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Ocean Surface Wave Measurement Using SAR Wave Mode Data 

Abstract 
Over the ocean, the SAR and ASAR instruments onboard ESA’s ERS and ENVISAT 

satellites are operated in wave mode whenever no other operation is requested. In wave mode, 

SAR collects data to form small images of 10 km x 5 km size every 200 or 100 km along the 

satellite’s orbit. Ocean wave parameters can be retrieved from these SAR/ASAR wave mode 

data over the global ocean with high quality. The wave parameters can be used for validation 

of numerical wave model forecasts and hindcasts, assimilation of models, observations and 

forecast of extreme ocean weather, as well as for global wave climate analysis. 

The main focus of the thesis is ocean wave information retrieval from SAR and ASAR 

wave mode data. This includes validation of published schemes for retrieving two-

dimensional ocean wave spectra and development of the new empirical algorithm 

CWAVE_ENV for the retrieval of integral wave parameters directly from ASAR wave mode 

data without using other input as the first guess.  

Three months of ASAR wave mode data acquired globally from December 2006 to 

February 2007 are used to validate the algorithms of the nonlinear PARSA (Partition 

Rescaling and Shift Algorithm) and the quasi-linear WVW (used by ESA for Level 2 ASAR 

Wave Mode Wave Spectra) by comparing them to collocated in situ buoy measurements and 

numerical wave model results. The PARSA algorithm needs the SAR look cross spectra and 

first guess spectra from numerical wave model as input. The algorithm can yield the full two-

dimensional ocean wave spectrum and the retrieved integral wave parameters agree with buoy 

measurements with a bias of only 0.09 m and a scatter index of 21%. The comparison with the 

forecast wave model of DWD is even better with a bias of -0.01 m and a scatter index of 16%. 

The quasi-linear ESA algorithm WVW has the advantage of not needing any priori. 

However, the retrieved wave spectra are limited to the domain of long wavelengths, mainly 

swell. Therefore the significant wave height (SWH) integrated from the WVW spectra has a 

higher bias of -0.19 m and a larger scatter index of 36% when compared to in situ buoy 

measurements. Furthermore, the underestimation of SWH increases with sea state. Around 

25% ASAR wave mode cross spectra cannot be converted successfully by using the algorithm, 

probably because of the low signal to noise ratio. 

Based on the empirical algorithm CWAVE_ERS developed for reprocessed ERS-2 SAR 

wave mode data, the CWAVE_ENV algorithm is proposed in this thesis and implemented for 

the ASAR wave mode data. Using the same three months ASAR wave mode data and the 

collocated dataset, the empirical algorithm is validated. Validation, particularly compared to 
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independent datasets, i.e., in situ buoy measurements and radar altimeters, proves that reliable 

and accurate sea state measurements can be achieved. The bias is only 0.06 m and the scatter 

index 24%, compared to the buoy measurements over deep water. The respective bias is -0.11 

m and -0.13 m and the scatter index 13% and 17% when compared to the crossover 

measurements of the spaceborne radar altimeters on GFO and JASON, respectively. 

For a full year dataset, from June 2006 to May 2007, ASAR wave mode data were 

processed using the CWAVE_ENV algorithm leading to a global sea state analysis. Global 

10-year returned extreme SWH is estimated to be 23.4 m using a lognormal probability 

density function (pdf) as the best fit for high sea state. Seasonal and annual maps for SWH, 

mean wave period, and wave steepness are compiled. In the winter season, the fetch-limit 

effects of the North Atlantic lead to high wave build up continuously from west to east, 

causing the gradual growth of swell. 

Compared to the results of reanalyzed wave model ERA-40 during 1971 - 2000, the 

annual mean wave height derived from ASAR wave mode data shows a similar pattern of 

high waves in the North Pacific, North Atlantic and the Southern Hemisphere. However, in 

the Northwestern Indian, a much stronger monsoon signal is observed in the ASAR results 

than the model results. With respect to the mean wave period, extreme swell is observed in 

the open sea south of Australia, which is around 1 s higher than the model results for the mean 

value.  

The SAR wave mode data are useful for global wave studies, while in the coastal regions, 

SAR data with higher resolution as well as larger coverage are required for investigating 

spatial changes of sea state. Wave refraction and diffraction around the Terceira island 

(located in the North Atlantic) is analyzed using the new high resolution TerraSAR-X data. 

Variations of wave height, peak wavelength and wave direction in the coastal wave processes 

are identified using the two-dimensional SAR image spectra. 
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Chapter 1  

Introduction 

1.1. Objectives of the work 
 

This present study emphasizes ocean surface wave measurements using Synthetic 

Aperture Radar (SAR) wave mode data. The following points are the main 

contributions of this study. 

 Validation of SAR ocean wave retrieval using the non-linear PARSA 

algorithm and the quasi-linear one used for ASAR wave mode Level2 WVW 

products from ESA.  

 Development of a new CWAVE_ENV algorithm for the ASAR wave mode 

data. 

 Global validation of the CWAVE_ENV empirical algorithm.  

 A global sea state statistical analysis derived from ASAR wave mode data 

using the CWAVE_ENV empirical algorithm. 

 Investigation of extreme sea state measurements using SAR wave mode data. 

 Coastal surface wave measurements using high resolution TerraSAR-X data. 

 

In the frame work of this thesis, following articles in Chapter 5 – 9 have been 

published or are under review.   

   Li, Xiao-Ming; Lehner, Susanne; He, Ming-Xia (2008): Ocean wave 

measurements based on satellite synthetic aperture radar (SAR) and numerical 

wave model (WAM) data - extreme sea state and cross sea analysis. 

International Journal of Remote Sensing, 29 (21), pp. 6403 - 6416, DOI: 

10.1080/01431160802175546 

    Li, Xiao-Ming; Lehner, Susanne; and Thomas Bruns (2009), “Ocean Wave 

Integral Parameter Measurements Using ENVISAT ASAR Wave Mode Data,” 

submitted to IEEE Transactions on Geoscience and Remote Sensing. 
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    Li, Xiao-Ming; König, Thomas; Schulz-Stellenfleth, Johannes; and Lehner, 

Susanne (2009), “Validation and intercomparison of ocean wave spectra 

retrieval scheme using ASAR wave mode data,” submitted to International 

Journal of Remote Sensing. 

   Li, Xiao-Ming and Lehner, Susanne (2009), “Utilization of ASAR Wave Mode 

Data for Shipping Safety,” Proceedings of Oceans’ 09 IEEE, Bremen, 

Germany, DOI: 10.1109/OCEANSE.2009.5278274 

   Li, Xiao-Ming; Lehner, Susanne; Rosenthal, Wolfgang (2010): Investigation of 

Ocean Surface Wave Refraction Using TerraSAR-X data. IEEE Transactions 

on Geoscience and Remote Sensing, 48(2), pp.830-840, DOI: 

10.1109/TGRS.2009.2033177. 

While the articles are represented in the relevant chapters, a general introduction, 

a wider outlook, and summary and conclusions are given. 

1.2. State of the art - - Satellite measurements of ocean waves 
 

We live on a water planet. Ocean covers over 70% of the Earth's surface and 

contains about 97% of the Earth's surface water. The ocean plays a major role in 

climate and weather.  

Waves are the ocean’s most obvious surface feature. They play a significant role 

in the processes at the air-sea interface, the ocean surface mixed layer, and the 

atmosphere marine boundary layer. Consequently, waves impact upon surface winds, 

surface currents, turbulent mixing in the surface mixed layer and consequently the 

transport of heat, momentum and freshwater. Knowledge of the large-scale climate of 

the ocean surface waves, in terms of seasonal patterns and natural variability is of 

central importance to climate studies. Many have demonstrated the researches on 

relationship between the wave climate and the global climate change, e.g. whether the 

increased wave height in northeast Atlantic Ocean is related to the increased surface 

air temperature and storminess, as described by Grevemeyer et al., [2000] and Von 

Storch and Weisse [2008]. 

Ocean waves are traditionally measured in situ at one point as by moored buoys, 

which are often located near coasts, therefore giving very limited spatial coverage.  
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Numerical wave modeling is an important approach to generate and predict 

surface sea state. The third generation WAve Model (WAM) has made promising 

progress since 1984 [WAMDI, 1988]. From June 1992 outwards a new version of 

WAM called cycle 4 [Komen, 1994] was introduced operationally at the European 

Centre for Medium-Range Weather Forecasts (ECMWF). For global sea state 

forecasts, the horizontal resolution of WAM is operated at the ECMWF at 1.5º 

resolution, and for regional forecast a higher resolution model up to 10 km is available 

as well, e.g., the WAM run operationally at Deutscher Wetterdienst (DWD). Modelers 

have improved wave model forecast performance considerably. During 1992-1993, 

the RMSE error of the 24-hour forecast of ECMWF was around 0.75 m for SWH 

which has been reduced to 0.25 m in 2002-2003, due to the assimilation of sea state 

and surface wind observations provided by satellite sensors, e.g., Radar Altimeter 

(RA), SAR and Scatterometer [Janssen, 2008]. The accuracy of some regional 

numerical wave models is validated as well in extreme sea state, for instance the LSM 

(Local Sea wave Model) operated by the DWD. This was tested, e.g., in selected 

severe winter storms over the North and the Baltic Sea, giving reasonable quality for 

short period forecasts [Behrens and Günther, 2008].  

However, with respect to the long-term accuracy of global wave models, there is 

still room for improvement as shown in the validation for the reanalysis ERA-40 wave 

products. SWH is slightly overestimated for low sea state  (<1.5 m) and substantially 

underestimated by more than 20% for rough sea state, when compared to the RA 

onboard Topex/Poseidon and in situ buoy measurements [Caires and Sterl, 2003].  

Satellite remote sensing, particularly the active microwave sensors SAR and RA, 

offers alternative approaches for the observation of ocean surface waves with global 

coverage and independence of cloud coverage and daylight.  

Satellite altimeters consist of a radar measuring the height of the satellite above 

the sea surface and a tracking system to determine the height of the satellite in 

geocentric coordinates. The system measures the sea surface height (SSH) relative to 

the center of mass of the Earth. This gives the shape of the sea surface. Spaceborne 

altimetry including Seasat (1978), Geosat (1985–1988), ERS–1 (1991–1996), ERS–2 

(1995–), Topex/Poseidon (1992–2006), Jason (2002–), and Envisat (2002-) has 

produced a large dataset for sea level, near surface wind speed , sea state and even 
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further for insight into oceanic low-frequency variability, e.g., eddy characteristics 

analyzed by Stammer [1997]. The altimeter can measure wave height to about an 

accuracy of ±10% or 0.25 m, e.g. seen in Carter et al. [1992]; Challenor and Cotton 

[2002] and Queffeulou [2004]. Unlike the approach for SWH measurements, retrieval 

of wave period from RA is still under development. Several empirical models, e.g., 

Gommenginger et al. [2003], Quilfen et al. [2004] and Mackay et al. [2008] have been 

suggested to obtain wave period measurements from altimeter data. 

ERS-1/2 SAR and ENVISAT ASAR can operate in wave mode thus acquiring 

global ocean surface wave measurements every 200 km or 100 km along the orbits, 

when the image mode (typical with swath width of 100 km by 100 km) data are not 

requested. Wave mode data are particularly suitable for global wave measurements 

and statistics. Since the launch of ERS-1 in 1991 SAR wave mode data were acquired 

by only the SAR image spectrum, namely the User Wave (UWA) spectrum (SAR 

wave fast delivery product) [Brooker, 1995] is available. The full wave mode data 

became available since 2002, when ENVISAT was launched. This gave the possibility 

to study individual waves in the open sea. Using three years (1993-1995) ERS-1 SAR 

wave mode, an assessment for the performance of the MPI retrieval scheme 

[Hasselmann and Hasselmann, 1991] as well as the operational feasibility was given 

by Heimbach et al. [1998]; the analysis of ERS SAR wave mode image intensity data 

was performed by Kerbaol et al. [1998]; and wind and wave measurements delivering 

global wave statistics using two years reprocessed ERS-2 SAR wave mode data 

[Lehner et al., 2000; König et al., 2007; Li et al., 2008] are also available.  

Since the launch of ENVISAT on 2002, wave mode data itself and high level 

products (the so called retrieved ocean wave spectra) are available and are provided to 

users [ENVISAT Handbook, 2007].  These ocean wave spectra only yield information 

on the inner spectral bins [Abadalla et al., 2008] contained in the ASAR wave mode 

data. Validation (see Chapter 4) shows that the integrated wave parameter SWH of 

these high level products is significantly underestimated and does not give correct 

measurements for sea state with SWH larger than 4 m.  

With the algorithm CWAVE, a new empirical approach delivers SWH and mean 

wave period, rather than the full two-dimensional wave spectra. The algorithm does 

not need priori information. For the ERS mission, the empirical algorithm 
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CWAVE_ERS [Schulz-Stellenfleth et al., 2007] was proposed for the reprocessed 

ERS-2 SAR wave mode data. Validation results show that the performance of 

CWAVE _ERS is fairly good when compared to the ECMWF WAM model using 

6000 collocation data pairs and 21 buoy measurements during three weeks in 1996. 

For both comparisons with respect to SWH, results of CWAVE_ERS show a bias and 

an RMS of 0.44 m and 0.39 m, respectively.   

As the full SAR wave mode data are not provided as standard products for the 

ERS mission, and also considering that ENVISAT ASAR wave mode data have 

different spatial resolution, image size, calibration constant and ocean surface imaging 

performance compared to ERS SAR wave mode data, the empirical algorithm is here 

extended to ASAR wave mode data. This will contribute to acquire a complete 

independent global wave measurements dataset used for analyzing global wave 

statistics and for satellite data assimilation into numerical wave models. 

1.3. Outline of the thesis 
 

This thesis is structured as follows. After a brief introduction, basic knowledge on 

ocean waves is introduced in Chapter 2. Chapter 3 contains the introduction of the 

SAR system and its geometry. SAR ocean wave imaging mechanisms as well as two-

dimensional wave spectra inversion schemes are discussed. The main dataset used in 

the present study is then described in Chapter 4.   

The application of ERS-2 SAR wave mode data to global wave measurements is 

presented in Chapter 5 including also a case of cross sea that occurred in the South 

Pacific. 

Performance of the existing ASAR wave mode products and the non-linear 

parametric inversion scheme PARSA for ocean wave spectra and integral wave 

parameters is presented in Chapter 6. An assessment of the performances of both 

algorithms under high sea state is given as well. 

 In Chapter 7, the newly developed empirical algorithm CWAVE_ENV to derive 

integral wave parameters from ASAR wave mode data is described in detail. Its 

validation is carried out by comparison to in situ buoy measurements, numerical wave 

model results and radar altimeter data.  

In order to investigate spatial variations of wave refraction and diffraction in 
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coastal zones, wide swath SAR data acquired by TerraSAR-X over Terceira island are 

used to derive high resolution wave direction, wavelength, and SWH fields in Chapter 

8. 

One full year (2006 June to 2007 May) global ASAR wave mode data have been 

processed. Statistical analysis for sea state, including extreme wave height estimation, 

global wave maps of SWH, mean wave period, and wave steepness are presented in 

the Chapter 9.  

Conclusions and an outlook are given in Chapter 10. 

Appendices are listed in Chapter 11. 
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Chapter 2 

Ocean Wave Basics 

In this chapter, basic elements of ocean surface gravity wave theory are briefly 

introduced.  

Ocean surface waves may be characterized by their period, which is the time taken 

by successive wave crests to pass a fixed point. Fig.2.1 demonstrates the classification 

of ocean waves by wave period. 

 The present study is concerned with remote sensing of ocean surface gravity 

waves having periods between 3 s ~ 30 s. The gravity waves are distinguished in two 

states: windsea, when the waves are being generated by the wind, and swell, when 

they have traveled away and escaped the influence of the generating wind. 

 

Figure 2. 1Classification of ocean surface waves [After ECMWF training course 

http://www.ecmwf.int/newsevents/training/rcourse_notes/NUMERICAL_METHODS

/index.html] 

 

2.1. Description of ocean waves 

The ocean surface appears to be composed of random waves with various height, 

lengths and directions. The basic model for describing the moving surface elevation is 

the random-phase/amplitude model [Holthuijsen, 2007], in which the sea surface is 

considered to be the sum of a large number of harmonic waves. Each of them may be 

represented by a sinusoidal, long-crested, progressive wave: 
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  2 2

2
, sin

H
x t t x

T L

     
 

 

(2.1) 

where H is the wave height, T is the wave period and L  is the wavelength (see 

illustration in Fig.2.2). Amplitude 2a H , radian frequency 2 T   and wave 

number 2k L , so that the propagating harmonic wave can be written as 

   , sinx t a t kx    

(2.2) 

 

 

 

Figure 2. 2 A sine wave 
 

Then the random surface elevation can be expressed by the sum of numerous 

sinusoidal waves with different frequencies, amplitudes and phases, 

   
1

sin
N

i i i
i

t a t  


   or    
1

2sin
N

i i i
i

t a f t  


   

(2.3) 

Where N is a large number and the amplitude ia and phase i ( 0 2i   ) are 

random variables.   
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Wave spectrum 

Equ. (2.2) shows that the water surface time history measured at a fixed point can be 

reproduced by linearly adding a large number of component sine waves having 

different amplitudes, frequencies, and phases. The continuous variance density 

spectrum  E f  for the sea surface elevation is: 

  2

0

1 1

2
lim if

E f E a
f 

     
 

(2.4) 

Here the  E   means variance density while  .E stands for expected value. The unit 

for  E f  is 2m Hz    or 2m rad   . The total variance 2 of the sea surface 

elevation is the sum of the variances of all frequency bands f or for a continuous 

spectrum,  

 2

0
E f df


   

(2.5) 

The variance density spectrum  E f  shows how the variance of the sea surface 

elevation is distributed over the frequencies. By multiplying with g , one can get the 

energy density spectrum: 

   vareneE f gE f  

(2.6) 

Here the two terms, variance density spectrum and energy density spectrum, are 

used indiscriminately. Transforming the spectrum into the radiance frequency, gives: 

    df
E E f

d



  

The harmonic wave is described as a one-dimensional process without considering 

the directions. For the actual sea surface, the horizontal dimension, i.e. direction of 

wave propagation, has to be added.  

   , , sin cos sinx y t a t kx ky         

(2.8) 

where 2k L is the wave number and   is the direction of wave propagation. Then 

the sea surface elevation can be described by the sum of numerous such harmonic 
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waves: 

   
1 1

, ,sin cos sin
N M

i j i i j i j i j
i j

t a t k x k y    
 

     

(2.9) 

Each wave component is therefore indicated in Equ.(2.9) with two indices: i for the 

frequency (or wave number) and j  for the direction.  

Similar with Equ.(2.4), the two-dimensional variance density spectrum for the three-

dimensional sea surface elevation is given by:  

  2

0 0

1 1

2
, lim lim if

E f E a
f


   

      
  

(2.10) 

and transformed to the radian frequency domain:  

  2

0 0

1 1

2
, lim lim iE E a

 
 

    

      
 

(2.11) 

The two-dimensional spectrum  ,E f  shows how the variance of sea surface 

elevation is distributed over frequencies and directions. By integrating the variances 

in all directions, one can get the one-dimensional spectrum: 

   
2

0
,E f E f d


    

(2.12) 

The directional frequency spectrum  ,fE  is related to the wave number spectrum 

 kE via 

                                                    
4 3

2

32
, k

f
E f E

g

                                          (2.13) 

A directional wave number spectrum (hereafter referred to as 2D or two-dimensional 

spectrum) is displayed in Fig. 2.3. 

The sea state can be characterized by different integral parameters, e.g., SWH 

(often also designated Hs), mean wave period (e.g. zero upcrossing wave period, 

denoted as 02mT  ) 

 ddffEH s  ),(4                 

(2.14) 
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  dfdffEdfdfETm
2

02 ),(),(       

(2.15) 

Another practical definition of significant wave height sH  is to be computed as 

the average of the 30% highest wave crests during the observation period.    

 

 

Figure 2. 3 An example of a directional spectrum computed by the WAM Model (see 

section 2.5). Unit of the wave energy isoline is 2m rad  

2.2 Wave propagation in deep water 

In fluid dynamics, the Airy wave theory [Airy, 1841] (often referred to as linear wave 

theory) gives a linear description of the propagation of gravity waves in deep waters 

(such that the waters are unaffected by the seabed), without currents or obstacles like 

islands and breakwaters. The linear wave theory of gravity waves is valid only if some 

assumptions are fulfilled. 

1. Water depth h  is constant. 

2. Wave motion is two-dimensional, which leads to waves with long crest and 

constant wave height H . 

3. Ocean wave is incompressible and the effects of viscosity, turbulence and surface 

tension can be neglected.  
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4. Wave height H  is small compared to the wave length L  and water depth h , 

i.e. 1H L   and 1H h  . 

Wave frequency  is related to wave number k by the dispersion relation [Lamb, 

1945]: 

 2 tanhgk kh                    

(2.16) 

where h  is the water depth and g is the acceleration of gravity. 

For deep water ( 1tanh( )kh   for kh  ), the dispersion relation is reduced to: 

gk2  

(2.17) 

The propagation speed of the surface wave profile, i.e., the phase speed, is obtained 

from the dispersion relation (2.16) with C k . 

 tanh
g

C kh
k

  

(2.18) 

In deep water, Equ.(2.18) reduces to: 

g
C

k
  

(2.19) 

indicating that long waves propagate faster than short waves.  

 

2.3. Wave propagation in shallow waters 

When ocean waves enter coastal waters, their amplitude and direction are affected by 

the limited water depth.  

When a harmonic wave propagates over seabed topography, it begins to change as 

it “feels” the bottom. Since the wave period remains constant, therefore via dispersion 

relationship (2.16), its wave length becomes progressively shorter and the phase speed 

C correspondingly decreases. This near-shore process of surface gravity waves is 

called wave shoaling. 

Provided that the harmonic wave approaches a straight coast at an angle d , the 

part of the wave in deep water moves more rapidly than it does in shallow water (Equ. 



Chapter 2 Ocean wave basics   

- 13 - 

(2.18) for phase speed). The effect causes the wave to turn parallel to the bottom 

contours. This phenomenon is called wave refraction as demonstrated in Fig.2.4.   

 

 

Figure 2. 4 Sketch of wave refraction caused by bottom topography 
 

During the wave refraction process, the change of wave height becomes rather 

complex. Wave height H in shoaling water is quantified by using [Kinsman, 1965]: 

 

DKHH d                                                                  

(2.20) 

in which dH  is the SWH in deep water. D  is called shoaling coefficient given by  

2/12/1

)2sinh(

2
1






















kh

kh

k

k
D

d

              

(2.21) 

and the refraction coefficient K is determined by 

2/1

)cos(

)cos(











 dK                                                         

(2.22) 

Using Snell’s law,   in (2.22) is expressed by, 
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))sin((sin 1
d

d

k

k
                                                     

(2.23) 

It can be observed that the shoaling effect of D , which is only relative to the water 

depth alone, acts first to decrease wave height as the waves shoal and then when the 

decreasing depth reaches some threshold (i.e., ratio of shallow water depth to wave 

length in deep water lower than 0.056 proposed in [Kinsman, 1965]), the wave height 

increases again. The coefficient K is taken relative to the approaching angle d of the 

waves in deep water. Therefore, change of wave height during the wave refraction 

process is governed by both factors. 

When the waves propagate around obstacles such as small islands, reef and 

breakwaters, the wave amplitude may vary rapidly across the geometric shadow line 

of such obstacles.  This rapid variation in amplitude causes the waves to turn into the 

areas with lower amplitude. This phenomenon is called wave diffraction.  

All these phenomena described above are due to the transportation characteristics 

of the waves. They can be accommodated by the linear wave theory as long as the 

waves are not too steep or not in very shallow water [Holthuijsen, 2007]. 

 

2.4. Generation of waves and decay 

The growth of waves due to wind is described by three different physical processes 

[Stewart, 1985], i.e. generation, dissipation and nonlinear interaction.  

Small waves with wavelength of a few centimeters are produced by random 

pressure fluctuations associated with turbulence in the sea surface wind. This is called 

Phillip’s resonance [Phillips, 1957], a process significant early in the growth of waves 

on a calm sea.  

The wind continues acting on the small waves causing them to become larger. 

Wind pressure over the waves is different along the wave profile and causes wave 

growth, which is unstable due to the differences of wind pressure. The higher the 

waves, the larger the pressure differences and thus the waves grow faster. The 

instability makes the waves to grow with exponential rate [Miles, 1957].  

The above two stages are considered for wind waves in the process of growing. 

During this stage, the waves begin to interact among themselves [Hasselmann et al., 
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1973]. The interaction transfers wave energy from short waves to longer waves and 

eventually, this leads to longer waves going faster than the wind.  When the longer 

waves propagate out of the generating area, they are called “swell”. The propagation 

of swell in the open sea and the deep water is described by the dispersion (as shown in 

Equ.(2.16)). Dispersion and angular spreading can be considered as the main causes 

of a gradual decrease of swell waves. For the deep ocean, the primary mechanism of 

swell wave energy dissipation is whitecapping. As waves grow, their steepness 

increases until a critical point when they break. This kind of dissipation depends on 

the existing energy of the swell waves and on the wave steepness [Hasselmann, 1974; 

Komen et al., 1994]. This dissipation is often small enough that swell can survive over 

long distances. A well-known example is that of Snodgrass et al. [1966] who 

observed waves generated in the Antarctica propagate all the way across the Pacific to 

the Gulf of Alaska.  

The diagram in Fig. 2.5 quantitatively describes the empirical swell propagation 

relating distance, wave height and wave period as well as the wind speed in the 

generating area.  

 

Figure 2. 5  Relation of swell wave height and period depending on the distance from 

the generation region and the travel time of the swell as well as wind speed in the 

generating area. [Dietrich et al., 1975, pp.254] 
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The diagram can be used to track storms generating swell. The swell propagates in 

the open ocean on great circles and can be observed far from the storms. If wind speed 

and wave height are measured in the storm, e.g. by remote sensing radar data, the 

swell can be forecasted for large traveling distance and a time span accordingly. 

When swell propagates into shallow water, a number of mechanisms may be involved 

in the dissipation of wave energy, which includes bottom friction, and bottom motion. 

2.5. Numerical wave model 

After the introduction of the concept of a wave spectrum by Pierson et al. [1964], 

different wave models were developed, which are commonly classified into three 

generations [Komen et al., 1994]. First and second generation models were analyzed 

and intercompared in SWAMP [1985]. As the result of this intercomparison, a third 

generation wave model was developed in which the wave spectrum is computed by 

integration of the energy balance equation without any priori restriction of the spectral 

shape. The model is expressed in terms of an action balance equation: 

     

g in nl ds

E E E
C S S S S

t x k

            
 

(2.24) 

where: ( , , )E E k x t  is the action density spectrum depending on wave number k ,  

time t , and locations x . gC is the deep-water group velocity. 

S  is the net source function, consisting of three terms: 

inS : Energy input by wind; 

:nlS Non-linear energy transfer by wave-wave interactions [Hasselman, 1962] 

dsS : Dissipation [Komen et al., 1994] 

This form of the equation is valid for deep water without refraction and no 

significant currents. From the full spectrum integral quantities like SWH or mean 

wave period are calculated by (2.14) and (2.15). 

Up to now, quite a few improved models [WAM cycle 4 by Günther et al. 1992; 

WAVEWATCH by Tolman, 1989; Tolman, 1992] use the basic WAM formulations. 

Improvements mainly concentrate on the source-term parameterization, particularly in 

the wind input, the propagation dynamics, and the extension to shallow-water and 

coastal regions. 
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Chapter 3 

SAR Basics 

In this chapter principles of Synthetic Aperture Radar (SAR), as well as the SAR 

ocean wave imaging theory and inversion algorithms are explained.   

SAR designs and applications have developed since the 1950s when Carl Wiley of 

Goodyear Aircraft Corporation discovered that with a side looking airborne radar 

(SLAR), Doppler could be used to improve the cross-range spatial resolution of the 

radar. The first experimental validation was carried out in 1953 by a group of 

scientists at the University of Illinois [Sherwin et al., 1962]. The following section 

provides a summary of civilian Earth observing SAR satellites.  

 

3.1. Review of SAR systems 

The first civilian SAR mission in space was the SEASAT in L-band, which operated 

only from early July to mid-September in 1978. Afterwards, there has been a 

considerable increase in SAR satellite missions. A brief summary for the spaceborne 

SAR missions is given in Table 3.1. The general characteristics of these radars are 

compared and contrasted. The acronyms are defined in the following. 

IM: Image mode;   AP: Alternative Polarization mode; WS: Wide Swath mode;     

HS: High-resolution Spotlight mode; SL: Spotlight mode; SM: StripMap mode;   

SC: ScanSAR mode 

SAR systems developed from low resolution to high resolution, from single 

imaging mode to multi modes, and from single polarization to dual- and/or Quad-

polarizations. TerraSAR-X, Cosmo-SkyMed and Radarsat-2 launched in 2007 are the 

representatives of the so-called “new generation” civilian SAR system, which can 

achieve high resolution up to 1 m when operating in spotlight mode. 
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Table 2. 1  Main Spaceborne SAR missions 

Satellite Country Year 
Band & 

wavelength (cm)

Incidence 
Angle 

(degree) 
Polarization 

Range 
Resolution (m) 

Azimuth 
Resolution (m) 

SEASAT USA 1978 L-band (23.5 ) 23 HH 25 25 (4 looks) 

ERS-1/2 
Europe 
(ESA) 

1991/1995 C-band (5.7) 23 VV 25 25 

ALMAZ USSR 1991 
S-band 

(10) 
30-60 HH 15 30 

JERS-1 Japan 1992 
L-band 
(23.5) 

39 HH 18 18 

Radarsat-1 Canada 1995 
C-band 

(5.7) 
20-50 HH 

25 (standard mode) 
35 (wide mode) 

9 (fine res. mode) 
50 (scansar mode) 

28 (standard mode) 
28 (wide mode) 

9 (fine res. mode) 
50 (scansar mode) 

ENVISAT 
Europe 
(ESA) 

2002 
C-band 

(5.7) 
15-45 

HH,HV, 
VH, VV 

30 (IM and AP mode) 
150 (WS mode) 

1000 (GM mode) 

30 (IM and AP mode) 
150 (WS mode) 

1000 (GM mode) 

TerraSAR-X Germany 2007 
X-band 

(3.1) 
20-55 

HH,HV, 
VH, VV 

1.5-3.5 (HS mode) 
1.5-3.5 (SL mode) 

1.7-3.5  (SM mode) 
1.7 -3.5 (SC mode) 

1  (HS mode) 
2 (SL mode) 
3 (SM mode) 
16 (SC mode) 

Radarsat-2 Canada 2007 
C-band 

(5.7) 
20-49 

HH,HV, 
VH, VV 

25 (standard mode) 
25 (wide mode) 

10 (fine res. mode) 
50 (scansar mode) 

28 (standard mode) 
28 (wide mode) 

9 (fine res. mode) 
50 (scansar mode) 
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3.2. SAR geometry and system parameters 

Synthetic Aperture Radars were developed as a means of overcoming the limitations 

of real aperture radars (RAR). These systems can achieve good azimuth resolution, 

but have to use large antenna.  A synthetic aperture is produced by using the forward 

motion of the radar to illuminate one target or scatter with many successive pulses and 

acquire the echoes in sequence. By recording and then combining these individual 

signals, a "synthetic aperture" is created in the computer providing a much improved 

azimuth resolution. Figure 3.1 illustrates how this is achieved.  

As a target (A) first enters the illumination of radar beam (1), the backscattered 

echoes from each transmitted pulse begin to be recorded. As the platform keeps 

moving forward, all echoes from the target for each pulse are recorded during the 

entire time that the target is within the beam. Till the target leaves the view of radar 

beam (2), the length of the synthesized aperture (B) is determined. This method of 

achieving uniform, fine azimuth resolution across the entire imaging swath is called 

synthetic aperture radar, or SAR.  

 

 

Figure 3. 1 SAR operating principles 
 

SAR is a typical side looking radar with a geometry demonstrated in Figure 3.2. 

The platform moves forward in the flight direction. The microwave beam is 

transmitted obliquely at right angles to the direction of flight illuminating a swath (B) 
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which is offset from nadir (A). Range (C) refers to the across-track dimension 

perpendicular to the flight direction, while azimuth (D) refers to the along-track 

dimension parallel to the flight direction.  

 

 

Figure 3. 2 SAR Geometry 
 

For the radar to be able to distinguish two closely spaced elements, their echoes 

must necessarily be received at different times. As shown in Figure 3.3 (a), the pulse-

width L is approaching targets T1 and T2. The slant range distance between the two 

targets is d. Since the radar pulse must travel round trip, the two targets lead to two 

distinguished echoes if 2d L .  

 

                                  (a)                                                                    (b) 

Figure 3. 3 Illustration of SAR range resolution (a) and azimuth resolution (b) 
 



Chapter 3 SAR Basics   

- 21 - 

The range resolution RR can be expressed as the reciprocal of the effective pulse-

width multiplied by the speed of light c ,  

2R

c
R

L
  

(3.1) 

Azimuth resolution describes the ability of imaging radar to separate two closely 

spaced scatterers in the direction parallel to the motion vector of the sensor. 

Compared to the RAR, the prominent advantage of SAR is its ability to achieve high 

resolution in azimuth or along-track direction. In the following a brief explanation is 

given.  

For real aperture radar, two targets in the azimuth or along-track resolution can be 

separated only if the distance between them is larger than the radar beam width (A) as 

demonstrated for T1 and T2 in Figure 3.3 (b). This beam width is a measurement of 

the width of the illumination pattern. As the radar illumination propagates to 

increasing distance from the sensor, the azimuth resolution becomes coarser thus the 

targets in the far range can not be distinguished correctly, as shown for T3 and T4 in 

the figure. Thus one can find that the beam width is taken as the azimuth resolution 

depending also slant-range distance to the target for these systems. 

For a diffraction limited system of a given radar wavelength R , the azimuth beam 

width A  depends on the physical length L of the antenna in the horizontal direction 

according to: 

R
A L

   

(3.2) 

Therefore, for the targets in the (slant) distance R to the radar, the azimuth resolution 

for the RAR is given by,  

_ cosA RAR A A

H
R R 


   

(3.3) 

in which H is the orbit height of radar and  is local incidence angle.  
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The ERS-2 SAR has an azimuth resolution of 25 m, the orbit height is around 750 

km, and incidence angle in the mid-swath is 23°. Considering the Equ.(3.2) and (3.3), 

one can find the size of antenna should be around 1 km for the RAR, which is 

impossible due to the size of spaceborne or airborne platforms. To achieve high 

resolution in azimuth direction, as well as to keep the antenna at small size, the 

concept of synthetic antenna or aperture was developed. The improved azimuth 

resolution is  

2 2_
_ cosA SAR

A RAR

H L
R

R




   

(3.4) 

Thus the azimuth resolution is independent of spacecraft height and improves as the 

antenna length is reduced. Equ.(3.4) is the theoretical resolution of strip-mode SAR. 

One could form a longer synthetic aperture by steering the transmitted radar beam so 

it follows the target as the spacecraft (aircraft) flies by. This is called spotlight-mode 

SAR [Carrar et al., 1995]. 

Achieving fine azimuth resolution may also be described from a Doppler 

processing viewpoint. A target's position along the flight path determines the Doppler 

frequency of its echoes: Targets ahead of the radar produce a positive Doppler offset; 

targets behind it produce a negative offset. As the satellite flies a distance (the 

synthetic aperture), echoes are resolved into a number of Doppler frequencies. The 

target's Doppler frequency determines its azimuth position. 

3.3. SAR-Ocean surface interactions 

This section will review SAR operation and geometry in the context of ocean imaging. 

Over the ocean, a SAR image consists of two-dimensional radar backscatter 

information of the roughness of the ocean surface. The backscattered radar energy 

depends on wavelength, polarization, geometry, attenuation by the atmosphere, and 

the roughness of the ocean surface. 

The returned energy over sea surface is primarily scattered by the small wind 

induced surface waves. It is assumed that for moderate incident angles between 20° 

and 60º the Bragg resonance is the primary mechanism for SAR ocean surface 

imaging [Plant, 1990], i.e. the incident radar waves are backscattered by short 
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capillary wave components on the ocean surface, whose wave length B , is related to 

radar wave frequency or wave length R  at an incident angle   by, 

2/ sinB R                                                           (3.5) 

For X-band SAR with a wavelength R  of 3.1 cm, the resonant Bragg wave length 

is 3.9 cm at an incidence angle of θ=23°, while a SAR operated in C-band 

( 5 6.R  cm) has a longer B  of  7.1 cm at the same incidence angle. This may lead 

to different radar signatures of the same oceanic or atmospheric phenomena as shown 

in simultaneous scenes acquired by multi-frequency SAR, e.g. SIR-C/X SAR.  

The Bragg resonance may be assumed to apply locally, i.e. within a resolution cell. 

This is the reason for the two-scale model [Hasselmann et al., 1985], where the ocean 

surface is divided into facets with the size of a resolution cell.  

SAR images acquired over the ocean contain abundant information on small scale 

and mesoscale phenomena occurring in the ocean and the marine boundary layer. The 

following provides a short summary for the oceanic or atmospheric features that can 

be detected by a SAR. 

 Surface wave characteristics – two dimensional wave spectrum, integral wave 

parameters, e.g. significant wave height, wavelength and wave direction. 

 Near surface wind field (10 m height), wind speed and wind direction. 

 Mesoscale and microscale atmospheric features – barrier jets, gap winds, storms, 

fronts, etc. 

 Surface current using the Along-track interferometric (ATI) technique or by 

estimating the shift of the Doppler-centroid. 

 Bathymetry 

 Ocean mesoscale features – fronts, eddies, current boundaries, river plumes, 

upwelling.  

 Internal waves and mixed layer depth estimates. 

 Ship and oil spill detection 

 

Mesoscale oceanic or atmospheric phenomena can be imaged by a single SAR 

image, particularly in ASAR wide swath mode of up to 350 km by 350 km. Figure 3.4 

shows a TerraSAR StripMap image acquired over the Changjiang River in China on 

March 19, 2008. One can observe hundreds of ships in the river with visible ship 
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wakes. Low wind speed in the river region causes the low backscatter and manifests 

itself as dark region. The surface current is strong in the mouth of Changjiang River. 

In the North of the River, one can find dry mud flats as dark parts. In the South, 

Marine Atmospheric Boundary Layer information on roll vortices is also visible.  

 

 
Figure 3. 4 TerraSAR-X StripMap mode image acquired over Changjiang River, 

China on Mar.19, 2008. Swath width is 30 km. 
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3.4. SAR Ocean wave imaging theory 

In order to derive ocean wave characteristics from SAR images, it is important to 

understand how ocean waves are imaged by SAR. In this section, the SAR imaging of 

ocean waves is examined on the basis of the two-scale model.  

The two-scale model [Hasselmann et al., 1985] is used as the basic element to 

describe the SAR ocean wave imaging process, in which the short waves are 

responsible for the Bragg scattering mechanism. Detection of longer waves is possible 

through the modulation of these capillary waves by the longer ones. In the model the 

combined RAR and SAR radar cross section modulation is attributed to three effects: 

tilt modulation, hydrodynamic modulations and orbital motion effect. Tilt and 

hydrodynamic modulations are considered to be the dominant RAR modulation 

mechanisms [Alpers, 1981]. The long waves tilt the capillary waves so that the local 

incident angle is changed thus modifying the Bragg wavelength and the backscattered 

energy. The hydrodynamic interaction between the long waves and the capillary 

waves causes the divergence and convergence and thus modulate the energy returned. 

SAR imaging of ocean waves has an additional source of modulation due to the 

orbital motion effect. This effect is often the dominant imaging mechanism for waves 

propagating in the azimuthal direction.  

All  the three mechanisms are shown schematically in Figure 3.5.  

The RAR modulation dominates imaging of range traveling waves and is in 

general assumed to be a linear process and can be written using the linear transfer 

function R
kT [Hasselmann and Hasselmann, 1991]. 
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(3.6) 

The transfer function R
kT  can be expressed as the sum of the respective three 

modulations, i.e. 

rb
k

hydr
k

titl
k

R
k TTTT   

(3.7) 

For VV polarization and a right looking SAR, the respective transfer functions for 

these modulations are given by the following: 
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With SAR right looking direction in negative yk  direction.   is the incidence angle 

and  is the hydrodynamic relaxation rate with value of 0.5 1S   after [Hasselmann 

and Hasselmann, 1991]. 

 

Figure 3. 5 The three modulation mechanisms for SAR imaging ocean wave 
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Tilt and hydrodynamic modulation are basically explained at the scatter level, 

assuming a frozen sea surface during the SAR coherent integration period. However 

for the motion associated with the traveling waves a frozen sea surface assumption is 

on longer valid.  

In deep water, individual water particles follow a circular trajectory, therefore 

long waves have a periodic orbital motion (as shown in Figure 3.5, the third image, a, 

b and c demonstrate the motions), which will produce an apparent increase and 

decrease in the density of scatters.  

Assuming the water circle has an orbital velocity component ru  (positive for 

direction towards the radar), then the effect of a facet having a constant radial velocity 

ru induces an azimuthal shift x  [Lyzenga et al., 1985], 

rx u   

(3.11) 

where  is defined as ratio of slant range R  to platform velocity V  

VR  

(3.12) 

This effect makes the azimuthally traveling waves detectable in a SAR image 

however there is a shift from their true position.  

u
kT  is the orbital velocity transfer function, which is given by [Hasselmann and 

Hasselmann, 1991] for a right looking SAR as: 


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
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k

k
T yu
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(3.13) 

The orbit motion of long waves during SAR data acquisition time leads to a 

distortion of the image spectrum, as well as the cut-off effect in the azimuth direction 

[Alpers and Brüning, 1986], namely waves shorter than a certain threshold will not be 

imaged by SAR. In Fig. 3.6, left panel is the SAR image spectrum and the collocated 

numerical wave model spectrum is shown in right panel. Comparing the wave energy 

distribution in the region out of the dashed lines, one can observe that some short 

waves propagating in the SAR azimuthal direction are not imaged.  
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Figure 3. 6 Comparison of SAR image spectrum (left) to collocated numerical wave 

model WAM spectrum (right) to demonstrate the cut-off effect for wave propagation 

in SAR azimuthal direction 

 

This low-pass filter effect is proportional to the value of   defined in Equ. (3.12) 

[Beal et al., 1983]; also it is supposed to be dependent on other parameters, such as 

incidence angle, scene coherence time [Milman et al., 1993], and geophysical 

parameters, for example, SWH [Beal et al., 1983; Milman et al., 1993] and mean 

wave period zT . As pointed out as also by Vachon et al. [1994], the intrinsic scene 

coherence time is dependent upon surface wind speed 10U . It is believed that the SAR 

cut-off wavelength c can be determined by the following function.  

10( , , , , )C s z

R
F H T U

V
   

(3.14) 

Different approaches, including empirical relationships, have been proposed to 

estimate the SAR cut-off wavelength, e.g. see [Beal et al., 1983; Monaldo, 1994; 

Kerbaol et al., 1998; Schulz-Stellenfleth and Lehner, 2002]. 

3.5. SAR ocean wave inversion algorithms 

Some SAR ocean wave inversion schemes are based on the forward mapping function 

of wave spectrum into SAR image spectrum or cross spectrum. And the forward 

mapping relations are derived based on the SAR ocean wave imaging mechanisms. 

Following the introduction of SAR ocean wave imaging theory, in this section, the 
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current schemes to derive two-dimensional ocean wave spectra from SAR data are 

briefly summarized. 

3.5.1. Linear and Non-linear Mapping of SAR Image Spectrum 

The SAR surface wave imaging process can be regarded as the sum of RAR imaging 

process and orbital motion effect. Respective modulation transfer functions have been 

introduced in Equ. (3.7) and (3.13).  

An integral transform relating the ocean wave spectrum kF to the SAR cross 

spectrum of two looks iI  with separated time t is given by [Engen and Johnsen, 

1995] in the following 
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In which, 1 2

t

I I


,

denotes the cross spectrum estimated from the normalized two looks 

of SAR complex data, which is defined as Fourier spectrum of the cross-covariance 

function 1 2I I , ,  

 1 2

1 2t I I

I I
  ,

,
F  

(3.16) 

Here   is defined in equation (3.12), xk is the azimuth wave number component and 

the cross-covariance functions v Rv Rf f f, ,  are defined as follows.  
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Expanding the transform of Equ.(3.15) to first order with respect to the wave 

spectrum kF yields the linear approximation as introduced by [Hasselmann and 

Hasselmann, 1991]. 
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The SAR transfer function ST  is given by 
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k k x k

R
T T i k T

V
   

(3.19) 

RT  is given via (3.8)-(3.10) and uT is given in (3.13). 

If one expands only the integral part of (3.15) to linear order and keeps the leading 

exponential factor this yields the quasi-linear transform given by  
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(3.20) 

The quasi-linear forward model is helpful as it yields a simple transform to 

retrieve the two-dimensional ocean wave spectrum from SAR cross spectrum. The 

quasi-linear relationship is the basis for the cross spectral scheme adopted by ESA 

for developing ASAR wave mode level2 WVW products [Engen et al., 2001].  

3.5.2. Algorithms of ocean wave spectrum retrieval from SAR data 

The general non-linear transformation relating the SAR image spectrum or cross 

spectrum to the ocean wave spectrum is given in the previous section. Several 

retrieval algorithms to derive the two-dimensional ocean wave spectrum or integral 

wave parameters from SAR data have been developed. A short summary for the 

current algorithms are given in the following.  

 

Nonlinear retrieval approach - - MPI and PARSA 

The mechanism of SAR imaging of ocean surface gravity waves generally consist of 

the linear transformation of tilt and hydrodynamic modulation, as well as the non-

linear distortion induced by the radial wave motions [Hasselmann et al., 1985]. This 

leads, among other effects, to image smearing and to a loss of information beyond the 

so-called azimuth cut-off wavelength [Alpers and Brüning, 1986]. For ERS and 

ENVISAT SAR, this corresponds typically to wavelengths shorter than about 200 m 

in the along track direction. In addition, ocean wave spectra from satellite SAR 

images suffer from a basic 180o ambiguity of wave propagation direction, which can 
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be resolved by using complex data [Engen and Johnson, 1995]. A nonlinear mapping 

of ocean wave spectra into SAR image spectra as well as its inversion was developed 

by Hasselmann and Hasselmann [1991] and is referred to as MPI scheme in the 

following. This inversion algorithm accomplishes the retrieval of ocean wave spectra 

from SAR spectra within the computational constraints of real-time operational 

applications (see also [Krogstad, 1992] for a simpler transform). An assessment of the 

performance of the algorithm as well as the operational feasibility was given by 

Heimbach et al., [1998] using three years (1993-1995) ERS-1 SAR wave mode UWA 

spectral data (i.e. SAR image spectrum, see [Brooker, 1995]). Validation results show 

that approximately 75% of the available SAR wave mode spectral data were 

converted into successful retrievals. There remains a small overestimation less than 

0.5 m for retrieved SWH by the MPI scheme compared to the results from WAM 

model.  

A semi-parametric algorithm was developed as well for full ocean wave spectrum 

retrieval from SAR by taking the ERS SAR wave mode image spectra and collocated 

wind vectors from ERS wind scatterometer into account as additional input 

[Mastenbroek and de Valk, 1998]. The algorithm could not be used for the ENVISAT 

mission where the scatterometer is not onboard. 

A parametric inversion scheme for the derivation of two-dimensional ocean wave 

spectra from SAR look cross spectra is presented by Schulz-Stellenfleth et al. [2005] 

and is referred to as the PARSA algorithm. This algorithm needs priori information 

from a numerical wave model as well, while by using the complex information of 

SAR data to resolve the ambiguity on wave propagation direction.  

 

SAR cross spectral algorithm 

Taking two looks of SAR wave mode complex data, the cross spectra can be used to 

remove the 180º ambiguity of ocean wave propagation direction [Engen and Johnson, 

1995], which was demonstrated for airborne C-band SAR data. Furthermore, the 

algorithm was extended to the spaceborne ERS-2 SAR reprocessed wave mode data 

by Lehner et al. [2000].  

This method has been adopted by ESA for the ASAR wave mode data, the so 

called WVW Level2 products WVW [ENVISAT Handbook, 2007]. Ocean wave 
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spectra of the WVW products only yield information in the inner spectral bins 

[Abadalla et al., 2008] contained in the ASAR wave mode data.  

To some extent, the PARSA algorithm introduced above is the combination of the 

nonlinear approach and the cross spectral algorithm. It uses the cross spectrum of 

SAR two looks to remove the 180º ambiguity and blends the SAR image spectra and 

first priori information from a wave model. 

Intercomparison and validation for PARSA and WVW algorithms are described in 

Chapter 6 in detail.  

 

Empirical algorithm - - CWAVE 

For the current non-linear or quasi-linear algorithms retrieving two-dimensional ocean 

wave spectra from SAR imagery, either a priori information from a numerical wave 

model is needed, e.g., for the MPI or PARSA scheme as used at weather forecast 

centers where a first guess is available. Otherwise the information provided on wave 

height is limited to parts of the spectrum for waves longer than a certain threshold.  

Here a new approach using an empirical algorithm is given to derive ocean wave 

integral parameters, e.g., SWH and mean wave period, instead of the full two-

dimensional spectra, while without needing priori information. For the ERS mission, 

the empirical algorithm CWAVE_ERS [Schulz-Stellenfleth et al., 2007] was proposed 

for the reprocessed ERS-2 SAR wave model data [Lehner et al., 2000]. Validation 

results show that the performance of CWAVE _ERS is fairly good when compared to 

the ECMWF WAM model using 6000 collocated data pairs and to 21 buoy 

measurements during three weeks in 1996. For both comparisons with respect to 

SWH, results of CWAVE_ERS showed the RMS is to be 0.44 m and 0.39 m, 

respectively. However CWAVE_ERS has not been validated for high sea state, e.g., 

SWH higher than 6 m. In the frame of this thesis, a new algorithm for ENVISAT 

ASAR wave mode data was developed.  

In this thesis, as well, wave measurements of ERS-2 SAR wave mode data using 

PARSA and CWAVE_ENV algorithms are cross validated as demonstrated in 

Chapter 5.  
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Chapter 4 

Dataset Description 

In this chapter, the datasets used in the present study are introduced briefly. Tab.4.1 

lists the used active microwave data, numerical wave model data and in situ buoy data. 

 

Table 4. 1 Datasets used in the present study 
 

Type Name Source 

Active microwave 
SAR wave mode 

(ERS-2 SAR and ENVISAT ASAR)
ESA, DLR 

Active microwave Radar Altimeter 
RADS, TU Delft 

CERSAT 

Numerical wave model 
ECMWF reanalysis wave model 

DWD forecast wave model 

ECMWF 

DWD 

In situ Meteorological buoy NDBC and MEDS

 

ERS-2 SAR and ENVISAT ASAR wave mode data are the main data source, 

which are used for SAR ocean wave algorithm development and validation. The radar 

altimeter is used for validating the SWH retrieved from SAR image and wave model 

results.  

On the ENVISAT platform both the ASAR sensor and the RA-2 are onboard and 

they are jointly used for global wave measurements. 

4.1. SAR wave mode data 

ERS-1/2 and ENVISAT acquire SAR wave mode data every 200 or 100 km along 

the satellite track as so called imagettes with approximately 5 km x 10 km size, when 

image mode data (typical swath size is 100 km by 100 km) is not requested.  

 

ERS-2 SAR wave mode data 

The standard ERS-2 SAR wave mode data are acquired over the ocean every 200 km 
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along the satellite track with coverage of 5 km x 10 km. It operates at C Band with 

23.5º incidence angle and VV polarization. The spatial resolution of wave mode data 

is 10 m in azimuth and 20 m in ground range. UWA spectra are the standard ESA fast 

delivery product [Brooker, 1995] for wave mode data during the ERS era. UWA 

spectra are coarsely gridded image power spectra derived from imagettes with a 

directional resolution of 15º and 10 wavenumber bins logarithmically spaced between 

66–660 m as an example shown in Fig. 4.1. The complex imagettes themselves are so 

far not available from ESA as a standard product, while delivering them is under 

consideration. 

 

 

 

Figure 4. 1 An example of standard ERS-2 SAR wave mode product- UWA spectrum 
 

Two-year ERS-2 wave mode raw data acquired during 1998 and 2000 were 

processed to SLC imagettes using the BSAR processor [Breit et al., 1997]. Four 

examples of ocean surface wave imaged by ERS-2 SAR wave mode are shown in 

Fig.4.2. Upper left represents the extreme sea state; upper right shows long swell 

travelling in azimuth direction; lower left is a cross sea case and an example of ocean 

wave travelling into ice zone is shown in lower right. 
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Figure 4. 2 Examples of surface waves imaged by the reprocessed ERS-2 SAR wave 
mode 

 

ENVISAT ASAR wave mode data 

As the successor of ERS/SAR, ASAR onboard ENVISAT also collects wave mode 

data to form small images (imagettes) of 5 km x 10 km size while every 100 km along 

the satellite’s orbit. Unlike for ERS, where only the SAR image spectra of wave mode 

data are provided, ESA generates different ENVISAT ASAR wave mode products 

from the respective raw data. In particular the level-1b (ASA_WVI_1P, for wave 

mode complex data and ASA_WVS_1P, for cross spectra derived from these complex 

data) and level-2 products (ASA_WVW_2P, the so called retrieved ocean wave 

spectra) are relevant for the present study.  

4.2. Radar altimeter data 

For more than thirty years, spaceborne radar altimetry including Seasat (1978), Geosat 

(1985–1988), ERS–1 (1991–1996), ERS–2 (1995–), Topex/Poseidon (1992–2006), 

Jason (2002–), and Envisat (2002-) have created a wealth of  space data for earth 

observation.  

The radar altimeter is a nadir-viewing active microwave sensor operating at the 
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main frequency of Ku-band (13.575 GHz), which makes measurements of the delay 

time and power of the return signal. Details of the principles of radar altimeter sea 

surface measurements are given in Appendix 1.  

These measurements are directly related to the range to the target, its radar 

backscatter coefficients and the surface roughness. The spatial resolution (footprint) 

of radar altimeters onboard on ERS-2 and ENVISAT are both 16-20 km and the 

measurements are performed about every second with about 7 km spacing. In the 

present study, RA data onboard ERS and ENVISAT (RA-2) operating in Ku-band is 

used for ocean surface wave observations, i.e. SWH measurements. RA data is 

acquired via the TuDelft Radar Altimeter Database System (RADS) freely 

[http://rads.tudelft.nl/rads/; Schrama et al., 2000; Naeije et al., 2002]. It needs to be 

pointed out that ESA normally provides the RA or RA-2 in Fast Delivery Products 

(FDP) to the users in real time. However, in some research centres, upgraded level 

products are processed from the RA raw data using different algorithms and therefore 

the performance of the upgraded products is slightly different.  

ASAR and RA-2 are both active microwave sensors onboard ENVISAT, which 

can provide the synergy sea surface measurements at a distance of around 300 km. 

Fig. 4.3 illuminates a typical daily coverage of the both tracks, i.e. ASAR wave mode 

and RA-2 tracks over the ocean. The grey line shows the orbit of ASAR sensor, which 

are always to the right side of RA-2 tracks.  

 

 

Figure 4. 3 An example of global ENVISAT ASAR wave mode tracks (grey line) and 

RA-2 tracks (dark line on the left side of ASAR tracks) during one day 
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4.3. Numerical wave model data 

In the present study, numerical wave model data run at weather centers, e.g. ECMWF 

and DWD are used. The reanalysis wave model at ECMWF generally is assimilated 

with satellite information, e.g., radar altimeter and SAR, and some in situ buoy 

measurements. While for both reanalysis and forecast numerical wave model, the 

input forcing of wind field from scatterometer measurements has been assimilated. 

Details for the numerical wave model used are described in Appendix 2.  

4.4. In situ buoy measurements 

Fig. 4.4 shows the geographical position of 77 moored buoys used for the present 

study. Most of the buoys are maintained by the NOAA National Data Buoy Center 

(NDBC) and the Environment Canada Marine Environmental Data Service (MEDS). 

Non-directional buoys measure the sea surface vertical acceleration, which is then 

used to derive surface displacement spectra. Data collection and analysis procedure 

for the NDBC non-directional wave buoys were described in detail by [Steele and 

Earle, 1979]. Generally, in each hour a 20-minute record of vertical hull accelerations 

of the buoy, sampled at a rate of 1Hz, is collected. By applying a segmented Fast 

Fourier Transformation (FFT) for the record, an acceleration spectrum is calculated 

from which the non-directional wave spectrum  fS , i.e., frequency spectrum, is 

obtained.  

Integral wave parameter, e.g. SWH, can be estimated from the frequency spectrum 

 fS  using a limited frequency interval. 

2/1
1

0

)(4 



 

f

f
dffSHs                                                                 

(4.1) 

The frequencies usually range from 0.03 to 0.40 Hz at intervals of 0.01 Hz. 

 

Name, latitude and longitude of the buoy stations as shown in Fig. 4.4 are given in 

Appendix 3. 
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Figure 4. 4 Location of collocated buoys for CWAVE_ENV model validation 
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Chapter 5 

Investigation of Cross Sea Using ERS-2 SAR Wave 

Mode Data 

I started the investigation of SAR surface wave measurements with the based on a 

cross sea case that occurred in the South Pacific.  

The content of the Chapter is based on the following publication: 

Li, Xiao-Ming; Lehner, Susanne; He, Ming-Xia (2008): Ocean wave measurements 

based on satellite synthetic aperture radar (SAR) and numerical wave model 

(WAM) data - extreme sea state and cross sea analysis. International Journal of 

Remote Sensing, 29 (21), S. 6403 - 6416, DOI: 10.1080/01431160802175546 

 

Two types of ocean waves usually characterize the sea surface, namely wind sea 

and swell. The first refers to waves influenced by the local wind, the latter to waves 

that have propagated out of the generating area and are thus no longer affected by the 

local wind. A sea state with two wave systems traveling at oblique angles is called 

cross sea. In the present study, such a case, which occurred in the South East Pacific, 

was analyzed by using ERS-2 SAR reprocessed wave mode images.  

Here only the main conclusions and plots are presented. 

The case is studied using two-dimensional spectra, including the WAM model 

spectra, cross spectra derived from complex SAR data and the non-linear retrieved 

PARSA spectra [Schulz-Stellenfleth et al., 2005].  

In Fig. 5.1, the measurements and model results are summarized for three 

consecutive imagettes. The most distinct peaks can be observed on the image shown 

rightmost of first row in figure 5.1, which is situated at 23.06°S and 111.6°W degrees. 

The hindcast WAM model spectra (second row), observed SAR cross spectra (third 

row) with ambiguity of wave propagation direction removed by using the imaginary 

part of the cross spectra and nonlinear retrieved PARSA spectra (lower row) are 

shown as well. It is clear from these contour plots that the cross sea contains two 

distinct swell systems propagation to northeast and to northwest. These are denoted as 
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Sne and Snw respectively. The generation and propagation of the two swells are 

demonstrated in Figure 5. 2. 

For the Snw swell system, it is observed from the SAR cross spectra and retrieved 

PARSA spectra that the peak energy is underestimated by the WAM model. One 

explanation is that the input wind field from ERA-40 at the generation area of the 

swell was too weak. This can be concluded as well from comparison to the 

QuikSCAT wind field (acquired on August 8, 2000 at around 12: 30 UTC) in Fig. 5.3. 

The maximum wind speed measured by QuikSCAT is about 30 m/s, which is 

substantially larger than the ERA-40 model result given to be 20m/s. Thus validation 

of the ocean wave model results can be used as a joint validation tool for the wind 

field. 

Fig. 5.4 shows nine SAR imagettes acquired during 17:28 to17:32 UTC on August 

8, 2000, along the orbit (North to South) demonstrated as squares in Fig. 5.2. The 

feature of the cross sea increases from north to south and reaches the most distinct two 

swell systems in the imagettes represented as the yellow square in Fig. 5.2. By a 

spectral partitioning method, the PARSA retrieved SWH of two distinct swells are 

calculated respectively and marked as well in Fig. 5.4. The PARSA retrieved swell 

SWH and the WAM model result against swell traveling distance from the source is 

shown in Fig. 5.5. 

It is observed from the imagettes that the swell Snw dissipated gradually and the 

feature of cross sea vanishes along the SAR descending orbit from north to south. In 

Fig. 5.5 (left), it can be seen that the individual swell SWH decreases from north to 

south along the track and the results both from the PARSA and the WAM model are 

fairly low. There is a slight difference between them lower than 0.5 m.   

The swell Sne has the reverse trend compared to the swell Snw, i.e. the swell SWH 

increases from North to South (nearer to the centre of the generation source) as shown 

in the right plot in Fig. 5.5.  

At the most distinct cross sea feature observed by the SAR imagette acquired at 

17:30 UTC, the swell SWH behaviour changes for both swell systems. In the right 

plot in Fig. 5.5, it can be found that after the turning point, swell SWH retrieved from 

PARSA decreases significantly compared to the WAM results. Thus in a first 

assessment a stronger damping than expected by the wave model is observed in the 

SAR data due to interaction with a second wave system. 
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SAR Images 

     
 

WAM Spectra 

     
 

SAR Cross Spectra Module 

     
 
 

PARSA Spectra 

     
 

Figure 5. 1  SAR Imagettes, WAM Model spectra (m4), SAR cross spectra (m2), 

PARSA retrieved spectra (m4) for the cross sea case 
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Figure 5. 2 Sketch map of the cross sea generation 
 

 

 

Figure 5. 3 ERA-40 (right) and Quikscat (left) wind fields over the generation area for 

the swell traveling to northwest (Snw) 
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1.2 m                                 1.6 m 

 

1.1 m                                  2.3 m 

 

0.6 m                                 3.0 m 

 

0.4 m                                 3.0 m 

 

0.7 m                                  2.7 m 

 

0.7 m                                  3.3 m 

 

Figure 5. 4  SAR imagettes shown as squares in Fig. 5.2. 
 
 
 

     
Figure 5. 5 Swell SWH against propagating distance comparison for the swell Sne 

(right) and Snw (left) 
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Summary 

A cross sea case is observed on at least eight consecutive imagettes, i.e. over a 

distance of more than 1000 km. The comparison among WAM model spectra, cross 

spectra and PARSA nonlinear inverted spectra is demonstrated. The generation area 

of the swell systems is determined. It is shown that as derived from the SAR wave 

measurements, the wind field in the generation area was too weak in the ERA-40 

model.  

Finally, swell dissipation is studied based on the comparison of SWH (derived 

from the retrieved and the model results) versus swell propagation distance. Although 

the PARSA retrieval scheme needs first guess information from the WAM model, the 

difference of wave model and SAR measurements along the orbit shows that the 

model results are consistently low after crossing of the two swell systems. 

Investigating the different behaviour of the WAM model and the SAR measurements, 

it can be shown that the swell systems affect each other, thus leading to a strong wave 

damping.  

This research shows the wave damping effect after crossing of two swell systems.  
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Chapter 6 

Validation and Intercomparison of Ocean Wave 

Spectra Retrieval Schemes Using ASAR Wave Mode 

Data 

 

As a next step, the existing SAR ocean wave retrieval algorithms from ESA and 

developed at DLR were investigated and validated. The content of this Chapter is 

based on the paper:  

Li, Xiao-Ming; König, Thomas; Schulz-Stellenfleth, Johannes; and Lehner, Susanne 

(2009), “Validation and intercomparison of ocean wave spectra retrieval scheme 

using ASAR wave mode data,” submitted to International Journal of Remote 

Sensing. 

In this chapter, validation of the non-linear Partition Rescaling and Shift 

Algorithm (PARSA) for deriving two-dimensional ocean wave spectra from ASAR 

wave mode data is presented. Intercomparison of the PARSA algorithm to the quasi-

linear retrieval algorithm adopted by ESA for ASAR wave mode Level-2 WVW 

products are analyzed as well in this chapter.  

Both schemes make use of the cross spectrum calculated from ASAR wave mode 

complex data as input. The forward mapping function of wave spectrum into SAR 

image spectrum or the cross spectrum, as well as the general descriptions for the 

inversion schemes have been already introduced in Chapter 3.  

At first the theoretical models for PARSA and WVW schemes are presented. 

 

6.1. Inversion scheme of PARSA  

The PARSA scheme [Schulz-Stellenfleth et al. 2005] is proposed to derive complete 

two-dimensional ocean wave spectra from SAR wave mode data with priori 

information obtained from numerical wave model, e.g., WAM [WAMDI Group, 

1988]. Thus the retrieved results present the best available estimation making use of 

both SAR and wave model information, which is not only essential for practical 
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applications in marine design, but is also important for the understanding of ocean 

wave physics, as well for the assimilation of  numerical wave forecast models. The 

scheme is available for reprocessed ERS-2 SAR and ENVISAT ASAR wave mode 

data and is also suitable for the future Sentinel-1 mission of ESA. 

The PARSA inversion scheme needs priori information from a numerical wave 

model while using complex information from SAR data to resolve the ambiguity on 

wave propagation direction.  

SAR Cross Spectra 

A SAR requires a finite period of time, in the order of 1 second e.g. for C-band SARs, 

to collect data from the synthetic aperture. As such, individual looks can be extracted 

from Doppler spectrum during the integration time or aperture synthesizing period. 

The waves propagate during this period and therefore by taking advantage of the 

offset during different looks, the 180° ambiguity of ocean wave propagation direction 

can be removed as investigated in, e.g., [Engen and Johnsen, 1995; Lehner et al., 

2000]. 

The SAR cross spectrum 1 2

t

I I


,

is defined as the Fourier spectrum of the cross 

covariance function 1 2,I I
 of two SAR looks with separation time t .  

 1 2

1 2

,

,
Ft I I

I I
    

(6.1) 
 
The cross spectrum is a complex valued function with symmetric real and anti-

symmetric imaginary part. The positive peaks of the imaginary part indicate the 

propagation direction of the waves.  

Two individual looks derived from one ERS-2 SAR wave mode image acquired 

on Nov.28th, 1998 over the North Pacific storm [Li et al. 2009] are shown in Fig. 6.1 

(a) and (b). The real part and imaginary part of the cross spectrum computed from the 

two looks are presented in (c) and (d) respectively. The negative value in the 

imaginary part is marked by blue lines. The black line for the positive value indicates 

the propagation direction of the ocean wave system. Two wave systems with 

wavelength of around 300 m and 420 m are observed in the cross spectrum, indicating 

a mixed sea state consisting of long swells and fully developed wind sea.  
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                                 (a)           (b) 

      

(c)           (d) 

Figure 6. 1 (a) and (b) for two individual looks of one ERS-2 SAR wave mode data 

acquired on Nov.28th, 1998 over the North Pacific storm. Real part (c) and imaginary 

part (d) of the cross spectrum are computed from the two looks. 

 

 

Comparison to the MPI scheme, PARSA has several additional features: 

 
 Three parameters are used for wavelength, wave height and propagation direction 

in different wave systems. An additional description of the directional spreading of 

wave systems is included as well. 

 The algorithm is based on explicit models for the measurement error, errors in the 

forward mapping model, and uncertainties in the priori wave spectrum.  

 

Measurement errors: 

The following model is used in the PARSA approach for derivation between 

simulated and observed cross spectrum due to errors in the SAR imaging model.  
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2

1 2expobs sim F
k x k kk          

(6.2) 
     
 1  describes errors in the overall energy level of the spectrum. 2 describes 

uncertainties in the SAR ocean wave forward model and F is regarded as the error 

due to the estimation of SAR cross spectrum. 

 
 Uncertainties in the priori wave spectrum: 

The approach uses the SAR information to adjust the parameters like wavelength, 

wave height, propagation direction and directional spreading in the priori spectrum kF  

from numerical wave model, e.g., the WAM model.  

Considering kF  can be split into pn different sub wave systems iS  using a 

partitioning scheme, for each sub wave system a stochastic model with vector 

( , , , )i i i
E k       is used to quantify the confidence of wave height (energy), 

wavelength (wave number), propagation direction and directional spreading (the same 

for all sub system). Therefore, a partitioned priori spectrum iS  is given on a polar 

grid ( , )k  , the corresponding processes iS   can be written as 

 

    0 0, ,i i i i i i i i
E k kS k S k                    0, ..., pi n  

(6.3) 
 
 

 The algorithm makes use of the phase information contained in the SAR cross 

spectrum to resolve ambiguities in the wave propagation direction. 

 
The inversion scheme is able to blend SAR information (cross spectrum, k ) and 

wave model spectrum wave number spectrum kF  in a consistent way based on a 

maximum posterior approach as given in (6.4).  
 

     
 ,

pdf , pdf pdf
pdf( )

pdf
k k k

k k
k

F F
F

 



 


 

(6.4) 
The symbol  represents a set of uncertain SAR ocean wave imaging parameters, 

as introduced in (6.2). A Flowchart for the inversion scheme is given in Fig. 6.2. 
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Figure 6. 2 Flowchart of the PARSA algorithm (after Schulz-Stellenfleth et al., 2008) 
 

The maximum posterior approach is equivalent to a cost function minimization, 

which is solved using an iterative approach to estimates an ocean wave spectrum such 

that the respective simulated cross spectrum as calculated by the fully non-linear 

forward model matches best the measured cross spectrum.  

The inversion scheme starts with decomposing the priori wave model spectrum kF  

into different wave systems, e.g., windsea and swell, and then is transformed to the 

polar grid by using the transformation given in (6.3). The partitioned model spectra 

are mapped into the cross spectrum as the simulation results by the forward model 

given in (3.15) in Chapter 3. The inversion is then carried out by an iterative 

correction of priori wave spectrum by comparing the simulated cross spectrum to the 

observed cross spectrum. The adjusted priori wave spectrum leading to a changed 

cross spectrum and results in reducing the cost function. A straightforward 

termination for the iteration follows the requirement that the estimated error should be 

an order of magnitude smaller than the expected error as given by the priori 

distribution.  

6.2. Inversion scheme of WVW 

The ENVISAT ASAR WVW products provide two-dimensional ocean wave spectra 

derived from ASAR wave mode images on a regular basis. They are provided on a 

log-polar grid with 24 wavelengths and 36 directions. The ESA algorithm uses cross 
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spectra derived from single-look-complex ASAR wave mode data as described in 

[Engen and Johnsen, 1995].  

The methodology for the currently available ASAR wave mode WVW products is 

briefly introduced. The non-linear transformation between SAR cross spectrum and 

ocean wave spectrum is given in (3.15). The main idea for the WVW inversion 

scheme is to divide the SAR cross spectrum into a non-linear (mainly wind driven) 

part and a quasi-linear (mainly swell driven) part: 

ql nlP P P 
 

(6.5) 
 

The philosophy of the proposed cross spectra wave retrieval inversion scheme for 

WVW products is to separate the contribution of  wind sea part nlP from the observed 

full nonlinear cross spectrum P , then the remaining part is the quasi-linear 

contribution from swell. If the signal-to-noise ratio of the SAR cross spectra is large 

enough, a unique solution of the wave spectrum can be achieved [Johnsen, 2001]. 

Some features for the implementation of the inversion scheme in the WVW products 

is given in the following. 

 

 Estimation of the wind field 

The non-linear part in the SAR cross spectra is assumed to be caused by the wind sea. 

Therefore the estimation for the wind field is a crucial point in the inversion. For the 

WVW products, the wind direction is estimated either using the external information, 

e.g., from numerical atmospheric model, or assuming the wind direction is 45° 

relative the SAR range direction. Using the assumed wind direction, combining with 

the conventional CMOD function for surface wind field retrieve [Stoffelen and 

Anderson, 1997; Lehner et al., 1998], the wind speed is estimated.  

 

 Estimation of the inverse wave age 

The wave age is tuned by fitting the measured azimuth shift variance to the 

corresponding simulated one by the given wind speed and wind direction. The 

azimuth shift variance is computed from the measured cut-off of the azimuth spectral 

profile. 
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 Estimation of the non-linear part in the cross spectra 

Using the given wind speed, wind direction and wave age, ocean wave spectra can 

be constructed with the model proposed by Elfouhaily et al. [1997]. Then the non-

linear part is calculated using the transformation given in (3.15).  

Eventually, the estimated non-linear part is removed from the observed cross 

spectra, and the remained is the quasi-linear part. Thus swell spectra can be resolved 

uniquely.  

Above are the basic elements of the inversion scheme for the current ASAR wave 

mode WVW products. One can conclude that the most important feature for the 

WVW schemes is the removing of the non-linear part in the cross spectrum, which is 

related to the cut-off estimation. Therefore remaining in the full cross spectrum is the 

wave information contained in the SAR cut-off domain only. The retrieved wave 

spectra in the WVW products, in fact, yields the information on the two-dimensional 

distribution of energy density for long waves [Abadalla et al., 2008] contained in the 

ASAR wave mode data.  

In the following validation and intercomparison, the limitations for the current 

WVW products are shown. First an example over the North Pacific is given. 

6.3. Validation of PARSA and WVW schemes 

As both algorithms are proposed to yield two-dimensional ocean wave spectra from 

ASAR wave mode data, the comparison of the retrieved spectra by the two algorithms 

is presented as first. 

 

Comparison of retrieved two-dimensional ocean wave spectra 

In Fig. 6.3, SWH given by the DWD global forecast wave model at 09:00 UTC on 

Dec.4th, 2006 is superimposed with an ASAR orbit across the North Pacific acquired 

between 09:15 UTC and 09:31 UTC. Small squares show the location where ASAR 

wave mode data are acquired with colors presenting the SWH retrieved by the 

PARSA scheme. One can observe that the orbit passes through a North Pacific storm 

with SWH above 10 m. Three ASAR wave mode imagettes of this orbit are located in 

quite different sea state, i.e. A (41º10´N/175º33´W) 、B (37º38´N/174º36´W) 、C 

(19º54´N/170º22´W) with respective SWH of 7.6 m, 5.8 m and 2.7 m as given by the 
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PARSA inversion。 

 

 

Figure 6. 3 SWH of DWD forecast wave model on Dec.4th, 2006 at 09: 00 UTC 

superimposed with SWH derived from ASAR wave mode data by the PARSA scheme 

 

Respective retrieved two-dimensional ocean wave spectra for the three ASAR 

imagettes, as well as the wave spectra derived from ECMWF reanalysis wave model 

used as priori information for PARSA scheme are shown in Fig.6.4 (a), (b) and (c). 

The retrieved PARSA spectra are consistent with the priori wave spectrum given 

by the ECMWF reanalysis wave model. On the one hand, the ECMWF reanalysis 

wave model has been assimilated with the ASAR cross spectrum information. The 

inversion scheme PARSA is proposed using for wave model assimilation, therefore 

the retrieved wave spectrum should be consistent with the wave model output, though. 

In the retrieved ocean wave spectrum by the PARSA scheme, the adjusted wave 

energy, wavelength and propagation direction, as well as the directional spreading 

using ASAR information are also visible. For ASAR imagette A, two swell systems 

with peak wavelength of 200 m and 300 m are resolved by the ECMWF reanalysis 
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wave model. The later swell system with higher energy is adjusted by the PARSA 

inversion scheme with increased wavelength to around of 400 m. The energy 

adjustment leads the SWH of 6.8 m given by the ECMWF wave model to be of 7.6 m 

retrieved by the PARSA scheme. With respect to B, it seems that only the SWH 

increases slightly from 5.5 m (ECMWF) to 5.8 m as given by the PARSA result. The 

sea state where C locates is rather complex with four wave systems traveling in 

different directions. Peak wavelengths for these subsystems are all increased by the 

PARSA inversion, while the SWH stays consistent for the total sea compared to the 

priori information. From the three examples for comparison, one can generally 

conclude that the PARSA scheme blends the ASAR observations into the priori 

information in a homogenous way with adjustments for partitioned wave systems and 

these adjustments increase with sea state, e.g., the adjustments of the energy are 

particularly pronounced in high sea state. 

The ocean wave spectra derived from ASAR wave mode WVW products are 

obviously limited to the ASAR cut-off wavenumber. Only the long wave information 

contained in the ASAR image are retrieved. On the other hand, one can observe that 

artificial effects of the SAR ocean wave imaging mechanism are also are visible in the 

cross spectrum, which needs to be taken care of,  when using the SAR look cross 

spectrum resolving wave propagation direction. 
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ASAR Wave Mode data (WVI) 

ASAR Wave Mode WVW Product 

 

ECMWF reanalysis wave model spectrum PARSA spectrum 

 

(a) 
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ASAR Wave Mode data (WVI) 

ASAR Wave Mode WVW Product 

 

ECMWF reanalysis wave model spectrum PARSA spectrum 

 

(b) 
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ASAR Wave Mode data (WVI) 

ASAR Wave Mode WVW Product 

 

ECMWF reanalysis wave model spectrum PARSA spectrum 

(C) 

Figure 6. 4 Comparison of retrieved two-dimensional wave spectrum from ASAR 

wave mode data using PARSA and WVW algorithm based on three ASAR wave 

mode data acquired on Dec.4th, 2006 in different sea state 

 

Integral wave parameters from the different sea state, e.g., SWH, mean wave 

period retrieved by PARSA and WVW schemes are given in the following. 

 

Validation of integral wave parameters 

The integral wave parameters, e.g., SWH, zero-upcrossing mean wave period Tm02 

and wave height H12 can be derived from the estimated two-dimensional ocean wave 
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spectrum, according to:   

 

4 ( , )SWH E f df d    

(6.6) 
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(6.8) 
 

The differences between ASAR measurements iY and results of other dataset iX  

(e.g., buoy or numerical model) are quantified in terms of bias, root-mean-square-

error (RMSE) and scatter index (SI), given by (6.9)-(6.11).    

ii XYBias                                                                        

(6.9) 
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 PARSA versus buoy 

SWH derived from PARSA spectra in December 2006 and January, February and 

May in 2007 are used to validate the results against in situ buoy measurements. 

Around 1200 data pairs are collocated. The geolocation of the buoys is given in 

Fig.4.4 in Chapter 4. 

Fig.6.5 (a) and (b) show the comparison result as scatter diagrams. PARSA (a) 

and ECMWF (b) reanalysis wave model results are compared to buoy data 

respectively. For the ECMWF comparison, only cases collocated to PARSA retrievals 
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are considered. Due to the assimilation of ASAR and RA measurements, the 

correlation of the ECMWF reanalysis model with the buoys is good indicated by the 

scatter index of 20%. The PARSA results have a similar scatter index of 21% and a 

RMS error of 0.64 m, slightly higher by 0.06 m relative to the ECMWF reanalysis 

model results in comparison the buoy measurements. 

 

 

(a)                                                                     (b) 

Figure 6. 5 Scatter diagrams of SWH retrieved by PARSA (a) and collocated 

ECMWF reanalysis wave model (assimilated with ASAR and RA information) (b) 

compared to in situ buoy measurements 

 

 PARSA versus numerical wave models 

With regard to the comparisons to results of the numerical wave model, data pairs 

collected in December 2006, January and February 2007 are used. The SWH retrieved 

by PARSA compared to the ECMWF reanalysis wave model and the DWD forecast 

wave model are represented in Fig. 6.6 (a) and (b), respectively. 

The comparison shows that the PARSA spectra results have better agreement with 

ECMWF reanalysis wave model results than compared to the DWD model, e.g., SI is 

lower than 10% and RMS error is only 25 cm, which might be because the PARSA 

uses the ECMWF model results as priori information. As the DWD forecast wave 

model is independent of SAR and RA information, comparison to this model shows 

independent results for the SAR ocean wave retrieval algorithm.  
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One interesting point is that SWH derived from PARSA spectra is substantially 

higher than for both wave models at high sea state. Due to the limited buoy 

comparison in high sea state (as shown in Fig.6.5), it is difficult to judge the 

performance of retrieved results by PARSA retrieval and reanalysis or forecast wave 

model results in this situation. The cross over collocated RA observations over high 

sea state will be used for comparison.   

 

 
(a)                                                                  (b) 

Figure 6. 6 Scatter diagrams of SWH retrieved by PARSA compared ECMWF 

reanalysis wave model (a) and DWD forecast wave model (b) 

 

Wave height H12 as given in Equ.(6.8) is associated with wave components with 

wavelength longer than 220 m. Such waves are directly detectable as patterns on the 

ASAR images. On the other hand, validation results show that SWH derived from 

numerical wave models, e.g., WAM operated in ECMWF there is a positive bias 

larger than 0.25 m related to swell events (e.g., wave period in the range of 10-15 s) 

generated by storms in the Southern Hemisphere winter time  when compared to in 

situ buoy measurements [Janssen, 2008].  Therefore it is particularly interesting to 

compare H12 PARSA algorithm to model results. 

Fig. 6.7 (a) and (b) shows the comparisons to the ECMWF reanalysis wave model 

for H12 and Tm02 retrieved by the PARSA scheme. Both plots show good correlation 

higher than 0.90 to the wave model results. For H12 comparison, the scatter index is of 
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24% and RMS error is 0.26 m. With respect to the Tm02 comparison, a better scatter 

index of 6% is acquired while correlation is slightly lower of 0.93. The lowest mean 

wave period retrieved by PARSA is around 3 s, which corresponds to a wavelength of 

15 m in deep water. On the other hand, one can observe many entries showing a 

higher estimation of mean wave period retrieved by PARSA than the ECMWF wave 

model results. This indicates that the long wave information contained in the ASAR 

image is blended well into the retrieved spectra by the algorithm.  

 

 

(a)                                                                (b) 

Figure 6. 7 Scatter diagrams of H12 (a) and Tm02 (b) retrieved by PARSA compared 

ECMWF reanalysis wave model 

 

Integral wave parameters derived from the retrieved two-dimensional ocean wave 

spectra by non-linear PARSA scheme are presented above. Validation for the 

inversion scheme for WVW products is given as follows.  

 

 Validation of inversion scheme for WVW 

The ESA-ENVISAT WVW products provide two-dimensional ocean wave spectra 

derived from ENVISAT wave mode images on a regular basis. They are provided on 

a log-polar grid with 24 wavelengths and 36 directions. The ESA algorithm uses cross 

spectra derived from single-look-complex ASAR wave mode data as described in 

[Engen and Johnsen, 1995]. In this section, WVW products are compared to wave 
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models and in situ measurements in order to demonstrate the benefits of PARSA with 

respect to the products currently available. WVW products are intended to deliver 

particularly precise information for long waves inside the cut-off region of the 

spectrum. Thus the wave height H12 is used for assessment, too.  

The same dataset with results from the PARSA inversion compared to in situ buoy 

measurements is used as SWH derived from WVW data for spectral validation. 

However, it should be noted that in the scatter plot presented in Fig. 6.8 there are 192 

entries, around 15% of the dataset for buoy comparison, are located at the origin (0, 0), 

which demonstrates that there is no SWH data available for cases when the ocean 

wave spectra cannot be retrieved from the cross spectra based on the quasi-linear 

inversion scheme adopted for the ESA wave mode products. This can be observed as 

well when SWH is compared to ECMWF and DWD model results as shown in 

Fig.6.9 (a) and (b), and H12 comparison in Fig.6.10. Many cases, nearly 25%, for triple 

comparisons are not converted successfully by this scheme and cannot be used for 

triple comparisons.   

Considering all the comparisons of integral wave parameters derived from the 

ESA WVW spectra, the scatter indices are all higher than 30% and the RMS error are 

higher than 0.65 m for the SWH comparisons. Another important conclusion from 

these three figures is the estimation of SWH derived from WVW spectra is 

significantly underestimating the sea state. This is particularly obvious when the SWH 

is higher than 4 m, though in the lower sea state it seems that WVW can provide 

reasonable estimates. 

Even if it is argued that the WVW results are only available for the long wave 

information resolved by the ASAR sensor, it still cannot provide reliable sea state 

estimations in many cases, as evident from the H12 comparison as shown in Fig.6.10, 

which are in fact results for wave already longer than 220 m. 
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Figure 6. 8 Scatter diagram of SWH derived from ESA Level2 WVW spectra 

compared to in situ buoy measurements. There are together 192 entries located in the 

origin (0, 0) demonstrating the cases that WVW spectra are not successfully converted. 

 

 

 
(a)                         (b) 

Figure 6. 9 SWH derived from ESA Level2 WVW spectra compared to ECMWF 

reanalysis wave model (a) and DWD forecast model (b) 
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Figure 6. 10 H12 derived from ESA Level2 WVW spectra compared to ECMWF 

reanalyzed wave model 

 

6.4. Conclusions 

Results achieved during the validation and intercomparison for the PARSA and 

WVW schemes are presented in this paper. Three months global data acquired during 

2006 December to 2007 February are used for comparisons to the numerical wave 

models; an additional month of 2007 May is included as well for the buoy comparison.  

Comparison of retrieved two-dimensional wave spectra by the PARSA inversion 

to the ECMWF wave model spectra shows that the inversion blends well the SAR 

information into the priori wave model results, which leads to the adjustment of the 

wave direction, wave length as well as wave energy. This change increases with sea 

state, which is especially obvious for the wave height.  

The spectra derived from the ESA WVW products are limited to the cut-off 

wavenumber domain. Further it seems that the artificial effect of SAR imaging of 

ocean waves is not considered sufficiently in the inversion. 

A summary of the statistical parameters obtained in the analysis of significant 

wave height is given in Tab.6.1 showing that very good results of SWH can be 
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achieved with the PARSA inversion scheme. 

 

Table 6. 1 Statistical results of different SAR ocean wave algorithms for SWH 

compared to in situ buoy measurements and results of numerical wave models 

 Vs. buoy Vs. ECMWF Vs. DWD 

Algorithm 
Bias  
(m) 

RMSE 
(m) 

SI 
Bias 
(m) 

RMSE
(m) 

SI 
Bias 
(m) 

RMSE 
(m) 

SI 

PARSA 0.09 0.64 0.21 0.01 0.25 0.09 -0.01 0.46 0.16 

WVW  -0.19 0.88 0.36 -0.16 0.65 0.30 -0.19 0.67 0.31 

 

Also it should be noted that currently the in situ dataset does not contain any data 

from the southern hemisphere were there are high sea states observed in large regions 

throughout the year and where the SAR observations can particularly improve the 

knowledge on ocean surface waves. Another issue addressed was the fact that most of 

the buoys are close to the coast and are therefore not fully representative for the sea 

state (in particular for storm events) in the open ocean. One strategy presented is the 

use of co-located altimeter measurements. As seen in the North Atlantic storm event 

case study [Li, et al., 2009], while the distance between wave mode images and 

altimeter measurements of around 300 km is likely to lead to considerable different 

wave height near the center of a severe storm. Therefore the cross over collocation 

with altimeter measurements for validation is needed in the future research. 

Considering the present level-2 WVW products from ESA, it should give a swell 

wave height while the comparisons presented in the paper shows the significant 

underestimation for the sea state, which is also presented by the validation in 

ECMWF [Abadalla, et al., 2008]. 

 The fact that the priori information from the ECMWF reanalysis wave model 

used in the PARSA inversion already went through the MPI inversion scheme making 

use of the level-1b ENVISAT ASAR cross spectrum product will be considered in 

future studies.  
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Chapter 7 

Empirical Algorithm CWAVE_ENV Development and 

Validation 

After the validation of existing algorithms, in this chapter a new algorithm was 

developed that yields SWH and mean wave period without the use of a first guess. 

Contents of this chapter are based on the paper entitled “Ocean Wave Integral 

Parameter Measurements Using ENVISAT ASAR Wave Mode Data”, which is 

submitted to IEEE Transactions on Geoscience and Remote Sensing. 

An empirical model consists of a function that fits a given dataset without giving a 

geophysical explanation. The graph of the function goes through the data points 

approximately. Thus, although we cannot use an empirical model to explain a system 

exactly, such a model can be used as a predictor or an estimator. In ocean remote 

sensing, quite a few empirical models are used in practice to derive ocean physic 

parameters, e.g. empirical algorithms are widely applied in the processing of the 

global CZCS data set [Gondon et al., 1983]; the CMOD to retrieve wind field from 

Scatterometer [Stoffelen and Anderson, 1997]; and the empirical models are used to 

measure mean wave period with Altimeter data [Gommenginger et al., 2003]. For 

SAR, integrated wave parameters are estimated as well by an empirical model 

CWAVE [Schulz-Stellenfleth et al., 2007]. 

Regarding to the current non-linear or quasi-linear algorithms retrieving two-

dimensional ocean wave spectra from SAR imagery, either priori information from a 

numerical wave model is needed e.g., MPI scheme or PARSA scheme as used at 

weather forecast centers, or like for the ESA WVW products the retrieved wave 

spectra are limited to waves longer than a certain threshold, as described in the 

previous chapter. 

In this chapter, an extended empirical algorithm called CWAVE_ENV to derive 

integral wave parameters such as SWH, mean wave period Tm02 and wave height H12 

from ENVISAT ASAR wave mode data is presented. It has the calibrated ASAR 

wave mode images as the only input and does not need additional first guess 
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information from an ocean wave model. This algorithm thus makes the SAR be an 

independent instrument measuring integrated wave parameters to Altimeter quality.  

For the ERS mission, the empirical algorithm CWAVE_ERS [Schulz-Stellenfleth 

et al., 2007] was proposed for the reprocessed ERS-2 SAR wave mode data [Lehner 

et al., 2000]. Validation results show that the performance of CWAVE _ERS is fairly 

good when compared to the ECMWF WAM model using 6000 collocation data pairs 

and to 21 buoy measurements during three weeks in 1996. For both comparisons with 

respect to SWH, results of CWAVE_ERS show a small bias and RMS of 0.44 m and 

0.39 m, respectively. While performance of CWAVE_ERS for high sea state, e.g., 

SWH larger than 6 m, is not evaluated in the comparisons. 

Fig. 7.1 shows that the implementation of CWAVE_ERS empirical model on the 

ENVISAT ASAR wave mode data acquired during January and February in 2007.  

 
(a)                                                                          (b) 

Figure 7. 1 Scatter diagrams of SWH derived from ASAR wave mode data using the 

CWAVE_ERS empirical model compared to the ECMWF reanalysis wave model (a) 

and the DWD forecast wave model (b). This is used to demonstrate that the 

CWAVE_ERS model is not suitable for the ASAR wave mode data and a new one is 

demanded. 

 
One can observe the low correlation, high bias and RMSE and scatter indices for 

the retrieved SWH compared to the ECMWF reanalysis wave model and DWD 

forecast wave model. Considering that ASAR wave mode data have different spatial 

resolution, image size, calibration constant and ocean surface imaging performance 
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with ERS-2 SAR wave mode data, a new tuning of the coefficients for the 

CWAVE_ENV model is needed. Using new CWAVE_ENV model, a global dataset 

of about 1000 measurements daily for ocean wave integral parameters from the 

ASAR wave mode data independent of priori information becomes available. 

 

7.1. Introduction of the parametric model CWAVE_ENV 

In this section, the CWAVE_ENV parametric model structure, model fitting 

procedure and its evaluation using the tuning dataset are described in detail. 

 

Multiple Regression Model 

Suppose n  parameters or factors S (s1,…,sn)  are thought to affect the expected 

observation W  with coefficients A(a0,…,an). A simple linear regression model 

collecting these parameters in an estimator is given by (7.1), see [von Storch and 

Zwiers, 1999]. 





N

i
iii EsaaW

1
0  

(7.1) 

where iE are random variables with zero mean. Formula (7.1) is the simple linear 

regression for modeling n data points and independent factors, which corresponds to a 

straight line. For the CWAVE_ENV empirical model, a quadratic term is added on the 

right side of Equ. (7.1), i.e., it is a multiple linear model, taking into account the 

quadratic nonlinearities as well as possible coupling among different variables. Thus 

the final form of the model is given as,  

ji
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j
jiii ssasaaW  
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,0                                       

(7.2) 

The model states that the observation W is expressed as a linear combinations of 

the factors S(s1,…,sn). However, the factors themselves can be nonlinear functions of 

other variables. In the following the variables chosen in the CWAVE_ENV model are 

described. 
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ASAR Image Parameters Selection in the CWAVE_ENV Model 

Using the model given by (7.2) it is assumed that the n variables include all relevant 

predictor variables. It is often required to select the variables such that no essential 

information is lost. On the other hand, too many variables will increase the 

computational effort as well as make the model rather sensitive to minor changes.  

In the CWAVE_ENV model, it is assumed that the ASAR parameters SA (s1,…,sn), 

i.e. the Normalized Radar Cross Section (NRCS, referred to as well as   shown in 

Equ. (7.3)), the variance of the normalized SAR image (cvar given in Equ. (7.4), see 

[Kerbaol, 1998]), and other parameters computed from the variance spectrum are 

regarded as related to ocean surface wave. Former researches state that due to the cut-

off effect of SAR imaging mechanism only long wave information is imaged by SAR, 

which is apparent for high altitude orbit SAR systems like ERS SAR and ENVISAT 

ASAR, while complete wave parameters still can be retrieved from the SAR image by 

using the empirical model.  

The NRCS of a SAR image is related to ocean surface wind based on the CMOD 

function [Stoffelen and Anderson, 1997; Lehner et al., 1998] and thus can represent 

short wave information.   

KI  100 log*10  

(7.3) 

var var
I I

c
I

 
   

 
                                                                  

(7.4) 

In (7.3) and (7.4), I is the mean intensity of ASAR imagettes and K is the 

calibration constant.  

Estimation of the ASAR image spectrum is performed by computing the image 

periodogram with a two-dimensional FFT algorithm. The raw periodogram is not a 

good spectral estimation because of spectral bias and the fact that the variance at a 

given frequency does not decrease as the number of samples used for the computation 

increases. The variance problem can be reduced by smoothing the periodogram. The 

idea behind is to divide the entire set with N samples into many sub sets with M 

samples, compute the FFT of each sub set, square it to get the power spectral density 



Chapter 7 Empirical algorithm CWAVE_ENV development and validation   

- 69 - 

and then compute the average of the ensemble. This approach applied on the ASAR 

image spectral estimation is given in Appendix 4.  

In both the models CWAVE_ERS and CWAVE_ENV, 20 parameters are 

extracted from the estimated two-dimensional SAR image spectra. Together with   

and cvar, there are 22 parameters that are collected into the ASAR image parameter 

vector SA (s1,…,sn) as input to the model (7.2).  

Although the exact physical meaning behind (7.2) is not easily to be interpreted, 

the 22 parameters derived from the ASAR image include the essential information 

relating the image itself to both long wave and short wave information therefore the 

parametric model is successful in estimating ocean wave integral parameters of the 

complete spectrum. 

 

Empirical Model Fitting Procedure  

A least square minimization approach is used to tune the CWAVE_ENV empirical 

model as given by (7.5), where W is the integral wave parameter (e.g., SWH or mean 

wave period) derived from model or other observation data sources collocated to the 

ASAR image and treated as the “true” or at least very reliable sea state observations. 

It needs to be pointed out that different integrated wave parameters correspond to 

respective parametric model coefficients.  

 

2

1 1
cos ( ) ( )

N k
j

t j i i
j i

J A W A S
 

                                              

(7.5) 

A stepwise regression procedure is used for the least square minimization 

approach. The 22 parameters defined in the previous section are all included in the 

tuning approach; however there are possibilities that some parameters will not lead to 

a significant improvement of the empirical model. To diagnose the performance of 

every SAR image parameters collected in the vector SA (s1,…,sn), couples of terms are 

used to quantify this. 

The regression (or explained) sum of squares due to regression is denoted by RSS  

2

1 0
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                                                        
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(7.6) 

The error (or residual) sum of squares ( ESS ) is  

                                                  2

1 0

( )
N k

j
j i i

j i

ESS W A S
 

                                         (7.7)                             

The multiple-regression is performed on every ASAR image parameter. The 

parameter 1lS  for which 1lRSS is largest is chosen as the initial parameter. In the next 

step, a new parameter 2lS  is selected, for which the incremental regression sum of 

squares incRSS  is again largest.  

2 1inc l lRSS RSS RSS                                                    

(7.8) 

In the third step, the testing of hypothesis that the inclusion of new ASAR 

parameter 2lS  significantly reduces the regression sum of squares are performed by 

computing the test variable of,  

1

2

( )

/ ( )
i inc

l

RSS
F

ESS N i
 


                                                     

(7.9) 

This is compared to the critical value of the distribution ),1( iNF  [von Storch 

and Zwiers, 1999]. The iteration to select ASAR parameters will be terminated if the 

testing variable )1( iF  is below 0.99 or 99% quantiles and the coefficients in (7.2) are 

fitted.  

7.2. CWAVE_ENV model implementation 

In the present study, some filters are implemented on ASAR wave mode data to be 

used in CWAVE_ENV model tuning and validation. 

(1) Only the ASAR wave mode data acquired in IS2 swath with incidence angle 

at around 23º and VV polarization are used.  

(2) It should be noted that only wave mode data acquired between -70º S~70º N 

are included in the dataset in order to avoid effect due to sea ice coverage.  

(3) Homogeneity test is performed on ASAR wave mode data. Two examples of 

inhomogeneous ASAR data are given in §2.2.3. The inhomogeneous data are 

excluded both from the tuning and validation dataset.  The ratio of image 

variance and squared image mean is set in 1.05 as the threshold to classify the 
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ASAR wave mode imagettes into classes of homogenous or inhomogeneous 

cases [Schulz-Stellenfleth and Lehner, 2004]. 

ASAR wave mode data and collocated ECMWF wave model spectra in December 

2006 are used as the tuning dataset.  

In the CWAVE_ENV empirical model, the 22 parameters extracted from ASAR 

wave mode image are used for parametric model tuning approach.  

The selection of a training dataset for the empirical model is a crucial point. Its 

accuracy should be very near to the ground truth and as well be sufficiently 

representative of different sea state within the global geographical coverage.  

In situ buoy measurements are believed to be the “ground truth (with 10% or 0.25 

m accuracy for wave height)” and are used generally for assimilation into offshore 

wave models, validation of global wave forecast models, calibration and validation of 

satellite wave sensors. Buoy measurements would be the best candidate for the tuning 

of the empirical model. However the existing sea state reference buoys are limited in 

terms of global distribution and location (few are located in the open sea and in the 

South Hemisphere) [Swail, 2008].  

The SAR/ASAR wave mode data are typically acquired globally in the open sea 

where only few buoy measurements are available. Therefore in the present study, 

ASAR collocated ECMWF reanalysis wave model results in December 2006 are used 

as the tuning dataset. As mentioned in the Chapter 4, the reanalysis ECMWF wave 

model is assimilated by all available in situ and satellite information is the reasonable 

and available tuning dataset. 

Histograms of SWH and Tm02 derived from the collocated ECMWF reanalysis 

wave model are shown in Fig.7.2 (a) and (b), respectively. It can be observed that the 

tuning dataset includes different sea state and the dominant SWH ranges between 1.5 

m ~ 2.5 m contributing around 50% to the entire tuning dataset. The maximum SWH 

given by the ECMWF model in the tuning dataset is 12.6 m.  The Tm02 distribution 

shows that the model measures numerous waves with period between 8 s ~ 9 s and 

long swell with periods larger than 12 s exist in the tuning dataset, too. 

The tuning dataset is used for testing the CWAVE_ENV model parameter fitting 

approach. Fig. 7.3 shows the comparison results for SWH (a) and Tm02 (b) of the 

tuning dataset to the ECMWF reanalysis model results. One can observe that the 

tuning approach of the CWAVE_ENV empirical model is successful making the 
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difference between the ASAR measurements derived by the CWAVE_ENV algorithm 

and the ECMWF reanalysis model results in the tuning dataset quite small with zero 

bias (as to be expected for the tuning), and low scatter indices of 15% and 7% for 

SWH and Tm02 respectively.   

Once the coefficients of the CWAVE_ENV model are fitted, it is used for the new 

complete dataset for the empirical model validation and calibration.  

 
(a)                                                                      (b) 

Figure 7. 2 Histogram of SWH (a) and Tm02 (b)) derived from the ECMWF analyzed 

model in December 2006, which are used in tuning dataset of CWAVE_ENV model 

 

 
                                (a)                                                                    (b) 
Figure 7. 3 Evaluation of the tuning datasets consisting of the data in December 2006 

for the CWAVE_ENV model 
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7.3. Performance assessment of the CWAVE_ENV empirical 

algorithm  

In this section, SWH, Tm02 and H12 derived from ASAR wave mode data are validated 

by comparisons to in situ measurements, numerical wave model and RA 

measurements comparisons on a dataset different to the tuning dataset.  

Besides the validation of CWAVE_ENV algorithm, comparisons to the two other 

SAR ocean wave retrieval algorithms, i.e. PARSA and WVW schemes validated in 

chapter 6 are presented as well in this section.  

   

 Compared to in situ buoy measurements  

The comparison is discriminated between deep water (depth > 100 m) and shallow 

water cases, as shown in the scatter diagrams of Fig. 7.4 (a) and (b) respectively.  

  

(a)                                                                 (b) 

Figure 7. 4  Scatter Plots of SWH derived by the CWAVE_ENV algorithm compared 

to buoy in situ measurements. (a) is for the comparisons in deep water and (b) is for 

shallow water 

In deep water, SWH derived by the CWAVE_ENV empirical algorithms shows a 

good agreement against the buoy measurements. One can observe that generally the 

empirical algorithm can provide reliable retrieved SWH from ASAR wave mode data 

with nearly zero bias, RMSE of 0.70 m and a scatter index of 24% in deep water. 

Considering the 61 data pairs in shallow water, the retrieved SWH has a lower 



Chapter 7 Empirical algorithm CWAVE_ENV development and validation   

- 74 - 

estimation with bias of around 0.2 m and the scatter index becomes rather higher to 

33%. As such near shore cases many be very variable and depend on collocation. 

The tuning dataset we choose in the present study is the reanalysis numerical wave 

model, which has a good accuracy and global distribution and location. Taking 

account the spatial resolution of the reanalysis wave model, the coastal ocean wave 

processes, e.g., wave shoaling and refraction induced by the bathymetry, cannot be 

resolved though [Li et al., 2009]. This therefore makes the retrieved results of 

CWAVE_ENV in shallow water showing a high bias.    

To investigate the performance of CWAVE_ENV for different sea states i.e., from 

smooth to high sea state, a step comparison is carried out. In Table 1, the results of 

comparison are summarized. Besides the three statistical parameters defined in 

Chapter 6 (Equ.(6.9)-(6.11)), the bias percent (BP) is used as well, estimating the 

relative bias depending on the mean value of buoy observations: 

100% ( )i i iBP Y X X                                                        

(7.10) 

Considering the usual measurement for quality, namely the scatter index, it is 

found that in rough sea state, i.e., SWH > 2.5 m, the CWAVE_ENV algorithm has a 

better performance with scatter indices lower than 20%. In a sea state with SWH 

lower than 1.25 m, there is a distinct difference between CWAVE_ENV results and in 

situ measurements. Retrieved SWH is overestimated compared to the buoy 

measurements and the scatter index in this sea state is 43%. The distinct difference 

between radar and in situ buoy measurements in low sea state is also shown in the 

validation for the RA measurements, e.g., see [Cotton et al., 1997; Krogstad and 

Barstow, 1999]. This somewhat is induced by the spatial inhomogeneity given by the 

fact that ASAR is sampling measurements every 100 km spatially while the buoy is 

averaged within 20 minutes. 

In high sea state, namely when SWH is higher than 4m, SWH derived by 

CWAVE_ENV is underestimated compared to buoy measurements and the bias 

increases with higher sea state. However, it is interesting to note that the scatter index 

is lower than 0.15 showing a quite promising agreement with in situ measurements in 

sea states with SWH > 6 m.  
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Table 7. 1 Statistical results assessing the performance of CWAVE_ENV for SWH in 

different sea state 

SWH (m) Data Pairs Bias (m) BP (100%) RMSE (m) SI 

(0,1.25) 170 0.45 47.6% 0.60 0.43 

(1.25, 2.5) 456 0.20 10.0% 0.63 0.31 

(2.5,4) 370 0.07 2.0% 0.69 0.21 

(4,6) 208 -0.34 7.0% 0.77 0.14 

>6 66 -0.91 12.6% 1.41 0.15 

All 1270 0.05 1.7% 0.72 0.24 

  

 

Further investigation of the CWAVE_ENV algorithm will be considered for cases 

of very low (< 1.0 m) and extreme sea state (> 10.0 m) when compared to more 

collocations of in situ measurements. 

 

Figure 7. 5  Percentage of ASAR wave mode data that pass the homogeneity test in 

different sea states acquired during January and February 2007 

 

In the next three sections, data pairs are collected in January and February 2007 
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for the comparisons to numerical wave models, existing ASAR wave mode level2 

WVW products and the crossover radar altimeters. Homogeneity test are performed as 

well before the comparisons and validations. Figure 6 shows percentages for the 

ASAR wave mode data that pass the homogeneity test in different sea state during the 

two months.  One can observe that more than 60% data are excluded when SWH is 

lower than 0.5 m. When SWH is higher than 2.5 m, 90% data are homogenous and 

can be used for comparisons. 

 

 Comparison to numerical wave models 

In this section, SWH, H12 wave height, Tm02 as well as wave energy period Tm-10 are 

compared to the ECMWF and DWD model results. The scatter plots of Fig. 7.6 (a) 

and (b) show the SWH comparisons against the ECMWF and DWD wave model 

results respectively.  

Both plots in Fig. 7.6 show that SWH retrieved by the CWAVE_ENV empirical 

algorithm have good agreement compared to the reanalysis and forecast model with 

zero bias, 0.43 m and 0.51m of RMSE and scatter index of 16% and 18% respectively. 

For all statistical parameters, results derived from CWAVE_ENV algorithm 

compared to the ECMWF reanalysis model have a better agreement than compared to 

the DWD model. A plausible explanation is that the CWAVE_ENV algorithm is 

tuned by the ECMWF reanalysis model. In extreme sea state, e.g., when SWH is 

higher than 10 m, CWAVE_ENV results have a trend lower than the ECMWF model, 

but higher than the DWD model. As the ECMWF model has been assimilated with the 

in situ buoy and satellite data, thus the DWD forecast results give more independent 

comparisons.  
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(a)                                                                      (b) 

Figure 7. 6 Scatter Plots of SWH derived by CWAVE_ENV compared to the 

ECMWF reanalysis Model (a) and the DWD forecast model (b) in January and 

February 2007 

 

H12 and Tm02 measurements are not available for the model provided by DWD. 

Results derived from the CWAVE_ENV algorithm for these parameters are compared 

to the ECMWF reanalysis model, as shown in Fig. 7.7 (a) and (b).  The scatter index 

of the H12 comparison is 30% while the bias still remains very low at 3 cm. Tm02 

comparison has a scatter index of 8% and the RMSE is 0.6 s.   

Additional to SWH, wave energy period Tm-10 = 1 0/m m  is another key parameter and 

used to calculate the wave power J  via 

2
100 49. s mJ H T   

(7.10) 

where J  has units /kW m [WMO, 1998]. The wave energy period is also retrieved by 

the CWAVE_ENV algorithm and compared to the reanalysis ECMWF model, as 

shown in Fig. 7.7 (c).  
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                                     (a)                                                              (b) 

 

(c) 

Figure 7. 7 Scatter Plots of wave height H12 (a), Tm02 (b) and Tm-10 (c) derived by 

CWAVE_ENV compared to the ECMWF reanalysis model in January and February 

2007 

 

As ASAR images are often requested as well for other modes (e.g. image mode 

with 100 km by 100 km swath coverage) which is exclusive to the wave mode in 

offshore regions, we are following the idea of extending the CWAVE_ENV algorithm 

to image swath ASAR data to retrieve sea state parameters. Thus coastal wave power 

statistics will become available. This is interesting for many coastal applications. 
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In Tab. 7.2, the statistics of the comparisons to both wave models are summarized. 

Integral wave parameters given by CWAVE_ENV have nearly zero bias when 

compared to models. Tm02 has the smaller scatter index of 8%, while it has the highest 

bias of -0.05 s and RMSE of 0.59 s in the triple comparisons. 

 

Table 7. 2 Statistics obtained by the CWAVE_ENV algorithm vs. ECMWF model 

and DWD model for SWH (m), H12 wave height (m), Tm02 (s), Tm-10 (m) in January 

and February 2007. Bias is with respect to observations and SI indicates scatter index. 

 
CWAVE_ENV vs. ECMWF 

model 

CWAVE_ENV vs. DWD 

model 

Statistical  
Para. 

Cor. Bias RMSE SI Cor. Bias RMSE SI 

SWH 0.93 -0.02 m 0.43 m 0.16 0.90 -0.05m 0.51m 0.18 

H12 0.92 -0.03 m 0.34 m 0.30 N/A 

Tm02 0.87 -0.05 s 0.60 s 0.08 N/A 

Tm-10 0.85 -0.06 s 0.74 s 0.08 N/A 

 

 

 Comparison to the PARSA inversion scheme 

The validation of nonlinear PARSA retrieval approach itself has been demonstrated in 

chapter 6. In this section, SWH and mean period Tm02 derived from the two SAR 

ocean wave algorithms are compared. In Fig. 7.8 (a) and (b) the comparison results 

are presented. The plots demonstrate that even without first guess information from 

models the CWAVE_ENV still yields reliable ocean wave parameter estimates, 

though it seems that there is underestimation in the extreme high sea state. Validation 

of both SAR algorithms is needed to be carried out with a focus on extreme sea states, 

where different SAR algorithms and models all have quite different behaviors.  

 

 Comparison to ESA Level2 Products – WVW 

After the validation of WVW products performance as demonstrated in chapter 6, it is 

no surprise that there is distinct difference between CWAVE_ENV and WVW 

retrieved results as shown in Fig. 7.9 (a) and (b) for SWH and H12. In spite it is argued 
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that the WVW spectra results are only available for the longer wave information 

resolved by the ASAR sensor, it still cannot provide the reliable sea state 

measurements in many cases.  

 

 
                                  (a)                                                                  (b) 

Figure 7. 8 SWH (a) and Tm02 (b) derived by the PARSA inversion scheme compared 

to the CWAVE_ENV algorithm in January and February 2007 

 

   

 

                                 (a)                                                                  (b) 

Figure 7. 9 SWH (a) and H12 (b) derived from ESA Level2 WVW spectra compared 

to CWAVE_ENV algorithm results in January and February 2007 
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 Comparison to radar altimeters 

As mentioned in the introduction part, RA is another radar remote sensing instrument 

that can provide accurate SWH measurements. In this section, cross validation of 

SWH retrieved by CWAVE_ENV is carried out. Measurements acquired from 

JASON-1 and GEOSAT Follow on (GFO) missions during January and February 

2007 are used. The data are acquired via the CERSAT database and the corrected 

SWH is used.  

For JASON-1, the corrected result is 1 0429 0 0266_ . * .SWH corr SWH   and for 

GFO, the respective equation is 1 0625 0 0754_ . * .SWH corr SWH   [Queffeulou, 

2004]. 

The time window chosen for ASAR wave mode data collocated to RA is 1 hour 

and the distance is less than 100 km. The crossover sea state measurements derived 

from GFO and JASON-1 are fully independent for the retrieved SWH from ASAR 

data. Within an area with a radius of 100 km, several RA single point measurements 

are collocated to the ASAR wave mode data. Therefore, the averaged SWH during the 

collocation cells and single SWH from the nearest point are both compared to the 

result derived by the CWAVE_ENV from the ASAR wave mode data. Fig. 7.10 and 

Fig. 7.11 are retrieved SWH compared to GFO and JASON-1, respectively.  

One can observe that all the comparisons are in very close agreement. The overall 

bias is around 0.10 m and RMSE is around 0.50 m. The correlation is higher than 90%, 

and the scatter indices are 17% and 13% for comparisons to GFO and JASON-1, 

respectively. Thus the SWH derived by the empirical model from ASAR data and 

altimeter measurements are of the same quality. 

In this section, sea state parameters retrieved by CWAVE_ENV algorithms are 

compared to different datasets. The comparisons show that the integral wave 

parameters derived from ASAR wave mode data are reliable and independent. It can 

be used as another dataset for global wave statistical analysis.  
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(a)                         (b) 

Figure 7. 10 Scatter Plots of SWH derived by CWAVE_ENV compared to the 

measurements of RA GFO. (a) is the comparison to the averaged SWH within the 

collocation cells and (b) is for the single SWH of the nearest point to ASAR wave 

mode data in January and February 2007 

 

 

(a)                         (b) 

Figure 7. 11 Scatter Plots of SWH derived by CWAVE_ENV compared to the 

measurements of RA JASON-1. (a) is the comparison to the averaged SWH within 

the collocation cells and (b) is for the single SWH of the nearest point to ASAR wave 

mode data in January and February 2007 
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7.4. Case studies 

Two case studies are investigated in this section, a severe storm that occurred over the 

North Atlantic on Feb. 10th, 2007; and the La Reunion extreme swell event, which 

was generated by a distant storm in south of Cape Town, South Africa. Both cases are 

analyzed using wave model outputs, double tracks of ASAR and RA-2 onboard the 

ENVISAT satellite. With respect to the storm case, performances of different SAR 

retrieval algorithms in extreme wind speed and sea state are compared to wave model 

results. In the La Reunion case study, we investigate ASAR measurements over a 

storm, which generated high swell across the entire Indian Ocean basin. Based on the 

empirical swell propagation law, the capability of ASAR wave mode data to be used 

for early warming system is analyzed as well.   

7.4.1 North Atlantic storm event 

In this section, a North Atlantic storm event is investigated in detail by using ASAR 

wave mode data, RA data and DWD forecast wave model results. Fig. 7.12 shows 

radar measurements and wave model results for the event. In (a) and (c) of the figure, 

SWH of the DWD forecast model results at 0:00 and 12:00 UTC are shown as the 

background, on which collocated SWH measurements from the double tracks of 

ASAR and RA-2 are superimposed. ASAR provides sea surface measurements in 

right looking mode, thus its surface track is around 300 km away from the nadir 

measurements of RA-2. At 0:00 UTC, the eastern track is the one of ASAR. Due to 

ascending and descending orbits, it becomes the western track in the descending case 

at about 12:00 UTC.  

SWH derived from radar measurements and model forecast results through the 

western high wave system is analyzed in the following. SWH derived from ASAR 

and RA-2 data along the tracks are represented by different curves in Fig. 7.12 (b) and 

(d) for 0:00 and 12:00.  For SWH retrieved by the ASAR algorithms, estimation by 

using the CWAVE_ENV algorithm are shown in a blue line, the nonlinear retrieval 

algorithm PARSA and the Level2 WVW products are shown in brown and yellow 

ones respectively. The DWD model results collocated with the ASAR track is plotted 

as well as a pink line.  

Estimation of SWH derived from RA-2 Ku-band is also used for comparison. It is 

represented by green lines in the plot and pink dashed lines used to denote its 
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collocated DWD model results. As RA-2 has the nadir footprints which are 300 km 

away from the ASAR measurements, the wave model results collocated to the RA-2 is 

different to the ones for the ASAR track. 

Both curve plots show that SWH derived from ASAR wave mode data and RA-2 

have quite good agreement with wave forecast model results when sea state is lower 

than 6 m. In high sea state, the differences are quite obvious though. At 0:00 UTC, the 

ASAR track is crossing the area of the wave system yielding high SWH. The PARSA 

algorithm provides the highest value of 11.4 m while WVW product has a large 

underestimation and yields only 5.7 m. The differences of using the ASAR algorithms 

to estimate SWH in high sea state is investigated in detail as follows. 

ASAR wave mode data are acquired along the orbit every one hundred kilometres 

to provide sample and instantaneous measurement over sea surface. To avoid high 

variations for SWH estimation using ASAR wave mode data in the high sea state, an 

averaging way is used. In the ascending pass of ENVISAT at around 0: 15 UTC, five 

data pairs of ASAR measurements and collocated DWD model located in the region 

between 42.32°N and 45.85°N which is near to the high wave system are linear 

averaged avoiding the effect of sampling of ASAR measurements. In the descending 

pass at around 12:40 UTC the area is chose as between 43.47°N to 49.63°N where 

eight data pairs are located with all wave heights higher than 7.0 m. 

The averaged SWH measurements derived from different algorithms and 

collocated DWD model results for both tracks are given in Tab. 7.3. 

 

Table 7. 3  The averaged SWH estimated from different ASAR algorithms and DWD 

model results in the higher wave field for ascending and descending pass 

 CWAVE_ENV PARSA WVW DWD model 

Ascending Pass 

(at about 0:20 UTC) 
8.5 m 9.6 m 5.7 m 8.4 m 

Descending Pass 

(at about 0:20 UTC) 
10.9 m 11.4 m 5.1 m 10.2 m 

 

For the both tracks, the CWAVE_ENV algorithm shows the capability to derive 

reliable measurements even in this extreme sea state, while the WVW products cannot 

be used to measure high sea state. Even when the SWH is lower than 5 m, the WVW 
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products have a positive bias compared to other algorithms and model results, which 

is particularly obvious in the descending pass as shown with the yellow line in Figure 

14 (d). Therefore, from this case study, one can conclude that the WVW has a 

substantial under estimation in high sea state and rather overestimation in low and 

moderate sea state. 

The PARSA algorithm yields higher estimation of SWH in both tracks than the 

DWD wave model and the CWAVE_ENV results. Moreover the positive bias 

increases significantly along with the sea state. The PARSA algorithm is implemented 

using the priori information from the ECMWF reanalysis wave model, in which the 

ASAR wave mode cross spectral information and RA measurements have been 

assimilated. The PARSA algorithm might have an overestimation due to 

instantaneous measurements in comparison to averaged model results. This needs to 

be further validated.  

At around 12:35 UTC, the RA-2 track was very near to the high wave system and 

yields the an estimation of SWH of 18.9 m, which is 2.9 m higher than the DWD 

model forecast result. For this high sea state, performance of different ASAR 

algorithms to derive SWH is investigated in detail, particularly to evaluate the 

CWAVE_ENV algorithm and the existing WVW Level2 products. CWAVE_ENV 

results for both passes show reliable measurements of SWH in different and variable 

sea state. 

      

(a)                    (b) 
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(c)        (d) 

Figure 7. 12 Comparison of significant wave height derived from DWD forecast 

model, ASAR wave mode data and RA-2 Altimeter data for North Atlantic Storm on 

10 Feb. 2007. (a): DWD forecast model at 0:00 UTC superimposed with ASAR 

(eastern) and RA-2 tracks; (b) SWH derived from ASAR track using different 

algorithms, RA-2 and collocated DWD model results at 0: 00 UTC; (c) The same with 

(a) while at 12:00 UTC; (d) The same with (b) while corresponding to the tracks 

acquired at 12:00 UTC 

This case study shows that quality of retrieved sea state parameters by 

CWAVE_ENV is comparable to RA measurements and to the SAR nonlinear 

retrieval approach, although no priori information is used. Double tracks of ASAR 

and RA can be used jointly to validate the wave model performance as well as for 

data assimilation under the condition that a suitable algorithm for ASAR is adopted. 

In respect to the CWAVE_ENV algorithm, one issue that needs to be further 

investigated is the performance in extreme sea state for extended datasets. 

7.4.2. Indian Ocean swells case 

On the evening of May 12th, 2007, a series of very high waves damaged the coasts of 

La Reunion island (21° S, 55°20’ E) and neighboring island in the Indian Ocean. The 

extreme swell with peak period of up to 19.5 s reached maximum individual height of 

11.3 m and 6.4 m of SWH [Lefèvre and Aouf, 2007].  
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The extreme swell is generated  by a severe storm around 40°S, 30°E in the south 

of Africa as shown in Fig. 7.13 with wind (a) and wave field (b) given by the DWD 

forecast model on May 10th, 2007 at 06:00 UTC. The storm engendered swell, which 

propagated through the Indian Ocean covering about 1000 km/day, hitting the La 

Reunion. 

 
(a)                    (b) 

      
Figure 7. 13 Wind field (a) and SWH (b) with direction of windsea of DWD forecast 

model on May 11th, 2007 at 6:00 UTC 

 
 Early warning of extreme wave using ASAR Wave Mode data 

In Fig. 7.14, SWH measurements derived from both tracks of ASAR wave mode data 

using CWAVE_ENV algorithm and RA-2 data are superimposed on collocated DWD 

forecast model results. Time difference between the ENVISAT track and the DWD 

model is around 1.5 hour.  

Compared to Fig. 7.13, one can observe that the storm was moving toward 

northeast and spanned quite a large region of more than 1000 km. The ENVISAT 

tracks cross the area of the storm at around 19:45 UTC on May 11th. The highest 

SWH measured along the ASAR track is 9.2 m located at 32.2°S, 4.7°E. A high swell 

system traveled to the northeast and arrived at La Reunion island on May 12th at 

around 16 UTC after traveling 1700~2000 km. Using a straightforward wave 

propagation relationships introduced by Dietrich et al. [1975] (as shown in Fig. 2.5 in 

Chapter 2), about 5 m waves can be forecasted in La Reunion island at around 

12:00~16:00 UTC on May 12th. This shows good agreement with in situ and 

reanalysis model, which yields 6 m [Lefèvre and Aouf, 2007].   
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Figure 7. 14 Significant wave height and swell direction of DWD model on May 11th, 

2007 at 21:00 UTC. Double tracks of ASAR wave mode (squares) and RA-2 (circles) 

at around 19:45 UTC are superimposed. 

 
In this case, around 20 hours earlier the extreme swell arriving at La Reunion island 

can be forecasted by ASAR wave mode measurements derived from the 

CWAVE_ENV algorithm. The ASAR wave mode data also may be used together to 

cross validate thus an extreme wave early warning system is possible.  

 

7.5. Conclusions 

An empirical algorithm CWAVE_ENV to estimate integral wave parameters from 

ASAR wave mode data without priori information is presented in this paper. The 

empirical model function is tuned using globally distributed ASAR wave mode data 

and collocated ECMWF reanalysis model results. The tuning approach is 

implemented using stepwise regression method to select ASAR image parameters. 

The geophysical model coefficients are derived by cost function minimization. 

Validation of the CWAVE_ENV algorithm is carried out by comparison against in 

situ buoy measurements, numerical wave model, ENVSIAT/ASAR WVW Level 2 
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products and crossover RA measurements. Validation results show that the accuracy 

of integral wave parameters retrieved by the CWAVE_ENV algorithm has the quality 

of the RA measurements and is near to in situ buoy measurements. Brief summary of 

the algorithm validation is given in following.  

(1) SWH retrieved from ASAR data compared to buoy in situ measurements are 

divided into comparisons in deep water and shallow water. In deep water, retrieved 

SWH has a good correlation of 0.9 to buoy measurements, a reasonable RMSE of 

0.70 m and 24% for SI. The comparison in shallow water yields rather high RMSE of 

1.0 m and SI of 33%, due to the limitation of the reanalysis wave model data in the 

empirical model tuning. 

Investigating the comparison of the CWAVE_ENV algorithm in different sea state 

demonstrates that the algorithm has good performance in rough sea state (with SWH 

higher than 2.0 m), while has an overestimation around half meter in the rather low 

sea state for SWH less than 1.25 m.  

(2) SWH, H12 wave height and Tm02 compared to the ECMWF reanalysis models are 

also presented.  CWAVE_ENV results have a low bias of -0.02 m and -0.03 m for 

SWH and H12 and RMSE of 0.43 m and 0.34 m respectively, while the wave period 

comparisons show a very low SI of 8%. 

As the DWD wave model is independent of ASAR information, comparison of SWH 

estimated by the CWAVE_ENV to the DWD wave model, with a small bias of -0.05 

m and SI of 18%, shows more realistic results than the comparison to the ECMWF 

reanalysis wave models, which is using the in situ measurements and satellite data in 

the assimilation scheme.  

(3) Retrieved results of SWH and H12 by the CWAVE_ENV are also compared to the 

ASAR wave mode Level2 products. The comparison results reveal that the existing 

Level2 products significantly underestimate SWH and the measurements vary with 

the change of ASAR cut-off wavelength. 

(4) RA measurements from GFO and JASON-1 missions are also used for the 

validation of the CWAVE_ENV algorithm. Crossover measurements from the RA are 

collocated to the ASAR wave mode data.  Bias of around -0.1 m and RMSE of around 

0.5 m are found for both comparisons. Low scatter indices of 13% and 17% are 

achieved when compared to GFO and JASON-1 respectively. Few cases over extreme 
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sea state with SWH of around 10 m have consistent results from the ASAR wave 

mode and GFO data.  

The results of the two case studies for extreme wave conditions thus demonstrate 

that the CWAVE_ENV algorithm performs well under extreme sea states.  

In the North Atlantic storm event case, the SWH given by ASAR and RA-2 are 

compared to the DWD forecast wave model. All measurements derived from radar 

and models agree well along the orbit, but for the extremely high sea state within the 

storm there are distinct differences. CWAVE_ENV results agree well with the DWD 

model results, but are around half meter higher for SWH above 7 m. Both RA-2 and 

ASAR PARSA results are higher than the wave forecast with a bias of more than 1 m 

in extreme sea state. The ASAR standard Level2 products WVW show a significant 

underestimation of wave height in storm areas. 

The analysis of the high swell case at La Reunion island demonstrated that ASAR 

wave mode data can be used as a forecasting tool for extreme waves contributing to a 

global early warning system. 

Despite of the overall good quality of integral wave parameters derived by 

CWAVE_ENV algorithm, the assessment is based on a three months period.  

Therefore, a more intensive validation by in situ buoy measurements, cross over RA 

measurements is needed to confirm its performance under extreme sea state 

conditions.  
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Chapter 8 

Investigation of Coastal Surface Wave Using 

TerraSAR-X Data  

 

The content of following Chapter has been published entitled “Investigation of Ocean 

Surface Wave Refraction Using TerraSAR-X data”, in IEEE transaction of 

Geosciences and Remote Sensing. 

In the previous chapters, surface wave measurements are performed globally by 

using SAR wave mode data, which are typically acquired over the open sea and the 

individual SAR images have small coverage of only 5 km by 10 km. In the open sea, 

water depth is large enough that has little effect on the surface wave signatures. 

However in the near-shore regions, where depth is much smaller and changes rapidly, 

effect the wave propagation, shape and height. In this chapter, coastal waves are 

investigated using wide swath SAR data.  

As a scientific and technological continuation of the X-SAR and SRTM missions, 

the new X-band SSAR TerraSAR-X was launched on June 15, 2007. Since then it has 

provided numerous high-quality data over land and ocean operationally.  

In the present study, surface wave refraction and diffraction is investigated using 

TerraSAR-X imagery acquired over the coast of Terceira island situated in the North 

Atlantic. Peak wavelength and wave direction are determined by SAR two-

dimensional image spectra and compared to measurements of X-band marine radar 

and results of the numerical wave model WAM. SWH in the near-shore shallow water 

region is estimated from TerraSAR-X data following the wave refraction laws and 

using the developed XWAVE empirical algorithm. Image spectra of the TerraSAR-X 

scenes in the full-coverage region are given to investigate significant changes of wave 

direction and length. 

By analyzing another TerraSAR-X image acquired in StripMap mode, a shadow 

zone in the lee side of Terceira island is identified. It is influenced jointly by wave 

refraction and diffraction. Furthermore, a cross sea pattern revealed in the image 

spectra is investigated. The cross sea is generated by the diffracted wave rays from the 
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northern and southern coasts of the island. Less wave directional spreading for the 

cross sea situation is observed as well when compared to the image spectra at the 

origin of diffraction.  

8.1. Introduction of TSX data 

In June 2007, the TerraSAR-X (TSX) satellite reached its orbit and from January 

2008, data and products were provided operationally to scientists (http://sss.terrasar-

x.dlr.de/). TSX has a sun-synchronous, near-polar dusk-dawn orbit with a mean 

altitude of 514 km. It can be operated in four different modes, i.e. ScanSAR, StripMap, 

Spotlight and High-Resolution (HR) Spotlight. Technical details of the different 

modes are summarized in Tab.8.1.  

Table 8. 1 Imaging characteristics of TSX in different modes 
 

 ScanSAR StripMap Spotlight HR Spotlight 

Swath Width 
(ground 
range) 

100 km 30 km 
10 km 

azimuth x 
10 km ground 

5 km azimuth x 
10 km ground 

Incidence 
angle 

20°-45° 20°-45° 20°-55° 20°-55° 

Azimuth Res. 16 m 3 m 2 m 1 m 

Ground 
Range Res. 

1.7 m-3.5 m 1.7 m-3.5 m 1.5 m-3.5 m 1.5 m-3.5 m 

 

Because of its flexible swath coverage and high resolution as well as the 

interferometric and polarimetric abilities, various oceanic and atmospheric 

applications can be investigated using TSX data, for example, the preliminary studies 

of ocean surface wind, coast lines, and surface waves as described in [Lehner et al., 

2008].  

As a unique sensor to image sea surface in two dimensions independent of 

weather and sunlight conditions, airborne or spaceborne SARs are suitable for 

investigating the spatial variations of surface waves, particularly in near-shore regions, 

where the local bathymetry, surface wind and surface currents have active interactions 

with oceanic gravity waves. SAR data have been used to study the ocean wave 

refraction mechanisms in coastal regions caused by, e.g. bottom topography [Lodge, 

1983], ocean currents [Irvine and Tilley, 1998; Li et al., 2002] and ice edges [Liu et al., 
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2001; Schulz-Stellenfleth and Lehner, 2002]. 

In the present study, Terceira island is chosen as the area of interest (AOI) for 

observation of coastal waves by making use of TSX images acquired in different 

modes. Terceira island is located in the Azores archipelago between latitudes 37º to 

40º N and longitudes 25º to 31º W. At the north of the Azores, the dominant wave 

direction is from north/northwest, as generated by high-latitude storms in the North 

Atlantic. Distributions of these waves change locally in shoaling, refraction and 

diffraction processes because of the quickly varying bathymetry at a short distance 

from the coast line.  

The volcanic island Terceira has an elliptical form approximately 29 km in the E-

W direction and 18 km in the S-N direction as shown in Fig.8.1. Three quick looks of 

TSX images acquired over the island operated respectively in ScanSAR, StripMap 

and Spotlight mode overlaid on top of each other are shown as well in the figure. The 

ScanSAR image has the largest area coverage of 140 km and 100 km in azimuth and 

range direction, respectively, with a pixel size of 8.25 m. Wind streaks are visible in 

the ScanSAR image, and surface wind blowing toward northwest is inferred by the 

shadow zone behind the Santa Barbara volcano (1021 m) at the NW end of the island. 

Details on the retrieval of the surface wind field from X-band SAR data are discussed 

in [Lehner et al., 2009]. The ScanSAR image yields an overview of sea state and wind 

field for the entire oceanic region around Terceira island.   

Inside the black rectangle, a quick look of a StripMap image acquired on January 

15, 2009 in the eastern coast of Terceira island is shown. A Spotlight image 

represented in the white rectangle was acquired on March 26, 2008. The Spotlight 

image covers the area limited to 5 km in azimuth and 12 km in range over the harbor 

of Terceira island. Spotlight mode data are particularly suitable for investigation of 

near-shore processes, harbor monitoring, and comparison to in situ measurements. It 

can be observed that the StripMap mode scene covers the whole eastern part of the 

island and can be used for investigating spatial variations of wave refraction when 

approaching the coasts. 



Chapter 8 Investigation of coastal surface wave using TerraSAR-X data   

- 94 - 

 

Figure 8. 1   Overlay of  TSX ScanSAR (largest one) image acquired on March 20, 

2008, StripMap image (in the black rectangle) acquired on January 15, 2009 and 

Spotlight mode image (in the white rectangle)  acquired on March 26, 2008 over 

Terceira island ( map in background © Google earth) 

 
Wave refraction caused by the change of bottom topography around the Terceira 

island coasts is investigated using TSX image spectra and measurements of X-band 

marine radar. The image spectrum extracted from the TSX Spotlight image in 

offshore direction shows a swell system with peak wavelength of 181 m and peak 
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wave direction of -34° (clockwise relative to the TSX azimuth direction) generated by 

a high-latitude storm whereas the one in the near-shore region shows a rotation of 

peak wave direction of 36° and the peak wavelength decrease of 128 m, induced by 

the wave refraction.  

The spatial variations of wave diffraction around the entire island are investigated 

using a TSX image acquired in StripMap mode on January 15, 2009, and compared to 

the variation in bottom topography. 

 

8.2. Auxiliary data 

8.2.1. WaMoS Marine Radar 

In the present study, local sea state measurements are derived from the second-

generation marine radar WaMoS II, which is an operational wave monitoring system 

to survey the sea surface wave field in time and two-dimensional space. The system 

consists of a conventional marine radar, an A/D converter to digitize the analog radar 

echo signal and a standard PC to store and process the data in real time. It is used 

onboard ships, oil platforms, and on shore to determine two-dimensional wave spectra 

and integrated sea state parameters, such as wave peak, propagation direction and 

SWH. The technique as presented in [Young et al., 1985; Nieto et al., 1999; Nieto et 

al., 2004] has been used operationally in many locations. 

The WaMoS II located on Terceira island was installed in Praia da Vitória Bay 

(38.7°N, 27.0°W) with a scanning radius of 2.2 km. The blue dash line demonstrates 

the coverage of WaMoS marine radar over the port superimposed on the subscene of 

the StripMap mode image shown in Fig. 8.2.  

WaMoS provides a local sea state measurement, whereas the numerical wave 

model gives an estimation of sea state over a large spatial scale. To verify ocean wave 

characteristics observed in the TSX image, the numerical wave model WAM is used 

to provide synergetic observations.  

8.2.2. Topography Dataset 

Bathymetry data used in the present study for investigating coastal wave processes are 

extracted from the National Geophysical Data Center (NGDC) ETOPO1 global relief 
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model [Amante and Eakins, 2008] in grid points. The spatial resolution of ETOPO1 

model is 1 arc-minute. 

 

Figure 8. 2 Demonstration of the location and scanning coverage of WaMoS marine 

radar at the port of Terceira island (Blue dash line superimposed on subscene with 

coverage size about 6 km by 9 km of TSX StripMap shown in Figure 8.1.) 

 

8.3. Observation of wave refraction and diffraction in TSX images 

General mechanisms of wave refraction and diffraction in shallow water have been 

introduced in Chapter 2. In the following, detail analyses for coastal wave processes 

observed by TSX are presented. 

8.3.1. Observation of wave refraction and diffraction by TSX  

In this section, TSX observations of wave refraction and diffraction are demonstrated. 

A TSX Spotlight image acquired on March 26, 2008, is used first for analyzing the 

wave refraction.   

In Fig. 8.3 (a) SWH of the total sea, peak wavelength, and wave direction of swell 

and windsea wave components derived from the DWD GSM model on March 26, 
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2008, at 18:00 UTC is shown. The model results are approximately 1.5 hour earlier 

than the acquisition of the TSX Spotlight image.  

The gray areas on the map indicate the position of the Azores archipelago. SWH 

in this region is in the range of 2.0 m to 2.5 m as given by the wave model. One storm 

with SWH higher than 6 m located approximately 1000 km northwest generates long 

swell propagating toward southeast. Swell (marked with a dash-dot line) with 

wavelength around 180 m is observed in the local region of Terceira island as shown 

in Fig. 8.3 (b), where the windsea becomes as low as 0.5 m. The sea state of Terceira 

island at this time is dominated by a swell wave system.  

 

 

        (a)                                                                                 (b) 

Figure 8. 3  SWH (background), Peak wavelength and direction for windsea (solid 

line) and swell (dash-dotted line) derived from the DWD GSM wave model for large 

coverage (a) and for the subscene of Azores Islands (b) on March 26, 2008 at 18:00 

UTC. 

 

In Fig. 8.4, the TSX Spotlight image acquired over the Terceira eastern coast in an 

ascending orbit is superimposed with topography data derived from the ETOPO1 

model. The coverage of the TSX Spotlight image is approximately 5 km in azimuth 

and 12 km in range with a resolution of 2.8 m and 3.5 m, respectively, at a pixel size 

of 1.25 m. Five subscenes A, B, C, D and E with 1024 by 1024 pixels covering an 
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area of around 1 km by 1 km shown on the TSX image are used for demonstration of 

the spectral analysis. A standard Fast Fourier Transform (FFT) method is used for the 

estimation of image spectrum. Between B and D, the TSX image is divided into four 

rows and six columns, with the same size of 1024 by 1024 for every subscene. The 

image spectra for the subscenes are shown in Fig. 8.5 to follow the spatial variations 

of gravity waves in the near-shore region. For the plots in Fig. 8.5, the spectral density 

value is scaled relatively to the reference maximum. 

The spatial resolution of the DWD GSM wave model is 0.75º x 0.75º, and the 

estimation for the integrated wave parameters to the nearest grid in the TSX image is 

located at 39°N, 27°W, which is approximately 30 km away from the TSX image 

subscene D. SWH, peak wavelength and direction as estimated by the DWD GSM 

model is 2.1 m, 176 m, and -45° (clockwise to the TSX azimuth direction), 

respectively. The same peak resolved by the DWD model is observed as well in the 

TSX image, as shown in its image spectra D in Fig. 8.5, denoted by P1. Peak 

wavelength and direction derived from the TSX image spectra of D is 181 m and -34°, 

respectively, which is comparable to the numerical wave model results.  

From right to left in the first row of Fig. 8.5, peak wave direction and wavelength 

show a significant change as observed in the spectra. Spectrum D agrees with model 

results in offshore with peak wave direction of -34°, whereas along the distance 

toward the inshore, the peak undergoes a clockwise rotation as observed in the 

spectrum B for peak wave direction of 14°. Because of the coarse spatial resolution of 

the numerical wave model, it cannot describe the coastal processes in detail.  

The WaMoS marine radar located in the Bay of Terceira has a similar scanning 

coverage as TSX subscene A. The TSX simultaneous measurement of the WaMoS 

marine radar was acquired at 19:30 UTC. The two-dimensional spectrum retrieved 

from the intensity backscatter of WaMoS is represented in Fig. 8.6 (left). This 

spectrum is rotated to show the same coordinate direction with the TSX image 

heading direction, i.e. 348.6° clockwise relative to North. Peak wave direction and 

wavelength estimated by the marine radar are 50° (clockwise relative to the TSX 

azimuth direction) and 117 m, respectively. Both parameters derived from the nearest 

TSX subscene image spectrum A are 36° and 128 m, respectively. The slight 

difference may be caused by the larger scanning region of the marine radar than the 

coverage of subscene A over the inhomogeneous sea surface near the coast.  
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By comparing the results of numerical wave model and marine radar, it can be 

observed that the peak wave direction has a rotation of approximately 70° from the 

TSX image spectra of subscenes D, C, B and A along the shoreward direction, as 

summarized in Tab. 8.2, for the peak P1. 

 

Table 8. 2 Peak Wave direction and length of P1 derived from TSX image spectra of 

subscenes A, B, C and D shown in Fig. 8.5 and Fig. 8.6 

No. of subscene of TSX 
image 

Peak wavelength (m) 
Peak wave direction 
(clockwise relative to 

azimuth direction) 
A 128     36°  

B 155 14° 
C 155 -14° 
D 181  -34° 

 

Examining the water depth estimation given by the ETOPO 1 model shown in Fig. 

8.5, from D to A, bathymetry changes significantly, particularly from deeper than 200 

m to shallower than 30 m. When the swell propagates toward Terceira island, because 

of the change of underwater topography, wave refraction occurs in the nearshore 

region. As the approaching swell has an angle with the bottom topography contours, 

wave crests bend parallel to the coast as observed by the rotation of peaks in the TSX 

image spectra from D to A. Furthermore, wave refraction also leads to the bending of 

crest parallel to the eastern coast of Terceira island. It can be observed in the second 

column of Fig. 8.6 how the peak rotates from -14° of C to nearly 0° traveling in the 

azimuth direction. 

Using TSX data, the spatial variability of near-shore wave behavior is resolved 

well. On the other hand, the spectral information can be used to deduce situation on 

underwater topography. It should be noted that a limitation of using SAR intensity 

image spectra is 180 º ambiguity for ocean wave propagation direction. If complex 

data are available, this can be resolved using a cross-spectral approach.  
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Figure 8. 4 TerraSAR-X Spotlight image acquired over Terceira island on March 26, 2008, at 19:32 UTC. Five subscenes marked as A, 

B, C, D and E are used for spectral analysis. Bottom topography given by the ETOPO 1 model is superimposed on the TSX image in grid 

points. 
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Figure 8. 5 Image spectra for the subscenes of TSX image divided by four rows and 6 columns between B and D. Each spectrum 

corresponds to a subscene of 1 km by 1 km. 
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Figure 8. 6 TSX image spectra corresponding to the subscene A shown in Figure 8.4 

with normalized energy density scale (right) and the spectrum estimated by the marine 

radar (left) with normalized energy density 

 

As introduced in part A of this section, when wave refraction occurs, besides the 

change of wavelength and wave direction, the transformation of wave height occurs as 

well. Here we first estimate wave height from the TSX image based on wave 

refraction law.  

The DWD GSM model gives, in deep water, a SWH dH of 2.1 m, peak 

wavelength d  of 176 m, and angle between wave propagation and bottom 

topography contour d of 54° (assuming the water depth contour is parallel to the 

north-south direction) are used as the reference measurements in deep water. 

Parameters determined from the TSX image spectra used for estimating SWH for 

subscenes of A, B, and C are listed in Tab. 8.3.  

Following Equ. (2.21) given in Chapter 2, the shoaling effect caused by water 

depth is estimated for the site of subscene A. Water depth h  for site A is 33 m. Then 

the shoaling coefficient AD  (subscript used to denote subscene A) is calculated to be 

0.928, and via Equ. (2.22), the refraction coefficient AK  is estimated to be 0.805. 

Thus one can estimate the SWH in the TSX subscene A to be 1.6 m through 

Equ.(2.20). Implementing the same method for subscene B and C, the SWH estimated 
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from the TSX image is given in the first column Tab. 8.4. For the calculations, dH , 

d  and d  are derived from the DWD model results of 2.1 m, 176 m, and  54°.  

 

Table 8. 3 Parameters determined from the TSX image spectra used for estimating 

SWH for subscenes of A, B and C 

No. of subscene 
in TSX image 

Angle between wave and 
bottom topography α 

Peak wavelength 
λ  (m) 

Water depth  h  
(m) 

A 25° 128 33 
B 3° 155 62 
C 25° 155 90 

 

 

Table 8. 4 SWH estimated from TSX data in subscene of A, B and C using wave 

refraction laws and empirical algorithm 

No. of 
subscene 
in TSX 
image 

SWH (m) by refraction 
law using DWD model 

results as the 
measurements in deep 

water 

SWH (m) by refraction 
law using XWAVE 

results as the 
measurements in deep 

water 

 SWH (m) by 
XWAVE 
empirical 
algorithm 

A 1.6 1.7 1.9 
B 1.7 1.9  2.2 
C 1.8 2.0 2.3 

 

An empirical algorithm XWAVE was developed to estimate integral wave 

parameter, SWH, from TSX data. Expression of the geophysical model function of the 

XWAVE algorithm is given in equation 

4 0 1 0. ( . cos( ))SWH a E b                                                    

(8.1) 

In the equation, E  is total energy calculated from the TSX image wave number 

spectrum F( )k


via  

F( )E k dk 
 

                                                                     

(8.2) 

  represents the angle between peak wave direction (with 180° ambiguity) and SAR 

azimuth direction and also is determined from the image spectra. Two coefficients 

a and b  are tuned by using hindcast results of the DWD wave model. In situ buoy 
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measurements will be used as the ground truth for further tuning.  

In this case, SWH estimated by XWAVE for subscene D is 2.4 m, which is 

slightly higher than the DWD GSM model result of 2.1 m. Choosing the result for 

SWH from D estimated by using the XWAVE algorithm as the initial value for deep 

water, the SWH for subscenes of A, B and C are determined by using the wave 

refraction law. Results are given in the second column of Tab. 4. The SWH measured 

by the WaMoS marine radar is 1.2 m, which is lower than other estimations from the 

model and TSX data.   

SWH for the three subscenes calculated directly by using XWAVE algorithm are 

given as well in the third column in Tab. 8.4. It shows a slightly higher estimation 

than using the refraction law. Further tuning for the coefficients in Equ. (8.1) is under 

investigation including cases of low sea state. 

In this case study, the GSM wave model provides regional view of the incoming 

swell system and the TSX data as well as its image spectra show good agreement of 

the swell system in the offshore region when compared to the model. Interaction of 

surface gravity waves and bottom topography are depicted by the TSX image, which 

cannot be resolved in the model because of limitation of spatial resolution. The 

WaMoS provides simultaneous measurement for a small scanning area near the coast. 

This is particularly suitable for harbor monitoring. The TSX data are an effective tool 

to derive the spatial variations of wave behavior and processes (e.g. refraction, 

shoaling and breaking) in the near-shore region.  

In the SAR spectrum of E shown in Fig. 8.5, another peak denoted by P2 can be 

observed, at an angle of around 45° to peak P1 and thus generates a cross sea [Li, et 

al., 2009]. Because of the limited spatial coverage of the TSX Spotlight image used, 

we cannot tell where the second wave component is from. Therefore, in addition, a 

large coverage StripMap image is used to examine the generation of cross sea. In the 

following, the StripMap data acquired on January 15, 2009, as marked by the yellow 

rectangle in Fig. 1 is used for the analysis.    

Sea state situation derived from the DWD GSM model on January 15, 2009, at 

9:00 UTC is chosen as the synergetic observation together with the StripMap mode 

image. The wind field of the GSM model is shown in Fig. 8.7 (a). The nearest model 

grid point to the TSX image is located in 39°N, 27°W, where the wind speed is 6.0 

m/s from northeast. SWH together with peak wave direction for windsea and swell is 
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shown in Fig. 8.7 (b). At 39°N/27°W, the swell and windsea wave height is 5.2 m and 

0.1 m respectively, and the swell peak wavelength is 285 m in the direction toward 

southeast. Therefore the sea state around the Azores is thus dominated by strong swell 

during the acquisition time of the TSX StripMap image. 

        

 

(a)                                                                                 (b) 

Figure 8. 7 (a) Wind field and (b) SWH (background) with peak wave direction of 

swell and windsea derived from the DWD GSM wave model around Terceira island 

on January 15, 2009 at 9:00 UTC. 

 

Fig. 8.8 shows the TSX StripMap image acquired over the eastern Terceira island 

on January 15, 2009 at 7:55 UTC. Ground coverage of the StripMap image is 30 km 

in range and 60 km in azimuth with a spatial resolution of 3.0 m in both directions. 

Like the Spotlight image shown in Fig. 5, the bottom topography derived from the 

ETOPO1 model is superimposed as well on the StripMap TSX image. Only grid point 

measurements of water depth shallower than 150 m are superimposed on the TSX 

image. One can observe that in the offshore region approximately 18 km south of 

Terceira island, water depth is deeper than 150 m, which is different from the northern 

coast. In the northern coastal region of the island, as previously analyzed, long swell 

crests bend parallel to the coast line caused by refraction. While in the southern coast, 
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the crest wave direction does not change significantly which is mainly due to the steep 

gradient in the bottom topography resulting in less refraction of the long waves.  

Six subscenes marked by white squares on the StripMap image are used for 

analyzing the spatial variability of the surface waves induced by interactions with the 

bottom. The corresponding image spectra of the subscenes are shown in Fig. 8.9. 

Subscenes A and B are chosen in the North and South around 30 km away from the 

island in deep water (water depth deeper than 200 m). These areas are used to 

determine the sea state of the wave trains approaching the island.  

In the image spectra of A and B, one can observe that swell with peak wavelength 

of around 300 m propagate toward the island, as comparable to the results of the 

DWD GSM wave model. Narrower energy peaks are found in the image spectra of B 

than in A. This indicates that less directional spreading of waves exists near the 

southern coast.  

A sheltered region located at the southeastern edge of the island is quite distinct in 

the TSX image. When long waves are intercepted by a barrier such as the Terceira 

island in the present case, a shadow zone will appear in the lee side of the island. 

Subscenes of C, D and E are chosen in the shadow zone and F is out of the region. As 

shown in the spectrum of Fig. 8.9, swell component propagating along the southern 

coast almost disappears in image spectra of C. The spectral density value for this 

swell component increases gradually further away from the coast, as observed in 

image spectra of D and E, as well as the backscatter intensity in the TSX image 

subscenes.   

The generation of shadow zone and penetration of wave energy into the region to 

the lee of the island are determined by wave refraction, diffraction, and variability in 

direction of wave travel. The influence of these factors is investigated separately in 

[Arthur, 1951], although they are not independent. In the present case, the water depth 

in the region between B and C changes significantly from less than 10 m to deeper 

than 200 m, whereas the peak wavelength in the region B is approximately 300 m. 

This may lead to less wave refracting in the C region. Therefore, the sheltered region 

in the lee side of Terceira is influenced jointly by the wave diffraction and refraction.   

Furthermore with respect to D, in addition to the wave component that propagates 

along the southern coast of the island, the spectra also indicate another wave 

component. This wave component propagates in the direction of south-north parallel 
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to the Terceira eastern coast, where the water depth is shallower than 100 m. 

Therefore the second wave component observed in D is the refracted wave 

propagating from the north of the island.  

In the SAR image spectrum and subscene of F, the cross sea feature becomes 

distinct. Nevertheless, generation of this cross sea is different from the one observed 

in D. In addition to the same wave component coming from the south of Terceira 

island, the other one is the diffracted wave from the north. Both wave refraction and 

diffraction can cause a change in wave traveling direction. The former tends to be 

parallel to the coasts in the shallow water, whereas the wave direction is bent 

surrounding to the obstacle in diffraction. 
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Figure 8. 8 TerraSAR-X StripMap mode image (around 30 km by 60 km) acquired 

over Terceira island on January 15, 2009 at 7:55 UTC. Six subscenes marked as A, B, 

C, D, E and F are used for spectral analysis. Bottom topography derived from the 

ETOPO 1 model is superimposed on the TSX image in grid points. The right panel 

shows the enlarged subscenes. 
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Figure 8. 9 SAR Image spectra derived from the subscenes of A, B, C, D, E and F as represented by 

the white squares in the Fig. 8.8. Spectral intensity value is scaled in respect to spectrum A 
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8.4. Conclusions 

In this study, we demonstrate the capability of different TSX modes to image surface 

gravity waves. Compared to conventional ERS SAR and ENVISAT ASAR, TSX has 

a lower /R V value, which provides the possibility to analyze ocean wave information 

directly using TSX image spectra. 

To demonstrate the capabilities of TSX imaging of surface gravity waves in detail, 

a case study of wave refraction-diffraction occurring around Terceira island is 

analyzed. It is performed by using TSX Spotlight and Stripmap mode image together 

with other auxiliary data, i.e., numerical wave model, simultaneous measurement of 

X-band marine radar and ETOPO 1 topography data.  

In the northern coast of Terceira island, wave refraction is caused by the rapid 

change of bottom topography that bends the crests of incoming long swell parallel to 

the coastal line. Simultaneous measurement of marine radar WaMoS in Praia da 

Vitória Bay shows the near-coast peak wave directions different from the numerical 

wave model of DWD. By analyzing the two-dimensional SAR image spectra derived 

from the Spotlight image, how the incoming long swell wave crests bent parallel to 

the coast can be observed. Along the direction toward the shore, four TSX subscenes 

image spectra are compared showing that the peak wave direction is rotated from 36° 

clockwise relative to the azimuth direction of -33° while the wavelength decreases 

from 181 m to 128 m during the wave refraction process.  

In the present case, variability of SWH during the refraction process is 

investigated through two different methods. Following the wave refraction laws, when 

the results of the DWD GSM model as the initial value for deep water were taken, 

SWH is estimated to be 1.6 m near the coast, which is around 0.4 m higher than the 

measurement of WaMoS marine radar. Empirical algorithm XWAVE is developed to 

derive SWH directly from TSX data. Retrieved SWH in the present case for near 

coast is 1.9 m, which is rather higher than the measurement from WaMoS. While 

when taking the XWAVE result in deep water as initial value and following the wave 

refraction law, the estimated SWH in near coast is 1.7 m. The comparison results 

indicate that the retrieved results by using XWAVE algorithm is reasonable while 

needing further improvement including the different sea state. 

When considering the role of the entire Terceira island in the ocean wave 

variability, it can cause e wave diffraction occur when long swell approaches.  The 
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phenomenon is analyzed by using a TSX StripMap mode scene with coverage of 30 

km by 60 km. Image spectra derived from the StripMap show the wave behavior 

before and after diffraction. Two subscenes of 3 km by 3 km in the TSX StripMap 

image located in the north and south of the Terceira island show that long swell with 

peak wavelength about 300 m approaches the island. The shadow zone is identified in 

the lee side of the Terceira island. This sheltering effect is found to be influenced by 

wave refraction and diffraction jointly. A cross sea feature observed behind the island 

is generated by refracted and diffracted waves, whereas in the seaward, it has strongly 

been affected by the diffracted waves surrounding the island.  

As Terceira island is located at high latitude in the North Atlantic, ocean swell 

constantly arrives from distant storms or cyclones. Therefore, the TSX images can 

capture wave refraction-diffraction in this situation.  

The TSX images with high resolution and suitable coverage size will be 

particularly used as a good tool to observe spatial variability of coastal ocean wave 

behavior. This will contribute to coastal engineering, infrastructure protecting and 

local numerical wave model development.   
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Chapter 9 

Global Sea State Analysis Using ASAR Wave Mode 

Data 

 

Validation and comparison of CWAVE_ENV algorithm to other dataset are presented 

in detail in chapter 7. By comparison to in situ buoy measurements, numerical wave 

model results and cross over measurements of the radar altimeters, it is proven that the 

estimation of integral wave parameters derived from ASAR wave mode data using the 

CWAVE_ENV algorithm is reliable and independent. Therefore, this makes SAR an 

additional radar observation contributing to the global statistical analysis of surface 

waves. 

In this chapter, ocean wave integral parameters of SWH and Tm02 retrieved by the 

CWAVE_ENV algorithm for one full year ASAR wave mode data acquired between 

June 2006 and May 2007 are used for such a global statistical analysis of sea state. 

9.1. Distribution of retrieved SWH by CWAVE_ENV 

The long-term variability of SWH is an important descriptor for wave climate. 

Different approaches have been proposed to describe the variability, with emphasis on 

the prediction of extreme waves, i.e. the return of extreme values for the long term. 

The general idea is to fit different probability density functions (PDF) using all the 

collected SWH measurements and then to derive the return value from the fitted 

model. Various PDF models have been adopted for fitting long-term SWH 

distributions, e.g., Weibull distribution for fitting the long-term shipborne wave 

recorders in the North Sea and Irish Sea [Battjes, 1972], as well as for the in situ buoy 

measurements acquired along the Portuguese Coast [Guedes Soares and Henriques, 

1996]; lognormal distribution [Jaspers, 1956]; Gamma [Ochi, 1992] or Beta 

distributions [Ferreia and Guedes Soares, 1999]; or the combination of different 

distributions [Haver, 1985]. Apart from the standard statistical distribution models, 

the so called Peak-Over-Threshold (POT) method, e.g., in Coles [2001]; Ferreira and 

Guedes Soares [1998] and Caires and Sterl [2005], is also used to estimate the return 

wave heights.  
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One has to notice that the estimation of return value strongly depends on the tail of 

the probability distributions, which vary for different PDF models. The choice of a 

PDF model, on the one hand, depends on the data set, e.g., derived from in situ 

measurements, numerical wave model or satellite remote sensing. On the other hand, 

there is no PDF model that can describe the entire data set accurately, which can only 

be determined by the accuracy of the fitting.  

In this section, a one-year SWH data set derived from the ASAR wave mode data 

is fitted to different PDF models and the return value for extreme SWH is given. 

Although, it is not sufficient to such an investigation based on one-year data only, it 

demonstrates the possibility of using long time series SAR wave mode data for global 

sea state analysis.   

The histogram of retrieved SWH by using CWAVE_ENV algorithm for one-year 

(2006 June to 2007 May) is shown in Fig. 9.1. There are more than 500,000 

measurements available in the dataset. Dominant SWH is distributed between 2.0 m 

and 2.5 m. The maximum retrieved SWH in the data set is 16.7 m. Four types of PDF 

models, i.e. normal distribution, Weibull distribution, extreme distribution and 

lognormal distribution, are fitted to the retrieved SWH. One can observe that 

generally the extreme and lognormal distributions fit the entire data set well, except 

the underestimation of the peak. 

 The Weibull distribution has been widely used for probability distributions of 

wave height and wind speed. It seems though that the Weibull distribution does not fit 

well the present dataset. The tail of the fitted different PDF models is shown in Fig. 

9.2. For SWH above 5.0 m, the behavior of the tail of the models is quite different. 

The Weibull distribution can provide a better tail for SWH between 5.0 m and 5.5 m. 

While for SWH higher than 5.5 m, it decreases sharply and strongly underestimates.  

 The lognormal distribution also estimates high sea state well, while in the 

extreme sea states it gives a better fit than all other models. Therefore, the lognormal 

distribution model is used for estimating return periods of extreme SWH based on the 

one-year dataset. The model function for the lognormal distribution is given by Equ. 

(9.1) 
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where μ and σ are the mean and standard deviation of the variable's natural logarithm 

(   (mean) = 0.909 and    (variance) = 0.404). The 10-year return value thus 

estimated to be 23.4 m.  

In the present study, the PDF is used for fitting a global dataset, whereas further 

studies should use distributions of SWH in different oceanic basins and fit PDFs to 

them.  

 

 
 

Figure 9. 1 Histogram of retrieved SWH superimposed with fitted PDF models 
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Figure 9. 2 Histogram of retrieved SWH (above 5 m) with superimposed fitted PDF 

models 

 

Joint Distribution of SWH and Tm02 

Fig.9.3 shows SWH as a function of mean wave period, derived from the one-year 

ASAR wave mode data. Three lines indicating different wave steepness are 

superimposed on the diagram. Wave steepness is one of the key parameters describing 

sea state. It is defined as ratio of SWH to wavelength, which is related to wave period 

via dispersion relationship. Therefore, the wave steepness can be expressed by Equ. 

(9.2) 
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(9.2) 

One can observe there are some cases with S  higher than 0.06, which might 

indicate some dangerous sea state. The compiled global wave steepness map is given 

in next section. 
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Figure 9. 3  SWH as a function of Tm02 derived from one-year ASAR wave mode data 

using the CWAVE_ENV algorithm. Colours indicate the number of cases found. Bin 

size is chosen as 0.25 (m and s) for statistics. 

 

9.2. Wave maps compiled by ASAR 

Seasonal Analysis 

SWH and Tm02 in all four seasons during 2006/2007 are compiled into maps in Fig. 

9.4 and Fig. 9.5, respectively. These maps are compiled with resolution of 1.5 by 1.5 

degrees. 

In the North Pacific and the North Atlantic, the highest global sea states are found 

in the winter season. Particularly between 40º-60ºN and 0º-50ºW winter storms often 

lead to SWH higher than 6 m. In the North Atlantic, high waves with average SWH 

above 5 m almost cover the entire basin, while the mean wave period builds up 

continuously towards the east. This shows that the North Atlantic is a fetch limited 

basin with steeper waves towards the west. Storm systems of high forward speed 

generate high waves, which are not fully developed in the western basin. 
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In the Southern Hemisphere, high sea state is found in the region between 

40°S~60° in all seasons and particularly high in the season JJA, with mean SWH > 

6.0 m. Extreme swells in the Southwest of Australia with mean wavelengths > 200 m 

are also observed in the winter season of the Southern Hemisphere. These long swells 

are generated by Antarctic storms and propagate across the Indian Ocean and the 

Pacific. These waves, together with high SWH, can cause coastal hazards, e.g., the 

extreme swell in 2007 May at the La Reunion coast [Lefèvre and Aouf, 2008; Li et al., 

2009]. 

In summer, the monsoon influence on sea state is observed in the western Indian 

Ocean with mean SWH around 4.0 m and above 4.5 m along the west coast of India. 

Furthermore, one can observe that SWH increases gradually from west to east. 

Comparing the SWH and Tm02 maps in different seasons, one can observe that 

high SWH coverage is smaller than the one of high mean wave period. Long swells 

exist approximately from 20°N to 60° N while high SWH exceeding 6 m only covers 

the 40ºN- 60ºN belt. In the Southern Hemisphere, the phenomenon is even more 

obvious in its winter season. Windsea with high SWH are generated by storms or 

cyclones and swell can propagate long distance without the influence of strong wind 

field. This phenomenon observed in the maps indicates that the SAR sensors are 

particularly powerful for investigation of swell propagation, e.g. the dissipation. 

It has to be pointed out that the effect of coarse sampling of the ASAR instrument. 

One can observe the “washboard” patterns in these maps which are caused by the 

coarse sampling rate. Although the main sea state signals are represented in these 

maps, probably some details are still missed. When dealing with the global sea state 

analysis using the satellite remote sensing, the sampling rate has to be considered. 
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Figure 9. 4 SWH maps from summer 2006 to spring 2007 for all seasons derived 

from the ASAR wave mode data with the CWAVE_ENV algorithm 
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Figure 9. 5 Tm02 maps from summer 2006 to spring 2007 for all seasons derived from 

the ASAR wave mode data with the CWAVE_ENV algorithm 
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Annual Mean 

The global maps of SWH and Tm02 for the annual mean are presented in the Fig. 9.6 

and Fig. 9.7, respectively. In addition, the wave maps from the ERA-40 data during 

1971-2000 (http://www.knmi.nl/onderzk/oceano/waves/era40/license.cgi) are shown 

for comparison of the main patterns.  

Generally, one can observe that the annual mean SWH derived from ASAR is 

very similar to the corrected ERA-40 (C-ERA, see Appendix 2 in Chapter 11) wave 

model data, while the ASAR results are affected by the sampling. 
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Figure 9. 6 Annual mean SWH map from June 2006 to May 2007 derived from the 

ASAR wave mode data with the CWAVE_ENV algorithm; (upper panel); 

 SWH map derived from the ERA-40 wave model data during 1971~2000 (lower 

panel) 
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Both plots of SWH show the region of 40°S - 60°S as the one with strongest wave 

systems, i.e. mean SWH > 4 m, and even in some regions over 4.5 m. In the North 

Atlantic, probably because of some ASAR wave mode data globally acquired in HH 

polarization (during 24/01/2007 ~ 30/01/2007) and/or with incidence angle of 33° 

(during 24/01/2007 ~ 06/02/2007 and 06/03/2007 ~ 13/03/2007) are excluded from 

the dataset, a slightly lower estimation of around 0.5 m is observed. In the North 

Pacific, dataset give a mean SWH of 3.0 m – 3.5 m.  

Besides the similar patterns, one still can find differences, the most obvious one in 

the western Indian Ocean. Mean SWH estimated by ASAR is over 2.0 m, whereas the 

C-ERA40 shows an underestimation by1.5 m – 2.0 m.  
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Figure 9. 7 Annual mean wave period map from  June 2006 to  May 2007derived 

from the ASAR wave mode data as computed by using the CWAVE_ENV algorithm 

(upper panel); 

Mean wave period map derived from the ERA-40 wave model data during 1971~2000 

(lower panel) 
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With respect to the mean wave period, long swells with mean period over 10 s are 

observed in the ASAR maps, in the basin southwest of Australia, while the model 

underestimates it by around 1 s. This also indicates that the SAR sensors are 

particularly sensible for swell detection, which probably is an advantage compared to 

the radar altimeters. 

In Fig. 9.8, the mean wave steepness based on the full year dataset is shown. 

Besides the basins with high waves and long swell as analyzed above, also other 

regions show high steepness. Most obvious is in the regions around Hawaii Islands in 

the North Pacific and the region between Madagascar and the west coast of Australia.  

 

 

Figure 9. 8 Global map of wave steepness derived from one-year ASAR wave mode 

data acquired during 2006 June to 2007 May 

 

9.3. Summary 

In the present study, full year ASAR wave mode data is processed using the new 

CWAVE_ENV algorithm. Distribution of wave height derived from ASAR wave 

mode data is investigated. The lognormal PDF function is used for a first estimation 

of the returned period for extreme SWH. 

Global wave maps are compiled using the retrieved integral wave parameters and 

seasonal variations for SWH and Tm02 are discussed. The seasonal maps represent the 

variations of sea state during 2006 June~2007 May. The annual mean SWH and Tm02 

are also compared to the results derived from reanalyzed ERA-40 wave model data.  
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A global wave steepness map based on the one-year data is given as well, pointing 

to areas with high steepness outside the storm regions. This is a new result for 

studying the global wave steepness using the spaceborne radar sensor, which also 

indicates the advantages of using SAR wave mode data for sea state analysis; On the 

one hand, SAR is sensible for the swell detection and on the other hand the developed 

new empirical algorithm CWAVE_ENV can yield reliable integral wave parameters.    

In principle, ERS SAR wave mode data are available since 1991 and ENVISAT 

ASAR since 2002. Inter-annual variability would be derived from this dataset using 

the CWAVE empirical algorithm for nearly two decades. With further missions, 

global wave climatology from space observations is in sight.  
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Chapter 10  

Summary and Conclusions 

This study focuses on the development and validation of SAR ocean wave retrieval 

algorithms, particularly those proposed for the ASAR wave mode data from the 

ENVISAT mission. A global sea state analysis using the results of CWAVE_EVN 

algorithm has been performed. Summaries for the different parts are given in the 

following sub-sections. 

 

 Validation of two-dimensional wave spectrum retrieval schemes using SAR 

complex data 

In the first part of the thesis, existing algorithms, i.e. PARSA and ESA WVW, for the 

retrieval of two-dimensional wave spectra from ASAR wave mode complex data are 

compared and validated. Both algorithms use the SAR cross spectrum as the input 

while the PARSA scheme needs also a priori information, e.g. from numerical wave 

model WAM.  

The full wave spectra are retrieved using the PARSA scheme whereas the results 

derived from the ESA WVW products are limited to the wavelength longer than the 

cut-off of SAR data, usually around 200 m. Therefore the wave parameter SWH 

integrated from the WVW spectra has a significant bias of -0.19 m and a large scatter 

index of 36% when compared to in situ buoy measurements. Even when it is argued 

that the wave height retrieved by the WVW scheme is only the swell SWH, this still 

shows a scatter index of 50% for H12 wave height as compared to the reanalyzed 

ECMWF wave model. Furthermore, the underestimation of wave height increases 

with sea state. 

On the other hand, the integrated wave parameter SWH derived from the PARSA 

spectra agrees well to the in situ buoy measurements with a bias of only 0.09 m and a 

scatter index of 21%.  Compared to the forecast wave model of DWD, the bias of -

0.01 m is negligible and the scatter index is as low as 16%.  

 

 Development and validation of the empirical algorithm CWAVE_ENV 

As the ESA WVW scheme does not include a priori information for the retrieval of 
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ocean wave spectra, the results are limited to frequencies lower than the cut-off and 

therefore cannot be used for measurements of the full SWH. Therefore the new 

empirical algorithm CWAVE_ENV has been developed to retrieve the integrated 

wave parameters, e.g. SWH and mean wave period, from ASAR wave mode data 

while not using a priori information. This makes the SAR to an altimeter like wave 

parameter measuring instrument.  

Validation, particularly by comparison to the independent in situ buoy 

measurements and radar altimeters, proves that reliable and accurate sea state 

measurements can be achieved, with a bias of only 0.06 m and a scatter index of 24% 

for buoys in deep water, and a bias of -0.11 m and -0.13 m at a scatter index of 13% 

and 17% for crossover measurements by the radar altimeters onboard GFO and 

JASON, respectively. 

The CWAVE_ENV algorithm also has limitations, for instance a rather high bias 

for very low sea state, with SWH < 1.0 m, when backscatter is close to the noise level 

of the instrument.   

On ERS and ENVISAT satellites, the SAR and RA are onboard the same platform. 

Because of the independent and reliable measurements of sea state from ASAR wave 

mode data using the CWAVE_ENV algorithm, both sensors can be used jointly with a 

spatial distance of around 300 km. This is useful as the SAR can yield additional 

validation for the numerical wave model, particularly for sea state observation in 

storms. Two cases of extreme sea state are investigated using ASAR wave mode data 

using different algorithms, additionally to the radar altimeter data.  The case studies 

show that the single track of ASAR can provide wave height as well as wave direction 

information. Together with the nadir track of the RA, both SAR and altimeter can be 

used jointly validating the numerical wave models. Therefore new assimilation 

schemes could be developed to achieve higher accuracy in sea state forecasting. 

  

 Global sea state statistics using ASAR wave mode data 

Based on the full year dataset from June 2006 to May 2007, ASAR wave mode data 

were processed using the CWAVE_ENV algorithm. A 10-year return period of global 

extreme SWH is estimated to be 18.8 m using the lognormal PDF.  

Seasonal and yearly wave maps for SWH, mean wave period, and wave steepness 

are compiled. Strong storm regions with high waves and long swells can be observed 

in the maps. The summer monsoon leads to mean SWH of 4.0 ~ 4.5 m over the 
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Northwest Indian Ocean. Annual mean comparison to the results of ERA-40 shows 

that regions with high wave systems, e.g. the North Pacific and the North Atlantic, are 

measured correctly by the ASAR measurements. In addition, a much stronger signal 

caused by the monsoon is found in the ASAR results and extreme swells are 

additionally found in the southwest of Australia. 

ASAR measurement of global wave steepness is a new contribution to the sea 

state statistics. Besides the basins with high waves and long swell, also some other 

regions with high steepness are shown in the maps, e.g. the region between 

Madagascar and the west coast of Australia.  

 

 Observation of coastal wave processes using TerraSAR-X data 

In the last part of the thesis, high resolution wave measurements using the new 

TerraSAR-X sensor are investigated. 

When surface waves propagate from deep water into shallow water regions, 

wavelength, direction and height of the waves change, e.g. caused by the underwater 

topography, and surface currents. While the SAR wave mode data are useful for 

global wave studies, SAR data with higher resolution as well as larger coverage are 

needed in coastal regions to investigate spatial changes of sea state.  

A new empirical algorithm XWAVE was developed for high resolution 

TerraSAR-X data, yielding the peak wavelength and wave direction for the analysis of 

wave refraction and diffraction as caused by the rapid changing bathymetry around 

Terceira island in the North Atlantic.  

A cross sea situation is identified in the TerraSAR-X Stripmap mode image, 

which is generated by the refracted and diffracted waves. An effect of less wave angle 

spreading effect is observed in this situation, which may indicate the change of sea 

state. 

 

 Outlook 

The present study shows that the newly developed empirical algorithm 

CWAVE_ENV is suitable for global integral wave parameter analysis. This opens the 

potential of global SAR wave mode measurements of ocean wave parameters on 

tracks parallel to the altimeter. The result can be used for wave climate research.   

By combining the SAR measurements with the radar altimeters onboard the same 
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platforms, both the spatial and temporal sampling is increased as measurements on 

parallel tracks are available This will improve the retrieval of seasonal and annual 

variations for global sea state.  
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Chapter 11 
 

Appendices 

Appendix 1: Principle of radar altimeter 

Radar altimeters on board the satellite permanently transmit signals at high frequency 

(Topex-Poseidon - over 1700 pulses per second) to the Earth, and receive the echo 

from the sea surface. This is analyzed to derive a precise measurement of the round-

trip time between the satellite and the sea surface. The time measurement, scaled by 

the speed of light (at which electromagnetic waves travel), yields a measurement of 

the satellite-to-ocean range R . As electromagnetic waves travel through the 

atmosphere, they can be decelerated by water vapor or by ionization. Once these 

phenomena are corrected for, the final range R  is estimated within 2 cm. The 

ultimate aim is to measure the sea level. This requires independent measurements of 

the satellite orbital trajectory, i.e. exact latitude, longitude and altitude coordinates. If 

the height of the satellite, satH , is known relative to a reference level, then the height, 

h , of the sea above the reference level is simply determined . 

sath H R   

(11.1) 

The radar altimeter receives the reflected wave, which varies in intensity over time. 

Fig. 11.1 illuminates the interaction of the radar pulse of duration τ with a smooth sea 

surface. The reflected wave's power increases sharply from the moment the leading 

edge of the radar signal strikes the surface. In practice, sea surface is rough rather than 

flat. In this case the conditions in Fig. B2 apply. As a result, the first reflection of 

energy commences when the leading edge of the pulse reaches the topmost crests of 

the waves at A, earlier than for the flat surface in position B, but the reflected energy 

does not achieve its maximum until the trailing edge reaches the lowest wave trough 

at C, [Robinson, 2004]. In this way, the radar altimeter is able to average out the effect 

of the ocean waves and consequently integral wave parameters, like significant wave 

height can be derived from the waveforms. 



Chapter 11 Appendices    

- 129 - 

 

Figure 11.1 Interaction of a pulse of duration τ with a smooth sea surface. (a) The 

illuminated surface geometry. (b) The resulting power of the reflected pulse. 

 

 

 

Figure 11.2 Interaction of a pulse with a rough sea surface. (a) The illuminated 

surface geometry. (b) The resulting power of the reflected pulse. 

(Fig. B1 and B2 are derived from [Robinson, 2004]) 
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Appendix 2: Numerical wave models data 

In the present study, WAM cycle 4 operated in different meteorological centers 

are used, i.e. ECMWF reanalyzed model, and forecast model results from Deutscher 

Wetterdienst (DWD, German Weather Service). Details about these models are given 

as follows. 

 

ECMWF reanalysis wave model 

This model is provided with full two-dimensional spectra on a polar grid with 24 

direction bins and 30 frequency bins beginning from 0.03452Hz with logarithmic 

increment of 1.1Hz and achieved at the four main synoptic hours 00, 06, 12 and 18 

UTC. They are collocated with the ASAR wave mode data and collected from the 

CERSAT collocation system (http://www.ifremer.fr/cersat/en/data/data.htm).  

It needs to be pointed out that the collocated WAM model results have been 

assimilated with inverted ASAR wave mode level 1b products and its performance 

has been assessed by [Abdalla, 2008] with global validation. 

 

DWD Forecast wave model 

The numerical wave forecast model provided by the DWD includes a global (GSM: 

Global Sea wave Model) and regional wave models for North Sea and Baltic Sea 

(LSM: Local Sea wave Model). 

Since the area of interest for this investigation is the northern part of Europe, the 

forecast results obtained by the wave model LSM are used to check whether the 

extreme storm events in the North Sea and in the Baltic Sea are predicted for several 

cases [Behrens and Günther, 2008]. The LSM runs on a model grid situated between 

40.55º N to 66.05ºN and 3.75ºW to 30.75ºE, with a spatial resolution of 0.1º by 0.167º 

(around 10 km) and 3h temporal resolution which is the same with GSM model. GSM 

model has a coarse spatial resolution of 0.75º by 0.75º. 

Fig. 11.3 shows SWH derived from DWD LSM (left panel) and GSM (right panel) 

model on January 26, 2008 at 18:00 UTC in North Atlantic. One can see that the due 

to the higher resolution that fine wave field structure is visible in LSM model. On the 

other hand, LSM model shows higher value in high sea state (i.e. storm Paula in 

Norwegian coasts) and lower in low sea state (i.e. Mediterranean ocean). 
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                     DWD LSM Model                                   DWD GSM Model 

Figure 11.3 SWH of DWD LSM model (left) and GSM model (right) on January 26, 

2008 at 18:00 UTC in North Atlantic 

 
 
 
 
KNMI C-ERA-40 wave model 

As introduced in the above paragraph, the validation results show that ERA-40 SWH 

reveals some underestimation in higher sea state. On the other hand, the ERA-40 

SWH has inhomogeneous time series due to assimilation of different altimeter dataset. 

Thus a non-parametric method [Caires and Sterl, 2005] that predicts the bias between 

ERA-40 SWH data and TOPEX altimeter measurements was implemented in ERA-40 

wave field to create a new 45-year global 6-hourly SWH dataset - the C-ERA-40 

dataset with spatial resolution of 1.5 by 1.5. 
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Appendix 3: List of buoys used for validation and comparison 

Name, latitude and longitude of buoys used for validation of SAR ocean wave 

algorithms is given in Tab. 11.1. The positions of the buoys are shown in Fig. 4.4 

 

Table A1. Name, Latitude and Longitude of buoys used for validation, corresponding 

to the red cross marks shown in Fig. 4.4  

Station Latitude Longitude Station Latitude Longitude
NODC_41001 34°44'N 72°41'W NODC_51001 23°26'N 162°13'W 
NODC_41002 32°19'N 75°22'W NODC_51002 17°11'N 157°47'W 
NODC_41009 28°30'N 80°10'W NODC_51003 19°13'N 160°49'W 
NODC_41010 28°57'N 78°29'W NODC_51004 17°31'N 152°29'W 
NODC_42001 25°54'N 89°40'W NODC_51028 0°01'S 153°52'W 
NODC_42002 25°10'N 94°25'W NODC_fpsn7 33°29'N 77°35'W 
NODC_42003 26°04'N 85°56'W NODC_46063 34°16'N 120°42'W 
NODC_42019 27°55'N 95°22'W NODC_46066 52°42'N 154°59'W 
NODC_42020 26°56'N 96°42'W NODC_46084 56°35'N 136°10'W 
NODC_42035 29°14'N 94°25'W MEDS_C44137 42°17'N 62°00'W 
NODC_42036 28°30'N 84°31'W MEDS_C44140 43°45'N 51°45'W 
NODC_42039 28°47'N 86°01'W MEDS_C44141 43°00'N 58°00'W 
NODC_42040 29°11'N 88°13'W MEDS_C44251 46°26'N 53°23'W 
NODC_44004 38°29'N 70°26'W MEDS_C44255 47°17'N 57°21'W 
NODC_44008 40°30'N 69°26'W MEDS_C44258 44°30'N 63°24'W 
NODC_44011 41°07'N 66°35'W MEDS_C46004 50°56'N 136°05'W 
NODC_44014 36°37'N 74°50'W MEDS_C46036 48°21'N 133°56'W 
NODC_44025 40°15'N 73°10'W MEDS_C46131 49°55'N 124°59'W 
NODC_46002 42°36'N 130°16'W MEDS_C46132 49°44'N 127°56'W 
NODC_46005 46°01'N 130°58'W MEDS_C46134 48°40'N 123°29'W 
NODC_46011 34°53'N 120°52'W MEDS_C46145 54°22'N 132°25'W 
NODC_46012 37°22'N 122°53'W MEDS_C46146 49°20'N 123°44'W 
NODC_46013 38°14'N 123°19'W MEDS_C46183 53°37'N 131°06'W 
NODC_46014 39°12'N 123°58'W MEDS_C46184 53°55'N 138°51'W 
NODC_46015 42°45'N 124°51'W MEDS_C46185 52°25'N 129°49'W 
NODC_46022 40°47'N 124°32'W MEDS_C46204 51°22'N 128°45'W 
NODC_46023 34°42'N 120°58'W MEDS_C46205 54°10'N 134°17'W 
NODC_46025 33°45'N 119°05'W MEDS_C46206 48°50' 126°00'W 
NODC_46027 41°51'N 124°23'W MEDS_C46207 50°53'N 129°55'W 
NODC_46028 35°44'N 121°53'W MEDS_C46208 52°31'N 132°41'W 
NODC_46029 46°08'N 124°31'W EUROP_41100 15°54'N 57°54'W 
NODC_46035 57°03'N 177°35'W EUROP_41101 14°36'N 56°12'W 
NODC_46042 36°45'N 122°25'W EUROP_62001 45°12'N 5°00'W 
NODC_46047 32°26'N 119°32'W EUROP_62029 48°42'N 12°30'W 
NODC_46050 44°38'N 124°30'W EUROP_62081 51°00'N 13°24'W 
NODC_46053 34°14'N 119°52'W EUROP_62105 55°24'N 12°24'W 
NODC_46059 38°02'N 130°00'W EUROP_62108 53°30'N 19°24'W 
NODC_46061 60°14'N 146°50'W EUROP_62163 47°30'N 8°24'W 

   EUROP_64045 59°06'N 11°42'W 
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Appendix 4: SAR image spectrum estimation using periodogram 

method 

A two-dimensional ASAR image with the size of xB  and yB  size in range and 

azimuth direction are divided into xnb and ynb subscenes respectively. The relation is 

given by,  

xxx nBnb  , yyy nBnb                                                 

(11.2) 

Where xn =256 and yn =512 are taken to be the subscene size used to divide the entire 

samples of xB  and yB  in range and azimuth direction. The two-dimensional FFT is 

performed on every subscene, i.e., normalized subscene G   with pixel size xn  and yn . 

 GfftF nynxG *                                                                

 (11.3) 

The power density spectrum for every subscene denoted by SP ,  

 2
GS FP                                                                    

(11.4) 

Summing the subscenes power density spectrum and averaging to reduce the variance, 

the entire ASAR image spectrum P  is given by,  


 S

yx

P
nbnb

P
1

                                                        

(11.5) 

The Fourier transform theory states that the integral of the image in the frequency 

domain equals to the image variance in the spatial domain. The Cartesian spectrum 

computed in step (11.5) needs to be normalized to ensure this case. The normalized 

ASAR image spectrum is denoted as P ,   

 

  1
*

  yx dkdkPPP                                                    

(11.6) 

In (11.6) xdk , ydk is the wave number spacing in ASAR image range and azimuth 

direction, given by, 

)*(2 xxx dBdk  , )*(2 yyy dBdk                                      
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(11.7) 

xd , yd  is the pixel spacing in meters of ASAR image. 

The ASAR parameters to be used for the CWAVE_ENV model are then computed 

from the SAR image spectrum P  by projection onto the subspace spanned by the 

orthonormal functions, i.e., by computing the respective scalar products.                                            

  yxyxiyx dkdkkkhkkPS  ),(,                                              

(11.8) 

where knni 1  and ih  is the orthonormal functions and their exact forms are 

proposed in the CWAVE_ENV model.  
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Appendix 5: Probability Density Functions (PDF) 

Normal Distribution 

The normal distribution or Gaussian distribution is a continuous probability 

distribution that describes data that clusters around a mean or average. The graph of 

the associated probability density function is bell-shaped, with a peak at the mean, and 

is known as the Gaussian function. The normal distribution can be used to describe, at 

least approximately, any variable that tends to cluster around the mean.  

The probability density function for a normal distribution is given by the formula 

   2

2

1

22
exp

x
p x


 

 
  
 
 

 

(11.9) 

where μ is the mean, σ is the standard deviation, and exp denotes the exponential 

function. 

 

The Weibull distribution has two parameters, the 'shape' parameter k and the 

'scale' parameter  as given in (E.2). It is named after [Waloddi Weibull, 1951]. 

   
1

exp
k

k
xk x

p x 

 


   

 
 

(11.10) 

Under certain parameterizations, the Weibull distribution reduces to several other 

familiar distributions: 

 When k = 1, it is the exponential distribution. 

 When k = 2, it becomes equivalent to the Rayleigh distribution 

 When k = 3.4, it appears similar to the normal distribution. 

 As k goes to infinity, the Weibull distribution asymptotically approaches the 

Dirac delta function. 
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