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INTRODUCTION

Modular tensor categories have appeared in a variety of contexts and ap-

plications. The categories of representations of the Drinfeld double of a

finite dimensional Hopf algebra, a more general class of weak Hopf alge-

bras ([NTV03]) or rational vertex operator algebras ([Hua08]) are modular.

The latter are a central source of examples for the TFT-approach to two-

dimensional conformal field theory ([FRS02]).

Furthermore, modular tensor categories are an essential ingredient in the

construction of Reshetikhin-Turaev invariants of knots and three-manifolds

([RT91]). This construction generalizes to the notion of a C-extended three-

dimensional topological field theory, where C is a modular tensor category.

The Reshetikhin-Turaev construction establishes a connection between

algebraic structures (modular categories) and three-dimensional geometric

objects (three-dimensional cobordisms). A similar connection in a lower di-

mension, which is by now a classical result (for a review see [Koc04]), states

that the notions of a two-dimensional topological field theory and of a com-

mutative Frobenius algebra are essentially equivalent. This is made precise

in the statement that the category of two-dimensional topological field the-

ories and the category of commutative Frobenius algebras are equivalent as

monoidal categories.

A modular tensor category might be thought of as a higher-dimensional

analogue of a commutative Frobenius algebra. This is indicated by several

observations:

Recent work ([Lur09]) on extended topological field theory in the sense

of higher category theory shows that a fully extended TFT is entirely de-

termined by its value on the point viewed as a zero-dimensional manifold.

On 0-1-2-extended TFT one makes the following observation: Such a theory

assigns ([FHLT09]) a semi-simple Frobenius algebra A to the point and the

center of A, being a commutative (semi-simple) Frobenius algebra, to the cir-

cle. Now whatever kind of tensor category C a 0-1-2-3-extended TFT assigns

to the point, one expects that it assigns to the circle the Drinfeld center of C,
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which is ([Müg03]) a modular tensor category. This is supported by [Fre09],

where the idea is formulated that a modular tensor category determines a 1-

2-3-extended topological field theory and vice versa. In this correspondence

the modular category is the structure that the TFT assigns to the circle.

A structure that is related to three-dimensional topological field theories

and modular categories is the one of a C-extended two-dimensional modular

functor (for a review see [BK01]). This is an assignment of a Vectk-valued

functor to every two-dimensional manifold with boundary. Given any Vectk-

enriched semi-simple abelian category C, a genus zero C-extended modular

functor (i.e. a functor for every surface of genus zero) is equivalent to the

structure of a weakly ribbon category ([BK01, Def. 5.3.5]) on C. A C-

extended modular functor for arbitrary genus is equivalent to the structure

of a modular tensor category on C, provided that the induced weakly ribbon

structure on C is ribbon.

This correspondence is in agreement with the idea that a modular cat-

egory should be thought of as the categorified analogue of a commutative

Frobenius algebra. The relation of modular categories to two-dimensional

surfaces explains the a priori mysterious appearance of the name-giving rep-

resentation of SL(2,Z) on the underlying vector-space of the Verlinde algebra

V(C) of C: The action of SL(2,Z) on the torus induces natural morphisms on

the vector space V(C). Similarly, representations of mapping class groups of

other surfaces naturally occur due to their action on the respective manifolds.

Given a finite group G, many of the above notions and structures may

be generalized to an equivariant setting, that means one replaces manifolds

by principal G-covers. In [Tur99] the notion of homotopy field theory was

introduced, which as a special case contains the notion of G-equivariant topo-

logical field theory for a finite group G. It turns out that in dimension two,

the monoidal categories of G-equivariant topological field theories (see def-

inition 1.2 in this thesis) and of G-Frobenius algebras (see definition 1.6 in

this thesis) are equivalent.

We now turn to an equivariant generalization of the higher-dimensional

analogue of Frobenius algebras, i.e. to categorical structures. In [Tur00], a G-

equivariant version of Reshetikhin-Turaev invariants was presented, together

with the notion of a G-equivariant fusion category (see definition 1.21 in

this thesis). These categories were also studied in [Kir04, Kir02], where the

motivating example is the category of G-twisted representations of a vertex

algebra V with finite group G of automorphisms. Given any G-equivariant
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fusion category C, one may form its orbifold category C/G. The central result

of [Kir04] is that C is G-modular, if and only if C/G is modular.

The relation between G-equivariant modular functors and G-equivariant

fusion categories was studied in [KP08]. Given an abelian G-equivariant cat-

egory C, the structure of a genus zero G-equivariant 2-dimensional modular

functor is equivalent to the structure of a G-equivariant weakly ribbon cate-

gory on C. However, a similar result that relates G-modular categories and

higher genus G-modular functors is not yet available in the literature.

We will now go into more detail on G-modular functors; for a precise

definition, we refer to [KP08] and definition 1.18. G will always be a finite

group, C a G-equivariant abelian category, i.e. an abelian category with a

G-grading C =
⊕

g∈G Cg and an action of G via functors Rg that cover the

adjoint action of G on itself. All abelian categories in this thesis are en-

riched over the category Vectk of finite-dimensional vector spaces over an

algebraically closed field k of characteristic zero.

A G-equivariant modular functor assigns to every principal G-cover (P →
E) of a two-dimensional manifold E a functor

τG(P→E) : �
a∈A(E)

Cm−1
a
→ Vectk ,

where A(E) is the set of boundary components of E and ma ∈ G the mon-

odromy of the cover (P→E) around the boundary a. To every diffeomor-

phism ϕ : (P→E)
∼=→ (P ′→E ′) of G-bundles, the G-equivariant modular

functor assigns an isomorphism of functors

ϕ∗ : τG(P→E) ⇒ τG(P ′→E ′) .

These assignments have to satisfy a number of axioms, e.g. they have to be

compatible with gluing of surfaces.

At this point a comment on the connection between the property of C
to be G-modular and the possibility of defining a C-extended G-equivariant

modular functor of higher genus is in order. Given a G-equivariant fusion

category C, we choose representatives (Vi)i∈I for the isomorphism classes of

simple objects of C. We write the action of G on objects as gV := Rg(V ).

Now define the extended Verlinde algebra Ṽ as in [Kir04]:

Ṽ(C) :=
⊕

g∈G,i∈I

Hom(Vi,
gVi) .
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The vector space splits as a direct sum

Ṽ(C) ∼=
⊕

g,h∈G
gh=hg

Ṽg,h(C)

with

Ṽg,h(C) =
⊕
i∈Ih

Hom(Vi,
gVi) ,

where Ih is the set of isomorphism classes of simple objects in the component

Ch.

The category C is calledG-modular, if a certain endomorphism s : Ṽ(C) →
Ṽ(C) is invertible. For the case G = {1}, this definition amounts to the usual

definition of modularity for a ribbon category. For G = {1} it was shown

([BK01, Section 5.5]) that invertibility of the endomorphism s is sufficient

to define a modular functor for manifolds of arbitrary genus g, by gluing

several appropriate manifolds of genus zero and using the gluing property of

modular functors. Conversely,if a consistent C-extended modular functor for

arbitrary genus manifolds exists, s is the morphism that is assigned to the

action of an element of the mapping class group of the torus and hence must

be invertible

One expects that these arguments generalize to the equivariant setting:

The vector spaces Ṽg,h(C) are the value τG(Tg,h→T ) of the G-modular functor

that corresponds to C on specific covers (Tg,h→T ) with monodromies g, h

along a basis of fundamental cycles of the torus T . For any group G the

action of the mapping class group of the torus can be lifted to an action on

the collection of covers of the form (Tg,h→T ). If a coherent C-extended G-

equivariant modular functor for higher genus manifolds exists, one expects

that this action induces the morphism s, which then has to be invertible.

Conversely, if C is G-modular, one would expect to get functors for arbitrary

G-covers by gluing covers of genus zero surfaces.

In the above discussion of a G = {1} C-extended modular functor, one

notices that even if the category is not modular, it is still possible to assign

functors to higher genus manifolds. However if C is not modular, a consistent

modular functor cannot be defined, precisely because it is not possible to

assign natural isomorphisms to all elements of the mapping class group of the

torus. So one expects that a generalization of the correspondence between G-

equivariant genus zero modular functors and G-equivariant ribbon categories
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to higher genus and G-modular categories depends on a better understanding

of the mapping class groups of G-bundles of higher genus manifolds.

We now turn to the results of this thesis. It is our aim to construct

a certain class of G-equivariant categories that as a special case contain

the so-called permutation equivariant categories, i.e. SN -equivariant fusion

categories that have C�N as neutral component with the induced permutation

action of SN . The construction will be geometric, i.e. we will give the G-

equivariant modular functor that corresponds to the permutation equivariant

categories. The data that enter this construction are a finite group G, a finite

G-set X and a modular category C.

The orbifolds of permutation equivariant categories are of particular in-

terest: For a modular category C (i.e. for G = {1}), the kernel of the

SL(2,Z)-representation that is induced by the action of SL(2,Z) on the torus

is a congruence subgroup ([NS08]). This has been conjectured for some time.

Various approaches ([Ban02, Ban03]) on this problem use data of the per-

mutation orbifolds.

As a first step towards the definition of a permutation equivariant modular

functor, we construct a functor

FX : Gcob(2) → cob(2)

from the category of G-covers of two-dimensional cobordisms to the category

of two-dimensional cobordisms by taking the total space of the associated

bundle:

FX (P→E) := X ×G P = X × P/(g−1x, p) ∼ (x, gp) (0.1)

This functor allows us to pull back a given two-dimensional topological field

theory to a permutation equivariant TFT. The G-Frobenius algebra that

corresponds to this topological field theory then gives enough insight to find

an ansatz for the G-equivariant abelian category CX , which is necessary to

define a G-equivariant modular functor τX . The category CX is determined

by the structure of orbits of the G-set X . In this categorified case, the

topological field theory is replaced by the modular functor τ that corresponds

to the modular category C. We are now ready to formulate one of our main

theorems that is explained in more detail in section 2.2:

Theorem. Let G be a finite group, X a finite ordered G-set and C a k-linear

modular category. Denote by CX the G-equivariant category determined by
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the orbit-structure of X . Then the functor τX defined by

τX (P→M) := τ(FX (P→M))

is a CX -extended G-equivariant modular functor.

We illustrate the situation by the following diagram:

modular category C // C-extended modular functor τ

FX -construction
of this thesis

��

uu TVXY[]_acefhj

G-modular category CX // CX -extended modular functor τXii jhfeca_][YXVT

The upper arrow that points to the left is dashed, since a C-extended modular

functor endows an abelian category C only with a weak duality [BK01] while

on a modular tensor category one has a strong duality. The lower arrow

pointing to the left is dashed not only for this reason; as mentioned before

the algebraic structure corresponding to higher genus G-equivariant modular

functors has not yet been worked out.

This finishes the geometric construction. As a step to the permutation

equivariant categories, we then use these geometric results to compute the

structural functors and morphisms of a Z/2-equivariant ribbon category,

where Z/2 acts on a set X with two elements by permutation. In this case it

is possible to give the full structure of a Z/2-equivariant monoidal category,

which turns out to be ribbon, rather than only weakly ribbon. This fin-

ishes in a geometric setting a program that was started in a purely algebraic

approach in [BFRS10a].

For arbitrary finite groups the situation is far more involved. In the

correspondence between G-equivariant modular functors and G-equivariant

weakly ribbon categories, the monoidal product comes from appropriate G-

covers over the pair-of-pants, i.e. over a sphere with three non-intersecting

discs removed. The main problem in the computation of the monoidal prod-

uct is to handle associated covers of these G-bundles: If the total space of

the associated bundle has non-zero genus, its geometry becomes complicated

to work with.
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As a step towards the monoidal structure on CX , one notices that the

axioms of a G-equivariant monoidal category imply that the summands CXg
are module categories (see [Ost03]) over the neutral component CX1 , which

is a braided monoidal category. Even if the G-equivariant weakly ribbon

categories CX for arbitrary groups are too complicated, it is still possible

to compute the module categories CXg /CX1 , which by the results of [ENO09]

determine this structure up to an element of a torsor over the group H3(G, k∗).
In addition we compute the modular invariant partition functions that

come with these module categories ([Ost03, Section 5.2]): A module cate-

gory M over a fusion category D comes ([Ost03]) with the two α-induction

functors α± : D → EndD(M). An important quantity is following matrix

with non-negative integers as entries:

Z(M/D)i,j := dimkHomEndD(M)(α
+
i , α

−
j ) ,

where i, j label the simple objects of D. The entries of this matrix are the

coefficients of the modular invariant partition function.

The main geometric tool in this thesis is the Lego-Teichmüller Game,

or LTG for short. The LTG is a systematic way to describe the action

of diffeomorphisms on surfaces: A marking graph is drawn on the surfaces

and a set of simple moves between such graphs is introduced. These moves

implement the action of the mapping class group and the operation of gluing

of surfaces.

The correspondence between the modular category C and the modular

functor τ provides us with a dictionary that translates LTG-moves into mor-

phisms in C (see appendix A). This dictionary turns out to be of invaluable

use in the computation of the structure morphisms in the categories CX ,

which are entirely expressed by the structure morphisms of C.
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Outline

In chapter 1 we will collect a number of definitions and basic properties

of G-equivariant topological field theories and modular functors. In more

detail, section 1.1 recalls the definition of a G-equivariant topological field

theory and then focusses on the case of two-dimensional theories. Here the

correspondence between G-equivariant TFTs and G-Frobenius algebras is ex-

plained. Section 1.2 is a detailed review of the Lego-Teichmüller Game, a for-

malism that aims at a description of mapping class groups of surfaces. In par-

ticular the connection between the LTG-moves and the mapping class group

of a surface is explained. Section 1.3 recalls the concept of G-equivariant

modular functors, which are related to G-equivariant weakly ribbon cate-

gories in section 1.4.

Chapter 2 contains our main construction: In section 2.1.1 we introduce

the cover functor (0.1), which ist the central idea for the construction, and

use it to construct permutation equivariant topological field theories. Then

we give a survey of those surfaces that will be of importance in the sequel

and compute the G-Frobenius algebras that correspond to our permutation

equivariant TFTs. These algebras provide us with enough insight to define

the permutation equivariant modular functors in section 2.2.

In chapter 3 we turn to concrete calculations: In section 3.1 we will

derive in detail the full structure of a Z/2-equivariant ribbon structure from

the G-equivariant modular functor τX . This makes heavy use of the Lego-

Teichmüller Game and is based on a careful analysis of Z/2-covers of certain

manifolds. In section 3.2 we turn to arbitrary groups and compute the module

category structures for CXg over CX1 that are part of the larger structure of a

G-equivariant monoidal category. The modular invariant partition functions

for these module categories are computed in 3.3. This shows that every

permutation modular invariant is physical.

In appendix A we will give a short overview over the application of the

Lego-Teichmüller Game to modular functors. This will include a dictionary

that relates LTG-moves to the structure morphisms of a ribbon category.
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1. MODULAR FUNCTORS AND TFTS

We will always assume that G is a finite group and k an algebraically closed

field of characteristic zero.

In this chapter we will recall the definitions of a G-equivariant topological

field theory and a G-Frobenius algebra. We will investigate the category

Gcob(2) of principal G-covers of two-dimensional cobordisms and explain

how to derive a G-Frobenius algebra from a two-dimensional G-equivariant

topological field theory.

We then have a closer look at the category ESurf of extended surfaces

and introduce the Lego-Teichmüller Game. The LTG will be used in chapter

3.

Then we recall the concept of G-equivariant modular functors and of

G-equivariant (weakly) ribbon categories and relate these notions.

1.1 Topological field theories and Frobenius algebras

1.1.1 Equivariant topological field theories

In this subsection we recall the notion of a G-equivariant topological field

theory. We first define a category Gcob(d) of cobordisms with G-covers.

An object (P→Σ, {ei}) of Gcob(d) consists of a smooth (d− 1)-dimen-

sional closed oriented manifold Σ, together with a principal left G-bundle P

on Σ. For technical reasons, we also fix a marked point ei on each connected

component of P . For any oriented manifold M , the manifold with the oppo-

site orientation will be denoted by M . It is sufficient to choose orientations

of the base manifolds:

Lemma 1.1. Let π : P →M be a discrete cover of an oriented manifold M .

Then the orientation of M canonically induces an orientation on P .

Proof. Since π : P →M is a discrete cover, π is a local diffeomorphism. The

global orientation of M can be represented by a global section of the orienta-
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tion bundle on M , which can be pulled back along the local diffeomorphism

π to a global section of the orientation bundle of P .

The morphisms in Gcob(d) from (P1→Σ1, e1) to (P2→Σ2, e2) are dif-

feomorphism classes of cobordisms of the base and the total space of the

principal bundles. More precisely, consider pairs (M,E), consisting of a left

principal G-bundle E over a smooth d-dimensional oriented manifold M and

an orientation preserving diffeomorphism of G-bundles from the restriction

∂E → ∂M to the G-bundles on the boundary, i.e. diffeomorphisms

∂M
∼=→ Σ1 t Σ2 , E|Σ1

∼=→ P1 and E|Σ2

∼=→ P2 .

The morphisms in Gcob(d) are now obtained by modding out diffeomor-

phisms of E. We write (E→M) for a representative.

The composition of morphisms is gluing along the boundary of both the

base and the total space: Let (Pi→Σi, ei) for i = 1, 2, 3 be objects in Gcob(d)

and (E→M) : (P1→Σ1, e1) → (P2→Σ2, e2) and (E ′→M ′) : (P2→Σ2, e2) →
(P3→Σ3, e3) be cobordisms. Then the manifold MtΣ2M

′ obtained by gluing

the base spaces is naturally equipped with the G-principal bundle E tP2 E
′.

The identity on (P→Σ, e) is the diffeomorphism class of the cylinder over Σ

with trivial G-cover.

The category Gcob(d) has a natural structure of a symmetric monoidal

category, with tensor product given by disjoint union of manifolds and bun-

dles. The empty set with empty G-bundle is the tensor unit.

We comment on the role of the marked points on the G-cover P of an

object (P→Σ, {ei}) which we have chosen as an auxiliary datum. For sim-

plicity we assume that P is connected, so we only consider a single marked

point e ∈ P . Its projection on Σ determines a base point x ∈ Σ. Moreover,

it determines an identification of the fibre Px over x with G. The marked

points on the objects (P→Σ, e) induce marked points on the boundaries of

cobordisms, but we did not impose any conditions on marked points on cobor-

disms. Thus different choices for e ∈ P give objects that are isomorphic in

Gcob(d), with the isomorphism being the cylinder with the trivial G-cover.

In the case of the trivial group G = 1, one can forget the marked point

and obtains an equivalence of categories of Gcob(d) to the usual category

cob(d) of manifolds and cobordisms.

Definition 1.2. The category GTFT of d-dimensional G-equivariant topo-

logical field theories (or G-TFTs for short) is the category of symmetric
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monoidal functors

tftG : Gcob(d) → Vectk. (1.1)

with monoidal natural transformations as morphisms.

1.1.2 The category Gcob(2)

From now on, we restrict our attention to two-dimensional cobordisms. We

will at first recall basic definitions concerning the two-dimensional case and

introduce some notation for the main objects of this thesis.

In the face of the technical condition in subsection 1.1.1 that the (one-

dimensional) manifolds serving as objects in Gcob(2) have distinguished

points on their connected components, the appropriate notion for morphisms

in Gcob(2) is that of G-covers of extended surfaces. Thus from [BK00,

Section 2] recall the following

Definition 1.3. An extended surface is a compact oriented smooth two-

dimensional manifold E, possibly with boundary, together with a choice of

a marked point on each connected component of the boundary ∂E. The set

of boundary components of E is denoted by A(E) and we write extended

surfaces as (E, {pa}a∈A(E)). A morphism of extended surfaces is a diffeo-

morphism that preserves marked points. The category of extended surfaces

together with morphisms of extended surfaces will be denoted by ESurf .

If (E, {pa}a∈A(E)) is an extended surface and α, β ∈ A(E) with α 6= β,

then we can glue E along the boundary components α and β. The glued

surface is denoted by tα,βE.

We will discuss extended surfaces and particularly their automorphisms

in section 1.2 in greater detail. From [Pri07, Section 2] recall the definition

of a G-cover of an extended surface:

Definition 1.4. A G-cover of an extended surface (E, {pa}a∈A(E)) is a pair

(P→E, {p̃a}a∈A(E)), where (P→E) is a principal G-bundle and p̃a ∈ P is a

choice of a marked point in the fiber of pa for every a ∈ A(E).

A morphism of G-covers of extended surfaces is a diffeomorphism between

principal G-covers that preserves marked points. We do not assume that

morphisms of G-covers of extended surfaces restrict to the identity on the

base space. The category of G-covers of extended surfaces is denoted by

GESurf .
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The morphisms in Gcob(2) are thus diffeomorphism classes of G-covers

of extended surfaces. We will now introduce notation for representatives of

certain objects and morphisms in Gcob(2).

Covers of the circle

For any element g ∈ G, we introduce the principal G-bundle (Pg→S1) with

total space

Pg := R×G/(t+ 2π, h) ∼ (t, hg) (1.2)

and distinguished point [0R, 1G]. With respect to this point, the monodromy

of the bundle is given by g. One easily checks that every principal G-bundle

over S1 is isomorphic to Pg for some g ∈ G.

Covers of the n-punctured sphere

We now fix a standard model for a connected extended surface of genus zero

with n boundary components. These surfaces and particularly their G-covers

will play a crucial role in this thesis.

Definition 1.5. For every n ∈ N the standard sphere (or n-punctured

sphere) Sn is the Riemann sphere C∪{∞} with standard orientation and with

discs of radius 1
3

centered at the first n positive integers removed. As marked

points on the boundary components of Sn, we choose k − i
3

for k = 1, . . . , n.

As an example, the standard sphere S3 looks as follows

α β γ

(1.3)

We need G-covers of the standard sphere Sn; as standard models for

these covers, we use the so called standard blocks [Pri07]. To construct the

standard blocks, we remove from Sn the straight lines connecting the points

k+ i
3

to the point ∞. The resulting manifold Sn\cuts is contractible, hence it
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only has the trivial G-cover ((Sn\cuts)×G→ Sn). For any n-tuple g1, . . . gn

of elements in G whose product is the neutral element, we obtain a G-cover

of Sn by gluing the two sides of the j-th cut in (Sn\cuts)×G with the action

of gj ∈ G. The following picture shows the situation with a view in the

direction of the negative imaginary axis:

(z, xgj) (z, x) (1.4)

with (z, x) ∈ (Sn\cuts)×G.

We finally have to specify marked points on the boundary components of

((Sn\cuts) × G)/gluing. To this end, we choose another n-tuple h1, . . . , hn

of elements in G and take as marked points [k − i
3
, hk] for k = 1, . . . n. We

write Sn(g1, . . . , gn;h1, . . . , hn) for the total space of these marked G-covers

over Sn. In fact, any G-cover over an n-punctured sphere is diffeomorphic

to one G-cover of the form (Sn(g1, . . . , gn;h1, . . . , hn) → Sn). These covers

have monodromies hig
−1
i h−1

i around the i-th boundary circle of Sn. The

restriction of the cover to the i-th boundary circle is then diffeomorphic to

(Phig
−1
i h−1

i
→ S1).

In the definition of standard blocks, the orientation of a boundary compo-

nent depends on whether we consider the component as ingoing or outgoing.

For example, for the pair-of-pants with one outgoing circle, the third circle is

given a clockwise orientation. The cover of S3 that is most important in the

following discussion is S3(g1, g2, (g1g2)
−1; 1, 1, 1). When orienting the third

boundary component as outgoing, this cover has monodromies g−1
1 and g−1

2

at the ingoing components and (g1g2)
−1 at the outgoing component.

1.1.3 From G-equivariant TFTs to G-Frobenius algebras

In this subsection, we explain the equivariant generalization of the corre-

spondence [Koc04] between two-dimensional topological field theories and
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commutative Frobenius algebras to set the stage for the discussion of G-

equivariant modular functors.

We start by recalling definitions from [MS06, Tur99]:

Definition 1.6. A (G-commutative) G-Frobenius algebra (or crossed G-

Frobenius algebra, or Turaev algebra) is a G-graded associative unital al-

gebra A =
⊕

g∈GAg together with a group homomorphism α : G→ Aut(A)

such that

1. The G-action is compatible with the G-grading via the adjoint action

of G on itself, αh : Ag → Ahgh−1 .

2. The restriction of αh to Ah is the identity.

3. A is twisted commutative: For all a ∈ A, b ∈ Ah we have αh(a)b = ba.

4. There is a G-invariant trace ε : A1 → k such that the induced pairing

Ag ⊗ Ag−1
m→ A1

ε→ k is non-degenerate.

5. For all g, h ∈ G we have∑
αh(ξi)ξ

i =
∑

ηiαg(η
i) ∈ Ahgh−1g−1 (1.5)

where (ξi, ξ
i) and (ηi, η

i) are pairs of dual bases of Ag, Ag−1 and Ah, Ah−1

respectively.

We call Ag the g-graded component and A1 the neutral component of A.

A morphism of G-Frobenius algebras is a morphism of unital algebras that

respects the trace, the G-action and the grading.

The following theorem [MS06, Tur99] holds:

Theorem 1.7. The symmetric tensor categories of G-TFTs and G-Frobenius

algebras are equivalent.

Instead of reviewing the complete proof (see [Tur99] or [MS06] with

slightly different conventions), we recall how to extract the data of a G-

Frobenius algebra from a two-dimensional G-TFT tftG.

• For g ∈ G, the g-graded component is defined as a vector space by

Ag := tftG(Pg−1→S1, [0, 1G]) ,

where Pg−1 is the principal G-bundle on S1 introduced subsection 1.1.2.
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• For any pair of group elements g, h ∈ G consider the standard three-

point block

(S3(g, h, (gh)
−1; 1, 1, 1)→S3) ,

with clockwise orientation around the third boundary component, as a

cobordism

(Pg−1→S1, [0, 1G])t(Ph−1→S1, [0, 1G]) −→ (P(gh)−1→S1, [0, 1G]) (1.6)

Its image under the functor tftG is a morphism mg,h : Ag ⊗ Ah → Agh

which yields an associative product
∑

g,h∈Gmg,h on the G-graded vector

space A =
⊕

g∈GAg.

• Unit η and counit ε of A are obtained from cobordisms with the topol-

ogy of a disc D. Since the disc is contractible, it only admits the trivial

cover (D×G→ D) which restricts unit and counit to be trivial on Ag

for g 6= 1.

The unit η of A is obtained as tftG(D×G→ D) with the disc viewed as

a cobordism from the empty set to (P1→S1, [0, 1G]). Hence η : k → A1.

Similarly we define the counit as tftG(D × G → D), where this time

the disc is seen as a cobordism from (P1→S1, [0, 1G]) to the empty set.

• We finally obtain the action of h ∈ G on Ag from the cover

(S2(g, g
−1; 1, h)→S2)

of the cylinder where the marked point over the outgoing boundary has

been shifted by h ∈ G. The discussion in subsection 1.1.2 shows that

the boundaries are isomorphic to the bundles (Pg−1→S1, [0, 1G]) and

(Phg−1h−1→S1, [0, 1G]) respectively, hence αh has the correct domain

and target.

We refer to [MS06] for a detailed calculation, which shows that these data

endow A =
⊕

g∈GAg with the structure of a G-Frobenius algebra.
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1.2 The Lego-Teichmüller Game

In this section we will recall basic properties of extended surfaces and in-

troduce the Lego-Teichmüller Game (or LTG for short). We will use the

terminology of [BK00]. The LTG is a collection of simple moves between

graphs on extended surfaces that describe the action of their respective map-

ping class groups.

These moves will play a crucial role in the discussion of modular func-

tors and the construction of equivariant monoidal categories. In particular

in sections 3.1 and 3.2 we will make heavy use of the LTG. In this section

we will only consider the Lego-Teichmüller Game for extended surfaces (def-

inition 1.3) and not for G-covers of extended surfaces as in [Pri07]. The

G-equivariant Lego-Teichmüller Game, which is unfortunately only available

for G-covers of surfaces of genus zero, only plays a role in the proof of 1.23.

For the results of this thesis, in particular in sections 3.1 and 3.2, we only

need the LTG for extended surfaces.

1.2.1 Basic definitions

Let us start by introducing one of the central objects of this section.

Definition 1.8. The mapping class group Γ(E) of an extended surface

(E, {pa}a∈A(E)) is the group of homotopy classes of morphisms E
∼=→ E of

extended surfaces.

By definition, the elements of the mapping class group are equivalence

classes of morphisms. When we speak about elements of the mapping class

group, we will use the same symbol for both the equivalence class and for a

representative of this class to simplify notation.

The main purpose of this section is to give a description of the action of

the mapping class group on the surface E, that is similar to a presentation

by generators and relations.

Definition 1.9.

• A cut on an extended surface (E, {pa}a∈A(E)) is a smooth closed simple

curve in the interior of E with a distinguished point on the curve.

• A cut system on E is a finite set C of non-intersecting cuts, such that

each connected component of E\C is a surface of genus 0.
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• The set of all cut systems on E up to isotopy is denoted by C(E).

The distinguished points on the cuts turn E\C into an extended surface.

Definition 1.10. A parametrization of an extended surface (E, {pa}a∈A(E)) is

a pair (C, {ψi}) of a cut system C on E and for every connected component

Ei of E \ C a homotopy class of a diffeomorphism ψi : Ei → Sni
to the

standard sphere Sni
(see definition 1.5) for some appropriate ni.

The mapping class group Γ(E) of an extended surface (E, {pa}a∈A(E))

acts on the set of all parametrizations by

ψ · (C, {ϕi}) := (ψ(C), {ϕi ◦ ψ−1})

As a tool to visualize parametrizations and to keep track of the action

of the mapping class group of an extended surface E, we will now introduce

markings on extended surfaces. As a first step we consider the standard

sphere Sn. The standard marking on Sn is a graph mSn , that has one vertex

in the lower halfplane at −2i, and straight edges that connect this vertex to

the distinguished points k − i
3

of Sn. We use this to fix a distinguished edge

(the one connected to the leftmost boundary component) and an order on

the set of edges of mSn . See the following picture of the standard marking

for n = 3; the distinguished edge is marked by an arrow:

α β γ

(1.7)

We call the vertex at −2i the internal vertex of the marking graph. It is the

only vertex that does not belong to a boundary component.

Definition 1.11.

• A marking without cuts on an extended surface (E, {pa}a∈A(E)) of genus

zero is a graph m on E, such that there is a diffeomorphism ϕ : E
∼=→ Sn

for n := |A(E)| with m = ϕ−1(mSn).
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• A marking on an arbitrary extended surface (E, {pa}a∈A(E)) is a pair

(C,m), where C is a cut system and m is a graph on E that gives

a marking without cuts on every connected component of E \C. An

example of genus one with two boundary components can be seen in

(1.32).

Isotopic markings are identified. The set of isotopy classes of markings

on E is denoted by M(E).

The marking on the standard sphere gives a distinguished edge and an

ordering of edges on every marking without cuts on an extended surface of

genus zero. Similarly on a general extended surface with a marking with

cuts, the standard marking induces a distinguished edge and an ordering of

the edges on all the markings on the connected components of E \C. In

some drawings we will mark the distinguished edge by an arrow, but more

often the arrow is suppressed for simplicity. We also get an internal vertex

in the induced markings on every connected component of E\C. Note that

an extended surface surface of genus zero can be endowed with a marking

with cuts.

The mapping class group Γ(E) of an extended surface (E, {pa}a∈A(E))

acts on the set M(E) of isotopy classes of markings by

ψ · (C,m) := (ψ(C), ψ(m)) .

Lemma 1.12. Let (E, {pa}a∈A(E)) be an extended surface. There is a bijec-

tion between the set of all parametrizations of E and the set of all markings

on E.

This immediately follows from the definitions.

Remark 1.13. In addition to the action of the mapping class group, we have

the operations of disjoint union and gluing of extended surfaces. We endow

the disjoint union and a glued surface with the following marking graphs:

• disjoint union: Given two extended surfaces E1, E2 with markings

(C1,m1), (C2,m2), we endow the disjoint union E1tE2 with the mark-

ing (C1 t C2,m1 tm2).

• gluing : Let (E, {pa}a∈A(E)) be an extended surface with marking (C,m)

and let α, β ∈ A(E) with α 6= β. Then we endow the glued surface

tα,βE with the marking tα,β(C,m) := (C t {α},tα,βm).
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1.2.2 The complex of markings

In this subsection we want to associate to any extended surface (E,{pa}a∈A(E))

a 2-dimensional CW-complex (in fact a 2-groupoid) M(E) that describes the

set of possible markings (up to isotopy) on E and the relations between these

markings. To this end we introduce a set of simple moves that interchange

two markings and relations between sequences of these moves.

As vertices of M(E) we take the set M(E) of isotopy classes of possible

markings on E. The edges will be the moves to be defined below, and 2-cells

relations between these moves.

Moves

We define a set of moves that translate certain marking graphs into each

other. These moves are in some cases motivated by the action of the map-

ping class group Γ(E), i.e. we introduce moves that translate the marking

(C,m) into (ϕ(C), ϕ(m)) for certain ϕ ∈ Γ(E). Given two vertices in M(E),

i.e. two marking graphs on E, we add one oriented edge between these ver-

tices for any of the following moves described below that transforms the two

corresponding markings into each other. We also add edges for pullbacks of

moves along diffeomorphisms of extended surfaces. The edges are directed

and for markings (C,m), (C ′,m′) on E we write an edge E connecting these

markings as E : (C,m) → (C ′,m′). If we travel the edge E backwards, we

write E−1 : (C ′,m′) → (C,m).

When we introduce these moves, we will in most cases only draw the

markings and not the surfaces, to provide a clearer view on the marking.

At first we give a list of genus zero move, of which there are the Z-, the B-

and the F-move. Then we give one genus one move (the S-move) and finally

explain how to generate more moves out of these four basic moves.

Genus 0 moves

Fix an extended surface (E, {pa}a∈A(E)) of genus 0.

The Z-move: For any marking (∅,m) without cuts on E we introduce

the rotation move or Z-move that moves the distinguished edge of (∅,m) as
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in the following example for a marking on S4:

α β γ δ

Z−→

α β γ δ

(1.8)

Observe that neither of these markings is the standard marking on S4. The Z-

move is motivated by the element of the mapping class group that is rotation

of the standard sphere Sn around the equator.

The B-move: For the standard sphere S3 define the braiding move or

B-move:

α β γ

Bα,β−→

α β γ

(1.9)

The B-move is motivated by rotation of the first two boundary components

around each other. See subsection 1.2.4 for a discussion of this motivation.

The F-move: Let ({c},m) be a marking on E with only one cut. This

gives markings on both connected components of E\c. Then we introduce

the fusion move or F-move that contracts the marking along the factorizing

link, which is the edge of the marking graph that intersects the cut:

c

Fc−→

(1.10)

Here the dotted line indicates the cut c, which in fact is a closed curve, but

we only draw a section of the whole marking. Note that this in fact is what is
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called the “generalized F-move” in [BK00]. In M(E), the F-move connects

the markings ({c},m) and (∅,m′), where m′ is the contracted graph.

The F-move is motivated by the process of gluing of extended surfaces.

Genus 1 moves

The S-move: Let T1 be a torus with one boundary component α and

consider the marking

c1

α

(1.11)

with one cut c1. We introduce the S-move:

c1

α S−→ α
c2

(1.12)

which connects the two indicated markings in M(T1). When we simplify

these pictures to show marking graphs without drawing surfaces, the S-move

reads

c1

α
S−→

c2

α

(1.13)

In this simplified picture it is important to notice that the label of the cut

changes.

The S-move is motivated by the diffeomorphism of the torus T1 that

exchanges two cycles that are canonical generators of H1(T1,Z).
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Generating more moves

For every extended surface (E, {pa}a∈A(E)) we add the following edges in

M(E) in addition to the moves above:

Disjoint union: If E = E1 t E2 and E : (C1,m1) → (C ′
1,m

′
1) is an edge

in M(E1) and (C2,m2) a marking on E2, then we add an edge

E t idC2,m2 : (C1,m1) t (C2,m2) → (C ′
1,m

′
1) t (C2,m2) . (1.14)

Gluing: If E = tα,βẼ with α, β ∈ A(Ẽ), α 6= β, and E : (C,m) →
(C,m′) is an edge in M(Ẽ), we add an edge

tα,β E : tα,β(C,m) → tα,β(C ′,m′) (1.15)

in M(E).

Distinguished moves

We introduce three further generalized moves. These are not necessary for the

following discussion, as they are already given by sequences of the previous

moves. We will only introduce these to simplify notation, they do not give

edges in the complex M(E).

If (C,m), (C ′,m′), (C ′′,m′′) are three markings on E and E : (C,m) →
(C ′,m′) and E′ : (C ′,m′) → (C ′′,m′′) are moves, we agree to write

E′E : (C,m) → (C ′′,m′′) (1.16)

for the composition of these moves.

The generalized B-move: Let (E, {pa}a∈A(E)) be an extended surface of

genus 0 and (∅,m) a marking without cuts on E. Assume that A(E) is a

disjoint union A(E) = I1 t I2 t I3 t I4 with I1 < I2 < I3 < I4, where the

order is induced by the order of the edges of m. Some of the sets Ik may be
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empty. Then the generalized braiding move BI2,I3 is given by

I1︷ ︸︸ ︷ I2︷ ︸︸ ︷ I3︷ ︸︸ ︷ I4︷ ︸︸ ︷
. . . . . . . . . . . .

F−1
c1

F−1
c2

F−1
c3−→

I1︷ ︸︸ ︷ I2︷ ︸︸ ︷ I3︷ ︸︸ ︷ I4︷ ︸︸ ︷
. . . . . . . . . . . .

c1 c2

c3

Bc1,c2−→

I1︷ ︸︸ ︷ I3︷ ︸︸ ︷ I2︷ ︸︸ ︷ I4︷ ︸︸ ︷
. . . . . . . . . . . .

c2 c1

c3

Fc1Fc2Fc3−→

I1︷ ︸︸ ︷ I3︷ ︸︸ ︷ I2︷ ︸︸ ︷ I4︷ ︸︸ ︷
. . . . . . . . . . . .

(1.17)

The generalized S-move: Let Tn be a torus with n punctures. We define

the generalized S-move as the following composition:

...A(Tn)


F−1

c−→

c1

A(Tn)


...

c

c1

idtcS−→
A(Tn)


...

c

c2

Fc−→ ...A(Tn)


c2

(1.18)

The Dehn-twist move: For any extended surface (E, {pα}α∈A(E)) with

marking (C,m) let α ∈ A(E) be a boundary component such that the dis-

tinguished edge of m ends at α. For arbitrary markings this can be achieved

by applying appropriate powers of the Z-move. Let c be a circle homotopic

to α that does not intersect any cuts in C. Then if we cut E along c, we

find that the resulting surface is diffeomorphic to a disjoint union of E with

marking (C,m) and S2 with standard marking. We use the abbreviation

Tα := Fc((B
−1
α,cZ) tc idm)F−1

c (1.19)

where (B−1
α,cZ) is meant to be applied to S2. Here the inverse F-move is

used to cut off a tubular neighborhood of α, i.e. a cylinder. Then the move
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B−1
α,cZ implements the Dehn-twist on this cylinder, finally the F-move is used

to glue the cylinder to the surface again. We call Tα the Dehn-twist move

around the boundary α.

If (E, {pα}α∈A(E)) is an extended surface with marking (C,m) and c ∈ C
is a cut on E, then we introduce the Dehn twist Tc around the cut c by

applying (1.19) to one side of the cut c. The relations introduced in the next

section will ensure that this is independent of the side of c on which Tc is

applied.

Relations

We will now give a set of relations that is partly motivated by relations in the

mapping class group Γ(E). Given any two sequences of edges in M(E) that

connect the same two vertices, we glue in a 2-cell, if any of these relations

below holds between the two sequences of moves.

We first give a set of general relations, then relations between genus zero

moves and then higher genus relations.

General relations

Functoriality: Assume that E is a disjoint union, E = E1 t E2, E :

(C1,m1) → (C ′
1,m

′
1). Consider the two edges E′ : (C ′

1,m
′
1 → (C ′′

1 ,m
′′
1)

in M(E1) and a marking (C2,m2) on E2. Then for the disjoint union we

impose the relation

(E′ t idC2,m2)(E t idC2,m2) = (E′E t idC2,m2) (1.20)

and for gluing the relation

tα,β (E′E) = (tα,βE
′)(tα,βE) (1.21)

for any α, β ∈ A(E) with α 6= β.

Associativity:

• If E is an edge in M(E1) and (C2,m2), (C3,m3) are markings on E2, E3

respectively, then

(E t idC2,m2) t idC3,m3 = E t id(C2,m2)t(C3,m3) . (1.22)
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• If α, β, γ, δ ∈ A(E) are pairwise different boundary components of E,

then the order of gluing does not matter, we impose the relation

tα,β tγ,δE = tγ,δ tα,β E . (1.23)

• If E = E1 t E2, α, β ∈ A(E1) and E : (C,m) → (C ′,m′) is an edge in

M(E1), we add the relation

tα,β (E t id) = tα,β(E) t id . (1.24)

Commutativity of disjoint union: If E = E1 t E2 and Ei is an edge in

M(Ei) for i = 1, 2, then

(E1 t id)(idtE2) = (idtE2)(E1 t id) (1.25)

Genus 0 relations

Rotation: If (∅,m) is a marking without cuts on E and |A(E)| = n,

then Zn = id.

Symmetry of the F-move: If ({c},m) is a marking on E with only one

cut and E\c = E1 t E2, then with n1 := |A(E1)|

Zn1−1Fc = Fc(Z
−1 t Z) . (1.26)

Associativity of the F-move: If E is connected and ({c1, c2},m) is a

marking on E with two cuts, then

Fc1Fc2 = Fc2Fc1 (1.27)

Cylinder axiom: Let S2 be the standard sphere with two holes, i.e.

a cylinder with the standard marking (∅,mS2) and boundary components

A(S2) = {α, β}. Let (E, {pa}a∈A(E)) be an extended surface with marking

(C,m) and γ ∈ A(E). For every edge E : (C,m) → (C ′,m′) in M(E) we

add a relation

EFγ = Fγ(E tγ,α id∅,mS2
) (1.28)

between moves (C t {γ},m tγ,α mS2) → (C ′,m′). Here the left hand side of

(1.28) contains the homeomorphism ϕ : E tγ,α S2 → E, which is the identity

outside a neighborhood of S2 (contraction of a collar around the boundary).
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Braiding axiom: Let (E, {pa}a∈A(E)) be an extended surface with four

boundary components α, β, γ, δ ∈ A(E) and (∅,m) a marking without cuts

on E. Then

Bα,βγ(∅,m) = Bα,γBα,β(∅,m) ,

Bαβ,γ(∅,m) = Bα,γBβ,γ(∅,m) .
(1.29)

All occurring moves are generalized braidings.

Dehn-twist axiom: Let (E, {pa}a∈A(E)) be a cylinder with boundary com-

ponents α and β and let (∅,m) be a marking without cuts and with distin-

guished vertex at the boundary component α. Then the Dehn twists around

either boundary of the cylinder coincide:

ZBα,β(∅,m) = Bβ,αZ(∅,m) (1.30)

Higher genus relations

We give two more relations for surfaces of genus 1.

One-punctured torus relation: Let T1 be a torus with one boundary

component α and marking (1.11). Then we add the following relations to

M(T1) that resemble relations in the mapping class group of T1:

S2 = Z−1Bα,c1 , (STc1)
3 = S2 . (1.31)

Two-punctured torus relation: Let T2 be the torus with two boundaries

α and β. Consider the marking

c1

α β

(1.32)
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Now let c be a curve on T2 around the lower part of T2 at the internal vertex

of the marking graph as in

c1

α β

c (1.33)

Then we add the relation

Bα,βFc1F
−1
c = S−1B−1

c2,βB
−1
β,c2

T−1
β S (1.34)

where the S-moves are generalized moves.

Propagation of relations: For every relation E = E′ we add relations on

disjoint unions and gluings.

E t id = E′ t id , tα,βE = tα,βE
′ (1.35)

1.2.3 Structure of the complex M(E)

The complex M(E) introduced in 1.2.2 has a very simple topology. The

following theorem is from [BK00]:

Theorem 1.14. Let (E, {pa}a∈A(E)) be an extended surface. Then the com-

plex M(E) is connected and simply connected.

1.2.4 Relation to the mapping class group

We will now discuss the connection between the mapping class group Γ(E) of

an extended surface (E, {pa}a∈A(E)) and the complexM(E). This connection

will be of crucial importance in this thesis and is the main reason for the

discussion of M(E) in section 1.2.2.

Fix a diffeomorphism ϕ : E
∼=→ E, i.e. a representative of an element of

Γ(E). As Γ(E) acts on the set of markings M(E), for every marking (C,m)

on E, we get a second marking (ϕ(C), ϕ(m)). Now theorem 1.14 implies that

• (ϕ(C), ϕ(m)) and (C,m) can be connected by a finite sequence of the

LTG-moves in section 1.2.2, since M(E) is connected, and
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• these moves are unique up to the relations in section 1.2.2, since M(E)

is simply connected.

However, a word of warning is due. This does not mean that the action

of the mapping class group on the set M(E) of isotopy classes of markings is

transitive. A counterexample is given by any two markings with a different

number of cuts. Two such markings are connected by a finite sequence of

LTG-moves (particularly by F-moves, which change the number of cuts), but

not by a diffeomorphism ϕ : E → E, which preserves the number of cuts.

From lemma 1.12 one deduces

Lemma 1.15. Let (E, {pa}a∈A(E)) be an extended surface and (C,m) ∈
M(E) a marking on E. If for ϕ ∈ Γ(E) we have ϕ · (C,m) = (C,m),

then ϕ = id.

This means that an element ϕ ∈ Γ(E) is uniquely determined by its

action on any marking graph on E. So any finite sequence of LTG-moves

other than the F-move uniquely determines an element of the mapping class

group.

We will now discuss an example, as the translation of an element in

the mapping class group into a sequence of LTG-moves will become very

important in section 3.1 and 3.2.

Let ϕB ∈ Γ(S3) be the element of the mapping class group that turns the

second and third boundary circle counterclockwise around each other as in

(1.36)

We call ϕB the braiding diffeomorphism. If we apply ϕB to the standard
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marking m ≡ (∅,mS3), we get the marking

α γ β

(1.37)

We can instead apply the LTG-move B (the generalized B-move) to the

marking m, by definition of B we get the marking ϕ−1
B (m) on S3:

α β γ

Bβ,γ−→
α β γ

(1.38)

Now if we apply the diffeomorphism ϕB to both sides of (1.38), we obtain

α γ β

Bβ,γ−→
α γ β

(1.39)

We see that the action of the diffeomorphism ϕB can be expressed by

the LTG-move B: The markings ϕB(m) and m are connected via the edge

B in M(S3). Conversely, if we are only given the B-move, we find the

diffeomorphism ϕB (up to isotopy) that interchanges the two markings that

are connected by B in M(E).
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1.3 G-equivariant modular functors

A structure that is related to three-dimensional topological field theory and

that plays an important role in this thesis is given by the notion of a mod-

ular functor. We will discuss the more general structure of a G-equivariant

modular functor, where G is a finite group.

Most of this section is from [KP08].

Definition 1.16. A G-equivariant category is an abelian category CG with

the following structure:

• A decomposition CG ∼=
⊕

g∈G CG
g into full abelian subcategories.

• A G-action covering the adjoint action of G on itself.

In more detail, we have for any group element g ∈ G a functor Rg :

CG → CG and for any pair g, h ∈ G of group elements isomorphisms

αg,h : Rg ◦Rh ⇒ Rgh such that R1 = IdCG , Rg(CG
h ) ⊂ CG

ghg−1 and

αg1g2,g3 ◦ (αg1,g2 ∗ idRg3
) = αg1,g2g3 ◦ (idRg1

∗αg2,g3) (1.40)

as natural isomorphisms Rg1 ◦Rg2 ◦Rg3 ⇒ Rg1g2g3 . Here ∗ denotes the

horizontal composition of 2-morphisms in the 2-category of categories.

As a shorthand, we introduce the notation gV ≡ Rg(V ) for g ∈ G and V

in CG.

Definition 1.17. Let CG be a G-equivariant category. We assume from now

on that CG is enriched over the category of finite-dimensional k-vector spaces.

We denote by � the Deligne tensor product of k-linear categories. An object

R ∈ CG � CG is called a gluing object if

• R is of vanishing total degree, R ∈
⊕

h CG
h � CG

h−1 .

• R is symmetric, i.e. R ∼= Rop. Here Rop is obtained by exchanging the

two factors.

• R is G-invariant: For every group element g ∈ G there is an isomor-

phism (Rg �Rg)(R) ∼= R.

• These isomorphisms are compatible with each other.

We write Rh for the component of R in CG
h � CG

h−1 ; sometimes we use the

Sweedler-like notation R = R(1) �R(2).
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We are now in a position to give the definition [KP08] of a G-equivariant

modular functor. To make the notation less cumbersome, we sometimes use

the abbreviation P ≡ (P→M, {p̃a}a∈A(M)) for G-covers of extended surfaces.

Definition 1.18. Let CG be a G-equivariant category enriched over the cat-

egory of finite-dimensional k-vector spaces and R be a gluing object for CG.

A CG-extended G-equivariant modular functor consists of the following data:

1. Functors for G-covers:

For every G-cover (P→M, {p̃a}a∈A(M)) of an extended surface a functor

τG(P→M, {p̃a}a∈A(M)) : �
a∈A(M)

CG
m−1

a
→ Vectk , (1.41)

where ma is the monodromy of P around the a-th boundary component

of M . We will often write τG(P ; {Va}) for the value of the functor on

a family {Va} of suitable objects.

2. Functorial isomorphisms for morphisms of G-covers:

For every isomorphism

f : (P→M, {p̃a}a∈A(M)) → (P ′→M ′, {p̃′a}a∈A(M ′)) (1.42)

of G-covers of extended surfaces an isomorphism of functors

f∗ : τG(P→M, {p̃a}a∈A(M)) → τG(P ′→M ′, {p̃′a}a∈A(M ′))

that depends only on the isotopy class of f .

3. Isomorphisms τG(∅) ∼= k and τG(P t P ′) ∼= τG(P ) ⊗k τ
G(P ′) for all

G-covers P , P ′.

4. Functorial gluing isomorphisms:

Let (P→M, {p̃a}a∈A(M)) be a G-cover of an extended surface and let

α, β ∈ A(M), α 6= β, such that the respective monodromies are inverse,

mα = m−1
β . Then gluing of P along the boundary components over α

and β is well defined. We have functorial gluing isomorphisms

Gα,β : τG(P ; {Va},Rα,β)
∼=→ τG(tα,βP ; {Va}) (1.43)

where Rα,β indicates that the summand Rmα of R is assigned to the

boundary components α and β respectively. This is well defined by
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vanishing total degree of R, by symmetry of R and by the assumption

mα = m−1
β on the monodromies of the boundaries. Here tα,βM is

again the surface with the boundary components α and β glued and

tα,βP again denotes the G-cover of tα,βM that is obtained by gluing

the corresponding boundary components over α and β.

5. Equivariance under the G-action:

For any G-cover (P→M, {pa}a∈A(M)) and any tuple of group elements

g = (ga)a∈A(M) ∈ GA(M) we have functorial isomorphisms

Tg : τG(P→M, {p̃a}a∈A(M); {Va})
∼→ τG(P→M, {gap̃a}a∈A(M); {gaVa}) .

(1.44)

These data are subject to the following conditions:

• (f ◦ g)∗ = f∗ ◦ g∗ and id∗ = id.

• All structural morphisms are functorial in (P → M, {p̃a}a∈A(M)) and

compatible with each other.

• When identifying R ∼= Rop we have Gα,β = Gβ,α.

• Normalization: τG(S2 ×G→ S2) ∼= k.

Remark 1.19. Specializing to the trivial group, G = {1} and suppressing

the morphisms Tg from (1.44) which implement equivariance, we recover the

usual definition of a modular functor, see e.g. [BK01].

Definition 1.20. A CG-extended G-equivariant modular functor is called

non-degenerate, if for every non-zero object V in CG there is a G-cover

(P→M, {p̃a}a∈A(M)) of an extended surface and a collection of objects {Va},
such that τG(P→M ;V, {Va}) is non-zero.

A genus zero CG-extended G-equivariant modular functor is a G-equivari-

ant modular functor that is only defined for G-covers (P→M, {p̃a}a∈A(M))

where M has genus zero and the gluing isomorphisms (1.43) are only defined

for pairs α, β of boundary components for which α and β lie in different

connected components of M .
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1.4 Modular functors and ribbon categories

For our purposes, the notion of a G-equivariant monoidal structure [Tur00,

Kir04, KP08] will be important.

Definition 1.21.

1. A G-equivariant monoidal category is a semisimple G-equivariant cate-

gory CG with a monoidal structure that is compatible with the grading,

i.e. X ⊗ Y ∈ CG
gh for X ∈ CG

g , Y ∈ CG
h and for which the functors Rg

implementing equivariance are endowed with the structure of tensor

functors.

2. A G-equivariant monoidal category is called braided, if for any pair of

objects X ∈ CG
g , Y ∈ CG

h there are isomorphisms

CX,Y : X ⊗ Y → gY ⊗X (1.45)

that satisfy two G-equivariant hexagon axioms.

3. An object V in a G-equivariant monoidal category CG has a weak dual

if there is an object V ∗ ∈ CG representing the functor HomCG(1, V⊗?).

This amounts to the existence of functorial isomorphisms HomCG(1, V⊗
T ) ∼= HomCG(V ∗, T ) for all T ∈ CG. With T = V ∗, the preimage of

the identity idV ∗ under this isomorphism gives the (right) coevaluation

coevV : 1 → V ⊗ V ∗.

4. A G-equivariant monoidal category is called weakly rigid if every object

has a weak dual. It is called rigid, if there are compatible duality

morphisms (i.e. evaluation and coevaluation).

5. A G-equivariant monoidal category is called weakly ribbon if it is weakly

rigid, braided and for every object V ∈ CG
g there is a functorial isomor-

phism ΘV : V → gV (the ribbon twist), satisfying certain coherence

conditions spelled out in [Kir04, Section 2]. A weakly ribbon category

is called a ribbon category, if it is rigid rather than only weakly rigid.

Observe that the morphism in part 2 of definition 1.21 does not give a

braiding in the ordinary sense on CG because of the g-twist in (1.45). The g-

twist ist necessary for grading reasons and becomes natural in the discussion

of theorem 1.22.
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The discussion in sections 3.1 and 3.2 is based on the following theorem

from [KP08]:

Theorem 1.22. Let CG be a semi-simple G-equivariant category that has

only finitely many isomorphism classes of simple objects. A non-degenerate

genus 0 CG-extended G-modular functor τG is equivalent to the structure of

a G-equivariant weakly ribbon category on CG.

Instead of giving the full proof, we will only explain how to obtain the

structure of a G-equivariant weakly fusion category on CG out of the data

given by the G-equivariant modular functor τG. For the converse statement

and detailed proof that this indeed satisfies the axioms of definition 1.21 see

[KP08, Section 7.2].

Since our categories are, by assumption, semi-simple with finitely many

isomorphism classes of simple objects, every Vectk-valued functor is rep-

resentable ([BK01, Lemma 5.3.1]). This allows us to adopt the following

strategy:

• Objects that are needed for the definition of a G-equivariant ribbon

category, i.e. the dual of an object and the tensor product of two ob-

jects, will be defined as objects representing certain functors that are

induced by τG.

• Structure morphisms, such as the associativity constraints or the braid-

ing, are then found by applying certain diffeomorphisms to appropriate

G-covers. By the definition of a G-equivariant modular functor, these

diffeomorphisms give isomorphisms of functors, which themselves by

the Yoneda-lemma induce morphisms on the representing objects in

the category CG.

One can express these diffeomorphisms by LTG-moves of G-covers of ex-

tended surfaces ([Pri07, Section 4]), which then are related to certain mor-

phisms in the category CG. The relations between LTG-moves then give

relations in CG. Like expressing diffeomorphisms by LTG-moves, one can ex-

press the process of gluing two G-covers by the G-equivariant counterpart of

the F-move. Gluing also gives an isomorphism between certain functors. So

the axioms of a G-equivariant modular functor provide us with a dictionary

that translates LTG-moves into CG-morphisms. We give this dictionary for

the non-equivariant case in appendix A.
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In section 1.2 we have only introduced the Lego-Teichmüller Game for

extended surfaces, not for G-covers of these. But the outcome is similar:

Every diffeomorphism of G-covers (of genus zero) can be uniquely (up to

relations) translated into a finite sequence of moves on markings, where in

this case a marking consists of a marking graph on the base surface as in

section 1.2.1 and elements of G×G attached to all edges of this graph.

For the value of the equivariant modular functor τG on the standard

blocks of subsection 1.1.2, we introduce the shorthand notation

〈V1, . . . , Vn〉G := τG(Sn(g1, . . . , gn; 1, . . . , 1) → Sn;V1, . . . , Vn). (1.46)

with objects Vi ∈ CG
gi
.

Now given the CG-extended G-equivariant modular functor τG, one begins

by defining the dual object for an object V in CG
g . This will be an object

V ∗ representing the functor

CG → Vectk

T 7→ 〈V, T 〉G.
(1.47)

For grading reasons, this functor takes non-zero values only if T is an object

in CG
g−1 , hence V ∗ ∈ CG

g−1 . Since the object V ∗ is defined to be a representing

object, it is determined up to canonical isomorphism by a functorial isomor-

phism Hom(V ∗, T ) ∼= 〈V, T 〉G. By the general theory of representing objects,

this means that every functor CG → Vectk is isomorphic to the functor (1.47)

for some V and V is up to canonical isomorphism uniquely determined by

the realization (1.47) of the hom-functor that corresponds to V .

This is important in the definition of the tensor product of two objects

A,B in CG. It is defined by

〈T,A⊗B〉G ∼= 〈T,A,B〉G. (1.48)

So A ⊗ B should be thought of as an object that represents the functor

〈?, A,B〉G. In detail we have 〈T,A,B〉G ∼= Hom(T ∗, A ⊗ B). So if A ∈
CG

g , B ∈ CG
h then for grading reasons the functor (1.48) only takes non-

zero values if T ∈ CG
(gh)−1 . By duality, this means that A ⊗ B ∈ CG

gh. The

associativity constraints (A⊗B)⊗C → A⊗(B⊗C) for this tensor product

are found by analyzing the covers (S4((ghk)
−1, g, h, k; 1, 1, 1, 1) → S4 of the

four-punctured sphere. These can be cut in two different ways, representing

the tensor products (A⊗B)⊗C and A⊗(B⊗C). This cutting procedure gives
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functorial isomorphisms between the corresponding Vectk-valued functors.

As these functors are representable with representing objects (A ⊗ B) ⊗ C

and A⊗ (B ⊗ C), the Yoneda-lemma gives an isomorphism (A⊗B)⊗ C →
A⊗ (B ⊗C). So the associativity constraints are constructed out of the CG-

morphisms that represent the G-equivariant F-move. The pentagon axiom

for these associativity constraints follows from associativity of gluing and of

the F-move.

The tensor unit is defined as the object 1 that obeys

〈1, T 〉G ∼= 〈T 〉G (1.49)

for every T in CG.

Let A ∈ CG
g and B ∈ CG

h . Recall the braiding diffeomorphism ϕB : S3 →
S3 from section 1.2.4. It turns the second and third boundary circle of S3

counterclockwise. ϕB lifts to a diffeomorphism

ϕ̃B : S3((gh)
−1, g, h; 1, 1, 1) → S3((gh)

−1, ghg−1, g; 1, g−1, 1) (1.50)

of G-covers of S3. This induces a functorial isomorphism

〈T,A⊗B〉G
def
= 〈T,A,B〉G

def
= τG(S3((gh)

−1, g, h; 1, 1, 1) → S3;T,A,B)
(ϕ̃B)∗→ τG(S3((gh)

−1, ghg−1, g; 1, g−1, 1);T,B,A)
T(1,g,1)→ τG(S3((gh)

−1, ghg−1, g; 1, 1, 1);T, gB,A)
def
= 〈T, gB,A〉G

def
= 〈T, gB ⊗ A〉G ,

(1.51)

where in the third line the equivariance morphisms (1.44) are used. By the

Yoneda-lemma this gives an isomorphism

CA,B : A⊗B → gB ⊗ A (1.52)

between the representing objects in CG, which will serve as equivariant braid-

ing isomorphisms in CG. The equivariant hexagon axioms are satisfied as

a consequence of the braiding axiom of the G-equivariant Lego-Teichmüller

Game. (1.52) shows that the g-twist in definition 1.21.2 of the equivariant

braiding arises naturally.

The ribbon twist ΘV : V → gV for an object V ∈ CG
g is defined by

〈V, T 〉G
(ϕ̃−1

B )∗→ 〈T, gV 〉G
ϕ̃Z→ 〈gV, T 〉G (1.53)
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where in this case ϕ̃B is the lift of the braiding diffeomorphism ϕB : S2 → S2

on the two-punctured sphere and ϕZ : S2 → S2 is rotation of S2 around the

equator which exchanges the two boundary components. Again the relations

in the G-equivariant LTG (resembling relations in the mapping class group)

ensure that the axioms for the G-equivariant ribbon twist are satisfied.

It is important to notice that the above procedure does in general give a

non-strict monoidal category. This means that the associativity constraints

are not necessarily identity morphisms.

In [KP08] no explicit prescription is given for how to obtain from a CG-

extended G-modular functor τG the tensoriality constraints for the equiv-

ariance functors Rg : CG → CG. We will need the explicit form of these

structure morphisms and therefore explain them in some detail.

In subsection 1.1.2 we defined the standard blocks on the n-punctured

sphere Sn as a quotient of Sn\cuts×G. By this definition, a point in the total

space Sn(g1, . . . , gn;h1, . . . , hn) is an equivalence class [z, x] with z ∈ Sn\cuts

and x ∈ G. For every group element k ∈ G the map [z, x] 7→ [z, xk] induces

an isomorphism of G-covers

k̃ : Sn(g1, . . . , gn;h1, . . . , hn) → Sn(k−1g1k, . . . , k
−1gnk;h1k, . . . , hnk)

(1.54)

The corresponding natural transformations enter in the construction of

the tensoriality constraints. To construct these morphisms, let h ∈ G and

A ∈ CG
g1

and B ∈ CG
g2

be objects of CG. The main step is to construct a

natural isomorphism between the functors CG → Vectk given by

T 7→ τG(S2(hg
−1
2 g−1

1 h−1, hg1g2h
−1; 1, 1);T, h(A⊗B)) (1.55)

and

T 7→ τG(S2(hg
−1
2 g−1

1 h−1, hg1g2h
−1; 1, 1);T, hA⊗ hB) . (1.56)

The objects h(A⊗B) and hA⊗ hB are representing the functors (1.55) and

(1.56) respectively. Thus, by the Yoneda lemma the image of the identity

for T ∗ = h(A ⊗ B) under the natural isomorphism that we will construct

between the functors (1.55) and (1.56) gives an isomorphism

ϕh
A,B : h(A⊗B) → hA⊗ hB .
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The natural transformation we use is given by

τG(S2(hg
−1
2 g−1

1 h−1, hg1g2h
−1; 1, 1);T, h(A⊗B))

T(1,h−1)→ τG(S2(hg
−1
2 g−1

1 h−1, hg1g2h
−1; 1, h−1);T,A⊗B)

(h̃)∗→ τG(S2(g
−1
2 g−1

1 , g1g2;h, 1);T,A⊗B)
G−1

→ τG(S2(g
−1
2 g−1

1 , g1g2;h, 1);T,R(1))

⊗kτ
G(S2(g

−1
2 g−1

1 , g1g2; 1, 1);R(2), A⊗B)
def
= τG(S2(g

−1
2 g−1

1 , g1g2;h, 1);T,R(1))

⊗kτ
G(S3(g

−1
2 g−1

1 , g1, g2; 1, 1, 1);R(2), A,B)
G→ τG(S3(g

−1
2 g−1

1 , g1, g2;h, 1, 1);T,A,B)
(h̃−1)∗→ τG(S3(hg

−1
2 g−1

1 h−1, hg1h
−1, hg2h

−1; 1, h−1, h−1);T,A,B)
T(1,h,h)→ τG(S3(hg

−1
2 g−1

1 h−1, hg1h
−1, hg2h

−1; 1, 1, 1);T, hA, hB)
def
= τG(S2(hg

−1
2 g−1

1 h−1, hg1g2h
−1; 1, 1);T, hA⊗ hB)

(1.57)

for any T in CG
hg−1

2 g−1
1 h−1 . The idea in the definition is to use the equivariance

isomorphisms defined in equation (1.44) to shift the G-action from objects

in the category to geometric quantities. Then a factorization is applied to

be able to use the definition of the tensor product and finally, the G-action

is shifted back to objects.

The following observation follows from the compatibility of all occurring

morphisms and the definition of the associativity constraints in CG:

Lemma 1.23.

The morphisms ϕh
A,B endow the functor Rh with the structure of a monoidal

functor.

Next, we adapt the discussion of [BK01, prop. 5.3.13] of conditions ensur-

ing that a weakly ribbon category is a ribbon category to the G-equivariant

case. Suppose CG is a weakly rigid G-equivariant category in which biduals

of objects can be functorially identified with the objects, (V ∗)∗ ∼= V for all

V in CG. This condition is fulfilled for all categories with tensor structure

obtained from a modular functor. The image of the identity on V ∗ under

the functorial isomorphisms of definition 1.21.3 provides us with a morphism

iV : 1 → V ⊗ V ∗ for any object V ∈ CG. Consider for a simple object V of

CG the morphism

α−1
V ∗,V,V ∗ ◦ (idV ∗ ⊗iV ) : V ∗ → (V ∗ ⊗ V )⊗ V ∗ (1.58)
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constructed from iV and the associativity constraint α of CG. Since CG is

semisimple, we can decompose V ∗ ⊗ V ∼=
⊕

j Vj into a direct sum of simple

objects Vj. Multiplicities can occur, but since dimk HomCG(1, V ∗ ⊗ V ) = 1

we can decompose the morphism

α−1
V ∗,V,V ∗ ◦ (idV ∗ ⊗iV ) = aV ⊗ idV ∗ +

∑
ψj (1.59)

into a morphism aV : 1 → V ∗ ⊗ V in the one-dimensional vector space

Hom(1, V ∗ ⊗ V ) and certain morphisms ψj. By the same arguments as in

[BK01], we have

Proposition 1.24. The category CG is rigid, if and only if aV 6= 0 with aV

as defined by (1.59) for all simple objects V .
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2. THE COVER FUNCTOR

This chapter contains our main construction. Its aim is to give a geometric

description of a specific class of G-equivariant (weakly) ribbon categories, i.e.

to define a G-equivariant modular functor that satisfies our purposes. This

chapter is based on the article [BS10].

To this end we fix a finite group G and a finite G-set X . In section 2.1

we will introduce the cover functor as a functor

FX : Gcob(d) → cob(d) . (2.1)

This functor assigns to every principal G-bundle (P→M) the total space of

the associated cover (X ×G P→M).

This assignment encodes the combinatorical information about the action

of G on X in geometrical data. For example, in the case of two-dimensional

theories, which is the case of our main interest, the set of boundary compo-

nents of X ×G P can be expressed in terms of the orbit structure of X .

First we will introduce the cover functor and show that it allows us to

pull back d-dimensional topological field theories to G-equivariant theories.

In the case of d = 2 we will then investigate the surfaces that are necessary to

derive the G-Frobenius algebra from the G-equivariant TFT (as in theorem

1.7).

Given a commutative Frobenius algebra (R, η,m, ε,∆), we will pull back

the associated TFT along the cover functor and express the G-Frobenius

algebra that corresponds to this G-TFT in terms of the G-set X and the

structure of R.

Once we know this G-Frobenius algebra in dependence of R, we will

categorify this structure and define a G-equivariant abelian category CX , by

replacing R with a modular category C. It turns out that this is the right

category to define a CX -extended G-equivariant modular functor τX out of

the cover functor, as we will do in section 2.2.
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2.1 Cover functors and two-dimensional topological field

theories

2.1.1 Definition of the cover functor

One ingredient in our construction of permutation equivariant G-TFTs is a

finite left G-set X . In the construction we will need to make choices for all

partitions of X . To this end, we fix an order on X as an auxiliary datum.

For any object (P→Σ, e) of Gcob(d), we consider the smooth (d − 1)-

manifold X ×GP , where X ×GP := (X ×P )/((g−1x, p) ∼ (x, gp)). Similarly,

we obtain smooth d-manifolds for morphisms of Gcob(d). For any G-bundle

P→M , the manifold X ×G P is the total space of an |X |-fold cover of M , we

call this cover the associated G-cover. We agree to write [x, p] ∈ X ×GM for

the equivalence class of (x, p) ∈ X ×M for any G-manifold M .

Proposition 2.1. Let X be a finite ordered left G-set. The assignment

(P→Σ, e) 7→ X ×G P defines a symmetric monoidal functor

FX : Gcob(d) → cob(d) (2.2)

Proof. The proof is straightforward, including its most intricate aspect, the

fact that gluing of cobordisms is respected.

Definition 2.2. The functor FX in proposition 2.1 is called the d-dimen-

sional cover functor for the G-set X .

Corollary 2.3. Let tft : cob(d) → Vectk be a topological field theory and let

X be a G-set. Then the composite functor

tftX : Gcob(d)
FX→ cob(d)

tft→ Vectk (2.3)

is a d-dimensional G-equivariant topological field theory in the sense of defi-

nition 1.2.

2.1.2 The two-dimensional cover functor and permutation equivariant

Frobenius algebras

From now on, we specialize to dimension d = 2. Recall definition 1.3 of an

extended surface. The cover functor FX induces a functor GESurf → ESurf

which we will also denote by FX . To see this, let (P→M, {p̃a}a∈A(M)) be an
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object in GESurf , i.e. a G-cover of an extended surface. By definition,

P is endowed with a marked point p̃a for each connected component of the

boundary of M . This yields on the boundary of FX (P→M) the marked

points [x, p̃a] for every element x ∈ X of the G-set and every boundary

component a of M . To turn FX (P→M) into an extended surface, we need

to choose just a single point for every connected component of the boundary

of FX (P→M). Here we use the auxiliary structure of an ordering on the

G-set X to choose the point [x, p̃a] with the smallest value of x ∈ X in that

boundary component.

To prepare the discussion of permutation equivariant Frobenius algebras,

we will now analyze covers of the following basic manifolds:

1. The vector spaces relevant for a G-equivariant topological field theory

are given by evaluations of the TFT functor on G-covers of the circle

S1.

2. The multiplicative structure on the vector spaces underlying a topo-

logical field theory comes from the 3-punctured sphere, the so-called

pair-of-pants. To set the stage for the discussion in sections 3.1 and

3.2, we consider covers of the n-punctured sphere.

Given a G-cover (P→M), we only consider the total space X ×GP of the

associated cover in our construction. But in the analysis of the geometry of

the manifold X ×G P it will sometimes be convenient to view X ×G P as a

|X |-fold cover over M . We will adopt this point of view whenever useful.

Covers of the circle

Given a finite G-set X , we define for every g ∈ G a |X |-fold cover of S1 with

total space Eg := R × X/(t + 2π, x) ∼ (t, g−1x). The following lemma is

straightforward:

Lemma 2.4. For any g ∈ G, the covers Eg and X ×G Pg over S1 with Pg as

in (1.2) are isomorphic.

As a closed one-dimensional manifold, the total space Eg is a disjoint

union of circles. We describe the connected components of Eg:

Lemma 2.5. For any element g ∈ G there is a one-to-one correspondence

between the connected components of the manifold Eg and the orbits of X
under the action of the cyclic group 〈g〉.
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We denote the set of orbits of X under the action of the cyclic group

〈g〉 ⊂ G by Og; let bg := |Og| be the number of orbits.

The following lemma follows from an easy calculation:

Lemma 2.6. The map

Eg → Ehgh−1

[t, x] 7→ [t, hx]
(2.4)

is an isomorphism of covers of S1. The induced map on the sets of connected

components is given by the map

Og → Ohgh−1

o 7→ ho.
(2.5)

between the sets of orbits of cyclic groups.

Covers of the n-punctured sphere

We will now turn to the morphisms in Gcob(2) and exhibit certain covers

of the n-punctured sphere that will be important in the following discussion.

We begin by analyzing covers of the three-punctured sphere S3. Sometimes

we abbreviate Eg1;g2 := FX (S3(g1, g2, (g1g2)
−1; 1, 1, 1) → S3).

To analyze how the structure of FX (S3(g1, g2, (g1g2)
−1; 1, 1, 1) → S3) de-

pends on the group elements g1 and g2, we introduce the following paths in

the base manifold, the pair-of-pants S3:

• γg1 , the path with winding number one around the ingoing boundary

circle which has monodromy g−1
1 .

• γg2 the path winding once around the ingoing boundary circle which

has monodromy g−1
2 .

• γg1g2 the path winding once around the outgoing boundary circle which

has monodromy (g1g2)
−1.

• α, β open paths connecting the base points of the ingoing circles with

the base point of the outgoing circle.
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outgoing

ingoing, monodromy g−1
1

ingoing, monodromy g−1
2

γg1g2

γg1γg2

α β

(2.6)

The following lemma describes the connected components of Eg1;g2 :

Lemma 2.7.

(i) There is a natural bijection between the connected components of

FX (S3(g1, g2, (g1g2)
−1; 1, 1, 1) → S3) = Eg1;g2

and orbits of the G-set X under the action of the subgroup 〈g1, g2〉 ⊂ G

of G generated by the elements g1 and g2.

(ii) By lemma 2.4 the restriction of Eg1;g2 to the boundary with monodromy

g−1
1 is diffeomorphic to Eg−1

1
and similarly for the other boundaries. Let

o be a 〈g1, g2〉-orbit of X and write Eo
g1;g2

for the connected component

of Eg1;g2 corresponding to the orbit o. The boundary components of

Eo
g1;g2

correspond to precisely those orbits of the cyclic subgroups 〈g1〉,
〈g2〉 and 〈g1g2〉 that are contained in the orbit o of the group 〈g1, g2〉.

(iii) In particular, the number of sheets of the cover Eo
g1;g2

→S3 is |o|.

This is seen by choosing appropriate lifts of the paths γg1 , γg2 , γg1g2 , α and

β. We leave the details to the reader as an exercise. We write bog1
for the

number of 〈g1〉-orbits that are contained in o and similarly for g2 and g1g2.

We can now describe the topology of the connected components of the cover:

Lemma 2.8. Let o be a 〈g1, g2〉-orbit of X . Then the component Eo
g1,g2

of

FX (S3(g1, g2, (g1g2)
−1; 1, 1, 1) → S3)

is a surface of genus
2− bog1

− bog2
− bog1g2

+ |o|
2

(2.7)
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Proof. The cover (Eo
g1,g2

→S3) is an unramified |o|-fold cover of the pair-of-

pants S3 with Euler characteristic χ(S3) = 2 − 3 = −1. Hence, by the

theorem of Riemann-Hurwitz, χ(Eo
g1,g2

) = −|o|.
As described in lemma 2.7, the number of boundary components of Eo

g1;g2

is bog1
+ bog2

+ bog1g2
. This implies formula (2.7) for the genus of Eo

g1,g2
.

Finally, we consider the special case of the cylinder S2 with principal

bundle (S2(g, g
−1; 1, h)→S2), where the first boundary is oriented as ingo-

ing and the second boundary as outgoing. Then S2(g, g
−1; 1, h) has mon-

odromies g−1 around the ingoing boundary and hg−1h−1 around the outgo-

ing boundary. We identify the ingoing boundary of (S2(g, g
−1; 1, h)→S2) with

(Pg−1→S1, [0, 1G]) and the outgoing boundary with (Pg−1→S1, [0, h]). The

latter is isomorphic to (Phg−1h−1→S1, [0, 1G]) under the map [t, k] 7→ [t, kh−1]

of bundles. Hence the boundaries of FX (S2(g, g
−1; 1, h)→S2) are isomorphic

to Eg−1 and Ehg−1h−1 respectively.

Lemma 2.9. The manifold FX (S2(g, g
−1; 1, h)→S2) is a disjoint union of

cylinders. These cylinders interpolate between the connected component of

Eg−1 corresponding to the 〈g〉-orbit o of X and the connected component of

Ehg−1h−1 that corresponds to the 〈hg−1h−1〉 = 〈hgh−1〉-orbit ho.

Proof. Consider the following paths in the base cylinder S2:

• γg the path winding once around the ingoing boundary circle which has

monodromy g−1.

• γhg−1h−1 the path winding once around the outgoing boundary circle

which has monodromy hg−1h−1.

• α a path connecting the base points of both boundary circles.

Let x ∈ o be an element of the 〈g〉-orbit o. The point [0, x] in Eg−1 is

connected to the points [0, gix] of Eg−1 by repeated lifts of γg, similar to the

proof of lemma 2.7. By lifting α to a path α̂gix in FX (S2(g, g
−1; 1, h)→S2)

with initial point α̂gix(0) = [0, gix] ∈ Eg−1 , these points are connected to

the points [0, hgix] ∈ Ehg−1h−1 , where the map from lemma 2.6 is used to

identify the outgoing boundary of FX (S2(g, g
−1; 1, h)→S2) with Ehg−1h−1 .

These again are connected by lifts of γhg−1h−1 only connected to points of the

same form. By lemma 2.5, the connected component of Ehg−1h−1 containing

these points, corresponds to the 〈hg−1h−1〉-orbit ho.
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Permutation equivariant Frobenius algebras

We now describe a construction that can be seen as the decategorified version

of the main construction of this thesis. Suppose we are given a finite ordered

G-set X and a commutative Frobenius algebra (R,m, η,∆, ε), playing the

role of a decategorification of a modular tensor category. A Frobenius alge-

bra structure on an associative unital algebra (R,m, η) can be equivalently

described ([FS08]) by a linear form ε such that the induced bilinear pairing

on R is non-degenerate or by a coalgebra structure (R,∆, ε) such that ∆ is

a morphism of (R,m, η)-bimodules. Here, we prefer the latter description.

We want to to construct a G-Frobenius algebra A with neutral component

A1 =
⊗

X R, where the G-action on A1 is induced by the G-action on X .

We start by constructing the underlying G-graded vector space:

• Composing the 2-dimensional topological field theory associated to R

tftR : cob(2) → Vectk (2.8)

with the tensor functor FX , we obtain by corollary 2.3 a 2-dimensional

G-equivariant TFT,

tftXR := tftR ◦FX : Gcob(2) → Vectk .

• To describe the G-Frobenius algebra A =
⊕

g∈GAg that corresponds to

this G-TFT, we first describe the vector spaces Ag for g ∈ G. By lemma

2.4, we have FX (Pg−1→S1, [0, 1G]) ∼= Eg−1 ; since the functor tftR is

monoidal, we only need to know the number of connected components

of Eg−1 which by lemma 2.5 is the number bg of orbits of the cyclic

group 〈g−1〉 = 〈g〉 on X . Thus, as a vector space,

Ag
∼= tftR(Eg−1) ∼= tftR(to∈OgS

1) ∼= R⊗Og ∼=
⊗
o∈Og

Ro , (2.9)

with Ro
∼= R as a vector space. Hence an element of Ag is a linear

combination of elements of the form ro1 ⊗ · · · ⊗ robg
with roi

∈ R.

The product morphisms mg1,g2 : Ag1 ⊗ Ag2 → Ag1g2 are induced by the

covers

(S3(g1, g2, (g1g2)
−1; 1, 1, 1)→S3)
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of the three-punctured sphere. On these covers the cover functor FX gives

the surfaces Eg1;g2 .

By lemma 2.7 each 〈g1, g2〉-orbit o on X gives a connected component

Eo
g1;g2

of Eg1;g2 and thus a contribution to the product morphism. We describe

these contributions separately; we write generators in Ag1 as products of

elements ro′i
∈ R and generators in Ag2 as tensor products of elements so′′i

∈
R.

• First multiply all elements ro′ and so′′ for all 〈g1〉-orbits o′ and the

〈g2〉-orbits o′′ that are contained in the 〈g1, g2〉-orbit o. No choices are

involved, because the Frobenius algebra R is commutative.

• By lemma 2.8, the genus of Eo
g1;g2

equals p :=
2−bo

g1
−bo

g2
−bo

g1g2
+|o|

2
. In a

second step, apply the endomorphism (m ◦∆)p of R to the product of

the previous step.

• Let o1, . . . , ok be those orbits of the cyclic group 〈g1g2〉 that are con-

tained in the 〈g1, g2〉-orbit o. To the element of R obtained in the

previous step, apply the k-fold coproduct of R, so we get an element in

Ro1 ⊗ · · · ⊗Rok
. This element is well defined by coassociativity of R.

• Map the factors Roi
of the previous step to the corresponding factors

of Ag1g2 . No choices are involved, since the coproduct on the Frobenius

algebra R is cocommutative.

This provides the prescription for the product on the G-Frobenius algebra

A. As explained in theorem 1.7, the unit of A is obtained as the evaluation

of the functor tftXR on the disc with the trivial G-cover. The cover functor

maps (D×G→ D) to the disjoint union
⊔

x∈X D of |X |-many copies of discs,

hence the unit of the G-Frobenius algebra A is just the tensor product of the

units
⊗

x∈X η : k → A1
∼=

⊗
x∈X R of R. Similarly we find that the counit

of A is given by tensor product of the counits of R.

From lemma 2.9 we deduce that the G-action αh : Ag → Ahgh−1 is

given by the permutation of factors: The connected components of the cover

FX (S2(g, g
−1; 1, h)→S2) of the cylinder are again cylinders. For any 〈g〉-orbit

o of X the factor Ro of Ag is thus mapped to the factor Rho of Ahgh−1 .
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2.2 G-equivariant modular functors from the cover functor

In this section we will use the two-dimensional cover functor to construct a G-

equivariant modular functor out of a given non-equivariant modular functor.

To achieve this we categorify the results of section 2.1.2.

Let C be a modular category that is enriched over the category Vectk of

finite dimensional vector spaces over the field k; we assume C to be strict.

Let X be a finite ordered G-set. For any pair (C,X ) we will construct a

G-equivariant modular functor τX .

We wish to use the 2-dimensional cover functor

FX : GESurf → ESurf (2.10)

on extended surfaces to associate to every modular tensor category C a G-

equivariant modular functor.

We choose representatives (Ui)i∈I for the isomorphism classes of simple

objects of C and denote by θi ∈ k the eigenvalue of the twist on Ui and by

di the dimension of Ui. As usual, we introduce the scalars p± :=
∑

i∈I θ
±
i d

2
i

and assume that p+ = p−. Finally, we introduce

D =
√
p+p− =

√∑
i

(di)2 . (2.11)

With this assumption, the modular category C defines (see e.g. [Tur94,

BK01]) a C-extended modular functor τ ≡ τC which is defined for standard

spheres as

τ(Sn;V1, . . . , Vn) := HomC(1, V1 ⊗ · · · ⊗ Vn) . (2.12)

To define a G-modular functor, we need a G-equivariant category (def-

inition 1.16) as input. Given (C,X ), we define a G-equivariant category

by transferring the results of subsection 2.1.1 to categorical structures. We

obtain

Definition 2.10. Let G be a finite group, X a finite G-set and C a modular

tensor category. Then the following data define a G-equivariant category CX :

1. For g ∈ G set

CXg := C�Og ≡ Co1 � · · ·� Cobg
,

where Og is the set of 〈g〉-orbits oi of X and bg = |Og|. Moreover,

Coi
∼= C as abelian categories.
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2. For g, h ∈ G define a functor Rh : CXg → CXhgh−1 by permutation of

factors: the factor Co of CXg is mapped to the factor Cho of CXhgh−1 .

The equivariance functors obey the strict identities Rh ◦ Rk = Rhk for

all h, k ∈ G which allows us to choose trivial composition constraints,

αh,k = id for all h, k ∈ G.

The G-equivariant category CX is semisimple and has only finitely many

isomorphism classes of simple objects. Representatives of the isomorphism

classes of simple objects in CXg are Ui1 ×· · ·×Uibg
. We next define the gluing

object (cf. definition 1.17)

R ∈
⊕
g∈G

CXg � CXg−1 ; (2.13)

its component Rg in CXg � CXg−1 is

Rg :=
⊕

i1,i2...ibg

(Uio1
× · · · × Uiobg

)× (U∨
io1
× · · · × U∨

iobg
) (2.14)

where the direct sum is taken over all isomorphism classes of simple objects

of C. Thus the direct sum in (2.14) is taken over representatives of all simple

objects of C�Og . With this definition, R is clearly symmetric and G-invariant.

Now we are able to define a CX -extended G-equivariant modular func-

tor τX . Let (P→M, {p̃a}a∈A(M)) be a G-cover of an extended surface M .

Consider the surface

FX (P→M, {p̃a}a∈A(M)) = X ×G P .

It can be viewed as the total space of an |X |-fold cover of M and has, by

the discussion in subsection 2.1.2 the structure of an extended surface. Let

a ∈ A(M) be a boundary component of M . By lemmas 2.4 and 2.5 the

restriction of X ×G P to a has a connected component for every 〈ma〉-orbit

of X , where ma is the monodromy of P around a.

Definition 2.11. Let (P→M, {p̃a}a∈A(M)) be a G-cover of an extended sur-

face M . Define a functor

τX (P→M, {p̃a}a∈A(M)) : �
a∈A(M)

CX
m−1

a
→ Vectk (2.15)

by

τX (P→M, {p̃a}a∈A(M)) := τ(FX (P→M, {p̃a}a∈A(M))) = τ(X ×G P ) , (2.16)

where τ is the modular functor (2.12) corresponding to C.
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This is indeed well-defined: from CX
m−1

a
= �Oma

C and lemmas 2.4 and

2.5 we conclude that

�
a∈A(M)

CX
m−1

a
= �

a∈A(X×GP )

C .

Note that the definition of τX also depends on the choice of marked points

in X ×G P .

We will now describe all the additional data that is needed to turn τX

into a CX -extended G-equivariant modular functor and prove that all axioms

are satisfied.

• Let f : (P→M, {p̃a}a∈A(M))
∼=→ (P ′→M ′, {p̃′a}a∈A(M ′)) be an isomor-

phism in GESurf . This gives a morphism f̄ := FX (f) : X ×G P
∼=→

X ×G P ′ in ESurf . By definition, the C-extended modular functor

τ gives an isomorphism f̄∗ : τ(X ×G P ) ⇒ τ(X ×G P ′), hence an

isomorphism f̄∗ : τX (P→M, {p̃a}a∈A(M)) ⇒ τX (P ′→M ′, {p̃′a}a∈A(M ′)).

This isomorphism only depends on the isotopy class of f and it obeys

(f ◦ g)∗ = f̄∗ ◦ ḡ∗.

• The C-extended modular functor has enough structure to provide an

isomorphism of functors

τX (∅) def
= τ(X ×G ∅) = τ(∅) ∼= k (2.17)

and for G-covers (P→M, {p̃a}a∈A(M)) and (P ′→M ′, {p̃′a}a∈A(M ′))

τX (P t P ′)
def
= τ(X ×G (P t P ′)) ∼= τ((X ×G P ) t (X ×G P

′))
∼= τ(X ×G P )⊗k τ(X ×G P

′))
def
= τX (P )⊗k τ

X (P ′).
(2.18)

• Next we describe the gluing isomorphisms. Let (P→M, {p̃a}a∈A(M)) be

a G-cover of M and let α, β ∈ A(M) be two different boundary com-

ponents of M with inverse monodromies, mα = m−1
β . This condition

ensures that we can glue P along α and β. For all a ∈ A(M) \ {α, β},
let Wa be an object of CX

m−1
a

. Then by definition 2.14 of the gluing

object R

τX (P, {Wa},Rα,β) ∼=
⊕

τ(X×GP, {Wa}, Uio1
×· · ·×Uiok

, U∨
io1
×· · ·×U∨

iok
).

(2.19)
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Here the oi are the 〈m−1
α 〉-orbits of X . Since the monodromies are

inverses, mβ = m−1
α , these orbits are equal to the 〈mβ〉-orbits so that

the assignment of the simple objects in the first component of Rm−1
α

to the boundary components of X ×G P over α and the simple objects

in the second component of Rm−1
α

to the boundary components over

β is compatible. The direct sum is taken over all simple objects as in

definition 2.14, where R has been introduced.

Since τ is a modular functor, we get gluing isomorphisms for all bound-

ary components of the cover X ×G P over α and β by gluing X ×G P

along each boundary component over α and β separately. The gluing

isomorphisms of τ satisfy an associativity condition; thus the procedure

does not depend on the order in which the boundary components are

glued. Hence we get gluing isomorphisms

Gα,β : τX (P, {Wa},Rα,β)
∼=→ τX (tα,βP, {Wa}) (2.20)

that are functorial in the objects Wa. The procedure in the definition

of Gα,β relies on the fact that the cover functor FX respects gluing of

covers.

• Next we implement G-equivariance. Let (P→M, {p̃a}a∈A(M)) be a G-

cover of an extended surface M with marked points {p̃a}a∈A(M) and let

g = (ga)a∈A(M) ∈ GA(M) be a tuple of elements of G for each boundary

component of M . For all a ∈ A(M) let Wa be an object in CG
m−1

a
. We

need to give functorial isomorphisms

Tg : τX (P→M, {p̃a}, {Wa})
∼=→ τX (P→M, {gap̃a}, {gaWa}). (2.21)

implementing the action of g on the boundary components.

The boundary component of (P→M, {p̃a}) corresponding to the a-th

boundary component ofM is isomorphic to the cover (Pma→S1, [0, 1G]).

Now we analyze the situation on the right hand side of (2.21). The

boundary of the cover (P→M, {gap̃a}) is isomorphic to to the cover

(Pma→S1, [0, ga]) ∼= (Pgamag−1
a
→S1, [0, 1G]). This induces precisely the

map Ema → Egamag−1
a

in lemma 2.6. After identifying boundary com-

ponents and orbits, a 〈ma〉-orbit o is mapped under this map to the

〈gamag
−1
a 〉-orbit gao. On the other hand, the action of Rga on CX

m−1
a

permutes the objects in CX
m−1

a
in exactly the same way. Hence we can

choose the equivariance isomorphisms Tg to be identity morphisms.
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• It follows from functoriality of the cover functor FX and of τ that all

isomorphisms constructed above are functorial in (P→M, {p̃a}a∈A(M)).

Similarly, one concludes that all isomorphisms are compatible.

• The G-equivariant modular functor τX is normalized:

τX (S2 ×G→S2)
def
= τ(X ×G (S2 ×G)) ∼= τ(X × S2) ∼= k⊗ · · · ⊗ k ∼= k

(2.22)

We summarize these findings in the following theorem, which is one of

the main results of this thesis:

Theorem 2.12. Let G be a finite group, X a finite ordered G-set and C a k-

linear modular category. Denote by CX the G-equivariant category determined

by the orbit-structure of X as introduced in definition 2.10. Then the functor

τX defined by

τX (P→M, {p̃a}a∈A(M)) := τ(FX (P→M, {p̃a}a∈A(M))) (2.23)

is a CX -extended G-equivariant modular functor.

From theorem 1.22 we immediately obtain the following

Corollary 2.13.

1. The G-equivariant modular functor τX induces a G-equivariant mon-

oidal structure on the G-equivariant category CX .

2. The equivariant modular functor τX induces on the G-equivariant mon-

oidal category CX the structure of a weakly fusion category. Since the

G-modular functor in theorem 2.12 is defined for arbitrary genus, we

expect this structure to be G-modular, so that orbifold theories exist.

Unfortunately, G-equivariant modular functors for higher genus are not

yet well understood.

3. By restriction, the G-equivariant functor τX endows for any group el-

ement g ∈ G the abelian category C�Og with the structure of a module

category over the tensor category C�X .
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In section 3.1, we make this structure explicit in the case of G = Z/2
acting non-trivially on a two-element set X . In this case, we can show that

the equivariant category is rigid rather than only weakly rigid. It is also

known in this case ([BFRS10a]) that the module category structure on C
over C � C describes the permutation modular invariant.

In section 3.2 we explicitely compute the monoidal product and structure

morphisms for the module categories in statement 3 of corollary 2.13 for

arbitrary groups G. It turns out in section 3.3 that also in the case of

arbitrary groups the module categories CXg over CX1 describe the permutation

modular invariant.

For our construction, it is indispensable to require C to be modular. A

genus 0 CX -extended G-equivariant modular functor has to be defined on

G-covers of extended surfaces of genus 0. According to lemma 2.8, the total

space of the associated |X |-fold cover, however, can have a non-zero genus.

Hence the C-extended modular functor τ has to be defined for any genus,

and thus we can define, as in theorem 2.12, the equivariant modular functor

τX for any genus as well.



3. PERMUTATION EQUIVARIANT RIBBON

CATEGORIES FROM MODULAR FUNCTORS

As we already pointed out, we want to define permutation equivariant ribbon

categories for a finite group G, a finite G-set X and a modular category C.

To do this, we use the G-equivariant modular functor from section 2.2 and

follow the lines of theorem 1.22.

It turns out that in contrast to the definition of the cover functor, which

is very easy, it is a very difficult task to compute the structure morphisms

for the G-equivariant (weakly) ribbon categories.

In the case of G = Z/2 action on a two-element set X by permutation, it is

possible to give the full structure of the Z/2-equivariant monoidal category,

which turns out to be ribbon. For arbitrary groups however, we can only

adress the question of finding the monoidal product of two objects in the

neutral component CX1 and of an object in CX1 with an object in some other

component CXg . We can find the mixed associativity constraints to give the

component CXg as a module category over the monoidal category CX1 .

With the methods we use, we are not able to derive the mixed tensor

products for arbitrary groups. The surfaces X×GP become more complicated

for groups larger that Z/2; even for Z/2 the definition of the tensor product

for two objects in the twisted sector and the computation of the associativity

constraint for three objects in the twisted sector is the most complicated part

of section 3.1.

There are two reasons for these problems: If the genus of the surfaces

X ×G P becomes larger, the analysis will become more complicated, this

already occurs in the Z/2-case. The other reason lies in the Lego-Teichmüller

Game: It becomes very difficult to draw and analyze marking graphs on

surfaces of varying structure and unknown genus.

However for arbitrary groups we can compute the modular invariant par-

tition functions that come with the module categories CXg over CX1 . Fur-

thermore the results of [ENO09] imply that the module category structures
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already fix the full monoidal product on CX up to an element of a torsor over

H3(G, k∗).

3.1 Z/2-permutation equivariant fusion categories

This section is based on the article [BS10].

3.1.1 Notation and conventions

For this section, we restrict ourselves on the case where the cyclic group

G = Z/2 acts on the ordered two-element set X = {1, 2} by permutation of

elements. We denote the generator of Z/2 by g and hence write Z/2 = {1, g}
with g2 = 1.

We note that in this special case, the principal Z/2-cover P →M and the

cover X×Z/2P →M are isomorphic as covers over the manifoldM . However,

whereas P has only one marked point for every connected component of ∂M ,

the cover X ×Z/2 P has one marked point in every connected component of

its boundary. We will assume that one distinguished point has been chosen

over each connected component of ∂P over ∂M (so that the total space P is

an extended surface itself) and work with P instead of X ×G P .

Our construction will involve choices: Following theorem 1.22 we define

the value of functors like the duality functor or the tensor product functor

by objects representing functors constructed from the equivariant modular

functor τX . This is possible, since by [BK01, lemma 5.3.1] any additive

functor F : D → Vectk from a semisimple abelian category D with finitely

many objects is representable. By definition of the dual object this shows

that any object V of CX is determined by the functor τX (S2(h
−1, h; 1, 1) →

S2; ?, V ) for appropriate h ∈ Z/2.

The representing objects from the Yoneda lemma will only be unique

up to canonical isomorphism. Different choices of representing objects lead

to different structures of ribbon categories on CX , which are equivalent via

a tensor functor which is the identity functor on CX and whose structure

morphisms are provided the Yoneda lemma. We will indicate such choices in

our discussion.

For the value of the equivariant modular functor τX on the standard

blocks of subsection 1.1.2, we introduce the shorthand notation

〈V1, . . . , Vn〉X := τX (Sn(g1, . . . , gn; 1, . . . , 1) → Sn;V1, . . . , Vn). (3.1)
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with objects Vi ∈ CXgi
. We use a similar shorthand for the C-extended modular

functor τ as well,

〈W1, . . . ,Wn〉 := τ(Sn;W1, . . . ,Wn) , (3.2)

where W1, . . . ,Wn are objects in C.

As an abelian category, the Z/2-equivariant category CX is of the form

(C�C)⊕(C), where C�C is the neutral and C the twisted component or sector

of CX . We denote objects in the neutral component by A1×A2, B1×B2, . . .

and objects in the twisted component by M,N, . . . .

The dual of an object V in C will be denoted by V ∨. We agree to drop the

tensor product symbol for objects of C when using the monoidal structure

of C, so we write AB ≡ A ⊗C B. The braiding of two objects in C will be

denoted by cA,B and the equivariant braiding in CX by CA,B in capital letters.

Similarly, θU denotes the twist, bU the (right) coevaluation and dU the (right)

evaluation in C, while for the corresponding morphisms ΘA, BA and DA of

CX capital letters are used.

When dealing with modular functors we use a graphical notation. First

note that the total spaces of Z/2-covers over Sn can have the following two

types of boundary components:

(3.3)

The first is a boundary component of non-trivial monodromy g, the sec-

ond with trivial monodromy 1 ∈ Z/2.

A decorated surface Σ also represents the corresponding vector space

τ(Σ;V1, . . . , Vn): we then write objects of the appropriate categories to the
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boundary components:

M

A1 × A2

(3.4)

When we write an object A1 × A2 next to a boundary embedded in R3, our

convention is such that the first object is assigned to the outer circle and the

second object to the inner circle.

To keep track of diffeomorphisms of a surface Σ, we use techniques from

the Lego-Teichmüller Game (section 1.2) and use the graphical representation

of these diffeomorphisms. The total space of a Z/2-cover with a marking

graph on it is depicted in

M

A1 × A2

(3.5)

Recall the standard marking on the standard sphere Sn from subsection 1.2.1

that relates the marked point k − i
3

to the point −2i for k = 1, 2 . . . n by n

straight lines.

When we apply diffeomorphisms to surfaces we will analyze the image of

markings graphs under the diffeomorphisms and relate the marking graphs

by finite sequences of LTG moves, see section 1.2.4.

The LTG gives rules to translate these moves into natural isomorphisms

between the corresponding vector spaces, see appendix A for this translation.
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In most cases, we will suppress the LTG-move Z (the rotation move) in

manipulations of the marking graphs; when translating the LTG-moves into

morphisms in C, we will point out at what point one has to insert Z-moves.

Similarly, if a surface has been obtained by gluing two boundary circles,

the corresponding circle will be drawn on the surface, this circle will then

give a cut in the glued marking graph.

3.1.2 Dual objects

We start by finding for every object V ∈ CX a candidate for the dual object.

This will be the object V ∗ representing the functor

CX → Vectk

T 7→ 〈V, T 〉X .
(3.6)

We consider two cases separately.

• For V in the neutral component, V = A1×A2 ∈ C�C, we consider the

standard block S2(1, 1; 1, 1) whose cover spaces is the disjoint union of

two copies of S2 and find the object representing the functor

C � C → Vectk

T1 × T2 7→ 〈A1 × A2, T1 × T2〉X .
(3.7)

Here, we restricted our attention to the value of the functor on the

neutral component, since the grading implies that the functor is zero

on the twisted component. We compute

τX (S2(1, 1; 1, 1) → S2;V, T ) = τ(S2 t S2;A1, A2, T1, T2)

∼= τ(S2;A1, T1)⊗k τ(S2;A2, T2)

def
= HomC(1, A1T1)⊗k HomC(1, A2T2)

∼= HomC(A
∨
1 , T1)⊗k HomC(A

∨
2 , T2)

def
= HomC�C(A

∨
1 × A∨

2 , X1 × T2)

def
= HomCX (A∨

1 × A∨
2 , X1 × T2).

(3.8)

Let us explain in this example the various steps in detail; in subsequent

calculations, we will only explain additional new features. The first

equality is by definition of the equivariant modular functor τX via the
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cover functor FX ; the second isomorphy is the tensoriality of τ . The

third equality follows from the definition of the modular functor τ from

the modular category C. The next isomorphism is a consequence of

the duality in the category C, while the last identities follow from the

definition of the Deligne product C � C and the definition of CX .

Hence we find that (A1×A2)
∗ ∼= A∨

1 ×A∨
2 . A choice of the representing

object and of a diffeomorphism is involved in equation (3.8); different

choices ultimately lead to equivalent dualities on CX .

• Let M be an object in the twisted component of CX , hence M ∈ C.

The total space of the cover (S2(g, g; 1, 1) → S2) has only one connected

component and is in fact diffeomorphic to S2 as a smooth manifold, so

we find

τX (S2(g, g; 1, 1);M,T ) = τ(S2;M,T )

def
= HomC(1,MT )

∼= HomC(M
∨, T )

(3.9)

We thus find that M∗ ∼= M∨. Again, a choice of a representing object

and of a diffeomorphism S2(g, g; 1, 1)
∼=→ S2 are involved.

So far we only found dual objects, for the further discussion on duality

in CX we need a tensor product on CX . For this reason, we return to more

aspects of a ribbon structure in section 3.1.7.

3.1.3 The tensor product

As in theorem 1.22, the tensor product of two objects V,W ∈ CX is defined

as the object representing the functor 〈?, V,W 〉X , i.e. by 〈T, V ⊗ W 〉X =

〈T, V,W 〉X . This again involves a choice of the representing object. The

total space of the standard cover S3((g1g2)
−1, g1, g2; 1, 1, 1) is isomorphic to

the n-punctured sphere Sn for a value of n that depends on the group elements

g1 and g2. We will have to choose such a diffeomorphism as well. Different

choices of this diffeomorphism lead to isomorphic tensor products, but the

choice will enter in the associativity constraints; hence we have to keep track

of this choice. This is done by considering the image of the standard marking

graph on Sn under this diffeomorphism. We call this image the standard

marking graph on S3((g1g2)
−1, g1, g2; 1, 1, 1).



3.1. Z/2-permutation equivariant fusion categories 53

• We first consider two objects V ≡ A1×A2 and W ≡ B1×B2 in the neu-

tral component of CX . Since total space of the cover S3(1, 1, 1; 1, 1, 1)

is just the disjoint union of two three-holed spheres, we find

〈T, V ⊗W 〉X ≡ 〈T1 × T2, A1 × A2, B1 ×B2〉X
def
= τX (S3(1, 1, 1; 1, 1, 1) → S3;T1 × T2, A1 × A2, B1 ×B2)

def
= τ(S3 t S3;T1, T2, A1, A2, B1, B2)

∼= τ(S3;T1, A1, B1)⊗k τ(S3;T2, A2, B2)

def
= HomC(1, T1A1B1)⊗k HomC(1, T2A2B2)

∼= HomC(T
∨
1 , A1B1)⊗k HomC(T

∨
2 , A2B2)

def
= HomC�C(T

∨
1 × T∨2 , A1B1 × A2B2)

(3.10)

Our definition of the tensor product on objects of the untwisted com-

ponent thus yields (A1×A2)⊗(B1×B2) := A1B1×A2B2, i.e. the usual

tensor product on C � C. The standard marking graph on the cover

S3(1, 1, 1; 1, 1, 1) is then

T1 × T2

A1 × A2B1 ×B2

(3.11)

• Next we consider the tensor product of an object in the untwisted

component A1 × A2 with an object M in the twisted component. The

total space S3(g, 1, g; 1, 1, 1) of the relevant cover is diffeomorphic to S4
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as can be seen by the following chain of diffeomorphisms:

T T

∼=→

A1 × A2M M A1

A2

T T

∼=→∼=→
A1

A2

M M A1

A2

(3.12)

In the first and second step we move the inner hole labelled by A2

around the component of the boundary with non-trivial monodromy,

labelled by M . The last step is also an isomorphism of manifolds; the

reader should not be confused by the fact that we have to draw two-

dimensional manifolds immersed into the three-dimensional space R3.

Hence we find that

〈T, (A1 × A2)⊗M〉X = 〈T,A1 × A2,M〉X
def
= τX (S3(g, 1, g; 1, 1, 1) → S3;T,A1 × A2,M)

def
= τ(S3(g, 1, g; 1, 1, 1);T,A1, A2,M)

∼= τ(S4;T,A1, A2,M)

def
= HomC(1, TA1A2M)

∼= HomC(T
∨, A1A2M).

(3.13)
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We are thus lead to the definition (A1 × A2) ⊗M := A1A2M . The

image of the standard marking graph on S4 under the diffeomorphism

described in equation (3.12) gives this marking on S3(g, 1, g; 1, 1, 1):

T

A1 × A2M

(3.14)

• The discussion of the tensor product M⊗(A1×A2) closely parallels the

preceding discussion. Again the manifold S3(g, g, 1; 1, 1, 1) is diffeomor-

phic to the four-punctured sphere S4. We introduce a diffeomorphism

similar to the one defined in equation (3.12):

T T

∼=→

A1 × A2 M MA1

A2

T T

∼=→
∼=→

A1

A2 M M

A1

A2

(3.15)
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We find:

〈T,M ⊗ (A1 × A2)〉X
def
= 〈T,M,A1 × A2〉X
def
= τX (S3(g, g, 1; 1, 1, 1) → S3;T,M,A1 × A2)

def
= τ(S3(g, g, 1; 1, 1, 1);T,M,A1, A2)

∼= τ(S4;T,M,A1, A2)

def
= HomC(1, TMA1A2)

∼= HomC(T
∨,MA1A2)

(3.16)

so that we are lead to define M ⊗ (A1 × A2) := MA1A2 and have the

standard marking graph on S3(g, g, 1; 1, 1, 1)

T

MA1 × A2

(3.17)

These definitions coincide with the ad hoc definitions made in [BFRS10a].

• We now turn to the tensor product of two objects in the twisted com-

ponent of CX . To this end, we first note that the tensor product functor

C � C → C⊕
l

Vl ×Wl 7→
⊕

l

VlWl
(3.18)

has the right adjoint [KR09, Thm. 2.20]

R : C → C � C

V 7→
⊕
i∈I

V U∨
i × Ui ,

(3.19)
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where the sum is over representatives of isomorphism classes of simple

objects of C.

We have to consider the manifold S3(1, g, g; 1, 1, 1) together with the

following diffeomorphisms

T1 × T2 T1

∼=→

N M MN
T2

T1 T1

∼=→
∼=→ T2 M

N

MT2

N
(3.20)

We thus find

〈T1 × T2,M ⊗N〉X
def
= 〈T1 × T2,M,N〉X
def
= τX (S3(1, g, g; 1, 1, 1) → S3;T1 × T2,M,N)

def
= τ(S3(1, g, g; 1, 1, 1);T1, T2,M,N)

∼= τ(S4;T2, T1,M,N)

def
= HomC(1, T2T1MN)

∼= HomC(T
∨
1 T

∨
2 ,MN)

∼= HomC�C(T
∨
1 × T∨2 , R(MN))

(3.21)
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where the last isomorphism is given by the adjunction between R and

the tensor product functor. Hence we set

M ⊗N = R(MN) =
⊕
i∈I

MNU∨
i × Ui. (3.22)

We note that the adjunction morphism

HomC(T
∨
1 T

∨
2 ,MN) ∼=

⊕
i∈I

HomC�C(T
∨
1 × T∨2 ,MNU∨

i × Ui)

∼=
⊕
i∈I

HomC(T
∨
1 ,MNU∨

i )⊗k HomC(T
∨
2 , Ui)

(3.23)

coincides with the gluing isomorphism

T1

T2

cut for gluing

T1

∼=→
⊕

i∈I

N

M

M

N

T2 Ui U∨
i

(3.24)

so that on the total space S3(1, g, g; 1, 1, 1) of the cover we have the

standard marking graph

T1 × T2

MN

(3.25)
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which has a cut drawn on the manifold close to the insertion of T2. The

second arrow in the marking on S3(1, g, g; 1, 1, 1) comes from the mark-

ing on S2(Ui, T2) and fixes the order of the objects in HomC(1, UiT2).

We finally determine the tensor unit 1Z/2 of CX that is defined by

〈1Z/2, U〉X := 〈U〉X (3.26)

for all U in CX . The classification of covers of the one-holed sphere implies

that 〈U〉X is only defined when U is in the neutral component, U ∈ CX1 . With

U = A1 × A2 ∈ C � C, we find 〈A1 × A2〉X ∼= 〈A1〉 ⊗k 〈A2〉 and hence

1Z/2 = 1× 1. (3.27)

Since the modular tensor category C was supposed to be strict, the unit

constraints of CX are the identity morphisms.

3.1.4 The associativity constraints

The next step is to derive the associativity constraints for the tensor prod-

uct given in the previous section. As special cases, we will find the mixed

associativity constraints for which ansätze were proposed in [BFRS10a].

For any choice of three elements p, q, r ∈ Z/2 we need to consider the

Z/2-cover

S4((pqr)
−1, p, q, r; 1, 1, 1, 1) → S4

of the four-holed sphere S4. This cover will be cut in two different ways,

representing the tensor product (A⊗B)⊗C and A⊗ (B ⊗C), respectively.

By gluing the markings that represent these tensor products, the two ways

of cutting give two different markings on S4((pqr)
−1, p, q, r; 1, 1, 1, 1) which

in turn represent two different diffeomorphisms from the total space of the

cover

f, g : S4((pqr)
−1, p, q, r; 1, 1, 1, 1)

∼=→ S (3.28)

to the appropriate standard block S, which is either a punctured sphere,

a disjoint union of punctured spheres or a surface of genus one. We then

consider for all objects T ∈ CX the following chain of natural transformations:

HomCX (T ∗, (A⊗B)⊗ C)
∼=→ τ(S;T,A,B,C)

f−1
∗→ τ(S4((pqr)

−1, p, q, r; 1, 1, 1, 1);T,A,B,C)
g∗→ τ(S;T,A,B,C)

∼=→ HomCX (T ∗, A⊗ (B ⊗ C)).

(3.29)
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The first and the last isomorphism in (3.29) are determined by the definition

of the tensor products (A⊗B)⊗C and A⊗ (B⊗C) as objects in C or C�C
respectively. The Yoneda lemma implies that this natural transformation

comes from a natural isomorphism αA,B,C : (A ⊗ B) ⊗ C
∼=→ A ⊗ (B ⊗ C).

The arguments of [KP08, BK01] then imply that these isomorphisms satisfy

the pentagon axiom.

The Lego-Teichmüller Game turns out to be a powerful tool for this task:

Both isomorphisms in (3.28) can be evaluated on the standard marking graph

on the standard block S. The composition g ◦ f−1 gives a new marking on

S that can be transformed into the standard marking by a finite sequence

of LTG-moves. Together with the dictionary for LTG-moves in appendix A,

these in turn give the natural transformation in (3.29).

We summarize our strategy:

• Determine the two marking graphs on S4((pqr)
−1, p, q, r; 1, 1, 1, 1) in-

duced on the cover by cutting S4 in the two ways determined by as-

sociativity and by our definition of the tensor product. Denote the

marking graph representing (A⊗B)⊗C by M1 and the marking graph

representing A⊗ (B ⊗ C) by M2.

• Determine the standard manifold S that is diffeomorphic to the to-

tal space S4((pqr)
−1, p, q, r; 1, 1, 1, 1). Then transform the manifold

S4((pqr)
−1, p, q, r; 1, 1, 1, 1) with the marking graph M1 to the standard

manifold S in the way prescribed by the marking M2.

• This yields S, together with a marking graph. Determine the LTG-

moves that transform this graph into the standard marking graph on

S.

• Translate these LTG-moves into morphisms in C or C � C.

Since we need to do this for any choice of p, q, r ∈ Z/2, we will get eight dif-

ferent associativity constraints αA,B,C , depending on the sector of the objects

A,B,C.

Three objects from the untwisted component

To illustrate the method, we start with the easiest case, three objects A1 ×
A2, B1 × B2 and C1 × C2 in the untwisted component. The total space



3.1. Z/2-permutation equivariant fusion categories 61

S4(1, 1, 1, 1; 1, 1, 1, 1) is just a disjoint union of two four-holed spheres. Both

cutting procedures yield the same marking graph on S4 t S4:

A1 × A2

C1 × C2

T1 × T2

B1 ×B2 (3.30)

Hence we arrive at the trivial LTG-move. Taking into account that C
is supposed to be strict, we find that αA1×A2,B1×B2,C1×C2 is the identity on

A1B1C1 × A2B2C2.

One object from the twisted component

Next we derive the associativity isomorphisms involving one object in the

twisted component and two objects in the untwisted component. To ex-

plain our prescription in detail, we first discuss the associativity constraint

αA1×A2,B1×B2,M in greater detail.

The first cutting on the total space of S4(g, 1, 1, g; 1, 1, 1, 1) amounts to

the gluing isomorphism in C � C:

⊕
i,j∈I

〈T, U∨
i × U∨

j ,M〉X ⊗k 〈Ui × Uj, A1 × A2, B1 ×B2〉X

∼=→〈T,A1 × A2, B1 ×B2,M〉X
(3.31)

With the standard markings on S3-covers introduced in section 3.1.3, we

arrive at the following picture:
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U∨
i × U∨

j

M

T

Ui × Uj

B1 ×B2

A1 × A2

(3.32)

By contracting the marking along the factorizing link, we get on the manifold

S4(g, 1, 1, g; 1, 1, 1, 1) the marking

A1 × A2

M B1 ×B2

T

(3.33)

The second gluing procedure is the isomorphism⊕
i∈I

〈T,A1 × A2, U
∨
i 〉X ⊗k 〈Ui, B1 ×B2,M〉X

∼=→〈T,A1 × A2, B1 ×B2,M〉X
(3.34)

with the pictorial description

U∨
i

T

A1 × A2

Ui

M

B1 ×B2

(3.35)



3.1. Z/2-permutation equivariant fusion categories 63

Again contracting the marking along the factorizing link, we get on the man-

ifold S4(g, 1, 1, g; 1, 1, 1, 1) the second marking

A1 × A2

M B1 ×B2

T

(3.36)

The surface S4(g, 1, 1, g; 1, 1, 1, 1) is isomorphic to a sphere S6 with 6

punctures. We draw the graph (3.33) obtained from the first gluing procedure

on S4(g, 1, 1, g; 1, 1, 1, 1) and use the isomorphism to S6 encoded in the graph

(3.36) obtained from the second gluing procedure:

A1 × A2 A1

∼=→

T

M B1 ×B2

T

M B1

B2

A2

∼=→

A1
A1

∼=→

T

M B1

T

M

B1B2

A2

B2

A2

(3.37)
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The LTG-moves that transform this marking into the standard marking

on S6 are easily read off:

A1 A1

BB1,A2−→

T

M

B2

T

M

B1B2

A2

B1

A2

(3.38)

The LTG-move BB1,A2 corresponds to the natural transformation on the

functor HomC(1, TA1B1A2B2M) that is induced by the braiding in C (see

appendix A), pictorially,

T A1 B1 A2 B2 M

BB1,A27→

T A1 A2 B1 B2 M

(3.39)

The ribbon structure on C induces an isomorphism

HomC(1, TA1B1A2B2M) ∼= HomC(T
∨, A1B1A2B2M) . (3.40)

Setting T∨ := A1B1A2B2M and evaluating the natural transformation (3.39)

on the identity, we obtain the morphism for the associativity constraint as

αA1×A2,B1×B2,M = idA1 ⊗cB1,A2 ⊗ idB2M .

These are precisely the mixed associativity constraints proposed in the

paper [BFRS10a]; in that paper, a whole family of mixed associativity con-

straints was given. Here we read off the morphisms from marking graphs

on surfaces. These graphs depend on the choice of diffeomorphisms made in

subsection 3.1.3. Different choices of diffeomorphisms lead to different as-

sociativity constraints, of which some were already proposed in [BFRS10a].

To be precise, for every associativity constraint in [BFRS10a] there exists

a choice of parametrization of the total space S3(g, 1, g; 1, 1, 1) that induces
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that associativity constraint. Different choices of diffeomorphisms are related

by elements of the mapping class group of the relevant surface. These group

elements can be translated into morphisms in C which can be used to endow

the identity functor on CX with the structure of an monoidal equivalence of

monoidal categories.

In fact in lemma 5 of [BFRS10a] it was shown by a calculation that for the

different associativity constraints the identity functor with tensoriality con-

straints only containing braiding and ribbon twist of C furnishes a monoidal

equivalence. One can verify that for any two choices of associativity con-

straints in [BFRS10a], the tensoriality constraints in [BFRS10a, Lemma 5]

are induced by the element of the mapping class group that interchanges the

two parametrizations that lead to these associativity constraints.

So the equivalence of the associativity constraints in [BFRS10a] is not

surprising from the modular functor point of view.

For the associativity constraint αM,A1×A2,B1×B2 , we get a similar picture.

The first gluing procedure on S4(g, g, 1, 1; 1, 1, 1, 1) gives the marking

M

B1 ×B2 A1 × A2

T

(3.41)

while the second procedure gives the marking

M

B1 ×B2 A1 × A2

T

(3.42)
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On the sphere S6 with 6 punctures, this gives the LTG-move

B−1
B1,A2−→

MT

B2

B1

A1

A2

MT

B2

B1

A1

A2 (3.43)

By the same reasoning as after equation (3.39), for the associativity con-

straints we conclude that αM,A1×A2,B1×B2 = idMA1 ⊗c−1
B1,A2

⊗ idB2 . This is one

of the constraints in [BFRS10a, Corollary 3].

For the associativity constraint αA1×A2,M,B1×B2 we consider the manifold

S4(g, 1, g, 1; 1, 1, 1, 1) ∼= S6. The two gluing procedures give the two markings

A1 × A2

B1 ×B2 M

T A1 × A2

B1 ×B2 M

T

(3.44)

Our general prescription gives the following marking graph on S6:

A1T

B2

M

A2

B1 (3.45)
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The following sequence of four LTG-moves transforms this marking graph

into the standard marking graph on S6:

A1T

B2

M

A2

B1

B−1
TA1,B2→

A1T

B2

M

A2

B1

BB2MB1,A2→
B−1

MB1,A2→

A1T

B2

M

A2

B1

A1T

B2

M

A2

B1

BTA1A2,B2→

A1T

B2

M

A2

B1

(3.46)

The sequence

BTA1A2,B2 ◦BB2MB1,A2 ◦B−1
MB1,A2

◦B−1
TA1,B2

(3.47)
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of LTG-moves is translated into the natural transformation

HomC(1, TA1A2MB1B2)
∼=→ HomC(1, TA1A2MB1B2), (3.48)

where we will need to insert the appropriate Z-moves implementing cyclicity:

T A1 A2 M B1 B2

Z7→
B−1

TA1,B27→

T A1 A2 B1B2 M T A1 A2 B1B2 M

B−1
MB1,A2→

BB2MB1,A2→
BTA1A2,B2→

T A1 A2M B1B2

T A1 A2 M B1B2

T A1 A2 M B1B2

Z−1

7→ = =

T A1 A2 M B1 B2

T A1 A2 M B1 B2

T A1 A2 M B1 B2

(3.49)

Using again the isomorphy

HomC(1, TA1A2MB1B2) ∼= HomC(T
∨, A1A2MB1B2) (3.50)

implied by duality and evaluating on the identity morphism gives the asso-

ciativity constraint
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αA1×A2,M,B1×B2 =

T A1 A2 M B1 B2

T A1 A2 M B1 B2 (3.51)

Two objects in the twisted component

We next discuss associativity constraints involving two objects in the twisted

and one in the untwisted component of CX . The tensor product of three such

objects lies in the untwisted component. Again the relevant marking graphs

on covers of the four-punctured sphere contain cuts.

We start with the associativity constraint αM,N,A1×A2 . The two gluing

procedures over S4 yield the following two markings on S4(1, g, g, 1; 1, 1, 1, 1),

where we already removed the cuts and contracted the factorizing links:

M

A1 × A2 N

T1 × T2 M

A1 × A2 N

T1 × T2

(3.52)

This gives the following marking on the six-punctured sphere S6:
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MT1

T2

A1

N

A2

(3.53)

It is transformed into the standard marking on S6 by the LTG-moves

B−1
A1,A2

◦B−1
A1,T2

. Now we need to translate this into a natural isomorphism

⊕
i∈I

HomC(1, T1MNU∨
i A1)⊗k HomC(1, T2UiA2)

∼=→
⊕
j∈I

HomC(1, T1MNA1A2U
∨
j )⊗k HomC(1, T2Uj)

(3.54)

Removing the cuts in the markings (3.52) on S4(1, g, g, 1; 1, 1, 1, 1) amounts

to the isomorphism⊕
i∈I

HomC(1, T1MNU∨
i A1)⊗k HomC(1, T2UiA2)

∼=→ HomC(1, T1MNA2T2A1)

(3.55)

which is given by the generalized F-move:

⊕
i∈I 7→

⊕
i∈I⊗k

M U∨
iT1 T2 UiA1N A2

MT1 T2

Ui

A1N A2

(3.56)

Then applying the LTG-moves B−1
A1,A2

◦B−1
A1,T2

gives
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⊕
i∈I

MT1 T2

Ui

A1N A2

(3.57)

to which we now apply the adjunction (3.23). After applying duality mor-

phisms, we obtain the following ribbon graph for the morphism on the right

hand side of (3.54):

⊕
i,j∈I

∑
α ⊗k

α

ᾱ

M

T∨1 T∨2

T2

Ui

A1N A2 UjU∨
j

(3.58)

The sum is taken over a basis of HomC(Uj, T
∨
2 ) and the corresponding dual

basis of HomC(T
∨
2 , Uj). It is obvious that the morphism does not depend

on the choice of basis. To use again the Yoneda lemma, we evaluate the

corresponding natural transformation on T∨1 = MNU∨
i A1 and T∨2 = UiA2

for the identity. We get the following explicit formula for the associativity

constraint:

αM,N,A1×A2 =
⊕

i,j∈I
∑

α ⊗kα

ᾱ

M

M U∨
i Ui

A1

A1

N

N

A2

A2

UjU∨
j

(3.59)

For the associativity constraint αM,A1×A2,N gluing S4(1, g, 1, g; 1, 1, 1, 1)

over the four-punctured sphere S4 gives, after removing the cuts, the graphs
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M

N A1 × A2

T1 × T2 M

N A1 × A2

T1 × T2

(3.60)

This results in the following marking on the 6-punctured sphere S6:

MT1

T2

A2

A1

N

(3.61)

This marking is transformed into the standard graph on S6 by the fol-

lowing chain of LTG-moves:

B−1
T2T1MA1,A2

◦B−1
NA2,T2

◦BN,T2 ◦BT1MA1,A2 (3.62)

They eventually lead to the associativity isomorphism

αM,A1×A2,N =
⊕

i∈I ⊗k

M

M

N

N U∨
i Ui

U∨
i UiA1

A1

A2

A2

(3.63)



3.1. Z/2-permutation equivariant fusion categories 73

For the associativity constraints αA1×A2,M,N gluing over S4 gives the

graphs

A1 × A2

N M

T1 × T2 A1 × A2

N M

T1 × T2

(3.64)

Transforming S4(1, 1, g, g; 1, 1, 1, 1) to S6 gives the following marking on

S6:

A1T1

A2

N

M

T2

(3.65)

The transformation into the standard graph on S6 is just given by the

LTG-move BT1A1,A2 . The procedure outlined before then gives the constraint

αA1×A2,M,N =
⊕

i∈I
∑

α ⊗k

M

M

N

N U∨
i Ui

U∨
j UjA1

A1

A2

A2

α ᾱ

θ−1

(3.66)
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where the α-summation is over a basis of HomC(Uj, A
∨
2Ui) and the corre-

sponding dual basis of HomC(A
∨
2Ui, Uj). The ribbon twist enters the mor-

phism during the application of the various F- and Z-moves and the adjunc-

tion (3.23).

Three objects in the twisted component

The last associativity isomorphism αM,N,O for three objects M,N,O in the

twisted component of CX is more involved: the total space of the relevant

cover ist S4(g, g, g, g; 1, 1, 1, 1), which is a surface of genus one. The two

gluing procedures over S4 give the following markings:

M

O N

T M

O N

T

(3.67)

Since the cover is not a genus zero surface any longer, the rules of the

LTG do not allow us to remove the cuts and to contract lines of the mark-

ing. Hence we keep lines indicating the cuts which are drawn with dotted

lines. Transforming S4(g, g, g, g; 1, 1, 1, 1) into a standard block along the

second marking gives the following surface of genus one with four boundary

components:

M

O N

T

M

O N

T

∼=→
∼=→
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∼=→

M

O N

T M

O N

T

∼=→

(3.68)

The transformation

M

O N

T M

O N

T

→

(3.69)

of the resulting marking into the standard marking on the four-holed torus

is given by the following sequence of LTG-moves:

S−1 ◦BTMN,R(1) ◦B−1
O,R(2) (3.70)

Translating these moves into a morphism in the modular tensor category C
gives

αM,N,O =
⊕

i,j∈I
di

D

M

M

N

N

O

OU∨
j Uj

U∨
i Ui

(3.71)

with D =
√
p+p− and p± defined as in section 2.2. (Note that the mor-

phism corresponding to the S-move in [BK01] is defined by a direct sum
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of morphisms UlU
∨
l → UkU

∨
k ; we have inserted two pairs of isomorphisms

identifying for a simple object Uk
∼= U∨

k∗ which cancel pairwise.)

These associativity constraints have to satisfy mixed pentagon axioms for

any choice of four objects in the two sectors of CX , yielding in total 16 different

types of pentagon diagrams. Theorem 2.12 asserts that our construction

yields a G-equivariant modular functor; theorem 1.22 then ensures that all

associativity constraints obtained in this section satisfy the pentagon axiom.

We have checked this by hand as well; only the pentagon with four objects

in the twisted component is more involved.

3.1.5 Tensoriality of the Z/2-action

We next derive the isomorphisms ϕA,B : h(A⊗B) → hA⊗ hB that turn the

equivariance functor Rh into a tensor functor. They have been described in

general before lemma 1.23. The functor R1 is the identity functor and the

tensoriality constraints ϕ1
A,B are identity morphisms. The non-trivial element

g ∈ Z/2 acts by permutation of factors on the untwisted component C � C
and as the identity on the twisted component C. Hence we only compute the

tensoriality constraint ϕg
A,B.

Before we proceed, we will have a look at the S2 cover of the form

(S2(g, g; 1, g) → S2), together with its marking. As a smooth manifold the

total space S2(g, g; 1, g) is diffeomorphic to S2(g, g; 1, 1) by a half turn around

the second hole. However this is not a map of marked covers over S2. We

choose a half turn diffeomorphism (say by rotating the second circle clock-

wise by π) to identify the total spaces S2(g, g; 1, g) and S2(g, g; 1, 1). Both

spaces are diffeomorphic to the two-punctured sphere S2 and by the axioms

of the C-extended modular functor τ , the corresponding diffeomorphism of

S2 induces a natural isomorphism HomC(1, UV ) ∼= HomC(1, U
gV ). Using the

duality, we get an isomorphism σV : V → gV = V . We use this isomorphism

to identify the respective hom-spaces. On marking graphs this introduces an

additional move which we call the σ-move,

U V
σV−→

U V

(3.72)
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(A1 × A2)⊗M M ⊗ (A1 × A2) M ⊗N

Fig. 3.1: The marking graphs on S3-covers that represent the non-trivial tensor
products. We show three Riemann spheres C from above. The arrow
points to the disc where the test object T is inserted. All covers are
twofold; their total space has the topology of a four-holed sphere. The
dashed line is a branch cut linking the two insertions with non-trivial
monodromy and indicates a self-intersection in the immersion of the total
space of the cover into three-dimensional space.

on the two-punctured sphere S2 and

U V
σV−→

U V

(3.73)

on the total space S2(g, g; 1, g) of the cover. Applying the half-turn diffeo-

morphism twice is the Dehn-twist, hence we have the identity σ2
V = θV ∈

HomC(V, V ).

From now on we will draw the standard spheres Sn as the one-point

compactification C of the complex plane with n discs of radius 1/3 centered at

1, 2, . . . n removed like in definition 1.5. As in subsection 1.1.2, the standard

blocks are obtained by identifying the trivial cover of the cut sphere along

the cuts, i.e. as (Sn\cuts×G)/∼. For instance the marking graphs on covers

of S3 that represent the tensor products are shown in figure 3.1.

We are now ready to compute the tensoriality constraint ϕg
A,B. We apply

the σ-move introduced in picture (3.73) to the relevant cover of S2 obtain

the marking graph



78 3. Permutation equivariant ribbon categories from modular functors

A B

(3.74)

on S2(g, g; 1, g). Then we apply the sequence of transformations in (1.57) on

S2(g, g; 1, g) and translate them into morphisms, which have to be applied

after the morphism σ.

We outline our procedure to determine the tensoriality constraint ϕg
A,B:

1. Determine the cover of the two-punctured sphere that is appropriate

for the pair of objects (A,B).

2. If the tensor product takes its value in the twisted component, A ⊗
B ∈ CXg , use the half-twist σ to identify the covers S2(g, g; 1, 1) and

S2(g, g; 1, g).

3. Apply the diffeomorphism g̃ from equation (1.54) to the cover.

4. Now we can glue in the cover of the three-punctured sphere S3 that

implements the tensor product A⊗B.

5. Apply the diffeomorphism g̃−1 = g̃ again.

6. Transform the resulting cover of S3 back to a standard block using the

marking from the tensor product gA⊗ gB.

7. Read off the LTG-moves that transform the resulting marking into the

standard marking. If A ⊗ B is in the untwisted component, this is

the tensoriality constraint. Otherwise, if A⊗ B ∈ CXg , the tensoriality

constraint is obtained by first applying the morphism σA⊗B to g(A⊗B)

to take into account step 2, and then the LTG-moves.
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The choice of the diffeomorphism σ to identify the total spaces S2(g, g; 1, 1)

and S2(g, g; 1, g) is non-canonical. Since the mapping class group of the cylin-

der is generated by the Dehn-twist, different choices of identifications differ

by powers of the Dehn-twist, which in our conventions is the square of σ.

A different choice of the identification of S2(g, g; 1, 1) and S2(g, g; 1, g) gives

different markings on the cover of S3 in step 6 of our procedure. As a conse-

quence, the LTG-moves will differ by powers of the ribbon-twist on g(A⊗B).

The difference then cancels in step 7, so that the tensoriality constraint is

independent of the choice of identifications of S2(g, g; 1, 1) and S2(g, g; 1, g).

We will start by deriving the tensoriality constraint ϕg
A1×A2,B1×B2

for g on

the tensor product of two objects in the untwisted component. Our procedure

gives the standard marking

A1 ×A2 B1 ×B2 C1 × C2

(3.75)

Hence we deduce that the constraint is the identity, ϕg

A×
1 A2,B1×B2

= idA2B2×A1B1 .

For the constraint ϕg
M,A1×A2

, we first have to use σ to identify S2(g, g; 1, 1)

and S2(g, g; 1, g); then we apply the sequence of operations described in

(1.57):

σ→ (g̃)∗→
T MA1A2 T MA1A2 T MA1A2
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→ → (g̃)∗→
T M A1 ×A2 T M A1 ×A2 T M A2 ×A1

→
T M A2 ×A1

(3.76)

In the first step we apply the half-twist σMA1A2 , in the second step the

application of g̃ as defined in (1.54) exchanges the two sheets of the cover. In

the third step we glue in the three-puncture sphere S3(g, g, 1; 1, 1, 1) with the

marking representing the tensor product M ⊗ (A1 × A2), see figure 3.1. In

the fourth step we perform the gluing on the marking graph, i.e. we contract

the marking along the factorizing link. In the fifth step we apply g̃ again,

which in particular exchanges the holes labelled by A1 and A2. The last step

is merely a simplification of the graph: we move the lines around the back

side of the sphere.

We use the marking on S3(g, g, 1; 1, 1, 1) in figure 3.1 that represents the

tensor product M ⊗ (A2 × A1) to get an isomorphism to S4. This marking

instructs us to move the disc labelled by A1 around the disc labelled by M .
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This yields the left figure in the following line:

T M A2 A1 T M A2 A1 T M A2 A1

(3.77)

In the second picture we redraw the marking graph in a more convenient

shape. The last picture is obtained by a diffeomorphism of non-embedded

manifolds.

The marking graph in the third picture of (3.77) is transformed into the

standard marking graph on S4 by the following sequence of LTG-moves:

T−1
A1
◦ σM ◦B−1

MA2,A1
◦BA2,M ◦BT,M (3.78)

where T is the Dehn twist move as in section 1.2.2. When we translate the

LTG moves into morphisms, several Dehn twists occur in manipulations of

the ribbon graphs. They have to be combined with the morphism σ which

squares to the twist. This leads to powers of σ that differ from the naive

expectations, and we arrive at the tensoriality constraint

ϕg
M,A1×A2

=

M A1 A2

M A1 A2

σ

σ−1 θ−1

(3.79)

where we have included σMA1A2 according to our general prescription, step

7.

For tensoriality constraint ϕg
A1×A2,M , we proceed in a similar way. Again

we identify the total spaces of the covers S2(g, g; 1, 1) and S2(g, g; 1, g) with

the diffeomorphism σ and apply (1.57). This gives:
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T MA2 ×A1

T MA1A2

(3.80)

The first picture is the result of (1.57). The second picture is the result of

transforming S3(g, 1, g; 1, 1, 1) to S4 using the marking on S3(g, 1, g; 1, 1, 1)

that represents the tensor product g(A1 × A2)⊗ gM = (A2 × A1)⊗M .

The resulting marking graph is transformed into the standard graph by

the sequence

B−1
A2,A1

◦B−1
A2,M ◦T−1

A2
◦B−1

M,A2
◦ σ−1

M (3.81)

of LTG-moves. This gives the morphism

ϕg
A1×A2,M =

MA1 A2

MA1A2

σ

σ−1θ−1

(3.82)

The last tensoriality constraint to be determined is ϕg
M,N . We apply (1.57)
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to S2(1, 1; 1, 1) and get

T1 × T2 NM

T1 T2NM

(3.83)

The first picture is again the result of (1.57), the second picture is the marking

graph we obtain on S4. As usual we glued all occurring cuts. Now this

marking is transformed into the standard marking by the LTG-moves

BNT2,M ◦B−1
N,T2

◦B−1
N,M ◦ σ−1

N ◦ σM (3.84)

Recall that g(M ⊗ N) =
⊕

Ui × MNU∨
i . Hence, we have to apply the

corresponding transformations to HomC(1, T1Ui) ⊗k HomC(1, T2MNU∨
i ) ∼=

HomC(1, T1T2MN) and finally use the adjunction (3.23), that resembles the

application of the F-move, to take the suppressed cuts in equation (3.83) into

account. We obtain

ϕg
M,N =

⊕
i,j∈I

∑
α ⊗k

M

Ui U∨
iM N

N U∨
j Uj

α

ᾱ

σσ−1

(3.85)

where the summation over α runs over a basis of HomC(Uj,MNU∨
i ) and the

corresponding dual basis. Again, we had to take into account Dehn twists

which shifted the powers of σ.

We have checked directly that all morphisms derived indeed satisfy all

identities needed to endow the functor Rg with the structure of a tensor

functor.
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3.1.6 The braiding

We finally derive the braiding on the Z/2-equivariant category CX which

consists of isomorphisms CU,V : U ⊗ V
∼=→ pV ⊗U with U ∈ CXp and V ∈ CXq .

Recall from section 1.2.4 the braiding diffeomorphism

(3.86)

of the three-holed sphere S3. We lift this morphism to appropriate covers

and obtain a diffeomorphism

ϕ̃B : S3((pq)
−1, p, q; 1, 1, 1)

∼=→ S3((pq)
−1, pqp−1, p; 1, p−1, 1) . (3.87)

As in theorem 1.22 it induces for any object T ∈ CX a natural isomorphism

〈T, U ⊗ V 〉X
def
= 〈T, U, V 〉X

def
= τX (S3((pq)

−1, p, q; 1, 1, 1);T, U, V )
(ϕ̃B)∗→

τX (S3((pq)
−1, pqp−1, p; 1, p−1, 1);T, V, U) =

τX (S3((pq)
−1, pqp−1, p; 1, 1, 1);T, pV, U)

def
= 〈T, pV, U〉X

def
= 〈T, pV ⊗ U〉X .

(3.88)

Thus the procedure to determine braidings is analogous to the one to deter-

mine the associativity constraints:

1. Start with the standard marking on the cover S3((pq)
−1, p, q; 1, 1, 1)

that represents the tensor product U ⊗ V .

2. Apply the diffeomorphism ϕ̃B from (3.87).

3. The result is the cover S3((pq)
−1, pqp−1, p; 1, p−1, 1) and has to be trans-

formed into a standard block, using the marking representing the tensor

product pV ⊗ U .

4. Next use the LTG-moves to transform the resulting marking graph on

the standard block into the standard marking graph.
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5. Finally translate the LTG-moves into morphisms in C or C�C, respec-

tively.

Not surprisingly, the braiding of two objects A1 ×A2 and B1 ×B2 in the

neutral component of CX turns out to be the braiding on C � C. To see this,

we lift the braiding diffeomorphism ϕB to S3(1, 1, 1; 1, 1, 1). As a smooth

manifold, this is just isomorphic to the disjoint union S3 t S3 of two three-

holed spheres. The lift ϕ̃B of the braiding isomorphism is just ϕB applied to

both components. Hence

CA1×A2,B1×B2 = cA1,B1 ⊗k cA2,B2 . (3.89)

We now discuss the more complicated situations. For the braiding CA1×A2,M :

(A1×A2)⊗M →M⊗(A1×A2), we have to consider the cover S3(g, 1, g; 1, 1, 1)

of S3 with its standard marking graph. Lifting the braiding ϕB gives the

marking

ϕ̃B→
T MA1 ×A2 T M A1 ×A2

(3.90)

on S3(g, g, 1; 1, 1, 1). Applying the diffeomorphism to S4 that represents the

tensor product 1M ⊗ (A1 × A2) = M ⊗ (A1 × A2) gives the marking

A1T M A2

(3.91)

on S4. It is connected to the standard marking of the four-punctured sphere

S4 by the following sequence of LTG-moves:

BA1,M ◦BT,A2 ◦BA1,A2 (3.92)
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Applied to HomC(1, TA1A2M), this induces the following braiding isomor-

phism on CX

CA1×A2,M =

M A1 A2

A1 A2 M

θ−1

(3.93)

For the braiding CM,A1×A2 : M⊗(A1×A2) → g(A1×A2)⊗M = (A2×A1)⊗
M we consider the cover S3(g, g, 1; 1, 1, 1) of S3 with its standard marking

graph. We lift the braiding ϕB and get the marking

T MA2 ×A1

(3.94)

on S3(g, 1, g; 1, g, 1). Note that the insertions of A1 and A2 have exchanged

the sheet, when they were moved pass the self-intersection. We apply the

diffeomorphism to S4 given by the marking on S3(g, 1, g; 1, g, 1) that repre-

sents the tensor product g(A1×A2)⊗M = (A2×A1)⊗M . The result is the

following marking on S4:

A1T A2 M

(3.95)
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This marking on S4 is transformed into the standard marking on S4 by

the LTG-moves

BA1M,A2 ◦BM,A1 . (3.96)

We get the braiding isomorphism on CX :

CM,A1×A2 =

A2 A1 M

M A1 A2

(3.97)

Finally we describe the braiding isomorphism CM,N : M ⊗N → gN ⊗M =

N ⊗M . We lift the braiding ϕB to S3(1, g, g; 1, 1, 1). The standard marking

on S3(1, g, g; 1, 1, 1) involves a cut: we first remove this cut and then apply

ϕ̃B:

ϕ̃B→
T1 × T2 M N T1 × T2 MN

(3.98)

We transform the resulting manifold into S4 and arrive at

MT1 N T2

(3.99)
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This marking is transformed into the standard marking on S4 by the following

sequence of moves:

B−1
T1,N ◦B−1

M,T2
◦B−1

T1,T2
◦ σ−1

N (3.100)

When we apply this to HomC(1, T1MNT2) and perform the gluing process

in the adjunction (3.19), we arrive at

CM,N =
⊕

i∈I ⊗k

N M U∨
i Ui

M N U∨
i Ui

σN θU∨i

(3.101)

Again powers of σ are changed by taking into account Dehn twists.

By theorem 2.12, our construction yields a G-equivariant modular func-

tor, and by theorem 1.22, braiding morphisms obtained from a G-equivariant

modular functor satisfy Z/2-equivariant generalizations of the hexagon ax-

ioms. We have also directly verified that the morphisms presented in this

subsection satisfy the hexagon axioms.

3.1.7 Equivariant ribbon structure

We now return to study the existence of a Z/2-equivariant ribbon structure

on CX . The general results of [KP08] ensure that CX has a twist but do

not guarantee the existence of duality morphisms like the left evaluation

D̃U : U ⊗ U∗ → 1. However, in the case of Z/2-permutation equivariant

categories, there are indeed compatible duality morphisms that endow CX
with a ribbon structure.

By theorem 1.22 we obtain the twist morphism ΘU : U → pU for U ∈ CXp
by the Yoneda lemma from a natural transformation of functors

τX (S2(p, p
−1; 1, 1);U, T )

(ϕ̃−1
B )∗→ τX (S2(p

−1, p; 1, p−1);T, U)

T(1,p)
= τX (S2(p

−1, p; 1, 1);T, pU)

(ϕ̃Z)∗→ τX (S2(p, p
−1; 1, 1); pU, T ) .

(3.102)
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Here ϕB is the braiding of the two holes of S2 and ϕ̃B its lift to the cover

S2(p
−1, p; 1, p−1). The equivariance morphism T(1,p) is, in our case, the iden-

tity. Finally, ϕZ is the diffeomorphism of the standard sphere inducing a

cyclic move of the distinguished edge, and ϕ̃Z is its lift.

For an object U = A1 × A2 in the untwisted component of CX , the total

space S2(1, 1; 1, 1) of the cover is again just a disjoint union of two copies of

S2 with the lifts of ϕ−1
B and ϕZ being the application of the diffeomorphisms

to both components separately. Hence the twist on CX1 is just the usual twist

on the category C � C:

ΘA1×A2 = θA1 ⊗k θA2 (3.103)

To calculate the twist morphism for an object U = M ∈ CXg in the twisted

component, our moves amount to

ϕ̃−1
B→ ϕ̃Z→

TM MT MT

(3.104)

Transforming the total space of this cover into the standard sphere S2

gives the following marking:

=T M MT

(3.105)

Here, we redrew the figure by pulling the line connecting to M along the

backside of the sphere. The last figure is transformed into the standard
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marking on S2 by applying the half turn move σM . Hence we find

ΘM = σM . (3.106)

Permutation orbifolds of rational conformal field theories have been analyzed

with representation theoretic tools in [BHS97]. The formula (3.106) for the

twist in the twisted component is in full agreement with formula [BHS97,

(4.21)] for the conformal weights.

Up to this point, we have derived all structure on CX from the approach

of Z/2-equivariant modular functors [KP08]. In fact, we have fully exploited

this ansatz and obtained the structure of a weakly rigid Z/2-equivariant

monoidal category. We next check that the condition in proposition 1.24 that

ensures that the tensor category CX is even rigid is satisfied. The criterion is

easy to check for simple objects Ui × Uj in the untwisted component of CX .

In this case the morphism

iUi×Uj
: 1× 1 → UiU

∨
i × UjU

∨
j (3.107)

is just given by the tensor product of two right coevaluations of C,

iUi×Uj
= bUi

⊗k bUj
. (3.108)

The morphisms ai×j in proposition 1.24 are non-zero by rigidity of C � C.

The ribbon structure on the neutral component CX1 is then just the usual

ribbon structure on C � C.

Now we look at a simple object Ui in CXg . As we have seen before, the

dual object of Ui in CX is U∨
i . The adjunction (3.23) with T1 = T2 = 1 and

N = U∨
i gives isomorphisms

HomC(U
∨
i , U

∨
i ) ∼= HomC(1, UiU

∨
i ) ∼= HomC�C(1× 1, R(UiU

∨
i )) (3.109)

Evaluating the isomorphism on idU∨
i

gives a morphism in
⊕

j∈I HomC�C(1×
1, UiU

∨
i U

∨
j × Uj) (the right coevaluation) whose only non-vanishing compo-

nent appears for j = 0. It reads

⊗kiUi
:=

1

1Ui U∨
i

(3.110)
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Now compute α−1
U∨

i ,Ui,U∨
i
◦ (idU∨

i
⊗iUi

) using equation (3.71) for the asso-

ciativity constraint:

α−1
U∨

i ,Ui,U∨
i
◦ (idU∨

i
⊗iUi

) =
⊕

k∈I
dk

D

UkU∨
kUiU∨

i U∨
i

U∨
i

(3.111)

Here dk is the dimension of the simple object Uk and D is the dimension of

the category C introduced in (2.11). The morphism

ai : 1× 1 →
⊕

k

U∨
i UiU

∨
k × Uk

from in proposition 1.24 can only have a non-vanishing component for k = 0,

a
(0)
i : 1× 1 → U∨

i Ui × 1 .

Since the tensor unit 1 is absolutely simple, i.e. End(1) = k id1, this compo-

nent a
(0)
i is of the form

a
(0)
i = ai ⊗k id1

with ai ∈ HomC(1, U
∨
i Ui). We then have

α−1
U∨

i ,Ui,U∨
i
◦ (idU∨

i
⊗iUi

) = +
∑

k 6=0 . . .ai

U∨
i U∨

i

U∨
i

Ui

(3.112)

Hence

1
D = ai

U∨
i

U∨
i U∨

i

Ui U∨
i U∨

iUiU∨
i

(3.113)
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To determine ai, we take a partial trace on both sides an arrive at

1
D = = diai ai

U∨
i Ui U∨

i U∨
i UiUi

Ui

(3.114)

so that

= 1
Ddi

ai

U∨
i Ui U∨

i Ui

(3.115)

and hence

ai = 1
Ddi

⊗k

U∨
i Ui 1

1 (3.116)

This morphism is non-zero since the left coevaluation of C is non-zero. Hence

the Z/2-permutation equivariant tensor category CX is rigid.

The right evaluation morphisms DUi
: U∨

i ⊗ Ui → 1× 1 are fixed by the

condition DUi
◦ ai = id1×1. It is easy to see that the right evaluation reads

DUi
= D ⊗k ∈ HomCX (U∨

i ⊗ Ui,1× 1)

U∨
i Ui

1

1 (3.117)

Similarly we find for the left evaluation

D̃Ui
= D ⊗k ∈ HomCX (Ui ⊗ U∨

i ,1× 1)

Ui U∨
i

1

1 (3.118)
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3.2 Module categories from G-equivariant modular functors

In this section we want to find the module category structures that were

already mentioned in corollary 2.13. To this end we fix an element g ∈ G.

By theorem 2.12 and corollary 2.13 there is the structure of aG-equivariant

monoidal category on
⊕

h∈G CXh with CX1 = C�O1 = C�X and CXh = C�Oh . We

first want to find the monoidal structure on the neutral component C�X and

then for every g ∈ G the module action functor

C�X × C�Og → C�Og .

3.2.1 The neutral component

We first briefly turn our attention to the monoidal structure on CX1 . In this

case, all relevant G-covers of extended surfaces are trivial covers. Since the

cover functor FX maps trivial covers to disjoint unions of copies of the base

space, the monoidal structure on CX1 is found by evaluating the modular

functor τ on disjoint unions of standard n-pointed spheres for appropriate

n. The occurring marking graphs are in all cases the standard marking

graphs on Sn. Now the following lemma is an easy observation, similar to

the computations for the neutral component in section 3.1:

Lemma 3.1. The weakly ribbon structure on CX1 = C�X induced by the G-

equivariant modular functor τX is ribbon (even modular) and is equivalent

to the standard ribbon structure on C�X . The tensoriality constraints of the

permutation action of G on C�X are identities.

3.2.2 The module action functor

The action of CX1 on CXg is found by evaluating the G-equivariant modular

functor τX on the principal G-cover (S3(g
−1, 1, g; 1, 1, 1) → S3) of the three-

punctured sphere. In lemma 2.7 the connected components of the total space

of the associated bundle FX (S3(g
−1, 1, g; 1, 1, 1) → S3) where fully described.

In this special case we have

Lemma 3.2.
(i) There is a natural bijection between the connected components of

FX (S3(g
−1, 1, g; 1, 1, 1) → S3) = Eg−1;1

and orbits of the G-set X under the action of the cyclic subgroup 〈g〉 ⊂
G of G.
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(ii) The restriction of FX (S3(g
−1, 1, g; 1, 1, 1) → S3) to the first boundary is

diffeomorphic to the manifold Eg, the restriction to the second boundary

to E1 and the restriction to the third boundary to Eg−1. Let o be a

〈g〉-orbit of X and write Eo
g−1;1 for the connected component of Eg−1;1

corresponding to the orbit o. The boundary components of Eo
g−1;1 over

the second boundary circle of S3 correspond to those elements of X ,

that are contained in the orbit o of the group 〈g〉. Eo
g−1;1 has a single

boundary component over both the first and third boundary circle of S3

(iii) In particular, the number of sheets of the cover Eo
g−1;1 → S3 is |o|.

By lemma 2.8 the genus of the relevant surface Eg−1;1 is zero.

From now on we restrict our attention to the connected components of

Eg−1;1 which by lemma 3.2 is the same as fixing a 〈g〉-orbit o.

In the definition of the module action functor

C�X × C�Og → C�Og

the connected component Eo
g−1;1 will give a contribution

C�o × C → C ;

all these contributions are then factor-wise combined to give the full functor.

By describing this contribution for all 〈g〉-orbits separately, we get the full

module action functor.

We can thus restrict ourselves to one connected component. Hence we

adopt from now on:

Convention 3.3. G is a cyclic group with generator g. The ordered set X
has a single G-orbit, its smallest element is x0 ∈ X . Let n := |X |.

This convention allows us to simplify notation. In particular we have

X = {gkx0|k = 0, . . . , n − 1}. Note that there is no further assumption on

the action of G on X . So X can be a one-element-set and hence the case

n = 1 is allowed. From now on we only consider a functor CX × C → C.

We will write objects in CX1 as (Ax)x∈X and sometimes use the abbrevi-

ation (Ax). The order of X induces an order on the factors in CX1 = C�X .

When we draw pictures, we will occasionally write Ak for the factor Agkx0
to

provide a clearer view of the drawing.
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Now let (Ax)x∈X be an object of C�X andM an object in C. As in theorem

1.22 the tensor product (Ax)x∈X ⊗M is defined to be the object of C that

represents the functor

C → Vectk

T 7→ τX (S3(g
−1, 1, g; 1, 1, 1) → S3;T, (Ax)x∈X ,M) = τ(Eg−1;1;T,Ax,M) .

(3.119)

Since the oriented manifold Eg−1;1 is of genus zero and has n + 2 boundary

components, there is a diffeomorphism Eg−1;1
∼= Sn+2. The choice of such a

diffeomorphism induces a natural isomorphism

τ(Eg−1;1;T,Ax,M)
∼=→ τ(Sn+2;T,Ax,M)

def
= HomC(1, T ⊗ (

⊗
x∈X

Ax)⊗M) .

(3.120)

The order of the objects Ax in
⊗

x∈X Ax is determined by the diffeomorphism

Eg−1;1
∼= Sn+2. This gives a choice (

⊗
x∈X Ax)⊗M of the object representing

the functor (3.119).

To find an appropriate diffeomorphism, we will define a marking graph

on the surface Eg−1;1. This is most conveniently done by viewing Eg−1;1 as

the total space of a cover over S3 and then lifting paths in S3 to Eg−1;1. The

marking will have one vertex for every boundary component of Eg−1;1 and

one internal vertex. Observe that Eg−1;1 has one boundary component over

the first and third boundary circle of S3 respectively and n = |X | boundary

components over the second boundary circle of S3.

Before we turn to concrete graphs, we first have a look at the lifting

properties of Eg−1;1. Consider the following path in S3 that turns clockwise

around the third boundary circle and has its starting point p in the lower

half-plane:

T A M

(3.121)

Now we lift this closed path to an open path in Eg−1;1 with starting point

[x, p] and find that its end point is [g−1x, p] (see lemma 2.4). We will later
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use this type of path in order to connect the boundary components over the

second boundary circle of S3 to our marking graph.

As a first step to finding a marking graph on the cover, we define a path

in S3 that connects the first and third boundary circle of S3. The lift of this

path then connects the boundary components of Eg−1;1 over those boundary

circles. By definition of the standard block S3(g
−1, 1, g; 1, 1, 1), the marked

point on its first boundary component is p1 = [1 − i
3
, 1G] and similarly for

the third boundary component p3 = [3 − i
3
, 1G]. By section 2.1.2 this gives

the marked points [x0, p1], [x0, p3] ∈ Eg−1;1. Now consider the following path

in S3:

T A

p

M

(3.122)

Lifting this path to Eg−1;1 such that the vertex at the first boundary circle

is lifted to [x0, p1] gives a path that connects [x0, p1] and [x0, p3] in Eg−1;1.

The lift p̂ of the point p will serve as internal vertex of the marking graph.

Over the second boundary circle of S3 the surface Eg−1;1 has one boundary

component in every sheet with marked points [x, p2] for every x ∈ X . By

convention 3.3 we have x = glx0 for some l. Since G and X are finite, we

can choose x = g−kx0 for some k = 0, . . . , n− 1. Now consider the following

path in S3 that winds k times clockwise around the third boundary circle:

T A M

(3.123)

This should be read as follows: The path starts in the lower half-plane,
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moves near the third boundary component, winds k times clockwise around

it and then connects to the marked point of the second boundary component.

Obviously this path has self-intersections in S3 but the lift to Eg−1;1 does not.

This paths slightly differs for different choices of k to avoid self-intersections

of the resulting marking graph. We will explain the differences:

As radius of the circular part of this path we choose rk = 1
3

+ 1
10

(1 −
k−1
n−1

). The lift of this path to Eg−1;1 with starting point p̂ then has end

point [g−kx0, p2]. Now we draw the lift of this path on Eg−1;1 for every

k = 1 . . . n − 1. The assumption on the radius rk ensures that the circular

part of the graph has no intersection with the paths for different k, since

the radius decreases with increasing k. Any other choice of radius with this

property gives a homotopic path. The line that connects the internal vertex

with the circular of the path is assumed to bend further to the right with

increasing k so that again it does not intersect with the paths for different k.

For k = 0 we connect the internal vertex p̂ and [x0, p2] with a straight

line. This is equivalent to the path for k = 0 constructed above, as the

straight line is homotopic to the path that winds zero times around the third

boundary circle.

In the cover Eg−1;1, the lifts of the paths (3.123) do not intersect with the

lift of the path (3.122), that connects the internal vertex to the boundary

components labeled by T and M .

The lift of the path (3.122) and the lifts of the paths (3.123) for all k finally

give a marking on Eg−1;1 that connects all marked points on all boundary

components. Now we get a diffeomorphism to Sn+2 by moving the boundary

components of Eg−1;1 along the marking graph and obtain

T . . . M
A0 A−n+1

(3.124)

where the upper dashed line marks multiple self-intersections of the immer-

sion of the surface into three-dimensional space like in the pictures in section
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3.1. As a non-embedded manifold, this is diffeomorphic to

T

. . .

MA0 A−n+1

(3.125)

This diffeomorphism induces an isomorphism

τ(Eg−1;1;T, (Ax)x∈X ,M)
∼=→ τ(Sn+2;T,Ax0 , Ag−1x0

, . . . , Ag−n+1x0
,M)

def
= HomC(1, TAx0 . . . Ag−n+1x0

M) .
(3.126)

This shows

Lemma 3.4. The functor

C → Vectk

T 7→ τX (S3(g
−1, 1, g; 1, 1, 1) → S3;T, (Ax)x∈X ,M) .

(3.127)

is represented by the object

(Ax)x∈X ⊗M := Ax0Ag−1x0
. . . Ag−n+1x0

M , (3.128)

which gives the module action functor

C�X × C → C
(Ax)x∈X ×M 7→ Ax0Ag−1x0

. . . Ag−n+1x0
M

(3.129)

A comment on the order of the objects Ax is due: In CX1 = C�X the

factors are ordered by the order of the G-set X . In the module action, the

order is by decreasing powers of the generator g.

3.2.3 Associativity constraints

We now turn to the question of finding associativity constraints

ψ(Ax),(Bx),M : ((Ax)⊗ (Bx))⊗M
∼=→ (Ax)⊗ ((Bx)⊗M)
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The general procedure of reading off associativity constraints from G-equi-

variant modular functors was described in theorem 1.22 and especially for

the case G = Z/2 in section 3.1.4 in greater detail. When dealing with

arbitrary groups, even with the restriction to cyclic groups in convention

3.3, the analysis of covers of the 4-punctured sphere is rather involved. The

main downside is that we are no longer able to draw marking graphs on the

manifolds X×GP themselves, but have to view them as total spaces of covers

over S4 and lift paths, as in the definition of the module action functor. Since

this section is very technical, its results are summarized in theorem 3.5.

We again restrict ourselves to convention 3.3. Then the cover (X ×G

S4(g
−1, 1, 1, g; 1, 1, 1, 1) → S4) has one boundary component over the first

and fourth and n = |X | boundary components over the second and third

boundary circle of S4. In total this makes 2 + 2n boundary components

and with the theorem of Riemann-Hurwitz we compute that the genus of

the total space X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) is zero. This implies that X ×G

S4(g
−1, 1, 1, g; 1, 1, 1, 1) is isomorphic to the standard sphere S2n+2 as a smooth

manifold.

We can now proceed as in section 3.1.4:

1. Determine the two marking graphs on X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1)

induced on the cover by cutting S4 in the two ways determined by

associativity and by our definition of the module action. Denote the

marking graph representing ((Ax)⊗ (Bx))⊗M by m1 and the marking

graph representing (Ax)⊗ ((Bx)⊗M) by m2.

2. Transform the surface X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) with the marking

graph m1 on it into the standard sphere S2n+2 in the way prescribed

by the marking m2.

3. This yields a marking graph on S2n+2. Determine the LTG-moves that

transform this graph into the standard marking graph on S2n+2 and

translate these LTG-moves into morphisms in C.

We turn to the first cutting procedure, that represents the tensor product

((Ax)⊗(Bx))⊗M . In this case the surface S4(g
−1, 1, 1, g; 1, 1, 1, 1) is cut into a

trivialG-cover S3(1, 1, 1; 1, 1, 1) representing the tensor product (Ax)⊗(Bx) ∈
C�X and the G-cover S3(g

−1, 1, g; 1, 1, 1) representing the product (Cx)⊗M ∈
C with (Cx) = (Ax)⊗ (Bx) = (AxBx). As the cover functor respects gluing,
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we can analyze the process by considering X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) and

the respective associated covers over S3. We analyze the resulting marking

graph on X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) by considering paths in the base S4

and lifting these to the covers. For the first and fourth boundary component

we get a lift of the path

T MA B

(3.130)

which is again lifted into the sheet corresponding the the generator x0 ∈
X . Now for the paths that connect to the boundary components over the

second and third boundary circle we consider every sheet separately. For

the boundary components in the sheet that corresponds to x = g−kx0 ∈ X ,

gluing gives an edge which is a lift of

T

M

A B
·
=

T

M

A B

(3.131)

where the path turns k times around the fourth boundary circle. In the

second picture we contracted the graph along the factorizing link, i.e. along

the edge that connects the vertex near the A and B boundary components

with the free vertex at the bottom of the picture. We draw the edges that

connect to different boundary circles in different colors to avoid confusion.

Note that the intersections of these paths do not give intersections in the
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total space of the cover as turning around the fourth boundary circle lifts to

paths in the total space that connect different sheets.

In the second cutting procedure the G-cover S4(g
−1, 1, 1, g; 1, 1, 1, 1) is cut

into two G-covers S3(g
−1, 1, g; 1, 1, 1), one representing the tensor product

(Bx) ⊗ M and one representing the tensor product (Ax) ⊗ N with N =

(Bx)⊗M . In this case for the first and fourth boundary component we again

get the path

T MA B

(3.132)

as in the first cutting procedure. For the second and third boundary circle, we

again consider all sheets separately; for the sheet corresponding to g−kx0 ∈ X
we get

T MA B

(3.133)

where the path connecting to the boundary component labeled by B turns

k times around the boundary component labeled by M , whereas the path

connecting to the A-boundary turns k times around both the B- and the

M -boundary. Again we use different colors to distinguish the edges.

Now we use the diffeomorphism given by the second marking to trans-

form the manifold into the standard sphere Sn+2. To find the image of

the first marking on S2n+2, we pick two boundary components of X ×G

S4(g
−1, 1, 1, g; 1, 1, 1, 1) and see how the corresponding edges of the marking

behave relative to each other while applying the diffeomorphism to S2n+2.
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The first thing to notice is that the edges connecting to the first and last

boundary component do not interfere with the edges of any other boundary

in the application of the diffeomorphism. On S2n+2 this just gives

T M
. . .

(3.134)

We now turn to the boundary components over the second and third

boundary circle of S4. When applying the diffeomorphism to S2n+2, all

boundary components of X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) are moved simultane-

ously. When checking the relative behavior of two boundary components we

will freely move these boundary components and the corresponding edges of

the marking. If the edge comes near any other boundary component over the

second and third boundary circle of S4, we will assume that this component

is already moved out of the way or is moved at the same time. This allows us

to move the edge over the other boundary components over the second and

third boundary circle of S4. So the following analysis could be formulated as

a recursive algorithm to transform X ×G S4(g
−1, 1, 1, g; 1, 1, 1, 1) into S2n+2.

The reader should always be aware of this procedure and should check that

the simultaneous movement indeed justifies this process.

We will now distinct all possible choices of boundary components over

the second and third boundary circle of S4.

• We start by comparing two boundary components over the third bound-

ary circle of S4, i.e. two boundary components labeled by Bg−kx0
and

Bg−lx0
, where without loss of generality we assume l > k. In the mark-

ings obtained from the two gluing procedures, the edges corresponding
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to Bg−kx0
and Bg−lx0

are lifts of

T

M

A B T

M

A B

(3.135)

where the first picture shows the gluing for ((Ax)⊗ (Bx))⊗M and the

second picture for (Ax)⊗ ((Bx)⊗M) as explained above. The darker

line connects to the boundary component of Bg−lx0
and turns l times

around the fourth boundary circle while the lighter line performs k

turns and connects to the Bg−kx0
-boundary. Obviously both markings

coincide, hence on S2n+2 we get

B−k B−l

. . .. . . . . .

(3.136)

• For two boundaries over the second circle of S4 labeled by Ag−kx0
and

Ag−lx0
with l > k we get a similar picture. In the gluing procedures

described above we obtain edges for the respective boundaries that are

lifts of

T

M

A B T MA B

(3.137)
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As we assume that the boundary components over the third bound-

ary circle of S4 are already moved out of the way, both edges can be

transformed into each other, hence on S2n+2 we get:

A−k A−l

. . .. . . . . .

(3.138)

• Now we turn to the more complicated situations. For k ≤ l we compare

the boundary components labeled by Ag−kx0
and Bg−lx0

. The gluing

procedures give us markings where the relevant edges are lifts of

T

M

A B

k turns

l turns

T MA B

k turns

l turns
(3.139)

We see that under the assumption that other boundaries are already

moved out of the way, again both edges coincide for k ≤ l. Hence when

applying the diffeomorphism to S2n+2 given by the second marking, we

get

A−k B−l

. . .. . . . . .

(3.140)
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on S2n+2.

• Finally we compare the edges corresponding to boundary components

labeled by Ag−kx0
and Bg−lx0

with k > l. In this case the edges in the

markings are lifts of

T

M

A B

l turns

k turns

T MA B

k turns

l turns

(3.141)

Observe that in the first picture the path connecting the internal ver-

tex to the Ag−kx0
-boundary turns around the fourth circle of S4 with a

smaller radius than the path connecting to the Bg−lx0
-boundary, since

k > l. Also check that all crossings in the paths in S4 do not give self-

intersections in X ×GS4(g
−1, 1, 1, g; 1, 1, 1, 1) as the crossing sections of

the paths lift to different sheets. Now we carefully apply the diffeomor-

phism represented by the second marking. It instructs us to turn the

Ag−kx0
-boundary k times around the third and fourth boundary circle

and the Bg−lx0
-boundary l times around the fourth boundary circle. As

a first step we turn the Ag−kx0
-boundary (k − l) times around. This

transforms the first marking into

T

M

A
B

l turns

l turns

(3.142)

Here both paths wind l times around the fourth boundary circle. When

we turned around the Ag−kx0
-boundary, the edge connecting to it al-

ways passed along the Bg−lx0
-boundary as they were lying in different
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sheets. Now we turn both boundaries around the fourth circle l times

simultaneously and finally end up with the marking

A−k
B−l

. . .. . . . . .

(3.143)

on S2n+2.

This describes the relative position of all pairs of edges of the marking we

obtain on S2n+2. An example of the final marking in the case of n = 4 is

depicted in

T MA′s B′s

(3.144)

In the general case, the final marking on S2n+2 now has straight lines

that connect the internal vertex to the T -, the M -, the Bx- and to the

Ax0-boundaries. The edge that connects the internal vertex to the Ag−kx0
-

boundary passes between the Bg−k+1x0
- and the Bg−kx0

-boundaries and then

turns around the Bg−jx0
-boundary for j < k and then connects to the Ag−kx0

-

boundary parallel to the other Ax-edges.

We now want to transform this marking into the standard marking by

a finite sequence of LTG-moves. To do so, recall that for every k > l the

marking is of the form

A−k
B−l

(3.145)
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Hence we need to apply the LTG-move BB
g−lx0

,A
g−kx0

to turn this into the

marking

A−k B−l

(3.146)

Now starting with the Bg−n+2x0
-boundary, for l = n−2, . . . , 1 we successively

apply BB
g−lx0

,A
g−kx0

for k = l + 1, . . . , n− 1. This finally gives the standard

marking on S2n+2. To translate these LTG-moves into a morphism in C, we

introduce auxiliary morphisms f (k) for k = n, . . . , 1 with

f (n) =

A−n+1

A−n+1

B−n+1

B−n+1 (3.147)

the identity and f (k) for k = n− 1, . . . , 1 recursively

f (k) = f (k+1)

A−k+1B−k+1 A−k B−k . . . A−n+1B−n+1

A−k+1 A−k. . . A−n+1B−k+1 B−k. . . B−n+1

(3.148)

So the recursive step f (l+1) → f (l) resembles the application of the LTG-

moves BB
g−l+1x0

,A
g−kx0

for k = l, . . . , n− 1.

Alltogether this gives the associativity constraint

ψ(Ax),(Bx),M = f (1) ⊗ idM (3.149)

An example of this morphism in the case n = 4 is depicted in
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ψ(Ax),(Bx),M =

A0 B0 A−1B−1A−2B−2A−3B−3

A0 A−1A−2A−3B−0B−1B−2B−3

M

M

(3.150)

For general n, the morphism ψ(Ax),(Bx),M is a shuffle that moves all B-

objects over the A-objects.

By theorem 1.22 or the general arguments of [KP08], these associativ-

ity constraints satisfy the mixed pentagon axiom, which can also easily be

verified by hand. We summarize our findings for arbitrary groups in the

following

Theorem 3.5. For any finite group G, any finite G-set X and any g ∈ G

the functor

C�X × C�Og → C�Og

(Ax)x∈X × (Mo)o∈Og 7→ (AxoAg−1xo
· · ·Ag−|o|+1xo

Mo)o∈Og

(3.151)

with xo the smallest element in the 〈g〉-orbit o of X , together with the asso-

ciativity constraints

ΨA,B,M = (ψo
(Ax)x∈o,(Bx)x∈o,M)o∈Og , (3.152)

with the morphisms ψo as in equation (3.150), endows the category C�Og with

the structure of a module category over the tensor category C�X .

The associativity constraints that we found in this section depend on the

choice of the marking on Eg−1;1 made in section 3.2.2. Like in the case of

G = Z/2 in section 3.1 a different choice of marking leads to an equivalent

module category structure.

Similarly one can compute the bimodule category structure on C�Og . As

we mentioned before, this already fixes a large part of the full monoidal

structure of CX :

In [ENO09, Section 8] it was shown that for a fusion category D, a group

homomorphism c : G→ BrPic(D) from G into the group BrPic(D) of equiv-

alence classes of invertible module categories over D determines two elements
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in certain cohomology groups of G. A structure of a G-equivariant monoidal

category with neutral component D and as twisted components representa-

tives of the equivalence classes c(g), exists, if and only if these two obstruction

classes vanish. Equivalence classes of G-equivariant categories based on the

homomorphism c then form a torsor over H3(G, k×).

In our modular functor approach, the existence of a G-equivariant mon-

oidal structure on the system of module categories CXg is already ensured

by theorem 1.22, hence in our situation both obstruction classes have to be

trivial. Thus the results of this section, summarized in theorem 3.5, describe

the equivalence class of theG-equivariant monoidal category up to an element

of a torsor over H3(G, k×).
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3.3 Permutation modular invariants

For any module category (M,⊗, ψ) over a monoidal category D the category

EndD(M) of D-module endofunctors of M is again a monoidal category that

acts on M. If D is braided, recall from [Ost03, Section 5.1,5.2] the following

definition:

Definition 3.6. Define two functors

α± : D → EndD(M) (3.153)

by putting

α±(U)(M) := U ⊗M (3.154)

as functors and with the following module functor constraints for α±(U):

γU,+
V,M := ψV,U,M ◦ (cU,V ⊗ idM) ◦ ψ−1

U,V,M and

γU,−
V,M := ψV,U,M ◦ (c−1

U,V ⊗ idM) ◦ ψ−1
U,V,M ,

(3.155)

where cU,V is the braiding in D. The functors α± are called the α-induction

functors.

Remark 3.7. The associativity constraints ψ of the module category M
endow the functors α± with the structure of monoidal functors.

If U is an object of D, we abbreviate α±(U) ≡ α±U ; if Uk is a simple object

of D, we write α±(Uk) ≡ α±k . Now for any two simple objects Ui, Uj of D we

define the non-negative integers

Zi,j := dimkHomEndD(M)(α
+
i , α

−
j ) (3.156)

The |I| × |I|-matrix Z(M/D) := (Zi,j) then obeys the requirements on a

modular invariant (see [FRS02, Theorem 5.1]). It is the aim of this section

to compute the structure of this matrix in the case that the module category

under consideration is given by the data of the G-equivariant modular functor

τX .

So we fix an element g ∈ G and examine the module category CXg = C�Og

over CX1 = C�X . We will continue in two steps: First we show that certain

entries of the matrix Z(CXg /CX1 ) are non-zero. Then we show that Z(CXg /CX1 )

is a permutation matrix, i.e. it contains precicely one entry 1 in every row

and column and 0 elsewhere. This already determines the whole matrix.
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For the first step we will give for every object U in C�X an invertible

natural transformation

ΓU : α+(U) ⇒ α−(gU) (3.157)

between module functors. For U = Uı̄ a simple object, this will be a non-zero

element in

HomEndC�X (C�Og )(α
+
ı̄ , α

−
gı̄) (3.158)

so that this vector-space is non-zero. As in section 3.2 we can restrict our

discussion to only one factor of C�Og by giving ΓU for every factor separately

so that we are again in the situation of convention 3.3. Hence we will consider

the problem where C�X acts on a single copy of C.

From now on we fix an object U = (Ux)x∈X in C�X and write Γ instead

of ΓU . For M in C by theorem 3.5 and the definition of the equivariance

functors Rg in definition 2.10 we find

α+
U (M) = UxoUg−1xo

· · ·Ug−n+1xo
M

α−gU(M) = Ug−1xo
· · ·Ug−n+1xo

UxoM
(3.159)

Hence we make the ansatz

ΓM :=

U0 U−1. . . U−n+1 M

U−1 U−n+1. . . U0 M

(3.160)

In formulas:

ΓM =
[
idUg−1xo

···Ug−n+1xo
⊗(cM,Uxo

◦ cUxo ,M)
]
◦

[
cUxo ,Ug−1xo

···Ug−n+1xo
⊗ idM

]
(3.161)

Lemma 3.8. Γ is a non-zero natural transformation between the module

functors α+
U and α−gU .
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Proof. Obviously ΓM is natural in M and invertible, hence non-zero. To

show that Γ is a natural transformation of module functors, we have to show

that for another object V = (Vx) of C�X the following compatibility with the

module functor constraints (3.155) holds:

(id(Vx)⊗ΓM) ◦ γU,+
V,M = γ

gU,−
V,M ◦ Γ(Vx)⊗M (3.162)

Spelling out all occurring morphisms, this amounts to[
idVxo ···Vg−n+1xo

⊗ΓM

]
◦ ψ(Vx),(Ux),M ◦

[
cX(Ux),(Vx) ⊗ idM

]
◦ ψ−1

(Ux),(Vx),M =

ψ(Vx),g(Ux),M ◦
[
(cX(Vx),g(Ux))

−1 ⊗ idM

]
◦ ψ−1

g(Ux),(Vx),M ◦ ΓVxo ···Vg−n+1xo
M

(3.163)

where cX(Ux),(Vx) denotes the braiding of two objects in C�X . This is an equality

in

HomC(Uxo · · ·Ug−n+1xo
Vxo · · ·Vg−n+1xo

M,Vxo · · ·Vg−n+1xo
Ug−1xo

· · ·Ug−n+1xo
UxoM) .

Denote by Ln(Uxo , . . . , Ug−n+1xo
;Vxo , . . . , Vg−n+1xo

;M) the left hand side of

(3.163) and byRn(Uxo , . . . , Ug−n+1xo
;Vxo , . . . , Vg−n+1xo

;M) the right hand side.

The endomorphism

F =

U0 U−1

U−1U0

(U−3 . . . U−n+1)

(U−3 . . . U−n+1)

U−2

U−2

V 0

V 0

V −1

V −1

(V −2 . . . V −n+1)

(V −2 . . . V −n+1)

M

M

(3.164)

is obviously invertible and an easy but lengthy graphical calculation shows

that it obeys

Ln(Uxo , . . . , Ug−n+1xo
;Vxo , . . . , Vg−n+1xo

;M) ◦ F =

Ln−1(Uxo , Ug−1xo
Ug−2xo

, . . . , Ug−n+1xo
;Vxo , Vg−1xo

Vg−2xo
, . . . , Vg−n+1xo

;M)
(3.165)

and

Rn(Uxo , . . . , Ug−n+1xo
;Vxo , . . . , Vg−n+1xo

;M) ◦ F =

Rn−1(Uxo , Ug−1xo
Ug−2xo

, . . . , Ug−n+1xo
;Vxo , Vg−1xo

Vg−2xo
, . . . , Vg−n+1xo

;M)
(3.166)
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Hence (3.163) holds by induction, the case n = 2 is an easy calculation using

only relations in the braid group on five strands.

When we apply lemma 3.8 to a simple object Uı̄ = (Ui)i∈ı̄ with ı̄ ∈ IX
we see

Zı̄,gı̄ = dimkHomEndC�X (C)(α
+
ı̄ , α

−
gı̄) 6= 0 . (3.167)

We now proceed with the second step in the computation of the matrix

Z(CXg /CX1 ), i.e. we show that it is a permutation matrix. We start with the

following

Definition 3.9. An Azumaya category M over a braided monoidal category

D is a left module category M over D for which the two monoidal functors

α± from (D,⊗) to (EndD(M), ◦) are equivalences.

An Azumaya algebra A in a braided monoidal category D is an algebra A in

D such that the category of right A-modules is an Azumaya category over

D.

Remark 3.10. This definition is equivalent to the definition given in [VZ98,

Section 3].

By [ENO09, Theorem 6.1] every bimodule category M over D, which

is part of an equivariant monoidal category with neutral component D, is

invertible with respect to a tensor product of module categories. We will

need the following criterion for invertibility of a module category. We assume

that D is braided and M is a module category that is turned into a bimodule

category by using the braiding of D.

Lemma 3.11. A semisimple module category M over a modular category D
is invertible if and only if it is equivalent to A−mod, as a module category

over D, for some Azumaya algebra A in D.

Proof. By proposition 4.2 and section 5.4 of [ENO09] invertibility of M is

equivalent to M being an Azumaya category. If M is invertible, by [ENO09,

Corollary 4.4] it is indecomposable over D. It follows from [Ost03, Theorem

1] that as a module category M is equivalent to A−mod for some algebra A

in D, which then is Azumaya by definition 3.9.

Theorem 3.12. The modular matrix Z(CXg /CX1 ) for the module category

described in theorem 3.5 reads

Z(CXg /CX1 )ı̄,̄ = δ̄,gı̄ (3.168)
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where ı̄, ̄ ∈ IX label the simple objects of CX1 = C�X and gı̄ is the multi-index

ı̄ permuted by the action of the group element g ∈ G.

Proof. Since τX is a G-equivariant modular functor, it induces ([KP08]) the

structure of aG-equivariant category on
⊕
CXh . The module category CXg over

CX1 is part of this larger structure, by [ENO09, Theorem 6.1] it is invertible,

hence by lemma 3.11 equivalent to the category A−mod for some Azumaya

algebra A in CX1 . As A is Azumaya, the functors α± are equivalences

α± : CX1 → EndCX1 (CXg ) ∼= A−bimod

of tensor categories. Hence A−bimod is semisimple and for a simple object

Uı̄ in CX1 the objects α±(Uı̄) in A−bimod are again simple. By semisimplicity

of A−bimod, the matrix

Z(CXg /CX1 )ı̄,̄ := dimkHomEndCX1
(CXg )(α

+
ı̄ , α

−
̄ )

has exactly one entry 1 in every row and every column and 0 elsewhere.

By lemma 3.8 we find that in every row and column the numbers Zı̄,gı̄ are

non-zero.

Remark 3.13. With techniques similar to those used in [BFRS10a, The-

orem 5.1] it is possible to compute a representative of the Morita class of

algebras A in C�X , such that A−mod ∼= C�Og as module categories over

C�X . Arguments parallel to [BFRS10a, Proposition 6.1] show that this rep-

resentative A carries the structure of a special symmetric Frobenius algebra.

Together with theorem 3.12 this implies that the permutation modular in-

variant (3.168) is physical, in the sense that there exists a consistent set of

correlators ([FFRS08, Definition 3.14]) with the permutation modular invari-

ant as torus partition function.
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A. THE LTG-DICTIONARY

We will now give a brief overview of the connection between the moves in the

(non-equivariant) Lego-Teichmüller-Game and the structure morphisms of a

modular category C. To this end we relate every LTG-move with a natural

isomorphism between hom-functors of C. We will do this for the LTG-moves

on the standard spheres and the one-punctured torus.

A.1 Modular categories vs. modular functors

Our motivation is theorem 1.22, where we explained how to obtain a G-

equivariant weakly ribbon category CG out of the structure of a CG-extended

G-equivariant modular functor τG. The objects that are needed for this

structure, i.e. the dual of an object and the tensor product of two objects,

were defined as objects that represent the functors τ(P→E) for appropriate

G-covers (P→E). The structure morphisms like for example the associativity

constraints or the equivariant braiding, were induced by the natural isomor-

phisms that the modular functor τG assigns to appropriate diffeomorphisms

of the G-covers.

The action of diffeomorphisms onG-covers can be dealt with by the equiv-

ariant Lego-Teichmüller-Game. So the proof of theorem 1.22 relies on a com-

parison of the LTG-moves and the structure morphisms of a G-equivariant

(weakly) ribbon category CG and in particular relations between these. We

want to make this comparison explicit in the non-equivariant case.

If C is a semisimple category, we denote by I the set of isomorphism classes

of simple objects and choose representatives Ui with i ∈ I. If C is modular,

we denote by di ∈ k the dimension of Ui and by θi ∈ k the eigenvalue of the

twist on Ui. As usual, we introduce the scalars p± :=
∑

i∈I θ
±
i d

2
i and assume

that p+ = p−, so that there exists a C-extended modular functor.

The correspondence between modular categories and modular functors

has two directions. First we discuss how to obtain parts of the structure of

a modular functor from a modular category C.
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Given a modular category C, the object R :=
⊕

i∈I Ui × U∨
i in C � C

satisfies the requirements 1.17 on a gluing object. The corresponding C-

extended modular functor τ ≡ τC is defined for the standard spheres as

τ(Sn) : C�n → Vectk

V1 × · · · × Vn 7→ τ(Sn;V1, . . . , Vn) := HomC(1, V1 · · ·Vn) ,
(A.1)

where again we agree to drop the tensor product symbol of objects in C in

the notation. Another standard manifold that will be needed for the LTG-

dictionary is the one-punctured torus T1. We compute the corresponding

functor
τ(T1) : C → Vectk

V 7→ τ(T1;V )
(A.2)

by representing T1 as a gluing of the three-punctured sphere S3 :

glue

α

βγ

α

−→

(A.3)

where we draw a marking on the surfaces to illustrate the gluing process. For

the functor τ(T1), the gluing isomorphisms (1.43) give an isomorphism

Gβ,γ : τ(S3;V,Rβ,γ)
∼=→ τ(T1;V ) (A.4)

for every object V of C. Here Rβ,γ indicates that the two factors of the gluing

object R in C � C are assigned to the boundary components β and γ. If we

spell out the domain of (A.4), we obtain a functorial isomorphism

τ(T1, V ) ∼= τ(S3;V,Rβ,γ)
def
=

⊕
i∈I

τ(S3;V, Ui, U
∨
i )

def
=

⊕
i∈I

HomC(1, V UiU
∨
i ) .

(A.5)
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Hence the C-extended modular functor corresponding to a modular category

C associates the the one-punctured torus T1 the functor τ(T1) given by (A.5).

Observe that up to this point we did not use the requirement on C to be

modular; this will enter once we discuss morphisms of extended surfaces, see

(A.12).

Assume we are given a semisimple abelian Vectk-enriched category C with

gluing object R and a C-extended modular functor. The functor τ(S3) for

the standard sphere S3 induces on C a tensor product of two objects of C.

More generally for the n-punctured sphere we obtain (n−1)-ary products as

representing objects of τ(Sn; ?, V1, . . . , Vn−1):

τ(Sn;T, V1, . . . , Vn−1) ∼= HomC(T
∨, V1 · · ·Vn−1) , (A.6)

with T∨ the dual object as in theorem 1.22. Using duality, we identify

τ(Sn;V1, . . . , Vn) ∼= HomC(1, V1 · · ·Vn) . (A.7)

We used the standard sphere Sn to define (n− 1)-ary tensor products. The

tensor product obtained in this way is in general not strictly associative.

If τ is defined for objects of higher genus, it follows that C has only finitely

many simple objects up to isomorphism. From the definition of dual objects,

one can compute the gluing object R, which turns out to be of the form

R ∼=
⊕

i∈I Ui × U∨
i . Similarly the functor τ(T1) for the one-punctured torus

also takes the form

τ(T1, V ) ∼=
⊕
i∈I

HomC(1, V UiU
∨
i ) . (A.8)

A.2 The dictionary

Before giving the dictionary for the Lego-Teichmüller-Game, we pause to

explain how it should be read.

1. Suppose we are given a C-extended modular functor τ and want to find

the weakly ribbon structure on C.

We have already explained how to find dual objects and n-ary tensor

products for C by choosing representing objects. Now let ϕ : E → E ′ be

a diffeomorphism of extended surfaces. We choose parametrizations of
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E and E ′, i.e. we draw marking graphs on both surfaces. In particular

the cuts in these marking graphs decompose E and E ′ into disjoint

unions of standard spheres. Then the functors τ(E) and τ(E ′) can

be expressed as tensor products of hom-functors of C as in (A.7) with

appropriate insertions of gluing objects.

Now we want to find the natural isomorphism between these hom-

functors that the modular functor τ assigns to ϕ. To this end we

apply ϕ to the marking graph on E and obtain a new marking on E ′.

According to section 1.2.4 this new marking is transformed into the

given marking on E ′ by a finite and (up to relations) unique sequence

of LTG-moves. Then we take the dictionary below and look up the

natural isomorphisms between hom-functors, expressed by structure

morphisms of a ribbon category, that correspond to these LTG-moves.

The composition of these isomorphisms is then the isomorphism that

the modular functor τ assigns to ϕ and one can read of the structure

morphisms.

However, this isomorphism still depends on the parametrizations of E

and E ′. In theorem 1.22 the dictionary is only used for diffeomorphisms

of standard spheres, which come with a canonical parametrization. For

arbitrary surfaces E, one has to keep track of these parametrizations,

as we did in sections 3.1 and 3.2.

2. Suppose we are given a modular tensor category C and want to define

a C-extended modular functor τ .

For the standard spheres Sn, we define τ by the hom-functor as in

(A.1). Now let ϕ : Sn → Sn be a diffeomorphism. To define a full

modular functor, we have to assign to ϕ a functorial isomorphism ϕ∗ :

τ(Sn) ⇒ τ(Sn). We apply ϕ to the standard marking on Sn and obtain

a new marking. Afterwards, this marking is transformed back into the

standard marking by a finite sequence of LTG-moves. Now we look up

these LTG-moves in the dictionary and get a composition of natural

transformations between the hom-functors. We assign this composition

to the diffeomorphism ϕ.

Defining the modular functor τ for arbitrary surfaces E is more in-

volved. To do so, we need to relate all possible choices of parametriza-

tions of E in a canonical way. We are then in the position to apply
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the above procedure and assign functorial isomorphisms to diffeomor-

phisms of extended surfaces. For details on this, we refer to [BK01,

Section 5.4].

Recall from section 1.2 the basic LTG-moves Z, B, F and S. We now give

the dictionary:

• The Z-move is related to the natural transformation

HomC(1, V1 · · ·Vn) −→ HomC(1, VnV1 · · ·Vn−1)

V1 . . . Vn−1 Vn

7→

V1 . . . Vn−1Vn

(A.9)

• The B-move is related to the natural transformation

HomC(1, V1V2V3) −→ HomC(1, V2V1V3)

V1 V2 V3

7→

V1 V3V2

(A.10)

• For the F-move, one needs to assign the gluing object R to the bound-

ary components that are glued, i.e. to both sides of the cut that is

removed by the F-move. By applying appropriate powers of the Z-

move, we can assume that we glue the last boundary component of the

standard sphere Sm to the first boundary component of the standard

sphere Sn for some m,n. The F-move is then related to the transfor-

mation⊕
i∈I HomC(1, V1 · · · VmUi)⊗k HomC(1, U

∨
i W1 · · ·Wn)

→ HomC(1, V1 · · · VmW1 · · ·Wn)

⊕
i∈I

V1 · · ·Vm Ui

⊗k

W1 · · ·WnU∨
i

7→
⊕

i∈I

V1 · · ·Vm

i

W1 · · ·Wn(A.11)
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• Finally for the S-move, we recall that the functor τ(T1) is isomorphic

to the functor (A.5). Under this identification the S-move is related to⊕
i∈I HomC(1, V UiU

∨
i ) →

⊕
j∈I HomC(1, V UjU

∨
j )

⊕
i∈I

V Ui U∨
i

7→
⊕

i,j∈I
dj

D

V Uj U∨
j

(A.12)

This is an isomorphism between the corresponding vector spaces, if and

only if the ribbon category C is modular.
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Zusammenfassung

In dieser Arbeit untersuchen wir eine bestimmte Klasse G-äquivarianter Ten-

sorkategorien, wobei G eine endliche Gruppe ist. Als Spezialfall erhalten wir

für die symmetrischen Gruppen G = SN die sogenannten Permutations-

äquivarianten Tensorkategorien. Die Konstruktion ist geometrisch, d.h. wir

geben einen G-äquivarianten modularen Funktor an, welcher dann die Struk-

tur einer G-äquivarianten monoidalen Kategorie induziert. Als Eingangsda-

ten verwenden wir eine endliche Gruppe G, eine endliche G-Menge X und

eine modulare Tensorkategorie C.

Die wesentliche Idee unserer Konstruktion ist die Definition des sogenann-

ten Cover-Funktors. Dies ist der Tensorfunktor von der Kategorie Gcob(d)

derG-Prinzipalbündel d-dimensionaler Kobordismen in die Kategorie cob(d)

der d-dimensionalen Kobordismen, welcher einem G-Bündel den Totalraum

des durch die G-Wirkung auf X assoziierten Bündels zuordnet.

Zunächst führen wir unsere Konstruktion dekategorifiziert durch, um einen

Ansatz für die abelsche Kategorie in Abhängigkeit von C und X zu bekom-

men. Dazu betrachten wir eine kommutative Frobenius-Algebra R und zie-

hen die von R induzierte topologische Feldtheorie entlang des Cover-Funktors

zu einer G-äquivarianten topologischen Feldtheorie zurück. Anschließend be-

rechnen wir die G-Frobenius-Algebra, welche zu dieser Feldtheorie äquivalent

ist.

Durch Kategorifizieren der Struktur dieser G-Frobenius-Algebra erhalten

wir eine G-äquivariante abelsche Kategorie CX . Dann definieren wir einen CX -

erweiterten G-äquivarianten modularen Funktor durch Anwenden des zu C
gehörenden modularen Funktors τ auf Totalräume von assoziierten Bündeln.

Die anschließende Berechnung der G-äquivarianten Ribbon-Struktur auf

CX erweist sich als sehr anspruchsvoll. Im Fall G = Z/2 können wir diese Be-

rechnung noch vollständig durchführen, für beliebige Gruppen jedoch können

wir nur noch die Modulkategorie-Strukturen auf den getwisteten Komponen-

ten über der neutralen Komponente bestimmen. Nach einem Resultat von

Etingof, Nikshych und Ostrik ist dadurch aber schon ein großer Teil der

monoidalen Struktur auf der G-äquivarianten Kategorie bestimmt.

Abschließend wenden wir diese Resultate an und berechnen die modu-

laren Invarianten der genannten Modulkategorien und zeigen so, dass alle

modularen Invarianten vom Permutationstyp physikalisch sind.
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