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PREFACE 

I entered the field of measures of voting power in early 1996 when Manfred Holler 
suggested that I write a Master’s thesis (Diplomarbeit in German) on the 
application of measures of voting power to decision-making in firms. This 
culminated in a tome entitled, ‘Power Indices and the Decision-making in Firms’ 
which I submitted to the Faculty of Economics of the University of Hamburg in the 
summer of 1997. The present thesis is a continuation of this work and which I 
undertook while a research and teaching fellow at the Institut für Allokation und 
Wettbewerb (IAW), University of Hamburg. 

  In 1998, cooperation with Yener Altunbas and Shanti Chakravarty at the 
University of Wales, Bangor, started on questions of voting power and 
proportional representation in the national assemblies of Wales and Scotland. 
After two research visits to Bangor in 1999 and 2000 and various meetings at 
international conferences and workshops four papers were produced (Altunbas et 
al., 1999a, 1999b, 2000, 2002). These papers are partly published and have been 
presented at a number of international conferences and workshops. Altunbas et al. 
(1999a) is the basis of chapter 6 of this thesis. The cooperation with Yener 
Altunbas and Shanti Chakravarty is set to continue in the near future on a project 
entitled ‘Economics of National Identity’ financed by the DAAD and the British 
Council. 

  In 1999, having read a paper by Moshé Machover, Dan Felsenthal and 
William Zwicker (1998), I produced a paper on the question ‘When is A Priori 
Voting Power Really A Priori?’ (Steffen, 2000). This forms the basis of chapter 2. 
Following that I returned to the central idea of my Master’s thesis and wrote a 
paper on ‘Power and the Internal Organization of Firms’ (Steffen, 1999) which is 
the basis of chapter 7. Both papers were the impetus for a very fruitful and close 
cooperation with Matthew Braham on the measurement of voting power during the 
last years. It has started with my request to Matthew, with whom I was working 
together on an experiment on distributional justice in the summer of 1999, to 
polish my English for both papers. Until now, the result of this cooperation are 
inter alia (i) five papers on the measurement of voting power dealing with 
questions of abstentions (Braham and Steffen [B&S], 2002a), voting power in 
hierarchical structures (B&S, 2001a, 2002b), partition effects in compound games 
(B&S, 2003), power and freedom (B&S, 2001b), and local monotonicity (B&S, 
2002c). Chapters 3, 4, and 7 are based on B&S (2002a, 2002c, 2002b). Two of 
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these papers are published in some form and all have been presented at a number 
of international conferences and workshops. 

In 1999 Rie Ono from the University of Toyama (who has moved to Chiba 
University in 2002) spent a research semester at the IAW. Together with Rie and 
Manfred Holler I started to work on the question of monotonicity of measures of 
voting power – a problem with which I was already confronted in my master thesis 
as well as in Altunbas et al. (1999a, 2000), Steffen (1999) and in B&S (2001b, 
2002a, 2002b, 2003). The first result of this research was a joint paper on 
‘Constrained Monotonicity and the Measurement of Power’ (Holler et al., 2001) 
which is the basis of chapter 5 of this thesis. This paper has lead to two further 
strings of developments: one by Sören Schönfeld (2001) who has investigated the 
concept of constrained monotonicity in more detail, and one by Matthew Braham 
and myself, going deeper into the question of monotonicity per se (B&S, 2002c). 
As already mentioned, the research on the latter is the basis of chapter 4. 



C h a p t e r  1  

INTRODUCTION* 

1. Motivation 

The measurement of voting power plays a useful role in the investigation of 
structural properties of collective decision-making rules which can be modelled as 
a simple (voting) game. Such rules can be found in legislative bodies, committees, 
and a variety of organizations. Measures of voting power have an established 
history in game and social choice theory, going back more than half a century. In 
the early 1980s, the field gained a reputation of having become a somewhat 
exhausted mine. However, since the early 1990s things have changed. The last 
decade has seen a resurgence of research into this field, with many new discoveries 
about the properties of classical power measures such as the Penrose 
(1946)/Banzhaf (1965) and Coleman (1971), the Public Good (Holler, 1982a; 
Holler and Packel, 1983; Holler and Li, 1995) and the Deegan-Packel (1978) 
measures and the Shapley-Shubik index (1954) as well as new developments in 
probabilistic techniques like Straffin’s (1977) partial homogeneity approach based 
on Owen’s (1972) multi-linear extension and new areas of applications. This thesis 
includes contributions to all these aspects. The theoretical contributions deal with 
the nature of a prioriticty and monotonicity of measures of voting power and with 
the question of abstention. The applied contributions consist of applications of 
measures of voting power to a newly created institution (the National Assembly for 
Wales) and to hierarchical organizations. 

  The central aim of this introductory chapter is to discuss the meaning of the 
term ‘voting power’. This is essential to understand to which purposes measures of 
voting power are applicable. The debates in the literature indicate that more 
attention on this issue is required especially in order to help those who are not 
deeply familiar to this area of research, but either seek to criticise it or just to 
apply its concepts and methods in an unreflective manner. 

  This chapter is organized as follows. In section 2 the term ‘voting power’ is 
introduced as a specific type of ‘power’. Based on this the basic idea, a measure of 
                                               
* The author is deeply indebted to Matthew Braham for helpful comments and intensive 

discussions. 
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voting power is introduced and a broad classification scheme between a priori and 
a posteriori measures is provided. Section 3 deals with the debate in the literature 
about the applicability of measures of voting power and tries to show that this 
debate is due largely to misunderstandings about the nature of voting power and 
the issues which a measure of voting power can deal with. Section 4 contains an 
outline and a summary of the main results of the thesis and the relationships 
between the different chapters. 

2. Voting Power: Meaning and Measurement 

A transparent discussion of the measurement of power requires at the very least a 
specification within the limits of ordinary language about what it is that should be 
measured. The term power is used in many situations in our daily life. However, if 
one asks people using this term to define it, one obtains a huge variety of answers. 
The same applies in the academic literature on power. A lot of work has been done 
in order to find a general characterization of the term power.1 This thesis follows 
an outcome-orientated version of Barry (1976) and Morriss’ (1987) understanding 
of power as an ability or capacity to do something or the possession of control in a 
social environment, which for the measurement of voting power following Brams 
(1975, p. 157) appears to be preferable to a player-orientated view.2 Put in the 
words of Vannucci (2002): the measurement of voting power ‘seems to be confined 
to analyzing the comparative “has more power than” relation among players ... as 
opposed to the more commonly used “has power over” relation’. That is, it is 
about ‘influence rankings’ of players in (collective) decision-making situations and 
not about so-called ‘bossy’ or bi-lateral relationships between players.3 

  In such situations power can be specified as the ability to determine the 
outcome of a (collective) decision-making situation based upon two components: 
the decision rule, commonly modelled by a mathematical structure known as a 

                                               
1 For a good collection of readings on the concept of power see Bell et al. (1969). 
2 A player-orientated view of power is what Barry (1976) calls social power, where a player, 

roughly speaking, has power if he or she has the ability to ‘influence’ the behavior of others. 
3 For clarifications of the distinction between both views of power assume we have a player i who 

has a set of actions or strategies {a1, a2} which is mapped onto a set of outcomes {x1, x2} such 
that if i chooses a1, x1 is the outcome; and if i chooses a2, x2 is the outcome. Under this set-up i 
is able to affect the outcome, i.e. i possesses ‘power to’ (do something) with respect to x1 and x2 
(see Braham and Holler 2002 for a detailed discussion). Now assume that there is another 
player j who is able to determine i’s choice concerning his or her action. Then j has ‘power 
over’ i, if i has an interest in the outcome. However, in general, this does not imply that i 
‘power to’ with respect to x1 and x2. 
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simple game (or simple voting game),4 and the decision-making structure. A 
player’s power in such a decision-making situation – his or her voting power – 
then depends upon his or her resources given to him or her by both components. 

  Consider the case of a group of n players (or voters) who must collectively 
decide whether to accept or to reject a series of proposals. These may be members 
of a legislature who must decide on a series of bills or stockholders or managers in 
a corporation who must decide on management proposals. If such a collective 
decision-making body has a clearly defined decision rule as a means of specifying 
outcomes, it will do so by specifying which subsets of the group of players can 
ensure the acceptance of a proposal. Although the number of possible rules is often 
very large, one can distinguish three typical cases: the rule of consensus in which 
all n players must vote in favour; the rule of individual initiative – as Rae (1969) 
has called it – if at least one single player votes in favour; and the most common of 
all, majority rule with a specified quota between n/2 and n-1 of the members. 

  The information about which subset of players is winning defined by the 
decision rule also implies information about the distribution of power in the 
decision-making body in relation to the bare rule. Consider a group of three 
players a, b, and c with votes of 4, 2, and 1 respectively and a quota of 5 votes in a 
‘yes’-‘no’ voting situation. In measuring voting power we want to determine how 
probable it is that a player has the ability to force the outcome of the vote by either 
voting ‘yes’ or ‘no’ (or ‘abstain’ if possible). We do this by calculating the 
probability that each player is in a position to determine the outcome with his or 
her votes which in this case coincide with the players’ resources (as no further 
structural information is known). At the first glance one may be attempted to take 
the players’ votes and, thus, their resources as a predicator for their chances and, 
thus, as a measure of their voting power. Then a would be twice as powerful as b 
and b would have twice as much power as c. However, this turns out to be an 

                                               
4 Both terms are used in the literature on the theory of voting power. The term simple game goes 

back to Shapley (1953), who attributes the concept to von Neumann and Morgenstern (1944). 
But due to the fact that Shapley’s class of simple games is wider than that by von Neumann and 
Morgenstern sometimes the term simple voting game is used to prevent confusion with von 
Neumann and Morgenstern’s simple games (see, e.g., Felsenthal and Machover, 1998). Note, 
that essence of a simple (voting) game is just that it specifies which subsets of players can 
ensure the acceptance of a proposal. As, e.g., Moulin (1983) points out such a voting method is a 
constitution that can be viewed as a game form, a term introduced by Gibbard (1973) to describe 
games in which individual utilities are not yet attached to possible outcomes (in effect a game 
without payoff functions). That is, a game form is a system which allows each individual his or 
her choice among a set of strategies, and makes an outcome dependent, in a determinate way, on 
the strategy each individual chooses (see Miller, 1982, for a brief introduction to game forms). 
Obviously, for a voting situation as described above the strategies are 〈yes, no〉 and the outcome 
is an element of {0, 1} (or 〈yes, abstain, no〉 and {1, 0, -1} if abstention is possible). 
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inappropriate measure if one examines the situation more closely. If we look at the 
possible winning subsets which are {a, b}, {a, c}, and {a, b, c} one can see that a 
is a member of three subsets while b and c are members of two subsets only. That 
is, without any further information an ordinal power ranking is possible: one can 
expect that the probability that a will be a member of a winning subset is higher 
than for b and c. 

  For a cardinal measure of power it is necessary to add additional information 
about the decision-making situation to the bare rule. Depending on this information 
one obtains measures of voting power such as the Penrose/Banzhaf or Coleman, 
the Public-Good, or the Deegan-Packel measures, or the Shapley-Shubik index. As 
discussed in chapter 3, the Penrose/Banzhaf or Coleman measures can be derived 
under the assumption that the players are individuals, while the Shapley-Shubik 
index can be derived under the assumption that the players behave as clones. The 
different measures of voting power which are subject of this thesis are discussed in 
detail in the different chapters, which are based on self contained papers. (This, 
unfortunately, leads to a certain amount of repetition.) 

  Note, that depending on the type of additional information, a further 
important distinction between the different measures of voting power is made: that 
between a priori and a posteriori measures.5 While there seems to be a general 
agreement in the literature how these two classes of measures can be characterized, 
there is an ongoing discussion about the question which measures belongs to which 
class. An a priori measure is seen as a measure that evaluates the distribution of 
voting power behind a Rawlsian ‘veil of ignorance’ while an a posteriori measure 
is seen as a measure that takes into account supplementary information. The core 
of the dispute in the literature is which information beyond the bare decision rule is 
behind or before the veil of ignorance. 

  The purist position is held by Felsenthal and Machover (1998, 2001a) and 
Felsenthal et al. (1998). They argue that only the Penrose/Banzhaf measure is a 
priori measure of voting power. From their point of view, the additional 
information that is necessary for a calculation of this measure and which is 
included in the measure as an implicit assumption, is the nearest to being behind 
the veil of ignorance relative to the bare decision rule because it represents the 
greatest ignorance of the decision-making structure. This position is based on the 
view that an a priori measure of voting power should in principle be based on, and 

                                               
5 The latter are also called actual or real measures, see Felsenthal and Machover (2000) or 

Stenlund et al. (1985), respectively. 
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only on, the bare decision rule which is regarded as an empty shell (and the 
distribution of resources given by that rule); i.e. the actual personalities of the 
players are ignored and must be ignored in order to provide a constitutional 
normative analysis. The justification for this position is that if designing a 
constitution, it would be mistaken tailor outcomes to a particular structure of 
preferences of the players and their affinities and disaffinities, because these are 
highly volatile and transient. 

  The position taken in thesis agrees with Felsenthal and Machover’s 
argumentation in the sense that it would be wrong to include information about the 
players’ preferences into the measurement of a priori voting power. However, on 
the other hand Felsenthal and Machover have neglected an important aspect that 
makes their point of view too restrictive. This is the existence of additional (a 
priori) information behind the veil of ignorance. If such type of information exists, 
one can show that their purist position can lead to the result that a measure of 
voting power is a priori but is not reasonable. Thus, the position taken in this 
thesis is that a measure should take into account all a priori information of the 
decision-making structure. 

3. On the Applicability of Measures of Voting Power 

In the literature some scholars criticize or even deny the usefulness of applying 
measures of voting power. Their criticism focuses mainly on two aspects: they 
maintain (i) that measures of voting power are incapable of taking into account 
complex decision-making procedures and (ii) that measures of voting power do not 
take into account the structure of preferences and affinities of the players (see, e.g., 
Garrett and Tsebelis, 1999a, 1999b, 2001; Tsebelis and Garrett, 1997; 
Steunenberg et al., 1999). 

  This criticism is more or less misguided. The critique (i) does not hold as one 
can apply the concept of a composite (or compound) voting game which allows the 
construction of extremely complex voting games from simpler ones, thus providing 
models for highly complex interactions among these simpler components 
(Felsenthal and Machover, 2001a).6 Note, that this is also the case if abstentions 
are allowed. 

                                               
6 For an application to the EU decision-making procedure, see, e.g., Laruelle and Widgrén (2001). 

For the definition of composite (or compound) simple games, see Shapley (1962b) or Felsenthal 
and Machover (1998). 
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Critique (ii) can be countered as follows. Firstly, most applications of measures of 
voting power deal with a priori power in order to analyse institutions. As already 
mentioned above such an analysis only addresses the distribution of voting power 
under a given decision rule and, if applicable, additional a priori information 
concerning the decision-making structure, ignoring the actual personalities of the 
players. Thus, voting power is not meant to take into account preferences. This 
point of view was been argued by Felsenthal and Machover (2001a), Lane and 
Berg (1999) and Holler and Widgrén (1999). 

  Secondly, measures of voting power are in fact (at least from a technical 
perspective) capable of taking into account preferences and affinities via an 
appropriate enrichment of the structure of bare decision rules by a posteriori 
information of the decision-making structure.7 Approaches to model preferences 
and affinities between players on the basis of bare rules have been proposed, for 
instance, in Owen (1971 and 1995), Stenlund et al. (1985), Straffin (1994), Holler 
and Widgrén (1999), Steunenberg et al. (1999) and Schmidtchen and Steunenberg 
(2002). 

  While Stenlund et al. consider empirical frequencies of coalitions players 
form from one voting occasion to another as an reflection of their preferences and 
affinities; Owen, Straffin, and Holler and Widgrén deal with preferences and 
affinities in spatial voting models. Owen and Straffin have suggested structures 
including additional information about players’ ideal points assuming that a player 
would be happiest with a policy occupying his or her point; failing that he or she 
would like a position as close as possible to his or her point. Based on such a 
structure they have proposed measures of voting power for spatial voting games. 
That these and the ‘classical’ measures of voting power are far less exclusive than 
it is often argued (see, e.g., Garrett and Tsebelis, 1999a) is shown by Holler and 
Widgrén. They demonstrate how one can model (one-dimensional) ideal points 
under Straffin’s (1977) partial homogeneity approach by assigning specific values 
to the elements of Straffin’s acceptability vector, which originally includes the 
probabilities of each player to vote for a random proposal. 

  Another interesting instance of a unified approach is that proposed by 
Steunenberg et al. Their method is based on the average distance between players’ 
ideal points and the equilibrium outcome in policy games where players have 
different abilities to affect the final outcome of the decision-making procedure 

                                               
7 However, whether this conceptually makes sense at all has been questioned recently in Braham 

and Holler (2002) 
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employing tools of non-cooperative game theory. Players’ preferences, as well as 
the decision rule of the decision-making situation, are fully integrated into the 
analysis, in that it allows players to act strategically; this is the reason why they 
call their measure a strategic power index (or in the terminology of this thesis a 
strategic measure of voting power). Varying the preferences of the players, they 
consider the average distance between the equilibrium outcome and the ideal points 
of players as a proxy for their power. Even starting with a non-cooperative game 
theoretic setup ‘before the veil of ignorance’, Felsenthal and Machover (2001a) 
have shown that behind the veil of ignorance their strategic measure turns out to be 
the well known Penrose/Banzhaf measure. 

4. Outline and Summary of Results 

This thesis consists of two parts. Part I concerns theoretical aspects of the theory 
of voting power while part II deals with applications of the theory of voting power 
to political and organizational questions. The chapters of both parts are laced 
together by their common focus on questions of a prioricity and local monotonicity 
and by the analysis and application of Straffin’s probabilistic partial homogeneity 
approach to the measurement of power. 

  Part I contains four theoretical chapters: 

• Chapter 2: When is A Priori Voting Power Really A Priori ? 
• Chapter 3: Voting Power in Games with Abstentions 
• Chapter 4: Local Monotonicity and Straffin’s Partial Homogeneity Approach  

                 to the Measurement of Voting Power 
• Chapter 5: Constrained Monotonicity and the Measurement of Power 

  Chapter 2 concerns a discussion of a prioricity properties of measures of 
voting power, in particular, questioning the position taken by Felsenthal and 
Machover (see, e.g., Felsenthal and Machover, 1998; Felsenthal et al., 1998). The 
analysis in this paper is: (i) There is little ground to support Felsenthal and 
Machover’s position that the Penrose/Banzhaf measure, derived from an 
assumption that each player behaves independently under Straffin’s approach, is 
the only pure a priori measure or is ‘more’ a priori than the Shapley-Shubik index, 
which results from Straffin’s approach if it is assumed that all players behave as 
clones according to the so-called ‘homogeneity assumption’. (ii) That, in contrast 
to Straffin’s (1977) statement that partial homogeneity assumptions are by their 
nature ad hoc, a partial homogeneity framework could also be a priori if the 
additional information which is used has an a priori ‘character’. An example of the 
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latter is given in chapter 7 where a priori voting power in hierarchical 
organizations is discussed. 

   In chapters 3 and 4 the a prioricity discussion is examined in more detail 
devoting a separate section of each chapter to this issue. While chapter 3 contains 
a more detailed discussion of the question whether one can distinguish between 
Straffin’s independence and homogeneity assumption behind a Rawlsian ‘veil of 
ignorance’, chapter 4 elaborates when a measure based on a partial homogeneity 
structure fulfils the conditions to be aprioristic. 

  However, the main focus of chapters 3 and 4 are on different issues. Chapter 
3 deals with the occurrence of abstentions in simple voting games. This is a very 
young and as yet under-developed part of the theory of voting power. Even in 
social choice, abstention is generally regarded as perfectly rational and normal.8 It 
is rather surprising, therefore, that the literature on voting power has until quite 
recently ex- or implicitly ignored the phenomenon.9 

  A first approach to dealing with abstentions was made by Felsenthal and 
Machover (1997, 1998). They proposed a ternary voting game (TVG). Chapter 3 
provides an alternative way to model abstention by using an abstention voting 
game (AVG). The basic difference is that a TVG treats ‘yes, ‘no’ and ‘abstain’ as 
simultaneous choices, while under an AVG setup voting is conceptualised 
sequentially: a player first chooses whether to vote at all, and then, if he or she has 
decided to vote, between casting a ‘yes’ or ‘no’ vote. 

  Both approaches can be conceptually justified. As Machover (2002) has 
pointed out, we can distinguish between two different forms of abstention: 
abstention by default and active abstention. By the former is meant the act of not 
showing-up to vote; by the latter is meant the case of a player declaring ‘I abstain’. 
While the TVG model can perhaps be regarded as assimilating all abstentions to 
those of the active kind, the AVG model, can be regarded doing the same for all 
abstentions that occur by default, i.e. abstentions that do not really figure as 

                                               
8 For a discussion see Green and Shapiro (1994, pp. 47-71) and the references they refer to. 
9 Note, that real-life decision rules (such as the UN Security Council) where abstention is in fact a 

tertium quid, are quite often misreported in the voting power literature as though they counted 
abstention as a ‘no’ vote. Apparently, scholars who assumed that abstention is irrational and 
undeserving of theoretical consideration fell into the trap of assuming that it, therefore, does not 
exist. Felsenthal and Machover (1997, 2001b, 2001c) cite many examples of such misreporting 
from the voting-power literature. 
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expressing an intermediate or even indeterminate degree of support between ‘yes’ 
and ‘no’, but as opting not to participate in a division.10 

  The focus of chapter 4 is on the ongoing and fundamental debate in the 
literature on voting power about what constitutes a ‘reasonable’ measure of a 
priori voting power. The reason is partly due to the fact that there is as yet no 
intuitively compelling and complete set of axioms that uniquely characterize a 
measure with the result that there are a variety of different measures that not only 
give different cardinal values but also different ordinal rankings of players. 

  A central topic in this debate is whether or not a reasonable measure of voting 
power should fulfil local monotonicity (LM) which is a specific version of a 
relation that goes back to Isbell (1958) and which is known as the desirability 
(Maschler and Peleg, 1966) or dominance (Felsenthal and Machover, 1995) 
relation. LM says that in weighted voting games (WVGs), i.e. simple voting 
games characterized by a vector of voting weights attached to each player and a 
quota, if a player i has at least as much weight as a player j, then player i should 
have as least as much power as player j. While the Shapley-Shubik index and the 
Penrose/Banzhaf or Coleman measures are locally monotonic, the Deegan-Packel 
and the Public-Good measures are not. 

  Some authors, notably Felsenthal and Machover (1998), have argued that the 
violation of LM is ‘pathological’ and thus measures of voting power that exhibit 
such behaviour are unreasonable. Other authors, noteably, Brams and Fishburn 
(1995) and Holler (1997, 1998), have argued that the violation of LM is a simple 
social fact of power and, therefore, LM cannot be used to determine the 
reasonableness of a measure of voting power. 

  So far the debate has ignored the violation of LM by another set of measures 
derived from Straffin’s partial homogeneity approach. By examining violations of 
LM in this context it is shown that the different sides to this debate are in a sense 
‘both wrong’. It is argued that LM is a special case of a more general monotonicity 
condition that relates ‘resources’ to ‘power’; in LM the resources are but the 
voting weights. However, given that it is not clear that a priori voting power is 
based on, and only on, the vector of voting weights and the decision rule, it turns 

                                               
10 Note, that abstention by default can be seen as a reversal of the ‘new member story’ from Brams 

(see Brams, 1975, pp. 178-180; Brams and Affuso, 1976; Rapoport and Cohen, 1984). This and 
also the relation of our approach to Saari and Siegberg’s (2000) results for semivalue rankings 
after dropping players is subject for further research in progress together with Matthew Braham. 
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out that a violation of LM can be ‘reasonable’. This, however, does not imply that 
power is not monotonic in resources per se. 

  The issue of LM and its violation is also central to chapter 5. It deals with the 
violation of LM in voting weights by Public-Good measures which most prominent 
measure is the Public-Good Index (Holler, 1982a; Holler and Packel, 1983). The 
underpinning argument of the Public-Good measures is the existence of a decision-
making structure that includes an incentive structure such that only those winning 
subset (coalitions) of players ought to form which contain no excess-player, i.e. 
the defection of each player makes the subset losing.  

  The chapter introduces two constrained versions of LM: (i) player-
constrained LM by restricting the number of non-dummy players in a game and 
(ii) partial LM by applying specific constrains on voting weights. It is shown the 
Public-Good measures fulfil partial LM for every proper WVG, i.e. for WVGs in 
which two disjoint subsets are never winning at the same time, and player-
constrained LM for every WVG with a simple majority rule and up to four non-
dummy players. Later studies of player-constrained LM by Schönfeld (2001) 
have shown, that player-constrained LM is also fulfilled for five non-dummy 
players if the WVG is self-dual (or constant sum), i.e. proper and strong. A WVG 
is strong if there is no subset such that this and its complement are losing at the 
same time. Note, that a simple way to guarantee that a WVG is self-dual is to set 
the sum of voting weights to an odd-number. Due to the fact, that as the division 
voting weights becomes finer and finer, the probability that a non-self-dual game 
occurs converges to zero. Therefore, the probability that player-constrained LM 
will be violated for five non-dummy players converges to zero, while simulations 
for six and seven non-dummy-players have shown that the probability of a 
violation of LM converges to around 20 % and 35 %, respectively. 

  Chapter 5 concludes with a discussion that points out that whether a specific 
measure of voting power is appropriate depends on the properties of the model of 
collective decision-making which one wants to analyze, and not necessarily on 
some intuitive notions of monotonicity. 

  Part II of this thesis contains two applied chapters, which make use of parts 
of the results provided in the previous chapters: 

• Chapter 6: Proportional Representation in the National Assembly for Wales 

• Chapter 7: A Priori Voting Power in Hierarchical Organizations 
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While chapter 6 is an application of the theory of voting power to an actual 
decision-making situation, chapter 7 deals with what one may call a ‘theoretical 
application’, i.e. the application of voting power to answer questions in another 
theoretical area of research. In the case of chapter 7 this is the study decision-
making situations and the nature of power in hierarchical organizations. 

  Chapter 6 contains an analysis of the voting rules for the National Assembly 
for Wales, which was established in 1999. The rule for electing members of the 
National Assembly for Wales is the Additional Member System (AMS), i.e. not 
the otherwise usual first-past-the-post system for Westminster Parliament. The 
AMS gives each voter two votes, to be cast at the Assembly Constituency level, 
and at the bigger Assembly Electoral Region level. One third of the members to the 
assembly are elected by a form of proportional representation, where party support 
is calculated by aggregating the two votes. The voters are allowed to cast the 
second vote in favour of a different party than the one they earlier voted for, at the 
Assembly Constituency level. It is shown that this additional degree of freedom 
can frustrate the objective of obtaining better correspondence between party 
support and the number of seats. Also, the effects of this additional degree of 
freedom on the voting power of the parties on the Assembly Electoral Region level 
are shown using Straffin’s partial homogeneity approach.11 Based on this analysis, 
a different system of proportional representation and a method of equating the 
distribution of voting power and seat distribution are proposed. 

  The main result of the study of the voting rules for the National Assembly for 
Wales is that the switch from the first-past-the-post system to the AMS for 
electing the assembly can frustrate voters and implies the possibility that some 
parties in the assembly will be rendered powerless, but may at least give some 
parties the chance of being involved in the business of government. 

  Chapter 7 deals with the nature of a priori voting power in hierarchical 
organizations. It is shown that every ‘restricted’ game with a permission 
structure, which is a simple game where the winning subsets are additionally 
restricted by a permission structure (see Brink, 1994, 1997, 1999, 2001; Gilles et 
al., 1992; Gilles and Owen, 1994; Brink and Gilles, 1996), can be represented as a 

                                               
11 Note, that while writing this paper we were in the believe that the original positions of Labour 

and Liberal Democrats can be seen as historical based a priori information of the decision-
making structure and thus could be used to analyse the a priori voting power of these. 
Unfortunately, when we finished this paper, Labour and Liberal Democrates have changed their 
positions. Thus our assumption has turned out to be inappropriate regarding our aim of an a 
priori analysis of the voting rules for the National Assembly for Wales. This has led to further 
research by the authors (see Altunbas et al., 2000, for first results). 
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compound game. Furthermore, it is pointed out that the existing research on voting 
power in hierarchical structures is necessary, but not sufficient to understand the 
nature of a priori voting power in hierarchical organizations, because it does not 
take into account: (i) that players who participate in a decision-making in 
hierarchical organizations in general have a damatis personae, which we model 
via Straffin’s partial homogeneity approach applied as an aprioristic framework, 
and (ii) that the top of a hierarchical organization can have a board-structure. 

  Taking both aspects into account we not only come out with violation of LM 
which one would expect based on the results of chapter 4. Moreover, there are 
some further counterintuitive results, i.e. the violation of known monotonicity 
properties of power in hierarchical organizations such as (weak) structural 
monotonicity and dis- and conjunctive fairness. (Weak) structural monotonicity 
more or less says that a player in a hierarchy who dominates another player should 
have at least as much voting power as the dominated player; dis- and conjunctive 
fairness roughly stipulate that the deletion of a hierarchical relation between two 
players under disjunctive fairness should change their voting power and that of the 
superiors of the dominating player by the same amount and in the same direction, 
while under conjunctive fairness the voting power of the dominated player and his 
or her superiors should be changed by the same amount and in the same direction, 
i.e. the fairness conditions turn out to be very specific ones that appear to be more 
monotonicity than fairness conditions. 

  Moreover, it is illustrated that dropping a player belonging to an intermediate 
hierarchical level, does not necessarily imply that his or her voting power is 
transferred downwards to the lower hierarchical levels. This has important 
implications to two related management concepts which are known as 
empowerment12 and lean management.13 Both are based on the idea that: (i) by 
removing intermediate layers or parts of layers of a hierarchy power can be 
transferred downwards to employees on the lower levels and that (ii) such a change 
will lead to increased motivation due to employees having more of a say in the 
organization’s destiny and thus, increased responsiveness and productivity gains 
for the organization. But as indicated above, (i) is not necessarily true if we 
remove layers or parts of layers. The practical implications of this perspective is 
that when we come to look at the performance of organizations, it is necessary to 
abstract from the particular personalities that are involved. The success or failure 
of an organization may not be so much a matter of its ‘leadership’ and 
                                               
12 See Gal-Or and Amit (1998) for a summary of empowerment. 
13 This concept goes back to Krafcik (1988). 
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‘management style’ – its ‘corporate culture’ – but of the interaction of incentives 
and decision-making rules. 
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C h a p t e r  2  

WHEN IS A PRIORI VOTING POWER REALLY A PRIORI ?* 

Abstract: This chapter concerns a discussion of a prioricity properties of measures 
of voting power, in particular, questioning the position taken by Felsenthal and 
Machover. The analysis in this paper is: (i) There is little ground to support 
Felsenthal and Machover’s position that the Penrose/Banzhaf measure, derived 
from an assumption that each player behaves independently under Straffin’s 
approach, is the only pure a priori measure or is ‘more’ a priori than the Shapley-
Shubik index, which results from Straffin’s so-called ‘homogeneity assumption’. 
(ii) That, in contrast to Straffin’s statement that partial homogeneity assumptions 
are by their nature ad hoc, a partial homogeneity framework could also be a priori 
if the additional information which is used has an a priori ‘character’. 

1. Introduction 

Power is an important concept in economics and political science. We talk about 
market power, monopoly power, party power, and so forth. There is, however, 
little agreement on how power is to be defined and how to observe and measure it, 
although in collective decision-making situations where a decision is made by 
voting on a proposal that is pitted against the status quo, measures of voting power 
are used in order to measure the distribution of power. One family of measures of 
voting power are those based on Straffin’s (1977) partial homogeneity approach. 
The best known measures within this family are its extreme cases: the Shapley-
Shubik (1954) and the Penrose (1946)/Banzhaf (1965) measures. Most scholars 
classify these and all other measures belonging to this family as measuring a priori 
voting power, i.e. the voting power only results from logical conclusions which are 
independent from experience or observation. In this context, a priori is commonly 
taken to mean the abstraction from individual preferences and social and 
psychological influences of the members of the voting body.1 Based on this, or at 
least on a very similar definition, Felsenthal et al. (1998) argue that only the 

                                               
* This chapter is based upon Steffen (2000). The author would like to thank Manfred Holler, 

Matthew Braham, Rie Ono, Christian Reuter, Mika Widgrén and two anonymous referees for 
helpful comments. 

1 An alternative way is that preferences are randomly distributed with respect to the decision-
makers. 
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Penrose/Banzhaf measure is an a priori measure of voting power, while the 
Shapley-Shubik index and thus by implication all other measures of this family 
should be considered as a posteriori measures - because they take into account 
information obtained from experience or observation. 

This chapter argues that this simple classification does not hold and that 
power is always measured a priori if it is not measured ex post (i.e. includes actual 
observations of voting behaviour), but that the degree of a priority varies with the 
extent to which additional information is used. 

The chapter is organized as follows: section 2 contains a brief introduction to 
Straffin’s partial homogeneity approach and some formal definitions. Section 3 
illustrates Felsenthal et al.’s position and argues that they neglect some important 
aspects, especially concerning the application of measures of voting power to real 
problems. While this section only deals with the two aforementioned extreme cases 
of the partial homogeneity approach, Section 4 extends the considerations and 
introduces the idea of fuzzy standards. Section 5 offers a classification of three 
different levels of a priori information and delimits these from an a posteriori 
level. Concluding remarks are made in Section 6. 

2. Measurement of Voting Power 

Let N = {1, 2, ...,n} be a set of voters (or players) of a weighted voting game      
[q; w], where q ∈ [0,1] is the majority quota, which is the voting weight needed to 
attain a certain end, i.e. to win or block a bill and w = (w1, w2, ..., wn) is the vector 
of voting weights of each voter i ∈ N. Furthermore, let W be a collection of 
subsets S⊆N with ii S

w q
∈

≥∑ , which is called the set of all winning coalitions. 
Then, we define the set of all crucial coalitions C as a collection of subsets S∈W 
where for each S at least one voter i ∈ S is a crucial voter. Voter i is called crucial 
for S∈W, if S is a losing coalition without i: S\{i}∉W. Finally, let Ci denote the 
class of crucial coalitions containing voter i as a crucial voter. 

  If we want to measure the distribution of voting power in a certain voting 
body following Straffin (1988) we need to ask the question ‘What is the difference 
that voter i can make to the decision with its votes?’ That is, voter i’s vote makes a 
difference when i converts a losing coalition S\{i} to a winning one, - in other 
words, when i is crucial to a winning coalition S. Thus the power of voter i can be 
defined as the probability that a coalition S will be formed and that S belongs to 
the set Ci. 
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For the calculation of this probability which is shown in Straffin (1977, 1988) we 
have to specify the probability model for the elements of the acceptability vector 
p, which includes the probabilities p1, p2, ..., pn, with pi ∈ [0,1] with which each 
voter i∈N will vote for a random bill. If we do not have any prior information of 
voters’ attitude towards alternative bills per se, there are the following two 
standard assumptions:2 

Independence assumption: Each pi is chosen independently from the uniform 
distribution on [0,1], i.e. how one voter feels about a proposal has nothing to do 
with how any other voter feels. 

Homogeneity assumption: Each pi = t and t is chosen from the uniform 
distribution on [0,1], i.e. all voters have the same probability of voting for a given 
proposal, but t varies from proposal to proposal. We could think of voters as 
judging bills by some common standard, and t as the bill’s acceptability level by 
that standard. 

It should be noted that the independence assumption is equivalent to assuming 
that each voter i will vote in favour for any bill with probability ½ (Straffin, 
1977). Thus, the independence assumption, which implies so-called indifference, 
requires only that the mean value be specified, while the homogeneity assumption 
requires the specification of the whole distribution from which the elements of the 
probability vector are selected (Leech, 1990). In this regard Straffin (1977) 
demonstrates that the independence assumption leads to the Penrose/Banzhaf 
measure (which is also known as the absolute or non-normalized Banzhaf index), 
while the homogeneity assumption yields the Shapley-Shubik index. 

  In order to account for additional information concerning the relation of 
voters in a given voting body, we can combine these two assumptions leading to 
the partial homogeneity assumption. For example, we can assume that a group of 
voters Ω ⊂ N has a certain standard which implies pi∈Ω = t, whereas the standard 
of another group of voters Τ ⊂ N with Ω ∩ Τ = ∅ is exactly the opposite of the 

                                               
2 It should be pointed out that these assumptions do not include specific preferences as they are 

used in connection with spatial voting models (see Holler and Widgrén, 1999). While in the case 
of spatial voting models p includes real numbers as an expression for voters’ preferences, here 
we only make assumptions concerning the probability distributions of the elements of p. Thus 
the partial homogeneity approach only employs relationships between standards of behavior of 
the voters which either can be a priori or a posteriori. For general considerations concerning 
other probability distributions of pi, see Straffin (1978). 
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former one, i.e. pi∈Τ = 1 - t, while all the other voters i∈N \ {Ω∪Τ} behave 
according to the independence assumption so that pi∈N \ {Ω ∪ Τ} = ½.3 

3. Homogeneity vs. Independence Assumption? 

Felsenthal et al. (1998) argue that in contrast to the independence assumption, the 
homogeneity assumption requires a very strong measure of uniformity among 
voters. They conclude that the choice between the homogeneity and independence 
assumption should not be made according to the degree of verisimilitude with 
regard to a real-life voting situation, but rather on the grounds of which is the more 
reasonable expression of a priori voting power. In their view, the independence 
assumption should be interpreted as embodying absence of a priori information 
about voters’ motivations, intentions, and interests. They further held that even in 
situations where the homogeneity assumption may be preferable on the basis of 
some partial knowledge, the power measure is a posteriori. The position is 
supported by reference to Leech (1990), who points out that the distributional 
assumption underlying the homogeneity assumption is much stronger than behind 
the independence assumption. Consequently, the homogeneity assumption is 
appropriate only if there is good reason to assume a high degree of uniformity 
among voters. 

There is no question that the formal arguments underlying Felsenthal et al.’s 
statement are correct. They do, however, seem to argue that we can only measure 
a priori voting power of a voting body behind a Rawlsian veil of ignorance 
(Rawls, 1971) if we know the majority quota q, the vector of voting weights w, 
and assume - due to the principle of insufficient reason - that the voters behave 
independently. At first glance, this looks like a real a priori position; although as it 
will be shown, this is mistaken. 

Firstly, it is not clear that the independence assumption should be more 
appropriate than that of homogeneity if we have no information on voters’ 
behaviour: the problem being that there is no justifiable reason to prefer one 
assumption or the other. The independence assumption implies that voters behave 
independently, while the homogeneity assumption implies a correlated behaviour 
and thus both assumptions are extreme cases. 

                                               
3 For the power value calculation for this case, see e.g. Kirman and Widgrén (1995). 
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Secondly, it appears reasonable to reject the independence assumption as 
inappropriate in cases when it is known that there is a common standard in the 
voting body. For instance this may be a historically determined pattern of 
behaviour and is thus valid behind the veil of ignorance. In such cases it is 
necessary to take into account such patterns by choosing the appropriate measure. 

  There is, moreover, a theoretical case behind the veil of ignorance where the 
homogeneity assumption is the appropriate one. This is when the relevant common 
standard for decision-making in a voting body is given by a Kantian categorical 
imperative (Kant, 1989), i.e. an a priori norm which is binding for all rational 
beings and is valid independent of all experience. There is, then, no reason to 
conclude that a measure of voting power that rests on a common standard is not an 
a priori one. 

4. The Partial Homogeneity Assumption 

Having considered the extreme cases of partial homogeneity, it is necessary to 
generalize the analysis. For this, we employ the arguments introduced above to 
further qualify why it seems inappropriate to conclude that only the independence 
assumption leads to a real a priori voting measure of voting power. 

One point of departure is to translate Kant’s a priori principles to the case of a 
political voting body. Here we can say that historically - at least in many countries 
- the voters of a left-wing party and the voters of a right-wing party, have a priori 
opposite standards. If, in addition, there is a centre party, its standard will lie 
between the other two former parties, i.e. the probability that voters of this party 
will vote in favour or against any given bill will be ½.4  

According to Klingemann and Volkens (1992), Gallagher et al. (1995, pp. 
157-162) and Roberts (1987), for instance, there is evidence to this effect in 
Germany since 1949: the left-wing Social Democrats (SPD) and the right-wing 
Christian Democrats (CDU) in general are diametrically opposed, while the Free 
Democrats (FDP) lie somewhere between the two. If we analyze the distribution of 
power in an assembly consisting of these three parties, and if we consider what we 
know about the position of the parties, we can model these positions as standards, 
i.e. pSPD = t, pCDU = 1- t and pFDP = [t + (1 - t)] ½ = ½, and we are still measuring 
a priori voting power. 

                                               
4 For the problems of choosing an one-dimensional political space, see e.g. Schmidt (1996). 
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Another example where diametrically opposed standards in voting games could 
occur is in the decision-making process of firms, the banking sector is such a case. 
Consider, for instance, the decision mechanism for granting a loan. This amounts 
more or less to a voting situation in which - in a simplified version - both the 
customer consultants and the credit department personnel have a vote. While a 
customer client is predominately interested in credit expansion, the credit 
department is on the whole interested in reducing the risk of the bank’s credit-
portfolio.5 In this case we are again measuring a priori voting power despite the 
inclusion of supplementary information. 

  As the partial homogeneity approach modelled above uses diametrically 
opposed standards, it is possible to argue that it is inappropriate in cases where we 
do not know to what extent the standards differ. Here a possible solution is a 
‘fuzzy’ version of the partial homogeneity approach. What this means is that we 
take intervals of standards rather than precisely opposite standards to analyze the 
‘stability’ of the solution to the voting game that uses diametrically opposed 
standards. Defining intervals for a fuzzy measure requires, however, that the 
standards sufficiently differ. As an example, consider a politically divided voting 
body, divided into left-wing and right-wing groups, and that the left-wing voters, 
i∈L with L⊂N, have a common standard pi∈L = pL = t. Then we can analyze the 
effect of extending the common standard pi∈R = pR of the right-wing voters, i∈R 
with R = N \ L, from pR = 1 - t to pR ∈ [1 - t - α; 1 - t + β] with 0 < β < t, and 0 < 
α < 1 - 2 t for t < ½. 

If there exists a third group of voters M⊂N, with M = N \{L∪R}, whose 
members are provided with a common standard pi∈M = pM and which lies between 
the standards of the right- and left-wing groups, we can define an additional 
standard interval for these voters. In this case we have to modify the interval for 
the right-wing voters i∈R introduced above. Let pM ∈ [g - γ; g + δ] with 0 < γ < g 
- t and 0 < δ < 1 - t - α - g be the standard interval of the voters i∈M in the central 
position then the corresponding interval for the right-wing voters is pR ∈ [1 - t - α; 
1 - t + β] with 0 < β < t and 0 < α < 1 - t - g - δ. 

  In each case we can model the behaviour of additional voters without a 
common standard according to the independence assumption (see e.g. Altunbas et 
al., 1999a). This is shown for the case where we have a left-wing and a right-wing 

                                               
5 For a more detailed example and the application of measures of voting power to hierarchical 

organizations, see Steffen (1999) and Braham and Steffen (2001c, 2002b). 
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group of voters in the following example which illustrates the usage of probability 
intervals. 

Example: Consider the weighted voting game [5; 2, 2, 1, 1, 1] and the 
acceptability vector p = (pL,pL,½,pR,pR). Applying a partial homogeneity structure 
with pL = t and pR = 1 - t, we obtain Ef = (1.00, 1.00 ,0.50 ,0.50 ,0.50). After 
normalizing these values we obtain Efnom = (0.29, 0.29, 0.14 ,0.14 ,0.14). Now 
varying the common standard of the rightist voters pR ∈ [1 - t - α; 1 - t + β] in 5%-
steps for α|β = 0 ∈ [0.00; 0.55] and β|α = 0 ∈ [0.00; 0.65], respectively, we obtain 
the result shown in Figure 1. 

  Figure 1 indicates the effects on relative (i.e. normalized) voting power 
resulting from such a variation of the standard pR for all five voters in the game. 
Obviously it is unnecessary that the right-wing standard be exactly opposite to that 
of the left-wing voters pL = t to obtain an approximate relative power distribution 
close to the one by using diametrically opposed standards. For example, we can 
see from Figure 1 that this correspondence is true for α = β ≈ 0.15. In this case 
there exists an interval spread of about 0.3. 

  But, one may also argue that there is a visible difference in the power 
distribution within the interval spread. However, we can encounter that these 
differences are negligible and that the ordinal power rankings remain the same 
within the spread. Note, that the ordinal rankings only change for α > 0.3, while 
they remain constant for 0.3 > α > 0 and for all permissible values of β. For α > 
0.3 which requires t < 0.35 and which is equal to the statement that the left-wing 
group of voters is a relative left-wing extremist group we obtain the result that 
these voters are no longer the most powerful voters. Figure 2 indicates the ordinal 
rankings resulting from variation in pR.6 

  Additionally, we also see that total non-normalized power decreases with an 

increase of α, and increases with an increase of β, i.e. the more standards differ the 

more powerful are the voters and vice versa. 

                                               
6 For our analysis of figure 2, we have neglected ordinal ranking effects which result from relative 

power differences ∆ Ef nom
ij = Ef nom

i – Ef nom
j which are less than 0.003. 
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Figure 1: The Evolution of Normalized Voting Power Varying the Opposite Standard pR 
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Figure 2: Ordinal Rankings of Voting Power 

α β Ordinal Rankings of Voting Power 

α = 0.00 β = 0.00 Ef1 ~ Ef2 > Ef3 ~ Ef4 ~ Ef5 
α = 0.00 β > 0.00 Ef1 ~ Ef2 > Ef3 > Ef4 ~ Ef5 

0.20 > α > 0.00 β = 0.00 Ef1 ~ Ef2 > Ef3 ~ Ef4 ~ Ef5 
α = 0.25 β = 0.00 Ef1 ~ Ef2 > Ef3 > Ef4 ~ Ef5 
α = 0.30 β = 0.00 Ef1 ~ Ef2 ~ Ef3 > Ef4 ~ Ef5 
α > 0.35 β = 0.00 Ef3 > Ef4 ~ Ef5 > Ef1 ~ Ef2 

5. A Classification of Three Different Levels of A Priori Information 

In this section a classification consisting of three different levels of a priori voting 
power is put forward. Categories are distinguished by the nature of available 
information supplementary to the pure weighted voting game [q; w]. Each of the 
levels is demarcated from a posteriori voting power. 

The first a priori level is described by cases where only information about the 
pure weighted voting game [q; w] is available. Here we cannot decide which 
assumption is more appropriate for modelling voter behaviour; the choice is, 
therefore, arbitrary. 

The second level defines cases where general additional a priori information is 
available. This level includes the two cases of a priori additional information 
discussed above: that of a Kantian categorical imperative or as in the example of 
bank granting a loan; and that which refers to a historical precedent, such as the 
behaviour of voters when they are political parties. 

The third level is a result of applying measures of voting power to analyze the 
distribution of power of a voting body when knowledge about individual voters is 
available. Here the formation of specific coalitions vis-à-vis particular issues can 
be taken into account - although in such cases we must exercise caution regarding 
what we mean by power. The problem here is that information derived from 
knowledge of individual voters is likely to be preference-based; and according to 
Miller (1982), we have to distinguish between preference and non-preference-
based sources of success: a voter may be successful because his or her preferences 
are similar to those of most other voters, or he or she is in a median-voter position. 
This, however, says nothing about his or her power as he or she may no longer be 
successful if his or her preferences change. Instead, a powerful voter should be 
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able (perhaps in a coalition with others) to bring out outcomes he or she likes or 
preclude outcomes he or she dislikes, regardless of the preferences or actions of 
other voters. In other words, power should be seen as a non-preference-based 
source of success. Hence, taking into account information on voting behaviour that 
may be blurred by preferences, makes it impossible to distinguish power from 
other components of success. 

  As a caveat, in contrast to a priori voting power which could be measured 
according to the classification above, it is possible to measure a posteriori voting 
power. In this case we would use quantitative information to model coalition 
formation, as for example, in Stenlund et al. (1985). In this paper the authors 
employed the relative frequencies of actual coalitions in the Swedish Riksdag from 
1971 to 1979 as probability weights of the theoretically possible coalitions in order 
to measure the distribution of voting power. They call this a measure of real 
voting power in contrast to what they call formal voting power. Under formal 
voting power they understand voting power which is measured, for instance, by 
applying the measures based on the partial homogeneity approach. 

6. Conclusion 

Felsenthal et al. (1998) maintain that the only possibility to measure a priori 
voting power is to get away from all supplementary information and to stick with 
the pure voting game and then due to the principle of insufficient reason assume 
that all voters’ behave according to the independence assumption. This chapter has 
argued that this appears inappropriate and that there is no unique measure of 
voting power which measures a priori voting power. In other words, power is 
always measured a priori, if it is not measured a posteriori, i.e. includes actual 
observations of voting behaviour. The point is to recognize that the degree of a 
priority varies with the amount of qualitative information. 



C h a p t e r  3  

VOTING POWER IN GAMES WITH ABSTENTIONS* 

Abstract: In general, analyses of voting power apply the notion of a simple voting 
game. This notion restricts each voter to two options: ‘yes’ or ‘no’. Felsenthal and 
Machover introduced the concept of a ternary voting game in which ‘abstain’ is 
added as a third option. They derive analogues of the Shapley-Shubik and Banzhaf 
indices. We examine these analogues and show that the assumption upon which 
they are based, that yes, no, choices, may not be justified. We propose a sequential 
structure in which voters first choose between participation and abstention and 
then between yes and no. This results in a structure that we denote as an abstention 
voting game, which is a collection of possible games on possible assemblies. 

1. Introduction 

In a series of recent publications and papers, Felsenthal and Machover [F&M] 
(1997, 1998, 2001a, 2001b, 2001c) have noted that except in a few rare cases 
(e.g. Fishburn, 1973; Morriss, 1987), the published work on voting power has 
used, explicitly or implicitly, one and the same type of mathematical structure to 
model decision rules of voting bodies that make yes/no decisions. This is the 
structure known as a simple voting game (SVG). 

  The SVG set-up and that of an important sub-class known as weighted voting 
games (WVG) are, according to F&M, seriously wanting in one important respect: 
they are strictly binary in that they assume that in each division1 a voter has just 
two options: voting ‘yes’ or ‘no’. In their papers, F&M point out, and give exam-
ples of, the fact that many real-life decisions are ternary in the sense that they al-
                                               
* This chapter is based upon Braham and Steffen (2002a). The author wishes to thank the 

participants at the Institute of SocioEconomics’ Research Seminar, University of Hamburg, for 
comments on a very early forerunner of this chapter as well as the participants at New Political 
Economy Meeting on Power and Fairness, 3–6 September 2000, Bad Segeberg, Germany. The 
author thanks Manfred Holler for helpful and insightful discussions at various stages in this 
research and Ines Lindner who has cooperated on various aspects of this chapter. The author also 
thanks William Zwicker for a valuable insight. Finally, the author is deeply indebted to Moshé 
Machover for helping him straighten out the crooked timber of his thinking. The usual 
disclaimer applies. 

1 Here we follow F&M’s (1997, p. 335) use of the term as taken from English parliamentary 
parlance to denote the collective act of a voting body, whereby each individual member casts a 
vote. 
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low abstention as a tertium quid, the effect of which may be quite different from 
both a ‘yes’ and a ‘no’, and so cannot be assimilated to either. The implication is 
that one needs to take abstention seriously and account for it when we calculate the 
voting power of a voter in a given voting body. 

  In order to release decision rules from the SVG corset, F&M (1997, 1998) 
introduce a generalization of the SVG set-up called a ternary voting game (TVG) 
which recognizes abstention alongside ‘yes’ and ‘no’ votes. This extends some 
earlier work in this direction undertaken by Fishburn (1973, pp. 53–55). They then 
derive analogues for the most commonly used measures of voting-power, the 
Shapley-Shubik (1954) and Banzhaf (1965) indices. 

  In this chapter, we examine F&M’s indices and show that they imply a 
particular decision-making structure, which, while defensible from a purely formal 
a priori position, is not necessarily the only one. We impute an alternative 
decision-making structure and hence derive an alternative family of measures of 
voting power for games with abstentions. 

 This chapter is organized as follows: section 2 reproduces the basic formal 
framework for a SVG, F&M’s TVG, and the corresponding Shapley-Shubik and 
Banzhaf indices as the basis of our argumentation. Section 3 discusses and 
challenges the underlying and heuristic assumption in F&M’s TVG set-up, that is, 
to abstain is symmetric to ‘yes’ and ‘no’. It is proposed that the abstention decision 
may be of a different nature to ‘yes’ and ‘no’ and therefore should be characterized 
as a structurally separate category. Thus in contrast to F&M who assume a 
simultaneous choice structure, we assume a sequential one. Under this assumption 
we show in Section 4 that it is possible to derive a natural family of power indices 
for games with abstentions without departing from the traditional SVG structure, 
and characterize a SVG with abstentions as a set of possible games on possible 
assemblies. In section 5 some conceptual problems related to the choice of 
assumptions that have to be applied when using our framework are discussed. 
Section 6 concludes the chapter. 

2. Basic Definitions and Terminology 

For the basic definitions and terminology relating to the idea of a simple voting 
game (SVG) and weighted voting game (WVG), we refer the reader to Shapley 
(1962b) or to reproductions in F&M (1998) or Straffin (1983). However, in order 
to present F&M’s derivation of analogues for the Shapley-Shubik and Banzhaf 
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indices and to develop our own framework, we need to reiterate some of this here. 
In particular: 

Definition 2.1 (i) A SVG is a pair Γ = (N, W ), where N is a finite set and W is 
a collection of subsets of N, satisfying the following properties: ∅ ∉ W ; N ∈ W ; 
and if S ∈ W and S ⊆ T, then T ∈ W. 

(ii) By N is meant an assembly (or voting body) and is the largest in W, its 
members are voters (or players), and its subsets are coalitions, and the members 
of W are winning coalitions of Γ. If S ⊆ N but S ∉ W, then it belongs to the set of 
losing coalitions L. Further, if i ∈ S and S ∈ W but S − {i} ∉ W, then voter i is 
called critical in the coalition S in the SVG Γ. 

(iii) Voters in a SVG Γ are identified by the integers 1, 2, …, n, where n = |N|. 

  There is an important sub-class of SVGs known as weighted voting games 
(WVG):  

Definition 2.2 Let w = (w1, w 2, …, wn) be a nonnegative vector, and let q sat-
isfy 0 ≤ q ≤ ∑{wi : i ∈ N}. Then in a WVG (q, w), S ∈ W iff ∑{wi : i ∈ S} > q 
and S ∈ L otherwise. 

Remark 2.1 The numbers wi are called (voting) weights, and q is called the 
(majority) quota. 

Definition 2.3 A numerical measure of the power of voter i to determine a de-
cision or series of decisions made in an assembly N is a vectorial function ξ as-
sociating to any SVG Γ an element of 0

+R
n , i.e. ξ is any function assigning a non-

negative real number ξi (Γ) to every voter i of every SVG Γ in which at least one 
voter i from each SVG Γ is assigned a value ξi (Γ) > 0 and ξi (Γ) is invariant under 
isomorphism. 

Remark 2.2 This very general definition, which is based upon Sagonti 
(1991), F&M (1995), and Felsenthal et al. (1998) encompasses three types of 
measures: (i) scores (counts or ‘raw’ indices), which we denote by κi (Γ) for voter 
i; (ii) indices, obtained by normalization of κ, i.e. κi/∑{κj(Γ) : i ∈ N}; and (iii) 
ratios of κi(Γ), obtained by dividing κi(Γ) by an appropriate quotient.2 We will 
make use of this definition later in the chapter in our derivation of a family of 
power indices that takes into account abstentions. 

                                               
2 The distinction between these three measures is made in Felsenthal et al. (1998). 
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The two most known and applied measures of voting power are the Shapley-
Shubik and Banzhaf indices. 

Definition 2.4 The Shapley-Shubik index (φ) of voter i in a SVG Γ is defined as 
φi (Γ) = ∑(| S | − 1)!(n − | S |)! / n!, where the summation is over all coalitions S in 
which i is critical. As is easy to prove, the sum of ∑(| S | − 1)!(n − | S |)! for all 
i ∈ N is equal to n!, so that ∑{φi(Γ) : i ∈ N} = 1. 

Definition 2.5 (i) The Banzhaf score or ‘raw’ Banzhaf index (η) of voter i in a 
SVG Γ is the number of coalitions in which i is critical. 
(ii) The Banzhaf index (β) of voter i in a SVG Γ is obtained from ηi (Γ) by nor-
malization: βi (Γ) = ηi (Γ)/∑{ηj (Γ) : j ∈ N}, so that ∑{βi (Γ) : i ∈ N} = 1. 
(iii) The absolute Banzhaf measure (β¶) of voter i in a SVG Γ is defined by 
βi ´  (Γ) = ηi (Γ)/2n–1. (This measure is commonly known as the absolute Banzhaf 
index.) 

  As F&M (1998, p. 14) note, the basic SVG set-up and the corresponding 
measures of voting power are ‘one-sided’, for they only model the division of an 
assembly on a resolution by the coalition S of the members voting ‘yes’. While 
admittedly this provides all the information needed when abstentions are not al-
lowed, F&M take it to be too restrictive for modelling abstentions. Thus they in-
troduce an alternative representation of a SVG that when extended can take ab-
stentions into account. To acquaint the reader with this idea, we start with their 
concept of a SVG in which abstention is not a tertium quid, which they define in 
terms of a bipartition or binary division: 

Definition 2.6 A bipartition or binary division of a set N is a map B from N to    
{−1, 1}. By B− and B+ are denoted the inverse images of {−1} and {1} respec-
tively under B: 

B − = {i ∈ N: Bi = −1}, B + = {i ∈ N: Bi = 1} 

Thus for a SVG with an assembly N, the bipartition rule is the map V from the set     
N{−1, 1} of all bipartitions to {−1, 1}, such that for any B ∈ N{−1, 1}, 

+1      if  
( ) =

-1  otherwise

 ∈



B
B

WV  

Remark 2.3 In other words, a bipartition B represents a division of an as-
sembly but one that does not allow abstentions: the sets B − and B + represent the 
sets of ‘no’ and ‘yes’ voters respectively. Under this representation, a SVG is 
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interpreted as a decision rule that assigns an outcome V (B) to each binary divi-
sion: a negative outcome −1 or a positive outcome 1, according to whether the 
resolution is defeated or approved. 

  As is easy to see, the natural extension of this formal framework to the situa-
tion where abstentions are recognized alongside ‘yes’ and ‘no’ is a ternary or tri-
partition, i.e. classifying voters into three sets instead of two: 

Definition 2.7 A tripartition or ternary division of a set N is a map T from N 
to {−1, 0, 1}. By T −, T 0, and T + are denoted the inverse images of {−1}, {0}, 
and {1} respectively under T : 

T − = {i ∈ N: Ti = −1},    T 0 = {i ∈ N: Ti = 0},    T + = {i ∈ N: Ti = 1} 

That is, for a TVG with an assembly N, the tripartition rule is the map U from the 
set N{−1, 0, 1} of all tripartitions to {−1, 1}, such that for any T ∈ N{−1, 0, 1}, 

U W( ) = 1      if 
  otherwise

+
T T ∈




-1
 

Remark 2.4 (i) Similar to Definition 2.6, a tripartition T represents a division 
of an assembly but one that now permits abstentions: the sets T − and T + represent 
the sets of ‘no’ and ‘yes’ voters respectively and T 0 the voters who decide to ab-
stain. Under this representation, a TVG is interpreted as a decision rule that as-
signs an outcome U(T ) to each ternary division: a negative outcome −1 or a posi-
tive outcome 1, according to whether the resolution is defeated or approved.3 

(ii) As TVGs are obtained from SVGs by allowing each voter three options in-
stead of two, it is possible to generalize further and allow each voter k options, 
where k > 1. Each option can be interpreted as a ‘degree of support’ for a given 
resolution, ranging from complete opposition to total enthusiasm. Thus a TVG is a 
special case where k = 3 (Freixas and Zwicker, 2000). 

  The next step is to summarize F&M’s derivation of the ternary analogues for 
the Shapley-Shubik and Banzhaf indices. For the Shapley-Shubik index, we need 
to note that they do so by way of an alternative representation that makes use of 
definitions 2.6 and 2.7 (F&M, 1996). That is, F&M define the Shapley-Shubik 
index in terms of a roll-call model, a model which disposes of the famed ‘con-
venient device’ of assuming that the all voters line up and all say ‘yes’ (or all say 

                                               
3 This structure is a generalization of Fishburn (1973, pp. 53–55). 
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‘no’) and replaces it with one in which each voter is assumed to vote ‘yes’ or ‘no’ 
with equal probability for bipartition games (Definition 2.6) or ‘yes’, ‘no’ or 
‘abstain’ with equal probability for tripartition games (Definition 2.7). 

  The essence of a roll-call model is that a pivotal voter is the first voter whose 
vote – ‘yes’ or ‘no’ in the case of bipartitions or ‘yes’, ‘no’, or ‘abstain’ in the case 
of tripartitions – seals the outcome one way or the other, so that the votes of all 
subsequent voters no longer make any difference. Thus on the basis of the 
equiprobability assumption, the Shapley-Shubik index for voter i is the probability 
that i will be the unique voter (or pivot) in the roll-call space RN, which is defined 
as the size of possible orders in N, n!, multiplied by the set of all possible parti-
tions, 2n or 3n in the binary and ternary space respectively. 

  Calling the unique (or pivotal) voter i in each roll-call R of N for a binary 
partition (or SVG) V the V-pivot of R, denoted as ‘piv(R ; V ); and calling the 
unique or pivotal voter i in each R of N for a ternary partition (or TVG) U the U-
pivot of R, denoted as ‘piv(R ; U )’, F&M obtain the following two characteriza-
tions of the Shapley-Shubik index: 

Definition 2.8 (i) The Shapley-Shubik index (φ) of voter i in a bipartition (or 
SVG) V is given by φi(V ) = |{i = piv(R ; V )}| / 2n n!.  
(ii) The Shapley-Shubik index (φ) of voter i in a tripartition (or TVG) U is given 
by φi(U ) = |{i = piv(R ; U )}| / 3n n!. 

  Our last step in this section is to show how F&M translate the ideas of a ter-
nary space to defining the Banzhaf indices. Here the approach is more direct. First 
they demonstrate that it is possible to define the Banzhaf indices in terms of bi-
partitions, by showing that the Banzhaf score (see Definition 2.5) is equivalent to 
the number of bipartitions in which voter i is positively or negatively critical given 
that each partition is equally probable. Then they demonstrate that it is easy to 
extend this framework to the tripartition case. 

  To spare the formalities, F&M’s intuition behind this idea is that what we are 
looking at is the agreement of voter i with the outcome of the bipartition B, which 
means that the decision goes i’s way: in the case of positive agreement i votes ‘yes’ 
and the resolution is passed, and in the case of negative agreement i votes ‘no’ and 
the resolution fails. In other words, i’s being critical (positively or negatively) for 
B means that i not only agrees with the outcome but also if i’s vote were to be re-
versed, the outcome would likewise be reversed. The absolute Banzhaf measure    
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(β ¶) is, therefore, the probability of obtaining a bipartition for which i is (positively 
or negatively) critical. 

  It is easy to see that this idea is extendible to the case of tripartitions, T, i.e. 
that is, instead of counting the number of times that i is critical in the binary space 
(i.e. the Banzhaf score, η), we count it in the ternary space. The absolute Banzhaf 
measure (β ¶) for a TVG is, then, the probability of obtaining a tripartition for 
which i is (positively or negatively) critical and so could change the outcome by 
reducing (switching from a yes to abstain or abstain to no) or increasing (switching 
from no to abstain or abstain to yes) his or her support for the resolution in 
question. 

Definition 2.9 (i) The Banzhaf score or ‘raw’ Banzhaf index (η) of voter i in a 
TVG U is the number of coalitions in which i is critical. 
(ii) The Banzhaf index (β) of voter i in a TVG U is obtained from ηi by normali-
zation: βi (U ) = ηi (U )/ ∑{ηj (U ) : j ∈ N}, so that ∑{βi (U ) : i ∈ N} = 1. 
(iii) The absolute Banzhaf measure (β¶) of voter i in a TVG U is defined by 
βi  ́= ηi (U ) / 3n−1. 

3. Incomplete Assemblies and Possible Games 

It should be immediate from Definition 2.8 parts (i) and (ii) and from comparing 
Definition 2.5 parts (i) – (iii) to Definition 2.9 parts (i) – (iii) that F&M have de-
rived extremely natural analogues for the Shapley-Shubik and Banzhaf indices for 
voting games that allow abstentions as a tertium quid. In this section we offer a 
few reasons why, despite their naturalness, the method that F&M have followed is 
not the only one and that there is an equally natural and simple alternative, al-
though the results are quite different. 

 In the first place, if we consider Definition 2.7 it should be obvious that this 
structure is not entirely innocent as it imposes a particular assumption on the 
nature of abstention: it is symmetric to ‘yes’ and ‘no’ (Figure 1a). To put the 
thought another way, when voter i is faced with a ternary decision rule, he or she 
evaluates ‘yes’, ‘no’ and ‘abstain’ in equal light. As F&M note (1998, p. 286), this 
is not unproblematic because it is not at all self-evident that abstention is symmet-
ric to ‘yes’ and ‘no’. While in their caution F&M are primarily concerned with the 
validity of assigning a priori probability 1/3 to each option, this may not be the 
central issue. For it may not be a matter of whether we should take the probability 
to abstain as a undetermined parameter in a general theory and leaving remaining 



 

 

32

probability to be shared equally between ‘yes’ and ‘no’ as F&M suggest, but 
whether the ternary structure is per se the appropriate – or only – way of model-
ling a decision rule that permits abstention. 

Consider, as F&M (1997, p. 336) do, the most commonly used rule in decision-
making bodies: the simple majority, whereby a resolution is passed if, and only if, 
more members vote for it than against it. Unless specified otherwise, this rule does 
not treat abstentions as ‘yes’ or ‘no’; for in the absence of a fixed voting quota, 
this rule counts the votes only of those voting, viz., abstention is treated as non-
participation.4 From the perspective, then, of the decision rule, to abstain is 
tantamount to making the assembly incomplete, which for weighted games, will re-
scale the relative voting weights. The corollary is that a voting game that does not 
assign an abstention to either ‘yes’ or ‘no’ is a collection of possible games on 
possible assemblies. Essentially this amounts to assuming that in contrast to 
F&M’s simultaneous choice structure, the choice is sequential: first voter i chooses 
to participate (or not as the case may be) in the division and then to chooses 
between ‘yes’ and ‘no’ (Figure 1b).5 The upshot is that from an a priori standpoint 
voter i in an assembly of, for instance, n = 3 faces not 9 tripartitions where he or 
she could be positively (or negatively) critical but 8 sets of bipartitions (13 bi-
                                               
4 A good example of this can be found in modern bankruptcy law in the UK and Germany where 

there are provisions for voting on so-called insolvency plans. In each jurisdiction, it is explicitly 
stated that majority quota is calculated only on the basis of participation in the division, which 
means casting a ‘yes’ or ‘no’ vote. See, Halsbury’s Statutory Instruments (1991, pp. 257–8) and 
Balz and Landfermann (1999, pp. 497–8). 

5 The sequential structure is, in fact, more in line with the economic theory of voting than the 
simultaneous structure. See Downs (1957) and the extensions of the basic model in Riker and 
Ordeshook (1968). See also Feddersen and Pesendorfer (1999) and Rothenberg and Sanders 
(1999). An empirical test of the sequential structure can be found in Thurner and Eymann 
(2000). Note that the sequential structure is what is observed, not what actually happens. The 
decision to vote ‘yes’ or ‘no’ may have been made prior to the decision to ‘abstain’ or 
‘participate’. Reversing the sequence of decisions has no bearing upon our analysis. 

Figure 1: Decision Structures 

abstain vote

yes no

abstain yes no

Fig. 1a Fig. 1b
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partitions in all); or in terms of the roll-call model, they face not a ternary roll-call 
space of 162 possible roll calls where he or she may be pivotal, but 8 sets of bi-
nary roll-calls with 78 binary roll calls in all. 

 In the second place, the assumption of a simultaneous choice structure – irre-

spective of whether or not the a priori probabilities for each option are symmetric 

or asymmetric – does not come without a major philosophical difficulty, and that is 

the TVG analogue of the Shapley-Shubik index (or any other roll-call model for 

that matter) allows abstainers (non participants) to be pivotal. Whether this is 

defensible is clearly a moot point, and while this is not the place to examine the 

matter in depth, we would like to point out that Morriss (1987), in one of the more 

conceptually probing studies of power, is quite adamant that this is mistaken. In 

discussing his own and very loose attempt to derive an index of voting power that 

accounts for abstentions, he writes: ‘… a member who never takes his seat or 

votes can be ignored’ (p. 171) and, 

… when you abstain, you are showing no interest in the outcome, and so what the even-

tual outcome is of no concern to us. We measure the power given by resources (here, 

votes) by seeing what you can obtain when you use these resources; what happens when 

you let them lie idle is not of any relevance (p. 173). 

 While it could be replied that the onus is equally on Morris or ourselves as to 
why power should not be assigned to abstainers given that they do affect out-
comes, it should be noted that F&M’s approach in this regard is not consistent: the 
TVG analogues for the Banzhaf indices do not assign a swing to abstainers. It 
could be argued, then, that on heuristic grounds alone, the sequential structure has 
the advantage of making the Shapley-Shubik and Banzhaf indices conceptually 
consistent in this respect. 

4. Abstention Voting Games 

In this section we formalize the rough notion introduced above that a decision rule 
that permits abstentions as a tertium quid is a collection of possible games played 
on possible assemblies. The gist of the idea is as follows: we have a fixed assembly 
N in which a certain number of voters abstain (do not participate in the division), 
this means we are in a situation where the remaining members are playing a binary 
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voting game. Such a game we call a possible game and we denote the collection of 
possible games as an abstention voting game (AVG). 

Definition 4.1 (i) Denote the power set of an assembly N, 2 |N |, containing all 
possible subsets of members of N by Ω(N ) = {Ωg | (Ωg ⊆ N )}, then a possible 
game is given as follows: if Γ is a SVG on N, then any game Γg on Ωg is called a 
possible game on N. 
(ii) Any possible game Γg is either itself a SVG or a degenerated simple voting 
game (DSVG) which is an ‘extended’ SVG where either all coalitions are winning 
or losing, i.e. S ∈ W ∀ S ⊆ Ωg or S ∈ L ∀ S ⊆ Ωg, respectively. 

Remark 4.1 (i) A DSVG is characterized by the absence of a critical voter in 
the assembly. This can occur in: (a) the extreme case where the assembly is the 
empty set which is either winning or losing;6 or (b) where the assembly is not the 
empty set. An example of the latter is given in F&M (1997, p. 342): let N = {a, b, 
c} and let the decision rule be that a resolution is carried if a supports it and at 
least one of the other two does not oppose it. If a abstains then we obtain a DSVG 
with assembly {b, c} in which all coalitions lose (since it is given that a does not 
vote ‘yes’). 
(ii) For the special case of a WVG, where voter i is assigned a fixed positive 
weight, each possible game Γg is characterized by different relative weights, i.e. 
the initial relative weights are re-scaled. 

  Applying Definition 4.1, we can define an AVG as: 

Definition 4.2 An AVG A is a collection of possible games Γg such that               
A = {Γg | g = 1, 2, …, 2n}. 

Remark 4.2 (i) To summarize this apparatus we can say that an AVG A is 
bundle of possible games Γg in the following sense: if the set of all voters is N, 
then from the moment the subset of non-abstainers Ωg is specified we have a pos-
sible game Γg whose assembly is Ωg. In a nutshell, an AVG A can be regarded as 
a family of possible games indexed by the subsets of N.7 

                                               
6 If the rule does not actually say what the outcome is under this circumstance, the game is, strictly 

speaking, not properly defined; or one could say that no decision is made, which is the same as if 
the assembly has not met at all. 

7 We are presupposing here that the decision rule is specified for the case of abstentions, which 
may not be the case. It is possible that the rule is given in an ‘incomplete’ or ambiguous form 
such as ‘a simple majority’, i.e. without defining the set of voters upon which the majority quota 
is calculated. In such cases one has to turn to supplementary material to find out how the 
decision rule has been interpreted with regard to abstentions. F&M (1997, pp. 348–350) discuss 
such cases. 
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(ii) An AVG can be considered as a generalization of a SVG, i.e. the ‘canonical’ 
assembly of size n is but a special case.8 
(iii) Like a SVG, an AVG is a bare a priori structure, i.e. it rules out all consid-
erations based on information not provided by the framework, still only classifying 
coalitions into winners and losers. Neither the propensities to abstain or vote ‘yes’ 
or ‘no’ are part of the definition. 

  By Definition 4.2 and using the very general definition of voting power for 
SVGs given by Definition 2.3, we define a measure of voting power for an AVG 
as: 

Definition 4.3 For any AVG A, a measure of voting power for voter i, ξi (A), is 
the expected value of ξi (Γg ), viz., E [ξi (Γg )] = ∑{αg ξi (Γg ) : Ωg ∋ i} with αg ≥ 0 
and ∑{αg : g = 1, 2, …, 2n} = 1 where αg is a probability weighting on Γg. 

Remark 4.3 (i) As ∅ ∈ Ω(N) it follows that in general ∑{ξi (A): i ∈ N} ≠ 1 
if αg > 0 for Γg (∅, W ). This violates Shapley’s (1953) ‘efficiency’ axiom if 
ξi (A) is an expected index, e.g. the expected Shapley-Shubik index. 

(ii) The idea of an expected measure of voting power has already been men-
tioned by Dubey and Shapley (1979) and Holler (1985). And as Holler (1987, p. 
430) has noted, if the rules of probability calculation apply to ξ, then ξi (A) is 
characterized by the properties of the original index. 

  We specify the probability weighting αg  that a possible game Γg  occurs by: 

Definition 4.4 Let f be a mapping such that f : Γg → αg with αg ∈ [0,1] and 
∑{αg : g = 1, 2, …, 2n} = 1. The vector α = {αg | g = 1, 2, ..., 2n} is called the ab-
stention vector. 

Remark 4.4 (i) The function f maps to each possible game Γg on Ωg in an 
AVG A the probability αg that this particular game will occur. In other words, αg 
is the device or indicator, that determines the probability with which each possible 
game of the bundle occurs: αg = ∏{1 − αi : i ∈ Ωg}∏{αi : i ∈ N − Ωg}, where 
αi ∈ [0,1] is the probability that voter i abstains in an AVG A. 
(ii) The probability weighting αg is a priori in the sense that it does not in and of 
itself contain any empirical information or assumptions about voters intentions or 
motivations to abstain. 

                                               
8 Contrast with the sense in which F&M (1997, p. 338) consider a TVG as a generalization of a 

SVG. Under this structure a SVG can be considered as a somewhat degenerate TVG which 
conflates abstention with ‘no’ or ‘yes’. Also contrast with a TVG being a special case of a 
further generalisation as in Remark 2.4 (ii). 
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It is straightforward to see that definitions 4.3 and 4.4 are insufficient for cal-
culating voting power. To do so we must flesh out αi, i.e. we need to make as-
sumptions about the abstention behaviour of each voter in order to obtain the ele-
ments of the abstention vector α. From an a priori standpoint, there are two com-
mon assumptions that we can borrow and apply from the probabilistic inter-
pretation of power indices (Straffin, 1977): the independence and the homogeneity 
assumptions.9 

Assumption 4.1 The independence assumption implies that each αi ∀i is chosen 
independently from the uniform distribution on [0,1], i.e. the abstention decision of 
voter i has nothing to do with the abstention decision of voter j. 

Remark 4.5 The independence assumption implies that we assign each αg 
(that means each of the 2n possible games) the same weight, i.e. a complete or an 
empty assembly occurs with the same probability as a partial assembly. Thus for 
calculating the voting power of an AVG A we assign each ξi (Γg ) the same weight, 
thereby reducing αi = ∏{1 − αi : i ∈ Ωg}∏{αi : i ∈ N − Ωg} to 1/2n. Hence, ξi (A) 
= 1/2n ∑{ξi (Γg ) : Ωg ∋ i}. 

Assumption 4.2 The homogeneity assumption implies that each αi = γ ∀ i and γ is 
chosen from the uniform distribution on [0,1], i.e. all voters have the same 
probability to abstain for a random resolution, but γ varies from resolution to 
resolution. 

Remark 4.6 With αg = (γ,γ, …, γ) the homogeneity assumption assigns to 
each possible game Γg a weight of (1 − γ)ωg · γn−ωg. The expected power of voter i 
is, therefore, ξi (A) = ∑{ 0

1
∫ [(1 − γ)ωg · γn−ωg] dγ ξi (Γg ) : Ωg ∋ i}, where the integral 

is the beta-function B(n − ωg + 1, ωg + 1). The expected power of voter i becomes: 
ξi (A) = ∑{ωg! (n − ωg )! / (n + 1)! · ξi (Γg ) : Ωg ∋ i}. Note that in contrast to the 
independence assumption, the homogeneity assumption leads to different 
weightings for each of the 2n possible games (due to the different size of Ωg ), 
although the complete assembly and empty assembly have the same weight. 

  One general remark needs to be made that applies to both the independence 
and homogeneity assumptions. As noted in Remark 4.3, if αg > 0 for Γg(∅, W ) 
then ∑{ξi (A): i ∈ N} will not in general sum to 1 if ξi (A) is an index. It is easy to 

                                               
9 The two assumptions of independence and homogeneity can be considered as extreme cases of 

Straffin’s (1977) more general framework of partial homogeneity. Formally, a partial 
homogeneity structure on N is a partition P = {S1, …, Sm} of N into disjoint subsets. If P is the 
discrete partition of N into one-voter subsets we have the independence assumption; if P is the 
indiscrete partition P = {N}, we have the homogeneity assumption. 
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see that under both assumptions as n increases the probability of Γg(∅, W ) de-
creases so that at the limit ∑{ξi (A): i ∈ N} approaches 1, therefore fulfilling 
Shapley’s (1953) second or ‘efficiency’ axiom. The assumptions differ, however, 
in the weight assigned to the empty and complete assemblies for n > 1: the inde-
pendence assumption always assigning less weight than the homogeneity as-
sumption. 

5. A Prioricity 

Astute readers will note that the AVG framework fails to provide a straightforward 
answer to the obvious question: which assumption on αi should be applied? The 
problem is rather complicated as it touches upon some philosophical subtleties that 
require much more extensive analysis than that which we can provide here. What 
we can do, however, is sketch a line of reasoning that rejects the preference for one 
or the other assumptions on purely formal a priori grounds. Thus we remain, for 
the time being, agnostic on this matter, leaving a positive decision to future 
investigations. 

 A simple and attractive line of thought – and one that is repeatedly pointed out 
in the literature, or at least implicit in it – postulates a prioricity as the desideratum 
of a measure of voting power. The idea can be found in the original papers by 
Shapley and Shubik (1954), Banzhaf (1965) and Coleman (1971). As Roth (1988, 
p. 9) puts it: 

Analyzing voting rules that are modelled as [SVGs] abstracts from the particular person-

alities and political interests present in particular voting environments, but this ab-

straction is what makes the analysis focus on the rules themselves rather than on the 

other aspects of the political environment. This kind of analysis seems to be just what is 

needed to analyze the voting rules in a new constitution, for example, long before the 

specific issues to be voted on arise or the specific factions and personalities that will be 

involved can be identified. 

 Commenting on the passage quoted, F&M (1998, p. 20) point out that a 
SVG is an ‘abstract shell, uninhabited by real agents, with real likes and dislikes, 
attractions, and repulsions’. Thus they insist that a truly a priori measure of voting 
power must not presuppose any specific information as to the interests of the 
voters or the affinities and disaffinities between them. By implication if ξi (A) is to 
fulfil such a criterion, assumptions on αi must too be a priori, something that is 
easy to accept if we believe that measures of voting power are to have any pre-
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scriptive application (e.g. designing a new constitution). In this regard a prioricity 
creates a ‘level playing field’, i.e. it is an impartiality criterion. 

 The problems arise, however, by the insistence – be it by F&M, Coleman 
(1971, p. 297), or others – that (in the context of voter propensities to choose ‘yes’ 
or ‘no’) only the independence assumption is truly a priori; the homogeneity as-
sumption apparently being less so because it assumes affinity (or positive correla-
tion) between voters. To put it another way, the independence assumption suppos-
edly maximizes our ignorance regarding such affinities, although it does so at an 
equally high cost to that of the homogeneity assumption. Independence implies 
‘strict inaffinity’ between voters, which is no less a strong assumption than that of 
affinity.10 

 While the defence of the independence assumption on the basis of a priori 
ignorance at first sight appears compelling, it has a snag: it is true if, and only if, 
we accept a particular metaphysical presupposition. That presupposition is, for 
want of better terminology, what Rae (1969, p. 42) has called political 
individualism, which is a model of a generic voter who is a discrete entity with a 
unique individuality and one that can make ‘sincere’ choices, in as much as a 
choice (whatever it is, be it selfish or altruistic) is made on the basis of what that 
individual thinks alone about the issue at stake and not what others think.11 To give 
a literary flourish to this generic figure, voter i is a person who fulfils J. S. Mill’s 
ideal of liberty: as one who, to paraphrase Isaiah Berlin’s (1969, p. 160) de-
scription, is bold and non-conforming, who assets his own values in the face of the 
prevailing opinion; is a strong and self-reliant personality free from the leading 
strings of the instructors of society.12 

 This supposition, which is embedded in the insistence that a prioricity is the 
absence of relations between individuals, has its attractions and indeed is implicit 
in much of the analysis of what we call ‘constitutional choice’. It is, however, es-
sentially a normative principle and one that we do not necessarily have to hold. We 
could easily argue with the implicit script in Mill’s ideal of liberty: that we are 
initially characterized by – or have tendency to – conformity from which we free 
ourselves. That is, political individualism is an ideal or end and not the starting 
point. But even if we wish to operate from ideals or the ends of life and character-
                                               
10 The author owes this insight to Manfred Holler.  
11 This is what F&M (1998, pp. 18, 36) term as ‘policy seeking’ and use as the basis of their 

concept of I-power, or power as influence. 
12 As Rae (1969, p. 41) puts it, this generic voter ‘wants to have his way by defeating proposals 

which his values lead him to dislike and by imposing those which they lead him to like’. 
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ize voter i as individualistic, we are not by necessity wedded to the independence 
assumption. For in place of political individualism we could have Kantian indi-
vidualism: that voter i will behave in accord with what his ‘rational will’ (‘real 
self’) commands, which is to obey the categorical imperative. While the Kantian 
individualist may proclaim that he alone has given himself the order which he 
obeys, the fact is all rational individuals will choose likewise. Thus, starting with 
Mill’s or with Kant’s individualism we can still end up with homogeneity as the 
truly a priori assumption. 

 The point is we do not appear to be entitled to endorse one assumption or an-
other as being a priori without making explicit our presuppositions. As a simple 
thought experiment, imagine you are told only that there is a group of voting enti-
ties behind the door. No other information is imparted. What grounds do you have 
for assuming that they will on average be as likely to behave in one way as the 
other (abstain or participate, or vote ‘yes’ or ‘no’) rather than assuming that on 
average that their behaviour will be highly correlated? The answer presents itself 
on its own: either you impute from your experience that voting entities behave one 
way or another, but then this is a posteriori information; or you resort to meta-
physical presuppositions about the nature of voting entities. In short: voting games 
may, to borrow F&M’s words, be uninhabited by real agents, but it is certainly 
inhabited by metaphysical ones. 

 To put the reasoning otherwise: the two assumptions differ not in the degree of 
a prioricity, but in their qualitative nature. For neither assumption specifies a 
particular value on αi; each is only an assumption about behaviour – independence 
or homogeneity – and a form of the distribution of that behaviour (that it is 
uniform). As Dubey and Shapley (1979, p. 103) acutely observed, it is mistaken to 
believe that the independence assumption underpinning the Banzhaf indices is 
equivalent to being one of ‘no assumption’. And nor can we argue as Leech (1990) 
has attempted to do, that the default assumption is independence (and therefore the 
true a priori one) because it can be expressed in a much weaker form than the 
homogeneity assumption. The argument is, in essence, that the condition that the 
probabilities are drawn from the uniform distribution is not necessary for the 
independence assumption: only that the distribution has a mean of 1/2 and that the 
probabilities are drawn independently. The homogeneity assumption, pace Leech, 
seemingly requires a specific form of distribution (that it is uniform), although 
Straffin (1978, p. 495) has argued otherwise. The seepage in Leech’s argument is 
that it is not clear that there is any qualitative difference between defining the 
independence assumption on the basis of (i) independence and the form of the 
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distribution; or (ii) independence and specifying the mean. Unless there is a dif-
ference, then there is no qualitative difference between homogeneity and inde-
pendence in terms of the quantity of presupposed information, absence of which is 
the defining trait of a prioricity.13 

 Thus our AVG framework is quite independent from any suppositions about 
the generic voter. This ambivalence is certainly not without its problems, because 
it begs the question about which assumption should be applied on αi for calculat-
ing voting power. While it is possible to argue that if we apply Straffin’s (1977) 
probabilistic interpretation of voting power we should choose the assumption on αi 
that is concordant with the assumptions on the propensity to vote ‘yes’ or ‘no’, i.e. 
homogeneity with homogeneity, independence with independence, this does not 
appear to us to be so straight-forward if abstention, as we have assumed, is 
structurally distinct from the ‘yes/no’ decision. 

6. Conclusion 

There is no need to summarise this chapter; the ideas are simple enough to stand 
on their own. In tying up this chapter we wish, however, to add two further 
remarks that concern further developments.  

 Firstly, our AVG structure is a fairly rough cut. In particular we have not 
imposed any internal consistency requirements that connect the possible assemblies 
in a non-arbitrary way and the weightings of the possible assemblies. What is also 
left to be explored is how the AVG structure can be further generalized possibly 
along the lines of the idea of multiple degrees of support (Freixas and Zwicker, 
2000) as noted in Remark 2.4 (ii), for which F&M’s TVG structure easily fits. 

 Secondly, there remains a much larger conceptual issue to be tackled: are the 
different frameworks comparable? That is, does it makes sense to pronounce that a 
measure of voting power for an AVG assigns to voter i this or that amount of 
power more or less than assigned by a TVG analogue?14 One has to bear in mind 

                                               
13 In fact this conclusion is also reached in Felsenthal et al. (1998, p. 106) where they describe the 

independence and homogeneity assumptions in terms of entropy and show that both can achieve 
maximal entropy, and by analogy, maximal a priori ignorance. The homogeneity assumption 
implies, however, that voters are indistinguishable clones. That voters may not be is, by our 
reasoning, either a metaphysical presupposition or an empirical imputation.  

14 The results can differ by a fair amount. Consider the WVG [51; 50, 25, 25]. The absolute 
Banzhaf index under the TVG structure assigns 0.89, 0.11, and 0.11 respectively while under 
the AVG structure (assuming that each voter abstains with probability 0.5) the values are 0.94, 
0.06, and 0.06 respectively. 
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that the different choice structures underlying the different approaches imply dif-
ferent games, although these games may derive from the same decision rule: one 
that permits abstention.15 However, note that Lindner (2001) has shown that in 
those cases where n > 15 the results derived either from F&M’s TVG or our AVG 
framework converge to the results of the ‘usual’ binary measures, put it in other 
words: abstention as a tertium quid has only an effect in small assemblies with less 
than 15 voters. 

                                               
15 See Lindner (2001) for an initial attempt to bring both the AVG and TVG structures into a 

single framework. 



C h a p t e r  4  

LOCAL MONOTONICITY AND STRAFFIN’S  

PARTIAL HOMOGENEITY APPROACH TO  

THE MEASUREMENT OF VOTING POWER* 

Abstract: There is a fundamental and on-going debate in the literature on voting 
power about what constitutes a ‘reasonable’ measure of a priori voting power. A 
central topic in this debate is whether or not a reasonable measure of voting power 
should fulfil local monotonicity (LM). While the Shapley-Shubik index and the 
Penrose/Banzhaf or Coleman measures are locally monotonic, the Deegan-Packel 
and the Public-Good measures are not. While some authors argue that the 
violation of LM is ‘pathological’ and thus measures of voting power that exhibit 
such behaviour are unreasonable, others say that the violation of LM is a simple 
social fact of power and, therefore, LM cannot be used to determine the 
reasonableness of a measure of voting power. However, so far the debate has 
ignored the violation of LM by another set of measures derived from Straffin’s 
partial homogeneity approach. By examining violations of LM in this context it is 
shown that the different sides to this debate are in a sense ‘both wrong’. It is 
argued that LM is a special case of a more general monotonicity condition that 
relates ‘resources’ to ‘power’; in LM the resources are but the voting weights. 
However, given that it is not clear that a priori voting power is based on, and only 
on, the vector of voting weights and the decision rule, it turns out that a violation 
of LM can be ‘reasonable’. This, however, does not imply that power is not 
monotonic in resources per se. 

1. Introduction 

The measurement of voting power is an important and established method for 
analysing the structural properties of collective decision making rules that can be 
modelled as a simple game, a mathematical structure that goes back to von 

————— 
* This chapter is based upon Braham and Steffen (2002c). The research on which this chapter is 
based has greatly benefited from intensive discussions with Manfred Holler and Moshé Machover. 
An early forerunner of the paper was presented at the Institute of SocioEconomics research 
seminar in June 2001. 
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Neumann and Morgenstern’s tome, Theory of Games and Economic Behavior 
(1944). A simple game is one in which we can classify the players into sets of 
winning and losing coalitions and a measure of voting power essential counts the 
relative frequency that a player can change a winning coalition into a losing one. 

There is, however, a fundamental and on-going debate in the literature – not 
unlike that found in the freedom of choice literature1 – about what constitutes a 
‘reasonable’ measure of a priori voting power, i.e. the power that each player has 
ex ante. The reason is in part due to the fact that there is as yet no intuitively 
compelling and complete set of axioms that uniquely characterize a measure with 
the result that there are a variety of different measures that not only give different 
cardinal values but also different ordinal rankings of players. And it is due in part 
to confusion about the nature and meaning of  the term ‘power’ itself. 

A central topic in this debate is whether or not a reasonable measure of voting 
power should fulfil local monotonicity. This is a postulates which says that in 
weighted voting games – simple games characterized by a vector of voting 
weights attached to each player and a quota – if a player i has at least as much 
weight as a player j, then player i should have at least as much power as player j. 
While the Shapley-Shubik (1954) index and the Penrose (1946)/Banzhaf (1965) or 
Coleman (1971) measures are locally monotonic, the Deegan-Packel (1978) index 
and the Public-Good Index (PGI) (Holler 1982a; Holler and Packel 1983) are not. 

Freixas and Gambarelli (1997) and Felsenthal and Machover (1998) have 
taken the position that local monotonicity is such an intuitively compelling 
postulate that any measure that violates cannot be used as a reasonable yardstick 
of voting power.2 This would mean that the Deegan-Packel index and PGI in a 
sense suffer ‘pathological’ defects. 

On the other hand, Deegan-Packel (1978, 1983) and Holler (1997, 1998) as 
well as Brams and Fishburn (1995) take the position that if the rationale or ‘story’ 

————— 
1 We are referring here to the debate about appropriate axioms for characterizing a measure of 

freedom. See, for example Jones and Sugden (1982), Pattanaik and Xu (1990, 1998), Sen (1991), 
(Sugden 1985), van Hees (2000). 

2 Actually the importance of local monotonicity as axiom or ‘postulate’ of power was noted 
already by Allingham (1975), although he did not take such a ‘strong’ position to that of Freixas 
and Gambarelli (1997) and Felsenthal and Machover (1998). 
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of a measure is reasonable and acceptable, then we are forced to accept that power 
is not locally monotone and that this is an inescapable fact of power being a social 
phenomenon (they cite empirical evidence to this effect). The underlying 
argument being that it is mistaken to take an axiomatic approach to the analysis of 
social interaction. 

What this debate has ignored is a general violation of LM by another set of 
measures derived from Straffin (1977). This is a probabilistic interpretation of 
voting power based on Owen’s (1972, 1975) multilinear extension (MLE) of a 
game. As is well known, the Shapley-Shubik and absolute Banzhaf indices can be 
derived as special cases of the MLE given a probability model of voter behaviour. 
Straffin’s partial homogeneity approach allows us to mix these probability models 
so that we can derive an infinite set of families of power measures. 

The reason for the violation of local monotonicity by the family of power 
measures derived by Straffin’s approach is wholly different to that of the violation 
by the Deegan-Packel index and the PGI. In the latter case the reason is due to the 
fact that the measures are based only on minimal winning coalitions (coalitions in 
which no proper subset are winning), i.e. the domain of all conceivable winning 
coalitions is restricted to the set of all minimal winning coalitions. That is, these 
measures ignore certain coalitions in which i is critical (i.e. without i the coalition 
is losing) either on the grounds that these coalitions will not form or because they 
should be ignored (the rationale for this is given in section 2). While in the former 
case, the violation of local monotonicity is due to the fact that the partial 
homogeneity approach does not treat each coalition equally likely, with the result 
that coalitions are not equally weighted. Thus, there is no restriction of the domain 
of all conceivable winning coalitions in this case. Under Straffin’s approach, the 
power of a player i depends not only upon the coalitions in i is critical but also 
upon the probability that such a coalition arises which is a function of voter 
propensities to vote ‘yes’ or ‘no’. The greater the probability of a coalition arising 
in which i is critical, the larger is i’s power. 

Although at first sight it appears quite reasonable to measure a player’s voting 
power as a function of being critical and of the probability such a critical coalition 
arising it is in fact inconsistent with the postulate of symmetry: that the a priori 
voting power of a player i should depend on, and only on, the position of that 
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player in a game. In other words, such a measure should rule out by default all 
information not provided by the framework of winning and losing coalitions. A 
measure that goes beyond this sparse informational framework, such as including 
data on player preferences, is usually called a posteriori voting power. The notion 
of a priori power as a sparse framework can be found in the original papers by 
Shapley and Shubik (1954), Banzhaf (1965) and Coleman (1971). As Roth (1988, 
p. 9) puts it: 

Analyzing voting rules that are modelled as [SVGs] abstracts from the particular person-
alities and political interests present in particular voting environments, but this abstraction 
is what makes the analysis focus on the rules themselves rather than on the other aspects 
of the political environment. This kind of analysis seems to be just what is needed to 
analyze the voting rules in a new constitution, for example, long before the specific issues 
to be voted on arise or the specific factions and personalities that will be involved can be 
identified. 

 Commenting on the passage quoted, Felsenthal and Machover (1998, p. 20) 
point out that a simple game is an ‘abstract shell, uninhabited by real agents, with 
real likes and dislikes, attractions, and repulsions’. It is for this reason that they 
insist that a truly a priori measure of voting power must not presuppose any 
specific information as to the interests of the players or the affinities and 
disaffinities between them. According to this position, Straffin’s partial 
homogeneity approach cannot be considered as truly a priori and as a corollary its 
violation of local monotonicity is irrelevant to the nature of a priori voting power. 
(This may explain why it has so far been ignored in the monotonicity discussion.) 

Such a position – although widely held – is mistaken because it is not in fact 
possible to calculate voting power merely on the collection of winning coalitions. 
As we will argue, the classical measures of voting power do presuppose more 
information than simply the collection of winning and losing coalitions. This 
additional information can be interpreted as a combination of a presupposed 
probability model of voting behaviour (this is not a new insight) and a particular 
type of decision-making structure (this is a new insight). And it is only a 
particular combination of the probability model and decision-making structure 
that will guarantee fulfilment of the postulates of symmetry and local 
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monotonicity (if one applies the probability model).3 Once this is recognized, it is 
easy to see that Straffin’s partial homogeneity approach is not necessarily any less 
a priori than say the Shapley-Shubik index or the Banzhaf measure. Thus the 
violation of local monotonicity by Straffin’s approach is relevant to the nature of 
a priori voting power. Its relevance can be stated as follows: neither symmetry – 
or its more general form, iso-invariance – nor local monotonicity are compelling 
postulates or axioms of a priori voting power. 

However, having done away with local monotonicity, we argue – some what 
paradoxically it may seem – that the position taken by Deegan and Packel (1978, 
1983), Holler (1997, 1998) and Brams and Fishburn (1995) that power must be 
accepted to be not locally monotonic is not entirely correct either. Their position 
is essentially one of argument by analogy. Drawing on experimental and political 
and social evidence they say that the fact that a player j who has less weight than a 
player i in a weighted voting game can have more power than player i is simply an 
instance of the violation of local monotonicity in resources that we observe all the 
time. Put differently, these authors believe that power is not necessarily increasing 
in the ‘resources’, or to borrow Dahl’s (Dahl, 1957) terminology, in the ‘base of 
power’. Voting weights are just a particular kind of resource or ‘base of power’. 

The problem here is that once we take the position that calculating voting 
power actually presupposes a probability model and a decision-making structure, 
the resources or ‘base of power’ is no longer restricted to only the voting weights. 
These weights may be augmented by the assumptions about how players behave 
(whether or not their behaviour is correlated), which is contingent on the a priori 
incentive structures given by the decision-making structure. Hence a player i may 
have more weight than a player j but due to the incentive structures that govern 
coalition formation, i may be in a weaker position because certain coalitions 
where i is critical may have a smaller probability of occurring than the coalitions 
in which j is critical. In a sense a player i’s weight is modified by the number of 
other players with whom i is correlated. Thus a violation of local monotonicity as 
defined by voting weights only does not imply a violation of local monotonicity 

————— 
3 Note that one can also take the position that the classical measures of voting power are just 
functions (recipes) which satisfy specific axioms. Following this line of thought, which is not done 
in this chapter, voting power is not (necessarily) a probabilistic concept. 
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when defined in terms of resources or the ‘base of power’ more generally. It is our 
belief that power is locally monotonic in this latter sense. As one can imagine, this 
throws up all sorts of theoretical problems because it requires a much more 
complicated definition of resources and a method for calculating the value of 
these resources in a voting game. 

The primary contention of this chapter is that an examination of the general 
violation of local monotonicity by Straffin’s approach throws light on the debate 
and on the nature of a priori voting power; and in particular on the problems of 
the ‘axiomatic’ or ‘postulate’ approach to the measure of voting power. 

This chapter is organized as follows. section 2 reproduces the basic formal 
framework for simple games and the measurement of voting power (readers 
familiar with this material may wish to skip this section). Section 3 outlines the 
five basic postulates – local monotonicity is one of them – that are generally taken 
to be necessary for defining a reasonable measure of a priori voting power. 
Section 4 considers the derivation of local monotonicity from the more general 
desirability (also called dominance) relation and its connection to a prioroicity. In 
this section it is shown that despite the intuitive appeal of the desirability relation 
and, therefore, local monotonicity the arguments in its favour break down once we 
recognize that voting is embedded in particular a decision-making structures. In 
section 5 the more general issue of ‘power and resources’ is examined. It is here 
that we show that local monotonicity in voting weights is a special case of a more 
general local monotonicity based upon resources or the ‘base of power’ and that a 
violation of the former does not entail a violation of the latter. Section 6 concludes 
the chapter. 

2. Simple Games and the Measurement of Voting Power 

In order to develop our argument we need to restate the basic definitions of the 
theory of simple games and voting power. We refer the reader to Shapley (1962b), 
Felsenthal and Machover (1998), and Taylor and Zwicker (1999) for additional 
background and results. 

The most important definition that we require is that of a decision rule which 
we will first formulate informally as follows. Let a n-member decision-making 
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body be denoted by a set N. A decision rule specifies which subsets of N can en-
sure the acceptance of a proposal. Formally: 

Let N = {1, 2, …, n} be the set of players. ℘(N) = {0, 1}n is the set of feasible 
coalitions. The simple game v is characterized by the set W(v)Õ℘(N) of winning 
coalitions. W(v) satisfies ∆œW(v); NŒW(v); and if SŒW(v) and SÕT then 
TŒW(v). Further, v can also be described by a characteristic function, v:℘(N) Æ 
{0, 1} with v(S) = 1 iff SŒW(v) and 0 otherwise. 

By G N we denote the set of all such n-person simple games. Weighted voting 
games are a special sub-class of simple games characterized by a non-negative 
real vector (w1, w2, …¸wn) where wi represents player i’s voting weight and a 
quota q which is the quota of votes necessary to establish a winning coalition, 
such that quota 0 .ii N

q w
∈

< ≤ ∑ A weighted voting game is represented by 
[q; w1, w2, …¸wn]. 

Power, in the generic sense of an ability or capacity to determine an outcome, 
is represented in a simple game as the ability of a player i to change the outcome 
of a play of the game. We say that a player i who by leaving a winning coalition 
SŒW(v) turns it into a losing coalition S \{i}œW(v) has a swing in S and is called 
a critical member of S. Coalitions where i has a swing are called critical 
coalitions with respect to i. Let us denote the set of critical coalitions w.r.t i as Ci. 
A concise description of v can be given by a set M(v), where SŒW(v) but no 
subset of S is in W(v), i.e. all members of S are critical. We call such a coalition a 
minimal winning coalition (MWC). Further, we denote by ηi(v) the number of 
swings of player i in v. Thus, ηi(v)=def |Ci (v)|. A player i for which η i(v) = 0 is 
called a dummy in v, i.e. it is never the case that i can turn a winning coalition into 
a losing coalition (it is easy to see that i is a dummy iff it is never a member of a 
MWC; and i is a dictator if {i} is the sole MWC). 

A measure of voting power is a mapping x :G NÆ n
+¡  that assigns to each 

player iŒN a number xi(v) that indicates i’s power in the game v. As we have 
already mentioned in the introduction, there are a number of well known 
measures, namely, the Shapley-Shubik index, the Banzhaf index, the Deegan-
Packel index, and the Holler-Packel or Public Good Index. 
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The Shapley-Shubik (1954) index (S-S) is a special case of the Shapley (1953) 
value for cooperative games. In this measure power equals the relative number of 
pivotal (‘swing’) positions of a player i in a simple game v assuming all player 
permutations are equally probable. The idea (or ‘story’) is that the players line up 
to vote yes and the player that turns a losing coalition into a winning coalition is 
the pivot (‘swing’). The S-S is given by: 

( ) ( )
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Whereas the S-S is concerned with the order in which a winning coalition may 
form, the Banzhaf (1965) index (Bz) examines any winning coalition, irrespective 
of the order in which it may be formed and considers any player to have power 
from having a swing in it.4 The Penrose/Banzhaf measure (which is also known as 
the ‘absolute’ or non-normalized Bz) is given by: 
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The Bz is obtained by normalization:5 
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The Deegan-Packel (1978) index (D-P) is based on three assumptions: that 
only MWCs will form; all MWCs are equally likely; and the MWC that is formed 
will divide the payoff equally among its members. Subject to these assumptions, 
the D-P index assigns to each player power proportional to the player’s expected 

————— 
4 The Banzhaf measure is in fact a rediscovery of Penrose (1946) and was later independently 

rediscovered by Rae (1969) and Coleman (1971). A history of the measure of voting power is 
contained in Felsenthal and Machover (1998). 

5 Here we follow Felsenthal and Machover (1998) and reserve the term ‘index’ for measures in 
which ∑i∈N ξi (v) = 1. See section 3. 
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payoff. Denote by M i(v) the set of MWCs to which player i belongs. The D-P 
index is given by: 

1 1
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v
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The Public Good Index (PGI) (which is also known as the Holler-Packel 
index) (Holler, 1982a; Holler and Packel, 1983) is also based on MWCs, although 
the story is different. Whereas the D-P index is based sharing the spoils of victory, 
the PGI is based upon the essential characteristic of a public good: non-rivalry in 
consumption and non-excludability in access. Thus if the outcome of a game v is 
the provision of a public good, each member of the winning coalition will receive 
the undivided value of the coalition. Only MWCs are taken into account not 
because winning coalitions with excess players will not form, but when it comes 
to the provision of a public good they will only form by sheer ‘luck’ because of 
the potential for free-riding.6 Assuming that all MWCs are equally likely, the PGI 
is given by: 
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The non-normalized or ‘absolute’ PGI is given by: 
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Power in simple games can also be modelled in probabalistic setting. As we 
have already said in section 1, this is what Straffin’s (1977, 1988) partial 
homogeneity approach is all about. It is a particular interpretation and extension 
of Owen’s (1972, 1975) multilinear extension (MLE) of a game v.7 

————— 
6 This rationale is based on Barry (1980a, 1980b). 
7 See also Laruelle and Valenciano (2001a) for an attempted synthesis of the probabilistic models. 
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Instead of deterministic coalitions SÕN that correspond to corner points 
sŒ{0, 1}n of the n-dimensional unit cube, one considers random coalitions S 
represented by the points piŒ[0, 1]n anywhere in the cube. Each pi is interpreted 
as the probability of a player i deciding in favour of a random proposal or 
participating in a random coalition; pi is also known as a player’s acceptance rate. 

Assuming that acceptance decisions are independent, the probability P of a 
given coalition SÕN is P(S=S)= (1 )i ji S j S

p p∈ ∉ −∏ ∏ . If we extend the 
characteristic function v of a simple game by weighting each v(S) with the 
respective probability of formation, we obtain the MLE ƒ :[0, 1]n Æ [0, 1] of a 
game v: 
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For fixed acceptance rates, the MLE gives the probability that a winning 
coalition S will form in v, and thus the expected value of v. The partial derivative 
∂f/∂pi of v’s MLE w.r.t to pi is called by Straffin (1977, 1988) a player’s power 
polynomial, which we denote by ƒi. 

ƒi(p1, …pn) is, then, the probability of i having a swing (i.e. having power in 
the generic sense) in a random coalition in a game v. If a player’s acceptance rates 
are themselves random variables with a joint distribution P, the expectation 
E¶i  =Úƒi(p1, …pn)dP is i’s power in a game v. The probabilistic measure of power 
E¶i(v) coincides with some of the classical measures under different probability 
models. 

Independence pi ~ U (0, 1) ∀ iŒN (A1) 
i.e. the decision of i has nothing to do with decision of j.8 

Homogeneity  t ~ U (0, 1), pi = t ∀ iŒN (A2) 
i.e. each i approves or rejects a proposal with the same probability t but t 
varies from proposal to proposal. 

————— 
8 Actually one does not necessarily need the uniform distribution. Leech (1990) has shown that 

distribution must only have a mean of 0.5. 
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It is a well-known result from Straffin that applying (A1) we obtain the 
Penrose/Banzhaf measure; applying (A2) we obtain the S-S; and as Brueckner 
(2001) has shown (A1) in combination with counting only MWCs (i.e. M i(v)) 
gives the non-normalized or absolute PGI. 

It is easy to see that this probability model is extremely flexible and allows us 
to create families of power measures that lie between the extremes of (A1) and 
(A2) by mixing these assumptions. This is what Straffin meant by partial 
homogeneity structure on N which is a partition P = {G1, …, Gm} of N into 
disjoint subsets. If P is the discrete partition of N into one-player subsets we have 
(A1); if P is the indiscrete partition P = {N}, we have (A2). Formally, 

Partial homogeneity  P = {G1, …, Gm} (A3) 
 Gk«Gl = ∆ if k ≠ l, ∪Gk = N 
 tk ~ U (0, 1), pi = tk " iŒGk, k = 1, … m 

(Note that we will use E¶i(v) when referring to a measure derived from 
Straffin’s approach and xi(v) for measures in general). 

3. Postulates of Power 

Given this variety of power measures and the fact there is as yet no intuitively 
complete and compelling set of axioms that uniquely characterize a measure but 
only individual axioms – some of which are compelling and others opaque 
unconvincing9 – there has been a number of attempts to reduce the set of measures 
by eliminating those that violate certain properties that are considered intuitively 
reasonable for a measure of a priori power. Here the literature very much concurs 
on three basic postulates or properties.10 An a priori measure of voting power 
xi(v) should at the very least satisfy: 

Iso-invariance (P1) 
if there is an isomorphism of v to v′ that maps a player i to i′, then           
xi(v) = xi ′(v′). 

————— 
9 See, for example, Straffin’s (1983, pp. 292–297) discussion of the axiomation of the S-S and Bz. 
10 Postulates (P1)–(P3) appear in all axiomatisations of measures of voting power as well as in 

comparisons of the different measures, e.g. Allingham (1975), Felsenthal and Machover (1998), 
Freixas and Gambarelli (1997), Laruelle (1999), Straffin (1983). 



 53

Ignoring dummies (P2) 
if v and v′ have exactly the same MWCs, i.e. M(v) = M(v′), then   
xi(v) = xi(v′) for any player i common to both. 

Vanishing for dummies (P3) 
xi(v) = 0 if i is a dummy in v. 

(P1) generally trades under the name of symmetry, which is a special case of 
iso-invariance in which we have an automorphism of v (i.e. an isomorphism of v 
to itself). This postulate requires that xi(v) be symmetric (i.e. invariant under any 
automorphism): if players i and j have symmetric positions w.r.t to v they have 
equal power. Note that (P1) implies that xi(v) should depend only on the 
collection W(v) of winning coalitions and nothing more. Felsenthal and Machover 
(1995, p. 204) claim that to deny (P1) would be tantamount to denying that simple 
games provide an adequate framework for theorizing about a priori voting power. 
Felsenthal and Machover buttress their position by saying that all authors dealing 
with voting power within the framework of simple games implicitly if not 
explicitly accept (P1). However, as we will discuss later, (P1) is a very restrictive 
way of defining a prioricity – a restriction that is a cause for much confusion 
about the nature of a priori voting power per se. That is, a priori voting power can 
be shown to presuppose (P1) only under very specific conditions; and these are 
shown up under Straffin’s partial homogeneity approach. This leads us to the 
conclusion that the deterministic simple game framework may not in fact be 
always adequate for theorizing about a priori voting power. This does not mean 
that we reject it outright; rather it means that it is too restrictive.  

(P2) means that the value of xi  for any player i in the simple game v is 
unchanged if v is extended to v′ by adding new dummy players (or equivalently, 
removing a dummy player from v will not alter the value of xi . (P3) is obvious: 
dummy players have no power. 

A forth postulate, that of normalization has also frequently been put forward: 

Normalization (P4) 
( ) 1.ii N
v

∈
=∑ ξ  
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The meaning of (P4) is straightforward: it is a way of answering questions like 
‘What fraction of the power in this game do I hold?’ However, as a postulate of 
power it is not without technical difficulties because for the Bz it is not 
necessarily meaningful (Dubey and Shapley, 1979; Shapley, 1977) and in 
particular distorts the probabalistic interpretation of the Bz measure. Furthermore, 
in contrast to (P1)–(P3), (P4) is not without conceptual problems, in that there is 
no intuitive justification for saying that a measure of voting power ought – either 
naturally or artifically – to sum to unity (Laruelle and Valenciano, 1999, 2001b) 
and thus should not be used to eliminate a measure as being unreasonable.11 

Finally, we come to the fifth and central postulate of this chapter: 

Local monotonicity (P5) 
If in a weighted voting game v, wi≥wj then xi(v)≥xj(v). 

(P5) can be expressed in two ways: that a xi(v) should preserve the order of 
weights; or more rhetorically, ‘having extra votes cannot hurt you, although will 
not necessarily help you.’ 

All the classical measures that we have listed above satisfy the first three 
postulates; normalization is naturally satisfied by the S-S and D-P indices (the Bz 
and PGI are ‘normalized’); and the D-P index and the PGI violate (P5) as will in 
general the family of measures Eƒi(v) that can be derived from Straffin’s partial 
homogeneity structure as represented by (A3). For illustration, consider the 
following three examples: 

Example 3.1 Assume the weighted voting game [51; 30, 26, 16, 12, 9, 7]. 
(i) The D-P index values are r1 = 0.23, r2 = 0.18, r3 = 0.21, r4 = r5 = 0.16, and   
r6 = 0.07. 
(ii) The PGI values are h1 = 0.21, h2 = 0.17, h3 = 0.21, h4 = h5 = 0.17, h6 = 0.08. 
(iii) Assume (A3) as follows: player 1 behaves independently, while players 2, 3, 

————— 
11 Actually the problem is not restricted to voting power. There was a fair amount of controversy 

among political scientists and sociologists from the 1950s to the 1970s about whether or not 
power had a constant sum property. See Nagel (1973). The question has in fact been reincarnated 
in Felsenthal and Machovers’s (1998) distinction between what they call ‘power as influence’ (I-
power) and ‘power as prize’ (P-power), the latter is considered to be a zero-sum game while the 
former not. 
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and 4 form a standard t and players 5 and 6 form a standard (1-t). Then we have 
Eƒ1(v) = 0.40, Eƒ2(v) = 0.47 Eƒ3(v) = 0.38, Eƒ4(v) = 0.30, Eƒ5(v) = 0.12, and 
Eƒ6(v) = 0.03. 

Example 3.2 Assume the weighted voting game [51; 30, 30, 18, 10, 9, 3]. 
(ii) The D-P index values are r1 = r2 = 0.19, r3 = 0.22, and r4 = r5 = r6 = 0.13. 
(ii) The PGI values are h1 = h2 = h3 = h4 = h5 = 0.18, and h6 = 0.09. 
(iii) Assume (A3) as follows: player 1 behaves independently, while players 2, 3, 
and 4 form a standard t and players 5 and 6 form a standard (1-t). Then we have 
Eƒi(v) are Eƒ1(v) = 0.37, Eƒ2(v) = 0.50 Eƒ3(v) = 0.42, Eƒ4(v) = 0.25, and Eƒ5(v) = 
Eƒ6(v) = 0.08. 

It is easy to see that the violation of (P5) – which we will henceforth denote 
as LM – by the Deegan-Packel and PGI is for an entirely different conceptual 
reason than the violation as a result of applying (A3) to Straffin’s probabilistic 
approach. In the first case the reason lies with the fact that both measures are 
based only on MWCs, i.e. the domain of the coalitions is restricted. According to 
the Deegan-Packel ‘story’ only MWCs will form; according to the PGI ‘story’ 
only MWCs form intentionally (excess sized coalitions are a matter of ‘luck’) and 
express power so that only they should be counted in the calculation of power. 
This means that a certain number of a player’s swings are not counted in the final 
measure of voting power, i.e. those in Ci \Mi. It can be the case that a ‘large’ 
player is ‘crowded out’ by many smaller players, who may have far more 
opportunities to form MWCs. The violation of LM is a result of all conceivable 
coalitions no longer being equally probable; only MWCs are considered with 
equal probability while other winning coalitions obtain a probability of zero. In 
the second case, the domain of all conceivable coalitions is not restricted. 
However, also in this case we do not assign the same probability to all 
conceivable coalitions. E.g., in Example 3.1 the violation of LM is a result of the 
coalitions no longer being equally probable. Player 2 gets a ‘boost’ in power over 
and above player 1 because it is critical in a winning coalition that occurs with a 
probability of 0.0833, which is significantly larger than the probability of any of 
winning coalitions in which player 1 is critical. This compensates for the fact that 
player 2 has four less swings than player 1. Table 1 gives the probabilities of each 
of the winning coalitions. 
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Table 1: Winning Coalitions for Example 3.1 

 W     

 Player i     

S 1 2 3 4 5 6 
i S

wi
∈∑  MWC P(S)(A1) P(S)(A3) 

1 30 26     56 yes 0.0156 0.0083 
2  26 16  9  51 yes 0.0156 0.0083 
3  26 16 12   54 yes 0.0156 0.0833 
4 30   12 9  51 yes 0.0156 0.0083 
5 30  16   7 53 yes 0.0156 0.0083 
6 30  16  9  55 yes 0.0156 0.0083 
7 30  16 12   58 yes 0.0156 0.0167 
8 30 26    7 63 no 0.0156 0.0083 
9 30 26   9  65 no 0.0156 0.0083 
10 30 26  12   68 no 0.0156 0.0167 
11 30 26 16    72 no 0.0156 0.0167 
12  26  12 9 7 54 yes 0.0156 0.0083 
13  26 16  9 7 58 no 0.0156 0.0083 
14  26 16 12  7 61 no 0.0156 0.0167 
15  26 16 12 9  63 no 0.0156 0.0167 
16 30   12 9 7 58 no 0.0156 0.0167 
17 30  16  9 7 62 no 0.0156 0.0167 
18 30  16 12  7 65 no 0.0156 0.0083 
19 30  16 12 9  67 no 0.0156 0.0083 
20 30 26   9 7 72 no 0.0156 0.0167 
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…/ Table 1 cont. 

 W     

 Player i     

S 1 2 3 4 5 6 
i S

wi
∈∑  MWC P(S)(A1) P(S)(A3) 

21 30 26  12  7 75 no 0.0156 0.0083 
22 30 26  12 9  77 no 0.0156 0.0083 
23 30 26 16   7 79 no 0.0156 0.0083 
24 30 26 16  9  81 no 0.0156 0.0083 
25 30 26 16 12   84 no 0.0156 0.0833 
26  26 16 12 9 7 70 no 0.0156 0.0083 
27 30  16 12 9 7 74 no 0.0156 0.0083 
28 30 26  12 9 7 84 no 0.0156 0.0083 
29 30 26 16  9 7 88 no 0.0156 0.0083 
30 30 26 16 12  7 91 no 0.0156 0.0167 
31 30 26 16 12 9  93 no 0.0156 0.0167 
32 30 26 16 12 9 7 100 no 0.0156 0.0083 
           

iC  18 14 10 6 6 2   0.5000 0.5000 

iM  5 4 5 4 4 2     

Note: Critical player is underlined. 
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4. The Desirability Relation and A Prioricity 

Given the conviction that LM is taken to be such an intuitively compelling 
postulate of a priori voting power it is necessary to recap its justification in some 
detail. Once this is done it is possible to show that LM is compelling only under a 
very narrow definition of a prioricity. That is, once we widen the notion of a 
prioricity, the argument in favour of LM as it is defined above is seriously 
weakened. 

As a number of authors have pointed out (Felsenthal and Machover, 1995, 
1998, pp. 241–246; Freixas and Gambarelli 1997), LM is a special case of the 
desirability (also called dominance) relation, ±, which is a pre-ordering (i.e. it is 
transitive and reflexive) of the players in a simple game v.12 The idea is that we 
can order the players in terms of their contribution to a coalition. Formally, 

i±j iff S»{j}ŒW(v) implies  S»{i}ŒW(v). 

In words, player i is at least as desirable as j in coalition S in a game v if 
interchanging i and j does not change S from winning to losing. If we have i± j 
but not j± i, then if j, i.e. player i is strictly more desirable than player j, which 
says that whatever j can contribute to the passing of a bill i can do as well (is at 
least as desirable) and in some cases more (is more desirable). Thus, 

ifj then xi(v)>xj(v). 

It is also easy to see that if players i and j in v are interchangeable, then by 
symmetry xi(v) =  xj(v), and, 

i±j  then xi(v)≥xj(v). 

For a weighted voting game it clearly follows that if wi≥wj then i± j, i.e. 
anything that wj can do, wi can also do because a winning coalition cannot become 
a losing coalition if it gains more weight (but it does not necessarily follow that if 

————— 
12 The desirability relation was first introduced by Isbell (1958) and later generalized by Maschler 

and Peleg (1966). See also Taylor and Zwicker (1999, pp. 86–92). 
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wi>wj then if j). It is therefore straightforward that if wi≥wj then xi(v)≥xj(v), viz. 
precisely LM as in (P5). 

It is clearly difficult to quarrel with this argument. Felsenthal and Machover 
(1998, p. 245) have expressed it forcefully: ‘In our view, any reasonable measure 
of a priori power … must respect dominance [desirability]. The case for this 
postulate is so strong that it hardly needs spelling out.’ That is, if desirability is 
respected – and it must be respected – then it logically follows that a priori power 
is locally monotone. And this certainly backs up the very common sense intuition 
that power is monotonically increasing in resources, and voting weights can 
clearly be taken to be a resource. This would seem to justify Felsenthal and 
Machover’s (1998, pp. 221–223) strong position that any a priori measure of 
voting power that violates LM is ‘pathological’ and should be disqualified as 
serving as a valid yardstick. 

This position, we contend is unwarranted as it is easy to show that it hinges 
on the particular notion of a prioricity that has traditionally been used in voting 
power. This is the view that an a priori measure of power is one that is dependent 
on, and only on, the collection of subsets W(v) (or the characteristic function). 
That is, no other information is used other than the decision rule itself. Clearly the 
argument in favour of accepting the logic of the desirability relation – and hence 
LM – follows from this perspective. 

Under this notion of a prioricity it is clear that the application of (A3) means 
that any resulting measure E¶i will not only violate iso-invariance (P1), it also 
follows that it is not a priori. Does this mean that LM does not necessarily apply 
and thus its violation has no relevance to understanding if a priori voting power 
and the choice of a reasonable measure? The answer is ‘no’. 

Firstly, it is not quite accurate to say that an a priori measure of power is 
based only on W(v). It is in fact not possible to calculate xi(v) in absence of an 
assumption of how the players behave.13 If we assume that all possible 
configurations of players are equally probable so that each subset of N (coalitions) 
is equally likely we are in effect assuming that for a random bill put before the 
assembly each player votes ‘yes’ or ‘no’ with equal probability.14 This is precisely 
the idea underpinning the Bz. It also underpins the D-P index and PGI, albeit 

————— 
13 This point was already recognized by Dubey and Shapley (1979, p. 103). 
14 We are ignoring the case of abstentions. See Felsenthal and Machover (1997) and Braham and 

Steffen (2002a). 
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under a modified form. Here the set of winning coalitions is restricted to M. For 
the S-S index, it is not the equi-probability of all combinations of players but 
equi-probability of all permutations, but this too results directly from the 
assumption that each player votes ‘yes’ or ‘no’ with a probability of 0.5.15 Thus 
the a prioricity of a measure of voting power is contingent upon a probability 
model of voting behaviour. The general belief is that a probability model that 
treats all players symmetrically (i.e. iso-invarance) is a priori while one that does 
not is a posteriori. Further, it is believed that the only really a prioristic model is 
one derived from the Bernoullian principle of insufficient reason which assigns 
equi-probabilities to each strategy that a player faces, i.e. each player votes ‘yes’ 
or ‘no’ with equi-probability. 

Secondly, in the same manner that xi(v) requires specification of behavioural 
assumptions, it also requires a specification of the decision-making situation or 
structure. That is, a probability model that treats all players symmetrically implies 
far more information than is generally thought to be the case. It presumes that the 
voting body has a homogeneous structure; there is no structural differentiation in 
the types of players: it is flat. In many instances this is true: voting in a parliament 
is flat in the sense that there are no structural difference between its members, 
although there obviously will be temporal differences as a matter of political and 
personal predilection resulting in a correlation of voting behaviour – but this is not 
‘structure’.16 We can characterise a flat decision structure by saying that each 
member has complete freedom of choice.17 For such a structure a symmetric 
probability model that assigns equal likelihood to each of the options for each 
player is obviously the most appropriate; and possibly the Bz will turn out to be 
the measure to use.18 But the fact that such a measure obeys iso-invariance, 
dominance, and thus LM is a happy coincidence. There is no way we can 

————— 
15 That is, the S-S index does not necessarily depend upon all voters lining up to vote ‘yes’ or all 

lining up to vote ‘no’. See Felsenthal and Machover (1996). 
16 Our position is in no way to be confused with that of Brams (1975, p. 202) who takes the 

environmental constraints or decision-making structure that we are dealing with to be preference 
based: ‘One such constraint is the organitzational ties of players, which may limit their freedom 
to select other players as coalition partners. In many legislatures, for example, the structure of 
the party system is all-important in determining what coalitions form. When strict party 
discipline prevails, a legislator always votes with his party and has no opportunity to seek out 
potential coalition partners among nonparty members.’ 

17 This concurs with Dubey and Shapley’s (1979, p. 103) discussion of the Bz. 
18 Whether this is the case, i.e. that the independence assumption is the most appropriate a priori 

assumption of a flat structure, or whether it is a priori impossible to differentiate between the 
independence and the homogeneity assumption as the two extreme cases of partial homogeneity 
is discussed in Steffen (1999) and Braham and Steffen (2002a). 
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conclude from this that voting power either is, or ought to be, locally monotone as 
defined by (P5). 

But there are also cases, perhaps more common than realized in the voting 
power literature, in which the decision-making structure is not flat, but 
differentiated and hierarchized in some manner or another. This is obviously the 
case of a bureaucracy or firm. In such a setting the players occupy positions and 
have to make choices that pertain to the aims of the department or that part of the 
organization to which they belong. In contrast to a flat structure the player’s 
freedom of choice is constrained by the system of incentives rewards used to 
make sure that each player makes choices that are concordant with their 
department or section and that of the organization as a whole. This will mean that 
players belonging to the same department or section of the organization will have 
highly correlated voting behaviour. That is, an organization is a series of 
arrangements between individuals with possibly differing goals.19 For instance, a 
bank will have staff that are responsible for expanding credit and staff responsible 
for managing risk. The granting of a large loan will usually require consent of 
both sections. It is reasonable to assume that the staff responsible for expanding 
credit will all have one standard of behaviour, while those responsible for 
managing risk will have an opposing standard.20 Example 3.3 above captures this 
structure in the definition of two opposing standards of t and (1–t). Note, also, that 
in this example we have not actually defined pi at all; we have only assumed 
certain patterns of correlated voting behaviour. 

Hence any reasonable model of voting power associated with committee 
voting in such structures requires that we take into account these different 
behavioural standards, i.e. apply the partial homogeneity structure of (A3). 
Furthermore, it is essential to recognize that in no way is this a violation of a 
prioricity because there are no ‘flesh and blood’ individuals in the model: all the 
sociological, psychological, and political – and dare say even the psychiatric – 

————— 
19 Shubik (1962) discussed this issue some forty years ago. See also the much earlier attempt to 

formalize this issue by Morgenstern (1951). 
20 See Steffen (1999) for a detailed example and Braham and Steffen (2001c) for a more general 

investigation of this case which also includes another example, that of a United Nations field 
office responsible for development projects that are a part of a refugee repatriation programme. 
In many instances, such projects have to be approved by the finance section of the agency 
headquarters which may have interests completely at odds with those of the field office. The 
field office is concerned with the welfare of particular refugees; the goal of the finance office is 
maximising donor contributions, which often leads to a tendency to support ‘high visibility’ 
projects that are popular with donors but have little value to the refugees. Alternatively put, the 
finance office has a tendency to turn down useful ‘low visibility’ projects proposed by the field 
office. 
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aspects of the players are ignored. It is not the names of individuals who are on 
the ballot papers but the positions in an organization.21 The structure is still, to use 
Felsenthal and Machover’s (1998, p. 20) own words, an ‘abstract shell, 
uninhabited by real agents, with real likes and dislikes, attractions, and repulsions’ 
and is therefore totally in accord with the position taken by Roth (1988) that we 
cited earlier in this essay. In a nutshell, there is nothing necessarily a posteriori 
about (A3) – although it can of course be so. 

Essentially what our argument is boiling down to is that the belief that (A3) 
necessarily contains more information from outside of W(v) than either (A1) or 
(A2) is mistaken; (A3) contains more structure. And here is where we do agree 
with the position that (A3) contains more information but only insofar as 
differentiation implies information and not in terms of the a prioricity of this 
information, i.e. a three dimensional space can contain more information than a 
two dimensional space. In the light of this reasoning we can say that a flat 
structure in which we treat players symmetrically is a limiting case of (A3). Thus, 
it is neither here nor there that a measure of voting power for these situations will 
generally violate iso-invariance, dominance, and by implication LM. 

To concur, then, with the proponents of iso-invariance, dominance, and LM 
postulates for selecting out an a priori measure of voting power can – will – lead 
to methodological absurdity. In many a situation we would end up employing a 
measure which is a priori in the very restrictive sense of being a limiting case of 
partial homogeneity but it would be entirely inappropriate (although ‘reasonable’ 
because it respects LM); or employing a measure that would be appropriate but 
neither a priori in the limiting sense nor reasonable because of its violation of 
LM. In the first case the analysis may turn out to be misplaced; while in the 
second case the analysis may be unwittingly discarded for normative reasons 
because of the attractive ethical appeal of a prioricity: it corresponds to a ‘veil of 
ignorance’ argument á la Harsanyi (1955) and Rawls (1971).22 The important 
methodological implication of this fine grained and even somewhat pedantic 

————— 
21 Straffin was in fact lead astray here: ‘Partial homogeneity assumptions are by their nature ad 

hoc; they would be out of place in theoretical analysis of abstract political structures where the 
level of abstraction requires symmetrical treatment of the players’ (Straffin 1978, p. 493). 
Straffin is of course correct if he is referring only to parliamentary decision-making structures. 

22 The importance of the veil of ignorance character of a prioricity to the analysis of voting power 
is stressed in Holler and Widgrén (1999) and Felsenthal and Machover (2001a) in their reply to 
the critical attack on voting power measures by Garrett and Tsebelis (1999a) who argue for a 
preference-based approach to the measure of voting power. 
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analysis is that the usual notion of a prioricity can lead one astray.23 To belabour 
the point and even be a little rhetorical, is it reasonable to take the position that 
from behind a veil of ignorance the world should be treated as flat? 

5. Power and Resources 

Although we have shown via a discussion of Straffin’s partial homogeneity 
approach that in its present form LM is untenable as a postulate of a priori power, 
this does not imply that we can take the position of Deegan and Packel (1983), 
Brams and Fishburn (1995), and especially Holler (1997, 1998) that the violation 
of LM simply reflects a social and political fact that there is an inverse 
relationship between power (in whatever form) and resources. This may seem 
paradoxical given our conclusion in the previous section, but this is not too 
difficult to resolve. As it turns out, the underlying intuition of LM is not 
necessarily wrong; only its definition is too restrictive. 

If we abstract from the particular definition of LM to that of monotonicity 
simpliciter we find a very general principle which states that as the underlying 
data of a problem changes, so does its solution. LM merely takes as its underlying 
data the vector of voting weights (w1, w2, …¸wn). There lies the problem. As we 
have argued in the previous section, the underlying data of voting game is actually 
more than this: it is made up of (i) the voting weights and (ii) the players positions 
within the decision-making structure. The interaction of both these components 
are what we can call the resources or, to use Dahl’s (1957) terminology, the ‘base’ 
of (voting) power. Under what we have called a flat structure, the position of each 
‘vote’ of a player’s voting weight (which is merely the sum of a players ‘votes’) is 
by definition symmetric and therefore each ‘vote’ has the same ability to make a 
difference to the outcome irrespective of who possesses these votes. In a flat 
structure, resources (or base of power) and weight happen to coincide; in a 
differentiated structure they do not. For the sake of illustration, consider a 
committee of five players and a simple majority rule, which can be represented as 
the weighted voting game [3; 1, 1, 1, 1, 1]. We can construct the following seven 
scenarios.  

————— 
23 Although in their attempt at a probabilistic refoundation of power measures Laruelle and 

Valenciano (2001a) recognise that the decision rule W(v) is not a ‘game’ and requires a 
specification of a probability model (actually this insight can be found explicitly in Straffin 
(1983, 1988, 1994)) they do not push their analysis far enough. The result is that they err in their 
conclusion that ‘… from a normative point of view the Banzhaf index is no doubt the best 
candidate as a reference for the design of voting procedures, where any information about the 
voters should be ignored even if available’ (p. 26). 
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Example 5.1 Assume (A1) for all players, we have E¶1 = E¶2 = E¶3 = E¶4 = E¶5 = 
0.38. (This is the Penrose/Banzhaf measure β ¢.) 

Example 5.2 Assume (A2) for all players, we have E¶1 = E¶2 = E¶3 = E¶4 = E¶5 = 
0.20 (This is the S-S index φ.) 

Example 5.3 Assume (A3) as follows: players 1, 2, 3 form a standard t and players 
4 and 5 a standard (1–t). We have E¶1 = E¶2 = E¶3 = 0.53 and E¶4 = E¶5 = 0.30. 

Example 5.4 Assume (A3) as follows: players 1, 2 form a standard t and players 3 
and 4 a standard (1–t) and player 5 behaves independently. We have E¶1 = E¶2 = 
= E¶3 = E¶4 = 0.42 and E¶5 = 0.53. 

Example 5.5 Assume (A3) as follows: players 1, 2, 3, 4 form a standard t and 
player 5 behaves independently. We have E¶1 = E¶2 = E¶3 = E¶4 = 0.25 and E¶5 = 
0.20. 

Example 5.6 Assume (A3) as follows: players 1, 2, 3 form a standard t and players 
4 and 5 behave independently. We have E¶1 = E¶2 = E¶3 = 0.33 and E¶4 = E¶5 = 
0.25. 

Example 5.7 Assume (A3) as follows: players 1, and 2 form a standard t and 
players 3, 4, 5 behave independently. We have E¶1 = E¶2 = 0.38 and E¶3 = E¶4 = 
E¶5 = 0.33. 

Observe that except for the extreme cases of applying (A1) and (A2), E¶i is 
always less for the independent players (for this committee) except in Example 
5.4, where it is greater than for the players belonging to either t or (1–t). This 
makes intuitive sense because the two ‘groups’ (or more accurately, the collection 
of players conforming to a given standard) are of equal size and ‘antagonistic’ 
which leaves the neutral party in a more powerful position.24 The reason is simple, 
each of the players in t and (1–t) is more likely to form a coalition with the 
independent than with players from the antagonistic standard. In a sense we could 
say that the antagonism ‘depletes’ the resources (i.e. weights) of the members of 
these groups, and as a consequence neutrality increases the value of the 
independent player. 

————— 
24 One could say that it is a form of a quarrel, although our examples in no way display the so-

called paradox of quarrelling members. See Brams (1975, p. 314). 
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The outcome for Example 5.3 where E¶i for the players in t is greater than the 
players in (1–t) also makes sense. Here we again have two opposing ‘groups’ and 
the members of the largest ‘group’ have a greater probability to be decisive than 
the smaller ‘group’. Clearly – and obviously – E¶i depends on the size of the 
group. This certainly makes sense; it confirms the idea that under certain 
circumstances there is power in numbers. We see this again in Examples 4–6. 

Thus the underlying data of a voting game needs to be clearly specified before 
we can calculate the resources or the ‘base of power’. This is the reason why we 
say that it is mistaken to believe that a violation of LM defined only by voting 
weights implies that power is not necessarily locally monotone in resources. It is 
beyond the scope of this chapter, but we posit that a reasonable method for 
calculating a quantitative value of a player’s resources put altogether in a voting 
game would probably produce a resulting measure of voting power that is locally 
monotonic in this quantity.  

Where those who deny this monotonic relationship err and equally where the 
proponents of LM also err is in the calculation of the quantity of the resource. 
Both sides of the debate focus only on the vector of voting weights as given by 
(w1, w2, …¸wn). As we have argued above this is mistaken in the same way it is 
mistaken to say that a superbly outfitted army that is defeated by a band of poorly 
equipped guerrillas is evidence that power is not locally monotonic in military 
resources. True, military power is not necessarily monotone in guns; but guns do 
not fully describe the underlying data of the situation, which includes military 
intelligence, knowledge of local geography, and even physical acclimatisation to 
the theatre of operations. We would argue that such a ill-equipped band of 
guerrillas probably does have more resources than its well-equipped enemy. 

6. Conclusion 

The main result of this chapter is in one sense depressing. By showing that neither 
iso-invariance (P1) nor local monotonicity (P5) are necessarily compelling axioms 
or postulates of a priori voting power we have whittled down the remaining set to 
the somewhat trivial and related axioms or postulates of ignoring dummies (P2) 
and vanishing for dummies (P3). 

For those familiar with the axiomatic approach to social choice problems, this 
result should come as no surprise. The related field of the measurement of 
freedom suffers from similar problems. Pattanaik and Xu (1990, 1998), for 
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instance, have shown that an apparently harmless and compelling set of axioms 
uniquely characterize a ‘naive’ counting rule that measures an agent’s total 
freedom by simply counting the number of options open to that agent. This is not 
the place to go into this debate, but suffice to say Pattanaik and Xu’s axiomatic 
structure has been dissected and severely criticized and in one important 
contribution to the debate (Carter 2001) the axioms have been shown to be 
inconsistent with the very basic definition of freedom itself. 

Returning to the question of power, we would like to close by pointing out that 
we are not saying that LM in its present form (i.e. based only on the vector of 
voting weights) is irrelevant to the study a priori voting power. Far from it. It has 
an important place to play as a normative criterion in institutional design. That is, 
if we desire to preserve the ranking of influence over social outcomes with that of 
the ranking of voting weights, then (i) we are compelled to create a voting 
structure in which there are no incentives such that players will a priori correlate 
their behaviour in one way or the other; and (ii) create conditions such that a 
priori not only MWCs will form. This perspective points to the possibility that the 
debate about LM has been confused by the ethical appeal of this postulate – it 
seems to reflect a requirement of fairness that goes back to Aristotle. We have not 
examined it, but it seems straightforward to assume that behind a veil of ignorance 
rational players would choose a voting system that respects LM in those situations 
where the players have a personal interest in the outcome of a vote. It would seem 
inappropriate however to characterize (describe) voting power by axioms or 
postulates that capture, directly, our moral intuitions.25 

————— 
25 There is an interesting parallel of this problem related to the monotonicity axiom in bargaining 

theory. See Roemer (1986). 



C h a p t e r  5  

CONSTRAINED MONOTONICITY AND  

THE MEASUREMENT OF POWER* 

Abstract: This chapter introduces two constrained versions of local monotonicity: 
(i) player-constrained local monotonicity by restricting the number of non-dummy 
players in a game and (ii) partial local monotonicity by applying specific 
constrains on voting weights. It is shown the Public-Good measures fulfil partial 
local monotonicity for every proper weighted voting game and player-constrained 
local monotonicity for every weighted voting game with a simple majority rule and 
up to four non-dummy players. The discussion points out that whether a specific 
measure of voting power is appropriate depends on the properties of the model of 
collective decision-making which one wants to analyze, and not necessarily on 
some intuitive notions of monotonicity. 

1. Introduction 

When it comes to monotonicity of power with respect to voting weights, it is 
important to note that none of the existing measures guarantee that the power value 
of an individual player i will not decrease if his or her voting weight increases. 
Fischer and Schotter (1978) demonstrate this result, i.e. the so-called paradox of 
redistribution, for the Shapley-Shubik (1954) and (normalized) Banzhaf (1965) 
indices. 

 The paradox of redistribution stresses upon the fact that power is a social 
concept: if we discuss the power of an individual member of a group in isolation 
from his or her social context, i.e. related only to his or her individual resources, 
we may experience all sorts of ‘paradoxical results’. It seems that sociologists are 
quite aware of this problem (see, e.g., Caplow, 1968). Political scientists, however, 
often see the non-monotonicity of power as a threat to the principle of democracy. 
To them, it is hard to accept that by increasing the number of votes, a group could 
decrease its power. However, it seems that there is ample empirical evidence for 
this phenomenon.1 On the other hand, an increase of votes is more likely to imply 
                                               
* This chapter is a based upon Holler, Ono and Steffen (2001). The author would like to thank 

Matthew Braham and two anonymous referees for helpful comments. 
1 See Brams and Fishburn (1995) for references. 
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increasing than decreasing power given a random distribution of voting weights of 
the other players and corresponding re-distributions (see Fischer and Schotter, 
1978). 

 In general, economists also assume that controlling more resources is more 
likely to mean more power than less. However, they also deal with concepts like 
monopoly power, bargaining, and exploitation which stress the social context of 
power and the social value of resources (assets, money, property, etc.). Note that 
in the discussion of power indices, voting weights are a proxy for resources. 

 The discussion of measures of voting power follows the strategy to constrain 
the redistribution of weights in order to derive monotonicity properties for the 
various measures and to discriminate the measures with respect to these properties. 
For example, a well-known result is that the Shapley-Shubik index satisfies global 
monotonicity,2 while the normalized Banzhaf index does not and thus suffers from 
the donation paradox:3 a player may experience a loss in his or her index value, 
although his or her voting weight increases, given that the voting weight of no 
other player increases. Note that global monotonicity can only be applied if this 
constraint holds: therefore, it is a constrained monotonicity concept. 

  Both, the Shapley-Shubik and the (normalized) Banzhaf index satisfy another 
monotonicity property: local monotonicity (LM). This property says that a player 
with a greater voting weight cannot have less power than a player with a smaller 
voting weight. The violation of LM is considered by many scholars as counter-
intuitive4 and implies, in terms of Machover (2000), a contradiction to the pre-
formal notion of what voting power is. LM is a compelling property and it seems 
straightforward to argue that indices which do not satisfy this property, such as the 
Public-Good Index (Holler, 1982b; Holler and Packel, 1983) or the Deegan-Packel 
index (Deegan and Packel, 1978; Packel and Deegan, 1982), should not be applied 
for the measurement of power. It is, however, interesting to note that the very same 
scholars who are strongly propagating this position emphasize that the power of 
players has to be discussed in the context of the distribution of votes between all 
players in the game when their favourite measure faces the paradox of re-
distribution. We do not know of any study that discusses the properties of the 
distribution of votes so that LM is satisfied. For example, it is obvious that LM 

                                               
2 See Turnovec (1998) and the generalization in Levinský and Silársky (2002). 
3 See Felsenthal and Machover (1998, p. 252). 
4 See Freixas and Gambarelli (1997) and the discussion which accompanies the publication of this 

article in the same volume. 
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will not be violated by any of the known power measures, including the Public-
Good Index and the Deegan-Packel index, for n players and if n-2 players are 
dummies. It is, however, less obvious that LM is also satisfied for the Public-Good 
Index (and the Deegan-Packel index) if the games have n-4 dummies. 

  In the following, we will elaborate some results of constraining the distri-
bution of votes, such that LM is satisfied for the Public-Good measures of voting 
power. Section 2 outlines the theory of simple voting games and introduces the 
Public-Good measures of voting power and its motivation. Sections 3 and 4 
present our results for a constrained LM of Public-Good measures of voting 
power. Section 5 concludes with a discussion that shows that whether a specific 
measure of voting power is appropriate depends on the properties of the model of 
collective decision-making which one wants to analyze, and not necessarily on 
some intuitive notions of monotonicity. 

2. Simple Voting Games and the Public-Good Measures of Voting Power 

Before we proceed to discuss our results, let us briefly review the Public-Good 
measures of voting power. This family contains the Public-Good Index, the Public 
Value (Holler and Li, 1995) and the Public-Good Measure.5 These measures have 
been introduced as a solution concepts for simple voting games (SVG). For the 
basic definitions and terminology relating to the idea of a SVG and the subclass of 
weighted voting games (WVG), we refer the reader to Shapley (1962b) or to 
reproductions in Felsenthal and Machover (1998) or Taylor and Zwicker (1999). 
However, in order to develop our argument, we need to reiterate some of this here. 

Definition 2.1 (i) A simple voting game (SVG) is a pair (N, W) where W is a 
collection of subsets of a finite set N, satisfying the following three conditions:  
∅ ∉ W; N ∈ W; and (monotonicity) if S ∈ W and S ⊆ T, then T ∈ W. 
(ii) By N is meant an assembly (or voting body) and is the largest in W, its 
members are players, and its subsets are coalitions. A coalition S is said to be 
winning or losing according to whether S ∈ W or S ∉ W. 
(iii) Players in a SVG W are identified by the integers 1, 2, ..., n, where n = |N|. 
(iv) A coalition S is called a minimal winning coalition (MWC) if S ∈ W, but no 
subset of S is in W. The set of MWCs is denoted by Wm. 

                                               
5 The Public Good Index is axiomatized in Holler and Packel (1983). Recently, Napel (2001) has 

completed the axiomatization by proving that Holler and Packel’s axiomatization contains no 
redundant axioms. 
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Remark 2.1 (i) A SVG can be represented by W because N is uniquely determined 
by W (its largest member). We will therefore follow this notation through this 
chapter. 
(ii) Monotonicity and the finiteness of N imply that Wm completely determines W. 

Definition 2.2 In a SVG W let S be a coalition and i a player. We say that: (i) i is 
critical in S if S ∈ W but S − {i} ∉ W ; (ii) i is a dummy if it never happens that  
S ∉ W but S ∪ {i} ∈ W. 

Remark 2.2 (i) It is easy to see that (i) a coalition is a MWC iff each of its 
members is critical; and (ii) a player is a dummy iff it is never a member of a 
MWC. 

Alternatively, a SVG can be represented by a characteristic function: 

Definition 2.3 Let W be a SVG on an assembly N. The characteristic function of 
W is a mapping v : 2N → {0, 1} such that for any coalition S, v(S) = 1 iff S∈W(v) 
and 0 otherwise. 

Remark 2.3 (i) Using the characteristic function a SVG W can be represented as a 
pair (N, v) that satisfies the conditions of Def. 2.1. In particular the monotonicity 
condition translates into v(S) ≤ v(T) whenever S ⊆ T. 

Furthermore, we need the definition of that important sub-class of SVGs known as 
weighted voting games (WVG): 

Definition 2.4 (i) A SVG W is a WVG if there are nonnegative weights w1,…,wn 
allocated to the players and a quota 0 < q ≤ ∑{wi : i ∈ N}. such that S ∈ W iff 
∑{wi :  i ∈ S} > q. 
(ii) A WVG can be represented by [q; w1,…,wn] 

Definition 2.5 A category is a set of WVGs which yield the same Wm. 

Rermark 2.4 Since a category is described by Wm, we use the set Wm to 
characterize the different categories. 

Example 2.1 Consider (½; w1, w2, w3). For this type of game, we can identify 
two different categories of MWC’s, which are Wm1 = {{1,2}, {1,3}} and Wm2 = 
{{1,2}, {1,3}, {2,3}}, i.e., each possible distribution of voting weights w leads to 
a set of MWC’s which is Wm1 or Wm2, respectively, if the players are ordered with 
decreasing voting weights, w1 ≥ w2 ≥ w3 and w1 ≤ ½. For example, a game with the 
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distribution w = (0.50, 0.25, 0.25) belongs to Wm1, while a game with w = (0.33, 
0.33, 0.33) or w = (0.40, 0.40, 0.20) is in Wm2. 

Before we introduce the Public-Good measures of voting power we define what we 
understand under a measure of voting power and how we are going to characterise 
such a measure. 

Definition 2.6 A numerical measure of the power of player i to influence a 
decision or series of decisions made in an assembly N is a vectorial function ξ as-
sociating to any SVG W an element of 0

+R
n , i.e. ξ is any function assigning a non-

negative real number ξi (W) to every player i of every SVG W in which at least 
one player i from each SVG W is assigned a value ξi (W) > 0 and ξi (W) is 
invariant under isomorphism. 

Remark 2.5 This very general definition, which is based upon Sagonti 
(1991), F&M (1995), and Felsenthal et al. (1998) encompasses three types of 
measures: (i) scores (counts or ‘raw’ indices), which we denote by κi (W) for 
player i; (ii) indices, obtained by normalization of κ, i.e. κi/∑{κj(W) : i ∈ N}; and 
(iii) ratios of κi(W), obtained by dividing κi(W) by an appropriate quotient.6 

The Public-Good measures of voting power belong to the group of measures 
which are based on counting MWCs. 

Definition 2.7 (i) The Public Value (h’’) for player i in a SVG W, which is a 
score, is derived from counting the MWCs which have i as a member: h’’i (W) = 
|{S ∈ Wi

m}|. 
(ii) The Public-Good Measure (h’) for player i in a SVG W, which is a ratio, is 
obtained from its h’’(W) by division of the cardinality of the set of MWCs: h’i (W) 
= h’’i (W) / |Wm|. 
(iii) The Public-Good Index (h) for player i in a SVG W is derived by the 
normalization of h’’(W) or h’(W): hi (W)  = h’’i (W) / ∑{h’’i (W): i ∈ N} =  
h’i (W) / ∑{h’i (W): i ∈ N} so that ∑{hi (W): i ∈ N} = 1. 

Remark 2.6 (i) The Public-Good measures are based on the concept of MWC’s. 
This specification is supported by the fact that the value of a coalition is 
considered to be a Public-Good. If the players in W consider the value v(S) = 1 as 
a Public-Good there should be no rivalry in consumption and each member of S 
will enjoy this value if coalition S is formed. Furthermore, if there are no entry cost 
or transaction cost of coalition formation, S will be formed - given that S is a 

                                               
6 The distinction between these three measures is made in Felsenthal et al. (1998). 
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coalition in Wm so that no possibility of free-riding exists. Thus, we can state that 
non-rivalry in consumption and the exclusion of free-riding are the core elements 
from which a Public-Good measure of voting power is derived. 
(ii) If S ∈ W but S ∉ Wm then it is assumed that because of the potential of free-
riding, it will only be formed by ‘luck’7 - and not because of the power of its 
members - or that the outcome of S is identical with an MWC K ⊂ S. In the latter 
interpretation, it leads to double counting, if S is taken into consideration. 
(iii) Although we take only MWC’s into account for the calculation of a Public-
Good measure of voting power we do not claim that no other coalitions will be 
formed. It is only assumed that these coalitions do not matter and thus should not 
be taken into consideration when it comes to measuring power.8 

3. Player-Constrained Local Monotonicity 

In sections 3 and 4, we will consider the violation of LM for voting bodies when 
power is measured by a Public-Good measure of voting power. Our results so far 
are rather general in that we do not restrict our analysis to specific voting weights. 
However, as the most common voting rule used in voting bodies is the simple 
majority, we only consider this rule for our results in this section. In particular, we 
show that there exists a class of WVGs which is ‘violation proof’, that is, for 
which we cannot find a distribution of votes which violates LM. 

Proposition 3.1 The Public-Good measures satisfy LM for every WVG with n-g 
dummy players and simple majority rule (i.e., q = ½), if g ≤ 4 (player-constrained 
LM). 

Proof For games with n-g dummy players, we have g players which are 
decisive at least in one case and thus will have some power. Thus, we have to 
prove that LM is guaranteed for games with q = ½ and g = 1, ..., 4. We can do this 
by listing all possible distributions of voting power which can occur using the 
Public-Good Index for these games and then showing that there is no violation of 
monotonicity in any case. For this we refer to Brams and Fishburn (1995) and 
Fishbrun and Brams (1996), who have already derived all possible categories of 
MWC’s for these games. By calculating h’’, h’, and h for these categories, we 
derive all possible values of the measures of voting power of the regarded classes 
of games. As h’’ and h’ are linear transformations of h it is enough to prove that h 

                                               
7 For an explicit distinction of power and luck, see Barry (1980a, 1980b). 
8 See, e.g. Holler (1998) for this argument. 
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fulfils LM. This is shown by the results in table 1 and 2 which indicate all values 
of h for g ≤ 4 are locally monotonic. ð 

Table 1: The Public-Good Index values for g = 3 

Categories of MWC’s for g =3  ci(ν) hi(v) 

 1 2 3 1 2 3 

{1,2}, {1,3} 2 1 1 0.50 0.25 0.25 

{1,2}, {1,3}, {2,3} 2 2 2 0.33 0.33 0.33 

Table 2: The Public-Good Index values for g = 4 

Categories of MWC’s for g = 4 ci(ν) hi(v) 

 1 2 3 4 1 2 3 4 

{1,2}, {1,3,4}, {2,3,4} 2 2 2 2 0.25 0.25 0.25 0.25 

{1,2}, {1,3}, {2,3,4} 2 2 2 1 0.29 0.29 0.29 0.14 

{1,2}, {1,3}, {1,4}, {2,3,4} 3 2 2 2 0.33 0.22 0.22 0.22 

{1,2}, {1,3}, {2,3} 2 2 2 0 0.33 0.33 0.33 0.00 

{1,2}, {1,3}, {1,4} 3 1 1 1 0.50 0.17 0.17 0.17 

{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4} 2 2 2 2 0.25 0.25 0.25 0.25 

Furthermore, for g = 5, the violation occurs between the two players with the 
largest voting weights in only one category (5%), while in the rest of the cases (4 
categories = 20%) the violation occurs between the players with the second and 
third largest voting weight, while the two players with the lowest weights are never 
affected. Moreover, in only two cases (10%) the violation leads to the result that a 
player with less weight has more power than the player with the largest weight. 

  For g = 6 in ten categories (9%), the violation occurs between the players 
with the largest weights and in four categories (3%), the violation occurs between 
the players with the third and fourth largest voting weight, while all other twenty-
seven violations (23%) occur between the players with the second and third largest 
voting weight. Moreover, in eighteen cases (16%), the violation leads to the result 
that a player with less weight has more power than the player with the largest 
weight. 

 Further, we have found out that in both cases (g = 5 and g =6), the player with 
the largest voting weight seems to be affected only by the violation of LM, if his or 
her relative voting weight lies in the interval [0.24, 0.36]. For the players with the 
second and third largest voting weight, the corresponding intervals where they are 
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not affected by non-monotonicity seem to be [0.20, 0.35] and [0.15, 0.21], 
respectively. 

 A possible conclusion from these results on monotonicity presented in this 
section is the following. Assume that the players, for e.g., are parties in an election 
game under proportional representation from which they only know that they have 
to decide on collective goods under a simple majority rule wherein they do not 
know their voting weights or they suppose that these will lie under 15% or over 
36%. Then the best strategy to maximize their power is to maximize their votes, 
i.e. their voting weight, especially if they could expect that there will not be more 
than four, five or six parties which will have a significant party support to win 
seats such that they are not dummies. 

4. Partial Local Monotonicity 

In Section 3, we have shown that the Public-Good measures of voting power are 
locally monotonic for all WVGs with a simple majority rule and with (n-g) - 
dummy players for g < 4. In this section, we prove that LM can be achieved for 
the these measures if we apply specific constraints on voting weights (different 
from the dummy condition of the previous section). 

Definition 4.1 A WVG is proper if two disjoint coalitions are never winning at 
the same time; formally, q ≥ ∑ {wi: i ∈ N} / 2 = ½. 

Proposition 4.1 The Public-Good measures satisfy LM for the players i and j for 
every proper WVG so that h’’i(W) ≥ h’’j(W), h’i(W) ≥ h’j(W), and hi(W) ≥ 
hj(W), if wi > wj and wk = w’ for all other players k ≠ i, j (partial LM). 

Proof Without a loss of generality, we assume i = 1 and j = 2. Further, 
we classify the MWC’s into the following four subclasses: 

W m12 = {S ∈ Wm | 1,2 ∈ S} 

W m1 = {S ∈ Wm | 1 ∈ S, 2 ∉ S} 

W m2 = {S ∈ Wm | 1 ∉ S, 2 ∈ S} 

Wm∅
 = {S ∈ Wm | 1, 2 ∉ S} 

Thus the Public-Good Index for the players 1 and 2 can be written as 
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(1)  h
1
(W) = ( | Wm12| + | Wm1| ) / ∑{h’’i(W): i ∈ N} and 

  h
2
(W) = ( | Wm12| + | Wm2| ) / ∑{h’’i(W): i ∈ N}, 

where ∑{h’’i(W): i ∈ N} is only used for normalization and |Wm| represents the 
cardinality of Wm. Thus, ∑{h’’i(W): i ∈ N} and |Wm12| have no influence on the 
relative distribution of power among the players 1 and 2 and we can focus on Wm1 
and Wm2. As it is easy to see this implies that this proof also hold for h’’ and h’. 
By Proposition 4.1 it is assumed that each player k ∈ N - {i, j} has the same 
weight w’. As a consequence any coalition in Wmf (f = 1, 2) has the same size, say, 
rf + 1 (r ‘k-members’ plus player f). Formally, rf := min{r| q - wf < r w’}; it is clear 
that 

(2)  r1 < r2. 

Furthermore, | Wmf| = 
2

f

n
r
− 

 
 

. Since the WVG is proper,  

(3)  (r1 + 1) + (r2 + 1) > n 

holds (otherwise, there exist two MWC’s). The inequalities (2) and (3) imply: 

(4)  |Wm1| > |Wm2| ⇔ 
1

2n
r
− 

 
 

 > 
2

2n
r
− 

 
 

, 

i.e., a constrained LM holds with respect to player 1 and 2.ð 

Remark 4.1 (i) Note that in Proposition 4.1, nothing is said about the power 
relationship of i and k and j and k. 
(ii) Note, that the fact of monotonicity being fulfilled for the players 1 and 2 
according to Proposition 4.1 does not mean that all index values will be locally 
monotonic in these cases. For instance, for the game (½; 0.4, 0.3, 0.1, 0.1, 0.1) the 
Public-Good Index is (0.27, 0.13, 0.20, 0.20, 0.20). This example illustrates 
partial LM of players 1 and 2, however, (unconstrained) LM is not satisfied. 
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5. Discussion 

In this chapter, we have discussed constraints on the number of (non-dummy) 
players and on the distribution of votes such that LM is satisfied for the Public-
Good measures of voting power. We have, furthermore, identified the player-
constrained and partial LM concepts along with it.9 

 An alternative approach to discuss monotonicity properties would be to 
choose constrained sets of coalitions (or permutations) which have i and j as 
members. For instance, the price monotonicity, introduced in Felsenthal et al. 
(1998), says that a power measure ξ should satisfy the condition ξi(v) > ξj(v) if i is 
in more coalitions a swinger10 than j. Since the Banzhaf index is based on the 
swing concept, it trivially satisfies price monotonicity while it is easy to show that 
the Shapley-Shubik index which refers to pivotal players and permutations fails to 
do so. Needless to say that the Public-Good measures of voting power or the 
Deegan-Packel index also lack price monotonicity defined by swing coalitions. 
However, if we re-define price monotonicity by stating that the power measures 
have to satisfy ξi(v) > ξj(v) if i is in more MWC’s than j, then measures which 
satisfies this monotonicity are Public-Good measures. 

  If the collective decision-making can be described by a model of weighted 
voting which consists of a decision rule (e.g. simple majority) and a distribution of 
votes, then a measure of voting power should answer the question: what is the 
probability that a player i is decisive for the collective outcome, given that we have 
no other information on the voting (or the players) and the forming of coalitions. 
On this level of abstraction, the measure represents an a priori evaluation of the 
WVG to each player. It has been argued that ‘power index speaks about the 
properties of a model, not about the properties of the power as such’ (Turnovec, 
1997, p. 613). Whether a specific measure of voting power is appropriate depends 
on the properties of the model of collective decision-making which one wants to 
analyze, and not necessarily on some intuitive notions of monotonicity. 

                                               
9 For further studies of player-constrained local monotonicity see Schönfeld (2001). 
10 Player i is a swinger of coalition S if he or she is critical in S. 
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Appendix 

Table 3: The Public-Good Index values for g = 5 

Categories of MWC’s for g = 5 ci(ν) hi(v) 

 1 2 3 4 5 1 2 3 4 5 

{1,2}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4,5} 4 2 3 3 3 0.27 0.13 0.20 0.20 0.20 

{1,2}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5} 3 3 4 2 2 0.21 0.21 0.29 0.14 0.14 

{1,2}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4} 4 2 3 3 2 0.29 0.14 0.21 0.21 0.14 

{1,2}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, 

{2,3,5} 

4 3 4 3 3 0.24 0.18 0.24 0.18 0.18 

{1,2}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, 

{2,3,5}, {2,4,5} 

4 4 4 4 4 0.20 0.20 0.20 0.20 0.20 

{1,2}, {1,3}, {2,3,4}, {2,3,5} 2 3 3 1 1 0.20 0.30 0.30 0.10 0.10 

{1,2}, {1,3}, {1,4,5}, {2,3,4,5} 3 2 2 2 2 0.27 0.18 0.18 0.18 0.18 

{1,2}, {1,3}, {1,4,5}, {2,3,4} 3 2 2 2 1 0.30 0.20 0.20 0.20 0.10 

{1,2}, {1,3}, {1,4,5}, {2,3,4}, {2,3,5} 3 3 3 2 2 0.23 0.23 0.23 0.15 0.15 

{1,2}, {1,3}, {1,4}, {2,3,4,5} 3 2 2 2 1 0.30 0.20 0.20 0.20 0.10 

{1,2}, {1,3}, {1,4}, {2,3,4} 3 2 2 2 0 0.33 0.22 0.22 0.22 0.00 

{1,2}, {1,3}, {1,4}, {1,5}, {2,3,4,5} 4 2 2 2 2 0.33 0.17 0.17 0.17 0.17 

{1,2}, {1,3}, {1,4}, {1,5} 4 1 1 1 1 0.50 0.13 0.13 0.13 0.13 

{1,2}, {1,3}, {2,3} 2 2 2 0 0 0.33 0.33 0.33 0.00 0.00 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{1,4,5}, {2,3,4,5} 

6 4 4 4 4 0.27 0.18 0.18 0.18 0.18 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{1,4,5}, {2,3,4} 

6 4 4 4 3 0.29 0.19 0.19 0.19 0.14 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{2,3,4}, {2,3,5} 

5 5 5 3 3 0.24 0.24 0.24 0.14 0.14 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{1,4,5}, {2,3,4}, {2,3,5} 

6 5 5 4 4 0.25 0.21 0.21 0.17 0.17 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5} 

6 6 5 5 5 0.22 0.22 0.19 0.19 0.19 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, 

{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5} 

6 6 6 6 6 0.20 0.20 0.20 0.20 0.20 

 



 

 

 

 

 

P A R T  II 

A P P L I C A T I O N S 



 

C h a p t e r  6  

PROPORTIONAL REPRESENTATION  

IN THE NATIONAL ASSEMBLY FOR WALES* 

Abstract: The rule for electing members to the National Assembly for Wales gives 
each voter two votes, to be cast at the Assembly Constituency level, and at the 
bigger Assembly Electoral Region level. One third of the members to the assembly 
are elected by a form of proportional representation, where party support is 
calculated by aggregating the two votes. The voters are allowed to cast the second 
vote in favour of a different party than the one they earlier voted for, at the 
Assembly Constituency level. It is shown that this additional degree of freedom 
can frustrate the objective of obtaining better correspondence between party 
support and the number of seats. Also, the effects of this additional degree of 
freedom on the voting power of the parties on the Assembly Electoral Region level 
are shown using Straffin’s partial homogeneity approach. Based on this analysis, a 
different system of proportional representation and a method of equating the 
distribution of voting power and the seat distribution are proposed.  

1. Introduction 

Few people would object to the idea that a system of election which allows a 
legislature to be captured by organised minorities is flawed. Even fewer people 
would argue that a party should secure greater representation or power in the 
parliament because the electoral support in favour of another party has increased. 
It is in keeping with the first of the ideas above that there is a move towards 
embracing some form of proportional representation in the United Kingdom. A 
tentative step towards experimenting with proportional representation was taken 
by central government in framing the rule for electing the National Assembly for 
Wales, which was elected the first time in May 1999 to take over the 
responsibilities that the Secretary of State exercises in Wales. Yet, this particular 
system of proportional representation chosen by government, described first in the 
White Paper entitled ‘A Voice for Wales’ (HMSO, 1997) and now part of the 

                                               
* This chapter is a based upon Altunbas, Chrakravarty and Steffen (1999a). The author is grateful 

for helpful comments to Matthew Braham and Manfred Holler. An earlier version of this paper 
by Altunbas and Chakravarty (2000) entitled ‘Proportional Representation in the Welsh 
Assembly’ is published in Public Choice 103, 85-94. 
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‘Government of Wales Act 1998 (chapter 38)’ (HMSO, 1998), suffers from the 
flaw that Party a might find that its representation (in seats) in the National 
Assembly for Wales has decreased in favour of Party b because Party b has 
increased support (in votes) at the expense of Party c. 

  This state of affairs comes about because voters are given two votes, one to 
cast at the Assembly Constituency level and another to cast at the Assembly 
Electoral Region level. These two votes are aggregated for arriving at the 
percentage share of party support, the figure which enters into the calculation of 
the additional member seats in the National Assembly for Wales. A problem with 
an electoral system which suffers from the anomaly described above is that the 
legitimacy of the assembly elections might come into question when the voters 
discover that the system of election is capable of producing unintended 
consequences of the votes cast. This is especially important because one of the 
objectives of introducing the system of proportional representation is to make 
representation in the assembly more reflective of the pattern of votes cast (see, e.g., 
Michael, 1999).1 

  The procedure for allocating the additional member seats per Assembly 
Electoral Region entails four sets of calculations. Party support is measured using 
results of these calculations. The party gaining the greatest amount of support 
after the first set of calculations is allocated the first additional member seat, and 
so on. 

  The chapter is organised as follows: section 2 describes the rule for electing 
the assembly while section 3 outlines Straffin’s partial homogeneity approach to 
the measurement of voting power, explaining how voting power is measured in this 
chapter and why this should be done so. Section 4 illustrates above mentioned 
anomalies and their effects on voting power starting with party support based on 
the general election results in May 1992. Section 5 illustrates these anomalies and 
effects starting with party support on the 1997 general election data.2 In 
continuation of the results obtained in sections 4 and 5, section 6 offers a different 
system of proportional representation and section 7 suggests a (theoretical) method 
to equate distribution of voting power and seat distribution. The conclusions are 
contained in section 8. 

                                               
1 Another anomaly of the election rules for the National Assembly for Wales concerning the 

election the First Minister due to a fall in support for his own party is discussed in Altunbas et 
al. (2002). 

2 The data on parliamentary votes in the above elections are taken from a database supplied by 
UK-Elect. 
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2. The Electoral Rule 

The electoral rules, the Additional Member System (AMS), are described in 
Sections 6 and 7 of the ‘Government of Wales Act 1998 (chapter 38)’ (HMSO, 
1998).3 Accordingly, each voter is to have two votes, and each voter will choose 
more than one member of the assembly. The first vote is to be cast to elect an 
assembly member by the first-past-the-post system (FPTPS) from the voter’s 
Assembly Constituency. There are 40 constituencies and 40 members of the 
assembly will be chosen by the FPTPS. These Assembly Constituencies which are 
the same as the existing Parliamentary Constituencies are then grouped into bigger 
units, comprising of the current boundaries for selecting members for the European 
Parliament. There are five such European Parliamentary Constituencies which here 
are called Assembly Electoral Regions. Each Assembly Electoral Region is 
allowed to contribute four additional members, a total of 20 for Wales, by a form 
of proportional representation. The composition of the five bigger constituencies is 
described in table 1. 

  The voters will be able to cast their second vote for the purpose of electing 
the additional members, and they can cast it differently from their first one. The 
sum of the votes - the votes cast on the Parliamentary and on the Assembly 
Electoral Region level - will then be recorded for each party in each of the larger 
Assembly Electoral Regions. An arithmetic formula is proposed to translate these 
total votes to allocate seats for the additional members from each Assembly 
Electoral Region using a modification of d’Hont’s allocation method as is 
described by De Meur (1987).  

  The four additional seats from each Assembly Electoral Region will be 
determined by (HMSO, 1997, p. 36): 

1. counting the number of votes cast for each party list in the Assembly Electoral 
Region; 

2. calculating the number of constituency seats won by each party throughout the 
Assembly Electoral Region; 

3. dividing the number of each party’s party list votes by the number of 
constituency seats won by the party, plus one. The party with the highest 
number of votes after that calculation gains the first additional member; 

                                               
3 For a more easily readable formulation concerning the most important rules, see Annex C, 

entitled ‘Electoral Arrangements’, of the devolution White Paper (HMSO 1997). 
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Table 1: Composition of the Assembly Electoral Regions 

Assembly Electoral 
Region 

Corresponding Assembly 
Constituency 

Number of 
Constituency 

Seats 

Number of 
Assembly  

Seats 

North Wales 
Add’l seats: 4 

1. Ynys Mon 
2. Caernarfon 
3. Conwy 
4. Clwyd West 
5. Vale of Clwyd 
6. Clwyd South 
7. Delyn 
8. Ayln and Deeside 
9. Wrexham 

9 13 

Mid and West Wales 
Add’l seats: 4 

10. Meirionnydd Nant Conwy 
11. Ceredigion 
12. Preseli Pembrokeshire 
13. Carmarthen West and South 

Pembrokeshire 
14. Carmarthen East and Dinefwr 
15. Llanelli 
16. Montgomeryshire 
17. Brecon and Radnorshire 

8 12 

South Wales West 
Add’l seats: 4 

18. Gower 
19. Swansea East 
20. Swansea West 
21. Neath 
22. Aberavon 
23. Bridgend 
24. Ogmore 

7 11 

South Wales Central 
Add’l seats: 4 

25. Vale of Glamorgan 
26. Pontypridd 
27. Rhondda 
28. Cynon Valley 
29. Cardiff North 
30. Cardiff West 
31. Cardiff Central 
32. Cardiff South and Penarth 

8 12 

South Wales East 
Add’l seats: 4 

33. Newport East 
34. Newport West 
35. Monmouth 
36. Torfaen 
37. Islwyn 
38. Caerphilly 
39. Blaenau Gwent 
40. Merthyr Tydfiland and 

Rhymney 

8 12 
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4. repeating the calculation for the second to the fourth additional members, but in 
each case dividing the party list votes by the number of constituency seats won, 
plus one, plus any additional seats allocated in previous rounds.4 

  The system should ensure that all parties which command a significant level 
of support across Wales win some seats in the assembly. 

3. Voting Power: Concept and Measurement 

3.1 The Concept of Voting Power 

Power is a central concept in political science. However, there is little agreement 
on how power is to be defined, how to observe and measure it. In this chapter, we 
follow Barry (1976) and Morriss’ (1987) understanding of power as an ability or 
capacity to do something or the possession of control in a social environment. If a 
decision-making situation can be represented as a voting situation the literature on 
the theory and measurement of voting power provides a way to ‘measure power’ 
defined in that manner by determining how probable it is that a decision-maker has 
such an ability. This is done by calculating the probability that a decision-maker 
has the ability to do something, i.e. to force the outcome of a vote. 

  In our case the voting situation is that in the National Assembly for Wales. It 
is assumed that decision-makers are political parties. They are considered as being 
unions formed in order to carry out the common will of their members through 
parliamentary decision making, i.e. by voting on proposed motions. To simplify, 
we will assume each party’s representatives vote as one bloc. So the number of 
votes of each party in the assembly - the voting weight of a party - is given by their 
number of seats. If the decision rule implicates some majority rule, only one of 
possible opposing motions on a certain issue will pass. The higher the likelihood 
that a party wins a poll, the higher will be the probability for the party to enforce 
its will and hence the ‘more powerful’ this party will be. Thus such probability - 
the probability with which each party will participate in a majority coalition - is 
used to measure the voting power of a party. 

Given the distribution of parliamentary seats, we can calculate the probabilities of 
different parties using a measure of voting power. In this chapter, we use a 
measure based on Straffin’s (1977) partial homogeneity approach. 
                                               
4 For the procedure as what to should happen in the event of two parties registering a tie at one of 

these stages of calculations - the White Paper (HMSO, 1997) is silent - see The „Government of 
Wales Act 1998 (chapter 38)“ (HMSO, 1998, Section 7 (7) - (9)).  
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A special feature of these and some familiar measures is that preparatory work, 
i.e. the work which is needed for the creation of proposals, the bargaining process 
of amending the draft proposals before they are passed or rejected, and the 
bargaining for coalitions, is not modelled. It is simply assumed that the voters’ 
resources in the final voting define a limiting condition for the bargaining and so 
the decision-making is modelled as a simple voting game (using the subclass of 
weighted voting games). 

3.2 Straffin’s Approach to the Measurement of Voting Power 

Let N = {1, 2, ...,n} be a set of parties (players) of a weighted voting game [q; w], 
where q∈[0,1] is the majority quota, which is the sum voting weights (number of 
seats) needed to attain a certain end (i.e. to win or block a bill), and w = (w1, w2, 
..., wn) is the vector of voting weights (or seats) of each party i∈N. Let W be a 
collection of subsets S⊆N with ii S

w q
∈

>∑ , which is called the class of all 
winning coalitions. Then, define the subset of all crucial coalitions C as a 
collection of subsets S∈W where for each S at least one party i∈S is a crucial 
party. Party i is called crucial for S∈W, if S is a losing coalition without i: 
S\{i}∉W. Finally, let Wi and Ci denote the classes of winning coalitions containing 
party i in the first case and additionally requiring player i to be crucial in the latter. 

 We have already defined above the voting power of a party as the probability 
with which a party will participate in a majority coalition. We now refine this 
definition by saying that the power of a party i is the probability that party i is a 
crucial member of a winning coalition, assuming that the parties acceptance 
decisions are independent: Pi(S=S, S∈Ci) = Pi(S=S, S∈Wi) - Pi(S=S\{i}, 
S\{i}∉W), where S is a randomly chosen coalition. Calculating this probability, 
we obtain  

(1)  Pi(S=S, S∈Ci) = 
\{ } \{ }

(1 )
i

j j
S j S i j S i
j S j i

p p
∈ ∈ ∉
∈ ≠

−∑ ∏ ∏
C

 = f ′ i(p) 

where pj is the probability of party j∈N to vote for a random bill to and p is the 
vector of such probabilities for all parties: p = (p1, p2, ..., pn). 

We now have to make an assumption concerning relations of the elements of the 
‘acceptability vector’ p. If we do not have any prior information of parties’ attitude 
towards alternative bills per se, there are the following two standard assumptions:5 

                                               
5 Straffin (1977) shows that if we use the independence assumption party i’s power polynomial 

leads to the Penrose (1946) / Banzhaf (1965) measure, which is known as the absolute or non-
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• Independence assumption: pi ∼ U[0,1] 
• Homogeneity assumption : pi = t with t ∼ U[0,1]  

 The main difference between these is that under the homogeneity assumption, 
there is a common standard by which the parties evaluate a bill and thus the 
probabilities of parties’ decisions are strictly correlated, while under the 
independence assumption, parties have the same distribution of voting for a 
proposal but act independently of each other. As E[pi] = ½ ∀ i∈N under the 
independence assumption, we can say that this assumption is equivalent to 
assuming that any party will vote for any bill with probability ½ (Straffin, 1977, 
1988). 

 In order to account for additional information concerning the relation of 
parties in a given voting body, we can combine these two assumptions leading to a 
partial homogeneity structure. For instance, we can assume that a party j has a 
certain standard (pj = t), whereas the standard of another party h is exactly the 
opposite of the first one (ph = 1-t), while all the other parties l∈N\{j, h} behave 
independently (pl = ½). For this case, the mean value of party i’s power 
polynomial can be written as (Kirman and Widgrén, 1995): 

(2) 
1 1

# 1 # # # 1 # #
0 0

... ' ( , , . . . , ,1 )  ... i i j n j h j n j hE f f t p p t d t dp dp+ − − + − −= −∫ ∫  

where E¶i  is party i’s voting power value, which we will use in our following 
analysis.6 

3.3 Why Measuring Voting Power? 

With the calculation of voting power values using measures of voting power, we 
can not only gain some information about the decisiveness of parties in 
parliamentary decision-making, but also the relation between party support, seat 
distribution and different decisions rules. This can be helpful for designing 
‘efficient’ collective decision units and decision rules. Thus, concerning the design, 
there are two important problems to solve: The creation of the aggregation 
mechanism for seat distribution based on party support and the choice of the 

                                                                                                                               
normalized Banzhaf index, while the homogeneity assumption yields to the Shapley-Shubik 
(1954) index. For general considerations concerning other probability distributions of pi, see 
Straffin (1978). 

6 For further applications, see, e.g., Kirman and Widgrén (1995), Straffin (1977) and (1988), 
Straffin, Davis and Brams (1982) and Widgrén (1993). 
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decision rule. We suggest a possible solution concerning these problems in section 
6 and 7. It should be mentioned in this context that in many representational 
bodies, seats are distributed among the parties roughly in proportion of their 
relative support. This practice seems to be based on the idea that voting power is 
reflected in the relative distribution of seats. But there is a number of studies 
suggesting that the voting power of parties in general does not coincide with their 
share of the seats7, even if the discrepancy of seat and power distribution varies 
with the choice of the measure of voting power. In sections 4 and 5 we will see that 
this is even true for the National Assembly for Wales. 

4. The 1992 Election 

We start our analyses with an investigation using the data of the general election 
results in May 1992 as a basis to compute the composition of the National 
Assembly for Wales.8 

 We first calculate the distribution of assembly seats, assuming that voters cast 
both votes identically. Thus, the total votes received by one party in an Assembly 
Electoral Region are twice the sum of votes gained in the Assembly Constituencies 
belonging to that region. After that, we calculate the voting power of each party 
for the cases of an absolute (q = 1/2) and a qualified majority quota (q = 2/3) on 
the basis of the original votes and seats determined in the step before. For 
computing the power values, we make the following assumptions concerning the 
acceptability vector p = (pLabour, pConservaties, pLiberal Democrats, pPlaid Cymru), which 
contains the pi’s of the four most important parties in Wales:9 It is well known that 
it is possible to position Labour, Conservative and Liberal Democrats in an one 
dimensional ideological space, putting Labour on the left, Conservative on the 
right and Liberal Democrats between them, and that in general, each of these 
parties has a common standard.10 Keeping this in mind, we can model the pi’s of 
                                               
7 See, e.g., Banzhaf (1968), Bomsdorf (1980; 1982), Brams (1975), Holler (1982a), Shapley and 

Shubik (1954), Turnovec (1994), Weiersmüller (1971), Widgrén (1994). 
8 Note, that this study was undertaken before the first ever elections of the National Assembly for 

Wales in May 1999. For an initial study of the actual 1999 election data see Altunbas et al. 
(2000). 

9 For purposes of calculation, we have also considered the Greens and for the 1997 election, the 
Referendum Party as a fifth homogenous party, with pGreen = t′ and pReferendum Party = t′, 
respectively, which have voting power in some cases even if they will never get a seat under the 
current rules for the seat distribution, while the other small parties can be ignored because their 
influence is negligible, i.e. they additionally have no voting power in the decision rules under 
consideration, and they also do not have an impact on the voting power of the other parties. 

10 See, e.g., Gallagher, Laver and Mair (1995, pp. 152-157). Note, that this was in fact the case 
when this chapter was written. Unfortunately, when the research was finished, Labour and 
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these parties using a partial homogeneity structure with pLabour = t, pConservaties =  1- 
t, and pLiberal Democrats =   (t + (1-t)) / 2 = ½. In contrast to these parties, Plaid 
Cymru is assumed to behave independently, i.e. pPlaid Cymru = ½, because it contains 
three different political groups (cultural nationalists, a right-wing extremist 
fraction and social democrats), which hold together only by their common 
language (Welsh), that is spoken by about 20% of the Welsh population and by 
their opinion that there is a separate Welsh identity. 

 For reasons of simplicity, we restrict our analysis to some of the Assembly 
Electoral Regions instead of analysing the effects for the whole National Assembly 
for Wales, i.e. we make a partial analysis, because effects and structure of results 
will be the same in case of a total analysis. 

 We start our analysis with the Assembly Electoral Region of South West 
Wales. Table 4.1. shows that the relation between party support in South West 
Wales and seat distribution is relatively close though the chosen rule for 
proportional representation seems to be adequate. 

 Concerning the distribution of voting power, the case of absolute majority 
seems obvious enough to need no further attention. This is quite different for the 
rule of qualified majority. A detailed look at the party support and distribution of 
voting power shows us that these values are in an inverse proportion for Liberal 
Democrats and Conservatives. We can observe the same in the case of seat 
distribution and voting power as well. It is what is in general called the violation of 
local monotonicity. That is that property, that a party i with a larger party support 
(in general terms ′with more resources′) than a party j, should have at least as 
much voting power than party j.  

                                                                                                                               
Liberal Democrates have changed their positions. Thus the assumption that the above standards 
of the parties can be seen as historical based a priori information (see Steffen, 2000) has turned 
out to be inappropriate regarding the aim of an a priori analysis of the voting rules for the 
National Assembly for Wales. This has led to further research on this issue. First results have 
been represented at the 2000 Annual Meeting of the European Public Choice Society, Sienna, 
26-29 April 2000 (see Altunbas et al., 2000). 
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Table 4.1: Votes go from Labour to Plaid Cymru but the Conservatives 
       lose one Seat 

Assembly Electoral Region: South West Wales 

Party 

 

Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st 

vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 61.26 61.26 100.00 81.25 7 63.64 100.00 75.00 

Conservative 23.72 23.72 0.00 18.75 3 27.27 0.00 25.00 

Liberal Democrats 9.25 9.25 0.00 25.00 1 9.09 0.00 33.33 

Plaid Cymru 5.15 5.15 0.00 8.33 0 0.00 0.00 0.00 

Second vote cast differently  

Labour 61.26 55.00 100.00 81.25 7 63.64 100.00 37.50 

Conservative 23.72 23.72 0.00 18.75 2 18.18 0.00 25.00 

Liberal Democrats 9.25 9.25 0.00 25.00 1 9.09 0.00 16.67 

Plaid Cymru 5.15 11.41 0.00 8.33 1 9.09 0.00 16.67 

As argued in Felsenthal and Machover (1995, 1998) local monotonicity should be 
fulfilled by any reasonable measure of (a priori) voting power. We agree on this 
but on the other hand, we have to take into account that, as discussed in Braham 
and Steffen (2002c), the common notion of local monotonicity is too restrictive. 
Under Straffin’s approach it is only applicable to the independence and the 
homogeneity assumption as in both cases ‘party support’ and ‘resources’ coincide. 
But this does no longer hold if we apply a partial homogeneity assumption as we 
have done here. In this case, where we have allowed for additional information, we 
have to use a more general definition of local monotonicity which also takes into 
account parties’ ‘standards of behavior’ (i.e. the different assumptions about the 
elements of the acceptability vector) and their interaction as a further component 
of parties’ resources resulting from the additional information. Then, following 
Braham and Steffen’s line of thought, the violation of local monotonicity (in 
weights) in our case turns out to be an expected and intuitively reasonable result. 

 Another interesting aspect follows from the comparison of the voting power 
for party support and seat distribution. Here, we see that the chosen rule for 
proportional representation leads to a decrease in power for Labour from 81.25 % 
to 75.00 % (and Plaid Cymru from 8.33 % to 0.00%) while the power of 
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Conservatives and Liberal democrats increases from 18.75 % to 25.00 % and from 
25.00 % to 33.33 % respectively. 

 In a next step, we simulate what would happen if the second vote was cast 
differently, leaving the votes cast at the Assembly Constituency level untouched. 
That is, the simulations affect only the election of additional members. 

 First, we assume that many of those who vote Labour in the constituencies 
transfer their allegiance to Plaid Cymru in exercising their second ballot. But the 
seat distribution reveals that Plaid Cymru gains a seat from the Conservatives 
instead from Labour. Concerning the distribution of voting power, nothing has 
changed in the case of party support. But looking at the distribution of voting 
power in relation to the new seat distribution, we can see that Labour and Liberal 
Democrats lose voting power without a change in their number of seats, while 
voting power of Plaid Cymru and the Conservatives, which lose a seat, remains 
constant or increases. This effect is known as the paradox of redistribution in 
literature (Fischer and Schotter, 1978; Schotter, 1982) and is based on possibilities 
of forming a winning coalition.11 

Table 4.2: Votes go from Labour to Liberal Democrates but the Conservatives  
                 lose one Seat 

Assembly Electoral Region: South West Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st  

vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 61.26 61.26 100.00 81.25 7 63.64 100.00 75.00 

Conservative 23.72 23.72 0.00 18.75 3 27.27 0.00 25.00 

Liberal Democrats 9.25 9.25 0.00 25.00 1 9.09 0.00 33.33 

Plaid Cymru 5.15 5.15 0.00 8.33 0 0.00 0.00 0.00 

Second vote cast differently  

Labour 61.26 47.76 100.00 75.00 7 63.64 100.00 75.00 

Conservative 23.72 23.72 0.00 25.00 2 18.18 0.00 25.00 

Liberal Democrats 9.25 22.75 0.00 33.33 2 18.18 0.00 33.33 

Plaid Cymru 5.15 5.15 0.00 0.00 0 0.00 0.00 0.00 

                                               
11 For an interpretation and some comments on this paradox, see Straffin (1982). 
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We obtain similar results if we assume that the Liberal Party gains votes from 
Labour, as has been shown in table 4.2. In this case, Liberal Democrats gain an 
assembly seat at the expense of the Conservatives, but regarding the distribution of 
voting power nothing changes. In contrast to the simulation before, the distribution 
of power in case of party support has changed now: while the direction of the 
variation in party support and voting power is concurring for Labour and Liberal 
Democrats, Conservatives gain some voting power and Plaid Cymru loses its 
voting power without any change in its party support. Furthermore, it is interesting 
to note that in this case, voting power regarding party support and seat distribution 
are identical. 

 In table 4.3, we illustrate a case where an increase in the Liberal Democrats’ 
second votes at the expense of the Conservatives does not benefit the Liberals; 
instead Labour gains an extra seat and all voting power without obtaining any 
extra votes. 

Table 4.3: Votes go from Conservatives to Liberal Democrats but Labour 
                 gains one Seat 

Assembly Electoral Region: South West Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st 

 vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 61.26 61.26 100.00 81.25 7 63.64 100.00 75.00 

Conservative 23.72 23.72 0.00 18.75 3 27.27 0.00 25.00 

Liberal Democrats 9.25 9.25 0.00 25.00 1 9.09 0.00 33.33 

Plaid Cymru 5.15 5.15 0.00 8.33 0 0.00 0.00 0.00 

Second vote cast differently  

Labour 61.26 61.26 100.00 81.25 8 72.73 100.00 100.00 

Conservative 23.72 17.72 0.00 18.75 2 18.18 0.00 0.00 

Liberal Democrats 9.25 15.25 0.00 25.00 1 9.09 0.00 0.00 

Plaid Cymru 5.15 5.15 0.00 8.33 0 0.00 0.00 0.00 

We obtain a similar example in table 4.4 for the Assembly Electoral Region Mid 
and West Wales, where an increase in Plaid Cymru votes in the exercise of the 
second set of ballot papers at the expense of the Conservatives could give an extra 
seat to the Liberal Democrats. Additionally, we have some interesting effects on  
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Table 4.4: Votes go from Conservatives to Plaid Cymru but Liberal Democrats  
                 gain one Seat 

Assembly Electoral Region: Mid and West Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st 

vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 32.58 32.58 75.00 37.50 4 33.33 25.00 25.00 

Conservative 28.88 28.88 25.00 37.50 4 33.33 25.00 25.00 

Liberal Democrats 20.25 20.25 33.33 41.67 2 16.67 33.33 8.33 

Plaid Cymru 17.67 17.67 33.33 41.67 2 16.67 33.33 8.33 

Second vote cast differently  

Labour 32.58 32.58 75.00 37.50 4 33.33 50.00 37.50 

Conservative 28.88 24.88 25.00 37.50 3 25.00 25.00 25.00 

Liberal Democrats 20.25 20.25 33.33 41.67 3 25.00 16.67 25.00 

Plaid Cymru 17.67 21.67 33.33 41.67 2 16.67 16.67 25.00 

voting power here. Where the voting power concerning party support remains 
unchanged as in the simulation before, the effects on voting power related to seat 
distribution are quite different. Whilst the direction of the change in power for 
Conservatives and Liberal Democrats corresponds with variation in seat 
distribution for the qualified majority quota, we have an opposite effect for the 
absolute majority quota and on the other hand a reverse change in power for both 
quotas for Labour and Plaid Cymru without any change in their number of seats in 
the assembly. 

  Another example regarding the effects on the seat distribution but with some 
different effects on voting power is given by table 4.5 for the Assembly Electoral 
Region of North Wales, where a decrease in Labour votes in favour of Plaid 
Cymru could give an extra assembly seat instead to Liberal Democrats. 

  In all examples above, a voter can only predict that the party from which the 
allegiance is taken away in the exercise of casting the second vote cannot gain 
seats as a result, but the voter cannot predict that this is the party which will 
necessarily gain fewer seats as a consequence. A voter cannot predict who will be 
losing a seat. Another feature of the examples above is that the party which is 
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more successful in increasing the share of second votes may find that the reward of 
an 

Table 4.5: Votes go from Labour to Plaid Cymru but Liberal Democrats  
                 gain one Seat 

Assembly Electoral Region: North Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st 

vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 37.32 37.32 75.00 50.00 5 38.46 50.00 50.00 

Conservative 35.72 35.72 25.00 50.00 5 38.46 50.00 50.00 

Liberal Democrats 12.98 12.98 33.33 0.00 1 7.69 0.00 0.00 

Plaid Cymru 13.35 13.35 33.33 0.00 2 15.38 66.67 0.00 

Second vote cast differently  

Labour 37.32 26.32 50.00 50.00 4 30.77 25.00 37.50 

Conservative 35.72 35.72 50.00 50.00 5 38.46 75.00 62.50 

Liberal Democrats 12.98 12.98 0.00 0.00 2 15.38 33.33 16.67 

Plaid Cymru 13.35 24.35 66.67 0.00 2 15.38 33.33 16.67 

extra assembly seat goes to another party. Thus, a party could gain or lose seats 
without any change in the proportion of votes cast in its favour. Concerning the 
effects on voting power, we have seen that voting power regarding party support 
and seat distribution does not correspond in general. Looking upon the power 
effects resulting from our simulations and comparing the initial distribution of 
voting power with the distribution where the second ballot is cast differently, we 
cannot observe any systematic variation of the distribution of voting power. 

5. The 1997 Election 

The pattern of simulation results reported in section 4 can be repeated for the 1997 
General Election. An illustration is given in table 5.1 and table 5.2. One interesting 
feature of these results is that Plaid Cymru will have to cause a collapse of Labour 
votes to gain an extra seat in North Wales, but Liberal Democrats can capture an 
extra seat with more modest transfer of votes from Labour. In both cases, 
Conservatives lose one seat in consequence of the decline in Labour support in the 
second vote. 
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Regarding the relation between party support and voting power, we can observe 
that if both votes are cast identically, we have a contrary relation between party 
support and voting power for Conservatives, Liberal Democrats and Plaid Cymru 
for the case of the absolute majority quota and that voting power for all parties, 
except Liberal Democrats, remains constant for the resulting seat distribution in 
the assembly, while the latter lose all their power even if they receive one seat in 
the assembly. 

Table 5.1: Votes go from Labour to Plaid Cymru but Conservatives lose one Seat 

Assembly Electoral Region: North Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st  

vote 

2nd 

vote 

absolut

e 

majorit

y 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 46.72 46.72 75.00 62.50 7 53.85 100.00 75.00 

Conservative 24.28 24.28 25.00 37.50 3 23.08 0.00 25.00 

Liberal Democrats 11.78 11.78 33.33 16.67 1 7.69 0.00 0.00 

Plaid Cymru 14.47 14.47 33.33 16.67 2 15.38 0.00 33.33 

Second vote cast differently  

Labour 46.72 25.72 75.00 56.25 7 53.85 100.00 75.00 

Conservative 24.28 24.28 25.00 31.25 2 15.38 0.00 25.00 

Liberal Democrats 11.78 11.78 33.33 20.83 1 7.69 0.00 0.00 

Plaid Cymru 14.47 35.47 33.33 20.83 3 23.08 0.00 33.33 

Looking upon the simulation when the second vote is cast differently, in table 5.1, 
we see that the hypothetical transfer of votes has no effect on voting power with 
the exception of absolute majority quota in case of party support, where the effect 
on the power of Labour and Plaid Cymru coincides with the change in party 
support, whereas Conservatives lose and Liberal Democrats gain voting power 
without a change in their votes. A similar effect occurs in table 5.2 in case of 
qualified majority quota for the seat distribution. While the variation of power 
corresponds to the change in seat distribution for Conservatives and Liberal 
Democrats, Labour gains and Plaid Cymru loses some power without any change 
in their number of seats. 
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Table 5.2: Votes go from Labour to Liberals but Conservatives lose one Seat 

Assembly Electoral Region: North Wales 

Party Total votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

 1st  

vote 

2nd 

vote 

absolute 

majority 

qualified 

majority 

absolut

e 

in % absolute 

majority 

qualified 

majority 

Both votes identical  

Labour 46.72 46.72 75.00 62.50 7 58.33 100.00 75.00 

Conservative 24.28 24.28 25.00 37.50 3 25.00 0.00 25.00 

Liberal Democrats 11.78 11.78 33.33 16.67 1 8.33 0.00 0.00 

Plaid Cymru 14.47 14.47 33.33 16.67 2 16.67 0.00 33.33 

Second vote cast differently  

Labour 46.72 36.72 75.00 62.50 7 58.33 100.00 87.50 

Conservative 24.28 24.28 25.00 37.50 2 16.67 0.00 12.50 

Liberal Democrats 11.78 21.78 33.33 16.67 2 16.67 0.00 16.67 

Plaid Cymru 14.47 14.47 33.33 16.67 2 16.67 0.00 16.67 

6. A Model for Designing a Proportional Representation 

As we have seen from the last two sections, the election rule proposed in the 
‘Government of Wales Act 1998 (chapter 38)’ poses a dilemma and some counter-
intuitive results. In this section, inspired by Gambarelli (1999) and Potthoff and 
Brams (1998) and Te Riele (1978), we propose a system of proportional 
representation dealing with the assignment of seats to parties according to their 
support using the method of integer quadratic programming (IQP).12 But before 
presenting this model, we have to make some general considerations concerning 
proportional representation. 

 The purpose of proportional representation is the delegation of ‘authority’ or 
‘power’ from a larger body of persons to a smaller one. While designing the rule 
for this procedure, it has to be ensured that the relative frequency of occurrence of 
some characteristics in the larger body should be roughly identical to those in the 
smaller one (Nurmi, 1984). Thus, our first step will be to lay down what should be 
the larger body and who are the persons in this body. Following Laruelle and 
Widgrén (1998), we can distinguish between three different cases: 

                                               
12 The assignment of parliament seats to electoral districts is another issue of proportional 

representation. 
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(i) The case of an association of Assembly Constituencies where each Assembly 
Constituency is treated equally. 

(ii) The case of a single state where each individual citizen is treated equally. 

(iii) The case of a federal state where each Assembly Constituency is treated in 
accordance to a weighted average between the extreme cases (i) and (ii). 

 Considering the proposed system for the proportional representation in the 
National Assembly for Wales, we notice that this belongs to the case of a federal 
state. 

 While designing a model of proportional representation, we also have to 
ensure that the elected body is able to make decisions, i.e. that there are not too 
many parties represented in the assembly (Laakso and Taagepera, 1982). This 
criteria of stability which is a trade-off relation to proportional representation 
seems to be satisfied by the above mentioned rule for the National Assembly for 
Wales, where no more than four parties will obtain a seat in the assembly. But 
indeed, this bias in the electoral system should not be as extreme as to permit a 
single party with considerably less than 50% of the party support to form a 
majority government. 

 The number of parties in the assembly can be controlled by denying 
representation to small parties whose vote falls below a certain threshold like it is 
used in Germany or by using a simple majority rule with single-seat districts as in 
the case of the National Assembly for Wales. 

 We now propose a model of proportional representation with reference to the 
above mentioned case of a federal state maintaining the Assembly Constituencies 
and the Assembly Electoral Regions introduced in section 2.13 Mathematically, the 
problem consists of transforming an ordered set of non-negative real numbers 
(voting weights) into integers (seats) with respect to certain constraints 
(Gambarelli, 1999). We suggest minimising ‘misrepresentation’14 in the assembly, 
by minimising the sum of the quadratic differences between share of votes wij and 
seats sij/Sj for each party i and each Assembly Electoral Region j, where si denotes 
the number of seats for a party, and hence is to be modelled as a general integer 
(gin), while S denotes the total number of seats in the assembly.15 For reason of 

                                               
13 But with only a few simple modifications the proposed model can also be used to model the 

other two cases mentioned above, e.g., dropping out the Assembly Electoral Region index j for 
the case of a single state in the following model. 

14 Gambarelli (1999) calls this the percentage error. 
15 For some alternative distance minimising procedures, see, e.g., Te Riele (1978). 
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stability, we furthermore suggest introducing a threshold D > 0. Therefore, we 
have to minimise the following objective function (3) subject to the constraints (4) 
to (11): 

(3)  ( )
,

min  / ²
ij

ad
ij ij j

s
i j

w s S−∑    s.t. 

(4)   ij j
i

s S=∑              ∀ j 

(5)  / #  =  ij i
j

w j w  ∑         ∀ i 

(6)   (1- )i iw Dµ <           ∀ i  

(7)  i iw Dµ≥               ∀ i 

(8)   ij is M≤ µ              ∀ i, j   M: sufficiently large number 

(9)  µi = 0 ∨ 1              ∀ i 

(10)  ad
ij i ij ij ii

w w wµ µ= ∑     ∀ i, j 

(11)   ijgin s                 ∀ i, j 

 Constraint (4) ensures that all seats for each Assembly Electoral Region will 
be distributed, while (5) to (9) are needed to implement the threshold D concerning 
party support as a necessary condition to gain a seat in the assembly. In this 
context, using the binary variable µi (6) to (8) ensure that only a party whose party 
support is equal or larger than D can gain a seat. Constraint (10) is an adjustment 
constraint which normalises voting weights of the parties with wi > D. The integer 
restriction (11) concludes the model. 

 A pleasant property of the suggested model which has been implicitly proved 
by Te Riele (1978), is that this model fulfils the Hare constraints and an intuitive 
monotonicity condition together Gambarelli (1999) has called fundamental criteria 
for proportional representation.16 

 The Hare constraints ensure, that no party would obtain fewer seats than 
rounding down or up its Hare quota17, which is defined as the product of the voting 

                                               
16 Te Riele (1978) has proved that the proposed model is equivalent to the method of the Greatest 
Remainders, also known as the method of Roget (Lisman, 1973), which was proposed already in 
1792 by Hamilton (Syrett, 1966) and which obviously fulfils the mentioned criteria. The method 
of Greatest Remainders is used, e.g., in Greece (Gallagher, Laver and Mair ,1995, p. 282). 
17 Lisman (1973) calls this the ’exact distribution’. 
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weight of party i in constituency j and the total number of seats in constituency j 
taking into account the threshold D via the binary variable µi: 

(12)  ad
ij ij j ih w S µ=             ∀ i, j  („Hare quota“) 

(13)  min round down ( )ij ijh h=      ∀ i, j  („Hare minimum“) 

(14)  max round up ( )ij ijh h=        ∀ i, j  („Hare maximum“) 

(15)  min
ij ijh s≤               ∀ i, j 

(16)  max
ij ijh s≥                ∀ i, j 

while monotonicity is defined here as follows: A party i which has a smaller party 
support than party k should not have more seats than party k: 

(17)   ( ) ( ) 0ad ad
kj ij kj ijw w s s− − ≥   ∀ k, i, j and k ≠ i 

  Applying the above model to the case of the National Assembly for Wales for 
the case of a federal state (j = 5) and for the case of a single state dropping out the 
Assembly Electoral Region index j, we obtain the results shown in table 6. 

Table 6: Proportional Representation: A Comparison of Different Systems  
             (60 Seats) 

The 1992 Election 

Party Party Support Seats  
AMS 

Seats IQP 
 (j = 1) 

Seats IQP 
 (j = 5) 

 original adjusted Total in % Total in % Total in % 

Labour 49.68 50.02 31 51.67 30 50.00 30 50.00 
Conservatives 28.39 28.58 19 31.67 17 28.33 18 30.00 
Liberal Democrats 12.43 12.51 6 10.00 8 13.33 7 11.67 
Plaid Cymru 8.83 8.89 4 6.67 5 8.33 5 8.33 

         

The 1997 Election 

Party Party Support Seats  
AMS 

Seats IQP 
 (j = 1) 

Seats IQP 
 (j = 5) 

 original adjusted Total in % Total in % Total in % 

Labour 54.74 56.63 37 61.67 34 56.67 33 55.00 
Conservatives 19.60 20.28 13 21.67 12 20.00 13 21.67 
Liberal Democrats 12.36 12.79 6 10.00 8 13.33 7 11.67 
Plaid Cymru 9.96 10.30 4 6.67 6 10.00 7 11.67 
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We can see that the seat distributions using the IQP model lead to results which 
are closer to (adjusted) party support than the results which are obtained by using 
the proposed method of the ‘Government of Wales Act 1998 (chapter 38)’, which 
leads to a distortion in favour of stronger parties and to the anomalies mentioned 
above. The anomalies will be prevented by using the IQP model. 

 Moreover, the effect that we may call ‘cost of federalism’ is obvious, i.e. the 
distortion with respect to (adjusted) party support is larger for the case of a federal 
state than for a single state. 

7. Equating Voting Power to Seat Distribution 

After solving the problem of proportional seat distribution, the next step is to 
address how to trigger the change from a given electoral system to one in which the 
distribution of party support is identical with the distribution of voting power. This 
seems to be worthwhile, because it is evident that the idea of representational 
democracy rests on this identity. 

 An obvious answer to the problem just posed is to derive the seat distribution 
from the distribution of party support so that the latter is first transformed into 
power values of each party and then, each party is given the share of seats that 
corresponds to its share of power. This procedure would technically work if just 
one decision rule is applied in the voting body. In most parliaments, this is not the 
case; some issues require simple majority decisions, other 2/3 or even larger 
majorities. Thus the problem becomes now one of weighing different values of the 
chosen measure of voting power for different decision rules. In the case of the 
National Assembly for Wales, where the assumed decision rules are ½ and 2/3, we 
probably can use an unweighted average of the chosen power values as the 
measure of the overall power of parties. Indeed, this may be a justifiable solution. 
Intuitively, one could suggest that the issues requiring larger majorities are more 
important than others and that consequently, the power values for those decision 
rules should be given more weight than others. However, the question of how much 
more weight remains a problem. On the other hand, one can propose weighing the 
values using the relative frequencies by which issues belonging to the domain of a 
given decision rule have in the past been put into the agenda of the voting body. 
This would, in most cases, mean putting most weight on the simple majority rule 
(Nurmi, 1982). 
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A possible solution to this problem is given by Berg and Holler (1986) and Holler 
(1985, 1987) where the concept of strict proportional power (SPP) is proposed, by 
using a randomised decision rule and interpreting the power values as expectation 
values. When a random sample over some discrete decision rules is allowed, we 
can obtain a power distribution equating the seat distribution, if the following 
equation system is met with 

1
1

m

jj
g

=
=∑  and 0 > gj > 1 ∀ j: 

(18)  ( ) ( ) ( ) ( ){ } ( )1 2 1 2 1 2, ,..., , ,..., , ,...,m m ng g g Ef q Ef q Ef q w w w=  

 ⇔ ( )1

m

j i j ij
g q wπ

=
=∑                                            ∀ i = 1, 2, ... , n 

 ⇔ 1 1 2 2( ) ( ) ... ( )i i m i m ig Ef q g Ef q g Ef q w+ + + = ∀ i = 1, 2, ... , n 

where the gj∈g = (g1, g2, ..., gm) are the probabilities or relative frequencies to 
derive with which the different decision rules qj∈q = (q1, q2, ..., qm) should occur 
and the Efi(qj)’s are the different power values for each decision rule qj for a party 
i. The solution of this system is possible, if we find m gj-levels, with corresponding 
power vectors Ef(qj) which are linearly independent, such that the vector of voting 
weights w is interior to the (convex) space generated by the m power vectors Ef(qj) 
(Berg and Holler, 1986). 

 If we interpret the gj’s as relative frequencies, this implies that each decision 
rule qj∈q will be realised gj times, i.e. each decision rule will be applied in a 
legislative period. Using the alternative interpretation and considering the gj’s as 
probabilities, each decision rule qj∈q has the probability gj to be put into reality, 
i.e. in the extreme case only one gj∈g will be singled out by some random 
mechanism. 

 The first possibility will be preferred by risk averse voters. But this procedure 
might affect stability and continuity of the decision making process because 
decisions made by a voting body often form only a part of an integrated whole. 
Instead, the latter possibility does not pose these problems as it is theoretically 
sufficient to make a random choice of a decision rule at the beginning of a election 
period, when the seat distribution is determined. For purposes of application, 
however, we think that the decision rule should be changed at shorter intervals, 
e.g., every year within the legislative period of four years for the National 
Assembly for Wales. Over a period of time, the actual voting power obtained by 
the parties is then likely to be close to the voting weights or seat distribution. 
Furthermore, Berg and Holler (1986) show that it is normally possible to prevent 
including decision rules that might endanger the functioning of a political system, 
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such as a veto rule. Moreover, the proposed concept avoids majority (of votes) 
dominating the minority all the time, such that every party in the assembly will 
have a chance to influence decision making. 

Table 7: The Probability vector g for the 1992 Election 

The 1992 Election 

Party i Party  Seats IQP Voting Probability 
 Support Total in % power Efij(qj) (in %) gj 

Labour 49.68 30 50.00 0.50: 87.50 
0.60: 75.00 
0.65: 62.50 
0.80: 37.50 

19.28 % 
10.80 % 
4.57 % 

58.27 % 

Conservatives 28.39 18 30.00 0.50: 12.50 
0.60: 25.00 
0.65: 31.25 
0.80: 37.50 

19.28 % 
10.80 % 
4.57 % 

58.27 % 

Liberal Democrats 12.43 7 11.67 0.50: 16.67 
0.60: 33.33 
0.65: 16.67 
0.80:   8.33 

19.28 % 
10.80 % 
4.57 % 

58.27 % 

Plaid Cymru 8.83 5   8.33 0.50: 16.67 
0.60:   0.00 
0.65: 16.67 
0.80:   8.33 

19.28 % 
10.80 % 
4.57 % 

58.27 % 

Applying the concept of SPP to the creation of the National Assembly for Wales 
on the basis of the 1992 Election, we have chosen vector q = (0.50, 0.60, 0.65, 
0.80) as the decision rule vector. Solving the equation system (18), we obtain g = 
(0.1928, 0.1080, 0.0457, 0.5827) as the corresponding vector of relative 
frequencies of the decision rules. This is shown in table 7 which additionally 
includes the power values for the different parties resulting from the different 
decision rules. 

 Even though we have obtained a situation in which the distribution of party 
support is identical to the distribution of voting power, this result leads to a 
problem concerning the ability of the voting body to make decisions as we have a 
high probability for q = 0.80, and as has been shown by Duncan Black, the greater 
the size of a majority quota, the lower will be the chance to displace a status quo 
by a new decision (McLean et al., 1998, pp. 103-118).18 

                                               
18 This reponsiveness to the overall nature of a decision rule could be analyzed applying 
Coleman’s (1971) power of the collectivitiy to act or Felsenthal and Machover’s (1998, p. 62) 
coefficient of resistance R(W) which is a linear transformation of Coleman’s measure. One can 
think of Coleman’s measure in the following sense. In an assembly of n members, there are 2n 
distinct partitions into the set of ‘yes’ and ‘no’ voters, then the power of a collectivity to act is 
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8. Conclusion 

There is growing uneasiness in Great Britain about the lack of correspondence 
between party support at the polls and party seats. While there is little chance of 
constitutional reform to embrace proportional representation at Westminster 
Parliament, there is willingness within the government to experiment with 
proportional representation elsewhere. The ‘Government of Wales Act 1998 
(chapter 38)’ (HMSO, 1998) contains the implicit admission that the application 
of the FPTPS might keep out Conservative party from the assembly, even with 20 
% of the votes. Table 8.1 outlines what would happen if there were 40 assembly 
members, elected from the current parliamentary boundaries using the FPTPS. The 
results based on the voting patterns in 1992 and 1997 are shown in this table. 

Table 8.1: First-Past-the-post (40 Seats) 

Party Votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

   absolute 

majority 

qualified 

majority 

absolute in % absolute 

majority 

qualified 

majority 

1992  

Labour 49.68 87.50 62.50 27 67.50 100.00 100.00 

Conservative 28.39 12.50 37.50 8 20.00 0.00 0.00 

Liberal Democrats 12.43 16.67 16..67 1 2.50 0.00 0.00 

Plaid Cymru 8.83 16.67 16..67 4 10.00 0.00 0.00 

1997  

Labour 54.74 100.00 81.25 34 85.00 100.00 100.00 

Conservative 19.60 0.00 18.75 0 0.00 0.00 0.00 

Liberal Democrats 12.36 0.00 25.00 2 5.00 0.00 0.00 

Plaid Cymru 9.96 0.00 8.33 4 10.00 0.00 0.00 

Proportional representation is needed not just to allow representation by small 
parties in the assembly, but to allow for minimal representation by the 
Conservative Party. The voting system proposed for the assembly will augment the 

                                                                                                                               
defined as the a priori probability that a proposal that is put before the assembly will be approved, 
i.e. it is a measure of success or ‘complaisance’ of W. Formally, Coleman defines his measure as: 
A(W) =def |W|/2n. However, A(W) implies independence as an underlying assumption. For an 
analysis of a structured decision-making situation we have to generalize A(W) to be capable of a 
partial homogeneity structure. It is easy to see that we can derive such an generalization, A( )W% , 
which contains A(W) under independence as a special case as 

def 1 1( , , ) , ,...
S

n nA p p d p dp( ) = ƒ

∈
∫ ∫∑% … …

W

W . 



 

 

102

number of seats by 20, and these seats will be allocated by a formula which 
departs from the FPTPS. Including these additional seats, the composition of the 
assembly is given in table 8.2. 

Table 8.2: AMS (60 Seats) 

Party Votes 

(in %) 

Voting power 

(in %) 

Seats Voting power 

(in %) 

   absolute 

majority 

qualified 

majority 

absolute in % absolute 

majority 

qualified 

majority 

1992  

Labour 49.68 87.50 62.50 31 51.67 100.00 62.50 

Conservative 28.39 12.50 37.50 19 31.67 0.00 37.50 

Liberal Democrats 12.43 16.67 16.67 6 10.00 0.00 16.67 

Plaid Cymru 8.83 16.67 16.67 4 6.67 0.00 16.67 

1997  

Labour 54.74 100.00 81.25 37 61.67 100.00 87,50 

Conservative 19.60 0.00 18.75 13 21.67 0.00 12.50 

Liberal Democrats 12.36 0.00 25.00 6 10.00 0.00 16.67 

Plaid Cymru 9.96 0.00 8.33 4 6.67 0.00 16.67 

Table 8.2 assumes that the voters cast both the ballots identically. The second 
ballot is superfluous. However, the ‘Government of Wales Act 1998 (chapter 38)’ 
contains the possibility that the second ballot is cast differently from the first one. 
We have argued in the above sections that the purpose of this extra degree of 
freedom is unclear in the context of an attempt to achieve some measure of 
proportionality in assembly representation. We have given examples illustrating 
that this extra degree of freedom can cause departure from the concept of 
proportionality. 

 Furthermore, we have also shown that if we want to distribute power in the 
assembly according to party support, we have to change our methods of allocating 
the seat distribution and the decision rules as far as the proposed method for 
measuring voting power is accepted. We have suggested a method which leads to a 
seat distribution that is closer to party support than the AMS. Additionally, it rules 
out the possibility of the occurrence of the above mentioned anomalies resulting 
from the AMS, and have shown that there exists a (theoretical) possibility to 
equate seat distribution and voting power in the assembly using a randomised 
decision rule. 
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From all this, one might ask whether it is worth having an electoral reform as has 
been introduced by the ‘Government of Wales Act 1998 (chapter 38)’. The answer 
given by many proponents of the electoral reform in Great Britain is the following 
(Johnston, 1998): The actual reform is a first step to resolve one of the major 
problems that they identify with the British constitution and form of Government - 
its unrepresentative ‘elected dictatorship’. As we have demonstrated above, the 
switch from the FPTPS to the AMS for electing the assembly may at least give 
some parties the chance of being involved in the business of government. 
Moreover, it is argued that the issue of the mentioned electoral reform should not 
be considered separately from the much wider and deeper one of the constitutional 
reform (Plant, 1991). 

 If one accepts this point of view, the consequences of using the AMS should 
be borne in mind: It can frustrate voters and it implies the possibility that some 
parties in the assembly will be rendered powerless. 



Chapter 7 

A PRIORI VOTING POWER IN HIERACHRICAL ORGANIZATIONS* 

Abstract: Power in hierarchical organizations can be investigated in different ways 
This chapter focuses on the study of a priori voting power in such organizations. It 
is shown that every ‘restricted’ game with a permission structure can be 
represented as a compound game. Furthermore, it is pointed out that the existing 
research in voting power in hierarchical structures is necessary, but not sufficient 
to understand the nature of a priori voting power in hierarchical organizations. 
This is because it does not take into account: (i) that players who participate in a 
decision-making in hierarchical organizations in general have a damatis personae, 
and (ii) that the top of a hierarchical organizations can have a board-structure. 
Once we account for these two factors we arrive at some counterintuitive 
characteristics of hierarchies, i.e. the violation of known monotonicity properties of 
power in hierarchical organizations such as structural monotonicity and dis- and 
conjunctive fairness. 

1. Introduction 

Power in hierarchical organizations can be investigated in different ways. One 
possibility is to study power arising only from the position of a player within the 
hierarchical structure of an organization, i.e. the analysis of ‘has power over’ 
relations. Brink and Gilles (1994) and Brink (1994) call this type of power 
relational power. 

  This chapter focuses on a alternative method and type of power in 
hierarchical organizations: that of voting power. This will allow us to 
simultaneously take into account the relational power of the players and the 
existence of a decision-making process which takes place within the hierarchical 
structured organization. This type of power refers to a player’s ability to approve 

                                               
* This chapter is a based upon Steffen (1999) and Braham and Steffen (2001a, 2002b). The author 

is indebted to Matthew Braham and Moshé Machover for their assistance in clarifying the 
fundamental concepts presented in this chapter as well as to Manfred Holler for the same reason 
and giving the initial impetus to this research. The author is also grateful for helpful comments 
to Yener Altunbas and Stefan Napel. Furthermore, this chapter has benefited from consultations 
with Deutsche Bank AG, Siemens Medical Solutions AG, and the Office of the United Nations 
High Commissioner for Refugees (UNHCR), Geneva. Moreover, the author thanks Deutsche 
Bank AG in Hamburg for financial support. 



 105

projects and measures the ‘has more power than’ relations among players. We will 
refer to this type of power as voting power in hierarchical organizations.1 

  Although the analysis of hierarchical organizations using the tools of 
cooperative game theory was foreseen many years ago by Morgenstern (1951), 
Shapley (1962b, p. 66), and Shubik (1962), it is a subject that economists have 
more or less left by the wayside. Notable exceptions are Brink (1994, 1997, 1999; 
2001), Gilles et al. (1992), Gilles and Owen (1994), and Brink and Gilles (1996). 
In order to take into account the aspects of voting power in hierarchical 
organizations they represent the decision-making situation as a combination of a 
simple game which represents the decision rule and a so-called permission 
structure which takes into account the hierarchical properties of the organization. 
Based on this combination they come out with what they call a permission value 
which can be interpreted as a measure of a priori voting power in a hierarchical 
structured organization (see Gilles et al., 1992), i.e. it assigns values of voting 
power to each player in terms of his or her probability of being able to approve 
projects in a hierarchical organization.2 

  Although Brink, Gilles, and Owen’s method is able to capture essential 
properties of a priori voting power in hierarchical organizations, it is not sufficient, 
because it does not take into account all social asymmetries that play an important 
role. The missing element is that they do not consider the fact that players who 
participate in a decision-making in hierarchical organizations in general have a 
damatis personae: they are the bearers of predetermined attributes and modes of 
behaviour.3 That is, players in (hierarchical) organizations often play 
predetermined roles, such as salesman, financial officer, head of external affairs, 
etc., which are equipped with a bundle of incentive structures and, thus, leads to 
specific standards of behavior. Thus determining the power of a player in such a 
structure must take such information into account because it is likely that players 

                                               
1 Gilles et al. (1992) call this hierarchical power, a term we do not use in order to avoid confusion 

with the concept of relational power. 
2 Note, that the central aim of their analysis is the creation of allocation mechanisms for the 

distribution of value within hierarchical organizations, e.g. for payment schemes for employees 
of a firm. 

3 Other types of social asymmetries discussed in the literature are, for instance, limited 
communication possibilities between players; see, e.g., Myerson (1977, 1980), Owen (1986), 
and Borm, Owen and Tijs (1992). Such communication structures can be described by using 
undirected graphs where the vertices represent the players and the edges connecting the vertices 
indicate the communications possibilities between the players. Following Brink and Gilles 
(1994) one can increase this type of social asymmetry by imposing dominance relations on such 
a communication structure. However, how the results of this chapter are related to limited 
communication possibilities (e.g. as indicated by Fn. 11 in section 3.3) is an issue of future 
research by the author. 
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with same incentive structure will act in the same way. One way to include this 
information is to partition the set of players into a priori subsets.4 

  This idea was already noted by Shubik (1962, p. 330) when he wrote that ‘an 
organization is a series of arrangements between individuals with possibly differ-
ing goals’. For example, a bank will have staff that are responsible for expanding 
credit and staff responsible for managing risk. The granting of a risky loan will 
usually require consent of both sections. It is reasonable to assume that the staff 
responsible for expanding credit will all have one standard of behaviour, while 
those responsible for managing risk will have an opposing standard.5 

  One way of integrating such behavioural standards into the analysis of a 
priori voting power in hierarchical organizations is to apply Straffin’s (1977, 
1988) partial homogeneity approach to the calculation of voting power. To do this 
we will model decision-making in a hierarchy by a composite (or compound) 
simple game which we will show to be an equivalent to the method of Brink, Gilles 
and Owen. Although this approach has the drawback that it loses the explicit 
description of the hierarchical properties of the decision-making situation, it does 
have the advantage that we can immediately apply known results from the theory 
and measurement of voting power. 

  An important fact is that if a priori standards are considered we are likely to 
encounter violations of local monotonicity, which is that property of a measure of 
voting power that ranks a player’s voting weight (number of votes) in the same 
order as his or her voting power. The reason is that under the partial homogeneity 
structure the winning coalitions do not occur with equal probability. This will also 
lead to violations of other monotonicity properties, namely, weak structural 
monotonicity (Brink, 2001) and its stronger version structural monotonicity 
(Brink and Gilles, 1996) – both properties more or less say that a player in a 
hierarchy who dominates another player should have at least as much voting power 
as the dominated player, and disjunctive fairness (Brink, 1997) and conjunctive 
fairness (Brink, 2001) – these properties roughly stipulate that the deletion of a 
hierarchical relation between two players under disjunctive fairness should change 
their voting power and that of the superiors of the dominating player by the same 
amount and in the same direction, while under conjunctive fairness the voting 

                                               
4 Note, that we use the term ‘act in the same way’ in order to point out that we are not talking 

about ‘cooperation’ of players in the sense of Aumann and Drèze (1974). 
5 See Braham and Steffen (2001a, 2002b) for further examples. 
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power of the dominated player and his or her superiors should be changed by the 
same amount and the same direction. 

  Moreover, an advantage of the (partial homogeneity) approach taken here is 
that it is more flexible than that of Brink, Owen, and Gilles because it can be used 
to represent ‘real-life’ hierarchical decision-making situations which cannot be 
represented by a combination of a simple game and a permission structure (see 
Example 6 in section 3.3). 

  This chapter is organised as follows: section 2 describes what we understand 
under a hierarchical organization and how this is related to a hierarchical structure 
and a permission structure. Section 3 reproduces the basic formal framework for 
simple games including compound games and discusses how a decision-making 
situation in a hierarchical structure can be modelled as such. In section 4 Straffin’s 
partial homogeneity approach is introduced. On the basis of the properties of this 
approach, i.e. the likely violation of local monotonicity, section 5 contains some 
general properties of voting power in hierarchical structures referring to the 
violation of (weak) structural monotonicity and dis- and conjunctive fairness. 
Section 6 concludes. 

2. Hierarchical Organizations, Hierarchical Structures, Permission  

    Structures, and Their Relationship 

Following Brink (1994) we define a hierarchical structure to be a system 
consisting of a finite set of positions (which can be players) and binary relations 
between these positions, called superior to or dominates. The relations are such 
that except for the position(s) at the top of the structure, each position has at least 
one predecessor, i.e. a hierarchical structure is a kind of tree structure.6 

  Building up on this definition of a hierarchical structure we can define a 
hierarchical organization to be a system that can be described by a finite set of 
players affiliated to the positions, dominance relations between these players, and a 
rule according to which (collective) decision-making takes place within the 
organization. By a dominance relation is meant a relation that indicates that one 
player has a direct influence on the set of actions that are available to the other 
player. In this context we refer to predecessors of a player as principals and to 
successors as agents. In common parlance the predecessors are what we call 
‘bosses’ or ‘managers’. 

                                               
6 See Radner (1992) for a general description of hierarchies. 
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The distinction between a hierarchical organization and a hierarchical structure is 
essentially one of the presence or absence of a decision rule. The character of these 
rules is such that they create constraints on the choices that the players can make, 
taking into account two components: a ‘pure’ decision rule and a so called 
permission structure. On the whole, a decision rule in a hierarchical organization 
describes how an outcome can be produced by defining which subsets of players 
are able to do this. While the ‘pure’ decision rule only contains the information 
about which players are necessary to approve a proposal for a non-hierarchical 
structure, i.e. in absence of the dominance relations, the permission structure takes 
into account dominance relations. 

  Formally, we can represent a hierarchical structure as a directed graph (or 
digraph), where the vertices represent the players and the directed edges 
connecting the vertices indicate the dominance relations between the players. Let N 
= {1, ..., n} be a finite set of vertices (players). Then a hierarchical structure can 
be represented by a digraph (N, D), where D Ã N ¥ N is a binary relation on N. 
Since we have fixed the set N, we can represent a digraph just by its relation D. If 
(i, j)∈D then player j is called a successor of player i, and i is called a 
predecessor of j in D. By S(i) and      S-1(i), respectively, we denote the set of all 
successors and predecessors of i∈N in D; i.e. S(i) = {j∈N | (i, j)∈D} and S-1(i) = 
{j∈N | (j, i)∈D}. We denote the collection of all hierarchical structures on N by 

N
HS . 

  Further, we restrict our attention to hierarchical structures that are acyclic, 
i.e. i∉ Ŝ (i) for all i∈N. By Ŝ  we denote the transitive closure of the hierarchical 
structure S, i.e. j∈ Ŝ (i) iff there exists a sequence of players (h1, ..., hl) such that 
h1 = i, hk+1ŒS(hk) for all 1 < k < l-1, and hl = j. The players in Ŝ (i) are called the 
subordinates of i in S, and the players in Ŝ -1(i) = {j∈N | i∈ Ŝ (j)} are called the 
superiors of i in S.  

  For an illustration, consider the following three simple examples: 

Example 1 Assume N = {a, b} and S∈ N
HS  given by S(a) = {b} and S(b) = ∆. 

(For a graphical representation see figure 1a.) 

Example 2 Assume N = {a, b, c} and S∈ N
HS  given by S(a) = {b, c} and S(b) = 

S(c) = ∆. (For a graphical representation see figure 1b.) 
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Example 3 Assume N = {a, b, c, d, e } and S∈ N
HS  given by S(a) = {b, c}, S(c) = 

{d, e}, S(b) = {d}, and S(d) = S(e) = ∆. (For a graphical representation see 
figure 1c.) 

Additionally, an often used assumption (which we also made implicitly for 
Examples 1-3) is that a hierarchical structure has one unique top-player, i.e. there 
exists an i∈N such that Ŝ (i) = N \ {i} and thus Ŝ -1(i) = ∆. Brink (2001) calls 
this quasi-strongly connectedness. It should be noted that this is a pleasant 
theoretical assumption, it is very restrictive because it is often the case that 
hierarchical organizations are characterized by a board structure at the top. 

  Examples of a hierarchy with a board structure at the top are: 

Example 4 Assume N = {a, b, c, d, e, f, g, h, i} and S∈ N
HS  given by S(a) = S(b) 

= S(c) = {d, e}, S(d) = {f, g}, S(e) = {h, i}, and S(f) = S(g) = S(h) = S(i) = ∆. 
(For a graphical representation see figure 2a.) 

Example 5 Assume N = {a, b, c, d, e, f, g, h } and SŒ N
HS  given by S(a) = S(b) = 

S(c) = {d}, S(d) = {e, f}, and S(e) = S(f) = ∆. (For a graphical representation 
see figure 2b.) 

  While the information given by a hierarchical structure as described above is 
sufficient to analyse relational power in hierarchical organizations7, the analysis of 
voting power requires the existence of a rule that stipulates how decisions are 

                                               
7 An example of such a measure that is familiar in graph theory is the score measure (or Copeland 

score). According to this measure the power value of a position only depends on the number of 
positions which it dominates directly while it does not depend on the other relations of these 
dominated positions. See Brink and Gilles (1994) or Brink (1994) for further information on 
relational power measures. 

Figure 1: Hierarchies with a Unique Top-Player I 
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made within the organization. In order that a decision rule ‘obeys’ the dominance 
relations (‘superior to’ relations) of a hierarchical organization, Brink, Gilles and 
Owen define what they call a game with a permission structure. This is composed 
of two elements: a permission structure which is simply a set of subsets of 
positions determined by the edges of the digraph and a ‘rule’ which defines which 
of these subsets is ‘winning’ or is entitled to approve an action (for the latter see 
section 3). 

  For their analysis they have introduced two natural types of permission 
structures: the conjunctive and the disjunctive permission structure. Under the 
conjunctive permission structure a player iŒN needs the permission of all his or 
her predecessors S-1(i). Formally the collection containing all allowed subsets of 
players under a conjunctive permission structure is given by: 

,
c
N C S  = {S ⊆  N | S-1(i) ⊆  S for all i∈S}. 

  Under the disjunctive permission structure which is formulated for quasi-
strongly connected hierarchical structures player i needs the permission of at least 
one of his or her predecessors. Consequently, player i needs the permission from 
all his or her predecessors following at least one ‘permission path’ from his or her 
position to the top-player i0. Formally the collection containing all allowed subsets 
of players under a disjunctive permission structure is given by 

1

, 1 0

 for every  there is a sequence of players ( ,..., )
   such that = ,  1 ( )for all 1 -1, 

 and = 

t
d
N k k

l

i S h h
S N h i h h k l

h i

 ∈ 
 = ⊆ + ∈ ≤ ≤ 
 
 

 C S S . 

Figure 2: Hierarchies with a Board-Structure at the Top I 
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Note, however, that this definition of a disjunctive permission structure can easily 
extended to non-quasi-strongly connected hierarchical structures, i.e. to structures 
with no unique top-player, saying that player i needs the permission from all his or 
her predecessors following at least one ‘permission path’ from his or her position 
to a certain number of top-players. We will make use of this more general 
definition of a disjunctive permission structure for our studies. 

  If we impose a disjunctive permission structure on Example 5 we can identify 
a special property of this hierarchical structure being that player d is what we call 
a gate-keeper. A player i∈N is a gate-keeper if all ‘permission paths’ in order to 
reach a top-player must contain player i. In this context Brink (2001) says such a 
player i dominates all j∈S(i) completely where complete domination is that 
property that says that player i dominates player j completely if all ‘permission 
paths’ from the top-player i0 to player j contain player i. We denote the set of 
players that player i dominates completely by S (i), i.e. 
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3. Modelling Decision-Making in Hierarchical Organisations 

In order to discuss Brink, Gilles and Owen’s approach to model decision-making 
in hierarchical organizations, this section introduces their second component: 
simple games. We state the basic definitions and notations from the theory of 
simple games that we will require for our analysis. We refer the reader to Shapley 
(1962b), Felsenthal and Machover (1998), and Taylor and Zwicker (1999) for 
additional background and results.  

  Furthermore, we will introduce an equivalent representation for the modelling 
of decision-making situations in hierarchical organizations using what is known as 
compound or (composite) games. 

3.1 Simple Games 

The most important definition that we require is that of a (collective) decision rule 
which we will first formulate informally as follows. Let a n-member decision-
making body be denoted by a set N. A decision rule specifies which subsets of N 
can ensure the acceptance of a proposal. Formally: 
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Let N = {1, 2, …, n} be the set of players. ℘(N) = {0, 1}n is the set of feasible 
coalitions. A simple game can be represented by a pair (N,W) where W⊆℘(N) of 
winning coalitions. W  satisfies ∅∉W; N∈W; and (monotonicity) if S∈W  and 
S⊆T then T∈W . A simple game can be represented by W because N is uniquely 
determined by W (its largest member). Further, W  can also be described by a 
characteristic function, v:℘(N) → {0, 1} with v(S) = 1 iff S∈W(v) and 0 
otherwise. By G N we denote the set of all such n-person simple games. 

  We say that a player i who by leaving a winning coalition S∈W(v) turns it 
into a losing coalition S\{i}∉W(v) has a swing in S and is called a critical 
member of S. Coalitions where i has a swing are called critical coalitions with 
respect to i. Let us denote the set of crucial coalitions w.r.t i as Ci. A concise 
description of v can be given by a set M(v), where S∈W(v) but no subset of S is in 
W(v), i.e. all members of S are critical. We call such a coalition a minimal 
winning coalition (MWC). Further, we denote by ηi(v) the number of swings of 
player i in v. Thus, ηi(v)=def |Ci(v)|. A player i for which η i(v) = 0 is called a 
dummy in v, i.e. it is never the case that i can turn a winning coalition into a losing 
coalition (it is easy to see that i is a dummy iff it is never a member of a MWC; 
and i is a dictator if {i} is the sole MWC). 

  Three types of simple games which will be used later are simple majority, 
unanimity, and minority games. These are defined as follows. Let In =def{1,…,n} 
be a ‘canonical assembly’. Then for any positive integer k such that k ≤ n, define 
Mn,k as the simple game whose winning coalitions are just those subsets of In that 
have at least k members. As a matter of shorthand, we denote (i) the simple 
majority game as Mn,(n/2)+1, (ii) the unanimity game as Mn,n, and (iii) the minority 
game as Mn,1. 

  A further definition we need is that of the important sub-class of simple 
games known as weighted voting games (WVG). A WVG is characterized by a 
non-negative real vector (w1, w2, …¸wn) where wi represents player i’s voting 
weight and a quota q which is the quota of votes necessary to establish a winning 
coalition, such that quota 0<q≤∑ i∈Nwi. A weighted voting game is represented 
by [q; w1, w2, …¸wn]. 
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3.2 Compound Games 

A fact of simple games is that they can be composed. In this context we are then 
talking about compound (or composite) games.8 Let m be a positive integer and let 
W* be a simple game with assembly Im = {1,…,m}. For each i ∈ Im, let Wi be an 
arbitrary simple game. We now define a simple game W*[W1,…,Wm] called the 
composite of W1, …Wm under W*. Next, define the assembly N of W*[W1,…,Wm] 
as the union of the assemblies Ni of Wi: def 1

m
i iN N== ∪ . We refer to W* as the ‘top’ 

and Wi as the i-th ‘component’ of the composite simple game W*[W1, …,Wm]; i.e. 
the ‘top’ is the game that is made up of all the component games: the decisions of 
each Wi are fed to W* which is a rule for collating the m lower level decisions into 
a final decision; put it in other words: W* is the collection of subsets of 
W*[W1,…,Wm] that assures the acceptance of a proposal. 

There are two types of compound simple games: meets and joins. 

A meet of the Wi is denoted by W1 Ÿ W2 Ÿ … Ÿ Wm which is equal to a unanimity 
game Mn,n on [W1,…,Wm], i.e. each component game must be won.9 If the 
assemblies Ni are pairwise disjoint, i.e. if the players are taken to be individual 
persons, and no person can be a member of more than one chamber, then a meet is 
called a product of Wi and is denoted by W1 × W2 × … × Wm. For the special 
case where all Ni coincide (the players in each Wi are the same), then W1 Ÿ W2 Ÿ 
… Ÿ Wm is given by W1 « W2 « … « Wm. 

A join of the Wi is denoted by W1 ⁄ W2 ⁄ … ⁄ Wm and is which is equal to a 
minority game Mn,1 on [W1,…,Wm], i.e. only one component game must be won. If 
the assemblies Ni are pairwise disjoint then the join is called a sum of Wi and is 
denoted by W1 + W2 + … + Wm. For the special case where all Ni coincide (the 
players in each Wi are the same), then W1 ⁄ W2 ⁄ … ⁄ Wm is given by W1 » W2 
» … » Wm. 

                                               
8 For a general introduction to compound (simple) games see Shapley (1962b) and Straffin (1983). 

For more detailed treatment see Shapley (1962a, 1964, 1967). 
9 Such a ‘structure’ can be used to model a multi-cameral system, that is when a motion has to be 

approved by different ‘chambers’, ‘committees’ or ‘houses’. 
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3.3 Games with Permission Structures, Compound Games and Their 
Relationship 

As mentioned in section 2, in order that a decision-making rule ‘obeys’ the 
dominance relations of a hierarchical organization, Brink, Gilles and Owen define 
a game with a permission structure. For brevity, we will refer to those as 
permission games. On the basis of sections 2 and 3.1 we can define such a game 
as a triple (N, v, S) where (N, v)∈G N and S∈ N

HS . Moreover, specifying the type 
of the permission structure they define a ‘conjunctive (or disjunctive) restriction 
of v on the permission structure S’ as a game (N, v, S) with the corresponding 
specification of the restriction on (N, v). For want of better terminology, we will 
refer to these games as conjunctive or disjunctive restricted permission games, 
respectively, and we will talk about restricted permission games, when we want to 
refer to both types of restrictions. 

  Thus, a restricted permission game transforms the characteristic function (of 
the simple game or a permission game) v into a modified characteristic function 

, , ( )N vr SS , which takes account of the limited allowance of each player to exercise 
his or her choice if a proposal has to be approved within an hierarchical 
organisation, i.e. a restricted permission game reduces the set of winning coalitions 
to a subset of those winning coalitions that are given by the simple game (N, v). 
This is done by the restriction that each winning coalition must contain a MWC 
that is also an element of ,

c
N C S  or ,

d
N C S , respectively. Formally, the conjunctive 

and disjunctive restricted characteristic functions are given by: 
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  Thus, we will denote conjunctive and disjunctive restricted permission 
games by (N, , ,

c
N vr S ) or (N, , ,

d
N vr S ), respectively. However, note that the definition 

of , ,
c
N vr S  and , ,

d
N vr S  appears to be arbitrary in that sense that a coalition S is 

winning even if it contains non-critical players whose superiors are not necessarily 
a member of S. Brink, Gilles, and Owen, unfortunately, do not comment on this 
restriction. However, there is a good technical reason for their restriction being 
that it rescues monotonicity (as given in the definition of a simple game) for their 
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restricted permission games.10 This leads to the fact that every restricted 
permission game can also be represented as a ‘plain’ simple game.  

  Using this fact and the fact that simple games can be composed, one can 
model each set of winning coalitions given by a restricted permission game as a 
join (of simple games) where each winning coalition is a unanimity game which 
itself is one component of the join. Therefore, we can represent every restricted 
permission game as a compound game. For an illustration, we use the five 
examples from section 2 by assuming a decision rule for each hierarchical 
structure. Note, that the subscripts used in the representations of WVGs denote the 
players. 

Example 1 Assume N = {a, b}, S∈ N
HS  given by S(a) = {b}, and S(b) = ∆ and 

v(S) = 1 if b∈S and 0 otherwise. Then (N, , ,
d

N vr S ) and as well (N, , ,
c

N vr S ) can be 
represented by , , ( )d

N vr SS  = , , ( )c
N vr SS  = 1 if SŒ{{a, b}} and 0 otherwise, i.e. W = 

{{a, b}} which can also be represented by the unanimity game M2,2. 

Example 2 Assume N = {a, b, c}, S∈ N
HS  given by S(a) = {b, c}, and S(b) = S(c) 

= ∆ and v(S) = 1 if b or cŒS and 0 otherwise. Then (N, , ,
d

N vr S ) and as well (N, 

, ,
c

N vr S ) can be represented by , , ( )d
N vr SS  = , , ( )c

N vr SS  = 1 if S∈{{a, b}, {a, c}, {a, b, 
c}} and 0 otherwise, i.e. W = {{a, b}, {a, c}, {a, b, c}} which can also be 
represented by the join [2; 1a, 1b] ⁄ [2; 1a, 1c] ⁄ [3; 1a, 1b, 1c] which can be 
merged to the WVG [3; 2a, 1b, 1c]. 

Example 3 Assume N = {a, b, c, d, e}, S∈ N
HS  given by S(a) = {b, c}, S(c) =       

{d, e}, S(b) = {d}, and S(d) = S(e) = ∆ and v(S) = 1 if d or e∈S and 0 otherwise. 
Then (N, , ,

d
N vr S ) can be represented by , , ( )d

N vr SS  = 1 if S∈{{a, b, d}, {a, c, d}, {a, 
c, e}, {a, c, d, e}, {a, b, c, d}, {a, b, d, e}, {a, b, c, e}, {a, b, c, d, e}} and 0 
otherwise, i.e. W = {{a, b, d}, {a, c, d}, {a, c, e}, {a, c, d, e}, {a, b, c, d}, {a, b, 
d, e}, {a, b, c, e}, {a, b, c, d, e}} which is also represented by the join [3; 1a, 1b, 
1d] ⁄ [3; 1a, 1c, 1d] ⁄ [3; 1a, 1c, 1e] ⁄ [4; 1a, 1c, 1d, 1e] ⁄ [4; 1a, 1b, 1c, 1d] ⁄ [4; 1a, 
1b, 1d, 1e] ⁄ [4; 1a, 1b, 1c, 1e] ⁄ [5; 1a, 1b, 1c, 1d, 1e] which can be merged to [3; 1a, 
1b, 1d] ⁄ [5; 2a, 2c, 1d, 1e]. (N, , ,

c
N vr S ) can be represented by , , ( )c

N vr SS  = 1 if 
SŒ{{a, c, e},     {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, c, d, e}} and 0 
otherwise, i.e. W = {{a, c, e}, {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, c, d, 
e}} which can also be represented by the join [3; 1a, 1c, 1e] ⁄ [4; 1a, 1b, 1c, 1d] ⁄ 
[4; 1a, 1b, 1c, 1e] ⁄ [4; 1a, 1c, 1d, 1e] ⁄ [5; 1a, 1b, 1c, 1d, 1e] which can be merged to 
the WVG [10; 4a, 1b, 4c, 1d, 2e]. 
                                               

10 Otherwise, a restricted permission game would be what is called a hypergraph; see, e.g., Taylor 
and Zwicker (1999, p. 3). 
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Note, that in Example 3 under the disjunctive restriction the coalition {a, b, d, e} 
is an example of a coalition which is winning under (N, , ,

d
N vr S ) as {a, b, 

d}∈M(v)« ,
d
N C S  and contains e as a non-critical player, but not his superior c. 

  For sake of brevity, for Examples 4 and 5 we could make use of the fact that 
M  could be used as concise description of a simple game in a characteristic 
function form, i.e. we will only state M( , ,

d
N vr S ) and M( , ,

c
N vr S ), respectively, and the 

merged join of each restricted permission game. 

Example 4 Assume N = {a, b, c, d, e, f, g, h, i} and S∈ N
HS  given by S(a) = S(b) 

= S(c) = {d, e}, S(d) = {f, g}, S(e) = {h, i}, and S(f) = S(g) = S(h) = S(i) = ∆ 
and v(S) = 1 if f, g, h, or i∈S and {a, b}, {a, c} or {b, c}ÃS and 0 otherwise. Then 
(N, , ,

d
N vr S ) can be represented by M( , ,

d
N vr S ) = {{a, b, d, f}, {a, b, d, g}, {a, c, d, f}, 

{a, c, d, g}, {b, c, d, f}, {b, c, d, g}, {a, b, e, h}, {a, b, e, i}, {a, c, e, h}, {a, c, e, 
i}, {b, c, e, h}, {b, c, e, i}} which can also represented by the product game [2; 1a, 
1b, 1c] × ([4; 3d, 1f, 1g] ⁄ [4; 3e, 1h, 1i]). (N, , ,

c
N vr S ) can be represented by 

M( , ,
c

N vr S ) = {{a, b, c, d, f}, {a, b, c, d, g}, {a, b, c, e, h}, {a, b, c, e, i}} which is 
also represented by the join [13; 3a, 3b, 3c, 3d, 1f, 1g] ⁄ [13; 3a, 3b, 3c, 3e, 1h, 1i]. 

Example 5 Assume N = {a, b, c, d, e, f} and S∈ N
HS  given by S(a) = S(b) = S(c) 

= {d}, S(d) = {e, f}, and S(e) = S(f) = ∆ and v(S) = 1 if e or f∈S and {a, b}, {a, 
c} or {b, c}⊂S and 0 otherwise. Then (N, , ,

d
N vr S ) can be represented by M( , ,

d
N vr S ) = 

{{a, b, d, e}, {a, b, d, f}, {a, c, d, e}, {a, c, d, f}, {b, c, d, e}, {b, c, d, f}} which 
can also be represented by the product game [2; 1a, 1b, 1c] × [3; 2d, 1e, 1f]. (N, 

, ,
c

N vr S ) can be represented by M( , ,
c

N vr S ) = {{a, b, c, d, e}, {a, b, c, d, f}} which can 
also be represented by the WVG [13; 3a, 3b, 3c, 3d, 1e, 1f]. 

  Moreover, by the representation of a decision-making situation in a 
hierarchical organization via a compound game we are also able to model ‘real 
life’ decision-making situations which cannot be represented by restricted 
permission games, because the decision rules are not in line with the permission 
structure. 

Example 6 Assume N = {a, b, c, d, e, f}, S∈ N
HS  given by S(a) = {b, c}, S(b) = 

d, S(c) = {e, f}, and S(d) = S(e) = S(f) = ∆, and a join [10; 3a, 3b, 1c, 1d, 3e] ⁄ 
[10; 3a, 3b, 1c, 1d, 3f]. (For a graphical representation of S see figure 3). Neither 
(N, , ,

d
N vr S ) nor (N, , ,

c
N vr S ) is capable to represent such a decision-making situation. 

  Although we could impose a dominance relation on the players e and f, i.e. 
S(d) = {e, f} so as to model the above game as a restricted permission game, this 
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is questionable because it distorts the real situation. Player d is never responsible 
for the decisions of the players e and f; d only participates in the decision-making 
process obeying the permission of his or her superiors given by the hierarchical 
structure. Thus, d is only responsible for the outcome of the decision and the 
compliance with the permission of his or her superiors, but not for the choice of e 
or f.11 

                                               
11 Referring to Fn. 3 we may say, that there exists what Myerson (1977) calls a com munication 

link between d and e, d and f as well as between b and c, i.e. an undirected edge that is not a 
part of a hierarchical structure. The decision rule in Example 6 takes into account those links, 
which could, but - as shown by this example – must not have a corresponding dominance 
relation. An explanation for such a decision rule may be the aim to implement an error reduction 
or control mechanism within the decision rule which reduces the mistakes that could be made by 
different sections of an organization. Therefore, the undirected edges in this context probably 
might be better called procedural links. However, note, that example 6 is not entirely abstract as 
there exists a real correspondence to it for which also the above mentioned explanation applies. 
As an incidence we refer the reader to decision-making situations over risky projects in a firm, 
which in general involve decision-makers in positions with conflicting incentives between each 
other. As an example of quite practical importance, let us take our example for granting a risky 
loan in a bank from section 1; a bank in legal terms is defined as ‘an institution whose current 
operations consist in granting loans and receiving deposits from the public’ (Freixas and Rochet, 
1997). One may think of players e and f as customer clients in the bank and of player c as their 
executive, while player b could be the head of the central risk management department of the 
bank, d the head of the credit department and a the manager of the bank. Now if a customer 
wants to apply for a loan assume that he or she has to get in contact with one of the customer 
clients. For approving the loan then e or f (following example 6) would require the consent of at 
least their executive c, the head of the central risk management department b, and manager a or, 
alternatively, instead of the consent of their executive the consent of the head of the credit 
department d, who is not their superior at all. This alternative gives e and f an outside option, 
i.e. it gives them the opportunity to go to the credit department to convince them, who have - 
given the incentive structure- per se a lower probability to approve a loan than c. If e or f is able 
to convince d it seems to be legitimate that the bank should grant the loan, if additionally a 
approves it. Note that this, due to the incentive structure, in general should not be the case, but 
could happen if c errs as c has, for instance, not the time or competence to evaluate the proposal 
properly. 

Figure 3: Hierarchies with a Unique Top-Player II 
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a
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4. Straffin’s Approach to the Measurement of A Priori Voting Power 

If we wish to calculate the voting power of the players for a decision making 
situation in a hierarchical organization, the question that naturally arises is which 
among the various measures should be used. Well known measures are, namely, 
the Shapley-Shubik (1954) index and the Penrose (1946)/Banzhaf (1965) 
measures, and those measures based upon Straffin’s (1977, 1988) probabilistic 
partial homogeneity approach. What all these measures have in common is being 
that they are a mapping ξ :G N→ n

+¡  that assigns to each player i∈N a number ξi  
that indicates i’s power in W((v) and that power is represented as the ability of a 
player i to change the outcome of a play of the game, i.e. by his or her swings. 

  Given that hierarchical organizations are different from non-hierarchized 
political bodies such as national legislatures in that players are not only part of an 
hierarchical structured organisation but also, in general, have a damatis personae: 
they are the bearers of predetermined attributes and modes of behaviour. The 
reason for being that is that players in a hierarchical organization often play 
predetermined roles which, as already Radner (1972) points out, are equipped with 
a bundle of incentive structures imposed in order to meet the goals of the 
organization due to the behaviour of the players. If it comes to a decision-making 
situation one has to take into account this fact, because it is more likely that 
players with same incentive structure act in the same way than players with an 
opposing incentive structure, i.e. one has to partition the players into subsets 
containing players with the same incentive structure or put in other words: with the 
same a priori standard of behaviour. 

  In order to consider the existence of such incentives structures that partition 
the players according to behavioural standards, it seems appropriate to choose a 
measure of voting power that allows us to include this information.12 In this regard 
it should be noted that if we take into account incentive structures and that players 
have a damatis personae we are assuming that the players will in fact follow these 
incentives, i.e. that the principal-agent problem is solved and all players behave 
rationally. Given that the incentive structures affect the possibilities of coalition 
formation in an organization, Straffin’s probabilistic partial homogeneity 
approach to the calculation of voting power appears to be the most appropriate 

                                               
12 That is to say, the measure that we need to use is no longer based solely on the classical 

‘minimalist’ structure of a simple game. 
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methodology because we can apply this structure as an a priori structure of the 
decision-making situation.13 

  Straffin’s approach is a particular interpretation and extension of Owen’s 
(1972, 1975) multilinear extension (MLE) of a game v. Straffin applies the MLE 
as a probability model for answering the question, ‘What is the probability that 
player i’s vote will make a difference to the outcome?’ Instead of deterministic 
coalitions S⊆N that correspond to corner points s∈{0, 1}n of the n-dimensional 
unit cube, one considers random coalitions S represented by the points pi∈[0, 1]n 
anywhere in the cube. Each pi is interpreted as the probability of a player i 
deciding in favour of a random proposal or participating in a random coalition; pi 
is also known as a player’s acceptance rate. 

  Assuming that acceptance decisions are independent, the probability P of a 

given coalition S⊆N is P(S=S)= (1 )i ji S j S
p p∈ ∉ −∏ ∏ . If we extend the 

characteristic function v of a simple game by weighting each v(S) with the 

respective probability of formation, we obtain the MLE ƒ :[0, 1]n → [0, 1] of a 

game v: 

1
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For fixed acceptance rates, the MLE gives the probability that a winning coalition 
S will form in v, and thus the expected value of v. The partial derivative ∂f/∂pi of 
v’s MLE w.r.t to pi is called by Straffin (1977, 1988) a player’s power 
polynomial, which we denote by ƒi. 

  ƒi(p1, …pn) is, then, the probability of i having a swing (i.e. having power in 
the generic sense) in a random coalition in a game v. If player’s acceptance rates 
are themselves random variables with a joint distribution P, the expectation 
Eƒi  =∫ƒi(p1, …pn)dP is i’s power in a game W(v). The probabilistic measure of 
power Eƒi(v) coincides with the classical measures ξi(v) under different 
probability models. For example: 

                                               
13 In contrast, Straffin (1978) himself argues that partial homogeneity assumptions are by their 

nature ad hoc. See Braham and Steffen (2002c) for a further discussion. 
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Independence pi ~ U (0, 1) ∀ i∈N (A1) 
i.e. the decision of i has nothing to do with decision of j.14 

Homogeneity t ~ U (0, 1), pi = t ∀ i∈N (A2) 
i.e. each i approves or rejects a proposal with the same probability t but t varies 
from proposal to proposal. 

  It is a well-known result from Straffin that applying (A1) we obtain the 
Banzhaf measure (Bz measure), which is commonly known as non-normalized or 
absolute Banzhaf index, and applying (A2) we obtain the Shapley-Shubik index  
(S-S index). 

  It is easy to see that this probability model is extremely flexible and allows us 
to create families of power measures that lie between the extremes of (A1) and 
(A2) by mixing these assumptions.  

  What is important for our purposes is that we can derive a partial 
homogeneity structure from this approach. This is the partitioning of the set of 
players into subsets whose members are either (a) homogeneous among 
themselves, but behave independently from the members of the other subsets or (b) 
independent.15 Formally:  

A partial homogeneity structure on N is a partition P = {G1, …, Gm} of N into 
disjoint subsets: 

Partial homogeneity     P = {G1, …, Gm}  (A3) 
   Gk∩Gl = ∅ if k ≠ l, ∪Gk = N 
   tk ~ U (0, 1), pi = tk ∀ i∈Gk, k = 1, … m 

If P is the discrete partition of N into one-player subsets we have (A1); if P is the 
indiscrete partition P = {N}, we have (A2). 

 In other words, (A3) allows us to build in information about the ‘prescribed’ 
relations or ‘standards’ of players that exist in a differentiated structure like a 
hierarchical organization. The reason for their existence goes back to the fact that, 
in general, a player’s position in a hierarchical organization is equipped with 
specific incentives of behaviour related to the type of decision-making situation.  
                                               

14 Actually one does not necessarily need the uniform distribution. Leech (1990) has shown that 
distribution must only have a mean of 0.5. 

15 See Kirman and Widgrén (1995, p. 458) for a formal representation. 
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For an illustration to the application of Straffin’s approach we refer to the six 
examples from section 3 on which we impose (A1), (A2), and a version of (A3) in 
order to illustrate the effect of a priori standards of behaviour. 

Example 1 Assume N = {a, b}, S∈ N
HS  given by S(a) = {b} and S(b) = ∆, and 

v(S) = 1 if b∈S and v(S) = 0 otherwise. Then (N, , ,
d

N vr S ) and as well (N, , ,
c

N vr S ) can 
be represented by the unanimity game Mn,n. 

Assume (A1) for all players. We have Eƒa  = 0.50, Eƒb = 0.50 (This is the Bz 
measure). 

Assume (A2) for all players. We have Eƒa  = 0.50, Eƒb = 0.50 (This is the S-S 
index). 

Assume (A3) as follows: player a forms a standard t and b a standard (1-t). We 
have Eƒa  = Eƒb = 0.5. 

Example 2 Assume N = {a, b, c}, S∈ N
HS  given by S(a) = {b, c}, and S(b) = S(c) 

= ∆ and v(S) = 1 if b or c∈S and 0 otherwise. Then (N, , ,
d

N vr S ) and as well (N, 

, ,
c

N vr S ) can be represented by the WVG [3; 2a, 1b, 1c]. 

Assume (A1) for all players. We have Eƒa  = 0.75, Eƒb = Eƒc  = 0.25. (This is the 
Bz measure.) 

Assume (A2) for all players. We have Eƒa  = 0.67, Eƒb = Eƒc  = 0.17. (This is the 
S-S index.) 

Assume (A3) as follows: player a behaves independently, player b forms a 
standard t and c a standard (1-t). We have Eƒa  = 0.83, Eƒb = Eƒc  = 0.25. 

Example 3 Assume N = {a, b, c, d, e}, S∈ N
HS  given by S(a) = {b, c}, S(c) =       

{d, e}, S(b) = {d}, and S(d) = S(e) = ∆ and v(S) = 1 if d or e∈S and 0 otherwise. 
Then (N, , ,

d
N vr S ) can be represented by the join [3; 1a, 1b, 1d] ⁄ [5; 2a, 2c, 1d, 1e] 

and (N, , ,
c

N vr S ) by the WVG [10; 4a, 1b, 4c, 1d, 2e]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = 0.50, Eƒb = Eƒe  = 
0.13, and Eƒc  = Eƒd  = 0.25 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒc  = 0.31, Eƒb = 

Eƒd  = 0.06, and Eƒe  = 0.19. (This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = 0.50, Eƒb = Eƒe  = 
0.08, and Eƒc  = Eƒd  = 0.17 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒc  = 0.38, Eƒb = 

Eƒd  = 0.05, and Eƒe  = 0.13. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, player b forms a 
standard t and c, d, and e a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 0.50, Eƒb 
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= Eƒe  = 0.08, and Eƒc  = Eƒd  = 0.25 and for (N, , ,
c

N vr S ) we have Eƒa  = 0.37, Eƒb 
= Eƒd  = 0.04, Eƒc  = 0.29, and Eƒe  = 0.21. 

Example 4 Assume N = {a, b, c, d, e, f, g, h, i} and SŒ N
HS  given by S(a) = S(b) 

= S(c) = {d, e}, S(d) = {f, g}, S(e) = {h, i}, and S(f) = S(g) = S(h) = S(i) = ∆ 
and v(S) = 1 if f, g, h, or iŒS and {a, b}, {a, c} or {b, c}ÃS and 0 otherwise. 
Then (N, , ,

d
N vr S ) can be represented by the product game [2; 1a, 1b, 1c] × ([4; 3d, 

1f, 1g] ⁄ [4; 3e, 1h, 1i]) and (N, , ,
c

N vr S ) by the join [13; 3a, 3b, 3c, 3d, 1f, 1g] ⁄ [13; 
3a, 3b, 3c, 3e, 1h, 1i]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.30, Eƒd  
= Eƒe  = 0.23, and Eƒf  = Eƒg  = Eƒh  = Eƒi  = 0.08 and for (N, , ,

c
N vr S ) we have 

Eƒa  = Eƒb = Eƒc  = 0.15, Eƒd  = Eƒe  = 0.06, and Eƒf  = Eƒg  = Eƒh  = Eƒi  = 0.02. 
(This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.19, Eƒd  
= Eƒe  = 0.14, and Eƒf  = Eƒg  = Eƒh  = Eƒi  = 0.04 and for (N, , ,

c
N vr S ) we have 

Eƒa  = Eƒb = Eƒc  = 0.28, Eƒd  = Eƒe  = 0.05, and Eƒf  = Eƒg  = Eƒh  = Eƒi  = 0.01. 
(This is the S-S index.) 

Assume (A3) as follows: players a, b, and c form a standard t, d, f, and g behave 
independently, e, h, and i form a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = Eƒb 

= Eƒc  = 0.21, Eƒd  = 0.30, Eƒe  = 0.15, Eƒf  = Eƒg  = 0.10, and Eƒh  = Eƒi  = 0.05 
and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.16, Eƒd  = 0.17, Eƒe  = 0.05, and 

Eƒf  = Eƒg  = 0.06, Eƒh  = Eƒi  = 0.02. 

Example 5 Assume N = {a, b, c, d, e, f} and S∈ N
HS  given by S(a) = S(b) = S(c) 

= {d}, S(d) = {e, f}, and S(e) = S(f) = ∆ and v(S) = 1 if e or f∈S and {a, b}, {a, 
c} or {b, c}⊂S and 0 otherwise. Then (N, , ,

d
N vr S ) can be represented by the product 

game     [2; 1a, 1b, 1c] × [3; 2d, 1e, 1f] and (N, , ,
c

N vr S ) by the WVG [13; 3a, 3b, 3c, 
3d, 1e, 1f]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.19, Eƒd  
= 0.38, and Eƒe  = Eƒf  = 0.13, and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = Eƒd  

= 0.09, and Eƒe  = Eƒf  = 0.03. (This is the Bz measure.)  

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.13, Eƒd  
= 0.43, and Eƒe  = Eƒf  = 0.08 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = Eƒd  

= 0.23, and Eƒe  = Eƒf  = 0.03. (This is the S-S index.) 

Assume (A3) as follows: players a, b, and c form a standard t, d behaves 
independently, and e and f form a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 
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Eƒb = Eƒc  = 0.12, Eƒd  = 0.23, and Eƒe  = Eƒf  = 0.18 and for (N, , ,
c

N vr S ) we have 
Eƒa  = Eƒb = Eƒc  = 0.07, Eƒd  = 0.08, and Eƒe  = Eƒf  = 0.10. 

Example 6 Assume N = {a, b, c, d, e, f}, S∈ N
HS  given by S(a) = {b, c}, S(b) = 

d, S(c) = {e, f}, and S(d) = S(e) = S(f) = ∆ and a join [10; 3a, 3b, 1c, 1d, 3e] ⁄ 
[10; 3a, 3b, 1c, 1d, 3f]. 

Assume (A1) for all players. We have Eƒa  = Eƒb = 0.28, and Eƒc  = Eƒd  = Eƒe  = 
Eƒf  = 0.09. (This is the Bz measure.) 

Assume (A2) for all players. We have Eƒa  = Eƒb = 0.37, and Eƒc  = Eƒd  = Eƒe  = 
Eƒf  = 0.07. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, players b and d form a 
standard t and c, e, and f a standard (1-t). We have Eƒa  = 0.20, Eƒb = 0.28, Eƒc  = 
0.06, Eƒd  = 0.07 and Eƒe  = Eƒf  = 0.14.16 

5. On the Nature of A Priori Voting Power in Hierarchical Organizations 

An important fact is that if a priori standards are considered we are likely to 
encounter violations of local monotonicity. Local Monotonicity is that property of 
a measure of voting power that ranks a player’s voting weight (number of votes) in 
the same order as his or her voting power, i.e. local monotonicity is fulfilled if 
whenever the weight of player i is at least as great as that of player j, then i has at 
least as much power as j. 17 Formally: 

                                               
16 Going back to our bank interpretation of Example 6 in Fn. 11 under (A3) we could say that c, e, 

and f are responsible for expanding credit and thus have the same standard t, b and d are 
responsible for managing risk and thus have an opposing standard (1-t); and manager a has to 
consider both aspects of granting a loan and thus behaves independently. 

17 See Young (1985) and Turnovec (1998) for general introductions to the concept of monotonicity 
and Braham and Steffen (2002c) and Felsenthal and Machover (1995, 1998) for discussion of 
local monotonicity as a postulate of voting power. As a number of authors have pointed out 
(Felsenthal and Machover, 1995, 1998; Freixas and Gambarelli, 1997), local monotonicity is a 
special case of the desirability (also called dominance) relation, ±, which is a pre-ordering (i.e. 
it is transitive and reflexive) of the players in a simple game W (v). The desirability relation was 
first introduced by Isbell (1958) and later generalized by Maschler and Peleg (1966). See also 
Taylor and Zwicker (1999, pp. 86–92). The idea is that we can order the players in terms of 
their contribution to a coalition. Formally, i± j iff S∪{j}∈W (v) implies S∪{i}∈W (v). In 
words, player i is at least as desirable as j in coalition S in a game v if interchanging i and j does 
not change S from winning to losing. If we have i± j but not j± i, then ifj, i.e. player i is strictly 
more desirable than player j, which says that whatever j can contribute to the passing of a bill i 
can do as well (is at least as desirable) and in some cases more (is more desirable). Thus, ifj 
then ξi (v)>ξj (v). It is also easy to see that if players i and j in v are interchangeable, then by 
symmetry ξi (v)=ξj (v), and, i± j then ξi (v)>ξj (v). For a WVG it clearly follows that if wi >wj 
then i± j, i.e. anything that wj can do, wi can also do because a winning coalition cannot become 
a losing coalition if it gains more weight (but it does not necessarily follow that if wi >wj then 
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Local monotonicity (P1) 

For every W(v)∈G N that can be represented as a WVG, if wi > wj then ξi(v) > 
ξj(v). 

  The reason for the violation of local monotonicity is due to the fact that under 
the partial homogeneity structure the winning coalitions do not occur with equal 
probability. Such violations are easy to find. 18 

Example 7 Assume N = {a, b, c} playing a simple majority game Mn,(n/2)+1. If (i) a 
and b form a standard t and c behaves independently, we have Eƒa  = Eƒb = 50, 
and Eƒc  = 0.33, but if (ii) a and b form opposing standards (say t and 1–t) and c 
behaves independently, then we have Eƒa  = Eƒb = 50, and Eƒc  = 0.67. 

 Note, however, that in more general terms, monotonicity refers to the 
resources or to use Dahl’s (1957) terminology, the ‘base of power’, of which 
voting weights are only one component given by the ‘bare’ decision rule. As 
argued in Braham and Steffen (2002c) the underlying data of a voting game is 
made up of at least two components: (i) the voting weights and (ii) the players 
positions within the decision-making structure. While under (A1) or (A2) the 
structure is ‘flat’ so that resources and weight happen to coincide, under a 
differentiated structure such as (A3) this is no longer the case. 

 Taking this into account, in Example 7, in the first part players a and b in a 
sense have ‘more’ resources due to their joint standard of behaviour than player c, 
and therefore, the power values do not violate such a general definition of local 
monotonicity, while the second part is a bit more tricky. Taking into account that a 
and b may be acting against each other, this reduces the value of their resources as 
such, and therefore, the greater voting power of c fulfils local monotonicity 
(generally defined). 

  Now, referring to the examples given in section 4 we can find violations of 
(P1), for instance, in Examples 3 and 5 under (A3) and the conjunctive restriction. 
In Example 3 the players a and c have both four votes, but a is more powerful 
than c, while in Example 5 the players a, b, c, and d have all three votes, but d is 
more powerful than the other three players. The reason is easy to see by looking at 
the partitioning of the players under (A3). In both examples the more powerful 
player is assumed to behave independently, while the other players have opposing 

                                                                                                                               
if j). It is therefore straightforward that if wi >wj then ξi (v)>ξj (v), viz. precisely local 
monotonicity as in (P1). 

18 See also Braham and Steffen (2002c) for further examples. 
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standards like in Example 7 (ii), which reduces the value of their resources as 
such, and therefore the greater voting power of a in Example 3 and d in Example 5 
fulfils local monotonicity (generally defined). 

  The fact that under (A3) winning coalitions do not occur with equal 
probability, has also further important implications on the nature of power in 
hierarchical organizations as it can cause violations of other monotonicity 
properties of voting power in hierarchical organizations. 

  In particular, it can lead to a violation of weak structural monotonicity and 
structural monotonicity. Weak structural monotonicity (Brink, 2001) states that 
the power ranking in any restricted permission game should rank a player j not 
before a player i if i dominates player j completely, i.e. by j∈ S (i). Formally: 

Weak structural monotonicity (P2) 

For every W(v)∈G N and S∈ N
HS , if i∈N  and j∈ S (i) then ξi(N, , ,

c
N vr S ) > ξj(N, 

, ,
c

N vr S ) and ξi(N, , ,
d

N vr S ) > ξj(N, , ,
d

N vr S ). 

  A stronger version known as structural monotonicity (Brink and Gilles, 
1996) extends the above property to the case that i dominates j, i.e. j∈S(i), which 
is said to be satisfied only under the conjunctive restriction. Formally: 

Structural monotonicity (P3) 

For every W(v)∈G N and S∈ N
HS , if i∈N  and j∈S(i) then ξi(N, , ,

c
N vr S ) > ξj(N, 

, ,
c

N vr S ). 

  Thus, (P2) and (P3) more or less say that a player in a hierarchy who 
dominates another player should have at least as much voting power as the 
dominated player. But then it is clear that (P2) and (P3) can only be fulfilled under 
very specific restricted permission games, for it requires rules which guarantee that 
a superior is always critical in more coalitions than a subordinate, or if in less, the 
partial homogeneity structure gives more weight to the winning coalitions where 
the superior is a critical member. 

  For an example for a violation of (P2) and (P3) take, for instance, again 
Example 5 under (A3) and the conjunctive restriction. Even though player d 
dominates the players e and f completely, d has less power than his or her 
subordinates e and f for the same reason as for the violation of local monotonicity. 
For an additional example for a violation of (P3) see also Example 4 under (A3) 
and the conjunctive restriction. Even though player d is dominated by the board 



 126

consisting of players a, b, and c, he or she has more power than these players, 
while player e, who compared to d has a symmetric position in the hierarchical 
structure S, has less power than a, b, and c and thus than d. The reason is that the 
board on the top is assumed to behave according to a common standard t and e and 
his or her subordinates h and i are assumed to have an opposing standard (1-t), 
while d and his or her subordinates are assumed to behave independently from 
which d gains resources in comparison to the players with opposing standards, 
e.g., it is more likely that d is a member of a winning coalition than e. 

  This result, i.e. the violation of (P2) and (P3) under (A3) is of particular 
significance for the study of power in hierarchical organizations because it implies 
that contrary to common belief there is no necessary correlation between power 
and the rank of a player in a hierarchical structure. 

  Another interesting case is Example 6 under (A3). Here players e and f have 
more power than their superior c and player b has more power than his or her 
superior a. The reason is that (i) the partition of the players, i.e. that player a 
behaves independently, while the players b and d form a standard t and c, e, and f 
form a standard (1-t) and (ii) that players e and f can form a winning coalition 
together with b and d but without c. 

  Furthermore, we may have an violation of disjunctive and conjunctive 
fairness. Disjunctive fairness (Brink, 1997) requires that deleting the relation 
between two players i and j∈S(i) (with |S - 1(j)| > 2) changes the power value for 
player i and j by the same amount. Moreover, the power values of all players h 
that completely dominate player i, in the sense that h∈S - 1(i) change by this same 
amount. Formally: 

Disjunctive fairness (P4) 

For every W(v)∈G N and S∈ N
HS , if i∈N  and j∈S(i) then ξh(N, , ,

d
N vr S ) - ξh(N, 

, , ( , )
d

N v i jr S- ) = ξj(N, , ,
d

N vr S ) - ξj(N, , , ( , )
d

N v i jr S- ) for all h∈{i}»S - 1(i). 

  Conjunctive fairness (Brink, 2001) says that deleting the relation between 
two players i and j∈S(i) (with |S - 1(j)| > 2) changes the power value for player j 
and any other predecessor h∈S - 1(j) \ {i} by the same amount. Moreover, the 
power values of all players that completely dominate the other predecessor h 
change by this same amount. Formally: 
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Conjunctive fairness (P5) 

For every W(v)∈G N and S∈ N
HS , if i, j, h∈N  such that i ≠ h and j∈S(i)«S(h), 

then ξg(N, , ,
c

N vr S ) - ξg(N, , , ( , )
c

N v i jr S- ) = ξj(N, , ,
c

N vr S ) - ξj(N, , , ( , )
c

N v i jr S- ) for all 
g∈{h}» S - 1(h). 

 Hence, (P4) and (P5) roughly stipulate that the deletion of a hierarchical 
relation between two players should under (P4) change their voting power and that 
of the superiors of the dominating player by the same amount and in the same 
direction, while under (P5) the voting power of the dominated player and his or her 
superiors should be changed by the same amount and in the same direction, i.e. 
Brink’s fairness conditions turn out to be very specific monotonicity conditions 
that can only be fulfilled under very specific restricted permission games, for it 
requires rules that guarantee that the proportions of the numbers of swings ηi , ηj, 
ηh , and ηg  remain the same under the new restricted permission game without the 
dominance relation (i, j) or, if not, that the partial homogeneity structure restores 
the original proportions. Consider the restricted permission game given by 
Example 8 which is the same as Example 3 but with (b, e) as an additional 
dominance relation: 

Example 8 Assume N = {a, b, c, d, e}, S∈ N
HS  given by S(a) = {b, c}, S(b) = 

S(c) = {d, e}, and S(d) = S(e) = ∆ and v(S) = 1 if d or e∈S and 0 otherwise. 
Then (N, , ,

d
N vr S ) can be represented by the join [5; 2a, 2b, 1d, 1e] ⁄ [5; 2a, 2c, 1d, 1e] 

and (N, , ,
c

N vr S ) by the WVG [10; 3a, 3b,3c, 1d, 1e]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = 0.56 and Eƒb = Eƒc  = 
Eƒd  = Eƒe  = 0.19 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.19 and Eƒd  = 

Eƒe  = 0.06. (This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = 0.53, Eƒb = Eƒc  = 
Eƒd  = Eƒe  = 0.12 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.30 and Eƒd  = 

Eƒe  = 0.05. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, player b forms a 
standard t and c, d, and e a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 0.55, Eƒb 

= 0.13, and Eƒc  = Eƒd  = Eƒe  = 0.21 and for (N, , ,
c

N vr S ) we have Eƒa  = 0.12, Eƒb 
= 0.21, Eƒc  = 0.13, and Eƒd  = Eƒe  = 0.04. 

 Now, comparing the results of Examples 3 and 8 we can find that (P4) and 
(P5) are satisfied under (A1) as proved in Brink (2001) and under (A2) as proved 
in Brink (1997) for (P4) and in Brink and Gilles (1996) for (P5). However, we can 
also see that (P4) and (P5) are violated under (A3). In particular, we find that 
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under the disjunctive restriction the power values of players b, e, and a who 
dominates b completely decreases by 0.06 under (A1) and by 0.03 under (A2) if 
we delete the dominance relation (b, e), while under (A3) the power values of a 
and b are reduced by 0.05 while that of e decreases by 0.13, i.e. (P4) is violated. 
Under the conjunctive restriction we can find a similar result but with an increase 
of the power values. Under (A1) and (A2) the power values of player e, his or her 
predecessor c, and a who dominates c completely are all increasing by 0.12 and 
0.08, respectively, if we delete the dominance relation (b, e), while under (A3) the 
power values of e increases by 0.17 and those of c and a by 0.16 and 0.25, 
respectively. 

 However, (P4) and (P5) can also be violated if the hierarchical organization 
does not have a unique top-player but with a board structure at the top, i.e. if we 
deal with non quasi-strongly connected hierarchical structures. Note, that this 
result contradicts Brink’s (2001) speculation that ‘the results in this paper could 
also be stated for acyclic permission structures that not necessarily are quasi-
strongly connected.’ E.g., consider a restricted permission game as given by 
Example 9. 

Example 9 Assume N = {a, b, c, d, e, f, g} and S∈ N
HS  given by S(a) = S(b) = 

S(c) = {d, e}, S(d) = S(e) = {f, g}, and S(f) = S(g) = ∆, and v(S) = 1 if f or g∈S 
and {a, b}, {a, c} or {b, c}⊂S and v(S) = 0 otherwise. (See figure 4a for a 
graphical representation of the hierarchical structure). Then (N, , ,

d
N vr S ) can be 

represented by the product game [2; 1a, 1b, 1c] ¥ ([3; 2d, 1f, 1g] ⁄ [3; 2e, 1f, 1g]) 
and (N, , ,

c
N vr S ) by the join [6; 1a, 1b, 1c, 1d, 1e, 1f] ⁄ [6; 1a, 1b, 1c, 1d, 1e, 1g]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.28, and 
Eƒd  = Eƒe  = Eƒf  = Eƒg  = 0.19 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = Eƒe  = 0.05, and Eƒf  = Eƒg  = 0.02. (This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.18, and 
Eƒd  = Eƒe  = Eƒf  = Eƒg  = 0.11 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = Eƒe  = 0.19, and Eƒf  = Eƒg  = 0.02. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, players b and d form a 
standard t and c, e, f and g a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 0.36, 

Eƒb = Eƒc  = 0.28, Eƒd  = 0.13, and Eƒe  = Eƒf  = Eƒg  = 0.21 and for (N, , ,
c

N vr S ) we 
have Eƒa  = 0.024, Eƒb = Eƒd  = 0.033, Eƒc  = Eƒe  = 0.025, and Eƒf  = Eƒg  = 
0.083. 
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Now, if we remove the dominance relation (e, f), the corresponding results are 
given by Example 10: 

Example 10 Assume N = {a, b, c, d, e, f, g} and S∈ N
HS  given by S(a) = S(b) = 

S(c) = {d, e}, S(d) = {f, g}, S(e) = {g}, and S(f) = S(g) = ∆, and v(S) = 1 if f or 
g∈S and {a, b}, {a, c} or {b, c}⊂S and v(S) = 0 otherwise. (See figure 4b for a 
graphical representation of the hierarchical structure). Then (N, , ,

d
N vr S ) can be 

represented by the product game [2; 1a, 1b, 1c] ¥ ([3; 2d, 1f, 1g] ⁄ [3; 2e, 1g]) and 
(N, , ,

c
N vr S ) by the join [5; 1a, 1b, 1c, 1d, 1f] ⁄ [6; 1a, 1b, 1c, 1d, 1e, 1g]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = Eƒd  = 
Eƒg  = 0.25 and Eƒe  = Eƒf  = 0.13 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = 0.08, Eƒe  = Eƒg  = 0.02, and Eƒf  = 0.06. (This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = Eƒd  = 
Eƒg  = 0.17 and Eƒe  = Eƒf  = 0.08 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = 0.22, Eƒe  = Eƒg  = 0.02, and Eƒf  = 0.07. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, players b and d form a 
standard t and c, e, f and g a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 0.33, 

Eƒb = 0.18, Eƒc  = 0.33, Eƒd  = Eƒe  = Eƒf  = 0.17, and Eƒg  = 0.33 and for (N, 

, ,
c

N vr S ) we have Eƒa  = 0.04, Eƒb = Eƒc  = Eƒd  = Eƒf  = 0.05, and Eƒe  = Eƒg  = 
0.01. 

  Comparing the results of Example 9 with those of Example 10 in which we 
have deleted (e, f) we can see that (P4) and (P5) are already violated under (A1) 
and (A2) due to the fact that these hierarchical organizations do not obey quasi-
strongly connectedness, and are still violated under (A3). In particular under the 

Figure 4: Hierarchies with a Board-Structure at the Top II 
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disjunctive restriction the power value of f under (A1) decreases by 0.06 while that 
of his or her predecessor d increases by 0.06. Under (A2) we obtain a similar 
result, i.e. the power value of f decreases by 0.03 while that of d increases by 0.06. 
Also applying (A3) the structure of the result remains the same: the power value of 
f decreases by 0.04 while that of d increases by 0.04. Under the conjunctive 
restriction the power value of f under (A1), (A2), and (A3) increases by 0.04 while 
that of his or her predecessor d increases only by 0.03.  

  However, note, that it could be possible that (A3) just rescues (P4) or (P5) if 
its violation occurs due to a non-quasi-strongly connected hierarchical structure. 

  Finally, if we reduce the number of players in Example 10 by eliminating 
player e, we obtain the restricted game with a permission structure as given by 
Example 11. 

Example 11 Assume N = {a, b, c, d, f, g} and S∈ N
HS  given by S(a) = S(b) = 

S(c) = {d}, S(d) = {f, g}, and S(f) = S(g) = ∆, and v(S) = 1 if f or g∈S and {a, 
b}, {a, c} or {b, c}⊂S and v(S) = 0 otherwise. (See figure 4c for a graphical 
representation of the hierarchical structure). Then (N, , ,

d
N vr S ) can be represented by 

the product game [2; 1a, 1b, 1c] ¥ [3; 2d, 1f, 1g] and (N, , ,
c

N vr S ) by the WVG [9; 2a, 
2b, 2c, 2d, 1f, 1g]. 

Assume (A1) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.19, 
Eƒd  = 0.38, Eƒf  = Eƒg  = 0.13 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = 0.09, and Eƒf  = Eƒg  = 0.03. (This is the Bz measure.) 

Assume (A2) for all players. For (N, , ,
d

N vr S ) we have Eƒa  = Eƒb = Eƒc  = 0.13, 
Eƒd  = 0.43, Eƒf  = Eƒg  = 0.08 and for (N, , ,

c
N vr S ) we have Eƒa  = Eƒb = Eƒc  = 

Eƒd  = 0.23, and Eƒf  = Eƒg  = 0.03. (This is the S-S index.) 

Assume (A3) as follows: player a behaves independently, players b and d form a 
standard t and c, f and g a standard (1-t). For (N, , ,

d
N vr S ) we have Eƒa  = 0.15, 

Eƒb = Eƒc  = 0.13, Eƒd  = 0.33, Eƒf  = Eƒg  = 0.17 and for (N, , ,
c

N vr S ) we have 
Eƒa  = 0.05, Eƒb = Eƒd  = 0.06, Eƒc  = 0.07, and Eƒf  = Eƒg  = 0.03. 

  Comparing the results of Example 11 with those of Examples 9 and 10 we 
can see that deleting player e does not necessarily lead to a shift of the players’ 
power values in a specific direction in a hierarchical organization. 
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6. Conclusions 

Our study of a priori voting power in hierarchical organizations using an 
alternative approach to Brink, Gilles and Owen has shown a number of 
counterintuitive results, namely, that monotonicity properties of voting power in 
hierarchical organizations like (weak) structural monotonicity and dis- and 
conjunctive fairness do not hold any longer if we take into account predetermined 
roles of players in a hierarchy and/or we drop the assumption of a unique top-
player, i.e. the hierarchical structure is not quasi-strongly connected. 

  Moreover, we have illustrated that (i) every ‘restricted’ permission game can 
be represented as a compound game and (ii) that (as shown by Example 11) 
dropping a player belonging to an intermediate hierarchical level, does not 
necessarily imply that this voting power is transferred downwards to lower 
hierarchical levels. 

We wish to tie up our conclusions with some further thoughts related to the 
analysis of voting power in hierarchical organizations and with an important 
implication that flows from it; for a more elaborated discussion on this issue we 
refer the reader to Braham and Steffen (2001a, 2002b). 

  There exists another related issue to characterize hierarchical organizations 
based upon the theory of simple games which is a subject to further research. This 
is the responsiveness of a hierarchical organization to the overall nature of a 
(collective) decision-making rule, i.e. the ability of a hierarchical organisation to 
approve projects. What we suspect from the fact that this analysis is based on the 
theory of simple games that ‘lean’ hierarchies are not necessarily more 
‘responsive’ and innovative than ‘fatter’ ones. While it is true that the time it may 
take to reach a decision is shorter in a lean than in a fat hierarchy because it has 
less layers and, therefore, less committees (component games). However, this does 
not imply that more projects will be approved (and, therefore, the organization will 
be more ‘responsive’ and innovative). 

 This together with the results provided in this chapter has an important 
implication to two related management concepts which are known as 
empowerment19 and lean management20. Both are based on the idea that: (i) by 
                                               
19 See Gal-Or and Amit (1998) for a summary of empowerment. For examples of the meaning and 

implications of empowerment in the management and organizational behaviour literature see 
Conger and Kanungo (1988), Pfeffer (1992), Spreitzer (1995, 1996), and Thomas and Velthouse 
(1990). 

20 This concept goes back to Krafcik (1988). 
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removing intermediate layers or parts of layers of a hierarchy power can be 
transferred downwards to employees on the lower levels and that (ii) such a change 
will lead to increased motivation due to employees having more of a say in the 
organization’s destiny and thus, increased responsiveness and productivity gains 
for the organization. But as indicated above (i) is not necessarily the case if we 
remove layers or parts of layers. Thus, frustration and reduction of effort is likely 
to be the result. But even if an employee’s voting power increases, this does not 
imply that motivation will increase. As indicated above, reducing the length and 
breadth of a hierarchy does not necessarily increase the probability that a project 
will be accepted. That is to say, in absence of a change in the decision rule and/or 
the partial homogeneity structure, empowerment and lean management can lead to 
an increase in the rejection rate and, thus, a fall in motivation. 

 The practical implications of this perspective is that when we come to look at 
the performance of organizations, it is necessary to abstract from the particular 
personalities that are involved. The success or failure of an organization may not 
be so much a matter of its ‘leadership’ and ‘management style’ – its ‘corporate 
culture’ – but of the interaction of its behavioral incentives and decision-making 
rules (including the permission and communication structures of the 
organization).21 

                                               
21 For a recent economic analysis of visionary leadership, see Rotemberg and Saloner (2000) who 

completely ignore the effects of the permission structure. 
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