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Chapter 1

Introduction

The contamination of groundwater and soil is a problem of great importance.
Consequently, appropriate techniques for restoring contaminated sites are re-
quired. The most commonly used method is the pump-and-treat remediation
technique, which involves the delivery of contaminated groundwater to the surface
and its above ground treatment. This method is characterized by its simplicity
and flexibility, but experiences in recent years prove its low efficiency. For this
reason, alternative remediation techniques have become the object of research.

A promising technology in this context is bioremediation, which involves the
degradation of a pollutant by microorganisms. The main aspects of this tech-
nique are the following: Microorganisms require certain substrates for living and
reproducing. The idea is to let microorganisms consume the contaminant in their
metabolic processes, and convert it to a neutral and non-toxic product. While the
pollutant is available in excess, usually other substrates that are essential for the
metabolism are limited. A typical bioremediation procedure therefore involves
the injection of substrates of low availability in order to provide an environment
in which microorganisms can grow significantly and utilize the contaminant.

One example of the successful restoration of a contaminated site by biore-
mediation is the Hamburg Airport in Germany. In an area of the airport the
groundwater is contaminated by chlorinated hydrocarbon, in particular by tetra-
chloroethylene. Besides this contaminant, the microorganisms involved require
an appropriate substrate that provides electrons for chemical reactions in their
metabolism. Due to the shortage of such substrates only a partial natural degra-
dation of tetrachloroethylene was observed. In order to create better conditions
for the growth of the microorganisms, ethanol has been injected as an electron
donor. Under these conditions a complete degradation of tetrachloroethylene
to non-toxic carbon dioxide is measured. Since this degradation is of significant
magnitude, bioremediation turns out to be an effective technique for restoring the
contaminated site at the Hamburg Airport (for more details we refer to [Gru08]).

In addition to the effectiveness described above, the cost-efficiency and en-
vironmental friendliness of bioremediation makes it a promising technology for
reducing groundwater and soil contamination.
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2 1 Introduction

In order to estimate the impact of a pollutant, as well as the efficiency of biore-
mediation methods, mathematical models are of particular interest. Beginning
with the one presented by Borden and Bedient in [Bor86], various bioremediation
models have been proposed and studied over the last few decades. For a list of
articles concerning bioremediation models consult the references in [Xin98]. More
recent models can be found in [Cir99, Klö02, Che06].

Of special note is the model presented by Odencrantz et al. in [Ode93]. Due
to its relative simplicity, while capturing the main aspects of bioremediation, this
particular model has been well studied; see for example [Mur98, Xin98, Xin00].

In the present work we will derive and analyze a particular bioremediation
model which on the one hand has similarities to the models mentioned above,
but which on the other hand shows some substantial differences that require an
independent analysis.

In chapter 2 we will derive a model that describes the biodegradation of an arbi-
trary number of contaminants. This one-dimensional model consists of advection-
reaction equations for the pollutants, and a rate equation for the microorganisms
involved. It turns out that great importance is attached to the growth rate of
the microorganisms, which in turn is closely linked to enzymatic reactions inside
their cells. Since these correlations can be of various types, mathematical models
must be built on a case-by-case basis. With respect to this fact we derive a biore-
mediation model under specific conditions. The awareness of these underlying
assumptions enables us to explain or criticize similar models that are discussed
in various articles without a detailed declaration of model assumptions.

In chapters 3 and 4 we examine the bioremediation model outlined in the pre-
vious chapter for one and two substrates. These two models will be analyzed with
respect to an important class of specific solutions, namely traveling waves. These
solutions are characterized by propagation with constant speed and unmodified
shape, and they become important due to their occurrence in various problems in
the natural sciences. Some of the bioremediation models mentioned above have
already been tested for traveling waves; see for example [Mur98, Log01, Che06].
But due to substantial differences between these models and the models derived
in this thesis, an independent analysis is required.

Chapter 3 is concerned with the existence of traveling wave solutions. Phase
plane arguments yield results with respect to the existence, the shape and prop-
agation speed of traveling waves in both models of interest.

In chapter 4 we will study the stability of the traveling wave solutions. In
this investigation, linear stability results are deduced from spectral analysis of
certain differential operators that are related to the bioremediation models under
consideration. These theoretical results have been supplemented with numerical
simulations.

Closing this work, chapter 5 contains a summary of the previous results, while
more detailed conclusions are presented at the end of each chapter.
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Chapter 2

Mathematical Modeling

The purpose of this chapter is to develop a bioremediation model, i.e. a mathe-
matical model that describes the degradation of one or more contaminants in a
certain environment by microorganisms.

To this end we will first provide some biological and chemical background
information about microorganisms that is needed for the modeling process.

Having this knowledge we derive a mathematical model consisting of ordinary
differential equations that describes the microbial growth and the related degra-
dation of the main food sources. We will first consider microorganisms whose
growth depends on one main source of energy and generalize this model after-
wards to the case of the dependency on m ∈ N sources.

Finally, we will extend the microbial growth model to a bioremediation model
by taking into account spatial dynamics and making some further adjustments.

The notations that are used in this chapter are listed in table 2.1 on page 32.

2.1 Background information

2.1.1 Microorganisms

Microorganisms are microscopically small organisms. They include for example
bacteria, many fungi and microscopic algae. In the following we will concentrate
on bacteria, a large group of unicellular microorganisms.

Bacteria reproduce by cell division, i.e. after growing to a fixed size the cell
is divided into two identical daughter cells. For this reproduction process and
for maintaining their vital functions they need energy, as well as carbon as the
most important substance for synthesizing cell mass. Various energy and carbon
metabolisms exist, but most bacteria, including Escherichia coli, one of the best
known bacteria, are chemoorganoheterotrophic. This technical term describes the

5



6 2 Mathematical Modeling

following characteristics [Got86]:

• Energy for living and growing is obtained from a chemical reaction (chemo-
trophic) in which usually electrons are transferred from one compound (elec-
tron donor) to another (electron acceptor). Hence, compounds from the
environment are consumed in this reaction.

• The electron donor in this energy yielding reaction is an organic compound
(organotrophic), very often fatty acids, amino acids and carbohydrate.

The electron acceptor for most of the bacteria is oxygen, but there also
exist bacteria that can use other molecules such as nitrate or sulfate.

• The carbon source is an organic compound (heterotrophic).

To sum up, if an organic electron donor, an electron acceptor and an organic
carbon source are available (as well as some additional essential bioelements), the
large group of chemoorganoheterotrophic bacteria is able to live and reproduce.
More precisely, for vital functions and reproducing, various chemical reactions
take place in the bacterial cells that involve, among others, the above mentioned
essential compounds such as electron donor, electron acceptor and carbon source.
Since most of these chemical reactions are enzymatic, we will also provide some
information about enzymes.

2.1.2 Enzymes

Enzymes are proteins that catalyze chemical reactions, i.e. they increase the
rates of those reactions. Almost all processes in biological cells require enzymes
to proceed at significant rates. The variety of specific enzymes that a cell is
equipped with is genetically determined.

In an enzymatic reaction one or more substrates are converted by the enzyme
into one or more products. In this process the substrates bind to the active
site of the enzyme, and a substrate-enzyme complex is built. In a second stage
the enzyme enables the conversion of the substrates into products, which are
released from the complex. While the substrates are degraded and the products
are synthesized in this process, the enzyme itself is not consumed in this reaction.

The simplest case of enzymatic reactions is a single-substrate reaction, i.e. the
transformation of one single substrate S to one single product P by a specific
enzyme E. This mechanism is schematically described in figure 2.1.

However, the majority of enzymatic reactions is represented by multi-substrate
reactions, which are catalyzed by enzymes that convert more than one substrate
into one or more products. We distinguish two main types of multi-substrate
reactions [Bis08, Coo07]:
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Figure 2.1: Schematic illustration of an enzymatic reaction in which one single
substrate is transformed to a single product

1. Sequential mechanism: All substrates have to bind to the enzyme before
the first product can be released. This mechanism can either be ordered,
when the substrates and products are bound and released in an obligatory
order, or random, when there is no fixed binding sequence.

2. Ping-pong mechanism: At least one product is released before the last
substrate has bound to the enzyme.

Finally, we can combine the knowledge about the metabolism of bacteria and
enzymatic reactions in biological cells:

For vital processes and reproduction bacteria need certain compounds. These
substrates, mainly an electron donor, an electron acceptor and a carbon source,
are transformed by enzymatic chemical reactions inside the bacterial cells. In
these reactions the substrates are degraded, and products, which are either es-
sential in vital processes and for synthesizing new cell material or by-products of
energy yielding chemical reactions, are produced, while the catalyzing enzyme is
not consumed in these reactions. This mechanism is visualized in figure 2.2, where
we concentrate on one single enzymatic reaction, and where Si (i = 1, . . . ,m),
E and Pj (j = 1, . . . , k) denote the substrates, enzyme and products involved in
this enzymatic reaction.

S1

...

Sm

P1

...

Pk

S1 + · · ·+ Sm + E −→ P1 + · · ·+ Pk + E

E

ES1

Sm
P1

Pk

bacterial cell

Figure 2.2: Schematic illustration of an enzymatic reaction in a bacterial cell that
involves m substrates and k products
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2.2 Bacterial growth depending on one substrate

Below we will first introduce an empirically found mathematical model for bac-
terial growth that depends on one single substrate. This model will be explained
afterwards by presenting a modeling process that yields the same equations.

2.2.1 Proposed model

In 1942 the biochemist Jacques Monod proposed a mathematical model for bacte-
rial growth depending on one single substrate [Mon42]. Although bacteria always
require more than just one compound to keep vital functions alive (compare sub-
section 2.1.1), he could describe bacterial growth depending on only one main
substrate by keeping all other potential limiting factors in large excess compared
to this one [Mon49].

Monod supposed that the cell concentration of bacteria (n) grows exponentially.
Furthermore, he assumed that the concentration of substrate (s1) decreases pro-
portionally to the bacterial growth, i.e.

ds1
dt

= −
1

Yn/s1

dn

dt
(2.1)

with a factor whose reciprocal Yn/s1 , the so-called yield constant, describes how
many units of bacteria can be built out of one unit of substrate. Based on these
assumptions Monod proposed the bacterial growth model

ds1
dt

=−
1

Yn/s1

µn (2.2)

dn

dt
= µn. (2.3)

The growth rate µ represents the overall velocity of several reactions in which cell
substance is synthesized. Most of these reactions are enzymatic, and every single
rate depends on the concentration of the involved substrate and the amount of
enzyme [Mon49]. The specific growth rate µ is therefore not constant but also
depends on the involved substrates and enzymes. The relation between µ and s1
is a very important one in growth dynamics. Monod suggested in his dissertation
1942 the formula

µ(s1) = µmax
s1

s1 +K1

, (2.4)

which he found empirically by studies on batch cultures of E. coli and M. tu-
bercolosis in glucose dilutions (see figure 2.3). The constant µmax is the maxi-
mum specific growth rate, which is asymptotically approached by increasing the
substrate concentration. The constant K1 represents the half saturation concen-
tration of the substrate, which occurs if the rate is half the maximum [Mon42].
This so-called Monod constant is also a measure for the affinity between bacteria
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and substrate: The smaller K1 is, the higher is the affinity. Bacteria related to
a small constant K1 are therefore able to grow strongly even if the environment
only provides a low substrate concentration [Sch04].

µmax

µmax

2

K1

s1

µ

Figure 2.3: Specific bacterial growth rate suggested by Monod

2.2.2 Modeling

Since Monod suggested the growth rate (2.4), different approaches have been
made to explain this empirically found formula. The obvious analogy to the
Michaelis-Menten equation1 in enzyme kinetics (see [Mic13]), which was not men-
tioned by Monod before [Mon49], indicates a connection to a single-substrate
enzyme reaction. This led the microbiologist S. John Pirt to the assumption
that the bacterial growth depends, besides on the substrate, on one special en-
zyme, namely the substrate uptake enzyme, which controls the growth rate and
is therefore the bottleneck in the whole process [Pir90].

Although it has often been assumed that a complicated process consisting of a
certain number of reactions is controlled by a “master reaction” (see [Bla05]), there
exists also criticism against this hypothesis; see [Mon49, Pan95]. Nevertheless,
we will explain the approach of Pirt in the following. For this purpose we will
first present some information about basic enzymatic reactions, which build the
basis of this ansatz (the used notation is defined in table 2.1).

Enzyme kinetics (single-substrate reactions)

According to Pirt we assume that one specific enzymatic reaction limits the bac-
terial growth. Therefore, the reaction rate of this enzymatic process must play an
important role for the growth of bacteria that depend on this reaction. For this
reason we will describe a certain enzymatic reaction mathematically and derive
its reaction rate.

1This equation, which represents the reaction rate of a single-substrate enzyme reaction,
will be derived and explained later in this section.
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In this section we concentrate on single-substrate reactions. More precisely,
we consider the case of a single enzyme E that combines reversibly with one
molecule of substrate S1 to form a complex S1E, which turns in a second stage
non-reversibly to a product P . This mechanism was proposed by Michaelis and
Menten in 1913 for the reaction of saccharose with the enzyme invertase to glucose
and fructose2; see [Mic13]. This reaction is represented by

S1 + E
k1
⇋
k−1

S1E
kf
→ P + E, (2.5)

where the parameters ki, i ∈ {−1, 1, f}, denote the rate constants of the particu-
lar reaction steps. The related differential equations that describe this two stage
chemical reaction are

ds1
dt

= −k1s1e+ k−1c1 (2.6)

dc1
dt

= k1s1e− k−1c1 − kfc1 (2.7)

de

dt
= −k1s1e+ k−1c1 + kfc1 (2.8)

dp

dt
= kfc1 (2.9)

with the natural initial conditions

s1(0) = s0, c1(0) = 0, e(0) = e0, p(0) = 0.

Here, the small letters stand for the concentrations of the compounds that are de-
noted by capital letters, whereas the concentration of the complex S1E is denoted
by c1. The numerical solution of this model for a characteristic set of parameters
is shown in figure 2.4.

s0

e0

s1

c1
e

p

t
Figure 2.4: Dynamics of an enzymatic reaction that follows mechanism (2.5)(see
also [Voe02]). For an explanation of the gray areas see the text in assumption A2.

2In this context glucose and fructose together are considered to be one product.
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Taking into account the induced conservation laws

d

dt
(e+ c1) = 0 ⇔ e(t) = e0 − c1(t)

d

dt
(s1 + c1 + p) = 0 ⇔ p(t) = s0 − s1(t)− c1(t)

we can reduce model (2.6)-(2.9) to

ds1
dt

= −k1s1(e0 − c1) + k−1c1 (2.10)

dc1
dt

= k1s1(e0 − c1)− k−1c1 − kfc1 (2.11)

with

s1(0) = s0, c1(0) = 0. (2.12)

This nonlinear problem is not integrable in closed form. The reaction rate of the
enzymatic reaction, which is defined as the rate of product formation, i.e. dp/dt,
is therefore not computable explicitly.

However, there exist different assumptions that yield approximations for the
solution and build the basis for the derivation of the rate equation:

A1. Equilibrium assumption: In 1913 the medical scientists and biochemists
Leonor Michaelis and Maud Leonora Menten assumed that the concentra-
tions satisfy c1, e0 << s1 ≈ s0. Moreover, they assumed that the rate
constants meet kf << k−1 so that kf is negligible in comparison with k−1,
and the substrate and enzyme are in equilibrium with their complex [Mic13].
The law of mass action then yields the equation

k1s1(e0 − c1) = k−1c1. (2.13)

This equation was the basis for Michaelis and Menten for computing the
rate equation of the enzymatic reaction (see below), but they did not present
an analysis of the overall dynamics.

If we do so, we realize that this equilibrium assumption cannot hold for
large time intervals: Plugging equation (2.13) into (2.10)-(2.12) yields that
no substrate is consumed and that the complex concentration does not
change at any time, which does not satisfactorily approximate the overall
dynamics. Nevertheless, a precise meaning to equation (2.13) can be given
by using asymptotic expansion methods and perturbation theory: Roughly
speaking, we first scale the variables by appropriate reference parameters
and detect small parameters by taking into account kf <<k−1 and e0<<s0.
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Furthermore, we derive an asymptotic expansion of the solution with re-
spect to one of the small parameters. Substituting this expansion into the
scaled problem and comparing coefficients yields that the main term of the
asymptotic expansion satisfies

ds1
dt

= −kfc1

0 = −k1s1(e0 − c1) + k−1c1,

and hence

ds1
dt

= −kfe0
s1

s1 +K
(2.14)

c1 = e0
s1

s1 +K
(2.15)

with K = k−1

k1
. Singular perturbation methods show that the solution

of (2.14)/(2.15) approximates the solution of (2.10)/(2.11) after a certain
transient in which c1 grows and s1 almost stays constant. In this time
interval the Michaelis-Menten assumption (2.13) holds, but neither s1 nor
c1 are constant. For more details we refer to appendix A.

Although the assumption kf << k−1 is not always applicable, Michaelis
and Menten did important pioneering work in enzyme kinetics by deriv-
ing equation (2.15) and the resulting rate equation (2.19), which will be
explained later in this section.

A2. Quasi-steady-state assumption: In 1925 the botanist George Edward
Briggs and the theoretical biologist John Burdon Sanderson Haldane gener-
alized the assumptions of Michaelis and Menten. Instead of an assumption
concerning the rate constants, they only proposed that the concentrations
of the complex and enzyme are always negligibly small, compared with the
concentrations of the substrate and product. In particular, they expected
the initial conditions to satisfy e0 << s0. From this assumption they in-
ferred that the rate of change of c1 has to be small as well, compared with
the rate of change of s1 and p after a short transient [Bri25]. This results
in a quasi-steady-state assumption3 for c1:

k1s1(e0 − c1)− (k−1 + kf )c1 = 0. (2.16)

Just as Michaelis and Menten, Briggs and Haldane concentrated on pre-
senting the rate equation of the enzymatic reaction by using the equation
above, but they did not analyze the overall dynamics.

3The name of this assumption refers to the fact that due to (2.16) we can consider the
concentration of the complex to stay almost constant, whereas it stays constant in a true
steady state [Seg89].
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Plugging equation (2.16) into (2.11) yields a steady-state situation for c1, i.e.
the concentration of the complex never changes, which does not describe
satisfactorily the dynamics of the enzymatic reaction at all times. This
apparent inconsistency can be solved by using asymptotic and perturbation
theory. Following the procedure explained in A1 yields that the solution of
(2.10)/(2.11) after a short period, in which c1 grows and s1 almost stays
constant, can be approximated by the solution of

ds1
dt

= −k1s1(e0 − c1) + k−1c1

0 = k1s1(e0 − c1)− (k−1 + kf )c1,

and therefore by

ds1
dt

= −kfc1 = −kfe0
s1

s1 +K
(2.17)

c1 = e0
s1

s1 +K
(2.18)

with K =
k−1+kf

k1
. Hence, the assumption (2.16) of Briggs and Haldane

holds without c1 being in a true steady state (a more detailed explanation
is presented in appendix A).

As shown in figure 2.4 for a representative enzymatic reaction, the assump-
tion of c1 being much smaller than s1 and the derivative of c1 being almost
zero holds in the entire gray interval. The additional assumption that c1 is
negligible compared with p is satisfied in the dark gray interval.4

The assumption of Briggs and Haldane is of more general applicability
than assumption A1 by Michaelis and Menten, which involves an addi-
tional statement concerning the product yielding rate constant kf . After
all, besides the different orders of magnitude of kf , the results only differ
in the constants K. However, these apparent small differences have a large
impact on the solutions (for more details see appendix A).

Summing up, by assuming A1 or A2 we are able to approximate the dynamics
of model (2.10)/(2.11) after a fast transient. For a detailed analysis of the dynam-
ics we refer to appendix A, and concentrate in the following on deriving the rate
equation of the enzymatic reaction. The reaction rate, which is defined as the rate
of product formation and hence a function of the substrate concentration, is an
important measure in enzyme kinetics. In this field of research, a special meaning
belongs to the initial reaction rate, i.e. the substrate concentration is given by

4The additional assumption concerning the product concentration p is used by Briggs and
Haldane to derive (2.16), but it is not involved in the asymptotic derivation of (2.17)/(2.18),
for which reason this approximation holds well in the entire gray interval.
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the initial concentration. Measuring the initial reaction rate minimizes the influ-
ence of complicating factors occurring during the reaction. Therefore, it yields a
more meaningful parameter than the value measured at any other time t [Voe02].
Nevertheless, in this mathematical analysis we will consider the more general re-
action rate at time t, and hence the rate depending on the substrate concentration
at time t.

Substituting (2.13) and (2.16), respectively, in (2.9) yields the rate equation

v(s1) :=
dp

dt
= kfc1 = kfe0

s1
s1 +K

.

By increasing the substrate concentration such that all enzymes are saturated
with substrate, the rate asymptotically approaches the maximum value

vmax := kfe0.

The rate of the enzymatic reaction is thus given by

v(s1) = vmax
s1

s1 +K
(2.19)

(see figure 2.5). This function, with respect to the initial concentration s1(t) = s0,
is referred to as the Michaelis-Menten equation, which is the basic equation in
enzyme kinetics.

vmax

vmax
2

K
s1

v

Figure 2.5: Reaction rate of the single-substrate reaction (2.5)

The so-called Michaelis constant K, which occurs in the Michaelis-Menten
equation (2.19), depends on the particular assumption that was made during the
derivation: Following assumption A1 by Michaelis and Menten, the constant is
given by K = k−1

k1
, while it denotes K =

k−1+kf
k1

if the derivation is based on

assumption A2 by Briggs and Haldane5.

5The more general constant that results from the derivation of Briggs and Haldane is also
often referred to as Michaelis constant.
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This kinetic constant represents the substrate concentration that occurs if the
rate is half the maximum. Hence, the smaller K is, the less substrate is needed to
be available to reach a certain reaction rate. In the case of the Michaelis-Menten
derivation, the Michaelis constant equals the dissociation constant of the complex,
which is a measure for the preference of the substrate to occur either as substrate
itself or bound in the complex. Therefore, the constant K also represents the
affinity, i.e. the binding strength, between the substrate and the enzyme: The
smaller K, the higher is the affinity, and hence the greater is the reaction rate
v(s1) for a fixed concentration s1 (see [Mic13]).

With this knowledge about enzymatic reactions we can concentrate on model-
ing bacterial growth that depends on one particular single-substrate reaction.

Bacterial growth

We assume that the substrate uptake enzyme, which controls the bacterial growth,
can be characterized by mechanism (2.5). The growth limiting enzymatic reac-
tion is therefore modeled by the differential equations (2.6)-(2.9). Taking the
quasi-steady-state assumption A2 by Briggs and Haldane into account (because
of its more general applicability than A1), and using the proportionality between
the substrate degradation and the bacterial growth, proposed by Monod in (2.1),
we get the mathematical model

ds1
dt

= − v(s1) (2.20)

dn

dt
= Yn/s1v(s1). (2.21)

Here, v(s1) represents the rate equation (2.19) of the limiting enzymatic reaction.
The second differential equation will be written in the form

dn

dt
= Yn/s1v(s1) =: µ(s1)n (2.22)

so that

µ(s1) =
Yn/s1

n
v(s1) =

Yn/s1

n
vmax

s1
s1 +K

represents the specific growth rate of the bacteria.
Now, we assume that the total concentration of enzyme depends linearly on

the concentration of bacteria, i.e.

e0 = αn, (2.23)

where α is the fixed fraction of enzyme of a bacterium. The maximum growth
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rate, which is asymptotically approached by increasing the substrate concentra-
tion, is then given by

µmax :=
Yn/s1

n
vmax = Yn/s1kfα.

The specific growth rate of the bacteria thus reads

µ(s1) = µmax
v(s1)

vmax

= µmax
s1

s1 +K
(2.24)

with K =
k−1+kf

k1
. Hence, the equations (2.20)/(2.22)/(2.24) form the bacterial

growth model that results from the assumptions stated above. In particular, the
bacterial growth rate depends on the rate equation of the limiting enzymatic re-
action, and the Monod constant equals the Michaelis constant.

The bacterial growth model derived in the current section equals in form the
equations (2.2)-(2.4). Therefore, the following assumptions seem to be reason-
able to explain the bacterial growth model proposed by Monod on the basis of
empirical studies:

1. The substrate decreases proportionally to the bacterial growth (see (2.1)).

2. The bacterial growth is controlled by a certain substrate uptake enzyme that
follows the kinetic mechanism (2.5).

3. The quasi-steady-state assumption A2 by Briggs and Haldane is applicable.

4. The total concentration of enzyme is proportional to the bacteria concen-
tration (see (2.23)).

2.3 Bacterial growth depending on multiple sub-

strates

In section 2.2 we studied bacteria whose growth depends on one substrate. We
assumed that all other essential compounds are available in excess and that the
growth limiting process is an enzymatic reaction that involves just one substrate
and one product. Enzymes of that kind are very rare. Typically, more than one
substrate and more than one product are involved in an enzymatic reaction.

In this section we will generalize the results of section 2.2 and study bacteria
whose growth is associated to an enzymatic reaction that involves more than one
substrate. Analogous to the last section we will first introduce a mathematical
model which is found in various articles without a detailed declaration of model
assumptions. By generalizing the assumptions stated in the previous section
we will then derive a bacterial growth model, which will be compared with the
first-mentioned one.
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2.3.1 Proposed model

If we take over Monod’s initial assumptions concerning the growth rates of sub-
strate and bacteria (see subsection 2.2.1), the general bacterial growth model
reads

dsi
dt

= −
1

Yn/si

µ(s1, . . . , sm)n, i = 1, . . . ,m (2.25)

dn

dt
= µ(s1, . . . , sm)n (2.26)

with a growth rate µ : Rm → R that depends on the enzymatic reactions inside
the bacterial cells.

The simplest choice for µ is the multiplication of m single-substrate growth
rates

µ(s1, . . . , sm) = µmax

m∏

i=1

si
si +Ki

, (2.27)

which is used in various bacterial growth and bioremediation models, for example
in [Meg72, Bor86, Ode93] for m = 2, in [Wid88] for m = 3, in [Ben84] for m = 4
and in [Sch98, May01, Hem07] for a general number m ∈ N of substrates.

2.3.2 Modeling

As said before, the growth rate µ depends on the enzymatic reactions in the bac-
terial cells. Similar to the assumption of Pirt concerning the single-substrate case,
we assume that there exists one particular growth limiting enzyme that converts
m substrates into one or more products. Analogous to the previous section we will
first provide some required information about enzymatic multi-substrate reactions
and concentrate afterwards on the derivation of a bacterial growth model, which
will be compared to model (2.25)-(2.27).

Enzyme kinetics (multi-substrate reactions)

According to subsection 2.1.2, two main mechanisms exist to convert m substrates
into products: sequential mechanisms, in which all substrates bind to the enzyme
before the first product is released, and ping-pong mechanisms, in which at least
one product is released before the last substrate has bound to the enzyme.

In this context we concentrate on ordered sequential mechanisms6. Therefore,
we only present the mathematical modeling and derivation of the rate equation for
these particular reactions in which m substrates are converted into one product7.

6For random sequential and ping-pong mechanisms see remark 1 on page 26.
7Analogous to the invertase reaction, which was studied by Michaelis and Menten, we can

consider several products to be a single one.
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If we assume that bi molecules of substrate Si combine with the enzyme, i.e. that
S∗
i = biSi, where bi represent stoichiometric constants (i = 1, . . . ,m), we can

write the kinetic mechanism in the form

S∗
1 +E

k1
⇋
k−1

S∗
1E + S∗

2

k2
⇋
k−2

. . .
km−1

⇋
k−(m−1)

S∗
1 . . . S

∗
m−1E + S∗

m

km
⇋
k−m

S∗
1 . . . S

∗
mE

kf
→ P +E.

(2.28)
With the notation c0 := e the associated differential equations are

ds∗i
dt

= −kici−1s
∗
i + k−ici, i = 1, . . . ,m

dci
dt

= kici−1s
∗
i − k−ici − ki+1cis

∗
i+1 + k−(i+1)ci+1, i = 1, . . . ,m− 1

dcm
dt

= kmcm−1s
∗
m − k−mcm − kfcm

de

dt
= −k1s

∗
1e+ k−1c1 + kfcm

dp

dt
= kfcm

with initial conditions

s∗i (0) = s∗i0, ci(0) = 0, e(0) = e0, p(0) = 0.

Using the induced conservation laws

d

dt
(e+

m∑

i=1

ci) = 0 ⇔ e(t) = e0 −
m∑

i=1

ci(t)

d

dt
(s∗1 +

m∑

i=1

ci + p) = 0 ⇔ p(t) = s∗10 − s∗1(t)−
m∑

i=1

ci(t)

we can reduce the above model to the differential equations for the substrates
and complexes.

As a generalization of Briggs’ and Haldane’s assumption in the single-substrate
case, we assume that all substrates on the one hand and all complexes on the
other hand are of the same order of magnitude, and that the concentrations of
the complexes and the enzyme are much smaller than of the substrates, which
yields particularly e0 << s∗i0. Following again the procedure that was proposed
on page 11 in section 2.2, i.e. scaling, asymptotic expansion methods and pertur-
bation theory, and taking into account s∗i =

1
bi
si yields that the dynamics after a

certain transient can be approximated by

dsi
dt

= −bikfcm, i = 1, . . . ,m (2.29)

0 = kici−1
si
bi
− k−ici − ki+1ci

si+1

bi+1

+ k−(i+1)ci+1, i = 1, . . . ,m− 1 (2.30)

0 = kmcm−1
sm
bm
− k−mcm − kfcm (2.31)
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(for more details see appendix A). With respect to the common nomenclature
for the single-substrate case (compare A2 on page 12), we refer to the equations
(2.30)/(2.31) as quasi-steady-state assumptions for all complexes.

In order to solve the equations (2.29)-(2.31), we have to compute the complex
concentrations ci depending on the substrates sj and the total enzyme e0, and to
solve the differential equations for sj (i, j = 1, . . . ,m).

However, with respect to the following investigations, which require besides
equation (2.29) only the rate equation

v(s1, . . . , sm) :=
dp

dt
= kfcm,

we restrict our concentration on the computation of cm.
Various approaches have been made to simplify the computation of rate equa-

tions for complex kinetic mechanisms that involve a fixed number of substrates
and products; see [Bis08]. These approaches attempt to avoid solving the quasi-
steady-state equations directly, which can, depending on the complexity of the
mechanism, be confusing and error-prone. Nevertheless, in this context we present
a direct solving of the quasi-steady-state equations. This procedure results in a
formula for the rate equation of mechanism (2.28), which is applicable to any
number of substrates. In order to describe this method, we write the components
that a complex or enzyme depends on in brackets behind the variable.

(i) Backward computation of the complexes: Solving of the equations (2.30)
and (2.31) for i = m, . . . , 1, where in every computation the last one is
taken into account, yields

ci = ci(si, . . . , sm, bi, . . . , bm, ci−1), i = m, . . . , 1

(ii) Forward computation of the complexes: Substitution of ci−1 from (i) into ci:

ci = ci(si, . . . , sm, bi, . . . , bm, e), i = 1, . . . ,m

(iii) Computation of the enzyme: Insertion of ci from (ii) in e = e0 −
∑m

j=1 cj:

e = e(s1, . . . , sm, b1, . . . , bm, e0)

(iv) Computation of cm: Substitution of e from (iii) into cm from (ii):

cm = cm(s1, . . . , sm, b1, . . . , bm, e0).

The calculation of cm according to the above procedure yields

cm =

m∏

j=1

sj

m∑

i=1

(

Ai

i−1∏

j=1

sj

)

+
m−1∑

i=1

m−i+1∑

l=2

(

Bil

m∏

j=1
j /∈{i,...,m−l+1}

sj

)

+
m∏

j=1

sj

e0 (2.32)
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with

Ai =
k−m + kf

km
bm

m−1∏

j=i

k−j

kj
bj

Bil =
kf

km−l+1

bm−l+1

m−l∏

j=i

k−j

kj
bj.

Since the maximum reaction rate, which is asymptotically approached when all
substrates are available in excess, is

vmax := kfe0,

the rate equation of the enzymatic reaction is given by

v(s1, . . . , sm) = vmax
cm
e0

. (2.33)

For a better understanding of this rate equation we will explain the meaning of
the kinetic constants Ai and Bil. Analogous to the Michaelis constant that has
been defined for single-substrate reactions as the particular substrate concentra-
tion that occurs if the reaction rate is half the maximum, we can define Michaelis
constants for multi-substrate reactions: With Ki we denote the concentration of
substrate Si that corresponds to the half maximum rate if all other substrates
are available in excess. This results in the following Michaelis constants for the
ordered sequential mechanism (2.28):

Ki =

{

Bim−i+1 =
kf
ki
bi, i = 1, . . . ,m− 1

Am =
k−m+kf

km
bm, i = m.

(2.34)

Hence, the kinetic constants Ai and Bil are products of Michaelis constants Ki

of the substrates and dissociation constants Kd
i of the various complexes.

Below we will state explicitly the rate equations for reactions that involve two
and three substrates, respectively, and exemplify them with specific enzymatic
reactions.

Example 1 (m=2). The rate equation of an ordered sequential mechanism in
which two substrates are converted irreversibly into one product is given by

v(s1, s2) = vmax
s1s2

A1 + A2s1 + B12s2 + s1s2
with

A1 =
k−2 + kf

k2

k−1

k1
b1b2 = K2K

d
1 B12 =

kf
k1

b1 = K1

A2 =
k−2 + kf

k2
b2 = K2
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(see [Coo07] for b1 = b2 = 1). In order to exemplify this reaction, we consider the
aromatic metabolism of anaerobic bacteria. A key enzyme in the degradation
of aromatic compounds is 4-hydroxybenzoyl-CoA reductase. In the bacterium
Thauera aromatica this enzyme catalyzes a reaction in which an external electron
donor and 4-hydroxybenzoyl-CoA react to form benzoyl-CoA. This reaction can
be simplified described by the reaction mentioned above. For more details we
refer to [Bol01, Bol05b, Bol05c].

Example 2 (m=3). The rate equation of an ordered sequential mechanism that
involves three substrates is given by

v(s1, s2, s3) = vmax
s1s2s3

A1 + A2s1 + A3s1s2 + B12s3 + B13s2s3 + B22s1s3 + s1s2s3

with

A1 =
k−3 + kf

k3

k−1

k1

k−2

k2
b1b2b3 = K3K

d
1K

d
2 B12 =

kf
k2

k−1

k1
b1b2 = K2K

d
1

A2 =
k−3 + kf

k3

k−2

k2
b2b3 = K3K

d
2 B13 =

kf
k1

b1 = K1

A3 =
k−3 + kf

k3
b3 = K3 B22 =

kf
k2

b2 = K2

(see [Bis08] for b1 = b2 = b3 = 1). As an example we consult again the aromatic
metabolism of anaerobic bacteria, in particular of the bacterium Thauera aro-
matica. The reaction mentioned in example 1 is followed by a reaction, which is
supposed to be the bottleneck in the metabolism of anaerobic bacteria that utilize
aromatic compounds as their source of energy or carbon. In this reaction, which is
catalyzed by the enzyme benzoyl-CoA reductase, an external electron donor, ATP
and benzoyl-CoA, which is the product of the reaction stated in example 1, react
to form a dienoyl-CoA compound. This reaction can be simplified represented
by the above mechanism. For more details see [Möb04, Bol05a, Bol05b, Bol05c].

With this knowledge about enzymatic reactions we can move on to modeling
bacterial growth that depends on an ordered sequential multi-substrate reaction.

Bacterial growth

We assume that the substrate uptake enzyme, which limits the bacterial growth,
follows the kinetic mechanism (2.28). Hence, we study bacteria whose growth
depends on m ∈ N substrates that bind in the growth limiting kinetic mechanism
in an obligatory order to an enzyme, and produce a single product, which might
be required for vital functions or reproduction.
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Assuming furthermore that the quasi-steady-state assumptions (2.30)/(2.31)
hold, and taking the proportionality (2.1) between the substrate uptake and the
bacterial growth into account, we get the model

dsi
dt

= −biv(s1, . . . , sm), i = 1, . . . ,m (2.35)

dn

dt
=b1Yn/s1v(s1, . . . , sm). (2.36)

The function v represents the rate equation (2.33) of the enzymatic reaction.
With the assumption (2.23) concerning the linearity between the total enzyme
and the bacteria concentration, we write (2.36) in the form

dn

dt
= b1Yn/s1v(s1, . . . , sm) =: µ(s1, . . . , sm)n

with the specific bacterial growth rate

µ(s1, . . . , sm) =
b1Yn/s1

n
v(s1, . . . , sm) =

b1Yn/s1

n
vmax

cm
αn

.

If we denote the maximum growth rate, which is asymptotically approached when
all substrates are available in excess, by

µmax :=
b1Yn/s1

n
vmax = b1Yn/s1kfα,

the specific growth rate of the bacteria is given by

µ(s1, . . . , sm) = µmax
v(s1, . . . , sm)

vmax

= µmax
cm
αn

. (2.37)

The notation
1

Yn/si

:=
bi
b1

1

Yn/s1

, i = 2, . . . ,m

then yields model (2.25)/(2.26) with growth rate (2.37).

To sum up, the model derived above is based on a generalization of the as-
sumptions in the single-substrate case, i.e. the assumptions 1-4 on page 15 are
generalized for m substrates.

2.3.3 Comparison and Examples

It is of interest to know whether the bacterial growth rate (2.27), which can be
found in various articles for different numbers of involved substrates, and the
growth rate (2.37), which has been derived above, are equal for all m ∈ N.
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For a better comparison we first write the growth rate (2.37) in the form

µ(s1, . . . , sm) = µmax

∏m
j=1 sj

∏m
j=1(sj +Kj) + L(s1, . . . , sm)

. (2.38)

We are aware of the fact that the constants Kj can be chosen arbitrarily from the
mathematical point of view since the differences to the biologically reasonable
choice as half-saturation or Monod constants are included in L. In the follow-
ing we assume that the Monod constants Kj can be chosen by equalizing those
products of both denominators of (2.37) and (2.38) that include only one single
constant Kj multiplied by one or more substrates8. This assumption yields the
constants

Kj =

{

Bj m−j+1 =
kf
kj
bj, j = 1, . . . ,m− 1

Am =
k−m+kf

km
bm, j = m,

i.e. just as in the single-substrate case the Monod constants equal the Michaelis
constants (2.34), which are related to the growth limiting enzymatic reaction.

With the above definition of the Monod constants the function L is given by

L(s1, . . . , sm) =
m−1∑

i=1

(

Ãi

i−1∏

j=1

sj

)

+
m−1∑

i=1

m−i∑

l=2

(

B̃il

m∏

j=1
j /∈{i,...,m−l+1}

sj

)

−Q(s1, . . . , sm)

with

Ãi = Km

(
m−1∏

j=i

Kd
j −

m−1∏

j=i

Kj

)

=
k−m + kf

km
bm

(
m−1∏

j=i

k−j

kj
bj −

m−1∏

j=i

kf
kj

bj

)

B̃il = Km−l+1

(
m−l∏

j=i

Kd
j −

m−l∏

j=i

Kj

)

=
kf

km−l+1

bm−l+1

(
m−l∏

j=i

k−j

kj
bj −

m−l∏

j=i

kf
kj

bj

)

.

The function Q represents the following sum: It includes all products
∏m

i=1 Qi

with Qi∈{si, Ki} such that there exist indices 1 ≤ j < k < l ≤ m with KjskKl

being part of the product. In other words, this sum describes all index ordered
products in which at least one substrate sl is in between two constants Kj, Kl.

As can be easily seen, the growth rates (2.27) and (2.38) are of the same form
if there exist model parameters that ensure L(s1, . . . , sm) = 0.

8That this is a biologically reasonable choice follows from the fact that the resulting Monod
constants equal the Michaelis constants (2.34).
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In order to illustrate the mechanics of (2.38) and compare them with the pro-
posed bacterial growth rates (2.27) in various concrete cases, we list below certain
examples.

Example 3 (m = 1). The purpose for deriving the general growth rate (2.38)
was to consider enzymes that convert more than one substrate into a product.
Nevertheless, it can be easily seen that the result is also applicable to bacteria
whose growth limiting process is a single-substrate reaction. Hence, the specific
growth rate of those bacteria is

µ(s1) = µmax
s1

s1 +K1

with

K1 =
k−1 + kf

k1
b1.

Due to the fact that L(s1) = 0, both the growth rates (2.27) and (2.38) have
the same structure and can be equalized by an appropriate choice of model pa-
rameters. This was already shown in section 2.2 under the assumption that in
the enzymatic reaction only one molecule of substrate binds to an enzyme. Note
that the above derivation generalizes this assumption: Taking into account the
stoichiometric constant b1 allows to consider enzymes that react with more than
one molecule of substrate.

Example 4 (m=2). The specific growth rate of bacteria whose growth depends
on two substrates is

µ(s1, s2) = µmax
s1s2

(s1 +K1)(s2 +K2) + L(s1, s2)

with
L(s1, s2) = Ã1

and parameters

K1 =
kf
k1

b1 Ã1 =
(k−2 + kf )(k−1 − kf )

k1k2
b1b2

K2 =
k−2 + kf

k2
b2.

This growth rate is identical in form to (2.27), which was suggested by Megee
in [Meg72] for the growth of Lactobacillus casei by the availability of glucose
and riboflavin, if L(s1, s2) = 0, and hence k−1 = kf (see also [Bad78]). In
terms of enzyme kinetics, this equality means that in one time step as many
complexes S∗

1S
∗
2E are converted into product as complexes S∗

1E fall apart into
S∗
1 and E. This is consistent with the assumption k−1

kf
= O(1), which is made in

the asymptotic analysis of the limiting enzymatic reactions in appendix A.2.
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Example 5 (m = 3). For dependency on three substrates we get the overall
growth rate

µ(s1, s2, s3) = µmax
s1s2s3

(s1 +K1)(s2 +K2)(s3 +K3) + L(s1, s2, s3)

with the function

L(s1, s2, s3) = Ã1 + Ã2s1 −K1K3s2 + B̃12s3

and the parameters

K1 =
kf
k1

b1 Ã1 =
(k−3 + kf )(k−1k−2 − k2

f )

k1k2k3
b1b2b3

K2 =
kf
k2

b2 Ã2 =
(k−3 + kf )(k−2 − kf )

k2k3
b2b3

K3 =
k−3 + kf

k3
b3 K1K3 =

kf (k−3 + kf )

k1k3
b1b3

B̃12 =
kf (k−1 − kf )

k1k2
b1b2.

This growth rate equals in form (2.27), which is used in [Wid88], if L(s1, s2, s3)=0.
In order to ensure that all coefficients in the function L are zero, the rate constants
have to satisfy

k−1 = −k−3 = kf ∨ k−2 = kf = 0 ∨ k−3 = kf = 0,

which is inconsistent with the positivity of all rate constants ki, i∈{±1,±2,±3, f}.
Consequently, the specific growth rates (2.27) and (2.38) cannot be equalized by
a biologically reasonable choice of model parameters.

Considering the above examples and some further analyses, which are stated
below, we can phrase the following results concerning the equivalence of the
proposed model (2.25)-(2.27) and the model (2.25)/(2.26)/(2.37), derived in this
chapter, for bacterial growth depending on m ∈ N substrates:

• m = 1: The bacterial growth rates (2.27) and (2.37) are of the same form
and can be equalized by an appropriate choice of model parameters (see
section 2.2 and example 3 in the current section).

• m = 2: The bacterial growth rates (2.27) and (2.37) are of the same form
if, and only if, the rate constants of the growth limiting enzymatic reaction
satisfy k−1 = kf (see example 4 in the current section).

• m> 2: The bacterial growth rates (2.27) and (2.37) are unequal (see ex-
ample 5 for m = 3 in the current section).
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Proof. The growth rates (2.27) and (2.37) have the same form if, and only
if, there exist constants Ki > 0 (i = 1, . . . ,m) such that the denominators
only differ by a positive multiplier a > 0:

a ·

m∏

i=1

(si +Ki) =
m∑

i=1

(

Ai

i−1∏

j=1

sj

)

+
m−1∑

i=1

m−i+1∑

l=2

(

Bil

m∏

j=1
j /∈{i,...,m−l+1}

sj

)

+
m∏

j=1

sj.

This is not the case for m > 2 since the left-hand side of the equation
includes every single si (i = 1, . . . ,m) multiplied by positive constants,
whereas on the right-hand side only s1 and sm occur without multiplication
by other substrates.

According to the above results, the assumptions 1-4 on page 15 generalized for m
substrates are not sufficient to explain the bacterial growth model (2.25)-(2.27)
for m > 2. Consequently, either the growth rate (2.27), which is used in various
articles, is based on assumptions that differ fundamentally from the ones that are
made in this thesis, or the additional simplification L(s1, . . . , sm) = 0, which can
not be justified from a biological or chemical point of view, is implicitly included
in its derivation.

Remark 1. In the above derivation of the bacterial growth rate we assumed that
the substrate uptake enzyme follows an ordered sequential kinetic mechanism.
Assuming either a random ordered or a ping-pong mechanism yields much more
complicated rate equations for the enzymatic reactions, and therefore more com-
plex bacterial growth rates. According to [Bis08, Las87] the curves related to
those rates differ in general fundamentally to those related to an ordered se-
quential mechanism. Nevertheless, making the additional assumption that in the
enzymatic reaction all reaction steps except the product yielding ones are in equi-
librium (rapid equilibrium assumption) yields simplified rate equations of similar
structure to (2.33) (see [Bis08] for a random sequential mechanism for m = 2 and
ping-pong mechanisms for m = 2, 3). The resulting bacterial growth rates are
therefore similar to (2.38) with slightly different functions L(s1, . . . , sm). This
might result in different statements about the equality of the proposed model
(2.25)-(2.27) and the model based on a random sequential or ping-pong mecha-
nism under the additional rapid equilibrium assumption for m ∈ N.

2.4 Bioremediation

In the previous section we derived a mathematical model for the growth of bacte-
ria and the associated degradation of their main food sources. The basic aspect of
a bioremediation process is therefore described by this model so that just minor
adjustments remain to be done in order to convert the bacterial growth model
into a bioremediation model.
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2.4.1 Expansion

Up to now we have only taken into account changes in time, i.e. we have assumed
that the concentrations in the observed area are constant. Now, we will also con-
sider spatial changes. More precisely, we consider the case of advection in which
the substrates Si are transported with a constant velocity ui, while the bacteria
are supposed to be immobile. If we assume that the concentrations are constant
vertical to the direction of flow, it is sufficient to consider a one-dimensional
model. The concentrations therefore depend on one space variable x ∈ R and
time t ∈ R. In connection with the spatial behavior we also take into account
the porosity of the underlying medium via the porosity constant Φ ∈ [0, 1].

Furthermore, we assume that the bacteria decay with rate R in the absence of
the substrates.

These assumptions yield the bioremediation model

Φ
∂

∂t
si + ui

∂

∂x
si = −

1

Yn/si

µ(s1, . . . , sm)n, i = 1, . . . ,m (2.39)

∂

∂t
n =

(
µ(s1, . . . , sm)−R

)
n (2.40)

with growth rate (2.38).

2.4.2 Non-dimensionalization

For further analyses we will non-dimensionalize9 the above bioremediation model.
In order to obtain a specific structure of the dimensionless model, which will be
specified later, we choose the scaling

si = Kis̄i, t = tr t̄,

n =
Φ

∑m
j=1

1
KjYn/sj

n̄, x= xrx̄

with dimensionless variables denoted by bars and with reference parameters tr
and xr. The scaled version of (2.39)/(2.40) reads

∂

∂t̄
s̄i + ūi

∂

∂x̄
s̄i = −

1

Ȳn̄/s̄i

µ̄(s̄1, . . . , s̄m)n̄, i = 1, . . . ,m (2.41)

∂

∂t̄
n̄ =

(
m∑

j=1

1

Ȳn̄/s̄j

µ̄(s̄1, . . . , s̄m)− R̄

)

n̄ (2.42)

with the dimensionless parameters

ūi =
tr
Φxr

ui,
1

Ȳn̄/s̄i

=
trµmax

Ki

∑m
j=1

1
KjYn/sj

1

Yn/si

, R̄ = trR

9The units of all variables and parameters used in this process are stated in table 2.1.
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and the notation

µ̄(s̄1, . . . , s̄m) =
µ(K1s̄1, . . . , Kms̄m)

µmax

=

∏m
j=1 s̄j

∏m
j=1(s̄j + 1) + L̄(s̄1, . . . , s̄m)

(2.43)

with

L̄(s̄1, . . . , s̄m) =
L(K1s̄1, . . . , Kms̄m)

∏m
j=1Kj

. (2.44)

The specific scaling sir = Ki ensures that the dimensionless parameters Ki

sir
in the denominator of (2.43) are replaced by 1. This results in a reduction of
the number of parameters that have to be considered, compared to other choices
of sir. The scaling for n yields that the sum of the right-hand sides of all differ-
ential equations has the simple form −R̄n̄. The fact that the particular reference
parameters are not necessarily estimates of the variables’ maximum (see (i) in
appendix A) does not present problems to further analyses since we will neither
compare orders of magnitude of different parameters, nor neglect terms.

In the subsequent chapters we focus on the analysis of the bioremediation model
(2.41)-(2.44) for m=1 and m=2 substrates. For this reason we state these two
models explicitly in the following examples, where we omit the bars, which denote
the dimensionless variables and parameters, for simplicity of notation.

Example 6 (m= 1). For bacterial growth depending on one substrate the di-
mensionless bioremediation model (2.41)-(2.44) is given by

∂

∂t
s1 + u1

∂

∂x
s1 = −

1

Yn/s1

µ(s1)n (2.45)

∂

∂t
n =

(
1

Yn/s1

µ(s1)−R

)

n (2.46)

with

µ(s1) =
s1

s1 + 1
. (2.47)

Example 7 (m=2). Bioremediation by bacteria whose growth depends on two
substrates is described by the dimensionless model

∂

∂t
s1 + u1

∂

∂x
s1 = −

1

Yn/s1

µ(s1, s2)n (2.48)

∂

∂t
s2 + u2

∂

∂x
s2 = −

1

Yn/s2

µ(s1, s2)n (2.49)

∂

∂t
n =

((
1

Yn/s1

+
1

Yn/s2

)

µ(s1, s2)−R

)

n. (2.50)
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From now on we assume k−1 = kf for the rate constants of the underlying en-
zymatic reaction so that the dimensional specific growth rates (2.27) and (2.37)
are equal (for more details we refer to example 4 on page 24). The dimensionless
growth rate is therefore given by

µ(s1, s2) =
s1

s1 + 1

s2
s2 + 1

. (2.51)

This model is very similar to the one proposed in [Ode93] if we neglect diffusion.
The main difference is the assumption of Odencrantz et al. that there exists a
positive background concentration of bacteria, which causes an additional term
in the last differential equation. The impact of this term is so far reaching that
the traveling wave analyses in [Mur98, Log01] are not applicable to our model
such that independent studies are required.

2.5 Conclusions

The main component of any bioremediation model is given by the growth rate of
the bacteria that are involved in the degradation process. This growth rate is in
turn closely linked to the rate of particular enzymatic reactions taking place in-
side the bacterial cells. For this reason the first step in deriving a bioremediation
model is the analysis of enzymatic reactions and bacterial growth.

As a consequence of the above correlations we first derived the rate equation of
specific enzymatic reactions that involve a general number m ∈ N of substrates.
For m= 1, this has already been done by Michaelis and Menten, as well as by
Briggs and Haldane, whose results are very similar, although they are based on
different assumptions (see [Mic13, Bri25]). For m> 1, a number of approaches
exist in the literature to compute the rate equation of complex enzymatic mech-
anisms, which usually attempt to avoid the direct solution of equations. These
approaches have been used to derive rate equations for specific kinetic mechanisms
and for various fixed numbers of substrates. In addition, a general rate equation
for an arbitrary number of substrates occurs in the literature; see [Hem07]. How-
ever, the derivation of this formula, as well as the underlying assumptions, and
in particular the specification of the kinetic mechanism under consideration, are
missing. In the present chapter we derived the rate equation of a specific kinetic
mechanism, namely of an ordered sequential one, satisfying a generalization of
the quasi-steady-state assumption by Briggs and Haldane, by solving a set of
equations directly. The resulting formula is of similar structure to the one pro-
posed in [Hem07], but they differ for m> 2 (for conclusions about this fact see
the discussion below).

In addition to the derivation of the rate equation, we studied the enzymatic
reactions under consideration by means of asymptotic analyses in order to spec-
ify the meaning and the validity of the rate equations based on the different
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assumptions of Michaelis/Menten and Briggs/Haldane. Various asymptotic ap-
proaches related to the quasi-steady-state assumption of Briggs and Haldane
for single-substrate reactions can be found in the literature; see for example
[Seg88, Seg89, Din08] and the references therein. However, to the best of our
knowledge, neither asymptotic analyses concerning the equilibrium assumption
of Michaelis and Menten, nor asymptotic analyses of multi-substrate reactions
currently exist in the literature. These analyses show that the equations derived
by Michaelis/Menten and Briggs/Haldane, as well as the equation derived for
multi-substrate reactions, hold after a short initial layer, as long as the substrate
concentrations are large enough.

Based on the rate equation of the underlying multi-substrate enzyme reaction,
a bacterial growth rate could be determined, and a bacterial growth model set
up. For m = 1 involved substrate, [Pir90] presented certain assumptions that
explain the empirically found growth rate proposed in [Mon42]. For m > 1,
growth rates for various fixed numbers, as well as for a general number of in-
volved substrates, have been presented by different authors; see for example
[Meg72, Wid88, Ben84, Hem07]. They are typically based on a simple multiplica-
tion of single-substrate growth rates, but explanations and specific assumptions
that back this suggestion up are not declared. Based on a generalization of Pirt’s
assumptions for the single-substrate case, and concentrating on a specific kinetic
mechanism of the limiting enzymatic reaction, namely an ordered sequential one,
we propose a bacterial growth rate that is applicable to any number of involved
substrates. This formula is similar to the multiplicative one mentioned above, but
while both growth rates can be equalized for m = 2 by stating certain assump-
tions on the rate constants in the underlying enzymatic reaction (see [Bad78]),
they are different for m>2. This leads us to the conclusion that the growth rates
suggested by [Wid88, Ben84, Hem07] and others are either based on assumptions
that differ from the ones made in this chapter, or alternatively that these authors
implicitly include a simplification, namely neglecting an additional term, which
cannot be justified by biological or chemical arguments.

In the final step we extended the derived bacterial growth model to a bioreme-
diation model by taking into account spatial changes and environmental prop-
erties. In order to compare the resulting model to others, we note that a va-
riety of different bioremediation models exist in the literature; see for example
[Bor86, Ode93, Xin98, Cir99, Klö02, Che06] and the references therein. Most
of these models describe a degradation of m = 2, a few of m = 3, 4 substrates,
where the commonly used bacterial growth rate is given by the multiplication of
single-substrate growth rates mentioned above. The model derived in this the-
sis therefore differs from other models for m > 2, at least with respect to the
growth rates, but as a matter of fact also in relation to other factors, such as
consideration of diffusion or specific properties of particular bacteria. In general,
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the bioremediation models in the literature show a large variation in complexity,
where the model presented in [Ode93] for m = 2 substrates is outstanding for
its relative simplicity while capturing the main aspects of bioremediation. If we
neglect diffusion in that model and take into account a specific assumption about
the rate constants in the limiting enzymatic reaction, this model bears a close
resemblance to the model presented in this thesis for m=2. But nevertheless, the
remaining small difference, namely the assumption of a positive background con-
centration of bacteria, and hence the occurrence of an additional term in the rate
equation for the biomass, has a large impact on the analysis of the two models
and requires different studies.
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description units

N bacteria cells
Si substrate mol
S∗
i bi molecules of substrate Si (S∗

i = biSi) mol
P intermediate product in the metabolism mol
E free enzyme mol
E0 total enzyme mol
S∗
1 . . . S

∗
i E complex of one enzyme and one unit of S∗

1 , . . . , S∗
i mol

n concentration of bacteria cells

m3

si concentration of substrate Si
mol

m3

s∗i concentration of S∗
i (s∗i = 1/bisi)

mol

m3

p concentration of product mol

m3

e concentration of free enzyme mol

m3

e0 concentration of total enzyme mol

m3

ci concentration of the substrate enzyme complex S∗
1 . . . S

∗
i E

mol

m3

(c0 := e)
Ki half saturation concentration of substrate Si

mol

m3

(Michaelis/Monod constant)
Kd

i dissociation constant of complex S∗
1 . . . S

∗
i E

mol

m3

v reaction rate of the enzymatic reaction 1
s

mol

m3

vmax maximum reaction rate of the enzymatic reaction 1
s

mol

m3

µ specific growth rate of the bacteria 1
s

µmax maximum specific growth rate of the bacteria 1
s

bi stoichiometric coefficient of substrate Si 1
Yn/si yield constant of substrate Si

cells

mol

α fraction enzyme of bacteria mol

cells

ki rate constant for S∗
1 . . . S

∗
i−1E + S∗

i → S∗
1 . . . S

∗
i E

1
s

m3

mol

k−i rate constant for S∗
1 . . . S

∗
i−1E + S∗

i ← S∗
1 . . . S

∗
i E

1
s

kf rate constant for S∗
1 . . . S

∗
mE → P + E 1

s

Φ porosity constant (Φ ∈ [0, 1]) 1
ui transportation speed of substrate Si

m

s

R death rate of the bacteria 1
s

x space m
t time s

Table 2.1: Notation used in chapter 2



Chapter 3

Existence of traveling waves

This chapter is devoted to the existence of special solutions of the bioremedia-
tion model (2.41)-(2.43), namely traveling waves. These solutions progress with a
constant speed and an unmodified shape. Consequently, they are constant along
linear functions in time t and space x, the so-called characteristics x = x0 + st,
where s denotes the wave speed. We can therefore introduce a new “moving” vari-
able z = x− st, which represents these linear functions, and write Q(z) := q(x, t)
for the traveling wave solution, where Q(z) is called wave form or profile. The
profile can appear in different shapes: If Q(z) is a smooth function that converges
to constant values at ±∞, then the traveling wave is said to be a wave front. If
the rest states are the same at ±∞, the traveling wave is called a pulse. Fur-
thermore, we refer to spatially-periodic traveling waves as wave trains. For more
information see [Gri91, Log01, San02].

In the following we will think of injecting constant concentrations of substrates,
and hence search for bounded non-negative traveling wave solutions with constant
values at plus and minus infinity. In other words, we are interested in the existence
of non-negative wave fronts in the bioremediation model (2.41)-(2.43).

Below we will concentrate on the analysis of the single-substrate and double-
substrate case, but we will also give an outlook on how to study the existence of
traveling waves if an arbitrary number of substrates is involved.

3.1 Single-substrate bioremediation model

In this section we will be concerned with the existence of non-negative traveling
wave front solutions of the single-substrate bioremediation model (2.45)-(2.47):

(
c
n

)

t

+

(
u 0
0 0

)(
c
n

)

x

=

(
−νµ1(c)n

(νµ1(c)−R)n

)

, µ1(c) =
c

c+ 1
. (3.1)

For simplifying reasons we changed the notation slightly compared to chapter 2.
The notation used throughout this section is listed in table 3.1 on page 38.

33
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3.1.1 Ansatz

First, we specify the mathematical model that has to be studied for the intended
existence analysis. This will be done by a change of variables and the declaration
of some assumptions concerning the model parameters.

Traveling wave ansatz

As stated above we change the variables to the “moving” ones

z := x− st and (C,N)(z) = (C,N)(x− st) := (c, n)(x, t).

With respect to these variables model (3.1) reads
(
u− s 0
0 −s

)(
C
N

)

z

=

(
−νµ1(C)N

(νµ1(C)−R)N

)

. (3.2)

Its solutions describe any traveling wave solution in (3.1). But due to our specific
application we are interested in a particular wave form, namely in non-negative
wave fronts. Taking into account that the constant states at ±∞ have to be
critical points of (3.2), we therefore add the constraints

0 ≤ C,N <∞ (3.3)

(C,N)(±∞) = (c±, 0) (3.4)

with arbitrary values c± ∈ R
+
0 .

In this way we have reduced the problem of finding non-negative wave front
solutions of (3.1) to the problem of solving (3.2)-(3.4) for s and (C,N) on R.

Assumptions

For further analyses we will concentrate on a certain case, which is specified by
the following assumptions:

(A1) The substrate is injected on the left side and transported to the right, i.e.

u > 0.

(A2) Due to the biological meaning the substrate concentration that is asymp-
totically approached for large z shall be smaller than the concentration of
the injection. We thus assume

c− > c+.

(A3) We are only interested in traveling but not standing waves1, i.e.

s 6= 0.

1For standing waves see remark 2 on page 39.
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3.1.2 Analysis

Since (3.2) is a planar autonomous system of ordinary differential equations, we
can study its solutions in the phase plane. In this way we will show the exis-
tence of a solution of (3.2)-(3.4) by demonstrating that for certain concentrations2

c− =: c̄− there exist values of s that are related to a unique non-negative trajec-
tory connecting the two critical points (c̄−, 0) and (c+, 0).

In order to simplify the subsequent phase plane analysis, we will first present
a necessary condition for the existence of a solution of (3.2)-(3.4): If there ex-
ists a non-negative connection of two different critical points, then the biomass
concentration asymptotically decays from positive values to zero, i.e.

Nz > 0 as z → −∞

Nz < 0 as z → +∞.

With respect to the assumptions and constraints we get the equivalent conditions

s < 0 ∧ µ1(c+) <
R

ν
< µ1(c̄−) (3.5)

and

s < 0 ∧ 0 < ν −R ∧ 0 ≤ c+ <
R

ν −R
< c̄−. (3.6)

Their meaning can be clarified by means of figure 3.1.

1

R̂
ν

R
ν

R
ν−R

C

µ1

Figure 3.1: Specific growth rate µ1 for different values of R

For studying the solutions of (3.2) in the phase plane we analyze the differen-
tial equation

dN

dC
=

u− s

s

(

1−
R

ν

C + 1

C

)

.

2Throughout this chapter we label limit concentrations that are predefined boundary values
by bars, while limit concentrations without bars have to be determined.
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The trajectories that have a root in C = c̄− are given by

N(C) :=
u− s

s

R

ν

(
ν −R

R
(C − c̄−)− ln

∣
∣
∣
∣

C

c̄−

∣
∣
∣
∣

)

.

Considering the assumptions and the first and second part of necessary condi-
tion (3.6) yields that the trajectories are strictly concave on R

+ with a non-
negative maximum. Selected trajectories for two different values of s are visual-
ized in figure 3.2, where the arrows indicate the direction of flow.

As can be verified by means of figure 3.2, for c̄− > R
ν−R

there exist hetero-
clinic orbits representing solutions of (3.2) that satisfy the constraints (3.3) and
(3.4). The necessary condition (3.6), without the requirement on c+, is therefore
a sufficient condition for the existence of solutions of (3.2)-(3.4) with respect to
(A1)-(A3). The shape of these solutions, and hence the profile of the correspond-
ing traveling wave in (3.1), is shown in figure 3.3 and specified in the following
two propositions.

Proposition 1. Consider model (3.2)-(3.4) with u > 0, ν > R and a predefined
limit c̄− > R

ν−R
=: c0. Then there exists a unique solution of (3.2)-(3.4) for every

s < 0. This solution has the following properties:

(i) C(z) is monotonically decreasing from c̄− to c+, which is the unique root of
N(C) in (0, c0).

(ii) N(z) is monotonically increasing on the left and monotonically decreasing
on the right of the maximum value and has the limits N(±∞) = 0.

(iii) The total biomass is given by Ntot :=
∫∞

−∞
N(z) dz = u−s

R
(c̄− − c+).

Proof. Statements (i) and (ii) follow directly from the curve sketching of N(C),
as indicated above. The formula in (iii) is computed by integrating the sum of
both differential equations of model (3.2) from minus to plus infinity and using
N(±∞) = 0.

bb bb C

N

R
ν−R

c̄−c+

Figure 3.2: Trajectories of (3.2) for u > 0, ν − R > 0, c̄− > R
ν−R

and different
values s < 0. The black orbits satisfy the constraints (3.3) and (3.4).
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C

N

z

c̄−

c+

Figure 3.3: Profile of a non-negative traveling wave front in (3.1)

The next proposition specifies the profile N(z), and hence statement (ii) of the
above proposition:

Proposition 2. N(z) is bounded from above by exponentially increasing and
decreasing functions. Furthermore, N(z) asymptotically approaches the least of
these upper bounds as z → ±∞. More precisely, there exist positive constants
K± such that

N(z) < K±e
−α±z

for all z ∈ R and

N(z) ∼ K±e
−α±z (3.7)

as z tends to ±∞ with

α± =
1

s

(
νµ1(c±)−R

)
,

where α+ > 0 and α− < 0.

Proof. For the proof, as well as an illustrating figure, we refer to appendix B.

To sum up, proposition 1 describes the existence of an infinite number of so-
lutions of (3.2)-(3.4) under specific assumptions on the model parameters, each
solution related to a pair (s,Ntot) satisfying

s = u−
R

c̄− − c+
Ntot < 0.

These solutions represent non-negative traveling wave fronts in model (3.1) that
travel with speed s and have the total biomass Ntot.

Example 8. Consider model (3.2)-(3.4) with the following parameters3:

u = 7.81, ν = 1.12,

R = 0.34, c̄−= 0.76.

3In the current and subsequent examples the sets of parameters are chosen to result in
qualitative statements, but they are not necessarily close to realistic application data.
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Then the unique root of N(C) in (0, c0) = (0, 0.44) is c+ = 0.22. With respect to
proposition 1 there exist solutions related to any combination (s,Ntot) satisfying

s = 7.81− 0.63Ntot < 0.

These combinations are represented by the black line in figure 3.4.

Ntot

s

12.40

u

0

Figure 3.4: Occurring combinations (s,Ntot) in example 8

description4

c(x, t) concentration of substrate
n(x, t) concentration of biomass
C(z) concentration of substrate (traveling wave)
N(z) concentration of biomass (traveling wave)
c± limit concentrations of C(z) as z tends to ±∞
c̄− predefined limit concentration c−
N(C) trajectories in the C-N phase plane that have a root in C = c̄−
Ntot total biomass in the wave profile: Ntot =

∫∞

−∞
N(z) dz

−α± asymptotic growth rates of N(z) as z tends to ±∞
u transportation speed of the substrate
s traveling wave speed
µ1(c) specific growth rate of the biomass
ν inverse yield constant of the substrate (ν = 1/Yn/c)
R death rate of the biomass
x space
z space along the characteristics: z = x− st
t time

Table 3.1: Notation used in section 3.1

4Note that according to subsection 2.4.2 the model under consideration is dimensionless.
The descriptions thus correspond to the related dimensional variables and parameters.
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Remark 2. Because they require a different treatment, we excluded standing
waves, i.e. waves that travel with speed s = 0, from the above analysis. It should
be mentioned that by a change of variables the problem of finding non-negative
standing wave fronts in (3.1) is reduced to the problem of solving (3.2)-(3.4) with
s = 0 for C and N on R. Analysis in the phase plane yields that the solutions are
(C,N)(z) = (c̄, 0) with any c̄ ∈ R

+
0 . The profile of the only standing wave fronts

in (3.1) is therefore given by constant functions C and N that are related to no
biomass in the system, and hence no reduction of the substrate concentration.

3.2 Double-substrate bioremediation model

In this section we will study the existence of non-negative traveling wave fronts
in the double-substrate bioremediation model (2.48)-(2.51):





co
cs
n





t

+





u 0 0
0 v 0
0 0 0









co
cs
n





x

=





−νoµ2(co, cs)n
−νsµ2(co, cs)n(

(νo + νs)µ2(co, cs)−R
)
n



 (3.8)

with dimensionless growth rate

µ2(co, cs) =
co

co + 1

cs
cs + 1

.

Again, for simplifying reasons we changed the notation5 compared to chapter 2.
The notation used throughout this section is listed in table 3.2 on page 54.

3.2.1 Ansatz

In order to detect non-negative traveling wave front solutions of model (3.8),
we follow the same approach as in the previous section. First, we will therefore
specify the mathematical model that has to be analyzed.

Traveling wave ansatz

With respect to traveling wave solutions we introduce the new variables

z := x− st and (Co, Cs, N)(z) = (Co, Cs, N)(x− st) := (co, cs, n)(x, t).

We are thus interested in solutions of the model




u− s 0 0
0 v − s 0
0 0 −s









Co

Cs

N





z

=





−νoµ2(Co, Cs)N
−νsµ2(Co, Cs)N(

(νo + νs)µ2(Co, Cs)−R
)
N



 (3.9)

5In particular, we assume one substrate to be oxygen, i.e. we concentrate on aerobic bacteria
that grow depending on one substrate in the presence of oxygen. For regarding anaerobic
bacteria the oxygen can be replaced by any other substrate.
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with the constraints

0 ≤ Co, Cs, N <∞ (3.10)

(Co, Cs, N)(±∞) = (co±, cs±, 0) (3.11)

with arbitrary limits co±, cs± ∈ R
+
0 .

In this manner the problem of finding non-negative traveling wave fronts in the
bioremediation model (3.8) is reduced to the problem of solving (3.9)-(3.11) for
s and (Co, Cs, N) on R.

Model reduction

The above model can be reduced by taking into account the conservation law

d

dz
(νs(u− s)Co − νo(v − s)Cs) = 0, (3.12)

which involves the first and second differential equation. Integration yields an
interdependence of Co and Cs such that model (3.9)-(3.11) is represented by

(
u− s 0
0 −s

)(
Co

N

)

z

=

(
−νoµ2(Co, C̃s(Co))N(

(νo + νs)µ2(Co, C̃s(Co))−R
)
N

)

(3.13)

with

C̃s(Co) := −
νs(u− s)

νo(s− v)
(Co − co−) + cs− (3.14)

and the constraints

0 ≤ Co, N <∞, 0 ≤ C̃s(Co) (3.15)

(Co, N)(±∞) = (co±, 0). (3.16)

The missing conditions C̃s(Co) <∞ and C̃s(co±) = cs± are covered by the other
constraints.

By this approach we could once more reduce the problem of finding non-
negative traveling wave fronts in model (3.8): The solutions s and (Co, N) of
(3.13)-(3.16) plus Cs(z) = C̃s(Co(z)) represent non-negative wave fronts in (3.8).

Assumptions

For the further analysis we concentrate on the following special case:

(A1) The substrates are injected at opposite sides and transported in different
directions. Therefore, u and v have different signs, and without loss of
generality we assume an injection of oxygen on the left and of the remaining
substrate on the right side, which corresponds to

v < 0 < u.
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(A2) Due to their biological meaning the inflowing substrate concentrations shall
be greater than the asymptotically approached ones on the other side. We
thus assume

co− > co+ > 0 and 0 < cs− < cs+.

(A3) We are only interested in traveling but not standing waves6, i.e.

s 6= 0.

With respect to the above assumptions, as well as the integrated conservation
law (3.12), we can state bounds for the wave speed s,

v < s < u, (3.17)

and hence specify the functions C̃s(Co) and µ̃2(Co) := µ2(Co, C̃s(Co)), which are
shown in figure 3.5.

Co

C̃s

co+ co− comax

cs−

cs+

csmax

Co

µ̃2

R
νo+νs

R̂
νo+νs

c1o c2o comax

Figure 3.5: Functions C̃s and µ̃2 for different values of R

3.2.2 Analysis

Below we will analyze model (3.13)-(3.16) with respect to assumptions (A1)-(A3).
For mathematical reasons we will first assume that the concentrations co− and cs−
are known, while the concentrations co+ and cs+ have to be determined. But with
respect to assumption (A1), namely that the substrates are injected at opposite
sides, it is of more interest for practical use to study the more complicated case
that co− and cs+ are predefined. This will be the objective in the subsequent
paragraph.

6For standing waves see remark 6 on page 52.
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Analysis for predefined values co−, cs−

Analogous to subsection 3.1.2 we will first state a necessary condition for the ex-
istence of solutions of (3.13)-(3.16) with predefined concentrations c̄o− := co− > 0
and c̄s− := cs− > 0. With respect to this condition, we will then study the solu-
tions of the model described above in the phase plane.

A necessary condition for the existence of a non-negative heteroclinic orbit,
and hence for the existence of a solution of (3.13)-(3.16), is

Nz > 0 as z → −∞

Nz < 0 as z → +∞.

Due to the assumptions and constraints this condition is satisfied if

s < 0 ∧ µ̃2(co+) <
R

νo + νs
< µ̃2(c̄o−) or

s > 0 ∧ µ̃2(c̄o−) <
R

νo + νs
< µ̃2(co+),

(3.18)

and equivalently if

s < 0 ∧ 0 < c1o < c2o ∧ 0 < co+< c1o < c̄o−< c2o or

s > 0 ∧ 0 < c1o < c2o ∧ 0 < c1o < co+< c2o < c̄o−,
(3.19)

where c
1/2
o represent the argument values of the intersections between µ̃2 and

R
νo+νs

(see figure 3.5).

The solutions of (3.13) in the phase plane satisfy the differential equation

dN

dCo

=
u− s

s

(
νo + νs

νo
−

R

νoµ̃2(Co)

)

.

The trajectories that have a root in Co = c̄o− are given by

N(Co) :=
u− s

s

R

νo

[(
νo + νs

R
− 1

)

(Co − c̄o−)−

(

1 +
1

c̄s− + ac̄o−

)

ln

∣
∣
∣
∣

co
c̄o−

∣
∣
∣
∣

+

(
1

a
+

1

c̄s− + ac̄o−

)

ln

∣
∣
∣
∣
1− a

Co − c̄o−
c̄s−

∣
∣
∣
∣

]

(3.20)

with −a denoting the derivative of C̃s(Co).
Curve sketching of N(Co) with respect to the assumptions and the second parts

of condition (3.19) yields the result that is visualized in figure 3.6. The arrows
indicate the direction of flow.
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comaxc1o c2o0

0 b b

co+ c̄o−
Co

N

comaxc1o c2o0

0 b b

co+ c̄o−
Co

N

Figure 3.6: Trajectories of (3.13) for v < 0 < u and specific values of c̄o−, c̄s− > 0,
v < s < 0 (left) and 0 < s < u (right) such that 0 < c1o < c2o. The black orbits
satisfy the constraints (3.15) and (3.16).7

The following statements can be verified by means of figure 3.6: If c̄o− satisfies
condition (3.19), then for s < 0 there exists a heteroclinic orbit representing a
solution of (3.13) that satisfies the constraints (3.15) and (3.16). For s > 0, a
solution like this does not necessarily exist. The first line of condition (3.19),
without the requirement on the unknown value co+, is therefore a sufficient con-
dition for the existence of solutions of (3.13)-(3.16) with respect to (A1)-(A3).
By contrast, the second line is not sufficient without the requirement on co+.

The solutions mentioned above, and hence the profiles of the corresponding
traveling wave solutions of (3.8), are visualized in figure 3.7.

Co

Cs

N

z

c̄o−
co+

cs+

c̄s−

Figure 3.7: Profile of non-negative traveling wave fronts in (3.8)

7Note that c
1/2
o depend on c̄o−, c̄s− and s. Figure 3.6 shows selected trajectories that have

the following property: For a fixed s these trajectories are related to different values c̄o−, c̄s−
that all result in the same functions C̃s and µ̃2, and hence in the same arguments c

1/2
o of the

intersections between µ̃2 and R/(νo + νs).
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With this information we can state the following propositions:

Proposition 3. Consider model (3.9)-(3.11) with v < s < 0 < u. Assume that
the limits c̄o− and c̄s− are given and satisfy 0 < c̄s− and 0 < c1o < c̄o− < c2o. Then
there exists a unique solution of (3.9)-(3.11). This solution has the following
properties:

(i) Co(z) is monotonically decreasing from c̄o− to co+, which is the unique root
of N(Co) in (0, c1o).

(ii) Cs(z) is monotonically increasing from c̄s− to cs+, which is determined by
C̃s(co+).

(iii) N(z) is monotonically increasing on the left and monotonically decreasing
on the right of the maximum value and has the limits N(±∞) = 0.

(iv) The total biomass is given by

Ntot =
u− s

R

νo + νs
νo

(c̄o− − co+) =
s− v

R

νo + νs
νs

(cs+ − c̄s−). (3.21)

Proposition 4. Consider model (3.9)-(3.11) with v < 0 < s < u. Assume that
the limits c̄o− and c̄s− are given and satisfy 0 < c̄s− and 0 < c2o < c̄o−. Then
there exists either no solution or a unique solution of (3.9)-(3.11). If there exists
a solution, it has the following properties:

(i) Co(z) is monotonically decreasing from c̄o− to co+, which is the unique root
of N(Co) in (c1o, c

2
o).

(ii) Cs(z) is monotonically increasing from c̄s− to cs+, which is determined by
C̃s(co+).

(iii) N(z) is monotonically increasing on the left and monotonically decreasing
on the right of the maximum value and has the limits N(±∞) = 0.

(iv) The total biomass is given by

Ntot =
u− s

R

νo + νs
νo

(c̄o− − co+) =
s− v

R

νo + νs
νs

(cs+ − c̄s−).

Proof. The following ideas of proof hold for both propositions 3 and 4: Statements
(i)-(iii) follow directly from the curve sketching of N(Co), as indicated above.
The first part of (3.21) is computed by integrating the first and substituting the
result into the second differential equation of (3.13). Plugging this result into the
integrated equation (3.12) yields the second part of (3.21).
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Analogous to section 3.1 we can specify the properties of N(z):

Proposition 5. N(z) is bounded from above by exponentially increasing and
decreasing functions. Furthermore, N(z) asymptotically approaches the least of
these upper bounds as z → ±∞. More precisely, there exist positive constants
K± such that

N(z) < K±e
−α±z

for all z ∈ R and

N(z) ∼ K±e
−α±z

as z tends to ±∞ with

α± =
1

s

(
(νo + νs)µ2(co±, cs±)−R

)
,

where α+ > 0 and α− < 0.

Proof. Based on the reduced model (3.13) the proof is analogous to the one of
proposition 2, which is presented in appendix B.

The solutions described in propositions 3-5 represent non-negative wave fronts
in the bioremediation model (3.8) that travel with speed s.

Analysis for predefined values co−, cs+

As indicated before, for practical use it is of more interest to state some results
about traveling wave fronts if besides co− the concentration cs+, but not cs−, is
predefined. This is the objective of the current paragraph.

With respect to (3.21) the traveling wave solutions under consideration satisfy

co+ = co− −
νo

νo + νs

R Ntot

u− s
(3.22)

cs− = cs+ −
νs

νo + νs

R Ntot

s− v
. (3.23)

The concentration cs− in model (3.13) can therefore be replaced by (3.23), and
hence be expressed by cs+. Solving the model that results from this replacement
yields information about traveling waves in (3.8) under fixation of co− and cs+.

Note that by the replacement indicated above not only cs+, but also the total
biomass Ntot comes into the model. It follows that the integral of N(z) appears
in a non-linear way in both differential equations, which is an aggravating cir-
cumstance.

First, we will study this problem under fixation of Ntot. Afterwards, we will
generalize the results and specify conditions for the existence of solutions if the
total biomass Ntot is not fixed.
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Fixation of Ntot The approach for solving the problem outlined above is to
perceive Ntot initially just as a predefined positive model parameter that has to
be equalized with the total biomass by an additional constraint:

(
u− s 0
0 −s

)(
Co

N

)

z

=

(
−νoµ2(Co, C

∗
s (Co))N(

(νo + νs)µ2(Co, C
∗
s (Co))−R

)
N

)

(3.24)

with

C∗
s (Co) = −

νs(u− s)

νo(s− v)
(Co − c̄o−) +

(

c̄s+ −
νs

νo + νs

R N∗
tot

s− v

)

︸ ︷︷ ︸

=:c∗s−

(3.25)

and the constraints

(i) 0 ≤ Co, N <∞, 0 ≤ C∗
s (Co) (3.26)

(ii) (Co, N)(−∞) = (c̄o−, 0), (Co, N)(+∞) = (co+, 0), co+ ∈ R
+ (3.27)

(iii) Ntot =

∫ ∞

−∞

N(z) dz =
u− s

R

νo + νs
νo

(c̄o− − co+)
!
= N∗

tot (3.28)

⇔ co+
!
= c̄o− −

νo
νo + νs

RN∗
tot

u− s
=: c∗o+. (3.29)

As before, the bars denote the predefined concentrations, while N∗
tot is a given

parameter8, and c∗o+, c∗s− are parameters that result from N∗
tot. These parameters

only have a biological meaning as total biomass and limit concentrations, respec-
tively, if Co and N satisfy constraint (3.29).

Remark 3. To shorten notation in the remainder of this chapter, we introduce
the parameters

b∗o :=
νo

νo + νs

RN∗
tot

c̄o−
, do :=

µ2(c̄o−, c̄s+)−
R

νo+νs
µ1(c̄o−)

µ2(c̄o−, c̄s+)−
R

νo+νs

,

b∗s :=
νs

νo + νs

RN∗
tot

c̄s+
, ds :=

µ2(c̄o−, c̄s+)−
R

νo+νs
µ1(c̄s+)

µ2(c̄o−, c̄s+)−
R

νo+νs

.

By means of these parameters we define the following modifications of the trans-
portation speeds u and v, whose precise meaning will be specified below:

u∗
1 := u− b∗o, v∗1 := v + b∗s,

u∗
2 := u− b∗odo, v∗2 := v + b∗sds.

8In the remainder of this chapter, parameters and functions that depend on the predefined
value N∗

tot are labeled by stars.
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In order to solve the above problem, we consider the Co-N phase plane again.
The solutions of (3.24) in the phase plane are given by (3.20), where c̄s− is
replaced by c∗s−. For satisfaction of constraint (3.29) it is necessary to find a
value s such that the trajectory N∗(Co) has a zero in c̄o−, as well as in c∗o+, i.e.

N∗

(

c̄o− −
νo

νo + νs

R N∗
tot

u− s

)

= 0. (N1)

For this purpose we consider the function value N∗(c∗o+) as a function of s. This
function, denoted by g∗(s), has a root if, and only if, the function

f ∗(s) :=
s

R
g∗(s) =

(
R

νo + νs
− 1

)

N∗
tot +

u− s

νo
ln

∣
∣
∣
∣

1

a∗o(s)

∣
∣
∣
∣
+

s− v

νs
ln

∣
∣
∣
∣

1

a∗s(s)

∣
∣
∣
∣

+
RN∗

tot

νo + νs

1

c̄o−c̄s+

1

a∗o(s)a
∗
s(s)− 1

· ln |a∗o(s)a
∗
s(s)|

with

a∗o(s) :=
c∗o+
c̄o−

= 1−
b∗o

u− s
and a∗s(s) :=

c∗s−
c̄s+

= 1−
b∗s

s− v

has a root s 6= 0. For a certain set of parameters the functions g∗ and f ∗ are
shown in figure 3.8. With respect to the later result (3.31), the visualization,
as well as the following remark, are restricted to the interval I∗nc := (v∗1, u

∗
1). Its

endpoints correspond to the zeros of a∗s(s) and a∗o(s), and hence to the zeros of
c∗s−(s) and c∗o+(s).

Remark 4. For c̄o−, c̄s+, N
∗
tot > 0 and v < u, it can be proven that the function

f ∗ is convex in I∗nc. It follows that both f ∗ and g∗ have at most two zeros in I∗nc
that might correspond to a solution of (3.24)-(3.29).

g∗(s)

s
v∗1 u∗

1

f ∗(s)

s
v∗1 u∗

1

Figure 3.8: g∗ and f ∗ with certain parameters c̄o−, c̄s+, N
∗
tot > 0 and v < 0 < u
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As can be verified by means of figure 3.6, not all zeros of N∗(Co) correspond to
solutions of (3.24)-(3.29). For this reason it has to be tested whether the zeros
of N∗(Co) that correspond to the values of s satisfying (N1), are located in the
correct interval. For this survey previous results, namely condition (3.19) and
propositions 3 and 4, can be used: Since c∗s− > 0 is equivalent to c̄o− < c∗omax, a
sufficient condition for the existence of a solution of (3.24)-(3.27), i.e. the above
model without the last-mentioned constraint, is

s < 0 ∧ 0 < c∗o+ < c1∗o < c̄o− < c2∗o < c∗omax or

s > 0 ∧ 0 < c1∗o < c∗o+ < c2∗o < c̄o− < c∗omax.
(N2)

Since all concentrations, except the predefined one c̄o−, depend on s, we can deter-
mine intervals such that each s in the conjunction of these intervals satisfies (N2):

Proposition 6. Consider c̄o−, c̄s+, N
∗
tot > 0 and v < 0 < u. Then the following

equivalences hold:

1. The condition s < 0 ∧ 0 < c∗o+ < c1∗o < c̄o− < c2∗o < c∗omax

is satisfied if, and only if, s ∈
(
max(v∗2, u

∗
2),min(0, u∗

1)
)
.

2. The condition s > 0 ∧ 0 < c1∗o < c∗o+ < c2∗o < c̄o− < c∗omax

is satisfied if, and only if, s ∈
(
max(v∗1, 0),min(v∗2, u

∗
2)
)
.

Proof. The idea of proof of part 1 is the following: Note that the chain of in-
equalities is equivalent to

0 < c∗o+ < c̄o− < c∗omax ∧ µ∗
2(c

∗
o+) <

R

νo + νs
< µ∗

2(c̄o−) (3.30)

with µ∗
2(Co) := µ2(Co, C

∗
s (Co)). By solving inequalities for s it is shown that

0 < c∗o+ < c̄o− < c∗omax ⇔ s ∈ (v∗1, u
∗
1) = I∗nc. (3.31)

Curve sketching of µ∗
2(c

∗
o+) and µ∗

2(c̄o−), perceived as functions of s, yields the
equivalence of the second part of (3.30) and s being in a certain point set.

Combining both results yields statement 1. Statement 2 is proven analogously.

From the above results it follows that finding a value s that satisfies (N1) and
(N2) is sufficient for the existence of a solution of (3.24)-(3.29):

Proposition 7. Consider model (3.24)-(3.29) with c̄o−, c̄s+, N
∗
tot > 0 and

v < 0 < u. This model has a solution if there exists a value s that satisfies

1. f ∗(s) = 0

2. s ∈
(
max(v∗2, u

∗
2),min(0, u∗

1)
)
:= I∗− or

s ∈
(
max(v∗1, 0),min(v∗2, u

∗
2)
)
:= I∗+.
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The solutions of model (3.24)-(3.29) correspond to non-negative traveling wave
fronts in the bioremediation model (3.8).

Example 9. Consider model (3.24)-(3.29) with the parameters

u = 4.000, νo = 1.170, R = 0.360, c̄o− = 2.240,

v =−9.780, νs = 1.550, N∗
tot =15.000, c̄s+ = 0.432.

We seek for values s such that the above problem has a solution.

(i) In the interval I∗nc = (v∗1, u
∗
1) = (−2.657, 2.963) the function f ∗ has the roots

s1 := 0.351 and s2 := 2.427.

(ii) Since both roots are positive, they have to satisfy s ∈ I∗+ = (0, 2.407). The
value s1 meets the condition, while s2 does not satisfy it.

Consequently, s1 corresponds to a solution of (3.24)-(3.29) with the above pa-
rameters. This solution represents a traveling wave front in the bioremediation
model (3.8) with Ntot = N∗

tot and co+ = c∗o+ = 1.603, as shown in figure 3.9 (left).
By contrast, s2 only corresponds to a solution of (3.24)-(3.27), the constraint
(3.29) is not satisfied. More precisely, there exists a trajectory connecting c̄o−
with a value co+, namely co+ = 0.825, but this limit concentration does not satisfy
co+ = c∗o+ = 0.763. Moreover, the total biomass Ntot = 14.366 in this solution
is not given by the parameter N∗

tot. The values c∗o+ and N∗
tot are therefore just

model parameters without applicable meaning.

c∗omaxc1∗o c2∗o0

0 b b b

c∗o+ c̄o−
Co

N∗

c∗omaxc1∗o c2∗o0

0 b b b

c∗o+co+ c̄o−
Co

N∗

Figure 3.9: Trajectories related to model (3.24)-(3.29) with the parameters given
in example 9, s = s1 (left) and s = s2 (right)
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No fixation of Ntot Below we will generalize the previous results by abandon-
ing the predefinition of total biomass. Accordingly, the issue is to state some
results concerning the solutions of the subsequent model, where only the positive
concentrations c̄o− and c̄s+ are predefined:

(
u− s 0
0 −s

)(
Co

N

)

z

=

(
−νoµ2(Co, Ĉs(Co))N

(
(νo + νs)µ2(Co, Ĉs(Co))−R

)
N

)

(3.32)

with

Ĉs(Co) = −
νs(u− s)

νo(s− v)
(Co − c̄o−) +

(

c̄s+ −
νs

νo + νs

R Ntot

s− v

)

(3.33)

and the constraints

(i) 0 ≤ Co, N <∞, 0 ≤ Ĉs(Co) (3.34)

(ii) (Co, N)(−∞) = (c̄o−, 0), (Co, N)(+∞) = (co+, 0), co+ ∈ R
+. (3.35)

Since proposition 7 is applicable to any positive parameter N∗
tot, we can generalize

its conditions in order to state results about (3.32)-(3.35). This generalization
will be done by regarding the conditions not only depending on s, but also on Ntot.

By f(s,Ntot) we denote the function f ∗(s), which now depends on s, as well as
on Ntot. Thus, the first necessary condition is satisfied by values s and Ntot > 0
such that f(s,Ntot) = 0.

For meeting the second condition, and hence the sufficient condition for the
existence of a solution, the zeros of f have to be in a restricted domain. This
domain is determined by regarding the endpoints of the intervals I∗± as functions
of Ntot. For example, the boundary v∗1 for a fixed parameter N∗

tot, which is defined
on page 46, is replaced by

sv1(Ntot) := v +
νs

νo + νs

R

c̄s+
Ntot

for a variable biomass Ntot. By transferring this notation to the other occurring
boundaries9 we can state the following result about the existence of solutions of
(3.32)-(3.35), and hence about the existence of non-negative traveling wave fronts
in the bioremediation model (3.8):

Proposition 8. Consider model (3.32)-(3.35) with c̄o−, c̄s+ > 0 and v < 0 < u.
This model has a solution if there exist values s and Ntot > 0 that satisfy

1. f(s,Ntot) = 0

2. (s,Ntot) ∈
{
(a, b) : max

(
sv2(b), su2(b)

)
< a < min

(
0, su1(b)

)}
=: D− or

(s,Ntot) ∈
{
(a, b) : max

(
sv1(b), 0

)
< a < min

(
sv2(b), su2(b)

)}
=: D+.

9For a list of all occurring functions, as well as their intersections, see appendix B.
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Remark 5. The set of points that satisfy the second condition of proposition 8 is
on the same side of the Ntot axis as the intersection point Pv2,u2 of sv2 and su2 .

Example 10. Consider model (3.32)-(3.35) with the parameters

u = 4.000, νo = 1.170, R = 0.360, c̄o− = 2.240,

v =−9.780, νs = 1.550, c̄s+ = 0.432.

Note that this set of parameters equals the set given in example 9 with the
difference that the total biomass Ntot is not fixed in this example.

We search for values s and Ntot such that the above model has a solution.

(i) The zeros of f(s,Ntot) in the domain

Dnc :=
{
(s,Ntot) : sv1(Ntot) < s < su1(Ntot)

}

are represented by black and white dots in figure 3.10, while the domain
Dnc is illustrated by the entire gray set.

(ii) Since the intersection point Pv2,u2 = (11.911, 2.735) of sv2 and su2 is above
the Ntot axis, the set of points satisfying the second condition of proposi-
tion 8 is D+, which is represented by the dark gray set in figure 3.10.

All black and white dots in the dark gray set in figure 3.10 therefore correspond
to a solution of (3.32)-(3.35). These solutions represent non-negative traveling
wave fronts in (3.8) that travel with speed s and have the total biomass Ntot.
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Figure 3.10: Domains Dnc, D+ and zeros of f with parameters given in example 10
(comparable to example 9: white zeros for Ntot = 15)
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Remark 6. Just as in section 3.1, standing waves were excluded from the above
analysis. By a change of variables the problem of finding non-negative standing
wave fronts in (3.8) can be reduced to the problem of solving (3.13)-(3.16) with
s = 0 for Co, N and Cs = C̃s(Co) on R. Phase plane analysis for v < 0 < u
yields the solutions (Co, Cs, N)(z) = (c̄o, c̄s, 0) with any c̄o, c̄s ∈ R

+
0 . The profile

of standing wave fronts in (3.8) is therefore given by constant functions that are
related to no biomass in the system, and hence no substrate reduction.

Remark 7. This remark is intended to give an outlook on how to generalize the
analysis of traveling wave solutions in the double-substrate bioremediation model
to the general case of an arbitrary number of involved substrates.

To simplify notation we first omit the bars in the multi-substrate bioremedia-
tion model (2.41)-(2.43) and introduce the notation νi := Y −1

n/si
. With respect to

the “moving” variables

z := x− st and (C1, . . . , Cm, N)(z) := (s1, . . . , sm, n)(x, t)

model (2.41)-(2.43) then reads







u1 − s 0
. . .

um − s
0 −s















C1
...

Cm

N








z

=








−ν1µ(C1, . . . , Cm)N
...

−νmµ(C1, . . . , Cm)N(
(ν1+ . . .+ νm)µ(C1, . . . , Cm)−R

)
N







.

As easily seen, the above model induces in particular the m−1 conservation laws

d

dz

(
νi(u1 − s)C1 − ν1(ui − s)Ci

)
= 0, i = 2, . . . ,m.

If we integrate these equations, we can express all concentrations by C1, and
hence reduce the model above to
(
u1 − s 0

0 −s

)(
C1

N

)

z

=

(
−ν1µ(C1, C̃2(C1), . . . , C̃m(C1))N(

(ν1 + . . .+ νm)µ(C1, C̃2(C1), . . . , C̃m(C1))−R
)
N

)

with

C̃i(C1) :=
νi
ν1

u1 − s

ui − s
(C1 − c1−) + ci−, i = 2, . . . ,m.

For concentrating on non-negative traveling wave fronts we add the constraints

0 ≤ C1, N <∞, 0 ≤ C̃i(C1), i = 2, . . . ,m

(C1, N)(±∞) = (c1±, 0)

with arbitrary limits c1± ∈ R
+
0 .

Thus, the problem of finding non-negative traveling wave fronts in the biore-
mediation model (2.41)-(2.43) is reduced to the problem of solving the above
model. With appropriate assumptions on the speeds ui and limits ci±, and hence
by a specification of the functions C̃i and µ, the solutions of the problem can be
studied in the C1-N phase plane, as presented in the current section for m = 2.
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3.3 Conclusions

Provided that the model parameters satisfy certain conditions, traveling wave
fronts exist in the single-substrate model, related to any speed s < 0. They
all show the same qualitative profile, namely a monotonically decreasing sub-
strate concentration and a bacteria concentration which is bounded from above
by monotonically increasing, as well as decreasing, functions. Beyond these simi-
larities, each wave profile is in particular characterized by a unique value of total
biomass, and a characteristic asymptotic behavior of the biomass function.

Likewise, we could establish sufficient conditions on the parameters in the
double-substrate model that ensure the occurrence of traveling wave fronts. Here
we distinguished two cases that differ in the selection of predefined limit concen-
trations. Of particular interest for practical use is the case in which the inflowing
substrate concentrations are known, while the outflowing ones are not known.
All waves resulting from the sufficient condition in this case travel in the same
direction with speeds out of a specific interval. Just as in the single-substrate
case, the profiles of these solutions have the same quality, i.e. while the oxygen
concentration decreases and the substrate concentration increases monotonically,
the biomass is bounded from above by monotonically increasing and decreasing
functions. But the profiles differ in their asymptotic behavior and total biomass,
where each value of total biomass at most occurs twice.
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description4

co(x, t) concentration of oxygen
cs(x, t) concentration of substrate
n(x, t) concentration of biomass
Co(z) concentration of oxygen (traveling wave)
Cs(z) concentration of substrate (traveling wave)
N(z) concentration of biomass (traveling wave)

C̃s(Co) function that expresses Cs depending on Co

C∗
s (Co) C̃s(Co) including the predefined parameter N∗

tot

Ĉs(Co) C̃s(Co) including the total biomass Ntot

co±, cs± limit concentrations of Co(z) and Cs(z) as z tends to ±∞
c̄o±, c̄s± predefined limit concentrations co±, cs±
c
1/2
o argument value of the intersections between µ̃2(Co) and R

νo+νs

comax root of the function C̃s(Co)

csmax csmax = C̃s(0)
(·)∗ concentrations that depend on the predefined parameter N∗

tot

N(Co) trajectories in the Co-N phase plane that have a root in Co = c̄o−
N∗(Co) N(Co) including the predefined parameter N∗

tot

g∗(s) N∗(c∗o+) considered as a function of s
f ∗(s) f ∗(s) = s

R
g∗(s)

f(s,Ntot) f ∗(s) considered as a function of s, as well as of Ntot

Ntot total biomass in the wave profile: Ntot =
∫∞

−∞
N(z) dz

N∗
tot predefined parameter
−α± asymptotic growth rates of N(z) as z tends to ±∞
u transportation speed of oxygen
v transportation speed of substrate
s traveling wave speed
u∗
i , v

∗
i endpoints of admissible intervals for s, depending on N∗

tot

sui
(Ntot) u∗

i considered as a function of Ntot

svi(Ntot) v∗i considered as a function of Ntot

I∗nc, I
∗
± admissible intervals for s, depending on N∗

tot

Dnc, D± admissible domains for (s,Ntot)
µ2(co, cs) specific growth rate of the biomass

µ̃2(Co) µ̃2(Co) = µ2(Co, C̃s(Co))
µ∗
2(Co) µ∗

2(Co) = µ2(Co, C
∗
s (Co))

νo inverse yield constant of oxygen (νo = 1/Yn/co)
νs inverse yield constant of substrate (νs = 1/Yn/cs)
R death rate of the biomass
x space
z space along the characteristics: z = x− st
t time

Table 3.2: Notation used in section 3.2



Chapter 4

Stability of traveling waves

In this chapter we will study the stability of the traveling waves that have been
determined in chapter 3 for the bioremediation models (3.1) and (3.8). The issue
is to describe the effect of a small perturbation of the wave front to the further
development of the solution, i.e. to find out whether the system will tend to the
original traveling wave front or whether a small perturbation causes a drastic
change of the solution.

There exist various approaches to investigate the stability of traveling waves.
In this context we concentrate on linearized stability, i.e. we assume that the
perturbations about the traveling waves are sufficiently small such that nonlin-
ear terms are negligible. This approach yields understanding of the evolution of
small perturbations to the wave front. In this way it provides a strong indica-
tion of (in-)stability, but for rigorous results the studies stated below have to be
complemented by a nonlinear stability analysis.

The following linearized stability analysis, which is related to the spectral anal-
ysis of specific differential operators, will be supplemented with numerical results.

4.1 Linear perturbation model

Oriented by [Log01], we will stepwise derive a linearized perturbation model that
describes the evolution of small perturbations of traveling wave fronts. In order to
judge its solutions in terms of stability of the traveling waves, we will subsequently
specify the meaning of linearized stability.

In order to discuss both models (3.1) and (3.8) at the same time, we introduce
the notation

qt + D̃qx = F (q), (4.1)

where q(x, t) denotes the concentration vector, D̃ the diagonal velocity matrix
and F (q) the function that contains the nonlinear growth terms.1

1For a list of notations that are used throughout this chapter we refer to table 4.1 on page 94.

55
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Moving coordinate system For looking at model (4.1) in a coordinate sys-
tem that moves with the speed s of the traveling wave, we regard the solution
depending on the variables z = x− st and t:

qt +
(
D̃ − sI

)
qz = F (q). (4.2)

The traveling wave Q(z) is a stationary solution in this coordinate system and
satisfies

DQz = F (Q),

where we use the notation D := D̃−sI for the diagonal matrix, which represents
the velocities in the moving coordinate system.

Nonlinear perturbation model Regarding the solution of (4.2) as sum of
the traveling wave solution and a small perturbation p(z, t),

q(z, t) = Q(z) + p(z, t)

with a given initial perturbation p(z, 0), we get a nonlinear model for the pertur-
bation:

pt +Dpz = F (Q+ p)− F (Q) (4.3)

p(z, 0) = u(z). (4.4)

The solutions p(z, t) of this model represent the evolution of any small initial
perturbation u(z) of the traveling wave front Q(z). Hence, for studying the
stability of traveling wave fronts, these solutions have to be characterized.

Linear perturbation model Making the assumption that the perturbations
p(z, t) of the traveling wave are sufficiently small such that the nonlinear terms
are negligible, we can simplify equation (4.3) by linearization around the traveling
wave solution q(z, t) = Q(z) or p(z, t) = 0, respectively. This yields

pt =
(
JF (Q)−D∂z

)
p =: Lp (4.5)

p(z, 0) = u(z), (4.6)

where JF denotes the Jacobian matrix of F . The solutions p(z, t) describe the
evolution of small initial perturbations u(z) of the traveling wave Q(z) in the
linearized system, and hence in a small neighborhood of the wave front. For a
linearized stability analysis of the traveling waves, we thus have to characterize
these solutions.
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According to [Log01] we use the following definition as a measure for stability:

Definition 1. A traveling wave Q(z) is called stable in a norm ‖ · ‖X if there
exists a positive constant δ > 0 such that the following statement holds:

‖q(z, 0)−Q(z)‖X = ‖u(z)‖X < δ ⇒ ‖q(z, t)−Q(z + h)‖X
t→∞
−−−→ 0

for some h ∈ R.

Hence, if the solution q(z, t) for all sufficiently small initial perturbations
asymptotically approaches some translate of the traveling wave front Q(z), we
call the traveling wave stable, otherwise unstable in the norm ‖ · ‖X .

If q(z, t) and p(z, t), respectively, are the solutions of linearized models, we call
the traveling wave linearly stable or linearly unstable in the norm ‖ · ‖X .

As we will see in the remainder of this chapter, the choice of the norm that
measures the closeness is a crucial issue. Related to this problem is the choice
of the function space X of admissible perturbations. Two typical options for the
function space X and the related norm ‖ · ‖X are the following:

• X = L2(R,Cn): The Hilbert space L2(R,Cn), equipped with the norm
‖ · ‖L2 , consists of square-integrable functions, i.e. of functions that satisfy

‖u‖2L2 =

∫ ∞

−∞

|u(z)|2 dz <∞.

• X = L2
w(R,C

n): The weighted space L2
w(R,C

n), equipped with the norm
‖ · ‖L2

w
, consists of functions that satisfy

‖uw‖
2
L2
w
=

∫ ∞

−∞

|uw(z)|
2w̄(z) dz <∞,

where w̄(z) is a positive weight function. Note that by definition this
space consists of those functions uw(z) for which u(z) := uw(z)

√

w̄(z) is in
L2(R,Cn).

In the following two sections we will study perturbations in both function
spaces L2(R,Cn) and L2

w(R,C
n), and hence derive results about the linearized

stability of the traveling waves in the norm ‖ · ‖L2 , as well as in the norm ‖ · ‖L2
w
.

Remark 8. Due to the interpretation of q(z, t) and p(z, t) as concentration vectors,
we are particularly interested in real-valued solutions q(z, t) and perturbations
p(z, t). We will keep this in mind in the analysis below and interpret the results
with respect to this request.
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4.2 Perturbations in L2

The solutions of the linearized perturbation model (4.5)/(4.6), and hence the
linearized stability properties of the traveling waves, are characterized by the
spectrum of the linear differential operator2 L: In particular, a spectral value with
positive real part yields instability, while we have stability if all spectral values
are localized in the open left half plane. Therefore, the issue of this section is
to determine the spectrum of L : L2(R,Cn) → L2(R,Cn) for the bioremediation
models (3.1) and (3.8). The approach that is presented below for studying the
spectrum of L is based on [San02] and the references therein.

4.2.1 Theory

The spectrum of an operator L : X → Y is defined by solvability properties of
the equation

(L− λI)x = y (4.7)

for a given y ∈ Y . Since the Fredholm index of a Fredholm operator is also a
measure for the solvability of equation (4.7), we can define the spectrum by using
Fredholm properties.

To this end we first recall the definition of a Fredholm operator and refer to
[San01, Sch02] for further information.

Definition 2 (Fredholm operator). Let X, Y be Banach spaces. A closed, densely
defined linear operator L : X → Y is said to be a Fredholm operator if

• the range R(L) is closed in Y ,

• the dimension of the nullspace N(L) is finite: dimN(L) <∞,

• the codimension of the range R(L) is finite: codimR(L) <∞.

The difference
ind (L) := dimN(L)− codimR(L)

is called the Fredholm index of L.

With respect to definition 2, the spectrum of a closed, densely defined linear
operator L acting on a Banach space X is defined as follows (see [San02]):

Definition 3 (Spectrum). We say that λ is in the spectrum σ(L) of L : X → X
if L − λI is not invertible, i.e. if the inverse operator does not exist or is not
bounded. We say that λ ∈ σ(L) is in the point spectrum σpt(L) if L − λI is a
Fredholm operator with index zero. The complement σess(L) := σ(L) \ σpt(L)
is called the essential spectrum of L. The complement ρ(L) := C \ σ(L) of the
spectrum in the complex plane C is the resolvent set of L.

2The operator L, as well as all operators that will be defined in the remainder of this chapter,
are specified in appendix C for both the bioremediation models (3.1) and (3.8).
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Remark 9. While there exists a standard definition of the spectrum of an operator
L, i.e. all values λ such that L − λI is not invertible, the two subsets of the
spectrum, namely the point and essential spectrum, are not uniformly defined.
The definitions differ in the classification of the eigenvalues.

Note that all eigenvalues λ of L, i.e. all values λ such that

(L− λI)u = 0 (4.8)

has a nontrivial solution u ∈ X, belong to the spectrum. Different definitions of
the point spectrum include for example either all eigenvalues, or alternatively all
isolated eigenvalues with finite multiplicity, while the complement in the set of
eigenvalues belongs to the essential spectrum.

According to the particular definition 3 of the spectrum, there is no distinction
between isolated and not isolated eigenvalues but a distinction in terms of Fred-
holm properties (see [San02, Sch02] and figure 4.1). Here, the point spectrum
entirely consists of eigenvalues, either isolated or not, while all eigenvalues in the
essential spectrum are not isolated.

ρ(L)

• (L− λI) Fredholm

• ind (L− λI) = 0

• dimN(L− λI) = 0

σpt(L)

• (L− λI) Fredholm

• ind (L− λI) = 0

• dimN(L− λI) > 0

σess(L)

• (L− λI) Fredholm

• ind (L− λI) < 0

• dimN(L− λI) = 0

• (L− λI) Fredholm

• either ind (L− λI) < 0,
dimN(L− λI) > 0

• or ind (L− λI) > 0

(L− λI)

not

Fredholm

eigenvalues

Figure 4.1: Spectrum of L according to definition 3

Due to the fact that D is invertible, Q(z) smooth and JF (Q(z)) bounded, the
linear differential operator L defined by (4.5) is closed and densely defined in
L2(R,Cn)(for more details see appendix C) such that we can apply definition 3
to determine its spectrum by Fredholm properties.

For practical computation of the spectrum we will take advantage of a special
property of L, which is related to the fact that the operator results from the
linearization about a traveling wave front. Taking this into account, we will
first introduce a problem that is equivalent to the eigenvalue equation (4.8), and
afterwards present a reformulation of the entire spectrum.
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Reformulation of the eigenvalue problem

The eigenvalue equation (4.8), which determines whether the linearized pertur-
bation model (4.5) has solutions of the form

p(z, t) = eλtu(z), (4.9)

is equivalent to the ordinary differential equation

u′ = D−1
(
JF (Q(z))− λI

)
u =: A(z, λ)u. (4.10)

Since the only z dependency in A(z, λ) is related to the traveling wave front
Q(z), which connects two stationary points, A(z, λ) asymptotically approaches
constant matrices as z → ±∞. The differential equation (4.10) can therefore be
written as

u′ = A(z, λ)u

=

(

lim
z→±∞

A(z, λ) +
(

A(z, λ)− lim
z→±∞

A(z, λ)
))

u

=
(

D−1
(
JF (Q±)− λI

)
+D−1

(
JF (Q(z))− JF (Q±)

))

u

=:
(
A±(λ) +R±(z)

)
u, (4.11)

where R±(z) tends to zero as z tends to ±∞.
In a second step of reformulation we introduce the family of differential oper-

ators T(λ), which are determined by differential equation (4.11):

T(λ)u :=

(
d

dz
− A(z, λ)

)

u =

(
d

dz
−
(
A±(λ) +R±(z)

)
)

u = 0. (4.12)

All pairs (λ, u) with u ∈ L2(R,Cn) that solve the equivalent problems (4.8)-
(4.12) are eigenvalues and eigenfunctions of L, and the eigenfunctions u represent
all possible initial perturbations of the wave front in L2(R,Cn) that evolve ac-
cording to (4.9). The norm of these perturbations is

‖p(z, t)‖2L2 =

∫ ∞

−∞

|eλtu(z)|2 dz = e2Re(λ)t

∫ ∞

−∞

|u(z)|2 dz = e2Re(λ)t‖u‖2L2 ,

which yields the following statements about the stability of the traveling waves:

(i) If there exists an eigenvalue λ of L with Re(λ) > 0, the related eigenfunc-
tion u represents an initial perturbation of the traveling wave whose norm
increases in time. In particular, for λ ∈ R, i.e. an eigenvalue on the real
axis, and a related real-valued eigenvector u(z) ∈ R

n, the perturbation in-
creases in time in every point z ∈ R in the linearized system. The traveling
wave front is therefore linearly unstable under perturbations u ∈ L2(R,Cn).
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(ii) If there only exist eigenvalues λ of L with negative real part, i.e. Re(λ) < 0,
the norm of all perturbations that are given by related eigenfunctions u
decreases in time. Consequently, there exist no initial perturbations in
L2(R,Cn) evolving according to (4.9) that prevent the traveling wave front
from being linearly stable. In this case, the determination of the non-
eigenvalues in the spectrum is needed in order to find out whether there
exist other initial perturbations p(z, 0) that evolve differently to (4.9) and
cause instability.

Reformulation of the entire spectrum

Since we have the relation

(L− λI) = −DT(λ)

between the differential operators L and T(λ), the spectrum of L is equal to the
set of values λ for which the operator T(λ) is not invertible. We call this set the
spectrum3 of T, which is specified by definition 3 if we replace L− λI by T(λ).

For computing the spectrum of T in practice, we will take advantage of the fact
that the involved matrix A(z, λ) tends to constant matrices as z tends to ±∞.
By using this fact we can relate Fredholm properties of T(λ) to properties of the
asymptotic matrices A±(λ). This results in a practical relation between spectral
values of T and characteristics of A±(λ), as will be seen in theorem 2.

Before stating the final theorems, we will name the properties of the matrices
A±(λ) that will be of interest to us by recalling the definition of hyperbolicity of
a matrix and introducing the instability index of a matrix:

Definition 4 (Hyperbolicity of a matrix). Consider a matrix A ∈ C
n×n. We call

A hyperbolic if all eigenvalues of A have non-zero real part, i.e. if no eigenvalue
lies on the imaginary axis. We refer to eigenvalues of A with positive (negative)
real part as unstable (stable) eigenvalues. Furthermore, we refer to the number
of unstable eigenvalues of a hyperbolic matrix A, counted with its algebraic mul-
tiplicity, as its instability index.

Using definition 4, we can formulate relations between Fredholm properties of
T(λ) and its asymptotic matrices A±(λ):

Theorem 1. Consider a family T of linear differential operators defined by

T(λ) : L2(R,Cn) −→ L2(R,Cn)

u 7−→
du

dz
− A(z, λ)u

3Note that we are not interested in the spectrum of the individual operators T(λ) for fixed
values of λ.
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with λ ∈ C. Let A(z, λ) be piecewise continuous and bounded for any fixed λ, and
let it asymptotically approach constant matrices limz→±∞A(z, λ) = A±(λ).4

Then, T(λ) is Fredholm if, and only if, A±(λ) are both hyperbolic. The Fredholm
index of T(λ) is then equal to the difference of the instability indices of A−(λ)
and A+(λ):

ind (T(λ)) = i−(λ)− i+(λ). (4.13)

Proof. The case of operators T(λ) acting on C0(R,Rn) with continuous matrices
A(z, λ) was proven by Palmer and Coppel: See [Pal84] and [Pal88] for the equiva-
lence of Fredholm properties of T(λ) and the existence of exponential dichotomies
for u′ = A(z, λ)u, and [Cop78] for the relation between exponential dichotomies
and hyperbolicity of the asymptotic matrices A±(λ). In order to consider the
operators on the function space L2(R,Cn), we take the results of [Ben92, San93]
into account. For a summary of the results we refer to [San00, San02].

By means of theorem 1 we can formulate a characterization of the spectrum
of T by properties of the matrices A±(λ) (for a visualization of these results see
figure 4.2):

Theorem 2. Consider a family T of linear differential operators defined by

T(λ) : L2(R,Cn) −→ L2(R,Cn)

u 7−→
du

dz
− A(z, λ)u

with λ ∈ C. Let A(z, λ) be piecewise continuous and bounded for any fixed λ, and
let it asymptotically approach constant matrices limz→±∞ A(z, λ) = A±(λ). Then
the following statements are true:

• λ is in the resolvent set ρ(T) if, and only if, A±(λ) are both hyperbolic with
same instability index i+(λ) = i−(λ) and dimN(T(λ)) = 0.

• λ is in the point spectrum σpt(T) if, and only if, the asymptotic matrices
A±(λ) are both hyperbolic with identical instability index i+(λ) = i−(λ) and
dimN(T(λ)) > 0.

• λ is in the essential spectrum σess(T) if, and only if,

– either at least one of the asymptotic matrices A±(λ) is not hyperbolic

– or else both matrices A±(λ) are hyperbolic but their instability indices
differ, so that i+(λ) 6= i−(λ).

4These properties of A(z, λ) ensure in particular that the operators T(λ) are closed and
densely defined in L2(R,Cn). The proof is analogous to the one concerning the operator L,
which is presented in appendix C.
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Proof. This theorem is proven by relating the results of theorem 1 to definition 3.
To this end we consider figure 4.1, which illustrates definition 3 in more detail
with respect to Fredholm properties of the involved operator. As stated above, we
define the spectrum of T to be the set of values λ for which T(λ) is not invertible
such that in definition 3, as well as in figure 4.1, the operator L − λI has to be
replaced by T(λ). Since, according to theorem 1, the operator T(λ) is Fredholm
if, and only if, A±(λ) are both hyperbolic, figure 4.1 changes to figure 4.2. With
respect to correlation (4.13) this proves the above theorem.

ρ(T)

• A±(λ) hyperbolic

• ind (T(λ)) = 0

• dimN(T(λ)) = 0

σpt(T)

• A±(λ) hyperbolic

• ind (T(λ)) = 0

• dimN(T(λ)) > 0

σess(T)

• A±(λ) hyperbolic

• ind (T(λ)) < 0

• dimN(T(λ)) = 0

• A±(λ) hyperbolic

• either ind (T(λ)) < 0,
dimN(T(λ)) > 0

• or ind (T(λ)) > 0

at least

one of
A±(λ) not

hyperbolic

eigenvalues

Figure 4.2: Spectrum of T according to definition 3 with respect to theorem 2
(note that the Fredholm index is given by ind (T(λ)) = i−(λ)− i+(λ))

To sum up, the spectrum of an operator T defined as in theorem 2 is related
to the eigenvalues of the asymptotic matrices A±(λ). As can easily be verified by
(4.10), the particular matrix A(z, λ) in our application satisfies the requirements
such that we can apply theorem 2 for computing the spectrum of the operator T,
and hence of the operator L. This computation will be done separately for the
single- and double-substrate bioremediation model in the following subsections.

4.2.2 Single-substrate bioremediation model

For studying the stability of traveling waves in the bioremediation model (3.1),
we have to determine the spectrum of T defined by the family

T(λ) =
d

dz
− A(z, λ)

=
d

dz
−

(
− 1

d1

(
f ′(C)N + λ

)
− 1

d1
f(C)

1
d2
f ′(C)N 1

d2

(
f(C)−R− λ

)

)

,

where d1 = u − s > 0 and d2 = −s > 0 denote the velocities in the diagonal
matrix D = diag(d1, d2), and f(C) = νµ1(C).
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In order to identify the spectrum of T by means of theorem 2, we compute the
eigenvalues of the asymptotic matrices

A±(λ) =

(
− λ

d1
− 1

d1
f(c±)

0 1
d2

(
f(c±)−R− λ

)

)

, (4.14)

which are

µ±
1 (λ) = −

λ

d1
(4.15)

µ±
2 (λ) =

1

d2

(
f(c±)−R− λ

)
. (4.16)

By denoting the zeros of Re(µ±
2 (λ)) by

λ±
2 := f(c±)−R

and taking into account the relation λ+
2 < 0 < λ−

2 , following from (3.5), we can
determine the signs of Re(µ±

i (λ)), as well as the Fredholm indices of T(λ), which
are visualized in figure 4.3.

With this information we can, according to theorem 2, make the following
classification of the values λ, as illustrated in figures 4.3 and 4.4:

σess(T) = {λ ∈ C : Re(λ) ∈ [λ+
2 , λ

−
2 ]}

ρ(T) ∪ σpt(T) = {λ ∈ C : Re(λ) ∈
(
−∞, λ+

2

)
∪
(
λ−
2 ,∞

)
}.

Re(λ)

ρ(T) ∪ σpt(T)
σess(T)

λ is eigenvalue

σess(T)

λ is eigenvalue
ρ(T) ∪ σpt(T)

0 1 1 0

+ + − −

+ − − −

+ + − −

+ + + −

λ ∈

ind (T(λ))

Re(µ+
1 (λ))

Re(µ+
2 (λ))

Re(µ−
1 (λ))

Re(µ−
2 (λ))

0λ+
2 λ−

2

Figure 4.3: Signs of Re(µ±
i (λ)), Fredholm indices ind (T(λ)) = i−(λ)− i+(λ), and

classification of λ with respect to theorem 2. Unstable eigenvalues are labeled by
gray sets.
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︸ ︷︷ ︸ ︸ ︷︷ ︸

σess(T)

ρ(T) ∪ σpt(T)

Re(λ)

Im(λ)

λ+
2 λ−

2
0

Figure 4.4: Classification of λ for T on L2(R,C2)

Due to λ−
2 > 0, the essential spectrum (and in particular the set of eigenvalues)

crosses the imaginary axis, which yields the following instability result:

Proposition 9. The traveling wave fronts in the bioremediation model (3.1) are
linearly unstable under initial perturbations u ∈ L2(R,C2).

Since the essential spectrum already causes instability, no further distinction
between resolvent set and point spectrum is needed for stating stability results5.

Remark 10 (Real-valued perturbations). Related to the eigenvalues in the es-
sential spectrum, there exist perturbations of the form p(z, t) = eλtu(z). These
perturbations are real-valued if, and only if, either λ and u are both real-valued
or else if λ has a non-zero imaginary part and u ≡ 0.

Every complex eigenvector u = uR + iuI (uI 6= 0) of L that is related to λ ∈ R

satisfies
λu = λuR + iλuI = LuR + iLuI = Lu.

Since from u ∈ L2(R,Cn) follows uR, uI ∈ L2(R,Rn) ⊂ L2(R,Cn), the real
and imaginary part of u belong to the function space under consideration, and
therefore, for uR/I 6= 0, the pairs (λ, uR/I) are real-valued eigenvalue-eigenvector
pairs of L.

From the above it follows that for the positive real eigenvalues λ ∈ (0, λ−
2 ) in the

essential spectrum real-valued perturbations p(z, t) exist that cause instability of
the traveling wave by growing in every point z ∈ R in the linearized perturbation
model.

5In subsection 4.3.2 and appendix C.3 we will present an approach that enables us to distinct
between resolvent set and point spectrum in certain cases by studying the asymptotic behavior
of the solutions of (4.10). Applied to the differential operator T in the current section, this
theory yields that the point spectrum of T is empty, i.e. C = σess(T) ∪ ρ(T).
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4.2.3 Double-substrate bioremediation model

In order to study the stability of traveling waves in the bioremediation model (3.8),
we will compute the spectrum of T given by

T(λ) =
d

dz
− A(z, λ)

=
d

dz
−





− 1
d1
(νofcoN + λ) − 1

d1
νofcsN − 1

d1
νof

− 1
d2
νsfcoN − 1

d2
(νsfcsN + λ) − 1

d2
νsf

1
d3
(νo + νs)fcoN

1
d3
(νo + νs)fcsN

1
d3

(
(νo + νs)f −R− λ

)



.

Here, we use the notation

fco =
d

dco
f(Co, Cs) and fcs =

d

dcs
f(Co, Cs)

with f(Co, Cs) = µ2(Co, Cs), and d1 = u − s > 0, d2 = v − s < 0 and d3 = −s
denote the velocities in the diagonal matrix D = diag(d1, d2, d3).

In order to identify the spectrum of T by applying theorem 2, we note that the
eigenvalues of the asymptotic matrices

A±(λ) =





− λ
d1

0 − 1
d1
νof(co±, cs±)

0 − λ
d2

− 1
d2
νsf(co±, cs±)

0 0 1
d3

(
(νo + νs)f(co±, cs±)−R− λ

)



 (4.17)

are

µ±
1 (λ) = −

λ

d1

µ±
2 (λ) = −

λ

d2

µ±
3 (λ) =

1

d3

(
(νo + νs)f(co±, cs±)−R− λ

)
.

Since there exist traveling waves with negative as well as traveling waves with
positive wave speeds s, we have to distinct both cases in the process of determining
the signs of the real parts of µ±

i (λ). By denoting the zeros of Re(µ±
3 (λ)) by

λ±
3 := (νo + νs)f(co±, cs±)−R

and taking into account the relations λ+
3 < 0 < λ−

3 for s < 0 and λ−
3 < 0 < λ+

3

for s > 0, which follow from condition (3.18), we can identify the signs of Re(µ±
i )

and Fredholm indices of T(λ) and classify λ, as visualized in figures 4.5 and 4.6.
We thus have

σess(T) = {λ ∈ C : Re(λ) ∈ [λ±
3 , λ

∓
3 ]}

ρ(T) ∪ σpt(T) = {λ ∈ C : Re(λ) ∈
(
−∞, λ±

3

)
∪
(
λ∓
3 ,∞

)
},

where the upper signs are related to s < 0 and the lower signs to s > 0.
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Re(λ)

ρ(T) ∪ σpt(T)
σess(T)

λ is eigenvalue

σess(T)

λ is eigenvalue
ρ(T) ∪ σpt(T)

0 1 1 0

+ + − −

− − + +

+ − − −

+ + − −

− − + +

+ + + −

λ ∈

ind (T(λ))

Re(µ+
1 (λ))

Re(µ+
2 (λ))

Re(µ+
3 (λ))

Re(µ−
1 (λ))

Re(µ−
2 (λ))

Re(µ−
3 (λ))

0λ+
3 λ−

3

s < 0

Re(λ)

ρ(T) ∪ σpt(T)
σess(T)

λ is eigenvalue

σess(T)

λ is eigenvalue
ρ(T) ∪ σpt(T)

0 1 1 0

+ + − −

− − + +

− − − +

+ + − −

− − + +

− + + +

λ ∈

ind (T(λ))

Re(µ+
1 (λ))

Re(µ+
2 (λ))

Re(µ+
3 (λ))

Re(µ−
1 (λ))

Re(µ−
2 (λ))

Re(µ−
3 (λ))

0λ−
3 λ+

3

s > 0

Figure 4.5: Signs of Re(µ±
i (λ)), Fredholm indices ind (T(λ)) = i−(λ)− i+(λ), and

classification of λ with respect to theorem 2. Unstable eigenvalues are labeled by
gray sets.
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︸ ︷︷ ︸ ︸ ︷︷ ︸

σess(T)

ρ(T) ∪ σpt(T)

Re(λ)

Im(λ)

λ±
3 λ∓

3
0

Figure 4.6: Classification of λ for T on L2(R,C3) for s < 0 (upper signs) and
s > 0 (lower signs)

Because of λ∓
3 > 0, a subset of the essential spectrum (and in particular a

subset of the set of eigenvalues) lies in the positive half plane, which yields the
following instability result:

Proposition 10. The traveling wave fronts in the bioremediation model (3.8)
are linearly unstable under initial perturbations u ∈ L2(R,C3).

Similar to subsection 4.2.2, a distinction between resolvent set and point spec-
trum does not yield any further instability results and is therefore not necessary.

Remark 11 (Real-valued perturbations). With the same argument as in remark 10,
for every real positive eigenvalue λ ∈ (0, λ∓

3 ) there exist real-valued perturbations
p(z, t) that cause instability of the traveling wave by growing in every point z ∈ R

with respect to the linearization.
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4.3 Perturbations in weighted L2 spaces

As discussed in section 4.2, for both bioremediation models (3.1) and (3.8) there
exist initial perturbations p(z, 0) = u(z) ∈ L2(R,Rn) that cause instability of
the traveling wave solutions Q(z). But does there maybe exist another function
space X that the differential operator L acts on such that the spectrum of L

lies in the negative half plane and the traveling waves are linearly stable under
perturbations p(z, 0) = u(z) ∈ X? In order to search for a function space X with
these properties, we transform the problem to a weighted L2 space (where the
weight function has to be determined) and study the spectrum of the operator L
acting on this space for the bioremediation models (3.1) and (3.8).

4.3.1 Theory

In the following we will introduce the conventional weighted L2 spaces and present
a procedure to determine the spectrum of L acting on these spaces, which will
be applied to the bioremediation models in the subsequent subsections. Since
some of the later results will suggest a certain generalization of the conventional
weighted L2 spaces, we will introduce this theory as well in this context.

Conventional weighted L2 spaces

At first, we will study perturbations in general weighted spaces, and concentrate
afterwards on spaces that are defined by exponential weight functions.

Let L2
w(R,C

n) denote the space of functions that satisfy

‖uw‖
2
L2
w
=

∫ ∞

−∞

|uw(z)|
2w̄(z) dz <∞,

where w̄(z) is a positive weight function. For simplicity of notation, and similar
to [Log01], we introduce the function w(z) :=

√

w̄(z) so that the weighted space
L2
w(R,C

n) can be defined by functions that satisfy

‖uw‖
2
L2
w
=

∫ ∞

−∞

|uw(z)w(z)|
2 dz <∞.

In addition to its positivity we initially assume w(z) to be differentiable.
The objective now is to identify the spectrum of the operator L on the weighted

space defined above. For practical computation of the spectral values we will take
advantage of the identity of the spectra of L acting on L2

w(R,C
n) and a related

operator B acting on the already known function space L2(R,Cn). Referring to
[Log01], we will first derive the operator B from the eigenvalue problem and give
afterwards some information about the essential spectrum.
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Eigenvalues: It is easily seen that uw ∈ L2
w(R,C

n) satisfies the eigenvalue
equation

Luw = λuw

if, and only if, u = uww ∈ L2(R,Cn) satisfies

Bu = λu (4.18)

with

B = wL
1

w
= L+D

w′

w
.

For finding the eigenvalues λ of the differential operator L acting on L2
w(R,C

n),
we therefore have to determine the eigenvalues λ of B acting on L2(R,Cn).

Analogous to subsection 4.2.1 we will rephrase the eigenvalue equation (4.18)
and present two equivalent problems: Based on the assumption that the fraction
w′(z)/w(z) approaches constant values at ±∞, equation (4.18) is equivalent to

u′ =

(

A(z, λ) +
w′(z)

w (z)
I

)

u (4.19)

=

([

A±(λ) +

(
w′

w

)

±

I

]

+

[

R±(z) +

(
w′(z)

w (z)
−

(
w′

w

)

±

)

I

])

u

=:
(
A±

w(λ) +R±
w(z)

)
u (4.20)

and

TB(λ)u :=

(
d

dz
− Aw(z, λ)

)

u =

(
d

dz
−
(
A±

w(λ) +R±
w(z)

)
)

u = 0, (4.21)

where R±
w(z) tends to zero as z tends to ±∞.

All solutions (λ, u) of the equivalent problems (4.18)-(4.21) with u ∈ L2(R,Cn)
are eigenvalues and eigenvectors of B, while (λ, uw) with uw = u/w ∈ L2

w(R,C
n)

are eigenvalues and eigenvectors of L. The eigenfunctions uw represent initial
perturbations in the function space L2

w(R,C
n) that evolve according to (4.9) and

satisfy

‖p(z, t)‖2L2
w
=

∫ ∞

−∞

|eλtuw(z)w(z)|
2 dz = e2Re(λ)t

∫ ∞

−∞

|uw(z)w(z)|
2 dz

= e2Re(λ)t‖uw‖
2
L2
w
.

It follows that the stability of traveling waves in the norm ‖ · ‖L2
w

is related to the
real parts of the eigenvalues of B and L in the same way as described on page 60.

Essential spectrum: Not only the eigenvalues but also their complements in the
essential spectra of L and B are identical. This follows from the equivalence of

(L− λI)gw = fw, gw, fw ∈ L2
w(R,C

n)
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and
(B− λI)g = f, g := gww, f := fww ∈ L2(R,Cn).

The determination of the essential spectrum of B on L2(R,Cn) thus results in
knowing the essential spectrum of L on L2

w(R,C
n).

Due to the relation
(B− λI) = −DTB(λ)

the spectra of B and TB are identical such that we can apply theorem 2 again
for computing the spectrum of B, and hence the spectrum of L on the weighted
space L2

w(R,C
n).

It is often convenient to consider exponentially weighted spaces such that in
the remainder of this section L2

w(R,C
n) will be defined by exponential weight

functions6

w(z) =

{

ek+z, z ≥ 0

ek−z, z < 0
(4.22)

with growth rates

k(z) =

{

k+, z ≥ 0

k−, z < 0

and k± ∈ R (see [San00]). The matrices in (4.20) and (4.21) thus read

A±
w(λ) = A±(λ) + k±I

R±
w(z) = R±(z) +

(
k(z)− k±

)
I.

Generalization of the conventional weighted L2 spaces

In the above definition of weighted spaces we chose the same weight function
w(z) for each component of the perturbation vector uw(z) = (uw1, . . . , uwn)(z).
A generalization of this approach is to allow different weight functions for each
component, i.e. we define the weighted space L̃2

w(R,C
n) by

‖uw‖
2
L̃2
w
=

∫ ∞

−∞

(
n∑

i=1

|uwi(z)wi(z)|
2

)

dz <∞

with differentiable, positive weight functions wi(z), i = 1, . . . , n. In order to
compute the spectrum of L acting on this more general weighted space, we follow
the above procedure and derive related operators B̃ and T

B̃
that act on L2(R,Cn)

and have the same spectrum as L.

6Alternatively, we could choose w(z) in such a way that it smoothly connects the asymptotic
functions ek±z, but since this neither changes the norm nor the results, we will concentrate on

the simpler weight functions (4.22) and replace the term w′(z)
w (z) in the above derivation by k(z).
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Due to the equivalence

uw =






uw1
...

uwn




 ∈ L̃2

w(R,C
n) ⇔ u =






w1 0
. . .

0 wn











uw1
...

uwn




 = Wuw ∈ L2(R,Cn),

λ and uw ∈ L̃2
w(R,C

n) satisfy the eigenvalue equation

Luw = λuw

if, and only if, λ and u = Wuw ∈ L2(R,Cn) satisfy

B̃u = λu

with
B̃ = WLW−1 = WJF (Q)W−1 −DW (W−1)′ −D∂z.

Furthermore, the above eigenvalue equations are equivalent to the problems

u′ = Ãw(z, λ)u,

T
B̃
(λ)u =

(
d

dz
− Ãw(z, λ)

)

u = 0

with
Ãw(z, λ) = D−1WJF (Q)W−1 −W (W−1)′ − λD−1.

With the same argumentation as before, the entire spectra of L on L̃2
w and T

B̃

on L2 are identical such that the problem of finding the spectrum of L on the
weighted space is transformed to the problem of computing the spectrum of T

B̃

on the well known function space L2.
In order to apply theorem 2 for computing the spectral values of T

B̃
, we have

to choose the weight matrix W such that Ãw(z, λ) asymptotically approaches
constant matrices Ã±

w(λ) as z → ±∞. If we concentrate again on exponential
weight functions, i.e.

wi(z) =

{

ek
i
+z, z ≥ 0

ek
i
−
z, z < 0

, i = 1, . . . , n,

this requirement results in restrictions on the growth rates ki
±. If these restric-

tions are satisfied, the eigenvalues of Ã±
w(λ) allow conclusions about the spectrum

of T
B̃

on L2, and hence of L on L̃2
w.

The issue of the subsequent subsections is to determine exponential weight
functions such that the traveling waves in the bioremediation models (3.1) and
(3.8) are stable in the associated weighted norms. To this end we will study the
spectrum of L depending on the weight function, and try to deduce sufficient
conditions on its growth rates that yield stability of the traveling waves in the
related weighted norm. According to the above derivation, the spectrum of L on
the weighted spaces will be determined by studying the related operators B and
B̃ on L2(R,Cn).
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4.3.2 Single-substrate bioremediation model

In order to study the stability of traveling waves in the bioremediation model (3.1)
in exponentially weighted spaces, we will first study the spectra of L in the
conventional weighted spaces L2

w(R,C
2) and supplement these results with notes

about the spectra of L in the more general spaces L̃2
w(R,C

2).

Perturbations in L2
w(R,C

2)

According to [Hen81, San02], the essential spectrum of B is bounded by values
for which at least one of the asymptotic matrices

A±
w(λ) =

(
− λ

d1
+ k± − 1

d1
f(c±)

0 1
d2

(
f(c±)−R− λ

)
+ k±

)

is not hyperbolic, i.e. by values λ such that

Re(µ±
1w(λ)) = −

Re(λ)

d1
+ k± = 0 ⇔ Re(λ) = d1k±

Re(µ±
2w(λ)) =

1

d2

(
f(c±)−R− Re(λ)

)
+ k± = 0 ⇔ Re(λ) = f(c±)−R + d2k±.

It follows that a sufficient condition for the essential spectrum of B to lie strictly
in the left half plane is given by the requirement that all values λ that are related
to a not hyperbolic matrix A±

w(λ) have negative real part Re(λ) < 0:

Sufficient condition for σess(B) ⊆ {x ∈ C : Re(x) < 0}: For

k− < −
1

d2

(
f(c−)−R

)
and k+ < 0

the essential spectrum σess(B) lies strictly in the left half plane.7

Consequently, the traveling waves might be linearly stable under perturbations
in weighted spaces L2

w(R,C
2) whose weight functions satisfy the sufficient condi-

tion stated above, but for a final stability result also the point spectrum has to
be localized.

Instead of computing the kernel of TB(λ), which would be necessary for dis-
tinguishing between point spectrum and resolvent set by means of theorem 2,
we will follow an alternative approach: We will compute the set of eigenvalues,
which includes the point spectrum, by finding those values λ such that (4.20)
has a solution in L2(R,C2). To this end we will first study the differential equa-
tion (4.20) separately on R

+ and R
−, and characterize the asymptotic behavior of

the solutions u ∈ C1(R±,C2) depending on the parameter λ. From these results
we will deduce conclusions about solutions of (4.20) in L2(R,C2).

7For an interpretation of this condition see page 78.
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In order to characterize the solutions of (4.20), we will apply the following
theorem of [Cod55] to the model of interest:

Theorem 3. Consider the linear system

y′ =
(
A+R(z)

)
y, (4.23)

where A is a constant matrix.

(i) It is assumed that the Jordan normal form J similar to A is diagonal. Let
R be an integrable matrix such that

∫ ∞

1

|R(z)| dz <∞.

If µj is a characteristic root of A and gj is the characteristic vector, so that
Agj = µjgj, then (4.23) has a solution yj such that

lim
z→∞

yj(z)e
−µjz = gj, j = 1, . . . , n.

In other words, for large z the solution acts like the corresponding one for
the case R(z) ≡ 0.

(ii) It is assumed that the Jordan normal form J similar to A has non-diagonal
submatrices Jk, k ≥ 1, where r+ 1 is the maximum number of rows in any
matrix Jk, k ≥ 1. Assume furthermore that

∫ ∞

1

zr|R(z)| dz <∞.

Let µj be a characteristic root of A, and let ȳ′ = Aȳ have a solution of the
form ȳ(z) = eµjzzlg+O(eµjzzl−1), where g is a vector and clearly, 0 ≤ l ≤ r.
Then (4.23) has a solution

lim
z→∞

y(z)e−µjzz−l − g = 0.

Proof. See [Cod55].

Remark 12. In order to characterize the asymptotic behavior of solutions as z
tends to −∞, we study the reflection along the vertical axis: Instead of

y′(z) =
(
A+R(z)

)
y(z), z → −∞

we investigate
ŷ′(z) =

(
Â+ R̂(z)

)
ŷ(z), z → +∞

with ŷ(z) = y(−z), Â = −A and R̂(z) = −R(−z).
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Applying theorem 3 to (4.20) thus means that we have to study

u′(z) =
(
A+

w(λ) +R+
w(z)

)
u(z) and û′(z) =

(
Â−

w(λ) + R̂−
w(z)

)
û(z)

with û(z) = u(−z), Â−
w(λ) = −A

−
w(λ) and R̂−

w(z) = −R
−
w(−z) for z → +∞.

For λ fixed, the upper triangular matrices A±
w(λ) are constant with the following

eigenvalues µ±
iw(λ) and eigenvectors g±iw(λ):

µ±
1w(λ) = −

λ

d1
+ k±, g±1w(λ) =

(
1
0

)

,

µ±
2w(λ) =

1

d2

(
f(c±)−R− λ

)
+ k±, g±2w(λ) =

(
1
d1
f(c±)

µ±
1 (λ)− µ±

2 (λ)

)

.

The eigenvalues of A−
w(λ) and Â−

w(λ) just differ by their signs, while the sets of
corresponding eigenvectors are identical.

As proven in appendix C.2, for every fixed λ ∈ C each pair of matrices
A+

w(λ)/R
+
w(λ) and Â−

w(λ)/R̂
−
w(λ) satisfies the assumptions of theorem 3 (i) or (ii).

With the notation λ̄± := d1
d1−d2

(f(c±)−R), theorem 3 yields the following results:

• For λ ∈ C \ {λ̄−, λ̄+}, system (4.20) has solutions with the asymptotic
behavior

u−
i (z) ∼ eµ

−

iw(λ)zg−iw(λ), i = 1, 2 as z → −∞

u+
i (z) ∼ eµ

+
iw(λ)zg+iw(λ), i = 1, 2 as z → +∞.

• For λ = λ̄+, system (4.20) has solutions with the asymptotic behavior

u−
i (z) ∼ eµ

−

iw(λ)zg−iw(λ), i = 1, 2 as z → −∞

u+
1 (z) ∼ eµ

+
1w(λ)zg+1w(λ)

u+
2 (z) ∼ zeµ

+
1w(λ)zg+1w(λ) as z → +∞.

• For λ = λ̄−, system (4.20) has solutions with the asymptotic behavior

u−
1 (z) ∼ eµ

−

1w(λ)zg−1w(λ)

u−
2 (z) ∼ −ze

µ−

1w(λ)zg−1w(λ) as z → −∞

u+
i (z) ∼ eµ

+
iw(λ)zg+iw(λ), i = 1, 2 as z → +∞.

The asymptotic behavior of all solutions of (4.20) is therefore given by the
eigenvalues and eigenvectors of the asymptotic matrices A±

w(λ). In particular,
the signs of the real parts of the eigenvalues determine whether the solutions
asymptotically decrease or increase.
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Since we are interested in solutions u ∈ L2(R,C2), we have to concentrate on
solutions that disappear at both ends. All functions u(z) that are a combination
of a decaying solution u−

i (z) of (4.20) for z negative and u+
j (z) for z positive

are solutions of (4.20) in L2(R,C2). The related pair (λ, u) thus represents an
eigenvalue and eigenvector of B.

In order to detect functions u with the above properties, we first select solu-
tions u+

i and u−
j with Re(µ+

iw(λ)) < 0 and Re(µ−
jw(λ)) > 0, respectively. We then

have to decide whether these decaying solutions for z negative and positive are
connected, and hence form a solution on R that disappears at both ends.

The real parts of the eigenvalues µ±
iw(λ) satisfy

Re(µ±
1w(λ))

(
>
=
<

)

0 ⇔ Re(λ)

(
<
=
>

)

d1k± =: λ±
1w

Re(µ±
2w(λ))

(
>
=
<

)

0 ⇔ Re(λ)

(
<
=
>

)

f(c±)−R + d2k± =: λ±
2w.

From these properties we can particularly deduce the following statements,
which can be verified by means of figure 4.7:

• Necessary condition for the existence of solutions of (4.20) that vanish at
both ends, and hence for λ being an eigenvalue of B: For

min(λ+
1w, λ

+
2w) < Re(λ) < max(λ−

1w, λ
−
2w)

there exists at least one solution u−
i (z) that disappears as z → −∞ and at

least one solution u+
j (z) that disappears as z →∞.

• Sufficient condition for the existence of solutions of (4.20) that vanish at
both ends, and hence for λ being an eigenvalue of B: For

max(λ+
1w, λ

+
2w) < Re(λ) <max(λ−

1w, λ
−
2w) ∨

min(λ+
1w, λ

+
2w) < Re(λ) < min(λ−

1w, λ
−
2w)

on one side both linearly independent solutions disappear, and on the other
side at least one solution disappears. Therefore, there must be a connection
between two solutions vanishing on either side.

• Sufficient condition for the non-existence of a solution of (4.20) that van-
ishes at both ends, and hence for λ being no eigenvalue of B: For

Re(λ) < min(λ+
1w, λ

+
2w) ∨ max(λ−

1w, λ
−
2w) < Re(λ)

there either exists no solution of (4.20) that disappears as z → ∞ or no
solution that disappears as z → −∞.
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Re(λ)

0

2

+

+

1

1

−

+

2

0

−

−

2− i+(λ)

i+(λ)

Re(µ+
1/2w(λ))

min(λ+
1w, λ

+
2w) max(λ+

1w, λ
+
2w)

Re(λ)

2

+

+

1

−

+

0

−

−

i−(λ)

Re(µ−
1/2w(λ))

min(λ−
1w, λ

−
2w) max(λ−

1w, λ
−
2w)

Figure 4.7: Signs of Re(µ±
iw(λ)), instability indices i±(λ), and number of disap-

pearing solutions (2−i+(λ) for z→+∞, i−(λ) for z→−∞). Unstable eigenvalues
µ±
iw(λ) are labeled by gray sets, disappearing solutions by hatched ones.

Remark 13. The above necessary and sufficient conditions for λ being an eigen-
value or no eigenvalue of the differential operator B are characteristic for the
model under consideration. But the idea of counting linearly independent decay-
ing solutions at each end in order to study eigenvalues can be applied to a more
general class of problems (see appendix C.3).

For stability investigations we are particularly interested whether there exist
eigenvalues λ of B with non-negative real part. From the last condition we can
deduce that for

max(λ−
1w, λ

−
2w) < 0,

or equivalently

k− < −
1

d2

(
f(c−)−R

)
, (4.24)

no such eigenvalue exists. This yields the following statement about the point
spectrum, which is a subset of the set of eigenvalues:

Sufficient condition for σpt(B) ⊆ {x ∈ C : Re(x) < 0}: For

k− < −
1

d2

(
f(c−)−R

)
and k+ ∈ R

the point spectrum σpt(B) is either empty or else lies strictly in the
left half plane.
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Taking into account the sufficient conditions for both σess(B) and σpt(B), and
hence for the entire spectrum σ(B), to lie in the open left half plane, we can
deduce the following stability result:

Proposition 11. A traveling wave front in the bioremediation model (3.1) is
linearly stable under initial perturbations uw ∈ L2

w(R,C
2) if the weighted space is

defined by an exponential weight function

w(z) =

{

ek+z, z ≥ 0

ek−z, z < 0

that satisfies

k− < −
1

d2

(
f(c−)−R

)
and k+ < 0. (4.25)

Interpretation of the stability condition In the following we will present an
interpretation of the sufficient stability condition (4.25) by specifying properties of
the functions in the associated weighted spaces. To this end we will first consider
arbitrary exponentially weighted spaces and subsequently take into account the
sufficient stability condition.

With respect to our application we restrict our concentration on real-valued
perturbations, i.e. on functions uw ∈ L2

w(R,R
2). Since uw ∈ L2

w(R,R
2) is equiv-

alent to uwi ∈ L2
w(R,R) for i = 1, 2, we can study the components individually.

For simplification we think of uwi as an exponential function such that we are
concerned with the functions

uwi(z) =

{

ea+z, z ≥ 0

ea−z, z < 0
and w(z) =

{

ek+z, z ≥ 0

ek−z, z < 0.

As mentioned before, uwi belongs to the function space L2
w(R,R) if, and only if,

ui(z) = uwi(z)w(z) =

{

e(a++k+)z, z ≥ 0

e(a−+k−)z, z < 0

is an element of L2(R,R). In order to ensure that ui ∈ L2(R,R), the functions
ui(z) have to decay exponentially as z tends to ±∞, and hence the growth rates
a± of uwi have to satisfy

a+ + k+ < 0 ⇔ a+ < −k+

a− + k− > 0 ⇔ a− > −k−.

Thus, for a given weight function w with growth rates k±, the weighted space
L2
w(R,R) contains those functions uwi whose exponential growth rates a± satisfy

the above conditions.
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The stability condition (4.25) is a limitation of allowed weight functions, and
hence of admissible growth rates of uwi, which have to satisfy

a+ < −k+ ∧ k+ < 0

a− > −k− >
1

d2

(
f(c−)−R

)
= −α−.

In particular, for z < 0 the stability condition (4.25) represents a lower bound
for the growth rate a− of uwi. With respect to the result (3.7), this ensures that
all functions uwi ∈ L2

w(R,R) decay faster than the traveling wave front N(z) as
z tends to −∞, which asymptotically decays with the rate −α−.

In other words, a traveling wave front is stable under initial perturbations uw(z)
that decay in both components faster than the biomass concentration N(z) as z
tends to −∞, while they are allowed to decay or even grow exponentially with
any rate less than −k+ > 0 as z tends to +∞ (see figure 4.8).

e0·z

e−α−z

e−k−z

uwi(z) = ea−z

e−k+z

ea+z = uwi(z)

e0·z

z

Figure 4.8: If the upper bounds e−k±z of uwi at ±∞ are in the hatched sets, then
the traveling wave is stable under initial perturbations uw ∈ L2

w(R,R
2), where L2

w

is defined as the set of functions whose components show asymptotic behavior in
the gray sets (for a better comparison of the growth rates no multipliers of the
exponential functions are taken into account)

In the following example we will consider a special case of exponential weight
functions, namely the case k− = k+.

Example 11. We are interested in the stability of traveling waves under pertur-
bations uw ∈ L2

w(R,C
2), where the weighted space is defined by the exponential

weight function
w(z) = ekz

with k ∈ R. For

k < −
1

d2

(
f(c−)−R

)
= α− < 0

the sufficient condition for the spectrum σ(B) to lie in the left half plane is met.
The traveling waves of (3.1) are therefore linearly stable in function spaces that
satisfy the above condition.
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The special case

1

d1 − d2

(
f(c+)−R

)
< k < −

1

d2

(
f(c−)−R

)
< 0, (4.26)

which is equivalent to λ+
2w < λ+

1w = λ−
1w < λ−

2w < 0, is shown in the figures 4.9
and 4.10.

Re(λ)

ρ(TB)
σess(TB)

λ is eigenvalue

σess(TB)

λ is eigenvalue
ρ(TB)

0 1 1 0

+ + − −

+ − − −

+ + − −

+ + + −

λ ∈

ind (TB(λ))

Re(µ+
1w(λ))

Re(µ+
2w(λ))

Re(µ−
1w(λ))

Re(µ−
2w(λ))

λ+
2w λ±

1w λ−
2w

0

Figure 4.9: Example 11 for k satisfying (4.26): Signs of Re(µ±
iw(λ)), Fredholm

indices ind (TB(λ)) = i−(λ)− i+(λ), and classification of λ with respect to theo-
rem 2 and the conditions following from theorem 3. Unstable eigenvalues µ±

iw(λ)
are labeled by gray sets, disappearing solutions by hatched ones.

︸ ︷︷ ︸ ︸ ︷︷ ︸

σess(TB)

ρ(TB)

Re(λ)

Im(λ)

λ+
2w λ±

1w λ−
2w

0

Figure 4.10: Example 11 for k satisfying (4.26): Classification of λ for TB on
L2
w(R,C

2) according to theorem 2 and the conditions following from theorem 3
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The spectrum of B and TB is given by

σ(TB) = σess(TB) = {λ ∈ C : Re(λ) ∈ [λ+
2w, λ

−
2w]} ⊂ {λ ∈ C : Re(λ) < 0}.

The point spectrum is empty.

Perturbations in L̃2
w(R,C

2)

In order to examine whether the sufficient stability condition (4.25) can be re-
laxed by allowing different weight functions for both components of the pertur-
bation vector, we will study the operator L on the exponentially weighted spaces
L̃2
w(R,C

2).
In order to apply theorem 2, we have to ensure that the matrix

Ãw(z, λ) =

(

− 1
d1
(f ′(C)N + λ) +

w′
1

w1
− 1

d1

w1

w2
f(C)

1
d2

w2

w1
f ′(C)N 1

d2
(f(C)−R− λ) +

w′
2

w2

)

asymptotically approaches constant matrices Ã±
w(λ), which is equivalent to the

following restrictions on the growth rates of the weight functions:

0 ≤ k2
+ − k1

+ ≤ α+ and α− ≤ k2
− − k1

− ≤ 0. (4.27)

Due to the fact that the asymptotic growth rates of N(z) satisfy α− < 0 < α+,
at least one of the secondary diagonal elements of each asymptotic matrix is zero
so that the eigenvalues of all asymptotic matrices equal their diagonal entries:

µ̃±
1w(λ) = −

λ

d1
+ k1

±

µ̃±
2w(λ) =

1

d2

(
f(c±)−R− λ

)
+ k2

±.

A necessary and sufficient condition for the essential spectrum σess(B̃) to lie
in the open left half plane is that the real parts of all values λ that satisfy at
least one of the equations Re

(
µ̃±
1/2w(λ)

)
= 0 have to be less than zero. This is

equivalent to the restrictions

k1
± < 0 and k2

± < α±. (4.28)

For studying the point spectrum σpt(B̃) we note that the upper triangular ma-
trices Ã±

w(λ), as well as the related matrices R̃±
w(z), more precisely Ã+

w(λ)/R̃
+
w(z)

and −Ã−
w(λ)/− R̃−

w(−z), meet the requirements of theorem 3. Information about
the eigenvalues of B̃ can therefore be deduced from the eigenvalues of Ã±

w(λ): A
sufficient condition for the existence of no eigenvalues λ of B̃ with non-negative
real part is that both eigenvalues µ̃−

1/2w(λ) of Ã−
w(λ) have negative real parts if

Re(λ) ≥ 0. This condition is equivalent to

k1
− < 0 and k2

− < α−. (4.29)
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Combining the requirements (4.27)-(4.29) we have the following stability result:

Proposition 12. A traveling wave front in model (3.1) is linearly stable in the
norm ‖ · ‖L̃2

w
defined by a weight matrix W (z) = diag

(
w1(z), w2(z)

)
with

wi(z) =

{

ek
i
+z, z ≥ 0

ek
i
−
z, z < 0

satisfying

k2
− ≤ k1

− < 0 ∧ k2
− < α− < k2

− − k1
−,

k1
+ ≤ k2

+ < α+ ∧ k1
+ < 0 ≤ k2

+ − k1
+ < α+.

(4.30)

Closing the analysis of the single-substrate bioremediation model, we relate
the stability results concerning the weighted spaces L̃2

w to the results concerning
L2
w. Clearly, the exponentially weighted spaces L2

w, defined by the same weight
function for all components, are special cases of L̃2

w, and consequently the stability
condition (4.25) is a special case of (4.30): If we choose the weight matrix W (z)
such that w1(z) = w2(z), and hence k1

± = k2
± =: k±, the sufficient stability

condition (4.30) is reduced to k− < α− and k+ < 0.
The consideration of the more general function spaces L̃2

w does not yield a re-
laxation of the constraints on the biomass perturbations, i.e. in order to ensure
stability of the traveling waves, the perturbations in the second component have
to decay faster than the biomass wave profile as z tends to −∞. In contrast, the
perturbations of C(z) in L̃2

w are allowed to decay slower than the wave profile N(z)
as z tends to −∞, i.e. the weight function does not necessarily have to satisfy
k1
− < α− in order to yield stability of the traveling wave in the associated norm.

Remark 14. In section 3.1 we proved that for a given set of parameters there
exists an infinite number of traveling wave front solutions of model (3.1). These
waves differ in their propagation speed, total biomass and in particular in the
decay rate of the biomass at −∞. In this section we proved that each of these
traveling waves is linearly stable under perturbations that decay faster than the
biomass as z tends to −∞. Consequently, the decay of any perturbed biomass
profile at −∞ is dominated by the biomass itself, and hence any perturbed profile
is uniquely related to a particular wave front. This roughly clarifies the apparent
inconsistency of an infinite number of stable traveling wave fronts.

4.3.3 Double-substrate bioremediation model

Analogous to the previous subsection the issue is to derive sufficient conditions
on the weight functions such that the traveling waves in the bioremediation
model (3.8) are stable in the associated weighted norm. For this we will con-
sider again perturbations in the conventional exponentially weighted spaces L2

w,
as well as in the generalized function spaces L̃2

w.
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Perturbations in L2
w(R,C

3)

Since the essential spectrum of B is bounded by values for which

A±
w(λ) =





− λ
d1

+ k± 0 − 1
d1
νof(co±, cs±)

0 − λ
d2

+ k± − 1
d2
νsf(co±, cs±)

0 0 1
d3

(
(νo + νs)f(co±, cs±)−R− λ

)
+ k±





is not hyperbolic, a necessary and sufficient condition for the essential spectrum
of B to lie in the closed left half plane is that all values λ that are related to a
not hyperbolic matrix A±

w(λ) have non-positive real part. This means, all values
λ that solve at least one of the equations

Re(µ±
1w(λ)) = −

Re(λ)

d1
+ k± = 0 ⇔ Re(λ) = d1k± =: λ±

1w

Re(µ±
2w(λ)) = −

Re(λ)

d2
+ k± = 0 ⇔ Re(λ) = d2k± =: λ±

2w

Re(µ±
3w(λ)) =

1

d3

(
(νo + νs)f(co±,cs±)−R− Re(λ)

)
+ k± = 0

⇔ Re(λ) = (νo + νs)f(co±, cs±)−R + d3k± =: λ±
3w

have to satisfy Re(λ) ≤ 0.
It is easily seen that there does not exist any set of parameters k± such that

this necessary stability condition is satisfied: Due to d2 < 0 < d1, for any k+ 6= 0
the values λ+

1w and λ+
2w have opposite signs. Analogously we can argue for k− 6= 0,

and according to subsection 4.2.3 either λ+
3w or λ−

3w is positive in the remaining
case k− = k+ = 0 . It follows that the essential spectrum crosses the imaginary
axis for any choice of k± ∈ R, which yields the following instability result:

Proposition 13. The traveling wave fronts in the bioremediation model (3.8)
are linearly unstable under initial perturbations uw ∈ L2

w(R,C
3) defined by an

exponential weight function

w(z) =

{

ek+z, z ≥ 0

ek−z, z < 0

with k± ∈ R.

The above results indicate that moving the entire essential spectrum into the
left half plane requires a different treatment of the different components of the
perturbation vector. The asymptotic behavior of the perturbations in all three
components has to be restricted in a way that cannot be captured by a scalar
weight function. We will therefore study perturbations in the weighted spaces
L̃2
w(R,C

3), which are defined by different weight functions for each component of
the perturbation vector.
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Perturbations in L̃2
w(R,C

3)

In order to apply theorem 2 for studying the spectrum of B̃, we will restrict our
concentration on weight functions such that the matrix

Ãw(z, λ) =





− 1
d1
(νofcoN + λ) +

w′
1

w1
− 1

d1

w1

w2
νofcsN − 1

d1

w1

w3
νof

− 1
d2

w2

w1
νsfcoN − 1

d2
(νsfcsN + λ) +

w′
2

w2
− 1

d2

w2

w3
νsf

1
d3

w3

w1
(νo + νs)fcoN

1
d3

w3

w2
(νo + νs)fcsN

1
d3

(
(νo + νs)f −R− λ

)
+

w′
3

w3






asymptotically approaches constant matrices Ã±
w(λ), i.e. we consider weight func-

tions whose growth rates satisfy

−α+ ≤ k2
+ − k1

+ ≤ α+ α− ≤ k2
− − k1

− ≤ −α−

0 ≤ k3
+ − k1

+ ≤ α+ α− ≤ k3
− − k1

− ≤ 0 (4.31)

0 ≤ k3
+ − k2

+ ≤ α+ α− ≤ k3
− − k2

− ≤ 0.

It is easily verified that due to α− < 0 < α+ the components of each asymptotic
matrix satisfy aij 6= 0⇒ aji = 0 for i 6= j, and that furthermore the eigenvalues
of each asymptotic matrix are given by its diagonal elements:

µ̃±
1w(λ) = −

λ

d1
+ k1

±

µ̃±
2w(λ) = −

λ

d2
+ k2

± (4.32)

µ̃±
3w(λ) =

1

d3

(
(νo + νs)f(co±, cs±)−R− λ

)
+ k3

±.

The essential spectrum σess(B̃) lies in the open left half plane if, and only if,
all λ satisfying Re(µ̃±

iw(λ)) = 0 also satisfy Re(λ) < 0, which is equivalent to

k1
± < 0, k2

± > 0, k3
±

{

< α±, s < 0

> α±, s > 0.
(4.33)

This condition ensures that in each component the associated weighted norm
tolerates perturbations on the downstream side, while it penalizes them on the
upstream side. This means for example for the first component, which is related
to the transportation speed d1 > 0, that the weighted norm by k1

± < 0 tolerates
perturbations at +∞ and penalizes them at −∞.

But these restrictions are not compatible with (4.31): Combining the restric-
tions (4.31) and (4.33) yields in particular the contradictions

k3
− − k2

− < α−≤ k3
− − k2

− for s < 0

k3
+ − k1

+ ≤ α+< k3
+ − k1

+ for s > 0.
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Consequently, there does not exist any weight matrix W (z) consisting of expo-
nential weight functions such that the asymptotic matrices Ã±

w(λ) exist and the
essential spectrum is bounded to the left of the imaginary axis. We can therefore
not directly formulate a sufficient condition on the weight functions that ensures
the stability of the traveling waves in the associated weighted norm.

In a second stage we will study a necessary condition which, if it is met, requires
further analyses to deduce stability or instability results. A necessary stability
condition is that the spectrum of T

B̃
lies in the closed left half plane, i.e. the

imaginary axis is allowed to be contained in the essential spectrum:

k1
± ≤ 0, k2

± ≥ 0, k3
±

{

≤ α±, s < 0

≥ α±, s > 0.
(4.34)

While in this case perturbations in the first and second component are not neces-
sarily penalized by a weight function, the perturbations in the third component
are still restricted on the upstream side by the biomass growth.

Indeed, there exist weight functions with the required properties, namely which
on the one hand ensure the existence of constant asymptotic matrices and which
on the other hand meet condition (4.34): The growth rates

k1
± = k2

± = k3
+ = 0, k3

− = α−, (4.35)

for example, are related to an upper triangular matrix Ã+
w(λ) and a lower tri-

angular matrix Ã−
w(λ). By means of theorem 2 we can deduce from the eigen-

values (4.32) the following statements about the spectrum of T
B̃

for s < 0 (see
figures 4.11 and 4.12):

σess(TB̃
) = {λ ∈ C : Re(λ) ∈ [λ+

3 , 0]}

ρ(T
B̃
) ∪ σpt(TB̃

) = {λ ∈ C : Re(λ) ∈ (−∞, λ+
3 ) ∪ (0,∞)}.

The essential spectrum of T
B̃

contains the imaginary axis but does not cross it.
We note furthermore that neither theorem 2 nor theorem 3 enables us to distinct
the point spectrum from the resolvent set without further information. Thus, in
order to deduce a final stability or instability result in this special case, as well as
in any other case satisfying the necessary condition (4.34), further analyses are
needed, which will not be part of this thesis.

The growth rates presented in (4.35) can be interpreted as follows: The weighted
space L̃2

w(R,C
3) defined by a weight matrix W (z) satisfying (4.35) consists of

functions that are elements of L2(R,C) in the first and second component, and
that decay faster than N(z) as z tends to −∞ in the third one. The traveling
waves are therefore possibly stable under perturbations in L2(R,C3) that are
restricted in the third component on the upstream side.
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To sum up, for weight functions that ensure the existence of asymptotic ma-
trices we can distinct two cases: If the weight functions contradict the neces-
sary stability condition (4.34), the traveling waves are unstable in the associated
weighted norm. If they on the other hand meet condition (4.34), the traveling
waves might be stable in the related norm, but for a final stability or instability
result further analyses are needed. Although the theoretical approach presented
in this thesis is not sufficient to detect a “stable function space”, the numerical
results in the next section indicate that there exist those spaces.
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4.4 Numerical results

The theoretical analyses presented in the previous sections shall be supplemented
with numerical simulations. To this end we consider a concrete example for each
bioremediation model, (3.1) and (3.8), and interpret the numerical results, which
are produced by Java applets, with respect to the developed theory.

In order to study the stability of certain traveling waves in the bioremediation
models (3.1) and (3.8), we proceed as follows8:

(i) Solution of the ordinary differential equation → wave profile: We choose
a certain set of parameters satisfying the requirements of propositions 1
and 7, respectively. For these parameters the ODE with appropriate initial
conditions is solved by the classical Runge-Kutta method.

(ii) Solution of the partial differential equation → traveling wave: In order to
picture the solution of the PDE for a sufficiently large time interval, we solve
this equation in a coordinate system that moves with speed s (in this coor-
dinate system a wave traveling with speed s is a stationary solution). The
adjusted9 PDE with appropriate boundary conditions is solved by means of
the explicit first-order upwind scheme, where the initial condition is given
by one of the following functions:

(a) No perturbation of the initial profile: The initial condition is repre-
sented by the profile resulting from (i).

(b) Perturbation of the initial profile: The initial condition is given by the
profile resulting from (i) plus a perturbation function.

In order to specify the procedure outlined above and to visualize the results,
we revert to the examples 8 and 9 on pages 37 and 49 in the past chapter:

Example 12 (m=1). For the parameters

u = 7.81, ν = 1.12, C(−26) = 0.76,

s =−0.13, R = 0.34, N(−26) = 3.34 · 10−18

we solve the ordinary differential equation (3.2) with step size ∆z = 0.02. The
solution in the Interval Ivis = [0, 25] is visualized in the first graph in figure 4.13.
The additionally given characteristic value Ntot = 12.65 is computed by the com-
posite Simpson’s rule in the interval I = [−26, 25]. It differs slightly from the
theoretical value Ntot = 12.60, which results from proposition 1 on page 36, and
it depends on the step sizes as stated in remark 15.

8In order to discuss both models at the same time, we denote by ODE the models (3.2) and
(3.24)/(3.25) and by PDE the models (3.1) and (3.8).

9The change from the space variable x to the “moving” one z = x − st results in replacing
the speed matrix D̃ in the PDE by D̃ − sI (see equation (4.2) in section 4.1).
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Using this profile (undisturbed or disturbed) as initial condition we solve the
partial differential equation (3.1) with step sizes ∆t = 0.002 and ∆z = 0.02 in a
coordinate system that moves with speed s̃ = s−0.00145 (for more details about
the additional constant see remark 15). The boundary conditions are given by
(c, n)(−26, t) = (C + uc, N + un)(−26), where u(z) = (uc, un)(z) denotes the
initial perturbation. The evolution of the undisturbed initial profile, as well as
the effects of three specific perturbations, are the following:

• If the initial profile is not perturbed, a specific profile, close to the initial
one, is reached quickly and remains unchanged (see first row in figure 4.13).

• In a bounded interval on the left of the biomass maximum we add a parabola
to C(z). This perturbation moves to the right while the maximum value of
the biomass, as well as the total biomass, increase and decrease again. The
limit profile in the interval Ivis equals the limit profile in the undisturbed
case (see second row in figure 4.13). This result is consistent with the the-
ory since any compact perturbation is zero for |z| large enough, and hence
an element of each “stable weighted space” L̃2

w, i.e. L̃2
w satisfying (4.30).

One particular property of exponentially weighted spaces shall be empha-
sized in this context: Even if the perturbation that travels to the right does
not decay, it is reduced by the weight function such that it does not cause
instability in the weighted L2 norm. In this sense, an instability in the L2

norm that is caused by certain traveling perturbations can be considered
as stability in an appropriate weighted L2 norm.

• In the entire interval I we add a Gaussian function to N(z). The maximum
value of the biomass first decreases, then increases significantly, combined
with a change in the slope of C(z). Finally, the profile tends to the limit
one in the undisturbed case (see third row in figure 4.13). With respect
to the theoretical analysis, this result is the expected one: Since Gaussian
functions decay faster than exponential functions for large values of |z|,
they are elements of all weighted spaces L̃2

w that satisfy the stability condi-
tion (4.30). In particular, they are elements of all function spaces L2

w that
meet the condition (4.25).

• In the interval I we perturb the wave profile N(z) by a function that decays
exponentially on either side of the maximum of N(z). At this we choose the
growth rates such that the perturbation decays slower than N(z) as z tends
to −∞. The maximum value of the biomass decreases, and the wave form
tends to another profile, which is characterized by slower decays in both
components. This profile travels with a speed different from the initial one
to the left (see fourth row in figure 4.13). This result is consistent with
the theory since due to the particular growth rate the perturbation does
not belong to any of the “stable weighted spaces” defined in the previous
section. Moreover, as expected, the limit profile is the unique one having
the asymptotic decay rate of the initial perturbation as z tends to −∞.
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Figure 4.13: Numerical results (for more details see the text in example 12)
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Remark 15. The numerically computed maximum biomass Nmax, the total biomass
Ntot, as well as the additional constant in the wave speed s̃, are related to the
step sizes: For a fixed ∆t, a decreasing step size ∆z results in decreasing values
Nmax and Ntot at t = 0, and increasing values Nmax and Ntot at t = 170, so that
the differences between the limit values and initial values decrease. Furthermore,
a decreasing step size ∆z yields a decreasing difference between the parameter s
that was used to create the initial condition and the numerical wave speed s̃.

Example 13 (m=2). With the parameters

u = 4.000, νo = 1.170, N∗
tot =15.000, Co(0) = 2.240,

v =−9.780, νs = 1.550, Cs(130) = 0.432,

s = 0.351, R = 0.360, N(0) = 1 · 10−5

we first compute, according to equation (3.23), the missing initial condition

Cs(0) = Cs(130)−
νs

νo + νs

RN∗
tot

s− v
= 0.128.

With these parameters and initial conditions we solve the ordinary differential
equation (3.24)/(3.25) with step size ∆z = 0.03 and visualize the solution in the
interval Ivis = [0, 65] (see first graph in figure 4.14).

With this profile (undisturbed and disturbed) as initial condition we solve the
partial differential equation (3.8) with step sizes ∆t = 0.002 and ∆z = 0.03
in a coordinate system moving with speed s̃ = s + 0.00195 (for more details
about the additive constant see remark 15). To this end we fix the boundary
conditions co(0, t) = (Co + uo)(0) and (cs, n)(130, t) = (Cs + us, N + un)(130),
where u(z) = (uo, us, un)(z) is the initial perturbation.

As can be verified in figure 4.14, the evolution of the undisturbed profile, as
well as the initial profile which is perturbed by parabolas, a Gaussian function
or an exponential decaying function, is the following:

• The undisturbed wave profile tends quickly to a very close one, which re-
mains unchanged (see first row in figure 4.14).

• Parabolas, added to Co(z) and Cs(z) in bounded intervals, move in the
direction of flow, i.e. the perturbation of Co(z) travels to the right, while
the perturbation of Cs(z) moves to the left. The limit profile in the visible
interval Ivis equals the one in the undisturbed case (see second row in fig-
ure 4.14). This compact perturbation is an element of any weighted space
L̃2
w defined by (4.31) and satisfying the necessary stability condition (4.34).

Consequently, if there exists a “stable weighted space” L̃2
w, then this per-

turbation belongs to it.
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Figure 4.14: Numerical results (for more details see the text in example 13)
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• If we perturb the wave profile N(z) by a Gaussian function, the maximum
of the biomass decreases and increases again, and finally the solution tends
to the limit profile in the undisturbed case (see third row in figure 4.14).
Due to the specific decay of Gaussian functions, this perturbation belongs
to any weighted space L̃2

w satisfying (4.31) and the necessary stability condi-
tion (4.34). The numerical results are therefore consistent with the theory.

• We add a function to the wave profile N(z) that decays exponentially on
either side of the biomass maximum. The growth rate chosen for the right-
hand side of the maximum is greater than the asymptotic growth rate of
the biomass, i.e. the perturbation decays slower than N(z) as z tends
to infinity. The solution tends to a profile that is different to the limit
one in the undisturbed case. This profile shows slower decays in all three
components and travels to the right (see fourth row in figure 4.14). This
result is in line with the theory: Due to its particular growth rate the initial
perturbation does not belong to any of the weighted spaces L̃2

w satisfying
(4.31) and the necessary stability condition (4.34).

To sum up, the theoretical results concerning the single-substrate model, as
well as the double-substrate model, are consistent with the numerical ones. But
in addition to the theoretical results regarding the double-substrate case, the
numerical data indicate the existence of a certain norm that ensures stability of
the traveling waves.

4.5 Conclusions

The traveling wave front solutions of the single-substrate bioremediation model
are linearly unstable in the L2 norm since the essential spectrum, and in particular
the set of eigenvalues of the linearization about the traveling wave, crosses the
imaginary axis. But the waves are linearly stable in the L2

w norm defined by a
scalar exponential weight function whose growth rates meet a specific condition.
This condition ensures that the perturbations in the associated weighted spaces
decay in both components faster than the biomass profile N(z) as z tends to −∞.

More generally, the traveling wave solutions of the above model are linearly
stable in certain weighted spaces L̃2

w, which allow different exponential weight
functions for each component of the perturbation vector. A sufficient stability
condition on the growth rates of these weight functions is given by (4.30), which
restricts the asymptotic behavior of admissible perturbations. In particular,
the substrate perturbations are less restricted than in the conventional weighted
spaces L2

w, while the constraints on the biomass perturbations could not be re-
laxed by considering the more general function spaces L̃2

w.
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The traveling wave fronts in the double-substrate bioremediation model are lin-
early unstable under perturbations in L2, as well as in L2

w, which is defined by a
scalar exponential weight function. Independent of its growth rates, the essential
spectrum of the associated differential operator crosses the imaginary axis. The
analysis of the more general weighted spaces L̃2

w, defined by different exponen-
tial weight functions for each component, did not yield a stability result either:
Weight functions that satisfy (4.31), but not (4.34), yield instability caused by
the essential spectrum, which crosses the imaginary axis. Weight functions that
meet both conditions might yield stability of the traveling waves in the related
norm, but due to the fact that the essential spectrum includes the imaginary axis,
and that the point spectrum cannot be localized by means of theorem 3, this case
cannot conclusively be studied by the procedure presented in this thesis. Thus,
further analyses are required to detect function spaces that the traveling waves
are stable for, which the numerical results indicate do exist.
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description10

q(x, t) concentration vector
Q(z) concentration vector (traveling wave)
F (q) function that contains the non-linear growth terms
JF (q) Jacobian matrix of F (q)
f(C) modified growth rate of the biomass for m = 1: f(C) = νµ1(C)
f(Co, Cs) growth rate of the biomass for m = 2: f(Co, Cs) = µ2(Co, Cs)

D̃ diagonal matrix containing the speeds of the substrates
D diagonal matrix containing the speeds of the substrates and bio-

mass in a moving coordinate system, D=D̃−sI=diag(d1, . . . , dm)
di speeds of substrates and biomass in a moving coordinate system
p(z, t) perturbation vector
u(z) initial perturbation: p(z, 0) = u(z)
uw(z) initial perturbation in weighted L2 spaces

L, B, B̃ differential operators

T, TB, T
B̃

differential operators with the same spectrum as L, B, B̃

A(z, λ) matrix occurring in T: T(λ) = d
dz
− A(z, λ)

A±(λ) asymptotic matrices of A(z, λ): limz→±∞A(z, λ) = A±(λ)
R±(z) difference between A(z, λ) and A±(λ): A(z, λ) = A±(λ) +R±(z)
(·)w matrices above related to TB

(̃·)w matrices above related to T
B̃

µ±
i (λ) eigenvalues of A±(λ)

g±i (λ) eigenvectors of A±(λ)
λ±
i value λ such that Re(µ±

i (λ)) = 0
(·)w values above related to A±

w(λ)

(̃·)w values above related to Ã±
w(λ)

w(z), wi(z) weight functions
W (z) weight matrix: W (z) = diag

(
w1(z), . . . , wm(z)

)

k(z), ki(z) exponential growth rates of w(z), wi(z) depending on z
k±, k

i
± exponential growth rates of w(z), wi(z) for z ≥ 0 and z < 0

ind (·) Fredholm index of an operator
i±(λ) instability indices of A±(λ)
x space
z space along the characteristics: z = x− st
t time

Table 4.1: Notation11 used in chapter 4

10Note that according to subsection 2.4.2 the models under consideration are dimensionless.
The descriptions thus correspond to the related dimensional values.

11For notations that are directly related to the mathematical models we refer to table 3.1 on
page 38 and table 3.2 on page 54.



Chapter 5

Summary

Due to its effectiveness and cost-efficiency, bioremediation is a promising tech-
nology for restoring contaminated groundwater and soil. In order to predict the
merits of this method, and to adjust influencing factors such as the concentrations
of additionally injected substrates, mathematical models are of special interest.
One particular bioremediation model has been derived and analyzed in this thesis.

Bioremediation is based on the utilization of contaminants by specific microor-
ganisms. Great importance is therefore attached to the metabolism of the organ-
isms involved, which is again closely linked to enzymatic reactions inside their
cells. The first step in deriving a bioremediation model is therefore the analysis
of enzymatic reactions and microbial growth.

At first, we analyzed specific enzymatic reactions that involve an arbitrary
number of substrates. Based on these results we derived a bacterial growth
model and in particular a formula for the bacterial growth rate that includes an
optional number of substrates and contaminants.

This bacterial growth rate was compared to a similar one that is commonly used
in several articles without a detailed declaration of underlying model assumptions.
For bacterial growth depending on one or two substrates, both growth rates
can be equalized, which lends, according to other authors, support to existing
single- and double-substrate bacterial growth models. For more than two involved
substrates, however, no biologically reasonable assumptions result in equal growth
rates. Hence, either the growth rates suggested by various authors for different
numbers of substrates are based on assumptions that differ from the ones made in
this work, or they include an additional simplification which cannot be justified
from a chemical or biological point of view.

Finally, by taking into account spatial changes and environmental properties,
we extended the derived bacterial growth model to a bioremediation model con-
sisting of advection-reaction equations for the substrates and a rate equation for
the bacteria.

95
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Subsequently, the above bioremediation model for one and two substrates was
analyzed with respect to traveling waves, which form an important class of solu-
tions in natural scientific applications. By deriving planar autonomous systems
of ordinary differential equations from the original model, phase plane analysis
yielded results concerning the existence of traveling wave solutions, their shape
and propagation speed.

It could be shown that under certain requirements on parameters the single-
substrate model has wave front solutions that travel with any negative propa-
gation speed. All those solutions are qualitatively of the same shape, but they
differ in particular in their characteristic value of total biomass, as well as in the
asymptotic behavior of the biomass concentration.

For the double-substrate model we could also establish a sufficient condition
for the existence of wave fronts. All fronts resulting from this condition travel
in the same direction with speeds in a certain bounded interval. Furthermore,
their profiles have the same qualitative properties, while in particular each value
of total biomass is taken at most twice.

In the final step, the traveling wave solutions that were specified above were
tested for their stability. To this end we derived a mathematical model that
describes the evolution of small perturbations about the wave profile. Linear sta-
bility results could be deduced from the spectral analysis of the occurring differ-
ential operator, where its Fredholm properties and specific asymptotic properties
were of particular importance.

All traveling wave fronts in the single-substrate bioremediation model turned
out to be linearly unstable under perturbations in L2, but linearly stable in the
L2
w norm which is defined by an exponential weight function whose growth rates

meet certain conditions. Roughly speaking, these conditions ensure that the
initial perturbations decay faster than the biomass wave front on the upstream
side. We could widen this result by introducing the class of more general weighted
spaces L̃2

w, defined by different exponential weight functions for each component
of the perturbation vector. With certain constraints on their growth rates, which
restrict the asymptotic behavior of the perturbations, we could prove stability of
the traveling waves in the associated weighted norms.

In contrast, the traveling wave fronts in the double-substrate bioremediation
model are linearly unstable in L2, as well as in any weighted space L2

w, defined by
a scalar exponential weight function. The generalization to the weighted spaces
L̃2
w, which allows different exponential weight functions in each component, did

not yield a stability result either: For certain spaces L̃2
w we could prove instability

of the traveling waves, while for the remaining cases further analyses are needed
to deduce final stability or instability results. Although numerical runs indicate
the existence of a function space that yields stability of the traveling waves in
the associated norm, this remains to be proven theoretically.
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A Modeling: Asymptotic analysis of enzymatic

reactions

Many mathematical problems are not solvable explicitly. However, if one of those
problems contains a small parameter ε, one can try to describe its solution by an
asymptotic series that approximates the solution in a certain order.

In the following we will give an overview about this procedure and refer to
related literature for more details.

Scaling:
An important step in finding a reliable approximation of the solution of the
original model by asymptotic expansion and perturbation methods is to choose
an appropriate scaling, i.e. proper reference parameters. Using an adequate sca-
ling often enables us to reduce the number of model parameters and to detect
small parameters.

According to [Seg72] and [Seg89], some of the essential points in scaling are
the following:

(i) The scale of a dependent variable is a combination of parameters with the
appropriate dimension that provides an estimate of the variable’s maximum
order of magnitude.

(ii) The scale of an independent variable is a combination of parameters with
the appropriate dimension that estimates the range of the independent vari-
able over which there is a significant change in the dependent variables.

Although the above conditions impose some restrictions on the choice of reference
parameters, there does not exist a unique scaling.

Asymptotic expansion:
Given the case that the scaled model P (f(t, ε), ε) = 0 contains a small parame-
ter ε, we try to describe the solution in the asymptotic expansion

f(t, ε) =
∞∑

k=0

fk(t)ε
k

that approximates the solution satisfactorily in a certain order. For computing the
coefficients fk(t) of the asymptotic series, we plug the asymptotic series into the
scaled problem. Comparing the coefficients of powers of ε yields problems whose
solutions are exactly the coefficients fk(t). The remaining issue is to find out
whether the asymptotic expansion in a certain order approximates the solution
satisfactorily. This will be explained in the next step.

For more details concerning asymptotic expansions see [Hin91, Mei01].
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Perturbation theory:
We define the reduced problem

P (f 0(t), 0) = 0

as the limit of the full problem

P (f(t, ε), ε) = 0

for ε→ 0. If f 0(t) is a good approximation of f(t, ε) in the sense that f(t, ε) con-
verges uniformly to f 0(t), we call the full problem regularly perturbed, otherwise
singularly perturbed.

In the former case of a regularly perturbed problem we can approximate

f(t, ε) ≈ f 0(t),

where f 0(t) equals the main term f0(t) of the asymptotic expansion. The qualita-
tive dynamics are already captured by this approximation, which can be improved
by higher order terms of the asymptotic expansion.

In the case of a singularly perturbed problem we have to correct the approxi-
mation f 0(t) in those intervals where uniform convergence is not achieved. With
respect to our application we concentrate on problems with initial layers where
very fast dynamics occur that are not captured by f 0(t). In order to describe
these dynamics that happen on a very short time scale, we introduce a local time
variable

τ = tε−α, α > 0

that, roughly speaking, blows up the initial layer so that we can regard the
solution under a magnifying glass. We approximate the solution of this initial
layer problem

P (f̂(τ, ε), ε) = 0

by solving the reduced problem

P (f̂ 0(τ), 0) = 0,

where the function f̂(τ, ε) = f(t(τ, ε), ε) converges uniformly to f̂ 0(τ). An ap-
proximation of the solution f(t, ε) is therefore given by

f(t, ε) ≈ f 0(t) + f̂ 0(tε−α)− f 0(0).

For further information about perturbation theory see [Hin91, O’M91, Gas03].

In the following we will apply the above procedure of scaling, asymptotic expan-
sion and perturbation analysis to the enzymatic reactions presented in chapter 2.
While various approaches concerning the quasi-steady-state assumption of Briggs
and Haldane for single-substrate reactions exist in the literature (see for exam-
ple [Seg88, Seg89, Din08]), neither the equilibrium assumption by Michaelis and
Menten for single-substrate reactions, nor the quasi-steady-state assumption for
multi-substrate reactions have been mentioned to the best of our knowledge.

The notation used throughout this appendix is listed in table A.1 on page 112.
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A.1 Single-substrate reactions

The general scaling

s1 = srs̄1, c1 = crc̄1, t = tr t̄

of model (2.10)-(2.12) yields

sr
tr

ds̄1
dt̄

= −k1srs̄1(e0 − crc̄1) + k−1crc̄1 (A.1)

cr
tr

dc̄1
dt̄

= k1srs̄1(e0 − crc̄1)− (k−1 + kf )crc̄1 (A.2)

with initial conditions
s̄1(0) =

s0
sr
, c̄1(0) = 0,

where the dimensionless variables are denoted by bars, and the reference pa-
rameters by index r. This problem is not explicitly solvable, but we can derive
approximations of the solution that hold well under certain assumptions.

Common assumption of Michaelis/Menten and Briggs/Haldane

Both Michaelis/Menten and Briggs/Haldane assumed that c1 is always negligibly
small compared with s1, hence the reference parameters should satisfy cr << sr.
Taking this into account we rewrite the general scaled model to

ds̄1
dt̄

= −k1trs̄1(e0 − crc̄1) + k−1tr
cr
sr
c̄1

cr
sr

dc̄1
dt̄

= k1trs̄1(e0 − crc̄1)− (k−1 + kf )tr
cr
sr
c̄1

with a small parameter ε := cr
sr

.
With respect to (i) on page 99, and because of s1(t) ≤ s0 and s1(0) = s0,

the reference parameter sr should be of the order of magnitude of s0. Due to
c1(t) ≤ e0, the parameter cr should be of the order of at most e0. Furthermore, we
choose tr such that we concentrate on the decay of the substrate and consumption
of the complex for the benefit of the product.

As already mentioned on page 99, there does not exist a unique scaling. For
demonstrating reasons we choose a rather simple one in this context and refer to
[Seg89] and [Din08] for a detailed discussion of various other scalings.

A particular scaling that satisfies the above conditions1 is

sr = s0, cr = e0, tr =
s0
kfe0

.

1The slow time scale that captures the decay of the substrate is chosen in orientation on
[Seg89, page 450], where also tr = (kfε)

−1 is chosen with a slightly different ε.
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This yields the scaled model

ds̄1
dt̄

= −
k1
kf

s0s̄1(1− c̄1) +
k−1

kf
c̄1 (A.3)

ε
dc̄1
dt̄

=
k1
kf

s0s̄1(1− c̄1)−
k−1 + kf

kf
c̄1 (A.4)

with initial conditions

s̄1(0) = 1, c̄1(0) = 0 (A.5)

and the small parameter ε := cr
sr

= e0
s0

.

Michaelis/Menten assumption

Besides the assumption that the concentration of the complex is always negligibly
small compared to the concentration of the substrate (particularly that the initial
conditions satisfy e0 << s0), Michaelis and Menten stated the assumption that
the substrate and enzyme are in equilibrium with their complex, which means
that kf << k−1. This results in the existence of a second small parameter in
the model that we assume to be of the same order of magnitude as ε. With the
notation

kf
k−1

=: βε = β
e0
s0
,

the model (A.3)/(A.4) becomes

βε
ds̄1
dt̄

= −
k1
k−1

s0s̄1(1− c̄1) + c̄1

βε2
dc̄1
dt̄

=
k1
k−1

s0s̄1(1− c̄1)− (1 + βε)c̄1,

where the term k1
k−1

s0 is supposed to be of O(1).
The main term of the asymptotic expansion and the solution of the reduced

model2, respectively, satisfies

ds̄01
dt̄

= −c̄01 (A.6)

c̄01(t̄) =
s0s̄

0
1

s0s̄01 +K
(A.7)

with K = k−1

k1
. After rescaling, these equations equal (2.14)/(2.15) and explain

in particular equation (2.13), the basis of the Michaelis-Menten theory.

2Before building the reduced model as the limit of the full model, we replace the differential
equation for s̄1 by the sum of both equations so that we can cancel one ε. Otherwise, the
reduced model would only consist of one equation, and the differential equation for s̄1 would
be lost.
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Since the solution of this reduced model cannot satisfy the initial conditions
(A.5), we expect the existence of fast dynamics in an initial layer. We therefore
rescale3 the time by τ = t̄ε−2 and find the model

dŝ1
dτ

=
ε

β

(

−
k1
k−1

s0ŝ1(1− ĉ1) + ĉ1

)

dĉ1
dτ

=
1

β

(
k1
k−1

s0ŝ1(1− ĉ1)− (1 + βε)ĉ1

)

.

The solution of the reduced model with respect to the initial data is

ŝ01(τ) = 1

ĉ01(τ) =
s0

s0 +K

(

1− e−
s0+K
βK

τ

)

=
s0

s0 +K

(

1− e
−

k1
kf

(s0+K)ετ
)

.

An approximation of the solution of (A.3)-(A.5) is therefore given by

s̄1(t̄) ≈ s̄01(t̄) (A.8)

c̄1(t̄) ≈
s0s̄

0
1(t̄)

s0s̄01(t̄) +K
−

s0
s0 +K

e−
s0+K
βK

t̄ε−2

=
s0s̄

0
1(t̄)

s0s̄01(t̄) +K
−

s0
s0 +K

e
−

k1
kf

(s0+K)t̄ε−1

(A.9)

with K = k−1

k1
. These functions are visualized in figure A.1, where the dynamics

in the initial layer are illustrated enlarged.

The approximation derived above holds well if the assumptions e0 << s0 and
kf << k−1 with

kf
k−1

= O( e0
s0
) = O(ε) and k1

k−1
s0 = O(1) are satisfied, and as

long as the concentration of the substrate is much greater than of the complex.
In particular, since equation (2.13), presented by Michaelis and Menten for the
derivation of the rate equation, equals equation (A.7), this approximation holds
well following the dynamics in the initial layer.

3Rescaling by τ = t̄ε−1 yields a time scale on which the assumed equilibrium of the first
reaction step can be seen, which means that both the concentration of the substrate and the
complex stay constant. Since these dynamics are captured by the other time scales (the solution
on this scale is canceled in the approximation by adding the constant and subtracting the limit),
we do not look at this time scale (compare also (ii) on page 99).
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Briggs/Haldane assumption

Since Briggs and Haldane did not make any further assumption, we directly
analyze the model (A.3)-(A.5), where k1

kf
s0 and k−1

kf
are supposed to be O(1).

The reduced model, whose solution equals the main term of the asymptotic
expansion, is

ds̄01
dt̄

= −c̄01 (A.10)

c̄01(t̄) =
s0s̄

0
1

s0s̄01 +K
(A.11)

with K =
k−1+kf

k1
. In the rescaled variables, the above model equals (2.17)/(2.18),

and hence explains the equation (2.16), proposed by Briggs and Haldane.
Since the initial conditions (A.5) cannot be satisfied by this solution, we expect

again fast dynamics in an initial layer. Rescaling the time by τ = t̄ε−1 yields the
full model

dŝ1
dτ

= ε

(

−
k1
kf

s0ŝ1(1− ĉ1) +
k−1

kf
ĉ1

)

dĉ1
dτ

=
k1
kf

s0ŝ1(1− ĉ1)− (1 +
k−1

kf
)ĉ1

and the following solution of the reduced one:

ŝ01(τ) = 1

ĉ01(τ) =
s0

s0 +K

(

1− e
−

k1
kf

(s0+K)τ
)

.

With this correction of the main term of the asymptotic expansion we can ap-
proximate the solution of (A.3)-(A.5) by

s̄1(t̄) ≈ s̄01(t̄) (A.12)

c̄1(t̄) ≈
s0s̄

0
1(t̄)

s0s̄01(t̄) +K
−

s0
s0 +K

e
−

k1
kf

(s0+K)t̄ε−1

(A.13)

with K =
k−1+kf

k1
(see figure A.1).

This approximation holds if the assumption e0 << s0, as well as k−1

kf
= O(1) and

k1
kf
s0 = O(1), are satisfied, and as long as c1 is negligibly small compared with s1.

Particularly, since the equation (2.16) of Briggs and Haldane equals equa-
tion (A.11), this approximation holds after a short transient, in which the con-
centration of the substrate stays almost constant and the concentration of the
complex grows.
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Comparison of Michaelis/Menten and Briggs/Haldane approximations

As can be easily seen, the approximations (A.8)/(A.9) and (A.12)/(A.13), which
result from the Michaelis/Menten and Briggs/Haldane assumption, respectively,
show qualitatively the same dynamics. According to figure A.1, the approxima-
tions only differ slightly4 in the scaled variables. But this should not mislead
us over the fact that the differences between both approximations, namely the
differences in the constants K, as well as in the order of magnitude of kf , are of
fundamental character: Since the time scaling involves the crucial parameter kf ,
the impact of its different orders of magnitude is masked in the scaled variables,
but it is revealed in the rescaled approximations

s1(t) ≈ s01(t)

c1(t) ≈ e0
s01(t)

s01(t) +K
− e0

s0
s0 +K

e−k1(s0+K)t,

where s01(t) denotes the solution behind the initial layer, which satisfies

ds01
dt

= −kfe0
s01(t)

s01(t) +K
.

As shown in figure A.2, after the complex concentration in the Michaelis/Menten
approximation increased quickly up to a value which is greater than in the
Briggs/Haldane case, the substrate and complex concentrations decay much slower
than in the solution that results from the Briggs/Haldane assumption.

Closing this section, we will compare and summarize the results concerning
the Michaelis/Menten and Briggs/Haldane assumptions that are presented in
the present chapter, as well as in chapter 2:

Both Michaelis/Menten and Briggs/Haldane stated the same assumptions about
the concentrations of the compounds that are involved in the enzymatic reaction,
while Michaelis/Menten made an additional assumption concerning the rate con-
stant of the product yielding reaction step.

Despite the above mentioned discrepancy and different argumentations, their
assumptions result in similar conclusions, namely in rate equations for the enzy-
matic reaction that qualitatively just differ in the constants K.

But neither Michaelis/Menten nor Briggs/Haldane analyzed the overall dy-
namics of the enzymatic reaction that result from their assumptions. It is easily
seen that the equations resulting from their assumptions cannot hold at all times.
This can be specified, and intervals in which these equations hold can be iden-
tified by means of asymptotic methods: By taking into account the different

4For the visual comparison we choose the same set of parameters except kf , which is negli-
gibly small compared to k−1 in the Michaelis/Menten case but of the same order of magnitude
as k−1 in the Briggs/Haldane case.
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assumptions we can derive approximations of the overall dynamics, which hold
as long as the assumptions are met, namely as long as the substrate concentration
is large enough. In particular, the equations derived by Michaelis/Menten and
Briggs/Haldane are both valid after a short initial layer, which shows different
dynamics, and as long as the substrate concentration is large enough.

As well as in the derivation of the rate equation, the different assumptions in
the asymptotic analysis yield identical qualitative dynamics, i.e. the resulting
models just differ in the constants K. But the negligibly small constant kf , as-
sumed by Michaelis/Menten, is related to a much slower decay of substrate and
complex concentrations after the initial layer. Therefore, having the common
assumption concerning the concentrations in mind, the approximation of enzy-
matic reactions that satisfy the additional assumption of Michaelis/Menten holds
at much longer times than the approximation of enzymatic reactions that satisfy
the Briggs/Haldane assumption.

s̄1(t̄)

c̄1(t̄)

t̄

Figure A.1: Comparison of the Michaelis/Menten approximation (black) and the
Briggs/Haldane approximation (gray) in scaled variables (for a better comparison
the same initial interval is pictured enlarged, although the scaled times τ differ)

s1(t)

c1(t)

t

Figure A.2: Comparison of the Michaelis/Menten approximation (black) and the
Briggs/Haldane approximation (gray) in rescaled variables (for a better compar-
ison both functions c1(t) are pictured enlarged)
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A.2 Multi-substrate reactions

For multi-substrate reactions that follow the reaction mechanism (2.28), we as-
sume that all substrates on the one hand and all complexes on the other hand
occur in the same order of magnitude. Due to this assumption it suffices to em-
ploy one reference parameter, sr, to scale all substrates and one parameter, cr, to
scale all complex concentrations. If we transfer the single-substrate assumption
of Briggs and Haldane, namely that the concentration of the complex is always
much smaller than of the substrate, to the multi-substrate case, we have cr << sr.
With the general scaling

s∗i = srs̄
∗
i , ci = crc̄i, t = tr t̄

we thus have the model

ds̄∗1
dt̄

= −k1tr

(

e0 −

m∑

j=1

crc̄j

)

s̄∗1 + k−1tr
cr
sr
c̄1

ds̄∗i
dt̄

= −kitrcrc̄i−1s̄
∗
i + k−itr

cr
sr
c̄i, i = 2,...,m

cr
sr

dc̄1
dt̄

= k1tr

(

e0 −

m∑

i=1

crc̄i

)

s̄∗1 − k−1tr
cr
sr
c̄1 − k2trcrc̄1s̄

∗
2 + k−2tr

cr
sr
c̄2

cr
sr

dc̄i
dt̄

= kitrcrc̄i−1s̄
∗
i − k−itr

cr
sr
c̄i − ki+1trcrc̄is̄

∗
i+1 + k−(i+1)tr

cr
sr
c̄i+1, i = 2,...,m−1

cr
sr

dc̄m
dt̄

= kmtrcrc̄m−1s̄
∗
m − (k−m + kf )tr

cr
sr
c̄m

with initial conditions

s̄∗i (0) =
s∗i0
sr

, c̄i(0) = 0

and a small parameter ε := cr
sr

.

With the same argumentation as stated on page 101 for the single-substrate
case, we choose for demonstrating reasons the simple scaling

sr = s∗10, cr = e0, tr =
s∗10
kfe0

, (A.14)
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which yields the model

ds̄∗1
dt̄

= −
k1
kf

s∗10

(

1−
m∑

j=1

c̄j

)

s̄∗1 +
k−1

kf
c̄1

ds̄∗i
dt̄

= −
ki
kf

s∗10c̄i−1s̄
∗
i +

k−i

kf
c̄i, i = 2, . . . ,m

ε
dc̄1
dt̄

=
k1
kf

s∗10

(

1−
m∑

i=1

c̄i

)

s̄∗1 −
k−1

kf
c̄1 −

k2
kf

s∗10c̄1s̄
∗
2 +

k−2

kf
c̄2

ε
dc̄i
dt̄

=
ki
kf

s∗10c̄i−1s̄
∗
i −

k−i

kf
c̄i −

ki+1

kf
s∗10c̄is̄

∗
i+1 +

k−(i+1)

kf
c̄i+1, i = 2, . . . ,m− 1

ε
dc̄m
dt̄

=
km
kf

s∗10c̄m−1s̄
∗
m −

k−m + kf
kf

c̄m

with initial conditions

s̄∗i (0) =
s∗i0
s∗10

, c̄i(0) = 0.

Here, the dimensionless parameters ki
kf
s∗10 and k−i

kf
are supposed to be O(1).

If we take into account the properties

ε
dc̄i
dt̄

= −
ds̄∗i
dt̄

+
ds̄∗i+1

dt̄
, i = 1, . . . ,m− 1

ε
dc̄m
dt̄

= −
ds̄∗m
dt̄
− c̄m,

we can write the reduced model in the form

ds̄∗0i
dt̄

= −c̄0m, i = 1, . . . ,m

0 = k1s
∗
10

(

1−
m∑

j=1

c̄0j

)

s̄∗01 − k−1c̄
0
1 − k2s

∗
10c̄

0
1s̄

∗0
2 + k−2c̄

0
2

0 = kis
∗
10c̄

0
i−1s̄

∗0
i − k−ic̄

0
i − ki+1s

∗
10c̄

0
i s̄

∗0
i+1 + k−(i+1)c̄

0
i+1, i = 2, . . . ,m− 1

0 = kms
∗
10c̄

0
m−1s̄

∗0
m − (k−m + kf )c̄

0
m.

In the rescaled variables, the above model equals model (2.29)-(2.31).

The latter m equations can be solved for c̄i (i = 1, . . . ,m) analogously to the
algorithm stated on page 19. In this case we take advantage of the equation
c̄00 = ē0 = 1−

∑m
j=1 c̄

0
j , and compute the complexes for i 6= m by substituting the

result of (iii) into the results of (ii).
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Since not all initial conditions can be satisfied, we expect again fast dynamics
in an initial layer. Rescaling by τ = t̄ε−1 yields

dŝ∗1
dτ

= ε

(

−
k1
kf

s∗10

(

1−
m∑

j=1

ĉj

)

ŝ∗1 +
k−1

kf
ĉ1

)

dŝ∗i
dτ

= ε

(

−
ki
kf

s∗10ĉi−1ŝ
∗
i +

k−i

kf
ĉi

)

, i = 2, . . . ,m

dĉ1
dτ

=
k1
kf

s∗10

(

1−
m∑

i=1

ĉi

)

ŝ∗1 −
k−1

kf
ĉ1 −

k2
kf

s∗10ĉ1ŝ
∗
2 +

k−2

kf
ĉ2

dĉi
dτ

=
ki
kf

s∗10ĉi−1ŝ
∗
i −

k−i

kf
ĉi −

ki+1

kf
s∗10ĉiŝ

∗
i+1 +

k−(i+1)

kf
ĉi+1, i = 2, . . . ,m− 1

dĉm
dτ

=
km
kf

s∗10ĉm−1ŝ
∗
m −

k−m + kf
kf

ĉm,

with the reduced model

dŝ∗0i
dτ

= 0, i = 1, . . . ,m

dĉ01
dτ

=
k1
kf

s∗10

(

1−
m∑

j=1

ĉ0j

)

ŝ∗01 −
k−1

kf
ĉ01 −

k2
kf

s∗10ĉ
0
1ŝ

∗0
2 +

k−2

kf
ĉ02

dĉ0i
dτ

=
ki
kf

s∗10ĉ
0
i−1ŝ

∗0
i −

k−i

kf
ĉ0i −

ki+1

kf
s∗10ĉ

0
i ŝ

∗0
i+1 +

k−(i+1)

kf
ĉ0i+1, i = 2, . . . ,m− 1

dĉ0m
dτ

=
km
kf

s∗10ĉ
0
m−1ŝ

∗0
m −

k−m + kf
kf

ĉ0m.

Taking into account the initial conditions ŝ∗0i (0) =
s∗i0
s∗10

and using the notation

ai :=
ki
kf

s∗i0, a−i :=
k−i

kf
(A.15)

gives the reduced model

ŝ∗0i (τ) =
s∗i0
s∗10

, i = 1, . . . ,m

dĉ01
dτ

= a1 − (a1 + a−1 + a2)ĉ
0
1 + (a−2 − a1)ĉ

0
2 − a1

m∑

j=3

ĉ0j

dĉ0i
dτ

= aiĉ
0
i−1 − (a−i + ai+1)ĉ

0
i + a−(i+1)ĉ

0
i+1, i = 2, . . . ,m− 1

dĉ0m
dτ

= amĉ
0
m−1 − (a−m + 1)ĉ0m.
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This model includes a linear inhomogeneous system of first order differential
equations with constant coefficients for the complexes ĉ0i . This problem has a
unique solution with respect to the initial conditions ĉ0i (0) = 0.

An approximation of the solution is therefore given by

s̄∗i (t̄) ≈ s̄∗0i (t̄) + ŝ∗0i (t̄ε−1)− ŝ∗0i (∞), i = 1, . . . ,m

c̄i(t̄) ≈ c̄0i (t̄) + ĉ0i (t̄ε
−1) − ĉ0i (∞), i = 1, . . . ,m.

This approximation holds if the assumption e0 << s∗10, as well as ki
kf
s∗10 = O(1)

and k−i

kf
= O(1), are satisfied, and as long as all substrate and complex concen-

trations are of the same order of magnitude, where the complex concentrations
are much smaller than the substrate concentrations.

Example 1 (m=2). We consider an enzymatic reaction that involves two sub-
strates and follows the mechanism

S∗
1 + E

k1
⇋
k−1

S∗
1E + S∗

2

k2
⇋
k−2

S∗
1S

∗
2E

kf
→ P + E.

We assume that the order of magnitude of the substrate concentrations on the
one hand and of the complex concentrations on the other hand are of the same
order of magnitude. Furthermore, we assume that the latter concentrations are
always negligibly small compared to the former ones. Then the dynamics (of the
scaled model using the scaling (A.14)) can be approximated by

s̄∗i (t̄) ≈ s̄∗0i (t̄) + ŝ∗0i

(

t̄
s∗10
e0

)

− ŝ∗0i (∞), i = 1, 2 (A.16)

c̄i(t̄) ≈ c̄0i (t̄) + ĉ0i

(

t̄
s∗10
e0

)

− ĉ0i (∞), i = 1, 2 (A.17)

where the occurring functions are the solutions of the following models:
The long-time behavior is given by

ds̄∗01
dt̄

= −c̄02

ds̄∗02
dt̄

= −c̄02

c̄01(t̄) = K2
s∗10s̄

∗0
1

(s∗10s̄
∗0
1 +K1)(s∗10s̄

∗0
2 +K2) + L

c̄02(t̄) =
(s∗10)

2s̄∗01 s̄∗02
(s∗10s̄

∗0
1 +K1)(s∗10s̄

∗0
2 +K2) + L

with

s̄∗01 (0) = 1, s̄∗02 (0) =
s∗20
s∗10
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and notation

K1 =
kf
k1

K2 =
k−2 + kf

k2

L =
(k−2 + kf )(k−1 − kf )

k1k2
.

The dynamics in the initial layer are approximated by

ŝ∗01 (τ) = 1

ŝ∗02 (τ) =
s∗20
s∗10

dĉ01
dτ

= a1 − (a1 + a−1 + a2)ĉ
0
1 + (a−2 − a1)ĉ

0
2

dĉ02
dτ

= a2ĉ
0
1 − (a−2 + 1)ĉ02

with
ĉ01(0) = 0, c̄02(0) = 0

and the notation introduced in (A.15).

The approximation (A.16)/(A.17) is visualized in figure A.3 for two different
sets of parameters, where the dynamics in the initial layer are represented mag-
nified. This figure shows the general dynamics in the sense that the complex
concentrations grow initially, while the substrate concentrations stay constant.
After these fast dynamics all concentrations decrease.

For the set of parameters that was chosen for the upper visualization, the
concentration of the substrate S∗

1 tends to zero. After a certain time, the complex
S∗
1E can therefore not be built, and hence the substrate S∗

2 not be consumed
anymore, for which reason the concentration of S∗

2 tends to a constant value
greater than zero.

For the second set of parameters, the substrate S∗
2 is entirely consumed first.

The complex S∗
1S

∗
2E can therefore not be built anymore, and the first reaction

step tends to its equilibrium so that the concentrations of S∗
1 and S∗

1E tend to
positive constant values.
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s̄∗1(t̄)

s̄∗2(t̄)

c̄1(t̄)

c̄2(t̄)
t̄

s̄∗1(t̄)

s̄∗2(t̄)

c̄1(t̄)

c̄2(t̄) t̄

Figure A.3: Approximated dynamics of an enzymatic reaction that involves two
substrates (for more details see the text in example 1)

description

f̄ solution of the full problem
f̄ 0 solution of the reduced problem (ε→ 0)
t̄ time variable

f̂ solution of the full initial layer problem

f̂ 0 solution of the reduced initial layer problem (ε→ 0)
τ time variable in the initial layer

Table A.1: Notation used in appendix A (f replaces si, s
∗
i and ci)
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B Existence

B.1 Proof related to chapter 3

Below we will prove certain specifications of the wave form N(z) in the single-
substrate bioremediation model (3.1) with respect to (A1)-(A3).

Proposition 1. N(z) is bounded from above by exponentially increasing and
decreasing functions. Furthermore, N(z) asymptotically approaches the least of
these upper bounds as z → ±∞. More precisely, there exist positive constants
K± such that

N(z) < K±e
−α±z

for all z ∈ R and
N(z) ∼ K±e

−α±z

as z tends to ±∞ with

α± =
1

s

(
νµ1(c±)−R

)
,

where α+ > 0 and α− < 0.

Proof. With d2 := −s > 0 and f(C) := νµ1(C), the traveling wave N(z) holds

Nz =
f(C)−R

d2
N,

which is equivalent to

d

dz

(

e
−

∫ z
0

f(C(z̄))−R
d2

dz̄
N(z)

)

= 0 and N(z) = N(0)e
∫ z
0

f(C(z̄))−R
d2

dz̄
.

Using the notation Ntot =
∫∞

−∞
N(z) dz we get

N(z) = Ntot
e
∫ z
0

f(C(z̄))−R
d2

dz̄

∫∞

−∞
e
∫ z̃
0

f(C(z̄))−R
d2

dz̄
dz̃

.

Expanding this fraction with e
−

∫ z0
0

f(C(z̄))−R
d2

dz̄
with an arbitrary z0 ∈ R, and using

the notation

G(z) := −

∫ z

z0

f(C(z̄))−R

d2
dz̄

yields

N(z) = Ntot
e−G(z)

∫∞

−∞
e−G(z̃) dz̃

. (B.1)
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It remains to show that the numerator of (B.1) is bounded from above by expo-
nentially increasing and decreasing functions, and that the denominator is greater
than zero.

For characterizing the function G(z), we choose z0 such that f(C(z0)) = R.
Since f(C) is strictly increasing and C(z) strictly decreasing, we have

f(C(z))−R

{

< 0, z > z0

> 0, z < z0.

These facts, as well as the consequential characteristics of G(z), are shown in
figure B.1. In particular, it can easily be verified that the first derivative of the
convex function satisfies

G′(z)
z→±∞
−−−−→ −

f(c±)−R

d2
=: α±

with α+ > 0 and α− < 0.

In order to prove that the numerator of (B.1) is bounded from above by expo-
nentially increasing and decreasing functions, we notice that there exist constants
b± such that G(z) is bounded below by the linear functions

G(z) > α±z + b±

for all z ∈ R. We thus get

e−G(z) < e−(α±z+b±) =: β±e
−α±z.

The numerator of (B.1) is therefore less than certain functions that decrease and
increase exponentially.

c+ c−

ν

f(c+)

f(c−)

R
b

b

b

C

f(C)

z0
z

α−z + b− α−(z − z0) α+(z − z0) α+z + b+

z

G(z)

z0
Figure B.1: Functions f(C) and G(z)
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In order to show that the denominator is greater than zero we distinguish two
cases: For z < z0, the function G meets G(z) < α−(z−z0), which is equivalent to

∫ z0

−∞

e−G(z) dz >

∫ z0

−∞

e−α−(z−z0) dz = −
1

α−

> 0.

For z > z0, we have G(z) < α+(z − z0), which is equivalent to

∫ ∞

z0

e−G(z) dz >

∫ ∞

z0

e−α+(z−z0) dz =
1

α+

> 0.

Hence, the denominator of (B.1) is positive as well:

D :=

∫ ∞

−∞

e−G(z) dz =

∫ z0

−∞

e−G(z) dz +

∫ ∞

z0

e−G(z) dz >
1

α+

−
1

α−

> 0.

We thus have

N(z) =
Ntot

D
e−G(z) <

Ntotβ±

D
e−α±z =: Kβ

±e
−α±z (B.2)

for all z ∈ R, which means that N(z) is less than certain functions that decrease
and increase exponentially (see figure B.2).

Furthermore, the wave form N(z) asymptotically approaches exponential func-
tions with growth rates −α± as z tends to ±∞: If we choose b± =: b̄± such that
G(z) asymptotically approaches the linear functions α±z+ b̄± as z tends to ±∞,
we have

N(z) =
Ntot

D
e−G(z) ∼

Ntot

D
e−(α±z+b̄±) =

Ntotβ̄±

D
e−α±z =: K±e

−α±z.

K+e
−α+zK−e

−α−z

z

Figure B.2: Upper bounds of N(z)
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B.2 Functions and parameters occurring in chapter 3

The functions occurring in proposition 8 on page 50 are listed below:

sv1(Ntot) := v +
νs

νo + νs

R

c̄s+
Ntot

su1(Ntot) := u−
νo

νo + νs

R

c̄o−
Ntot

sv2(Ntot) := v +
νs

νo + νs

Rds
c̄s+

Ntot

su2(Ntot) := u−
νo

νo + νs

Rdo
c̄o−

Ntot.

Their intersections among each other, as well as their intersections with the Ntot

axis, determine the point sets D± defined in the second condition of proposition 8.
The argument values of these intersections are stated below, where N

vi,uj

tot denotes
the value Ntot that meets svi(Ntot) = suj

(Ntot):

N v1,u1
tot :=

νo + νs
R

c̄o−c̄s+
c̄o−νs + c̄s+νo

(u− v)

N v2,u2
tot :=

νo + νs
R

c̄o−c̄s+
c̄o−νs ds + c̄s+νo do

(u− v)

N0,u2
tot :=

νo + νs
νo

c̄o−
Rdo

u

N v2,0
tot :=

νo + νs
νs

c̄s+
Rds

(−v)

N v1,u2
tot :=

νo + νs
R

c̄o−c̄s+
c̄o−νs + c̄s+νo do

(u− v)

N v2,u1
tot :=

νo + νs
R

c̄o−c̄s+
c̄o−νs ds + c̄s+νo

(u− v)

N v1,0
tot :=

νo + νs
νs

c̄s+
R

(−v)

N0,u1
tot :=

νo + νs
ν0

c̄o−
R

u.
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C Stability

C.1 Operators occurring in chapter 4

The differential operators L and T acting on L2, as well as the operators B and
TB on L2

w, and B̃ and TB̃ on L̃2
w, are given by

L = (JF (Q)−D∂z) T(λ) =
d

dz
− A(z, λ)

=
d

dz
−
(
A±(λ) +R±(z)

)

B = L+ k(z)D TB(λ) =
d

dz
− Aw(z, λ)

=
d

dz
−
(
A±

w(λ) +R±
w(z)

)

B̃ = WLW−1
T

B̃
(λ) =

d

dz
− Ãw(z, λ)

= WJF (Q)W−1 −DW (W−1)′ −D∂z =
d

dz
−
(
Ã±

w(λ) + R̃±
w(z)

)
.

The included functions are listed below5, separately for the single-substrate and
double-substrate bioremediation model, while in both cases the weight functions
are defined as follows:

w(z) =

{

ek+z, z ≥ 0

ek−z, z < 0
, k(z) =

{

k+, z ≥ 0

k−, z < 0

wi(z) =

{

ek
i
+z, z ≥ 0

ek
i
−
z, z < 0

, ki(z) =

{

ki
+, z ≥ 0

ki
−, z < 0.

Single-substrate bioremediation model

f(C) = ν
C

C + 1

f ′(C) = ν
1

(C + 1)2

D =

(
d1 0
0 d2

)

=

(
u− s 0
0 −s

)

W (z) =

(
w1(z) 0
0 w2(z)

)

5Since the matrices Ã±
w(λ) and R̃±

w(z) are not uniquely defined but depend on the choice of
the weight functions, we refer to pages 81 and 84 for more details.
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JF (Q) = JF (C,N)

=

(
−f ′(C)N −f(C)
f ′(C)N f(C)−R

)

A(z, λ) = D−1
(
JF (C,N)− λI

)

=

(
− 1

d1

(
f ′(C)N + λ

)
− 1

d1
f(C)

1
d2
f ′(C)N 1

d2

(
f(C)−R− λ

)

)

A±(λ) = D−1
(
JF (c±, 0)− λI

)

=

(
− λ

d1
− 1

d1
f(c±)

0 1
d2

(
f(c±)−R− λ

)

)

R±(z) = D−1
(
JF (C,N)− JF (c±, 0)

)

=

(
− 1

d1
f ′(C)N − 1

d1

(
f(C)− f(c±)

)

1
d2
f ′(C)N 1

d2

(
f(C)− f(c±)

)

)

Aw(z, λ) = A(z, λ) + k(z)I

=

(
− 1

d1

(
f ′(C)N + λ

)
+ k − 1

d1
f(C)

1
d2
f ′(C)N 1

d2

(
f(C)−R− λ

)
+ k

)

A±
w(λ) = A±(λ) + k±I

=

(
− λ

d1
+ k± − 1

d1
f(c±)

0 1
d2

(
f(c±)−R− λ

)
+ k±

)

R±
w(z) = R±(z) +

(
k(z)− k±

)
I

=

(
− 1

d1
f ′(C)N + (k − k±) − 1

d1

(
f(C)− f(c±)

)

1
d2
f ′(C)N 1

d2

(
f(C)− f(c±)

)
+ (k − k±)

)

Ãw(z, λ) = D−1WJF (Q)W−1 −W (W−1)′ − λD−1

=

(
− 1

d1

(
f ′(C)N + λ

)
+ k1 − 1

d1

w1

w2
f(C)

1
d2

w2

w1
f ′(C)N 1

d2

(
f(C)−R− λ

)
+ k2

)

Double-substrate bioremediation model

f = f(Co, Cs) =
Co

Co + 1

Cs

Cs + 1
, f±= f(co±, cs±)

fco = fco(Co, Cs) =
1

(Co + 1)2
Cs

Cs + 1
, fcs = fcs(Co, Cs)=

Co

Co + 1

1

(Cs + 1)2

D =





d1 0 0
0 d2 0
0 0 d3



 =





u− s 0 0
0 v − s 0
0 0 −s



, W (z) =





w1(z) 0 0
0 w2(z) 0
0 0 w3(z)
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JF (Q) = JF (Co, Cs, N)

=





−νofcoN −νofcsN −νof
−νsfcoN −νsfcsN −νsf

(νo + νs)fcoN (νo + νs)fcsN (νo + νs)f −R





A(z, λ) = D−1
(
JF (Co, Cs, N)− λI

)

=





− 1
d1
(νofcoN + λ) − 1

d1
νofcsN − 1

d1
νof

− 1
d2
νsfcoN − 1

d2
(νsfcsN + λ) − 1

d2
νsf

1
d3
(νo + νs)fcoN

1
d3
(νo + νs)fcsN

1
d3

(
(νo + νs)f −R− λ

)





A±(λ) = D−1
(
JF (co±, cs±, 0)− λI

)

=





− λ
d1

0 − 1
d1
νof

±

0 − λ
d2

− 1
d2
νsf

±

0 0 1
d3

(
(νo + νs)f

± −R− λ
)





R±(z) = D−1
(
JF (Co, Cs, N)− JF (co±, cs±, 0)

)

=





− νo
d1
fcoN − νo

d1
fcsN − νo

d1
(f − f±)

− νs
d2
fcoN − νs

d2
fcsN − νs

d2
(f − f±)

νo+νs
d3

fcoN
νo+νs
d3

fcsN
νo+νs
d3

(f − f±)





Aw(z, λ) = A(z, λ) + k(z)I

=





− 1
d1
(νofcoN+λ)+k − 1

d1
νofcsN − 1

d1
νof

− 1
d2
νsfcoN − 1

d2
(νsfcsN+λ)+k − 1

d2
νsf

1
d3
(νo + νs)fcoN

1
d3
(νo + νs)fcsN

1
d3

(
(νo+νs)f−R−λ

)
+k





A±
w(λ) = A±(λ) + k±I

=





− λ
d1

+ k± 0 − 1
d1
νof

±

0 − λ
d2

+ k± − 1
d2
νsf

±

0 0 1
d3

(
(νo + νs)f

± −R− λ
)
+ k±





R±
w(z) = R±(z) +

(
k(z)− k±

)
I

=





− νo
d1
fcoN + (k−k±) − νo

d1
fcsN − νo

d1
(f − f±)

− νs
d2
fcoN − νs

d2
fcsN + (k−k±) − νs

d2
(f − f±)

νo+νs
d3

fcoN
νo+νs
d3

fcsN
νo+νs
d3

(f − f±) + (k−k±)





Ãw(z, λ) = D−1WJF (Q)W−1 −W (W−1)′ − λD−1

=





− 1
d1
(νofcoN+λ)+k1 − 1

d1

w1

w2
νofcsN − 1

d1

w1

w3
νof

− 1
d2

w2

w1
νsfcoN − 1

d2
(νsfcsN+λ)+k2 − 1

d2

w2

w3
νsf

1
d3

w3

w1
(νo + νs)fcoN

1
d3

w3

w2
(νo + νs)fcsN

1
d3

(
(νo+νs)f−R−λ

)
+k3
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C.2 Proofs related to chapter 4

Proposition 1. Consider the linear operator

L : D(L) ⊂ L2(R,Cn) −→ L2(R,Cn)

p 7−→
(
JF (Q(z))−D∂z

)
p

with D(L) := {p ∈ L2(R,Cn) : p absolutely continuous, p′ ∈ L2(R,Cn)} and
assume that the matrix D is invertible, Q ∈ C1(R,Rn) and JF (Q(z)) is bounded.
Then L is closed and densely defined in L2(R,Cn) with domain D(L).

Proof. The second property follows directly from the fact that D(L) is dense in
L2(R,Cn). It thus remains to show that L is closed, i.e. if pn ∈ D(L), pn → p in
L2(R,Cn) and Lpn → g in L2(R,Cn), then p ∈ D(L) and g = Lp.

Consider a sequence {pn} ∈ D(L) satisfying

pn −→ p ∈ L2(R,Cn)

Lpn = JF (Q(z))pn −D∂zpn −→ g ∈ L2(R,Cn),

and note that for all [a, b] ⊂ R the functions pn satisfy

pn(b) = pn(a) +

∫ b

a

∂zpn(z) dz. (C.1)

Since Q(z) is continuously differentiable and JF (Q(z)) is bounded, we have

JF (Q(z))pn −→ JF (Q(z))p ∈ L2(R,Cn),

and hence

−D∂zpn −→ g − JF (Q(z))p ∈ L2(R,Cn).

Due to the invertibility of D, this is equivalent to

∂zpn −→ −D
−1g +D−1JF (Q(z))p ∈ L2(R,Cn).

With respect to the above results, the limit of (C.1) is

p(b) = p(a) +

∫ b

a

−D−1g(z) +D−1JF (Q(z))p(z) dz,

i.e. p is absolutely continuous and

∂zp = −D−1g +D−1JF (Q(z))p ∈ L2(R,Cn),

and hence p ∈ D(L). Moreover, the latter equation is equivalent to

g = JF (Q(z))p−D∂zp = Lp,

which completes the proof.
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The remainder of this subsection is devoted to theorem 3 on page 74.
We consider the differential equations

u′(z) =
(
A+

w(λ) +R+
w(z)

)
u(z) and û′(z) =

(
Â−

w(λ) + R̂−
w(z)

)
û(z)

with û(z) = u(−z), Â−
w(λ) = −A−

w(λ) and R̂−
w(z) = −R−

w(−z) related to the
eigenvalue problem (4.20) of the bioremediation model (3.1).

Below it is proven that for every fixed λ ∈ C each pair of matrices A+
w(λ)/R

+
w(z)

and Â−
w(λ)/R̂

−
w(z) either satisfies the assumptions of theorem 3 (i) or (ii).

Proposition 2. Consider the matrices

A±
w(λ) =

(
µ±
1w(λ) −

1
d1
f(c±)

0 µ±
2w(λ)

)

and Â−
w(λ) = −A

−
w(λ).

(i) For λ 6= d1
d1−d2

(f(c+)−R), and hence µ+
1w(λ) 6= µ+

2w(λ), there exists a matrix

P such that J = P−1A+
w(λ)P is diagonal.

For λ = d1
d1−d2

(f(c+)−R), and hence µ+
1w(λ) = µ+

2w(λ), there exists a matrix

P such that J = P−1A+
w(λ)P is a non-diagonal Jordan block.

(ii) For λ 6= d1
d1−d2

(f(c−)−R), and hence µ−
1w(λ) 6= µ−

2w(λ), there exists a matrix

P such that J = P−1Â−
w(λ)P is diagonal.

For λ = d1
d1−d2

(f(c−)−R), and hence µ−
1w(λ) = µ−

2w(λ), there exists a matrix

P such that J = P−1Â−
w(λ)P is a non-diagonal Jordan block.

Proof. In the mentioned order, the matrices

P =

(
a b
0 (µ+

2w(λ)− µ+
1w(λ))

b
r+

)

and P =

(
a b
0 a

r+

)

satisfy the requirements of (i), while

P =

(
a b
0 (µ−

2w(λ)− µ−
1w(λ))

b
r−

)

and P =

(
a b
0 − a

r−

)

satisfy (ii) for arbitrary values a, b ∈ R \ {0} and with notation r± := − 1
d1
f(c±).

Due to the fact that the equalities R+
w(z) = R+(z) and R̂−

w(z) = R̂−(z) are true
for z > 0, the requests on R+

w(z) and R̂−
w(z) claimed in theorem 3 can be verified

by considering the matrices R+(z) and R̂−(z) in the subsequent proposition.
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Proposition 3. Consider the matrices

R±(z) =

(
− 1

d1
f ′(C)N − 1

d1

(
f(C)− f(c±)

)

1
d2
f ′(C)N 1

d2

(
f(C)− f(c±)

)

)

and R̂−(z) = −R−(−z). Both matrices R(z) = R+(z) and R(z) = R̂−(z) satisfy
∫ ∞

1

|R(z)| dz <∞ and

∫ ∞

1

z|R(z)| dz <∞.

Remark 1. Taking into account
∫ ∞

1

|R̂−(z)| dz =

∫ −1

−∞

|R−(z)| dz and

∫ ∞

1

z|R̂−(z)| dz =

∫ −1

−∞

−z|R−(z)| dz

we can trace the statements about R̂−(z) back to statements about R−(z).

Proof. Since all four statements are shown analogously, we restrict the proof to
the first one.

Since d1 = u− s, d2 = −s, N , f ′(C) and f(C)− f(c+) are positive, it is

|R+(z)| =

(
1

d1
+

1

d2

)(

f(C)− f(c+) + f ′(C)N
)

.

It thus remains to show that
∫ ∞

1

f(C)− f(c+) dz <∞ and

∫ ∞

1

f ′(C)N dz <∞.

Due to the mean value theorem there exists a constant K1 with

f(C)− f(c+) ≤ K1(C − c+).

Integration of the first differential equation of (3.2) yields

C − c+ =
1

d1

∫ ∞

z

f(C)N dz̄.

Using f(C) < f(c−) and the result (B.2) gives

C − c+ < K2

∫ ∞

z

e−α+z̄ dz̄ = K3e
−α+z,

and therefore
∫ ∞

1

f(C)− f(c+) dz ≤ K1

∫ ∞

1

C − c+ dz < K4

∫ ∞

1

e−α+z dz =: K <∞

with positive constants Ki (i = 1, . . . , 4) and K.

Using f ′(C) < L1 and (B.2) again yields
∫ ∞

1

f ′(C)N dz < L1

∫ ∞

1

N dz < L2

∫ ∞

1

e−α+z dz =: L <∞

with positive constants L1, L2 and L.
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C.3 Eigenvalues of certain operators

Consider the differential equation

u′ = A(z, λ)u

with
A(z, λ) = A±(λ) +R±(z)

z→±∞
−−−−→ A±(λ),

and suppose that the pairs (λ, u) solving this equation with u ∈ L2(R,Cn) are
eigenvalues and eigenvectors of a related differential operator L on L2(R,Cn).

If A+(λ)/R+(z) and −A−(λ)/−R−(−z) satisfy the assumptions of theorem 3
(i) or (ii), the asymptotic behavior of the solutions is dominated by the eigenvalues
µ±
i (λ) of A±(λ). Since the signs of Re(µ±

i (λ)) determine the signs of the gradient
of the solutions at large |z|, the instability indices i±(λ) of A±(λ) are a measure
for the number of linearly independent decreasing/increasing solutions at ±∞.
We can therefore express necessary and sufficient conditions for the existence
and non-existence of solutions that decay at both ends, and hence for λ being an
eigenvalue or no eigenvalue of L, in terms of instability indices.

These conditions, combined with results of theorem 2, are visualized in ta-
ble C.1. In certain cases, namely i−(λ) = 0 and i+(λ) = n, they enable us to
distinguish ρ(L) from σpt(L), and to differentiate between eigenvalues and non-
eigenvalues in σess(L) without computing dim(N(L− λI)).

i+(λ)

i−(λ)

ind =

λ is

λ ∈

ind =

λ is

λ ∈

ind =

λ is

λ ∈

ind =

λ is

λ ∈

0 1 2 . . . n

0

1

2

...

n

0

no eigenvalue

ρ(L)

1

eigenvalue

σess(L)

2

eigenvalue

σess(L)

n

eigenvalue

σess(L)

−1

no eigenvalue

σess(L)

0

ρ(L) ∪ σpt(L)

1

eigenvalue

σess(L)

n− 1

eigenvalue

σess(L)

−2

no eigenvalue

σess(L)

−1

σess(L)

0

ρ(L) ∪ σpt(L)

n− 2

eigenvalue

σess(L)

−n

no eigenvalue

σess(L)

−(n− 1)

no eigenvalue

σess(L)

−(n− 2)

no eigenvalue

σess(L)

0

no eigenvalue

ρ(L)

Table C.1: Classification of λ with respect to the instability indices according to
theorem 2 and the conditions following from theorem 3
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Remark 2. Note that the instability index is only defined for hyperbolic matrices.
The results visualized in table C.1 are therefore not applicable to values λ that
are related to either a non-hyperbolic matrix A−(λ) or a non-hyperbolic matrix
A+(λ). Nevertheless, counting negative and positive eigenvalues of A±(λ) in these
cases also yields necessary and sufficient conditions concerning the eigenvalues of
the differential operator L with the same arguments as before.

Remark 3. Consider the single-substrate bioremediation model (3.1) and the re-
lated differential operator L on L2(R,C2). Since the matrices A+(λ)/R+(z) and
−A−(λ)/−R−(−z) satisfy the assumptions of theorem 3, the results visualized in
table C.1 are applicable to this problem. It is thus easily deduced from figure 4.3
that the point spectrum σpt(L) is empty, as already mentioned on page 65.
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Abstract

Bioremediation, i.e. the degradation of contaminants by microorganisms, is a
promising technology for restoring contaminated groundwater and soil. In order
to predict the merits of this method, mathematical models are of special interest.
In this thesis a particular bioremediation model is derived and analyzed.

We develop a mathematical model that describes the degradation of an ar-
bitrary number of substrates and the related growth of specific bacteria. Due
to natural correlations, the modeling process involves the analysis of enzymatic
reactions as well as bacterial growth depending on these reactions. The resulting
bioremediation model consists of advection-reaction equations for the substrate
concentrations and a rate equation related to the biomass concentration.

For the special cases of one and two substrates involved in the bioremediation
process, we analyze our model with respect to traveling wave solutions, which
form an important class of solutions occurring in various problems in the natural
sciences.

By phase plane arguments we show the existence of traveling wave fronts in
both models of interest, and we specify the solutions in terms of the wave profile
and occurring wave speeds.

Furthermore, we study the wave fronts with respect to their stability in L2 as
well as in exponentially weighted L2 spaces. We deduce linear stability results
from the spectral analysis of differential operators involved in the problem, where
their Fredholm properties and specific asymptotic properties are of particular
importance.





Zusammenfassung

Bioremediation, d. h. der Abbau von Schadstoffen durch Mikroorganismen, ist
eine Erfolg versprechende Methode zur Sanierung verunreinigten Grundwassers
und Bodens. Zur Beurteilung der Effizienz derartiger Sanierungsmethoden kön-
nen mathematische Modelle eingesetzt werden. In der vorliegenden Arbeit wird
ein spezielles Bioremediationsmodell hergeleitet und analysiert.

Zunächst wird ein mathematisches Modell aufgestellt, das den Abbau einer be-
liebigen Substratanzahl und das damit verbundene Wachstum spezieller Bakte-
rien beschreibt. Aufgrund natürlicher Zusammenhänge finden im Modellierungs-
prozess sowohl enzymatische Reaktionen als auch das eng mit diesen Reaktionen
verbundene bakterielle Wachstum Beachtung. Das resultierende Bioremediations-
modell besteht aus Advektions-Reaktions-Gleichungen für die Substratkonzentra-
tionen und einer Ratengleichung für die Bakterienkonzentration.

Für die Spezialfälle eines Substrats bzw. zweier Substrate wird dieses Modell im
Hinblick auf wandernde Wellen untersucht. Diese Lösungen stellen eine wichtige
Klasse spezieller Lösungen dar, die in vielen verschiedenen naturwissenschaft-
lichen Problemen auftreten.

Mithilfe von Phasenraum-Argumenten wird die Existenz wandernder Wellen
in beiden oben genannten Modellen gezeigt. Darüber hinaus lassen sich detail-
lierte Angaben zu den auftretenden Wellenprofilen und Wellengeschwindigkeiten
machen.

Abschließend werden die zuvor bestimmten wandernden Wellen im Hinblick
auf ihre Stabilität in L2 und exponentiell gewichteten L2-Räumen untersucht.
Die Spektralanalyse spezieller Differentialoperatoren liefert Aussagen über die
linearisierte Stabilität der wandernden Wellen, wobei Fredholmeigenschaften so-
wie spezielle asymptotische Eigenschaften der betrachteten Operatoren von beson-
derer Bedeutung sind.





Lebenslauf

Persönliche Daten

Name Caroline Frederike v. Dresky

Geburtsdatum 01.10.1977

Geburtsort Lübeck

Ausbildung

1988-1997 Lauenburgische Gelehrtenschule Ratzeburg,
Abschluss: Abitur

10/1997-09/2000 Georg-August-Universität Göttingen:
Studium Mathematik

10/2000-06/2004 Universität Hamburg:
Studium Mathematik, Abschluss: Diplom

04/2005-06/2010 Universität Hamburg:
Promotionsstudium Mathematik

Wissenschaftliche Tätigkeit

09/2004-12/2008 Universität Hamburg, Department Mathematik:
wissenschaftliche Mitarbeiterin

10/2007-06/2008,
01/2009-12/2009

Foundation for Research and Technology–Hellas (Heraklion),
Institute of Applied and Computational Mathematics:
wissenschaftliche Mitarbeiterin

seit 06/2010 Wolfgang Pauli Institut (Wien), Fakultät für Mathematik:
wissenschaftliche Mitarbeiterin

Hamburg, den 3. Juni 2010


