Optische Potentiale für die Nukleon-Nukleon Wechselwirkung bis 3 GeV

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von ANDREAS FUNK aus Lübeck

> > Hamburg 2002

Gutachter der Dissertation:	Prof. Dr. H.V. von Geramb Prof. Dr. J. Bartels
Gutachter der Disputation:	Prof. Dr. H.V. von Geramb Prof. Dr. W. Scobel
Datum der Disputation:	2. Dezember 2002
Vorsitzender des Prüfungsausschusses:	Dr. H.D. Rüter
Vorsitzender des Promotionsausschusses:	Prof. Dr. G. Huber
Dekan des Fachbereichs Physik:	Prof. Dr. FW. Büßer

Zusammenfassung

Traditionell wird die Nukleon-Nukleon-Wechselwirkung durch ein Potential für den Anwendungsbereich zwischen 0 und 300 MeV formuliert. In dieser Arbeit wird der Anwendungsbereich erweitert auf 0 bis 3 GeV. Die Potentialbeschreibung ist beschränkt auf die elastische Streuung. Diese Einschränkung bedingt die Einführung nicht hermitescher Potentiale, die auch als optische Potentiale bekannt sind. Die Erweiterung erfolgt im Rahmen einiger explizit spezifizierter Potentialklassen, bei denen die Anwendungen in weiterführenden kernphysikalischen Problemen eine zentrale Bedeutung haben. Die Formfaktoren der Potentiale werden im Ortsraum definiert. Mit der Einführung komplexwertiger Potentiale im Partialwellenformalismus wird eine exakte Reproduktion des Nukleon-Nukleon Datenmaterials aus der neuesten Phasenanalyse bis 3 GeV von Arndt et al. in SAID garantiert. Die Erweiterung der Nukleon-Nukleon-Wechselwirkung im Rahmen eines optischen Potentials erlaubt eine Vielzahl von Interpretationen, die in qualitativer und quantitativer Form zum Ausdruck gebracht werden. Besonders betont sei die kurzreichweitige Korrelation beim Nukleon-Nukleon Stoßprozess, die bei Streuenergien über 1 GeV die Verschmelzung bzw. Spaltung der QCD-Bereiche impliziert. Oberhalb von $T_{Lab} \sim 1.3 \text{ GeV}$ ist der Pauli'sche Abstoßungsdruck überwunden und die Verschmelzung mit anschließender Teilchenerzeugung liefert Stromverluste in Abhängigkeit von Radius und Energie. Die physikalische Interpretation des optischen Potentials wird ausführlich behandelt und die numerischen Ergebnisse sind als Abbildungen und Tabellen für weiterführende Arbeiten in dieser Dissertation aufgenommen worden.

Neben der grundsätzlichen Bedeutung eines Nukleon-Nukleon-Potentials für niedere und mittlere Energien (bis 3 GeV) besteht großer Bedarf für solche hochqualitativen Potentiale in der mittelenergetischen Nuklearphysik, wie den Transmutationsprojekten, Spallationsquellen, Erzeugung und Beschreibung exotischer Kerne sowie alle damit verbundenen Kernreaktionen. Eine Anwendung des hier definierten Nukleon-Nukleon optischen Potentials ist die mikroskopische Analyse der Nukleon-Kern-Streuung für die elastische Protonstreuung an ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca und ¹⁶O. Theoretisch erfolgt dies im Rahmen des full-folding optischen Potentials für die Nukleon-Kern-Streuung.

Damit wird der Zusammenhang zwischen der elementaren Nukleon-Nukleon-Wechselwirkung mit der Nukleon-Kern-Wechselwirkung mikroskopisch quantitativ formuliert und durch exemplarische Ergebnisse in seiner Richtigkeit unter Beweis gestellt. Die Berücksichtigung relativistischer Effekte bleibt im Rahmen der bekannten Näherungen der Kernphysik. Die Einführung effektiver Wechselwirkungen von zwei Nukleonen, die eingebettet sind in das nukleare Medium, resultiert in effektiven Wechselwirkungen, wie tund g-Matrizen. Diese bilden die Grundlage aller mikroskopischen Theorien des nuklearen Viel-Teilchen-Problems, welches mit dem neuen Nukleon-Nukleon optischen Potential eine sehr wesentlich erweiterte Grundlage mit Anwendung findet. Die gegenwärtigen Entwicklungsprojekte der Kernphysik werden als Referenz und Zielgruppe in der Arbeit genannt.

Abstract

The tradidional nucleon nucleon interaction is described by potentials, which claim to be valid between 0 and 300 MeV. In this work these are extended to energies between 0 and 3 GeV. The potential framework is limited to elastic scattering. This limitation leads us to non hermitian potentials, which are known as optical potentials. Within this extension we explicitly use some classes of potentials, where the focus lies on the application in current problems of nuclear physics. The form factors of these potentials are defined in R-space. With the introduction of complex potentials in partial wave formalism we provide an exact reproduction of nucleon nucleon scattering data given by the latest phase shift analysis from Arndt et al. in SAID, which reaches up to 3 GeV. The extension of the nucleon nucleon interaction with an optical potential provides many physical interpretations, which are discussed qualitatively and quantitatively. The main point is the short range correlation in nucleon nucleon collisions which implies fusion and fission of QCD objects at scattering energies above 1 GeV. Above 1.3 GeV the nucleons overcome the Pauli-blocking and fusion with particle production leads to losses of flux dependent on radius and energy. The physical interpretation is treated in detail and the numerical results are given as figures and tables for further use.

Besides the principal meaning of a nucleon nucleon potential for low and medium energies, up to 3 GeV, there is a great demand for such high quality potentials in medium energy nuclear physics like transmutation projects, spallation sources, production and description of exotic nuclei and related nuclear reactions. One application of the nucleon nucleon optical model potential is the microscopic description of nucleon nucleus scattering in the case of elastic proton scattering from ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca and ¹⁶O. This is done in the framework of the full-folding optical model for nucleon nucleus scattering.

The relation between the elementary nucleon nucleon interaction and the nucleon nucleus interaction is formulated quantitatively and microscopically with some results to show examplary proofs of its correctness. The treatments of relativistic effects stay within the known approaches of nuclear physics. The introduction of effective nucleon nucleon interactions for nucleons in nuclear medium, $T_{Lab} < 3$ GeV, leads to an extended table of high quality t- and g-matrices as effective interactions. These are basic for all microscopic theories of nuclear many body problems and are essentially extended with the nucleon nucleon optical model. Further developments of nuclear physics are briefly discussed in this work to give an outlook and reference.

Inhaltsverzeichnis

1	Einleitung				
2	Opt	isches Potentialmodell	6		
	2.1	Überblick über die experimentellen Daten und Motivation des op-			
		tischen Potentials	6		
	2.2	Bewegungsgleichungen	27		
	2.3	Einfache Potentialmodelle	29		
	2.4	Potentialmodelle mit Hintergrundpotential	30		
3	Sepa	arable optische Potentiale	43		
	3.1	Die Hamilton-Operatoren	43		
	3.2	Konstruktion des optischen Potentials	45		
	3.3	Eigenschaften des NN optischen Potentials	48		
4	Anv	vendung des NNOMP in der Nukleon-Kern-Streuung	65		
	4.1	Nukleon-Kern-Streuung	65		
	4.2	Full-folding Modell	68		
		4.2.1 Der Zwei-Teilchen Propagator	77		
		4.2.2 Explizite Berechnung des optischen Potentials	78		
	4.3 Ergebnisse				
		4.3.1 Medium- und Fermi-Effekte	80		
		4.3.2 Totale Wirkungsquerschnitte	81		
		4.3.3 Differentielle Wirkungsquerschnitte	87		
5	Zusammenfassung und Ausblick				
	5.1	Zusammenfassung	95		
	5.2	Ausblick	98		
Li	teratı	urverzeichnis	98		
Ar	nhäng	ge 1	07		

A	Relativistische Kinematik in der NA-Streuung	107
B	Berechnung der t-Matrix und Coulomb-Effekt	110
С	Relativistische Kinematik und Schwellwertenergien	114
D	Stärken der Gaußpotentiale	119

Kapitel 1

Einleitung

Eine theoretische Beschreibung der Nukleon-Nukleon- (*NN*-) Streuung ist ein fundamentaler Bestandteil des Verständnisses von Kernstruktur und Streuung von Mehr- und Viel-Teilchen-Systemen [Fes92, Mac89, Mac01b, Mac01c]. So lautet ein Paradigma der Kernphysik. Die Niederenergiestreuung wird traditionell mit wenigen Freiheitsgraden beschrieben, von denen Spin- und Isospin die vorherrschende Rolle spielen. Bei mittleren Energien werden Teilchenproduktion und Inelastizitäten bedeutend, und mehrere Elementarteilchensysteme aus Nukleonen und Mesonen tragen zur *NN*-Streuung bei. Als emergente Struktur aus der Quantenchromodynamik (QCD) gibt es derzeit keine quantitative Beschreibung dieser Nukleonen und Mesonen in der *NN*-Streuung oberhalb der inelastischen Schwelle, weder durch die QCD noch durch die emergenten Nukleonen und Mesonen [Myh88, Kus91].

Die grundsätzlichen Eigenschaften der Wechselwirkung sind heute wohlbekannt. Sie ist kurzreichweitig, bei mittleren Distanzen kommt es zur Attraktion, bei kleineren Abständen zur Repulsion. Aus dem magnetischen Moment und dem Quadrupolmoment des Deuterons und der Beimischung des ${}^{3}D_{1}$ Zustands folgt, dass es eine Tensorkraft geben muss.

Theoretisch unbestritten ist die Notwendigkeit einer relativistischen Behandlung [Pol98, Kam98, Wal01]. Dazu gibt es zwei Aspekte zu beachten. Der erste ist die steigende Bedeutung der relativistischen Kinematik, wenn die kinetische Energie die Größenordnung der Ruhemassen der gestreuten Teilchen erreicht. Zweitens ist die Teilchenproduktion *per se* relativistisch und benötigt eine Beschreibung durch die hochgradig nichtlineare QCD. Diese Nichtlinearität verhindert aber eine einfache Beschreibung der *NN*-Streuung durch die QCD. Ungeachtet dessen existieren Hybridmodelle, die diese Nichtlinearität bei der Suche nach einer Erklärung der Streuung und der hadronischen Anregungsspektren in andere Bereiche verschieben [Kuk98, Jen01]. Alle benutzen schwere Valenzquarks mit einer typischen effektiven Masse von 300 MeV und massive Goldstone Bosonen anstelle masseloser Gluonen. Auch Farbfreiheitsgrade sind in diesen Modellen enthalten. Dazu gibt es effektive Quantenfeldtheorien, die die Quark-Gluon Struktur des Standardmodells mit der niederenergetischen Kernphysik verbinden [Sca97, Kap98, Bea98, Ric99]. Das derzeitige hohe Ansehen der Quantenfeldtheorien stammt daher, dass sie Begründung und Interpretation der emergenten Struktur geben. Aber genau wie die Hybridmodelle führen auch sie viele Freiheitsgrade *ad hoc* ein.

Ein erstes, bereits entscheidendes Problem bei der Erstellung eines NN-Potentials ist die Bewertung der Datenbasis. Die bekannten Phasenanalysen stammen heute aus der Gruppe um Arndt und im Bereich bis 350 MeV von der Gruppe in Nijmegen. Als diese in den achtziger Jahren begann sich intensiv um die Verbesserung der NN-Potentiale und Phasenanalysen zu bemühen, bestand der erste Schritt in einer kritischen Durchsicht der Weltdatenbasis bis 350 MeV Laborenergie seit 1955. Dabei wurden alle Datenpunkte, die ein ungewöhnlich großes oder kleines χ^2 haben, ausgeschlossen [Ber88, Ber90, Sto93a]. Das χ^2 /Datum verbessert sich damit von 1.4 [Bug92] auf 0.99 im Jahre 1993 [Sto93a], bzw. heute auf 1.09 nach dem Hinzufügen neuer Daten. Gewonnen wurden diese Phasenanalysen über einen Fit der Potentiale mit energieabhängigen Zusatztermen. Die Phasenverschiebungen ergaben sich durch Einsetzen der Potentiale in die Schrödinger Gleichung. In diesem Sinne muß man von Potentialanalysen anstelle von Phasenanalysen sprechen. Die Phasenanalyse SP40 von Arndt, die die gesamte Weltdatenbasis bis 400 MeV berücksichtigt erreicht χ^2 /Datum von 1.27/1.41 (*pp/np*). In dieser Arbeit werden ausschließlich die Phasenanalysen von Arndt verwendet.

Die experimentellen NN-Daten und ihre Parametrisierungen durch Amplituden und Phasenverschiebungen zeigen im Energiebereich bis 3 GeV ein sehr glattes Verhalten [Arn83, Arn87, Arn92, Arn94a, Arn94b, Arn97, Bys87, Leh87, LL87, LL93, All98, All99a, All99b, All00, Arn00]. Diese Eigenschaft unterstützt die klassische Herangehensweise der Verwendung eines NN-Potentials. Wir verwenden eine minimale Anzahl von Freiheitsgraden, die durch Spin und Isospin gegeben sind. Durch diese klassische Herangehensweise wird der explizite Bezug auf die zugrundeliegende QCD Substruktur aufgegeben. Dennoch reflektiert die zugrundeliegende Dynamik deren geometrische Aspekte durch Oberflächen und Randbedingungen. Der Erfolg des Bag-Modells gibt eine direkte Evidenz für die entscheidende Rolle, die diese Randbedingungen spielen mit den emergenten Strukturen als direkte Konsequenz des QCD Confinements. Dies ist ein weiterer Beleg für die Ansicht, dass eine Beschreibung der elastischen NN-Streuung nicht, oder nicht notwendigerweise, explizit von den Details der QCD abhängt. Nur geometrische Einflüsse wie Radius, Formfaktor und eventuelle kanalabhängige Randbedingungen aus dem QCD Confinement werden zur Beschreibung der meisten Daten benötigt. Durch die Hochenergiestreuung, in der die geometrischen Grenzwerte der S-Matrix bei energieunabhängigen Formfaktoren erreicht werden, erhält diese Betrachtungsweise eine weitere Unterstützung. Im Übergangsbereich werden die geometrischen Grenzwerte nicht erreicht, und die Faktorisierungsschemata [Lo87, Mat94, Lan01] der Hochenergiestreuung finden keine Anwendung.

Natürlich gab es in den letzten Jahren mehrere auf Bosonaustausch basierte Rechnungen zur Beschreibung der *NN*-Streuung unter 1 GeV. Alle haben qualitative Ergebnisse erreicht, oft unter Zuhilfenahme vieler Freiheitsgrade, nur um qualitative Übereinstimmung zu erreichen und trotz expliziter Berücksichtigung der Δ und *N** Resonanzen. Mehrere sogenannte High Quality Potentiale haben sich im Laufe der neunziger Jahre etabliert. Diese Potentiale, gestartet mit dem physikalischen Anspruch die nukleonische Wechselwirkung durch Mesonaustausch darzustellen, hatten gleichwohl das Ziel, die Datenbasis quantitativ zu beschreiben. Ein präziser Fit an die Daten ist auch nötig, um die Potentiale durch ihre Vorhersagefähigkeit testen zu können.

Trotz des hohen physikalischen Anspruchs werden aber in diese Potentiale phänomenologische Ansätze hineingesteckt um ein sinnvolles long-range Verhalten annehmen zu können [Jaf79]. Bei all diesen Potentialen liegt die Anzahl der freien Parameter in der Größenordnung von 45. Man kann sagen, diese Potentiale sind entstanden im Geiste der Meson-Austauschtheorie, in dem Sinne, dass sie das langreichweitige Ein-Pion-Austausch Verhalten zeigen [Mac01b].

Beteiligt an der Entwicklung dieser Potentiale waren

- die Nijmegen Gruppe mit den Nij-I, Nij-II und Reid93 Potentialen [Sto94],
- die Argonne Gruppe mit dem AV18 Potential [Wir95],
- die Bonner Gruppe mit dem CD-Bonn Potential [Mac96, Mac01a].

Diese Potentiale und auch das bereits 1980 entstandene Parispotential [Lac80] beschreiben das langreichweitige Verhalten durch den Mesonaustausch. Unterschiede gibt es in der Art der betrachteten mesonischen Prozesse und in der Behandlung von nichtlokalen oder energieabhängigen Termen. Gemeinsam ist diesen Potentialen, dass der mittel- und kurzreichweitige Anteil, der von der QCD bestimmt wird, auf phänomenologische Weise behandelt wird. Damit ist durch die mesontheoretisch motivierten Potentiale auch die physikalische Berechtigung der Inversionpotentiale gegeben, denn diese zeigen auch das langreichweitige Ein-Pion-Austauschverhalten, haben aber den Vorteil, dass sie aufgrund ihrer Konstruktion jederzeit an neue Daten angepasst werden können.

Optische Modelle sind im Mittel- und im unteren Hochenergiebereich bis 3 GeV untersucht worden [Neu91, Ger98, Ger01], und sie können noch verbessert werden um eine hochqualitative Beschreibung der Mittelenergiestreuung zu geben.

Ein hochqualitativer Fit der on-shell t-Matrizen ist deshalb wünschenswert, weil er eine Erweiterung in den off-shell Bereich ermöglicht. Dieser wird für Mehr- und Viel-Teilchen Rechnungen benötigt. Insbesondere mikroskopische optische Modellpotentiale für elastische Nukleon-Kern-Streuung und Bremsstrahlungsreaktionen, die quantitative Ergebnisse liefern sollen, benötigen eine sorgfältige und exakte Behandlung der off-shell *NN* t-Matrizen [Amo00]. Solche Rechnungen haben gezeigt, dass es unumgänglich ist, t-Matrizen zu haben, deren onshell Werte im gesamten Energieintervall mit den *NN*-Daten übereinstimmen. Entsprechend werden Präzisionsdaten benötigt um die *NN* Wechselwirkungen zu bestimmen.

Es gibt viele Untersuchungen von Mehr- und Viel-Teilchen-Systemen im Niederenergiebereich $T_{Lab} < 300$ MeV, und ihre Ergebnisse haben Auswirkungen auch auf den Bereich oberhalb der Pionschwelle [Mac01c]. In diesem Zusammenhang muss festgestellt werden, dass es in diesem Bereich signifikante Unterschiede in den off-shell t-Matrizen der theoretisch motivierten Bosonaustauschmodelle gibt. Bei solchen Unterschieden bleibt es deshalb schwierig, mit Sicherheit bestimmte dynamische oder kinematische Eigenschaften festzulegen. Nichtlokalität, explizite Energieabhängigkeit oder mit der relativistischen Kinematik verknüpfte Zusammenhänge seien hier genannt.

Im Gegensatz dazu steht der Zugang über die Quanteninversion, durch den jede on-shell t-Matrix in den off-shell Bereich fortgesetzt werden kann [Kir91]. Eine Methode ist der Gel'fand-Levitan-Marchenko Inversionsalgorithmus für Sturm-Liouville Gleichungen. Dieser Zugang zu den off-shell t-Matrizen ist immer dann geeignet, wenn die physikalische S-Matrix unitär und die Bewegungsgleichung vom Sturm-Liouville Typ ist. Dies gilt ohne Einschränkung für NN t-Matrizen im Energiebereich unter 300 MeV. Mathematisch betrachtet basiert der Gel'fand-Levitan-Marchenko Algorithmus auf einer Klasse von reellen und regulären Potentialen. Im Sinne der inversen Streuphysik verallgemeinern wir diese Methode auf nichtunitäre S-Matrizen. Mit diesem Werkzeug erzeugen wir für jede Partialwelle einzeln ein optisches NN-Potential. Der verwendete Algorithmus erlaubt Untersuchungen von komplexen, separablen Potentialen in Verbindung mit jedem beliebigen Hintergrundpotential. Als Hintergrundpotentiale kommen alle existierenden Ortsraum NN-Potentiale in Betracht. Hintergrundpotentiale im Impulsraum, wie Bonn-B [Mac89], Bonn-CD [Mac01a] oder OSBEP [Jä98], haben wir nicht untersucht, obwohl man auch mit diesen ähnliche Betrachtungen anstellen kann.

Wir beschränken uns bei den Hintergrundpotentialen auf die bekannten Ortsraumpotentiale Paris [Lac80], Nijmegen, [Sto93b, Sto93a, Sto94], Argonne [Wir95] und auf die Inversionpotentiale [Kir89, Ger94, San97]. Zu diesen addieren wir kanalabhängige komplexe separable Potentiale mit energieabhängigen Stärken. Bei gegebenen Eingabedaten (Phasenverschiebungen) erhalten wir dann eindeutige Potentiale.

Im zweiten Kapitel soll zunächst eine Einführung in die experimentelle Situa-

tion und eine Motivation des optischen Potentials gegeben werden. Anschließend werden einige einfache Potentialmodelle und Ergebnisse dazu vorgestellt. Im dritten Kapitel werden das separable optische Potentialmodell für die *NN*-Streuung und Ergebnisse dazu erläutert. Ein wesentlicher Teil dieser Ergebnisse ist bereits veröffentlicht worden [Fun01]. Im vierten Kapitel wird eine Anwendung des optischen Nukleon-Nukleon Potentialmodells (NNOMP) auf die Nukleon-Kern-(*NA*-) Streuung vorgestellt. Diese sind in [Are02] veröffentlicht. Im letzten Kapitel wird die Arbeit zusammengefasst und es wird ein Ausblick gegeben auf ein Potential auf der Basis der relativistischen Constraint Dynamics von Dirac [Dir49].

Kapitel 2

Optisches Potentialmodell

2.1 Überblick über die experimentellen Daten und Motivation des optischen Potentials

Die *NN*-Streuung ist ein lange diskutiertes Problem, das mit der Entwicklung der Datenbasis immer wieder neu behandelt worden ist [Arn83, Arn87, Arn92, Arn94a, Arn94b, Arn97, Bys87, Leh87, LL87, LL93, All98, All99a, All99b, All00, Mac01a, Sto93a]. Die Niederenergiedaten sind von der VPI/GWU Gruppe bis 400 MeV [Arn00], von der Nijmegen Gruppe mit den PWA93 Phasenanalysen bis 350 MeV [Sto93a] und von Machleidt mit dem Bonn-CD-2000 [Mac01a] untersucht worden.

Die VPI/GWU Gruppe hat über Jahre hinweg viele Lösungen für diesen Energiebereich angegeben, die von Arndt et al. in seiner aktuellen Veröffentlichung [Arn00] aufgeführt sind. Die derzeit erhältlichen Lösungen sind in Tab. (2.1) angegeben. Die Namen der Lösungen enthalten die Jahreszeit und das Jahr ihrer Erstellung, die Niederenergielösungen enden auf die Zahl 40. Die Weltdatenbasis hat sich in den letzten zwei Jahrzehnten rapide vergrößert, wie auch den Abbildungen (2.1) und (2.2) zu entnehmen ist. Während die pp Daten derzeit bis 3 GeV reichen, sind die *np* Daten auf den Bereich unter 1.3 GeV beschränkt. Überraschenderweise haben sich die Lösungen von SM97 zu WI00 nur geringfügig geändert und zeigen sich sehr stabil in Bezug auf das Hinzufügen neuer Daten. Für die derzeit aktuelle Lösung SP02 gilt dies nur eingeschränkt, hier sind einige Unterschiede aufgetreten. Diese betreffen besonders den ${}^{1}D_{2}$ Kanal und den Imaginärteil der Phase im ${}^{1}S_{0}$ Kanal. Für unsere Rechnungen haben wir SP00, FA00 und WI00 Lösungen verwendet und die Ergebnisse haben nur marginal differiert. Deswegen werden wir uns im weiteren auf die Ergebnisse von SP00 stützen. Eine Zusammenstellung der Phasen ist in den Abbildungen (2.3-2.6) zu sehen.

Die VPI/GWU Lösungen sind Parametrisierungen der S-Matrix in den elasti-

Abbildung 2.1: Entwicklung der Datenbasis von SAID von 1980 bis heute. Die Zahl der pp Datenpunkte ist in rot dargestellt, die der np Datenpunkte in grün.

Abbildung 2.2: Entwicklung der Niederenergiedatenbasis unterhalb der Pionschwelle von SAID von 1980 bis heute. Die Zahl der pp Datenpunkte ist in rot dargestellt, die der np Datenpunkte in grün.

Abbildung 2.3: Realteile der Einkanal *np* Phasenverschiebungen. Die kontinuierlichen SP02 Lösungen sind rot dargestellt, die SP02 Lösungen zu einzelnen Energien durch rote Kreuze und Fehlerbalken, die kontinuierlichen SP00 Lösungen grün, die SP00 Lösungen zu einzelnen Energien durch grüne Kreuze und Fehlerbalken und die kontinuierlichen SM97 Lösungen in Magenta.

Abbildung 2.4: Realteile der np Phasenverschiebungen für die gekoppelten ${}^{3}SD_{1}$ und ${}^{3}PF_{2}$ -Kanäle. Die kontinuierlichen SP02 Lösungen sind rot dargestellt, die SP02 Lösungen zu einzelnen Energien durch rote Kreuze und Fehlerbalken, die kontinuierlichen SP00 Lösungen grün, die SP00 Lösungen zu einzelnen Energien durch grüne Kreuze und Fehlerbalken und die kontinuierlichen SM97 Lösungen in Magenta.

Abbildung 2.5: Imaginärteile der Einkanal *np* Phasenverschiebungen. Die kontinuierlichen SP02 Lösungen sind rot dargestellt, die SP02 Lösungen zu einzelnen Energien durch rote Kreuze und Fehlerbalken, die kontinuierlichen SP00 Lösungen grün, die SP00 Lösungen zu einzelnen Energien durch grüne Kreuze und Fehlerbalken und die kontinuierlichen SM97 Lösungen in Magenta.

Abbildung 2.6: Imaginärteile der np Phasenverschiebungen für die gekoppelten ${}^{3}SD_{1}$ - und ${}^{3}PF_{2}$ -Kanäle. Die kontinuierlichen SP02 Lösungen sind rot dargestellt, die SP02 Lösungen zu einzelnen Energien durch rote Kreuze und Fehlerbalken, die kontinuierlichen SP00 Lösungen grün, die SP00 Lösungen zu einzelnen Energien durch grüne Kreuze und Fehlerbalken und die kontinuierlichen SM97 Lösungen in Magenta.

Lösung	$T_{Lab}(pp/np)(MeV)$	χ^2/pp Datum	χ^2/np Datum
SP02	0-3000/1300	39116/22892 = 1.71	20454/12454 = 1.64
WI01	0-3000/1300	39082/22892 = 1.71	20609/12404 = 1.66
WI00	0-3000/1300	38560/22884 = 1.69	20418/12406 = 1.65
WI40	0-400/400	4457/3452 = 1.29	6585/4467 = 1.47
FA00	0-3000/1300	38493/22884 = 1.68	18723/11472 = 1.63
SM00	0-3000/1300	36735/21797 = 1.69	18674/11472 = 1.63
SM99	0-2500/1300	33832/21041 = 1.61	18688/11407 = 1.64
SP40	0-400/400	4398/3452 = 1.27	5415/3855 = 1.40
SM97	0-2500/1300	28686/16994 = 1.69	17437/10854 = 1.61
VV40	0-400/400	3035/2170 = 1.40	4547/3532 = 1.29
SM94	0-1600/1300	22375/12838 = 1.74	17516/10918 = 1.60
VZ40	0-400/400	3098/2170 = 1.43	4595/3367 = 1.36
FA91	0-1600/1100	20600/11880 = 1.73	13711/7572 = 1.81
VL40	0-350/350	2792/1919 = 1.45	4292/3026 = 1.42
SM86	0-1200/1100	11900/7223 = 1.65	8871/5474 = 1.62
SP82	0-1200/1100	9199/5207 = 1.77	9103/5283 = 1.69

Tabelle 2.1: Von SAID erhältliche Lösungen.

schen Kanälen [Arn82]. Der Zusammenhang zwischen S- und K-Matrix

$$S_1 = (1 + iK_4)(1 - iK_4)^{-1}, (2.1)$$

ergibt umgekehrt

$$K_4 = i(1 - S_1)(1 + S_1) = \operatorname{Re}K_4 + i\operatorname{Im}K_4.$$
 (2.2)

Der Realteil dieser K-Matrix entspricht einer unitären S-Matrix (S_6) und damit den Phasenverschiebungen δ^{\pm} und ε , die über

$$S_6 = \frac{(1 + iReK_4)}{(1 - iReK_4)} = \begin{pmatrix} \cos(2\varepsilon)\exp(2i\delta^-) & i\sin(2\varepsilon)\exp(i(\delta^- + \delta^+)) \\ i\sin(2\varepsilon)\exp(i(\delta^- + \delta^+)) & \cos(2\varepsilon)\exp(2i\delta^-) \end{pmatrix}$$
(2.3)

definiert sind. Die Absorptionsparameter ρ^\pm und μ ergeben sich aus dem Imaginärteil der K-Matrix mittels

$$\mathcal{I}mK_4 = \begin{pmatrix} \tan^2 \rho^- & \tan \rho^- \tan \rho^+ \cos \mu \\ \tan \rho^- \tan \rho^+ \cos \mu & \tan^2 \rho^+ \end{pmatrix}.$$
 (2.4)

Im Einkanalfall vereinfachen sich diese Beziehungen zu $K = \tan \delta + i \tan^2 \rho$.

Für unsere Untersuchungen haben wir reelle *NN*-Potentiale aus der inversen Streutheorie bei festem Drehimpuls verwendet. Sie wurden mit einem Inversionsalgorithmus erzeugt, der auf den Gel'fand-Levitan-Marchenko Integralgleichungen basiert [Kir89]. Diese begründen sich physikalisch auf die radiale Schrödinger Gleichung bei festem Drehimpuls

$$\left[-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2} V_\ell(r)\right] \psi_\ell(r,k) = k^2 \psi_\ell(r,k),$$
(2.5)

wo $V_{\ell}(r)$ ein lokales und energieunabhängiges Potential im Ortsraum ist. Substituiert man mit

$$q(r) = \frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2} V_{\ell}(r) \quad \text{und} \quad \lambda = k^2,$$
(2.6)

so erhält man die Sturm-Liouville Gleichung

$$\left[-\frac{d^2}{dx^2} + q(x)\right]y(x) = \lambda y(x).$$
(2.7)

Es gibt zwei häufig verwendete und im Ergebnis äquivalente Inversionsalgorithmen für die Sturm-Liouville Gleichung, die Marchenko- und die Gel'fand-Levitan Inversion. Beide führen prinzipiell auf die gleiche Lösung, verhalten sich aber numerisch komplementär. Die wichtigsten Schritte seien für den Einkanalfall kurz umrissen. Im gekoppelten Fall handelt es sich um Matrixgleichungen mit entsprechend verallgemeinerten Ein- und Ausgabekernen [Koh94].

Im Fall der Marchenko Inversion wird die experimentelle Information über die S-Matrix, $S_{\ell}(k) = \exp(2i\delta_{\ell}(k))$ erzeugt, aus der der Eingabekern durch eine Fourier-Hankel-Transformation hervorgeht

$$F_{\ell}(r,t) = -\frac{1}{2\pi} \int_{-\infty}^{+\infty} h_{\ell}^{+}(rk) [S_{\ell}(k) - 1] h_{\ell}^{+}(tk) dk, \qquad (2.8)$$

mit den Riccati-Hankel Funktionen h_{ℓ}^+ . Dieser Eingabekern eingesetzt in die Marchenko Gleichung

$$A_{\ell}(r,t) + F_{\ell}(r,t) + \int_{r}^{\infty} A_{\ell}(r,s) F_{\ell}(s,t) ds = 0,$$
(2.9)

führt auf den Translationskern $A_{\ell}(r,t)$. Das Potential aus Gl. (2.5) ist mit dem Translationkern verbunden über

$$V_{\ell}(r) = -2\frac{d}{dr}A_{\ell}(r, r).$$
 (2.10)

Die Gel'fand-Levitan Inversion benötigt im Gegensatz zur Marchenko Inversion nicht die S-Matrix, sondern die Jost Funktion als spektrale Eingabe. Die Beziehung zur S-Matrix lautet

$$S_{\ell}(k) = \frac{F_{\ell}(-k)}{F_{\ell}(k)}.$$
(2.11)

Der Gel'fand-Levitan Eingabekern ist gegeben durch die Fourier-Bessel-Transformierte

$$G_{\ell}(r,t) = \frac{2}{\pi} \int_{0}^{\infty} j_{\ell}(rk) \left(\frac{1}{|F_{\ell}(k)|^{2}} - 1\right) j_{\ell}(tk) dk,$$
(2.12)

mit den Riccati-Bessel Funktionen $j_{\ell}(x)$. Die Gel'fand-Levitan Integralgleichung

$$K_{\ell}(r,t) + G_{\ell}(r,t) + \int_{0}^{r} K_{\ell}(r,s)G_{\ell}(s,t)ds = 0$$
(2.13)

definiert den Translationskern $K_{\ell}(r, t)$ mit der Randbedingung

$$V_{\ell}(r) = 2 \frac{d}{dr} K_{\ell}(r, r).$$
 (2.14)

Beide Integralgleichungen führen auf identische Potentiale.

Die Bestimmung der Eingabekerne aus den Daten, Phasenverschiebungen $\delta(T_{Lab}(k))$ oder K-Matrizen $K(T_{Lab}(k))$ erfordert eine genaue Interpolation und Extrapolation dieser Daten. Für alle praktischen Anwendungen haben sich rationale Funktionen als geeignet erwiesen. Für die Daten bis 3 GeV haben wir eine Darstellung durch rationale Funktionen $R^{[2N-1,2N]}(k) = P^{[2N-1]}/P^{[2N]}$ mit möglichst kleinen Werten für N verwendet. Typische Werte von N liegen zwischen 2 und 6. Wichtig ist, dass das Vorzeichen von $\delta(k)$ sich nach dem energetisch höchsten Punkt nicht mehr ändert und asymptotisch $\lim_{k\to\infty} \delta(k) \sim 1/k$ erreicht wird. Mit Gewichtsfunktionen erreichen wir einen besonders guten Fit in einem bestimmten Intervall und einen weniger guten in anderen Bereichen. So war in den ${}^{1}S_{0}$, ${}^{1}P_{1}$, ${}^{3}P_{0,1}$, ${}^{3}D_{2}$ und ${}^{1}F_{3}$ Kanälen das Gewicht 1 unterhalb 1.2 GeV und 0.05 darüber. Für ${}^{1}D_{2}$ und ${}^{3}F_{3}$ lag die Grenze schon bei 300 MeV. Diese rationalen Funktionen stellen sicher, dass die durch den Inversionsalgorithmus gewonnenen Potentiale nach Lösen der Schrödinger Gleichung die gewünschten Phasenverschiebungen ergeben. Dies ist aus den Abbildungen (2.7) und (2.8) klar ersichtlich. Hier kann man gut erkennen, dass die Fits der Phasenverschiebungen bis 300 MeV bei allen Modellen als hochqualitativ bezeichnet werden können. Diese Phasenverschiebungen wurden erzeugt mit Nijmegen-I und Nijmegen-II [Sto93b, Sto93a, Sto94] und Argonne AV18 [Wir95]

14

Abbildung 2.7: Einkanal *np* Phasenverschiebungen nach Arndt FA00, Arndt SM97, und berechnet nach Nijmegen-I, Nijmegen-II, AV18 und Inversion.

Abbildung 2.8: ${}^{3}SD_{1}$ und ${}^{3}PF_{2}$ *np* Phasenverschiebungen nach Arndt FA00, Arndt SM97, und berechnet nach Nijmegen-I, Nijmegen-II und AV18.

Wechselwirkungen und mit Gel'fand-Levitan-Marchenko Inversionspotentialen [Ger01, Kir89, Ger94, San97].

Auf der Skala bis 3 GeV zeigt sich, dass die Ein-Boson-Austausch (OBE) Modelle deutlich von den Daten abweichen. Genau wie die Phasenanalysen mussten auch die OBE Potentiale mehrere kritische Analysen erfahren [Mac01c, Mac01a]. Dazu gehört auch die Beobachtung kleiner Differenzen zwischen den Phasenanalysen und den Potentialmodellen schon unterhalb der Pionschwelle [Had01]. Ein stabiles theoretisches Ergebnis würde viele a priori gegebene Größen erfordern, Größen, die durch andere Quellen festgelegt sind. Dies scheint im Moment nicht möglich, deswegen beruhen alle aktuellen Potentiale auf Fits vieler Parameter an die gleichen Daten. Alle Fits sind jedoch mehr oder weniger unabhängig voneinander durchgeführt worden und basieren auf verschiedenen theoretischen Spezifikationen der Bosonaustauschdynamik. In den Abbildungen (2.9) und (2.10) sind die auftretenden Unterschiede zu sehen. Dort wurde die Nijmegen PWA93 [Sto93a] Phase im np ${}^{1}S_{0}$ und ${}^{3}P_{0}$ Kanal als Referenz genommen und die Differenzen von dieser zu den anderen Phasenanalysen oder den aus den Potentialmodellen berechneten Phasen aufgetragen. Solche Unterschiede sind charakteristisch für Variationen zwischen verschiedenen endlichen Potenzreihenentwicklungen von Datenpunkten in einem endlichen Intervall. Eine mathematische Eigenschaft solcher endlicher Potenzreihenentwicklungen im Intervall ist, dass die Datenpunkte im Intervall gut reproduziert werden, während die Fortsetzung außerhalb des Intervalls stark divergieren kann. Dies ist auch in den Abbildungen (2.7) und (2.8) deutlich zu erkennen und der Grund dafür, dass die Verwendung von OBE Potentialen oberhalb der gefitteten Energie nicht sinnvoll ist. Man würde von einer konsistenten Theorie aber erwarten, dass die Extrapolationen, wenn auch falsch, so aber doch alle gleich wären. Dies ist nicht der Fall. Der physikalische Mangel liegt innnerhalb einer Wechselwirkungsdistanz von 1 fm. Das in der vorliegenden Arbeit präsentierte optische Modell soll innerhalb der Potentialtheorie diese kurzreichweitigen Eigenschaften berücksichtigen und untersuchen.

Zum langreichweitigen Verhalten des *NN*-Potentials, das als Ein-Pion-Austauschpotential (OPEP) angenommen wird, sei folgendes angemerkt. In der PWA93 Analyse von Nijmegen und im Bonn-CD-2000 von Machleidt wird dieses Verhalten in allen Kanälen angenommen. Tatsächlich wird dies auch bestätigt, wenn eine dieser Phasen als Eingabe für die Gel'fand-Levitan-Marchenko Inversion verwendet wird. Auf der anderen Seite hat die VPI/GWU Gruppe die Ein-Pion-Austausch Amplituden nur in den Partialwellen mit den höheren Drehimpulsen berücksichtigt. In den kleineren Drehimpulsen ergibt die Quanteninversion zur SM94 Lösung kein OPEP Verhalten, sondern zeigt dies nur im Mittel, was man als Hinweis auf die Bedeutung der Nichtlokalität werten kann, aber eher eine Folge der VPI/GWU Parametrisierung ist [San97]. Das unterschiedliche Verhalten ist auch in der Abbildung (2.11) deutlich erkennbar.

Abbildung 2.9: Differenzen zwischen den verschiedenen np ${}^{1}S_{0}$ Phasenverschiebungen. Die Differenzen beziehen sich auf die Phasenanalyse Nijmegen PWA93.

Abbildung 2.10: Differenzen zwischen den verschiedenen np ${}^{3}P_{0}$ Phasenverschiebungen. Die Differenzen beziehen sich auf die Phasenanalyse Nijmegen PWA93.

Abbildung 2.11: Verschiedene Inversionspotentiale zum np ${}^{1}S_{0}$ Kanal.

Abbildung 2.12: Wechselwirkungsschema für niederenergetische NN-Streuung mit $T_{Lab} < 300$ MeV.

Trotz der oben gegebenen Einschränkungen bleiben die OBE Potentiale die physikalisch motivierten Potentiale für Niederenergiestreuung. Sie führen in diesem Bereich zu hochqualitativen Fits an die Phasenverschiebungen. Diese Eigenschaft macht sie nützlich für die Suche nach einer Interpretation der Daten bei steigender Energie. In Abbildung (2.12) ist ein Wechselwirkungsschema für verschiedene Radialbereiche bei niedrigen Energien dargestellt. Dieses Schema findet Unterstützung durch Inversionspotentiale, die die Niederenergiephasen mit einer Genauigkeit von 0.25 Grad reproduzieren. Es sind auch solche Inversionspotentiale berechnet worden, die der reellen SP00 Phase bis 1 GeV eng folgen, diese sind in Abbildung (2.13) gezeigt. Sie besitzen ein langreichweitiges Yukawa Verhalten, eine Attraktion bei mittleren Radien $\sim 1-2$ fm und eine kurzreichweitige starke Repulsion bei einem Radius von 1 fm. Diese Potentiale sind energieunabhängig, so dass man sagen kann, die lang- und mittelreichweitigen Anteile verlieren bei kinetischen Energien oberhalb 500 MeV an Bedeutung. Für Projektile mit $T_{Lab} > 1.5$ GeV kann deshalb nur das repulsive core für die Streuung von Bedeutung bleiben. Deshalb haben wir auch Inversionpotentiale zur reellen SP00 Phase bis 3 GeV berechnet mit einem Gewichtsfaktor von 0.1 für Energien unter 1.2 GeV und einem Gewichtsfaktor von 1 oberhalb 1.2 GeV. Dies dient dazu, den Hochenergieanteil zu betonen und den kurzreichweitigen Charakter unterhalb 1 fm in der Wechselwirkung besser festzulegen. Das kurzreichweitige Verhalten dieser Potentiale ist in Abbildung (2.14) gezeigt. Man kann deutlich sehen, dass es sich bei den gezeigten ${}^{1}S_{0}$, ${}^{3}P_{0,1}$ Potentialen um Soft Core Potentiale handelt. Diese Potentiale haben eine Schulter und ein Maximum mit einer typischen Stärke von ~ 1 GeV bei einem Radius von $\sim 0.3 - 0.4$ fm. Dieses Maximum im Potential ergibt sich aus einem breiten Minimum in der Phase im Bereich zwischen 1.5 und 2 GeV. Für höhere Drehimpulse liegt dieses Minimum oberhalb 3 GeV.

Abbildung 2.13: NN Inversionspotentiale zu den SP00 Phasenverschiebungen.

Abbildung 2.14: Kurzreichweitiges Verhalten der np Inversionspotentiale, die zum Realteil der SP00 Phase bis 3 GeV gefittet sind.

Abbildung 2.15: Schwellwertenergien für Produktionsprozesse in der *NN*-Streuung.

Weil die Phasenanalyse auf 3 GeV begrenzt ist, sind die angegebenen Inversionpotentiale nur bis zu einer Distanz oberhalb etwa 0.25 fm zuverlässig. Unterhalb dieses Abstands spiegelt sich in ihnen nur unsere Extrapolation der Phase und das angenommene asymptotische Verhalten $\lim_{k\to\infty} \delta(k) \sim 1/k$ wider.

Oberhalb von 300 MeV öffnen sich Reaktionskanäle und die elastische S-Matrix ist nicht länger unitär. In Abbildung (2.15) ist das graduelle Ansteigen der Anzahl der offenen Kanäle und Resonanzen sowie einfacher und mehrfacher Produktionsmechanismen in der NN-Streuung gezeigt. Eine tabellarische Aufstellung hierzu findet sich im Anhang C. Nur die $\Delta(1232)$ Resonanz hat eine niedrige Energieschwelle und eine relativ kleine Breite von 120 MeV. Deswegen ist sie die einzige, von der man erwarten kann, dass sie in den elastischen Streuphasen klar zu erkennen ist. In den ${}^{1}D_{2}$, ${}^{3}F_{3}$ und ${}^{3}PF_{2}$ Kanälen ist dies der Fall. Alle anderen Resonanzen haben entweder höhere Energieschwellen oder sind so breit und koppeln an so viele Kanäle, dass sie in den Phasenverschiebungen nicht eindeutig zu identifizieren sind. In den oben nicht genannten Kanälen sind die Phasen deshalb sehr glatte, sich langsam mit der Energie ändernde Funktionen. Dies ist die Bedingung für die Anwendbarkeit eines Potentialmodells, das sich von *quasi* makroskopischen, geometrischen Größen ableitet. Im Fall von NA-Streuung wer-

Abbildung 2.16: Wechselwirkungsschema für die NN-Streuung bei mittleren Energien mit $300 < T_{Lab} < 1500$ MeV.

den derartige Größen durch Parameter von Woods-Saxon-Potentialen dargestellt. Im *NN* Fall wurde früher ein lokales Gaußpotential verwendet [Ger98], wobei in qualitativer Übereinstimmung mit den unter 300 MeV gültigen Potentialen eine Spin-Isospin-Kopplung festgestellt wurde. Man muss dazu anmerken, dass die Absorption in diesen optischen *NN*-Potentialen nicht dem geometrischen Grenzwert einer total absorbierenden Scheibe entspricht. Zusammen mit der starken Spin-Isospin-Kopplung führt dies zu stark kanalabhängigen Potentialen, im Gegensatz zum *NA* Fall, wo die angenommenen Zentral- und Spin-Bahn-Potentiale drehimpulsunabhängig sind.

Im Sinne einer Visualisierung der *NN*-Streuung wie in Abbildung (2.12) schließen wir nun in Abbildung (2.16) auch die Bedeutung von Reaktionen und Resonanzen bildlich ein. Dies soll den Energiebereich von 0.3 bis 2 GeV abdecken. Die obere Grenze soll später diskutiert werden, für den Moment verweisen wir auf die Schulter und das Maximum im Inversionpotential bei 1 GeV, siehe auch Abb. (2.14). Wir gehen auf einige Einzelheiten im Bereich zwischen 0.5 und 1 fm ein. Die beiden kollidierenden Hadronen bleiben während des ganzen Prozesses im hadronischen Zustand. Eines der beiden Nukleonen kann angeregt werden, z.B. in ein $\Delta(1232)$, das andere bleibt im Grundzustand. Die Anregung kann zwischen den beiden Hadronen auch ausgetauscht werden, es können aber auch beide

Abbildung 2.17: Wechselwirkungsschema für hochenergetische NN-Streuung mit 2 GeV $< T_{Lab}$.

Nukleonen in einen intermediären Zustand angeregt werden. Die Mesonproduktion kann nur ausgehen von einer oder beiden der zwei separaten QCD-Einheiten. Wichtig ist, dass in diesem Energiebereich die den Streuprozess dominierenden Prozesse solche sind, die identifizierbare hadronische Einheiten enthalten. In einem optischen Modell führt der auftretende Stromverlust zu einer diffusen Absorption, die sich bis zu einem Abstand von 3 fm und mehr ausdehnt, auch wenn der Großteil der Absorption innerhalb 1 fm passiert. Dies wird im Kapitel 3 näher erläutert.

Man benötigt mindestens 2 GeV an Projektilenergie im Laborsystem, um im Schwerpunktsystem wenigstens 1 GeV zur Überwindung des repulsiven core Potentials und zur Verschmelzung zu einem zusammengesetzten System zur Verfügung zu haben. Dies ist in dem Streuschema in Abbildung (2.17) gezeigt. Die Zielsetzung unseres optischen Modells ist es, diese Vermutung über Fusion und Spaltung eines zusammengesetzten dibaryonischen Systems, das die Streuphysik in diesem Energiebereich dominiert, zu untermauern.

Zur Beschreibung der Entwicklung des Systems zwischen 0.3 und 3 GeV werden wir die Feshbach-Theorie verwenden um das optische Potential formal zu begründen [Fes00, Fes85]. Entscheidender Teil dieser Theorie ist der Projektionsoperatorformalismus mit den *P*- und *Q*-Unterräumen, die den Hilbertraum

P + Q = 1 in den Raum P der elastischen Streukanäle und den Raum Q der Reaktions- und inelastischen Kanäle aufteilen. Die Theorie nimmt dann eine Hierarchie der Vorgänge im Raum Q an, von denen die Doorway Zustände die einfachsten sind. Doorway Zustände zeichnen sich dadurch aus, dass sie die einzige Möglichkeit sind, den elastischen Kanal zu verlassen oder dorthin zurückzukehren. Jeder Doorway Zustand führt eine komplexe und separable Komponente mit einer energieabhängigen Stärke in das Potential ein. Wenn eine sehr große Anzahl von Doorway Zuständen partizipiert, kann der Effekt durch einen lokalen Potentialoperator dargestellt werden. Dies war die Basis der früheren Untersuchung [Ger98].

2.2 Bewegungsgleichungen

Eine kovariante Beschreibung der *NN*-Streuung ist formal gegeben durch die Bethe-Salpeter Gleichung

$$\mathcal{M} = \mathcal{V} + \mathcal{VGM},\tag{2.15}$$

wo \mathcal{M} die invarianten Amplituden der irreduziblen Zwei-Teilchen Diagramme, die auf \mathcal{V} basieren, sind. Diese Gleichung wird als Ansatz für die verschiedensten Näherungen verwendet. Speziell die dreidimensionalen Näherungen, die die Definition eines Potentials erlauben, haben eine große Verbreitung [Bla66, Gro92, Amg01, Ram01, Sav01]. Hier muss besonders die dreidimensionale Blankenbecler-Sugar Reduktion [Bla66] erwähnt werden, die auf eine Gleichung führt, die für Anwendungen in der *NN*-Streuung oft benutzt wird [Mac01a, Par70]. Diese Reduktion kann man aus Gl. (2.15) erhalten, die in Vierer-Impulsen ausgedrückt lautet

$$\mathcal{M}(q',q;P) = \mathcal{V}(q',q,P) + \int d^4k \mathcal{V}(q',k;P) \mathcal{G}(k;P) \mathcal{M}(k,q;P), \quad (2.16)$$

mit dem Propagator

$$\mathcal{G}(k;P) = \frac{i}{(2\pi)^4} \left[\frac{\frac{1}{2} \not\!\!\!P + \not\!\!\!/ + M}{\left(\frac{1}{2}P + k\right)^2 - M^2 + i\epsilon} \right]_{(1)} \left[\frac{\frac{1}{2} \not\!\!\!P - \not\!\!\!/ + M}{\left(\frac{1}{2}P - k\right)^2 - M^2 + i\epsilon} \right]_{(2)} .$$
(2.17)

Die Indizes beziehen sich auf das Nukleon (1) bzw. Nukleon (2). Im Schwerpunktsystem ist $P = (\sqrt{s}, 0)$ gerade die Gesamtenergie $E = \sqrt{s}$. Die Blankenbecler -Sugar Reduktion verwendet die kovariante Form

$$\mathcal{G}_{BS}(k,s) = -\frac{\delta(k_0)}{(2\pi)^3} \frac{M^2}{E_k} \frac{\Lambda^+_{(1)}(\mathbf{k})\Lambda^+_{(2)}(-\mathbf{k})}{\frac{1}{4}s - E_k^2 + i\epsilon},$$
(2.18)

2.2. BEWEGUNGSGLEICHUNGEN

mit Projektoren zu positiven Energien

$$\Lambda_{(i)}^{+}(\mathbf{k}) = \left(\frac{\gamma^{0} E_{k} - \vec{\gamma} \cdot \mathbf{k} + M}{2M}\right)_{(i)}.$$
(2.19)

Die Amplituden werden dann durch die reduzierten Terme ausgedrückt und genügen der Integralgleichung

$$\mathcal{M}(\mathbf{q}',\mathbf{q}) = \mathcal{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3\mathbf{k}}{(2\pi)^3} \mathcal{V}(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_\mathbf{k}} \frac{\Lambda^+_{(1)}(\mathbf{k})\Lambda^+_{(2)}(-\mathbf{k})}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{M}(\mathbf{k},\mathbf{q}).$$
(2.20)

Berücksichtigt man nur die Matrixelemente mit Spinoren positiver Energie, erhält man eine minimal relativistische Gleichung für die *NN* t-Matrix

$$\mathcal{T}(\mathbf{q}',\mathbf{q}) = \mathcal{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3\mathbf{k}}{(2\pi)^3} \mathcal{V}(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_{\mathbf{k}}} \frac{1}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{T}(\mathbf{k},\mathbf{q}).$$
(2.21)

Mit den Substitutionen

$$T(\mathbf{q}',\mathbf{q}) = \left(\frac{M}{E_{\mathbf{q}'}}\right)^{1/2} \mathcal{T}(\mathbf{q}',\mathbf{q}) \left(\frac{M}{E_{\mathbf{q}}}\right)^{1/2}$$
(2.22)

und

$$V(\mathbf{q}',\mathbf{q}) = \left(\frac{M}{E_{\mathbf{q}'}}\right)^{1/2} \mathcal{V}(\mathbf{q}',\mathbf{q}) \left(\frac{M}{E_{\mathbf{q}}}\right)^{1/2}$$
(2.23)

erhält man eine einfachere Form der t-Matrix. Diese entspricht der bekannten Lippmann-Schwinger Gleichung im Impulsraum

$$T(\mathbf{q}',\mathbf{q}) = V(\mathbf{q}',\mathbf{q}) + \int \frac{d^3\mathbf{k}}{(2\pi)^3} V(\mathbf{q}',\mathbf{k}) \frac{M}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} T(\mathbf{k},\mathbf{q}).$$
(2.24)

Für praktische Rechnungen ist eine äquivalente Lippmann-Schwinger Gleichung für die Wellenfunktion sehr nützlich. Formal kann man diese Äquivalenz über den Møller-Operator, der die Verbindung der freien Wellenfunktion mit der gestreuten Welle herstellt, und dem Zusammenhang zwischen Streuamplitude und Potential $T^{(\pm)}\Phi = V\Omega^{(\pm)}\Phi$ zeigen. Wir nutzen die Äquivalenz der Lippmann-Schwinger Integralgleichung mit der Schrödinger Gleichung

$$\left(-\Delta + \frac{M}{\hbar^2}V(\mathbf{r}) - k^2\right)\psi(\mathbf{r}, \mathbf{k}) = 0.$$
(2.25)

Der Massenfaktor M vor dem Potential entspricht der reduzierten Masse des Systems aus zwei Nukleonen. Die weitere Kinematik ist im Anhang C erläutert. Das Potential $V(\mathbf{r})$ in Gl. (2.25) steht dabei für das vollständige NN optische Potential,
das sich zusammensetzt aus dem reellen, möglicherweise impulsabhängigen Referenzpotential und dem komplexen lokalen und nichtlokalen optischen Potential

$$V := V_a(r) + V_b(r)p^2 + p^2 V_b(r) + V_c(r) + iW_c(r) + \int ds (V_d(r,s) + iW_d(r,s)). \quad (2.26)$$

Mit den Indizes *a*, *b*, *c*, *d* soll ausgedrückt werden, dass diese Potentiale von der jeweiligen Partialwelle und von der verwendeten Parametrisierung des Potentials abhängig sind. Diese Parameter können vorgegeben, z.B. durch das verwendete Bosonaustauschpotential, oder durch Fitprozeduren bestimmt sein.

2.3 Einfache Potentialmodelle

Die wesentlichen physikalischen Eigenschaften des optischen Potentialmodells zeigen sich in den Partialwellen mit kleinen Drehimpulsen, ${}^{1}S_{0}$ und ${}^{3}P_{0,1}$, und hier besonders im Energiebereich von 1.5 bis 2.5 GeV.

Als einfaches Modell, das aber die Phänomenologie sehr gut erkennen läßt, haben wir ein Potential mit einer Gaußfunktion als Formfaktor gefittet. Hierdurch wird besonders der kurzreichweitige Teil der Wechselwirkung betont. Der allgemeine Potentialansatz aus Gl. (2.26) reduziert sich damit auf $V_{a,b} = 0$, $V_d = W_d =$ 0 und

$$V_c + iW_c = (V(LSJ, E) + iW(LSJ, E))e^{-r^2/r_0^2(LSJ, E)}.$$
(2.27)

Mit diesem Potentialansatz haben wir die Stärken und Reichweiten des Potentials für verschiedene jeweils 200 MeV breite Energieintervalle gefittet. Dies geschah im Energiebereich zwischen 1.5 und 2.5 GeV. Einen Vergleich dieser Potentiale mit Gel'fand-Levitan-Marchenko Inversionspotentialen, die ebenfalls auf dieses Energieintervall optimiert wurden, zeigt die Abb. (2.18). Charakteristisch ist die immer wieder auftretende Stärke des reellen Potentials von etwa 1 GeV, die sich aus dem Minimum der Arndt'schen Phasenverschiebungen in den unteren Partialwellen bei etwa 1.5 GeV zu ergeben scheint. In diesem Energiebereich beginnt offensichtlich eine neue Physik. Um dies näher zu untersuchen, haben wir einen Satz von Potentialen erstellt, bei dem wir die reellen Potentialstärken festgehalten und nur die Reichweiten angepasst haben. Diese Potentiale sind in Abb. (2.19) gezeigt. Die zentrale rote Kurve gehört zur Stärke von 1 GeV, die grünen Kurven zeigen leicht variierte Potentialstärken. Die Potentiale sind um einen Energiewert von 2 GeV herum gefittet. Es zeigt sich, dass alle Kurven einen gemeinsamen Fixpunkt haben. Dieser Fixpunkt entspricht gerade dem klassischen Umkehrpunkt zu der Energie, bei der die Phasen ihr Minimum erreichen.

Abbildung 2.18: $np^{1}S_{0}$ und ${}^{3}P_{0,1}$ Inversionspotentiale, die besonders an die Hochenergiephasenverschiebungen SP00 zwischen 1.2 und 3 GeV gefittet wurden (rot). Realteile der über ein breites Intervall von 1.5 bis 2.5 GeV gefitteten Gaußpotentiale (grün).

Desweiteren haben wir einige einfache Modelle mit optischen Potentialen von der Form

$$V_c + iW_c = (V(LSJ, E) + iW(LSJ, E))e^{-r^n/r_0^n(LSJ, E)}, \quad n = 1, 2, 4$$
 (2.28)

berechnet. In Abb. (2.20) sind die optimalen, mit diesen Potentialen erzielten Fits an die Phasenverschiebungen gezeigt. Die genaue Parametrisierung der Potentiale ist in Tab. (2.2) gegeben. Auch hier zeigt sich die reelle Potentialstärke von etwa 1 GeV, wenn auch die Formfaktoren differieren. Es stellt sich heraus, dass ein Ansteigen der Phasen mit diesem einfachen Potentialmodell zwar realisiert werden kann, aber nicht in dem Maße, wie es von den Arndt'schen Lösungen gefordert wird. Wenn man davon ausgeht, dass die Arndt'sche Phasenanalyse auch am Rande ihres Gültigkeitsbereiches noch zuverlässige Ergebnissse liefert, dann findet sich hier ein eindeutiger Hinweis für das Auftreten von QCD-Effekten, die wohl nur im Rahmen der QCD sinnvoll beschrieben werden können. Dennoch bleibt der Wunsch nach experimentellen Daten bei höheren Energien, die diese Vermutungen erhärten oder widerlegen können.

2.4 Potentialmodelle mit Hintergrundpotential

Als Erweiterung der im vorigen Abschnitt vorgestellten sehr einfachen optischen Potentialmodelle und um die Ortsraumversionen $V_a(r)$ der bekannten Mesonaustauschpotentiale zu testen, haben wir diese Austauschpotentiale mit einem optischen Term ergänzt und mit einem zusätzlichen Formfaktor versehen

$$\mathcal{V} = V_a(r)(1 + (V_c(LSJ, E) + iW_c(LSJ, E))e^{-(r/r_0(LSJ, E))^2}).$$
(2.29)

Abbildung 2.19: Optische Potentiale mit Gauß Formfaktor. Die Potentialstärke ist festgehalten bei 1 GeV (durchgezogene rote Kurve) oder bei Werten um 1 GeV herum (grüne Kurven).

Abbildung 2.20: Mit statischen Gaußpotentialen zwischen 1.5 und 2.5 GeV gefittete Phasenverschiebungen und Extrapolationen zu höheren Energien.

Partialwelle	Exponent	<i>r</i> ₀ [fm]	V [MeV]	W [MeV]
${}^{1}S_{0}$	1	0.26	1881	-237
0	2	0.48	948	-117
	4	0.58	663	-79
${}^{3}P_{0}$	1	0.54	1037	-126
	2	0.87	624	-75
	4	0.88	544	-90
${}^{3}P_{1}$	1	0.50	1029	-171
	2	0.81	609	-100
	4	0.90	475	-77

Tabelle 2.2: Parameter für die verwendeten Gaußpotentiale mit verschiedenen Exponenten Gl. (2.28).

Mit einem solchen Ansatz lassen sich zum einen die Stärken und Schwächen der Mesonaustauschpotentiale aufzeigen, die ich im folgenden als Hintergrundpotential bezeichne, zum anderen zeigt sich der Übergang von der hadronisch geprägten Nieder- und Mittelenergiekernphysik in die Hochenergiephysik, die von den Freiheitsgraden der Quarks und Gluonen geprägt ist. In der Abb. (2.21) sind die V_c aufgetragen in Abhängigkeit von der Reichweite r_0 und der Energie T_{Lab} für den $np^{1}S_{0}$ und den $np^{3}P_{0}$ Kanal. Als Hintergrundpotentiale sind das Hamburger Inversionspotential, das Nijmegen-II Potential und das Argonne AV18 Potential verwendet worden. Die Potentiale wurden gefittet an die WI00 Phasen. Die gefitteten Parameter sind in Anhang D in den Tabellen (D.1) bis (D.36) aufgelistet. In der Abb. (2.22) sind die W_c aufgetragen. In Abb. (2.23) ist die Qualität des Fits dargestellt, ausgedrückt durch den χ^2 Wert. Entsprechende Darstellungen zu den ${}^{3}P_{1}$ und ${}^{1}D_{2}$ Kanälen sind in den Abbildungen (2.24-2.26) gegeben. Kleine Werte von r_0 unter 0.5 fm führen hier zu großen reellen und imaginären Potentialstärken. Im ${}^{1}S_{0}$ Kanal ergibt sich eine repulsive Korrektur, die bei etwa 1 GeV ihr Maximum erreicht. Bei höheren Energien ergibt sich eine Attraktion, die auf das Wiederansteigen der Phase in diesem Bereich zurückzuführen ist. Oberhalb von 2 GeV wird der Fit deutlich schlechter. Das starke Ansteigen der Phase kann nicht reproduziert werden. Der Imaginärteil des Potentials erreicht einen Extremwert bei etwa 1.5 GeV, dort erreicht auch der Imaginärteil der Phase sein Maximum. Die ${}^{3}P_{0,1}$ Kanäle erfordern eine attraktive Korrektur. Eine Ausnahme bildet der ${}^{3}P_{1}$ Kanal in Verbindung mit dem Nijmegen-II Hintergrundpotential. Die imagi-

Abbildung 2.21: V_c für die np 1S_0 und 3P_0 Kanäle zu verschiedenen Hintergrundpotentialen.

Abbildung 2.22: W_c für die np 1S_0 und 3P_0 Kanäle zu verschiedenen Hintergrundpotentialen.

Abbildung 2.23: χ^2 -Wert in den np 1S_0 und 3P_0 Kanälen als Maßstab für die Qualität des Fits.

Abbildung 2.24: V_c für die np 3P_1 und 1D_2 Kanäle zu verschiedenen Hintergrundpotentialen.

Abbildung 2.25: W_c für die np 3P_1 und 1D_2 Kanäle zu verschiedenen Hintergrundpotentialen.

Abbildung 2.26: χ^2 -Wert in den np 3P_1 und 1D_2 Kanälen als Maßstab für die Qualität des Fits.

nären Potentialstärken verhalten sich ähnlich wie im ${}^{1}S_{0}$ Kanal.

Der ${}^{1}D_{2}$ Kanal ist von der Δ Resonanz geprägt und erfordert deutlich größere Potentialstärken. Zudem ist die Qualität des Fits deutlich schlechter als in den anderen Kanälen. Hier werden die Grenzen des lokalen Potentialmodells bei der Beschreibung der von einer einzelnen Resonanz geprägten Streuung deutlich. Ein solches Verhalten lässt sich erst mit dem separablen Modell beschreiben bzw. im Rahmen der QCD physikalisch untersuchen.

In weiteren Rechnungen haben wir Fits erstellt, die im Energieintervall zwischen 300 MeV und 2500 MeV die Phasen zu jeweils nur einem Energiewert reproduzieren. Es liegt in der Natur der Sache, dass dieser eine Energiewert perfekt gefittet wird. Die gefitteten Parameter sind in Anhang D in den Tabellen (D.37) bis (D.51) aufgelistet. Grafische Darstellungen der Ergebnisse dieser Rechnungen sind in den Abb. (2.27-2.29) zu sehen. Diese gefitteten Potentialstärken hängen stetig von der Energie und der Reichweite ab. Unterhalb der Pionschwelle gehen die so erstellten Potentiale stetig in die Hintergrundpotentiale über. Bei Verwendung des Inversionspotentials als Hintergrundpotential sind die Potentialstärken generell etwas kleiner als bei Verwendung der Mesonaustauschpotentiale. Im ${}^{1}S_{0}$ und ${}^{3}P_{0}$ Kanal kann man ein ausgeprägtes Minimum von W_{c} bei etwa 1.5 GeV erkennen. Im ${}^{1}S_{0}$ Kanal gibt es ferner ein Maximum in der reellen Potentialstärke V_{c} bei etwa 1 GeV. Die Abhängigkeit der Potentialstärken von r_{0} ist in den meisten Fällen klein.

Abbildung 2.27: Real- und Imaginärteile der zu jeweils einer Energie gefitteten Potentialstärken, nach Gl. (2.29) im ${}^{1}S_{0}$ Kanal, für drei verschiedene Hintergrundpotentiale.

Abbildung 2.28: Real- und Imaginärteile der zu jeweils einer Energie gefitteten Potentialstärken, nach Gl. (2.29) im ${}^{3}P_{0}$ Kanal, für drei verschiedene Hintergrundpotentiale.

Abbildung 2.29: Real- und Imaginärteile der zu jeweils einer Energie gefitteten Potentialstärken, nach Gl. (2.29) im ${}^{3}P_{1}$ Kanal, für drei verschiedene Hintergrundpotentiale.

Kapitel 3

Separable optische Potentiale

Das optische Potential, wie es hier verwendet werden soll, ist komplexwertig, nichtlokal, separabel und energieabhängig. In der Impulsraumdarstellung kann man ein solches Potential als Produkt dreier Faktoren angeben. Es sind dies die Strukturfunktion des ersten Hadrons, der Propagator und die Strukturfunktion des zweiten Hadrons. Die Separabilität verlangt ferner, dass

$$\mathcal{V}(r,r') = F_1(r)v(E)F_2(r').$$
 (3.1)

Hier sind die Funktionen F_1 und F_2 die hadronischen Verteilungsfunktionen. Je nach Modell kommen hier verschiedene Funktionen in Betracht, z.B. eine Entwicklung nach Oszillatorfunktionen. Für N Oszillatorfunktionen $R_i(r)$ ergibt sich dann beispielsweise

$$\mathcal{V}(r,r') = \sum_{ij}^{N} R_i(r) v_{ij}(E) R_j(r').$$
(3.2)

Die Koeffizienten $v_{ij}(E)$ werden dann als Potentialstärken bezeichnet.

3.1 Die Hamilton-Operatoren

Zur Konstruktion des separablen optischen *NN*-Potentials werden drei Hamilton-Operatoren herangezogen. Wir verwenden einen Referenz-Hamilton-Operator und einen projizierten bzw. Struktur-Hamilton-Operator, um aus diesen beiden einen vollständigen Hamilton-Operator zu konstruieren, der per Konstruktion die vollständigen komplexwertigen vorgegebenen Phasenverschiebungen reproduziert.

Unser Referenz-Hamilton-Operator besteht aus der kinetischen Energie und einem lokalen reellen Potential V_0

$$H = T + V_0.$$
 (3.3)

Als Hintergrundpotential haben wir verschiedene Bosonaustauschpotentiale und das Hamburger Gel'fand-Levitan-Marchenko Inversionspotential verwendet. Die dazugehörige Schrödinger Gleichung

$$H|\psi_0\rangle = E|\psi_0\rangle \tag{3.4}$$

hat die Lösungen ψ_0 , die für große Radien der Randbedingung

$$|\psi_0\rangle \underset{r \to \infty}{\sim} \frac{1}{2i} \left[-h^-(kr) + S^0(k)h^+(kr) \right]$$
 (3.5)

genügen, wo S^0 die dazugehörige unitäre S-Matrix ist und h^{\pm} die entsprechenden Hankel Funktionen sind. Hier wie auch im weiteren werden alle Partialwellen getrennt betrachtet und die entsprechenden Indizes weggelassen. Zu diesen Hintergrundpotentialen sind alle mit dem Streuproblem zusammenhängenden Größen wie Wellenfunktion, Phasenverschiebungen und Greensfunktion festgelegt und bekannt. Die Hintergrundpotentiale reproduzieren die Arndt'schen Phasenverschiebungen bis etwa 300 MeV in der Regel sehr gut, zu höheren Energien gibt es Abweichungen und der Imaginärteil der Arndt'schen Phasen kann mit einem reellwertigen Potential naturgemäß nicht reproduziert werden.

Als weiteres führen wir den projezierten Hamilton-Operator $H_{PP} = PHP$ ein. Zu diesem projezierten oder Struktur-Hamilton-Operator gibt es eine Schrödinger Gleichung

$$H_{PP}|\psi_P\rangle = E|\psi_P\rangle. \tag{3.6}$$

Die Rechnung folgt hier dem Feshbach-Formalismus [Fes62]. Wir spalten den Hilbert-Raum in zwei orthogonale Unterräume P und Q auf. P enthält die freien, Q die gebundenen Zustände. Für die entsprechenden Projektionsoperatoren gilt die Vollständigkeitsrelation

$$P + Q = 1.$$
 (3.7)

Wir nehmen ferner für den Raum Q einen endlichen Rang N an

$$Q := \sum_{i=1}^{N} |\Phi_i\rangle \langle \Phi_i| = \sum_{i=1}^{N} |i\rangle \langle i|.$$
(3.8)

Die Basisfunktionen $|\Phi_i\rangle$ des Raums Q kann man hier als Doorway Zustände interpretieren. Über diese Doorway Zustände kann man nun eine Verbindung zwischen den QCD Zuständen und den hadronischen Zuständen wie Nukleonen, Mesonen und anderen freien Teilchen herstellen. Wir nehmen also an, dass die Teilchenerzeugung und -vernichtung im hochgradig nichtlinearen QCD Bereich geschieht und dass die Q-Raum Wellenfunktionen Projektionen dieser Prozesse auf den hadronischen Sektor sind. Der dritte Hamilton-Operator ist nun der vollständige Hamilton-Operator zum optischen Modell, der den Referenz-Hamilton-Operator enthält und als Korrekturterm das optische Potential \mathcal{V} . Dieses komplexwertige nichtlokale Potential, separabel und von endlichem Rang, führt auf den vollständigen Hamilton-Operator

$$\mathcal{H} = T + V_0 + \mathcal{V}(r, r', E). \tag{3.9}$$

Das separable Potential ist motiviert durch die Doorway Zustände, ist aber generell für die verschiedensten Zwecke geeignet [Kwo97].

Die Schrödinger Gleichung zum vollständigen Hamilton-Operator \mathcal{H} hat reguläre physikalische Lösungen $\Psi_{\mathcal{H}}^+ = \Psi_{\mathcal{H}}^+(\mathbf{r}, \mathbf{k}, E)$. Das asymptotische Verhalten dieser Lösungen wird von uns an die vollständige komplexwertige Phasenverschiebung des elastischen Kanals angepasst. Für diese Zwecke verwenden wir die kontinuierlichen Phasenverschiebungen von Arndt und Mitarbeitern [Arn]. Das Referenzpotential V_0 und die verwendete Lösung von Arndt werden für jede Rechnung einzeln spezifiziert.

3.2 Konstruktion des optischen Potentials

Um nun aus einem gegebenen Referenzpotential das optische Potential zu konstruieren, drücken wir die Lösungen zum projezierten Hamilton-Operator durch die Lösungen zum freien Hamilton-Operator und den Q-Raum Projektor aus. Dieser Q-Raum Projektor muss *a priori* bekannt sein, wir verwenden z.B. Oszillatorfunktionen. Wenn man in Gl. (3.6) H durch H_{PP} , H_{QP} , H_{PQ} und H_{QQ} ersetzt, erhält man

$$(E - H_{PP} - H_{QP} - H_{PQ} - H_{QQ})|\psi_P\rangle = -H_{QP}|\psi_P\rangle.$$
 (3.10)

Addiert man nun auf der rechten Seite eine Null $(E - H)|\psi_0\rangle$ hinzu und multipliziert dann von links mit der Greensfunktion, erhält man eine Lippmann-Schwinger Gleichung

$$|\psi_P\rangle = |\psi_0\rangle - \frac{1}{E^+ - H_0} H_{QP} |\psi_P\rangle$$
(3.11)

$$= |\psi_0\rangle - \sum_j G^+ |j\rangle \langle j|H_{QP}|\psi_P\rangle.$$
(3.12)

Aus der Orthogonalität folgt

$$0 = \langle i | \psi_P \rangle = \langle i | \psi_0 \rangle - \langle i | G^+ H_{QP} | \psi_P \rangle, \qquad (3.13)$$

$$< i |\psi_0> = < i |G^+ H_{QP}|\psi_P>$$
 (3.14)

$$=\sum_{j}^{N} < i|G^{+}|j> < j|H_{QP}|\psi_{P}>.$$
(3.15)

Multiplikation von links mit dem Inversen der Matrix $\langle i|G^+|j \rangle$ und Substitution von $|i\rangle$ und $|j\rangle$ durch die Oszillatorfunktionen $|\Phi\rangle$ führt auf

$$< j |H_{QP}|\psi_P > = \sum_{i}^{N} \{ < \Phi | G^+ | \Phi > \}_{ji}^{-1} < i | \psi_0 > .$$
 (3.16)

In die Lippmann-Schwinger Gleichung eingesetzt ergibt sich damit

$$|\psi_P\rangle = |\psi_0\rangle - \sum_j G^+|j\rangle \sum_i \langle \Phi|G^+|\Phi\rangle_{ji}^{-1} < i|\psi_0\rangle, \qquad (3.17)$$

oder nach Vertauschen der Indizes

$$|\psi_P\rangle = |\psi_0\rangle - \sum_{ij} G^+|i\rangle \langle \Phi|G^+|\Phi\rangle_{ij}^{-1} < j|\psi_0\rangle.$$
(3.18)

Den mittleren Ausdruck fassen wir zusammen zu einer Stärkematrix Λ

$$|i\rangle\langle\Phi|G^{+}|\Phi\rangle_{ij}^{-1}\langle j| = |i\rangle\lambda_{ij}\langle j| = \Lambda_{ij}(r,r').$$
(3.19)

Diese Stärkematrix sei so beschaffen, dass die *P*-Raum Wellenfunktionen sich asymptotisch wie die Wellenfunktionen zum vollen Hamilton-Operator des optischen Modells verhalten. Asymptotisch gilt also $|\psi_P\rangle = |\Psi_H\rangle$. Von dieser Lösung nehmen wir an, dass sie asymptotisch an die vollständige nichtunitäre experimentelle S-Matrix angepasst ist

$$|\Psi_{\mathcal{H}}\rangle \underset{r \to \infty}{\sim} |\psi_P\rangle \underset{r \to \infty}{\sim} \frac{1}{2i} \left[-h^-(kr) + h^+(kr)S(k) \right].$$
(3.20)

Mittels des Numerov-Algorithmus können wir die physikalischen Lösungen u(r, k) zum Referenzpotential leicht ausrechnen. Diese genügen der Gleichung

$$u''(r,k) = \left[\frac{l(l+1)}{r^2} + \frac{2\mu}{\hbar^2} \frac{V_a(r)}{1+2V_b(r)} - \left(\frac{V_b'(r)}{1+2V_b(r)}\right)^2 - \frac{k^2}{1+2V_b(r)}\right] u(r,k). \quad (3.21)$$

Asymptotisch verhält sich diese Wellenfunktion wie

$$u(r,k) \sim_{r \to \infty} \frac{1}{2i} \left[-h^{-}(kr) + h^{+}(kr)S^{0}(k) \right].$$
 (3.22)

 $h^{\pm}(kr)$ sind die Riccati-Hankel Funktionen. Die Normierung lautet

$$\psi^{+}(r,k) = \frac{u(r,k)}{\sqrt{1+2V_{b}(r)}}.$$
(3.23)

Die irregulären Jost Lösungen

$$\mathcal{J}^+ \sim h^+(kr) \tag{3.24}$$

werden entsprechend berechnet. Durch sie ist die Greensfunktion zum Referenzpotential definiert als

$$G^{+}(r, r', k) = \begin{cases} -(2\mu/\hbar^{2})\frac{1}{k}\psi^{+}(r, k)\mathcal{J}^{+T}(r', k), & r < r', \\ -(2\mu/\hbar^{2})\frac{1}{k}\mathcal{J}^{+}(r, k)\psi^{+T}(r', k), & r' < r \end{cases}$$
(3.25)

Wir wissen von oben, dass

$$|\psi_P > = |\psi_0 > -\sum_{ij}^N G^+ \Lambda_{ij} |\psi_0 >$$
 (3.26)

$$= |\psi_0\rangle - \sum_{ij}^N G^+ |i\rangle \lambda_{ij} < j|\psi_0\rangle$$
(3.27)

und damit für den Matchingradius

$$\Psi^{+}(R,k) = \psi^{+}(R,k) + \sum_{ij} \int_{0}^{\infty} G^{+}(R,r_{1},k) \Phi_{i}(r_{1}) dr_{1} \lambda_{ij}(k) \int_{0}^{\infty} \Phi_{j}(r_{2}) \psi^{+}(r_{2},k) dr_{2}.$$
 (3.28)

Aus dieser Gleichung und dem Vergleich der asymptotischen Randbedingungen der Lösung zum Referenzpotential und der Lösung zum vollständigen optischen Potential, die an die vollständige experimentelle S-Matrix angepasst sein soll, erhalten wir ein Gleichungssystem für die λ_{ij}

$$\Psi^{+}(R,k) - \psi^{+}(R,k) = \frac{1}{2i}h^{+}(Rk)\left[S(k) - S^{0}(k)\right]$$

= $\sum_{ij}\int_{0}^{\infty}G^{+}(R,r_{1},k)\Phi_{i}(r_{1})dr_{1}\lambda_{ij}(k)$
 $\times \int_{0}^{\infty}\Phi_{j}(r_{2})\psi^{+}(r_{2},k)dr_{2}.$ (3.29)

Bei hinreichend vielen Energien erhalten wir so ein lineares Gleichungssystem für die λ_{ij} , die dann nicht mehr von k abhängen sollen. Das Produkt der beiden Integrale gibt den Koeffizienten für das λ_{ij} . Durch Herausheben entsprechender Faktoren aus der Greensfunktion kann man erreichen, dass beide Integrale identisch werden. Um das lineare Gleichungssystem aufzustellen benötigt man dann $(N^2 + N)/2$ Energiewerte.

Aus den λ_{ij} erhalte ich über (3.19) die Matrix A. Das separable Potential $\mathcal{V}(r, r')$ ist dann gegeben durch

$$\mathcal{V}(r,r') = \Lambda \frac{1}{1 - G^+ \Lambda}.$$
(3.30)

Die physikalischen Lösungen zum vollständigen optischen Potential erhält man durch Lösen der Lippmann-Schwinger Gleichung

$$|\Psi_{\mathcal{H}}\rangle = |\psi_0\rangle + G^+ \mathcal{V} |\Psi_{\mathcal{H}}\rangle. \tag{3.31}$$

Anstelle der Oszillatorfunktionen kann man auch andere Formfaktoren verwenden. Zu jedem Potential mit endlichem Rang kann man die Potentialstärken bestimmen, indem man Energiewerte um einen Mittelwert herum mitberücksichtigt. Es zeigt sich aber, dass ein Mangel an Energieabhängigkeit schnell zu Schwierigkeiten führt, speziell im gekoppelten Kanal ist deshalb die Beschränkung auf ein Potential vom Rang 1 sinnvoll. Die Wahl des Formfaktors bleibt aber damit weiterhin frei. Wir haben

- normierte Oszillatorfunktionen,
- Gaußfunktionen $\Phi_{\alpha} = N_0 e^{-(r-r_0)^2/a_0^2}$ mit den freien Parametern a_0 und r_0 ,
- normierte Dreiecksfunktionen $\Phi_{\alpha}(r_0) = h/2$, $\Phi_{\alpha}(r_0 \pm h) = h/4$ und $\Phi_{\alpha} = 0$ überall sonst,
- sowie Randbedingungsmodelle mit $\Phi_{\alpha}(r_0) = h$ und $\Phi_{\alpha} = 0$ überall sonst

verwendet. Mit diesem Randbedingungsmodell wird ein scharfer Übergang vom hadronischen Sektor in die QCD realisiert. Natürlich sind auch andere Formfaktoren denkbar, insbesondere solche, die durch die Modelle der QCD inspiriert sind.

3.3 Eigenschaften des NN optischen Potentials

Mit dem oben vorgestellten Algorithmus sind eine Reihe von Potentialen entwickelt worden. Als Referenzpotentiale haben wir das Paris, Nijmegen-I, Nijmegen-II, Argonne AV18 und das Inversionspotential verwendet. Als Formfaktoren für das separable Potential haben wir normierte Wellenfunktionen des harmonischen Oszillators $\Phi_{\ell}(r, \hbar\omega)$ benutzt. Für $\hbar\omega$ haben wir Werte zwischen 200 und 900 MeV eingesetzt. Stets ist für alle Partialwellen derselbe $\hbar\omega$ Wert benutzt worden. In den ungekoppelten Kanälen sind die Partialwellen bis J = 7 berechnet worden, in den gekoppelten Kanälen die bis J = 6. Als Formfaktoren haben wir mehrere Wellenfunktionen des harmonischen Oszillators mit den radialen Quantenzahlen n = 1, 2, 3 verwendet. Somit erhielten wir ein separables Potential vom Rang 3. Mit der Verwendung von Daten in den Intervallen $T_{Lab} \pm 25$, $T_{Lab} \pm 50$ und $T_{Lab} \pm 100$ MeV haben wir die least square Lösungen des überbestimmten Gleichungssystems (3.29) bestimmt. Damit haben wir dann einen Wert für die Oszillatorkonstante $\hbar\omega$ gesucht, der im ganzen Energiebereich von 0.5 bis 2 GeV ein niedriges χ^2 liefert. Dieser Wert beträgt $\hbar\omega = 450$ MeV. Für separable Potentiale vom Rang 1 lauten die Oszillatorfunktionen

$$\Phi_{\ell}(r,\hbar\omega) \sim r^{\ell+1} \exp[-(r/r_0)^2], \quad \text{mit} \quad r_0 = \sqrt{\frac{2\hbar^2}{\mu\hbar\omega}}.$$
 (3.32)

Für den verwendeten Wert $\hbar\omega = 450$ MeV ist $r_0 = 0.61$ fm. Mit diesem Formfaktor ist die Lösung der Gleichung (3.29) trivial. Per Konstruktion werden mit diesem optischen Potential die eingegebenen Phasenverschiebungen perfekt reproduziert.

Im einfachen Fall des Potentials vom Rang 1 erhalten wir die Stärke σ_{α} des separablen Potentials nach Gl. (3.30)

$$\sigma_{\alpha}(k) = \left[1 - \lambda_{\alpha}(k) \int_{0}^{\infty} \int_{0}^{\infty} \Phi_{\alpha}(r_{1}) G_{\alpha}^{+}(r_{1}, r_{2}, k) \Phi_{\alpha}(r_{2}) dr_{1} dr_{2}\right]^{-1} \lambda_{\alpha}(k).$$
(3.33)

Mit dem Index α ist hier die jeweilige Partialwelle bezeichnet. Für das separable Potential gilt

$$\mathcal{V}(r,r') = |\Phi_{\alpha}\rangle \sigma_{\alpha} \langle \Phi_{\alpha}| = \Phi_{\alpha}(r)\sigma_{\alpha}\Phi_{\alpha}(r').$$
(3.34)

In den numerischen Anwendungen wird meist die Größe

$$W = \frac{\hbar^2}{2\mu} \sigma_{\alpha} \tag{3.35}$$

verwendet. Diese ist in den Abbildungen (3.1) und (3.2) dargestellt. Die verwendeten Hintergrundpotentiale sind durch Kurzbeschriftungen markiert. Pa steht für Paris, N1 für Nijmegen-I, N2 für Nijmegen-II, Av für Argonne AV18 und In für das Inversionspotential. Zwei Punkte werden an dieser Stelle deutlich. Der erste ist, dass die Potentialstärken nicht unbeträchtlich sind. Die Referenzpotentiale allein sind nicht in der Lage die Phasen δ , bzw. δ^{\pm} , ϵ zu reproduzieren. Der zweite ist der Verlust der Unitarität der S-Matrix. Dieser zeigt sich in den Größen ρ , bzw. ρ^{\pm} , μ .

Abbildung 3.1: Stärken des separablen optischen Potentials in den ungekoppelten *np* Kanälen. Es wurden Paris, Argonne AV18, Nijmegen-I, Nijmegen-II und Inversionspotentiale als Referenzpotential verwendet.

Abbildung 3.2: Stärken des separablen optischen Potentials in den gekoppelten np Kanälen. Es wurden Paris, Argonne AV18, Nijmegen-I, Nijmegen-II Potentiale als Referenzpotential verwendet.

Unterhalb der Pionschwelle ist das optische Potential noch rein reell und seine Stärke ist sehr klein. Hier zeigt sich die gute Reproduktion der Phasen durch die Referenzpotentiale im Niederenergiebereich. Das imaginäre Potential zeigt, beginnend bei einer Energieschwelle von 280 MeV, ein glattes Verhalten. Das negative Vorzeichen signalisiert einen Verlust des Wahrscheinlichkeitsstroms. Das Inversionspotential als Hintergrundpotential generiert generell kleine reelle Potentialstärken. Es benötigt also nur geringe Korrekturen und unterstützt so das Bild des soft core Potentials, wie es in Abschnitt 2.1 und in Abb. (2.14) gezeigt wurde. Im ${}^{1}D_{2}$, ${}^{3}F_{3}$ und ${}^{3}PF_{2}$ Kanal erhalten wir für alle Hintergrundpotentiale große Potentialstärken. Dies kann durch die starke Kopplung dieser Kanäle an die $\Delta(1232)$ Resonanz erklärt werden, die das Streuverhalten im Energiebereich zwischen 300 und 1000 MeV dominiert. Der daran anschließende Energiebereich zwischen 1 und 2 GeV wird dann durch verschiedene Formen der N^* Resonanz beherrscht. Eine Auflistung der möglichen Produktionsprozesse und Resonanzen findet sich in Abb. (2.15) und im Anhang C. Die große Energieabhängigkeit der separablen Potentialstärken im ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanal rührt von der starken Kopplung an die $\Delta(1232)$ Resonanz zwischen 500 und 750 MeV her. Die Ergebnisse zu den gekoppelten Kanälen sind in Abb. (3.1) gezeigt. Die aus den ungekoppelten Kanälen gewonnenen Erkenntnisse behalten hier ihre Gültigkeit. Der ${}^{3}PF_{2}$ Kanal zeigt bei etwa 600 MeV eine ähnliche Kopplung an die $\Delta(1232)$ Resonanz wie die ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanäle. Die anderen Kanäle zeigen ein glattes Verhalten der Potentialstärken. Die Stetigkeit der Potentialstärken rechtfertigt die Verwendung sowohl des Gel'fand-Levitan-Marchenko Inversionspotentials, als auch die von komplexwertigen lokalen und nur schwach energieabhängigen Potentialen mit einfachen Formfaktoren, wie z.B. Gauß oder Yukawa Formfaktoren [Ger98].

Zusätzlich zu den Potentialen mit einer Oszillatorkonstante $\hbar\omega = 450 \text{ MeV}$ sind auch solche mit Oszillatorkonstanten von 750 und 900 MeV erstellt worden. Diese größeren Oszillatorkonstanten führen zu kleineren Werten für r_0 von 0.47 bzw. 0.43 fm. Mit der Variation der Oszillatorkonstanten kann man feststellen, in welchen Radialbereichen die Hintergrundpotentiale am stärksten differieren. Formfaktoren Φ_{α} mit kleinerer Reichweite führen zu größeren Potentialstärken des separablen Potentials. Die Defizite der Hintergrundpotentiale erscheinen somit effektiv vergrößert. Diesen Effekt haben wir für Energien zwischen 0.3 und 3 GeV untersucht. Der Schwerpunkt lag auf einer möglichst geringen Anderung der Potentialstärken bei Einschränkung der Reichweite. Für Reichweiten zwischen 0 und 0.8 fm erwies sich die Oszillatorkonstante von 450 MeV als optimal, für kürzere Reichweiten bis 0.5 fm eine Oszillatorkonstante von 750 MeV. Nur bei Verwendung des Inversionspotentials bleiben die reellen Potentialstärken auch dann noch klein. Weil das Inversionspotential der reellen Phase bis 3 GeV folgt, kann man hieraus eine Entkopplung des Real- und Imaginärteils des separablen Potentials ablesen. Die Interferenzeffekte sind klein und der Real- und der Imaginärteil des Potentials können fast unabhängig voneinander betrachtet werden. Dies ist bei der Verwendung der Bosonaustauschpotentiale nicht erkennbar. Speziell die schlechten Extrapolationseigenschaften der explizit impulsabhängigen Potentiale Paris und Nijmegen-I machen sich hier bemerkbar.

Eine Ausnahme bilden der ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanal. Auch bei Verwendung des Inversionspotential haben die Potentialstärken in diesen Kanälen Real- und Imaginärteile von vergleichbarer Größe. Hier wird der Mechanismus deutlich, mit dem das optische Potential die starken Resonanzeffekte behandelt.

Die Änderungen, die sich bei Verwendung größerer Oszillatorkonstanten in den Potentialstärken zu den Bosonaustauschpotentialen ergeben, sind ein eindeutiges Indiz dafür, dass diese eine schlechte Wahl als Referenzpotential bei der Untersuchung von kurzreichweitigen Eigenschaften sind. Unterhalb von etwa 1 fm verlieren die Bosonaustauschpoteniale an Aussagekraft.

Die hier angestellten Untersuchungen unterstützen das Konzept der Clusterbildung und anschließenden Fusion zweier Nukleonen, allgemeiner zweier Elementarteilchen, wie z.B. πN , $\pi \pi$, zu einem kombinierten Objekt [Ger01]. Zur Visualisierung dieser Vorgänge betrachten wir die Wahrscheinlichkeitsdichte und den Stromverlust des elastischen Kanals. Diese werden wir in Abhängigkeit von Radius und Energie auftragen. Die Wahrscheinlichkeitsdichte ρ ist gegeben durch

$$\rho_{\alpha}(r,k) = \frac{1}{r^2} \mathbf{Sp} \Psi_{\alpha}^{\dagger}(r,k) \Psi_{\alpha}(r,k).$$
(3.36)

Den Stromverlust $(\nabla \cdot \mathbf{j})_{\alpha}$ berechnen wir mittels der Kontinuitätsgleichung

$$\partial_t \rho_\alpha(\mathbf{r}) + (\nabla \cdot \mathbf{j})_\alpha = 0 \tag{3.37}$$

und der zeitabhängigen Schrödinger Gleichung

$$(\nabla \cdot \mathbf{j})_{\alpha} = \frac{i}{\hbar} \frac{1}{r^2} \operatorname{Sp} \int_{0}^{\infty} [\Psi_{\alpha}^{\dagger}(r,k) \mathcal{V}_{\alpha}(r,r_1) \Psi_{\alpha}(r_1,k) - \Psi_{\alpha}^{\dagger}(r_1,k) \mathcal{V}_{\alpha}^{\dagger}(r_1,r) \Psi_{\alpha}(r,k)] dr_1.$$
(3.38)

Die Wahrscheinlichkeitsdichte und der radiale Stromverlust in den niedrigen Partialwellen sind in den Abbildungen (3.3) bis (3.8) dargestellt. In diesen Abbildungen sind zu je einem Kanal die SP00 Phasenverschiebungen $\delta(T_{Lab})$, die single energy Lösungen und die Phasenverschiebungen zum Inversionspotential aufgetragen, dies jeweils im linken oberen Bild. Im Bild oben rechts sind die Imaginärteile $\rho(T_{Lab})$ der SP00 Phase und die dazugehörigen single energy Lösungen aufgetragen. Im Bild unten links ist die Wahrscheinlichkeitsdichte ρ nach Gl. (3.36) in Abhängigkeit von T_{Lab} und vom Radius aufgetragen, in den Abbildungen unten rechts der radiale Stromverlust nach Gl. (3.38). Die reelle Phase des Inversionspotentials folgt dem glatten Verlauf der kontinuierlichen Lösung von Arndt.

Abbildung 3.3: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np ${}^{1}S_{0}$ Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Abbildung 3.4: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np ${}^{3}P_{0}$ Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Abbildung 3.5: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np ${}^{1}P_{1}$ Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Abbildung 3.6: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np ${}^{3}P_{1}$ Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Abbildung 3.7: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np 1D_2 Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Abbildung 3.8: Reelle und imaginäre Phasenverschiebungen sowie Wahrscheinlichkeitsdichte und radialer Stromverlust im np ${}^{3}F_{3}$ Kanal als Funktion von Radius und Energie. Die Wellenfunktionen sind berechnet zum vollständigen optischen Potential gefittet an die SP00 Phasen unter Verwendung des Inversionspotentials als Referenzpotential.

Zusätzlich sind die single energy Lösungen gegeben, die von den glatten Kurven abweichen können. Manche dieser Abweichungen lassen sich als schmalbandige dibaryonische Resonanzen interpretieren [All99b]. Eine endgültige Aussage über die Existenz solcher Resonanzen kann aber derzeit noch nicht getroffen werden. Falls es diese Resonanzen gibt, so bleibt das optische Modell in seiner geometrischen Aussage dennoch gültig. Ihre detaillierte Beschreibung ist aber nur durch eine quantenchromodynamische Behandlung ihrer Strukturen und ihrer Zerfallseigenschaften möglich.

In den Konturplots sind die Wahrscheinlichkeitsdichten und der radiale Stromverlust im Bereich zwischen 0 und 2 fm sowie zwischen 0.3 und 3 GeV aufgetragen. Mit Ausnahme der ${}^{1}P_{1}$, ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanäle lässt sich überall ein glattes, stetiges Verhalten beobachten. Zum ${}^{1}P_{1}$ Kanal muss angemerkt werden, dass Arndt diese Phase nur bis zu einer Energie von 1.2 GeV als zuverlässig angibt. Das Verhalten darüberhinaus ist extrapoliert. Mit dem optischen Potential ist es möglich auch ein hypothetisches derartig starkes Ansteigen der Phase zu visualisieren. Die Wahrscheinlichkeitsdichte zeigt ein ungewöhnliches Verhalten, während der Stromverlust keine Auffälligkeiten zeigt.

Die beiden in Abb. (3.3) und Abb. (3.4) gezeigten J = 0 Kanäle ${}^{1}S_{0}$ und ${}^{3}P_{0}$ haben beide ein Minimum in der Phase bei etwa 1.6 GeV. Die Darstellungen von Wahrscheinlichkeitsdichte und Stromverlust zeigen eine starke Absorption im Bereich um 0.5 fm, die von einer breiten Resonanz stammt. Das Ergebnis zum ${}^{3}P_{1}$ Kanal in Abb. (3.6) kann man ähnlich deuten. Die Übereinstimmung zwischen dem starken Anstieg des Imaginärteils und der einsetzenden Absorption ist beim ${}^{1}P_{1}$ Kanal in Abb. (3.5) gut erkennbar. Die ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanäle in Abb. (3.7) und Abb. (3.8) haben zwischen 600 und 900 MeV eine deutlich strukturierte Phase. Dieses Verhalten der Phase ist in der Wahrscheinlichkeitsamplitude gut erkennbar, wo es eine nach außen verlagerte Wahrscheinlichkeitsamplitude und eine absorptive Zone bei großen Radien bis 1 fm gibt.

Das genaue Verhalten von Wahrscheinlichkeitsdichte und Stromverlust ist nicht unabhängig von der verwendeten Geometrie des optischen Potentials, die Ergebnisse reagieren aber stabil auf eine Änderung der Oszillatorkonstante. In Abbildung (3.9) ist der Stromverlust bei Verwendung des optischen Potentials mit einem lokalen Gauß'schen Formfaktor dargestellt und den Ergebnissen zum separablen Potential gegenübergestellt. Die beiden Potentialmodelle haben praktisch dieselben Eigenschaften. Damit zeigt sich, wie die Struktur des Problems, die durch die Phasenverschiebungen gegeben ist, das Verhalten der Wellenfunktion bereits so weit einschränkt, dass die Einzelheiten des Potentialmodells keine signifikanten Auswirkungen mehr haben. Somit wird auch das einfache Bild der *NN*-Streuung aus den Abbildungen (2.12, 2.16 und 2.17) nochmals gerechtfertigt. Das Verhalten von Wahrscheinlichkeitsdichte und Stromverlust untermauert unsere These von zwei separaten, möglicherweise angeregten, Einheiten im Be-

Abbildung 3.9: Vergleich des Stromverlusts zwischen separablem optischem Potential und optischem Potential mit Gauß Formfaktor bei Energien zwischen 1.5 und 2.5 GeV. Es wird gezeigt, dass die Mechanismen von Fusion und Spaltung im ${}^{1}S_{0}$ und ${}^{3}P_{0,1}$ Kanal für ein lokales oder nichtlokales Potential praktisch gleich sind.

reich zwischen 300 und 1000 MeV und einer Verschmelzung zu einem Objekt bei höheren Energien und kleinen Abständen.

Zur weiteren Untersuchung haben wir die Kowalski-Noyes Verhältnisse

$$f_{\alpha}(k,q) = \frac{T_{\alpha}^{(\pm,0)}(T_{Lab}(k),k,q)}{T_{\alpha}^{(\pm,0)}(T_{Lab}(k),k,k)}$$
(3.39)

der half-off-shell t-Matrizen berechnet. Diese eignen sich besonders zur Untersuchung der Eigenschaften im Impulsraum. Für reelle Potentiale ist auch das Kowalski-Noyes Verhältnis f reell, bei komplexwertigen Potentialen ist das nicht der Fall. Das Verhältnis f ist dabei unabhängig von der Wahl der Randbedingung im Anhang B. In Abbildung (3.10) ist ein Konturplot des Kowalski-Noyes Verhältnisses für den ${}^{1}D_{2}$ und den ${}^{3}F_{3}$ Kanal jeweils mit dem Inversionspotential und mit dem Nijmegen-II Potential als Hintergrundpotential gegeben.

Der ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanal sind hier ausgewählt worden, weil sie stark von der $\Delta(1232)$ Resonanz beeinflusst sind. Sie zeigen die größten Änderungen des optischen Potentials bei unterschiedlicher Wahl des Referenzpotentials. Die starke Energieabhängigkeit der Ergebnisse kann daher nicht überraschen. Die großen Unterschiede zwischen den Phasen der Hintergrundpotentiale und den SP00 Lösungen passen genau in dieses Bild eines resonanten Streuprozesses, wie es in Abb. (2.16) gezeichnet wird. Es ist nicht schwer vorherzusagen, welche großen Probleme mikroskopische Modelle bei der Beschreibung der Mischung zwischen resonanter Streuung und Hintergrundstreuung haben werden.

Bei Energien über 1 GeV kann man in den elastischen Phasenverschiebungen keine offensichtlichen Resonanzeffekte erkennen. Daraus darf man aber nicht schließen, dass die Wahl der Parametrisierung des optischen Potentials für die off-shell t-Matrix irrelevant wäre. In Abbildung (3.11) sind die Kowalski-Noyes Verhältnisse im ${}^{3}P_{0}$ Kanal für verschiedene Formfaktoren des separablen Potentials gezeigt. Auch in anderen Kanälen hat sich gezeigt, dass die Unterschiede im off-shell Verhalten signifikant sind. Der Einfluss dieser Unterschiede verschwindet aber, wenn die off-shell t-Matrizen für Mehr- und Viel-Teilchen Rechnungen verwendet werden [Amo00]. Man sagt, dass nur die Werte, die nicht weit off-shell liegen, in diese Berechnungen eingehen, und dass bei Rechnungen, die symmetrisch um die on-shell Werte herum durchgeführt werden, sich diese Unterschiede annullieren. Es ist nicht zu erwarten, dass sich dieses Verhalten beim Übergang von der Streuung bei niederen Energien zu mittleren Energien hin ändert. Wir machen deshalb keine Aussage, welche separablen Formfaktoren zu bevorzugen sind.

62

Abbildung 3.10: Kowalski-Noyes Verhältnisse f zum ${}^{1}D_{2}$ und ${}^{3}F_{3}$ Kanal. In der linken Spalte sind die Realteile gezeigt, in der rechten die Imaginärteile. Die separablen Potentiale sind berechnet zum Nijmegen-II und zum Inversionspotential als Hintergrundpotential. Die Oszillatorkonstante $\hbar\omega$ beträgt 450 MeV.

Abbildung 3.11: Kowalski-Noyes Verhältnisse im ${}^{3}P_{0}$ Kanal, berechnet zum Nijmegen-II Hintergrundpotential mit verschiedenen separablen Formfaktoren. Es wurden die Oszillatorkonstanten 450, 750 und 900 MeV verwendet sowie ein Randbedingungsmodell mit $r_{0} = 0.45$ fm und h = 0.015 fm. Der k_{off} Wert durchläuft die Werte von 0 bis 7 fm⁻¹. Die ganzzahligen Werte sind durch einen Punkt markiert. Der Wert von k_{on} entspricht einer Laborenergie von 2 GeV.
Kapitel 4

Anwendung des NNOMP in der Nukleon-Kern-Streuung

4.1 Nukleon-Kern-Streuung

Die elastische Nukleon-Kern-(*NA*) Streuung ist als ausgezeichnetes Mittel zur Untersuchung der Kernstruktur bekannt [Amo00]. Die Ergebnisse der nichtrelativistischen Theorie dieser Streuung können als eine zuverlässige Vorhersage für die in der angewandten Nukleartechnologie benötigten Reaktionsdaten verwendet werden. Große Mengen solcher Daten — inklusive Wirkungsquerschnitte für Spaltungsreaktionen bei mittleren Energien — werden für verschiedene Hochtechnologieanwendungen benötigt, wie die Umwandlung langlebiger radioaktiver Abfälle mit Spallationsquellen, beschleunigerbasierte Zerstörung waffenfähigen Plutoniums, beschleunigergetriebene Energiegewinnung durch Kernspaltung von Thorium bei gleichzeitiger Zerstörung langlebigen radioaktiven Abfalls ohne Produktion waffenfähigen Materials und Produktion von Tritium mit Beschleunigern [Con97, Kha97, Mas98, Van98]. Untersuchungen über medizinische Strahlentherapie und Strahlenschutz benötigen ebenfalls solche Daten. Dieser Teil der Arbeit verfolgt die Ergebnisse und Gesichtspunkte von [Are02].

Vom Standpunkt der Grundlagenforschung aus gesehen, besteht die intellektuelle Herausforderung darin, über die Physik von einzelnen Hadronen hinauszugehen und die wesentlichen Aspekte der Kernphysik aus ersten Prinzipien wie der QCD heraus zu verstehen [Rob00, Cap00]. Es ist allgemein akzeptiert, dass der QCD Lagrangian eine nichtlineare Dynamik involviert. Dies macht das volle Verständnis der Kernphysik aus ersten Prinzipien heraus sehr schwierig. Deshalb werden die meisten Phänomene mit geeigneten effektiven Freiheitsgraden beschrieben. Eine Betrachtung der natürlichen Phänomene ergibt eine Einteilung in Energieskalen (Q), einmal das Gebiet der Kernstruktur $Q \sim 1 - 10$ MeV und das Gebiet der *NN*-Wechselwirkung mit Struktur- und Substrukturskalen $Q \sim 0.3 - 1$ GeV. Die große Lücke zwischen der hadronischen Energieskala und der Skala der nuklearen Bindungsenergien macht die direkte Anwendung der nichtlinearen QCD auf die Physik der Kerne so schwierig. Einen alternativen Zugang bieten effektive Quantenfeldtheorien (EQF), die auf der chiralen Symmetrie basieren und die auch quantitative Rechnungen erlauben. Derzeit wird diese Methode auf Mehr- und Viel-Teilchen-Systeme ausgeweitet. In Kombination mit den Niederenergiekonstanten, die aus ersten Prinzipien der QCD gewonnen wurden, kann die EQF vielleicht bald ein konsistentes qualitatives Verständnis der Kerneigenschaften und der Nieder- bis Mittelenergie-Kernstreuung liefern.

Neben dem Verständnis der Kernstruktur aus der QCD heraus ist das dynamische Verhalten der Nukleonen bei Anwesenheit von Kernmaterie von Interesse. Die Relevanz von modifizierten *NN*-Streuamplituden in Form von g-Matrizen im nuklearen Medium mit mittleren Feldern und Pauli-blocking ist wohlbekannt. Diese *NN*-Amplituden — und alternative Reduktionen in Form von t-Matrizen — sind mit qualitativen Ergebnissen bei der Berechnung von nuklearen Dichten in stabilen Kernen und der Beschreibung von *NA*-Streuung mit Projektilenergien unter 1 GeV verwendet worden. Für höhere Energien erwartet man signifikante dynamische Veränderungen im Bereich kleiner Abstände wegen dibaryonischer Fusionen mit anschließenden Spaltungen von *NN*-Subsystemen [Fun01].

Unabhängig davon haben mehrere Gruppen Mittelenergie-*NA*-Streuung mit Zwei-Nukleon t- und g-Matrizen als zugrundeliegender Wechselwirkung erfolgreich berechnet [Ray92]. Wir unterscheiden dabei zwischen zwei Hauptphilosophien, mit denen die *NA*-Streuung beschrieben wird, die nichtrelativistische Schrödinger-Theorie und die relativistische Dirac-Theorie [Amo00, Ray92]. Gemeinsam ist beiden die explizite Verwendung und die genaue Behandlung eines wechselwirkenden Paares von Nukleonen unter dem Einfluss der anderen Nukleonen im Kern und die Notwendigkeit einer effektiven *NN*-Streuamplitude, die onund off-shell definiert und bekannt ist. Die neueren Berechnungen von nichtrelativistischen *NA*-Potentialen im Impulsraum [Are89, Are90a, Are90b, Are95, Cre90, Els90] verwenden durchgängig eine konsistente Behandlung der fully-off-shell *NN* t- und g-Matrizen.

Weil die meisten verfügbaren *NN*-Potentiale [Lac80, Mac01a, Sto94, Sto93b, Wir95] an die *NN*-Streudaten unter 350 MeV gefittet sind, genügt eine nichtrelativistische Behandlung des full-folding optischen Modells für die meisten *NA*-Streuanwendungen, entsprechend dem zugrundeliegenden *NN* Modell. Inversionspotentiale, die die elastischen *NN*-Streuphasen bis 1.2 GeV fitten, sind allerdings im full-folding Modell für Projektilenergien bis 500 MeV verwendet worden [Are96]. Obwohl es sich dabei um nichtrelativistische Rechnungen handelt, erlaubten sie eine bessere Beschreibung der Daten als die auf den traditionellen *NN*-Potentialen basierenden Methoden. Das Fehlen von relativistischer Kinematik, Pionproduktion und Δ -Anregung in der *NN*-Wechselwirkung manifestiert sich dabei nicht als gravierende Einschränkung des Modells. Es sollen hier nun diese Einschränkungen überwunden werden und ein full-folding Modell im Impulsraum mit *minimaler Relativität* formuliert werden. Mit geeigneten Modifikationen an den existierenden Programmen sollen hochqualitative full-folding optische Modelle für Energien bis 1.5 GeV entstehen.

Ausführliche Untersuchungen zur *NA*-Streuung sind im Kontext mit relativistischen Dirac-Modellen angestellt worden [Coo93, Mur87, Ott88, Ott91, Ray92, Tjo91]. Diese Modelle liefern eine fundamentalere Formulierung in dem Sinne, dass sie relativistische Kinematik und Dynamik einschließen. Sie verwenden aber alle gefittete *NN*-Wechselwirkungen, die die Phasenverschiebungen nicht gut beschreiben. Dies ist ein ernsthafter Mangel, denn es ist allgemein anerkannt, dass alle folding Modelle eine hochqualitative *NN*-Wechselwirkung als Grundlage benötigen.

Für die Beschreibung von NA-Streuung werden nur moderate nukleare Dichten benötigt, daher sind NN g-Matrizen nicht zwingend erforderlich. Weiterhin sind nur für Energien unter 500 MeV die Effekte des nuklearen Mediums mit spezieller Behandlung von Pauli-blocking und selbstkonsistenten mittleren Feldeffekten dominierend. Für mittlere und höhere NN Energien werden die Mesonproduktion und die intrinsische hadronische Anregung des wechselwirkenden Paars wichtiger. Die t-Matrix im elastischen Kanal ist dann nicht mehr unitär. Da die Niederenergie g- und t-Matrizen innerhalb der Potentialtheorie wohlbekannt sind, suchen wir eine Fortsetzung des NN Potentialmodells mit einem NN optischen Potentialmodell (NNOMP). Wir haben das separable optische Potential zwischen 0.3 und 3 GeV NN Energie auf die NA-Streuung angewendet. Die Rechnungen basieren auf einem relativistisch korrigierten full-folding optischen Modell im Impulsraum, das eine Erweiterung seines nichtrelativistischen Vorgängers [Are95] darstellt. Weil die Lorentztransformation mit dem Verhältnis von Projektilenergie zu Projektilmasse skaliert, benötigt man über 400 MeV Projektilenergie des Nukleons um wesentliche Kontraktionseffekte zu erzielen. Über 300 MeV Projektilenergie sollte man sicherheitshalber die relativistische Kinematik für Faltungsrechnungen verwenden. Bei Pion-Nukleon-Streuung ist die relativistische Kinematik weit verbreitet [Aar68, Ern80, Gie82, Gie83, Gie85, Tho80, Wei82]. Eine sehr gute Erläuterung einiger Aspekte der relativistischen Kinematik gibt der Reviewartikel von Ray, Hoffmann und Coker [Ray92].

Einer der großen Vorteile des nichtrelativistischen optischen *NA*-Potentials ist seine wohl definierte Struktur, die durch die paarweise wechselwirkenden Nukleonen gegeben ist. Diese Modelle waren bemerkenswert erfolgreich bei der Beschreibung von Niederenergiestreuung mit ihrer Verbindung zum Schalenmodell mit gebundenen Zuständen von einzelnen Teilchen. Die Kombination von Targetkorrelationen und hochqualitativer *NN*-Wechselwirkung gibt in erster Ordnung eine gute Beschreibung der *NA*-Dynamik. Diese nichtrelativistischen Theorien sind erfolgreich für viele Targets angewendet worden, und es sollen nun relativistische Korrekturen angebracht werden, um Rechnungen bis 1.5 GeV durchführen zu können.

Im nächsten Abschnitt wird eine Übersicht des full-folding optischen Modells gegeben. Dabei wird insbesondere auf den g-Matrixformalismus eingegangen und es werden die Details der Rechnung erläutert. Diese Rechnungen sind von H.F. Arellano durchgeführt und in [Are02] mit den entsprechenden Abbildungen veröffentlicht worden. Die Ergebnisse werden in Abschnitt 4.3 diskutiert.

4.2 Full-folding Modell

In der nichtrelativistischen Theorie des optischen Potentialmodells ist die Kopplung zwischen dem Projektil- und dem Targetnukleon gegeben durch die Faltung der effektiven Zwei-Körper Wechselwirkung und der gemischten Dichte der Grundzustände. Im Schwerpunktsystem von Projektil und Kern mit der Energie Edes Projektils kann die Kollision mit einem optischen Potential U(E) beschrieben werden

$$U(\mathbf{k}', \mathbf{k}; E) = \sum_{\alpha \le \epsilon_F} \int \int d\mathbf{p}' \, d\mathbf{p} \, \varphi_{\alpha}^{\dagger}(\mathbf{p}') \langle \mathbf{k}' \mathbf{p}' | \mathcal{T}(\Omega_{\alpha}) | \mathbf{k} \mathbf{p} \rangle_{A+1} \varphi_{\alpha}(\mathbf{p}), \qquad (4.1)$$

wo φ_{α} die Ein-Teilchen Grundzustandswellenfunktion zur Energie ϵ_{α} ist und die Summe über alle Niveaus bis zur Fermienergie ϵ_F läuft. Die Zwei-Teilchen \mathcal{T} -Matrix wird ausgewertet bei der Startenergie $\Omega_{\alpha} = m_p + E + m_t + \epsilon_{\alpha}$ mit den Massen von Target m_t und Projektil m_p , seiner kinetischen Energie E und der Bindungsenergie ϵ_{α} . Zu den weiteren Bezeichnungen siehe auch Abb. (4.1). Der Index A + 1 zeigt an, dass es sich um Matrixelemente im Schwerpunktsystem von Projektil und Target handelt, Recoil-Effekte sind vernachlässigt. In den aktuellsten full-folding Rechnungen des optischen Potentials zur *NA*-Streuung, in denen Medium-Effekte explizit in der Zwei-Teilchen-Wechselwirkung enthalten sind, wird die t-Matrix durch eine g-Matrix für infinite Kernmaterie dargestellt [Are89, Are90a, Are90b, Are95]. Bei Nichtberücksichtigung von Modifikationen durch das Medium wurde die t-Matrix meist durch die Zwei-Teilchen-Streumatrix zweier freier Teilchen genähert [Are90b, Els90]. Keine dieser full-folding Rechnungen beinhaltet die benötigte relativistische Kinematik für Hochenergieprozesse.

Für das optische Potential in der Form, wie es oben angegeben ist, benötigt man die t-Matrix im Schwerpunktsystem von Projektil und Kern. Alle verfügbaren Zwei-Teilchen Potentiale sind an Streudaten im Zwei-Teilchen Schwerpunktsystem angepasst. Das praktische Problem besteht nun darin, aus diesen Potentia-

Abbildung 4.1: Schematische Darstellung der Streuung von Projektil und Targetnukleon mit Angabe der entsprechenden Vierer-Impulse.

len die benötigten effektiven Wechselwirkungen unter hinreichender Berücksichtigung der relativistischen Effekte im Schwerpunktsystem von Projektil und Kern zu gewinnen. Dies ist ein bekanntes Problem der Kernphysik und es gibt zahlreiche mögliche Vorgehensweisen [Aar68, Ern80, Gie82, Gie83, Gie85, Tho80, Wei82]. In dem nun folgenden Verfahren behalten wir die dynamische Struktur des Potentials aus Gl. (4.1) bei und identifizieren durch eine Lorentztransformation die entsprechenden kinematischen Variablen der Zwei-Körper Streuung. Die Transformation der t-Matrix vom Zwei-Teilchen (2B) Schwerpunktsystem in das Schwerpunktsystem von Projektil und Kern (A+1) geschieht unter Beachtung von drei wesentlichen Punkten. Erstens gibt es aufgrund der geforderten Lorentzinvarianz des Flusses einen Normierungsfaktor - den sogenannten Møller Flussfaktor — der die Streuamplituden der beiden Systeme miteinander verbindet. Zweitens muss die Kinematik aus dem (A+1) System in das (2B) System transformiert werden, das dem Zwei-Teilchen Potential zugrunde liegt. Drittens involviert die Transformation der Streumatrix vom Zwei-Teilchen in das (A+1) System die Rotation von Spins, ein Effekt der auch als Wigner Rotation bekannt ist. Der Anteil dieses Effekts, der im Zusammenhang mit den relativistischen "no Pair" Potentialen für NA-Streuung von Tjon und Wallace untersucht worden ist, ist bei Energien zwischen 200 und 500 MeV eher klein. Obwohl man keine Aussage über die Bedeutung dieses Effekts bei den hier betrachteten höheren Energien machen kann, ist er hier nicht berücksichtigt.

Die Bezeichnungen für die Vierer-Impulse des Targets und des Projektilnukleons lauten

$$k = (\bar{\omega}, \mathbf{k}), \qquad k' = (\bar{\omega}', \mathbf{k}');$$

$$p = (\bar{\epsilon}, \mathbf{p}), \qquad p' = (\bar{\epsilon}', \mathbf{p}').$$

Bei Translationsinvarianz, wie sie für freie Teilchen in infiniter Kernmaterie angenommen werden kann, ist die Zwei-Teilchen Wechselwirkung durch die Startenergie Ω und den Gesamtimpuls der Streupartner **Q** bestimmt

$$\langle \mathbf{k}' \mathbf{p}' | \mathcal{T}(\Omega) | \mathbf{k} \mathbf{p} \rangle_{A+1} = \eta(\mathbf{k}' \mathbf{p}'; \mathbf{k} \mathbf{p}) \langle \mathbf{k}'_r, -\mathbf{k}'_r | \tau_{\mathbf{Q}}(\sqrt{s}) | \mathbf{k}_r, -\mathbf{k}_r \rangle_{2B} \,\delta(\mathbf{Q}' - \mathbf{Q}).$$
(4.2)

Durch die Dirac'sche Deltafunktion wird Impulserhaltung des Dreier-Gesamtimpulses $\mathbf{Q}' = \mathbf{Q}$ sichergestellt

$$\mathbf{Q} = \mathbf{k} + \mathbf{p}, \qquad \qquad \mathbf{Q}' = \mathbf{k}' + \mathbf{p}', \qquad (4.3)$$

und \sqrt{s} ist die Energie im Zwei-Teilchen Schwerpunktsystem

$$s = \Omega^2 - \mathbf{Q}^2. \tag{4.4}$$

Der Normierungsfaktor η ist der Møller Flussfaktor

$$\eta(\mathbf{k}'\mathbf{p}';\mathbf{kp}) = \left[\frac{\omega(\mathbf{k}'_r)\epsilon(-\mathbf{k}'_r)\omega(\mathbf{k}_r)\epsilon(-\mathbf{k}_r)}{\omega(\mathbf{k}')\epsilon(\mathbf{p}')\omega(\mathbf{k})\epsilon(\mathbf{p})}\right]^{1/2},\tag{4.5}$$

wo die Energien ω und ϵ on-mass-shell genommen sind, d.h. $\omega^2 = m_p^2 + \mathbf{k}_r^2$ und $\epsilon^2 = m_t^2 + \mathbf{k}_r^2$.

Weiter muss eine Lorentztransformation für die Relativimpulse \mathbf{k}_r und \mathbf{k}'_r angegeben werden. Dazu sollen hier die Arbeiten von Aaron, Amado und Young (AAY) [Aar68] und Giebink [Gie85] verwendet werden. Details hierzu stehen im Anhang A.

Eine kovariante Beschreibung der *NN*-Streuung ist formal durch die Bethe-Salpeter Gleichung gegeben

$$\mathcal{M} = \mathcal{V} + \mathcal{VGM},\tag{4.6}$$

wo \mathcal{M} die invarianten Amplituden der irreduziblen Zwei-Teilchen Diagramme sind. Diese Gleichung wird als Ansatz für die verschiedenartigsten Näherungen

KAPITEL 4. ANWENDUNG DES NNOMP IN DER NUKLEON-KERN-STREUUNG

verwendet. Die dreidimensionale Blankenbecler-Sugar Reduktion ist weit verbreitet und für unsere Zwecke, nämlich die Definition eines *NN*-Potentials, hinreichend [Mac01a]. Die Amplituden werden dann durch die reduzierten Terme ausgedrückt und genügen der Integralgleichung

$$\mathcal{M}(\mathbf{q}',\mathbf{q}) = \mathcal{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \mathcal{V}(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_{\mathbf{k}}} \frac{\Lambda^+_{(1)}(\mathbf{k})\Lambda^+_{(2)}(-\mathbf{k})}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{M}(\mathbf{k},\mathbf{q}).$$
(4.7)

Berücksichtigt man nur die Matrixelemente mit Spinoren positiver Energie, erhält man eine minimal relativistische Gleichung für die *NN* t-Matrix

$$\mathcal{T}(\mathbf{q}',\mathbf{q}) = \mathcal{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \mathcal{V}(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_{\mathbf{k}}} \frac{1}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{T}(\mathbf{k},\mathbf{q}).$$
(4.8)

Mit den Substitutionen

$$T(\mathbf{q}',\mathbf{q}) = \left(\frac{M}{E_{\mathbf{q}'}}\right)^{1/2} \mathcal{T}(\mathbf{q}',\mathbf{q}) \left(\frac{M}{E_{\mathbf{q}}}\right)^{1/2}$$
(4.9)

und

$$V(\mathbf{q}',\mathbf{q}) = \left(\frac{M}{E_{\mathbf{q}'}}\right)^{1/2} \mathcal{V}(\mathbf{q}',\mathbf{q}) \left(\frac{M}{E_{\mathbf{q}}}\right)^{1/2}$$
(4.10)

kann man eine einfachere Form der t-Matrix erhalten. Diese entspricht der bekannten Lippmann-Schwinger Gleichung im Impulsraum

$$T(\mathbf{q}',\mathbf{q}) = V(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} V(\mathbf{q}',\mathbf{k}) \frac{M}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} T(\mathbf{k},\mathbf{q}).$$
(4.11)

Die besondere Bedeutung dieser Gleichung entsteht dadurch, dass sie eine Fortsetzung der on-shell durch die experimentellen Daten und Phasenanalysen gegebenen t-Matrizen in den off-shell Bereich liefert, der für das full-folding optische Modell benötigt wird. Wir setzen hier weniger auf ein fundamentales theoretisches Ergebnis als vielmehr auf die experimentellen *NN*-Streudaten und die geringe Sensibilität der *NA*-Streuung bezüglich alternativer off-shell Fortsetzungen. Ein wichtiges Ergebnis ist, dass optische *NN*-Potentiale, die on-shell gleichwertig sind, zu sehr ähnlichen *NA*-Streuamplituden führen, ungeachtet von off-shell Differenzen und der beschränkten off-shell Fortsetzung aus Gl. (4.7-4.11).

Ein bedeutender Schritt bei der Beschreibung der *NA*-Streuung war die Festlegung einer effektiven Wechselwirkung, die auf der freien Zwei-Teilchen Wechselwirkung beruht. Diese Philosophie wurde von den frühen Faltungsmodellen und den aktuellen nichtrelativistischen full-folding Modellen verfolgt [Are95]. Die effektive Wechselwirkung \mathcal{T} aus Gl. (4.1) stammt aus den Betrachtungen von Brueckner-Bethe-Goldstone zur g-Matrix. Die Erweiterung zu Hochenergieanwendungen erfordert minimale relativistische Korrekturen. In diesem Zusammenhang ist die Arbeit von Brockmann und Machleidt [Bro90] interessant, wo eine relativistische dreidimensionale Reduktion der Bethe-Salpeter-Gleichung zur Behandlung der Wechselwirkung von Nukleonen in Kernmaterie verwendet wird. Wenn man nur Matrixelemente zwischen Spinoren zu positiven Energien berücksichtigt, erhält man die durch das Medium modifizierten invarianten Amplituden [Bro90]

$$\mathcal{G}_{\mathbf{Q}}(\mathbf{q}',\mathbf{q};s) = \mathcal{V}_{\mathbf{Q}}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \mathcal{V}_{\mathbf{Q}}(\mathbf{q}',\mathbf{k}) \left(\frac{M}{E_{\frac{1}{2}\mathbf{Q}+\mathbf{k}}}\right) \frac{M\bar{Q}(\mathbf{Q};\mathbf{k})}{\frac{1}{4}s + \frac{1}{4}\mathbf{Q}^2 - E_{\frac{1}{2}\mathbf{Q}+\mathbf{k}}^2 + i\epsilon} \mathcal{G}_{\mathbf{Q}}(\mathbf{k},\mathbf{q};s). \quad (4.12)$$

Hier steht der Impuls **Q** für den Impuls des Paares bezogen auf den Hintergrund und \overline{Q} ist der Pauli-blocking Operator, der auf nicht besetzte intermediäre Zustände projeziert. Für den obigen Ausdruck wurden gemittelte Winkel benutzt, d.h. $|\frac{1}{2}\mathbf{Q} + \mathbf{k}|^2 \approx \frac{1}{4}\mathbf{Q}^2 + \mathbf{k}^2$ und die Invariante s definiert als $s = 4E_{\frac{1}{2}\mathbf{Q}+\mathbf{q}}^2 - \mathbf{Q}^2$. Diese Reduktion in Verbindung mit der Dirac-Brueckner-Hartree-Fock Näherung wurde mit gutem Erfolg auf infinite Kernmaterie [Bro90] und auf Grundzustandseigenschaften [Mü90] angewendet.

Die obige Gleichung für G ist deshalb so wichtig, weil sie eine direkte Verbindung zum freien *NN*-Potential liefert. Unter Verwendung der gleichen Definitionen wie in Gl.(4.9) und (4.10)

$$g_{\mathbf{Q}}(\mathbf{q}',\mathbf{q};\sqrt{s}) = \sqrt{\frac{M}{E_{\mathbf{q}'}}} \mathcal{G}_{\mathbf{Q}}(\mathbf{q}',\mathbf{q};s) \sqrt{\frac{M}{E_{\mathbf{q}}}}$$
(4.13)

und

$$V(\mathbf{q}', \mathbf{q}) = \sqrt{\frac{M}{E_{\mathbf{q}'}}} \mathcal{V}(\mathbf{q}', \mathbf{q}) \sqrt{\frac{M}{E_{\mathbf{q}}}}, \qquad (4.14)$$

erhalten wir

$$g_{\mathbf{Q}}(\mathbf{q}',\mathbf{q};\sqrt{s}) = V_{\mathbf{Q}}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} V_{\mathbf{Q}}(\mathbf{q}',\mathbf{k}) \left(\frac{E_{\mathbf{k}}}{E_{\frac{1}{2}\mathbf{Q}+\mathbf{k}}}\right) \frac{M\bar{Q}(\mathbf{Q},\mathbf{k})}{\frac{1}{4}s + \frac{1}{4}\mathbf{Q}^2 - E_{\frac{1}{2}\mathbf{Q}+\mathbf{k}}^2 + i\epsilon} g_{\mathbf{Q}}(\mathbf{k},\mathbf{q};\sqrt{s}).$$

$$(4.15)$$

Der oben angegebene Dirac-Brueckner Ansatz unterscheidet sich auf nichttriviale Weise vom nichtrelativistischen Ansatz. Die mit Hilfe von effektiven Dirac-Spinoren realisierte Dichteabhängigkeit der Ein-Boson-Austausch Wechselwirkung und die explizite relativistische Kinematik sind Eigenschaften, die keinen

KAPITEL 4. ANWENDUNG DES NNOMP IN DER NUKLEON-KERN-STREUUNG

Gegenpart im traditionellen Brueckner Ansatz haben. Bei Unterdrückung dieser dynamischen relativistischen Effekte kann man immer noch ein Minimum an relativistischen Eigenschaften extrahieren, die für das nichtrelativistische Modell benötigt werden. Für unseren Ansatz fordern wir Selbstkonsistenz mit der folgenden Wahl eines Quasi-Teilchen-Spektrums

$$E_{\mathbf{p}}^{2} = \mathbf{p}^{2} + (M + U(\mathbf{p}))^{2}.$$
(4.16)

Wie beim Brueckner-Bethe-Goldstone Ansatz üblich erhalten wir das selbstkonsistente Quasi-Potential durch eine kontinuierliche Wahl der Fermi-Oberfläche. Als erster Test kann der Fall zweier freier wechselwirkender Nukleonen dienen, hier geht der Pauli-blocking Operator in die Identität über und das selbstkonsistente Feld verschwindet. Wenn die Wechselwirkung weiter im Schwerpunktsystem ($\mathbf{Q} = 0$) der beiden Nukleonen betrachtet wird, dann entspricht die g-Matrix gerade der freien Streumatrix T, wie sie durch die Blankenbecler-Sugar Gleichung (4.11) beschrieben wird. Diesen Grenzfall kann man leicht überprüfen, wenn man \sqrt{s} durch $2\sqrt{q_0^2 + M^2}$ ersetzt. q_0 ist der relative on-shell Schwerpunktimpuls. Wir haben

$$T(\mathbf{q}', \mathbf{q}; \sqrt{s}) = V(\mathbf{q}', \mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} v(\mathbf{q}', \mathbf{k}) \frac{M}{q_0^2 - k^2 + i\epsilon} T(\mathbf{k}, \mathbf{q}; \sqrt{s}), \quad (4.17)$$

dies ist gerade die nichtrelativistische Lippmann-Schwinger Gleichung mit dem Pol an der Stelle des relativistisch richtigen Impulses.

Der andere interessante Fall ist der von infiniter Kernmaterie, wo die relativistische Struktur des Quasi-Teilchen-Spektrums aus Gl. (4.16) durch eine Potenzreihe in U/M abgeschätzt wird

$$E_{\mathbf{p}}^2/M \approx 2\left(\frac{\mathbf{p}^2}{2M} + U(\mathbf{p})\right) + M(1 + \mathcal{O}[(U/M)^2]).$$
 (4.18)

Wenn wir nun weiter \mathbf{p}^2 durch die über den Winkel gemittelte Größe $\frac{1}{4}\mathbf{Q}^2 + \mathbf{k}^2$ ersetzen und mit *s* genauso verfahren, dann ist die Ähnlichkeit des Nenners aus Gl. (4.15) mit dem Nenner des nichtrelativistischen Propagators evident. Eine Abschätzung der Genauigkeit der oben angegebenen Näherung ergibt sich aus der Tatsache, dass $(U/M) \lesssim 1/10$. Damit ist sichergestellt, dass der obige Ausdruck für E^2 zu einem Propagator führt, der sich um weniger als 1% vom relativistischen Propagator unterscheidet. Somit ist die Verwendung einer nichtrelativistischen selbstkonsistenten Methode für die Quasi-Potentiale gerechtfertigt.

Mit diesen Bezeichnungen kann man nun effektive Zwei-Teilchen Wechselwirkungen berechnen, wie sie für das full-folding optische Modell benötigt werden, wobei in Gl. (4.15) eine geeignete Wahl für die Invariante *s* getroffen wurde mit einer konsistenten Startenergie Ω_{α} aus Gl. (4.1). Weil Ω_{α} die gesamte Paarenergie der wechselwirkenden Nukleonen mit dem Gesamtimpuls **Q** ist, ist die Invariante $s = \Omega_{\alpha}^2 - \mathbf{Q}^2$.

Es folgen zunächst einige Anmerkungen zu den hier verwendeten Methoden zur Berechnung des full-folding optischen Potentials U(E). Wir verwenden für das full-folding optische Potential die Gleichung

$$U(\mathbf{k}, \mathbf{k}'; E) = \sum_{\alpha \le \epsilon_F} \left\langle \mathbf{k}'; \varphi_{\alpha} \middle| F(E + \epsilon_{\alpha}) \middle| \mathbf{k}; \varphi_{\alpha} \right\rangle_{\mathcal{A}},$$
(4.19)

 \mathcal{A} steht für antisymmetrisierte Matrixelemente, und $F(\omega)$ ist die Zwei-Teilchen-Wechselwirkung, die im folgenden genau erläutert werden soll.

Die Zwei-Teilchen-Wechselwirkung $F(\omega)$ muss der Integralgleichung

$$F(\omega) = V + V\Lambda(\omega)F(\omega) \tag{4.20}$$

genügen. Der Schwerpunktimpuls der zwei wechselwirkenden Nukleonen sei \mathbf{K} und der Relativimpuls κ . Wir erhalten die Darstellung

$$\langle \mathbf{K}'; \boldsymbol{\kappa}' \big| F(\omega) \big| \mathbf{K}; \boldsymbol{\kappa} \rangle = \delta(\mathbf{K} - \mathbf{K}') \langle \boldsymbol{\kappa}' | V | \boldsymbol{\kappa} \rangle + \int d\mathbf{q} d\mathbf{Q} d\mathbf{q}' d\mathbf{Q}' \langle \mathbf{K}'; \boldsymbol{\kappa}' \big| V | \mathbf{Q}'; \mathbf{q}' \rangle \langle \mathbf{Q}'; \mathbf{q}' \big| \Lambda(\omega) | \mathbf{Q}; \mathbf{q} \rangle \langle \mathbf{Q}; \mathbf{q} \big| F(\omega) | \mathbf{K}; \boldsymbol{\kappa} \rangle,$$

$$(4.21)$$

wo wir Impulserhaltung für das wechselwirkende Paar angenommen haben. Um die Lösung der Gleichung möglichst einfach zu gestalten, führen wir den gemittelten Schwerpunktimpuls P und die Änderung des Schwerpunktimpulses p ein, außerdem p',

$$p' = Q' - Q$$
 $P = \frac{1}{2}(K' + K)$ $p = K - K'.$ (4.22)

In diesen Koordinaten und unter Ausnutzung der Impulserhaltung $K' = P - \frac{1}{2}p = Q'$ erhalten wir

$$\left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa}' \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle = \delta(\mathbf{p}) \left\langle \boldsymbol{\kappa}' \middle| V \middle| \boldsymbol{\kappa} \right\rangle + \int d\mathbf{p}' d\mathbf{q} d\mathbf{q}' \left\langle \boldsymbol{\kappa}' \middle| V \middle| \mathbf{q}' \right\rangle$$

$$\times \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \mathbf{q}' \middle| \Lambda(\omega) \middle| \mathbf{P} - \frac{1}{2}\mathbf{p} - \mathbf{p}'; \mathbf{q} \right\rangle \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p} - \mathbf{p}'; \mathbf{q} \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle.$$

$$(4.23)$$

Wegen der Translationsinvarianz der Wechselwirkung der Nukleonen für infinite Kernmaterie und für freie Nukleonen kann man die Fouriertransformierte der

KAPITEL 4. ANWENDUNG DES NNOMP IN DER NUKLEON-KERN-STREUUNG

Zwei-Teilchen Matrixelemente von F bezüglich der Schwerpunktkoordinate bilden

$$\left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa}' \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle = \frac{1}{(2\pi)^3} \int d\mathbf{R} e^{i\mathbf{R}\cdot\mathbf{p}} \left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{P};\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle.$$
(4.24)

 $\langle \kappa' | f_{[\mathbf{P};\mathbf{R}]}(\omega) | \kappa \rangle$ sind die Matrixelemente einer reduzierten effektiven Zwei-Körper Kraft $f_{[\mathbf{P};\mathbf{R}]}(\omega)$, zu einem gemittelten Schwerpunktimpuls **P** und an einem Ort **R**. Für den Propagator gehen wir analog vor

$$\left\langle \mathbf{P} + \frac{1}{2}\mathbf{p}; \mathbf{q}' \middle| \Lambda(\omega) \middle| \mathbf{P} - \frac{1}{2}\mathbf{p}; \mathbf{q} \right\rangle = \frac{1}{(2\pi)^3} \int d\mathbf{R} e^{-i\mathbf{R}\cdot\mathbf{p}} \left\langle \mathbf{q}' \middle| \lambda_{[\mathbf{P};\mathbf{R}]}(\omega) \middle| \mathbf{q} \right\rangle.$$
(4.25)

 $\lambda_{[\mathbf{P};\mathbf{R}]}(\omega)$ ist dann der reduzierte Zwei-Teilchen Propagator zu **P** und **R**. λ und f lassen sich durch Λ und F ausdrücken,

$$\left\langle \mathbf{q}' \middle| \lambda_{[\mathbf{P};\mathbf{R}]}(\omega) \middle| \mathbf{q} \right\rangle = \int d\mathbf{p} e^{i\mathbf{R}\cdot\mathbf{p}} \left\langle \mathbf{P} + \frac{1}{2}\mathbf{p}; \mathbf{q}' \middle| \Lambda(\omega) \middle| \mathbf{P} - \frac{1}{2}\mathbf{p}; \mathbf{q} \right\rangle$$
(4.26)

und

$$\left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{P};\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle = \int d\mathbf{p} e^{-i\mathbf{R}\cdot\mathbf{p}} \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa}' \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle.$$
(4.27)

Beginnend von Gl.(4.23) kann ich diese Ausdrücke zusammenfassen. Ich multipliziere die ganze Gleichung mit $e^{-i\mathbf{R}\cdot\mathbf{p}}$ und bilde das Integral über $d\mathbf{p}$, so dass die linke Seite unserer neuen Gleichung gleich der rechten Seite von Gl. (4.27) ist

$$\left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{P},\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle = \int d\mathbf{p} e^{-i\mathbf{p}\cdot\mathbf{R}} \delta(\mathbf{p}) \langle \boldsymbol{\kappa}' | V | \boldsymbol{\kappa} \rangle + \int d\mathbf{p} d\mathbf{p}' d\mathbf{q} d\mathbf{q}' e^{-i\mathbf{p}\cdot\mathbf{R}} \langle \boldsymbol{\kappa}' | V | \mathbf{q}' \rangle \times \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \mathbf{q}' \middle| \Lambda(\omega) \middle| \mathbf{P} - \frac{1}{2}\mathbf{p} - \mathbf{p}'; \mathbf{q} \right\rangle \times \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p} - \mathbf{p}'; \mathbf{q} \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle.$$
(4.28)

Im nächsten Schritt ersetzen wir das $\Lambda(\omega)$ unter dem Integral durch Gl. (4.25)

$$\left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{P},\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle = \left\langle \boldsymbol{\kappa}' \middle| V \middle| \boldsymbol{\kappa} \right\rangle + \frac{1}{(2\pi)^3} \int d\mathbf{p} d\mathbf{p}' d\mathbf{q} d\mathbf{q}' d\mathbf{R}' e^{-i\mathbf{p}\cdot\mathbf{R}} e^{-i\mathbf{p}'\cdot\mathbf{R}'} \\ \times \left\langle \boldsymbol{\kappa}' \middle| V \middle| \mathbf{q}' \right\rangle \left\langle \mathbf{q}' \middle| \lambda_{[\mathbf{P}-\frac{1}{2}\mathbf{p}-\frac{1}{2}\mathbf{p}';\mathbf{R}']}(\omega) \middle| \mathbf{q} \right\rangle \left\langle \mathbf{P} - \frac{1}{2}\mathbf{p} - \mathbf{p}'; \mathbf{q} \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle,$$

$$(4.29)$$

und weiter wird auch F durch f ersetzt

$$\left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{P},\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle = \left\langle \boldsymbol{\kappa}' \middle| V \middle| \boldsymbol{\kappa} \right\rangle$$

$$+ \frac{1}{(2\pi)^6} \int d\mathbf{p} d\mathbf{p}' d\mathbf{q} d\mathbf{q}' d\mathbf{R}' d\mathbf{R}'' e^{-i\mathbf{p}\cdot\mathbf{R}} e^{-i\mathbf{p}'\cdot\mathbf{R}'} e^{i\mathbf{R}''\cdot(\mathbf{p}+\mathbf{p}')} \left\langle \boldsymbol{\kappa}' \middle| V \middle| \mathbf{q}' \right\rangle$$

$$\times \left\langle \mathbf{q}' \middle| \lambda_{[\mathbf{P}-\frac{1}{2}\mathbf{p}-\frac{1}{2}\mathbf{p}';\mathbf{R}']}(\omega) \middle| \mathbf{q} \right\rangle \left\langle \mathbf{q} \middle| f_{[\mathbf{P}-\frac{1}{2}\mathbf{p}';\mathbf{R}'']}(\omega) \middle| \boldsymbol{\kappa} \right\rangle.$$
(4.30)

Im weiteren ersetzen wir R' durch $\mathbf{R} + \mathbf{r}$ und \mathbf{R}'' durch $\mathbf{R} - \mathbf{r}'/2$. Auch die Variable \mathbf{p} wird ersetzt durch eine neue Variable, $-\mathbf{p}/2 - \mathbf{p}'/2$, die wir wieder \mathbf{p} nennen. Um Schreibarbeit zu sparen, lassen wir ab jetzt die Abhängigkeit von den Relativkoordinaten $\boldsymbol{\kappa}, \boldsymbol{\kappa}', \mathbf{q}, \mathbf{q}'$ weg,

$$f_{[\mathbf{P};\mathbf{R}]}(\omega) = V + \frac{1}{(2\pi)^6} \int d\mathbf{r}' d\mathbf{r} d\mathbf{p}' d\mathbf{p} V \lambda_{[\mathbf{P}+\mathbf{p};\mathbf{R}+\mathbf{r}]}(\omega) e^{i(\mathbf{r}'\cdot\mathbf{p}-\mathbf{r}\cdot\mathbf{p}')} f_{[\mathbf{P}-\frac{\mathbf{p}'}{2};\mathbf{R}-\frac{\mathbf{r}'}{2}]}(\omega).$$
(4.31)

Eine Entwicklung von Gl. (4.31) ergibt

$$f_{[\mathbf{P};\mathbf{R}]}(\omega) = V + V\lambda_{[\mathbf{P};\mathbf{R}]}(\omega)V + \dots$$
(4.32)

Der erste nichttriviale Term enthält also die Kraft bei P und R und den Propagator zu den gleichen Koordinaten P und R. Deswegen ist es sicher eine vernünftige Einschätzung, dass die dominierenden Beiträge in Gl. (4.31) diejenigen sind, die von den Matrixelementen des Propagators stammen, die um P und R zentriert sind. Wir entwickeln den Propagator um P und R und betrachten nur den ersten Term

$$\lambda_{[\mathbf{P}+\mathbf{p};\mathbf{R}+\mathbf{r}]}(\omega) = \lambda_{[\mathbf{P};\mathbf{R}]}(\omega) + \dots$$
(4.33)

Als Lösung erhalten wir dann eine generalisierte g-Matrix, die einer vereinfachten Integralgleichung genügt

$$g_{[\mathbf{P};\mathbf{R}]}(\omega) = V + V\lambda_{[\mathbf{P};\mathbf{R}]}(\omega)g_{[\mathbf{P};\mathbf{R}]}(\omega).$$
(4.34)

Diese g-Matrix ist eine deutliche Verbesserung gegenüber Rechnungen, die die Auswirkungen des nuklearen Mediums vernachlässigen, sie ist aber wesentlich einfacher zu berechnen als die exakte f-Matrix in Gl. (4.31).

Die in Gl. (4.20) gesuchte Zwei-Teilchen Matrix F erhalten wir dann mit Gl. (4.24)

$$\left\langle \mathbf{P} - \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa}' \middle| F(\omega) \middle| \mathbf{P} + \frac{1}{2}\mathbf{p}; \boldsymbol{\kappa} \right\rangle \approx \frac{1}{(2\pi)^3} \int d\mathbf{R} e^{i\mathbf{R}\cdot\mathbf{p}} \left\langle \boldsymbol{\kappa}' \middle| g_{[\mathbf{P};\mathbf{R}]}(\omega) \middle| \boldsymbol{\kappa} \right\rangle.$$
 (4.35)

4.2.1 Der Zwei-Teilchen Propagator

Zur Lösung sowohl der vollständigen Gl. (4.31) als auch der vereinfachten Gl. (4.34) fehlt noch ein geeigneter Propagator. Der Zusammenhang zwischen dem reduzierten Zwei-Teilchen Propagator λ und dem Zwei-Teilchen Propagator Λ ist durch Gl. (4.26) gegeben. Der Zwei-Teilchen Propagator ist festgelegt durch [Kad89]

$$\langle \mathbf{q}_1'; \mathbf{q}_2' | \Lambda(\omega) | \mathbf{q}_1; \mathbf{q}_2 \rangle = \int \frac{A(\mathbf{q}_1', \mathbf{q}_1; z) A(\mathbf{q}_2', \mathbf{q}_2; z')}{\omega - z - z' + i\varepsilon} dz dz', \tag{4.36}$$

wo A(z) die Single-Nukleon Spektralfunktion [Kad89] und die q_i die Ein-Teilchen Impulse sind.

Zur Bestimmung der Spektralfunktion ziehen wir ein symmetrisches wechselwirkendes Fermigas heran. In der Ortsraumdarstellung erhalten wir die Spektralfunktion $A_p(z)$ für ein Fermigas, das durch Fermiimpuls und Fermienergie ausgezeichnet ist

$$A_p(\mathbf{x}', \mathbf{x}; z) = \frac{1}{(2\pi)^3} \int d\mathbf{k}_\alpha \delta[z - \epsilon(k_\alpha; k_F)] e^{i\mathbf{k}_\alpha \cdot (\mathbf{x} - \mathbf{x}')} \Theta[\epsilon(k_\alpha; k_F) - \epsilon_F].$$
(4.37)

 $\epsilon(k_{\alpha}; k_F)$ ist die Ein-Teilchen Energie eines Nukleons mit dem Impuls k_{α} im infiniten Medium mit Fermiimpuls k_F ,

$$\epsilon(k_{\alpha};k_F) = \frac{k_{\alpha}^2}{2m} + \operatorname{Re}[U_{NM}(k_{\alpha};k_F)], \qquad (4.38)$$

 $\hbar = 1$, *m* ist die Nukleonenmasse und $U_{NM}[k_{\alpha}; k_F]$ ist das komplexe selbstkonsistente mittlere Feld

$$U_{NM}(k;k_F) = \sum_{\alpha \le \epsilon_F} \left\langle \frac{1}{2} (\mathbf{k} - \mathbf{k}_{\alpha}) \middle| g_{[\mathbf{k} + \mathbf{k}_{\alpha}]}(\epsilon(k) + \epsilon(k_{\alpha})) \middle| \frac{1}{2} (\mathbf{k} - \mathbf{k}_{\alpha}) \right\rangle.$$
(4.39)

Um die Verbindung des infiniten mit dem endlichen System herzustellen, nutzen wir die Beziehung

$$\rho(R) = \frac{2}{3\pi^2} k_F^3(R), \qquad (4.40)$$

die die Dichte ρ des Kerns mit der des Fermigases gleichsetzt und so eine Ortsabhängigkeit von $k_F = k_F(R)$ schafft. $\mathbf{R} = \mathbf{x} + \mathbf{x}'$ ist die gemittelte Koordinate der beiden wechselwirkenden Nukleonen. Mit diesen Festlegungen kann man nun in Gl. (4.37, 4.36) und (4.26) einsetzen und wenn man weiter annimmt

$$k_F(|\mathbf{R} \pm \mathbf{r}/2|) \approx k_F(R),$$
 (4.41)

erhält man

$$\left\langle \mathbf{q}' \middle| \lambda_{[\mathbf{P};\mathbf{r}]}(\omega) \middle| \mathbf{q} \right\rangle = \delta(\mathbf{q} - \mathbf{q}') \lambda_{\mathbf{P}}^{NM}(\mathbf{q};\omega;k_F(R)),$$
 (4.42)

mit

$$\lambda_{\mathbf{P}}^{NM}(\mathbf{q};\omega;k_F) = \frac{\mathcal{Q}(P_+;P_-;k_F)}{\omega + i\epsilon - \epsilon(P_+;k_F) - \epsilon(p_-;k_F)}$$
(4.43)

und $P_{\pm} = |\frac{1}{2}\mathbf{P} \pm \mathbf{q}|$ sowie dem Pauli-blocking Operator

$$\mathcal{Q}(P_+; P_-; k_F) = \Theta[\epsilon(P_+; k_F) - \epsilon_F] \Theta[\epsilon(P_-; k_F) - \epsilon_F].$$
(4.44)

4.2.2 Explizite Berechnung des optischen Potentials

Für das optische Potential wird die Gl. (4.19) verwendet. Für die Zwei-Teilchen Kraft wird der Ausdruck aus Gl. (4.24) eingesetzt

$$U(\mathbf{k}', \mathbf{k}; E) = \frac{1}{(2\pi)^3} \sum_{\alpha \le \epsilon_F} \int d\mathbf{R} d\mathbf{P} \mathbf{p} e^{i\mathbf{R} \cdot (\mathbf{q} - \mathbf{p})} \rho_\alpha (\mathbf{P} + \frac{1}{2}\mathbf{p}, \mathbf{P} - \frac{1}{2}\mathbf{p}) \\ \times \left\langle \boldsymbol{\kappa}' - \frac{1}{4}(\mathbf{p} - \mathbf{q}) \middle| f_{[\mathbf{K} + \mathbf{P}; \mathbf{R}]}(E + \epsilon_\alpha) \middle| \boldsymbol{\kappa} + \frac{1}{4}(\mathbf{p} - \mathbf{q}) \right\rangle_{\mathcal{A}}$$
(4.45)

mit den Notationen

$$\boldsymbol{\kappa}' = \frac{1}{2}(\mathbf{K} - \mathbf{P} - \mathbf{q}), \qquad \boldsymbol{\kappa} = \frac{1}{2}(\mathbf{K} - \mathbf{P} + \mathbf{q}) \qquad (4.46)$$

und

$$\mathbf{K} = \frac{1}{2}(\mathbf{k} + \mathbf{k}'), \qquad \mathbf{q} = \mathbf{k} - \mathbf{k}', \qquad (4.47)$$

entsprechend den mittleren und übertragenen Impulsen des Projektils. Die Grundzustandsdichte ρ_{α} zum Zustand α ist

$$\rho_{\alpha}(\mathbf{P} + \frac{1}{2}\mathbf{p}, \mathbf{P} - \frac{1}{2}\mathbf{p}) = n_{\alpha}\phi_{\alpha}^{\dagger}(\mathbf{P} + \frac{1}{2}\mathbf{p})\phi_{\alpha}^{\dagger}(\mathbf{P} - \frac{1}{2}\mathbf{p}), \qquad (4.48)$$

wo n_{α} die Besetzungszahl von α ist. Um die Berechnung weiter zu vereinfachen, führen wir die Wigner-Transformierte W_{α} der Ein-Teilchen Dichte ρ_{α} ein

$$W_{\alpha}(\mathbf{R};\mathbf{P}) = \frac{1}{(2\pi)^3} \int d\mathbf{p} e^{-i\mathbf{R}\cdot\mathbf{p}} \rho_{\alpha}(\mathbf{P} + \frac{1}{2}\mathbf{p}, \mathbf{P} - \frac{1}{2}\mathbf{p}).$$
(4.49)

Wenn wir dies in Gl. (4.45) einsetzen und die Variable $\mathbf{p} \rightarrow \mathbf{p} + \mathbf{q}$ ersetzen, erhalten wir

$$U(\mathbf{k}', \mathbf{k}; E) = \frac{1}{(2\pi)^3} \sum_{\alpha} \int d\mathbf{R} d\mathbf{R}' d\mathbf{P} d\mathbf{p} e^{i\mathbf{R}' \cdot \mathbf{q}} W_{\alpha}(\mathbf{R}'; \mathbf{P}) e^{i\mathbf{p} \cdot (\mathbf{R}' - \mathbf{R})} \\ \times \left\langle \boldsymbol{\kappa}' - \frac{1}{4} \mathbf{p} \middle| f_{[\mathbf{K} + \mathbf{P}; \mathbf{R}]}(E + \epsilon_{\alpha}) \middle| \boldsymbol{\kappa} + \frac{1}{4} \mathbf{p} \right\rangle_{\mathcal{A}}.$$
 (4.50)

KAPITEL 4. ANWENDUNG DES NNOMP IN DER NUKLEON-KERN-STREUUNG

Hier sieht man, dass der Impuls p ein Maß für die Delokalisierung R' eines mittleren gebundenen Nukleons bezüglich des einfallenden Teilchens R ist. Weil die f-Matrixelemente bei einer von R unabhängigen Wechselwirkung nicht von p abhängen, ist es für den allgemeinen Fall gerechtfertigt, in Gl. (4.50) $\mathbf{p} = 0$ zu setzen. Für das optische Potential erhalten wir damit

$$U(\mathbf{k}', \mathbf{k}; E) \simeq \int d\mathbf{R} e^{i\mathbf{q}\cdot\mathbf{R}} \sum_{\alpha} \int d\mathbf{P} W_{\alpha}(\mathbf{R}; \mathbf{P}) \left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{K}+\mathbf{P};\mathbf{R}]}(E+\epsilon_{\alpha}) \middle| \boldsymbol{\kappa} \right\rangle_{\mathcal{A}}.$$
(4.51)

Diese beiden Gleichungen (4.50) und (4.51) liefern ein Gerüst zur Entwicklung der lokale Dichte Näherung.

Wir vereinfachen die Rechnung nun soweit, dass wir die g-Matrix anstelle der exakten Wechselwirkung f verwenden und setzen eine mittlere Bindungsenergie $\bar{\epsilon}$ für die Ein-Teilchen Zustände ein,

$$U(\mathbf{k}',\mathbf{k};E) = \int d\mathbf{R} \int d\mathbf{P} e^{i\mathbf{q}\cdot\mathbf{R}} W(\mathbf{R};\mathbf{P}) \left\langle \boldsymbol{\kappa}' \middle| f_{[\mathbf{K}+\mathbf{P};\mathbf{R}]}(E+\bar{\epsilon}) \middle| \boldsymbol{\kappa} \right\rangle_{\mathcal{A}}$$
(4.52)

wo $W(\mathbf{R}; \mathbf{P})$ die Wigner-Transformierte der gemischten Target Dichte ist

$$W(\mathbf{R}; \mathbf{P}) = \sum_{\alpha} W_{\alpha}(\mathbf{R}; \mathbf{P})$$

= $\frac{1}{(2\pi)^3} \int d\mathbf{p} e^{-i\mathbf{R}\cdot\mathbf{p}} \rho(\mathbf{P} + \frac{1}{2}\mathbf{p}, \mathbf{P} - \frac{1}{2}\mathbf{p}).$ (4.53)

Für die gemischte Dichte verwenden wir [Are90b]

$$\rho(\mathbf{P} + \frac{1}{2}\mathbf{p}, \mathbf{P} - \frac{1}{2}\mathbf{p}) \approx \rho(p; P)$$

$$= \frac{4}{(2\pi)^3} \int d\mathbf{R} \rho(R) e^{i\mathbf{p}\cdot\mathbf{R}} \frac{1}{\hat{\rho}(R)} \Theta[\hat{k}(R) - P],$$
(4.54)

wo $\hat{k}(R)$ eine lokale Impulsfunktion ist, die entweder durch die Slater- oder durch die Campi-Bouyssy-Näherung gegeben ist. Die lokale Dichte ist dann

$$\hat{\rho}(R) = \frac{2}{3\pi^3} \hat{k}_F^3(R).$$
(4.55)

Die Wignertransformierte ist in diesem Fall

$$W(\mathbf{R};\mathbf{P}) = \frac{4}{(2\pi)^3} \rho(R) \frac{1}{\hat{\rho}(R)} \Theta[\hat{k}(R) - P], \qquad (4.56)$$

wo $\rho(R)$ die Grundzustandsdichte ist. Mit diesen Bezeichnungen erhalten wir dann für das optische Potential

$$U(\mathbf{k}', \mathbf{k}; E) = \frac{4}{(2\pi)^3} \int d\mathbf{R} e^{i\mathbf{q}\cdot\mathbf{R}} \rho(R) \\ \times \left\{ \frac{1}{\hat{\rho}(R)} \int d\mathbf{P} \Theta[\hat{k}(R) - P] \left\langle \boldsymbol{\kappa}' \Big| g_{[\mathbf{K}+\mathbf{P};\mathbf{R}]}(E + \bar{\epsilon}) \Big| \boldsymbol{\kappa} \right\rangle_{\mathcal{A}} \right\}. \quad (4.57)$$

oder kürzer ausgedrückt

$$U(\mathbf{k}',\mathbf{k};E) = 4\pi \int d\mathbf{R} e^{i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{R}} (\rho_p(\mathbf{R})\bar{g}_{pN}(\mathbf{k}',\mathbf{k}) + \rho_n(\mathbf{R})\bar{g}_{nN}(\mathbf{k}',\mathbf{k})), \quad (4.58)$$

wo ρ_p und ρ_n die lokalen Protonen- bzw. Neutronendichten und \bar{g}_{NN} die an der Fermienergie gemittelten off-shell NN Amplituden sind. Für einen speziellen Kanal hängt diese Amplitude über k_f durch g implizit von der nuklearen Dichte und vom lokalen Impuls \hat{k} ab, der die Fermi-Bewegung der Targetnukleonen einschränkt. Der Ausdruck für die g-Matrix ist

$$\bar{g}_{NN} = \frac{3}{4\pi\hat{k}^3} \int \Theta(\hat{k} - |\mathbf{P}|) g_{\mathbf{K}+\mathbf{P}}(\mathbf{k}_{\mathbf{r}}', \mathbf{k}_{\mathbf{r}}; \sqrt{s}) \, d\mathbf{P}, \tag{4.59}$$

mit $\mathbf{K} = (\mathbf{k} + \mathbf{k}')/2$ und die beiden Relativimpulse $\mathbf{k}_{\mathbf{r}}$ und $\mathbf{k}'_{\mathbf{r}}$ erhält man nach der Vorschrift aus dem Anhang A. Damit sind diese Amplituden vollständig off-shell berechnet, wobei keinerlei Annahmen über die Ortsraumstruktur der g-Matrix gemacht worden sind. Mit diesem Ansatz ist das optische Potential ein echter nichtlokaler Operator. Seine Verwendung in der Schrödinger Gleichung führt auf Integro-Differentialgleichungen, die innerhalb der numerischen Genauigkeit exakt gelöst worden sind.

Die Kernmaterierechnungen für die g-Matrix wurden bei verschiedenen Werten von k_f mit vollständig selbstkonsistenten Feldern durchgeführt. Es wurden die optischen Inversionspotentiale zu den SP00-Phasenverschiebungen mit verschiedenen Hintergrundpotentialen (Nijmegen-I und -II, Reid-93, Argonne, Paris und Gel'fand-Levitan-Marchenko Inversionspotentiale) behandelt.

4.3 Ergebnisse

4.3.1 Medium- und Fermi-Effekte

Um die spezifischen Auswirkungen der Fermi-gemittelten effektiven Wechselwirkungen zu untersuchen haben wir die gemittelten \bar{g} -Matrizen im pp und nn Kanal aufgetragen, speziell das on-shell Vorwärts-Element. In unserem Fall hängt die \bar{g}_{NN} Amplitude vom Impuls des Projektils $|\mathbf{k}|$, dem Fermiimpuls k_f und dem lokalen Impuls \hat{k} ab. Im Fall der freien t-Matrix Rechnungen setzen wir $k_f = 0$, erlauben aber die Variation von P durch die lokale nukleare Dichte wegen der Fermi-Bewegung im Kern ($|\mathbf{P}| \leq \hat{k}$). Im Fall des g-Matrixelements haben wir $\hat{k} = k_f$ gesetzt. In Abb. (4.2) sind Real- und Imaginärteile von \bar{g}_{pp} und \bar{g}_{np} gezeigt, die mit dem NNOMP zu den SP00 Phasen und mit dem AV18 Referenzpotential berechnet worden sind. Sie sind aufgetragen als Funktion des Projektilimpulses und in einer Sequenz von \hat{k} -Werten von 0.6 bis 1.4 fm⁻¹. Der 0.6 fm⁻¹ Wert ist jeweils mit einer etwas dickeren Linie dargestellt. Um die Bedeutung des Imaginärteils des NNOMP zu untersuchen, ist dieser in den vier Diagrammen auf der rechten Seite weggelassen worden. Die verschiedenen Formen der relativistischen Kinematik nach Giebink oder AAY sind in den Amplituden praktisch nicht zu unterscheiden.

Ein Vergleich der Ergebnisse zwischen der oberen und unteren Reihe zeigt bei den g-Matrixrechnungen eine stärkere Abhängigkeit des Ergebnisses von der Fermi-Bewegung als bei den t-Matrixrechnungen. Diese Eigenschaft zeigt sich besonders im Realteil der Amplituden und weniger im Imaginärteil. Dies ist ein klarer Hinweis auf die Bedeutung der selbstkonsistenten Felder bei den Fermigemittelten Größen. Beim vollen NNOMP werden die Imaginärteile bei Energien über 500 MeV sehr viel größer als die Realteile, während bei $|\mathbf{k}| < 5 \text{ fm}^{-1}$ die Größen von Real- und Imaginärteil vergleichbar bleiben. Deshalb erwarten wir, dass die Empfindlichkeit der g-Matrix auf die Fermi-Bewegung bei Energien unter 500 MeV am stärksten ausgeprägt ist.

Weiter sehen wir, dass der Imaginärteil der g-Matrix stark von der Anwesenheit des Imaginärteils im NNOMP abhängt. Bei Nichtanwesenheit geht der Imaginärteil oberhalb von etwa 5 fm⁻¹ in eine Sättigung über, während er beim vollen NNOMP weiter ansteigt. Diese Eigenschaft manifestiert sich, wenn das Fermi-Mittel bei der Auswertung des full-folding Potentials voll off-shell geht, was im nächsten Abschnitt erläutert wird.

4.3.2 Totale Wirkungsquerschnitte

Die Bewertung des full-folding optischen Modells einschließlich der relativistischen Kinematik und der Eigenheiten der zugrundeliegenden *NN* Potentiale soll zuerst anhand der totalen Wirkungsquerschnitte für die elastische Neutron-Kern-Streuung erfolgen. In Abb. (4.3) sind die gemessenen [Car96] und die berechneten totalen Wirkungsquerschnitte für Neutronenstreuung an ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca und ¹⁶O bei Strahlenergien zwischen 100 MeV und 1 GeV dargestellt. Diese Wirkungsquerschnitte sind mittels g- und t-Matrizen berechnet worden, wie auch schon in früheren Arbeiten [Are96], aber mit dem separablen optischen Potential

Abbildung 4.2: Die Fermi-gemittelten Vorwärtsamplituden \bar{g}_{NN} bei $k_f = 1 \text{ fm}^{-1}$ und \bar{t}_{NN} zu lokalen Impulsen von 0.6 bis 1.4 fm⁻¹. Aufgetragen sind Daten basierend auf dem NNOMP zum AV18 Potential und den SP00 Phasen für pp und np Kanäle als Funktion des Projektilimpulses. Die vier Diagramme auf der linken Seite zeigen die Matrixelemente zum vollen NNOMP, während die vier Diagramme auf der rechten Seite Ergebnisse unter Nichtberücksichtigung des Imaginärteils von NNOMP zeigen. Die etwas dickeren durchgezogenen Linien zeigen die Ergebnisse für $\hat{k} = 0.6 \text{ fm}^{-1}$.

Abbildung 4.3: Totale Wirkungsquerschnitte für elastische Streuung von Neutronen an ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca und ¹⁶O in Abhängigkeit der Projektilenergie. Die experimentellen Daten [Car96] sind durch Kreise dargestellt. Die durchgezogenen Linien zeigen die Ergebnisse der g-Matrixrechnungen, die gestrichelten die der t-Matrixrechnungen. Die Kurven zum vollen NNOMP sind rechts mit einem Dreieck markiert, die Kurven, bei denen der Imaginärteil unberücksichtigt ist, sind nicht markiert.

und mit der hier beschriebenen Kinematik. Um die Rolle des absorptiven Anteils des NNOMP bewerten zu können sind die Wirkungsquerschnitte mit und ohne Berücksichtigung des Imaginärteils von NNOMP berechnet worden. Aus der Abbildung ergibt sich eine bemerkenswerte Übereinstimmung der vollen g-Matrixrechnungen mit den experimentellen Daten, speziell bei Energien über \sim 200 MeV. Bei den t-Matrixrechnungen und bei Unterdrückung des Imaginärteils von NNOMP ist das nicht der Fall. Das Fehlen von Medium-Effekten macht sich über 500 MeV beim ²⁰⁸Pb bemerkbar, aber weniger bei den leichteren Kernen. Der Imaginärteil des NNOMP hat eine besondere Bedeutung bei Energien über 400 MeV, wie man aus dem Vergleich der markierten mit der nicht markierten Kurve sehen kann.

Wegen des aktuellen Trends zu Spallationsquellen mit höheren Energien gewinnen Reaktionsquerschnitte für Proton-Kern-Streuung bei höheren Energien zunehmende Bedeutung. In Abb. (4.4) haben wir berechnete Reaktionsquerschnitte mit experimentellen Daten [Car96] verglichen. Die Bezeichnungen sind dieselben wie in Abb. (4.3). Das NNOMP basiert auf den SP00 Phasenverschiebungen mit dem AV18 Referenzpotential. Es hat sich aber gezeigt, dass die Reaktionsquerschnitte vom gewählten Referenzpotential kaum abhängen. Auch hier sieht man wieder geringe Unterschiede zwischen den g- und t-Matrixrechnungen bei Energien oberhalb von etwa 500 MeV. Bei diesen höheren Energien haben die Medium-Effekte nur geringe, aber nicht ganz vernachlässigbare Auswirkungen. Unterhalb von 400 MeV ist das speziell bei ²⁰⁸Pb nicht der Fall. Hier kann man einen klaren Unterschied zwischen den g- und den t-Matrixrechnungen erkennen. Diese Unterschiede sind jedoch alle kleiner als der Unterschied zwischen den Rechnungen mit und ohne Imaginärteil von NNOMP. Man kann einen deutlichen Unterschied oberhalb von 500 MeV sehen. Weil es oberhalb dieser Energie aber fast keine Daten gibt, hat die g-Matrixrechnung zum vollen Potential hier den Charakter einer Vorhersage.

Eine weitere Eigenschaft, die sich aus Abb. (4.4) ergibt, ist ein Plateau in den Wirkungsquerschnitten bei Energien ab etwa 650 MeV. Bei der Untersuchung dieser Eigenschaft sieht man, dass sowohl der totale Wirkungsquerschnitt σ_T als auch der Reaktionsquerschnitt σ_R fast linear von $A^{2/3}$ abhängen. Die untersuchten Werte für A liegen dabei zwischen 16 und 208. In Abb. (4.5) sind deshalb die berechneten Werte von σ_T und σ_R in Abhängigkeit von $A^{2/3}$ dargestellt. Die durchgezogenen Kurven stehen für g-Matrixrechnungen bei verschiedenen Energien, die punktierten Kurven sind bei Unterdrückung des Imaginärteils von NNOMP entstanden. Das NNOMP basiert auf den SP00 Phasen und dem AV18 Referenzpotential. Die strichliierten Kurven entsprechen linearen Darstellungen, diese lauten $\sigma_R = -0.19 + 0.10A^{2/3}$ und $\sigma_T = 0.03 + 0.052A^{2/3}$, gemessen in barn. Eine gute gemeinsame Parametrisierung für alle Energien ist dabei nur unter Verwendung des vollen NNOMP möglich. Der absorptive Anteil des NNOMP hebt also

Abbildung 4.4: Berechnete totale Reaktionsquerschnitte für elastische Protonstreuung an ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca und ¹⁶O als Funktion der Projektilenergie. Die experimentellen Daten stammen von [Car96]. Die durchgezogenen bzw. gestrichelten Kurven stehen für full-folding Ergebnisse mit g- bzw. t-Matrizen. Die auf der rechten Seite durch ein Dreieck markierten Kurven basieren auf dem vollen NNOMP, bei den nicht markierten Kurven ist der Imaginärteil des NNOMP unterdrückt.

Abbildung 4.5: Reaktions- (σ_R) und totale (σ_T) Wirkungsquerschnitte für Proton- und Neutron-Streuung als Funktion von $A^{2/3}$ bei 650, 800, 1040, 1250 und 1500 MeV. Die durchgezogenen bzw. punktierten Linien entsprechen g-Matrixrechnungen zum vollen bzw. zum Realteil von NNOMP. Die strichlierten Kurven entsprechen einer angenommenen linearen Abhängigkeit.

in diesem Sinne die Energieabhängigkeit der Wirkungsquerschnitte oberhalb von 700 MeV auf.

4.3.3 Differentielle Wirkungsquerschnitte

Die Berechnung von differentiellen Wirkungsquerschnitten und Spinobservablen bleibt für alle mikroskopischen Modelle eine große Herausforderung. Eine Bewertung der verschiedenen relativistischen Kinematiken ergibt sich durch den Vergleich dieser Observablen bei Verwendung von Giebink oder AAY Kinematik. Diese Ergebnisse sind in Abb. (4.6) gezeigt. Hier sind differentieller Wirkungsquerschnitt $d\sigma/d\omega$, die Analysierstärke A_y und die Spinrotationsfunktion Q für elastische $p + {}^{40}$ Ca Streuung als Funktion des Impulstransfers q bei einer Energie von 1.04 GeV aufgetragen. Diese g-Matrixrechnungen sind mit Giebink (durchgezogene Kurven) und AAY (strichliierte Kurven) durchgeführt worden und zeigen den Fall, wo der Unterschied am stärksten ausgeprägt ist. In allen anderen Fällen ist der Unterschied praktisch nicht zu sehen. Eine Differenz tritt in der Analysierstärke bei Impulsüberträgen über 1.5 fm⁻¹ auf, wo die Giebink Kurve etwas über der AAY Kurve liegt. Alle weiteren Rechnungen sind mit der Giebink Kinematik gemacht worden.

Weiter sind die Rechnungen zu sechs verschiedenen NNOMP Modellen gemacht worden, bei verschiedenen Energien und unter Verwendung des full-folding Modells im g-Matrixformalismus. Als Kerne wurden ⁴⁰Ca und ²⁰⁸Pb ausgewählt, für die es zahlreiche und hochpräzise Daten in verschiedenen Energiebereichen gibt [Ray85, Hut88, Ble88, Hof81, Rah81, Fer86, Alk76a, Alk80, Hä90, Aas86, Hin87, Hin89, Hof80, Hof80, Alk76b, Ray81]. Es wurde das volle NNOMP verwendet, das *NN*-Potential wurde an die SP00 Phasen gefittet und als Referenzpotential dienten Nijmegen-I, Nijmegen-II, Paris, AV18, Reid93 und das Hamburger Inversionspotential. Die Unterschiede zwischen den verschiedenen Referenzpotentialen sind gering, alle sind als durchgezogene Linien dargestellt. Damit soll die geringe Sensitivität der *NA*-Streuung auf on-shell äquivalente Potentiale mit unterschiedlichem off-shell Verhalten veranschaulicht werden.

Wenn man bedenkt, dass die hier erzielten Resultate auf einer parameterfreien Rechnung beruhen, dann ist die Übereinstimmung mit den experimentellen Daten bemerkenswert gut. Die Grenzen des Formalismus werden erst bei einer genaueren Untersuchung der Ergebnisse deutlich. In Abb. (4.7), wo elastische ⁴⁰Ca Streuung dargestellt ist, sieht man für alle Observablen und Energien eine sehr gute Übereinstimmung mit den experimentellen Daten bei Impulsüberträgen über 1 fm⁻¹. Nur bei kleineren Impulsüberträgen bleibt eine gewisse Differenz. In Abb. (4.8) sind die gleichen Ergebnisse für höhere Energien zwischen 650 und 1040 MeV gezeigt. Zwei Kurven weichen etwas von den anderen ab, dies sind die zum AV18- und zum Paris-Potential gehörenden. Diese Abweichung tritt haupt-

Abbildung 4.6: Empfindlichkeit auf die verwendete Kinematik: die berechneten differentiellen Wirkungsquerschnitte, Analysierstärken und Spinrotationen als Funktionen des Impulsübertrags für elastische $p + {}^{40}$ Ca Streuung bei 1.04 GeV. Die durchgezogenen Kurven entsprechen der Verwendung des in-medium fullfolding NNOMP mit Giebink Kinematik, die strichliierten Kurven stehen für AAY Kinematik.

Abbildung 4.7: Berechnete differentielle Wirkungsquerschnitte (obere Reihe), Analysierstärken (mittlere Reihe) und Spin Rotationen (untere Reihe) als Funktionen des Impulsübertrags für elastische $p + ^{40}$ Ca Streuung bei 300, 400 und 497.5 MeV. Alle Kurven sind mit full-folding g-Matrixrechnungen berechnet.

Abbildung 4.8: Wie Abb. (4.7), aber für die Energien 650, 800 und 1040 MeV.

Abbildung 4.9: Berechnete differentielle Wirkungsquerschnitte (obere Reihe), Analysierstärken (mittlere Reihe) und Spin Rotationen (untere Reihe) als Funktionen des Impulsübertrags für elastische $p + {}^{208}$ Pb Streuung bei 300, 400 und 497.5 MeV. Alle Kurven sind mit full-folding g-Matrixrechnungen berechnet.

sächlich beim differentiellen Wirkungsquerschnitt und bei den Analysierstärken bei 800 und 1040 MeV auf. Die Ursachen dafür und die Gründe, warum dieses Problem beim ⁴⁰Ca verstärkt und beim ²⁰⁸Pb weniger ausgeprägt auftritt, sind noch unbekannt. Die Ergebnisse zum ²⁰⁸Pb weisen einen ähnlichen Trend auf. Dieser hat sich auch schon in früheren nichtrelativistischen Rechnungen gezeigt. Die Suche nach einer fehlenden Komponente, die sich bei niedrigen Impulsüberträgen bemerkbar macht, bleibt deshalb vorerst ohne Ergebnis. Einige Ansätze hierzu sind schon diskutiert worden [Ray92].

Die Ergebnisse zum ²⁰⁸Pb für Energien zwischen 300 und 1000 MeV sind in den Abb. (4.9) und (4.10) gezeigt. Der Wirkungsquerschnitt zeigt, mit Ausnahme der 400 und 497.5 MeV Bilder, eine sehr gute Übereinstimmung mit den experimentellen Daten. Bei den Spinobservablen kann man bei Energien über 650 MeV eine Tendenz zum Verlust der Struktur erkennen.

Bei der Berechnung der hier verwendeten full-folding optischen Potentia-

Abbildung 4.10: Wie in Abb. (4.9), aber für die Energien 650, 800 und 1000 MeV.

KAPITEL 4. ANWENDUNG DES NNOMP IN DER NUKLEON-KERN-STREUUNG

le sind beschränkende Annahmen weder über die lokale Struktur der effektiven NN Wechselwirkung noch über die endgültige Struktur der NA Kopplung gemacht worden. Diese Potentiale werden als nichtlokale Operatoren behandelt und sind das Ergebnis einer detaillierten off-shell Behandlung der effektiven NN Wechselwirkung. Im Gegensatz hierzu wird das optische Potential in der nichtrelativistischen Impulsnäherung von Ray, Hoffmann und Coker [Ray92] als lokal angenommen und berücksichtigt nur die on-shell t-Matrix Elemente als effektive Wechselwirkung. Eindeutige Unterschiede zwischen diesen Potentialen kann man bei der Behandlung von NA-Streuung im mittleren Energiebereich zwischen 200 und 400 MeV sehen. Dargestellt sind diese Unterschiede in Abb. (4.11) am Beispiel der 800 MeV $p + ^{208}$ Pb Streuung. Gezeigt werden differentieller Wirkungsquerschnitt, Analysierstärken und Spinrotationen in Abhängigkeit vom Impulsübertrag. Eindeutige Unterschiede kann man zwischen den g- und den t-Matrixrechnungen erkennen, inbesondere bei den Spinobservablen. Besonders ausgeprägt sind diese bei Impulsüberträgen über 1.5 fm^{-1} , womit die Sensitivität auf Medium-Effekte in diesem Bereich betont wird. Innerhalb der t-Matrixrechnungen kann man aber sagen, dass die full-folding Rechnungen den $t\rho$ Rechnungen sehr ähnlich sind. Die Unterschiede sind in der Größenordnung vergleichbar mit den Beiträgen von kurzreichweitigen Korrelationen [Ray92].

Die hier vorgestellten Rechnungen sind die ersten derartigen Rechnungen, die bis 1.5 GeV getestet wurden. Zwischen diesen Rechnungen und ihren Vorgängern [Are89, Are90a, Are90b, Are95, Are96] gibt es einige Unterschiede, insbesondere bei den Anwendungen bei 800 MeV und bei Vorwärtswinkeln. Neben der Frage der Lokalität bei der *NA* Kopplung und der Behandlung der off-shell effektiven *NN* Wechselwirkung gibt es noch andere Effekte, die in die Rechnungen zu den lokalen Potentialen eingegangen sind und die Unterschiede in den Ergebnissen verursachen können. Von speziellem Interesse sind hier kurzreichweitige Korrelationen und die Beiträge der elektromagnetischen Spin-Bahn Kopplungen zur *NA*-Kopplung. Weil die $t\rho$ Rechnungen technisch wesentlich einfacher sind als die full-folding Rechnungen, erscheinen sie als probates Mittel, um solche Effekte zu untersuchen. Quantitative Vergleiche erfordern aber die Berücksichtigung von Medium-Effekten im full-folding Modell.

Abbildung 4.11: Vergleich von g-Matrix full-folding-, freien t-Matrix full-folding-, offshell $t\rho$ - und on-shell $t\rho$ -Rechnungen für elastische $p + {}^{208}$ Pb Streuung bei 800 MeV.

Kapitel 5

Zusammenfassung und Ausblick

5.1 Zusammenfassung

Die klassischen *NN*-Potentiale beschreiben die *NN*-Wechselwirkung bis zu Energien von 300 MeV. Oberhalb dieser Energie ist die elastische Streumatrix nicht mehr unitär. Zu ihrer Behandlung müssen deshalb nicht hermitesche Potentiale eingeführt werden. Die Beschreibung des Energiebereiches bis 3 GeV mit komplexwertigen oder optischen Potentialen ist Gegenstand dieser Dissertation.

Als Datengrundlagen dienen die Phasenanalysen von Arndt *et al.*, die bis 3 GeV gegeben sind. Es sind verschiedene Klassen von Potentialen vorgestellt worden. Zu diesen Klassen von Potentialen gehören komplexwertige Potentiale mit Gauß'schen Formfaktoren ohne Hintergrundpotential. Diese bestätigen den Soft Core Charakter der *NN*-Wechselwirkung, der sich auch schon aus den Gel'-fand-Levitan-Marchenko Inversionspotentialen ergibt. Mit diesen Potentialen ist eine grobe qualitative Beschreibung der *NN*-Wechselwirkung möglich, die Details der Phasenverschiebungen und die Resonanzstrukturen können mit einem solchen Modell nicht beschrieben werden. Weiter haben wir verschiedene Hintergrundpotentiale mit einem komplexen Gauß'schen Formfaktor ergänzt. Anhand dieser Korrekturen werden die Stärken und Schwächen der verschiedenen Hintergrundpotentiale diskutiert.

Mit inversen Methoden und einem Ansatz von separablen optischen Potentialen sind mehrere *NN*-Ortsraumpotentiale, die die Phasenverschiebungen bis 300 MeV qualitativ fitten, zu höheren Energien hin erweitert worden. Es werden die Phasenverschiebungen bis zu einer Energie von 3 GeV exakt reproduziert. Die Differenz zwischen den Phasenverschiebungen der Hintergrundpotentiale und den experimentellen Phasenverschiebungen wird durch kurzreichweitige komplexe separable Potentiale korrigiert.

Mit der Erweiterung der Bosonaustauschpotentiale zu höheren Energien be-

trachten wir ein neues Reaktionsschema. Bei mittleren Energien zwischen 300 und 1000 MeV erkennt man intrinsische Anregungen isolierter Nukleonen. Die beiden Nukleonen bleiben als separate Objekte bestehen. Bei höheren Energien und besonders bei Energien über 1.3 GeV können die zwei Nukleonen zu einem gemeinsamen Objekt verschmelzen. Hieraus können Mesonproduktion und andere Reaktionsprozesse entstehen, aber auch das Zurückfallen in den elastischen Kanal ist möglich. Dieses Verhalten ist am deutlichsten in den ${}^{1}S_{0}$ und ${}^{3}P_{0,1}$ Kanälen zu beobachten. Ein Minimum in den reellen Phasenverschiebungen führt in der Gel'fand-Levitan-Marchenko Inversion auf ein Soft Core Potential mit einer typischen Repulsion von 1 GeV. Das Reaktionsvolumen des fusionierten Systems bleibt dann innerhalb eines Radius von 1 fm und in diesem Bereich sind die mittelund langreichweitigen Beiträge des Bosonaustauschpotentials allenfalls noch kleine Korrekturen. Bei den höheren Partialwellen muss man beachten, dass hier die Zentrifugalbarriere die Wahrscheinlichkeit einer Fusion deutlich verringert bzw. zu höheren Energien verschiebt.

Der Energiebereich zwischen 300 und 1000 MeV wird in den ${}^{1}D_{2}$, ${}^{3}F_{3}$ und ${}^{3}PF_{2}$ Kanälen durch die Δ Resonanz dominiert. Hier benötigen wir für alle Referenzpotentiale große und stark energieabhängige Beiträge des optischen Potentials. Zur Beschreibung der Streuung in diesem Energiebereich muss diese Resonanz explizit mitberücksichtigt werden. Im Rahmen unseres Modells wird die Δ Resonanz als Doorway Zustand zur Pionproduktion betrachtet. Mit dem separablen Potential haben wir die Möglichkeit, die Bildung solcher Zustände auch in einem engen Energiebereich zu beschreiben.

Die OBE Potentiale sind entweder von den existierenden Phasenverschiebungen zu weit entfernt oder sie beschreiben die Δ Resonanz auf eine Weise, die eine Separation vom Hintergrund nicht zulässt. Für eine Untersuchung der Phänomenologie ist deshalb das Inversionspotential besser geeignet. Dieses lässt sich zu jeder vorgegebenen Phasenverschiebung konstruieren, indem man die Phasenverschiebung als Eingabedatensatz für die Gel'fand-Levitan-Marchenko Inversion verwendet. Diese Inversionspotentiale kann man dann als Hintergrundpotential für das separable optische Potential nutzen. Mit dem hier vorgestellten verallgemeinerten Inversionsalgorithmus werden dazu die komplexen separablen Potentiale berechnet und das vollständige separable Potential entwickelt. Die geometrischen Eigenschaften des optischen Modells und der Soft Core Charakter des Potentials sind damit allein aus den Phasenverschiebungen abgeleitet. Eine genaue Interpretation dieser emergenten Strukturen bleibt Aufgabe der QCD.

Neben der grundsätzlichen Bedeutung des *NN*-Potentials besteht generell der Wunsch nach hochqualitativen *NN*-Wechselwirkungen zur Anwendung in den aktuellen Projekten der Kernphysik. Hier seien Spallationsquellen, Transmutationsprojekte, exotische Kerne, aber auch die medizinische Strahlentherapie und der Strahlenschutz genannt. Als ein Anwendungsfall wird die mikroskopische Beschreibung der *NA*-Streuung am Beispiel von elastischer Protonstreuung an ²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca und ¹⁶O ausgeführt. Dies geschieht im Rahmen des full-folding Modells für die *NA*-Streuung. Das nichtrelativistische full-folding Modell ist in den relativistischen Bereich erweitert worden. Es sind einige Probleme der Kinematik behandelt worden, wie der off-shell Lorentz Boost der gestreuten Teilchen zwischen dem *NN* und dem *NA* System. Der nukleare Medium-Effekt ist im Rahmen der Kernmaterie g-Matrix Theorie und unter Verwendung eines NNOMP, das Inelastizitäten und isobare Resonanzen bis zu Nukleonenenergien von 3 GeV berücksichtigt, untersucht worden. Die Kernmaterie g-Matrizen sind unter Berücksichtigung von sowohl Pauli-blocking als auch selbstkonsitentem mittlerem nuklearen Feld wie in der üblichen Brueckner Theorie entwickelt worden. Effekte aus Wigner Rotation und elektromagnetische Spin-Bahn Korrekturen sind nicht berücksichtigt worden.

Es sind sowohl t-Matrix- als auch in-medium selbstkonsistente g-Matrixrechnungen durchgeführt worden. Mit den Korrekturen der relativistischen Kinematik und in Verbindung mit einer realistischen Beschreibung der *NN*-Resonanzen und -Inelastizitäten mittels des NNOMP wird eine gute Beschreibung sowohl der totalen als auch der differentiellen Observablen der elastischen *NA*-Streuung gegeben. Die Ergebnisse zeigen eine schwache Abhängigkeit von der Wahl der relativistischen Kinematik nach AAY oder Giebink. Medium-Effekte sind über den gesamten Energiebereich vorhanden, obwohl sie über 400 MeV eher klein sind. Die Inelastizitäten des NNOMP werden dagegen oberhalb von 400 MeV besonders wichtig, wie sich in der Beschreibung der totalen Wirkungsquerschnitte zeigt.

Obwohl also eine angemessene Darstellung der differentiellen Observablen bis zu 1 GeV gegeben wird, bleiben noch einige Punkte offen, speziell das Verhalten der Spinobservablen bei kleinen Impulsüberträgen im Bereich zwischen 400 und 500 MeV. Das primäre Ziel der Rechnungen war es, einen parameterfreien nichtrelativistischen Formalismus zur Behandlung der elastischen NA-Streuung zu geben, unter Berücksichtigung der bei diesen hohen Energien erforderlichen relativistischen Kinematik. Eine systematische Untersuchung verschiedener anderer Effekte war an dieser Stelle noch nicht vorgesehen und bleibt Gegenstand weiterer Arbeiten. Diese werden die Verwendung alternativer Dichteverteilungen, anderer Darstellungen der gemischten Dichte, elektromagnetische Effekte und die Behandlung von Korrelationen höherer Ordnung zum Inhalt haben. Off-shell Effekte, die aus der Nichtlokalität der separablen Beschreibung des NNOMP oberhalb der Pionschwelle herrühren, bedürfen ebenfalls einer weiteren Untersuchung. Dennoch kann man sagen, dass ein Grad der Übereinstimmung mit den experimentellen Daten erreicht worden ist, der vergleichbar ist mit den phänomenologischen relativistischen Rechnungen.

Die hier präsentierten Rechnungen sind von begrenztem Wert in dem Sinne, dass sie keine kovariante Beschreibung der Zwei- und (A+1)- Teilchen Dynamik verwenden. Es wird aber ein praktischer Zugang geliefert, der durch die gute Übereinstimmung der numerischen Ergebnisse mit den experimentellen Daten motiviert und gerechtfertigt ist. Es wurde also bei Verwendung von minimaler Relativität eine quantitative Beschreibung der *NA*-Streuung bis hin zu Energien von 1.5 GeV erreicht unter Verwendung des NNOMP, das die Inelastizitäten und isobaren Resonanzen bis 3 GeV vollständig berücksichtigt. Inwieweit eine vollständige kovariante Behandlung ähnlich gute Übereinstimmung mit dem Experiment erreicht ist noch offen.

5.2 Ausblick

Die hier vorgestellten Modelle beschreiben eine Erweiterung verschiedener, vorhandener Potentiale zu Energien bis 3 GeV. Bei Überschreiten der Pionschwelle und überhaupt beim Erreichen höherer Energien gewinnen relativistische Effekte an Bedeutung. Durch die Verwendung von relativistischer Kinematik wurde dies im NNOMP und auch im full-folding Modell berücksichtigt. Eine Beschreibung der relativistischen Dynamik ist damit aber nicht gegeben. Eine mögliche Beschreibung der relativistischen Dynamik ist die Dirac'sche Constraint Dynamics [Dir49]. Für die Zwei-Teilchen Dirac Gleichung ist sie in der QED und in der QCD erfolgreich getestet worden. In der Anwendung auf das Zwei-Teilchen NN Problem haben Long, Crater und Liu [Cra83, Cra87, Lon98, Liu01] gezeigt, dass sich die Dirac Gleichung bei Verwendung eines lokalen Mesonaustauschpotentials für das NN Problem auf eine Gleichung von der Art der Schrödinger Gleichung reduzieren lässt. Derzeit laufen intensive Bemühungen, das Mesonaustauschpotential geeignet zu parametrisieren und die vorhandenen Fits [Liu01] weiter zu verbessern. Die Verwendung eines derartigen Potentials als Hintergrundpotential für das separable optische Potential öffnet eine Möglichkeit für die Zukunft. Dieses Referenzpotential soll so beschaffen sein, dass die separablen Korrekturterme auch bei Energien bis 3 GeV ausschließlich die durch Resonanzen und Teilchenproduktionen entstehenden Effekte und nicht die Schwächen der bis jetzt von uns verwendeten Hintergrundpotentiale korrigieren müssen. Diese Hintergrundpotentiale — Paris, Nijmegen-I, Nijmegen-II und AV18 — waren ursprünglich nicht für die Verwendung bei Energien oberhalb der Pionschwelle vorgesehen. Welche separablen Formfaktoren hier geeignet sind, bleibt abzuwarten. Die Verwendung eines solchen Potentials für die modernen Projekte der Kernphysik und für t- oder g-Matrixrechnungen in der NA-Streuung ist sicher vielversprechend.

Literaturverzeichnis

- [Aar68] R. Aaron, R. D. Amado und J. E. Young, Phys. Rev. 174, 2022 (1968).
- [Aas86] B. Aas *et al.*, Nucl. Phys. A460, 675 (1986).
- [Alk76a] G. D. Alkhazov *et al.*, Nucl. Phys. A274, 443 (1976).
- [Alk76b] G. D. Alkhazov *et al.*, Zap. Nauchn. Semin. LOMI **244**, 3 (1976).
- [Alk80] G. D. Alkhazov *et al.*, Phys. Lett. **90B**, 364 (1980).
- [All98] C. E. Allgower *et al.*, Nucl. Phys. A637, 231 (1998).
- [All99a] C. E. Allgower *et al.*, Phys. Rev. C **60**, 054001 (1999).
- [All99b] C. E. Allgower *et al.*, Phys. Rev. C **60**, 054002 (1999).
- [All00] C. E. Allgower *et al.*, Phys. Rev. C **62**, 064001 (2000).
- [Amg01] A. Amghar, B. Desplanques und L. Theussl, Nucl. Phys. A694, 439 (2001).
- [Amo00] K. A. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglididis und J. Raynal, Adv. in Nucl. Phys. 25, 275 (2000).
- [Are89] H. F. Arellano, F. A. Brieva und W. G. Love, Phys. Rev. Lett. **63**, 605 (1989).
- [Are90a] H. F. Arellano, F. A. Brieva und W. G. Love, Phys. Rev. C **41**, 2188 (1990).
- [Are90b] H. F. Arellano, F. A. Brieva und W. G. Love, Phys. Rev. C 42, 652 (1990).
- [Are95] H. F. Arellano, F. A. Brieva und W. G. Love, Phys. Rev. C 52, 301 (1995).

[Are96] H. Arellano, F. A. Brieva, M. Sander und H. von Geramb, Phys. Rev. C 54, 2570 (1996). [Are02] H. F. Arellano und H. V. von Geramb, Phys. Rev. C 66, 024602 (2002).[Arn] R. A. Arndt, W. J. Briscoe, R. L. Workman und I. I. Strakovsky, SAID, ssh -l said gwdac.phys.gwu.edu. R. A. Arndt und L. D. Roper, Phys. Rev. D 25, 2011 (1982). [Arn82] R. A. Arndt et al., Phys. Rev. D 28, 97 (1983). [Arn83] [Arn87] R. A. Arndt, I. Hyslop, John S. und L. D. Roper, Phys. Rev. D 35, 128 (1987). [Arn92] R. A. Arndt, L. D. Roper, R. L. Workman und M. W. McNaughton, Phys. Rev. D 45, 3995 (1992). [Arn94a] R. A. Arndt, I. I. Strakovsky und R. L. Workman, Phys. Rev. C 50, 2731 (1994), nucl-th/9407035. [Arn94b] R. A. Arndt, R. L. Workman und M. M. Pavan, Phys. Rev. C 49, 2729 (1994). [Arn97] R. A. Arndt, C. H. Oh, I. I. Strakovsky, R. L. Workman und F. Dohrmann, Phys. Rev. C 56, 3005 (1997), nucl-th/9706003. [Arn00] R. A. Arndt, I. I. Strakovsky und R. L. Workman, Phys. Rev. C 62, 0034005 (2000). [Bea98] S. R. Beane, T. D. Cohen und D. R. Phillips, Nucl. Phys. A632, 445 (1998), nucl-th/9709062. J. R. Bergervoet, P. C. van Campen, W. A. van der Sanden und J. J. [Ber88] de Swart, Phys. Rev. C 38, 15 (1988). [Ber90] J. R. Bergervoet et al., Phys. Rev. C 41, 1435 (1990). [Bla66] R. Blankenbecler und R. Sugar, Phys. Rev. 142, 1051 (1966). [Ble88] E. Bleszynski et al., Phys. Rev. C 37, 1527 (1988). [Bro90] R. Brockmann und R. Machleidt, Phys. Rev. C 42, 1965 (1990). [Bug92] D. V. Bugg und R. A. Bryan, Nucl. Phys. A540, 449 (1992).
[Bys87] J. Bystricky, C. Lechanoine-LeLuc und F. Lehar, J. de Physique 48, 199 (1987). [Cap00] S. Capstick et al. (Hg.), Key Issues in Hadronic Physics (2000), hep-ph/0012238. [Car96] R. F. Carlson, Atomic Data and Nucl. Data Tables 63, 93 (1996). [Con97] H. Condé (Hg.), Proc.2. Int. Conf. on Accelerator-Driven Transmutation Technologies and Applications, Kalmar (1996), Uppsala University (1997). [Coo93] E. D. Cooper, S. Hama, B. C. Clark und R. L. Mercer, Phys. Rev. C 47, 297 (1993). [Cra83] H. W. Crater und P. V. Alstine, Ann. of Phys. 148, 57 (1983). [Cra87] H. W. Crater und P. V. Alstine, Phys. Rev. D 36, 3007 (1987). [Cre90] R. Crespo, R. C. Johnson und J. A. Tostevin, Phys. Rev. C 41, 2257 (1990).[Dir49] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). [Els90] C. Elster, T. Cheon, E. F. Redish und P. C. Tandy, Phys. Rev. C 41, 814 (1990). [Ern80] D. J. Ernst und G. A. Miller, Phys. Rev. C 21, 1472 (1980). [Fer86] R. W. Fergerson et al., Phys. Rev C 33, 239 (1986). [Fes62] H. Feshbach, Ann. Phys. 19, 287 (1962). H. Feshbach, Ann. Phys. (N.Y.) 165, 398 (1985). [Fes85] [Fes92] H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions, Wiley, New York (1992). [Fes00] H. Feshbach, Ann. Phys. (N.Y.) 281, 519 (2000). [Fud73] M. G. Fuda und J. S. Whiting, Phys. Rev. C 8, 1255 (1973). [Fun01] A. Funk, H. V. von Geramb und K. A. Amos, Phys. Rev. C 64, 054003 (2001).

- [Ger94] H. V. von Geramb und H. Kohlhoff, in H. V. von Geramb (Hg.), Quantum Inversion Theory and Applications, Band 427 von Lecture Notes in Physics, (S. 285), Springer, Berlin (1994).
- [Ger98] H. V. von Geramb, K. A. Amos, H. Labes und M. Sander, Phys Rev. C 58, 1948 (1998).
- [Ger01] H. V. von Geramb, A. Funk und A. Faltenbacher, in A. T. Kruppa und R. G. Lovas (Hg.), *Resonances in Few-Body systems*, Band 13 von *Few-Body Systems Suppl.*, (S. 274), Springer, Wien (2001).
- [Gie82] D. R. Giebink, Phys. Rev. C 25, 2133 (1982).
- [Gie83] D. R. Giebink, Phys. Rev. C 28, 818 (1983).
- [Gie85] D. R. Giebink, Phys. Rev. C 32, 502 (1985).
- [Gol75] M. L. Goldberger und K. M. Watson, *Collision Theory*, Krieger, New York (1975).
- [Gro92] F. Gross, J. w. van Orden und K. Holinde, Phys. Rev. C 45, 2094 (1992).
- [Gro00] D. E. Groom *et al.*, Eur. Phys. Jour. **C15**, 1, URL:http://pdg.lbl.gov (2000).
- [Hä90] O. Häusser, in A. Boudard und Y. Terrien (Hg.), Proceedings of the Conference on Polarization Phenomena in Nuclear Physics, Les Editions de Physique, Paris (1990).
- [Had01] D. Hadjimichef, J. Haidenbauer und G. Krein, Phys. Rev. C 63, 035204 (2001), nucl-th/0010044.
- [Her91] V. Herrmann, J. Speth und K. Nakayama, Phys. Rev. C **43**, 394 (1991).
- [Hin87] N. Hintz et al., University of Minnesota Summary Progress Report (1984-1987).
- [Hin89] N. Hintz et al., University of Minnesota Progress Report (1989).
- [Hof80] G. W. Hoffmann *et al.*, Phys. Rev. C **21**, 1488 (1980).
- [Hof81] G. W. Hoffmann *et al.*, Phys. Rev. Lett. **47**, 1436 (1981).
- [Hut88] D. A. Hutcheon *et al.*, Nucl. Phys. A483, 429 (1988).

- [Jä98] L. Jäde, Phys. Rev. C 58, 96 (1998), nucl-th/9802039.
- [Jaf79] R. L. Jaffe und F. E. Low, Phys. Rev. D **19**, 2105 (1979).
- [Jen01] S. N. Jena, P. Panda und T. C. Tripathy, Phys. Rev. D 63, 014011 (2001).
- [Kad89] L. P. Kadanoff und G. Baym, *Quantum Statistical Mechanics*, Addison-Wesley, Massachusetts (1989).
- [Kam98] H. Kamada und W. Gloeckle, Phys. Rev. Lett. **80**, 2547 (1998).
- [Kap98] D. B. Kaplan, M. J. Savage und M. B. Wise, Phys. Lett. **B424**, 390 (1998), nucl-th/9801034.
- [Kha97] M. K. Khankhasayev, Z. Kurmanov und H. Plendl (Hg.), Proc. Int. Workshop on Nucl. Methods for Transmutation of Nuclear waste: Problems, Perspectives, Cooperative Research, Dubna 1996, World Scientific (1997).
- [Kir89] T. Kirst, K. Amos, L. Berge, M. Coz und H. V. Von Geramb, Phys. Rev. C 40, 912 (1989).
- [Kir91] T. Kirst, J. Math. Phys. **32**, 1318 (1991).
- [Koh94] H. Kohlhoff und H. V. von Geramb, in H. v. von Geramb (Hg.), *Quantum Inversion theory and Applications*, Band 427 von *Lecture Notes in Physics*, (S. 314), Springer, Springer (1994).
- [Kü92] M. Küker, *Inversionspotentiale aus Proton–Proton–Streuphasen*, Diplomarbeit, Universität Hamburg (1992).
- [Kuk98] V. I. Kukulin, V. N. Pomerantsev, A. Faessler, A. J. Buchmann und E. M. Tursunov, Phys. Rev. C57, 535 (1998), nucl-th/ 9711043.
- [Kus91] A. M. Kusainov, V. G. Neudatchin und I. T. Obukhovsky, Phys. Rev. C44, 2343 (1991).
- [Kwo97] N. H. Kwong und H. S. Köhler, Phys. Rev. C 55, 1650 (1997).
- [Lac80] M. Lacombe *et al.*, Phys. Rev. C **21**, 861 (1980).
- [Lan01] P. V. Landshoff, Nucl. Phys. Proc. Suppl **B99**, 311 (2001).
- [Lee61] J. M. J. van Leeuwen und A. S. Reiner, Physica 27, 99 (1961).

[Leh87]	F. Lehar, C. Lechanoine-LeLuc und J. Bystricky, J. de Physique 48 , 1273 (1987).
[Liu01]	B. Liu, <i>Two body Dirac equations and nucleon nucleon scattering phase shift analysis</i> , Dissertation, University of Tennessee (2001).
[LL87]	C. Lechanoine-LeLuc, F. Lehar und J. Bystricky, J. de Physique 48 , 985 (1987).
[LL93]	C. Lechanoine-LeLuc und F. Lehar, Rev. Mod. Phys. 65, 47 (1993).
[Lo87]	S. Y. Lo (Hg.), <i>Geometrical pictures in hadronic collisions</i> , World scientific, Singapore (1987).
[Lon98]	P. Long und H. W. Crater, J. Math. Phys. 39, 124 (1998).
[Mac89]	R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[Mac96]	R. Machleidt, F. Sammaruruca und Y. Song, Phys. Rev. C 53, 1483 (1996).
[Mac01a]	R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[Mac01b]	R. Machleidt, Nucl. Phys. A689, 11 (2001), nucl-th/0009055.
[Mac01c]	R. Machleidt und I. Slaus, J. Phys. G27, R69 (2001), nucl-th/0101056.
[Mas98]	S. G. Mashnik, A. J. Sierk, O. Bersillon und T. Gabriel, <i>Cascade-excitation model detailed analysis of proton spallation at energies from 10 MeV to 5 GeV</i> , Technischer Bericht, Los Alamos Report No. LA-UR-98-0418, enthält eine Liste mit Referenzen zu aktuellen Projekten (1998), http://t2lanl.gov/publications/publications.html.
[Mat94]	G. Matthiae, Reports on Progress in Physics 57, 743 (1994).
[McD70]	M. R. C. McDowell und J. P. Coleman, <i>Introduction to the Theory of Ion–Atom–Collisions</i> , North Holland, Amsterdam (1970).
[Mes79]	A. Messiah, Quantenmechanik, de Gruyter, Berlin (1979).
[Mü90]	H. Müther, R. Machleidt und R. Brockmann, Phys. Rev. C 42, 1981 (1990).
[Mur87]	D. P. Murdock und C. J. Horowitz, Phys. Rev. C 35, 1442 (1987).

- [Myh88] F. Myhrer und J. Wroldsen, Rev. Mod. Phys. **60**, 629 (1988).
- [Neu91] V. G. Neudatchin, N. P. Yudin, Y. L. Dorodnykh und I. T. Obukhovsky, Phys. Rev. C **43**, 2499 (1991).
- [Ott88] N. Ottenstein, S. J. Wallace und J. A. Tjon, Phys. Rev. C **38**, 2272 (1988).
- [Ott91] N. Ottenstein, E. E. van Faassen, J. A. Tjon und S. J. Wallace, Phys. Rev. C 43, 2393 (1991).
- [Par70] M. H. Partovi und E. L. Lommon, Phys. Rev. D 2, 1999 (1970).
- [Pol98] W. N. Polyzou, Phys. Rev. C58, 91 (1998), nucl-th/9711046.
- [Rah81] A. Rahbar *et al.*, Phys. Rev. Lett. **47**, 1811 (1981).
- [Ram01] G. Ramalho, A. Arriaga und M. T. Pena, Nucl. Phys. A689, 511 (2001).
- [Ray81] L. Ray *et al.*, Phys. Rev. C 23, 828 (1981).
- [Ray85] L. Ray und G. W. Hoffmann, Phys. Rev. C **31**, 538 (1985).
- [Ray92] L. Ray, G. W. Hoffmann und W. R. Coker, Phys. Rep. **212**, 223 (1992).
- [Ric99] K. G. Richardson, Chiral symmetry and the nucleon nucleon interaction, Dissertation, University of Manchester (1999), hep-ph/ 0008118.
- [Rob00] C. D. Roberts und S. M. Schmidt, Prog. Part. Nucl. Phys. 45, 1 (2000).
- [San97] M. Sander und H. V. von Geramb, Phys. Rev. C 56, 1218 (1997), nucl-th/9703031.
- [Sav01] C. Savkli und F. Gross, Phys. Rev. C 63, 035208 (2001).
- [Sca97] K. A. Scaldeferri, D. R. Phillips, C. W. Kao und T. D. Cohen, Phys. Rev. C56, 679 (1997), nucl-th/9610049.
- [Sto93a] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester und J. J. de Swart, Phys. Rev. C 48, 792 (1993).
- [Sto93b] V. G. J. Stoks, R. Timmermans und J. J. de Swart, Phys. Rev. C 47, 512 (1993), nucl-th/9211007.

- [Sto94] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen und J. J. de Swart, Phys. Rev. C **49**, 2950 (1994).
- [Tho80] A. W. Thomas und R. H. Landau, Phys. Rep. 58, 121 (1980).
- [Tjo91] J. A. Tjon und S. J. Wallace, Phys Rev. C 44, 1156 (1991).
- [Van98] K. A. Van Riper, S. G. Mashnik und W. B. Wilson, Study of Isotope Production in high Power Accelerators, Technischer Bericht, Los Alamos Report No. LA-UR-5379 (1998).
- [Wal01] S. J. Wallace, Nucl. Phys. A689, 167 (2001), nucl-th/0010090.
- [Wei82] D. L. Weiss und D. J. Ernst, Phys. Rev. C 26, 605 (1982).
- [Wir95] R. B. Wiringa, V. G. J. Stoks und R. Schiavilla, Phys. Rev. C **51**, 38 (1995), nucl-th/9408016.

Anhang A

Relativistische Kinematik in der *NA*-**Streuung**

Es sind zwei verschiedene Transformationsformen für die Impulse im *NN* Zwei-Teilchen Schwerpunktsystem und im *NA* Projektil-Target Schwerpunktsystem benutzt worden. Eine ist von Giebink [Gie85, Gie83, Gie82] entwickelt worden, die andere von Aaron *et al.* [Aar68]. Die letztgenannte kann ebenso durch die Annahme der Invarianz unter Zeitumkehr erhalten werden [Ern80].

Bei Giebink werden im Zusammenhang mit einer lorentzinvarianten Zwei-Teilchen Übergangsamplitude die Vierer-Impulse von Projektil und getroffenem Nukleon im (A+1)-Schwerpunktsystem mit $k = (\bar{\omega}, \mathbf{k})$ und $p = (\bar{\epsilon}, \mathbf{p})$ bezeichnet. Die entsprechenden Impulse im Ausgangskanal sind k' und p'. Bei Giebink ist der Vierer-Gesamtimpuls erhalten

$$k + p = k' + p' \equiv \mathcal{Q},\tag{A.1}$$

woraus folgt, dass beide Teilchen off-mass-shell sind. Die Relativimpulse im Zwei-Teilchen Schwerpunktsystem erhält man durch Anwendung einer Lorentztransformation mit einem Boost β auf die Impulse. Diesen Boost bekommen wir aus der Invariante

$$(\bar{\omega} + \bar{\epsilon})^2 - (\mathbf{k} + \mathbf{p})^2 = S \tag{A.2}$$

und aus

$$\boldsymbol{\beta} = \frac{\mathbf{k} + \mathbf{p}}{\bar{\omega} + \bar{\epsilon}} = \frac{\mathbf{k}' + \mathbf{p}'}{\bar{\omega}' + \bar{\epsilon}'}.$$
 (A.3)

Damit kann man die einfallenden und ausgehenden Relativimpulse \mathbf{k}_r und \mathbf{k}'_r di-

rekt berechnen.

$$\mathbf{k}_{r} = \frac{(\bar{\epsilon} + \epsilon_{r})\mathbf{k} - (\bar{\omega} + \omega_{r})\mathbf{p}}{\bar{\epsilon} + \epsilon_{r} + \bar{\omega} + \omega_{r}}$$
(A.4)

$$\mathbf{k'}_r = \frac{(\bar{\epsilon'} + \epsilon'_r)\mathbf{k'} - (\bar{\omega'} + \omega'_r)\mathbf{p'}}{\bar{\epsilon'} + \epsilon'_r + \bar{\omega'} + \omega'_r}.$$
(A.5)

Der Index r steht für die on-mass-shell Relativenergie

$$\omega_r = \sqrt{m_p^2 + \mathbf{k}_r^2}, \qquad \epsilon_r = \sqrt{m_t^2 + \mathbf{k}_r^2}, \qquad (A.6)$$

wo m_p und m_t für die Massen von Projektil und getroffenem Nukleon stehen. Man kann zeigen, dass für die oben benötigte Größe \mathbf{k}_r^2 gilt

$$\mathbf{k}_{r}^{2} = \frac{1}{4S} \xi^{2}(s, k^{2}, p^{2}), \tag{A.7}$$

wo die ξ -Funktion definiert ist als

$$\xi(x, y, z) = \sqrt{(x - y - z)^2 - 4yz}.$$
 (A.8)

Hier sei angemerkt, dass die ξ -Funktion in Gl. (A.7) an den off-mass-shell Invarianten $k^2 = \bar{\omega}^2 - \mathbf{k}^2$ und $p^2 = \bar{\epsilon}^2 - \mathbf{p}^2$ genommen wird. Die derzeitige hier verwendete Implementation Giebinks betrachtet die Schwierigkeit der Lorentztransformationen wenn S in Gl. (A.2) negativ wird, was für sehr große Impulse $\mathbf{k} + \mathbf{p}$ passieren kann. Weil aber die Wellenfunktionen der gebundenen Zustände des getroffenen Nukleons die Impulsverteilung für p auf Größenordnungen unterhalb 2 fm⁻¹ einschränkt, treten solche Schwierigkeiten nur für sehr große k und k' auf, die also sehr weit off-shell liegende Elemente von $U(\mathbf{k}, \mathbf{k}')$ betreffen. Ein Weg diese Schwierigkeit zu umgehen, besteht darin S auf Werte nahe on-massshell zu beschränken. Dann nähern wir

$$S \approx m_p^2 + m_t^2 + 2\bar{\omega}\bar{\epsilon} - 2\mathbf{k}\cdot\mathbf{p}.$$
(A.9)

Eine Mittelung über die Fermi-Bewegung der Targetnukleonen (p) erlaubt die Vereinfachung

$$S \to S_0 = m_p^2 + m_t^2 + 2\bar{\omega}\bar{\epsilon}. \tag{A.10}$$

Für die Relativenergien erhält man dann

$$\omega_r = \frac{\bar{\omega}\bar{\epsilon} + m_t^2}{\sqrt{S_0}}, \qquad \epsilon_r = \frac{\bar{\omega}\bar{\epsilon} + m_p^2}{\sqrt{S_0}}. \quad (A.11)$$

Dann ist $\sqrt{S_0} = \omega_r + \epsilon_r$. Die full-folding Rechnungen nach der Giebink Kinematik wurden durchgeführt mit $\bar{\epsilon} = \bar{\epsilon}' = M$ und $\bar{\omega} = \bar{\omega}' = M + E$, wo M die Nukleonenmasse ist.

108

ANHÄNGE

In der von Aaron *et al.* [Aar68] entwickelten Kinematik wird der Boost für die Relativimpulse im Ein- und Ausgangskanal mit unterschiedlichen Geschwindigkeiten durchgeführt. In jedem Kanal werden die Teilchen on-mass-shell gesetzt und der zugehörige Boost ist durch Gl. (A.3) gegeben. Die entstehenden Relativimpulse haben die gleiche Struktur wie die aus Gl. (A.4, A.5), nur mit den Substitutionen $\bar{\omega} \to \omega(\mathbf{k})$ und $\bar{\epsilon} \to \epsilon(\mathbf{p})$. Eine direkte Berechnung ergibt

$$\mathbf{k}_{r}^{2} = \frac{1}{4s_{in}}\xi^{2}(s_{in}, m_{p}^{2}, m_{t}^{2}), \qquad (A.12)$$

mit

$$s_{in} = [\epsilon(\mathbf{p}) + \omega(\mathbf{k})]^2 - (\mathbf{p} + \mathbf{k})^2$$
(A.13)

und analog auch für den Ausgangskanal.

Anhang B

Berechnung der t-Matrix und Coulomb-Effekt

Für die Anwendung des NNOMP bei der Berechnung von mikroskopischen optischen Potentialen benötigen wir die half-off-shell (HOS) NN t-Matrix für on-shell Werte k zwischen 0 und ca. 6 fm⁻¹, aber für prinzipiell unbegrenzte off-shell Werte q, da in der Streuung Integrale der Form $\int_0^\infty dq f(q) T(q,k) T(q',k)$ auftreten¹.

Eine schnelle und im gesamten *k-q*-Bereich stabile Methode zur Berechnung dieser HOS t-Matrizen aus einem gegebenen Ortsraumpotential geht nach Van Leeuwen und Reiner [Lee61, Fud73] von der inhomogenen HOS-Erweiterung der Schrödinger Gleichung aus:

$$\left[k^{2} + \frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} - \frac{L(L+1)}{r^{2}} - V_{L}(r)\right]\psi_{L}(k,q,r) = (k^{2} - q^{2})u_{L}(qr).$$
(B.1)

Der allgemeinere Fall enthält auch ein separables komplexes Potential vom Rang 1 und harmonische Oszillatorfunktionen $\Phi_L(r) := \Phi_L(r, \hbar\omega)$ als radiale Formfaktoren:

$$\left[k^{2} + \frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} - \frac{L(L+1)}{r^{2}} - V_{L}(r)\right] \psi_{L}(k,q,r) - \Phi_{L}(r)\lambda_{L}(k^{2}) \int_{0}^{\infty} \Phi_{L}(x)\psi_{L}(k,q,x) \, dx = (k^{2} - q^{2}) \, u_{L}(qr).$$
(B.2)

Hier bedeutet $u_L(z) = z j_L(z)$ die Riccati-Bessel Funktion in der Phasenkonvention von Messiah [Mes79]. Mit einem solchen Potential lautet die radiale Schrö-

¹In der Praxis hat es sich als ausreichend erwiesen, das Integral bei $q_{max} \sim 20 f m^{-1}$ abzuschneiden.

dinger Gleichung

$$\left[k^{2} + (1 + 2V_{b}(r))\left(\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} - \frac{L(L+1)}{r^{2}}\right) - V^{a}(r) + V_{b}''(r) + 2V_{b}'(r)\frac{\mathrm{d}}{\mathrm{d}r}\right]\psi_{L}(k,q,r) - \Phi_{L}(r)\lambda_{L}(k^{2})\int_{0}^{\infty}\Phi_{L}(x)\psi_{L}(k,q,x)\,dx = (k^{2} - q^{2})\,u_{L}(qr).$$
 (B.3)

Die reguläre Lösung $\psi_L(k,q,r)$ von (B.1,B.2) verschwindet am Ursprung. Ihr asymptotisches Verhalten ist

$$\lim_{r \to \infty} \psi_L(k, q, r) = u_L(qr) - q \, w_L^{(+)}(kr) \, T_L(k, q; k^2), \tag{B.4}$$

wobei $w_L^{(+)}(z)$ die Riccati-Hankel Funktion und $T_L(k,q;k^2)$ die HOS t-Matrix bezeichnet. Zwischen der *on-shell* t-Matrix $T_L(k,k;k^2)$ und der S-Matrix besteht der Zusammenhang

$$S_L(k) = 1 - 2ikT_L(k, k; k^2).$$

Für die gekoppelten Kanäle wird Gleichung (B.1) als Matrixgleichung geschrieben bzw. durch ein System zweier gekoppelter, inhomogener Gleichungen ersetzt

$$\left[-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2} - k^2\right] \psi_{L',L}^{JST}(k,q,r) + \sum_{L''} V_{L',L''}^{JST}(r) \psi_{L'',L}^{JST}(k,q,r) = (k^2 - q^2) \delta_{L',L} u_L(qr), \quad (B.5)$$

und Gleichung (B.2)

$$\left[-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2} - k^2\right] \psi_{L',L}^{JST}(k,q,r) + \sum_{L''} V_{L',L''}^{JST}(r) \psi_{L'',L}^{JST}(k,q,r) + \sum_{L''} \Phi_{L'}(r) \lambda_{L'L''}(k^2) \int_0^\infty \Phi_{L''}(x) \psi_{L'',L}(k,q,x) \, dx = (k^2 - q^2) \delta_{L',L} u_L(qr).$$

Die Asymptotik der Wellenfunktion lautet

$$\lim_{r \to \infty} \psi_{L',L}^{JST}(k,q,r) = \delta_{L',L} u_L(qr) - q w_L^+(kr) T_{L',L}^{JST}(k,q;k^2)$$

Bei der Behandlung der Coulombkorrekturen an der NN t-Matrix geht man von einem Formalismus mit zwei Potentialen aus. Man definiert dazu die Coulombfunktionen χ_a als Eigenlösungen für das Coulombpotential V_C und hat

$$\delta(P_f - P_i)T_{NN}^C = \langle \chi_b^- | V_N | \psi_a^+ \rangle + \langle \Phi_b^- | V_C | \chi_a^+ \rangle$$
$$= \langle \chi_b^- | T_N^C | \chi_a^+ \rangle + \langle \Phi_b^- | T_C | \Phi_a^+ \rangle.$$
(B.6)

Mit dem Index N sei hier jeweils der nukleonische Anteil bezeichnet. Die NNt-Matrix bei Berücksichtigung der Coulomb-Wechselwirkung setzt sich also aus einer Coulomb-korrigierten hadronischen Amplitude $\langle \chi_b^- | T_N^C | \chi_a^+ \rangle$ und einem Anteil reiner Coulombstreuung $\langle \Phi_b | T_C | \Phi_a^+ \rangle$ zusammen. Die reine (HOS) Coulombamplitude ist analytisch bekannt und lautet für ein Coulombpotential $V_C(r) := \alpha/r = Z_1 Z_2 e^2/r$ [McD70]:

$$T_C(\vec{q}, \vec{k}; k^2) = \frac{2}{(2\pi)^2} \alpha e^{-\frac{1}{2}n\pi} \Gamma(1+in) \lim_{\lambda \to 0^+} \frac{\left[q^2 - (k+i\lambda)^2\right]^{in}}{\left[(\vec{q}-\vec{k})^2 + \lambda^2\right]^{1+in}}$$
(B.7)

mit $n := \frac{m\alpha}{2k}$. Die entsprechende *on-shell* Amplitude ist

$$T_C(\vec{k}, \vec{k}; k^2) = \frac{1}{(2\pi)^2} \frac{\alpha}{2k^2 \sin^2 \frac{\theta}{2}} \cdot e^{2i\eta^c - in\ln(\sin^2 \frac{\theta}{2})},$$
 (B.8)

wobei

$$\eta^C := \arg(1+in) \quad \text{und} \quad (\vec{k} - \vec{q})^2 = 4k^2 \sin^2 \frac{\theta}{2} \quad (|\vec{k}| = |\vec{q}|).$$

Für ein System identischer Teilchen ist die Coulombamplitude zu antisymmetrisieren. Dies bedeutet, dass für das *pp* System die Coulombamplitude vom Gesamtspin *S* abhängig wird [Gol75]:

$$T_{C}(\vec{q}, \vec{k}; k^{2}) = \langle S' M_{S'}, \vec{q} | T_{C} | \vec{k}; S M_{S} \rangle$$

= $\delta_{S,S'} \delta_{M_{S},M_{S'}} \left[\langle \vec{q} | T_{C} | \vec{k} \rangle + (-)^{S} \langle -\vec{q} | T_{C} | \vec{k} \rangle \right]$ (B.9)

Zwischen der on-shell t-Matrix und der Streuamplitude besteht der Zusammenhang

$$f(k,\theta) := -(2\pi)^2 k \left[\frac{d}{dk}e(k)\right]^{-1} T(\vec{k},\vec{k};k^2)$$
(B.10)

mit

$$k \left[\frac{d}{dk} e(k) \right]^{-1} = \begin{cases} m & \text{bei nichtrelativistischer Kinematik,} \\ \sqrt{k^2 + m^2} & \text{bei relativistischer Kinematik.} \end{cases}$$
(B.11)

Dies bedeutet, dass sowohl die Coulomb t-Matrizen als auch die aus der Schrödinger Gleichung (B.1) berechneten nichtrelativistischen NN t-Matrizen, an ihrem on-shell Wert mit dem Faktor $m/\sqrt{k^2 + m^2} = m/e(k)$ zu skalieren sind, um mit dem lorentzinvarianten Wirkungsquerschnitt konsistent zu sein². Außerhalb der

²Man kann dies auch direkt zeigen, indem man den lorentzinvarianten Wirkungsquerschnitt im Schwerpunktsystem ausdrückt und mit dem gewöhnlichen, nichtrelativistischen Zusammenhang zwischen Streuamplitude und differentiellem Wirkungsquerschnitt vergleicht [Her91].

ANHÄNGE

Energieschale lautet die Skalierungsbedingung für nichtrelativistische t-Matrizen [Her91]

$$T(\vec{p}', \vec{p}) = \sqrt{m/e(p')} T_{nr}(\vec{p}', \vec{p}) \sqrt{m/e(p)}.$$
 (B.12)

Zur Berechnung der Coulomb-korrigierten, hadronischen t-Matrix ersetzt man Gleichung (B.1) durch

$$\left[k^{2} + \frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} - \frac{L(L+1)}{r^{2}} - (V_{L}(r) + mV_{C})\right] \psi_{l}^{C}(k,q,r) = (k^{2} - q^{2} - mV_{C}) \chi_{l}(qr)$$
(B.13)

und die asymptotische Bedingung (B.4) durch

$$\lim_{r \to \infty} \psi_l^C(k, q, r) = \chi_l(qr) - q \,\omega_l^{(+)}(kr) \, T_l^C(k, q; k^2).$$
(B.14)

Die sphärischen Coulombfunktionen χ, ω [Mes79, Kü92] sind so zu definieren, dass sie im Grenzwert $\alpha \to 0$ in die Riccati-Bessel bzw. Riccati-Hankel Funktionen übergehen.

Anhang C

Relativistische Kinematik und Schwellwertenergien

Die Definition für den relativistischen Impuls ist

$$p^{\mu} = \begin{pmatrix} \frac{T_{Lab} + mc^2}{c} \\ \sqrt{\frac{(T_{Lab} + mc^2)^2}{c^2} - m^2 c^2} \\ 0 \\ 0 \end{pmatrix}$$
(C.1)

und damit ergibt sich die Mandelstam Variable s als

$$s = p^{\mu}p_{\mu} = \left(\frac{T_{Lab} + mc^2}{c}\right)^2 - \left(\frac{T_{Lab} + mc^2}{c}\right)^2 + m^2c^2 = m^2c^2.$$
(C.2)

Im Zwei-Teilchen System, wo m_1 im Labor
system ruhe, während m_2 das Projektil sei, gilt

$$s = p^{\mu}p_{\mu} = \left(\frac{T_{Lab} + m_1c^2 + m_2c^2}{c}\right)^2 - \left(\frac{T_{Lab} + m_2c^2}{c}\right)^2 + m_2^2c^2 \qquad (C.3)$$

$$=2T_{Lab}m_1 + c^2(m_1 + m_2)^2.$$
 (C.4)

Für den Impuls im Schwerpunktsystem gilt

$$\frac{E^2}{c^2} - p^2 = s = \left(\frac{T_1 + T_2 + m_1 c^2 + m_2 c^2}{c}\right)^2 \tag{C.5}$$

$$T_{1,2} = \sqrt{c^2 p^2 + m_{1,2}^2 c^4} - m_{1,2} c^2 \tag{C.6}$$

$$s = \left(\frac{\sqrt{c^2 p^2 + m_1^2 c^4} + \sqrt{c^2 p^2 + m_2^2 c^4}}{c}\right)^2.$$
 (C.7)

ANHÄNGE

Durch Gleichsetzen mit (C.4) und Auflösen nach p erhalte ich den Schwerpunktimpuls in Abhängigkeit von der Laborenergie

$$p^{2} = \frac{m_{1}^{2}(T_{Lab}^{2} + 2m_{2}c^{2}T_{Lab})}{2m_{1}T_{Lab} + (m_{1} + m_{2})^{2}c^{2}}.$$
 (C.8)

Damit kann man eine Umrechnungstabelle Tab. (C.1) aufstellen. Anhand dieser Tabelle kann man die Schwellenenergie für die bekannten Anregungen (Tab. C.2) und Teilchenproduktionen (Tab. C.3) direkt angeben.

T_{Lab} (MeV)	W_{cm} (MeV)	Überschussmasse (MeV/c ²)	Resonanzenergie (MeV)
50.0	1902.8	24.8	963.8
100.0	1927.4	49.4	988.4
150.0	1951.6	73.6	1012.6
200.0	1975.5	97.5	1036.5
250.0	1999.1	121.1	1060.1
300.0	2022.4	144.4	1083.4
350.0	2045.5	167.5	1106.5
400.0	2068.4	190.4	1129.4
450.0	2090.9	212.9	1151.9
500.0	2113.3	235.3	1174.3
550.0	2135.4	257.4	1196.4
600.0	2157.2	279.2	1218.2
650.0	2178.9	300.9	1239.9
700.0	2200.3	322.3	1261.3
800.0	2242.6	364.6	1303.6
900.0	2284.1	406.1	1345.1
1000.0	2324.8	446.8	1385.8
1100.0	2364.9	486.9	1425.9
1200.0	2404.3	526.3	1465.3
1300.0	2443.0	565.0	1504.0
1400.0	2481.1	603.1	1542.1
1500.0	2518.7	640.7	1579.7
1600.0	2555.7	677.7	1616.7
1700.0	2592.2	714.2	1653.2
1800.0	2628.2	750.2	1689.2
1900.0	2663.7	785.7	1724.7
2000.0	2698.7	820.7	1759.7
2200.0	2767.4	889.4	1828.4
2400.0	2834.4	956.4	1895.4
2600.0	2899.9	1021.9	1960.9
2800.0	2964.0	1086.0	2025.0
3000.0	3026.7	1148.7	2087.7

Tabelle C.1: Umrechnungstabelle für relativistische Teilchenenergien.

Tabelle C.2: Angeregte Zustände in der np Streuung. Massen nach [Gro00].

Teilchen	Kanal	Masse (MeV/ c^2)	$T_{Lab}(MeV)$
N^*	P_{11}	1440	1137
N^*	D_{13}^{11}	1520	1343
N^*	S_{11}	1535	1381
N^*	S_{11}	1650	1691
N^*	D_{15}	1675	1760
N^*	F_{15}	1680	1774
N^*	D_{13}	1700	1830
N^*	P_{11}	1710	1858
N^*	P_{13}	1720	1887
Δ	P_{33}	1232	631
Δ	P_{33}	1600	1554
Δ	S_{31}	1620	1609
Δ	D_{33}	1700	1830

Teilchen	Masse (MeV/ c^2)	$T_{Lab}(MeV)$
π^0	135	280
π^{\pm}	140	290
$\pi^+\pi^-$	279	600
$\pi^+\pi^-\pi^0$	414	920
η	547	1254
$\pi^+\pi^-\pi^+\pi^-$	558	1283
$\eta\pi$	682	1613
$\pi^+\pi^-\pi^+\pi^-\pi^0$	693	1643
ho	769	1854
ω	783	1894
$\eta\pi\pi$	826	2017
$\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$	837	2049
$ ho\pi$	904	2245
$\omega\pi$	918	2286
η^\prime	958	2406
f_0	980	2473
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	972	2449
a_0	985	2488
K^+K^-	987	2495
$K^0 K^0$	995	2519
ϕ	1019	2593

Tabelle C.3: Produktionsprozesse in der np Streuung. Massen nach [Gro00].

Anhang D

Stärken der Gaußpotentiale

In den folgenden Tabellen sind die gefitteten Parameter der Gaußpotentiale mit Hintergrundpotential aufgelistet. Die Potentiale sind berechnet nach der Gl. (2.29)

$$\mathcal{V} = V_a(r)(1 + (V_c(LSJ, E) + iW_c(LSJ, E))e^{-(r/r_0(LSJ, E))^2}).$$
(D.1)

Es sind Fits erstellt worden, die sich über ein breites Energieintervall $T_{Lab} \pm 160$ MeV erstrecken. Diese sind in den Tabellen (D.1) bis (D.36) aufgelistet. Weiter sind Potentiale erstellt worden, die die Phasen jeweils zu nur einem Energiewert fitten. Diese sind in den Tabellen (D.37) bis (D.51) aufgelistet.

	Inversion		Niimegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08931	-0.00370	-0.02041	-0.00391	0.04725	-0.00425
350	-0.08202	-0.00833	0.01242	-0.00919	0.10146	-0.01016
400	-0.05360	-0.01586	0.03485	-0.01784	0.14100	-0.01998
450	-0.00621	-0.02769	0.06624	-0.03142	0.18736	-0.03563
500	0.06298	-0.04375	0.11711	-0.04996	0.25316	-0.05731
550	0.15247	-0.06465	0.18520	-0.07422	0.33676	-0.08608
600	0.25798	-0.09170	0.26364	-0.10561	0.43075	-0.12371
650	0.36917	-0.12505	0.33908	-0.14382	0.51963	-0.16984
700	0.47703	-0.16396	0.40078	-0.18712	0.59044	-0.22222
750	0.57166	-0.20642	0.43830	-0.23196	0.63051	-0.27618
800	0.64794	-0.25007	0.44832	-0.27454	0.63592	-0.32673
850	0.70189	-0.29210	0.43006	-0.31102	0.60620	-0.36895
900	0.73416	-0.33039	0.38846	-0.33925	0.54796	-0.40021
950	0.74664	-0.36351	0.32948	-0.35845	0.46908	-0.41981
1000	0.74250	-0.39082	0.25956	-0.36914	0.37783	-0.42869
1050	0.72552	-0.41245	0.18463	-0.37275	0.28158	-0.42890
1100	0.69898	-0.42879	0.10904	-0.37079	0.18568	-0.42250
1150	0.66635	-0.44058	0.03636	-0.36491	0.09430	-0.41164
1200	0.62938	-0.44830	-0.03198	-0.35617	0.00912	-0.39772
1250	0.59040	-0.45289	-0.09454	-0.34585	-0.06834	-0.38229
1300	0.55031	-0.45468	-0.15124	-0.33445	-0.13810	-0.36601
1350	0.51036	-0.45444	-0.20193	-0.32274	-0.20014	-0.34974
1400	0.47092	-0.45225	-0.24706	-0.31082	-0.25510	-0.33361
1450	0.43217	-0.44880	-0.28724	-0.29916	-0.30379	-0.31813
1500	0.39454	-0.44407	-0.32281	-0.28773	-0.34670	-0.30324
1550	0.35770	-0.43853	-0.35458	-0.27676	-0.38483	-0.28916
1600	0.32208	-0.43219	-0.38275	-0.26621	-0.41850	-0.27582
1650	0.28713	-0.42529	-0.40810	-0.25616	-0.44864	-0.26327
1700	0.25296	-0.41796	-0.43093	-0.24660	-0.47562	-0.25149
1750	0.21940	-0.41019	-0.45164	-0.23750	-0.49995	-0.24038
1800	0.18618	-0.40214	-0.47066	-0.22886	-0.52211	-0.22995
1850	0.15336	-0.39380	-0.48816	-0.22065	-0.54234	-0.22013
1900	0.12057	-0.38524	-0.50453	-0.21286	-0.56109	-0.21090
1950	0.08778	-0.37649	-0.51996	-0.20546	-0.57856	-0.20220
2000	0.05477	-0.36754	-0.53470	-0.19841	-0.59504	-0.19398
2050	0.02141	-0.35842	-0.54894	-0.19170	-0.61074	-0.18621
2100	-0.01246	-0.34912	-0.56287	-0.18529	-0.62587	-0.17885
2150	-0.04704	-0.33963	-0.57668	-0.17916	-0.64064	-0.17184
2200	-0.08251	-0.32993	-0.59056	-0.17327	-0.65524	-0.16517
2250	-0.11894	-0.32007	-0.60464	-0.16764	-0.66979	-0.15882
2300	-0.15668	-0.30998	-0.61916	-0.16221	-0.68453	-0.15274
2350	-0.19568	-0.29971	-0.63419	-0.15701	-0.69955	-0.14695
2400	-0.23636	-0.28916	-0.65002	-0.15198	-0.71510	-0.14138
2450	-0.27865	-0.27844	-0.66673	-0.14718	-0.73125	-0.13607
2500	-0.32292	-0.26747	-0.68460	-0.14257	-0.74826	-0.13099

Tabelle D.1: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.5$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	\tilde{W}_c	V_c	W_c
300	-0.08027	-0.00342	-0.01719	-0.00400	0.05414	-0.00464
350	-0.07201	-0.00752	0.01303	-0.00912	0.10486	-0.01076
400	-0.04549	-0.01410	0.03519	-0.01727	0.14323	-0.02061
450	-0.00300	-0.02430	0.06575	-0.02986	0.18836	-0.03602
500	0.05746	-0.03798	0.11341	-0.04692	0.25140	-0.05729
550	0.13411	-0.05560	0.17540	-0.06916	0.32985	-0.08551
600	0.22301	-0.07816	0.24507	-0.09773	0.41589	-0.12225
650	0.31527	-0.10565	0.31009	-0.13202	0.49396	-0.16649
700	0.40338	-0.13731	0.36088	-0.17001	0.55161	-0.21506
750	0.47941	-0.17142	0.38875	-0.20811	0.57788	-0.26250
800	0.53957	-0.20600	0.39189	-0.24285	0.57139	-0.30391
850	0.58112	-0.23886	0.37095	-0.27122	0.53445	-0.33546
900	0.60508	-0.26845	0.33124	-0.29197	0.47506	-0.35620
950	0.61335	-0.29380	0.27841	-0.30510	0.40108	-0.36685
1000	0.60871	-0.31457	0.21792	-0.31156	0.31961	-0.36919
1050	0.59428	-0.33102	0.15449	-0.31279	0.23637	-0.36545
1100	0.57267	-0.34352	0.09136	-0.31013	0.15511	-0.35746
1150	0.54658	-0.35271	0.03110	-0.30486	0.07866	-0.34692
1200	0.51731	-0.35895	-0.02538	-0.29774	0.00784	-0.33474
1250	0.48661	-0.36298	-0.07710	-0.28968	-0.05643	-0.32199
1300	0.45511	-0.36502	-0.12413	-0.28097	-0.11440	-0.30897
1350	0.42373	-0.36564	-0.16638	-0.27214	-0.16617	-0.29625
1400	0.39270	-0.36487	-0.20426	-0.26319	-0.21232	-0.28378
1450	0.36213	-0.36323	-0.23826	-0.25446	-0.25353	-0.27190
1500	0.33232	-0.36067	-0.26865	-0.24590	-0.29019	-0.26051
1550	0.30300	-0.35754	-0.29605	-0.23767	-0.32310	-0.24974
1600	0.27449	-0.35381	-0.32063	-0.22972	-0.35249	-0.23951
1650	0.24634	-0.34969	-0.34300	-0.22212	-0.37910	-0.22986
1700	0.21863	-0.34523	-0.36337	-0.21487	-0.40320	-0.22076
1750	0.19122	-0.34044	-0.38209	-0.20792	-0.42521	-0.21215
1800	0.16387	-0.33542	-0.39946	-0.20131	-0.44549	-0.20402
1850	0.13665	-0.33015	-0.41565	-0.19500	-0.46424	-0.19634
1900	0.10923	-0.32469	-0.43096	-0.18899	-0.48182	-0.18907
1950	0.08159	-0.31905	-0.44555	-0.18324	-0.49838	-0.18219
2000	0.05351	-0.31323	-0.45963	-0.17776	-0.51419	-0.17565
2050	0.02490	-0.30724	-0.47335	-0.17252	-0.52940	-0.16945
2100	-0.00439	-0.30106	-0.48687	-0.16749	-0.54420	-0.16353
2150	-0.03455	-0.29470	-0.50038	-0.16266	-0.55876	-0.15789
2200	-0.06574	-0.28811	-0.51404	-0.15801	-0.57325	-0.15248
2250	-0.09807	-0.28135	-0.52794	-0.15355	-0.58779	-0.14732
2300	-0.13183	-0.27434	-0.54234	-0.14924	-0.60259	-0.14235
2350	-0.16703	-0.26713	-0.55728	-0.14511	-0.61774	-0.13760
2400	-0.20404	-0.25963	-0.57305	-0.14110	-0.63347	-0.13301
2450	-0.24286	-0.25192	-0.58972	-0.13728	-0.64985	-0.12863
2500	-0.28385	-0.24392	-0.60757	-0.13359	-0.66714	-0.12443

Tabelle D.2: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08188	-0.00371	-0.00939	-0.00528	0.10130	-0.00748
350	-0.07028	-0.00781	0.02124	-0.01123	0.15297	-0.01593
400	-0.04161	-0.01421	0.04729	-0.02023	0.19715	-0.02865
450	0.00141	-0.02396	0.08194	-0.03378	0.24829	-0.04779
500	0.06026	-0.03693	0.13324	-0.05210	0.32006	-0.07449
550	0.13280	-0.05352	0.19737	-0.07598	0.40792	-0.11044
600	0.21512	-0.07458	0.26662	-0.10640	0.49928	-0.15678
650	0.29886	-0.09996	0.32745	-0.14190	0.57166	-0.20914
700	0.37722	-0.12878	0.37031	-0.17943	0.61105	-0.26029
750	0.44324	-0.15928	0.38786	-0.21457	0.61113	-0.30248
800	0.49399	-0.18964	0.38081	-0.24410	0.57879	-0.33276
850	0.52760	-0.21791	0.35211	-0.26592	0.52201	-0.35057
900	0.54556	-0.24286	0.30824	-0.28003	0.45070	-0.35804
950	0.54998	-0.26385	0.25487	-0.28731	0.37197	-0.35755
1000	0.54357	-0.28076	0.19681	-0.28919	0.29113	-0.35144
1050	0.52916	-0.29398	0.13782	-0.28721	0.21208	-0.34184
1100	0.50903	-0.30392	0.08030	-0.28256	0.13703	-0.33020
1150	0.48546	-0.31118	0.02613	-0.27631	0.06768	-0.31769
1200	0.45949	-0.31611	-0.02426	-0.26898	0.00416	-0.30480
1250	0.43254	-0.31933	-0.07021	-0.26126	-0.05314	-0.29221
1300	0.40509	-0.32102	-0.11193	-0.25328	-0.10468	-0.27994
1350	0.37784	-0.32165	-0.14945	-0.24543	-0.15070	-0.26833
1400	0.35096	-0.32122	-0.18318	-0.23762	-0.19181	-0.25721
1450	0.32447	-0.32016	-0.21357	-0.23011	-0.22864	-0.24678
1500	0.29863	-0.31839	-0.24086	-0.22280	-0.26157	-0.23688
1550	0.27315	-0.31621	-0.26562	-0.21583	-0.29129	-0.22761
1600	0.24832	-0.31358	-0.28797	-0.20911	-0.31799	-0.21884
1650	0.22371	-0.31065	-0.30845	-0.20272	-0.34233	-0.21060
1700	0.19940	-0.30747	-0.32724	-0.19662	-0.36455	-0.20285
1750	0.17523	-0.30402	-0.34463	-0.19079	-0.38498	-0.19551
1800	0.15102	-0.30040	-0.36090	-0.18524	-0.40395	-0.18860
1850	0.12680	-0.29656	-0.37616	-0.17994	-0.42163	-0.18205
1900	0.10227	-0.29258	-0.39071	-0.17489	-0.43832	-0.17586
1950	0.07741	-0.28843	-0.40466	-0.17006	-0.45417	-0.16998
2000	0.05204	-0.28413	-0.41822	-0.16544	-0.46941	-0.16440
2050	0.02604	-0.27966	-0.43151	-0.16102	-0.48416	-0.15908
2100	-0.00071	-0.27503	-0.44468	-0.15678	-0.49860	-0.15401
2150	-0.02841	-0.27021	-0.45790	-0.15271	-0.51289	-0.14916
2200	-0.05722	-0.26518	-0.47131	-0.14877	-0.52718	-0.14450
2250	-0.08722	-0.25998	-0.48502	-0.14500	-0.54158	-0.14004
2300	-0.11872	-0.25454	-0.49924	-0.14135	-0.55631	-0.13575
2350	-0.15174	-0.24890	-0.51405	-0.13784	-0.57141	-0.13163
2400	-0.18663	-0.24298	-0.52970	-0.13445	-0.58713	-0.12765
2450	-0.22343	-0.23683	-0.54626	-0.13120	-0.60355	-0.12385
2500	-0.26247	-0.23039	-0.56402	-0.12809	-0.62091	-0.12019

Tabelle D.3: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08818	-0.00461	0.08782	-0.01341	0.13086	-0.01886
350	-0.07099	-0.00898	0.18508	-0.02833	0.20991	-0.03907
400	-0.03758	-0.01562	0.12551	-0.03300	0.29046	-0.06728
450	0.00878	-0.02554	0.14949	-0.04867	0.40063	-0.11210
500	0.06946	-0.03863	0.20397	-0.07147	0.49021	-0.16349
550	0.14187	-0.05530	0.27455	-0.10192	0.59924	-0.23811
600	0.22195	-0.07629	0.34518	-0.13955	0.69578	-0.32492
650	0.30141	-0.10122	0.39674	-0.17942	0.76210	-0.40404
700	0.37389	-0.12906	0.42165	-0.21623	0.77193	-0.44417
750	0.43309	-0.15787	0.41818	-0.24554	0.71154	-0.43654
800	0.47690	-0.18588	0.39277	-0.26645	0.62367	-0.41838
850	0.50423	-0.21130	0.35095	-0.27903	0.53282	-0.40170
900	0.51712	-0.23319	0.29936	-0.28482	0.44350	-0.38559
950	0.51793	-0.25118	0.24265	-0.28536	0.35679	-0.36905
1000	0.50936	-0.26536	0.18432	-0.28214	0.27389	-0.35213
1050	0.49407	-0.27622	0.12707	-0.27654	0.19619	-0.33542
1100	0.47411	-0.28423	0.07242	-0.26948	0.12434	-0.31923
1150	0.45148	-0.28999	0.02166	-0.26175	0.05904	-0.30398
1200	0.42701	-0.29380	-0.02516	-0.25363	-0.00017	-0.28957
1250	0.40194	-0.29625	-0.06765	-0.24560	-0.05324	-0.27627
1300	0.37659	-0.29747	-0.10614	-0.23767	-0.10083	-0.26387
1350	0.35155	-0.29787	-0.14074	-0.23009	-0.14328	-0.25248
1400	0.32692	-0.29742	-0.17187	-0.22272	-0.18121	-0.24182
1450	0.30269	-0.29650	-0.19998	-0.21574	-0.21527	-0.23200
1500	0.27905	-0.29503	-0.22530	-0.20904	-0.24579	-0.22280
1550	0.25573	-0.29326	-0.24836	-0.20270	-0.27343	-0.21426
1600	0.23298	-0.29112	-0.26925	-0.19663	-0.29837	-0.20625
1650	0.21038	-0.28877	-0.28849	-0.19089	-0.32120	-0.19877
1700	0.18800	-0.28622	-0.30623	-0.18543	-0.34214	-0.19175
1750	0.16570	-0.28345	-0.32272	-0.18023	-0.36149	-0.18514
1800	0.14328	-0.28054	-0.33823	-0.17529	-0.37956	-0.17892
1850	0.12078	-0.27746	-0.35286	-0.17057	-0.39648	-0.17303
1900	0.09793	-0.27425	-0.36687	-0.16609	-0.41253	-0.16747
1950	0.07470	-0.27090	-0.38037	-0.16180	-0.42786	-0.16220
2000	0.05089	-0.26740	-0.39354	-0.15770	-0.44265	-0.15718
2050	0.02643	-0.26376	-0.40650	-0.15378	-0.45705	-0.15241
2100	0.00115	-0.25996	-0.41940	-0.15002	-0.47119	-0.14786
2150	-0.02510	-0.25599	-0.43239	-0.14640	-0.48525	-0.14350
2200	-0.05249	-0.25182	-0.44560	-0.14291	-0.49936	-0.13931
2250	-0.08112	-0.24748	-0.45915	-0.13956	-0.51361	-0.13529
2300	-0.11127	-0.24291	-0.47323	-0.13632	-0.52822	-0.13143
2350	-0.14298	-0.23814	-0.48791	-0.13322	-0.54325	-0.12772
2400	-0.17660	-0.23310	-0.50345	-0.13021	-0.55893	-0.12413
2450	-0.21216	-0.22784	-0.51992	-0.12734	-0.57533	-0.12070
2500	-0.25002	-0.22229	-0.53759	-0.12459	-0.59268	-0.11740

Tabelle D.4: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08596	-0.00673	-0.04526	-0.01384	-0.05702	-0.01463
350	-0.06573	-0.01144	-0.01554	-0.02624	-0.02601	-0.03009
400	-0.02786	-0.01852	0.06848	-0.04684	0.03742	-0.05253
450	0.02195	-0.02891	0.16433	-0.07728	0.14388	-0.09191
500	0.08561	-0.04263	0.24738	-0.11313	0.26144	-0.15384
550	0.15956	-0.06005	0.35005	-0.16577	0.33688	-0.21455
600	0.23914	-0.08178	0.43928	-0.22587	0.39979	-0.27784
650	0.31584	-0.10716	0.49735	-0.27843	0.49393	-0.38138
700	0.38367	-0.13485	0.50439	-0.30525	0.56640	-0.47687
750	0.43699	-0.16275	0.46712	-0.30985	0.60446	-0.53071
800	0.47460	-0.18910	0.41436	-0.30867	0.59072	-0.52323
850	0.49624	-0.21233	0.35592	-0.30493	0.52247	-0.47572
900	0.50446	-0.23180	0.29547	-0.29914	0.43240	-0.42846
950	0.50184	-0.24737	0.23483	-0.29156	0.34321	-0.39149
1000	0.49102	-0.25934	0.17555	-0.28269	0.25991	-0.36190
1050	0.47451	-0.26827	0.11907	-0.27325	0.18355	-0.33732
1100	0.45415	-0.27469	0.06614	-0.26364	0.11405	-0.31622
1150	0.43173	-0.27917	0.01754	-0.25426	0.05155	-0.29795
1200	0.40792	-0.28202	-0.02696	-0.24514	-0.00471	-0.28173
1250	0.38379	-0.28374	-0.06717	-0.23656	-0.05492	-0.26742
1300	0.35957	-0.28446	-0.10353	-0.22839	-0.09984	-0.25452
1350	0.33577	-0.28454	-0.13618	-0.22078	-0.13987	-0.24298
1400	0.31243	-0.28393	-0.16557	-0.21354	-0.17565	-0.23240
1450	0.28950	-0.28298	-0.19214	-0.20679	-0.20781	-0.22281
1500	0.26716	-0.28157	-0.21613	-0.20037	-0.23668	-0.21393
1550	0.24511	-0.27995	-0.23802	-0.19437	-0.26290	-0.20577
1600	0.22358	-0.27803	-0.25792	-0.18866	-0.28661	-0.19817
1650	0.20218	-0.27595	-0.27630	-0.18329	-0.30839	-0.19111
1700	0.18096	-0.27371	-0.29330	-0.17821	-0.32843	-0.18453
1750	0.15978	-0.27130	-0.30917	-0.17338	-0.34702	-0.17835
1800	0.13845	-0.26877	-0.32414	-0.16881	-0.36443	-0.17254
1850	0.11699	-0.26610	-0.33831	-0.16446	-0.38079	-0.16707
1900	0.09515	-0.26332	-0.35193	-0.16032	-0.39638	-0.16190
1950	0.07290	-0.26041	-0.36510	-0.15638	-0.41131	-0.15701
2000	0.05006	-0.25736	-0.37799	-0.15261	-0.42578	-0.15236
2050	0.02652	-0.25419	-0.39071	-0.14901	-0.43989	-0.14794
2100	0.00216	-0.25086	-0.40341	-0.14556	-0.45381	-0.14372
2150	-0.02321	-0.24738	-0.41622	-0.14224	-0.46767	-0.13968
2200	-0.04973	-0.24370	-0.42928	-0.13904	-0.48162	-0.13580
2250	-0.07751	-0.23986	-0.44269	-0.13597	-0.49575	-0.13209
2300	-0.10682	-0.23580	-0.45665	-0.13300	-0.51026	-0.12850
2350	-0.13772	-0.23155	-0.47123	-0.13015	-0.52521	-0.12507
2400	-0.17055	-0.22703	-0.48668	-0.12740	-0.54084	-0.12174
2450	-0.20534	-0.22230	-0.50307	-0.12478	-0.55720	-0.11857
2500	-0.24246	-0.21728	-0.52067	-0.12227	-0.57454	-0.11551

Tabelle D.5: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.11683	-0.00856	-0.17945	-0.01068	-0.18327	-0.01072
350	-0.05487	-0.01599	-0.14383	-0.02239	-0.16188	-0.02410
400	-0.05000	-0.02163	-0.08545	-0.03900	-0.10341	-0.04326
450	0.04658	-0.03489	0.04555	-0.07421	-0.00237	-0.07881
500	0.11089	-0.04938	0.13303	-0.11502	0.10655	-0.13582
550	0.18632	-0.06800	0.20889	-0.16109	0.17733	-0.19528
600	0.26551	-0.09101	0.26997	-0.20756	0.24148	-0.26263
650	0.33927	-0.11724	0.35994	-0.28102	0.29495	-0.32853
700	0.40213	-0.14504	0.42434	-0.34379	0.37493	-0.43518
750	0.44929	-0.17213	0.44565	-0.37138	0.43416	-0.51803
800	0.48063	-0.19689	0.41490	-0.36100	0.46467	-0.54980
850	0.49670	-0.21804	0.35522	-0.33860	0.45414	-0.52547
900	0.50043	-0.23525	0.29068	-0.31881	0.39992	-0.47066
950	0.49453	-0.24863	0.22787	-0.30206	0.32370	-0.41753
1000	0.48149	-0.25861	0.16816	-0.28721	0.24524	-0.37570
1050	0.46365	-0.26584	0.11234	-0.27385	0.17178	-0.34327
1100	0.44263	-0.27084	0.06070	-0.26166	0.10478	-0.31729
1150	0.42005	-0.27418	0.01365	-0.25062	0.04467	-0.29599
1200	0.39644	-0.27613	-0.02920	-0.24044	-0.00931	-0.27790
1250	0.37275	-0.27717	-0.06779	-0.23122	-0.05740	-0.26247
1300	0.34913	-0.27738	-0.10263	-0.22270	-0.10036	-0.24894
1350	0.32603	-0.27711	-0.13390	-0.21492	-0.13864	-0.23709
1400	0.30343	-0.27627	-0.16205	-0.20765	-0.17286	-0.22641
1450	0.28128	-0.27517	-0.18754	-0.20097	-0.20365	-0.21685
1500	0.25971	-0.27371	-0.21057	-0.19469	-0.23133	-0.20810
1550	0.23843	-0.27210	-0.23163	-0.18885	-0.25651	-0.20013
1600	0.21766	-0.27025	-0.25081	-0.18335	-0.27933	-0.19276
1650	0.19699	-0.26827	-0.26857	-0.17819	-0.30035	-0.18595
1700	0.17648	-0.26619	-0.28504	-0.17335	-0.31973	-0.17963
1750	0.15599	-0.26395	-0.30045	-0.16875	-0.33775	-0.17372
1800	0.13533	-0.26162	-0.31502	-0.16442	-0.35467	-0.16818
1850	0.11453	-0.25916	-0.32886	-0.16030	-0.37062	-0.16297
1900	0.09333	-0.25662	-0.34219	-0.15640	-0.38586	-0.15806
1950	0.07169	-0.25395	-0.35511	-0.15268	-0.40048	-0.15342
2000	0.04945	-0.25117	-0.36778	-0.14913	-0.41469	-0.14902
2050	0.02650	-0.24826	-0.38032	-0.14575	-0.42859	-0.14484
2100	0.00271	-0.24521	-0.39286	-0.14250	-0.44232	-0.14084
2150	-0.02209	-0.24201	-0.40553	-0.13938	-0.45603	-0.13703
2200	-0.04806	-0.23864	-0.41847	-0.13638	-0.46985	-0.13336
2250	-0.07530	-0.23510	-0.43177	-0.13350	-0.48387	-0.12985
2300	-0.10409	-0.23134	-0.44564	-0.13072	-0.49830	-0.12646
2350	-0.13447	-0.22741	-0.46015	-0.12806	-0.51318	-0.12322
2400	-0.16678	-0.22321	-0.47552	-0.12548	-0.52875	-0.12008
2450	-0.20109	-0.21880	-0.49185	-0.12303	-0.54507	-0.11708
2500	-0.23773	-0.21411	-0.50940	-0.12070	-0.56238	-0.11420

Tabelle D.6: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.15921	-0.00833	-0.22499	-0.00809	-0.02305	-0.00184
350	-0.10167	-0.01691	-0.23201	-0.01897	-0.25025	-0.01963
400	-0.03662	-0.02767	-0.17459	-0.03405	-0.19072	-0.03703
450	0.06721	-0.04360	0.04166	-0.08015	-0.05886	-0.07600
500	0.14297	-0.05982	0.11435	-0.13112	0.01392	-0.12468
550	0.22121	-0.08013	0.14852	-0.17317	0.04713	-0.16397
600	0.29989	-0.10475	0.21764	-0.23525	0.14256	-0.25595
650	0.36974	-0.13182	0.28004	-0.29922	0.19732	-0.33073
700	0.42649	-0.15944	0.30789	-0.33064	0.24035	-0.39261
750	0.46665	-0.18527	0.35872	-0.38245	0.30461	-0.48731
800	0.49134	-0.20807	0.36986	-0.39303	0.34931	-0.54075
850	0.50182	-0.22690	0.33717	-0.37003	0.36718	-0.54059
900	0.50124	-0.24178	0.28065	-0.33989	0.34837	-0.49803
950	0.49223	-0.25301	0.21975	-0.31441	0.29589	-0.44074
1000	0.47707	-0.26108	0.16096	-0.29369	0.22824	-0.39018
1050	0.45787	-0.26670	0.10616	-0.27651	0.15985	-0.35091
1100	0.43609	-0.27037	0.05571	-0.26183	0.09592	-0.32039
1150	0.41317	-0.27265	0.00994	-0.24918	0.03813	-0.29622
1200	0.38952	-0.27375	-0.03163	-0.23795	-0.01389	-0.27633
1250	0.36598	-0.27413	-0.06901	-0.22807	-0.06026	-0.25979
1300	0.34265	-0.27383	-0.10270	-0.21914	-0.10170	-0.24559
1350	0.31992	-0.27318	-0.13294	-0.21114	-0.13864	-0.23335
1400	0.29775	-0.27206	-0.16018	-0.20377	-0.17168	-0.22248
1450	0.27606	-0.27077	-0.18485	-0.19707	-0.20143	-0.21286
1500	0.25495	-0.26919	-0.20716	-0.19083	-0.22821	-0.20414
1550	0.23415	-0.26751	-0.22761	-0.18508	-0.25261	-0.19625
1600	0.21383	-0.26563	-0.24625	-0.17969	-0.27475	-0.18901
1650	0.19363	-0.26368	-0.26354	-0.17467	-0.29518	-0.18235
1700	0.17357	-0.26163	-0.27961	-0.16997	-0.31405	-0.17619
1750	0.15351	-0.25946	-0.29467	-0.16553	-0.33164	-0.17045
1800	0.13328	-0.25723	-0.30894	-0.16135	-0.34819	-0.16509
1850	0.11289	-0.25488	-0.32252	-0.15738	-0.36382	-0.16006
1900	0.09209	-0.25245	-0.33563	-0.15363	-0.37878	-0.15533
1950	0.07086	-0.24992	-0.34835	-0.15007	-0.39317	-0.15086
2000	0.04900	-0.24728	-0.36085	-0.14668	-0.40717	-0.14663
2050	0.02643	-0.24453	-0.37325	-0.14344	-0.42089	-0.14261
2100	0.00301	-0.24165	-0.38566	-0.14034	-0.43448	-0.13878
2150	-0.02143	-0.23862	-0.39822	-0.13736	-0.44806	-0.13512
2200	-0.04704	-0.23541	-0.41107	-0.13450	-0.46177	-0.13160
2250	-0.07393	-0.23206	-0.42429	-0.13176	-0.47571	-0.12823
2300	-0.10237	-0.22850	-0.43809	-0.12911	-0.49006	-0.12499
2350	-0.13241	-0.22476	-0.45252	-0.12657	-0.50488	-0.12188
2400	-0.16440	-0.22075	-0.46784	-0.12413	-0.52040	-0.11888
2450	-0.19839	-0.21655	-0.48412	-0.12181	-0.53668	-0.11601
2500	-0.23472	-0.21207	-0.50163	-0.11959	-0.55397	-0.11326

Tabelle D.7: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 1.1$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.17185	-0.00729	0.00164	-0.00109	0.01933	-0.00100
350	-0.14572	-0.01615	-0.29319	-0.01618	-0.30485	-0.01668
400	-0.08665	-0.02741	-0.25368	-0.02886	-0.26091	-0.03167
450	0.00310	-0.04301	-0.09524	-0.06301	-0.16930	-0.06036
500	0.15069	-0.06992	-0.02094	-0.10260	-0.07294	-0.10761
550	0.23369	-0.09254	0.08519	-0.16879	-0.00938	-0.16150
600	0.32850	-0.12191	0.15114	-0.23481	0.04802	-0.22525
650	0.40044	-0.15076	0.17462	-0.26752	0.10017	-0.29443
700	0.45258	-0.17786	0.26584	-0.36964	0.14428	-0.35731
750	0.48595	-0.20170	0.27570	-0.37389	0.20934	-0.45669
800	0.50409	-0.22189	0.30823	-0.40215	0.25915	-0.52257
850	0.50921	-0.23800	0.30294	-0.39058	0.28982	-0.53904
900	0.50461	-0.25035	0.26372	-0.35859	0.29276	-0.51079
950	0.49274	-0.25934	0.20952	-0.32682	0.26271	-0.45771
1000	0.47561	-0.26552	0.15343	-0.30090	0.20897	-0.40324
1050	0.45514	-0.26957	0.10020	-0.28018	0.14749	-0.35881
1100	0.43257	-0.27197	0.05099	-0.26317	0.08726	-0.32439
1150	0.40922	-0.27322	0.00637	-0.24899	0.03185	-0.29762
1200	0.38539	-0.27351	-0.03414	-0.23677	-0.01838	-0.27605
1250	0.36185	-0.27324	-0.07053	-0.22624	-0.06328	-0.25844
1300	0.33863	-0.27244	-0.10333	-0.21690	-0.10348	-0.24358
1350	0.31608	-0.27139	-0.13277	-0.20866	-0.13933	-0.23094
1400	0.29414	-0.26998	-0.15929	-0.20115	-0.17144	-0.21985
1450	0.27270	-0.26846	-0.18333	-0.19439	-0.20038	-0.21012
1500	0.25188	-0.26672	-0.20509	-0.18815	-0.22645	-0.20137
1550	0.23136	-0.26492	-0.22505	-0.18243	-0.25023	-0.19351
1600	0.21133	-0.26297	-0.24328	-0.17710	-0.27185	-0.18633
1650	0.19141	-0.26097	-0.26021	-0.17216	-0.29182	-0.17976
1700	0.17163	-0.25891	-0.27596	-0.16755	-0.31030	-0.17371
1750	0.15185	-0.25675	-0.29075	-0.16321	-0.32754	-0.16808
1800	0.13190	-0.25454	-0.30479	-0.15913	-0.34379	-0.16284
1850	0.11177	-0.25223	-0.31816	-0.15528	-0.35916	-0.15793
1900	0.09124	-0.24986	-0.33109	-0.15164	-0.37390	-0.15333
1950	0.07026	-0.24740	-0.34366	-0.14818	-0.38810	-0.14898
2000	0.04865	-0.24483	-0.35603	-0.14489	-0.40193	-0.14487
2050	0.02633	-0.24217	-0.36831	-0.14176	-0.41552	-0.14097
2100	0.00315	-0.23937	-0.38062	-0.13877	-0.42898	-0.13726
2150	-0.02105	-0.23644	-0.39310	-0.13590	-0.44246	-0.13371
2200	-0.04642	-0.23335	-0.40586	-0.13313	-0.45608	-0.13030
2250	-0.07308	-0.23010	-0.41902	-0.13049	-0.46994	-0.12705
2300	-0.10129	-0.22666	-0.43276	-0.12794	-0.48423	-0.12391
2350	-0.13111	-0.22304	-0.44714	-0.12550	-0.49900	-0.12090
2400	-0.16288	-0.21916	-0.46241	-0.12315	-0.51447	-0.11800
2450	-0.19665	-0.21509	-0.47865	-0.12092	-0.53073	-0.11523
2500	-0.23278	-0.21075	-0.49613	-0.11880	-0.54800	-0.11257

Tabelle D.8: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 1.2$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.17231	-0.00564	0.05678	-0.00105	0.02514	-0.00115
350	-0.19159	-0.01457	-0.32838	-0.01430	-0.34600	-0.01441
400	-0.13078	-0.02604	-0.28519	-0.02698	-0.31434	-0.02769
450	0.00367	-0.04675	-0.16060	-0.05533	-0.20197	-0.05692
500	0.12194	-0.07298	-0.08847	-0.09123	-0.13563	-0.09543
550	0.17542	-0.09149	0.04682	-0.16699	-0.04557	-0.16102
600	0.31134	-0.13136	0.10888	-0.23798	0.03926	-0.26030
650	0.40929	-0.16831	0.13287	-0.27837	0.05934	-0.30831
700	0.47067	-0.19808	0.18500	-0.34060	0.10339	-0.38187
750	0.50278	-0.22041	0.20784	-0.36056	0.13797	-0.42984
800	0.51640	-0.23762	0.25072	-0.40048	0.18959	-0.50319
850	0.51712	-0.25063	0.26314	-0.40072	0.22642	-0.53103
900	0.50908	-0.26022	0.24159	-0.37275	0.24189	-0.51460
950	0.49471	-0.26689	0.19721	-0.33805	0.22856	-0.46849
1000	0.47585	-0.27117	0.14540	-0.30807	0.18850	-0.41389
1050	0.45422	-0.27367	0.09430	-0.28425	0.13483	-0.36618
1100	0.43090	-0.27482	0.04648	-0.26512	0.07876	-0.32861
1150	0.40710	-0.27509	0.00294	-0.24954	0.02581	-0.29957
1200	0.38302	-0.27458	-0.03663	-0.23639	-0.02272	-0.27649
1250	0.35937	-0.27368	-0.07220	-0.22525	-0.06633	-0.25791
1300	0.33615	-0.27238	-0.10427	-0.21551	-0.10546	-0.24241
1350	0.31367	-0.27094	-0.13306	-0.20701	-0.14043	-0.22938
1400	0.29184	-0.26922	-0.15901	-0.19935	-0.17177	-0.21806
1450	0.27055	-0.26746	-0.18255	-0.19251	-0.20005	-0.20820
1500	0.24988	-0.26553	-0.20387	-0.18623	-0.22555	-0.19939
1550	0.22953	-0.26359	-0.22345	-0.18052	-0.24884	-0.19153
1600	0.20967	-0.26154	-0.24134	-0.17522	-0.27003	-0.18437
1650	0.18993	-0.25946	-0.25798	-0.17033	-0.28962	-0.17785
1700	0.17033	-0.25735	-0.27348	-0.16578	-0.30778	-0.17187
1750	0.15073	-0.25516	-0.28805	-0.16150	-0.32474	-0.16631
1800	0.13095	-0.25293	-0.30191	-0.15750	-0.34076	-0.16116
1850	0.11100	-0.25063	-0.31511	-0.15372	-0.35592	-0.15634
1900	0.09063	-0.24827	-0.32790	-0.15016	-0.37048	-0.15182
1950	0.06982	-0.24583	-0.34035	-0.14678	-0.38452	-0.14757
2000	0.04838	-0.24330	-0.35261	-0.14357	-0.39822	-0.14355
2050	0.02622	-0.24067	-0.36479	-0.14052	-0.41169	-0.13974
2100	0.00321	-0.23793	-0.37702	-0.13760	-0.42505	-0.13611
2150	-0.02083	-0.23505	-0.38942	-0.13481	-0.43844	-0.13265
2200	-0.04605	-0.23202	-0.40212	-0.13212	-0.45199	-0.12932
2250	-0.07255	-0.22884	-0.41522	-0.12955	-0.46578	-0.12615
2300	-0.10061	-0.22547	-0.42891	-0.12707	-0.48001	-0.12309
2350	-0.13028	-0.22193	-0.44325	-0.12471	-0.49473	-0.12016
2400	-0.16191	-0.21813	-0.45849	-0.12243	-0.51018	-0.11733
2450	-0.19554	-0.21414	-0.47470	-0.12027	-0.52640	-0.11464
2500	-0.23153	-0.20989	-0.49214	-0.11823	-0.54365	-0.11206

Tabelle D.9: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 1.3$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.60696	-0.07422	0.33263	-0.09547	1.32494	-0.11075
350	-0.60410	-0.14222	0.40793	-0.19110	1.63564	-0.22829
400	-0.56931	-0.24213	0.48475	-0.33741	1.95489	-0.41530
450	-0.52006	-0.38494	0.51604	-0.54934	2.21215	-0.69668
500	-0.47629	-0.56117	0.46935	-0.80646	2.35804	-1.05484
550	-0.45630	-0.76615	0.32069	-1.08954	2.35325	-1.47277
600	-0.46039	-0.99782	0.07767	-1.37901	2.19746	-1.93039
650	-0.48961	-1.24653	-0.24320	-1.64504	1.90333	-2.38966
700	-0.53581	-1.50038	-0.60755	-1.86225	1.51137	-2.81061
750	-0.59071	-1.74642	-0.98300	-2.01490	1.06546	-3.16124
800	-0.63990	-1.97253	-1.33585	-2.09913	0.61723	-3.42289
850	-0.67081	-2.16640	-1.64175	-2.11656	0.20657	-3.58648
900	-0.67155	-2.31829	-1.88119	-2.07449	-0.13543	-3.65318
950	-0.63898	-2.42078	-2.04560	-1.98059	-0.39787	-3.62900
1000	-0.57756	-2.47110	-2.13436	-1.84494	-0.58469	-3.52534
1050	-0.49730	-2.47065	-2.15234	-1.68075	-0.70988	-3.35610
1100	-0.40969	-2.42659	-2.11197	-1.50763	-0.79079	-3.13956
1150	-0.32513	-2.34663	-2.03650	-1.34153	-0.84351	-2.89120
1200	-0.25021	-2.24178	-1.95272	-1.19150	-0.87960	-2.62862
1250	-0.18921	-2.12033	-1.87611	-1.05740	-0.90716	-2.36372
1300	-0.14290	-1.99089	-1.81212	-0.93838	-0.93012	-2.10780
1350	-0.11169	-1.85858	-1.76112	-0.83227	-0.95137	-1.86667
1400	-0.09336	-1.72852	-1.72143	-0.73854	-0.97122	-1.64589
1450	-0.08702	-1.60293	-1.69120	-0.65567	-0.99096	-1.44677
1500	-0.09025	-1.48403	-1.66828	-0.58299	-1.01052	-1.27042
1550	-0.10154	-1.37247	-1.65096	-0.51933	-1.03024	-1.11567
1600	-0.11914	-1.26867	-1.63774	-0.46375	-1.05006	-0.98103
1650	-0.14205	-1.17277	-1.62760	-0.41531	-1.07018	-0.86448
1700	-0.16898	-1.08420	-1.61959	-0.37304	-1.09023	-0.76363
1750	-0.19909	-1.00279	-1.61309	-0.33619	-1.11010	-0.67655
1800	-0.23179	-0.92789	-1.60766	-0.30398	-1.12963	-0.60118
1850	-0.26646	-0.85919	-1.60296	-0.27584	-1.14867	-0.53596
1900	-0.30263	-0.79595	-1.59874	-0.25114	-1.16703	-0.47925
1950	-0.34019	-0.73779	-1.59492	-0.22942	-1.18480	-0.42986
2000	-0.37873	-0.68427	-1.59137	-0.21030	-1.20186	-0.38676
2050	-0.41821	-0.63481	-1.58809	-0.19336	-1.21829	-0.34892
2100	-0.45829	-0.58916	-1.58502	-0.17835	-1.23403	-0.31570
2150	-0.49908	-0.54683	-1.58220	-0.16499	-1.24923	-0.28635
2200	-0.54050	-0.50767	-1.57969	-0.15310	-1.26397	-0.26043
2250	-0.58246	-0.47124	-1.57749	-0.14245	-1.27829	-0.23740
2300	-0.62492	-0.43731	-1.57567	-0.13290	-1.29228	-0.21690
2350	-0.66792	-0.40574	-1.57428	-0.12433	-1.30606	-0.19864
2400	-0.71138	-0.37619	-1.57339	-0.11661	-1.31969	-0.18226
2450	-0.75534	-0.34864	-1.57306	-0.10967	-1.33328	-0.16762
2500	-0.79970	-0.32278	-1.57336	-0.10339	-1.34690	-0.15445

Tabelle D.10: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.5$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.31461	-0.04128	0.17988	-0.04912	0.69402	-0.05526
350	-0.31203	-0.08020	0.22204	-0.09829	0.85334	-0.11281
400	-0.29166	-0.13756	0.26596	-0.17344	1.01675	-0.20336
450	-0.26204	-0.21934	0.28821	-0.28285	1.15062	-0.33901
500	-0.23156	-0.32014	0.27389	-0.41765	1.23309	-0.51205
550	-0.20971	-0.43801	0.21132	-0.57086	1.24665	-0.71651
600	-0.19743	-0.57180	0.10329	-0.73513	1.19131	-0.94528
650	-0.19591	-0.71602	-0.04376	-0.89702	1.07217	-1.18247
700	-0.20129	-0.86333	-0.21440	-1.04292	0.90676	-1.40963
750	-0.20987	-1.00614	-0.39347	-1.16242	0.71392	-1.61054
800	-0.21511	-1.13701	-0.56419	-1.24968	0.51643	-1.77337
850	-0.21221	-1.24877	-0.71471	-1.30210	0.33162	-1.89029
900	-0.19688	-1.33560	-0.83622	-1.32043	0.17303	-1.95810
950	-0.16915	-1.39367	-0.92656	-1.30722	0.04500	-1.97716
1000	-0.13206	-1.42220	-0.98821	-1.26700	-0.05439	-1.95170
1050	-0.09062	-1.42290	-1.02677	-1.20522	-0.13118	-1.88832
1100	-0.04975	-1.40036	-1.04893	-1.12869	-0.19230	-1.79646
1150	-0.01377	-1.35920	-1.06095	-1.04309	-0.24421	-1.68441
1200	0.01518	-1.30533	-1.06751	-0.95445	-0.29093	-1.56148
1250	0.03570	-1.24308	-1.07199	-0.86661	-0.33543	-1.43413
1300	0.04814	-1.17676	-1.07611	-0.78294	-0.37861	-1.30834
1350	0.05258	-1.10891	-1.08108	-0.70487	-0.42143	-1.18730
1400	0.05049	-1.04198	-1.08686	-0.63367	-0.46328	-1.07394
1450	0.04235	-0.97712	-1.09369	-0.56932	-0.50445	-0.96917
1500	0.02946	-0.91537	-1.10114	-0.51188	-0.54431	-0.87377
1550	0.01256	-0.85706	-1.10900	-0.46080	-0.58273	-0.78751
1600	-0.00747	-0.80239	-1.11695	-0.41560	-0.61941	-0.71006
1650	-0.03020	-0.75151	-1.12487	-0.37572	-0.65440	-0.64089
1700	-0.05502	-0.70411	-1.13253	-0.34049	-0.68754	-0.57914
1750	-0.08155	-0.66015	-1.13985	-0.30944	-0.71887	-0.52421
1800	-0.10954	-0.61934	-1.14679	-0.28200	-0.74848	-0.47530
1850	-0.13872	-0.58156	-1.15332	-0.25777	-0.77643	-0.43184
1900	-0.16890	-0.54643	-1.15942	-0.23629	-0.80280	-0.39310
1950	-0.20008	-0.51381	-1.16520	-0.21723	-0.82783	-0.35855
2000	-0.23207	-0.48349	-1.17065	-0.20029	-0.85154	-0.32774
2050	-0.26493	-0.45517	-1.17586	-0.18517	-0.87417	-0.30012
2100	-0.29848	-0.42875	-1.18086	-0.17167	-0.89573	-0.27540
2150	-0.33286	-0.40398	-1.18576	-0.15955	-0.91647	-0.25316
2200	-0.36804	-0.38082	-1.19063	-0.14869	-0.93650	-0.23318
2250	-0.40403	-0.35902	-1.19554	-0.13891	-0.95593	-0.21514
2300	-0.44085	-0.33847	-1.20057	-0.13009	-0.97488	-0.19883
2350	-0.47855	-0.31913	-1.20581	-0.12213	-0.99349	-0.18408
2400	-0.51715	-0.30079	-1.21132	-0.11492	-1.01186	-0.17068
2450	-0.55668	-0.28347	-1.21721	-0.10842	-1.03011	-0.15855
2500	-0.59713	-0.26698	-1.22355	-0.10251	-1.04832	-0.14748

Tabelle D.11: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.19937	-0.02689	0.12089	-0.03223	0.45745	-0.03560
350	-0.19745	-0.05261	0.14982	-0.06437	0.56139	-0.07223
400	-0.18389	-0.09069	0.18008	-0.11338	0.66775	-0.12946
450	-0.16387	-0.14517	0.19657	-0.18481	0.75545	-0.21489
500	-0.14197	-0.21254	0.19034	-0.27335	0.81160	-0.32387
550	-0.12414	-0.29177	0.15414	-0.37534	0.82584	-0.45338
600	-0.11126	-0.38223	0.08951	-0.48695	0.79832	-0.59984
650	-0.10437	-0.48036	0.00001	-0.60023	0.73197	-0.75420
700	-0.10120	-0.58113	-0.10509	-0.70641	0.63717	-0.90529
750	-0.09960	-0.67930	-0.21667	-0.79823	0.52497	-1.04282
800	-0.09561	-0.76958	-0.32427	-0.87070	0.40892	-1.15851
850	-0.08668	-0.84695	-0.42064	-0.92076	0.29914	-1.24630
900	-0.07066	-0.90732	-0.50052	-0.94749	0.20348	-1.30285
950	-0.04818	-0.94819	-0.56302	-0.95158	0.12409	-1.32744
1000	-0.02151	-0.96925	-0.60995	-0.93544	0.05955	-1.32223
1050	0.00609	-0.97190	-0.64487	-0.90246	0.00615	-1.29122
1100	0.03177	-0.95935	-0.67149	-0.85720	-0.04004	-1.24041
1150	0.05305	-0.93475	-0.69324	-0.80358	-0.08263	-1.17518
1200	0.06895	-0.90193	-0.71226	-0.74582	-0.12352	-1.10154
1250	0.07883	-0.86367	-0.73013	-0.68680	-0.16415	-1.02370
1300	0.08317	-0.82269	-0.74740	-0.62910	-0.20462	-0.94554
1350	0.08208	-0.78058	-0.76460	-0.57401	-0.24526	-0.86925
1400	0.07664	-0.73886	-0.78147	-0.52271	-0.28536	-0.79677
1450	0.06714	-0.69825	-0.79818	-0.47547	-0.32498	-0.72885
1500	0.05449	-0.65942	-0.81440	-0.43255	-0.36353	-0.66612
1550	0.03911	-0.62257	-0.83007	-0.39376	-0.40086	-0.60858
1600	0.02157	-0.58784	-0.84503	-0.35890	-0.43669	-0.55615
1650	0.00214	-0.55536	-0.85928	-0.32771	-0.47103	-0.50865
1700	-0.01884	-0.52492	-0.87275	-0.29979	-0.50377	-0.46562
1750	-0.04110	-0.49654	-0.88543	-0.27486	-0.53492	-0.42678
1800	-0.06453	-0.47003	-0.89739	-0.25257	-0.56456	-0.39170
1850	-0.08896	-0.44536	-0.90865	-0.23267	-0.59275	-0.36010
1900	-0.11430	-0.42227	-0.91926	-0.21484	-0.61956	-0.33154
1950	-0.14057	-0.40070	-0.92934	-0.19887	-0.64519	-0.30574
2000	-0.16766	-0.38053	-0.93893	-0.18455	-0.66968	-0.28243
2050	-0.19565	-0.36157	-0.94813	-0.17165	-0.69321	-0.26128
2100	-0.22440	-0.34376	-0.95699	-0.16004	-0.71583	-0.24211
2150	-0.25407	-0.32695	-0.96564	-0.14954	-0.73774	-0.22467
2200	-0.28466	-0.31114	-0.97415	-0.14007	-0.75904	-0.20884
2250	-0.31619	-0.29615	-0.98260	-0.13148	-0.77983	-0.19438
2300	-0.34870	-0.28192	-0.99108	-0.12368	-0.80024	-0.18117
2350	-0.38225	-0.26843	-0.99967	-0.11662	-0.82037	-0.16912
2400	-0.41690	-0.25553	-1.00846	-0.11018	-0.84034	-0.15806
2450	-0.45268	-0.24327	-1.01753	-0.10434	-0.86024	-0.14796
2500	-0.48963	-0.23148	-1.02697	-0.09902	-0.88016	-0.13865

Tabelle D.12: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.14573	-0.02000	0.09372	-0.02473	0.34861	-0.02692
350	-0.14369	-0.03914	0.11644	-0.04910	0.42674	-0.05423
400	-0.13317	-0.06753	0.13993	-0.08608	0.50620	-0.09657
450	-0.11790	-0.10820	0.15288	-0.13984	0.57152	-0.15948
500	-0.10081	-0.15862	0.14910	-0.20651	0.61387	-0.23955
550	-0.08610	-0.21812	0.12350	-0.28371	0.62614	-0.33486
600	-0.07452	-0.28634	0.07719	-0.36895	0.60862	-0.44316
650	-0.06693	-0.36070	0.01263	-0.45668	0.56339	-0.55825
700	-0.06175	-0.43745	-0.06357	-0.54050	0.49782	-0.67222
750	-0.05746	-0.51260	-0.14490	-0.61489	0.41965	-0.77760
800	-0.05127	-0.58204	-0.22379	-0.67568	0.33848	-0.86808
850	-0.04147	-0.64187	-0.29505	-0.72004	0.26133	-0.93873
900	-0.02674	-0.68889	-0.35499	-0.74666	0.19357	-0.98658
950	-0.00782	-0.72122	-0.40315	-0.75560	0.13645	-1.01065
1000	0.01346	-0.73867	-0.44102	-0.74841	0.08876	-1.01224
1050	0.03465	-0.74237	-0.47120	-0.72754	0.04773	-0.99420
1100	0.05374	-0.73477	-0.49630	-0.69644	0.01066	-0.96089
1150	0.06901	-0.71825	-0.51863	-0.65812	-0.02491	-0.91629
1200	0.07990	-0.69563	-0.53947	-0.61587	-0.06013	-0.86483
1250	0.08603	-0.66896	-0.55979	-0.57193	-0.09584	-0.80963
1300	0.08783	-0.64018	-0.57976	-0.52834	-0.13187	-0.75357
1350	0.08543	-0.61047	-0.59966	-0.48621	-0.16837	-0.69832
1400	0.07969	-0.58091	-0.61917	-0.44651	-0.20465	-0.64536
1450	0.07079	-0.55204	-0.63835	-0.40956	-0.24068	-0.59529
1500	0.05943	-0.52433	-0.65692	-0.37562	-0.27594	-0.54865
1550	0.04591	-0.49793	-0.67482	-0.34464	-0.31028	-0.50550
1600	0.03065	-0.47297	-0.69191	-0.31652	-0.34346	-0.46583
1650	0.01383	-0.44954	-0.70823	-0.29113	-0.37544	-0.42959
1700	-0.00429	-0.42749	-0.72370	-0.26818	-0.40615	-0.39647
1750	-0.02353	-0.40686	-0.73836	-0.24752	-0.43556	-0.36632
1800	-0.04383	-0.38752	-0.75227	-0.22889	-0.46374	-0.33886
1850	-0.06505	-0.36944	-0.76545	-0.21213	-0.49073	-0.31391
1900	-0.08715	-0.35246	-0.77797	-0.19700	-0.51659	-0.29117
1950	-0.11016	-0.33653	-0.78995	-0.18335	-0.54148	-0.27047
2000	-0.13399	-0.32157	-0.80141	-0.17102	-0.56543	-0.25161
2050	-0.15874	-0.30745	-0.81249	-0.15985	-0.58860	-0.23438
2100	-0.18430	-0.29413	-0.82319	-0.14973	-0.61102	-0.21863
2150	-0.21082	-0.28151	-0.83367	-0.14052	-0.63287	-0.20420
2200	-0.23830	-0.26958	-0.84399	-0.13218	-0.65423	-0.19101
2250	-0.26679	-0.25822	-0.85423	-0.12457	-0.67521	-0.17888
2300	-0.29633	-0.24738	-0.86446	-0.11763	-0.69589	-0.16773
2350	-0.32699	-0.23706	-0.87479	-0.11132	-0.71639	-0.15748
2400	-0.35882	-0.22714	-0.88528	-0.10553	-0.73681	-0.14802
2450	-0.39189	-0.21766	-0.89604	-0.10028	-0.75723	-0.13932
2500	-0.42623	-0.20850	-0.90712	-0.09546	-0.77773	-0.13126

Tabelle D.13: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.11768	-0.01641	0.08010	-0.02108	0.29265	-0.02266
350	-0.11507	-0.03195	0.09964	-0.04143	0.35675	-0.04518
400	-0.10583	-0.05493	0.11931	-0.07204	0.42120	-0.07976
450	-0.09304	-0.08782	0.12981	-0.11626	0.47357	-0.13079
500	-0.07874	-0.12860	0.12664	-0.17096	0.50737	-0.19548
550	-0.06611	-0.17683	0.10596	-0.23434	0.51730	-0.27239
600	-0.05577	-0.23227	0.06876	-0.30458	0.50379	-0.35991
650	-0.04843	-0.29292	0.01696	-0.37737	0.46854	-0.45329
700	-0.04287	-0.35575	-0.04419	-0.44762	0.41736	-0.54637
750	-0.03789	-0.41752	-0.10954	-0.51085	0.35631	-0.63324
800	-0.03127	-0.47485	-0.17308	-0.56354	0.29292	-0.70874
850	-0.02172	-0.52451	-0.23072	-0.60311	0.23259	-0.76873
900	-0.00830	-0.56382	-0.27958	-0.62819	0.17944	-0.81053
950	0.00825	-0.59122	-0.31944	-0.63859	0.13425	-0.83313
1000	0.02637	-0.60657	-0.35159	-0.63541	0.09588	-0.83741
1050	0.04405	-0.61079	-0.37819	-0.62060	0.06209	-0.82559
1100	0.05969	-0.60590	-0.40125	-0.59698	0.03074	-0.80114
1150	0.07197	-0.59382	-0.42258	-0.56701	-0.00008	-0.76727
1200	0.08049	-0.57680	-0.44307	-0.53342	-0.03113	-0.72752
1250	0.08497	-0.55649	-0.46340	-0.49809	-0.06301	-0.68443
1300	0.08583	-0.53442	-0.48360	-0.46272	-0.09547	-0.64032
1350	0.08318	-0.51153	-0.50382	-0.42826	-0.12856	-0.59654
1400	0.07771	-0.48868	-0.52371	-0.39554	-0.16162	-0.55432
1450	0.06959	-0.46628	-0.54332	-0.36487	-0.19461	-0.51417
1500	0.05937	-0.44473	-0.56236	-0.33652	-0.22705	-0.47656
1550	0.04729	-0.42414	-0.58077	-0.31046	-0.25880	-0.44156
1600	0.03370	-0.40461	-0.59842	-0.28666	-0.28962	-0.40921
1650	0.01873	-0.38624	-0.61534	-0.26504	-0.31949	-0.37949
1700	0.00258	-0.36890	-0.63148	-0.24537	-0.34830	-0.35216
1750	-0.01460	-0.35264	-0.64685	-0.22756	-0.37606	-0.32715
1800	-0.03278	-0.33734	-0.66151	-0.21142	-0.40280	-0.30425
1850	-0.05184	-0.32301	-0.67549	-0.19681	-0.42854	-0.28333
1900	-0.07176	-0.30950	-0.68884	-0.18355	-0.45334	-0.26415
1950	-0.09258	-0.29680	-0.70168	-0.17152	-0.47733	-0.24660
2000	-0.11423	-0.28485	-0.71403	-0.16062	-0.50054	-0.23053
2050	-0.13679	-0.27352	-0.72601	-0.15068	-0.52311	-0.21576
2100	-0.16020	-0.26281	-0.73765	-0.14164	-0.54505	-0.20221
2150	-0.18456	-0.25262	-0.74906	-0.13339	-0.56653	-0.18972
2200	-0.20992	-0.24297	-0.76033	-0.12587	-0.58762	-0.17826
2250	-0.23631	-0.23374	-0.77151	-0.11900	-0.60842	-0.16767
2300	-0.26377	-0.22491	-0.78269	-0.11270	-0.62901	-0.15787
2350	-0.29240	-0.21648	-0.79396	-0.10696	-0.64948	-0.14885
2400	-0.32223	-0.20834	-0.80539	-0.10168	-0.66993	-0.14047
2450	-0.35334	-0.20054	-0.81707	-0.09687	-0.69045	-0.13274
2500	-0.38577	-0.19297	-0.82907	-0.09244	-0.71111	-0.12555

Tabelle D.14: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.10178	-0.01446	0.07342	-0.01936	0.26262	-0.02056
350	-0.09834	-0.02786	0.09127	-0.03745	0.31818	-0.04040
400	-0.08954	-0.04756	0.10848	-0.06434	0.37311	-0.07050
450	-0.07811	-0.07566	0.11703	-0.10287	0.41687	-0.11454
500	-0.06552	-0.11048	0.11366	-0.15029	0.44462	-0.17006
550	-0.05429	-0.15169	0.09539	-0.20516	0.45226	-0.23592
600	-0.04491	-0.19914	0.06317	-0.26602	0.44032	-0.31083
650	-0.03800	-0.25116	0.01864	-0.32930	0.41028	-0.39091
700	-0.03250	-0.30520	-0.03377	-0.39072	0.36702	-0.47102
750	-0.02743	-0.35853	-0.08974	-0.44649	0.31563	-0.54622
800	-0.02088	-0.40820	-0.14415	-0.49350	0.26239	-0.61210
850	-0.01180	-0.45143	-0.19358	-0.52943	0.21180	-0.66505
900	0.00056	-0.48586	-0.23566	-0.55293	0.16719	-0.70261
950	0.01549	-0.51014	-0.27029	-0.56368	0.12908	-0.72379
1000	0.03159	-0.52413	-0.29868	-0.56255	0.09641	-0.72925
1050	0.04712	-0.52863	-0.32268	-0.55115	0.06718	-0.72080
1100	0.06073	-0.52535	-0.34402	-0.53190	0.03959	-0.70140
1150	0.07129	-0.51594	-0.36420	-0.50695	0.01205	-0.67376
1200	0.07851	-0.50230	-0.38392	-0.47865	-0.01604	-0.64092
1250	0.08217	-0.48583	-0.40370	-0.44864	-0.04512	-0.60502
1300	0.08264	-0.46782	-0.42348	-0.41840	-0.07492	-0.56806
1350	0.08001	-0.44906	-0.44338	-0.38878	-0.10543	-0.53120
1400	0.07489	-0.43026	-0.46303	-0.36052	-0.13606	-0.49550
1450	0.06742	-0.41180	-0.48246	-0.33391	-0.16673	-0.46141
1500	0.05808	-0.39398	-0.50139	-0.30920	-0.19701	-0.42935
1550	0.04706	-0.37693	-0.51975	-0.28638	-0.22675	-0.39940
1600	0.03466	-0.36072	-0.53744	-0.26545	-0.25573	-0.37160
1650	0.02099	-0.34545	-0.55445	-0.24635	-0.28393	-0.34597
1700	0.00622	-0.33100	-0.57074	-0.22891	-0.31124	-0.32231
1750	-0.00953	-0.31741	-0.58632	-0.21304	-0.33765	-0.30057
1800	-0.02624	-0.30461	-0.60125	-0.19860	-0.36320	-0.28059
1850	-0.04381	-0.29260	-0.61555	-0.18549	-0.38789	-0.26226
1900	-0.06222	-0.28125	-0.62927	-0.17354	-0.41178	-0.24540
1950	-0.08152	-0.27056	-0.64251	-0.16266	-0.43498	-0.22992
2000	-0.10164	-0.26047	-0.65530	-0.15276	-0.45751	-0.21569
2050	-0.12268	-0.25090	-0.66775	-0.14372	-0.47949	-0.20257
2100	-0.14457	-0.24182	-0.67987	-0.13546	-0.50094	-0.19048
2150	-0.16743	-0.23317	-0.69179	-0.12790	-0.52201	-0.17930
2200	-0.19128	-0.22495	-0.70357	-0.12099	-0.54277	-0.16901
2250	-0.21617	-0.21709	-0.71528	-0.11466	-0.56330	-0.15947
2300	-0.24216	-0.20953	-0.72700	-0.10884	-0.58368	-0.15062
2350	-0.26931	-0.20231	-0.73881	-0.10352	-0.60400	-0.14244
2400	-0.29769	-0.19531	-0.75078	-0.09862	-0.62435	-0.13482
2450	-0.32737	-0.18860	-0.76300	-0.09414	-0.64480	-0.12777
2500	-0.35840	-0.18206	-0.77553	-0.09002	-0.66545	-0.12119

Tabelle D.15: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.09224	-0.01341	0.07095	-0.01874	0.24706	-0.01970
350	-0.08784	-0.02546	0.08786	-0.03551	0.29689	-0.03797
400	-0.07904	-0.04302	0.10322	-0.06008	0.34504	-0.06529
450	-0.06840	-0.06797	0.10995	-0.09492	0.38238	-0.10487
500	-0.05692	-0.09884	0.10593	-0.13758	0.40542	-0.15447
550	-0.04667	-0.13537	0.08880	-0.18680	0.41089	-0.21313
600	-0.03802	-0.17748	0.05946	-0.24136	0.39937	-0.27979
650	-0.03151	-0.22373	0.01935	-0.29818	0.37217	-0.35108
700	-0.02621	-0.27188	-0.02761	-0.35353	0.33361	-0.42256
750	-0.02124	-0.31952	-0.07762	-0.40405	0.28809	-0.48991
800	-0.01490	-0.36404	-0.12618	-0.44698	0.24114	-0.54924
850	-0.00627	-0.40293	-0.17030	-0.48017	0.19663	-0.59730
900	0.00527	-0.43409	-0.20792	-0.50232	0.15742	-0.63181
950	0.01904	-0.45626	-0.23906	-0.51303	0.12386	-0.65179
1000	0.03377	-0.46932	-0.26484	-0.51302	0.09490	-0.65777
1050	0.04788	-0.47397	-0.28696	-0.50370	0.06873	-0.65132
1100	0.06019	-0.47172	-0.30694	-0.48722	0.04373	-0.63503
1150	0.06968	-0.46403	-0.32611	-0.46549	0.01851	-0.61132
1200	0.07611	-0.45258	-0.34506	-0.44064	-0.00743	-0.58286
1250	0.07931	-0.43860	-0.36419	-0.41413	-0.03446	-0.55156
1300	0.07959	-0.42321	-0.38344	-0.38730	-0.06228	-0.51921
1350	0.07706	-0.40713	-0.40287	-0.36092	-0.09088	-0.48683
1400	0.07226	-0.39097	-0.42213	-0.33566	-0.11967	-0.45536
1450	0.06530	-0.37506	-0.44121	-0.31180	-0.14860	-0.42523
1500	0.05662	-0.35968	-0.45986	-0.28956	-0.17724	-0.39682
1550	0.04638	-0.34494	-0.47801	-0.26897	-0.20545	-0.37020
1600	0.03484	-0.33089	-0.49554	-0.25002	-0.23302	-0.34543
1650	0.02211	-0.31764	-0.51245	-0.23268	-0.25993	-0.32252
1700	0.00832	-0.30509	-0.52871	-0.21679	-0.28608	-0.30132
1750	-0.00641	-0.29326	-0.54431	-0.20230	-0.31144	-0.28178
1800	-0.02206	-0.28211	-0.55930	-0.18907	-0.33604	-0.26377
1850	-0.03857	-0.27162	-0.57371	-0.17702	-0.35990	-0.24722
1900	-0.05590	-0.26170	-0.58758	-0.16601	-0.38304	-0.23195
1950	-0.07410	-0.25234	-0.60101	-0.15597	-0.40558	-0.21788
2000	-0.09313	-0.24349	-0.61401	-0.14680	-0.42753	-0.20492
2050	-0.11307	-0.23508	-0.62670	-0.13841	-0.44901	-0.19294
2100	-0.13386	-0.22710	-0.63908	-0.13072	-0.47003	-0.18188
2150	-0.15563	-0.21946	-0.65129	-0.12367	-0.49073	-0.17162
2200	-0.17838	-0.21222	-0.66336	-0.11722	-0.51117	-0.16215
2250	-0.20218	-0.20526	-0.67538	-0.11128	-0.53143	-0.15336
2300	-0.22708	-0.19857	-0.68742	-0.10582	-0.55159	-0.14518
2350	-0.25314	-0.19216	-0.69955	-0.10082	-0.57173	-0.13761
2400	-0.28045	-0.18594	-0.71185	-0.09621	-0.59193	-0.13053
2450	-0.30906	-0.17996	-0.72440	-0.09198	-0.61228	-0.12398
2500	-0.33904	-0.17412	-0.73726	-0.08809	-0.63284	-0.11784

Tabelle D.16: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 1.1$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08622	-0.01290	0.07156	-0.01889	0.24049	-0.01967
350	-0.08082	-0.02404	0.08782	-0.03486	0.28605	-0.03698
400	-0.07182	-0.04014	0.10149	-0.05787	0.32885	-0.06246
450	-0.06167	-0.06290	0.10634	-0.09017	0.36092	-0.09900
500	-0.05096	-0.09100	0.10136	-0.12948	0.38000	-0.14455
550	-0.04143	-0.12426	0.08463	-0.17473	0.38341	-0.19825
600	-0.03334	-0.16261	0.05697	-0.22485	0.37171	-0.25918
650	-0.02719	-0.20480	0.01968	-0.27706	0.34609	-0.32435
700	-0.02210	-0.24879	-0.02369	-0.32803	0.31043	-0.38977
750	-0.01728	-0.29243	-0.06973	-0.37472	0.26868	-0.45158
800	-0.01117	-0.33332	-0.11433	-0.41462	0.22583	-0.50623
850	-0.00294	-0.36916	-0.15482	-0.44571	0.18535	-0.55075
900	0.00796	-0.39800	-0.18937	-0.46674	0.14974	-0.58298
950	0.02089	-0.41868	-0.21806	-0.47727	0.11926	-0.60199
1000	0.03465	-0.43107	-0.24196	-0.47791	0.09285	-0.60818
1050	0.04778	-0.43580	-0.26267	-0.46994	0.06882	-0.60298
1100	0.05919	-0.43425	-0.28159	-0.45531	0.04568	-0.58873
1150	0.06796	-0.42773	-0.29993	-0.43578	0.02215	-0.56762
1200	0.07389	-0.41778	-0.31819	-0.41329	-0.00220	-0.54210
1250	0.07679	-0.40549	-0.33674	-0.38919	-0.02769	-0.51392
1300	0.07699	-0.39191	-0.35547	-0.36473	-0.05402	-0.48469
1350	0.07457	-0.37766	-0.37443	-0.34061	-0.08116	-0.45536
1400	0.07003	-0.36330	-0.39328	-0.31746	-0.10857	-0.42680
1450	0.06347	-0.34914	-0.41200	-0.29553	-0.13617	-0.39940
1500	0.05528	-0.33544	-0.43034	-0.27506	-0.16355	-0.37350
1550	0.04562	-0.32228	-0.44823	-0.25605	-0.19059	-0.34919
1600	0.03472	-0.30972	-0.46555	-0.23852	-0.21708	-0.32651
1650	0.02268	-0.29786	-0.48231	-0.22245	-0.24299	-0.30551
1700	0.00962	-0.28661	-0.49845	-0.20768	-0.26823	-0.28603
1750	-0.00436	-0.27601	-0.51399	-0.19419	-0.29276	-0.26805
1800	-0.01924	-0.26599	-0.52897	-0.18185	-0.31662	-0.25144
1850	-0.03496	-0.25656	-0.54339	-0.17058	-0.33980	-0.23614
1900	-0.05149	-0.24762	-0.55731	-0.16027	-0.36235	-0.22199
1950	-0.06889	-0.23918	-0.57081	-0.15084	-0.38436	-0.20894
2000	-0.08711	-0.23120	-0.58392	-0.14222	-0.40584	-0.19690
2050	-0.10624	-0.22360	-0.59673	-0.13430	-0.42691	-0.18574
2100	-0.12621	-0.21638	-0.60926	-0.12705	-0.44756	-0.17542
2150	-0.14716	-0.20947	-0.62162	-0.12037	-0.46794	-0.16583
2200	-0.16909	-0.20290	-0.63388	-0.11427	-0.48810	-0.15696
2250	-0.19207	-0.19658	-0.64608	-0.10864	-0.50811	-0.14871
2300	-0.21615	-0.19049	-0.65831	-0.10345	-0.52806	-0.14103
2350	-0.24139	-0.18466	-0.67065	-0.09869	-0.54802	-0.13390
2400	-0.26788	-0.17899	-0.68315	-0.09430	-0.56808	-0.12723
2450	-0.29568	-0.17353	-0.69591	-0.09027	-0.58830	-0.12104
2500	-0.32484	-0.16819	-0.70899	-0.08655	-0.60877	-0.11524

Tabelle D.17: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 1.2$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.
	Inversion		Nijme	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08223	-0.01273	0.07490	-0.01965	0.24012	-0.02026
350	-0.07585	-0.02324	0.09038	-0.03510	0.28211	-0.03696
400	-0.06658	-0.03828	0.10220	-0.05699	0.32023	-0.06116
450	-0.05677	-0.05944	0.10498	-0.08741	0.34762	-0.09552
500	-0.04663	-0.08552	0.09880	-0.12427	0.36319	-0.13814
550	-0.03764	-0.11639	0.08200	-0.16659	0.36462	-0.18825
600	-0.03000	-0.15201	0.05530	-0.21342	0.35242	-0.24504
650	-0.02414	-0.19122	0.01985	-0.26221	0.32763	-0.30576
700	-0.01926	-0.23218	-0.02108	-0.30990	0.29380	-0.36676
750	-0.01460	-0.27288	-0.06435	-0.35371	0.25455	-0.42449
800	-0.00871	-0.31111	-0.10618	-0.39129	0.21449	-0.47568
850	-0.00081	-0.34472	-0.14409	-0.42074	0.17677	-0.51753
900	0.00960	-0.37187	-0.17643	-0.44084	0.14368	-0.54802
950	0.02189	-0.39146	-0.20333	-0.45115	0.11535	-0.56622
1000	0.03493	-0.40335	-0.22583	-0.45219	0.09077	-0.57248
1050	0.04735	-0.40813	-0.24547	-0.44512	0.06830	-0.56808
1100	0.05812	-0.40707	-0.26355	-0.43178	0.04654	-0.55522
1150	0.06639	-0.40138	-0.28120	-0.41380	0.02428	-0.53592
1200	0.07197	-0.39249	-0.29888	-0.39299	0.00113	-0.51246
1250	0.07469	-0.38142	-0.31691	-0.37062	-0.02318	-0.48647
1300	0.07485	-0.36911	-0.33519	-0.34787	-0.04837	-0.45944
1350	0.07253	-0.35617	-0.35373	-0.32539	-0.07439	-0.43228
1400	0.06819	-0.34310	-0.37220	-0.30377	-0.10072	-0.40579
1450	0.06194	-0.33019	-0.39058	-0.28326	-0.12729	-0.38033
1500	0.05413	-0.31768	-0.40863	-0.26407	-0.15370	-0.35624
1550	0.04491	-0.30565	-0.42626	-0.24624	-0.17982	-0.33359
1600	0.03450	-0.29417	-0.44338	-0.22975	-0.20547	-0.31243
1650	0.02297	-0.28330	-0.45996	-0.21462	-0.23060	-0.29281
1700	0.01046	-0.27299	-0.47598	-0.20069	-0.25512	-0.27458
1750	-0.00295	-0.26326	-0.49142	-0.18795	-0.27899	-0.25773
1800	-0.01725	-0.25405	-0.50634	-0.17626	-0.30226	-0.24214
1850	-0.03237	-0.24538	-0.52073	-0.16559	-0.32491	-0.22776
1900	-0.04830	-0.23716	-0.53465	-0.15580	-0.34698	-0.21444
1950	-0.06509	-0.22939	-0.54817	-0.14683	-0.36856	-0.20214
2000	-0.08270	-0.22203	-0.56133	-0.13863	-0.38965	-0.19077
2050	-0.10120	-0.21502	-0.57420	-0.13108	-0.41037	-0.18023
2100	-0.12056	-0.20835	-0.58682	-0.12416	-0.43073	-0.17045
2150	-0.14087	-0.20196	-0.59928	-0.11778	-0.45083	-0.16137
2200	-0.16218	-0.19588	-0.61163	-0.11193	-0.47075	-0.15295
2250	-0.18453	-0.19003	-0.62396	-0.10654	-0.49056	-0.14511
2300	-0.20798	-0.18438	-0.63631	-0.10157	-0.51033	-0.13780
2350	-0.23259	-0.17897	-0.64877	-0.09700	-0.53013	-0.13101
2400	-0.25845	-0.17370	-0.66141	-0.09277	-0.55005	-0.12464
2450	-0.28561	-0.16863	-0.67431	-0.08890	-0.57015	-0.11873
2500	-0.31415	-0.16366	-0.68753	-0.08532	-0.59052	-0.11318

Tabelle D.18: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 1.3$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.60864	-0.00220	1.06000	-0.00315	-0.67454	-0.00215
350	-0.57970	-0.00542	1.41160	-0.00804	-0.75191	-0.00520
400	-0.50315	-0.01155	1.77744	-0.01758	-0.79737	-0.01082
450	-0.39094	-0.02163	2.13451	-0.03343	-0.82606	-0.01967
500	-0.26071	-0.03783	2.45736	-0.05897	-0.85396	-0.03318
550	-0.13276	-0.06054	2.72247	-0.09472	-0.89488	-0.05076
600	-0.02138	-0.09070	2.91843	-0.14206	-0.95391	-0.07204
650	0.06301	-0.12824	3.04124	-0.20091	-1.03109	-0.09560
700	0.11753	-0.17251	3.09815	-0.27041	-1.12034	-0.11977
750	0.14178	-0.22243	3.09855	-0.34925	-1.21530	-0.14291
800	0.14078	-0.27664	3.05804	-0.43573	-1.30812	-0.16386
850	0.12018	-0.33380	2.99087	-0.52819	-1.39346	-0.18207
900	0.08594	-0.39250	2.90979	-0.62488	-1.46811	-0.19749
950	0.04419	-0.45204	2.82635	-0.72493	-1.53044	-0.21068
1000	-0.00020	-0.51131	2.74895	-0.82667	-1.58042	-0.22207
1050	-0.04290	-0.56948	2.68459	-0.92852	-1.61861	-0.23215
1100	-0.08113	-0.62538	2.63732	-1.02821	-1.64625	-0.24111
1150	-0.11298	-0.67758	2.60939	-1.12291	-1.66461	-0.24893
1200	-0.13755	-0.72436	2.60125	-1.20929	-1.67504	-0.25537
1250	-0.15456	-0.76393	2.61200	-1.28392	-1.67868	-0.26009
1300	-0.16567	-0.79470	2.63755	-1.34423	-1.67712	-0.26268
1350	-0.17183	-0.81562	2.67508	-1.38842	-1.67135	-0.26294
1400	-0.17579	-0.82618	2.71890	-1.41617	-1.66281	-0.26070
1450	-0.17952	-0.82710	2.76508	-1.42902	-1.65259	-0.25619
1500	-0.18514	-0.81957	2.80965	-1.42933	-1.64166	-0.24975
1550	-0.19437	-0.80577	2.84960	-1.42103	-1.63087	-0.24200
1600	-0.20813	-0.78743	2.88314	-1.40709	-1.62068	-0.23343
1650	-0.22688	-0.76684	2.90944	-1.39143	-1.61146	-0.22467
1700	-0.25035	-0.74550	2.92869	-1.37653	-1.60324	-0.21615
1750	-0.27841	-0.72494	2.94092	-1.36509	-1.59611	-0.20826
1800	-0.31044	-0.70577	2.94669	-1.35824	-1.58998	-0.20116
1850	-0.34584	-0.68871	2.94677	-1.35743	-1.58476	-0.19502
1900	-0.38394	-0.67370	2.94182	-1.36267	-1.58030	-0.18979
1950	-0.42413	-0.66091	2.93257	-1.37459	-1.57650	-0.18552
2000	-0.46603	-0.64991	2.91913	-1.39268	-1.57328	-0.18205
2050	-0.50889	-0.64033	2.90242	-1.41638	-1.57049	-0.17929
2100	-0.55237	-0.63158	2.88243	-1.44478	-1.56808	-0.17705
2150	-0.59573	-0.62301	2.86002	-1.47646	-1.56587	-0.17516
2200	-0.63847	-0.61387	2.83540	-1.50965	-1.56376	-0.17338
2250	-0.67972	-0.60329	2.80957	-1.54181	-1.56157	-0.17147
2300	-0.71893	-0.59052	2.78286	-1.57036	-1.55919	-0.16918
2350	-0.75527	-0.57483	2.75636	-1.59208	-1.55643	-0.16626
2400	-0.78823	-0.55557	2.73054	-1.60365	-1.55319	-0.16245
2450	-0.81734	-0.53254	2.70642	-1.60241	-1.54938	-0.15762
2500	-0.84232	-0.50570	2.68496	-1.58594	-1.54491	-0.15165

Tabelle D.19: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.5$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.32355	-0.00120	0.50652	-0.00146	-0.35648	-0.00118
350	-0.31327	-0.00298	0.67760	-0.00373	-0.40456	-0.00293
400	-0.27563	-0.00639	0.85803	-0.00817	-0.43500	-0.00621
450	-0.21628	-0.01196	1.03710	-0.01557	-0.45537	-0.01148
500	-0.14526	-0.02087	1.20252	-0.02755	-0.47492	-0.01971
550	-0.07418	-0.03333	1.34282	-0.04444	-0.50215	-0.03077
600	-0.01132	-0.04994	1.45207	-0.06703	-0.54094	-0.04476
650	0.03728	-0.07081	1.52770	-0.09551	-0.59242	-0.06122
700	0.06977	-0.09578	1.57241	-0.12973	-0.65393	-0.07944
750	0.08565	-0.12454	1.58997	-0.16931	-0.72229	-0.09860
800	0.08739	-0.15655	1.58727	-0.21366	-0.79281	-0.11792
850	0.07787	-0.19121	1.57078	-0.26212	-0.86171	-0.13675
900	0.06025	-0.22786	1.54653	-0.31392	-0.92609	-0.15462
950	0.03791	-0.26609	1.52020	-0.36863	-0.98382	-0.17143
1000	0.01362	-0.30522	1.49609	-0.42536	-1.03384	-0.18702
1050	-0.01004	-0.34459	1.47800	-0.48318	-1.07560	-0.20137
1100	-0.03133	-0.38332	1.46827	-0.54079	-1.10928	-0.21432
1150	-0.04902	-0.42030	1.46838	-0.59648	-1.13535	-0.22565
1200	-0.06251	-0.45426	1.47879	-0.64829	-1.15454	-0.23505
1250	-0.07166	-0.48384	1.49921	-0.69417	-1.16766	-0.24214
1300	-0.07754	-0.50794	1.52758	-0.73255	-1.17599	-0.24665
1350	-0.08082	-0.52576	1.56241	-0.76227	-1.18039	-0.24842
1400	-0.08331	-0.53698	1.60064	-0.78306	-1.18217	-0.24744
1450	-0.08627	-0.54204	1.64010	-0.79567	-1.18228	-0.24405
1500	-0.09103	-0.54170	1.67860	-0.80136	-1.18161	-0.23867
1550	-0.09863	-0.53737	1.71448	-0.80226	-1.18087	-0.23197
1600	-0.10964	-0.53014	1.74673	-0.80004	-1.18048	-0.22444
1650	-0.12431	-0.52150	1.77485	-0.79689	-1.18070	-0.21674
1700	-0.14245	-0.51238	1.79893	-0.79421	-1.18159	-0.20924
1750	-0.16397	-0.50381	1.81895	-0.79358	-1.18320	-0.20234
1800	-0.18851	-0.49618	1.83522	-0.79569	-1.18545	-0.19619
1850	-0.21566	-0.48999	1.84811	-0.80144	-1.18827	-0.19094
1900	-0.24503	-0.48520	1.85796	-0.81088	-1.19154	-0.18655
1950	-0.27624	-0.48195	1.86517	-0.82446	-1.19518	-0.18305
2000	-0.30908	-0.47995	1.86972	-0.84196	-1.19915	-0.18030
2050	-0.34308	-0.47894	1.87211	-0.86309	-1.20330	-0.17819
2100	-0.37803	-0.47848	1.87225	-0.88739	-1.20762	-0.17657
2150	-0.41345	-0.47805	1.87058	-0.91400	-1.21196	-0.17522
2200	-0.44902	-0.47702	1.86714	-0.94188	-1.21625	-0.17393
2250	-0.48411	-0.47464	1.86243	-0.96940	-1.22031	-0.17243
2300	-0.51832	-0.47022	1.85654	-0.99492	-1.22406	-0.17047
2350	-0.55100	-0.46302	1.85003	-1.01630	-1.22731	-0.16778
2400	-0.58169	-0.45239	1.84312	-1.03125	-1.22998	-0.16411
2450	-0.60991	-0.43803	1.83636	-1.03788	-1.23196	-0.15931
2500	-0.63529	-0.41980	1.83036	-1.03435	-1.23317	-0.15328

Tabelle D.20: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.20062	-0.00075	0.30050	-0.00085	-0.22419	-0.00075
350	-0.19728	-0.00188	0.40425	-0.00217	-0.25794	-0.00189
400	-0.17611	-0.00406	0.51529	-0.00479	-0.28042	-0.00407
450	-0.13994	-0.00764	0.62736	-0.00917	-0.29610	-0.00762
500	-0.09508	-0.01341	0.73294	-0.01631	-0.31107	-0.01324
550	-0.04913	-0.02151	0.82491	-0.02646	-0.33119	-0.02092
600	-0.00774	-0.03238	0.89929	-0.04016	-0.35947	-0.03087
650	0.02490	-0.04617	0.95411	-0.05762	-0.39712	-0.04291
700	0.04735	-0.06288	0.99058	-0.07887	-0.44276	-0.05671
750	0.05902	-0.08240	1.01059	-0.10381	-0.49453	-0.07183
800	0.06133	-0.10450	1.01803	-0.13218	-0.54931	-0.08775
850	0.05602	-0.12887	1.01667	-0.16365	-0.60439	-0.10403
900	0.04506	-0.15513	1.01012	-0.19780	-0.65751	-0.12023
950	0.03069	-0.18303	1.00189	-0.23438	-0.70680	-0.13617
1000	0.01474	-0.21209	0.99475	-0.27283	-0.75111	-0.15157
1050	-0.00097	-0.24185	0.99120	-0.31254	-0.78964	-0.16620
1100	-0.01518	-0.27159	0.99289	-0.35260	-0.82220	-0.17981
1150	-0.02698	-0.30046	1.00091	-0.39182	-0.84887	-0.19204
1200	-0.03590	-0.32743	1.01570	-0.42884	-0.87003	-0.20251
1250	-0.04182	-0.35142	1.03716	-0.46217	-0.88619	-0.21080
1300	-0.04554	-0.37156	1.06400	-0.49068	-0.89833	-0.21663
1350	-0.04755	-0.38717	1.09524	-0.51351	-0.90716	-0.21984
1400	-0.04922	-0.39800	1.12884	-0.53041	-0.91375	-0.22043
1450	-0.05148	-0.40432	1.16335	-0.54182	-0.91890	-0.21872
1500	-0.05532	-0.40668	1.19725	-0.54856	-0.92334	-0.21509
1550	-0.06151	-0.40611	1.22941	-0.55207	-0.92769	-0.21018
1600	-0.07049	-0.40340	1.25912	-0.55346	-0.93227	-0.20445
1650	-0.08242	-0.39966	1.28602	-0.55425	-0.93732	-0.19848
1700	-0.09718	-0.39558	1.31015	-0.55540	-0.94284	-0.19262
1750	-0.11471	-0.39193	1.33149	-0.55803	-0.94890	-0.18726
1800	-0.13475	-0.38901	1.35021	-0.56265	-0.95543	-0.18251
1850	-0.15702	-0.38723	1.36657	-0.56990	-0.96236	-0.17854
1900	-0.18125	-0.38655	1.38076	-0.57988	-0.96960	-0.17532
1950	-0.20714	-0.38710	1.39305	-0.59292	-0.97706	-0.17287
2000	-0.23458	-0.38868	1.40339	-0.60893	-0.98474	-0.17108
2050	-0.26321	-0.39106	1.41210	-0.62772	-0.99251	-0.16986
2100	-0.29291	-0.39391	1.41908	-0.64898	-1.00036	-0.16903
2150	-0.32330	-0.39679	1.42460	-0.67214	-1.00816	-0.16842
2200	-0.35416	-0.39915	1.42861	-0.69642	-1.01586	-0.16782
2250	-0.38500	-0.40033	1.43143	-0.72064	-1.02329	-0.16695
2300	-0.41551	-0.39967	1.43306	-0.74355	-1.03037	-0.16556
2350	-0.44514	-0.39649	1.43384	-0.76350	-1.03695	-0.16340
2400	-0.47350	-0.39014	1.43387	-0.77870	-1.04292	-0.16020
2450	-0.50013	-0.38027	1.43351	-0.78761	-1.04818	-0.15581
2500	-0.52464	-0.36668	1.43320	-0.78871	-1.05265	-0.15013

Tabelle D.21: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Niim	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.13964	-0.00052	0.20490	-0.00057	-0.15878	-0.00054
350	-0.13917	-0.00132	0.27720	-0.00146	-0.18484	-0.00136
400	-0.12588	-0.00288	0.35567	-0.00325	-0.20286	-0.00296
450	-0.10123	-0.00546	0.43608	-0.00626	-0.21579	-0.00560
500	-0.06957	-0.00963	0.51313	-0.01120	-0.22811	-0.00982
550	-0.03645	-0.01554	0.58167	-0.01827	-0.24425	-0.01566
600	-0.00608	-0.02352	0.63867	-0.02789	-0.26668	-0.02334
650	0.01829	-0.03373	0.68248	-0.04026	-0.29655	-0.03281
700	0.03542	-0.04622	0.71368	-0.05548	-0.33305	-0.04387
750	0.04472	-0.06099	0.73336	-0.07352	-0.37495	-0.05628
800	0.04709	-0.07791	0.74409	-0.09428	-0.41997	-0.06968
850	0.04372	-0.09682	0.74842	-0.11756	-0.46602	-0.08374
900	0.03600	-0.11746	0.74884	-0.14311	-0.51127	-0.09812
950	0.02556	-0.13967	0.74788	-0.17075	-0.55412	-0.11262
1000	0.01377	-0.16311	0.74755	-0.20011	-0.59349	-0.12696
1050	0.00206	-0.18740	0.74975	-0.23071	-0.62855	-0.14089
1100	-0.00859	-0.21197	0.75575	-0.26186	-0.65896	-0.15410
1150	-0.01743	-0.23609	0.76644	-0.29266	-0.68463	-0.16622
1200	-0.02406	-0.25892	0.78224	-0.32201	-0.70575	-0.17682
1250	-0.02839	-0.27953	0.80311	-0.34876	-0.72269	-0.18549
1300	-0.03102	-0.29717	0.82813	-0.37200	-0.73621	-0.19193
1350	-0.03238	-0.31126	0.85658	-0.39102	-0.74689	-0.19595
1400	-0.03357	-0.32155	0.88691	-0.40557	-0.75565	-0.19757
1450	-0.03536	-0.32825	0.91801	-0.41597	-0.76318	-0.19704
1500	-0.03856	-0.33177	0.94870	-0.42281	-0.77011	-0.19472
1550	-0.04380	-0.33293	0.97812	-0.42720	-0.77694	-0.19118
1600	-0.05144	-0.33238	1.00568	-0.42998	-0.78399	-0.18682
1650	-0.06162	-0.33100	1.03112	-0.43231	-0.79143	-0.18220
1700	-0.07426	-0.32935	1.05443	-0.43495	-0.79927	-0.17763
1750	-0.08931	-0.32806	1.07560	-0.43879	-0.80756	-0.17346
1800	-0.10657	-0.32741	1.09474	-0.44423	-0.81624	-0.16982
1850	-0.12583	-0.32771	1.11205	-0.45180	-0.82524	-0.16685
1900	-0.14686	-0.32896	1.12765	-0.46159	-0.83450	-0.16454
1950	-0.16945	-0.33128	1.14175	-0.47390	-0.84392	-0.16292
2000	-0.19351	-0.33450	1.15427	-0.48867	-0.85351	-0.16188
2050	-0.21876	-0.33843	1.16546	-0.50577	-0.86316	-0.16134
2100	-0.24509	-0.34281	1.17520	-0.52497	-0.87286	-0.16116
2150	-0.27223	-0.34721	1.18368	-0.54583	-0.88249	-0.16114
2200	-0.29998	-0.35119	1.19083	-0.56774	-0.89201	-0.16109
2250	-0.32795	-0.35410	1.19686	-0.58971	-0.90127	-0.16075
2300	-0.35587	-0.35536	1.20172	-0.61074	-0.91019	-0.15987
2350	-0.38326	-0.35430	1.20566	-0.62943	-0.91862	-0.15817
2400	-0.40978	-0.35029	1.20869	-0.64426	-0.92646	-0.15541
2450	-0.43500	-0.34296	1.21111	-0.65390	-0.93361	-0.15144
2500	-0.45853	-0.33209	1.21325	-0.65700	-0.93995	-0.14616

Tabelle D.22: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.10577	-0.00039	0.15345	-0.00042	-0.12205	-0.00041
350	-0.10662	-0.00101	0.20871	-0.00109	-0.14358	-0.00106
400	-0.09753	-0.00221	0.26944	-0.00243	-0.15889	-0.00232
450	-0.07926	-0.00422	0.33251	-0.00471	-0.17013	-0.00443
500	-0.05504	-0.00750	0.39380	-0.00847	-0.18080	-0.00782
550	-0.02920	-0.01216	0.44923	-0.01390	-0.19452	-0.01258
600	-0.00516	-0.01850	0.49631	-0.02133	-0.21341	-0.01889
650	0.01441	-0.02666	0.53357	-0.03096	-0.23855	-0.02676
700	0.02841	-0.03674	0.56128	-0.04289	-0.26942	-0.03610
750	0.03625	-0.04875	0.58014	-0.05717	-0.30515	-0.04673
800	0.03857	-0.06265	0.59201	-0.07372	-0.34392	-0.05840
850	0.03622	-0.07832	0.59881	-0.09245	-0.38404	-0.07085
900	0.03029	-0.09559	0.60245	-0.11316	-0.42396	-0.08379
950	0.02205	-0.11437	0.60490	-0.13576	-0.46227	-0.09706
1000	0.01263	-0.13437	0.60777	-0.15993	-0.49797	-0.11039
1050	0.00318	-0.15527	0.61259	-0.18530	-0.53026	-0.12352
1100	-0.00544	-0.17660	0.62046	-0.21131	-0.55873	-0.13615
1150	-0.01259	-0.19773	0.63213	-0.23720	-0.58323	-0.14789
1200	-0.01792	-0.21791	0.64797	-0.26207	-0.60383	-0.15833
1250	-0.02133	-0.23633	0.66802	-0.28493	-0.62079	-0.16705
1300	-0.02335	-0.25231	0.69153	-0.30500	-0.63477	-0.17374
1350	-0.02433	-0.26532	0.71792	-0.32167	-0.64626	-0.17821
1400	-0.02523	-0.27514	0.74594	-0.33471	-0.65606	-0.18045
1450	-0.02670	-0.28191	0.77465	-0.34435	-0.66477	-0.18069
1500	-0.02947	-0.28597	0.80308	-0.35108	-0.67297	-0.17924
1550	-0.03406	-0.28803	0.83050	-0.35578	-0.68110	-0.17663
1600	-0.04081	-0.28863	0.85642	-0.35917	-0.68944	-0.17324
1650	-0.04984	-0.28851	0.88059	-0.36220	-0.69813	-0.16957
1700	-0.06109	-0.28818	0.90304	-0.36551	-0.70719	-0.16591
1750	-0.07451	-0.28817	0.92371	-0.36985	-0.71665	-0.16259
1800	-0.08995	-0.28873	0.94269	-0.37557	-0.72647	-0.15972
1850	-0.10723	-0.29015	0.96015	-0.38314	-0.73657	-0.15747
1900	-0.12618	-0.29241	0.97618	-0.39262	-0.74689	-0.15581
1950	-0.14659	-0.29564	0.99094	-0.40429	-0.75737	-0.15477
2000	-0.16841	-0.29970	1.00435	-0.41812	-0.76799	-0.15427
2050	-0.19139	-0.30442	1.01660	-0.43402	-0.77867	-0.15423
2100	-0.21547	-0.30956	1.02759	-0.45180	-0.78938	-0.15450
2150	-0.24039	-0.31475	1.03743	-0.47109	-0.80003	-0.15491
2200	-0.26600	-0.31956	1.04606	-0.49136	-0.81057	-0.15527
2250	-0.29196	-0.32342	1.05361	-0.51178	-0.82087	-0.15532
2300	-0.31803	-0.32574	1.06002	-0.53145	-0.83085	-0.15481
2350	-0.34379	-0.32590	1.06548	-0.54915	-0.84036	-0.15349
2400	-0.36891	-0.32329	1.06996	-0.56353	-0.84931	-0.15109
2450	-0.39300	-0.31753	1.07371	-0.57338	-0.85759	-0.14746
2500	-0.41568	-0.30837	1.07700	-0.57746	-0.86508	-0.14251

Tabelle D.23: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inver	rsion	Niim	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.08520	-0.00031	0.12270	-0.00033	-0.09939	-0.00034
350	-0.08672	-0.00081	0.16770	-0.00087	-0.11804	-0.00087
400	-0.08010	-0.00180	0.21773	-0.00194	-0.13162	-0.00192
450	-0.06568	-0.00346	0.27027	-0.00379	-0.14174	-0.00369
500	-0.04601	-0.00618	0.32193	-0.00686	-0.15133	-0.00657
550	-0.02468	-0.01007	0.36927	-0.01130	-0.16348	-0.01062
600	-0.00459	-0.01539	0.41013	-0.01742	-0.18007	-0.01605
650	0.01196	-0.02228	0.44315	-0.02540	-0.20213	-0.02289
700	0.02397	-0.03085	0.46845	-0.03535	-0.22931	-0.03108
750	0.03085	-0.04112	0.48649	-0.04734	-0.26095	-0.04050
800	0.03308	-0.05309	0.49873	-0.06132	-0.29552	-0.05096
850	0.03133	-0.06669	0.50672	-0.07725	-0.33159	-0.06225
900	0.02648	-0.08180	0.51201	-0.09497	-0.36780	-0.07413
950	0.01960	-0.09834	0.51625	-0.11442	-0.40288	-0.08644
1000	0.01164	-0.11607	0.52079	-0.13534	-0.43591	-0.09895
1050	0.00361	-0.13474	0.52696	-0.15743	-0.46609	-0.11139
1100	-0.00374	-0.15392	0.53571	-0.18018	-0.49301	-0.12348
1150	-0.00983	-0.17304	0.54771	-0.20296	-0.51647	-0.13483
1200	-0.01435	-0.19142	0.56334	-0.22495	-0.53648	-0.14503
1250	-0.01720	-0.20833	0.58261	-0.24531	-0.55325	-0.15368
1300	-0.01884	-0.22315	0.60494	-0.26332	-0.56734	-0.16046
1350	-0.01958	-0.23538	0.62982	-0.27843	-0.57917	-0.16517
1400	-0.02029	-0.24480	0.65614	-0.29045	-0.58949	-0.16780
1450	-0.02155	-0.25154	0.68313	-0.29952	-0.59883	-0.16854
1500	-0.02401	-0.25588	0.70992	-0.30609	-0.60772	-0.16769
1550	-0.02816	-0.25844	0.73586	-0.31090	-0.61657	-0.16573
1600	-0.03429	-0.25970	0.76053	-0.31457	-0.62562	-0.16301
1650	-0.04252	-0.26033	0.78370	-0.31796	-0.63501	-0.16000
1700	-0.05280	-0.26077	0.80538	-0.32160	-0.64475	-0.15698
1750	-0.06510	-0.26152	0.82552	-0.32617	-0.65486	-0.15425
1800	-0.07930	-0.26279	0.84420	-0.33198	-0.66531	-0.15194
1850	-0.09521	-0.26485	0.86155	-0.33943	-0.67603	-0.15020
1900	-0.11271	-0.26770	0.87765	-0.34862	-0.68696	-0.14899
1950	-0.13161	-0.27144	0.89262	-0.35979	-0.69803	-0.14837
2000	-0.15186	-0.27596	0.90639	-0.37293	-0.70925	-0.14826
2050	-0.17326	-0.28110	0.91912	-0.38795	-0.72051	-0.14856
2100	-0.19575	-0.28666	0.93069	-0.40471	-0.73181	-0.14915
2150	-0.21911	-0.29228	0.94121	-0.42287	-0.74306	-0.14988
2200	-0.24319	-0.29756	0.95058	-0.44198	-0.75420	-0.15053
2250	-0.26770	-0.30196	0.95891	-0.46127	-0.76512	-0.15086
2300	-0.29242	-0.30493	0.96612	-0.47995	-0.77575	-0.15064
2350	-0.31695	-0.30584	0.97236	-0.49689	-0.78592	-0.14959
2400	-0.34101	-0.30412	0.97760	-0.51086	-0.79557	-0.14747
2450	-0.36421	-0.29938	0.98202	-0.52072	-0.80455	-0.14411
2500	-0.38619	-0.29137	0.98589	-0.52533	-0.81278	-0.13943

Tabelle D.24: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Niim	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.07180	-0.00026	0.10283	-0.00027	-0.08438	-0.00029
350	-0.07370	-0.00069	0.14119	-0.00072	-0.10111	-0.00074
400	-0.06864	-0.00153	0.18424	-0.00163	-0.11351	-0.00166
450	-0.05670	-0.00296	0.22991	-0.00320	-0.12287	-0.00320
500	-0.04002	-0.00531	0.27523	-0.00581	-0.13171	-0.00573
550	-0.02167	-0.00869	0.31722	-0.00962	-0.14278	-0.00931
600	-0.00421	-0.01334	0.35389	-0.01490	-0.15780	-0.01413
650	0.01032	-0.01938	0.38400	-0.02181	-0.17774	-0.02026
700	0.02097	-0.02693	0.40756	-0.03047	-0.20237	-0.02764
750	0.02720	-0.03604	0.42489	-0.04095	-0.23116	-0.03621
800	0.02934	-0.04671	0.43721	-0.05325	-0.26279	-0.04581
850	0.02797	-0.05891	0.44581	-0.06732	-0.29598	-0.05625
900	0.02382	-0.07253	0.45202	-0.08306	-0.32953	-0.06734
950	0.01783	-0.08752	0.45727	-0.10041	-0.36225	-0.07892
1000	0.01085	-0.10369	0.46276	-0.11915	-0.39328	-0.09077
1050	0.00376	-0.12080	0.46968	-0.13902	-0.42186	-0.10267
1100	-0.00274	-0.13847	0.47886	-0.15957	-0.44757	-0.11429
1150	-0.00813	-0.15617	0.49095	-0.18023	-0.47017	-0.12530
1200	-0.01210	-0.17328	0.50629	-0.20028	-0.48965	-0.13527
1250	-0.01458	-0.18911	0.52492	-0.21891	-0.50617	-0.14381
1300	-0.01596	-0.20308	0.54632	-0.23550	-0.52022	-0.15060
1350	-0.01655	-0.21473	0.57005	-0.24953	-0.53220	-0.15546
1400	-0.01712	-0.22384	0.59513	-0.26080	-0.54279	-0.15834
1450	-0.01823	-0.23050	0.62083	-0.26946	-0.55248	-0.15942
1500	-0.02048	-0.23499	0.64639	-0.27586	-0.56177	-0.15899
1550	-0.02430	-0.23785	0.67122	-0.28070	-0.57103	-0.15748
1600	-0.02998	-0.23952	0.69492	-0.28452	-0.58050	-0.15524
1650	-0.03765	-0.24062	0.71730	-0.28810	-0.59030	-0.15270
1700	-0.04724	-0.24155	0.73834	-0.29192	-0.60044	-0.15014
1750	-0.05874	-0.24278	0.75801	-0.29659	-0.61094	-0.14785
1800	-0.07203	-0.24449	0.77637	-0.30240	-0.62176	-0.14594
1850	-0.08697	-0.24695	0.79352	-0.30974	-0.63284	-0.14456
1900	-0.10342	-0.25015	0.80955	-0.31868	-0.64413	-0.14368
1950	-0.12122	-0.25420	0.82454	-0.32946	-0.65556	-0.14337
2000	-0.14034	-0.25898	0.83845	-0.34206	-0.66713	-0.14352
2050	-0.16059	-0.26438	0.85138	-0.35643	-0.67874	-0.14408
2100	-0.18192	-0.27017	0.86324	-0.37243	-0.69040	-0.14491
2150	-0.20412	-0.27604	0.87409	-0.38976	-0.70201	-0.14586
2200	-0.22707	-0.28160	0.88385	-0.40801	-0.1354	-0.14672
2250	-0.25049	-0.28033	0.89260	-0.42647	-0.72485	-0.14/2/ 0.14790
2300	-0.2(419)	-0.289/1	0.90025	-0.44440	-0.13588	-0.14720
2350	-0.29780	-0.29112	0.90091	-0.40075	-0.74049	-0.14042
2400	-0.32104	-0.29000	0.91255 0.01724	-0.4(43)	-0.75058	-0.14450
2400	-0.34334	-0.28391	0.91/34	-0.48418	-0.70004	-0.14130
2000	-0.30494	-0.21010	0.92149	-0.40900	-0.11410	-0.19099

Tabelle D.25: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 1.1$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijm	egen-II	AV	18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-0.06259	-0.00023	0.08923	-0.00023	-0.07388	-0.00025
350	-0.06472	-0.00060	0.12302	-0.00063	-0.08928	-0.00066
400	-0.06070	-0.00135	0.16127	-0.00142	-0.10085	-0.00147
450	-0.05046	-0.00262	0.20218	-0.00279	-0.10965	-0.00285
500	-0.03584	-0.00471	0.24310	-0.00510	-0.11796	-0.00513
550	-0.01956	-0.00774	0.28133	-0.00848	-0.12826	-0.00838
600	-0.00393	-0.01191	0.31505	-0.01317	-0.14214	-0.01278
650	0.00917	-0.01736	0.34307	-0.01934	-0.16056	-0.01839
700	0.01886	-0.02419	0.36533	-0.02711	-0.18336	-0.02519
750	0.02460	-0.03248	0.38207	-0.03655	-0.21008	-0.03314
800	0.02667	-0.04223	0.39435	-0.04767	-0.23956	-0.04210
850	0.02555	-0.05342	0.40327	-0.06045	-0.27064	-0.05191
900	0.02189	-0.06598	0.41002	-0.07480	-0.30220	-0.06239
950	0.01652	-0.07987	0.41589	-0.09067	-0.33316	-0.07341
1000	0.01022	-0.09491	0.42196	-0.10787	-0.36268	-0.08475
1050	0.00380	-0.11089	0.42931	-0.12617	-0.39003	-0.09620
1100	-0.00211	-0.12745	0.43872	-0.14517	-0.41479	-0.10745
1150	-0.00700	-0.14411	0.45079	-0.16432	-0.43669	-0.11816
1200	-0.01060	-0.16028	0.46584	-0.18296	-0.45572	-0.12793
1250	-0.01281	-0.17531	0.48395	-0.20036	-0.47198	-0.13635
1300	-0.01401	-0.18865	0.50462	-0.21593	-0.48595	-0.14314
1350	-0.01449	-0.19985	0.52746	-0.22916	-0.49798	-0.14807
1400	-0.01497	-0.20870	0.55158	-0.23989	-0.50871	-0.15112
1450	-0.01597	-0.21529	0.57630	-0.24822	-0.51860	-0.15244
1500	-0.01805	-0.21985	0.60092	-0.25448	-0.52814	-0.15231
1550	-0.02163	-0.22290	0.62489	-0.25932	-0.53765	-0.15113
1600	-0.02699	-0.22484	0.64784	-0.26322	-0.54738	-0.14924
1650	-0.03423	-0.22626	0.66958	-0.26690	-0.55743	-0.14705
1700	-0.04331	-0.22752	0.69010	-0.27081	-0.56781	-0.14483
1750	-0.05421	-0.22906	0.70937	-0.27553	-0.57855	-0.14286
1800	-0.06683	-0.23106	0.72742	-0.28132	-0.58961	-0.14125
1850	-0.08104	-0.23378	0.74437	-0.28854	-0.60091	-0.14014
1900	-0.09671	-0.23720	0.76028	-0.29728	-0.61242	-0.13951
1950	-0.11370	-0.24144	0.77523	-0.30774	-0.62407	-0.13942
2000	-0.13197	-0.24639	0.78915	-0.31994	-0.63585	-0.13978
2050	-0.15135	-0.25194	0.80216	-0.33381	-0.64769	-0.14052
2100	-0.17180	-0.25787	0.81415	-0.34923	-0.65958	-0.14153
2150	-0.19312	-0.26389	0.82518	-0.36594	-0.67143	-0.14264
2200	-0.21522	-0.26963	0.83515	-0.38353	-0.68320	-0.14367
2250	-0.23781	-0.27457	0.84412	-0.40135	-0.69477	-0.14437
2300	-0.26072	-0.27822	0.85201	-0.41870	-0.70608	-0.14452
2350	-0.28361	-0.27998	0.85891	-0.43459	-0.71697	-0.14384
2400	-0.30620	-0.27928	0.86477	-0.44792	-0.72737	-0.14209
2450	-0.32814	-0.27576	0.86974	-0.45764	-0.73716	-0.13911
2500	-0.34908	-0.26913	0.87404	-0.46272	-0.74621	-0.13480

Tabelle D.26: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 1.2$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Invo	sion	Niim	agan II		/18
$T_{Lab}(MeV)$	V_c	W _c	V_c	W _c	V_c	W _c
300	-0.05595	-0.00020	0.07948	-0.00021	-0.06622	-0.00022
350	-0.05824	-0.00054	0.10999	-0.00056	-0.08065	-0.00059
400	-0.05496	-0.00121	0.14478	-0.00127	-0.09161	-0.00133
450	-0.04594	-0.00236	0.18225	-0.00251	-0.10001	-0.00260
500	-0.03280	-0.00428	0.21999	-0.00460	-0.10792	-0.00470
550	-0.01802	-0.00704	0.25547	-0.00766	-0.11764	-0.00770
600	-0.00373	-0.01087	0.28701	-0.01193	-0.13068	-0.01178
650	0.00833	-0.01589	0.31347	-0.01757	-0.14798	-0.01700
700	0.01731	-0.02220	0.33474	-0.02470	-0.16940	-0.02338
750	0.02269	-0.02988	0.35100	-0.03338	-0.19457	-0.03086
800	0.02470	-0.03895	0.36318	-0.04365	-0.22243	-0.03933
850	0.02375	-0.04940	0.37228	-0.05548	-0.25192	-0.04865
900	0.02044	-0.06117	0.37937	-0.06881	-0.28197	-0.05866
950	0.01553	-0.07423	0.38564	-0.08360	-0.31157	-0.06924
1000	0.00972	-0.08843	0.39207	-0.09968	-0.33992	-0.08018
1050	0.00378	-0.10356	0.39968	-0.11682	-0.36631	-0.09127
1100	-0.00169	-0.11929	0.40920	-0.13466	-0.39030	-0.10222
1150	-0.00622	-0.13517	0.42121	-0.15269	-0.41165	-0.11268
1200	-0.00954	-0.15063	0.43602	-0.17030	-0.43029	-0.12228
1250	-0.01156	-0.16504	0.45368	-0.18678	-0.44633	-0.13060
1300	-0.01263	-0.17789	0.47377	-0.20157	-0.46020	-0.13735
1350	-0.01303	-0.18874	0.49592	-0.21421	-0.47223	-0.14234
1400	-0.01344	-0.19739	0.51929	-0.22452	-0.48303	-0.14550
1450	-0.01435	-0.20390	0.54325	-0.23260	-0.49305	-0.14700
1500	-0.01631	-0.20850	0.56713	-0.23875	-0.50273	-0.14709
1550	-0.01971	-0.21167	0.59042	-0.24356	-0.51241	-0.14616
1600	-0.02482	-0.21380	0.61278	-0.24750	-0.52230	-0.14453
1650	-0.03173	-0.21543	0.63401	-0.25124	-0.53252	-0.14261
1700	-0.04041	-0.21692	0.65410	-0.25522	-0.54306	-0.14065
1750	-0.05086	-0.21868	0.67302	-0.25995	-0.55395	-0.13892
1800	-0.06297	-0.22088	0.69081	-0.26571	-0.56515	-0.13753
1850	-0.07662	-0.22378	0.70757	-0.27283	-0.57660	-0.13663
1900	-0.09169	-0.22735	0.72334	-0.28139	-0.58825	-0.13619
1950	-0.10805	-0.23172	0.73821	-0.29161	-0.60004	-0.13626
2000	-0.12567	-0.23678	0.75210	-0.30348	-0.61197	-0.13678
2050	-0.14438	-0.24241	0.76513	-0.31695	-0.62395	-0.13766
2100	-0.16415	-0.24843	0.77717	-0.33193	-0.63599	-0.13880
2150	-0.18479	-0.25455	0.78828	-0.34815	-0.64800	-0.14004
2200	-0.20622	-0.26040	0.79836	-0.36523	-0.65993	-0.14119
2250	-0.22816	-0.26549	0.80746	-0.38256	-0.67168	-0.14202
2300	-0.25046	-0.26932	0.81548	-0.39945	-0.68317	-0.14228
2350	-0.27277	-0.27133	0.82251	-0.41497	-0.69427	-0.14173
2400	-0.29485	-0.27094	0.82849	-0.42805	-0.70489	-0.14011
2450	-0.31634	-0.26779	0.83356	-0.43769	-0.71490	-0.13726
2500	-0.33690	-0.26160	0.83793	-0.44287	-0.72420	-0.13308

Tabelle D.27: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 1.3$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Niime	gen-II	AV18		
$T_{Lab}(MeV)$	V_c	W _c	V_c	W _c	V_c	W_c	
300	-3.55807	-0.03823	5.81802	-3.29398	-4.23135	-0.23260	
350	-4.61180	-0.08766	7.50480	-6.07580	-4.42151	-0.26821	
400	-4.65296	-0.10599	7.84182	-10.33561	-4.53393	-0.33188	
450	-5.86657	-0.18489	6.15109	-16.50687	-4.64621	-0.42836	
500	-9.01516	-0.49496	3.29140	-23.66891	-4.79211	-0.47658	
550	-5.99890	-0.24802	0.42518	-30.71624	-4.90564	-0.44584	
600	-9.28869	-0.70586	-2.15217	-37.13127	-4.96052	-0.39386	
650	-9.41028	-0.71087	-4.80342	-42.51230	-4.98261	-0.35570	
700	-9.49478	-0.72093	-8.03797	-46.44787	-4.99453	-0.33606	
750	-9.56988	-0.75768	-11.80056	-48.62161	-5.00503	-0.33060	
800	-9.64379	-0.81232	-15.18481	-49.29051	-5.01237	-0.33421	
850	-9.71014	-0.87210	-17.54459	-49.28941	-5.01344	-0.34353	
900	-9.76582	-0.93478	-18.95129	-49.19503	-5.00878	-0.35689	
950	-9.81159	-1.00158	-19.68550	-49.24848	-4.99970	-0.37313	
1000	-9.85003	-1.07885	-19.94741	-49.45370	-4.98746	-0.39210	
1050	-9.88180	-1.17192	-19.87399	-49.83764	-4.97248	-0.41332	
1100	-9.91117	-1.29517	-19.55849	-50.33549	-4.95556	-0.43686	
1150	-9.93427	-1.47529	-19.06111	-50.96839	-4.93656	-0.46232	
1200	-9.87826	-1.79226	-18.42705	-51.68028	-4.91600	-0.48987	
1250	-9.49883	-1.98038	-17.69840	-52.48647	-4.89374	-0.51900	
1300	-9.15995	-1.98227	-16.89994	-53.35792	-4.87002	-0.54978	
1350	-8.88525	-1.90272	-16.06662	-54.29577	-4.84495	-0.58170	
1400	-8.66384	-1.77348	-15.21018	-55.29292	-4.81850	-0.61468	
1450	-8.49478	-1.61219	-14.36638	-56.33545	-4.79117	-0.64831	
1500	-8.38792	-1.43220	-13.54041	-57.43542	-4.76286	-0.68224	
1550	-8.34227	-1.26925	-12.76581	-58.57129	-4.73431	-0.71618	
1600	-7.12353	-1.12720	-12.04781	-59.76116	-4.70558	-0.74967	
1650	-6.99062	-1.12229	-11.41497	-60.98362	-4.67758	-0.78251	
1700	-6.87252	-1.09914	-10.87570	-62.25032	-4.65058	-0.81427	
1750	-6.76531	-1.06760	-10.45478	-63.54430	-4.62567	-0.84483	
1800	-6.66439	-1.03097	-10.16890	-64.86948	-4.60338	-0.87372	
1850	-6.55872	-0.98754	-10.02842	-66.20534	-4.58463	-0.90106	
1900	-6.42387	-0.91083	-10.05785	-67.54853	-4.57025	-0.92625	
1950	-6.14050	-1.04740	-10.25997	-68.87296	-4.56100	-0.94939	
2000	-6.04608	-1.20185	-10.65851	-70.15827	-4.55795	-0.96984	
2050	-5.95546	-1.35149	-11.24267	-71.37991	-4.56142	-0.98728	
2100	-5.85744	-1.52233	-12.02686	-72.49979	-4.57246	-1.00084	
2150	-5.74482	-1.72162	-12.99102	-73.49173	-4.59098	-1.00955	
2200	-5.61051	-1.95446	-14.12202	-74.31372	-4.61720	-1.01222	
2250	-5.44644	-2.21881	-15.38839	-74.93056	-4.65038	-1.00746	
2300	-5.24345	-2.50722	-16.75155	-75.31771	-4.68908	-0.99401	
2350	-4.99085	-2.80773	-18.16070	-75.44972	-4.73129	-0.97127	
2400	-4.68007	-3.10444	-19.55894	-75.31001	-4.77463	-0.93939	
2450	-4.30904	-3.37856	-20.89220	-74.90644	-4.81660	-0.89944	
2500	-3.87969	-3.60929	-22.10036	-74.24637	-4.85561	-0.85331	

Tabelle D.28: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 0.5$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Niime	gen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W _c	V_c	W_c
300	-2.60606	-0.01908	1.60603	-1.09101	-3.62730	-0.20574
350	-2.61788	-0.02102	2.12980	-2.06637	-3.77978	-0.25675
400	-3.33310	-0.08685	2.15736	-3.57469	-3.87384	-0.33752
450	-4.29486	-0.18964	1.40857	-5.75908	-3.97163	-0.46061
500	-4.34624	-0.26100	0.14999	-8.35943	-4.11979	-0.55108
550	-5.54561	-0.34960	-1.18654	-11.03296	-4.26352	-0.55037
600	-5.63710	-0.38015	-2.43515	-13.52604	-4.34949	-0.50358
650	-5.70664	-0.37528	-3.70036	-15.63123	-4.39154	-0.46315
700	-8.41344	-0.71127	-5.15316	-17.17138	-4.41791	-0.44345
750	-8.39866	-0.83460	-6.74970	-18.03184	-4.44210	-0.44094
800	-6.97546	-0.66181	-8.15096	-18.34376	-4.46259	-0.44882
850	-7.05351	-0.77584	-9.14592	-18.44262	-4.47495	-0.46255
900	-7.17309	-0.91392	-9.78288	-18.54023	-4.47958	-0.48045
950	-7.53246	-0.93714	-10.17371	-18.71687	-4.47813	-0.50137
1000	-7.02947	-1.65985	-10.39107	-18.96787	-4.47231	-0.52545
1050	-6.75192	-1.80808	-10.48526	-19.30010	-4.46276	-0.55223
1100	-6.48233	-1.87523	-10.48750	-19.68690	-4.45062	-0.58202
1150	-6.22886	-1.88643	-10.42007	-20.13561	-4.43570	-0.61435
1200	-5.98643	-1.86334	-10.29724	-20.62403	-4.41878	-0.64963
1250	-5.76191	-1.81624	-10.13518	-21.15753	-4.39963	-0.68727
1300	-5.55273	-1.75415	-9.94193	-21.72464	-4.37852	-0.72752
1350	-5.36104	-1.68306	-9.73118	-22.32509	-4.35556	-0.76983
1400	-5.18415	-1.60542	-9.50715	-22.95621	-4.33057	-0.81418
1450	-5.01850	-1.52770	-9.28391	-23.61135	-4.30417	-0.86011
1500	-4.86097	-1.45223	-9.06426	-24.29554	-4.27597	-0.90720
1550	-4.70629	-1.38979	-8.86153	-24.99889	-4.24700	-0.95508
1600	-4.55889	-1.34425	-8.67919	-25.72873	-4.21717	-1.00304
1650	-4.42491	-1.31694	-8.52896	-26.47507	-4.18791	-1.05086
1700	-4.30867	-1.30120	-8.41559	-27.24246	-4.15966	-1.09778
1750	-4.20677	-1.29615	-8.34980	-28.02244	-4.13443	-1.14385
1800	-4.11658	-1.30099	-8.33974	-28.81591	-4.11352	-1.18834
1850	-4.03351	-1.31687	-8.38998	-29.61317	-4.09903	-1.23186
1900	-3.95633	-1.34575	-8.51192	-30.41126	-4.09338	-1.27350
1950	-3.88163	-1.38900	-8.70654	-31.19821	-4.09915	-1.31354
2000	-3.80817	-1.44928	-8.98416	-31.96316	-4.12045	-1.35009
2050	-3.73332	-1.52637	-9.33971	-32.69506	-4.16039	-1.37991
2100	-3.65392	-1.62236	-9.77834	-33.37532	-4.22368	-1.39477
2150	-3.56628	-1.73584	-10.29043	-33.99227	-4.30721	-1.38087
2200	-3.46494	-1.86621	-10.86841	-34.52665	-4.39564	-1.32795
2250	-3.34418	-2.01056	-11.49676	-34.96332	-4.46576	-1.24652
2300	-3.19868	-2.16427	-12.15718	-35.29192	-4.51175	-1.15667
2350	-3.02305	-2.32054	-12.82586	-35.50268	-4.54065	-1.06883
2400	-2.81341	-2.47042	-13.47687	-35.59023	-4.55925	-0.98581
2450	-2.56958	-2.60352	-14.08676	-35.55997	-4.57151	-0.90808
2500	-2.29358	-2.70818	-14.62964	-35.41773	-4.58015	-0.83532

Tabelle D.29: Potentialstärken zum 1D_2 Kanal mit $r_0 = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Niima	an II	AV18	
$T_{I,i}(MeV)$	V.	W.	V.	W.	V.	10 W.
300	9 47478	0.02024	0.72444	0.51815	2 42862	0.12280
300 350	-2.41410 2 40682	-0.03034	0.72444 0.06247	-0.31813	-3.43602	-0.13280
350 400	-2.49082	-0.03394	0.90247	-0.99030 1 74952	-3.50000	-0.16065
400	-2.50016 2 16514	-0.04355	0.94622 0.52810	-1.74200	-3.54907	-0.20391
430 500	-3.10314 2 20027	-0.13367	0.32819 0.17792	-2.81902	-3.09898	-0.36443
500	-3.20037	-0.16410	-0.17723	-4.09507	-3.09410	-0.49445
000	-4.13135	-0.29871	-0.95787	-3.42(19)	-3.81043	-0.54270
650	-4.19755	-0.34029	-1.72098	-0.71755	-3.90282	-0.54028
000	-0.52207	-0.36433	-2.31772	-7.84301	-3.90100	-0.52710
700	-5.35110	-0.44250	-3.40543	-8.08855	-4.00281	-0.52706
750	-5.36660	-0.52665	-4.35452	-9.1/4//	-4.04022	-0.54326
800	-5.36334	-0.65036	-5.18362	-9.38019	-4.07373	-0.56892
850	-5.32289	-0.81144	-5.78874	-9.48882	-4.09835	-0.59756
900	-5.22395	-0.98704	-6.20153	-9.61032	-4.11362	-0.62765
950	-5.08172	-1.14640	-6.48330	-9.78291	-4.12112	-0.65877
1000	-4.91946	-1.27862	-6.67213	-10.00135	-4.12257	-0.69215
1050	-4.75561	-1.37742	-6.79469	-10.26789	-4.11870	-0.72773
1100	-4.59183	-1.44473	-6.86687	-10.56761	-4.11083	-0.76666
1150	-4.43568	-1.48129	-6.90060	-10.90436	-4.09867	-0.80853
1200	-4.28488	-1.49499	-6.90296	-11.26621	-4.08301	-0.85443
1250	-4.14393	-1.49017	-6.88277	-11.65618	-4.06339	-0.90369
1300	-4.01102	-1.47226	-6.84401	-12.06828	-4.03971	-0.95694
1350	-3.88745	-1.44582	-6.79422	-12.50235	-4.01173	-1.01345
1400	-3.77205	-1.41348	-6.73558	-12.95716	-3.97844	-1.07300
1450	-3.66382	-1.38001	-6.67584	-13.42883	-3.94017	-1.13470
1500	-3.56275	-1.34638	-6.61675	-13.92029	-3.89577	-1.19690
1550	-3.46710	-1.31684	-6.56565	-14.42568	-3.84672	-1.25862
1600	-3.37783	-1.29173	-6.52497	-14.94904	-3.79346	-1.31773
1650	-3.29382	-1.27386	-6.50125	-15.48432	-3.73886	-1.37448
1700	-3.21615	-1.26300	-6.49765	-16.03394	-3.68466	-1.42822
1750	-3.14399	-1.26058	-6.52039	-16.59243	-3.63363	-1.48105
1800	-3.07771	-1.26659	-6.57456	-17.15997	-3.58760	-1.53394
1850	-3.01553	-1.28138	-6.66283	-17.73045	-3.54742	-1.59000
1900	-2.95729	-1.30577	-6.79214	-18.30142	-3.51485	-1.65143
1950	-2.90068	-1.33995	-6.96296	-18.86548	-3.48938	-1.72237
2000	-2.84443	-1.38529	-7.18131	-19.41531	-3.47157	-1.80789
2050	-2.78629	-1.44126	-7.44403	-19.94412	-3.45795	-1.91389
2100	-2.72351	-1.50917	-7.75362	-20.44000	-3.44291	-2.04974
2150	-2.65339	-1.58800	-8.10403	-20.89582	-3.41433	-2.21999
2200	-2.57208	-1.67727	-8.48993	-21.29968	-3.35936	-2.42273
2250	-2.47578	-1.77490	-8.90142	-21.64262	-3.26989	-2.64810
2300	-2.36104	-1.87765	-9.32699	-21.91848	-3.14225	-2.88674
2350	-2.22441	-1.98075	-9.75190	-22.12197	-2.97229	-3.13138
2400	-2.06348	-2.07794	-10.16038	-22.25058	-2.75547	-3.37424
2450	-1.87837	-2.16209	-10.53868	-22.20000 -22.30821	-248918	-360553
2500	-1.67067	-2.22505	-10.87176	-22.29936	-2.17103	-3.81271

Tabelle D.30: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inver	rsion	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-2.38800	-0.03013	0.41684	-0.30371	-3.38617	-0.07433
350	-2.40611	-0.03830	0.55625	-0.59163	-3.38943	-0.12091
400	-2.41392	-0.05291	0.54181	-1.04583	-3.38885	-0.18877
450	-3.04882	-0.11559	0.27477	-1.70350	-3.39690	-0.29027
500	-3.06244	-0.16954	-0.17874	-2.48083	-3.44076	-0.39694
550	-3.96759	-0.22516	-0.69477	-3.29269	-3.51188	-0.46897
600	-3.98960	-0.28101	-1.22078	-4.08523	-3.58061	-0.50409
650	-4.01600	-0.32808	-1.77649	-4.78791	-3.63195	-0.52534
700	-4.03588	-0.37871	-2.40110	-5.31994	-3.67008	-0.55403
750	-4.04658	-0.44950	-3.06674	-5.62824	-3.70363	-0.59784
800	-4.04732	-0.54730	-3.65603	-5.76207	-3.73372	-0.65113
850	-4.03316	-0.66791	-4.10416	-5.84301	-3.75697	-0.70516
900	-3.99430	-0.80119	-4.43173	-5.94283	-3.77225	-0.75727
950	-3.92960	-0.92926	-4.67701	-6.08568	-3.78032	-0.80719
1000	-3.84420	-1.03850	-4.86216	-6.26711	-3.78157	-0.85678
1050	-3.74889	-1.12262	-5.00306	-6.48766	-3.77614	-0.90625
1100	-3.64692	-1.18431	-5.10853	-6.73609	-3.76428	-0.95745
1150	-3.54472	-1.22482	-5.18588	-7.01409	-3.74542	-1.00954
1200	-3.44188	-1.24910	-5.23925	-7.31255	-3.71932	-1.06378
1250	-3.34238	-1.26002	-5.27459	-7.63288	-3.68567	-1.11850
1300	-3.24583	-1.26115	-5.29457	-7.97045	-3.64409	-1.17344
1350	-3.15407	-1.25563	-5.30457	-8.32473	-3.59544	-1.22687
1400	-3.06716	-1.24522	-5.30624	-8.69471	-3.54011	-1.27748
1450	-2.98523	-1.23317	-5.30513	-9.07751	-3.48039	-1.32489
1500	-2.90890	-1.21990	-5.30270	-9.47506	-3.41762	-1.36788
1550	-2.83724	-1.20817	-5.30416	-9.88322	-3.35412	-1.40781
1600	-2.77088	-1.19803	-5.31147	-10.30470	-3.29132	-1.44432
1650	-2.70863	-1.19151	-5.32925	-10.73519	-3.23058	-1.47957
1700	-2.65076	-1.18871	-5.35993	-11.17630	-3.17283	-1.51393
1750	-2.59626	-1.19108	-5.40793	-11.62399	-3.11864	-1.54967
1800	-2.54521	-1.19908	-5.47696	-12.07828	-3.06866	-1.58776
1850	-2.49629	-1.21324	-5.56893	-12.53466	-3.02233	-1.63018
1900	-2.44940	-1.23444	-5.68883	-12.99116	-2.98023	-1.67853
1950	-2.40292	-1.26286	-5.83695	-13.44241	-2.94104	-1.73486
2000	-2.35582	-1.29961	-6.01748	-13.88286	-2.90437	-1.80186
2050	-2.30644	-1.34427	-6.22813	-14.30760	-2.86801	-1.88135
2100	-2.25258	-1.39776	-6.47040	-14.70786	-2.82948	-1.97704
2150	-2.19220	-1.45931	-6.73987	-15.07851	-2.78469	-2.09060
2200	-2.12232	-1.52844	-7.03238	-15.41096	-2.72796	-2.22419
2250	-2.04003	-1.60352	-7.34064	-15.69892	-2.65264	-2.37738
2300	-1.94275	-1.68205	-7.65622	-15.93808	-2.55225	-2.54730
2350	-1.82788	-1.76028	-7.96847	-16.12496	-2.42034	-2.72873
2400	-1.69363	-1.83337	-8.26614	-16.25815	-2.25143	-2.91444
2450	-1.54011	-1.89579	-8.53967	-16.34077	-2.04251	-3.09551
2500	-1.36855	-1.94112	-8.77867	-16.37649	-1.79116	-3.26128

Tabelle D.31: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inver	sion	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-2.33923	-0.02382	0.27614	-0.20292	-3.35199	-0.04348
350	-2.34585	-0.03504	0.37095	-0.40032	-3.32536	-0.07865
400	-2.34731	-0.05273	0.36006	-0.71540	-3.29977	-0.13281
450	-2.35124	-0.08042	0.17235	-1.17475	-3.28142	-0.21572
500	-2.36740	-0.10859	-0.15076	-1.71947	-3.29022	-0.31025
550	-2.99527	-0.18400	-0.52609	-2.29016	-3.32466	-0.38691
600	-3.02076	-0.22215	-0.91774	-2.84963	-3.36495	-0.43950
650	-3.04800	-0.25078	-1.33834	-3.34773	-3.39701	-0.48145
700	-3.07238	-0.28155	-1.81244	-3.72492	-3.41924	-0.52904
750	-3.09851	-0.32430	-2.31638	-3.94105	-3.43551	-0.59026
800	-3.13241	-0.37975	-2.76533	-4.03235	-3.44730	-0.66044
850	-3.17800	-0.44435	-3.11546	-4.08796	-3.45390	-0.73033
900	-3.23884	-0.52457	-3.38346	-4.16038	-3.45491	-0.79636
950	-3.27260	-0.67458	-3.59740	-4.26754	-3.45086	-0.85793
1000	-3.22911	-0.82604	-3.77230	-4.40712	-3.44121	-0.91637
1050	-3.16605	-0.92665	-3.91889	-4.58059	-3.42597	-0.97161
1100	-3.09497	-0.99947	-4.04185	-4.78042	-3.40461	-1.02511
1150	-3.02187	-1.05087	-4.14545	-5.00846	-3.37724	-1.07586
1200	-2.94685	-1.08664	-4.23109	-5.25782	-3.34345	-1.12482
1250	-2.87310	-1.10955	-4.30227	-5.52927	-3.30406	-1.17087
1300	-2.80050	-1.12272	-4.35996	-5.81863	-3.25922	-1.21416
1350	-2.73053	-1.12879	-4.40777	-6.12476	-3.21031	-1.25428
1400	-2.66335	-1.12942	-4.44654	-6.44614	-3.15794	-1.29095
1450	-2.59910	-1.12738	-4.48045	-6.77977	-3.10358	-1.32494
1500	-2.53841	-1.12332	-4.51068	-7.12664	-3.04818	-1.35584
1550	-2.48068	-1.11963	-4.54134	-7.48296	-2.99279	-1.38518
1600	-2.42663	-1.11656	-4.57419	-7.85051	-2.93834	-1.41281
1650	-2.37542	-1.11584	-4.61299	-8.22556	-2.88533	-1.44048
1700	-2.32743	-1.11768	-4.65984	-8.60920	-2.83442	-1.46843
1750	-2.28188	-1.12326	-4.71839	-8.99795	-2.78572	-1.49833
1800	-2.23883	-1.13305	-4.79173	-9.39173	-2.73974	-1.53096
1850	-2.19718	-1.14749	-4.88148	-9.78680	-2.69586	-1.56764
1900	-2.15677	-1.16740	-4.99169	-10.18146	-2.65448	-1.60967
1950	-2.11620	-1.19294	-5.12267	-10.57135	-2.61445	-1.65838
2000	-2.07458	-1.22506	-5.27775	-10.95194	-2.57538	-1.71575
2050	-2.03050	-1.26347	-5.45518	-11.31928	-2.53566	-1.78283
2100	-1.98213	-1.30893	-5.65607	-11.66631	-2.49343	-1.86219
2150	-1.92780	-1.36083	-5.87691	-11.98897	-2.44603	-1.95486
2200	-1.86505	-1.41877	-6.11432	-12.28045	-2.38956	-2.06249
2250	-1.79151	-1.48141	-6.36251	-12.53591	-2.31930	-2.18532
2300	-1.70508	-1.54668	-6.61476	-12.75200	-2.23025	-2.32206
2350	-1.60364	-1.61150	-6.86270	-12.92620	-2.11679	-2.46958
2400	-1.48566	-1.67183	-7.09757	-13.05768	-1.97373	-2.62274
2450	-1.35122	-1.72307	-7.31203	-13.14913	-1.79775	-2.77457
2500	-1.20127	-1.75981	-7.49823	-13.20375	-1.58604	-2.91629

Tabelle D.32: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inver	rsion	Nijme	egen-II	AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	\tilde{W}_c	V_c	W_c
300	-2.30988	-0.01778	0.20056	-0.14802	-3.31785	-0.02809
350	-2.30639	-0.02952	0.27152	-0.29563	-3.27901	-0.05440
400	-2.30106	-0.04793	0.26367	-0.53410	-3.24144	-0.09713
450	-2.29852	-0.07702	0.12152	-0.88463	-3.20892	-0.16434
500	-2.30791	-0.10985	-0.12682	-1.30272	-3.19652	-0.24542
550	-2.32826	-0.13370	-0.42044	-1.74310	-3.20581	-0.31832
600	-2.94272	-0.18786	-0.73246	-2.17716	-3.22319	-0.37610
650	-2.95225	-0.22397	-1.07174	-2.56533	-3.23661	-0.42681
700	-2.95804	-0.26454	-1.45509	-2.85976	-3.24217	-0.48249
750	-2.95810	-0.31922	-1.86150	-3.02805	-3.24103	-0.54984
800	-2.95272	-0.39154	-2.22417	-3.09898	-3.23505	-0.62478
850	-2.94222	-0.47787	-2.51050	-3.14274	-3.22573	-0.69877
900	-2.92413	-0.57269	-2.73484	-3.20012	-3.21348	-0.76816
950	-2.89656	-0.66801	-2.91974	-3.28488	-3.19880	-0.83232
1000	-2.85795	-0.75614	-3.07699	-3.39547	-3.18081	-0.89211
1050	-2.81148	-0.83130	-3.21527	-3.53355	-3.15948	-0.94750
1100	-2.75828	-0.89318	-3.33799	-3.69400	-3.13397	-0.99963
1150	-2.70211	-0.94135	-3.44855	-3.87928	-3.10457	-1.04787
1200	-2.64309	-0.97808	-3.54739	-4.08492	-3.07067	-1.09310
1250	-2.58392	-1.00467	-3.63684	-4.31246	-3.03310	-1.13481
1300	-2.52473	-1.02311	-3.71666	-4.55914	-2.99179	-1.17336
1350	-2.46693	-1.03531	-3.78896	-4.82430	-2.94775	-1.20884
1400	-2.41085	-1.04246	-3.85346	-5.10662	-2.90137	-1.24121
1450	-2.35676	-1.04681	-3.91283	-5.40315	-2.85352	-1.27137
1500	-2.30535	-1.04886	-3.96747	-5.71419	-2.80493	-1.29909
1550	-2.25620	-1.05060	-4.02038	-6.03582	-2.75616	-1.32573
1600	-2.20995	-1.05228	-4.07286	-6.36893	-2.70800	-1.35119
1650	-2.16591	-1.05539	-4.12794	-6.70974	-2.66065	-1.37693
1700	-2.12438	-1.06019	-4.18745	-7.05872	-2.61471	-1.40316
1750	-2.08465	-1.06776	-4.25454	-7.41247	-2.57016	-1.43127
1800	-2.04674	-1.07858	-4.33193	-7.77065	-2.52744	-1.46192
1850	-2.00969	-1.09311	-4.42113	-8.12981	-2.48598	-1.49617
1900	-1.97331	-1.11211	-4.52571	-8.48833	-2.44611	-1.53514
1950	-1.93641	-1.13579	-4.64604	-8.84237	-2.40686	-1.57985
2000	-1.89820	-1.16500	-4.78504	-9.18794	-2.36785	-1.63195
2050	-1.85749	-1.19951	-4.94133	-9.52164	-2.32777	-1.69218
2100	-1.81267	-1.24002	-5.11592	-9.83743	-2.28511	-1.76259
2150	-1.76233	-1.28600	-5.30591	-10.13183	-2.23779	-1.84393
2200	-1.70434	-1.33712	-5.50849	-10.39912	-2.18275	-1.93754
2250	-1.63667	-1.39221	-5.71881	-10.63525	-2.11629	-2.04372
2300	-1.55751	-1.44951	-5.93130	-10.83747	-2.03439	-2.16170
2350	-1.46501	-1.50635	-6.13899	-11.00382	-1.93234	-2.28933
2400	-1.35782	-1.55923	-6.33471	-11.13376	-1.80547	-2.42275
2450	-1.23595	-1.60414	-6.51247	-11.22971	-1.65055	-2.55642
2500	-1.10011	-1.63630	-6.66598	-11.29457	-1.46461	-2.68308

Tabelle D.33: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inver	rsion	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-2.28939	-0.01347	0.15537	-0.11490	-3.28521	-0.01989
350	-2.27911	-0.02447	0.21209	-0.23225	-3.24142	-0.04028
400	-2.26845	-0.04222	0.20651	-0.42404	-3.19842	-0.07477
450	-2.26041	-0.07068	0.09281	-0.70842	-3.15881	-0.13015
500	-2.26303	-0.10489	-0.10889	-1.04985	-3.13424	-0.19949
550	-2.27706	-0.13384	-0.35120	-1.41170	-3.12726	-0.26600
600	-2.29553	-0.15386	-0.61269	-1.77044	-3.12811	-0.32323
650	-2.31337	-0.16954	-0.89996	-2.09284	-3.12685	-0.37623
700	-2.88468	-0.22819	-1.22536	-2.33825	-3.11894	-0.43391
750	-2.86407	-0.27671	-1.56975	-2.47913	-3.10427	-0.50164
800	-2.82733	-0.33725	-1.87732	-2.53960	-3.08509	-0.57592
850	-2.77347	-0.40797	-2.12195	-2.57796	-3.06430	-0.64930
900	-2.71224	-0.49008	-2.31622	-2.62773	-3.04286	-0.71837
950	-2.66456	-0.58283	-2.47910	-2.69996	-3.02109	-0.78245
1000	-2.62289	-0.67114	-2.62038	-2.79333	-2.99794	-0.84204
1050	-2.58088	-0.74620	-2.74748	-2.90924	-2.97321	-0.89710
1100	-2.53551	-0.80843	-2.86332	-3.04368	-2.94584	-0.94850
1150	-2.48836	-0.85812	-2.97103	-3.19905	-2.91606	-0.99582
1200	-2.43882	-0.89741	-3.07105	-3.37217	-2.88309	-1.03982
1250	-2.38890	-0.92745	-3.16551	-3.56503	-2.84756	-1.08025
1300	-2.33862	-0.94990	-3.25405	-3.77613	-2.80927	-1.11748
1350	-2.28919	-0.96635	-3.33822	-4.00575	-2.76893	-1.15176
1400	-2.24092	-0.97785	-3.41726	-4.25352	-2.72676	-1.18313
1450	-2.19408	-0.98630	-3.49279	-4.51730	-2.68336	-1.21247
1500	-2.14930	-0.99219	-3.56444	-4.79752	-2.63931	-1.23962
1550	-2.10621	-0.99727	-3.63406	-5.09052	-2.59493	-1.26580
1600	-2.06540	-1.00185	-3.70221	-5.39666	-2.55093	-1.29097
1650	-2.02626	-1.00728	-3.77105	-5.71200	-2.50737	-1.31639
1700	-1.98905	-1.01388	-3.84192	-6.03641	-2.46479	-1.34228
1750	-1.95315	-1.02264	-3.91742	-6.36624	-2.42312	-1.36985
1800	-1.91857	-1.03407	-3.99992	-6.70079	-2.38275	-1.39971
1850	-1.88447	-1.04862	-4.09079	-7.03656	-2.34318	-1.43276
1900	-1.85070	-1.06703	-4.19327	-7.37186	-2.30469	-1.47002
1950	-1.81620	-1.08949	-4.30780	-7.70305	-2.26641	-1.51235
2000	-1.78024	-1.11681	-4.43711	-8.02643	-2.22798	-1.56119
2050	-1.74180	-1.14880	-4.58008	-8.33889	-2.18832	-1.61713
2100	-1.69944	-1.18609	-4.73771	-8.63498	-2.14607	-1.68193
2150	-1.65190	-1.22822	-4.90759	-8.91163	-2.09953	-1.75618
2200	-1.59729	-1.27489	-5.08730	-9.16374	-2.04611	-1.84103
2250	-1.53381	-1.32509	-5.27273	-9.38780	-1.98273	-1.93676
2300	-1.45982	-1.37725	-5.45906	-9.58139	-1.90600	-2.04287
2350	-1.37366	-1.42900	-5.64030	-9.74290	-1.81184	-2.15771
2400	-1.27407	-1.47721	-5.81034	-9.87194	-1.69610	-2.27820
2450	-1.16101	-1.51827	-5.96412	-9.97075	-1.55571	-2.39981
2500	-1.03502	-1.54785	-6.09634	-10.04201	-1.38772	-2.51636

Tabelle D.34: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 1.1$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
300	-2.27349	-0.01059	0.12619	-0.09340	-3.25581	-0.01513
350	-2.25900	-0.02052	0.17372	-0.19094	-3.21003	-0.03161
400	-2.24458	-0.03709	0.16983	-0.35214	-3.16463	-0.06034
450	-2.23242	-0.06409	0.07509	-0.59321	-3.12160	-0.10716
500	-2.22949	-0.09792	-0.09556	-0.88454	-3.09015	-0.16717
550	-2.23737	-0.12920	-0.30355	-1.19519	-3.07282	-0.22716
600	-2.25069	-0.15413	-0.53099	-1.50490	-3.06217	-0.28157
650	-2.26471	-0.17616	-0.78307	-1.78459	-3.05005	-0.33382
700	-2.27943	-0.20129	-1.06931	-1.99836	-3.03203	-0.39065
750	-2.81272	-0.23139	-1.37196	-2.12190	-3.00742	-0.45639
800	-2.76581	-0.27175	-1.64244	-2.17623	-2.97880	-0.52810
850	-2.69421	-0.30678	-1.85870	-2.21177	-2.94988	-0.59941
900	-2.41974	-0.35685	-2.03202	-2.25722	-2.92194	-0.66716
950	-2.45492	-0.48937	-2.17887	-2.32190	-2.89519	-0.73054
1000	-2.43837	-0.60437	-2.30770	-2.40459	-2.86845	-0.78974
1050	-2.40925	-0.68460	-2.42502	-2.50647	-2.84138	-0.84462
1100	-2.37375	-0.74825	-2.53337	-2.62409	-2.81279	-0.89583
1150	-2.33513	-0.79892	-2.63573	-2.75959	-2.78281	-0.94303
1200	-2.29351	-0.83948	-2.73258	-2.91040	-2.75051	-0.98682
1250	-2.25089	-0.87127	-2.82606	-3.07849	-2.71640	-1.02710
1300	-2.20744	-0.89584	-2.91602	-3.26300	-2.68016	-1.06420
1350	-2.16428	-0.91466	-3.00396	-3.46470	-2.64230	-1.09842
1400	-2.12177	-0.92866	-3.08922	-3.68400	-2.60297	-1.12985
1450	-2.08019	-0.93952	-3.17300	-3.91969	-2.56255	-1.15928
1500	-2.04014	-0.94774	-3.25468	-4.17284	-2.52155	-1.18666
1550	-2.00133	-0.95490	-3.33529	-4.44050	-2.48014	-1.21305
1600	-1.96429	-0.96133	-3.41479	-4.72315	-2.43897	-1.23848
1650	-1.92851	-0.96827	-3.49446	-5.01696	-2.39802	-1.26407
1700	-1.89425	-0.97606	-3.57499	-5.32145	-2.35779	-1.29006
1750	-1.86094	-0.98564	-3.65833	-5.63272	-2.31819	-1.31753
1800	-1.82862	-0.99751	-3.74640	-5.94963	-2.27956	-1.34706
1850	-1.79654	-1.01211	-3.84028	-6.26851	-2.24145	-1.37945
1900	-1.76455	-1.03015	-3.94295	-6.58744	-2.20409	-1.41566
1950	-1.73171	-1.05181	-4.05483	-6.90279	-2.16671	-1.45643
2000	-1.69735	-1.07787	-4.17851	-7.21097	-2.12898	-1.50308
2050	-1.66056	-1.10815	-4.31310	-7.50899	-2.08991	-1.55612
2100	-1.61999	-1.14324	-4.45965	-7.79179	-2.04831	-1.61710
2150	-1.57453	-1.18273	-4.61606	-8.05649	-2.00269	-1.68653
2200	-1.52245	-1.22637	-4.78032	-8.29843	-1.95079	-1.76542
2250	-1.46208	-1.27323	-4.94879	-8.51445	-1.88991	-1.85405
2300	-1.39194	-1.32189	-5.11725	-8.70233	-1.81711	-1.95205
2350	-1.31048	-1.37020	-5.28043	-8.86066	-1.72878	-2.05807
2400	-1.21652	-1.41531	-5.43295	-8.98918	-1.62115	-2.16958
2450	-1.10994	-1.45391	-5.57042	-9.08996	-1.49134	-2.28271
2500	-0.99117	-1.48197	-5.68824	-9.16549	-1.33646	-2.39208

Tabelle D.35: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 1.2$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inve	rsion	Nijme	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c	
300	-2.26051	-0.00865	0.10624	-0.07863	-3.23017	-0.01215	
350	-2.24341	-0.01756	0.14749	-0.16248	-3.18368	-0.02598	
400	-2.22643	-0.03289	0.14486	-0.30250	-3.13730	-0.05064	
450	-2.21131	-0.05823	0.06342	-0.51356	-3.09265	-0.09127	
500	-2.20415	-0.09092	-0.08547	-0.77024	-3.05729	-0.14410	
550	-2.20685	-0.12290	-0.26933	-1.04548	-3.03335	-0.19833	
600	-2.21515	-0.15055	-0.47270	-1.32131	-3.01477	-0.24930	
650	-2.22465	-0.17659	-0.69981	-1.57147	-2.99477	-0.29953	
700	-2.23447	-0.20666	-0.95828	-1.76345	-2.96929	-0.35434	
750	-2.24666	-0.24549	-1.23142	-1.87518	-2.93744	-0.41725	
800	-2.26328	-0.29368	-1.47569	-1.92549	-2.90198	-0.48585	
850	-2.28400	-0.34991	-1.67180	-1.95929	-2.86712	-0.55473	
900	-2.30403	-0.41728	-1.83001	-2.00198	-2.83434	-0.62090	
950	-2.31295	-0.49757	-1.96504	-2.06168	-2.80382	-0.68344	
1000	-2.30452	-0.57866	-2.08437	-2.13726	-2.77433	-0.74223	
1050	-2.28426	-0.64903	-2.19383	-2.22971	-2.74541	-0.79703	
1100	-2.25618	-0.70834	-2.29569	-2.33596	-2.71580	-0.84826	
1150	-2.22391	-0.75704	-2.39274	-2.45790	-2.68552	-0.89563	
1200	-2.18813	-0.79694	-2.48549	-2.59329	-2.65360	-0.93959	
1250	-2.15082	-0.82896	-2.57605	-2.74394	-2.62038	-0.98011	
1300	-2.11231	-0.85436	-2.66447	-2.90922	-2.58549	-1.01749	
1350	-2.07368	-0.87437	-2.75230	-3.09010	-2.54931	-1.05202	
1400	-2.03530	-0.88980	-2.83913	-3.28734	-2.51191	-1.08382	
1450	-1.99749	-0.90216	-2.92611	-3.50034	-2.47355	-1.11365	
1500	-1.96081	-0.91190	-3.01268	-3.73074	-2.43467	-1.14146	
1550	-1.92504	-0.92045	-3.09955	-3.97641	-2.39536	-1.16827	
1600	-1.89068	-0.92816	-3.18635	-4.23831	-2.35620	-1.19410	
1650	-1.85728	-0.93617	-3.27373	-4.51308	-2.31714	-1.22001	
1700	-1.82511	-0.94483	-3.36179	-4.80022	-2.27863	-1.24622	
1750	-1.79364	-0.95503	-3.45180	-5.09579	-2.24056	-1.27374	
1800	-1.76294	-0.96726	-3.54516	-5.39833	-2.20326	-1.30314	
1850	-1.73231	-0.98194	-3.64257	-5.70389	-2.16628	-1.33514	
1900	-1.70161	-0.99974	-3.74666	-6.01031	-2.12986	-1.37065	
1950	-1.67000	-1.02088	-3.85778	-6.31384	-2.09326	-1.41034	
2000	-1.63684	-1.04605	-3.97839	-6.61087	-2.05618	-1.45544	
2050	-1.60128	-1.07513	-4.10774	-6.89843	-2.01773	-1.50639	
2100	-1.56210	-1.10866	-4.24693	-7.17167	-1.97681	-1.56462	
2150	-1.51824	-1.14628	-4.39415	-7.42785	-1.93208	-1.63058	
2200	-1.46811	-1.18775	-4.54765	-7.66256	-1.88151	-1.70518	
2250	-1.41015	-1.23222	-4.70424	-7.87288	-1.82269	-1.78871	
2300	-1.34297	-1.27840	-4.86010	-8.05674	-1.75298	-1.88085	
2350	-1.26513	-1.32429	-5.01052	-8.21286	-1.66911	-1.98050	
2400	-1.17546	-1.36724	-5.15070	-8.34102	-1.56763	-2.08546	
2450	-1.07384	-1.40419	-5.27669	-8.44318	-1.44584	-2.19235	
2500	-0.96056	-1.43135	-5.38443	-8.52172	-1.30091	-2.29641	

Tabelle D.36: Potentialstärken zum ${}^{1}D_{2}$ Kanal mit $r_{0} = 1.3$ fm. Das Potential ist berechnet nach Gl. (D.1) und über ein Intervall von $T_{Lab} \pm 160$ MeV gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.08979	-0.00556	-0.00399	-0.00679	0.08438	-0.00791
400	-0.10696	-0.01139	-0.03624	-0.01369	0.05919	-0.01602
450	-0.08887	-0.01889	-0.02259	-0.02282	0.08368	-0.02698
500	-0.03166	-0.02933	0.03317	-0.03602	0.15528	-0.04322
550	0.05583	-0.04365	0.11654	-0.05463	0.25846	-0.06670
600	0.16361	-0.06361	0.21385	-0.08091	0.37762	-0.10052
650	0.27584	-0.08975	0.30476	-0.11502	0.48761	-0.14484
700	0.38037	-0.12212	0.37417	-0.15577	0.56869	-0.19754
750	0.47114	-0.15869	0.41642	-0.19901	0.61331	-0.25243
800	0.54025	-0.19666	0.42537	-0.23951	0.61430	-0.30181
850	0.58716	-0.23313	0.40538	-0.27317	0.57853	-0.34037
900	0.61401	-0.26571	0.36393	-0.29772	0.51680	-0.36586
950	0.62348	-0.29398	0.30801	-0.31390	0.43869	-0.38002
1000	0.61986	-0.31716	0.24491	-0.32239	0.35364	-0.38452
1050	0.60596	-0.33508	0.17902	-0.32434	0.26704	-0.38129
1100	0.58433	-0.34846	0.11343	-0.32157	0.18251	-0.37283
1150	0.55822	-0.35809	0.05117	-0.31570	0.10338	-0.36127
1200	0.52846	-0.36453	-0.00741	-0.30768	0.02987	-0.34777
1250	0.49844	-0.36830	-0.06002	-0.29845	-0.03566	-0.33346
1300	0.46677	-0.36997	-0.10849	-0.28849	-0.09547	-0.31879
1350	0.43474	-0.37001	-0.15242	-0.27831	-0.14928	-0.30436
1400	0.40339	-0.36875	-0.19162	-0.26823	-0.19706	-0.29044
1450	0.37292	-0.36668	-0.22656	-0.25855	-0.23945	-0.27735
1500	0.34281	-0.36338	-0.25806	-0.24892	-0.27748	-0.26464
1550	0.31336	-0.35978	-0.28639	-0.23993	-0.31152	-0.25290
1600	0.28421	-0.35566	-0.31213	-0.23135	-0.34230	-0.24187
1650	0.25565	-0.35126	-0.33542	-0.22330	-0.37002	-0.23162
1700	0.22785	-0.34625	-0.35641	-0.21550	-0.39492	-0.22185
1750	0.20013	-0.34120	-0.37580	-0.20825	-0.41777	-0.21284
1800	0.17231	-0.33609	-0.39388	-0.20148	-0.43890	-0.20447
1850	0.14509	-0.33044	-0.41039	-0.19488	-0.45811	-0.19644
1900	0.11752	-0.32489	-0.42607	-0.18876	-0.47618	-0.18902
1950	0.08949	-0.31912	-0.44109	-0.18292	-0.49330	-0.18200
2000	0.06175	-0.31314	-0.45514	-0.17734	-0.50919	-0.17535
2050	0.03310	-0.30713	-0.46901	-0.17208	-0.52464	-0.16910
2100	0.00391	-0.30093	-0.48256	-0.16703	-0.53955	-0.16316
2150	-0.02614	-0.29453	-0.49607	-0.16219	-0.55419	-0.15749
2200	-0.05733	-0.28794	-0.50974	-0.15753	-0.56878	-0.15207
2250	-0.08928	-0.28098	-0.52345	-0.15296	-0.58319	-0.14680
2300	-0.12275	-0.27396	-0.53767	-0.14863	-0.59789	-0.14181
2350	-0.15763	-0.26656	-0.55242	-0.14438	-0.61290	-0.13695
2400	-0.19427	-0.25897	-0.56795	-0.14030	-0.62845	-0.13231
2450	-0.23267	-0.25129	-0.58433	-0.13646	-0.64461	-0.12792
2500	-0.27317	-0.24308	-0.60185	-0.13263	-0.66163	-0.12358

Tabelle D.37: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.09029	-0.00554	-0.00455	-0.00770	0.10337	-0.01010
400	-0.10492	-0.01107	-0.03928	-0.01468	0.06802	-0.01884
450	-0.08570	-0.01810	-0.02390	-0.02392	0.09295	-0.03080
500	-0.03020	-0.02789	0.03413	-0.03757	0.16962	-0.04933
550	0.05258	-0.04128	0.11909	-0.05715	0.27982	-0.07716
600	0.15297	-0.05991	0.21676	-0.08508	0.40591	-0.11829
650	0.25604	-0.08414	0.30579	-0.12101	0.51806	-0.17166
700	0.35054	-0.11384	0.37044	-0.16263	0.59286	-0.23148
750	0.43118	-0.14694	0.40582	-0.20466	0.62418	-0.28777
800	0.49114	-0.18069	0.40753	-0.24124	0.60900	-0.33097
850	0.53053	-0.21250	0.38203	-0.26895	0.55952	-0.35822
900	0.55187	-0.24032	0.33799	-0.28687	0.48932	-0.37087
950	0.55796	-0.26399	0.28252	-0.29684	0.40813	-0.37326
1000	0.55288	-0.28306	0.22237	-0.30026	0.32441	-0.36836
1050	0.53921	-0.29753	0.16119	-0.29854	0.24220	-0.35838
1100	0.51921	-0.30817	0.10136	-0.29343	0.16388	-0.34553
1150	0.49569	-0.31576	0.04520	-0.28634	0.09174	-0.33152
1200	0.46931	-0.32080	-0.00725	-0.27799	0.02543	-0.31699
1250	0.44295	-0.32375	-0.05418	-0.26907	-0.03331	-0.30270
1300	0.41531	-0.32507	-0.09736	-0.25988	-0.08677	-0.28875
1350	0.38746	-0.32519	-0.13650	-0.25077	-0.13484	-0.27548
1400	0.36025	-0.32433	-0.17151	-0.24193	-0.17757	-0.26299
1450	0.33383	-0.32288	-0.20281	-0.23356	-0.21558	-0.25145
1500	0.30770	-0.32049	-0.23117	-0.22531	-0.24982	-0.24037
1550	0.28212	-0.31791	-0.25678	-0.21767	-0.28061	-0.23024
1600	0.25672	-0.31496	-0.28019	-0.21042	-0.30861	-0.22077
1650	0.23176	-0.31182	-0.30151	-0.20363	-0.33398	-0.21201
1700	0.20738	-0.30816	-0.32086	-0.19706	-0.35691	-0.20367
1750	0.18296	-0.30451	-0.33885	-0.19098	-0.37811	-0.19600
1800	0.15836	-0.30083	-0.35574	-0.18529	-0.39786	-0.18888
1850	0.13416	-0.29668	-0.37129	-0.17974	-0.41594	-0.18203
1900	0.10953	-0.29261	-0.38616	-0.17461	-0.43307	-0.17572
1950	0.08435	-0.28837	-0.40050	-0.16970	-0.44942	-0.16972
2000	0.05930	-0.28392	-0.41402	-0.16499	-0.46471	-0.16403
2050	0.03330	-0.27944	-0.42744	-0.16056	-0.47968	-0.15869
2100	0.00667	-0.27478	-0.44063	-0.15630	-0.49422	-0.15360
2150	-0.02091	-0.26994	-0.45383	-0.15221	-0.50857	-0.14872
2200	-0.04968	-0.26491	-0.46726	-0.14827	-0.52294	-0.14405
2250	-0.07931	-0.25952	-0.48078	-0.14439	-0.53722	-0.13949
2300	-0.11051	-0.25407	-0.49484	-0.14072	-0.55183	-0.13518
2350	-0.14320	-0.24824	-0.50946	-0.13710	-0.56680	-0.13096
2400	-0.17771	-0.24223	-0.52487	-0.13364	-0.58235	-0.12692
2450	-0.21407	-0.23611	-0.54117	-0.13038	-0.59856	-0.12311
2500	-0.25262	-0.22947	-0.55861	-0.12712	-0.61566	-0.11932

Tabelle D.38: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.09864	-0.00593	-0.00606	-0.01012	0.16900	-0.02002
400	-0.11031	-0.01143	-0.04734	-0.01729	0.09197	-0.02722
450	-0.08795	-0.01837	-0.02774	-0.02725	0.11735	-0.04163
500	-0.03057	-0.02807	0.03790	-0.04276	0.20888	-0.06747
550	0.05235	-0.04140	0.13141	-0.06585	0.34123	-0.11050
600	0.15114	-0.05995	0.23696	-0.09945	0.48949	-0.17858
650	0.25099	-0.08394	0.32964	-0.14198	0.60748	-0.26238
700	0.34092	-0.11299	0.39144	-0.18833	0.66618	-0.33781
750	0.41609	-0.14485	0.41908	-0.23092	0.67170	-0.38883
800	0.47037	-0.17663	0.41112	-0.26317	0.63141	-0.41127
850	0.50455	-0.20584	0.37736	-0.28365	0.56312	-0.41380
900	0.52164	-0.23071	0.32801	-0.29369	0.48120	-0.40446
950	0.52470	-0.25137	0.27019	-0.29658	0.39404	-0.38971
1000	0.51780	-0.26759	0.21010	-0.29435	0.30861	-0.37247
1050	0.50344	-0.27959	0.15065	-0.28848	0.22753	-0.35401
1100	0.48370	-0.28820	0.09357	-0.28052	0.15202	-0.33561
1150	0.46114	-0.29418	0.04066	-0.27165	0.08354	-0.31816
1200	0.43627	-0.29804	-0.00835	-0.26231	0.02124	-0.30167
1250	0.41169	-0.30019	-0.05197	-0.25300	-0.03357	-0.28645
1300	0.38611	-0.30104	-0.09201	-0.24382	-0.08325	-0.27225
1350	0.36047	-0.30095	-0.12827	-0.23500	-0.12784	-0.25917
1400	0.33550	-0.30010	-0.16070	-0.22663	-0.16745	-0.24716
1450	0.31130	-0.29884	-0.18974	-0.21885	-0.20274	-0.23626
1500	0.28737	-0.29680	-0.21610	-0.21126	-0.23457	-0.22593
1550	0.26394	-0.29468	-0.23999	-0.20430	-0.26327	-0.21660
1600	0.24065	-0.29226	-0.26190	-0.19775	-0.28946	-0.20794
1650	0.21773	-0.28973	-0.28193	-0.19165	-0.31328	-0.19998
1700	0.19529	-0.28675	-0.30019	-0.18577	-0.33491	-0.19243
1750	0.17277	-0.28381	-0.31725	-0.18033	-0.35498	-0.18551
1800	0.15000	-0.28086	-0.33334	-0.17528	-0.37377	-0.17911
1850	0.12754	-0.27749	-0.34824	-0.17033	-0.39107	-0.17295
1900	0.10460	-0.27421	-0.36254	-0.16577	-0.40753	-0.16728
1950	0.08108	-0.27078	-0.37640	-0.16141	-0.42332	-0.16190
2000	0.05760	-0.26715	-0.38953	-0.15723	-0.43816	-0.15679
2050	0.03314	-0.26350	-0.40261	-0.15330	-0.45275	-0.15200
2100	0.00800	-0.25968	-0.41552	-0.14953	-0.46698	-0.14742
2150	-0.01811	-0.25568	-0.42850	-0.14590	-0.48109	-0.14304
2200	-0.04546	-0.25151	-0.44172	-0.14241	-0.49528	-0.13884
2250	-0.07371	-0.24699	-0.45508	-0.13895	-0.50940	-0.13473
2300	-0.10356	-0.24240	-0.46900	-0.13569	-0.52391	-0.13085
2350	-0.13495	-0.23746	-0.48350	-0.13247	-0.53881	-0.12704
2400	-0.16818	-0.23232	-0.49881	-0.12940	-0.55431	-0.12339
2450	-0.20330	-0.22708	-0.51502	-0.12651	-0.57050	-0.11995
2500	-0.24066	-0.22133	-0.53239	-0.12362	-0.58761	-0.11652

Tabelle D.39: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.11415	-0.00662	-0.01009	-0.01603	0.20877	-0.28310
400	-0.12107	-0.01221	-0.06261	-0.02174	0.16575	-0.07542
450	-0.09364	-0.01924	-0.03472	-0.03292	0.17507	-0.08069
500	-0.03204	-0.02919	0.04423	-0.05234	0.29481	-0.14078
550	0.05380	-0.04297	0.15325	-0.08329	0.44452	-0.26297
600	0.15414	-0.06220	0.27325	-0.13018	0.55593	-0.41373
650	0.25388	-0.08692	0.37163	-0.18715	0.62340	-0.52459
700	0.34198	-0.11644	0.42755	-0.24098	0.65764	-0.57863
750	0.41395	-0.14820	0.44344	-0.28127	0.66080	-0.58468
800	0.46419	-0.17906	0.42317	-0.30367	0.62521	-0.55196
850	0.49425	-0.20660	0.37988	-0.31213	0.55759	-0.50518
900	0.50771	-0.22932	0.32449	-0.31123	0.47334	-0.45954
950	0.50796	-0.24765	0.26353	-0.30539	0.38385	-0.42039
1000	0.49915	-0.26164	0.20250	-0.29672	0.29756	-0.38746
1050	0.48372	-0.27164	0.14358	-0.28629	0.21710	-0.35901
1100	0.46363	-0.27856	0.08794	-0.27524	0.14325	-0.33431
1150	0.44125	-0.28320	0.03693	-0.26436	0.07702	-0.31297
1200	0.41701	-0.28602	-0.00998	-0.25379	0.01725	-0.29415
1250	0.39328	-0.28742	-0.05151	-0.24380	-0.03502	-0.27762
1300	0.36879	-0.28776	-0.08953	-0.23432	-0.08225	-0.26277
1350	0.34435	-0.28736	-0.12391	-0.22546	-0.12455	-0.24946
1400	0.32064	-0.28637	-0.15465	-0.21722	-0.16211	-0.23751
1450	0.29771	-0.28509	-0.18218	-0.20968	-0.19555	-0.22683
1500	0.27506	-0.28315	-0.20721	-0.20242	-0.22576	-0.21686
1550	0.25289	-0.28120	-0.22993	-0.19583	-0.25305	-0.20793
1600	0.23085	-0.27903	-0.25083	-0.18967	-0.27799	-0.19972
1650	0.20914	-0.27679	-0.26998	-0.18396	-0.30074	-0.19221
1700	0.18786	-0.27416	-0.28749	-0.17848	-0.32145	-0.18512
1750	0.16647	-0.27159	-0.30390	-0.17344	-0.34074	-0.17865
1800	0.14480	-0.26903	-0.31943	-0.16876	-0.35885	-0.17268
1850	0.12339	-0.26608	-0.33386	-0.16420	-0.37558	-0.16695
1900	0.10148	-0.26324	-0.34775	-0.15999	-0.39155	-0.16168
1950	0.07896	-0.26026	-0.36127	-0.15598	-0.40692	-0.15670
2000	0.05644	-0.25709	-0.37411	-0.15214	-0.42143	-0.15196
2050	0.03292	-0.25391	-0.38695	-0.14853	-0.43573	-0.14752
2100	0.00869	-0.25056	-0.39965	-0.14506	-0.44972	-0.14328
2150	-0.01653	-0.24706	-0.41244	-0.14173	-0.46364	-0.13922
2200	-0.04300	-0.24338	-0.42551	-0.13853	-0.47765	-0.13533
2250	-0.07041	-0.23936	-0.43874	-0.13535	-0.49166	-0.13152
2300	-0.09943	-0.23528	-0.45255	-0.13237	-0.50607	-0.12792
2350	-0.13000	-0.23085	-0.46695	-0.12941	-0.52089	-0.12438
2400	-0.16244	-0.22624	-0.48218	-0.12659	-0.53634	-0.12100
2450	-0.19679	-0.22152	-0.49831	-0.12395	-0.55249	-0.11781
2500	-0.23340	-0.21630	-0.51561	-0.12131	-0.56958	-0.11463

Tabelle D.40: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inversion		Nijmegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.13761	-0.00749	-0.02969	-0.03397	-0.02510	-0.28920
400	-0.13637	-0.01322	-0.09083	-0.02786	0.07291	-0.23730
450	-0.10183	-0.02046	-0.04684	-0.04137	0.15443	-0.24480
500	-0.03428	-0.03091	0.05299	-0.06937	0.23852	-0.33835
550	0.05629	-0.04553	0.18540	-0.12028	0.31568	-0.46343
600	0.16010	-0.06601	0.31988	-0.20151	0.38052	-0.58658
650	0.26155	-0.09216	0.41213	-0.28451	0.43661	-0.67931
700	0.34932	-0.12289	0.45431	-0.33877	0.48463	-0.72856
750	0.41923	-0.15521	0.45919	-0.36323	0.52144	-0.73266
800	0.46622	-0.18564	0.43093	-0.36357	0.53497	-0.68670
850	0.49269	-0.21188	0.38164	-0.35215	0.51089	-0.60835
900	0.50287	-0.23278	0.32217	-0.33613	0.45044	-0.52644
950	0.50046	-0.24908	0.25886	-0.31960	0.36993	-0.45931
1000	0.48972	-0.26110	0.19696	-0.30366	0.28683	-0.40845
1050	0.47304	-0.26933	0.13824	-0.28836	0.20812	-0.36899
1100	0.45230	-0.27475	0.08344	-0.27408	0.13588	-0.33757
1150	0.42971	-0.27817	0.03365	-0.26112	0.07137	-0.31216
1200	0.40560	-0.28004	-0.01186	-0.24923	0.01341	-0.29086
1250	0.38223	-0.28073	-0.05198	-0.23845	-0.03709	-0.27288
1300	0.35827	-0.28055	-0.08860	-0.22853	-0.08260	-0.25721
1350	0.33448	-0.27978	-0.12168	-0.21948	-0.12329	-0.24349
1400	0.31149	-0.27856	-0.15124	-0.21121	-0.15938	-0.23140
1450	0.28929	-0.27715	-0.17773	-0.20374	-0.19153	-0.22074
1500	0.26740	-0.27518	-0.20182	-0.19663	-0.22058	-0.21091
1550	0.24598	-0.27326	-0.22371	-0.19023	-0.24685	-0.20218
1600	0.22470	-0.27117	-0.24388	-0.18428	-0.27090	-0.19421
1650	0.20372	-0.26904	-0.26240	-0.17882	-0.29287	-0.18697
1700	0.18316	-0.26658	-0.27937	-0.17358	-0.31291	-0.18017
1750	0.16246	-0.26419	-0.29531	-0.16878	-0.33162	-0.17397
1800	0.14148	-0.26184	-0.31043	-0.16435	-0.34922	-0.16829
1850	0.12072	-0.25912	-0.32451	-0.16003	-0.36553	-0.16283
1900	0.09945	-0.25652	-0.33811	-0.15606	-0.38114	-0.15783
1950	0.07756	-0.25379	-0.35136	-0.15228	-0.39620	-0.15310
2000	0.05563	-0.25088	-0.36400	-0.14866	-0.41044	-0.14861
2050	0.03270	-0.24797	-0.37664	-0.14526	-0.42452	-0.14441
2100	0.00905	-0.24491	-0.38918	-0.14201	-0.43832	-0.14040
2150	-0.01561	-0.24169	-0.40183	-0.13888	-0.45208	-0.13656
2200	-0.04153	-0.23830	-0.41478	-0.13587	-0.46596	-0.13289
2250	-0.06840	-0.23459	-0.42791	-0.13289	-0.47986	-0.12928
2300	-0.09689	-0.23082	-0.44162	-0.13009	-0.49418	-0.12587
2350	-0.12694	-0.22670	-0.45595	-0.12732	-0.50893	-0.12253
2400	-0.15887	-0.22241	-0.47111	-0.12467	-0.52433	-0.11933
2450	-0.19273	-0.21801	-0.48718	-0.12221	-0.54044	-0.11632
2500	-0.22887	-0.21312	-0.50444	-0.11973	-0.55752	-0.11332

Tabelle D.41: Potentialstärken zum ${}^{1}S_{0}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijme	gen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	\tilde{W}_c	V_c	W_c
350	-0.41807	-0.04944	0.05686	-0.05956	0.55271	-0.06617
400	-0.40757	-0.09831	0.16706	-0.12511	0.81437	-0.14327
450	-0.33370	-0.16166	0.30024	-0.21416	1.09677	-0.25159
500	-0.24708	-0.24470	0.38908	-0.33165	1.31872	-0.39881
550	-0.18804	-0.35060	0.38314	-0.47770	1.41484	-0.58812
600	-0.17228	-0.47993	0.27231	-0.64639	1.36648	-0.81612
650	-0.19722	-0.63278	0.07663	-0.82937	1.19364	-1.07610
700	-0.24046	-0.80113	-0.15751	-1.00873	0.95335	-1.34655
750	-0.28037	-0.97238	-0.38994	-1.16563	0.69851	-1.60043
800	-0.30082	-1.13337	-0.59303	-1.28752	0.46749	-1.81515
850	-0.29811	-1.26970	-0.75684	-1.36472	0.27447	-1.97129
900	-0.27034	-1.37348	-0.87545	-1.39781	0.12822	-2.06350
950	-0.22312	-1.44049	-0.95302	-1.39005	0.02392	-2.09254
1000	-0.16630	-1.46971	-0.99935	-1.34580	-0.05079	-2.06294
1050	-0.10756	-1.46704	-1.02412	-1.27532	-0.10654	-1.98839
1100	-0.05337	-1.43758	-1.03578	-1.18651	-0.15248	-1.87987
1150	-0.00743	-1.38978	-1.04106	-1.08930	-0.19474	-1.75184
1200	0.02856	-1.32849	-1.04371	-0.98925	-0.23627	-1.61275
1250	0.05275	-1.26020	-1.04766	-0.89188	-0.28060	-1.47192
1300	0.06831	-1.18830	-1.05191	-0.80044	-0.32455	-1.33474
1350	0.07373	-1.11564	-1.05862	-0.71600	-0.37073	-1.20428
1400	0.07191	-1.04570	-1.06676	-0.64054	-0.41680	-1.08465
1450	0.06312	-0.97830	-1.07626	-0.57291	-0.46282	-0.97492
1500	0.04997	-0.91480	-1.08596	-0.51333	-0.50681	-0.87625
1550	0.03275	-0.85518	-1.09583	-0.46081	-0.54902	-0.78772
1600	0.01182	-0.79932	-1.10578	-0.41448	-0.58957	-0.70844
1650	-0.01138	-0.74788	-1.11527	-0.37408	-0.62771	-0.63840
1700	-0.03677	-0.69998	-1.12430	-0.33849	-0.66369	-0.57601
1750	-0.06381	-0.65620	-1.13279	-0.30749	-0.69755	-0.52115
1800	-0.09258	-0.61522	-1.14080	-0.27997	-0.72954	-0.47207
1850	-0.12259	-0.57756	-1.14826	-0.25583	-0.75967	-0.42871
1900	-0.15314	-0.54261	-1.15496	-0.23450	-0.78763	-0.39018
1950	-0.18517	-0.51037	-1.16142	-0.21564	-0.81439	-0.35595
2000	-0.21751	-0.48013	-1.16722	-0.19879	-0.83929	-0.32528
2050	-0.25057	-0.45177	-1.17265	-0.18370	-0.86284	-0.29774
2100	-0.28492	-0.42586	-1.17804	-0.17042	-0.88563	-0.27338
2150	-0.31972	-0.40118	-1.18310	-0.15835	-0.90719	-0.25124
2200	-0.35511	-0.37816	-1.18801	-0.14756	-0.92781	-0.23140
2250	-0.39146	-0.35635	-1.19296	-0.13777	-0.94783	-0.21339
2300	-0.42846	-0.33599	-1.19793	-0.12900	-0.96721	-0.19721
2350	-0.46635	-0.31687	-1.20309	-0.12110	-0.98619	-0.18261
2400	-0.50536	-0.29857	-1.20859	-0.11388	-1.00499	-0.16924
2450	-0.54517	-0.28128	-1.21439	-0.10736	-1.02354	-0.15712
2500	-0.58593	-0.26482	-1.22063	-0.10143	-1.04203	-0.14606

Tabelle D.42: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijme	gen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.27161	-0.03281	0.03766	-0.03931	0.36401	-0.04289
400	-0.26583	-0.06555	0.11047	-0.08206	0.53360	-0.09181
450	-0.21742	-0.10754	0.19824	-0.13949	0.71523	-0.15950
500	-0.15987	-0.16220	0.25740	-0.21510	0.85800	-0.25095
550	-0.11948	-0.23222	0.25613	-0.31007	0.92235	-0.36911
600	-0.10605	-0.31888	0.18836	-0.42232	0.89785	-0.51345
650	-0.11730	-0.42312	0.06698	-0.54840	0.79746	-0.68166
700	-0.13813	-0.53958	-0.07822	-0.67747	0.65672	-0.86113
750	-0.15452	-0.65887	-0.22153	-0.79629	0.50820	-1.03424
800	-0.15689	-0.77074	-0.34577	-0.89418	0.37493	-1.18472
850	-0.14458	-0.86494	-0.44620	-0.96250	0.26393	-1.29845
900	-0.11778	-0.93596	-0.52040	-0.99968	0.17922	-1.37040
950	-0.08104	-0.98150	-0.57206	-1.00706	0.11681	-1.40044
1000	-0.04103	-1.00178	-0.60798	-0.98763	0.06860	-1.39156
1050	-0.00221	-1.00118	-0.63370	-0.94831	0.02855	-1.35258
1100	0.03171	-0.98339	-0.65394	-0.89448	-0.00850	-1.29059
1150	0.05907	-0.95398	-0.67181	-0.83289	-0.04541	-1.21488
1200	0.07913	-0.91603	-0.68894	-0.76735	-0.08350	-1.13077
1250	0.09110	-0.87375	-0.70711	-0.70200	-0.12440	-1.04441
1300	0.09722	-0.82902	-0.72501	-0.63902	-0.16561	-0.95897
1350	0.09660	-0.78377	-0.74394	-0.57968	-0.20863	-0.87674
1400	0.09128	-0.74011	-0.76281	-0.52560	-0.25153	-0.80039
1450	0.08132	-0.69790	-0.78175	-0.47625	-0.29439	-0.72947
1500	0.06852	-0.65796	-0.79980	-0.43197	-0.33563	-0.66479
1550	0.05297	-0.62026	-0.81711	-0.39228	-0.37543	-0.60593
1600	0.03487	-0.58477	-0.83373	-0.35672	-0.41386	-0.55247
1650	0.01520	-0.55194	-0.84927	-0.32526	-0.45028	-0.50457
1700	-0.00607	-0.52118	-0.86389	-0.29716	-0.48493	-0.46128
1750	-0.02856	-0.49296	-0.87756	-0.27239	-0.51777	-0.42270
1800	-0.05246	-0.46636	-0.89046	-0.25012	-0.54908	-0.38768
1850	-0.07738	-0.44181	-0.90256	-0.23038	-0.57881	-0.35633
1900	-0.10286	-0.41886	-0.91372	-0.21272	-0.60673	-0.32806
1950	-0.12965	-0.39761	-0.92445	-0.19699	-0.63364	-0.30266
2000	-0.15688	-0.37750	-0.93441	-0.18278	-0.65899	-0.27956
2050	-0.18491	-0.35849	-0.94387	-0.16993	-0.68321	-0.25854
2100	-0.21417	-0.34110	-0.95315	-0.15856	-0.70678	-0.23978
2150	-0.24407	-0.32436	-0.96202	-0.14813	-0.72933	-0.22249
2200	-0.27471	-0.30865	-0.97064	-0.13874	-0.75110	-0.20683
2250	-0.30643	-0.29364	-0.97921	-0.13016	-0.77237	-0.19244
2300	-0.33898	-0.27954	-0.98772	-0.12243	-0.79312	-0.17939
2350	-0.37258	-0.26622	-0.99632	-0.11544	-0.81355	-0.16750
2400	-0.40747	-0.25335	-1.00517	-0.10901	-0.83389	-0.15649
2450	-0.44339	-0.24110	-1.01425	-0.10317	-0.85406	-0.14642
2500	-0.48050	-0.22933	-1.02369	-0.09784	-0.87422	-0.13715

Tabelle D.43: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Niime	gen-II	AV18		
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c	
350	-0.20089	-0.02449	0.02877	-0.02998	0.27607	-0.03229	
400	-0.19676	-0.04900	0.08409	-0.06225	0.40283	-0.06857	
450	-0.16077	-0.08029	0.15048	-0.10523	0.53777	-0.11822	
500	-0.11778	-0.12091	0.19526	-0.16164	0.64351	-0.18494	
550	-0.08720	-0.17309	0.19503	-0.23274	0.69178	-0.27124	
600	-0.07604	-0.23816	0.14567	-0.31766	0.67574	-0.37736	
650	-0.08235	-0.31725	0.05698	-0.41469	0.60530	-0.50244	
700	-0.09471	-0.40639	-0.04880	-0.51614	0.50652	-0.63775	
750	-0.10272	-0.49820	-0.15261	-0.61182	0.40303	-0.77020	
800	-0.09963	-0.58441	-0.24198	-0.69279	0.31116	-0.88708	
850	-0.08569	-0.65702	-0.31416	-0.75164	0.23512	-0.97727	
900	-0.06168	-0.71174	-0.36803	-0.78634	0.17705	-1.03638	
950	-0.03139	-0.74702	-0.40682	-0.79756	0.13348	-1.06403	
1000	0.00008	-0.76335	-0.43583	-0.78755	0.09824	-1.06245	
1050	0.02961	-0.76420	-0.45893	-0.76158	0.06714	-1.03814	
1100	0.05466	-0.75242	-0.47934	-0.72376	0.03665	-0.99634	
1150	0.07429	-0.73214	-0.49890	-0.67929	0.00509	-0.94388	
1200	0.08809	-0.70560	-0.51855	-0.63104	-0.02825	-0.88462	
1250	0.09563	-0.67592	-0.53932	-0.58230	-0.06430	-0.82316	
1300	0.09867	-0.64432	-0.55994	-0.53468	-0.10098	-0.76172	
1350	0.09654	-0.61229	-0.58134	-0.48932	-0.13933	-0.70212	
1400	0.09086	-0.58131	-0.60249	-0.44756	-0.17769	-0.64636	
1450	0.08160	-0.55128	-0.62352	-0.40904	-0.21616	-0.59415	
1500	0.07014	-0.52275	-0.64358	-0.37411	-0.25342	-0.54611	
1550	0.05653	-0.49574	-0.66282	-0.34248	-0.28959	-0.50204	
1600	0.04086	-0.47021	-0.68130	-0.31387	-0.32472	-0.46167	
1650	0.02392	-0.44652	-0.69868	-0.28832	-0.35824	-0.42520	
1700	0.00561	-0.42423	-0.71513	-0.26529	-0.39038	-0.39194	
1750	-0.01374	-0.40374	-0.73061	-0.24482	-0.42105	-0.36208	
1800	-0.03435	-0.38433	-0.74533	-0.22626	-0.45051	-0.33474	
1850	-0.05591	-0.36636	-0.75926	-0.20968	-0.47870	-0.31006	
1900	-0.07806	-0.34948	-0.77227	-0.19473	-0.50541	-0.28763	
1950	-0.10142	-0.33382	-0.78483	-0.18133	-0.53131	-0.26732	
2000	-0.12532	-0.31891	-0.79665	-0.16913	-0.55594	-0.24869	
2050	-0.15005	-0.30473	-0.80797	-0.15802	-0.57965	-0.23159	
2100	-0.17597	-0.29176	-0.81908	-0.14815	-0.60285	-0.21624	
2150	-0.20262	-0.27918	-0.82980	-0.13903	-0.62523	-0.20198	
2200	-0.23010	-0.26732	-0.84025	-0.13077	-0.64697	-0.18895	
2250	-0.25869	-0.25593	-0.85063	-0.12319	-0.66834	-0.17691	
2300	-0.28820	-0.24519	-0.86093	-0.11632	-0.68931	-0.16591	
2350	-0.31884	-0.23500	-0.87130	-0.11009	-0.71006	-0.15582	
2400	-0.35083	-0.22510	-0.88189	-0.10433	-0.73079	-0.14642	
2450	-0.38396	-0.21562	-0.89268	-0.09908	-0.75145	-0.13776	
2500	-0.41839	-0.20646	-0.90379	-0.09426	-0.77217	-0.12974	

Tabelle D.44: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijme	gen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.16292	-0.01994	0.02413	-0.02513	0.22964	-0.02678
400	-0.15919	-0.03983	0.07013	-0.05185	0.33321	-0.05645
450	-0.12976	-0.06512	0.12494	-0.08715	0.44276	-0.09666
500	-0.09476	-0.09787	0.16166	-0.13326	0.52805	-0.15041
550	-0.06972	-0.14001	0.16147	-0.19136	0.56680	-0.21980
600	-0.06014	-0.19279	0.12141	-0.26105	0.55411	-0.30534
650	-0.06424	-0.25734	0.04972	-0.34135	0.49838	-0.40677
700	-0.07267	-0.33052	-0.03538	-0.42629	0.42072	-0.51736
750	-0.07704	-0.40622	-0.11840	-0.50747	0.34004	-0.62654
800	-0.07205	-0.47745	-0.18940	-0.57719	0.26915	-0.72378
850	-0.05826	-0.53756	-0.24661	-0.62898	0.21090	-0.79977
900	-0.03663	-0.58298	-0.28950	-0.66077	0.16653	-0.85062
950	-0.01046	-0.61251	-0.32100	-0.67292	0.13290	-0.87588
1000	0.01607	-0.62669	-0.34556	-0.66724	0.10488	-0.87736
1050	0.04052	-0.62841	-0.36622	-0.64809	0.07918	-0.86028
1100	0.06091	-0.62000	-0.38547	-0.61883	0.05309	-0.82886
1150	0.07663	-0.60480	-0.40459	-0.58374	0.02545	-0.78858
1200	0.08741	-0.58458	-0.42420	-0.54517	-0.00417	-0.74250
1250	0.09298	-0.56183	-0.44499	-0.50589	-0.03640	-0.69438
1300	0.09479	-0.53748	-0.46579	-0.46718	-0.06941	-0.64591
1350	0.09231	-0.51272	-0.48732	-0.43006	-0.10402	-0.59863
1400	0.08689	-0.48873	-0.50862	-0.39566	-0.13877	-0.55418
1450	0.07846	-0.46542	-0.52980	-0.36374	-0.17375	-0.51233
1500	0.06818	-0.44322	-0.55011	-0.33459	-0.20780	-0.47362
1550	0.05605	-0.42213	-0.56966	-0.30802	-0.24101	-0.43789
1600	0.04213	-0.40215	-0.58852	-0.28383	-0.27342	-0.40499
1650	0.02709	-0.38357	-0.60635	-0.26211	-0.30452	-0.37511
1700	0.01081	-0.36603	-0.62332	-0.24240	-0.33450	-0.34771
1750	-0.00643	-0.34988	-0.63941	-0.22479	-0.36327	-0.32299
1800	-0.02484	-0.33453	-0.65479	-0.20873	-0.39106	-0.30021
1850	-0.04416	-0.32029	-0.66943	-0.19431	-0.41779	-0.27956
1900	-0.06409	-0.30687	-0.68322	-0.18124	-0.44329	-0.26067
1950	-0.08517	-0.29440	-0.69659	-0.16946	-0.46813	-0.24350
2000	-0.10684	-0.28247	-0.70927	-0.15868	-0.49190	-0.22765
2050	-0.12935	-0.27108	-0.72149	-0.14882	-0.51491	-0.21301
2100	-0.15303	-0.26068	-0.73351	-0.14003	-0.53753	-0.19984
2150	-0.17748	-0.25051	-0.74516	-0.13186	-0.55946	-0.18752
2200	-0.20279	-0.24091	-0.75655	-0.12444	-0.58087	-0.17622
2250	-0.22924	-0.23165	-0.76789	-0.11760	-0.60202	-0.16571
2300	-0.25665	-0.22289	-0.77915	-0.11138	-0.62284	-0.15607
2350	-0.28521	-0.21456	-0.79047	-0.10572	-0.64353	-0.14720
2400	-0.31515	-0.20643	-0.80201	-0.10047	-0.66427	-0.13889
2450	-0.34629	-0.19862	-0.81374	-0.09567	-0.68500	-0.13120
2500	-0.37877	-0.19104	-0.82579	-0.09125	-0.70585	-0.12404

Tabelle D.45: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Niime	Niimegen-II		AV18	
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c	
	-0.14093	-0.01727	0.02154	-0.02244	0.20326	-0.02370	
400	-0.13702	-0.03435	0.06213	-0.04594	0.29286	-0.04955	
450	-0.11126	-0.05597	0.11004	-0.07673	0.38699	-0.08428	
500	-0.08096	-0.08390	0.14177	-0.11670	0.45963	-0.13039	
550	-0.05929	-0.11983	0.14128	-0.16694	0.49207	-0.18976	
600	-0.05076	-0.16497	0.10642	-0.22725	0.48069	-0.26294	
650	-0.05370	-0.22040	0.04459	-0.29704	0.43303	-0.34997	
700	-0.06004	-0.28349	-0.02837	-0.37135	0.36730	-0.44529	
750	-0.06258	-0.34898	-0.09914	-0.44296	0.29962	-0.53993	
800	-0.05688	-0.41073	-0.15930	-0.50502	0.24072	-0.62470	
850	-0.04362	-0.46297	-0.20763	-0.55174	0.19267	-0.69150	
900	-0.02380	-0.50257	-0.24392	-0.58109	0.15621	-0.73681	
950	-0.00036	-0.52853	-0.27090	-0.59329	0.12843	-0.76015	
1000	0.02305	-0.54139	-0.29248	-0.58989	0.10482	-0.76306	
1050	0.04440	-0.54363	-0.31125	-0.57463	0.08260	-0.75001	
1100	0.06203	-0.53729	-0.32929	-0.55044	0.05949	-0.72458	
1150	0.07550	-0.52517	-0.34759	-0.52101	0.03465	-0.69142	
1200	0.08460	-0.50877	-0.36659	-0.48836	0.00775	-0.65314	
1250	0.08915	-0.49023	-0.38680	-0.45493	-0.02166	-0.61295	
1300	0.09041	-0.47027	-0.40715	-0.42178	-0.05194	-0.57225	
1350	0.08790	-0.44991	-0.42822	-0.38986	-0.08378	-0.53239	
1400	0.08283	-0.43017	-0.44911	-0.36015	-0.11585	-0.49479	
1450	0.07509	-0.41093	-0.46994	-0.33246	-0.14824	-0.45927	
1500	0.06570	-0.39257	-0.48999	-0.30706	-0.17988	-0.42627	
1550	0.05465	-0.37509	-0.50936	-0.28381	-0.21085	-0.39571	
1600	0.04198	-0.35849	-0.52811	-0.26256	-0.24121	-0.36745	
1650	0.02826	-0.34304	-0.54593	-0.24338	-0.27045	-0.34170	
1700	0.01339	-0.32841	-0.56297	-0.22592	-0.29875	-0.31798	
1750	-0.00239	-0.31493	-0.57919	-0.21025	-0.32602	-0.29652	
1800	-0.01928	-0.30208	-0.59477	-0.19591	-0.35248	-0.27667	
1850	-0.03705	-0.29015	-0.60967	-0.18299	-0.37804	-0.25861	
1900	-0.05545	-0.27887	-0.62379	-0.17122	-0.40252	-0.24202	
1950	-0.07496	-0.26839	-0.63753	-0.16059	-0.42646	-0.22690	
2000	-0.09509	-0.25832	-0.65062	-0.15082	-0.44948	-0.21287	
2050	-0.11606	-0.24867	-0.66329	-0.14185	-0.47184	-0.19988	
2100	-0.13817	-0.23987	-0.67577	-0.13384	-0.49389	-0.18816	
2150	-0.16108	-0.23123	-0.68792	-0.12637	-0.51537	-0.17714	
2200	-0.18487	-0.22305	-0.69983	-0.11955	-0.53641	-0.16700	
2250	-0.20979	-0.21514	-0.71170	-0.11326	-0.55725	-0.15754	
2300	-0.23570	-0.20765	-0.72349	-0.10752	-0.57784	-0.14884	
2350	-0.26278	-0.20051	-0.73536	-0.10229	-0.59835	-0.14081	
2400	-0.29124	-0.19351	-0.74745	-0.09741	-0.61896	-0.13325	
2450	-0.32092	-0.18677	-0.75972	-0.09295	-0.63961	-0.12625	
2500	-0.35197	-0.18021	-0.77231	-0.08884	-0.66043	-0.11971	

Tabelle D.46: Potentialstärken zum ${}^{3}P_{0}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijm	egen-II	AV	'18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.43546	-0.00054	0.33457	-0.00067	-0.44515	-0.00055
400	-0.43411	-0.00235	0.56890	-0.00303	-0.47769	-0.00238
450	-0.35517	-0.00601	0.83308	-0.00794	-0.46538	-0.00605
500	-0.24892	-0.01207	1.07626	-0.01619	-0.45201	-0.01198
550	-0.13707	-0.02150	1.28299	-0.02905	-0.45083	-0.02086
600	-0.03907	-0.03526	1.43982	-0.04776	-0.47209	-0.03316
650	0.03101	-0.05447	1.53874	-0.07390	-0.52067	-0.04927
700	0.07614	-0.07882	1.59244	-0.10710	-0.58674	-0.06816
750	0.09703	-0.10783	1.60848	-0.14683	-0.66441	-0.08869
800	0.09932	-0.14047	1.59912	-0.19181	-0.74555	-0.10950
850	0.08597	-0.17623	1.57124	-0.24159	-0.82613	-0.12986
900	0.06322	-0.21463	1.53508	-0.29566	-0.90103	-0.14936
950	0.03596	-0.25498	1.49831	-0.35321	-0.96738	-0.16769
1000	0.00523	-0.29659	1.46267	-0.41351	-1.02562	-0.18457
1050	-0.02277	-0.33927	1.43682	-0.47610	-1.07327	-0.20043
1100	-0.04815	-0.38219	1.42047	-0.53990	-1.11197	-0.21509
1150	-0.06748	-0.42322	1.41802	-0.60156	-1.14109	-0.22792
1200	-0.08023	-0.46124	1.42976	-0.65922	-1.16169	-0.23881
1250	-0.08697	-0.49439	1.45420	-0.71011	-1.17506	-0.24719
1300	-0.08918	-0.52103	1.48854	-0.75186	-1.18272	-0.25256
1350	-0.08640	-0.53975	1.53265	-0.78224	-1.18505	-0.25462
1400	-0.08351	-0.54999	1.57900	-0.80108	-1.18487	-0.25311
1450	-0.08119	-0.55344	1.62642	-0.81083	-1.18292	-0.24901
1500	-0.08163	-0.55046	1.67145	-0.81229	-1.18050	-0.24247
1550	-0.08644	-0.54283	1.71167	-0.80822	-1.17860	-0.23433
1600	-0.09599	-0.53304	1.74662	-0.80226	-1.17762	-0.22569
1650	-0.10987	-0.52209	1.77665	-0.79578	-1.17752	-0.21700
1700	-0.12830	-0.51100	1.80122	-0.79036	-1.17850	-0.20866
1750	-0.15061	-0.50125	1.82125	-0.78821	-1.18041	-0.20126
1800	-0.17525	-0.49252	1.83863	-0.78864	-1.18267	-0.19468
1850	-0.20293	-0.48596	1.85225	-0.79386	-1.18564	-0.18931
1900	-0.23337	-0.48105	1.86202	-0.80328	-1.18926	-0.18488
1950	-0.26512	-0.47808	1.87008	-0.81732	-1.19302	-0.18151
2000	-0.29868	-0.47632	1.87513	-0.83525	-1.19716	-0.17888
2050	-0.33333	-0.47585	1.87813	-0.85736	-1.20145	-0.17700
2100	-0.36900	-0.47654	1.87896	-0.88374	-1.20592	-0.17580
2150	-0.40540	-0.47709	1.87733	-0.91237	-1.21049	-0.17483
2200	-11/1/125/1	-0.47(3)	1.87287	-0.94326	-1.21523	-0.17401
2250	0.47004	0.47054	1.00701	0.07401	1 01004	0.17000
2300	-0.47894	-0.47654	1.86761	-0.97431	-1.21964	-0.17306
0050	-0.47894 -0.51531 0.54070	-0.47654 -0.47389	1.86761 1.85951 1.85100	-0.97431 -1.00445	-1.21964 -1.22404 1.22770	-0.17306 -0.17173
2350	-0.47894 -0.51531 -0.54970 0.52002	-0.47654 -0.47389 -0.46814 0.45022	1.86761 1.85951 1.85128 1.84977	-0.97431 -1.00445 -1.02981 1.04057	-1.21964 -1.22404 -1.22779 1.22004	-0.17306 -0.17173 -0.16957 0.16652
$2350 \\ 2400 \\ 2450$	$\begin{array}{r} -0.47294 \\ -0.47894 \\ -0.51531 \\ -0.54970 \\ -0.58203 \\ 0.61177 \end{array}$	-0.47654 -0.47389 -0.46814 -0.45928 0.44596	$1.86761 \\ 1.85951 \\ 1.85128 \\ 1.84277 \\ 1.82280$	-0.97431 -1.00445 -1.02981 -1.04957 1.05924	-1.21964 -1.22404 -1.22779 -1.23094 1.22226	-0.17306 -0.17173 -0.16957 -0.16653 0.16200

Tabelle D.47: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.6$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Niim	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.27328	-0.00035	0.19973	-0.00040	-0.28355	-0.00036
400	-0.27561	-0.00153	0.34182	-0.00180	-0.30734	-0.00158
450	-0.22706	-0.00391	0.50335	-0.00472	-0.30155	-0.00403
500	-0.15997	-0.00786	0.65403	-0.00964	-0.29487	-0.00803
550	-0.08850	-0.01398	0.78449	-0.01733	-0.29624	-0.01410
600	-0.02533	-0.02294	0.88646	-0.02860	-0.31283	-0.02264
650	0.02035	-0.03553	0.95473	-0.04452	-0.34848	-0.03413
700	0.05031	-0.05168	0.99639	-0.06499	-0.39707	-0.04806
750	0.06477	-0.07121	1.01547	-0.08983	-0.45504	-0.06382
800	0.06715	-0.09358	1.01897	-0.11843	-0.51696	-0.08057
850	0.05916	-0.11859	1.01079	-0.15060	-0.58007	-0.09783
900	0.04475	-0.14597	0.99707	-0.18611	-0.64050	-0.11524
950	0.02711	-0.17532	0.98255	-0.22448	-0.69580	-0.13243
1000	0.00689	-0.20619	0.96835	-0.26530	-0.74598	-0.14906
1050	-0.01161	-0.23836	0.96010	-0.30819	-0.78864	-0.16519
1100	-0.02842	-0.27123	0.95781	-0.35244	-0.82470	-0.18054
1150	-0.04107	-0.30312	0.96445	-0.39574	-0.85335	-0.19432
1200	-0.04914	-0.33307	0.98040	-0.43673	-0.87516	-0.20628
1250	-0.05304	-0.35965	1.00479	-0.47348	-0.89108	-0.21581
1300	-0.05386	-0.38157	1.03581	-0.50430	-0.90231	-0.22243
1350	-0.05134	-0.39766	1.07342	-0.52753	-0.90912	-0.22579
1400	-0.04906	-0.40761	1.11257	-0.54308	-0.91391	-0.22579
1450	-0.04747	-0.41258	1.15252	-0.55250	-0.91726	-0.22330
1500	-0.04821	-0.41285	1.19090	-0.55632	-0.92026	-0.21852
1550	-0.05245	-0.40975	1.22608	-0.55642	-0.92371	-0.21223
1600	-0.06040	-0.40510	1.25775	-0.55524	-0.92792	-0.20544
1650	-0.07179	-0.39962	1.28612	-0.55373	-0.93281	-0.19855
1700	-0.08679	-0.39406	1.31079	-0.55297	-0.93857	-0.19192
1750	-0.10490	-0.38955	1.33235	-0.55454	-0.94503	-0.18610
1800	-0.12500	-0.38578	1.35210	-0.55794	-0.95166	-0.18094
1850	-0.14760	-0.38371	1.36923	-0.56479	-0.95883	-0.17685
1900	-0.17259	-0.38296	1.38362	-0.57472	-0.96647	-0.17359
1950	-0.19882	-0.38375	1.39676	-0.58806	-0.97413	-0.17126
2000	-0.22674	-0.38552	1.40768	-0.60435	-0.98204	-0.16957
2050	-0.25581	-0.38835	1.41703	-0.62382	-0.99001	-0.16855
2100	-0.28596	-0.39215	1.42470	-0.64660	-0.99805	-0.16814
2150	-0.31705	-0.39586	1.43040	-0.67127	-1.00614	-0.16789
2200	-0.34909	-0.39938	1.43380	-0.69784	-1.01431	-0.16776
2250	-0.38089	-0.40191	1.43634	-0.72474	-1.02211	-0.16744
2300	-0.41308	-0.40286	1.43645	-0.75120	-1.02986	-0.16670
2350	-0.44406	-0.40101	1.43601	-0.77423	-1.03695	-0.16508
2400	-0.47370	-0.39626	1.43491	-0.79314	-1.04341	-0.16253
2450	-0.50157	-0.38730	1.43295	-0.80451	-1.04913	-0.15851
2500	-0.52681	-0.37440	1.43176	-0.80743	-1.05384	-0.15313

Tabelle D.48: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.7$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.19200	-0.00025	0.13698	-0.00027	-0.20293	-0.00026
400	-0.19554	-0.00110	0.23602	-0.00123	-0.22180	-0.00115
450	-0.16226	-0.00283	0.34964	-0.00325	-0.21904	-0.00297
500	-0.11501	-0.00569	0.45699	-0.00664	-0.21552	-0.00596
550	-0.06398	-0.01015	0.55146	-0.01199	-0.21789	-0.01052
600	-0.01840	-0.01670	0.62708	-0.01988	-0.23166	-0.01704
650	0.01493	-0.02598	0.67993	-0.03110	-0.26002	-0.02595
700	0.03714	-0.03798	0.71460	-0.04568	-0.29867	-0.03696
750	0.04821	-0.05268	0.73358	-0.06357	-0.34518	-0.04972
800	0.05046	-0.06972	0.74157	-0.08441	-0.39556	-0.06364
850	0.04500	-0.08905	0.74112	-0.10814	-0.44772	-0.07841
900	0.03466	-0.11051	0.73652	-0.13463	-0.49859	-0.09373
950	0.02178	-0.13382	0.73113	-0.16358	-0.54606	-0.10927
1000	0.00680	-0.15868	0.72580	-0.19470	-0.59001	-0.12472
1050	-0.00697	-0.18489	0.72470	-0.22770	-0.62824	-0.14000
1100	-0.01950	-0.21197	0.72791	-0.26204	-0.66133	-0.15482
1150	-0.02887	-0.23852	0.73774	-0.29596	-0.68842	-0.16839
1200	-0.03469	-0.26373	0.75456	-0.32837	-0.70985	-0.18037
1250	-0.03728	-0.28640	0.77777	-0.35773	-0.72634	-0.19017
1300	-0.03753	-0.30544	0.80606	-0.38273	-0.73888	-0.19731
1350	-0.03522	-0.31983	0.83942	-0.40203	-0.74766	-0.20142
1400	-0.03327	-0.32934	0.87401	-0.41553	-0.75479	-0.20245
1450	-0.03200	-0.33487	0.90929	-0.42439	-0.76072	-0.20115
1500	-0.03276	-0.33665	0.94345	-0.42897	-0.76639	-0.19773
1550	-0.03648	-0.33573	0.97521	-0.43071	-0.77250	-0.19291
1600	-0.04333	-0.33358	1.00436	-0.43149	-0.77926	-0.18758
1650	-0.05310	-0.33077	1.03102	-0.43202	-0.78663	-0.18211
1700	-0.06595	-0.32791	1.05486	-0.43317	-0.79475	-0.17683
1750	-0.08146	-0.32594	1.07634	-0.43617	-0.80345	-0.17226
1800	-0.09875	-0.32456	1.09642	-0.44062	-0.81228	-0.16823
1850	-0.11825	-0.32463	1.11447	-0.44784	-0.82154	-0.16515
1900	-0.13989	-0.32584	1.13037	-0.45758	-0.83120	-0.16281
1950	-0.16271	-0.32835	1.14526	-0.47009	-0.84083	-0.16129
2000	-0.18714	-0.33174	1.15835	-0.48507	-0.85067	-0.16035
2050	-0.21270	-0.33606	1.17014	-0.50270	-0.86053	-0.16000
2100	-0.23937	-0.34125	1.18053	-0.52314	-0.87043	-0.16021
2150	-0.26704	-0.34640	1.18922	-0.54524	-0.88035	-0.16054
2200	-0.29576	-0.35142	1.19593	-0.56906	-0.89033	-0.16095
2250	-0.32450	-0.35555	1.20178	-0.59328	-0.89996	-0.16116
2300	-0.35381	-0.35829	1.20543	-0.61729	-0.90952	-0.16092
2350	-0.38234	-0.35846	1.20838	-0.63859	-0.91845	-0.15976
2400	-0.40994	-0.35594	1.21050	-0.65655	-0.92677	-0.15766
2450	-0.43624	-0.34947	1.21156	-0.66829	-0.93436	-0.15408
2500	-0.46041	-0.33925	1.21291	-0.67293	-0.94096	-0.14909

Tabelle D.49: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.8$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.14658	-0.00019	0.10316	-0.00020	-0.15748	-0.00020
400	-0.15051	-0.00085	0.17891	-0.00093	-0.17336	-0.00091
450	-0.12571	-0.00220	0.26657	-0.00246	-0.17222	-0.00236
500	-0.08961	-0.00445	0.35035	-0.00505	-0.17038	-0.00475
550	-0.05011	-0.00797	0.42509	-0.00914	-0.17319	-0.00844
600	-0.01448	-0.01315	0.48606	-0.01522	-0.18517	-0.01376
650	0.01184	-0.02055	0.53003	-0.02392	-0.20908	-0.02110
700	0.02961	-0.03020	0.56029	-0.03532	-0.24166	-0.03031
750	0.03868	-0.04210	0.57856	-0.04942	-0.28108	-0.04115
800	0.04079	-0.05605	0.58831	-0.06599	-0.32418	-0.05319
850	0.03671	-0.07203	0.59142	-0.08504	-0.36928	-0.06619
900	0.02863	-0.08995	0.59117	-0.10648	-0.41381	-0.07991
950	0.01842	-0.10962	0.59020	-0.13011	-0.45593	-0.09407
1000	0.00641	-0.13081	0.58917	-0.15571	-0.49544	-0.10840
1050	-0.00468	-0.15333	0.59145	-0.18304	-0.53034	-0.12276
1100	-0.01479	-0.17679	0.59717	-0.21167	-0.56102	-0.13688
1150	-0.02231	-0.19999	0.60823	-0.24013	-0.58661	-0.14997
1200	-0.02689	-0.22219	0.62500	-0.26752	-0.60734	-0.16168
1250	-0.02879	-0.24234	0.64703	-0.29253	-0.62377	-0.17143
1300	-0.02874	-0.25949	0.67327	-0.31405	-0.63677	-0.17875
1350	-0.02661	-0.27272	0.70373	-0.33093	-0.64647	-0.18326
1400	-0.02485	-0.28183	0.73527	-0.34310	-0.65476	-0.18493
1450	-0.02375	-0.28757	0.76745	-0.35144	-0.66201	-0.18443
1500	-0.02447	-0.29011	0.79876	-0.35627	-0.66908	-0.18195
1550	-0.02781	-0.29036	0.82815	-0.35876	-0.67658	-0.17814
1600	-0.03391	-0.28958	0.85542	-0.36048	-0.68469	-0.17385
1650	-0.04259	-0.28823	0.88067	-0.36200	-0.69335	-0.16938
1700	-0.05403	-0.28686	0.90362	-0.36405	-0.70269	-0.16507
1750	-0.06785	-0.28626	0.92462	-0.36767	-0.71256	-0.16137
1800	-0.08331	-0.28619	0.94448	-0.37254	-0.72254	-0.15815
1850	-0.10078	-0.28740	0.96266	-0.37978	-0.73289	-0.15579
1900	-0.12023	-0.28963	0.97901	-0.38920	-0.74362	-0.15410
1950	-0.14082	-0.29303	0.99452	-0.40103	-0.75431	-0.15316
2000	-0.16294	-0.29723	1.00847	-0.41503	-0.76518	-0.15275
2050	-0.18618	-0.30230	1.02128	-0.43139	-0.77606	-0.15288
2100	-0.21050	-0.30817	1.03285	-0.45023	-0.78697	-0.15353
2150	-0.23588	-0.31404	1.04290	-0.47060	-0.79790	-0.15427
2200	-0.26232	-0.31982	1.05116	-0.49257	-0.80889	-0.15509
2250	-0.28894	-0.32480	1.05858	-0.51497	-0.81954	-0.15567
2300	-0.31623	-0.32851	1.06395	-0.53730	-0.83013	-0.15581
2350	-0.34299	-0.32983	1.06854	-0.55733	-0.84013	-0.15502
2400	-0.36906	-0.32861	1.07221	-0.57449	-0.84953	-0.15327
2450	-0.39413	-0.32367	1.07474	-0.58622	-0.85825	-0.15003
2500	-0.41738	-0.31513	1.07730	-0.59169	-0.86598	-0.14538

Tabelle D.50: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 0.9$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

	Inve	rsion	Nijm	egen-II	AV	/18
$T_{Lab}(MeV)$	V_c	W_c	V_c	W_c	V_c	W_c
350	-0.11892	-0.00015	0.08294	-0.00016	-0.12942	-0.00017
400	-0.12294	-0.00070	0.14471	-0.00075	-0.14337	-0.00076
450	-0.10325	-0.00182	0.21676	-0.00199	-0.14317	-0.00197
500	-0.07397	-0.00368	0.28631	-0.00410	-0.14233	-0.00400
550	-0.04155	-0.00662	0.34905	-0.00745	-0.14535	-0.00713
600	-0.01206	-0.01096	0.40101	-0.01244	-0.15613	-0.01168
650	0.00992	-0.01719	0.43938	-0.01964	-0.17715	-0.01802
700	0.02492	-0.02536	0.46667	-0.02912	-0.20575	-0.02604
750	0.03272	-0.03552	0.48419	-0.04093	-0.24050	-0.03560
800	0.03470	-0.04751	0.49468	-0.05491	-0.27876	-0.04634
850	0.03144	-0.06135	0.49962	-0.07108	-0.31910	-0.05808
900	0.02475	-0.07700	0.50169	-0.08940	-0.35927	-0.07063
950	0.01618	-0.09430	0.50310	-0.10972	-0.39764	-0.08374
1000	0.00602	-0.11308	0.50440	-0.13186	-0.43397	-0.09716
1050	-0.00340	-0.13316	0.50848	-0.15563	-0.46641	-0.11074
1100	-0.01201	-0.15421	0.51546	-0.18065	-0.49523	-0.12421
1150	-0.01839	-0.17516	0.52702	-0.20564	-0.51959	-0.13682
1200	-0.02221	-0.19533	0.54348	-0.22981	-0.53963	-0.14821
1250	-0.02370	-0.21376	0.56452	-0.25203	-0.55584	-0.15781
1300	-0.02350	-0.22961	0.58924	-0.27130	-0.56895	-0.16517
1350	-0.02149	-0.24201	0.61765	-0.28658	-0.57910	-0.16990
1400	-0.01986	-0.25079	0.64705	-0.29781	-0.58800	-0.17198
1450	-0.01886	-0.25659	0.67705	-0.30575	-0.59598	-0.17201
1500	-0.01953	-0.25955	0.70634	-0.31065	-0.60383	-0.17018
1550	-0.02260	-0.26049	0.73401	-0.31352	-0.61211	-0.16709
1600	-0.02816	-0.26052	0.75988	-0.31573	-0.62096	-0.16351
1650	-0.03610	-0.26005	0.78404	-0.31778	-0.63033	-0.15976
1700	-0.04656	-0.25956	0.80619	-0.32031	-0.64036	-0.15612
1750	-0.05923	-0.25978	0.82668	-0.32423	-0.65087	-0.15305
1800	-0.07342	-0.26047	0.84618	-0.32927	-0.66148	-0.15040
1850	-0.08950	-0.26234	0.86421	-0.33643	-0.67245	-0.14854
1900	-0.10744	-0.26516	0.88064	-0.34555	-0.68377	-0.14732
1950	-0.12648	-0.26905	0.89631	-0.35685	-0.69505	-0.14679
2000	-0.14699	-0.27371	0.91059	-0.37013	-0.70650	-0.14675
2050	-0.16861	-0.27917	0.92384	-0.38556	-0.71797	-0.14723
2100	-0.19131	-0.28540	0.93596	-0.40327	-0.72946	-0.14818
2150	-0.21505	-0.29166	0.94666	-0.42243	-0.74097	-0.14923
2200	-0.23988	-0.29785	0.95571	-0.44309	-0.75255	-0.15033
2250	-0.26496	-0.30330	0.96392	-0.46420	-0.76381	-0.15119
2300	-0.29079	-0.30759	0.97019	-0.48533	-0.77503	-0.15159
2350	-0.31624	-0.30961	0.97564	-0.50441	-0.78567	-0.15108
2400	-0.34116	-0.30922	0.98012	-0.52094	-0.79574	-0.14960
2450	-0.36527	-0.30527	0.98341	-0.53255	-0.80516	-0.14663
2500	-0.38777	-0.29784	0.98656	-0.53844	-0.81362	-0.14225

Tabelle D.51: Potentialstärken zum ${}^{3}P_{1}$ Kanal mit $r_{0} = 1.0$ fm. Das Potential ist berechnet nach Gl. (D.1) und zu jeweils einem Energiewert gefittet.

Danksagung

An dieser Stelle möchte ich mich bei denjenigen bedanken, die zum Entstehen dieser Arbeit beigetragen haben.

An erster Stelle sei mein Doktorvater Herr Professor Dr. H. V. von Geramb genannt. Bei ihm möchte ich mich ausdrücklich für die intensive Betreuung, die interessante Themenstellung und das lebhafte Interesse am Fortgang der Arbeit bedanken. Er gab mir die Möglichkeit zur Teilnahme an internationalen Konferenzen und ihm ist es zu verdanken, dass Teile meiner Arbeit schon veröffentlicht sind.

Zum weiteren sei Dr. H. F. Arellano von der Universidad de Chile in Santiago genannt, der die Ergebnisse zur *NA*-Streuung erstellt hat.

Den Mitgliedern der Hamburger Kerntheoriegruppe, Herrn Dipl.-Phys., Dipl.-Math. Stefan Wirsching und Herrn Dipl.-Phys. Davaadorj Bayansan danke ich für das gute Arbeitsklima. Sie waren stets offen für Fragestellungen aller Art, auch über die Physik hinaus. Herrn Stefan Wirsching sei ferner für das intensive Korrekturlesen der Arbeit gedankt.

Bei unserer Sekretärin Frau Helga Bohnhardt möchte ich mich für die Unterstützung in allen außerphysikalischen Dingen bedanken.

Bei der Hansischen Universitätsstiftung möchte ich mich für die Gewährung der Reisekostenunterstützung zur Konferenz in Sarospatak (Ungarn) bedanken.

Zum Schluss möchte ich mich bei meinen Eltern bedanken, die mir das Studium erst ermöglicht haben.