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ABSTRACT

The exact mechanism behind Strombolian volcanic eruptions is unknown to the present
day. Therefore, despite numerous studies using increasingly sophisticated measuring tech-
niques, it is still a frequent subject of debate. Little information has so far been gained on
pressures and energies involved during an explosion, mainly due to the lack of precise in-
situ measurement techniques of the physical conditions at the source and during the very
first moments of a Strombolian explosion. These techniques are now available, and can
therefore provide the key to resolving this debate.

In 2005/06 the author of this study deployed three newly-developed, continuous wave
Doppler radar instruments at the crater rim of Mount Erebus volcano in Antarctica. Erebus
is one of the few volcanic open vent systems that allows the unobstructed observation of
source processes from the crater rim. Therefore, the volcano represents an ideal outdoor
laboratory and a model for Strombolian-style volcanoes in general. Strombolian explosions
at Erebus are most likely generated by the adiabatic expansion of pressurised gas slugs ris-
ing in the conduit. Erebus’ crater features a 1000◦C hot, active phonolite lava lake, which
at the time of the experiment was about 40 m wide and produced 2–6 large explosions per
day. Part of this study was the development of a wireless data recording system suitable to
withstand extreme environmental conditions, such as the ones that can be found in Antarc-
tica and on many volcanoes worldwide. The deployed radar instruments measured the
in-situ lava surface velocities of 55 explosions at Erebus, at a sampling rate of 1-15 Hz. Ad-
ditional instrumentation consisted of a combined infrared/visual video camera and a net-
work of infrasound microphones operated by the Mount Erebus Volcano Observatory. This
multi-parameter experiment provides detailed new insights into the still largely unknown
mechanism of Strombolian eruptions, and helps to improve existing eruption models.

The main goal of this study is to provide a tool to determine concrete physical eruption
parameters as a function of time. The technique developed here will allow the calculation of
energy freed during the first second of a Strombolian volcanic eruption as a detailed function
of time, including its partitioning into all relevant energy types. In a similar way, the history
of gas pressure and volume during an explosion will be derived as a function of time, thus
allowing for a detailed analysis of the physical state of the vent system at any given time
during the first moments of an explosion.

The study also provides a comprehensive source model for acoustic signals associated
with explosions. Furthermore, it supplies a simple way to determine the explosion’s vertical
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ground forces that are expected to generate seismic waves. The above was achieved by
developing and applying a simple geometrical explosion model to the data. As an additional
output, explosion direction vectors were calculated in 3D as a function of time, allowing for
conclusions on the symmetry of the vent system.

A major general conclusion of this study is that energies and pressures of Strombolian
explosions cannot be determined by distant acoustic pressure recordings alone. Any attempt
to do so will cause misleading results. The outcome of this study suggests, however, a very
simple tool for determining gas slug lengths from acoustic signals, which are very similar
amongst Strombolian-type volcanoes. While acoustic signals before the burst of bubbles
are generated by a short monotonic volumetric expansion of the bulging lava lake, signals
generated after the burst of the bubble are most likely the result of a ”λ/4-type” resonance
of the cavity formed by the gas slug in the uppermost conduit. These post-burst signals
are higher in amplitude and longer in duration than the pre-burst part, therefore strongly
dominating the acoustic signal of explosions. By measuring the frequency and decay rate of
the resonance signal, the inferred slug length and possibly the width of the conduit can be
determined in a very simple way.

During explosions, the absolute gas pressure inside expanding bubbles rapidly drops
from ∼3–7 atm to ∼2 atm just before the burst. The overall energy budget of explosions
is dominated by the quasi-static output of thermal energy through the ejection of hot lava,
amounting to more than 1012 J per explosion. The dynamics of explosions are controlled by
kinetic and potential energy of the expanding bubble shell, whereas other forms of energy
play only a minor role. The dynamic energy release (i.e. not counting thermal energy) is
typically around 109 J for large explosions, with a peak discharge rate frequently exceeding
5× 109 W, which for a short time equals the power output of several nuclear power plants.

Remarkably, about half of the explosions at Erebus show two distinct surface acceleration
peaks separated by ∼0.3 seconds. This suggests that rising gas bubbles fragment into two
or more parts shortly before reaching the lava lake surface, most likely caused by a change
in conduit diameter at the bottom of the lava lake. Results suggest a total gas volume of
>20,000 m3 for large explosions, of which typically less than 10% are contained in the re-
spective first approaching bubble fragment of each explosion. Ground forces, caused by the
inertia of the accelerated material, lie in the order of 108 N and have a dominating frequency
of 3 Hz, therefore providing possible source parameters of the expected seismic signal.

The technique developed in this study can be applied to other volcanoes with similar
observation conditions. Additionally, the results derived from Erebus provide valuable in-
formation on Strombolian explosions in general. For example, the physical parameters de-
termined in this study provide the necessary boundary conditions for sophisticated conduit
modelling, not only at Erebus but at many other Strombolian volcanoes. Furthermore, ex-
isting eruption models can now be constrained and improved.
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CHAPTER 1

INTRODUCTION

Volcanoes are a phenomenon that has always fascinated humans. On average, the popula-
tion density around active volcanoes is 2 - 5 times as large as the global median (Small and
Naumann, 2001), paying tribute to their fertile soil. Yet while they are fascinating and fer-
tile, they can also be deadly, with eruptions occurring with little or effectively no detected
warning signs (Larsen et al., 2009; Carn et al., 2009). Considering that more than 600 million
people live in the vicinity (<100 km) of an active volcano (Small and Naumann, 2001), this
fact highlights the need for a thorough understanding of volcanic systems in general.

Strombolian volcanoes are an abundant subtype of volcanoes whose incandescent and
often picturesque eruptions usually pose no life-threatening danger to the wider population
around them. Nevertheless, they can induce secondary catastrophic events such as land
slides and tsunamis, and they pose an immediate hazard to individuals and property located
on the volcanic edifice. It is therefore important to understand their eruption dynamics,
including their general mechanism as well as their detailed physical parameters.

1.1 Motivation for this study

MacDonald (1972) correctly interpreted explosions on lava lakes as bursting gas bubbles.
This idea evolved in the following years, and Blackburn et al. (1976) suggested the bursting
of large gas bubbles as a mechanism for Strombolian explosions1 in general (Fig. 1.1). They
used cine film recordings of explosions at various volcanoes to determine the velocity of
explosion ejecta and to estimate gas overpressures. For example, they suggested an over-
pressure of 600 Pa (0.006 atmospheres) for bubble explosions at Stromboli, and 25 kPa (0.25
atmospheres) for Heimaey. Even though these numbers are much too low in the light of
results delivered by newer technologies, they highlight the importance of knowing physical
parameters of explosions for the generation of an acceptable eruption model.

Most of the existing studies at Strombolian volcanoes were targeted at determining the
source processes of eruptions, and, as will be reviewed later in this chapter, a wealth of

1In the following I will use the term explosion to describe a single explosive event at a volcano, whereas the
term eruption refers to the time span of increased activity at a volcano, i.e. an eruption can include several or
many explosions.

3



4 INTRODUCTION

rising
gas slug

lava lakeliquid
magma
conduit

Figure 1.1: Sketch of a gas slug rising in a volcanic conduit

information was derived from numerous field experiments. Nevertheless, a variety of fun-
damental questions are still open, whose answers play an important role in the way we
regard Strombolian volcanic eruptions. The most relevant of these are:

1. What happens during a Strombolian explosion, and how do bubbles burst?

2. What are the energies involved, and what is their partitioning?

3. What are the gas overpressures of a rising gas bubble just before its explosion?

4. How large are the gas volumes of exploding bubbles?

5. What causes the acoustic signal that is typically observed during Strombolian explosions, and
what can we learn from it?

6. What are the associated ground forces, and can they explain the seismic signals that usually
accompany Strombolian explosions?

In this study, I will attempt to find an answer for each of these questions. I will use the
following sections to introduce the necessary background on Strombolian eruptions and the
measurement techniques that are of relevance to this study. Finally, at the end of this chapter,
in Section 1.7, I will outline the strategy for answering the above questions.

So why is the first second of a volcanic eruption so important? One of the most im-
portant parameters that is needed to improve our understanding of the dynamics involved
in a Strombolian eruption is the expansion velocity of the gas bubble that is driving it, as
well as the velocity of ejected particles during the bubble’s burst. Understanding the his-
tory of these velocities is the key to calculating the fundamental parameters of an explosion,
such as energies, gas pressures and gas volumes, and to explain secondary effects such as re-
sulting acoustic airwaves or seismic ground waves. Additionally, these parameters deliver
the necessary boundary conditions for conduit modelling, therefore providing a reference
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Figure 1.2: Combined thermal and daylight image of
Mt. Erebus, taken by the Hyperion hyperspectral im-
ager aboard the NASA Earth Observing-1 (EO-1) space-
craft. The inlay shows so-called Hyperion L1 data pixels
(30x30m in size) of the lava lake, classifying it as ”hot”
(adapted from Davies et al., 2006, with friendly permis-
sion). The field camp at Lower Erebus Hut is marked as a
star.

frame for future studies. Processes that occur after the important first moments are a causal
result of the explosion process, but they have no great significance for our understanding of
the explosion mechanism itself.

1.2 A bubble bursts

As will be shown in the sections ahead, a wealth of literature exists concerning the mecha-
nisms that are responsible for the birth of a Strombolian volcanic eruption. It is understood
that before Strombolian explosions, large bubbles of gas rise in a volcanic conduit (so-called
”slug flow”, see Fig. 1.1). These bubbles typically burst upon reaching the top of the con-
duit, resulting in a powerful explosion and the ejection of lava fragments several hundred
metres high into the atmosphere (Figs. 1.3 and 1.4). The style of explosion is largely deter-
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Figure 1.3: Image sequence of a 40 m wide bursting gas bubble at Erebus volcano, 2005 (infrared
false colour, provided by the mount Erebus Volcano Observatory (MEVO).)

mined by the geometry of the uppermost conduit system. At large lava lakes such as Erta
’Ale, bubbles have enough lateral space to freely expand in all directions before bursting.
In contrast, at volcanoes like Stromboli, bubbles burst several tens of metres deep inside
the conduit (Harris and Ripepe, 2007), and are therefore unable to expand laterally. Erebus is
right between those two endmembers, allowing for a burst on the surface but with a lateral
constraint through the size of its lava lake.

While it is generally accepted that the rise and burst of a bubble is accompanied by a
ground force generating a seismic signal, and by a disturbance of the atmosphere generating
an acoustic signal, the underlying mechanisms are still unclear and under discussion (e.g.
Parfitt, 2004; Allard et al., 2005; Burton et al., 2007; Aster et al., 2008). This is partially due to
the lack of in-situ data, which naturally are hard to obtain on active volcanoes.

Until recently, most of what has been learned about Strombolian eruption dynamics has
been derived from seismic and/or acoustic data (e.g. Neuberg et al., 1994; Vergniolle and Bran-
deis, 1994; Ripepe et al., 1996; Rowe et al., 1998, 2000; Johnson and Lees, 2000; Johnson, 2003;
Garcés et al., 2000; Ripepe et al., 2004a; Chouet et al., 1997, 2003; Aster et al., 2003, 2008) 2, direct
observations (e.g. Chouet et al., 1974; Blackburn et al., 1976, and many more) and laboratory
experiments (Seyfried and Freundt, 2000; James et al., 2006, 2008). Only in recent years, in-
terdisciplinary observation campaigns have become more and more common (e.g. Ripepe
et al., 2002, 2004b; Aster et al., 2004; Harris and Ripepe, 2007) in order to record additional
observable parameters that allow to better constrain new models. Additional instrumenta-
tion typically consisted of passive sensors, such as continuous gas measurements (COSPEC,
FTIR, DOAS, e.g. Burton et al., 2003), temperature measurements (e.g. Ripepe et al., 2002), and
video surveillance (both visual and thermal, e.g. Chouet et al., 1974; Ripepe et al., 1993; Calvari
et al., 2005; Patrick et al., 2007; Calkins et al., 2008).

2while these studies cover only a small fraction of the available literature, a more comprehensive overview of
existing studies is provided by Harris and Ripepe (2007).
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Active sensors providing in-situ measurements have been used more rarely, and mainly
consisted of Doppler sounding techniques such as acoustic sounders and Doppler radar
(e.g. Weill et al., 1992; Hort and Seyfried, 1998; Dubosclard et al., 1999; Seyfried and Hort, 1999;
Urbanski et al., 2002; Vöge et al., 2005; Donnadieu et al., 2005). In addition to field studies,
several interesting models were developed (analogue, digital, and theoretical e.g. Jaupart and
Vergniolle, 1988; Seyfried and Freundt, 2000; James et al., 2004, 2008) and underwater explosion
experiments were conducted (Ichihara et al., 2005, 2009) that gave clues about the underlying
physical principles (as will be discussed in Sec. 2.2).

Bubble bursts have extensively been studied at Stromboli volcano, Italy (see above), which
has the advantage of relatively small logistical challenges to a field experiment at the cost
of a lack of sufficient visibility onto the surface of the magma column. The same is true for
Hawaiian volcanoes, Mt. Etna, and Arenal volcano (e.g. as summarised by Schmincke, 2004).
Recently, Strombolian eruptions have even been observed underwater at a depth of 550 m
by Chadwick et al. (2008). In contrast to these examples, much better observation conditions
are offered by volcanoes that display an active lava lake. Lava lakes are typically sustained
by convective heat and mass transport from a magma reservoir at depth to the top of the
conduit (i.e. the lava lake surface; Witham and Llewellin, 2006; Calkins et al., 2008).

Unfortunately, amongst the numerous Strombolian volcanoes on our planet, only a very
small number sustain a long-lived active lava lake inside the vent that can be observed di-
rectly from the crater rim without much risk. These rare model volcanoes provide a unique
opportunity for investigating eruption and conduit processes, since they represent an open
window into the interior of a volcano. At the present time they are limited to only a few cases
worldwide, e.g. Erta Ale volcano in Ethiopia (Le Guern et al., 1979; Oppenheimer and Francis,
1998; Harris et al., 2005), Nyiragongo in the Democratic Republic of the Congo (Tazieff , 1984;
Demant et al., 1994), Ambrym volcano in Vanuatu (McCall et al., 1971; Carniel et al., 2003), and
Erebus volcano in Antarctica (Giggenbach et al., 1973). Unfortunately, the good observation
conditions at these volcanoes come at the cost of very challenging logistical conditions.

Of the above volcanoes, Erebus is the only one that provides reliable observation condi-
tions3 at close range (i.e. from the crater rim, within several 100 m), and additionally it is the
only one covered with a highly developed existing geophysical network (Aster et al., 2004).
It therefore represents an ideal ”outdoor laboratory” for the investigation of Strombolian
eruption processes.

Yet, as outlined in Section 1.1, despite these numerous studies on Strombolian volcanoes,
several important questions are still open. For example, the strength of ground forces gen-
erated by explosions is not entirely clear, and there is debate about the source and inter-
pretation of the associated acoustic signal (Vergniolle and Brandeis, 1994, 1996; Seyfried, 1997;
Seyfried and Freundt, 2000; Garcés et al., 2000; Hagerty et al., 2000; Rowe et al., 2000; Johnson and
Lees, 2000; Johnson, 2003; Johnson et al., 2003; Vergniolle et al., 2004; James et al., 2004, 2008). Fur-

3e.g. Erta Ale’s lava lake was found solidified in January 2005 by the author, and numerous reports exist on
the variability of conditions at Nyiragongo and Ambrym.
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Figure 1.4: Bursting gas bubbles (centimetre-sized) in a thermal mud pool. Wai-O-Tapu, New
Zealand, 2008.

thermore, basic physical parameters of the gas bubbles are unconstrained, such as their gas
pressure and volume at burst (reflected in widely varying estimates, e.g. Chouet et al., 1974;
Blackburn et al., 1976; Wilson, 1980; Vergniolle, 1998; Vergniolle et al., 2004), and their energy
balance (e.g. McGetchin and Chouet, 1979).

Vergniolle and Brandeis (1994, 1996), based on non-visual data, propose that pressurised
gas bubbles, instead of immediately bursting upon reaching the surface of the magma col-
umn, rest there for several seconds and vibrate around their equilibrium pressure before
they finally burst. They believe that bubbles burst close to the minimum of their suggested
oscillation cycle, i.e. when they have reached their smallest dimension of the contraction
phase that follows their initial expansion. They include bubbles at Stromboli as an example,
where, in order to fit their model to acoustic data, they suggest that bubbles grow from a
diameter of two metres to a diameter of more than five metres with a wall thickness of 1 cm,
before the bubbles deflate and contract again to a size of 2 m, at which point they burst. Fur-
thermore, Vergniolle et al. (2004) propose, again based solely on acoustic data, that bubbles
during Strombolian explosions of Shishaldin volcano, Alaska, oscillate in the same fashion
before they violently burst. They claim that bubbles inflate from a diameter of 10 m to a
diameter of 30 m, while at the same time thinning out to a shell thickness of around 1 cm
without bursting, before they shrink again to their minimum size of∼10 m, after which they
finally burst.

To the knowledge of the author, bubble oscillations similar to the ones described above
(i.e. with a contracting phase) have never been visually observed during Strombolian ex-
plosions. Therefore, an independent quantitative or qualitative confirmation does not exist.
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Additionally, it appears counterintuitive that a highly viscous magma bubble can grow from
a diameter of 10 m to 30 m, at a wall thickness of∼1 cm, without rupturing or bursting early
in the process (as generally discussed by, e.g. James et al., 2009). It appears even more coun-
terintuitive that this bubble should be able to develop an underpressure and subsequently
shrink again to a third of its size before it eventually bursts at its minimum size. This study
will therefore challenge these assumptions, based on multi-parameter data acquired at Ere-
bus volcano, and propose a much simpler scenario that can explain the available data.

1.3 Volcanic sound

Volcanoes generate sound. While this is obvious for audible frequencies (i.e.>20 Hz) during
large eruptions, most of this sound is actually inaudible, located in the near-infrasound range
below 20 Hz. Such infrasonic signals are usually generated even during minor activity of
volcanoes.

It is typically observed at volcanoes that spectral energies of infrasonic signals are several
orders of magnitude higher than those of audible signals (e.g. Vergniolle et al., 1996; Johnson,
2003; Johnson et al., 2004), usually dominating in the 0.5–10 Hz range (Garcés and McNutt,
1997; Hagerty et al., 2000; Rowe et al., 2000; Johnson and Lees, 2000). This behaviour is caused
by the typical dimensions of volcanic sound sources (i.e. gas-filled resonating chambers,
degassing surfaces, vents, lava lakes), which favour generating acoustic wavelengths in the
same size dimensions (e.g. in a standard atmosphere, a 4 Hz wave has a wavelength of
∼85 m). Scientists have long made use of these properties, exploiting the fact that acoustic
transport mechanisms over short distances in the atmosphere are much simpler than that of
seismic waves. A Green’s function in the ”fluid” atmosphere is much simpler than that in the
complex subsurface structure of a volcanic edifice, therefore minimising propagation effects
(Johnson, 2003). Additionally, the local sound speed is mainly a function of temperature and
can therefore be determined relatively easy.

In an early study, Richards (1963) measured high frequency (mainly audible) volcanic
sound at several types of volcanoes, and concluded that there must be large differences in
the sound generation mechanisms of different types of volcanic activity. At almost the same
time, Machado et al. (1962) tape-recorded eruption sounds from the 1957 eruption of Fayal
volcano on the Azores and attributed different types of (mainly audible) acoustic signals to
different eruption features. They also found first hints that volcanoes produce signals in the
infrasound frequency range by noticing strong movements of the recorder needle when no
audible eruption sound was present.

Several studies targeted the sound that is produced by large volcanic eruptions, and found
that these eruptions are capable of producing very long period infrasonic signals that cir-
cumnavigate our planet (e.g. Gorshkov, 1960; Gorshkov and Dubik, 1970; Simkin and Howard,
1970; Donn and Balachandran, 1981; Mikumo and Bolt, 1985; Kanamori and Mori, 1992; Morrissey
and Chouet, 1997). Donn and Balachandran (1981) used seismic and acoustic waves generated
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by the 1981 Mt. St. Helens eruption to calculate the explosive yield of the eruption, which
they estimated to be equivalent to around 35 megatons of TNT. Such results highlight the
potentially destructive effects of volcanic pressure waves (Yokoo et al., 2006).

While it appears intuitive that infrasonic and seismic waves caused by a volcanic eruption
yield important information about the eruption intensity, Johnson et al. (2005) showed that
this is not always the case, concluding that seismic and acoustic amplitudes do not generally
scale well, or in an obvious relationship, with eruption intensities (see also Yamasato, 1998;
Hagerty et al., 2000; Johnson and Lees, 2000). This was supported by a laboratory study by
Vidal et al. (2006), showing that there is no simple relationship between measured acoustic
pressure amplitudes at the receiver and the pressure inside an acoustic source. Neverthe-
less, acoustic measurements at volcanoes have greatly increased the knowledge of eruption
processes. An important asset of acoustic measurements at volcanoes is the simple determi-
nation of vent locations, allowing for precise activity mapping (Yamasato, 1997; Ripepe and
Marchetti, 2002; Johnson et al., 2003; Garcés et al., 2003; Johnson, 2004; Matoza et al., 2007; Jones
et al., 2008).

Several studies investigated the propagation of volcano-induced acoustic waves in the
atmosphere (e.g. Buckingham and Garcés, 1996; Garcés and McNutt, 1997; Garcés et al., 1998;
Matoza et al., 2007, 2009; Fee and Garcés, 2007), an important aspect of volcano acoustics when
measuring sound at medium to large distances from the source. Johnson et al. (2008), in
accordance with earlier studies (e.g. Vergniolle et al., 1996; Pierce, 1981; Dowling and Williams,
1983; Johnson, 2003) argue that acoustic path effects such as multipathing, diffraction, and
non-linearities are often negligible when certain conditions are given, such as measuring
infrasonic frequencies with a moderate amplitude within a few kilometres of the crater rim
of a volcano, and when considering only the first moments of an explosion signal.

The sound of a Strombolian explosion is an especially promising information source for
determining the underlying processes. Accordingly, many volcano-acoustic studies targeted
Strombolian volcanoes.

Woulff and McGetchin (1976) studied volcanic noise caused by explosions at Stromboli and
calculate gas velocities from acoustic power. They conclude that the acoustic source geome-
try mainly resembles that of a dipole, which was later, however, shown to be only partially
true (Vergniolle and Brandeis, 1994) and can be attributed to the lack of low frequency data
at the time. Neuberg et al. (1994) showed that seismic broadband recordings at Stromboli
contain a large frequency content below 1 Hz, highlighting the importance of broadband
recordings not only when recording seismic signals but also when recording acoustic sig-
nals.

Erebus volcano, which has exhibited periods of Strombolian explosions ever since it was
first visited, was the target for several seismo-acoustic studies by Dibble et al. (1984); Dibble
(1989) and later by Rowe et al. (2000); Johnson et al. (2003, 2004); Johnson and Aster (2005);
Johnson et al. (2008); Jones et al. (2008). These studies revealed a wealth of information and
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showing that seismo-acoustic explosion signals are generated by the burst of large bubbles
on the surface of Erebus’ lava lake.

On the theoretical side, Lu et al. (1989) described oscillations of a small floating gas bubble
at the surface of a liquid, and concluded that gas bubbles can be an effective monopole
source of sound. These and similar observations of possible sound sources led to a variety
of proposed source mechanisms for Strombolian explosions.

Several studies discuss the effects of a Strombolian explosion on the surrounding atmo-
sphere, ranging from models suggesting a gas-filled conduit that resonates like an open or-
gan pipe (Chouet et al., 1974), a bursting bubble (e.g. Ripepe and Gordeev, 1999; Rowe et al., 2000;
Johnson et al., 2003), a vibrating bubble (Vergniolle and Brandeis, 1994, 1996), a Helmholtz res-
onator (Vergniolle and Caplan-Auerbach, 2004; Cannata et al., 2009), an explosion source deep
within the magma conduit (Buckingham and Garcés, 1996; Garcés and McNutt, 1997; Hagerty
et al., 2000), or a bursting balloon (as discussed by Vergniolle and Brandeis, 1994; Kulkarny,
1978; Blackstock, 2000).

Recent studies increasingly acknowledge that volcanic sound sources are often volume
sources, meaning that sound is produced by introducing additional volume into the at-
mosphere, which during Strombolian explosions is mostly volcanic gas (e.g. Vergniolle and
Brandeis, 1994; Firstov and Kravchenko, 1996; Ripepe and Gordeev, 1999; Rowe et al., 2000; John-
son, 2003; Johnson et al., 2004; Ichihara et al., 2009). Most of the studies assumed these volume
sources to be representable both by a monopole and by a compact source (Lighthill, 1978;
Dowling, 1998). While the former assumption was shown to be wrong in some cases by
Johnson et al. (2008), results from this study will show that Strombolian sources cannot al-
ways be modelled as a compact, or point source, either. Only recently bubble explosions are
modelled with more complexity, including dipole signatures, which unfortunately requires
a much better azimuthal instrument coverage of the source, and which therefore demands
a greater effort in the field (Johnson et al., 2008).

As for the mechanics behind Strombolian explosions, the wealth of existing literature and
proposed models demonstrates that the issue is far from being resolved. This question is
therefore one of the major issues in volcano acoustics, and will be extensively discussed in
this study. Fortunately, the excellent observation conditions at Erebus volcano combined
with new in situ measuring devices such as Doppler radar offer a unique possibility to shed
more light on the answer.

1.4 Measuring the energy of a volcanic eruption

The total energy output of a volcanic eruption varies greatly with the style of eruption, the
individual volcano, and even with the individual explosions within a single eruption. For
this reason, the absolute energy output of an explosion or an eruption can be regarded as an
individual property of the volcano in question. Comparing absolute energy values therefore
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Figure 1.5: Mt. Erebus volcano, towering almost 4,000 m above the Ross Sea, seen from the Mc-
Murdo dry valleys (A. Gerst, 2002).

only makes sense when characterising different volcanoes. However, the individual parti-
tioning of involved energy types shares some interesting common properties between dif-
ferent styles of volcanic eruptions. Therefore, studying the energy partitioning of volcanic
eruptions and explosions can give us important clues about the underlying mechanisms.
Furthermore, like an individual fingerprint, the energy partitioning of a certain volcano
might be characteristic, and stable over a longer period of time, yielding information on the
individual explosion mechanism of the volcano in question.

In an early study, Minakami (1942) determined the speed and kinetic energy of bombs
at the Vulcanian-style Asama volcano from geometrical calculations, concluding that the
ejection velocity of bombs often exceeds 150 m/s. While the technique at the time possibly
produced adequate results regarding the exit velocity of ejecta, the derived pressure values
exceeding 500 atmospheres seem crudely overestimated. Yokoyama (1956, 1957), in a more
comprehensive study, estimates several different energy output forms of the Strombolian-
style Mihara volcano, Japan, as well as the total energy output of a variety of volcanoes
on Earth. Hédervári (1963) further refined this work, explicitly naming thermal, kinetic and
potential energy of ejecta, as well as seismic and acoustic waves as participating energy



MEASURING THE ENERGY OF A VOLCANIC ERUPTION 13

forms. While technical capabilities prevented a quantification of these partitions, the study
provided an important base for further work that eventually led to the definition of the
”Volcanic Explosivity Index” (VEI, Newhall and Self , 1982).

Shimozuru (1968) made an approach to partially quantify the energy partitioning at several
volcanoes and compare it to chemical explosions. While his theoretical considerations are
very interesting, again, the lack of solid physical data prevented him from reaching a com-
prehensive conclusion. Yet he was able to conclude that the ratio of seismic energy output
to total eruption energy can be similar to chemical explosions.

McGetchin and Chouet (1979) analysed field observations and data from Chouet et al. (1974)
and Woulff and McGetchin (1976), and presented a partial energy budget of Stromboli vol-
cano. Although their energy budget was not broken up into single explosions, they found
that by far the most energy is released as heat, followed by the kinetic energy of ejected gas
and particles and acoustic energy.

Existing studies about the general energy partitioning of volcanic eruptions unanimously
highlight the importance of thermal energy, followed by kinetic and potential energies,
which often are several orders of magnitude smaller than thermal energy (e.g. Yokoyama
et al., 1992). The observation that Strombolian volcanoes typically emit large amounts of
thermal energy without a large output of lava led Francis et al. (1993) to suggest that such
volcanoes might grow endogenously, i.e. by the storage and cooling of magma underneath
the volcano.

While in the last decades, the calculation of a simple form of energy budget has been
attempted for several types of volcanic activity, such as silicic explosive volcanism (e.g. Gor-
shkov, 1960; Gorshkov and Dubik, 1970; Wilson et al., 1978; Pyle, 1995; Yokoyama et al., 1992;
Woods, 1995; Heki, 2006; Zobin et al., 2009), crater lakes containing meteoric water (Brown
et al., 1989, 1991; Hurst et al., 1991), or phreatomagmatic explosions (Raue, 2004), little is
known about the detailed energy partitioning in Strombolian explosions.

Up to now, the general problem for experimenters was that physical data was either im-
possible to obtain in the necessary detail, or it lacked the diversity of a multi-parameter
dataset. At many volcanoes, safety conditions at or near the vent prevent the collection of
data during the eruption itself, so that much information must be reproduced from post-
eruptive clues. Unfortunately, calculating an energy budget from distant or post-eruptive
observations alone requires a large number of assumptions, which makes the interpretation
of the results difficult. Additionally, in such a situation, conclusions can only be drawn on
the overall eruption, so that different mechanisms acting at different times of the eruptions,
or during single explosions, remain unclear.

A solution to the above problem is a multi-parameter experiment at a location that allows
the observation of single Strombolian explosions from a safe but prominent position with
a variety of sensors. Ideally, this multi-parameter dataset includes in-situ sensors to obtain
data in the most direct way possible. Doppler radar devices allow for such in-situ measure-
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Figure 1.6: An FMCW Doppler Radar device, with a sketch of the radar beam.

ments, providing detailed information about the velocity and relative number of particles
that are participating in the explosion process.

1.5 Using Doppler radar at volcanoes

The radio detection and ranging technology was developed during the first half of the 20th
century, mainly motivated by its potential military use. Yet, soon after the technology was
made available, scientists were intrigued by the prospect of using its capabilities to obtain
information on volcanic eruptions. A first volcanological use of radar included a volcanic
crisis at Montserrat in the 1950s (Robson, pers. comm., 1997). Kienle and Shaw (1979) used
radar data recorded by Alaskan military stations during volcanic eruptions to determine the
width and height of eruption columns. These first uses of radar in volcanology highlighted
one of the main advantages of radar: it allows the obtainment of in-situ data where other
techniques fail due to inclement weather and poor visibility conditions, as are often the case
during large volcanic eruptions.

There are several Doppler techniques available that can be used on a volcano to obtain in-
formation of eruption velocities. This includes, apart from the microwaves used in Doppler
radar, techniques based on sound (e.g. Weill et al., 1992) and on laser. While both these tech-
niques have the capability of obtaining in-situ data of velocities and the dimensions of a vol-
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canic target, they also have their limitations. For example, sonic Doppler measurements re-
quire the precise knowledge of the sound speed around the target, which is strongly altered
by the presence of hot volcanic gases. Laser devices typically require a very stable mount-
ing, have a considerable power consumption, a requirement for frequent maintenance, and
they typically do not provide a sufficiently wide observational field of view. Additionally,
they often fail during poor visibility conditions.

The use of radar in volcanology was strongly promoted by the 1981 eruption of Mt. St.
Helens, where its capabilities were demonstrated by Harris et al. (1981) and the U.S. National
Weather Survey. A 5 cm weather radar was used to precisely track the eruption cloud, en-
abling them to calculate the mass flux of the eruption and the cloud density during various
phases of the eruption, thus providing important information to civil authorities. A weather
radar was also used to track the following eruption of Mt. St. Helens in 1982 (Harris and Rose,
1983).

After this impressive display of the capabilities of radar, the U.S. National Weather Survey
installed a C-band radar to monitor the activity of Alaskan volcanoes in the Cook Inlet, pro-
viding vital information for the city of Anchorage and international aviation routes, which
are both endangered by ash fall and eruption clouds from volcanoes in the area. Its superb
functionality was demonstrated in 1992 during an eruption of Mt. Spurr volcano (Schneider
et al., 1995).

Unfortunately, the radar systems discussed above are largely immobile devices that need
to be transported by truck; others cannot be transported at all. They also are pulsed radars,
which means that they send out strong microwave pulses in the megawatt range, requiring
a large amount of power. Therefore, these devices are not suitable for the use on smaller-
scale eruption processes, such as Strombolian explosions or lava domes, which require the
installation of devices in the close proximity of volcanic vents or domes, an area that on most
volcanoes can only be accessed on foot. This lack of versatility triggered the development
of much smaller and lighter devices.

In 1996, Hort and Seyfried, inspired by the existence of lightweight frequency modulated con-
tinuous wave (FMCW) Doppler radars that are used in meteorology to detect rainfall (Strauch,
1976; Peters, 1995), modified such a device to be used on volcanoes. FMCW radars offer
several important advantages over pulsed radars, including their low power consumption,
their small size and their light weight. The device used by Hort and Seyfried (1998), which
was later called MVR (Mobile Volcano Radar), operates with 24 GHz K-Band microwaves, has
a range of a several kilometres, and its initial version (”MVR3”) had a maximum sampling
rate of about 1 Hz. Its most important feature for volcanological measurements is that at
the used frequency, measurements are largely undisturbed by clouds, rain, snow, wind and
darkness, allowing for continuous observations independent of meteorological or visibility
conditions.

In 1998, two years after the MVR was introduced, a small pulsed Doppler radar in-
strument (VOLDORAD, Volcano Doppler Radar) was developed by a group of scientists in
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Clermont-Ferrand, and was first used at Mt. Etna (Dubosclard et al., 1999, 2004). While the
pulsed Doppler radar offers a wider swath (or field of view) and a much better temporal
resolution than the early MVR system (Hort and Seyfried, 1998), it has the important disad-
vantage of a high power consumption and weight, prohibiting its transport by foot or an
operation without a power generator attached. A more comprehensive comparison of the
two instruments can be found in Vöge et al. (2005), while technical and operational details of
the MVR system are discussed by Hort et al. (2003) and Vöge and Hort (2009).

Following these first steps of designing a light and portable volcano Doppler radar, the
MVR system has been extended and used at a variety of volcanoes displaying several dif-
ferent eruption styles. Vöge et al. (2005) used the MVR system to measure instabilities of
Merapi volcano’s notoriously dangerous lava dome (see also Hort et al., 2006; Vöge and Hort,
2008; Vöge et al., 2008; Vöge and Hort, 2009). Further examples of its successful use included
measurements of explosion velocities at Stromboli volcano (Urbanski et al., 2002; Hort et al.,
2003; Scharff et al., 2008), monitoring of explosions from Santiaguito’s lava dome (Scharff
et al., 2007), the investigation of particle size distributions within eruption clouds from Col-
ima (Scharff et al., 2009), and the testing for eruption models at Yasur volcano on the island
archipelago of Vanuatu (Meier et al., 2009).

In a similar manner to the MVR system, the pulsed and somewhat heavier VOLDORAD
system provided valuable insights into ash cloud dynamics of Arenal volcano (Donnadieu
et al., 2005), as well as mass estimations for explosions at Stromboli (Gouhier and Donnadieu,
2008). During average measurements of entire eruption clouds, VOLDORAD’s wider beam
width of 9◦ compared to MVR’s 1–3◦ (Sec. A.1) provides an advantage, while the smaller
beam width of the MVR system enables it to spotlight certain areas of the cloud. The two
systems therefore complement each other in their capabilities.

A third radar system intended to be used on volcanoes was developed by a group of
scientists from the University of Reading, and was named AVTIS (All-weather Volcano Topog-
raphy Imaging Sensor; Wadge et al., 2005). Even though AVTIS is also a portable FMCW type
radar (working at 94 GHz), it is somewhat different in style than the two systems discussed
above, because it does not measure velocities by making use of the Doppler effect. Instead,
AVTIS has its strengths in producing a 3D image of a target up to 7 km away by producing
a raster grid of distance measurements. Additionally, it operates as a passive radiometer.
When comparing successive AVTIS raster images, moderate deformations in the range of
a few metres can be resolved (Wadge et al., 2005). Accordingly, it was successfully used for
imaging the growing lava dome of Montserrat volcano (Wadge et al., 2006), and to track an
advancing lava flow at Arenal Volcano, Costa Rica (Macfarlane et al., 2006).

Hort et al. (2001, 2003) extended the volcanic radar toolbox by introducing the technique
of measuring an explosion simultaneously with three radars in order to reproduce a 3D
velocity vector (this technique will be used and further refined here), while Vöge et al. (2008)
introduced an automatic classification algorithm for large amounts of radar data, based on
neural networks. Newest developments of the MVR system include the use of a much faster
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Figure 1.7: Series of Doppler radar velocity spectra. The horizontal axis of each spectrum denotes
the particle’s radar velocity, the vertical axis denotes echo power in arbitrary units. The red line
therefore shows how much material moves at which speed towards the radar. This example sequence
covers an explosion from the active lava lake of Mt. Erebus volcano, Antarctica (similar to that shown
in Fig. 1.3). At the start of the explosion, only a few fragments move at a low speed, which then
increase in amount and velocity towards the climax of the explosion. Note that the whole sequence
shown here covers only the very start of an explosion, equivalent to the first two frames shown in
Fig. 1.3.

and more precise MVR device (”MVR4”), which I will present in this study, and the use of
the device in interferometric mode, allowing it to detect millimetre scale deformations at
distances of up to several kilometres (Scharff et al., 2007).

A radar spectrum. In order to interpret data measured with an FMCW radar, it is neces-
sary to understand the underlying measurement principle, as well as the nature and shape
of radar data. Radar illuminates its target with electromagnetic waves and subsequently
records their echo. According to the Doppler effect, the reflected signal will have a fre-
quency shift that is proportional to the target’s velocity component pointing towards the
radar. This property allows the device to determine this component of the target’s velocity
(subsequently called ”radar velocity”), as well as its distance (Hort et al., 2003; Vöge and Hort,
2009).

At volcanoes, a radar device typically does not illuminate only one target, but many ob-
jects that are located in its beam, or field of view. Therefore, the device receives many echoes
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from objects with different speeds. For this reason, every sample from the MVR radar sys-
tem combines information about the velocity, distance and relative abundance of all objects
illuminated by the radar beam. A natural way to visualise this multitude of information is
a so-called ”radar spectrum”.

Figure 1.7 shows an example sequence of four radar spectra, recorded during a Strombo-
lian explosion at Erebus volcano. A spectrum is a relative measure of the amount of mate-
rial in the radar beam, sorted by the material’s radar velocity. Even though the radar has
its strengths in the precise measurement of the particles’ velocity, the echo power does not
easily translate into the exact amount of material, and strongly depends on the material’s
grain size (e.g. Ziemen, 2008; Seyfried and Hort, 1999; Marzano et al., 2006a,b). As long as the
grain size distribution is not known, echo power can only be regarded as a relative measure
of the amount of material in the radar beam. Since in this study, knowing the exact amount
of material in the radar beam is of no great significance, I will not go into further details of
this property.

Figure 1.8 shows a simulation of a radar spectrum, generated by a hypothetical bubble
explosion from a lava lake. Since the correctness of such an explosion model will be a main
focus point of this study, I leave it undiscussed for now, but use the spectrum generated
by this model as a demonstration and aid for interpreting radar spectra in general. The
explosion model assumes that the initially flat surface of the lava lake bulges up towards
a hemispherical shape, pushed by pressurised gas underneath (similar to an inflating bal-
loon). A large number of radar reflectors are assumed to be randomly distributed over the
whole surface of the lake, each one contributing to the spectrum on the right. Accordingly,
the spectrum was simulated by adding up the contribution of each reflector, depending on
its surface angle, velocity, as well as distance from the beam axis, assuming that the radar
device was located at 300 m distance on a fictional crater rim.

The shape of the resulting spectrum (Fig. 1.8, right) has a characteristic peak, ending
abruptly at exactly the velocity signal that is, in this case, caused by a point near the centre
area of the bulging lake surface. No particle is moving faster than that, therefore no echo
power exists above that velocity. Below the peak, the signal slowly fades out, represent-
ing the speeds of particles on the side of the lake, which move slower and also generate a
smaller echo due to the radially decreasing intensity of the radar beam towards the edges of
the lake (see Fig. A.1 in the appendix).

While the characteristic features of a radar spectrum will be of importance later in this
study (e.g. it will be discussed in more detail in Secs. 4.1.2 and 6.2), the example shown here
is simply meant to serve as a demonstration of the connection between radar target and the
resulting data.
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Figure 1.8: Simulated radar spectrum. Left: simulated surface of a lava lake (gray dots), starting
to bulge towards a hemispherical shape with a vertical centre velocity of 30 m/s. The red area is
illuminated by the radar beam, fading away from the beam centre according to the antenna gain
pattern (Appendix Fig. A.1). The black line marks where the radar’s sensitivity reaches -10 dB, i.e.
where the receivable echo power has fallen to 1/10 of that in the beam centre. Projections of the
beam’s centre axis, at an elevation angle of 39◦, are indicated as dotted lines on the box walls. Right:
Expected radar spectrum. The strong peak results from reflectors near the lake centre in this case,
and is located at their velocity projected in beam direction, i.e. at sin 39◦ × 30 m/s = 18.9 m/s.

1.6 Mount Erebus volcano

Mount Erebus volcano was discovered in 1841 by the polar explorer Sir James Clark Ross,
who named it together with the neighbouring Mount Terror after his two ships, Erebus and
Terror. Appropriately, Erebus was a Greek god of darkness. At 78◦ South, Erebus is the
southernmost active volcano on Earth (Figs. 1.2, 1.5, & 1.9), a large alkaline intraplate stra-
tovolcano towering 3794 m above the Antarctic Ross sea (Fig. 1.5) with a subaerial volume
of ∼2000 km3 (Esser et al., 2004). Its most important features are its frequent episodes of
Strombolian activity (Volcano Explosivity Index 0-1) ever since it was first visited and docu-
mented by scientists in the seventies, and its long-lived active lava lake (Fig. 1.10). The lava
lake is directly connected to a magma reservoir at depth, therefore the lake represents the
topmost part of this magma reservoir and the overlying conduit system.

Erebus is part of the Terror Rift at the western boundary of the West Antarctic rift system
(Kyle, 1990; Behrendt, 1999), and overlies only very thin continental crust (∼20 km; Bannister
et al., 2000). Together with its subsidiary volcanoes Terror and Bird it forms Ross island.
Petrologic evidence (Kyle et al., 1992) suggests a hot spot or a mantle plume beneath Erebus,
which is consistent with seismic evidence suggesting a major thermal anomaly under Ross
Island (Watson et al., 2006).

The distinctive shape of Erebus (Fig. 1.5) is caused by a summit plateau composed of in-
terbedded phonolitic pyroclastic bomb deposits and lava flows, starting at an elevation of
∼3500 m (Kelly et al., 2008a). A summit cone is located in the centre of the summit plateau,
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Figure 1.9: Crater region and summit plateau of Erebus volcano. The mountain in the background
is the extinct volcano Mt. Terror (photograph kindly provided by George Steinmetz c© 2005).

hosting a 500 m wide and 200 m deep crater (Fig. 1.9) with a smaller Inner Crater embed-
ded (Fig. 5.10 below). Erebus’ long-lived Ray Lava Lake is located inside the Inner Crater
(Fig. 1.10). The main crater hosts two further vents, which is the sporadically appearing
Werner Lava Lake and an active ash vent that frequently displays ash and gas explosions.

After first being climbed in 1908 by Douglas Mawson and other members of Sir Ernest
Shackleton’s ”Nimrod” British Antarctic Expedition (Oppenheimer and Kyle, 2008a), Erebus
largely remained outside the focus of scientific interest until it was revisited by Giggenbach
et al. in 1972. Early scientific studies, carried out by Giggenbach et al. (1973); Kyle (1977), and
Kyle et al. (1982), produced first outlines of Erebus’ eruptive activity as well as its geochemi-
cal and stratigraphic history.

Erebus’ magma, and therefore Ray Lava Lake (Fig. 1.10), consists of phonolite, which is
a high-temperature, highly alkalic magma with basic-to-intermediate silica content (Kyle,
1977; Kyle et al., 1992; Kelly et al., 2008b). It is relatively rare compared to basaltic magmas
(Dibble et al., 1984). The lava lake contains 25 – 40% anorthoclase feldspar phenocrysts (Kyle,
1977; Dunbar et al., 1994; Sweeney et al., 2008), and its chemical and isotopic composition has
remained stable during the last decades (Kelly et al., 2008b; Sims et al., 2008). Geochemical
modelling by Dunbar et al. (1994) revealed that the phenocrysts in Ray Lava Lake require
centuries of convective circulation between the surface and a depth of ∼400 m for their
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formation, suggesting a stable conduit system with a lifetime of at least several centuries.

Magma viscosities of Erebus’ phonolite, as derived from geochemical modelling, are likely
to be in the 5× 103 – 104 Pa s range (Carmichael et al., 1974; Sweeney et al., 2008; Oppenheimer
et al., 2009), and are therefore somewhat greater than that of other know lava lakes (Op-
penheimer et al., 2009). The width of Ray Lava Lake varied from 10 – 40 m during the last
decades (e.g. Kyle, 1977; Kyle et al., 1990; Aster et al., 2003; Dibble et al., 2008), and was ∼40 m
in 2005/06.

The temperature of Erebus magma, and therefore that of fresh magma entering Ray Lava
Lake, lies around 1000◦ C, which was determined by several independent empirical and
experimental approaches, e.g. by optical pyrometer and mineral thermometer (Kyle, 1977),
olivine-cpx thermometry (Caldwell and Kyle, 1994), melt inclusion homogenisation (Dunbar
et al., 1994), and with a Forward Looking Infrared (FLIR) camera (Calkins et al., 2008). The
temperature at the uppermost surface layer of the lake is controlled by radiative and con-
vective cooling, and is therefore up to a few hundred degrees cooler than the magma tem-
perature (Calkins et al., 2008). However, due to the strong convection of hot magma inside
the lake, this cooled surface layer is constantly reworked, so that its thickness is likely to be
only a few centimetres. Its influence on the explosion mechanics is therefore assumed to be
negligible in this study.

The predominant eruption style of Erebus is Strombolian, and includes sporadic explo-
sions that originate from the surface of Ray Lava Lake, caused by the expansion of over-
pressured bubbles of magmatic gas (e.g. Giggenbach et al., 1973; Dibble et al., 1984; Kaminuma,
1994; Rowe et al., 2000; Aster et al., 2003, 2004, 2008; Dibble et al., 2008). During these explo-
sions, which show a degree of high self-similarity (Dibble, 1994; Aster et al., 2003; Henderson,
2007), magma bombs are frequently thrown several hundred metres beyond the crater rim.
This Strombolian activity ebbs and increases over long cycles (months to years), including
periods without any explosions (Jones et al., 2008). In 2005/06, around 2 – 6 explosions per
day occurred at Erebus.

Since Erebus is an open magmatic system, its overall style of activity was frequently
recurring but episodical during the last 30 years and did not include major eruptions or
paroxysms (Dibble et al., 2008). During several occasions, however, the lake was buried by
landslides of eruptive debris for a short while, therefore temporarily altering the volcano’s
eruption style (Kienle et al., 1985; Caldwell and Kyle, 1994; Kaminuma, 1994; Dibble et al., 2008).
Yet, such departures from Erebus’ typical Strombolian activity were rare in the last decades.
Explosion sounds similar to today’s were already observed by J. C. Ross in 1841 (Kyle et al.,
1982; Kyle, 1994), suggesting a similar style of activity at that time.

Consistent with its open magmatic system that does not accumulate large pressures or de-
viatoric stresses, Erebus displays a lack of internal earthquakes and volcanotectonic events
(Rowe et al., 2000; Aster et al., 2008). Seismic signals are typically associated with explosions,
and are found in a wide frequency range (e.g. Dibble et al., 1984, 2008; Rowe et al., 1998, 2000;
Aster et al., 2003, 2008; De Lauro et al., 2009). Additionally, explosions excite strong acous-
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Figure 1.10: Left: Erebus crater on a day with good visibility. Still, the red glowing liquid lava lake
at its bottom is not bright enough to show on this picture. Right: Closeup view of Ray Lava lake
(A. Gerst, 2005).

tic signals in the audible and infrasonic frequency range (e.g. Dibble, 1989; Rowe et al., 2000;
Johnson and Aster, 2005; Johnson et al., 2008; Jones et al., 2008).

Oppenheimer and Kyle (2008b) measured the gas composition from Erebus’ plume in 2004,
showing that it mainly consists of water vapour (H2O) and carbon dioxide (CO2), account-
ing for 58 and 36 mol percent, respectively (equivalent to 37 and 56 wt. %). These are fol-
lowed by CO (2.3 mol %), SO2 (∼1.4 mol %), HF (∼1.3 mol %), and HCl (∼0.7 mol %). The
resulting total gas flux inferred for Erebus’ crater is 2,360 tons per day in 2004 (Oppenheimer
and Kyle, 2008b), of which 74 tons per day consist of SO2. Harris et al. (1999), using satellite
measurements, estimated the SO2 flux from Erebus volcano in 1984/85 at a few hundred
tons per day.

Presently existing long term instrumentation at Erebus includes a seismic broadband
monitoring network as well as an acoustic network, an infrared camera on the crater rim,
GPS receivers, tiltmeters and meteorological instruments (Aster et al., 2004, 2008; Jones et al.,
2008), run by the Mount Erebus Volcano Observatory (MEVO). The instruments are operating
continuously as long as the power systems work, which is usually the case during the aus-
tral summer, where solar power is abundantly available, and often they even run throughout
the winter. During summer seasons, the instrumentation network at Erebus is regularly sup-
plemented by temporary surveys, such as gas composition and flux measurements (Sweeney
et al., 2008; Wardell et al., 2008; Oppenheimer and Kyle, 2008b), observations with thermal cam-
eras (Calkins et al., 2008; Davies et al., 2008), laser topography scanning (Csatho et al., 2005,
2008), geological investigations (e.g. Dunbar et al., 1994; Caldwell and Kyle, 1994; Sims et al.,
2008; Kelly et al., 2008a), or, in this case, Doppler Radar measurements.
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1.7 Strategy

This study aims to provide an answer to the questions listed in Section 1.1 by looking at
them from a new perspective, combined with various established observation techniques.
To achieve this goal I have attempted to overcome the problems faced by previous studies
by A) choosing a more suitable observation target, B) utilising a type of in-situ sensor that
is relatively new to volcanology, and C) using an integrated approach of three different but
complementary instrument types to form a unique multi-parameter dataset.

A prime objective of this study is to shed more light on Strombolian explosions by investi-
gating explosions at a relatively simple model volcano. As shown in Section 1.6, the chosen
observation target, Erebus volcano, offers ideal observation conditions and reliable activity
at the convenience of relatively simple logistics in the Antarctic summer season. Strombo-
lian bubble explosions at Erebus occur several times per day from an active lava lake, and
can be fully observed from several positions on the crater rim. They show a high degree of
self-similarity, allowing relatively constant experiment conditions over the course of a field
season. This condition allows for the development of a geometrical explosion model, which
will be the basis for several important results of this study.

To fulfill the above set objectives, in this study I will present a unique multidisciplinary
dataset. It is obtained through the synchronous observation of the birth of a Strombolian
explosion with acoustic microphones, a thermal camera, and Doppler radar instruments
(Sec. 1.5). These three types of instruments have the advantage of providing a very direct
kind of observation through a simple atmospheric transport function from source to instru-
ment, and additionally provide a precise in-situ measurement of explosion velocities. As
will be shown in the following chapters, the synergy of their strengths allows the constraint
of important and previously unknown parameters of Strombolian volcanic eruptions, there-
fore taking a substantial step towards answering the open questions listed in Section 1.1.
The results will serve as a guideline, and in some cases as a constraint, for the interpretation
of data from other, less accessible or more complex volcanoes.

In the following Chapters I will introduce the necessary background to understand the
roots and causes of a Strombolian volcanic eruption (Ch. 2), followed by the development
of the theoretical tools that are necessary to calculate the expected acoustic signal generated
by a bubble burst from a lava lake (Ch. 3). The theoretical core of this study will be the
development of a model that describes the geometry of an exploding (i.e. expanding) gas
bubble on the surface of a lava lake (Ch. 4), designed to allow for the use of field data for
identifying and constraining important physical parameters of the explosion process.

The practical part of this study describes the design and implementation of a field exper-
iment at Mt. Erebus volcano, Antarctica (Ch. 5), which delivered the necessary field data
to validate and to make use of the model. These data will be shown in detail (Ch. 6), after
which they enter the bubble expansion model to derive physical properties of explosions
at Erebus (Ch. 7). An additional and somewhat separate Chapter (Ch. 8) will introduce a
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special mode of measuring an explosion with three radars at the same time, allowing for the
determination of the three-dimensional expansion direction of bubbles. All obtained results
will be discussed in Chapter 9 in the context of existing literature, and the final Chapter 10
will highlight the achieved knowledge and remaining controversies.

The strategy of using a geometrical model that is applied to radar data to constrain ex-
plosion parameters is somewhat different to the approach followed by previous studies.
Instead of building a model that attempts to completely simulate the mechanics behind a
bubble explosion, and subsequently comparing the outcome of this model with real world
observations, this study uses the reverse approach. The model will first be developed on
the basis of visual observations to represent a simple geometrical description of the natural
process, leaving only one free parameter. This parameter will later be constrained by radar
data, so that the adjustment of free parameters to make the model fit to the data will not be
necessary. This strategy provides an unambiguous source of information on the dynamics of
the model explosion. After discussing the validity of the model’s assumptions in each case,
several of the gained explosion parameters can be assumed to reflect parameters of the nat-
ural system. The model will provide information on the explosion energies, gas pressures
and volumes that are needed to cause the observed surface movements. Additionally, the
model allows the prediction of expected acoustic and seismic signals, therefore facilitating
their interpretation not only at Erebus volcano but also at other Strombolian-type volcanoes
worldwide.



CHAPTER 2

A REVIEW: THE ROOTS OF A
STROMBOLIAN ERUPTION

It is generally accepted that Strombolian explosions are caused by the generation and sub-
sequent rise of large gas bubbles in a liquid magma conduit, often resulting in a powerful
explosion when reaching the surface. Nevertheless, many underlying mechanisms are still
unclear and subject to debate. This Chapter will discuss the physics and possible mecha-
nisms behind rising slugs and Strombolian explosions, including a simulation of conduit
rise processes expected at Erebus volcano.

2.1 The formation of large gas bubbles

Currently there are two main models attempting to explain the formation of gas bubbles at
depth (see review by Slezin, 2003; Parfitt, 2004). While it is commonly accepted that large gas
bubbles form through coalescence of small bubbles with magmatic gas originating from a
magma reservoir, the two models differ in the exact way these large bubbles form. The first
of the models attributes the generation of large gas bubbles to the collapse of an accumula-
tion of small bubbles, or foam that has previously collected at the top of a magma reservoir
or beneath a structural barrier like a dike-to-conduit transition (Jaupart and Vergniolle, 1988;
Vergniolle and Jaupart, 1990; Chouet et al., 1997; Ripepe and Gordeev, 1999; Ripepe et al., 2001).
The model assumes that upon collapse, the generated bubble starts to move and subse-
quently travels up the liquid magma conduit.

The model predicts a pressure change associated with the sudden collapse of the foam
layer, a process which could be responsible for some of the very long period (VLP) seismic
signals observed at volcanoes (e.g. at Stromboli volcano, Neuberg et al., 1994; Chouet et al.,
2003). While Ripepe and Gordeev (1999) concluded that this effect would only generate small
pressure changes in basaltic systems (around 80–800 Pa), Chouet et al. (2003) show that in
some cases much larger pressure changes (as high as 106 Pa) can be expected when liquid
inertia and dynamic bubble growth effects are also included. Such pressures could excite a
resonance of the whole liquid conduit above, acting as an efficient source for seismic waves.

25
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The second model attributes the generation of large gas bubbles to the coalescence of
smaller bubbles that are rising in the magma column with different speeds relative to the
magma, depending on their size (Wilson, 1980; Parfitt and Wilson, 1995). Additionally to the
rise of bubbles within the magma, depending on the magmatic system, the magma itself
can also rise in the conduit. According to the model, as a result of the rise speed of the
magma, two situations can evolve. In slowly rising magma the bubbles have enough time to
coalesce into large bubbles and generate Strombolian eruptions. In fast rising magma, they
do not have time to coalesce before being erupted, and therefore remain relatively small
and dispersed in the liquid upon reaching the surface (resulting in fire fountains, so-called
Hawaiian-style eruptions).

In reality, it is possible that these two principal mechanisms (foam collapse vs. coalescence
during rise) are simply endmember scenarios of a variety of effects, meaning that the true
mechanism might be a mixture of both. Small and large bubbles might be continuously
be collecting at magma chamber roofs and beneath structural barriers, possibly leading to
discrete foam collapse events, while at the same time the bubbles further coalesce on their
way up (especially in inclined conduits), that way explaining a broad spectrum of bubble
sizes (as will be shown here to exist at Erebus).

Even though the two models have a large significance in explaining the deep mechanisms
that distinguish Strombolian from Hawaiian-style eruptions, their difference does not have
much significance once a large gas bubble has formed one way or the other. Seismic evidence
suggests that a volumetric expansion of gas bubbles occurs at a depth of several hundred
metres below the surface of the magma column (e.g. Neuberg et al., 1994; Wassermann, 1997;
Kirchdörfer, 1999; Chouet et al., 1999; Rowe et al., 2000; Chouet et al., 2003; Marchetti and Ripepe,
2005). Other studies based on chemical techniques find evidence that large bubbles coalesce
at much deeper parts of the magmatic systems. Allard et al. (2005) found evidence from
chemical gas measurements suggesting that during the fire fountaining episode of the 2000
Etna eruption, large gas bubbles formed at a depth of around 1.5 km below the vent. At
Stromboli, gas chemistry data suggests that large gas bubbles form at depths of 0.8 – 2.7 km
(Burton et al., 2007). Consistent with these results, several authors suggested that the more
shallow seismic sources at Stromboli (and at comparable volcanoes) are dynamic effects
associated with the bubble’s rise, such as the flow around structural barriers (e.g. Chouet
et al., 2008), or conduit response effects associated with bubble bursts.

2.2 A rising gas slug in a volcanic conduit

When gas bubbles rise in a confined tube of liquid, four different characteristic flow regimes
tend to form, mainly depending on the amount of gas supplied from below (e.g. Seyfried and
Freundt, 2000; Krüssenberg et al., 2000). Bubbly flow describes the rise of well-dispersed, rel-
atively small bubbles (compared to the conduit diameter), whose size distribution tends to
be highly uniform (James et al., 2004). Transitional flow describes a regime in which bubbles
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Figure 2.1: Strombolian explosion at Etna volcano, taken during an eruption in 2001. c© A. Gerst.

start to form clusters and coalesce to larger bubbles. The bubble size distribution is therefore
wider, or even bimodal (Krüssenberg et al., 2000). The slug flow regime is characterised by
large bubbles that usually fill the entire diameter of the confining tube (apart from a thin film
of liquid on the side), resembling a long vertical gas cylinder more like a spherical bubble.
When the gas supply from below increases beyond a critical threshold, slug flow develops
into annular flow, where the gas phase forms a continuous cylinder from the bottom to the
top of the conduit, surrounded by a ”pipe” of liquid.

Each of the above flow regimes are assumed to develop in volcanic conduits under the
right circumstances, thereby successfully explaining a variety of different observed eruption
styles (e.g. Seyfried and Freundt, 2000; Parfitt, 2004). Bubbles of the conduit filling type (i.e, in a
slug flow) are in the volcanological literature typically called gas slugs (Jaupart and Vergniolle,
1989; Seyfried and Freundt, 2000; Ripepe et al., 2001; James et al., 2004)1, and their dynamic
behaviour is largely controlled by the conduit geometry (i.e. shape and diameter) as well as
the magma rheology (viscosity, density). Bubbles of this type are commonly assumed to be
responsible (Blackburn et al., 1976) for Strombolian eruptions (or, rather, explosions) by rising
in a volcanic conduit and subsequently exploding at the top (Sec. 1.2 and Figs. 1.3 & 2.1).

Since this study concentrates on Strombolian eruptions, and thus on slug type bubbles, I

1in the engineering literature, somewhat confusingly, the gas phase is typically called ”Taylor bubble”, and the
liquid phase is called the ”liquid slug” (James et al., 2004).
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will use the terms slug and bubble interchangeably from now on, referring to a large conduit-
filling gas bubble that rises in a conduit and eventually explodes on the top.

James et al. (2004) show that the formation of slug flow is strongly promoted when the
confining tube is even only slightly inclined, due to increased bubble coalescence. Since any
volcanic conduit is very likely to include segments that are not completely vertical, they
argue that slug flow should be a common phenomenon in volcanic conduits, independent
of the process that generates the gas bubbles at depth (e.g. foam collapse vs. rise speed
dependent models).

Mathematical models for the rise of slugs in vertical pipes have been developed, along
with considerable research (e.g. Davies and Taylor, 1950; White and Beardmore, 1962; Brown,
1965; Wallis, 1969; Polonsky et al., 1999a; Taha and Cui, 2006). Unfortunately, few of these
placed any emphasis on the slug expansion due to pressure gradients, an effect that is of
strong importance for the rise of slugs in volcanic conduits (Polonsky et al., 1999b; Seyfried
and Freundt, 2000). Nevertheless, a few models specialising in this effect have been pro-
posed (Blackburn et al., 1976; Vergniolle, 1998; Seyfried and Freundt, 2000; James et al., 2004),
discussing the slug rise in volcanic conduits. These models become more and more suc-
cessful in describing the behaviour of gas slugs in laboratory experiments (James et al., 2004;
Lane et al., 2005; James et al., 2006) as well as during Strombolian-style eruptions on active
volcanoes (e.g. Neuberg et al., 1994; Ohminato et al., 1998; Rowe et al., 1998, 2000; Ripepe and
Gordeev, 1999; Kirchdörfer, 1999; Aster et al., 2003; Chouet et al., 2003; Gerst et al., 2006, 2008).

The work by James et al. (2008), which was largely validated by analogue laboratory exper-
iments, makes interesting predictions about the last moments of a bubble’s rise in a conduit,
just before its burst. Since the behaviour of gas slugs in this upper region of the conduit
is directly connected with their behaviour during the final explosion, available information
about the upper conduit slug dynamics will be used to improve the model used in this study.

Typically, studies investigating volcanological fluid flow problems assume that basaltic
high temperature magma behaves like a Newtonian fluid2. Yet, Shaw (1969) shows that at
temperatures below 1130◦C, the rheology of basalt becomes increasingly non-Newtonian.
However, James et al. (2008) point out that due to the large flow velocities involved with
the rise of a gas slug, these deviations from the Newtonian model are small compared to
effects from other poorly constrained parameters, such as viscosity. This is in accordance
with assumptions made by other authors, such as Vergniolle and Brandeis (1996), arguing that
the relaxation times (Dingwell et al., 1993) for typical magmas at Strombolian volcanoes are
much smaller than the time scales considered here (Webb and Dingwell, 1990). Nevertheless,
departure from Newtonian rheology is still possible through a very high crystal content
(Lejeune and Richet, 1995). At Erebus, this crystal content is in the order of 25 – 40% (Kyle,
1977; Dunbar et al., 1994; Sweeney et al., 2008), which is considerable but still inside the range
that can be approximated as Newtonian (Lejeune and Richet, 1995).

2A fluid is called Newtonian when its stress vs. strain-rate curve is linear and passes through the origin. The
slope of this curve is determined by the fluid’s viscosity. The flow properties of a Non-Newtonian fluid
cannot be described by a single constant viscosity value.
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James et al. (2008) use a straight-forward 1D model to provide first-order predictions about
the dynamics of rising slugs, refine these results by using a 3D computational fluid dynamics
(CFD) model, and finally verify some of their results with an analogue model. Their model
suggests that slugs rise with a constant speed of their tail, while the slug nose accelerates due
to volume expansion caused by the decreasing hydrostatic pressure on the slug (Polonsky
et al., 1999b; Seyfried and Freundt, 2000). Since the thickness of the wall film (as sketched
in Fig 1.1) is found to be relatively constant, the acceleration of the slug nose leads to an
ever increasing amount of liquid draining past the slug nose, i.e. the slug nose not only
accelerates relative to the inertial system, but also accelerates relative to the speed of liquid
pushed upward by the slug nose. A consequence of this is that the height of the remaining
liquid column above the slug does not decrease in a linear way, as previously assumed (e.g.
Vergniolle, 1998), but with an accelerated speed.

There are several factors governing the rise of a slug in a conduit or tube. They can be
described by several dimensionless numbers, which are all hydrodynamic properties of the
system. The first one is the Morton number, which describes the importance of viscous effects
in relation to surface tension effects (White and Beardmore, 1962):

Mo =
gµ4

ρσ3
(2.1)

where g is the gravitational acceleration, µ, ρ, and σ are the viscosity, density and surface
tension of the liquid, respectively. In a highly viscous system such as a Strombolian volcanic
conduit, the Morton number is expected to be rather large.

The second important parameter is the Eötvös number, which describes the buoyancy
forces in relation to surface tension forces:

Eo =
ρgD2

σ
(2.2)

where D is the conduit diameter. Again, this number is expected to be rather large in the
case of a slug in a volcanic conduit. At Erebus, with an assumed magma viscosity in the
order of µm = 5 × 103 Pa s (Sweeney et al., 2008), a magma density of around 2600 kg/m3

below a depth of 50 m (Dibble, 1994), and a surface tension around 0.4 N
m (e.g. Walker and

Mullins Jr., 1981; Koopmann, 2004), the Morton number is in the 1013 range. Assuming a
conduit diameter around 10 m (Dibble et al., 2008), the Eötvös number lies in the 106 range.
These two numbers show that slugs in Strombolian volcanic conduits are mainly driven by
buoyancy and viscosity, whereas surface tension effects can be neglected (Wallis, 1969).

The third characteristic number is the Froude number, which describes the ratio of inertial
to buoyancy forces, or, in other words, the ratio of kinetic to potential energy. It can be
determined in a system that is controlled by mixed viscous and inertial effects through (James
et al., 2008)

Fr = 0.345(1− e−Nf/34.5) (2.3)
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where Nf is the inverse viscosity. It describes the importance of viscous effects and can be
determined from the above numbers through (Fabre and Liné, 1992)

Nf =
(

Eo3

Mo

)1/4

(2.4)

For the above values assumed at Erebus, Nf calculates to ∼50. This value characterises
a flow regime in the intermediate zone (2 < Nf < 300, Fabre and Liné, 1992; James et al.,
2008), where viscous and inertial forces both play an important role during slug rise. Finally,
the Erebus Froude number calculates to 0.267 for the above assumptions, allowing for the
calculation of a slug’s rise speed (see next section).

Another interesting parameter of a flow regime is the Reynolds number, which, similar to
Nf , describes the ratio of viscous to inertial forces, and provides an important indicator for
the likelihood of turbulence in a system. It is defined through Re = ρUsD/µ (e.g. Seyfried
and Freundt, 2000), where Us is the rise speed of the slug. Typically, during flow in a pipe,
the transition from laminar to turbulent flow starts at a Reynolds number in the range of
103 – 104. At Erebus, this number is in the 101 – 102 range, therefore slug flow is far from
turbulent. The same can be said for other Strombolian volcanoes.

The numbers determined above allow the estimation of several important parameters of
interest for slug flow. For example, with a formula supplied by Brown (1965), the equilibrium
thickness δ∞ of the liquid film on the side of the slug can be estimated (James et al., 2004,
2008):

δ∞ =
√

1 +ND − 1
N

, where N = 3

√
14.5

ρ2g

µ2
. (2.5)

For Erebus, assuming a conduit diameter of 10 m, this yields a liquid film thickness in the
order of 1.5 m, i.e. ∼30% of the conduit radius. The formula provides an interesting way
of estimating the conduit diameter if the downward drag force caused by this liquid film
around the rising slug can be determined by other means (e.g. through seismic source mod-
elling, Chouet et al., 2003).

Figure 2.2 shows an implementation of the 1D fluid dynamic model by James et al. (2008),
displaying the slug rise of three differently sized slugs at Erebus. The values used for the
conduit width and the magma properties are adapted to the above made assumptions. From
these plots, slug lengths at depth can be estimated, as well as the slug rise speed (2.6 m/s),
which is independent from the slug’s mass or volume.

2.2.1 Expected slug overpressure and rise speed

A rising gas bubble always attempts to equalise its pressure with the surrounding hydro-
static pressure. Because the hydrostatic pressure decreases on the bubble’s way up, the
bubble continuously expands, therefore adjusting its pressure. If the bubble were always
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Figure 2.2: Simulation of rising gas slugs in a volcanic conduit with parameters adapted to Erebus
conduit conditions, using the 1D model developed by James et al. (2008) and an implementation by
M. Hort, (pers. comm.). Lines show the positions of the slug nose (red), the slug base (black), and the
liquid surface (grey) as a function of time relative to the burst time. The only difference between the
plots is the gas slug mass (as annotated). Surface displacement is plotted for a 10 m wide conduit,
not considering that in reality the conduit feeds into a lava lake with a much wider cross sectional
area, therefore the surface lift will not be as strong in a real lava lake.

successful in doing so, it would arrive at the top of the liquid with no significant overpres-
sure, and it could not burst. An example for such a situation is bubbles in water. On the
other hand, bubbles in Strombolian volcanic eruptions must have a significant overpressure
upon arrival at the surface, as can be seen in their powerful explosions (Fig. 2.1). Therefore,
a mechanism must exist that leads to such an overpressure despite the bubble’s attempt to
equalise it through expansion.

The overpressure inside a rising slug before its burst, i.e. the pressure in excess of the
hydrostatic pressure at the current position of the slug nose, can only be generated by two
main mechanisms (Blackburn et al., 1976; Sparks, 1978). The first one is negligible in the case of
magma conduits – it is the surface tension of the bubble (which is small for large bubbles in
magma). The second and much more important source of overpressure is the restriction that
the expanding gas slug experiences by the viscosity and inertia of the surrounding liquid. It
is small as long as the bubble does not grow much, but it can increase significantly when the
slug expansion rate is large, as it typically is shortly before a slug approaches the surface.

Figure 2.3 shows the history of gas pressure in a rising slug at Erebus. The gas slug mass
(2,000 kg) was arbitrarily chosen and matches that of the left plot in Figure 2.2. The figure
also shows the gas slug volume, which strongly increases with time, eventually even tripling
in the last 10 seconds before the slug arrives at the surface. The plot stops at a slug volume
of ∼1,600 m3, at which the overpressure of the slug is around 400 kPa, and the remaining
liquid head above the slug is 1.4 m thick. From this point on, the final expansion and burst
of the slug starts, which cannot be modelled with the 1D model (James et al., 2009). It is these
final processes that will be one of the main focus points of this study.

Figure 2.3 demonstrates that the overpressure of a bubble at burst is generated to a large
part through dynamic processes in the last tens of metres of its ascent. These are mainly con-
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Figure 2.3: Simulation of pressure
and volume of a rising slug. Param-
eters are similar to Fig. 2.2 (left). Slug
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as star). The upper horizontal axis de-
notes the slug nose depth at the re-
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trolled by the hydrostatic pressure gradient, the viscosity and the inertia of the liquid. The
relative hydrostatic pressure gradient, which is responsible for the slug expansion, strongly
increases towards the top of the conduit, therefore the slug overpressure increases shortly
before reaching the surface. Nevertheless, Figure 2.3 shows that even at depth, when its
expansion rate is still slow, the slug has a significant overpressure. The reason for this is
that the slow expansion rate at that time is counterbalanced by the still very high inertia of
the large liquid column above the slug, which has to be accelerated in order for the slug
to expand. This way even a small expansion rate can lead to a significant overpressure at
depth.

Viscous overpressures caused by the ascent of slugs in volcanic conduits can reach sig-
nificantly higher values in magmas with intermediate viscosity (e.g. intermediate magmas,
such as andesites, dacites, or phonolites) than in low viscosity magmas (e.g. ultramafic or
mafic magmas, such as basalt).

In contrast to the importance of dynamic and near surface effects for slug overpressure,
initial overpressures that are acquired at depth (e.g. during formation of the slug or dur-
ing passage of constrained conduit areas) are rapidly equalised during the following ascent
phase and are therefore irrelevant for the burst process.

James et al. (2004) show that inclined tubes or conduits promote the formation of slugs with
an increased size and an increased speed of up to 50%. Additionally they find that liquid
mixing is strongly enhanced in that case, often generating a complete circulatory system
filling the tube. At Stromboli volcano, Italy, the conduit is assumed to be inclined by about
30◦ from the vertical, with an assumed depth of about 200 m below the surface (Chouet et al.,
2003). New evidence suggests that the same might be true for Erebus volcano (Aster et al.,
2008).
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As demonstrated by Wallis (1969) and James et al. (2004, 2008), a slug in a tube rises with a
largely constant base velocity, while its nose accelerates as a reaction to hydrostatic decom-
pression during the rise. The base velocity is controlled by the flow regime, i.e. depending
on the relative importance of viscous and inertial forces. It can be estimated from the above
calculated dimensionless parameters of the system:

Us = Fr
√
gD (2.6)

For Erebus, this implies a slug base rise speed of Us ≈ 2.6 m/s, and is reflected in the 1D
conduit rise model shown in Figure 2.2.

2.2.2 Resulting conduit pressures and net forces on the system

The rising gas slug exerts force on the surrounding medium mainly through two different
processes: i) changing the liquid’s pressure, which is acting on the conduit wall and bottom,
and ii) causing friction forces between moving liquid and the wall. Both these processes add
up to the final net force that is applied to the system.

James et al. (2004) demonstrate that the pressure acting on the conduit walls changes dur-
ing the entire rise-time of the slug (not just during the passage of the slug). These pressure
changes consist of several different phases, dependent on the actual position of the slug rel-
ative to the point where the pressure is measured (see Fig. 2.4). The gas volume increase
during the rise of a slug leads to an upward acceleration of the entire liquid column above,
and therefore to a downward force. Additionally, by lengthening the slug, the area of the
liquid film surrounding the slug increases, creating more downward drag at the conduit
walls (where the thickness of the film was observed to remain almost constant, see James
et al., 2008). Both these effects influence the pressure in the entire conduit (Fig. 2.4).

While the slug rises and expands, the pressure at an arbitrarily chosen reference point
at the conduit wall above the slug head will slowly increase due to the increasing static
overhead of liquid (Fig. 2.4, phase I). When the slug passes that point, the pressure rapidly
drops (phase II) because some of the space above the point, which was formerly occupied
by liquid, now gets replaced by the light gas (which has a lower density than the liquid).
This rapid pressure drop associated with the loss of static overhead as the bubble passes is
largely persistent (James et al., 2004) even after the bubble has burst on the surface (i.e. the
magma surface level has dropped), and can only be reversed by a subsequent resupply of
magma from below.

However, even after the bubble has passed the reference point, the pressure at this point
keeps on changing (Fig. 2.4). This pressure change is caused by the expanding slug (now
above the reference point) increasing the area of the liquid film running down its sides,
creating more and more downward drag at the conduit walls as the slug gets longer. The
material within the film of liquid is running down the side of the slug, which means it is
either accelerating in free fall, or it has reached its terminal velocity and is suspended by
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Figure 2.4: Sketch of conduit pressure caused by a rising gas slug, schematically summarising
results by James et al. (2004). The slug is released before the start of the time axis, i.e. off the left side,
and its burst time is marked by a dashed line. The black curve shows the pressure measured at the
bottom of the conduit, whereas the grey curve shows the pressure at an arbitrarily chosen reference
point on the conduit wall (grey triangle on right). The four different phases marked in the pressure
plot are shown as little sketches on the right. Note that in the case of a conduit that is connected to
a large pressure-stable reservoir at the bottom, the reservoir would react by injecting liquid into the
bottom of the conduit immediately after the slug has entered the conduit, equalising this loss of static
overhead (see concluding note on page 35).

wall friction. In either case it is not supported by the liquid column any more, so the mass
contained in it is not contributing to the hydrostatic pressure underneath (James et al., 2004).
Thus, because this mass is ever increasing with the size of the slug, the hydrostatic pressure
underneath the slug (i.e. at our reference point) constantly decreases while the slug rises3

(Fig. 2.4, phase III). When the slug bursts, the film collapses into the column and suddenly
contributes to the hydrostatic pressure underneath, causing one last positive pressure leap
at our reference point (phase IV).

Since the described pressure changes not only affect the conduit walls but also act on the
bottom of the conduit or whatever is underneath (e.g. like a magma chamber), they induce
a net force acting on the whole system. Yet, the force resulting from pressure loss caused
by wall friction (Fig. 2.4) is exactly counterbalanced by the resulting downward force on the
wall (James et al., 2008). Only the counter force in reaction to the upward acceleration of the
column above the slug remains (Takei and Kumazawa, 1994). This force is relatively weak,
especially when the slug is still deep, i.e. where it is not expanding much due to a small
pressure gradient. Therefore, no strong net forces on the system are expected during this
phase of the bubble rise4.

3this effect is only somewhat diminished by the liquid nose accelerated upward ahead of the slug, creating an
upward drag force on the wall.

4unless the bubble passes through a region of a sudden diameter change of the conduit, as will be discussed
below (Sec. 9.8.1).
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Burst effects. Further up in the conduit, when approaching the surface, the slug expands
significantly faster than before, but still the momentum force caused by the acceleration of
fluid above the slug is largely counterbalanced by the now increasing amount of fluid that
is accelerated downward alongside the bubble during its rise (James et al., 2008). Only when
the slug approaches the surface, just before its burst, this delicate force balance is disturbed
by the dynamic processes that are associated with the final rapid expansion of the slug and
the associated acceleration of mass.

These final burst effects are highly dependent on the conduit geometry and on the circum-
stances of the burst itself. Nevertheless, the above shows that ground forces associated with
the bubble’s burst are not merely a small contribution to forces that are generated during
the whole process of slug rise. Instead, they are a very important part of the process because
they are one of the few occasions where the slug can actually generate a net force on the
ground (along with the generation process of the slug at depth, and when passing through
a conduit constriction). The burst process is thus expected to play a considerable role in the
generation of seismic waves that can be observed during Strombolian eruptions. To investi-
gate this, one objective of this study will be to use radar data to calculate the ground forces
generated by an expanding gas slug near the surface of a magma conduit.

A concluding note. The above mentioned laboratory experiments by James et al. (2004)
operate with a fixed liquid volume and do not have a large fluid reservoir underneath that
could act as a pressure equaliser (as described by, e.g., Seyfried and Freundt, 2000). Therefore,
the pressure at the bottom of the laboratory conduit is allowed to vary while the liquid flux
is zero at this point. In a situation where a magma chamber is located at the bottom of
the conduit, such a pressure equaliser exists, i.e. the pressure at the base of the conduit can
be assumed to be constant (the pressure inside a large magma chamber can be considered
unaltered by the relatively small volume loss caused by the rise of one slug). This slightly
changes the reaction of the system. As soon as a bubble has entered the conduit from below,
the system reacts to the loss of static overhead (and to the pressure loss through wall friction)
by a restoring force pressing magma into the column from below (Witham and Llewellin,
2006). This means that as soon as the bubble has entered the column from below, the magma
level at the surface of the column not just rises due to the volume expansion of the slug,
but also due to the influx of magma into the conduit resulting from the loss of hydrostatic
pressure. Theoretical considerations by Witham and Llewellin (2006) show that this behaviour
leads to tight geometry constraints for stable conduit-lake systems. If these are not met, the
lake system will be unstable and eventually drain.

In summary, the most important point of this Chapter was to show that even though
pressure changes occur during the slug generation and rise process, the burst overpressure
and the net forces are still dominated by the dynamic overpressure generated in the last
moments of the slug rise. Any initial overpressure of the bubble at depth is rapidly equalised
and is therefore insignificant for the burst process. Furthermore, conduit forces acting on
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the whole system are mainly expected during the generation of the slug, when passing a
sudden change in conduit diameter, and finally, during burst. From a fluid dynamics point
of view, impulsive seismic signals from Strombolian eruptions are therefore expected to
mainly originate from either one of these three processes, and will mostly couple to the
surrounding rock at locations of conduit discontinuities.
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THE FIRST SECOND OF A STROMBOLIAN
ERUPTION
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CHAPTER 3

THE THEORY OF SOUND FIELDS AND
THEIR SOURCES

An important part of this study is to make useful predictions about the acoustic signal gener-
ated by a Strombolian volcanic eruption. However, the requirements for mathematical tools
to study the sound field and the sound energy generated by an exploding magma bubble
often exceed the capabilities of the standard equations used in textbooks. This can mostly
be attributed to the fact that in the case of volcanoes, the usual assumptions of a compact
source and an observer in the far-field often do not hold, or at least they must be examined
very carefully.

Some of the standard acoustic equations are occasionally used in a somewhat imprecise
manner in the literature, i.e. without the necessary testing for their valid range. In the follow-
ing section, to cast more light on these formulae, I will distill some of the necessary tools in
detail from the multitude of available literature on the topic. I will place the main emphasis
on highlighting the assumptions and simplifications that were emplaced, and pointing out
their valid range of use. My approach will follow, to a certain point, the approach by Lighthill
(1978), but includes argumentations and various other elements from further literature (e.g.
Dowling and Williams, 1983; Dowling, 1998; Stepanishen, 1998; Temkin, 1981; Ehrenfried, 2003).

The sound fields that we deal with in daily life as well as on volcanoes are pressure distur-
bances in the atmosphere travelling away from their source, which are in the simplest anal-
ogy somewhat similar to ripples on a pond after tossing a rock. The difference is, however,
that sound waves travel in a three dimensional space and are driven by pressure differences
rather than gravity. The following sections will describe how to deal with these disturbances
mathematically, and how to develop useful tools to better predict their behaviour.

3.1 Wave equation and sound potential

To a sound wave, physically speaking, the atmosphere is not much more than a compress-
ible fluid, i.e. its density fluctuates as a function of pressure. In such a fluid, the properties
of sound propagation can be best described with a ”velocity potential”, or ”sound poten-
tial” ΦA. This potential is the non-rotational part (i.e. it does not contain any vortices) of

39
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the general ”velocity field” of the fluid. Only this non-rotational part can contribute to the
propagation of sound in the medium (Lighthill, 1978, p. 3). Since the fluid is compress-
ible1, Laplace’s equation (∆ΦA = ~∇2ΦA = 0) is not fulfilled and must be replaced by the
homogeneous wave equation for ΦA:(

1
c2

∂

∂t2
−∆

)
ΦA = 0, (3.1)

which is valid at all places outside the source region of the sound field. c is the medium’s
speed of sound. This wave equation can directly be derived from the core of the Navier-
Stokes equations, i.e. basically from the differential form of Newton’s second law describing
the movement of a potential flow.

Assuming spherical geometry, i.e. parameters only vary with their distance r from the
origin, ∆ΦA can be rewritten as

∆ΦA =
1
r

∂

∂r2
(rΦA), (3.2)

leading to a homogeneous wave equation in spherical coordinates:(
1
c2

∂

∂t2
− ∂

∂r2

)
(rΦA) = 0, (3.3)

which has the general solution (Lighthill, 1978, p. 18)

rΦA = f(r − ct) + g(r + ct). (3.4)

This solution describes spherical waves travelling in increasing directions of r (function f ),
as well as in the opposite direction (function g). Since the latter case represents incoming
waves, which are of no interest for this study, we will from now on only concentrate on
solutions for outgoing waves (f ), caused by ”our” source.

From the velocity potential ΦA, the physical properties of the sound field, such as velocity
u(r, t), pressure p(r, t) or the transport of energy can be derived (e.g. Lighthill, 1978; Temkin,
1981):

~u(r, t) = ~∇ΦA (3.5)

p(r, t) = −ρa
∂ΦA

∂t
, (3.6)

1in fluid dynamics, an incompressible fluid is a material that does not change its density with pressure (i.e. it does
not compress), assuming a constant temperature. Its density can, however, change with temperature. An
incompressible flow is a solid or fluid (including gas) flow in which the divergence of velocity is zero. While
incompressible materials always undergo incompressible flow, under certain circumstances even compress-
ible materials can undergo (nearly) incompressible flow, e.g. when the fluid’s speed is much less than the
sound speed. Assuming incompressible flow greatly simplifies the governing equations.
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where p(r, t) is the excess pressure above the surrounding fluid or atmospheric pressure
patm, i.e. the total pressure will be p̂ = p + patm. However, for the transport of energy, patm

will not be important (Lighthill, 1978, p. 13). ρa is the density of the surrounding atmosphere.

The origin of the above relations (Eq. 3.5 and 3.6) becomes obvious when combining the
homogeneous wave equation (Eq. 3.1) with the continuity equation of fluid dynamics. The
latter is

1
ρa

∂ρ

∂p

∂p

∂t
+ ~∇ · ~u = 0 (3.7)

where ρ is the density of the atmosphere slightly fluctuating around its undisturbed value ρa
(~∇ρ ≈ 0). The assumption of small variations in ρ can be made because, as will be shown
later in this section, almost all sound waves we are confronted with are only minor pertur-
bations of the atmospheric pressure, leading to only minor changes in density (Dowling and

Williams, 1983, p. 13). With the speed of sound c =
√

∂p
∂ρ the continuity equation can be

rewritten as

1
ρac2

∂p

∂t
+ ~∇ · ~u = 0 (3.8)

Inserting relations 3.5 and 3.6 into this equation immediately leads to the homogeneous
wave equation (Eq. 3.1), showing that Equations 3.5 and 3.6 are the necessary link between
wave equation and continuity equation.

From equations 3.5 and 3.6, a true rate of energy2 transport I across a small plane element
of unit area can be defined, also called acoustic intensity (Lighthill, 1978, p. 13):

~I = p~u = −ρa(
∂ΦA

∂t
)~∇ΦA , (3.9)

which, when multiplied by the respective area of energy flux, has a similar form than the
most basic equation relating power to force and velocity (i.e. P = ~F~v). I is measured in
W/m2 and due to its wide range is often expressed in a decibel (dB) scale, resembling the
sound intensity level (SIL) of a sound wave (Lighthill, 1978, p. 17):

SIL [in dB] = 10 log10

(
Imean

Iref

)
= 120 + 10 log10(

(
Imean

W/m2

)
, (3.10)

where Imean is the mean acoustic intensity and Iref is a reference value, usually chosen so
that the threshold of hearing marks 0 dB. A typical minimum intensity level for audibility
of sounds (i.e. the hearing threshold) at ”higher” frequencies (500 to 8000 Hz) within the
audible spectrum (around 20 to 20,000 Hz) is around I = 10−12W/m2, thus this is a widely
accepted value for Iref (Lighthill, 1978, p. 17). It approximately resembles the sound intensity
caused by a flying mosquito at a distance of 3 m. The audibility threshold rapidly increases

2both potential and kinetic
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for frequencies above and below that range. At 100 Hz, the level of audibility is around 40
dB (10−8W/m2). Below about 20 Hz, audibility disappears completely (Lighthill, 1978). The
typical pain threshold for most audible frequencies lies around 120 - 140 dB (1− 100W/m2).

By integrating the sound intensity over a given surface, the total energy transport rate
through that surface can be calculated. The total sound power output Wsound of a sound
source is obtained by integrating over a closed surface enclosing the sound source. This
total power output is also often described in a decibel scale, resembling the sound power
level (SWL) (Dowling and Williams, 1983, p. 12):

SWL [in dB] = 10 log10

(
Wsound

Wref

)
= 120 + 10 log10

(
Wsound

Watt

)
, (3.11)

where Wref is the standard reference sound power and equals 10−12 W. For comparison it is
interesting to note that the typical total power output of a human shout is only about 10−5 W
(e.g. Dowling and Williams, 1983, p. 12)3, whereas a large jet aircraft at take-off generates
more than 105 W of sound waves. A rocket or a spacecraft at take-off can produce sound as
powerful as 105 to 107 W (Lighthill (1978), p. 17, or Dowling and Williams (1983), p. 12). The
relatively small amount of power generated by the human voice leads to astonishing results
when compared to other energy sources. For example, Dowling and Williams (1983, p. 12)
point out that the total sound energy created by the combined shouts of a stadium crowd
during an exciting sports game roughly equals the energy required to fry one egg. Even
more astounding, the above numbers show that a large aircraft at take-off generates about
as much sound power as the whole Earth’s population shouting at once.

The above sound power level (SWL) should not be confused with the sound pressure
level (SPL), which is somewhat confusingly measured in decibel, too. While the former
describes the power output of a sound source (i.e. it is a property of the source), the latter
is a measure of the mean amplitude of the pressure disturbance prms in the atmosphere at
a certain distance from the source (i.e. it is a property of the sound field, see Dowling and
Williams, 1983, p. 13):

SPL [in dB] = 10 log10

(
p2

rms

p2
ref

)
= 20 log10

(
prms

2× 10−5N/m2

)
, (3.12)

where pref , like on the other intensity scales, marks the threshold of human audibility, which
accordingly is equal to 0 dB on this scale. prms is the root mean squared overpressure of the
sound wave. The most commonly used value for pref is 2×10−5 Pa, which represents a pres-
sure fluctuation of only about 10−10 atmospheres. This means the particle vibration ampli-
tude at the threshold of human hearing is only around 10−11 metres (Dowling and Williams,
1983, p. 13), i.e the human ear can detect (coherent) particle movements as small as 1/10
of the size of a Helium atom. Again, the threshold of pain at audible frequencies is around
120 to 140 dB SPL (20 to 200 Pa), which is still only a pressure variation of about 1/1000

3Some sources state slightly higher values for a human shout, up to 10−4 – 10−3 W (e.g. Lighthill, 1978, p.16)
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of the atmosphere. This shows that most sound waves we are confronted with can be re-
garded as only minor pressure perturbations of the atmosphere, which means that products
of perturbed quantities are negligible, resulting in a linear acoustic field. Theoretically, a
fluctuation with an amplitude of 1 bar (i.e. one atmosphere) at sea level would correspond to
194 dB SPL.

Interestingly, the sound intensity level of a plane wave travelling in a standard atmo-
sphere is equal to its sound pressure level: SIL = SPL, because the acoustic intensity of
a plane sound wave increases proportionally to the squared pressure (Eq. 3.9 reduces to
I = p2

ρac
, because u = p

ρac
for plane waves, see e.g. Lighthill, 1978, p. 4). However, this is

not true under conditions where the air density ρa or the speed of sound c vary significantly
from the conditions ρ0, c0 under which the reference values Iref and pref were obtained (i.e.
where Iref = p2ref

ρ0c0
).

3.2 The speed of sound, air pressure & density

Several formulae for the propagation of sound were derived in the last section, most of
which depend on physical parameters of the surrounding atmosphere, such as air density
and the speed of sound. These parameters can be calculated using the ideal gas law

p̂V = nRmT =
m

MA
RmT (3.13)

where V is the volume occupied by an ideal gas of mass m, absolute pressure p̂ and tem-
perature T [K]. MA is the molar mass of dry air (≈ 0.0289645 kg/mol, see list of symbols
on p. 239), Rm is the molar (universal) gas constant, and n is the number of moles of gas.
Consequently, air density ρ is a direct function of pressure and temperature

ρ(p̂, T ) =
m

V
=
nMA

V
= p̂

MA

RmT
. (3.14)

For example, at Lower Erebus Hut (station LEH) on Mt. Erebus volcano the air pressure at
an altitude of 3400 m above sea level varies between 61 kPa and 64 kPa, with an annual
mean at around 62.5 kPa (Mount Erebus Volcano Observatory webpage MEVO, 2008). A
good estimation for the mean air pressure at the crater rim at an altitude of approximately
3770 m is therefore 60 kPa. With an average summer temperature of -30◦C this gives an air
density of around 0.86 kg/m3.

In classical mechanics the speed of sound in a gas is found to be the square root of the
quotient between the gas’ bulk modulus and its density (c =

√
κ/ρ), where κ = γ p̂ is the

bulk modulus of the gas, an equivalent to the stiffness of solid media. γ is the ratio of specific
heats (also called the adiabatic index, isentropic exponent, or isentropic expansion factor)

γ =
Cp
CV

(3.15)



44 THE THEORY OF SOUND FIELDS AND THEIR SOURCES

temp [◦C] ca[m/s]

-40 306.0
-30 312.5
-20 318.9
-10 325.1
0 331.2

10 337.2
20 343.1
30 349.0
40 354.7

Table 3.1: Sound speed in dry air at different temperatures. Note that these values are practically
independent of air pressure (and therefore independent of altitude).

γ is equal to 1.4 for air at standard conditions, and 1.1 for hot gases (Lighthill, 1978).

Since the gases that are of interest in this study (i.e. air and hot magmatic gases such as
water vapour or CO2) are behaving much like an ideal gas, we can rephrase the formula for
the speed of sound using the ideal gas law (White, 1961; Ford, 1970):

ca =

√
γ
p̂

ρ
=
√
γ
RmT

MA
≈ 20.047

√
T︸ ︷︷ ︸

for air

(3.16)

It is somewhat counterintuitive that air pressure, and therefore also altitude, does not
influence the speed of sound in dry air (Eq. 3.16). Even in moist air its influence is almost
negligible. The controlling term is the ratio of air pressure to density, which in an ideal gas
is independent of pressure. Table 3.1 shows the calculated sound speeds for a variety of
air temperatures (for example, at the crater rim of Mt. Erebus volcano, at a mean summer
temperature of −30◦C the speed of sound is ≈ 312.5 m

s ).

3.3 The sound potential of a simple monopole source

One of the most basic but also most important sources of sound is the so-called ”simple
source”. It describes a homogeneous sound field that only has one infinitely small source
region, i.e. a point source. Equation 3.1 is only valid outside this source region. The infinitely
small source of sound, which is yet to be specified, can be included in the wave equation
through the parameter ξ, acting only in its infinitely small source volume at position ~x0:(

1
c2

∂

∂t2
−∆

)
ΦA = ξ(t)δ(~x0), (3.17)

where δ(~x0) is the Dirac delta function. To learn more about the nature of this source term,
Equation 3.17 will be integrated over the volume VS of a sphere of radius r, whose centre is
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located at ~x0. Additionally, the resulting equation will be analysed for a diminishing radius
r of the integration sphere, leading to

lim
r→0

∫
VS

1
c2

∂

∂t2
ΦA dVS︸ ︷︷ ︸

I

− lim
r→0

∫
VS

∆ΦA dVS︸ ︷︷ ︸
II

= lim
r→0

∫
VS

ξ(t)δ(~x0) dVS︸ ︷︷ ︸
III

(3.18)

Since the integral in term III only includes contributions from the source itself, term III can
be replaced with ξ(t). By expanding ΦA into a series of harmonic oscillations it can be shown
(Ehrenfried, 2003, p. 149) that even though the integrand in term I possesses a singularity
at ~x0, the value of the integral is zero in this case. Therefore, the only term remaining on
the left side of Equation 3.18 is term II , which can be transformed to a surface integral
using the divergence theorem (also known as Gauss’s theorem), together with Equation 3.5
(Ehrenfried, 2003, p. 149):

− lim
r→0

∫
VS

∆ΦA dVS = − lim
r→0

∫
AS

~̂n ~∇ΦA dAS = − lim
r→0

∫
AS

uR dAS = − lim
r→0

4πr2ṙ = −V̇source,

(3.19)

where ~̂n is the surface unit vector of the integration sphere, AS is its surface, and uR is
the surface velocity of the sphere, radially pointing away from the centre. Equation 3.18
therefore reduces to

ξ(t) = −V̇source(t). (3.20)

This means that the source term in Equation 3.17 can simply be interpreted as the volume
flux of the source, i.e. the rate at which volume Vsource is produced in the source. In this
case, a solution for the inhomogeneous wave equation (3.17) in spherical coordinates can be
found (e.g. Lighthill, 1978; Temkin, 1981), yielding a sound potential of

ΦA(r, t) = − V̇source(t)
4πr

, (3.21)

where the source is located at r = 0. This solution does not yet include the transport of
energy away from the source with a finite wave speed, a feature that can easily be corrected
for by incorporating a time-lag r/ca, effectively describing the transport of energy away
from the source with the average speed of sound ca (Lighthill, 1978, p. 18). The general
solution for ΦA is then

ΦA(r, t) = − V̇source(t− r/ca)
4πr

. (3.22)

This type of source is widely known as acoustic monopole, simple source, or Lighthill’s
monopole. It describes the sound field generated by an infinitesimal monopole source of
sound of the so-called strength V̇source. As an example, such a source can be approximated
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by a popping firecracker. Using Equations 3.5 and 3.6, the physical properties of the result-
ing wave field can be calculated from (3.22). The pressure at any given point outside the
source region is

p(r, t) = −ρa
∂ΦA

∂t
=
ρaV̈source(t− r/ca)

4πr
. (3.23)

This relation shows that the pressure at a given distance from the source will only depend on
the rate of change of volume outflow, i.e. the volume acceleration of material being emitted
from the source. The particle velocity ~u of a given point in the atmosphere is only slightly
more complicated:

|~u(r, t)| = ur(r, t) =
∂ΦA

∂r
=
V̇source(t− r/ca) + r

ca
V̈source(t− r/ca)

4πr2
. (3.24)

Integrating the particle velocity over the surface of a closed volume surrounding the
source yields the volume flow out of this surface. Interestingly, the volume flow 4πr2ur

from a monopole source through the surface of a sphere at distance r from the centre is
not equal to V̇source(t) (as might seem logical when only keeping the continuity equation in
mind), but is

4πr2ur = V̇source(t− r/ca) +
r

ca
V̈source(t− r/ca). (3.25)

The second term in this equation has its origin in the dynamic, wave-like behaviour of the
volume flow (introduced by the time-lag r/c), which increases with increasing distance from
the source. Consequently, at large distances from the source the movement of the atmo-
sphere is not controlled by the volume outflow (or flux) from the source but by the volume
acceleration of the source. This important observation will later lead to the definition of the
so-called near and far fields. For simplicity reasons, t− r/ca is from now on replaced by t′,
which is called the ”retarded time”.

Another important physical parameter is the total power flux away from the source through
the surface of a sphere of radius r. It can be calculated using Equation 3.9, multiplied by the
surface area 4πr2:

Ėsound,mono(t′, r) = 4πr2I = 4πr2pur (3.26)

=
ρa

4πca
V̈ 2

source(t
′) +

ρa
4π

V̇source(t′)V̈source(t′)
r

. (3.27)

Considering the law of conservation of energy it may seem irritating that the total power
output through the surface of the sphere is a function of r, since this basically means that
the total energy flux through the surface of the closed integration sphere depends on its
radius, which seems counterintuitive when keeping in mind that energy must be conserved.
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Rephrasing the term in question (Eq. 3.27) sheds some light on its nature:

Ėsound,mono =
ρa

4πca
V̈ 2

source +
∂

∂t

( ρa
8πr

V̇ 2
source

)
, (3.28)

showing that the left term on the right side of (3.28) is always positive, representing the
amount of energy that is radiated into the atmosphere by the source. In contrast to this,
the right term can change its sign, i.e. becoming negative when the absolute value of the
volume flux from the source decreases (see also Temkin, 1981, p. 272). This term represents
the inertia and kinetic energy of the atmosphere being displaced and accelerated by the
volume expansion in the vicinity of the source, transferring energy back and forth from the
source to the atmosphere in the case of an oscillating source. Right at the location of a point
source this term is infinite, since a source of infinitesimal size would have to move with an
infinite velocity to generate a finite volume acceleration. At large distances from the source
this term vanishes, simply because the squared velocity of the displaced atmosphere at large
distances is too small to play an important role in the energy flux. Also, integrating over a
time period longer than a typical cycle period of the system eliminates the effect of this term,
resulting from the fact that in a stable system, whatever is accelerated must be decelerated
sooner or later, and energy is conserved. Therefore, the effect described by this term does not
radiate energy, i.e. it does not generate sound waves. However, when estimating the energy
output during the first moments of an explosion (Sec. 4.2.7), this term cannot be neglected,
even though the energy stored in it will be given back to the system eventually.

Special case: a half space boundary. Note that both p and ~u are doubled if the source is
located right on the interface between a solid half space and the atmosphere. This is because
only a negligible amount of pressure and particle velocity can be transferred into the solid
half space (see also end of Section 3.6). Since the energy flux from the source is proportional
to the product of p and ~u (Eq. 3.9), it will be twice as high in the half space case as if the
same source would radiate into a full space atmosphere (i.e. in Eq. 3.26, both p and ~u are
multiplied by a factor of two, while the area into which energy is released is divided by two
in the half space case. This leaves an overall factor of two in the energy output, compared
to a full space case). It means that the energy output of a source will be doubled simply
by moving it to a half space boundary – even though its volumetric properties V̇source and
V̈source remain unchanged. In other words, twice the energy is required to displace the same
amount of atmosphere when only half the space is available.

Also note that rearranging a monopole source into a half space setting does not change
the source’s property of being a monopole, i.e. it does not introduce a dipole component as
is the case with a piston moving in and out of a half space (Sec. 3.5). This can be shown
through symmetry considerations.
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3.4 Compactness, near and far-field

The above paragraph shows that the physical effects caused by a simple sound source vary
significantly with the source distance. Additionally, up to this point the established equa-
tions only describe a source of infinitesimal size. It is therefore necessary to discuss the area
of validity of these equations for source geometries that are closer to real-life applications,
i.e. sources of finite sizes. For the judgement of the validity of the above equations there are
two critical parameters, namely the compactness of the source and the observation distance.

The compactness of a source is a measure for the size of the source compared to a
typical wavelength λ of the system, and is given by its compactness ratio, or Helmholtz number

He =
ωa

ca
=

2πa
λ

= ka , (3.29)

where a is the radius of the source area that generates a volume flux, e.g. in the case of a
monopole source this might be a breathing or pulsating sphere. k is the wave number, ω
is a typical frequency of the system. Since the Helmholtz number is equal to 2πa

λ , it repre-
sents the ratio of the sphere’s circumference 2πa to the emitted acoustic wavelength λ. This
means that simple sources as described by Equation 3.23 are always compact, due to their
infinitesimal size.

A source is called non-compact if 2πa
λ � 1, and compact if 2πa

λ � 1 (Dowling and Williams,
1983, p. 50). From this definition follows that for compact sources the travel time of an
acoustic signal travelling from one side of the source to the opposite side is negligible in
comparison to the main wave period of the emitted signal. This is not the case for non-
compact sources. A sound signal that is emitted from the surface of a non-compact source,
even if emitted impulsively from all surface points at the same time, will appear smeared
(or blurred) over a finite period of time when recorded by a close or distant observer, sim-
ply due to the different path lengths between the observer and the various points on the
source surface. In this case the assumption of a simple monopole source does not hold,
and calculating the physical parameters of the wave field becomes increasingly complicated
(Sec. 3.6). An alternative way to judge the compactness of a source is comparing the small-
est time scale of interest with the maximum acoustic travel time between any two points on
the source (Stepanishen, 1998, p. 122). This criterion will later be of interest when judging
the compactness of a lava lake as explosion sound source. Dowling and Williams (1983, p.
50) show that non-compact sources are far more effective in radiating sound than compact
sources – the compactness ratio is therefore also a measure of the sphere’s ability to radiate
sound by vibration.

Lighthill (1978, p. 23, 31ff ) and Stepanishen (1998, p. 122) show that compact sources, even
though being of a significant finite size, behave just like simple point sources if the observer
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is located clearly outside of the source radius, allowing the use of equations derived in
Section 3.3. This property follows from the linearity of the sound potential (Eq. 3.22) and
from the definition of a compact source, requiring that the sources’ size is small compared
to the main wave length.

Another consequence of the linearity of the sound potential is that the calculation of the
sound field of a group of sources is possible by a simple addition of their individual source
functions. If the group itself fulfills the compactness definition, and if the individual sources
do not show systematic phase differences, then the resulting sound field at increasing dis-
tance from the source will soon evolve into the sound field of a simple source, the strength
of which is simply the sum of the strengths of all individual source functions. The effec-
tiveness of this process is controlled by the complexity of the group’s geometrical shape. If
the shape of the source group is significantly more complex than that of a sphere, then the
simple-source character of the sound field only evolves at a large distance from the source,
i.e. in the so-called far-field (Lighthill, 1978, p. 32).

The far-field of a monopole source is defined as the part of the medium that has a dis-
tance r to the source that is larger than a typical wave length divided by 2π (Lighthill, 1978,
p. 22), i.e.

ωr

ca
=

2πr
λ
� 1 . (3.30)

This definition also follows from Equations 3.25 and 3.28, showing the volume and energy
flux through a closed sphere around a source, both of which fluxes include a term that
is dependent on the source distance. The terms that are dominant at large distances are
called far-field terms, whereas the terms that are dominant at small distances are called
near-field terms. For example, Equation 3.28 shows that in the near-field of a simple source
the output of energy is varying with the rate of change of the squared volume flow rate
(this change can be positive or negative), whereas in the far-field the energy output depends
on the squared volume acceleration (which is always positive). Interestingly, the equation
for the pressure field (Eq. 3.23) of a simple source (which is always compact) does not show
any difference between near and far-field.

For pulsating spheres, Temkin (1981, p.274) finds an interesting relationship between the
volume of the source and the approximate volume of the near-field Vnf :

Vnf = Vsource
3

1 + (He)2
. (3.31)

This relation shows that for non-compact sources (He � 1) the near-field volume vanishes
in comparison to the source volume, whereas for compact sources the near-field volume
is about three times as large as the source volume. This behaviour can be explained by
the near-field being defined as the region where the kinetic energy of the disturbed atmo-
sphere plays a significant role, i.e. where energy is transported forth and back between the
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atmosphere and the source. Non-compact sources, due to their large surface area, will have
significantly smaller surface accelerations and velocities compared to compact sources, so
the kinetic energy of the atmosphere surrounding a non-compact source is considerably
smaller, leading to a smaller near-field volume. Junger (1966) shows that the energy radiated
away in the far-field is often of comparable size to the energy stored (or ”trapped”) in the
near-field. This temporarily stored energy will eventually be given back to the source or it
will be radiated away into the far-field in the final deceleration phase, just before the source
comes to rest.

Compact or non-compact lava lake? Since the main object of interest in this study is the
active Ray Lava Lake at Mt. Erebus volcano, it is necessary to analyse whether this object can
be regarded as a compact source. The lava lake generates sound, mainly in the infrasonic
spectrum, by displacing the surrounding atmosphere while bulging up in an explosion.
This means that sound is almost exclusively generated on its surface, i.e processes below
the surface do not play a significant direct role in sound generation as long as the surface (or
bubble shell) is intact, which will be shown is often the case during the early moments of an
explosion.

The lake had a radius of roughly 20 metres in 2005/06, and exploding bubbles more or
less spanned the whole surface of the lake. The typical duration of the expansion phase of an
explosion was around 0.5 s, so a main period of 1 s is a reasonable assumption for its sound
output, leading to a typical wavelength of around 313 m (Sec 3.2). The Helmholtz number
(Eq. 3.29), or the compactness ratio, calculates to He ≈ 0.4 in this case, meaning that the
source cannot be regarded as ”non-compact”. However, sources with such a compactness
ratio (i.e. He < 1 but not He � 1) cannot generally be considered a compact source either,
since the ratio, even though being smaller than 1, is still relatively close to unity. Therefore,
a closer look is necessary to judge whether the assumption of a compact source is valid in
this case.

The maximum travel path length of sound travelling between two arbitrary points on the
surface of a bulging exploding bubble can be as high as πRL, where RL is the radius of the
lava lake. Conservatively assuming that the true speed of sound in the vicinity of the lake
is at least as high as the above calculated speed of sound in cold air (Eq. 3.16; Note that in
the direct vicinity of the hot lava lake it could even be significantly higher, see Eq. A.2), the
sound generated by a point at one side of the bubble travels during a time span smaller or
equal to πRL/c ≈ 0.2s to a point on the opposite side. This means that an impulsive signal
emerging from all points of the bubble surface at the same time will be smeared (blurred)
over a time span of up to 0.2 s when being recorded from the side. At Erebus, all infrasonic
receivers are located on the crater rim (Jones et al., 2008; Johnson et al., 2008) and beyond,
so the sound path is not horizontal but sloping at an elevation angle φR of around 39◦ to
the horizontal (see Section 4.1.2), leading to a maximum effective time delay of ∆t ≈ 0.1s
between signals emerging from the far and the near side of the lake.
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This delay amounts to only around 10% of the 1 s wave period in question, thus the lava
lake can, when ”loosely interpreting” the original definition, still be regarded as a compact
source. However, since the sample rate of infrasonic microphones located at and around
Erebus crater rim in 2005/06 was around 40 samples per second (Jones et al., 2008), a delay
of 0.1 s means that impulsive signals from the lake are, in the worst case, smeared over four
samples. Later in this study, Doppler radar signals will be used to compute an expected
infrasound trace, which is then compared to real infrasound recordings. For this comparison
it is necessary to keep the ”smearing effect” in mind. The lava lake can therefore only be
regarded as an ”almost compact” source in this case. However, for other applications this
assumption might not be valid, so care must be taken to repeat these considerations in the
case of a modified setup.

Even though the Ray Lava Lake of Mt. Erebus can be assumed to be a compact source of
sound under some circumstances, it is still necessary to determine whether near-field terms
will have to be considered when calculating the energy output or the velocity field. As
shown above, a typical wavelength of the Erebus system is around 313 m, and the closest
infrasound receiver microphone is installed at RAY site at a distance of 310 m from the lake
centre (Jones et al., 2008). The above ratio (Eq. 3.30) is therefore ≈ 6.2, which is significantly
larger than the reference value of 1. The velocity field at the RAY microphone can therefore
be considered not a perfect but a fair representation of a velocity far-field. This is in agree-
ment with Equation 3.31, which states that at Erebus the volume of the near-field should be
about 2.6 times as large as the volume of the source - the closest microphone is well outside
that volume. Yet care must be taken to keep the existence of a near-field in mind.

In Section 4.2.7 an attempt will be made to calculate the sound energy output of an ex-
ploding bubble from Ray Lava Lake, i.e. the sound energy emitted from the surface of an
expanding bubble through an imaginary control surface close to the bubble. Exploding bub-
bles at Erebus usually reach radii similar to the lake radius of around 20 m, so the radius
of the control surface should be set to a similar value. Equation 3.30 yields a ratio of ≈ 0.4
for this radius, clearly signaling that near-field terms will not be negligible at such distances
from the source. Thus, for the calculation of the energy output right at the source, the full
Equation 3.28 must be used.

3.5 The lava lake - a simple dipole sound source?

Up to this point only monopole sources have been considered in the study, i.e. sources that
vary their volume only isotropically while their their location remains fixed. Yet another
important source configuration is an acoustic dipole, which is generated when the source
changes its location instead of its net volume, e.g. by an oscillating rigid sphere or by a
baffled piston moving in and out of a rigid wall. Dipoles have a characteristic emission pat-
tern that shows a strong directivity, i.e. it mainly radiates sound along its axis of symmetry,
the dipole axis, while almost no sound is radiated into perpendicular directions. It can be
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Figure 3.1: Sound field directivity D(θ) of a baffled piston with different compactness ratios (He =
0.4, 1.6, 4.0). While a piston of compactness 0.4 has an almost isotropic radiation pattern, a piston
of compactness 4 shows a strongly directional emission pattern. Note that the active Ray Lava Lake
of Mt. Erebus, which resembles a vertically moving piston during the first moments of an explosion,
has a compactness ratio of around 0.4 at frequencies of around 1 Hz. Its radiation pattern at these
frequencies can therefore be considered as near isotropic, i.e. acting like a monopole. At frequencies
of 4 Hz, however, its compactness ratio is around 1.6, leading to a significant directivity. At even
higher frequencies the radiation pattern of the lava lake resembles more and more that of a pure
dipole.

argued that the subject of this study, i.e. bubble explosions on lava lakes, are a good mani-
festation of a volume source and therefore a good representation of a monopole. However,
during their first fractions of a second, explosions at Erebus do not resemble a spherical
source very well, they rather resemble a piston shooting out of the ground (as will be shown
in Section 4.1). It might therefore be argued that a dipole could be the better representation
of the source configuration during the first moments of an explosion. And indeed for some
compactness ratios (He) of a baffled piston the sound intensity vector can be a strong func-
tion of the observation angle. It is therefore necessary to have a closer look at the geometry
of interest.

The directional factor of the sound intensity emission pattern of a dipole is the main dif-
ference4 to the sound emission pattern of a monopole (Stepanishen, 1998, p. 123). It is given
by (Dowling, 1998, p. 112):

D(θ) =
∣∣∣∣2J1(He sin θ)

He sin θ

∣∣∣∣2 (3.32)

where J1(...) denotes a Bessel function (Abramowitz and Stegun, 1965), which can be approx-
imated by J1(x) ≈ 1/4(sin x +

√
2sin(x/

√
2)) with an error < 5% for x < 4.5. For example,

for a non-compact piston with He = 4.0 the ratio between the acoustic intensity radiated in
direction of the piston axis (θ = 0) and the intensity radiated perpendicular to it (θ = π/2) is
indeed very large (≈ 1000; see Fig. 3.1). This means that in this case, a thousand times more
energy is emitted along the piston axis than perpendicular to it. However, Figure 3.1 shows

4in case of a piston that is placed at the boundary between a solid half space and the atmosphere, the pressure
and velocity values have to be doubled, similar to a monopole source placed at such an interface (see end of
Sec. 3.3 and Dowling, 1998, p. 112)
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that at Erebus, with a source compactness of He ≈ 0.4 at 1 Hz (see Sec. 3.4), the radiation
pattern is almost isotropic. In this frequency range the lava lake acts like a monopole source
even when it is still flat during the first moments of an explosion. Only at higher frequen-
cies the compactness ratio increases sufficiently (He ≈ 1.6 at 4 Hz, see Eq. 3.29) to produce
a directional radiation pattern (Fig. 3.1). It is therefore justified to regard the lava lake as a
monopole source even when the surface is flat during the first moments of an explosion.

3.6 Calculating sound fields of complex bodies via Green’s Func-
tions

In Section 3.3 it was shown that a sound source of a simple geometry generates a sound
field that can be described analytically in a very simple way. Section 3.4 shows that even
in the case of a more complex and continuous source geometry the resulting sound field
can be comparatively simple if certain conditions are fulfilled (regarding the compactness
of the source, and the observer’s distance in comparison to the wavelength). Since these
conditions are only partially fulfilled by the objects that are of interest in this study, the
question still arises whether there are analytical solutions for complex source geometries
when these conditions are not fulfilled. An analytical method to calculate the sound field
of a non-compact pulsating sphere can be found (Temkin, 1981, p. 209), demonstrating the
additional properties of such a sound field in comparison to the sound field of a simple
source. While this method works for a pulsating sphere, it fails for more complex objects,
e.g. like a bulging lava lake. Yet, Stepanishen (1998, p. 122) and Ehrenfried (2003, p. 156)
show that it is still possible in such a case to derive an analytical solution using so-called
Green’s functions, due to the linear nature of sound fields (or, to turn the argument around,
the linear nature of the sound field is – as in the above sections – a necessity for this method
to work). This method will later be adopted for calculating the sound output of explosions
from Erebus’ Ray Lava Lake (Sec. 4.5, non-compact case)

A Green’s function is the system’s response to an impulse-like disturbance at a certain
point of the medium. In linear systems this principle allows the calculation of the response
to continuous and complex source geometries by integrating over the source function mul-
tiplied with the Green’s function of the medium, just as if the source consists of an infinite
number of small point sources at different locations resembling the geometry of the real
source. In this case the wave fields generated by every single point source simply add up to
form the resulting wave field, consistent with Huygens’s principle (Baker and Copson, 1953).

ΦA(~x, t) =
∫
V

∫ +∞

−∞
G(~x, t, ~x′, τ) s(~x′, τ) dτ d3~x′ (3.33)
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where

G(~x, t, ~x′, τ) =
δ(t− |~x− ~x′|/c− τ)

4π|~x− ~x′|
(3.34)

is called Green’s function, containing a Dirac-δ-impulse as a point-like disturbance of the
acoustic medium. Similar to Equation 3.22 it includes the retarded time and a geometrical
spreading term resembling 1

4πr . s(~x′, τ) is the (now continuous) distribution of the source
strength (see also Eq. 3.22) in space ~x′ and time τ . The integration volume V must, of course,
fully enclose the source. The resulting function ΦA(~x, t) is again a solution to the inhomoge-
neous wave equation, as is G itself:(

1
c2

∂

∂t2
−∆

)
ΦA = s(~x, t) (3.35)

Since the simple Green’s function above does not yet include any information about pos-
sible further boundary conditions of the wave field (e.g. foreign bodies in the wave field, or
structural boundaries), the result is only valid in an infinite open space (Ehrenfried, 2003, p.
156). For example, the Green’s function for a planar problem like a baffled piston in a rigid
wall (see end of Sec. 3.3, and Sec 3.5) is exactly twice the Green’s function for a point source
in open space (Eq. 3.34), i.e. it is 2G (Stepanishen, 1998, p. 123).

This very powerful method is not only used in the field of acoustics, but is widely used in
the frame of potential theory in most fields of physics and geophysics, including seismology.



CHAPTER 4

DEVELOPING A THEORETICAL MODEL OF
AN EXPLODING MAGMA BUBBLE

From simply looking at raw data, not much can be learnt about the nature of volcanic erup-
tions. Since there is no instrument that can directly tell us the pressure inside an exploding
gas bubble, or the energy of an accelerating piece of magma, we need to find a method
of how to combine the data that can be collected from a safe distance, so that it leads to
trustworthy conclusions on the parameters in question.

One way to accomplish this is to develop a model of the process that includes all signif-
icant physical properties of the system that are contributing to the real process. Knowing
that every model of less complexity than the true natural system is only an approximation,
it is important to optimise this approximation by choosing the right level of model com-
plexity. Of course, a model that is too simple will not be able to describe the process in the
necessary complexity to make useful predictions about the real process. On the other hand,
a model that has too many parameters cannot be constrained by the available data, leaving
undetermined parameters and therefore ambiguities in the model’s predictions.

Assuming that a model with the right amount of complexity exists that is a fair description
of the real process occurring in a volcano, it can be constrained with the available data. Ide-
ally, the model thereby allows predictions to be made on the other, not directly observable
parameters of interest. Additionally, comparing the model’s predictions with complemen-
tary observations provides information about the correctness of the model itself, therefore
improving the knowledge of the underlying mechanism.

In this chapter I will develop a geometrical model describing the expansion of a pres-
surised gas bubble under the surface of a liquid lava lake - a process that is commonly be-
lieved to occur during Strombolian eruptions at Erebus volcano. The purpose of this model
is not a complete simulation of the process (such as, e.g., the definition of some starting
conditions and the subsequent simulation of the explosion). This is not necessary because
the available Doppler radar data gives us ongoing information about the state of the sys-
tem during the explosion. Therefore, the chosen model only describes the geometry of the
process, which can then be constrained by the radar data. This provides us with knowl-
edge – within the exactness of our model – about the current state of the system, such as

55
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Figure 4.1: Bubble model. Top: Thermal video sequence of a typical bubble burst from Ray Lava
Lake on Erebus volcano. Shell rupture typically occurs between phase iii and iv. Bottom: Bubble
model sketch (side view). The black area is a magma shell of constant volume Vm, spanning up a
dome-shaped bubble cap with a total volume Vcap(t). Beneath and inside the cap, hot magmatic gas
of overpressure p(t) expands, pushing up and stretching the shell. Due to the expanding area of the
shell, its thickness h(t) constantly decreases with time. The shape of the cap is always a section of a
sphere, and its edge is tied to the lake edge, a horizontal circle with radius RL.

the position or the speed of the magma shell. From these properties I will then calculate the
parameters of interest, such as energies, gas pressures, gas volumes, or even the predicted
infrasonic signal recorded at distance.

4.1 Geometrical model: an expanding magma shell

For the model of an expanding bubble, several geometries can be assumed, which all must
more or less represent the observed shape of a real exploding bubble on the surface of a lava
lake. One possible representation of this natural shape is the assumption of an expanding
hemispherical shell, which can be considered a fair first-order representation of the true
geometry (Sec 1.2). Such a shape has the attractive property of a spherical geometry, and
most of its equations can therefore be solved analytically. However, this model has one
major flaw: during the start of an explosion (i.e. at the moment when the lava lake surface
initially starts to bulge up) the lake’s shape is far from hemispherical (e.g. Fig. 1.3). Since the
start of an explosion is a very important moment for calculating the parameters of interest,
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such a model is not suitable for our task.

A suitable model must describe the flat lake surface during the start of an explosion as
well as the bulging during later phases of an explosion. Ideally, it does not have any free
parameters other than the ones that can either be observed or estimated by the distant ob-
server, i.e. from the crater rim.

4.1.1 Model geometry

The model that I have chosen for this study starts out with a flat sheet of magma forming the
surface of the lava lake at the time just before the initial movement of its surface. This sheet
represents the material between the approaching hot magmatic gas slug (with a pressure p)
and the lake surface. In the model it is approximated by a uniform, relatively thin layer of
liquid magma of a thickness h0 much smaller than the lake radius RL (Fig. 4.1 i). During
an explosion, this shell is pushed up and flexed outward by the expanding gas, just like
a round membrane that is attached to the edge of the lake (Fig. 4.1 ii-iv). The shape of
this sheet, or shell, is always represented as a section of the surface of a sphere, with the
boundary condition that there is no movement at the edges of the lake (i.e. the lake shore
is a ”hinge”). Figure 4.1 shows that this model is a good representation of the true surface
geometry developing during an explosion. In reality, the bubble typically bursts somewhere
between phase iii and iv.

The total magma volume Vm contained in the shell is assumed to be constant during the
rapid expansion phase of the explosion, because once this phase has started, the loss of
material from the shell is negligible due to magma viscosity hindering drainage from the
shell. The volume that is encompassed by the doming shell is called Vcap, and is assumed
to contain hot magmatic gas. During the expansion phase the shell expands its area while
thinning out to preserve its total mass and magma volume. The absolute position and shape
of the shell at any given time can be described with the single parameter H(t), representing
the height of the zenith point of the shell above the initial undisturbed lake level (Fig. 4.2).

I consider this model geometry as a good representation of the true geometry based on
video observations of numerous explosions at Erebus (see Figs. 1.3 & 6.2, or videos in the
supporting online material, SOM). It also fits well to geometries of expanding and bursting
bubbles on smaller scales, such as laboratory experiments, e.g. James et al. (2004, Fig. 6b), and
volcanic mud bubbles (Fig. 1.4). The model is deliberately kept very simple to avoid ambigu-
ities introduced by the guessing and fitting of parameters. The only significant parameters
that influence this model are the lake radius and the total mass of the ejected material, both
of which can be estimated by an observer on the crater rim.

The position Z of the geometrical centre of the spherical shell section lies beneath the
undisturbed lake level surface during the early stages of an explosion, but will eventually
move up and cross this plane at some stage. This leads to two geometrical situations that
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Figure 4.2: Model geometry of the expanding gas bubble.

need to be distinguished (Fig. 4.2 A and B), so care must be taken not to introduce incon-
sistencies when moving from geometry A (Z < 0) to geometry B (Z > 0). The following
parameter relations are valid for all Z:

Z = H −R (4.1)

R =
H

2
+
R2
L

2H
(4.2)

α = arccos
(
R−H
R

)
(4.3)

H =

 R+
√
R2 −R2

L : Z ≥ 0

R−
√
R2 −R2

L : Z < 0
(4.4)

where R is the shell radius and α is the opening angle of the shell cap (Fig. 4.2). It is always
equal to, or larger than the lake radius (R ≥ RL; H ≥ 0).

The volume Vcap surrounded by the shell and the outside surface areaAcap of the spherical
cap are

Vcap = H2π

(
R− H

3

)
=
π

6
H3 +

πR2
L

2
H (4.5)
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Acap = 2πR2 (1− cosα) = 2πRH = π
(
H2 +R2

L

)
(4.6)

Vcap, which increases during an explosion, should not be confused with Vm (Fig. 4.1), which
is the constant volume of the magma in the cap shell, i.e.

Vm =
mm

ρm
≈ h Acap (4.7)

where mm is the total mass of the magma in the shell, and ρm is its density. The magma
volume can be approximated by the product of the shell thickness h and its surface areaAcap

because the shell thickness is always much smaller than the bubble radius (h� RL ≤ R).

As the bubble geometry is changing in time, the above parameters (H , R, Vcap, h) are
functions of time, therefore their time derivatives can be calculated:

Ṙ = Ḣ

(
1
2
−

R2
L

2H2

)
(4.8)

Ḣ = Ṙ

(
1 +

R(t)
H −R

)
(4.9)

V̇cap =
π

2
Ḣ
(
H2 +R2

L

)
(4.10)

In the following sections, the Zenith height H(t) and its time derivatives Ḣ(t), Ḧ(t) shall
be the main parameter describing the bubble geometry and movement, therefore R and Z

can be eliminated from all final equations.

Some of the following equations (e.g. for calculating the total kinetic energy of the cap)
will require integrations over the whole volume of the magma shell (i.e. the constant volume
of magma Vm in the shell1). In order to facilitate these integrals by making use of the spe-
cial symmetry of the geometrical shape, we will introduce a parameter q ∈ [0 . . . 1], where
q = 0 defines the zenith of the cap, and q = 1 defines the edge of the cap (Fig. 4.3). As a
requirement, q shall be a linear measure of the volume of liquid material enclosed in a shell
segment (i.e. V1 in Fig. 4.3) along the cap surface, starting from the zenith point (enclosing a
volume of zero) and increasing towards the edge (enclosing the full cap volume). Therefore,
the following assumption must be fulfilled:

q =
V1

Vm
=

V1

V1 + V2
=

A1

A1 +A2
(4.11)

where V1 is the cap volume enclosed by a circle defined by q, V2 is the remaining volume,

1i.e. not the total (gas) volume surrounded by the cap Vcap.
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Figure 4.3: Model parametrisation geometry. The model parameter q increases linearly with the
enclosed shell volume V1.

and Vm = V1 + V2 is the total volume of the magma shell (Eq. 4.7). A1 and A2 are the upper
surface areas of shell sections V1 and V2. Since the thickness h(t) is small compared to the
lake radius RL, the volumes can be approximated as Vi ≈ h Ai (see Eq. 4.7). The surface
areas are given by

A1(q) =
∫
A1

dA =
∫ 2π

0

∫ θ(q)

0
R2 sin θ′ dθ′dΦ = 2πR2(1− cos θ(q)) (4.12)

Acap = A1 +A2 = 2πR2(1− cosα) (4.13)

where θ is the angle between ~R and the vertical. Therefore, with Eq. 4.3 and 4.11

q(θ) =
1− cos θ
1− cosα

=
R

H
(1− cos θ) (4.14)

or

θ(q) = arccos
(

1− qH

R

)
(4.15)

The volume form dV for integrals over a thin shell with thickness h � R can be trans-
ferred if the function to be integrated is not a function of azimuth Φ. Using Equation 4.11



GEOMETRICAL MODEL: AN EXPANDING MAGMA SHELL 61

R ( )�����q

Z

r(q)

�

Radar

r(q)

v (q)
R

r
R

^

x

z

o
R

Figure 4.4: Radar view angle geometry

(where V (q) = V1 = qVm), dV can be replaced by

dV = Vm dq (4.16)

This is also evident from the following consideration: in a general spherical geometry the
volume form is defined as dV = r2 sin θdr dΦ dθ, which reduces to dV = 2πR2h sin θ dθ for
h � R and if the function to be integrated is not a function of Φ. h can be replaced by
h = Vm

Acap
as given by Equation 4.7, therefore leaving dV = RVm

H sin θ dθ. From Eq. 4.14
follows that dq = R

H sin θ dθ. Combining these two statements, we are left with dV = Vm dq.

With this parameter q, any given point in the (x,z) plane can now be defined in the form
~r = ~r(q), where q ∈ [0 . . . 1] (Fig. 4.3). Due to the cylindrical symmetry we can use two-
component vectors of the form ~r =

(
rx
rz

)
. As shown in Figure 4.4, ~r(q) can be written as

~r(q) =

(
rx

rz

)
= ~Z + ~R(θ(q)) (4.17)

=

(
0
Z

)
+

(
R sin θ(q)
R cos θ(q)

)

using Equations 4.15 and 4.1 eventually leads to

~r(q) =

( √
qH2(1− q) + qR2

L

H(1− q)

)
(4.18)
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Figure 4.5: Simulated velocity spectrum of an expanding bubble. Left: surface of a 15 m high
bubble, expanding with a zenith velocity of 60 m/s, approximated by randomly located surface
reflectors (dots). The red area is illuminated by the radar beam, fading away from the beam centre
according to the antenna gain pattern (Appendix Fig. A.1). The black line marks where the radar’s
sensitivity reaches -10 dB, i.e. where the receivable echo power has fallen to 1/10 of that in the beam
centre. The blue dot is the point on the bubble surface moving fastest towards the radar. Projections
of the beam’s centre axis are indicated as dotted lines on the box walls. The radar’s look angle and
distance (39◦ elev., 300 m) were chosen to resemble the geometry at Erebus volcano. Right: Resulting
simulated radar spectrum. A typical feature is the distinct cutoff velocity vR,cut on the right side of
the spectrum, caused by the bubble’s curved surface. It shows the radar velocity of the blue dot on
the left.

and its time derivative ~̇r(q), giving the surface velocity of the cap at point ~r(q):

~̇r(q) =

 qHḢ(1−q)√
qH2(1−q)+qR2

L

Ḣ(1− q)

 (4.19)

4.1.2 View from the radar’s perspective

For the processing of radar data in this experiment, it is necessary to describe the movement
of the cap in its native parameters H(t), Ḣ(t) and Ḧ(t), derived from the measured radar
velocities. It is therefore necessary to establish a unique relation between an observable fea-
ture in the radar spectrum and the movement of the cap. As shown in Section 1.5, the radar
only measures the component of the observed object that is pointing towards the radar, i.e.
the beam-parallel velocity component. Moreover, in the used setup the radar will not only
measure one single object in the radar beam, but it will observe all surface points on the
magma cap that are inside the beam, and sum up all their echoes in one velocity spectrum
(Fig. 4.5).

Figure 4.5 (right) shows the simulation of such a spectrum at an arbitrary time during an
assumed bubble explosion (similar to Fig. 1.8 shown in the introduction). This was achieved
by simulating 10,000 random reflectors on the surface of the bubble (Fig. 4.5 left, grey dots),
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which is assumed to expand with a zenith velocity Ḣ of 60 m/s. Every moving reflector
has a certain speed component in radar direction, and a weighting, depending on its pro-
jected surface area as seen from the radar. Adding up the contribution of every reflector that
is located inside the radar beam (red dots) leads to the expected radar velocity spectrum
(right).

Figure 4.5 illustrates that a single radar spectrum merges information about a significantly
large area of the bubble surface. It is therefore generally difficult to attribute a single ob-
served feature in the radar velocity spectrum (e.g. a peak at a certain velocity) to its respec-
tive surface point on the magma cap. One possibility is to determine the mean (or median)
velocities of the spectrum and compare them to the expected mean velocities predicted by
the model. However, this mean velocity would be strongly dependent on the actual area of
the bubble that is observed by the radar2, and therefore on the distance between radar and
bubble, given that the conical radar beam has a fixed opening angle. When comparing data
from different radars at different distances, or if the aim of a radar onto the bubble is only
slightly misaligned, then using mean or median velocities would introduce a significant
systematic error.

Yet there is one prominent feature in the spectrum that can be easily traced, which is prac-
tically independent of observation distance, and which additionally is relatively insensitive
towards a misalignment of the radar aim. It is the abrupt cutoff of echo power at its max-
imum velocity (Fig. 4.5), caused by the bubble’s round surface moving coherently towards
the radar. The peak just before the cutoff represents the radar velocity of the surface region
moving fastest towards the radar.

This distinctive cutoff velocity (vR,cut) is equal to the maximum velocity of the spectrum (i.e.
the maximum velocity at which there is significant echo power), as long as the object in
the radar beam is an intact bubble surface. It can easily be identified in a spectrum, and
can also be attributed to a unique point on the cap surface, i.e. the point on the surface
that moves fastest towards the radar. Therefore, calculating the velocity of this point in the
bubble model will provide the necessary relation between the model (H(t), Ḣ(t)) and the
data (vR,cut(t)).

I will now determine this cutoff velocity from model parameters. First it is necessary to
calculate the velocity component of a given surface point ~r(q) as seen from the radar. I define
a unit vector

~̂rR =

(
r̂R,x

r̂R,z

)
=

(
cosφR
sinφR

)
(4.20)

pointing from the source (i.e. the magma cap) towards the radar. Because the beam spread
is only ∼ ±2◦ and the distance to the radar device (≈ 300 m) is significantly larger than the

2If the illuminated area gets larger, more lateral parts of the bubble become illuminated, which move almost
perpendicular to the radar beam and therefore have smaller radar velocities. This adds echo power to mainly
the lower velocities in the spectrum, therefore dragging the mean velocity down.
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target region we consider this unit vector to be constant within the target region. φR is the
elevation angle (inclination) of the radar as seen from the source (Figure 4.4). At Erebus, this
angle is ∼ 39◦ for the fast radar located at RAY. The speed of surface point ~r as measured by
the radar is simply the projection of ~̇r onto the unit vector pointing in radar direction:

vR(q) = ~̇r(q) · ~̂rR =

(
ṙx(q)
ṙz(q)

)
·

(
cosφR
sinφR

)
(4.21)

= Ḣ

 qH(1− q) cosφR√
qH2(1− q) + qR2

L

+ (1− q) sinφR


︸ ︷︷ ︸

Q

(4.22)

As argued above, the cutoff velocity in the radar spectrum vR,cut is the maximum of vR(q)
with respect to q:

vR,cut = Ḣ max
q∈q0,q1

(
Q(q,H)

)
(4.23)

where [q0 . . . q1] defines the area of the cap that is observed by the radar beam. If the radar
beam covers the whole area between zenith and cap edge, then q is allowed to vary over its
whole range [0 . . . 1] (Fig. 4.3). By reversing this equation, the zenith velocity Ḣ(t) at time t
can be determined from vR,cut(t):

Ḣ(t) =
vR,cut(t)

max
q∈q0,q1

(
Q(q,H(t))

) (4.24)

This equation establishes a way to determine the cap velocity directly from radar observa-
tions, since the starting value of H is known during every explosion, i.e. it is zero. Using
this initial value for H , Ḣ can be calculated from the cutoff velocity vR,cut. The correct value
of H for the next time step can then easily be estimated by integrating Ḣ over time, and
eventually the whole time series of H and Ḣ can be determined by this iterative process.

4.2 Explosion energies

The aim of this section is to develop an equation for each of the energy types that are in-
volved in an explosion. These separate types of energy can later be added to form the total
energy balance of an eruption.

It is the gas internal energy contained in a rising and expanding bubble that drives its final
explosion. During the explosion, energy is transferred into various different energy types,
all connected to the expanding magma cap. The most significant of these energy types are
the cap’s kinetic energy, its potential energy in Earth’s gravity field, the energy dissipated in
the viscous cap, its surface energy, the sound energy emitted into the atmosphere, the seis-
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mic energy radiated into the ground, and, somewhat separately, the thermal energy carried
by the hot magma.

In the following subsections, I will derive these energy types in detail for the bubble ex-
pansion model presented above. I will present each energy type as a function of parameters
that can be directly measured by radar (i.e. bubble zenith height H , as derived from radar
velocities; Sec. 4.1) and of model parameters that can be estimated (e.g. lake radius RL and
magma shell massmm). While some typical features and dependencies of these energy types
will be discussed here, they will not be quantified at this point. In Chapter 6 I will provide a
detailed and quantified discussion of the data, including all involved energy types and their
uncertainties.

4.2.1 Energy balance

When adding up all dynamic types of energy that are involved in an explosion, including
the energy in the reservoir that is driving the eruption (i.e. the gas internal energy), the law
of the conservation of energy states that this sum must be zero at all times:

−Wgas + Ekin + Epot + Ediss + Esurf + Eatm + Eseis = 0 (4.25)

where the indices ’gas’, ’kin’, ’pot’, ’diss’, ’surf’, ’atm’ and ’seis’ refer to the energy types
of gas internal energy, kinetic energy, potential energy, dissipated energy, surface energy,
emitted sound energy, and seismic energy, respectively (Sec. 4.2). An additional but some-
what separate type of energy is the thermal energy contained in the magma cap. This type
of energy is not powered by the internal gas energy but is passively carried by the hot ejecta.
Since radiative and convective cooling processes are negligible within the time frame of an
explosion, thermal energy can be considered as constant during this time, and therefore does
not enter the above equation. However, as will be shown later, even though thermal energy
does not show up in the dynamic energy balance (Eq. 4.25), it must be included when calcu-
lating the total energy output of an explosion, since it is by far the biggest energy transport
mechanism.

The following equation shows the amount of energy that is freed from the expanding gas
between the start of an explosion and time t, plus the thermal energy. At the end of an
explosion, this value can be considered as the total energy output of the explosion.

Etotal(t) = Ekin(t)+Epot(t)+Ediss(t)+Esurf(t)+Eatm(t)+Eseis(t)+Etherm (4.26)

Differentiating this equation with respect to time yields the total power output at any given
time t during an explosion (i.e. P = d

dtE = Ė):

Ptotal(t) = Pkin(t) + Ppot(t) + Pdiss(t) + Psurf(t) + Patm(t) + Pseis(t) (4.27)
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4.2.2 Pressure volume work Wgas

When gas expands without the addition of external heat, the first law of thermodynamics
states that the performed expansion work relates to the gas’ internal energy Ugas as follows:

dWgas = −dUgas (4.28)

This assumption of an adiabatic process is valid in the case of a rapid process such as a bub-
ble burst, since no significant amount of heat will leave the gas in the timescales involved.
Chemical thermodynamics finds that the amount of pressure-volume work is given by

dWgas = pgas dVgas (4.29)

which, due to its differential nature, is generally true. Here, pgas is the current gas over-
pressure inside the bubble (i.e. in excess of the surrounding atmospheric pressure), the ab-
solute pressure of the gas is therefore p̂gas = pgas + patm. Vgas is the total gas volume in
the bubble (i.e. contained inside the cap and the slug tail, see also Fig. 4.6). Please note
that when integrating this formula to gain absolute energy values, the type of expansion
(i.e. pgas = pgas(Vgas)) has to be considered. As a time derivative, the above formula can be
expressed as

Ẇgas = pgas V̇gas, (4.30)

Even though Vgas is, due to the slug tail inside the conduit, significantly larger than Vcap

(Fig. 4.1), their time derivatives are equal because the volume of the slug tail is not assumed
to change significantly during the time of an explosion. This assumption is reasonable,
since a significant rise or drop of the bottom surface of the slug tail would require a rapid
acceleration of all magma inside the whole conduit (Fig. 4.6) – a process which would require
pressures and forces that are by magnitudes higher than the ones observed, and whose
consequences should be easily recognisable if it existed3. Therefore, V̇gas can be replaced by
V̇cap (Eq. 4.10), leaving

Ẇgas = pgas V̇cap =
π

2
pgasḢ

(
H2 +R2

L

)
(4.31)

4.2.3 Kinetic energy Ekin of the magma shell

During an explosion, a large amount of energy is transferred into kinetic energy of the ma-
terial that is accelerated away from the centre of the explosion. This amount of energy is

3Note that during the explosion, the bottom of the slug tail might nevertheless continue to (slowly) rise, simply
because the magma film on the conduit wall drains to the bottom. However, the net volume increase caused
by this effect is zero.
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especially high in the case of an exploding magma bubble, simply due to the enormous
mass of the magma shell.

The total kinetic energy of material inside the expanding magma shell can be found by
integrating over the kinetic energy of all moving material of the shell:

Ekin =
∫
V

1
2
ρm ṽ

2(r) dV (4.32)

As shown by Equation 4.16, this integral can be replaced by

Ekin =
∫ 1

0

1
2
ρmVm v

2(q) dq (4.33)

=
mm

2

∫ 1

0
v2(q) dq, (4.34)

where ρm is the density of the magma in the shell, Vm is the volume of the magma in the
shell, andmm = ρmVm is the total mass of magma (Eq. 4.7). v2(q) is the square of the velocity
of the shell, parameterised with q (Eq. 4.19):

v2(q) = ~̇r(q) · ~̇r(q) =
q2H2Ḣ2(1− q)2

qH2(1− q) + qR2
L

+ Ḣ2(1− q)2 (4.35)

The integral in 4.34 results, after several steps, in the following equation for Ekin:

Ekin =
mmḢ

2

4H6

(
H2 +R2

L

)(
H4 − 2R2

LH
2 + 2R4

L ln
[
1 +

H2

R2
L

])
(4.36)

Even though this equation is considerably more complicated than the well knownE = 1
2mv

2

of a single moving body, it nevertheless bears some resemblance. Accordingly,Ekin increases
with the magma mass mm and the square of the zenith velocity Ḣ .

Since the energy balance will be set up as energy rates, the time derivative of Ekin is
needed:

Ėkin =
mm

2H7

(
Ḣ3R2

L

(
H2
(
H2 + 6R2

L

)
− 2R2

L

(
2H2 + 3R2

L

)
ln
[
1 +

H2

R2
L

])
+

HḢḦ
(
H2 +R2

L

)(
H4 − 2H2R2

L + 2R4
L ln

[
1 +

H2

R2
L

]))
(4.37)

During the explosion, kinetic energy is not only stored in the heavy magma shell, but
also in the outward accelerating gas inside the bubble itself. Since the overall mass of this
accelerated magmatic gas is so low in comparison to the mass of the magma shell (at Erebus
typically several 1,000 tons of magma shell mass vs. only a few tons of gas mass), the latter
effect is negligible in comparison to the kinetic energy of the shell (e.g. McGetchin and Chouet,
1979). An additional part of kinetic energy is stored in atmospheric air that is pushed away
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by the expanding shell. This so-called acoustic energy will be quantified in Section 4.2.7.

4.2.4 Potential energy Epot of the magma shell

During the expansion phase of the bubble, the heavy magma shell is pushed upwards, there-
fore its overall potential energy in Earth’s gravity field increases. We can state that

Epot = g

∫
mm

z(~r) dm = ρm g

∫
Vm

rz(~r) dV (4.38)

where g is acceleration due to gravity; mm, Vm and ρm are the mass, volume and density of
the magma shell, respectively, and z(~r) = rz is the distance of uplift at point ~r. Transforming
to an integral over the parameter q (Eq. 4.18 and 4.19) results in

Epot = mm g

∫ 1

0
rz(q) dq = mm g

∫ 1

0
H(1− q) dq (4.39)

and integration gives

Epot =
1
2
mm gH (4.40)

showing that similarly to a weight lifted in Earth’s gravity, the potential energy of the
magma shell increases linearly with the shell mass, the strength of the gravitational force,
and the amount of lift. The difference to the weight analogy is that the magma cap is not
lifted as a whole, but its edge is attached to the ground, leading to a factor of 1

2 in the for-
mula.

The temporal rate of potential energy delivered to the magma shell follows from:

Ėpot =
1
2
mm gḢ (4.41)

4.2.5 Dissipated energy Ediss inside shell

During the expansion phase of an explosion the bubble membrane is constantly stretched,
leading to the strain of material in the shell and therefore to the dissipation of energy. This
dissipated energy will heat up the stretching material, although only by a small amount.

The stretching of the magma shell leads to a differential movement of viscous material
in the shell, i.e. material at the inside of the shell moves at a slightly different speed than
material at the outside. From this velocity difference I will calculate the largest of the three
local principal strain rates ε̇ = dṽ/dr following Batchelor (1967, p. 253ff). ṽ is the radial
velocity of magma. Since the shell thickness h(t) is always small against the current radius
of the spherical cap section (because R(t) ≥ RL � h(t), see Eq. 4.2), the largest principal



EXPLOSION ENERGIES 69

strain rate inside the shell can be approximated as

ε̇ =
dṽ

dr
≈ ḣ

h
(4.42)

The shell thickness can be derived from Equation 4.6 through

h =
Vm
Acap

=
Vm

π(H2 +R2
L)

(4.43)

Its time derivative is

ḣ =
−2VmHḢ
π(H2 +R2

L)2
(4.44)

Combining Equations 4.42 to 4.44, we remain with

ε̇ ≈ − 2HḢ
H2 +R2

L

(4.45)

For symmetry reasons, the two other principal strain rates must be −1
2dṽ/dr. This allows

the calculation of the local rate of dissipation for each unit volume of the magma, assuming
a Newtonian4 fluid rheology (Batchelor, 1967, p. 253ff):

3µmε̇2 (4.46)

where µm is the viscosity of the material.

Integrating Equation 4.46 over the total volume of the shell gives the total rate of dissipa-
tion in the magma shell:

Ėdiss =
∫
V

3µmε̇2 dV (4.47)

=
∫ 1

0

12µmH2Ḣ2

(H2 +R2
L)2

Vm dq

Since neither H nor Ḣ are functions of q, integration is trivial, leading to

Ėdiss =
12µmVmH2Ḣ2

(H2 +R2
L)2

(4.48)

Interestingly, the rate of dissipated energy increases with the square of zenith velocity but
roughly decreases with the square of zenith height. If the expansion speed of a bubble
would remain constant during the explosion, the most energy would be dissipated when

4A fluid is called Newtonian when its stress vs. strain-rate curve is linear and passes through the origin. The
slope of this curve is determined by the fluid’s viscosity. The flow properties of a Non-Newtonian fluid
cannot be described by a single constant viscosity value.
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the bubble is still small.

For the simplicity of the calculation, a Newtonian rheology was assumed for the magma
in Equation 4.46. Even though this is not always a valid approximation for real magma (e.g.
Webb and Dingwell, 1990; Dingwell et al., 1993; Divoux et al., 2008), it is considered a good
enough approximation for this task (see also Vergniolle and Brandeis, 1996; James et al., 2004),
especially since the amount of dissipated energy is small compared to the total amount of
energy released during an explosion (Sec. 7.3).

4.2.6 Shell surface expansion energy Esurf

During the bubble expansion phase, some energy is consumed by the surface expansion
of the shell, similar to the surface tension energy stored in a soap bubble. Even though
this effect is very small compared to other energy fractions involved (i.e. a few Kilojoule
compared to kinetic energy in the gigajoule range, see Section 7.3), we will quantify this by
calculating the surface energy rate. Atotal is the total inside and outside surface area of the
expanding membrane, which can be approximated as twice the cap surface area (Eq. 4.6) of
the spherical cap section (because h(t) << RL). The total surface energy is therefore

Esurf = σmAtotal = 2πσm(H2 +R2
L) , (4.49)

where σm is the specific surface energy of the magma in the bubble shell. Note that this
value is dependent on magma temperature and water content, but a rough estimate is
σm = 0.4Nm = 0.4 J

m2 (e.g. determined by Walker and Mullins Jr., 1981; Koopmann, 2004), which
is commonly used throughout the literature (e.g. Vergniolle and Brandeis, 1996; Seyfried and
Freundt, 2000). To set this value in context, the total surface energy of a 40 m wide lava lake
is 503 J, about as much energy as is needed to heat one litre of water by 0.1◦C.

In total, the surface generation energy rate is:

Ėsurf = 4πσmHḢ . (4.50)

After the rupture of the membrane, the surface again increases significantly due to the gen-
eration of fragments. However, this contribution is still very small compared to other energy
types involved, and shall not be discussed further here.

4.2.7 Energy radiated into the atmosphere Eatm (acoustic energy)

A small but important part of the energy released during a Strombolian explosion is used
for the displacement and acceleration of the atmosphere surrounding the source of the ex-
plosion, leading to a movement away from the centre. This acceleration is often very rapid,
thus generating disturbances in the atmosphere that travel away from the source as sound
waves (see Chapter 3). It was argued in Sections 3.4 and 3.5 that bubble explosions similar to
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the ones at Erebus volcano behave close to a simple monopole source in the frequency band
of interest. Therefore, some (carefully chosen) aspects of the system can be described by
the same formulae as are valid for a point monopole source, allowing the analytical calcula-
tion of physical parameters despite the lava lake’s complex surface geometry, which would
usually prevent any analytical approach.

Equation 3.27 is one of these formulae, describing the energy output of a point source.
Therefore, under certain conditions, it is suitable to provide a good estimate of the true
sound power output of the exploding bubble considered here. It specifically describes the
sound energy flux through the surface of an imaginary sphere surrounding the source,
which, due to the conservation of energy, must be representative of the amount of sound
energy that is released by the source. Such an imaginary surface is called a control sur-
face and is commonly used to calculate the sound field of complex bodies (e.g. Dowling and
Williams, 1983, p.199).

When only a far-field excitation exists then the use of a control sphere is trivial because any
closed integration surface enclosing the source will yield the same result. However, when a
near-field exists, as is the case here, using this technique is somewhat more complicated, as
the energy flux through the control sphere now depends on its radius (as already discussed
in Section 3.3). The nature of this property lies in the fact that the expanding source not
only dumps energy into sound waves that radiate away from the source (the far-field, see
Sec. 3.4), but also uses energy to accelerate and (temporally) displace the atmosphere around
it (the near-field). The latter type of energy will eventually be transferred back to the source
when the expansion phase is over, and is therefore only ”borrowed” from the system (i.e.
the long term average energy transfer to the near-field is zero), but right at the start of the
explosion the source dumps a significant amount of energy there (Eq. 3.28). Therefore, the
near-field energy needs to be included when calculating the sound energy output during
the early moments of an explosion. Since velocity contributes as a square to kinetic energy,
most of the near-field energy will be stored close to the source, and vanishes in the far-field.
Thus care must be taken to choose an appropriate radius for the imaginary control surface
(centred on the source), which catches only the energy that is transferred through it, but not
the energy that is stored inside it in the near-field (e.g. if the control surface is placed too
far away, it will only ”see” the far-field energy, thus being a poor estimate of the true energy
output).

To produce a good estimate of the sound output the control surface should be placed as
close as possible to the source, preferably into the region where the source reaches its max-
imum velocity, since in this region the maximum kinetic energy (near-field) is temporally
stored in the atmosphere. A control sphere radius similar to the lava lake dimension is most
appropriate, so the control sphere effectively describes a hemisphere with roughly the same
diameter as the lava lake. This means that Equation 3.27 provides a good estimate of the
atmospheric sound power output when r is replaced by the lava lake radius RL and Vsource

by Vcap. As argued at the end of Section 3.3, the sound energy output has to be doubled
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to account for the source’s setting at the interface between a solid half space and the atmo-
sphere:

Ėatm(t) = 2 Ėsound,mono(r = RL, t)

=
ρa

2πca
V̈ 2

cap(t) +
ρa

2πRL
V̇cap(t)V̈cap(t) , (4.51)

where Vcap(t) can be written as a function of parameter H(t) (Eq. 4.5):

Ėatm =
πρa
8ca

(
2HḢ2 + Ḧ

(
H2 +R2

L

))2
+

πρa
8RL

Ḣ
(
H2 +R2

L

)(
2HḢ2 + Ḧ

(
H2 +R2

L

))
(4.52)

The second of the two terms in each of these equations refers to the energy that is tempo-
rally stored in the near-field. Both terms contribute in roughly the same orders of magnitude
to the sound power output at the given setup (i.e. the geometry of Ray Lava Lake at Ere-
bus volcano). The equations show that the sound power output mainly increases with the
second derivative of the volume of the cap.

The above equations are a manifestation of Lighthill’s monopole (Eq. 3.23), whose sound
output is strongly dependent on its volumetric acceleration. Since the cap volume increases
with the third power of the cap zenith height (Eq. 4.5), the most effective sound power
output is expected late in the explosion, when the bubble has acquired a considerable size.

4.2.8 Seismic energy radiated into the ground Eseis

During an explosion, a significant amount of magma mass is accelerated out of the lava lake,
leading to a primarily vertical reaction force acting on the ground. Additionally, at the time
of the burst, the sharp pressure drop inside the bubble and in the slug tail causes the normal
force on the conduit wall to drop, which produces a secondary isotropic deflationary source
(Kanamori et al., 1984). These two types of time-varying forces on the ground will excite
seismic waves. The seismic amplitudes caused by the isotropic force are typically much
smaller (in the order of 10 percent) than those caused by the single force. Kanamori et al.
(1984) quantify this by arguing that the ratio of the two is approximately equal to the ratio
of the gas particle velocity to the seismic wave velocity, and contend that the effect of the
isotropic source is secondary. Since the main duration of bubble explosions at Erebus is
usually in the second to sub-second range, the resulting seismic signal is expected in the
short-period range (0.2–2 s). Note that very long period period (VLP) seismic waves that are
excited by the rising bubble in the conduit are not considered here, since the are not directly
associated with the bubble’s burst.

In order to approximate the amount of energy radiated into the ground we first need
to estimate the ground force caused by a bubble burst. Subsequently, through calculating
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the response of the ground to that variable force, the amount of radiated energy can be
estimated.

To approximate the seismic radiation energy we must therefore primarily determine the
vertical reaction force caused by a bubble burst. The net vertical force during a bubble burst
explosion consists mainly of the reaction force from the upward acceleration of the magma
shell, plus a small component resulting from the upward acceleration of the atmosphere.
The latter component is, however, smaller than the former one by several orders of mag-
nitude (Sec. 7.3) and can be ignored. Accordingly, the vertical seismic ground force can be
calculated from Newton’s second law, using Equations 4.16 and 4.19. It is the sum of the
vertical acceleration force exerted by each mass element, i.e. the vertical acceleration force
integrated over the whole volume of the shell:

Fground,z ≈ −mm
¯̈rz = −

∫
M
r̈z(~r) dm (4.53)

= −mm

∫ 1

0
r̈z(q) dq = −mm

∫ 1

0
Ḧ(1− q) dq , (4.54)

where ¯̈rz is the spatial average of the magma shell’s vertical acceleration r̈z , and mm is the
magma shell mass. Integration yields the vertical seismic force on the ground caused by a
bubble burst as a function of time:

Fground,z(t) = −1
2
mm Ḧ(t) . (4.55)

An assumption made here concerns the quantity of accelerated mass. During the last mo-
ments of the bubble ascent (just before the rapid acceleration phase sets in) the magma mass
above the bubble is constantly decreasing. In those early moments of an explosion, before
the rapid acceleration practically fixes the amount of magma in the shell to mm, the above
formula underestimates the true ground force of the explosion. Additionally, bubble sur-
face velocities determined by radar are only valid up to the point of shell rupture. Therefore
the ground force can only be reliably estimated up to that point in time. Taking both these
limitations into account, the above calculation of the ground force is only valid between the
onset of the rapid acceleration phase and the burst time.

The seismic body wave displacement caused by this vertical ground force on the surface
of a volcano can be approximated by the displacement ~s(~r, t) caused by a vertical single
force on the surface of an elastic half space. By symmetry, the displacement due to a force
applied on the surface of a half space can be estimated as twice the deformation caused in a
whole space (e.g. Aki and Richards, 1980; Kanamori et al., 1984):
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~s(~r, t) =

 sr

sθ

sΦ

 =
2

4πρrockrv2
p

Fground,z(t−
r

vp
)

 − cos θ
0
0



+
2

4πρrockrv2
s

Fground,z(t−
r

vs
)

 0
sin θ

0

 (4.56)

where vp, vs are the p and swave speeds, and ρrock is the density of the surrounding medium.
θ is the angle to the vertical, and Φ the azimuth. This simple approach neglects the excitation
of surface waves and part of the near-field, therefore it represents only an approximation of
the far-field radiation that should be suitable for modeling the short-period wave field from
Erebus explosions, which are dominated by body waves (e.g. Rowe et al., 2000) and for esti-
mating the radiated seismic energy. A more exact solution can be derived through numerical
methods (e.g. Ohminato and Chouet, 1997) or from solving so-called Lamb’s problem (e.g. Aki
and Richards, 1980). Both of these approaches involve relatively complex calculations that
are unnecessary for this task.

Given the displacement field, radiated energy can be calculated by determining the en-
ergy flux though a closed surface surrounding the source (Haskell, 1964):

Eseis,p = ρrockvp

∫ 2π

0

∫ π

π
2

∫ ∞
−∞

ṡ2
r dt r

2 sin θ dθ dΦ (4.57)

Eseis,s = ρrockvs

∫ 2π

0

∫ π

π
2

∫ ∞
−∞

(ṡ2
θ + ṡ2

Φ) dt r2 sin θ dθ dΦ (4.58)

where Eseis,p and Eseis,s are the seismic energies transported by p and s waves, respectively.
In our case, using a half space solution (Eq. 4.56) and integrating over a lower hemisphere
with its centre located at the force point provides a convenient way of solving these equa-
tions. Finally, adding p and swave energies yields the total radiated seismic energy (Haskell,
1964; Kanamori and Given, 1982):

Eseis = Eseis,p + Eseis,s =
(

1
6πρrockv3

p

+
1

3πρrockv3
s

)∫ ∞
−∞

Ḟ 2
ground,z dt (4.59)

By using Equation 4.55 and assuming the validity of our expansion model, this energy can
be directly determined from measured parameters such as the zenith position of the lake
surface H :

Eseis =
(

1
6πρrockv3

p

+
1

3πρrockv3
s

)
m2
m

4

∫ ∞
−∞

...
H

2
dt (4.60)
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Equation 4.60 shows that the amount of seismic energy radiated by an exploding bubble
is very sensitive to dynamic parameters of the system, such as the third temporal derivative
of the zenith position H and the square of the accelerated mass. Additionally, since the seis-
mic energy decreases with the third power of the wave speeds, a good knowledge of these
speeds significantly improves the quality of the result. As will be shown in later sections,
the uncertainty in the accelerated mass and the wave speeds will lead to a relative uncer-
tainty in the seismic energy that is larger than for the other types of energy. Yet, due to the
generally small amount of seismic energy radiated by explosions, these uncertainties play a
negligible role in the overall energy budget.

4.2.9 Thermal Energy Etherm

The thermal energy stored in the hot magma shell is a type of energy that is not powered by
the gas internal energy, therefore it does not change during bubble burst. This means that
the rate of change of thermal energy Ėtherm can be considered as nearly zero during the time
of final expansion and burst. It is thus not important for the energy balance during the time
of burst. However, it plays an important role in the overall energy output of an explosion:

∆Etherm = ηmmm cp,m ∆T (4.61)

where mm is the mass of the magma shell, while ηm describes the fraction of shell material
that does not fall back into the lake after an explosion, and is therefore lost to the lava lake.
cp,m is the specific heat of magma, not taking into account any changes in the crystal content
during the cooling. An approximate number for it is cp,m ∼ 1000 J

kgK (e.g. Jaeger, 1964;
Calkins et al., 2008).

The importance of this type of energy can be demonstrated by calculating the amount
of thermal energy stored in a single metric ton of magma at a typical lava lake tempera-
ture of ∼ 1000◦C above the ambient temperature. According to Equation 4.61 it is 109 J, or
∼280 kWh, i.e. roughly equivalent to the amount of electrical energy that an average one
person European household uses up in two months.

In addition to the heat stored in the magma mass, a small amount of thermal energy is
stored in the hot magmatic gas that is eventually freed during an explosion, therefore also
contributing to the total energy balance. However, in comparison to the energy stored in
the heavy magma shell, this amount of energy is negligible (e.g. McGetchin and Chouet, 1979)
and will not be further considered in this study.

4.3 Deriving gas pressure from the rate of energy output

In the last sections I have developed the necessary formulae to determine the energy output
from an exploding bubble constrained by radar measurements. Thermodynamic consid-
erations derived in Section 4.2.2 show that this amount of freed energy is powered by the
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internal energy contained in the bubble’s gas (Eq. 4.28), which is directly dependent on the
gas pressure (Eq. 4.29). This means that the higher the underlying gas pressure, the higher
the power output of an explosion. By quantifying this simple relation, I will develop a for-
mula to calculate the gas pressure inside a bubble from the observed power output of an
explosion.

The necessary link will be Equation 4.25, which can be written as time derivative:

Ẇgas = Ėkin + Ėpot + Ėdiss + Ėsurf + Ėatm + Ėseis (4.62)

When combining this with Equation 4.31, the overpressure inside the bubble at time t can be
calculated, merely from the rate at which energy is transferred from the gas into the different
kinds of energy of the expanding magma cap:

pgas(t) =
Ėkin(t) + Ėpot(t) + Ėdiss(t) + Ėsurf(t) + Ėatm(t) + Ėseis(t)

V̇cap(t)
(4.63)

This simple relation shows that indeed, the higher the power output during an explosion,
the higher must be the pressure inside the bubble causing this power output. All necessary
parameters that enter this equation can directly be observed from the crater rim (mainly the
radar cutoff velocity vR,cut(t), the approximate lake radius and the rough amount of ejected
material).

4.4 Determining the volume of rising gas slugs

One of the challenges in volcanology is determining the amount of gas that is released dur-
ing explosions. Together with gas composition measurements, this knowledge enables the
determination of the respective quantities of ejected gas components, and therefore allows
an improved judgement about the current status of the magmatic system.

I have developed two different methods to determine the volume of approaching gas
slugs, using radar measurements in combination with the above expansion model. Both
methods are based on thermodynamic properties of hot magmatic gas, and estimate the
initial gas volume Vgas,0 of the slugs, i.e. their volume at a point in time just before they
enter their rapid expansion phase (Fig. 4.6). The first method uses the energy (Sec. 4.2) that
is transferred from the gas into various forms of energy during the rapid expansion phase,
while the second method evaluates the shape of the pressure drop curve during the rapid
expansion phase.

The two methods will be described in detail in the following subsections. Additionally, a
third way to estimate the erupted gas volume of an explosion is to estimate from video the
size of void, or ”missing volume” in the lava lake and conduit underneath. I will later use
all three of these methods individually to determine the bubble volumes during explosions
at Erebus (Sec. 7.5).
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Figure 4.6: Sketch of a rising and expand-
ing gas slug in the upper conduit. A: Just be-
fore the last phase of the slug rise process, the
”rapid expansion phase”, the gas slug volume
is called Vgas,0. B: During the rapid expansion
phase, the increasing slug volume can be ap-
proximated by Vgas(t) ≈ Vgas,0 + Vcap(t), where
Vcap(t) can be directly calculated from radar
measurements. The approximation is valid be-
cause the slug base does not move significantly
during the short time interval of the expansion
phase.

V
gas,0

A B

gas

magma

rock

V
gas,0

magma

rock

V
cap

Once the total volume of the gas bubble and its pressure are known for a single moment
in time, then the overall mass mgas of the gas bubble can be calculated, using the ideal gas
law (Eq. 3.13):

mgas =
p̂gas(t) Vgas(t)

Tgas(t)
Mgas

Rm
, (4.64)

where the temperature Tgas(t) of the gas can be determined through Equation A.1. From
these gas mass quantities, an overall gas flux from the volcano during explosions can be
calculated, providing a valuable basis for interpreting gas composition measurements (e.g.
FTIR, DOAS, see e.g. Francis et al., 2000; Burton et al., 2007), which is otherwise hard to obtain.

4.4.1 Determining gas volume from energy output

To establish a relation between the initial gas volume Vgas,0 (Fig. 4.6) and the energy that
was transferred from the gas into other types of energy during an explosion, I will start out
from some basic thermodynamic equations. Since all thermodynamic processes during a
Strombolian bubble explosion take place on time scales that do not allow significant heat
transfer between the gas and the surrounding conduit walls, all processes can be considered
as adiabatic (see also Sec. 4.2.2).

The equation for an ideal fluid that is undergoing an adiabatic process is

p̂gasV
γ

gas = constant (4.65)

where p̂gas = pgas + patm is the total pressure (including the ambient atmospheric pressure
patm). γ is the ratio of specific heats (γ = Cp

CV
, see Eq. 3.15) and is equal to 1.1 for hot gases

(Lighthill, 1978).

To calculate the work that can be done by an adiabatically expanding volume of gas from
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Figure 4.7: Determining initial bubble volume from energy output. Showing Eq. 4.72 with an
assumed end pressure of 160 kPa (approx 100 kPa above ambient at Erebus crater rim), this graph
depicts the relation between pressure drop ∆p, energy loss through adiabatic work ∆Wgas, and the
bubble’s initial volume Vgas,0. For example, a gas bubble whose pressure drops by 400 kPa when
performing 1010 J of expansion work must have had an initial volume of ∼ 17,000 m3.

state 0 to state 1 (e.g. the start [annotated with index ”0”] and the end [index ”1”] of the rapid
expansion phase), I use (Kinney and Graham, 1985):

∆Wgas =
p̂gas,0Vgas,0

γ − 1

(
1−

[
Vgas,0

Vgas,1

]γ−1
)

(4.66)

this can be expressed in terms of pressure by using Eq. 4.65:

∆Wgas =
p̂gas,0Vgas,0

γ − 1

(
1−

[
p̂gas,1

p̂gas,0

] γ−1
γ

)
(4.67)

p̂gas,0, Vgas,0 are the absolute parameters of the system just before the rapid expansion,
p̂gas,1, Vgas,1 are the parameters at its end. ∆Wgas is the work that was done by the gas
between state 0 and state 1.

Simply rephrasing Equation 4.67 leaves us with an equation for the initial volume:

Vgas,0 = ∆Wgas
γ − 1
p̂gas,0

(
1−

[
p̂gas,1

p̂gas,0

] γ−1
γ

)−1

(4.68)

This relation allows the estimation of the initial volume of an expanding gas bubble when
1.) the gas pressure during the start and end of the process is known (i.e. the pressure drop)
and 2.) the amount of energy that was withdrawn from the gas during that time is known.



DETERMINING THE VOLUME OF RISING GAS SLUGS 79

Figure 4.7 shows this relation for a variety of different energy outputs. To simplify the figure,
an end pressure p̂gas,1 of 100 kPa above the ambient pressure was assumed here, leaving only
the pressure drop ∆p = p̂gas,0 − p̂gas,1 to be varied. I will show in a later Section that this is
not an unrealistic scenario during explosions at Erebus.

4.4.2 Determining gas volume from gas pressure decay

The second method to determine bubble volumes is based on the gas law stating that in an
expanding gas volume, the pressure must drop in a certain relation to the amount of volume
expansion. This law must be fulfilled at any given time during the expansion phase, and
therefore offers a way to test the validity of the model.

The gas law states that, assuming an initial gas volume of Vgas,0 and an initial gas pressure
pgas,0, the gas pressure inside the bubble during its expansion is

p̂gas(V ) = pgas(V ) + patm = pgas,0

(
Vgas,0

Vgas

)γ
(4.69)

or,

Vgas(p̂) = Vgas,0

(
p̂gas,0

p̂gas

) 1
γ

(4.70)

Since the volume of the magma cap Vcap (Fig. 4.6) can be measured by integrating radar ve-
locities, we introduce it into the equation by eliminating the (unknown) total bubble volume
Vgas. We achieve this by subtracting Vgas,0 on both sides, where ∆Vgas = Vgas − Vgas,0 = Vcap,
leaving us with

∆Vgas = Vgas,0

((
p̂gas,0

p̂gas

) 1
γ

− 1

)
= Vcap (4.71)

Figure 4.8 illustrates this relation for a set of different initial volumes. All graphs start
at their initial volume (i.e. zero volume expansion), when their pressure is at 100% of the
starting pressure. When the volume increases, the pressure drops and, for example, a bub-
ble with an initial volume of 1000 m3 will just about halve its pressure5 when doubling its
volume by an expansion of another 1000 m3. Therefore, by registering how the pressure
inside a bubble reacts to a volume increase, the initial volume can be estimated. Rephrasing
Equation 4.71 provides us with the necessary formula:

Vgas,0 = Vcap

((
p̂gas,0

p̂gas

) 1
γ

− 1

)−1

(4.72)

5due to the adiabatic process, the pressure will be slightly less than 50% in this case because the gas cools
during its expansion.
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Figure 4.8: Determining initial bubble volume from gas pressure decay. The figure shows the
relation between the volume change of a gas and its pressure change during an adiabatic expansion
process (Eq. 4.71). Initial gas volumes Vgas,0 (pressure before the expansion) are annotated. Starting
from 100% of their initial pressure (bottom left), the pressure in small bubbles drops quicker than the
pressure in large bubbles when the bubble volumes are increased by the same absolute amount. This
behaviour can be used to estimate the initial bubble volume.

All parameters on the right side of this equation can be determined from radar measure-
ments. If the model and the resulting pressure values (Sec 4.3) are correct, then these pres-
sure values are expected to follow one of the curves depicted in Figure 4.8, indicating the
bubble’s initial volume.

To make sure that this second method to determine bubble volumes is not only a rephrased
version of the first method, we will take a closer look at their input parameters. Both equa-
tions (Eq. 4.68 and Eq. 4.72, respectively) are dependent on correct pressure values deter-
mined from the expansion model (Sec. 4.3). The first method relies on the pressure differ-
ence between the start and the end of the rapid expansion phase, not taking into account
how the system got from one state to the other (apart from assuming an adiabatic process).
The second method offers the possibility to test the model by also taking into account how
the system got there.

The main difference between the methods, however, is the other important parameter that
enters their respective equation: the first (Eq. 4.68) uses the change of internal gas energy
between the start and end of the rapid expansion phase. This energy output is measured as
the difference in the total energy (Eq. 4.26) between the two points in time. These total en-
ergy values are highly dependent on a variety of parameters, such as the membrane’s zenith
height, velocity, acceleration, and for example the magma shell mass. Each one of these pa-
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rameters therefore influences the initial bubble volume as determined by the first method.
In contrast, the second method (Eq. 4.72) does not rely on this multitude of parameters. In
addition to the already mentioned pressure, its only other significant input parameter is the
current volume of the magma shell Vcap, which can be determined from the radar data in
a relatively simple way. In summary, even though both methods rely on correct pressure
calculations, they can nevertheless be regarded as largely independent.

4.5 Infrasonic signals caused by expanding bubbles

The theoretical background that is necessary to calculate the pressure signal caused by an
expanding bubble was already discussed in Section 3.3. In Section 3.4 I have shown that
the lava lake can be considered a simple source of sound only under some circumstances.
Due to the size of the lava lake, a signal that is coherently emerging from all points of the
lake surface will be smeared in time, or blurred, by up to 0.1 s when being recorded by a
receiver. Depending on whether this smearing effect is expected to significantly influence
the outcome of the calculation, the lake should be regarded either as compact (i.e. without
the smearing effect, for simplifying the governing equations) or as non-compact (for greater
exactness of the results). Here, I will describe how to calculate the predicted sound field in
either of these cases.

Compact case Starting with the more simple case (i.e. regarding the lava lake as a com-
pact source) we can calculate its sound field from Equation 3.23, while the source volume
acceleration V̈source is simply replaced by the volume acceleration of the bubble cap V̈cap

(Eq. 4.5):

p(r, t) =
ρa

4πr
V̈cap(t− r/ca) . (4.73)

It follows that the amplitude of the sound pressure p decreases with one over the distance
between source and receiver.

Since the bubble is gaining in size during its expansion, the distance r between the sur-
face of the bubble (i.e. the source of sound) and the observer on the crater rim decreases
constantly. This leads to an acoustic Doppler effect and therefore to a slight increase in
frequency. Since the size of the bubble as a function of time is known, this effect will be
considered when calculating the expected sound power output via Equation 4.73.

Non-compact case If the lava lake is considered a non-compact source, then the sound
generated from two different locations on the lake surface at the same time will arrive at
significantly different times at the receiver (Sec. 3.4). I have shown in Section 3.6 that a
possible solution for this scenario is the assumption of many small sources of sound that
are distributed over the surface of the non-compact source of sound. In this case the source
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Figure 4.9: Approximating a non-compact sound source by multiple compact sources. Each of the
red dots represents a small compact monopole source. Here, the sources are randomly distributed on
the surface of the bulging lava lake, each representing an average surface area of 2 m2. The strength
of each of the sources at a certain time depends on its current acceleration on the expanding surface.

of sound is the surface of the bulging and expanding lava lake. The analytical solution of
this problem involves the integration of individual source strengths over the surface of the
lake. Since the special geometry of the problem is too complicated for a simple analytical
solution, I have solved the problem numerically.

As shown in Figure 4.9 I have generated a large number of random points on the surface
of the lava lake. These points each represent a small compact monopole source of sound,
and their combined phase and strength add up to the total generated infrasound signal that
can be observed at a defined point in the distance. Their numberNsources was chosen in each
time step so that the average surface area of each source is 2 m2 (i.e. more than 1000 points
on the surface).

To calculate the strength of each source we first need to know the current surface accelera-
tion at this certain point, defined by the parameters q and Φ. While q was already introduced
in Section 4.1.1, Φ is the azimuth of the source point with regard to the centre of the lake.
The special properties of q ensure uniform distribution of points on the spherical surface,
simply by choosing uniformly distributed values for q [0..1] and Φ [0..2π].

The acceleration of a surface point (q,Φ) on the bubble shell at time t follows from Equa-
tion 4.19, this time in three dimensions:

~̈rn(q,Φ, t) =

 rx

ry

rz

 =


√
q(1−q)(R2

LḢ
2+HḦ(R2

L+H2(1−q)))
(R2

L+H2(1−q))
3
2

cos Φ
√
q(1−q)(R2

LḢ
2+HḦ(R2

L+H2(1−q)))
(R2

L+H2(1−q))
3
2

sin Φ

Ḧ(1− q)

 (4.74)

where the index n denotes the n-th of Nsources surface points. The unit normal at this point
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is given by

~̂nn(q,Φ, t) =

 sin θ(q, t) cos Φ
sin θ(q, t) sin Φ

cos θ(q, t)

 (4.75)

while θ(q) is defined by Equation 4.15.

The volume acceleration of each source can be approximated by the projection of the ac-
celeration vector onto the unit vector that is normal to the surface, multiplied by the point’s
surface area:

V̈n(q,Φ, t) =
Acap

Nsources
~̈rn(q,Φ, t) · ~̂nn(q,Φ, t) (4.76)

where Acap is the surface of the shell cap (Eq. 4.6). The source’s individual pressure signal
created at the position of an observer or a microphone at distance rmic,n from the source
point is then given by Equation 3.23:

pn(q,Φ, t, rmic,n) =
ρa

4πrmic,n
V̈n(q,Φ, t− rmic,n

c ) (4.77)

rmic,n is not only a function of the observer’s distance and elevation angle, but also a function
of q Φ and t, therefore it has to be determined individually for each source point.

Due to the linearity of pressure signals in the atmosphere (Sec. 3.1), the sum of all source
signals represents the total pressure signal, expected at a microphone at distance rmic from
the lava lake centre at an elevation angle of φmic:

pmic(rmic, φmic, t) =
∑
n

pn
(
q,Φ, t, rmic,n

)
(4.78)

In Section 7.6 this equation will be used to calculate expected acoustic signals from lava
lake explosions at Erebus volcano, which are then compared to real acoustic signals. Con-
veniently, this approach not only takes care of the compactness problem, it automatically
also includes the directivity of a sound source. Thus, if the geometry of the source results
in an emission pattern containing poles of higher order, such as dipoles (e.g. Sec. 3.5) or
quadrupoles, this approach will nevertheless calculate the correct sound pressure ampli-
tude at the receiver site.

This property can even be exploited further, because the method allows the systematic in-
vestigation of the emission pattern of a sound source with a complex geometry as a function
of frequency. Unfortunately, even though promising interesting results, such an investiga-
tion is beyond the scope of this study and should be subject to future research.
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CHAPTER 5

INSTRUMENT DEVELOPMENT
& DATA ACQUISITION

At the time when this study commenced, no reliable radar field recording system existed
that could endure the conditions met on the crater rim of an active volcano in Antarctica.
Even in the summer months, conditions on the 3794 m high Erebus volcano can deteriorate
within minutes into a full blown blizzard, with winds exceeding 150 km/h, temperatures
below -45◦C, and visibility below a few metres. Instruments on the crater rim are constantly
exposed to highly corrosive acidic gases from the volcano’s interior, to a wind of abrasive
ice particles, to strong UV light, to the accumulation of heavy rime ice, and sometimes to
ballistic impacts from the volcano’s ejecta.

To allow for a reliable operation under such conditions, a rugged field recording system
for radar data needed to be developed, along with necessary improvements to the actual
radar devices. The first section in this chapter describes the criteria that I included in the
system’s design, how I met these criteria, and how the system was eventually tested at a
quarry blast site.

The second section in this chapter describes the field experiment conducted by the author
of this study at Erebus volcano in 2005/2006, leading to the collection of a unique multidis-
ciplinary dataset that serves as the basis of this study.

5.1 Developing a data collection system for extreme environments

One of the most important criteria in the instrument development was data security, espe-
cially given that an effective protection against volcanic bombs, which frequently impact on
the crater rim, would require an impractical amount of effort. Accordingly, the system was
designed so that all data generated by the radar devices is immediately stored in two inde-
pendent locations. This includes an on-site location, i.e. on the crater rim, and an off-site
location that can freely be chosen. While data transfer from the radar device to the on-site
data logger is conducted through a cable, off-site data are transferred through a wireless
network. This approach combines the advantages of both methods, namely the safety of

85
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Figure 5.1: A modular field data recording system (here shown in a quarry setup).

off-site data from destruction through volcanic hazards, and the reliability of on-site data,
including its independence from network outages.

In the next sections I will describe the various elements of the data logging system (Fig. 5.1),
starting with the newly-developed radar device, the data logger, wireless telemetry and tim-
ing devices, possible solutions for the power supply, and ending with a system demonstra-
tion by monitoring a controlled man-made explosion.

5.1.1 MVR4 - a new and fast FMCW Doppler Radar

The original design idea for the instrument originated from Matthias Hort and Malte Vöge
in cooperation with METEKr company, as an improved version of the pre-existing MVR3
instrument (Sec. 1.5 and Hort and Seyfried, 1998; Hort et al., 2003). Their first prototype of the
MVR4 was constructed just when this study commenced, but was not yet adapted to field
operation.

Therefore, an integral part of this study was its adaptation to extreme field conditions,
which included the

• construction of a sturdy but lightweight portable aluminium tripod (Fig. 5.2);

• hardening against high winds and gusts;

• securing the radar’s operation over a broad temperature range (-50◦C . . . +40◦C);
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• improvement of the calibration and aiming mechanism, which needed to be operated
with thick gloves at cold temperatures (Fig. 5.2);

• implementation of several soft- and hardware updates.

Figure 5.2: Newly-developed fast radar (MVR4),
adapted to extreme environments.

Major hardware construction and
updates were accomplished in cooper-
ation with the mechanical workshop of
the Centre for Marine and Climate Re-
search of the University of Hamburg.
Hardware was optimised for field op-
erationability, which in practice meant
a size and weight minimisation to fa-
cilitate transport via air freight and on
foot, as well as an easy assembly under
inclement weather conditions. Accord-
ingly, metal parts were mainly con-
structed from lightweight aluminium
(Fig. 5.2), which additionally proved to
be adequately corrosion resistant when
exposed to acidic volcanic gases.

The radar’s antenna was hardened
against high winds and gusts by struc-
turally combining two off-the-shelf
60 cm parabolic offset antennae (typ-
ically used for satellite receivers), i.e.
gluing them on top of each other us-
ing a 2 cm layer of construction foam.
While the inner one of the two dishes continues to act as the parabolic reflector for radar
waves, the outer one merely serves as structural reinforcement. A sturdy gear head (Fig. 5.2)
was designed and constructed to allow a precise adjustment of the radar’s alignment around
three axes while ensuring its stability in high winds. Special care was taken to allow for an
easy operation under cold conditions (e.g. by using special silicone grease) and while wear-
ing thick gloves.

The operation of the radar’s electronic components under low temperatures was ensured
by the installation of thermal insulation pads around the radar transceiver heads (the head
is visible without insulation in Fig. 5.2), and by the use of extra flexible silicone coated ca-
bles. These were also specified as sufficiently UV proof to temporally endure the harsh
lighting conditions that can be found in Antarctic high altitude locations, which are strongly
exposed to the ozone hole. For the same reason, UV proof ropes were chosen for securing
all hardware on the crater rim against high winds.

To ensure the correct aim of the radar beam under rough field conditions, the existing
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aiming mechanism of the radar needed improvement. Traditionally, the radar was aimed
onto a rotating1 radar reflector consisting of two rotating steel balls, while improving the
aim by trial and error until the reflector’s echo signal was maximised. A telescopic sight
attached to the radar (similar to the one visible on Fig. 5.2) was then adjusted and ”locked”
onto the reflector2. After this procedure (called radar calibration), the telescope’s cross hairs
indicated the centre of the radar beam, allowing the correct alignment of the beam onto any
target of interest.

Figure 5.3: Radar calibration device with rotating corner
reflectors. The ∼30 cm high device is typically powered by
a 12 V battery.

In the course of this study, the ro-
tating reflector spheres were re-
placed by rotating corner reflec-
tors (Fig. 5.3), resulting in a much
stronger echo power, which al-
lowed for a more precise adjust-
ment. Additionally, the adjust-
ment and lock mechanism of the
telescope mount was newly con-
structed to allow for a better han-
dling in the field while allowing
for finer adjustments.

The data output stream of the fast MVR4 radar is typically transmitted through a 100 Mbit
ethernet cable to an attached data logger. The older and slower MVR3 devices produce data
output through a RS-232 serial port, which can either directly be connected to a serial port
of a data logger, or to a serial-to-network converter (e.g. NetbiterTM), which sends the data
stream through a wireless network to a remote computer.

For the interpretation of results it is important to note that both MVR3 and MVR4 radars
typically have a blind period in every sample, i.e. they do not measure reflected radar echoes
during the entire sampling interval but have a short period of time when they are ”blind”.
This time can partially be adjusted. A typical duration of the data measurement and inte-
gration period of an MVR3 radar is 300 ms out of every one-second sample interval. The
device is therefore blind during the remaining 700 ms of every second, an effect that must
be taken into account when interpreting MVR3 data of explosions. The MVR4 device, de-
pending on its current sampling rate, has a typical blind time fraction of ∼75%, i.e. with a
sampling period set to 0.07 s, the radar measures only during ∼0.018 s. Due to its higher
sample rate compared to MVR3 radars, the blind time of MVR4 radars typically does not
play an important role when interpreting explosion signals of volcanoes.

1The reflector needs to rotate, so its echo peak can easily be identified in the spectrum, moving at a non-zero
velocity.

2taking into account a parallax error resulting from the telescope’s position off the beam’s centre axis.
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Figure 5.4: Data logger in operation.

5.1.2 Data recording system

For on-site data storage, I developed a data recording system with a data logger as a central
element. Maximised for reliability within the available resources, a variety of design criteria
had to be met:

1. high reliability;

2. ruggedness;

3. wide operational temperature range (-40◦C . . . +50◦C);

4. gas and water proofness, and corrosion resistance to volcanic gases;

5. sufficient computing power to process the fast data stream from an MVR4 radar;

6. safe data storage despite low temperatures;

7. lightweight, easy to carry on foot;

8. easy to operate with gloves;

9. low power consumption;

10. easy to repair under field conditions;

11. wide power input range, power glitch, peak and reversal protection;

12. cost minimisation and availability of low-cost replacement parts;

13. lightning protection through electromagnetic shielding and grounding precautions.

14. impact protection from small volcanic bombs and from shrapnel from close impacts.

Criteria 2, 4, 7, 10, and 14 were met by using a rugged, commercially available, water- and
gas proof synthetic PeliTM case as housing for electronic elements (Fig. 5.4). All electronic el-
ements (e.g. power supply, CPU board, connector board, see Fig. 5.5 left) were implemented
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Figure 5.5: Modular data logger. Left: Modules inside data logger (l. to r.): power module; hard
drive module (also shown on right); CPU module; connector module for debugging. Right: Hard
drive temperature stabilisation module with rubber shock absorbers, designed to house a standard
2.5” laptop hard drive.

as individual modules inside the logger. An aluminium rack was installed in the logger
case as a structural backbone for all modules, allowing for quick and easy insertion or the
replacement of individual modules even under field conditions (Fig. 5.5).

This modular approach was not only chosen for individual electronic components inside
the data logger, but was adapted for the entire system. Accordingly, peripheral systems
like the WLAN client, the timing servers, or the power distribution hub were implemented
as individual and independent elements in their own respective cases, connected by cables
(Fig. 5.1). This greatly simplified the identification of faulty elements, and allowed for their
quick repair or replacement in the field. All elements are provided with power through
cables from a central power distribution box, providing a power bus with a voltage choice
of 12 and 24 V.

The core of the data logger is its central processing unit (CPU) module (Fig. 5.5 left), featur-
ing an AMD GeodeTM ”Cool FrontRunner” single board computer (PC/104-Plus standard),
providing a 366 MHz processor and 256 MB of memory at a power consumption of 6.5 W.
While this computing power is sufficient to process the ∼1–2 Mbit/s data stream of a fast
MVR4 radar, the CPU’s power consumption and therefore its heat generation is sufficiently
low to refrain from using a cooling fan.

All used plugs, cables, and electronic parts are temperature rated down to at least -40◦C,
allowing for the wide operational temperature range specified in criterion 3. Additionally,
the data logger provides space for a 2 cm thick foam padding layer that completely sur-
rounds and insulates the logger’s interior. To test for the systems functionality at low tem-
peratures, a multi-day full system test was performed at -30◦C in a large laboratory freezer.

I refrained from the use of liquid crystal displays throughout, which typically cease func-
tioning at low temperatures. Instead, for setting up the radar, for calibration, and for re-
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Figure 5.6: Radar peripherals. Left: An all weather rugged control display for the radar system.
Right: Field box with a GPS controlled NTP timing server and a network switch, providing precise
timing information to the system.

trieval of immediate state-of-health information, I developed a simple external display box
that is easy to read in cold temperatures and in strong sunlight3 (Fig. 5.6 left). The display
box has four control buttons that are easy to use with thick gloves, and provide the nec-
essary control over the instrument. Additionally, the entire system can fully be accessed
and remote-controlled through a connection to a field laptop computer, either through a
standard network cable or through a wireless WLAN connection.

Reliable data storage at low temperatures posed a particular challenge to the system de-
sign. This problem was solved in two ways, depending on the differing storage capacity
requirements of the old and the new radars. For the older MVR3 radars, only a few GB of
storage capacity was needed to accommodate several week’s of radar data. In this case I
decided against the use of conventional hard drives, replacing it with an 8 GB solid state
disk (e.g. a Compact FlashTM card) that served as a startup and data storage drive. Using
such solid state disks, which are available as industry rated versions down to a temperature
of -40◦C, left the entire system without any moving parts.

For the faster MVR4 devices, a data storage capacity in the range of 100 GB was required.
Since at the time of the experiment no solid state disk with such a capacity was available,
the storage capacity requirements were met by using a standard 2.5” hard drive that is
commonly used in laptop computers. Unfortunately, due to their fragile movable parts,
these drives typically have operational temperature ranges limited to >+5◦C, and addition-
ally are highly sensitive to shocks. Nevertheless, to allow for their usage, I constructed a
temperature-stabilised, thermally insulated housing for the hard drive, which constantly
monitors the hard drive temperature and provides heat if the drive temperature drops be-
neath +5◦C (Fig. 5.5 right). The device also makes sure that after a potential power outage,
the data logger only spins up the hard drive after heating it to a safe temperature. Pro-

3based on a vacuum fluorescence display with an attached green filter. Control commands between display
and logger are transmitted through the CPU board’s serial and parallel ports.
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tection against potential mechanical shocks through moving or dropping the data logger is
provided through a three-dimensional suspension of the drive and its copper block housing
on rubber shock protectors.

In a field environment, the power supply is typically one of the major sources of problems.
For example, if the available power sources (i.e. sun and/or wind) are not sufficient to meet
the instrument’s power needs, the voltage in the storage batteries drops. If uncontrolled,
such a voltage drop can lead to a state of non-operation of connected electronic elements,
which sometimes does not recover when the voltage rises back to normal, thus requiring a
hard reset. Such a lockout scenario poses a major threat to data safety, especially in a remote-
controlled system. A further source of power-related faults is, for example, the voltage drop
over long power supply cables, or the accidental power reversal by a user.

To prevent any damage or data loss from power-related faults, a series of preemptive
measures was taken. While the use of modern DC/DC power converters ensures a wide
range of input voltages (9 – 36 V) at efficiencies >80%, an adequate reversal protection and
additional fuses eliminate the danger from power peaks and reversals. Furthermore, the
system was protected by so-called watchdogs, which are small independent electronic circuits
that monitor the operation of the CPU, and perform a system reset in case of an undefined
state. While the CPU board itself has two of them, another watchdog was manually installed
in the data logger. The latter specifically monitors the state of the wireless network and is
programmed to perform a power cycle of the network hardware in case of a problem (further
described in Sec. 5.1.3).

Low-level protection against lightning and discharges of static electricity was achieved by
the introduction of a single electrical ground potential for the whole system while avoiding
grounding loops. Lightning protectors were introduced at all ethernet and antenna cable
connections. A low-level electromagnetic shielding of the logger was achieved by applying
a layer of specially conducting shield paint inside the logger case, which was electrically
connected to the system ground. It must be noted that while these measures provide suffi-
cient protection from static electricity and possibly from lightning strikes in the wider vicin-
ity, they do not provide adequate protection from a direct lightning strike. Protecting from a
direct strike would require an immense effort in grounding measures, and should be imple-
mented on an individual basis, depending on the lightning hazards at the respective field
location. In Antarctica, the danger from lightning strikes is relatively low in comparison to
static voltage buildup due to blowing snow, thus I regarded further preemptive measures
to the ones described above as unnecessary.

A minimisation of costs was achieved by the exclusive use of standard (”off-the-shelf”)
electronic parts. Mechanical hardware was manufactured by an in-house mechanical work-
shop, and special care was taken to keep all elements simple, easily replaceable, and repro-
ducible.
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5.1.3 Wireless telemetry, precision timing & power supply

When more than one radar is used at the same time, an effective time synchronisation and
a centralised base station to control the different instruments is essential. Additionally, for
data safety reasons in a hazardous environment, it is necessary to download and store data
in real time at an off-site location. To accomplish this, all data loggers and radars in the sys-
tem are connected through a wireless local area network (WLAN). This is realised through
the use of several commercially available industrial wireless clients and access points that
are rated to operate at low temperatures (for this study I used SmartbridgeTM products).
Each radar-logger combination is connected through a LAN cable to either a client, an ac-
cess point, or a repeater station, which in return is connected to a WLAN antenna (Fig. 5.1
inlay), effectively spanning a wireless network over the experiment site.

Commercially available products do not always hold what product advertising promises,
and in accordance with this, occasional unexpected problems with the WLAN devices oc-
curred during field tests, leading to unresponsive access points and therefore potentially
to network outages and lockout situations. These can only be solved by a hard reset of
the WLAN device, i.e. through a power cycle. To avoid these problems in the field, a spe-
cial watchdog device (ibootTM) was installed in the data loggers, continuously monitoring
the status of the WLAN device. In case of a problem, such as an unresponsive device, the
watchdog switches off the power to the WLAN device for a few seconds, therefore forcing
a hard reset and resolving a potential freeze and the associated network outage.

Precision timing of all devices in the network is achieved by the use of two or more in-
dependent time servers in the network, which distribute precise timing information via the
Network Time Protocol (NTP). The devices, manufactured by MTECHr company, obtain the
exact time from signals of the Global Positioning System (GPS). NTP clients run on all data
loggers and on the MVR4 radar, constantly querying the two NTP servers in the network,
and by comparing network latencies, determining the precise time down to a few 100ths of
a second. Ideally, one server is connected via cable to each data logger or radar (Fig. 5.6
right) so that precise timing is continued even in the case of a network outage.

The total power consumption of the radar system is strongly dependent on the choice of
devices. A typical field station setup consists of a radar device (MVR3: ∼18 W4; MVR4: ∼23
W), a data logger (with hard drive: ∼13 W when writing; with flash drive:∼8 W), a GPS NTP
server (3 – 5 W), and a WLAN client (4 – 6 W). In case of an MVR3 radar setup, this adds to a
total of 33 W; a system with an MVR4 radar needs around 45 W. When power consumption
is a critical constraint, the data logger and NTP server can be omitted, lowering the system’s
power consumption to around 25 W at the cost of data safety. As an example, such a reduced
system can run for around 30 hours continuously on a standard 65 Ah car battery.

Even though it is the most important element in the system, an all-encompassing solution

4all given power consumptions are averages, and include the DC/DC voltage converters that transform the
system input voltage of 9–36 V into the stabilised voltage needed by the respective device.
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Figure 5.7: Power sup-
ply. A methanol fuel cell
providing 50 W continuous
power.

for the power supply does not exist. In most field experiments, the local setting dictates
which power sources can be used. In the case of Antarctica, these choices are solar and
wind power, simply because both of them are abundant in the Antarctic summer. Since
they are not an explicit part of the system developed in this study, I will discuss them in
Section 5.2.4 as part of the experiment description.

A very lightweight and versatile power source that was integrated into the system de-
veloped here, is a so-called Methanol fuel cell (Figs. 5.1 & 5.7), a small but powerful electric
generator recently developed by SFC Smart Fuel Cell AGr. Weighing only 7 kg, it generates
50 W of continuous power by converting ∼0.05 litres of methanol fuel per hour into water
vapour and carbon dioxide. A 10 litre tank of methanol therefore lasts for more than a week
when supplying a system that uses 50 W continuously, or for more than two weeks when
supplying a 25 W system buffered by a small 12 V battery (Fig. 5.7).

Even though such a fuel cell would be an attractive alternative to the available energy
sources in Antarctica, the technology was new at the time of the experiment and its reliability
unproven under harsh environmental conditions, particularly under low temperatures. I
therefore decided against using it in Antarctica in favour of the more established and proven
solar and wind energy.

5.1.4 System test: monitoring a quarry blast with three radars

A quarry blast in Koschenberg, Germany, was observed with three radars on October 13,
2005, to test the setup of the radar system with precise timing capabilities, wireless data
transmission and telemetry. The purpose of this section is to demonstrate the system setup
in the field. The gained data will later be used to demonstrate a data processing method for
calculating 3D velocity vectors (Appendix B.1.1).
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Figure 5.8: Quarry panorama with radar locations (triangles) and blast wall (marked by an ellipse).
The target region illuminated by the radars was much smaller than the wall, and is shown in Fig. B.2

Figure 5.8 shows the setup of the blast site and indicates the position of the three radars.
For the blast, 13 tons of explosives were placed in 60 vertical boreholes, aligned in three
rows above the rock face. The ignition sequence was completed within around 0.5 seconds
and moved from left to right (as seen from the radars), fracturing roughly 100,000 tons of
rock.

The blast was observed by three radars at distances between 250 m and 320 m, sampling
at 1 Hz (see Fig. 5.9 top). A laptop base computer was used for central data storage and to
control the system. While the collocated base site and the MVR4 radar were powered by a
50 W methanol fuel cell, the other two radars ran off a car battery, respectively. The setup
of the entire observation system took about half a day. All devices performed nominally
during the test, nevertheless important information on necessary system improvements was
gained. The obtained data and results can be found in Appendix B.1.1.

Figure 5.9: Radar pointing on the quarry wall after the blast.
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5.2 Multidisciplinary experiment at Erebus volcano, Antarctica

This section describes the experiment conducted at Erebus volcano (Figs. 1.2, 5.10 & 5.11) in
the 2005/2006 field season, leading to the collection of a unique multidisciplinary dataset.
While the collection of radar data (Sec. 5.2.1) was the responsibility of the author, the other
elements of the dataset were collected by various working groups and individuals. Jones
et al. (2008) installed and maintained a network of several acoustic infrasound microphones
(Sec. 5.2.2), whereas staff of the Mount Erebus Volcano Observatory (MEVO, see Aster et al.,
2004) were responsible for the collection of infrared video data (Sec. 5.2.3).

The field campaign took place from 1 December 2005 until 3 January 2006, preceded by
several weeks of preparation in the nearby McMurdo Base and a short altitude adaption
period in an acclimatisation camp at medium altitude. The field camp was set up at the pre-
existing Lower Erebus Hut (LEH, Fig. 5.12), located on the summit plateau of Erebus volcano
at an altitude of 3400 m, which is about 170 m lower than the lava lake at ∼ 1.8 km distance.

A detailed elevation model of the crater region is given in Figure 5.10 (therefore sup-
plementing Figure 1.2, which shows a satellite image of the whole volcano including the
location of LEH). All relevant site coordinates are additionally given in Table 5.1.

Initial transport to and from the field camp was conducted by helicopters with additional
frequent logistical support from McMurdo station (run by the US National Science Founda-
tion) when weather conditions were appropriate. Transport in the field was accomplished
by snowmobiles, allowing motorised travel to the base of the crater hill, some 150 vertical
metres below the crater rim. From there, all instruments were carried on foot to their final
location on the crater rim (Fig. 5.17).

Frequent blizzards and inclement weather conditions with temperatures down to -45◦C
restricted the number of opportunities for the setup of instruments. Working on the crater
rim was only possible in good visibility conditions to reduce safety hazards originating from
impacting explosion ejecta, which on several occasions travelled well beyond the crater rim
(indicated by dots in Fig. 5.10). For the same reason, field teams were in close VHF radio
contact with the field camp at LEH or with McMurdo station operations (MAC OPS) at all
times, and operated in groups of at least two persons.

During the field season, explosions at Erebus typically occurred several times per day,
and originated from the phonolitic lava lake (called Ray Lava Lake), which had a diameter
of around 40 m the time. Ray Lava Lake was situated ∼ 200 m below the crater rim of a
roughly 500 m wide crater (Fig. 5.15). Most explosions lasted for several seconds, with an
impulsive main acceleration phase lasting for around one second. They often ejected a large
number of decimetre to metre sized lava bombs (Fig. 5.14), covering distances up to several
hundred metres from the lake.
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Figure 5.10: Digital elevation model of Mt. Erebus crater region. Radar and multi-instrument sites
are shown as stars, all three of them are located on the crater rim with a direct line of sight to Ray Lava
Lake (indicated as dashed lines). The lava lake is sketched as a red circle with an indicated, 40 m wide
bursting bubble above. Orange circles show infrasound (IS) sites located at lower elevations on the
crater flanks. The underlying horizontal grid is centred under the lava lake coordinates (Tab. 5.1), the
vertical axis denotes elevation above sea level. Dark grey dots indicate the positions of the farthest
flying bombs that were found (Bomb GPS locations were kindly provided by Nelia Dunbar, see also
Gerst et al., 2008). The elevation model was acquired by airborne laser altimetry (Csatho et al., 2005).
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Name Instrument type Latitude Longitude Elevation

LEH (Lower Erebus Hut; base camp) environmental monitoring 77.51039◦ S 167.14587◦ E 3400 m
RAY (Ray’s Site) fast radar 77.52857◦ S 167.17057◦ E 3769 m

infrasound microphone 77.52856◦ S 167.17083◦ E 3769 m

SHK (Shackleton’s Cairn) radar 77.52605◦ S 167.15608◦ E 3774 m
infrared video camera 77.52605◦ S 167.15608◦ E 3774 m
infrasound microphone 77.52607◦ S 167.15585◦ E 3774 m

SUM (Summit) radar 77.52991◦ S 167.16534◦ E 3790 m
NKB (Nausea Knob) infrasound microphone 77.52199◦ S 167.14740◦ E 3627 m
E1S1 (E1 Site) infrasound microphone 77.53045◦ S 167.13984◦ E 3712 m
E1S2 (E1 Site) infrasound microphone 77.53034◦ S 167.15091◦ E 3769 m
Ray Lava Lake centre none 77.52669◦ S 167.16528◦ E 3570 m

Table 5.1: Station locations (WGS84). The position of instrument sites were all determined by differential
GPS (using Trimble receivers, supported by UNAVCO) with a precision better than +/- 10 cm (N. Dunbar, pers.
comm.). Data were processed using a permanent base station at Lower Erebus Hut. The location of the lava
lake centre was calculated using several distance measurements (not shown) with a Leica Vector GIS laser range
finder relative to the crater rim station locations. The position of the permanent lava lake (named Ray Lava Lake)
should be exact to within 10m, but it might not be stable over a time span of several years. The lake diameter
was ∼40 m at the time. Note that inside Erebus crater there is another lava lake called Werner Lava Lake, which
is transient in nature and much smaller than Ray Lava Lake.

Figure 5.11: Photograph of Mt. Erebus crater region in the austral summer 2005/06, modified to
include station locations. The location of Lower Erebus Hut on the summit plateau is obstructed by a
volcanic plume of mainly water vapour and CO2. This photograph was kindly provided by George
Steinmetz c©.
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Figure 5.12: Field camp at Lower Erebus Hut, at an elevation of 3400 m. The mountains in the
background are the Transantarctic Mountains at a distance of more than 100 km (A. Gerst, 2007).

5.2.1 Doppler radars

The technical state of the Hamburg University Doppler radar monitoring system and the
environmental conditions in the field allowed me to exceed the originally proposed experi-
ment outline (DFG proposal HO1411-16/1) in two major points. Firstly, three radar devices
were installed on the crater rim instead of one. Secondly, the timely completion of the de-
velopment of a new and comparatively fast radar device called MVR4 (Sec. 5.1.1) not only
increased the available sampling rate from 1 sps to ∼14 sps, but also expanded the radar’s
velocity measurement range and resolution. These two additions allowed the observation
of Strombolian explosions at Erebus not only in much more detail through the higher sam-
pling rate, but also to observe them in three dimensions from three different observation
points on the crater rim.

Three sites on the crater rim (RAY, SHK, SUM) were occupied with FMCW Doppler radar
devices (technical information in Sec. 1.5 & 5.1.1), all of them with a direct line of sight to
the lava lake, at an observation distance of ∼300 – 400 m (leading to observation elevation
angles between 31◦ and 41◦, see Fig. 5.10 & Tab. 5.1). The fast MVR4 radar was installed
at RAY site, operating with a sampling rate of ∼14 sps. Two slower MVR3 radars were
installed at sites SHK (Fig. 5.13) and SUM, operating at ∼1 sps. The choice of sites was
a tradeoff between optimal observation conditions (i.e. three maximally different azimuth
angles from the lava lake), existing power supplies, and safety issues. While observation
conditions were optimal at a site on the Northeast side of the crater rim, this location was
avoided due to safety concerns regarding its frequent bombardment with volcanic ejecta
(Fig. 5.10).

The centre areas of the radar beams observing the lava lake surface had a diameter of
around 20 m, resulting from the beam spread angle of ∼ 3◦ at -10 dB (Fig. A.1). The area of
observation on an expanding bubble was large enough to ensure that its surface point that
was moving fastest towards the radar was observed during at least the first second of each
explosion, even when the bubble surface strongly bulged upwards during an explosion.
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Figure 5.13: Instruments at Shackleton’s Cairn (SHK) site at an elevation of 3774 m. Left: The
instrument in the foreground is a FTIR spectrometer (not used in this study), followed by a Doppler
Radar and the thermal infrared video camera (C. Oppenheimer, 2005). Right: video camera closeup
(A. Gerst, 2007).

Figure 5.14: Left: Alignment of the radar at SHK site. A directional Yagi WiFi antenna, as well as
an omnidirectional dipole antenna is mounted on the pole on the left. The infrared video camera is
located just out of view to the right. Right: fresh lava bomb, still partially molten and glowing inside
(A. Gerst, 2005).

Figure 5.15: Ray Lava Lake seen from the Doppler radar’s perspective on a day with good visibility
from SHK site. The distance to the lake is ∼300 m. Right: Closeup view of currently ∼40 m wide
Ray Lava lake (A. Gerst, 2005).
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All three radar devices sent their data directly through a wireless network to a database
server located at the Lower Erebus Hut field camp. This allowed for a real-time monitoring
of the data and the direct assessment of state of health information, as well as the issuing
of control commands from the field camp. For additional data safety in the case of network
outages, the radars at RAY and SHK had a custom built data logger (Sec. 5.1.2) directly at-
tached, redundantly recording all data onto a temperature-stabilised hard drive. For weight
and power saving reasons, the radar at SUM site, located at a relatively inaccessible place
close to the summit of the volcano, did not have an additional data logger attached. While
strongly reducing the power consumption of SUM site, the drawback of this practise was
that its data could only be recorded as long as the wireless network was operating.

Precise synchronisation of the three radars down to a few milliseconds was ensured by the
use of two independent, M-TECHr NTP servers in the network (Sec. 5.1.3), synchronised
with the Global Positioning System, and located at SHK and RAY sites.

Before installation on their respective crater rim sites, all three radars were calibrated at
Lower Erebus Hut, meaning that their radar beams were aligned with a telescopic sight
attached to the radar, using a portable rotating radar reflector (Sec. 5.1.1). This practise
allowed for the correct pointing of the radar beam onto the target simply by aiming through
the telescopic sight (the mount for the telescope can be seen in Fig. 5.15; the telescope itself
was not attached at the time). Subsequently, the radars were transported and anchored on
the crater rim, using long ground pegs and special rope.

Valid radar data were obtained from 15 December 2005 to 2 January 2006, as will be de-
scribed in more detail in the Data Section (an observation time overview is shown in Fig. 6.1).

5.2.2 Infrasonic acoustic microphones

A network of several acoustic microphones recording in the infrasonic frequency range
(<20 Hz), was installed by Jones et al. (2008), complementing and replacing pre-existing
microphones (Aster et al., 2004). The network consisted of seven sensors, of which five were
operating at the time of the radar experiment. They were installed at distances of ∼ 300
– 800 m from the lake (Fig. 5.10 & Tab. 5.1).

Two different sensor types were used (pressure transducers and elecret condenser elements;
for further technical details see Jones et al., 2008), mainly differing in their dynamical range.
The more dynamical pressure transducers (installed at SHK site) have a dynamic range of
±125 Pa and a flat frequency response down to 0.01 Hz (3 dB corner), controlled by a me-
chanical low pass filter attached to the microphone (Jones et al., 2008). Elecret condenser
elements (installed at RAY, NKB, E1S1 & E1S2) have a dynamic range of ±50 Pa and pro-
vide useful data down to frequencies of 0.05 Hz, with a 3 dB attenuation corner at 0.5 Hz
(Aster et al., 2004).
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Figure 5.16: Crater region seen from
the field camp at Lower Erebus Hut,
located on the summit plateau at a
distance of about 1.7 km from the
crater rim. From here, transport
of equipment was accomplished by
snowmobiles and by foot. All tents
needed to be protected by snow walls
to withstand the frequent and pow-
erful Antarctic blizzards (A. Gerst,
2007).

Figure 5.17: Methods of transport (decreasing level of sophistication). Left: hooking up a cargo
transport net to a hovering helicopter. Centre: Transport of gear to within 400 m of the crater rim is
achieved via snowmobile. Right: The crater rim can only be approached on foot (A. Gerst, 2007 &
2005).

5.2.3 Infrared video

A thermal camera was located on the crater rim, deployed by staff of the Mount Erebus
Volcano Observatory (MEVO , see Aster et al., 2004) at SHK site (Fig. 5.10), co-located with a
Doppler radar. The camera recorded in an overlay mode of both the infrared and the visible
spectrum and produced an analog video stream at a frame rate of 30 frames per second
(fps). The analogue video stream was telemetered via a 900MHz radio link to a digitiser at
Lower Erebus Hut (LEH), which produced a time stamped digital video stream of 640x480
pixel frames at a rate between 15 and 30 fps, depending on the variable quality of the radio
link.

Relatively constant ambient lighting conditions were ensured by the polar latitude of
77.5◦ South, which prevented the sun from descending below the horizon even at ”night”
times in the Antarctic summer. In contrast to the microwaves used by Doppler radars, in-
frared radiation is strongly attenuated by clouds. Therefore, weather and volcanic plume
conditions above and inside the crater strongly influence the quality of thermal video im-
ages.
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Figure 5.18: Field trouble. Left: Rime ice on instruments, typically building up in the final hours
of large storms or blizzards before the weather improves. Right: RAY power site after a direct hit of
a medium sized bomb. The large wooden battery boxes were only slightly scorched, thus narrowly
escaping total destruction (A. Gerst, 2005).

5.2.4 Power supply

Power for all stations was supplied by solar panels and wind generators. SUM site, a tem-
porary installation that was only used for this experiment, had a portable array of solar pan-
els installed with a total maximum power of ∼200 W5. Radars at SHK and RAY sites both
tapped into the permanently installed MEVO power supply at the respective sites (Aster
et al., 2004). Each of these consisted of a solar array and a wind generator, located several
hundred metres beyond the crater rim for operational safety reasons. Power was trans-
ferred to the crater rim via a cable. Despite its relatively safe location, RAY power site was
partially destroyed by a direct hit from a medium sized volcanic bomb in mid December
2005 (Fig. 5.18 right).

5.2.5 Wireless network

The wireless local area network that was used for data transmission between radar sites
and base camp consisted of commercially available Smartbridger 2.4 GHz WLAN clients
installed at sites RAY and SUM, as well as a repeater station (”XO2

TM”) installed at SHK site.
SHK site allowed a direct line-of-sight connection to the base camp at Lower Erebus Hut,
where a wifi access point provided the necessary network infrastructure. All sites used 20 dB
directional Yagi antennae, the repeater site additionally used a 13 dB round dipole antenna
for its connection to crater rim sites (as can be seen in Fig. 5.14). The used protocol was IEEE
802.11b, allowing for a maximum theoretical data transfer rate of 11 Mbps. However, during
the experiment the typically achieved throughput was only a fraction of this (<2 Mbps).

5while this was the maximum achievable power output, the actual multi-day average output power was about
10% of that value.
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The wireless architecture did not only provide a real time data downlink to the base camp,
it also allowed remote access of all radar devices and their data loggers on operation sys-
tem level, enabling the continuous download of state of health information of all involved
instruments. A very useful additional feature of this wireless network architecture was that
it could be easily accessed from a portable laptop computer (with a standard WLAN card)
from virtually anywhere in the crater region, allowing a simple and wireless way to check
recording instruments in the field.

The main cause for the occasional network outages that occurred during the experiment
was found to be short power outages or voltage drops. These sometimes caused the WLAN
devices to lock up until manually restarted by a power cycle. This problem was largely
overcome by the introduction of small watchdog devices (installed in the data loggers) that
continuously checked the network availability, and which automatically power-cycled the
whole station in case of a device lock-up (see Sec. 5.1.3). Yet, despite these measures, the
system occasionally locked up because even the watchdog devices proved to be vulnerable
to power glitches under field conditions. Considering that severe weather conditions fre-
quently eliminated the possibility of leaving the camp and servicing an instrument for time
spans of up to a week, these lockout situations posed a potentially serious threat to data
safety. To finally eradicate the problem, these vulnerable parts of the system were protected
by a simple electromechanical timer, programmed to power cycle the connected devices
every four hours.

An additional, entirely mechanical cause of network failures was the breaking of Yagi an-
tennae through the buildup of rime ice (Fig. 5.18 left). However, this problem could quickly
be overcome by a more sturdy suspension of the antennae by additional ropes.



CHAPTER 6

DATA

This section describes data that was collected in the frame of this study at Mt. Erebus vol-
cano, Antarctica, from December 2005 to January 2006. It concentrates on data from a fast
MVR4 Doppler radar device operating at location Ray’s (RAY) on the crater rim, as well as
data from an infrared video camera installed on the crater rim at position Shackleton’s Cairn
(SHK; see Tab. 5.1).

A short section will address data from two further, slower, MVR3 radar devices that were
positioned at locations Shackleton’s Cairn and Summit (SUM) on the crater rim. Additionally,
I will briefly address recordings of acoustic infrasound that will be used later. The micro-
phone setup and the acoustic data collection were not part of this study, but were carried
out by Jones et al. (2008, see also Sec. 5.2.2). Likewise, infrared video data were collected by
staff of the Mount Erebus Volcano Observatory (MEVO).

In Chapter 7 I will use the data from the fast radar to derive mechanical and energetic
properties of typical bubble burst explosions with a high temporal resolution. The combined
data from all three radar devices will be used in Chapter 8 to derive 3D vectors of explosion
directivity, including a more detailed discussion of the data from the two slower radars.

Figure 6.1 gives a temporal overview of all explosions that were observed with the three
radar devices, located at RAY, SHK and SUM sites. For an overview of all station locations
and their coordinates, see Figure 5.10 and Table 5.1. A total of 55 explosions were recorded
in 18 days of intermittent operation, classified into several different explosion types, as will
be defined in the next sections.

For a better comparison between explosions detected by radar and explosions that were
automatically detected by the infrasound network (Jones et al., 2008), acoustic trigger events
are included in Figure 6.1 as dashed lines. Their height indicates the relative sound pressure
measured at the crater rim. Both the radar and the acoustic system were only intermittently
operating, so not all explosions were detected by both systems together. Radar data were
automatically and manually sighted for medium sized and large explosions, so the detection
rate during radar operating hours should be close to 100%.

In general, operational failures were mainly caused by power outages due to severe po-
lar storms covering solar panels with snow and depositing rime ice on wind generators,
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Figure 6.1: Overview of all explosions observed with radar. Underlying gray shades indicate the
times at which the three radars were operating (located at SUM, SHK & RAY). Coloured vertical
lines and symbols denote the kind of explosion that was detected, their relative height indicates the
maximum detected velocity. Dashed black lines denote explosive events detected by the automatic
infrasound triggering system (intermittently operating); the line heights are scaled with measured
sound pressure. Major and minor tick marks indicate days and hours, respectively. Outages shorter
than one hour are not explicitly shown. Note that at 16-Dec, the short operating period of SUM and
SHK radars was an off-site calibration test only.
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sometimes for several days at a time. Additionally, occasional network outages sometimes
prevented the recording of data from the radar located at SUM, because this device did not
have a local data logger attached but transferred its data through the wireless network to a
data logger at the base camp, located at the Lower Erebus Hut (LEH).

6.1 A visual overview

The thermal video camera installed at the crater rim (Aster et al., 2004, see Sec. 5.2.3) allowed
for the visual observation of explosions. However, weather and volcanic plume conditions
permitted the video observation of only about half the explosions that were observed by
radar. A characteristic snapshot of each of the visually observed explosions is shown in
Figure 6.2 to provide an overview of explosions. The original video files are available in the
supporting online material (SOM). Additionally, three sequences of several snapshots, each
depicting one of the three different explosion types, are shown in Figures 6.10 to 6.12 below.

Explosion types. Explosions at Erebus were classified into four different types: I, II, small,
and blurred, according to their explosion characteristics. Types I and II are by far the most
frequent, and can be seen as the ”standard” type explosions that are observed at Erebus.
The main difference between them is the way bubbles expand. Their exact characteristics
will be discussed in detail in the following sections. Small explosions, as the name suggests,
resemble a smaller and lower energetic version of types I and II. This influences several of
their characteristics, which will also be discussed. Finally, the naming of blurred explosions
refers to their appearance in the radar velocity spectra, where they have a somewhat fuzzy,
or blurred shape that prevents the picking of cutoff velocities (Sec. 4.1.2). Visually, blurred
explosions are very similar to type I and II explosions, and might simply be a degenerated
version of them. I will now successively describe the characteristics of all explosion types,
shedding further light on their nature.

While type I and II explosions are equal in number (19 each), only six small and eight
blurred explosions were detected. Video observations are more sparse, amounting to 11
type I and six type II explosions. Additionally, four small and one blurred explosion could be
observed with a lower frame rate of 1 fps.

Video data show that type I & II explosions typically affected the entire surface of the
lava lake1. Small explosions, due to a smaller bubble radius, only affected a part of the lake
surface. In these cases the approximate radius of this affected area (i.e. their footprint) was
determined from video (as annotated on the snapshots).

In addition to explosively bursting bubbles there were numerous very small gas bubbles
(R < 2 m) that reached the surface of the lake without any sign of explosion. These very

1The snapshots in Figure 6.2 show some of the type II explosions in their early phase (e.g. IIP ) before the
explosion affects the whole lake surface.
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Figure 6.2: Thermal video snapshots of explosions that were observed both by radar and the
MEVO thermal camera (weather permitting). ”Hot” pixels are shown in green, ambient tempered
pixels are shown in their natural colours. All videos are available in the supporting online material
(SOM). The unique identifier for each explosion (upper left corner) consists of a prefix showing the
explosion type (I, II, S, & B), and an alphabetical index increasing in temporal order (see Fig. 6.6 be-
low). Explosions that are annotated with ”Img” are only available as low resolution video with 1 fps.
Where stated, R denotes the approximate radius of the affected region of the lake surface (otherwise
R ≈ 20 m, i.e. the whole lake surface was affected for all but small explosions).
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Figure 6.3: Series of Doppler radar velocity spectra, recorded during the rapid expansion phase of
a typical type I bubble explosion (panel IP in Fig. 6.2). The radar was of the fast type, located at RAY
site. Each spectrum sums around 70 ms of Doppler velocity data (≈ 14 sps). Positive speeds mean a
movement towards the radar. The small vertical lines show picked cutoff velocities and their error
range.

small bubbles obviously did not contain as much volume as their larger, explosive coun-
terparts but occurred much more frequently. Typically, they reached the surface of the lava
lake as benignly as an air bubble reaching the surface of water, and then slowly collapsed
within a few seconds (see videos provided in SOM). Neither detectable audible sound nor
infrasound was usually generated by these events.

6.2 Radar velocity spectra

Figure 6.3 shows an example series of radar velocity spectra, depicting four subsequent
samples of a typical type I explosion at Erebus. The spectrum shown in Figure 6.3 A was
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recorded some 310 ms after the explosion started, with subsequent spectra following about
every 70 ms. As discussed in Section 1.5, the spectra are a relative measure of how much
material in the radar beam moved at which speed toward the radar. In case of Figure 6.3 A,
this means that the bulk of material had a radar velocity component between 15 and 25 m/s
at that time. I use the spectra for picking radar cutoff velocities (vR,cut, see Eq. 4.23), which
allows the calculation of a bubble’s surface velocity when applying the bubble expansion
model (Sec. 7). Since they are the key parameter for all subsequent data processing, I will
use the following paragraphs to describe the determination of vR,cut in the necessary detail.

Surface points on an expanding bubble move in many different directions away from the
centre. As was also discussed in Section 1.5, the direction of particle movement has a large
influence on the measured velocity component pointing towards the radar (e.g. a particle
moving perpendicular to the beam would appear to not move at all, having a radar velocity
near zero). To demonstrate the consequences of this effect I have simulated the expected
velocity spectra for four different stages of a bubble explosion. Figure 6.4 A shows the
expected radar spectrum for an initial phase of an explosion, when the lake surface is still
almost flat, but has already started to bulge up. In Figure 6.4 B and C the bubble grows,
leading to an increasing radar cutoff velocity. As argued in Section 4.1.2, the typical peak
in echo power just beneath vR,cut is caused by the part of the bubble’s surface area that is
located around the point moving fastest towards the radar. The coherent and round shape of
the bubble surface ensures that this area has a significant size, leading to the concentration of
significant echo power in the spectrum just beneath the velocity of the point with the largest
radar velocity. Consequently, vR,cut is not only the upper cutoff velocity of this peak, but it
is also the overall maximum velocity of which an echo can be observed in the spectrum (in
the case of an intact bubble).

Figure 6.4 D shows a simulation of a post-burst situation (i.e. the expected velocity spec-
trum after the shell has ruptured) by using the same parameters as in C, with the addition
that some of the individual reflector’s speeds were increased by random values. This in-
crease of speed simulates ejecta that have been randomly accelerated by escaping gas dur-
ing shell rupture while most others still move close to their pre-burst velocity. Introducing
this effect immediately broadens the simulated spectrum, and eliminates the distinct cutoff
at the spectrum’s right side. In real spectra, from this point on, picking the cutoff velocity
is difficult because it is no longer equal to the spectrum’s maximum velocity. In an extreme
case it might even be entirely masked by the signature of the burst fragments, as indicated
in this simulation.

Comparing the simulated spectra from Figure 6.4 to the real ones shown in Figure 6.3
allows us to understand their important features. As a first impression, the four spectra in
Figure 6.3 illustrate that the shapes of velocity spectra can significantly change from one
sample to the next. Velocity spectra of type I explosions typically started out showing one
(or a group of) narrow but high peaks (Fig. 6.3 A & B), and then suddenly transformed into
a broader group of peaks somewhat later in the explosion (Fig. 6.3 C & D). Consistent with
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Figure 6.4: Simulated velocity spectra for different stages during a bubble explosion. The sim-
ulation method is similar to the one used in Fig. 4.5. The radar’s location was chosen to reflect the
geometry at Erebus (φR = 39◦, 300 m distance), illuminating only a part of the bubble surface (red).
The black line marks where the radar’s sensitivity reaches -10 dB, i.e. where the receivable echo
power has fallen to 1/10 of that in the beam centre. The blue dot is the point on the bubble surface
moving fastest towards the radar (→ vR,cut). A-C: Expansion of a bubble with an intact surface. D:
Simulation of a post-burst spectrum, with otherwise similar parameters as were used in C.
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the simulation (Fig. 6.4 C), such a broadening of the spectrum is most likely caused by the
change from a single intact surface in the radar beam to a situation where several (or many)
objects move in the radar beam at significantly different radar velocities.

Additionally, comparison with explosion videos showed that this characteristic change
of shape usually occurs around the time when bubble shell rupture can be identified on
video. Accordingly, I interpret this change from a narrow to a broad radar spectrum as the
detection of shell rupture from now on, transforming the single bulging lava lake surface
into a group of individual ejecta fragments moving at different speeds. In the following
figures, if observed, the detection time of this broadening effect will be marked as a star.

Picking of spectra. As mentioned above, for the later application of the bubble expan-
sion model to the data it was necessary to identify the radar cutoff velocity vR,cut in each
explosion spectrum, a feature that allows the calculation of the speed of the bubble surface
moving towards the radar (Sec. 4.1.2). Figure 6.3 gives an example of how the cutoff veloci-
ties were picked. In cases where the velocity spectra consisted of one single peak or a narrow
group of peaks, the cutoff velocity was a very distinctive feature in the spectrum, and was
additionally identical with (or close to) the maximum velocity in the spectrum. This made
its identification trivial and easily obtained even by automatic methods (e.g. Fig. 6.3 A & B).

In the case of a broader group of peaks in the spectrum (Fig. 6.3 C & D), the automatic
detection of vR,cut proved to be unreliable due to the existence of many fragments instead of
only one bubble surface in the radar beam. In this case, the original interpretation of vR,cut

does not hold, since there is no intact bubble surface any more. Instead, the closest analogy
to that definition is to pick the maximum radar velocity of the bulk of material2. Picking
this feature in post-burst spectra is very difficult for an automatic picking algorithm, since
sometimes only a few fast fragments can cause an echo peak in the spectrum at a high
velocity, but they do not represent the maximum speed of the bulk very well (e.g. small
peak at far right in Fig. 6.3 D)3. Note that for further processing (e.g. for applying the bubble
expansion model), only the pre-burst spectra are important. Even so, all available spectra
(pre and post-burst) were manually picked to ensure a constant quality of picks. If necessary,
this pick quality can be assessed in Figures 6.6 to 6.8 below.

To quantitatively include the quality of picks in the further processing, error ranges ∆vR,cut

were introduced, embracing each pick of vR,cut (shown in Fig. 6.3). The error ranges were
manually picked with the aim of including the true cutoff velocity with a very high likeli-
hood. Since this is a rather quantitative definition, the statistical analogy of a 95% confidence
interval was aimed for, and is therefore considered an appropriate analogy. Consequently,
the width of the error range was relatively large when the spectrum consisted of a broad

2defined as the maximum velocity at which a significant signal echo can be observed in the radar spectrum,
caused by the main bulk of material.

3Next to manual picking, several types of automatic picking algorithms to determine cutoff velocities were
investigated (not shown). While they all led to similar results, I found that the picking error rate is higher
for automatic methods than when picking manually, so I refrained from using automated picks.
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Figure 6.5: Spectra series of a typical type II explosion. Note the difference in vertical scale be-
tween A–B and C–D. Typical type II spectra show similar features as post-burst spectra from type I
explosions (Fig. 6.3 D). In A & B, the echo power that can be seen to the right of vR,cut is mostly
ambient noise. Absolute dB values of type II explosions are typically smaller than those of type I
explosions, most likely resulting from the fractured surface.

group of peaks (e.g. post-burst spectra, Fig. 6.3 D), and sometimes it shrank down to the
sample width of the velocity axis (i.e. the velocity resolution, in this case 0.39 m/s; e.g.
Fig. 6.3 A). The pick of vR,cut was not necessarily in the centre of the error range, caused by
the asymmetrical shape of the falling upper flank in the spectrum.

Figure 6.5 shows a series of spectra from a typical type II explosion. In comparison to
type I explosions (Fig. 6.3), type II explosions show higher velocities and a much broader
and more diffuse spectrum, right from the start of an explosion. Similar to post-burst spectra
from type I explosions (Fig. 6.3 D), type II spectra do not show the signature of an intact
surface, i.e. a well defined peak. This typically leads to a large error range for the picked
cutoff velocity. In contrast to type I explosions, radar and video observations of type II
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explosions suggest that the lava lake surface immediately ruptures when the first movement
is detected, and before a significant bulging of the entire lake surface occurs.

In summary, cutoff velocities of type II explosions cannot be interpreted in the same way
as those of type I explosions. While for type I explosions they are representative of the
whole moving lake surface, they only represent a few (or many) explosion fragments for
type II explosions. For this reason, cutoff velocities of type II explosions are not used in the
further processing, apart for calculating their expected infrasonic acoustic signal.

Of the 55 recorded explosions, 44 allowed for the picking of radar cutoff speeds as a func-
tion of time. Eight explosions had a ”blurred” radar velocity spectrum, i.e. they did not
display a distinct maximum or cutoff velocity, but various widely dispersed velocity peaks
with different heights. Cutoff velocities of blurred explosions could therefore not be picked.
During three explosions the radar data showed short but significant gaps in the sampling,
most likely due to a short overload of the radar’s central processing unit. Cutoff velocities
of these explosions (marked as ”bad data”) were therefore not picked, either.

The available radar data of explosions includes several hundred velocity spectra. Inspect-
ing these one at a time does not allow for a clear overview of the data. Therefore, I will
introduce a more adequate method to visualise a time series of several velocity spectra in
one diagram.

6.3 Radar velocigrams

Figures 6.6 to 6.9 show radar velocity spectra for all measured explosions as so-called veloci-
grams. This type of illustration allows the visualisation of a time series of several velocity
spectra in one plot, where their echo power is translated into a colour map, and their radar
velocity is shown on the vertical axis. Therefore, brightly coloured areas in the velocigram
allow the viewer to follow the temporal development of velocities of the material in the
radar beam.

The velocigrams additionally show the cutoff velocities that were picked in each spectrum
as white lines, and their respective error bars are indicated. This allows a judgement to be
made on the correctness of fit between the picked cutoff velocities and the spectra. The
figures show that generally, error bars (∆vR,cut) of type II explosions are significantly larger
than those of type I.

For explosions of type blurred (Fig. 6.9) it was not possible to determine cutoff velocities
because their velocity spectra typically did not show a distinctive peak or maximum veloc-
ity. It is therefore not possible to analyse their surface velocities. However, when comparing
their velocigrams to the velocigrams of type II explosions (Fig. 6.7), they show important
similarities, not only in their curve shape, but also in their velocity and echo power range.
It is therefore likely that blurred explosions are very similar, if not identical, to type II explo-
sions (this will be further discussed in Chapter 9).
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Figure 6.6: Radar velocigram of explosion type I. Each explosion was assigned a unique label (up-
per left), consisting of the explosion type and an index of subsequent letters of the alphabet. The text
annotation shows the reference time of the explosion start and the explosion type (the meaning of
types Ia and Ib will be explained in Sec. 6.4). Explosions for which a thermal video is available are
marked with ”Vid”, explosions for which at least a single infrared snapshot image is available are
marked with ”Img”. The colour map shows the echo power in dB that was measured by the radar at
the respective time (scale is non-linear). White lines show the picked cutoff velocities and their error
range.



116 DATA

Figure 6.7: Radar velocigram of explosion type II. On average, type II explosions have radar veloc-
ities up to three times as high as type I explosions, but produce smaller echo powers (see Fig. 6.6 for
further explanation).
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Figure 6.8: Radar velocigram of explosion type small. Note the difference in maximum radar
velocities between small and type II explosions. R denotes the approximate radius of the affected
region of the lake surface (in type I & II explosionsR ≈ 20 m, i.e. the whole lake surface was affected).

Figure 6.9: Radar velocigram of explosion type blurred. Due to a ”blurred” upper end of the ve-
locity spectrum, cutoff velocities could not be picked for this type. Despite this, spectra of blurred
explosions appear very similar to those of type II explosions. The dB scale colour map is the same as
was used in the other velocigram plots.
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When comparing the overall levels of echo power between explosion types, it is evident
that type I and small explosions (Figs. 6.6 and 6.8) produce the highest echo powers, while
type II and blurred explosions (Figs. 6.7 and 6.9) generally yield lower echo powers. This is
partly because the echo power of type II and blurred explosions, due to their higher veloci-
ties, is distributed over a broader velocity range in the spectrum. However, it is likely that
this effect is also partly caused by the early fragmentation of the bubble shell during type II
and blurred explosions. Radar waves are expected to scatter much more strongly (therefore
reducing echo power) when illuminating a cloud of fragments than when reflecting off an
intact surface.

6.4 Surface velocities

As mentioned above, for the later application of the bubble expansion model it is necessary
to further analyse the cutoff velocities picked from the spectra. According to Section 6.2,
cutoff velocities in pre-burst spectra represent the speed of the bubble surface point mov-
ing fastest towards the radar. In post-burst spectra they represent the speed of the bulk of
material moving fastest towards the radar.

Figures 6.10 to 6.12 (red traces) show the same cutoff velocity traces that were already
shown as white lines in Figures 6.6 to 6.8 as a function of time. The difference is that now
they are plotted into a single figure, grouped according to their explosion type. This allows
the analysis of common properties of the curves as well as differences between explosion
types. After their respective burst time (marked as star), the curves are plotted as dashed
lines to account for the fact that after the shell has ruptured, the picked cutoff velocities do
not represent a single surface velocity any more. I have shown in Section 6.2 that instead, at
that time, they represent the maximum speed of bulk explosion fragments that are left over
from the burst surface. In some cases, no shell burst could be determined, either because
the shell did not burst within the plotted time range (as happened during several small
explosions), or because the burst process happened so soon after the explosion start that
the characteristic change of spectrum shape (Sec. 6.2) could not be uniquely identified (as in
most type II explosions). In either case, the respective line was plotted fully solid.

Velocity curves were transferred into shell acceleration and displacement curves by per-
forming simple calculus operations. Accordingly, the blue curves at the top of Figures 6.10
to 6.12 show the integrals of the respective cutoff velocity traces, allowing the judgement of
the amount of maximum surface displacement towards the radar at any given point in time.
Green curves at the bottom are the derivatives of cutoff velocity traces, i.e. they show the
maximum surface acceleration towards the radar.

Lighter coloured shades behind the curves mark the estimated error range of every data
point, showing one standard deviation around the expected value. As will be discussed
in Section 7.1, this error range was determined with a Monte-Carlo type algorithm, and
includes all significant sources of uncertainty, i.e. picking uncertainties as well as parameter



SURFACE VELOCITIES 119

Figure 6.10: Measured surface movement of explosion type I. Image sequence: infrared video
snapshots of a typical type I explosion. Episodes are shown as Roman numbers. Middle curves
(red): picked cutoff velocities (vR,cut) for all type I explosions. While the curves are oversampled (in-
terpolated) by a factor of two, the true data points are marked as dots. Picked error ranges (∆vR,cut)
are shown as error bars. Stars indicate the time when shell rupture was detected. The black solid
line shows the mean of all curves, the black star marks the mean burst time. Top curves (blue): in-
tegrated velocity curves, representing surface displacement in radar direction. Propagated standard
error ranges are marked as shades. Bottom curves (green): derivatives of velocity curves, represent-
ing the surface acceleration component pointing towards the radar. Type I acceleration curves show
a typical double peak pattern. Curves are split into subtypes Ia & Ib, depending on the onset time of
the second acceleration peak.
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Figure 6.11: Measured surface movement of type II explosions. Acceleration curves (bottom,
green) typically show only a single acceleration peak. Shell burst usually occurred right at the start
of the explosion.

uncertainties. To minimise numerical errors during further processing, after calculating the
derivatives and integrals, all curves were oversampled by a factor of two using a spline
function. To allow for a quality assessment of this interpolation, all original data points are
shown as dots in Figures 6.10 to 6.12 (red traces), together with the originally picked error
bars (∆vR,cut).

There are significant differences between the curve shapes of the three different main ex-
plosion types. The most significant differences can be observed between type I and type II
explosions. They can be best identified by comparing their respective acceleration curves:
while type I explosions typically show a characteristic double acceleration peak separated
by about a third of a second (Fig. 6.10), type II explosions show only a single but large accel-
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Figure 6.12: Measured surface movement of type small explosions. Small bubbles tended to
slowly collapse rather than burst.

eration peak (Fig. 6.11). Generally, type II explosions show much larger surface accelerations
and velocities (up to 1000 m/s2 and 150 m/s in radar direction, respectively) than type I ex-
plosions (around 150 m/s2 and 40 m/s). As suggested by their name, surface accelerations
and velocities of small explosions are by far the smallest of the three types (around 20 m/s2

and 10 m/s).

All explosions have in common that shortly after the explosion starts, the surface velocity
of the bubble strongly increases, leading to a rapid expansion of the shell. This phase, which
typically ends after 0.2 – 0.3 s for type I and II explosions, will be referred to as the rapid
expansion phase of an explosion.

Video snapshots at the top of the figures further help to distinguish the different explo-
sion types. The explosions chosen for the snapshots are typical examples of their respective
group. For a more detailed analysis, all available videos can be found in the supporting on-
line material (SOM). Precise time stamps in the snapshots and their respective annotations
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above the curves help to identify the snapshot times in the curves below (e.g. annotated as
Roman numbers).

The start of an explosion is defined as the first detectable significant movement, which is
also typically the onset of the rapid surface expansion phase. For type I explosions, video
snapshots and burst detection times from radar suggest that the bulging lava lake surface
typically stays intact until around 0.4 s after the explosion start. After the burst, the surface
disintegrates into fragments whose velocities are measured by the radar. In contrast, the
lava lake surface during type II explosions typically ruptures immediately upon its first de-
tectable movement. Therefore, in all following figures for type II explosions, if shell rupture
is not especially indicated by a star, it can be assumed to occur around time zero. This fun-
damental difference between type I & II explosions highlights that their acceleration curves
must be interpreted differently. While for type I explosions they are representative of the
accelerating lake surface, they represent accelerating explosion fragments for type II explo-
sions.

Acceleration curves of type I explosions (Fig. 6.10, bottom) show a further noteworthy
property: their characteristic double peak behaviour can be divided into two groups, ac-
cording to the time between the peaks. While most explosions have a remarkably stable
peak-to-peak time of ≈ 0.3 s (subsequently called subtype Ia, shown in dark green), some
of them have a shorter peak-to-peak time of ≈ 0.2 s (subtype Ib, light green). It should also
be noted that even though the acceleration curves are highly variable during the expansion
phase of the bubbles, accelerations are always positive before the burst, meaning that both
velocity and displacement grow monotonically. Eventually, after the burst, accelerations of
fragments become negative, i.e. their speed component in radar direction decreases, but it
does not decrease below zero in the time frame of interest. Therefore, even after the burst,
the observed surface parts and fragments of type I and II explosions are always moving
away from the explosion centre until their trajectories eventually turn towards the ground
due to Earth’s gravity.

Small explosions show a behaviour that is significantly different from both of the above
types. Their video snapshot illustrates this (Fig. 6.12, top): while type I and II explosions
affect the whole lava lake surface, bubbles of type small only fill a part of the lake surface,
ranging from metre sized bubbles up to larger ones that are almost filling the entire lake.
Another significant difference is that small bubbles do not explode as violently as type I
and II bubbles. Instead, they grow for a certain time (typically for several seconds), and
then slowly collapse and shrink without causing a large amount of ejecta or audible sound
(although they do create infrasound, as will be shown later). While all of them monotoni-
cally grow at first and then subsequently shrink in one single cycle, the acceleration curves
of small explosions typically show a subtle oscillation pattern superimposed on their (always
positive) growth.
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In summary, the main characteristics of the different explosion styles can be described as
follows:

Type I explosions: • Bubble expansion with an initially intact membrane.
• Double acceleration peak.
• Affects entire lava lake.

Type II explosions: • Membrane ruptures right at start of explosion.
• Single acceleration peak.
• Higher velocities and accelerations than type I.
• Affects entire lava lake.

Small explosions: • Less violent than types I and II.
• Affects only part of lava lake.
• Membrane rupture is delayed or prevented.

Blurred explosions: • Picking of cutoff velocities prevented by ”blurred” spectra.
• Similarity of velocigram to type II explosions.
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CHAPTER 7

APPLICATION OF THE BUBBLE EXPANSION
MODEL

In order to derive physical parameters of the bubble burst, such as energies, bubble pres-
sures, and gas volumes, the model that was developed in Chapter 4 needs to be applied to
the data measured at Erebus volcano (as described in the last Chapter). This application will
be described in the following sections, starting with a short overview on how the necessary
input parameters were chosen, and how the error analysis of results was accomplished.

Since the model describes an expanding bubble with an intact magma shell, its application
is only valid when this condition is fulfilled. As shown in Section 6.2, only type I and small
explosions can be considered as unfractured bubbles with an intact magma shell during
the first moments of an explosion. Therefore, the model will only be applied to these two
explosion types.

At the end of this chapter, the model’s prediction of the acoustic signal generated by ex-
plosions will be compared to real acoustic data.

7.1 Error analysis & input parameters

The bubble expansion model includes a multitude of nonlinear dependencies, some of which
need to be solved numerically. Additionally, its output is dependent on a variety of input
parameters, which naturally have an uncertainty in their value. Both these properties make
a reliable traditional error analysis (i.e. with a linear or squared approximation for error
propagation) nearly impossible.

Therefore, to obtain reliable information on the propagation of errors in the model, I chose
a statistical approach that can best be described as a Monte Carlo type. In this approach, all
output parameters are computed a large number of times, while in each run all model input
parameters were randomly varied within their known or presumed error ranges before en-
tering the computations. By comparing the influence of a large number of these randomly
varied computations on the output parameters (e.g. energies or pressure), it was possible to
precisely determine the influence of known parameter uncertainties on the model results.
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Symbol Name Expected Estimated For source Main influence on
value 1σ uncert. reference see

RL Lava lake radius 20 m ± 15 % Tab. 5.1 All output parameters
φR Radar elevation angle 39.1◦ ± 2◦ Tab. 5.1 All output parameters
hburst Shell thickness at burst 0.75 m ± 0.2 m this Sec. All output parameters
ρm Density of magma 2000 kg/m3 ± 15 % this Sec. All output parameters

µm Viscosity of magma 5 × 104 Pa s ± 1 magn. Sec. 4.2.5 Shell dissipated energy
ca Sound speed in air 313 m/s ± 10 % Eq. 3.16 Sonic energy; IS signal
ρa Density of air 0.86 kg/m3 ± 10 % Eq. 3.14 Sonic energy; IS signal
cp,m Heat capacity of magma 1000 J/(kg K) ± 10 % Sec. 4.2.9 Shell thermal energy
σm Surface energy of magma 0.4 J/m2 ± 25 % Sec. 4.2.6 Shell surface energy
vp P-wave speed in ground 2200 m/s ± 10 % this Sec. Seismic energy
vs S-wave speed in ground 1270 m/s ± 10 % this Sec. Seismic energy
ρrock Surrounding rock density 2400 kg/m3 ± 10 % this Sec. Seismic energy

Table 7.1: Model input parameters with uncertainties. When entering the model, the above param-
eters were randomly varied around their expected value, following a Gaussian distribution with a
half width equal to the above uncertainty values (i.e. = 1 σ). Magma viscosity µm, due to its wide
range, was varied by one order of magnitude in either direction (through a Gaussian distribution of
its logarithm).

All significant model input parameters are shown in Table 7.1. They were assumed to be
statistically independent and normally (Gaussian) distributed around their expected value1,
with a 1 σ uncertainty range as shown in the Table. The distribution was truncated at 2 σ,
i.e. the parameters were allowed to vary within the 2 σ range around their expected value.

In practice, a number of N computation runs with randomly varied input parameters
typically led to a set of N results for each output parameter. The central 68.3% of this set of
results thus depict a variation of one σ around the unvaried result. In all following graphs
(with the exception of the picked radar velocities, see below), the extent of this 68.3% confi-
dence interval is shown either as error bars or as colour shades in the background.

The stability of the solution was tested by investigating the influence ofN on the resulting
error ranges of output parameters. Error ranges were largely stable for N > 100, neverthe-
lessN = 10, 000 runs were used for the final computations to ensure a statistically significant
number of runs.

Picking errors of cutoff velocities (see Fig. 6.3 and Sec. 6.3) entered the error estimation
through the same principal mechanism as the other parameters (listed in Table 7.1), but fol-
lowed a somewhat different distribution function. All values for cutoff velocities (vR,cut(t))
that entered the model computation were randomly varied within their picked error bound-
aries (∆vR,cut). Inside this range, their probability followed a Laplacian distribution, meaning
that the highest probability was assigned to the expected value (i.e. the picked cutoff velocity
vR,cut), exponentially falling off towards the edges of the error boundary2. In contrast to the

1with the exception of magma viscosity, whose logarithm was assumed to be normally distributed.
2The symmetrical flanks were shaped so that the probability density function reached 1

e2
at the farther of the

two boundaries, and additionally scaled so that the upper and the lower range had the same total probability
(meaning that the median of all values is equal to the expected value).
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parameters listed in Table 7.1, cutoff velocities were not allowed to vary beyond their picked
boundary. It was found that the exact shape of the distribution does not have a significant
influence on the results.

Magma density: Dibble (1994) used seismic ray path modelling and a vesicularity model to
estimate magma densities at various depths in the magma column of Erebus. He argues
that below a sufficient depth (i.e. > 50 m) the magma density approaches 2600 kg/m3. His
assumption is, however, that it will be significantly less at the surface of the lava lake due
to vesicles in the magma, which can be observed in freshly ejected lava bombs (despite the
low overall gas content of Erebus magma; Sweeney et al., 2008). In this study, we assume a
density of 2000 kg/m3 for magma at the lake surface. The large uncertainty in this value is
reflected in the assumed 1 σ uncertainty of ± 300 kg/m3 entering the model.

The overall mass of accelerated magma was approximated through the thickness of the
magma shell at burst, as can be estimated from typical fragment dimensions, found through-
out the crater region. At Erebus, fragments that are ejected over the rim by bubble explosions
usually have a flattened shape, likely representing near intact pieces of the ruptured magma
shell. Often their ”largest dimension” is in the range of a few metres. Yet, even these largest
bombs rarely have a ”smallest dimension” that is larger than one metre. The typical size of
their smallest dimension is consistent for the majority of large bombs at Erebus, i.e. between
half a metre and one metre. Assuming that these fragments resemble a cross section of the
bubble shell, their smallest dimension is a rough estimate of the shell thickness at burst (an
assumption that has already been made by others, e.g. Vergniolle and Brandeis, 1994, ; P. Kyle,
pers.comm., 2005). Accordingly, I assume that the shell thickness at Erebus at the time of burst
is in the size range of 0.5 to 1 m (a number that is somewhat higher than, but in the same
magnitude range as the 0.2 m estimated by Dibble et al., 2008, from early video recordings).

Thus, for the following calculations, an average shell thickness of 0.75 ± 0.2 m was used,
from which the overall magma volume in the shell was calculated (around 1800 m3 for type
I explosions, see Eq. 4.43). This is certainly a coarse simplification (e.g. videos suggest that
bubble shells are usually thicker on the outside than in the centre part). However, since
most of the momentum and the potential energy is carried by the centre part of the bubble,
I regard this assumption as appropriate. From the shell magma volume, the shell mass can
be easily calculated using the magma density discussed above, leading to a typical magma
shell mass of around 3600 ± 1100 metric tons for a type I explosion.

Both the assumed shell thickness and the magma density influence the assumed mass of
the shell in a near-linear way, and the shell mass influences most involved energy types.
Therefore, it must be kept in mind that these uncertainties in mass estimation will result
in a similarly sized error in the obtained pressures and energies (since mass influences the
significant energy types in a linear way). Fortunately, it is unlikely that the error in mass
estimation surpasses, or even approaches, a whole order of magnitude, meaning that the
resulting error in energies and pressure will also remain in this limit. This is reflected in the
overall error ranges of these parameters, as will be shown later in this chapter.
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The lava lake radius used in the model was adopted from the true dimensions of the lava
lake, as measured with a Leica Vector GIS LASER range finder (Tab. 5.1). Even though
the lava lake had a somewhat elongated, or elliptical shape during the measurements (e.g.
Fig. 6.2), the model approximates the lava lake as circular. For all explosions but those of
type small, it was assumed that the radius affected by a bubble (i.e. the bubble footprint) equals
the lake radius. However, as shown in Section 6.1, this assumption is not valid for small
explosions. Therefore, footprint radii of small explosions were approximated from video by
comparing their size with the known lake dimensions (as annotated in Fig. 6.2). For the
error analysis they were assigned a 15% uncertainty.

Magma viscosity: phonolitic magmas from Erebus typically contain around 30% anortho-
clase crystals (e.g. Sweeney et al., 2008), which together with the magma water content and
temperature have a large influence on the magma viscosity. Sweeney et al. (2008) estimate the
magma’s viscosity at depth (i.e. at a pressure exceeding 50 bars) to around 5×103 – 104 Pa s.
Consistently, Oppenheimer et al. (2009) calculate the viscosity of Ray Lava Lake to 104 Pa s,
based on a model by Giordano et al. (2008). The obtained viscosities are similar to those from
andesite in the same temperature range (e.g. Carmichael et al., 1974, Fig. 4.7, and P. Kyle, pers.
comm, 2008). However, it is possible that the viscosity at the topmost lava lake surface layer
could be approaching 106 Pa s, due to a slightly lowered surface temperature (in the order
of 65◦C lower, Sweeney et al., 2008), and more importantly, due to a decreased water content
(possibly down to 0.05 – 0.15 weight-%, Sweeney et al., 2008, and K. Heide, pers. comm. and
unpublished data, 2008). In this study, a surface viscosity of 5× 104 Pa s was assumed for Ere-
bus lava lake, with a 1 σ uncertainty range covering a whole order of magnitude in either
direction (i.e. 5× 103 to 5× 105 Pa s).

Elastic parameters of the volcanic rock surrounding the lava lake (vp, vs and ρrock, see
Tab. 7.1) were used to calculate the seismic energy created by bubble explosions. Estimates
for these values were taken from Dibble et al. (1994) and are in accordance with more recent
studies (e.g. Aster et al., 2008). In all calculations, 10 % uncertainty was assumed for these
parameters.

7.2 Bubble zenith velocities

The first bubble parameters that were determined from the model were the bubble’s zenith
height H(t), zenith velocity Ḣ(t), and zenith acceleration Ḧ(t) (these are not to be confused
with the measured ”raw” radial surface displacement, velocity and acceleration towards
the radar, which were shown in Fig. 6.10. Instead, zenith parameters describe the vertical
movement of the uppermost point of the dome). As described in Section 4.1.2, the zenith
parameters were directly determined from cutoff velocities through simple geometrical con-
versions3. These traces are the basis for calculating all following parameters and predictions

3Similar to the surface movement parameters shown in Sec. 6.4, to minimise numerical errors during further
processing, the H(t), Ḣ(t), and Ḧ(t) traces were oversampled by a factor of two after they have been calcu-
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of the model.

Figure 7.1 shows these zenith parameters for all explosions of type I. The figure also shows
a snapshot of different episodes of the explosion, together with a schematic illustration of
the model to allow for a judgement of the validity of the model geometry. As expected from
the angle of observation, zenith velocities are typically somewhat higher than the ”raw”
surface velocities shown in Figure 6.10.

Similar to the figures showing raw surface velocities (Fig. 6.10, middle), traces are con-
tinued as dashed lines beyond the times where shell fragmentation was detected by radar
(marked as stars). At this time the traces do not represent intact surface properties any
more, but those of the bulk of shell fragments. All important conclusions must therefore be
deduced from the pre-burst part of the traces. Not surprisingly, zenith accelerations show
the same double peak pattern as was already observed in the surface accelerations (Fig. 6.10
bottom), again split up in subtypes Ia & Ib.

The width of the zenith parameters’ error range, shown as shades in the background, was
mainly influenced by individual picking uncertainties (∆vR,cut(t)) and geometrical input
parameters, such as the lava lake radius and the radar beam’s elevation angle.

Figure 7.2 shows the zenith parameters of small explosions, which are significantly smaller
in value than their counterparts of type I explosions. A bubble burst was detected for only
one of the small explosions; for all others the shell remained mostly intact during the ob-
servation time displayed in the figure. Some of them supported an almost intact shell even
when collapsing, while gas escaped through a relatively small hole in the shell (see videos
in the supporting online material, SOM). In contrast to type I explosions, small explosions
typically do not show a double acceleration pulse. Instead, while monotonically growing,
their acceleration phase is often superimposed by a slight oscillation with a period between
0.2 – 0.3 s (Fig. 7.2 bottom).

7.3 Explosion energies

The relations derived in Section 4.2 allow the calculation of the amount of energy that was
transferred from the gas internal energy into the different energy types associated with bub-
ble expansion. Figure 7.3 shows a time series of these energies for type I explosions, allowing
the assessment of the total released energy as well as its partitioning into different types. The
main energy types that are involved are the kinetic energy of the accelerated magma shell,
its potential energy in Earth’s gravity field, the elastic energy radiated into the atmosphere
by displacing the surrounding air, the elastic energy radiated into the ground as seismic
waves, the frictional heating of the deforming magma shell, the energy needed to increase
the surface area of the shell, and lastly the thermal energy output4. Since all of the above

lated from the original, non-oversampled cutoff velocities.
4This only refers to the heat that is carried by explosion fragments. Independently from this, eventually all of

the involved types of energy will be transformed into thermal energy when ejecta have come to rest after an
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Figure 7.1: Calculated bubble zenith movement during type I explosions. Top: Infrared snapshots
of various stages of a typical explosion. Middle: Schematic sketch of the model geometry, depicting
how each stage is reflected in the model. Bottom: Bubble zenith height above the original lake level
(blue), its vertical velocity (red), and its vertical acceleration (green). Mean traces are shown as black
lines; stars mark the burst time as detected by radar. Underlying colour shades show the standard
deviation of the parameters, resulting from picking and parameter uncertainties.
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Figure 7.2: Bubble zenith movement during small explosions

mentioned types of energy, apart from thermal energy, are powered by the dynamically ex-
panding gas bubble, they are from now on referred to as ”dynamic” energies. Since thermal
energy is not directly powered by the rapid gas expansion, it is considered as ”static”, or
constant during an explosion. Also, on the timescales of interest, heat loss through radiation
can be neglected.

All dynamic energy types show a similar temporal behaviour. Starting out from zero joule
at rest, energies rise up to their pre-explosion level (i.e. before the time marked as explosion
start in the figure), reflecting a small upward movement of the lake surface in the order of
a few m/s that is usually preceding explosions. After the explosion start, during the rapid
expansion phase, energies quickly increase by several orders of magnitude. After around
0.2 s, energies tend to level out and remain at their current order of magnitude until the
shell bursts at around 0.4 to 0.5 s after the start of the explosion.

The energy partitioning figure (Fig. 7.3) shows that by far the most energy that is dynam-
ically freed by gas bubbles is turned into kinetic and gravitational potential energy of the
shell, making them the controlling factor for all parameters derived from the energy output
(e.g. gas pressure and volumes). They add up to more than 1 GJ, or the energy equivalent

explosion
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Figure 7.3: Explosion energy partitioning for type I explosions. To keep the figure from cluttering,
only type Ia explosions were plotted. Type Ib explosions are not substantially different, but have a
slightly shorter rapid expansion phase. Note that even between explosions the lava lake surface is
typically in (slow) motion, therefore some of the energy types do not start from exact zero during
explosions (this effect is most prominent for kinetic and potential energies).

freed by the explosion of several hundred kg of TNT5. Their uncertainty is mainly controlled
by uncertainties in the mass estimate of the magma shell, and to a smaller degree by cutoff
velocity picking errors.

The third largest type of dynamically freed energy, significantly smaller than the above
types, is the shell’s dissipated energy caused by viscous friction in the magma shell. This
energy is immediately turned into heat, therefore raising the temperature of the magma
shell while it expands. Yet, even though it exceeds 10 MJ just before the burst, it is hardly
enough energy to heat the magma shell by more than a few 1000ths of a kelvin, due to the
enormous heat storage capacity of the magma shell (Eq. 4.61). As discussed in Section 7.1,
the viscosity value for magma near the lake surface is only poorly constrained, leading to
a large uncertainty in the dissipated energy output in the order of one magnitude. Never-
theless, Figure 7.3 shows that even in the most viscous assumption, the dissipated energy

5General unit definitions, including the TNT equivalent, can be found in Thompson and Taylor (2008)
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during type I explosions remains about a magnitude smaller than the shell’s kinetic energy.
This ratio, however, is different for small explosions, as will be shown later.

Acoustic energy, i.e. the energy that is stored in, and radiated into the atmosphere by the
expanding bubble, is the fourth largest dynamic energy type involved. Just before the burst
of type I explosions it typically reaches 1 MJ. During the rapid expansion phase, the acoustic
output power (or energy rate) often exceeds 10 MW (190 dB SWL; see Eq. 3.11), which is
more than the acoustic output power of large spacecraft rockets (Lighthill, 1978, p. 17). The
quality of the predicted acoustic energy output is mostly dependent on the knowledge of
the bubble’s surface area, which practically reduces to the correct estimation of the lava lake
radius (or, for small explosions, the estimation of the bubble footprint radius).

Even though being about a magnitude smaller than the acoustic energy, a certain amount
of energy is transferred into seismic energy that is radiated into the ground. At around
50 KJ, it surmounts to only one 100,000th of the kinetic energy of the shell, or as an everyday
life analogy, to about the nutritional energy that is contained in a few grams of chocolate.
This might seem surprising at first, given that the inertial forces of the accelerating heavy
magma shell are in the 108 N range, as will be shown in Section 7.7. However, the process
of force coupling to the ground is rather ineffective (Eq. 4.60), leading to such low energy
values. The uncertainty in these value is mostly controlled by the knowledge of the mass
of the shell, and by the elastic parameters of the ground surrounding the lava lake. Even
less importantly, the amount of surface energy stored in the expanding bubble surface is
less than 1 KJ, largely controlled by the magma’s specific surface energy and the bubble’s
surface area.

Somewhat different to the dynamic energy types that are powered by the expanding gas,
thermal energy is considered as constant during the burst since it is not freed by the expand-
ing gas bubble but is passively carried by the 1000◦ C hot magma shell and the subsequent
explosion ejecta. The thermal energy shown in Figure 7.3 assumes that the entire mass of
the magma shell is ejected and lost to the system. In reality, most of the material eventually
slips back into the lake, so only a part of the shell’s mass and heat will actually be lost to
the system (factor ηm in Eq. 4.61). But even if only a quarter of the material is available for
cooling outside of the lava lake, the magnitude of the thermal energy output is unchanged,
as can be seen in the logarithmic nature of Figure 7.3.

The amount of thermal energy transported by a single explosion lies in the order of 1012 J.
This is equivalent to the energy release of ≈ 1 kiloton of TNT (about 5 – 10 % of the yield of
a moderately sized nuclear weapon), or about fifty years worth of electricity for an average
European five person household, therefore far exceeding the energy that is dynamically
freed by the expanding gas (≈ 109 J).

Small explosions, as expected, released much less energy than type I explosions, yet their
overall energy partitioning had similar characteristics to type I explosions. There are, how-
ever, some important differences between the types, as shown in Figure 7.4. While the total
dynamic energy output of small explosions, due to small bubble sizes and low velocities,
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Figure 7.4: Explosion energy partitioning of small explosions.

is only in the 10 MJ range, their kinetic and potential energies contribute about equally, if
not in a reversed order than during type I explosions. It is also remarkable that magma
viscosity, and therefore dissipative energy, plays a much larger role in small explosions than
during type I explosions. At the bubble’s maximum growth phase, the three aforementioned
energies even contribute almost equally to the total amount of dynamic energy. A further
striking feature of small explosions is that the amount of radiated seismic energy is in the
10–100 J range, which suggests that the seismic waves excited by small explosions are much
weaker than that of the other types, and therefore most likely more difficult to detect.

Also, somewhat different than during type I explosions, it is difficult to quantify the
amount of thermal energy that is passively transported by ejecta from small explosions, since
many of their fragments immediately fall back into the lava lake and therefore remain in the
system. It is also notable that small explosions do not show the sharp increase in dynamic
energies that is prominent during the first moments of type I explosions. Instead, they show
a more gentle and steady increase throughout the first half-second of explosions.

7.4 Gas pressure inside bubbles

In Section 4.3 I have shown how the gas pressure inside expanding bubbles can be derived
from their rate of energy output. Figure 7.5 shows the result of Equation 4.63, calculated for
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Figure 7.5: Calculating gas overpressure inside bubbles. The relevant part of the pressure curve is
marked in red, an enlarged version is shown in Fig. 7.6.

every available data point. The traces shown in the figure can therefore be interpreted as the
relative gas overpressure in the bubbles above the ambient atmospheric pressure. However,
care must be taken to only interpret these traces in their valid range (shown in red), which
is only the time of pressure decrease following the first acceleration peak.

At times before the relevant section, the approaching bubbles have not yet reached the
surface of the lava lake, therefore the magma shell mass is not yet fixed (but decreasing),
while Equation 4.63 assumes a constant shell mass. This leads to an apparent pressure in-
crease when in reality the gas pressure is ever decreasing at this stage due to the rise of the
bubble in the conduit (i.e. by decreasing the hydrostatic load above the bubble). Shortly
after, around the time when the shell acceleration reaches its first maximum, the shell mass
can be considered constant because drainage from the shell is a significantly slower process
(Sec. 2.2.1) than the shell expansion once the bubble shell has started moving. Therefore,
during this phase, the calculated pressure values can be considered representative for the
gas pressure inside the bubbles. It is interesting to note that at the time of the first accelera-
tion maximum, the lava lake surface has only slightly bulged up (typically between 1 and 3
metres; compare Figs. 7.1 (blue traces) and 7.5).

The above gas pressures are meaningful, or valid, until the time when the bubble shell
ruptures. Shell rupture is typically detected by radar only a short time after the pressure
curve minima that follow the first peak. Considering that this detection of shell rupture by
radar is probably somewhat delayed (most likely in the range of one sampling interval, i.e.
∼ 0.07 s), I will interpret pressure curves only up to their minima, i.e. before the onset of the
second peak. Therefore, the red area in Figure 7.5 ends there.

The cause of the second pressure/acceleration peak is not entirely clear at this stage. One
possibility is that it is caused by a second bubble arriving at the surface just before the shell
burst (this will be discussed in Chapter 9). In this case the calculated pressure is meaningful
even beyond the minima, up until the burst time, as detected by radar. Another possible
explanation for the second acceleration peak is that the true shell rupture is possibly detected
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Figure 7.6: Gas pressure inside expanding bubbles. Top: This figure shows the relevant part of
Fig. 7.5 for type I explosions, i.e. the time between the start of the rapid expansion phase of every
explosion and the time when the pressure reaches its minimum. Individual error ranges are shown
as shaded areas in light red, the average error range is shown as the purple shaded area around the
mean. An overpressure of 0 kPa means atmospheric pressure. In contrast, the green dashed line
shows the mean absolute pressure. Bottom: similar plot for small explosions.

by the radar with a more significant delay than previously assumed (i.e. > 0.1 s). In this
case the second acceleration peak does not show the acceleration of an intact surface, but is
merely ”faked” by already accelerating shell fragments following the burst. In the second
case the calculated pressure would not be correct after its minimum. To avoid this ambiguity,
I refrain from interpreting the ambiguous part of the pressure curve.

Figure 7.6 (top) shows only the relevant part of Fig. 7.5, i.e. the relative overpressure dur-
ing the time between the start of the rapid expansion phase of every explosion, and the time
when the pressure reaches its minimum between the peaks. The figure shows that at the
start of the rapid expansion phase of type I explosions, the gas overpressure lies between
100 and 600 kPa, with a mean of ∼400 kPa (4 bars) above ambient, i.e. the range of a few
atmospheres only, or merely about the pressure in a bicycle tyre. Due to the large surface
area on which the pressure acts (i.e. the inner surface of the bubble shell), this relatively low
pressure is sufficient to produce the large observed energy output.

Towards the end of the rapid expansion phase, the overpressure typically drops to about
100 kPa (1 bar) or less, being lowest at the onset of the second acceleration peak. After
that time, the meaning of the pressure curve is ambiguous, depending on the reason for the
second peak, as was discussed above. If the first discussed possibility is true, then at this
time the remaining pressure will be topped up by a newly arriving bubble from below, or, if
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the second possibility is true, it will immediately be freed by the rupture of the bubble shell.

Error ranges of pressure traces are shown as red shades in Figure 7.6. Due to their width,
error shades of individual explosions overlap and are therefore hard to distinguish. Thus,
the median width of all pressure error shades is shown as a single darker shade behind the
mean trace, allowing judgement of the average standard deviation of the traces. This lies in
the order of several 10s of percent, reflecting the large uncertainty in the shell mass. Despite
this large uncertainty, the figure shows that even in the worst case the gas overpressure at
the start of the rapid expansion phase is unlikely to exceed 1,000 kPa (10 bars).

The bottom part of Figure 7.6 shows the pressure drop calculated for small explosions.
As can be expected, the overpressure found in small bubbles is far less than in type I explo-
sions, only ranging around 100 kPa. The large extent of error shades in this figure shows
that the relative size of errors for small explosions is much larger than for type I explosions
(most prominent for one single trace, which belongs to explosion SC, see Fig. 6.8). This is
mainly the result of the relatively large influence of dissipated energy on the total energy
output rate of small bubbles (as discussed in Sec. 7.3). As shown, dissipated energy has a
large uncertainty due to uncertainties in the magma viscosity, which reflects on the pressure
uncertainties. This means that a better constraint on magma viscosities would significantly
reduce the error on gas pressures during small explosions.

7.5 Gas volume

It was shown in Section 4.4 that there are three separate methods to determine the gas vol-
ume of exploding bubbles, namely i) from the shape of the pressure decay in bubbles, ii)
from the energy output, and iii) from video observations. Results from these three methods
will now be shown and compared.

Method A): Gas volume from pressure decay. In the last section, the bubble’s gas pres-
sure decay was determined as a function of time during their rapid expansion phase. At the
same time the amount of volume expansion of the bubble cap is known from radar measure-
ments. Section 4.4.2 describes how these two properties can be used to calculate the initial
gas volume of the bubble just before the onset of the rapid expansion phase. It needs to be
noted that in the case of several bubbles erupting in quick succession, this method would
yield only the initial volume of the first approaching bubble.

Figure 7.7 (top) shows the pressure decay of all type I explosions, in a different style than
shown in Figure 7.6. The used diagram style is similar to Figure 4.8, which was used to
introduce the technique. It relates the amount of gas pressure decay to the amount of gas
volume expansion. Red curves show data derived from radar, while blue curves show how
an ideal gas is expected to behave when it expands adiabatically. Not surprisingly, the shape
of the pressure drop in the ideal gas is highly dependent on its starting volume (which is
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Figure 7.7: Estimating bubble gas volume from expansion speed. These figures are similar to
Fig. 4.8, now with real data included. The top plot shows data from type I explosions, the bottom plot
shows small explosions. Red curves show the pressure drop inside the bubble vs. volume increase
during the bubble expansion phase. The volume increase is derived from the bubble size change
measured by the radar. Blue curves show the expected behaviour of an adiabatically expanding
ideal gas bubble with different initial volumes (as annotated). The black line shows the mean trace
of all type I explosions.
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Figure 7.8: Bubble volumes of Type I explosions. Blue stars show initial gas volumes (Vgas,0)
determined with the energy output method, red dots show initial gas volumes of the same explosions
determined with the pressure decay method. Error bars indicate one standard deviation. Dashed
lines show the median of the respective group.

annotated in the figure). For example, when an initial gas volume of 10,000 m3 is expanded
by 1,000 m3, it will only slightly lower its pressure, while an initial gas volume of 1,000 m3

will just about half its pressure when it is expanded by 1,000 m3.

Two things can be read from Figure 7.7 (top). First, most red traces follow the curvature
of a blue curve, meaning that the assumption of an adiabatically expanding ideal gas was
appropriate. If this assumption were unjustified, a differently shaped expansion behaviour
would be expected. Second, the red curves tend to group between the reference curves for
1,000 m3 and 2,000 m3, respectively. This suggests that the gas volume of type I bubbles at
the start of the rapid expansion phase lies in that range.

The bottom part of Figure 7.7 shows the same plot as the top part, but for small explosions.
As can be expected, their average gas volume is smaller than that of type I explosions, but
the volumes are also more scattered. This high relative variation in the gas volumes of small
explosions results from the large uncertainties of their pressure curves, as was discussed in
the last section.

Method B): Gas volume from energy output. This technique makes use of the knowl-
edge about the bubble’s total energy output during the rapid expansion phase; its details
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were described in Section 4.4.1. Figure 7.8 shows initial bubble volumes of all type I ex-
plosions determined from the energy output method as blue stars, including error bars. To
allow a comparison with the previous method, results from the pressure decay method are
also included in the figure, shown as red dots. Similar to the previous method it needs to be
noted that in the case of several bubbles erupting in a quick succession, this method would
yield only the initial volume of the first approaching bubble.

The figure shows that there are minor but systematic differences between the two pressure
determination methods. While the median of type I initial volumes determined with the
pressure decay method lies around 1,250 m3 (dashed red line), their median as determined
from the energy output method lies around 1,000 m3. This difference in the order of a few
tens of percent is within the expected error range, reflecting the uncertainties involved with
the different methods (see error bars). Given that the two methods are largely independent,
the result can be considered a very good agreement. Nevertheless, the difference shows that
the energy output method systematically tends to yield somewhat smaller initial volumes
than the pressure decay method

Error bar sizes of both methods are mostly influenced by uncertainties in the pressure val-
ues, and therefore largely controlled by uncertainties in the shell mass estimates. To a minor
degree, error bars on the energy output method are controlled by bubble energies, which are
again largely dependent on the shell mass. Error bars determined with the pressure decay
method are, to a minor degree, dependent on errors in the cap volume, which are controlled
by radar velocity picking errors.

Method C): Gas volume estimation from video. This method makes use of the assump-
tion that after an explosion, the void volume inside the lava lake and the conduit (i.e. the
volume that was filled with magma before the explosion) equals the total volume of ejected
material, i.e. gas plus magma. Contrary to methods A) and B), in the case of several bubbles
erupting in quick succession, this method does not yield the volume of the first bubble, but
the overall amount of gas erupted during the entire explosion.

Figure 7.9 shows infrared video snapshot sequences from three different typical explo-
sions at Erebus. The respective first snapshot was taken immediately before the explosion.
The other(s) were taken as a comparison just after the explosion. As a reference scale, the
lava lake diameter is annotated as≈ 40 m. Dibble et al. (2008), when observing Erebus explo-
sions in 1987, noticed that the lake level sometimes continued to drop for several seconds af-
ter an explosion (most likely caused by inertia of the magma column, which was accelerated
downward by the explosion). Such effects were not observed on the video data available for
this study.

The first sequence (Fig. 7.9, top) shows a very large type I explosion. Right after the
explosion, the lake level has dropped out of view, i.e. it dropped by at least 30 m, as can be
approximated from the figure. Assuming a roughly circular lake surface, this amounts to a
void volume larger than 37,000 m3. It was argued in Section 7.1 that the magma volume of a
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Figure 7.9: Estimating total erupted gas volume from video snapshots. These three sequences of
infrared video snapshots show the lake level drop caused by three different explosions. Since the
size of the lake is known (approximately 40 m on its largest horizontal dimension), the erupted gas
volumes were estimated to > 35,000 m3 (top), ∼17,000 m3 (middle), and ∼8,000 m3 (bottom).
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large type I explosion lies in the order of 1,800 m3. Assuming that just before the start of the
explosion, this void volume was filled with pressurised gas6 and the ejected magma shell,
this means that the total ejected (pressurised) gas volume during this explosion amounted
to at least 35,000 m3.

The second sequence (Fig. 7.9, middle) shows a typical type II explosion. In this case, the
lake level dropped by around 15 m, suggesting a total gas volume of ∼ 17,000 m3. The third
sequence (Fig. 7.9, bottom) shows a medium sized type I explosion (IR). In this case the lake
level dropped by about 8 m, which corresponds to a total gas volume of∼ 8,000 m3. During
other type I explosions (not shown), the lake level was mostly found to drop in the range
between 10 and 15 m, and no significant systematic differences were found between type I
and II explosions. During small explosions (not shown) the lake level typically dropped
by an insignificant amount only, showing that the ejected gas volume is highly variable
between explosions, strongly depending on their type.

When comparing the three available methods for estimating gas volumes, the video method
is a rather coarse technique, carrying a large amount of error that mainly arises from uncer-
tainties in the lake dimensions and the observation geometry. Nevertheless, it clearly shows
that the total gas volume ejected by explosions is significantly higher (i.e. by a factor of 5 –
10) than initial gas volumes determined from the two former methods. This discrepancy
will be further discussed and interpreted in Chapter 9.

7.6 Acoustic signals caused by explosions

The methods derived in Section 4.5 allow the calculation of the expected acoustic signal
caused by bubble explosions up to the time of shell fragmentation. Following arguments
from Section 3.4, the bulging lava lake should be regarded as a non-compact source in the
frequency band of interest (i.e. acoustic infrasound around 1 Hz). Therefore I calculated its
predicted infrasound signal by adding up the expected infrasound signal of a large number
of random monopole sources on the surface of the bulging lake (Fig. 4.9), effectively using
the Green’s function method described in Section 3.6. To demonstrate the difference between
using the equations for the compact and non-compact case, I have included an example
figure in Appendix A that shows the predicted signals for both cases (Fig. A.3).

Red lines in Figure 7.10 show the expected infrasound signals of all type I explosions, as
they would be observed on the crater rim at a line-of-sight distance of 300 m and an ele-
vation angle of 39◦. The effect of atmospheric absorption (Pierce, 1981) on the pressure am-
plitude was neglected, which is a common practise for such a short distance (e.g. Vergniolle
et al., 1996; Johnson et al., 2008). Each explosion is plotted in a separate box (similar to the

6Gas volumes are highly dependent on their current gas pressure, so they are only comparable at similar
pressures. The gas pressure here is similar to the gas pressure that was assumed for the previous estimates
of the initial gas volumes, i.e. it is the typical bubble pressure just before the rapid expansion phase, as shown
in Fig. 7.6. Therefore, the volume numbers are comparable.
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Figure 7.10: Expected vs. measured infrasound signals (type I). Thick red lines show the acoustic
pressure signal predicted by the model, calculated from radar data. Underlying red shades depict
their error range (sometimes hidden behind thick red line). Thin lines show recorded unfiltered in-
frasound signals from different microphone sites. Since the microphones all have different distances
from the lava lake, the traces were shifted and scaled in their amplitude to a common virtual dis-
tance of 300 m (apart from SHK and RAY, which already fulfill that criterion). The text information
is similar to Fig. 6.6, with the difference that the time axis origin refers to the explosion signal start as
observed on the crater rim, i.e. shifted by the signal’s travel time.
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velocigrams shown in Fig. 6.6) to allow for a comparison with the underlain real acoustic
recording of the respective explosion (thin coloured lines).

Red error shades under the red lines show uncertainties in the prediction of the acous-
tic signal. Their main contributors are uncertainties in the volumetric acceleration of the
lava lake surface, caused by uncertainties in the lava lake diameter and in the radar velocity
picks. Other contributors are uncertainties in the surrounding air density and the atmo-
spheric sound speed.

Acoustic data were recorded by Jones et al. (2008) with two different types of infrasound
microphones, distributed around the crater rim (see also Sec. 5.2.2). Due to the crater ge-
ometry, individual microphones have different distances from the lava lake. Therefore, for
better comparison of real and predicted acoustic signals, I have shifted all recorded acoustic
signals by a fixed amount of time to represent a recording on the crater rim at 300 m distance
from the lake centre. This time shift was not adjusted for individual explosions, but was de-
termined only once per station and remained fixed for the entire data set (signal travel times
from lake to receiver were found to be 0.93 s, 0.99 s, 1.74 s & 2.43 s for RAY, SHK, E1S1 &
E1S2 sites, respectively). Additionally, I have scaled the recorded amplitudes to that same
distance, using the 1/r law, where r is the distance from the source. This practise allows for
a direct comparison between predicted and real acoustic recordings, with respect to travel
time as well as to the signal’s true amplitude.

Figure 7.10 shows that the model predicts an infrasonic wave to be emitted during explo-
sions even before the burst of the shell (marked as star), merely through the bulging of the
lava lake surface. The expected signal starts with a compression of the atmosphere, caused
by the bulging of the lake surface, followed by an expansion when the bulging slows down.
The pressure waves are very powerful (several tens of Pa at the crater rim), yet they are
located mainly in the infrasonic spectrum and thus largely outside the human audibility
range. Radar data are only valid for describing the acceleration of the magma shell before
the burst, thus the predicted sound traces end at burst time.

One of the most notable features of Figure 7.10 is that despite being determined in an
entirely different way, predicted and measured acoustic pressure signals match very well
for most type I explosions, not only in amplitude but also in the shape of the signal up
until the burst time. Both of them agree in that a significant amount of acoustic energy is
radiated before the bubble bursts, simply by introducing and accelerating volume into the
surrounding atmosphere. This effect will be further discussed in Chapter 9, supplemented
by a simple explanation for the acoustic signal that can be measured after the burst.

When looking at the match in detail, it is striking that the typical double peak pattern in
the predicted acoustic pressure signal (resulting from the double acceleration peak that is
typical for type I explosions) often correlates with a distinctive plateau, or a bank, before the
main onset of measured acoustic signals from type I explosions. This plateau was previously
observed in acoustic recordings at Erebus (Johnson et al., 2004), it is therefore likely to be a
distinctive feature of current Erebus explosions. When comparing the waveforms, the first
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Figure 7.11: Expected vs. measured infrasound signals (small explosions). R denotes the approx-
imate radius of the affected region of the lake surface (in type I & II explosions R ≈ 20 m, i.e. the
whole lake surface was affected).

and smaller one of the two predicted pressure peaks typically aligns very well with the
plateau in the recorded pressure (e.g. Fig. 7.10 IA). However, the predicted trace rarely
matches the plateau’s exact shape. Thus, despite the good overall fit during the explosion’s
main phase and the very good temporal correlation between predicted peak and recorded
plateau, the model is not fully sufficient to reproduce the exact acoustic waveform at the
very start of explosions.

The most likely reason for this is that the model tends to overestimate the acoustic sig-
nal early in the explosion. It assumes that right from the start, the entire lava lake surface
bulges upwards, while in reality, in those first moments only a fraction of the lake surface is
bulging up. This means that a small upward bulging of the model lava lake early in the ex-
plosion generates a relatively strong predicted acoustic signal (i.e. the first of the two peaks
in Fig. 7.10 IA), which is much stronger than the real acoustic signal generated by the partly
bulging lake at that time. Even though this effect diminishes quickly into the explosion
when the affected area grows to engulf the entire lake surface, it leads to an overestimation
of the first of the two typical predicted acoustic pressure peaks of type I explosions. While
it would be possible to eliminate this effect in the model by introducing additional parame-
ters, I refrained from doing so to keep the model simple and to avoid introducing arbitrary
parameters.

Yet, as a demonstration, Figure A.5 (Appendix A) shows the same data as Figure 7.10
but uses the spectra’s mean velocity instead of their cutoff velocity to predict the acoustic
traces. Even though being a somewhat arbitrary procedure, the fit between real and pre-
dicted traces increases significantly for some explosions.

Figure 7.11 shows a similar plot for small explosions. The calculation takes into account
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Figure 7.12: Expected vs. measured infrasound signals (type II). The predicted acoustic traces are
fully dashed because shell rupture typically occurs right at the start of type II explosions, therefore
not fulfilling the conditions for a valid use of the bubble expansion model. Nevertheless, the model
was used to calculate these traces as a demonstration of its capabilities even outside its valid range.
Note that some of the traces are clipped (e.g. IIL).

that the area of affected lava lake surface is much smaller than during type I explosions (see
parameter R in Fig. 7.11). As expected, small explosions cause significantly weaker pressure
waves than type I explosions, reflected not only in the model prediction but also in the
measured signal. Similar to type I explosions, predicted acoustic traces of small explosions
match the recorded signals very well, not only in amplitude but also in shape. This not only
indicates that the bubble expansion model is a good description of the real process, but also
that the size estimates (R) obtained from video are reasonable.
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Figure 7.13: Measured infrasound signals (blurred explosions). No acoustic traces can be predicted
from the model, since blurred explosions did not allow for the picking of radar cutoff velocities. Note
that similar to Fig. 7.12 some of the traces are clipped (e.g. BC).

As an additional demonstration, Figure 7.12 shows the same kind of comparison as the
above figures, adapted for type II explosions. The predicted traces are fully dashed because
as argued before, the bubble shell during type II explosions tends to rupture immediately
at the start of the explosion. Therefore, applying the bubble expansion model to predict
the acoustic signal of type II is not strictly valid. However, doing so regardless of these
concerns leads to a surprisingly good fit between predicted and measured signals. This
indicates that even though being outside of its valid range, the bubble expansion model
successfully predicts the acoustic signals of type II explosions. A possible explanation for
this is that after the burst of type II bubbles, the resulting two-phase flow of fragments and
gas behaves somewhat similarly to an intact shell with regard to infrasound generation.

The main difference between type I and II acoustic signals is that type II signals generally
have the much larger pressure amplitudes. Accordingly, Figure 7.12 shows that some of the
recorded signals are clipped, which usually occurs at pressures exceeding ± 125 Pa at the
microphone. This is in agreement with qualitative video observations, giving the impression
that type II explosions are more violent than type I explosions. Another interesting feature
of type II acoustic signals is that on both the predicted and the measured traces, they entirely
lack the characteristic plateau, or double peak signature that is typical for type I explosions.
This is in agreement with Figure 6.11, showing that type II signals only have one acceleration
peak.

Lastly, Figure 7.13 shows the measured acoustic signals for blurred explosions. Since no
radar cutoff velocities were picked for these events, no predicted acoustic signal can be
shown. The figure nevertheless reveals some useful properties of blurred explosions. Their
amplitudes are similarly high as those of type II explosions, and even their shapes are very
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Figure 7.14: Vertical ground forces generated by explosions. Top: type Ia explosions. The black line
shows the mean of all traces, its gray error shade indicates the median width of all error shades. Note
that type Ib explosions were not plotted here to avoid cluttering and to allow a better comparison
with Fig. 7.1 (bottom). Bottom: small explosions.

similar to type II signals. This supports the conclusion drawn in Section 6.3 that type II and
blurred explosions are very similar to each other.

In summary, the above data show that predicted and measured acoustic pressure signals
agree very well for type I and small explosions, and they even show a surprising match for
type II explosions, outside the model’s range of validity. This overall agreement is remark-
able, given that the respective traces were determined from entirely different data types, i.e.
one from radar velocity data using a geometrical expansion model, and the other from direct
acoustic pressure measurements on the crater rim.

7.7 Ground force caused by explosions

Vertical ground forces resulting from bubble explosions were calculated from Equation 4.55.
As argued in Section 4.2.8, following Newton’s second law, the ground force is mainly
controlled by the inertial forces of the shell mass during its acceleration. Accordingly, the
ground force mimics the zenith acceleration function (Fig. 7.1), scaled by a geometrical factor
and the shell mass. Since the acceleration is mainly upwards, the ground force is expected
to be directed downward, i.e. its value should mostly be negative.
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Figure 7.14 (top) shows the vertical ground force for type Ia bubble bursts, which is indeed
mainly negative, i.e. directed downwards. Its peak values vary between ∼ 100 – 800 MN,
i.e. they mainly lie in the 108 N range. Similar to the previous parameters, the calculated
ground force is only valid until the burst of the bubbles, i.e. it does not include post-burst
effects.

The bottom part of Figure 7.14 shows ground forces for small explosions, which are nat-
urally much smaller than those of type I explosions. This should reflect in a much smaller
seismic signature, as was already argued in Section 7.3 when discussing the seismic energy
output of small explosions (Fig. 7.4).

The error shades shown in Figure 7.14 partially overlap, therefore their median width is
indicated as a dark error shade around the mean trace (solid black). Error ranges of ground
forces are generally relatively large compared to other model output parameters because
they directly depend on uncertainties of the shell mass, which, as argued before, is less
constrained than other parameters. Additionally, uncertainties in the picked radar cutoff
velocities influence the zenith acceleration and therefore the ground force uncertainties, but
only to a minor degree compared to mass errors.
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CHAPTER 8

MEASURING THE DIRECTIVITY OF
EXPLOSIONS IN 3D AND 4D

Note: parts of this chapter were already published in Gerst et al. (2008)

In the last chapters, physical properties of bubble explosions were derived from Doppler
radar data coming from a single high resolution instrument. By applying the expansion
model (Chapter 7), the assumption of a vertically symmetrical process was made. Yet, some
of the explosion videos show a slight directivity of explosions towards one side, therefore
breaking vertical symmetry. When measuring the surface speed of such an asymmetrically
exploding bubble, the result will depend on the observation azimuth of the radar (i.e. de-
pending on whether the explosion is directed towards the radar or away from it). It will be
argued in Chapter 9 that this effect is averaged out when measuring and analysing several
explosions, which are likely to show a variety of different explosion directivity. However,
this assumption is yet to be shown as being valid, which will be one of the purposes of this
chapter.

My approach to do so will make use of data from three different radar devices, which
recorded several explosions simultaneously from three different observation azimuths. This
combined data set allows for the calculation of the directivity of explosions in three dimen-
sions.

The knowledge of the directivity of explosions is not only important for supporting the
overall conclusions that will be drawn in this study. It also plays a fundamental role when
interpreting infrasonic recordings of volcanic eruptions in general, which is a very power-
ful tool in volcanology. Several studies (e.g. Vergniolle et al., 1996; Johnson et al., 2004) were
aimed at gaining information about the source process of a Strombolian eruption by analysis
of the infrasound signal. In most previous cases of infrasonic near-source recordings, only
one or two sensors were used, which were often placed at locations determined by practical
reasons, assuming that source directivity effects and path effects were negligible. Practi-
cally, this means that the assumption of a monopole sound source was made. As shown
in Chapter 3, an acoustic monopole is a source with an isotropic emission pattern, i.e. the
generated acoustic pressure is independent of the direction of observation. It can be realised
by a spherically symmetric volume source, or, in a half space, a hemisphere located right
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on the boundary. A dipole source, i.e. a source with a certain direction-dependent emission
pattern (Sec. 3.5), can be generated, for example, by either a directional expansion of a bub-
ble shell or by a moving sphere. In other words, if there is a significant amount of directivity
in an explosion, then the assumption of a monopole source can become invalid, leading to a
possibly erroneous interpretation of acoustic data.

Recent studies of volcanic infrasound signals support this assumption. With the devel-
opment of new instruments it became possible to observe the source of a volcanic eruption
with a whole network of acoustic microphones. Jones et al. (2008), just shortly after the radar
experiment, deployed a network of three acoustic sensors on the crater rim of Erebus vol-
cano, with a special emphasis on determining the source signature. Using these data, John-
son et al. (2008) conclude that infrasonic signals from explosions from the active lava lake on
Erebus contain a significant non-monopole part, which is interpreted as an asymmetric (i.e.
non-isotropic) expansion of the bursting bubble. However, sound distortions along the path
could not be fully ruled out as a possible explanation.

This raises the question of when the assumption of a monopole source is valid, and
whether this can be determined by means that are independent from acoustic recordings.
I will show that one possibility to achieve this is via the three dimensional recording of
radar data from an explosion. Using velocity measurements from three radars allows the
calculation of the directivities of explosions in 3D as they evolve in time, effectively provid-
ing a 4D observation. Non-symmetrical explosions can be identified on the basis of their
directivity vector.

As this 3D radar technique is relatively new, I initially derive the theoretical background
for calculating the directivity of a moving projectile, a volcanic jet, and eventually that of an
expanding bubble (shown in Appendix B.1). On the basis of this theory I will present the
directivity of 10 explosion recorded at Erebus.

8.1 The synchronous measurement with three Doppler radars

As shown in previous chapters, most explosions in 2005/06 at Erebus lasted for several
seconds, with an impulsive main acceleration phase lasting for around one second. The 3D
radar system at Erebus was set up so that the devices were located at the sites RAY, SHK
& SUM (see Table 5.1 and Fig. 5.10), which are all located on the crater rim with a direct
and unobstructed view of the lava lake inside the crater. The area of observation on the
bubble surface (i.e. illuminated by the radar) had a diameter of around 20 m, resulting from
the spread angle of the radar beam (Fig. 6.4). This is large enough to ensure that the point
on the bubble surface that is moving fastest towards the radar was always within the area
of observation during the first seconds of each explosion, even if the bubble centre moved
somewhat away from the centre of the lake1 (the videos show that even for explosions that

1Even though the radially decreasing sensitivity of the radar beam causes reflected signals to decrease towards
the lake borders, the correct measurement of velocities is not compromised by this effect (Sec. 1.5).
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showed some directivity, this lateral displacement was indeed small during their first few
seconds).

To make the data of the three radar devices comparable, the data of the fast radar (∼14 sps;
RAY site) had to be adapted to simulate the data output style of the two slower radars
(∼1 sps; SHK & SUM sites). Internal technology of the two slower radar devices limited the
observation time during every sample interval, so that for the chosen setup, the target could
only be observed during the last 250 ms of every full UT (universal time) second. Therefore,
to provide a uniform and unambiguous dataset, data from the faster radar were accordingly
cut and downsampled, such that 3D velocity data of the target exist for every 250 ms in every
full UT second (see Fig. 8.1). This obviously means that the sampling process was sparse,
and that the system was blind for processes occurring within the first 750 ms of every full
UT second. Since the typical expanding phase of an intact bubble at Erebus took about a
second, one sample can be expected from that phase.

Samples from times before the shell burst show the surface velocity of the expanding bub-
ble, while samples from times after the burst show the velocities of large shell fragments. In
contrast to the more sophisticated model used in Chapter 7, due to the low sampling rate of
1 sps, a very simple expansion model was chosen for this purpose (Sec. B.2). This means that
during an explosion, material is considered as mainly moving radially away from the lake
in all directions, thus the cutoff velocities obtained at that time are considered to represent
the explosion’s expansion velocity (i.e. without any geometrical corrections for the shape of
the bulging lake, and not considering if the shell has already burst). Accordingly, I do not
distinguish between explosion types here, as was done in Chapters 6 and 7, but I include ex-
plosions of all types that allow the picking of cutoff velocities (i.e. all but blurred explosions).
While these assumptions would be too crude for determining detailed physical properties
of explosions, they are fully sufficient to determine the directivity of an explosion, since
data from the three radars are all similarly processed, i.e. using the above made geometrical
simplification. In summary, the necessary information for the directivity of explosions can
almost directly be derived from the difference in measured surface velocity of the different
radars. However, the used simplifications put limits on the interpretation of the obtained
directivities, as will be discussed later.

8.2 Results

To obtain the 4D explosion directivity at Erebus, radar cutoff velocities (as explained in
Fig. 6.3) were determined for each explosion and plotted in Figure 8.1. As a picking crite-
rion, care was taken to only consider the maximum speed of the bulk material (i.e. the shell
surface), and not to pick the maximum speed of small amounts of fast ejecta, which could
have been the result of gas jets from the fracturing of the shell. I then used the technique
described in Appendix B.2 to calculate the directivity vector as a function of time for every
explosion.
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Figure 8.1: Picked cutoff velocities of three radars for 10 explosions, including error bars. The vertical axis
shows the speed [m/s] of the bubble shell (before burst) or its fragments (after burst), the horizontal axis shows
time of day [hh:mm:ss UT] until one second after the main part of the explosion. Data from later times are not
shown in the diagram, since velocities are usually small. The inlay plot shows a stereographic projection of
the directivity vectors, annotated with the respective second. The circular grid line marks an inclination of 45◦,
with the centre representing a vertical vector (meaning no directivity). Note that the length of the vectors is
not accounted for in the stereographic plot, therefore vectors with a small absolute velocity will be visually
overestimated.
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Figure 8.2: Top: 3D radar directivity vectors for a Strombolian explosion at Erebus. The three orange arrows
show the main explosion direction for three seconds (01/01/2006, 14:27:31, 32, 34), where the thickness of the
vector is scaled with the strength of the radar signal, which is a relative measure for the amount of moving
material in the radar beam. The length of the vector in m is scaled by a factor of 10 from its absolute value in
m/s (i.e. 300 m length equals 30 m/s). Blue lines indicate error boundaries for azimuth, inclination and absolute
value. Station and camera locations are marked as stars; the 40 m wide Ray Lava Lake is indicated as a red circle
on the crater bottom. Numbers at the arrow tips indicate the second of their occurrence. For better orientation,
the projection of the longest directivity vector and its error bars is drawn on the sides of the box. Note that
unlike in Fig. B.2, a vertical arrow here means no directivity, i.e. purely symmetrical expansion. The stereogram
in the corner shows the direction of the respective vectors in the same fashion as in Fig. 8.1 I).
Bottom: infrared video sequence of the explosion, recorded by the MEVO camera from the crater rim at po-
sition SHK. The images show that the explosion is not symmetrical, but has a preferred direction towards the
upper left of the picture. This direction fits very well with the explosion directivity vector derived from the
radar observations.
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During the deployment time of the radar system, 24 eruptive events were recorded simul-
taneously on all three radars (Fig. 6.1), 10 of which yielded velocity spectra that allowed the
determination of cutoff velocities, and therefore the calculation of one or more successive
explosion directivity vectors. The other 14 explosions did not allow for the determination
of directivity vectors, mainly due to short time gaps in the spectra, resulting from a tem-
porarily slow network (as mentioned in Sec. 5.2.1, the radar located at SUM did not have
a local data logger for storage, but directly transferred its data to the base camp). Three
explosions produced velocities that were too high for the sensitivity range of the two older
radar instruments (> 72 m/s), so cutoff velocities could not be picked. Figure 8.2 shows the
directivity vectors that were obtained during one of the 10 processable explosions. Of these
10 explosions, six were recorded on video; all of them with a good to very good fit between
video and directivity (see Table B.1, Fig. 8.2 and SOM).

Error boundaries around the cutoff velocities were picked as described in Section 7.1, re-
sulting in a positive and a negative error boundary for each radar measurement, i.e. leading
to a total of six error boundaries for the three radars. Assuming the validity of this rela-
tively simple model (Appendix Sec. B.2), these six error boundaries were propagated to the
azimuth, inclination, and absolute value of the final derived velocity vector (App. B.2). The
propagated error boundaries were grouped in positive and negative errors. Subsequently,
their squares were added inside each group, since the errors from the different radars are
considered statistically independent. The resulting error boundaries on azimuth, inclina-
tion, and absolute value of the final derived velocity vectors are given in Table B.1, and are
also shown as blue bars in Figure 8.2.

Figure 8.1 shows not only the picked radar velocities of explosions, but also a small stereo-
graphic plot showing the resulting directivity vectors in their temporal order. For all but one
(Fig. 8.1 F) of the 10 explosions, the directivity vectors of subsequent seconds are grouped,
allowing for the conclusion that the main directivity remains stable within a certain region
throughout an explosion even though shell rupture usually occurs after the first sample of
the explosion (i.e. around the time of the peak). However, when taking a closer look, even
though the vectors are grouped, they show significant changes (or a rotation) of direction
during the time of an explosion. Especially interesting is the event shown in Figure 8.1 F.
Its directivity vectors show a large variation in the stereogram, indicating a non-uniform
explosion directivity. And indeed the video footage of this explosion shows that the initial
movement of the bubble is significantly different to the movement in the main expansion
phase (see SOM).

Figure 8.3 is a stereogram containing all explosion directivity vectors obtained from the
10 explosions that allowed for the calculation of directivities. The figure shows that explo-
sion directivities have a large variation, and even though vectors from single explosions are
grouped together, they change strongly from explosion to explosion. The average azimuthal
error on the directivity values is 32.5◦, and the average inclination error is 15.6◦. The close-
ness of the mean direction to the centre (= no directivity) shows that the explosions do
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Figure 8.3: Directivities (azimuth/inclination
pairs) derived from radar measurements plotted on
a hemisphere, where the centre point (i.e. the verti-
cal) indicates an explosion with no directivity. This
plot combines the stereograms in Fig. 8.1 A – J. Big
dots mark the direction of the longest vector of each
explosion, which can be considered as the ”main di-
rection” of each explosion. Small dots show all other
directivity values. The big star marks the mean direc-
tion of the longest vector of all explosions, calculated
by adding up all unit vectors of all longest vectors
(i.e. all large dots). The small star marks the mean di-
rection of all other vectors. Radar locations, as seen
from the source, are marked as triangles.
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not have a single preferred direction. Only a directional sector around SSW appears to be
avoided, although I do not consider this as statistically significant at this stage, i.e. without
further evidence. Note that error ranges are too small to be fully responsible for the large
variation of directivities. Therefore, the variation of explosion directions must be a true
feature of the volcanic system.

Figure 8.4 is a map of locations of fresh volcanic bombs that were found farthest from the
lava lake. It shows that on all but the west side of the crater, the farthest reaching bombs are
distributed close to the 400 m distance line from the lake. The exact distribution is, to a large
part, expected to be influenced by the elevation angle of the crater rim as seen from the lava
lake, which at Erebus is changing significantly with azimuth, being smallest on the South
and East sides of the crater. Nevertheless, the figure shows that no strong trend of bomb
directivity is present at Erebus, consistent with the widely scattered explosion directivities
shown in Figure 8.3.

8.3 Implications of the 3D observations

I have shown in Chapter 7 that with the help of a geometrical bubble expansion model, ex-
plosions at Erebus bear a wealth of physical parameters that can be determined, allowing for
an interesting insight into their mechanism. In contrast, the aim of this chapter is restricted
to the determination of directivity effects of explosions, using a strongly simplified expan-
sion model. Naturally, the choice of model complexity has positive and negative effects on
the gained results, some of which are discussed in detail in Gerst et al. (2008). At Erebus, the
system of three radars recorded three independent parameters. Accordingly, a simplified
model with three degrees of freedom was chosen as the best compromise between model
simplicity and information gain, leaving the model neither under- nor over-determined. It
is therefore not necessary to guess any of the parameters, which would introduce a strong
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Figure 8.4: Map of farthest reaching
volcanic bombs on the volcano slope
that were ejected in the months before
January 2006 (red dots; also shown in
Fig. 5.10). The darker shaded area rep-
resents the typical area of bomb fall for
the time period measured. A dashed cir-
cle marks the 400 m distance line from
Ray Lava Lake for comparison. Stars
indicate the locations of radar devices
(Tab. 5.1). GPS Locations were gener-
ated using Trimble 5700 receivers oper-
ated in differential mode with the base sta-
tion receiver located roughly 2 km away at
Lower Erebus Hut. Note that there was no
access to the two craters (thick black line)
in that season, so no bombs could be lo-
cated therein. Source: Nelia Dunbar, pers.
comm.

bias to the results. And indeed, the good correlations between radar measurements, video
observations and infrasound recordings suggest that in the case of Erebus, such a simple
(and qualitative) model is a valid first order description of the real process. Additionally,
even if doubt should remain whether the system can be sufficiently described by an expand-
ing, horizontally moving bubble, the derived directivity vectors still have significance. This
is because the radar velocities can indicate the presence of a preferred (i.e. asymmetrical)
expansion direction of the volumetrically expanding body, independently of its assumed
shape in the model.

The above results show that explosions often show a strong directivity, i.e. the expanding
bubble has a significant horizontal velocity component and therefore a favourite expansion
direction. It is therefore likely that the assumption of an exclusive monopole sound source
is insufficient for these explosions, and that at least a dipole component has to be added to
adequately describe the acoustic source. This conclusion is strongly sustained by the obser-
vation made by Johnson et al. (2008) that infrasound signals from explosions at Erebus often
inherit a significant dipole (if not quadrupole) signature. Even though sound waveform
distortions along the path might be causing similar effects, they are not necessary to explain
the good agreement between radar and infrasound data (Johnson et al., 2008).

A good correlation between video observations and radar explosion directivity measure-
ments was found, as well as a significant grouping of directivity vectors during single ex-
plosions. This indicates that the method presented here is a stable and reliable method of
determining 4D directivities of explosions. A more detailed analysis of the directivity be-
haviour during single explosions shows that even though being grouped, some directivity
vectors display a change or rotation during the explosions. This behaviour is consistent with
variations of infrasound dipole axes during single explosions (Johnson et al., 2008), which is
expected when the preferred direction of expansion slightly varies during explosions. Un-
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fortunately, the (now permanent) network of infrasound microphones used by Johnson et al.
(2008) was not yet fully operational at the time of the radar experiment, so a direct com-
parison of explosions directivities and acoustic dipole axes of individual explosions is not
possible due to the lack of temporal overlap.

Rotations of explosion directivity are possibly caused by the rupture of the magma shell,
which usually occurs after the first sample of the main part of an explosion. After the rup-
ture, the radar is tracking the largest shell fragments, the velocities of which are probably
influenced not only by their velocity shortly before the rupture, but also by the rupture pro-
cess itself. Considering this, a change of the explosion directivity, accompanied by a rotation
of the infrasound dipole axis is not surprising. Additionally, the system is expected to inherit
a further mechanism for the rotation of infrasound dipole axes, resulting from the expected
cavity resonance after the burst of the magma shell (as will be discussed in Sec. 9.5). While
the dipole axis of the expanding bubble is expected to be influenced by the directivity of
the explosion, the cavity resonance after the burst is expected to generate a mostly verti-
cal dipole, controlled by the orientation of the conduit axis. Thus, acoustic dipole axes of
explosions can be expected to systematically rotate towards the vertical after the shell burst.

When examining the behaviour of several explosions, a large variety of explosion direc-
tivities was observed (Fig. 8.3). Since measurement errors cannot account for such a large
variation, I conclude that eruptive events at Erebus in 2005/06 had a wide range of main di-
rections. The relatively uniform distribution pattern of directivity vectors agrees well with
the locations of the farthest volcanic bombs ejected from the explosions, and suggests that
the preferred direction of an explosion is mainly random. The implication of this is that a
systematic bias of results obtained in Chapter 7, caused by a possibly preferred main di-
rection of explosions, can be ruled out. Therefore, even though single traces of the shown
physical parameters are possibly biased by the directivities of individual explosions, their
average can be expected to be free of such influence.

What are the possible causes for such a randomness in explosion directions? Generally,
such behaviour can be expected if the source region does not force the explosion in a cer-
tain direction. In this case, the point of first rupture will most likely be controlled by the
geometry and the physical properties of the magma shell of the bubble, which at the point
of rupture spans the entire surface of the lake. Since the momentum of the gas inside the
expanding bubble is negligible compared to the momentum of the dense magma shell, the
point of rupture will most likely be determined by the fastest expanding (or the thinnest)
point in the expanding magma shell, the position of which can be considered as largely
random from the current perspective.

This is an important observation, since it suggests that despite its somewhat non-circular
surface footprint, the internal geometry of Ray Lava Lake and the immediate region under-
neath is largely symmetrical with a vertical axis of symmetry, i.e. non-inclined. For example,
if the conduit mouth were strongly inclined, a predominant explosion direction would be
expected. Again, this behaviour is consistent with observations by Johnson et al. (2008) of a
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wide direction range of infrasound dipole axes.

Additionally, this assumption is supported by the observation that the point of first ex-
pansion at the start of each explosion is variable but mainly located in the middle of the lake
(in case of an inclined conduit directly beneath the lake surface, the points of first expansion
would most likely be expected to predominantly appear at one side of the lake, indicat-
ing the dip direction of the conduit). This point is further supported by the symmetrical
shape of the empty lava lake immediately after an explosion, which is visible in some of the
videos. From a thermodynamic point of view it is not surprising that a circular geometry is
favoured by a system that is stable over a long period of time, since round shapes generally
provide the smallest ratio of surface to volume, therefore minimising cooling effects (Bruce
and Huppert, 1989).
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CHAPTER 9

DISCUSSION OF BUBBLE MODEL RESULTS

Results from Chapter 7 show that the application of the bubble expansion model developed
in Chapter 4 leads to very well constrained conclusions on important eruption parameters
such as explosion speeds, energies, gas pressures, bubble volumes, expected infrasonic sig-
nals, and therefore on the explosion mechanism in general. I will now discuss these results
in a broader frame, analysing their credibility and consistency with results from other stud-
ies.

9.1 Limitations & constraints of the used model

While the model developed in this study provides important insight into the dynamics of
explosions at Erebus, it has a few important limitations that should be kept in mind when
interpreting the results shown in Chapter 7:

• The most significant constraint of this method is that the model results are only valid
at times before the burst of the bubble, which means that at Erebus, the model is only
valid for explosions of type I (and small explosions). Only during these explosions does
the surface of the lava lake bulge up as assumed in the model (Fig. 4.1). Explosions
of this type represent around half of the explosions at Erebus recorded in 2005/06.
However, it was argued in Chapter 7 that while type II explosions appear visually
different through their early shell rupture, all explosion types most likely have strong
similarities in their important parameters.

• It is also important to keep in mind that the model results, such as forces, pressures
and energies, represent physical properties that are averaged over the whole area of
the doming shell. In the real system, these properties will vary across this large area,
therefore they will exceed the average in certain areas or at certain times. Addition-
ally, the exact geometry of the doming shell varies from explosion to explosion, and
the true lake geometry is slightly elliptical instead of circular. Therefore, this simple
geometrical model does not serve as a detailed source of information on single explo-
sions, but attempts to capture the common and characteristic parameters of the whole
set of explosions at Erebus.

163
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• Somewhat similar to the last point, the expansion model cannot (yet) resolve the influ-
ence of the directivity of explosions (which were determined in Ch. 8), since up to now
it only incorporates data from one fast radar device (the other two devices used in the
3D experiment described in Ch. 8 are too slow to capture the detailed processes of a
bubble explosion). Therefore, depending on the explosion direction, results from sin-
gle explosions might be systematically biased by the explosion’s directivity, whereas
such an influence is not expected when considering the bulk of explosions together
(this will be further discussed below).

9.2 Explosion types

Independently from the applied model, raw radar data (Sec. 6.3 and 6.4) show that explo-
sions at Erebus can be divided into two main groups. Video observations and the shape
of radar spectra suggest that type I explosions expand with an initially intact magma shell
until they burst some 0.4 seconds later. Type II explosions do not show this behaviour, but
violently burst right at the time of the first detected movement on the lava lake surface,
inferred from radar spectra and thermal video. While type I explosions are suitable for the
application of the bubble expansion model, and therefore reveal information about gas pres-
sures, energies and volumes, type II explosions unfortunately do not. With the given data
it is therefore impossible to directly compare these parameters between the two explosion
types.

Due to the lack of more conclusive data on this matter, reasons for the early rupture of
type II explosions can at this point only be speculated upon. The most likely explanation for
an early rupture of the magma shell are heterogeneities in the surface structure of the lava
lake, possibly caused by local differences in temperature (and therefore viscosity) or by the
structure of convection cells that are constantly reworking the lake surface.

The range of surface and ejecta velocities measured at Erebus, 5 – 160 m/s (Figs. 6.6 – 6.9),
is wider and higher than that of comparable volcanoes but nevertheless similar. Velocities
at Stromboli are in the range of 20 – 80 m/s, as obtained through a variety of measurement
techniques (e.g. Chouet et al., 1974; Weill et al., 1992; Seyfried and Hort, 1999; Urbanski et al.,
2002; Hort et al., 2003; Vöge et al., 2005). Indeed, the vast majority of particles during Erebus
explosions is in that same range (Figs. 6.10 – 6.11), and only a few fragments exceed this,
accelerating up to 160 m/s or more. New data from Yasur volcano, Vanuatu, and from
Stromboli measured with the same advanced Doppler radar device that was developed for
this study revealed that even during Strombolian explosions from these volcanoes, a small
but significant fraction of particles was found travelling at similarly high speeds and was
most likely missed before (unpublished data and T. Meier & M. Hort, pers. comm. and Meier
et al., 2009).

Two further explosion types were identified at Erebus, subsequently named small and
blurred to reflect their main characteristics. Small explosions are most likely caused by the
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same process as type I explosions, with the main difference being a significantly smaller gas
volume, leading to less powerful explosions.

Blurred explosions are somewhat more difficult to characterise, due to the fact that cutoff
velocities could not be identified and picked for this type. Their velocigrams look very
similar to type II explosions, suggesting that the two types are largely similar.

The difference between type II and blurred explosions is possibly caused by a simple ob-
servational effect: as shown in Chapter 8, explosions at Erebus often show a significant
directivity in their expansion. While this has only a slight effect on the observation of in-
tact bubbles, it might be a crucial factor when observing the initial jet of exploding shell
fragments in type II explosions. It is possible that blurred explosions simply have an initial
jet direction that is by chance pointed towards the radar device, thus causing a high num-
ber of fragments moving at different speeds in the radar beam early in the explosion. This
would cause the radar spectra to ”blur”. If this is the case, then the only difference between
type II and blurred explosions is the direction of their first jet of particles. This hypothesis is
further sustained by the small number of blurred explosions in comparison to type II explo-
sions, reflecting the relatively low statistical likelihood that an initial explosion jet is directed
towards the radar device.

9.3 Explosion energies

Results in Section 7.3 show that bubble explosion dynamics at Erebus are mainly controlled
by the kinetic and potential energy of the heavy magma shell, as well as to a lesser degree
by viscous dissipation inside the shell. Type I explosions often release energies of up to one
gigajoule within 0.2 seconds after the explosion start, which amounts to a short time power
output of 5 gigawatts, or several times the power output of a large nuclear power plant.

It must be noted that the energy output presented here only accounts for explosions, and
is meant to illuminate their dynamics. The values presented are not intended to represent a
long-term energy budget, which would have to include the steady-state heat and gas output
between explosions (e.g. McGetchin and Chouet, 1979).

Furthermore, even though the energy output of type II explosions cannot be determined
with the method presented here, it is likely to be in the same order of magnitude as type I
explosions. The fact that type II explosions visually appear more energetic and have higher
radar velocities and accelerations does not mean that their energy is higher than that of type
I explosions. The high velocities belong to a few explosion fragments, which are indeed
faster than those observed during type I explosions, but their mass is significantly less than
that of the entire lake surface moving during type I explosions.

Directivity effects are certainly expected to have an influence on the apparent energy out-
put of a bubble, in that a bubble expanding towards the radar will appear more energetic
than a bubble with a main expansion direction away from the radar. Therefore, the energy
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Figure 9.1: Strombolian explosion at Yasur volcano, Vanuatu, 2007. c© A. Gerst.

values of single explosions should only be interpreted with this effect in mind. Yet, since it
was shown in Chapter 8 that the directivities of multiple explosions are largely random, this
effect does not play a significant role when interpreting the average trace of all explosions.
The same argument is valid for the other derived properties, such as pressures and volumes.

The energy values obtained for Erebus explosions are an impressive display of the breadth
of magnitude scales that are covered by volcanic eruptions. While seismic energies radiated
into the ground can be as low as 103 – 105 J, dissipative and potential energies lie in the 107

and 108 J range, respectively, topped by the shell’s kinetic energy, which reaches 109 J. Even
though these dynamic energy types are comparable to the impressive amount of energy
freed by the explosion of several hundred kilograms of TNT (Sec. 7.3), they pale in compar-
ison to the thermal energy that is passively transported by fragments, which is another 1000
times larger. Located in the 1012 J range, the thermal energy released by a single explosion at
Erebus would take an entire hour to be produced by a large nuclear power plant (at 1 GW).

Such observations of magnitude-spanning energy output, and especially the importance
of thermal energy, are consistent with estimations of volcanic energy output at volcanoes
with a different eruption style (see Sec. 1.4, e.g. Minakami, 1942; Yokoyama, 1956; Hédervári,
1963; Nakamura, 1965; Gorshkov and Dubik, 1970; Woulff and McGetchin, 1976, ...). As discussed
in Section 1.4, Yokoyama et al. (1992) derived a partial energy budget of the 1982 El Chichon
explosive lava dome eruption in Mexico. Even though the large scale and explosive nature
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of this eruption is based on entirely different mechanics than the ones at Erebus, making it
impossible to conduct a time-dependent analysis of the eruption energies, their estimated
relative energy partitioning is very similar to the one determined at Erebus. Consistently,
they report that by far the most energy is contained in the thermal output (> 1017 J in this
case), followed by kinetic energy, which was two orders of magnitude smaller. Zobin et al.
(2009) determined kinetic explosion energies at Volcán de Colima based on seismic record-
ings, and suggest that kinetic energies of single explosions are in the 109 J range, which is,
despite the different explosion mechanisms, very similar to those obtained at Erebus.

Even though they are not the controlling factors of explosions, energy types with smaller
magnitudes provide important clues about the mechanism of explosions. Two important
ones are the acoustic and seismic energy output of explosions.

Acoustic and seismic energies. An overview of typical acoustic energies at different
volcanoes is provided by Johnson (2003) and Johnson et al. (2003), concluding that the acous-
tic energy output from single pulse explosions at a variety of volcanoes lies in the 105 – 107 J
range. Heki (2006) found a similar value (∼ 1.2×107 J) for the acoustic energy generated dur-
ing the 2004 eruption of Asama volcano, Japan. These values match closely with the acoustic
energy output of Erebus determined in Section 7.3. It is important to note that the values
in the above studies were all determined directly from acoustic measurements. In contrast,
the estimate for the acoustic energy output in this study, shown in Figure 7.3, is solely de-
termined from radar measurements in combination with the simple expansion model de-
veloped here, without the involvement or adjustment of any free parameters. Thus, the
agreement of the two methods supports the validity of the method presented here.

Johnson and Aster (2005), in 1999 and 2000, measured seismic energies at Erebus volcano
in the range of 104 – 106 J, and infrasound energies in the order of 105 to 107 J. They found
a stable ratio of ∼10 between acoustic and seismic1 energy, which they named the volcano
acoustic seismic ratio, (VASR). Both their observations align very well with the results of our
radar measurements combined with the explosion model (in absolute and relative terms,
see Fig. 7.3), providing additional confidence in the model presented here.

Johnson and Aster (2005) show that the VASR varies greatly from volcano to volcano2, al-
lowing for clues on the source depth and explosion mechanism. Values can even become
smaller than one (e.g. at Karymsky volcano), meaning that the seismic energy output is
greater than the acoustic energy output. Typically, high VASR values are expected for ex-
plosion sources that are located close to the surface, as is the case in many Strombolian
systems (Johnson and Aster, 2005). This is consistent with the findings of this study, and with
the conclusions drawn by McGetchin and Chouet (1979) on Stromboli (although their VASR

1SP & LP, ∼0.5–12 Hz
2and sometimes it varies with explosion size. Consistently, Figs. 7.3 and 7.4 show that during small explosions,

seismic energies are much more reduced than acoustic energies, an effect that was already noted by Rowe
et al. (2000).
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is probably strongly overestimated due to limited technical possibilities at the time, and
through their time averaging).

Overall, the above results show that the energy partitioning obtained from radar mea-
surements at Erebus is not only much more detailed than that of previous studies, it is
also consistent with the energy partitioning estimated for other volcanoes and with pre-
vious findings at Erebus. This creates additional confidence in the technique used here, and
provides us with additional knowledge about in-situ parameters of Strombolian explosion
mechanics.

9.4 Gas pressure

A time series of the in-situ bubble gas pressure was determined (Fig. 7.6) from the dynamic
rate of energy that was released during bubble explosions, exploiting the fact that the higher
the bubble pressure, the higher the energy output rate. For type I explosions, overpressures
at the beginning of the rapid expansion phase were found in the range of 100 – 600 kPa, or
100 – 800 kPa when including the estimated uncertainty of the values. This means that even
in the ”worst case”, bubble overpressures do not exceed 800 kPa. These findings show that a
moderate amount of overpressure in the order of a few atmospheres is sufficient to account
for the observed energy release. The obtained pressure curve also predicts the amount of
overpressure that is left over at burst time of type I explosions, about one atmosphere. The
energy stored in this remaining pressure is mainly converted into heat and an infrasonic
wave pulse. Since type II bubbles were shown to burst earlier in the process than type I
bubbles, they are expected to have a burst overpressure somewhere in between these val-
ues, which means that the burst pressure of type II explosions is higher than that of type I
explosions.

While the method applied here gives very detailed results, its correct magnitude can eas-
ily be checked using Newton’s second law. It states that the acceleration force F of the heavy
magma shell must be equal to the driving overpressure p times the surface A on which the
pressure acts: F = m a = p A. Friction effects are not considered in this simple compar-
ison, an assumption that is considered adequate due to the minor influence of friction on
the overall dynamics (Fig. 7.3). While the determination of the exact values is rather dif-
ficult, using an approximation for A = πR2

L ≈ 1257 m2, m ≈ 3.6 × 106 kg (Sec. 7.1) and
a ≈ 100 m/s2 (around half of the peak accelerations shown in Fig. 7.1, giving the average
acceleration for the whole shell instead of the zenith only) leaves us with an estimated over-
pressure of p ≈ 290 kPa. Comparing this value to Fig. 7.6 shows that the two methods give
consistent results.

Even though the pressure values determined here are valid for Erebus volcano only, the
underlying mechanism will be similar at other Strombolian-type volcanoes. It can be ex-
pected that pressures correlate strongly with ejecta velocities, which are, for example, rela-
tively similar between Erebus and Stromboli volcano (Sec. 1.2, or e.g. Blackburn et al., 1976).
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Therefore, the relatively precise overpressure determined here considerably narrows down
the large variety of pressure estimates suggested for Strombolian explosions in general.

Superstatic slug pressures in the order of up to 10 MPa have been suggested to explain in-
frasonic data obtained at Stromboli (e.g. Vergniolle, 1998). Yet to the knowledge of the author
no mechanism has been proposed to date that could account for a sustained overpressure
of such magnitude in an open basaltic system (e.g. as discussed by Massol and Jaupart, 1999;
Morrissey and Chouet, 1997). At the opposite end of the scale, Blackburn et al. (1976), by using
cine film recordings of explosions, suggested an overpressure of only 600 Pa (0.006 atmo-
spheres) for bubble explosions at Stromboli (also suggested by Chouet et al., 1974), and 25
kPa (0.25 atmospheres) for Heimaey. Ripepe and Marchetti (2002), using a method similar to
that used by Vergniolle and Brandeis (1994), suggested 50 – 400 kPa for explosions at Strom-
boli. Wilson (1980) suggests initial overpressures of around 20 – 400 kPa for Strombolian
explosions. For Shishaldin, Vergniolle et al. (2004) suggest vibrating and bursting bubbles
with an overpressure of ∼150 – 1400 kPa.

The results obtained here suggest that, with respect to the above-mentioned studies, pres-
sures on the extreme ends of the scale are unrealistic. While a bubble overpressure that
is significantly below one atmosphere cannot account for the ejecta velocities observed, an
overpressure of several MPa (i.e. several tens of atmospheres) does not only lack a convinc-
ing generation mechanism, it would also result in a much more violent explosion than the
ones typically observed at Strombolian volcanoes (Morrissey and Chouet, 1997). The data pre-
sented here, together with the physical bubble expansion model suggest that pressures of
one to several atmospheres are indeed the most realistic, both accounting for the observed
bubble expansion and being in accordance with estimates from several other studies. It is
important to note that at no stage in the process are bubbles at Erebus underpressurised (i.e.
with a gas pressure lower than the ambient atmospheric pressure; see Vergniolle and Brandeis,
1996), showing that bubble oscillations as proposed by Vergniolle and Brandeis (1994, 1996)
do not occur at Erebus.

To support the credibility of the pressure values obtained here it is necessary to check if
such overpressures can indeed be generated by a slug rising in a liquid magma conduit. The
main hinderance for pressure buildup in a slug is that whenever the slug has an overpres-
sure (i.e. a gas pressure that is higher than the hydrostatic pressure of the surrounding liq-
uid), it simply expands, therefore lowering the pressure inside (Sec. 2.2). The most effective
process for a pressure buildup in a slug despite this mechanism is the so-called ”viscous over-
pressure”, which results from the viscosity and mass of the liquid preventing a fast enough
expansion of the rising slug, therefore resulting in a small but significant slug overpressure.

Vergniolle and Brandeis (1996) argue that, while they suggest gas pressures at Stromboli in
the order of 20 – 600 kPa, viscous overpressure can only explain 3 kPa of that, but fail to
explain where the rest comes from. They speculate that during the bubble’s rise in the con-
duit, these might keep an initial excess pressure, which they possibly acquired when being
formed at a depth of several hundred metres. As was shown in Section 2.2, this is a rather
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Figure 9.2: Expected overpressure of a gas slug at burst. Obtained by calculating conduit rise pa-
rameters (similar Figs. 2.2 & 2.3, based on James et al., 2008) for a grid of slug masses and conduit
diameters. The lower horizontal axis denotes slug gas masses, the upper axis denotes the respective
slug volume at 400 kPa overpressure. Burst overpressures (isolines) are given in kPa for a moment
shortly before the burst, when the liquid magma head has decreased to a thickness of 1.4 m (which is
assumed to be the thickness at the start of the rapid expansion phase). Geometry and fluid parame-
ters are those assumed for Erebus (Sec. 2.2), although the widening of the conduit into the lake is not
incorporated.

unlikely scenario when considering the fluid dynamic laws that govern the pressure devel-
opment in a rising gas slug, meaning that the slug will rapidly equalise such an overpressure
by expansion.

James et al. (2008) developed both a 1D and a 3D slug ascent model that was verified in
laboratory experiments (see also James et al., 2004, and Sec. 2.1). Their results clearly show
that a slug rising in a volcanic conduit is not able to effectively sustain an initial overpres-
sure, i.e. the overpressure that it initially acquired during its formation deep in the conduit,
regardless of the exact mechanism. Upon release of the slug, any initial overpressure rapidly
leads to an expansion of the slug, which either ends in a neutralisation of the pressure by the
time it reaches the surface, or in a damped longitudinal oscillation of the liquid head above
the slug (Vergniolle et al., 1996; James et al., 2004).

The above discussed model by James et al. (2004, 2008) nevertheless predicts a significant
amount of overpressure for slugs that approach the surface of the liquid, based on viscous
and inertial effects initiated by the slug’s volume expansion. Figure 9.2 is a plot of the ex-
pected overpressure of a slug at Erebus approaching the surface, obtained in a similar way
to Figure 2.2, using parameters that are assumed representative for Erebus (see Sec. 2.2). It
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shows that expected overpressures can be as high as 400 kPa for a 10 m wide conduit and a
slug mass of 2,000 kg (translating into a slug volume of ∼1,700 m3 at 400 kPa overpressure),
which is similar to this study’s findings at Erebus (Sec. 7.4). For the simplicity of calcula-
tions, the conduit was assumed to retain its diameter up to the surface instead of widening
into a lava lake (which I will argue later has a profound effect on slug dynamics). Thus, de-
spite their remarkable match, these values can only serve as a demonstration of magnitude
rather than as an exact calculation of burst overpressures. Yet, in summary, a sufficient over-
pressure can indeed be explained by the simple model of a slug rising in a conduit, making
it unnecessary to explain the overpressure of a slug approaching the surface with an initial
overpressure at depth, as proposed by Vergniolle and Brandeis (1996); Vergniolle et al. (2004);
Vergniolle and Caplan-Auerbach (2004).

9.5 Source of the acoustic signal

The results from Section 7.6 show that radar measurements in combination with an explo-
sion model match acoustic data from the same explosions very well. This provides the basis
for interpreting acoustic signals at Erebus and other Strombolian volcanoes. The variety
of possible source models (as discussed in Sec. 1.3) can be collapsed to a dual mechanism
at Erebus, namely the strictly monotonic final expansion of a large gas bubble beneath the
surface of the lava lake, followed by a cavity resonance mechanism after the burst of the
bubble. I will now discuss various aspects of this dual mechanism, starting with general
atmospheric propagation effects.

As discussed in several studies (e.g. Buckingham and Garcés, 1996; Garcés and McNutt, 1997;
Garcés et al., 1998; Matoza et al., 2007; Fee and Garcés, 2007), propagation effects of acoustic
waves in the atmosphere need to be ruled out or accounted for. Johnson et al. (2008), in accor-
dance with earlier studies (e.g. Vergniolle et al., 1996; Pierce, 1981), argue that acoustic path
effects such as dispersion, multipathing, diffraction, and non-linearities are negligible when
certain conditions are given, such as measuring infrasonic frequencies with a moderate am-
plitude directly at the crater rim of a volcano, and when considering only the first moments
of an explosion signal.

As shown in Figure 5.10, two of the infrasonic stations at Erebus are located significantly
behind the crater rim, therefore diffraction effects3 cannot completely be ruled out for these
stations. Yet, at Erebus, with typical frequencies around 2 Hz and all stations located well
within 1 km of the source, no evidence was found that would suggest such effects (Johnson
et al., 2008; Jones et al., 2008).

Multipath effects such as echoes from the crater wall are not expected to influence the
explosion signal before about 1.7 s after the initial onset (Johnson et al., 2003), consistent with
the actual crater dimensions. Therefore, I do not assume that these effects play a signifi-

3as reported by Johnson (2004) for frequencies around 20 Hz at Stromboli
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cant role here4. Using environmental data collected by the MEVO network at Erebus (Aster
et al., 2004), Johnson et al. (2008) show that environmental influences such as wind speed and
direction only play a small or even negligible role in sound propagation at Erebus during
non-storm conditions. Finally, the linear propagation of sound appears to be an adequate
assumption for Erebus, given that acoustic pressure signals at the crater rim are typically
within 0.25% of the ambient atmospheric pressure (Dowling and Williams, 1983, p.12). Of
course non-linear effects in the close vicinity of the lava lake cannot be ruled out, but are
beyond the scope of this study.

9.5.1 Pre-burst acoustic signal: a volumetric source

As demonstrated in Figure 7.10, pre-burst waveforms predicted from radar data match the
true waveforms closely, both in amplitude as well as in shape. This match, together with the
simplicity of the expansion model that was used for the prediction, suggests that the respon-
sible process for the generation of the initial infrasound signal during Erebus explosions is
indeed the bulging surface of the lava lake, which acts as a non-compact volumetric source
of sound by displacing the atmosphere. Consequently, several alternative models must be
discarded.

Vergniolle and Brandeis (1994) suggest that most of the acoustic energy is released due to
vibrations of the bubble around its equilibrium at the magma-air interface before the bub-
ble bursts (a process that has never been directly or visually observed during Strombolian
explosions). They also claim that the signal of the actual bubble burst is merely a small high
frequency disturbance of the acoustic wave. The data presented here show that both these
assumptions are certainly not valid at Erebus, where bubbles neither deflate nor vibrate
once they have reached the surface, and where the generated waveforms (which are highly
similar to those at Stromboli) can be fully explained by the expansion of a volumetric source
(i.e. a bulging lava lake) up to the point of the bubble’s burst. This is consistent with find-
ings by Ichihara et al. (2009), measuring atmospheric acoustic waveforms created by shallow
underwater explosions. They showed that the generated acoustic air waves are mainly cre-
ated by the interaction of the bulging liquid surface with the atmosphere - a situation that is
geometrically very similar to the expanding lava lake surface at Erebus.

One of the reasons why bubble vibrations might seem intuitive to some could be that
sufficiently deep underwater explosions typically generate bubbles that oscillate for sev-
eral cycles before equilibrium sets in (e.g. Ichihara et al., 2005, 2009). While they are deep
enough and therefore far enough from the liquid’s surface, these bubbles do not have the
possibility of equalising their pressure by bursting through the surface – they are therefore
stable and oscillate around their equilibrium pressure. However, this situation drastically
changes when the amount of liquid between the bubble and the surface decreases. In this

4A reflection from the bottom of the crater cannot be ruled out for large bubbles, possibly enhancing the strong
rarefaction that is typically observed in Erebus waveforms (Figs. 7.10 and 9.4). Yet, this effect would only
affect the post-burst waveform.
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case, which is somewhat similar to that of Strombolian bubbles right at the surface of a
magma column, explosion bubbles do not oscillate any more5 but expand violently through
the liquid’s surface (Ichihara et al., 2009). Consequently, a strongly overpressured gas slug or
a bubble rising in a magma conduit can freely oscillate around its equilibrium pressure only
until it approaches the surface. In the last seconds of its rise it acquires a large overpressure
(compared to ambient air pressure) due to the relatively high viscosity and mass of magma
(Fig. 2.2). Shortly before reaching the surface, its expansion will quickly accelerate, leading
to a rapid and monotonic volume expansion followed by the bubble’s burst6 before reaching
equilibrium James et al. (2004, 2008, 2009).

Additionally, the above observations also rule out that the acoustic wave is merely gener-
ated by wave transmission at the magma surface, i.e. resulting from a pressure wave travel-
ling through the liquid magma to the surface. While such a scenario is now easy to disprove
for Erebus, where visual data are abundant, such mechanisms have been proposed to ex-
plain acoustic signals at other Strombolian-type volcanoes (e.g. Buckingham and Garcés, 1996;
Garcés and McNutt, 1997; Hagerty et al., 2000). In the light of results from this study, however,
this mechanism is likely to play only a minor role in similar style Strombolian explosions.

A certain influence on predicted acoustic waveforms is expected by the directivity of ex-
plosions, as discussed in Chapter 8, and as observed by Johnson et al. (2008), leading to a
variation of the partial dipole signature in the infrasound signal. However, since this vari-
ation was shown to be random (Sec. 8.3), I expect no overall systematic influence on the
obtained waveforms.

9.5.2 Post-burst acoustic signal: a cavity resonance

An important observation arising from the comparison of calculated and real acoustic sig-
nals (Fig. 7.10) is that the largest part of the pressure peak occurs after the burst of the bubble
(as detected by radar and confirmed by video), meaning a process occurring after the burst
must be responsible for its generation.

Spiel (1992) showed that small bubbles bursting at the surface of water behave like Helm-
holtz resonators, because their neck opens slowly compared to their resonance period. Vidal
et al. (2006), in contrast, use a model that was geometrically adapted to that of an elongated
volcanic gas slug, and show in theory and experiment that a ”λ/4” resonator is formed when
a membrane above a pressurised, gas-filled cylindrical cavity suddenly bursts (Fig. 9.3). The
sudden pressure release excites a resonance whose fundamental wave length λ is four times
the cavity depth (Vidal et al., 2006).

Assuming that this mechanism is present when volcanic gas slugs burst at the top of a lava
column, I now calculate its expected resonance properties. Accordingly, I expect a strong

5At a certain depth, shallow underwater explosions can generate a double acceleration pulse, which is not an
oscillation of the surface (i.e. the surface has no deflation phase), see Ichihara et al. (2009) and Sec. 9.8.2 below.

6accelerated by the lack of sufficient elasticity in the magma membrane
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Figure 9.3: Cavity resonance principle.

vibration signal caused by the resonance of hot magmatic gas contained in the cylindrical
cavity that is formed by the gas slug after its top lid is suddenly removed by the burst of the
magma shell.

From the total slug volume that I infer from video observations7, i.e. in the order of 10,000
– 40,000 m3, final slug lengths in the order of 100 m are expected when assuming a conduit
width between 10 and 20 m. However, this assumption neglects the width of the lava lake,
which is ∼40 m at the top, therefore overestimating slug lengths just before the burst. Fig-
ure 7.9 shows that after large explosions, cavities occupy the whole lake volume to at least
a depth of 30 – 40 m or possibly even deeper. The actual depth of the point where the lake
narrows to a conduit is therefore not known in 2005 (in contrast to 1987, where it was in the
range of 30 – 40 m; Dibble et al., 2008). Therefore, from video observations alone, it is only
possible to constrain slug lengths to a range of around 40 – 100 m.

Assuming that the cavity formed by a slug contains a 60/40 mol mixture of water vapour
and CO2 at a temperature of 800◦C, the speed of sound inside the cavity is around 600 m/s
(Sec. A.2). For a 100 m deep cavity this leads to an expected fundamental resonance fre-
quency of ∼1.5 Hz. Due to radiation at the cavity mouth and dissipation through the cavity
walls, strong damping of the resonance wave is expected. From Vidal et al. (2006, Eq. 4), I
estimate8 a characteristic damping time of τ ≈ 3.4 s (fundamental mode), for a 100 m cavity
with a 40 m wide mouth that is filled with hot magmatic gas (Sec. A.2). The true damp-
ing time will possibly be even shorter due to the presence of shell fragments around the
resonator mouth.

7at the start of the rapid expansion phase of an explosion (Sec. 7.5)
8assuming a kinematic viscosity of 2× 10−4 m2/s (hot steam at 800◦C) and a Prandtl number of 0.8.
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Figure 9.4: Cavity resonance generating an acoustic signal. The Figure is similar to Fig. 7.10 (IH),
showing a typical explosion at Erebus. Accordingly, the thick red line shows the signal as predicted
by radar measurements up to the time of burst. Thin lines show recorded unfiltered infrasound
pressure signals of four stations around the crater rim, scaled and shifted to a common distance of
300 m. Top: the thick orange dashed line shows the expected acoustic pressure signal of a 65 m deep
resonating cavity. Bottom: by slightly varying the cavity length (thin dashed lines) the influence of
the cavity length on the signal can be demonstrated, suggesting a cavity length in the order of 60 –
80 m. Note that the E1S1 microphone provides the most consistent waveforms, see Fig. 7.10.

Laboratory experiments (Vidal et al., 2006) show that for slowly bursting membranes (i.e.
membranes with high inertia, such as the bubble’s heavy magma shell), the measured reso-
nance amplitude scatters strongly even with consistent initial conditions. It is typically only
a small fraction of the expected outward propagated initial cavity pressure (i.e. corrected by
1/r, where r is the distance between source and receiver), and is almost impossible to pre-
dict without knowing details of the membrane rupture process9. Thus, as a demonstration,
I assume a 65 m deep cavity and a resonance amplitude of around 80 Pa at the crater rim,
knowing this is a somewhat arbitrary but not an unreasonable assumption for a highly inert
bursting magma shell. Figure 9.4 (top) shows the expected waveform of such a resonator,
with its calculated damping time of τ = 0.9 s (again using Vidal et al., 2006, Eq. 4). It was

9i.e. during the membrane rupture, a Helmholtz resonator is formed for a short period of time, quickly devel-
oping into an open cavity resonance once the membrane has burst.
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superimposed on the calculated infrasound signal just before the burst was detected by the
radar.

Figure 9.4 (bottom) shows the same data as shown in the top part, but includes two ad-
ditional hypothetical resonator signals obtained by a slightly altered resonator length. Its
purpose is to demonstrate the influence of the bubble length on the match between expected
and real acoustic pressure signals.

Waveforms in Figure 9.4 show that with the above made simple estimates on expected
slug lengths and damping time (based on gas volume data and thermodynamic considera-
tions), a cavity resonance signal can be predicted that matches the observed acoustic signal
reasonably well. Even though a difference in the match quality between individual receivers
exist, the main waveform characteristics are reproduced.

For the explosion shown in Figure 9.4, a resonating cavity (and therefore slug length at
burst time) of 65 m is the most adequate assumption. Even the decay of the signal is well
reproduced by the expected damping time of 0.9 s, although some low frequency noise on
the signals prevents an ideal fit without filtering the signal. Thus, when using infrasonic
signals to obtain information about a resonating gas-filled conduit, the frequency of the
signal provides information on the length of the cavity, while the conduit mouth width
can be estimated from the signal’s damping time. This property can possibly be used as a
surprisingly simple and effective tool for the remote analysis of Strombolian-type volcanoes.

According to the theory, harmonic overtones are expected at (2n + 1) times the funda-
mental frequency [n > 0] (Vidal et al., 2006). At Erebus, the first harmonic overtone would
therefore be expected around 6 Hz. However, harmonics are not clearly visible in spectro-
grams (not shown), most likely due to noise and very short signal lengths, and the fact that
higher harmonics are damped much faster than the fundamental mode (Vidal et al., 2006). A
more sophisticated search for these harmonic frequencies, and an investigation of the cor-
relation between resonance frequencies and explosion size (or slug size) would therefore be
an interesting goal for a future study at Erebus.

When analysing the quality of the match between the two waveforms it must be kept in
mind that crater echoes are likely to play a role in the acoustic signals starting at about 1 s
after the signal onset. This means that a detailed match of the waveform after the first second
is unlikely without the detailed incorporation of these echoes in the atmospheric transport
model. The echoes are strongly dependent on the crater geometry, and are expected to vary
between receiver sites. Their incorporation will thus be a promising challenge for future
studies. Even so, Figure 9.4 shows an impressive match between a simple cavity resonance
waveform and the real acoustic signals.

Since resonance effects have been previously proposed to cause acoustic signals after
Strombolian explosions, I will briefly discuss two alternative mechanisms.

Alternative I: the model of an excited Helmholtz resonator in the gas-filled conduit (e.g.
Spiel, 1992; Vergniolle and Caplan-Auerbach, 2004; Cannata et al., 2009) is very similar to the
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above mechanism, and might possibly fit the real waveforms just as well as the cavity res-
onance model discussed above. However, it requires additional variables to be determined
or guessed, such as the neck length and neck width of the Helmholtz resonator. It there-
fore adds additional complexity and ambiguity without providing more information on the
actual mechanism. I therefore suggest the use of the much simpler cavity resonance model
presented by Vidal et al. (2006), unless or until new data might necessitate the use of more
complex models for resonance generation.

Alternative II: the above discussed cavity resonance model is also somewhat similar to
that of a resonating open organ pipe, as proposed by Chouet et al. (1974), who observed
oscillating gas velocities during explosions at Stromboli. For the same resonating frequency,
the λ/4 model discussed above suggests a resonator that is only half as long as that of an
open organ pipe. This is because an open organ pipe has two open ends as a boundary
condition (the exciting end of an organ pipe is always open), leading to a λ/2 type resonance
(Hall, 2001). However, the cavity formed by a burst gas slug in a conduit has only one open
end, and is therefore more similar to that of a closed organ pipe instead of an open one (Hall,
2001), leading once again to a λ/4 type resonance (i.e. eliminating alternative II). Thus, in
the case of Stromboli, this suggests a resonating conduit that is roughly only half as long as
that resulting from the ”open organ pipe” formula used by Chouet et al. (1974). Additionally,
contrary to some previous studies, it is important to use the correct speed of sound for
the hot magmatic gas that is located inside and outside the conduit after a burst, which is
typically almost twice as high as the commonly used atmospheric sound speed at ambient
temperatures (Eq. A.2).

Volcanic acoustic waveforms are far from the purity of laboratory waveforms, influenced
by a variety of poorly constrained parameters, such as echoes and details of the source
geometry. Therefore, since some of the above proposed resonance mechanisms produce
similar resonance patterns, the question about the correct mechanism is difficult to resolve
by simply comparing waveforms.

In summary, the λ/4 type cavity resonance (as discussed by Vidal et al., 2006) that was
proposed in this study as the predominant mechanism for Erebus post-burst waveforms is
by far the most simple and straightforward of the above proposed mechanisms. It keeps
unconstrained parameters at a minimum while explaining the waveforms and observed
effects just as well or even better than the other mechanisms. I thus propose to use ”Ockham’s
razor” (e.g. Gernert, 2007), meaning that more complex models than the simplest sufficient
one should be discarded until they provide testable predictions that justify their increased
complexity, ideally offering a better understanding of the phenomena in question.

For example, using the cavity resonance model to interpret the 7–9 Hz signal measured
at Stromboli by Vergniolle and Brandeis (1994) and Vergniolle et al. (1996) would lead to a slug
lengths of 16–21 m. Accordingly, the 2 Hz signal measured by Vergniolle and Caplan-Auerbach
(2004) at Shishaldin volcano would lead to slug lengths of∼75 metres. This is slightly longer
than what the authors of the study proposed based on a Helmholtz resonator model, and it
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is very similar to the value obtained for slugs at Erebus.

Naturally, all of the above models, including the one proposed here, have their limita-
tions. In the case of bubble bursts, as long as details of the shell rupture process are un-
known, the results of Vidal et al. (2006) clearly show that it is impossible to calculate the
initial bubble pressure from post-burst infrasound alone. It is prevented because the ampli-
tude of the cavity resonance after the burst is strongly dependent on the details of the burst
process. Therefore, without the development of even more sophisticated bubble models,
this spoils the ability of using post-burst acoustic amplitudes for calculating the gas energy.
Even though this was attempted in the past, doing so leads to incorrect values. This also ex-
plains reports of the typically weak correlation of seismic and infrasonic amplitudes during
volcanic explosions (Johnson et al., 2005), again highlighting that it is impossible under most
conditions to estimate the bubble parameters at volcanoes from distant pressure recordings
alone.

Fortunately, the data presented here show that, despite the model’s simplicity, radar mea-
surements in combination with an explosion model provide the necessary information to
successfully predict the acoustic signal from Strombolian explosions at Erebus. The proper-
ties of the waveform match, without the adjustment of arbitrary parameters, provide con-
fidence in the interpretation of acoustic signals not only at Erebus but also at other Strom-
bolian volcanoes. Therefore, by using the frequency of acoustic explosion signals, the tech-
nique presented here offers a surprisingly simple tool to judge the length of Strombolian
gas slugs, and possibly to estimate the width of the conduit mouth. This new tool should
therefore be tested at other Strombolian volcanoes.

9.6 Source of the seismic signal

As discussed in Sections 4.2.8 and 7.7, Strombolian bubble bursts are expected to generate
a large, mainly vertical downward force on the ground. They therefore generate seismic
waves in the short period range, in addition to the very long period signal associated with
the bubble’s rise in the conduit. The explosion forces are expected to couple into the ground
at regions of conduit discontinuities (e.g. Chouet et al., 2008), of which the most obvious and
closest one to the surface is the transition zone between the wide lava lake and the more
narrow conduit (see Sec. 9.8.1 below). While the relative amount of seismic energy radiated
into the ground was already discussed in this Chapter (Sec. 9.3), I will now discuss the
ground forces that are generating these short period seismic waves.

Figure 7.14 shows that peak vertical ground forces are expected between 100 and 800 MN,
i.e. in the 108–109 N range. As a comparison, this force is about equal in its absolute value
to the force needed to lift a large cruise ship10. The frequency of this force signal is around

10e.g. the R.M.S. Queen Mary II, which at its construction in 2003 was the worlds largest passenger ship, has a
mass of ≈ 76,000 metric tons, i.e. its weight is around 750 MN in Earth’s gravity.
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3 Hz; it therefore lies in a frequency range similar to that of typical volcanic long period (LP)
signals (e.g. McNutt, 2005).

These above calculated forces are two orders of magnitude higher than what was pre-
viously assumed and modelled for slug ascents and bursts (James et al., 2004, 2008). Yet
intriguingly, they are very similar to forces determined by seismological field studies. For
example, forces in the 108 N range were suggested for mechanisms causing very long pe-
riod (VLP) signals at Stromboli (Chouet et al., 2003, 2008), Popocatépetl volcano (Chouet et al.,
2005), and also at Erebus itself (Aster et al., 2008). Forces in the 109 N range were suggested at
Hawai’i (Ohminato et al., 1998) and small explosions at Volcán de Colima (Zobin et al., 2009),
topped by 1010 N for vulcanian explosions at Asama volcano (Ohminato, 2008) and for large
explosions at Popocatépetl (Zobin et al., 2009). In most of these cases, however, the frequency
of the measured signal lies in the very long period (VLP) range, having significantly longer
periods than the 3 Hz force signal inferred for explosions at Erebus.

As discussed in Chapter 7, type II explosions do not allow for the application of the bubble
expansion model. Therefore it is not possible to determine their ground forces in the same
way as for type I signals. Type II explosions appear visually more violent than type I ex-
plosions, have higher ejecta velocities (Sec. 6.3), and also generate stronger acoustic signals
(Sec. 7.6). Nevertheless, it is possible that they generate a weaker ground force and therefore
a weaker seismic signal than type I explosions, resulting from their very localised point of
shell rupture early in the explosion. This ”pinpointing” leads to a violent gas outbreak and
generates fast ejecta, but it does not lead to a comprehensive acceleration of the entire lava
lake surface. Therefore, a strong acoustic signal might be generated, but not necessarily ac-
companied by a strong ground force or seismic signal. If present, this effect should reflect in
a systematic VASR difference (see Sec. 9.3 and Johnson and Aster, 2005) between type I and II
explosions.

Seismic energies of small explosions turned out to be very small, due to the small masses
and accelerations involved. It can therefore be expected that the generation of seismic waves
during small explosions is negligible, which should reflect in weak, or even in a lack of, seis-
mic recordings of small explosions on the local seismological network. Similar observations
were made by Rowe et al. (2000), who report a significantly increased VASR (i.e. decreased
seismic energy) for small explosions at Erebus.

Due to its high frequency, the above proposed force function for bubble bursts cannot
serve as an alternative generation mechanism for previously proposed VLP source mecha-
nisms. VLP events have periods between 2 and several 100 s (e.g. McNutt, 2005), and are
assumed to emerge during the rise of the slug in the conduit, i.e. several seconds before the
burst and at depths of a few 100 metres (as discussed in Sec. 2.2.2, and e.g. Chouet et al., 1997,
1999, 2003, 2005, 2008; Rowe et al., 1998, 2000; Ripepe and Gordeev, 1999; Ripepe et al., 2001;
Seyfried and Freundt, 2000; Aster et al., 2003, 2008; James et al., 2004, 2006). In contrast, the
ground forces inferred for Erebus are expected to generate a strong signal around 3 Hz right
at burst time, and should be easily observable in the volcanic edifice, although typically
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strongly altered by reverberations.

Intriguingly, Rowe et al. (1998, 2000) analysed seismic events from Erebus explosions and
find signals around 3 Hz, which have long codas that prevent a detailed waveform analysis,
but which are radially polarised towards the lava lake (De Lauro et al., 2009). Thus, despite
the effects of attenuation and complex path effects that are typically found at volcanoes,
I propose that seismic amplitudes and frequency contents of explosion signals from other
Strombolian volcanoes should be compared to force functions determined from respective
radar measurements.

9.7 Bubble gas volume

Bubble gas volumes were determined in Section 7.5 in three different ways. The first two
methods (A & B), based on thermodynamic considerations, agree very well in suggesting
that approaching bubbles have an initial volume of around 1,000 – 1,250 m3 at the start of
their rapid expansion phase. Such plain numbers of volume are relatively hard to visualise.
To provide the reader with a more imaginable figure, this volume is similar to about twice
the cabin volume of a large passenger aircraft11.

The third method (Sec. 7.5, C), based on video observations, yields much higher estimates
for the total gas volume expelled during the entire explosion. These are in the range of
8,000 – 35,000 m3, and strongly varying from explosion to explosion. Gas volumes of large
explosions could even be greater than 35,000 m3. In all cases they are much larger than
volumes determined from the first two methods. Error bars on the plots show that this
difference cannot be explained by systematic errors, e.g. by having selected wrong values
for shell thickness or magma density (see parameter errors, Sec. 7.1).

While this systematic difference seems odd at first, it can be explained by a simple mech-
anism. The first two methods (A & B) only constrain the volume of the gas bubble that is
initially pushing up the lava lake surface, whereas the video estimation method (C) takes
into account the total volume of gas ejected during the entire explosion. If only a single
bubble rises and expands to form an explosion, these two volumes are expected to be sim-
ilar. However, if there is more than one bubble involved, or if it is a fragmented bubble
whose fragments arrive at the surface in quick succession, then the initial volume of the first
approaching bubble is expected to be significantly smaller than the combined volume of all
bubbles. In that case, the different volumes measured by methods A/B and C are consistent
with the theory, bearing important information on the explosion mechanism.

Figure 4.7 gives another hint that supports the above reasoning. When not only the first
acceleration peak is taken into account, as was done for methods A & B, but when estimating
the initial volume from the amount of energy that is freed between the start of an explosion
and the moment of burst, then a new picture arises. The amount of freed energy before the

11The combined cabin volume of both passenger decks of a Boeing 747-400 aircraft is ∼700 m3.
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moment of burst is around 5×109 J for large type I bubbles (Fig. 7.3). Therefore, at least this
amount of energy must have been stored in the combined bubbles at the beginning of the
rapid expansion phase, plus the unknown amount of gas energy that was still contained in
the bubble(s) at the moment of the (first) bubble’s burst. At the start of the rapid expansion,
the bubble had an overpressure of around 400 kPa, dropping by about 300 kPa before burst-
ing (Fig. 7.6). The simple thermodynamics plotted in Figure 4.7 show that in order to release
this amount of energy at that specific pressure drop, the bubbles must have had a combined
volume of at least 12,000 m3 at the beginning of the rapid expansion phase.

The above consideration shows that, as soon as more than only the first approaching
bubble is taken into account, the various methods for determining bubble volumes match
much more closely. Nevertheless, the information on the volumes of the respective first
approaching bubbles is a very useful resource, as will be shown and further discussed in
Section 9.8.

I will now compare the obtained bubble volumes to values obtained with other methods
and at other volcanoes. Johnson et al. (2008) determined gas volumes at Erebus from acoustic
records, and estimate bubble volumes of 1,000 m3 – 24,000 m3. Interestingly, this covers
the total range of bubble volumes determined here, including the relatively small volumes
of the first approaching bubble of each explosion, as well as entire explosion gas volumes.
Johnson et al. (2004), based on infrasonic measurements, estimated the gas mass of Erebus
bubbles to the order of 103 kg per explosion, which translates into a volume in the order of
1,000 m3 when assuming an overpressure of 400 kPa and 1000◦C at the start of the rapid
expansion phase.

Gas volumes estimated for Stromboli are naturally much smaller than those inferred for
Erebus, given the smaller scale of Stromboli’s explosions. Vergniolle and Brandeis (1996) sug-
gest gas volumes at Stromboli in the order of 2 – 100 m3 (however, based on the assumption
of bubble vibrations, the existence of which seem unlikely in the light of this study). To
make these numbers comparable, assuming an average overpressure of 400 kPa at burst,
the bubbles would need to have volumes between 0.5 and 20 m3, the lower end of which
appears rather small despite Stromboli’s moderate sized explosions. More realistically, air-
borne COSPEC measurements at Stromboli volcano (Allard et al., 1994) suggest a gas output
of a few hundred kilograms per second during explosions, which translates into a few hun-
dred cubic metres per explosion (at 400 kPa) when assuming an average explosion duration
of one second. This is consistent with early photoballistic measurements by Chouet et al.
(1974), suggesting gas masses in the order of a few hundred kg per explosion.

For the much larger explosions at Shishaldin, Vergniolle et al. (2004), also based on assumed
bubble vibrations, suggest slug diameters of 5 m at lengths of 10 – 60 m (sometimes 80 m)
with an overpressure of∼150 – 1400 kPa. They suggest an overall gas volume at atmospheric
pressure of∼10,000 m3 per bubble, which translates into∼2,000 m3 at 400 kPa overpressure.

Gas volumes are likely to be highly dependent on the individual properties of the volcanic
system, therefore gas volumes from different volcanoes cannot easily be compared. Never-
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theless, the above values show that gas volumes determined from radar measurements at
Erebus are in a similar magnitude range than that of comparable volcanoes. Furthermore,
the results obtained here (Sec. 7.5, C) show that gas volumes are strongly dependent on the
explosion type. A more causal way to express this relation is that, most likely, the available
gas volume determines the explosion type.

9.7.1 Slug expansion: a volume problem?

Due to the volume expansion experienced by a rising gas slug in a volcanic conduit, the
liquid head above a slug is pushed upwards, constantly raising the surface level until the
moment when the slug reaches the surface. This effect was already indicated in Figure 2.2,
simulating a typical slug rise at Erebus, although for only one possible conduit diameter
and not taking account of the widening of the conduit into the lava lake.

In contrast, video and visual observations at Erebus show that the level of Ray Lava Lake
does not rise strongly in the last moments before an explosion (SOM, 2010; Dibble et al., 2008).
Only in the last few seconds before an explosion, the lake level rises by a few metres and
eventually starts to bulge and explode.

If the predicted lake level rise cannot account for the observed one, then the proposed
slug rise model for Erebus does not adequately represent the real processes. For example,
a very small lake level rise before explosions might suggest a very shallow source of gas
instead of a bubble rising in a long conduit. I will therefore test the compatibility of the
proposed conduit rise model with the observed lake level rise. To do so, I have repeated
the simulation shown in Figure 2.2 for a variety of conduit diameters and gas slug masses,
but also incorporated the effect that the large cross sectional area of the lava lake has on the
expected conduit rise (i.e. for a given volume input, the level rise decreases by a factor of
(Rc/RL)2, where Rc and RL are the conduit and lake radii, respectively. This cross-section
ratio is independent from the lake depth).

Figure 9.5 shows the result of this simulation. It shows that the lake level rise is indeed
only moderate when including the effect of the large surface area of the lake, but it depends
on the conduit diameter. Dibble et al. (2008) observed in 1987, under favourable viewing
conditions after a large explosion, that the hole at the bottom of the (then emptied) lava lake
has a diameter of around 10 m. Due to the changeability of a magmatic system, this might
not necessarily represent the conduit diameter nearly 20 years later, but the observed general
steadiness of conditions at Erebus suggests that this value is still in the correct range. The
figure suggests that the expected lake level rise for a 10 m conduit is indeed below 3 m for
slug masses up to 12,000 kg, which corresponds to a slug volume of ∼10,000 m3 at 400 kPa
overpressure above ambient.

Vergniolle et al. (2004, and references therein) give an overview of vent and conduit diam-
eters for various volcanoes, such as Etna (2–10 m), Kilauea (∼20 m), Stromboli (∼2 m), and
estimate a conduit radius of 12 m for Shishaldin. The above suggested 10 m for Erebus is
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Figure 9.5: Expected lake level rise before burst. This plot is similar in style to Fig. 9.2, but shows
the expected level rise in Ray Lava Lake shortly before the burst, which is caused by the expansion
of the rising slug in the conduit in the seconds before reaching the surface (Figs. 2.2 & 2.3). The lower
horizontal axis denotes slug gas masses, the upper horizontal axis denotes the respective slug volume
at 400 kPa overpressure above atmospheric pressure. While the slug expansion was calculated for
the respective conduit diameter shown on the vertical axis, it was converted into the expected lake
level rise for a lava lake of 40 m diameter (isolines). The large area of the lava lake in comparison to
the conduit cross section dampens the expected level rise compared to that of a pure conduit.

therefore within the range spanned by other Strombolian volcanoes, and is consistent with
thermal considerations by Calkins et al. (2008), who calculate a minimum conduit diameter of
∼4 m for Erebus. Wallis (1969) observe that in a slug flow regime, slug lengths are typically
within 10 times the conduit diameter. At Erebus, even though highly dependent on scaling
laws, this would allow for slug lengths of ∼100 m. When neglecting the film thickness, it
would infer slug volumes at depth in the order of 8,000 m3 (while still at a high pressure),
which is consistent with the above determined final slug volumes at the beginning of the
rapid expansion phase.

The expected lake level rise shown in Figure 9.5 is thus fully compatible with video ob-
servations (SOM) and those of other authors (Dibble et al., 2008), therefore fully accounting
for the slug volume expansion. As a consequence, the slug rise model is not compromised
by observations of only a moderate pre-explosion lake level rise.
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9.8 Constraints on the conduit shape - generating ”double bub-
bles”?

Figures 6.10 and 7.1 illustrate that type I bubbles at Erebus show a very consistent double
acceleration peak. This means that the lake surface accelerates in two pulses, separated by
about 0.3 s. In between the pulses the expansion acceleration almost stagnates, so that the
expansion velocity remains constant for some fractions of a second before resuming acceler-
ation. While a possible explanation for the first peak is evident, i.e. the rapid expansion of
an overpressured gas bubble under the surface of the lava lake leading to a pressured drop
in the bubble, the explanation for the second peak is not so simple.

As a first hypothesis, it is possible that the second acceleration peak is merely caused
by the increased velocities that the radar measures after the bubble has burst. Since the
burst process accelerates many small fragments, it is possible that the radar spectrum is
dominated by their fast velocities after the burst, appearing as a second acceleration peak
while in reality the large shell fragments do not accelerate a second time. Even though this
would be a convenient explanation for the phenomenon, existing evidence points in another
direction. Figure 6.10 shows that the bubbles’ burst is consistently detected∼0.1 – 0.15 s after
the onset of the second peak by the radar. While it is possible to imagine a systematic delay
time between the actual burst and its detection by radar, it would be hard to explain why
the radar would nevertheless detect the resulting high velocities immediately after the burst
without a delay.

Furthermore, radar velocigrams as shown in Figure 6.6 (e.g. II) suggest that after the ve-
locity stagnation in between the two acceleration phases, not only a few fragments but the
bulk of the material continues to accelerate. This evidence suggests that the second accelera-
tion phase indeed concerns the entire, still intact magma shell before the burst. Additionally,
estimated bubble volumes (as discussed in Sec. 9.7) suggest that the bubble that is responsi-
ble for the first acceleration peak only has a volume in the range of 1,000 m3, while the total
amount of gas expelled in an explosion is ten times higher. If only one bubble is involved in
the explosion, then it remains unclear where the large total gas volume comes from. I thus
conclude from the combined evidence above that the double acceleration peaks are indeed
a real phenomenon.

Consistently, double explosions have been suggested as possible explanations for peculiar
phenomena at Stromboli (from video data Chouet et al., 1974; Ripepe et al., 1993; Harris and
Ripepe, 2007). Chadwick et al. (2008) observed submarine Strombolian-style eruptions at the
submerged ”NW Rota-1” volcano in the Mariana arc, and find hydroacoustic evidence for
multiple gas slugs arriving at the magma surface in rapid succession. And at Erebus, almost
10 years before the data for this study was recorded, Rowe et al. (2000) found acoustic wave
forms that they attribute to double explosions. Consistent with the findings in this study,
they report time lags in the order of 0.15 – 0.3 s between the explosion peaks. Yet, until now,
no satisfying explanation was given as to their generation mechanism.
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The above evidence necessitates a physical explanation for the generation of at least two
acceleration peaks12. Since the curve shapes are very similar between different explosions
that are weeks apart, there must be a non-destructive and highly repetitive underlying
mechanism. As a possible explanation I suggest the arrival of two or more slugs at the sur-
face in rapid succession. Their generation mechanism can simply be explained by the fluid
dynamic effects that are typically caused by a sudden widening of the conduit only a few
tens of metres beneath the surface of the liquid column. I will now discuss this phenomenon
in detail.

9.8.1 The effects of an abrupt change in conduit diameter

A mechanism that is capable of introducing a significant pressure disturbance in an ascend-
ing slug is the passage of a sudden change in conduit diameter. While this was suspected
soon after volcanological models for slug flow were proposed (e.g. Seyfried and Freundt, 2000;
Aster et al., 2003), it was systematically investigated by James et al. (2006), who found aston-
ishing results.

James et al. (2006), on the basis of detailed laboratory experiments, found that it is not a
conduit constriction that generates the greatest disturbance to a rising slug, but a sudden
widening of the conduit diameter, a so-called ”flare”. The experimenters demonstrate that
the passage of even a minor widening of the conduit (i.e. an increase of the conduit diameter
as small as a factor of 1.3 – 2.1) leads to a severe disruption of the slug ascent. Typical effects
are the occurrence of superstatic pressure peaks, net forces on the system, and a sudden
acceleration of the slug accompanied by a violent disruption of the slug shape, which often
tears the slug into two or more separated sections. Figure 9.6, adapted from real data by
James et al. (2006), sketches such a flare passage. The severity of these effects was found to
increase with the amount of diameter change. The effects even occurred when the widening
concerned only a small section of the conduit at depth (i.e. a spatially confined ”bulge” in
the conduit).

These highly dynamic effects are caused by the abrupt change of slug rise speed (James
et al., 2006), which generally strongly increases with the tube diameter (Eq. 2.6). A higher
rise speed in the wider, upper part of the tube leads to an acceleration of the downward
flux of liquid on the side of the slug as soon as its nose enters the upper part. During
the passage of the flare, this relatively fast downward flowing liquid film above the flare is
entering the lower (narrower) tube, leading to a thickening of the film there, accelerating and
”squeezing” the slug into the upper tube. When the slug is sufficiently long, this thickening
occurs before the slug has completely passed the flare, eventually closing off the ascending
gas for a moment and cutting the slug in two separate sections, which then typically reach
the surface in rapid succession (Fig. 9.6).

12Possibly, even more than two acceleration peaks exist, which could occur after the bubble has burst, i.e. when
the radar cannot track the velocity of the intact shell any more.
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Figure 9.6: A gas slug passing a section of a sudden conduit widening (also called a ”flare”).
(adapted from James et al., 2006). During the passage, a slug of sufficient length typically gets cut
into several sections, accompanied by strong shape distortions and an acceleration of the slug’s rise
speed. A similar geometry is expected under lava lakes. Even though the scaling behaviour of this
effect is not entirely clear, the experiments suggest that it occurs in a wide range of flow regimes,
including the one inferred for Erebus’ magma viscosity and conduit geometry.

James et al. (2006) found that the effects of such a flare passage are highly repeatable, and
strongly depend on the depth of the flare and its profile, i.e. the widening of the cross-
sectional conduit area. Shallow positioned13 sections of severe tube widening (i.e. a dou-
bling of the diameter14) were observed to cause the largest disruption in the slug’s final
approach to the surface.

Interestingly, such a geometry is very likely to be present at the bottom of most existing
lava lakes, with a relatively narrow conduit feeding into a wider, fluid-filled lava lake. Such
a funnel-shaped vent geometry is common at volcanoes (Sparks et al., 1997), and recent litera-
ture has noted that it is also present at Erebus (e.g. Dibble et al., 2008; Calkins et al., 2008). This
is not surprising, given that such a geometry is very likely to be enhanced by convectional
erosion in the lava lake, where constantly circulating hot magma generates a downward
flow along the lake walls (Calkins et al., 2008).

Even though James et al. (2006) point out that the usually applied scaling laws fail in such
a dynamic regime, the mechanisms observed during a flare passage of a laboratory slug
are likely to have a great similarity to larger natural systems. Therefore, if such a flare is
situated just beneath the surface of a lava lake, it is likely to have a significant influence on
the slug rise in the last moments before reaching the surface, possibly influencing the gas
overpressure just before the explosion.

The phenomenon of slug separation into two or more sub-bubbles deserves a closer look.

13shallow in this respect means that the flare is not submerged significantly deeper than about three times the
upper conduit diameter. Numerical and analogue models of fluid dynamics show that the ”active” part of
liquid flow field above the slug occupies a volume that is about equal in length and width, i.e. it is not much
longer than the conduit is wide, possibly even less (Polonsky et al., 1999a; James et al., 2006).

14the used widening profiles were relatively gentle-shaped, i.e. it is not necessary to have a step-like widening
of the profile to observe this effect.
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James et al. (2006) found that when slug separation occurs in slugs that are just longer than
the critical cutoff length, the respective first segments experience the strongest acceleration
towards the surface. In contrast, slugs that are just under the critical length are accompanied
by strong shape elongations. Depending on several different parameters, laboratory slugs
temporarily increase their ascent velocity by up to a factor of 10 after the passage of a flare
(James et al., 2006). Shape disruptions occur during the entire high-speed phase of the slug
(i.e. just above the conduit widening) and sometimes lead to a very narrow and pointed slug
nose, which ascends to the surface in a jet-like manner.

Intriguingly, in the natural system, this shape alteration mechanism can sufficiently ex-
plain the two main types of explosion styles found in the Ray Lava Lake of Mt. Erebus. The
violent type II explosions emerge at a relatively small and defined spot on the lake surface.
Thus, they could be caused by slugs that are just under the cutoff length, which have experi-
enced a strong elongation, possibly causing a strongly pointed slug nose. In contrast, type I
explosions, with their double acceleration peak might be caused by slugs that are beyond
the critical length and therefore get cut in two (or more) sections. Consistently, small explo-
sions could result from bubbles that are much too small to be cut in half or to be significantly
disturbed, therefore not generating a double peak.

The length or volume of the first bubble is partly determined by the geometry of the flare
and the liquid properties, both of which are expected to be reasonably stable at Erebus (Kelly
et al., 2008b). Therefore, if this mechanism plays a role, sizes, pressures and volumes of the
respective first bubble of explosions can be expected to be similar to each other. In contrast,
the combined volume of the following bubbles is dependent on the initial slug length, which
varies between explosions. Therefore, this mechanism can conveniently explain why the
bubble pressures and volumes of the respective first bubble of different type I explosions are
so similar to each other, while the overall expelled gas volume varies greatly from explosion
to explosion (Fig. 7.9).

James et al. (2006) show that acceleration forces and changes in flow pattern associated with
a slug passage act as net vertical forces on the whole system (typically a small-magnitude
upward force acting on the flare neck, followed by a stronger downward force acting on
the bottom of the tube). Depending on the geometry and the pressure wave velocity of
the system, these pressure perturbations can stimulate longitudinal oscillations (”standing
waves”) of the conduit.

A testable expected consequence of this mechanism is therefore the excitation of seismic
waves. The signals are expected to emerge a few seconds before the burst from the flare
neck and possibly from the bottom of the conduit, potentially capable of exciting the entire
conduit to resonance. While this has the potential for an in-depth future investigation, it is
so far consistent with existing seismic studies conducted at Erebus (Rowe et al., 1998, 2000;
Aster et al., 2003, 2008).
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9.8.2 Alternative explanation: an explosive gas injection

An alternative explanation for the double acceleration peak during bubble explosions at
Erebus is that bubbles are not the result of gas slugs that have risen in the conduit, but the
result of a sudden explosive degassing into a shallow area of the lava lake. Such an explosive
injection of highly pressurised gas into the liquid magma could generate a hydrodynamic
phenomenon that is very similar to that caused by shallow underwater explosions.

Ichihara et al. (2005) and Ichihara et al. (2009) have conducted underwater explosion ex-
periments showing that shallow explosions cause the bulging of the water surface above,
which acts as a volumetric source for the generation of an acoustic signal. They found that
for a certain depth of the explosion relative to their size, the water surface above the explo-
sion accelerates in two separate pulses. The first acceleration pulse is caused by the massive
displacement of volume through the explosion itself, followed by a deceleration of the dis-
placement when the gas pressure drops due to the bubble’s expansion. Then, a second
peak in the acceleration of the water surface is caused by the top of the bubble approach-
ing the surface (while the bottom part of the bubble continues to decelerate). Even though
the surface level does not oscillate (i.e. there is no surface retraction phase during shallow
explosions), these two acceleration peaks of the water surface typically generate an acoustic
M-wave (Ichihara et al., 2009) by volumetrically expanding into the atmosphere.

If the above mechanism is present at Erebus, it could account for the double acceleration
peak observed at the surface. The resulting typical plateau in the acoustic signal, could then
be interpreted as a degenerated form of an M-wave. If existing, this mechanism would have
profound consequences for the currently accepted model for Erebus explosions. Instead of
rising gas slugs inside the conduit, it would imply that the conduit is more or less slug-free.
Additionally, a persistent source of explosive gas release would have to be present in the
shallow part of the lake.

The presence of an active gas vent in Erebus’ crater next to Ray Lava Lake, which sporad-
ically and sometimes explosively ejects a gas jet (Calkins et al., 2008; Jones et al., 2008), shows
that an explosive source of gas injection into Ray Lava lake is possible. Oppenheimer and Kyle
(2008b) show that gas released from Ray Lava Lake has a significantly different CO2/H2O
composition than gas released from the other vents at Erebus, suggesting that at least two
different gas supply mechanisms exist in Erebus’ crater.

Furthermore, after observing explosions in 1987, Dibble et al. (2008) reported that right
after some explosions, ”... new lava entered the empty basin through a small vent at the top of
the wall on the side away from the camera wall.” This observation suggests that even though
the system is overall stable, the magma supply to Ray Lava lake is not always exclusively
feeding into the lake from the bottom, thus providing a possible source of a gas injection on
the side.

Aster et al. (2003) suggest that a shallow summit magma reservoir could exist at Erebus,
in that case being the source of magma and gas feeding into the lava lake. In the case of a
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reservoir roof that is possibly located only a few tens of metres beneath Erebus’ crater floor,
gas would be expected to accumulate at the roof of the reservoir and beneath structural
barriers in the shape of coalescing foam. When such a barrier is finally surmounted by
the gas, depending on the geometry, it would either rise up the (in that case very short)
”conduit” into the lava lake, or it could rise through cracks, causing a direct gas explosion,
as can frequently be observed in Erebus’ active ash vent.

Such a geometry is supported by observations by Dibble et al. (2008), who report that after
some large explosions at Erebus, the lava lake continued to drain down the conduit for
several seconds after an explosion. This was most likely caused by inertia of the magma
column, which was pushed downward by the explosion’s force (Sec. 7.7). Due to the large
mass of magma in a long conduit, the presence of such a strong effect suggests a rather short
conduit length, which is consistent with a very shallow magma reservoir. Additionally, a
short conduit length strongly promotes the stability of a conduit-lake system (Witham and
Llewellin, 2006), and might explain why Ray Lava Lake shows such a high degree of long-
term stability, which is generally hard to obtain (Witham and Llewellin, 2006).

In summary, the alternative model for the shallow Erebus conduit system and the asso-
ciated explosion mechanism discussed in this section is interesting, but it is not backed up
by many quantitative observations, thus I do not regard it as the most likely scenario at this
point. However, while it opens up a variety of new questions, it answers some others, and
the rationales presented here suggest that it should nevertheless be further discussed and
considered in future studies.

9.8.3 No alternative: bubble vibrations

As discussed in Section 2.2, the liquid head above a rising slug can act as a mass bouncing on
a gas spring, resulting in longitudinal oscillations of the slug (e.g. Vergniolle et al., 1996; James
et al., 2008). It is tempting to attribute the double acceleration peak that is observed during
bubble expansion to such an oscillation (similar to the model developed by Vergniolle and
Brandeis, 1994). Vergniolle et al. (1996, Eq. 5) provide a formula for the expected oscillation
period of a slug at depth, which was confirmed in laboratory experiments by James et al.
(2004).

Figure 9.7 shows this expected pre-burst oscillation period for a variety of conduit di-
ameters and gas masses expected for Erebus, using the same model as was used for Fig-
ures 2.2, 9.2 & 9.5 (James et al., 2008), and using the formula provided by Vergniolle et al.
(1996). The period is shown for the moment when the liquid head above the slug has de-
creased to 1.4 m thickness, representing the thickness of the magma shell (Sec. 7.1) above the
slug at the beginning of the rapid expansion phase, i.e. at the time when the first acceleration
peak occurs.

The expected period for a longitudinal slug oscillation at Erebus, depending on the con-
duit diameter, lies in the range of several seconds even for small slugs just before the burst
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Figure 9.7: Expected oscillation pe-
riod of a magma head above a slug.
This plot is similar in style to Fig. 9.2,
but shows the expected oscillation
eigenperiod of the liquid magma col-
umn above the slug, bouncing on the
pressurised gas and therefore acting
like a mass-spring system. Periods
are given for the moment just before
the burst, when the liquid has only a
remaining thickness of 1.4 m (which
is assumed to be the thickness at the
start of the rapid expansion phase).
The periods are even lower when the
slug is still deep.

(Fig. 9.7). It increases substantially for larger slugs, and is much higher for slugs that are still
deep, due to the larger mass of magma above the slug. Even though the model considers the
existing amount of overpressure in the slug, which strongly decreases the oscillation period,
the predicted period is still much higher than the ∼0.3 s period that can be inferred when
interpreting the double acceleration peaks as an oscillation (Fig. 6.10).

Furthermore, if such a longitudinal oscillation is so strongly excited in that phase of an
explosion, its excitation would be expected to slowly emerge in the seconds before the burst,
with a constantly decreasing period due to the ongoing mass decrease above the slug (as
observed by James et al., 2004). Surface accelerations obtained from radar data do not show
any signs for such a slowly emerging oscillation of the lake surface. Consistent with the
above, in laboratory experiments, James et al. (2004) find evidence suggesting the presence of
such longitudinal oscillations when the slug is still deep, but they do not find any evidence
for shape oscillations of the membrane once the bubble has approached the surface.

9.9 Long term energy balance and mass flux

Section 4.2 shows that the overall (static and dynamic) explosive energy output at Erebus is
dominated entirely by the thermal energy transported in magma fragments ejected from the
lake. The general observation that thermal energy by far exceeds all other types of energy
is in accordance with earlier observations at other volcanoes (e.g. Yokoyama, 1956; Hédervári,
1963; McGetchin and Chouet, 1979).

On Erebus, each large explosion (of all types but small) ejects hot fragments carrying
around 4 × 1012 J of heat. With an estimated daily average of about 3 – 4 large explosions
(Fig. 6.1), and assuming that a quarter of the hot shell material remains outside the lake long
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enough to cool before slipping back (factor ηm in Eq. 4.61), this amounts to a daily thermal
output of∼ 3×1012 J during an active phase of the volcano, such as the field season 2005/06.
On average, this is equivalent to a constant power output of∼35 MW, but this value neglects
the additional steady-state radiative and convective heat output from the lava lake occur-
ring in between the explosions.

Calkins et al. (2008), by using a temporally deployed ground-based thermal camera15, es-
timate the steady-state radiative and convective thermal output of Ray Lava Lake in 2004
to about 36 ± 3 MW, which is about the same amount of energy that is transported through
explosions (as estimated above). Therefore, by including power output by mass loss, the
estimated thermal energy loss is significantly greater than previously assumed. This must
be considered when, for example, estimating minimum reservoir sizes through thermal heat
loss (e.g. Calkins et al., 2008).

The additional non-steady power output caused by explosions is difficult to detect or
determine with satellite-based methods (e.g. Harris et al., 1999; Davies et al., 2008; Wright
and Pilger, 2008a,b), since they are typically sampling only once in several days. Therefore,
satellites are likely to simply miss the short time period after an explosion where the ejected
and dispersed lava significantly adds to the radiated heat, and might even introduce an
aliasing effect. Consistently, Wright and Pilger (2008a) measure a highly variable heat flux at
Erebus at the end of 2005 with an average of∼17 MW, but with single measurements as high
as 100 MW (e.g. MODIS, 10 April 2006, with the satellite possibly sampling shortly after an
explosion).

I have argued in Section 7.1 that the mass of magma removed from the conduit during
a large explosion in the austral summer of 2005/06 was in the order of ∼3,600 metric tons.
If an average of three explosions per day is assumed of which a quarter remains perma-
nently outside the lake, this surmounts to a mass loss of ∼2,700 tons/day, or an average
mass loss of ∼30 kg/s. This mass loss is in the same order of magnitude as the assumed
magma supply rate that is necessary to deliver (via thermal convection in the conduit) the
required heat to counterbalance the heat loss through radiation. Wright and Pilger (2008a)
estimate the average convective magma supply rate of Erebus at 14 - 118 kg/s, or 1,200 –
10,000 tons per day on the basis of satellite measured heat flux. Calkins et al. (2008), using a
ground-based thermal camera, estimate this value at 140 - 400 kg/s, while Davies et al. (2008),
using satellite-based measurements in the austral summer of 2005/06, suggest a convective
magma supply rate of 64 – 93 kg/s.

Given that both the amount of mass ejection through explosions, and the thermally nec-
essary magma supply rate (Calkins et al., 2008; Davies et al., 2008) are based on a number of
assumptions, their agreement is remarkable. The consequence of this is that during a phase
as active as December 2005 and January 2006, the magma supply rate in the conduit must
accommodate for both the radiative heat flux between explosions, as well as for the net mass

15The permanently installed thermal infrared camera at Erebus (Aster et al., 2004) is not calibrated, and can
therefore not be used for calculating the energy output.
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loss by explosion ejecta. Another possibility is that, rather than being strongly convective,
the conduit feeding Ray Lava Lake might almost be a ”one way street” during such phases,
delivering just as much magma to the top as is removed by the explosions, and still provid-
ing enough heat to support a permanent lava lake. An investigation of this effect will be an
interesting target for a future study.



CHAPTER 10

CONCLUSIONS AND OUTLOOK

This study derives and analyses a multi-parameter dataset using Doppler radar and seis-
mic, infrasonic and video observations collected in 2005/06 at Erebus volcano, Antarctica.
The results show that such a multi-parameter dataset can provide novel and important in-
formation about the start of Strombolian eruptions, therefore enhancing our understanding
of Strombolian-type volcanoes. We now have a tool at hand to determine in-situ parameters
during the critical first second of an eruption in real-time, and during all weather and light
conditions. It provides information on the eruption mechanism in unprecedented detail,
and for the first time allows the calculation of energy that is freed during the first second
of a volcanic eruption as a detailed function of time. Similarly, the history of gas pressure
during an explosion can now be derived as a function of time, thus allowing for a detailed
analysis of the physical state of the vent system at any given time during the important first
moments of an explosion. Serving as a basis for future studies, these parameters deliver
the necessary boundary conditions for sophisticated conduit modelling at Erebus and most
likely at other Strombolian volcanoes. Furthermore, the obtained results not only enhance
confidence in the used explosion models and measurement techniques, but also provide us
with profound knowledge about the source of acoustic signals from Strombolian eruptions.

I will summarise the outcome of this study, as discussed in Chapter 9, by answering the
questions stated in the introduction of this manuscript (Sec. 1.1). While the complexity of
the process makes it impossible to include all aspects of the respective answers in just a few
sentences, there are several key findings that stand out:

1. What happens during a Strombolian explosion, and how do bubbles burst?

At Erebus, the first second of an explosion is characterised by several time episodes,
developing from an undisturbed lava lake surface into an episode of a rapidly bulging
and accelerating lake surface up to the point of violent rupture. During about half of
the explosions, the acceleration of the lake surface shows two peaks that are separated
by about 0.3 s. Results suggest that this type of bulging of the lake is caused by the adi-
abatic expansion of two or more gas bubbles reaching the surface of the lake in rapid
succession. Conduit modelling data from other studies suggest that this is caused by
the breakup of a large approaching gas slug, most likely only several tens of metres
beneath the surface of the lava lake, caused by the geometry of the conduit-lake tran-
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sition. For this type of explosion, the bubbles’ burst usually occurs 0.4 – 0.5 s after
the first significant movement of the lake surface. During the other half of Erebus’ ex-
plosions, bubbles burst immediately after reaching the lava lake surface. In all cases,
bubbles expand strictly monotonic, and do not vibrate before their burst.

2. What are the energies involved, and what is their partitioning?

Due to the new techniques and instruments that were applied in this study, the energy
partitioning obtained from radar measurements at Erebus is comprehensive and much
more detailed than that of previous studies. At the same time it is consistent with the
sparsely available, partial attempts to acquire energy partitioning estimates for other
volcanoes, and it agrees with previous findings at Erebus, providing additional confi-
dence in the results. The data show that of all energy types that are involved in Strom-
bolian eruptions, only the thermal energy together with two dynamic types of energy
are significant for the overall energy budget: the kinetic energy of the ejecta, as well as
their potential energy in Earth’s gravity field. The dynamic energy types are powered
by large pressurised gas bubbles rising in the conduit and exploding at the top, whose
sheer size makes up for their moderate overpressure of only a few atmospheres. At
Erebus, the dynamic energy released during an explosion (i.e. not counting thermal
energy) is equivalent to the explosion of several hundred kilograms of TNT, around
one gigajoule. Most of this energy release occurs within 0.2 seconds. For a short time
this is equivalent to the power output of five large nuclear power plants. Yet at the
same time this dynamic energy output is almost negligible in comparison to the ther-
mal energy that is passively carried by the hot ejecta. This thermal energy is in the
terajoule range, or equal to about fifty years worth of electricity for an average Euro-
pean five person household. This relation emphasises the importance of the ejecta’s
thermal energy in the long-term energy budget of volcanoes.

3. What are the gas overpressures of a rising gas bubble just before its explosion?

Calculated overpressures of gas bubbles were in the range of several atmospheres dur-
ing the start of the explosion (∼200 – 600 KPa, about the pressure in a bicycle tire),
dropping to about one atmosphere (100 kPa) just before the burst. Even when includ-
ing all parameter uncertainties, no overpressure was found to be larger than 800 kPa.
These findings are consistent with state of the art theoretical considerations and recent
laboratory models undertaken by others.

4. How large are the gas volumes of exploding bubbles?

As described above, about half of the explosions show a double acceleration peak
that is most likely caused by the breakup of rising gas slugs in two or more parts. Gas
volumes of the first approaching bubble of each explosion were found to be very stable
at around 1,000 m3 (about the cabin volume of two large passenger aircraft), and were
determined through two semi-independent thermodynamic methods. The total gas
volume of each explosion was found to be highly variable, and exceeded 35,000 m3

during some large explosions.
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5. What causes the acoustic signal that is typically observed during Strombolian explosions, and
what can we learn from it?

Doppler radar data, together with a simple eruption model, is now capable of ex-
plaining the acoustic signal generated by Strombolian eruptions at Erebus, providing
confidence for the validity of this source mechanism at other Strombolian volcanoes,
which was a constant source of debate in the past. At Erebus, the infrasound signal
can be explained by a dual mechanism consisting of a short volumetric expansion be-
fore the burst, and a simple ”λ/4-type” resonance generated by the gas slug cavity
once the bubble has burst. Results show that the post-burst part clearly dominates the
explosion’s acoustic signal, both in amplitude and duration.

To be more precise, results show that real acoustic signals match their simulated coun-
terparts closely until the time of the bubbles’ burst. This means that acoustic am-
plitudes scale robustly with the explosions’ volumetric expansion, determined from
radar data through the explosion model developed here. While this scaling relation-
ship is very clear until the time of the bubbles’ burst, post-burst signals cannot be
explained by this mechanism any more. Following Vidal et al. (2006), I propose a reso-
nance of the suddenly depressurised gas remaining in the cavity formed by the slug,
with a wavelength that is four times the length of the cavity. While the shape of the
measured acoustic waveform matches very well with this mechanism without the ad-
justment of arbitrary parameters, Vidal et al. (2006) show that the amplitude of the
cavity resonance after burst is strongly dependent on the details of the burst process
and cannot easily be predicted. Consistently, recorded acoustic amplitudes at Ere-
bus generally scaled with explosion velocities and energies, but included considerable
scattering.

Therefore, without the development of even more sophisticated bubble models, Vi-
dal’s results and the outcome of this study strongly suggest that it is not possible to
determine eruption pressures or energies from post-burst infrasound alone. The re-
sults shown here do, however, suggest a very simple tool for determining gas slug
lengths at the time of burst, simply by measuring the cavity resonance wavelength
and dividing it by four. If the conduit diameter can be estimated, either by measur-
ing the decay time of the resonance signal or by visual observations, this value easily
translates into bubble gas volumes.

6. What are the associated ground forces, and can they explain the seismic signals that usually
accompany Strombolian explosions?

Vertical ground forces generated by explosions, as predicted by the model presented
here, are in the 108 N range. This is about the force needed to lift a large cruise ship in
Earth’s gravity. This magnitude of force is in the same range as the forces proposed by
existing models as the source of VLP seismic signals at Strombolian volcanoes.
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10.1 What can we learn about other volcanoes?

The above results provide a new perspective for interpreting data from Strombolian erup-
tions, not only at Erebus but also at other volcanoes. The results constrain important phys-
ical eruption parameters, and they serve to improve existing models for the generation of
acoustic signals during explosions.

Even though the model presented in this study was developed primarily for Erebus, it
can be applied to other Strombolian-type volcanoes. Naturally, magmatic and geometric
parameters at other Strombolian volcanoes are likely to be different from those at Erebus.
For example, estimates for magma viscosities at Stromboli volcano range from 100 Pa s
(Williams and McBirney, 1979; Vergniolle and Brandeis, 1994) to 1250 Pa s (Vergniolle et al., 1996),
which is roughly an order of magnitude less than the viscosity inferred for Erebus magma.
Similarly, the estimated magma viscosity at Shishaldin is around 500 Pa s (Vergniolle et al.,
2004). These parameter differences can easily be adjusted in the model. Therefore, as long
as the geometry of the volcano in question allows the observation of a bubble burst with
a Doppler radar instrument, the model is suitable to provide conclusive information about
the explosion processes at other volcanoes.

Unfortunately, the number of volcanoes that allow the observation of Strombolian bubble
bursts directly from the crater rim is limited to only a handful of cases worldwide, mainly
due to geometry and safety constraints. Nevertheless, the results obtained in this study
allow for conclusions even on those Strombolian eruptions that cannot easily be observed
with instruments on the crater rim. For example, explosions at Erebus and Stromboli have
very similar acoustic waveforms (Vergniolle et al., 1996; Rowe et al., 2000; Johnson et al., 2003),
therefore it is likely that the underlying mechanisms are also similar. The same charac-
teristics can be found in acoustic signals recorded at other Strombolian volcanoes, such as
at Klyuchevskoi (Firstov and Kravchenko, 1996), Shishaldin (Vergniolle et al., 2004), Arenal
(Hagerty et al., 2000), and Karymsky (Johnson et al., 2003).

The clarity and simplicity of the causal connection between the bubbles’ monotonic vol-
umetric expansion at Erebus, their early burst, and the resulting acoustic signal strongly
suggests a similar mechanism for other volcanoes with a similar eruption style. Therefore,
from the results obtained at Erebus we can learn how to interpret acoustic signals at these
volcanoes. Once tested at such volcanoes, the technique can provide a very simple method
for determining gas slug lengths, conduit mouth widths, and erupted gas volumes. One of
the factors whose influence needs to be tested is the geometry of the upper part of the con-
duit, which in the case of many other volcanoes is not as unobstructed as at Erebus, therefore
possibly influencing the acoustic signal shapes. I therefore propose that this theory be tested
and volumetric expansion and cavity resonance signals be investigated at other Strombolian
volcanoes.

In a similar manner, the technique of determining the ground force history of explosions
from radar observations provides a simple source function for propagation models of seis-
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mic waves, and should be tested against seismic recordings at Erebus and other Strombolian
volcanoes. The results have great potential to increase our understanding of seismo-acoustic
measurements at volcanoes, and they provide additional confidence when interpreting data
from volcanoes where one of the sensor types are not available for various reasons.

What else do the results obtained at Erebus tell us about other volcanoes? A parameter
of interest is the bubbles’ gas pressure just before the burst. Studies show that pre-burst
bubble gas pressures are expected to be strongly dependent on magma viscosities and con-
duit diameters (James et al., 2008). Even for volcanoes with different geometries and magma
compositions, these values can often be estimated, allowing for an order of magnitude esti-
mation of pre-burst gas pressures at other Strombolian-type volcanoes.

Similar to the gas pressure of bubbles, the energy partitioning during explosions depends
on several factors and will therefore vary from volcano to volcano. Yet, observed differences
of several magnitudes between the principal energy types (thermal, kinetic, potential and
dissipative) suggest that the partitioning order obtained for Erebus is fairly robust and there-
fore possibly valid for many other volcanoes of Strombolian eruption type. Furthermore, the
above results suggest that the absolute value of all involved energies mainly depends on the
total mass of ejected magma fragments, and can therefore be determined at other volcanoes.
Usually, this total mass can be estimated by accounting for the ejected material after an ex-
plosion, either by a physical investigation or potentially with the help of a thermal camera,
as is currently in use at many volcanoes worldwide.

Moreover, the results show that the directivity of volcanic explosions, i.e. the direction
of the main acceleration of mass during a blast, can be monitored by three Doppler radar
instruments in 3D, and even in 4D when the process spans more than one sampling interval
of the recording system.

10.2 Future outlook

In addition to the testing of the above techniques at other Strombolian volcanoes, I suggest
the further use of the unique possibilities that arise from the almost ideal observation con-
ditions given at Erebus volcano. Despite the sometimes challenging logistical conditions,
Erebus serves as an outdoor laboratory and a Strombolian model volcano. Studying this
volcano will not only result in improved knowledge on Erebus itself, but more importantly
it will enhance our knowledge about Strombolian volcanoes in general, some of which are
potentially dangerous, and are located in populated areas in Europe and other continents.

For future activities at Erebus I suggest establishing a system of four or more radars, fully
surrounding the explosion source. In this case the setup will allow the use of a more sophis-
ticated eruption model. A great improvement would be the exclusive use of the newer and
faster types of radar with a sampling rate of 20 samples per second or more, offering a far
more detailed insight into eruption processes. Furthermore, this would greatly enhance the
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capability of a direct comparison of radar measurements to the now continuously operating
network of infrasound microphones.

An open question at Erebus is the actual length of the conduit, and the processes that form
or release a gas slug. The rapidly progressing technological capabilities of the MVR radar
system now allow for a detailed measurement of even small changes in the lava lake surface
level in between explosions. This not only offers the possibility of monitoring small scale
oscillations of the lake level, it also allows the determination of the precise rate at which the
lava lake refills after an explosion. Using a fluid dynamic model, this refill rate can provide
clues on the deeper conduit geometry, such as the overall conduit length and width, and
would help the interpretation of existing seismic data associated with conduit resonances
and slug formation (Aster et al., 2008).

The suggestions made in the last two sections merely represent a brief list of possible
uses of Doppler radar measurements in combination with a multi-parameter experiment,
and it is likely to be biased and narrowed by the limited perspective of a single person’s
point of view. The potential of the method is much greater than this, most likely allowing
the determination of a wide range of information that is of interest to scientists at various
volcanoes worldwide. While several interesting projects are currently under way to solve
the riddles of some of these volcanoes (e.g. Scharff et al., 2007, 2008, 2009; Meier et al., 2009), it
is up to the imagination of the reader to make even more use of this potential in the future.
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APPENDIX A

SUPPORTING FIGURES AND
CALCULATIONS

A.1 Radar antenna gain pattern

Figure A.1: Doppler radar squared antenna gain pattern (two-way gain). The pattern was obtained
by slowly turning the radar beam horizontally, sweeping the beam over a distant reflector. The
diagram shows the measured reflected echo power vs. the radar beam angle (both with arbitrary
offsets). The echo power peaks where the radar beam aims right on the reflector, and falls off rapidly
towards the side, dropping to -10 dB at ≈ 1.5◦ off the beam centre. Since the radar waves passed
through the antenna twice (for sending and receiving), the measured pattern is the square of the
pure antenna gain pattern (i.e. dB values are doubled).

Despite the effect of a radially decreasing sensitivity of the radar beam, the correct measure-
ment of velocities of reflectors at the beam edge is not compromised by this effect (i.e. a reflector’s
echo peak in the spectrum will still appear at the correct velocity, even though its signal is weaker
than the signal of a reflector that is closer to the beam centre). There is, of course, a limit to this,
since beyond a certain distance from the beam centre, the echo power drops too low to allow for a
significant contribution of echo power to the spectrum. In practise, the -10 dB line (Figs. 1.8, 4.5) is a
good indicator for this corner, therefore defining an area with a significant echo contribution to the
spectrum. Accordingly, the -10 dB line can be considered as the practical ”beam edge”.
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A.2 Temperature and sound speed of an adiabatically expanding
gas

When hot gas expands adiabatically, its temperature drops. Therefore, such a temperature
decrease also takes place in a rapidly expanding magmatic gas bubble. It can be determined
through (Kinney and Graham, 1985):

Tgas,1 = Tgas,0

(
p̂gas,1

p̂gas,0

) γ−1
γ

(A.1)

where Tgas,0 is the initial temperature of the gas at the beginning of the expansion process.
It is assumed to be equal to the temperature of the lava lake, around 1000◦C (Kelly et al.,
2008b). It is worth noting that at the time of the burst, the gas has cooled down by only a
few hundreds of K (see Fig. A.2).

In order to calculate the speed of sound in a gas, its molar mass must be known (Sec. 3.2).
Oppenheimer and Kyle (2008b) determined the typical gas composition at Erebus (Sec. 1.6),
and find that the gas is mainly composed of water vapour and carbon dioxide (CO2). I thus
approximate the molar mass of the magmatic gas by using that of a gas mixture consisting of
60 mol % water vapour Mgas (≈ 0.0180106 kg/mol) and 40 mol % CO2 (≈ 0.044010 kg/mol).
This leads to a molar mass of Mgas ≈ 0.028 kg/mol, which is very similar to that of dry air
(Sec. 3.2).

By using Equation 3.16 with an adapted γ parameter (i.e. a ratio of specific heats γ = 1.1
for hot magmatic gas instead of 1.4 for dry air), the speed of sound of the hot magmatic gas
can be estimated to

cgas ≈ 18.07
√
Tgas , (A.2)

which gives a speed of sound of cgas ≈ 650 m/s at 1000◦C and 600 m/s at 800◦C.
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Figure A.2: Temperature change of an adiabatically expanding gas, with an initial temperature of
1000◦C (∼1273 K). Note that depending on the initial pressure, the gas looses only 50 K to 150 K
during its expansion phase before the burst, and about the same amount again once it has expanded
enough to assume ambient atmospheric pressure.



208 SUPPORTING FIGURES AND CALCULATIONS

A.3 Compact vs. non-compact lava lake

−50

0

50

100 I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

−50

0

50

100 I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

−50

0

50

100 I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

−50

0

50

100 I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

0 0.2 0.4 0.6 0.8
−50

0

50

100

0 0.2 0.4 0.6 0.8

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

0 0.2 0.4 0.6 0.8

I
H

29−Dec−2005
10:50:14.739

Ia (#34)
Vid

 

 

predicted @ 300 m
E1S1 (x 2.5)
E1S2 (x 1.8)
NKB (x 2.5)
SHK (x 1.0)

Expected vs. measured infrasound signals  ( Type I explosions )

Time after explosion start [s]

P
re

ss
ur

e 
[P

a]

Expected vs. measured infrasound signals  ( Type I explosions )

Time after explosion start [s]

P
re

ss
ur

e 
[P

a]

I
H

29−Dec−2005
10:50:14.739

Ia (#33)
Vid

Figure A.3: Erebus lava lake as a compact vs. non-compact infrasound source The figure is similar
to Fig. 7.10 (IH). Analogous to that figure, the lower red line shows the predicted acoustic signal when
using the Green’s function method for a non-compact source. Additionally, the upper (dark red) line
shows the predicted sound output of a compact acoustic monopole with the same volumetric prop-
erties (i.e. the same volumetric acceleration at any given time). Thin lines show real acoustic signals
as measured around the crater region, scaled to a common reference distance. In accordance with the
conclusions drawn in Sections 3.4 & 7.6, the non-compact source is more adequate for reproducing
the real sound output of explosions from Ray Lava Lake on Erebus volcano.
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A.4 Calculating acoustic waveforms using mean radar velocities

Figure A.4: Radar velocigram of explosion type I, showing automatically picked mean velocities
instead of cutoff velocities. This Figure is largely similar to Fig. 6.6, the only difference is that
the white lines do not show the manually picked cutoff velocities, but automatically picked mean
velocities. These will be used in Fig. A.5 to demonstrate their effect on the fit between predicted and
expected acoustic traces.
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Figure A.5: Expected vs. measured infrasound signals (type I), when using mean velocities
instead of cutoff velocities. This Figure is largely similar to Fig. 7.10. The difference is that
here, instead of using manually picked cutoff velocities to predict the acoustic pressure traces,
automatically picked mean velocities were used (see Fig. A.4). Practically, even though the reason is
not entirely clear, this increases the fit between real and predicted acoustic traces, especially for the
typical small plateau before the main peak (see explosions IA to IH). A possible explanation is that
mean velocities, which are always smaller than cutoff velocities, provide a better description of the
volumetric expansion process when the bubble is still small, therefore not overestimating the first
plateau (as discussed in Sec. 7.6).

Note that using mean velocities instead of cutoff velocities only has a minor scaling effect
on the other explosion parameters (e.g. energies, pressures, volumes) that can be obtained from
the model (not shown).



APPENDIX B

DERIVING 3D EXPLOSION DIRECTIVITY

Note: parts of this chapter were already published in Gerst et al. (2008)

To obtain a 3D velocity vector, at least three linear independent velocity components of
the moving object have to be measured. This can be achieved by aligning three radar beams
to overlap in the region in which the object is located, i.e. the target region. In order to un-
derstand the meaning of radar velocity data, it is important to be aware of the nature of such
a measurement. Most importantly, the radar will only measure the Doppler shift of scattered
reflections from the target surface, i.e. only the velocity component in beam direction will be
measured. Because the beam has a finite angle of spread (around 3◦, depending on the used
antenna type; see Fig. A.1) several objects in the target region are observed simultaneously,
represented in a velocity spectrum (Fig. 6.3).

Depending on the nature of the target there are two ways to extract the target’s velocity
from the spectra, which is subsequently needed to calculate its velocity vector. For a single
particle in the radar beam this is trivial, since it will lead to only a single line in the spec-
trum, the radar velocity of which can be easily identified. In case of several objects in the
radar beam, moving at different speeds, a representative average speed can be obtained by
calculating the median velocity of the spectrum. In this case, care must be taken to ensure
similar illumination areas of the different radars. If not all three radars observe the same
group of particles at the same time, their median velocities will be biased by this, leading to
a systematical error in the obtained velocity vector. When calculating the directivity of an
expanding bubble, median velocities are of no use because they are strongly influenced by
the area of illumination on the bubble surface, and therefore by parameters like the radar’s
distance to the source etc. In this case, as will be shown below, cutoff velocities need to be
picked (Fig. 6.3), allowing for the determination of the bubble’s current surface speed.

FMCW Doppler radars typically integrate the received echo power over a certain time in-
terval, which typically is shorter than the sampling interval (see Sec. 5.1.1). For a temporally
precise measurement, it is best to minimise the sampling interval, or, if this is technically
impossible, to minimise the integration interval time within the sampling interval. In this
study, controlled by the two slower MVR3 radars with a sampling period of 1 s, the integra-
tion interval was 300 ms for the man-made explosion (Sec. B.1.1) and 250 ms for the Erebus
setup.
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Figure B.1: Directivity of a projectile. When ob-
serving a projectile (large dot) in the target region
moving with velocity ~v, all three radars ”see” the
same object, therefore measuring different compo-
nents of the same velocity vector ~v. These are pro-
jections of ~v onto the respective unit vectors pointing
towards the radars.

I will first derive the theoretical background for calculating the direction of a single pro-
jectile, jet, or directed explosion from three linear independent Doppler radar observations.
This technique was originally used by Hort et al. (2003), but without an introduction of the
mathematical background of the technique. I will qualitatively verify this technique by pro-
cessing a non-volcanic data set from a quarry blast where the direction of the material is
known a priori (Sec. B.1.1 below). Then I will modify the theory such that it becomes appli-
cable to the explosion of bubbles on active volcanic lava lakes (Sec. B.2 below).

B.1 The directivity of a moving projectile

I start with the simplest scenario, which assumes either i) a single object moving through the
three radar beams (e.g. a projectile of an explosion) or ii) several projectiles that are distin-
guishable in each of the different spectra recorded by the different radars (while this might
be possible for a few objects, it is impossible in the case of thousands of particles moving
simultaneously through the beam) or iii) many moving objects in the radar beam with sim-
ilar trajectories, i.e. behaving like one large particle. Figure B.1 shows that in this case the
measured velocity components vRi in the three radar directions are simply projections of
the original projectile velocity ~v onto the radar beams, i.e. onto the unit vectors ~̂rRi pointing
towards the radar i (i = [1, 2, 3, ...]):

vRi = ~v · ~̂rRi . (B.1)
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With three radars measuring, this can be expressed as the following system of equations: vR1

vR2

vR3

 =

 r̂1,x r̂1,y r̂1,z

r̂2,x r̂2,y r̂2,z

r̂3,x r̂3,y r̂3,z


 vx

vy

vz

 (B.2)

or, simply

~vR = R̄ ~v , (B.3)

where ~vR is the vector with all three observed radar velocities. Equation B.3 can be solved
by inverting the matrix R̄:

~v = R̄−1 ~vR . (B.4)

B.1.1 Directivity example: a quarry blast in 4D

A quarry blast in Koschenberg, Germany, was observed with three radars on October 13,
2005, to test the setup of the radar system with precise timing capabilities, wireless data
transmission and telemetry. A detailed description of the field setup was given in Sec-
tion 5.1.4, where it served as a system test and demonstration. The blast, in which 13 tons
of explosives were used to remove a ∼100,000 ton rock face, was measured at distances
between 250 m and 320 m by the three radars sampling at 1 Hz (see Fig. B.2 top).

In this setup, the radar target was a wall of rock. This means that the assumption of a
single projectile in the target region does not hold. However, the three radars observed
the rock face from the front (Fig. 5.8), allowing them all to observe the same target region,
which, due to the beam width of ∼ 3◦ was significantly smaller than the moving rock face.
Thus, the assumption can be made that all particles in the target region (circle in Fig. B.2 A)
moved with approximately the same velocity and initially parallel trajectories, so the above
calculation of ~v is valid. As suggested above, median velocities were calculated from the
spectra and used for the calculation of velocity vectors.

Figure B.2 (bottom) shows that during the first second after detonation, the material
moved almost horizontally. Yet it did not simply move away from the rock face, but moved
mostly parallel to it (towards the right). This parallel movement was very likely caused by
a delayed ignition of the borehole charges (a technique deliberately used by the blast crew),
which also moved from left to right within 0.5 s. A second later the parallel movements
have slowed down significantly, and a rapid downward movement is observed, obviously
caused by gravity. Three seconds after the detonation, downward movement was fastest,
with a speed of almost 25 m/s (second ”3”, and image at top centre). From this point on,
material started to slow down, until almost all material came to rest at about seven seconds
after the ignition.
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Figure B.2: Monitoring the directivity of a quarry blast.
Top row: snapshot images from the explosion sequence, with a time difference of two seconds each. The
first movement in the target area (indicated by circle) on the front of the rock face was detected at 13:43:46.7
[hh:mm:ss.s UT]. Lines show the approximate location of the radar beams, annotated with numbers. Radar
no. 1 is located right next to the camera. From snapshot A and B it is visible that some of the boreholes blew out
during the blast (outside the target region, so this was not observed by the radars).
Middle row: individual velocity spectra of the three different radars are shown for each second after the ig-
nition (as annotated). Each plot contains integrated velocity information about the last 300 ms of the previous
UT second. The width of the peaks indicates that some material moves at speeds different to the median speed
(main peak) or in different directions inside the radar beams, as can be expected in such a scenario.
Bottom row: combined true velocity vectors of the bulk material in the target area for each second after the
ignition. In this visualisation, the rock face roughly coincides with the back part of the box (y-z plane), and the
x-axis approximately points along beam 2 (top).
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The above data show that 3D radar observations of the quarry blast agree very well with
the true target movements, which are, in this case, known a priori, and additionally sup-
ported by video observations. This shows that it is possible to successfully track 3D direc-
tivities of an explosion evolving with time with Doppler radars.

B.2 The directivity of an expanding bubble

At Erebus, the dynamics of explosions substantially differ from those at a quarry blast. Ex-
plosions at Erebus occur from the surface of a lava lake, which is visible from the crater rim
in a direct line of sight, caused by the expansion of a large overpressured gas bubble (or
slug) just beneath the surface. These explosions are not constrained by surrounding walls,
so ejecta can freely follow their original trajectory. Additionally, at Erebus the dynamically
expanding surface of the lava lake stays intact during the first moments of bubble expan-
sion, gradually evolving to an almost hemispherical magma shell. The growing cap causes
the different radars to ”see” slightly different parts of the bubble, i.e. there is no single target
region any more. Thus, the assumption made in Section B.1 that the target behaves as a sin-
gle projectile with a single velocity vector ~v is not valid any more. The model needs to take
into account that the radial expansion of the bubble always leads to a positive contribution
to the measured radar velocity, independent of the observation azimuth (this is not the case
when observing a single projectile). Thus, the technique developed in Section B.1 has to be
slightly modified to account for this different geometry.

For this task, a very simple eruption model was used to limit the number of free parame-
ters. The model assumes that during an explosion, when the head of a pressurised gas slug
approaches the surface of the lava lake, the magma shell that develops from the lake surface
expands with a hemispherical shape, and with its centre remaining close to the centre of
the lava lake. Such an assumption is an adequate first order description of the majority of
explosions at Erebus (see video caption in Fig. 8.2 and SOM).

To account for a possible directivity of an explosion in the model, the radially expand-
ing hemisphere is allowed to possess a velocity component in the horizontal plane, i.e. the
radially expanding sphere is allowed to move horizontally while keeping its expanding
spherical shape (see Figure B.3). Such behaviour is assumed to be a good first order approx-
imation for the observed asymmetric, or non-isotropic expansion of bubbles. To keep the
model simple and to avoid additional free parameters, the bubble centre is not allowed to
move vertically (only when the expanding bubble is observed by more than three radars,
a vertical movement of the bubble can be included without an under-determination of the
model). For the intended task, such an assumption is reasonable for a simple model, and
video observations show that the bubble centre does not rise far above the lake level during
an explosion.

The three radars need to be aligned to observe the same area on the lake surface when
it is still flat (i.e. before an explosion). When an explosion takes place and the lake surface
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Figure B.3: Directivity of a bubble burst.
When observing a bubble burst, all three radars will
”see” a slightly different (but possibly overlapping)
part of the bubble surface, due to different observa-
tion angles.

bulges upwards the three radars will ”see” increasingly different parts of the evolving hemi-
spherical surface due to their different observation angles. Naturally, for the given geometry
and with a slow horizontal movement of the bubble compared to the expansion velocity, the
surface point moving fastest towards the radar will be located close to the point where the
radar beam has a 90◦ angle of incidence on the surface. Therefore, both points will move
at a similar velocity towards the radar. In the special case that the sphere has no lateral ve-
locity, each radar will in fact measure the true radial expansion velocity (so in this case all
three radar spectra are equal, i.e. the explosion has no directivity). To obtain the speed of
the above mentioned point from a radar spectrum, not the median but the cutoff velocity
in each radar spectrum (see Fig. 6.3) must be picked, which represents the beam-parallel
component of the shell velocity.

The velocity of an arbitrary point on the magma shell during an eruptive event at Erebus
can be expressed as

~v = ~vtrans + vradial ~̂r , (B.5)

where ~vtrans (Figure B.3) is the horizontal movement of the magma shell (~vtrans has no ver-
tical component, i.e. vtrans,z = 0), vradial is the absolute value of the radial velocity of the
hemisphere, and ~̂r is the normal vector on the surface at the point of interest.

To calculate the velocity component vR1 in beam direction at a point where the beam of
radar no. 1 is perpendicular to the surface, the velocity of this point has to be projected
onto the surface normal unit vector ~̂rR1 pointing towards the radar, since the radar is only
measuring the component along the beam:

vR1 =
(
~vtrans + vradial ~̂rR1

)
~̂rR1 = ~vtrans · ~̂rR1 + vradial . (B.6)

Under the above made assumption (|~vtrans| � vradial) and with a distance to the radar source
that is significantly larger than the bubble radius, the point of 90◦ incidence can be consid-
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ered identical with the point moving fastest towards the radar. Thus, vR1 for this point can
be identified in the spectrum as the cutoff velocity vR1,cut.

When three radars are installed, three of the above equations can be set up, resulting in
an equation system vR1,cut

vR2,cut

vR3,cut

 =

 r̂1,x r̂1,y 1
r̂2,x r̂2,y 1
r̂3,x r̂3,y 1


 vtrans,x

vtrans,y

vradial

 (B.7)

or,

~vR,cut = ˜̄R ~vdir , (B.8)

where ~vR,cut is the vector with all three observed radar cutoff velocities. The equation can,
once again, be solved by inverting the matrix, in this case ˜̄R (which is significantly differ-
ent to the matrix R̄ from Section B.1, since the z-coordinates of the radar locations do not
contribute to ˜̄R):

~vdir = ˜̄R−1
~vR,cut . (B.9)

The resulting vector ~vdir, which consists of the two horizontal components and the radial
component of the hemisphere movement, represents the velocity vector of the uppermost
point of the hemisphere, therefore providing a measure of the directivity of the explosion
(Fig. 8.2). It is important to note that a purely vertical vector means that the expanding
spherical cap does not move horizontally, i.e. it has no directivity. Also note that at this
stage, with three recording instruments, a purely vertical directivity (e.g. like a vertically
accelerating cannon ball) can be detected for a single projectile, but not for an expanding
bubble. In future deployments with more than three radars, such additional parameters can
be resolved.
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Date Time [UT] vRAY [m/s] vSHK [m/s] vSUM [m/s] Dir Azimuth [◦ ] Dir Inclination [◦ ] AbsVel [m/s] Video
2005-12-24 22:20:49 29.43 -0.40 / +3.10 48.09 -6.50 / +7.30 36.00 -0.80 / +4.20 -89.3 -26.6 / +26.0 65.5 -11.9 / +8.7 39.8 -4.2 / +5.7 -
2005-12-24 22:20:50 16.09 -0.40 / +1.20 23.34 -5.10 / +6.50 25.59 -1.40 / +0.60 232.0 -9.6 / +13.5 32.6 -7.8 / +11.3 26.2 -2.7 / +2.2 -
2005-12-24 22:20:51 7.06 -0.40 / +1.20 11.25 -0.30 / +7.00 15.75 -0.60 / +0.60 226.9 -1.7 / +15.3 10.4 -2.3 / +13.0 21.0 -2.7 / +1.6 -
2005-12-27 05:21:30 30.21 -0.40 / +2.40 33.75 -5.10 / +10.10 43.59 -3.90 / +8.20 223.1 -6.9 / +13.9 35.7 -17.8 / +17.4 40.1 -6.1 / +16.2 yes
2005-12-27 05:21:31 18.44 -0.40 / +0.80 21.38 -1.10 / +2.20 27.00 -2.00 / +7.60 224.4 -3.7 / +4.9 35.1 -21.9 / +11.5 25.2 -3.1 / +15.6 yes
2005-12-27 21:05:46 36.88 -7.80 / +3.10 44.72 -9.30 / +0.30 41.62 -3.40 / +8.20 249.3 -41.4 / +56.6 74.3 -39.1 / +12.7 39.9 -4.8 / +5.7 -
2005-12-27 21:05:47 20.79 -12.90 / +1.60 12.66 -1.10 / +11.20 18.56 -7.60 / +4.80 102.1 -96.2 / +150.6 69.9 -69.3 / +3.9 18.5 -0.8 / +16.8 -
2005-12-29 15:27:21 25.89 -0.40 / +0.40 45.56 -5.60 / +17.20 36.28 -2.20 / +12.40 253.9 -22.6 / +28.5 52.2 -29.2 / +7.1 38.9 -3.0 / +21.5 -
2005-12-29 15:27:22 20.01 -0.40 / +0.40 21.38 -2.80 / +14.60 23.06 -1.10 / +0.60 226.3 -14.7 / +71.2 68.8 -7.0 / +8.5 20.2 -1.2 / +9.7 -
2005-12-30 04:59:57 20.40 -1.20 / +2.70 22.50 -4.50 / +6.20 22.22 -2.50 / +7.30 239.5 -41.7 / +220.0 78.6 -44.9 / +7.6 20.9 -2.3 / +8.1 -
2005-12-30 04:59:58 7.06 -0.40 / +2.70 8.72 -3.40 / +11.20 6.75 -2.20 / +0.80 -2.0 -87.3 / +134.2 77.9 -38.7 / +2.8 8.5 -2.2 / +11.5 -
2005-12-30 20:54:17 2.75 -1.20 / +0.40 0.56 +0.00 / +0.00 0.00 +0.00 / +0.00 52.6 -2.9 / +0.5 27.2 -0.3 / +1.5 7.2 -3.0 / +1.0 yes
2005-12-30 20:54:18 10.99 -0.40 / +1.20 46.12 -1.40 / +8.70 14.06 -0.80 / +9.60 -41.5 -48.9 / +8.5 50.3 -13.8 / +1.5 39.0 -1.3 / +8.3 yes
2005-12-30 20:54:19 4.71 -0.40 / +0.40 11.81 -0.80 / +2.00 10.41 -0.60 / +0.80 241.3 -4.1 / +7.5 21.8 -5.6 / +6.7 13.9 -1.3 / +1.8 yes
2005-12-31 06:12:01 27.86 -3.50 / +8.20 57.38 -7.60 / +11.80 26.44 -4.80 / +0.60 -17.9 -19.2 / +36.0 62.0 -8.3 / +3.8 52.7 -7.7 / +18.0 yes
2005-12-31 06:12:02 13.73 -1.20 / +1.20 25.59 -1.40 / +6.50 14.06 -0.60 / +0.60 -30.2 -19.9 / +19.0 66.7 -6.7 / +1.9 22.4 -1.7 / +5.9 yes
2005-12-31 06:12:03 8.24 -0.80 / +0.80 22.22 -15.80 / +0.60 6.75 -0.60 / +0.00 -10.2 -7.8 / +71.5 53.7 -1.6 / +13.8 21.9 -13.1 / +1.6 yes
2005-12-31 11:44:39 41.98 -3.10 / +9.80 56.81 -1.10 / +9.30 41.91 -2.00 / +12.40 -24.5 -100.8 / +58.5 77.2 -24.0 / +0.8 52.2 -3.3 / +16.6 yes
2005-12-31 11:44:40 19.22 -0.80 / +1.20 25.03 -1.40 / +1.10 20.81 -0.60 / +0.60 -77.8 -23.0 / +42.3 78.2 -4.9 / +4.1 22.1 -1.1 / +1.3 yes
2005-12-31 11:44:41 11.77 -0.40 / +1.60 20.25 -2.50 / +0.00 15.19 -1.70 / +0.80 264.7 -16.2 / +35.8 60.5 -6.3 / +14.1 16.7 -1.5 / +0.5 yes
2005-12-31 11:44:42 6.67 +0.00 / +1.60 18.84 -1.70 / +0.00 9.00 -0.60 / +0.00 -62.8 -6.0 / +26.8 55.0 -0.0 / +6.9 15.1 -1.4 / +0.9 yes
2006-01-01 14:27:31 20.01 -0.40 / +1.20 21.38 -1.40 / +2.00 21.38 -1.40 / +2.20 236.5 -21.4 / +105.5 81.1 -16.3 / +9.9 20.2 -0.8 / +1.8 yes
2006-01-01 14:27:32 30.21 -2.70 / +1.20 21.66 -0.80 / +17.40 21.94 -0.60 / +2.20 57.1 -33.0 / +7.6 58.3 -2.9 / +9.6 36.0 -6.6 / +12.2 yes
2006-01-01 14:27:34 15.69 -2.00 / +2.70 4.78 -3.10 / +6.50 11.25 -0.60 / +1.10 84.3 -30.2 / +24.6 48.6 -9.8 / +11.5 16.1 -4.4 / +6.8 yes
2006-01-01 17:46:37 28.64 -0.40 / +7.50 21.38 -0.60 / +2.50 26.44 -1.10 / +1.40 97.5 -40.1 / +37.1 77.0 -20.4 / +2.9 26.4 -1.3 / +14.0 yes
2006-01-01 17:46:38 18.83 -0.40 / +0.80 10.69 -0.80 / +0.80 16.03 -0.60 / +1.10 91.7 -12.0 / +23.0 65.8 -4.3 / +3.6 17.3 -1.4 / +1.7 yes
2006-01-01 17:46:39 11.77 -0.40 / +0.40 4.22 -1.10 / +17.70 10.69 -0.80 / +0.60 127.1 -139.1 / +19.2 56.5 -6.5 / +6.7 9.6 -0.5 / +11.3 yes

Table B.1: Picked cutoff velocities from three radars (RAY, SHK, SUM), showing 10 explosions and their respective directivity vectors. When the bubble expansion phase
lasted for more than one second, several directivity vectors were calculated. Error boundaries on the picked velocities were determined manually, and their propagation
on the directivity vectors were calculated. See Fig. 8.3 for a graphical display of the results. Note that errors due to unprecise station locations are negligible compared to
errors resulting from picking uncertainties.
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Gerst, A., M. Hort, P. Kyle, and M. Vöge (2006), The first second of a Strombolian erup-
tion: velocity observations at Erebus volcano, Antarctica, Eos Trans. AGU, Fall Meet. Suppl.,
87(52), Abstr. V31G–04.
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List of Symbols

The following list summarises the the most frequently used symbols and constants. Page numbers refer to location of first
use.

Symbol Meaning

A Surface area (general) (p. 45)
Acap Surface area of bubble cap (section of sphere) (p. 59)
c Speed of sound (general) (p. 40)
cgas Speed of sound (hot magmatic gas) (p. 206)
ca Speed of sound (air) (p. 44)
Cp Specific heat capacity at constant pressure (general) (p. 44)
CV Specific heat capacity at constant volume (general) (p. 44)
cp,m Specific heat capacity at constant pressure (magma) (p. 75)
E,W Energy (general) (p. 65)
Eatm Energy radiated into atmosphere (e.g. sound) (p. 65)
Ediss Energy dissipated in magma cap (p. 65)
Ekin Kinetic energy of magma cap (p. 65)
Epot Potential energy of magma cap in Earth’s gravity (p. 65)
Eseis Seismic energy radiated into ground (p. 65)
Etherm Thermal energy of magma cap (p. 65)

Ėsound,mono Power emitted by an acoustic monopole source (p. 72)
f Function (general) (p. 40)

Fground,z Vertical ground force caused by an explosion (p. 73)
g Gravitational acceleration on Earth’s surface (p. 68)
H Zenith height of magma cap (p. 57)
h Thickness of bubble cap shell (p. 56)
h0 Initial thickness of bubble cap shell (p. 57)
He Helmholtz number, compactness of a sound source (p. 48)
I, ~I Acoustic intensity of a sound source (p. 41)
k Wave number (general) (p. 48)

Mgas Molar mass of magmatic gas (H2O / CO2) [≈ 0.028 kg/mol] (p. 206)
MA Molar mass (dry air) [≈ 0.0289645 kg/mol] (p. 43)
mm Total mass of the magma in bubble shell (p. 59)
~̂n Surface normal unit vector (p. 83)
p Overpressure of gas (general) (p. 40)
p̂ Absolute pressure of gas (general) (p. 41)

P, Ė Power (general) [J/s] (p. 65)
pgas Overpressure inside a gas bubble (p. 66)
p̂gas Absolute pressure inside a gas bubble (p. 66)
q Model parameter of magma cap (p. 59)

R, ~R Radius / radial vector of a spherical bubble (p. 58)
~r Position vector (general) (p. 61)
r Radius; distance from a point or coordinate origin (general) (p. 45)
~̇r Velocity (general) (p. 62)
r̈, v̇ Acceleration (general) (p. 73)
RL Lava lake radius (p. 57)
Rm molar / universal gas constant [8.314472(15) J/(mol K)] (p. 43)
T Temperature (general) [K] (p. 43)
t Time (general) (p. 40)
t′ Retarded time (for compact sound sources) (p. 46)
Tgas Temperature [K] (magmatic gas) (p. 77)
~u Acoustic particle velocity (p. 40)

Ugas Internal energy (magmatic gas) (p. 66)
ur Acoustic particle velocity (radial) (p. 46)
V Volume (general) (p. 43)
~v Velocity (general) (p. 62)

continued on next page...

239



240

...continued.

Symbol Meaning

v, ṙ Speed (general) (p. 45)
Vcap Volume of bubble cap (section of sphere) (p. 59)
Vgas Volume of a gas bubble (consisting of cap & slug tail) (p. 66)
Vsource Volume of a sound source (general) (p. 49)
Vm Volume of magma in cap shell (p. 57)
vR Velocity component along radar beam (= radar velocity) (p. 64)

vR,cut Distinctive cutoff velocity near the maximum of a radar velocity spectrum (p. 63)
Wgas Pressure-volume work (magmatic gas) (p. 65)
Z Vertical coordinate of magma cap centre (p. 58)
ηm Ratio of permanently ejected material to total shell mass (p. 75)
ε̇ Largest local principal strain rate in magma shell (p. 69)
γ Ratio of specific heats, or adiabatic index (general) (p. 44)
λ Wave length (general) (p. 48)
µm Viscosity of magma (p. 69)
ω Oscillation frequency (general) (p. 48)
Φ Azimuth (general) (p. 60)

ΦA Acoustic velocity potential (p. 39)
φR Elevation angle between radar beam and the horizontal (p. 63)
ρ Density (general) (p. 41)
ρa Density (atmospheric air) (p. 41)
ρm Density (magma) (p. 59)
σ Standard error interval (general) (p. 126)
σm Specific surface energy (magma) (p. 70)
θ Angle between a vector and the vertical (general) (p. 52)

And in the end
it’s not the years in our life that count.

It’s the life in our years.

Abraham Lincoln
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