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Abstract

The research on atomic scale solid state structures ha®gdedanto a highly dy-
namic field that is driven by fundamental questions as wedigiications. In this
thesis, the electronic properties offdrent nano scale systems are theoretically
investigated and distinct physicdfects determining their electronic structure will
be encountered.

In the first part, &ects of inhomogeneities and impurities in graphene are ad-
dressed by means of first-principles theory and analyticadets. We give an
explanation for an unexpected gap reported in recent segrtnnneling spec-
troscopy (STS) experiments on graphene. A particular typeeztron-phonon
coupling is shown to cause huge inelastic contributionsTi® $n graphene. As
graphene exhibits long range ripples, we investigate teetrnic properties of
corrugated graphene. We show that quenched ripples indaggdp-magnetic
fields and that these can lead to the formation of flat bandsthedgermi level,
which are destroyed upon annealing. Being crucial for arpfiegtion, we then
turn to impurity éfects in graphene. Berent interaction mechanisms of impu-
rities with graphene are introduced and the requirememtgripurity states in
the vicinity of the Fermi level are worked out. We find that ogshell and in-
ert impurities &ect graphene very flerently: the former interact directly with
graphene, strongly hybridize, cause midgap states or beabtarged, whereas
inert impurities usually physisorb and substrate medidtguing dfects become
important.

In the second part of this thesis, we address the electroapepties of mag-
netic ad-atoms and nanostructures on surfaces by combirsgtgleinctional the-
ory with many body approaches. For the model system of Ca@dsaon difer-
ent transition metal surfaces, hybridization mechanism®hicidated and recent
photoemission experiments displaying a transition frooalized to delocalized
Ce 4f electrons upon changing the substrate are explained. wtds, we turn
to the Kondo éect of Co atoms in diierent environments. In a joint STS and
ab-initio theory investigation, we find that the Kondo temgtere of Co atoms
embedded in CoGiclusters on Cu(111) exhibits a nonmonotonic variation with
the cluster size and demonstrate the importance of theildcainogeneous elec-
tronic structure for correlationfiects in small clusters. Motivated by very recent
experiments, we identify possible scenarios for the Konfdlece due to Co ad-
atoms on graphene. We find that orbital physics controls thedk dfect if Co
is located in the center of a graphene hexagon. Charaatesighatures of the
interplay of the orbital Co physics and the peculiar bamdestire of graphene are
predicted to occur in local probe experiments.



Zusammenfassung

Nanostrukturierte Festkorper bilden ein dynamischesdfarngsfeld, das sowohl
durch grundlegende Fragen als auch durch Anwendungenierbtivird. In der
vorliegenden Arbeit werden die elektronischen Eigengehaferschiedener Na-
nosysteme theoretisch untersucht und es wird herausgiestelche physikali-
schen Mechanismen ihre elektronische Struktur bestimmen.

Im ersten Teil wird der Einfluss von Inhomogenitaten unor§gllen auf Gra-
phen mittels Dichtefunktionaltheorie und analytischerddite betrachtet. Wir
erklaren eine unerwartete Energieliicke, die in Rasteelspektroskopieexpe-
rimenten (RTS) beobachtet wurde. Es wird gezeigt, dass sgeeielle Art der
Elektron-Phonon-Wechselwirkung zu sehr grof3en unetdstis Beitragen in der
RTS fuhrt. Da Graphen langreichweitigefflein aufweist, betrachten wir die elek-
tronischen Eigenschaften von welligem Graphen. Wir zeidass “eingefrorene”
Riffeln pseudomagnetische Felder und flache Bander am Ferreailikervor-
rufen, welche durch Relaxation zerstort werden. Danactdeve Storstellenef-
fekte in Graphen behandelt. Dabei werden verschiedened&kankungsmecha-
nismen von Storstellen mit Graphen und die Voraussetaufigedie Erzeugung
quasilokaler Zustande am Fermi Niveau herausgearb8iigtstellen mit &enen
Elektronenschalen wechselwirken direkt mit Graphen, ioy&ieren stark oder
werden geladen, wahrend inerte Storstellen indirekt@néphen wechselwirken
und im Zusammenspiel mit dem Substrat zu Dotierung fuhiemkn.

Der zweite Teil dieser Arbeit behandelt die elektroniscBegenschaften ma-
gnetischer Ad-Atome und Nanostrukturen auf Oberflacheshei Dichtefunk-
tionaltheorie und Vielteilchenmethoden kombiniert werdeur Ce Atome auf
verschiedenUbergangsmetalloberflachen werden Hybridisierungsemsimen
erlautert und Photoemissionsexperimente, die elieargang von lokalisierten
zu delokalisierten Ce #4Elektronen zeigen, erklart. Im Weiteren wird der Kondo
Effekt von Co Atomen in verschiedenen Umgebungen untersucinthDKombi-
nation von RTS und ab-initio Theorie finden wir, dass die Kofidmperatur von
Co Atomen in CoCyi Clustern auf Cu (111) nicht monoton mit der Clustergrof3e
variiert, und demonstrieren die Wichtigkeit der lokalehamogenen elektroni-
schen Struktur fur Korrelationfiekte in kleinen Clustern. Motiviert durch RTS
Experimente, werden im letzten Teil der Arbeit moglichei®rien fur den Kon-
do Efekt von Co Atomen auf Graphen diskutiert. Wir zeigen, dabgale Frei-
heitsgrade den Kondoftekt kontrollieren, falls Co zentral Uber einem Graphen
Hexagon adsorbiert. Fir RTS Experimente werden charaligashe Signaturen
des Wechselspiels von orbitaler Co Physik und der besondgaedstruktur von
Graphen vorhergesagt.
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Chapter 1

Introduction

Physics aims to describe phenomena on length scales raingmdPlanck scale

of 10-*m up to astronomic length scales of more tha®* it The dominating
physics strongly diers between the scales and transitions from one scale to a
longer scale are often associated with the emergence of hemomena, growing
complexity and eventually coarse graining.

Solid state physics deals with phenomena spanning the festgehe 161°m
atomic scale up to someuin or even more. Mechanical properties of solid state
materials of some 18 m to 10 m in size have been exploited since the ancient
times. Similarly, magnetism has fascinated people and &ées bsed in applica-
tions like compass needles for centuries. Starting aboitygdrs ago, increas-
ingly smaller structures could be fabricated, studied afouad their way into
technology. Semiconductors are one remarkable examplasmdspect, where
advancing miniaturization revealed beautiful new phyard brought along novel
applications: The quantum Halffect has been discovered in the inversion layer of
a metal-oxide-semiconductor fieldfect transistor (MOSFET)[1], which is at the
same time the building block of all modern computers. Dutimglast decades,
improvement of semiconductor devices meant miniaturatiith typical dimen-
sions of the smallest structures reaching80 nm in 2007. To date, the top-down
production of structures of some nm in size is becoming ptssind raises the
guestion of how electronic and magnetiteets emerge on this previously inac-
cessible length scale.

In the opposite, bottom-up, direction, self assembly anthahanipulation us-
ing scanning tunneling microscopes (STM) provide a grovaimgunt of possibil-
ities to design and characterize nano scale structures: iISTipable of moving
individual atoms along surfaces and to create structurasnell-directed manner
[2]. In this way, electronic wave functions can be engindenetheir size, shape
and energy dependence 3, 4].

No matter from which direction, the nano scale, i.e. the eafigm a few
atoms up to 100nm, is approached new questions of both,tgicieand techno-
logical importance arise. If three dimensional materiéis 5i are structured on
the nano scale the ratio of surface to bulk atoms becomesatiih a sense that
surface &ects might significantly determine the electronic progsrtf the whole

1



2 1. Introduction

structure. For this reason, the conventional Si-basedrel@cs is expected to en-
counter fundamental limitations at the spatial scale bdlewm [5] and the search
for so-called “nanomaterials” that are better suited feating smaller structures
than Si is of particular technological importance. Thisrsbaxtends over a di-
verse field of materials including nanopatrticles with atelh dimensions within

the nanoscale, nanotubes having a nanosize cross-séetieaar nanofilms with

a nanoscale thickness, but macroscopic extent in the otlvedimensions.

In this context, carbon is an extremely promising elementfoims sta-
ble 4-fold coordinated Sphybrids like diamond, 2-fold coordinated sp hybrids
like acetylene, as well as stable 3-fold coordinatet! lagbrids like benzene or
graphene. The latter allotrope, made up by carbon atomsgedain a two
dimensional (2-d) honeycomb lattice, is a building block floree dimensional
graphite, "one dimensional” carbon nanotubes and "zeredsional” fullerenes.
These derived materials were discovered before graphanddiu behavior al-
ready pointed towards one of graphene’s most remarkabpepies: The carbon
atoms in graphene "are completely naked from above and Bédawthey are
"largely immune to further bonding”, as summed up by R. Seyalh his 1996
Nobel lecturellB].

The first experimental realization of graphenk [7] about &géater initiated
enormous interest in this material. In addition to being fin& truly two di-
mensional material [8] and being surprisingly inert, greqpd became famous for
its remarkable electronic propertiés [9] L0} 11]. Its 2ystal structure leads to
electrons behaving like massless fermions with the speédhdfbeing replaced
by the Fermi velocitw ~ 1 nys. Electrons in graphene show extraordinarily
high charge carrier mobility ~ 10° cm?V-1s! [i7, [12,[13] which —in combina-
tion with the very high Fermi velocity— makes micron mearefgaths routinely
achievable. These properties make graphene a hotly detwtelilate for silicon
replacement in electronics industry. Moreover, graphsrgiticularly prospec-
tive for applications like ultra-high frequency transist{l4], gas sensois[i15] or
as transparent flexible electrode material for displayrnietdbgy. Indeed, as large
scale high quality graphene samples grown by a techniguedcahemical va-
por deposition[[16] are becoming available, graphene egijitins are appearing
very realistic today and are calling for an intense investan of its electronic
properties.

The dfects of inhomogeneities in graphene are particularly ingmbr First,
inhomogeneities are widely used to functionalize materi&inpurities in semi-
conductors, e.g., can be used to control charge transpwerara key element for
building transistors. Similarly, the giant magneto remise (GMR) &ect used in
magnetic data storage employs that nm-thin layered fergoetanon-ferromagnet
structures exhibit extraordinarily strong magneto resisé.

At the same time, inhomogeneities are sources of electraitesing: At suf-
ficiently low temperatures, impurity scattering is the miagbortant contribution
to the electronic resistance of usual metals or semicondaict

Impurity effects can not only lead to new applications and determine pleei
formance but they can also reveal the nature of exotic grataids, details of
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electronic correlations or magnetic interactions. Imgesiact as scattering cen-
ters which can locally destroy a coherent electronic statecaeate a real-space
fingerprint of this state. Scanning tunneling microscopyN$ images of the
guasiparticle density of states close to Zn impurities enhigh T, superconduc-
tor BiSr,CaCuyOg,s, for instance, revealed a four-fold symmetric quasi-péeti
cloud [17] and is one of the most direct proofsdafvave pairing in these materi-
als. Similarly, impurities uncovered the nature of an exstirface state occurring
on clean Cr (001) surfaces as being an orbital Kondo singtetéd by Crd,, and
dy, orbitals with the sp conduction electronsi[18].

Inhomogeneities in graphene should be therefore studiedttn a basic un-
derstanding of this material as well as they may presenésdotapplications. The
first part of this thesis is devoted to impurity, phonon amd&tral inhomogene-
ity effects on electronic properties of this material. Moreoverwill address the
interaction of graphene with magnetic impurities in the {zeat of this thesis and
encounter a special Konddfect controlled by graphene’s particular symmetries.

Magnetism, in general, is major challenge in condensedamgaltiysics, where
the advance to the nano scale comes up with the possibilitgwfunderstanding
as well as of novel applications. Techniques like x-ray nedigrcircular dichro-
ism (XMCD) or spin-polarized scanning tunneling microsg@tiow to address
magnetism element specifically and with atomic scale dpasmlution. In this
way, magnetic interactions can be investigated in the rénoge individual atoms
up to structures of some nm’s in size. Such experiments aawvide important
insights for understanding the transition from atoms tadsoi.e. from electronic
excitations being described by atomic multiplets to etautr excitations forming
guasiparticle bands or collective excitations like spiaves. A general theory of
the magnetic properties of atoms, molecules or clustersmtact with substrate
surfaces would be a big step in this direction but is stilklag. Moreover, un-
derstanding these magnetic systems will be important far starage technology,
where proceeding miniaturization brings up questions of siable magnetic mo-
ments can formed in increasingly small structures and hewrtbments interact
with their surrounding.

Many efects have been observed in this context. Single atoms cannagy-
netic moments on paramagnetic surfaces with the directidheomagnetic mo-
ment being stabilized by unexpectedly high magnetic aropaes as found for Co
ad-atoms on Pt (111) [19]. On other surfaces like Cu (111)(3d), Ag (100),
or Au (111) [20/21] the same Co ad-atoms appear to be begilledas “Kondo
impurities”: below a characteristic temperatufg, the Co magnetic moment is
screened by the conduction electrons which condense intargy+mody ground
state forming singlet with the ad-atom spin. The dominaphgsical éfects ap-
pear to depend strongly on precise atomic configurations.

While this gives large freedom to design nanomagnetic &tras with desired
properties, the fact that “each atom matters” presents amaapllenge for the
theoretical description of these structures. The secortepthis thesis addresses
exactly this problem by combining ab-initio electronic ¢imqe and model based
many-body approaches. We will investigate certain modstesys like Ce ad-
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4 1. Introduction

atoms on dierent substrates or Cognano structures on Cu (111) surfaces to
find out which atomistic processes determine the physichedd systems and
which quantities obtained from first-principles theory #re best starting point
for getting a model based understanding of these systems.

The thesis is organized as follows: The description of int@sand inhomo-
geneities in graphene as well as the study of magnetic nactistes presented in
this work is in large parts based on ab-initio simulationthie framework of den-
sity functional theory (DFT). DFT as well as generalizagda deal with correla-
tion phenomena like the Konddfect are introduced in chapfdr 2. Afterwards we
turn to the study of graphene with its basic electronic prigebeing introduced
in chapteiB followed by an investigation of structural infmgeneities in chapter
M as well as impurity £ects in this material in chaptél 5. Chaplfér 6 is devoted
to magnetic nano structures on non-magnetic substratésasu€e on dferent
transition metal substrates, Co{an Cu (111) as well as Co on graphene. In this
chapter the Anderson impurity model and the Kondo modelrareduced, their
basic physics is discussed and then combined with DFT elounk to describe
these nanosystems. Ce on Ag (111), W (110), and Rh (111) dssv€oCy on
Cu (111) are investigated in joint experimental and thécaiestudies.



Chapter 2

Ab-initio theory of solids

Deriving material properties from their atomistic struetpresents a great chal-
lenge in theoretical physics: The full quantum mechanieakdption of any solid
state material involves a many body Hamiltonian of the form

l:l = Fle + |:|| + Hei, (2.1)

covering the dynamics of the electromd, the ion cores or nucleH; and their
mutual interactionHe;. H is called first-principles or ab-initio Hamiltonian if it
is only based on fundamental constants like the elementamge g, the electron
massim, the ion core masséd,,, their charge&, etc.. A nonrelativistic version
[22] of this Hamiltonian containing the Coulomb-type iamiinteractionV, and
electron-nucleus interaction, | reads as

He = .|fi—f" (2.2)
A= Do 2. (R.-R). (2.3)
He = ZVH(Rﬂ—ri, (2.4)

where (i, FAQy) and (@, F3#) are position and momentum operators of the elec-
trons and ion cores, respectivielyin any situation of practical interest to solid
sate physics this Hamiltonian includes on the order of sobfe(hano system) to

~ 107 quantum degrees of freedom (macroscopic system) and oigaihysical
observables by directly diagonalizing it or directly ewating quantum statistical
averages is intractable. The formidable task is ratherrigpdpproximations that
make calculations of some desired quantity feasible whaéntaining stficient
accuracy. As usual, the approximation of choice strongpedes on the physical
observable of interest. A frequently used starting poihésBorn-Oppenheimer

In order to keep notations simple, vectors are not markeslititvout this thesis. Whether a
guantity is a vector or a scalar becomes clear from the cantex
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6 2. Ab-initio theory of solids

approximation (see secti¢n_P.1) to decouple the electranétthe ion core dy-
namics, which leads to a problem of interacting electrona static potential
generated by frozen ion cores[23]. The latter problem, ghagsimpler than the
initial one, still comprises too much complexity for dir@eticulations of physical
properties and various ways of treating it have been deeelog hese include
ground state methods like DFI_]24] or wave function Montel€f#5] as well as

excited state methods like GW]26]. DFT is a particularlyssful ground state
approach that gives even good predictions for one-ele@xaitation spectra as
long as correlations are not too strong. Large parts of tloikwely on DFT and

the formalism will be introduced in secti@nP.2.

Whenever the description of electrons in terms of indepetplarticles breaks
down the systems are called strongly correlated: The eleictwave function ac-
quires many body character meaning that a description mg@f single Slater
determinants is no more possible. The Kondle& [27], where the conduction
electrons form a singlet with a localized spin, is a famowmaxle where the sin-
gle particle picture fails qualitatively to describe therttmodynamic and spectral
properties. Strongly correlated electrons have beentibadily studied by means
of model Hamiltonians reading generally as

n 1 .
He = Z tijCiTCj + E Z Uijkl CiTerCkC|. (25)
g ik

Here,c andc' denote the usual fermionic annihilation and creation dpesa
respectively, which are labelled by a multi indexcontaining site, orbital and
spin degrees of freedom. All one electron contributionshi® Hamiltonian are
included in the “hopping parameters;, whereadJ;;, describes the two particle
interactions.

Rewriting the full electronic Hamiltonian as obtained frég. (Z.1) in Born-
Oppenheimer approximation to a second quantized tightHbgnbasis yields a
Hamiltonian in the form of Eq.[{215). (See appendix B.) Frafly employed
model Hamiltonians, like the Anderson impurity model or thebbard model
[28], differ from this full Hamiltonian by considering only a truncatelilbert
space of one electron degrees of freedom, e.g. restridimgntices to a par-
ticular set of orbitals, and using a simplified local Coulomteraction. During
the last decades great progress has been made in undeargtémeliphysics of
the model Hamiltonians by various techniques: The behavigknderson im-
purities can be understood by means of renormalizationmnoethods, largéN
expansions or quantum Monte Carlo methods. Theoretictd sawh as dynami-
cal mean field theory (DMFT][29, 30, B1], its cluster extensi [32/ 3334, 35]
or the recent dual fermion approachl[36] for treating latiwodels like the Hub-
bard model have been developed and allowed one to undete@ptysics of the
Mott transition or the occurrence of complex ordered phas#dsese systems.

Originally, these approaches relied on hopping and Coulpartameters be-
ing empirically adjusted, which hinders their applicalyilin cases, where the
detailled atomistic structure is decisive. One way to aslgit@is problem is by

6



2.1 Born-Oppenheimer Approximation

combining DFT with model approaches to obtain structure rmaterial specific
model Hamiltonians derived from first principles. One ssstel implementation
of this idea is the “LDA-DMFT” method [37[38]. The combination of DFT with
model-based many body approaches is particular impomarihé understanding
of magnetic nanostructures, which are addressed in cHapterthis context, we
covercome limitations of prior combinations of many bodytineels with DFT,
which relied on specific DFT implementations that did nodwalto treat complex
magnetic nanostructures.

In sectionZ.P a derivation of DFT and important prereqassior its practi-
cal use as well as an introduction of the implementation dsethis work are
given. Afterwards a theoretical background for combinirgiDwvith model based
approaches is given in terms of affeetive action formalism and constraining
fields.

2.1 Born-Oppenheimer Approximation

Since the electron mass is by a factor of 1800 less than thiesuenass, the
electrons should follow the nuclear motion quasi-instaetasly. This heuristic
argument has been put on formal grounds by Born and Oppeehésee, e.g.,
[23] or [22].) who showed that electron and ion core dynanos be separated
in a lowest order approximation:

We consider the electrons moving in a static array of iongadre. the opera-
torsFAQ;, — R, are replaced by real parameters. Solving the resulting kaman
describing the electrons in presence of frozen ion cores,

(|:|e + I:Iei)wK(R,u’ ri) = EK(R,U)wK(R,U’ ri)’ (26)

yields a basis of electronic eigenfunctiapig(R,, ri), which contain the nuclear
coordinatesR,, as parameter« denotes the overall electronic quantum number.
Now, the following ansatz for eigenfunctions of the full Héonian, Eq. [Z1), is
chosen:

Do(R.. 1) = xo(RIYK (R, 1), (2.7)

where the wave functiopg(R,) of the nuclei depends on the total system quantum
numberQ. Applying the full Hamiltonian to the ansatz for the full wafunctions
yields

HPo(R,. 1) = [Ex(R.) + Fi| ®o(R,.r)
= Yk (R, 1) [EK(R#) + l:li])(Q(R#)
_ Z ﬁ [ZVpWK(Ry, Vuro(Ry) +XQ(R#)V5wK(R#’ ri)] ) (2.8)

The energyEx (R,) acts on the ion core motion as an adiabatic potential, vesere
the last line of Eq. [{[ZI8) contains the non-adiabatic terfilse contribution~
V. (Re, 1) Vuxo(R,) vanishes in first order perturbation theory but the term

7



8 2. Ab-initio theory of solids

V2 (R, 1i) is finite in this order. Since, by symmetiyx may only depend on
differencesR, - ry, this first order correction is by a factor of/M, < 0.5 1073
smaller than the pure electronic kinetic energy. Up to atives of this order, the
electrons follow the ion core motions adiabatically (ke= const).

It is therefore in many circumstances an appropriate apm&tion to treat the
electrons as moving in a static potential generated by tieefr ion cores, while
the ion cores are considered as classical objects movirgidiective potential
Ex(R,) and interacting viaV;(R, — R)). In large parts of this thesis we will make
use of this so-called Born-Oppenheimer approximation. sklajly, it is equiv-
alent to neglecting allféects of electron-phonon coupling. There are however
famous examples, like BCS superconductivity, where thgr@gamation breaks
down. In chaptell4 we will deal with scanning tunneling speeof graphene and
show that electron-phonon coupling has an unexpectedipg#fect, there.

2.2 Density Functional Theory

Having separated the electronic dynamics from the nuclediomone is in gen-
eral still left with a problem of greatest complexity and thany body all electron
wave functionsyk (R, ri) being quasi unmanageable objects. However, Hohen-
berg, Kohn and Sham showed that the groundstate of any ctitggaelectron
system can be properly described by the ground state densigad of the many
body wave function (Hohenberg-Kohn Theorem I). They fursteowed that this
density obeys a variational condition (Hohenberg-Kohnadrem II), which can
be used for mapping the many electron problem ontoféectve single particle
problem (Kohn-Sham equations).

A classical derivation, following Kuiblef[22], Jonés [24hd Martin [39] will
be given, here. An alternative derivation based onféecave action formalism
will be discussed in the context of going beyond DFT in sedA&G.].

Considem electrons moving in an external potenthLt = Zi“il Vext(fi) being
described by

He = T + Vee + Voxs, (2.9)

whereT is their kinetic energy ande is their interaction. (See EJ_{2.6.) For any
N-electron stat@b), the densityn(r) at a pointr is given by

n(r) = (®| [Z S(r - fi)) |D). (2.10)
i=1

A densityn(r) resulting from arN-electron wave function according to EG.(2.10)
is calledN-representable. On the setldfrepresentable densities the functional

F[n] = |q>§2h|/|r(]n)<q)|-r + Ved @) (2.11)

is well defined withM(n) being the set o-electron statel@) yielding the density
n(r). The contribution of the external potenti@Ve.|®) to the total energ¥ =

8



2.2 Density Functional Theory

(®|H¢|®) of the electronic system is given by
(@1Vexd®) = [ (Al (2.12)

With the ground statéd,), for givenVey and the corresponding density, Ritz’s
variational principle proves that

Eo = (@olHel®o) = min (®IHel®) = Fng] + f No(MVeu(r)Ar.  (2.13)

This is the Hohenberg-Kohn Theorem |: The ground state grieggpf an inter-
acting electron system is a functional of the electron dgnsi

Eo = E[n()]. (214)

Another application of Ritz’s variational principle yieddor anyN-representable
electron densityr # ng

E[no] = |CD)mln (D|H|DP) < |q>§2|!/|r(]n)<q)|Helq)> = E[n]. (2.15)

€M(no)

Therefore, the ground state densigyminimizes the energy function&n] within
the set ofN-representable densities, which proves the HohenbergrKbleorem
ll. As consequence, the ground state density obeys theizaighequation

oE[n]
on(r) -

(2.16)

whereu is a Lagrange multiplier to ensure the desired number otreles,N =
[ n(r)d®. This can be solved by mapping onto a single particle probiétn a
self-consistency condition. First, consider an auxiligygtem of noninteracting
particles described by the Schrodinger equation

2
[—;’—mA v veﬁ(r)] wi(t) = awi(r). (2.17)

The ground state density of this system is obtained by odéogpheN energeti-
cally lowest states

N
n) = > Wi, (2.18)
i=1
The dfective potentialvg;(r) has to be determined such, that the ground state
density of the interacting electron system and of the aarxilsystem coincide.

To this end, the exchange-correlation functioBg[n] is defined by splitting the
energy functional of the interacting electrons accordmg t

E[N] = Toln] + Enlnl(r) + Exclr] + f PN )Veu(r). (2.19)

9



10 2. Ab-initio theory of solids

Here,To[Nn] denotes the kinetic energy of noninteracting electrorik thie density
n andEy[n] is the electrostatic energy (Hartree energy) of the chdirggeibution
resulting fromn. Defining the Hartree potential and the exchange-coroeigio-
tential by

welrl(n) = 22 andwirtr) = 2441, (2.20)
respectively, EqL{Z.16) can be replaced by
OTolN | () + wlnl() + veu) 222 20 (2.20)

oy (r) oy (r)

withi = 1,2,..., N and the orthonormality constraiQk;|y;) = 6;j. As —U&TDO(?) =
~ 2 Ayi(r) Eq. (Z21) and{2Z17) coincide for

Ve (1) = Vext(r) + Vu[N](r) + vie[N](r). (2.22)

Therefore, the ground state density of the interactingiedasystem is given
by a self consistent solution of the Eqs.(2.2P), (.17) &), known as Kohn-
Sham equationsy;(r) and¢ are referred to as Kohn-Sham eigenfunctions and
eigenvalues, respectively.

The proof of the Hohenberg-Kohn theorems presented abdds htso if the
for electron density(r) is replaced by the spin density matrix

Aas(r) = (DN Ws(r)ID) (2.23)

as fundamental variable. He¥€,(r) denotes the field operator for electrons with
spina =T, |. This allows for more flexibility in formulating approximans to the
exchange-correlation functional.

To generalize the Kohn-Sham theory to the spin dependeaisas Ref.[]40])
the condition of vanishing variation of the total eneligji] under the constraint
N =3, [fi,(r)dr is examined:

T, N 6E
5%‘(’0 + Vu[AI(r)6,s + ) + Vos(F) = Ubop. (2.24)

Comparison to a noninteracting auxiliary system, as in §gs22) and [(Z117),
shows that Eq{Z.24) is equivalent to the coupled Pauli gqeations

2 . .
; [_;’_maaﬁA Vg () + VI3 + VETRI(D) | 00(1) = w0 (0).

In analogy to Eq. [[Z18), the spin density matrix is given my(f) =
TR ud (Nu(r) and self-consistency of the Hartreg[fi] and exchange-
correlation potentialsxc[ﬁ] is required.

10



2.2 Density Functional Theory

11

2.2.1 Approximations to the exchange-correlation functioal

The total energy functional has been abstractly defined is. EZ.I1) and
(Z13) but an explicit form necessary for practical applaas of the theory is
a-priori unknown. A very successful class of approximatectionals are the so-
called (semi-)local exchange correlation functionalsiolwtuse exact exchange-
correlation energies of the homogeneous electron gas ggpamx@mation for in-
homogeneous systems. The local-density approximatiod\[Libplements this
by assuming

Elr] = f N()ex(n(), (2.25)

wheree, is afunctionof the densityn(r). To obtain an explicit form og,., one
separates exchandgg,, and correlationk,, contributions to

Ey = Ey + Eq (2.26)

and similarlye,. = € + &.: The exchange enerdy is defined as the Fock integral
applied to the Kohn-Sham (KS) orbitals:

Ex[N] = (D"S|Ved®®) — Enn, (2.27)

where|®XS) is the Slater determinant of the occupied KS orbitals. Tkis@ssion
can be evaluated for the homogeneous electron gas, whekSttwebitals are
plane waves]41]. The resulting exchange energy denEity is

3 (On/4ys

2.2
4 rs (2.28)

3
&(n) = ‘E(C"Wzr\)”3 ==

with the Wigner Seitz radius; being radius of a sphere containing one electron

on averagen = —;. Fore., there are analytical expressions for the homogeneous

electron gas in the limits of high and low densities. The higinsity limit is the
limit of weak interactions, in which

e(N) = cologrs— ¢y + Corslogrs — Cars + . .. (2.29)

and the constants are obtained from many-body perturbation theary [41]. In

the low-density, i.e., strong coupling limit, comparisorthe electrostatic and the
zero-point vibrational energies of a Wigner crystal yig4iE]

dy d
eo(n) = -+ 3—/12 +. (2.30)
S

and the constant$. An expression encompassing both limits is

1
2Co(Bara’? + Bar s + Bard? + Bar2) ,

2In the following section atomic units are usdd= e = me = 1.

e(n) = —2¢o(1 + ayrg) log|l + (2.31)

11



12 2. Ab-initio theory of solids

whereg: = 5 expl52), B2 = 2cB7. The remaining cd@icientsas, B andp,
are obtained by fitting Eq.[{2.B1) to Quantum Monte Carlo @ation energies
by Ceperley and Alder. (See, e.d@..][41] and referencesithgre

The generalization of LDA to include spin densities, callechl spin density
approximation (LSDA), reads for the collinear case as

Bl = [ n0)eclm®). n e (2.32)

This LSDA functional can be obtained from the LDA functionalng spin scaling
relations for kinetic and exchange terms as well as a randwsgapproximation
(RPA) motivated interpolation for the correlation energitidely used param-
eterizations can be found, e.g., in Ref._1[41]. For DFT catahs including
non-collinear spin configurations, an approximation to élkehange correlation
potential is obtained by employing Edq.{2.32) and diagaadj the spin density
matrix fi,s(r) locally. (Seel[2R] for details.)

To construct functionals beyond LDA, in particular the gatieed gradi-
ent approximations (GGA) used in many parts of this work, dbecept of the
exchange-correlation hola,(r,r’), has to be introduced[22]: Consider the two
electron correlation function

p2(r, 1) = TO(@NY] (MWL) Yo () o (1) 0) (2.33)

and defineny(r,r’) by pa(r,r’) = n(r)ny(r, r’) with ny(r,r’) = n(r’) + ny(r,r’).
Hence n(r,r’) describes the depletion of densityrgtif there is an electron at
Integrating Eq.[(Z.33) over yields the sum rule

fd?’r’nxc(r, )= -1 (2.34)

In analogy to Egs. [{2.26) anf{ZI12%(r,r’) = ny(r,r’) + ne(r,r’) can be de-
composed into the exchange hatg(r, r’), and the correlation holec(r,r’). The
exchange energy is defined as the Fock integral of the KSatsbiEq. [2.2]7),
which implies

ny(r,r') <0 (2.35)

in all space and
fd3r’nx(r, 'y =-1. (2.36)
Combination of Eqs[{Z.34) and (Z]36) yields

fd3r’nc(r, r') = 0. (2.37)
With the concept of coupling constant integratiag(r,r’) can be directly

related to the functiondt,.[n]: We generalize the density functional, EG.{2.11),
by introducing the coupling constante [0, 1],

F.n] = l@grgmﬂ)((blT + AVed D), (2.38)

12



2.2 Density Functional Theory

and defind®?) as the N-electron state, which minimiZBs AVee Under the con-
straint of yielding the densitg(r). As
dF,[n]
da

= (D Ved®p), (2.39)

we obtain fromF[n] = Fq[n] +f0 F*[”] dA by definition of the exchange-correlation
functional, Eq. [[Z.19),

Exln] = f (DA Nad D7) — Enlr]. (2.40)

With the replacementgb) — |®@}) andp,(r,r’) — pa(r,r’) in Eq. ([Z3B) we
define the coupling constant dependent exchange-comelhtle,nl(r,r’), by
pa(r, 1) = n(r)ny(r,r’) and

na(r,r’) = n(r’) + n(r,r").
This yields the electron-electron interaction energy asfion of A:

n(rny(r, 1)
Ir—r|

(DX Ved @}y = % f or dr’

By definition of the Hartree energy and Eq._{2.40), one findd i), is deter-
mined by the coupling-constant averaged exchange-ctaelbole ny(r,r’) =

f dand.(r,r"):

Eyoln] = f or dr '”(?”X"(rr,l "),
Hence an accurate approximation to the exchange-cooelatnctionalE,[n] is
equivalent an accurate descriptionngf(r, r’).

The fact that local approximations like L(S)DA give surprgly accurate re-
sults even for systems, where the density varies strongtii@scale of the Fermi
wavelength or the Thomas-Fermi screening length can bl perderstood from
properties of the corresponding exchange-correlatioe:ha{S)DA is derived
from the homogeneous electron gas, which is a real physystéés. Therefore,
the LDA exchange-correlation hole respects the sum ruléxof(Z.36) and Eq.
(2317) as well as the negativity condition of EQ.(2.35).

These properties of the exchange-correlation hole need pdserved when
constructing of semilocal generalizations of LSDA: Thetfinschange-correlation
functionals including density gradien® - the so-called gradient expansion ap-
proximations (GEA) - were less accurate than LDA due to uspaf properties
of ny(r,r + u) at largeu [41]: There,nSEA exhibits undamped cos{Ri) oscilla-
tions and violates the negativity condition, EG._(2.35)eBum rule, Eq.[{2.36),
is only fullfilled with an additional convergence factor. rehermore,nS&A does
not integrate to zero as required by Hg. (2.37) due to a pesitf tail at largeu.

At smallu, however, the GEA exchange-correlation hole is much béttan
LDA. Perdew, Wang, Becke et al. (see, e.q.,][41]) succeedembmnstructing

13



14 2. Ab-initio theory of solids

functionals that combine the desirable features of LDA with more realistic
exchange-correlation-hole from GEA at smallThis class of semilocal function-
als, called generalized gradient approximations (GGAnaw widely applied

from solid state physics to chemistry.

In calculations for this thesis GGA-functionals PW91 andEPave been
used. The basic step of getting from GEA to PW91-GGA is intcddg a real-
space cutfi on nSEA that enforces the sum rules and the negativity contition ac-
cording to Eqgs. [[2.35) {{Z.87). The explicit parameter@abf PW91 is given
in [42]. The newer PBE GGA-functional can be constructedemotuitively by
using some known exact relations as starting point and mptiniag the cutd
construction from PW9L1. Despite this quitéfdrent construction PW91 and PBE
give very similar results]43].

2.3 Basis sets for Kohn-Sham Hamiltonians

The Kohn-Sham equatiori, {Z]17), is formally a single-p#&tSchrodinger equa-
tion, which can be solved by expanding the wave functions bass set of the
single particle Hilbert space. The basis set is infinite,@neral, and a finite sub-
set appropriate to the physical problem under considerdias to be chosen for
numerical solutions. A preferably “small” basis set, whathhe same time allows
for an accurate description of the Kohn-Sham wave funcfisnseeded.

This requirement causesfliiculties for many realistic solids and molecules,
as the character of the wave functions near the nucfigrdidrastically from the
interstitial regions: In the vicinity of the nuclei, the wa¥unction shows rapid
oscillations but does not strongly respond to changes affibenical environment.
In the interstitial region, however, the wave function iso&rth and very sensitive
to its environment[44].

Besides the localized basis sets, widely used in quantumisky, various
plane wave based approaches have been developed to dediig/jthoblem: For
periodic systems the crystal momentins a good quantum number and Bloch’s
theorem states that any eigenstate of the Kohn-Sham Hamaifta), i (r), can be
represented by a discrete sum of plane waves

Ui(r) = Z Giksc€®HO,
G

An obvious way of specifying a finite basis, is to truncateftiiebasis by impos-
ing a kinetic energy cut® E; such that only plane waveg*®"  with

172(k + G)?

om < Ecut

are considered. This approachfteus, however, from the problem that plane
waves are poorly suited to reproduce the electronic wavetitums near the nu-
clei. Correspondingly, large cuts E.; are required|45]. Historically two dis-
tinct strategies - the pseudopotential (PP) and the augrdevdve methods (see

14



2.3 Basis sets for Kohn-Sham Hamiltonians 15

sectiondZ.3]1 andZ.3.2, respectively) - have been deseltp deal with this
problem. The calculations presented in this work employstivealled projector
augmented waves (PAW), which can be viewed as unificatiohePt and aug-
mented wave approaches. The PAW method is described irosBE8.B. The
discussion in sectiois Z.B.1-213.3 follows mainly Ret&, 29,44/ 45].

2.3.1 Pseudopotentials

The scattering properties of the deep attractive ion cordd@ob potential, which
is (almost) spherically symmetric and localized in a closenity of the nuclei,
are fully characterized by the energy and angular momentepemtient phase
shift (€). The eigenenergies of the KS Hamiltonian, Hq. {P.17), canliained
solely from the wave functions in the interstitial regiogssaon as all phase shifts
are known. The essential point for PP approaches is thatdkie fsnctions outsite
the scattering regions depend only on phase shifts modulBRs are constructed
such that they approximaig(e) modulo Zr in a given energy range, where the
freedom of adding integer multiples of & used to remove nodes from the wave
function in the scattering region. The PP can be much weaigsmoother than
the original ion-core potential, which means that the plaaee expansion for the
PP converges with significantly smaller plane wave diitftan for the original
problem.

This scattering theoretic view of pseudopotentials can ékkillustrated by a
cancellation theorem of kinetic and potential energy dbuations to the energy
of a valence electron wave function in the core region [3%9je Pauli repulsion of
the core electrons (kinetic energy) and the attractivecore Coulomb potential
have opposite sign and partly cancel each other. THeEackeis combined in an
approximatgpseudopotentiahcting on the valence electrons. The core electrons
are frozen and eliminated from the calculation.

In practice,ab-initio pseudopotentials can be constructed as follows/[45, 39]:
For a given atomic species, one solves the Kohn-Sham egsdbo the isolated
atom and obtains the all-electron wave functigns. Here,| denotes the total-
angular momentum quantum numhbmrthe angular momentum component about
one quantization axis. For each valence electron siatea pseudo-function?>,
which coincides withy,,, outside the core radiug and fulfills requirements like
smoothness and absence of nodes ingide defined.

Exploiting the spherical symmetry of the ion core problehg Schrodinger
equation can be inverted for each angular momentum chahredla reference
energies; to yield a potentialy(r) such that| > is an eigenstate with energy

hZ

=+ " g2,ps
S0 ZmeV Yi(r)- (2.41)

w(r) =&+

Using a soft charge densi®(r) mimicking the charge of the ion core and the
pseudo charge densityry = 3 fuPS(r)yFS(r) constructed from the pseudo wave

15



16 2. Ab-initio theory of solids

functions, we define a pseudo Kohn-Sham Hamiltdhian

2
H = —%VZ + VPS(r) + iyl + Z](r) + e([R(r)], T) (2.42)
with the pseudopotentialf (r), such that the pseudo Kohn-Sham Hamiltonian
produces the desired pseudo wave functigfisi.e.

V() = u(r) = R + Z1(r) = vie([R(], 7). (2.43)

The construction of Eq.LTZ#3) is called unscreening. ltribfematic sincev
is non-linear inn(r) and related ambiguities arise [39]. The final pseudop@kent
can be represented in the form

VPS = Voo 4 Vst (2.44)
which consists of a local paxt'°c(r, r’) = v(r)s(r —r’) and a semilocal part

5(Ir| |r Dy

VEH(r.r) = Z Yin(PVi () = Yim(r"). (2.45)

Here,Y\m(r), denote the usual spherical harmonics. This construtiyndefines
the pseudopotential, which is non-local due to the expliefiendence of(r) on

the angular momentuim Evaluating expectation vales of the semilocal potential,
Eq. (2.4%), involves double integrals and is computatigredpensive. Therefore,
separable peusdopotentials, which can be decomposediaarty

/PSS _ A|OC |'7[’| S\/|><V|¢|Tnsl
vy Z Wil (249

are often used. The statjgg>V,) are projectors that operate upon the pseudized
wave functions/PS. Formally very similar expressions arise in the contexhef t
projector augmented waves described in sefionl2.3.3.

Methods of constructing pseudopotential$éfeti by choosing pseudofunc-
tions y}> for given yim. One widely used class of pseudopotentials are norm-
conserving pseudopotentials, which impose the constthattthe total amount
of charge within the core region is given correctly B> f|<r PriyPS(P? =

flm d*rlyim(r)2. The pseudopotentials constructed in this way have thecorr
scattering properties to linear order in energy aroundeference energies.
The total energy in the pseudopotential method reads as

H? B . 3 o
E= Z fn<wﬁsl - ﬁvz + VPSI!#?) + Eself + EH[n + Z] + Exc[n], (2-47)
n

where Egg is adjusted such that the energy of isolated atoms in thedpgeu
tential calculation equals the total energy of an all-etattcalculation. The

3For clarity, H is written for each angular momentum channel separately.
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2.3 Basis sets for Kohn-Sham Hamiltonians

"pseudized” charge densif is chosen to mimic the charge of the nucleus and
the core electrons in a smooth wa¥.is kept fixed, once the pseudopotential is
constructed and does not change with the atomic environment

PPs are very successful in the field of molecular dynamicsilsitions [45]
and are widely used for large systems. However, there are sloawbacks of the
PP method. First, within. around the nuclei (nearly) all information on the shape
of electron density is lost. Moreover, so-called trandféity problems arise that
can be grouped into two classes:

e Energy transferability problems: The scattering propsrof the reference
system are reproduced accurately only within a given enengge.

e Charge transferability problems: The pseudopotentiabisstructed for a
fixed atomic environment and errors arise, e.g., due to teedized charge
densityZ being kept fixed to the spherically symmetric shape of therref
ence system.

For norm-conserving PPs, the capabilities fifogeently describing first row
and 3d transition metal elements are limited, since no ehofa, combining
high (energy) transferability and accuracy with moderaiergy cutdfs could be
found. The mixed basis set approaches address this problentloding atom
centered localized basis function in addition to the planees [47]. Vanderbilt's
ultrasoft PPs do not impose norm conservation and overcoragy transfer-
ability problems in describing first row or 3d elemenfsaently employing only
plane waves [48].

Problems with charge transferability can be improved byuidiong so-called
non-linear core correction5 [39] but f@rbeing not adapted to the atomic envi-
ronment systematic errors occur (see sedfion?.3.3.).

2.3.2 Augmented wave methods

In the augmented wave methods, fatient approach is followed by constructing
potential dependent basis sets: Space is again dividedtobto-centered spheres
and the interstitial region but, here, the basis functiorssagmented with atomic
orbital like functions within the atom-centered spheresddy there is a variety of
methods including linearized rffin tin orbitals (LMTO), linearized augmented
plane waves (LAPW), and the Korringa-, Kohn- and Rostok€kK) multiple
scattering approach which implement this idea. These mdsttifer, e.g., in the
way the wave functions in the interstitial region, calledv&ope functions, are
described: plane waves in LAPW or solutions of the Laplaaea#&qgn in LMTO.
Here we will illustrate the augmented wave methods with ttegle of the
(linearized) augmented plane waves due to its formal sritida with the PAW
method (see sectign Z.B8.3), which has been used for catmdgiresented in this
thesis. In the augmented plane wave (APW) methods, a motkshia — often
a so-called mfiin-tin potential, which is constant in the interstitial apdherically
symmetric in the mfiin tin spheres — is chosen for the construction of the basis

17



18 2. Ab-initio theory of solids

functions. The resulting Schrodinger equation is solveedch region separately
and the partial solutions are matched continuously at tiheédvef interstitial and
atomic regions. The solutions of the Schrodinger equatiathe interstitial are
plane waves. Inside the spheres, the Bessel functionsraugum the Rayleigh
decomposition of the plane wave are replaced by radial fomstu, (E, r), which
solve a radial Schrodinger equation

2 2
{;l—m(—% . I(IrJ;l)) V() - E|} ru(E,r)=0 (2.48)

involving the mufin-tin potentialVM™ and the energy parametgr. For a given
reciprocal lattice vectoK, and,k from the first Brillouin zone of the crystal, the
corresponding APW basis function reads as

g (K+Kr interstitial

Peller) = { S & (KU (E, ) Yim(r) - MUiR-tin 1, (2.49)

wherer# = r — 7 for the mufin-tin sphereu centered at*. Using the Rayleigh
decomposition of the plane wave about the sphere cehttre coéﬁcientsaﬁrf(k)
are obtained from the requirement for continuous basistiomns:

Ji((K + K)Rwr)
u(E, Rur)

This defines the APW basis, where the enerdieenter as parameters. For an
accurate description of band structures in terms of APWsiyiits out to be nec-
essary to set the expansion paramekgrsqual to the band energi€s,, where

v is a band index. As the basis functions depend then on the éaegjies, the
solution of the equation resulting from the Schrodingaragopn becomes a non-
linear problem, which is computationally much more demagdhan a secular
problem. Moreover, the APW basis functions are by constraaliscontinuous
in slope at the mflin-tin boundaries. Therefore, the variational procedurenaf
ing the expansion cdicients of the final wave functions in terms of APWs needs
to be adjusted, such that the final wave functions have araomuss first derivative
in the whole space.

The problem with discontinuities and — most important — thielpems
caused by nonlinear equations occurring in all augmenteee waethods are
avoided in thdinearizedaugmented wave methods introduced by Andersen [49]
inthe 1970s. This development paved the way for realistautations of first row
and 3d elements or complex systems [22]: On going from an AR@htLAPW
basis, the radial basis functiongE,, r*) in the mutfin-tins are supplemented by
their energy derivative8eu(E, r*)le—g, = W(E;, r*), and bothyu, andu, are now
evaluated at fixedenergyE,. This yields basis functions of the folim

& (k) = 4nd® N7y (K + k)

m

(2.50)

g (K+Kr interstitial

000 ={ 5, 9 00y mumi, D

4We skip the dependence afandu on E; in the following formulas, as the reference energies
are fixed.
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2.3 Basis sets for Kohn-Sham Hamiltonians 19

where there are nowwvo expansion cdﬁcients,aﬂf(k) and b/ﬁrf(k), per mufin-
tin sphere and angular momentum channel. Theséiceats are fixed by re-
quiring continuity in value and first derivative of the LAPWadis functions,
which fully determines the LAPW basis set. Approaching fribms formulation
of LAPW, further improvements have been established lilee gb-called addi-
tive augmentation [50] or the implementation the so-caliddpotential LAPW
method (FLAPW) that allows to treat the full-potential arithrge density with-
out any shape approximations [51ffieiently. Today, methods like FLAPW enjoy
great popularity for their high accuracy and are often usgaroblems where ef-
fects related to spin-orbit coupling play an important rdlee main drawback of
FLAPW and related methods lies in the bigger computatioeat@hds as com-
pared to pseudopotential approaches or PAW.

2.3.3 Projector augmented waves

The pseudopotential and augmented wave methods appraaplotiiem of solv-
ing the Schrodingey Kohn-Sham equations from two opposite sides: In the
pseudopotential approaches, the operators occurringidamiltonian are trans-
formed, whereas the augmented wave methods aim at comsgruct dficient
basis set but leaving the Hamiltonian unchanged. Pseueojait theory can
be derived with the so-called orthogonalized plane wavdd/\{pwhich project
atomic core states out of the variational Hilbert space.sTiocedure can be
expressed in terms of a transformation oper@idB9]:

¥y = T1%0), (2.52)

where|¥,,) denotes a physical all-electron wave function with its bestions near
the nuclei and¥,) is a smoother auxiliary wave function. Shifting the tramsfo
mation7 to the operators occurring in the Kohn-Sham Hamiltoniatdgi€after
further approximations) pseudopotentials with the sméatictions remaining as
variational degrees of freedom. However, the all-electwane functions can be
recovered from their smooth counterparts usings in Eq. [Z252), which aug-
ments the auxiliary functions within the rfiin-tin spheres. Exploiting this formal
similarity of pseudopotential and augmented wave apprmdBlochl [52] uni-
fied them in thegorojector augmented wavéBAW) method, which is discussed in
the following section.

The central concept of the PAW method is a transformationmmgp7 -, as in
Eqg. (Z52) with

T = 1+Zfrﬂ, (2.53)
u

where the summation is over all augmentation sphei@sd the operatar, acts
within the sphereu. It applies projector function;) for augmenting auxiliary
partial wavesg;) with their physical counterparig;):

Tu= > (It = 130)) (Bl (2.54)

iep
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20 2. Ab-initio theory of solids

Herei denotes the quantum numbers specifying partial wavesddcat the
muffin-tin-sphereu. As in the construction of pseudopotentials, physical par-
tial waves|¢;) are solutions of the Schrodinger equation of isolated atouhile

the corresponding auxiliary functiong) are chosen to matclp;) outside the
augmentation spheres, being smooth inside and continudifi¢rentiable in all
space. The projector statigs) are finally defined by

(Bilg;) = 6ij. (2.55)

The explicit parameterizations of the auxiliary wave fuoies and the projector
functions employed by the VASP code and used in this work arengn Ref.
[53]. This leads to the PAW decomposition of the wave fundio

W) = 1Py + " (1) - 1¥)) (2.56)
M
with
W = > IgBIP) (2.57)
ieu
B = D IBXEIP). (2.58)

iep

The PAW basis functions are continuouslyfdrentiable by construction. The
augmentation done in PAW is similar to the additive augnesman the context
of LAPW [B0] in the sense tha¥) extends into the augmentation spheres, where
only those partg;) are removed that are replaced by some all-electron couterp
|pi)-

Using the transformation operatdrany observablé can be calculated from
the auxiliary wave functions as

(A = D" Tu(BalT AT ), (2.59)

where f,, is the occupation number of the std#g). For suficiently local oper-
ators like the kinetic energy or the electron density andseayed partial wave
expansions this simplifiestio

(A) = Z fn<§’n|A|§’n> + Z JZ DIJ(<¢]|A|¢|> — <§ZJ|A|(5|>), (260)
n uoijeu

where all information about the augmentation channelsgemti#h the one-center
density matrices

Dij = >l Trlp}(pilPn). (2.61)

SWe skip writing contribution from core states explicitly.
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21

Correspondingly, the electron density decomposes(igs= f(r) + Z#(ni(r) —

fiL(r)) with
i) = > P
n(r) = iZne:Dij¢?(0¢j(0
HORE iDi@T(f)(}j(f)- (2.62)

i,jeu
The Kohn-Sham equations in PAW representation are obtdgeapplying
the variational principle to the total energy functionatiwrespect to the auxil-

iary wave functions: Since the transformation oper&tatoes not depend on the
electron density, the Kohn-Sham equations transform dawogto Eq. [Z.5P) as

TTHT P = a7 T1P0). (2.63)

Here,H = —g—an + Ve (r) is the Kohn-Sham Hamiltonian from Eq[C{2117), so
that Eq. [Z6B) is a Schrodinger type equation but with terlap operato? 7
occurring on the right hand side. To solve HQ. (2.63) thelaryiwave functions
are expanded in terms of plane waves:

W) = <ri%0 = ) cecd®or. (2.64)
G

For comparison to the pseudopotential approach (see sBEBdl) it is useful
to consider the PAW decomposition of the total energy fumal. Similar to
expectation values of single particle operators, Hq. 2.8 total energy is
divided into three parts

E=E+) EI-E. (2.65)
u
with
E = Z fn<\i”n| - h_zvz + \7|an> + En[n+ Z] + Ex[N] (2.66)
- 2m
B = 3 Dyl - 2o VU0) + Bl + 2] + Exln] (2.67)
2m H 1l

i,jep

~ W -~ 21,5 .
L= D D@l = 5o VP +Vig)) + Eulfy; + 2] + Eclf].  (2.68)

i,jep

m
RN
Il

The potentialv enters the total energy in the form of an intelligent zero and
is included to improve the plane wave convergence propertiehe compen-
sation charge densitf(r) = 2 Zﬂ(r) plays the role of the pseudized charge
density in the pseudopotential approach and is construsiet that the elec-
trostatic multipole moments of the one-center contrimgito the charge density,
() + Z,(r) — Atu(r) - Z,(r), vanish for each atomic site.
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22 2. Ab-initio theory of solids

In contrast to the norm-conserving pseudopotentﬁjsr,) is non-spherical
and adapts to its atomic environment. PAW can be theref@eed as a pseu-
dopotential method that adapts the pseudopotential tastamtaneous environ-
ment. It can be shown that the total energy expression indogetential theory,
Eq. (Z4T), follows from the PAW total energy if a Taylor exygéon in the on-site
occupancy matriceB;; is truncated after linear order [52,153].

The main approximations in practical PAW implementatiores the frozen
core approximation, finite plane wave cutsoand the finite number of augmen-
tation channels being included. The latter two approxioratican be well con-
trolled by increasing the plane wave cut-andor the number of augmentation
partial waves[]52].

2.4 The Vienna Ab Initio Simulation Package

For all DFT calculations in this work the Vienna Ab Initio Siation Package
(VASP) has been applied. It is a complex software packagpddorming elec-

tronic structure and molecular dynamics simulations. TA&/Pnethod as well

as Vanderbilt’s ultrasoft pseudopotentials are implemeént VASP to expand the
solutions of the Kohn-Sham equationsi[53]. In this work, BfWV basis-sets
have been applied due to their higher accuracy and theatsliiy for many body

calculations.

For iterative eigenvector optimization, VASP providestetient algorithms
based on the so-called “residual vector minimization saenirhe central quan-
tity of all these algorithms is the residual vector

IRy = (H — E)\¥,,) with E = w,

(Pnl¥n)
where|¥,) denotes a trial wave function. These vectors are used tonexpa
subspace of the bands followed by the diagonalization oKtten-Sham Hamil-
tonian in the expanded subspace, iteratively. There aredhpigate gradient
(CG) andDavidson block algorithnas well as theesidual minimization method
by direct inversion in the iterative subspa@MM-DIIS) available for this pur-
pose in VASP. As the Davidson block algorithm turned out toMed suited for
our parallel computer cluster, it has been used in this work.

lonic relaxations can be performed in VASP by using dampedR@arinello
molecular dynamics and related velocity quench algorittanggiasi-Newton and a
CG algorithm. For the graphene-adsorbate systems theityefpench algorithm
turned out to be the fasted and most reliable starting pdlear the total energy
minimum, switching to CG could sometimes further speed wpriiaxations.
A flow diagram summarizing the VASP electronic and ionic xat&éon cycle is
shown in Fig[Z11.
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/ trial-charge p;, and trial-wavevectors /

| set up Hamiltonian H (p;,) |

!

| iterative refinements of wavefunctions {y,, } |

!

| new charge density pou = ¥, fulWa(r) |

| refinement of density Pin,Pour = NEW Piy |

e

| calculate forces, update ions |
]

Figure 2.1: Flow diagram of the VASP loop. Frorn [54].

2.5 Free energy functional formalism

To obtain a more general description of the electronic sinecof solids and to
construct approaches beyond DFT we consider ffecve action formalism as
introduced, e.g., iN]55]. The discussion will follow majriRefs. [56] and[[31].

We start with a many electron Hamiltonia#,in second quantized form like Eq.

(Z.3). Such a Hamiltonian can be a fully first-principles Hiéonian like Eq. [Z.6)
transferred to a second quantized notation or any simplifiedel Hamiltonian.
With the particle number operatoN, and the chemical potential, the grand
canonical partition function is

Z = Tr PN, (2.69)

The corresponding thermodynamic potential is the grandmiaal potential de-
noted by

F= —% InZz (2.70)

and sometimes referred to as “free energy” in this contetxé Fartition function
can be expressed as a path integral of Grassmann numpéng,

7 f D () ()]~ & L2 im0 )] (2.71)

The integration measure is defined in Eq. (2.65) of Ref. [88]t(n; (1), 7i(1)) =
(n(®)IHIn(7)), where

In(x)) = & Zim o) (2.72)

is a coherent state created from the Fock vacuyOmwith
Ciln(7)) = mi(@)In(r)). (2.73)
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24 2. Ab-initio theory of solids

Defining the action

S (T)mi(7)] = - fj dr [Z n; (1)(0: — wni(7) + H(i (7), mi(7)) (2.74)
the partition function is given by

z-= f DL ()i (r)] e S m ) (2.75)

or in a symbolic short-hand notation

Z= f D[n*n]e St (2.76)

We choose now an observable of inter@sthat couples to a sourck and con-
sider the modified actio® + JA. The corresponding partition function and free
energy are now functionals Jf

1 . ,
F[J] :—Eln f D[n*n]e Strm=IAunl, (2.77)

Consequently% = A[J], which can formally be inverted to yield = J[A].
Using a Legendre transform, the soutcean be eliminated frork in favor of A,

which yields the new functional

ITA] = F[J[A] - AJ[A]. (2.78)

. . . 6r A . .
Variation of w.r.t. A yields 2 = J[A] and in case of stationaB{A] the free

energy isF[J[A]] = I'TA], i.e. the Legendre transformed functional gives the free
energy. MoreoverT[A] being stationary is equivalent t& taking its physical
value corresponding to the original system, EQsS._{2.74)(@nH).

We, now, splitthe actio® according t&5 = So+41S1, whereA plays the role of
a coupling constant, as e.g. already done in the contextrstaacting exchange-
correlation functionals in sectidn Z.P.%¢ will serve as a “non-interacting” refer-
ence system for the full interacting problem. The functidna I";[A] depends
now on the coupling constant and it is useful to express tiyeifueracting func-
tional by means of coupling constant integration

Al = To[A] + ALTA] (2.79)

LA
To[A] + fo N—7=. (2.80)

As doesI’, so does) = J,[A] depend now oml. Substituting the definition df,
Eq. (Z.78), for the non-interacting cage- 0 into Eq. [Z.7D) yields

TTA] = Fo[Jo[Al] — Ab[A] + ALTA]. (2.81)

Jo is called "constraining field”, as it forces the non-inténag reference system
described by the actio8q[n"n] + JoA[r*n] to yield the desired expectation value
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Theory MFT DFT DMFT

local magnetization . local Green function
local densityn(r)

m Gii(w)

| non-interacting elec Anderson  imourit
spin in dfective field | trons in dfective po- purty

Observable

Reference sys

tem . model
Const tential eact b
ﬁeolgs raining | efrective local field Kohn-Sham potential tio(ramc Ve hybndiza-

Table 2.1: Comparison of theories in the unifying framework of funogés of physical
observables.A-priori unrelated theoriesfel only in the physical observable of interest,
the reference system, the constraining field and the fumati@lating the fully interacting
problem with the reference system. Framl[56].

for A. At the physical value of, I'[A] is stationary which determines by Eq.
Z81) the constraining field

SAT[A]
oA

In turn, a given constraining field determingdy 2l = A[Jo] or, equivalently,
by considering

Jo[A] =

(2.82)

Qo[ Jo, A] = Fo[Jo] — A (2.83)

as functional of twandependenvariables J, andA, and requiring stationarity,
690[‘]0’ A]

> T -0 2.84

5% (2.84)

The physical expectation value of the observahles, hence, a self-consistent

solution of Eqgs.[[2.82) and{Z184).

This formalism can be applied to any physical system andrésya unifying

framework for theories from dlierent areas of physics. These include the classical

Weiss mean field theory (MFT) of Ising mangets, density fiomztl theory and
dynamical mean field theory (DMFT). In view of th&ective action formalism,
these theories fter only in the physical observablg, they focus on, the reference
system,S, the constraining field)y, and the functionaly = Jo[A], Eq. {(Z382).
Table[Z contains a comparison of these theories. In thenfirig we will shortly

rederive DFT from this fective action approach and introduce extensions, such

as LDA+U, LDA ++ and LDA+DMFT.

2.5.1 Functional integral derivation of DFT

With the electron densityy(i) = ¥(r)¥(r), chosen as fundamental observable,
the conjugated source fiell{r) modifies the action as

S[J =S+ f dxJ(N)¥ (X)P(x), (2.85)

wherex = (r,7,0). The source term acts like an additional one-electronrpote
tial. From the electronic point of view and in the approximatof frozen nuclei
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26 2. Ab-initio theory of solids

any materials dfer only by external one-electron potentials, which are wgaie
guantities of the electron density. This can be viewed apetaeason behind the
first Hohenberg-Kohn theorem.

The free energy becomes a functional of the source figlg

F1J] :—%In f D[y S, (2.86)

and the Legendre transform w.rX(r) yields

I'poer[n] = F[I[N]] - fer(r)n(r). (2.87)

In analogy to the preceding section, a non-interactingeeiee system has to be
chosen,
I'per[n] = Coper[n] + Al'per[N], (2.88)

and the self-consistency conditions, Eds. (P.82) &ndj2t&e to be imposed.
In the Kohn-Sham approach to DFT, the reference system medrby non-
interacting electrons in anffective potentialves(r) = Vext(r) + Jo(r), which is
the sum of an external potential(r) and the constraining fieldy(r). Compari-
son to Eq.[[Z22) shows that finally we will obtalg(x) = V4(r) + Vyc(r).

We can calculate the free energy of the reference systememetgize as in
Eq. (Z38B) to the potentidlq[Jy, N] containing the potential and the density as
independent variables:

Qo[Jo, N] = — Z tr Infiwn — = Vesf] - ferO(r)n(r), (2.89)

where the tr denotes the trace over all single electron ésgoé freedomw,
are the fermionic Matsubara frequencids— —V?/2 andvii — Ver(r) are the
single particle kinetic energy andtective potential operators, respecti\ﬁlﬁy
constructionQ)g is stationary w.r.t. taJo(r) andn(r) and performing the variation

from Eq. [Z8%) yields
1 L
() = 7 D (rlliwn == Gerd i, (2.90)

which implicitly definesJy = Jg[n] in terms ofn. Obtaining the density from
Eq. (Z90) is equivalent to solving the Kohn-Sham equafdh{) and using the
corresponding Green function of the Kohn-Sham particles

vi Ny ()

lwn — €

Gis(r, 1, iwn) = Z (2.91)

to calculate the density accordingri@) = % Yo, Gis(r, I, iwn)e“n.

5The chemical potential is understood to be includedifr).
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2.5 Free energy functional formalism 27

The connection of the reference system to the fully intémgcproblem is
given by means coupling constant integration, where EQg3Jd2.82) yield Eqgs.
(Z38) -[Z.4D) when applied to the special case of DFT. Tioeegethe Hartree and
exchange correlation functional enter this general foilsnahs

ATper[n] = Ex[n] + Exc[n]. (2.92)

The coupling constant integration appears here as natnkabétween the refer-
ence and the full system, whereas in the classical approd2RT, as discussed in
sectior’ZZ11, it had to be introduced "by hand”. As in sedl@® these arguments
can be straightforwardly generalized to include the spimsdgm(r) as additional
variational quantity and to obtain spin density functiotiedory.

2.5.2 LDA+U

For many materials with delocalized s- and p-electronsmpi@iate properties as
well as excitation spectra obtained from LDA and the cormesiing Kohn-Sham
Green functions compare very well to experiments. HowevPA (as well as
GGA) often fail qualitatively to describe systems contagqstrongly localized
electrons including Mott insulating transition metal cayopds and f-electron
systems like lanthanides or Pu. This observation motivilitesntroduction of
hybrid methods, which separate the electrons into wealdysénongly correlated:
the weakly correlated electrons are described by means ®f WRereas for the
strongly correlated electrons many-body corrections beyoF T, like DMFT, are
included. This can be systemically achieved by includingdiamhal observables
describing the strongly correlated electrons into the tional I

In the L(S)DA+U method, the spin-dependent density matrix of a set of eorre
lated orbitalsn,, is considered as additional variational degree of freeddfth
the conjugated constraining field,, the total free energy is now a functional of
the Kohn-Sham potentiaks(x) andA,. Its Legendre transform with respect to
the densityp, the spin densitym, andn?, reads as

I'ioa+ulo, M Nap] = Tooale, Ml — Apn7, + Al Lparulp, M N, (2.93)

where

AT pasulp, M Nap] = Enlpo] + ExC? o, ] + dy[ng] — Ppc[ng]- (2.94)

LDA Hartree and exchange correlation energy is correctetected by a term
Oy[ng,] — Ppc[ng] accounting for on-site Coulomb interactioffexts. In the
LDA+U scheme, the on-site Coulomb interaction energy is evaduat the
Hartree-Fock approximation,

1
q)U[nab] = E Z Uacdbngbngg + (Uacdb_ Uacbd)ngbngd, (2-95)
abckC,o
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28 2. Ab-initio theory of solids

with the indicesa, b, ¢, d including orbital and- spin quantum numbers> de-
notes the subspace of correlated orbitalsldgg, is the local Coulomb interaction
matrix element

Uabed = f drdr’xa(Mxp(r Ve (r = rxe(ra(r), (2.96)

wherevc(r — r’) is the screened Coulomb interaction and the functigfs),

I = ab,c,d, form a basis of correlated subspace. As L(S)DA contairesadly
Coulomb interactionféects, the LDA contribution to the on-site Coulomb energy
has be corrected for, which is done by the double-counting,t®pc[na]. The
form of ®pc[nap) is unknown a-priori and additional assumptions on the vy t
on-site Coulomb interaction is included in LDA need to be ma®ne widely
used double-counting scheme, called fully localized linstbased on two ob-
servations(|57]: (1) LDA usually gives reliable total eniesgy while (2) orbital
energies are often badly represented: One well known exammplydrogen atom
with the orbital energy being0.54 Ry instead of1 Ry, but the total energy being
—0.96 Ry which is very close to the exact value-f Ry. Related to this is the
shortcoming of LDA that the potentizi%’;g"] varies continuously with particle
numberN, whereas the (still unknown) exact density functional fetadan &ec-
tive one-electron potential that jumps discontinuoushewN passes through an
integer value. One, therefore, constructs the double aaysuch that the total
LDA+U energy is not changed w.r.t. LDA but the desired potentialp is created
for integer filling of the correlated orbitals. It is assuntédt L(S)DA correctly
yields the total energy fasolated atomsvith orbitally averaged Coulomb

— 1
U= "< Uaa (2.97)
and exchange interaction

J=U-

1
(dim C - 1)(dim C) a;c (Uapba — Uaban) (2.98)

and uses the corresponding interaction energy as doubgioguorrection([58]:
1- 1
®oc[nas] = SUN(N - 1) - EJ‘[NT(NT — 1)+ NYN' - 1) (2.99)
with N = ¥ _nZ, for o =T, ], N = NT + N!. This form of the double counting

correction is implemented in VASP and will be used in sed8dh
The generalized Kohn-Sham equations are derived in anatogys. [2.8DP) -

Z33) yielding
n(r)

1 . PO -

Eznkrl[lwn—t—veff—ﬂ]‘ﬂr) (2.100)
1 . o . R

N = 5 D Ocallion = €= et = AT o). (2.101)
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2.5 Free energy functional formalism

Here,A = Y anc lra)dan{xsl denotes operator form of the local constraining matrix
field, which is given by

B 0AI'Lpasulp, m nZ

ab = o = Mano — iy (2.102)
with
Manor = Z chdangg- + (Ubcda— chad)ngd, (2.103)
cdeC
VES, = da|U(N-1/2)- J(N" - 1/2)|. (2.104)

Practical implementations of the LDAJ scheme are usually based on an LDA
code which includes localized orbitdlg,), for example as part of the employed
basis set. In the original implementation, these localstates were LMTO partial
waves|[59], but can also be atomic centered augmentatiatifuns as in FLAPW
[60], mixed basis approaches [61] or PAW[62]. Using thesaliaed states, the
operator. is added as additional orbital-dependent potential to therkSham
Hamiltonian: A A

His = Hisoa+ ) ¥3) (Mano — Vas,) (- (2.105)

ab,o

When going from DFT to spin density functional theory, thelursion of the spin
gives more flexibility in formulation of an accurate totakegy functional. Simi-
larly, the additional variational degrees of freedom in LLBAallow one to obtain
a more accurate total energy functional. Correspondimggbund state properties
of systems like Gd (type of magnetic order) or Mott Hubbarthpounds (mag-
netic moments) are better described in LBAthan in L(S)DA [58].

However, when interpreting the Kohn-Sham quasipartickesxaitations of
the real system, L(S)DA, LDAU and even the unknown exact density functional
have a common intrinsic shortcoming: The Kohn-Sham paéplaying the role
of the self-energy is static and real in these approachesreidre, any phe-
nomenon due to the energy dependence of the self-energptdammcovered by
these static theories. Correlatioffiects like mass enhancement, the Konffe,
finite quasiparticle lifetimes, or the formation of Mott-bloard insulators can-
not be explained by excitation spectra calculated withiw@frthese approaches.
A promising way to deal with these phenomena in an first-fpies way is the
generalization of LDAU to include dynamicalféects, called LDA-+ [38].

2.5.3 LDA++

From a practical point of view, all LDA+ methods as well as in LDAU base
on a Hubbard type interaction being added to the Kohn-Shamilktenian, which
serves as bare, "non-interacting” starting point. As indage of DFT or LDA-U,
these approaches can be formally justified by deriving théimman efective ac-
tion formalism. To explicitly include dynamics, the Greemétions of correlated
orbitals,Ga(7, 7') = —(TTCa(T)CE(T’», become variational quantities and replace

29



30 2. Ab-initio theory of solids

the local density matrices], from the LDA+U formalism. The electron density
is maintained as a variational quantity. The action is, Benwodified by sources
for the densityL(r), and for the correlated Green functiodg,(z, 7’):

S’ =S+ f de(r)¢*(x)¢(x)+Z f drdr’ Joa(r, T)C(T)C(r)).  (2.106)
ab

The Legendre transform of the corresponding free energhnorate the sources
L(r) andJpa(7, ) yields the functional

Tipa++[o. M Gan(7, 7)] = Torpale, Ml — Tr(IG) + Al par+ [0, M Gan(7, 7)),

(2.107)
with
Tr(JG) = [ f drdr’ Jpa(r, 7")Gap(t, 7') (2.108)
and
Al—‘LDA++[p, m, r]ab] = Ey [p] + E!ZEA [p’ m] + Dy [Gab(T, T,)] - q)DC[Gab(T, T,)]-
(2.109)

This is the same as for LDAU, Eqgs. [Z.9B) and(Z.94), apart from the fact that
the local Coulomb interaction is not treated in HartreekFapproximation any
more. A formally exact expression for this functionallis][31

1t y
DOy[Gap(t, )] = 5 fo da Z Uabcd<c;cgcccd)1. (2.110)
abcdkeC,o,07

As in the case of LDAU, the double counting term is a-priori unknown and needs
to be determined by assuming a particular form of local Calainteraction being
included in LDA. The same double counting as in LBA might for example be
used in LDA++.

As before, a Kohn-Sham decomposition allowing for full derself-
consistency can be made by performing the variation of tfezeace system like

in Egs. [Z8B){{Z2.84) or in the analog E]s.(2.89)-(P.91):
n(r)

Gan(iw) = (ralliwn — = Vers — Jiwn)] ™ b)- (2.112)

The constraining fieldJ(iw,) = Yanc lra)Ja(ion)(xol, plays the role of a self-
energy. Itis given by

£ D lion == Sers = Il ) (@110

Jap(iwn) = Sap(iw) — T2 (2.113)
with
. 0Dy [Gap(iw)]

)3 _ 2.114

0Dpc[Nap)

DC DCl! lab,
= —. 2.115
2ab,a' 6nba ( )
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2.5 Free energy functional formalism 31

The explicit form of the functionafdy[Ga(r, 7')], Eq. [ZIID, is unknown in
general, but can be represented diagrammatically [31]. l&itices of corre-
lated sites, one widely used approximation to the functiahg[G,p(r, 7')] is
provided by dynamical mean field theory (DMFT). It assure$Gap(7, 7')] —
DOpmet[Gan(t, 7')] as the sum of two-particle irreducible graphs constrdidtem
the local interaction and local Green functions![31] andjgiealent to assuming
a local self-energ¥rarb(iw) = SrrZan(iw) [56].

In the second part of this work we will be dealing with magoetd-atoms
and nanostructures on metal surfaces. The metal hostsramlide sp-type bands
at the Fermi level which are well described by LDA. Howevile magnetic ad-
atoms will require to include dynamic on-site correlatidfeets and will be stud-
ied by means of LDA+.

We will deal with one correlated site (the magnetic ad-atang use Ander-
son impurity model resulting from Eq$.(Z.112) ahd (Z11t8)the density frozen
to its LDA form to obtain excitation spectra. In practiceisthorresponds to con-
sidering Anderson impurity models (AIM) of the form

|:| = HAKS + l:IU - |:|DC, (2116)

where Kohn-Sham eigenstatds) and energiesy, Hks = Y ekl KXK| =

% eKc’f(cK serve as bare starting point. The impurity site is treatecbazlated
subspace and the Coulomb interactté = 3 apeiec.oor UabedCaCiCeCa iS added
with double countingHpc, being corrected for. The methods to calculate spe-
cific physical quantities like spectral functions or Kon@mnperatures from the
AIM will be adapted to the specific physical problem and imigwontinuous time
guantum Monte Carld [63], largd-expansions [64] as well as perturbative renor-
malization groupl[2/7].
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Chapter 3

An overview of graphene physics

The existence of two-dimensional crystals like graphertethair stability at ele-
vated temperatures|[8] has been surprising, as the MernaigeYtheorem forbids
the formation of long range crystalline structures in twmensions([65]. Dis-
locations are expected to destroy any 2d-crystals. Rewplviis apparent con-
tradiction between experiment and theory, was consequantientral problem
during the first few years of graphene research. Two mecmasnéxplaining the
stability of graphene appear very likely, today: First,girane crystals can be
viewed as trapped a metastable state because they aretextiiaen 3D mate-
rials and strong interatomic bonds prevent thermal fluginatfrom generating
dislocations or other crystal defects even at room tempesatr above [9]. More-
over, 2d-crystals can be stabilized by anharmoffieats, which suppress long-
wavelength bending fluctuations and minimize the total éeergy for smoothly
rippled configurations at moderate temperatures([66, 9hceegraphene should
not be flat but intrinsically rippled, which is supported bpMe Carlo simulations
[67] and transmission electron microscopyl[68].

In the light of these stabilization mechanisms, all actuapfene production
processes can be viewed as circumvention of problems dueetmal fluctua-
tions: All available fabrication techniques work by firsbgiing a monolayer of
graphene inside or on top of another three dimensionalargstd then remov-
ing the bulk at sfficiently low temperatures. This route to obtain graphene and
other two dimensional crystals goes back to Geim and Nowagél [€] who first
isolated graphene by a technique called micromechaniealabe. They started
with three-dimensional graphite and extracted singler&ypy repeated peeling
with adhesive tape. Later, automated cleavage technigkeesdnification have
been developed [69, 70]. Other promising recent technigtes with mono-
layer graphene grown epitaxially on top of other crystaldasies like Ni(111)
and transfer the graphene layers onto weakly binding satestf/1| 16]. These
new techniques allow for industrial scale graphene pradnct

As outlined in the introduction, one main reason for the dangterest in
graphene is the surprisingly high electronic quality evérearly samples. In
present graphene samples, charge carriers can be tunaduocwusly between
electrons and holes in concentrations up t&* &2 and their mobilities can ex-
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3.1 The electronic structure of graphene 33

K

Figure 3.1: Left: Crystal structure of graphene. The carbon atoms asnged in two
degenerate sublattices A (green) and B (blue). These sobkatare connected by the
vectorsby (23). @ anday indicate the Bravais lattice vectors. Right: Brillouin 2ofBZ)
of graphene, with high symmetry poirits M, K and K’ marked. The irreducible part of
the BZ is indicated by the solid line connectifigK, M andT".

ceed 15000 cntV-1s! even under ambient conditions. These mobilities are ex-
pected to be significantly improvable but the values meakwsefar, are still well
below the highest mobilities of 7000 cntV-1s! obtained in bulk semiconduc-
tors like InSb [[9]. However, the mobility of charge carriensgraphene appears
to persist even high electrostatic and chemical doping [ASimilarly important
(and related) source of interest in graphene is the spdemtenic structure with
low energy excitations resembling massless Dirac fermions

3.1 The electronic structure of graphene

The crystal structure of graphene can be viewed as triangatizce with two
atoms per unit cell forming two sublattices A and B. In thisaagement the
carbon atoms arsp’ hybridized, with the carbos-orbitals and the in-plang-
orbitals forming a network af-bonds. The resulting bands splitinto a bonding
part forming deep fully occupied valence bands, which $itabthe crystal, and
unoccupied high energy anti-bonding bands (seelElg. 3.2).

The remaining out-of-planp-orbitals, p,, form x bonds with their neighbors
and determine the low energy electronic structure of graphé\s can be seen
from the LDA band structure, there are twdands which intersect at the corners
K and K’ of the Brillouin zonH. The Fermi level of pristine graphene lies at this
crossing point, called Dirac point. In the vicinity of therBe point, the electron
energy depends linearly on the crystal momentum. The quoreling density of
states (DOS), shown in Fig—8.2, exhibits a “pseudogap” treaFermi level. The
DOS vanishes linearly foE — Er = 0 and is particle hole symmetric in this
region.

This peculiar electronic structure, can be understood imgeof an-band
the tight-binding model. In the approximation of nearesighbor hopping, the

1K and K’ are equivalent by symmetry. See below.
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Figure 3.2: Left: Band structure of graphene as obtained from LDA. Thebines are

the graphene, which determine the electronic structure of grapheneenvttinity of the
Fermi level,EF = 0. Theo-bands are marked in green and give rise to valence bands
with E < 3.0 eV as well as high energy states aboveel. As the pendant of the graphite
interlayer band, in graphene a quasi-continuum of neagly &lectron states begin8&V
above the Fermi level at tHe-point (solid back lines). Right: LDA density of states of
graphene. The projection on thestates is shown in green, the density of states of the
nm-bands in blue. The linear dispersion in the vicinity of therrai level gives rise to a
characteristic V-shape density of states at low energies.

Hamiltonian can be expressed asl[[72, 73]

A=t b +alb, (3.1)

<i,j>

wherea; andb; denote the Fermi operators of electrons localized in thieacgp,
orbital of sublattice atoms A and B in the cellRit respectively. The sum includes
all pairs of nearest-neighbor carbon atoms tard2.7eV is the nearest-neighbor
hopping parameter.

Using the Fourier transformed operatargb,), defined byg; = fQB %‘e‘mak

andb, analogous@, the Hamiltonian reads ad = fQB %‘Pin‘Pk with ¥, =

ay

b and thek-dependent Z 2 matrix
k

0 &k

where£(K) = t 373, €®i=) andb; (j = 1,2, 3) are the vectors connecting neigh-
boring atomsl[[74]. As
Hk = —0'3Hk0'3 (33)

is chiral, its spectrum is symmetric abdtit= 0 and given by(k) = £|£(K)|. The
first important property of this disperion is that all low egw states are located
near the K and K’ points of the Brillouin zone. A Taylor expamsof £(k) for
k in the vicinity of these points yields the linear dispersigk) ~ +hvk ¥ K|,

200z denotes the Brillouin zone volume.
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3.1 The electronic structure of graphene 35

where we usedK’ = —K andv; is the Fermi velocityav; = ‘/7§ta0 ~ 5.8eVA.
(ap = 2.465A is the lattice constant of graphene.)

Doing this expansion with the Hamiltonfyrd, aroundK andK’ yields the
two dimensional (2D) Dirac equation for two speciesnmdisslesgermions,y,
andy, [[/4,[11]: Withy (k) = y(k — K) andy,(k) = oy (k + K) the linearized
Hamiltonian reads

o’k
T A O A R O A R C X
Qp

whereo = (01, 0) denote the “spatial” part of the Pauli matrices;,. Note
that the spinorsy;, and Pauli matrices-; are not defined with regard to the real
electron spin but to pseudo spin coming from the sublattegrek of freedom. In
first quantized form each type of spinogs, andy,, fulfills a 2D Dirac equation
of massless patrticles, which have the form

— ivio - Vg 2(X) = By 2(X) (3.5)

in position space representation. The treatment of thesedistinct types of
fermions can be unified by considering four-spinorslafal 2D Dirac fermions.
As in relativistic quantum mechanics, the eigenstatesaeddlDirac equations can
be characterized by the projection of the momentum on thaduspin, called
helicity or chirality. This chirality, though related, isfterent from the chirality
defined in Eq. [[3]3), which does not include any momentunugsspin projec-
tion.

Each Dirac point is individually topologically stabilizéyy a combination of
time reversal and inversion symmetry[75]: opening a gagenkaving the sys-
tem translationally invariant requires breaking of timeemsal or inversion sym-
metry or an external potential commensurate with the graplegtice, which has
a finite Fourier component at the wave ved®« K — K’ and thus hybridizes the
two Dirac points.

One distinct property of graphene is the special symmetsyatés at the Dirac
point, which makes graphene behaving verffadent from usual metal surfaces
as will be worked out in the context of inelastic tunnelinglafondo physics
in sectiond™Z]1 and 8.5, respectively. The point symmetoygrof graphene is
Cev, Which is generated by rotations of anglg3, C,/3, and a mirror reflection,
Sy, e.g., about a horizontal axis going through the center ofxagon in Fig.
B. As this group is non-abelian it has non-trivial, highdenensional irreducible
representations. The group of the wave vector at the K andilfitp isCs,. The
eigenstates); », at K and K’ are each twice degenerate and transform acaprdin
to the two-dimensional irreducible representation Egf[76].

Rotations likeC, ;3 transform K into K’ and require energies in both valleys
to be equal. It is possible to form linear combinations imimg wave functions
from both valleys, which transform according to theBpandE, representations

3A detailled derivation with the Taylor expansion being @urout, explicitly, is given in the
context of corrugationféects in sectioi 4.2 1.
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Figure 3.3: Left: Measurement of quantum Halffect and Shubnikov-de-Haas oscilla-
tions in graphene. The plateaux in the Hall resistanggat half integer multiples ofe /h
are characteristic of massless Dirac fermions. (The fatiorde?/h is due to valley and
spin degeneracy.) From Ref.][9]. Middle: Comparison of Landevel quantization in
grapheneEy ~ + VN, (upper panel) to the standard Landau level sequEgce N+1/2
(lower panel) for non-chiral particles with parabolic disgion. From Ref.[]9]. Right:
Transmission probability as function of incident angle étectrons with energy 80 meV
through a 100 nm wide potential barrier with height 200 meaf(curves) and 285 meV
(blue curve). In addition to a broad transmission resonane®rmal incidence there are
additional resonances at finite angles. Frbm [83].

of Cg. Including translations], about Bravais lattice vectors to the symmetry
group, it can be shown that the degenerate four states aitae fwints K and K’
form an irreducible representation of the extended symnggtiupG = Cg, ® T
[i76].

3.2 Quasirelativistic physics in graphene

These special properties of the low energy excitationsaplgene result in inter-
esting physical fects that started avalanche of research in this directibighw
has been recently reviewed (n[11], as well as earlier reviewluding a special
issue of Solid State Communicationsi[77]. Unusu&e&s of quantum electro-
dynamics can manifest in graphenel[78]: When subjected tagnetic field,
massless Dirac formions show an anomalous integer quantiireffect, with
the ladder of plateaus in the Hall resistance being shified/8 from the stan-
dard sequenceé [79,180,/81,82]. (See [Egl 3.3.) This shitgdence of plateaus
can be understood from the special Landau level (LL) quantia in graphene.
In contrast to non-chiral particles with parabolic dispems where theN-th Lan-
dau level is at energ¥y = fi(eB/m‘c)(N + 1/2), the N-th Landau level is at
energyEyn = +hv; v2eBN/c. The lowest Landau level is &y = 0 and shared by
electrons and holes. From both, the viewpoint of electranisotes, this zeroth
Landau level exhibits only half the degeneracy of the hidlaerdau levels so that
the Hall plateaus are shifted by2lfrom the normal sequence of integer filling fac-
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3.3 Experiments on impurity effects in graphene

tors. The functional dependence of the cyclotron energiethe magnetic field
for electrons in graphene beirg, ~ VB results in markably higher LL separa-
tions than in usual semiconductors for typical fielBs;- 10T, in the laboratory.
This allowed for the observation of the QHE at room tempeea|84]. We will
encounter the physics of (pseudo)-Landau levels in se@iidnin the context of
graphene ripples.

Another practically importantféect is the manifestation of the so-called Klein
paradox in graphene: In relativistic quantum mechanias,ghenomenon refers
to the process that particles can penetrate through patéatiriers with transmis-
sion probability one as soon as the barrier height exceeids their rest energy,
myc?. Electrons in graphene having a gapless spectrum and ffextiee mass
thus penetrate through any potential barrier at normatierate. The transmis-
sion through barriers at general angles has been investigpgt Katsnelson et al.
[83] and it has been shown that there are in general seveegitidins with trans-
mission probability 1. These transmission resonancesepieted in Fig[C313 for
barrier parameters that might be typically encounteredapigene p-n junctions.

As a consequence of these transmission resonances, Andecsdization is
suppressed in graphene. Moreover, it means that graphesitheés insensitive to
external potentials that are smooth on the atomic scalelatdatgraphene field
effect transistor cannot be closed like usual MOSFETSs. To lgrédghhene field
effect transistors a gap needs to be opened in the spectruni edride achieved,
e.g., by creating graphene nanoribbans|85, 86] or cherhunationalizationl[87].

3.3 Experiments on impurity effects in graphene

Any application exploiting graphene’s unique electronioperties requires us
to understand impurityféects in this material. Firstly, impurities are inevitable
sources of electron scattering left from the productioncpss and they might
limit electron transport in graphene to a substantial extelowever, apart from
being just undesirable obstacles, impurities provide agswtool for control-
ling and examining the electronic properties of solid statgerials. Doping of
semiconductors is one famous application of impurity statethis context. In
addition, impurities in graphene allow to address fundaaleuestions in top-of-
table experiments: Impurity states in this material aredaly related to scattering
of relativistic quasiparticles [78, 88,189,190 91] 92] adhas to quasiparticles in
the pseudogap phase of high Tc supercondudiol$ [88, 93].

Experiments showed that adsorbates on graphene and refatiedials can
strongly dfect charge transport by doping and causing scattering cfrefes.
Since 2000, carbon nanotube (CNT) based gas sensors havedpested [[94,
95,196]: By placing a semiconducting CNT on a %8l substrate, contacting it
by normal metal electrodes and using Si as a back gate a figdt ¢ransistor
(FET) is created. (See Fig._8.4.) A gate voltagebetween the tube and the Si
gate can used to charge the CNT and to tune the chemical @btestde it. The
current through such CNT-FET turns out to be sensitive toegassure. Kong et
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Figure 3.4: (a) Schematic structure of a carbon nanotube fiddce transistor. From
[96]. (b) Chemical gatingféects to the semiconducting CNT. Current versus gate voltage
curves before N@(circles), after NQ (triangles), and after Ng{(squares) exposures. The
measurements with NdHand NG were carried out successively after sample recovery.
From [94].

al. |94] found shifting of the current vs. gate voltage cwwedifferent directions
upon NH; and NQ exposure. (See Fig.—3.4). Similarly, CNT-FETs afieeted
by other adsorbates including@ [9€], K and Q.

In a similar setup graphene has been proven to be strongdjtiserto gas ex-
posurel[7]: Changing resistanBeof a graphene multilayer device has been mea-
sured upon KO, NH; and GHsOH adsorptionR drops upon exposure to water,
while ethanol and ammonia exposure as well as placementuuvaincrease it.
Subsequent experimenis [15] studied the sensitivity gblggae based devices to
active gases in more detail: Combining measurements obtiggtudinal and the
Hall resistivity (pxx andpyy, respectively) the chemically induced charge carrier
concentrationan and their signs were determined. The measurements[{Elg. 3.5
a) show, that N@and HO act as acceptors, while Nknd CO are donors. For
NO, the adsorption of single molecules appeared to be detect@ibk height of
steps occurring in Hall resistangg, (Fig. [3.5 b) are peaked around the value
corresponding to removal or addition of one electron to tia@hene samplé]15].
Such steps occur only, when the sample is exposed tod@nnealed after expo-
sure but not, e.g., for a clean the sample in He flow. Morea@such steps have
been detected for #0, NH; or CO adsorbing on graphene. In secfion5.2.1, we
give a joint theoretical and experimental study clarifythg@ mechanism of this
single molecule detection. In general, the response ohgragand CNT devices
to gas exposure can be verytdrent or caused by fllerent mechanisms: For CNT
devices Schottky barriers can control the response [97@reds for graphene the
Schottky éfect is suppressed due to the vanishing gap.

In the limit of strong doping, ARPES with graphene on SiC obsd lifting
(lowering) of the chemical potential upon K (NDexposurel[9€, €9] and showed
that these adsorbates act as donor and acceptor, respedtiveom temperature
transport measurements using graphene on Substrates Schedin et. al._[15]
find NO, induced hole doping up to concentrations o & 102cm2 and the
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Figure 3.5: (a) Response in the resistivityof single-layer devices to N H,O, NH;
and CO in concentrations of 1ppm in He at atmospheric presdire positive (negative)
sign of changes ip were added to indicate electron (hole) doping. Region | -déndce

is in vacuum prior to its exposure; Il - exposure to the didutbemical; 11l - evacuation of
the experimental setup; and IV - annealing at?160From [15]. (b) Examples of changes
in Hall resistivity observed near the neutrality point aigriadsorption of strongly diluted
NO, (blue curve) and its desorption in vacuum at’&0(red curve). The green curve is
a reference of the same device thoroughly annealed and ¥parsed to pure He. The
curves are for a three-layer deviceBn= 10 T. The grid lines correspond to changes in
pxy caused by adding one electron charge. From [15].

electron mobility staying constant within 20% of its meatuea The charged NO
impurities do not seem to stronglyfact electron scattering. However, depositing
K on graphene at cryogenic temperaturies [100] Chen et alieaah electron
doping up to 5- 6 x 10*?cm2 but found the electron mobility decreasing by
more than a factor of 15 within this doping range. These segiyncontradictory
experiments lead to a controversy on the importance chamgaatities as limiting
factor for the electron mobility in graphene. In sectlon.3,2ve address the
guestion of which impurities are naturally present in gephby means of first-
principles theory. We show that there is a close relatiowbeh migration barriers
of impurities in graphene and whether they are covalentigmically bond.

Impurities are naturally local perturbations and one rdoteinderstanding
their dfects is investigating the local electronic properties wirtivicinity. The
local density of states (LDOS) is therefore one central tjityam the study of
impurity effects in chaptdi5. Experimentally, STM provides a tool to sneathe
LDOS with atomic resolution.

3.4 Local probe experiments on graphene
During the time when thesis was prepared scanning tunnatiogoscopy char-

acterizations of graphene samples have been reparted1021 103/ 104, 105,
106,107/ 108, 109]. Several results are in close relatidhedheoretical studies
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presented here:

These experiments have proven directly, that graphengdlft8iO, prepared
by mechanical exfoliation as well as epitaxial graphene @{®01) exhibit a
high degree of crystalline order. For epitaxial single tay@phene on SiC(0001)
height modulations stemming from the a reconstruction ef$IC layer under-
neath the graphene have been found. These corrugationsarcauypical length
scale of 18 nm and lead to a root mean square (rms) roughness on theadrder
0.01 - 0.02nm [104,105]. Mechanically exfoliated graphene on,S&&hibits
corrugations on a larger length scale and more than an ofaeagnitude bigger
roughness: The two experiments from Refs. [101] 102] fouridHt fluctuations
that mainly follow the roughness of the underlying substraith rms roughness
on the order of @ nm and correlation length of approx. 30 nm. Later experisien
[108] showed that graphene on Si€an have partially suspended areas that do not
follow the roughness of the underlying substrate but hagesime rippling char-
acteristics as found for fully suspended graphene sheetdoye Carlo calcula-
tions [67] and microscopic electronfftaction [68]: there are corrugations on the
length scale of 15 nm with rms roughness &-0.4 nm and correspondingly typi-
cal height variations of 1 nm between "valleys” and "hills” of the graphene sheet
[L08]. The roughness of graphene strongly depends on tipau@ion technique.
Understanding the electronic properties of present graglsamples, therefore,
requires a theory describing how corrugatioffeet the electronic structure. The
guestion is addressed in section 4.2.

The concentration of impurities and the amount of atomidescarrugations
can depend strongly on fine details of the sample preparabienertheless, the
results by diferent groups on impurity concentrations in mechanicalfpleated
graphene appear consistent. In Refs. [101] 102] defectégions of a few nrh
are reported. A larger scale transmission electron mio@s¢TEM) study [110]
found about B% of the carbon atoms forming defects, which correspondpio
prox. one defect per 10 im STM topographies in the vicinity of impurities in
epitaxial bilayer graphene revealed complex scatteriritepes and largely cor-
rugated low energy scanning tunneling spectra at distasfc@$ew nm from the
nearest atomic defe¢t[103]. (See Higl3.6.) This strongugation of the spectra,
in particular the pronounced (V minima, in the bias range @40 meV are un-
expected given the strong electron doping of the samplabinghis experiment.

STS of graphene with in a larger range of bias voltages| [108] tame up
with a surprise that, with hindsight of the theory given ictgan[4.1, is possibly
closely related to the corrugated low energy spectra redarnt Ref. [108]: It is
not the Dirac point with its linearly vanishing density ofragty of states, which
causes the most prominent feature in the measurgdvVdspectra, but a gap of
+60 meV pinned to the Fermi level [106] (see Higl3.6 right).

After initial speculations on the nature of this gap likettea including sub-
strate and electric field#ects [104], the most recent experiments indicate that this
gap is caused by the opening of an inelastic tunneling cHalugeto graphene’s
out-of-plane at K and K’ phonon5[106]. This is highly unegfesl in the light of
the experience with inelastidfects in scanning tunneling spectroscopy: For tun-
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Figure 3.6: Left: STM constant current mode topographic images of defecbilayer
epitaxial graphene. Complex scattering patterns arowndiatscale defects are found at
bias voltage+r300 meV. The sample is heavily electron doped with the DiGot@pprox
300 meV below the Fermi level. From103]. Middle: low enedjydV spectra taken at
in different areas of the same sample as in the left part. The speetagerages over lines
of 2 - 3nm in length. The peaks irl (dV marked by blue arrows correlate with maxima
of longwavelength interference patterns. Frém [103]. Righ/dV spectra taken at the
same point on the graphene surface fdiiedent gate voltage¥s, by Zhang et al.. Curves
are vertically displaced for clarity. Red arrows indicdte gate-dependent positions of
the adjacent conductance minimuvty, outside the gap feature. From[1.06].

neling into normal metal$ [111] or Dirac materials like higb superconductors
[112,[113] inelastic processes usually contribute on thieoof a few percent or
less to the total dV signal. Sectioi’4l1 will be devoted to a theory explaining
this unexpected phenomenon.
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Chapter 4

Lattice corrugations in graphene

In this chapter we discuss how deviations of graphene freqpatfect lattice influ-
ence its electronic properties. Phonons present are dgahlaitice corrugations
and turn out to be very important for understanding STM eixpents. The first
section of this chapter will be devoted to giving a theory bbpon d€fects mani-
festing in STM on graphene and to explain recent experimémthis section will
investigate Brillouin zone corner states inhibiting grapé’s Dirac electrons be-
ing coupled to high energy states from the Brillouin zoneteerit will be shown
that tiny admixtures of zone center states to the Dirac mlrcitates have a big
impact on tunneling, while the overall electronic struetigronly weakly &ected.

In section4.R, we study the question of which corrugaticars strongly in-
fluence graphene’s Dirac electrons as regards their intriosal electronic prop-
erties. We consider long wavelength graphene ripples aod $tow so called
rippling-induced pseudomagnetic fields alter grapher@/s-énergy electronic
properties. To this end, first principles calculations aymbined with an fec-
tive field theory. The formation of flat bands near the Fermeleorrespond-
ing to “pseudo-Landau levels” is studied as a function ofrtppling parameters.
Quenched and relaxed ripples turn out to be fundamentdiigrdnt is this respect:
It is demonstrated, both numerically and analyticallyf gr@anealing of quenched
ripples can destroy the flat bands.
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4.1 Phonon mediated tunnelling into graphene 43

4.1 Phonon mediated tunnelling into graphene

In the following sections a detailled theoretical study loé phonon mediated
tunneling scenario is given and it is explained how inetastintributions can
dominate the t/dU spectra from Refs[[104, 106]. Firstly, a derivation of a ba-
sic electron-phonon interaction Hamiltonian is given. h&e present a simple
model of graphene’s electrons being coupled t’ohonons. Within this model
the electron self-energy, the total density of states (D&fd)the density of states
resolved in diferent tunneling channels are calculated. It turns out tietdtal
DOS and the DOS in the channel of zone center statéey ditrongly: At low en-
ergies, the total DOS is dominated by Meshape from the Dirac electron’s DOS.
However, the DOS of the zone center channel recovers theegagperimental
dl /dU spectra.

Motivated by this insight, thefBect of diferent KK’ phonons on the electronic
wave functions and their decay in the vacuum is investightedheans of first
principles theory. It is shown why the electron-phonon dmgphas such a large
impact on STS as seen in Refs. [1104,1106] and which phonos®rsible of the
gap seen in STS. We show that the inelastic channel is syramylanced in the
tunneling density of states (TDOS) by a very general meamaf band mixing.
This mechanism is not limited to dynamic processes but setpected to occur,
e.g., near short range corrugations of the graphene lattice

4.1.1 Electron-phonon interactions

Any electron in a solid interacts with the lattice degreese#dom and is sensitive
to displacements of the ions from their minimum energy passt. A Hamilto-
nian describing the interaction of electrons and phonoxneiisred following the
textbook by Mahan [28]. We start from a Hamiltonian

containing the quantized normal modes of lattice vibration

Hp = Z W By, (4.2)
k
the kinetic and Coulomb energy of the electrons
ol
He= » ——+— ) — 4.3
e ZZm+2;r”, (4.3)
and the electron-ion interaction
Hei = > Veilri = Ry). (4.4)
iJ

Here,k = (k, ) contains the phonon wave vectoand the branch. The indices
I, ] label the electrons, their momenpa positionsr; and distances; = |r; — I,
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44 4. Lattice corrugations in graphene

as well as the inded labels ions and their positio®®. The ionic positions are
decomposedR; = R) + Qy, into their equilibrium position&; and their displace-
mentQ;. ForQ; small as compared to interionic distances one can expand

Vei(fi = Ry) = Vei(ri — RY) = Qs VVei(ri — R3) + O(QY). (4.5)
This yields the electron-phonon interaction potential

Veplr) = = >, QiWVeilr - ). (4.6)
J

The displacemer®¥ of the ions due to a phonon moklés given by

1/2
% =) 6 Sacral) (@.7)
Here, M is the ionic massN the number of atoms in the crystal agdis the
unit polarization vector of the phonon mode. We now intragdadasis of Bloch
functionsey(r) = ug(r)e"" for the single electron wave functions labelleddy:
(g, v) including crystal momenturg and band index, whereuy(r) is required to
have the periodicity of the Bravais lattice. Inserting B.4j into Eq. [4.6) with
Q; = Xk Q% and using the density operaje(r) = Yaq ¢(’;(r)¢q/(r)c$cq, yields the
electron-phonon interaction Hamiltonian

Hep:fd3rp(r)vep(r) (4.8)
= Z f dr (Z Q§VVailr — ROU; (NUg (NEY 9 |ciey  (4.9)
k,0,q9’ J
= Z My . CiCor (B + ') (4.10)
k.a.0’

with

o h
M ;=1
ka4 (2|v| Ny

My q.q IS called the electron-phonon interaction matrix element.

1/2
) f A*ré& VVei(r)ug (Nug (NE€9 Y 6, —q. (4.11)

4.1.2 Perturbative treatment of electron-phonon interactons

The simplest model allowing us to understand how electtoorpn coupling due
to the K/K’ phonons in graphenefiiects STS deals with three electronic bands:
the two grapheng-bands at KK’ and a band of states at the zone certawhich
extend far into the vacuum above the sheet. The latter baagpioximated by a

flat band
H, = E, ) did, (4.12)
q
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at energyE, in the vicinity ofI". Here,d, is the annihilation operator of an electron
with crystal momentung this flat band. The Hamiltonian of thebands can be
be written as

He = D ve(0)ciooa (4.13)

V:i,q

where the index = +(-) denotes the conduction (valence) band apgis the
annihilator of an electron in this-band with momentum qg. Close to the Dirac
points K and K, i.e.q = +K + k with |k| < |K|, the dispersion is linea(k) ~
th|k|.

With the phonon Hamiltonian from Eq[{4.2) restricted to asé vicinity of
the K/K’ points and constant phonon ener@y = w, in this region, scattering of
electrons between thestates at KK’ and zone center states is accounted for in
the following electron-phonon interaction Hamiltonian:

Hep= 1 )" (0),4Cuq + ClyeqOa)(@ +a’). (4.14)
.0,k

As small spots of the Brillouin zone are involved, we assutiieg ¢ = Adk+q—q
which leads directly from Eq.[{4.10) to the interaction ahthaEq. [41IK). In
this model dealing with three electronic bands, the noeratting electron Green
function is a diagonal & 3 matrix and reads as

iu)n]—-E(,- 0 0
Go(q, I(Un) = O iwn—le(q) ? ) (415)
0 0 iwn+e€(0)

whereiwy are fermionic Matsubara frequencies. With the non-intargghonon
Green functiof DOk, Q) = DO(iQy) = - 2“’62 on bosonic Matsubara frequen-
cies,iQn, and the electron-phonon interaction from Hqg. (%.14) tiemnsed to the
matrix form of Eq. [Z1b),

Hep = Z(dk+q’ P +k+q)MV(dQ’ C_»Crg) (@ + aTk) (4.16)
v,0,K
with
040 0 0 A
M_=|2 0 O0flandM,=| 0 0 0], (4.17)
0 0O 100

the lowest order contribution to the electronic self-egesy

. 1 . o
X iwy) = -= Z DO(K, iQm)M,Go(q = K, iwn — iQm)M ,/
K.Qm,v,v
1 . o
= -= Z DY(iQIM,Gr = 0,iwy - iQmM,,  (4.18)
Qm v,V

1See Mahar([28] for a detailled derivation.
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whereG°(r = 0,iw,) is the non-interacting local Green functigh,= 1/ksT
is the inverse temperature and the independendg®cdind M, on k has been
exploited. The sum over bosonic Matsubara frequenciesrigedaout using the
contour integration technique described in chapter 3.5aff [2&8]: We change
to the spectral representati@i(r = 0, iwy) = [ dw’' 5“2 and obtairg(q, iw,) =
Y(iwn) with

. A(w’)
Y(iwy) = —-= dw'M D°(|Qm) : -M,/
@ Q;,,f @ wp—1Qm— w
_ Z f dw'M, A )M, ( Molw) __N(-we)
lwp — Wa — W  lwpy+ wa — @
Do(lwn — o)ng(iwn — ). (4.19)

Here, ng(2) = 1/(€** — 1) is the complex Bose function ang(iw, — w’) =
~-1/(e® + 1) = —ne(-w’), as€f“n = —1. In the zero temperature limpg, — oo,
we haveng(w,) — 0, Ng(—wy) — (-1), andng(—w’) — BO(w’). Analytical contin-
uationiw, — w + 16 with § — 0* yields

Zfdw’MvA(w')Mv,( 1

X(w+i6
(w ) wW+10+ wa — W

bO(w +i6 - )O(w))

> f de’ M, A(w' )M, ( o)
e~ W10 —wy —
O(-w’)
=

(4.20)

These equations apply to the case of zero chemical potentiaD which can be
always achieved by shifting the spectral functiééw) — A%(w’) = A%(w + p).
With the spectral function

Iw+m lw + pl

,20(w + p)

Al(w) = dlag(é(w +u—-E,), 20(-w — p) ) (4.21)

belonging to the local unperturbed Green funct(dh{r = 0, w) the integrals in
Eq. (420) can be easily evaluated. For energies W, small as compared to
the Dlrac electron bandwidi¥V ~ 6 eV, the diagonal components readas(w +
i0) = X 1(w +16) + X7, (w +i6), where

2 - w-wg @rwatu)?|
5w+ 16) = 22 (W + p — wa) log| =72 | + (w + u + wa) log W) if u>=0 4.22)
11 2 (wHp—wa)? wtw :
W2 | (w + u — wa) log W o | * (w+ u + wy)log ‘Ta if u<O
and
. . 2nA .
T (w +1i6) = == — wa) [w + 1 — Sign ) wy|. (4.23)
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Figure 4.1: (Color online) DOS for dterent coupling strengthg = 0, 0.3, 0.5, 0.7
eV. Left panel: Total DOSN(w). Middle panel: DOS imr-channel N, (w). Right panel:
DOS in channel of long range zone center statg$w).

Ther block is

1 2
S (w4 i6) = 22 : N ——, 4.24
ii(w ) w+u—E, — sign €, — )wa E- ( )

with i = 2,3 and causes a rigid shift of the band energies in regime itapbfor
STS. With the interacting Green function bei@gl(p, w) = GO (p, w) — Z(w),
momentum space integration yields the density of sthles) = —%ImG(r =
0, w + 16).

For fixed chemical potential = —0.4eV andE, = 3.3eV, Fig. [£1 shows
how the DOS is modified by the electron-phonon interactioa asction of the
coupling strengtil. The total DOSN(w) = Tr N(w), and the DOS of the-bands,
N:(w) = Yi—12(N(w))ii, are virtually indistinguishable and exhibit the “V”-sheap
characteristic for Dirac fermions. The main modificationha total DOS is a shift
to slightly lower energies with increasing coupling stréndue to ther-block of
¥(w + 16) — a consequence of level repulsion of theands and the flat band at
E., well known from second order perturbation theory.

However, the spectral properties in the channel of zoneecestates are
strongly altered at low energi¢s| << W. The density of states in this channel,
Nr(w) = (N(w))11, reads as

1 2V (w +i6)
N = -2 = - ’
r(@) n MGa:(w) mlw — E; — Z11(w +16)12
~ O(jw| - wa) |w + p — SigN W)wy - (4.25)

Without electron-phonon interactioNr(w) vanishes forw # E,. But, as
soon as this interaction becomegeetive and the energy of the electrans> w,
exceeds the phonon mode energy, the zone center statesstiag with the
bands. This leads to a gap #fv, around the Fermi level in the channel of zone
center states. Outside this g&fp(w) recovers the usual “V”-shape of graphene’s
DOS. (See Fid4l1, right panel.) Indeed, the shaper@b) is very similar to the
gapped spectra found in STS on graphene.|[106]

Comparing the scales in the left and right part of Higl 4.1 sees, that the
DOS in the nearly free electron channel is for all couplingstants considered,
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Figure 4.2: (Color online) Upper panel: Band structure of graphene. sFbands inhibit-

ing the Dirac electrons are marked with dark red lines. bbtaf the graphite interlayer
band, in graphene a quasi-continuum of nearly free elestiaes begins.3 eV above the
Fermi level at thd™-point (light green lines). Lower panel: Decay of the elenic wave
functions¥(2) as a function of height above the graphene sheet. The laterally averaged
density|¥(2)|? is shown for states near the Dirac point of flat graphenedsmie) and in
presence of a Kout-of-plane frozen phonon (dashed line). The densityriggig to the
lowest quasi free electron bandlaprinted as dotted line.

here, smaller than the total DOS by a factor of less tha0.1ln the next section,
it will be shown that in STS, however, this factor g20 is by far overcompen-
sated by the factor on the order of*ldbming from the dferent tunneling matrix
elements in presence or absence of certaki Khonons.

4.1.3 Frozen-phonon simulations

To address thefkects of the KK’ phonons on the electronic wave functions of
graphene and related tunneling matrix elements, we peedwmhensity functional
calculations within the framework of the local density appmation using VASP
[48] with the PAW [53,/52] basis sets as described in sectidBs? and_ZH.
The corresponding plane wave expansions were fiuatd28 eV and the Bril-
louin zone integrations were carried out with the tetrabeenethod on k-meshes
denser than 2020 when folded back to the simple graphene unit cell. Thecadrt
extension of this cell was chosen to be 24A.
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4.1 Phonon mediated tunnelling into graphene 49

To understand the phonoftects on tunneling it is insightful to revisit the band
structure of flat graphene (Fig._#.2) obtained from DFT: THeands exhibit the
well known shape intersecting the Fermi level at the K poithinear dispersion
in the vicinity. At the zone centdr, a quasi continuum of free electron like bands
starts 33 eV above the Fermi level. These bands correspond to thiéeiyee band
of graphite, which is important in graphite intercalatioongpounds([114]. In
contrast to graphite, the quasi free electron bands, hexeyat limited by other
graphene layers on top and extend far into the vacuum abew&htet.

To quantify the decay of the wave functions offdrent bands into the vacuum,
we calculated the laterally averaged charge defiit)|? of these wave functions
as a function of distancefrom the sheet. As shown in Fig._%.2, lower panel,
the wave functions at the Dirac point of flat graphene have thaximum atz =
0.4 A above the sheet. Farz 1.5A, their probability density starts decaying into
the vacuum dominated by an exponentj#l (2)|? ~ e'2, with decay constant

At = 3.9A7", which has been obtained from a linear fit of |8 (2) in this
region. This decay constant follows from the single pagt&throdinger equation
in presence of a constant potential given by the graphenk fuaction [115]:

At=2, /lgf + 2myop/h2, (4.26)

where the in-plane crystal momentumkg = 1.7A7 for the electrons at K
and we obtaineg = 4.5 eV for the work function from LDA.

States at th& point of the Brillouin zonek; = 0, decay much slower into the
vacuum: The lowest nearly free electron state is extrenoely fanged (see Fig 1.,

lower panel) and spreads out into the vacuum with decay anhst! = 1.0A7,

For states at the Fermi level with = 0, Eq. [4.26) yieldst™ = 22A". Such
states are absent in perfect graphene but they can be gahesaperturbations
mixing the Dirac-liker bands at KK’ with k; = O states af’. The nearly free
electron states as well as the bonding s- apdtates al” are examples of such
k, = O states.

Selection rules determine which perturbations may geedgats 0 admix-
tures to the Dirac bands: Firstly translational symmetrghine broken, with the
perturbation having K’ Fourier components. Moreover,lg = 0 plane wave
transforms undeCg, according to the identity representation. The Dirac states
the Brillouin zone corners belong the two-dimensioBabndE, representations
of Cgy. SO, the perturbation must also break symmetry and must have a com-
ponent transforming according B , underCg, to achieve coupling of the Dirac
bands to long ranged zone center states.

All phonons at K and K’ break translational symmetry apprajgly. Out
of the six phonon modes at/K’' the two-fold degenerate modés; at 151 meV
andKg at 67 meV transform according t; and E; underCyg, [116]. TheK;
andK; modes at 160 meV and 125 meV, respectively, belong to onessianal
representations dfs, and cannot couple states from graphene’s Dirac point to
long ranged zone center states.

49



50 4. Lattice corrugations in graphene

TO

[}
=]
T

LA

Phonon energy (meV)
=
o
T

TA

a
o
T

Figure 4.3: Left: Phonon dispersion of graphene obtained from DFT ¢doies) and in-
plane phonon dispersion of graphite from inelastic x-ratteeing (triangles and circles).
Right: Snapshot of eigenmodes of graphene at the K-poiotnfL16].

The coupling éiciency by theKs andKg phonons has been addressed in our
first-principles calculations: In a frozen-phonon simigla the displacement op-
eratorQ¥ from Eq. [ZT) is replaced by a real number vage(™<t + a] gt) —
vYné’, wherenis a positive number € [0; 2r) andQ¥(t) — ReQ¥. Then, the ion
displacements read as

1/2
%=~ avgniy ) i) (4.27)
whereMc ~ 12 u is the atomic mass of carbon. The ratie h/N is the number
of phonons per unit cell. In the case of graphene, the undraation vector of
the phonon mode is six-dimensionél= (¢4, £g), as there are two atoms per unit
cell. The two-fold degeneratés;;s modes can be representedd)y = £5°e k% =
VI/28, andé)® = (£5°)° = 3 (oo + by + bpe*/3), whereb; with i = 0,1,2 are
unit vectors connecting nearest neighbors.

The admixture ok, = 0 components to states at the Fermi level dged Ks
phonons manifests in changing slopes of[B(g)|?>, shown in Fig.[Z}: Starting

at 3A above the sheet the decay constant reducasite: 2.3A " and 22A™
in presence of th&s andKg phonons, respectively. This is the decay constant
expected fok; = O contributions from Eq.[{4.26). Thus, both phonons fuifdi
the above selection rules turn out to couple to states frenbikac point to long
range states at the zone center.

The coupling éiciencies can be obtained by analyzing kKpe= 0 admixture
as function of phonon concentration According to Eq. [[4.10), a displacement
field Q¢ as in Eq. [4.27) generates a perturbation acting on theretect

Hep = ? D Migge’cicy +He.|. (4.28)
.9’

To leading order, the changes in the local dengif(2)|? are quadratic in that
perturbation and consequentf?(2)> = ax(2)i, where the constant of propor-

50



4.1 Phonon mediated tunnelling into graphene

51

8 T T T T
unperturbed—— 3.5 —
6l K 4 3t K5 K ||
o K¢ — 2=36A +
~ 4t g L z=40A x
= x 25 z=44A «
o 21 \:j 2L
S =
or 1 1.5¢ E
_2 - - 1 - -
T | e ]
-6 ey ok ‘ ‘ ‘
0 05 1 15 2 25 3 35 4 45 0 20 40 60 80 100 120 1

z(A) 7

Figure 4.4: Left: Logarithm of the probability density Igi¥(2)|? as function of height

z above the graphene sheet for an unperturbed graphene sheetl @s in presence of
frozenKs andKg phonons. The amplitude of the frozen phononm ~ 0.1A in both
cases. Right: DensityP'(2)|?> as function of phonon density 4t differentz. The data
points for theKs andKg phonons are depicted in red and green, respectively. The sol
lines in the respective color show linear fits to these daiatpo

Ky (Z) @K (Z) K, (Z)/aKs (Z)
z=3.6A|0.0080| 0.114 14.3
z=4.0A | 0.0034| 0.051 14.9
z=44A | 0.0015| 0.023 15.5

Table 4.1: Linear fits of|¥(2)|? as function of phonon densityat different heightg, as
shown in Fig[Z}. The ratiok,(2)/ak,(2) yields the relative intensity of the twoftirent
inelastic phonon processes and turns out to be quasi indepeafz, as required.

tionality ax(2) is a measure for thefléciency of the inelastic phonon chankalin-

der consideration. The relativéfieiency of theKs and theKg phonon channels is
given by the ratiavg,(2)/ @k, (2), where the-dependence cancels out. As the wave
functions of states from the Dirac point without any phondasay almost twice
faster into the vacuum than in presencegfor K¢ phononsg|¥(2)? = [¥(2)? is
fulfilled to very good approximation far> 3.5A. (See Fig[ZH left.)

For both, theKs or Kg phonons, our frozen-phonon calculations confirm
[¥(2)|?> ~ i for the range oh™plotted in Fig.[Z# right. This range corresponds
in both cases to displacemef®| < 0.2A in each atomic coordinate. The linear
fits to these data sets yiedgl(z) and the corresponding relativéfieiencies of the
two phonon channels. These are given in tablk 4.1 and they tlad the inelastic
tunneling due to th&g phonon at 67 meV should be morfieient by a factor of
approx. 15 than inelastic tunneling due to the 151 nkg\phonon.

According to Ters@i-Hamann theory [115], tunneling currents are determined
by the tunneling density of states, which is the LDOS at tloation of the tip
- usually on the order 5A above the sample. Thus, for eachelingichannel,
the DOS inside the graphene sheet has to be weighted witlgtiaeesd amplitude
of the corresponding wave function about 5A above the sampleich can be
approximately written as

dl /dU ~ [¥r>Np(E) + [Pk |*Nk (E). (4.29)
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Figure 4.5: DOS in channel of long range zone center stdteéw), for different chemical
potentialsuy = —0.4, —0.2, 0.0, 0.2 and 04 eV, phonon energw, = 67 meV, energy
of zone center states, = 3.3eV, and the coupling strength = 0.5 eV fixed to the
experimental value [106]. The curves are vertically dispthfor clarity.

With the decay constants from above, the ratio of the expialgrefactors en-

tering the tunneling matrix elements|¥-/¥x|? o« el7Az. At 7 = BA this ratio

is on the order of 10 Thus, the admixture of zone center states tort@nds

by electron-phonon coupling appears as greatly enhancéusfactor of 10 in
STM spectra. The factor of/20 in the ratioNr(w)/N,(w) resulting from Egs.
@Z22[4.21) and depicted in Fig.—#%.1 is overcompensatechbyntatrix element
effect on the order of 0 The STM spectra are therefore dominated by the in-
elastic phonon mediated channel of long range states frerndhe center and the
spectra are expected to exhibit the shapBidtv).

As discussed above, the 67 meV phonon provides by a factds tfelmost
important contribution to this inelastic tunneling. It isetefore illustrative to
considerw, = 67 meV and studWNr(w) according to Eq. [[4.25) as a function
of the chemical potential, as shown in FHig.14.5. This presargimulation of the
STM spectra.

Here, we considered the nearly free electron bands as aagati of the long
range zone center states and chBse= 3.3 eV, consequently. The most promi-
nent feature of the simulated STM spectra is a gapwf around the Fermi level,
which is independent of doping. The minimum caused by zontecstates being
coupled withr-states at the Dirac point shifts with the chemical poténtihis be-
havior is un#fected by the particular choice Bf. as long a£,, does not fall into
the range of bias energies used in STS. So, including coniits from higher
nearly free electron staté&s, > 3.3 eV or the bondingr-statesE,, = —20 eV will
not change these spectra qualitatively.

Experimentally, the chemical potential is shifted with fae voltage [[7, 106].
Thus, the spectra calculated, here, and the experimeng&frdin Ref. [105] (see
Fig. [3.8) exhibit the same characteristic behavior. Thedgagreement of the
simulated spectra,lddU ~ Nr(eU), and the experimental STM spectra strongly
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4.1 Phonon mediated tunnelling into graphene 53

supports the correctness of the phonon mediated tunnelkahamism proposed

in Ref. [106]. In addition, our calculations explain why t6é meV Ks phonon

but not the 151 meV Kphonon appears as major inelastic feature in STS. Very
recently, prediction of the ratio of thegKto the Ks inelastic phonon signal being
on the order of 10-15 has been confirmed experimenfally [117]

Moreover, it becomes clear that the phenomenon of stronghamced tun-
neling currents may occur in various contexts in grapheie Hermi surface of
perfect graphene is located at the corner of the BrillouimezoAny perturbation
the mixing the Dirac electron states at the Brillouin zonmeos with long range
states al” may cause such enhancement. Therefore, corrugations lencé¢he
graphene lattice constant can be expectedterathe tunneling density of states
enormously. This is quite in contrast to most metal surfaskere theprojected
Fermi surface usually includes not only a few points of théase Brillouin zone
but extends over wide areas of the surface Brillouin zoneerdfore, the sur-
prisingly huge inelastic phonorffect in STM on graphene, where the phonons
circumvent the “momentum space selection rule for tungglikeq. (4.26), is
intimately connected with graphene being truly two dimenai.
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54 4. Lattice corrugations in graphene

4.2 Midgap states in corrugated graphene

One of the biggest early puzzles about graphene was thatimengional crys-
tals were expected not to exist (see chapler 3). Thermalufitions in two-

dimensional solids, in principle, should lead to macroscdsplacements of the
carbon atoms from their perfect lattice arrangement anttaeany long range
crystalline order. One very like solution of this problensheeen given by Monte
Carlo simulations[[67] and transmission electron micreyd®8] which suggest
that graphene is stabilized by intrinsic ripples. We nowdss how rippling af-
fects the low energy electronic properties of graphene. uarter which condi-
tions midgap states do occur.

4.2.1 Rippling dfects in a tight-binding model

A tight-binding (TB) Hamiltonian, Eq.[{3]2), and a low engttheory, Eq. [314),
describing electrons in graphene as two species of Dirawiées have been in-
troduced in sectiofi3.1. These models can serve as basibt@ining a field
theoretical model of graphene’s electronic propertiesrgsence of ripples. A
derivation suggested by A. Tsvelik will be sketched here:

The TB Hamiltonian from Eq[{3l2) can be rewritten in the form

nnn(K nn(K
"= bb( W )( o ) (4.30)

wheret,, andt,,, denote the Fourier transformed nearest and next-to-riderps
ping matrix elements, respectively. As in secfiod 3&l(by) are the Fermi opera-
tors of electrons in sublattice A (B) with crystal momentkm
We introduce a coordinate frame, whase = (-1,0), & = (1/2, \/§/2),
e; = (1/2, - V/3/2) are vectors connecting atoms in sublattice A with thearast
neighbors in sublattice B. The nearest neighbor distarbefised as unit of length
3 = ap/ V3 = 1L.4A = 1. In this coordinate system two non-equivalent corners
of the Brillouin zone are atK = (0, ¥47/3V3). Close totK, the dispersion for
the undeformed lattice vanishes linearly and a continuugorhdescribing low
energy electronic states can be defined: NeaKtpeint the undeformed hopping
integral can be expanded as
to ) ke
M

tan(K)
to [e‘”‘x + 2 cos(V3ky/2)ek/ 2]

3ty3 . _
;ao (O — i) — 2Vo0, (4.31)

wherek = (ki ky), 9 = k=K, 9 = %(Bx +1dy), andvy = 3tedy/2 is the Fermi
velocity, involving explicitly the nearest-neighbor spag: Lattice deformations
which are smooth on the scadg can be described by the in-plane displacement
field u, with a € {x,y} and the out-of-plane displacement fidld (x,y are the
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4.2 Midgap states in corrugated graphene 55

usual real space cartesian coordinates.) Then, latticgrdations give rise to the
deformation tensor field

1
Ugp = > [0aUp + pUg + 03hdphN] (4.32)

with a,b € {x,y}, which quantifies the local strain of the graphene sheet. In
particular, ., eﬁuabeﬂ yields the local changes of bond lengthsendirection
(u=1223).

A change in bond length causes a change in the hopping ihtegra
dlogty/dlogdy = B ~ -2 (see e.g. Harrison [1118)), i.edte/03, ~ 4eV/A.
Therefore, local strains change the Fourier transformeqbimg integrals accord-
ing to

ot ; ou®
at(K)/[55] = ) & el eh

u
= Uy + 3B + €2 Uqp

a1 3 V3 il 3 V3
= Uy + ez'”/?’(zuxx Uyt 5 Ug) € 2'”/3(Zuxx + 2%y = =)
3 .
= Z_(UXX - uYy - 2|qu) = 3uZz, (4.33)

wherez = x + 1y. Thus, the nearest neighbor hopping matrix element near the
pointK becomes _
tan(K) = 2v0 (0 = yUz) . (4.34)

wherey = (1/tp)oty/0R plays a role of the charge, amg, can be interpreted as a
vector potential:

A= A= A -IAS = Uy, (4.35)

Curvature induced rehybridization of andr bands leads to similar gauge fields
acting on the Dirac fermions [119].
As in Ref. [120], we introduce a pair of two-dimensional sp;¥; =

( SK ) ¥, = ( b{r ) describing electronic wave packets centered atkhe
K K

and-K point, respectively. Repeating the above derivations &urgg fields due
to smooth lattice deformation for theK point leads to the same vector potential
but with opposite sign. As shown in Rel._[120], all thesedalisdn dtects can be
summarized in the low energy Hamiltonian

H =¥ {I & 1A, + Voo, ® [-il 3, + yT°A]} P, (4.36)

where the Pauli matrices,, u = X, Yy, act on the sublattice index and the matrices
72, a = 1,2,3, act on the valley index of the sping#" = (‘PT,‘I’;). Electrons

in a deformed graphene lattice are a subject of a generadivpotentialAj. Its
componentﬁﬁ are generated by slow deformations, as described abovethiée
components&\,}2 are generated by abrupt changes of the nearest neighbanigopp
integrals[120].
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56 4. Lattice corrugations in graphene

In general, the rippling induced gauge fielfsare nonuniform andfeect the
electrons in graphene like a&fectivemagnetic field[[121]:

B =i(0A - 0A%) = V x A, (4.37)

This efective magnetic field couples to the graphene 2D Dirac spiribie spin
associated with them is the sublattice index rather tharréhkelectron spin.
Hence, thesefective fields are formally similar but fier physically from real
magnetic fields.

TB estimations on theffective magnetic field induced to graphene by rippling
found the possibility of partially flat bands, which are timakg of Landau levels
in real magnetic fields [122]. Therefore, these flat bandsefegred to apseudo
Landau levels. In particular, zero-energy chiral states-(0 LL) at the Fermi
level should occur in inhomogeneous (real affé@ive) magnetic fields, as was
pointed out from topological considerations|[81]. Guin¢ale [122] showed
that one-dimensional ripples with height modulation on tinder ofh ~ 1 —
5nm on a length scale of ~ 50 nm gives rise to about one pseudo-magnetic
flux quantum per ripple. They confirmed within the TB appro#@hoccurrence
of pseudo Landau levels within this regime. Moreover, it hasn shown that
rippling induced gauge fields accompanied by an modulatedreistatic field
can open band gaps [122]. In graphene rippl&&gcéve electrostatic fields are
generated due to strain- and curvature induced chandgg(k) [L1S].

The appearance of ripple-induced mid-gap states can lesdportant con-
sequences: The increased DOS at the Fermi level will enht@nrectendency to
spatial inhomogeneities [122] as well as it leads to str@spmnant electron scat-
tering [78)123[ 124]. Knowing the conditions under whiclidgap states occur is
therefore important for the problem of electron scatte'ringraphen@.

The predictions on midgap states in Ref._[122] have beereratbalitative
involving adjustable parameters, like hopping matrix edaeits or their change
with strain and curvature. Moreover, they neglected reldytation efects of the
m ando bands[[12R]. It is not cleaa priori how essential thesdfects can be.
Moreover, taking into account next-nearest-neighbor mgppeads to ascalar
electrostatic potential induced by the ripples [122] whielhn cause opening a gap
around the Fermi leve[ [119]. To describe this electrostptitential yet more
adjustable parameters are required which makes predsatiereasingly dficult.
Here, complete first-principles calculations includingthkse diferent dfects
without any adjustable parameters can be very helpful,@sdhow to judge how
important corrections to the simplest nearest-neighbomidgel are.

In the next section, we present full potential DFT studiegjoénched and
annealed graphene ripples. We find flat bands very close tDitlae point for
guenched ripples, whereas in annealed ripples these malgtgs turn out to be
suppressed. Subsequently we will extend the low enefigctive field theory
description of graphene to include this relaxatidieet and justify this extension
by our DFT results.

2lmpurity induced midgap states will be addressed in ché&pter
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4.2 Midgap states in corrugated graphene 57

Figure 4.6: Upper Panel: Schematic top and side view of the sinusoidgilgme ripples.

The rippling period is denoted byand the amplitude by. Lower panel: Perspective
view of a relaxed graphene ripple. The green arrows showiiptadement of the atoms
during the relaxation. To enforce a constant rippling atagé the vertical position of the
atoms marked as big red dots has been fixed.

4.2.2 First principles simulations of graphene ripples

To model quenched ripples in our DFT calculations we comsgieusoidal
graphene ripples with height field(x,y) = hgosin(@X) (Fig. [48 upper panel).
While the dfective gauge fieldA is caused by strain and curvature, the strain in
the ripple can be significantly reduced by allowing all atcansl the supercell
shape to relax with the constraint of fixed rippling ampleung.

This relaxation leads to our model of annealed graphendespghere "an-
nealed” means that in these ripples possible external esdor energy barriers
preventing the ripples from relaxation have been removadhSources might be
impurities or bonding to a substrate with lattice mismalcPg[[105]. As starting
point for the relaxed cell shape, we shortened the suparcalpling direction
such that the arc length of one sinusoidal graphene rippiegeoincides with
the equilibrium length of the same supercell for flat graghefhen, standard
relaxation of the atomic positions and the cell shape urgeconstraint of fixed
rippling amplitudeh,.

In all calculations within this section we employ the gefieesl gradient ap-
proximation (GGA)[42] to DFT for supercells containing wplté0 carbon atoms.
The resulting Kohn-Sham problems are solved within VASH pttkage by ex-
panding the electronic bands into projector augmented svéWAW) [53,[52],
as described in sectiofsZ13.3 2.4. Plane waveftabb500 eV for band-
structure calculations and 875 eV for the relaxations atal émergy calculations
were used. For the total energy calculations, the Brill@ane integrations were
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58 4. Lattice corrugations in graphene
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Figure 4.7:Band structure of corrugated graphene sheets: The higalestoe and lowest
conduction bands along tikedirection (perpendicular to the rippling direction) aresim
for different armchair ripples. The dash dotted (blue) and solit) (rees correspond to
unrelaxed sinusoidal ripples with fixég/| = 1A/4by ratio for| = 16, 80bg, respectively.
Dashed lines: A ripple relaxed with the constraigt= 4A and a rippling period of 16
graphene unit cells.

performed with QL eV Gaussian smearing on k-meshes denser thar224vhen
folded back to the graphene first Brillouin zone, whereasdtaxations and input
charge densities for band structure calculations k-megih@ed by a factor of 2
turned out to be dticient.

Firstly, the occurrence of the = 0 LL in quenched ripples has been studied
as function of the ripple lengthandho/I. Forhy/l = 1A/4b, with by = V3ae/2,

i.e. ho/l ~ 0.1, prominent changes in the high valance and the low conalucti
bands occur depending on the rippling periggig. [4.1).

The shorter ripplel(= 16bg) exhibits electron dispersion resembling mass-
less particles with the Dirac point shifted frdgn= 2r/3ay to ky, ~ 0.375(2r/ay),
wherek, is the crystal momentum perpendicular to the rippling dioeg x. How-
ever, the bands of the= 80b, ripple are flat near the Fermi level and exhibit all
characteristics of the = 0 LL of Dirac fermions: They are chiral, that is, fully
sublattice polarized and localized in regions of maximufaative magnetic field
B (see Fig[4, left panel):

For a ripple of the forni(x) = hg sin(@x) with g = 2z/I and| suficiently large
we haveu,, ~ (hoqcos@x))? and Eq. [4.35) yields thefective gauge field

A, ~ (hogcos@x)?. (4.38)
As (Ax = A; = 0) and the pseudomagnetic field is
B =V x A~ hig®sin(QX. (4.39)

Thus, forl = 80by the absolute value of thefective field is maximum around
x = 10,30,50, 700y which coincides with the regions of maximum probability
density for the highest valence band electrons Wjtk 0.385(2r/ay).

58



4.2 Midgap states in corrugated graphene 59

001frn A ] =t
! / . 0.8}
0.005| /! ' 1 s
T, //\\ ’//\\ A 806
- ;/’ L\\ /I/,’ \‘\\ 8 0.4
~0.005 -
oy v, 902
—001f VoV P I A 7/
0 10 20 30 40 50 60 70 -3-2.5-2-1.5-1-0.50 0.5 1 ]

Cell number E (eV)

Figure 4.8: Real space properties of the pseudo Landau level wave @unsctor the rip-
ple with lengthl = 80bg andhg/l = 1A/4by. Left panel: The squared projection of the
highest valence band wave function onto both sublatticehidsvn as a function of the
cell number. Sublattice A and B are denoted on the positidenagative ordinate, respec-
tively. The diferent curves correspond tofiirent crystal momenti, = 0.385 (solid),
0.4025 (dashed) and4R25(2r/ag) (dotted) perpendicular to the rippling direction. Right
panel: The local density of states (LDOS) inside the celts atlbgy (low eff. field) and

at x = 10bg (high field region). For the low field region, the LDOS is thengain both
sublattices (only sublattice A plotted is here, dashed liwhereas in the high field region
the LDOS in sublattice A (solid) and B (dash-dottedfeti significantly.

This peculiar real space structure manifests also in tha kbensity of states
(LDOS) (Fig.[43, right panel). In the high field region, thgestrum is gapped
around the Fermi leveH = 0) in one sublattice (here B) but exhibits a mid-gap
peak in the other sublattice. Such an LDOS should lead t@#idd stripes in low
bias STM images with sublattice A bright and B dark, whichaswreminiscent
of the midgap impurity state5[92] to be discussed in se@dm®. The increased
density of states at the Fermi level may cause instabiliges ferromagnetism
as proposed by Guinea et al. [122]. To investigate this pdggiby means of
ab-initio theory we performed spin-polarized DFT calcigias within the GGA
as described above. Independent of the starting magnetizatixing parameters
etc., these calculations could not find any ferromagnetitesas self-consistent
solution of the corresponding Kohn-Sham problem. This iy Wely because
of strong antiferromagnetic coupling between the sulgles$tiA and B: It tends
to spin-polarize atoms from the “dark” sublattice — an ee&mally unfavorable
process because of the energy gap in this sublattice. Treref local moments
are formed in the “bright” sublattice, they will more likedyrange to noncollinear
structures and prevent spin-polarization of their “darkarest neighbors.

In the low dfective field region, the LDOS recovers the pseudogap shape ty
ical for flat graphene and the two sublattices appear fullyivedent again. This
transition from an inhomogeneous to a homogeneous locattmigy electronic
structure can be understood in terms of the band structunek faway from the
k-space centelk c ~ 0.38(2r/a;), of then = 0 LL “plateau”, the real space
center of the Landau level moves into regions of lowéeaive magnetic field
(Fig. [£3, left panel). This is very similar to the case of otabes in a magnetic
field perpendicular to the tube axis [126]. HQrsuch that the LL wave functions
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60 4. Lattice corrugations in graphene

from regions of oppositeftective magnetic field start overlapping significantly,
the corresponding band energies start to depenkl ddere, the wave function
character changes back to that of the usual steep graptsanals.

The band structures of the quenched ripples shown in[EigalloW to esti-
mate the strength of the involved pseudomagnetic fieldseithe shift of the
Dirac point ofok, = 0.042(2r/ay) away from the flat graphene value, we obtain
the average gauge fieldo| = 7ick,/e = 2.8 - 10*Ta,. With Egs. [43H-439)
and forq = 2r/80by this yields the amplitude sinusoidal pseudomagnetic field
Bo = Aq ~ 250T. Due toB = Bysin(X) a pseudo Landau level wave func-
tion should be localized on a length less tHat corresponding to an area of
12/16 = 18 nn¥ for the ripple under consideration. (See also R&f.[122he T
value of 250 T corresponds to approx. 2 (pseudo)magnetigfiaxta per 18 nfn

The energy required to create the quenched ripples coesidbere, is ®
eV/atom. They have maximum local strain of 24%, which is morea tthee av-
erage strain of approx. 1% measured in epitaxial graphez [dr 4% found in
other nanosized epitaxial materials [127]. Scaling doveytbeudo magnetic field
of thel = 80y ripple with hy = 20A to these strain values yield% = 10 T and
40T, respectively.

So far, we considered quenched ripples, but the pseudoriafiakl is sensi-
tive not only to flexural deformations but also to in-planstditions. In general,
ripples will be accompanied by in-plane distortions: Fa tjuenched ripple of
lengthl = 16b, with h/l = 1A/4b,, we relaxed the atomic positions and the su-
percell shape of the ripple with the constraint of fixed ripglheight. For this
relaxed structure with atomic positions depicted in Fg8, 4ower panel, the
“rippling” energy is 003 eV/atom. The structure is still sinusoidal but with all
nearest neighbor bond lengths having relaxed backd®-143A — the value of
flat graphene. During this relaxation process tifeative gauge field decreases
as can be seen from the band structure of the relaxed ripdHgin[Z1. The
Dirac point for the relaxed ripple is &} ~ 0.332(2r/ap), which is by a factor of
40 closer the flat graphene valuelQf= 1/3(2r/ag) than the Dirac point of the
guenched ripples. This corresponds to a decrease of thagavéfective gauge
field the same factor. So, in the minimum energy structurdisfdtill corrugated
graphene sheet theff#rent contributions to the rippling induced gauge field sum
up to nearly zero average gauge field. This suppressiofffedteve gauge and
pseudomagentic fields in the annealed ripple turns out touegyageneral fect
and can be understood in terms of the model discussed in fisulgsection.

4.2.3 Hfective field theory for corrugated graphene

In section[Z.Z]1 we revisited the derivation of the low egepamiltonian of

graphene and showed that strain and curvature cause galdge d&ing on

graphene’s Dirac fermions (see Hg.~4.35). We will now giveaaalytical model

worked out by A. Tsvelik[[128] to understand in which casestipple induced
gauge fields lead to midgap states. We will restrict oursefoghe case of slow
deformations whea!? = 0.
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4.2 Midgap states in corrugated graphene

The zero energy wave functions in presence of a deformatiducied vector
potential can be found analytically fég, = 0. With 8 according to Eq.[{4.37)
and® > 0 the zero energy wave functions can be expressed as

aK =ag= z”exp[—ala— ] bk =b_x =0. (4.40)

For 8 < 0 one has to interchangg, a_x with by, b_x andz with z. Inserting
these wave functions into thdfective Hamiltonian[{4.36) shows that these are
indeedE = 0 eigenfunctions. The condition of normalizability detemas the
range of allowed powerns In two dimensions, the Green function of the Laplace
operator is §3)! ~ log|z. ConsequentlyﬁB ~ ®log|z, whered = fdzdz_B

is the pseudomagnetic flux. Thus, we hadve= z"exp —%B = 2"|47*®, where
the prefactokr = 1/® turns out to be the inverse flux quantupy. These wave
functions are normalizable ferranging from 0 to the integer part of the pseudo-
magnetic flux. As many zero modes exist.

The expression fo$s and for the deformation tensor changes drastically de-
pending on whether the elastic energy is at its minimum or Tloé expression for
the elastic energy density of a smooth surface compatitile tve C; symmetry
is given by [129] 66]:

E

K
(4 + 1)U+ Upy)? + 1 (U= Uy)? + Ay | + (VN2

(A +p)

1 — 12
5(8u + du) + 6h6h]

+u|ou+ (@h)?| [au+ (ah)?] + g(vzh)2

2
UAA + (1 + ) + %(Vzh)z (4.41)

1 - — 1
——(8%A + 0°A) + —R[h
zaa4 ) 00 [h]

whereR = [8°hd*h — (66h)?] is the Gaussian curvature of the surfagey are
in-plane Lamé constants aidis the bending rigidity of the surface. Integration
over the whole surface is understood. If for given fieldthe membrane is at
equilibrium, the elastic energf{4]41) is at its minimugh, = & = 0, w.rt.
changes irA andA:

= Pl 1 = — 1
— = pA+ A+ p)—|—(*A+ A +——Rh]
oA = KA “)05[205( )+ 5N
= uA+(A+ ):—LA+ & A+ s R[h]] (4.42)
- A 1277 20602 " (902 '
Consequently,
4 2
0= APH AL I AL 9 am
2@+p) 200 (99)?
& A+3u — &

200 20+ ™ o
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62 4. Lattice corrugations in graphene

or in matrix form R= MA with

52 A+3u 84 A
R= —( g )R[h], M:( 2l 20 ],and A:( /:).
(99)? 2002  2(A+p)

Thus the gauge field is

A+3 o4
A = (A + p)? '2(A+J;) T2007 |R
= p+2) | 5L )T
(00) 2(A+p)
52
(A p)? [ o G )R[h]
pA+2u) | e
2
A +/l ( (;9')2)2 ]
= a7 |R[h]. (4.43)
0
A+ 2'u (00)?

R is the Jacobian of the coordinate transformatiendh, & = oh:

9(£.¢)

(z2

Thus, R as well asA3, A® vanish in any configuration df which depends on
just one Cartesian coordinate. This includes all plane wardigurations, in
particular those studied by DFT in the previous section. sBuliing Eq. [4.4B)

into (£.3T) we get

8?hé?h — (oh)? =

_ A+p 0% - PE
A+2u (80)?

which isC3; symmetric, as it must be.

This C3 symmetry of8 for a relaxed membrane leads to important qualitative
differences with a real magnetic field. A local vortex of magnigicl with flux
N carriesN normalizable zero modes, but it is not possible to creatl autux
by deforming a membrane and allowing for in plane relaxat®manalogue of a
magnetic vortex is a point-like defect carrying local Gaaisgurvature

R[h], (4.44)

d’k ik(r-a)
h=h(r-al), R=R(r-al) = (Zﬂ)sze' (4.45)
Then the argument in wave functidn{4.40) is
=8 = ysin(3)b(r - a) (4.46)
dk
b(r) = WJg(kr)Rk (4.47)

whereg is the angle with respect to the crystalline axis. Siffga@s constant at
smallk, Eq. [4.4Y) yieldd(r) ~ r at distances larger than the size of the defect.
Such wave function is not normalizable. On the other handvinee function for

62



4.2 Midgap states in corrugated graphene 63

two defects with curvature of the opposite sign will be noliradble for the entire
volume (as a plane wave). Such state is non-degeneratés thathaven = 0 in
@.40).

So, if we allow the graphene membrane to relax there are amngegenerate
zero modes, which only exist for membrane configurations mitnzero Gaussian
curvature. Therefore, thefect of relaxations on the electronic properties of the
graphene ripples is qualitatively the same for 1D and 2DleippThedegenerate
zero modes are suppressed in relaxed ripples and no significdgap peak in the
total DOS of 2D ripples is expected to occur. The ab-initicekations from the
previous section reveal a perfect particle-hole symmettgva energies and jus-
tify this nearest neighbor hopping based field theory focdbsg the electronic
properties of graphene ripples.
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Chapter 5
Impurities in graphene

In this chapter, we discuss how adsorbatéfech the electronic properties of
graphene and give a systematic theoretical investigatiampurity effects in
this material. To this end, we go from simple models allowiog qualitative
insights to more realistic models including full ab-inidescriptions of impurities
on graphene. First, the Green function formalism is intosduwhich allows to
address the local electronic properties of graphene irepoesof impurities. A
comparison of strongly schematized graphene with a modeicemductor and a
model metal is given in this framework (section5l1.1). W timat certain types
of impurities create resonances in the vicinity of the Dipaint and discuss the
nature of these “midgap states” in section3.1.2. Predistfor STM experiments
are given in this section. Within this model approach we disocuss impurities
in superconducting graphene and describe how opening gdfeaxsanducting gap
affects the low energy impurity states (secfion3.1.5).

Section[5.P is devoted to realistic DFT based studies of itypeffects in
normal state graphene. We start with a detailled joint @rpamtal and theoretical
study addressing the interaction of Né@nd N.O, with graphene (sectidn 5.2.1)
and afterwards address thffeet on HO on graphene in sectidn 5.R2.2. With
these examples show that there are two distinct classespufrities, open-shell
impurities and inert impurities. The former interact dihgavith graphene and
become charged or strongly hybridize. The latter interasdkly with graphene
but may still lead to doping by mediating interactions beswgraphene and its
substrate. In sectidn 5.2.3 we give a broad investigatiarpeh-shell impurities
on graphene, discuss their electroniteets, their bonding energies and migra-
tion barriers. The latter will allow to judge which types ofipurities are likely
expected to occur in graphene samples.

5.1 Models of impurities in graphene

To study impurity &ects in graphene we first compare impurities in a metal
with rectangular DOS and a semiconductor with gapped DOBdaantermediate
case of a graphene-type host with “V”-shape DOS. These madel be treated
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5.1 Models of impurities in graphene 65

fully analytically and allow us to understand the similestand diferences of
graphene, normal semiconductors, and simple metals. Indkestep (section
B.1.2), we consider impurities in a tight-binding model cdghene, which allows
us to include atomistic details of the impurity; finally (§ea[5.1.3), we discuss
the dfect of impurities bringing along additional orbitals, whibybridize with
the graphene bands.

5.1.1 Hosts with schematized electronic structure

Following [130], a simple model of a metal, a semiconductod graphene is
obtained from an unperturbed Hamiltonian

|:| = Z EkCle, (51)
k
wherecy are Fermi operators of electrons labelled by the quantumbeuin =
(E, v), which contains the crystal momentutrand the band index. The spin-
index is omitted for simplicity.e is the energy of the electron in the stktand
the Fermi energy is defined to Iag = 0.

A short range spherically symmetric impurity can be imadiag aj-function
potentialV(x) = V&(x) and reads a¥ = V kK cEck, in this model.

The associated impurityfiect on the electronic properties of the system can
be obtained using Green function techniques: The unpetiu@reen function is
given byG®(E) = (E — H +i5)~* and has matrix elemen@, (E) = dkw e2r5-
The full Green function

G(E)=(E-H -V +is)™ (5.2)
is then
G(E) = G°(E) + GYE)T (E)G*(E), (5.3)
where theT-matrix is )
T(E) = (1-VG&(E) V. (5.4)

All single particle observables can be calculated from@rmesen function. Of par-
ticular interest is the LDOS\(r, E), in the vicinity of the impurity which is, e.g.,
probed by scanning tunnelling spectroscopy. At any piitihhe LDOS is given
by N(F, E) = —%Im G(r,r, E), whereG(F, T, E) is the real space representation of
the Green functio(E):

G(r.F.E) = ) Gu(E)e T, (55)
kk

As the unperturbed system is homogeneous and its real spaea @inction
is independent off, we can define the local unperturbed Green functisi) =
GO(r,P E) = 3 =. Using the Cauchy principal value, yields

_1
E—e+i

go(E) = 7); %M — |7TNQ(E), (56)

65



66 5. Impurities in graphene

whereNo(E) = >« 6(E — &) is the unperturbed local density of states, and conse-
quently
3 * No(E')

Specifying the unperturbed LDOS isfluient to determine the local unperturbed
Green function. As the matrix elements of the localizedygtion(k|V|K') = V
considered here are independenkaidk’, Eq. [5.2) simplifies tak|T(E)|k’) =
T(E) with

dE’. (5.7)

T(E) = (1-Vg(E) V. (5.8)

This formalism will be now used to compare impurity resoren diterent
model materials:

e a metal with rectangular and symmetric DOS with respected-grmi level
N'(E) = 2 - ©(D - |E|) and resulting Green functiag'(E) = 55 In|2E| -
i7Ng'(E);

e a semiconductor with gajy in the DOSNS(E) = =5 - (©(D + A — [E|) -

O(A - |EJ)) andgi(E) = 55 In | S2BEE| - inNS(E);

E2
D2_E2| —

e graphene with DOSNJ(E) = § - ©(D - |E|) andgd(E) = £ In
imNg(E).

These unperturbed Green functions are depicted inEly.E51(5.3) shows that
poles of theT-matrix cause impurity resonances, which occur accordingd.
E&3) if

Rego(E) = 1/V with [Im go(E)| < |Rego(E)|. (5.9)

The solutions to these conditions can be determined graiphicf. [93]) as has
been done in Fid. 5.1:

Weak impuritiegV.| < D cause resonances close to the band edges and close
to the gap edge of the model semiconductor, but no resonarite imiddle of
graphene’s pseudogap is created. To obtain an impurityeaese in the vicinity
of the Fermi level of graphene, the impurity potential hagxoeed a threshold
V] = D on the order of the bandwidth. Concerning weak impuritie$ < D,
graphene behaves like the model of the metal with no resasaclose to the
Fermi level and turns out to be robust against perturbatbtigs kind. As regards
strong impuritie§V.| > D graphene exhibiting an impurity state in the center
of the (pseudo)gap is more similar to the model semiconduileém to the metal.
This overall behavior of graphene is directly related téatsl, unperturbed Green
function gg: The divergences of %(E) are the same as for metaff(E)), but
the structure of zeros RB(E) — 0 with [Im gg(E)| < |Regg(E)| is the same as
for the semiconductogf(E)).

In the latter case of a strong impurity, the enefgy, of the impurity reso-
nance and its width' show a universal behavior. FM| > D, Eqg. [5.9) simplifies
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Figure 5.1: Unperturbed model Green functions for a mef] a semiconductagg, and

a grapheneg.;0 (Here, the bandwidth parameterls= 1 and the semiconductor’s gap is
= 3. 1) The real and imaginary parts are shown by solid and dashes| Irespectively.

The real parts exhibit logarithmic divergences at band edgel have zeros in the center

of the bands as well as in the middle of the gap (semiconductmeudogap (graphene).

Impurity resonances may occur at intersections of thgge) with the 1/V lines. |V, | >

D (V<] < D) illustrate strongly (weakly) attractive impurity potéads.

to 2EimpIn EE“; and consequently 193, D0,192]
D2
Eippx —. 5.10
™ D (5-10)

This resonance is well-defined if its widkhis small as compared to the distance

to the closest Van-Hove singularity: < |Eimpl. An expansion of Eq{5l8) about

Eimp YieldsT(E) ~ m with

oReg®(E)| )
I = Imgg(Eimp)' —
9E  |o
imp
T E|mp -
= SIEmpl[In|—57|+1 (5.11)

The criterionl” < |Ejnpl is best fulfilled for|Eimp| close to the Dirac point: With
increasing potential strengt — oo, the impurity resonances approaches the
Dirac point|Ejmp| — 0 and becomes arbitrarily sharp— 0 withI'/|Ejyp| — O.
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68 5. Impurities in graphene

5.1.2 The nature of midgap impurity state

The requirements to the discussion of the previous sectene the bare density
of states of the host material and that the matrix elemertteeampurity potential
are the same between all eigenstditesind|k’) of the unperturbed system. This
leads to the possibly counterintuitively appearing cosida that strong impuri-
ties,V — oo, cause midgap states in graphene and in semiconductoeednthe
same arguments can be made for impurities in the pseudogege i high-Tc
superconductors [130,193]. We now address the questiondaf the nature of
these impurity states is and why they occur.

In the language of Green functions, this question has beswered al-
ready: a host with unperturbed Green functgy(E) fulfilling Rego(E) — 0
and|lm go(E)| < |Rego(E)| for E — Einp = 0 is required.

The simplest system fulfilling this requirement is a twodegystem with
HamiltonianH = Acs, whereo; (i = 1,2,3) are the usual Pauli matrices and
o Is the corresponding identity matrix. The eigenenergigbisfsystem are-A.

In this system playing the role of the host, an “impurity pdial” with the matrix
elements between all eigenstates of the unperturbed sys®g the same reads
asV = V(oo + o1). The perturbed systetd + V is easily diagonalized and has
eigenenergieg; = 0 andE, = 2V in the limitV > A. The state at zero energy
|-y = (1, -1)/ V2 is the pendant of the midgap state in graphene and in thelmode
semiconductor. So, a strong impurity forces the system eigenstates of the
impurity potential and the midgap states are thdBecéively decoupled/|-) = 0

from the impurity operator.

This result and its atomistic meaning can be translatedde ohgraphene by
means of the tight-binding, Eq4_(B.1)-(13.2), model introed in sectiof311. As
Hy = —o3Hkos is chiral, its spectrum is symmetric abobt= 0 and given by
e(k) = £[£(K)|. We will see that the chirality of this Hamiltonian manifesisself
in impurity induced midgap states.

Impurities acting as potential scatterers read in this m(aievpot =
> PV ¥, with V; j being complex X 2 matrices. The eigenstatestof are of
the form|k.) ~ (1, €®) with ¢(k) € [0, 2r). Therefore, impurities as discussed
in sectio5.T]1 with the matrix elements being the same datvall eigenstates
of the unperturbed Hamiltonian translate into this modepatentials localized

10fora
0O 0/

at the origin and acting on one sublattice onWgo = Vs = Uo(
“single” impurity in sublattice A with potential strength.

The Green function formalism introduced in secfion 3.1 4 loa directly ap-
plied to this tight-binding model of graphene with EQ._{518)olving now 2x 2
matrices in sublattice space rather than complex numbées loical Green func-
tion appearing in this context g(E) = 0 %(E — Hy +i0)72.

Impurity resonances occur at Re @€Ein,) = 0 and a comparison of resonant
energiesEin, in this tight-binding model to the purely DOS based modehgho
that single localized impurities acting one sublatticedwequasi identical in both

models. (See Fid. 5.2, approaches the Dirac point folp — oo in the same
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Figure 5.2: The energyEim, of the impurity resonance as function of the potential gjtien
Uo is shown for single and double impurities. For the singletscer Einp obtained from

the tight-binding model is compared to the result obtaimednfthe DOS based model
from sectiod 5. 1]1. (Eq{5.1L0) with fitted bandwidbh= 6.06 eV andV = Ug.)

manner in both models.
The importance of the atomistic structure of the impurity ttoe creation of
this midgap state can be inferred from the resonant eneajieapurity states

(1) g acting on both sublattices
within the unit cell at the origin. This pair of neighboringadterers produces a
resonance at the Dirac point fop = 3t = 8.1 eV andEn, changes sign, wheld,
passes through this value. This is in contrast to a singleritypwhereE,, — 0
appears only in the limit of infinite potential strength arfthnging the sign of
Eimp requires changing the sign ok.

This universal behavior of the single impurity is closelyated to the real
space shape of the created midgap state, i.e. the site d=peEndf impurity in-
duced changes inthe LDOS. In the tight binding formalismfiabove, the LDOS
(as is the Green function) at a sitis 2x 2 matrixN(i, E) = —2Im G(i, i, E) in sub-
lattice space. Its diagonal elements contain the LDOS pi@geon sublattice A
(B) of the unit cell located a®. Introducing wave function®;(r) for the carbon
p, orbitals, this discrete LDOS can be converted to the contisu-dependent
LDOSN(r, E) = -Im (3, ; ©i(r)G(i. j. E)®{()).

The LDOS in the vicinity of single and double impurities wittssonances at
Eimp = —0.1eV are shown in Figl_5l3. A strong single impurity in subtattA
induces an impurity state mostly localized in sublatticend sice versa. A state
localized in one sublattice can be realized only close tdinac pointE = 0, as

chirality of the Hamiltonian requires

3] w3l

_ _Eimp( (1) ) (5.12)

due to “double impuritiesVoo = Vg4 = Up

This result can be also viewed as manifestation of Lieb’'site [131] in
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70 5. Impurities in graphene

Figure 5.3: Real space properties of impurity states fdfatient atomic structures of the
impurity: Ther-dependent LDOS & = Ejnp = —0.1 eV is shown for a single impurity
with Ug = 45 eV (left) and for a scalar double impurity withy = 6.9 eV (right) encoded
corresponding to the color bar. The impurity sites are nthegebig red dots in the center
of the images. The impurity state due to the single impuritpme sublattice is almost
entirely localized in the other sublattice. Such a stateordyexist very close to the Dirac

point. (See Eq[(512).)

graphene: Having an infinitely strong potential acting a¢ site means decou-
pling this site from the rest of the system and thus havirfgdint numbers of
atoms in sublattices A and BNy # Ng. Lieb’s theorem states that any re-
pulsive Hubbard model on a bipartite lattice will have a grdstate with spin
S = 1/2INa — Ng|. So, the impurity state witk;,, — 0 is the host of this mag-
netic moment.

As discussed in sectidnB.4, STM allows to image impurityestavith very
high spatial resolution. This high resolution is “enhariceg the symmetry of
graphene’s electronic states at the Fermi level, whichitesuthe impurity states
depending strongly on microscopic details of the impuikyg the adsorption site:
As Fig.[5.3 shows, single and double impurities can be djsished by the sym-
metry of the induced impurity state even if the resolutionhef STM is not suf-
ficient to resolve the dlierence between single and double impurities, directly.
In sectior(&.b, we will find that the particular symmetrieggodphene’s low en-
ergy electronic states will allow to distinguish betweefliedent impurity orbitals
causing a resonance.

Investigating the #ect of impurities in graphene on the length scale of the
lattice constant requirdd, from Eqg. [3:2) as description of the pristine system,
whereas at larger length scaldg, from Eq. [3.4) sffices as unperturbed starting
point. Using this linearized Hamiltonian, we will show incsien[E. 15 that the
diagonal part of graphene’s unperturbed real space Grewtidn simplifies to

go(r,w):wvfzfdp PJ(pr)

D2(w? ~ V7 ?)
for large distances > #vi/w from the impurity site. As a consequence, the
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changes in LDOS decay according to a power IsM(r, Eimp) o 1/r for Einp #
0 as found by several authois [88, 132] 92]. This is in cohtas hard-wall
impurity, i.e. Uy — oo andEimp, = 0, which has 1r? asymptotics oAN(r, Eimp)
[M33].

5.1.3 Resonant impurities

So far, we considered impurities acting as potential seagen graphene. Many
impurities contribute orbitalsﬁimp = eimpdfd, with Fermi operatod and energy
&mp Which hybridize with the graphene bands= Y; lI’iTVid + h.c.. This problem
has been extensively discussed for normal metals and is iferred to as “non-
interacting Anderson impurity model”[27].

Changing to the momentum space representation fQ ¢ k‘P*de + h.c.
and evaluating the appropriate matrix elements in Eql dﬁéjs to the coupled
equations

(E - a)Gkk(E) = dkk + VieGax(E) (5.13)
(E-&)Gaa(E) = 1+ Z ViGid(E) (5.14)
K
(E-a)Gkd(E) = VGud(E) (5.15)
(E-e)Guk(E) = ) ViGux(E), (5.16)
=

wherek = (R, +) includes crystal momentukand band index. These can be

decoupled to
k,Vk//

(E - Ek)GKk/(E) = 6Kk’ + Z
k//

G (E) (5.17)

and

E-Cu® =1+ Y. 6, @) (5.18)
k

Eq. (&E1T) shows that a resonant impurity acts on the graphkattrons like an
energy dependent potential

V|>(k’ Vk/

Vk,k’(E) = E _ €d *

(5.19)

Hence, all results for the potential impurities can be ta@es to resonant
impurities. Combining Eqs.[{5]10) and (5.19) yields poesiesonant energies
Eimp With corresponding resonance widtlaccording to Eq.[{5.11). Well defined
impurity resonances with significant spectral weight ingrephene bands require
thatI" < |Eimp — &dl, i.€. that the singularity in theffective potential, Eq.[{5.19),
is well separated from the resonance.

An adsorbate having an orbital close to the Dirac pdit & D), which is
strongly bond to one carbon atom in one sublattice owly< V > D), fulfills this
condition and will act like a very strong static impurity patial in the vicinity
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72 5. Impurities in graphene

of the Dirac point. A chiral midgap state witBimp| < |ed| is created. A weakly
hybridized impurity orbital Vx = V — 0) will lead toEjmp — €3 and|Eimp — €l <
I'. No strong resonance in the graphene bands will occur. Hexvdepending on
its filling a weakly hybridized impurity orbital can act asrdw or acceptor level
and create a charged impurity. We will encounter this sibman sectiorf 5.2]1.

5.1.4 Clusters and extended impurities

The impurities considered so far acted on the length scateeofjraphene lat-
tice constant and graphene prove insensitive to single \pedkrbations at this
length scale. We briefly turn now to potentials which act dviglger areas of
the graphene sheet and which are smooth on the atomic scaleh @®ten-
tials are diagonal in the sublattice indices and enter ihiet-binding model as
\7pot =3 Vi‘Pi“Pi, with V; being a real number varying slowly with site indiex
Transferring to the long wavelength Dirac formalism yiestisooth scalar poten-
tials V(r)oo. These potentials shift the Dirac point locally, i.e. thegd to local
doping if either the surrounding graphene sheet or the satbstan act as reser-
voir for electrons or holes. In this way, charge inhomogee®ican be created
which are referred to as “electron and hole puddles”|[13#ef averaged chem-
ical potential is close to the Dirac point, = 0. These puddles are considered
important for electron transport in the = 0 regime [83]. In this sense, weak
extended potentials may strongly influence the electromipgrties of a graphene
sample.

Besides local dopingfiects, graphene’s electronic properties turn out to be
insensitive also to these extended potentials: As thesnpals are diagonal in
sublattice space, they cannot change the sublattice isofpharge carriers upon
scattering. This leads to a strong suppression of backstagtof electrons
potential barriers and all smooth barriers becoming fublysparent for electrons
at normal incidence [83].

5.1.5 Impurities in superconducting graphene

In the preceding sections it has been discussed that ceémaurities can sub-
stantially change clean graphene’s linearly vanishingsitgrof states: Strong
impurities cause virtual bound states (VBS), i.e. resoearc the DOS, which
may be arbitrarily sharp in the vicinity of the Dirac point.

Recently, proximity induced superconductivity in grapbédras been demon-
strated([136] and opened exciting opportunities for expents: Superconducting
graphene is an explicit example of valleytronics [136], vehepposite valleys are
nontrivially coupled. Understanding impurityfects is interesting in this context,
for two reasons: First, it shows how the special low energgtebnic properties
of normal state graphene translate into other phases ofriiierial. In addition,
the possibility of intragap bound states is directly redate the stability of the
superconducting state in graphene.
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In this section, we theoretically investigate proximityluted superconduc-
tivity in graphene and study impurityffects on the LDOS. In the proximity ef-
fect, the pairing state of the Cooper pairs tunneling from shperconductor to
graphene, will be controlled by the pairing state of supedcmtor. As in the case
of the experiment by Heersche et. [al.[l135], we consider&vizooper pairs in
graphene. While intrinsic superconductivity in graphemeantroversialll137]
and no spectral gap in the samples has been measured to datetexthat TAl
bilayer contacts placed on the graphene sheet induce a redasupercurrent
[135]. In presence of thesajectedCooper pairs, any type of electron-electron
interactions in graphene will produce a gap in the spectrihis gapA will be
proportional to the interaction strength and it remainsegséen how large it can
be in graphene. Electron spectroscopy such as STibapthnar tunneling into
graphene in proximity to superconducting leads would be &bteveal this spec-

troscopic gap. We will treak below as a phenomenological parameter that needs

to be determined separately. Furthermore, we describégnapin this proximity
regime by Bogoliubov-de Gennes theory, since screenirgher d@ficient in this
material [138].

As discussed in sectign-B.1, low energy electronic exoitatin normal states
graphene can be described by a Hamiltoritga = vii(kio1 F koo,), whereo,
I =1,2,3, are Pauli matrices acting on the sublattice degreesed@ma o is the
identity matrix, andy is the Fermi veloci@.

To understand impurities in superconducting graphene eweite the above
Hamiltonian to the Nambu formalism including both valleys:

H = —ihv f A2XPT(X) (0101 ® To — 207 ® T3) ® AgP(X) (5.20)

with ¥(x)' = (‘I—’IW(X),‘PIK,(X),‘PTK—(X),‘I"TW(X)) andW¥;,k=(x) being field oper-
ators of electrons with a spifl and belonging to a vallei*. 7; and A; with
I = 1,2,3 are Pauli matrices acting on the valley and Nambu spagegcasgely.
7o andAg are the corresponding identity matrices. In this formaliemproximity
induced pairing potential enters As3® 7o ® A; and results in electron dynamics

being described by the Dirac-Bogoliubov-de Gennes (DBda@nhtonian [139]:
H= —ith((910'1®To —820'2®T3) ® Ag+ Aoz ® 19 A1. (521)

The two valley Dirac Hamiltonian, Eq[(3.4), as well as thed@BHamilto-
nian, Eq. [5.211), allow for local impurities being paramizted by ten indepen-
dent parameters [140]:

3
V = Uo(00®70) + ) Ugors @71, (5.22)
sl=1

Each of the parameters is associated with a particularescajtsource.ug, for
instance, corresponds to an electrostatic potential gedraver one unit cell and
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74 5. Impurities in graphene

Figure 5.4: Among the various local impurities we discuss two limitirases. The scalar
impurity (left), Vs, corresponds to a uniform potential averaged over one ghjtiehereas
the on-site impurity (right)\V,, acts on one sublattice only.

us 3 to different on-site energies in sublattice A and B. We discuss imviihg
cases: a homogeneous potential acting within one uniMgéflscalar impurity*)
as well as a strongly localized impurity, ("on-site impurity*) acting only at
sublatticeA and giving rise to intervalley scattering. (See gl 5.4).

Starting from impurity operators in the tight-binding foohSectiof 5. 112 and
using the conventions of Eq._({5]21) we obtain the followimgliit expressions
for the impurity potentials in the adopted matrix notation:

Vs = Voo ® 10 ® Az + V100 ® 19 ® Ag (523)
and
VO :VQ(O'3+0'0)®(T()+T1)®A3+V1(O'3+O'0)®(TQ+T1)®A0. (524)

In both cased/, andV; describe the electrostatic and magnetic contribution to
the impurity potential, respectively. Thefect of these impurities on the local
electronic properties of the superconducting graphenetshe contained in the
LDOS, which we calculate using the T-matrix approach a®duced in Section
or in Ref.[[9B].

Dealing with local impurities, it is convenient to adopt {h&sition space rep-
resentation. Therefore, the freedependent Green’s functicd@(x, w) in polar
coordinatesx = x(r, ¢), is obtained from its momentum space counterpart

Cp.e) = (0-H)*
(wO'o®To+Vf[p10'1®To— p20'2®T3])®A0+A0'3®T0®A1
w2_vf2p2_A2

by Fourier transformation
d’p 4 :
hallay oY apx
[ &0
go(r,w)(wO'o(X)To@Ao + AO’3®T0®A1)
+0u(r, w)([cOSp o1 ® 7o + SiNP o2 ®T3] ® Ag)  (5.25)

Go(x, w)

IHere, we definer; acting for both valleysK*, on pseudospinors of the forffx- =
(WR..¥R.), where A and B denote the two sublattices.
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Figure 5.5: Energy of the impurity resonance for the scalar impurity &snation of the
magnetic impurity potentidV; for different electrostatic potentiadlg. The gap-parameter
is A = W/10. The lower right inset shows the splitting of the impustgte due to inter-
valley scattering. We model intervalley scattering/as Vi1(oo®to®Ag+aoo® 118 Ag)
with the strength of the intervalley scattering parametatibya andV; = 5W. One split
state is shifted to the gap edge, the other state remaindragap state.

with o 3(pr)
W= | d olpr 5.26
9o(r, w) = Vi o p\NZ(a)Z— N 2P (5.26)
and o L(pr)
- 1(pr
Gi(r-w) =1v7 | = dp |02W2(w2 Ryt (5.27)

where we expressed the Brillouin zone volu@g = 27rW2/vf2 in terms of the
bandwidthw.

The Green function ak = 0 determines the LDOS of the clean system:
GO0, w + i6) = M(w)(wog ® To ® Ag + Aoz ® 7o ® A1). Here is M(w) =
M’ (w) + IM”(w) with

1 A2 — )?
M’ = | 5.28
@)= s3I W ar = (5.28)
and sgnw) 2 2 2 2
-z for A < w? < A* + W
z — 2W2
M” (w) { 0 olse. (5.29)

The corresponding LDOS vanishes within the supercondggap (w? < A?)
and is given byNo(w) = % outside the gap, which is quitefterent from usual
BCS superconductors as there aocoherence peaks at the gap edge.

As discussed in Sectidn'5.1L.2, impurity resonances occenvttie T matrix
becomes (almost) singular, i.e. det{1G°(0, w)V) = 0. For the scalar impurity
this secular equation yields

1 - 2M(w)wV1 + M3(w)(w? — AD)(VZ-V2) =0 (5.30)
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76 5. Impurities in graphene

with solutions that can be understood analytically in tHef#ing limiting cases:
Firstly consider a solely magnetic impurity, i, = 0, withV; > 0. In the Born
limit the solutionswg = —A + dw with

ﬂz -W2/(AV1)
A e (5.31)
give rise to intragap bound and virtual bound states in tméigoum approaching
the gap edge exponentially with decreasifg

In the opposite limit of unitary scatteringy, = +A — dw with

__
V]_ In (3/—?)

fulfills the secular equation, where the upper (lower) sigmesponds to an intra-
gap bound (continuum virtual bound) state.

It is insightful to compare superconducting graphene talistwave super-
conductors. Analogous arguments have shown that intragapdostates occur in
these systems aiy = A — éw with

ow =

ow = (5.32)

2(nV1No/2)?
- A 5.33
00 = T4 (VaNo/ 2P (5:33)

whereN;y is the density of states at the Fermi level of the normal staeerial
[93]. Graphene haBl, — 0 resulting in the functional dependence of the reso-
nance energies beingftérent from Eq.[(5.33). Superconducting graphene is not
as sensitive to magnetic impurities as usual s-wave supeéuotors are: In the
case of weak impurities resonant energies approach thedggpexponentially,
Eqg. (&31), in contrast téw ~ VZ in the usual s-wave case.

Numerical solutions to energies of the intragap bound statgraphene are
shown in Fig. [(&b. They recover the limiting cases obtainealdically, Eq.
(G31)-[5.3P) and demonstrate also thEeet of an electrostatic contributiow,
to the impurity potential: In the Born limit, the exponemntiependence ofw
on the magnetic potential strengéh is dominant and suppresses any significant
influence ofVy on the impurity state energy. In thg — oo limit, V, leads to a

2
renormalization of theffectivemagnetic potential strength — V(1 - é). As

Fig. &5 shows, thefBect of an additional electrostatic potential becomes most
pronounced in the intermediate region, where it reduce<fileetive magnetic
potential strength most significantly. However, no quéliachanges regarding
the resonant energies occur.

To elucidate the fect of intervalley scattering, we compare the strongly lo-
calized on-site impurities to the scalar impurities disagsabove. Due to valley
degeneracy, the scalar impurity gives rise to doubly degge@entra gap bound
states. This degeneracy is lifted by intervalley scatteNh= V(oo ® 70 ® Ag +
ao(® 11 ® Ag), asais increased from 0 to 1. (See Fig.15.5).

The secular equation for the on-site impuréys 1, reduces to that of a scalar
impurity with the replacemen¥y; — 4Vq;. Thus, apart from lifting the val-
ley degeneracy intervalley scattering results in a renbzat#on of the dfective
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impurity strength. Note, however, that although both vyl and K’ are nontriv-
ially coupled by the superconducting pairing and despigepbeudo spin nature
of the valley degree of freedom, only real magnetic impesitct as pair breakers
— a consequence of the Anderson theoremI[141].

We will now turn to the real space properties of impurity etain su-
perconducting graphene and compare to usual s-wave-suqgkrctors as well
as normal state graphene. With the real-space Green'sidanG(x, X', w) =
G(x — X, w) + G°(x, w)T(w)G°(-X, w) one obtains the local density of states
N(X, w) = No(w) + ON(X, w) = —%ImG(x, X, w) in presence of an impurity. As
before, this LDOS is a matrix corresponding to the matrixctrre of the Green
function. Here, it accounts for the contributions from thetent sublattices, val-
leys and the Nambu space. According to Hq. (b.21), the gpiexgitations are
hole excitations yielding for each spin component the LDOS

Ao = Az

N (X w) = Tr N(X, tw), (5.34)

where the trace involves either the spin-down or up partefNambu space. In the
case of the scalar impurity, this yields the following catrens to the unperturbed
LDOS

a1 g5(r, w) + b gi(r, w)
1 - 2M(w)wV; + M (w)(w? — A2)(VZ - VE)

0Ny (r, +w) = ——Im (5.35)
T
n

with aj; = (w?— A?)[£Vo + M(w)w(VZ - V)] + (w? + A%V andb; = (£Vo+ Vi) +
M(w)w(VE — V). By replacingM(w) — 4M(w) in these formula, one obtains the
case of the strongly localized on-site impurity.

Due to Eq. [5.3b), the asymptotic decay of impurity induc&OS modula-
tions at large distances from the impurity is governedyffy, wo) and g(r, wo).
Neglecting high-energy cutforelated oscillations at this length scale, one may
extend the momentum space integrals in EEq.{5.25) to infidibys yields mod-

ified Bessel functions, i.ego(r, wo) = —#K(O,r,/A2 — w3/vs) and ga(r, wo) =

W2
gap states decays as

VA K(1,r /A2 - wZ/v). Therefore, the LDOS of impurity induced intra-

SNy (r, £wp) oc r-ter VAo, (5.36)

The exponential decay is the same as in usual s-wave suplerctons, whereas
the 1/r prefactor is characteristic for two dimensional materfa&d,[93].

As Fig. [5.6 (a) shows, impurity states in the gap can givetosgrominent
features in the LDOS, which may be measured by STM: The deatthe im-
purity state at the impurity site at= 0 as well as the maximum of the density
are strongly sensitive to the particular type of impuritygeneral, impurity states
with energies in the middle of the gay,(= 5W in Fig. [5.6 (la)) give rise to the
sharpest maxima in thedependent LDOS. The ratio of the maximum density to
the density at the impurity site increases with the potéstrangthV;.
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Figure 5.6: Upper panel: Left: Densit\N of the intra-gap bound states as a function
of the distancea from the impurity for purely magnetic scalar impurities agi¢terent
potentialsVy. The impurity strength is given in units of the bandwidth Right: Friedel
oscillations in the local density of states (LDOS) arounat@ar impurity atr = 0 with

Vo = 0 andV; = 3W. The diferent curves correspond to the energies 0.8, 0.5 and
0.25W. In both panels, the gap-parametenis=- W/10. Lower panel: The local density
of states (LDOS, upper panel) and the local spin densityatést(LSDOS, lower panel),
SNy (r, w) — Ny (r, w), atr = 0 andr = 1 is shown for scalar of impurities with ftierent
potentials: a purely magnetic impurity withy = 0 andV; = 3W (left) as well as an
impurity with Vo = 2W andV; = 1W.

In the continuum, EqI{5.85) encodes the real space shapB®favound the
impurities. As Fig[’2b (b) shows exemplary for a scalar initguthe wavelength
A of these oscillations is always determined by the energynd the gaph: 1 =
nvi/ Yw? — A2, Therefore, the asymptotic long range decay of LDOS osicilia
in the continuum is qualitatively the same for normal statd auperconducting
graphene.

The most prominent dierences between normal state and superconducting
graphene appear in the energy dependence of the LDOS indimityiof an im-
purity:

In Fig. 5.8, the LDOS near a purely magnetic scalar impuritgnw, = 0
andV; = 3W is compared to an impurity contributing an electrostatiteptal
Vo = 2W andV; = 1W. The purely magnetic impurity, Fid._5%.6 (c), does not
break particle hole symmetry and yields therefore a fulljnsetric LDOS and
a fully antisymmetric local spin density of states (LSDOB)is is in contrast to
the more general second impurity, Fig.15.6 (d), where the B2@d LSDOS are
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not symmetric under particle hole transformation.

Moreover, bothmagneticimpurities considered, here, lead to resonances in
the continuum close to the superconducting gap-edge. Sstnances do not
occur for normal states graphene and are very similar tog@ances occurring
close the gap edges of the model semiconductor discussestiim&5.T1: The
real parts of the local Green function of superconductirapbene (EJ_5.28) and
the model semiconductor are very similar as both divergaritdgnically at the
gap edge.

5.2 Realistic impurity effects

In the previous sections we discussefiietent mechanisms of impurities interact-
ing with graphene in terms of (semi)analytically solvabledals. We now work
out which of these models apply to which impurities preseméal graphene sam-
ples and give an understanding of doping of graphene by bates. To this end,
we firstly consider the N@system interacting with graphene and give a com-
bined experimental and theoretical study. The experimeate carried out by K.
Novoselov et al. in A. Geim’s group at the University at Maester. Afterwards
we proceed with discussing the importance of substridieets in the context of
H,O adsorbates on graphene. Afterwards, the relation of ngnaiechanisms,
migration barriers and the occurrence of chiral midgagestat graphene is stud-
ied.

5.2.1 The NQ system on graphene

Theoretically, the electronic and structural propertiethe graphene adsorbate
systems are addressed by means of DFT, as described in idetayl diploma
thesis[[142]. In short, all calculations are carried outwtiite VASP [48] using the
projector augmented waves (PAW)[53] 52] basis sets (cfisesZ.3.B and 21 4).
As van der Waals forces are ill represented in the local teagiproximation
(LDA) as well as in gradient corrected exchange correlatioctionals (GGA)
resulting in over- and underbonding, respectively [143,apply both functionals
to obtain upper and lower bounds for adsorption energiesraliated structural
properties. The plane wave expansions of the Kohn-Shartetslwere cut & at
875¢eV in the GGAI[42] and at 957 eV in the LDA-calculations.

In this periodic scheme, single N@nd N.O4 adsorbates are modelled ixx3
and 4x 4 graphene supercells, respectively. The ionic configumatpresented
here are fully relaxed with all forces being less tha@ZOaVA_l, and the con-
vergence of subsequent total energy calculations is gtedrby applying the
tetrahedron method with Blochl corrections Bitentered k-meshes denser than
30x 30x 1, when folded back to the single graphene Brillouin zoneinARef.
[144], the DOS obtained in our DFT calculations are the @ mfuantities in the
following discussion of the adsorbatéexts on the electronic properties of the
graphene sheets.
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Figure 5.7: Left: Spin-polarized DOS of the graphene supercells witoaoed NQ, a) -

b), and DOS of graphene witholy4, €) - €), in various adsorption geometries. The energy
of the Dirac points is defined d&p = 0. In the case of N@the Fermi levelg; of the
supercell is below the Dirac point, directly at the energthefspin down POMO, whereas
for N2Og4 Es is directly at the Dirac points. Right: Adsorption geomesrobtained with
GGA. The carbon atoms are printed in blue, nitrogen greeroaggden red.

Gaseous N@maintains equilibrium with its dimer )0, giving rise to various
different adsorption mechanisms on graphene — similar to the afagraphite
[145,[146]. For both, we obtained possible adsorption geneseas depicted in
Fig. [5.1 right. The corresponding adsorption energies ilAGEB 85 meV (a),
67 meV (b), 67 meV (c), 50meV (d) and 44 meV (e) per moleculéd slieet-
adsorbate distances o#3- 3.5A for the monomer and.8 — 3.9A for the dimer.
As usual, LDA yields higher adsorption energies, approx@lyal69— 181 meV
for the monomer and 112 280 meV for the dimer, and favors the adsorbates by
0.5 — 1A nearer to the sheet.

The spin-polarized DOS of the supercells containing,Nshown in Fig[517
a) and b), reveals a strong acceptor level.4te¥/ below the Dirac point in both
adsorption geometries. The molecular orbitals of,NMOrrespond to flat bands
and manifest themselves as peaks in the DOS. The energibges® peaks are
virtually independent of the adsorbate orientation. Maospartant for doping
effects is the partially occupied molecular orbital (POMO) @\which is split
by a Hund like exchange interaction: The spin-up componériis orbital is
approximately 15 eV below the Dirac point and fully occupied, as it is also for
the case of free NOmolecule. The spin down component of the NBOMO
is unoccupiedfor free NQ,, but Q4 eV below the Dirac point in the adsorbed
conflguratloE — it gets populated by electrons from graphene.

By means of band structure calculations we investigatedbémel width and

°The energies of the POMO spin up and down orbitals relativegdirac points predicted by
LDA are —0.5eV and-1.4 eV, respectively, i.e. in almost quantitative agreemeittt the GGA
results.
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hybridization of the N@ acceptor bands with the graphene bands. It turns out
that in a small region, less than 1% of the Brillouin zone, wehine graphene
and the N@Q POMO bands come as close as 40 meV, these bands start mixing
significantly. In the entire rest of the Brillouin zone, thezaptor band is localized
almost entirely at the adsorbate. The band structure @dlook yieldV,/D < 0.1

for Vi as entering Eq.[{5.19). The acceptor level is weakly hybediwith the
graphene bands and localized at the,N@@sorbate.

In contrast to the paramagnetic monomer, the dime©JNhas no unpaired
electrons and is diamagnetic: on formation from two monantiee two POMOs
hybridize with the resulting bonding orbital being the heghoccupied molecu-
lar orbital (HOMO). The possibility of dopingfiects due to adsorbed dimers has
been investigated using the DOS depicted in Eig. 5.7 c) - gaid\ the molecular
orbitals of the adsorbates are recognizable as sharp peaks supercell DOS.
Similar to NG, band structure calculations reveal weak hybridizatiothefad-
sorbate and the graphene bands. TRONHOMO is in all cases more than 3 eV
below the Fermi level and therefore does not give rise to apird). However,
the lowest unoccupied molecular orbital (LUMO) is alwaygeuear to the Dirac
point, i.e. between 1 meV and 66 meV above it. Those initiathypty NO4 LU-
MOs can be populated by the graphene electrons due to thexuoightions and
act consequently as acceptor levels.

So, density functional theory predicts the following expemntally checkable
features: First, there will be two types of dopants, wherpheae is exposed to
NO,: the monomer and the dimer giving rise to acceptor leveld&ow and
rather close to the Dirac point, respectively. Furthermare find both acceptor
states almost entirely localized at the adsorbate molsautd similarly weakly
hybridized with the grapheng bands. Therefore electrons in both acceptor states
should exhibit a similar electron mobility, which should bich less than the
mobility of the electrons in the graphene bands.

These predictions have been examined experimentally byolkosElov and A.
Geim at the University of Manchester by combining electreddfigfect and Hall
measurements atftierent adsorbate concentrations. The results will be pteden
in the following part of this section. As described In [7, ] 4¥all bar devices
with Ti/Au (5nmy40nm) contacts were prepared from monolayer graphene flakes
on heavily-doped oxidized (300nm Sijilicon substrates. As prepared, the sam-
ples were unintentionally p-doped. This unintentionalidggas been removed
by annealing in vacuum for 2 hours at 410K [7].

Then the samples were exposed tofrongly diluted in nitrogen (100 ppm
of NO,) for 60 seconds at room temperature. After the exposure liaenber
was evacuated and the samples were annealed in a numbereaiagncycles
while constantly kept under vacuum. During each annealywjecthe devices
were heated up to 410K, kept at that temperature for some titf@ving for
desorption of some N/ N,O, (such reducing the doping level slightly) and
then cooled down to room temperature at which longitudRgland Hall R,
resistances were measuredBat 1 T as a function of the gate voltaye.

This procedure allowed us to vary the level of doping gralgualthe range
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Figure 5.8: The Hall resistance®yy, as a function of the gate voltagés, for a graphene
sample with diferent levels of N§/N,O4 doping. The solid lines are the experimental
results and the dashed lines are the simulations. They e tiit the experimental curves
by adjusting the dopant concentratianisandc, for each curveRyy vs. Vg is shown for
16 different adsorbate concentrations in the left panel. The greees are not shown in
the right panel, the other correspond to the equally colotedes in the right panel. The
simulation close to the red curve corresponds to undopgthgreec, = ¢, = 0.

from 310" cm~2 down to practically pristine state with doping as low a$'tdn2
by controlling the time spent at 410K (varied from 2 minutes the very first
cycle and up to 16 hours for the last cycle, when the undoed stas reached).
In total, 16 cycles and one measurement with the pristingpkahave been made.
(See Fig[5l18.)

TheseR,y vs. Vg measurements exhibit two characteristic features. itsib
curves move towards higher positive gate voltages witheiasing NQ/N,O,4 dop-
ing. Secondly, the transition region, whé®g depends linearly on the gate volt-
age (corresponding to the presence of both types of cgirimsomes wider, and
simultaneously, the maximuiR,, achieved becomes lower for a higher amount
of NO,/N,O,4 on the graphene sample. This is a clear evidence of the twiaatis
acceptor levels, as will be explained in the following.

Consider ¥R, as shown in Fig[5]9. The deep acceptor level causes a solid
shift at all Vg, while the acceptor level close to the Dirac point gives tsan
additional shift of the electron branch (straight line agakéve /R,y). The curve
for doped graphene (blue curve) exhibits these two shifts v@spect to the red
curve, which corresponds to undoped graphene. The&iOeptor level shifts the
entire doped curve to the right, whereas the additionat ehthe electron branch
reflects the presence of the®y impurity level near the Dirac point. The latter
additional shift in ¥R,, displays as broadening of the transition region near the
charge neutrality point in th,, curves, discussed above.

To make this analysis quantitative we give a simple modeiclis based on
the presence of four types of carriers: electrons and holgsaphene as well as
electrons in the N@and NO, acceptor states. Electrons and holes in graphene
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Figure 5.9: 1/Ryy for pristine (red curve) and doped (blue curve) graphenephesn
Upper panel: schematic DOS of doped graphene (correspontie tblue curve) with
grey depicting DOS for pure graphene, the magenta peakseqmiag the DOS for N®
and the green peak for 4. Shifting of the blue curve with respect to the undoped one
(red) suggests the presence of the low-layingoNi®@ak, and the fact that the electron
branch for blue curve is shifted with respect to the hole thandicates the presence of
the NbO4 peak.

have approximately the same, rather high mobility of ab@@&cnt/Vs [[7]. Our
DFT calculations predict the acceptor bands to be both fltt svisimilar band-
width and a similar, weak hybridization with the graphenadsais found. Thus,
we expect the mobility: of electrons in the impurity states to be much smaller
than the mobility of the electrons in the graphene bandsr&sging the impurity
state electron mobility: in units of the graphene electron mobility, the Hall re-

sistance is given by [148},, = Z&‘éﬁ;ﬂ;@ wheren (p) is the density of electrons
(holes) in graphene ardis the density of electrons in the impurity states. As the
gate voltage/s = ao is directly related to the total charge density of the sample
o = ¢(c + n - p), where the prefactar is determined by substrate properties as
described in[[7], we can simulate the Hall resistance as eifumof V.

To this end, we adjust the global fit parameteto the slope of thgl/R,|
curves. Once, the impurity state electron mobilitand the impurity DONim,
are specifiedR,y, andV; are functions of the chemical potential, sincep andc
are determined by the graphene DOS &k}, respectively, via the Fermi distri-
bution function. It turns out, that for reasonable agreeréall 17 experimental
curves with the simulationg = 0.1 is required andNiny(E) has to be peaked
aroundtwo distinct energiesg; < -300meV andE, ~ —-40meV. Taking in

particularNinp(E) = ¢16(E — E;) + C20(E — E), we simulate thé,, vs. Vg mea-
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84 5. Impurities in graphene

surements with three global fit parametetg andE, and two curve specific fit
parametersg; andc,. E; < —300meV corresponds to our DFT estimation of
E; ~ —400 meV.

The good agreement of simulations and experiment (se€ Hycénfirms the
presence of two distinct impurity levels due to the N&dd NO, as predicted by
DFT. The coéficientsc; andc, are measures of the density of electronic states due
to the NQ and NO, adsorbates, respectively. From the fitting of the simutetio
to the experimental curves we obtaip = 1.7, 1.1, 0.6 - 102cm™? andc, =
1.3, 0.9, 0.3 10*cm2 for the brown, blue and magenta curve in Fig.15.8,
respectively, corresponding to 3000-10000 molecules oavicd of Q75um x
0.75um in size.

The deep acceptor level Bf < —300 meV due to N@is always fully occu-
pied under our experimental conditions. In the limit of espie to NQ strongly
diluted in an inert gas atomsphere, the characteristic guimphe Hall resistivity
of graphene devices detected by Schedin el al. [15] cornekjmosingle electrons
being removed or introduced to the sample. The combined DiglTeaperimen-
tal results presented here suggest that these jumps concsp the detection of
single NQ molecules and lead to the picture that one electron is tearesf from
graphene to N@per adsorbate molecule. N@olecules cause doping but do not
create any chiral midgap state in graphene. So, they arexamepte of the class
of charged, weakly hybridized impurities, as discussedectiSn[5.1.B.

5.2.2 Inertimpurities

Experiments like those by Schedin et dl. 1[15] show that geaphis sensitive to
closed-shell molecules likeJ®, NH; and CO, as these adsorbates cause doping
of graphene. The microscopic mechanism of this doping, kewéas remained
unclear and will be addressed in this section. Density fonet theory calcula-
tions on single water molecule adsorbates on perfect feaglstg graphené [149]
were in line with previous studies on carbon nanotubes (CJi%0] and found
H,O physisorption but no O induced impurity states close to the Fermi level.
Therefore, the dopingfiects found experimentally/[7, [15] are very likely due to
more complicated mechanisms than interactions of graph&thesingle water
molecules: Firstly, the experiments dealing with tlkeet of water on graphene
were carried out using graphene on top of Sg0bstrates. In addition, for finite
concentrations of kD on graphene §O clusters might form.

In this section we study the substrate and cluster formaftects in the water-
graphene-system by means of density functional theory JDIV& show that both,
highly oriented water clusters as well as water adsorbatesmbination with a
defective SiQ substrate can lead to doping of graphene. To this end, wedmns
model systems (see Fig.5l110) for water and ice ffedent concentrations of free
standing graphene as well as for water interacting withatede SiQ, substrates.
By analyzing the involved dipole moments and comparisorigotestatic force
microscopy([151], we show that the Si®ubstrate is crucial for obtaining doping
by H,O adsorbates on graphene.
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Figure 5.10: Model systems for water interacting with graphene. a-c:eB&nding
graphene with single water adsorbates (a), a bilayer (b)aatatralayer (c) of ice Ih.
Carbon atoms yellow, oxygen red and hydrogen small blues.bali: graphene on top of
SiO, with every second (d-f) or eighth (g-i) surface Si atom fargha (2 defect. Water
adsorbates are considered on top of graphene (e), and Imegnagghene and the substrate
(M, (h), and (i). Fully coordinated Si atoms are depictedbigsblue balls, Si atoms atgg
defects in green.

As in the previous DFT calculations presented in this thebis electronic
and structural properties of the graphene-substrateraai®osystems are obtained
using generalized gradient approximation (GGA)[42, 43fh® exchange corre-
lation potential. For solving the resulting Kohn-Sham damrawe used VASP
[48] with the PAW [52,[58] basis sets and 875eV as plane waveftu The
graphene-substrate-adsorbate systems are modeled upergells containing up
to 83 substrate atoms (Si, O and H), 12 adsorbate atoms, a@dag#ns. In the
total energy calculations and during the structural reiara the k-meshes for
sampling of the supercell Brillouin zone were chosen be aselas a 24 24 and
12 x 12 k-mesh, respectively, when folded up to the simple graphmit cell.

First, water adsorption on free standing graphene witfedint water con-
centrations is considered. To model a singig®Hnolecule on graphene,>33
graphene supercells were used. Full relaxation g M/ith oxygen or hydrogen
nearest to the graphene yielded adsorbed configuratiohsoimitling energies of
40 meV and 36 meV and molecule sheet distances5ff & and 325 A, respec-
tively. These values are in the same order as those obtaineddnaerts et. al.
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Figure 5.11: Bandstructures of supercells with fully relaxed single ecoles (a), a bi-
layer (b) and a tetralayer (c) of water on graphene, corredipg to Fig.[5.ID a-c), re-
spectively, are shown. The graphenbands are marked in green, the nearly free electron
bands in blue. Due to theJ® dipole moments, graphene’s nearly free electron band is
shifted with respect to its bands.

[149] indicating physisorption of single water moleculesgraphene. Analyz-
ing the density of stat@sand structures for these two adsorption geometries we
find qualitative agreement with Ref._[149]: None of thesefigurations exhibits
energy levels due to the adsorbate near the Dirac point,@grsin Fig. [5.T1
a) for the configuration with oxygen closest to graphene. HIBMO of H,O is
more than 24 eV below the Fermi energy and its LUMO more than 3 eV above it.
The absence of any additional impurity level close to thea®point shows that
single water molecules on perfect free standing grapheeetskdo not cause any
doping.

The supercell applied here, corresponds to an adsorbatemiation of
n = 2nn12, which is well inside the range of concentrations (1-10-fnfound
experimentally in Ref.[[151]. The lateral dimensian= 4.5 A of the hexagonal
ice Ih (0001)-surface unit cell corresponds to a conceptratf 5.7 H,O nnT? per
layer. Thus, increasing the,B concentration significantly above the= 2 nnr2
from above leads to water clusters or ice like structuret)erathan isolated
molecules.

To gain insight into doping of graphene by water clusters iaetbverlayers
we studied fully relaxed bi-layers and four layers of ice éis@arbed on graphene.
These overlayer structures have been proposed as basesgroiwth on various
hexagonal metal surfacés [152Z,153] and can be modeled®s (/3) R30 over-
layer on the simple graphene unit cell. The lattice mismatchis configuration
is 0.23 A — on the same order as found for water overlayers on N)([TBZ] —
and therefore a reasonable starting point for studyingmcgraphene.

The supercell bandstructures (Hig.—5.11 b) and c)) showtliga¢lectric field
by proton-ordered ice on top of graphene changes the enégggmhene’s nearly
free electron bands. In contrast to pristine graphene, evtiezse bands start at
3eV above the Dirac point or in the case of singlgoHadsorbates on graphene
(Fig. [E11 a)), their bottom is at 0.6eV above and 0.1eV bdlwvDirac point
for a bi- and a tetralayer of ice lh on top of graphene. Thi$t $hidue to elec-
trostatic fields induced by the @ dipole moments and results in hole doping for
the tetralayer of ice on graphene.

The water adlayers cause a change in contact potégtiahich can be esti-
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mated using the yO dipole momenp = 6.2x1073°Cm and the relaxed structures
to bedyp = 1.4V and 5.4V for a water bi- and tetralayer, respectively. M/bnly
the latter structure causes doping, the correspondinggehancontact potential
exceeds the experimental valdgey, = 1.3V, from Ref. [151] by more than a
factor of 4. However, water strongly diluted i, Mas been found to cause hole
doping in graphene on S15]. Given these two experiments, doping due to mul-
tiple fully oriented ice overlayers as in Fig._5l11 is likelgt the most important
interaction mechanism for water and graphene.

We now turn to studying thefiect of the SiQ substrate in the water-graphene
interplay. The experiments with graphene on top of Si®ed substrates, which
were created by plasma oxidation of Si._{[15,1151] The SsOrface created in
this way is amorphous and its electronic, structural andanita properties are
challenging to model from first principles. To obtain, qtative insight to the
most important physical mechanisms it is, however, a restslerstarting point to
consider crystalline SiQin thes-cristobalite form as a substrate [154].

The (111) surface of this modification can be used to creaartbst likely
defects on Si@amorphous surfaces: These are so cag¢dndQ} defects[[155]
having one under coordinated silicon and oxygen atom, otispd/. Further-
more, the unit cell of this surface is nearly commensurati wie graphene
lattice: The lattice constardsio, = 7.13 A [I56] results in a surface unit cell
asio,/ V2 = 5.04 A, which is 4% larger than twice the lattice constang 2
4.93 A of graphene. As the SiQetrahedra in Si@are known to adjust to exter-
nal strain easily, we model graphene on Sii§ 2x 2 or 4x 4 graphene supercells
with lateral dimension &, or 4a,. As substrate we put 4% laterally strained and
hydrogen passivategicristobalite with 6 Si atoms per surface unit cell in veatic
direction. We then created the defects by removing H passivatoms, added
the HO adsorbates and relaxed until all forces were less th@®e A2, In
this way, we consider passivated and defective,Si®faces — the latter contain-
ing either undercoordinated silicon or oxygen atoms — astsate for graphene.
The dfect of water exposure is simulated by putting water molecole top of
graphene as well as between graphene and the substrate.

Graphene on top of fully passivated Sideans two inert systems in contact
with each other. Consequently, there are no bands in adddigraphene’s Dirac
bands at the Fermi level and no doping occurs. (The bandtsteuis not shown
here, for brevity.) This changes strongly for graphene dedwre SiQ. As a
model system, we stud@3 defects ins-cristobalite (111)-surfaces. Depending
on the supercell size,»22 and 4x 4, in these periodic structures every second and
eighth surface Si atom is under coordinated, respectiaely,forms aQ3 defect.
(See Fig[2.10 (d-i).)

These defects lead to additional states in the vicinitygV) around the Fermi
level. (See Figl’52 a) and d).) The avoided crossing in Bifi2 a) indicates
significant hybridization of the defect and the graphenedbaand demonstrate
the impurity state’s importance for conduction electroatsring in graphene. In
the pure Si@ graphene model systems (FIg._3.12 a) and d)), the impuritgba
do not cross the Fermi level. This situation can be changeddigr adsorbates,
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88 5. Impurities in graphene

Figure 5.12: Band structures for graphene on defective Sé0bstrates. (a-c) 2 2 and
(d-f) 4 x 4 graphene supercells with every second, (a-c), or eigtit), gurface Si atom
forming an defect. The corresponding geometries are shown in[Eigl d-i),0respec-
tively. Spin up and down bands are shown at the same time.riGatidns at the defect
site are marked as green fatbands. a) and d) without waterlzdss. b) with water on
top of graphene. c), e), and f) with water between graphedatansubstrate. c), f) 0
dipole moment pointing tilted downwards. e)®l dipole moment pointing upwards.

which may sit either in between graphene and the substragdgH2 c), ) and f)
or on top of graphene (Fi._5J12 b)). In all cases, the elstdtix dipole moment
of the water adsorbates comes along with strong local eltettic fields, which
allow to shift the impurity bands significantly with respéatthe graphene bands.
As Fig.[5.12 demonstrates, this shift strongly depends emplhce of adsorption
and the orientation of the water molecules leading, eithbpte doping (FiglC’5.12
c) and f)) or electron doping (Fig. 5]12 e)).

Similar dfects of water can be found for graphene on the (0001)-plane of
quartz orp-cristobalite with @ defects. Although the interaction mechanisms of
water, SiQ and graphene presented here are not exhaustive, the ceompafiva-
ter adsorption on perfect free standing graphene to wasarption on graphene
lying on a (defective) Si@substrate allows the following conclusions: Perfect
free standing graphene may have water adsorbates on tojg lelgctronic trans-
port properties are insensitive against perturbationhbyater adsorbates. Sin-
gle molecules will not create any impurity states close ® Ehirac point. For
obtaining doping ffects, one needs highly ordered®icluster or ice structures.

The substrate changes the situation completely. The dipolments of HO
adsorbates cause local electrostatic fields that can kaiftubstrate’s defect states
with respect to the graphene electrons and cause doping.

This microscopic view of HO pushing electrons to the substrate is well in line
with EFM [151]: The graphene contact potential changes lyuaklV upon
water adsorption (exposure to moist With 50% relative humidity), whereas
the SiQ substrate contact potential stays almost constant duhisgproce-
dure. This change in contact potentia$ can be converted into doping of
graphene (expressed in terms of a surface charge denskgyowing the sepa-
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5.2 Realistic impurity effects 89

ration d of the compensation charges in the substrate from the gnap$ieeet:

o = g&Ap/d =~ 2 x 108%ecm? for d = 1nm ande, = 3.9, which is the di-
electric constant of Si© Typical experimental values ~ 10%e.cm™? suggest

d ~ 20nm. Thus, the DFT simulations as well as the EFM experimsaggest
that HO induced doping is mediated by electrostatic dipole fielus @at the
separation between the compensation charges and the geapheet is signifi-
cantly larger than the typical 2 A found e.g. for doping by Kaamins, which are
discussed in the following section. Thidi@grence can be expected to manifest in
electron scattering with indirect dopants leading to mueaker scattering than
direct dopants.

5.2.3 Midgap states and migration barriers

For judging which impurities might determine electron seang in graphene and
for optimizing chemical functionalization, the mechanssdetermining the impu-
rity mobility, i.e. their migration barriers and bindingengies, need to be known:
Firstly, the migration barriers decide at which tempemrsumpurities will start
moving along the graphene sheet resulting in possiblearlimtmation. Indeed, it
has been shown that clusters of (charged) impurities leae#ker electron scat-
tering than the same amount of randomly distributed immsitL57]. Moreover,
the migration barriers and adsorption energies allow tgguat which tempera-
ture impurities can be removed from the graphene sheets bg.@nnealing. In
this section, we first consider monovalent adsorbates anw #iat these can be
divided into two separate groups regarding the bonding ar@sm: ionically and
covalently bond impurities. To this end, we present abamialculations on H, Li,
Na, K, Cs, F, Cl, Br, I, CH, and OH adsorbates on graphene. For these systems the
electronic structure (sectién’5.2.3) and migration besr{sectioii 5.213) are ana-
lyzed. The covalently bond impurities cause a charactensidgap state derived
from the graphene electrons. This state turns out to be vabyes as graphene’s
conjugatedr bonds enhance the migration barriers of neutral covaldathd im-
purities. In sectioi 5.213, the experimentally importaade of oxygen ad-atoms
is discussed.

For a first principles description of the graphene adsorbgstems we per-
formed GGA [42]43] calculations on» 4 graphene supercells containing one
impurity. As in the previous sections, VASP [48] with PAW ['BZ] basis sets has
been used. We obtained relaxed structures for the grapli=oebate systems,
total energies, and orbitally resolved LDOS. In the totadrgy calculations and
during the structural relaxations the k-meshes for sargpirthe supercell Bril-
louin zone were chosen be as dense asxa2fland 12 12 k-mesh, respectively,
when folded up to the simple graphene unit cell.

To find migration barriers for ionically bond impurities & suficient to per-
form structural relaxations with the impurities in thredfelient high symmetry
adsorption sites: on top of a C-atom (t-site), in the middla bexagon (h-site)
and above the middle of a nearest neighbor C-C bond (b-3iteg.covalent im-
purities cause strong distortions of the nearby bonds aggine the minimum
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90 5. Impurities in graphene

energy paths to be calculated using the nudged elastic batigdooh[158]. As
starting guess a linear interpolation between two adjastatile configurations
with three or more intermediate points has been chosen. dakdbr convergence

of the migration barriers with the supercell size, we perfed also calculations
with 3 x 3 as well as 5 5 supercells for H ad-atoms and reproduced the barrier
from the 4x 4 supercell within an accuracy of 4%. Moreover, the convergeof

the local density of states close to the impurity with theesapll size has been
assured in this way.

Electronic structure of monovalent impurities on graphene

The local electronic structure of graphene in the vicinitpdsorbates (Fid._5.13)
can be grouped into two classes. The LDOS in the vicinity «fosldates like
Li or Cl exhibits a sharp resonance close to Fermi level wisciimost entirely
localized at the impurity. Besides this peak, the LDOS atimrest neighbor and
at the next nearest neighbor of the impurity exhibits theidegap characteristic
for graphene.

This is qualitatively diferent for the second group of impurities (Fig.5$.13 c)
and d)). H and F adatoms cause a midgap state charactesisBir&c fermions:
With the bonding partner of the impurity in sublattice A timepurity state is lo-
calized in sublattice B and at the impurity atom.

Every stable atomic configuration under investigation carstoictly grouped
either into the class of strongly or weakly hybridized imigas, as can be seen
from Fig. [EIB e)-f): lonically bond impurities give rise # sharp acceptor
(donor) level below (above) the Dirac pointig = 0. The LDOS of covalently
bond impurities is much broader and exhibits charactensonances far below
the Fermi level (between10 eV and-4 eV) as well as a midgap state at the Fermi
level.

As regards electron scattering this midgap state is maidgpendent of the
particular type of covalent impurity. The supercell bandictures for H, CH,
OH, and F covalently bond to graphene are shown in[Eig] 5.hd.bBnd structure
of graphene with adsorbed H and €&t well as those for graphene with F and OH
adsorbates coincide close to the Fermi level despite therelnt internal structure
of the adsorbates. The coupling of the midgap state and #pdgne bands can be
quantified in areffectiveimpurity modelH = Hp + Hinp, where the unperturbed
graphene bands are described by

Ho = ) e()d]dk (5.37)

k

and the perturbation by
Himp = €mpC'C+ V [Z c'dg + H.c.] : (5.38)
k

Here, the indeX = (E, v) denotes crystal momentukiand band number = +.
€(k) is the unperturbed graphene dispersion. ThHec#ive impurity is charac-
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Figure 5.13:LDOS in different graphene adsorbate systems. (a-b) ionically bondrimp
ties, (c-d) covalently bond impurities. a) Graphenki, b) Graphener Cl, ¢) Graphene

H d) Graphener F. For the impurity’s bonding partner in graphene and itsesaneigh-
bor thep, projected LDOS is shown. The valence electron LDOS at theuritypsite for
ionically bond impurities is depicted in (e) and for covalgrbond impurities in (f). In
(a-d) and (f) the Fermi level is & = 0; in (e) the Dirac point is a = 0.

terized by its energyimp and its hybridizatiorV with the graphene bands. In a
supercell calculation at the backfolded Dirac poiﬁts K*, this model simplifies
to

€imp A B
H=| A* 0 0|, (5.39)
B 0 O

where the zero block stems from the graphene bands at the porat andA (B)
are the components &f in the two diferent sublattices A (B). This allows to
derive the coupling strengtiig| = +/|Al? + |B|? andemp from the DFT energies of
the three bands closest to the Fermi level in the superdellledion: We identify
the energies of these bands at the supercell Brillouin zepeikt, E; < E, < Eg,
with the eigenvalues dfl from Eq. [2:39):6p = 0, €. = €imp/2+ +/l€mp/2? + [VI2.
By letting ¢ = E, (i.e. choosing the energyfiset such thak, = 0), e. = E;
ande, = E; and solving forem, and|V|?, we obtain the impurity energies and
coupling strengths as shown in taplel5.1.
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Figure 5.14: Supercell band structure of (a) H and £€bh graphene as well as (b) F and
OH bond covalently to graphene. Bands coincide close to ¢éhmHevel € = 0) despite
the diferent internal structure of the impurities.

The coupling|V| is mainly independent of the internal structure of the cova-
lently bond impurities. Hence, this midgap state appeasswasversal feature of
all monovalent impurities which are strongly bond to one Hppene’s carbon
atoms.

Bonding of H-atoms to graphene and related electron scajtbas been an-
alyzed in [159/ 160, 161]. For the bonding partner of H, AH®ond to its nearest
carbon neighbors is broken andrabond with the H ad-atom is formed. The
carbon bonding partner of H atoms has been found to be dembdm the
graphener-electron system and the resulting local imbalance betwleemum-
ber of atoms belonging to each of the two sublattices causgggap state. The
band structures from Fig._ 5114 and the coupling constanta ffable[5]l show
that same mechanism isfective for all monovalent covalently bond impurities
on graphene.

It might appear surprising that F forms a covalent bond wiipbene, while
Cl becomes charged and bonds ionically. This is caused byn#reness of
graphene’s spnetwork, which has to be broken upon formation of a covalent
bond. For Cl having one completely filled inner electronielsthe typical cova-
lent radius is 102A (see Ref.[[162]), which is almost twice more than for Fugh
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5.2 Realistic impurity effects 93

Table 5.1: Impurity energy and hybridization for thefective impurity model of the
midgap state for dierent impurities. All impurities are placed on top of a C atavhich
is at the total energy minimum for the covalently bond impesi and the anions CIBr
but not for the cations Li and Na.

emp (€V) V] (eV) emp (€V) V] (eV)

H -0.03 0.69 || Li 1.17 0.11

CHs -0.11 0.70 || Na 0.93 0.07

OH -0.70 0.65 | ClI -0.79 0.21

F -0.67 0.65 || Br -0.73 0.09

Table 5.2: Minimum energy sites, bonding energiEg, and migration barrierdE for
ionically and covalently bond impurities.

site E,(eV) AE (eV) site E,(eV) AE (eV)

H t 0.80 1.01 | Li h 1.08 0.31

CH; | t 0.27 0.63 || Na| h 0.48 0.09

OH t 0.91 053 | K h 0.81 0.06

F t 1.99 0.29 ||Cs| h 0.96 0.04

@) b 2.43 0.74 ||Cl | tb 0.80 < 0.005

Br | t,b 0.54 < 0.005

I t,b 0.31 < 0.005

a significantly lower covalent binding energy can be expkéde Cl than for F,
which — as our calculations show — unables Cl to break gragpbem network.
For the same reason, N@oes not bind covalently to graphene.

Migration barriers and chemical bonding

In the following we show, that the creation of the midgapestay a neutral im-
purity covalently bond to one carbon atom and high migraliamiers are closely
related. A comparison to ionically bond impurities is given

In agreement with [163], we find the energy minimum for theailkations at
the h-sites and barriers as shown in tdblé 5.2. The barreamedse with cation
size and are all (except for the special case of Li) below ¥.1 e

The potential energy landscape for the cations consistgpsefid the center of
the hexagons bordered by a hexagonal net of banks. Wittsmttispanned by
the nearest neighbor carbon bonds, the variation of paiestiergy is by a factor
of more than 5 smaller than between the h-site and/thisites.

This landscape is reversed for the anions: Having theirggnminima on the
net and maxima in the center of the hexagons, the anions eaty fmove on
the graphene sheets. The fact that the height of the impaibbye the sheet is
always minimized in center of the hexagon, would result emeéhergy minimum
being in the center of the hexagon for all ionically bond impes if atomic scale
inhomogeneities in the screening charge of the impuritierewegligible. The
anions preferring the t- and b-sites over the h-sites shbatsnhomogeneities in
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Figure 5.15: Stable and transition state geometries for H, OHz@Hd O (from top to
bottom) on graphene. For H, OH and O, two neighboring stati®m ption geometries
are in the very right and left and the saddle point transisitatte in the middle. Transition
of CH3 from one stable adsorbed geometry to a neighboring reqdiserption. For
CHgs, desorption with the saddle point configuration being in itiddle is shown. In
the minimum energy adsorbed configuration of {3hle H-C-H bond angles are 1@9,
suggesting sphybridization of C in the CH group, whereas the desorbed £id flat
corresponding to Sphybridization.

the screening charge corrugate the potential energy lapdsaf the ions on the
order of some 10 meV.

The total bonding energ¥, (see tablé€h]2), is for each the cationic species
about 3 times to an order of magnitude bigger than its mignabarrier, AE.
For the anions the rati&,/AE ~ 107 is even larger. While the typical ionic
bonding energies on the order of a few 100meV to 1eV prevesbrgéon a
room temperature, the migration barriers are significasrtialler, make most ions
mobile on graphene and let cluster formation appear p@satlstbom temperature.

This in strong contrast to covalently bond impurities: oalcalations show
that the potential energy landscape for these impuritidsy/ian order of mag-
nitude more corrugated. We find migration barriers betwe28 €V for F and
1.01eV for H. Notably, F has highest absolute binding eneigy £ 1.99eV)
of all monovalent impurities considered, here, but it has gmallest migration
barrier within the group of covalent impurities. For F and @id find the sad-
dle point energy of the transition path significantly beldwe tlesorption energy,
which isE, = 0.91eV for OH. This is in strong contrast to H and €H-or H
the energy of the saddle point state is only 4 meV below thergésn barrier
and moving a Chtgroup from one carbon atom to its nearest neighbor requires
even overcoming the desorption barrier d®eV. No saddle point configuration
with the CH;-group in the middle of two neighboring C-atoms except far @tk
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Figure 5.16: Electronic structure in the transition state. @)LDOS at a carbon atom
next to the impurity. Lower part: Band structures of graghsuapercells with b) H and c)
F impurities in transition state configuration. Contrilbus from the impurity atoms are
marked as fatbands. In all panels, the Dirac point is defiodmbtate = O.

being fully desorbed from the graphene sheet could be found.

The transition paths between adjacent stable adsorpties sf H, OH, and
CHjs are depicted in Fid—5.15. In agreement with previous stig9], we find
significant out-of-plane lifting (@ — 0.5 A) of the impurity’s bonding partner in
the minimum energy configurations.

H, F, and OH are above a bridge site in saddle point of the itrangath.
In this configuration, the OH group is oriented perpendictdathe C-C bond
of the two neighboring carbon atoms. For F, OH, and H the eabfichemical
binding in the saddle point configuration can be understoonh fthe supercell
electronic properties shown in Fig._8l16. The LDOS at thé@aratoms next to
the F and OH impurities is very similar to the LDOS in the vigirof ionically
bond impurities like Cl or Br (see Fig._ 5113b). This is in a@st to the case of
H, where in addition to a resonance at 2 eV, the LDOS at theocaneighbor of
the impurity is broadened and exhibits a peak&eV — similar to all covalently
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96 5. Impurities in graphene

bond impurities in their minimum energy configuration. Thenkpurity causes a
donor level and is at the same time covalently bond, as thersefbband structure
with contributions from the H impurity marked as fat bandsttier illustrates.
There are contributions from theHorbital over the energy range froni0 eV up
to +3 eV, indicating strong hybridization of the impurity or&litvith the graphene
bands. This is very dierent from F in the saddle point configuration with its
valence orbitals contributing significantly within an egyeinterval which is an
order of magnitude smaller. In the transition state F and @Hamically bond to
graphene.

The high barrier for H suggests that the formation of a stroogplent bond
in the transition state is highly unfavorable. The origirto$ efect can be under-
stood from the model Hamiltonian, Ed._(5139): With the impuon top of the
bridge site, sublattice symmetry is preservéd= Bin Eq. (5.39). The symmet-
ric combination of the two (p, orbitals adjacent to the impurity, = %(O, 1,1)
will couple to the impuritygim, = (1,0,0). The antisymmetric combination
¢ = %(O, 1,-1) is decoupled and forms the analog of the midgap state ogur
for the impurity on top of a carbon atom: In the latter casehwie impurity’s
bonding partner in sublattice A, one obtaiBs= 0 and finiteA in Eq. (539).
Thus,¢ = (0,0, 1) is decoupled from the impurity in the stable configuratiog
is non-bonding and is therefore at the energy of the Dirantppi = %(O, 1,-1),
however, is an antibonding combination of neighboring, Mbitals. The ab-
initio calculations show that the resonances derived frioisidtate are more than
1 eV above the Dirac point, unoccupied and not available ¢oeening the ad-
ditional positive charge brought by the H-impurity. Thuse treation of a local
charge is enforced by graphene’s electronic structureh®irhpurity in a b-site
saddle point configuration. As a consequence, a strongnegde ionic bonding
with graphenadecreasesnigration barriers, while migration preferably neutral
covalently bond impurities is suppressed.

Oxygen impurities on graphene

In the previous sections, we showed with the model systenoofavalent impuri-
ties that covalently bond impurities exhibit higher migpatbarriers than ionically
bond impurities. With increasing number of chemically aetorbitals, as, e.g.,
for transition metal adsorbates with partially filled 3d khehe situation can be-
come arbitrarily complicated (see sectlon] 6.5). We now slmwever, that the
experimentally and technically important case of oxygefagmns is well in line
with the results on monovalent impurities.

Oxygen being divalent, adsorbs to bridge sites on graphetienugration
from one stable configuration to the next involving the paghidted in Fig[5.76.
In the stable adsorbed configuration, it binds covalentlgraphene with decou-
pling its two carbon bonding partners from the grapheméectronic system (see
Fig.[5.1T). The LDOS at these carbon atoms is strongly degietthe vicinity of
the Fermi level and exhibits the typical shape oflspnded carbon — very similar
to the situation for monovalent covalently bond impuritoesgraphene discussed
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Figure 5.17: Electronic structure of graphene with adsorbed oxygen énntinimum
energy configuration (a) and in the transition state conditiom (b). The p projected
LDOS at a carbon bonding partner of oxygen, one of its neamsighbors, and the LDOS
at the oxygen ad-atom are shown.

before.

However, no midgap state is created by oxygen ad-atomsimmtit@mum en-
ergy configuration as both graphene sublattices fieeted equally by the oxygen
ad-atoms. There are resonances in the LDOS of nearest eyl = —-1.2 eV
andE = 0.9eV, but the LDOS vanishes linearly at the Fermi lelggl= 0. This
is because O represents a "double impurity” in terms of atdghding model
(see section’5.71.2) and strong double impurities do notausally create midgap
states.

For migration of oxygen from one stable configuration to ayhboring, one
of its two bonds to graphene has to be broken. In the saddi# pt@ite, oxygen
is forming a single covalent bond to one carbon atom. Thislt®sn a midgap
state of the same nature as in the case of covalently bondimgpwvalent impu-
rities in their stable configuration. The midgap state ightly above the Fermi
level, as the non-bonding orbital of oxygen (sharp peakwedte = O in Fig.
b) is fully belowEr and accepts one electron from the midgap state. So,
O binds partially covalent and partially ionically to gragpte in the saddle point
configuration.

As in the case of monovalent impurities, the requirementre&dking one co-
valent bond results in the rather high migration barrier @G4@V for oxygen on
graphene, which is however smaller than the adsorptiorggre#r2.43 eV. In this
sense O is similar to OH or F on graphene, which are all ablerta & (partially)
ionic bond in the saddle point configuration.

The investigation various examples of monovalent impesion graphene in
this subsection allowed us to establish a relation betwieein type of chemical
bonding, the occurrence of chiral midgap states and thejration barriers. We
showed that migration barriers of ionically bond impustage significantly lower
than than their binding energieskE <« Ey,, which is in contrast to covalently bond
impurities having typical migration barriers on the ordesome 100 meV to 1 eV
andAE ~ E;.

This tendency explains experimental findings of chargeduitips moving
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98 5. Impurities in graphene

almost freely on graphene |15, 164] and experiments suiggesinsiderable mi-
gration barriers for H adsorbates [1.10] 87]. The fact thasterization of im-
purities on graphene strongly suppresses their contoibud the resistivity [157]
makes covalently bond impurities one natural candidatedartain source of scat-
tering limiting the electron mobility in graphene. It is essial that, as demon-
strated here, these impurities frequently have quasiloeaks nearby the neutral-
ity point — not accidentally but enforced by symmetry.
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Chapter 6

Correlated magnetic nanosystems

In the preceding chapters we studied the influence of inh@emeiges on the elec-
tronic properties on graphene. These systems appeareavillescribed within
the picture of non-interacting quasiparticles obtainedfl_DA/GGA. Here, we
aim at an understanding of how the atomic composition detersrithe electronic
and magnetic properties of nanosystems where the indepepéddicle picture
breaks down. We focus on magnetic ad-atoms and nanostsabarmetal sur-
faces as well as on graphene and perform semianalytic andrkased studies.
In all examples discussed, here, Kondo physics will playnapartant role. The
Kondo dfect will be introduced together with the Anderson impuritydel in sec-
tion[@. 1. Afterwards, Ce atoms onffirent metal hosts are investigated in a joint
theoretical and experimental study (sectiod 6.2). An dtieifbased theory for
resonant valence photoemission spectra is given and arategbdependent tran-
sition of the Ce f-electron character from localized to delzed is explained.
Co ad-atoms in Cu hosts have been subject of numerous STMimgmts and
present a model system for investigating the Konffeat. In particular, the in-
fluence of local coordination on the Kondfiext has been studied experimentally
in this system, whereas a full theoretical ab-initio basadesstanding is still
unavailable. This motivates the first-principles studie€o in different Cu en-
vironments (sectioh8.4). First, single Co atoms in bulk @ @mpared to Co
inside a Cu (111) surface and adsorbed on Cu (111). Aftesyaabrdination ef-
fects in magnetic CoGunanostructures are investigated by combining STM and
first-principles theory. The last part of this chapter (S8d) is devoted to the
study of Co ad-atoms on graphene. In graphafiequasiparticles at the Fermi
level belong to a non-trivial representation of the crygi@int symmetry group.
This makes graphene veryfiirent from usual metal surfaces and we will work
out the consequences for STM experiments: It will be showanttie coupling of
the impurity to graphene depends unusually strong on therstny of the active
impurity orbitals. This stronglyfects g-factors seen in STM as well as Kondo
temperatures.
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100 6. Correlated magnetic nanosystems

6.1 The Anderson Impurity Model and the Kondo
effect

Historically, the motivation for the Anderson Impurity meldAIM) goes back to
the 1930s, when a resistance minimum has been observed érsetals like Au
[165]. This minimum was in opposition to the usually monatatly decreasing
resistance, when the temperature is lowered and its origgtatally obscure at
that time [27]. In the 1960s a correlation between the rast minimum and
the existence of localized magnetic moments has been f@&€j, [which finally
motivated Kondo’s study of magnetic impurities in non-metgmmetallic hosts:
Using a perturbative approach Kondo explained the minimairthé resistance
due to contributions from magnetic impuritiés [167].

During that time Anderson addressed the question of howisthmagnetic
moments can be formed in metallic hosts [168]. The insidtdt & spin-down
electron hopping onto a spin-up impurity will experience aoly the exchange
repulsion but also the Hartree repulsion of the spin-uptedacalready residing
there, while the spin-up electron does not see this repylsead to the formula-
tion of AIM Hamiltoniarl:

Ham = Z 6Cy, Ceo + Z (VimC, Omer + H.C.) + Hay (6.1)
k.o kmo
with
. 1
Hao= ) cambhotng + 5 D) Unmvm G, 0y o oy oG (6.2)
o mm,’m’,m"”’

o0’

It describes an impurity characterized by quantum numlensy) (orbital
and spin), with corresponding Fermi operatatg,, on-site energieg;m and lo-
cal Coulomb interactiotJ iy This impurity is embedded in a sea of con-
duction electrons described by Fermi operatas, and energiess, wherek
includes crystal momentum and band index. The couplingeirtipurity and the
conduction electrons is provided by the hoppiig.

This model explains how local moments are formed and howdnegventu-
ally screened at low temperatures. Its physics can be agpedarom the non-
interacting limit,Unymm — 0, and from the atomic limity,,, — 0. In section
B.T1.3, the non-interacting limit has been studied with ttemresult being the
occurrence of virtual bound states: Defining the hybridaratunction (cf. Eq.

G18)), 5 ,
m B " w+i5—€k, '

it can be shown that the LDOS at the impurity site consists odsbnance at
€imp = €m + ReAnn(€mp) Of widtl T = —Im Amm(w). The impurity does not have

'Here, the mulitorbital AIM is given. The original AIM incluetl one impurity orbital.
2This statement holds iy is diagonal and if” is small as compared to the distance:gp
to the closest Van Hove singularity in the bare conductiectebn DOS.
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6.1 The Anderson Impurity Model and the Kondo dfect 101

a magnetic moment in this case, i.e. it does not contributaree@\Veiss term to
the magnetic susceptibility.

We now turn to the atomic limit, consider an impurity with ambital and skip
orbital quantum numbers in the following. The impurity H#omian S|mpI|f|es
to Hy = 3, g + Ung; Ny, Which has four eigenstaté),| 1) = d! 10,1 L
y = df0), and| 1) = dId]|0). The empty impurity|0), and the double occupled
impurity are non-magnetic with energi&g = 0 andE, = 2¢4 + U, respectively.
In the case of single occupatidr,) or| |), the energy i€, = ¢4 and the impurity
possesses a magnetic moment corresponding to aispifor given chemical
potential i, the impurity is hence magneticH; — Eg < u andE, — E; > y, i.e.

€ <u<e+ U (6.4)

The spectral functiom(w), of such a magnetic impurity consists t@geaks at
€ andeg + U,

N(w) = %5(6(1 - w) + %5(&1 + U - w), (6.5)

corresponding to the removal and the addition of an electespectively.

The behavior of the impurity in between these two limitings&s can be
grouped in diferent parameter regimes: The first qualitative insight fhaomder-
son’s original work[[168] using a static mean field theoryhiatta finite magnetic
moment at the impurity site forms #zIm A(u) < U and Eq. [&14) are fulfilled.
If, in particular,eg +U —u > [Im A(u)| andu —eq > [Im A(w)l, the Anderson model

can be mapped to the s-d modell[2[] = Ho + Hsq With Hg = >, €kCTKng,U and
Heg = Z e (7L G + S7C et + Sl ;G — € Cre)) (6.6)
kk

whereS, andS* = S, +iS, are spin operators of a sphlocalized at the impurity
site. For a single orbital impurity, the exchange couplmgiven by

1 1
Jw = ViV + . 6.7
Kk k k(U+6d—6|2 ek—ed) (6.7)

For electrons at the Fermi level, this coupling is antiferegnetic due to Eq.
@&34). Upon reducing the AIM to the s-d model an additionaleptial scat-
tering term \7p0t occurs. This term can be accounted for by including it into
Hy — Ho + Vpot and consideringy, as Fermi operators of the exact eigenstates
of Ho + Vpot This entire transformation from the AIM to the s-d model adled
Schrigter-Wolff transformation. The so-called local moment regime is ddfine
as the regime in which a Schfier-Wolff transformation is possible and the s-d
model is adequate to describe the low energy physics of ttersy

Starting from the local moment regime and increasing either lettingeq or
& + U approach the Fermi level, such that e ~ [ImA|oreg+ U — u ~ [ImA]
valance fluctuations can no longer be considered as virteakegses and elimi-
nated by the Schriger-Wolff transformation. This regime is called intermediate
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Figure 6.1: (a) Schematic illustration of the evolution of the impursigectral function
pd(w) = N(w) as interaction strength U is turned on continuously, na@mig a constant
impurity occupancy. The noninteracting resonandg at 0 splits into an upper and lower
atomic peak aty + U andeg, respectively. From[47]. (b) lllustration of the one o#bit
AIM. The magnetic impurity is assumed to have one electreslleith energyey = &4
below the Fermi energy = 0 of the metal (red). This level is assumed to be occupied
by one spin-up electron (blue). Adding another electroedgires bring up the Coulomb
energy,U, while it would cost at leadky| to remove the electron. However, the system
can tunnel between this and thrergetically degeneratsonfiguration with flipped spin:
The spin-up electron can hoff the impurity site to briefly occupy a classically forbidden
virtual state outside the impurity, and then be replaced dyia-down electron from the
metal. From[[160]

valence or mixed valence regime. Finally, there are twomagmnetic regimes, the
empty orbital- and the double occupancy regime, in the cases— u > [ImA|
andu — e — U > |Im A|, respectively. In the following sections we will study sys-
tems covering the local moment and the intermediate valesgimes and address
their spectral properties.

A mean-field treatment does not resolve the question of heveplectral and
thermodynamic properties translate from the atomic to thengly hybridized
limit and how the atomic “ionisation” peaks in the spectrumcaled Hubbard
bands — evolve into a single resonance: upon turning on theidigation of
the impurity to the conduction electrons a many-body resoeathe so-called
Abrikosov-Suhl-Kondo resonance, develops at the Fernel lévonversely, upon
turning on the interaction the two Hubbard bands are sglithe virtual bound
state peak, which narrows and evolves into the Abrikosdw-8ondo resonance
if the local moment regime is entered. (See Higl 6.1 (a).)s Tésonance orig-
inates from the impurity spin being screened by conductieoten spins and
the corresponding coherent tunneling of the impurity smitween spin-up and
spin-down configurations as illustrated in Aig.16.1 (b).

The width of the resonance is defined as Kondo temperkglie Calculating
Tk for arealisticsystem is a formidable problem and will be faced in the foltayv
sections. It is worth noting that even the question of whygietof Kondo model
is appropriate to describe a given realistic impurity carekigemely dificult, in
general. For the classical example of Fe impurities in bulik #his question has
only been answered very recently [170]. There are, howexadl;defined model
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6.1 The Anderson Impurity Model and the Kondo dfect 103

systems, where the dependencd pfon the model parameters is known. For an
s-d model with constant bare DOS of the hpgt,conduction electron bandwidth
D andk-independent exchange couplidg Jc one obtains[27]

ke Tk ~ DJ2Jpo|Y/?e /20, (6.8)

The single orbital Anderson model in the local moment regivite constant hy-
bridizationA, chemical potentigk = 0 and bandwidtld such thategy|, |eg + U| >
D, can be reduced to above the s-d model. Applying the StariéVolff trans-
formation, Eq.[[€17), and substituting into EG."{6.8) y&eld

1/2
kBTK N D(l ||AU+ U|) e—ﬂ|€d||Ed+U|/2AU. (69)
€dll€d

The screening of the impurity spin by the conduction eletspins leading
to the formation of the Abrikosov-Suhl-Kondo resonancealet] Kondo éect.
The energy gain upon screening and formation of the regufiany body ground
state is on the order dfx. Hence, the Kondoftect disappears at high temper-
aturesT > Ty, where the impurity spin and the conduction electrons lbsé t
correlations.

In the AIM only the impurity site is subject to a quartic iraetion term,
whereas the bath of conduction electrons assumed to bentenadting. Using
the action formalism introducted in sectibnl2.5 (see [55[1af1] for a detailled
derivation), the non-interacting (Gaussian) bath degoédseedom can be inte-
grated out and local electronic properties of the impurég be described by the
effective action

s s
Sw=->, [ ¢ foﬂ (G (= )G) + [ Haldi (). du(e) (6.10)
@
with
Goaplion) = (iw + ) = Agg(iw). (6.11)

The hybridization function, defined in Eq[{6.3), mimics #fect of the con-

duction electron bath on impurity degrees of freedom as gueacy dependent
complex valued potential. It will be therefore a central mitg in the discussion

of realistic impurity éfects in the following sections.
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Figure 6.2: (a) The phase diagram of bulk cerium. Frdm1/3, 31]. {pyl Fdensity of
states ofx andy as obtained from experiments (circles) and LEEAMFT (solid lines).
Upon volume collapse, spectral weight is transferred toAthiekosov-Suhl resonance at
the Fermi level. Fronl]175].

6.2 Ce ad-atoms on metal surfaces

Isolated Ce atoms coupled to a metallic host are an emblemasie for the
physics quantum impurity problems introduced in the lastise. The valence
electrons of rare earth elements exhibit a very distinctattar: the 4-derived
states are localized, experience strong electron-eteatteraction and usually
possess a magnetic moment, whilg65-states are extended and participate in
the chemical bonding. Ce is a particular interesting cagsegsts 4f shell is at
the borderline between localization and itinerancy: budkuidergoes a pressure
induced isostructural first-order volume collapse traosjtthe Cen — vy transi-
tion, with the change in volume being on the order of 15%. (Hgel6.2, Refs.
[172,[173[ 174, 175], and references therein.) In the lach@wey-phase, the #
spectrum is split into Hubbard bands and a lockhdagnetic moment is present.
When reducing the volume on entering thphase, an Abrikosov-Suhl resonance
develops at the Fermi level and the local moment disapp8disThe Cex — vy
transition is, therefore, intimately connected with titioa of the 4f electrons
from delocalized to localized.

Similarly, isolated Ce atoms coupled to metallic hosts ldgwery diferent
behavior depending on their atomic environments: Ce ataluted in bulk met-
als have been found to cover the hole range, from magneticitbeatomic-like
electronic Cé& configuration in hosts like Ag to non-magnetic in, e.g. Rh qr W
as well as intermediate cases in between|[176]. The mecharishind this be-
havior have been revealed by extensive photoemissionestuadiCe impurities
in bulk metals as well as Ce intermetallic compounds and aryha@eveloped by
Gunnarsson and Schonhamrmier [64]. Depending on the hyatidin of the Ce
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Figure 6.3: Valence photoelectron energy distribution curves for thleamr Ag(111),
W(110), and Rh(111) surfaces ((a)) and in presence the ofiéans ( 0.001 ML cov-
erage) ((b)). The curves labelled by (c) are thffedénces between the corresponding
spectra (b) and (a).

atoms with their environment and the bare Ce 4f energy wiiné Fermi level
of the host, Ce appears to be either in the local moment oremtixed valence
regime.

It is now investigated how theffect of reduced coordinatiorftacts the spec-
tral properties of isolated Ce atoms on metal surfacestlyipghotoemission ex-
periments on Ce ad-atoms on Ag(111), W(110), and Rh(11ases performed
by Gardonio and Carbone (ELETTRA, Trieste) are describedulk, these ma-
terials are known to span all the range from weak hybridira{Ag), with via
the intermediate case (W), to strong hybridization (RheAfards, a theoretical
investigation of Ce on these surfaces is given.

6.2.1 Photoemission spectroscopy of Ce

The photoemission experiments were performed at SuperB&@#nline at the
ELETTRA Synchrotron Radiation facility in Trieste. Ag(111W(110) and
Rh(111) substrates were prepared by a standard proceddrenanitored by
LEED. Isolated Ce ad-atoms were obtained by depositing @esabstrate tem-
perature of 20K in a coverage regime ranging from one thaltkan few tenth of
a monolayer (statistical growth regime). The majdfidulty of photoemission ex-
periments on such systems is that spectroscopic signadtanagnetic impurities
in the 0.01-0.001 ML coverage range can be obtained onlyhfusd combination
of impurity/substrates for which the signal of the impurity is compagabl the
host. l.e. there needs to be a photon energy such that theated impurity or-
bital cross section is much larger than the cross sectianthéoother channels.
Resonant photoemission across tlie 4 4f threshold of Ce is one of the few
cases where this requirement is fulfilled.
Fig. [6.3 shows the resonant photoelectron spectra meaatithd Ce d —

4f absorption threshold for Ce isolated atoms on Ag(111), \W)Y&hd Rh(111)
surfaces. In order to better distinguish between the phatson signal derived
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106 6. Correlated magnetic nanosystems

from the Ce ad-atoms and the substrate contribution, théophassion spectra
before (curves (a)) and after (curves (b)) deposition ofie@toms are compared
and the diference spectra (curves (c)) are taken for each host. Thé&rspmeéc
isolated Ce atoms are found to be clearlffetient on the three substrates and a
clear trend when going from Ag to Rh is visible: On Ag(111)yalpeak around
2.9 eV is present, while on W(110) peaks at binding enerdiéssoand 2.3 eV as
well as two smaller peaks close to the Fermi level, at 0.0 aR8 8V, contribute
spectral weight. On Rh(111) the major contribution is dedifrom structures
close to the Fermi level, the peaks labelled 1 and 2, a smalberad peak around
2.3 eV is still present. l.e. thefdelectrons of Ce seem to undergo a transition
from localized to delocalized when going from Ce on Ag (1Hle on Rh (111)
via the intermediate case of Ce on W (110). In the intermediase, the deep
ionization peak appears to be split up into two peaks.

To understand the origin of these entirel§feient distributions of CeAspec-
tral weight and to explain why the ionization peak is splitap W (110), we
present first-principles calculations in the following sabtion.

6.2.2 Simulation of Ce ad-atom photoemission spectra

To investigate the electronic properties of Ce on the thobstsates theoretically
with the detailled atomistic environment of Ce being tak&o account, we pro-
ceed in two steps: First, DFT calculations are carried oabtain relaxed geome-
tries and the hybridization functions for single Ce-atom#g(111), W(110), and
Rh(111). These hybridization functions are afterwardsiusecalculate the va-
lence electron photoemission spectra following Gunnarssw Schonhammer,
Ref. [64].

The DFT calculations have been carried out using VASP and RAyle-
mented in there. (See sectidns 2.3.3 2.4.) In theselatdms, single Ce
atoms on Ag(111), W(110) and Rh(111) have been modeled @sing surface
supercells with slab thicknesses of 7 layers and all cnygttaktures have been
relaxed until the forces acting on each atom were less tfe®/A. The relaxed
structures are depicted in High.4. In all cases Ce adsottighosymmetry posi-
tions, which are close to the continued bulk lattice on Ad{1d4nd W(110). On
the Rh (111) surface, Ce adsorption to an hcp site is B0 meV more favorable
than the fcc site.

The corresponding LDOS (seel.4), projected on the-Cg-, andd-orbitals,
shows that thes- and p-states of Ce appear to be similarly broad and delocalized
on all substrates and their LDOS extends oyet0 eV in energy. This indicates
strong metallic bonding Ce to the substrate. The @estates slightly broaden
when going from Ce on Ag (111) to Ce on Rh (111) but the charstiewidth
of the LDOS in the 5d states is in all cases on the order of somelence, the
picture of Ce having delocalized outer s-, p-, and d-elestideveloped for Ce in
bulk metals can be well transferred to isolated Ce atoms ofilAgy), W(110) and
Rh (111).

The Ce 4f electrons can be expected to be subject of stronglatbions which
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Figure 6.4: Upper panel: Fully relaxed adsorption geometries of (a) €& (111),
(b) W(110) and (c) Rh (111). On Ag(111) and W(110), Ce occsipesitions close to
the continued bulk lattice. On the (111) surface of fcc Rhsteks close to an hcp site.
Lower panel: LDOS of the Ce-, p-, andd-orbitals on Ag (111), W(110) and Rh (111).
The Ce &, 6p-, and Sl-electrons are strongly hybridized with the substrate ootidn
bands and contribute to the LDOS over an energy range on diee of some eV.
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Figure 6.5: Calculated Ce 4 f-electron hybridization functions forléaded adatoms on
Ag(111), W(110), and Rh(111). The real parts are shown ihéneft and the imaginary
parts in the right panel.

require a description in terms of an LBA based approach (see section 2.5.3).
For the description of the isolated Ce ad-atoms we choost-fiitnciples Ander-
son models” with the hybridization functions,«(w), Eq. [6.3), being obtained
from DFT. The PAW basis sets provide intrinsically projeas onto localized
atomic orbitals, which we use to extract the hybridizationdtions. The proce-
dure to obtain hybridization functions or Green functias1f projector quantities
calculated in VASP has been implemented during this thegisaexplained in
appendixA.

Following Gunnarsson and Schonhammer,] [64], we assdmg(w) =
A(w)dmnt, 1.€. diagonal and orbitally independent hybridizatiorhieth we ob-
tain from the full LDA hybridization A-°% (w) by averaging over all Ce f-orbitals,
A(w) = 2 3 AR (w). The resultingA(w) for Ce on the three dierent substrates
are shown in Fig_6I5.

The imaginary part of the Ce 4f-hybridization, lfw), on the Ag (111) is at
all energies below the Fermi level more than an order of ntagaismaller than
the corresponding 4f-hybridizations of Ce on W(110) or Rh1(1 Obviously, Ce
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108 6. Correlated magnetic nanosystems

on Rh (111) exhibits by far the strongest hybridization,aithgives the first hint,
why the ionization peak of Ce on Rh (111) is most strongly setaut and why
the quasi-particle peak at the Fermi level might be stronigesCe on Rh (111).
In the intermediate case of Ce on W(110), there is a peak in(to) extending
fromw = -1 eV to-2eV. This resonance is caused by bondinggdod-orbitals
of neighboring W-atoms.
The real parts of the Cefdhybridization functions are shown in Fig._b.5.

They are related to Im(w) by the Hilbert transform

Im A(’)

w—w

ReA(w) = —EPfdw'
n

Hence, peaks in the imaginary part cause steps in the raallper step in RA(w)
in the energy range of -2.1 until -1.3 eV for Ce on W(110), Wwélproven respon-
sible for the peak splitting observed in photoemission (Ege6.3).

In the sudden approximation, the photoemission intensigy,we aim to cal-
culate is given by expectation values of the resolvent dped the many body
Hamiltonian:

1
ple) ~ 2 D Im{goly— ZUnldo. (6.12)

—i0+—E0+

Here,|$o) is the many body ground state Bf and E, the corresponding ground
state energyy, is defined to be the Fermi operator removing one electron from
a Ce 4 state labelled by the quantum numbei.e. ¢, = dy, with v = (m, o)

in terms of Eq. [[&11). The idea of the approach from RE&f.] [&4foi calculate
the ground variationally and introduce a many body basig|is¢t which is ap-
proximately complete in the subspace describing the phusston experiment,

1 ~ Y |iXi|, so that it can be used to evaluate the resolvent operator EQq.

€12):

1 s
p(e) ~ = D Imdaolu il
AN
To proceed, we note that in valence electron photoemisg$iGe anainly pro-
cesses involving! — f%or f — f! transitions can be expected to contribute
[64]. Therefore, we consider the limit — oo and restrict the Ce 4f occupancy to
0 and 1. To construgpe) and the basis s¢lfi)}, we rewrite the AIM in the form

% il 1¢o). (6.13)

6—i0+—E0+

Ny
H = Z:; €n, + fﬂﬁiylﬁsydé + f[V(e)wway +H.clde+ U Z nn, (6.14)

y<u

whereU — o is implied,n, = ¢y, € is the bare on-site Cef4energﬁ, and the
conduction electron states with corresponding Fermi dpesé,, are relabelled
according to their bare energyand the f-orbital they couple to. The conduction
electrons not coupling to the Ce 4f orbitals can be omitted.

3In our LDA++ approachg; is used to absorb the double counting terms and left as fitting
parameter.
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6.2 Ce ad-atoms on metal surfaces 109

We introduce a “Fermi-vacuum” state

0y = ( ]_[ w;) vacuum, (6.15)

V,E<€F

with all conduction electron state below the Fermi levegtlland all Ce 4f states
empty. In lowest ordeid couples this state to states of the form

1
= 7o) 6.16
ForU — o~ and
N¢ — oo with N¢V(e) = const (6.17)

it can be shown that thexactmany body ground state takes the form

(6.18)

0
po) = A |0>+f a(e)le)de |,

(o)

-1/2
where the Fermi level isr = 0 and the constar& = (1+ f_io |a(e)|2de) en-

sures normalization. Defining
AE = (¢olHI¢o) — (OHI0), (6.19)

the codficientsa(e) are obtained from minimization ofiE, which implies the
secular equations

AE = /N¢ f V*(e)a(e)de (6.20)
(AE — € + €)a(e) = /N;V(e). (6.21)
The solution to these equations yields
0 2
_ V(e)l
AE = Nj Lo AE—e 7 —de (6.22)

and the occupancy of the Ce f-shell,

0
_ A2 24, —
ng = A [w la(e)|“de = TEL (6.23)
with ,
V(e)l
C = N¢ f BE—e 1 6)2d (6.24)

This specifies all ground state properties up to correctiothe order of INs.
We now construct the basfg)} for the photoexcited state. Cd $hotoemission
creates states of the fonm|¢o) (c.f. Eq. [&IB)), which can be represented as

0
Ulbo) = fN—f f dea(e)ie) (6.25)
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110 6. Correlated magnetic nanosystems

where the statess, v) = y.,|0), contain one hole in the conduction band. These
states couple to states of the form

e, €,v; 1) = " ey We,|0) 6.26
= 1;w e (6.26)
with matrix elementse, €, v; 1|H|e”,v) = /Nt — 1V (€')d(e — €”), which remain

finite in the limit of Eq. [6&1F). The statés ¢, v; 1) have the Ce # shell singly
occupied and two holes in the conduction band. All otherstancluding, e.g.,
those with a particle-hole pair in the conduction ba(n@’v,wfl,y,wmlox can be
shown to couple to states of typev) or |, €, v; 1) with a strengthV(e¢””), which
goes to zero in the limit of EQLC{G&.117). Therefofl, v), |, €, v; 1)} = {|i)} yields
the desired basis for describing the photoemission exeetion to order AN;.

Evaluating Eq.[[6.13) in this subspace and accounting sfin-orbit split-
ting Aes = 0.25eV of the Ce 4 orbitalgl yields

p(e) ~ A f de|V(e)|(

wherez = € — iI0* andé = ¢ — AE. N¢; = 6 andN¢, = 8 are the degeneracies of
the Ce 4f spin-orbit multiplets with = 5/2 andj = 7/2, respectively, and
1

g(Z) B Z— €5 — Nflr(Z) Nsz(Z+ AEf) (628)

N¢2
(¢ 5)2 (€ =6 — Aer)?

) Imd(z+6-€), (6.27)

The functionI'(2) plays the role hybridization function in the truncated bditt

space
2
(2 = f de 'V(E)' . (6.29)

By construction, we havV/(e)? = —% Im A(e), which forms the interface of
the first-principles hybridization function§¢) and the Gunnarsson-Schohammer
treatment of the AIM presented above. With the on-$ienergy being the only
fitting parameter and using the established value of 250nwe\thie spin-orbit
splitting between thds,, and 7, states, the groundstate and the spectral proper-
ties of the Ce adatoms are obtained by firstly solving the gdized fornf of Eq.
(€&22) numerically and then evaluating the integrals in.f§27) and[(6.29) nu-
merically. This has been implemented in a FORTRAN-prognatich carefully
treats the nearly singular integrands.

Fig. [6.6 shows the calculated Cé 4pectra for all substrates andfdrent
on-site energies;. The spectra of Ce on Ag(111) exhibit one sharp peak close to
the baref-electron energy, which corresponds to the ionizationgsst! — f°.
Independent o&; the spectral weight of this main peak dominates the spectrum
and is by orders of magnitude larger than the weight of a ptesgiondo peak:

4See Ref.[[64] for detailsAE is affected by including spin-orbit coupling. Therefore, we use
the generalization of Eq[{6R2) to include spin-orbit dingy as given explicitly in Eq. (A1) of
Ref. [64].
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Figure 6.6: Calculated 4-spectra for single Ce atoms on Ag(111), W(110) and Rh(111)
surfaces. The dependence of the spectra on the on-sitéesweng illustrated by showing
spectra obtained with fierente;. All cureves are labelled by the corresponding

Rh(111)

1 1 1 1 T T 1 1
3 2 1 0 3 2 1 0
binding energy (eV) binding energy (eV)

Figure 6.7: Comparison of experimental photoemission spectra (a)arvéttence band
of Ce ad-atoms on Ag(111), W(110) and Rh(111) surfaces tthiaretical Ce 4f-spectra
(b). The theoretical spectra have been obtained witk 3.0eV, 17 eV, and 37 eV for
Ce on Ag(111), W(110) and Rh(111), respectively.

within the entire range of; considered in FigC&l6 we find4dn; < 104, This
presents a measure for the weighdf the Kondo peak, a& = 1-n; for vanishing
spin-orbit splittingAe; = 0 [64,27].

For the case of Ce on Rh(111), the Kondo or the spin-orbit jéak— 7,
around the energyAe;) dominate the spectrum for aj shown in Fig.L&b and
the ionization peak is always broadened to a wide continuttare, the main
effect of changinge; is changing the relative weight of the spin-orbit peak as
compared to the Kondo peak.

The spectra of Ce on W(110) lie in between these two extremesoaith the
ionization peak being remarkably split-up into two sepapaks aE > -1.5eV
andE < -2.3eV in all cases. In this intermediate regime, the on-gikergy
strongly dfects the ratio of spectral weight in the ionization peak sodmount of
weight in the the Kondo and the spin-orbit peak.

The comparison of theoretical and experimental spectrangin Fig.
shows that theory and experiment are in very good agreemimteach other.
This suggests that the physical processes determininghibt®@gmission spectra
of isolated Ce ad-atoms on thefférent surfaces are well described within our
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112 6. Correlated magnetic nanosystems

model. All trends including the peak splitting in the cas€efon W(110) are un-
derstandable from the structure of the hybridization fiomgt shown in Fig[&l5.
On the ionization peak, the hybridization acts like a sekgy term on a resonant
level (c.f. Eq. [62B)) with the real part shifting the lewld the imaginary part
broadening it. The Ag(111) and Rh(111) surfaces are forrtiiegtwo extreme
cases of weak and strong hybridization, respectively, aad to correspondingly
sharp/ broadened ionization peaks. The resonance wnear—1.6 eV in the hy-
bridization of Ce on W(110) splits the ionization peak: thepsin the real part
causes spectral weight being shifted to lower energiesttle resonance and to
higher energies above it.

For Ce on Rh (111), there is an even larger step il\@&g extending from
w = -3eV to-2eV. This large step results in a significant amount of weight
being being pushed to that high energies, that it contribtdehe peaks close to
the Fermi level but does not form a second separate ionizpgak as in the case
of Ce on W(110). Thisfect occurring in the case of strong hybridization, has
been similarly observed in the bulk compound Cedi7 4,[27].

As in the case of bulk alloy$ [1¥7], the hybridization of the &f states with
the conduction electron states can induce strong strisctarthe Ce 4f spectral
function for isolated atoms on surfaces. The results fromvaldemonstrates
that the LDA++ approach followed, here, is ideally suited to either prethiese
structures or to reveal the hybridization mechanisms mesipte for structures in
experimentally measured spectra. For the case of Ce on AD,(photoemis-
sion and theory found concordantly no significant Kondo tkatribution to the
spectra. This is in contrast to the Kondfieet of Ce on Ag (111) reported in
early STM experiments [178]. The Kondo temperatlige= 5K= 0.4 meV/kg
reported there is farfbthe valueTx ~ 6 < 10°meV for alle; < 1 eV found here
by combining photoemission and first-principles calcolas. Hence, our results
support the conjecture (c.f. Rét[179]) that the STM expenis from Ref.[[178]
were measuring rather Ce clusters than isolated atoms od¥g.(This demon-
strates that the combination of photoemission spectrgseop first-principles
theory can provide an important complementary view on thesials of magnetic
nanostructures.
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Figure 6.8: Schematic illustration of an STM experiment on a nanostinecadsorbed on
a surface. The tunneling current is caused by hopping franigthto the surface and to
the adsorbate. Frorh [180].

6.3 Scanning tunneling spectroscopy of adsorbate
resonances

We now turn to an investigation of local electronic propestof magnetic hanos-
tructures and their manifestation in scanning tunneliregBpscopy experiments.
We are particularly interested in setups as depicted in&zly. where a tunneling
currentl is measured as function of bias voltage To calculaté = 1(V) and

the diferential tunneling conductance /dV, we follow the standard tunneling
Hamiltonian approaches from Refs. [115,11180,1181]: thessystithout the STM

tip is described by the Anderson impurity model in the fornEgf (€.1) and the
isolated tip is modelled in terms of non-interacting elent with the Hamiltonian

Hi= " ethtoo (6.30)
p,o

wheret,, denotes the Fermi operators for electrons with gpim a stategp in
the tip. The energy of electrons in the tipgsandp is a general quantum number.

When the tip is brought close to the surface, a tunnelingecircan flow and
the interaction of tip and sample expressed by the tunnélangiltonian,

M = > (Mmgdhy tor + H.C) + > (MigCl, tpr + H.C). (6.31)

Here,Mm, andMy,, are the tunneling matrix elements describing hopping af-ele
trons from a tip statg into an adsorbate orbitah and an conduction electron
statek, respectively.

Using the continuity equation, the current from the tip te #ample can be
expressed as

| = —e(fy), (6.32)

wheren, = 3, tzwtpﬂ is the number operator for electrons in the tip. The time
derivative is given by the Heisenberg equationtipw.r.t. the full Hamiltonian
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|:|:|:|AIM +|:|t+ M:

=<l o) <(i 160

- —Im (> Mg the) + D Mig(Sl, to.)) (6.33)

In general, the expectation values in Eqs.(6.32) andl(&u&3)ith respect to a
time-dependent non-equilibrium state of the tip-sampstesy and the current has
to be calculated by means of non-equilibrium Green funstasoutlined in Ref.
[180]. Standard scanning tunneling spectroscopy exp@atsneork at tip-sample
separations on the order of-510 A and moderate bias voltaggs1 eV, where
the tunneling matrix elements define the smallest enerdg stghe Hamiltonian
and tunneling currents are so small that the tip and the saargl each itocal
equilibrium. In this situation the manifestation of nonsédprium driving the
current between tip and sample is that the chemical potefti@, u;, and sample,
us, differ by the bias voltageV = u; — us. l.e. the bias is accounted for by the
state of the system when evaluating the average in[Eq.] (6.33)

Following Ref. [28] we adopt the interaction representatioith K =
Ham + He — uhy — ushs governing the time dependence of all operators and
Ns = ko ck[rck(,. Expanding to lowest order in the tunneling Hamiltonian, Eq
€313), yields the tunneling current

| = PUa(eV) - UsaleV (639

whereU ¢ (Uaqy) is a retarded (advanced) correlation function relatecmelytic
continuationjw, — w + i0*, to the Matsubara correlation function

B ) .
U(iwy) = — f dréwnf{Mkplvl;,F,<T,clg(r)tp,(,(r)t;ﬁ,ck,(,,>
0

+ MMy o (T (Dt o (O Oy o)
+ MkpM;vp/<TTCEU(T)tp,a(T)tE,(,fdnrv,cr'>
+ MinpMig (T (D)t (T G (6.35)

Summation over all quantum numbers is understood, herefifBhéwvo terms of
this expression correspond to direct tip-conduction ebecstate and tip-adsorbate
state tunneling, the latter two are quantum interferencaedeFor the setup under
investigation, i.e. an STM tip several A away from the suefétds reasonable to
assume no interaction between the tip- and the sampler@t@:tHence the state
of the tip-sample system can be decomposed into a singleiprathte and the
correlation function factors into a product of Green fuons for tip and sample.

5This assumption is already contained in the particular fofd’.
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For the first term in EqL{6.35) this yields
X(iwn) = - fo " dre“" (T} (Dtpe (D], . Ceor
f dre“ ™ (T Ceo O (DN Tetp o (L], )
== Z G (0, = iwn)Gig (iwr)

iwh

dEs (ro‘( S)fdft pp(t)nF(Et) nF(Es) (6.36)

I(,L)n+€t_€s

where a Lehmann representation of the Matsubara Greendusdtas been used:

G(iwy) = %% Comparison with Eq[{6.34) shows that terms of the type

X(eV+i0) - X(eV - i0%)
- 2 f 9 pr (e f e (@)(ele) - Ne(e))3(EV + & — &)

= -2 [ AR (- Vel V)~ () (6.37)

enter the expression for the current. Inserting these iqtd&34) yields

de ) ,

h 2n
T MmpM;vp'A?w,%(fs)Agg (es—€V)
+ MmnpMy, o A7 7 (€9 AT (€5 — €V)
MMy A (eATT (65— eV) (Ne(es — €V) — Ne(es)).  (6.38)
For approximately constant tip density of states withinrduege of applied bias

voltages and neglecting higher order contributions of ifrséample coupling, the
differential tunneling conductance is consequently given by

dl * oo
v~ A5p () MM AT (V) + Mg AT (V)
+MunpMi /A (€V) + MipMy Az (V) (6.39)

In absence of external magnetic fields, the Hamiltoniame tieversal symmetric
and all matrix elements can be defined in terms of real numkarstting the tip
density of states, yields the compact expression for thierdntial conductance

3—\'/ ~ - Im{M'GR(eV)M}, (6.40)
_ [ Mk
M _( Mo ) (6.42)
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whereGR is the retarded Green function of the sample in matrix fornsing a

standard equation of motion technique_[180], this Greertion matrix can be
expressed entirely in terms of the unperturbed conductestren Green function
GRY(w) = 6kkGR(w), the full interacting impurity Green functioBF,,(eV) and

the hybridization matrix elemeni4., from Eq. [6.1):

GRU(®) = 6k GR() + GP(®) D [Viem Clym(@)Vin G(w) ~ (6.43)
GRu(@) = ) Gln(@)VimiG(w) (6.44)
GRn(@) = GP(®) D Viem Gl(@). (6.45)

This can be used together with EQ.(6.40) to show that tlieréintial conductance
is

dl
— ~ -ImTR(e 6.46
N (eVv), (6.46)
TR=" MG + > MpuGhy M, (6.47)
k.p mnv,p
Mpm = Mpm+ > MpGPVin (6.48)
k

We now turn to the situation of a resonance in one of the intporbitals,my, at
energye; of width I with spectral weightZ: G,Fﬁbnb(w) = £ Moreover, we

w—+I"

~ ~

assume smooth density of states in all other channel&gpd= M, being equal
for all tip states in the energy range of interest. Then, updonstant background
the conductance close &Y = ¢ takes the form

di - -
oo m { M, G o (€V) M | (6.49)

= — {(RE[M] = IM? [Ny )IM[ G, (€V)] + 2ReMiy]Im[ M JRE[GR, 1, (€]}

~ —{(6? = 1)IM[GE, ry (V)] - 20RE[GE, (V)]
1 (@+9p

j— j— 2 j— ju— - = j—
— 1{ (P -1) qu} 1 L (6.50)
where we defined = (w — ¢)/I" and
ReM
gz ——om (6.51)
Im My,

As Eq. [65D) shows, the impurity resonance manifests in I KESa Fano reso-
nance with the asymmetry factay, given by Eq.[651).

To calculate the g-factor for a particular realistic sitoatthe structure the
STM tip has to be known and conduction electron statgef,) and (magnetic)
impurity statesyn,(r) have to be disentangled. This poses two problems: First
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6.3 Scanning tunneling spectroscopy of adsorbate resonaas 117

the exact shape of the tip and its apex orbitals is usuallynawk. Second, the
distinction between impurity and conduction electronestas not fully natural:
The impurity and the conduction electron states hybrideagling to the Kohn-
Sham eigenstates of the adsorbate impurity-system beixiyiras of both. The
definition of the impurity orbitals is therefore not unique.

One way to deal with these problems is joining first-prinegtheory with
model calculations and making assumption on the unknowanpaters like tip
wave functions based on physical intuition. In this way, d-dactors for Co
on Cu(111) and Cu(100) have been addressed in Ref.l [182hisnaork, the
impurity and conduction electron states have been seplabstdirst obtaining
the Kohn-Sham eigenstates of the clean surfaces and tharatig the Kohn-
Sham Hamiltonian of the surface with impurity in the basigegiby low energy
(e — er] < 1eV) clean surface eigenstates. Assuming an s-wave tipleowstng
one atomic like Co 3d-orbital for being active in the Kondteet, the depen-
dence of the Fano g-factor on parallel tip surface distaRckas been calculated.
At R, < 6A the authors find qualitative agreement for their g-fagtaith ex-
perimental data from Refi_[183]. In this approach, the dsegling of the corre-
lated impurity and the conduction electron states by takiamall energy window
eigenstates from the clean surface might seem a drastioxpption, since the
s and p-states of Co the impurity are strongly hybridizing with @a atoms in
the vicinity. The Cos- and p-orbitals are consequently part of “the” conduction
electrons in the vicinity of the impurity but not includedthre conduction electron
basis set from Ref[ [182]. Similarly, the potential scattgtetween the conduc-
tion electron statesfbthe impurity potential is not necessarily small as compared
to the scale given by the energy window-f eV.

Working with basis sets truncated in the way of Ref._[182]esatibe the con-
duction electron states may appear unsatisfactory, as gtates are usually well
described in DFT with full potential basis sets like FLAPWRAW. In LDA++
approaches as discussed in sedfion P.5[3"dr 6.2 a corrslalspace is selected.
Within this LDA++ philosophy, projecting the correlated subspace out of the
Kohn-Sham Hamiltonian is the most natural way of obtainitige” conduction
electron wave functions and energies. Indeed, this phiagaut of correlated
states can be viewed as the direct complement of projeconglations in, as
done in basis independent formulations of LEBMFT [184].

This projecting out strategy can be followed offeiient levels of approxima-
tion. First, all matrix element8,, as well as the bare conduction electron Green
functionG} could be obtained in this way and interfaced e.g. with a QMGtam
of the resulting AIM. While this might be conceptionally thest consequent way
of calculating the g-factor and probably a way to make ptashs in the future, it
might be not the most transparent way to shed light on experiah observations
and to explain trends observed in experiment:,(is usually a high dimensional
matrix with the conduction electron quantum numkencluding a few hundred
different bands in typical supercell calculations.

It is therefore useful to make additional assumptions onpiagicular form
of the matrix elements in Eq[{6.1) arld (8.31). We follow twamplementary
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118 6. Correlated magnetic nanosystems

series of approximations based offelient physical assumptions. In all cases, we
consider the tip directly above the magnetic ad-atom or si@acture and assume
that the magnetic moment is localized in atomic 3d orbitathe impurityﬁ.

To obtain our first approach to the g-factor, we note thaatbenicimpurity s-
and p-orbitals mainly contribute to the conduction electrortetaat the impurity
site and it is therefore reasonable to construct a basismfiaion electron states
in the vicinity of the impurity from these- and p-orbitals. Then, for thel-type
magnetic orbitals strongly localized at the impurity sttes hybridization matrix
elements are given by

Vi = f FriWV () = WPV, (6.52)

whereV is the full Kohn-Sham potential arfls; is a projector on the- and p-
orbitals of the impurity. For the tip directly above the ada the tunneling am-
plitude of conduction electron states to the tip is likelyrdoated by the amplitude
of the conduction electron wave functions at the impuritg,sivhich is topmost
point of the sampﬂe The conduction electron tunnelling matrix elements fulfil
therefore

I\/Ikp ~ <wk|PspHT|wp>, (6-53)

whereHy is the Kohn-Sham Hamiltonian of the tip-sample system withuoy-
bridizationV,.

The full Kohn-Sham GreenfunctidBgs is related to the unhybridized Kohn-
Sham Green functio®}s = G occurring in Eq. [6.48) by the Dyson equation
Gks = Gs + GR VGl + GR VG VG + - --. As Gl is by definition block
diagonal in the conduction and impurity states, we h@\&s|j) = (i|G§S|j> +
O(V?) for s- andp-atomic statedj) and|j), at the impurity site.

Inserting this to Eq.[{6.48) yields

I\/Ipm ~ Mpm + <wp|HTPspGKSPspV|wm>- (6-54)

Obviously, Ps,GksPsp is the local Kohn-Sham Green function of the s- and p-
impurity orbitals. In the simplest approximation, all dagdencies on impurity
orbitals s, py, py, p; are neglected and the local Green function is replaced by an
average(Gys = %Tr PsGksPsp: over all impuritys- and p-orbitals. This yields

Mpm x Mpm + M()VQG_Ks, (655)

and _
M pm MOVORK;KS

MoVolmG_Ks

g= (6.56)

8In this work, Co on Cu(111) as well as Co on graphene is consitidNe therefore restrict
the discussion to 3d states carrying the magnetic momertg $he generalization to f-states is
straight forward.

"This process should not be confused with “tunneling thrdaglurity orbitals”. The impurity
s andp-orbitals, are part of the conduction electrons.
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whereM, andV, are constants. Note, that this approximation to the g-fazda

also be derived along the lines of Ref. [180] by assuming aquear form of the

conduction electron wave functions. In this sense, Eq&jd5equivalent to Eq.
(3.21) from Ref. [[180].

The other “projecting out” approach to the g-factor aimshat tase, where
the resonance is formed by a set of impurity orbitals withl @efined symmetry,
S, which is also a symmetry of the clean surface as well as ostireace with
an impurity on top. In this case, the conduction electrotestaan be labelled
in terms of irreducible representatiomsof the symmetryS and the conduction
electron quantum numbers can chosen to contaik = (m, R), with GEE ~ O
being still diagonal. With the notion that the impurity isaag the topmost point
of the sample, the tunneling amplitude of conduction etecstates to the tip is
again dominated by the impurity site it is reasonable to @&y, = “V”—gvkm for
tip orbitals, p, transforming unde$ also according ton. With the definition of
the hybridization function, Eq[{8.3), this leads to

_ Mpm+ (Mo/Vo)ReA
T (Mo/Vo)imA

(6.57)

We will encounter this high symmetry situation for Co on drape and use Eq.

®.51) in sectiol 6I5.
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Figure 6.9: Left: Kondo temperatures for Co infierent Cu environments with Co
coordination numben = 3, 4, 9 and 12 for Co on the Cu (111) and Cu (100) surfaces, in
the Cu (111) surface and in bulk Cu, respectively. The dabheds a fit of Tx according

to Eq. [658) andlp(er,r) ~ n to the experimental Kondo temperature data. The simple
scaling of appears to be well followed by the experimentéh gints. From Ref[[185].
Right: Orbitally averaged hybridization functions for Gobulk Cu, in the first layer of
the Cu (111) and as ad-atom on Cu (111). The imaginary paud, isxshown.

6.4 Co atoms in Cu environments

Co atoms coupled to metallic Cu hosts may be regarded as thedphila fly”
for experiments of how localized electrons interact withodealized electrons.
In different Cu environments, Co is known act as Kondo impurity andd¢
temperatures have been measured for Co in bulk, for Co on thélCl) and
Cu (100) surfaces as well as for Co in the Cu (111) surface,[188]. These
experiments showed that within these four configuratioakibndo temperatures
appear to scale with the coordination numberf Co according to

Tk = Toexp(-1/Jp(er, 1)), (6.58)

where the product of theffective exchange interactichand the local density of
states at the impurity sijge, r) fulfills Jo(er, r) ~ n. This simple relation appears
to hold despite all multiorbitalféects and the intricate local electronic structure
for Co in different Cu environments (see HIg.16.9).

This is indeed surprising, as detailled descriptions os¢hexperiments ap-
peared complicated and quite contradictory: Early intetigdions of Co on Cu
(111) Kondo #ect were based on the assumption that only surface states of
Cu (111) are involved in the scattering of electron waves ly €o adatoms
[186,[187[188B]. These interpretations were particulastccessful in explain-
ing the observations of “quantum mirage5” [189] in corralstures on the Cu
(111) surface. However, later experiments with Co atom#erCu (100) surface
(that does not have any surface state) [183], or on Ag (11trlbse to atomic
surface steps (thatfact the surface state$) [190] have indicated that bulk rathe
than surface states are responsible for the Koridzein these situations.

We turn now to an investigation to which extent the realistiemic geome-
try of Kondo systems plays a crucial role in determining thenplex electronic
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6.4 Co atoms in Cu environments 121

properties and to which extent details of the intraatomial@mb interaction are
important in these systems.

6.4.1 QMC study of Co coupled to Cu hosts

We first present an LDA+ type investigation of the spectra on Co in bulk Cu,
in the Cu (111) surface and on the Cu (111) surface, which bas blone in
collaboration with E. Goreld§. These Co-Cu systems are treated as five-orbital
Anderson impurity models representing 8lectronic shell of the cobalt atom
hybridized with a bath of a conduction Cu electrons. ThesklsAbre solved
using the recently developed Continuous Time Quantum MGaté (CT-QMC)
method in the weak coupling formulatidn[191].

The details of the CT-QMC method are described elsewher® 92 198].
We apply it here, since it is capable of dealing with an aabjtdocal Coulomb
interaction matrix, which allows us to compare results vétlfull rotationally
invariant Coulomb interaction matrix to on-site Coulomkenaction containing
only density-density type terms. The input of the CT-QMCcad#dtions are bath
Green functions as defined in Eq._{d.11), which are relatdtiddybridization
functions as explained in sectibn’.1. The latter are used Gualitative discus-
sion.

For all Co-Cu systems studied here, the bath Green funcaodsthe hy-
bridization functions were obtained using the DFT withie Bupercell approach
using the VASP package (see sectionl 2.4) with the projecigmented wave
(PAW) basis sets (c.f. Ref._[52] and sectlon 2.3.3). For theukation of a cobalt
impurity in the bulk we employed a Coggusupercell structure with the lattice
constant corresponding to pure copper. The surfaces wedelgtby supercells
of Cu (111) slabs containing 5 Cu layers witlkk 2 and 3x 4 lateral extension for
Co in and on the surface, respectively.

We obtained the Codbath Green function matrix,

di n n d
Goij(ian) = Z (Clilefmic) <lﬂ k| J>, (6.59)

= lwn + U — &nk

and the related hybridization function using the projestdiy ) provided by the
PAW basis sets (see appendix A). In this way, we avoid a titiocaf the Kohn-
Sham Hilbert space like in Ref._[182], where Co on Cu (111)been discussed.
Moreover, we treat all Co 3d orbitals on the same footing amdat restrict our
considerations to thes._,- orbital as in Ref.[[182].

The orbitally averaged Cod3hybridization functions for the three ftierent
Co-Cu systems are shown in Fi§._16.9. The experimental tréndcoeasing
Kondo temperatures with increasing coordination is in agrent with increas-
ing hybridization strength when going from Co ad-atoms, ¢ar@Side the surface

8The CT-QMC results presented here have been obtained by fieldBowho wrote the CT-
QMC code and performed the CT-QMC calculations. The auththigthesis performed the DFT
calculations, which yielded the bath Green functions useithput for the CT-QMC calculations
and the hybridization functions discussed in this section.
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Figure 6.10: Total DOS of the Co 3d orbitals. Left: For Co embedded in bulktle
DOS as obtained from CT-QMC calculations with full and diagloCoulomb vertex and
U=4eV,J=07¢eV,8=10eV?!in close to Cad’ configuration is compared to the
LDA Co DOS. Right: Comparison of of a Co atom embedded in thk bfiCu to Co in
the 1-st layer and a Co-adatom on the Cu(111) surface. Thexshow CT-QMC results
forU =4eV,J =07 eV, = 10 eV with the impurity ind” configuration.

layer of Cu (111) to Co in bulk Co. When comparing EQ.16.8) tp £9), on
sees that the Schffer Wolf transformation leads tdp ~ A. Our calculations
yleld |mAad_atom(€f) »Im Aﬁrst_|ayer(€f) - Im Abu|k(€f) =1:28: 31, whichis
roughly in line with the experimental data suggesting theesponding rations of
the hybridization strengths on the order of 1 : 3 : 4.

For the many-body calculations of the Co impurity in the Cunmave need
to find the éfective d-orbital chemical potential which defines the numbwg,
of 3d-electrons of cobalt. The particular electronic camfegion of a Co atom
in a copper matrix is unknown, and obtaining it in a systemfist-principles
way is equivalent to solving the double counting problentuassed in section
Z53. Here, DFT yieldsy = 7.3 — 7.4, which suggests that the realistic Co 3d
occupation is likely close to thd’ configuration. Therefore we performed all
impurity calculations for Co ird” configuration. The DOS being discussed in
the following have been obtained from the QMC Matsubara Gfeactions by
analytical continuation using the maximum entropy metHigif].

The results of the CT-QMC calculations with full and densignsity type
Coulomb vertex for a cobalt impurity in the bulk with = 4 eV andJ = 0.7 eV
are presented in Fid._6J10 and compared to the bare impuweitgity of states.
There is a pronounced fierence between the Kondo-like resonances near the
Fermi level. In the case of the full-vertex it becomes more narrow and located
much closer to the Fermi level. The sign problem for a Co intpum the bulk is
not large and the average sign is between 0.90 and 0.97 dagesdthe simula-
tion temperature.

We also performed CT-QMC calculations of a cobalt impuritytbe surface
of Cu(111) and embedded into the first copper layer. In cehtmathe bulk sys-
tem, in or on the surface one has a large sign problem, refatbdhe relatively
large non-diagonal elements of the bath Green functiontho@igh changing of
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the sign is a very rare event (less than 0.03% of the acceptpd)swe had to
do constrained sign calculatioris [192, 193]. The sign gnobprevents us from
calculating at stiiciently low temperatures, which would be required for relya
obtaining a quantitative value of the width of the Kondo remace. However, a
gualitative study of how the local coordinatioffects the spectral properties of
the impurity is possible g8 = 10eV!: A comparison of the dierent spectral
functions for the bulk, surface and first-layer cobalt impuis presented in Fig.
[£.10. One can see clearly the change of the Kondo resonadte ag a function
of reduced dimensionality, i.e. when going from the bulloint on the surface.
At our simulation temperature, the width of the Kondo resmeeof Co in and on
the surface appears to be similar. However, the high eneajyifes of the spectra
differ markedly between Co on and in the surface. The upper Hdhiesak is
shifted to higher energies upon reducing the coordination.

This study leads to the conclusions, that non-densityitletesrms in the
Coulomb vertex are required to obtain quantitative préatist of spectral func-
tions and related properties, as can been seen from thegpositthe Hubbard
peaks and the quasiparticle peak in Fig. 5.10 left. Howdwdaridization dfects
like bringing the Co impurity from bulk to the surface can hetg drastic: As a
comparison of the two panels in Fig._8.10 shows, the shangeoii the Kondo
resonance and the shifting of the Hubbard bands is muchgsromhen going
from bulk to the surface than on switching on the non-diagpa# of Coulomb
matrix. So, the qualitative overall shape of the DOS andatponse to strong
hybridization changes appear to be well described by dedsibsity type terms
of the Coulomb vertex.

6.4.2 The Kondo dfect in CoCu, clusters

In the last section we found that experiment and theory appearee on the trend
that increasing coordination leads to higher Kondo tentpeza. We now report
on a joint experimenlﬂland theoretical study of CoGelusters on the Cu (111)
surface: The clusters containing a single magnetic impwrére investigated by
scanning tunneling microscopy, spectroscopy, ahdnitio electronic structure
calculations. Surprisingly, the Kondo temperatures of@oeatom embedded in
the Cu clusters on Cu(111) exhibit a non-monotonic vanmatdh the cluster size.
This is at variance with previously discussed models whrehtgpically invoked
to interpret the Kondo féect of a single adsorbed atom (adatom). We perform
DFT calculations to model the experimental observatiorts @emonstrate the
importance of the local inhomogeneous electronic stredircorrelation &ects
in small clusters.

The details of the experimental procedure are given in REI5]. For here,
it is important to note that the scanning tunneling micrggcaas operated at
7 K and in ultra-high vacuum with a base pressure of B&. The CoCunanos-
tructures were created by first evaporating individual Goret on the Cu (111)

9The experiments presented in this section were done by Hl, NeKroger and R. Berndt at
the Institut fur Experimentelle und Angewandte Physikri§tran-Albrechts-Universitat zu Kiel.
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Figure 6.11:(a) STM image of Co and Cu atoms on Cu(111) prior to fabrica@oCuy,
clusters. (b) - (e) Sequence of STM images showing Gallisters. The same lateral and
height scale was used for all images. Images were acquigesahple voltage of 100 mV
and a tunneling current of. DnA. (f) Ball-and-stick models of fully relaxed adsorption
structures of CoGuon Cu(111). Only the uppermost substrate layer is shownl&oitye
(g) Experimental energy of unoccupied cluster state vetkister size. The size of the
symbols (squares) corresponds to the uncertainty of thgiese Calculated energies are
depicted as dots.

surface and then placing Cu atoms around Co by atomic matipalwith the
STM tip. Spectroscopy of theflierential conductance (¢dV) was performed by
a lock-in technique.

Figured6.11 (a)-(e) show a series of constant-current Sfiages, which illus-
trates fabrication of a CoCu cluster (Figs.6.11(a), (b)) dimensions of CoGu
(n =1,...,4) clusters (Figs. 6.11(b)-(e)). In STM images acquired sample
voltage of 100 mV Co atoms appear higher than Cu atoms[(E{(®)). The
stick-and-ball models of the clusters used for the calanistare presented in
Fig.[6.T1(f).

Spectroscopy of IddV performed with the tip positioned above the cluster
center reveals an unoccupied state whose energy decreiisésoneasing num-
ber of Cu atoms (squares in Hig.6.11(g)). Our calculatise® (below) show
that this resonance is @ character and are in agreement with experimental data
(circles in Fig[&.111(g)). This resonance serves to confirendalculated relaxed
structures.

Figure[&.IP shows a sequence bfdV spectra acquired on a single Co atom
(lower curve,n = 0) and above the center of CoCdusters withn ranging be-
tween 1 and 4. Starting from a sharp indentation of thEedintial conductance
close to the Fermi level (0 mV) which is the spectroscopiaaigre of the single-
Co Kondo dfect on Cu(111), thelddV curve broadens appreciably upon adding
two Cu atoms to the Co atom. Surprisingly, upon increasimegriimber of Cu
atoms to three and four, the resonance sharpens again, tirmsoto the mono-
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Figure 6.12: Spectroscopy oflddV of CoCuy, clusters around the Fermi level. The spec-
troscopic feature is the Abrikosov-Suhl resonance indunethe Kondo &ect. Lines
depict fits of Fano lines, Eq[(650), to experimental datpec®a forn = 1,...,
vertically ofset by 5, 10, 20, 25nS, respectively.
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Figure 6.13: (Color online) Kondo temperatures (a) and asymmetry paenséb) as a
function of cluster size from experiments (squares) ancidaions (dots).

tonic behavior of the unoccupigg-like state with the number of copper atoms
(Fig.[611(9)).

To quantify the broadening of the resonances at the Ferral \e® described
experimental data by a Fano line shape as in Eq._{6.50) gqvitite asymmetry
parameter of the Fano theory and width= kgTx. The profiles of Fano line
shapes according to EJ._(6150) and fitted tpd¥ data are presented as lines in
Fig.6.12. The striking change of the width of the Abrikos®whl resonance is
reflected by the Kondo temperatufg plotted in Fig[6.IB (a). While the single
Co adatom exhibit§x = (61 + 4) K, in agreement with Ref.[]183], for CoGu
we find (326+ 30) K which then decreases again to @8) K for CoCuy,. Figure
[£.13(b) shows the evolution of the asymmetry parameterthéltiuster size. For
n = 0,1, 2 the asymmetry parameter varies weakly aroufid ®increases steeply
by ~ 100 % upon adding a third Cu atom. Kondo temperatures andrasymy
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Table 6.1:Experimental and calculated Kondo temperatuiigg @nd asymmetry param-
eters (]) of CoCuy, extracted from fits of the Fano lines, E{.(8.13), to meas#@ado
resonances shown in FIg.8l12. Experimental uncertaintgimgacorrespond to standard
deviations obtained by a statistical analysis of a varidtfite. CalculatedTx andq are
the arithmetic mean of values obtained by a Gaussian broaglehthe splocal density
of states by 100 meV and 50 meV. The uncertainty margins tefiecdeviations of the
arithmetic mean from data obtained by 100 meV and 50 meV lergag.

Experiment Calculation

Tk (K) q Tk (K) q
61+4 009+003| 52+4 012+0.01
142+ 10 012+0.03| 204+12 003+0.01
326+ 30 007+0.03| 288+3 001+0.01
200+ 15 022+0.04|221+18 013+0.01
43+6 022+004| 79+3 033+0.01

A WNPEFEFODS

parameters for the various clusters are summarized in &able

The peculiar behavior of the Kondo resonance with clusia [ at variance
with the monotonic dependence®f on the coordination from the surface Kondo
models discussed in Refs_[183, 185] and in the precedingpsecGiven the
complications and controversy in gaining theoretical ustiding of the Kondo
effect of single Co atoms on the Cu (111) surface (c.f. sedfidha6d Refs.
[186,[187 /188, 183, 190]rb initio electronic structure calculations which are
not restricted by specific model assumptions can be veryldéére, we perform
accurate calculations of the local electronic structurelosters on the copper
surface.

We use these calculations together with HQ.](6.8) to obtairearetical esti-
mate of how the Kondo temperature should vary with clustes.ssince thesp-d
exchange interaction is localg in Eq. (6.8) is the LDOS of conduction electrons
at the magnetic atom at the Fermi level. Within the approxions discussed in
sectior 6B, the asymmetry parametgis also determined by the local electronic
structure:q can be expressed according to Hq. (5.56) and rewritten as

q = —[Im Gis(er)] [y + ReGs(er)], (6.60)

whereGys is the local Green’s function of the conduction electrorth@impurity
site andy = Mpm/MoV is a measure for the ratio of the coupling of the STM tip
to conduction electron states and to the strongly localzed states.

To realistically describe the Coguwlusters on Cu(111) we calculated their
electronic and structural properties by means of DFT ugdiegyeneralized gradi-
ent approximation to the exchange correlation poterit2] \ith PAW basis sets
(350 eV plane wave cutff) [52] as implemented in VASP [53]. (See sectibng 2.2,
233, andZ}4 for details.) We modeled the Cp€tmuctures using 43 supercells
of Cu(111) slabs containing up to 7 Cu layers. Guided by tipaegnt heights and
symmetries from the STM images, we chose flat Co€lusters with the Co atom
at high symmetry positions in the center of the cluster asdisg point. These
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Figure 6.14: Calculated local density of states (LDOS) at the Co site fo€@, assem-
blies. (a)spLDOS, N(E), plotted for energies betweefl.9 eV and 19 eV with respect

to the Fermi energy. (b) Close-up view of (a) showing the gyeange of the Kondo res-
onance. (c)p, LDOS, N, (E), with indicated energies of unoccupied cluster resorgnce
shown in Figl&M1 (g).

structures haven been fully relaxed with the requiremeait #fi forces are less

than 002 eV A" and were then used to calculate the LDOS. The supercell Bril-
louin zone integrations for obtaining the LDOS have beerigpered using the
tetrahedron-method on 6 k meshes with subsequent 50 - 100 meV Gaussian
broadening. Below, we use both, 50 and 100 meV smearingptod® an uncer-
tainty margin for the derived Kondo temperatures and asyimyrparamete@.

The relaxed structures, FIg.8111(f), show that the digtafdhe Co atom to
the Cu surface increases monotonically upon adding Cu atwthe cluster. How-
ever, the local electronic structure at the Fermi level artieCo site varies in a

10These uncertainty margins naturally do not contain uneis, which are due to the models,
Egs. [6:8) and{6.80), used to obtain Kondo temperature§and factor from the first-principles
calculations. These margins give only an estimate of isitiDFT errors due to e.g. the finite
k-mesh used in the Brillouin zone integration.
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128 6. Correlated magnetic nanosystems

non-monotonic way with increasing number of Cu atoms. Thessate conduc-
tion band states extend to the Co adatom site where theyaattesth localized
Co 3o electrons. In the simple model of EqL{6.8), this interatti® quanti-
fied by the Cosp-projected LDOSN(E) = Ns(E) + Np(E), which is shown in
Figs[6.1%(a) and6.14(b). The dependencdi(Eg) on the number of Cu atoms
is non-monotonfd, Fig.[6.12 (b), and leads, according to Hg.6.8), to the expe
mentally observed non-monotonic behavior of the Kondo tnajoire (Fig 6.13):
we usedW = 20 eV andJ = 1.3 eV as fitting parameters to obtain the theoretical
estimates for the Kondo temperatures shown in Table 6.1 @n@E3. Moreover,
with y = 0.22 eV in Eq. (E8D) the variation dBys(Er) = [ de’ 52 with the
number Cu atoms also reproduces the non-monotonic tregdbserved in the
experiments., Fig.6.13 (b). Figure 8.14 (c) shows thatghprojected LDOS at
the Co siteN,,, exhibits an unoccupied state resonance and its evoluiitrtie
number of Cu atoms. The resonances appear as peaks in thiatzsddl,, whose
energies show the same monotonic behavior as in the expetiFig[6.11 (g).

This trend inN,, is representative for all contributions M(E). Upon adding
more Cu atoms to the cluster spectral weight and resonamcgies are shifted to
lower energies. LikéNp, the other Cop orbitals have their main spectral weight
aboveEr, wheread\s has its main peaks belot:, which is characteristic for
transition metals. Consequently, there is an decreaseeéise) ofNs (Np) at E¢
with increasing cluster size. When these contributionbl{gr) are almost bal-
anced but non-uniform, a non-monotonic dependend¥Bf) on the cluster size
occurs, as is the case here. The details of the non-mondiehavior are related
to the specific nature of cluster resonances and chemicalsbionthe system.
The Fermi level of Cu lies in the region of non-bondigsg states. This region
is characterized by numerous cluster resonances lying @hosnergy and being
therefore very sensitive to changes of the environment. |&\imn-monotonic
variation of N(Eg) with cluster size is likely to occur, predicting its detall be-
havior requires accounting for the full geometry of the tdus.

In summary, we have shown in this section that the Koniecein clusters
depends crucially on their detailed geometric structureonmby atom manipu-
lation changes the local density of conduction electrotestat the magnetic site
and thus varies the Kondo temperature in rather broad limits

11The same non-monotonic variation M{Eg) is obtained in LDA and in spin-polarized GGA
calculations witha posteriorispin averaging.
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6.5 Coon graphene

Graphene diers from usual metals or semiconductors in three importsrecs:
Itis a truly two-dimensional materiall[ 7] with the chargerars resembling mass-
less Dirac fermiong [81, 82, 11] and the chemical potengdahdp tunable by gate
voltages|[7].

Recently, scanning tunneling spectroscopy experimentgaghene opened
the exciting possibility to address its electronic projsrtocally and to study the
interaction of graphene with magnetic ad-atoms. For si@glatoms adsorbed on
heavily doped graphene, the observation of Kondo resosanitk Kondo tem-
peratures of the order @f = 15K has been reported [196]. Theoretically, Kondo
physics in “Dirac materials” defined as class of materiathww energy Dirac
type excitations has been first addressed in the contexgbffe superconductors
[197,/198/ 199, 200, 93]. It has been demonstrated that evie iundoped case a
Kondo dfect can exist above a certain critical coupling betweenrtipurity spin
and the Dirac electrons[197, 198].

The dependence of the critical coupling, Kondo temperatared impurity
spectral functions on doping and localized impurity stdias been studied in
terms of theoretical model systems like single orbital Asda models or SU(2)
Kondo models[201, 202, 203,204, 205, 206]. All these swidjpored, however,
the importance of orbital physics for the Kondfiext of magnetic ad-atoms on
graphene. It arises because localized spins in magnesooictur almost exclu-
sively in partially filledd or f shells. For graphene the same two-dimensional
representations of the hexago@al symmetry group, that determines the orbital
degeneracies of ad-atoms in high-symmetry locations s @sponsible for the
band degeneracies in graphene at the two Dirac points. Aicagy, the spin of an
ad-atom in the center of a carbon hexagon can only codjtgently by superex-
change to graphene bands close to the Dirac point, if it ialioed in orbitally
degenerate levels. Therefore, the orbital degree of freedlod also spin-orbit
coupling can be naturally expected to govern the Kondo plsyisi graphene. In
general one can expect that correlatiffieets will entangle fluctuating orbital [18]
and spin degrees of freedoms. This can lead to an SU(4) Kdiield €07/ 208].

In the next subsections, we show that symmetry and orbitatsen rules
govern not only the coupling to the graphene bands closeet®irac points but
also to high-energy van-Hove singularities. We find thaial high-energy fluc-
tuations control the size of the Kondo temperature, anduiin,tcan lead to a
strongly asymmetric gate-voltage dependencé&fthat would be characteristic
for a specific set of orbitals. First, we investigate the apison of Co ad-atoms
on graphene by means of DFT (section8.5.1). In se€fionléae 2levelop dirst-
principlesbased model describing the Kondo physics of Co on graphenallys
we predict desinct signatures of the Kondo resonances dde tn graphene in
scanning tunneling experiments.
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Figure 6.15: Left: Schematic illustration high symmetry adsorptiorsifor Co ad-atoms
on graphene (red) and paths connecting these sites (grgduhjle: Total energyE, of
graphene with a Co ad-atom as function of the Co positiongatba path depicted in the
left panel. Energies obtained with GGA and LDA are shown. &hergy for Co at an
h-site is defined ak = 0. Right: Total magnetic moment of the graphene supercé wi
adsorbed Co as function of the Co position.

6.5.1 Adsorption geometries and magnetic states

For an ab-initio description of Co on graphene we performed Balculations on
3x3, 4x4, 5x5 and 6<6 graphene supercells containing one Co ad-atom using the
Vienna Ab Initio Simulation Package (VASR) 48] with the potor augmented
wave (PAW) [52| 58] basis sets. To judge the role of on-sitel@mb interactions,
we employed a generalized gradient approximation funati®@GA) [4Z] as well
as GGA+U with U = 2eV,J = 09eV andU = 4eV,J = 0.9eV. In addition,
LDA calculations were performed. The calculations wereedaith plane wave
cut-offs 800 eV and 928 eV for the GGA and LDA functionals, respettiviéd/e
obtained fully relaxed structures for all of these funcéilsnwith the forces acting
on each atom less thar02 eVA ™.

To judge which adsorption geometries are possible, weyfirstaxed Co ad-
atoms adsorbed to high-symmetry sites the graphene la@mabove the center
of a hexagon (h-site), Co on top of a C-atom (t-site) and aleoladge site (b-
site). Using a 4x 4 graphene supercell, 100 meV first order Methfessel-Paxton
smearing and a & 3 k-mesh for sampling the supercell Brillouin zone, we cal-
culated to total-energy and the total magnetic moment o$tipercell for the Co
atom being moved along the path connecting the relaxed pkiimgeometri@.

As can be seen from Fig._6115, LDA as well as GGA predict Co diisg
to a h-site with t-site or b-site adsorption beind.5 eV higher in energy. In all
cases, the electronic configuration of Co close to §oin1/2. These results are
in agreement with prior studies published in Ref._[209]. Bter, our results
suggest that neither t-site nor b-site adsorption givestasnetastable structures
that are separated from the h-site total energy minimum bygrafgant energy
barrier.

The h-site adsorption geometry @&, symmetric, which leads to degener-

12The paths were obtained by linearly interpolating betwéerrélaxed adsorption geometries
and using 5 images in between each of the relaxed geometries.
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6.5 Co on graphene 131

Energy (eV) magnetic momenig)
U (eV) | h-site | t-site | b-site U (eV) | h-site| t-site | b-site
0.0 0.00 | 0.60 | 0.47 0.0 1.11 ] 1.25| 1.23
2.0 0.00 | 0.04 | 0.23 2.0 1.18 | 1.94| 1.55
4.0 0.00 | -0.22| -0.08 4.0 193 |1.95| 1.97

Table 6.2: Left: Total energy in eV of relaxed structures with Co dfelient adsorption
sites as function of on-site Coulomb repulsidn For each value dfJ, the energy for Co
at an h-site is defined & = 0. Right: Magnetic moment ipg of Co 3 electrons as
function of U and adsorption site.

ate states in the vicinity of the Fermi level (see below). sTimturally rises the
guestion of the stability against Jahn-Teller distortioBach distortions are sup-
pressed: Small displacements of the Co ad-atom from its stnuradsorption
site do not change the crystal field the Co orbitals at the Fawel and their
hybridization for with the low energy graphene bands todmarder. Also assym-
metric out-of plane motions of the adjacent C-atoms liftingCg, symmetry did
not yield any energy gain in our GGA calculations.

In GGA+U, the potential energy landscape for Co appears much mane co
plicated. The GGAU functional has various almost isoenergetic self-coasist
solutions at the same adsorption site which makes optaaniramsition path as for
the GGA calculations highly error-prone and computatitynalefficient. There-
fore, we obtained fully relaxed geometries for Co at h-, @ érsites and anal-
ysed the forces for small displacements from the relaxedipos: ForU = 2 eV,

J = 0.9 eV h-site adsorption is still the global total energy miomwith the Co
3d electrons giving rise either to sp8y = 1/2 or spinSy = 1. At this value ofU,
there exists also a metastable configuration for Co at & tagth 3d electron spin
Sq = 1, which is 004 eV higher in energy than ti& = 1/2 h-site configuration.
In the Sy = 1 t-site configuration, an additional unpaired electron nyaiatal-
ized in the Co 4-orbital an contributing another spin24 occurs, such that the
total Co spin isS = 3/2. ForU = 4eV,J = 0.9eV the global minimum energy
is found for Co withS = 3/2 on a t-site, which is @ eV and 008 eV lower in
energy than the h- and b-sites, respectively. These remeltsummarized in table
2. While pure GGA or LDA strongly suggests Co adsorbing-gités in a spin
1/2 state, from GGAU both h-site as well as a t-site adsorption in low or high
spin-configurations appear possible. In the following wecdss the electronic
structure and discuss the possibility of a Kondikeet for all relevant cases: first
S = 3/2 on the t-site, the®y = 1 on the h-site and, finally = 1/2 on the h-site
as the most interesting case.

6.5.2 Kondo models from first-principles

To understand the electronic structure of Co adsorbed tonk- tesites on
graphene, we consider the LDOS obtained from GGAwith U = 2eV,J =
0.9 eV in these adsorption geometries and discussfthetef spin-orbit coupling
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Figure 6.16: Upper panel: Orbitally resolved spin-polarized local dgnsf states
(LDOS) for a Co ad-atom at an h-site (left) and a t-site (fightU = 2eV andJ = 0.9 eV.
At the h-site, Co has spiry4 due to one hole in thed3orbitals with E1 symmetrydys,
dy;). For Co on a t-site we find spin/3due to two holes in the Cad3orbitals and one
electron in the Co gorbital. Lower panel: Energy level diagrams of Co at a geaggh
h-site (left) and a t-site (right).

(SOQ).

For Co adsorbed on a t-site the crystal fields h@gesymmetry: the 5 Co
d-orbitals split into two orbital doublets correspondingth® two-dimensional
representation (E) @3, and a singlet of the one-dimensional representation (Al).
As can be seen from the LDOS (FIg._6.16), the spihd the Co atom is made up
by a spin 1 residing in the Cod3orbitals of E symmetry ferromagnetically cou-
pled to a spin 2 mainly from the Co 4-orbital. The four low-energy graphene
bands close to the Dirac points can also be decomposed iatwardimensional
and two one-dimensional representations which hybridfeiently with the E
and Al orbitals, respectively. In the absence of spin-arbiipling (SOC) one
can, therefore, expect a two-stage Kondieet: first, the direct coupling of the
s-orbital to the C atom beneath quenchg&df S = 3/2 resulting in a spin 1 cou-
pling to the two bands dE symmetry via the next-nearest C atoms which screen
the remaining spin in a second stage.

To estimate the strength of SOC in this configuration, weuwate the mag-
netic anisotropyEyae = E; — E. = 1.0meV, as the energy filerence be-
tween magnetization parallel and perpendicular to thelgrae plane in GGAU
with U = 4.0eV andJ = 0.9eVH This translates into ierent energies,
Es, =12 — Eis,=32 ® 1.3 meV, depending on thecomponentS,, of the Co spin
S = 3/2 in this configuration. Ignoring Kondo physics, the grounaltes has
IS,| = 3/2 and exhibits Kramers degeneracy but spin féps- 3/2 - S, = -3/2
induced by conduction electron scattering are only possibhigher order pro-
cesses. Hence, the Kondfiext is dficiently suppressed for Co in this configu-

13These calculations were done with &3 graphene supercell, which has been fully relaxed
for Co at a t-site in a spin-collinear GGAJ calculation withU = 4.0eV andJ = 0.9eV. The
magnetic anisotropy has been calculated by constraineditiection of magnetization at the Co
site but allowing for all other electronic degrees of freedo relax to a self-consistent solution.
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6.5 Co on graphene 133

ration, as soon a$x < 1.3meVx 15K. For a (first stage) Kondo temperature
of the order of 15K or above a definite determination of thewaht low-energy
model is very dificult, but a possible scenario is that first the Kondiea par-
tially screens 12 out of S = 3/2, then spin-orbit coupling stabilizes a low en-
ergy doublet§, = +1), which is finally screened at very low temperatures by an
anisotropic Kondo fect.

For Co at an h-site, the situation is more interesting anceatjiative analysis
easier: here, the crystal fields hag, symmetry and decompose the d-orbitals
into two non-equivalent two-dimensional irreducible eggntations E1d(,, d,)
and E2 (le_y2, dy) plus one one-dimensional representation Ald.(.2). For
both theSy = 1/2 and theSy = 1 configuration, the spin degree mainly resides
in the E1 orbitals, as shown f@y = 1/2 in Fig. [616. The Co gorbital is
unoccupied in this configuration. To estimate the strenfjthe@SOC for the Co
3d electrons in this configuration, we extract the couplingstantA occuring
in the single particle SOC operatbisoc ~ Al - s, with | ands being the orbital
and spin angular momentum operators, respectively, frorBR/ANith the self-
consistent GGA charge density we obtdia 60 meV.

Moreover, in the GGA calculations we obtained the crystéd $plitting from
the d-level energies ag,—eg; = —0.8 eV andep; —eg; = —0.56 eV for Co at the h-
site. Diagonalizing the@subspace of the Co atom wila = 1 in d® configuration
in this crystal field yields a singlet as the ground state cins separated by about
0.008 e\ 90K from a doublet of first excited states. Hence, for a higim-€o
at an h-position alsy = 1 Kondo dfect is quenched iTx < 90K and a much
lower Ty [19€] is only consistent with the low-spin configuration.

For Co at an h-site witts = 1/2 in d® configuration (see Fig[_6.]16) one
obtains a four-fold degenerate state. SOC lifts this degeyeresulting in a twice
degenerate atomic ground state, which is separated fromldat@f excited states
by an energy of the order af In this more than half-filled regime, the spin- and
orbital moment are aligned in parallel (c.f. Hund’s 3rd jul&he d-hole resides
in the highest crystal field orbital&1, which havel,] = 1. Hence, the Zeeman
splitting for out-of-plane magnetic fieldB;, iSAE = ugB,(9/S,+9l,) /i = +ug2B,
resulting in the &ective g-factor ofj|s,|/% = 2. We will see that the SOC induced
lifting from four fold to two fold degeneracy will lead to SYWY( Kondo physics
above the scale of and SU(2) Kondo physics at lower energies.

To predict the behavior of the Kondo temperatures with the galtage in this
configuration, we describe the Co at an h-site in terms of atefgon impurity
model: The conduction electrons residing in graphendisnds are modeled by
a tight-binding Hamiltonian of the fo

Ho = tz c'g+t Z c'g+t” Z c'q (6.61)

<i,j> <i,j> <>

14To obtain the correct energies of botkband van-Hove singularities and the correct slope
of the r-bands close to the Dirac points we go beyond the nearestin@igight-binding model
introduced in section3.1, Eq§.(B.1) aid13.2), and consigddo third nearest neighbor hopping
as suggested in Ref.[73].
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witht = —=2.97eV,t’ = -0.073 eV, and” = —0.33 eV quantifying the nearest,
next-nearest and next-to-next nearest neighbor hoppasgectively([73]. Here,
c; denotes the Fermi operator for an electron in the caganbital at sitd, where
the indexi = (i, A/B) labels the sublattice (A,B) and the unit cellcentered at
R. In analogy to Eq. [[312), Fourier transformatian,= 3 €} (cca, Cp)" =
Y &R, leads toHo = [ dk ¢ Hkcx with

NE GRS
Hk‘(f*(k) n(k))’

whereg(k) = t33, &kt 4 t7 73 CI andp(k) = t3°, % with bj, b,
andb]’ denoting vectors, which connect nearest, next-to-nearekthird nearest
neighbors in the graphene lattice, respectively.

For the Co atom, we consider itsd-®rbitals, Hy = Yime €EmNme +
3 Y(mey.or) oMo With Ny = dioOme, Wherem is the quantum number
of the z-component of the orbital momentudy,, are Fermi operatord) is the
local Coulomb repulsion anel, are the bare on-site energies. Here, we include
hopping from the localized d-orbital to the nearest-neagib-atoms and use the
Cesv Symmetry to write the coupling of Co to graphene in the form

(6.62)

V= VinCh,Oms + H.C, (6.63)

mo

wherecn, = ;. €™ig ./ V6, ¢, is the Fermi operator of electrons at carbon
atom at sitg andg; is the angle between a fixed crystalline axis and the bond from
sitej to the Co impurity.

As explained in sectiof 8.1, all local physics is containethe local Hamil-
tonian,Hz;, and the hybridization functiofny (w) defined in Eq.[613). Here, we
haveAmm (iw) = VimG2,. (iw)Vm, Where

G (iw) = fdk<m|k)(iw— Hi) =Xk |y (6.64)

is the bare graphene electron Green function of the s@&tes Apy(iw) =
Am(iw)dmny is diagonal and\p\(iw) = A_(iw) by symmetry.

The hybridization functions for élierent values ofm = 0,1, 2 are subject to
selection rules imposed by the matrix elementik): The eigenstates #d, close
to the Dirac pointsk andK’ = —K, transform according to E1 and E2 undgy,
with the E1 and E2 being degenerate at the Dirac point. Hdryteidization with
m = 0 states is cubically suppressed,Ago(w) ~ |w|® and

V3wl

2 _ 2 -
Im A|m|:1((,u)/v =Im A|m|:2(w)/V X _7T27T(t — 2t”)2

(6.65)

to leading order inw.
In contrast to the particle hole symmetry for— 0, the hybridization func-
tions are largely asymmetric at higher energies. This iseduy the E1 and the
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Figure 6.17:Imaginary part, Im\(E), of the hybridization functions of the Eln{ = 1)
and E2 orbitals|fn = 2) of a Co ad-atom adsorbed to a graphene h-site. Hybridizati
functions obtained from DFT and tight-binding (TB) modefsome Co on an infinite
graphene sheet (TB-inf) as well as the same supercell (TBax used in DFT with
V1 =14eV andV, = 1.5eV are shown.

E2 impurity orbitals coupling each to only one of the van-E®ngularities re-
sulting from the graphene bands at the Brillouin zone M polifite E1 impurity
orbitals as well as the graphene valence electron waveifunscat the M point are
odd under 180rotation about the h-site, whereas the E2 orbitals and audiuiu
electron wave functions at the M point are even under thissfcamation. Hence,
the E1 hybridization exhibits a logarithmic singularity,

Al(a)) ~In lw — Em_|, (666)

atEy. = t+t - 3t” » -2.1eV. However, there is no singularity in the E1
hybridization at the energy of the conduction band van-Hoxgularity,Ey, =
—t+t' + 3t” = 1.9eV. For the E2 orbitals, the situation is reversed:

Az(a)) ~1In |w — EM+| (667)

forw — En..

To obtain realistic hybridization strength¥; andV,, we calculateA,, by
means of DFT as described in appendix A and fit the tight-bigdiybridiza-
tions viaV; andV, (see Fig.[6.17). The tight-binding (TB) hybridizations wer
obtained in two ways: (1) by directly evaluating Eq._(6.64hich models one
Co ad-atom on an infinite graphene sheet, and (2) by empldii;mgame 6 6
supercell as in the DFT calculations and performing the ssupercell Brillouin
zone integration.

The high energy particle-hofeE1-E2 asymmetry is striking the DFT as well
as in both TB hybridization functions. The DFT hybridizatiftunctions display
small wiggles and the van-Hove singularities appear to beased out. Compar-
ison of the DFT hybridization to the TB supercell hybridipatshows that these
two efects are supercell artifacts. The tight-binding curveshmamvell fitted to
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Figure 6.18: Left: Renormalized @ective coupling strength,)(D)2&-LCRe:D) -
J(D)po, as function of the high energy cuffd for the chemical potentigt = 0.20 eV
and three dferent bare couplinggy = 1.05, 100, and ®5 eV. Right: Kondo tempera-
turesTk as function ofu for Jop = 1.02, 100, and ©8 eV. The Kondo temperatures are
remarkably asymmetric for electron and hole doped graphene

DF with V; = 1.4eV andV, = 1.5eV. For energies above43V and below
—3.1eV also further bands contribute A@,(w). They contribute to screening and
lead to a (finite) renormalization of the exchange couplifgclv we absorb in a
redefinition of the bare exchange couplilgused below.

To estimate Kondo temperatures and their gate voltage depee, we solve
the scaling equati@ [27,210]

dJ(D) _ pl—D) +p(u + D)
a0 - ~N(D)J*(D) D ,

where J(D) is the renormalized exchange couplirig,is the high energy cut-
off, u is the chemical potential in graphene ar@) = —ImA;(w)/(xVZ). The
degeneracy factofN(D) = 4 for D > 1 andN(D) = 2 else [210], accounts for
locking the orbital- to the spin-degree of freedom below¢hergy scale of the
spin-orbit coupling.

Varying Jo for u = 0.2 eV (as in the experiment reported in Ref.[196]), we find
the Kondo temperatd@changing by an order of magnitude for varyigigwithin
a few percent. (See Fig._6118 left.) While this hinders pridins of the absolute
value of the Kondo temperature, the trend of how the Kond@trature depends
on the chemical potential in graphene is robust w.r.t. ckamgJy: LeavingJ, as
fitting parameter, we predict the gate voltage-dependeh@g as shown in Fig.
right.

Note that the used values fdg ~ 1eV are of ordek/lZ/U for realistic values
of V; andU. The remarkable asymmetry of the hybridization functicadieto a

(6.68)

SNote that onlyonefitting parameter is employed per curve. Including an oa-gitential at
the adjacent C-atoms allows to bring even the energy positid the wiggles in the TB supercell
and the DFT hybridization functions into agreement. Herefecus on qualitative consequences
of the particle hole asymmetry in the hybridization funot@nd do not include a second fitting
parameter.

16This scaling analysis has been contributed by A. Rosch @isity of Cologne).

"\We extract the Kondo temperatur@g, from the scaling analysis, as value of the high energy
cut-of D = kg Tk, whereJ(D) diverges.
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6.5 Co on graphene 137

highly asymmetric dependence of the Kondo temperaturelseogdte voltages. If
the E2 orbitals were carrying the magnetic moment instedtlldhis asymmetry
would be reversed.

Interestingly, ford > J. ~ 1.1 eV we find that the Kondofiect persists even
for vanishing doping. This implies that by relative smalkaolges (e.g. using
different substrates) it may be possible to realize the quantiticatpoint of the
pseudogap Kondo problem 197, 198] 93,1199 200].

6.5.3 Fourier transformed STM and Fano lineshapes

We will now discuss how the symmetry of Co orbital carrying thagnetic mo-
ment can be probed by FT-STS. Afterwards, we explain how émoRsymmetry
factor arising in STS of Kondo resonances fkaeted by the special electronic
structure and the particular symmetries of Co at an h-sitgraphene.

In the simplest model (see e.(.[88]), FT-STS measures thadfdransform
of the local density of stateg(E)|, in the vicinity of an impurity with the con-
stant background of a clean sample being substracted:

o(E) = —% fdzre”“lm (G(r,r,E) - GO(r, 1, E)). (6.69)

Using the T-matrix formalism as in sectibn5]1.1 in the diseposition space rep-
resentation of sectidn 5.1.2 and representing the capporbitals bys-functions
in real space, Eq[{6.69) simplifies to

1 21,7 AKrj 1 *
LCREDY [ @K 160k - 6B . (670

where the index labels the two atoms per graphene unit cglltheir position
w.r.t. the unit cell origin and th& integral extends over the first Brillouin zone.
The Green functions occuring in E@._{6.70) are 2 matrices in sublattice space
and obtained from the unperturbed graphene Green fundB§ft) with the T-
matrix: 5Gk’,k’+k(E) = Gck)’(E)Tk',k'+k(E)Gck)’+k(E)'

In a resonant level model for the Kondo peak, we considetaigof E1 and
E2 symmetry to derive the FT-STS patterns from [EQ.{6.70)gigicorresponding
T-matrix with phaser/2. To this end, we implement EJ._(€170) in Mathematica
and use av3 x V3 R30° graphene supercell which allows us to obtaiandk’
independenT matrices for h-site impurity resonances.

This leads to the Fourier transformed LDOS as depicted in Bd9. As
the Kondo impurity on the h-site couples equally strong tthdband K’ points,
the inter-valley scattering is very strong. Due to the twblattices, it depends
however strongly on the enerdgyand the phase shiftto which extent this K-K’
scattering leads to FT-STS intensity at the K and K’ points.Fg.[6.19 shows,
there is a double arc structure of intensity aroundi for E = 0.4 eV with the
radius given by twice the Fermi wave vector. These strustdigappear foE —

0. The orbital symmetries manifest in distinct FT-STS majit wharacteristic
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138 6. Correlated magnetic nanosystems

E=-0.4 eV E=0.0eV E=+0.4 eV

El

FT-LDOS (arb. u.)

E2

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
k, (2/a) k, (2n/a) k, (2n/a)

Figure 6.19:Fourier transformed LDOS for resonances of E1 (upper pamel)E2 sym-
metry (lower panel) at energigs= —0.4, 0.0, and 04 eV for a phaser/2 of the T-matrix
at these energies. The reciprocal lattice vectors ata/820) and (¥ V3, 1) in units of
2r/a, wherea = 2.465A is the lattice constant. The bright spots close to timepaound-
aries are centers of higher Brillouin zones. The insets stioge-up views of the K’
points which are at symmetry equivalent positions o2(@3).

gate voltage and tunneling bias dependence: Upon enérgy, —E (and phase
shift reversalg/2 + n — n/2—n) the FT-STS patterns of resonances with E2 and
E1 symmetry interchange.

We now turn to the Fano g-factors arising in STS. To this eislifistructive,
to compare Fano factors arising at impurity resonancesaptgne to the case
of normal metal hosts. The magnetic orbitals of the ad-ataaually strongly
localized resulting in the direct tunneling of electror@frthe impurity orbtials to
the tip being much weaker than tunneling via the substidg;| < [My in Eq.
©.48) andM,n| < [MgVoGks| in Eq. (6586). Negelcting, thus, direct tunneling
from the impurity to the tip, EQL{6.56) simplifies to

q~ —ReG(Eg)/Im G(Ep). (6.71)

In a metal with bandwidtid and constant DOS in the vicinity of the impuﬁy
D+Ee

ImG(e) = —n/2D if -D < € < D, we obtaing ~ £ In ‘D_EF‘ ~ Z£ Henceq < 1
and the Kondo #ect manifests in STM on normal metals as anti-resonance clos
to Er as long a$Myi| < Myl

This is very diterent for graphene: The graphene DOS is linear and in the

simplest model given b}J(E) = & - ©(D - |E|) resultingG(E) = & In D%ZEZ -

185ee also section 5.1.1 and Fif_]5.1 for the model Green fumctf simple metals and
graphene discussed, here.
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6.5 Co on graphene 139

A (eV)
o

E (eV) E (eV)

Figure 6.20: Hybridization functions A, (left) and Fano asymmetry factorg, (right)
for Co on graphene as obtained from our first principles dafmns. Theg-factors have
been calculated from the hybridization functions using &1). For the hybridization
functions ReA is plotted as solid line, Im dashed. The enerdy = 0 corresponds to the
Fermi level of the charge neutral supercell.

i7Ng(E) and
g~ ZS0Ee) |5 (6.72)
Vi D

This result follows directly from linearity oNg(E) and the Kramers-Kronig re-
lations. AsD ~ 6eVH and usuallyer < 0.5eV, the g-factor can bg > 1 and
the Kondo &ect may manifest in STM agsonanceénstead of an anti-resonance,
even for|My < |[Myl. This is in contrast to a normal metal, where predominant
tunneling into the conduction electron states results iroad¢-antiresonance in
STM.

As the real part of the Green function enters Hq. (6.71), Hectpr carries
information about high energy features of the local elestratructure which is
in general beyondftective low energy theories. To understand the role of such
contributions to the g-factor, we illustrate the situationthe experimentally im-
portant case of Co on graphene. We assume Co adsorption taige HJsing
the hybridization functions obtained from DFT and EQ._(§,5ve simulate the
g-factor for E1 and E2 type resoances.

As Fig.[6.2D0 shows, we havyin A(e)| < |[ReA(e)| in the vicinity of the Fermi
level of the charge neutral supercéll= 0. As a consequence, one obtains 1
in a wide energy rage arglis strongly energy dependent. Spis expected to be
strongly sensitive to local changes in the chemical paaéofi graphene, which
can be caused by gate voltages, chemical doping or subefiates. Apart from
lg > 1 for E — 0, we find the g-factor for resonances with E1 and E2 symmetry
displaying markedly dierent and asymmetric energy dependences. The orgin of
these asymmetric g-factors is the same as for the asymrieinito temperatures:
States of E1 symmetry couple to the valence band van-Hogelsinty but not to
the conduction band van-Hove singularity, whereas for thg/Re impurity states
the situation is reversed. All thes&ects are well beyond a Dirac type linearized

¥Assuming linear dispersion in the entire Brillouin zone apgroximating the Brillouin zone
by circles around the two nonequivalent Dirac points resalD ~ 6 eV [9Z].
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140 6. Correlated magnetic nanosystems

dispersion analysis.
In summary, we showed in the last three subsections that dhededtfect of

Co ad-atoms on graphene is controlled by the particular sgtmes of the Co 8-

orbitals originating from graphene crystal field splittirdased on first-principles
calculations we found éfierent possible scenarios with or h-site adsorption of
Co and consequences for the Kondo physics. For Co htsaie we found a sur-
prising asymmetry of Kondo temperatures and Fano g-fagtors the chemical
potential and predicted characteristic FT-STS patterné thase dfects can be

probed by STM.
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Chapter 7

Summary and Outlook

In this thesis we investigated the electronic propertiedifdérent nano scale solid
state systems, in particular graphene and magnetic nactsts on surfaces.
Graphene dfers from usual metal or semiconductor surfaces in that wsdo-
ergy electronic quasiparticles are entirely located inBhidouin zone corners
with band degeneracies being enforced by the high symmetfighe honeycomb
lattice. We found that this specialty, presents a commokdracind for huge in-
elastic contributions to STS of clean graphene and an disbd@gantrolled Kondo
effect of Co ad-atoms on graphene.

Zone corner phonons can couple the low energy electroniesssdates from
K/K’ to high energy states from the Brillouin zone center anduinvent the so-
called momentum space selection rule for tunnelling inapgene. There are two
different phonons with energyy = 67 meV and 151 meV which may by symme-
try assist electron tunneling into graphene. Our densibgctional calculations
showed that the inelastic tunneling channel due to the 67 pieWvion is by a fac-
tor of ~ 15 more dicient than the 151 meV channel. This is in good accordance
with recent experiments [117] and allowed to disentangfeedint many body
contributions to graphene’s electronic structure by medusTS.

For Co ad-atoms adsorbed to the center of a graphene hexhg@ame two-
dimensional representations of the hexagonal symmetmypgithat are responsi-
ble for the band degeneracies in graphene, also deternaroeliital degeneracies
of the ad-atoms. Henceffieient superexchange coupling of the ad-atom spin to
the graphene bands, requires it to reside in degeneratalsrbihis notion leads
to the general prediction that orbital fluctuations and a[sia-orbit coupling nat-
urally control the Kondo physics of any magnetic ad-atomoaaisag to a high
symmetry position on graphene. For case of Co on grapheninavehat the in-
terplay of the orbital Co physics and the peculiar bandestme of graphene leads
to a gate-voltage dependence of the Kondo temperaturee dfadhog-factor and
of the FT-STS patterns displaying a very strong, charatteparticle-hole asym-
metry. This will allow to probe experimentally, which orali$ are involved in the
Kondo dfect of the magnetic impurity.

The study of general inhomogeneity and impurifieets in graphene pre-
sented here revealed how graphene interacts with its emagat and how midgap
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142 7. Summary and Outlook

states that likely present important sources of electraitexéng can be cre-
ated. Investigating the electronic properties of corradajraphene, we showed
by means of first-principles calculations how rippling-iiceéd pseudo-magnetic
fields alter graphenes low-energy electronic propertiesjastified an extended
low energy &ective field theory. The formation of flat bands near the Féenel
corresponding to pseudo-Landau levels has been confirmephénched ripples
but relaxation of in-plane strains turned out to destroys¢hstates. This may
be an important statement in light of the hypotheSis[123} tfuenched ripples
are a major source of scattering in graphene and the obgerthat annealing
of a freely hanged graphene membrane can increase drstisahobility [12].
However, this issue is still speculative and there is yeteal theory that ex-
plains why ripple structures should become quenched. Euitivestigations are
needed on this question. An alternative source of midgapsstaan be resonant
impurities. Our studies of monovalent impurities showdrt these impurities
frequently cause quasilocal states nearby the Dirac poimotaccidentally but
enforced by symmetry. These chiral midgap states are oftesnapanied by high
migration barriers of the impurities, which makes thesedntes very stable and
lets them appear as a very natural source of electron Sogtiergraphene. When
studying doping mechanisms for gas molecule adsorbatesaphgne, inert and
open shell adsorbates turned out to be fundamentatigrdnt: While open-shell
species like N@Qappear to accept electrons directly from graphene, dogiegte
due to inert molecules like #D require additional reservoirs for electrons or holes
like the substrate, for example.

The magnetic nanostructures investigated in the last p#niothesis demon-
strated how sensitive magnetic atoms are to their partiedgironment. For
isolated Ce atoms on fiierent surfaces, we found thd £lectrons showing all
the range from localized to delocalized behavior and praned changes in the
spectral function with the substrate. A similarly high degrof tunability has
been found for the CoGuelusters on Cu (111) surfaces, where atom-by-atom ma-
nipulation was proven to cause non-monotonic variationthénlocal electronic
structure and varied the Kondo temperature in rather brioats|

Great progress in the understanding of the electronic tstre©f nano scale
electronic systems has been achieved during the last yeansitlespread ap-
plications of these systems require a theory capable ofifgtige nanostructure
design”. Reduced symmetries at surfaces often hindebtel@edictions, in par-
ticular if many-body phenomena at low temperatures playasoe role. The
example of Co on graphene shows that incorporating thismabiieto the field of
correlated magnetic nanosystems may change this situdteto its the well de-
fined and highly symmetric low energy excitations. Firstgtg exploring these
possibilities are on the way.
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Appendix A

LDA ++ calculations using VASP

The ab-initio treatment of correlated systems (see sesffdn2[ 2513, and 8.1)
requires the calculation of Green functions or hybridmatfunctions in terms
of local orbitals. Following Ref. [1184], the desired quayptis a projection
PC = 3 |LXL| of the full Kohn-Sham Green functioBks(E) on a set of lo-
calized orbitalg|L)}:

GCo(E) = PCGys(E)PE. (A.1)

The subspac€ = span(|L)}) is usually termed correlated subspace. In plane
wave based calculationSgs(E) is available in terms of a (truncated) set of Bloch
stategK) that are eigenstatéss|K) = ex|K):

|KXK]

Gs(E) = ) ————
ks(E) KE+|O+—eK

(A.2)

Inserting Eq. [[AR) into Eq. [{Al1l) shows that one needs tduata projectors
of the type(L|K) in order to access the matrix elemer@ {(E))... of the local
Green function.

In most cases the correlated orbitals are d- or f-orbitalsclwvare to a good
approximation localized inside the PAW augmentation sphetJsing the PAW
decomposition, Eqs.[1252) arld(2.56), of the Bloch stéje= 71K) = |K) +
>illgiy — |<zi>)<r>i||2> one obtains for a converged partial wave expansigk) =
Zi(L|¢i>(f)i|K>. The indexi of the augmentation functiorig;) includes siteu,
angular momenturh andm as well as an index labelling the radial function:
i = (u,l,mv). In practice, the localized orbitals can be also choseretarigular
momentum eigenstates at a given gitgvhich leads to

(LK) = > (Lig, XBIK) (A-3)

with v abbreviatingi = (u,l,m v) wherepu, |, and m are fixed. In the PAW
approach, the first augmentation function,= 0, for each channel is usually
taken to be in atomic eigenfunction (c.f. sectlond.3.3 amed H52]). Defin-
ing the correlated subspace in terms of atomic eigenfuneti®ads consequently
to |L) = |¢,-0). As higher augmentation functiong,> 0, are in general not
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144 A. LDA ++ calculations using VASP

orthogonal to theg,_o) states, evaluation of Eq[{A.3), requires accounting for
the overlaps of the forndg,-ol¢,.). This approach has been implemented to the
AB-INIT code by Amadon([Z11].

We implemented an LDAU inspired approximation to extract local Green
functions from VASP. As in the LDAU scheme implemented in VASP [212], we
choose

KLIK)R = > (RIB X ) B IK). (A4)

Hence, the absolute value of the projectors is in this schgiwen by the pro-
jection onto a subspace of augmentation channels with gimgnlar momentum,
(I, m). The phase is determined by

aMMMFw%Z®Mﬂ. (A.5)

If higher augmentation channels are negligitp,-o/K)| > [(B,-0lK)I, Eq. [A3)
and Egs. [[ARW)HAB) become equivalent and both approaghed the same
Green functions. This is usually the case for states clo#eet&ermi level, where
the projection(p,-o|K) presents normally the major contribution to the PAW par-
tial wave expansion. The LDADMFT implementation based on the projectors
from Egs. [AZ3){AD) has been compared to NMTO [213,1214] ather plane
wave Wannier function based LBAOMFT implementations[[215] for the test
cases of YTiQ and NiO, where the results turned out to be in good accordance
[218].

As constructed, the projectors in EG._{A.3) as well as in HEH) and [A%)
are not properly normalized to two reasons: (1) the Bloclistiasncomplete and
(2) the PAW augmentation functions are not orthonormal.unimplementation
we orthonormalize the projectors by the following Wannigre construction: By
definition, the localized statgk) are labelled by site and angular momentum
indices: L = (u,l,m). We split the site indexx = R+ T such thatR labels
the position within the unit cell and@ is the Bravais lattice vector of the unit
cell in whichy is located. This allows us to construct the Bloch transfofrine
localized states,

Lo = > ILy), (A.6)
T
wherek is from the first Brillouin zone anflLt) = |L) = |u, |, my withu = R+ T.
The sum in Eq. [[AJ6) runs over the Bravais lattice. Labellihg Bloch states

IK) = |k, n) by their crystal momentunk, and band indexn, we normalize the
our projectorP¢ (k) = (L|k, n) using the overlap operator

O () = > P69 (PLL(K) (A7)

n

PEL) = D TOMI P (K. (A-8)
4
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In many parts of this work, we use hybridization functionstéad of local
Green functions. These functions are related to each other b

GHe)=€e+i6—es— Ale), (A.9)

wheregy is the static crystal field. Eq[C(A.9) is a matrix equationtw@, A, and

& being (dimC) x (dim C) matrices, in general. To separate the hybridization
from the static LDA crystal field, we numerically evaluate thmit e — oo, where
e—-G(e) - «.
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Appendix B

Second quantized interacting
electron Hamiltonians

We consider an interacting electron Hamiltonian in the fofreqgs. [Z1){{(Z}) in
Born-Oppenheimer approximation

A2
=3 gt 2V Y - ®.1)

and aim to rewrite it in the form of EqL{2.5). HeN(f;) is a one-electron potential
as following from Eq.[[Z}) for frozen nuclei. Following R§P117] we employ the
field operators¥,(r), for electrons with spiwr to write the one electron operators
in second quantized form

H, = dr ' 7 e 2
1_Zf rwi(r) oY + V() |2, (n). (B.2)

This operator is spin-independent and diagonal in spircasli Spin-orbit cou-
pling or magnetic fields transverse to the spin quantizatos can lead to terms
which are df-diagonal in the spin indices. The Coulomb interaction ig1sp
independent and reads in terms of the field operators as

H,

} 3r By’ wi T o e2 ,
> ; fd W (r) W (r )—|r — r'|lP‘"(r )P,(r). (B.3)

The field operatorsy).(r), create electrons in position eigenstgtes |o-) with
spino. Changing from position space eigenstates tdf@dint one electron basis
{lay ® |0y} is achieved by reexpressing the field operators:

¥o(r) = D (rla)C,., (B.4)

A

wherec, - is the annihilation operator of an electron in a state dbedrby the
wave functiong,(r) = (rla) with spinc-. This yields

2
H, = Z C o tpaCac With tg, = f dr ¢(r) (_%VZ + V(r)) ¢a(r),  (B.5)

o,a.B
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and 1
H, = > Z UapparChoCh oG Cor (B.6)
., BB
with
Ueppo = fdgf d3f'¢§(f)¢2(f')|r i,|¢ﬂ’(r')¢a/(f)- (B.7)

Introducing superindiceis= («;, oj) combining orbital and spin degrees of free-
dom, Eqs.[(BB)HBI7), take the form of Eq.{R.5) with

tij = toi.0;00,.0, (B.8)

and
Uijkl = U(Yi,aj,akﬂ|60‘i,0'|60'j,0'k- (Bg)

Due to the spin-independence of the Coulomb interactioméiueix elements);jq
factorize into an orbital dependent pad,, 4,4, @nd the Kronecker symbols in
SPIN-SPaCE&,; o Ocr; o

In Egs. [B:B) and[{Bl7) we considered the bare two-body Gublinterac-

tion V(r,r’") = € _ It should be noted that the discussion presented heretis no

[r—r’]

restricted to any particular type of interaction. The ordynial property we ex-

ploited in Eq. [B.Y) is the spin-independence. Hence, tlewalliscussion holds
also for any other spin-independent two body interactike & screened Coulomb
interaction.
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Appendix C

The Nambu formalism for
superconducting graphene

We derive a Hamiltonian of graphene in proximity of a supadiating material
and the Nambu formalism as used in secfion’5.1.5, Hqs. 1¢§62P]), is intro-
duced. The discussion of superconductivity is followindR¢218] and[[98]. In
a basic model, normal state graphene can be described bghhéinding Hamil-
tonian defined in Eqs[{3.1) and{B.2). We use the same caowerds in section
31 to label operators, sublattices etc. but now the elecpin degree of freedom
is written, explicitly: & . andb; . denote the Fermi operators of electrons localized
at sublattice atoms A and B in the cellRtwith sping € {1, |}, respectively.

We consider a local electron-electron interactionin g of the form

i = =3 3, [ FTHOHO%O%O, €

with the field operators¥.(r), as defined in appendiX B. Following the standard
BCS mean field treatment, this interaction is decoupled tara sef quadratic
terms (c.f. Egs. (2.2)-(2.4) of Ref._[93])

~ 1 . *
Hecs =5 f Fr WL (Ve (NF() + ACELOPI) + AP (0)¥1 (),
S5’
_ (C.2)
whereV, . contains the usual Hartree-Fock terms and

A() = -V (L)1) (C.3)

is the pair potential. In normal state graphene the supeérgtimg order parame-
ter vanishes(¥,(r)¥;(r)) = O, but in contact with a superconductor a supercon-
ducting correlations and a pairing potential are introdimgthe proximity &ect.

In the tight-binding basis of graphene, the proximity inédicsuperconducting

LIn the case of proximity induced superconductivity the &tae-electron interaction can have
arbitrary sign. Here, s-wave pairing as in the experimentibgrsche et al., Ref[_[1B5], is dis-
cussed.
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conducting correlations lead to finite order parametersiefform(a; ;& ;) and
(bi;bi;). Assuming the resulting pairing potential to be real anggkig the
Hartree-Fock contributions of the local electron-elegtimteraction, we arrive at

Hsc= ) A(aga +bibi)) + He (C.4)

for describing s-wave superconducting pairing in graphene

We now translate this pairing to the low energy Dirac desiapof elec-
trons in graphene. Setting the graphene lattice constaninédsof length,
a, = 246A = 1, and introducing a coordinate frame such that the vectors
connecting nearest neighbor atoms bre= (-1/V3,0), b, = (1/2V3,1/2),
andbs = (1/2 \/§,—1/2), a Taylor expansion of the tight-binding Hamilto-
nian, Eq. [(3R) around the two non-equivalent nodal poilts, = +q; =
+(4r/ V3) {1/2,1/2 V3], yields

Ho = Z f Pk Wl (KWHk Wi o(K) + P (HK- Pk (K) (C.5)
ce{T.d}

with HKr(k) = hvi (k]_O'l + k20'2), hvs = \/§t/2, and\I”Kiﬁg(k) = ( iskﬂh,g' ), where
k01,5

o are Pauli matrices acting on the sublattice degrees of dreed

Following  Nambu, we introduce a  spinor ¥i(K) =
(Wi, (0, Wi | (K), Wk-1(-K), Wk 1(-K)) creating particle and the time re-
versed hole excitations. The particle-hole space is cNl@ohbu space, and we
defineA; with i = 1,2, 3 as Pauli matrices acting within this space. Moreover,
we introduce Pauli matriceg acting within the valleyK*-space. 7o and Ag
are the corresponding identity matrices. This allows ustrite the graphene
Hamiltonian in Nambu space: The pairing reads as

A0 0 0)(aig,
- 0 A O O]| b
HSC:fdzk(ak+ql,T’ bk+q1,T9 ak—ql,T9 bk—ql,T) O 0 A 0 &:;—Zl’j +H.C.
1,
0 0 0 A\ bygy
0 0 o3 O
< 0 0 0 o3 (s
_ 2 ¥ 3
_Afd k¥ (k) s 0 0 0 ¥(K) (C.6)
0 05 0 O
=A f kP (K) 03 ® 70 ® AP (K). (C.7)
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150 C. The Nambu formalism for superconducting graphene

Rewriting Eq. [C.b) in Nambu space yields

Hes(K) O 0 0
Ho = f A2k ¥ (K) 8 HK(‘)(k) _HK?(_k) 8 ¥(K)
0 0 0 —Hk-(=K)
He:(k) 0 0 0
_ f kM| HKE)(k) HK?(k) O NG (eX)
0 0 0  Hg(K

In the continuum Dirac theory of graphene, the site indexeplaced by a contin-
uous position space coordinate Changing to position space representation and

combining Eqs.[{C1]7) and{Q.8) leads to

He:() 0 Aoz O
5 0 He(® 0  Aos |g
Her = f EXP| prs Ko() Hiee (0 o [¥X
0 Aos 0 HK—(X)

= deX\'I\’T(X)(—ith (810'1 ®Tg— 0202 ® T3) QANg+A03®To® Al)\'P(X).
(C.9)

This is exactly the Dirac-Bogoliubov-de-Gennes HamiltomiEq. [5.21), used in
sectior 5.15.
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