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Introduction

History: One of the main concerns of number theory is the study of integral solutions
of polynomial equations with integral coefficients. The Fermat curve plays a prominent
role in this context. It is fascinating the people because of two properties which seem to
be contrary to each other from a naive viewpoint. First, it is given by the very simple
equation

Xn + Y n = Zn ,

where n is a natural number, and second it is a very hard problem to prove the unsolvability
by non-trivial integer solutions for n > 2. In fact, this problem, which is also known as
“Fermat’s Last Theorem”, has challenged mathematics for more that three hundred years
and has finally been proved by Wiles in 1993-1995. Even if this big problem is solved, the
Fermat curve is still an interesting object because of its exemplary character.

In order to analyze the arithmetic properties of an algebraic curve X, which is defined
over a number field E, one can try to construct a (minimal) arithmetic surface f : X →
SpecOE which has X as generic fiber i.e. construct a (minimal) regular model X of this
curve; here OE denotes the ring of integers of E. Since X is a projective model of X
the E-rational points X(E) correspond bijectively to the set of sections X (OE). With
the importance of the classical intersection theory of algebraic surfaces over algebraically
closed fields in mind, one can ask how to construct a good intersection theory for arithmetic
surfaces. This is not an easy problem since just adapting the classical definitions would give
an intersection theory which is not well defined for divisor classes. Arakelov solved in his
famous article [Ara] this problem by adding some analytic data in order to “compactify” the
base scheme and to “complete” the arithmetic surface. He defined an intersection theory
for arithmetic divisors1 and he reformulated everything in the language of hermitian line
bundles. Many other mathematicians as for example Deligne, Gillet and Soulé, et al. have
made an advancement of this theory by extending it to other types of arithmetic divisors
(hermitian line bundles resp.) and by generalizing it to higher dimensional arithmetic
varieties.

The property that the Arakelov intersection theory is well defined for arithmetic divi-
sor classes makes theoretically possible to compute arithmetic self-intersection numbers of
all types of arithmetic divisors. Especially the arithmetic self-intersection number of the
hermitian line bundle ω2

X ,Ar, where ωX ,Ar is the line bundle ωX/ SpecZ = ωX/ SpecOE ⊗OX
1In the literature often called Arakelov divisors.
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f ∗ωSpecOE/ SpecZ equipped with the Arakelov metric, is a number of great importance (cf.
[Sz],[Ul] and [Zh]). Unfortunately, its computation is a very difficult problem if the genus
of the curve X is bigger or equal to two and therefore there is not much known about these
numbers (cf. [BMMB], [AU] plus [MU] or [AU] plus [JK1]). Parshin showed that an upper
bound for ω2

XP ,Ar for certain families of morphisms of arithmetic surfaces {XP → Y}P∈Y (E)

would imply bounds for the height of rational points of the curve Y , hence it would yield
an effective version of Mordell’s conjecture (cf. [Vo], [Pa]). However, except for certain
kinds of modular curves there are only a few results on such upper bounds. In [Kü1] Kühn
extends the Arakelov intersection theory in order to obtain an intersection theory that
works for hermitian line bundles equipped with metrics which have logarithmic singular-
ities at a finite set of points. Provided that one can compute regular models that fulfill
certain conditions, this generalized arithmetic intersection theory can be used in order to
compute upper bounds for ω2

Ar in case of modular curves and Fermat curves (cf. [Kü2]).

The main results: The main result of this thesis is the construction of (minimal) reg-
ular models FN of Fermat curves of squarefree exponent and the computation of upper
bounds for ω2

FN ,Ar using Kühn’s results in [Kü1] and [Kü2]. Furthermore, we compute
upper bounds for the regular model of the Fermat curves of prime exponent that was con-
structed by McCallum [Mc] and for certain types of regular models that appear often as
models of modular curves.

Previous work: There are several works which deal with the construction of regular and
minimal regular models Fp of the Fermat curve Fp of prime exponent. The most prominent
one is given by William G. McCallum which describes the minimal regular model over
Zp[ζp] (Z[ζp] resp.), where ζp is a primitive p-th root of unity (see [Mc]). Inspired by this
work Haichau Chang [Cha] and Nguen Kkhak V’et [V′] constructed independently the
minimal regular model over Zp (Z resp.). In order to do this Chang started with the model
which is given by the Fermat-equation and then - following the construction of McCallum -
made a straight forward computation. Nguen Kkhak V’et considered the quotient scheme,
which is given by McCallum’s scheme and the group Gal(Qp(ζp)/Qp), and resolved the
singularities. The stable model of the Fermat curve of prime exponent was constructed by
Hironobu Maeda [Mae1],[Mae2] and by Jeroen J. van Beele [vB].

In [Kü2] Kühn used McCallum’s model and an “approximated” version of one of his
formulae for upper bounds in order to compute an upper bound for ω2

Fp,Ar. In [CK] Kühn
and the author made an improvement of this result using the original version of that for-
mula.

Description of the contents: In Chapter 1 we review some of the necessary background
material in order to work with arithmetic surfaces. We start summarizing methods which
are needed for the construction of the arithmetic surface as for example blowing-ups and
regularity criteria of schemes. Most of this material is not restricted to surfaces. Then we
introduce the intersection theory for arithmetic surfaces which gives us an important tool
for the study of these schemes. Finally we define the canonical sheaf (canonical divisor
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resp.). This invariant displays its significance in the adjunction formula (Theorem 1.4.9)
which we will frequently use in later chapters. To illustrate the introduced results we
already start in Proposition 1.1.13 and Proposition 1.4.11 applying them to the Fermat
curve. The reader who is familiar with the basic concepts of arithmetic geometry may just
take a look at these propositions which are related to the Fermat curve and skip the rest
of this chapter.

Whereas the first chapter gives us the required tools, Chapter 2 explains the strategy
to construct (minimal) regular models. In this context we present the resolution of surface-
singularities like it was done by Lipman and the construction of minimal models done by
Lichtenbaum. At the end we introduce a few facts about descent theory which explain
that our constructions can be done fiber by fiber. Again, the reader who is familiar with
these topics may skip the whole chapter.

In Chapter 3 we explain Arakelov’s idea to extend the intersection theory of arithmetic
surfaces by considering some analytic data in order to obtain an arithmetic intersection
theory which is defined for divisor classes. In fact, we present the arithmetic intersection
theory developed by Gillet and Soulé which is an advancement of Arakelov’s theory. We
show two approaches to this theory: The arithmetic intersection theory of hermitian line
bundles and the one of arithmetic divisors. Since it is sometimes useful to switch between
these languages we explain how results can be translated. The second section of Chapter
3 is devoted to a result of Kühn (Theorem 3.2.2) which gives us an upper bound for the
arithmetic self-intersection number of the dualizing sheaf ω2

X ,Ar of an arithmetic surface X
which fulfills certain conditions. This result is the starting point of our work. It enables us
to compute ω2

X ,Ar just by some algebraic data which can be extracted from the arithmetic
surface X . Subsequent to this we describe how to approximate the numbers that can
be computed with the algebraic data and we show that the Fermat curves (and certain
modular curves) fulfill the conditions which are necessary in order to apply Kühn’s result.
The reader who is well versed in Arakelov theory may skip the first section of this chapter
but should nevertheless read the second section since it is of fundamental importance for
the rest of the work.

In Chapter 4 we start to apply Kühn’s result we reviewed in the previous section. We
explain the construction of a regular model Fp of the Fermat curve of prime exponent Fp
which was given by McCallum. This model is the first example of an arithmetic surface
that fulfills the conditions of Kühn’s theorem. Using the explicit description of the model,
we compute certain vertical divisors which are necessary to calculate the upper bound of
the arithmetic self-intersection number of the dualizing sheaf. In fact, we even compute a
little bit more than that, namely a canonical divisor and a divisor which is associated with
a pullback of the tautological sheaf. After that we calculate the upper bound (Theorem
4.2.6). McCallum describes the minimal regular model Fminp of Fp as well. Unfortunately,
we cannot apply Kühn’s result directly to that model since it does not satisfy the conditions
needed. However, in Section 4.2.1 we use the result for McCallum’s (non-minimal) model
and obtain a relative result for the dualizing sheaf of the minimal regular model (Theorem
4.2.8).
After that we consider a different type of curves: The modular curves. Kühn used in [Kü2]
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his formula to compute upper bounds in case of the modular curve X0(N). He also used an
“approximated” version of his formula to compute an upper bound for X(N). In Chapter
5 we consider a situation which covers many cases of this kind of curves. Even if we have
the modular curve situation in mind, we describe everything in an abstract setting which
can be understood without any knowledge about the modular curves. Later we show that
we can apply our results to specific cases of the curves X0(N) and X(N), where we achieve
the same results as Kühn in the first case and the better (“non-approximated”) upper
bound in the second case.

Chapter 6 is the main part of this thesis. It is divided into two sections. In the first
section we construct the minimal regular model FminN of the Fermat curve of squarefree
odd exponent N over the ring of integers of the number field Q(ζN); here ζN is a primitive
N -th root of unity. In order to do this we start with an analyzation of the polynomial

ψ(Xm, Y m) =
(XN + Y N − ZN)− (Xm + Y m − Zm)p

p
,

where p is a prime with p|N and N = pm. This is important for the study of the special
fiber over the primes that lie above p. Then we construct a regular model of this curve
and prove that this is in fact the minimal regular model. For the later applications it
is important that we have made this construction over a number field that contains the
primitive N -th roots of unity. In the second section we compute - similar to the prime
exponent case in Chapter 4 - a canonical divisor and a divisor which is associated with
the pullback of the tautological sheaf. We use this and apply Kühn’s formula in order to
compute an upper bound for ω2

FminN ,Ar
.

In each of the Chapters 4, 5 and 6 we do not only compute upper bounds for ω2
Ar but

also give asymptotic formulae of these numbers and analyze which data in the bound -
the analytic data or the algebraic data - is the dominating one. The asymptotic formulae
intend to illustrate the significant part of the growth of the upper bounds for ω2

Ar as the
curves in question vary within a certain family of curves. However, the way the formulae
are chosen is not uniform and differs for the families of curves.

In Chapter 7 we give a small discussion about subsequent work and open problems.
Here we consider the case of the Fermat curve of squarefree even exponent. Furthermore,
we describe a different approach to the results in Section 6.1 which was posed by Franz
Király and which uses the theory of quotient singularities. At the end we illustrate the
difficulties that appear in the case of Fermat curves of non-squarefree exponent.

Acknowledgement: I would like to thank the international research training group
“Arithmetic and Geometry” at the Humboldt University of Berlin - and here especially
professor Jürg Kramer and professor Ulf Kühn - for the opportunity of a temporary par-
ticipation. This time has enhanced my mathematical background in Arithmetic Geome-
try. I would also like to thank the University of Hamburg for providing a good research-
environment. During my work on this thesis there were many mathematicians who helped
me by offering suggestions, encouragement and inspiring discussions. I would like to thank
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like to thank Vincenz Busch for the reading of Section 6.1 and Inmaculada Pizán Molina
for a careful reading regarding linguistic matters. Special thanks go to professor Stefan
Wewers for his help with questions concerning the construction of models. Finally, and
most importantly, I would like to thank professor Ulf Kühn for his encouragement and his
motivating mentoring.





Terminology and Conventions

We assume that the reader is familiar with basic concepts of algebraic geometry. Even if
we use most of the time standard terminology, as it is use for example in [Liu] or [Ha],
we review at this point terminology and conventions which will be used frequently in this
work.

We use the term ring to denote a commutative ring with a unit. A ring homomorphism
is always assumed to take the unit element of one ring to the unit element of the other
ring. If we have a ring A and an element f ∈ A, we will denote by A/f the factor ring
A/(f).

Given a polynomial ring A[X1, . . . , Xr], we denote by A[X1, . . . , X̂i, . . . , Xr] the same ring
but after removing Xi. In other words, we have

A[X1, . . . , X̂i, . . . , Xr] = A[X1, . . . , Xi−1, Xi+1, . . . , Xr] .

If S is a multiplicative subset of A, we denote by AS the localization of A with respect to
S. For a prime ideal p of A we write Ap for the localization AS of A with S = A \ p. Given
an integral ring A we denote its field of fractions by Frac(A) i.e. the localization of A with
respect to the multiplicative subset A∗.

For an affine scheme SpecA and an ideal I ⊂ A we denote by V (I) the subset of
SpecA which consists of the prime ideals of A that contain I. Similarly, we proceed with
projective schemes ProjB =

⊕
d≥0Bd; here B is a graded ring. We denote by V+(I) the

set of homogenous prime ideals p ∈ ProjB that contain the homogenous ideal I ⊂ B. If
there is no danger of confusion, we will use the same symbol p to denote a prime ideal
considered as an ideal of the ring p ⊂ A (p ⊂ B resp.) on the one hand and as an element
of the scheme p ∈ SpecA (p ∈ ProjB resp.) on the other hand.

For a smooth projective curve C we denote by g(C) the (geometric) genus of the curve.
If there is no danger of confusion to which curve we are referring, we write g. We will
denote the arithmetic genus of a curve by pa. If the arithmetic genus and the geometric
genus of a curve C coincide, we will just say genus and write g(C) or g.

xi





Chapter 1

Geometry of arithmetic surfaces

In this chapter we review some results of arithmetic geometry which are needed in order
to work with arithmetic surfaces.

1.1 Regularity

Our aim is to define regularity for a scheme, to develop a couple of tools that help to show
that a scheme or a ring is regular (or to show that it is non-regular), and to explain the
geometric viewpoint of regularity.

Let A be a Noetherian local ring with maximal ideal m and residue class field k(m) =
A/m. We denote by dimA the Krull dimension which is defined to be the number of strict
inclusions in a maximal chain of prime ideals. Since we just consider Noetherian rings,
this dimension is finite. It can be shown that the Krull dimension of A is less or equal to
the dimension of the k(m)-vector space m/m2 (see e.g. [Mat1], p.78). We are interested in
rings where equality holds.

Definition 1.1.1. Let A be a Noetherian local ring with maximal ideal m and residue
class field k(m). We say that A is regular if dimA = dimk(m) m/m

2.

Given any system of generators of m, the number of generators is obviously bigger or
equal to dimk(m) m/m

2. On the other hand there exists a system with exactly dimk(m) m/m
2

generators. To see this we just have to consider any basis of m/m2 and then choose for each
element in this basis a preimage. Now, Nakayama’s lemma tells us that these preimages
already generate m as an A-module (see e.g. [Ei], p.124: Corollary 4.8 (b)). This gives us
another description of regularity:

Proposition 1.1.2. Let A be a Noetherian local ring with maximal ideal m and residue
class field k(m). A is regular if and only if m can be generated by dimA elements.

Definition 1.1.3. Let A be a Noetherian ring and p ⊂ A a prime ideal. We say that A is
regular at p if Ap is a regular local ring. We say that A is regular if it is regular at each
prime ideal.

1
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Corollary 1.1.4. Let A be a Noetherian ring and p ⊂ A a prime ideal. Then A is regular
at p if and only if pAp is generated by ht(p) elements.

Proof: With Proposition 1.1.2 we have that A is regular at p if and only if pAp is
generated by dimAp elements. Since ht(p) = dimAp (see e.g. [Liu], p.69: Proposition 5.8.
(b)) the claim follows. �

Proposition 1.1.5. Let A be a regular Noetherian ring and S a muliplicative subset of A.
Then AS is regular.

Proof: Let P be a prime ideal of AS. This ideal is of the form pAS with a prime ideal p
of A disjoint from S (see e.g. [Mat2], p.22: Theorem 4.1. (ii)). We have (AS)pAS = Ap (see
e.g. [Mat2], p.24: Corollary 4.), hence the regularity of AS at P follows from the regularity
of A at p. �

Proposition 1.1.6. Let A be a Noetherian ring. Then A is regular if and only if it is
regular at its maximal ideals.

Proof: Follows with [Mat2], p.24: Corollary 4. �

In the following chapters we often have the situation that we have to check the regularity
of a factor ring A/f , where A is a regular ring and f is an element of A. This ring comes
with the canonical surjection can : A→ A/f . Now, the preimage of a prime ideal of A/f
gives us a prime ideal of A. We can use the following fact to check regularity:

Proposition 1.1.7. Let A/f be a factor ring, where A is a regular ring and f is an element
of A. Furthermore, let P be a prime ideal of A/f and p = can−1P. Then A/f is regular
at P if and only if f 6∈ (pAp)

2.

Proof: The proposition follows directly with [Liu], p.129: Corollary 2.12. and [Mat2],
p.23: Theorem 4.2. �

Definition 1.1.8. Let X be a locally Noetherian scheme and x ∈ X a point. We say that
X is regular at x if the stalk OX,x at x of the structure sheaf OX is a regular local ring.
We say that X is regular if it is regular at all of its points. If x is a point of X which is
not regular we call it a singular point of X. A scheme that is not regular is said to be
singular .

In case our scheme comes together with a flat morphism we can use the following useful
result:

Proposition 1.1.9. Let X and Y be locally Noetherian schemes and g : X → Y a flat
morphism. If Y is regular at y ∈ g(X), and Xy = X ×Y Spec k(y) is regular at a point x,
then X is regular at x.
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Proof: See e.g. [Gr1], p.143: Corollaire 6.5.2. �

The proposition above is helpful if the studying of the points of Y and Xy is easy.
Anyway, in the situations we consider later the scheme Y is already regular and we only
need to take care of the scheme Xy. This scheme is a variety over the field k(y). To analyze
the points of this variety we can use the Jacobian criterion:

Theorem 1.1.10 (Jacobian criterion). Let k be a field, X = V (I) a closed subvariety of
An
k = Spec k[T1, . . . , Tn], and F1, . . . , Fr a system of generators of I. For a rational point

x ∈ X(k) we consider the r × n matrix

Jx =

(
∂Fi
∂Tj

(x)

)
1≤i≤r,1≤j≤n

.

Then X is regular at x if and only if rank Jx = n− dimOX,x.

Proof: See e.g. [Liu], p.130: Theorem 2.19. �

Remark 1.1.11. Let us assume the morphism g in Proposition 1.1.9 is faithfully flat , i.e.
flat and surjective (see e.g. [Mi], p10: Proposition 2.7.). If Y and Xy are regular for all
y ∈ Y then X is regular. If X is regular then Y is regular (see e.g. [Gr1], p.143: Corollaire
6.5.2.). If Y is regular at y and Xy is singular at some x it may nevertheless happen that
X is regular at x.

Definition 1.1.12. Let N ∈ N be a natural number with N ≥ 2 and ζN a primitive N -th
root of unity. We call the scheme

X = SpecZ[ζN ][X, Y ]/(XN + Y N − 1) . (1.1.1)

the (affine) Fermat scheme of exponent N .

Proposition 1.1.13. Let X be the Fermat scheme of exponent N (cf. Definition 1.1.12).
Then X is regular at a prime ideal p ∈ X , if N /∈ p.

Proof: We have a morphism g : X → Y = SpecZ[ζN ] which corresponds to the ring
homomorphism

g] : Z[ζN ]→ Z[ζN ][X, Y ]/(XN + Y N − 1)

where g] is the composition of the inclusion Z[ζN ]→ Z[ζN ][X, Y ] and the canonical surjec-
tion Z[ζN ][X, Y ]→ Z[ζN ][X, Y ]/(XN +Y N−1). The scheme X is integral, Y is a Dedekind
scheme, and g is non-constant, hence the morphism g is flat (see e.g. [Liu], p.137: Corollary
3.10.). We want to show that X is regular at a prime ideal p ∈ X if N 6∈ p. To see this
we start with a prime ideal p with g(p) = 0. Then this prime ideal is the image of an ele-
ment of XQ(ζN ) = SpecQ(ζN)[X, Y ]/(XN + Y N − 1) with respect to the obvious morphism
XQ(ζN ) → X . Since this morphism is flat and XQ(ζN ) is regular it follows that X is regular
at p (see e.g. [Gr1], p.143: Corollaire 6.5.2.). Next, let p be a prime ideal with g(p) = q,
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where q is a prime in Z[ζN ]. Since Y is regular, we only have to concentrate on the fiber
Xq = Spec k(q)[X, Y ]/(XN+Y N−1), where k(q) is the residue field of q (Proposition 1.1.9).
We use the Jacobian criterion to analyze the scheme Xq. For simplicity we may change to

the geometric special fiber X q = Xq ×Spec k(q) Spec k(q) = Spec k(q)[X, Y ]/(XN + Y N − 1).

Since the inclusion morphism k(q) ↪→ k(q) is faithfully flat, the projection morphism
p2 : X q → Xq is faithfully flat as well. Hence, if X q is regular, then Xq is regular. Now,
let us assume that N /∈ q. Then the rank of the Jacobian matrix J = (NXN−1, NY N−1)
is 1 for all points of X q and so X q is regular (Theorem 1.1.10 and [Liu], p.130: Corollary
2.17.), hence X is regular in p (Proposition 1.1.9). If N ∈ q then the Jacobian matrix is
zero and it follows that X q is singular at all points. In this situation Proposition 1.1.9 does
not tell us, if X is regular at p. �

Example 1.1.14. In Proposition 1.1.13 we saw that X given by (1.1.1) is regular at a
prime ideal p, if N /∈ p. Contrary to this, if N ∈ p and g(p) = q, then the whole fiber
above q (considered as a k(q)-variety) is singular, and we do not know anything about X
at p. However, it may happen - like we mentioned before - that p is a regular point of X .
We may illustrate this with the similar scheme

X = SpecZ[X, Y ]/(X3 + Y 3 − 1) .

Consider the maximal ideal m = (X − 2, Y − 2, 3) ∈ X . We can interpret this “closed
point” as an element of X(3). This is a singular point of X(3) according to the Jacobian
criterion. On the other hand we have

X3 + Y 3 − 1 = (X + Y − 4)3 + 3G(X, Y )

with G(X, Y ) = 21−x2y+4x2−xy2+8xy−16x+4y2−16y. If G(X, Y ) ∈ m we have 1 ∈ m,
a contradiction. It follows that G(X, Y ) becomes a unit in (Z[X, Y ]/(X3 + Y 3 − 1))m. Now
the claim follows with Corollary 1.1.4 because m (Z[X, Y ]/(X3 + Y 3 − 1))m = (X − 2, Y −
2).

In Remark 1.1.11 we just mentioned that if we have a surjective flat morphism g :
X → Y with a regular scheme X, then Y is necessarily regular, too. It would be desirable
to have a statement in the opposite direction. In other words, to have a certain kind of
morphism with the property that if Y is regular then it follows that X is regular.

Definition 1.1.15. Let g : X → Y be a morphism that is locally of finite type. We say
that g is unramified at x ∈ X if OX,x/myOX,x is a finite separable field extension of k(y),
where g(x) = y and my is the maximal ideal of OY,y. We say that g is unramified if it is
unramified at all x ∈ X. The morphism g is called étale if it is flat and unramified.

Proposition 1.1.16. Let g : X → Y be an étale morphism. The following properties are
true.

1. dimOX,x = dimOY,g(y) for all x ∈ X.
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2. If Y is normal, then X is normal.

3. If Y is regular, then X is regular.

Proof: See e.g. [Mi], p.27: Proposition 3.17. �

Now we are going to describe how we can use regularity to show normality.

Proposition 1.1.17. Let R be a regular integral Noetherian ring and f ∈ R \R∗. If R/f
is regular in codimension 1 then R/f is normal.

Proof: Since R is a regular ring it is a Cohen-Macaulay ring (see [Liu], p.337 for a
definition and this statement). We want to show that R/f is a Cohen-Macaulay ring, too:
Let m ∈ Max (R/f) and M ∈ Max (R) be the preimage of m. The ideal M is indeed
a maximal ideal because the canonical map R → R/f is a surjection. Since localization
commutes with passing to quotients by ideals, we have

(R/f)m = RM/fRM .

Now f is a regular element of RM and so RM/fRM is a Cohen-Macaulay ring (see [Liu],
p.337: Proposition 2.15. (a)). Since our computation is valid for all maximal ideal of R/f
the ring R/f is Cohen-Macaulay (cf. [Ei], p.452: Proposition 18.8.). The statement follows
now with Serre’s criterion (see [Liu], p.339: Theorem 2.23.). �

1.2 Blowing-ups

In the study of birational morphisms blowing-ups play an important role. In this section
we will summarize the main facts we need about blowing-ups. Most of the material we
introduce is standard and the proofs may be found in [Liu], [EH] and [Ha]. Later we will
prove a result which deals with the concrete situation that will appear in the following
chapters frequently. Apart from this we follow most of the time the book [Liu].

To start with, let A be a Noetherian ring and I an ideal of A. We denote by Ã the
graded A-algebra

Ã =
⊕
d≥0

Id, where I0 := A .

Definition 1.2.1. Let X = SpecA be an affine Noetherian scheme, I an ideal of A, and
X̃ = Proj Ã. The scheme X̃ together with the canonical morphism X̃ → X is called the
blowing-up of X along V (I).

The blowing-up has the following properties.

Lemma 1.2.2. Let A be a Noetherian ring, and let I be an ideal of A.

1. The ring Ã is integral if and only if A is integral.

2. Let B be a flat A-algebra, and let B̃ be the graded B-algebra associated to the ideal
IB. Then we have a canonical isomorphism B̃ ∼= B ⊗A Ã.
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Proof: See e.g. [Liu], p. 318: Lemma 1.2. (c) and (d). �

Now let I = (a1, . . . , ar). We denote by ti ∈ I = Ã1 the element ai considered as
a homogeneous element of degree 1. We have a surjective homomorphism of graded A-
algebras

φ : A[X1, . . . , Xr]→ Ã

defined by φ(Xi) = ti. It follows that Ã is isomorphic to a factor ring A[X1, . . . , Xr]/J ;
here J denotes an ideal of A[X1, . . . , Xr]. It may be desirable for certain applications to
express the blowing-up in such a way. Unfortunately it is not always easy to describe the
ideal J explicitly. However if the ideal I is generated by a regular sequence we have a nice
description of J .

Lemma 1.2.3. Let I ⊂ A be an ideal which is generated by a regular sequence a1, . . . , ar.
Then Ã ∼= A[X1, . . . , Xr]/J where the ideal J is generated by the elements of the form
Xiaj −Xjai for 1 ≤ i, j ≤ r.

Proof: See e.g. [EH], p.172: Proposition IV-25. and p. 173: Exercise IV-26. �

Later on, we will often work with integral rings. Here we have the following situation:

Lemma 1.2.4. Let A be a Noetherian integral ring and I = (a1, . . . , ar) an ideal of A,

with ai 6= 0 for all i. The blowing-up X̃ → X = SpecA along V (I) is the union of the
affine open subschemes SpecAi, 1 ≤ i ≤ r, where Ai is the sub-A-algebra

A[
a1

ai
, . . . ,

ar
ai

]

of the field Frac(A) generated by the
aj
ai
∈ Frac(A), 1 ≤ j ≤ r.

Proof: See e.g. [Liu], p. 320: Lemma 1.4. �

Lemma 1.2.5. Let A be an integral Noetherian ring, a1, . . . , ar a regular sequence, and
I = (a1, . . . , ar). We have:

1. The ring

R = A[X1, . . . , X̂i, . . . , Xr]/J ,

where J is generated by the elements aj −Xjai with 1 ≤ j ≤ r and j 6= i, is integral.

2. For an element f ∈ A let f denote its image in R. We have

f ∈ Id ⇔ f ∈ (ai)
d .
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Proof: Since A is integral Ã is integral, too (Lemma 1.2.2 (1)). We know that

Ã ∼= A[X1, . . . , Xr]/J

where J is generated by the elements Xiaj − Xjai for 1 ≤ i, j,≤ r (Lemma 1.2.3). But

then, SpecR is an affine open subset of Proj Ã and therefore integral. This proves the first
statement.
For simplicity we assume i = 1. Let f ∈ Id. Then there exists a homogeneous polynomial
F (X) = F (X1, . . . , Xr) ∈ A[X1, . . . , Xr] of degree d with f = F (a) = F (a1, . . . , ar). If we
set

f0 =
F (a1, X2a1, . . . , Xra1)

ad1
= F (1, X2, . . . , Xr)

we obviously have f = f0a1
d and therefore f ∈ (a1)d.

Now let f ∈ (a1)d. Furthermore, let n be the biggest integer with f ∈ In. Let us suppose
n < d. Again, we have a homogeneous polynomial F (X) of degree n with F (a) = f . If
follows that not all coefficients of F (X) are in I because otherwise we would have f ∈ In+1.

Now f0 = F (a1,X2a1,...,Xra1)
an1

is a polynomial in X2, . . . , Xr where not all coefficients of f0 are

in I. Again, we have f = f0a1
n but, since R is integral, the element a1 must divide f0.

Then f0 = a1G(X) + H(X) with ploynomials G(X) ∈ A[X2, . . . , Xr] and H(X) ∈ J . It
follows that all coefficients of f0 are in I, a contradiction. In other words, we have d ≤ n
and therefore f ∈ Id. �

So far we have seen, the most comfortable situations arise if we work with an integral
scheme that we blow up along a subscheme associated to an ideal generated by a regular
sequence. Unfortunately, sometimes we do not have these pleasant circumstances. How-
ever, in the situations that have to be considered later the following theorem will help us
to overcome this problem.

Theorem 1.2.6. Let A be an integral Noetherian ring, a1, . . . , ar a regular sequence, and
I = (a1, . . . , ar) a prime ideal. Furthermore, let f ∈ I and n be the biggest integer with
f ∈ In. Then

A[X1, . . . , X̂i, . . . , Xr]/J0
∼= A/f [

a1

ai
, . . . ,

ar
ai

]

where J0 is the ideal generated by the aj−Xjai (with 1 ≤ j ≤ r and j 6= i) and a polynomial
f0 with f ≡ f0a

n
i mod J ; here aj denotes the residue class of aj in A/f and J is the ideal

from Lemma 1.2.5.

Proof: For simplicity we assume i = 1. The canonical surjection

ϕ : A[X2, . . . , Xr] −→A/f [
a2

a1

, . . . ,
ar
a1

]

F (X2, . . . , Xr) 7−→F (
a2

a1

, . . . ,
ar
a1

)
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(here the bold F indicates that we reduce the coefficients of the polynomial modulo f)
induces, since ai −Xia1 ∈ kerϕ, a surjection

φ : A[X2, . . . , Xr]/J −→A/f [
a2

a1

, . . . ,
ar
a1

]

F (X2, . . . Xr) 7−→F (
a2

a1

, . . . ,
ar
a1

)

where J is the ideal from Lemma 1.2.5. We get the following commutative diagram

A[X2, . . . , Xr]/J
φ // // A/f [a2

a1
, . . . , ar

a1
]

A

OO

can // A/f
� ?

OO
(1.2.1)

Next we want to investigate the kernel of the map φ. Let x = F (X2, . . . Xr) with a
polynomial F (X2, . . . , Xr) of degree m and φ(x) = 0. We have am1 F (X2, . . . , Xr) ≡ µ
mod J with an element µ ∈ A. Since diagram (1.2.1) is commutative and the right arrow
in this diagram is injective we have can(µ) = 0. It follows that µ = λf with a λ ∈ A. Now
let n (nλ resp.) be the biggest integer with f ∈ In (λ ∈ Inλ resp.) and f0 ∈ A[X2, . . . , Xr]
(λ0 ∈ A[X2, . . . , Xr] resp.) with a1

nf0 = f (a1
nλλ0 = λ resp.). We have

a1
mx = fλ = a1

nf0a1
nλλ0 (1.2.2)

in A[X2, . . . , Xr]/J . If we assume that m ≤ n + nλ we can cancel a1
m in equation (1.2.2)

(Lemma 1.2.5 (1)) and it follows that x is in the ideal (f0). So if we can show that
m > n+nλ is impossible we have finished our proof. According to (1.2.2) we have λf ∈ Im
(Lemma 1.2.5 (2)). Now, m > n + nλ would implie that the associated graded algebra
grI(A) is not integral. But a1, . . . , ar is a regular sequence and so we have an A/I-algebra
isomorphism

Sym(I/I2) ∼= grI(A)

(see [Hu]) with Sym(I/I2) integral since I is a prime ideal. This gives us the contradiction.
�

Remark 1.2.7. The schemes we have to consider later are of the form SpecA/f (at least
locally) with a ring A and a prime element f ∈ A. An ideal of A/f is of the form I/f
with an ideal I = (a1, . . . , ar) ⊂ A. The blowing-up of A/f along V (I/f) will be covered
by the spectrum of the affine rings

A/f [
a1

ai
, . . . ,

ar
ai

] ,

where aj is the residue class of aj in A/f (Lemma 1.2.4). According to Theorem 1.2.6 we
can express these rings explicitly as factor rings. To do this, the only thing we need to
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know is the biggest integer n with f ∈ In and polynomials f0,i with f ≡ f0,ia
n
i mod J .

There is a strategy how one can find these quantities: One just needs to find a homogenous
polynomial F (X) ∈ A[X1, . . . , Xr] where not all coefficients are in I and with F (a) = f .
Obviously f ∈ In where n is the degree of F (X). Because a1, . . . , ar is a regular sequence
it is a quasi-regular sequence as well (see [Mat2], p.125: Theorem 16.2.). It follows that
if f ∈ In+1 then all coefficients are in I, a contradiction. So n is the biggest integer with
f ∈ In. The f0,i we get now in the same way like in the proof of Lemma 1.2.5. More
explicit, we have

f0,i = f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xr) .

It is possible to extend the construction of blowing-up affine scheme to arbitrary
schemes. In this situation we need to use a coherent sheaf of ideals to construct the
blowing-up.

Definition 1.2.8. Let X be a Noetherian scheme, and I be a coherent sheaf of ideals on
X. Consider the sheaf of graded algebras

⊕
d≥0 Id, where Id is the d-th power of the ideal

I, and we set I0 = OX . Then X̃ = Proj
⊕

d≥0 Id is the blowing-up of X with respect to
the coherent sheaf of ideals I. If Y is the closed subscheme of X corresponding to I, then
we also call X̃ the blowing-up of X along Y .

Proposition 1.2.9. Let X be a locally Noetherian scheme, and let I be a coherent sheaf of
ideals on X. Let π : X̃ → X be the blowing-up of X along Y = V (I). Then the following
properties are true:

1. The morphism π is proper.

2. Let Z → X be a flat morphism with Z locally Noetherian. Let Z̃ → Z be the blowing-
up of Z along IOZ; then Z̃ ∼= X̃ ×X Z.

3. The morphism π induces an isomorphism π−1(X \ V (I)) → X \ V (I). If X is

integral, and if I 6= 0 , then X̃ is integral, and π is a birational morphism.

Proof: See e.g. [Liu], p.322: Proposition 1.12. �

Now let us assume, that X is a locally Noetherian scheme that comes together with a
closed immersion f : X → Z to a locally Noetherian scheme Z. Let J be a quasi-coherent
sheaf of ideals on Z with the property that f(X) is not contained in the center V (J ).

Then the blowing-up X̃ of X along I, where I = (f−1J )OX , is a closed immersion of the

blowing-up Z̃ of Z along J (see e.g. [Liu], p.324: Corollary 1.16.). The closed subscheme

X̃ ⊆ Z̃ is called the strict transform of X. Later, the situation just described will appear
very often. In our case the scheme X will be a singular scheme which is a subscheme of a
regular scheme Z. We will use a sequence of blowing-ups of X to get a desingularization
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of this scheme1. Each of these blowing-ups comes from a blowing-up of the scheme Z. The
blowing-ups of Z will be regular again:

Theorem 1.2.10. Let Z be a regular locally Noetherian scheme, and π : Z̃ → Z be the
blowing-up of Z along a regular closed subscheme Y = V (J ). Then the scheme Z̃ is
regular.

Proof: See e.g. [Liu], p.325: Theorem 1.19. �

1.3 Intersection theory for arithmetic surfaces

Definition 1.3.1. An arithmetic surface X is a regular integral scheme of dimension 2
together with a projective flat morphism f : X → SpecOE, where OE is the ring of integers
of a number field E or a localization of such a ring. Moreover we assume that the generic
fiber

XE = X ×SpecOE SpecE

of f is geometrically irreducible2. For each s ∈ SpecOE we define the fiber above s as
Xs := X ×SpecOE Spec k(s). We have X(0) = XE. Any point s 6= (0) will be called a closed
point and the corresponding fiber Xs a special fiber .

Definition 1.3.2. Let C be a smooth projective geometrically irreducible curve over a
number field E, and f : X → SpecOE an arithmetic surface. We say that X is a regular
model of C, if there is an E-isomorphism between the curves C and XE.

Assumption 1.3.3. For the rest of this subsection we make the assumption that f : X →
SpecOE is an arithmetic surface in the sense of Definition 1.3.1.

Remark 1.3.4. Due to the fact that SpecOE is Noetherian and that f is of finite type it
follows that X is Noetherian as well.

Definition 1.3.5. We denote by Z1(X ) the group of Weil divisors of X , by Cl(X ) the
divisor class group of X i.e. the group of Weil divisors divided by the subgroup of principal
divisors R1(X ), and by Pic(X ) the Picard group of X . Instead of saying “a Weil divisor”
we will just say “a divisor”.3

1We will describe later that a desingularization of an arithmetic surface always exists. To get it, one has
to perform a finite sequence of modifications, where a modification is the normalization of the blowing-up
of the singular locus. However, in the following chapters, whenever we construct regular models of the
Fermat curve of squarefree exponent, we just need to work with blowing-ups and never need to normalize
explicitly.

2That XE is geometrically irreducible is equivalent to the property that E is algebraically closed in the
function field K(XE) (see e.g. [Liu], p.91: Corollary 2.14. (d)).

3The names and symbols for these groups differ in the literatur. For example the group of Weil divisors
is sometimes denoted by Div(X ) (see e.g. [Ha]) or the divisor class group is called Chow group (see e.g.
[La]).
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Remark 1.3.6. Since X is a regular Noetherian integral scheme, the divisor class group
Cl(X ) of X is isomorphic to the Picard group Pic(X ) (see [Liu], p.257: Corollary 1.19 and
p.271: Proposition 2.16). Let us denote by f the canonical surjection f : Z1(X )→ Cl(X )
and by g the isomorphism g : Cl(X )→ Pic(X ). For any divisor D ∈ Z1(X ) we denote the
corresponding invertible sheaf (g ◦ f)(D) by OX (D).

Remark 1.3.7. Since X is a regular Noetherian integral scheme, the group of Weil divisors
Z1(X ) of X is isomorphic to its group of Cartier divisors Div(X ) (see e.g. [Liu], p. 271:
Proposition 2.16.). A Cartier divisor can by represented by a system {(Ui, fi)i}, where
the Ui are open subsets of X that form a covering of X , fi is the quotient of two regular
elements of OX (Ui), and fi|Ui∩Uj ∈ fj|Ui∩UjOX (Ui ∩ Uj)∗ for every i, j.

Definition 1.3.8. Let D be a divisor and {(Ui, fi)i} its corresponding Cartier divisor
(Remark 1.3.7). We say that fi is a local equation of D in Ui. Let x ∈ X be a closed point
and Ui one of the open sets with x ∈ Ui. We denote the image of fi in K(X ) - which is
induced by the map OX (Ui)→ OX ,x - by fx and call it a local equation of D in x.

Remark 1.3.9. A local equation fx of a divisor D in a closed point x is not unique,
since it depends on the system {(Ui, fi)i}, which represents the Cartier divisor. However,
if {(Vj, gj)j} is a different system that represents the same divisor, then on Ui ∩ Vj the
elements fi and gj differ by an element of OX (Ui ∩ Vj)∗, hence gx differs from fx just by a
unit of OX ,x.

Remark 1.3.10. If D is effective, then fi ∈ OX (Ui) for all i (see e.g. [Ue], p. 45:
PROBLEM 13.), hence fx ∈ OX ,x for all x ∈ X .

Definition 1.3.11. Let D, E be effective divisors without common component, x ∈ X a
closed point and fx, gx local equations of D, E in the local ring OX ,x. Then we define the
intersection number ix(D, E) in x as the length of OX ,x/(fx, gx) as an OX ,x-module. We
say that D intersects E if SuppD∩Supp E 6= ∅. This is equivalent to the existence of closed
points x ∈ X with ix(D, E) 6= 0. We say that the intersection of D and E is transverse in
x if ix(D, E) = 1. The symbol ix(D, E) is bilinear and so we may extend the intersection
number to all pairs of divisors of X (just write D as D+ − D− with D+ and D− effective
and then define ix(D, E) := ix(D+, E)− ix(D−, E)) that have no common components. Now
let s ∈ SpecOE be a closed point. The intersection number of D and E above s is then
defined as

is(D, E) :=
∑
x∈X (1)

s

ix(D, E)[k(x) : k(s)] ,

where X (1)
s denotes the set of closed points of Xs and k(x) (k(s) resp.) denotes the residue

class field of x (s resp.). If one of the divisors has support in a special fiber Xs then
is′(D, E) = 0 for all s′ 6= s. If it is clear which s is considered we just write D · E (instead
of is(D, E)).
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Definition 1.3.12. Let s ∈ SpecOE be a closed point and E a vertical divisor contained
in the special fiber Xs. According to the moving lemma (see e.g. [Liu], p.379: Corollary
1.10) there exists a principal divisor (f) so that D := E + (f) and E have no common
component. Since (f) · E = 0 (see. e.g. [La], p.58: Theorem 3.1.) we may define the
self-intersection of E as

E2 := D · E .

Remark 1.3.13. Another possible way to define E2 can be done by Serre’s Tor-formula
via cohomological methods (see e.g. [De] or [SABK], p.11.).

Definition 1.3.14. We set Cl(X )Q = Cl(X ) ⊗Z Q. Obviously Cl(X )Q is a group again.
The difference is that we are now allowed to work with divisors with rational coefficients.
We will use Z1(X )Q and Pic(X )Q for the analog construction for the group of Weil divisors
and the Picard group. The morphisms f, g of Remark 1.3.6 extend to morphisms fQ :=
f ⊗ idQ, gQ := g⊗ idQ of the groups Z1(X )Q,Cl(X )Q and Pic(X )Q. Again, for D ∈ Z1(X )Q
we will denote by OX (D) its image with respect to gQ ◦ fQ in Pic(X )Q.

Remark 1.3.15. We extend the intersection numbers of Definition 1.3.11 to elements
of Z1(X )Q. We will illustrate this with divisors r

s
D, r′

s′
E ∈ Z1(X )Q, where D and E are

pairwise different prime divisors of X . In this case we set

ix(
r

s
D, r

′

s′
E) :=

r

s

r′

s′
ix(D, E) .

Now, the intersection of arbitrary elements of Z1(X )Q will be defined by using the bilin-
earity of the intersection products of Definition 1.3.11.

Lemma 1.3.16. Let f : X → SpecOE be an arithmetic surface and s ∈ SpecOE a closed
point. Then

Xs =
1

m
div(h)

in Z1(X )Q, where Xs = f ∗s, h ∈ K(X ) and m ∈ Z.

Proof: We know that the divisor class group Cl(SpecOE) is finite and so we can find
a positive integer m and a rational function g ∈ E = K(SpecOE) with the property that
m · s = div(g). Since X is regular it follows that f ∗s = Xs (see [Liu], p.351: Lemma 3.9)
and so f ∗(m · s) = m · Xs = div(h) for a h ∈ K(X ). Now, in Z1(X )Q we may divide this
equation by m and the lemma is proven. �

1.4 Canonical divisors on an arithmetic surface

Let f : X → Y be a quasi-projective local complete intersection of Noetherian schemes.
Since f is quasi-projective there exists a scheme Z together with a regular immersion
g : X → Z and a smooth morphism h : Z → Y so that f = h ◦ g. Since h is smooth
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and Y is Noetherian Ω1
Z/Y is locally free (see [Liu], p.222: Proposition 2.5.); here Ω1

Z/Y

denotes the sheaf of relative differentials of degree 1. Now, because g is an immersion it
decomposes into a closed immersion ι : X → V and an open immersion V → Z, where V is
an open subscheme of Z. Let J be the ideal sheaf of V that is associated to the morphism
ι. The sheaf CX/Z := ι∗(J /J 2) is called the conormal sheaf of X in Z. It is a locally free
sheaf of X (see e.g. [Liu], p.229: Corollary 3.8.) which is independent of V .

Definition 1.4.1. We use the notation from above. The invertible sheaf

ωX/Y := det(CX/Z)∨ ⊗OX h∗(det Ω1
Z/Y )

is called the canonical sheaf of X → Y ; here det denotes the top exterior product ∧top

and det(CX/Z)∨ := HomOX (det(CX/Z),OX). It is independent of the decomposition X →
Z → Y (see e.g. [Liu], p.238: Lemma 4.5.).

Remark 1.4.2. Let f : X → SpecOE be an arithmetic surface in the sense of Definition
1.3.1. Then f is a quasi-projective local complete intersection (see [Liu], p.232: Example
3.18.).

Remark 1.4.3. Since the scheme SpecOE is a locally Noetherian scheme and f is a
flat projective local complete intersection of relative dimension 1, the canonical sheaf is
isomorphic to the 1-dualizing sheaf (see [Liu], p.247: Theorem 4.32.).

Definition 1.4.4. Let f : X → SpecOE be an arithmetic surface in the sense of Definition
1.3.1. We have ωX/ SpecZ = ωX/ SpecOE ⊗OX f ∗ωSpecOE/ SpecZ (see [Liu], p.239: Theorem 4.9.
(a)). For simplicity we just write ωX for ωX/SpecZ (here we follow the notation of [MB],
p.75).

Definition 1.4.5. We call any divisor K of X with OX (K) ∼= ωX/ SpecOE a canonical
divisor. This divisor exists because of Remark 1.3.6.

Remark 1.4.6. By abuse of language we call a divisor K ∈ Z1(X )Q with OX (K) =
ωX/SpecOE in Pic(X )Q a canonical divisor as well. Given another canonical divisor K′ it
follows that K − K′ = 1

s
div(f) with a s ∈ Z, and f ∈ K(X ) an element of the field of

functions4.

Definition 1.4.7. Let f : X → Y be a morphism of Noetherian schemes and f ∗ the
induced group homomorphism f ∗ : Pic(Y) → Pic(X ). For F ∈ Pic(Y) we denote by F|X
the pullback f ∗F ∈ Pic(X ) and call it the restriction of F to X . Let us now assume
in addition that X and Y are regular and integral, and that f is flat or dominant. In
this case we have a group homomorphism f ∗ : Z1(Y) → Z1(X ) (see [Liu], p.261: Lemma
1.33.). Again, for a divisor D ∈ Z1(Y) we denote by D|X its pullback f ∗D ∈ Z1(X ) and
call it the restriction of D to X . Notice that we have OX (D|X ) ∼= OY(D)|X (see [Liu],
p. 262: Remark 1.35.). The morphism f ∗ induces a morphism f ∗Q : Pic(Y)Q → Pic(X )Q
(f ∗Q : Z1(Y)Q → Z1(X )Q resp.). We set F|X := f ∗QF (D|X := f ∗QD resp.) for a line bundle
F ∈ Pic(Y)Q (a divisor D ∈ Z1(Y)Q resp.).

4Notice that Cl(X )Q is canonically isomorphic to Z1(X )Q/(R
1(X )⊗Z Q) since Q is flat over Z.
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Remark 1.4.8. Let s ∈ SpecOE (we do not postulate that s is a closed point). For
each fiber Xs → Spec k(s) we get a canonical sheaf ωXs/ Spec k(s), and we have the relation
ωXs/ Spec k(s)

∼= ωX/ SpecOE |Xs (see [Liu], p.350: Corollary 3.6. (d)). If s is the generic point
we define a canonical divisor K ∈ Z1(X)Q of X := X ×SpecOE SpecE in the same way we
did with the arithmetic surface i.e. K is a divisor that fulfills OX(K) ∼= ωX/ SpecE. For a
canonical divisor K of X it follows that K|X is a canonical divisor of X, hence K|X and K
represent the same class in Cl(X)Q.

Now let E ∈ Z1(X ) be a vertical divisor contained in a special fiber Xs and K a canonical
divisor on X . Since any other canonical divisor is rationally equivalent to K the intersection
number K · E depends uniquely on ωX/OSpecE

and not on the choice of a representative K.
We have the following important theorem:

Theorem 1.4.9 (Adjunction formula). Let f : X → SpecOE be an arithmetic surface,
s ∈ SpecOE a closed point and E ∈ Z1(X ) a vertical divisor contained in the special fiber
Xs. Then we have

2pa(E)− 2 = E2 +K · E , (1.4.1)

where pa(E) is the arithmetic genus of E.

Proof: See [Li] Theorem 3.2. in case K ∈ Z1(X ). If K ∈ Z1(X )Q then there exists a
canonical divisor K′ ∈ Z1(X ) with K − K′ = 1

s
div(f) (cf. Remark 1.4.6), hence K fulfills

(1.4.1). �

Definition 1.4.10. Let S be a Dedekind scheme of dimension 1. We say that X is a fibered
surface, if X is an integral scheme of dimension 2 together with a projective flat morphism
f : X → S. If X is normal we say that it is a normal fibered surface. For a closed point
s ∈ S let Xs := X ×S Spec k(s). Furthermore, let C be an irreducible component of Xs and
ξ ∈ Xs the generic point of C. Then we define the multiplicity of C in Xs to be the length
of OXs,ξ as OXs,ξ-module.

Proposition 1.4.11. Let N be a squarefree natural number with N ≥ 2 and X the Fer-
mat scheme (1.1.1) of exponent N . Each fiber above a prime ideal of Z[ζN ] has just one
component. If p ⊂ Z[ζN ] is a prime ideal with N ∈ p, then this component has multiplicity
p, where p ∩ Z = (p). Else, it has multiplicity one.

Proof: If q is a prime ideal of Z[ζN ] with N /∈ q, then

Xq = Spec k(q)[X, Y ]/(XN + Y N − 1) ,

where (XN +Y N − 1) is irreducible in k(q)[X, Y ] (Eisenstein criterion). It is obvious, that
Xq has just one component, namely C = V (XN + Y N − 1). Let us set R = k(q)[X, Y ] and
I = (XN + Y N − 1). Let ξ be the generic point of Xq. Then we have

OXq,ξ = (R/I)(0) = RI/IRI .
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It follows
lengthRI/IRI RI/IRI = lengthRI RI/IRI = 1 ,

hence the multiplicity of C is one. If p is a prime ideal of Z[ζN ] with N ∈ p, then

Xp = Spec k(p)[X, Y ]/(XN/p + Y N/p − 1)p ,

where (XN/p + Y N/p − 1) is irreducible in k(p)[X, Y ] and p ∩ Z = (p). Similar to the
previous case, we see, that C = V (XN/p + Y N/p − 1) is the only component of Xp. We set
R = k(p)[X, Y ] and I = (XN/p + Y N/p− 1). In this situation ξ = (XN/p + Y N/p− 1) is the
generic point of Xq. Here we have

OXq,ξ = (R/Ip)I = RI/I
pRI = RI/(IRI)

p .

It follows
lengthRI/(IRI)p RI/(IRI)

p = lengthRI RI/(IRI)
p = p ,

hence the multiplicity of C is p.
�

Definition 1.4.12. Let X be a normal scheme and C a prime divisor i.e. an irreducible
subscheme of codimension 1. The ring OX ,ξ, where ξ is the generic point of C, is a discrete
valuation ring. We denote the valuation by νC and an uniformizing parameter by tC, i.e.
an element tC ∈ OX ,ξ with νC(tC) = 1.

Remark 1.4.13. Let X be a normal fibered surface in the sence of Definition 1.4.10.
Another way of computing the multiplicity of C in Xs is the following: Let ξ be the generic
point of C in X . Then the multiplicity of C is νC(ts) where ts is a uniformizing parameter
of OSpecOE ,s (cf. [LL], p.63).

Remark 1.4.14. Let f : X → SpecOE and s ∈ SpecOE be as in Theorem 1.4.9. Let
C1, . . . , Cr be the irreducible components of Xs, with respective multiplicities d1, . . . , dr.
Then we have the following equality of Weil divisors in X :

Xs =
∑

1≤i≤r

diCi ,

where Xs = f ∗s (see. [Liu], p.351: Lemma 3.9. (a)). Furthermore, since the generic fiber
XE is geometrically irreducible it is geometrically connected. Hence, Xs is geometrically
connected (see e.g. [Liu], p.350: Corollary 3.6. (b).

Proposition 1.4.15. Let f : X → SpecOE be an arithmetic surface, s ∈ SpecOE a
closed point and C1, . . . , Cr the irreducible components of Xs, with respective multiplicities
d1, . . . , dr. Then the following properties are true:

1. For all Ci we have Xs · Ci = 0.
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2. For all Ci we have

C2
i = − 1

di

∑
j 6=i

djCj · Ci .

3. Furthermore, let K be a canonical divisor of X . We have 2pa(XE)−2 = K·Xs, where
XE is the generic fiber of X .

Proof: See [Liu], p.384: Proposition 1.21. and p.389: Proposition 1.35. Statement 3. is
true for K ∈ Z1(X )Q as well. This follows by the same arguments as in Theorem 1.4.9. �

Later on it will be important to construct the canonical divisor explicitly. The following
proposition will help us with that.

Proposition 1.4.16. Let f : X → SpecOE be an arithmetic surface and K ∈ Z1(X )Q a
divisor on X which satisfies the adjunction formula (1.4.1) and whose restriction to the
generic fiber X is a canonical divisor of X. Then K is a canonical divisor on X .

Proof: Let K̃ be a canonical divisor on X (we already know that it exists). We want to

show that K̃ ∼ K and so that K is a canonical divisor as well. We denote the horizontal
part of the divisors by K̃h and Kh. Since the restriction to the generic fiber of both divisors
is a canonical divisor of X we have K̃|X = K̃h|X ∼ Kh|X = K|X and so there exists a

rational element g ∈ K(X) and a s ∈ Z with K̃|X − 1
s

div(g) = K|X . Because we have
K(X) ∼= K(X ), we can interpret g as an element of K(X ) and so obtain a principal divisor
whose restriction to X is div(g). We denote this principal divisor by div(g) as well. If we

now set K′ := K + 1
s

div(g) we get a divisor with the properties K′ ∼ K and K′h = K̃h.
Since we are just interested in K up to rational equivalence we may assume from now on
that the horizontal part of K is the same as the one of K̃.
Let s ∈ SpecOE be a closed point with s ∈ f(Supp K̃v ∪ SuppKv) and Xs the fiber above

it; here K̃v (Kv resp.) denotes the vertical part of K̃ (K resp.). Let K̃s (Ks resp.) be the

part of K̃ (K resp.) which has support in Xs. Since K̃ and K fulfill the adjunction formula
and have the same horizontal part we have

0 = (K̃s −Ks) · (K̃ − K) = (K̃s −Ks) · (K̃s −Ks) .

and so K̃s − Ks = qXs, where q is a rational number (see [La], p.61: Proposition 3.5.).

Now, according to Lemma 1.3.16, we find m ∈ Z and h ∈ K(X ) so that K̃s − Ks =

qXs = q
m

div(h) and so we have K̃s = Ks in Cl(X )Q. If we set K′ := K + q
m

div(h) we
have just changed the part of K with support in Xs. Again, we have K′ ∼ K and now
K̃h + K̃s = K′h + K′s. Continuing successively with the other (finitely many) closed points

of f(Supp K̃v∪SuppKv) we arrive at a divisor K′′ with K′′ = K̃ and K′′ ∼ K as we claimed
at the beginning. �
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Remark 1.4.17. The Proposition 1.4.16 uses the fact that in Z1(X )Q the special fibers are
divisors coming from functions (see Lemma 1.3.16). In other words, the canonical divisor
in the sense of Remark 1.4.6 is only defined up to rational multiples of principal divisors
and therefore in particular defined only up to special fibers (in Z1(X )Q).





Chapter 2

Regular and minimal regular models
of curves

Assumption 2.0.18. Unless otherwise specified, we denote by C a smooth projective
geometrically irreducible curve over a number field E. Furthermore, we denote by OE the
ring of integers of E.

In this chapter we explain how we can construct a (minimal) regular model for C.
Explicitly, we can use the results of the subsequent sections in the following way: Since C
is projective there exists a natural number n and a closed embedding C ↪→ PnE. Let X be
the normalization of the closure of C in PnOE with respect to the morphism

C ↪→ PnE → PnOE .

Then X is a normal scheme over SpecOE and its generic fiber is E-isomorphic to C. Now,
in Section 2.1 we describe how we can desingularize X . Then, in Section 2.2 we show that
we can construct a minimal regular model out of the regular model we obtained in the
previous section in case the genus of the curve is greater than 0. Finally, in Section 2.3 we
demonstrate that all this work can be done fiber by fiber.

2.1 Resolution of singularities for surfaces

Let C be as in Assumption 2.0.18. Regarding the nice properties of arithmetic surfaces it
is desirable to find a regular model of this curve. We have seen before that it is easy to
construct a normal fibered surface over SpecOE that has a generic fiber isomorphic to C.
Next, we could ask ourselves if we can use this normal fibered surface as a starting point
of a construction that yields us a regular model of this curve. Lipman gave in [Lip1],[Lip2]
a positive answer to this question1. In this section we will review shortly the basic ideas
of his proof. We follow the presentation given by Artin in [Ar1].

1In fact, the idea of his proof can be applied to arbitrary excellent two-dimensional schemes.
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Definition 2.1.1. Let X be a normal fibered surface. We call a proper birational morphism
f : X ′ → X with X ′ regular a desingularization (or a resolution of singularities) of X .

Remark 2.1.2. The scheme X is excellent (see e.g. [Liu], p.343: Theorem 2.39. (c) and
Corollary 2.40. (c)). This, together with the fact that X is normal, yield that the singular
locus Sing(X ), i.e. the set of points x ∈ X at which X is singular, is a closed subset of
codimension 2 (see [Gr1], (7.8.6) (iii)).

Theorem 2.1.3. Let X be a normal fibered surface. We construct a sequence of surfaces
and proper birational morphisms

. . .→ Xn+1 → Xn → . . .→ X1 → X0 = X , (2.1.1)

where Xi+1 is the normalization of the blowing-up of Xi along Sing(Xi). Then the sequence
(2.1.1) is finite, hence a desingularization of X exists.

Proof: See [Lip1],[Lip2] of alternatively [Ar1]. �

Remark 2.1.4. The proof of the Theorem 2.1.3 (as it is described in [Ar1]) can be done
in three steps: In the first it is shown that we can reduce everything to the situation that
X just has rational singularities. A point x ∈ X is called a rational singularity , if for
every proper birational morphism f : X ′ → X the stalk R1f∗OX ′ at x is zero2: here R1f∗
denotes the first right derived functor of f∗ and OX ′ the structure sheaf of X ′. In the
second step it is shown that everything can be reduced to the situation of a surface with
rational singularities of multiplicity 2, so called rational double points . The multiplicity of
a rational singularity x is defined as the multiplicity of the local ring OX ,x (cf. [ZS], p.
294). The third step deals with the desingularization of these singularities.

2.2 The minimal regular model

Again, let C be as in Assumption 2.0.18. Furthermore, let us set S = SpecOE. We have
seen in Section 2.1 that there exists a regular model X → S of C, i.e. X is an arithmetic
surface over S and its generic fiber XE is isomorphic to C. For another arithmetic surface
X ′ which is S-birational equivalent to X its generic fiber is isomorphic to C as well, hence
it is a regular model too. In this section we discuss under which conditions there exists a
minimal regular model in a birational equivalence class. Before we do this we must define
what we mean by a minimal regular model. First of all we make the following observation:
If we have a (S-) birational morphism f : X → X ′ of regular models, then f is surjective

2Normally one defines a rational singularity x as a point x ∈ X where for each desingularization
f : V ′ → SpecOX ,x we have R1f∗OV ′ = 0 (cf. [La], p. 125). However, since this definition needs the
existence of a desingularization Lipman uses the term pseudo-rational singularity in his proof. Once it
is shown that the desingularization exists it turns out that every rational sigularity is a pseudo-rational
singularity and vice versa (cf. [Lip2], p. 157: Remark).
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(it is closed, since it is proper, and it is dominant, since it is a birational map of integral
schemes). Hence, it would make sense to postulate, that, if there exists a minimal regular
model, then any birational morphism to any other regular model should be an isomorphism.
On the other hand, a minimal regular model should be unique. However, there could be
several non-isomorphic models that have the above property, hence we have to postulate
a little bit more.

Definition 2.2.1. We call a regular model X of the curve C a relatively minimal model
if every S-birational morphism f : X → X ′ to another regular model X ′ is necessarily an
isomorphism. If all relatively minimal models in the birational equivalence class of X are
isomorphic, we say that X is a minimal (regular) model of C.

Now, we want to analyze S-birational morphisms of regular models in more detail. It
turns out, that a specific kind of blowing-up-morphisms play an important role in the study
of these morphisms:

Definition 2.2.2. Let X be an arithmetic surface. We call the blowing-up π : X̃ → X of
X along a closed point x a monoidal transformation.

As a blowing-up a monoidal transformation is a birational morphism. It induces an
isomorphism X̃ \ π−1(x) ∼= X \ {x} (Proposition 1.2.9 (3.)), and the preimage of x is
isomorphic to P1

k(x) (see e.g. [Liu], p.325: Theorem 1.19. (b)). Now, the Factorization
Theorem states that we can express any birational morphism of regular models in terms
of monoidal transformations:

Theorem 2.2.3 (Factorization Theorem). Let f : X → X ′ be a S-birational morphism of
regular models. Then X is isomorphic to a scheme obtained from X ′ by a finite number of
successive monoidal transformations.

Proof: See e.g. [Chi], p.311: Theorem 2.1 or [Li], p.392: Theorem 1.15. resp. �

Definition 2.2.4. Let X be a regular model. A prime divisor E on X is called an excep-
tional divisor if there exists a regular model X ′ and a S-birational morphism f : X → X ′
such that f(E) is reduced to a point, and that f : X \ E → X ′ \ f(E) is an isomorphism.

Given a regular model X of C the Factorization Theorem tells us that X is a relatively
minimal model if and only if it does not contain any exceptional divisors. It is obvious now
that it is very useful to identify the exceptional divisors of the given model. Even if our
model X is not relatively minimal, the knowledge of the exceptional divisors describes to
us the appearance of a relatively minimal model that is in the same birational equivalence
class. Another famous theorem helps us to identify the exceptional divisors.

Theorem 2.2.5 (Castelnuovo’s criterion). Let X → S be a regular model of C. Let E ⊂ X
be a vertical prime divisor in the fiber above s ∈ S, and k′ = H0(E ,OE). Then E is an
exceptional divisor if and only if E ∼= P1

k′ and E2 = −|k′ : k(s)|.
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Proof: See e.g. [Chi], p.315: Theorem 3.1 or [Li], p.399: Theorem 3.9. resp. �

Now we are ready to prove that there exists a relatively minimal model.

Lemma 2.2.6. Let X → S be a regular model of C. Then there exists a relatively minimal
model X rel and a S-birational morphism f : X → X rel.

Proof: This proof is a composition of proofs in [Ar1] and [Liu]. Since an irreducible fiber
has self-intersection 0 (Proposition 1.4.15 (1.)), the exceptional divisors lie in reducible
fibers. The set of points s ∈ S where the fiber of X over s is irreducible is a dense open
subset of S because the generic fiber is geometrically irreducible (see e.g. [Gr2], Proposition
(9.7.8)). Since OE is a Dedekind ring, every closed set of S is finite, hence there are only
finitely many reducible fibers. Let us denote by δ(X ) the number of irreducible components
which lie in reducible fibers of X . According to our previous observations δ(X ) is finite.
If we now blow down an exceptional divisor E of X , the resulting model X ′ will have less
irreducible components that lie in reducible fiber, hence δ(X ′) < δ(X ). We continue this
process of blowing down exceptional divisors and obtain a chain X → X ′ → X ′′ → X ′′′ →
. . . of regular models. We have δ(X ) < δ(X ′) < δ(X ′′) < δ(X ′′′) < . . ., and since δ(X ) was
finite the chain of regular models must stop after finitely many steps with a regular model
X rel that has not exceptional divisors. According to the Factorization Theorem this must
be a relatively minimal model. �

Theorem 2.2.7 (Minimal Models Theorem). Let E be a number field, OE its ring of inte-
gers, and S = SpecOE. Furthermore, let C be a smooth projective geometrically irreducible
curve over E with g(C) ≥ 1 and X → S a regular model of C. Then there exists a minimal
regular model Xmin and a S-birational morphism f : X → Xmin.

Proof: See e.g. [Chi], p.313 or [Liu], p.422: Theorem 3.21. �

Remark 2.2.8. In the Minimal Model Theorem the property that g(C) ≥ 1 is used to
show that any two different exceptional divisors of X are disjoint (cf. [Chi], p.324: Lemma
7.2). This and the Minimal Model Theorem itself is false without the g(C) ≥ 1 hypothesis
(see [Liu], p.422: Remark 3.23.)

Corollary 2.2.9. If in the situation of Theorem 2.2.7 the scheme X does not contain any
exceptional divisor, then it is a minimal regular model of C.

Proof: Since X does not have any exceptional divisor it is a relative minimal model.
According to Theorem 2.2.7 this is already a minimal regular model. �
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2.3 Descent

In this section we sketch some aspects of descent theory which will be useful in our context.
For more background material and details the reader may take a look at [BLR], [Mur][Mi]
and [FGI+]. The application of the theory we have in mind is the glueing of schemes.
Especially the situation of glueing schemes along subsets which are not open with respect
to the Zariski-topology will be of interest. At this point the author would like to thank
professor Stefan Wewers for the useful discussions regarding the content of this section.

We consider the following problem: given a morphism of schemes p : S ′ → S and a
S ′-scheme X ′. Under which conditions does X ′ “descent” to a S-scheme X i.e. is of the
form X ′ = p∗X = X ×S S ′ ? It turns out that there are a few necessary conditions that
have to be fulfilled. Let S ′′ = S ′ ×S S ′ and S ′′′ = S ′ ×S S ′ ×S S ′. Furthermore let p1 and
p2 be the first and second projection of S ′′ onto S ′ and pi,j the projections pi,j : S ′′′ → S ′′

onto the factor with indices i and j for i, j ∈ {1, 2, 3} with i < j. A covering datum of
X ′ is a S ′′-isomorphism ϕ : p∗1X

′ → p∗2X
′. We say that this covering datum is a descent

datum if the cocycle condition

p∗1,3 ϕ = p∗2,3 ϕ ◦ p∗1,2 ϕ

is fulfilled. Given a S-scheme X it can be easily verified that we get a canonical decent
datum ψ : p∗1XS′ → p∗2XS′ on the scheme XS′ := X ×S S ′. Now, a decent datum ϕ for X ′

is called effective if it is isomorphic to such a canonical one i.e. there exist a S-scheme X
and an isomorphism f : X ′ → XS′ , so that the diagram

p∗1X
′ ϕ //

p∗1f

��

p∗2X
′

p∗2f

��
p∗1XS′

ψ // p∗2XS′

is commutative. In order to solve the problem from the beginning it seems to be obvious
that we have to find a descent datum and a criterion that helps us to decide whether this
descent datum is effective. Before we explain how one can do this we will take a look at
our setting from a different viewpoint.

Since we are working with objects which are (at least locally) affine, we want to explain
what the formalism above means if we interpret it in the language of rings and modules3.
So, let p : R → R′ be a morphism of rings and M ′ an R′-module. A covering datum for
M ′ corresponds to a R′ ⊗R R′-isomorphism

ϕ : M ′ ⊗R R′ → R′ ⊗RM ′ .

3In fact, since we have the glueing of schemes in mind it would be sufficient to work just with rings.
However, descent theory can be used to glue quasi-coherent modules as well and therefore we consider the
more general (but not much more difficult) situation with modules.
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This covering datum fulfills the cocycle condition if the R′ ⊗R R′ ⊗R R′-isomorphisms

ϕ1 : R′ ⊗RM ′ ⊗R R′ → R′ ⊗R R′ ⊗RM ′ ,

ϕ2 : M ′ ⊗R R′ ⊗R R′ → R′ ⊗R R′ ⊗RM ′ ,

ϕ3 : M ′ ⊗R R′ ⊗R R′ → R′ ⊗RM ′ ⊗R R′ ,

fulfill ϕ2 = ϕ1ϕ3; here ϕ1,ϕ2 and ϕ3 are obtained by tensoring ϕ with idR′ in the first,
second and third position. In this situation ϕ is a descent datum, and it is effective if there
exists a R-module M and an isomorphism f : M ′ →M ⊗R R′ so that the diagram

M ′ ⊗R R′
ϕ //

f⊗idR′
��

R′ ⊗RM ′

idR′ ⊗f
��

(M ⊗R R′)⊗R R′
ψ // R′ ⊗R (M ⊗R R′)

commutes; here the R′ ⊗R R′-isomorphism ψ is given by (m ⊗ r) ⊗ r′ 7→ r ⊗ (m ⊗ r′). In
this situation one can show the following result.

Proposition 2.3.1. Let p : R → R′ be a faithfully flat ring-homomorphism, M ′ a R′-
module and ϕ a descent datum for M ′. Then ϕ is an effective descent datum.

Proof: See [Mur], p.124: Proposition 7.1.1. �

Let us return now to the situation of the beginning of the S ′-scheme X ′ and the mor-
phism p : S ′ → S. To postulate that p is faithfully flat and that the base-schemes are
affine is not enough in order to obtain a similar result to the proposition above (cf. [BLR],
Section 6.7.). Hence, in this situation a descent datum ϕ for X ′ is not necessarily an effec-
tive descent datum. However, if X ′ can be covered by affine open subschemes U ′ which are
stable under ϕ (an open subscheme U ′ is stable under ϕ if ϕ restricts to an isomorphism
p∗1U

′ → p∗2U
′) we have the following.

Theorem 2.3.2. Let p : S ′ → S be a faithfully flat and quasi-compact morphism of affine
schemes. A descent datum ϕ on an S ′-scheme X ′ is effective if and only if X ′ can be
covered by affine open subschemes which are stable under ϕ.

Proof: See [BLR] p.135-136: Theorem 6. (b). �

We consider the situation described in Assumption 2.0.18. We explain now how we
can use the descent theory in order to glue schemes. In fact we are especially interested
in the situation which is relevant for the construction of regular models of C over OE.
For this reason, let us assume we have constructed regular models over a finite number
of localizations of OE with respect to prime ideals. Furthermore we assume that we have
constructed a regular model over the open subset which is given by the complement of the
finite set of prime ideals. We want to glue these models to a regular model over OE. In
order to use Theorem 2.3.2 we need to explain how our situation fits into the setting of
the theorem. It seems to be clear that S will be the spectrum of the ring of integers of E.
Next, we need to discover the role of its localizations and the open subset.
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Remark 2.3.3. Let E be a number field and R = OE its ring of integers. For an element
f ∈ R we let R0 = OE[f−1] be the localization of R with respect to the set {1, f, f 2, . . .}.
Let p1, . . . , ps be the prime ideals of R with f ∈ pi. We denote by Ri the localization of R
with respect to the prime ideal pi for 1 ≤ i ≤ s. Then the ring

R′ = R0 × . . .×Rs

is faithfully flat over the ring R with respect to the obvious morphism a 7→ (a, . . . , a). In
fact the affine scheme S ′ = SpecR′ is the disjoint union of the schemes Si = SpecRi, and
the scheme-morphism p : S ′ → S = SpecR is faithfully flat and quasi-compact.

Theorem 2.3.4. In the situation of Remark 2.3.3 let C be a SpecE-scheme and for each
i let Yi = SpecAi be an affine Si-scheme, where Yi×Si SpecE is SpecE-isomorphic to C.
Then there exists a S-scheme Y with Y ×S Si ∼= Yi for 0 ≤ i ≤ s.

Proof: Let Y ′ =
∐s

i=0 Yi be the disjoint union of the Yi, hence Y ′ = Spec(A0× . . .×As).
Since Y ′ is affine and the morphism p : S ′ → S is faithfully flat and quasi-compact (Remark
2.3.3) a descent datum ϕ for Y ′ is effective (Theorem 2.3.2). We will construct this descent
datum. By assumption the rings Ai⊗Ri E are pairwise E-isomorphic to each other. Let us
denote by φi,i+1 the isomorphism from Ai ⊗Ri E to Ai+1 ⊗Ri+1

E for 0 ≤ i ≤ s− 1 and by
φi,i the identity morphism of the corresponding ring Ai⊗RiE for 0 ≤ i ≤ s. Then we define
for arbitrary i 6= j with |i − j| > 1 morphisms φi,j = φj−1,j ◦ φj−2,j−1 ◦ . . . ◦ φi,i+1 if i < j
and φi,j = (φi−1,i ◦φi−2,i−1 ◦ . . .◦φj,j+1)−1 if i > j. Hence, we have defined E-isomorphisms

φi,j : Ai ⊗Ri E → Aj ⊗Rj E

for all 0 ≤ i, j ≤ s with
φj,k ◦ φi,j = φi,k . (2.3.1)

Next, we are going to construct a covering datum. Such a covering datum corresponds to
a family of Ri ⊗R Rj-isomorphisms

ϕi,j : Ai ⊗R Rj → Ri ⊗R Aj .

If i = j we can define ϕi,i by a ⊗ r 7→ r ⊗ a. More interesting is the case i 6= j. Before
we define these isomorphisms we need to make more preparative work. We define ring
homomorphisms

ιi,j : Ri ⊗R Rj → E

by ri ⊗ rj 7→ ri · rj. Notice, for i 6= j this homomorphism is actually an isomorphism.

Furthermore we define E-isomorphisms φ̃i,j := tj ◦ φi,j, where

tj : Aj ⊗Rj E → E ⊗Rj Aj

is given by a ⊗ l 7→ l ⊗ a. Now, for i 6= j we obtain an Ri ⊗R Rj-isomorphism from
Ai ⊗Ri (Ri ⊗R Rj) to (Ri ⊗R Rj)⊗Rj Aj by the composition

(ι−1
i,j ⊗ idAj) ◦ φ̃i,j ◦ (idAi ⊗ιi,j) . (2.3.2)
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Since Ai ⊗Ri (Ri ⊗R Rj) is Ri ⊗R Rj-isomorphic to Ai ⊗R Rj and (Ri ⊗R Rj) ⊗Rj Aj is
Ri⊗RRj-isomorphic to Ri⊗RAj we obtain the remaining ϕi,j by composing the morphism
(2.3.2) with these isomorphisms, and therefore obtain a covering datum. In order to show
that this covering datum is a descent datum we have to prove that it fulfills the cocycle
condition. To be more precise, we have to show that for any i, j, k the morphism

Φ
(1)
i,j,k ◦ Φ

(3)
i,j,k : Ai ⊗R Rj ⊗R Rk → Ri ⊗R Rj ⊗R Ak

coincides with the morphism Φ
(2)
i,j,k, where Φ

(1)
i,j,k = (idRi ⊗ϕj,k), Φ

(3)
i,j,k = (ϕi,j ⊗ idRk) and

Φ
(2)
i,j,k is obtained by tensoring ϕi,k with idRj in the second position. Let us show the equality

Φ
(2)
i,j,k = Φ

(1)
i,j,k ◦ Φ

(3)
i,j,k (2.3.3)

for pairwise different i, j, k. Since Φ
(l)
i,j,k (l = {1, 2, 3}) is a Ri ⊗R Rj ⊗R Rk-isomorphism it

is enough to show the equality for

ai ⊗ 1⊗ 1 ∈ Ai ⊗R Rj ⊗R Rk ,

where ai ∈ Ai is an arbitrary element. Now, let φi,j(ai ⊗ 1) = aj ⊗ b and φj,k(aj ⊗ 1) =
ak ⊗ c, hence φi,k(ai ⊗ 1) = ak ⊗ bc according to (2.3.1). Furthermore let ι−1

i,j (b) = ri ⊗ rj,
ι−1
j,k(c) = r′j ⊗ r′k, ι−1

i,k (b) = r′′i ⊗ r′′k and ι−1
i,k (c) = r′′′i ⊗ r′′′k . Then we have

Φ
(3)
i,j,k(ai ⊗ 1⊗ 1) = ri ⊗ rjaj ⊗ 1

and

Φ
(1)
i,j,k(1⊗ aj ⊗ 1) = 1⊗ r′j ⊗ r′kak ,

hence

Φ
(1)
i,j,k ◦ Φ

(3)
i,j,k(ai ⊗ 1⊗ 1) = ri ⊗ rjr′j ⊗ r′kak .

On the other hand

Φ
(2)
i,j,k(ai ⊗ 1⊗ 1) = r′′i r

′′′
i ⊗ 1⊗ r′′kr′′′k ak .

Now, since ri · rj = r′′i · r′′k and r′j · r′k = r′′′i · r′′′k we have ri⊗ rjr′j ⊗ r′k = r′′i r
′′′
i ⊗ 1⊗ r′′kr′′′k and

therefore the equality (2.3.3). The remaining cases follow similar (but even easier). One
has just to remember the basic properties of the tensor as for example ri ⊗ ai = 1 ⊗ riai
for an element ri ⊗ ai ∈ Ri ⊗R Ai and the basic properties of the morphisms involved as
for example φ−1

i,j = φj,i. We leave the remaining verifications to the reader. �

Corollary 2.3.5. In the situation of Remark 2.3.3 let C be a curve which is defined over the
number field E and for each i let Xi be a regular model of C over the scheme Si = SpecRi.
Then there exists a regular model X over R with X ×S Si ∼= Xi for 0 ≤ i ≤ s.
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Sketch of the proof: It is enough to show that there exist affine open coverings

n⋃
j=1

Cj = C , (2.3.4)

and for each Xi
n⋃
j=1

Ui,j = Xi (2.3.5)

so that Ui,j restricts to Cj on the generic fiber i.e. Ui,j ×Si SpecE ∼= Cj. Indeed, if we have
such coverings then we can follow the proof of Theorem 2.3.4 and construct for each j an
effective descent datum ϕj of

U ′j :=
s∐
i=0

Ui,j .

This descent data give us a descent datum ϕ for

X ′ :=
s∐
i=0

Xi ,

and moreover the U ′j form an affine open cover of X ′ which is stable under ϕ. Therefore
2.3.2 will yield the claim.

Let us construct the Cj and the Ui,j. We choose for each Xi a finite affine open covering

mi⋃
k=1

U
(k)
i = Xi . (2.3.6)

This covering induces by restriction an affine open covering ∪mik=1C
(k)
i of C. Now we set

Cj := C
(j)
0 for 1 ≤ j ≤ m0 ,

Cm0+j := C
(j)
1 for 1 ≤ j ≤ m1 ,

Cm0+m1+j := C
(j)
2 for 1 ≤ j ≤ m2 ,

etc.

In this way we obtain n = m0 + . . . + ms affine open subsets C1, . . . , Cn. Obviously
∪nj=1Cj = C, hence (2.3.4) is fulfilled. Next, we want to define the Ui,j. Let Xi be one of
the arithmetic surfaces and Cj one of the affine open subsets in the covering of C. If j is
of the form

j = m0 + . . .+mi−1 + k (2.3.7)

with 1 ≤ k ≤ mi (in case i = 0 equation (2.3.7) has to be replaced by j = k) then we just

set Ui,j := U
(k)
i , where U

(k)
i is the affine open subset in the covering (2.3.6). If this is not
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the case, it is not automatically clear that there exists an affine open subset of Xi whose
restriction equals Cj. We know that Cj is just the curve C after removing finitely many
points P1, . . . , Pl. Let P1, . . . ,Pl be the Zariski-closure of P1, . . . , Pl in Xi. If we remove
P1, . . . ,Pl from Xi the resulting scheme will be open. Unfortunately it will not be affine in
general. However, one can show that if we remove in addition the (finitely many) vertical
components of Xi which do not intersect any of the P1, . . . ,Pl then we obtain a scheme
Uj ⊂ Xi which is affine and whose restriction to C will be Cj. In this case we set Ui,j := Uj.

Obviously the Ui,j chosen in this way fulfill (2.3.5) since each U
(k)
i in (2.3.6) is one of the

Ui,j. Finally, because of the construction we have Ui,j ×Si SpecE ∼= Cj. �



Chapter 3

Arakelov Intersection Theory

In Section 1.3 we have introduced a local intersection theory for arithmetic surfaces. Un-
fortunately, the theory does not extend to a global intersection theory which is well defined
for divisor classes. To see this, let us consider for example an arithmetic surface X over
SpecZ. Then every special fiber is a principal divisor but the intersection of a horizontal
prime divisor with the fiber is strictly positive (see [Liu], p.388: Proposition 1.30.). The
problem is that the scheme X is not “complete”. This means that it is possible to move an
intersection point of two divisors “out to infinity” (where it then disappears) by choosing
other divisors in the divisor classes1. Arakelov overcame this problem by adding some
analytic data which “compactify” the base scheme and which “complete” the arithmetic
surface.

3.1 Arithmetic intersection numbers for

hermitian line bundles

Let E be a number field, OE its ring of integers and f : X → SpecOE an arithmetic
surface in the sense of Definition 1.3.1. We denote the complex valued points X (C) by X∞;
this is a compact, 1-dimensional, complex manifold, which may have several connected
components. Actually we have the decomposition

X∞ =
∐

σ:E↪→C

Xσ(C) ,

where Xσ(C) denotes the set of complex valued points of the curve Xσ = X ×SpecE,σ SpecC
coming from the embedding σ : E ↪→ C.

1Let X = ProjB, with a graded ring B = ⊕d≥0Bd. Furthermore let D1 = V+(p1) and D2 = V+(p2)
be divisors, where p1 and p2 are homogenous prime ideals of B. An intersection point P corresponds to a
maximal ideal m with pi ⊂ m (i = 1, 2). It may be possible to find a divisor D3 = V+(p3) which is linear
equivalent to D2 and where the maximal ideal m′ with pi ⊂ m′ (i = 1, 3) fulfills ⊕d>0Bd ⊂ m′. This means
the intersection point has moved to infinity (cf. [Si], p.340: Example 7.1.).

29
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Definition 3.1.1. A hermitian line bundle L = (L, h) is a line bundle L on X together
with a smooth, hermitian metric h on the induced holomorphic line bundle L∞ = L ⊗Z C
on X∞. We denote the norm associated with h by || · ||. Two hermitian line bundles L,M
on X are isomorphic, if

L ⊗M
−1 ∼= (OX , | · |) ,

where | · | denotes the usual absolute value. The arithmetic Picard group P̂ic(X ) is the
group of isomorphy classes of hermitian line bundles L on X , the group structure being
given by the tensor product (cf. e.g. [BG], p.58: 2.7.3.).

Definition 3.1.2. Let L be a line bundle on X that has a non-trivial global section l. By
definition there exists an open covering

⋃
Ui = X and OX -isomorphism

ϕi : L|Ui → OX |Ui .

Furthermore, let x ∈ X and Ui an open subset with x ∈ Ui. We denote the image of ϕi(l)
in OX ,x (with respect to the map OX (Ui)→ OX ,x) by lx and call it a local equation of l in
x.

Remark 3.1.3. We use the notation from Definition 3.1.2. According to Remark 1.3.6 we
can associate a divisor class to the line bundle L. The property, that L has a non-trivial
global section l is equivalent to the assertion that there exists an effective divisor in this
class (see e.g. [Ue], p. 48: Lemma 7.43.). In fact, the system {(Ui, ϕi(l))i} defines such an
effective Cartier divisor (Weil divisor). We denote this divisor by div(l). It follows, that
a local equation lx for l in x is nothing but a local equation of div(l) in x in the sense of
Definition 1.3.8.

Definition 3.1.4. Let L, M be two hermitian line bundles on X and l,m non-trivial,
global sections, whose induced divisors div(l) and div(m) on X have no common compo-
nents. Then we define the intersection number at the finite places (l.m)fin of l and m by
the formula

(l.m)fin :=
∑
x∈X (2)

log ] (OX ,x/(lx,mx)) =
∑
x∈X (2)

ix(div(l), div(m)) log |k(x)|

=
∑

s∈SpecOE

 ∑
x∈X (1)

s

ix(div(l), div(m))[k(x) : k(s)]

 log |k(s)| ,

where lx and mx are local equations of l and m at the point x ∈ X ; here X (2) denotes the
set of closed points of X (X (1)

s denotes the set of closed points of Xs respectively). The
sections l and m induce global sections on L∞ and M∞, which we denote by abuse of
notation again by l and m. We assume that the associated divisors div(l) and div(m) on
X∞ have no points in common. Writing div(l) =

∑
α pαPα with pα ∈ Z and Pα ∈ X∞, we

set
(log ||m||)[div(l)] :=

∑
α

pα log ||m(Pα)|| , (3.1.1)
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where || · || is the norm which is associated to the metric ofM∞. The intersection number
at the infinite places (l.m)∞ of l and m is now given by the formula

(l.m)∞ := −(log ||m||)[div(l)]−
∫
X∞

log ||l|| · c1(M) , (3.1.2)

where the first Chern form c1(M) ∈ H1,1(X∞,R) of M is given, away from the divisor
div(m) on X∞, by

c1(M) = ddc(− log ||m(·)||2) ;

the integral in (3.1.2) has to be understood as integrating with respect to the extension of
c1(M) to all of X∞. We define the arithmetic intersection number L.M of L and M by

L.M := (l.m)fin + (l.m)∞ . (3.1.3)

For general L and M we can choose line bundles Li and Mj (i, j = 1, 2) for which non-
trivial global sections exist, such that Li has disjoint global sections withMj for i, j = 1, 2
and

L ∼= L1 ⊗ L⊗−1
2 ,M∼=M1 ⊗M⊗−1

2 . (3.1.4)

We provide Li∞ and Mj∞ with metrics in such a way that the by (3.1.4) induced equiv-
alences are isometries. Then we define L.M by linearity. The arithmetic self-intersection
number of L is given by L.L.

Theorem 3.1.5 (Arakelov, Deligne et al.). Formula (3.1.3) induces a bilinear, symmetric
pairing

P̂ic(X )× P̂ic(X )→ R .

Proof: See for example [So]. �

Remark 3.1.6. Theorem 3.1.5 is a generalisation, essentially due to Deligne, of the arith-
metic intersection pairing, invented by Arakelov, where only hermitian line bundles, whose
Chern forms are multiples of a fixed volume form, were considered.

Definition 3.1.7. We have X∞ =
∐

σ:E↪→CXσ(C). By abuse of notation we call a (1,1)-
form ν on X∞ such that ν =

∏
σ:E↪→C νσ, where each νσ is a volume form, i.e. a positive,

normalized, real (1,1)-form, on Xσ(C), also a volume form on X∞. A hermitian line bundel
L is called ν-admissible, if c1(L) = deg(L)ν. If the genus of X is greater than one, then
for each σ we have on Xσ(C) the canonical volume form

νσcan(z) =
i

2g

∑
j

|fσj |2dz ∧ dz,

where fσ1 (z)dz, . . . , fσg (z)dz is an orthonormal basis of H0(Xσ(C),Ω1) equipped with the
natural scalar product. We write νcan for the induced volume form on X∞.
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Definition 3.1.8. Let D be an effective divisor on X . Furthermore let O(D) be the
associated invertible line bundle (Remark 1.3.6). We can endow O(D)∞ with the unique
νcan-admissible metric || · || such that∫

X∞
log ||1D||νcan = 0

where 1D is the canonical section of O(D)∞. We denote by O(D) the line bundle O(D)
together with this metric.

Remark 3.1.9. Due to Arakelov is the observation that there is a unique metric ‖ · ‖Ar

on ωX (cf. Definition 1.4.4) such that for all sections P of f : X → SpecOE (i.e. P comes
from an E-rational point of the geometric fiber) it holds the adjunction formula

ωX ,Ar.O(P) +O(P)2 = log |∆E|Q|, (3.1.5)

where ωX ,Ar = (ωX , ‖ · ‖Ar). Moreover ωX ,Ar is a νcan-admissible line bundle (see [La] or
[Ara], § 4. ).

Remark 3.1.10. In Remark 1.4.17 we saw that a canonical divisor is in particular only
defined up to rational multiples of the special fibers. Because of formula (3.1.5) this
indeterminacy will be deleted by the norm of the section.

We may reformulate the intersection pairing of Theorem 3.1.5, which was defined for
elements of the arithmetic Picard group, as an intersection pairing of elements of the so
called arithmetic Chow group of codimension 1. This is useful because it enables us to
switch between these both points of view and allows us to choose the one which is more
adequate in the given situation. In order to explain this in more detail we start by defining
Green’s functions.

Definition 3.1.11. Let D be a divisor of X∞. By a Green’s function for D we mean a
function

g : X∞ \ Supp(D)→ R

which satisfies the following condition: If D is represented by a rational function f on an
open set U , then there exists a smooth function α on U such that for P /∈ Supp(D),

g(P ) = − log |f(P )|2 + α(P ) .

Now, let D be a divisor on X . By a Green’s function for D we mean a Greens’s function
for D|X∞ .

Remark 3.1.12. Observe, as a current a green function for D satisfies

ddc gD + δD = ν (3.1.6)
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for some smooth volume form ν; here D = D|X∞ . In the original setup of Arakelov only
Green’s functions gAr which satisfy (3.1.6) for a fixed volume form νAr had been considered.
Also in addition gD,Ar = gAr(D, ·) had to be normalized by∫

X∞
gAr(D, z)νAr(z) = 0 .

Definition 3.1.13. An arithmetic divisor D̂ = (D, g) is a divisor D ∈ Z1(X ) together
with a Green’s function g for D. The set of arithmetic divisors forms a group with respect
to the obvious addition

(D, g) + (D′, g′) = (D +D′, g + g′) ,

called the group of arithmetic divisors Ẑ1(X ). For a rational function f ∈ K(X ) we denote
its restriction to K(X∞) by f∞. The function

− log |f∞|2 ,

where | · | is the usual absolute value, is a Green’s function for the principal divisor div(f).

The subgroup of Ẑ1(X ) which consists of the arithmetic divisors

d̂iv(f) = (div(f),− log |f∞|2)

will be denoted by R̂1(X ). Finally, the arithmetic Chow group of codimension 1 is defined
to be the quotient

ĈH
1
(X ) = Ẑ1(X )/R̂1(X ) .

For D̂ ∈ D ∈ Z1(X ) we denote the corresponding element in ĈH
1
(X ) by [D̂].

Remark 3.1.14. An arithmetic divisor D+ αX∞ (with αX∞ =
∑

σ ασXσ) in the sense of
Arakelov corresponds in the setup of Definition 3.1.13 to the arithmetic divisor (D, gD,Ar +∑

σ ασ); this correspondence is compatible with rational equivalence and the product struc-
ture described below in Definition 3.1.15.

Definition 3.1.15. Let Z =
∑

x∈X (2) nx x be a 2-cycle2 on X with integral coefficients
i.e. the x are closed points of X and the nx belong to Z, where only finitely many nx are
different from 0. We define its Arakelov degree by

d̂egZ :=
∑
x∈X (2)

nx log |k(x)| .

2Here we follow the definition of [SABK] which defines a 2-cycle as an element of the free abelian group
generated by the points of codimension 2 (cf. [SABK], p.11). The are several books where they define
cycles not by codimension but by dimension. In these books this element would be called a 0-cycle (cf.
e.g. [La], p.52).
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Given two Weil divisors D1,D2 of X which have no common components we define their
intersection 2-cycle (which we denote by abuse of notation by D1 · D2) as

D1 · D2 :=
∑
x∈X (2)

ix(D1,D2)x ,

where ix(D1,D2) is the intersection of D1 and D2 in x (cf. Definition 1.3.11). Now, let

D̂1 = (D1, g1) and D̂2 = (D2, g2) be arithmetic divisors, where D1 and D2 have no common
components. On X∞ \Supp(D1|X∞) we have the (1,1)-form ddc gi. We can extend this to a
form of X∞, and we will denote this extension by ωi. The arithmetic intersection number
of D̂1 and D̂2 is defined as

D̂1 · D̂2 := d̂eg (D1 · D2) +
1

2

(∫
X∞

g2ω1 +
∑
α

pαg1(Pα)

)
, (3.1.7)

where D2|X∞ =
∑

α pαPα (cf. e.g. [Bo], p.274: (5.8) or [GS], p. 152: (v)). Now, for any

elements z1, z2 ∈ ĈH
1
(X ) we can find D̂1 and D̂2 with z1 = [D̂1] and z2 = [D̂2] so that D1

and D2 have no common components. We obtain therefore the following result:

Theorem 3.1.16 (Gillet, Soule et al.). The formula 3.1.7 induces a bilinear, symmetric
pairing

ĈH
1
(X )× ĈH

1
(X )→ R .

Proof: See for example [GS] or [SABK]. �

Proposition 3.1.17. There is an isomorphism

ĉ1 : P̂ic(X )→ ĈH
1
(X )

mapping the class of L to the class of (div(s),− log ||s||2), for any rational section s of L;
here || · || is the norm associated with the hermitian metric of L∞. The isomorphism is
compatible with the intersection pairings (3.1.3) and (3.1.7).

Proof: For the first statement see e.g. [SABK], p. 67: Proposition 1. The second
statement follows directly by the definitions. �

Convention 3.1.18. Analog to Section 1.3 and Section 1.4 we will allow rational coeffi-

cients for the groups P̂ic(X ) and ĈH
1
(X ). The corresponding groups will be denoted by

P̂ic(X )Q and ĈH
1
(X )Q. Furthermore, we will extend the arithmetic intersection numbers

to these groups. Unless otherwise specified, we will always assume in the following to work
with these groups i.e. assume to work with rational coefficients.
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3.2 Kühn’s formula for ω2
Ar

3.2.1 The formula

Assumption 3.2.1. Let E be a number field and OE its ring of integers. Further-
more, let Y → SpecOE be an arithmetic surface and write Y for its generic fiber. We
fix ∞, P1, ..., Pr ∈ Y (E) such that Y \ {∞, P1, ..., Pr} is hyperbolic. Then we consider
an arithmetic surface X → SpecOE equipped with a dominant morphism of arithmetic
SpecOE-surfaces β : X → Y such that the induced morphism β : X → Y of algebraic
curves defined over E is unramified above Y (E) \ {∞, P1, ..., Pr}3. Let g ≥ 2 be the genus
of X and d = deg(β). We write β∗∞ =

∑
bjSj and the points Sj will be called labeled .

Set bmax = maxj{bj}. Divisors on X with support in the labeled points are called labeled .
Finally, a prime p is said to be bad if the fiber of X above p is reducible4.

Theorem 3.2.2. Let β : X → Y be a morphism of arithmetic surfaces as in Assumption
3.2.1. Assume that all labeled points are E-rational points and that all labeled divisors of
degree zero are torsion, then the arithmetic self-intersection number of the dualizing sheaf
ωX ,Ar (cf. Remark 3.1.9) on X satisfies the inequality

ω2
X ,Ar ≤ (2g − 2)

(
log |∆E|Q|2 + [E : Q] (κ1 log bmax + κ2) +

∑
p bad

ap log Nm(p)

)
, (3.2.1)

where κ1, κ2 ∈ R∗+ are positive constants that depend only on Y and the points∞, P1, ..., Pr.
The coefficients ap ∈ Q are determined by certain local intersection numbers (see formula
(3.2.4) below).

Proof: See [Kü2] Theorem I. �

Remark 3.2.3. The proof of Theorem 3.2.2 uses classical Arakelov theory, as well as
generalized arithmetic intersection theory (see [Kü1]), which allows to use results of Jor-
genson and Kramer [JK2]. The generalized arithmetic intersection theory is an extension
of the intersection theory for hermitian line bundles we introduced in Section 3.1. The
difference is that we are now allowed to work with hermitian, logarithmically singular line
bundles i.e. pairs (L, h), where L is a line bundle on X and h is a hermitian logarithmi-
cally singular metric on L∞ with respect to a finite subset S ⊂ X∞ (cf. [Kü1] Definition
3.1). The isomorphism classes of these line bundles form the generalized arithmetic Picard

group P̂ic(X ,S), and we have a canonical inclusion of P̂ic(X ) in P̂ic(X ,S). It is shown
in [Kü1] how to extend the intersection at the infinite places (3.1.2) in order to work for

3That the morphism β is dominant means that the generic point of X will be mapped to the generic
point of Y. This assures that the induced morphism of the generic fibers gives us a non-constant morphism
of algebraic curves. Since β is projective (see e.g. [Liu], p.108: Corollary 3.32. (e)), the morphism β is
closed. In this situation the property “dominant” is equivalent to “surjective”.

4Notice, that a prime of bad reduction does not need to be a bad prime.
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the hermitian, logarithmically singular line bundles. This induces a bilinear, symmetric
pairing

P̂ic(X ,S)× P̂ic(X ,S)→ R

extending the pairing of Arakelov. In fact, if S = ∅ then the definitions coincide with the
definitions of Section 3.1.

Definition 3.2.4. To keep the notation simple, we write Sj for the Zariski closure in X
of a labeled point Sj. Let K be a canonical divisor of X , then for each labeled point Sj we
can find a divisor Fj such that(

Sj + Fj −
1

2g − 2
K
)
· C = 0 (3.2.2)

for all vertical irreducible components C of X . Similarly we find for each labeled point Sj
a divisor Gj such that also for all C as before(

Sj + Gj −
1

d
β∗∞

)
· C = 0 . (3.2.3)

Notice that we can choose Fj and Gj to have support in the fiber above the bad primes
(Lemma 1.3.16). The rational numbers ap in Theorem 3.2.2 are determined by the following
arithmetic intersection numbers of trivially metrised hermitian line bundles∑

p bad

ap log Nm(p) = −2g

d

∑
j

bj O(Gj)2 +
2g − 2

d

∑
j

bj O(Fj)2. (3.2.4)

The number
∑

p bad ap log Nm(p) is called the geometric contribution. The number

[E : Q] (κ1 log bmax + κ2)

the analytic contribution (cf. [Kü2]).

Remark 3.2.5. Notice that pullbacks of divisors are always defined in our situation, since
the morphism is dominant (see e.g. [Liu], p.261: Lemma 1.33.).

Remark 3.2.6. Here we briefly explain why the divisors Fj and Gj exist and how one
can construct them. We illustrate everything with the divisors Gj. If we assume for the
moment that we know already that the divisor Gj as defined in (3.2.3) exists, it is obvious
that it can even be chosen to have support in the fibers above the bad primes, hence in
this situation we get

Gj =
∑
p bad

Gj,p ,

where Gj,p is a vertical divisor with support in the fiber above p. Then(
Sj + Gj,p −

1

d
β∗∞

)
· C = 0 (3.2.5)
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for all vertical components C in the fiber above p. On the other hand, if we can choose for
each bad prime p a vertical divisor Gj,p with support in the fiber above p which satisfies
(3.2.5) for all vertical components in the fiber above p, then

∑
p bad Gj,p fulfills (3.2.3). If

follows that the existence of Gj is equivalent to the existence of the Gj,p, and that the
computation of Gj can be done fiber by fiber once we have shown the existence. Now let

Xp = X ×SpecOE Spec k(p) =

rp∑
j=1

djCj

be the special fiber above p. The rank of the intersection matrix Cp = (diCi · djCj)1≤i,j≤rp
is rp − 1 (see. [La], p. 60: Proposition 3.3. and p. 61: Lemma 3.4.). We define the vector
Bp := (B1, . . . , Brp)

t, where

Bi :=

(
Sj −

1

d
β∗∞

)
· Ci .

It follows easily that Gj,p as defined in (3.2.5) exists if and only if Bp = Cpx is solvable,
where x ∈ Qrp is a column vector. Now since (Sj − d−1β∗∞) · Xp = 0 and Ci · Xp = 0
for all i we can eliminate one row in the augmented matrix (Cp|Bp) by elementary row
operations. We will denote the resulting matrix by (Cp|Bp)

′. We have rp − 1 = rankCp ≤
rank(Cp|Bp) = rank(Cp|Bp)

′ ≤ rp − 1, hence rankCp = rank(Cp|Bp) which shows that
Bp = Cpx is solvable. In a completely analog way we can show that the divisors Fj exists
and that we can make our computation fiber by fiber i.e. that we can compute the Fj,p in
order to get Fj, where Fj,p is the part of Fj which has support in the fiber above p.

Remark 3.2.7. Since the divisors Gj and Fj are vertical the hermitian line bundles O(Gj)
and O(Fj) have a trivial metric5. Hence, the intersection number at the infinite places of
O(Gj)2 and O(Fj)2 is zero, and so the computation of (3.2.4) becomes a pure algebraic
problem.

Remark 3.2.8. With equation (3.2.3) we have to be careful. In general we do not have
β∗∞ = β∗∞. However, we can show the following: Let P ∈ Y be a E-rational point and
P the horizontal divisor obtained by taking the Zariski-closure of P in Y . Since P |Y = P
we have (β∗P )|X = β∗P (see e.g. [Gr3] (21.4.4)) and therefore β∗P − β∗P is a vertical
divisor.

3.2.2 A first analysis of the geometric contribution

In [Kü2] a general bound for the quantity (3.2.4) is given. We will give a short review of
the facts related to this bound and discuss whether or not this is a good bound in a given
situation.

Let p be a bad prime and

X ×SpecOE Spec k(p) =

rp∑
j=1

djCj

5Some authors write O(Gj) and O(Fj) instead of O(Gj) and O(Fj) to indicate this circumstance.
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be the decomposition into irreducible components. We set

up = max
i,j
|Ci · Cj|, lp = min

Ci·Cj 6=0
|Ci · Cj| .

Since X ×SpecOE SpecFp is connected (Remark 1.4.14), there is a minimal number of
intersection points needed to connect any two irreducible components of Xs; we denote
this number by cp. We set

bp =

 cp∑
k=1

(
k∑
l=1

(
up
lp

)l−1
)2

+ (rp − cp − 1)

(
cp∑
l=1

(
up
lp

)l−1
)2
 up
l2p
.

Proposition 3.2.9. Let Gj be as in (3.2.3) and Gj,p be the part of Gj which lies in the
special fiber above p, where p is a bad prime. Then we have

− (Gj,p)2 ≤ bp .

In order to discuss the quality of the bound given in Proposition 3.2.9 we need to review
in short the proof of the proposition:

Sketch of the proof: After possibly renumbering the irreducible components and adding
rational multiples of full fibers, we may assume 0 6= Gj,p =

∑rp
k=2 nkCk with all nk ≥ 0 and

n1 = 0. Now, let

W = { Cj} (3.2.6)

be the set of all irreducible components of the fiber above p and set

U0 = {Cj ∈ W |nj = 0 }
V0 = W \ U0.

Then we define recursively

Uk+1 = {Cj ∈ Vk | ∃ Ci ∈ Uk with Cj · Ci > 0 }
Vk+1 = Vk \ Uk+1.

Since the fiber above p is connected, the subsets Uk ⊂ W determine a disjoint decompo-
sition of W . In fact this decomposition has at most cp + 1 disjoint sets. It can be shown
that for each coefficient nj with component Cj ∈ Uk there exists the upper bound

nj ≤
1

lp

k∑
l=1

(
up
lp

)l−1

(3.2.7)
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(see proof of Proposition 6.1. in [Kü2]). These bounds can be used to obtain

− (Gj,p)2 = −
rp∑

j,k=2

njnk(Cj · Ck) (3.2.8)

≤ −
rp∑
j=2

n2
j(Cj · Cj) ≤

rp∑
j=2

n2
jup (3.2.9)

≤
∑
Uk⊂W
Uk 6=U0

#Uk ·

(
k∑
l=1

(
up
lp

)l−1
)2

up
l2p

(3.2.10)

≤

cp−1∑
k=1

(
k∑
l=1

(
up
lp

)l−1
)2

+ (rp − cp)

(
cp∑
l=1

(
up
lp

)l−1
)2
 up
l2p
. (3.2.11)

Hence, the proposition is proved. �

In case that Y = P1 and β : X → P1 is a Galois cover 6, i.e. the extension of the
function fields K(Y) → K(X ) is Galois with group G and Y is isomorphic to X/G, then
we have

G2
j = F2

j ,

where Fj is the vertical divisor in (3.2.2) (see [Kü2], p.22: Proposition 6.2.). Hence, in this
situation we have ∑

p bad

ap log Nm(p) = −2

d

∑
j

bj O(Gj)2 ,

and we can use the bp to get a bound for the ap. In general the situation is not that easy.
However, since F2

j ≤ 0, we can find at least a “rough” bound for the ap. We summarize
this in the following theorem:

Theorem 3.2.10. With the notation from above we have

ap ≤ 2gbp .

If in addition Y = P1 and β : X → P1 is a Galois cover, then we have the stronger
inequality

ap ≤ 2bp .

Proof: See [Kü2], p.25: Theorem 6.3. �

6Since β is surjective it is always a cover (cf. [LL], p.63).
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Remark 3.2.11. If we want to discuss whether or not this is a good bound for (3.2.4) we
need to analyze which input the computation of the bound needs, and we have to compare
this with the necessary input one would need to compute the exact quantity. The given
numbers are rp, up, lp and cp.
We start with an analyzation of Proposition 3.2.9. According to equation (3.2.8) the
exact computation of the (Gj,p)2 would imply the knowledge of the coefficients ni and
the knowledge of the intersection matrix of the special fiber. Even if it is likely that
we know the intersection matrix (otherwise it would have been difficult to compute up
and ip) the proposition does not use this information. Hence the intersection numbers
−Ci · Cj for i 6= j will be approximated by zero and the intersection numbers −Ci · Ci by
up. This gives the step from (3.2.8) to (3.2.9). Now, the approximation of the ni will
be done dependent on a specific choice of a disjoint decomposition of the set W (3.2.6).
In general we cannot expect that this approximation gives us the correct values of the ni
since neither the intersection matrix nor the intersection of the horizontal divisor Sj (cf.
(3.2.3)) with the special fiber are used (cf. [Kü2], proof of Proposition 6.1.). However, if
we could include the knowledge of the dual graph and the identification of the ni which
are zero we could improve the proposition since we would know the “best decomposition”.
In this case we would take (3.2.10) as the bound of the −(Gj,p)2. Without this we have
to assume the “worst decomposition”, and so we end up with (3.2.11). In order to get
the “worst decomposition” we have to assume that ni 6= 0 for i 6= 1. Furthermore, it
is important to assume that the configuration of the special fiber looks like a chain of
length cp that starts with component C1 and ends with a component, say Ccp , where all the
remaining rp − cp components intersect just the component Ccp of the chain. Notice that
just the configuration of the special fiber does not give us the “worst decomposition” but
the position of the component C1 in it. It follows that the quality of the approximation
done in the step from (3.2.10) to (3.2.11) depends basically on three things: the difference
between the real configuration and the configuration described above, the number of the
ni which are zero, and the position of the corresponding components in the special fiber.
Finally, let us discuss the bound of the ap given in Theorem 3.2.10. For sure the quality of
the theorem has to be considered relative to Proposition 3.2.9. However, if we assume that
the proposition gave us a good approximation of the numbers −(Gj,p)2 the significance of
the theorem depends strongly on the morphism β : X → Y . If the morphism is a Galois
cover, we have (relative to Proposition 3.2.9) the best approximation. If it is not a Galois
cover, it is difficult to say something about the significance of the results because we do
not know the numbers F2

j,p. In this case the theorem would just give a good result if the
numbers F2

j,p are small in comparison to the numbers G2
j,p.

3.2.3 Application to Fermat curves and modular curves

In Subsection 3.1 we saw how the Arakelov Intersection Theory extends the regular arith-
metic intersection theory which was introduced in Subsection 1.3, and we explained how to
equip the canonical sheaf with a unique metric in order to fulfill an adjunction formula in
this new setting. The hermitian line bundle we obtained in this way was denoted by ωAr.
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Considering all the aspects which are involved in the computation of the self-intersection
number of ωAr it seems to be clear that this cannot be a simple problem. In [Kü2] Kühn
computed upper bounds for the number ω2

Ar where he used his extension of the intersection
theory. Theorem 3.2.2 was taken from this article and is the starting point of our work.
The advantage of Theorem 3.2.2 is that it reduces the computation of the upper bound
for ω2

Ar to a pure algebraic problem i.e. the analytic data of the intersection is already
contained in the analytic contribution [E : Q] (κ1 log bmax + κ2) in (3.2.1).
Now, in order to apply the Theorem we proceed as follows: We have to consider curves
X, Y that are defined over a number field E (where we know how to compute ∆E/Q and
|E : Q|), and a morphism β : X → Y which fulfills the conditions of the theorem, hence
all labeled points are E-rational and all labeled divisors of degree zero are torsion. Then
we use the theory developed in Chapter 1 and 2 in order to construct regular models X ,
Y and a morphism β : X → Y that extends the morphism of the curves. Once we have
done this we determine the vertical divisors as defined in (3.2.2) and (3.2.3). Finally, we
compute the geometric contribution (3.2.4).

In this work we will consider two types of curves, where we can show that there exists
a morphism to P1 which fulfills the conditions of the theorem: the Fermat curves and the
modular curves. We start with the first type. Let N be a squarefree integer. We consider
the Fermat curve

FN : XN + Y N = ZN ,

together with the natural morphism

β : FN → P1 (3.2.12)

given by (x : y : z) 7→ (xN : yN). Since the morphism β is defined over Q, it is defined over
any number field. It is a Galois covering of degree N2 and, since there are only the three
branch points 0, 1,∞, it is a Belyi morphism. All the ramification orders equal N . In [MR]
Murty and Ramakrishnan give the associated Belyi uniformisation FN(C)\β−1{0, 1,∞} ∼=
ΓN \H. The subgroup ΓN of Γ(2) is given by ΓN = kerψ where ψ : Γ(2)→ Z/NZ×Z/NZ
maps the generators of Γ(2) to the elements (1, 0) and (0, 1).

Definition 3.2.12. Let f : X → Y be a morphism of curves. A ramified point, i.e. an
element S ∈ X that maps to one of the branch points of Y , will be called a cusp. Divisors
with support in the cusps having degree zero are called cuspidal divisor .

Convention 3.2.13. Let us consider the situation of Assumption 3.2.1. The cusps are
contained in the preimage of the set {∞, P1, . . . , Pr}. We make for the rest of this work
the convention that the point ∞ has been chosen so that the labeled points are contained
in the cusps.

Theorem 3.2.14 (Rohrlich). Let FN be the Fermat curve of exponent N and β : FN → P1

the morphism in (3.2.12). Then the group of cuspidal divisors modulo the group of principal
cuspidal divisors is a torsion subgroup of Cl(FN).
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Proof: The statement follows from [Ro], p. 101: Theorem 1. �

Corollary 3.2.15. Let FN be the Fermat curve of exponent N and β : FN → P1 the
morphism in (3.2.12). Furthermore, let S ∈ FN be a cusp. Then (2g − 2)S is a canonical
divisor.

Proof: By the Hurwitz formula there exists a canonical divisor with support in the cusps.
Then by Theorem 3.2.14 the claim follows. �

If we now construct a regular model of FN over the ring of integers of a cyclotomic field
we can find a canonical divisor of the following form:

Lemma 3.2.16. Let N be a squarefree odd integer, ζN a primitive N-th root of unity and
FN the Fermat curve of exponent N . Furthermore let F be a regular model of FN over
SpecZ[ζN ]. Then there exists a canonical divisor K ∈ Z1(F)Q = Z1(F) ⊗Z Q on F of the
form

K = (2g − 2)S + V ,

where S is a horizontal divisor coming from an arbitrary cusp, g = g(FN) is the genus of
FN and V denotes a vertical divisor having support in the special fibers, that lie above the
bad prime ideals.

Proof: It follows from Corollary 3.2.15 that

(2g − 2)S

is a canonical divisor in Z1(FN)Q, where S is any cusp. If we now set

K0 := (2g − 2)S + V0 ,

where S is the Zariski closure of S and V0 is a sum of divisors, having support in the
closed fibers, so that K0 fulfills the adjunction formula, then K0 is a canonical divisor of
F (see Proposition 1.4.16). Note that similar arguments, as in the proof of Proposition
1.4.16, assure that V0 exists. For all primes q ∈ SpecOE not dividing N - in fact these
are the good primes - the special fiber F ×SpecOE Spec k(q) is smooth and so it consists
of a single irreducible component. Since the self-intersection of this fiber is zero (see [La]:
p.61: Proposition 3.5.) we can add any multiple of it to K0 and the resulting divisor
still fulfills the adjunction formula. Using this fact we can transform K0 into a divisor
K = (2g− 2)S +V , where V is a vertical divisor having support in the special fibers above
the bad primes. Again, by Proposition 1.4.16, this is a canonical divisor. �

Next, we want to analyze the situation in case of the modular curves. A modular curve
Y (Γ) is a curve constructed as the quotient of the complex upper half-plane by the action of
a congruence subgroup Γ of SL2(Z). The compactification of Y (Γ) is a (compact) modular
curve denoted by X(Γ). For an introduction to the subject of modular curves the reader
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may take a look at the books [DS], [Sh] or [Si] CHAPTER 1. For a modular curve X(Γ)
there exists a natural morphism X(Γ)→ X(1) ∼= P1, where the cusps of this morphism are
exactly the cusps of the modular curve, i.e. the points X(Γ)\Y (Γ). We have the following
important theorem.

Theorem 3.2.17 (Manin-Drinfeld). Let Γ be a congruent subgroup of SL2(Z) and X(Γ)
the corresponding modular curve. Then the divisors of X(Γ) of degree 0 and with support
in the cusps are torsion divisors.

Proof: See [El], p. 59: Théorème. �

Remark 3.2.18. We have seen in Theorem 3.2.14 and Theorem 3.2.17 that the Fermat
curve FN together with the morphism β : FN → P1 (3.2.12) and the modular curves X(Γ)
with their natural morphisms X(Γ) → P1 fulfill the condition that the cuspidal divisors
(labeled divisor of degree zero resp.) are torsion. Since the Fermat curve and the morphism
β are defined over Q they are defined over any number field. The cusps of β are Q(ζN)-
rational, hence the regular models and the morphism between them, which extend the
curves and their morphism, must be SpecOE-schemes and a SpecOE-morphism, where
OE is the ring of integer of a number field E with Q(ζN) ⊆ E. In that case the cusps will
be E-rational and the conditions of Theorem 3.2.2 will be fulfilled. In case of the modular
curve we will find number fields as well. Since these number fields depend on the specific
type of modular curve we will not discuss the several situations by now but we will do this
for each case separately the first time they appear.

In Chapter 4 and Chapter 6 we will work with Fermat curves over cyclotomic fields. In
several situations it will be important to distinguish between the cusps.

Notation 3.2.19. Let N be an odd squarefree integer and FN the Fermat curve of ex-
ponent N . Furthermore we assume that we have fixed a primitive N -th root of unity ζN .
Then we denote by Sxi (Syi , Szi resp.) the cusp (0 : ζ iN : 1) ((ζ iN : 0 : 1), (ζ iN : −1 : 0)
resp.). If the properties of the cusp, which are relevant for our consideration, do not de-
pend on the exponent i we will drop the subscript and just write Sx (Sy, Sz resp.). For a
normal model of the Fermat curve the Zariski-closure of a cusp gives us a horizontal prime
divisor. If there is no danger of confusion which normal model we consider we will denote
by Sxi ,Sx,Syi , etc. the Zariski-closure of Sxi , Sx, Syi , etc.





Chapter 4

Fermat curves of prime exponent

In this chapter we apply Theorem 3.2.2 to the regular model whose construction was given
by McCallum. The results of this chapter build the basis for the preprint [CK].

4.1 Regular and minimal regular models of the Fer-

mat curve of prime exponent

Let p be an odd prime number. In this section we are going to sketch the construction done
by McCallum [Mc] of a regular model and the minimal model of the curve Fp : Xp+Y p = Zp

over S = SpecR, where R is the localization of Z[ζp] with respect to the prime ideal (π);
here π = 1− ζp, where ζp is a primitive p-th root of unity. The prime ideal (π) lies above p;
in fact since p is totally ramified in Q(ζp) we have p = uπp−1 with an element u ∈ Z[ζp]

∗.
Let us start with the model which is given by the normalization of the projective completion
of the curve

Xp + Y p = 1 (4.1.1)

in A2
S. Reduction modulo π gives us (X+Y −1)p = 0, hence the special fiber is non-regular

and consists of one line which has multiplicity p. Moving this line to the X-axis1, equation
(4.1.1) becomes

−uπp−1φ(X,−Y − 1) + uπp−1φ(Y ) + Y p = 0 ,

where

φ(X, Y ) :=
(X + Y )p −Xp − Y p

p

and φ(X) := φ(X, 1). Now, by blowing up the line π = Y = 0, one obtains a model which
is covered by two affine open sets U1 and U2 which will be described in the following. We
introduce new variables W and Z. Setting Z = Y

π
, we have

U1 = Spec (R[X, Y, Z]/(Zπ − Y, f1(X, Y ))) (4.1.2)

1To be more precise, we make the coordinate change given by X ′ = X and Y ′ = Y +X − 1. After that
we redefine X := X ′ and Y := Y ′.

45
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where
f1(X, Y ) = −uφ(X,−Y − 1) + uφ(Y ) + πZp ;

setting W = π
Y

the second affine open set is U2 = Spec (R[X, Y,W ]/(WY − π, f2(X, Y )))
where

f2(X, Y ) = −uW p−1φ(X,−Y − 1) + uW p−1φ(Y ) + Y .

The geometric special fiber U1 ×S Spec k(π) ∪ U2 ×S Spec k(π) of this model consists of a
component L (which is located just in U2 and associated to the ideal of R[X, Y,W ]/(WY −
π, f2(X, Y )) which is generated by the images of Y and W with respect to the canonical
surjection) and components Lx, Ly, Lα1 , . . . , Lαr , Lβ1 , . . . , Lβs which intersect L and corre-
spond to the different roots of the polynomial

φ(X,−1) = −X(X − 1)
r∏
i=1

(X − αi)2

s∏
j=1

(X − βj) ;

we have α ∈ k(π), α 6= 0, 1 and β /∈ k(π). The Lαi appear with multiplicity 2 whereas all
other components with multiplicity 1. There is also a line Lz crossing the point at infinity
on L, which we cannot see in this affine model. There are just singularities left on the
double lines Lαi . Blowing up these singularities we achieve new components Lαi,j crossing
Lαi . All components have genus 0. For later applications we define the index set

I := {x, y, z, βj, αi, αi,j, . . .} . (4.1.3)

Let us denote the model we achived by Fp. The scheme Fp is a regular model and its

geometric special fiber Fp ×SpecR Spec k(π) corresponding to (π) has the configuration as
in Figure 4.1; the pair (n,m) indicates the multiplicity n and the self-intersection m of the
component ([Mc], Theorem 3.).

LZ Lβ1 . . . Lβs

. . . L

Lα1,j
Lαr,j

.

.

.

.

.

.

.

.

.

.

.

.

(1,−2) (1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−p)

(p,−1)

. . .

. . .
(1,−p)(2,−p)

Lα1 Lαr. . .LX LY

Figure 4.1: The configuration of the geometric special fiber
Fp ×SpecR Spec k(π). All components have genus 0. The only com-
ponent with self-intersection number -1 is L.
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Remark 4.1.1. If we now blow down the curve L (which is the only one with self-
intersection −1), we get the minimal regular model Fminp (cf. Section 2.2).

Remark 4.1.2. A regular model over Z[ζp] can be obtained by glueing the model Fp over
S and the smooth model of Fp over SpecZ[ζp] \ {(π)}. We will denote this model as well
by Fp (cf. Section 2.3).

Remark 4.1.3. The morphism β : Fp → P1 in (3.2.12) induces a morphism β : F0
p → P1

Z[ζp]

of surfaces: here F0
p is the surface over SpecZ[ζp] that is given by the same equation as Fp.

Since Fp was obtained as a sequence of blowing-ups of F0
p the morphism (3.2.12) extends

to a morphism of arithmetic surfaces

β : Fp → P1
Z[ζp] . (4.1.4)

4.2 Explicit geometric contributions to Kühn’s for-

mula for ω2
Ar in the prime exponent case

Let p be a prime number with p > 3 and Fp the regular model described in Section 4.1.

Lx LzLy

. . .L

Sx

S
′
x

Sy

Figure 4.2: The divisors Sx,S ′x and Sy, where S ′x is coming from
another cusp of the form (0 : ζjp : 1).

Proposition 4.2.1. To distinguish between the cusp of Fp we use Notation 3.2.19. Let S
and S ′ be horizontal divisors of Fp coming from different cusps S and S ′ on Fp. Then the
following properties are true:

1. S does not intersect S ′.

2. If S = Sx ( Sy,Sz resp.), then S only intersects the component Lx ( Ly, Lz resp.) in
the special fiber Fp ×SpecZ[ζp] Spec k(π) (see figure 4.2).
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Proof: If we talk about a cusp in the following, we will mean a point of the form
(0 : ζ ip − 1 : 1) ((ζ ip : ζ ip − 1 : 1) resp.) which is just Sx (Sy resp.) after the transformation
of the line X + Y = 1 to the X-axis (cf. Section 4.1).
Now let S,S ′ be two horizontal divisors on Fp associated with cusps S, S ′ and let Q ∈
SuppS ∩ SuppS ′ be a point. We will denote by m the maximal ideal corresponding to
Q in an open affine neighborhood of Q. For each element (ideal resp.) in a ring that
corresponds to an open affine subset of a fiber we will denote by the same symbol the
image of this element (ideal resp.) in the ring that corresponds to the neighborhood of Q.
Let us analyze the different situations that may arise. If the cusps lie above different branch
points, for example S = (0 : ζ ip − 1 : 1) and S ′ = (ζjp : ζjp − 1 : 1), we have X,X − ζjp ∈ m.
But then ζjp ∈ m which is impossible since ζjp is a unit. So let S and S ′ lie above the
same branch point. Without loss of generality we may assume S = (ζ ip : ζ ip − 1 : 1)
and S ′ = (ζjp : ζjp − 1 : 1). It is a basic result from number theory that (ζ lp − 1)/π is
a unit in Z[ζp] if l 6≡ 0 mod p. We will denote this unit by εl. If Q is a point in the
fiber Fp ×SpecZ[ζp] Spec k(q), where q ∈ SpecZ[ζp], then q ⊆ m. On the other hand since
X − ζ ip, X − ζjp ∈ m we have ζ ip − ζjp = ζ ip(1 − ζj−ip ) = ζ ipεj−iπ and so (π) ⊆ m. Now if
q is different from (π) and so in particular coprime to (π) we have 1 ∈ m which gives us
a contradiction again. It follows that the only possibility for Q to be in a special fiber is
to be in the fiber of bad reduction Fp ×SpecZ[ζp] Spec k(π). It follows that we can reduce
our analyzation to the scheme Fp → SpecR that was constructed at the beginning of the
previous section. Now since S and S ′ are Q(ζp)-rational points S and S ′ are reduced to
single points P and P ′ in this fiber. A direct computation shows that

M =
(
X − ζ ip, π, Z − εi

)
and

M ′ =
(
X − ζjp , π, Z − εj

)
are the ideals corresponding to these points in the open affine subset U1 (cf. Equation
(4.1.2)). If we take a look at the affine open set U1 we can easily verify that M and M ′ are
indeed maximal ideals and that S and S ′ are reduced to these points in the fiber of bad
reduction since

π (Z − εi) = Y − ζ ip + 1

and π (Z − εj) = Y − ζjp + 1. Now if P = P ′ = Q we have

εi − εj =
ζ ip − 1

π
−
ζjp − 1

π
=
ζ ip − ζjp
π

=
ζ ip(1− ζj−ip )

π
= ζ ipεj−i .

and so ζ ipεj−i ∈ m. But since ζ ipεj−i ∈ Z[ζp]
∗, this gives us a contradiction and we have

completed the proof of (i).
Now let S = (0 : ζ ip − 1 : 1), so S is Sx after the transformation described in Section 4.1.
Again S∩Fp×SpecZ[ζp]Spec k(π) is reduced to a single point P . Let M be the corresponding
maximal ideal, so M = (X, π, Z − εi). The irreducible component Lx corresponds (in U1)
to the prime ideal I = (π,X). Obviously I ⊂ M and so P is in the component Lx in the
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fiber of bad reduction (remember that the component L does not lie in U1). Since S is
only reduced to P it only intersects Lx. Similar computations for Sy and Sz yield (ii). �

Now we are ready to compute the canonical divisor for the model Fp. In the Lemma
3.2.16 we saw that such a divisor can be constructed with a horizontal divisor S coming
from a cusp and vertical divisors having support in the fibers above the bad primes. Now
let Sx be a cusp (cf. Notation 3.2.19),

Vx = λxLx + λyLy + λzLz (4.2.1)

and

VΣ =
r∑
i=1

(
p∑
j=1

λαi,jLαi,j + λαiLαi

)
+

s∑
j=1

λβjLβj , (4.2.2)

where

λx =
2g − p
p

, (4.2.3)

λy = λz = λβj = λαi,k = −p− 2

p
for all i = 1, . . . , r and j = 1, . . . , s , (4.2.4)

λαi = −2

(
p− 2

p

)
for all i = 1, . . . , r . (4.2.5)

Lemma 4.2.2. The divisor

Kx = (2g − 2)Sx + Vx + VΣ (4.2.6)

is a canonical divisor. In particular Sx + Fx with Fx = 1
(2g−2)

(Vx + VΣ) satisfies (3.2.2)

(notice that Sx (Fx resp.) is one of the Sj (Fj resp.) in the notation of Theorem 3.2.2).

Proof: First of all notice that L is not included in Kx, since it is modulo the full fiber just
a linear combination of the other components. From Lemma 3.2.16 we know that there
exists a canonical divisor of the form (4.2.6) with (4.2.1) and (4.2.2) for some coefficients λ.
Now, the whole idea of the proof is the repeating use of the adjunction formula (Theorem
1.4.9) combined with the fact that the genus of the components of the special fiber is zero
(see [Mc], p.59: Theorem 3) in order to approve the choice of the coefficients λ we made
in (4.2.3), (4.2.4) and (4.2.5). We start with the observation

2λαi,j = λαi . (4.2.7)

Indeed, according to the adjunction formula L2
αi,j

+Kx ·Lαi,j = 2g(Lαi,j)−2 and L2
αi,j

= −2
(see previous section) we have

0 = Lαi,j · Kx = Lαi,j ·

(
p∑
l=1

λαi,jLαi,j + λαiLαi

)
= λαi,j(−2) + λαi .
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Now using (4.2.7) and the adjunction formula for Lαi , we get

p− 2 = Lαi · Kx =

p∑
j=1

λαi,j + λαi(−p) =
p

2
λαi − pλαi = −p

2
λαi .

Similar computations yield λy, λz and the λβj . Finally, one observes that

p− 2 = Kx · Lx = (2g − 2)Sx · Lx + λxL
2
x = (2g − 2) + λx(−p)

and with this we finish the first part of our proof. To show that Sx+ 1
(2g−2)

(Vx + VΣ) fulfills

(3.2.2) is now a simple verification. �

With a view to this lemma we see that the vertical part of two divisors coming from
cusps that lie over different branch points, say Kx and Ky, just differs in the parts Vx and
Vy.

We now calculate certain intersection numbers, which will be used later to complete
the computations of the coefficient ap in (3.2.4).

Lemma 4.2.3. Let Vx and VΣ be the divisor defined in (4.2.1) and (4.2.2). Then we have

VΣ · VΣ = (p− 3)(−p)
(
p− 2

p

)2

, (4.2.8)

Vx · Vx = (−p)
(

2g − p
p

)2

+ (−2p)

(
p− 2

p

)2

(4.2.9)

and
Vx · VΣ = 0 . (4.2.10)

Proof: In all the computations in this proof we have to remember the coefficients we
calculated in Lemma 4.2.2. Let us start by showing the equation (4.2.8). If we write
VΣ = VΣα +VΣβ , where VΣα denotes the part with support in the Lα and VΣβ the part with
support in the Lβ, we have

VΣ · VΣ = VΣα · VΣα + VΣβ · VΣβ ,

since each of the components of VΣα does not intersect any component of VΣβ and vice
versa. From Figure 4.1 we see that each Lβi just intersects itself and that the number of
self-intersection is −p. Since there are s lines Lβi , we have

VΣβ · VΣβ = s(−p)
(
p− 2

p

)2

.

Now let K be a canonical divisor. According to the adjunction formula, we have K·Lαi,j = 0
and, since each Lαi,j just intersects the VΣα part of K, the equation 0 = K·Lαi,j = VΣα ·Lαi,j .
This yields

VΣα · VΣα = VΣα ·
r∑
i=1

λαiLαi =
r∑
i=1

λαi (VΣα · Lαi) ,
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where each addend is

λαi (VΣα · Lαi) = λαi

((
p∑
i=1

λαi,jLαi,j + λαiLαi

)
· Lαi

)

= λαi

(p
2
λαi + λαi(−p)

)
= −p

2
λ2
αi

= 2(−p)
(
p− 2

p

)2

.

Since there are r lines Lαi , we have

VΣ · VΣ = (2r + s)(−p)
(
p− 2

p

)2

= (p− 3)(−p)
(
p− 2

p

)2

Next we show (4.2.9). The lines Lx,Ly and Lz only intersect themselves and each
self-intersection number is −p. Now everything follows from the equations (4.2.3) and
(4.2.4).

Finally, equation (4.2.10) follows since SuppVx ∩ SuppVΣ = ∅. �

Lemma 4.2.4. Let
Dx = Sx + Gx , (4.2.11)

where Gx = 1
p
Lx. Then the divisor Dx is associated with

(
β∗OP1

Z[ζp]
(1)
)⊗ 1

p2

, or in other

words
O(Dx)⊗p

2 ∼= β∗OP1
Z[ζp]

(1) ;

here β is the extension of the morphism β : FN → P1 (cf. Remark 4.1.3 ). In particular Sx+
Gx satisfies (3.2.3) since the Zariski-closure ∞ of ∞ in P1

Z[ζp] is associated with OP1
Z[ζp]

(1)

(notice that Sx (Gx resp.) is one of the Sj (Gj resp.) in the notation of Theorem 3.2.2).

Proof: Let Sx be a cusp and Q ∈ P1
Q(ζp) the corresponding branch point. Since

Pic(P1
Q(ζp))

∼= Z and OP1
Q(ζp)

(1) is a generator of Pic(P1
Q(ζp)) any divisor of degree 1 is

associated with OP1
Q(ζp)

(1). We choose Q to be this associated divisor. Now

β∗Q =

p∑
i=1

pSi ,

where Si runs through the cusps lying above Q (we may assume without loss of generality
S1 = Sx). If follows from Theorem 3.2.14 that β∗Q = p2Sx in Cl(Fp)Q and so p2Sx is
associated with β∗OP1

Q(ζp)
(1). Since β∗OP1

Z[ζp]
(1)|Fp ∼= β∗OP1

Q(ζp)
(1) it is clear that we can

find Dx with O(Dx)⊗p
2 ∼= β∗OP1

Z[ζp]
(1) and Dx = Sx + Gx where Gx is a vertical divisor
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having support in the special fiber Fp ×SpecZ[ζp] Spec k(π) (Lemma 1.3.16). Now let I be
the index set defined in (4.1.3). Since each component of the special fiber which is different
from L is mapped to a single point by β, we have

(p2Dx) · Li = 0 (∀i ∈ I) (4.2.12)

(see [Liu], p. 398: Theorem 2.12 (a) ). On the other hand we have

p2 = p2Dx · Fp ×SpecZ[ζp] Spec k(π) = p2Dx · pL (4.2.13)

(see [Liu], p. 388: Remark 1.31.). Solving (4.2.12) and (4.2.13) we get Gx = 1
p
Lx. �

Theorem 4.2.5. Let Kx = (2g − 2)(Sx + Fx) be a canonical divisor as in (4.2.6) and
Dx = Sx + Gx a divisor as in (4.2.11), where x indicates that this divisor belongs to a cusp
Sx. Then

Fx · Fx = −p
3 − 7p2 + 15p− 8

p2(p− 3)2
,

and

Gx · Gx = −1

p
.

Proof: We have F2
x = 1

(2g−2)2
(V2

x + V2
Σ) by Lemma 4.2.2 and Lemma 4.2.3. Now again

Lemma 4.2.3 together with g = (p−1)(p−2)
2

yield (after simplifying equations) our first claim.
Since Gx = 1

p
Lx the second claim follows. �

Now, we successfully prepared all the ingredients to calculate some intersection numbers
for the Fermat curves.

Theorem 4.2.6. Let Fp be the regular model of the fermat curve Fp over SpecZ[ζp] which
was constructed in Section 4.1. Then the arithmetic self-intersection number of its dualizing
sheaf equipped with the Arakelov metric satisfies

ω2
Fp,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

p2 − 4p+ 2

p(p− 3)
log p

)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: In Remark 4.1.3 and Remark 3.2.18 we saw that the morphism β : Fp → P1
Z[ζp] is

a morphism of arithmetic surfaces as in Assumption 3.2.1 and that the induced morphism
β : Fp → P1 fulfills the requirements of Theorem 3.2.2. Since β∗∞ =

∑p
i=1 pSi we have

bj = bmax = p. The morphism β is of degree p2. It follows with Theorem 4.2.5, Lemma
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4.2.2 and Lemma 4.2.4 that in our case the formula (3.2.4) of Theorem 3.2.2 becomes∑
p bad

ap log Nm(p) = ap log Nm(p) = −2gO(Gj)2 + (2g − 2)O(Fj)2

= −2gGj2 log p+ (2g − 2)Fj2 log p

=
2g

p
log p− (2g − 2)

p3 − 7p2 + 15p− 8

p2(p− 3)2
log p

=
p2 − 4p+ 2

p(p− 3)
log p.

�

4.2.1 ω2
Ar for the minimal regular model of Fp

In Section 4.1 we have seen that we get a minimal regular model Fminp of Fp if we blow
down the component L of the special fiber. Let π : Fp → Fminp denote this blowing-down.
Then there exists a vertical divisor W on Fp (with support in the special fiber above the
bad prime) such that π∗ωFminp

= ωFp ⊗O(W). We have

ω2
Fminp ,Ar = π∗ω2

Fminp ,Ar = ω2
Fp,Ar + 2ωFp · O(W) +O(W)2 .

Proposition 4.2.7. With the notation from above we have

2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p.

Proof: We start by computing the canonical divisor Kminx of Fminp , so the divisor with

O(Kminx ) ∼= ωFminp
. Let L̃u := πLu, where u ∈ I and I is the index set (4.1.3). In order to

compute intersections of the L̃u we need to find their pullback and then compute everything
on Fp. We have π∗L̃u = Lu for u = αi,j and

π∗L̃u = Lu + L

for all other u. Indeed, let for instance u = x. Then we have π∗L̃x = Lx+µxL, where µx is
a rational number. It follows that 0 = L · π∗L̃x = 1− µx (see [Liu], p.398: Theorem 2.12.
(a)).
The canonical divisor on Fminp is given by

Kminx = (2g − 2)(Sx +
1

p
L̃x) .

To verify this we just need to prove that Kminx satisfies the adjunction formula and restricts
to the canonical divisor Kx of the generic fiber Fp (see Proposition 1.4.16). The second
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property is obviously fulfilled. In order to verify the adjunction formula one has to check
that it is valid for each irreducible component of the special fiber. We will illustrate this
for the component L̃x and leave the rest to the reader since the computations are very
similar. We have

Kminx · L̃x = (2g − 2)(Sx · L̃x +
1

p
L̃2
x)

= (2g − 2)(1 +
1

p
(Lx + L)2)

= p(p− 3)(1− 1

p
(p− 1)) = (p− 3)

(see [Liu], p.398: Theorem 2.12. (c) for the second equality). On the other hand

2pa(L̃x)− 2− L̃2
x = −2− (Lx + L)2 = (p− 3)

and so the formula is valid for L̃x. The pullback of the canonical divisor is

π∗Kminx = (2g − 2)(Sx +
1

p
Lx +

1

p
L)

and an easy computation shows that

W = −λyLy − λzLz −
(2− p)
p

Lx − VΣ +
2g − 2

p
L

fulfills π∗Kminx = Kx+W . It follows that we have to compute (2Kx ·W+W2) log p in order
to get 2ωFp · O(W) +O(W)2. Since we have W · (2Kx +W) =W · (Kx + π∗Kminx ) we may
compute W · Kx and W · π∗Kminx . Using the adjunction formula and linearity we get

W · Kx = (p− 2)

(
−λy − λz −

(
2− p
p

))
− VΣ · Kx −

(
2g − 2

p

)
= 3

(
(p− 2)2

p

)
− V2

Σ −
(
p(p− 3)

p

)
= (p− 2)2 − (p− 3) .

On the other hand we have

W · π∗Kminx =W · (p(p− 3)Sx + (p− 3)Lx + (p− 3)L)

= (p− 2)(p− 3)− (p− 2)(p− 3) + (p− 3)2 + (p− 3)W · L

= (p− 3)2 + (p− 3)

(
−λy − λz −

2− p
p

+
p− 2

p
(p− 3)− (p− 3)

)
= (p− 3)2 + (p− 3)(p− 2)− (p− 3)2 = (p− 2)(p− 3)

and so 2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p. �
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Theorem 4.2.8. Let Fminp be the minimal regular model of the fermat curve Fp over
SpecZ[ζp] from Section 4.1. Then the arithmetic self-intersection number of its dualiz-
ing sheaf equipped with the Arakelov metric satisfies

ω2
Fminp ,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

3p2 − 14p+ 15

p(p− 3)
log p

)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: This follows directly from Theorem 4.2.6 and Proposition 4.2.7. �

Remark 4.2.9. Since |Q(ζp) : Q| = ϕ(p) = p − 1 it is obvious that - independent of κ1

and κ2 - the analytic contribution [Q(ζp) : Q] (κ1 log p+ κ2) will dominate the geometric

contribution 3p2−14p+15
p(p−3)

log p for big prime numbers p.

Corollary 4.2.10. With the notation from the Theorem 4.2.8 we have:

ω2
Fminp ,Ar ≤ (2g − 2)ϕ(p) ((2 + κ1) log p+ κ2) +O(g log p) (4.2.14)

Proof: It is a well known fact that ∆Q(ζp)|Q = (−1)
ϕ(p)
2

(
pϕ(p)

p

)
and [Q(ζp) : Q] = ϕ(p)

and so Theorem 4.2.8 yields

ω2
Fp,Ar ≤ (2g − 2)

(
2 log

pϕ(p)

p
+ ϕ(p) (κ1 log p+ κ2) +

3p2 − 14p+ 15

p(p− 3)
log p

)
= (2g − 2)

(
ϕ(p) ((2 + κ1) log p+ κ2) +

p− 5

p
log p

)
,

hence we obtain the asymptotic bound we claimed. �





Chapter 5

Some modular curves

In this chapter we describe how to compute the quantities Gj and Fj defined in (3.2.3)
and (3.2.2) in a situation that covers many cases of the modular curves X0(N) and X(N).
Regular models of these curves have been determined by Deligne and Rapoport [DR]; the
latter one as well by Katz and Mazur via moduli interpretation [KM]. We will give a short
review of the models we are interested in, similar to the review given in [Kü2] Chapter 6
and Chapter 9. Furthermore, we will use our computation in order to apply Theorem 3.2.2
to specific cases (see as well footnote below).

5.1 The general situation

Assumption 5.1.1. We consider the following situation: Let E be a number field with
ring of integers OE and β : X → Y a morphism of arithmetic SpecOE-surfaces as it
is described in Assumption 3.2.1; we denote by β the induced morphism of the algebraic
curves X and Y that are given by the generic fibers of X and Y . Furthermore, we assume Y
to be smooth. Let us assume for simplicity that there is just one bad prime ideal p ⊂ OE,
and that the special fiber of X above p consists of rp = n + 1 components C0, . . . Cn of
multiplicity one1 with β(Ci) = D, where D is the special fiber of Y above p; all components
intersect each other in a set of points which we will call the supersingular points (Figure
5.1). The intersections are transverse and we denote the number of supersingular points
by s. We set

d = deg β (5.1.1)

and
di = deg β|Ci = |K(Ci) : K(D)| . (5.1.2)

Notice that we have

d =
n∑
i=0

di ,

1The cases with multiplicity greater than one can be handled with a little extra work with the same
strategy.

57
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D

...
...

C0
C1

Cn−1
Cn

...

−→ β

Figure 5.1: The special fibers above p of the arithmetic surfaces.
All components C0, . . . , Cn are mapped to the component D and
intersect each other in the supersingular points.

since the multiplicity of the Ci is one. Let ∞ ∈ Y be a E-rational ramified point and

β∗∞ =
∑
j

bjSj . (5.1.3)

We assume that the Sj are E-rational and that any divisor of degree zero with support in
them is torsion. For a Sj we denote by Sj the Zariski-closure of Si in X . It follows that in
this situation the Theorem 3.2.2 is applicable.

Remark 5.1.2. Notice that we have now all the information we need to apply Proposition
3.2.9 and Theorem 3.2.10 to get an approximation of the geometric contribution. In this
subsection we are going to compute the geometric contribution explicitly (Theorem 5.1.6
and Theorem 5.1.9).

In order to compute the geometric contribution exactly we start by determining the
vertical divisor Gj defined in (3.2.3). The divisor Gj has to satisfy

d(Sj + Gj) · Ci = β∗∞ · Ci

for 0 ≤ i ≤ n. On the other hand, we have

β∗∞ · Ci =∞ · diD = di

for 0 ≤ i ≤ n (see e.g. [Liu], p.398: Theorem 2.12. (b)). Hence, we are searching for a
vertical divisor Gj, which satisfies

d(Sj + Gj) · Ci = dj (5.1.4)

for all 0 ≤ i ≤ n.
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Given a column vector λ = (λ1, . . . , λn)t ∈ Qn, we set

Cλ := λ1C1 + . . .+ λnCn .

Since the adding of a rational multiple of the whole fiber gives us another divisor which
satisfies this equation, we can make the ansatz

Gj = Cλ ; (5.1.5)

hence, we do not require C0. We know, that Sj just intersects one of the Ci and that this
intersection is transverse (see e.g. [Liu], p.388: Remark 1.31. and Corollary 1.32.). Let us
assume that Ck is this component. To indicate this dependence we will introduce a second
subscript and write Gj,k. Equation (5.1.4) becomes now

d(Sj + Gj,k) · Ci = dj (5.1.6)

for all 0 ≤ i ≤ n. Solving this equation is nothing more than solving

Cλ = Dk , (5.1.7)

where C ∈ Qn×n is given by

C =

−ns s
. . .

s −ns

 ,

and Dk = D − ek ∈ Qn, where

D =


d1
d
...
dn
d

 ,

e0 is the zero vector, and ek (for k 6= 0) is the column vector which has a 1 in the k-th
position and zeros everywhere else (notice that C is just the intersection matrix). If we
add all the rows of the augmented matrix (C|Dk) it can be easily seen that

−sλ1 − . . .− sλn =

∑n
i=1 di
d

− 1 = −d0

d
,

hence a solution λ of (5.1.7) solves (5.1.6) for j = 0 as well and is therefore indeed a
solution of (5.1.4) for all j.

Notation 5.1.3. Analog to our way of redefining the vertical divisor Gj,k we have to
redefine the ramification indices of the Sj: We will write bj,k if Sj intersects Ck (this
notation is well defined, since each Sj just intersects one of the components Ci).
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Lemma 5.1.4. We have detC = (n+1)(n−1)(−s)n, hence (5.1.7) is uniquely solvable. Let
us set

W =
n∑
i=1

di
d
, (5.1.8)

ak = − 1

(n+ 1)s
(We− e+Dk) ,

for k 6= 0, and

a0 = − 1

(n+ 1)s
(We+D) ,

where e ∈ Qn is the column vector which has everywhere 1 as entry. Then a solution of
(5.1.6) is given by Gj,k = Cak.

Proof: The formula for detC is a simple linear algebra exercise. That (5.1.7) is uniquely
solvable follows since detC 6= 0 or for example by Remark 3.2.6. We verify the second
statement: Let k 6= 0. Then

Cak = − 1

(n+ 1)

−n 1
. . .

1 −n

 ((W − 1)e+Dk)

= − 1

(n+ 1)
((1−W )e+

−n 1
. . .

1 −n

Dk)

= − 1

(n+ 1)

−(n+ 1) 0
. . .

0 −(n+ 1)

Dk = Dk ,

which proves that our choice of ak is in fact the solution. The verification for k = 0 follows
in a similar manner. �

Corollary 5.1.5. We have

G2
j,k = atkCak = − 1

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
2

(n+ 1)s

(
W +

dk
d
− 1

)
,

for k 6= 0 and

G2
j,0 = at0Ca0 = − 1

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

;

the row vector atk denotes the transpose of ak, and W is defined by (5.1.8).
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Proof: The first equality follows with (5.1.5) and the fact that C is the intersection
matrix. Let k 6= 0. Then the second equality follows, because

atkCak = atkDk

= − 1

(n+ 1)s

 n∑
i=1
i 6=k

(
(W − 1)

dj
d

+

(
dj
d

)2
)

+ (W − 1)
dk
d
− 2

dk
d

+

(
dk
d

)2

−W + 2


= − 1

(n+ 1)s

(
W 2 −W +

n∑
i=1

(
di
d

)2

− 2
dk
d
−W + 2

)
.

Again, a similar computation gives us the result for the k = 0 case. �

The special fiber X ×SpecOE Spec k(p) is not smooth over Spec k(p). Hence we cannot
assume that the Cartier divisors are the Weil divisors in this situation. However the curves
Ci are smooth and we have the following diagram of regular schemes

Ci

β|Ci
��

p|Ci
// X

β

��

Y ×SpecOE Spec k(p)
p1

// Y

(5.1.9)

where β|Ci is the restriction of β to the component Ci, p1 is the first projection, and p|Ci
is the composition p|Ci = p1 ◦ ι of the closed immersion ι : Ci → X ×SpecOE Spec k(p)
followed by the first projection p1 : X ×SpecOE Spec k(p) → X . Pullbacks with respect to
β|Ci exist (see e.g. [Liu], p.261: Lemma 1.33. (2)). The pullback p∗1∞ ((p|Ci)∗β∗∞ resp.)
exists, because ∞ (β∗∞ resp.) does not contain any irreducible component of the special
fiber of X (cf. [Liu], p.260: Lemma 1.29 and p.261: Remark 1.30.). Since there are no
vertical divisors in the special fiber of X which are mapped to a closed point of Y we have
β∗∞ = β∗∞ (cf. Remark 3.2.8). It follows that (p|Ci)∗β∗∞ exists an we have

(β|Ci)∗p∗1∞ = (p|Ci)∗β∗∞ (5.1.10)

(see e.g. [Gr3] (21.4.4)). The pullback with respect to p1 (p|Ci resp.) of a horizontal divisor
that came from an E-rational point is just a point of the special fiber with ramification
index one (see e.g. [Liu], p.381: Theorem 1.12. (d) and p.388: Corollary 1.32.). Let
x = p∗1∞ be this point. Then it follows by (5.1.10) that

(β|Ci)∗x =
∑
j

Sj ·Ci=1

bj,isj ,
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where sj = (p|Ci)∗Sj. Combining this with (5.1.2) we get

di =
∑
j

Sj ·Ci=1

bj,i . (5.1.11)

Theorem 5.1.6. In the situation of Assumption 5.1.1 we have

∑
j

bjG2
j =

d

(n+ 1)s

(
n∑
i=0

(
di
d

)2

− 1

)
,

where the bj are given by (5.1.3) and the Gj are the vertical divisor of the special fiber above
the bad prime p which are defined by (5.1.4) ( (3.2.3) resp.).

Proof: We have ∑
j

bjG2
j =

n∑
i=0

∑
j

Sj ·Ci=1

bj,iG2
j,i

(Notation 5.1.3). It follows by Corollary 5.1.5 and (5.1.11) that

n∑
i=0

∑
j

Sj ·Ci=1

bj,iG2
j,i =

n∑
i=0

− di
(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
n∑
i=1

2di
(n+ 1)s

(
W +

di
d
− 1

)

= − d

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
n∑
i=1

2di
(n+ 1)s

(
W +

di
d
− 1

)

= − d

(n+ 1)s

n∑
i=0

(
di
d

)2

+
d

(n+ 1)s

(
2d0

d
− 1

)
+

n∑
i=1

2di
(n+ 1)s

(
di − d0

d

)

=
d

(n+ 1)s

n∑
i=0

(
di
d

)2

− d

(n+ 1)s
,

where we used a few times W = 1− d0
d

(which is equivalent to
∑n

i=0 di = d). �

Next we want to compute the Fj defined in (3.2.2). The vertical divisor we are looking
for has to fulfill

(2g − 2)(Sj + Fj) · Ci = K · Ci (5.1.12)

for 0 ≤ i ≤ n, where K is a canonical divisor of X and g is the genus of the curve X.
Let us assume that the horizontal divisor Sj intersects the component Ck. Analog to the
previous situation we make the ansatz

Fj,k = Cλ , (5.1.13)
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where we changed - as we did in the case of the Gj,k - the notation of the Fj to Fj,k (now
our notation indicates the cusp Sj we used and the vertical divisor Ck which is intersected
by Sj). Let us set

Ki =
K · Ci

(2g − 2)
. (5.1.14)

Notice that
∑n

i=0Ki = 1, since K · (C0 + . . .+ Cn) = 2g − 2. Then the problem of solving

(2g − 2)(Sj + Fj,k) · Ci = K · Ci (5.1.15)

for 0 ≤ i ≤ n may be reformulated as finding the vector

λ =

λ1
...
λn


which satisfies

K − ek = Cλ ,

where C and ek are defined as before and K = (K1, . . . ,Kn)t. We denote by Kk the column
vector K − ek.

Lemma 5.1.7. Let us set

V =
n∑
i=1

Ki , (5.1.16)

and

ak = − 1

(n+ 1)s
(V e− e+Kk) ,

for k 6= 0, and

a0 = − 1

(n+ 1)s
(V e+K) ,

where e ∈ Qn is the column vector which has everywhere 1 as entry, and the Ki are defined
by (5.1.14). Then a solution of (5.1.15) is given by Fj,k = Cak.

Proof: The proof is totally analog to the one of Lemma 5.1.4. �

Corollary 5.1.8. We have

F2
j,k = atkCak = − 1

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
+

2

(n+ 1)s
(V +Kk − 1) ,

for k 6= 0 and

F2
j,0 = at0Ca0 = − 1

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
;

the row vector atk denotes the transpose of ak, V and Ki are given by (5.1.16) and (5.1.14).
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Proof: The proof is the same as in Corollary 5.1.5, one just has to interchange the
symbols. �

Theorem 5.1.9. In the situation of Assumption 5.1.1 we have∑
j

bjF2
j = − d

(n+ 1)s

n∑
i=0

K2
i +

2

(n+ 1)s

n∑
i=0

diKi −
d

(n+ 1)s
,

where the bj are given by (5.1.3) and the Fj are the vertical divisor of the special fiber above
the bad prime p which are defined by (5.1.12) ( (3.2.2) resp.).

Proof: It follows by Corollary 5.1.8 and equation (5.1.11) that∑
j

bjF2
j =

n∑
i=0

∑
j

Sj ·Ci=1

bj,iF2
j,i

= − d

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
+

n∑
i=1

2di
(n+ 1)s

(V +Ki − 1)

= − d

(n+ 1)s

n∑
i=0

K2
i +

d

(n+ 1)s
(2K0 − 1) +

n∑
i=1

2di
(n+ 1)s

(Ki −K0)

= − d

(n+ 1)s

n∑
i=0

K2
i +

2d

(n+ 1)s
K0 −

d

(n+ 1)s
+

n∑
i=1

2di
(n+ 1)s

Ki +
2(d0 − d)

(n+ 1)s
K0 ,

where we used V = 1−K0. �

Corollary 5.1.10. If all the genera of the Ci are the same, then∑
j

bjF2
j = − dn

(n+ 1)2s
,

where the bj are given by (5.1.3) and the Fj are the vertical divisor of the special fiber above
the bad prime p which are defined by (5.1.12) ( (3.2.2) resp.).

Proof: Let us set gC := g(Ci). By the adjunction formula 1.4.9 we have

2g − 2 = K · (C0 + . . .+ Cn) = (n+ 1)(2gC − 2 + ns) ,

hence

Ki =
2gC − 2 + ns

(n+ 1)(2gC − 2 + ns)
=

1

n+ 1
.

Substitution of this into the equation of Theorem 5.1.9 gives the claim. �

Remark 5.1.11. Since the computation of O(Gj)2 and O(Fj)2 in (3.2.4) can be done fiber
by fiber (cf. Remark 3.2.6) we can easily extend the situation of Assumption 5.1.1 and its
associated results (Theorem 5.1.6 and Theorem 5.1.9) to situations with more than one
bad prime.
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5.2 The minimal regular model of X0(N)

Now we are going to apply the results of the previous subsection to the modular cuver
X0(N) for certain values of N .

Remark 5.2.1. Let N be a squarefree natural number coprime to 6 which has at least two
prime factors, and whose prime factors p fulfill p ≡ 1, 3 or 9 mod 12. Then it is shown
in [Kü2] Chapter 7 that the minimal regular model X0(N) of X0(N) together with the
natural morphism β : X0(N)→ X (1) fulfills the requirement of Assumption 5.1.1 (see also
Remark 5.1.11). In fact, with the notation from Assumption 5.1.1 we have d =

∏
p|N(p+1),

s = d p−1
12(p+1)

, n = 1, d0 = pd
p+1

and d1 = d
p+1

.

Lemma 5.2.2. In the situation of Remark 5.2.1 we have∑
j

bjO(Gj)2 = −12
∑
p|N

p

p2 − 1
log p

and ∑
j

bjO(Fj)2 = −3 logN −
∑
p|N

6

p− 1
log p ,

where Gj and Fj are the vertical divisors defined in (3.2.3) and (3.2.2).

Proof: The morphism β fulfills the conditions of Theorem 3.2.2 by the discussion above.
We have

O(Gj)2 =
∑
p|N

O(Gj,p)2, O(Fj)2 =
∑
p|N

O(Fj,p)2 , (5.2.1)

where Gj,p (Fj,p resp.) denotes the part of the vertical divisor Gj (Fj resp.) which has
support in the special fiber above p. Let us fix a bad prime p. Then by Theorem 5.1.6 it
follows ∑

j

bjO(Gj,p)2 =
6(p+ 1)

p− 1

((
p

p+ 1

)2

+

(
1

p+ 1

)2

− 1

)
log p

=
−12p

p2 − 1
log p .

Since C0 and C∞ are copies of the same curve, their genus is the same. Hence, we can apply
Corollary 5.1.10 and get ∑

j

bjO(Fj,p)2 = −12(p+ 1)

22(p− 1)
log p

= −3(p+ 1)

p− 1
log p .

Now, we use equation (5.2.1) and sum up over the bad primes. Simplifying the derived
equations yields our claim. �
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Remark 5.2.3. The results of Lemma 5.2.2 are not new. They have been computed
already by U. Kühn in [Kü2] (Lemma 7.3. and Lemma 7.4). In his paper U. Kühn
computes the quantities

∑
j bjO(Gj)2 and

∑
j bjO(Fj)2 for more values of N (in this case

vertical components can appear which are mapped to a point by β). Unfortunately our
approach does not attack these cases. Our approach is a generalization of the computation
of the other cases. The advantage is that it can be applied to other modular curves whose
special fiber of the (minimal) regular models looks similar to the one of X0(N) for the
values of N in Remark 5.2.1.

Remark 5.2.4. In [Kü2] the results are used to compute an upper bound for ω2
X0(N),Ar. It

leads to the bound
ω2
X0(N),Ar ≤ (16πκ◦ − 1)g log(N) +O(g) ,

where κ◦ ∈ R∗+ is an absolute constant independent of N and g is the genus of X0(N).

5.3 A regular model of X(N)

Let N = pkm, where p > 3 is a prime and m 6= 1 is a natural number coprime to 6p. The
modular curve X(N) is defined over the number field Q(ζN); again, ζN denotes a primitive
N -th root of unity. Its complex valued points correspond to the compact Riemann surface
Γ(N)\(H ∪ P1(Q)), where

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

The regular model X (N) over SpecZ[ζN ] determined by Katz and Mazur can be described
as follows: The scheme X (N) is smooth over Z[ζN , 1/N ]. For a prime ideal p ⊂ Z[ζN ] with
p ∩ Z = (p) the special fiber X (N)×SpecZ[ζN ] SpecFp is the union of

rp = pk + pk−1 (5.3.1)

irreducible components crossing in

sp =
p− 1

24
m2ϕ(m)

∏
q|m

(
1 +

1

q

)
(5.3.2)

supersingular points; here ϕ is Euler’s function. We assume that all intersections are
transverse2. The natural morphism β : X(N) → X(1) extends to a morphism of the
arithmetic surfaces β : X (N)→ X (1). It is a Galois cover, and its degree equals

d = deg β =
N3

2

∏
p|N

(
1− 1

p2

)
. (5.3.3)

2The transversality condition is not easy to verify. One could possibly use Corollary 13.8.5, p.431 in
[KM] in order to decide whether or not the condition is fulfilled.
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For p the components C0, . . . , Cpk+pk−1−1 are mapped to the smooth component D of the
special fiber of X (1). They all have the same local degree and since their multiplicity is
one, this local degree is given by

d

pk + pk−1
.

Remark 5.3.1. Let N be a natural number coprime to 6 that has at least two different
prime factors, let X (N) be the regular model of the modular curve X(N) over SpecZ[ζN ]
which was constructed by Katz and Mazur, and let β : X (N) → X (1) be the natural
morphism that was obtained as the extension of the morphism β : X(N) → X(1). For
an Q(ζN)-rational ramified point ∞ ∈ X(1) let β∗∞ =

∑
j bjSj. Then the Sj are Q(ζN)-

rational and any divisor of degree zero with support in them is torsion (cf. [Og] and
Theorem 3.2.17); we have bj = N for all j (cf. [Sh]). It follows that X (N) together with
its morphism β : X (N)→ X (1) fulfills the requirements of Assumption 5.1.1.

Lemma 5.3.2. In the situation of Remark 5.3.1 we have∑
j

bjO(Gj)2 =
∑
j

bjO(Fj)2 = −ϕ(N)12
∑
p|N

p(pk + pk−1 − 1)

p2 − 1
log p , (5.3.4)

where Gj and Fj are the vertical divisors defined in (3.2.3) and (3.2.2).

Proof: Let us first show the second equality in (5.3.4). We have

O(Fj)2 =
∑
p bad

O(Fj,p)2 ,

where Fj,p denotes the part of the vertical divisor Fj which has support in the special fiber
above p. We fix a bad prime ideal p. The equations (5.3.1), (5.3.2) and (5.3.3) together
with Corollary 5.1.10 yield∑

j

bjO(Fj,p)2 = − 12

p− 1
p3k

(
1− 1

p2

)
pk + pk−1 − 1

(pk + pk−1)2
log Nm(p)

= −12pk(pk + pk−1 − 1)

p+ 1
log Nm(p) .

Now, let f be the inertial degree of p over p i.e. the natural number with Nm(p) = pf , and
e the ramification index of p over p. Since Q(ζN)/Q is a Galois extension, all the inertial
degrees and ramification indices of the prime ideals over p are the same, and we get the
equation |Q(ζN) : Q| = efr, where r denotes the number of prime ideals over p. We have
e = ϕ(pk) (see. [Ne], p. 61: (10.3)). Now, let us set

Fj,p :=
∑
p bad

p∩Z=(p)

Fj,p .
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Since |Q(ζN) : Q| = ϕ(N), we have fr = ϕ(m), hence∑
j

bjO(Fj,p)2 = −r12pk(pk + pk−1 − 1)

p+ 1
log pf

= −ϕ(m)
12pk(pk + pk−1 − 1)

p+ 1
log p

= −ϕ(N)
12p(pk + pk−1 − 1)

p2 − 1
log p .

Now, summing up along all primes p with p|N gives the claim. The first equality in (5.3.4)
follows either by direct computations as above (but now with Theorem 5.1.6) or by the
fact that β : X (N)→ X (1) is a Galois cover. �

Theorem 5.3.3. Let N be a natural number coprime to 6 that has at least two differ-
ent prime factors, and let X (N) be the regular model of the modular curve X(N) over
SpecZ[ζN ] which was constructed by Katz and Mazur. We assume that all intersections
are transverse3. Then the arithmetic self-intersection number of its dualizing sheaf equipped
with the Arakelov metric satisfies

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN) : Q](κ1 logN + κ2)

)
+

(2g − 2)48

N2
∏

p|N(1 + 1
p
)

∑
p|N

p(pk + pk−1 − 1)

p2 − 1
log p ,

where κ1, κ2 ∈ R∗+ are positive constants independent of N .

Proof: By Remark 5.3.1 the requirements of Assumption 5.1.1 are fulfilled, hence The-
orem 3.2.2 is applicable. Since bmax = N (cf. Remark 5.3.1) we only have to compute the
geometric contribution. By Lemma 5.3.2 we have∑

p bad

ap log Nm(p) = −2g

d

∑
j

bj O(Gj)2 +
2g − 2

d

∑
j

bj O(Fj)2

= −2

d

∑
j

bj O(Fj)2

=
48

N2
∏

p|N(1 + 1
p
)

∑
p|N

p(pk + pk−1 − 1)

p2 − 1
log p ,

which completes the prove. �

3The transversality condition is not easy to verify. One could possibly use Corollary 13.8.5, p.431 in
[KM] in order to decide whether or not the condition is fulfilled.
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Remark 5.3.4. In [Kü2] Kühn uses Proposition 3.2.9 and Theorem 3.2.10 (Proposition
6.1. and Theorem 6.3 in [Kü2]) to approximate the geometric contribution. This leads to
the upper bound

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN) : Q](κ1 logN + κ2)

)
+ 2(2g − 2)

∑
p⊃(N)

(rp − 1)2

sp
log Nm p ,

where rp is the number of components and sp the number of supersingular points; the rest
of the notation is the same as in Theorem 5.3.3 (cf. Theorem 9.1. [Kü2]). However, our
computation gives us the exact value of the geometric contribution, hence Theorem 5.3.3
is an improvement of Theorem 9.1. in [Kü2].

Theorem 5.3.5. With the notation of Theorem 5.3.3 we have the asymptotic bound

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN) : Q](κ1 logN + κ2)

)
+O (g) .

Proof: According to Theorem 5.3.3 we have∑
p bad

ap log Nm(p) =
48

N2
∏

p|N(1 + 1
p
)

∑
p|N

p(pk + pk−1 − 1)

p2 − 1
log p

<
48

N2

∑
p|N

pk log p

<
48

N

∑
p|N

log p

≤ 48

N
logN ∈ O(1) ,

and this yields the claim. �

Remark 5.3.6. Since
∑

p bad ap log Nm(p) ∈ O(1) it is obvious that the analytic contribu-
tion dominates the geometric contribution.





Chapter 6

Fermat curves of squarefree exponent

In the previous two chapters we applied Kühn’s formula (Theorem 3.2.2) to regular models
of curves. In case of the Fermat curves we used the model constructed by McCallum and in
case of the modular curves we used the model of Deligne and Rapoport (Katz and Mazur
resp.). In this chapter we extend the results about the Fermat curve of prime exponent
to Fermat curves of squarefree odd exponent. In order to do this we construct a regular
model of this curve. Later we will show that this model is in fact the minimal regular
model of this curve, and we will apply Kühn’s formula.

6.1 The minimal regular model of the Fermat curve

of

squarefree exponent

Let N be a squarefree odd natural number which has at least two prime factors, and ζN
a primitive N -th root of unity. In this section we construct the minimal regular model of
the Fermat curve

FN : XN + Y N = ZN

over SpecZ[ζN ]. Let p be a prime number with N = pm. Since N is squarefree, we have
gcd(p,m) = 1. We fix a prime ideal p of Z[ζN ] that divides p, or in other words that lies
above it1. We denote by R the localization of Z[ζN ] with respect to p, and by Rsh the
strict henselization of R. Let π be the prime element of R. We can and will interpret this
element as the prime element of Rsh too. We start with the model

F0
N,p = ProjR[X, Y, Z]/(XN + Y N − ZN) . (6.1.1)

To construct the minimal regular model we will work with affine open subschemes of this
model. Later we just have to glue the constructed parts together to get the intended

1Contrary to the prime exponent case it may happen that there is more than just one prime ideal above
the prime. For example if N = 3 · 5 · 11, then there are 4 prime ideals lying above 11 (see e.g. [Ne] p. 61
(10.3)).
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projective model. We may illustrate everything with the affine open subscheme2

X := SpecR[X, Y ]/(XN + Y N − 1) . (6.1.2)

The Noetherian scheme X is integral because R[X, Y ] is a unique factorization domain and
XN +Y N − 1 is an irreducible element according to the Eisenstein criterion. For a natural
number n we will use (by abuse of notation) Fn to denote the polynomial Xn + Y n − 1.
It will be clear from the context if we refer to the Fermat curve or to the polynomial. For
the following computations it will be useful to write the equation (6.1.2) as

F p
m + pψ(Xm, Y m) (6.1.3)

where

ψ(a, b) =
ap + bp − 1− (a+ b− 1)p

p
. (6.1.4)

According to [Ne] p. 61 (10.3) we have p = µπp−1 with a unit µ ∈ R∗. Using equation
(6.1.3), it can be easily seen that the special fiber of X is of the form

Spec(R[X, Y ]/(F p
m + pψ(Xm, Y m))⊗R k(π)) = Spec(k(π)[X, Y ]/F p

m) ,

where k(π) is a finite field extension of Fp, the field with p elements 3. The special fiber
consists of one component C which has multiplicity p (Proposition 1.4.11). The component
- considered as a subset of X - is the closure of the ideal I = (π, Fm)/(XN + Y N − 1) ⊂
R[X, Y ]/(XN + Y N − 1), so V (I) = C. The ideal I is a prime ideal since the ring

R[X, Y ]/I ∼= k(π)[X, Y ]/(Xm + Y m − 1) (6.1.5)

is integral. Because of the regularity of this ring, the closed subscheme C is regular by
definition. However since FN ∈ Ip−1 and p 6= 2 the scheme X is singular. In fact, it is not
even normal because it is not regular in codimension 1 (Proposition 1.1.17)4.

Notation 6.1.1. In the following computations we have to work very often with factor
rings of the form

R[X1, . . . , Xr]/J ,

with an ideal J . If there is no danger of confusion, we will use for an element f ∈
R[X1 . . . , Xr] the same symbol to denote the residue class of it in R[X1 . . . , Xr]/J . For
example in the situation described above we will write (π, Fm) ⊂ R[X, Y ]/(XN + Y N − 1)
to denote the ideal (π, Fm)/(XN + Y N − 1).

2In fact, if we want to make everything totally accurate we should introduce new variables X0 := X
Z

and Y0 := Y
Z to get the subscheme R[X0, Y0]/(XN

0 + Y N0 − 1) as the set of elements of degree 0 in the
localization of the ring with respect to the multiplicative subset {1, Z, Z2, Z3, . . .}. Instead of this, we will
use - for simpicity - the symbols X and Y for these new variables.

3Strictly speaking we have |k(π) : Fp| = fp, where fp denotes the smallest number with pfp ≡ 1 mod m
(see [Ne] p.61 (10.3)).

4It can be shown that the scheme SpecA[X,Y ]/(XN + Y N − 1), where A is the ring of integers of
a number field, is normal if and only if all prime numbers p|N are unramified in A (see [KW], p.106:
Theorem 3.3.).
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Notation 6.1.2. We can interpret k(π) as a subfield of Fp, where Fp is an algebraic closure
of Fp. The algebraic closure of k(π) (in Fp) is just Fp. For this reason we choose Fp as the
fixed algebraic closure of k(π).

6.1.1 The polynomial ψ(Xm, Y m)

In this subsection we are going to study the polynomial ψ(Xm, Y m). In order to do this
we take a close look at the polynomial ψ(a, b) and then later we just have to insert Xm

and Y m. We have the following:

ψ(a, b)− ψ(a, 1− a) =
ap + bp − 1− (a+ b− 1)p

p
− ap + (1− a)p − 1

p

=
bp − (a+ b− 1)p + (a− 1)p

p
=

p−1∑
k=1

(
p
k

)
p

(a+ b− 1))p−kbk(−1)k .

Substituting Xm for a and Y m for b we get

ψ(Xm, Y m) = ψ(Xm, 1−Xm) +

p−1∑
k=1

(
p
k

)
p
Fm

p−kY mk(−1)k (6.1.6)

For later computations it will be important to know the factorization of ψ(Xm, Y m).
We will review a result of McCallum [Mc]:

Lemma 6.1.3. Let p ≥ 3. We have the decomposition

ψ(a, 1− a) = a(a− 1)Ψ(a) , (6.1.7)

with a polynomial Ψ(a) ∈ R[a]. In the factorization of Ψ(a) over Fp, factors occur with
multiplicity 1 if not rational over Fp, and with multiplicity 2 otherwise.

Proof: The proof is an elaboration of the proof given in [Mc] p.59. We have (ψ(a, 1−a))′ =
ap−1−(1−a)p−1 ≡ −(a−2)·. . .·(a−p+1) mod (π). The only roots of ψ(a, 1−a) mod (π)
with multiplicity higher than 1 are of the form α ∈

{
2, . . . , p− 1

}
with an α ∈ R. If we

assume that the multiplicity of α is greater than two the second derivative would vanish in
α, too. But from (p− 1)αp−2 + (p− 1)(1−α)p−2 ≡ 0 mod (π) it follows αp−2 ≡ (α− 1)p−2

mod (π) and so by multiplication with α(α − 1) we obtain α − 1 ≡ α mod (π) and this
is obviously impossible. Let us denote the root of multiplicity 2 by α1, . . . , αs (they are
pairwise distinct, because otherwise we would have a root of higher multiplicity).
Together with the fact that 0 and 1 are simple roots of ψ(a, 1 − a) (and ψ(a, 1 − a)) we
get the decomposition

ψ(a, 1− a) = a(a− 1)(a− β1) · . . . · (a− βr)(a− α1)2 · . . . · (a− αs)2 , (6.1.8)

over Fp, where βi /∈ Fp. �
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Corollary 6.1.4. Let p ≥ 3. We have the decomposition

ψ(Xm, 1−Xm) = Xm

m−1∏
i=0

(X − ζ im)Ψ(Xm) . (6.1.9)

In the factorization of Ψ(Xm) over Fp, factors (X − δ) occur with multiplicity 1 if δ
m

is
not rational over Fp, and with multiplicity 2 otherwise.

Proof: If we replace in (6.1.7) a by Xm it is obvious that we get (6.1.9), since ζ im ∈ R.
A decomposition as in (6.1.8) becomes

ψ(Xm, 1−Xm) = Xm

m−1∏
i=0

(X − ζ im)(X − δ1) · . . . · (X − δrm)(X − γ1)2 · . . . · (X − δsm)2

after this replacement; here δ
m

= β and γm = α. Since the αi and βj from Lemma 6.1.3

are not zero the polynomials Xm − αi (Xm − βj resp.) split into coprime linear factors

over Fp. The linear polynomials (X − γk) are the only factors of multiplicity 2 in Ψ(Xm)
over Fp. �

Definition 6.1.5. Let us denote by % the number of factors (X − γk)2 of Ψ(Xm) over Fp.

Remark 6.1.6. Since ψ(a, 1−a) is a polynomial of degree p−1 the polynomial ψ(Xm, 1−
Xm) is of degree m(p− 1). Corollary 6.1.4 tells us that there are

deg Ψ(Xm)− 2% = m(p− 3)− 2%

linear factors of multiplicity one in Ψ(Xm). However, for different prime numbers p the
corresponding number %p may vary strongly. For example let p = 5. Then Ψ5(a) ≡ a2−a+1
mod 5, where a2−a+1 is an irreducible element of F5[a]. It follows that in this case %5 = 0.
On the other hand, consider the case p = 7. Here we have Ψ7(a) ≡ (a+2)2(a+4)2 mod 7,
hence %7 = 1

2
deg Ψ7(Xm) = 2m.

6.1.2 The blowing-up of X along V (I)

We start by giving an explicit description of the blowing-up.

Proposition 6.1.7. The blowing-up X̃ of the scheme X in (6.1.2) along V (I), where I =
(π, Fm) ⊂ R[X, Y ]/FN , is given by the affine open subsets U1 = SpecS1 and U2 = SpecS2,
where

S1 := R[X, Y, Z]/(Fm − Zπ, πZp + µψ(Xm, Y m)) (6.1.10)

and
S2 := R[X, Y,W ]/(WFm − π, Fm + µW p−1ψ(Xm, Y m)) . (6.1.11)

In other words, we have X̃ = U1 ∪ U2.
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Proof: The generators of the ideal I obviously form a regular sequence in R[X, Y ], since
R[X, Y ] and R[X, Y ]/π (R[X, Y ]/Fm resp.) are integral. It follows that we can apply
Theorem 1.2.6. The polynomial

FmZ
p−1 + µW p−1ψ(Xm, Y m) ∈ (R[X, Y ]) [W,Z]

is homogenous (in W and Z) and the coefficient µψ(Xm, Y m) is not in the ideal I. The
statement follows now with Remark 1.2.7. �

Remark 6.1.8. The scheme X̃ can be considered as a subscheme of the scheme Z̃ = V1∪V2,
where

V1 := SpecR[X, Y, Z]/(Fm − Zπ)

and
V2 := SpecR[X, Y,W ]/(WFm − π) .

Since Z̃ is just the blowing-up of the regular scheme Z = SpecR[X, Y ] along (π, Fm), it is

regular as well (Lemma 1.2.4 and Theorem 1.2.10). The scheme X̃ is the strict transform

of X in Z̃.

Proposition 6.1.9. The scheme X̃ from Proposition 6.1.7 is normal. Let Fm, ψ(Xm, 1−
Xm) ∈ Fp[X, Y ] be the reductions of Fm and ψ(Xm, 1−Xm) with respect to the canonical

morphism R[X, Y ]→ Fp[X, Y ]. The geometric special fiber X̃ ×SpecR SpecFp has configu-
ration as in Figure 6.1, where the components L(x,y) are of genus 0 and parameterized by

the pairs (x, y) ∈ F2

p with

xm + ym − 1 = ψ(xm, 1− xm) = 0 .

L(x,y)

Fm

. . .. . .

Figure 6.1: The configuration of the geometric special fiber
X̃ ×SpecR SpecFp.
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Proof: We consider the scheme

X̃ sh = X̃ ×SpecR SpecRsh (6.1.12)

i.e. the scheme X̃ after the base change SpecRsh → SpecR. Since this base change is
faithfully flat, normality of X̃ sh implies normality of X̃ (the advantage is that the special

fiber of X̃ sh is a variety over the algebraically closed field Fp). We will start our computation
with the affine open subscheme U sh

1 = SpecSsh1 , where Ssh1 = S1 ⊗R Rsh. The special fiber
of this scheme is

U sh
1 ×SpecRsh SpecFp = Spec

(
Fp[X, Y, Z]/(Fm, ψ(Xm, Y m))

)
= Spec

(
Fp[X, Y, Z]/(Fm, ψ(Xm, 1−Xm))

)
. (6.1.13)

This variety consists of lines Lx,y = V (X − x, Y − y), where x is a root of ψ(Xm, 1−Xm)
and y is a root of Y m + xm − 1 ∈ Fp[Y ]. These lines correspond to prime divisors V (P)
of U sh

1 , where P = (X − X ′, Y − Y ′, π) is a prime ideal of height 1 and X ′ ≡ x mod π
(Y ′ ≡ y mod π resp.). Because of Remark 6.1.8 and Proposition 1.1.17, the only thing to

do is to show that Ssh1 is regular at P (since the generic fiber of X̃ sh (U sh
1 resp.) is regular

Ssh1 is regular at every prime ideal which does not contain π). Notice that π cannot be a
divisor of X ′ and of Y ′, since xm + ym = 1. Because of symmetry we may assume π - Y ′
without loss of generality. We have ψ(X ′m, 1−X ′m) = λπ with an element λ ∈ Rsh. Now,

ψ(Xm, 1−Xm) = λπ + (X −X ′)G(X)

with a polynomial G(X) ∈ Rsh[X]. It follows from Proposition 6.1.7 and equation (6.1.6),
that

−(X −X ′)G(X) = π
(
Zpµ−1 + ZY m(p−1) + λ+ πH(Y, Z)

)
in Ssh1 , where H(Y, Z) is a polynomial in Y and Z. Let us suppose that Zpµ−1+ZY m(p−1)+

λ + πH(Y, Z) ∈ P. Then Zpµ−1 + ZY ′m(p−1) + λ ∈ P and - using Hensel’s lemma -

(Z−Z ′) ∈ P, where Z ′ is a root of Zpµ−1 +ZY ′m(p−1) +λ =: f(Z) ∈ Rsh[Z]. Indeed, since
f ′(Z) = ym(p−1) 6= 0 the polynomial f(Z) splits into coprime linear factors in Fp, and this
decomposition “lifts” to Rsh. But if this linear factor is in P then P is a maximal ideal, a
contradiction since P was assumed to be of height 1. If follows that Zpµ−1 + ZY m(p−1) +
λ+ πH(Y, Z) /∈ P and so this element becomes a unit in (Ssh1 )P. We will denote this unit
by ε.
Now, since π|X ′m + Y ′m − 1 we have X ′m + Y ′m − 1 = τπ with an element τ ∈ Rsh. It
follows again with Proposition 6.1.7 that

πZ = Xm + Y m − 1

= Xm −X ′m + Y m − Y ′m +X ′
m

+ Y ′
m − 1

= (X −X ′)
m−1∏
i=1

(X −X ′ζ im) + (Y − Y ′)
m−1∏
i=1

(Y − Y ′ζ im) + τπ
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in Ssh1 . Now,
∏m−1

i=1 (Y − Y ′ζ im) /∈ P because otherwise Y ′ ∈ P or (1− ζ im) ∈ P and this is
impossible, since these elements are units in Rsh. To see this, remember that π - Y ′, and
that (1− ζ im) is a divisor of m and m is coprime to p. It follows that

∏m−1
i=1 (Y − Y ′ζ im) is

a unit in (Ssh1 )P. We will denote this unit by ε′. In the localization (Ssh1 )P we have

−(X −X ′)G(X)
1

ε
= π

and

−(X −X ′)

(
m−1∏
i=1

(X −X ′ζ im) +G(X)
1

ε
(Z − τ)

)
1

ε′
= (Y − Y ′) .

It follows P(Ssh1 )P = (X −X ′) and so Ssh1 is regular at P (Corollary 1.1.4).
In the second affine open subscheme U sh

2 = SpecSsh2 , where Ssh2 = S2 ⊗R Rsh, the only
thing left to do is to check the regularity of Ssh2 at the prime ideal

P = (W,Fm, π) (6.1.14)

which corresponds to the component Fm in Figure 6.1. But in Ssh2 we even have P = (W )
(Proposition 6.1.7) and so this ring is obviously regular at P. �

6.1.3 The minimal regular model

The next thing we want to do is to find the singular closed points of X̃ and then resolve these
singularities (remember that there are no other (non-closed) singular points, since X̃ is
normal). These singular points are elements of irreducible closed subsets of codimension 1,

i.e. prime divisors of X̃ . Since we can identify vertical prime divisors with the components
of the special fiber, we will say that “a singular point P lies on a component L” when we
want to indicate that P is an element of the corresponding prime divisor. The resolution
we have in mind can be done by blowing up the lines that have singular points lying on
them. Since blowing up commutes with flat morphisms (Proposition 1.2.9 (2.)) we can

work the whole time with X̃ sh instead of X̃ , as long as we just blow up along ideal sheaves
J of X̃ sh which are of the form IOX̃ sh with an ideal sheaf I of X̃ . Before we come to the
main result of this section we need to introduce some more terminology:

Definition 6.1.10. We use the notation from Proposition 6.1.9. We call a component
L(x,y) of X̃ sh = X̃ ×SpecR SpecRsh a component of type A, if x = 0 or xm = 1, and a

component of type B , if x is a multiple root of ψ(Xm, 1−Xm) different from 0.

Theorem 6.1.11. Let X̃ sh be the normal scheme given by (6.1.12). If we blow up (m−1)-
times along the components of type A, we get p chains consisting of (m− 1) lines (Figure
6.2), blowing up along the components of type B gives p chains consisting of one line
(Figure 6.3); we use the word line to indicate that it is a component of genus 0. The
resulting scheme is regular.
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. . .

. . .

. . .

. . .

. . .

(m− 1)-times

Fm

p-times

L(xa,ya)

Figure 6.2: The configuration of the components after (m−1)-times
blowing up a component L(xa,ya) of type A.

Fm

.

.

.p-times

. . . . . .

L(xb,yb)

Figure 6.3: The configuration of the components after blowing up
a component L(xb,yb) of type B.

Before we proof the theorem we will show three preparative lemmata.

Lemma 6.1.12. We use the notation from Proposition 6.1.9. The only singular closed
points of X̃ sh lie on the components L(x,y) of type A and of type B (Figure 6.4).

Proof: In order to find the singular closed points we analyze the special fiber of X̃ sh.
For simplicity we will use, for the rest of the proof, the word point if we refer to a closed
point. We start our analyzation with the affine open subset

U sh
1 ×SpecRsh SpecFp = Spec

(
Fp[X, Y, Z]/(Fm, ψ(Xm, 1−Xm))

)
(from Equation (6.1.13)). The Jacobian criterion (Theorem 1.1.10) helps us to locate the
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L(xb,yb)

Fm

. . .. . .

L(xa,ya)

Figure 6.4: The line L(xa,ya) is of type A i.e. xa = 0 or xma = 1,
and the line L(xb,yb) is of type B, so (X − xb) is a multiple factor of

ψ(Xm, 1−Xm) different from X.

possible singular points. The Jacobian matrix is of the form

J(X, Y, Z) =

(
mXm−1 mY m−1 0
G(X)′ 0 0

)
,

where G(X) := ψ(Xm, 1 −Xm). If follows that a point P = (x, y, z) ∈ U1 ×SpecR SpecFp
is singular if and only if

−mym−1G(x)′ = 0 .

Now, y = 0 implies xm − 1 = 0 and so x is a m-th root of unity. In case G(x)′ = 0
the element x is a m-th root of an element of F∗p or 0 (Corollary 6.1.4). We continue our
analyzation with the affine open subset U sh

2 . In fact, we just need to check if there are

singular points lying on Fm (Fm is the only component of the special fiber of X̃ sh which
does not lie in U sh

1 ): a point which lies on Fm corresponds to a maximal ideal

m = (π,W,X −X ′, Y − Y ′) ⊂ Ssh2 ,

where X ′m + Y ′m ≡ 1 mod π (cf. (6.1.14)). Without loss of generality we may again
assume π - Y ′. In Ssh2 we have

(Y − Y ′)ε′ ∈ (π,W,X −X ′) ⊂ Ssh2 ,

where ε′ =
∏m−1

i=1 (Y − Y ′ζ im) /∈ m (one uses similar arguments as in Proposition 6.1.9
together with (6.1.11)). This together with the fact that π = WFm in Ssh2 , gives us

m(Ssh2 )m = (W,X −X ′) ,

hence Ssh2 is regular at m (Corollary 1.1.4). Our analyzation shows that there are no
singular points lying on components which are different from those of type A and of type
B. �
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Lemma 6.1.12 shows us that we have to focus on the components of type A and of type
B. Let us analyze the former ones. A component L(xa,ya) of type A corresponds to a prime
ideal

P = (π,X, Y − ζ im) ⊂ Ssh1 .

There is an affine open neighborhood U of P with the property that V (P) ⊂ U = SpecA ⊆
U sh

1 and PA = (π,X). To be more precise, we have Y m − 1 = (Y − ζ im)f where f is the
product of the (Y − ζjm) with j 6= i. Then we may take A to be

A = S/(πZp + µψ(Xm, Y m)) , (6.1.15)

where

S =
(
Rsh[X, Y, Z]/(Fm − Zπ)

)
f

is the localization of Rsh[X, Y, Z]/(Fm−Zπ) with respect to the set {1, f, f 2, f 3, . . .}, hence
U is isomorphic to the principal open subset D(f) of U sh

1 . Notice, since P is a regular
prime ideal of height one, it is not a problem to find an affine open neighborhood U ′ so
that P will be generated by one element in this neighborhood. Unfortunately U ′ does
not contain V (P). Next, we study schemes which naturally appear as blowing-ups of the
scheme SpecA.

Lemma 6.1.13. Let l ∈ N with 1 ≤ l ≤ m− 1 and

Al := S[Tl]/(π − TlX l, gl(Tl)) , (6.1.16)

where

gl(Tl) = TlZ
p + µ

ψ(Xm, 1−Xm)

X l
+ µ

p−1∑
k=1

(
p

k

)
p−1(TlZ)p−kX l(p−k−1)Y mk(−1)k . (6.1.17)

Furthermore, let Ul = SpecAl. Then Ul is normal; the configuration of the special fiber
of Ul is given in Figure 6.5. The only components of the special fiber which correspond to
prime ideals that contain X are given by Ll,1, . . . , Ll,p and L(xa,ya). If l = m− 1 there are
no singular closed points lying on these components. If l < m− 1, the only singular closed
points are the points where the componets Ll,i intersect the component L(xa,ya).

Proof: First of all notice that Ul is a closed subscheme of the regular integral scheme
Vl := SpecS[Tl]/(π − TlX l). To see that Vl is integral and regular one may observe that
even the ring

B := Rsh[X, Y, Z, Tl]/(Fm − Zπ, π − TlX l)

has this properties: since π,X l is a regular sequence in the integral ring Rsh[X, Y, Z]/(Fm−
Zπ), the ring B is just one of the rings we get if we blow up Rsh[X, Y, Z]/(Fm−Zπ) along
the ideal (π,X l) (Lemma 1.2.5). It follows that B is integral (Lemma 1.2.2). To see the
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L(xa,ya)

Ll,1
Ll,2
Ll,3

Ll,p

. . ..
.
.

Figure 6.5: The configuration of the special fiber of Ul. If l < m−1,
the components Ll,i intersect the component L(xa,ya) in a singular
point of Ul.

regularity we use the Jacobian criterion (Theorem 1.1.10) and find that the only maximal
ideals which may be singular are of the form

m = (π,X, Y − ζ im, T − T ′, Z − Z ′)

with T ′, Z ′ ∈ Rsh and i ∈ Z. We have the chain of prime ideals 0 ( (π,X, Y − ζ im) (
(π,X, Y − ζ im, T − T ′) ( m. On the other hand mBm = (X,T − T ′, Z − Z ′). This gives us
3 ≤ dimBm ≤ dimk(m) m/m

2 ≤ 3, hence the regularity of Bm. It follows that B is regular
(Proposition 1.1.6).

Let us return to the scheme Ul and show that it is normal. In order to do this we may
first consider the affine open subscheme U ′l = Spec(Al)X , where (Al)X is the localization
of Al with respect to the set

{1, X,X2, X3, . . .} .
The special fiber of U ′l has the same configuration as the one of Ul but with the difference
that U ′l does not possess the components which correspond to prime ideals that contain X
and π. An easy computation shows that (Al)X ∼= (Ssh1 )Xf = (S1 ⊗R Rsh)Xf (cf. (6.1.10))
where Xf is the multiplicative subset {1, f,X,Xf,X2, f 2, . . .}. It follows that U ′l is normal
and that its special fiber has the same configuration as the special fiber of U sh

1 = SpecSsh1

after removing the components L(x,y) with x = 0 (cf. Proposition 6.1.9). Next, let us
analyze the components of the special fiber of Ul that do not lie in U ′l i. e. let us consider
those components of Spec

(
Al ⊗Rsh Fp

)
whose corresponding prime ideal of Al contains X

(since the generic fiber of Ul is regular Al is regular at every prime ideal which does not
contain π). For a prime ideal P ⊂ Al with π,X ∈ P we have

TlZ
p + µTlZ(ζ im)m(p−1) = TlZ(Zp−1 + µ) ∈ P , (6.1.18)

hence the only prime ideals of height one with this property are

(π,X, Tl), (6.1.19)

(π,X, Z), (6.1.20)
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and
(π,X,Z − θζ ip−1) , (6.1.21)

where θ is an element of Rsh with θp−1 = −µ and 0 ≤ i ≤ p − 2. Notice that P can
just contain one of the elements Tl, Z or Z − θζ ip−1, because otherwise P = Al or P is a
maximal ideal, hence it is of height 2. Since π = TlX

l in Al it follows with (6.1.17) and
(6.1.18) that P(Al)P = (X), and therefore the normality of Ul.
Let m = (X,Tl− T ′, Z −Z ′) be a maximal ideal of Al with π - T ′ (notice that π ∈ m since
π = TlX

l in Al). It follows with (6.1.17) and (6.1.18) that T ′Z(Zp−1 + µ) ∈ m and so we
may assume without loss of generality that Z ′ = 0 or Z ′ = θζ ip−1. Since the factors

Z, (Z − θ), (Z − θζp−1), (Z − θζ2
p−1), . . . , (Z − θζp−2

p−1 ) (6.1.22)

are pairwise coprime, equation (6.1.17) and (6.1.18) show us that (Z − Z ′) is contained
in the ideal of (Al)m which is generated by X and (T − T ′), hence the ring Al is regular
at m. Next, let m = (X,Tl, Z − Z ′), where (Z − Z ′) is coprime to any of the factors in
(6.1.22). Then Z(Zp−1 + µ) becomes a unit in the localization with respect to m. Again,
equation (6.1.17) and (6.1.18) yield m(Al)m = (X,Z − Z ′) and therefore the regularity of
Al at m. Now, the only situation left we have to consider is m = (X,Tl, Z − Z ′), where
Z ′ = 0 or Z ′ = θζ ip−1 with an integer i. We may distinguish here between two cases. In
case l = m− 1, we have

− T(m−1)Z(Zp−1 + µ) = µX

(
ψ(Xm, 1−Xm)

Xm
+ P (T(m−1))

)
(6.1.23)

in A(m−1); here P (T(m−1)) ∈ S[T(m−1)] is the polynomial given by

P (T(m−1)) =

p−2∑
k=1

(
p
k

)
p

(T(m−1)Z)p−kX(m−1)(p−k−1)−1Y mk(−1)k .

Obviously we have P (T(m−1)) ∈ m. If the term in brackets on the right-hand side of (6.1.23)
was contained in m then

ψ(Xm, 1−Xm)

Xm
∈ m ,

a contradiction. Hence, this term becomes a unit in (A(m−1))m, and we have

m(A(m−1))m = (T(m−1), Z − Z ′) .

In other words, A(m−1) is regular at m. Now, consider the case l < m − 1. Let M be the
prime ideal of the regular ring S[Tl]/(π−TlX l) which is given by the preimage of m. Since
(Y − ζ im) = −(Xm−ZTlX l)f−1 in S[Tl]/(π−TlX l), we have (Y − ζ im) ∈M2, which yields

gl(Tl) ≡ TlZ
p + µTlZ ≡ 0 mod M2 .

It follows that Al is singular at m (Proposition 1.1.7). Let us denote the components
which correspond to the prime ideals (π,X,Z) and (π,X,Z − θζ ip−1) for 0 ≤ i ≤ p− 2 by

Ll,1, . . . , Ll,p. The configuration of Ul ×SpecRsh SpecFp is given in Figure 6.5. �
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Ll+1,1

.

.

.

Ll+1,pLl,p

Ll,3

Ll,3

Ll,1

Ll+1,3

Ll+1,2

Figure 6.6: The configuration of Spec Ãl+1 ×SpecRsh SpecFp. There
are no singular points lying on the components.

Lemma 6.1.14. We use the notation from Lemma 6.1.13. Let l < m− 1. If we blow up
along the ideal (X,Tl) the resulting scheme will be covered by the affine open subset Ul+1

(cf. Lemma 6.1.13) and an affine open subset Ũl+1 = Spec Ãl+1. The configuration of the
special fiber is given by Figure 6.5 (just interchange l by l + 1) in Ul+1 and by Figure 6.6

in Ũl+1. The scheme Ũl+1 is regular.

Proof: We blow up along the ideal (X,Tl). Setting X
Tl

= X̃ one affine open subset of the
blowing-up is given by the spectrum of

Al
[
XTl

−1
] ∼= S[Tl, X̃]/(π − T l+1

l X̃ l, X̃Tl −X, g̃l(X̃)) =: Ãl+1 ,

where

g̃l(X̃) = Zp+µ
ψ((X̃Tl)

m, 1− (X̃Tl)
m)

X̃ lTl
l+1

+µ

p−1∑
k=1

(
p

k

)
p−1Tl

(l+1)(p−k−1)X̃ l(p−k−1)Zp−kY mk(−1)k .

Now, a prime ideal I which contains π, contains X and Y − ζ im, since Tl ∈ I or X̃ ∈ I.

Furthermore, in case X̃ ∈ I it follows Zp + µZ ∈ I. Hence, the prime ideals of height 1
which contain X̃ are of the form (X̃,G(Z)), where G(Z) is one of the factors in (6.1.22).
We will denote these prime ideals by P1, . . . ,Pp. In case Tl ∈ I we have Zp +µZ ∈ I, too.
Analog to the previous case we will denote the prime ideals (Tl, G(Z)) by Q1, . . . ,Qp. A

maximal ideal m of Ãl+1 is of the form m = (X̃,G(Z), Tl − T ′) (m = (Tl, G(Z), X̃ − X ′)
resp.). If we localize with respect to this ideal, the corresponding ideal in the localization

will be generated by X̃ and Tl − T ′ (Tl and X̃ −X ′ resp.), hence the ring is regular at m.
Since these are the only maximal ideals of this ring, the ring itself is regular (Proposition

1.1.6). The blowing-up-morphism Ũl+1 = Spec Ãl+1 → SpecAl is an isomorphism away
from V (X,Tl). According to this isomorphism the components Ll,i of Ul are the images of

the components which correspond to the prime ideals Pi ⊂ Ãl+1 Therefore, we will denote
these components as well by Ll,i. The components which lie above the singular points will
be denoted by Ll+1,i. They correspond to the prime ideals Qi. Then the special fiber has
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the configuration as in Figure 6.6. The component Ll,i intersect the component Ll+1,i in

the point corresponding to some m = (X̃, Tl, G(Z)). Let us take a look now at the other
affine open subset of the blowing-up. Setting Tl+1 = Tl

X
we get

Al
[
TlX

−1
] ∼= S[Tl, Tl+1]/(π − Tl+1X

l+1, Tl+1X − Tl, gl+1(Tl+1)) = Al+1 .

Notice, that the components Ll+1,i of Ul+1 = SpecAl+1 are the components Ll+1,i of

Spec Ãl+1. �

Proof of Theorem 6.1.11: According to Lemma 6.1.12 there are just singular closed
points on the components of type A and type B. Let L(xa,ya) be a component of type A
that corresponds to a prime ideal P = (π,X, Y − ζ im) ⊂ Ssh1 . We consider everything in
the affine open subset U = SpecA, where A is the ring of (6.1.15). We blow up U along
V (PA). Since PA = (π,X), the blowing-up will be covered by two affine open subsets.
Setting T1 = π

X
the first one is given by U1. The only new components are L1,1, . . . , L1,p

(cf. Figure 6.5 with l = 1). Setting X1 = X
π

the second subset is

SpecS[X1]/(X1π −X, g(X1)) ,

where

g(X1) = Zp + µ
ψ((X1π)m, 1− (X1π)m)

π
+ µ

p−1∑
k=1

(
p

k

)
p−1Zp−kπp−k−1Y mk(−1)k .

Here we only have to study the prime ideals m with X1, π ∈ m, since all the others that lie
above π can be found in U1. We have

Zp + µZ = πP (X1)

in S[X1]/(X1π − X, g(X1)), with a polynomial P (X1) ∈ S[X1]. It follows Zp + µZ ∈ m,
which implies

Z ∈ m or Z − θζ ip−1 ∈ m (6.1.24)

with 0 ≤ i ≤ p−2; here θ ∈ Rsh is an element with θp−1 = −µ. The prime ideal m is of the
form m = (π,X1, Z) (m = (π,X1, Z − θζ ip−1) resp.), hence maximal. In fact, they are the
“end points” of the components L1,i. Since the factors in (6.1.24) are pairwise coprime,

m (S[X1]/(X1π −X, g(X1)))m

will be generated by two elements, hence S[X1]/(X1π −X, g(X1)) is regular at m. There
are p singular closed points lying on L(xa,ya) (Lemma 6.1.13). If we blow up this line, we
get another p new components L2,1, . . . , L2,p (Lemma 6.1.14). There are no singular closed
points lying on the L1,i (Lemma 6.1.14). The only singular closed points that lie on the
L2,i or the line L(xa,ya), are the points where the L2,i intersect L(xa,ya) (Lemma 6.1.13). It is
clear that repeating this process (i.e. blowing up the component L(xa,ya)) (m-3)-times will
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give the resolution of the singularities that lie on this component, and will therefore yield
the configuration we claimed. By symmetry we can argue the same way for components of
type A which correspond to prime ideals of the form P = (π,X−ζ im, Y ). Finally, a similar
(but simpler, since no inductive argument is needed) computation shows that we just have
to blow up the components of type B once in order to get the remaining statements of the
proof. �

Theorem 6.1.15. Let N be a squarefree odd natural number which has at least two prime
factors, ζN a primitive N-th root of unity and N = pm with a prime p. Furthermore, let
R be the localization of Z[ζN ] with respect to a fixed prime ideal p ∈ SpecZ[ζN ] that lies
above p. We denote by FminN,p → SpecR the minimal regular model of the Fermat curve FN
over R. Then the geometric special fiber

FminN,p ×SpecR SpecFp

has the configuration as in Figure 6.7; the Table 6.1 gives us the number, multiplicity, genus
and self-intersection of the components. Finally, all intersection between components of the
geometric special fiber are transverse.

Lγ

Lγ,p

Lγ,1

Lγ,2

Lγ,3

. . .

LXY Z

.

.

.

Fm

p-times

. . .

. . .

. . .

. . .

L1 L2 L(m−2) L(m−1)

.

.

.
.
.
.

. . .

Lδ

Figure 6.7: The configuration of the geometric special fiber
FminN,p ×SpecR SpecFp.

Proof: The scheme

F0
N,p = ProjR[X0, Y0, Z0]/(XN

0 + Y N
0 − ZN

0 )

is covered by the affine scheme X in (6.1.2) and

X ′ = SpecR[Y ′, Z ′]/(1 + Y ′
N − Z ′N)
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Number of components Multiplicity Genus Self-intersection
Li 3mp i 0 −2

LXY Z 3m m 0 −p
Lγ m% 2 0 −p
Lγ,j pm% 1 0 −2
Lδ m2(p− 3)− 2m% 1 0 −p
Fm 1 p 1

2
(m− 1)(m− 2) −m2

Table 6.1: % denotes the number of factors with multiplicity two of Ψ(Xm) over Fp (cf.
Definition 6.1.5).

where Y ′ = Y0
X0

and Z ′ = Z0

X0
. To blow up F0

N,p along the ideal V+(Xm
0 + Y m

0 − Zm
0 , π) is to

blow up X along (π, Fm) and X ′ along (π, 1+Y ′m−Z ′m) and then glue everything together;

we denote these blowing-ups by X̃ and X̃ ′. Since X is isomorphic to X ′ and (π, Fm) to

(π, 1 + Y ′m − Z ′m) via X 7→ Z ′ and Y 7→ −Y ′ the blowing-ups X̃ and X̃ ′ are isomorphic

as well. The only components of X̃ ′ which are not in X̃ are the ones that correspond to
prime ideals that contain Z ′. According to the isomorphism above these components are
isomorphic to the components of type A which contain X. It follows that we can easily use
Theorem 6.1.11 to resolve the singularities of these schemes. The regular model of FN we
achieve in this way will be denoted by FN,p. With the discussion above, it follows that it is
enough to analyze the regular scheme from Theorem 6.1.11 and to remember that there are
a few more components which we cannot see in this affine open subset. We give a sketch
of the things one has to do to get the quantities in the table. In fact, we will verify these
quantities for FN,p and at the end of the proof it will turn out that FN,p = FminN,p . Let us start
with the number of components of FN,p. With Theorem 6.1.11 it is clear that the geometric
special fiber of FN,p is of the form Figure 6.7. The vertical components are parametrized

by pairs (x, y) ∈ Fp with xm+ym−1 = xm
∏m−1

i=0 (x−ζ im)Ψ(xm) (Proposition 6.1.9). There
are % factors (X−γk)2 in Ψ(Xm), and for each γk the ploynomial Y m+γmk −1 ∈ Fp[Y ] has
m solutions (remember that γmk 6= 1). Hence, we get m% lines. We denote these lines by
Lγ (these are the ones of type B in Theorem 6.1.11). Furthermore, there are m(p− 3)− 2%
linear factors (X − δ) and with the same argument as before there are m(m(p− 3)− 2%)
lines which correspond to these. We denote these by Lδ. Now, the only solutions which
are left are the following:

(0, ζ
i

m) (6.1.25)

for 0 ≤ i ≤ m− 1, and

(ζ
i

m, 0) (6.1.26)

for 0 ≤ i ≤ m− 1. This gives us 2m lines (these are the components of type A in Theorem
6.1.11). Like we mentioned before there are more lines which behave like the ones of type A
but which cannot be seen in this affine picture. In fact, by the isomorphism we described
at the beginning it is clear that there are m more lines, hence these together with the
ones of (6.1.25) and (6.1.26) give us 3m lines. We denote them by LXY Z . According to
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Theorem 6.1.11, for each LXY Z there are p chains of m − 1 lines, where the ends of the
chains intersect LXY Z . These ends will be denoted by L(m−1) and the following lines by
L(m−2), L(m−3), etc. As well according to Theorem 6.1.11 there are p lines intersecting each
Lγ. We will denote these lines by Lγ,1, . . . , Lγ,p. Collecting this information we get the
number of components of table 6.1.
Next, we want to study the multiplicity of the components. To do this one may use
Remark 1.4.13. We will illustrate this in a few cases. For example let us return to the
scheme Ul = SpecAl in (6.1.16). The prime ideals of height 1 of Al are (π,X,Z) and
(π,X, Z − θζ ip−1) for 0 ≤ i ≤ p− 2. These correspond to the components Ll. Furthermore,
there is the prime ideal (π,X, Tl) which will correspond to a LXY Z (after blowing up (m-
1-l)-times). Let P be a prime ideal that corresponds to Ll. In Theorem 6.1.11 we have
seen that P(Al)P = (X). Since π = TlX

l in Al and Tl becomes a unit in (Al)P, we get
νLl(π) = l, hence the multiplicity of Ll is l. Now, let P = (π,X, Tl). Equation (6.1.17)
shows us that Tl = Xm−lε in (Al)P with a unit ε ∈ (Al)

∗
P. With the same argument as

before we get νLXY Z (π) = m, hence the component LXY Z has multiplicity m. To get the
multiplicities of the other components one can continue in the same way with the other
components. The genera of the components are clear; the formula 1

2
(m− 1)(m− 2) is just

the well known genus formula for curves which are given by a homogenous polynomial of
degree m.
Next, we prove that all intersections are transverse. Let us denote by Fπ the geometric
special fiber of FN,p. According to Remark 1.4.14 we have

Fπ =
∑

dΓΓ ,

where the sum runs over all components together with their multiplicity (the symbol Γ
stands for any of the components in Figure 6.7). To each component Γ of the right-hand
side, we have

0 < Γ(Fπ − dΓΓ) .

Let us denote by IΓ the sum of the multiplicities of the components that have a positive
intersection number with Γ. Obviously we have

IΓ ≤ Γ(Fπ − dΓΓ)

and equality holds for all Γ if and only if all intersections are transverse. We get the
following table:

Γ IΓ

Li 2i
LXY Z p+ p(m− 1)
Lγ 2p
Lγ,j 2
Lδ p
Fm m2p
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Let us denote by K a canonical divisor of FN,p. By the adjunction formula (Theorem
1.4.9) and Proposition 1.4.15 we have

2ga(FN)− 2 = K · Fπ

=
∑

dΓK · Γ

=
∑

dΓ(−Γ2 + 2ga(Γ)− 2)

=
∑

Γ(Fπ − dΓΓ) + 2pga(Fm)− 2
∑

dΓ

≥
∑

IΓ + 2pga(Fm)− 2
∑

dΓ ,

hence the intersections are transverse if and only if

2ga(FN)− 2 =
∑

IΓ + 2pga(Fm)− 2
∑

dΓ . (6.1.27)

Using the known quantities of Table 6.1 and the table for the IΓ we get∑
IΓ = 3m3p− 2m2p+ 2pm%+m2p2

and
−2
∑

dΓ = −3m3p+m2p− 2pm%− 2p .

We have
2ga(FN)− 2 = m2p2 − 3mp

and ∑
IΓ − 2

∑
dΓ + 2pga(Fm) = −m2p+m2p2 − 2p+ p(m− 1)(m− 2)

= m2p2 − 3mp ,

which yields the equality (6.1.27) and therefore the transversality of the intersections.
Since we know the intersection numbers and the configuration of the geometric special fiber,
one can use Proposition 1.4.15 (1.) to get the self-intersection number of the components.
Finally, since there are no exceptional divisors, Corollary 2.2.9 tells us, that FN,p is already
the minimal regular model. �

Corollary 6.1.16. Let FnormalN,p be the normalization of the scheme

F0
N,p = ProjR[X, Y, Z]/(XN + Y N − ZN) .

Then all singular (closed) points are rational singularities.
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Proof: Let fnor : FminN,p → FnorN,p be the desingularization of FnormalN,p , where FminN,p is the
minimal regular model from Theorem 6.1.15. Let P ∈ FnormalN,p be a singular point and
C1, . . . , Cn the components of FminN,p with fnor(Ci) = P . Then P is rational if and only if the
fundamental cycle ZP with respect to P fulfills pa(ZP ) = 0 (see. [Ar2], p.132: Theorem
3.). Using Theorem 6.1.15 it can be easily seen that

ZP =
n∑
i=1

Ci .

Now, the adjunction formula together with an inductive argument yields

pa(ZP ) =
n∑
i=1

pa(Ci) +
∑

1≤i<j≤n

Ci · Cj − (n− 1) =
∑

1≤i<j≤n

Ci · Cj − (n− 1) .

Finally, it can be easily seen - using the configuration described in Theorem 6.1.15 - that
pa(ZP ) = 0. �

Remark 6.1.17. Let U ⊂ SpecZ[ζN ] be the open subset consisting of the prime ideals p
with N /∈ p, hence U = SpecZ[ζN , 1/N ]. We set FminN,U := F0

N ×SpecZ[ζN ] U , where

F0
N = ProjZ[ζN ][X, Y, Z]/(XN + Y N − ZN) ;

the scheme FminN,U is regular by Proposition 1.1.13. For a prime ideal p with N ∈ p we take
the minimal regular model FminN,p from Theorem 6.1.15, where p ∩ Z = (p). Now, we glue
the scheme FminN,U and all the FminN,p together and obtain the minimal regular model FminN of
the Fermat curve FN over SpecZ[ζN ] (see Section 2.3). This model is indeed the minimal
regular model, since it is regular and there are no exceptional divisors. Notice, that the
bad primes in this situation are exactly the primes p with N ∈ p. Hence, a prime p is bad
if and only if p|N , where p ∩ Z = (p). The special fiber above a good prime q ∈ U just
consists of one component. This component is of multiplicity one. Similar to Remark 4.1.3
the morphism β : FN → P1 in (3.2.12) extends to a morphism

β : FminN → P1
Z[ζN ]

(β : FminN,p → P1
R resp. ) since we were just performing a sequence of blowing-ups.

With the regular model we are ready now to compute a first upper bound for the
arithmetic self-intersection number of the dualizing sheaf. In order to do this we will use
the results of Subsection 3.2.2 to approximate the geometric contribution.

Theorem 6.1.18. Let N be a squarefree odd integer with at least two prime factors, and
let FminN be the minimal regular model of the fermat curve FN over SpecZ[ζN ]. Then the
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arithmetic self-intersection number of its dualizing sheaf equipped with the Arakelov metric
satisfies

ω2
FminN ,Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN) : Q](κ1 logN + κ2)

)
+ (2g − 2)

∑
p⊃(N)

4gN8N
p

+4

38N
p
−2(N2 − 9)

log Nm(p),

where κ1, κ2 ∈ R∗+ are positive constants independent of N .

Proof: In Remark 3.2.18 we saw that the morphism β : FN → P1 fulfills the requirements
of Theorem 3.2.2, hence we only have bound the geometric contribution. In order to do
this we will use Proposition 3.2.9 and Theorem 3.2.10. Using the notation of Proposition

3.2.9 we have 32 ≤ up = max{p,m2} ≤
(
N
3

)2
, lp = 1 and cp = 2m = 2N

p
(cf. Theorem

6.1.15). Since 0 ≤ % ≤ m
2

(p− 3) we get

rp − cp − 1 = 3mp(m− 1) +m+ %m(p− 1) +m2(p− 3)

≤ 3mp(m− 1) +m+
m2

2
(p− 3)(p+ 1)

< N +
3N2

2
.

We will approximate
k−1∑
l=0

ul <
uk

u− 1

and

cp∑
k=1

u2k =
(ucp+1 − u)(ucp+1 + u)

(u− 1)(u+ 1)

=
u

u− 1

u

u+ 1
(u2cp − 1) <

u2

u2 − 1
u2cp

in order to obtain

bp =

 cp∑
k=1

(
k∑
l=1

ul−1
p

)2

+ (rp − cp − 1)

(
cp∑
l=1

ul−1
p

)2
up

<

(
cp∑
k=1

u2k
p + (N +

3N2

2
)u

2cp
p

)
up

(up − 1)2

<

(
81

80
+N +

3N2

2

)
u

2cp+1
p

(up − 1)2
(6.1.28)
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Now since 81
80

+N + 3N2

2
< 2N2 and up ≤

(
N
3

)2
the term (6.1.28) is smaller than

2N2

(
N
3

)8N
p

+2

(
(
N
3

)2 − 1)2
=

2N8N
p

+4

38N
p
−2(N2 − 9)

.

Therefore, it follows with Theorem 3.2.10∑
p bad

ap log Nm(p) <
∑
p bad

4gN8N
p

+4

38N
p
−2(N2 − 9)

log Nm(p) ,

hence the claim. �

Remark 6.1.19. One may use the results of Subsection 3.2.2 less wastefully in order
to get an improvement of Theorem 6.1.18. However, this is not our intention since we
will compute the geometric contribution exactly in the next subsection. Taking a look at
Theorem 6.1.18 one could get the impression in case of the Fermat curves in question that
the geometric contribution is the dominating term in the inequality (3.2.1). In the next
subsection it will turn out as well that this is not the case.

6.2 Explicit geometric contributions to Kühn’s for-

mula for ωAr2 in the squarefree case

Let N be a squarefree odd integer, which is not a prime number, and FminN the minimal
model described in Section 6.1, which was obtained by glueing the models FminN,p of Theorem
6.1.15 and the model FminN,U (cf. Remark 6.1.17).

Proposition 6.2.1. Let S be a cusp of FN and S the horizontal divisor obtained by taking
the Zariski-closure of S in FminN,p . Then S only intersects one component of the geometric
special fiber, namely one of the L1 (see. Figure 6.7). Again, this intersection is transverse.

Proof: We use Notation 3.2.19. Without loss of generality we assume S = Sxi , with an
integer i. If we take the Zariski-closure of S in

F0
N,p = ProjR[X, Y, Z]/(XN + Y N − ZN) (6.2.1)

we get a horizontal divisor S0, which corresponds to the prime ideal (X, Y − ζ iN , Z− 1). It
intersects the special fiber in the point Pxi = V+((X, Y − ζ iN , Z− 1, π)). Now, our minimal
regular Model FminN,p comes together with a birational morphism

f : FminN,p → F0
N,p ; (6.2.2)

in fact, f is just the composition of the blowing-ups in Proposition 6.1.7, Theorem 6.1.11
and Theorem 6.1.15. We have

FminN,p ×SpecR SpecFp · S = degKsh S = 1 , (6.2.3)
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where Ksh = Frac(Rsh) (see e.g. [Liu], p.388: Remark 1.31.). It follows that FminN,p ×SpecR

SpecFp ∩ S is reduced to a point P and that P belongs to a single irreducible component
which is of multiplicity one (compare e.g. with [Liu], p.388: Corollary 1.32.). Furthermore,
(6.2.3) shows us that S intersects this component transversally (see e.g. [Liu], p.378:
Proposition 1.8.). On the other hand, we have P ∈ f−1(Pxi). But f−1(Pxi) consists of
one component LXY Z and p chains of components L1, L2, . . . , L(m−1), where the L(m−1)

intersect the component LXY Z (compare with Figure 6.7). Since the only components of
f−1(Pxi) of multiplicity one are the L1, P must lie on one of them. �

Remark 6.2.2. We use Notation 3.2.19. In the proof of Proposition 6.2.1 we saw that
the horizontal divisor Sxi , which was obtained as the Zariski-closure of the cusp Sxi , just
intersects one of the components L1, which lies in f−1(Pxi); here Pxi = V+((X, Y − ζ iN , Z−
1, π)) and f : FminN,p → F0

N,p is the minimal desingularization of F0
N,p. Analog to this we

obtain that the horizontal divisor that corresponds to a cusp Syi (Szi resp.) intersects a
component L1 that lies in f−1(Pyi) (f−1(Pzi) resp.), where Pyi = V+((X − ζ iN , Y, Z − 1, π))
and Pzi = V+((X − ζ iN , Y + 1, Z, π)).

Since there are 3N components L1 and 3N cusps we could guess that each L1 was
intersected by exactly one horizontal divisor which comes from a cusp. In fact, we show in
the next proposition that this is the case.

Proposition 6.2.3. For the cusps S and S ′ of FN we denote by S and S ′ the associated
horizontal divisors of FminN,p . According to Proposition 6.2.1 these horizontal divisors inter-
sect components L and L′ of the special fiber (both are one of the L1). We have S = S ′ if
and only if L = L′.

Proof: We use Notation 3.2.19. We only have to show that L = L′ implies S = S ′ (the
other direction is tautological). Let us assume that this is not true. Then there exist S
and S ′ with S 6= S ′ and L = L′. According to Remark 6.2.2 we may assume without loss of
generality that S = Sxi and S ′ = Sxj with 0 ≤ j < i < N . Remember that the morphism

f in (6.2.2) factors f : FminN,p

f1→ F1
N,p

f0→ F0
N,p, where F1

N,p is the blowing-up of F0
N,p along

V (Xm+Y m−Zm, π). The scheme F1
N,p is covered by X̃ and X̃ ′ (cf. beginning of the proof

of Theorem 6.1.15). and its special fiber just consists of the components Fm, LXY Z , Lγi and
Lδ. According to our assumption we must have Supp f1(Sxi) ∩ Supp f1(Sxj) = P with a
closed point P which lies in the special fiber of F1

N,p (this follows since all the components

Li were blown down to points by f1). In fact P is a singular point which lies in X̃ . It

makes therefore sence to analyze X̃ (cf. Proposition 6.1.7) again. Since all the singular

points of X̃ lie in U1 = SpecS1 (cf. (6.1.10) and proof of Lemma 6.1.12) we can restrict our
attention to this affine open subset. Because Fm = Zπ in S1 an easy computation shows
that

f1(Sxi)|U1 = V

(
X, Y − ζ iN , Z −

(ζ imN − 1)

π

)



93

and

f1(Sxj)|U1 = V

(
X, Y − ζjN , Z −

(ζjmN − 1)

π

)

(notice that
(ζkmN −1)

π
∈ R∗ or

(ζkmN −1)

π
= 0 since ζmN is a primitive p-th root of unity). Let m

be the maximal ideal of S1 with V (m) = P . Then

ζ iN − ζ
j
N = ζjN(ζ i−jN − 1) ∈ m

and since π ∈ m we must have p - i− j. Indeed, let us assume that p divides i− j. Then
the order of ζ i−jN is coprime to p and therefore m contains a natural number coprime to p,
hence a contradiction. On the other hand, since

(ζ imN − 1)

π
− (ζjmN − 1)

π
=
ζjmN (ζ

(i−j)m
N − 1)

π
∈ m ,

we have ζ
(i−j)m
N = 1, hence p|i − j. This gives us another contradiction and shows that

S = S ′. �

Similar to the situation in Section 4.2 we will compute now the canonical divisor for our
schemes FminN and FminN,p . Let us consider first the scheme FminN,p . Again, we can use Lemma
3.2.16, which tells us that if we have a horizontal divisor Sj coming from a cusp Sj, then
there exists a canonical divisor of FminN,p of the form

Kj,p = (2g − 2)Sj + Vj,p , (6.2.4)

where Vj,p is a vertical divisor with support in the special fiber.

We can interpret any vertical divisor of FminN,p as a divisor of FminN . Using this we can
show the following:

Proposition 6.2.4. We interpret the vertical divisors Vj,p of (6.2.4) as divisors of FminN .
If we set

Vj =
∑
p bad

Vj,p ,

where the sum runs over all bad prime ideals p, then

Kj = (2g − 2)Sj + Vj (6.2.5)

is a canonical divisor of FminN . In particular, if we set Fj,p = 1
(2g−2)

Vj,p, then Fj =∑
p badFj,p fulfills (3.2.2).
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Proof: Any divisor, who satisfies the adjunction formula and whose restriction to the
generic fiber FN is a canonical divisor of FN , is a canonical divisor of FminN (Proposition
1.4.16). Obviously Kj|FN is a canonical divisor of FN , hence the only thing to verify is that
Kj fulfills the adjunction formula. Now, let E be a vertical prime divisor of FminN . If E is
contained in a special fiber above a bad prime p, then

Kj · E = Kj,p · E = 2pa(E)− 2− E2 .

Otherwise E is a special fiber itself, which lies above a “good” prime q (Remark 6.1.17 and
Proposition 1.4.11). We have

Kj · E = 2pa(FN)− 2 ,

(Proposition 1.4.15 (1.) and [Liu], p.388: Remark 1.31.). On the other hand we have
pa(E) = pa(FN) and E2 = 0 (Proposition 1.4.15 and [Liu], p. 350: Corollary 3.6.), hence
the adjunction formula is fulfilled. This yields the first claim. The second claim is obvious.
�

With Proposition 6.2.4 in mind it seems to be useful to determine the Kx,p in (6.2.4),
because this yields a canonical divisor for FminN . In order to construct this divisor explicitly
we need to distinguish between the components in the special fiber. For this reason we will
number these components.

Notation 6.2.5. We use the notation from Theorem 6.1.15. Let us fix a cusp S and a
corresponding horizontal divisor S. We know that S just intersects one of the component
of the special fiber, in fact it must be one of the L1 (Proposition 6.2.1). In the geometric
special fiber of FminN,p there are 3m components LXY Z . To distinguish between these com-

ponents we will number them and denote by L(i) the i-th one of the LXY Z . Now, for each
component L(i) there are p chains of components L1, L2, . . . L(m−1), where the L(m−1) inter-
sect L(i). Again, we will number these chains. We denote the components of the chains by
L

(i)
j,k, where the superscript shows the belonging to L(i), the first subscript j indicates that

it is one of the components Lj and the second subscript k shows that it is a component
of the k-th chain. In the same way we proceed with the components Lγ and Lδ. We will

number them and denote them by L
(i)
γ and L

(i)
δ . The components Lγ,j will be denoted by

L
(i)
γ,j, where the superscript i indicates that L

(i)
γ,j intersects L

(i)
γ . Without loss of generality

we assume that we did this numbering in a way that S intersects the component L
(1)
1,1.

Now we are ready to compute a canonical divisor of the scheme FminN,p . We set

V =
3m∑
i=1

(
m−1∑
j=1

p∑
k=1

λ
(i)
j,kL

(i)
j,k + λ(i)L(i)

)
(6.2.6)

and

VΣ =

m%∑
i=1

(
p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L
(i)
γ

)
+

m2(p−3)−2m%∑
i=1

λ
(i)
δ L

(i)
δ , (6.2.7)
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where % is the number introduced in Definition 6.1.5 and the coefficients are defined by

λ(1) =
2g − 2

p
− m(p− 2)

p
, (6.2.8)

λ
(1)
j,1 =

1

m

(
λ(1)j + (m− j)(2g − 2)

)
1 ≤ j ≤ m− 1, (6.2.9)

λ
(1)
j,k =

1

m
λ(1)j 1 ≤ j ≤ m− 1; 2 ≤ k ≤ p, (6.2.10)

λ(i) =− m(p− 2)

p
2 ≤ i ≤ 3m, (6.2.11)

λ
(i)
j,k =− p− 2

p
j 2 ≤ i ≤ 3m; 1 ≤ j ≤ m− 1; 1 ≤ k ≤ p (6.2.12)

λ
(i)
γ,j =− p− 2

p
1 ≤ j ≤ p; 1 ≤ i ≤ m% (6.2.13)

λ(i)
γ =− 2

(
p− 2

p

)
1 ≤ i ≤ m% (6.2.14)

λ
(i)
δ =− p− 2

p
1 ≤ i ≤ m2(p− 3)− 2m% . (6.2.15)

Similar to the previous subsection we can show the following lemma:

Lemma 6.2.6. The divisor

Kp = (2g − 2)S + V + VΣ , (6.2.16)

where V and VΣ are given by (6.2.6) and (6.2.7), is a canonical divisor of FminN,p .

Proof: According to Proposition 1.4.16 it is enough to check thatKp fulfills the adjunction
formula. This can be verified using the quantities computed in Theorem 6.1.15. �

Lemma 6.2.7. Let V and VΣ be the divisors of (6.2.6) and (6.2.7). Then we have

V · V = −(3m− 1)pm

(
p− 2

p

)2

+ λ(1)

(
(p− 2)− (2g − 2)

m

)
− m− 1

m
(2g − 2)2 , (6.2.17)

VΣ · VΣ = −pm2(p− 3)

(
p− 2

p

)2

(6.2.18)

and
V · VΣ = 0 . (6.2.19)
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Proof: Let us prove (6.2.17). By the adjunction formula we have V ·L(i) = Kp ·L(i) = p−2
for all components L(i); the divisor Kp is the canonical divisor of Lemma 6.2.6. For a

component L
(i)
j,k with ijk 6= 1 we have V ·L(i)

j,k = Kp ·L(i)
j,k = 0. Furthermore, the intersection

of L
(1)
1,1 with V is −(2g− 2), since 0 = Kp ·L(1)

1,1 = ((2g− 2)S +V) ·L(1)
1,1 = (2g− 2) +V ·L(1)

1,1.
Now, using equation (6.2.6), we get

V · V = V ·
3m∑
i=1

(
m−1∑
j=1

p∑
k=1

λ
(i)
j,kL

(i)
j,k + λ(i)L(i)

)
(6.2.20)

=
3m∑
i=1

(
m−1∑
j=1

p∑
k=1

λ
(i)
j,k(V · L

(i)
j,k) + λ(i)(V · L(i))

)
(6.2.21)

= −λ(1)
1,1(2g − 2) + (p− 2)λ(1) − (3m− 1)(p− 2)m

(
p− 2

p

)
, (6.2.22)

where we used equation (6.2.11) in the last line. Substituting the number of (6.2.9), we
get

V · V = − 1

m

(
λ(1) + (m− 1)(2g − 2)

)
(2g − 2) + (p− 2)λ(1) − (3m− 1)pm

(
p− 2

p

)2

.

After rearranging the terms we will get the formular for the self-intersection of V .
Next, we show (6.2.18). If we take a look at the configuration of the geometric special

fiber given in Figure 6.7, we see that the components L
(i)
δ and L

(i)
γ intersect Fm and itself.

While these are the only components in case of the L
(i)
δ , a component L

(i)
γ intersects more

components, namely the L
(i)
γ,j for 1 ≤ j ≤ p. Finally, a component L

(i)
γ,j just intersects the

component L
(i)
γ and itself. Since Fm does not appear in the sum VΣ, it follows

VΣ · VΣ =

m%∑
i=1

(
p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L
(i)
γ

)2

+

m2(p−3)−2m%∑
i=1

−p
(
λ

(i)
δ

)2

.

We have (
p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L
(i)
γ

)
· L(i)

γ,j = VΣ · L(i)
γ,j = Kp · L(i)

γ,j = 0

for every i and j, hence(
p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L
(i)
γ

)2

=

(
p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L
(i)
γ

)
· λ(i)

γ L
(i)
γ

= 2p

(
p− 2

p

)2

− 4p

(
p− 2

p

)2

= −2p

(
p− 2

p

)2
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It follows that

VΣ · VΣ = −2pm%

(
p− 2

p

)2

− pm2(p− 3)

(
p− 2

p

)2

+ 2pm%

(
p− 2

p

)2

,

which yields our claim.
Finally, equation (6.2.19) follows since SuppV ∩ SuppVΣ = ∅.

�

Next we want to find a divisor Dp of FminN,p , where the invertible sheaf which is associated
to N2Dp is isomorphic to the pullback of the twisting sheaf of Serre β∗OP1

R
(1). Without

loss of generality we continue assuming that S just intersects the component L
(1)
1,1 in the

special fiber. We set

Gp =
m−1∑
j=1

p∑
k=1

µj,kL
(1)
j,k + µL(1) , (6.2.23)

where

µ =
1

p
, (6.2.24)

µj,1 =
j(1− p)
mp

+ 1, (6.2.25)

µj,k =
j

mp
, for k 6= 1 . (6.2.26)

Similar to the results in the prime-exponent-case (Lemma 4.2.4) we get now the follow-
ing result:

Lemma 6.2.8. Let
Dp = S + Gp , (6.2.27)

where Gp is the vertical divisor in (6.2.23). Then Dp is a divisor of FminN,p which is associated

with
(
β∗OP1

R
(1)
)⊗ 1

N2

; here β denotes the extension of β : FN → P1 (cf. Remark 6.1.17).

Proof: Analog to the proof of Lemma 4.2.4 we can show that N2S is associated with
β∗OP1

K
(1), where K is the fraction field of R. Since

β∗OP1
R

(1)|FN ∼= β∗OP1
K

(1) ,

it is clear that Dp can be chosen as Dp = S + Gp with a vertical divisor Gp. Again, the
divisor Dp has to fulfill the equations

(N2Dp) · C = 0 (6.2.28)
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for all components C which are different from Fm (see e.g. [Liu], p.398: Theorem 2.12.
(a)), and

N2 = N2Dp · FminN,p ×SpecR SpecFp = N2Dp · pFm (6.2.29)

(see e.g. [Liu], p.388: Remark 1.31.). Now, one can use the quantities computed in
Theorem 6.1.15 to verify that our choice of Gp in (6.2.23) indeed satisfies the equations
(6.2.28) and (6.2.29). �

Corollary 6.2.9. We interpret the divisors Gp as divisors of FminN and denote by S the
Zariski-closure of S in FminN . Then the divisor

D = S +
∑
p bad

Gp (6.2.30)

is associated with (β∗OP1
Z[ζN ]

(1))⊗
1
N2 ; here β denotes the extension of β : FN → P1 (cf.

Remark 6.1.17).

Proof: By the same arguments as in Lemma 4.2.4 and Lemma 6.2.8 we can assume that
the divisor we are looking for is of the form D = S + G with a vertical divisor G with
support in the fibers which are above the bad primes. Analog to the previous lemma we
make the following observation: For a component C which lies in the special fiber above p
(here p ∩ Z = p and p|N) and which is different from the component FN/p, D has to fulfill
the equation

(N2D) · C = 0 .

As well, D has to fulfill

N2 = N2D · FminN ×SpecR SpecFp = N2D · pFN/p .

On the other hand, if we take G =
∑

p bad Gp, then these equations are satisfied, because a
component C which belongs to the fiber above p just intersects Gp. Hence, we have shown
that our choice of the divisor G is the correct one. �

Theorem 6.2.10. Let Kp = (2g−2)S+V+VΣ be the canonical divisor of FminN,p from Lemma
6.2.6 and Dp = S + Gp the divisor defined in Lemma 6.2.8. We set Fp = 1

2g−2
(V + VΣ).

Then

Fp · Fp = −N
4 −N3(p+ 5) +N2(6p+ 2)−N(9p− 15) + 4(N/p)2 − 12(N/p)

(N2 − 3N)2

and

Gp · Gp = −N − p+ 1

N
.
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Proof: Since g(FN) = 1
2
(m2p2 − 3mp+ 2) Lemma 6.2.7 gives us

(2g − 2)2F2
p =V2 + V2

Σ

=−m2(p− 2)2 +
m(p− 2)2

p

+

(
m2p2 − 3mp

p
− m(p− 2)

p

)(
p− 2− m2p2 − 3mp

m

)
− (m− 1)(m2p2 − 3mp)2

m

=− 2m2p2 − 4m2 − 15mp+ 12m+ 5m3p3 − p4m4 + p4m3 − 6m2p3 + 9mp2 .

Now, substituting N = pm gives us the first equation. In order to verify the second
equation one observes that

0 = D · L(1)
j,k = Gp · L(1)

j,k

for all L
(1)
j,k with jk 6= 1. As well, we have

0 = D · L(1) = Gp · L(1)

and therefore

Gp · Gp = µ2
1,1

(
L

(1)
1,1

)2

+ µ1,1µ2,1 = −S · µ1,1L
(1)
1,1 =

p− 1

mp
− 1 ,

which completes our proof. �

Lemma 6.2.11. Let N be a squarefree odd integer with at least two prime factors, and
let FminN be the minimal regular model of the fermat curve FN over SpecZ[ζN ] which was
constructed in Section 6.1. Furthermore, let Sj be a cusp (with respect to the morphism
β : FN → P1 in (3.2.12)) which lies above the branch point ∞. For each bad prime p we
number the components of FminN,p so that Sj is the fixed cusp from Notation 6.2.5, and we
compute Fp and Gp from Theorem 6.2.10 and Lemma 6.2.8 with respect to this numbering.
Let us set

Fj =
∑
p bad

Fp

and
Gj =

∑
p bad

Gp ,

where we interpret the Fp and Gp as divisors of FminN . Then Fj (Gj resp.) fulfills (3.2.2)
( (3.2.3) resp.).
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Proof: For Fj the statement follows directly by Proposition 6.2.4. In case of the Gi we
can argue as follows: the cusp Sj lies above the branch point ∞. The Zariski-closure ∞
of ∞ in P1

Z[ζN ] is associated with OP1
Z[ζN ]

(1). Hence, the claim follows with Corollary 6.2.9.

�

Lemma 6.2.12. In the situation of Lemma 6.2.11 we set F2
p = F2

p and G2
p = G2

p for
each prime p with p|N ; here p is any prime ideal above p and F2

p and G2
p are the numbers

computed in Theorem 6.2.10. Then

O(Fj)2 =
∑
p|N

ϕ(N)/ϕ(p)F2
p log p

and
O(Gj)2 =

∑
p|N

ϕ(N)/ϕ(p)G2
p log p .

Proof: We have
O(Fj)2 =

∑
p bad

O(Fp)
2 =

∑
p|N

∑
p bad

p∩Z=(p)

O(Fp)
2 ,

with O(Fp)
2 = F2

p log Nm(p), where F2
p is the number computed in Theorem 6.2.10. For

each prime p let us denote by rp the number of prime ideals of Z[ζN ] that lie above p. For
a prime ideal p with p ∩ Z = (p), we have

rp log Nm(p) = ϕ(N)/ϕ(p) log(p)

(cf. proof of Lemma 5.3.2). For prime ideals of Z[ζN ], that lie above the same prime
number p, the special fibers of FminN are isomorphism, hence it follows that∑

p bad
p∩Z=(p)

O(Fp)
2 = rpF2

p log Nm(p) = ϕ(N)/ϕ(p)F2
p log p .

Now, if we sum up over all prime numbers p with p|N , we obtain the formula for O(Fj)2.
The formula for O(Gj)2 can be computed in a similar way. �

Theorem 6.2.13. Let N be a squarefree odd integer with at least two prime factors, and
let FminN be the minimal regular model of the fermat curve FN over SpecZ[ζN ] which was
constructed in Section 6.1. Then the arithmetic self-intersection number of its dualizing
sheaf equipped with the Arakelov metric satisfies

ω2
FminN ,Ar ≤(2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN) : Q](κ1 logN + κ2)

)
+ (2g − 2)

∑
p|N

ϕ(N)

ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p ,

where κ1, κ2 ∈ R∗+ are positive constants independent of N .
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Proof: In Remark 6.1.17 and Remark 3.2.18 we saw that the morphism β : FminN → P1
Z[ζN ]

is a morphism of arithmetic surfaces as in Assumption 3.2.1 and that the induced morphism
β : FN → P1 fulfills the requirements of Theorem 3.2.2. Analog to the prime exponent
case we have deg β = N2 and β∗∞ =

∑N
i=1NSi, hence bj = bmax = N . It follows that in

our case the formula (3.2.4) of Theorem 3.2.2 becomes∑
p bad

ap log Nm(p) = −2gO(Gj)2 + (2g − 2)O(Fj)2

=
∑
p|N

ϕ(N)

ϕ(p)

(
−2gG2

p + (2g − 2)F2
p

)
log p

=
∑
p|N

ϕ(N)

ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p ,

where we used Lemma 6.2.12 for the second equality and Theorem 6.2.10 for the last
equality. �

Remark 6.2.14. Notice that the analytic contribution dominates the geometric contribu-
tion again. Since N is a squarefree odd integer and

|∆Q(ζN )|Q| =
Nϕ(N)∏

p|N p
ϕ(N)/(p−1)

(6.2.31)

we have

∑
p bad

ap log Nm(p) =
∑
p|N

ϕ(N)

ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p

≤
∑
p|N

ϕ(N)

ϕ(p)

3N

N − 3
log p ≤

∑
p|N

15

4
log p

ϕ(N)
(p−1) (6.2.32)

=
15

4
log(∆−1Nϕ(N)) ∈ O(log(∆−1Nϕ(N))) , (6.2.33)

for the geometric contribution; here ∆ = |∆Q(ζN )|Q|. In order to show the claimed relation
of dominance we just need to show that

ϕ(N)κ1 logN + ϕ(N)κ2 −
∑
p|N

15

4
log p

ϕ(N)
(p−1)

is positive for big N (N being odd and squarefree). If fact, we will show that∑
p|N

(
κ1 −

15

4(p− 1)

)
log p
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is positive since this will imply the previous statement. Let us denote by pi the i-th odd
prime number. Furthermore let l ∈ N be the maximum with κ1 − 15/(4pl − 4) ≤ 0 and
k ∈ N the minimum with

∑l
i=1(κ1 − 15/(4pi − 4)) log pi + (κ1 − 15/(4pk − 4)) log pk > 0.

Then, for N with
∏k

i=1 pi ≤ N it follows that N must have a prime factor p′ with p′ ≥ pk
since N is squarefree. Hence,

∑
p|N

(
κ1 −

15

(4p− 4)

)
log p ≥

l∑
i=1

(
κ1 −

15

(4pi − 4)

)
log pi +

(
κ1 −

15

(4p′ − 4)

)
log p′ > 0 ,

and the positivity is shown.

Corollary 6.2.15. With the notation from the Theorem 6.2.13 we have the asymptotic
bound

ω2
FminN ,Ar ≤ (2g − 2)ϕ(N)(2 + κ1) logN +O(gϕ(N) + g log(∆−1Nϕ(N))) , (6.2.34)

where ∆ = |∆Q(ζN )|Q|.

Proof: In Remark 6.2.14 we have seen that∑
p bad

ap log Nm(p) ∈ O(log(∆−1Nϕ(N))) .

The analytic contribution is

ϕ(N)(κ1 logN + κ2) = ϕ(N)κ1 logN +O(ϕ(N)) .

Finally, the term log |∆Q(ζN )|Q|2 = log ∆2 becomes

log |∆Q(ζN )|Q|2 = 2 logNϕ(N) +O(log(∆−1Nϕ(N)))) .

Now, the statement follows with Theorem 6.2.13. �

Remark 6.2.16. Notice that (6.2.34) is valid for arbitrary squarefree odd integer N , hence
odd prime numbers as well. This follows with (4.2.14) and p = |∆Q(ζp)|Q|−1pϕ(p). However,
since in the prime exponent case the term ϕ(p)κ2 will dominate the term log p, as the size
of the prime numbers increases, it makes sense not to include ϕ(p)κ2 in the “big O”-part.
If N is not a prime number the situation looks different. In this case we neither have
ϕ(N) ∈ O(log(∆−1Nϕ(N))) nor log(∆−1Nϕ(N)) ∈ O(ϕ(N)). In other words, non of the
fractions

ϕ(N)

log(∆−1Nϕ(N))
(6.2.35)

and
log(∆−1Nϕ(N))

ϕ(N)
(6.2.36)
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is bounded by a constant as N varies over the squarefree odd integers. To see this we will
construct for each fraction a sequence of integers for which there exists no bound. Let
us denote by pi the i-th odd prime number. We define the first sequence of integers by
Ni := pipi+1. Now, for (6.2.35) we obtain

ϕ(Ni)

log(∆−1N
ϕ(Ni)
i )

=
1

log
∏

p|Ni p
1
p−1

>
1

2 log p
1

pi−1

i

,

hence limi→∞ log(∆−1N
ϕ(Ni)
i )−1ϕ(Ni) = ∞. For the second fraction we define a different

sequence. Set Ni :=
∏i

j=1 pj. Then

log(∆−1N
ϕ(Ni)
i )

ϕ(Ni)
= log

∏
p|Ni

p
1
p−1 =

i∑
j=1

1

pj − 1
log pj ≥

i∑
j=1

1

pj
=: si .

It is a well known fact of number theory that the sequence (si)i diverges. It follows

lim
i→∞

ϕ(Ni)
−1 log(∆−1N

ϕ(Ni)
i ) =∞ .

We see that the relation of domination depends strongly on the factorization of N into
prime numbers.





Chapter 7

Remarks on the Fermat curve for the
remaining cases

With Chapter 4 and Chapter 6 we obtained a description of the minimal regular model of
the Fermat curves FN of squarefree odd exponent N over the ring of integers of the N -th
cyclotomic field. In this chapter we give a few remarks on the situation of the “squarefree
even”-case and the case of non-squarefree exponents. Furthermore, we sketch a different
construction of the results of Section 6.1 and a different general approach.

7.1 The minimal regular model of the Fermat curve

for squarefree even exponent

Let N be a squarefree natural number which is divisible by 2 and FN the Fermat curve
of exponent N . The purpose of this section is to discuss the construction of the minimal
regular model of FN and the differences to the construction of the model in the odd-case.
Since we do not restrict ourselves to the situation that N has at least two different prime
divisors we may start our analyzation with the case N = 2. Again, we would like to work
over a number field which contains the roots of unity in question. However, since the
second roots of unity are just 1 and -1 our number field will be Q and the ring of integers
will be Z. The origin of our construction is the scheme

F0
2 = ProjZ[X, Y, Z]/(X2 + Y 2 − Z2) .

We analyze the affine open subscheme

X = SpecZ[X, Y ]/(X2 + Y 2 − 1) .

Contrary to the odd-case this scheme is normal. This can be easily seen by writing the
equation X2 + Y 2 − 1 as

X2 + Y 2 − 1 = (X + Y − 1)2 + 2(X + Y − 1−XY )

105
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and then by showing that the Ideal I = (X + Y − 1, 2) can be generated by (X + Y − 1)
in the localization with respect to I. A few computations - which are similar to the one in
Section 6.1 - yield that the blowing-up of X along I is covered by

SpecZ[X, Y, Z]/(F1 − 2Z, 2Z2 +X + Y − 1−XY )

and
SpecZ[X, Y,W ]/(WF1 − 2, F1 +W (X + Y − 1−XY )) ,

where F1 = X+Y −1, and that this scheme is regular. The configuration of the special fiber
is given by a component L, which has multiplicity 2 and self-intersection -1, and components
LX and LY , which have multiplicity 1 and self-intersection -2. The components LX and
LY do not intersect each other but intersect L transversally. Remembering the situation
for odd N one could ask if there is a third component LZ which cannot be seen in this
picture. A symmetry argument will not work since the scheme X is not isomorphic to
X ′ = SpecZ[X,Z]/(X2 +1−Z2). To see this one could just verify that X has two singular
closed points and X ′ just one. In fact, there is no third component.

Since the genus of the Fermat curve F2 is 0 we cannot expect that there exists a minimal
regular model (cf. Remark 2.2.8). In fact, if we blow down the (-1)-component L we end up
with the situation that the components LX and LY intersect each other transversally and
that both have multiplicity 1 and self-intersection -1. If we now blow down the component
LX we will get a relatively minimal model which is not isomorphic to the relatively minimal
model we get when we blow down LY . Hence, there does not exist a minimal model of F2.

Let us next consider the case that N is a squarefree even number that has at least
two different prime divisors. Since the genus of this curve is greater than 0 we know that
there exists a minimal regular model (Theorem 2.2.7). If we make the construction of this
model fiber by fiber we have to distinguish between two cases: The construction for a fiber
over 2 and the construction for a fiber over p, where p 6= 2. We start with the latter case,
hence N = pm, where 2|m. Most of the results in Section 6.1 do not use the fact that m is
assumed to be odd, hence it should be possible as well to adapt these results to the current
situation. If we consider the fiber above 2 the situation looks slightly different. Here we
have N = 2m, where m is a squarefree odd number. Since exponentiating with 2 does
not respect minus signs the results of Subsection 6.1.1 cannot be applied to this situation.
However, in this case we can rewrite the Fermat equation as

XN + Y N − 1 = (Xm + Y m − 1)2 + 2(Xm + Y m − 1−XmY m) .

Analog to the situation of the Fermat curve of exponent 2 we can use this equation to
show that the components of the special fiber over 2 are regular, hence we do not need
to normalize in this part. Another thing which is similar to this situation and different to
the odd-case is that the affine open subschemes SpecZ[ζm][X, Y ]/(X2m + Y 2m − 1) and
SpecZ[X,Z][ζm]/(X2m + 1 − Z2m) are not isomorphic. However, the author conjectures
that most of the results in Section 6.1 can be used after a small modification and that
Theorem 6.1.15 remains true for squarefree even natural numbers with the difference that
the model FminN,p for a prime ideal with 2 ∈ p has just 2m components LXY Z , 4m components
Li and no components Lγ and Lδ.
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7.2 An alternative way to the results in Section 6.1

In this section the author reviews a different approach to the result of Section 6.1. This
approach was suggested by Franz Király.

The idea is the following: Let Fminp be the minimal regular model of the Fermat curve Fp
of odd prime exponent p which was constructed by William G. McCallum (see Section 4.1
or the original article [Mc]). We consider the normalization of this scheme in the function
field K(FN) of the Fermat curve FN of exponent N , where N is a squarefree odd natural
number with N = pm (just as in Section 6.1); this normalization will be denoted by

Y = N(Fminp , K(FN)) .

It is birational to the minimal regular model FminN of the curve FN and since it is normal
there can be just isolated singularities i.e. all singular points left are closed points. Now,
if one can locate these singular points and determine their desingularization behavior, the
model FminN can be obtained by this information. We sketch how this could possibly be
done.

The morphism of curves FN → Fp, which is given by (a : b : c) 7→ (am : bm : cm), induces
a Galois extension K(FN)/K(Fp) of the function fields and in fact Fp can be interpreted as
the quotient curve FG

N , where G is this Galois group G(K(FN)/K(Fp)). Furthermore one
observes that this Galois group operates on the scheme Y as well1, and it follows that the
quotient scheme YG exists since G is finite (cf. [Liu], p.59: Exercise 3.3.23.). Because of
the universal property of the quotient scheme we have a morphism YG → Fminp , and since
K(YG) = K(Y)G = K(FN)G = K(Fp) the uniqueness of the normalization yields that this
morphism is in fact an isomorphism. Now we want to relate the schemes Y and YG. In
order to do this let us denote by f the quotient morphism f : Y → YG = Fminp . Then
for an element y ∈ Y we have OYG,f(y) = (OY,y)G. Király suggests that in this situation a
theorem of Serre ([CES], p.352: Theorem 2.3.9.) can be used in order to verify whether or
not y ∈ Y is a singular point2. For that only the knowledge of the minimal regular model
Fminp and the knowledge of the function field K(FN) is needed. Serre’s theorem works in
this situation since the characteristic of the residue field k(y) (k(f(y)) resp.) does not
divide the order of the group. Furthermore, Király conjectures that the singular points of
Y are tame cyclic quotient singularities in the sense of ([CES], p.351: Definition 2.3.7.).
The desingularization of these singularities is well known.

It is planned by Király and the author to verify this approach and publish the results
in a forthcoming paper.

1 In case of affine schemes this is easy to see. Take for example a ring A with field of fractions
Frac(A) = K and a finite Galois extension L of K. Furthermore let B be the integral closure of A in L
and G = (L/K) the Galois group of the field extension. By definition, for each element b ∈ B there exists
a monic polynomial f(T ) ∈ A[T ] with f(b) = 0. Now, for every σ ∈ G we have 0 = σ(f(b)) = f(σ(b)),
hence σ(b) ∈ B. It follows σ(B) = B. For arbitrary schemes this statement remains true because of the
construction of the normalization and the statement in the affine case.

2Notice, that we cannot apply the theorem of Serre directly since the Galois extension K(FN )/K(Fp)
is not cyclic. However, we can find an intermediate extension so that K(FN )/K(Fp) splits into two cyclic
extensions for which we can use this theorem.
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7.3 Difficulties in the non-squarefree case

Let p be a prime number and Fpk the Fermat curve of exponent pk, where k > 1. If we
assume that one has constructed minimal regular models of these curves for all primes p,
then the construction of minimal regular models of Fermat curves of arbitrary exponent (or
at least of exponent of the form mpk with gcd(p,m) = 1 and m squarefree) should not be
a big problem. However, it seems to be very difficult to say something about the minimal
regular model of the curve Fpk . A direct approach, as it was made by McCallum and the
author in the squarefree-case, will probably get stuck in this case since the complexity
of the equations involved increases too rapidly. In order to make an approach as it is
described in Section 7.2 one would need a result similar to the one of Serre but with the
difference that here the characteristic of the residue field divides the order of the group.
As an improvement of Serre’s theorem Király and Lütkebohmert give in [KL] exactly such
result (see [KL], p.2: Theorem 1 and Corollary 3). After constructing a normal model
(which can be done the same way it was done in Section 7.2) their work could be used in
order to find the singularities of this model just by the minimal regular model Fminp and the
function field K(Fpk). However, it seems to be likely that the desingularization of these
singularities is complicated, and it is therefore not clear if this approach can be used in
order to find a (easy) construction of the minimal regular model of Fpk .

7.4 Stable and semi-stable models of the Fermat curve

In this section we sketch an approach how one could possibly obtain a regular model
of the Fermat curve FN once a (semi-) stable model of this curve has been constructed.
For example, for Fp, where p is an odd prime number, a stable model of Fp was given
by Hironobu Maeda [Mae1],[Mae2] and by Jeroen J. van Beele [vB]. In order to use the
approach for the Fermat curve of another exponent one would need to construct the (semi-)
stable model of this curve. However, in general the construction of these models is not
easy.

The approach: it is well known that there exists a number field E so that the Fermat
curve FN has a stable model over the ring of integers OE of this number field ([DM])3.
Let us assume that we have found such a stable model over OE. Then one can make a
finite étale base change to a ring R in order to obtain a stable model that only has split
ordinary double points (see [Liu], p.510: Proposition 3.15. and p.514: Corollary 3.22.).
Furthermore, if one can determine the thickness of these singularities then a regular model
can be obtained as well (cf. [Liu], p.515: Corollary 3.25.). Finally, blowing down (−1)-
curves will yield a minimal regular model over R.

3In fact, this statement - and therefore the approach - is not restricted to Fermat curves.
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[Bo] J.-B. Bost: Potential theory and Lefschetz theorems for arithmetic surfaces.
Ann. Sci. École Norm. Sup. (4) 32 (1999), 241–312.

[Cha] H. Chang: On the singularities of the Fermat scheme over Z. Chinese J. Math.
17 (1989), 243–257.

[Chi] T. Chinburg: Minimal models for curves over Dedekind rings. In Arithmetic
Geometry (Storrs, Conn., 1984). Springer, New York, (1986), 309–326.

[CES] B. Conrad, B. Edixhoven, W. Stein: J1(p) has connected fibers. Doc. Math. 8
(2003), 331–408 (electronic).
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[FGI+] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli : Fun-
damental Algebraic Geometry (Grothendieck’s FGA Explained). Mathematical
Surveys and Monographs 123. American Mathematical Society, Providence, RI,
2005.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Arithmetik und Geometrie der Fermat-Kurven

FN : XN + Y N = ZN

mit quadratfreien Exponenten N . Darüber hinaus befassen wir uns mit Anwendungen in
der Arakelov-Theorie. Die Hauptresultate, die wir erhalten, sind eine explizite Konstruk-
tion des minimalen regulären Modells FminN über SpecZ[ζN ], wobei Z[ζN ] der Ganzheitsring
zu dem N -ten Kreisteilungskörper ist, und obere Schranken für die arithmetische Selbst-
schnittzahl des hermiteschen Geradenbündels ω2

FminN ,Ar
, wobei ωFminN ,Ar das Geradenbündel

ωFminN /SpecZ = ωFminN /SpecOE ⊗OFmin
N

f ∗ωSpecOE/SpecZ

versehen mit der Arakelov-Metrik ist.
Ausgangspunkt der Berechnung des minimalen regulären Modells ist das Modell über

dem Ring R, welches durch die Fermat-Gleichung gegeben ist; der Ring R ist hierbei die
Lokalisierung von Z[ζN ] nach einem Primideal, das die Zahl N enthält. Wir arbeiten mit
der Technik des Aufblasens, wobei wir uns besonders mit der sinnvollen Wahl der Zentren
beschäftigen. Die bei der Konstruktion durch das Aufblasen entstehenden Komponenten
der speziellen Faser des Modells unterteilen wir in unterschiedliche Typen, die wir dann
gesondert analysieren. In jedem Schritt benutzen wir diverse Techniken zum Auffinden der
singulären Loci und zur Bestimmung von Regularität und Normalität. Das Hauptresultat
beschreibt dann die Zusammensetzung der speziellen Fasern von FminN gemeinsam mit der
genauen Anzahl, dem Geschlecht, der Selbstschnittzahl und der Multiplizität der Kompo-
nenten. Durch ein kombinatorisches Argument folgt die Transversalität der Schnitte.

Ein Vorteil unserer expliziten Konstruktion ist, dass wir sie für weitere Berechnungen,
die das Modell betreffen, nutzen können. Für bestimmte Punkte auf der generischen Faser
berechnen wir beispielsweise, welche vertikalen Komponenten der speziellen Faser von den
horizontalen Divisoren, die wir als Zariski-Abschluss dieser Punkte erhalten, geschnitten
werden. Dies können wir nutzen, um kanonische Divisoren zu konstruieren, die besondere
für andere Anwendungen nützliche Eigenschaften haben.

Um obere Schranken für die arithmetische Selbstschnittzahl von ω2
FminN ,Ar

zu berechnen,

benutzen wir ein Theorem von Kühn, welches dieses Problem auf die Berechnung gewisser
endlicher Selbstschnittzahlen reduziert. Diese Selbstschnittzahlen können wir mit unserem
Modell bestimmen und erhalten damit asymptotische obere Schranken.
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