
Morphology-Based Language Modeling for
Amharic

Dissertationsschrift zum Erlangung des Grades
eines Doktors der Naturwissenschaften am
Department Informatik an der Fakultät für

Mathematik, Informatik und
Naturwissenschaften der Universität Hamburg

Vorgelegt von
Martha Yifiru Tachbelie

aus Addis Ababa, Äthiopia

August 2010

Betreut von:
Prof. Dr. Ing. Wolfgang Menzel, Universität Hamburg





Genehmigt von der Fakultät für Mathematik, Informatik und Naturwissenschaften

Department Informatik der Universität Hamburg auf Antrag von

Prof. Dr. Wolfgang Menzel (Erstgutachter/Betreuer)

Prof. Dr. Christopher Habel (Zweitgutachter)

Prof. Dr. Leonie Dreschler-Fischer (Vorsitzender)

Hamburg, den 31.08.2010 (Tag der Disputation)



ii

Dedicated to

my husband Solomon Teferra Abate

and
my daughter Deborah Solomon



iii

Acknowledgment

First and for most, I would like to express my heartfelt thanks to God, who gave

me the strength, determination, endurance and wisdom to bring this thesis to com-

pletion. Oh God, I would be nowhere without you. Your name be glorified.

I owe a great debt of gratitude to my supervisor Prof. Dr. Ing. Wolfgang

Menzel. This thesis would not have been possible without your guidance, as well

as inspiring and enlightening ideas, comments and suggestions. I am glad to be your

supervisee and share your rich, broad and deep knowledge. Thank you very much.

Thank you also for your concern and readiness to help me whenever I needed. You

made me comfortable to come to you whenever I have problems. You facilitated

favorable conditions for me to fulfill the course work I was required to do and spent

your precious time in selecting relevant courses and text books, as well as in assessing

me through long discussions. Thank you so much.

My heartfelt thanks also goes to Prof. Dr. Christopher Habel. Thank you

very much for your constructive comments and suggestions on the draft of the thesis.

Thank you also for arranging favorable conditions for me to fulfill the courses that

I should take to have a better understanding of the area. You spent your precious

time in selecting text books and in the assessment discussions. You were ready to

help me whenever I knocked at your door. Thank you very much.

I am grateful to Prof. Baye Yimam for sharing his knowledge on Amharic

morphology. You shared me your deep linguistic knowledge both through personal

discussion and your wonderful book which I received as a gift from you. Many

thanks.

Let me use this opportunity to express my deepest gratitude to my husband

and colleague, Dr. Solomon Teferra, who is the source of my success in my

professional career. Thank you for your love, care and patience. You sacrificed your

professional career and let me finish my study. You replaced my role as a mother

to our daughter. Soul, how can I ever express my thanks to you? Thank you very

much also for your invaluable comments and suggestions throughout my study and

on the draft of this thesis.

Dr. Kerstin Fischer deserves my heartfelt gratitude for being besides me

when I was in trouble. You gave me hope when I was almost to quit my study due

to financial problems. Kerstin, this thesis would not have been possible, at least

at this time, without your financial support. You facilitated the completion of the

thesis. Many thanks for your kindness.

I would also like to thank all my colleagues at NATs for being friendly and

making the atmosphere nice. Specifically, I would like to thank Monica Gavrila



iv

for being with me in all times. Thank you for everything you have done for me and

for encouraging me whenever I am down due to various reasons. Thank you very

much also for printing, binding and submitting the thesis.

Yared Getachew and Eleni Asfaw, thank you so much for expressing the love

of Jesus Christ to me. Thank you very much for everything you did for me and,

above all, for your prayer support.

I am grateful to my mother, W/o Asrat Demeke, for her love and encourage-

ment, as well as for bearing with my stay abroad. Thank you very much, Asratie.

My love and thanks goes to my sister, Eden (Mitin), for bearing with my stay

abroad. Mitinie, I do not forget your usual question, "when do you come back to

Ethiopia", whenever we spoke over the phone.

My love and special thanks goes to my daughter, Deborah, for being patient

to stay most of the time without me. Many times, I arrive home after you went to

bed. Thank you for your patience.

Last, but not least, I would like to thank the University of Hamburg for the

financial support without which the study would not have been possible.

Martha Yifiru Tachbelie

August, 2010



v

Abstract

Language models are fundamental for many natural language processing applica-

tions. The most widely used type of language models are the corpus-based proba-

bilistic ones. These models provide an estimate of the probability of a word sequence

W based on training data. Therefore, large amounts of training data are required in

order to ensure statistical significance. But even if the training data are very large, it

is impossible to avoid the problems of data sparseness and out-of-vocabulary (OOV)

words. These problems are particularly serious for languages with a rich morphol-

ogy, which are characterized with high vocabulary growth rate and a correspondingly

high perplexity of their language models. Since the vocabulary size directly affects

system complexity, a promising direction is towards the use of sub-word units in

language modeling.

This study explored different ways of language modeling for Amharic, a mor-

phologically rich Semitic language, using morphemes as units. Morpheme-based

language models have been trained on automatically and manually segmented data

using the SRI Language Modeling toolkit (SRILM). The quality of these models has

been assessed in terms of perplexity, the probability they assign to the test set, and

the improvement in word recognition accuracy obtained as a result of using them

in a speech recognition task. The results show that the morpheme-based language

models trained on manually segmented data always have a higher quality.

A comparison with word-based models reveals that the word-based models fared

better in terms of the probability they assigned to the test set. In terms of word

recognition accuracy, however, interpolated (morpheme- and word-based) models

achieved the best results. In addition, the morpheme-based models reduced the

OOV rate considerably.

Since using morpheme-based language models in a lattice rescoring framework

does not solve the OOV problem, speech recognition experiments in which mor-

phemes are used as dictionary entries and language modeling units have been con-

ducted. The use of morphemes highly reduced the OOV rate and consequently

boosted the word recognition accuracy of the 5k vocabulary morpheme-based speech

recognition system. However, as morpheme-based recognition systems suffer from

acoustic confusability and limited n-gram language model scope, their performance

with a larger morph vocabulary was not as expected.

When morphemes are used as units in language modeling, word-level dependen-

cies might be lost. As a solution to this problem we have investigated root-based

language models in the framework of factored language modeling. Although this

produced far better test set probabilities, the much weaker predictions of a root-
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based model resulted in a loss in word recognition accuracy. In addition to the

morpheme-based language models, several factored language models that integrate

morphological information into word based models have also been developed. The

results show that integrating morphological information leads to better models.

In summary, the study showed that using morphemes in modeling morpholog-

ically rich languages is advantageous, especially in reducing the OOV rate. This,

consequently, improves word recognition accuracy of small vocabulary morpheme-

based speech recognition systems. Moreover, using morpheme-based language mod-

els as a complementary tool to the word-based models is fruitful. The study has

also confirmed that the best way of evaluating a language model is by applying it to

the application for which it was intended. Currently, this is the only way to reliably

determine the actual contribution of the model to the performance of the target

application.
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Zusamenfassung

Sprachmodelle sind eine wichtige Grundlagen für viele Anwendungen der Verar-

beitung natürlicher Sprache. Am weitesten verbreitet sind hierbei die korpus-

basierten probabilistischen Ansätze. Diese Modelle erlauben es, die Wahrschein-

lichkeit einer Wortsequenz W auf der Grundlage von Trainingsdaten abzuschätzen.

Dazu werden große Mengen an Trainingsdaten benötigt, um die statistische Sig-

nifikanz sicherzustellen. Allerdings lässt sich auch beim Vorhandensein sehr großer

Datenmengen das Problem der Datenknappheit und der lexikalischen Unvoll-

ständigkeit (out-of-vocabulary, OOV) nicht vollständig vermeiden.

Diese Probleme sind besonders gravierend für Sprachen mit einer reichhaltigen

Morphologie, in denen der Wortschatz stark anwächst und zu Sprachmodellen mit

hoher Perplexität führt. Da die Größe des Lexikons nicht beliebig gesteigert wer-

den kann, besteht ein vielversprechender Ansatz in der Verwendung von Wortbe-

standteilen.

Diese Arbeit hat sich das Ziel gestellt, einen optimalen Weg zur Modellierung

der amharischen Sprache, einer morphologisch reichhaltigen semitischen Sprache,

zu finden, wobei als Wortuntereinheiten Morpheme verwendet werden. Mit Hilfe

des SRI Language Modeling toolkit (SRILM) wurde eine Reihe morphem-basierter

Sprachmodelle sowohl auf automatisch als auch auf manuell segmentierten Korpus-

daten trainiert. Der Vergleich dieser Modelle erfolgt hinsichtlich ihrer Perplexität,

der für eine Testdatenmenge geschätzten Wahrscheinlichkeit, sowie der Steigerung

der Worterkennungsrate, die sich durch ihre Verwendung in einem Spracherkenner

erzielen lässt.

Die automatisierte Ermittlung der Wortsegmentierung erfolgt mit Hilfe einer

unüberwacht trainierten, korpus-basierten morphologischen Analyse (Morfessor).

Die Resultate zeigen jedoch, dass die Sprachmodelle auf der Basis manuell seg-

mentierter Daten generell besser sind.

Die morphem-basierten Sprachmodelle wurden auch mit wort-basierten Mod-

ellen verglichen. Dabei zeigt sich, dass die wort-basierten Modelle hinsichtlich der

Testdatenwahrscheinlichkeit besser abschneiden. Im Hinblick auf die Gemauigkeit

der Spracherkennung ergeben jedoch interpolierte (morphem- und wort-basierten)

Modelle die besten Ergebnisse durch Neubewertung von Worthypothesegraphen.

Darüberhinaus waren die morphem-basierten Models in der Lage, die OOV-Rate

drastisch zu reduzieren.

Da sich durch die Verwendung morphem-basierter Sprachmodelle zur Neubewer-

tung von Worthypothesegraphen das OOV-Problem nicht lösen lässt, wurden auch

Experimente mit einem Spracherkennungssystem durchgeführt, das die Morpheme
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direkt als Wörterbucheintragung und als Basiseinheit zur Sprachmodellierung ver-

wendet. Dabei wurde durch die Verwendung der Morphemes die OOV-Rate erhe-

blich reduziert und die Morphemerkennungsrate auf den 5k Evaluationsdaten deut-

lich gesteigert. Allerdings bringen morphem-basierte Erkenner auch eine höhere

akustische Verwechselbarkeit der Erkennungseinheiten, sowie eine Reduktion der ef-

fektiven Reichweite statistischer n-gramm-Modelle mit sich, sodass die Qualität bei

größeren Morphinventaren unter den Erwartungen blieb.

Wenn Morpheme als Basiseinheiten zur Sprachmodellierung verwendet werden,

können Abhängigkeiten auf der Wortebene verloren gehen. Als Lösung für dieses

Problem wurden Modelle auf der Basis der Wortwurzel (root) im Rahmen von fak-

torisierten Sprachmodellen untersucht. Zwar ergeben sich auf dieser Modellierungs-

grundlage erheblich bessere Werte für die Testdatenwahrscheinlichkeit, wegen der

schwächeren Vorhersagekraft konnte eine Verbesserung der Worterkennungsrate

aber nicht erreicht werden.

Zusätzlich zu den rein morphem-basierten Sprachmodellen wurden verschiedene

faktorisierte Sprachmodelle entwickelt, die es gestatten, wort-basierte Modelle durch

unterschiedliche morphologische Information anzureichern. Die Ergebnisse zeigen,

dass die Verwendung solcher zusätzlicher Prädiktoren zu qualitativ besseren Mod-

ellen führt.

Mit der Arbeit konnte gezeigt werden, dass die Verwendung von Morphemen zur

Modellierung morphologisch reichhaltiger Sprachen vorteilhaft ist und insbesondere

zu einer Reduktion der OOV-Rate führt. In der Folge ergeben sich auch verbesserte

Werte für die Worterkennungsrate von Spracherkennungssystemen mit kleinem Mor-

pheminventar. Es hat sich herausgestellt, dass die Verwendung morphem-basierter

Sprachmodelle als Zusatzkomponente in wort-basierten Modellen nutzbringend ist.

Die Arbeit hat auch bestätigt, dass die Evaluation von Sprachmodellen stets durch

Einbettung in diejenigen Anwendung erfolgen sollte für die es entwickelt wurde.

Nur so kann derzeit zuverlässig ermittelt werden, ob das Modell tatsächlich eine

Verbesserung erbringt.
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Chapter 1

Introduction

Natural Language Processing, also called Human Language Technology or Language

Technology or Speech and Language Processing, is an interdisciplinary field which

aims at getting computers perform useful tasks involving natural language such

as enabling human-machine communication, improving human-human communica-

tion, or simply doing useful processing of text and speech [Jurafsky and Martin,

2008]. Research and development activities in this field include the coding, recog-

nition, interpretation, translation, and generation of human languages [Cole et al.,

1997]. The end results of such activities are speech and language technologies such

as speech recognition and synthesis, machine translation, text categorization, text

summarization, information/text retrieval, information extraction, etc.

Many speech and language technologies can be formulated as a problem in

communication theory, particularly as a source-channel or noisy-channel model. A

source-channel model has first been exploited for continuous speech recognition by

the IBM speech recognition group [Bahl et al., 1983]. However, later it has also

been applied in many other natural language processing applications including ma-

chine translation, spelling correction, optical character recognition, etc. This model

basically states that a communication channel is a system in which the output de-

pends statistically on the input. It is characterized by a conditional probability

distribution p(Y |W ) that Y emerges from the channel given W was input. In au-

tomatic speech recognition, Y is an acoustic signal; in machine translation, Y is

a sequence of words in the target language; and in spelling correction, Y is a se-

quence of characters produced by a possibly imperfect typist [Brown et al., 1992];

in optical character recognition, Y is the image of the printed characters; and in

handwriting recognition, Y is the sequence of strokes on a tablet [Roukos, 1997]. In

all of these applications, we face the problem of recovering a string of words after

it has been “distorted” by passing through a noisy-channel. Part of tackling this

problem is to estimate the probability with which any particular string of words will

be presented as input to the noisy-channel [Brown et al., 1992]. This is the task of

language modeling. Therefore, a language model is a key component in speech and

language processing and research on language modeling serves a wide spectrum of

applications [Roukos, 1997]. The following section discusses language modeling.
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1.1 Language Modeling

The goal of language modeling is to characterize, capture and exploit the restric-

tions imposed on the way in which words can be combined to form sentences and

by doing so to describe how words are arranged in a natural language. It is an at-

tempt to capture the inherent regularities (in word sequence) of a natural language.

Language modeling is fundamental to many natural language applications. Having

good language models is, therefore, important to improve the performance of speech

and natural language processing systems.

Historically, two major techniques have been used to model languages. The first

one relies on grammars, such as context free grammars or unification grammars,

which are defined based on linguistic knowledge. The second technique uses corpus

based probabilistic models which are widely applied in natural language processing

since their introduction in the 1980’s. The scope of this thesis is limited to the latter

models, namely, statistical language models (SLM).

Although SLMs have first been introduced for speech recognition systems [Je-

linek, 1990], in principle, they can be used in any natural language processing ap-

plication where the prior probability of a word sequence is important. Thus, they

are used in statistical machine translation [Brown et al., 1990, 1993], spelling cor-

rection [Keringhan et al., 1990, Church and Gale, 1991], character and handwriting

recognition [Kopec and Chou, 1994, Kolak and Resnik, 2002], part-of-speech tag-

ging [Bahl and Mercer, 1976, Church, 1988], text summarization and paraphrasing

[Knight and Marcu, 2002, Barzilay and Lee, 2004], question answering [Echihabi

and Marcu, 2003], and information retrieval [Croft and Lafferty, 2003].

Statistical language models provide an estimate of the probability of a word se-

quence W for a given task. If W is a specified sequence of words, W = w1, w2, · · · , wq

then it would seem reasonable that P (W ) can be calculated as:

p(W ) = p(w1)p(w2|w1)p(w3|w1w2), · · · , p(wq|w1w2, · · · , wq−1) (1.1)

However, it is essentially impossible to estimate the conditional probabilities for all

words and all sequence lengths in a given language. Thus, n-gram models, in which

the conditional probabilities are approximated based only on the preceding n − 1

words, are used. Even n-gram probabilities are difficult to estimate reliably for all

n.

The probabilities in n-gram models are commonly determined by means of max-

imum likelihood estimation (MLE). This makes the probability distribution depen-

dent on the available training data and on how the context has been defined [Junqua
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and Haton, 1996]. Thus, to ensure statistical significance, large training data are re-

quired in statistical language modeling [Young et al., 2006]. Even if we have a large

training corpus, there might still be many possible word sequences which will not be

encountered at all, or which appear with a statistically insignificant frequency (data

sparseness problem) [Young et al., 2006]. Moreover, there might also be individual

words which are not in the corpus at all - Out-of-Vocabulary (OOV) words prob-

lem. Words or word sequences not observed in a training data will be assigned zero

probability while those words or word sequences that appeared with a statistically

insignificant frequency will be assigned a poor probability estimate. This negatively

affects the performance of an application that uses the language model. Smoothing

techniques (discussed in detail in chapter 2) and several other modeling techniques

such as class based language models are used to alleviate the problem of OOV and

data sparsity. Nevertheless, the problems of data sparseness and out-of-vocabulary

words are still challenging for morphologically rich languages like Amharic.

1.2 Natural Language Processing for Amharic

Research and development in the area of human language technology have been

and are being conducted for more than 50 years with a particular focus on few

languages, and consequently most of the technologies are available for technologically

favoured languages like English, French, German or Japanese. Although language

technologies are equally important and useful for under served languages such as

the Ethiopian ones, research in this field started only recently and no usable basic

technologies are available for these languages. On the other hand, to survive in the

information age and help people in their development, Ethiopian languages require

to have basic technological tools [Atelach et al., 2003]. Thus, there is an urgent

need for a variety of natural language applications including spell-checkers, machine

translation systems, natural language generator, speech recognizer and synthesizer,

information retrieval system etc. for Ethiopian languages in general and Amharic

in particular [Atelach et al., 2003].

To this end, various Masters and Ph.D. students conducted research in natural

language processing specifically in the area of Treebank, electronic thesaurus and

dictionary construction, stemming, morphological analysis and synthesis, part of

speech tagging, natural language (sentence) parsing, data driven bilingual lexical

acquisition, machine translation, indexing, information retrieval, data mining, text

classification and categorization, summarization, spelling checker, optical charac-

ter recognition, speaker verification, speech recognition and synthesis. Although

language models are fundamental for many of the natural language processing ap-
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plications, so far they did not receive the attention of researchers who are working

on Ethiopian languages. Even those who worked in the area of speech recogni-

tion (Solomon [2001], Kinfe [2002], Zegaye [2003], Martha [2003], Molalgne [2004],

Hussien and Gambäck [2005] and Solomon [2006]), to which a language model is

central [Jelinek, 1990], concentrated on the acoustic modeling part and paid little

or no attention to language modeling. These works, therefore, could not achieve

the performance improvement which can be obtained using a high quality language

model. Furthermore, since Amharic is a morphologically rich language, language

modeling for Amharic is demanding and deserves special attention.

1.3 Morphology of Amharic

Amharic is one of the morphologically rich languages. Like other Semitic languages,

Amharic exhibits a root-pattern morphological phenomenon. A root is a set of

consonants (also called radicals) which has a basic lexical meaning. A pattern

consists of a set of vowels which are inserted among the consonants of a root to

form a stem. In addition to this non-concatenative morphological feature, Amharic

uses different affixes to create inflectional and derivational word forms.

Some adverbs can be derived from adjectives. Nouns are derived from other basic

nouns, adjectives, stems, roots, and the infinitive form of a verb by affixation and

intercalation. Case, number, definiteness, and gender marker affixes inflect nouns.

Adjectives are derived from nouns, stems or verbal roots by adding a prefix or a

suffix. Moreover, adjectives can also be formed through compounding. Like nouns,

adjectives are inflected for gender, number, and case [Baye, 2000EC].

Amharic verbs are derived from roots. The conversion of a root to a basic verb

stem requires both intercalation and affixation. For instance, from the root gdl ’kill’

we obtain the perfective verb stem gäddäl- by intercalating pattern ä_ä. From this

perfective stem, it is possible to derive a passive (tägäddäl-) and a causative stem

(asgäddäl-) using prefixes tä- and as-, respectively. Other verb forms are also derived

from roots in a similar fashion. Verbs are inflected for person, gender, number,

aspect, tense and mood [Baye, 2000EC]. Other elements like negative markers also

inflect verbs in Amharic.

A more detailed description of Amharic morphology is given in Chapter 3. But

from the above brief description, it can already be seen that Amharic is a morpho-

logically rich language. It is this feature that makes development of language models

for Amharic challenging.
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1.4 Statement of the Problem

The data sparseness problem in statistical language modeling is more serious for

languages with a rich morphology such as Amharic, Arabic, Hebrew or Turkish

than for languages like English. Languages with rich morphology have a high vo-

cabulary growth rate which results in high perplexity and a large number of out-of-

vocabulary words [Vergyri et al., 2004]. The simplest or easiest solution for these

problems might be extending the size of the training vocabulary so as to minimize

OOV words. However, this is not efficient even for morphologically poor languages,

let alone for morphologically rich languages as a vocabulary of any size becomes

inadequate. Sproat [1992] stated that "... one can have a very large list of words

yet still encounter many words that are not to be found in that list". He empha-

sized the problem of out-of-vocabulary words even for English, which is known to

be a morphologically impoverished language. One can imagine how severe the data

sparseness and OOV words problems are in morphologically rich languages. Thus,

a way for building high quality language models on the basis of insufficient training

material has to be found [Geutner, 1995]. A promising direction is to abandon the

word as a modeling unit and split words into smaller word fragments [Hirsimäki

et al., 2005].

Since Amharic is a morphologically rich language, an Amharic language model

suffers from the data sparseness and out-of-vocabulary words problems. The neg-

ative effect of the Amharic morphology on language modeling has already been

reported by Solomon [2006], who also recommended the development of sub-word

based language models for Amharic.

The purpose of this study is, therefore, to explore the best way of modeling the

Amharic language using morphemes as a language modeling unit. To this end, the

research answers the following questions.

1. Can language modeling (for Amharic) be done on the sub-word level?

2. Which smoothing technique leads to the best quality language model?

3. Which kind of morphemes (statistical or linguistic ones) is better for modeling

Amharic?

4. Is explicit treatment of the root-pattern morphology superior to simply ignor-

ing it?

5. How to capture word level dependencies in morpheme-based language model-

ing?
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6. Are morpheme-based language models superior to the word-based ones?

7. How to compare word-based and morpheme-based language models?

8. How can morpheme-based language models be used in a speech recognition

system?

9. Do morpheme-based language models yield a performance improvement in a

speech recognition system?

10. Does the integration of morphological features to word-based language models

result in better quality models?

1.5 Contribution of the Research

Considering the main purpose of this research work, the following can be considered

the major contributions of the study.

We showed the possibility of developing language models for Amharic using sub-

words or morphs as a solution to the data sparseness problem. Different morpheme-

based language models have been developed. The results of our experiments con-

firmed that linguistic morphemes are better suited to model the Amharic language

than the statistical ones and that an explicit treatment of root-pattern morphology

is advantageous to simply ignoring it.

We further demonstrate that language models that have a different number of

tokens and a different out-of-vocabulary rate can be best compared by integrating

them into an application for which they have been designed.

We showed two ways of using morpheme-based language models in speech recog-

nition. The first is a lattice rescoring approach where the language models were

used to rescore word-based lattices. The second approach uses morphemes as lex-

ical entries and language model units. Here, the speech recognition system recog-

nizes morphemes and sequences of morphemes need to be concatenated into words.

Morpheme-based language models yielded a performance improvement using both

methods except for the latter if applied to large vocabularies.

Since Amharic roots represent the lexical meaning of words, we developed root-

based language models which are able to capture word level dependencies in a

morpheme-based language model.

Several factored language models that integrate an extra word feature to lan-

guage models have also been developed and found to be high quality models in terms

of perplexity and word recognition accuracy .
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It has also been found that among a range of smoothing techniques, Kneser-Ney and

its variations produced better language models regardless of the language modeling

unit used.

1.6 Scope and Limitation of the Study

The scope of this research is limited to statistical language modeling. The devel-

opment of statistical language models requires a text corpus consisting of millions

of sentences. In this regard, it is obvious that the amount of data used in our ex-

periment is small. Although it might be possible to take text from the web, the

normalization task is laborious as, to our knowledge, there are no text processing

tools for the language.

The unavailability of a rule based Amharic morphological analyzer that serves

our purpose was a major limitation since the study should explore the effect of ex-

plicit treatment of root-pattern morphology on the quality of morph-based language

models. Due to the arduous task of manual segmentation, we prepared a linguisti-

cally segmented corpus consisting of only 21,338 sentences. Although the amount of

data used is very small, it was possible to explore the advantage of explicit treatment

of the Amharic root-pattern morphology.

1.7 Organization of the Thesis

The thesis is organized into seven chapters. This chapter gives background infor-

mation and states the problems which are addressed in the study. Chapter two

presents the fundamentals of language modeling and a review of prominent works

in morpheme-based language modeling. The nature of Amharic morphology are

presented in chapter three. Chapter four provides a brief overview of computational

morphology and a review of works on Amharic computational morphology. Chapter

five presents details of the morphology-based language modeling experiments and the

results of the experiments are also discussed in this chapter. Chapter six deals with

the speech recognition experiments (lattice rescoring and morpheme-based speech

recognition) and presents the results. Chapter seven contains conclusions and rec-

ommendations for future work.





Chapter 2

Fundamentals of Language

Modeling

In Chapter 1, we indicated that SLMs can be applied in any natural language

application where the prior knowledge of admissible word sequences in a natural

language is important. Here we explain how language models are used in a natural

language application, taking the speech recognition problem as an example since

we consider automatic speech recognition as one of the most important application

areas. However, as the focus of the thesis is on language modeling and not on speech

recognition in general, we do not delve into this topic. The chapter also provides

a description of evaluation metrics for language models, training procedures for

computing the probabilities, smoothing techniques and the various kinds of language

models.

2.1 Language Models in Speech Recognition

A speech recognition system is a system that automatically transcribes speech into

text. The task can be formulated as a noisy-channel model and as a result, the

speech recognition problem is considered a special case of Bayesian inference. Thus,

the problem of speech recognition can be seen as that of finding the sequence of

words Ŵ that maximizes the conditional probability p(W |A), which denotes the

probability that the words W are spoken given the observed acoustic evidence A,

i.e.

Ŵ = argmax
w

p(W |A) (2.1)

This probability is computed using Bayes theorem as:

Ŵ = argmax
w

p(A|W )p(W )

p(A)
(2.2)

where p(A) is the average probability that A (the acoustic evidence) will be observed,

p(A|W ) is the probability that the acoustic evidence A will be observed given the
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speaker says W, and p(W ) is the prior probability that the word string W will be

uttered [Jelinek, 1997].

Since the p(A) is fixed for each sentence (sequence of word), it can be ig-

nored. Consequently, the recognizer’s task can be reduced to that of finding

Ŵ = argmaxw p(A|W )p(W ). This makes the probabilities p(A|W ) and p(W ) to be

central in a speech recognition system. Figure 2.1 shows how these probabilities are

integrated to recognize a sentence.

Figure 2.1: Components of a speech recognizer (taken from Jurafsky and Martin
[2008])

Figure 2.1 also indicates the processes/components of a speech recognition system.

The speech extraction includes sampling the electric signal, which is the output of a

microphone, and transforming it into spectral features. The acoustic model, which

also includes the word pronunciation dictionary, computes the probability p(A|W )

while the language model computes the prior probability of the word sequence W,

p(W ). Finally, the decoder searches for a sequence of words that maximizes the

product of the probabilities given by the acoustic and the language models. Alter-

natively, the decoder may provide N hypotheses, represented either as an N-best list

or a lattice, instead of a single most likely hypothesis. We do not explain all the

components in detail but concentrate only on language modeling.

2.2 Language Modeling

A statistical language model (SLM) is a probability distribution p(W) over word

sequences W that models how often each sequence W occurs as a sentence. For a

word sequence W (W = w1, w2, · · · , wq), the probability P (W ) can be calculated

using the chain-rule as:
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p(W ) = p(w1w2, · · · , wq)

= p(w1)p(w2|w1)p(w3|w1w2), · · · , p(wq|w1w2, · · · , wq−1)

=

q
∏

i=1

p(wi|w1, · · · , wi−1) (2.3)

However, it is essentially impossible to estimate the conditional probabilities,

p(wq|w1w2, · · · , wq−1) for all words and all sequence lengths in a given language

since most histories would be unique or would have appeared only a few times. In

practice, the estimation of these probabilities is infeasible because the set of strings

is infinite. Thus, the Markov assumption, that says we can predict the probability of

some future unit by only looking into the most recent observations, is applied. The

most widely used language models, namely n-grams, are based on this assumption.

Instead of computing the probability of a word given its entire or long history, we

will approximate the history by just the last few words [Jurafsky and Martin, 2008].

That means p(wq|w1w2, · · · , wq−1) is approximated as:

p(wq|w1w2, · · · , wq−1) = p(wq|wq−n+1, · · · , wq−1) (2.4)

based only on the preceding n − 1 words. However, as n increases the number of

n-grams also increases and the models become complex in terms of the number of

parameters they employ. Because of their memory requirement and sparseness of

training data, n is usually limited to 2, 3 or possibly 4.

2.2.1 Probability Estimation

The probabilities in n-gram models are commonly estimated based on maximum

likelihood estimation (MLE) - that is by counting events in context on some

training corpus. That means we take counts from a corpus and normalize them so

that they lie between 0 and 1 [Jurafsky and Martin, 2008] as shown in the following

equation.

p(wq|wq−N+1, · · · , wq−1) =
C(wq|wq−N+1, · · · , wq)

C(wq|wq−N+1, · · · , wq−1)
(2.5)

where C(.) is the amount of a given word sequence in the training data. From

equation 2.5, we can see that the n-gram probability is computed by dividing the

observed count of an n-gram with the observed count of its prefix.

Maximum likelihood estimation is solely dependent on the training data. That
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means we can get a good probability estimate for those n-grams that occurred in

the training data in a sufficient number of times. However, there might be n-

gram sequences that may not exist in our corpus. These n-grams will, therefore,

be assigned zero probabilities even if they are legal sequences in a given language.

Consequently, speech and language processing applications using such a model will

decide erroneously. In addition, even if a certain sequence has a non zero-count, the

probability estimate might be poor if the count is small. Therefore, a method that

can help to obtain better probability estimates is required. Smoothing is usually used

for this purpose. Section 2.4 gives descriptions of the various smoothing techniques

developed so far. Before that we would like to discuss how language models are

evaluated.

2.3 Evaluation of Language Models

The best way of evaluating language models is measuring its effect on a specific

application for which it was designed [Rosenfeld, 1997]. This way of evaluation

is called extrinsic evaluation. However, it is computationally expensive, hard to

measure and bad for a task independent comparison. There is, therefore, a need

for an intrinsic evaluation metric which measures the quality of language models

independent of any application. The commonly used way is to evaluate a language

model by the probability it assigns to some unseen text (test set), a text which is

not used during model training. Better models will assign a higher probability to

the test data [Jurafsky and Martin, 2008]. Based on this probability, two related

intrinsic evaluation metrics - Cross entropy and Perplexity - are computed.

2.3.1 Cross-entropy

The cross-entropy of a model m on some distribution p is defined as:

H(p,m) = lim
n→∞

−
1

n

∑

w∈L

p(w1, ..., wn) logm(w1, ..., wn) (2.6)

For a stationary and ergodic process, we can estimate the cross-entropy by taking

a single sequence that is long enough instead of summing over all possible sequence

as follows.

H(p,m) = lim
n→∞

−
1

n
logm(w1, ..., wn) (2.7)

As we can notice from the above equation, cross-entropy is defined in the limit. But,

with a sufficiently large sequence of fixed length, we can approximate cross-entropy
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of a model M = P (wi|wi−N+1...wi−1
) on a sequence of words W as [Jurafsky and

Martin, 2008]:

H(W ) = −
1

N
logP (w1w2...wN ) (2.8)

Where, N is the number of tokens in a test text.

This measures the average surprise of a model in seeing the test set and the aim

is to minimize this number. Cross entropy is inversely related to the probability

assigned (by the model) to the word sequence of the test data. That means a high

probability leads to a low cross entropy.

2.3.2 Perplexity

A related most commonly used intrinsic language model evaluation metric is per-

plexity. Perplexity is computed as:

PP (W ) = 2H(W )

= P (w1w2...wN )−
1

N

= N

√

1

P (w1w2...wN )

= N

√

√

√

√

N
∏

i=1

1

P (wi|w1...wi−1)
(2.9)

Perplexity can be interpreted as the average branching factor of a language model.

Models with low perplexity values for a given data set are better models. As can be

seen from equation 2.9, a higher conditional probability of the word sequence leads

to lower perplexity. Thus, minimizing perplexity is equivalent to maximizing the

test set probability [Jurafsky and Martin, 2008].

Since the calculation of both cross entropy and perplexity is based on the num-

ber of tokens in a test set, vocabularies must be the same when perplexities or

cross entropies are compared. Otherwise, the measures are not comparable. Even

if the vocabularies are equal, different texts, with different out-of-vocabulary words

rate will make the comparison dubious [Rosenfeld, 2000]. Some researchers [Gau-

vain et al., 1995, Hacioglu et al., 2003] used normalized perplexity for comparison

purposes. However, they did not give an explanation about the soundness of the

normalization method (formula) they used. When we have different token counts,

models can perhaps be compared on the basis of the probability they assign to the

test sets. In addition, improvement in perplexity does not always guarantee an im-
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provement in the performance of the application for which the language model is

used [Jurafsky and Martin, 2008]. Thus, several attempts have been made to devise

metrics that are better correlated with the error rate of the application, especially

the speech recognizer. Such metrics include speech decoder entropy [Ferretti et al.,

1989], acoustic perplexity and synthetic acoustic word error rate [Axelrod et al.,

2007]. Nevertheless, perplexity continues to be the preferred metric for practical

language model construction [Rosenfeld, 2000].

2.4 Smoothing Techniques

Smoothing is a term that describes techniques for adjusting the MLE probabilities

and to produce more accurate probabilities [Chen and Goodman, 1998]. The name

- smoothing - comes from "the fact that (looking ahead a bit) we will be shaving a

little bit of probability mass from the higher counts, and piling it instead of the zero

counts, making the distribution a little less jagged" [Jurafsky and Martin, 2008].

Smoothing not only prevents zero probabilities, but also attempts to improve the

accuracy of the model as a whole [Chen and Goodman, 1998]. The following are

some of the smoothing techniques used in language modeling.

2.4.1 Laplace Smoothing

In Laplace smoothing, which is also called Laplace’s Law or Add-one smoothing, we

pretend that each n-gram occurs once more than it actually does. That means we

add one to all the counts before we normalize them into probabilities. According to

Laplace smoothing, the uni-gram probability of the word wi is computed as follows:

p(wi)addone =
c(wi) + 1

N + V
(2.10)

where c(wi) is count of wi, N is the total number of word tokens and V is the

number of types, as opposed to the unsmoothed MLE of the uni-gram probability

of the word wi:

p(wi) =
c(wi)

N
(2.11)

However, the estimates of Laplace law are dependent on the size of the vocabulary

[Manning and Schütze, 1999]. If the data is sparse for a large vocabulary, Laplace

law gives too much of the probability mass to unseen events1. That means, it does

1Laplace law gives very low probability to each unseen event. However, if the data is sparse
over large vocabulary, there will be a lot of unseen events which makes the total probability mass
allocated to them fairly large.
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not perform well enough to be used in n-gram models [Jurafsky and Martin, 2008].

2.4.2 Add λ Smoothing

This smoothing method is introduced as a solution for the overestimation problem

of Laplace smoothing. It is based on the assumption that a smaller probability mass

will be moved to unseen events by adding a fractional count λ (which is between 0

and 1) rather than 1. Therefore, add λ smoothing (which is also called Lidstone’s

law) adds a positive value λ which is normally smaller than 1 to each n-gram count.

That means the probability will be calculated as follows.

p(wi)addλ =
c(wi) + λ

N + V λ
(2.12)

Although this method avoids the limitation of Laplace smoothing by choosing a

small λ, it has also its own drawbacks. It requires a method for choosing an appro-

priate value for λ dynamically [Jurafsky and Martin, 2008, Manning and Schütze,

1999]. Moreover, it always gives probability estimates linear in the MLE frequency

and this is not a good match to the empirical distribution at low frequencies [Man-

ning and Schütze, 1999]. Therefore, there was a need for better smoothing methods.

2.4.3 Natural Discounting

Natural discounting [Ristad, 1995] is introduced as a solution to the problems of

Laplace and Add λ smoothing techniques. It is principally inspired by the theory of

stochastic complexity and the theory of algorithmic complexity. Instead of estimat-

ing parameter values, natural discounting method imposes constraints on strings so

that simple strings are more probable than complex ones. This smoothing technique

considers the number of observed types and the vocabulary size in the probability

calculation as shown below.

PND(wi|wi−1) =



















C(wi−1wi)
C(wi−1)

, if q = k
(

C(wi−1wi)
C(wi−1)

)

C(wi−1)(C(wi−1)+1)+q(1−q)
C(wi−1)2+C(wi−1)+2q

, if q < k & C(wi−1) > 0
(

1
k−q

)

q(q+1)
C(wi−1)2+C(wi−1)+2q

, otherwise

(2.13)

where q is the number of observed types, k is the vocabulary.
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2.4.4 Good-Turing Smoothing

The Good-Turing smoothing was first described by Good [1953]. The idea of this

algorithm is to re-estimate the amount of probability mass to assign to n-grams

that occurred zero times by looking at the number of n-grams that occurred once,

i.e. based on the number of singletons or hapax legomena [Jurafsky and Martin,

2008]. This smoothing technique is based on computing Nc frequency of frequency

or count of count. For example, assuming bi-grams, N0 is the number of bi-grams

with count 0, N1 the number of bi-grams with count 1, and so on. The Good-Turing

estimate replaces an MLE count c with a corrected count c∗, which is calculated as

a function of Nc+1:

c∗ = (c+ 1)
Nc+1

Nc

(2.14)

This way we can replace all the MLE counts and the probability can be calculated

as p = c∗

N
, where N is the total number of counts in the distribution. Alternatively,

instead of computing the corrected count c∗ for N0, we calculate the probability of

events that had zero count N0 as follows:

P ∗
GT =

N1

N
(2.15)

where, N1 is the number of items that occurred once and N is the total number of

items we have seen in the training data. This probability mass is then distributed

among unseen events uniformly, or by some other sophisticated method [Manning

and Schütze, 1999].

Good-Turing method assumes that we know N0 (the number of missing n-grams)

and the distribution of words and n-grams is binomial, although this is not actually

the case. In addition, Good-Turing estimate can not be used when the count of

count is 0 [Jurafsky and Martin, 2008]. Therefore, there is also a need to smooth

the count of counts so that they are all above zero. Gale and Sampson [1995]

proposed a simple and effective algorithm as a solution, called Simple Good-Turing.

In this method, the count of counts Nc are smoothed before they are used in the

computation of the corrected counts.

Since large counts are assumed to be reliable, the discounted/corrected count c∗

is not used for all counts. Moreover, it is customary to treat n-grams with low counts

as if the count were 0. Thus, in practice Good-Turing discounting is not used by

itself, but in combination with backoff and interpolation algorithms [Jurafsky and

Martin, 2008].
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2.4.5 Interpolation and Backoff

The smoothing techniques discussed so far solve the problem of data sparsity based

on the raw frequency of n-grams. Another way of approaching the problem is based

on the n-gram hierarchy. That is, we estimate a probability p (wn|wn−1wn−2) of a

tri-gram, for which no example is found in our training data, based on bi-gram prob-

ability p (wn|wn−1), and so on. There are two ways of using the n-gram hierarchy:

interpolation and backoff. The following is a brief description of these methods.

2.4.5.1 Interpolation

In interpolation, we combine the probability estimates of all n-gram orders based

on the assumption that if there is insufficient data to estimate a probability in

the higher-order n-gram, the lower order can often provide useful information. In

simple linear interpolation (which is also called Jelinek-Mercer smoothing af-

ter its developers Jelinek and Mercer [1980]), we estimate the tri-gram probability

p (wn|wn−1wn−2), for example, by mixing together the uni-gram, bi-gram, and tri-

gram probabilities, each weighted by a λ as follows:

P ∗ (wn|wn−1wn−2) = λ1p (wn|wn−1wn−2) + λ2p (wn|wn−1) + λ3p (wn) (2.16)

where
∑

i

λi = 1 (2.17)

In a slightly more sophisticated version of linear interpolation, each λ weight is

computed based on the context/history. For example, if the context of a certain

tri-gram is observed frequently, then a high λ will be suitable for the tri-gram, and

consequently we give more weight to the tri-gram in the interpolation. On the

contrary, for a history that has occurred only once, a lower λ will be appropriate

[Chen and Goodman, 1998].

In both the simple and conditional interpolation, the λs are learned from some

data using algorithms such as Baum-Welch, or Expectation-Maximization. We

choose the λ values that maximize the likelihood of some data that is different

from the training corpus. One can use for instance a held-out corpus or the tech-

nique known as deleted interpolation. In deleted interpolation different parts of the

training data rotate in training either the maximum likelihood probabilities or the

λs and the average of the results is then used [Chen and Goodman, 1998].
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2.4.5.2 Backoff

Another way of using information from the n-gram hierarchy to obtain better esti-

mates is backoff. In this method, probabilities are computed based on higher order

n-gram counts if the counts are nonzero. Otherwise, we compute the probability of

a particular n-gram based on (n-1)-gram. If the count of the (n-1)-gram is also zero,

then we backoff to the (n-2)-gram. We continue backing off until we reach a history

that has some counts. Katz backoff is one example of such a model.

Katz Smoothing [Katz, 1987] is a backoff smoothing with Good-Turing dis-

counting. The method extends the intuition of Good-Turing estimate by adding

information from n-gram hierarchy. It uses discounting to know how much total

probability mass to set aside for all unseen events, and backoff to distribute this

probability. This method provides a better way of distributing the probability mass

among unseen n-grams on the basis of the information it gets from lower order

n-grams. Katz backoff generally works as follows: if we have a nonzero count for

an n-gram, then it relies on the discounted/corrected (according to Good-Turing

smoothing) probability P ∗. Otherwise, we recursively backoff to the Katz proba-

bility for the shorter history [Jurafsky and Martin, 2008]. The following formulae

show how tri-gram and bi-gram probabilities are computed:

PK (wn|wn−1wn−2) =



















P ∗ (wn|wn−1wn−2) , if C (wn−2wn−1wn) > 0

α (wn−2wn−1)PK (wn|wn−1) , else if C (wn−2wn−1) > 0

P ∗ (wn) , otherwise.

(2.18)

PK (wn|wn−1) =







P ∗ (wn|wn−1) , if C (wn−1wn) > 0

α (wn−1)P
∗ (wn) , otherwise.

(2.19)

where P ∗ (.) is a discounted probability and α is a weight used to ensure that the

probability mass for the lower order n-grams sums up to exactly the amount that

we saved by discounting the higher-order n-grams. Details of the computation of

P ∗ (.) and α can be found in Jurafsky and Martin [2008].

2.4.6 Witten-Bell Smoothing

Witten-Bell smoothing [Witten and Bell, 1991], which can be considered as an in-

stance of linear interpolation, was first developed for the task of text compression.

In this method, the nth-order smoothed model is defined recursively as a linear in-
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terpolation of nth-order MLE model and the (n-1)th-order smoothed model [Chen

and Goodman, 1998] as it is given below for a tri-gram model.

PWB (wn|wn−2wn−1) =

λwn−2wn−1
PMLE (wn|wn−2wn−1)

+
(

1− λwn−2wn−1

)

PWB (wn|wn−1) (2.20)

where the probability mass given to unseen n-grams is calculated on the basis of the

number of unique words that follow the history(wn−2wn−1), which is the number of

observed tri-gram types.

1− λwn−2wn−1
=

| {wi : C(wi−2wi−1wi) > 0} |

| {wi : C(wi−2wi−1wi) > 0} |+N
(2.21)

where N is the number of tokens that follow the history (wn−2wn−1). Chen and

Goodman [1998] found out that this smoothing method performs poorly specially

when used on small training sets.

2.4.7 Absolute Discounting

In absolute discounting [Ney and Essen, 1991, Ney et al., 1995] all non-zero MLE

counts are discounted by a small constant amount D. The discounted frequencies

are then distributed over unseen events [Manning and Schütze, 1999]. The idea

was, if we have good estimates for higher counts, a small discount won’t affect them

[Jurafsky and Martin, 2008]. The probability is computed as follows.

Pabs (wn|wn−1) =







C(wn−1wn)−D

(wn−1)
, if C(wn−1wn) > 0

α(wn−1)Pabs(wn), if C(wn−1wn) = 0
(2.22)

where C(.) is the count of the n-gram, D is the discounting value which is between

0 and 1 (0 ≤ D ≤ 1) and α is the backoff weight, which is calculated as:

α(wn−1) =
1−

∑

n Pabs(wn|wn−1)

1−
∑

n Pabs(wn)
(2.23)

Absolute discounting can also be used in the framework of interpolation as follows.

Pabs(wn|wn−1) =
max{C(wn−1wn)−D, 0}

C(wn−1)
+ β(wn−1)Pabs(wn) (2.24)
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where the interpolation coefficient β is calculated as:

β(wn−1) =
DN(wn−1∗)

C(wn−1)
(2.25)

where N(wn−1∗) represents the number of unique words that follow the history

wn−1. In all cases, the value of D can be determined on some held out data or

using cross validation technique on the training data. Ney et al. [1995] obtained the

following optimal estimate for D through cross validation on the training data.

D =
n1

n1 + 2n2
(2.26)

where n1 and n2 are the total number of n-grams with exactly one and two counts,

respectively, in the training data and n is the order of the higher-order model.

Absolute discounting is the base for the Kneser-Ney smoothing technique and

its variant, which are known for their superior performance compared with other

smoothing algorithms.

2.4.8 Kneser-Ney Smoothing

As indicated in section 2.4.7, Kneser-Ney smoothing is based on absolute discounting

technique but uses a more sophisticated way to handle the backoff distribution. For

example, consider the job of building a bi-gram model using a corpus which consists

of common words such as Francisco, which occurs more often after a single word San.

As the count of the word Francisco is high, the uni-gram probability is also high, and

therefore, absolute discounting will give a relatively high probability to Francisco

occurring after a new bi-gram history. However, this should not be the case as the

word Francisco follows only the word San. Kneser-Ney smoothing tries to solve this

problem. The main idea of this method is that the uni-gram probability should not

be proportional to the frequency of a word, but to the number of different words

that it follows [Chen and Goodman, 1998]. Thus, Kneser-Ney smoothing bases the

estimate on the number of different contexts word w has appeared in assuming that

words which have appeared in more contexts are more likely to appear in some other

new context as well [Jurafsky and Martin, 2008]. Thus the uni-gram probability is

defined as follows:

P (wi) =
| {wi−1 : C(wi−1wi) > 0} |

∑

wi
| {wi−1 : C(wi−1wi) > 0} |

(2.27)

Assuming a proper coefficient α on the backoff so as to make everything sum to one,

Kneser-Ney bi-gram backoff probability is given as follows:
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PKN (wi|wi−1) =







C(wi−1wi)−D

C(wi−1)
, if C(wi−1wi) > 0

α(wi)
|{wi−1:C(wi−1wi)>0}|∑
wi

|{wi−1:C(wi−1wi)>0}| , Otherwise
(2.28)

The interpolated version of Kneser-Ney, which is called interpolated Kneser-Ney can

be computed as shown below:

PKN (wi|wi−1) =
C(wi−1wi)−D

C(wi−1)
+ β(wi)

| {wi−1 : C(wi−1wi) > 0} |
∑

wi
| {wi−1 : C(wi−1wi) > 0} |

(2.29)

This method is the most commonly used and the best performing modern n-gram

smoothing method. It gave rise for the birth of its variant called Modified Kneser-

Ney [Chen and Goodman, 1998].

2.4.9 Modified Kneser-Ney Smoothing

Modified Kneser-Ney smoothing was introduced by Chen and Goodman [1998]. This

smoothing method differs from Kneser-Ney since it uses three different discounts

D1, D2, D3+ that are applied to n-gram with one, two, and three or more counts,

respectively instead of a single discount D for all nonzero counts. Chen and Good-

man [1998] did the modification based on their observation that the ideal average

discount for n-grams with one or two counts is substantially different from the ideal

average discount for n-grams with 3 or more counts. They were able to show that

this method significantly outperforms the regular Kneser-Ney smoothing. A bi-gram

probability will be computed as follows.

PMKN (wi|wi−1) =
C(wi−1wi)−D(C(wi−1wi))

C(wi−1)
+ β(wi−1wi)PMKN (wi) (2.30)

where

D(c) =































0, if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c ≥ 3

(2.31)

As Ney et al. [1995] developed an optimal estimate for D (for both absolute discount-

ing and Kneser-Ney smoothing) as a function of training data, Chen and Goodman

[1998] did the same to estimate the optimal values for D1, D2 and D3+.
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Y =
n1

n1 + 2n2

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3 = 3− 4Y
n4

n3
(2.32)

where the ni’s have the same meaning as in absolute discounting and Kneser-Ney

smoothing. If one of the ni’s (count of counts) is zero, then it is not possible to use

this smoothing technique.

β(wi−1wi) is computed as follows so as to make the distribution to sum to 1.

β(wi−1wi) =

∑3+
j=1Dj | {wi−1 : Cj(wi−1wi) > 0} |
∑

wi
| {wi−1 : C(wi−1wi) > 0} |

(2.33)

2.5 Improved Language Models

Smoothing techniques have been developed to improve the quality of n-gram lan-

guage models. Besides smoothing, several other methods have also been tried to

improve language models. The probability of a word in n-gram models is normally

computed based on the previous N − 1 words. Therefore, n-gram models can not

capture long distance dependencies. In addition, since they consider only the very

immediate history, they can not adapt to the style or topic of the document [Lau

et al., 1993] and, therefore, are considered static models. In this section we give

a brief description of language models which have been developed as remedies to

these and other related problems of n-gram modeling. However, we do not claim to

be exhaustive in covering all the techniques.

2.5.1 Class-based Models

Class based or cluster n-gram models [Brown et al., 1992] are particularly intro-

duced to tackle the problem of data sparsity. In class-based language models, the

probability of a word wi is computed by multiplying the conditional probability of

the word’s class given the preceding classes and the word given its class. Classes

based on part-of-speech tags, morphological features of words, or semantic infor-

mation have been tried [Niesler, 1997]. Moreover, models based on automatically

derived classes have been trained [Brown et al., 1992]. Class based models led to a

reduction in perplexity when linearly interpolated with word based n-gram models.
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2.5.2 Higher Order N-gram

Higher order n-gram (quadro- or penta-gram) models are an obvious solution to the

problem of tri-gram models not being able to capture long distance dependencies.

However, most of the quadro- or penta-gram sequences might not appear in the

training data because of data sparseness. Therefore, we need either to backoff to

or interpolate with lower-order n-grams (tri-gram, bi-gram, uni-gram). In addition,

as n increases the complexity of the model also increases. Nevertheless, Goodman

[2001] developed n-gram models of n 1 to 10, as well as 20 to study the relationship

between n-gram order and perplexity. Using 280 million words as training data a

small improvement in perplexity has been obtained in 6-gram and 7-gram models

over the penta-gram one. However, only the difference in perplexity between quadro-

gram and penta-gram was significant. He also indicated the fact that penta-gram

models provide a good trade off between computational resources and performance.

2.5.3 Decision Tree Models

Decision tree-based language models, which have been first introduced by Bahl et al.

[1989], were suggested as a solution for the problem of long distance dependencies

in n-gram models. Tree based models can partition the space of histories by ask-

ing questions about the history h at each of the internal nodes. The probability

distribution p(w|h) is then computed based on the training data at each leaf. In

the first attempt [Bahl et al., 1989], only a slight improvement in perplexity was

obtained over the normal n-gram model although it involved a very time consuming

tree-building process (many months of training). It was possible to obtain an appre-

ciably lower perplexity when the tree-based model is interpolated with the normal

n-gram model. Thus, the authors indicated the fact that the best way to benefit from

a tree-based language model is by using it together with the n-gram model instead

of replacing it. Rosenfeld [2000] said that it is likely that trees that significantly

outperform n-grams exist, however, finding them is difficult due to computational

and data sparseness reasons.

2.5.4 Skipping Models

Skipping n-gram models [Huang et al., Rosenfeld, 1994, Martin et al., 1999], also

called distance n-grams, are those models in which the probabilities are computed

for sequence of n words with gaps between them. That means the words no longer

form a consecutive sequence. Considering tri-gram models, for instance, probability

of wn can be calculated as p(wn|wn−3, wn−1), p(wn|wn−3, wn−2), etc. Martin et al.

[1999] used the idea to skip repetitions (I, and, the, and a), fillers (uh and um) or
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modifiers (very) in the history of n-grams based on the assumption that skipping

these words does not change the meaning of a phrase. Besides capturing long dis-

tance dependencies, this model can be used as a solution for the data sparseness

problem caused by higher order n-gram models.

2.5.5 Dynamic Language Models

A dynamic or adaptive language model, which can be either trigger- [Lau et al.,

1993, Rosenfeld, 1996] or cache-based [Kuhn, 1988, Kupiec, 1989, Kuhn and Mori,

1990, 1992, Jelinek et al., 1991], is one that changes its estimates as a result of

seeing some of the text. In trigger-based models certain words of the vocabulary

will be identified as triggers and the presence of these trigger words in the history

modifies (increases or decreases) the distribution of the predicted/triggered words.

Cache-based language models are based on the assumption that a word used in the

recent past is much more likely to be used again. Thus, a cache model, which can

be implemented either as a class-based [Kuhn and Mori, 1990, 1992, Jelinek et al.,

1991] or tri-gram model [Jelinek et al., 1991], estimates the probability of a word

from its recent frequency of use instead of its overall frequency in the training text.

Interpolated with a normal tri-gram model, the cache-based language model resulted

in a reduction in perplexity and a reduced word error rate of speech recognition.

However, cache models are not appropriate for domains where the previous words

are not exactly known. In a speech recognition application, for example, if cache

models make error on earlier words, they do not have a way to correct it unless there

is some way for users to interfere [Jurafsky and Martin, 2008].

2.5.6 Mixture Models

Mixture models or sentence mixture models [Iyer et al., 1994, Iyer and Ostendorf,

1999] are a simple variation of the standard n-gram model. They are based on

the observation that there are different sentence types in a corpus which could

be grouped by style, topic, or any other criteria. N-gram models are, therefore,

estimated for each group of sentences and linearly interpolated either at the n-gram

level or at the sentence level. When they are combined at the sentence level the

approach is called sentence mixture model.

2.6 Morphology-based Language Modeling

Despite the development of smoothing techniques and other modeling techniques

such as class-based language models, the data sparseness and out-of-vocabulary
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words problems remained as challenges for morphologically rich languages. This is

the reason behind the use of sub-word modeling units for language modeling instead

of the usual units, namely words.

2.6.1 Sub-word Based Language Modeling

Many researchers [Geutner, 1995, Carki et al., 2000, Byrne et al., 2000, Whittaker

and Woodland, 2000, Whittaker et al., 2001, Siivola et al., 2003, Hirsimäki et al.,

2005, Kirchhoff et al., 2002, Kiecza and Waibel, 1999, Kwon, 2000, Choueiter et al.,

2006, El-Desoky et al., 2009, Heintz, 2010] developed sub-word based language mod-

els using different approaches. The approaches differ in the choice of the sub-word

units (which can be syllables, chunks or morphemes) or the word decomposition

method they use (statistical method, linguistically motivated, etc.). In almost all

of the cases sub-word based language models have been applied to an automatic

speech recognition application.

A reduction in perplexity and in the out-of-vocabulary rate has been reported

in most of the studies. However, the perplexity reduction did not always lead to an

improvement in the performance of automatic speech recognition systems. This is

due to the high acoustic confusability of short units.

Different approaches have been tried to improve the system performance while

using sub-word units. One of the methods is the lattice or n-best list rescoring ap-

proach in which the sub-word units are used only in the language modeling compo-

nent. Improvement in system performance has been reported as a result of rescoring

lattices (n-best lists) using sub-word models interpolated with normal word-based

models. The problem with this approach is that it is not possible to avoid the out-

of-vocabulary words problem since word based dictionaries are used to generate the

n-best list or the lattices. Another approach was to concatenate acoustically confus-

able sub-word units into longer units which can be acoustically better distinguished.

This method also may not completely avoid the out-of-vocabulary words problem.

Another challenge of using sub-words in language modeling is related to the scope

of the n-grams. That means, for example, if a word is segmented into five sub-word

units and if we develop a penta-gram language model, the n-gram spans only a

single word. Therefore, capturing word level dependencies becomes problematic.

Researchers tried to solve this problem by using longer size n-grams like six- or

seven-grams. Skipping models of the type used in Byrne et al. [2000] can also be

used to tackle this problem.

The following section reviews the most influential works in morpheme-based

language modeling.
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2.6.2 Review of Previous Works

Geutner [1995] developed a language model for German by decomposing full word

forms into individual morphemes and using morphs as units so as to produce a better

large-vocabulary speech recognition system. In the experiment, she used different

methods of word decomposition: strictly morpheme based (linguistically based, for

example, “weggehen” is decomposed as “weg-geh-en”), not strictly linguistically ori-

ented, decomposition into root form (this is something like removing suffixes, for

instance “weggeh” is considered instead of “weggehen”) and combination of the last

two (not strictly linguistic based and decomposition into root form). A reduction

in vocabulary size has been observed in all cases. Although the perplexity improve-

ment varies, all morpheme based models have a lower perplexity than the word

based language model. The language model developed using morphemes obtained

by strictly linguistic decomposition showed a higher reduction in perplexity than the

others. However, this language model did not improve the performance of the speech

recognition system. That is why the author tried a decomposition method which is

not strictly linguistically oriented. This method led to both a perplexity reduction

and a slight improvement in recognition accuracy. However, the author did not

provide details of the decomposition method and therefore it is difficult to explain

the performance improvement of the speech recognition system. No performance

improvement has been obtained as a result of using a root based decomposition.

Combining both methods led to a perplexity reduction but not to an improvement

in the performance of the speech recognition system.

Carki et al. [2000] developed a speech recognizer for Turkish using an automatic

decomposition of words into syllables and merging them into larger units by defin-

ing word-positioned syllable classes. These units are used to train a quadro-gram

language model. As a result, the out-of-vocabulary rate was decreased by 50%.

However, because of acoustic confusability, the performance of speech recognition

system decreased.

Byrne et al. [2000] developed a morph-based language model for Czech and used

it in a large-vocabulary continuous speech recognition system. Words were decom-

posed into stems and endings and a morpheme bi-gram model has been developed

using each morpheme as a unit. With this language model, it was possible to obtain

a reduction in perplexity as well as an improvement (over 37%) in word recognition

accuracy over the baseline system. The result obviously contradicts the findings of

other researchers. But as the authors noted, this might be due to the nature of the

language, the decomposition method or the task. As their language model simply

considers morphemes as units, the probability of the stem is predicted based on the
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previous ending i.e. p(si|ei−1). This leads to a loss of word level dependencies as

the ending gives information about grammatical features and not about the previous

word. Considering this fact, the model was modified so that the probability of si
is calculated as p(si|si−1) and the probability of ei is calculated as interpolation of

p(ei|si) and p(ei|ei−1) using an interpolation weight ε, where 0 ≤ ε ≤ 1. Surpris-

ingly, a better morpheme based model has been obtained with ε = 0.0. Byrne et al.

[2001] applied the morpheme-based language models to a morpheme-based speech

recognition. Although the baseline morpheme-based recognition system performed

worse than the word-based recognition, a result which is nearly as good as the word-

based system has been obtained by optimizing scaling factors and rescoring lattices

with a tri-gram morpheme-based language model.

Whittaker and Woodland [2000] conducted a research focusing on the selection

of sub-word units for n-gram modeling of Russian and English. The sub-word units

are called particles by the authors since they denote any possible part of a word

whether it is a single character or a whole word. Whittaker and Woodland [2000]

used three word decomposition methods: affix stripping (based on string matching)

and two greedy, data driven algorithms called particle selection algorithm (PSA)

and word decomposition algorithm (WDA). PSA is designed to determine particle

units that best model the training data. It uses the word uni-gram and bi-gram

statistics from the training data and a list of all possible candidate particles of

different lengths. Each particle is inserted in all words and a change in training like-

lihood is computed. The particle that gave the greatest reduction in perplexity is

permanently added to the final set of particles (S) which initially contains all single

characters that occur in words of the vocabulary. WDA is designed to determine

word decompositions that best model the training data. Given an initial decom-

position for each vocabulary word, it optimizes the decomposition of each word in

turn. The optimal decomposition of a word is the one that maximizes the likeli-

hood of the training data. In their experiments, they used fixed length character

decomposition and affix striping as initial decomposition. The particles (obtained

using different decomposition methods) have been used only in the language mod-

eling component of a speech recognition system using a lattice rescoring framework.

They developed various 6-gram language models and applied the language models in

a speech recognition system. Particle models gave similar perplexity and word error

rate (WER)2 results as the word based models. However, a reduction in perplexity

and a small reduction in WER have been obtained using an interpolation of particle

and word based models. Their results also show that the data driven decomposition

2Although the particles are considered as a unit in language modeling, word level perplexity
and WER have been reported.
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algorithms led to a greater improvement, which can be attributed to the nature of

the algorithms.

Whittaker et al. [2001] also investigated the use of particles in language and

acoustic modeling. Their vocabulary independent speech recognition system has

three components: the particle-based speech recognizer, a converter which translates

particle hypotheses into a graph of word candidates, and a decoder which selects the

highest scoring word sequence. As it can be expected, an increase in WER has been

observed compared to a word bi-gram speech recognizer of comparable complexity.

However, it was possible to cover 18 OOV words which are not part of the decoder’s

65k vocabulary.

In another study Whittaker et al. [2001] compared word-based, class-based and

particle-based language models. An improvement in perplexity has been obtained

as a result of interpolating particle models with word and class based models. The

authors also indicated the fact that the improvement with particle models suggests

their capability of tackling the data sparsity problem.

Siivola et al. [2003] developed an unlimited vocabulary speech recognizer for

Finnish using syllables and morphemes as units both in language and acoustic mod-

els. While the syllable lexicon has been produced using a reasonably simple rule

set, an unsupervised morphological learning algorithm, namely Morfessor [Creutz

and Lagus, 2005] (for a detailed description see Section 4.3.2.1), has been applied

to segment words into morphs. They developed a tri-gram language model for each

of the lexicons (word, syllable and morph) and found that the word-based language

model has a lower perplexity than the syllable and morph-based ones. However,

they calculated the perplexity of the syllable and morph-based language models by

normalizing the log probabilities with the number of word tokens instead of the

respective syllable and morph tokens. This approach does not seem to be correct

as the probabilities are collected for syllable and morph tokens. Speech recognition

results have been reported in WER, token error rate (ToER) and letter error rate

(LER). The results show that morph-based models outperform all the others despite

the use of morphemes in both acoustic and language models. This result contradicts

the findings of other similar experiments.

In another study, Hirsimäki et al. [2005] compared the performance of auto-

matically learned morphs (statistical) with linguistic morphs for a Finnish speech

recognition task. Their aim was to find out whether the error rate reduction ob-

tained in the previous study [Siivola et al., 2003] is due to the reduction in out-

of-vocabulary rate or whether other ways of splitting words would also give good

results. Therefore, they considered three lexical units: statistical morphs (obtained

using Morfessor), words extended with phonemes as sub-word units and grammat-
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ical morphs (obtained using linguistic rules). N-gram language models of order 2

to 7, smoothed with the Kneser-Ney smoothing technique, have been trained for

each of the lexical units using the SRILM toolkit. The language models have been

evaluated using cross-entropy and the results show that morpheme-based models are

better than word-based models. Similar to the results of their previous study, the

morph-based language models performed better in speech recognition than the word

based models. Therefore, they concluded that both the grammatical and statisti-

cal morphemes seem to be a good choice for representing a very large vocabulary

efficiently with a reasonable number of lexical units.

Kirchhoff et al. [2002] developed particle-based (similar to Whittakers’s model

[Whittaker and Woodland, 2000]) language model for Arabic, motivated by the

work of Billa et al. [1997] who have got promising results by just separating the

definite article from the following noun. Instead of decomposing words fully into

component morphemes, they detached the possessive and object pronoun suffixes,

definite article, negation and future markers and prepositional morphemes. The

particle models have higher perplexity compared to the word-based model. However,

they calculated the perplexity in the same way as Siivola et al. [2003] did, that means

the log probabilities accumulated over the particles but normalized with the number

of words instead of the number of particles. Small reduction in WER has been

achieved as a result of rescoring n-best lists using a model which is an interpolation

of particle and word models.

Creutz et al. [2007] analysed sub-word based language models in large vocabu-

lary continuous speech recognition of four morphologically rich languages: Finnish,

Estonian, Turkish and Egyptian Colloquial Arabic. Their aim was to compare mor-

pheme and word based n-gram language models in automatic speech recognition

across languages. The result of their experiment shows that the morph-based mod-

els perform better than the word based models except for Arabic, where the word

model outperforms the morph based model. The best performance is observed for

Finish data sets, which is explained by the speaker dependent acoustic models and

clean noise conditions. The authors attributed the poor performance of the Arabic

setup to the insufficient amount of language model training data. However, we also

note that the type of speech data used to train the systems is different. While read

speech corpora have been used for Finnish, Estonian and Turkish, spontaneous tele-

phone conversations, which are characterized by disfluencies and by the presence of

non-speech have been used for Arabic experiment. This might also explain the poor

performance of the Arabic system.

El-Desoky et al. [2009] investigated the use of morphological decomposition and

diacritization for improving Arabic LVCSR. The authors tried to address the OOV
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and short-vowel problems by using morphological decomposition and diacritization

in Arabic language modeling. In their study, the vocabularies are selected from

a text corpus consisting of around 206 Million full-word forms using a maximum

likelihood approach where the OOV rate is minimized over held-out data. The vo-

cabulary of the baseline word-based recognition system is 256k. The tool used for

morphological decomposition and diacritization is MADA, which stands for Morpho-

logical Analysis and Disambiguation for Arabic. They did two sets of experiments:

first using only morphological decomposition in language modeling and second us-

ing both morphological decomposition and diacritization. In both cases, however,

the vocabulary is not purely morph vocabulary. Instead, the first N highly ranked

(according to the maximum likelihood vocabulary selection procedure) decompos-

able words are left unsegmented. They experimented using different values for N.

The best result (0.5 absolute word error rate reduction over the baseline system)

has been obtained with a system that uses 256k vocabulary (236k morph and 20k

full-word) and only morphological decomposition in language modeling .

Heintz [2010] did a study on Arabic language modeling with stem-derived mor-

phemes for automatic speech recognition. To decompose words into morphemes, she

used an algorithm which first identifies the stem of a word (based on stem patterns)

and considers any letters on either side of the word as affixes. The claim of using

this decomposition method is that besides solving the OOV problem, it also solves

the dialectal and short-vowel problems of the language. The Modern Standard Ara-

bic portion of the TDT4 multilingual broadcast news speech text and annotations,

distributed by the linguistic data consortium, has been used for training and test-

ing language models. Of this text, 14 million words are used for training while

17k and 19k words are used for development and test sets, respectively. SRILM

has been used for language model training. As the author indicated, although the

morpheme-based models showed improvement in terms of coverage and average neg-

ative log-probability (a metric used in Kirchhoff et al. [2002], Siivola et al. [2003]

and Kirchhoff et al. [2006]), no improvement has been obtained in word recognition

accuracy. She attributed this to a number of factors including acoustic confusability

and lack of context in the predictions of morpheme-based models.

Using sub-word units in both acoustic and language models of a speech recog-

nition system is a solution for the out-of-vocabulary problem. However, often these

units are acoustically highly confusable and their use reduces the scope of the lan-

guage model. Kiecza and Waibel [1999], while developing a LVCSR system for

Korean, tried to overcome these problems by creating a set of units that lie be-

tween longer units (word phrases - "eojeols") and shorter units (syllables). They

start from the syllable based system and repeatedly concatenate the syllables in
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order to decrease acoustic confusability and increase the span of the n-gram lan-

guage model. Similarly, Kwon [2000] developed LVCSR systems for Korean using

syllables and morphemes as recognition units. Kwon [2000] tackled the problems

of acoustic confusability and the limited scope of the n-gram language models by

combining recognition units. Both linguistic and statistical methods have been used

to concatenate units.

Choueiter et al. [2006] developed morpheme-based LVCSR system for Arabic.

Unlike Kiecza and Waibel [1999] and Kwon [2000], here a morpheme lattice con-

strainer has been used to reduce the decoding of illegal morpheme sequences which

results in non-word output and consequently lead to performance degradation. The

lattice constrainer is a finite state acceptor that allows only legal sequences of mor-

phemes. Although this method helps to avoid the recognition of morpheme se-

quences that lead to non-word units, it does not really solve the problem of acoustic

confusability which results from the use of short units.

2.6.3 Factored Language Model

Factored language models (FLM) have first been introduced by Kirchhoff et al. [2002]

for combining various morphological information in Arabic language modeling. In

FLM a word is viewed as a bundle or vector of K parallel factors, that is, wn ≡

f1
n, f

2
n, ..., f

k
n . The factors of a given word can be the word itself, stem, root, pattern,

morphological classes, or any other linguistic element into which a word can be

decomposed. The idea is that some of the feature bundles (for example: roots,

patterns and morphological class) can uniquely define the words i.e. (W = wi) ≡

(R = ri, P = pi,M = mi). Therefore, the n-gram probabilities can be defined on

the basis of these features/factors as follows:

P (wi|wi−1, wi−2)

= P (ri, pi,mi|ri−1, pi−1,mi−1, ri−2, pi−2,mi−2)

= P (ri|pi,mi, ri−1, pi−1,mi−1, ri−2, pi−2,mi−2)

P (pi|mi, ri−1, pi−1,mi−1, ri−2, pi−2,mi−2)

P (mi|ri−1, pi−1,mi−1, ri−2, pi−2,mi−2) (2.34)

There are two important points in the development of FLM: choosing the appropri-

ate factors which can be done based on linguistic knowledge or using a data driven

technique and find the best statistical model over these factors. Unlike normal word

or morpheme-based language models, in FLM there is no obvious natural backoff
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order. In a tri-gram word based model, for instance, we backoff to a bi-gram if a

particular tri-gram sequence is not observed in our corpus by dropping the most

distant neighbor, and so on. However, in FLM the factors can be temporally equiv-

alent and it is not obvious which factor to drop first during backoff. If we consider

a quadro-gram FLM and if we drop one factor at a time, we can have six possible

backoff paths as it is depicted in Figure 2.2 and we need to choose a path that re-

sults in a better model. Therefore, choosing a backoff path is an important decision

to be taken in FLM. There are three possible ways of choosing a backoff path: 1)

Considering a fixed path based on linguistic or other reasonable knowledge; 2) Gen-

eralized all-child backoff where multiple backoff paths are chosen at run time; and

3) Generalized constrained-child backoff where a subset of backoff paths is chosen

at run time Kirchhoff et al. [2008]. A genetic algorithm for learning the structure

of a factored language model has been developed by Duh and Kirchhoff [2004].

Figure 2.2: Possible backoff paths

The advantages of FLMs as indicated by Kirchhoff et al. [2003] are:

• reliable estimation of component probabilities, since more observations will be

available for different combinations of morphemes,

• model simplification by avoiding superfluous conditioning variables,

• expressing dependencies across words, and

• easy integration of other word features (e.g. semantics) beyond morphological

features.



Chapter 3

Amharic and Its Morphology

3.1 Introduction

Amharic is a member of the Ethio-Semitic languages, which belong to the Semitic

branch of the Afroasiatic super family [Voigt, 1987]. It is related to Hebrew, Arabic,

and Syrian. Amharic, which is spoken mainly in Ethiopia, is the second populous

Semitic language, after Arabic. According to the 1998 census, it is spoken by over

17 million people as a first language and by over 5 million as a second language

throughout different regions of Ethiopia. For fifty years, it was the constitutionally

recognized national language of Ethiopia, the required language of instruction in the

primary school (1-6 grades) and a required subject of the Ethiopian School Leaving

Certificate Examination (ESLCE) [Anbessa and Hudson, 2007]. Currently, Amharic

is the official working language of the federal democratic republic of Ethiopia and

several of the states within the federal system. The language is also spoken in other

countries such as Egypt and Israel [Ethnologue, 2004].

Like other Semitic languages such as Arabic, Amharic exhibits a root-pattern

morphological phenomenon. In addition, it uses different affixes to create inflectional

and derivational word forms. The following is a description of the Amharic word

morphology.

3.2 Root-Pattern Morphology

Semitic languages are characterized by a root-pattern morphology. A root, also

called radical, is a set of consonants (commonly three, but ranges from one to

six) which carry the basic lexical meaning. A pattern, also called vocalic element,

consists of vowels which are inserted (intercalated) among the consonants of the

root. The pattern is combined with a particular prefix or suffix to create a single

grammatical form [Bender et al., 1976] or another stem [Baye, 2000EC]. Stems

are, therefore, formed by intercalating the vowels among root consonants. Finally,

prefixes and suffixes are added either to complete the stem as a word or to form

another stem.
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Like other Semitic languages, Amharic is characterized by the root-pattern non-

concatenative morphology. For example1, the Amharic root sbr /sbr/2 means

’break’, when we insert the pattern ä-ä among the radicals, we get the stem ˜¤r-

/säbbär-/. Attaching the suffix -ä gives ˜¤� /säbbärä/ ’he broke’ which is the first

form of the verb (third person masculine singular in past tense as in other Semitic

languages) [Bender et al., 1976]. Using the same pattern, but without geminating

the second consonant and attaching the suffix -a, we get the process nominal ˜¤•

/säbära/ which means ’breaking’. The pattern ä-a combined with the suffix -i makes

agent nouns, as in ˜§” /säbari/ ’one who breaks’. The same stem with the suffix -a,

gives us the participle ˜§• /säbara/ ’broken’. Intercalating the vowel ä between the

second and third consonant results in a jussive stem s¤r- /sbär-/. Attaching the

prefix Œ- /mä-/ to it forms an infinitive verb Œs¤r /mäsbär/ ’to break’ [Bender

et al., 1976]. The imperfective stem is derived from the root by intercalating the

vowel ä between the first and the second consonants. Usually the form taken by

the stems of a particular class is indicated by a sequence of Cs and Vs, called

template. For example, CVCCVC, CCVC and CVCC are templates that represent

the perfective, jussive and imperfective stems of tri-radical verbs, respectively.

3.3 Derivational and Inflectional Morphology

There are five parts of speech in Amharic: adjectives, nouns, verbs, adverbs, and

prepositions and conjunctions. Prepositions and conjunctions are totally unproduc-

tive. Adverbs are few in number and are less productive. They are not inflected but

some adverbs can be derived from adjectives, for instance, ká{ /kIfuña/ ’severely or

seriously’ is derived from the adjective ká /kIfu/ ’wicked’ by suffixing -ña. There-

fore, our discussion of derivational and inflectional morphology concentrates on the

remaining three parts of speech, namely verbs, nouns, and adjectives.

3.3.1 Derivation

3.3.1.1 Verbs

Unlike the other word categories such as nouns and adjectives, the derivation of verbs

from other parts of speech is not common. Anbessa and Hudson [2007] indicated the

existence of verbs, called denominals, which are derived from nouns by taking just

the consonants of a noun and considering them as a root. For instance, the verb Œ�È

1Most of the examples given in this chapter are taken from text books.
2For transcription purpose, IPA representation is used with some modifications. The IPA

representation (with the modification we made) is given in Appendix A.
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/märräzä/ ’He poisoned’ and °�° /tärrätä/ ’He told a story’ are denominal verbs

derived from the nouns Œrz /märz/ ’poison’ and °�t /tärät/ ’story’, respectively.

However, the authors themselves indicated that the history of denominals is rarely

certain. In addition, even if the denominals are considered to be derived from the

noun, we can still see that the verb derivation is from the consonants of the nouns.

Thus, it is possible to say that in almost all the cases Amharic verbs are derived

from root consonants, which carry the basic lexical meaning, by intercalating vowel

patterns and/or using different derivational morphemes.

Roots and patterns

Most scholars (to mention some: Dawkin [1960], Bender and Hailu [1978], Leslau

[2000]) claim that the number of consonants of roots in Amharic verbs range from one

to six. For instance, Leslau [2000] classified the verbs as bi-radicals (abbreviated tri-

radicals), tri-radicals, quadri-radicals, abbreviated quadri-radicals and pluri-radicals

(those consisting of more than four consonants) on the basis of the number of con-

sonants that show up in the surface forms of the verbs. Dawkin [1960] classified

verbs into five groups depending on the number and behavior of the consonants in

the verbs:

• Group I — Uncontracted three-radical verbs

• Group II — Contracted three-radical verbs with a vowel instead of the last

radical

• Group III — Contracted three-radical verbs with a vowel instead of the penul-

timate radical

• Group IV — Uncontracted four-radical verbs

• Group V — Contracted four-radical verbs with a vowel instead of the last

radical

However, Baye [1999] argues that Amharic verbal stems have uniformly three radi-

cals and that variation in the number of consonants in the surface forms is a result

of reduction and/or extension of one or more of the three radicals. That means

verbs having less than three consonants in their surface form have gone through the

process of root-reduction and those that have more than three passed through the

process of root-extension. Here, it is important to note that scholars who claim that

the number of root consonants in Amharic verbs range from one to six do not deny

the existence of root reduction processes in Amharic verbs. The reduction process
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involves reduction of the laryngeals and glides (h, y, w, ?) and two other weak radi-

cals (b and r). The extension process is divided into: Internal extension (gemination

and reduplication) and external extension (epenthesis). But all the scholars agree

that tri-radical verbs are the basic/common types in Amharic as it is true for other

Semitic languages.

Discussing whether Amharic verbs consist of uniformly three, less or more than

three consonants is not the purpose of the present work. The most interesting

point for us is that Amharic verbal stems are derived from root consonants by

interdigitating vowel patterns. However, as we manually segmented Amharic words

using the list of roots in Bender and Hailu [1978] to cross check the roots that

we found during the segmentation task, we followed the long standing claim that

Amharic verbs can have one to six consonants in the root.

The penultimate radical is the most important element in a verb. Specifically,

"it is like the pivot of the verbal stem" [Dawkin, 1960]. Thus, traditionally Amharic

verbs are classified into three types depending on the gemination pattern of this

radical. In type A verbs, the penultimate radical geminates in perfect tense only.

In type B verbs, the penultimate radical geminates irrespective of the verb forms.

In type C verbs, the penultimate radical geminates in both perfect and imperfect

verb forms.

The vowel /ä/, also called the thematic or aspectual vowel, is considered to

be the only vowel that is intercalated among the consonants of all Amharic verbs

except Type C verbs that are also characterized by using the vowel /a/ after the

first radical. Thus, any other vowel in the surface form of Amharic verbs indicate

reduction of laryngeals, sometimes called gutturals or weak radicals, and glides (h,

y, w, ?). The presence of the vowel /a/ in surface forms implies the reduction of the

two consonants /?/ and /h/, the vowel /o/ implies the reduction of /w/ and /e/

implies the reduction of the consonant /y/, as shown in Table 3.1.

Roots Verbs Gloss
frh färra ’he feared’
nwr norrä ’he lived, it existed’
hyd hedä ’he went’
l?k lakä ’he delegated’

Table 3.1: Reduction of consonants

Baye [1999] indicated the existence of two more weak radicals (/r/ and /b/), that

are not laryngeals but sometimes disappear from the surface forms of verbs. For

instance, the verbal forms €y- /ayy/ ’saw’ and €l- /all/ ’said’, derived from the
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tri-radical roots /r-?-y/ and /b-h-l/, respectively. Thus, the existence of the above

mentioned six consonants (w, y, h, ?, b and r) in verbal roots imply the existence of

a vowel other than /ä/ and the change of the vowel caused by the loss of the radicals.

We considered this fact in the morphological segmentation of Amharic words.

Simple and derived verbs

Although almost all Amharic verbs are derived from root consonants, as indicated

by Sisay [2004] traditionally a distinction is made between simple and derived verbs.

Simple verbs are those verbs derived from roots by intercalating vowel patterns

whereas derived verbs are considered as derivatives of simple verbs. The derivation

process can be an internal one in which consonant-vowel patterns are changed, an

external one where derivational affixes are attached to the simple derived verbs or

a combination of the internal and external derivational processes.

Simple stems are formed by intercalating the vowel ‡ /ä/ (except for type C

verbs) among the root consonants. The number of vowels required differs according

to the conjugation and the number of consonants in the root. Table 3.2 indicates,

as an example, how the pattern differs depending on conjugation and verb type for

tri-radical verbs.

Verb forms Type A: sbr Type B: flg Type C: mrk
stems Template stems Template stems Template

Perfect säbbär- CVCCVC fälläg- CVCCVC marräk- CVCCVC
Imperfect säbr- CVCC fällg- CVCCC marrk- CVCCC
Jussive sbär- CCVC fällg- CVCCC mark- CVCC
Gerund säbr- CVCC fällg- CVCCC mark- CVCC
Infinitive sbär- CCVC fälläg- CVCCVC maräk- CVCVC

Table 3.2: Simple verb conjugation

The following are stems derived from the simple stems.

1. Causative: Causative verbs are derived by adding the derivational mor-

phemes a- and/or as- to the verb stem as in the examples Ô�s- /därräs-/ ’ar-

rive’ - €Ô�s- /adärräs-/ ’cause to arrive’ and Â˜d- /wässäd-/ ’take’ - €sÂ˜d-

/aswässäd-/ ’cause to take’. In most cases the a- morpheme is used to form

causative of intransitive verbs and verbs of state, and the as- for transitive

ones. Exceptions are:

• verbs that begin with a, which always take the morpheme as- to form

causative e.g. €ÔÚ /addägä/ ’he grew’ - €›ÔÚ /asaddägä/ ’he raised’;



38 Chapter 3. Amharic and Its Morphology

• transitive verbs which have to do with eating, drinking and related ac-

tivities whose causative is formed with the a- morpheme as in ¤‰ /bälla/

’eat’ - €¤‰ /abälla/ ’feed’;

• verbs which are transitive only in the sense of having cognate objects

form their causatives using the morpheme as- as in ¸à� /Čäffärä/ ’he

danced’ - €s¸à� /asČäffärä/ ’he caused to dance’

There are verbs that take both the a- and as- causative morphemes to form

the direct causative and indirect causative, respectively. For instance, the verb

Œ³ /mät’t’a/ ’he came’ can take both derivational morphemes as in €Œ³

/amät’t’a/ ’he brought’ and €sŒ³ /asmät’t’a/ ’he caused someone to bring

something’. In direct causative, the causer actively participate in action, but

in indirect causative the causer gets the action performed by somebody else.

2. Passive/Reflexive: The passive verbs are derived using the derivational mor-

pheme t(‡)- /t(ä)-/. This derivational morpheme is realized as °- /tä-/

before consonants and as t- /t-/ before vowels. Moreover, in the imperfect,

jussive and in derived nominals like verbal noun, the derivational morpheme

t- /t-/ is used. In this case, it assimilates to the first consonant of the verb

stem, and as a result, the first radical of the verb geminates [Mengistu, 2002].

For example, in y-ÂrÂr /y-wwärwär/ ’let it be thrown’ which is the surface

form of /y-t-wärwär/, the gemination of the first consonant, namely /w/, is

the result of assimilation of the passive prefix t- /t-/.

In Amharic, the passive does not normally apply to intransitive verbs. Ex-

ceptions are intransitive verbs like à‰ /fälla/ ’it boiled’ that form their pas-

sive forms using the prefix t(‡)- /t(ä)-/ as in °à‰ /täfälla/ ’it was boiled’.

However, some scholars [Bender and Hailu, 1978, Anbessa and Hudson, 2007]

argue that such kind of verbs derive their passive from their causative form

(€à‰ /afäll’a/ ’he boiled’) although they give no explanation about how the

causative prefix disappears from the surface form of the passive verb. Oth-

ers, like [Demoz, 1964] argue that most intransitive verbs, which allow the

passive, take a special type of object – a cognate object – and, therefore, the

attachment of the passive prefix is not problematic since such constructions

are considered transitive.

Intransitive verbs may take the morpheme t(ä)- to express the general-

ized/habitual impersonal [Anbessa and Hudson, 2007] and the irony or sarcasm

meanings [Mengistu, 2002].

The reflexive form of self-grooming transitive verbs such as ’wash’ and ’shave’ is
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derived by attaching the prefix °- /tä-/ to them. For example, €°¤ /at’t’äbä/

’he washed’ - ³°¤ /tat’t’äbä/ ’he washed himself’. Since the same prefix is

also used to render a passive reading, the reflexive verb can also have a passive

interpretation. However, Mengistu [2002] said that with verbs that express

events that normally affect a body part, reflexive is the preferred reading.

Although, the reflexive derivation applies to transitive verbs, it does not apply

to all transitive verbs. For transitive verbs for which reflexive derivation using

the prefix °- /tä-/ is not possible, the reflexive construction can be formed

by employing the nominal reflexive strategy. For instance, °Œ³ /tämätta/

which is derived from Œ³ /mätta/ has passive meaning ’he was hit’ instead

of reflexive. The reflexive is, therefore, given using nominal reflexive strategy

as …•™n Œ³ /?rasun mätta/ ’he hit himself’.

The intransitive/anticausative verb is also derived from the transitive ones

using the prefix /tä-/. Thus, verbs like °˜¤� /täsäbbärä/ can have either a

passive ’be broken’ or an anticausative reading ’break, intransitive’.

3. Reduplicative/repetitive: Reduplicative stems indicate an action which is

performed repeatedly. For tri-radical verbs, such stems are formed by dupli-

cating the second consonant of the root and using the vowel ƒ- /a-/ after the

duplicated consonant as in ˜§¤� /säbabärä/ ’he broke repeatedely’. All verb

types, Type A, B and C have the same reduplicative forms.

4. Reciprocal: Reciprocal verbs are derived by prefixing the derivational mor-

pheme °- /tä-/ either to the derived type C forms (that use the vowel a after

the first radical) or to the reduplicative stem [Mengistu, 2002]. For example,

reciprocal forms of °ÝÔ‡ /tägaddälu/ ’killed each other’ and °Ú×Ô‡ /tägä-

daddälu/ ’killed one another’ are derived from the derived type C stem gaddäl-

and reduplicative stem gädaddäl-, respectively. Although Mengistu [2002] in-

dicated the fact that no essential semantic difference exists between the two

reciprocal forms, Baye [1999] said that there is difference in the number of

participants in the reciprocal action. In the case of a reciprocal that is derived

from a derived type C stem, there are two participants, whereas in the form

derived from a reduplicative stem, the number of participants may be more

than two.

The causative of reciprocal verbs are formed by adding the causative prefix a-

to the reciprocal verb forms. However, the reciprocal prefix t(ä)- assimilates

to the stem-initial consonant (thus causes the first radical of the stem to

geminate) and does not show up in the surface form of the reciprocal causative.
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That means, for example, the form, €-t-ÝÔl- /a-t-gaddäl-/ is changed to €-

ÝÔl- /a-ggaddäl-/ ’caused to kill each other’.

5. Adjutative: prefixing the causative prefix a- to a stem which is formed by

geminating the first consonant and using the vowels ƒ /a/ and ‡ /ä/ after the

first and second consonants, respectively results in an adjutative stem [Baye,

1999]. Although, the verbs are derived using the causative prefix, they indi-

cate a participatory or adjutative subject. The surface form of the adjutative

verbs is similar to the reciprocal causative ones, and therefore, they are often

confused. However, unlike the reciprocal causative verb forms, the gemination

of the first radical in adjutative verbs is not a result of assimilation. For ex-

ample, the adjutative form €-ÝÔl- /a-ggaddäl-/ (compare the form with the

reciprocal causative) means ’help somebody to kill somebody else’.

6. Other derived verb forms: Attenuative and intensive verb stems are the

other two kinds of stems derived from the verbal roots. These stems are bound

stems as they always require the auxiliary verb /allä/ (for intransitive verbs)

or /adärrägä/ (for transitive verbs) and verbal features like tense and aspect

and nominal features like person, number and gender are expressed using these

auxiliary verbs. Consequently, Baye [1999] characterized the attenuative and

the intensive stems as non-verbal stems. An attenuative stem is derived with

the intercalation of the vowel /ä/ and gemination of the ultimate radical. This

stem, as its name implies, shows attenuated actions. For example, ¼àt €†

/käfätt allä/ expresses the attenuation action ’it opened slightly’. On the

other hand, the intensive stem is a bound stem which is formed by extending

both the ultimate and penultimate radicals and inserting the epenthetic vowel

/I/ to avoid consonant clusters. kft €† /kIffItt allä/ means ’it opened

suddenly’. In addition to these stems, the reduplicative form of a verb can

also express intensive and attenuated actions [Leslau, 2000]. For instance,

the duplicative verbs ˜§¤�w /säbabäräw/ and ◊≈Œ˜ /k’ämamäsä/ in µy±

Œs³Â±n ˜§¤�w /t’ytu mästawätun säbabäräw/ ’The bullet shattered the

glass’ and µ t mgb ◊≈Œ˜ /t’k’it mIgb k’ämamäsä/ ’he ate some food’

show the intensive and attenuated action, respectively.

3.3.1.2 Nouns

The nouns in Amharic include notional words denoting subjects, objects, phenom-

ena; and also words used as objects of thought, any actions and states, features and

relations. Whether a word is a noun or not can be determined according to mor-

phological distinction and sometimes syntactically [Titov, 1976]. A word is grouped
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under noun if it inflects for the Amharic plural marker -†mm /-očč/, can be used

as a subject or an object in a sentence, is modified by adjectives, and comes after

demonstrative pronouns.

Amharic nouns can be either primary or derived. They are derived if they are

related in their root consonants and/or meaning to verbs, adjectives, or other nouns.

Otherwise, they are primary. For example, a noun …gr /?Igr/ ’foot, leg’ is primary

but, …g�{ /?Igräñña/ ’pedestrian’ is derived from the nominal base …gr by adding

the morpheme -‡{ /-äñña/ [Leslau, 2000]. The following is a description of noun

derivation.

Nouns are derived from other nouns, adjectives, roots, stems, and the infinitive

form of a verb by affixation and intercalation. The morphemes -¶t /-nät/, -‡{

/-äñña/, -‡t /-ät/, -€Ä /-awi/, -°{ /-täñña/, -{ /-ña/ and the prefix §†- /balä-/

are used to derive nouns from other nouns. Table 3.3 shows examples of nouns

derived from other basic nouns.

Base Gloss Bound Derived Gloss
noun morpheme noun
lIǧ child -nät lIǧnät childhood
bärr door -äñña bärräñña goal keeper
šum appointed -ät šumät appointment
ǧärmän Germany -awi ǧärmänawi German
dInbär border -täñña dInbärtäñña one who shares a border
?ngliz England -ña ?nglizña English
mäkina car balä- balämäkina car owner

Table 3.3: Nouns derived from other nouns

From the adjectives, nouns can be derived using the suffixes /nät/ and /-ät/ as in

the examples /dägnät/ ’generosity’ which is derived from the adjective /däg/ ’kind’

and Iwqät ’knowledge’ from the adjective Iwq ’known’.

Nouns can also be derived from verbal roots by intercalation and affixation.

Table 3.4 shows nouns derived from a verbal root, their category, the vocalic pattern

and the affixes used. As it can be seen from the table, one possibility to derive a noun

from a root is intercalating the vowel /I/3 among the root consonants or just after

the first root consonant. This intercalation may also result in a bound morpheme

which, together with different affixes, form other nouns. Most of the nouns formed

this way are resultative nouns although sometimes they are also process nouns.

Nouns like z¹b /znab/ ’rain’ or bound stems such as t¿z- /tIkkaz-/ and w×q-

3As Baye [2000EC] indicated the insertion of /I/ is necessary for purely phonological reasons.
It is an epenthetic vowel inserted to avoid consonant cluster.
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/wIddak’-/, which are used to derive nouns, can be derived by intercalating the

vowel € /a/ after the second consonant of a root. Intercalation of the vowel ‡ /ä/

after the first radical or among radicals results in either a noun or a bound stem

used to derive a noun. The pattern ä-a and the suffix /i/ are used in the derivation

of agent nouns. Nouns of manner can be derived by prefixing /a/ to the stem which

is formed by duplicating the penultimate radical and intercalating the pattern ä-a-

ä. The infinitive/verbal noun is derived by prefixing the morpheme /mä-/ to the

jussive verb stem and the instrumental noun is derived by suffixing /-iya/ to the

infinitive.

Root Stem Affix Derived noun Category Gloss
l-b-s lIbs lIbs cloth
t’-k’-m t’Ik’m t’Ik’m advantage
g-r-d gIrd -oš gIrdoš awning, eclipse
g-b-r gIbr -nna gIbrInna farming, agriculture
s-n-f sInf -nna sInfInna laziness
d-g-m dIggIm -oš dIggImoš process/ repetetion

resultative
s-b-r sIbr -at sIbrat resultative breakage
s-r-k’ sIrk’ -ot sIrk’ot theft
č-h-l čIl -ota čIlota resultative ability
d-k-m dIkam dIkam resultative tiredness
z-n-b zInab zInab resultative rain
t-k-z tIkkaz -e tIkkaze resultative melancholy, sadness
w-t’-h wIt’ -et wIt’et resultative result
g-f-h gIf -it gIfit resultative influence
s-r-Č sIrČ -it sIrČt process transmission
g-f-h gIf -iya gIfiya process crush
š-f-t šIft -a šIfta resultative outlaw, bandit
m-l-s mäls mäls resultative answer
k’-l-d k’äld k’äld ’joke’
k’-l-m k’äläm k’äläm resultative color, ink
s-b-r säbär- -a säbära process process of breaking
f-t-n fätän- -a fätäna resultative test ,exam
s-b-k säbak- -i säbaki agent preacher
w-d-k’ wIddak’- -i wIddak’i resultative reprobate, rubbish
s-b-r sbär mä- mäsbär infinitive to break
f-l-g fälläg mä- mäfälläg infinitive to seek
s-b-r mäsbär -iya mäsbäriya instrumental tool for breaking
s-b-r ssäbabär a- assäbabär manner manner of breaking

Table 3.4: Nouns derived from verbal roots

In Amharic, nouns can also be formed through compounding. For example,
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…n •…¹t /?nIǧära?nat/ ’stepmother’ is derived from the nouns …n • /?nIǧära/

’Ethiopian bread’ and …¹t /?nat/ ’mother’. As it can be seen, no morpheme is

used to bind the two nouns. But, there are also compound nouns whose compo-

nents came together by inserting the compounding morpheme ‡ /ä/ as in ¨°kr-

s²Ñn /betäkrIstiyan/ ’church’ which is formed from ¨t /bet/ ’house’ and krs²Ñn

/krIstiyan/ ’Christian’.

3.3.1.3 Adjectives

Adjectives in Amharic include all the words that modify nouns and can be modified

by the word ¤³m /bät’am/ ’very, greatly’. As it is true for nouns, adjectives can also

be primary (such as Ôg /däg/ ’kind’) or derived, although the number of primary

adjectives is very small.

Adjectives are derived from nouns, stems or verbal roots by adding a suffix and

by intercalation. The suffixes -ƒm /-am/, -‡{ /-äñña/, -€Ä /-awi/, and -ƒ≈ /-

ama/ are used in the derivation of adjectives from nouns. For example, it is possible

to derive €b³m /habtam/ ’rich, wealthy’, €y†{ /hayläña/ ’powerful, mighty’,

ÈŒ¹Ä /zämänawi/ ’modern’ and dnÝÑ≈ /dIngayama/ ’stony’ from the noun €bt

/habt/ ’riches, wealth’, €yl /hayl/ ’power, force’, ÈŒn /zämän/ ’period, epoch’

and dnÝy /dInIgay/ ’stone’, respectively.

Adjectives can also be derived either from roots by intercalation of vocalic ele-

ments or attaching a suffix to bound stems. Table 3.5 gives examples of adjectives

derived from bound stems or verbal roots. As it can be seen from the table, the

suffix -a is used to derive adjectives from a bound stem which is formed by inter-

calating the vocalic element ä-a to the root consonants. The vocalic patterns ä-a,

ä-ä (also used in the derivation of verbs and nouns), ä-i, and u are used to derive

adjectives from roots.

Root Stem Affix Derived Adjective Gloss
t’-m-m t’ämam- -a t’ämama crooked, bent
k-b-d käbad käbad heavy
s-n-f sänäf sänäf lazy
r-z-m räzzim räžim long
k-b-r k-bur kIbur respectful
z-n-g-h z-n-gu zIngu forgetfull

Table 3.5: Adjectives derived from verbal roots

Adjectives can also be formed through compounding. For instance, …Ô˜â

/hodäsäfi/ ’tolerant, patient’, is derived by compounding the noun …d /hod/ ’stom-
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ach’ and the adjective ˜â /ssäfi/ ’wide’. Note the use of ‡ /ä/ as a compounding

morpheme.

3.3.2 Inflection

3.3.2.1 Verbs

Verbs are inflected for person, gender, number, aspect, tense, and mood [Baye,

2000EC]. Table 3.6 shows the inflection of perfective and imperfective verbs for

person, gender, number.

Person Perfective Imperfective
1st säbbär-ku/hu ?-säbr
1st plural säbbär-n ?-n-säbr
2nd

masculine säbbär-h/k t-säbr
feminine säbbär-š t-säbr-i
polite säbbär-u t-säbr-u
plural säbbär-aččhu t-säbr-u
3rd

masculine säbbär-ä y-säbr
feminine säbbär-äčč t-säbr
polite säbbär-u y-säbr-u
plural säbbär-u y-säbr-u

Table 3.6: Subject markers

As it can be seen from the table, in imperfective stems the morphemes …- /?-/, t-

/t-/ and y- /j-/ indicate first, second and third person, respectively. -‚ /-?i/ is

the gender marker suffix and n- /n-/ and -∫ /-u/ are plural markers in the first

and second person. For perfective verbs, the markers for the first, second and third

person are -½ /-ku/ or -∫ /-hu/, -k /-k/ or -h /-h/ and -‡ /ä/, respectively. These

morphemes are attached to the perfective verb stem as suffixes. The gender and

number marker suffixes are assimilated with the person marker suffixes as in -]/š/

which resulted from the assimilation of the second person marker -h /-h/ and the

gender marker -‚ /-?i/. These markers (person, gender and number) are called

subject markers as they indicate or substitute the subject in a given sentence.

There are also person markers that indicate the object in a sentence. These

morphemes can be seen from Table 3.7. The morpheme which comes immediately

after the stem of the verb is the third person subject marker, -‡ /ä/. After this

subject morpheme, come the object morphemes. That means if both subject and

object markers are attached to a verb stem, their order is always stem-subj-obj. Here
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object can be either a direct or prepositional object but both object markers can

not appear together on a verb. Prepositional object markers indicate prepositional

phrases that have different adverbial functions. The prepositions that are used

to form the prepositional phrases are † /lä/ and ¤ /bä/ that have benefactive

and malfactive functions, respectively. For instance, …n¸±n ˜¤�l} /?nIČätun

säbbärällň/ means ’he broke the wood for me’ whereas …n¸±n ˜¤�b} /?nIČätun

säbbäräbbň/ means ’He broke the wood - against my will’.

Person Direct object Prepositional objects
Benefactive Malfactive

1st säbbär-ä-ň säbbär-ä-ll-ň säbbär-ä-bb-ň
1st plural säbbär-ä-n säbbär-ä-ll-n säbbär-ä-bb-n
2nd

masculine säbbär-ä-h säbbär-ä-ll-h säbbär-ä-bb-h
feminine säbbär-ä-š säbbär-ä-ll-š säbbär-ä-bb-š
polite säbbär-ä-wo(t) säbbär-ä-ll-wo(t) säbbär-ä-bb-wo(t)
plural säbbär-ä-aččhu säbbär-ä-ll-aččhu säbbär-ä-bb-aččhu
3rd

masculine säbbär-ä-w säbbär-ä-ll-ät säbbär-ä-bb-ät
feminine säbbär-ä-at säbbär-ä-ll-at säbbär-ä-bb-at
polite säbbär-ä-aččäw säbbär-ä-ll-aččäw säbbär-ä-bb-aččäw
plural säbbär-ä-aččäw säbbär-ä-ll-aččäw säbbär-ä-bb-aččäw

Table 3.7: Object markers

With regard to aspect, Amharic verbs are basically categorized into two classes:

perfect and imperfect forms. Under these main categories, Baye [2000EC] and

Baye [2006] identified four sub-aspectual types, three derived from the imperfective

(prospective, inceptive and completive) and one derived from the perfective stem

(progressive). The prospective indicates an imminent or intended action while the

inceptive indicates an action which is beginning. As the names imply, progressive

and completive verbs denote an action in progress and a completed action, respec-

tively. Amharic verbs inflect for these aspects except for inceptive. The prospective

aspect is indicated by the prefix l- /l-/ which comes before the subject marker of

an imperfective stem which is followed by the auxiliary verbs ¶w /näw/ ’is’ and ¶¤r

/näbbär/ ’was’. As it has already been said, verbs do not inflect for inceptive. It is

expressed by an imperfective verb followed by the auxiliary verb,  Œr /ǧämmär/

’begin’. Progressive is expressed using the prefix …Î- /?yyä-/ attached to a perfec-

tive stem and with the auxiliary verbs used in prospective aspect. The completive

aspect (whose stem is also identified as gerund or converb) is indicated by adding

different genitive suffixes for first, second and third persons and using the auxiliaries
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€l- /all-/ ’exist’ and ¶¤r /näbbär/ ’was’.

There are four moods in Amharic: declarative, interrogative, negative and im-

perative. Verbs can take different forms according to the mood. This form can be

expressed either in the stem or by inflectional affixes. Table 3.8 shows the structure

and inflection of verbs according to the mood.

Person Declarative Interrogative Negative Imperative
1st ?-säbr- l-?-sbär- all-sbär-
1st plural ?-n-säbr- ?-n-sbär- all-n-sbär-
2nd

masculine t-säbr- t-säbr- all-t-sbär- sbär
feminine t-säbr-?i t-säbr-?i all-t-sbär-?i sbär-?i
polite t-säbr-u- t-säbr-u all-t-sbär-u sbär-u
plural t-säbr-u- t-säbr-u all-t-sbär-u sbär-u
3rd

masculine y-säbr- y-sbär- all-y-sbär- y-sbär
feminine t-säbr- t-sbär- all-t-sbär- t-sbär
polite y-säbr-u- y-sbär-u all-y-sbär-u y-sbär-u
plural y-säbr-u- y-sbär-u all-y-sbär-u y-sbär-u

Table 3.8: Inflection according to mood

Tense in Amharic can be broadly categorized as past and non-past. The past tense

can be categorized into three: simple, recent and remote past. Simple past, that

uses a perfective stem, indicates that an action is completed in the past but does not

clearly indicate the time unless adverbs of time (such as t¹nt /tInant/ ’yesterday’,

Ë– /zare/ ’today’ and €∫n /?ahun/ ’now’) are used. For example, the sentence

¿› €n¤› ÚÔ† /Kasa ?nbässa gäddälä/ ’Kasa killed a lion’ does not indicate when

Kasa did the action whereas ¿› t¹nt €n¤› ÚÔ† /Kasa tInant ?nbässa gäddälä/

’Kasa killed a lion yesterday’ clearly indicates the time. Recent past is formed with

a completive aspect stem and the auxiliary verb €l- /all-/ ’exist’, which is attached

to the verb, as in ¿› €n¤› Údýl /Kasa ?nbässa gädlo?ll/ ’Kasa killed a lion’.

However, when the completive aspect is used with the auxiliary ¶¤r /näbbär/ ’was’,

it gives a remote past tense. In this case, however, the auxiliary is not attached to

the completive stem as in ¿› €n¤› Úd‹ ¶¤r /Kasa ?nbässa gädlo näbbär/ ’Kasa

killed a lion’.

Non-past tense is formed with the imperfective stem and the auxiliary verb €l-

/all-/ ’exist’, which is a bound morpheme attached to the verb. The stem indicates

that the action is not performed and the auxiliary indicates when the action will be

performed. This time ranges from present to future thus, the tense can be either

present or future. This may be the reason why some call this tense as present-future.
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Normally, this tense is ambiguous and it is difficult to know whether it is present

or future unless adverbs of time are used. In addition, there is also continuous

(present or past) tense in Amharic. The continuous tense is formed by attaching

the prefix …Î- /?yä-/ to a verb and the auxiliaries ¶w /näw/ ’is’ and ¶¤r /näbbär/

’was’. For instance, ¿› ŒÝ€f …Ñ¶¤¤ ¶w /Kasa mäs’haf ?yanäbäbä näw/ ’Kasa

is reading a book’ is a present continuous whereas ¿› ŒÝ€f …Ñ¶¤¤ ¶¤r /Kasa

mäs’haf ?yanäbäbä näbbär/ ’Kasa was reading a book’ is past continuous tense.

3.3.2.2 Nouns

Amharic nouns inflect for case, number, definiteness, and gender marker affixes. In

Amharic, there are three cases: nominative, accusative and genitive. Nominative

has no indicator [Baye, 2000EC]. It is distinguished by its place in a sentence where

nominative comes always before accusative [Titov, 1976], and the subject markers

attached on the verb in a given sentence. The suffix -n and the suffixes shown in

Table 3.9 or the prefix Î- /yä-/ inflect Amharic nouns for accusative and genitive

case, respectively.

Person Singular Plural
Vowel ending Consonant ending

1st -Ò /-ye/ -„ /-e/ -€mn /-aččn/
2nd

masculine -h /-h/ -…h /-Ih/ -€m∫ /-aččhu/
feminine -] /-š/ -…] /-Iš/
polite -Ç /-wo/ -Ç /-wo/
3rd

masculine -w /-w/ -∫ /-u/ -€hw /-aččäw/
feminine -Å /-wa/ -Å /-wa/
polite -€hw /-aččäw/ -€hw /-aččäw/

Table 3.9: Genitive case markers (adapted from Titov [1976]))

In contrast to other Semitic languages, Amharic has only two numbers - singular

and plural. The suffixes -†m /-očč/, -ƒn /-an/ and -ƒt /-at/ are used to in-

flect nouns for number. For example, ¨µm /betočč/ ’houses’,Œmh•n /mämhIran/

’teachers’ and hÛ¹t /hIs’anat/ ’babies’ are plural forms of ¨t /bet/ ’house’, Œmhr

/mämhIr/ ’teacher’ and hÛn /hIs’an/ ’baby’. Vocalic changes and reduplication are

also used to indicate plurality of some words, especially words borrowed from Geez4

language. For example, Ô¹gl /dänagel/ ’virgins’ and Ÿ›Ÿs /k’usak’us/ ’things’ are

4Geez is another Ethiopian Semitic language nowadays mostly used in Ethiopian orthodox
church.
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plural forms of dngl /dIngIl/ ’virgin’ and Ÿs /k’us/ ’thing’ formed through vocalic

changes and reduplication.

A noun in Amharic can be either definite or indefinite. Indefiniteness has no

special marker. However, as Titov [1976] said, the numeral €nd /and/ ’one’ is

sometimes used to indicate indefiniteness. For instance, €nd €lÝ /and alga/ might

mean ’one bed’ or ’a bed’ depending on the context. The definiteness markers, which

are bound morphemes, are given in Table 3.10. As it is indicated in the table, -∫

/-u/ and -w /-w/ are used for masculine nouns ending with consonant and vowels,

respectively. For the feminine, the morpheme -Å /-wa/ is used. In addition, -‚±

/-itu/ or -Ð± /-yitu/ and -‚tÅ /-itwa/ or -ÐtÅ /-yitwa/ can be used for feminine.

The only definiteness marker for plural is -∫ /-u/ which is attached to the noun after

the plural marker. If a definite noun is preceded by an adjective, the definiteness

marker is attached to the adjective instead of the noun. As one can observe, the

definite articles of singular nouns, namely -∫ /-u/, -w /-w/ and -Å /-wa/, coincide

with the corresponding third person genitive/possessive suffixes and are determined

depending on the context. For example, ¨± /betu/ might mean ’his house’ or ’the

house’.

Gender/Number Definiteness Markers
Consonant ending Vowel ending

Sg. masc. -u -w
Sg. fem. -wa, -itu, itwa -wa, -yItu, yItwa
Pl. -u -u

Table 3.10: Definiteness markers (adapted from Leslau [2000]))

Like most Semitic languages, Amharic has only two genders masculine and feminine,

and distinguishes gender in the second and third person. Some Amharic nouns carry

gender in their meaning (for example, ¤– /bäre/ ’ox’ and ‰m /lam/ ’cow’) whereas

others require additional means to indicate gender. Masculine nouns do not have

gender marker morphemes but the morphemes ‚t /-it/ and ‚± /-itu/5 are used

to indicate feminine nouns. Moreover, gender distinction is best observed in the

gender of the definite article, the demonstrative pronouns, the verb referring to a

noun or the gender specifier. For example, Ω]•w /mušraw/ ’the bridegroom’

is masculine as it is indicated by the masculine definite article -w /-w/ whereas

Ω]•Å /mušrawa/ is feminine as shown by the feminine article -Å /-wa/. The

masculine demonstrative pronoun yh /yIh/ ’this’ in yh °≈” /yIh tämari/ ’this

student’ indicates that °≈” /tämari/ ’student’ is treated as a masculine in contrast

5The feminine markers may also be used to express diminutiveness.
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to yhm /yIhč/ in yhm °≈” /yIhč tämari/ ’this(fem.) student’. The verb referring

to the noun also reveals the gender of the noun as in à�s yÝl§l /färäs ygalbal/

’a horse gallops’ and à�s tÝl§†m /färäs tgalbaläč/ ’a horse(fem.) gallops’. In

addition, the gender specifiers (Ând /wänd/, œt /set/, °§t /täbat/, …nst /?nIst/

and €w• /awra/) can also indicate the gender of a noun as in Ând l¥ /wänd lIǧ/

’boy’ and œt l¥ /set lIǧ/ ’girl’.

3.3.2.3 Adjectives

Adjectives inflect for case, number, definiteness and gender in a similar fashion to

nouns. Therefore, we do not discuss the inflection of adjectives here. However, some

categories of the adjective can be marked for number through reduplication. For

example, the singular form tlq /tIlk’/ ’big’, becomes t‰lq tIlAlk’ in the plural.





Chapter 4

Computational Morphology

This chapter gives an introduction to computational morphology. We, specifically,

present what the field is all about, its application, the output of computational

morphology systems and the approaches to computational morphology. A review of

some works on Amharic computational morphology are also presented.

4.1 Introduction

Morphology is the study of word formation. It tries to discover the rules that govern

the formation of words from the smaller meaning bearing units, morphemes, in a

language. The field that tries to perform the same task automatically using com-

puters and computational methods is called computational morphology. It deals

with the processing of words and word forms, in both their written and spoken form

[Trost, 2003]. The most basic task in computational morphology is to take a string

of characters or phonemes as input and deliver the analysis as output. It has a wide

range of practical applications. Sproat [1992] indicated that morphological informa-

tion is useful in several natural language processing areas such as text generation,

parsing, lemmatization, machine translation, document retrieval, etc. Even appli-

cations that require little linguistic knowledge, e.g. information retrieval, include

some amount of morphological treatment [Daille et al., 2002].

Specifically, computational morphology is applied in the following areas [Sproat,

1992]:

• Natural language applications: Morphological processing systems can be

applied in natural language tasks such as parsing, generation, machine trans-

lation, lemmatization, and the construction and use of on-line dictionaries. In

parsing, for example, one needs to know properties of words such as part-of-

speech (POS) category or morphosyntactic features. These properties can be

predicted, on the basis of the last suffix or the first prefix of the word, by a

computational morphology system which is also called morphological analyzer

or parser.
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• Speech synthesis: Since most text-to-speech systems incorporate some

amount of syntactic analysis, they use morphological information. Moreover,

decomposition of morphologically complex words is important for proper pro-

nunciation of words. For instance, decomposition of the word boathouse into

boat and house helps the text-to-speech system not to pronounce the th in

boathouse as θ (as in thing) or ð (as in father). In many cases, morphology is

also responsible for word stress assignment, cf. an’alysis, anal’ytics, ’analyse.

• Speech recognition: Currently, speech recognition systems are based on a

limited vocabulary and they do not recognize words that are not in the dictio-

nary. However, these systems, theoretically, need to handle out-of-vocabulary

words. This is why morphological analysis has become indispensable in such

systems. In some systems morpheme-based recognition rather than word-

based recognition is used and words are, therefore, recognized as concatena-

tion of morphs. In such systems, the lexical and language models are also

developed using morphs as units.

• Document retrieval: In document/text retrieval, there is a need to conflate

keywords (e.g. spy and spies, church and churches, etc) in order to retrieve

all documents in the database that contain those words. For morphologically

impoverished languages like English, stemmers might well serve this purpose.

However, finding a given word in a morphologically rich language requires a

fair amount of morphological processing.

• Word processing applications: Word processing includes hyphenation and

spelling correction. Text segmentation in some Asian languages (such as Chi-

nese, Japanese and Korean) or Japanese text input are also part of word

processing. In hyphenation, morphological analyzers can be used for segment-

ing words correctly. Most current spelling correction systems are based on

dictionaries that list all word forms. Listing all word forms in a dictionary

is, however, disadvantageous. Firstly, the dictionaries can not be complete

in coverage and secondly increasing the size of the dictionary means that the

program has to scan words in the dictionary which consequently makes the

spelling correction system slow. Thus, it is preferable to have a root lexicon,

a set of affixes and simple morphotactic rules instead of listing all word forms.

In languages like Chinese, Japanese and Korean, words in a sentence are not

separated by blank spaces or punctuation marks. Morphological analysis can,

therefore, be used in segmentation of sentences into words. Japanese is written

with a combination of two sets of characters (Kana and Kanji). As the number
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of Kanji characters is very large, most Japanese text input systems use kana-

kanji converter, which requires a combination of statistical and morphological

methods.

4.2 Output of a Computational Morphology System

In the previous section, we have seen that morphological analyzers are important in

many areas. However, different applications require different morphological infor-

mation. This makes the output of a computational morphology system to depend

on the application for which the system is designed [Sproat, 1992]. For example, a

morphological analyzer designed to be used in a syntactic parser and another one

developed for a text-to-speech application won’t provide the same kind of analysis.

In the former, word properties such as morphosyntactic feature are indispensable

while for the latter only the sequence of morphs into which a word can be decom-

posed is required. On the other hand, for information retrieval systems, information

that indicate the word “spies” is an inflectional form of the word “spy” is required

from a morphological analyzer. Thus, having the word “spies” as an input, we can

obtain at least the following three possible analyses as output (setting aside the

ambiguity of spy between a noun and a verb).

I. spy + NounPlural or spy + VerbThirdPersonSingularPresentTense

II. spy + s

III. spies -> spy

Generally, “there is no hard and fast answer to the question of what kind of analysis

a morphological analyzer should provide” [Sproat, 1992]. This implies that we have

to design morphological analyzers in such a way that they provide the morphological

information in the format required by the target system that uses the information.

For the development of morpheme-based language models, morphological analyzers

that provide the second analysis (from the above list) are required.

4.3 Approaches to Computational Morphology

Understanding the importance of computational morphology in various speech and

language processing applications, a number of approaches are used to develop com-

putational morphology systems. These approaches are based on concepts in au-

tomata theory, probability, the principle of analogy, or information theory [Kaza-

kov and Manandhar, 2001]. Kazakov and Manandhar [2001] broadly categorized
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the approaches of computational morphology into rule-based and corpus-based.

Soudi et al. [2007] also used the same classification but with different terminolo-

gies: knowledge-based and empirical approaches instead of rule- and corpus-based,

respectively.

4.3.1 Rule-based Approaches

A rule-based or knowledge-based approach is built on solid linguistic grounds. Be-

cause of their reliance on linguistic frameworks, systems developed using rule-based

approaches are often efficient and produce better quality outputs [Karttunen, 1994].

The simplest model of morphology can be the one in which all words are listed

along with their morphological features. Morphological analysis is, therefore, per-

formed as a table lookup. This approach, called full-form lexicon by Trost [2003], is

simple and applicable to all possible morphological phenomena. However, it suffers

from redundancy since most natural languages exhibit at least some productive mor-

phological processes by which a great number of word forms are created. In addition,

this method does not have a means to cope with out-of-lexicon word forms.

Another approach that solves the problem of redundancy in a full-form lexicon

is a lemma lexicon. Unlike the full-form lexicon, in a lemma lexicon, we store

the lemma of words as representative for all the different forms of a paradigm.

Then, we use an algorithm that relates every form to its lemma and also delivers

a morphosyntactic analysis. If we consider concatenative morphology, for instance,

affixes must be stored in a separate list together with the relevant morphotactic

rules. The problem of morphological analysis can, therefore, be considered as finding

a sequence of affixes and a lemma that conforms to the morphotactic. However, this

approach has limitations with regard to the treatment of morphological rules. For

instance, if a word does not conform to the regular default case, then we need

some kind of exception handling mechanism, which can be tailored to a particular

language. Moreover, the algorithm is language specific and most likely we need to

develop separate algorithms for analysis and generation [Trost, 2003], hence there

is a need for other ways of approaching the problem.

The most common and popular rule-based method, which is devised to handle

morphological analysis and generation in a bi-directional way, is the Two-Level-

morphology (TLM) [Koskenniemi, 1983]. TLM is based on two levels of representa-

tions (underlying or lexical level and surface level), and a set of morphological rules,

which are compiled into finite state transducers, used to map the underlying and sur-

face level word forms. The lexicon, that lists the lexical morphemes, can be divided

into different logical sublexicons (noun stem, verb stem, suffix, etc. lexicon) each
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implemented as a finite state automaton. TLM is based on the assumption that sur-

face forms are constructed by a concatenation of lexical morphemes. Originally this

assumption made the use of TLM for languages with non-linear morphology very

difficult. More recently, however, it has also been applied to Semitic languages that

are characterized by nonconcatenative morphology e.g. Amharic, Arabic, Akkadian

and Hebrew.

A feature peculiar to rule-based approaches is that they are based on linguistic

knowledge presented to the systems as linguistic resources, such as the lexicon and

the morphological rules. That means such resources, particularly the rules need to

be handcrafted for each language. Consequently, the development of a rule-based

morphological analyzer is costly and time consuming. That is why alternative data-

driven or corpus-based approaches have been introduced.

4.3.2 Corpus-based Approaches

Corpus-based approaches, that do not strictly follow explicit theory of linguistics,

use some algorithms to learn, for example the morphological segmentation of a

language, from sample data (corpus). The acquired knowledge is then used to

perform the morphological analysis task [Kazakov and Manandhar, 2001]. Corpus-

based approaches can be further categorized into supervised [van den Bosch, 1997,

Wicentowski, 2004] and unsupervised [Goldsmith, 2000, Creutz and Lagus, 2005]

approaches according to the kind of corpus used to train the system. Supervised

approaches use annotated text corpora whereas unsupervised ones use a raw, unan-

notated text. Since there are many languages for which a rule-based morphological

analyzer or an annotated corpus does not exist, the unsupervised approach is an

appealing alternative. It is a particularly interesting option for under-resourced lan-

guages like Amharic. Therefore, recent work focused on unsupervised morphology

learning.

As indicated by Goldsmith [2000], there are four approaches used in unsuper-

vised morphology learning. The first approach is the one that identifies morpheme

boundaries depending on the degree of predictability of the nth letter given the first

n-1 letters. This approach was first proposed by Harris [1955] and further developed

by Hafer and Weiss [1974]. The second approach is based on the assumption that

local information about a string of letters or words is sufficient to identify morpheme

boundaries. Thus, this approach tries to identify bigrams and trigrams that have

a high likelihood of being morpheme internal. The third approach concentrates on

the discovery of patterns that show the relationship between pairs of related words

or paradigms [Goldsmith, 2000]. The fourth one is a top down approach that fo-
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cuses on globally optimizing a single criterion, namely the criterion of minimum

description length, for the corpus [Jurafsky and Martin, 2008].

The idea in minimum description length (MDL) is that first we try to learn the

optimal probabilistic model of some data. The model is then used to assign a like-

lihood and a compressed length to the entire data set. The proposed model itself

is also assigned a length. The MDL principle states that the optimal analysis of

the data is the one for which the sum of the data length and the model length is

the smallest. The MDL approach to morphology induction has been used by many

researchers, notably by Goldsmith [2000] and Creutz and Lagus [2005] who inde-

pendently developed freely available tools Linguistica and Morfessor, respectively.

Since we used Morfessor in our experiment, its brief description follows.

4.3.2.1 Morfessor

Morfessor, developed by Creutz and Lagus [2005], is an unsupervised morphology

learner and morpheme segmenter. It learns a morphological segmentation of the

word forms in the input data. Unlike many other morphology induction programs

such as Linguistica [Goldsmith, 2000], Morfessor tries to identify all the morphemes

of a given word. That means it produces a full segmentation of word forms. For ex-

ample, the word dessertspoonfuls is segmented by morfessor as dessert+spoon+ful+s

instead of dessertspoonful+s .

Morfessor has undergone four development steps that resulted in four ver-

sions [Creutz, 2006]: Morfessor Baseline, Morfessor Baseline-Freq-Length, Morfes-

sor Categories-ML and Morfessor Categories-MAP. Currently, two versions of the

Morfessor program, Morfessor Baseline and Morfessor Categories-MAP, are freely

available for research purpose. However, when we started our experiments only the

Morfessor Baseline system was available and consequently it is the one used in our

experiments.

The Morfessor Baseline model is based on the MDL criterion. It learns a lexicon

of morphs which is concise and produces a compact representation for the words in

the corpus as defined below.

argmax p(Lexicon/corpus) = argmax p(corpus/Lexicon)p(Lexicon) (4.1)

In Morfessor baseline the p(Lexicon) (which is the prior probability of getting M dis-

tinct morphs) is estimated on the basis of two properties of morphs: frequency and

character sequence probability (length probability). The morphs are simply strings
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of letters and do not have substructure, i.e. the lexicon is flat. The model does

not assume a uniform probability distribution for the proposed morphs. Instead

the relative frequency of the morphs is considered as their probability. The baseline

model is prone to three kinds of errors: under-segmentation or incomplete segmen-

tation which implies that some morpheme boundaries are missed, over-segmentation

where words are split into too many parts, and morphotactic violation which oc-

curs when a substring that can function as a morph in some context is proposed

in the wrong context. In Morfessor Baseline, a frequent string is most concisely

coded in one piece, regardless of its linguistic structure. This sometimes leads to

undersegmentation. In contrast, a rare string is best coded in short substrings which

causes oversegmentation. Since the model does not assign any grammatical cate-

gories to the proposed morphemes and it does not indicate the context in which

the morph can occur, it is prone to the third type of error (morphotactic violation).

Nevertheless, this model works well and the developers used it in all of their speech

recognition experiments. Morfessor baseline produces a better morph segmentation,

from a morphological point of view, when provided with a word type list [Creutz,

2006] instead of word token list.

The Morfessor Baseline-Freq-Length model is an extension of the Morfessor Base-

line model. It applies Bayesian prior probabilities to the frequency and length dis-

tributions of the morphs. The purpose of the frequency prior (which is derived from

Zipf’s law) is to favour solutions where the frequency distribution of the proposed

morphs is in accordance with Zipf’s law. The morph length distribution describes

the proportion of morphs of a particular length, measured in letters. The Baseline-

Freq-Length model utilizes a gamma distribution as a prior for morph length. This

model outperforms Morfessor Baseline due to the priors for morph length and fre-

quency. Although the number of over- and under-segmentations is reduced, the

model is insufficient for preventing morphotactic violations. Moreover, the differ-

ence between Morfessor Baseline and Baseline-Freq-Length diminishes with larger

amounts of data [Creutz, 2006]. It has also been indicated that the length prior

is more effective than the frequency prior. As a result, in most of their experi-

ments, the developers omitted the frequency prior and consequently, come up with

a Baseline-Length model.

Morfessor Categories-ML is a version that tries to reduce errors of the Baseline

models caused by their context insensitivity. It introduces a simple morphotactics

in order to reduce morphotactic violation errors. In this model, a segmentation

produced by one of the Baseline algorithms is reanalyzed using maximum likelihood

(ML) optimization and some heuristics. Each morph in the segmented corpus is

tagged with one of the following categories: prefix, stem, or suffix based on a few
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usage-based features of the morph. In cases where none of the three categories is

likely, morphs are tagged with a category “noise”. These noise morphs are short seg-

ments, which are not morphs at all or not morphemes in the current context. Thus,

the presence of noise morphs typically indicates that a word has been over-segmented

or that it contains morphotactic violations. Over-segmentation is reduced by ap-

plying a heuristic that joins together noise morphs with their neighbors whereas

under-segmentation is alleviated by forcing splits of redundant morphs (morphs

that contain other morphs found in the lexicon). Thus, in Morfessor Categories-

ML, the size of the lexicon is controlled through these heuristics instead of an

overall probability function. Once the lexicon has been modified, maximum like-

lihood re-estimation is applied in order to re-segment and re-tag the corpus. A

first order Hidden Markov Model (HMM) has been used for assigning probabili-

ties to each possible segmentation and tagging of a word form. The HMM is in-

tended to model morphotactics that is expressed by means of a regular expression

as word = ((prefix) ∗ stem (suffix)∗)+. Since restrictions (such as a suffix may

not start a word, a prefix may not end it, a suffix should not occur immediately

after a prefix) are used, some morphotactic violation errors that are observed in

the Morfessor Baseline models are removed in the Morfessor Categories-ML model

[Creutz, 2006].

Morfessor Categories-MAP works similar to Morfessor Categories-ML but has

a more sophisticated formulation than Morfessor Categories-ML. As indicated

by Creutz [2006], Morfessor Categories-MAP operates on data sets consisting of

word tokens whereas Categories-ML works on word types. Moreover, Morfessor

Categories-MAP is a complete maximum a posteriori model. That means, unlike

the Morfessor Categories-ML, it does not rely on heuristics to determine the op-

timal size of the lexicon. Instead it utilizes a hierarchical lexicon structure which

provides a different mechanism to control over- and under-segmentations. In this

model, under-segmentation can be avoided by expanding a lexical item into the

sub-morphs it consists of whereas over-segmentation is avoided by expanding sub-

structures as long as they do not contain noise morphs. Morphotactics is handled

in a similar fashion as for the Morfessor Categories-ML model.

Morfessor has been evaluated in two manners: directly by comparing to a lin-

guistic gold standard (called direct evaluation hereafter) and indirectly through a

speech recognition experiment (called indirect evaluation afterwards) [Creutz, 2006].

In direct evaluation, the proposed placements of morpheme boundaries have been

compared to a linguistic gold standard segmentation. The results of the comparison

is then presented using precision, recall and F-measure. Precision is the proportion

of correct morph boundaries among all morph boundaries suggested by Morfessor
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while recall is the ratio of correct boundaries discovered by the algorithm to all

morpheme boundaries in the gold standard. F-measure is defined as the harmonic

mean of precision and recall as follows[Creutz, 2006].

F -measure =
1

[12(
1

precision
+ 1

recall
)]

(4.2)

The Helsinki University of Technology Morphology Evaluation Gold Standard (Hut-

megs) [Creutz and Lindén, 2004], consisting of a linguistic segmentation for English

and Finnish, has been used in the direct evaluation. The Finnish gold standard

contains the segmentation for 1.4 million word types while the English one contains

segmentations for 120,000 distinct words. The gold standards include word types,

however if a word has several possible segmentations, all of them are supplied.

The evaluation data sets used for Finnish is prose and news text from the Finnish

Information Technology center for Science and the Finnish National News Agency.

The English data set consists of the Brown corpus, a sample of the Gigaword corpus,

as well as prose, news and scientific text from the Gutenberg project. Evaluations

have been carried out on data sets containing 10,000, 50,000, 250,000 and 16 million

words for Finnish. The same data set sizes are used for English, except for the largest

data set which consists of only 12 million words. In the direct evaluation method,

Linguistica has also been included (for comparison) besides the four versions of

Morfessor (Baseline, Baseline-Length, Categories-ML and Categories-MAP).

For Finnish, it has been found that Categories-ML and Categories-MAP are the

best performing algorithms according to the F-measure values. Although Categories-

ML is the leader in most cases, for some data set sizes (10,000 and 250,000) the

difference between them is not statistically significant. Baseline-Length is slightly

better compared to Morfessor Baseline, but the difference is statistically significant

only on the 50,000 word data set. The worst performing algorithm on the Finnish

data set is Linguistica.

For the English data set, most of the algorithms performed better (in terms

of F-measure) than on the corresponding Finnish data set which might be due to

the simplicity of English morphology [Creutz, 2006]. Linguistica is the second best

performing algorithm on the 50,000 and 250,000 test set. This shows that Linguistica

is more suited for a language with simple morphology like English.

Morfessor Baseline, Categories-ML and Categories-MAP have also been evalu-

ated on data sets for Turkish and the Egyptian dialect of Arabic consisting of 17

million tokens or 580,000 types and 150,000 token or 17,000 types, respectively. The

gold standard segmentations for Turkish is based on a morphological parser devel-
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oped at Bogazici University while the Arabic one is based on a lexicon of Egyptian

Colloquial Arabic. However, in their experiment the developers of Morfessor, treated

the Arabic word stems as correct morphs although the stems should have been an-

alyzed into root and vowel patterns. Their results show that the performance of

Morfessor Baseline varies greatly with data size and language, whereas the others

seem to perform constantly irrespective of the language. The F-measure obtained

for the Morfessor Baseline model on the Arabic data set (the smallest data set

compared to the others) is very small, namely 41.7% [Creutz, 2006].

Only the Morfessor Baseline model is evaluated indirectly through a speech

recognition experiment. N-gram language models have been developed using dif-

ferent units (syllables, words, statistical morphs obtained using Morfessor Baseline

and grammatical morphs) and the language models have been compared in terms of

cross-entropy and as integrated components of a large-vocabulary speaker-dependent

speech recognition system. Two experiments have been conducted [Siivola et al.,

2003, Hirsimäki et al., 2005] that have already been reviewed in Chapter 2 of this

thesis. In general, the results of the experiments showed that statistical morphs

perform best.

4.4 Computational Morphology for Amharic

Since 2000, several researchers (pioneered by Abiyot [2000]) have attempted to de-

velop morphological systems for Amharic. The attempts differ in the method they

employ, the amount of data they used, the type of problem they tried to solve, etc.

The following is a review of works conducted on Amharic computational morphology

in chronological order.

Abiyot [2000] developed a prototype automatic word parser for Amharic verbs

and their derivations, particularly nouns. His system is a rule based one that is

designed based on the morphological features of the language. The parser handles

morphotactics, non-concatenative morphology and phonological (spelling) changes.

Moreover, the system has the ability of indicating the part-of-speech of words. To

perform its tasks, the parser uses different knowledge sources: An Amharic verb root

lexicon, an affix database and phonological rules. The performance of the parser

has been tested on a test set consisting of 200 verbs and 200 nouns. The parser

was able to recognize 86% of the verbs and 84% of the nouns correctly. Apart from

the number of words in the test set, nothing is said about the number of roots and

affixes in the databases used in the prototype system.

Nega and Willett [2002] developed an Amharic iterative context-sensitive stem-

mer for processing document and query words in information retrieval. The stemmer
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uses a list of stop words and affixes, which have been developed based on statisti-

cal methods (but with extensive manual interventions) from a corpus consisting of

texts from different domains. The stemmer works, simply, as follows. A word to

be stemmed is first checked against the stop word list to ensure its processing. If

it is not in the list, it is passed to the prefix and then to the suffix removal mod-

ules. After all the prefixes and suffixes have been removed, the resulting stem is

used to generate the consonantal roots. The stemmer takes account of letter in-

consistencies and reduplicative verb forms. The authors tested the stemmer on a

test set consisting of 1221 words and obtained morphologically meaningful stems

for 95.9% of the words. The stemmer is more prone to over-stemming (2.7%) than

to under-stemming (1.4%). Nega and Willett [2003] showed the effectiveness of this

stemmer by applying it to an information retrieval task. As described in [Nega and

Willett, 2002], the stemmer produces the stem or the root of a word. Thus, unless

it is modified to deliver all the morphemes of a word, a direct application of this

stemmer in our work is not possible.

Tesfaye [2002] trained a morphological analysis system for Amharic using a freely

available morphology learning program, namely Linguistica [Goldsmith, 2000]. Lin-

guistica requires a large corpus ranging from 5,000 to 1,000,000 words. Tesfaye

[2002] used a 5,236 words corpus, the smallest recommended corpus size, to learn

the morphology of Amharic using Linguistica. As Linguistica can not handle the

root-pattern non-concatenative morphology of Amharic, he developed a stem inter-

nal morphological parser (called Amharic Stems Morphological Analyzer - ASMA)

based on the theory of autosegmental morphology to analyze the stems identified by

Linguistica into their constituent root and pattern morphemes. However, he could

not succeed to integrate his stem analyzer to that of Linguistica because of time

limitations. Moreover, although the stem analyzer had been developed to analyze

the output of Linguistica, Tesfaye [2002] was forced to use a separate corpus con-

sisting of 326 stems for the stem morphological analyzer. The reason behind this, as

indicated by the author, is that Linguistica could not produce linguistically correct

stems. Both systems use the respective corpora as input and produce morphological

dictionaries as their output. To test the performance, the output of the systems

(500 words and 255 stems from the output of Linguistica and ASMA, respectively)

has been examined by two linguists. 94% of the stems and 87% of the words have

been parsed successfully by ASMA and Linguistica, respectively. In the case of

Linguistica, undersegmented words are considered as correct analysis.

Sisay and Haller [2003] discussed three related issues about Amharic verb mor-

phology in the context of machine translation, namely Amharic verb classification,

aspects of lexical entries for lexical transfer and the implementation of a morpho-
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logical analyzer. They used the Xerox finite state tools for implementing a morpho-

logical analyzer and indicated that most of the morphological phenomena can be

handled using finite state machinery. However, derivational processes that involve

the simultaneous application of stem interdigitation and reduplication operations

can not be accommodated. The scope of this work is limited to the Amharic verb

morphology.

Saba and Gibbon [2005] developed a finite state based computational morphol-

ogy system for Amharic. As the system is based on a finite state transducer, it can

be used for analysis as well as generation. Saba and Gibbon [2005] designed the

system in such a way that it can cover all morphological processes of the language:

concatenative and non-concatenative (root-pattern and partial or full reduplica-

tion). Moreover, they tried to make the analyzer complete by covering words from

all parts of speech in the language. However, the number of words in the lexicon is

not indicated except for the number of regular verb roots which is 1277. The ana-

lyzer takes a string of morphemes as an input and gives the underlying morphemes

and morphosyntactic categories. Taking ’Čäräsk’ as input, for example, produces

’[Črs+VERB+Perf]+Subj+2P+Sg+Masc’ as output. As indicated by Saba [2007],

the transducer for verbs lacks a deeper analysis of the constraints and consequently

is characterized by over-generation. Furthermore, the lexicon of nouns and adjec-

tives is incomplete. We have also noticed the fact that the morphological analyzer

developed by Saba and Gibbon [2005] exhibit a dearth of lexicon. It has been tested

on 207 words and it analyzed less than 50% (75 words) of the words. In addition,

the output of the system is not directly useful for our project which needs the mor-

phemes themselves instead of their morphological features. Since the source code of

the analyzer is not yet made available, it is not possible to customize it.

Sisay [2005] developed an Amharic word segmentation system using conditional

random fields. The segmentation task did not consider all bound morphemes. While

bound morphemes such as prepositions, conjunctions, relative markers, auxiliary

verbs, negation markers and coordinate conjunctions are considered; others such as

definite article, number, gender and case markers are not considered as segments

instead treated as part of a word. Sisay [2005] used five annotated news articles con-

sisting of 1000 words to train and test the system. Using a five-fold cross validation

method, he could achieve an accuracy of 84%.

Atelach and Asker [2007] developed a rule-based stemmer for Amharic that re-

duces words to their citation forms. Although the stemmer is a rule based one,

it also employs statistical methods for disambiguation. The authors constructed

65 rules based on the entire Amharic morphology. These rules vary from simple

affixation rules to allowed combinations of prefixes and suffixes for each word cat-
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egory and set of prefixes. The stemmer works as follows. It first creates a list of

all possible segmentations by applying the morphological rules. Each segmentation

is then verified by matching each candidate stem against the entries of a machine

readable dictionary. If exactly one stem matches the dictionary entry, then that

segmentation will be presented as the output of the stemmer. Otherwise, if more

than one stem matches, the most likely stem will be selected after disambiguating

among the candidate stems based on statistical and other properties of the stem, in

particular the length of the stem in terms of the number of characters. On the other

hand, if no stem matches the dictionary entry, the stemmer will modify the stem

and redo the matching. The authors evaluated the performance of the stemmer on

two test sets from different domains: news (1503 tokens) and fiction (470 tokens).

The overall accuracy of the stemmer was 76.9% and 60.0% on the news and fiction

domain, respectively. Since this stemmer gives the complete segmentation of a word

as an output instead of the stem, it would be an appropriate tool for our work which

requires all the morphemes of a word. Unfortunately, it was not possible to have

access to the stemmer.

Recently, Gasser [2010a] developed a freely available morphological anayser and

generator, called HornMorpho, for three Ethiopian languages: Amharic, Oromo

and Tigrinya. HornMorpho has been developed as part of the L3 project at Indiana

University which is dedicated to developing computational tools for under-resourced

languages. It analyses and generates Amharic verbs as well as nouns, Oromo and

Tigrinya verbs. As indicated by Gasser [2010b], given an Amharic word, HornMor-

pho, returns the root (for verbs only), the lemma and a grammatical analysis in

the form of a feature structure description for each possible anaylsis. As it is clear,

the analyser became available after we finished our experiments. Moreover, with its

current output format, the analyser can not be used directly for our purpose.

As it can be observed from the above review, some of the morphological analysis

systems are not directly applicable to our work because of the format of their output

and/or their limited coverage. Some others suffer from lack of training data and,

therefore, are not efficient for processing large amounts of text as required for lan-

guage modeling. Those systems that could be used are not available. Therefore, we

were forced to find alternative ways for morphological analysis, and decided to use

an unsupervised morphological learning system that requires only an unannotated

text corpus.





Chapter 5

Morphology-based Language

Modeling for Amharic

5.1 Introduction

This chapter expounds the various morphology-based language modeling experi-

ments that we have conducted. The SRI language modeling toolkit has been used

to develop the language models. Section 5.2 gives a brief description of the toolkit.

As there is no morphological analyzer suited for our purpose and as the development

of such a morphological analyzer was not feasible within the time available for the

project, we used a freely available unsupervised morphology learning tool, namely

Morfessor, to morphologically segment words in our corpus. Section 5.3 presents

the morph-based language modeling experiment conducted using the morphs, called

statistical morphs hereafter, obtained using the unsupervised morphology induction

algorithm. In order to see the benefit of using morphs as a modeling unit, sev-

eral word-based language models have also been developed and compared with the

statistical morph-based language models.

Morfessor deals with concatenative morphology. However, Amharic exhibits the

non-concatenative morphological feature besides the concatenative one. Thus, to

see the impact of non-concatenative processes in language modeling, we manually

segmented a collection of 72,428 word types extracted from a text corpus consisting

of 21,338 sentences. Since the morphs have been obtained by applying linguistic

rules we call them linguistic morphs. Linguistic morph-based language models have

been developed with these data. The performance of such models has been compared

with statistical morph-based and word-based language models. The details of the

experiment are presented in Section 5.4.

In statistical and linguistic morph-based language modeling, we considered each

morph as a unit in language modeling. This, however, leads to a loss of word level

dependencies because the span of the n-gram might be limited to a single word. As

a solution to this problem and since it allows to integrate any relevant information

(e.g. Part-of-Speech tags) to language models, we also developed factored language
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models. Section 5.5 describes the development of factored language models and

Part-of-Speech taggers that provide additional information for them.

5.2 Modeling Tool

The tool used for language modeling is the SRI Language Modeling toolkit (SRILM)

which has been under development in the SRI Speech Technology and Research

Laboratory since 1995 [Stolcke, 2002]. SRILM is an extensible toolkit, that runs on

UNIX and Windows platforms, for building and applying statistical language models

for use in speech recognition, tagging, segmentation, and machine translation.

Besides the standard word-based n-gram language models, it supports the de-

velopment of other language model types such as class-based models, cache models,

factored language models, skipping models, dynamically interpolated models, etc.

Moreover, it implements most of the known smoothing techniques. Although SRILM

has been originally developed for language model construction and evaluation, over

the years it has evolved to include tools that go beyond language model estimation

and evaluation, for instance, a tool to rescore and expand lattices.

SRILM is a freely available open source language modeling toolkit. It is currently

used by many researchers all over the world and is required by some statistical

language processing tools such as Moses.1

5.3 Statistical Morph-based Language Models

5.3.1 Corpus Preparation

A text corpus (called ATC_48k hereafter) consisting of 48,090 sentences and

1,542,697 tokens has been prepared. The electronic text has been obtained from

ethiozena archive which contains written newscast. Since the target application

domain is speech recognition and since we wanted to merge the text corpus with

the one prepared by Solomon et al. [2005] for speech recognition, the text has been

normalized accordingly. The normalization tasks that we have performed (using

manual as well as automatic means) include:

• Correction of spelling and grammar errors. The absence of an Amharic spelling

and grammar checker makes the task difficult and laborious. Thus, we do not

claim that we corrected every spelling and grammar error in the corpus.

1Moses is a statistical machine translation tool.
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• Expansion of abbreviations and contractions. The most common contractions

are Ethiopian personal names, title and names formed through compounding.

For example it is common to write the name Úb�≈rÑm ’gäbrämaryam’ as

Ú/≈rÑm ’gä/maryam’ and the title °q‰y √¸s´r ’t’äk’lay minister’ which

means prime minister as °/√¸s´r ’t’ä/minister’ or even as °/√ ’t’ä/mi’.

Such contractions have been expanded.

• Separation of concatenated words.

• Textual transcription of numbers. Telephone numbers, date, time, etc. written

in numbers have been transcribed.

• Removal of foreign words, particularly English words provided that their re-

moval does not affect the grammatical structure of a sentence.

• Removal of punctuation marks.

After normalization, the ATC_48k corpus has been merged with the text database

prepared by Solomon et al. [2005] from the same domain. The combined text corpus

(called ATC_120k afterwards) used in the experiment consists of 120,262 sentences

or 2,348,150 tokens or 211,120 types. Table 5.1 presents the frequency distribution

of words in the ATC_120k corpus.

Frequency Number of words
1 121285
2 - 10 69526
11 - 100 17356
101 - 1000 2655
1001 - 10000 293
10001 - 20000 3
above 20000 2

Table 5.1: Word frequency distribution

Zipf’s law is useful to describe the frequency of words in natural language. It

indicates the fact that there are a few very common words, a middling number of

medium frequency words, and many low frequency words [Manning and Schütze,

1999]. Our corpus exhibits such a distribution and this implies that the data is

sparse. As it can be noted from Table 5.1, more than 50% (121,285) of the words

occur only once (hapax legomena) in the corpus. However, our corpus is not the only

one to include large number of hapaxes. Zemánek [2001] indicated that CLARA

(Corpus Linguae Arabicae), an Arabic corpus, consists of more than 50% hapax
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legomena. On the other hand, in our corpus only 5 words appear with a frequency

of above 10,000. These words are function words such as wsµ /wIsT/ ’in’.

We also compared the frequency distribution of Amharic words with other lan-

guages, namely English and German. The negra corpus that consists of 20,602

sentences have been used for German. To make a fair comparison, the same amount

of sentences have been taken for English and Amharic from the WSJ and ATC_120k

corpora, respectively. Figure 5.1 depicts the frequency distribution of words for the

three languages. As can be clearly seen the number of hapax legomena for Amharic

is much bigger than for German and English.

Figure 5.1: Word frequency distribution of Amharic, English and German

5.3.2 Word Segmentation

Developing a sub-word language model requires to have a word parser which splits

word forms into its constituent morphs. Different people [Abiyot, 2000, Nega and

Willett, 2002, Tesfaye, 2002, Sisay and Haller, 2003, Saba and Gibbon, 2005, Sisay,

2005, Atelach and Asker, 2007] have attempted to develop morphological analyzer

for Amharic using different methods as it has been discussed in Chapter 4. However,

most of the systems can not be directly used for our purpose. The ones that could

be used are not accessible. Hence, there is a need to look for other ways of handling

the problem.

An alternative approach is the use of unsupervised corpus-based methods that

require only raw unannotated data for morphology induction. The lack of resources

such as morphologically annotated corpora for Amharic makes the unsupervised

morphology induction methods both interesting and practical. Therefore, two freely

available, language independent unsupervised morphology learning tools have been

identified: Linguistica [Goldsmith, 2000] and Morfessor [Creutz and Lagus, 2005].
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Both tools have been tried on a subset of our corpus (9,996 sentences). Unfortu-

nately, it has been found that Linguistica divides every word into two constituents

even if a word actually consists of more than two morphemes. Thus, Morfessor

which tries to identify all the morphemes found in a word has been used to produce

our morphologically segmented corpus.

Morfessor requires a list of words as an input to learn the morphs. The developers

of Morfessor found out that Morfessor, evaluated on Finnish and English data sets,

gives better morph segmentation when it is provided with a list of word types instead

of a list of word tokens. To compare these findings with the situation in Amharic,

two word lists have been prepared from the ATC_120 corpus: a list of tokens and

a list of word types. These word lists have then been used as an input to Morfessor.

Morfessor learns the morph segmentation from the input data and presents as output

the frequency of a word and its constituent morphs (type-based and token-based

segmentations). The morphs of a given word are separated by a plus (+) sign.

Table 5.2 gives example output from Morfessor.

Input: word type list Input: word token list
Frequency Segmentation Frequency Segmentation
1 CAmAa 63 CAmA
1 CA + mAcawe 1 CAmA + cawe
1 CAmA + cawene 2 CAmA + cawene
1 CAmA + cawene + nA 1 CAmA + cawene + nA
1 CAmA + cenene 4 CAmA + cenene
1 CAmA + nA 4 CAmA + nA
1 CAmA + ne 3 CAmA + ne
1 CAmA + we 1 CAmA + we
1 CAmA + wene 3 CAmA + wene
1 CAmA + wocacawene 1 CAmA + wocacawene
1 CAmA + woce 4 CAmAwoce
1 CAmA + wocene 2 CAmAwoce + ne
1 CAmA + wocene + nA 1 CAmAwoce + ne + nA
1 CAmA + wocu 1 CAmA + wocu

aThe transcription is the one employed in Solomon [2006].

Table 5.2: Morfessor segmented data

5.3.2.1 Evaluation of the Word Segmentation

A segmentation performance can be evaluated by comparing morpheme boundaries

proposed by the algorithm with a linguistic gold standard. Creutz [2006] indicated

that such an evaluation is straightforward and intuitive provided that an adequate
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gold standard exists. Since, to our knowledge, there is no gold standard segmenta-

tion available for Amharic, we manually prepared one for about 1,000 words. The

words have been taken from the output segmentation (type-based segmentation)

systematically. That means after taking the first word, every fiftieth word has been

taken and the correct segmentation for it has been provided. However, similar to

Creutz [2006], we considered Amharic stems as a correct segmentation although

they should have been analyzed into root and pattern. The same words have also

been selected from the token-based segmentation. The segmentation of words (type-

based and token-based segmentation) have been compared with the gold standard

and precision, recall and f-measure (see Table 5.3) have been calculated using the

evaluation scripts of Hutmegs package [Creutz and Lindén, 2004]. As can be seen

from the table, the type-based segmentation is better than the token-based one when

compared in terms of f-measure. Moreover, the recall of the type-based segmentation

is also higher than the token-based one. However, there is no notable difference in

precision. The f-measures for Amharic are higher than the one reported by Creutz

[2006] for Arabic (41.7%) using the same version of Morfessor but on a data set

consisting of 17,000 distinct words. This might be due to the amount of data used

for evaluation and the way the gold standards have been prepared. The Arabic

data set is very big compared to the one used to evaluate the Amharic segmentation

(only 1,000 word types). While the Arabic gold standard has been generated auto-

matically based on a lexicon of Egyptian Colloquial Arabic, the Amharic one was

prepared manually which would result in a more accurate segmentation compared

to the automatic method.

Measures Type-based seg. Token-based seg.
Precision 82.19% 82.84%
Recall 54.59% 37.60%
F-Measure 65.60% 51.72%

Table 5.3: Evaluation results of the segmentation

5.3.2.2 The Morph Segmented Corpora

The output of Morfessor has been processed (the frequency and the + sign have

been removed) and the words in our corpus have been replaced by their constituent

morphs automatically. Since Morfessor has been trained on two different word

lists, there are two different kinds of output (morph segmentation) and, therefore,

two morph-segmented corpora: token_based_corpus and type_based_corpus. To-

ken_based_corpus (consisting of 2,741,218 tokens or 52,337 distinct morphs) is a



5.3. Statistical Morph-based Language Models 71

morphologically segmented corpus where the morphs have been found by analyzing

the list of tokens whereas in type_based_corpus, that consists of 4,035,656 tokens

or 15,923 types, the morphs have been obtained by analyzing the word type list.

Figure 5.2 shows the frequency distribution of morphs in these corpora. In the to-

ken_based_corpus, the majority of morphs (14,550) are in the frequency range of

2 to 5 while in type_based_corpus there are only 2,268 morphs in this frequency

range. Most (3,511) of the morphs in type-based corpus have frequencies between

20 and 49.

Figure 5.2: Morph frequency distribution

Figure 5.3 depicts the morph length (in terms of number of characters) distribu-

tion in token_based_ and type_based_corpus. As can be seen from the figure,

the length of most of the morphemes (4,647) in type_based_corpus is six while

in token_based_corpus, the majority of morphemes (23,266) consists of 10 to 19

characters. The figure also shows that most of the morphs have even length which

is due to the transcription system used. In our corpus each Amharic character is

transcribed by a consonant and vowel which made almost all words in the corpus

to have even length.

5.3.3 The Language Models

Each morph segmented corpus (token_based_corpus and type_based_corpus de-

scribed in Section 5.3.2.2) is divided into three parts: training set, development and

evaluation test sets with a proportion of 80:10:10. Trigram models with Good-Turing

smoothing and Katz-backoff have been developed using the corpora. Although di-

rect comparison of perplexity figures for these models is not possible, a surprisingly

big difference in perplexity (860.47 for the token_based_corpus and 117.43 for the
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Figure 5.3: Morph length distribution

type_based_corpus) has been observed. The reason for this difference might be

the fact that the number of unsegmented words in token_based_corpus (45,767) is

greater than that of the type_based_corpus (11,622). This conforms to the finding

of Creutz and Lagus [2005] that segmentation is less frequent when a list of word

tokens is used as input to Morfessor. For instance, one can observe from Table 5.2

that the word /CAmAwoce/ has been considered as a single morph word albeit it

should be segmented into /CAmA/ and /woce/. Moreover, the fact that there are

many morphs with length 10 to 19 (see Figure 5.3) further proves that segmenta-

tion is less common when word-token list is used as input. From Figure 5.4 we can

also see that the vocabulary size has been reduced when word type list has been

used as input to morfessor. This is because Morfessor Baseline most concisely codes

frequent strings into one piece (regardless of their linguistic structure) which in

turn engenders under-segmentation while rare strings are coded in short substrings

[Creutz, 2006]. The segmentation evaluation result presented in Section 5.3.2.1 also

shows that type-based segmentation is better than the token-based one. Accord-

ingly, only the type_based_corpus has been used for subsequent experimentation

and the following results presented in this section are based on this corpus.

N-gram models of order 2 to 5 have been trained using the type_based_corpus.

The effect of different smoothing techniques (Good-Turing, Absolute discounting,

Witten-Bell, Natural discounting, modified and unmodified Kneser-Ney) on the

quality of language models has been studied. The best results obtained for each

smoothing technique are presented in Table 5.4.

As it can be seen from Table 5.4, the best performing model is a pentagram

model with unmodified Kneser-Ney smoothing. This result is in line with the finding
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Figure 5.4: Vocabulary size before and after segmentation

N-gram Smoothing technique Perplexity
Quadrogram Good-Turing with Katz backoff 113.24
Pentagram Absolute Discounting with 0.7 discounting factor 112.79
Pentagram Witten-Bell 110.88
Pentagram Natural Discounting 117.37
Quadrogram Modified Kneser-Ney 107.54
Pentagram Unmodified Kneser-Ney 103.63

Table 5.4: Perplexity of statistical morph-based language models

of Chen and Goodman [1998] that Kneser-Ney and its variation outperform other

smoothing techniques.

Probability estimates of different n-gram order have been interpolated for

Witten-Bell, Absolute discounting and modified Kneser-Ney smoothing techniques.

Interpolation has been performed only for these three smoothing techniques because

the SRILM toolkit supports interpolation only for them. Table 5.5 shows the best

results for each smoothing technique.

N-gram Smoothing technique Perplexity
Quadrogram Witten-Bell 112.1
Pentagram Modified Kneser-Ney 101.38
Quadrogram Absolute Discounting with 0.7 discounting factor 118.38

Table 5.5: Perplexity results with interpolation

Interpolating n-gram probability estimates at the specified order n with lower order
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estimates sometimes yield better models [Stolcke, 2002]. Our experiment verified

this fact. A pentagram model with Kneser-Ney smoothing and interpolation of n-

gram probability estimates has a perplexity of 101.38. For the other smoothing

techniques an increase in perplexity has been observed. This best performing model

has a perplexity of 102.59 on the evaluation test set.

As indicated by Stolcke [2002], discarding unknown words or treating them as

a special “unknown word” token affects the quality of language models. Thus, un-

known words have been mapped to a special “unknown word” token for the best

model indicated in Table 5.5 and an increase in perplexity (to 102.26) has been

observed. This might be due to the fact that there are only 76 out-of-vocabulary

words.

5.3.4 Word-Based Language Model

To compare the results obtained for statistical morph-based language models, we

have also developed word-based language models. For this purpose, we used the cor-

pus from which the morph-segmented corpus has been prepared. Table 5.6 shows the

perplexity of word-based models. The pentagram model with unmodified Kneser-

Ney is the best model compared to the other word-based language models.

N-gram Smoothing technique Perplexity
Trigram Good-Turing with Katz backoff 1151.29
Pentagram Absolute Discounting with 0.7 discounting factor 1147.04
Pentagram Witten-Bell 1236
Pentagram Natural Discounting 1204.14
Quadrogram Modified Kneser-Ney 1107.32
Pentagram Unmodified Kneser-Ney 1078.16

Table 5.6: Perplexity of word-based models

Interpolation of n-gram probability estimates has also been tried for the three

smoothing techniques for which SRILM supports interpolation. As it can be seen

from Table 5.7, improvement has been achieved for a pentagram model with modi-

fied Kneser-Ney as a result of interpolation. In contrast, models using the other two

smoothing techniques (Witten-Bell and Absolute Discounting) did not benefit from

interpolation.

The optimal quality has been obtained with pentagram language model with

modified Kneser-Ney, interpolation of n-gram probability estimates, and a mapping

of unknown words to a special “unknown word” token. This model has a perplexity

of 879.25 and 873.01 on the development and evaluation test sets, respectively.
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N-gram Smoothing technique Perplexity
Pentagram Witten-Bell 1241.41
Pentagram Modified Kneser-Ney 1059.38
Pentagram Absolute Discounting with 0.7 discounting factor 1158.63

Table 5.7: Perplexity of word-based models with interpolation

Although it is not possible to compare the perplexities of our word-based language

models and the ones reported by Solomon [2006] (where the maximum perplexity

of a bi-gram word-based language model was 167.89) because of the different test

sets used, we did not expect such a big gap in the figures. To discover the reason

behind the divergence in perplexity, we have developed word-based language models

using our corpus (consisting of 96,205 sentences or 185,468 word types for training

and 12,026 sentences or 51,056 distinct words for testing) in the same fashion as

Solomon [2006] did. In Solomon [2006] HLStats, HBuild and HSGen modules of

the HTK toolkit [Young et al., 2006] have been used. HLStats creates a bigram

probability, HBuild converts the bigram language model into lattice format and

HSGen generates sentences from the lattice and calculates the perplexity.

Using this method it has been possible to develop a bi-gram word-based language

model with a perplexity of 239.45. However, this perplexity figure is still large

compared to 167.89 reported by Solomon [2006]. This is due to the nature of the

data used in the experiments. In our corpus, there are many long sentences (35,626

and 4,434 sentences in the training and test sets, respectively) that contain more

than 20 words. On the other hand, the training data used by Solomon [2006] contains

only 51 long sentences (out of 73,895 sentences) while the test set has none. We

conducted another experiment following the same procedure but excluding the long

sentences from our training and test sets. In this experiment, the training set consists

of 60,597 sentences while the test set includes 7,592 sentences or 27,550 word types.

Using this data it was possible to get a perplexity of 181.63.

Obviously, the problem with the method used by [Solomon, 2006] is that it cal-

culates the perplexity from automatically generated sentences and there is no guar-

antee for the correctness of these sentences. In addition, when the test is conducted

repeatedly, the perplexity values vary as the sentences generated are different. For

example, in the experiment that we conducted with short sentences (containing 20

or less words), the perplexity values varied from 181.63 to 201.27 as shown in figure

5.5. Therefore, we can not directly compare the perplexity of the word-based lan-

guage model that has been developed in the same way as Solomon [2006] with the

one reported in [Solomon, 2006] let alone with the perplexities of the models that
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have been tested on real test sentences.

Figure 5.5: Perplexity variance

5.3.4.1 Influence of Data Quality

Although we expect that the high perplexity of our word-based language models

is attributed to the morphological richness of the language, spelling errors might

also contribute. To estimate the influence of spelling errors, we have conducted two

experiments. For these experiments, two data sets have been prepared: data_set_I

and data_set_II. 10,000 sentences (consisting of 312,003 word tokens or 60,292

distinct words) of the ATC_48k have been manually checked for spelling errors.

The text which is free from spelling errors consists of 10,005 sentences or 307,689

word tokes or 57,687 types. The higher number of sentences in the spelling error free

text is due to splitting of two or more sentences which were considered originally a

single one. As expected, the number of tokens and word types have also been reduced

after spelling error correction. This might roughly show the spelling error rate in the

original text. The spelling error free sentences have been merged with the sentences

that Solomon et al. [2005] used to develop a speech corpus. We took only 11,917

sentences (that contain 117,792 tokens or 32,382 types) which are actually read for

the speech corpus as this will assure us that there is no spelling error. This forms

data_set_I that consists of 21,922 sentences and 425,481 tokens. Data_set_II is

prepared in the same way except that the spelling errors in the 10,000 sentences

have not been corrected. It consists of 21,917 sentences and 429,795 tokens. These

data have been divided into training set, development and evaluation test set with a

proportion of 80:10:10 and word-based language models have been developed. The

perplexity of the models developed using these data sets are presented in Table 5.8

and 5.9.
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N-gram Smoothing technique Perplexity
Quadrogram Absolute Discounting with 0.7 discounting factor 981.464
Quadrogram Witten-Bell 1091.03
Quadrogram Natural Discounting 1013.81
Trigram Modified Kneser-Ney 970.285
Trigram Unmodified Kneser-Ney 940.046

Table 5.8: Word-based models with data_set_I

N-gram Smoothing technique Perplexity
Quadrogram Absolute Discounting with 0.7 discounting factor 988.073
Pentagram Witten-Bell 1096.71
Quadrogram Natural Discounting 1022.22
Trigram Modified Kneser-Ney 986.471
Trigram Unmodified Kneser-Ney 955.999

Table 5.9: Word-based models with data_set_II

As it can be observed from Table 5.8 and 5.9, the best models are the tri-gram

models with unmodified Kneser-Ney smoothing for both data sets. The perplexity

values are 940.046 and 955.999 for data_set_I and data_set_II, respectively. When

n-gram estimates are interpolated, the four-gram models with modified Kneser-Ney

smoothing have the lowest perplexity for both data sets, as shown in Table 5.10 and

5.11.

N-gram Smoothing technique Perplexity
Quadrogram Witten-Bell 1084.92
Quadrogram Modified Kneser-Ney 936.898
Quadrogram Absolute Discounting with 0.7 discounting factor 979.125

Table 5.10: Interpolated word-based models data_set_I

Mapping the out-of-vocabulary words to a special “unknown word” token reduced

the perplexity of the best performing model developed using data_set_I by 349.487

(from 936.898 to 587.411). This model has a perplexity of 613.983 on the evalua-

tion test set. For data_set_II, a perplexity reduction of 372.632 (from 953.953 to

581.321) has been observed as a result of mapping unknown words to the “unknown

word” token. The latter model has a perplexity of 578.627 on evaluation test set.

There is still a very high perplexity for the best models developed using

data_set_I, which is free of spelling errors. This enables us to conclude that cor-

recting spelling errors did not reduce the high perplexity of word-based models and,
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N-gram Smoothing technique Perplexity
Quadrogram Witten-Bell 1092.23
Quadrogram Modified Kneser-Ney 953.953
Quadrogram Absolute Discounting with 0.7 discounting factor 987.89

Table 5.11: Interpolated word-based models data_set_II

therefore, the sole source for the high perplexity is the morphological feature of the

language.

5.3.5 Comparison of Word-based and Statistical Morph-based

Language Models

The perplexity values of word-based and morph-based models are not directly com-

parable as the test sets used have quite different token counts. In this case, it is

better to consider the probability assigned to the test sets by the models. A model

that assigns a high probability is considered a better model. To avoid underflow, log

probabilities are used for comparison. The total log probability of the best perform-

ing statistical morph-based model (a pentagram model with Kneser-Ney smoothing

and interpolation of n-gram probability estimates, indicated in Table 5.4) is -834495,

whereas the corresponding word-based model has a total log probability of -705218.

Table 5.12 depicts the log probabilities of best statistical morph-based model and

the corresponding word based model which has a perplexity of 1059.38 (see Table

5.7).

Model Log Probabilities
Best performing morph-based model -834495
Corresponding word-based model -705218

Table 5.12: Log probabilities I

The best performing word-based language model (pentagram model with unmod-

ified Kneser-Ney, interpolation of n-gram probabilities, and mapping of unknown

words to “unknown word” token) has a total log probability of -726095, while the

total log probability of the corresponding statistical morph-based model is -836215

although its perplexity is 102.26. Table 5.13 shows this fact. This tells us that word-

based models have high log probability and, therefore, are better models although

their perplexity is higher. On the other hand, sub-word based language models offer

the benefit of reducing the out-of-vocabulary words rate from 13,500 to 76. This

is a great achievement, as the out-of-vocabulary words problem is severe in mor-
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phologically rich languages in general, and Amharic in particular. Thus, a speech

recognition experiment is required to investigate which model is really better and

improves the performance of the speech recognition system.

Model Log Probabilities
Best performing word-based model -726095
Corresponding morph-based model -836215

Table 5.13: Log probabilities II

5.4 Linguistic Morph-based Language Models

5.4.1 Manual Word Segmentation

Morfessor tries to find the concatenative morphemes in a given word. However, a

word in Amharic can be decomposed into root, pattern and one or more affix mor-

phemes. Since Morfessor does not handle the non-concatenative feature, we man-

ually segmented 72,428 word types found in a corpus of 21,338 sentences (419,660

tokens). By manually segmenting the tokens in the corpus we hoped to obtain an

optimistic estimation of what an automatic procedure could achieve at best if it

would be available.

To do the segmentation, we used two books as manuals: Baye [2000EC] and

Bender and Hailu [1978]. Yimam’s book describes how morphemes can be combined

to form words. The list of roots in Bender and Hailu [1978] helped us to cross-

check the roots that we suggest during the segmentation. Unlike the unsupervised

morphology induction program, namely Morfessor, we provided full segmentation

for each word including the root and the pattern whenever appropriate as shown in

Table 5.14. The tags in parentheses such as (prefix), (root), etc. are not actually

used when we develop the linguistic morph-based language models. But they are

used particularly for the purpose of preparing the factored data that is required for

factored language modeling.

We do not claim the segmentation to be comprehensive. Since a word type list

has been used, there is only one entry in case of polysemy or homonymy. For ex-

ample, the word µ“ /t’Iru/ might be an adjective which means ’good’ or it might

be an imperative verb which has a meaning ’call’ (for second person plural). Conse-

quently, the word has two different segmentations. Nevertheless, we provided only

one segmentation based on the most frequent meaning of the word in our text.

In other words we disambiguated based on the frequency of use in the text. The

geminated and non-geminated word forms, which might have distinct meanings and
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Word Segmentation
HenedamahonE Heneda (prefix) ma (prefix) hwn (root) a (pattern) E
HenedamahonewA Heneda (prefix) ma (prefix) hwn (root) a (pattern) wA
Henedamahonu Heneda (prefix) ma (prefix) hwn (root) a (pattern) u
HenedamahonuA Heneda (prefix) ma (prefix) hwn (root) a (pattern) uA
Henedamakaru Heneda (prefix) mkr (root) aa (pattern) u
HenedamaleHakete Heneda (prefix) maleHakete
HenedamalasekAcawe Heneda (prefix) mls (root) aa (pattern) k Acaw
Henedamalasuteme Heneda (prefix) mls (root) aa (pattern) u t m
Henedamamalase Heneda (prefix) ma (prefix) mls (root) aa (pattern)
HenedamanaCa Heneda (prefix) mnCh (root) aa (pattern) a
Henedamaqedase Heneda (prefix) maqedase
HenedamaraDA Heneda (prefix) maraDA
HenedamaraTa Heneda (prefix) mrT (root) aa (pattern) a
HenedamaraTu Heneda (prefix) mrT (root) aa (pattern) u
Henedamaraqehute Heneda (prefix) mrq (root) aa (pattern) hu t

Table 5.14: Manually segmented words

consequently different segmentations, have also been treated in the same manner as

the polysemous or homonymous ones. Because the transcription system does not

indicate the geminated consonant, for instance, €°Ú¥ /?at’ägäbu/ can be treated

as an adverb which means ’next to him’ or as a verb with a meaning ’they made

somebody else full or they satisfied (somebody else)’ based on the gemination of

the consonant g. This word could have, therefore, been segmented in two different

ways: [?at’ägäb + u] if it is an adverb or [?a + t’gb + aa + u] if it is a verb.

Another point is related to the plural forms of words borrowed from Geez2 which

are formed by epenthesis and vocalic changes. For example, the plural form of the

noun Á¼b /kokäb/ - ’star’ is ¼Åkbt /käwakbIt/. There are also some Amharic

words whose plural forms are formed through partial reduplication. For instance,

the plural form of the adjective tlq /tIlk’/ - ’big’ is t‰lq /tIlalk’/. It would be

easier if we analyse such words as, for example, käwakbIt = kokäb + NPl3 or tIlalk’ =

tIlk’ + AdjPl4. However, we need an analysis that gives the morphemes themselves.

Thus, such words have not been segmented since it is difficult to segment them

into morphemes. Nevertheless, we believe that these limitations do not significantly

affect the quality of our manually segmented corpus.

Once we have the segmented list of words, we automatically substituted each and

2Another Semitic language mostly used in the liturgy of Ethiopian and Eritrean Orthodox
täwahdo churches.

3A short form for plural noun.
4A short form for plural adjective.
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every word in our corpus (from which the word type list has been derived) with its

segmentation so as to have the linguistic morph-segmented corpus, manually_seg

corpus. This corpus has 1,141,434 tokens or 11,154 distinct morphs. As can be

seen from Table 5.15, the length of most of the morphs in the manually_seg corpus

is between two and six which corresponds to the segmentation found by Morfessor

trained on word type list where most of morphs have a length of six. The majority of

the morphs in manually_seg corpus have a frequency of five or less which resembles

the segmentation trained on the word token list (see Figure 5.6).

Length No. of Occurrence
1 28
2 - 6 6364
7 - 9 2826
10 - 19 1930
20 - 29 6

Table 5.15: Morph length distribution of manually segmented corpus

Figure 5.6: Linguistic morpheme frequency distribution

5.4.2 Morph and Word-based Language Models

To find out whether the manual segmentation contributes to an improvement of

model quality, we also segmented the same text corpus using Morfessor, and conse-

quently we obtained a statistically morph-segmented version of the corpus, morfes-

sor_seg corpus. The same text corpus (without being morphologically segmented)

has also been used to train word-based models. That means we have three versions

of the corpus: an unsegmented version for training word based models and a linguis-

tically morph-segmented (manually_seg) as well as a statistically morph-segmented
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one (morfessor_seg). The experimental results presented in the next section are

based on these three corpora.

Each of the three corpora has been divided into three parts: training set, de-

velopment and evaluation test sets in the proportion of 80:10:10. Language models

with several smoothing techniques and n-gram orders have been trained using the

three corpora: manually_seg, morfessor_seg and word_based corpus. The best

model for each corpus is presented in Table 5.16.

Corpus N-gram Smoothing techniques Perplexity Logprob
Manually_seg 6-gram Unmodified Kneser-Ney 21.597 -153178
Morfessor_seg 5-gram Unmodified Kneser-Ney 99.49 -161241
Word_based 4-gram Unmodified Kneser-Ney 1000.86 -116387

Table 5.16: Perplexity difference according to the type of corpus

As it can be clearly seen from Table 5.16, the model that uses the manually seg-

mented data has a lower perplexity5 compared to all the other models. But, when

considering the log probability, the word based model still seems better than the

morph-based ones. The models developed with manually segmented data excel

the ones developed with automatically segmented data. With regard to out-of-

vocabulary words, the models developed using automatically and manually seg-

mented corpus have 45 and 507 out-of-vocabulary words, respectively. In contrast,

the number of out-of-vocabulary words in word-based models is very high, namely

4821. One can also see that unmodified Kneser-Ney smoothing outperformed all the

other smoothing techniques irrespective of the type of corpus.

Corpus N-gram Smoothing techniques Perplexity Logprob
Manually_seg 6-gram Modified Kneser-Ney 20.703 -151071
Morfessor_seg 5-gram Modified Kneser-Ney 97.297 -160459
Word_based 5-gram Modified Kneser-Ney 997.387 -116329

Table 5.17: Effect of interpolation

Interpolation brought improvement (see Table 5.17) to all the models regardless of

the kind of corpus used. However for the word based model, the increase in log

probability is not as large as it is for the others. The language models developed us-

5The perplexity and the out-of-vocabulary words reported here for manually segmented data
are different from the one reported in Martha and Menzel [2009]. This is because in Martha and
Menzel [2009] there were words which were left unsegmented as it was difficult to decide on their
proper segmentation. Later these words have all been segmented in consultation with a linguist
and according to recommendations in the literature.
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ing manually segmented data consistently surpassed (in quality) the ones developed

using automatically segmented data.

5.5 Factored Language Models

Sections 5.3 and 5.4 presented the various morph-based language models for

Amharic. In these experiments morphemes are considered as units of a language

model. This, however, might result in a loss of word level dependencies since the

root consonants of the words may stand too far apart. Therefore, approaches that

capture word level dependencies are required to model the Amharic language. Kirch-

hoff et al. [2003] introduced factored language models that can include word level

dependencies while using morphemes as units in language modeling. That is why

we opted for developing factored language models for Amharic.

As it has been discussed in Chapter 2, in addition to capturing the word level

dependencies, factored language models also enable us to integrate any kind of rel-

evant information to a language model. Part of speech (POS) or morphological

class information, for instance, might improve the quality of a language model as

knowing the POS of a word can tell us what words are likely to occur in its neighbor-

hood [Jurafsky and Martin, 2008]. To see the effect of integrating POS information

to the language models, a POS tagger which is able to automatically assign POS

information to the word forms in a sentence is needed.

5.5.1 Previous Works on Amharic Part-of-Speech Taggers

Mesfin [2000] attempted to develop a Hidden Markov Model (HMM) based POS

tagger for Amharic. He extracted a total of 23 POS tags from a page long text (300

words) which is also used for training and testing the POS tagger. The tagger does

not have the capability of guessing the POS tag of unknown words, and consequently

all the unknown words are assigned a UNC tag, which stands for unknown category.

As the lexicon used is very small and the tagger is not able to deal with unknown

words, many of the words from the test set were assigned the UNC tag.

Sisay [2005] developed a POS tagger using Conditional Random Fields. Instead

of using the POS tagset developed by Mesfin [2000], Sisay [2005] developed another

abstract tagset (consisting of 10 tags) by collapsing some of the categories proposed

by Mesfin [2000]. He trained the tagger on a manually annotated text corpus of five

Amharic news articles (1000 words) and obtained an accuracy of 74%.

A very recent parallel, but independent development, is due to Gambäck et al.

[2009]. There, three tagging strategies have been compared – Hidden Markov Models
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(HMM), Support Vector Machines (SVM) and Maximum Entropy (ME) – using the

manually annotated corpus [Girma and Mesfin, 2006] developed at the Ethiopian

Language Research Center (ELRC) of Addis Ababa University. Since the corpus

contains a few errors and tagging inconsistencies, they cleaned the corpus. Cleaning

includes tagging non-tagged items, correcting some tagging errors and misspellings,

merging collocations tagged with a single tag, and tagging punctuations (such as “

and /) consistently. They have used three tagsets: the one used in Sisay [2005], the

original tagset developed at ELRC that consists of 30 tags and the 11 basic classes of

the ELRC tagset. The average accuracies (after 10-fold cross validation) are 85.56,

88.30, 87.87 for the TnT-, SVM- and maximum entropy based taggers, respectively

for the ELRC tagset. They also found that the maximum entropy tagger performs

best among the three systems, when allowed to select its own folds. Their result

also shows that the SVM-based tagger outperforms the other ones in classifying

unknown words and in the overall accuracy for the tagset (ELRC).

As the data sets used to train the first two systems ([Mesfin, 2000] and [Sisay,

2005]) are very small, it is not possible to apply the taggers to large amount of text

which is needed for training a language model. Thus, we developed one for our

purpose. Section 5.5.2 presents the POS tagger experiment we have conducted for

factored language modeling purpose. The third work [Gambäck et al., 2009] is a

parallel development, i.e. it has been published after we developed our POS tagger.

5.5.2 Amharic Part-of-Speech Taggers

5.5.2.1 The POS Tagset

In our experiment, we used the POS tagset developed within “The Annotation of

Amharic News Documents" project at the ELRC. The purpose of the project was

to manually tag each Amharic word in its context [Girma and Mesfin, 2006]. In this

project, a new POS tagset for Amharic has been derived. The tagset has 11 basic

classes: nouns (N), pronouns (PRON), adjectives (ADJ), adverbs (ADV), verbs

(V), prepositions (PREP), conjunction (CONJ), interjection (INT), punctuation

(PUNC), numeral (NUM) and UNC which stands for unclassified and used for words

which are difficult to place in any of the classes. Some of these basic classes are

further subdivided and a total of 30 POS tags have been identified as shown in

Table 5.18. Although the tagset contains a tag for nouns with preposition, with

conjunction and with both preposition and conjunction, it does not have a separate

tag for proper and plural nouns. Therefore, such nouns are assigned the common

tag N.
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Categories Tags
Verbal Noun VN
Noun with prep. NP
Noun with conj. NC
Noun with prep. & conj. NPC
Any other noun N
Pronoun with prep. PRONP
Pronoun with conj. PRONC
Pronoun with prep. & conj. PRONPC
Any other pronoun PRON
Auxiliary verb AUX
Relative verb VREL
Verb with prep. VP
Verb with conj. VC
Verb with prep. & conj. VPC
Any other verb V
Adjective with prep. ADJP
Adjective with conj. ADJC
Adjective with prep. & conj. ADJPC
Any other adjective ADJ
Preposition PREP
Conjunction CONJ
Adverbs ADV
Cardinal number NUMCR
Ordinal number NUMOR
Number with prep. NUMP
Number with conj. NUMC
Number with prep. & conj. NUMPC
Interjection INT
Punctuation PUNC
Unclassified UNC

Table 5.18: Amharic POS tagset (extracted from Girma and Mesfin [2006])

5.5.2.2 The Corpus

The corpus used to train and test the taggers is also the one developed in the above

mentioned project — “The Annotation of Amharic News Documents" [Girma and

Mesfin, 2006]. It consists of 210,000 manually annotated tokens of Amharic news

documents.

In this corpus, collocations have been annotated inconsistently. Sometimes a

collocation is assigned a single POS tag and sometimes each token in a collocation

got a separate POS tag. For example, ’tmhrt bEt’, which means school, has got a

single POS tag, N, in some places and a separate POS tags for each of the tokens in

some other places. Therefore, unlike Gambäck et al. [2009] who merged a collocation

with a single tag, effort has been exerted to annotate collocations consistently by

assigning separate POS tags for the individual words in a collocation.
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As the software used for training the taggers requires a corpus that lists a word and

its tag (separated by white space) per line, we had to process the corpus accordingly.

Moreover, the place where and date on which the news item appeared have been

deleted from the corpus as they were not tagged. After doing the above mentioned

pre-processing tasks, we ended up with a corpus that consists in 205355 tagged

tokens.

5.5.2.3 The Software

We used two kinds of software, namely TnT and SVMTool, to train different tag-

gers. TnT, Trigram’n’Tags, is a Markov model based, efficient, language indepen-

dent statistical part of speech tagger [Brants, 2000]. It has been applied to many

languages including German, English, Slovene, Hungarian and Swedish successfully.

Megyesi [2001] showed that TnT is better than maximum entropy, memory- and

transformation-based taggers.

SVMTool is a support vector machine based part-of-speech tagger generator

[Giménez and Màrquez, 2004]. As indicated by the developers, it is a simple, flexible,

effective and efficient tool. It has been successfully applied to English and Spanish.

Since POS tagging is not at the core of this study, we direct readers who are

interested to know more about the software, namely TnT and SVMTool, to the

respective literature.

5.5.2.4 TnT-Based Taggers

We have developed three TnT-based taggers by taking different amounts of tokens

(80%, 90% and 95%) from the corpus as training data and named the taggers as

tagger1, tagger2 and tagger3, respectively. Five percent of the corpus (after taking

95% for training) have been reserved as a test set. This test set has also been used

to evaluate the SVM-based taggers to make the results comparable.

Table 5.19 shows the accuracy of each tagger. As it is clear from the table, the

maximum accuracy was found when 95% of the data (195,087 words) have been used

for training. This tagger has an overall accuracy of 82.99%. The results also show

that the training has not yet reached the point of saturation and the overall accuracy

increases, although slightly, as the amount of training data increases. This conforms

with findings for other languages that “... the larger the corpus and the higher the

accuracy of the training corpus, the better the performance of the tagger” [Brants,

2000]. One can also observe that improvement in the overall accuracy is affected

with the amount of data added. Higher improvement in accuracy has been obtained

when we increase the training data by 10% than increasing by only five percent.
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Compared to similar experiments done for other languages and the result obtained

for Amharic by Gambäck et al. [2009], our taggers have a worse performance. The

better results obtained by Gambäck et al. [2009] might be due to better optimization,

the use of cleaned data and a 10-fold cross-validation technique to train and evaluate

the taggers. Nevertheless, since the development of POS tagger is not the main aim

of this study, we still consider the result acceptable for the given purpose.

Accuracy in %
Taggers Known Unknown Overall
Tagger1 88.24 48.77 82.70
Tagger2 88.09 48.11 82.94
Tagger3 88.00 47.82 82.99

Table 5.19: Accuracy of TnT taggers

5.5.2.5 SVM-Based Tagger

We trained the SVM-based tagger, SVMM0C0, using 90% of the tagged corpus. To

train this model, the default values for the cost parameter C (that controls the trade

off between allowing training errors and forcing rigid margins) and for other features

like the size of the sliding window have been used. The model has been trained in

a one pass, left-to-right and right-to-left combined, greedy tagging scheme. The

resulting tagger has an overall accuracy of 84.44% (on the test set used to evaluate

the TnT-based taggers) as Table 5.20 shows.

A slight improvement of the overall accuracy and the accuracy of known words

has been achieved setting the cost parameter to 0.1 (see SVMM0C01 in Table 5.20).

The accuracy improvement for unknown words is bigger (from 73.64 to 75.30) com-

pared to the accuracy of known words and the overall accuracy. However, when

the cost parameter was increased above 0.1, the accuracy declined. Neither a cost

parameter of 0.3 (SVMM0C03) nor of 0.5 (SVMM0C05) brought an improvement in

accuracy both for the overall accuracy and for the accuracy of known and unknown

words.

Accuracy in %
Taggers Known Unknown Overall
SVMM0C0 86.03 73.64 84.44
SVMM0C01 86.97 75.30 85.47
SVMM0C03 86.71 73.49 85.01
SVMM0C05 86.48 71.97 84.61

Table 5.20: Accuracy of SVM-based taggers

To determine how the amount of training data affects accuracy, we trained another
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SVM-based tagger (SVMM0C01-95) using 95% of the data and the cost parameter

of 0.1. As it can be seen from Table 5.21, only a slight improvement in the overall

accuracy and the accuracy for classifying unknown words has been achieved com-

pared to the SVMM0C01 tagger which has been trained on 90% of the data. This

corresponds to the findings for TnT-based taggers that improved only marginally

when a small amount of data (5%) is added. For known words the accuracy declined

slightly. Although this tagger is better (in terms of the overall accuracy) than all

the other ones developed in our experiment, it performs still worse than the one

reported by Gambäck et al. [2009]. Another tagger (SVMM0C03-95) has been de-

veloped using the same data but with a different cost parameter (0.3). However, no

improvement in performance has been observed.

Accuracy in %
Taggers Known Unknown Overall
SVMM0C01-95 86.95 75.35 85.50
SVMM0C03-95 86.76 73.40 85.09

Table 5.21: Accuracy of SVM-based taggers trained on 95% of the data

5.5.2.6 Comparison of TnT- and SVM-Based Taggers

The SVMM0C0 has been trained with the same data that has been used to train

the TnT-based tagger, tagger2. The same test set has also been used to test the

two types of taggers so that we can directly compare the results and decide which

algorithm to use for tagging our text for factored language modeling. As it can

be seen from Table 5.20, the SVM-based tagger has an overall accuracy of 84.44%,

which is better than the result we found for the TnT-based tagger (82.94%). This

finding is in line with what has been reported by Giménez and Màrquez [2004]. We

also noticed that SVM-based taggers have a better capability of classifying unknown

words (73.64%) than a TnT-based tagger (48.11%) which has also been reported by

Gambäck et al. [2009].

With regard to speed and memory requirements, TnT-based taggers are more

efficient than the SVM-based ones. A SVM-based tagger tags 366.7 tokens per

second whereas the TnT-based tagger tags 114083 tokens per second. Moreover,

the TnT-based tagger, tagger2, requires less (647.68KB) memory than the SVM-

based tagger, SVMM0C0, (169.6MB). However, our concern is on the accuracy of

the taggers instead of their speed and memory requirements. Thus, we preferred

to use SVM-based taggers to tag our text for the experiment in factored language

modeling.

Therefore, we trained a new SVM-based tagger using 100% of the tagged corpus
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based on the assumption that the increase in the accuracy (from 85.47 to 85.50%)

observed when increasing the training data (from 90% to 95%) will continue if more

training data are added. Again, the cost parameter has been set to 0.1 which yielded

good performance in the previous experiments. It is this tagger that was used to

tag the text for training factored language models.

5.5.3 Amharic Factored Language Models

5.5.3.1 Factored Data Preparation

To train factored language models we need a corpus in which each word is repre-

sented as a vector of factors or features. In our experiment each word is considered

a bundle of features including the word itself, as well as its part of speech tag, prefix,

root, pattern and suffix (cf. Table 5.22).

W-HenedamahonE:POS-VP:PR-Henedama:R-hwn:PA-a:SU-E
W-HenedamahonewA:POS-VP:PR-Henedama:R-hwn:PA-a:SU-wA
W-Henedamahonu:POS-VP:PR-Henedama:R-hwn:PA-a:SU-u
W-HenedamahonuA:POS-VP:PR-Henedama:R-hwn:PA-a:SU-uA
W-Henedamakaru:POS-VP:PR-Heneda:R-mkr:PA-aa:SU-u
W-Henedamakatale:POS-VP:PR-Henedama:R-ktl:PA-aa:SU-null
W-HenedamaleHakete:POS-VP:PR-Heneda:R-null:PA-null:SU-null
W-HenedamalasekAcawe:POS-VP:PR-Heneda:R-mls:PA-aa:SU-kAcaw
W-Henedamalasuteme:POS-VP:PR-Heneda:R-mls:PA-aa:SU-utm
W-Henedamamalase:POS-VP:PR-Henedama:R-mls:PA-aa:SU-null
W-HenedamanaCa:POS-VP:PR-Heneda:R-mnCh:PA-aa:SU-a
W-Henedamaqedase:POS-VP:PR-Heneda:R-null:PA-null:SU-null
W-HenedamaraDA:POS-VP:PR-Heneda:R-null:PA-null:SU-null
W-HenedamaraTa:POS-VP:PR-Heneda:R-mrT:PA-aa:SU-a
W-HenedamaraTu:POS-VP:PR-Heneda:R-mrT:PA-aa:SU-u
W-Henedamaraqehute:POS-VP:PR-Heneda:R-mrq:PA-aa:SU-hut

Table 5.22: Factored representation

Each feature in the feature vector is separated by a colon (:) and consists of a <tag>-

<value> pair. In our case the tags are: W for word, POS for Part-of-Speech, PR

for prefix, R for root, PA for pattern and SU for suffix. Although, in Amharic words

can have more than one prefix and suffix, we considered each word as having zero

or one prefix and/or suffix by concatenating a sequence of affixes into a single unit.

A given tag-value pair may be missing from the feature bundle. In this case, the

tag takes a special value ’null’.

The manually segmented data (described in Section 5.4.1 that include 72,428

word types) has also been used to prepare the factored version of the corpus con-
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catenating sequences of prefixes or suffixes into a single unit. This decreased the

number of morph tokens to 936,483 and increased the number of distinct morphs

to 14,093 (compared to the manually_seg corpus that includes 1,141,434 token or

11,154 types). However, the morph length distribution is similar to the manu-

ally_seg corpus (see Table 5.23). Most of the morphemes consists of two to six

characters. The curve for the frequency distribution is also similar as shown in

Figure 5.7.

Length No. of occurrence
1 19
2 - 6 7979
7 - 9 3763
10 - 19 2326
20 - 29 6

Table 5.23: Linguistic morpheme length distribution after affix concatenation

Figure 5.7: Linguistic morpheme frequency distribution before and after affix con-
catenation

The manually segmented word list has been converted to the format indicated in

Table 5.22 and the words in the corpus have been automatically substituted with

their factored representation. The resulting corpus has then been used to train

and test various kinds of factored language models presented in this section. As

we did in other experiments, we divided the corpus into training, development and

evaluation test sets in the proportion of 80:10:10. Moreover, since our previous

experiments revealed the fact that Kneser-Ney smoothing outperforms all other

smoothing methods, we smoothed the factored language models with this technique

unless it became impossible to use it due to the occurrence of a zero count of counts.
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5.5.3.2 Capturing Word-level Dependency

In Amharic the root consonants of words (derived from consonantal root) represent

the basic lexical meaning of the word. Since our morph-based language models

(both statistical and linguistic ones) consider each morph as a unit, a loss of word

level dependencies could occur as the root consonants of the words stand too far

apart. Thus, we have to find a means of capturing word level dependencies while

using morphs in language modeling. We have proposed and developed root-based

language models in the framework of factored language modeling. One can also

consider the models as skipping ones since we skip other morphs during language

model estimation.

However, although all the verbs are derived from root consonants, there are

words in other part of speech classes which are not derivations of root consonants.

Normally, these words have the value ’null’ for the root feature (for the R tag

introduced in Section 5.5.3.1). When we consider only roots in language modeling,

these words will be excluded from our model which in turn will have a negative

impact on the language models we develop. Preliminary investigation also revealed

the fact that the perplexities of the models have been influenced by the null values

for the root tag in the data. Therefore, stems are included to the models as shown

in equation 5.1. We did not introduce a new stem feature into our factored data

representation, but considered the stem as a root, if the word is not a derivation of

consonantal root.

ri ≡







ri, if root 6= null

stemi, otherwise
(5.1)

where stemi is the stem of a word (that is not derived from root consonants) after

removing all the prefixes and suffixes.

We have trained root-based models of order 2 to 5. Table 5.24 shows the per-

plexity of these models on the development test set. A higher improvement in

perplexity (278.565 to 223.259) has been observed when we move from bigram to

trigram. However, as n increases above 3, the level of improvement declined. This

might be due to the small set of training data used. As n increases, n-grams might

not appear in the training corpus and, therefore, the probabilities are computed

on the basis of the lower order n-grams. The pentagram model is the best model

compared to the others. This model has a perplexity of 204.946 on the evaluation

test set.

In order to determine the benefit gained from the root-based model, we developed

word based models with the same training data. They differ from the root-based
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Language models Perplexity
Bigram 278.565
Trigram 223.259
Quadrogram 213.144
Pentagram 211.929

Table 5.24: Perplexity of root-based models on the development set

models in the use of words as a unit instead of roots. These models have also been

tested on the same test data (consisting of 2134 sentences or 20989 words) and the

same smoothing technique has also been applied. The number of out-of-vocabulary

words is much lower (295) in the root-based model than in the word-based one

(2672). The pentagram word based model has a perplexity of 972.58 (as shown

in Table 5.25) on the development test set. Moreover, the log-probability of the

best root-based model is higher (-53102.3) than that of the word based model (-

61106.0). However, the perplexities of and the probablities assigned to the test set

by the root-based and word based language models are incommensurable since a

root might stand for many words and, consequently, the root based models might

be less constraining. Therefore, a speech recognition experiment is required to study

the benefit of root-based models.

Language models Perplexity
Bigram 1148.76
Trigram 989.95
Quadrogram 975.41
Pentagram 972.58

Table 5.25: Perplexity of word only models

5.5.3.3 POS Information in Language Modeling

A crucial advantage of factored language models is that they enable us to integrate

any kind of relevant information to language models. We exploited this advantage by

integrating POS tags into the word based language models. Instead of computing the

n-gram probabilities of words only on the basis of previous n-1 words (wn|wn−2wn−1)

we calculated the probabilities of words on the basis of n-1 previous words and their

POS as (wn|wn−2posn−2wn−1posn−1). Since the POS tag of a word can tell us what

words are likely to occur in its neighborhood, we expect the models that take POS

into account to be precise.

We have developed factored language models with two (wn|wn−1posn−1) and
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four (wn|wn−2posn−2wn−1posn−1) parents. In these models a fixed backoff strategy

has been applied. The best model (in terms of perplexity) is the model with four

parents for which the backoff path has been defined by dropping first posn−2, then

wn−2, then wn−1, and finally posn−1. This model has a perplexity of 910.37 (see

Table 5.26) on the development test set. Since we used the same training and test

sets as for the word based models described in Section 5.5.3.2, we can compare

perplexity results directly. As it has been already indicated, a pentagram word only

model6 has a perplexity of 972.58 which is higher than the perplexity we have got

for the trigram model that considered the previous words’ POS tag.

Language models Perplexity
Word based 972.58
W|W1,POS1 1054.92
W|W2,POS2,W1,POS1 885.81
FLM learned with GA 1119.58

Table 5.26: Perplexity of models with POS

In this experiment we defined the factor combinations to be word and POS and

we used a fixed backoff order. However, it is difficult to determine which factor

combination and which backoff path would result in a robust model that will bring

improvement to a target application. Thus, Duh and Kirchhoff [2004] developed a

genetic algorithm (GA) to find out a robust model. We used this algorithm to deter-

mine the backoff path that results in a robust model and trained a model with four

parents which estimates p(wn|wn−2posn−2wn−1posn−1). The best model developed

with the GA did not consider posn−1 as a history when computing probabilities.

This model has a perplexity of 1119.58 which is higher than the one we have got

using a fixed backoff strategy and also higher than the perplexity of a word-only

model.

5.5.3.4 Other Factored Language Models

Since POS contributed a lot to the improvement of language model quality (in terms

of perplexity reduction), n-gram models that take other factors instead of POS into

account have been developed. These models are equivalent (in structure) to the

best model that include POS in n-gram history during language model estimation.

The backoff order is also defined in similar manner. For example, the model that

includes the root as an additional factor is estimated as wn|wn−2Rn−2wn−1Rn−1 and

6Note: here we compared a pentagram word only model with bigram and trigram FLM.
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the backoff path has been defined by dropping first Rn−2, then wn−2, then wn−1,

and finally Rn−1.

The perplexities of these models are shown in Table 5.27. All the models that

take an additional factor in the history outperformed the trigram word only model

(see Table 5.25). The model that takes the prefix as an extra information surpassed

all the other models including the one with POS. This shows that prefixes are

strong in predicting a given word. Pellegrini and Lamel [2006a], who applied word

decomposition in Amharic speech recognition, also found a higher word error rate

reduction when only the prefixes have been detached from words. The pattern

(PA) seems weak in predicting a given word. This finding is in line with that of

Kirchhoff et al. [2006] who reported that morphological patterns did not contribute

any information for Arabic conversational speech recognition.

Language models Perplexity
W|W2,PR2,W1,PR1a 857.61
W|W2,R2,W1,R1 896.59
W|W2,PA2,W1,PA1 958.31
W|W2,SU2,W1,SU1 898.89

Table 5.27: Perplexity of models with different factors
aW = Word, PR = Prefix, R = Root, PA = Pattern, SU = Suffix.

Models that consider all the available features (word, POS, prefix, root, pattern

and suffix) as histories have also been developed under the assumption that the

improvement (in perplexity) obtained as a result of using an extra feature of a

word in the history, will continue if we use more features. A fixed backoff strategy

has been applied, in which the factors have been dropped in the following order:

suffix, pattern, root, prefix, word and POS. As shown in Table 5.28, a model that

considered factors at position n-1 (W1,POS1,PR1,R1,PA1 and SU1) has a perplexity

of 1044.41 which is lower than the equivalent model that includes only POS in the n-

gram history. Extending the history by adding the factors at n-2 position decreased

the perplexity to 886.89. However, as it can be observed from Table 5.27, there are

models that take only one extra feature but have a perplexity lower than this model.

The reason behind this is not clear at the moment.

As it is difficult to find out which factor combination and which backoff path

would result in a robust model, we again used the genetic algorithm [Duh and

Kirchhoff, 2004] to learn the best language model structure. The first and second

best language models have perplexities of 1075.57 and 1084.29, respectively. These

two models use the same factors as histories (POS1 PR1 R1 PA1 SU1 POS2 SU2)

but differ in the backoff path employed.
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Language models Perplexity
W|W1,POS1,PR1,R1,PA1,SU1 1044.41
W|W2,POS2,PR2,R2,PA2,SU2,W1,POS1,PR1,R1,PA1,SU1 886.893
First best 1075.57
Second best 1084.29

Table 5.28: Perplexity of models with all factors

The results in Table 5.28 imply that factors are relevant when they are used together

with words, cf. the perplexities of the model that considered factors at position n-1

(W1,POS1,PR1,R1,PA1 and SU1) and the first and second best models learnt with

the genetic algorithm that did not consider words in the n-gram history.

Generally, our experiment revealed that perplexity improvement can be gained

as a result of using extra features of a word in language modeling. However, more

investigation is required to ascertain whether this perplexity improvement also re-

sults in an improvement in the performance of an application for which the language

models are designed. In our case, we need to conduct an experiment to find out

whether these language models improve the performance of a speech recognition

system or not.





Chapter 6

Application of Morphology-based

Language Models

In Chapter 5 we evaluated language models mainly using an intrinsic evaluation

metric, namely perplexity because this is the preferred metric for practical language

model construction. However, the value of perplexity as a quality measure is not

without limitation. Improvement in perplexity does not always lead to an improve-

ment in the performance of an application that uses the language model. Moreover,

when we have different token counts in test sets, perplexities are not comparable. In

such cases, language models have been compared on the basis of the probability they

assign to a test set. Since the best way of evaluating the quality of a language model

is to apply it to a specific application for which the language model is designed and

see if it results in an improvement in performance, the morphology-based language

models have been evaluated by applying them in an Amharic speech recognition

system. This chapter presents the results of the speech recognition experiments

that we have conducted.

Language models have been applied to a speech recognition system in two dif-

ferent ways. The first is a lattice rescoring framework in which morphemes are used

only in the language modeling component, while the lexicon still consists of words.

Therefore, this method can not help to analyse the contribution of morpheme-based

language models to a reduction of the OOV rate. On the other hand, it avoids the

effect of acoustic confusability on the performance of a speech recognition system.

Details of the experiment and its results are presented in Section 6.1. The sec-

ond approach uses morphemes as lexical and language modeling units of the speech

recognition system. Although this method suffers from acoustic confusability and

limited n-gram language model scope, it enables us to see the contribution of mor-

phemes to the reduction of the OOV rate. Section 6.2 presents the results of this

experiment.
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6.1 Lattice Rescoring with Morphology-based Language

Models

In order to analyse the contribution (in terms of performance improvement) of the

morphology-based language models in a speech recognition task, the speech recog-

nition system which has been developed by Solomon [2006] has been used as a

baseline in the lattice rescoring experiment. Section 6.1.1 gives a brief description

of this baseline speech recognition system. To make our results comparable, we

have developed various morphology-based language models (morpheme-based and

factored ones) that are equivalent to the ones elucidated in Chapter 5 but have been

trained on the text corpus which has also been used to develop the baseline language

model. These language models, interpolated with the baseline language model, have

then been used in lattice rescoring. We have used interpolated models since previous

research (Whittaker and Woodland [2000], Kirchhoff et al. [2002]) also obtained an

improvement in WRA using interpolated models. The morpheme-based language

models and the result of lattice rescoring using them are presented in Section 6.1.2.

Section 6.1.3 exhibits the factored language models and their application for lattice

rescoring.

6.1.1 The Baseline Speech Recognition System

6.1.1.1 The Speech and Text Corpus

The speech corpus used to develop the baseline speech recognition system is a read

speech corpus [Solomon et al., 2005]. It contains 20 hours of training speech collected

from 100 speakers who read a total of 10,850 sentences (28,666 tokens). Compared

to other speech corpora that contain hundreds of hours of speech data for training,

this corpus is obviously small in size and accordingly the models will suffer from a

lack of training data.

The corpus includes four different test sets (5k and 20k both for development and

evaluation). However, since our aim is to analyse the contribution of morphology-

based language models in speech recognition performance improvement, we have

generated the lattices only for the 5k development test set which includes 360 sen-

tences read by 20 speakers.

The text corpus used to train the baseline backoff bigram language model consists

of 77,844 sentences (868,929 tokens or 108,523 types).
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6.1.1.2 The Acoustic, Lexical and Language Models

The acoustic model is a set of intra-word triphone HMMs with 3 emitting states and

12 Gaussian mixtures that resulted in a total of 33,702 physically saved Gaussian

mixtures. The states of these models are tied, using decision-tree based state-

clustering that reduced the number of triphone models from 5,092 logical models to

4,099 physical ones.

The Amharic pronunciation dictionary has been encoded by means of a simple

procedure that takes advantage of the orthographic representation (a consonant

vowel syllable) which is fairly close to the pronunciation in many cases. There are,

however, notable differences especially in the area of gemination and insertion of the

epenthetic vowel.

The baseline language model is a closed vocabulary (for 5k) backoff bigram model

developed using the HTK toolkit. The absolute discounting method has been used

to reserve some probabilities for unseen bigrams where the discounting factor, D, has

been set to 0.5, which is the default value in the HLStats module. The perplexity

of this language model on a test set that consists of 727 sentences (8,337 tokens) is

91.28.

6.1.1.3 Performance of the Baseline System

We generated lattices from the 100 best alternatives for each sentence of the 5k

development test set using the HTK tool and decoded the best path transcriptions

for each sentence using the lattice processing tool of SRILM [Stolcke, 2002]. Word

recognition accuracy of this system was 91.67% with a language model scale of 15.0

and a word insertion penalty of 6.0. The better performance (compared to the one

reported by Solomon [2006], 90.94%, using the same models and on the same test

set) is due to the tuning of the language model and the word insertion penalty

factors.

6.1.2 Morpheme-based Language Models

We have developed several sub-word based language models for Amharic using the

morphologically segmented version of the data that has been used to develop the

baseline language model.

Both statistical and linguistic morphs have been used as units in language mod-

eling. Morfessor [Creutz and Lagus, 2005] has been applied to produce the statistical

morphs. The linguistic morphs have been obtained according to the manually seg-

mented collection of word types described in Section 5.4.1. We substituted each word

in the corpus with its segmentation if the word is found in the manually segmented
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word collection. Otherwise, the word is left unsegmented. Due to the simplicity of

this approach, a substantial share of words (12.3%) in our training data could not

be segmented at all.

Using the statistical and linguistic morphs as units, we tried to develop n-gram

language models of order two to four. In all cases the SRILM toolkit has been used

to train the language models. We smoothed the language models using modified

Kneser-Ney smoothing, unless one or more of the required counts of count is/are

zero. If one of them becomes zero, then other smoothing techniques that do not

depend on such values (e.g. Whitten-Bell) have been used. Table 6.1 presents the

perplexity of the various morpheme-based language models on the segmented version

of the test set that has been used to test the baseline bigram language model.

Language models Perplexity Logprob
Linguistic morph bigram 36.55 -34654.5
Linguistic morph trigram 23.09 -30232.5
Linguistic morph quadrogram 18.39 -28038.5
Statistical morph bigram 114.92 -31800.2
Statistical morph trigram 71.61 -28630
Statistical morph quadrogram 64.22 -27899.7

Table 6.1: Perplexity of morpheme-based language models

As the number of morphs in the linguistically and statistically segmented test sets

are different, we can not directly compare the perplexities of statistical and linguis-

tic morpheme-based language models. Although the statistical morpheme-based

models have high perplexities, surprisingly they seem better than the linguistic

morpheme-based ones if compared with respect to the probability they assign to the

test set.

6.1.2.1 Lattice Rescoring with Morpheme-based Language Models

The lattices generated as indicated in Section 6.1.1.3 have been rescored using the

various morpheme-based language models and decoded to find the best path. An

improvement in word recognition accuracy (WRA) has been observed (see Table

6.2). However, the linguistic morpheme-based models contribute more to the per-

formance improvement (an absolute 0.25% increase in accuracy with the linguistic

morph trigram model) than the statistical morpheme-based ones that fared better

than the linguistic morpheme-based models with regard to the probability they as-

sign to the test set. Using higher order n-gram brings only a slight improvement in

performance, from 91.77 to 91.82 and then to 91.85 as a result of using trigram and
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quadrogram language models, respectively.

Language models used Word recognition accuracy in %
Baseline word-based (BL) 91.67
BL + Statistical morph bigram 91.77
BL + Statistical morph trigram 91.82
BL + Statistical morph quadrogram 91.85
BL + Linguistic morph bigram 91.87
BL + Linguistic morph trigram 91.92
BL + Linguistic morph quadrogram 91.89

Table 6.2: WRA improvement with morpheme-based language models

6.1.3 Factored Language Models

The manually segmented data has also been used to obtain a factored version of

the corpus used to develop the baseline language model. The factored version of

the corpus has been prepared in a way similar to the one described Section 5.5.3.1.

This corpus has then been used to train various kinds of closed vocabulary factored

language models1. All the factored language models have been tested on the factored

version of the test set used to test the baseline language model.

We have developed root-based n-gram language models of order 2 to 5. The

perplexity2 of these models on the development test set is presented in Table 6.3.

The highest perplexity improvement has been obtained when the n-gram order has

been changed from bigram to trigram.

Language models Perplexity Logprob
Root bigram 113.57 -18628.9
Root trigram 24.63 -12611.8
Root quadrogram 11.20 -9510.29
Root pentagram 8.72 -8525.42

Table 6.3: Perplexity of root-based models

We also developed a factored language model that considered all the available factors

(word, POS, prefix, root, pattern and suffix) as histories and that uses a fixed backoff

1This experiment followed similar procedure with the one reported in [Martha et al., 2009], but
the data was modified. Words which are not derived from root consonants have got null value for
the R tag in [Martha et al., 2009] while, in the experiment reported here, these words assigned the
stem of a word for R (root) feature. Hence, the figures reported are different.

2These numbers are not comparable to the perplexities of other models since a root can represent
a set of words and consequently root-based models are less constraining.
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path by dropping suffix first, then pattern, and so on. Since it is difficult to determine

which factor combination and which backoff path would result in a robust model

yielding an improvement of speech recognition, we applied the genetic algorithm

[Duh and Kirchhoff, 2004] again, to find the optimal one. The best model is the

one that uses four factors (word, prefix, root and pattern) as histories and combines

generalized all-child and constrained-child backoff. We applied the two best (in terms

of perplexity) models, that differ only in the backoff path, to the speech recognition

task. The perplexities and log-probabilities of the factored language models are

given in Table 6.4. The FLM with fixed backoff is the best model compared to the

others.

Language modelsa Perplexity Logprob
FLM with fixed backoff 55.04 -15777.7
1st Best factor combination 71.89 -16828.7
2nd Best factor combination 118.62 -18800.3

aThe language models are smoothed with Witten-Bell smoothing since it was not possible to
use the Kneser-Ney smoothing technique due to the existence of zero count of count.

Table 6.4: Perplexity of factored language models

Other factored language models that take one word feature (besides the words) in

the n-gram history have been developed. The additional features used are part-

of-speech (POS), prefix (PR), root (R), pattern (PA) and suffix (SU). The models

developed contain two (wn|wn−1Xn−1)3 and four (wn|wn−2Xn−2wn−1Xn−1) parents

where the backoff paths have been defined by dropping wn−1 and then Xn−1 for the

former models and by dropping Xn−2, then Wn−2, then Wn−1, and finally Xn−1 for

the latter ones. The perplexity and log-probability of these models are presented

in Table 6.5. The models with four parents are almost similar in perplexity and

probability. Among the models with two parents, the one that takes root (R) as

an additional information is the best one while the model that takes pattern is the

worst.

6.1.3.1 Lattice Rescoring with Factored Language Models

Since it is problematic to use factored language models in standard word decoders,

we substituted each word in the lattice with its factored representation. A word

bigram model that is equivalent to the baseline word bigram language model has

been trained on the factored data and used as a baseline for factored representa-

tions. This language model has a perplexity of 63.59. The best path transcription

3X is a place holder which can represent one of the extra word feature.
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Language models Perplexity Logprob
W|W1,POS1 64.11 -16377.7
W|W1,PR1 65.02 -16433.2
W|W1,R1 62.14 -16255.1
W|W1,PA1 66.50 -16522.1
W|W1,SU1 65.43 -16458.3
W|W2,POS2,W1,POS1 10.614 -9298.57
W|W2,PR2,W1,PR1 10.67 -9322.02
W|W2,R2,W1,R1 10.36 -9204.7
W|W2,PA2,W1,PA1 10.89 -9401.08
W|W2,SU2,W1,SU1 10.70 -9330.96

Table 6.5: Perplexity of other factored language models

decoded using this language model has a WRA of 91.60%, which is slightly lower

than the performance of the normal baseline speech recognition system (91.67%).

This might be due to the smoothing technique applied in the development of the

language models. Although absolute discounting with the same discounting factor

has been applied to both bigram models, the unigram models have been discounted

differently. While in the baseline word based language model the unigram mod-

els have not been discounted at all, in the equivalent factored model the unigrams

have been discounted using Good-Turing discounting technique which is the default

discounting technique in SRILM.

The various factored language models (described in 6.1.3) have been used to

rescore the lattices and most of them brought a considerable improvement in WRA.

The first best factored language model learned by the genetic algorithm outper-

formed the second best model and the one with fixed backoff (see Table 6.6). The

factored language model with fixed backoff did not contribute much to the WRA

improvement although it is the best model in terms of the perplexity and the prob-

ability it assigns to the test set as it is shown in Table 6.4.

Language models used Word recognition accuracy in %
Baseline word bigram (FBL) 91.60
FBL + FLM with fixed backoff 91.99
FBL + 1st Best factor combination 92.82
FBL + 2nd Best factor combination 92.55

Table 6.6: WRA improvement with factored language models

All the factored language models that integrate an additional word feature in the

n-gram history brought an improvement in WRA. Among the models with two par-
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ents, the one that takes POS contributed more to the performance improvement.

Although the model in which the probability estimation was conditioned on the

previous word and its root has a lower perplexity and assigned higher probability to

the test set compared to the others, this model did not achieve the highest improve-

ment in WRA. Models with four parents did not fare better than the ones with two

parents, if the maximal n-gram order to be used for transition weight assignment

was set to 2. However, when trigrams are used, all the models contributed a notable

improvement.

Language models used Word recognition accuracy in %
Baseline word bigram (FBL) 91.60
FBL + W|W1,POS1 92.87
FBL + W|W1,PR1 92.85
FBL + W|W1,R1 92.75
FBL + W|W1,PA1 92.77
FBL + W|W1,SU1 92.58
FBL + W|W2,POS2,W1,POS1 93.60
FBL + W|W2,PR2,W1,PR1 93.82
FBL + W|W2,R2,W1,R1 93.65
FBL + W|W2,PA2,W1,PA1 93.68
FBL + W|W2,SU2,W1,SU1 93.53

Table 6.7: WRA improvement with other factored language models

Unlike the other factored language models presented so far, root-based language

models always caused a degradation of word recognition accuracy (see Table 6.8).

Although the higher order root-based model, namely the pentagram, assigned a

high probability to the test set, it resulted in a WRA which is below that of the

baseline system. This is a surprise because the root-based models have been used

together with the baseline model. It may be unobjectionable if no improvement

over the baseline has been achieved since a root might represent a set of alternative

words and consequently root-based models are less constraining. The results, there-

fore, indicate that root-based models capture information that is not helpful for the

baseline system.

These results also show that a reduction in perplexity of the language models

does not always lead to an improvement in WRA.

6.2 Morpheme-based Speech Recognition

In Section 6.1, we have presented the use of morphology-based language models in

speech recognition in a lattice rescoring frame work. We showed that most of the
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Language models used Word recognition accuracy in %
Baseline word bigram (FBL) 91.60
FBL + Root bigram 90.77
FBL + Root trigram 90.87
FBL + Root quadrogram 90.99
FBL + Root pentagram 91.14

Table 6.8: WRA with root-based models

morphology-based language models brought an improvement in the performance of

a speech recognition system. However, the use of morpheme-based language models

in a lattice rescoring framework does not solve the OOV problem. This section

presents a morpheme-based speech recognition experiment we have conducted to

show how the OOV problem can be reduced by using morphemes as lexical and

language modeling units in a speech recognition system.

Most large vocabulary speech recognition systems operate with a finite vocabu-

lary. All the words which are not in the system’s vocabulary are considered out-of-

vocabulary words. These words are one of the major sources of error in an automatic

speech recognition system. When a speech recognition system is confronted with

a word which is not in its vocabulary, it may recognize it as a phonetically simi-

lar in-vocabulary unit/item. That means the OOV word is mis-recognized. This

in turn might cause its neighboring words also to be mis-recognized. Woodland

et al. [1995] indicated that each OOV word in the test data contributes to 1.6 er-

rors on the average. Therefore, different approaches have been investigated to cope

with the OOV problem and as a consequence to reduce the error rate of automatic

speech recognition systems. One of these approaches is vocabulary optimization

Bazzi [2002], where the vocabulary is selected in a way that it reduces the OOV

rate. This involves either increasing the vocabulary size or including frequent words

in a vocabulary. This approach may work for morphologically simple languages like

English where a 20k vocabulary has 2% OOV rate and a 65k one has only 0.6%

Gales and Woodland [2006].

However, for morphologically rich languages, for which OOV is a severe problem,

a much larger vocabulary is required to reach a similarly low OOV rate. Gales and

Woodland [2006] indicated that for Russian an 800k and Arabic a 400k vocabulary

is required to reduce the OOV rate to 1%. Increasing the vocabulary to alleviate the

OOV problem is not the best solution especially for morphologically rich languages

as the system complexity increases with the size of the vocabulary. Therefore,

modeling sub-word units, particularly morphs, has been used for morphologically

rich languages. Prominent work has been reviewed in Section 2.6.1.
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For Amharic, the application of automatic word decomposition (using Harris al-

gorithm) for automatic speech recognition has been investigated by Pellegrini and

Lamel [2006a]. In their study, the units obtained through decomposition have been

used in both lexical and language models. They reported recognition results for four

different configurations: full word and three decomposed forms (detaching both pre-

fix and suffix, prefix only and suffix only). A word error rate (WER) reduction over

the base line word-based system has been reported using 2 hours of training data in

speech recognition in all decomposed forms although the level of improvement varies.

The highest improvement (5.2% absolute WER reduction) has been obtained with

the system in which only the prefixes have been detached. When both the prefixes

and suffixes have been considered, the improvement in performance is small, namely

2.2%. This might be, as the authors indicate, due to the limited span of the n-gram

language models.

Decomposing lexical units with the same algorithm led to worse performance

when more training data (35 hours)4 was used [Pellegrini and Lamel, 2007]. This

can be explained by a higher acoustic confusability. Pellegrini and Lamel [2007, 2009]

tried to solve this problem by using other modified decomposition algorithms. Their

starting algorithm was also Morfessor [Creutz and Lagus, 2005] which, however, has

been modified by adding different information. In Morfessor baseline, the prior

probability of getting N distinct morphs (p(Lexicon)) is estimated on the basis

of the frequency and length (character sequence probability) of morphs. The first

modification made by Pellegrini and Lamel [2007, 2009] affect the calculation of

morph length. In Morfessor Baseline character probabilities are static and calculated

as a simple ratio of the number of occurrences of the character (irrespective of its

place in words) divided by the total number of characters in the corpus. Inspired by

Harris’ algorithm, Pellegrini and Lamel [2007, 2009] made the calculation context

sensitive. The probability that a word beginning (WB5) is a morph, is defined as the

ratio of the number of distinct letters L(WB) which can follow WB over the total

number of distinct letters L. The other modification is adding a phone-based feature

in the calculation of p(Lexicon). The third modification is to avoid segmentation

if it results in phonetically confusable morphs. During the decomposition process,

morphs that differ from each other by only one syllable are compared. If the pair of

syllables is among the most frequently confused pairs (found in their previous study

[Pellegrini and Lamel, 2006b]), the segmentation is forbidden. They were only able

4As indicated by Pellegrini and Lamel [2006a], the speech data are broadcast news data taken
from Radio Deutsche Welle (25 hours) and Radio Medhin (12 hours) of which two hours of speech
were reserved for development test.

5The word beginning symbol WB stands for the strings that begin a given word, from length
zero to the length of the word itself.
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to achieve a word error rate reduction if the phonetic confusion constraint was used

to block the decomposition of words which would result in acoustically confusable

units.

In this section, we first show the effect of OOV rate on the performance of an

Amharic speech recognition system by using three full-word dictionaries (5k, 20k and

65k). Then, we investigate options to reduce the OOV problem using morphemes as

lexical and language modeling units and study its effect on the performance of the

system. Since our aim is to study the contribution of morphemes to the reduction

of the OOV rate in a speech recognition task and since we wanted to exploit the

capability of the recent HTK Decoder (HDecode which allows the use of trigram

language models), new sets of acoustic models have been developed instead of using

the ones applied in the lattice rescoring experiment. Morfessor [Creutz and Lagus,

2005] has been used to morphologically segment the text corpus required for training

and testing in a morpheme-based speech recognition system.

6.2.1 Word-based Recognizers

6.2.1.1 The Speech Corpus

The speech corpus used to develop the speech recognition system is the Amharic

read speech corpus described in Section 6.1.1. Again, the 5k development test set

has been used for the purpose of this investigation.

6.2.1.2 Acoustic, Lexical and Language Models

The acoustic model consists of 6,610 cross-word triphone HMMs each with 3 emitting

states. The states of these models and all the cross-word triphone models that are

potentially needed for recognition are tied using decision-tree based state-clustering

that reduced the number of triphone models from 77,658 logical models to 10,215

physical ones. Their mixture is added incrementally and 12 Gaussian mixtures have

been found to be optimal.

The vocabulary for the three full-word form pronunciation dictionaries has been

prepared by taking the most frequent words from the ATC_120k text corpus de-

scribed in Section 5.3.1 that consists of 120,262 sentences (2,348,150 tokens or

211,120 types). Table 6.9 shows the out-of-vocabulary rates on the 5k develop-

ment test set that consists of 360 sentences (4,106 tokens or 2,836 distinct words)

for these vocabularies. Although we tried to optimize the vocabularies by taking

the most frequent words, the OOV rate is still high. The pronunciation dictionaries

have then been encoded using the simple procedure described in Section 6.1.1.



108 Chapter 6. Application of Morphology-based Language Models

Vocabulary Token OOV (%) Type OOV (%)
5k 36.43 51.55
20k 20.41 29.23
65k 9.33 13.36

Table 6.9: OOV rate on the 5k development test set

The text corpus from which the vocabularies have been selected has also been used

to train the language models. As there are three dictionaries (5k, 20k and 65k), we

have developed three trigram language models one for each vocabulary using the

SRILM toolkit Stolcke [2002]. The language models are made open by including

a special unknown word token. The modified Kneser-Ney smoothing method has

been used to smooth all the language models.

6.2.1.3 Performance of Word-based Speech Recognizers

Speech recognition experiments have been performed using the 5k, 20k and the 65k

vocabularies. In each case the systems have been evaluated with the 5k development

test set. Figure 6.1 presents the word recognition accuracy for each vocabulary. As

it can be seen from the figure, the OOV rate decreases when the vocabulary size

increases. As the OOV rate decreases the performance of the speech recognition

system increases. The best performance (78.3%) has been obtained for the 65k

which has OOV rate of 9.33%. The results show that the OOV rate highly affects the

performance of a speech recognition system. To deal with this problem, morphemes

instead of words have been considered as dictionary entries and units in language

models.

6.2.2 Morpheme-based Recognizers

6.2.2.1 Acoustic, Lexical and Language Models

The acoustic model has been developed in a similar fashion as for the word-based

recognizers. The training data has a set of 6,459 cross-morph triphone HMMs each

with 3 emitting states. The states of these models and all the possible cross-morph

triphone models are tied and, therefore, the number of triphone models is reduced

from 57,799 logical to 7,685 physical models. Similar to the word-based models, 12

Gaussian mixtures have been found to be optimal.

The ATC_120k corpus has been morphologically segmented using Morfessor.

The resulting morphologically segmented text corpus consists of 4,035,656 tokens or

15,925 distinct morphs. In order to facilitate the conversion of morpheme sequences
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Figure 6.1: Word recognition accuracy of three word-based recognizers

to words, a special word boundary marker has been attached to word boundary mor-

phemes which made the morphemes context-sensitive and consequently increased the

number of distinct morphemes to 28,492. From the morphologically segmented cor-

pus, three dictionaries have been prepared: 5k and 20k by taking the most frequent

morphs and 28.4k by considering all the morphemes. The morpheme-based OOV

rates of these vocabularies on the 5k development test set are presented in Table

6.10 which shows that the OOV rate is highly reduced as a result of using morphs.

Vocabulary Token OOV (%) Type OOV (%)
5k 10.75 28.43
20k 0.67 1.83

All (28.4k) 0.03 0.08

Table 6.10: Morph OOV rate of the 5k development test set

In order to analyse the benefit of morpheme-based system interms of covering the

OOV words, we calculated word-based OOV rate by counting the number of words

which can not be rewriten interms of the morphs found in the vocabularies. Table

6.11 shows the word OOV rate of morpheme-based systems. As it can be observed,

the use of morphemes highly reduced the word OOV rate. The token OOV rate for

the 5k morph vocabulary, for instance, is reduced by almost 50% from the token

OOV rate of the 5k full-word vocabulary (cf. Table 6.9).

As we have three dictionaries (5k, 20k and 28.4k), we have developed three
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Vocabulary Token OOV (%) Type OOV (%)
5k 18.39 26.06
20k 1.19 1.73

All (28.4k) 0.05 0.07

Table 6.11: Word OOV rate of morph-vocabularies on the 5k development test set

open vocabulary morpheme-based trigram language models, one for each vocabulary.

Similar to the word-based language models, the morpheme-based ones have also been

smoothed using modified Kneser-Ney smoothing technique.

6.2.2.2 Performance of Morpheme-based Speech Recognizers

The morpheme-based speech recognition system has been evaluated on the 5k de-

velopment test set using the 5k, 20k and 28.4k morph vocabularies. The results

are reported in terms of morph recognition accuracy and word recognition accuracy.

The word recognition accuracy has been computed after words have been obtained

by concatenating the recognized morph sequence. The best performance (see Ta-

ble 6.12) has been obtained with the 28.4k morph vocabulary which has an OOV

rate of 0.03. Since the OOV rate is very small, an accuracy even higher than the

one reported here was expected. The reasons for this disappointing performance

(in spite of having a small OOV rate) might be a higher acoustic confusability and

the limited language model scope which are peculiar to morpheme-based speech

recognition systems.

Vocabulary Morph Rec. Acc. Word Rec. Acc.
5k 55.34 50.04
20k 67.67 62.00

28.4k 68.26 62.78

Table 6.12: Performance of morpheme-based speech recognizers

6.2.3 Comparison of Word- and Morpheme-based Speech Recog-

nizers

The morph vocabularies have a very low OOV rate compared to the word vocabu-

laries. This has a positive effect on speech recognition accuracy, especially for small

vocabularies, namely 5k. The word-based model has a word recognition accuracy of

38.47% when the 5k vocabulary has been used. On the other hand, the morpheme-

based system reaches a word recognition accuracy of 50.04% for the 5k morph vo-
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cabulary6, which means an absolute improvement of 11.57%. However, for the 20k

the morpheme-based speech recognizer performed slightly worse (62.00%) than the

equivalent word-based system which has a word recognition accuracy of 62.51%. The

performance of the recognizer with 28.4k morph vocabulary is only slightly better

than the 20k word-based recognizer although it includes all the morphs in the text

and has a very low OOV rate. As we have already mentioned, besides the acous-

tic confusability, the limited scope of the morpheme-based n-gram language model

might contribute to the poor performance of the morpheme-based speech recognizer.

This has also been commented on by Pellegrini and Lamel [2006a] who suggested the

use of higher order n-gram models. Thus, higher order morpheme-based language

models have been used in our morpheme-based speech recognizers.

Since it is not possible to use n-gram models higher than trigram in the HTK

decoding tool (HDecode), we generated lattices using the 20k and 28.4k vocab-

ulary morpheme-based recognizers and rescored the lattices with a quadrogram

morpheme-based language model which has been developed in the same manner

as the trigram models. As it can be seen from Table 6.13, a 1% absolute word

recognition accuracy improvement (over the 20k word-based recognizer) has been

obtained for the 20k vocabulary morpheme-based recognizers as a result of rescoring

the lattices with a quadrogram language model. However, the performance of the

28.4k which has a very low OOV rate (0.03) and covers all the morphemes in the text

is still smaller than the performance of the 65k word-based recognizer (78.3%) which

has a considerably higher OOV rate (9.33) although the result is better than the

one that uses a trigram morpheme-based language model. This might indicate that

acoustic confusability is the most influencial factor for the performance degradation

of a morpheme-based speech recognizer on large vocabularies.

Vocabulary Morph Rec. Acc. Word Rec. Acc.
20k 68.92 63.51

28.4k 69.70 64.46

Table 6.13: Lattice rescoring with a quadrogram morpheme-based language model

As it can be seen from Table 6.14, rescoring with a pentagram language model did

not lead to further improvement. Rather, the morph and word recognition accuracies

(for both 20k and 28.4k vocabularies) became worse than the recognizer that used

6Comparing the morpheme-based systems directly with the word-based ones may not be fair
because they have a higher coverage than word-based systems of the same vocabulary size. On
the other hand, the morpheme-based systems are also dis-favoured by the concatenation of ille-
gal morph-sequences, increasing number of small and acoustically confusable units and a limited
language model scope.



112 Chapter 6. Application of Morphology-based Language Models

the quadrogram morpheme-based language model. This is similar with that of Diehl

et al. [2009] who obtained notable reduction in word error rate using quadrogram

language models but, only minimal or no improvement (over the systems that use

qadrogram language models) using pentagram models. Our result might be due to

data sparseness. As the language model training corpus is very small, many of the

pentagrams might not have been encountered in the training data and, therefore, are

estimated in terms of lower order n-grams. Regarding the language model quality,

the pentagram language models did not lead to much perplexity improvement (less

than 1%) compared to the quadrogram ones for the 20k and the 28.4k vocabularies.

The perplexity gains of the quadrogram language models over the trigram ones are

8.291% and 8.386% for the 20k and 28.4k vocabularies, respectively.

Vocabulary Morph Rec. Acc. Word Rec. Acc.
20k 67.69 62.17

28.4k 68.48 63.17

Table 6.14: Lattice rescoring with a pentagram morpheme-based language model
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Conclusion and Recommendation

7.1 Introduction

The purpose of this research was to explore the best way of modeling the Amharic

language using morphemes as units. To this end, we have developed various

morphology-based (morpheme-based and factored) language models by which we

demonstrated the possibility of using morphological information in Amharic lan-

guage modeling. This chapter presents our conclusive remarks and recommendations

for future work.

7.2 Conclusion

Language models have been developed using both statistical and linguistic mor-

phemes. The results of our experiments have shown that linguistic morpheme-

based language models are better than the statistical morph-based ones. In lin-

guistic morph-based language models, the root-pattern morphological phenomenon

has been modeled explicitly. Moreover, the segmentation quality is certainly better

than the one provided by Morfessor. The results also have shown that an explicit

treatment of the root-pattern morphological phenomenon is superior than simply

ignoring it. These models have been compared with word-based ones on the basis of

the probability they assigned to the test set and it has been found that word based

language models fared better.

However, since the best way of determining the quality of language models is

to apply them to the specific application for which they have been designed and

see whether they contribute an improvement or not, speech recognition experiments

have been conducted in a lattice rescoring framework where word lattices have been

rescored with interpolated models (word and morph-based). All morpheme-based

language models improved word recognition accuracy. Based on the lattice rescoring

experiment alone, we were not able to conclude whether the word based language

models are superior, since interpolated models have been used in rescoring. It is

possible, however, to conclude that the use of morpheme-based language models as

a complementary tool (to the word based language models) is fruitful for speech
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recognition systems. Moreover, the morph-based language models provide the ad-

vantage of reducing OOV words rate which is a serious problem in morphologically

rich languages.

Using morpheme-based language models in a lattice rescoring framework does

not solve the OOV problem. Therefore, speech recognition experiments for Amharic

have been conducted to study the effect of OOV words problem and to find out

whether the problem can be reduced by using morphemes as lexical and language

model units. For the word-based systems, the OOV rate decreases as the vocabulary

size increases and word recognition accuracy increases as the OOV rate decreases.

Using morphemes as dictionary entries and language model units highly reduced

the OOV rate and consequently boosted the word recognition accuracy, especially

for small vocabularies (5k). However, as the morph vocabulary grows, the perfor-

mance of morpheme-based speech recognition was not as expected since it suffers

from acoustic confusability and limited n-gram language model scope. The word

recognition accuracy improvement obtained as a result of lattice rescoring with

higher order morpheme-based language model (quadrogram) shows convincingly

that the morpheme-based speech recognizer suffers from limited n-gram language

model scope. But the acoustic confusability is more important.

Exploiting the nature of Amharic roots, we proposed and developed root-based

language models (in the framework of factored language modeling) as a solution

for the loss of word-level dependencies. The root-based language models have high

test set probability. However, since a root might stand for a set of words, the root-

based language models are less constraining. Therefore, another speech recognition

experiment has been conducted to analyse their contribution to the improvement of

speech recognition performance. The results showed that the root-based language

models did not contribute to the improvement of word recognition accuracy. The

use of root-based language models rather degraded the performance of the baseline

system.

Since factored language modeling makes possible to integrate any kind of relevant

information to language models, several factored language models have also been

developed. It was possible to gain a reduction in perplexity values and all the models

that take an extra information were better than the word only models. This result

received further support from the word recognition accuracy improvement gained

as a result of using these models in a speech recognition task. This enables us to

conclude that integrating morphological information into word-based models leads

to better quality language models.

It has also been found that Kneser-Ney smoothing technique and its variations

consistently outperformed alternative smoothing techniques irrespective of the units
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used in language modeling.

7.3 Recommendations

Based on the findings of our research and the knowledge obtained from the literature,

the following recommendations are forwarded for future work.

Our experiments showed that linguistic morphemes resulted in better quality

language models although the amount of data used for the experiment is limited due

to the laborious task of manual segmentation. We believe that developing linguistic

morph-based language models with more data will result in more robust language

models. For this, however, there is a need for a rule-based Amharic morphological

analyzer. We recommend to further develop the finite state based morphological

analyzer of Saba and Gibbon [2005] by increasing the coverage of the dictionaries and

modifying the format of the output. Extending the coverage of the dictionaries can

be done by extracting words from electronic dictionaries, from the manually tagged

corpus [Girma and Mesfin, 2006] or by tagging texts using automatic methods. It

might even be possible to generate the entries of a root dictionary automatically from

Amharic consonants using a combinatorial approach. Since this method might also

generate invalid roots, using the phonological rules of the language as additional

constraints (to avoid invalid roots) is advisable. For morpheme-based language

modeling, the output of the system should be the constituent morphemes of a given

word instead of the morphological features. Thus, the format of the output of

the morphological analyzer should also be modified accordingly. As the Amharic

language is under-resourced, it would even be advantageous to provide alternative

output formats so that the morphological analyzer can also be applied to other

natural language processing tasks. We also recommend to explore the functionalities

of the recently developed Amahric morphological analyser, namely HornMorpho

[Gasser, 2010a], for future use.

Although the morpheme-based recognizer benefits from the low OOV rate, it

suffers from the small, acoustically confusable units and the limited span of the

n-gram language model. We used lattice rescoring with higher order n-grams and

obtained an improvement in word recognition accuracy. Further improvement in

morpheme-based speech recognition can be expected if care is taken (for instance,

using confusion constraints as in Pellegrini and Lamel [2009]) to avoid acoustically

confusable units during or after morphological segmentation. Moreover, we just

concatenated the recognized morpheme sequences up to a word boundary marker

and no effort has been made to avoid concatenation of illegal morpheme sequences.

Attempts in this line may also improve the performance of morpheme-based speech
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recognizer where a morpheme-based language model is one of the main components.

For example, rules (such as ignore the subject marker morph if it comes at the

beginning of a morph sequence) could help to avoid the concatenation of illegal

morph sequences.

We developed root-based language models to compensate the loss of word level

dependencies. Although these models assigned high probability to the test set,

no benefit has been gained from them in improving the performance of a speech

recognition system. Improvement of these models by adding other word features,

but still maintaining word level dependencies is recommended. Moreover, since dy-

namic cache language models overcome the limitation of n-gram models in modeling

dependencies longer than n, the development of morph-based dynamic cache models

to capture word level dependencies is worth exploring.

We applied the morpheme-based language models to an automatic speech recog-

nition task. The morpheme-based language models can also be applied to other

natural language applications. Now a days, morphological decomposition, and con-

sequently morpheme-based language model is used in statistical machine transla-

tion into morphologically complex languages [Labaka et al., 2007, Badr et al., 2008,

Oflazer, 2008]. We, therefore, specifically recommend the use of morph-based lan-

guage models for Amharic statistical machine translation since the problem of acous-

tic confusability is not an issue in statistical machine translation.

Last, but not least, we recommend the development of text processing tools, such

as a spelling checker, for Amharic since the availability of such tools will facilitate

research in Amharic natural language processing.



Appendix A

IPA Representation of Amharic

Sounds

A.1 Consonants

Bilabial Labio Alveolar Post Palatal VelarGlotalLabialized
dental alveolar Velar

Plosive p ’p’ t ’t’ k ’k’ ? ’…’ kw ’ff’
b ’b’ d ’d’ g ’g’ gw ’≤’

Affricate t∫ (č) ’m’
d (ǧ) ‘¥‘

Nasal m ’m’ n ’n’ (ñ) ‘}‘
Fricative f ’f’ s ’s’ z ’z’ ∫ (š) ‘]‘

(ž) ‘•‘ h ’h’
Tap/Trill r ’r’
Approximant w ’w’ j (y) ’y’
Lateral
Approximant l ’l’
Ejective
Stop (p’) ’Í’ t’ ’µ’ k’ ’q’ kw’ ’ff’
Ejective
Affricate t∫ ’ (Č) ‘½‘
Ejective
Fricative s’ ’Ý’

Table A.1: IPA Representation of Amharic consonants

A.2 Vowels

front center back
high i ’‚’ I ’…’ u ’∫’
mid e ’„’ (ä) ’‡’ o ’†’
low a ’€’

Table A.2: IPA Representation of Amharic vowels
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