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Introduction

Motivation

Model categories, first introduced by Quillen in [Qui67], are an axiomatic
approach to do homotopy theory. A model category structure on a category
consists of three distinguished classes of morphisms called weak equivalences,
fibrations and cofibrations that satisfy certain axioms. The homotopy cat-
egory on a model category is obtained by inverting weak equivalences. If
a model category is equipped with a monoidal product, then, one obtains
the notion of a monoidal model category structure. One requires in addi-
tion, that the monoidal product satisfies some compatibility conditions with
respect to the model structure.

A monoidal category is related to the subcategory of its monoids via
an adjoint pair of functors. In many cases, the forgetful functor from the
category of monoids to the monoidal category has a left adjoint. In [SS00],
Schwede and Shipley point out some sufficient conditions for extending a
model category structure to the associated category of monoids over a monoi-
dal model category. Whenever these conditions are fulfilled, an application
of a transfer theorem along the adjoint pair of functors guarantees a model
structure for the category of monoids.

Later in [SS03], Schwede and Shipley investigate another general ques-
tion. They consider two monoidal model categories related via a weak
monoidal Quillen equivalence. Then they discuss to what extend these
Quillen equivalences are preserved for the categories of monoids. A moti-
vating example of a weak monoidal Quillen equivalence is provided by the
Dold-Kan correspondence.

The Dold-Kan correspondence, discovered independently by Dold and
Kan (see [Dol58]), establishes an equivalence of categories between simpli-
cial objects and non-negatively graded differential objects in every abelian
category. Simplicial structures are relatively difficult to handle: objects are
subject to many combinatorial relations. Hence, the Dold-Kan correspon-
dence is of great importance: it provides a proper understanding of simplicial
structures since working with differential graded objects is often more famil-
iar.

The categories of simplicial abelian groups and non-negatively graded dif-
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ferential abelian groups are both endowed with a monoidal model category
structure. Although these categories are equivalent via the Dold-Kan corre-
spondence, their respective categories of monoids are not equivalent. This
failure is roughly due to the difference between the monoidal products con-
sidered on these two monoidal categories. However, the functors involved in
the Dold-Kan correspondence give rise to two weak monoidal Quillen equiv-
alences. These Quillen equivalences are then lifted along the adjoint pairs of
functors. As a consequence, Schwede and Shipley derive that the homotopy
categories of the categories of monoids are equivalent.

After this overview of the work of Schwede and Shipley, a natural ques-
tion arises: what can be said for the categories of comonoids over monoidal
model categories? In this work, we restrict to the category of simplicial vector
spaces and to the category of non-negatively graded differential vector spaces
over a fixed field K. Their respective comonoids consist of the category of
simplicial coalgebras and of the category of non-negatively graded differential
coalgebras. Moreover, these categories of comonoids support model struc-
tures proven in [Goe95] and in [GG99]. Using the techniques pioneered by
Schwede and Shipley, we discuss the comparison of the homotopy categories
of these comonoids. However, on the one hand, we observe that the dual-
ization of the main result of Schwede and Shipley turns out to be fruitless.
On the other hand, a direct approach through a criterion given in [Hov99,
Corollary 1.3.16] remains difficult: computing the homology of complexes
that involve cofree coalgebras functors leads to cumbersome problems as we
will see later.

Outline

The first chapter is devoted to some generalities about monoidal model cate-
gories. It is subdivided into three parts. In the first part, we recall the basic
concept of monoidal categories with a special emphasis on the categories
of monoids and comonoids. In the second part, we present the main tools
used in model category structures. These tools include the Quillen (co)small
object argument and the transfer theorem which is a powerful result for cre-
ating new model structures. The third part discusses the requirements that
make a monoidal product compatible with a model structure. This is given
by the pushout product axiom. We also state the main result of Schwede
and Shipley in [SS03] that motivates the present work.

Since we are interested in comonoids, we dedicate the second chapter to
the study of coalgebra structures. In [Swe69], Sweedler constructs a cofree
functor that is right adjoint to the forgetful functor from the category of
coalgebras to the category of vector spaces. In fact, the cofree coalgebra
on a vector space V is a certain subcoalgebra of the coalgebra obtained via
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the dual of the tensor algebra on the dual space V ∗ (see [Swe69, Theorem
6.4.1]). While the tensor algebra is well described, the cofree coalgebra func-
tor is hard to characterize: it is essentially obtained by a result of existence,
but one would like to achieve concrete computations. To this end we use
an equivalent approach suggested by Getzler and Goerss in [GG99] and we
compute the cofree coalgebra on a one-dimensional vector space. However,
dimensions higher than one lead to some difficulties left unaddressed in this
work.

The third chapter deals with differential graded objects. First, we recall
the standard monoidal model structure on the category of differential graded
vector spaces. This model category structure is in addition cofibrantly gen-
erated. We adress the question whether it is fibrantly generated. We could
find a generating set of acyclic fibrations, but our candidate for a generating
set of fibrations fails: the category of differential graded vector spaces does
not have cosmall objects except its terminal object. We provide a counterex-
ample that clarifies this point. We also consider the category of differential
graded algebras and explain how its model structure can be recovered by
the method of Schwede and Shipley. However, similar considerations do not
hold when one deals with the category of differential graded coalgebras. We
point out the various problems that arise.

In chapter four, we give a brief review of the Dold-Kan correspondence.
This correspondence is realized by the normalization functor N and its
inverse Γ which we describe with some examples. Then we consider the
Alexander-Whitney map AW and its homotopical inverse given by the shuf-
fle map ∇. These maps are (co)monoidal transformations and serve to define
comultiplications for the comonoids. We end this chapter with the descrip-
tion of a model structure on simplicial coalgebras proven in [Goe95].

In chapter five, we dualize the work of Schwede and Shipley in [SS03].
Namely, we prove that the normalization functorN defines a functor from the
category of simplicial coalgebras to the category of non-negatively differential
graded coalgebras. Similar considerations hold for the functor Γ that goes in
the opposite direction. However, as in [SS03], we point out that both functors
are neither adjoint nor inverse to each other. Then, we construct functors
that are right adjoint to the functors N and Γ on the level of comonoids.
The adjoint pairs of functors obtained in this way turn out to be Quillen
pairs. It follows that the homotopy category of simplicial coalgebras and
the homotopy category of non-negatively graded differential coalgebras are
adjoint. But improving these Quillen pairs into Quillen equivalences remains
an unsolved task: since the category of differential graded vector spaces fails
to be fibrantly generated, we are not able to apply the main result of Schwede
and Shipley. In order to get around this problem, we use a criterion proven
in [Hov99, Corollary 1.3.16]. Once again, we are facing some difficulties:
the involved cofree coalgebra functors do not behave well with respect to
homology. Nevertheless, we exhibit some differential graded coalgebras that
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verify the criterion given in [Hov99, Corollary 1.3.16].

Notations

Throughout this work, we denote by K a given field. Vectors spaces, al-
gebras, coalgebras and tensor products are taken over K. We adopt a
mnemonic notation for the various categories: for instance, DG-K-Vct stands
for the category of differential graded K-vector spaces.
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Chapter 1

Preliminaries on Monoidal
Model Structures

1.1 Monoidal structures

In this section we recall the concept of monoidal categories. This concept
is studied for instance in [Bor94b] or [Mac98]. After focussing on monoids
and comonoids in a given monoidal category we describe monoidal functors.
When two monoidal categories are adjoint it is possible under some suitable
conditions to construct an adjunction between their respective categories of
monoids. We state such results at the end of this section.

1.1.1 Monoidal categories

Definition 1.1.1. A monoidal category C = (C,⊗, I, α, λ, ρ) consist of

(i) a category C,

(ii) a bifunctor ⊗ : C×C→ C,

(iii) a unit object I ∈ C,

(iv) and three isomorphisms

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C

λA : I ⊗A ∼= A

ρA : A⊗ I ∼= A

that are natural for all A,B,C ∈ C

subject to the following coherence conditions:
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• the pentagonal diagram

A⊗ (B ⊗ (C ⊗D))
idA⊗αB,C,D //

αA,B,C⊗D

��

A⊗ ((B ⊗ C)⊗D)

αA,B⊗C,D

��

(A⊗B)⊗ (C ⊗D)

αA⊗B,C,D

��
((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

αA,B,C⊗idD

oo

commutes for all A,B,C,D ∈ C;

• the triangular diagram

A⊗ (I ⊗B)
αA,I,B //

idA⊗λB

��

(A⊗ I)⊗B

ρA⊗idB

��
A⊗B A⊗B

commutes for all A,B ∈ C;

• and finally λI = ρI : I ⊗ I → I.

Definition 1.1.2. A monoidal category (C,⊗, IC) is said to be symmetric
if it is equipped with isomorphisms

γA,B : A⊗B ∼= B ⊗A

natural in A,B ∈ C with

γA,B ◦ γB,A = Id, ρB = λB ◦ γB,I : B ⊗ I ∼= B

and such that the diagram

A⊗ (B ⊗ C)
αA,B,C //

idA⊗γB,C

��

(A⊗B)⊗ C
γA⊗B,C // C ⊗ (A⊗B)

αC,A,B

��
A⊗ (C ⊗B) αA,C,B

// (A⊗ C)⊗B
γA,C⊗idB

// (C ⊗A)⊗B

commutes.

Example 1.1.3. In [Mac98, VII.3] MacLane gives a non-exhaustive list of
examples. We recall that every category with finite products is monoidal
with its terminal object as unit object. Likewise every category with finite
coproducts is monoidal with its initial object as unit object. In this way one
gets a large range of monoidal categories. We will consider in this work the
monoidal category of vector spaces over a field K, (K-Vct,⊗K ,K).
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Definition 1.1.4. A closed category C is a symmetric monoidal category in
which each functor −⊗C : C→ C has a specified right adjoint (−)C : C→
C.

Example 1.1.5. The monoidal category (K-Vct,⊗K ,K) is closed. If Y is
a K-vector space then the right adjoint of the functor − ⊗K Y is given by
the functor K-Vct(Y ,−).

We now describe some specific objects in a given monoidal category.

Definition 1.1.6. Let C be a monoidal category.

1. A monoid M in a monoidal category is an object M ∈ C together with
two arrows µM : M⊗M →M and ηM : I →M such that the diagrams

M ⊗ (M ⊗M)
αM,M,M //

idM⊗µM

��

(M ⊗M)⊗M µM⊗idM // M ⊗M
µM

��
M ⊗M µM

// M

and

I ⊗M
ηM⊗idM //

λM
))RRRRRRRRRRRRRRR M ⊗M

µM

��

M ⊗ I
idM⊗ηMoo

ρM

uulllllllllllllll

M

are commutative.

2. A morphism of monoids f : (M,µM , ηM ) −→ (N,µN , ηN ) is a mor-
phism f : M → N in C which satisfies

µN (f ⊗ f) = fµM and fηM = ηN .

With these morphisms, the monoids in C constitute a category that we de-
note by C-Monoid. The assignment (M,µM , ηM ) 7−→M defines a forgetful
functor U : C-Monoid −→ C

Definition 1.1.7. Let C be a monoidal category.

1. A comonoid C is an object C ∈ C together with two arrows ∆C : C →
C ⊗ C and εC : C → I such that the diagrams

C
∆C //

∆C

��

C ⊗ C
∆C⊗idC

��
C ⊗ C

idC⊗∆C

// C ⊗ (C ⊗ C) αC,C,C

// (C ⊗ C)⊗ C

13



and
I ⊗ C C ⊗ C

εC⊗idCoo idC⊗εC // C ⊗ I

C
λ−1

C

hhQQQQQQQQQQQQQQQ ρ−1
C

66mmmmmmmmmmmmmmm

∆C

OO

are commutative.

2. A morphism of comonoids f : (C,∆C , εC) −→ (D,∆D, εD) is a mor-
phism f : C → D which satisfies

(f ⊗ f)∆C = ∆Df and εDf = εC .

With these morphisms, the comonoids in C constitute a category that we
denote by C-coMonoid. The assignment (C,∆C , εC) 7−→ C defines a for-
getful functor U : C-coMonoid −→ C.

It might be useful to formally view comonoids of a monoidal category C
as monoids in the opposite category Cop.

Lemma 1.1.8. Let (C,⊗, IC) be a monoidal category. Then comonoids in
C are monoids in the opposite category Cop. More precisely

(C-coMonoid)op = Cop-Monoid.

We refer for instance to [Por08, Section 2.2] where this topic is discussed.

1.1.2 Monoidal functors

Definition 1.1.9. A lax monoidal functor F : (C,⊗, IC) → (D, ⊗̂, ID) be-
tween monoidal categories consists of the following data:

(i) a functor F : C→ D;

(ii) for objects A,B ∈ C morphisms ΨA,B : F (A)⊗̂F (B) → F (A ⊗ B) in
D which are natural in A and B;

(iii) for the units, a morphism ψ : ID → F (IC) in D

such that the following diagrams

F (A)⊗̂(F (B)⊗̂F (C))
αD //

id⊗Ψ
��

(F (A)⊗̂F (B))⊗̂F (C)

Ψ⊗id
��

F (A)⊗̂(F (B ⊗ C))

Ψ
��

(F (A⊗B)⊗̂F (C))

Ψ
��

F (A⊗ (B ⊗ C))
F (αC)

// F ((A⊗B)⊗ C),

14



F (A)⊗̂ID
ρD //

id⊗ψ
��

F (A)

F (A)⊗̂F (IC)
Ψ

// F (A⊗ IC)

F (ρC)

OO

and

ID⊗̂F (A)
λD //

ψ⊗id
��

F (A)

F (IC)⊗̂F (A)
Ψ

// F (IC ⊗A)

F (λC)

OO

are commutative.

Remark 1.1.10. A lax monoidal functor is strong monoidal respectively
strict monoidal if the coherence morphisms are invertible respectively iden-
tities.

Definition 1.1.11. A monoidal functor F between symmetric monoidal
categories is said to be symmetric if the diagram

F (A)⊗̂F (B)
γF (A),F (B) //

ΨA,B

��

F (B)⊗̂F (A)

ΨB,A

��
F (A⊗B)

F (γA,B)
// F (B ⊗A)

commutes for all A,B.

Definition 1.1.12. A monoidal natural transformation

Θ: (F,Φ, φ)→ (G,Γ, γ)

between two monoidal functors is a natural transformation between the un-
derlying functors Θ: F → G such that the diagrams

F (A)⊗̂F (B)
ΨF //

ΘA⊗̂ΘB

��

F (A⊗B)

ΘA⊗B

��
G(A)⊗̂G(B)

ΨG

// G(A⊗B)

ID
ψF // F (IC)

ΘIC
��

ID ψG

// G(IC)

commute for all A,B.
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There is also the dual notion of a lax comonoidal functor and a comonoidal
natural transformation.

1.1.3 Monads

Definition 1.1.13. Let (CC, ◦, Id) be the monoidal category of endofunctors
of a category C. Consider a triple T = (T, η, µ) where T : C → C is an
endofunctor and η : Id→ T, µ : T ◦ T → T are two natural transformations.
Then T is a monad in C if it is a monoid in (CC, ◦, Id). Notice that the
transformations η and µ are respectively the unit and the multiplication of
the monoid T.

Definition 1.1.14. Let T = (T, η, µ) be a monad in a category C.

1. A T-algebra in C is a pair (C, h) where C ∈ C and h : T (C)→ C is a
morphism in C making the diagrams

TTC
Th //

µC

��

TC

h
��

TC
h

// C

and
C

ηC //

idC !!CC
CC

CC
CC

TC

h
��
C

commute.

2. A morphism α : (C, h)→ (D, g) of T-algebras is a morphism α : C → D
in C such that the following diagram

TC
h //

Tα
��

C

α

��
TD g

// D

commutes.

With these morphisms, T-algebras constitute a category CT and (C, h) 7−→
C defines a forgetful functor U : CT → C.

16



Proposition 1.1.15. Consider the following situation

(C,⊗, IC)

TC
��

L // (D, ⊗̂, ID)

TD
��

R
oo

C-Monoid

UC

OO

D-Monoid

UD

OO

R̃

oo

where

(i) the monoidal categories (C,⊗, IC) and (D, ⊗̂, ID) are closed and co-
complete;

(ii) the functor R has a left adjoint L;

(iii) and R̃ is a functor between the categories of monoids such that

R ◦ UD = UC ◦ R̃.

Then R̃ has a left adjoint.

Proof. The assumption (i) guarantees the existence of left adjoint functors
TC and TD for the forgetful functors UC and UD by [Mac98, VII, 3, Theorem
2]. The category of monoids in C has colimits and the left adjoint, TC, called
the free monoid functor, is given for an object C ∈ C by

TC(C) =
∐
n≥0

C⊗n with C⊗0 = IC.

The multiplication is given by concatenation and a similar construction holds
for the free monoid functor TD. In this way, the category of monoids in C
can be interpreted as the category of T-algebras with T = UC ◦TC, similarly
for the category of monoids in D. Now the claim is an application of the
adjoint lifting theorem proven in [Bor94b, 4.5].
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1.2 Model structures

In this section we give an overview on model category structures. This
notion, first introduced by Quillen in [Qui67], is an axiomatic approach to
do homotopy theory. We first recall the different axioms and their immediate
consequences. Then we describe Quillen functors which compare categories
endowed with model structures. In practice it is difficult to endow a category
with a model structure. In order to reduce these difficulties, some useful
techniques are available. These techniques include the concept of locally
presentable categories and Quillen’s small object argument. We are also
interested in (co)fibrantly generated model categories: these model categories
are characterized by sets of generating (co)fibrations and generating acyclic
(co)fibrations. Having these (co)fibrant generators on a model category leads
to many advantages. The most important one is the transfer theorem.

1.2.1 Axioms

Definition 1.2.1. Let C be a category.

1. A map f : A → B in C is a retract of a map g : C → D in C if there
is a commutative diagram of the following form

A //

f

��

C //

g

��

A

f

��
B // D // B

where the horizontal composites are identities.

2. A map i : A→ B has the left lifting property with respect to p : X → Y
if for any commutative diagram

A
f //

i
��

X

p

��
B g

//

h
>>

Y

there is a lift h : B → Y such that hi = f and ph = g. Dually the map
p is said to have the right lifting property with respect to i.

Definition 1.2.2. A model category is a category C endowed with three
classes of morphisms, weak equivalences, fibrations, and cofibrations such
that the following axioms hold.

MC1: All limits and colimits exist in C, that is, C is complete and cocom-
plete.
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MC2: If f and g are maps in C such that the composite gf is defined and if
two of the three maps f , g, gf are weak equivalences, then so is the
third.

MC3: If f is a retract of g and g is a fibration, cofibration, or a weak equiv-
alence, then so is f .

MC4: Given a commutating solid diagram

A
��

i
��

// X

p
����

B //

l
>>

Y

with i a cofibration and p a fibration, a lift l exists in either of the
following two situations

(i) the map p is a weak equivalence or
(ii) the map i is a weak equivalence.

MC5: Any map f can be factored in two ways

(i) f = pi with p a acyclic fibration and i a cofibration or
(ii) f = pi with p a fibration and i an acyclic cofibration.

Remark 1.2.3. If a category C has a model structure then its opposite
category Cop inherits a model structure. Indeed let f : A→ B be a map in
C and fop : B → A its corresponding opposite map in Cop. Then fop is

• a weak equivalence in Cop if f is a weak equivalence in C;

• a cofibration in Cop if f is a fibration in C;

• a fibration in Cop if f is a cofibration in C.

Definition 1.2.4. Let C be a model category, ∅ its initial object and ∗
its terminal object. An object C ∈ C is cofibrant if the map ∅ → C is a
cofibration and fibrant if the map C → ∗ is a fibration.

For each object C of a model category C, applying axiom MC5(i) to
the map ∅ → C yields an acyclic fibration (C)cof → C with (C)cof cofibrant.
The object (C)cof is called the cofibrant replacement of C. Dually using
axiom MC5(ii) and the map C → ∗ one defines the fibrant replacement of
C denoted by (C)fib.

Definition 1.2.5. A cylinder object for C ∈ C is an object C ∧ I of C
together with a diagram

C
∐

C
i−→ C ∧ I p−→ C

19



which factors the canonical map C
∐
C → C and such that p is a weak

equivalence. A cylinder object C ∧ I is called good cylinder object if i is a
cofibration and very good cylinder object if in addition the weak equivalence
p is a fibration.

Definition 1.2.6. A path object for C ∈ C is an object CI of C together
with a diagram

C
i−→ CI

p−→ C
∏

C

which factors the canonical map C → C
∏
C and such that i is a weak

equivalence. A path object CI is called good path object if p is a fibration
and very good path object if in addition the weak equivalence i is a cofibration.

1.2.2 Quillen functors

Definition 1.2.7. Let C and D be model categories.

1. A functor L : C→ D is a left Quillen functor if it is a left adjoint and
preserves cofibrations and trivial cofibrations.

2. A functor R : D → C is a right Quillen functor if it is a right adjoint
and preserves fibrations and trivial fibrations.

3. An adjoint pair of functors (L,R) is a Quillen pair if F is a left Quillen
adjoint or equivalently if R is a right Quillen functor.

Definition 1.2.8. A Quillen pair (L,R) is a Quillen equivalence if and
only if, for every cofibrant object C ∈ C and fibrant object D ∈ D a map
f : LC → D is a weak equivalence in D if and only if its adjoint map C → RD
is a weak equivalence in C.

Proving that a Quillen pair is a Quillen equivalence is not an easy task
in general. The following criteria might help. Recall that a functor F is said
to reflect some property of morphisms if, given a morphism f , if Ff has the
property so does f .

Proposition 1.2.9. Consider a Quillen pair L : C � D : R. Then the
following are equivalent:

(a) The pair (L,R) is a Quillen equivalence.

(b) The left adjoint L reflects weak equivalences between cofibrant objects
and for every fibrant object D ∈ D the map L(RD)cof → D is a weak
equivalence.

(c) The right adjoint R reflects weak equivalences between fibrant objects
and for every cofibrant object C ∈ C the map C → R(LC)fib is a weak
equivalence.

See for instance [Hov99, Corollary 1.3.16] for a proof.
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1.2.3 Smallness and cosmallness

Definition 1.2.10. Let C be a complete and cocomplete category, D be a
subcategory of C and λ be an ordinal.

1. A λ-sequence in C is a functor X : λ→ C, that is, a diagram

X0 → X1 → · · · → Xβ → · · · (β < λ),

such that the induced morphism colimβ<λXβ → Xγ is an isomorphism
for every limit ordinal γ < λ.

2. The composition of a λ-sequence is the morphism X0 → colimβ<λXβ .

3. A transfinite composition of D-morphisms is the composition in C of
a λ-sequence such that Xβ → Xβ+1 are morphisms in D for all β < λ.

4. A λ-tower in C is a functor X : λ → Cop such that the natural map
Xα → limβ<αXβ is an isomorphism for every limit ordinal α < λ.
There is also the dual notion of composition of a λ-tower.

Definition 1.2.11. Let D be a subcategory of C.

1. An object A ∈ C is small relative to D if there is a cofinal set S of
ordinals such that for all λ ∈ S and for all λ-sequence X : λ→ D, the
induced map of sets

colim
β<λ

C(A,Xβ) −→ C(A, colim
β<λ

Xβ)

is a bijection.

2. Dually an object A ∈ C is cosmall relative to D if there is a cofinal set
S of ordinals such that for all λ ∈ S and for all λ-tower X : λ→ Dop,
the induced map of sets

colim
β<λ

C(Xβ , A) −→ C(lim
β<λ

Xβ , A)

is a bijection.

There is a fruitful concept for studying smallness in a given category. The
following gives a short survey to the concept of locally presentable categories.
A thorough study can be found in [Bor94b] or [AR94].

Definition 1.2.12. Let C be a category and λ be an ordinal.

1. An object C ∈C is λ-presentable if the functor C(C,−) : C→ Set pre-
serves λ-directed colimits. An object is presentable if it is λ-presentable
for some λ.
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2. The category C is locally λ-presentable if it is cocomplete and has a set
of λ-presentable objects such that every object is a λ-directed colimit
of objects from this set. Finally C is locally presentable if it is locally
λ-presentable for some λ.

When a category is known to be locally presentable, the result below
reduces drastically the study of the smallness.

Proposition 1.2.13. Each object in a locally presentable category is small
relative to the whole category.

See for instance [AR94, 1.13, 1.16, 1.17] and [Bor94b, 5.2.10] for the
proof.

Definition 1.2.14. A symmetric monoidal category (C,⊗, I) with C locally
presentable is admissible if for each C ∈ C the endofunctor C ⊗− : C→ C
preserves directed colimits.

Notice that closedness induces admissibility: the functor above in this
case is a left adjoint and therefore preserves all colimits. Since we are in-
terested in comonoids the following result due to Porst has many useful
consequences.

Proposition 1.2.15. If C is an admissible monoidal category then the cat-
egory of comonoids C is locally presentable.

See [Por08, Section 2.7.] for the proof.

1.2.4 Quillen’s small and cosmall object argument

Definition 1.2.16. Let I be a class of maps in a category C.

1. A map is I-injective if it has the right lifting property with respect to
every map in I. The class of I-injective maps is denoted I-inj.

2. A map is I-projective if it has the left lifting property with respect to
every map in I. The class of I-projective maps is denoted I-proj.

Definition 1.2.17. Let I be a set of maps in a complete and cocomplete
category C.

1. A relative I-cell complex is a transfinite composition of pushouts of
elements of I. The collection of relative I-cell complexes is denoted by
I-cell.

2. Dually a relative I-cocell complex is a transfinite composition of pull-
backs of elements of I. The collection of relative I-cocell complexes is
denoted by I-cocell.
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The following important results are known as respectively the small ob-
ject argument and the cosmall object argument. They ensure that the fac-
torizations axioms MC5(i) and MC5(ii) hold in a functorial way.

Theorem 1.2.18. Let C be category and I a set of maps in C.

1. Suppose that C is cocomplete and that the domains of the maps of I are
small relative to I-cell. Then every morphism of C can be functorially
factored as a map in I-cell followed by a map in I-inj.

2. Suppose that C is complete and that the codomains of the maps of I
are cosmall relative to I-cocell. Then every morphism of C can be
functorially factored as a map in I-cocell followed by a map in I-proj.

See [Hov99, Theorem 2.1.14] for a proof of the first statement. The
second statement is the categorical dual of the first one.

1.2.5 Cofibrant and fibrant generation

We briefly recall the concept of (co)fibrant generation on a model category.
The basic idea is to find some sets that generate the entire model category
structure. In this case, many results about model structures can be proved
by means of these generating sets.

Definition 1.2.19. A model category C is cofibrantly generated if there are
sets I and J of maps such that:

(i) the domain of every map in I is small relative to I-cell;

(ii) the domain of every map in J is small relative to J-cell;

(iii) the fibrations are maps which have the right lifting property with re-
spect to the maps in J ;

(iv) the trivial fibrations are maps which have the right lifting property
with respect to the maps in I.

Definition 1.2.20. Dually a model category C is fibrantly generated if its
dual Cop is cofibrantly generated. That is, there are sets I and J of maps
such that:

(i) the codomain of every map in I is cosmall relative to I-cocell;

(ii) the codomain of every map in J is cosmall relative to J-cocell;

(iii) the cofibrations are maps which have the left lifting property with
respect to the maps in J ;

(iv) the trivial cofibrations are maps which have the left lifting property
with respect to the maps in I.
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1.2.6 The transfer theorem

The transfer theorem is a powerful result for creating a new model structure
from an old one. Let C be a category with a cofibrantly generated model
structure. Suppose in addition that C is left adjoint to a category D that
is complete and cocomplete. Then, under further assumptions, the category
D inherits a cofibrantly generated model category from that of C. We refer
for instance to [Cra95, Theorem 3.3], [Bla96] or [Rez96] for thorough details
and applications of this result. For specific purposes, we give a version of
the transfer theorem proved by Schwede and Shipley. Here, the cofibrantly
generated model category C is equipped with a monad T and one would like
to endow the category of T-algebras with a model structure.

Proposition 1.2.21. Assume that the underlying functor of T = (T, η, µ)
commutes with filtered colimits. Let I be a set of generating cofibrations
and J be a set of generating acyclic cofibrations for the cofibrantly generated
model category C. Let T (I) and T (J) be the images of these sets under the
free T-algebra functor. Assume that the domains of T (I) and T (J) are small
relative to T (I)-cell and T (J)-cell respectively. Suppose that

(i) every T (J)-cell is a weak equivalence, or

(ii) every object of C is fibrant and every T-algebra has a good path object.

Then the category of T-algebras is a cofibrantly generated model category with
T (I) as generating set of cofibrations and T (J) as generating set of acyclic
cofibrations.

The proof of this proposition is given in [SS00, Lemma 2.3]. We mention
that the various applications of this result are available in [SS00, Theorem
4.1]. Note that in the transfer theorem the place of the involved categories
is important. In an adjunction L : C � D : R, the lift is made from the
left side to the right one. But in our work we would like to achieve it in the
opposite direction, that is from right to left. This explains why we consider
categorical dualizations. As we will see later, this dualizing process does not
completely solve the issue: for instance it leads to some difficulties concerning
cosmallness conditions.
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1.3 Monoidal model structures

We gather in this section the basic notions of monoidal model structures.
A more thorough treatment of these notions is given in [Hov99] and [SS00]
for instance. The rough idea is to define a compatibility condition on a
category that is simultaneously endowed with a model structure and a closed
symmetric monoidal structure. We then introduce the appropriate functors
which compare such categories. We postpone examples and applications to
the coming chapters. We end this section with an important result that
establishes a Quillen equivalence for categories of monoids. This result is
due to Schwede and Shipley (see [SS03, Theorem 3.12]) and constitutes the
main motivation of this work.

1.3.1 Axioms

Definition 1.3.1. A model category C is a monoidal model category if it
has a closed symmetric monoidal structure with product ⊗ and unit object
IC and satisfies the following axioms.

Pushout product axiom: Let A → B and K → L be cofibrations in
C. Then the dotted map in the pushout square

A⊗K //

��

A⊗ L

��

��

B ⊗K //

--

A⊗ L
∐
A⊗K B ⊗K

((
B ⊗ L

is also a cofibration. If in addition one of the former maps is a weak equiva-
lence, so is the latter map.

Unit axiom: For every cofibrant object C ∈ C the morphism

(IC)cof ⊗ C → IC ⊗ C ∼= C

is a weak equivalence.

1.3.2 Quillen monoidal functors

Let (C,⊗, IC) and (D, ⊗̂, ID) be monoidal categories and consider a lax
monoidal functor R : (D, ⊗̂, ID) → (C,⊗, IC). As seen in Definition 1.1.9,
the functor R comes equipped with monoidal structure maps ΨX,Y : RX ⊗
RY → R(X⊗̂Y ) and ψ : IC → R(ID). Besides suppose that the functor R
has a left adjoint L : C→ D with η as unit and ε as counit of the adjunction
(L,R).
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Lemma 1.3.2. The functor L : C → D as in the above situation is lax
comonoidal.

Proof. The comonoidal structure maps ΦA,B : L(A ⊗ B) → LA⊗̂LB are
given by the composition:

L(A⊗B)
L(ηA⊗ηB) //

ΦA,B

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ L(RLA⊗RLB)
L(ΨLA,LB)

// LR(LA⊗̂LB)

εLA,LB

��
LA⊗̂LB

for all A and B in C. The map φ : L(IC) → ID is defined as the adjoint
of ψ. We shall check that Φ satisfied the comonoidal axioms, that is, the
coherence diagrams commute. Notice that the map ΦA,B is adjoint to the
composite map

A⊗B
ηA⊗ηB // RLA⊗RLB

ΨLA,LB // R(LA⊗̂LB).

Since this latter map is monoidal by hypothesis it follows by adjointness
arguments that Φ is comonoidal.

Definition 1.3.3. Suppose that (C,⊗, IC) and (D, ⊗̂, ID) are monoidal
model categories and that the pair (L,R) is a Quillen adjunction with the
functor R lax monoidal as above. Then the pair (L,R) is a weak monoidal
Quillen pair if the following conditions are satisfied:

1. For all cofibrant objects A and B in C the comonoidal map

ΦA,B : L(A⊗B) −→ LA⊗̂LB

is a weak equivalence in D.

2. The composite map

L
(
(IC)cof

)
−→ L(IC)

φ−→ ID

is a weak equivalence in D.

A strong monoidal Quillen pair is a weak monoidal Quillen pair for which
the comonoidal maps Φ and φ are isomorphisms. A Quillen equivalence pair
(L,R) leads naturally to the notions of weak monoidal Quillen equivalence
and strong monoidal Quillen equivalence.
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In Proposition 1.1.15, we have seen that under some conditions, it is
possible to lift the adjunction (L,R) on the level of categories of monoids.
Let us denote by (Lmon, R̃) the resulting adjoint pair. We state now the
main result obtained by Schwede and Shipley in [SS03].

Definition 1.3.4. Consider a functor R : D → C to a model category C
with a left adjoint L : C → D. An object of D is a cell object if it can be
obtained from the initial object as a (possibly transfinite) composition of
pushouts along morphisms of the form Lf , for f a cofibration in C.

Definition 1.3.5. A functor R as above creates a model structure for the
category D if

(i) the category D supports a model structure in which a morphism f is a
weak equivalence respectively a fibration, if and only if the morphism
Rf is a weak equivalence, respectively a fibration, in C and

(ii) every cofibrant object in D is a retract of a cell object.

Theorem 1.3.6. Consider the following situation

(C,⊗, IC)

TC
��

L // (D, ⊗̂, ID)

TD
��

R
oo

C-Monoid

UC

OO

Lmon
// D-Monoid

UD

OO

R̃

oo

where

(i) the functor R is the right adjoint of a weak monoidal Quillen equiva-
lence;

(ii) the unit objects IC and ID are both cofibrant;

(iii) the forgetful functors create model structures for the categories of monoids.

Then the adjoint pair (Lmon, R̃) is a Quillen equivalence.

We refer to [SS03, 5.1] for the proof. Applying this result to the category
of simplicial abelian groups and to the category of non-negatively differential
graded abelian groups, Schwede and Shipley deduce that the category of
simplicial rings and the category of non-negatively graded differential rings
are Quillen equivalent ([SS03, Theorem 1.1.]). More generally, they establish
that for a given commutative ring A, there is a Quillen equivalence between
the categories of simplicial A-algebras and non-negatively differential graded
A-algebras. This latter result motivates the present work: we would like
to achieve similar properties for simplicial coalgebras and non-negatively
graded differential coalgebras over a field. The natural attempt is to use a
categorical dualization of the above theorem.
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Chapter 2

Preliminaries on Coalgebra
Structures

2.1 Algebras and coalgebras

In this section we recall some basics about coalgebra structures. A thorough
introduction can be found in the book of Sweedler [Swe69] or in the book of
Abe [Abe77]. We briefly review the duality between algebras and coalgebras
and state the fundamental theorem on coalgebras.

Definition 2.1.1. The category of unital associative K-algebras, denoted by
K-Alg, is the category of monoids in the monoidal category (K-Vct,⊗K ,K).

Definition 2.1.2. Dually the category of counital coassociative coalgebras
denoted K-coAlg is the category of comonoids in the monoidal category
(K-Vct,⊗K ,K).

Proposition 2.1.3. If (C,∆C , εC) is a K-coalgebra then its linear dual C∗ =
K-Vct(C,K) is a K-algebra.

This result has been proven by [Swe69] or [Abe77]. We only give the
structure maps of the algebra C∗. First consider vector spaces X and Y and
define the map ρ : X∗ ⊗ Y ∗ −→ (X ⊗ Y )∗ by

ρ(f ⊗ g)(x⊗ y) = f(x)⊗ g(y)

for each (f, g) ∈ X∗ × Y ∗ and (x, y) ∈ X × Y . Then the multiplication µC∗
is defined by the composite

C∗ ⊗ C∗ ρ−→ (C ⊗ C)∗
∆∗

C−→ C∗

and the unit map ηC∗ by K ∼= K∗ ε∗C−→ C∗.
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Remark 2.1.4. Conversely, the linear dual of an algebra does not need to
be a coalgebra. Nevertheless, if the algebra (A,µA, ηA) is finite dimensional
as a K-vector space, then the map ρ is an isomorphism and A∗ becomes a
coalgebra with comultiplication ∆A∗ given by

A∗
µ∗A−→ (A⊗A)∗

ρ−1

−→ A∗ ⊗A∗

and counit map εA∗ by A∗
η∗A−→ K∗ ∼= K.

We now give the fundamental theorem on coalgebras which is stated after
recalling the following definition.

Definition 2.1.5. A subcoalgebra V of a coalgebra (C,∆C , εC) is a subvector
space V of C that satisfies

∆C(V ) ⊆ V ⊗K V.

The structure maps of V are given by the restrictions ∆C |V and εC |V .

Theorem 2.1.6. Consider a coalgebra C and a given element c in C. Then
the subcoalgebra generated by c is finite dimensional.

See for instance [Swe69, Theorem 2.2.1] for the proof.

Corollary 2.1.7. Any coalgebra C is the union of its finite-dimensional
subcoalgebras Cα. In other words a coalgebra C can be written as the filtered
colimit of its finite-dimensional subcoalgebras.

2.2 The functor (−)◦

We have already mentioned that the linear dual of an algebra does not need
to be a coalgebra. The functor, (−)◦, considered in this section detects the
right subspace of the linear dual that possesses a coalgebra structure.

Definition 2.2.1. Let A be a K-algebra. An ideal I of A is cofinite if the
dimension over K of the quotient algebra A/I is finite.

Example 2.2.2. Consider K[X], the polynomial algebra in one variable, X.
Then every non-zero ideal in K[X] is cofinite. Indeed K[X] is a principal
ideal domain and therefore each ideal is generated by some monic polynomial
q(X) in K[X]. Finally the dimension over K of the quotient K[X]/

(
q(X)

)
is the degree of the polynomial q(X).

Proposition 2.2.3. Let (A,µA, ηA) be an algebra. Consider A◦ to be the
subspace {

f ∈ A∗ | ker f contains a cofinite ideal I of A
}
.

Then A◦ is a coalgebra. Moreover the assignment A 7−→ A◦ defines a con-
travariant functor from K-Alg to K-coAlg.
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A detailed proof can be found in [Swe69]. We only specify the struc-
ture maps on the coalgebra A◦. The comultiplication ∆A◦ is defined as the
restriction of the dual map µ∗A : A∗ −→ (A ⊗K A)∗ to A◦ ⊆ A∗, that is
∆A◦ = µ∗A|A◦ . The counit map εA◦ : A◦ −→ K is given by εA◦(f) = f(1K)
for f ∈ A◦ ⊆ A∗.

Example 2.2.4. It might be difficult to compute A◦ for an arbitrary algebra
A. We give two easy cases.

• If the algebra A is finite-dimensional over K then the coalgebra A◦ is
the dual coalgebra A∗ as one should expect.

• Recall that an algebra is called simple if it does not contain a non-
trivial two sided ideal. For instance, the field of fractions K(X) of the
polynomial algebra K[X] is simple. If a simple algebra A is infinite-
dimensional over K then A◦ = 0.

Proposition 2.2.5. The functors (−)◦ and (−)∗ define an adjunction be-
tween the categories K-coAlg and (K-Alg)op. Precisely if A is an algebra
and C a coalgebra, then

K-Alg(A,C∗) ∼= K-coAlg(C,A◦).

Proof. Consider the canonical map λ : C → C∗∗ from C to its bidual C∗∗.
One shows that λ(C) ⊆ C∗◦ and that there exists a coalgebra morphism
λC : C → C∗◦. With this in hand, define a map

Φ: K-Alg(A,C∗) −→ K-coAlg(C,A◦)

by the assignment Φ(φ) = φ◦◦λC for any algebra morphism φ : A→ C∗. Fur-
thermore consider the algebra morphism λA : A→ A◦∗ given by λA(a)

(
f
)

=
f(a) for any a ∈ A and f ∈ A◦. Then the map

Ψ: K-coAlg(C,A◦) −→ K-Alg(A,C∗)

defined by Ψ(ψ) = ψ∗ ◦ λA is an inverse of Φ.

Notice that both functors above do not carry out an anti-equivalence of
categories between K-coAlg and K-Alg. To see this, consider for instance
K(X), the field of fractions of the polynomial algebra K[X]. Then one
obtains K(X)◦ = 0 and hence K(X)◦∗ 6= K(X).
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2.3 Profinite algebras

This section is concerned with the category of profinite algebras. As re-
marked in [Wit79, Theorem 1] or in [AW02], this category is equivalent to
the opposite of the category of coalgebras. In the next section, we will use
this useful result to construct a cofree coalgebra functor.

Definition 2.3.1. Let K be a given field.

1. A profinite K-algebra is a topological K-algebra which is isomorphic to
the inverse limit of an inverse system of finite-dimensional K-algebras.

2. A morphism of profinite K-algebras is a morphism of K-algebras which
is continuous with respect to the inverse limit topology.

Together with these morphims profinite K-algebras form a category that we
denote by Pro-K-Alg.

Definition 2.3.2. Consider a K-algebra A and let
(
Iα
)
α

be the set of its
cofinite two-sided ideals. Define a partial order α ≤ β if Iβ ⊆ Iα. For α ≤ β
consider the canonical K-algebra morphism fαβ : A/Iβ −→ A/Iα. In this
way the family

(
A/Iα

)
α

forms an inverse system of algebras. The inverse
limit of this inverse system is called the profinite completion of A and is
denoted Â = limαA/Iα.

Example 2.3.3. Let K[X] be the polynomial algebra and consider two
polynomials r(X) and q(X) in K[X]. If r(X) divides q(X) then we have an
inclusion of ideals

(
r(X)

)
⊇
(
q(X)

)
. Thereby we get an inverse system of

quotients. The profinite completion of the polynomial algebra K[X] is given
by the set of residue classes([

fq(X)

])
∈
∏
q(X)

K[X]/
(
q(X)

)
such that if r(X) divides q(X) then fr(X) ≡ fq(X) mod r(X).

Proposition 2.3.4. Profinite completion defines a functor from K-Alg to
Pro-K-Alg. Moreover this functor is left adjoint to the forgetful functor.

It is well-known that the linear dual functor takes colimits to limits.
However the converse is not true. This fact leads to many issues when con-
sidering dualizing processes. The following lemma shows that the continuous
dual functor is more flexible.

Lemma 2.3.5. The continuous dual functor

(−)∗cont : Pro-K-Alg→ K-coAlg

from profinite algebras to coalgebras carries limits to colimits.
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See for instance [Bru66, Lemma A.3] for a proof.

Theorem 2.3.6. The linear dual functor and the continuous dual functor
define an anti-equivalence of categories between the category of coalgebras
K-coAlg and the category of profinite algebras Pro-K-Alg.

Proof. Let C be an object of K-coAlg. Then write C as colimCα with Cα
its finite-dimensional subcoalgebras. With help of the previous lemma one
has the following

(C∗)∗cont ∼=
((

colim
α
Cα
)∗)∗cont

∼=
(

lim
α
C∗α

)∗cont

∼= colim
α

((
C∗α
)∗cont

)
∼= colim

α
Cα

∼= C.

Notice that
(
C∗α
)∗cont ∼= Cα since the Cα are finite-dimensional. Conversely

consider A ∈ Pro-K-coAlg and write A as limαAα by definition. Then a
similar argument as above shows that

(
A∗cont

)∗ ∼= A.

Corollary 2.3.7. The category of coalgebras, K-coAlg is complete and co-
complete.

Proof. The category of profinite algebras is cocomplete. Therefore the above
anti-equivalence of categories ensures the completeness of K-coAlg. More-
over, the forgetful functor from the category of coalgebras to the category
of vector spaces creates colimits. This asserts that the category K-coAlg is
cocomplete.

2.4 Cofree coalgebras

Cofree coalgebras are the dual notions of free algebras. In this section we
investigate the construction of a cofree coalgebra on a given vector space.
There are many approaches to this question. We will state the approach
given by Sweedler and then give another one suggested by Getzler and Go-
erss. Before defining cofree coalgebras we briefly recall the standard construc-
tion of free algebras given by the tensor algebra functor. These properties
follow from the proof of Proposition 1.1.15.

Let V be a K-vector space. The tensor algebra on V is the vector space

T (V ) = K ⊕
⊕
n≥1

V ⊗n
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equipped with the associative multiplication

µT (V )

(
(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn)

)
= v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn

given by concatenations. The unit map, ηT (V ), is given by the canonical
embedding K → T (V ). The tensor algebra defines a functor T from K-
Vct to K-Alg and is left adjoint to the functor U : K-Alg→ K-Vct which
forgets the algebra structure.

Definition 2.4.1. Let V be a K-vector space. A pair (C, π) with C ∈ K-
coAlg and π : C → V a map of vector spaces is called a cofree coalgebra
on V if for any coalgebra D and any map ν : D → V of vector spaces there
exists a unique coalgebra morphism g such that the diagram

V D
νoo

∃! g~~
C

π

OO

commutes. In other words, the pair (C, π) is couniversal among the pairs
(D, ν). Notice that the coalgebra C when it exists is unique up to an iso-
morphism of coalgebras.

Lemma 2.4.2. Suppose that there is a cofree coalgebra (C, π) on X ∈ K-
Vct and let Y be a subspace of X. Consider D the sum of all subcoalgebras
E of C such that π(E) ⊆ X and ρ = π|D. Then the pair (D, ρ) is a cofree
coalgebra on Y .

For a proof, see for instance [Abe77, Lemma 2.4.3].

The following result, due to Sweedler, constructs a cofree coalgebra for
every K-vector space. As a consequence, it follows that the functor that
forgets coalgebra structures has a right adjoint.

Theorem 2.4.3. There exists a cofree coalgebra on any V ∈ K-Vct.

Proof. We consider the tensor algebra on the dual vector space of V , T (V ∗).
Then the canonical embedding i : V ∗ → T (V ∗) yields the following composite
map π : T (V ∗)◦ −→ T (V ∗)∗ i∗−→ T (V ∗)∗ where the first map is the obvious
inclusion . We prove that pair (T (V ∗)◦, π) is a cofree coalgebra on the bidual
V ∗∗. For any object D ∈ K-coAlg one has

K-Vct(D,V ∗∗) ∼= K-Vct(V ∗, D∗)
∼= K-Alg(T (V ∗), D∗)
∼= K-coAlg(D,T (V ∗)◦)

Notice that the two last isomorphisms come respectively from the adjunction
between the categories K-Vct and K-Alg and the adjunction in Proposition

33



2.2.5. Hence (T (V ∗)◦, π) is the cofree coalgebra on the bidual V ∗∗ as desired.
Now, the previous lemma supplies the answer for the vector space V since
V ∗∗ ⊇ V .

Corollary 2.4.4. The forgetful functor U from K-coAlg to K-Vct has a
right adjoint.

Proof. This follows from the couniversality of the cofree coalgebra.

We describe now an approach given in [GG99]. Basically this approach
uses the anti-equivalence of the categories Pro-K-Alg and K-coAlg. This
property gives a categorical construction for a right adjoint functor from
K-Vct to K-coAlg.

Proposition 2.4.5. Let V be in K-Vct. If V is finite-dimensional over K
then the cofree coalgebra on V is given by

S(V ) =
(
T̂ (V ∗)

)∗cont

.

For general V ∈ K-Vct the cofree coalgebra is defined by

S(V ) = colim
α
S(Vα)

with Vα running over the finite-dimensional subvector spaces of V .

Proof. If V is finite-dimensional using the idenfication V ∼= V ∗∗ and the
following bijections with any D ∈ K-coAlg

K-Vct(D,V ∗∗) ∼= K-Vct(V ∗, D∗)
∼= K-Alg(T (V ∗), D∗)
∼= Pro-K-Alg(T̂ (V ∗), D∗)
∼= K-coAlg(D, (T̂ (V ∗))∗cont).

give the desired result. Notice that the third bijection comes from the adjunc-
tion between the category of algebras and the category of profinite algebras.
The last isomorphism is the anti-equivalence established in Theorem 2.3.6.

Now consider a general V ∈ K-Vct. Any object D ∈ K-coAlg can be
written as the colimit of its finite-dimensional subcoalgebras, D = colimβ Dβ .
Using [GG99, Lemma 1.9], we notice that the natural map

colim
α
K-coAlg(Dβ , S(Vα)) −→ K-coAlg(Dβ, colim

α
S(Vα))

is a bijection. Then the following

K-coAlg(D,S(V )) ∼= lim
β
K-coAlg(Dβ, S(V ))

∼= lim
β

colim
α
K-coAlg(Dβ , S(Vα))

∼= lim
β

colim
α
K-Vct(Dβ , Vα)

∼= K-Vct(D,V )
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completes the proof.

Corollary 2.4.6. Consider V a finite dimensional K-vector space. Then

T (V ∗)◦ ∼=
(
T̂ (V ∗)

)∗cont

Proof. Any two right-adjoint of a functor are naturally isomorphic (see [Mac98,
IV. Corollary 1.]), therefore the claim follows.

2.5 Cofree coalgebra on a one-dimensional space

We use the approach suggested by Getzler and Goerss in order to compute
the cofree coalgebra on a one-dimensional vector space. The cofree coalgebra
involves the profinite completion of the polynomial algebra K[X]. In this
case things are a bit easier since we know that every non-zero ideal in K[X] is
cofinite. As we will see, the arguments mimic somehow the standard results
in number theory about the cofinite completion of the integers.

Definition 2.5.1. Let A be a commutative ring and I a proper ideal of A.
If n ≥ m then we have the canonical ring morphism A/In → A/Im. The
I-adic completion of A is the inverse limit limnA/I

n.

Example 2.5.2. Let K[X] be the polynomial algebra in one variable X
and p(X) be an irreducible polynomial in K[X]. We denote by

(
p(X)r

)
the

two-sided ideal generated by p(X)r. The following inclusions

· · · ⊆
(
p(X)r+1

)
⊆
(
p(X)r

)
⊆ · · · ⊆

(
p(X)

)
yield an inverse system of canonical projections

· · · → K[X]/(p(X)r+1)→ K[X]/(p(X)r)→ · · · → K[X]/(p(X)).

Then the
(
p(X)

)
-adic completion ofK[X] is given by the following sequences

of residue classes{([
fr
])
r≥1
∈
∏
r

K[X]/(p(X)r) | ∀ r, fr+1 ≡ fr mod p(X)r
}
.

Definition 2.5.3. Let A be a commutative ring. A formal power series in
one variable X with coefficients an ∈ A is an expression of the form

∞∑
n=0

anX
n = a0 + a1X + a2X

2 + · · · .

Formal power series with coefficients in A form a ring denoted by A
[
[X]
]
.
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In number theory it is well-known that the p-adic completion of Z is
isomorphic to the ring of p-adic integers usually denoted by Zp. Similarly
the (X)-adic completion of the polynomial algebra K[X] is the power series
ringK

[
[X]
]
(see [Eis04, 7.1 Example]). The following proposition generalizes

this result.

Proposition 2.5.4. Let p(X) be an irreducible polynomial in K[X] and a be
a root of p(X) in the algebraic closure of the field K. Then the

(
p(X)

)
-adic

completion of K[X] is isomorphic to the ring of formal power series with
coefficents in the field K(a) obtained by adjoining the root a to K.

Proof. Recall that if p(X) is an irreducible polynomial over K and if a is a
root of p(X) in the algebraic closure K̄ of K, then the quotient K[X]/

(
p(X)

)
is a field isomorphic to the field K(a) obtained by adjoining the root a to
K. Moreover if b is another root in K̄ then K(b) ∼= K(a). Since the natural
map from the inverse limit to K[X]/

(
p(X)

)
is a surjection, one deduces that

the inverse limit must contain a sequence which contains the root a. For all
r the maps K(a)

[
[X]
]
−→ K[X]/(p(X)r) which send a power series with

coefficients in K(a) to its residue class in K[X]/(p(X)r) give rise to a map

Ψ: K(a)
[
[X]
]
−→ lim

r
K[X]/(p(X)r)

by universality of inverse limits. The inverse of Ψ is given by

Φ: lim
r
K[X]/(p(X)r) −→ K(a)

[
[X]
]

which send a sequence of residue classes
([
fr
])
r≥1

to the formal power series

f1 + (f2 − f1) + (f3 − f2) + · · · .

In number theory the isomorphism Ẑ ∼=
∏
p Zp compares the profinite

completion of Z and the p-adic completions for p running through all prime
number. The proposition below is a natural analogue.

Proposition 2.5.5. The profinite completion of the polynomial algebra is
given by

K̂[X] ∼=
∏
p(X)

K(a)
[
[X]
]

where p(X) runs over all irreducible monic polynomials in K[X] and a is a
root of p(X) in the algebraic closure K̄ of the field K.

Proof. Without loss of generality, we may identify polynomials in K[X] that
differ by a unit. Consider a polynomial q(X) ∈ K[X]. Its prime decomposi-
tion yields

q(X) =
∏
p(X)

p(X)pn
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with p(X) running through all the irreducible polynomials of K[X] and pn
is the integer indicating the multiplicity of p(X). Then, by the Chinese
Remainder Theorem, we obtain

K[X]/
(
q(x)

) ∼= ∏
p(X)

K[X]/
(
p(X)pn

)
.

Now let us fix an irreducible polynomial p(X) and ap(X) one of its roots
in the algebraic closure K̄. By the previous proposition we obtain natural
projections

K(ap(X))
[
[X]
]
−→ K[X]/

(
p(X)pn

)
.

These projections maps give rise to a product map∏
p(X)

K(ap(X))
[
[X]
]
−→

∏
p(X)

K[X]/
(
p(X)pn

) ∼= K[X]/
(
q(X)

)
.

Thus, by the universality of inverse limits, we have an induced map

Π:
∏
p(X)

K(ap(X))
[
[X]
]
−→ K̂[X] = lim

q(X)
K[X]/

(
q(X)

)
.

It remains to define an inverse map Θ for Π. For this consider the following
composite of projection maps

K̂[X] = lim
q(X)

K[X]/
(
q(X)

)
−→ K[X]/

(
q(X)

)
−→ K[X]/

(
p(X)r

)
.

By the universality of inverse limits and the previous proposition, there exists
a map

K̂[X] −→ lim
r
K[X]/

(
p(X)r

) ∼= K(ap(X))
[
[X]
]
.

Finally the desired inverse map

Θ: K̂[X] −→
∏
p(X)

K(ap(X))
[
[X]
]

is given by the universal property of products.

Recall that if V is an n-dimensional K-vector space then the tensor
algebra T (V ) is isomorphic to the non-commutative polynomial algebra on
n variables over K. The following result is suggested by Getzler and Goerss
in [GG99, Example 1.13].

Corollary 2.5.6. Let V be a one-dimensional K-vector space. Then the
cofree coalgebra on V is given by

S(V ) ∼=

( ∏
p(X)

K
(
ap(X)

)[
[X]
])∗cont
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Proof. Using K ∼= K∗ we identify the tensor algebra T (K∗) with the poly-
nomial algebra K[X]. Then, the preceding proposition supplies the desired
result.

Remark 2.5.7. We complete this section with some observations. As seen
above, the approach of Getzler and Goerss yields an identification of the
cofree coalgebra on a one-dimensional K-vector space. However, whenever a
vector space V is of dimension larger than one it might be hard to compute
the cofree coalgebra S(V ). As noted above, we identify the tensor algebra
T (V ) with the polynomial algebra in non-commuting variables. Thus, if
for instance dimK V = 2 then T (V ) = K

{
X,Y

}
. But even characterizing

cofinite ideals in the algebra K
{
X,Y

}
remains a difficult task.

While the construction of free algebras is relatively easy, that of cofree
coalgebras is cumbersome. We notice that there are many other interpre-
tations of the cofree coalgebra on a vector space. We refer to [Taf72] and
[BL85] for different approaches. We also mention that recent papers such as
[Haz03] still investigate this question.
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Chapter 3

Differential Graded Objects

3.1 Differential graded vector spaces

This section deals with the categorical and monoidal model structure of the
category of differential graded vector space. The main categorical proper-
ties of differential graded vector spaces appear in [Mac67] and [Wei94] for
instance. The monoidal model structure is described in [Hov99]. We also
address the question whether the opposite category of differential graded
vector spaces is cofibrantly generated.

3.1.1 Categorical structure

Definition 3.1.1. Let K-Vct be the category of K-vector spaces.

1. A differential graded K-vector space X is a family (Xn)n∈N of objects
in K-Vct equipped with maps of vector spaces dn : Xn → Xn−1 such
that dn ◦ dn+1 = 0.

2. A morphism f : (X, dX)→ (Y, dY ) of differential graded vector space is
a family fn : Xn → Yn of maps of vector spaces satisfying fn−1 ◦ dX =
dY ◦ fn for all n.

Together with these morphisms, differential graded vector spaces form a
category that we denote by DG-K-Vct.

Definition 3.1.2. Given an object (X, dX) of DG-K-Vct the nth homology
module of (X, dX) is given by

Hn(X) = ker dn/ im dn+1.

Moreover an object (X, dX) will be said to be acyclic if Hn(X) = 0 for all
n.
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In the category DG-K-Vct, the differential graded vector space 0 with
trivial vector spaces and trivial differentials is the zero object. Here are also
countably many objects in DG-K-Vct that are relevant in this work.

1. The n-sphere denoted by Sn is the object of K-Vct which has (Sn)k =
K for k = n and is trivial in all other degrees. All differentials are
trivial, hence

Hk(Sn) =
{
K if k = n
0 if k 6= n

2. The n-disk denoted by Dn is the object of K-Vct which has (Dn)k = K
for k = n, n−1 and is trivial in all other degrees. The identity on K is
its only non-trivial differential and therefore Hk(Dn) is 0 for all integer
k.

Definition 3.1.3. Let f : X → Y be a map of differential graded vector
spaces. Then the mapping cone on f denoted by cone(f) is the object of
DG-K-Vct whose degree n part is given by Xn−1 ⊕ Yn. The differential
in cone(f) is given by d(x, y) = (−d(x), d(y) − f(x)) for all x ∈ Xn−1 and
y ∈ Yn. When f is the identity on an object X, the cone is denoted by
cone(X).

Proposition 3.1.4. The category of differential graded vector spaces DG-
K-Vct is complete and cocomplete.

This result is well-known. We refer to the book of Weibel [Wei94] for a
detailled description of limits and colimits in this category: they are defined
degreewise. However, in sight of the next section, we shall give a description
of pushouts in the category DG-K-Vct. Consider the following pushout
square of differential graded vector spaces

(Z, dZ)
f //

g

��

(X, dY )

��
(Y, dY ) // (X, dX)

∐
(Z,dZ)(Y, dY ).

Then the pushout object is given by

(X, dX)
∐

(Z,dZ)

(Y, dY ) = (X, dX)
∐

(Y, dY )/ ∼

where the relation ∼ identifies f(z) and g(z) for each z ∈ Z. Notice that
when the maps f and g are monomorphisms then the pushout object is the
union (X, dX)

∐
(Y, dY ).
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3.1.2 Monoidal model structure

Proposition 3.1.5. The category of differential graded vector spaces DG-
K-Vct is equipped with a cofibrantly generated model structure.

In [Qui67, Chapter I, Example B], Quillen provides the category of dif-
ferential graded vector spaces with a model structure. We refer to [DS95,
Chapter 7] where Dwyer and Spalinski prove with thorough details that the
category of non-negatively differential graded vector spaces has a cofibrantly
generated model structure.
A map f in the category DG-K-Vct is a

• weak equivalence if H∗f is an isomorphism,

• cofibration if for each n ≥ 0, fn is injective,

• fibration if for each n ≥ 1, fn is surjective.

The generating acyclic cofibrations are given by the maps
{
0→ Dn | n ≥ 1

}
and the generating cofibrations by

{
Sn−1 → Dn | n ≥ 1

}
.

Remark 3.1.6. If K was just a commutative ring, the cofibrations would be
required in addition to have degreewise projective cokernels. This becomes
superfluous under the assumption that K is a field.

Definition 3.1.7. Consider two objects X and Y in the category DG-K-
Vct. Then define the monoidal product ⊗ by

(X ⊗ Y )n =
⊕
p+q=n

Xp ⊗K Yq

with differential

d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy.

The unit of this monoidal product is S0, the differential graded vector space
concentred in degree 0. Sometimes we will denote S0 by K[0]. Notice that
the monoidal product ⊗ is symmetric.

Example 3.1.8. The monoidal product of a n-sphere Sn and a m-sphere
Sm is the (n+m)-sphere Sn+m. The monoidal product of a n-sphere Sn and
a m-disk Dm is isomorphic to an (n+m)-disk Dn+m.

Lemma 3.1.9. The category DG-K-Vct endowed with the monoidal product
⊗ is closed.

Proof. Given differential graded vector spaces (X, dX) and (Y, dY ) we let
Hom(X,Y ) be the object of DG-K-Vct described as follow:

Hom(X,Y )n =
∏
p≥0

K-Vct(Xp, Yp+n)
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with differential dH for any map f = {fp : Xp → Yp+n}p≥0 given by

(dHf)p(x) = dY (fpx) + (−1)n+1fp−1(dXx), x ∈ Xp.

The specified right adjoint of the functor −⊗ Y : DG-K-Vct→ DG-K-Vct
is then given by the functor Hom(Y,−) : DG-K-Vct→ DG-K-Vct.

Proposition 3.1.10. The category of differential graded vector space has a
monoidal model category structure.

Proof. We check that the monoidal product ⊗ is compatible with the model
structure defined above. Since the category DG-K-Vct is cofibrantly gener-
ated, it suffices to use [Hov99, Corollary 4.2.5 ] for proving that the pushout
product axiom holds. The pushout product of two generating cofibrations
Sn−1 → Dn and Sm−1 → Dm yields the following pushout diagram

Sn−1 ⊗ Sm−1 //

��

Dn ⊗ Sm−1

��

��

Sn−1 ⊗ Dm //

//

Sm−1 ⊗ Dn
∐

Sm−1⊗Sn−1 Sn−1 ⊗ Dm

**
Dn ⊗ Dm

The dotted arrow becomes

Dn+m−1
∐

Sn+m−2

Dn+m−1 −→ Dn ⊗ Dm

which is a cofibration by the remarks given above. Finally similar considera-
tions show that the pushout product of a generating cofibration Sn−1 → Dn

with a generating acyclic cofibration 0→ Dm

0⊗ Sn−1 //

��

0⊗ Dn

��

��

Dm ⊗ Sn−1 //

..

Sn−1 ⊗ Dm

''
Dm ⊗ Dn

gives the map Dn+m−1 −→ Dn ⊗ Dm. This map is a weak equivalence: its
domain is acyclic and the codomain is as well acyclic by the Künneth formula
(see [Mac67, Theorem 10.2]).
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3.1.3 On the opposite category of DG-K-Vct

Recall that when a category C is endowed with a model structure then its op-
posite category Cop inherits a model structure. However, if C is cofibrantly
generated, then it is not obvious whether Cop is cofibrantly generated. We
investigate this issue for the opposite of the category of differential graded
vector spaces. We were able to find two sets that generate fibrations and
acyclic fibrations. But some cosmallness difficulties appear. Roughly these
difficulties are due to the fact that opposite categories are rarely locally
presentable.

Proposition 3.1.11. Define Q to be the set {Dn → 0 | n ≥ 1}. A chain
map f : X → Y is injective if and only if f has the left lifting property with
respect to any map in Q.

Proof. One direction is obvious since maps Dn → 0 are acyclic fibrations in
the standard model structure of DG-K-Vct.
For the other direction suppose f has the left lifting property with respect
to Q. Assume that there is an xn ∈ Xn with xn 6= 0 and fn(xn) = 0. Since
xn 6= 0 there is a linear map αn : Xn → K such that αn(xn) = 1.

(i) If xn is not a cycle then define αn−1(dxn) = 1. This gives a chain map
α : X → Dn and by assumption a lift ζ exits in the following diagram

X

f

��

α // Dn

∼
����

Y
β

//

ζ
==

0

Therefore 0 = ζn(0) = ζn ◦ fn(xn) = αn(xn) = 1, which is the desired
contradiction. Therefore fn(xn) 6= 0 and the chain map f is injective.

(ii) Let xn be a cycle and a boundary. That is, d(xn) = 0 and there is a
xn+1 ∈ Xn+1 such that d(xn+1) = xn. Then define αn+1(xn+1) = 1.
Note that xn+1 is not a boundary. This gives a chain map α : X →
Dn+1 and a contradiction follows as in case (i).

(iii) Let xn be a cycle and not a boundary. Then xn generates a sphere
sub-complex Sn of X. This sub-complex Sn can be mapped to Dn+1

and the above argument works again.

Proposition 3.1.12. Define P to be the set {Dn → 0,Dn → Sn | n ≥ 1}.
A chain map f is in P -proj if and only if it is injective and induces an
isomorphism in homology.
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Proof. One direction is obvious since every map in P is a fibration. For the
other direction, injectivity comes from P -proj ⊂ Q-proj (since Q ⊂ P ) and
the previous lemma. We show that every map in P -proj induces isomorphism
in homology. Let f : A→ B be a map in P -proj. As f is injective, we have
the short exact sequence 0 → A → B → cokerf → 0. As this sequence
induces a long exact sequence in homology, it suffices to show that cokerf
has no homology. The object cokerf which is built degreewise is also a
pushout

A //

f

��

0

��
B // cokerf

We deduce that the map 0 → cokerf is also in P -proj since P -proj
is closed under pushouts. Let us now assume that cokerf is not acyclic.
Then there is an element xn ∈ (cokerf)n with d(xn) = 0 and xn not a
boundary. Note that xn generates a subcomplex Sn of cokerf and that
cokerf ∼= Sn⊕ cokerf/Sn as chain complexes. But the map 0→ Sn is not in
P -proj since

0

��

// Dn

��
Sn Sn

does not admit a lift. Therefore the map 0 → cokerf can not be in P -proj
either which is the desired contradiction.

3.1.4 A counterexample

Both propositions in the preceding paragraph tell us that the sets Q and
P are good candidates for, respectively, generating acyclic fibrations and
generating fibrations in the category DG-K-Vct. What remains is the co-
smallness of the codomains of the sets Q and P . For the set Q using the fact
that every terminal object in a category is cosmall relative to that category,
we deduce the cosmallness of 0 relative to Q-cocell.

Unfortunately the codomains Sn in the set P are not cosmall. Indeed
consider a cofiltered sequence of maps in the category DG-K-Vct

· · · → Yα+1 → Yα → · · · → Y1 → Y0

such that each Yα+1 → Yα is in P -cocell. Then the following canonical map

colim
α

DG-K-Vct(Yα,Sn) −→ DG-K-Vct(lim
α
Yα,Sn)

does not need to be a bijection. To that end, we give a counterexample that
shows that the n-sphere Sn is not cosmall. We define Yα to be Sn and all
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maps Yα → Yα−1 to be trivial. Then on the one hand, using the fact that
all maps are trivial we have

colim
α

DG-K-Vct
(
Yα,Sn

)
∼= colim

α
K-Vct

(
K,K

)
∼=

⊕
α

K

and on the other hand we obtain

DG-K-Vct
(

lim
α
Yα,Sn

)
∼= DG-K-Vct

(∏
α

Yα,Sn
)

∼= K-Vct
(∏

α

K,K
)

=
(∏

α

K
)∗

Now we compare the duals of the two resulting vector spaces. Since the
linear dual carries colimits to limits, we obtain that

(⊕
αK

)∗
is isomorphic

to
∏
αK. We conclude by observing that

∏
αK as an infinite dimensional

vector space is not isomorphisc to its bidual
(∏

αK
)∗∗

. Hence the n-sphere
Sn is not cosmall.

Notice that one could also take Yα to be the differential graded vector
spaces that have in degree n the vector space K[X]/(Xα+1) and that are
trivial in other degrees, that is

· · · → 0→ K[X]/(Xα+1)→ 0→ · · ·

and maps from Yα to Yα−1 are projections K[X]/(Xα+1) → K[X]/(Xα).
Since the inverse limits of the (Yα)α is the vector space K

[
[X]
]

of power
series, one obtains another counterexample by observing that K

[
[X]
]

and
its bidual are not isomorphic.

We also stress another issue occuring in the study of the opposite cat-
egory (DG-K-Vct)op. The category (DG-K-Vct)op inherits the monoidal
structure ⊗ defined above. However this category is not closed anymore.
The functor

−⊗ Y : (DG-K-Vct)op −→ (DG-K-Vct)op

does not have a right adjoint. Otherwise −⊗Y would be a right adjoint this
time on DG-K-Vct and this is not true since −⊗Y does not commute with
arbitrary limits for instance.
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3.2 Differential graded algebras

In this section we investigate the category of differential graded algebras.
This category has a model structure. We present a proof suggested by
Schwede and Shipley. Viewing differential graded algebras as monoids in
the monoidal category of differential graded vector space, they could lift the
model structure along the appropriate adjoint functors. This gives a first
application of the useful transfer theorem given in Paragraph 1.2.6.

3.2.1 Categorical structure

Definition 3.2.1. The category of unital associative differential graded al-
gebras denoted by DG-K-Alg is the category of monoids in the monoidal
category (DG-K-Vct,⊗,K[0]).

Let (X, dX) be an object in DG-K-Vct. The differential graded tensor
algebra

(
T (X), dT (X)

)
is defined by

T0(X) = K ⊕
∞⊕
p=1

(X0)⊗p

and for n > 0, Tn(X) =
⊕

Xd1 ⊗ · · · ⊗Xdt

where the second sum is taken over all di with d1 + · · · + dt = n. The
differential is given by

dT (X)(x1 ⊗ · · · ⊗ xp) =
p∑
i=1

(−1)ηix1 ⊗ · · · ⊗ dxi ⊗ · · · ⊗ xp

where ηi = degx1 + · · · + degxi−1. It follows from the proof of Proposition
1.1.15 that the assignment (X, dX) 7−→

(
T (X), dT (X)

)
defines a covariant

functor from DG-K-Vct to DG-K-Alg and this functor is left adjoint to the
functor U : DG-K-Alg→ DG-K-Vct which forgets the algebra structure.

The following result is standard. We review its proof in order to describe
filtered colimits of differential graded algebras explicitly.

Lemma 3.2.2. The forgetful functor U : DG-K-Alg −→ DG-K-Vct creates
filtered colimits.

Proof. Suppose (Ai)i∈I is a family of differential graded algebras where I is
a filtered indexing category. The colimit of U(Ai) in DG-K-Vct is given in
a standard fashion by

colim
i
U(Ai) =

⊕
i

U(Ai)/ ∼
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where ∼ is the equivalence relation described as follows:

(xi ∈ U(Ai)) ∼ (yj ∈ U(Aj))

if and only if there exists k ≥ i, j and chain maps

fik : Ai → Ak and gjk : Aj → Ak such that fik(xi) = gjk(yj).

Now we provide an algebra structure ? on this differential graded vector
space: given two classes [xi] ∈ colimi U(Ai) and [yj ] ∈ colimi U(Aj), define

[xi] ? [yj ] = [fik(xi) • gjk(yj)]

where • is the algebra structure of the (Ai)i. This product ? is well-defined.
Indeed it is independent of the choice of k since I is filtered. Moreover
(colimi U(Ai), ?) is universal among cocones of DG-K-Alg. Indeed given
another cocone (Z, h) in DG-K-Alg there exists a unique K-vector space
chain map α : colimi U(Ai)→ Z. Since

α([xi]? [yj ]) = h(fik(xi)•gjk(yj)) = h(fik(xi))•h(gjk(yj)) = α([xi])?α([yj ])

one deduces that α is an algebra map. Thus (colimi U(Ai), ?) corresponds
to colimiAi in DG-K-Alg.

3.2.2 Model structure

In order to apply the Transfer Result, we need the following lemma which
constructs good path objects for each differential graded algebra.

Lemma 3.2.3. Every differential graded algebra has a good path object.

Proof. Let (I, dI) denotes the following differential graded vector space con-
centrated in degrees 0 and 1:

· · · 0→ 0→ K 〈a〉 d−→ K 〈b, c〉 → 0 · · ·

with d(a) = c−b. Setting ∆(b) = b⊗b, ∆(c) = c⊗c and ∆(a) = b⊗a+a⊗c
yields a coassociative counital coalgebra structure on the differential graded
vector space (I, dI). Then the differential graded vector space Hom(I,A) as
defined in the proof of Lemma 3.1.9 becomes a differential graded algebra
with multiplication

f · g = µA ◦ (f ⊗ g) ◦∆

for each f and g in Hom(I, A). It remains to check that the differential
graded algebra Hom(I,A) is a path object for a given differential graded
algebra A. To see this, consider the following map of differential graded
algebras

A→ Hom(I,A)→ A×A.
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The first map is a weak equivalence, that is, it induces isomorphism in ho-
mology. Indeed applying the homotopy classification theorem (see [Mac67,
Chapter III, Theorem 4.3.]) yields

Hn(Hom(I, A)) ∼=
+∞∏
p=−∞

K-Vct(Hp(I),Hp+n(A)).

But since H0(I) ∼= K and Hp(I) = 0 for p 6= 0, we deduce the needed result
from the fact that K-Vct(K,X) ∼= X for a given vector space X.

Proposition 3.2.4. The category of differential graded algebras DG-K-Alg
supports a cofibrantly generated model category structure.

Proof. The strategy is to transfer the model structure on differential graded
algebras by means of the adjunction

T : DG-K-Vct � DG-K-Alg : U.

Since the category DG-K-Vct is cofibrantly generated by I =
{
Sn−1 → Dn |

n ≥ 1
}

and J =
{
0 → Dn | n ≥ 1

}
it suffices to check the criterion given

in Proposition 1.2.21. Notice first that the functor T is a left adjoint and
therefore commutes with filtered colimits. Now we check that the domains
of T (I), T (Sn) are small relative to the whole category DG-K-Alg. We have
to prove that the natural map

colim
α

DG-K-Alg(T (Sn), Xα) −→ DG-K-Alg(T (Sn), colim
α
Xα)

is an isomorphism for any filtered sequence of maps in DG-K-Alg

X0 → X1 → · · · → Xα → Xα+1 → · · · .

On the one hand, using the adjunction above gives

colim
α

DG-K-Alg(T (Sn), Xα) ∼= colim
α

DG-K-Vct(Sn, U(Xα))

On the other hand, Lemma 3.2.2 yields

DG-K-Alg(T (Sn), colim
α
Xα) ∼= DG-K-Vct(Sn, U(colim

α
Xα))

∼= DG-K-Vct(Sn, colim
α
U(Xα)).

Finally the desired isomorphism is deduced from the fact that the n-sphere
Sn is small in the category DG-K-Vct. The tensor algebra T (0) on the trivial
differential graded vector space 0 is the 0-circle S0. By similar argument as
above, it is even easier to check that T (0) is also small.

Notice that every object of the category DG-K-Vct is fibrant. As the
previous lemma provides the category DG-K-Alg with good path objects,
the required result follows.
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In order to reduce the amount of work, we could also put foward the argu-
ment that the category of differential graded algebras is locally presentable.
Since in a locally presentable category each object is small relative to the
whole category smallness of the algebra T (Sn) and T (0) follow immediately.

3.3 Differential graded coalgebras

This section is devoted to the study of the category of differential graded coal-
gebras. Our main source will be the preprint of Getzler and Goerss [GG99].
First they prove that the main properties of coalgebras remain valid in the
differential graded context. Then they derive a cofibrantly generated model
structure for the category of differential graded coalgebras. We elaborate
on their arguments by showing that the category of differential graded coal-
gebras is locally presentable. Viewing coalgebras as comonoids of vector
spaces, it is natural to ask if the Getzler-Goerss model structure comes from
applying the Transfer Result as in the case of algebras.

3.3.1 Categorical structure

Definition 3.3.1. The category of counital coassociative differential graded
coalgebras that we denote by DG-K-coAlg is the category of comonoids in
the monoidal category (DG-K-Vct,⊗,K[0]).

Proposition 3.3.2. Every differential graded coalgebra is the filtered colimit
of its finite dimensional subcoalgebras.

Definition 3.3.3. Let K be a field.

1. A profinite differential graded K-algebra is a topological differential
graded K-algebra which is isomorphic to the inverse limit of an inverse
system of finite-dimensional differential graded K-algebras.

2. A morphism of profinite differential graded K-algebra is a morphism
of differential graded K-algebras that is continuous with respect to the
profinite topology.

Together with these morphims profinite differential graded K-algebras form
a category, which we denote by Pro-DG-K-Alg.

Proposition 3.3.4. There is an anti-equivalence of categories between the
category of differential graded coalgebras DG-K-coAlg and the category of
profinite non-positively graded differential algebras Pro-DG-K-Alg.

Corollary 3.3.5. The category of differential graded coalgebras is complete
and cocomplete.
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Proof(Sketch). While colimits in differential graded coalgebras are created
by the forgetful functor from DG-K-coAlg to DG-K-Vct, the existence of
limits is more subtil. To see this, the idea is to prove that the category of
profinite differential graded algebras Pro-DG-K-Alg is cocomplete and then
to use the anti-equivalence stated above to derive completeness for DG-K-
coAlg (see [GG99, Proposition 1.8]).

Proposition 3.3.6. The forgetful functor Ud from the category of differential
graded coalgebras DG-K-coAlg to the category of differential graded vector
spaces DG-K-Vct has a right adjoint Sd.

Proof. The arguments are exactly the same as in Proposition 2.4.5. We shall
simply recall how cofree coalgebras are constructed. Let V be a differential
graded vector space. If V is degreewise finite-dimensional, then the cofree
coalgebra on V is given by

Sd(V ) =
(
T̂ (V ∗)

)∗cont

.

For general V ∈ K-Vct the cofree coalgebra is defined by

Sd(V ) = colimSd(Vα)

with Vα running over the finite-dimensional subvector spaces of V .

Example 3.3.7. Let C be a finite dimensional differential graded coalgebra
and (V, ∂) be a differential graded vector space which is concentrated in
non-negative degrees and finite dimensional in each degree. We recall from
[GG99, Lemma 1.12] that

(i) if V0 = 0 then
(
C × Sd(V )

)∗ ∼= TC∗
(
C∗ ⊗ V ∗ ⊗ C∗

)
and

(ii) if V0 = K with generator X then(
C × Sd(V )

)∗ ∼= lim
q(X)

(
TC∗(C∗ ⊗ V ∗ ⊗ C∗)/

(
q(X), ∂q(X)

))
with q(X) running over all monic polynomials in K[X].

In particular we can choose in (i) the differential graded vector space
V to be the n-sphere Sn with n ≥ 1 and C to be the one dimensional
differential graded coalgebra K[0] concentrated in degree zero. Note that
K[0] is the terminal object in the category DG-K-coAlg and therefore the
product K[0] ×X with any object X in DG-K-coAlg is isomorphic to X.
Thus we obtain that(

Sd(Sn)
)∗ ∼= TK[0]∗

(
(Sn)∗

) ∼= TK[0]

(
S−n

)
.
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Moreover, applying (ii) to the 0-sphere S0 and to the one dimensional
coalgebra K[0] yields(

Sd(S0)
)∗ ∼= lim

q(X)

(
TK[0]∗

(
(S0)∗

)
/
(
q(X)

)) ∼= lim
q(X)

(
K[X]/

(
q(X)

))
.

In this way we recover the example studied earlier in Section 2.5.

3.3.2 Model structure

Getzler and Goerss have provided a model structure on the category of dif-
ferential graded coalgebras DG-K-coAlg: this paragraph summarizes their
main arguments (see [GG99, Section 2]).

Definition 3.3.8. Consider a map f in the category DG-K-coAlg. Then
define f to be a

• weak equivalence if H∗f is an isomorphism,

• cofibration if it is a degree-wise injection of graded K-vector spaces,

• fibration if it has the right lifting property with respect to trivial cofi-
brations.

The following result and its corollary allow functorial factorizations of
coalgebra morphisms into cofibrations followed by trivial fibrations.

Proposition 3.3.9. Let C be a differential graded coalgebra. Then for all
non-negative integers n, the natural projection

C × Sd(Dn)→ C

induces isomorphism in homology.

See [GG99, Theorem 2.1] for the proof.

Corollary 3.3.10. Let V be a non-negatively graded differential vector space.
Suppose moreover that V is acyclic. Then the natural projection

C × Sd(V )→ C

induces isomorphism in homology.

See [GG99, Proposition 2.2] for the proof.

Proposition 3.3.11. Let f : C → D be a morphism in the category of dif-
ferential graded coalgebras DG-K-coAlg. Choose V an acyclic differential
graded vector space containing C. Then the morphism f can be factored

C
i−→ D × Sd(V )

p−→ D

with i a cofibration and p an acyclic fibration.
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Proof. We give with more details the proof given by Getzler and Goerss. In
light of Corollary 3.3.10, the trick is to factor the coalgebra map f : C → D
through a coalgebra D × Sd(V ) where V is a suitable acyclic differential
graded vector space. First forget the coalgebra structure on C by con-
sidering Ud(C) ∈ DG-K-Vct. Then define V to be cone(Ud(C)). The
differential graded vector space cone(Ud(C)) is acyclic and comes with a
canonical embedding j : Ud(C) → cone(Ud(C)). Thus we define p to be the
projection map D × Sd(V ) → D. Then notice that to give a morphism in
DG-K-coAlg

(
C,D × Sd(V )

)
amouts to give a pair of morphisms in

DG-K-coAlg(C,D)×DG-K-coAlg(C,Sd(V )).

But using the adjunction between the categories of coalgebras and vector
spaces, the previous product is equivalent to

DG-K-coAlg(C,D)×DG-K-Vct(Ud(C), V ).

In this way, the pair (f, j) yields a coalgebra morphism i. Now consider
π : D×Sd(V )→ Sd(V ) the projection onto Sd(V ) and the map ε : Sd(V )→
V coming from the counit of the adjunction between coalgebras and vector
spaces. Then the following composition

C
i−→ D × Sd(V ) π−→ Sd(V ) ε−→ V = cone(Ud(V ))

is the embedding j and therefore insures that the coalgebra morphism i is a
cofibration as required.

Finally let us point out that the composite map

C
∐

C → C × Sd
(
cone

(
Ud(C

∐
C)
))
→ C

yields a natural construction of a very good cylinder object for a given object
C in the category DG-K-coAlg.

Lemma 3.3.12. A morphism of differential graded coalgebras is a fibration
if and only if it has the right lifting property with respect to all acyclic cofi-
brations A→ B such that B has a countable homogeneous basis.

See [GG99, Lemma 2.6] for the proof.

Lemma 3.3.13. The category of differential graded coalgebra DG-K-coAlg
is a locally presentable category.

Proof. This lemma is a consequence of the more general result stated in
Proposition 1.2.15. The category of differential graded vector spaces DG-
K-Vct is locally presentable by. Moreover the monoidal category (DG-
K-Vct,⊗,K[0]) is admissible since it is closed. Hence the category of its
comonoids DG-K-coAlg is locally presentable as well.
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Corollary 3.3.14. Any morphism in the category of differential graded coal-
gebras DG-K-coAlg can be factored by an acyclic cofibration followed by a
fibration.

Proof. Lemma 3.3.12 above supplies a good candidate for the cofibrant gen-
erating set and Lemma 3.3.13 guarantees the small object argument.

Theorem 3.3.15. The category of differential graded coalgebra DG-K-coAlg
supports a cofibrantly generated model structure.

The next result asserts that the pair of functors (Sd, Ud) is a Quillen pair.

Proposition 3.3.16. The cofree coalgebra functor

Sd : DG-K-Vct −→ DG-K-coAlg

preserves fibrations and weak equivalences.

Proof. Notice first that every differential graded vector space in the model
category DG-K-Vct is fibrant and cofibrant. Furthermore, the forgetful
functor Ud : DG-K-coAlg −→ DG-K-Vct preserves cofibrations and weak
equivalences. Hence Ud is a left Quillen functor and the claim follows.

3.3.3 Problems with the transfer of model category struc-
tures

We make some comments on whether the Getzler-Goerss model structure on
DG-K-coAlg can be recovered by means of the transfer theorem. Since we
have the adjunction

Ud : DG-K-coAlg � DG-K-Vct : Sd

we cannot apply the transfer theorem: the involved categories and functors
are in the wrong places. To get around this problem it is natural to consider
the following formal dualization provided by Lemma 1.1.8:

(DG-K-Vct)op
Sop

d // (DG-K-Vct)op-Monoid = (DG-K-coAlg)op.
Uop

d

oo

But some problems still occur:

• As observed in Paragraph 3.1.4, the category ((DG-K-Vct)op,⊗) is
not closed. It follows that the opposite category (DG-K-Vct)op is not
a monoidal model category. A similar argument is used by Hovey to
show that the category of topological spaces fails to be a monoidal
model category (see [Hov99, page 110]). The fact is that one needs
the closedness in the definition of monoidal model categories in order
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to derive further properties for the homotopy category associated to a
monoidal model category: under this assumption, the homotopy cate-
gory inherits a closed monoidal structure (see [Hov99, Theorem 4.3.2]).
In [SS00], Schwede and Shipley require the closedness of the monoidal
structure in order to guarantee that the monoidal product commutes
with colimits and hence to ensure that the categories of monoids have
colimits whenever the monoidal categories are cocomplete. In the case
of vector spaces and coalgebras, however, we can obtain cocomplete-
ness via an alternative line of argument.

• We have seen that Proposition 3.1.11 provides the opposite category
of differential graded vector spaces, (DG-K-Vct)op with a set of ge-
nerating acyclic cofibrations Qop. However the set P op in Proposition
3.1.12 is not a set of generating cofibrations since its domain Sn is not
small in the opposite category (DG-K-Vct)op as proven in Paragraph
3.1.4. The result of this observation is that the opposite category
(DG-K-Vct)op is not cofibrantly generated. One needs the cofibrant
generation in the monoidal model category in order to guarantee the
factorization axiom MC5 for the associated category of monoids: the
crucial point is to be able to apply Quillen’s small object argument.
Unfortunately, the dual of Quillen’s small object argument is inefficient
since cosmall objects are rare in this case.

To conclude, although the opposite category (DG-K-coAlg)op inherits a
model structure in the usual way, this model structure does not arise from
an application of the transfer theorem.
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Chapter 4

Simplicial Objects

4.1 The Dold-Kan correspondence

We collect from Weibel [Wei94] and Mac Lane [Mac67] some basics about
simplicial methods. We focus on the Dold-Kan correspondence which estab-
lishes an equivalence of categories between simplicial objects and differential
graded objects in every abelian category. This correspondence is concretely
given by the normalization functor N and its inverse Γ. Following Weibel,
we briefly recall the construction of the inverse functor Γ at the end of this
section.

4.1.1 Generalities

Definition 4.1.1. Let [n] be the ordered set {0 < 1 < · · · < n}. A map
f : [n]→ [m] is non-decreasing if f(i) ≥ f(j) whenever i > j. The simplicial
category ∆ is the category with objects [n] for n ≥ 0 and with non-decreasing
maps as morphisms.

Definition 4.1.2. Let ∆ be the simplicial category.

1. The face maps εi : [n − 1] → [n] are the injections in ∆ which miss
i, (0 ≤ i ≤ n).

2. The degeneracy maps ηi : [n+ 1]→ [n] are the surjections in ∆ which
send both i and i+ 1 to i.

Proposition 4.1.3. The face and degeneracy maps satisfy the following re-
lations

εjεi = εiεj−1 if i < j,
ηjηi = ηiηj+1 if i ≤ j,

ηjεi =


εiηj−1 if i < j,
id[n] if i = j or i = j + 1
εi−1ηj if i > j + 1.
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Proposition 4.1.4. Every morphism f : [n] → [m] in ∆ has a unique epi-
monic factorization

f = εi1εi2 · · · εirηj1ηj2 · · · ηjs
such that i1 < i2 < · · · < ir and j1 < j2 < · · · < js with m = n− s+ r.

See for instance [Wei94, Lemma 8.1.2] for a proof.

Definition 4.1.5. Let C be a category.

1. A simplicial object in C is a functor X : ∆op → C.

A face operator is a morphism X(εi) : Xn → Xn−1 and a degeneracy
operator is a morphism X(ηi) : Xn → Xn+1.

2. Dually a cosimplicial object in C is a functor X : ∆→ C.

A coface operator is a morphism X(εi) : Xn−1 → Xn and a codegener-
acy operator is a morphism X(ηi) : Xn+1 → Xn.

Example 4.1.6. A standard construction which can be found for instance
in [Bou70, 7.7] gives rise to cosimplicial objects whenever two categories
are adjoint. Indeed for arbitrary categories C and D we consider a functor
L : C −→ D left adjoint to R : D −→ C. If we denote by ϕ : 1C → RL and
ψ : LR→ 1D the adjunction maps and by µ the composite

RψL : R(LR)L −→ R1DL,

then
(
RL,ϕ, µ

)
defines a monad on C. Now let C be in C. If we set

(RL)0C = C and (RL)nC = (RL)(RL)n−1C,

then the functor XC : ∆→ C given by

Xn
C = (RL)n+1C, n ≥ 0

with

di = (RL)iϕ(RL)n−i : (RL)nC −→ (RL)n+1

si = (RL)iµ(RL)n−i : (RL)n+2C −→ (RL)n+1

define a cosimplicial object called the cosimplicial resolution over the ca-
tegory C. One obtains an augmentation by considering the map ϕC : C −→
X−1
C = RLC. Dually the composite functor LR defines a comonad on D

and one obtains a simplicial object called the simplicial resolution over the
category D. We refer to [Mac98, VII.6] for details on simplicial resolutions.
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4.1.2 The normalization functor N

Definition 4.1.7. Let A be a simplicial object in an abelian category C.

1. The differential graded object associated to A is denoted by CA and is
given by (CA)n = An with differential the alternating sum of the face
operators:

d =
n∑
i=0

(−1)idi : (CA)n → (CA)n−1

2. The differential graded object of degenerate simplices associated to A,
denoted by DA is the subcomplex of CA with

(DA)0 = 0 and (DA)n = s0An−1 + · · ·+ sn−1An−1 for n ≥ 1.

Definition 4.1.8. The normalized differential graded object associated to A,
denoted by NA is the quotient of CA by its subcomplex DA, that is

NA = CA/DA.

The normalization functor N is the functor that associates to a simplicial
object its normalized differential graded object.

We shall also mention the alternative definition of the normalization func-
tor N given by

(NA)n =
n−1⋂
i=0

ker(di)

with differential (−1)ndn : (NA)n −→ (NA)n−1.
The result below, called the Dold-Kan correspondence, establishes an

equivalence of categories between the category of simplicial objects and the
category of differential graded objects in every abelian category.

Theorem 4.1.9. Let C be an abelian category. Then, the normalization
functor N is an equivalence of categories between the category of differential
graded objects in C and the category of simplicial objects in C.

We refer to [Wei94, 8.4.4] for a proof of the Dold-Kan correspondence.
We shall now give a description of the inverse of the normalization functor.
If (C, d) is a differential graded object in C, then the inverse functor denoted
by Γ is given by

(ΓC)n =
n⊕
p=0

⊕
η

Cp[η]

where η ranges over all surjections [n] → [p] in ∆ and Cp[η] denotes a copy

of Cp. Note that there are
(
n

p

)
surjections η : [n]→ [p] in ∆.
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Now consider a morphism α : [m] → [n] in ∆. Then the morphism
Γ(α) : (ΓC)n → (ΓC)m is defined by its restrictions Γ(α, η) : Cp[η]→ (ΓC)m
as follows: let η : [m] → [n] be a surjection and ηα : [m] → [p] the result-
ing composite map with α. Using Proposition 4.1.4 we can factor ηα as a
composite of an epimorphism η′ followed by a monomorphism ε:

[m] α //

η′

��

[n]

η

��
[q] ε

// [p].

The morphism Γ(α, η) is then defined according to the outcome of the
above epi-monic factorization:

• if p = q then Γ(α, η) is the natural identification of Cp[η] with the
summand Cp[η′] of (ΓC)m.

• if p = q + 1 and ε = εp then Γ(α, η) is the differential

Cp[η] = Cp
d−→ Cp−1 = Cq[η′] ⊆ (ΓC)m.

• In the other cases Γ(α, η) is the trivial map.

Example 4.1.10. The algorithm described above yields for instance

(ΓC)0 = C0

[
id[0]

]
,

(ΓC)1 = C0

[
η0

]
⊕ C1

[
id[1]

]
,

(ΓC)2 = C0

[
η0η0

]
⊕ C1

[
η0

]
⊕ C1

[
η1

]
⊕ C2

[
id[2]

]
.

In order to obtain the face operator (ΓC)(ε0) : (ΓC)1 → (ΓC)0, we have
to consider the compositions with ε0. Thus, we obtain with help of the
simplicial identities of Proposition 4.1.3

[0]
ε0 //

��

[1]

η0
��

[0]
ε0 //

��

[1]

id[1]
��

[0]
id[0]

// [0] [0] ε0
// [1]

and the required face operator is given by the matrix (ΓC)(ε0) =
(
id 0

)
.

Similar computations show that the other face operator (ΓC)(ε1) : (ΓC)1 →
(ΓC)0 is given by the matrix (ΓC)(ε1) =

(
id d

)
.
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4.2 Simplicial vector spaces

After the generalities of the preceding section, we focus on the category of
simplicial K-vector spaces. This category is equivalent to that of differential
graded K-vector spaces via the Dold-Kan correspondence. We use this cor-
respondence to give some examples of simplicial vector spaces. Moreover, we
explain how to derive from the Dold-Kan theorem a cofibrantly generated
model structure for the category of simplicial vector spaces.

4.2.1 Categorical structure

Definition 4.2.1. Let K-Vct be the category of K-vector spaces.

1. A simplicial vector space X is a simplicial object in the category of
vector spaces K-Vct, that is a functor X : ∆op → K-Vct.

2. A morphism f : X → Y of simplicial vector spaces is a natural trans-
formation of functors X,Y : ∆op → K-Vct.

Together with these morphisms, simplicial vector spaces form a category that
we denote by S-K-Vct.

The category of K-vector spaces, K-Vct is abelian. Therefore the Dold-
Kan correspondence is an equivalence between the category of differential
graded vector spaces, DG-K-Vct, and the category of simplicial vector spaces,
S-K-Vct,

N : S-K-Vct // DG-K-Vct : Γ.oo

It follows from [Mac98, IV.4 Theorem 1] that the normalization functor N
is an adjoint equivalence of categories. The unit ε : NΓ→ Id and the counit
η : Id → ΓN of this adjoint equivalence are both natural isomorphisms.
Later, we shall exploit these properties to define a suitable comultiplication
for simplicial vector spaces.

We use the inverse functor Γ to give some examples of simplicial vector
spaces.

Example 4.2.2. Recall that the n-sphere Sn is the differential graded vector
space which consists of K concentrated in degree n. We describe the image
under the inverse functor Γ of the vector space Sn for n ≥ 1 with help of the
algorithm given in Section 4.1.2. If l is an index with l < n, then

(
Γ(Sn)

)
l
is

the zero vector space 0. For an index l ≥ n, the vector space
(
Γ(Sn)

)
l
consists

of
(
l

n

)
copies of K. Hence, for instance the diagram of face operators in

the simplicial vector space Γ(S1) is

0 Koo oo K⊕2oooo
oo

K⊕3
oooo
oooo

K⊕4 · · ·oooo
oooo
oo

59



We may represent the face operators involved in Γ(S1) with matrices where
the entries 1 and 0 denote respectively the identity map on K and the trivial
map. We shall give here some of these face operators. The face operators
∂i : K −→ 0 are all trivial. The face operators ∂i : K⊕2 −→ K are given by

∂0 =
(

1 0
)
, ∂1 =

(
1 1

)
,

∂2 =
(

0 1
)
.

The face operators from ∂i : K⊕3 −→ K⊕2 are given by

∂0 =
(

1 0 0
0 1 0

)
, ∂1 =

(
1 0 0
0 1 1

)
,

∂2 =
(

1 1 0
0 0 1

)
, ∂3 =

(
0 1 0
0 0 1

)
.

We may also recover in a similar fashion the degeneracy operators of Γ(S1),
but we restrict to the face operators since only they appear in the differential
graded vector space associated to Γ(S1).

Notice that the simplicial vector space Γ(S0) is easier to describe: it has
K in each degree and all the maps are the identity of the field K. In other
words, Γ(S0) is the constant simplicial vector space at K.

Definition 4.2.3. Let X be a simplicial vector space. We define the n-th
homotopy groups of X, πn(X) to be:

πn(X) = Hn(NX) ∼= Hn(CX).

With this definition, computing homotopy groups of a given simplicial
vector space amouts to computing the homology groups of the differential
graded vector space associated to it.

Recall that a category is called small if its objects and morphisms are
sets. Let C and D be two categories. If in addition the category C is small,
then we denote by Funct(C,D) the category of functors from C to D.

Lemma 4.2.4. Let I be a small category. If a given category C is complete
and cocomplete, then Funct(I,C) is complete and cocomplete.

See for instance [Bor94a, Theorem 2.15.2] for a proof.

Proposition 4.2.5. The category of simplicial vector spaces, S-K-Vct is
complete and cocomplete.

Proof. The category of vector spaces is complete and cocomplete. Since the
category S-K-Vct is by definition Funct(∆op, K-Vct), the proposition is a
consequence of the preceding lemma.
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4.2.2 Monoidal model structure

Proposition 4.2.6. The category of simplicial vector spaces, S-K-Vct is
equipped with a cofibrantly generated model structure.

The model structure comes from defining a map f in the category S-K-
Vct to be a

• weak equivalence if π∗f is an isomorphism,

• cofibration if it is a level-wise injection,

• fibration if it has the right lifting property with respect to trivial cofi-
brations.

Since the category of differential graded vector spaces DG-K-Vct is cofi-
brantly generated, one deduces the cofibrant generation of the category S-
K-Vct by applying the transfer result to the adjoint pair (Γ, N) provided
by the Dold-Kan correspondence. Hence in the category S-K-Vct, the gen-
erating acyclic cofibrations are given by the maps

{
0→ Γ(Dn) | n ≥ 1

}
and

the generating cofibrations by
{
Γ(Sn−1)→ Γ(Dn) | n ≥ 1

}
.

Definition 4.2.7. Let X and Y be two objects in the category S-K-Vct.
Then define the monoidal product ⊗̂ by

(X⊗̂Y )n = Xn ⊗K Yn.

The unit of the monoidal product ⊗̂ is the simplicial vector space that has
K in each degree and identity maps on K as face and degeneracy operators.
We denote this unit by I(K). The monoidal product ⊗̂ is symmetric.

Lemma 4.2.8. The category of simplicial vectors spaces, S-K-Vct, endowed
with the monoidal product ⊗̂ is closed.

Lemma 4.2.9. The category of simplicial vector spaces, S-K-Vct, is locally
presentable.

Proof. Following [Bor94a, 5.3.3, 5.7.5], every category of functors from a
small category to a locally presentable category is a locally presentable. Since
the category of vector spaces K-Vct is locally presentable, the claim follows.

Proposition 4.2.10. The category of simplicial vectors spaces, S-K-Vct,
has a monoidal model structure.

We recall from [Qui67] or [GJ99] that a simplicial model category is a
model category with an additional axiom which is called axiom SM7. In
[Qui67, 4.11] it is proven that the category S-K-Vct is in fact a simplicial
model category. Therefore, the above proposition follows because the axiom
SM7 ensures the compatibility of the monoidal product ⊗̂ with the model
structure.
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4.3 The Eilenberg-Zilber theorem

In this section, we recall the basic properties of the Alexander-Withney map
and the shuffle map from [Mac67] and [May67]. In fact these maps provide
the normalization functor N with respectively a monoidal and a comonoidal
structure. Hence, in the next chapter, we shall make use of these observations
to derive a comonoidal structure for the inverse functor Γ.

4.3.1 The Alexander-Whitney map AW

Definition 4.3.1. Let X and Y be simplicial vector spaces. The Alexander-
Whitney map is given by

AW : C(X⊗̂Y ) −→ C(X)⊗ C(Y )

which is defined degreewise by

AWn : Xn ⊗ Yn −→
⊕
p+q=n

Xp ⊗ Yq

x⊗ y 7−→
n∑
i=0

d̃n−ix⊗ di0y

with d̃n−ix = di+1 · · · dnx.

Proposition 4.3.2. The Alexander-Whitney map, AW , turns C into a lax
comonoidal functor.

The claim follows from [Mac67, Lemma 8.2, Thorem 8.5, Proposition
8.7]. Notice that the above proposition has a normalized version

AWN : N(X⊗̂Y ) −→ NX ⊗NY

given in [Mac67, Corollary 8.6]. Thus, the normalized Alexander-Whitney
map turns the functor N into a lax comonoidal functor(

N,AWN

)
: (S-K-Vct, ⊗̂, I(K)) −→ (DG-K-Vct,⊗,K[0]).

4.3.2 The shuffle map ∇

Definition 4.3.3. Let p and q be non-negative integers. A (p, q)-shuffle
(µ, ν) is a partition of the set [p+ q− 1] of integers into two disjoint subsets
µ1 < · · · < µp and ν1 < · · · < νq of p and q integers respectively.

1. A (p, q)-shuffle is also defined as a permutation σ of the set of integers
{1, · · · , p+ q} such that σ(i) < σ(j) whenever i < j ≤ p or p < i < j.
In this way, µi is given by σ(i)− 1 and νj by σ(p+ j)− 1.
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2. The signature of a shuffle (µ, ν) is the integer

ε(µ) =
p∑
i=1

µi − (i− 1).

Example 4.3.4. Let S3 be the group of permutations of the set {1, 2, 3}.
Then the (1, 2)-shuffles are the identity, the 2-cycle (12) and the 3-cycle (132)
of S3.

Definition 4.3.5. Let X and Y be simplicial vector spaces. The shuffle
map is given by

∇ : C(X)⊗ C(Y ) −→ C(X⊗̂Y )

which is defined degreewise by

∇n :
⊕
p+q=n

Xp ⊗ Yq −→ Xn ⊗ Yn

xp ⊗ yq 7−→
∑
(µ,ν)

(−1)ε(µ)(sνq · · · sν1xp ⊗ sµp · · · sµ1yq)

where the sum is taken over all (p, q)-shuffles (µ, ν).

Proposition 4.3.6. The shuffle map ∇ is a symmetric monoidal natural
transformation.

We refer to [Mac67, Theorem 8.8] for the proof. The shuffle map also
has a normalised version

∇N : NX ⊗NY −→ N(X⊗̂Y )

given in [Mac67, Corollary 8.9]. Hence the normalized shuffle map induces
a lax symmetric monoidal structure on the normalization functor(

N,∇N
)
: (S-K-Vct, ⊗̂, I(K)) −→ (DG-K-Vct,⊗,K[0]).

The Alexander-Whitney map AW and the shuffle map ∇ as well as their
normalized versions AWN and ∇N satisfy the following property due to
Eilenberg and Zilber.

Theorem 4.3.7. For simplicial vector spaces X and Y there are natural
chain homotopy equivalences

C(X⊗̂Y )
AW //

CX ⊗ CY
∇

oo

N(X⊗̂Y )
AWN //

NX ⊗NY
∇N

oo
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In other words, the Alexander-Whitney map, the shuffle map and their
normalized versions satisfy the homotopical relations:

∇ ◦AW ' Id,
AW ◦ ∇ ' Id,

∇N ◦AWN ' Id.

Furthermore, following [May67, Corollary 29.10] or [SS03, Section 2.3],
we note the identity AWN ◦ ∇N = Id.

4.4 Simplicial coalgebras

In this section we investigate the category of simplicial K-coalgebras. As
a category of functors, simplicial coalgebras inherit most of their properties
from K-coAlg. In [Goe95] Goerss endows the category of simplicial coalge-
bras with a model structure. We briefly recall his construction and we point
out that the category of simplicial coalgebras is locally presentable.

4.4.1 Categorical structure

Definition 4.4.1. The category of simplicial coalgebras, denoted by S-
K-coAlg, is the category of comonoids in the monoidal category (S-K-
Vct,⊗̂,I(K)).

Lemma 4.4.2. The category of simplicial coalgebras, S-K-coAlg is complete
and cocomplete.

Proof. The category S-K-coAlg is the category of functors Funct(∆op, K-
coAlg). Lemma 4.2.4 ensures the desired result.

Lemma 4.4.3. Suppose that I is a small category. Then every adjunction
L : C � D : R gives rise to an adjunction Funct(I,C) � Funct(I,D) on
the level of categories of functors.

See for instance [Bor94a, Proposition 3.2.4] for the proof.

Proposition 4.4.4. The forgetful functor Us from the category of simplicial
coalgebras, S-K-coAlg, to the category of simplicial vector spaces, S-K-Vct,
has a right adjoint Ss.

Proof. Since the category of simplicial objects in a category C is by def-
inition Funct(∆op, C), applying the previous lemma to the adjunction
U : K-coAlg � K-Vct : S yields the result.
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4.4.2 Model structure

The category of simplicial coalgebras, S-K-coAlg, is endowed with a model
structure. This model structure was established by Goerss in [Goe95, Sec-
tion 3]. We shall mention that Goerss considers cocommutative simplicial
coalgebras. But one can adapt his arguments to the non-cocommutative
case as well.

Definition 4.4.5. A map f in S-K-coAlg is a

• weak equivalence if π∗f is an isomorphism,

• cofibration if it is a level-wise inclusion,

• fibration if it has the right lifting property with respect to trivial cofi-
brations.

The main arguments of Goerss remain unchanged for the case of non-
cocommutative simplicial coalgebras. The only slight difference is concerned
with [Goe95, Lemma 3.5] recalled below.

Lemma 4.4.6. Let f : C → D be a morphism of coalgebras. Then, f can be
factored as f = p ◦ i

C
i−→ X

p−→ D

where i is a cofibration and p is an acyclic fibration.

In the proof of this lemma, we may replace the cocommutative cofree
functor by its non-cocommutative version Ss : S-K-Vct −→ S-K-coAlg that
we consider here. Therefore, as suggested in [Goe95, Lemma 3.5], the fac-
torization is given by the simplicial coalgebra

X = D ×
(∏

α

Ss
(
Γ(Dnα)

))
where the product is taken in the category S-K-coAlg and

α ∈
⋃
n≥0

S-K-coAlg
(
C,Ss

(
Γ(Dn)

))
.

The map p is the projection and the map i is taken as the product of f and
all α. In this way, the arguments of Goerss hold since only the cofreeness
property is required.

Proposition 4.4.7. The category of simplicial coalgebras, S-K-coAlg, is a
locally presentable category.

Proof. The symmetric monoidal category (S-K-Vct, ⊗̂, I(K)) is closed and
locally presentable. Hence, the category of its comonoids is locally pre-
sentable by Proposition 1.2.15.
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We notice that [Goe95, Lemma 3.7] provides the category of simplicial
coalgebras, S-K-coAlg with generating acyclic cofibrations. Let c be an
infinite regular cardinal which is at least equal to the cardinality of the field
K.

Lemma 4.4.8. A map f : A → B in S-K-coAlg is a fibration if and only
if f has the right lifting property with respect to trivial cofibrations C → D
such that the cardinality of a homogeneous basis of D is smaller than c.

In view of the preceding proposition, Quillen small object argument gives
the factorization axiom MC5(ii).

Theorem 4.4.9. The category of simplicial coalgebras, S-K-coAlg, supports
a model structure.

Here is an analogue of Proposition 3.3.16 for simplicial vector spaces and
simplicial coalgebras.

Proposition 4.4.10. The cofree coalgebra functor

Ss : S-K-Vct −→ S-K-coAlg

preserves fibrations and weak equivalences.
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Chapter 5

The Dold-Kan Correspondence
and Coalgebras

5.1 On coalgebras

In [SS03] Schwede and Shipley prove that the normalization functor, N , and
its inverse, Γ, induce functors on the level of monoids. Then they show that
the resulting functors do not form an adjunction. Mimicking their ideas, we
obtain dual results for coalgebras. We define comultiplications for simplicial
and differential graded vector spaces. As a consequence, the functors N
and Γ give rise to functors on the categories of coalgebras. However, as
for algebras, we show that the resulting coalgebra-valued functors are not
adjoint.

5.1.1 The functors N and Γ on the categories of coalgebras

Proposition 5.1.1. Consider a simplicial coalgebra (A,∆A, εA).
Then (NA,∆NA, εNA) is a differential graded coalgebra with a comultiplica-
tion given by the composition

NA
N(∆A) // N(A⊗̂A)

AWA,A // NA⊗NA

and counit given by N(εA).
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Proof. In the diagram

NA⊗NA
N(∆A)⊗Id// N(A⊗̂A)⊗NA

AWA,A⊗Id // NA⊗NA⊗NA

N(A⊗̂A)
N(∆A⊗̂Id) //

AWA,A

OO

N(A⊗̂A⊗̂A)
AWA,A⊗̂A //

AWA⊗̂A,A

OO

NA⊗N(A⊗̂A)

Id⊗AWA,A

OO

NA
N(∆A) //

N(∆A)

OO

N(A⊗̂A)
AWA,A //

N(Id⊗̂∆A)

OO

NA⊗NA

Id⊗N(∆A)

OO

each small square commutes. To see this it suffices to use the fact that ∆A

is coassociative and that the Alexander-Whitney map AW is turns N into a
lax comonoidal functor. Hence the composite square commutes as well and
this means that ∆NA is coassociative.

The counitary property comes from the naturality of the map AW and
the fact that K[0] ∼= NI(K).

Now let f : (A,∆A)→ (B,∆B) be a map of simplicial coalgebras. Then
the following composite diagram

NA
N(∆A) //

N(f)

��

N(A⊗̂A)
AWA,A //

N(f⊗̂f)
��

NA⊗NA

N(f)⊗N(f)

��
NB

N(∆B)
// N(B⊗̂B)

AWB,B

// NB ⊗NB

commutes. Indeed the map f satisfies the identity (f⊗̂f)◦∆A = ∆B ◦f and
therefore applying the functor N yields that the left diagram commutes. The
right square commutes since the Alexander-Whitney map AW turns N into
a lax comonoidal functor. This observation ensures that the normalization
functor N induces a functor from S-K-coAlg to DG-K-coAlg.

Similar considerations show that the functor Γ also gives rise to a functor
from the category of differential graded coalgebras, DG-K-coAlg, to the
category of simplicial coalgebras, S-K-coAlg.

Proposition 5.1.2. Consider a differential graded coalgebra (B,∆B, εB).
Then (ΓB,∆ΓB, εΓB) is a simplicial coalgebra with a comultiplication ∆ΓB

given by the following composition

68



ΓB
Γ(∆B) //

∆ΓB

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT Γ(B ⊗B)
Γ(ε−1

B ⊗ε−1
B )

// Γ(NΓB ⊗NΓB)

Γ(∇ΓB,ΓB)
��

ΓN(ΓB⊗̂ΓB)

η−1

ΓB⊗̂ΓB
��

ΓB⊗̂ΓB

and counit given by Γ(εB)

Proof. Note that the functor N is an equivalence of categories and therefore
gives rise to an adjoint equivalence with unit η : Id −→ ΓN and counit
ε : NΓ −→ Id which are both natural isomorphisms. As for the previous
proposition the coassociativity and the counitary property come from the
fact that the shuffle map ∇ is a natural monoidal transformation.

Remark 5.1.3. We denote by ψX,Y the composition of natural maps

ψX,Y = η−1
ΓX⊗̂ΓY

◦ Γ(∇ΓX,ΓY ) ◦ Γ(ε−1
X ⊗ ε

−1
Y )

Since the composition AW ◦∇ is the identity, we deduce that ∇ is injective
and therefore ψX,Y is also injective for any X and Y in DG-K-coAlg.
Moreover observe that

ψB,B = η−1
ΓB⊗̂ΓB

◦ Γ(∇ΓB,ΓB) ◦ Γ(ε−1
B ⊗ ε

−1
B )

in the definition of ∆ΓB.

5.1.2 Comonoidal properties of the adjunction counit and
unit

Lemma 5.1.4. The adjunction counit ε : NΓ −→ Id is a comonoidal trans-
formation. The diagram

NΓ(X ⊗ Y )
N(ψX,Y )

//

εX⊗Y

��

N(ΓX⊗̂ΓY )
AWΓX,ΓY // NΓX ⊗NΓY

εX⊗εY

��
X ⊗ Y X ⊗ Y

commutes for every X,Y in DG-K-coAlg.
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Proof. The naturality of the inverse ε−1 : Id −→ NΓ

N(ΓX⊗̂ΓY )
ε−1

N(ΓX⊗̂ΓY ) //

AWΓX,ΓY

��

NΓN(ΓX⊗̂ΓY )

NΓ(AWΓX,ΓY )

��
NΓX ⊗NΓY

ε−1
NΓX⊗NΓY

// NΓ(NΓX ⊗NΓY )

yields the identity

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY = NΓ(AWΓX,ΓY ) ◦ ε−1

N(ΓX⊗̂ΓY )
.

Since the composite Nη−1
A ◦ ε

−1
NA is the identity for every object A we

deduce that ε−1
N(ΓX⊗ΓY ) is inverse to N(η−1

ΓX⊗̂ΓY
) and the previous identity

becomes

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY ◦N(η−1

ΓX⊗̂ΓY
) = NΓ(AWΓX,ΓY ).

Using the fact that AW ◦ ∇ = Id we obtain

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY ◦N(η−1

ΓX⊗̂ΓY
) ◦NΓ(∇ΓX,ΓY )

= NΓ(AWΓX,ΓY ) ◦NΓ(∇ΓX,ΓY )

= NΓ(AWΓX,ΓY ◦ ∇ΓX,ΓY )

= Id.

Composing with NΓ(ε−1
X ⊗ ε

−1
Y ) yields

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY ◦N(η−1

ΓX⊗̂ΓY
) ◦NΓ(∇ΓX,ΓY ) ◦NΓ(ε−1

X ⊗ ε
−1
Y )

= NΓ(ε−1
X ⊗ ε

−1
Y )

and then

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY ◦N(η−1

ΓX⊗̂ΓY
◦ Γ(∇ΓX,ΓY ) ◦ Γ(ε−1

X ⊗ ε
−1
Y ))

= NΓ(ε−1
X ⊗ ε

−1
Y ).

Using the definition of the map ψ we can deduce that

ε−1
NΓX⊗NΓY ◦AWΓX,ΓY ◦N(ψX,Y ) = NΓ(ε−1

X ⊗ ε
−1
Y ).

The map ε is natural, therefore the diagram
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NΓ(X ⊗ Y )
εX⊗Y //

NΓ(ε−1
X ⊗ε−1

Y )
��

X ⊗ Y

ε−1
X ⊗ε−1

Y

��
NΓ(NΓX ⊗NΓY ) εNΓX⊗NΓY

// NΓX ⊗NΓY

commutes and we conclude that

εX ⊗ εY ◦AWΓX,ΓY ◦N(ψX,Y )

= εX ⊗ εY ◦ εNΓX⊗NΓY ◦NΓ(ε−1
X ⊗ ε

−1
Y )

= εX⊗Y .

Proposition 5.1.5. The functor

Γ: DG-K-coAlg // S-K-coAlg

is full and faithful and respects coalgebra structures. Moreover, the composite
endofunctor NΓ is naturally isomorphic to the identity functor on the level
of categories of comonoids.

Proof. The map ΓX,Y : DG-K-coAlg(X,Y ) −→ S-K-coAlg(ΓX,ΓY ) is in-
jective and surjective for any X and Y in DG-K-coAlg since the functor Γ
is an equivalence on underlying monoidal categories. It remains to show that
if f = Γ(g) : ΓX → ΓY is a map of simplicial coalgebras then g : X → Y is
a map of differential graded coalgebras. Suppose that f = Γ(g) is comulti-
plicative. That means that in the diagram

ΓX
Γ(∆X) //

Γ(g)

��

Γ(X ⊗X)
ψX,X //

Γ(g⊗g)
��

ΓX⊗̂ΓX

Γ(g)⊗̂Γ(g)
��

ΓY
Γ(∆Y )

// Γ(Y ⊗ Y )
ψY,Y

// ΓY ⊗̂ΓY

the composite square commutes. Since the transformation ψ is natural, the
right square commutes. Consequently, using the fact that the map ψX,X is
injective we deduce that the left square commutes as well. This implies that
Γ
(
(g ⊗ g) ◦ ∆X

)
= Γ(∆Y ◦ Γg). Therefore, using the faithfulness of Γ, we

conclude that (g ⊗ g) ◦∆X = ∆Y ◦ g, that is to say g is comultiplicative.
The counit ε : NΓ −→ Id is comonoidal by the previous lemma. So ε

is comultiplicative and therefore it is a natural isomorphism on the level of
comonoids.
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The unit η : Id −→ ΓN does not have good comonoidal properties. More
precisely, there are objects X and Y in the category S-K-coAlg such that
the diagram

X⊗̂Y
ηX⊗̂Y

��

X⊗̂Y

ηX⊗̂ηY

��
ΓN(X⊗̂Y )

Γ(AWX,Y )
// Γ(NX ⊗NY )

ψNX,NY

// ΓNX⊗̂ΓNY

does not commute. Indeed consider for example X = Y = Γ(Z[1]) as in
[SS03, Remark 2.14].
Since N is left inverse to Γ by the previous proposition, one has

NX = NY = NΓ(Z[1]) ∼= Z[1]

and
NX ⊗NY ∼= Z[1]⊗ Z[1] = Z[2]

Therefore the lower composite map in the previous diagram vanishes in de-
gree 1 since

[Γ(NX ⊗NY )]1 = [Γ(Z[2])]1 = 0.

But in degree 1, the right map ηX⊗̂ηY is an isomorphism between free abelian
groups of rank one since

[Γ(NY )]1 ∼= [Y ]1 ∼= Z ∼= [X]1 ∼= [Γ(NX)]1.

5.2 Quillen functors for coalgebras

We construct right adjoint functors for the coalgebra-valued functors defined
in the preceding section. It turns out that the resulting pairs of functors are
Quillen pairs. Then we investigate the question whether these Quillen pairs
are Quillen equivalences. As already mentioned, the opposite category of
differential graded vector spaces is not cofibrantly generated. Hence we can
not apply the transfer result and the main result of Schwede and Shipley
in order to derive a Quillen equivalence for coalgebras. Thus we consider
a direct approach via a criterion given by Hovey. We observe that several
problems, essentially due to the functor S from vector spaces to coalgebras,
appear.

5.2.1 Two Quillen pairs

Let us consider the pair (N,Γ) and the induced normalization functor from
the category of simplicial coalgebras S-K-coAlg to the category of differ-
ential graded coalgebras DG-K-coAlg, denoted here by Ñ . As seen above,
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the categories of vector spaces and that of coalgebras are related by adjoint
pairs. We sum up these various adjunctions in the diagram below:

(S-K-Vct, ⊗̂, I(K))

Ss

��

N // (DG-K-Vct,⊗,K[0])

Sd

��

Γ
oo

S-K-coAlg

Us

OO

Ñ // DG-K-coAlg.

Ud

OO

Then the following result constructs a Quillen right adjoint functor for
the functor Ñ .

Proposition 5.2.1. In the above situation the functor Ñ has a right adjoint
Rcom. Moreover the adjoint pair (Ñ , Rcom) is a Quillen pair.

Proof. First let V be a differential graded vector space and Sd(V ) its differ-
ential graded cofree coalgebra. We set

Rcom(Sd(V )) = SsΓ(V ).

Indeed the various adjoint pairs (Us, Ss), (N,Γ), (Ud, Sd) and the identity
NUs = UdÑ respectively, yield the following bijections

S-K-coAlg
(
X,RcomSdV

)
= S-K-coAlg

(
X,SsΓV

)
∼= S-K-Vct

(
UsX,ΓV

)
∼= DG-K-Vct

(
NUsX,V

)
∼= DG-K-Vct

(
UdÑX, V

)
∼= S-K-coAlg

(
ÑX, SdV

)
.

This means that the functor Rcom is right adjoint to Ñ for cofree coalge-
bras. Now we notice that the adjunction (Ud, Sd) defines a monad SdUd over
the category DG-K-coAlg. Thus if C is a differential graded coalgebra its
cosimplicial resolution starts as follow:

C // SdUdC
d0 //

d1
// SdUdSdUdC . . .oo

Since the functor Rcom should be a right adjoint it has to preserve lim-
its. Therefore defining Rcom(C) as the equalizer of the maps Rcom(d0) and
Rcom(d1) yields the needed right adjoint.

Finally we observe that the cofibrations and acyclic cofibrations in S-
K-Vct and DG-K-Vct match with those of their respective categories of
comonoids S-K-coAlg and DG-K-coAlg. Since the functor N is a left
Quillen functor the identity NUs = UdÑ ensures that the functor Ñ is a left
Quillen functor.
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We could also consider the pair (Γ, N) and the induced functor Γ̃ from
the category of differential graded coalgebras DG-K-coAlg to the category
of simplicial coalgebras S-K-coAlg. Gathering again the various adjunctions
in the diagram below

(DG-K-Vct,⊗,K[0])

Sd

��

Γ // (S-K-Vct, ⊗̂, I(K))

Ss

��

N
oo

DG-K-coAlg

Ud

OO

Γ̃ // S-K-coAlg

Us

OO

one obtains by a similar consideration a Quillen right adjoint functor for
the functor Γ̃. For every simplicial vector space V it suffices to set

Rcom(Ss(V )) = SdN(V )

and then to consider the cosimplicial resolution arising from the monad SsUs
over the category S-K-coAlg.

We deduce the following result by [Hov99, Lemma 1.3.10].

Corollary 5.2.2. The homotopy categories of differential graded coalgebras
and simplicial coalgebras are adjoint.

5.2.2 Hovey’s criterion for coalgebras

Following Hovey, the Quillen adjunction (Ñ , Rcom) would be a Quillen equiv-
alence if Ñ reflected weak equivalences between cofibrant objects and if for
every fibrant differential graded coalgebra Y , the map Ñ

(
RcomY

)cof → Y
was a weak equivalence in DG-K-coAlg. Notice that since every object in
S-K-coAlg is cofibrant, the cofibrant replacement

(
RcomY

)cof can be taken
to be RcomY . Hence we are reduced to studying the map ÑRcomY → Y for
fibrant coalgebras Y .

Definition 5.2.3. A fibrant differential graded coalgebra Y satisfies the
Hovey criterion if the above map is a weak equivalence in DG-K-coAlg,
that is

H∗(ÑRcomY ) ∼= H∗(Y ).

We investigate the Hovey’s criterion on some differential graded coalge-
bras.

Proposition 5.2.4. The following objects in DG-K-coAlg:

1. the terminal object K[0],

2. the cofree coalgebra Sd(S0) on the 0-sphere S0,
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3. the cofree coalgebra Sd(V ) on every acyclic vector space V

are fibrant and satisfy the Hovey’s criterion.

Proof. As remarked earlier, in the category DG-K-coAlg the one dimen-
sional coalgebra K concentrated in degree zero is the terminal object. This
terminal object, denoted by K[0], is fibrant in the model structure of DG-
K-coAlg. Since the functor Rcom is a right adjoint, it carries the terminal
objectK[0] to the terminal object of S-K-coAlg which is I(K), the simplicial
coalgebra with the one dimensional coalgebra K in each degree. Therefore
we obtain

H∗
(
ÑRcom(K[0])

) ∼= H∗
(
ÑI(K)

) ∼= H∗
(
K[0]

)
,

hence the Hovey criterion is satisfied by K[0].
Recall that every object is fibrant in the model structure on the category

DG-K-Vct. Since the functor Sd preserves fibrations, it follows that every
cofree coalgebra is fibrant. In particular Sd(S0) is fibrant. Now the definition
of the functor Rcom on cofree coalgebras and the Dold-Kan correspondence
yield

ÑRcomSd
(
S0
)

= ÑSsΓ
(
S0
) ∼= ÑSs

(
I(K)

)
.

Since the face maps in the simplicial coalgebra Ss
(
I(K)

)
are all identities

on S(K), their alternating sums are either 0 or idS(K) and the associated
complex is:

· · · ←− 0←− S(K) 0←− S(K) id←− S(K) 0←− S(K) id←− · · ·

Therefore we obtain

H∗

(
ÑSs

(
I(K)

))
=
{

0 if ∗ 6= 0
S(K) if ∗ = 0

Finally the Hovey criterion for the differential graded coalgebra Sd(S0) fol-
lows from the fact that Sd(S0) is concentrated in degree zero and from the
identification of Sd(S0) with S(K).

Now let V be an acyclic differential graded vector space. In other words
V is weakly equivalent to 0, the zero object of the category DG-K-Vct.
Since the functors Sd, Γ and Ss preserve weak equivalences, we deduce on
the one hand that Sd(V ) is weakly equivalent to Sd(0) = K[0] and on the
other hand

ÑRcomSd(V ) = ÑSsΓ(V )
' ÑSsΓ(0)
' ÑSs(0)
= ÑI(K)
= K[0]
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Hence we obtain the required result for acyclic differential graded vector
spaces. Notice in particular that the Hovey criterion holds for the cofree
coalgebra on every n-disk Dn.

We were not able to prove that arbitary fibrant differential graded coal-
gebras satisfy the Hovey criterion. For instance consider the cofree coalgebra
Sd(Sn) on a n-sphere Sn with n ≥ 1. Then with help of the isomorphism(

Sd(Sn)
)∗ ∼= TK[0]

(
S−n

)
= S0 ⊕ S−n ⊕ S−2n ⊕ S−3n ⊕ · · ·

provided in Example 3.3.7 we know the homology of the differential graded
coalgebra Sd(Sn). However, computing the homology of the differential
graded coalgebra

ÑRcomSd(Sn) = ÑSsΓ(Sn)
leads to some difficulties. Let us consider for instance the case n = 1. In
Example 4.2.2 we have already studied the simplicial vector space Γ(S1). It
follows that the complex associated to the simplicial coalgebra Ss(Γ(S1)) is:

0←− S(0) ∂1←− S(K) ∂2←− S(K⊕2) ∂3←− S(K⊕3)←− · · ·

with differentials

∂n =
n∑
i=0

(−1)iS(di)

arising from the face maps of the simplicial vector space Γ(S1). But we have
noted in Remark 2.5.7 that the functor S : K-Vct → K-coAlg applied to
vector spaces with dimension larger than one is hard to express. Moreover
the functor S involves not only the tensor algebra functor but the profinite
completion functor. Hence it does not have good additivity properties that
could simplifly the study of the injectivity or the surjectivity of the above
differentials.

5.2.3 On non-counital coalgebras

We end this chapter with an observation on non-counital coassociative coal-
gebras.

Definition 5.2.5. Let V be a positively differential graded K-vector space.
The non-counital tensor coalgebra T ′(V ) over V is the vector space

T ′(V ) =
⊕
n≥1

V ⊗n

equipped with the coassociative comultiplication

∆T ′(V )(v1 ⊗ · · · ⊗ vn) =
n∑
i=1

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn)

given by deconcatenations.
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The result below asserts that the tensor coalgebra T ′(V ) is couniver-
sal and hence, defines a cofree functor that is right adjoint to the obvious
forgetful functor.

Proposition 5.2.6. Let (C,∆C) be a non-counital positively graded differ-
ential coalgebra. Consider u : C → V , a map of differential graded vector
spaces, and π : T ′(V )→ V the natural projection. Then, there exists a unique
map of coalgebras θ : C → T ′(V ) such that the diagram

V C
uoo

∃! θ||
T ′(V )

π

OO

commutes.

Proof. For i ≥ 1, let us consider the maps

∆(i−1) : C → C ⊗ C → · · · → C⊗(i)

given by the i-fold iterations of the coassociative comultiplication ∆C . For
n ≥ 1, we need to define maps

θn : Cn −→ T ′n(V ) =
⊕

d1+...+dt=n

Vd1 ⊗ . . .⊗ Vdt .

Since the indexes di are positive, we notice that the direct sum is finite and
therefore equivalent to a finite product. In this way, for i ≤ n, the composite
maps

u⊗i ◦∆(i−1) : C −→ C⊗i −→ V ⊗i

give rise to the desired maps θn by the universality of products. Next, by
an induction argument, one obtains the identity

(
∆(i−1) ⊗∆(j−1)

)
◦∆C =

∆(i+j−1) that guarantees that the map θ = (θn)n≥1 is in fact a map of
differential graded coalgebras.

The positive gradings together with the definition of the monoidal pro-
duct in differential graded vector spaces force the couniversality of the tensor
coalgebra T ′(V ). The main advantage of this construction is the isomorphism
H∗
(
T ′(V )

) ∼= T ′
(
H∗(V )

)
given by the Künneth formula.

However, a similar construction does not hold for simplicial non-counital
coalgebras, since in this case, the monoidal product is defined degreewise.
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Zusammenfassung

Die Dold-Kan-Korrespondenz etabliert eine Äquivalenz zwischen der Ka-
tegorie der simplizialen Vektorräume und der Kategorie der nicht-negativ
graduierten differentiellen Vektorräume über einem Körper K. Beide Kate-
gorien besitzen geschlossene monoidale Modellstrukturen. Diese Arbeit un-
tersucht in welchem Ausmaß die an der Dold-Kan-Korrespondenz beteiligten
Funktoren die Modellstrukturen der assoziierten Kategorien von Komonoiden
erhalten.
Wir beweisen, dass der Normalisierungsfunktor N Teil einer Quillen-Adjunk-
tion zwischen der Kategorie simplizialer Koalgebren und der Kategorie nicht-
negativ graduierter differentieller Koalgebren ist. Weiter zeigen wir ein
analoges Resultat für den zu N inversen Funktor Γ, welcher uns eine weitere
Adjunktion liefert.
Wir verwenden zwei Methoden um zu überprüfen, ob diese Quillen-Adjunk-
tionen sogar Quillen-Äquivalenzen sind: zum Einen die kategorielle Dua-
lisierung nach Schwede und Shipley, zum Anderen ein Kriterium von Hovey.
Im ersten Fall stellen wir fest, dass die opponierte Kategorie der nicht-negativ
graduierten differentiellen Vektorräume keine monoidale Modellstruktur zu-
lässt. Dies begründet sich darin, dass das monoidale Produkt in dieser
Kategorie nicht geschlossen ist. Auch hat diese Kategorie nicht genug ko-
kleine Objekte um Quillens kokleine-Objekte-Argument anzuwenden. Damit
schließen wir, dass die Modellstruktur auf der opponierten Kategorie der
nicht-negativ graduierten differentiellen Vektorräume nicht durch das Trans-
fer-Theorem wiedergegeben werden kann. Im zweiten Fall betrachten wir den
direkten Zugang nach Hovey. Wir können Hoveys Kriterium nicht für be-
liebige fasernde Koalgebren nachweisen: Betrachten wir den Komplex, der
zu der kofreien Koalgebra auf der simplizialen n-Sphäre für n > 0 assoziiert
wird. Schon die Berechnung der Homologie dieses Komplexes führt zu di-
versen Problemen, da der kofreie Koalgebra-Funktor unzugänglich ist und
keine guten homologischen Eigenschaften hat. Allerdings finden wir Klassen
differentieller graduierter Koalgebren, die Hoveys Kriterium erfüllen. Diese
umfassen unter anderem die kofreien Koalgebren auf der Null-Sphäre und
azyklische Vektorräume.
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