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Chapter 1

Introduction and overview

This thesis is about infinite graphs. The main question that inspired the
research presented in this thesis is how the homology of a locally finite
graph interacts with its combinatorial structure. Graphs are simplicial 1-
complexes and therefore one traditionally, and conveniently, considers their
simplicial homology. The coefficients are usually taken from a field such
as Iy, R or C, which makes the first simplicial homology group into a vector
space called the cycle space of G. We will use this terminology also in the
case that the coefficients are taken from Z.

For reasons to become apparent soon let us denote the first homology
group of G as Cgs, = Cun(G). For the moment it will suffice to take our
coefficients from [, and interpret the elements of Cg, as sets of edges.
Moreover, let us first consider finite graphs. Apparently, the structure of
Cqn as a group tells us little as such, since it is always a direct sum of Fy's
depending only on the number of vertices and edges of G. But there are a
number of classical theorems—often called ‘cycle space theorems—showing
that the interaction of Cg, with the combinatorial structure of G can tell
us more about commonly investigated graph properties. Examples are:

e Tutte’s theorem that the induced non-separating cycles in a 3-connec-
ted graph generate the cycle space,

e MacLane’s theorem that a graph is planar if and only if its cycle space
has a ‘simple’ basis (i.e. each edge lies in at most two elements of the
basis),

e Whitney’s theorem that a graph is planar if and only if it has an
abstract dual (where ‘dual’ is defined in terms of the cycle space),

and many more. The cycle space has thus become one of the standard
aspects of finite graphs used in their structural analysis.

For infinite graphs the interaction between Cg, and the combinatorial
structure of G is not nearly that powerful: Most of the cycle space theo-
rems, including the ones cited above, fail for infinite graphs, even for locally



finite ones, graphs in which each vertex has only finitely many neighbours.
However, for locally finite graphs this can be remedied by defining the cycle
space slightly differently.

Let G be a locally finite graph. In combinatorial terms, the cycle space
Chn Of G is defined by considering the (finite) edge sets of (combinatorial)
cycles in G and letting the cycle space consist of all finite sums of those
edge sets. Diestel and Kiihn [16, 17] introduced the topological cycle space
C = C(G), which is defined as follows. Let |G| be the Freudenthal compact-
ification [28] of G and consider the (possibly infinite) edge sets of circles in
|G|, homeomorphic images of the unit circle S* in |G|. These edge sets are
called circuits. The sums of circuits—where infinite sums are allowed as
long as they are thin, i.e. every edge of the graph lies in only finitely many
summands—then form the topological cycle space.

Since [16, 17] first appeared, the topological cycle space has shown
to be a surprisingly successful approach. Indeed, all the standard cycle
space theorems have been shown to extend to locally finite graphs for the
topological cycle space, see [2, 3, 4, 5, 7, 8, 9, 13, 18, 30, 31, 32, 40],
or [14, 15] for an overview.

Given the success of C for graphs, it seems desirable to recast its defi-
nition in homological terms that make no reference to the one-dimensional
character of |G| (e.g., to circles), to obtain a homology theory for similar
but more general spaces (such as non-compact CW complexes of any di-
mension) that implements the ideas and advantages of C more generally.
To obtain more general results, we shall always choose the coefficients from
Z; the results for Fy will follow from those for Z by taking them modulo
2. The oriented cycle space C(G) is defined analogously to the topological
cycle space: Let £ (G) be the oriented edge space of G, the group of all
integer-valued functions on the set of oriented edges of G that take inverse
values on inverse orientations of edges, and let C be the subgroup of & that
consists of thin sums of oriented circuits, functions that are 1 on the edges
of a circle (with cyclic orientation) and 0 elsewhere.

For such an extendable translation of our combinatorial definition of C
into algebraic terms, simplicial homology is easily seen not to be the right
approach: while |G| is not a simplicial complex, the simplicial homology
of G itself (without ends) yields the classical (oriented) cycle space Cgy.
One way of extending simplicial homology to more general spaces is Cech
homology; and indeed we will show that its first group applied to |G| is
isomorphic to C. But there the usefulness of Cech homology for graphs
ends: since its groups are constructed as limits rather than directly from
chains and cycles, they do not interact with the combinatorial structure of
G in the way we expect and know it from C.

The next candidate for the desired description of C in terms of homology
is singular homology. Indeed, C is built from circles in |G| and circles are
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singular 1-cycles, which generate the first singular homology group Hi(|G|)
of |G|, so both groups are built from similar elements. On the face of it,
it is not clear whether C might in fact be isomorphic, even canonically, to
H,(]G]). However, it will turn out that it is not: we shall prove that C is
always a natural quotient of H;(|G|), but this quotient is proper unless G
is essentially finite. This may seem surprising, since C is defined via (thin)
infinite sums while all sums in the definition of H,(|G|) are finite, which
suggests that C might be larger than H;(|G|).

Our approach for the comparison of C and Hi(|G|) will be to define
a homomorphism from Z;(|G|) to £ that determines how often the (ori-
ented) edges of G are traversed by the simplices of a 1-cycle z and that
maps z to this function on the oriented edges. It will turn out that this
homomorphism vanishes on boundaries and that its image is precisely C.
Hence it defines an epimorphism f: H,(|G|) — C(G). Finally, we will show
that f is not normally injective, by constructing loops that traverse every
edge equally often in either direction but that are not null-homologous; an
example is given in Figure 1.1. Thus, C (and also C) is a genuinely new
object, also from a topological point of view.

I
I
—

1 | |
[ | |
[N S I

Figure 1.1: A loop that is not null-homologous but whose homology class
is mapped to the zero element in the oriented edge space.

For our proof that loops like the ‘curling simplex’ shown in Figure 1.1
are not null-homologous we shall need a better understanding of the funda-
mental group of |G|. This will enable us to define an invariant on 1-chains
in |G| that can distinguish 1-cycles like the curling simplex from bound-
aries of singular 2-chains, hence completing the proof that f need not be
injective. The fundamental group of a finite graph G is easy to describe:
it is the free group on the (oriented) chords of a spanning tree of G, the
edges of GG that are not edges of the spanning tree. For the Freudenthal
compactification of infinite graphs, the situation is different, since a loop in
|G| can traverse infinitely many chords while the elements of a free group
are always finite sums of its generators.

One of the main aims of this thesis will thus be to develop a combinato-
rial description of the fundamental group of the space |G| for an arbitrary
connected locally finite graph G. We shall describe 7 (|G]), as for finite G,
in terms of reduced words in the oriented chords of a spanning tree. How-
ever, when G is infinite this does not work for arbitrary spanning trees but



only for topological spanning trees. Moreover, we will have to allow infinite
words of any countable order type, and reduction by cancelling adjacent
inverse letters or sequences of letters does not suffice. However, the kind of
reduction we need can be described in terms of word reductions in the free
groups F7 on all the finite subsets I of chords, which enables us to embed
the group Fj, of infinite reduced words in the inverse limit of those F7,
and handle it in this form. On the other hand, mapping a loop in |G| to
the sequence of chords it traverses, and then reducing that sequence (or
word), turns out to be well defined on homotopy classes and hence defines
an embedding of 7 (|G|) as a subgroup in F.

Our combinatorial characterization of m (|G|) re-proves the description
of the fundamental group of the Hawaiian Earring by Higman [35] and Can-
non and Conner [10]. The Hawaiian Earring |, oy{z € R? | [|[—(0,1/n)| =
1/n} is homotopy equivalent to the Freudenthal compactification of any
graph G that has precisely one non-trivial end, an end to which there con-
verges a sequence of chords of some topological spanning tree of G. Our
characterization of m(|G|) will hence yield that the fundamental group of
the Hawaiian Earring is precisely F., as shown by Higman [35] and later,
with a characterization in terms of words similar to ours, by Cannon and
Conner [10].

The last aim of this thesis will then be to define a variant of singular ho-
mology that captures, for locally finite graphs G and dimension 1, precisely
the topological cycle space of G. Our hope with this plan is to stimulate
further work in two directions. One is that its new topological guise should
make the cycle space accessible to topological methods that might generate
some windfall for the study of graphs. And conversely, that as the approach
that gave rise to C is made accessible to more general spaces and higher
dimensions, its proven usefulness for graphs might find some more general
topological analogues. It is therefore natural to require the spaces for which
we shall define our homology theory to have some properties that makes the
approach of C applicable to them: Analogously to G and its Freudenthal
compactification |G| that gave rise to C, we shall consider locally compact
Hausdorff spaces X with a fixed Hausdorff compactification X.

The construction of our homology theory will be done in two steps:
First, we shall define an ad-hoc homology that satisfies Hy(G) = C(G).
This homology will not satisfy the axioms for homology, but it will serve
as an introduction of the main ideas of how to capture C by a homol-
ogy. In the second step, we shall then define a homology theory for locally
compact Hausdorff spaces with compactification that will satisfy all the
Eilenberg—Steenrod axioms [26]. The proof that this homology theory sat-

isfies Hy(G) = C(G) will depend on the work done in the first step.

A main feature of our homology will be that it treats the compactifi-
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cation points, or ends,! differently from other points: All simplices will be
‘based in” X, i.e. its O-faces will live in X; our chains, which we allow to
be infinite, will have to be locally finite in X but not at ends. On the face
of it, the second requirement looks similar to the definition of the ‘locally
finite homology’ given in [36], but this homoloy does not consider ends and
hence yields different groups. Indeed, the locally finite homology would not
succeed in capturing the topological cycle space: It allows for cycles like
the sum ) _, 0, in R, where o,(z) = n + z for z € [0, 1}, which does not
correspond to an element of the cycle space (note that R is homeomorphic
to the double-ray and thus ‘cycle space’ is defined in this case).

This thesis is organized as follows. After going through the main def-
initions and notation Chapter 2 we shall develop our combinatorial char-
acterization of 71(|G|) in Chapter 3. The Cech homology will be dis-
cussed briefly in Chapter 5, and in Chapter 4 we define the homomorphism
f: Hi(|G|) — C(G) and show that it is surjective, but not normally injec-
tive. In Chapter 6 we will then define our new homology theory for locally
compact spaces and show that it satisfies the axioms for homology and
coincides with the topological cycle space for graphs and dimension 1.

Parts of this thesis have been submitted for publication: the combina-
torial characterization of the fundamental group of |G| [19], the comparison
of the topological cycle space and singular homology, Cech homology, and
the ad-hoc homology from Section 6.2 [20], and the definition and analysis
of the new homology theory defined in Section 6.3 [21]. Moreover, there are
extended versions [23] and [22] of [19] and [20], respectively, which include
proofs of easy facts that have been omitted in the original papers.

1With a slight abuse of notation, we will call the point in X \ X ends, although we
do not require that they are ends in the sense of Freudenthal [28].






Chapter 2

Definitions and basic facts

For graphs we use the terminology of [14], for topology that of Hatcher [34].
We shall need a couple of facts and definitions from graph theory and alge-
braic topology, which we will introduce in the following sections, separated
by fields. But first, let us look at some basic topological concepts.

2.1 Topology

All graphs in this thesis may have multiple edges but no loops. This said, we
shall from now on use the terms path and loop topologically, for continuous
but not necessarily injective maps o: [0, 1] — X, where X is any Hausdorff
space. If o is a loop, it is based at the point o(0) = o(1). We write o~
for the path s — o(1 — s). If a path is injective, we call its image an arc
in X. If a loop o is ‘internally injective’ (i.e. o(z) = o(y) implies x = y or
{z,y} = {0,1}), then its image is homeomorphic to the unit circle S* in
C. In this case we call o a circle path and its image a circle in X.
The following fact can be found in [33, p. 208].

Lemma 2.1. The image of a topological path with distinct endpoints x,y
i a Hausdorff space X contains an arc in X between x and y.

Given a set {Xj | i € I} of topological spaces, we write X = | | X}, for
their disjoint union endowed with the disjoint union topology.

The homology we shall define in Chapter 6 will crucially rely on the
concept of topological dimension. There are many different ways to define
topological dimension, most of them have proved to be very useful when
applied to certain types of spaces; the definition we use in this thesis is
usually called Lebesgue covering dimension, other ones are, for instance,
the large and the small inductive dimension. For an introduction and
(much) more about topological dimension, see [27].
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Let X be a normal space! and let & > —1 be an integer. Then X
has dimension at most k if every open cover Y of X has a refinement U’
such that every z € X lies in at most k& + 1 sets from U’. If n is the
smallest number with this property, then we say that X has dimension n.
An example for an n-dimensional space is the Euclidian space R"—in fact,
every dimension theory is supposed to assign dimension n to R™. More
generally, it is not hard to see that every subset of R" containing an open
ball has dimension n; in particular, the standard n-simplex A" in R*™
being homeomorphic to such a subset of R™, has dimension n.

The following is an immediate consequence of the definition.

Lemma 2.2. Let X be a normal space. The following claims hold:
(i) X has dimension —1 if and only if X is empty.
(ii) If X has dimension 0, then it is totally disconnected.

For the proof that the homology we shall define in Chapter 6 satisfies
the axioms for homology—which will be stated shortly—we will need to
consider Cartesian products of spaces. It would be natural to assume that
the dimension of a product does not exceed the sum of dimensions of its
factors, but this is not generally true. However, it is true if both spaces are
compact [27, Theorem 3.2.13]:

Lemma 2.3. Let X, Y be compact Hausdorff spaces. Then the product
space X XY has dimension at most dim(X) + dim(Y").

2.2 Graph theory

Let G be a locally finite connected graph, fixed throughout this section. For
graphs, ends and the Freudenthal compactification are usually defined in
a combinatorial way, as follows. A 1-way infinite (graph-theoretical) path
in G is a ray. Two rays are equivalent if no finite set of vertices separates
them in GG, and the resulting equivalence classes are the ends of G; write
2 = Q(G) for the set of ends of G.

The Freudenthal compactification |G| of G can now be defined as fol-
lows: its point set is the union of G and Q(G), its basic open sets are the
basic open sets of @ itself (as a 1-complex) and the sets C(S,w) defined for
every end w and every finite set S of vertices, as follows. Let C(S,w) =: C
be the unique component of G — S in which w lives (i.e., in which every
ray of w has a tail, or subray), and let C(S,w) be the union of C' with the

'Lebesgue covering dimension has proved to have very useful properties especially
for normal spaces, but it can also be defined for general spaces. However, we will only
need the definition for normal spaces.



set of all the ends of G that live in C' and the (finitely many) open edges
between S and C.? Tt is not hard to see that |G| is indeed the Freudenthal
compactification of G.

Note that the boundary of C(S,w) in |G| is a subset of S, that every
ray converges to the end containing it, and that the set of ends is totally
disconnected. Since every basic open neighbourhood of a vertex or a point
on an edge contains at most one vertex, we have at once

Lemma 2.4. Let U be a basic open set in |G|. Then every sequence of
vertices in U converges to a point in U.

The ends of G provide a new way to connect points in |G|: If F'is a
cut (i.e. the set of edges between the sides of a bipartition of V(G)), then
there is no arc in G from one side of the partition to the other that avoids
all edges in F. In |G| there can be such an arc, but only when F' contains
infinitely many edges [14, Lemma 8.5.5]:

Lemma 2.5. Let F' be a finite cut and let X,Y be the sides of the corre-
sponding partition of V(G). Then every arc from X toY meets an inner
point of some edge in F.

We shall frequently use the following non-trivial lemma.

Lemma 2.6 ([18]). For a locally finite graph G, every closed, connected
subspace of |G| is arc-connected.

A standard subspace of |G| is a closed connected subspace of |G| that
contains every edge of which it contains an inner point. Note that by
Lemma 2.6 every standard subspace is arc-connected. A topological span-
ning tree of G is a standard subspace of |G| that contains every vertex—and
hence also every end—of G and that contains no circle. It is easy to see
that every locally finite connnected graph has a topological spanning tree;
for instance, the closure of a normal spanning tree is a topological spanning
tree. An edge of GG that does not lie in T"is a chord of T.

Normal spanning trees can be used to show that |G| is a metric space:
If T is a normal spanning tree, let the edges in T" have length %, }1, %, cee
according to their height in 7', and let every chord of T have length the
sum of lengths of the tree-edges it spans. These edge-lengths are easily

seen to induce a metric of |G|. We thus have

Theorem 2.7. |G| is a compact metric space.

By Theorem 2.7, |G| is normal. We can thus consider the topological
dimension of |G].

2The definition given in [14] is slightly different, but equivalent to the simpler defi-
nition given here when G is locally finite. Generalizations are studied in [37, 41].



Lemma 2.8. |G| is one-dimensional.

Proof. Since |G| is compact, it suffices to consider finite open covers. So
let U be a finite open cover of |G|. For every end w of G consider a
neighbourhood C/(S,,,w) that is contained in some set in U. Since Q(G),
being a closed subspace of the compact Hausdorff space |G|, is compact,
finitely many neighbourhoods C(S,,,w) suffice to cover it. Let S be the
union of the sets S,, beloging to those finitely many neighbourhoods. Then
the open sets C(S,w) cover Q(G), they are pairwise disjoint, and each of
them is contained in some set from U. The part of |G| that is not yet
covered is a finite graph and hence we can easily extend our choice of open
sets C'(S,w) to a cover of all of |G| in which every point of |G| is contained
in at most two sets. [l

An edge e = uv of G has two directions, (u,v) and (v,u). A triple
(e,u,v) consisting of an edge together with one of its two directions is
an oriented edge. The two oriented edges corresponding to e are its two
orientations, denoted by € and e. Thus, {€,e} = {(e,u,v), (e,v,u)},
but we cannot generally say which is which. However, from the definition
of G as a 1-complex we have a fixed homeomorphism 6,: [0,1] — e. We
call (0.(0),0.(1)) the natural direction of e, and (e, 0.(0),0.(1)) its natural
orientation.

Let o: [0,1] — |G| be a path in |G|. Given an edge e = uv of G, if [s, ]
is a subinterval of [0, 1] such that

{o(s),0(t)} = {u,v} and o((s,t)) = é:=6.((0,1)),

we say that o traverses e on [s, t]. It does so in the direction of (o(s), o(t)),
or traverses € = (e,0(s),o(t)). We then call its restriction to [s,t] a pass
of o through e, or €, from o(s) to o(t).

Using that [0, 1] is compact and |G| is Hausdorff, one easily shows that
a path in |G| contains at most finitely many passes through any given edge:

Lemma 2.9. A path in |G| traverses each edge only finitely often.

Proof. Let o be a path in |G|, and let e = uv be an edge such that o
contains infinitely many passes o [ [s,, t,| through e, n = 1,2,.... Passing
to a subsequence if necessary, we may assume that the sequence sy, so, . ..
converges, say to s € [0,1]. Then the sequence of the corresponding ¢, also
converges to s: given € > 0, choose m large enough that for all n > m both
|sp, — s| < e/2 and t, — s, < /2 (using that the lengths of the intervals
(S, tn] converge to 0, which they clearly do); then |t, —s| < ¢ for all n. > m.
But now o fails to be continuous at s, because {o(s,),o(t,)} = {u,v} for
each n but each point in |G| has a neighbourhood avoiding u or v. O]
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Let & =& (G) denote the set of all integer-valued functions ¢ on the
set E of all oriented edges of G that satisfy p(€) = —p(&) for all € € E.
This is an abelian group under pointwise addition. A family (p; | i € I) of
clements of € is thin if for every € € E we have ¢;(€) # 0 for only finitely
many i. Then ¢ = Y., ¢; is a well-defined element of E: it maps each
¢ € E to the (finite) sum of those ¢;(€) that are non-zero. We shall call
a function ¢ € & obtained in this way the thin sum of those ;.

We can now define our oriented version of the topological cycle space
of G. When « is a circle path in |G| based at a vertex, we call the function
Dot E — Z defined by

if a traverses
Yo' € — ¢ —1 if a traverses
0 otherwise.

ol o)

an oriented circuit in G, and write C = C (G) for the subgroup of £ formed
by all thin sums of oriented circuits.

We remark that C is closed also under infinite thin sums [16, Cor. 5.2],
but this is neither obvious nor generally true for thin spans of subsets
of € 6, Sec. 3]. We remark further that composing the functions in C with
the canonical homomorphism Z — Z, yields the usual topological cycle
space C(G) of G as studied in [3, 4, 5, 8, 9, 16, 17, 18, 30, 32, 40|, the F,
vector space of subsets of £ obtained as thin sums of (unoriented) circuits.
The combinatorial cycle space consisting of all finite sums of finite circuits
will be denoted by Cg,, or by 5ﬁn in the oriented case.

The topological cycle space C(G) can be characterized as the set of those
subsets of E that meet every finite cut of G in an even number of edges [16,
Thm. 7.1], [14, Thm. 8.5.8]. The characterization has an oriented analogue:

Theorem 2.10. An element ¢ of & lies in C if and only ifY e wle) =
0 for every finite oriented cut F of G.

The proof of Theorem 2.10 is not completely trivial. But it adapts
readily from the unoriented proof given e.g. in [14], which we leave to the
reader to check if desired.

Given a topological spanning tree T' of G and a chord e of T, we write
C. for the fundamental circuit of e, the unique circuit in T'+e. The oriented
fundamental circuit 56 is the unique oriented circuit in 7"+ e with positive
value on the natural orientation of e.

Theorem 2.11. The fundamental circuits of a topological spanning tree
generate the topological cycle space. The oriented fundamental circuits gen-
erate the oriented cycle space.

11



The first statement of Theorem 2.11 is given in [18, Theorem 6.1].
Again, the proof of the oriented statement adapts readily from the proof
of the unoriented version.

We close this section with a standard tool in infinite graph theory,
Konig’s infinity lemma (eg. [14, Lemma 8.1.2]).

Lemma 2.12. Let V|, Vs, ... be non-empty finite sets and let G be a graph
on J,, Vo such that every vertex in each V,+1 has at least one neigbour in
V... Then G contains a ray whose nth vertex lies in V,, for every n.

2.3 Algebra and algebraic topology

For our study of the fundamental group of |G| we shall need two basic theo-
rems: The Nielsen—Schreier theorem and the Seifert—van Kampen theorem.

Theorem 2.13 ([39]). Every subgroup of a free group is free.

We shall only need a weaker version of the Seifert—van Kampen theorem,
the theorem in its whole strength it can be found eg. in [34, Theorem 1.20].

Theorem 2.14. Let G be a locally finite graph and assume that a standard
subspace H of |G| is the union of standard subspaces Hy, Hy with HiNHy =
{z}, where x is a vertex. Then m (H) ~ m(Hy) % m(H3).

Note that Theorem 2.14 indeed follows from the Seifert—van Kampen
theorem: Let U be an open star of radius ¢ < 1 around x; then H| := H,UU
and HY := H, U U are open sets with intersection U, and clearly m(H]) is
canonically isomorphic to 7 (H;). As U is simply connected, the Seifert—
van Kampen theorem yields m(H) ~ m(H{) % m(H)) ~ m(Hy) * 71 (Ha).

A 1-cycle that can be written as a sum of 1-simplices no two of which
share their first point is an elementary cycle. Every 1-cycle is easily seen
to be a sum of elementary 1-cycles, a decomposition which is not normally
unique. When we prove statements about H;(|G|), it will often suffice to
consider elementary 1-cycles.

The following lemma enables us to subdivide or concatenate the sim-
plices in a 1-cycle while keeping it in its homology class.

Lemma 2.15. Let o be a singular 1-simplex in |G|, and let s € (0,1).
Write o' and " for the 1-simplices obtained from the restrictions of o to
[0,s] and to [s,1] by reparametrizing linearly. Then o + ¢” — o is the
boundary of a 2-simplex with image Im o. U

When ¢ is a summand in a cycle z € Z;, we shall say that the equiv-
alent cycle 2z’ obtained by replacing o with ¢’ + ¢” in the sum arises by
subdividing o (at s or at o(s)). A frequent application of Lemma 2.15 is
the following:
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Corollary 2.16. Every non-zero element of Hi(|G|) is represented by a
sum of loops each based at a vertex.

Proof. Pick a cycle representing a given homology class, and decompose
it into elementary cycles. Use Lemma 2.15 to concatenate their simplices
into a single loop. If such a loop a passes through a vertex, we can sub-
divide it there and suppress its original boundary point, obtaining a ho-
mologous loop based at that vertex. If a does not pass through a vertex,
then Im a C é for some edge e (since non-trivial sets of ends are never
connected), so « is null-homotopic and [a] = 0. O

A homology theory assigns to every space X and every subspace A of
X a sequence (Hn(X , A))n oy, of abelian groups,® and to every continuous
map f: X — Y with f(A) C B for subspaces A of X and B of Y (which
we indicate by writing f: (X, A) — (Y, B)) a sequence of homomorphisms
fe: Ho(X, A) — H,(Y, B) so that (fg). = f.g« for compositions of maps
and 1, = 1 for the identity maps. We abbreviate H,(X,0) to H,(X).

Finally, the following axioms for homology have to be satisfied:

Homotopy equivalence: If continuous maps f,g: (X, A) — (Y, B) are
homotopic, then f, = g,.

The Long Exact Sequence of a Pair: For every pair (X, A) there are
boundary homomorphisms 0: H,(X,A) — H,—1(A) such that

P Ho(A) —= H,(X) — H, (X, A)
/
H,_1(A) s H,_(X) L
is an exact sequence, where ¢ denotes the inclusion (A,0) — (X,0)
and 7 denotes the inclusion (X,0) — (X, A). These boundary ho-
momorphisms are natural, i.e. given a continuous map f: (X, A) —
(Y, B) the diagrams
H, (X, A) 2= H,_,(A)

| |

commute.

3Usually (in particular, for all homology theories considered in this thesis) H, (X, A)
is the trivial group for n < 0, but this is not part of the requirements on homology
theories.
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Excision: Given subspaces A, B of X whose interiors cover X, the inclu-
sion (B,AN B) — (X, A) induces isomorphisms H,(B,AN B) —
H, (X, A) for all n.

Disjoint unions: If X = |_|a X, with inclusions ¢,: X, — X, the di-
rect sum map @, (¢a), : DB, Hn(Xa, Aa) — Ho(X, A), where A =
||, Aa, is an isomorphism.

The axioms above are the ones stated in [34, p. 160-161]. The origi-
nal Eilenberg-Steenrod axioms [26] contain an additional axiom, called the
‘dimension axiom’, stating that the homology groups of a single point are
nonzero only in dimension zero. However, this axiom is not always re-
garded as an essential part of the requirements for a homology theory. An
example for a homology theory that does not satisfy the dimension axiom
is bordism theory; in this case the groups of a single point are non-trivial in
infinitely many dimensions. We omit the dimension axiom, but note that
the homology theory we construct will trivially satisfy it.

The groups H, (X, A) above are called relative homology groups; spe-
cializations H,(X) = H,(X,0) are absolute homology groups.

Let us note that not every homology theory satisfies all axioms without
modification; it is often the case that a homology theory is defined for
certain types of (pairs of) spaces or certain groups of coefficients. The Cech
homology for instance, which we will discuss in Chapter 5, does satisfy
all the axioms under the additional assumption that both X and A are
compact and the coefficients are taken from a module over a ring or from a
compact topological group. Otherwise, the exactness axiom is not generally
satisfied.

A cohomology theory has to satisfy axioms dual to those for a homol-
ogy theory. Thus, a cohomology theory assigns to every space X, every
subspace A of X, and every abelian group G a sequence (H "X, A; G))nEZ
of abelian groups, and to every continuous map f: (X, A) — (Y, B) a se-
quence of homomorphisms f*: H*(Y, B;G) — H"(X, A; G) so that (fg)* =
g*f*and 1* = 1. The axioms are the following:

Homotopy equivalence: If continuous maps f,g: (X, A) — (Y, B) are
homotopic, then f* = g¢*: H"(Y, B;G) — H"(X, A; G).

The Long Exact Sequence of a Pair: For every pair (X, A) there are
coboundary homomorphisms §: H"(A; G) — H""1(X, A; G) such that

s HM(X, A Q) —— H"(X;G) —“— H"(A; G)
/
H"Jrl(X, A; G) ™ Hn+1(X; G) v
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is an exact sequence, where ¢ denotes the inclusion (A,0) — (X,0)
and 7 denotes the inclusion (X,0) — (X, A). These coboundary
homomorphisms are natural, i.e. given a standard map f: (X, A) —
(Y, B) the diagrams

H"(B;G) —2= H"\(Y, B; G)
if* if*
H"(A; Q) —= H"(X, A; G)
commute.

Excision: Given subspaces A, B of X whose interiors cover X, the in-
clusion (B, AN B) — (X, A) induces isomorphisms H"(X, A;G) —
H™(B,AN B;G) for all n.

Disjoint unions: If X = | | X, with inclusions ¢,: X, — X, the direct
product map [, (¢a), : H*(X,A;G) — [], H"(Xa, Aa; G), where
A =], A, is an isomorphism.

We shall need another basic algebraic lemma, the Five-Lemma (eg. [34,
p. 129]).

Lemma 2.17. Let

A B C D E

ekl

A B’ c’ D’ E'

be a commutative diagram in which both horizontal sequences are exact. If
a, B, 0, and € are isomorphisms, then so is 7.

2.4 The groups of a finite graph

In this section let G be a finite graph and let T" be a fixed spanning tree
of G. We sketch the well known fact that the fundamental group and the
first homology group of GG can be expressed in terms of the chords of 7'

Let us first consider the fundamental group of G. Every loop based at
a vertex can be characterized by its passed through the chords of T, hence
every such loop induces a word with letters the (oriented) chords of 7. Now
if two loops ¢ and 7 induce words w, and w,, and if w, and w, reduce to
the same word—where a reduction is a sequence of deleting inverse pairs
of adjacent letters (such as €e or ee€)—, then ¢ and 7 are homotopic.
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This homotopy can be realized by recursively retracting subpaths that pass
through a chord and back (and possibly travel along 7' in between the
passes, but not along other chords) in the order given by the reductions
of the words. Therefore, 7 (G) is canonically isomorphic to the group of
reduced words, i.e. the free group with generators the (oriented) chords of
T.

The first homology group H;(G) can be obtained similarly. Using the
Seifert—van Kampen theorem and the fact that the fundamental group of
the unit circle S' is canonically isomorphic to Z (or, alternatively, by the
equivalence of simplicial and singular homology), on shows that H;(G)
is canonically isomorphic to the free abelian group with generators the
(oriented) chords of T. Hence Hi(G) ~ C(G). It is now clear that H;(G)
is the abelianization of m (G).

Let us remark that the first cohomology group H'! of G yields the same
result as H;, provided that the coefficients in H; and H' are taken from
the same group.

All facts metioned in this section also remain true for locally finite
graphs which have a topological spanning tree with only finitely many
chords.
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Chapter 3

The fundamental group of |G|

3.1 Introduction

In this chapter we give a combinatorial characterization of the fundamental
group of the Freudenthal compactification |G| of a locally finite graph G.

When G is finite, we saw in Section 2.4 that m(|G|) = m1(G) is the free
group on the set of (arbitrarily oriented) chords of a spanning tree of G. We
shall see that when G is infinite and there are infinitely many chords, then
71 (|G|) is not a free group. However, we show that it embeds canonically
as a subgroup in an inverse limit /™ of free groups: those on the finite sets
of (oriented) chords of any topological spanning tree T' of G.

More precisely, we characterize 71 (|G|) in terms of subgroup embeddings

m(|G]) = F — F*,

where Fl is a group formed by ‘reduced’ infinite words of chords of 7.1
These words arise as the traces of loops in |G/, so in general they will have
arbitrary countable order types. Unlike for finite graphs, many natural
homotopies between such loops do not proceed by retracting passes through
chords one by one. (We give a simple example in Section 3.3.) Nevertheless,
we show that to generate the homotopy classes of loops in |G| from suitable
representatives we only need homotopies that do retract passes through
chords one at a time, in some linear order. As a consequence, we are
again able to define reduction of words as a linear sequence of steps each
cancelling one pair of letters, although the order in which the steps are
performed may now have any countable order type (such as that of the
rationals).

The fact that our sequences of reduction steps are not well-ordered
will make it difficult or impossible to handle reductions in terms of their

LCovering space theory does not apply since, trivial exceptions aside, |G| is not semi-
locally simply connected at ends.
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definition. However we show that reduction of infinite words can be charac-
terized in terms of the reductions they induce on all their finite subwords.
A formalization of this observation yields the embedding F,, — F™.

An end of G is trivial if it has a contractible neighbourhood. If every
end of G is trivial, then |G| is homotopy equivalent to a finite graph. If
G has exactly one non-trivial end, then |G| is homotopy equivalent to the
Hawaiian Earring. Its fundamental group was studied by Higman [35] and
by Cannon and Conner [10]. Our characterization of m(|G|) coincides
with their combinatorial description of this group when G has only one
non-trivial end.

The characterization of m;(|G]) is not only an important result in its
own right—the fundamental group of such a standard space as |G| ought to
be understood—, but it also has a substantial application: in the proof that
C (G) is usually a proper quotient of H;(|G|) in Chapter 4, Theorem 3.14
below is the cornerstone of the proof.

This chapter is organized as follows. We begin with a section collecting
together the remaining definitions and known background that we need.
In Section 3.3 we introduce our group F,, of infinite words, and show how
it embeds in the inverse limit of the free groups on its finite subsets of
letters. In Section 3.4 we embed m(|G|) in Fi, leaving the proof of the
main lemma to Section 3.5.

3.2 Terminology and basic facts

All homotopies between paths that we consider are relative to the first and
last point of their domain, usually {0, 1}. In many cases we shall construct
homotopies between paths using that certain subpaths are homotopic. For
instance, if the restrictions of two given paths to [0, %] are homotopic, as well
as their restrictions to [%, 1], then performing both ‘subpath homotopies’
at the same time yields a homotopy between the original paths. The same
is clearly true for any finite number of subpath homotopies—but not for
infinitely many, as one cannot guarantee continuity at accumulation points
of the subintervals when combining the subpath homotopies. However, if
the subpath homotopies behave ‘nicely’, then the following lemma enables

us to combine them.

Lemma 3.1. Let «, 3 be paths in a topological space X. Assume that
there are disjoint subintervals (ag, bo), (a1,b1),... of [0,1] such that o and
B conincide on [0, 1]\, (an, bn), while each segment o | [an, b,] is homotopic
in a([an, bn]) U 6([@,“ bn]) to B1[an,b,]. Then a and [ are homotopic.

Proof. Write D := |, (an,by,). For every n € N let F" = (ftn)te[o ; bea
homotopy in ([a,, b)) UB([an, be]) between a | [ay,, b,] and B [an, b,). We
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define the desired homotopy F' = ( ft) between a and ( as

t€(0,1]

o) e fi(x) if x € (ay,by),
filw) {Oz(x) =p(zx) ifzxe(0,1]\D.

Clearly, fo = a and f; = 3. It remains to prove that F'is continuous.

Let x,t € [0,1] and a neighbourhood U of F(xz,t) in X be given. We
find an € > 0 so that F'((z —¢,2],(t —e,t +¢)) C U; the case F([z,z +
e),(t —e,t+¢)) C U is analogous. If z € (a,,b,] for some n, then as F™
is continuous, there is an ¢ with F((x —egx],(t —e, t+ 6)) cU.

We may thus assume that « ¢ (J, (an, b,]. This implies that no interval
(x —e,x) is contained in D, as otherwise we would have (z —e¢,x) C (ap, b,)
for some n and hence x € (ay,,b,|. Now by assumption z € [0,1] \ D,
and hence F(z,t) = a(z) = f(z). Pick e > 0 with x —e € [0,1] \ D
small enough that both a and S map [z — ,z] into U. We claim that
F((z —e,z],(t —e,z +¢)) C U. Indeed, for every 2’ € (z — &,z] \ D and
every t' € (t —e,t+¢) we have F(2/,t') = a(z’) = f(2') € U. On the other
hand, for every 2’ € (x —e,z]ND and t' € (t —e,t+¢) we have 2’ € (ay, by,)
for some n. As x and x — ¢ lie in [0,1] \ D, we have (a,,b,) C (x — ¢, x)
and hence

F(2', 1) = F"(',t') € a([an, bn]) U B([an, b)) C a([z —£,2]) U B([z — &, ])
cU

by the choice of €. O

Many topological spaces that are not normally associated with graphs
can be expressed as a graph with ends, or as a subspace thereof. The
Hawaiian Earring, for example, is homeomorphic to the subspace of the
infinite grid that consists of all the vertical double rays and its end. Since
the subspaces of graphs with ends form a richer class than the spaces of
graphs with ends themselves, we prove all our results not just for |G| but
more generally for subspaces H of |G|. However, the reader will lose little
by thinking of H as the entire space |G|. All subspaces we shall consider
will be standard subspaces of G.

A topological tree in |G| is a standard subspace of |G| that contains no
circle. Note that the subgraph that such a space induces in G need not
be connected: its connectedness may hinge on the ends it contains. By
Lemma 2.6 every topological tree is arc-connected. Chords of topological
trees are defined the same way as for ordinary trees or topological spanning
trees.

Lemma 3.2. Topological trees in |G| are locally arc-connected.
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Proof. Let T be a topological tree in |G|. Let D be any open subset of T,
and x € D. We have to find an arc-connected open neighbourhood of
x in T inside D. This is trivial if z is a vertex or an inner point of an
edge, so we assume that z is an end. Then D may be chosen of the form
D = C(S,z) NT, for some finite set S C V(G). Since G — S has only
finitely many components, 7'\ S is a finite union of open sets of this form,
so D is open and closed in 7"\ S.

Similarly, 7"\ S has only finitely many arc-components, and hence only
finitely many components. Each of them is closed and open in 7'\ S, and
open even in T'. One component, C), say, contains z. Then C, C D, since
D is open and closed in T'\ S. To complete the proof, we show that C, is
arc-connected.

Suppose not. As C, is the union of some of the finitely many arc-
components of 7"\ S, it has only finitely many arc-components. Not all of
them can be closed in C, since C,, is connected. Let C be an arc-component
of C,, that is not closed in C,. Then its closure C in T meets C, \ C, and
clearly it does so only in ends of G.

Since the components of 7"\ S other than C, are open in T', we have
C CC,US. As C is connected and T is closed in |G|, we know that C' is
connected and closed in |G|, and hence arc-connected by Lemma 2.6. Let
A be an arc in C from a point in C' to one in C, \ C. As S is finite and
O\ (SUC) only consists of ends, we can choose A so that it avoids S:
If A does not avoid S, then after its last vertex in S it traverses an edge.
As the inner points of this edge lie in C, they also lie in C. Hence the
final segment of A starting at the centre of this edge is an arc as desired.
But then A C C,, contradicting the definition of C' as an arc-component
of C,. ]

Between any two of its points, « and y say, a topological tree T' in |G|
contains a unique arc, which we denote by T'y. These arcs are ‘short’ also
in terms of the topology on T induced by |G|:

Lemma 3.3. If a sequence (z;);en of points inT converges to a point z, then
every neighbourhood of z contains all but finitely many of the arcs z;Tz; 1.

Proof. Since the arcs z;Tz;,1 are unique, Lemma 3.2 implies that they lie
in arbitrarily small neighbourhoods of z. 0

We shall need topological trees in |G| as spanning trees for our analysis
of m(|G|): arbitrary graph-theoretical spanning trees of G' can have non-
trivial loops in their closures, which would leave no trace of chords and thus
be invisible to our intended representation of homotopy classes by words
of such chords.

Clearly, a topological tree T in |G| is a topological spanning tree of G
if and only if it contains V(G) (and hence also 2(G)). Similarly, given a
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standard subspace H of |G|, we call a topological tree T in |G| a topological
spanning tree of H if T' C H and T contains every vertex or end of G that
lies in H.

As mentioned in Section 2.2, topological spanning trees exist in all
locally finite connected graphs. We now prove that they also exist in all
the relevant subspaces. In fact, we need a slight technical strengthening of
this:

Lemma 3.4. Let T'C H be standard subspaces of |G|. If T is a topological
tree, it can be extended to a topological spanning tree of H.

Proof. By Theorem 2.7, |G| is a compact Hausdorff space. Let S be the
set of standard subspaces of |G| such that T C S C H and S contains all
the vertices and ends of G that lie in H. Since H is closed in |G|, every
S € S is closed not only in H but also in |G|, and therefore compact. Since
the intersection of a nested chain of compact connected Hausdorff spaces
is connected [42, p. 203], S has a minimal element 7" by Zorn’s Lemma.
By Lemma 2.6, 7" is arc-connected, and it contains no circle: if it did, we
could delete an edge to obtain a smaller element of S. (Since V(G)UQ(G)
is totally disconnected, every circle in |G| contains an edge.) Hence T" is a
topological tree in |G|, and by definition of S a topological spanning tree
of H containing T'. O

Like graph-theoretical trees, topological trees in |G| are contractible.
Again, we shall need a slightly technical strengthening of this. Call a
homotopy F'(x,t) time-injective if for every x the map t — F'(x,t) is either
constant or injective.

Lemma 3.5. For every point x in a topological tree T in |G| there is a
time-injective deformation retraction of T' onto x.

Proof. Similar to the metric of |G| defined in Section 2.2 the space T is
metrizable as follows. Choose an enumeration of the edges in T and give
the nth edge length 27". Define the distance d(y, z) between points y, z in
T as the sum of lengths of the edges (and partial edges) in y7'z; note that
if y # z then yT'z meets the interior of at least one edge. Then clearly d
is a metric with d(y,z) < 1 for all y,z € T, and it is easy to check that
it induces the given topology on T: The neighbourhoods of vertices and
inner points of edges are trivially identical in both topologies. For an end
w, every basic open neighbourhood C’(S, w) N'T contains the open e-ball
(with respect to d) around w, where € is the minimum of lengths of the
edges incident with S. On the other hand, for a given € > 0, choose a finite
vertex set S large enough so that the sum of lengths of all edges incident
with V(@) \ S is less than e. Let U C C(S,w) N T be an arc-connected
neighbourhood of w in 7', which exists by Lemma 3.2. Then by the choice
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of S all points in U have mutual distance less than ¢, thus U is contained
in the e-ball around w.

By construction, if z € yT'y' for some y,y € T, then we have d(y,y’) =
d(y, z) +d(z,vy"). We now define the time-injective homotopy F' in T from
the identity on 7" to the map 7' — {z} as follows: For every y € T and
t € [0,1] let F(y,t) be the unique point on 2Ty at distance (1 —t) - d(z,y)
from .

For the proof that F' is continuous, we show that d(F(y, t), F(y, t)) <
d(y,y’) for every y,yy/ € T and t € [0,1]; then for every ¢ > 0 and every
v,y € T with d(y,y') < /2 and t,t' € [0,1] with |t — | < /2 we have

d(F(y,t),F(y',t’)) < d(F(y,t),F(y’,t)) + d(F(y’,t),F(y',t’))
< d(y7yl> + |t - tll ’ d(%,y/)
<e/24(g/2)-1=c¢.

As 2Ty and 2Ty’ are closed, there is a last point z on 2Ty that also lies
in xTy'; this point satisfies Tz = Ty N zTy" as the unique x—z arc 7Tz
is contained in both 2Ty and xT%'. Then yTz U 2Ty is a y—z arc in T
and hence yTy' = yT'z U zTy'. This implies d(y,y") = d(y, z) + d(z,y'). If
F(y,t) € 2Ty and F(y',t) € 2Ty, then

d(F(y,t), F(y',t)) < d(F(y,t),2) +d(z, F(y,t))
<d(y,2) +d(z,y) = dly. y).

Otherwise at least one of F'(y,t), F(v/,t) lies in 2Tz = 2TyNaTy" and hence
both F(y,t) and F(y',t) are contained in 2Ty or in T%'. In particular,
one of F(y,t), F(y/,t) lies on the arc between the other and x. Then

d(F(y,t), F(y',t)) = |d(z, F(y,t)) — d(z, F(y/,1))]
=1 —1t)-|d(z,y) —d(z,y)| < d(y,y).

Corollary 3.6. If a topological spanning tree T of a standard subspace
H of |G| has only finitely many chords, then H is homotopy equivalent
to a finite graph H'. Moreover, H' has a spanning tree T such that the
homotopy equivalence of H and H' maps T to T' and vice versa and maps
chords of T' to chords of T' and vice versa.

Proof. Let Ty C T be the union of all arcs vT'w where v and w are end-
vertices of chords of T'. Then T} is arc-connected and hence a topological
tree. The closure C' of each component C of T \ Ty meets Ty in a single
point: It meets Tj since each point in C' sends an arc in T to Ty, and since
C' is arc-connected by Lemma 2.6, it cannot meet Ty in two points z,y as
the union of the 2y arcs in Ty and C would form a circle in 7.
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By Lemma 3.5 we can retract each such component C to CNTy, showing
that H is homotopy equivalent to its subspace Hy defined as the union of
Ty and all the chords of T. Now Hy need not be a finite graph: The arcs
that formed Ty may well travel through ends of G. But as Tj is the union
of finitely many arcs in 7', it is homeomorphic to a finite tree 7'. Then H,
is homeomorphic—in particular homotopy equivalent—to the union H’ of
T and all the chords of Tj, where each chord of 7" connects the images of
the endvertices of the corresponding chord of Ty. Thus, H' and 1" are as
desired. O]

Given a standard subspace H of |G|, let us call an end w of G trivial
in H if w € H and w has a contractible neighbourhood in H. For instance,
all the ends of G are trivial in any topological spanning tree of G, by
Lemma 3.5. Trivial ends in larger subspaces can also be made visible by
topological spanning trees:

Lemma 3.7. Let T be a topological spanning tree of a standard subspace
H of |G|. An end w € H of G is triwial in H if and only if w has a
neighbourhood in H that contains no chord of T.

Proof. Suppose first that w has a neighbourhood in H containing no chord
of T'. This neighbourhood U can be chosen of the form C’(S, w) N H, since
these form a neighbourhood basis of w, and so that the S—C' edges in H
are no chords of T either. Then U, indeed its closure U in H, contains
no inner point of any chord of T, i.e., U C T. By Lemma 3.2, there is an
arc-connected neighbourhood U’ C U of w in H, and we may clearly choose
U’ to be a standard subspace. Its closure 7" in H lies in U C T, is closed
in |G|, and therefore is arc-connected by Lemma 2.6. So 7" is a topological
tree in |G|, and contractible by Lemma 3.5.

Conversely, suppose that w has a contractible neighbourhood U in H;
this cannot contain a circle. By Lemma 3.2, the end w has an arc-connected
open neighbourhood 7" in T" inside U. Since T carries the subspace topology
from H, this has the form 7" = U’ NT for an open subset U’ C U of H.
This U’ is a neighbourhood of w in H that contains no chord of T": for any
such chord it would also contain an arc in 77 C U between its vertices, to
form a circle in U that does not exist. O

3.3 Infinite words and inverse limits

In the this section and the next, we will give a combinatorial description
of m (|G|)—indeed of 7 (H) for any standard subspace H of |G|, when G
is any connected locally finite graph. Our description will involve infinite
words and their reductions in a ‘continuous’ setting, and embedding the
group they form as a subgroup of a limit of finitely generated free groups.
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Such things have been studied also by Eda [24], Cannon and Conner [10],
and by Chiswell and Miiller [11].

In Section 2.4 we saw that when G is finite, 71 (|G|) is the free group F
on the set of chords of any fixed spanning tree. The standard description
of F' is given in terms of reduced words of those oriented chords, where
reduction is performed by cancelling adjacent inverse pairs of letters such
as €;e; or ¢;¢;. The map assigning to a path in |G| the sequence of chords it
traverses defines the canonical group isomorphism between 7 (|G|) and F;
in particular, reducing the words obtained from homotopic paths yields the
same reduced word.

Our description of m1(|G|) when G is infinite will be similar in spirit,
but more complex. We shall start not with an arbitrary spanning tree but
with a topological spanning tree of |G|. Then every path in |G| defines as
its ‘trace’ an infinite word in the oriented chords of that tree, as before.
However, these words can have any countable order type, and it is no longer
clear how to define the reduction of words in a way that captures homotopy
of paths.

Consider the following example. Let G be the infinite ladder, with a
topological spanning tree T' consisting of one side of the ladder, all its rungs,
and its unique end w (Figure 3.1). The path running along the bottom side
of the ladder and back is a null-homotopic loop. Since it traces the chords
€o, €1,... all the way to w and then returns the same way, the infinite
word €peq ... e1eg should reduce to the empty word. But it contains no
cancelling pair of letters, such as €;¢e; or e;e€;.

w

Figure 3.1: The infinite ladder and its topological spanning tree 7' (bold
edges)

This simple example suggests that some transfinite equivalent of can-
celling pairs of letters, such as cancelling inverse pairs of infinite sequences
of letters, might lead to a suitable notion of reduction. However, in graphs
with infinitely many ends one can have null-homotopic loops whose trace
of chords contains no cancelling pair of subsequences whatsoever:

Example 3.8. We construct a locally finite graph G and a null-homotopic
loop ¢ in |G| whose trace of chords contains no cancelling pair of subse-
quences, of any order type.

Let T' be the binary tree with root . Write V,, for the set of vertices
at distance n in T from r, and let 7T,, be the subtree of T induced by
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VoU-+-UV,. Our first aim will be to construct a loop o in |T'| that tra-
verses every edge of T' once in each direction. We shall obtain ¢ as a limit
of similar loops o, in T,, C |T|.

We start with the constant map oq: [0, 1] — Ty = {r}. Assume induc-
tively that o,: [0,1] — T, is a loop traversing every edge of T,, exactly
once in each direction. Assume further that o, pauses every time it visits
a vertex in V,, (i.e., a leaf of T,), remaining stationary at that vertex for
some time. More precisely, we assume for every vertex v € V,, that o, (v)
is a non-trivial closed interval. Let us call the restriction of o,, to such an
interval a pass of o, through v.

Let 0,41 be obtained from o, by replacing, for each vertex v in V,,,
the pass of o, through v by a topological path that first travels from v
to its first neighbour in V,,,; and back, and then to its other neighbour
in V.1 and back, pausing at each of those neighbours for some non-trivial
time interval. Outside the passes of g, through leaves of T,,, let 0,1 agree
with o,,.

Let us now define 0. Let s € [0, 1] be given. If its values 0,(s) coincide
for all large enough n, let o(s) := o,(s) for these n. If not, then s, :=
on(s) € V, for every n, and sps182 ... is aray in T; let 0 map s to the end
of G to which this ray belongs. This map o is easily seen to be continuous,
and by Lemma 3.5 it is null-homotopic. It is also easy to check that no
sequence of passes of o through the edges of T is followed immediately by
the inverse of this sequence.

The edges of T" are not chords of a topological spanning tree, but this
can be achieved by changing the graph: just double every edge.? The new
edges together with all vertices and ends then form a topological spanning
tree in the resulting graph G, whose chords are the original edges of our
tree T, and o is still a (null-homotopic) loop in |G|.

Example 3.8 shows that there is no hope of capturing homotopies of
loops in terms of word reduction defined recursively by cancelling pairs of
inverse subwords, finite or infinite. We shall therefore define the reduction
of infinite words differently, though only slightly. We shall still cancel
inverse letters in pairs, even only one at a time, and these reduction ‘steps’
will be ordered linearly (rather unlike the simultaneous dissolution of all
the chords by the homotopy in the example). However, the reduction steps
will not be well-ordered.

This definition of reduction is less straightforward, but it has an im-
portant property: as for finite GG, it will be purely combinatorial in terms
of letters, their inverses, and their linear order, making no reference to the
interpretation of those letters as chords and their relative positions under

2And subdivide the new edges once, in case you prefer to obtain a simple graph
instead of a graph with multiple edges.
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the topology of |G|.

Another problem, however, is more serious: since the reduction steps
are not well-ordered, it will be difficult to handle reductions—e.g. to prove
that every word reduces to a unique reduced word, or that word reduction
captures the homotopy of loops, i.e. that traces of homotopic loops can al-
ways be reduced to the same word. The key to solving these problems will
lie in the observation that the property of being reduced can be character-
ized in terms of all the finite subwords of a given word. We shall formalize
this observation by way of an embedding of our group F, of infinite words
in the inverse limit F* of the free groups on the finite subsets of letters.

The remainder of this section is devoted to carrying out this programme.
In Section 3.4 we shall then study how 7 (|G|) embeds as a subgroup in Fi,
when its letters are interpreted as oriented chords of a topological spanning
tree of GG. We shall prove that, as in the finite case, the map assigning to
a loop in |G| its trace of chords and reducing that trace is well defined on
homotopy classes, giving us injective homomorphisms

m(|G]) = Foo — F™.

By determining their precise images we shall complete our combinatorial
characterization of 7 (|G|)—and likewise of m;(H) for subspaces H of |G|.

Let A = {@, ...} and {&, @,...} be disjoint countable sets. Let
us call the elements of

letters, and say that €; and e; are inverse to each other. A word in A is a
map w: S — A from a totally ordered countable set S, the set of positions
of (the letters used by) w, such that w™!(a) is finite for every a € A. The
only property of S relevant to us is its order type, so two words w: S — A
and w’: S — A will be considered the same if there is an order-preserving
bijection ¢: S — 5" such that w = w’ o p. If S is finite, then w is a
finite word; otherwise it is infinite. The concatenation wyws of two words
is defined in the obvious way: we assume that their sets S7, S5 of positions
are disjoint, put S; before Sy in S; U Ss, and let wywy be the combined
map wy; U wy. For I C N we let

and write w | I as shorthand for the restriction w [w™!(A;). Note that if [
is finite then so is the word w | I, since w™!(a) is finite for every a.

An interval of S is a subset S C S closed under betweenness, i.e.,
such that whenever s’ < s < §” with s§',s” € S’ then also s € S’. The
most frequently used intervals are those of the form [¢',s"]s := {s € S |

26



¢ <s<s"tand (s,8)sg:={se S| <s<s} If(s,5)s =0, we call
s, s" adjacent in S.

A reduction of a finite or infinite word w: S — A is a totally ordered
set R of disjoint 2-element subsets of S such that the two elements of each
p € R are adjacent in S\ J{q € R | ¢ < p} and are mapped by w to inverse
letters €;, ;. We say that w reduces to the word w [ (S'\ | R). If w has no
nonempty reduction, we call it reduced.

Informally, one may think of the ordering on R as expressing time. A re-
duction of a finite word thus recursively deletes cancelling pairs of (positions
of) inverse letters; this agrees with the usual definition of reduction in free
groups. When w is infinite, cancellation no longer happens ‘recursively in
time’, because R need not be well ordered.

As is well known, every finite word w reduces to a unique reduced word,
which we denote as r(w). Note that 7(w) is unique only as an abstract word,
not as a restriction of w: if w = €yey€y then r(w) = €y, but this letter €
may have either the first or the third position in w. The set of reduced finite
words forms a group, with multiplication defined as (wy,ws) — 7(wws),
and identity the empty word. This is the free group with free generators
€o, €1,... and inverses €g, €1, .... For finite I C N, the subgroup

Fr={w|Imw C A}
is the free group on {¢; | i € I}.
Consider a word w, finite or infinite, and I C N. The definitions of

reduction and restriction immediately imply the following:

If R is a reduction of w, then {{s,s'} € R | w(s) € A},

3.1
with the ordering induced from R, is a reduction of w|1. (3:.1)

In particular:
Any result of first reducing and then restricting a word can (3.2)

also be obtained by first restricting and then reducing it.

By (3.2), the homomorphisms F; — Fy, I C J, defined by mapping
w € Fjyto r(w|I) € F; now make the family of all F; with finite I an
inverse system. Let us write

F* = F*(A) ==lim Fy

for the corresponding inverse limit of the F;. By our assumption that [
runs through all the finite subsets of some countable set, and that F; can
be viewed as the free group on I, this defines F* uniquely as an abstract

group.
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Our next aim is to show that also every infinite word reduces to a
unique reduced word. We shall then be able to extend the map w — r(w),
defined so far only for finite words w, to infinite words w. The operation
(wy,wy) — r(wiws) will then make the set of reduced (finite or infinite)
words a group, our desired group Fi.

Existence is immediate:

Lemma 3.9. Every word reduces to some reduced word.

Proof. Let w: S — A be any word. By Zorn’s Lemma there is a maximal
reduction R of w. Since R is maximal, the word w [ (S\|J R) is reduced. O

To prove uniqueness, we begin with a characterization of the reduced
words in terms of reductions of their finite subwords. Let w: S — A be
any word. If w is finite, call a position s € S permanent in w if it is not
deleted in any reduction, i.e., if s € S\ |J R for every reduction R of w. If
w is infinite, call a position s € S permanent in w if there exists a finite
I C N such that w(s) € A; and s is permanent in w [ I. By (3.2), a
permanent position of w [ I is also permanent in w [ J for all finite J D 1.
The converse, however, need not hold: it may happen that {s, s’} is a pair
(‘of cancelling positions’) in a reduction of w [ I but w [ J has a letter from
A\ A; whose position lies between s and s, so that s and s’ are permanent
inwlJ.

Lemma 3.10. A word is reduced if and only if all its positions are perma-
nent.

Proof. The assertion is clear for finite words, so let w: S — A be an infinite
word. Suppose first that all positions of w are permanent. Let R be any
reduction of w; we will show that R = (). Let s be any position of w. As
s is permanent, there is a finite / C N such that w(s) € A; and s is not
deleted in any reduction of w [ I. By (3.1), the pairs in R whose elements
map to Ay form a reduction of w [ I, so s does not lie in such a pair. As s
was arbitrary, this proves that R = 0.

Now suppose that w has a non-permanent position s. We shall construct
a non-trivial reduction of w. For all n € N put S, := {s € S | w(s) €
Ago,..n1}; recall that these are finite sets. Write w, for the finite word
w I with I = {0,...,n}, the restriction of w to S,. For any reduction R
of w41, the set R~ := {{t,t'} € R | t,t' € S,,} with the induced ordering
is a reduction of w,, by (3.1).

Pick N € N large enough so that s € Sy. Since s is not permanent
in w, every w, with n > N has a reduction in which s is deleted. As
w, has only finitely many reductions, Lemma 2.12 gives us an infinite
sequence Ry, Ryi1,... in which each R, is a reduction of w, deleting s,
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and R, = R, for every n > N. Inductively, this implies:

For all m < n, we have R,, = {{t,t'} € R, | t,t' € S,,},
and the ordering of R, on this set agrees with that induced (3.3)
by R,,.

Let s € S be such that {s, s’} € R,, for some n; then {s,s'} € R,, for every
n > N, by (3.3).

Our sequence (R,,) divides the positions of w into two types. Call a
position t of w essential if there exists an n > N such that ¢t € S,, and ¢
remains undeleted in R, ; otherwise call t inessential. Consider the set

R:={]J ()R

m>N n>m

of all pairs of positions of w that are eventually in R,,. Let R be endowed
with the ordering p < ¢ induced by all the orderings of R, with n large
enough that p, ¢ € R,,; these orderings are compatible by (3.3). Note that R
is non-empty, since it contains {s, s'}. We shall prove that R is a reduction
of w.

We have to show that the elements of each p € R, say p = {t1,%2} with
ty < to, are adjacent in S\ J{g € R | ¢ < p}. Suppose not, and pick
t € (ti,t2)s \U{q € R | ¢ < p}. If t is essential, then ¢ is a position of w,,
remaining undeleted in R, for all large enough n. But then {t1,¢,} ¢ R, for
all these n, contradicting the fact that {¢;,t2} € R. Hence t is inessential.
Then ¢ is deleted in every R, with n large enough. By (3.3), the pair
{t,t'} € R,, deleting t is the same for all these n, so {t,t'} =: p’ € R. By
the choice of t, this implies p’ £ p. For n large enough that p,p’ € R,,, this
contradicts the fact that ¢y, ¢, are adjacent in S, \|J{q¢ € R.,q < p}, which
they are since R, is a reduction of w,,. O

Note that a word can consist entirely of non-permanent positions and
still reduce to a non-empty word: the word €yeg ey is again an example.

Lemma 3.10 offers an easy way to check whether an infinite word is
reduced. In general, it can be hard to prove that a given word w has
no nontrivial reduction, since this need not have a ‘first’ cancellation, see
Example 3.8.2 By Lemma 3.10 it suffices to check whether every position
becomes permanent in some large enough but finite w [ 1.

Similarly, it can be hard to prove that two words reduce to the same
word. The following lemma provides an easier way to do this, in terms of
only the finite restrictions of the two words:

30n the other hand, a reduction R of the trace of the path in Example 3.8 to the
empty word is not hard to find: Clearly, the elements of R have to be all pairs {€, €
with e an edge of T. The ordering on R can be any ordering in which a pair {€,€}
appears before a pair {5/, ?’} whenever ¢’ lies on the path from e to the root of T'.

However, one can construct paths with even more complicated traces, see Theo-
rem 3.14 (i).
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Lemma 3.11. Two words w,w’ can be reduced to the same (abstract) word
if and only if r(w[I) =r(w'[I) for every finite I C N.

Proof. The forward implication follows easily from (3.2). Conversely, sup-
pose that r(w[I) = r(w'[I) for every finite I/ C N. By Lemma 3.9, w and
w’ can be reduced to reduced words v and v’, respectively. Our aim is
to show that v = ¢/, that is to say, to find an order-preserving bijection
©: S — S between the domains S of v and S’ of v/ such that v = v’ op. For
every finite I, our assumption and the forward implication of the lemma
yield
r(wl)=r(wlI)=r|I)=r@[I).

Hence for every possible domain S; C S of (v [ I) and every possible
domain S7 C 5" of r(v' | I) there exists an order isomorphism S; — 57
that commutes with v and v’. For every I, there are only finitely many
such maps Sy — 57, since there are only finitely many such sets Sy and .S}.
And for I C J, every such map S; — S induces such a map S; — 5}
with S; € Sy and 57 € S, by (3.2). Hence by Lemma 2.12 there exists

a sequence @y C @1 C --- of such maps ¢,: Spo,...n} — S%O.__n}, whose
union ¢ maps all of S onto S’, since by Lemma 3.10 every position of v
and of v' is permanent. ]

With Lemma 3.11 we are now able to prove:
Lemma 3.12. Every word reduces to a unique reduced word.

Proof. By Lemma 3.9, every word w reduces to some reduced word w’.
Suppose there is another reduced word w” to which w can be reduced. By
the easy direction of Lemma 3.11, we have

r(w' 1) =r(wlI)=rw"II)

for every finite I/ C N. By the other direction of Lemma 3.11, this implies
that w’ and w” can be reduced to the same word. Since w’ reduces only
to w’ and w” reduces only to w”, this must be the word w' = w”. ]

As in the case of finite words, we denote the unique reduced word that
a word w reduces to by r(w). The set of reduced words now forms a group

—

with multiplication defined as (wq,ws) — r(wiws), identity the empty
word, and inverses w~ of w: S — A defined as the map on the same S, but
with the inverse ordering, satisfying {w(s),w™(s)} = {€;, €} for some i for
every s € S. (Thus, w™ is w taken backwards, replacing each letter with
its inverse.) Note that the proof of associativity requires an application of
Lemma 3.12.
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As noted earlier, infinite words have been studied by Cannon and Con-
ner [10] and—in a more general setting allowing the letters to live in any
group (not necessarily the same for each letter)—by Eda [24]. For reference,
let us note that F,, equals BF(Xg) in the notation of Cannon & Conner
and XnyZ = x{Z in Eda’s notation.

As indicated earlier, we claim that F, embeds canonically in the inverse
limit F* of the groups Fj. Indeed, by (3.2), the maps h;: w — r(w | I)
are homomorphisms F,, — F7 that commute with the homomorphisms
F; — Fy from the inverse system, so they define a homomorphism

h: Foo — F*

satisfying m; o h = h; for all I (where 7 is the projection F* — Fj given
by the definition of the inverse limit). To show that A is injective, consider
an element w of its kernel. For every I, we have

r(wlI)=h(w)= m(h(w)) =m;(1) =0,

where 1 denotes the identity in F* and () that of F7, the empty word. Thus,
w is a reduced word which has no permanent positions. By Lemma 3.10,
this means that w is the empty word in Fi,. Thus, h is a group embedding
of F in I, as claimed.

We remark that h is not surjective. Indeed, while every letter occurs
only finitely often in any given word, there are elements of F* whose
projections to the F; contain some fixed letter—or even every letter—
unboundedly often; such an element will not lie in the image of h. (For
example, if w; is the word €ge --- €;€;_1 --- €€y € Fy,. 43, then the words
wowy - - - w; for each 7 define an element of F™* that contains each letter in-
finitely often.) However, these are clearly the only elements of F'* that h
misses: the subgroup h(F.,) of F'* consists of precisely those elements (w;)
of F* that are bounded in the sense that for every letter € € A there exists
a k € N such that |w;'(€)| < k for all 1.

Theorem 3.14 (ii) below summarizes what we have shown so far.

3.4 Embedding C(G) in F

Let G be a locally finite connected graph. Let H be a standard subspace
of |G|, and let T be a fixed topological spanning tree of H. If T' has only
finitely many chords, then H is homotopy equivalent to a finite graph by
Corollary 3.6, and all we shall prove below will be known. We therefore
assume that 7' has infinitely many chords. Enumerate these as eq, eq, . ..
let A = {€o, €1,...} be the set of their natural orientations, and put

A::{607617'~-}U{EO,€1,...}.

Y
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Let

Fao = Fy(A)
be the group of infinite reduced words with letters in A, as defined in
Section 3.3.

Unless otherwise mentioned, the endpoints of all paths considered from
now on will be vertices or ends. When we speak of ‘the passes’ of a given
path o, without referring to any particular edges, we shall mean the passes
of o through chords of T

Every path ¢ in H defines a word w, by its passes through the chords
of T. Formally, we take as S the set of the domains [a, b] of passes of o,
ordered naturally as internally disjoint subsets of [0, 1], and let w, map
every [a,b] € S to the directed chord that o traverses on [a,b]. We call
w, the trace of o. Our aim is to show that (a) — r(w,) defines a group
embedding i (H) — F.

For a proof that (a) — r(w,) is well defined, consider homotopic loops
a ~ [ in H. We wish to show that r(w,) = r(ws). By Lemma 3.11 it
suffices to show that r(wg [ I) = r(wg [ I) for every finite I C N. Consider
the space obtained from H by attaching a disc to H for every j ¢ I,
by an injective attachment map from the boundary of the disc onto the
fundamental circle of e;, the unique circle in T'+e;. This space deformation-
retracts onto T"U (J{e; | ¢ € I}, and hence is homotopy equivalent by
Corollary 3.6 to a finite graph W} having a spanning tree T; with || chords,
one for each e;. Composing a and ( with the map H — W/ from this
homotopy equivalence yields homotopic loops o and 3" in W}, whose traces
in F; are wy = w, [ I and wg = wg [ I. Since the map (y) — r(w,) is
known to be well defined for finite graphs, we deduce that

r(wa [ 1) =r(wy) =r(wg) =r(wg [ I).

This completes the proof that () — 7(w,) is well defined. By (3.2), it is a
homomorphism. For injectivity, we shall prove in Section 3.5 the following
extension to paths that need not be loops:

Lemma 3.13. Paths o, 7 in H with the same endpoints are homotopic in
H if (and only if ) their traces reduce to the same word.

In Section 5.2 we shall show that Lemma 3.13 also follows from a result
of Eda and Kawamura [25]. Nevertheless, we will show in Section 3.5 that
the homotopy between o and 7 can be chosen so that it contracts pairs
of passes, one at a time, like known from finite graphs. Our proof of
Lemma 3.13 will thus show more: that either there is a ‘natural’ homotopy
between ¢ and 7, one that essentially uses the combinatorial structure of
the graph, or no homotopy at all.
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We remark that the map () — r(w,) will not normally be surjective.
For example, €y€;--- will always be a reduced word, but no loop in |G|
can pass through these chords in precisely this order if they do not converge
to an end. Hence if two ends are non-trivial in H, then by Lemma 3.7 the
sequence €y, €1,... of chords of T"in H does not converge and therefore
the reduced word €yéy - - - lies outside the image of our map («) — r(w,).

In order to describe the image of this map precisely, let us call a subword
w' = w[S of aword w: S — A monotonic if S’ is infinite and can be
written as S’ = {so, s1,...} so that either sp < s3 < -+ or sg > 513 > ---.
Let us say that w' converges (in |G|) if there exists an end to which every
sequence xg, T, ... with x,, € w(s,) for all n converges. If w is the trace of
a path in H, then by the continuity of this path all the monotonic subwords
of w—and hence those of r(w)—converge.

We can now summarize our combinatorial description of m;(H) as fol-
lows.

Theorem 3.14. Let G be a locally finite connected graph, and let H be a
standard subspace of |G|. Let T be a topological spanning tree of H, and
let eg,eq,... be its chords.

(i) The map () +— r(wy,) is an injective homomorphism from m(H)
to the group Fy, of reduced finite or infinite words in {€y, €1,...} U
{0, €1,...}. Its image consists of those reduced words whose mono-
tonic subwords all converge in |G|.

(ii) The homomorphisms w w r(w [ I) from Fy to Fr embed Fy as
a subgroup in lim Fy. It consists of those elements of lim Fy whose
projections r(w [ I) use each letter only boundedly often. (The bound
may depend on the letter.)

Proof. (i) We already saw that («a) — 7(w,) is a homomorphism, and
injectivity follows from Lemma 3.13 (which will be proved in Section 3.5).
We have also seen that for every loop « in H all the monotonic subwords
of r(w,) converge in |G|. It remains to show the converse: that if all the
monotonic subwords of a reduced word w converge, then there is a loop «
in H such that w = r(w,).

We prove the following more general fact: If w is a word (not necessarily
reduced) whose monotonic subwords all converge, then w is the trace of a
loop in H. So let w: S — A be such a word. Enumerate S as s, s1,....*
We will inductively choose disjoint closed intervals I,, C [0, 1] ordered cor-
respondingly, i.e. so that I,, precedes I, in [0, 1] whenever s,, < s,. For
each n, we will let a,, be an order-preserving homeomorphism from I, to
the oriented chord w(s,). We will then extend the union of all the «, to a
loop a: [0,1] — H.

4Note that the enumeration is not related to the order of S.
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In order that such a continuous extension « exist, we have to take some
precautions when we choose the I,,. For example, suppose that the chords
w(sp), w(sz2),... converge to one end, while the chords w(sy),w(ss),...
converge to another end. If S is ordered as sg < 9 < -+-|-++ < 83 < 59
(note that every monotonic subword of w converges), there may be a point
x € [0, 1] such that every interval around x contains all but finitely many
of the intervals I,. In this case, any extension of |, a,, will fail to be
continuous at x. In order to prevent this, we shall first formalize such
critical situations in terms of partitions of S, then prove that there are
only countably many of them, reserve open intervals as padding around
potentially critical points such as x, and finally choose the I,, so as to avoid
these intervals.

Consider a partition P of S into non-empty parts S~(P) and S*(P),
such that s~ < st whenever s= € S7(P) and st € S*(P). Note that
for all cofinal sequences in S~(P), finite or infinite, the final vertices of
the corresponding chords of T converge to a common point 2z~ (P) € H:
otherwise there would be a monotonic subword of w that does not converge
in |G|. Likewise, there is a point z7(P) € H such that for all coinitial
sequences in ST (P) the first vertices of the corresponding chords converge
to zT(P). We call P critical if z=(P) # z*(P).

Let us show that there are only countably many critical partitions. Sup-
pose not, and note that there are only countably many critical partitions P
for which S~(P) has a greatest element, since S is countable, and likewise
ST (P) has a least element only countably often. Hence there are uncount-
ably many P for which neither S™(P) has a greatest element nor S*(P)
has a least element. For each such P, both 2z~ (P) and 2% (P) are ends. Let
W (P) be a finite set of vertices that separates z~(P) from z*(P) in |G].
As G is countable, it contains only countably many finite vertex sets, and
hence there is a set W such that W = W (P) for uncountably many P. Pick
a sequence Py, Py, ... of critical partitions with W (P;) = W, and so that
either S™(Py) € S™(P1) € -++ or ST(Py) € ST(P) € ---. We assume
that S~ (F) € S~ (P1) € ---, the other case being analogous. To ob-
tain a contradiction, let us use this sequence to construct a non-convergent
monotonic subword of w.

Choose s, € S™(FR) and sg € ST(Py) N S™(P)) so that W separates
w(sy) from w(sy) in G this is possible, since W separates 2z~ (P,) from
2T (Py). Then for i = 1,2,... in turn choose s; € S™(P;) and s €
S*T(P) N S™(P1) so that s; > s, and W separates w(s; ) from w(s;)
in G. Then w[{sy,5sq,51,57,--.} is a monotonic subword of w that does
not converge in |G|, since W separates all the pairs w(s; ), w(s;). This
completes the proof that there are only countably many critical partitions;

enumerate them as Fy, P, . ...
We now construct a. Inductively choose disjoint, closed, non-trivial in-
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tervals I,,, J,, C [0, 1] so that I,,, precedes I, on [0, 1] whenever s,, < s,, and
so that I, precedes J, if and only if s, € S7(P,). For each n, let a,, be
an order-preserving homeomorphism from 7, to the oriented chord w(s,,).
Extend the union of all the «,, to a loop «, as follows. Consider the con-
nected components I of [0,1] \ |J,. These are again intervals, possibly
trivial; we call them connecting intervals. We shall first define a on the
boundary points a < b of each I, and then extend it continuously to map
I onto the arc a(a)Ta(b). In order to make o continuous, we will have to
make sure when we choose «(a) and «(b) that the following is satisfied for
r=aorz=>0:

For every boundary point x of a connecting interval, and
every neighbourhood U of a(x), there is an € > 0 such that (3.4)
a(y) € U whenever y € (x —e,x + ¢€) lies in an interval I,.

Suppose first that I is not an initial or final segment of [0, 1], i.e., that
the boundary points a, b of I satisfy 0 < a < b < 1. Now the sets

S~ :={s, | I, precedes I} and ST := {s,, | I precedes I}

form a partition P of S into non-empty parts. If P is critical, then P =
P,, for some m and hence J,, C I by the choice of I as a component
of [0,1] \ UI,. In particular, I is non-trivial in this case. Let a map a
to z7(P) and b to z(P). (Note that if one of these points, a say, is a
boundary point of some I,,, then «,,(a) = 2z~ (P), so a coincides with «,, on
I,,.) If P is not critical, we have 2z~ (P) = z7(P) and let &« map a and b to
this point.® In both these cases, (3.4) follows easily from the definition of
z7(P) and z*(P).

Now consider the case a = 0. If S has a least element s,, then b is a
boundary point of I,, on which « is already defined. Otherwise, S has a
coinitial sequence - - - < s, < s,,, in which case the restriction of w to this
sequence is a monotonic subword of w; this converges in |G| to some end w,
and we put a(b) = w. Note that w is independent of the choice of the
coinitial sequence of S, as otherwise there would be a monotonic subword
of w that does not converge. In both cases, our choice of a(b) satisfies (3.4).
As af(a), if a # b, we choose any vertex or end in H, satisfying (3.4) trivially.
In the case of b = 1, we proceed analogously.

For each I, we now extend o to I — a(a)Ta(b) as planned. In partic-
ular, if a(a) = a(b) we let v map all of I to that point.

By construction, « is continuous on the interior of each interval I,, and
of each connecting interval. Hence it remains to check that « is continuous
at boundary points of such intervals. (Recall that every point in [0, 1] either
lies in some I,, or in an connecting interval.) Suppose first that x is the

5In particular, if I is trivial, the image of a = b is well defined.
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boundary point of a connecting interval. Let zp < x; < --- be a sequence
of points in [0, 1] converging to z. If all but finitely many of these lie in
intervals I,,, their images under « converge to a(z) by (3.4). If not, we
may assume that each xz; lies in some connecting interval I' = [y;, z;]. At
most one of these intervals / contains infinitely many z; (because then it
contains z), whose values then converge to a(x) by the continuity of « [ I.
Disregarding these z;, we may thus assume that each I’ contains no z;
with j # .

Let us show that the sequence (o), a(z0), @(y1), a(z1),... converges
to a(x). Let a basic open neighbourhood U of a(x) be given, and let € be as
provided by (3.4). For all but finitely many ¢ we have y;, z; € (r —e,x+¢),
and we claim that a(y;), a(z;) € U for such i. By definition of y; (the case
of z; is analogous), there is a sequence of boundary points of intervals I,
that converges to y;, and we may choose this sequence in (x — ¢,z + ¢€).
By (3.4), a maps these points to vertices converging to a(y;). By our
choice of ¢, these vertices lie in U. As every sequence of vertices in U
converges to a point in U, by Lemma 2.4, we obtain «(y;) € U as desired.
We now apply Lemma 3.3 to the sequence a(yo), a(20), a(y1), a(z1),...:
By the lemma, the entire arcs a(I') = a(y;)Ta(z;) converge to a(z). In
particular, a(z;) — «o(z) as desired.

Suppose now that z is not the boundary point of a connecting inter-

val but of an interval I,, say I, = [z,y]. Then the sets S~ := {s,, |
I, precedes x} and ST := {s,, | = precedes I,,} form a partition P of S,
with s, = minS*™. If S~ = (), then x = 0 and continuity at x is trivial.

Otherwise, S~ (P) has a greatest element or P is critical. In both cases,
would be the boundary point of a connecting interval, a contradiction.
Note that o as defined here does not need to be a loop. But we can
turn it into a loop without changing its trace, by appending to it a path in
T from a(1) to «(0).
(ii) This was proved at the end of Section 3.3. O

Corollary 3.15. Let H C H' be standard subspaces of |G|. Then m(H) is
a subgroup of m(H').

Proof. Let T be a topological spanning tree of H. By Lemma 3.4, T" extends
to a topological spanning tree 7" of H'. Since every chord of T' is also a
chord of 7", Theorem 3.14 (i) implies the assertion. ]

Let us call a standard subspace H of |G| non-trivial if it contains an
end (of ) that is non-trivial in H, otherwise H is trivial. The fundamental
groups of all such spaces contain and are contained in the abstract group F,
defined in Section 3.3; recall that this group is independent of GG, as long
as |G| itself is non-trivial. Indeed:
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Corollary 3.16. For every non-trivial standard subspace H of any |G|
there are subgroup embeddings Fo, — m(H) — Fi.

Proof. Theorem 3.14 (i) says that m (H) is a subgroup of Fi,. Conversely,
let T" be a topological spanning tree of H. Since H is non-trivial, 7" has a
sequence of chords in H that converge to an end w € H of G (Lemma 3.7).
The union H' of T with all these chords is a standard subspace of |G| con-
tained in H, so m(H') < m(H) by Corollary 3.15. Since T is a topological
spanning tree of H' all whose (infinite subwords of words of) chords con-
verge in |G|, Theorem 3.14 (i) implies that 7 (H') is isomorphic to Fi,. O

Corollary 3.17. The fundamental group m (H) of a standard subspace H
of |G| is free if and only if H is trivial. In particular, m (|G|) is free if and
only if every end has a contractible neighbourhood in |G)|.

Proof. Let T be a topological spanning tree of H. If H is trivial, then T" has
only finitely many chords in H: otherwise some of them would converge to
a end, which would be non-trivial in H by Lemma 3.7. By Corollary 3.6,
H is homotopy equivalent to a finite graph whose fundamental group is the
free group on this set of chords.

Conversely, let us assume that H is non-trivial and show that m (H)
is not free. By Corollary 3.16, 7 (H) contains Fj, as a subgroup, so by
Theorem 2.13 it suffices to prove that F,, is not free. As pointed out
in [10], this was shown by Higman [35]. O

When H is non-trivial, then 7 (H) is uncountable, so any representa-
tion needs uncountably many generators. We believe that one also needs
uncountably many relations, but have no proof of this.

Theorem 3.14 provides a reasonably complete solution to our original
graph-theoretical problem, which asked for a canonical combinatorial de-
scription of the fundamental group of |G| for given G. However, it does
not answer the group-theoretical question of how interesting or varied the
groups occurring as m (|G|) or m(H) are.

We close with some evidence that this question may indeed be inter-
esting. For all we know so far, F,, might be the only abstract group ever
occuring as 7 (H) for non-trivial H. However, this is far from the truth:

Theorem 3.18. The fundamental group m (H) of a standard subspace H
of |G| is isomorphic to Fy if and only if H contains precisely one end of
G that s non-trivial in H.

For the proof of Theorem 3.18 we need a lemma about F,,. By The-
orem 4.1 of Conner and Eda [12], for any homomorphism from F,, to a
free product A x B there are finitely generated subgroups A’ of A and B’
of B such that the image of the homomorphism is contained in A’ x B or
in A B’. Hence,
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Lemma 3.19. If groups A, B are not finitely generated then there is no
epimorphism Fy, — A x B. O

Proof of Theorem 3.18. Suppose first that H contains precisely one end of
G that is non-trivial in H. Then every sequence of chords in H in which
each chord appears only finitely often converges to this end. The group
embedding 7 (H) — F from Theorem 3.14 (i) is therefore surjective.

Now suppose that 71 (H) is isomorphic to F,. Then H is non-trivial
(see the proof of Corollary 3.17), so H contains an end of G that is non-
trivial in H. It remains to show that there cannot be two such ends, w;
and wy say. Let T be a topological spanning tree of H, and pick a finite set
S of vertices separating w; from wy. Consider the graph G' = G/S obtained
from G by deleting any edges between vertices in .S and identifying all the
vertices in S to a new vertex vg. Since rays in G have a tail in G’ and vice
versa, there is an obvious bicontinuous bijection between the ends of G and
those of G', and we shall not distinguish them notationally. Let H/S and
T/S be the quotient spaces of H and T defined analogously.

Our next aim is to construct a standard subspace H' of |G'| and a
topological spanning tree 7" of H' such that the chords of 7" are precisely
the chords of T" other than those between vertices in S. Clearly 7'/S is a
path-connected subspace of H/S that contains all its vertices and ends, but
T/S can contain circles. However, all these contain vg, so by deleting some
edges at vg we can make 7'/S into a topological spanning tree 7" of H/S.
As we do not want 7" to have chords in H/S that are not chords of T, we
remove the same edges at vg also from H/S, to obtain a standard subspace
H’ of |G'| of which T is still a topological spanning tree.

It is easy to see that the chords of T” are precisely the chords of T that
do not join two vertices in S. We enumerate the chords of T" as eg, ey, . ..
so that the chords of 7" are precisely e,,e,1,... for some n € N.

The vertex vg separates the ends w; and we in G', so |G'| \ {vs} is
the disjoint union of open sets Oy, 0y with w; € O; and ws € Os. For
i =1,21et H; := {vs} U (H' N O;). Both H; are non-trivial, and hence
their fundamental groups are not finitely generated. As Hy N Hy = {vg},
Theorem 2.14 yields that m (H') ~ 7 (Hy) * m1(Ha).

We now define an epimorphism f: m(H) — m(H'); as m(H) ~ Fy
by assumption, this will induce an epimorphism F,, — m(H;) * m (H2)
contradicting Lemma 3.19. By Theorem 3.14 (i), every element a of 7 (H)
corresponds to a reduced word w, in F({€, €1,...}) all of whose mono-
tonic subwords converge in |G|. Consider the word r(w, [{n,n+1,...}).
This word corresponds to an element of 7 (H'): its monotonic subwords
are subwords of w,, so they converge in |G| and hence also in |G’|. Hence
by (3.2) and Theorem 3.14 (i) the map w, — r(w, [ {n,n+1,...}) in-
duces a homomorphism f: m(H) — m(H’). For the same reason f is
surjective: by Theorem 3.14 (i), every element of 7 (H’) corresponds to a
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reduced word w in {€,, €,.1,... } U{€,, €,1,...} all of whose monotonic
subwords converge in |G|, and hence also in |G|. Therefore w = w, for
some a € 71 (H), by Theorem 3.14 (i). O

3.5 Proof of the main lemma

We conclude our proof of Theorem 3.14 with the proof of Lemma 3.13. In
this proof we shall need another lemma:

Lemma 3.20. Let o be a path in H and let w,: S — A be its trace. Then
for every S C S there is a path T in H with the same endpoints as o and
such that w, = w, [ S’. Moreover, T can be chosen so that T [ [a,b] = o [[a, b]
for every domain [a,b] € S" of a pass of T.

Proof. Note that the first statement follows from the more general fact
that we proved in Theorem 3.14 (i): As w, is the trace of a path, all its
monotonic subwords converge in H. Hence also all monotonic subwords
of w, ['S’ converge in H, and thus it is the trace of a path 7. To ensure
that 7 coincides with ¢ on every domain of a pass of 7, we will construct 7
explicitely.

For every = € [0,1] that lies in an interval in S’ we define 7(z) :=
o(x). Further, we put 7(0) := ¢(0) and 7(1) := o(1). Then for every
x € [0, 1] with 7(x) still undefined there is a unique maximal interval [a, b]
that contains = and is disjoint from (s,t) for every [s,t] € S’. It is easy to
see that o(a) and o(b) are vertices or ends, and hence lie in T'. If a # b, we
call [a, b] a non-traversing interval and define 7 on [a, b] as a path from o(a)
to o(b) whose image is precisely the arc in T between these two points. If
a = b, then we let 7(a) := o(a). Clearly w, = w, [ S" and 7 [[a,b] = o [[a, ]
for each [a, b] € S'; it remains to show that 7 continuous.

Continuity is clear at inner points of intervals in S’ or of non-traversing
intervals, so let = be any other point. By definition, 7(z) = o(x). It is easy
to see that o(x) is a vertex or an end, so 7(z) € T'. Continuity of 7 at x is
now follows easily: Given a neighbourhood U of 7(z), Lemma 3.2 gives us
an arc-connected neighbourhood U’ C U. As ¢ is continuous, there is an
open interval I around = which ¢ maps to U’. Now also 7(I) C U’ unless
I meets non-traversing intervals that are not contained in /. In this case
we can use the continuity of 7 on those intervals to find an interval I’ C [
which 7 maps to U’. (Note that there are at most two such intervals.) [

We are now ready for the proof of Lemma 3.13. The proof that a ~ 3
implies r(w,) = r(wg) was already shown for the case that o and § are
loops. The general case follows, since ¢ and 7 can be made into loops by
appending a path in 7T joining their endpoints, which does not change their
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traces. It remains to prove the converse: we assume that r(w,) = r(w,),
and show that o ~ 7.

Our aim is to construct a homotopy F' = (f;)icpo,] of paths f; in H with
fo =0 and f; = 7. We first assume that 7 does not traverse any chords;
the general statement will then follow from this case. Our proof of this case
will consist of the following four parts. We begin with some simplifications
of the problem, straightening o and 7 to homotopic but less complicated
paths. We then pair up the passes of o through chords, with a view to
cancel such pairs (€, €) by a local homotopy f; — fi that retracts a small
segment of f; running through e and back through e without traversing
any other chords. These pairs of passes have to be nested in the right
way, and we will have to determine a (time) order in which to cancel them.
Defining the pairing and the ordering of the pairs will be the second part
of the proof. The ordering will have to list inner pairs before outer pairs,
but among all the linear orders doing this we have to find a suitable one:
since the partial order of the nestings of pairs can have limits, so will the
linear order of times ¢t at which to cancel the pairs. At these limits we may
encounter discontinuities in our homotopy. But we shall be able to choose
the order of cancellations so that this happens only countably often. In
the third step we handle with those discontinuities and smooth them out
by inserting further local homotopies f; — fy at those countably many
times t. In the last part of the proof we finally show that the homotopy F
thus defined is indeed continuous.

3.5.1 Straightening ¢ and 7

Although 7 does not, by assumption, traverse chords, its image might still
contain inner points of chords. Let us call a path « in H straight if it does
not have this property, i.e. if a(z) € T for every x not contained in the
domain of a pass. Applying Lemma 3.1 to local homotopies retracting any
segments of « visiting a chord e = uv to a constant map with image u or v,
we can make any path in H straight without touching its passes:

Every path o in H is homotopic in Im « to a straight path o/

that has the same passes as . (3.5)

By ‘having the same passes’ we mean not only that «, o’ have the same
trace but that for every interval [a,b] C [0, 1] either both segments « [ [a, b]
and o [ [a,b] are a pass of their respective path or neither is, and if both
are then « [[a,b] = o/ [a, b].

By (3.5), o and 7 are homotopic to straight paths ¢’ and 7’ such that o’
has the same passes as ¢ while 7/ has the same passes as 7 (namely, none).
In particular, wy = w, and wy. = w, = 0, so

r(wyr) = r(wy) = r(w,) = r(wy)
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by assumption. We may therefore assume that ¢ and 7 are straight, oth-
erwise replace them by ¢’ and 7’.

Let us start with the simplest case: assume that o also traverses no
chord. Then ¢ and 7 are homotopic. Indeed:

Let « and 3 be paths in T with identical endpoints x,y €
V(G)UQ(G). Then there is a homotopy between o and 3 in
ImaUlIm G. If B is constant, this homotopy can be chosen
time-injective.

(3.6)

To prove (3.6), we construct homotopies of o and 3 to an z—y path in xTy.
We shall assemble these two homotopies from homotopies between the seg-
ments 7: [a,b] — T of a or (3 that are maximal with v((a,b)) C T\ 2Ty,
and constant maps, defined as follows. Since T\ xT'y is open in T', the maxi-
mality of [a,b] implies that y(a),v(b) € zTy. Let us show that y(a) = v(b).
If not, then these two points are joined by two arcs that have disjoint inte-
riors: one in Ty, and another in Im y (Lemma 2.1). These two arcs would
form a circle in T', which does not exist since T' is a topological spanning
tree of H. By Lemma 3.5, there is a time-injective homotopy in Im v from
7 to the constant map [a,b] — {y(a)} (= {7(b)}). By Lemma 3.1 we can
combine all these homotopies, one for every 7, and obtain time-injective
homotopies (in Im o and Im ) from « and § to z—y paths in 2Ty. If § is
constant (with image x = y), the first of these is the desired time-injective
homotopy from « to #. Otherwise we note that since zTy ~ [0, 1], the
latter two paths are homotopic in 27Ty, and we can combine our three
homotopies to the desired homotopy between o and [.

Using Lemma 3.1 to apply (3.6) to segments between passes, we obtain
the following generalization:

If paths o and B in H with identical endpoints have the same
passes, then there is a homotopy between them in Im a U (3.7)

Im 3.

Let us assume now that o traverses chords. Then [0, 1] is the disjoint
union of the following intervals: the interiors of domains of passes, and the
components of the rest of [0, 1]. Every such component is a closed interval.
By (3.7), we may assume that

If (a,b) C [0,1] is maximal with the property that it avoids
all domains of passes of o, then o maps |a,b] onto the
arc o(a)To(b). In particular, if o(a) = o(b) then o is con-
stant on [a,b).

(3.8)

This completes part one of the proof.
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3.5.2 Ordering pairs of passes

Our next step towards the construction of the desired homotopy F' between
o and 7 will base upon the fact that w, reduces to w, = (. So let us consider
a reduction R of w, to the empty word. By definition, R is a totally ordered
set of disjoint pairs of positions of w, such that the elements of each p € R
are adjacent in S\ |J{¢ € R | ¢ < p} and are mapped by w, to inverse
letters €;,e;. The positions of w,, in this case, are the domains of the
passes of 0. Let us write

P:={(mp)|3Is,;t)eR: (r=0]sand p=0c]t)}

for the set of pairs of passes corresponding to R, where the order of (s,t)
is that from S (so the interval s precedes the interval ¢ in [0, 1]). Note that
‘P is countable, because ¢ has only countably many passes. Our homotopy
F will remove the passes of ¢ in pairs as specified by P, one at a time.
The order in which this is done will not necessarily be the ordering which
R induces on P, so let us for now think of P as an unordered set.

Let us fix some more notation for later use. Let o be a path in H, and
let p = (m, p) be a pair of passes of a through the same chord e =: e(p), but
in opposite directions.® Let [a,a~] be the domain of 7 and [b~, ] that of p,
and assume that a < a~ < b~ < b. (Note that this assumption is satisfied
by every element of P.) Then m(a) = p(b) =: z and w(a™) = p(b~) =: 2~
are the two vertices of e. If a[[a™,b”] traverses no chord, and if 5 is the
path obtained from « by replacing its segment « [ [a,b] with the constant
map [a,b] — {z}, we say that 3 is obtained from « by cancelling the pair p
of passes. Since a, a~, b, b~, z, and z~ depend only on the pair p = (m, p)
but not on the rest of o, we denote them by a(p), a=(p), b(p), b= (p), z(p),
and z~(p). Thus:

For all p € P, we have a(a(p)) = a(b(p)) = z2(p) and
o(a=(p)) = o(b=(p)) = 2 (p). These points are vertices (3.9)
and hence lie in T.

We now wish to determine the order in which our homotopy F' will
cancel the pairs in P. This order will have to satisfy an obvious neces-
sary condition imposed by the relative position of the passes in these pairs.
Indeed, our definition of P implies that, given two pairs p,p’ € P, the inter-
vals (a(p),b(p)) and (a(p'),b(p’)) are either disjoint or nested; accordingly,
we call p and p’ parallel or nested. If p and p’ are nested and [a(p), b(p)]
contains [a(p’), b(p')], we say that p surrounds p’ and write p > p’. This is

SWhile p will always be an element of P, the path a will in general not be o but a
path which has less passes than o, i.e. every pass of a will be a pass of o but not vice
versa.
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clearly a partial ordering. In fact, < is the inverse of a tree order:

Whenever a pair is surrounded by two other pairs, these

latter pairs are nested. (3.10)

This partial ordering < on P will have to be respected by any order in
which our homotopy F can cancel the pairs in P: if p surrounds p’, then
p’ has to be cancelled before p.

Our next aim, therefore, is to extend < to a total ordering < on P.
We may think of < informally as the ‘order in which F will cancel the
pairs’, but should remember that the order type of < may be arbitrarily
complicated for a countable linear ordering. Note that, in order for our
desired homotopy F'(x,t) to be continuous, it will not be enough to take
as = the linear extension of < defined by the reduction R: While the
given order on R has to respect <, its relations between pairs that are
incomparable in < can be chosen almost arbitrarily. In order to be able to
handle the discontinuities in Section 3.5.3 we shall need a more structured
ordering.

To define =<, we start by enumerating the elements of P arbitrarily.
Then, recursively for i = 0,1,..., let M; be a maximal chain in P\ (M, U
...UM;_1) containing the first pair from this set in the enumeration of P.
(If there is no pair left we terminate the recursion, so all the chains M; are
non-empty.) Given two pairs p,p’ (not necessarily distinct), let p < p’ if
either

e p, p' lie in the same M; and p < p'; or
e pe Mjand p' € M; with i < j.

Thus, < puts later chains below earlier chains. When p < p’ we say that
p precedes p', and p’ succeeds p. By (3.10) and the maximality of the
chains M;, each of the sets M™ := |J_, M, is closed upwards in <: if
p' > p e M" then also p’ € M™. In words:

For all i < j, no pair in M; surrounds a pair in M,;. (3.11)

By definition of <, this implies that < is indeed a linear extension of <, i.e.
that p < p’ whenever p < p’: every pair precedes any pair that surrounds
it.

Having partitioned the set P of passes of ¢ into pairs, and having chosen
an order < in which we want our homotopy F' to cancel them, we next
wish to map our pairs p to time intervals [s(p),¢(p)] C [0,1] in which F
can cancel p. These intervals will reflect < in that

t(p) < s(p') whenever p < p'; (3.12)
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in particular, they will be disjoint for different p. While ¢ runs through
[s(p), t(p)}, the path f; will change only on [a(p), b(p)}, so as to cancel p.

In order to state precisely what we require, we need another definition.
Let a be a topological path in H, with a(a) = a(b) =: z for some a < b, and
let 5 be the path obtained from « by replacing « | [a, b] with the constant
map [a,b] — {z}. We say that a homotopy from « to [ retracts o | [a,b]
to z if it is relative to [0, a] U [b, 1], time-injective, and maps [a, b] x [0, 1]
to a([a,b]). If a([a,b]) C X for a subspace X of H, we may also say that
this retraction is performed in X.

Our paths f; will satisfy the following assertions:

The passes of f; are also passes of o; thus, f; [ |c,d] = o |
[c,d] for every t € [0,1] and every domain [c,d] of a pass of  (3.13)
fe.

For every p € P, the passes of fsp) are exactly those passes
of o that are contained in pairs p' = p; in particular, p is a (3.14)

pair of passes of fsp)-

For every p € P, the path fyp) is obtained from fyy)
by cancelling the pair p. This is achieved by a homotopy

(fo)ieisp) ) that first retracts fyp) | [a‘(p), b~ (p)} to z~(p) (3.15)
in T and then retracts the resulting path f, | [a(p),b(p)]

to z(p) in e(p).

The first part of the homotopy in (3.15) will be obtained by apply-
ing (3.6), with a = fy) | [a”(p),b~(p)] and B: [a=(p),b=(p)] — {z~(p)}-
This will turn f,,) into a path f; mapping [a(p), b(p)] onto the chord e(p),
to which the second part of the homotopy is then applied.

Let us note for later use:

The path fi) maps [a(p),b(p)] to the vertex z(p). (3.16)

With this preview of how the linear order < of cancellations of passes
will be implemented by F', we complete the second part of our proof.

3.5.3 Smoothing out the discontinuities

In the third part of the proof, we now turn to the reason why we have not
chosen the intervals [s(p),t(p)] explicitly yet. This is because observing
the rules just outlined will not suffice to make our homotopy F' continuous.
To see this, consider a bipartition » = (P~, P™) of P into non-empty
sets P, P™ such that p~ < p™ whenever p~ € P~ and pt € P". Given
1 € N, let
Pr:=P'NM;, and P :=P NM,.
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Since P~ is non-empty, P™ meets only finitely many M;: For if ¢ € P~ lies
in M, say, then by the definition of <, P* cannot meet chains M; with
i > k. Denote the largest ¢ with P;* # () by i(r), and call it the index of r.
Then P;(FT) is an initial segment of PT. Since the elements of M; are nested,
< coincides on PZ.J(FT) with <.

Let us call r critical if PT has no least element (with respect to <).
For critical partitions r, we define

@™ b= ) [a(p) b(p)].

+
pGPim

Since P;(rr) is countable, it has an (infinite) coinitial sequence pj > pf > ---.
Then lim, a(p;f) = a™. As o is continuous, the vertices z(p) = o (a(p;))
converge in H to o(at). As only finitely many of the vertices z(p,') can

coincide by Lemma 2.9 and the fact that G is locally finite, o(a™) must be
an end, which we denote by

z(r) € QG).

Call a point z € [a™,b"] critical (with respect to r) if z € (a(q),b(q))
also for some ¢ € P~. Then

Py i={qe P |z € (a(g),b(q))} #0

is a <-chain, which may or may not have a greatest element. Put

(az,b,) = | (alg),b(q)).

qEP,

Every ¢ € P, is nested with every p € P;(FT), since x lies in both (a(q), b(q))
and (a(p), b(p)). As ¢ < p, this means that ¢ < p, so

la;,b,] C [a™,b"].

T rx
Let us give an example of such a path o.

Example 3.21. Suppose that w is a non-trivial end of H, and let e,,, €,,,, . . .
be a sequence of chords of T' that converges to w. Now let o be a loop
in H based at a vertex v that first traverses €,,, €,,,... and reaches
w at time 1/3. On [2/3,1], we let o go the same way backwards, i.e.
o(z) == o(l —xz) for x € [2/3,1]. Thus in [2/3,1], ¢ returns from w
to v, traversing ..., €,,, €,,. Between time 1/3 and 2/3, we let it tra-
VETSe €4, €nys Enys Eng, With domains of these passes [0.35,0.36], [0.4,0.41],
[0.5,0.51], and [0.64,0.65], say. In P, the unique pass through €,, forms a
pair p; with the unique pass through e,,. Then in the order <, the pairs
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po and p; are smaller than alle the other pairs. Now consider the partition
r=(P~,P%) of P with P~ = {pg,p1}. Then [a™,b%] =[1/3,2/3], and the
points x € (0.35,0.65) are critical with respect to r. For € (0.4,0.51)
we have P, = {po, p1}, for the other z in (0.35,0.65) we have P, = {po},
but for all z € (0.35,0.65) we have (a,,b,) = (0.35,0.65). The points in

)T

(1/3,2/3) \ (0.35,0.65) are not critical with respect to r.

To see why such r and x are ‘critical’ for the construction of our ho-
motopy F', assume now that F' has been chosen so as to satisfy (3.12)-
(3.15), but apart from this arbitrarily. Since p = pf = -+ we then have
td >t7 > -+, where t,7 := ¢(p,") is the time at which F has just cancelled
the pair p;. Let

t*:=lim, t;7 = inf, t;.
For every = € [a(p)),b(p})], statement (3.16) yields f+(z) = z(p,) =

o(a(pl)). Every z € [at,b"] satisfies this for all n, so for such z the
continuity of F' and o imply

Jir (@) = limy, fy+ () = lim, o (a(p,)) = o(a®) = 2(r). (3.17)

Now assume that x is critical. Since P, is a countable <-chain, it contains
a (finite or infinite) cofinal sequence ¢y < ¢1 < ---. Then lim, a(g,) = a, .
Let

t, = lim, t(q,) = sup,, t(q,).

Asg<pforallge P~ and p € PT, we have t, <t by (3.12). As earlier,
the fact that = € [a(gs), b(g,)] for all n implies

fi (2) = lim, figgy (@) %2 lim, o (a(gn)) = o(a7) =: 2. (3.18)

If P has a greatest element g, then z, will be the vertex z(g,); if not,
it will be an end. But this end need not be z(r). And if z, # z(r), we shall
have a problem: to avoid a contradiction between (3.17) and (3.18), we will
have to ensure that ¢, # t* (which does not follow from the assumptions
we have made about F so far), and define F'(z,t) so as to move z, to z(r) in
the time interval [¢t;,¢]. Let us call our critical partition bad if z, # z(r)
for some critical point x, which we then also call bad.

In general, P may have uncountably many critical partitions, and a
critical partition can have bad points x with infinitely many different z,.
It will be crucial for our construction of F', therefore, to prove that there
can be only countably many bad partitions. For each of these, we shall be
able to deal with all its bad points simultaneously.

For our proof that there are only countably many bad partitions, let us
show first that

P,y # 0 for every bad partition r = (P~, P"), indeed for

3.19
every critical partition that has a critical point. ( )
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To prove (3.19) let @ = i(r), let x be a critical point for r, and consider
any ¢ € P . If ¢ € M; we are done. If not, then ¢ € M, for some j > 1,
because there are p € P;t with ¢ < p. By the maximality of M;, this means
that there is a p* € M; with p % ¢. Since ¢ < p for all p € P, (as z lies in
both (a(p),b(p)) and (a(q),b(q))), it follows that p* lies in P, = M; \ P,
which thus is non-empty, as claimed.

By (3.19), the nested union

PeFic)

is not empty. As ¢ < pfor all ¢ € P, and p € P;', we have [a~,b"] C
l[a™, bT]:

at <a  and b <bT.

Assuming that r is bad, let us show that at least one of these inequalities
is strict. Pick a bad point z € [aT,b%]. Assume first that x € (a=,b7).
Then z lies in (a(p), b(p)) for some, and hence for all large enough, p € Py
But then all these p lie in P, , so (a~,b7) C (a,,b,) and hence a, < a™.
(In fact, we have equality, but the above inequation will be sufficient.)
Recall that a™ < a_. Since z is a bad point, we have o(a, ) # o(at) and
therefore a; # a™. Hence a™ < a; < a~, as desired.

On the other hand if z ¢ (a,b7), then z € [aT,a”|U[b7,b7]. We
assume that x € [aT,a”] and show a™ < a7; the case of z € [b,b"] is
analogous, showing b~ < b". Pick ¢ € P;. Then z € (a(q),b(q)) C
(a(p),b(p)) for every p € PZE), so at < a(q) < z < a~ by the definition
of a™.

We have thus shown that, for every bad partition r, the set
D(r):=(a",a")U(b~,b")

is non-empty. We next show that these sets are disjoint for distinct r =
(P~,P*) and # = (P~, PT) with the same index i. As r # 7, we may
assume that there is a pair p € P~NPT. Then p € M;, since M; C P NP~
for every j > i, while M; C P* N P* for every j < i. But then

a” <alp)<at <b"<blp)<b”

with the obvious notation. Since D(r)N[a~,b"] = @ while D(7) C (a*,b"),
we have D(r) N D(7) = () as claimed.

As there are only countably many partition indices ¢, and for every bad
partition r with index ¢ the set D(r) contains a rational, this completes our
proof that there are only countably many bad partitions.
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Denote the set of all critical and all bad partitions by R and R’, re-
spectively. Given r € R, write a(r) and b(r) for the points a™,b" € [0, 1]
defined above. Taking limits in (3.9), we obtain:

For every r € R we have o(a(r)) = o(b(r)) (= z(r) €

G) C T). (3.20)

Our plan is to begin the construction of F' by extending our linear
ordering < to PUR. We shall then choose disjoint time intervals [s(g), t(q)]
for all ¢ € PUR’, extending (3.12) to PUR'. For every r = (P~, P*) € R,
the choices made for P will define times

th:=inf{t(p) | pe PT} and ¢t :=sup{t(p)|pe P }.

In order to satisfy (3.17), we shall have to have f,+ map all of [a(r), b(r)]
to {z(r)}. For r € R\ R’, this will be satisfied automatically. For bad r,
this will require the insertion of a local homotopy fs») — fir) analogous
to (3.15), where s(r) and ¢(r) are chosen so that

t- <s(r)<t(r) <tf.

To extend =< from P to PUR, we simply place all the partitions r € R
at their natural positions in the chains M;,). Indeed, let us extend our
partial ordering < on P to P UR by letting ¢ < ¢’ whenever [a(q), b(q)} C

la(¢'),b(¢")]. Then

is easily seen to be a <-chain. We now define < on PUR as we did on P:
given q, ¢, we put ¢ < ¢ if either

e ¢, ¢ lie in the same M; and ¢ < ¢; or
L4 qEM]andq’eM,W1thz<j

Let us note a couple of facts about this ordering. The fact that pairs
are either nested or disjoint extends at once:

Given q,q € PUR with q < ¢, either ¢ < ¢’ or the intervals

(a(q),b(q)) and (a(q'),b(q’)) are disjoint. (3.21)
The following statements can be satisfied by suitable p € Pizr), which we
recall is non-empty if r has a critical point (see (3.19)):

For every r € R that has a critical point, in particular for

every r € R, there is a pair p € P such that p < r. Given (3.22)

any ' € R with ' < r, this p can be chosen so that r' <
p=r.

48



It is not difficult to describe < directly, without reference to <:

A partition (P~, PT) € R precedes all pairs in PT and suc-
ceeds all pairs in P~. Two partitions r = (P~,P*) and  (3.23)
7= (P, P%) satisfy r X 7 if and only if PT C P*.

Having defined <, we can now choose disjoint intervals [s(q), t(¢)] for
all g € PUTR/, to satisfy

t(q) < s(¢') whenever ¢ < ¢ . (3.24)

This can be done inductively, since P U R’ is countable.
We are finally ready to define our homotopy F' = (f;)icpo1]. We first
define f; for all ¢ € [0, 1] outside the set

C:= J (s(a),t(a)).

qEPUR!

Given such t € [0,1] \ C, let
Q" ={qgePUR[t(g) <t}

be set of all ¢ whose time intervals took place before time t. For every
x € [0, 1], the set

Qy={q€ Q" |z € (alg),blq)) }
of all such ¢ affecting = is a <-chain, by (3.21). If Q% # 0, we set
(a, 0%) == | (a(q).b(q))
q€Q%

and define fi(z) := o(al) = o(bL) € T. (Recall (3.9) and (3.20).) If Q% = 0,
we call z unchanged at time t, define f;(x) := o(z), and put a’, ;== z =: b’
Thus,

for allt ¢ C and all xz, we have fi(x) = o(al) = o(b). (3.25)

We need to show that these functions f; are continuous. This will follow
from the fact that ¢ is continous, once we have shown the following:

For all t ¢ C and all x with Q. # 0, the function f; is
constant on (aL,b.) with value f,(x) € T.

$7CC

(3.26)

To prove (3.26), pick y € (al,b.). We show that Q # 0 and (al,b) =
(a',b'); then fi(y) = fi(z) € T by deﬁmtlon of f;. By the choice of y,

x?m

there exists ¢ € Q' such that (a(q )) contains both x and ¥, giving
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q € QLNQ;. As QL is a <-chain, we have ¢ < ¢’ for all large enough ¢’ € Q.
Since y € (a(q),b(q)) C (a(q’),b(q/)) implies ¢ € Q! all large enough
¢ € Q! liein Q! giving (af,,b.,) C (al,b}). Likewise, (al,bl) C (al,b,) and

hence (a},,b,) = (a;,b,). This completes the proof of (3.26), and with it

the proof that the f; defined so far are continuous.
We have just shown that (af,b;) = (af,b}) for all x and y with y €

T 7T

(a',b'). Therefore, for any x,y the intervals (a’,b’) and (a!,b!) are either

T 7T x) Cx Yy
identical or disjoint: if (al,b.) meets (al,b), in a point z say, we have
(al,b,) = (al,b.) = (a,b;). An immediate consequence of this is the
following;:

For allt € [0,1]\ C and z € [0,1], the points a', and b, are

2
unchanged at time t. (3.27)

It remains to define f; for t € (s(q), t(q)) with ¢ € PUTR’. Since these
intervals are disjoint, f,) and fy) are already defined. For each ¢, our aim
is to define the functions f; with ¢ € (s(¢),t(¢)) as a homotopy between
fs(q and fyg)- When g € R’, this homotopy should retract fyq) | [a(q), b(q)]
to z(q) in T by a direct application of (3.6). When ¢ € P, our plan is to
follow (3.15) and achieve the same result in two stages. We first wish to
use (3.6) to retract fyq) | [a™(q),b7(¢)] to 27(¢) in T. This should turn
fs@) | [a(q), b(q)} into a path consisting of the two passes of ¢ through e(q)
at the beginning and end, and a constant path with image 2~ (p) in the
middle. We then wish to retract this path to z(q) in e(q).

In order to apply (3.6) and implement (3.15) as just outlined, we have
to verify the following prerequisites:

e that fy, maps both a(q) and b(q) to 2(q);

e that fy) maps all of [a(q),b(q)] to z(g);

e if g € P: that fy() agrees with o on D(q) := (a(q),a™(q))U(b~(q),b(q))
and maps [a_(q), b‘(q)} to T

o if g € R': that fy, maps [a(q),b(q)} to T.

Let us prove the first statement, as well as the second statement for
a(q) and b(q). At times s(q) and (q), both a(q) and b(q) were unchanged,
because they can lie in an interval (a(q’),b(q’ )) only when ¢ < ¢ and
hence t(q) < t(¢'). Therefore fyq) and fyq both map a(q) and b(q) to
o(a(g)) = o(b(q)) = 2(q). (Recall (3.9) and (3.20).)

Next, we prove the second statment for z € (a(q), b(q)). At time t(q),

none of these x was unchanged, since q € Qi(q) for all these z. In fact, ¢ is
the greatest element of each of the <-chains Q?. Therefore (ai'?,b?) =

(a(g),b(q)), and hence fyq(z) = o(a(q)) = z(g) by (3.25).
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To prove the first part of the third statement note that, if ¢ € P, all
the points in D(q) are still unchanged at time s(g). Hence fy() agrees with
o on D(q).

To prove the rest of the third and the fourth statement, consider any
point z in [a(q),b(qﬂ, but not in D(q) if ¢ € P. We have to show that
fs(@(x) € T. This follows from (3.26) if  is not unchanged at time s(q),
so assume that it is. Then fy4 (x) = o(x). If this point is not in 7', then x
is an inner point of the domain of a pass contained in some p < q. If p=g¢
this means that x € D(q), contradicting our choice of x. Hence p < ¢, and
t(p) < s(q) by (3.24). Thus p € Q59 £ @, contradicting our assumption
that x was unchanged at time s(q).

Having checked the prerequisites, we may now apply (3.6) as outlined
carlier to choose f; for all ¢ € (s(q),t(q)) as follows:

For every r € R', the paths (fi)icis(r) () form a homotopy

retracting fyr) f[a(r),b(r)} to 2(r). (3.28)

For every p € P, the paths (ft)te[s(p p} f07"m a homotopy
that first retracts fyp) 1 [a™(p),b~(p)] to 2~ (p) in T and then  (3.29)
retracts the resultmg path on [ (p ) b(p)} to z(p) in e(p).

For our later proof that F'is continuous, let us note an important prop-
erty of the homotopies in (3.28) and (3.29). Let U be a neighbourhood in
|G| of an end w; then U N H is a neighbourhood of w in H. By Lemma 3.3
there is a basic open neighbourhood U C U of w in |G| (i.e., U = C(S,w)
for some finite set S of vertices) such that for any z,y € UNT, the arc
2Ty is contained in U (and thus in UNH). Let S’ be the set of neighbours
of S in C(S,w), note that these are finitely many. Call U := C(S',w) a
core of U around w. If U’ contains a vertex z(p), then U contains its neigh-
bour 2z~ (p) and the edge e(p). The next statement therefore follows from
the fact that the homotopies used in (3.28) and (3.29) either run inside
e(p) or else are time-injective (by our definition of retracting).

Let g € PNR and z € (a(q),b(q)), and let U' C |G| be a
core of a neighbourhood U around an end. If both fyq)(z) (3.30)
and fyq(x) lie in U', then fi(xz) € U for all t € [s(q),t(q)].
The definition of F'is now complete. Note finally that
Im F = Im 0. (3.31)

This completes part three of our proof.
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3.5.4 The continuity proof

It remains to show that the family (f;)icjo,1) of paths in H is a homotopy
between o and 7. Since Q° = (), we have f; = 0. Rather than proving
that fi; = 7, let us show that Im f; C T'; then (3.6) and our assumption
that Im7 C T imply f; ~ 7, which is good enough. For a proof that
Im f; C T consider any = € [0,1]. If x is not unchanged at time ¢ = 1,
then fi(z) € T by (3.26). If it is, then fi(z) = o(x). Since o is straight,
we have fi(z) € T unless z lies in the interior of the domain of a pass of o.
But this pass is contained in some pair p € Q!, so x was not unchanged at
time 1, contradiction.

We now prove that F' is continuous. Let x,t € [0, 1] be given, and let
U be any neighbourhood of F(z,t) in |G|; then U N H is a neighbourhood
of F(z,t) in H. If F(x,t) is an end, let U’ be a core of U around that
end. We shall find an € > 0 such that F((z —e,z+¢),(t —¢,t+¢)) C U,
proceeding in two steps.

1. We find an ¢ for which F((z — e,z +¢),(t —¢,t]) C U.

For every ¢ > 0, let
Q.= {g € PUR'| (t =10 (s(g). t(g)) # 0}.

If Q. = () for some ¢, then for all ¢ € (t — ,t] we have Q" = Q'
and hence fy = f;. As f; is continuous, there is an 9 < € such that
F((z —eo,z +e0), (t —€0,1]) C U.

If Q). is never empty but finite for some ¢, there exists ¢ € PUR' such
that ¢ € (s(q),t(q)]. Since (f;)ie[s(a)i(q) Was defined as a homotopy,
in (3.28) or (3.29), we have F((z — 9,2 + &), (t — €0,t]) C U for
small enough ¢y < €.

We may thus assume that (). is infinite for every ¢ > 0, so it has no
maximal element with respect to <. By the definition of <, we can
choose € small enough that all pairs in )., lie in the same chain M;.
Then ¢ = i(r) for all partitions r in Q.,, e.g. by (3.19). Hence @, C
M;, so the intervals (a(q), b(q)) with ¢ € Q., are nested; put

(aa b) = U (G(Q>7b(Q))'

queo

By (3.9) and (3.20) every point a(q) with g € @, is mapped by o to
a vertex or an end, and by Lemma 2.9 and the fact that G is locally
finite every vertex can appear only finitely often as the image of such
an a(q). Thus, o(a) is the limit of an infinite sequence of ends or
distinct vertices o(a(q)) = z(g), so o(a) must be an end.
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Our assumption that )., has no maximal element also implies that
t ¢ C,so F(z,t) = fi(x) = o(al) by (3.25). Moreover, there are
points ¢’ ¢ C' arbitrarily close below t. If F(z,t) is an end, it will
suffice to find an € < gy such that t —e ¢ C and F(a/,t") € U’ for all
¥ € (x—e,x+e)andall ' € [t —e,t]\ C: then for all such 2’ and
all t” € (t — e,t) N C we shall have F(2/,t") € U by (3.30).

We distinguish two cases: that z lies in (a, b) or not.

(i)

Suppose that = € (a,b). Then a, = a, so (3.25) yields F(x,t) =
o(a), which we know is an end. Since o is continuous, there is a
d > 0 such that o maps [a,a + J) to U’. Choose €1 < ¢ so that
for all ¢ € Q., we have a(q) € [a,a+ ) and (x — e,z +¢1) C
(a(q),b(q))-

Pick g € Q¢,. Choose g5 < €1 small enough that ¢t — g5 > t(qo),
and so that ¢ — ey ¢ C. Then for all 2’ € (x — 9,2 + £9)
and t' € [t — e5,1] \ C we have gy € Q% # (), and (3.25) yields
F(2',t') = o(a’,). These points lie in U, since a < a’, < a(q) <
a+9.

Suppose now that = ¢ (a,b), say * < a. Note that for all
2" ¢ (a,b) and t' € (t — eo,1] \ C we have Q, = Q%,, and hence
fe(a) = fula).

If x = a, pick g € Q. Then fi4)(x) = fi(x) € U'. (Note
that as a = aj, for all y € (a,b), we have fi(z) = fi(a) = o(a)
by (3.27), hence fi(z) is an end, so U’ is defined.) As fyq,) is
continuous, there is an e; <t —t(qp) (< o) such that t —e; ¢ C
and fig) ((x — 1,2+ 1)) C U'. We show that F(a/,¢') € U’

forall 2’ € (x —ey,x+¢e1) and t/ € [t —eq,t]\C. If ng, = Q;(/qo),

then fy(z') = fiq (') € U'. Otherwise QY 2 Qi(,qo) (since
t(qo) < t'), and hence 2’ € (a,b). Then

x—81<a§ag/<x’<x+£1.

As a!, is unchanged at time #' by (3.27) and hence also at time
t(go) < t', we have fu(2') = o(a’)) = fyg)(at) by (3.25). his
last point lies in U’, by the above inequality and the choice of ¢;.
Thus, F(2',t") € U'.

If x < a, then, as f; is continuous, there is an €; < gy such that
r+e <aand F(2',t) € U for all 2’ € (x — 1,2+ ;). Choose
g1 so that t —e; ¢ C. And as noted earlier, F'(2/,t') = F(a/,t)
for every ¢ € [t — e1,t] \ C and all these 2, so F(2/,t') € U.
On the other hand for ¢’ € (t —e1,¢) N C, say t' € (s(q),t(q))
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with ¢ € Q.,, we have fy(2') = fyq)(2’) for these same 2, be-
cause ' ¢ (a,b) 2 (a(q),b(g)) and hence fy(2’) remained con-
stant throughout the homotopy defined in (3.28) or (3.29). Since
t(q) ¢ C, we are thus home by the case of ¢’ € [t —eq,t] \ C.

2. We find an € for which F((z — ¢,z +¢),[t,t +¢)) CU.

For every ¢ > 0, let

Q. ={qePUR'|[t,t+¢)N (s(q),t(q)) #0}.

As in the first step, we may assume that (). is infinite for every e.
Thus Q. # (), but Q. has no least element in <. Then ¢ ¢ C, so the
sets

Pt:={peP|s(p)>t} and P :={peP|tlp) <t}

partition P. From (3.22) we know that there are pairs p with s(p)
arbitrarily close after ¢, thus P™ meets every .. So P* has no least
element in <, and

t=inf{t(p)|pe€ P"}. (3.32)

Let us write r := (P~, PT). But note that P~ may be empty, in which
case r ¢ R and every (). might meet infinitely many chains M;.

If F(x,t)is an end, then, as in Step 1, it will suffice to find an € < g
such that t + ¢ ¢ C and F(2/,t') € U’ for all 2/ € (x — e,z + ¢) and
allt' e [t,t+¢]\ C.

We distinguish two cases.

(i) Our first case is that for every e there is a ¢ € Q. with z €
(a(q),b(q)). Depending on whether P~ is empty or not, we
shall in two different ways define an end z(r) and an interval
[a(r),b(r)] containing x, and in each case prove that

fi maps (a(r),b(r)) to z(r). (3.33)

We shall then use (3.33) to find the € desired in Step 2.

We first assume that P~ # (). Then r is a critical partition, so
z(r) is defined and is an end. Every Q. NP meets only finitely
many chains M;, and for the largest of these ¢ we have ()., C M,
for some small enough €. Then the intervals [a(q),b(¢)] with
q € @, are nested, and

[a(r), b(r)] = [ [a(),b(@)] = () [alg),b(q)]

peP; 7€Q<
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by definition of a(r) and b(r), and (3.22). By our assumption
for Case 2(i), we have = € [a(r), b(r)].

If r is bad, then r lies in R’ and precedes all pairs in P,
By (3.24) and (3.32) we have ¢(r) < t, so r € Q'. In fact,
r is the greatest element of Q!. For r succeeds every p € Q' NP,
since these p lie in P~. But then r also succeeds any 7’ € Q'NR’:
otherwise 7 < p < 1/ for some p € PT by (3.22), while ¢(p) <
t(r') <t (by (3.24) and r' € Q') implies that p € P~. Now as
r is the greatest element of !, it is also the greatest element
of Ql, for every y € (a(r),b(r)), giving a}, = a(r). Ast ¢ C,
(3.25) yields

fily) = o(at) = o(a(r)) =" 2(r),

completing the proof of (3.33) for the case that P~ # () and r is
bad.

Let us suppose now that r is not bad (so r € R\ R’), and
once more show that fy(y) = z(r) for every y € (a(r),b(r)). As
before, we have f,(y) = o(ay) by (3.25). If y is critical, then
Q;, # 0, and hence a}, = a, by (3.22) and the definitions of r,
a, and aj. Thus

fly) = olay) = o(a,) = 2, = 2(r)

since y is not bad. Now assume that y is not critical. By defini-
tion of r, this means that

QNP =0. (3.34)

We first prove that y is unchanged at time ¢. Indeed, otherwise
Q;, # 0, and by (3.34) there exists an 7 = (P~,P*) € R’ such
that y € (a(7),b(r)) and ¢(7) < t. By (3.24), 7 precedes all
pairs in PT, which by (3.23) implies that Pt D P*. As 7 # r
(since 7 € R’ but r ¢ R’), there exists a pair p € Pt N P~. As
all sufficiently early pairs of P+ lie in M, we can find this p
in M@, giving 7 < p. But then y € (a(7),b(F)) C (a(p), b(p))
and t(p) < t, contradicting (3.34).

Thus y is unchanged at time ¢. Then (3.25) yields fi(y) = o(y),
so let us show that o(y) = z(r). Our aim is to prove o(y) =
z(r) using (3.8). Let [a,b] 5 y be a maximal interval with the
property that (a,b) (which is allowed to be empty) avoids every
domain of a pass of . As every neighbourhood of a(r) or b(r)
meets the domain of a pass of o (namely, in a(p) or b(p) for
every sufficiently small p € P;(FT)) we have [a,b] C [a(r),b(r)].
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We first prove that every point in [a, b] is unchanged at time ¢.
Indeed, otherwise there is a ¢ € Q' for which (a(g), b(q)) meets
[a,b]. As y is unchanged at time ¢ we have (a(q),b(q)) 2 [a,b]
and thus a(q) € (a,b) or b(q) € (a,b), say a(q) € (a,b). If
qg € P, then [a(q),a‘(q)] is the domain of a pass of o that
meets (a,b), a contradiction. If ¢ = (P~, P) € R/, then since
[a(q),b(q)] = ﬂpeﬁiq) [a(p), b(p)] there is a pair p € P;{q) with
a(p) € (a,alq)) € (a,b), with a similar contradiction. Hence
every point in [a, b] is unchanged at time ¢ and thus f; [ [a,b] =
o[ la,bl.

Let us show that o(a) = o(b) = z(r): then either [a,b] = {y}
and thus o(y) = z(r), or ¢ maps all of [a,b], including y, to
z(r) by (3.8). We prove o(a) = z(r); the proof that o(b) =
z(r) is analogous. If a = a(r), then o(a) = o(a(r)) = z(r),
by definition of z(r). If a # a(r) then, by the choice of [a,b],
there is a sequence yo < y; < --- of points in [a(r),b(r)] such
that lim, y, = a and such that every y, lies in the interior of
the domain of a pass of ¢ (possibly the same for all n), and
hence is critical (for r). As a is unchanged at time ¢, and hence
a ¢ (a(q),b(q)) for every ¢ € Q', we have y, < b, < a and
hence also lim, b! = a. As o is continuous, the points (b}, )
converge in H to o(a). Since each y, is critical but not bad,
we have o(b], ) = z(r) for every n, and thus o(a) = z(r). This
completes the proof of (3.33) for the case of P~ # ().

We now assume that P~ = (). Then every z € [0, 1] is unchanged
at time ¢, since Q, # () would imply P~ # () by (3.22) and (3.24).
Thus, f; = 0. Consider the <-chain Q! of all ¢ € P UR' with
z € (a(g),b(q)). By our assumption for Case 2(i),

Ve>0: Q.nQ.+#0. (3.35)

Since Q¢ = 0 this means that Q! like Q., has no least element,
and by (3.22) neither does QL NP = QL N P*. Therefore

la(r).b(r)] =[] la).b@)] = [ [alq),b(q)]-

pEQLNP+ qeQ}

Pick po,p1,... € QL N P with lim, a(p,) = a(r). As o is
continuous, lim, z(p,) = o(a(r)) =: z(r). (Recall that z(p,) =
o(a(p,)).) By (3.9), Lemma 2.9, and the fact that G is locally
finite, z(r) is an end.

To complete the proof of (3.33), we show that (a(r), b(r)) avoids
every domain of a pass of o: then it is a maximal interval with
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this property, and (3.33) follows from (3.8) and the fact that f; =
o. (For the application of (3.8) note that o (b(r)) = o (a(r)), by
taking limits in (3.9).) Suppose that (a(r),b(r)) contains a point
y from the domain of a pass of o, say of the pair p. If p was an
element of Q!, there would be another pair p’ < p in Q!, with
y & (a(p'),b(p')). As this contradicts the choice of y as a point
in (a(r),b(r)), we have p ¢ QL. Thus, = ¢ (a(p),b(p)), and
hence p # ¢ for all ¢ € QL. But p is nested with every such g,
since y € (a(p),b(p)) N (alg),b(q)). Therefore p < ¢, and hence

VgeQ,: t<t(p) <s(g),

by (3.24) and since p ¢ P~ = (. But then for ¢ < t(p) — ¢
we have Q. N QL = 0, contradicting (3.35). This completes the
proof of (3.33).

We have thus shown for both sets of definitions that f; maps
(a(r),b(r)), and hence also [a(r),b(r)], to the end z(r). As
z € [a(r),b(r)], we in particular have z(r) = f,(z) € U'. As f; is
continuous, there is a § > 0 such that f; maps (a(r) — 4, b(r)+4)
to U’. By the definition of [a(r),b(r)] (in either case) we can
find a pair py € PT such that a(py) € (a(r) — d,a(r)) and
b(po) € (b(r),b(r) + ). Choose € so that ¢ +¢& ¢ C, and small
enough that t+¢& < t(po) as well as (z—e,z+¢) C (a(po), b(po)).
Then for all t' € [t,t + ]\ C and 2’ € (v — €,z + ¢) we have
Po € Qi(,po) D Q" and hence a(p) = ai(,po) < al,. Thus,

a(r) — 6 < a(py) < dly < ' <z 4e <b(r)+9,

giving f,(a%,) € U’ by the choice of §. But a, is unchanged at
time ¢ by (3.27), and hence also at time ¢ < #'. So this latter
point is just o(al), giving F(z',t') = o(a’) = fi(a) € U’
by (3.25).

Our second case is that there is an o such that = ¢ (a(q),b(q))
for all ¢ € Q).,. Suppose first that there is even an £; < g( such
that (z — &1, 2 + £1) avoids (a(q),b(q)) for all ¢ € Q.,. Then
consider any 2’ € (x — e,z +¢1). For every ¢’ € [t,t +¢;)\ C
we have F(2',t) = F(2',t) by (3.25), since Q%, = Q',. For
teft,t+e)NC, say t' € (s(g),t(q)) with ¢ € Q.,, this implies
F(z/,t') = F(a',s(q)) = F(a',t) by (3.28) or (3.29), since 2’ ¢
(a(q),b(q)) and s(q) € [t,t + 1) \ C. As f; is continuous, there
is an g9 < &7 such that f; maps (r — 9,2 + &3) to U. Then
F(z',t') = F(a',;t) € U for all 2’ € (v — e9,0 + &2) and ' €
[t, t —+ 82).
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We may thus assume that there is no such ¢;. Then:

For every e, the interval (x — €,z + €) meets

(a(q),b(q)) for infinitely many q € Q. (3.36)

By (3.36) there is a sequence qo, ¢, ... of pairs and partitions
in Q., with lim, a(g,) = « or lim, b(¢g,) = z; we assume that
lim, a(g,) = . As o is continuous, we have lim, o(a,) = o(x).
By (3.9) and (3.20), the sequence (a(an))neN is a sequence of
vertices and ends, and every vertex appears only finitely often
(Lemma 2.9). Therefore o(x) is an end.

Let us show that z is unchanged at time ¢. By (3.36), any inter-
val (a(q),b(g)) that contains z meets some (a(g,), b(¢s)), but is
not contained in it since ¢, € Q., and hence z E (a(q),b(q)) \
(a(gn),b(gn)). Thus ¢ > g, by (3.21), and t( ) t(¢n) >t by
(3.24), giving ¢ ¢ Q. as desired. As = ¢ ( ) for every
q € Q¢,, © remains unchanged at all times ¢’ € [t t+ o] \ C.

As z is unchanged at time ¢, we have o(z) = F(x,t) e U'. As o
is continuous, there is an € < ¢ such that 0((x —€, x+6)) cU’
and t+¢ ¢ C. Then for every 2’ € [z, x+¢) and t’ € [t, t4¢]\C we
have z < a’, (< 2'), because z is unchanged at time # and hence
z ¢ (alq),b(q)) for every ¢ € Q. Likewise, for 2’ € (z — ¢, 7]
we have 7/ < bg/ < z. Thus for every 2’ € (x — e,z 4 ¢) and
t' € [t,t+e]\C we have a’, € (v—¢,z+¢)or b’ € (x—e,x+¢),
say b, € (x — e, +¢). By (3.27), b, is unchanged at time #'
and hence also at time ¢ < #. We thus have F(2/,t') = o(a’,) =
a(bl) = fi(bt,) € U’ by (3.25).

This completes the fourth and final part of our proof that ¢ and 7 are
homtopic if 7 does not traverse chords.

Before we consider the general case where 7 too travserses chords, let
us remind ourselves in which subsets of H the homotopies considered so
far run. In part one of the above proof, we first used (3.5) to straighten o
to a path o', which we then trimmed further to obtain a path ¢” satisfying
(3.8). This path ¢” served as fy for our homotopy F', which ended with a
path f; in 7. This path was homotopic to the straightened version 7’ of
the original path 7 (not traversing any chords). We thus found homotopies

o~o ~fo~ it ~T

The first of these homotopies runs in Im o; see (3.5). In the second ho-
motopy we retracted segments ¢’ | [a,b] C T to paths ¢” | [a,b] with
image o’(a)To’(b). This is the unique o’(a)-0’(b) arc in T, so Lemma 2.1
implies that the image of o’ [ [a,b] contains it. The homotopy between
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o' | [a,b] and ¢” | [a,b], which (3.6) says runs in the union of the im-
ages of those two paths, thus in fact runs in Im ¢’ C Im o, and hence
so does the entire second homotopy ¢’ ~ ¢” = f;. The third homotopy,
fo ~ fi, runs in Im fy C Im o’ C Im o by (3.31). Similarly, the last ho-
motopy 7 ~ 7’ runs in Im 7, and the penultimate one, f; ~ 7/, runs in
Im fiUulm7’ CImoUIm7. All in all, we have shown the following:

If T traverses no chords and w, reduces to the empty word,
then there is a homotopy in Im o UIm 7 between o and 7.

(3.37)

3.5.5 The general case

To complete our proof of Lemma 3.13, we now consider the case in which
both ¢ and 7 traverse chords. By Lemma 3.20, there are paths ¢’ and 7’
such that w,s = r(w,) and w, = r(w,), and we may further assume that
every pass of ¢’ is also a pass of ¢ while every pass of 7’ is also a pass of .
Statement (3.37), applied to every non-trivial interval [a, b] that is maximal
with the property that it avoids the interior of every domain of a pass of o,
yields 0 ~ ¢’ by Lemma 3.1: note that o [[a, b] and ¢’ | [a, b] have the same
first and last point (because a and b are either boundary points of domains
of common passes of ¢ and ¢’ or limits of such points, and ¢ and ¢’ are
continuous), and the reduction of w, to w,s defines a reduction of wy (4 to
Wor(ap) = 0. Likewise, we obtain 7 ~ 7'. It thus suffices to prove o’ ~ 77,
from our assumptions that

W = 1(Wy) = r(w;) = Wy (3.38)

(cf. Lemma 3.12).

Our aim is to use (3.7) to obtain the desired homotopy ¢’ ~ 7’. But (3.7)
requires that the two paths considered have the same passes, not just the
same trace. In order to make (3.7) applicable, we therefore have to ‘syn-
chronize’ corresponding passes of ¢/ and 7’: make their domains coincide
by reparametrizing ¢’ and 7/, and make ¢’ and 7’ agree on those domains
by applying local homotopies inside the corrsponding chords.

Every path «: [0,1] — H defines a partition of [0, 1] into intervals:
the interiors of domains of passes, and the (closed) components of the
rest of [0,1]. The set Z, of all those intervals, including trivial ‘intervals’
[z, x] = {x}, inherits a linear ordering from [0, 1]. The bijection between the
passes of ¢’ and 7’ provided by (3.38) defines an order-preserving bijection
V[ Icr’ — IT/.

Although 7 maps open to open and closed to closed intervals, it might
map non-trivial closed intervals to trivial ones or vice versa. In order to
synchronize o’ with 7/ as planned, we therefore have to expand trivial closed
intervals to non-trivial ones in our reparametrizations of o’ and 7/. This will
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be possible, since clearly Z,» and Z,, contain only countably many trivial
intervals whose corresponding interval in the other set is non-trivial.

We may thus partition [0, 1] into a set Z of intervals so that there exist
order-preserving bijections 7, : Z — Z, and . : Z — L, that map open
to open intervals bijectively, and trivial to trivial intervals, and which com-
mute with 7: Z,» — Z.,. We can now define surjective maps ¢, ¢: [0,1] —
[0, 1] such that ¢ maps every I € Z onto m,(I) € Z,» and 1) maps every
I €7 ontorn.(I) €Ty

Clearly, ¢” := ¢’ o ¢ is homotopic to ¢’, and 7" := 7/ 0 1) is homotopic
to 7’. So it suffices to show that ¢” ~ 7”7. But these maps now have not
only the same trace but also the same domains of corresponding passes.
Combining homotopies between corresponding passes inside their respec-
tive chords with a homotopy between the rests of ¢” and 7" as in (3.7)
yields the desired homotopy ¢” ~ 7", by Lemma 3.1.

This completes the proof of Lemma 3.13 and with it our proof that
m(]G|) embeds canonically into F...
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Chapter 4

C(G) and singular homology

4.1 Introduction

The topological cycle space C had not been considered in graph theory
before [16] appeared, and it has been surprisingly successful at extending
the classical cycle space theory of finite graphs to locally finite graphs;
see [2,3,4,5,7,8,9,13, 18, 30, 31, 32, 40|, or [15] for a survey. However, a
question raised in [13] but still unanswered is how new, from a topological
viewpoint, is the homology described implicitly by C. In this chapter we
shall take the first step to clarify this relationship.

Since topological circles are (images of simplices representing) singular
l-cycles in |G|, it is also natural to ask how closely C(G), respectively
its oriented version C (G), is related to the first singular homology group
of |G|. Indeed it is not clear whether the two coincide by some natural
canonical isomorphism, so that C (G) would be just another way of looking
at Hy(|G)).

Our aim in this chapter is to answer this question. We begin by studying
the homomorphism f: H,(|G|) — C(G) that should serve as the desired
canonical isomorphism if indeed there is one. Surprisingly, this homomor-
phism is easily seen to be surjective. However, it turns out that it usually
has a non-trivial kernel. Thus C(G), despite looking ‘larger’ because we
allow infinite sums in its generation from elementary cycles, turns out to
be a (usually proper) quotient of H;(|G|).

For the proof that f has a non-trivial kernel we will need our character-
ization of the fundamental group of |G| from Chapter 3. The embedding
m1(|G|) — Fu will enable us to show that some elements of the kernel of f
are not boundaries of singular 2-chains, completing the proof that f need
not be injective: By counting occurences of certain subwords of a reduced
word we shall be able to define an invariant on 1-chains that vanishes on
boundaries but is non-zero on some elements of the kernel of f.
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4.2 Mapping H,(|G|) to C(G)

Let G = (V, E) be a connected locally finite graph. In this section we shall
start our comparison of the first singular homology group H; of |G| (with
integer coefficients) with the oriented topological cycle space C (G) of G.
When G is finite, then |G| = G and all circuits and their thin sums are
finite. Hence in this case C is just the first simplicial homology group of G,
so the two groups are indeed the same.

When G is infinite, however, both circuits and thin sums can be infinite
too. So they are not just the simplicial 1-cycles in G. But there is an
obvious singular 1-cycle in |G| associated with an oriented circuit ¢,: the
circle path «, viewed as a singleton 1-chain. Our aim is to extend this
correspondence to one between H; and C.

Our approach will be to define a homomorphism f: H, — &(G) that
counts for a given homology class h how often the 1-simplices of a cycle
representing h, when properly concatenated, traverse a given edge €; we
then let f(h) € £(G) map € to this number. We shall prove that f(h) al-
ways lies in C and, perhaps surprisingly, that f maps H; onto C. However,
we find that f is not normally injective. The main result of this chapter
characterizes the graphs for which it is:

Theorem 4.1. The map f: Hi(|G|) — E(G) is a group homomorphism

onto B(G), which has a non-trivial kernel if and only if G contains infinitely
many (finite) circuits.

Thus, C turns out to be a canonical—but usually non-trivial—quotient
of Hy. Taking this result mod 2 answers our original question: the topo-
logical cycle space C of GG is a canonical—but usually non-trivial—quotient
of the singular homology group of |G| with [Fy coefficients.

We remark that the last condition in Theorem 4.1 can be rephrased in
various natural ways: that G has a non-trivial end; that G has a spanning
tree with infinitely many chords; that every spanning tree of G has infinitely
many chords; or that G contains infinitely many disjoint (finite) circuits
[14, Ex. 37, Ch. 8]. The remainder of this chapter is devoted to the proof
of Theorem 4.1.

Let us define f formally. Recall that we denote by S! the unit circle in
the complex plane. The elements of H(S') are represented by the loops
e [0,1] — St 2™k € Z. Write m: Hy(S') — Z for the group
isomorphism [n;] — k. For every edge e of G, let f.: |G| — S' wrap e
round S! in its natural direction, defining f. [ é as n; 0 0. (recall that 6,
is the isomorphism [0,1] — e fixed in the definition of G as a 1-complex)
and putting f.(|G|\ é) := 1 € C. Note that f, is continuous.

IThe precise definition of f will be given shortly.
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The following lemma is easy to prove using homotopies in S, combined
by Lemma 3.1:

Lemma 4.2. Let a: [0,1] — |G| be a loop based at a vertex. If o traverses
e exactly k times in its natural direction and exactly ¢ times in the opposite
direction, then w([f.oa]) =k — L.

Proof. Composing a pass of a through e (in its natural direction) with f,
yields a map from a subinterval of [0, 1] to S which, after reparametriza-
tion, is homotopic to 7.

The domains of distinct passes of a through e are closed subintervals of
[0, 1] meeting at most in their boundary points. The rest of [0, 1] is a finite
disjoint union of open intervals (s,t) (or (s, 1] or [0,%)). Each of these is
in turn a disjoint union, possibly infinite, of open intervals (s',¢") which «
maps to é and closed intervals which f, o & maps to 1 € C. Since s, t], by
definition, contains no pass through e, o always maps s’ and t’ to the same
endvertex of e. Then « [ [¢',t'] is homotopic to the constant map to that
vertex, and (fe o ) [ [¢',] is homotopic to the constant map to 1. These
homotopies combine to a homotopy of (f. o @) [[s,t] to the constant map
with value 1.

We deduce that f, o a is homotopic to a concatenation oy - ... - g, of
loops in S' of which (after reparametrization) k are equal to n; and ¢ are
equal to the inverse loop 7;, and the rest are constant with value 1. The
result follows. O

Given h € Hi(|G|), we now let f(h) € E(G) assign (7o (f.).)(h) € Z

to the natural orientation € of e:
f(h): € — (mo(fe))(h) € Z.

This completes the definition of f: Hy(|G|) — &, which is clearly a group
homomorphism.

We want f to be a homomorphism between H;(|G|) and C(G), so it
has to map homology classes to elements of the cycle space. This is indeed
the case:

Lemma 4.3. Im f C C(G).

Proof. By Theorem 2.10 it suffices to show that for every finite oriented
cut F of G and every h € H,(|G|) we have Yoeci J(R)(€)=0. Let F =
E(U,U’) and h be given, let F = {e | € € F}, and assume for simplicity
that the orientations € € F of these edges are their natural orientations.
Since f is a homomorphism, we may assume that h is represented by an
elementary 1-cycle, which we may choose by Corollary 2.16 to consist of a
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loop a based at a vertex. We shall prove that « traverses the edges in F
as often from U to U’ as it does from U’ to U. Then

S e =Y o (£))(al) = S w(lf. o)) = 0

ecF ecF ecF
by Lemma 4.2.
Let [s1,t1], ..., [Sn, tn] be the domains of the passes of a through edges

of F', and let further ¢ty := 0 and s,,; := 1. In order to prove that as many
of these passes are from a vertex in U to one in U’ as vice versa, it suffices
to show that each of the segments 3 = « [ [t;, s;11], 0 < i < n, has either
all its vertices in U or all its vertices in U’. If t; = s;,1, then we are done,
so assume that ¢; < s;;1, hence ( is a path. If the starting vertex ((¢;) of
0 lies in U, say, put

S = sup{r S [tiasi-l—l] Vv ﬂﬁ([tz,r]) - U}

We wish to show that s = s;1. If not, then ((s) is an end by Lemma 2.5,
and this end lies both in the closure of U and in the closure of U’. But
these closures are disjoint: the set S of vertices incident with an edge in F’
is finite, and since S separates U from U’, the neighbourhood C‘(S,w) of
any end w avoids either U or U’. O

Next, we prove that f is surjective. At first glance, this may seem
surprising: after all, we have to capture arbitrary thin sums of oriented
circuits, which may well be disjoint, by finite 1-cycles.

Lemma 4.4. Im f D C(G).

Proof. Let ¢ = > c4¥a € C(G) be an arbitrary thin sum of oriented
circuits, where each « is a circle path in |G|. We may assume that each «
is based at a vertex v(«). (If the image of a non-trivial path contains no
vertex it must lie inside an edge, because non-trivial sets of ends cannot be
connected. Since edges do not contain circles, a has to meet a vertex.) We
shall construct a loop 7 in |G| such that f([r]) = ¢.

Let T be a spanning tree of G and pick a root r € V. Write V,, for the
set of vertices at distance n in T from r, and let T,, be the subtree of T
induced by Vo U ---UV,. Our first aim will be to construct a loop ¢ in |G|
that traverses every edge of T' once in each direction and avoids all other
edges of GG, similar to Example 3.8. We shall obtain ¢ as a limit of similar
loops o, in T,, C |G|. We shall then incorporate our loops a € A into o, to
obtain 7. When we describe these maps informally, we shall think of [0, 1]
as measuring time, and of a loop as a journey through |G|.

Let oy be the unique (constant) map [0,1] — Ty. Assume inductively
that o,: [0,1] — T, is a loop traversing every edge of T, exactly once
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in each direction. Assume further that o, pauses every time it visits a
vertex, remaining stationary at that vertex for some time. More precisely,
we assume for every vertex v € T,, — r that o, '(v) is a disjoint union of as
many non-trivial closed intervals as v has incident edges in 7T;,, and of one
more such interval in the case of v = r. Let us call the restriction of o,, to
such an interval a pass of g, through v. We are thus assuming that o, is
the union of its passes through the vertices and edges of T,.

Let 0,11 be obtained from o, by replacing, for each leaf v of T, the
unique pass of g,, through v by a path that starts out remaining stationary
at v for some time, then visits all the neighbours of v in V,,,; in turn, paus-
ing at each and shuttling back and forth between v and those neighbours,
and finally returns to v to pause there. Outside the passes of g, through
leaves of T}, let 0,11 agree with o,,. Note that o, satisfies our inductive
assumptions for n + 1: it traverses every edge of T, exactly once each
way, pauses every time it visits a vertex, and is the union of its passes
through the vertices and edges of T;, .

Let us now define 0. Let s € [0, 1] be given. If the values o, (s) coincide
for all large enough n, let o(s) := o,(s) for these n. If not, then s, :=
on(s) € V, for every n, and sps182... is aray in T let 0 map s to the end
of G containing that ray.

Clearly every o, is continuous, and ¢ is continuous at points not mapped
to ends. To show that ¢ is continuous at every point s mapped to an end
w = o(s), let a neighbourhood C(S,w) of w in |G| be given. Choose n
large enough that the finite set S is contained in V(7,_1); let 7" be the
component of 7'\ T,,_; containing s,. We claim that ¢ maps the interval
I :=0;"(s,) to C(S,w). Since 0,11 agrees with o,, on the boundary points
of I but not on s, we know that I is a neighbourhood of s in [0, 1], so this
will complete the proof that ¢ is continuous. Let ¢ € I be given. Induction
on m shows that o,,,(1) C T" for every m > n. Hence if o(¢) is not an end,
then o(t) = o(t) € T C C(S,w) for some m. But if () is an end, then
this is the end o’ of a ray that starts at o, (t) = s, and lies in 7" C C(S, w).
Hence so does o' = o(t).

Let 7 be obtained from o by replacing, for every vertex v, one of the
passes of o through v with a concatenation of all the circle paths o with
a € A and v(a) = v. Note that these are finitely many for each v, because
G has only finitely many edges at v and ), ¢q is a thin sum.

Let us prove that 7 is continuous. As before, this is clear at points
x € [0, 1] which o does not map to an end: for such x the map 7 agrees on
suitable intervals [s, ] and [z, t] with o or some « € A, which we know to
be continuous. The proof that 7 is continuous at points x which o maps
to ends is similar to our earlier continuity proof for o. The only difference
now is that we have to choose n large enough also to ensure that none of
the a with v(a) € T" passes through a vertex of S. Such a choice of n is
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possible, because only finitly many edges are incident with vertices in S
and the ¢, form a thin family of circuits. Then C(S,w) contains not only
T’ but also the images of all « with v(«) € T”, because Im « is connected
but does not meet the boundary of C (S,w), since the boundary is a subset
of S.

Finally, recall that o traverses every edge of T once in each direction,
and that it does not traverse any other edges. Therefore f([o]) = 0 € C(G),
and hence f([7]) =), c4 Pa = ¢ as desired. O

In fact, we have just shown the following stronger statement:

Lemma 4.5. For every ¢ € C(G) there is a loop o in |G| with f([a]) = c.

4.3 Distinguishing boundaries from other cy-
cles

To complete the proof of Theorem 4.1 it remains to show that f has a
non-trivial kernel if and only if G contains infinitely many circuits. The
forward implication of this is easy. Indeed, suppose that G contains only
finitely many circuits, and let T" be a normal spanning tree of G. Then
T has only finitely many chords, so |G| is homotopy equivalent to a finite
graph (Corollary 3.6). Hence, as is well known, H;(|G|) equals the first
simplicial homology group of GG viewed as a 1-complex, which in turn is
clearly isomorphic to C (G). Therefore f must be injective.

The converse implication, surprisingly, is quite a bit harder. Assuming
that G contains infinitely many circuits, we shall define a loop p in |G| that
traverses every edge equally often in both directions (so that f([p]) = 0),
and which is easily seen not to be null-homotopic. To prove that [p] # 0,
however, i.e. that p is not a boundary, will be harder: it turned out that
we need the characterization of the fundamental group of |G| developed in
Chapter 3. With this tool we shall be able to define an invariant of 1-chains
that can distinguish p from boundaries.

Let T be a topological spanning tree of G. Each of the infinitely many
circuits in G is a finite sum (mod 2) of distinct fundamental circuits of 7' by
Theorem 2.11. Therefore T" has infinitely many chords, eg, e1, ... say. Since
|G| is compact, there is a sequence €;,, €;,,... of chords which converge
to an end w of G. There exists a loop p in |G|, based at a vertex, that
traverses €;,, €i,, . -, €y, €, - . in this order and runs otherwise along 7.2

2Thus, p starts with passes through €;,, €;,,..., interspersed with finite segments
of T between the endpoints of these passes, until it reaches w, from where it returns along
T to the starting vertex of €;,; it then traverses ‘e;,, €;,, ... interspersed with connecting
segments of T to reach w a second time, and finally returns from there along T to its
starting vertex. Note that the convergence of e;, e;,, ... is essential for p to be a path:
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(See Figure 4.1 for an example of p.) Since p traverses the chords of T
equally often in both directions, Theorem 2.10 (applied to the fundamental
cuts of T', the cuts that contain precisely one edge from T') and Lemmas 4.2
and 4.3 imply that p also traverses the edges of T" equally often in both
directions.

Figure 4.1: The loop p in the ladder with topological spanning tree T'. The
natural directions of the chords of T" are pointing to the left side.

Hence f([p]) = 0 € C(G). To complete the proof that f is not injective,
and thereby the proof of Theorem 4.1, we show that [p] # 0, i.e. that p
is not the boundary of any 2-chain. In order to do so, we shall use our
results and terminology from Chapter 3 to define an invariant of 1-chains
that can distinguish p from boundaries. As in Chapter 3 we consider only
paths whose boundary points are vertices or ends, so our invariant will be
defined only for chains of 1-simplices with this property. However, it is
easy to see that this entails no loss of generality: Indeed, if p = > A\, 07,
for 2-simplices 7,,, we can modify each 7, into another 2-simplex 7, whose
O-faces are vertices or ends, and such that p = > \,07,, as follows. For
every inner point x of an edge e, = u,v, in |G| pick a fixed path 7, from x
to v, (say). Then append to every l-simplex o occurring in the boundary
of a 7, and ending in such a point x the path 7, after x, turning o into
a path o’ between two vertices by appending at most two such paths .
Then if 07, = 09 — 01 + 09, say, it is easy to see that also o — o] + 7},
is the boundary of a 2-simplex 7). And clearly p = > A, 07, implies that
also p = > \,07), since we modified only 1-simplices that cancelled out
anyway in this sum.

We need some more notation. Given k € N and a reduced word w: S —
A (where A = { €, €, €1, €1, ...} as in Chapter 3), write n*(w, k) for the
number of intervals in S (recall that an interval in S is a subset closed under
betweenness) which can be written as {sg, s1,...} with sp < s; < --- and
w(s;) = €, for every j € N. This number exists: there are at most
lw™t(€,,)| such intervals, and this number is finite by our definition of
‘word’. Put

n(w, k) :=n"(w,k) —nt(w k) € Z

(Recall that w™ is w backwards with inverse letters, so n*(w™, k) counts

there is no path in |G| through an w-sequence of chords that does not converge.
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the intervals in S which can be written as {sg, s1,...} with so > s; > ---
and w,(s;) = €, for every j € N.)

Given k € N and a path o in |G|, let N(o, k) := n(r(w,), k). Given a
l-chain ¢ =) A,0y, let N(p, k) :=>" X\, N(o,, k) for every fixed k, and
put

N () := ming [N(¢, k).

Unlike N (i, k) for fixed k, the function N is not a homomorphism. Never-
theless, it will help us distinguish our special path p from boundaries: we
shall prove that N vanishes on boundaries, while clearly N(p) = 1.3

We begin by noting a property of the function n(w, k):

If w is a reduced word and w = wiws, then there exists a

k € N such that n(w, ) = n(wy, £) + n(wsq, £) for all £ > k. (4.1)

Indeed, denote the domains of w; and ws by S; and Sy (chosen disjoint);
then the domain of w is the disjoint union S of S; and Sy, with Sy pre-
ceding S,. If S7 has a largest element, s; say, choose k large enough that
w(s1) & { €, €is Ciryrs Cinyys--- 1 (Note that w(s;) does not have to be
€;; or e;, for any j, since the e;; are not necessarily all edges of G; in this
case any k would suffice.) Then for every ¢ > k none of the intervals in
S counted by n(w,f) meets both S; and Sy, since these intervals cannot
contain s;. Hence every such interval is either an interval of S; or one of Sy,
so n(w, £) = n(wy, ) + n(ws, ) as desired. On the other hand if S; has no
largest element, then no interval in S that meets both S; and S5 can be
written as {sg, $1,...} with 59 < s3 < ... or sp > s; > ..., so none of the
intervals counted by n(w, ¢) for any ¢ meets both Sy and S;. Hence, in this
case, n(w, ) = n(w, ) + n(wsy, £) for all .

For our proof that N vanishes on boundaries ¢, it suffices to show
that every 2-simplex 7 satisfies N(J7,k) = 0 for large enough k: then
N(p,k) = 0 for some (large) k, and hence N(¢) = 0 as claimed. So
consider a 2-simplex 7, with boundary 01 = 09 — 01 + 0y denoted so that
09 ends at the starting vertex of op. Write w; := r(w,,) for the words to
which the traces of the o; reduce (i = 0,1,2), and wyy := 7(We,, ), Where
090 := 090 is the path consisting of oy followed by .

Note that wyy = r(wawy). Indeed, we can reduce w,,, by first applying
to Wy, C Wy, the reduction that turns w,, into wsy, and then apply to w,, C
Wy, the reduction that turns w,, into wy. Together this is a reduction of
Wy t0 wowp. Let R be a reduction of wywy to r(waewy). Since we started
with w,,,, the reduced word r(wywy) we end up with is r(w,,,) = wsy by
Lemma 3.12.

Let us look at what R does. Since w, and wy are both reduced, every
pair of positions in R has one position in wy and the other in wy. Hence

3Indeed, the word w), is easily seen to be reduced (cf. Lemma 3.10); hence N (p, k) =
n(w,, k) = 1 for all k, since n™ (w,, k) = 1 and n* (w, , k) = 0.
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if w denotes the subword of ws whose positions are deleted by R, we have
found reduced words w, wj, wy, such that

wy =wyw and wo=w wy and Wy = wWywy.
By (4.1), therefore, we have for all large enough &

n(ws, k) = n(wh, k) + n(w, k)
n(wo, k) = n(w™, k) + n(wg, k)
n(wag, k) = n(wy, k) + n(wy, k).

As n(w™, k) = —n(w, k), we deduce that
n(ws, k) + n(wg, k) — n(wsg, k) = 0

for all these k.
Since oy is homotopic to o7 (across 7), Lemma 3.13 implies that wyy =
wi. We therefore deduce that

N(01,k) = N(o9,k) + N(og, k) — N(o1,k) =0

for all large enough k, as desired. This completes the proof of Theorem 4.1.
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Chapter 5

Interlude: Cech homology and
homotopy

This chapter is devoted to the relationship between the topological cycle
space of a graph with ends and its Cech homology. We shall see that their
groups are canonically isomorphic, but also that this isomorphism is not
enough to capture the relevance of C (G) to the structure of G—the reason
why cycle spaces are studied in the first place.

5.1 Cech homology

The Cech homology of a space is an alternative to singular homology for
spaces that are not simplicial complexes. Consider a space X and an open
cover U of X. Then U defines a simplicial complex X, the nerve of U:
The O-simplices of X, are the elements of I/, and any n + 1 elements of U
form an n-simplex if and only if they have a nonempty overall intersection.
For two open covers U, U’ of X, we write Y < U’ if U’ is a refinement of
U. In this case, it is easy to define a continuous map from X;» to X For
each O-simplex U of Xy (i.e. U € U’') there is a O-simplex w(U) of Xy (an
element of U) that contains it. Map each U to w(U) and extend this map
linearly to the higher-dimensional simplices in X so as to obtain a map
pP: Xu/ — Xu.

Since U € U’' can be contained in more than one element of U, the
choice of : U’ — U is not unique and neither is p. But it is easy to see
that all possible choices of 7 induce homotopic maps p: If 7’ is another
possible choice of 7, then their induced maps p and p’ are homotopic by
the homotopy F': Xy x [0,1] — X defined by letting F(U,0) = =(U)
and F(U,1) = n'(U) for each U € U’ and extending linearly to the higher-
dimensional simplices in X and to all times ¢ € (0,1). Thus, all choices of
7 induce a unique homomorphism g%, : H, (Xy) — H,(Xy) on homology.
Therefore, the homology groups H, (X)) for all open covers U, with the
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order < defined above, together with the homomorphisms p¥, form an
inverse family. Define the nth Cech homology group H,(X) to be the inverse
limit of this family. For more on Cech homology, see eg. [26] or [38].

The main result of this chapter is that for locally finite graphs the first
Cech homology group and the topological cycle space coincide:

Theorem 5.1. For a locally finite graph G we have a canonical isomor-

phism H,(|G|) ~ C(G).

Proof. To compute the inverse limit of the groups H;(Xy,) it suffices to to
consider a family 4 of open covers of |G| that contains a refinement for
every open cover of |G|, and to compute the inverse limit of the inverse
family (H; (|G |U))u <y We will now construct a suitable 4.

Let T be a normal spanning tree of G and denote the subtree induced
by the first n levels by T,,. Now for each n let 4 contain an open cover U,
consisting of the following sets: An open star of radius 27" around each
vertex v € V(T,), finitely many open subintervals of length 27" of each
edge e € E(T,), and the sets C(V(T}),w) for each end w of G. Note that
U, is a finite family as G — V(T,,) has only finitely many components.

It is not hard to see that for each open cover U of |G| some U, is a
refinement of U: Since |G| is compact, there is a finite subcover U’ of
U. Choose n large enough so that each set in U, has a diameter smaller
than the Lebesgue number of ’, where the metric of |G| is that defined in
Section 2.2. (Recall that in this metric, any set C(V(T}),w) has diameter
at most 2-("~1.) Then U, is a refinement of U.

Now every nerve |G|y, retracts to the graph G,, obtained from G by
contracting all components of G — T),, and hence the homology group
H(|G|y,) = H1(G,) is a direct product of Z’s, one for each chord of T’
with at least one endvertex in 7},. Thus H;(|G|) also is the direct product
of copies of Z, one for each chord of T. As the same is true for C (@), we
have that H,(|G|) and C(G) are canonically isomorphic. O

Theorem 5.1 shows that one can describe the topological cycle space in
terms of the Cech homology. However, although H,(|G|) is isomorphic to
C (G) as a group, it does not sufficiently reflect the combinatorial properties
of C(@), i.e. its relation to the combinatorial structure of G. To make this
precise, note that a number of classical results about the cycle space say
which circuits generate it—as do the non-separating chordless circuits in a
3-connected graph, say. In the Cech homology, however, it is not possible to
decide whether a given homology class in H,(|G|) corresponds to a circuit
in G. Indeed, the obvious relation between H;(|G|) and the combinatorial
structure of G is that every homology class ¢ € H,(|G|) corresponds to a
family (c,) of homology classes in the groups Hi(|Gly,) = H1(G,). One
might think that the class ¢ should correspond to a circuit if and only if
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every ¢, with sufficiently large n corresponds to a circuit in G,,. But this is
not the case: the limit of a sequence of cycle space elements in the GG,, can
be a circuit even if the elements of the sequence are not circuits in the G,,.

A A A

v

v

T C

Figure 5.1: The graph G (drawn twice) with a normal spanning tree 7" and
a circuit c.

Let G be the graph shown in Figure 5.1. G consists of a "wide ladder”
with three stiles xl, 23, ..., 2% 22,..., and 23,23, ..., and has attached
infinitely many (oridinary) ladders by identifying the first rung of the nth
ladder L, with the edge z3, ;x . Tt is not hard to prove that T from

Figure 5.1 is a normal spanning tree of G with root r = x1.

10

U1
Cq G1o C10
G4 vg vg?
r r
V(Ty) V(Tho)

Figure 5.2: The edge sets ¢4 in G4 and ¢y in Gyp.

The edge set ¢ from Figure 5.1 is a circuit, but each edge set ¢, it induces
on a contracted graph G,, with n = 6k 4 4 is not a circuit. Indeed, each
Gerya consists of G[V (Tgp14)], for each i < k a vertex v¥** corresponding
to a contracted tail of the ladder L;, and a vertex ng+4 corresponding to
the contracted tail of the wide ladder and all ladders L; with j > k. The
edge set cgrpq is not a circuit since it has degree 4 at v5***. Therefore, c is
a circuit although it is the limit of the non-circuits cg 4.

One can easily manipulate the example so that no ¢, with n large

enough is a circuit. Indeed, for « = 1,...,5, we can attach a copy H; of
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G to L; by connecting the root of the normal spanning tree of the wide
ladder in H; to a vertex v; in L; that has distance 6k +¢—1 from r in T for
some k. We may choose k large enough so that v; does not belong to one
of the first two rungs of L;; the other two vertices of the first rung of the
wide ladder in H; can then be connected to the two vertices u;, w; below
v; in L;. For each 7 < 6, instead of letting ¢ traversing w;u,;v;, we let it run
along H; just like the original ¢ did in GG. Then the new c is a circuit, but
none of the edge sets ¢, (with n large enough) it induces on the contracted
graphs G, is a circuit.

5.2 Cech homotopy

Cech homotopy is a way to define the fundamental group of a space (in
fact homotopy groups of any dimension) similar to the way that the Cech
homology is defined. One shows that the homotopy groups of the nerves of
open coverings of a space X form an inverse system and defines the Cech
homotopy groups 7,(X) as the inverse limits of the homotopy groups of
the nerves. Alternatively, one requires the coverings to be finite; then one
obtains the Cech homotopy groups 7 (X) based on finite covers. From this
construction it is evident that the first Cech homotopy group of |G|, based
on finite covers or not,! is the inverse limit of the fundamental groups of
the finite graphs G,, and hence 7, (|G|) = #f'(X) is the inverse limit F* of
the free groups F7.

Eda and Kawamura [25] show that the fundamental group of every
one-dimensional continuum X is isomorphic to a subgroup of its first Cech
homotopy group based on finite covers. More precisely, they show that
the ‘canonical’ homomorphism 7 (X) — #f(X) (defined by mapping a
homotopy class to the limit of its induced classes on the nerves of finite
covers) is injective. Together with Lemma 2.9 and the embedding F,, —
F™, this result implies our Lemma 3.13.

However, their proof does not explicitely construct a homotopy between
paths with same image in #¥'(X), let alone a homotopy that procedes by
contracting pairs of passes through chords. The main achievement of our
proof is hence to have shown that homotopies between paths in |G| basically
work the same as homotopies in a finite graph, by contracting pairs of
passes, one at a time.

IFor compact spaces, 7, and 7 are clearly identical.
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Chapter 6

A new homology for locally
compact spaces

6.1 Introduction

We have seen in the last section that Cech homology—although its first
group is isomorphic to the topological cycle space—fails to properly reflect
its relation to the combinatorial structure of G. For this reason, we shall
keep at our singular approach to define C in terms of homology. Since by
Theorem 4.1 standard singular homology is not the right theory to capture
C , we shall define a singular-type homology that does so.

As advertised in Chapter 1, we shall define our homology for locally
compact Hausdorff spaces with a (fixed) Hausdorff compactification. Recall
that these properties are needed to reflect the properties of G and |G| that
are fundamental for the success of C. Therefore, this class of spaces is the
broadest for which we can hope to obtain a homology theory with similar
properties as C. Note that this class includes, for instance, all locally finite
CW-complexes, of any dimension.

The loops constructed in Section 4.3 suggest that our homology should
allow to subdivide a 1-simplex infinitely often: Then, every 1-chain in |G|
will be homologous to the sum of its passes through edges of GG, and hence
it will be null-homologous if and only if it lies in the kernel of f. The idea is
thus to define the homology so that we obtain essentially the same 1-cycles
as in standard singular homology but more boundaries.

The construction of C is based on the idea to consider not only the
graph itself but also its ends. Nevertheless, although ends do not play a
different role in the definition of C than points in G, elements of C do
behave differently at ends. Indeed, elements of C are thin sums of circuits,
and as G is locally finite, these circuits are also ‘thin’ at vertices, i.e. every
vertex lies in only finitely many of the closures of the circuits in the family.
This does not have to be the case for ends: An end can lie in the closures
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of infinitely many circuits, even when the circuits form a thin family.

This suggests to require a similar property from the chains in our ho-
mology: They will have to be locally finite in G' but not at ends.! This
will enable us to subdivide paths in |G| infinitely often, but the required
locally finiteness in G will keep us from obtaining undesired cycles, such
as the edges of a double-ray (all directed the same way), which has zero
boundary but does not correspond to an element of the cycle space. In the
ad-hoc homology we shall define in Section 6.2 we will rule out such cycles
by imposing an additional condition on cycles. This will lead to the desired
result in dimension 1, i.e. our first homology group will be C, but generate
problems elsewhere. More precisely, this homology will fail to satisfy the
axioms for homology, which is caused precisely by this restriction on cycles.

In Section 6.3 we shall then change our approach slightly: Instead of
restricting the group of cycles we shall define chains differently, so as to
obtain 1-cycles that are essentially finite and 2-cycles that allow us to sub-
divide 1-simplices infinitely often. This homology theory will satisfy the
axioms, which will be shown in Section 6.4. After briefly discussing the
associated cohomology in Section 6.5, we shall show in Section 6.6 that our
homology captures, for graphs and dimension 1, precisely the topological
cycle space. In this last section, we will again need the preliminary work
done in Section 6.2 to prove that the homomorphism f in Theorem 4.1
induces an isomorphism H;(G) ~ C(G).

6.2 An ad-hoc homology for locally compact
spaces

In this section we describe an ad-hoc way to define homology groups that
extend the main properties of the cycle space of graphs to arbitrary dimen-
sions.

While the homology defined in this section succeeds in capturing C (G),
it is not a homology theory: It fails to allow for long exact sequences as
demanded by the axioms, see end of Section 6.2.1. Nevertheless, our proof
that the homology theory we shall construct in Section 6.3 specializes in
dimension 1 to yield C will rely on this section. Moreover, it serves to
introduce some of the main ideas in a technically simpler setting.

6.2.1 Definition and examples

Let X be a locally compact Hausdorff space and let X be a Hausdorff
compactification of X. (See e.g. [1] for more on such spaces.) Note that

IThe formal definition of ‘locally finite’ will be given shortly.
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every locally compact Hausdorff space is Tychonoff, and thus has a Haus-
dorff compactification. The kind of spaces we have in mind is that X is a
locally finite CW-complex and X is its Freudenthal compactification, but
formally we do not make any further assumptions. Nevertheless, we will
call the points in X \ X ends, even if they are not ends in the usual, more
restrictive, sense.

Although our chains, cycles etc. will live in X, we shall denote their
groups as C,,(X), Z,(X) etc, with reference to X rather than X: this is
because ends will play a special role, so the information of which points of
X are ends must be encoded in the notation for those groups.

Given points v, ...,v, € R™ (not necessarily in general position), we
write [v, ..., v,] for their convex hull. The natural map A™ — [vg, ..., v,]
is the linear map (to,...,t,) — Y. t;v;.

If vg, ..., v, are in general position, the natural map A™ — [vy, ..., v,]
is clearly a homeomorphism. Then [vg,...,v,] is an n-simplex in R™, the
point v; is its ith vertex. Every convex hull of k£ +1 < n vertices is a k-face
of [vg, ..., v,]. Weuse [vg,...,0,...,v,] to denote the (n—1)-face spanned
by all the vertices but v;.

Let us call a family (o, | i € I) of singular n-simplices in X admissible
if

(i) (o; | @ € I) is locally finite in X, that is, every x € X has a neigh-
bourhood in X that meets the image of o; for only finitely many ¢;

(ii) every o; maps the O-faces of A™ to X.

Note that as X is locally compact, (i) is equivalent to asking that every
compact subspace of X meets the image of og; for only finitely many .
Condition (ii), like (i), underscores that ends are not treated on a par with
the points in X: we allow them to occur on infinitely many o; (which
(i) forbids for points of X), but not in the fundamental role of images of
O-faces: all simplices must be ‘rooted” in X. If X is a countable union
of compact spaces, (i) and (ii) together imply that admissible families are
countable, i.e. that |I| < N,.

When (0; | @ € I) is an admissible family of n-simplices, any formal
linear combination Zie ;Ao with all A; € Z is an n-sum in X .2 We regard
n-sums » .., \io; and jes HjT; as equivalent if for every n-simplex p we
have > ;. _, A = > ic Jr=p M- Note that these sums are well-defined
since an n-simplex can occur only finitely many times in an admissible
family. We write C,(X) for the group of n-chains, the equivalence classes
of n-sums. The elements of an n-chain are its representations. Clearly

2In standard singular homology, one does not usually distinguish between formal
sums and chains. It will become apparent soon why we have to make this distinction.
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every n-chain ¢ has a unique representation whose simplices are pairwise
distinct—which we call the reduced representation of ¢—, but we shall
consider other representations too. The subgroup of C,(X) consisting of
those n-chains that have a finite representation is denoted by C/ (X).

The boundary operators 9,: C,, — C,,_; are defined by extending lin-
early from 0, 0;, which are defined as usual in singular homology. Note that
Oy, is well defined (i.e., that it preserves the required local finiteness), and
On—-10, = 0. Chains in Im 0 will be called boundaries.

As n-cycles, we do not take the entire kernel of 0,,. Rather, we define
Z)(X) :=Ker (0, [C! (X)), and let Z,(X) be the set of those n-chains that
are sums of such finite cycles:

Zn(X) = {go e Cu(X) ‘ o=z with 2 € ZL(X) Vj € J}.

jeJ

More precisely, an n-chain ¢ € C,(X) shall lie in Z,(X) if it has a rep-
resentation Zie[ Aio; for which I admits a partition into finite sets I;
(j € J) such that, for every j € J, the n-chain z; € C,(X) represented by
Y e 1, Aioi lies in Z! (X). Any such representation of ¢ as a formal sum will

be called a standard representation of ¢ as a cycle® We call the elements
of Z,(X) the n-cycles of X.

The chains in B, (X) := Im 0,4, then form a subgroup of Z,(X): by
definition, they can be written as >, ; A;z; where each z; is the (finite)
boundary of a singular (n+1)-simplex. We therefore have homology groups

H,(X) = Zo(X)/Bn(X)

as usual.

Note that if X is compact, then all admissible families and hence all
chains are finite, so the homology defined above coincides with the usual
singular homology. The characteristic feature of this homology is that
while infinite cycles are allowed, they are always of ‘finite character’: in
any standard representation of an infinite cycle, every finite subchain is
contained in a larger finite subchain that is already a cycle.

For graphs and Freudenthal compactifications, the finite character of
this homology is also shown in another aspect: We will show in the next sec-
tion that every 1-cycle—finite or infinite—is homologous to a cycle whose
reduced representation consists of a single loop.

Let us now define relative homology groups H, (X, A). Normally, these
groups are defined for all subsets A C X. In our case, the subspace A

3Since the o; need not be distinct, ¢ has many representations by formal sums. Not
all of these need admit a partition as indicated—an example will be given later in the
section.
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has to satisfy further conditions. Since we wish to consider chains in A, in
our sense, A has to be locally compact and come with a compactification
A. Chains in 4 have to be chains also in X , hence we further need that
Ac X, and that ends of A lie in X \ X, that is, they have to be ends of
X.

Let A be a closed subset of X (but not necessarily closed in X). Since X
is locally compact, so is A. Let A denote the closure of A in X. Then A is
a compactification of A, and A \AC X \ X. Clearly, admissible families of
simplices in A are also admissible in X. We define H, (X, A) as follows. Let
Cn(X, A) be the quotient group C,(X)/C,(A),* and let C! (X, A) be the
subgroup of all its elements ¢+ C,,(A) with ¢ € C! (X). Define Z/ (X, A) as
the kernel of the quotient map C, (X, A) — C,_1(X, A) of 0, restricted to
Cl(X,A), and B, (X, A) as the image of the quotient map C,11(X, A) —
Ch(X,A) of 0,,41. Then define Z,(X, A) from Z/ (X, A) as before, and put
H,(X,A)=7,X,A)/B,(X,A). Clearly, H,(X,0) = H,(X).

Before proving in the next section that this homology (for graphs and
dimension 1) captures the cycle space, let us look at an example which
might indicate whether we obtain the desired cycles. For simplicity, we
will restrict our attention to absolute homology. Consider the double ladder.
This is the 2-ended graph G with vertices v,, and v}, for all integers n, and
with edges e,, from v,, to v,41, edges €], from v], to v/, and edges f,, from
v, to v),. The l-simplices corresponding to these edges, oriented in their
natural directions, are 0., , 8., , and 0y, , see Figure 6.1.

vy v v}
| - | - | - | - |- /
> > > > > ®
’ /
e_o €1
=1 fo fi
€_9o €1
> > > > > @
V_1 Vo U1

Figure 6.1: The 1-chains ¢ and ¢’ in the double ladder.

In order to let the elements of our homology be defined, let G be
any Hausdorff compactification of G. (One could, for instance, choose
the Freudenthal compactification |G| of G.) For the infinite chains ¢ and
¢’ represented by > 6., and ) 0. , respectively, and for ¢ := ¢ — ¢’ we
have dp = J¢' = 01 = 0, and neither sum as written above contains a
finite cycle. However, we can rewrite ¢ as ¢ = > z, with finite cycles

4Formally, C,,(A) is not a subset of C,,(X), because the equivalence classes of n-sums
in X are larger than those in A. For instance, every formal sum ¢ — o with ¢ a singular
n-simplex in X that does not live in A is part of the equivalence class of the empty
n-sum in X, but not in A. But there is a natural embedding C,,(4) — C,(X): map an
n-chain in A to the n-chain in X with the same reduced representation.
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2y = U, +0g,,, — 0 —0y,. This shows that ¢ € Z,(G), although this was
not visible from its original representation.

By contrast, one can show that ¢ ¢ Z;(G) if G is the Freudenthal
compactification of GG. This follows from Theorem 6.3 below and Theo-
rem 2.10, but is not obvious. For example, one might try to represent ¢ as
o => " z withz, =0,  +6,_1+0.,—0,, where 6,,: [0,1] — e_,U- - -Ue,
maps 0 to v_, and 1 to v,41, see Figure 6.2.

. V_2 v_1 ) U1 U2 U3
SD .
9671 060 = 00 ecl
!/ . »
21 : > >
0L72 :Fel 662
/ > >
25 > — >—*#%
F0,

Figure 6.2: Finite cycles summing to ¢—by an inadmissible sum.

This representation of ¢, however, although well defined as a formal sum
(since every simplex occurs at most twice), is not a legal 1-sum, because
its family of simplices is not locally finite and hence not admissible. (The
point vy, for instance, lies in every simplex 6;.)

We close this section with a proof that this homology is not a homology
theory since it fails to satisfy the long exact sequence axiom. To see this,
let A C X consist of a single point ¢ in X and assume there is a path
7 in X from a to an end. This assumption is satisfied in every path-
connected, non-compact space X with a path-connected compactification
X, for instance in every connected locally finite graph and its Hausdorft
compactification. The 0-chain ¢ = —o in A, where o: {0} — A, is a O-cycle
whose homology class in Hy(A) lies in the kernel of ¢, : Ho(A) — Hy(X)
(because ¢ = 97 for 7 =Y oo, w [[1 — 21771 — 27%]) but not in the image
of 01: Hi(X,A) — Hy(A) (because clearly no finite 1-cycle in X can have
boundary ¢, and no infinite 1-cycle in X that is a sum of finite cycles can
have boundary ¢, since by Condition (i) only finitely many of those finite
cycles meet a). Hence the long sequence for the pair (X, A) fails to be
exact at Hy(A).

6.2.2 H,(G) equals C(G)

In this section we show that, for graphs G, the group H;(G) defined in
Section 6.2.1 is canonically isomorphic to the topological cycle space C (GQ)
of G.

In analogy to our notation of Section 4.2, we shall denote this isomor-
phism by f: H(G) — C(G). In our definition of f we shall have to refer
to the map which, in Section 4.2, was denoted as f: Hy(|G|) — € (G); this
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map will now be denoted as f’. (Recall that |G| denotes the Freudenthal
compactification of G, and that H;(|G]) is its usual first singular homology
group.”’) When G is finite, our new function f will coincide with f’.

In order to define f, let ¢ € Z;(G) be given in any standard represen-
tation ¢ = ) .., A\io; as a cycle, and let € € E be any oriented edge. We
shall first define f([¢])(€) € Z with reference to ¢ and its given represen-
tation as a cycle, and then show that our definition does not depend on
these choices.

To define f([¢])(€), we show that for all large enough finite subchains
¢ € Z1(G) of ¢ the values of f/([¢])(€) agree (the homology class [¢']
being taken in H;(|G|)), and set f([p])(€) to this common value. Write
I, for the set of those i € I whose o; meets e; since e is compact and
(0 | i €I)is agood family, I, is a finite set.

Let m: Hi(S') — Z and f.: |G| — S* be defined as in Section 4.2, and
write (fe);: C1(]G|) — C1(S) for the chain map induced by f..

Lemma 6.1. For all finite sets I' such that I, C I' C I and ¢ :=
Y e Nioi € Z1(|G)), the values of f'([¢'])(€) agree.

Proof. Let @ := ) ;c; Aioi. We show that even if o, is not a cycle in |G|,
the chain (f.);(¢.) is a cycle in S* homologous to (f.);(¢’) for every ¢’ as
stated. Then, by definition of f’,

F(eN(E) = m(fo)l¢'])) = m([(fe)s(D)]) = 7 ([(fe)s(e)])

for all such ¢’, and the result follows.

For a proof of [(fe)s(we)] = [(fe)s(¢')], note that for all i € I\ I. the
map f. o o; is constant (with value 1 € C). So for such i, f. o o; is a null-
homologous cycle. But (fe):(p.) differs from (f.)s(¢’), which is a cycle,
precisely by the terms \;(f. o 0;) with i € I' \ I.. Hence (f¢)s(pe) too is a
cycle, and it is homologous to (fe)s(¢’). O

We now define f: H,(G) — £(G) by letting f([¢]) map an oriented
edge € to the common value of f'([¢'])(€) for all ¢’ as in Lemma 6.1. In
order to show that f is well defined, let ¢ € Z;(G) and ¢ € B(G) be
given in any standard representations ¢ = Zie Ao and ¢ = Zie 7 Ai0;
with I'NJ = (). We show that f assigns the same value to [¢] = [¢ + ¢] no
matter whether we base its computation on ¢ or on ¢ +1: this proves that
f([¢]) depends neither on the choice of ¢ as a representative of [p] nor on
its representation as ), ; Aio;.

Given € € E, let I, be the set of all ¢ € I such that o; meets e, and
define J, likewise. Let I’ C I and J' C J be finite sets containing I, and J,,

SWe shall use C1(G), Z1(G), B1(G) and H;(G) to refer to our new homology of |G|
that relies on the information of which points of |G| are ends, while C1(|G|), Z1(|G]),
B1(]G)) and H;(|G|) continue to refer to the usual singular homology of the space |G|.
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respectively, such that ¢ := 3., \io; € Z(|G]) and ¢' := >, \io; €
By (]G]); such sets exist since ¢ and 1 are given in standard representations.
Then
F(@DE) = fl¢' +¢'D(e).

For our new function f, its value of [p]| = [¢ + 1] computed with reference
to ¢ equals the left-hand side of this equation, while its value computed
with reference to o+ equals the right-hand side. This completes the proof
that f is well defined. Note that if ¢ is finite, then trivially fl¢] = f'[¢],
where [p] is taken in H;(G) and in Hy(|G|), respectively.

Since f' is a homomorphism with image C (G) (see Section 4.3), Lemma
6.1 implies that so is f. Indeed, for a proof that f([¢]) € C(G) consider the
finite oriented cuts F of G , and apply Theorem 2.10 to any finite subchain
¢’ of ¢ containing all the simplices that meet this cut. The proof that f
is surjective is the same as in Section 4.2: every element of C (G) has the
form f([7]) with 7 a single loop. Thus in fact,

C(G) C f(H\(®)) C C(G)

with equality.

Our final goal is to show that f is injective. For finite GG, the standard
proof is to rewrite a given cycle z € Z;(G) as a homologous sum of simplices
each traversing exactly one edge. If [z] € Ker f, every edge is traversed
equally often in both directions, and we can pair up the simplices traversing
it accordingly. Each pair is a boundary, and hence so is z.

The reason why this proof does not work for f" on H;(|G|) is that the
simplices even in a finite cycle can traverse infinitely many edges. The
proof would therefore require us to break up the given finite cycle into a
‘homologous’ infinite chain, which is impossible in H;(|G|).

In our new setup, however, this can indeed be done. In fact, it turns out
that our restriction that any boundary chains to be added must be locally
finite exactly strikes the balance between being restrictive enough to rule
out counterexamples like ¢ in Section 6.2.1 and being general enough to
allow the subdivision into chains of single edges even of complicated cycles
like our non-injectivity example from Section 4.3.

This is shown in the following lemma. Although its proof looks some-
what technical, the idea is very simple, so let us describe it informally first.
Consider a 1-simplex 7 traversing infinitely many edges. Our task is to
‘subdivide it infinitely often’, into 1-simplices o1, 09, ... each traversing ex-
actly one edge, by adding a locally finite sum of boundaries. We begin by
targeting the first pass of 7 through an edge, e = wv say. Let o; be this
pass, and let 7/ and 7”7 be the segments of 7 before and after o;. We now
subdivide 7 at u and v: we add to 7 the boundary 7 + oy + 7" — 7, to
obtain the chain 7"+ o1 +7”. Next, we target the second pass of 7 through
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an edge, oo. If this is a pass of 7/, say, with segments « and § before and
after oo, we add the boundary «a + o9 + 3 — 7/ to insert oy into our chain
while eliminating 7’. Doing this for all passes of 7 in turn should leave us
at the limit with only the chain o 4+ 05+ ..., since all other simplices are
eliminated again when the earliest pass they contain is targeted. The main
task of the formal proof of this, except for the inevitable book-keeping, is
to ensure that all the boundaries we add do indeed form a locally finite
chain, i.e. an element of B (G).

Lemma 6.2. For every z € Z{(G) there exist a chain ¢ = ), ,0; €
Z1(G) and a chain b € B1(G) such that z + b = ¢, every o; maps [0, 1]
homeomorphically to some edge e, and all these edges e as well as the
images of the simplices in b are contained in the image of the 1-simplices
n z.

Proof. By the additivity of Z](G), we may clearly assume that z is an
elementary cycle consisting of a single loop 7y that is based at a vertex and
is not null-homotopic. In particular, 7y traverses an edge. Since 7y traverses
every edge only finitely often (Lemma 2.9), 7y contains only countably
many passes through edges, 71, 1, . . . say, which we reparametrize as maps
from [0, 1].

In each of at most w steps we shall add to our then current finite cycle

n
Zy = E o; + 5 T;
i=1

Jj€JIn

(which initially is zy = 79) finitely many simplices o; or 7; with coefficients 1
or —1 so that the sum of simplices added lies in By (G). We shall make sure
that all these simplices added or deleted form a good family; in particular,
their sum will not depend on the order of summation, although this order
will help us with our book-keeping. The result will be a chain of the form
> ic1 0i T > ey 7j in which every 7; is a null-homotopic loop (in particular
0 ¢ J) and the o; are those required in the statement of the lemma.

We shall choose the z, inductively so as to satisfy the following condi-
tions, which hold for n = 0 with Jy = {0}:

(i) o1,...,0, and all 7; (j € J,) are paths in |G| between (possibly
identical) vertices;

(ii) if n > 1, every 7; (j € Jy) is a segment of some 7; with i € J,_y;

(iii) if n > 1, there exists j(n) such that J,_1 \ J, = {j(n)} and the finite
chain by, := on — Tjtn) + 2 yc g\, T lies in Bi(G);

(iv) o, is homotopic to m, relative to {0,1};
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(v) suitably reparametrized, (7,41, T42,...) is the family of all edge-
passes of the paths 7; (j € J,); specifically, the edge-passes in the
paths 7 with j" € J,, \ J,_1 are precisely those in Tj(n) other than m,.

Assuming that z, ; satisfies these conditions, let us define z,. If m,
does not exist, we terminate the construction, putting I := {1,...,n — 1}
and J := J,_;. If it does, then by (v) for n — 1 there is a unique j € J,,_1
such that m, is an edge-pass in 7;. The path 7; is a concatenation of three
segments «, m,, and §, where o and 3 may have trivial domain. Let J, be
obtained from J,,_; by removing j =: j(n) and adding new indices j’, j” for
a =: 7 and § =: 7;» whenever these maps are paths (i.e., have non-trivial
domain), reparametrizing each to domain [0, 1]. Let o, be an injective path
that is homotopic to 7, relative to {0,1}. Clearly, z, again satisfies the
conditions. If the process continues for w steps, we complete it by putting
I':=N, and letting J := [, ey Uj,, & consist of those j that are eventually
in J,.

Let us take a look at the simplices 7; with j € J. By definition of J,
we have j € J, for all large enough n. By (i) and (ii), 7; is a segment of 7,
between two vertices, and by (v) it contains none of the passes 7y, 7o, .. ..
So it does not traverse any edge. Hence,

7; 18 a null-homotopic loop based at a vertex. (6.1)

Notice that for only finitely many j € J can 7; be based at the same
vertex v. Indeed, given j € J, let n be the unique integer such that
J € Jn\ Jn—1. Then, since 0 ¢ J, 7; is a segment of 7y followed or preceded
by m,, and hence 7, is a pass through an edge at v. Since 7y contains only
finitely many such passes, this can happen for only finitely many n, and
indices j first appearing in J,, for different n are distinct.

Next, let us show the following:

The family of all simplices added or deleted in the construc-
tion, that is, of all 0, i € I, all 75, j € J, and all 7j(), is (6.2)
locally finite and hence good.

To prove (6.2), let x be any point in G. If x is a vertex, let E, be the
set of edges at x; if € € for an edge e, let E, := {e}. Choose an
open neighbourhood U of = contained in |J E,. Since 7y traverses each
edge in E, only finitely often, only finitely many of the paths o;, © € I,
meet U. Similarly, any path 7; with j € J that meets U must be based at a
vertex incident with an edge in E,. Since there are only finitely many such
vertices, and at each only finitely many 7; are based, only finitely many
7; with j € J meet U. Finally, consider a path 7;(,). This path traverses
an edge (in m,), so if it meets U it must also traverse an edge in E, or
adjacent to an edge in E,. Only finitely many of the passes 7 traverse
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such edges. By (v), any 7; containing 7, satisfies j € J; U --- U Ji_q, so
j(n) € JyU---UJg_4 for the largest such k. Since this is a finite set and the
map n — j(n) is injective, only finitely many n are such that 7;(,) meets U.
This completes the proof of (6.2).

To complete the proof of the lemma, we show that z +b = ¢ for b :=
> ierbi — D2 jes 7jy and in particular that b € B(G). By (6.2), the family
of all simplices in b is good, so b € B;(G) by (iii) and (6.1). Likewise, the
family of all o; is good. Since

Z+Zbi:ZUi+ZTj

iel icl jed
by construction, we deduce that z4+b= 3., 0; = ¢ as desired. O

We can now easily complete the proof that our function f: H;(G) —
C (@) is injective. Consider any [z] € Ker f. As z € Z,(G), it has a stan-
dard representation as z = »_._;2; with all z; € Zj(G). By Lemma 6.2,
there are b; € Bi(G) (j € J) such that z; + b; = ¢;, where ¢; = >, 0
is a chain of simplices each traversing exactly one edge, and these edges as
well as the images of the simplices in b; lie in the image of z;. The fact
that z is a locally finite chain therefore implies that so are

b::ij andcp::Zgoj.

jed jeJ

Indeed, every x € GG has an open neighbourhood U that meets the images
of simplices in z; for only finitely many j; let J, be the set of those j.
Hence U does not meet the images of any simplices in b; or ¢, for j ¢ J,.
For each j € J,, we can find an open neighbourhood U; C U of z that
meets only finitely many simplices in b; or ¢;, because b; and ¢; are well-
defined chains. The intersection of these finitely many U; thus is an open
neighbourhood of = that meets only finitely many simplices in b or in ¢,
showing that b and ¢ are well-defined chains.

For I := J;c;1;, we thus have Z; 3 2 +b = ¢ = >, ;0;, with
b € Bi(G). Since [z] € Ker f, we thus have [p] € Ker f. Therefore
the loops formed by the elementary cycles in ¢ = >, ; 0; traverse, in
total, each edge of G equally often in both directions (see Lemma 4.2).
Since each of the o; traverses precisely one edge, we can thus pair them
up into cancelling pairs o; + 0y € By(G), where o; and oy traverse the
same edge but in opposite directions. Hence ¢ = >"._. 0; € B1(G), giving
z =@ —be B (G) as desired.

iel
We have thus shown that f is a group isomorphism between H;(G)
and C(G). Moreover, if we restrict f to those homology classes that are

represented by finite cycles, then by Lemma 4.4 and the fact that f and f’
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coincide on finite cycles we obtain that this this restriction is still onto and
hence an isomorphism. This implies that all homology classes have finite
representatives. We thus have our first main result of this chapter:

Theorem 6.3. The function f is a group isomorphism between Hi(G) and

C(G). Moreover, for every class ¢ € Hy(G) there is a finite cycle z € Z|(G)
with ¢ = [z].

6.3 A new homology for locally compact
spaces

In this section we define a homology theory that implements the same ideas
as our ad-hoc homology of Section 6.2, but which will satisfy all the usual
axioms. To achieve this, we shall encode all the properties we need into
the definition of chains—rather than restricting both chains and cycles, as
in Section 6.2. Our homology will also be defined for disjoint unions of
compactifications, i.e. for X = | | X, and X = | | X; where cach X}, is a
compactification of Xj. Nevertheless, we will start with the definition for
compact X and then extend it to unions of compactifications.

Let X be a locally compact Hausdorff space, and let X be a Hausdorff
compactification of X. We define admissible families and n-sums as in
Section 6.2. All other notation will now be defined differently.

In order to capture C(G) in dimension 1 for locally finite graphs, we have
to consider chains consisting of infinitely many simplices, by Theorem 4.1.
On the other hand, if one allows infinite chains without further restrictions,
one obtains cycles like ¢ in Figure 6.1, which does not correspond to an
element of C(G). The solution to this dilemma is to allow infinitely many
simplices only if they are of a certain type.

Call a singular n-simplex ¢ in X degenerate if it is lower dimensional in
the following sense: There is a compact Hausdorff space X, of dimension at
most n—1 such that o can be written as the composition of continuous maps
A" — X, — X. (Note that X, is normal as it is compact and Hausdorff.
Hence the topological dimension of X, is defined as in Section 2.1) The idea
behind this definition is that the 2-simplices whose boundaries are added
to a l-simplex to subdivide it, like in the proof of Lemma 6.2, are easily
seen to be degenerate, and we need to be able to add infinitely many of
those simplices. (In fact, all 2-simplices in |G| are trivially degenerate by
Lemma 2.8)

As the empty space is the only space of dimension —1, and every 0-
dimensional space is totally disconnected, we have that no singular 0-
simplex is degenerate and a singular 1-simplex is degenerate if and only
if it is constant.
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Denote by C/(X) the group of equivalence classes of n-sums. (Recall
that two n-sums are called equivalent if every n-simplex appears equally
often—taking account of the multiplicities A\;—in both sums.) As before,
the elements of a class ¢ € C! (X) are its representations, its unique repre-
sentation Y \;0; with pairwise distinct o; is the reduced representation of
c. We call ¢ good if the simplices o; in its reduced representation are de-
generate for all but finitely many ¢ € I. An n-chain in X is an equivalence
class ¢ € C/ (X) that can be written as ¢ = ¢;+0dcq, where both ¢; € C)(X)
and ¢, € C)_,(X) are good. In other words, c is an n-chain if and only
if it has a representation Zie ; Aio; for which I is the disjoint union of a
finite set Iy, a (possibly infinite) set I;, and finite sets I;, j € J, such that
each 0;, i € I, is degenerate, and each sum ) . I A;o; is the boundary
of a degenerate singular (n + 1)-simplex.® We call such a representation
a standard representation of c¢. Note that a standard representation will
not, in general, be a reduced representation, and vice versa, a reduced
representation does not have to be standard.

We write C,,(X) for the group of all n-chains in X. As usual, we write
Zn(X) :=Ker 0, and B, (X) :=Im 0,,1. The elements of Z,, are n-cycles,
those of B,, are boundaries. Clearly, B, C Z,, so we can define the homology
groups H,(X) := Z,/B, as usual.

Since a cycle ¢; + dcy as above represents the same homology class as
c1 does, we have at once:

Proposition 6.4. Every homology class is represented by a good n-cycle.

As no singular 0-simplex is degenerate, this means that every homology
class in Hy(X) is represented by a finite O-cycle. Moreover, as every de-
generate 1-simplex is constant and hence equivalent to the boundary of a
constant (and thus degenerate) 2-simplex, we have the same in dimension
1:

Proposition 6.5. Fvery homology class in Ho(X) or in Hi(X) is repre-
sented by a finite cycle.

Let us now define relative homology groups. Consider a closed subset
A of X and write A for the closure of 4 in X. In order to make all
the axioms work, we additionally require the boundary of Ain X to be
a (compact) subset of X. In the case of graphs and their Freudenthal
compactification, this is the case for instance if A is a component of G—S for
S a finite vertex set. In infinite graph theory, it is an often used procedure to
contract such components (see, for instance, the construction of the graphs

SHence I, contains all indices of the non-degenerate n-simplices in the representation
of ¢; certifying it as a good chain, as well as all indices of the boundary simplices of the
non-degenerate (n + 1)-simplices in the according representation of cs.
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G; in Chapter 5), so for our purposes it does not seem too restrictive to
only consider such subsets. We call (X, A) an admissible pair. Like in
Section 6.2, we have immediately that admissible families of simplices in A
are admissible also in X. Now let C,, (X, A) = C,,(X)/C,(A), let Z,(X, A)
be the kernel of the quotient map C,(X,A) — C,_1(X,A) of 9,, and
B, (X, A) the image of the quotient map C,,41(X, A) — Cn(X, A) of 041,
and define H, (X, A) := Z,(X, A)/B,.(X, A).

Having defined the homology groups for compactifications, we now ex-
tend it to disjoint unions of compactifications as follows: If X = | | X,
X = || X, and A is a closed subspace of X such that for each k the
pair (X, Ax) is admissible, where Ay := AN X}, we call (X, A) an ad-
missible pair. For an admissible pair (X, A), define C, (X, A) as the direct
sum @ C,, (X, Ag). The homology groups H, (X) and H, (X, A) are then
defined in the obvious way.

Our earlier definitions of admissible families, n-sums, and n-chains for
compact X also extend naturally to disjoint unions X = | | X}, as follows: A
family of singular n-simplices in X is admissible if its subfamily of simplices
in X} is admissible for finitely many k& and empty for all other k. (Note that
every simplex lives in a unique X}, as we assumed the X, to be disjoint.)
An n-sum in X is a formal sum ), , \jo; where (0;);c; is an admissible
family. The equivalence classes of n-sums form a group C/ (X), an element
c of C!(X) is good if it has a representation in which all but finitely many
simplices are degenerate, and an n-chain in X is a class ¢ € C/ (X) that can
be written as ¢ = ¢; + dcp with good ¢; € C}(X) and good ¢, € C), ., (X).
It is easy to see that C,(X), defined earlier as @, C,,(X}), is indeed the
group of n-chains in X.

In standard homology, it is trivial that a chain in X all of whose sim-
plices live in A is also a chain in A. In our case, this is not immediate: If
all simplices in the reduced representation of a chain in X live in fl, this
does not imply directly that there is a standard representation all whose
simplices live in A. Indeed, if there is an infinite admissible family of de-
generate (n + 1)-simplices that do not live in A but whose boundaries do,
then the sum of their boundaries is the representation of an n-chain in
X, and all simplices in the reduced representation of this chain live in A.
But as soon as this reduced representation consists of infinitely many non-
degenerate n-simplices, we do not know whether it does also represent a
chain in A. Here we can use that (X, A) is an admissible pair: As each
Ay, has a compact boundary that is contained in X}, there is no admissible
family as above. An one can indeed show that a chain in X is a chain in A
as soon as their simplices live in A. More generally, we have the following:

Lemma 6.6. Let ), ., \ijo; be a reduced representation of a chain ¢ in X

and let I' C I be the set of those indices with Im o; C A. Then Ziel, AiO;
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is the reduced representation of a chain cy in A.

Proof. Choose a standard representation of ¢, i.e.

c = Z)\lO'Z—FZ)\ZO',L +Z)\ja7'j, (63)

i€lp i€l jeJ

where Ij is finite and each simplex oy, ¢ € I}, and 75, j € J, is degenerate.
Note that not all simplices occurring in this representation have to live in
A, this only has to hold for the n-simplices that are part of the reduced
representation of c.

Let I, C Iy, I{ C I;, and J' C J be the index sets of those simplices
that live in A. Let further (0% )kex be the family of those n-simplices living
in A that are a face of some 7; with j € J\J', and let A, be the multiplicity
in which oy occurs in the sum ), ;\ 5 A;07;. Note that K is finite since
every 7;, j € J\ J', with a face o, k € K, meets the compact boundary
of A and (7;);e s\ is admissible. Now the n-sum

Z )\io_i + Z )\iai + Z )\jaTj + Z )\kak (64)

i€l iel] JjeJ’ keK

is a standard representation of a chain c4 in A, and by construction the
reduced representation of c, is precisely >, ;, A\jo;: Each simplex in (6.4)
also occurs in the representation from (6.3), and it does so in the same
multiplicity. Hence all simplices in (6.4) occur with the same multiplicity
in the reduced representation of ¢ and c4, showing that c4 is represented

by Zie]’ )\102 ]

The homology defined in this section captures C in dimension 1. We will
prove this in Section 6.6 using Theorem 6.3, but first we show in Section 6.4
that it is indeed a homology theory.

6.4 Verifying the axioms

In this section we show that the homology theory we defined satisfies the
axioms for homology (see Section 2.3). As a preliminary step we have
to show that continuous functions between spaces induce homomorphisms
between their homology groups. This will not work for arbitrary continuous
functions: As we distinguish between ends and other points, our functions
will have to respect this distinction.

Let locally compact Hausdorff spaces X ,X and Y, Y be given, where
X =] Xk and X = L] X, with X}, a compactification of X, and similarly
for Y = |]Y,. Let A C X and B C Y be closed subspaces such that
(X, A) and (Y, B) are admissible pairs. As before, we write A and B for
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the closures of A in X and B in Y, and note that A\ A C X \ X and
B\ B CY\Y. Let us call a continuous function f: X — Y a standard
map if f(X) C Y and f(X\ X) C Y\ Y. If, in addition, f(A) C B,
we write f: (X, A) — (Y, B). (As before, we refer to X even though the
functions live on X.)

Let us show that every standard map f : (X, A) — (Y, B) induces
a homomorphism f, : H,(X,A) — H,(Y,B), defined as follows. For a
homology class [c] € H,(X, A), choose a standard representation ) .., A\io;
of ¢ and map [c] to the homology class in H,(Y, B) that contains the n-
cycle represented by > .., A; fo;. In ordinary singular homology this map is
always well defined. To see that it is well defined in our case, note first that
f preserves the equivalence of sums, maps boundaries to boundaries, and
maps degenerate simplices to degenerate simplices. Hence all that remains
to check is that f maps chains to chains. The following lemma implies that
it does:

Lemma 6.7. For every standard map f : (X, A) — (Y, B), if (0i)ier is
an admissible family of n-simplices in X (resp. A), then (foi)icr is an
admissible family of n-simplices in'Y (resp. B).

Proof. As f is standard and (o;);c; is admissible, every fo; maps the 0-
faces of A™ to Y. It therefore remains to show that every y € Y has a
neighbourhood that meets the image of fo; for only finitely many 7. Let
U be a compact neighbourhood of 3 in Y, its preimage f~!(U) is a subset
of X = | | X that is closed in X as f is continuous. Hence f~'(U) N X}
is compact for each k. Since (0;);c; is admissible, it contains simplices in
only finitely many X, and as the subfamilies of simplices in those X}, are
admissible, only finitely many o; meet f~(U). Hence U meets the image of
fo; for only finitely many i and hence (fo;);es is admissible. The analogous
claim for A and B follows as f(A) C B. O

By Lemma 6.7 the map ) ., \io; — > ..; A\ifo; defines a homomor-
phism
fi: Co(X,A) — C,(Y, B)

with df; = f;0, i.e. fy is a chain map. Thus every standard map f :
(X,A) — (Y, B) induces a homomorphism f, : H,(X,A) — H,(Y,B). It
is easy to see that if g : (Y, B) — (Z,C) is another standard map we have
(9f)+ = g« f«, and that 1, = 1.

We thus have shown that our homology admits induced homomorphisms
if the continuous functions satisfy the natural condition that they map ends
to ends and points in X to points in Y. We now show that, subject only
to similarly natural constraints, our homology satisfies the axioms for a
homology theory.

We will verify the axioms in the order of Section 2.3.
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Theorem 6.8 (Homotopy equivalence). If standard maps f,g: (X, A) —
(Y, B) are homotopic via standard maps (X, A) — (Y, B) then f. = g..

Proof. Denote by F' = (fi):c[0,1) the homotopy between f and g consisting
of standard maps f; : (X, A) — (Y, B) and satisfying fo = f and f; = g.
We first consider the absolute groups H,(X), H,(Y).

The main ingredient in the proof of homotopy equivalence for standard
singular homology is a decomposition of A™ x [0, 1] into (n + 1)-simplices
Do, ..., D, (seeeg. [34]). This decomposition works as follows: In A™x|0, 1]
let A" x {0} =: [vo,...,v,] and A" x {1} =: [wy,...,w,], and put D; =
[V, - .., Vj,wj, ..., wy,]. Each D; is an (n+1)-simplex, and hence the natural
map between A" and D; is a homeomorphism which we denote by 7;.

In standard singular homology, for an n-chain z = >, ., Ajo; in X one
considers the (n + 1)-chain

ZZ 1Y NFo(o;x1)oT; (6.5)

i€l j=0

in Y, where o x 1: A" x [0,1] — X x [0, 1] is the map (a,b) — (o(a),d),
and then shows that 0P (z)+ P(0z) = g4(2) — fy(2). If z is an n-cycle, then
9s(2) — fi(2) = OP(z) + P(0z) = 0P(z), thus ¢s(z) — f4(2) is a boundary,
which means that gy and f; take 2 to the same homology class and hence
Fel2]) = gu([2])-

In our case, we first have to show that, given an n-chain z in X with
representation ) ., \;o;, the expression P(z) in (6.5) is indeed an (n + 1)-
sum, i.e. that (Fo(o; X 1)07;)icr jefo,....n} is an admissible family of (n+1)-
simplices in Y. Then we have to show that the ¢ € C, ., represented by
P(z) has a standard representation. If these two claims are true, we will
also have 0P (z) + P(0z) = gs(2) — fi(2) and hence f.([z]) = g.([2]).

To show that the family (F' o (0; x 1) o 7j)icrjefo,..n} 1S admissible,
note first that, since (0;);cs is an admissible family of simplices in X, their
images meet only finitely many Xj; let X~ be their (compact) union. Now
let y € Y be given, and choose a compact neighbourhood U of y. As Y is
Hausdorff, U is closed in Y. Consider the preimage of U under F'. As U is
closed and F is continuous, this is a closed subset of X~ x [0, 1], and hence
compact. Its projection

-----

U:={reX|3tel0,1]:F(z,t) U}

to )A(*, then, is also compact. Since U C Y and each f; is standard, we
have U € X , SO U meets Im o; for only finitely many 7. And for only those
i does U meet the image of any F o (0; x 1) o7;, j € {0,...,n}. Hence
P(z) is an (n + 1)-sum.

To verify our second claim, let [z] € H,(X) be given, and assume
without loss of generality that z is good (cf. Proposition 6.4), i.e. it has
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a representation ), ; A;o; such that only finitely many of the o; are not
degenerate. We show that if o; is degenerate then F o (o; x 1) o 7; is
degenerate for each j; from this it follows directly that P(z) as stated in
(6.5) is a standard representation of an (n + 1)-chain in Y.

Suppose that o; is degenerate; then there is a compact Hausdorff space
X,, of dimension at most n — 1, and continuous maps a: A" — X, and
B: X,, — X with o, = foa. Now let v : A" — X_ x [0,1] be the
composition of the natural map 7; from A" to D; C A" x [0, 1] and the
map a x 1 from A" x [0, 1] to X,, x[0,1]. Then Fo(o;x1)oT; = (Fof)or,
so all that remains to show is that X,, x [0,1] has dimension at most n.
But this is immediate by Lemma 2.3 and the fact that X, has dimension
at most n — 1 while [0, 1] has dimension 1.

We thus have f, = g, : H,(X) — H,(Y). As P takes sums in A to
sums in B, the formula 0P + PO = g4 — f; remains valid also for relative
chains, and thus we also have f, = g.: H,(X, A) — H,(Y, B). O

Theorem 6.9 (The Long Exact Sequence of a Pair). There are boundary
homomorphisms 0: H,(X,A) — H,_1(A) such that

L

s Ho(A) — Hoy(X) —=> H, (X, A)

is an exact sequence, where v denotes the inclusion (A,0) — (X,0) and 7
denotes the inclusion (X,0) — (X, A). These boundary homomorphisms
are natural, i.e. given a continuous map f: (X, A) — (Y, B) the diagrams

HH(X7 A) L> n—l(A)

| |

commute.

Proof. As clearly Im ¢; = Ker my we have a short exact sequence of chain
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complexes

O O (A) — 2 O (A) — 2 O (A) 2
ty Ly Ly

L9 1 (X) 9 Co(X) 9 C’n_l(X)*a>«~

4 ”ﬁ f

2 O (X A) L= O (X, A) 2 O (X, A) 2

0 0 0

It is a general algebraic fact (see eg. [34]) that for every short exact sequence
of chain complexes there exists a natural boundary homomorphism 0 of the
corresponding homology groups giving the desired long exact sequence. [

Theorem 6.10 (Excision). Let (X, A) be an admissible pair and let B be
a closed subset of X such that the interiors int A of A and int B of B

cover X. Then the inclusion (B, AN B) — (X, A) induces isomorphisms
H,(B,ANB) — H,(X, A).

To prove Theorem 6.10, we first sketch the proof of excision for ordi-
nary singular homology, and then point out the differences to our case.
We start with barycentric subdivision of simplices. The aim is to find a
sufficiently fine barycentric subdivision so as to construct a homomorphism

from Cy(X) to Co(A + B) i= Cy(A) + Co(B) C Gy (X).

Lemma 6.11. For every n-simplex [vy,...,v,| there is a finite family of
degenerate simplices A" — v, ..., v,| such that adding the boundaries of
those (n+1)-simplices, as well as the n-simplices in the corresponding fam-
ilies of the (n—1)-faces of [vo, ..., v,], to the natural map vy, . .., v,] yields
the sum of simplices in its barycentric subdivision (with suitable signs).

Proof. Induction on n. The lemma is clearly true for n = 0. For n > 0,
let b be the barycentre of [vg,...,v,]. Then [vy,...,v,] is homologous to
Soro(=1)FA, with Ay, := [b,vg, ..., 0k, .., vy], since it differs from this
sum by the boundary of the degenerate (n + 1)-simplex [b, vy, ..., v,]. By
induction, every (n —1)-face of [vy, ..., v,] is homologous via boundaries of
degenerate simplices to a sum of the simplices in its barycentric subdivision
plus a sum of (degenerate) simplices for each of its (n —2)-faces. Hence Ay,
being the cone over the (n — 1)-face [vg,..., 0k, ..., v,] is a corresponding
sum of boundaries of degenerate simplices one dimension higher. As each
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(n — 2)-face appears equally often as a face of an (n — 1)-face of [vg, ..., v,]
with positive and negative sign, so does the sum of (degenerate) simplices
belonging to this face. Hence those sums cancel in the sum of all bound-
aries, which implies that [vy, ..., v,] is homologous to a sum of the desired
type. O

For every singular n-simplex o, let T'(¢) be the sum consisting of the com-
positions of ¢ and each of the degenerate (n + 1)-simplices provided by
Lemma 6.11 applied to A™, and let S(o) be the sum of restrictions of o to
the simplices in the barycentric subdivision of A™. Then Lemma 6.11 says
that (with appropriate choice of the signs in 7" and S)

IT (o) =0 —T(90) — S(0).

Now S and T extend to a chain map S : C,(X) — C,(X), that is, a
map with S = S0 (which follows immediately from the definition of the
barycentric subdivision), and a map 7" : C,,(X) — Cy41(X) with

AT +Td=1- 5. (6.6)

Next, let us define, for every positive integer m, the map D,,: C,(X) —
Chn11(X) like in standard homology, i.e. Dy, := > .., T'S’. Note that

0Dy + Dpd = 1 — S™ (6.7)

by (6.6) and the fact that S is a chain map.

Finally, define maps D: Cp,(X) — Cp11(X) and p: Cp(X) — Cn(A+B)
as follows: For every singular simplex o, let m(o) be the smallest number
m for which every simplex in S™ (o) lives in the interior of A or of B. Now
define D(0) := Dy (o) and extend linearly to C,,(X). The map p is defined
by p(c) = S™)(0) + Do) (00) — D(90) and extending linearly. Note
that p(o) is indeed in C,(A + B), see [34]. With this notation, we have

0D+ DO =1 — 1p, (6.8)
where ¢ is the inclusion C,, (A + B) — C,,(X). Moreover, we clearly have
pv=1. (6.9)

The relations (6.8) and (6.9) are the main ingredients for the proof
of excision in the case of standard singular homology. In the case of our
homology, we have to confront three major problems in order to define
D and p so as to satisfy (6.8) and (6.9):"7 Firstly, these maps will map a
singular simplex to a sum of simplices, but the underlying family of this

"In order to avoid confusion with the notation of the case of standard homology, we
will from now label the maps from standard homology by adding the index g,.
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sum need not be admissible as its simplices may map 0-faces to ends. Hence
we have to change the maps so that the simplices in their image map 0O-faces
to X. The second problem is that, while we change the image simplices,
we have to ensure that each of them still lives in the interior of A or of B.
Hence we are not allowed to change them too much. The third problem
will be to guarantee that the image of a chain is a chain, i.e. that it has
a standard representation. We shall overcome the first two problems by
subdividing the simplices at points that are mapped to X contrary to the
barycentres of A™ and its faces.

To make this precise, we define the notion of a o-pseudo-linear m-
simplex, where o is a given singular n-simplex. See Figure 6.3 for a low-
dimensional example. Let points wo, ..., Wy, w}, ..., w, € A", m > 1, be
given such that ¢ maps each w} to X and each w; with w; # w! to X \
X. The o-pseudo-linear m-simplex with centre [wy, ..., wy,| and antennae
w;w;, 0 <i<m,is a singular simplex 7 : A" — [wy, ..., wy,] U UL, ww]
defined as follows. Let v, ...,v], be the vertices of A™ and consider the
following simplex [vg, ..., v, € A™: Put v; := v} if w; = w} and v; =
— (21}2 + D i vé) otherwise. Then map [vg, ..., vy,] to [wo, ..., wy,] by
sending v; to w; and extending linearly, and map each line v;v} to the line
w;w;. Call the union of [vg, ..., v, and the lines v;v} the kernel of A™ with
respect to the points w; and wy.

For m = 1, this already defines the simplex 7. For m > 1 and each [-face
of [vg,...,v,] (1 <1< m) define 7 on the kernel of this face (with respect
to the corresponding w; and w}) the same way it is defined on the kernel
of A™. Now consider a point x on the boundary of [v,..., v, and write
x =y ", wvl. For every face D of [vg,...,v,] that contains z, spanned
by the vertices v;, ¢ € I say, we say that the projection

Tp: ! Z v}
5 Zie] i icl it
of x to the corresponding face of A™ is associated with = (see Figure 6.3).
Note that xp lies in the kernel of this face of A™ and that 7 maps x and zp
to the same point in the corresponding face of [wy, . .., w,,|. Together with
x these points xp span internally disjoint simplices as follows: For every
maximal descending sequence D,,, D,,_1, ..., D} of faces that contain z,3
the points xp; span an (m — k)-simplex, where the number £ depends on z
but not on the choice of the sequence. For a point on a line v;v, we obtain
a set of (m — 1)-simplices defined in the same way. It is easy to see that
these simplices are disjoint for distinct points x,y and that they cover all
of A™ apart from the interior of its kernel. We can thus define 7 on each
such simplex as the constant function with image the image of x.

8Note that D,,, = [vo,..., V] and hence xp, = x. Furthermore, Dy, is the (unique)
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Figure 6.3: A singular 2-simplex ¢ in X and a o-pseudo-linear 2-simplex 7
with centre [wy, w1, ws] and antennae w;w}, where wj, = wy and w| = wy.
The points wy, wy, and w) are mapped to X, the point ws is mapped to
an end. The simplex 7 is constant on each of the grey lines on the left.

The definition of o-pseudo-linear simplices immediately yields that the
boundary of a o-pseudo-linear (m + 1)-simplex 7 is the sum (with appro-
priate signs) of the o-pseudo-linear m-simplices with centres the m-faces
of the centre of 7 (and the corresponding antennae). This implies

Lemma 6.12. If an m-simplex [wy, . . ., w,] € A™ is homologous to a sum
of m-simplices, then this remains true if we choose a point w' for every
vertex w of those simplices and replace each simplex S by a o-pseudo-linear

simplex with centre S and antennae all lines from a vertex w of S to its
w'. O

The maps D and p will map a singular simplex ¢ to a sum consisting
of compositions of ¢ and o-pseudo-linear simplices, and correspondingly
a chain ¢ to a sum of compositions with o-pseudo-linear simplices for all
simplices ¢ in a representation of ¢ still to be chosen. In order to choose
the antennae of the o-pseudo-linear simplices, we shall use a subset B’
of B defined as follows: For every point in the boundary of A, choose a
compact neighbourhood that is contained in B. This is possible because
the boundary of A is contained in X—since (X, A) is an admissible pair—
and because X \ int A Cint B. Since the boundary of each A, = An X,
is compact, finitely many such neighbourhoods suffice to cover it. Let B’
be the union of B \ A and the neighbourhoods for all k. Write B’ for the
closure of B’ in X. Note that the interiors of A and B’ cover X and that
the boundary of each B, = B' N X}, is a compact subset of X.

Now consider a singular n-simplex o. Let b be the barycentre of A™.
If o(b) € X, then we set 0’ := b. Otherwise consider the line bug, where
A" =: [ug, . .., uy|, see Figure 6.3. As X \ X is closed and o is continuous,

face of [vg,...,vn] of smallest dimension that contains x.
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there is a last point BA on this line for which o(bb) € X \ X. Since the
boundaries of A and B are contained in X, we can find a point ' on the
line bug so that

if o(b) lies in the interior of A then so does o(bV) (6.10)

and
if o(b) lies in the interior of B' then so does o(bl'). (6.11)

Proceed analogously if b is a barycentre of a face of A™. The only difference
is that we consider the line buj;, where j is the smallest index with wu;
belonging to that face. It is not hard to see that the points b’ can be
chosen so that, for singular simplices with a common face, the choices of
the points on this face coincide.

We are now ready to define the maps D and p. For every singular
simplex o, let m(o) be the smallest number m for which every simplex in
S (o) lives in the interior of A or of B’. Now for a chain ¢ € C,,(X) with
reduced representation ¢ = ) ., A\;0;, consider the sum

Z Ai( Do) )in(07)

il

and define D(c) to be the sum obtained from the above sum by replac-
ing each simplex in each (Dy,(s,))an(0:) by the composition of o; and a
o;-pseudo-linear simplex defined as above. (Note that each simplex in
(Dim(o:))fin(0;) is the concatenation of o; and a standard map of a simplex
in A™.) For p, consider the sum

> (SE(03) + (Do) 007) = Din(907) )

i€l

and again replace each simplex in it by the composition of o; and a o;-
pseudo-linear simplex so as to obtain p(c).

We need to show that D(c) and p(c) are indeed chains, i.e. that they
have a standard representation. For both sums, the underlying families of
simplices are admissible as the family (o;);c; is and both D(¢) and p(c)
consist of finitely many restrictions of each o; (with their 0-faces mapped
to X). Now D(c) clearly has a standard representation since each of its
simplices can be written as o;07 with 7: A" — A" and thus is degenerate.
A standard representation of p(c) can be found by combining standard
representations of dD(c), D(0c), and ¢, according to (6.8). Hence D(c)
and p(c) are chains.

Proof of Theorem 6.10. Since the inclusion ¢ : C,, (A + B) — C,,(X) maps
chains in A to chains in A, it induces a homomorphism C,(A + B, A) —
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Ch(X,A). By (6.8) and (6.9) we obtain that for an n-cycle z in C,,(A+B, A)
orin Cp,(X, A) the sum (por)(2)—z, respectively (top)(z)—z, is a boundary.
Hence we have p, o, = 1 and ¢, 0 p, = 1 and thus ¢, : H,(A+ B, A) —
H, (X, A) is an isomorphism.

We claim that the map C,,(B)/C,,(ANB) — C,(A+ B)/C,(A) induced
by inclusion is an isomorphism and thus induces an isomorphism H, (B, AN
B) — H,(A+ B,A). Then we will have H,(B,AN B) ~ H,(X,A) as
desired. Indeed, C,,(A+ B)/C,(A) can be obtained by starting with C,,(B)
and factoring out those chains whose reduced representation consists of
simplices living in A (and hence in ANB ). By Lemma 6.6 and the fact that
the boundary of each Ay, and each é; is a compact subset of X, the latter
are precisely the chains in C,,(AN B), hence the map C,(B)/C,(ANB) —
Cn(A+ B)/C,(A) is an isomorphism. O

The last axiom follows directly from the definition.

Theorem 6.13 (Disjoint unions). For a disjoint union X = ||, X, (with
X the disjoint union of all X, ) with inclusions v, : Xo — X, the direct
sum map D, (ta), : B, Hn(Xa, Aa) — Hy (X, A), where A = ||, Aq, is

an 1somorphism. O

6.5 Cohomology

The cohomology belonging to the homology constructed in Section 6.3 is
defined as usual by dualization: Given an admissible pair (X, A) and an
abelian group G, the nth group C™(X, A; G) of cochains is the group of ho-
momorphisms from the nth chain group C,, (X, A) (with integer coefficients)
to GG. The boundary operators 0, : C,, — C,_; dualize to the coboundary
operators 6": C"1 — O™ by letting 6" f := f 0 0,. In analogy to the nota-
tion for homology, the group Ker 6"*! of n-cocycles is denoted by Z", while
B"™ denotes the group Im 0" of n-coboundaries. The cohomology groups are
then defined by H" := Z"/B™.

We show that this cohomology satisfies the axioms for cohomology. The
proofs will be easier than the proofs of the axioms for homology as we can
use the results of the last section.

As in the case of homology, we first have to show that we have induced
homomorphisms. This follows by dualization of the corresponding fact for
homology: Every standard map f: (X, A) — (Y, B) defines a chain map
fi: Cu(X, A) — C,(Y, B) whose dual is a cochain map f*: C"(Y, B; G) —
C"(X, A;G), i.e. which satisfies 6 f* = f*§. Therefore, f* induces a homo-
morphism f*: H"(Y, B;G) — H"(X, A; G). Like for homology, if g: (Y, B)
— (Z,C) is another standard map, then (¢gf)* = f*¢* and 1* = 1.
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Theorem 6.14 (Homotopy equivalence). If standard maps f,g: (X, A) —
(Y, B) are homotopic via standard maps, then f* = g*: H*(Y,B;G) —
H"(X, A;G).

Proof. In the proof of Theorem 6.8 we constructed a chain homotopy P
between fy and g4, i.e. a map P: C,, — Cy41 with OP + PO = g4 — f3. The
dual of P hence is a map P*: C"*! — C" with P*§ + 0P* = ¢* — f* iec. a
cochain homotopy between f* and ¢f. This implies that f* = g¢*. O

Theorem 6.15 (The Long Exact Sequence of a Pair). There are cobound-
ary homomorphisms §: H"(A; G) — H"™ (X, A; G) such that

S HMX, A Q) —— H"(X;G) —“— H™(A; G)

/
Hn+1(X,A; G) * H”+1(X;G) L*>

is an exact sequence, where v denotes the inclusion (A,0) — (X,0) and
denotes the inclusion (X, ) — (X, A). These coboundary homomorphisms
are natural, i.e. given a standard map f : (X, A) — (Y, B) the diagrams

H"(B;G) —>= H"\(Y, B; G)

| 3

H™(A; Q) —= H"(X, A; G)
commute.

Proof. The short exact sequence

T

00— Cp(A) —= Cp(X) —2 O (X, A) —=0
dualizes to
0~ CM(A;G) =2 C"(X;G) <" C™(X, A;G) =~ 0,

where * and 7 denote the cochain maps induced by the inclusions ¢ :
(A,0) — (X,0) and 7 : (X,0) — (X, A). (Note that the cochain maps are
the duals of the corresponding chain maps ¢4 and 7y.) This short sequence
is exact: Injectivity of 7¥ is immediate and so is Ker s = Im7f. The
surjectivity of ¢* follows from Lemma 6.6, since every given homomorphism
¢: Cp(A) — G can be extended to a homomorphism ¢: C,(X) — G by
defining 1 (c) as (ca), where c4 is the chain in A which ¢ defines by
Lemma 6.6. We thus have a short exact sequence of cochain complexes.
Like in the homology case, this gives us the desired long exact sequence. []
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Theorem 6.16 (Excision). If (X, A) is an admissible pair and B is a
subspace of X such that the interiors of A and B cover X, the inclusion
(B,AN B) — (X, A) induces isomorphisms H"(X, A;G) — H"(B,AN
B;G) for all n.

Proof. The chain homotopy D and the chain maps p and ¢ from (6.8)
and (6.9) induce dual maps D*, p*, and ¢* that satisfy the dual equations
p* =1 and 1 — p*v* = D*6 + 0D*. Therefore, +* and p* induce iso-
morphisms between the cohomology groups H"(X;G) and H"(A + B; G).
The inclusion 7: C,(A + B) — C,(X) is the identity on C,(A) and
hence induces an inclusion C,(A + B, A) — C, (X, A) which we also de-
note by w. Therefore, it induces a homomorphism 7*: H"(X, A;G) —
H"(A+ B, A;G). Now by the long exact sequence axiom we have a com-
mutative diagram

HY(X;G)— H" (A + B;G)

H"Y(A;G) —— H" (4: G)

*

H™(X,A;G) —"= H"(A+ B, A; G)

H"(X;G) —“= H"(A+ B;G)

H™(A;G) —X— H"(A;G)

and since the two maps ¢* as well as the two maps 1* are isomorphisms, the
Five Lemma (Lemma 2.17) shows that 7* is an isomorphism H"(X, A; G) —
H"(A+ B, A;G). Since the map C,(B)/Cn,(ANB) — C,(A+ B)/C,(A)
induced by inclusion is an isomorphism, this also induces an isomorphism
C"(A+ B,A;G) — C"(B, AN B;G) and hence an isomorphism on coho-
mology. We thus have an isomorphism H"(X, A;G) — H"(B,AN B;G)
as desired. O

Theorem 6.17 (Disjoint unions). If X = | |, X, with inclusions to: Xo —
X, the direct product map [], (ta), : H"(X, A;G) — ], H"(Xa, Aa; G),
where A = | |, Aa, is an isomorphism.

Proof. This follows immediately from the definition of the chains for dis-
joint unions and the (easy) algebraic fact that the dual of a direct sum is
the direct product of the duals. O
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6.6 Our homology on graphs

In this section we wind up the analysis of our new homology theory in the
case of graphs. We start by computing its homology groups for the case
that the space X is a locally finite graph and X its Freudenthal compact-
ification. In particular, our homology captures (in dimension 1) precisely
the topological cycle space of X:

Theorem 6.18. Let X be a locally finite connected graph and X its Freuden-
thal compactification. Then

(i) mapping a 0-chain in X with finite reduced representation Y A\;o; to
>\ defines a homomorphism Co(X) — Z which in turn induces an
isomorphism Ho(X) — Z,

(ii) the map f defined in Section 6.2.2 defines an isomorphism Hy(X) —
C(X), and

(i) Hn(X) =0 for everyn > 1.

Proof. (i) Asno 0-simplex is degenerate and every degenerate 1-simplex
is constant and hence a cycle, we obtain that every 0-chain has a
finite reduced representation, hence the map defined above is indeed
a homomorphism Cy(X) — Z. Moreover, the boundaries of 1-chains
are precisely the boundaries of the finite 1-chains and hence the group
Hy(X) is the same as in standard singular homology. In particular,
the above map induces an isomorphism to Z.

(ii) By Theorem 6.3 it suffices to prove that our homology coincides with
that of Section 6.2 for X and dimension 1. Let us denote the chain
groups and homology groups defined in Section 6.2 by C’n(X ) and
H,(X), similar for the group of cycles and for that of boundaries.

By Lemma 2.8, every n-simplex in X ,n > 2, is degenerate. Therefore,
every ¢ € C!(X), n > 2, is good, and so we have C,(X) = C/(X) =
C(X) for every n > 2. By Proposition 6.5 every homology class in
H,(X) is represented by a finite cycle, and by Theorem 6.3 the same is
true also for Hy(X). Since Cy(X) = Co(X), we have By (X) = B;(X)
and hence Hy(X) = Hy(X).

(iii) Let n > 1 and an n-cycle z be given; we show that z is a boundary.
To this end, choose an enumeration eg, ey, ... of the edges of X. Let
By be the union of X — ¢y and two disjoint closed half-edges of e,
one at each endvertex. Then the interiors of ey and By cover X. We
may thus apply excision.

Let p be the map C,,(X) — Cy(eg + By) from (6.8) and (6.9). Then
p(z) is the sum of a chain in ey and a chain in B;. The boundary
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of both of those chains is an (n — 1)-cycle in ey N By. As ey N By is
the disjoint union of two closed intervals, all its homology groups of
dimension at least 1 vanish, hence the boundary of the two chains is
also a boundary in eqg N B;. Choose an n-chain in ey N By with the
right boundary and subtract it from our two chains in ey and Bj so as
to obtain cycles zp in €y and 2] in By. Note that zy+ 2] is homologous
to z =: 2.

Now repeat the construction with z7, e;, and By the union of By — e
and two disjoint half-edges of e; so as to obtain cycles z; in e; and
zh in By. Working through the edges e; in turn this way, we obtain
cycles z; in e; and zj,, in B;. Since X is locally finite, for every
vertex v there exists an ¢ such that the component C, of B; containing
v is a closed star around v. In all later B;, this component remains
unchanged, and hence the simplices of 2 living in C, are not touched
by p, i.e. all later z; agree on C; let 2, be the cycle in C, formed by
those simplices.

Since each z; is homologous in B; to z; + 2/, (with By := X), the
family of all simplices in the (n+1)-chains certifying these homologies
is locally finite in X: For every x € X there is an ¢ such that either
x ¢ B; or x is contained in a component C,, of B; (if = is a vertex, then
obviously v = x). In either case there is a neighbourhood around x
that avoids all the (n + 1)-chains of later steps. Since each (n + 1)-
simplex is degenerate, the family of those simlices is admissible.

Thus, z is homologous to the sum of all z; and z,. Since each e; and
each C, has trivial homology in dimension n, each z; is a boundary
in e;, of an (n+ 1)-chain ¢; say, and so is each z, in C,, of an (n+1)-
chain ¢, say. As every point in X has a neighbourhood that meets
only finitely many e; and C,, the infinite sum ) . ¢; + >, ¢, is an
(n + 1)-chain ¢ in X. By construction, dc = z.

O

Note that Theorem 6.18 (i) holds for every connected locally compact

Hausdorff space. Hence for any X = | |, Xj we have Ho(X) = @, Z.

Theroem 6.18 implies that H;(X) is the strong abelianization of the fun-

damental group 7 (X), extending the fact that the first singular homology
group is the abelianization of the fundamental group to locally finite graphs
with our homology. Given a subgroup H of F, the strong abelianization
is defined as follows (see also [10]).

A word w in H is an element of the big commutator subgroup of H if
its domain S can be partitioned into (possibly infinitely many) intervals
Si, 1 € I, so that every word w; := w[.5; lies in H and there is a bijection
p: I — I with wy = w; for every i € I. In other words, the big
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commutator subgroup consists of words that can be split into subwords
which in turn can be partitioned into inverse pairs. This definition is a
direct translation of the definition of the commutator subgroup of a finite
free group, which can be defined the same way but is restricted to finite
partitions of S. The strong abelianization of H is now defined as the
quotient of H over its big commutator subgroup.

In the case of H = m (X) it is easy to see that a word lies in the big
commutator subgroup of m (X ) if and only if every letter apears as often
as its inverse. Thus, the strong abelianization H' of 7 (X) is canonically
isomorphic to a subgroup of the topological cycle space: For an element
h of H' count, for each chord € of the topological spanning tree T on
which our description of 7T1(X ) is based, how often the words in h contain
the letter € and e, respectively, and let An(€) be the difference of those
two numbers. (This difference is well defined by the definition of the big

commutator subgroup.) Then map h to the sum of )\h(g)ée for all chords
of T.

This map clearly is an embedding, and by Lemma 4.5 it is even an
isomorphism. By Theorem 6.18 (ii) this implies

Theorem 6.19. If X is a locally finite connected graph and X its Freuden-
thal compactification, then Hy(X) is the strong abelianization of m(X).

Another aspect of graph (co-)homology mentioned in Section 2.4 is that
homology and cohomology coincide in dimension 1 if the coefficients of the
homology groups lie in the same abelian group G used in the definition of
the cohomology groups. We close this chapter by showing that this does
not remain true for our homology.

To see this, let us study the cohomology group H'(X;Z). The 0-
cochains are the functions X — 7Z (recall that every 0-chain is finite and
hence a 0-cochain is determined uniquely by its images of the 0-simplices).
A 1-cocycle ¢ is a homomorphism from the group of 1-chains to Z that van-
ishes on boundaries. Since two 1-chains differ by a boundary if and only if
they traverse the same edges (Theorem 6.18 (ii)), a 1-cocycle is determined
by its images of (sums of) passes through edges and half-edges. Let T be
a normal spanning tree of X. Then one can define a 0-cochain ¢y so that
¢ + dcy maps each sum of passes through edges of T' to 0. Therefore, we
can characterize the cohomology class [c] by the images of ¢ + d¢y on the
chords of T'. This characterization is easily seen to be an isomorphism ¢
between H'(X;Z) and the group of all homomorphisms ZF(N\ET) _, 7,
If X has at least one non-trivial end, then 7T has infinitely many chords
and H'(X;Z) is canonically isomorphic to the group of homomorphisms
78 — 7.

For each chord e of T, let x. be the element of ZFENEM) which is
1 at the component corresponding to e and 0 elsewhere. The canonical
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homomorphism g: H'(X,Z) — C is now defined by

g(d) = D> s(eDx)Ce.

e€ E(G)\E(T)

For finite graphs, ¢ is known to be an isomorphism. This is not the case
for infinite graphs:

Theorem 6.20. Let X be a locally finite graph with at least one non-trivial
end. Then g: HY(X,Z) — C(X) is not surjective.

Proof. Let z € C be given and write z = ZeeE(G)\E(T) <be(1. A cohomology
class [¢] with ¢([c]) = z has to satisfy ¢([c])(xe) = ¢e. We claim that this
is not possible if infinitely many ¢, are non-zero; this implies Im g = Crn
and hence ¢ is not surjective.

To prove the claim, we need an algebraic notation. An abelian torsion-
free group G is slender if every homomorphism Z* — G maps all but
finitely many x; (with x; being 1 in the component ¢ and 0 elsewhere) to
0. For an introduction to (and some examples of) slender groups, see [29,
Section 94]. It is immediate that subgroups of slender groups are slender,
hence Z, being a subgroup of every torsion-free group, is slender. Thus,
we can have ¢([c])(xe) = ¢. for all chords e if? and only if all but finitely
many ¢, are zero. 0

9This direction is immediate: Every element ¢ of ZZ(G\E(T) has a unique represen-

tation as > ¢ gy m(r) AeXes let @([c]) map ¢ to 3o e pa)\ (1) Aede- Note that this
sum is well-defined since all but finitely many summands are zero.
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Zusammenfassung

Der topologische Zyklenraum C(G) eines unendlichen Graphen G wurde
2004 von Diestel und Kiihn eingefiihrt. Mit seiner Hilfe war es méglich, die
Zyklenraum-Theoreme, welche den Zyklenraum eines endlichen Graphen
mit seinen strukturellen Eigenschaften wie Zusammenhang oder Pléattbar-
keit in Verbindung setzen, auf lokal endliche Graphen zu erweitern. Die
Definition von C(G) wurde dabei auf kombinatorischem Wege mit Hilfe der
Freudenthal-Kompaktifizierung |G| von G gegeben. Ziel der vorliegenden
Arbeit ist die Untersuchung, ob sich C(G) auch iiber eine Homologietheorie
definieren lésst.

Die simpliziale Homologie scheidet als Kandidat hierfiir offensichtlich
aus, niaher untersucht werden die singuldre Homologie (Kapitel 4) und
die Cech-Homologie (Kapitel 5) von |G|. Das Hauptresultat von Kapitel
4 ist, dass C(G) ein echter Quotient der ersten singuldren Homologiegrup-
pe Hi(|G|) ist: Der natiirliche Homomorphismus H;(|G|) — C(G) ist stets
surjektiv aber im Allgemeinen nicht injektiv. Hingegen ist die erste Cech-
Homologiegruppe kanonisch isomorph zu C(G), allerdings geniigt dieser
Gruppenisomorphismus nicht, um die Zyklenraum-Theoreme auf die Cech-
Homologie zu erweitern: Aufgrund der Definition von H,(|G|) als inverser
Limes geht etwa die Information verloren, welche Elemente von H,(|G|)
Kreisen in |G| entsprechen, was jedoch ein entscheidender Bestandteil vie-
ler Zyklenraum-Theoreme ist.

Als Hilfsmittel fiir den Beweis der Nicht-Injektivitdt des Homomorphis-
mus aus Kapitel 4 wird in Kapitel 3 eine kombinatorische Beschreibung
der Fundamentalgruppe von |G| entwickelt, ein bereits an sich wiinschens-
wertes Resultat. Zur Beschreibung von 7 (|G|) werden unendliche Worter
verwendet, deren Buchstaben die Sehnen eines fest gewéhlten topologischen
Spannbaumes von G sind. Die erhaltene Beschreibung liefert als Korollar
eine bekannte Beschreibung der Fundamentalgruppe des Hawazischen Ohr-
rings durch Higman sowie Cannon und Conner.

Das letzte Ziel dieser Dissertation ist die Konstruktion einer Homologie-
theorie, basierend auf singuldren Simplizes, welche das Konzept des topo-
logischen Zyklenraumes verallgemeinert. In Kapitel 6 gelingt dieses Vorha-
ben: Es wird eine Homologietheorie fiir lokal kompakte Hausdorff-Raume
definiert, welche fiir lokal endliche Graphen den topologischen Zyklenraum
als erste Homologiegruppe besitzt und zusétzlich die Eilenberg-Steenrod-
Axiome fiir Homologie erfiillt.
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