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Abstract

The analysis of extremes is of increasing importance in meteorological science.
This is mainly due to the associated damages caused by the events and the ex-
pected changes going along with changing climate conditions. Extremes are of
relevance in different fields and can be classified by the time scale of the generat-
ing processes. This circumstance complicates the analysis, beside their inherent
rareness. These complications have to be overcome with adequate methods and
the following are applied: Standardized Precipitation Index (SPI), extreme value
statistics and extreme event return time analysis.

This study contributes to the description of extreme events. The more tech-
nical oriented part discusses shortcomings of the applied methods and resolves
them partly. The impact of climate variability and climate change on frequency
and intensity of the extremes is analyzed for Icelandic precipitation and North
Atlantic cyclones. Further, extreme event return time properties are investigated
in long-term memory processes near 1/f .
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1 Introduction

1.1 Extremes, their characteristics and definition

1.1.1 Severe meteorological events

One objective of weather forecasts is to give early warnings of upcoming severe
weather events. This is of outstanding importance for shipping or air traffic, to
name a few. The knowledge of future weather states comes along with the ability
to take preventive measures, reducing damage costs and helping to save lives. In
addition to short-term prediction, a climatological description of severe events
helps for future planning. The long-term strategy for dikes is one example, where
from observed sea levels a dike height has to be estimated to prevent from floods
in the remote future.

The fundamental meteorological quantities, such as temperature, precipita-
tion and wind speed are involved, if severe meteorological events are considered.
However, a unifying property is often the associated exceptional damage caused
by those events. Further, this events are unusual in terms of their rare occurrence.
Hence, the individual characteristics could be quite different as the following ex-
amples demonstrate.

Venezuela flood, December 1999

The rainfall from 14 to 16 December 1999 in Venezuela caused one of the
largest historical rainfall-induced debris flows ever documented worldwide. Ex-
tensive flooding came along with landslides and avalanches of mud, rocks and
trees and caused between 20000 to 50000 fatalities.

The unusualness of this event is deduced from annual maximum daily rainfall
amounts from 1951 to 1999 (Figure 1.1). The outstanding high value is achieved
at 15 December 1999, reaching about 410mm/dy. This is more than twice as
large as any of the previously recorded annual maxima from 1951 to 1999. For
comparison, the highest recorded daily precipitation amount measured at Dresden
station was only slightly above 150mm/dy. This value was recorded during the
Elbe flood at 12 August 2002.



8 Introduction

Figure 1.1: Annual maximum daily rainfall reported at Maiquetia international
airport, Venezuela (Figure from Coles and Pericchi (2003)).

The 15 December event was embedded in a series of days with high precip-
itation amounts. However, it is this single peak value which is of interest. The
reason is the outstanding high deviation from the other yearly maxima, which is
easily referred just by visual inspection. Leading to the question: is it possible
to forecast such an unusual high event on the basis of observational data ?

European heat wave, summer 2003

One of the most sever natural catastrophes in Europe is the heat wave in the
year 2003. In the first half of August exceptional high and long lasting temper-
atures caused between 40 000 and 70 000 fatalities (World Health Organization
(2004)).

The heat wave development is exemplified with observed daily mean data at
the French station Besançon1. Positive temperature anomalies persisted through-
out August and exceeded the 99% quantile at several successive days at the begin-
ning of summer (Figure 1.2 a)). At the 7 August, the highest daily temperature
was observed, ever recorded during the 1931 to 2004 period. High June and
July temperatures preceded the August heat wave. Whereas the monthly mean
July temperature reached a moderately high magnitude, as well as in August
the June mean temperature broke any previous temperature record (Schär et al.,
2004). This together leads to the highest observed summer temperature ever
recorded, considerably outstanding the center of the mean summer temperature
distribution (Figure 1.2 b)).

1Data from the European Climate Assessment & Dataset project (Klein Tank et al., 2002)
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Figure 1.2: Observed summer temperatures at Besançon station (France): a)
Year 2003 daily temperature anomalies, in respect to the climatological day (ref-
erence period 1931-2004) and box plot consisting of all anomalies on the right.
The gray line gives the 99% quantile. b) Histogram of summer mean tempera-
tures, as well as kernel density estimate (black line).

In contrast to the previous example the highest occurred daily value is not
distinct different from previous maxima (box plot, Figure 1.2 a)). This points
out, that a single peak value is of minor importance for the severeness of the
heat wave in 2003. The important property however, is the persistence of high
temperature anomalies on a large number of consecutive days.

Iberian Peninsula drought, 2005

The year 2005 was one of the driest years in Spain and Portugal since the be-
ginning of the observational record. Drought conditions lead to rationing of water,
losses in agriculture, enhanced forest fire risk and reduced electricity production
through direct (hydroelectric power plants) or indirect effects (for example water
cooling systems in nuclear power plants).

Figure 1.3 shows daily accumulated precipitation anomalies for three selected
Spanish stations in years of major droughts. Since the Spanish water supply
highly depends on precipitation stored mainly in autumn and winter, the lines
start with the onset of the hydrological year in October. Despite differences
between the single stations, a common property of all major drought events is
the accumulation of precipitation deficits over a long time period of 9 months.
From October 2004 to June 2005 the accumulated precipitation percentage of the
normal 1961 to 1990 period was smaller than 40% in Reliquias and Granada and
smaller than 60% in Barcelona (García-Herrera et al., 2006). This lead to further
consequences for the subsequent year as the Spanish water reservoirs could not
recover and reached only 47.6% of the total fill level in January 2006 (Spanish
Ministry of the Environment).
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Figure 1.3: Development of major droughts in Spain recorded at a) Reliquias, b)
Granada and c) Barcelona. Shown are daily accumulated precipitation anomalies
in respect to climatology (1961-90). The black lines give anomalies from October
2004 to June 2005 (Figure from García-Herrera et al. (2006)).

Accumulated precipitation deficits are the main physical process for drought
development. The accumulation time span is subject to change, leading to an
integrated timescale of droughts. With this example the timescale of severe events
is further extended up to several months.

1.1.2 Definition of extremes

So far, severe meteorological events have been described and their importance
has been demonstrated, but a definition of what has to be considered as an
extreme event is missing. The common property of all presented examples was
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the unusualness of the events. Unusualness can be quantified through the concept
of probability.

Thinking of an observed time series, an extreme event is surely the highest
value that occurred during the observational period. This is why extreme value
theory starts with considering the maximum, Mn of an independent and identical
distributed (iid) random sample, X1, X2, . . . , Xn:

Mn = max{X1, X2, . . . , Xn} (1.1)

It is obvious that, the larger the observation time period (the sample size, n)
the higher maximum values are expected. This extends naturally to the question
whether a distribution function exists for Mn by taking the limit n → ∞. The
answer is given by the Fisher-Tippett Theorem (also know as Extremal Types
Theorem; Fisher and Tippett (1928)), which demonstrates that convergence of a
limit process with suitable normalized maxima, z, against a distribution function
H(z) is achieved and H(z) belongs to one of the following distribution families
(details given in Coles (2003)):

• Type I: Gumbel distribution (ξ = 0)

• Type II: Fréchet distribution (ξ > 0)

• Type III: Weibull distribution2 (ξ < 0)

Note, that these are the only possible limits. The three types can be unified
into one distribution function, the generalized extreme value distribution (GEV),
where the shape parameter, ξ, determines the type at hand.

Return level plots are the usual way to visualize GEV. The return levels
(values) are plotted against the return period on logarithmic scale (time). This
simplifies interpretation, because the expected level can be deduced, which is
reached or exceeded during given time period. Further, it guides the decision for
the extremal type at hand. Type Gumbel shows up as a straight line and type
Fréchet (Weibull) as a concave (convex) curve (Figure 1.4).

Extremes belong to the upper tail of the distribution functions and the upper
tail behavior is completely determined by the GEV. This holds for a large class of
distributions, because the condition required for the random sample is only the iid
assumption. Extensions exist for serial or spatially dependant variables. Making
extreme value theory to the method of choice for extremes in meteorological
applications.

1.1.3 Simulation example

The advantage of extreme value statistics is demonstrated and it is shown that
simple criteria may give wrong findings for the extremal behavior. Two artificial

2In the extreme value context it is the reversed Weibull distribution.
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Figure 1.4: Return level plot illustrating the three different extremal types:
Gumbel (ξ = 0), Fréchet (ξ > 0) and Weibull (ξ < 0).

data sets with known outcome are created. The aim is to show differences in the
extremes of two samples. In this way the example is an analog for climate change
experiments, where differences between present and future climate states are of
interest.

The random samples are Weibull distributed. This is a realistic example,
because observed wind speeds are often thought of as following a Weibull distri-
bution. The parameters of the distributions are given as follows: for sample one
(sample two) the shape parameter is set to 0.6 (0.9) and the scale parameter is
equal to 1.5 (5). The sample size is chosen to correspond to 150 years of daily
observational data. This is sufficiently large (n > 50000) to minimize sample size
effects.

Some typical measures, sample mean and standard deviation, as well as higher
quantiles are calculated for the two samples. Quantities like these are often chosen
to characterize or to draw conclusions about the extremes. The widely used
extreme indices3 use either absolute or quantile based thresholds and therefrom
derived quantities, like for example the number of tropical nights, warm spell
duration index, precipitation due to very wet days and many more. Comparing
the two samples yields higher values throughout for sample two (Table 1.1). This
indicates that higher values are more probable and that extreme values occur
more often in sample two. By contrast, the sample maximum is lower in sample
two, hinting at problems with the above interpretation (Table 1.1). However, the
maximum is just a single value, so one is tempted to attribute this discrepancy
to sample size effects.

The previous finding is contradicted by the estimated GEV. The resulting re-
turn level plot yields higher return values for return periods above the intersection
of the two lines (around 1 year) for sample one (Figure 1.5 a)). The difference

3For example, the set of descriptive indices of extremes defined by the “Expert Team on
Climate Change Detection and Indices” (Klein Tank et al., 2009)
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µ̂ σ̂ Q95 Q99 max

sample one (blue) 2.3 4.0 9.3 19.1 96.5
sample two (red) 5.3 5.8 16.9 27.3 66.7

Table 1.1: Estimated mean (µ̂), standard deviation (σ̂), 95% quantile (Q95),
99% quantile (Q99) and sample maximum (max) for the example of two Weibull
distributed random samples.

between the two curves enlarges for increasing return periods. Therefore the ex-
treme values are lower in sample two, in contrast to the previously used measures.
As the example uses simulated data, that is random values from specified Weibull
distributions, the outcome is known. The true densities cross near a value of 60,
attributing higher probabilities for values above the intersection for sample one
(Figure 1.5 b)). This confirms that sample two extremes are reduced, as achieved
by the estimated GEV, where even the intersection occurs almost at the same
value.

The discrepancy between the two outcomes results therefrom, that the quan-
tities in Table 1.1 do not represent the upper tail and are mainly determined from
the range below the intersection. There and below reside most values (according
to Figure 1.5 b)), leading to the higher sample two quantiles. To conclude, for the
example given higher quantiles have to be chosen to capture the upper tail and to

(a) Return level plot
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Figure 1.5: Example with two Weibull distributed random samples, with spec-
ified Weibull parameters. Shown are: a) return level plot for estimated extreme
value distributions, together with 95% confidence intervals (gray shaded and
dashed lines) and b) true density functions with logarithmic vertical axis for
sample one (blue lines) and sample two (red lines).
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reproduce the correct extremal behavior. The example is also a contribution to
the discussion about the impact of changing mean and variance on the extremes.
Comparing these different factors it was found that a change of both can lead to
increased extremes, with the variance even more important for the upper tails
(Katz and Brown, 1992). However, here increasing mean and variance comes
along with reduced extremes. The reason is the effect of the shape parameter
determining the Weibull distribution. This constrain was already pointed out by
Katz and Brown (1992) and described more precisely by the hazard function.

In summarizing, simple measures, like indices of extremes, are not recom-
mended for extreme value analysis. The example demonstrates, that they give
neither sufficient nor necessary conditions for the extremal behavior. However,
simple measures can be meaningful to describe moderate extremes. An example
is the density increase below the intersection in the simulation study. They gain
further importance in cases where extreme value statistics is not applicable (see
later discussion in Chapter 1.2).

1.1.4 Outliers and extreme values

Meteorological time series are sometimes outlier adjusted. For example:without
any additional knowledge about the December 1999 rainfall event in Venezuela
(Chapter 1.1.1), one is tempted to consider the unusual high value as an outlier.
For outlier detection bulk formulas or statistical tests are used, like for example
a multiple of the standard deviation, measures based on the interquartile range
or Grubbs’ test. While not explicitly shown, one can expect that most of the
criteria or tests will interpret this event as an outlier. In this example however,
one surely knows that the observed value is correct and not the effect of some
kind of measurement error. Thus the Venezuela rainfall event deals also as an
warning not to falsely interprete unusual high values as outliers.

Long ago a critical assessment on outlier removal was given by R. A. Fisher,
who stated: "... the rejection of observations is too crude to be defended: and

unless there are other reasons for rejection than the mere divergences from the

majority, it would be more philosophical to accept these extremes, not as gross

errors, but as indication that the distribution of errors is not normal" (Fisher,
1922), pointing out the importance of the distributional assumption. In fact
most outlier criteria and tests are based on the assumption of normal distributed
values.

Returning to the Venezuelan time series the outstanding high event is also
a challenge for extreme value analysis. The problem of attributing a realistic
probability was addressed in several publications (Coles and Pericchi, 2003; Coles
et al., 2003). The extremes were analyzed, using different extreme value models
and estimation technics. Without going into details here, the return level curve
of the seasonal model is coming close to the empirical estimated return period of
the 12 December event (Figure 1.6). All models were estimated predictive, that
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Figure 1.6: Return level plot for different predictive extreme value models fit-
ted to daily precipitation observed at Maiquetia international airport, Venezuela
(Figure from Coles et al. (2003); return level z in mm/dy and return period 1/p
in years).

is the highest value is excluded in the estimation process. The seasonal model
leads to a return period of about 130 years and the calculated probability that
an event as large as 410mm/dy will occur in a 49 years period is 30% (Coles
et al., 2003). This demonstrates the ability to account for realistic probabilities
for such an unusual high event, if extreme value statistics is correctly applied and
contradicts any speculations on an outlier.

1.2 Peak values and long lasting events - time
series aspects

As shown by the presented examples, the spectrum of severe meteorological events
is large. This does not only result from different meteorological quantities. Most
striking is the involved time structure, ranging from single peak values up to long
lasting events. An important characteristic for events on longer time scales are
aggregation effects, as the drought example demonstrated. In this context single
values and even single extreme values are not meaningful. It is the accumulation
of many negative or positive deviations over a certain time period that matters
and constitutes the extreme event.

On the other hand, the framework given by extreme value statistics is the
method of choice for the analysis of extremes. If peak values are of interest
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standard methods, like block-maxima or the peaks over threshold approach can
be applied to calculate extreme value distributions. Care has to be taken in
the case of meteorological time series, as many of them are serial dependant (or
exhibit memory) with nonvanishing autocorrelation for higher lags. One source
therefore are often the thermal inertia of oceans and land surfaces. However, this
property violates the basic iid requirement. To overcome this, extensions were
developed and modifications exists, so that standard extreme value statistics for
iid data is still applicable (overview and discussion in Dress (2008)):

• Clusters of exceedances: detecting independent clusters of exceedances and
using the cluster maxima for further analysis

• Nonparametric: applying standard extreme value statistics to all exceedances,
together with adequate adjustment of confidence intervals

• Semiparametric: using the residuals of a previously fitted time series model

Each of the methods has their pros and cons depending on the situation at
hand. If clusters could be physically defined or the autocorrelation function is
rapidly vanishing for higher lags, the cluster of exceedances approach is sufficient.

From another point of view, serial dependance is a necessary condition for ac-
cumulation processes. Because the probability that a positive (negative) anomaly
follows a positive (negative) one is increased. In contrast to iid samples, where
positive and negative anomalies in the future time step are equal likely indepen-
dent of the past. If the total effect of successive high events is of interest the time
series needs preprocessing. This might be done in a way analogous to the cluster
approach. But, instead of cluster maxima, cluster sums can be used for extreme
value analysis. Although, this is appropriate on short time scales, constrains oc-
cur for processes developing on long time periods. Sources for long lasting events
are often associated with non stationary behavior. Examples include persistent
weather regimes, the El Niño/Southern Oscillation phenomenon or variability up
to decades and more (like the meridional overturning circulation in the North
Atlantic). For events lasting a month or longer the sample size is drastically
reduced, if the data is preprocessed in the same manner. So, even though ex-
treme value statistics is the preferable method for the analysis of extremes, it is
impractical for events on long time scales.

1.3 Outline

The problems mentioned above make it necessary to use different methods, ad-
equate for the problem at hand. The standardized precipitation index (SPI) is
subject of Chapter 2 and 3. The SPI is related to accumulated deficit precipi-
tation and can be constructed for different time scales (McKee et al., 1993). In
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Chapter 2 a local study is accomplished, relating Icelandic SPI dry and wet ex-
tremes to a distinct dipole pressure field. It is further demonstrated, how the
SPI can be used for climate change assessment. The basis for the SPI construc-
tion is the probability distribution for precipitation. The Gamma distribution
is the usual standard and is reconsidered in Chapter 3. This is done with a
comparative analysis, using other admissible distributions. In Chapter 4 North
Atlantic cyclone extremes and their potential change under greenhouse gas warm-
ing are analyzed. Extreme value statistics is applied, focusing on return level and
parameter changes. Another way of analyzing extremes is to look at the time
distances of successive threshold crossings. Extreme event return time distribu-
tions and their memory properties in long-term memory processes are analyzed
in Chapter 5.





2 Extreme dry and wet events in Ice-
land: Observations, simulations and
scenarios

Monthly extremes of dryness and wetness in Iceland are analyzed based on
the standardized precipitation index (SPI). The analysis is performed for ob-
servations and four sets of coupled atmosphere-ocean climate model simulations
(ECHAM5/MPI-OM) to link water cycle extremes in Iceland with regional atmo-
spheric flow patterns and to estimate and evaluate future changes. The follow-
ing results are obtained: (i) SPI extremes are linked with a Europe-Greenland
Index (EGI) describing south-westerly flow anomalies by a dipole and the re-
lated geopotential height differences. The good agreement between the observed
statistics and transient 20th century simulations encourages analysis of future
climate projections. (ii) Comparison of the 21st century A1B-scenario with the
pre-industrial climate reveals significant and large differences: While extremes of
dryness hardly change, extremely wet conditions increase in winter and spring.
As there is no flow intensification and cyclone density decreases, the cause maybe
found air moisture raising in a warmer climate.

2.1 Introduction

Iceland’s climate and climate variability are commonly associated with storm-
tracks and cyclone path regimes (Schneidereit et al. (2007)) depending on telecon-
nections affecting the North Atlantic sector like, for example, the North Atlantic
Oscillation (NAO) or El Nino - Southern Oscillation (ENSO); for comprehensive
reviews see SFB-512 (2005) and Fraedrich (1994). Here, however, the indicator of
climate variability to be analyzed is not the meridional surface pressure dipole be-
tween Iceland and the Azores, but extremes of the water cycle in Iceland located
at the northern NAO-pole. Water cycle extremes affect land (and sea) and are
characterized by periods of dryness and wetness, both of which occur in arid and
in humid climates. Notwithstanding the considerable ecological and economical
impact, the corresponding atmospheric flow patterns are also of interest, in par-
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ticular, when climate simulations are to be verified and future climate scenarios
need to be evaluated.

Extremes are rare by definition and difficult to estimate. Different methods
can be used to describe extremes. Nonparametric methods are based on per-
centiles or quantiles and are often used in meteorological science for the calcula-
tion of extreme indices (for example: Klein Tank and Können (2003)). Paramet-
ric methods, however, enable calculations of extreme value distributions (Coles
(2003)). In the following the standardized precipitation index (SPI) is applied,
which has been proposed to obtain a quantitive meaning for an otherwise loose
definition (Bordi et al. (2006)), in order to monitor dryness and wetness (McKee
et al. (1993)). Although for the index calculation parametric methods are used,
the SPI is a nonparametric method, because estimated distributions are only used
for the standardization. Therefore, the SPI may be regarded as an extension of
nonparametric methods.

The goals of this chapter are twofold: (a) linking extreme dryness and wet-
ness with atmospheric flow patterns and (b) estimating future changes in the
occurrence of the extremes. To achieve these aims, our analysis is structured as
follows: The SPI and the observed and simulated data sets to be analyzed are in-
troduced (Section 2.2 and 2.3). Observed dryness and wetness as extremes of the
SPI and the associated observed large scale atmospheric flow are identified and
compared with transient 20th century model simulation (Section 2.4). Based on
this comparison dryness and wetness (and the related atmospheric flow) statistics
are evaluated for future climate scenarios (Section 2.5). A brief summary con-
cludes the analyses (Section 2.6). In addition, the relation between SPI extremes
to cyclone track densities are investigated in the Appendix.

2.2 Data and model simulations

Iceland precipitation is represented by single time series in terms of monthly
means of area (about 105km2) averages to make analyses of higher resolution
observations and low resolution simulations comparable.

Observations

Observed Iceland precipitation values are taken from a precipitation clima-
tology at 0.5◦ resolution (VASCLIMO, Variability Analysis of Surface Climate
Observations, Beck et al. (2005)). The VASCLIMO data set is very similar to
the CRU TS 2.1 data set (CRU, Climate Research Unit, Mitchell and Jones
(2005)): for area averaged Island precipitation on a monthly basis, time series
show nearly identical distributional properties with the same variability (correla-
tions larger than 0.9). The observed atmospheric flow is presented by the 500hPa
geopotential height analysis (ERA40, Simmons and Gibson (2000)). Both precip-
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itation and geopotential height data sets are analyzed for the overlapping period
1958 to 2000.

Simulations

The coupled atmosphere-ocean climate model is ECHAM5/MPI-OM (Roeck-
ner et al. (2003), Marsland et al. (2003)); the atmosphere is in T63 spectral
resolution (about 1.8◦) with 31 vertical levels. Thus Iceland is represented by 6
grid boxes. No flux correction is applied. The following model simulations are
analyzed:

1. Pre-industrial control experiment (CTL) with constant greenhouse gas con-
centrations as observed in 1860 (500 years integration).

2. Transient 20th century simulation (1860 to 2000) to compare with observa-
tions (three ensemble members).

3. Stabilization run (20C) with greenhouse gases fixed at present day climate
of the year 2000 (three 100 year ensemble members).

4. Stabilization run (A1B) with greenhouse gases fixed at 2100 following the
A1B scenario (Nakićenović et al. (2000)), which represents the climate af-
ter an intermediate greenhouse gas increase (three 100 year ensemble mem-
bers).

Trends

Precipitation trends from 1951 to 2000 are determined for each calendar
month for both observations and the 20th century simulation. Although there is
evidence of local trends in observed Iceland precipitation (Beck et al. (2005)), the
area averaging removes them. Only two months show a significant trend (95%
confidence level, according to Mann-Kendall-Test). Trends are not removed in
the following, because calculations with and without them did not change the
results.

2.3 Standardized Precipitation Index (SPI)

The SPI was introduced by McKee et al. (1993) to classify and monitor dry-
ness and wetness. The calculation of the SPI is based on an "equal probability
transformation": monthly precipitation is transformed to a standard normal dis-
tribution to yield SPI values by preserving probabilities (details are given in the
Appendix of Bordi and Sutera (2001)). The standardization ensures, that the SPI
gives a uniform measure for dryness and wetness in different climate regimes or
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under seasonal dependence. The SPI can be constructed for different timescales
characterizing meteorological, hydrological and agricultural periods of dryness
and wetness. Here we choose the monthly time scale characterizing the meteo-
rologicaly relevant period, that is, wet and dry spells and its extremes. The SPI
classification is shown in Table 2.1.

Distribution

The transformation depends on the assumed statistical distribution of monthly
precipitation. A false distribution type leads to systematic errors, which are most
severe at the upper and lower tails and, therefore, for the extreme values. The
gamma distribution, as used by Bordi et al. (2006) to describe precipitation in
Sicily, has lead to adequate results. However, this distribution does not hold
for all months for the Iceland precipitation time series; for some months better
fits can be achieved by the Weibull distribution. To still use a single unifying
distribution type the "Generalized Gamma Distribution" is applied instead:

f(x) =
d

Γ(k)
b−dkx(dk−1) exp

(

−
(x

b

)d
)

(2.1)

with scale parameter b, two shape parameters d and k, and the gamma function
Γ(y). This version includes as special cases the gamma distribution (by setting
d = 1) and the Weibull distribution (with k = 1). The two shape parameters
make maximum likelihood estimation difficult and lead to convergence problems.
Therefore, parameter estimation is performed by using the reparameterized ver-
sion of the generalized gamma distribution (Lawless (1982)).

Changing climate

The transformation can also be used to identify possible dryness and wetness
changes in terms of SPI values. The solid lines and arrows illustrate the trans-

SPI intervals SPI classes P

SPI ≥ 2 W3: extremely wet 2.3
2 > SPI ≥ 1.5 W2: severely wet 4.4

1.5 > SPI ≥ 1 W1: moderately wet 9.2
1 > SPI > −1 W0, D0: normal 68.2

−1 ≥ SPI > −1.5 D1: moderately dry 9.2
−1.5 ≥ SPI > −2 D2: severely dry 4.4

SPI ≤ −2 D3: extremely dry 2.3

Table 2.1: Standardized Precipitation Index (SPI) classes and corresponding
event probability, P in %.
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formation to SPI (Figure 2.1). For an example value x = 20, from a sample
(X), which is gamma (Γ1) distributed (solid curve), the transformation leads to
a SPI value of approximately 1. Transforming the whole sample, X, results in
standard normal distributed SPI values, with preserved probabilities, but only if
the samples are indeed drawn from a Γ1-distribution. The same transformation
of a y = x from another sample (Y ), which is Γ2 distributed, will lead to the same
SPI value. But the "preserved" probability is now the probability of the Γ2 dis-
tribution. Transforming the whole sample Y will not give the standard normal
distribution. The probability difference between x from Γ1 and y from Γ2 occurs
also after the transformation (difference between the two horizontal arrows). So,
possible future precipitation changes are also detected and expressed in terms of
the SPI by this transformation property.

2.4 SPI extremes and atmospheric flow: present

day climate

For 1958 to 2000 the observed monthly extreme SPI classes for Iceland are as-
sociated with monthly mean northern hemisphere 500hPa geopotential height
anomaly composites to identify atmospheric flow fields related to extreme dry-
ness and wetness. This provides the background for comparison with climate
simulations.

0 20 40 60 −2 0 2
0.0

0.5

1.0

Γ1
Γ2

Φ

Figure 2.1: The transformation to SPI is illustrated by solid lines and arrows: a
gamma distribution (Γ1, left) is transformed to the standard normal distribution
(Φ, right). Another gamma distribution (Γ2, dashed lines, left) is transformed
such that the probability differences remain the same on the both sides. Note
that the resulting distribution (dashed lines, right) does not have the properties of
the standard normal distribution (shown are cumulative distribution functions).
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2.4.1 Observations

SPI

In a first step, precipitation is transformed to SPI. The time period is short and
the extreme events are rare. According to Table 2.1 one expects approximately
11 extreme wet and 11 dry months in 43 years. Extreme and severe SPI classes
are combined to increase the sample size. Then, composite maps of the 500hPa
geopotential height anomalies (of extreme wet and dry months) are constructed
as averages over the deviations from the mean over all months of the remaining
SPI classes.

Circulation

In Figure 2.2 the resulting geopotential height anomalies are composited for
severe and extreme wet (a) and dry (b) conditions and are averaged for the whole
year. In the severe and extreme wet case a negative anomaly center is found near
Greenland and a positive anomaly center near Europe between England and
Scandinavia, which are steering centers of the flow. The signs of the anomaly
centers are reversed in the case of severe and extreme dry conditions, but their
locations remain the same. These patterns are nearly consistent throughout

(a) Severe and extreme wet conditions (b) Severe and extreme dry conditions

Figure 2.2: Composite maps of ERA40 geopotential height anomalies [gpm]
corresponding to observed severe and extreme a) wet (SPI ≥ 1.5) and b) dry
(SPI ≤ −1.5) conditions in Iceland. Continuous lines show positive and dashed
lines negative anomalies. The contour intervals are 20gpm.
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the seasons, with slightly varying magnitude and location of anomaly centers
(not shown). The anomalies are highest during autumn and winter, in spring
and summer the anomalies are weaker. Around Greenland no deviations of the
location occur throughout the seasons, whereas in the wet cases the positive
anomaly center is shifted northward in spring. In the dry cases the negative
anomaly center is split in two poles in autumn.

Cassou et al. (2004) found four climate regimes in the winter 500hPa geopo-
tential height field by cluster analysis, capturing nonlinearities of North-Atlantic
weather regimes. One of the regimes (the west-east dipole between Greenland
and Scandinavia, their Figure 3 d)) is similar to the wet extreme anomaly field
(Figure 2.2 a)). However, the dry extreme anomaly field (Figure 2.2 b)) has no
clear equivalent: for NAO negative (Cassou et al. (2004) with Figure 3 a)), the
positive poles over South-Greenland coincide, while the negative pole (Figure 2.2
b)) is displaced north-eastward. That is, extremes can partly be associated with
weather regimes, associated with cluster analysis. Therefore, NAO relations with
Iceland precipitation (Hanna et al. (2004)) and, possibly, cyclone activity (Ser-
reze et al. (1997)) could be extended in view of these results for both present day
and changing climates.

In summarizing, the anomalous flow patterns associated with severe and ex-
treme wet SPI classes (Figure 2.2 a)) are related to an anomalous northward
atmospheric flow (of warm and wet air masses) from the Atlantic region. This
flow is reversed in severe and extreme dry conditions, where Iceland is under the
influence of dry polar air masses. Thus, a Europe-Greenland geopotential height
difference is suggested as a flow index, EGI (used in Section 2.5), representing
the pressure gradient, which characterizes the anomalous circulation.

2.4.2 Climate model: transient simulation

Verifying climate models by comparing observations with the transient 20th cen-
tury simulations (1860 to 2000) is prerequisite for evaluating the representative-
ness of future scenarios. Thus, the respective ensemble simulations are subjected
to the same SPI and circulation pattern analysis. It should be noted that the
ensemble members are not simulations of the present climate, but of scenarios
starting from the pre-industrial climate forced with observed greenhouse gases
until the year 2000.

SPI

Since SPI is calculated on a monthly basis, the comparison of the observed
and model simulated precipitation is made for each calender month. A two-
sample Kolmogorov-Smirnov test is performed testing the null hypothesis that
precipitation data are drawn from the same continuous distribution (applied to
each individual ensemble member). Test results are shown in Table 2.2 in terms of
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Month 1 2 3

1 0.717 0.272 0.179
2 0.998 0.549 0.396
3 0.179 0.001 0.068
4 0 0.006 0.039
5 0.717 0.022 0.272
6 0.396 0.272 0.549
7 0.549 0.179 0.717
8 0.869 0.396 0.272
9 0.039 0.001 0.068

10 0.967 0.869 0.967
11 0.039 0.396 0.272
12 0.006 0.272 0

Table 2.2: Two sample Kolmogorov-Smirnov test: estimated p-values are shown
for each ensemble member (1 to 3). The null hypothesis is rejected at 5% level
for p < 0.05.

probability, p, of null hypothesis rejection: In six months (January February, June
to August, October) the null hypothesis is accepted for each member; in three
months (March, May and November) there is one ensemble member for which
the null hypothesis is rejected, so that there is still some agreement between
observation and model simulations. In September and December one ensemble
member fulfills the test, while no agreement is found for April. In summarizing,
no single season shows a systematic departure. Best agreement exists in summer
and worst in spring, possibly due to ENSO influencing the flow and cyclone
track patterns (Fraedrich (1994)). Though not perfect, the agreement between
observed and model simulated precipitation can be considered as good.

Circulation

Now the flow fields associated with severe and extreme SPI classes are de-
termined from model simulations to analyze and compare wetness and dryness
related circulation patterns. All ensemble members are analyzed together and
the results are presented in Figure 2.3, where significant anomaly differences are
shaded according to a T-test (95% confidence). Nearly the same anomaly patterns
are found in observations and the transient simulations of the present day climate
(Figures 2.2 and 2.3). Comparison shows the following results: For severe and
extreme wetness the model area of significant positive geopotential height anoma-
lies is shifted southward with the European center near England while negative
anomalies show the same strength and location. For severe and extreme dryness
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(a) Severe and extreme wet conditions (b) Severe and extreme dry conditions

Figure 2.3: Composite maps of geopotential height anomalies ([gpm]) of the
transient 20th century simulation corresponding to observed severe and extreme
a) wet (SPI ≥ 1.5) and b) dry (SPI ≤ −1.5) conditions in Iceland. Contour lines
see Figure 2.2, significant areas shaded (95% confidence level).

composites show larger deviations: positive anomalies are much stronger in the
observed geopotential heights, while negative ones reach higher values in simu-
lations. The strengths of the Greenland and Europe anomalies are asymmetric
in the observations and almost symmetric in the simulations, while the centers’
locations remain the same (Figure 2.3). Some of these differences may result
from the short time period of the observations and, therefore, represent random
fluctuations, or from model bias underestimating the tropical influence on mid-
latitude weather and climate. However, the time limitation in the data series
does not influence the present analysis. Only if differences were much larger than
found, the model bias would have reached a magnitude that credible results of
the projected future may affected. In summarizing, the patterns of observed and
simulated flow fields agree well and the statistical test highlights the important
areas steering the flow. Furthermore, they are consistent with the previously
given physical explanation.

2.5 Climate change scenarios

The ensemble members of two stabilization runs are analyzed representing present
day (20C) and the scenario (A1B) climates and both sets are compared with the
pre-industrial (CTL) climate.
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SPI

The SPI classes (Figure 2.4) show almost no differences between present day
and pre-industrial frequencies. However, the scenario climate compared with the
pre-industrial shows a strong increase of severe and extreme wet conditions. The
frequency of the severe wet class is more than doubled, while in the extreme wet
class it is more than trebled. In all dry classes the frequencies are reduced, except
for the extreme dry class, which remains unchanged. Differences in frequency
between extreme SPI classes of model simulations are now evaluated on a seasonal
basis (Figure 2.5). The present day climate shows only small changes in wet and
dry extremes compared with the pre-industrial simulation. The scenario climate
reveals small (large) changes for the extreme dry (wet) SPI classes; note that, in
the scenario climate, the increase in the wet extremes is strongest in summer and
autumn; a considerable increase occurs in winter, while it is lowest for spring.
Small differences between the single ensemble members are found, which lie in
the range of random variations. All members show the same seasonal response.

Circulation

The SPI extremes in both pre-industrial and scenario simulations are also as-
sociated with the previously found atmospheric circulation anomalies and their
steering centers (not shown). Relating the frequency increase of extreme wet SPI
classes to anomalous flow patterns is analyzed by the joint density distribution of
the respective indices, SPI and EGI (introduced in Sections 2.3 and 2.4.1). Sig-

0

5

10

15

20

25

30

35

2.3
4.4

9.2

34.1

 SPI classes

[%
]

D3 D2 D1 D0 W0 W1 W2 W3

CTL
20C
A1B

Figure 2.4: Frequencies of SPI classes (see Table 2.1): pre-industrial (CTL),
present day (20C) and scenario climate (A1B); SPI event probabilities in % on
right vertical axis.
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Figure 2.5: Differences of extreme SPI class frequencies (per season): present
day (20C) minus pre-industrial (CTL) climates (left), scenario (A1B) minus pre-
industrial (CTL) climates (right).

nificant positive and negative geopotential height anomalies define the steering
centers of both wet or dry patterns (see Figure 2.3). The "wet/dry" intersec-
tions yield a dipole, whose area averaged geopotential height anomalies define
the Europe-Greenland Index (EGI), that is, a difference of area averaged geopo-
tentials between the Europe and Greenland "wet/dry" intersections. Extreme
wet patterns correspond to positive EGI values with enhanced southwesterly flow
and extreme dry conditions in Iceland to negative ones, with reduced southwest-
erly flow. This Europe-Greenland circulation index, EGI, is now related to the
Iceland SPI for each season (Figure 2.6). The following results are noted:

EGI-SPI correlations

In the pre-industrial (observed) climate SPI and EGI are highly correlated
and the correlations range from 0.64 (0.6) in summer to 0.72 (0.69) in winter.
This shows that the EGI is not only relevant for the extreme but also for the other
SPI classes. The correlations remain almost unaltered in the scenario climate.

EGI-SPI joint density (pre-industrial)

The joint density estimates also show that high (low) SPI values are asso-
ciated with high (low) EGI values (Figure 2.6, left column). EGI values show
larger variability in winter than in summer (see also discussion in Section 2.2),
as it is obvious from density tails. In summarizing, these statistics support the
introduction of EGI representing the atmospheric flow relation with SPI and its
extremes (Section 2.4.1).
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Figure 2.6: Seasonal joint density estimates of standardized precipitation index
(SPI axis) and Europe-Greenland geopotential height difference (EGI axis in
[100gpm]): pre-industrial climate (CTL, left) and density differences between
scenario and pre-industrial climate (A1B-CTL, right). Density contours start
from 0.005 with contour intervals 0.025; negative (positive) density differences are
dashed (solid) starting from -0.001 (0.001) with contour intervals 0.001. Higher
values are shaded darker.

EGI-SPI joint density difference (A1B and CTL)

The two dimensional densities (EGI, SPI) are calculated for the scenario cli-
mate to determine the density differences between the scenario and pre-industrial
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climate (Figure 2.6, right column). A shift along the SPI axis to higher values is
obvious in all seasons. Note that the positive contour lines reach highest values
(SPI ≈ 2) in summer and autumn, which is due to more extreme wet events (than
in the other seasons, see also Figure 2.5). The shift along the EGI axis, however,
is less pronounced. The change of the densities to higher EGI values is only found
in summer and autumn, i.e. the wet pattern (Figures 2.2 a) or 2.3 a)) occurs more
often and higher differences between the poles are getting more probable. This
is reversed in winter and spring, where the density is reduced for high positive
EGI values. In these seasons the occurrence of the dry pattern (Figures 2.2 b) or
2.3 b)) has an increased probability. Note, that all individual ensemble members
show the same response, as in Figure 2.6, with nearly no differences.

In summarizing, we conclude that (i) the increase of extreme wet events (Fig-
ure 2.5) in winter and spring (of the A1B scenario climate) is not a result of
an intensification of the anomaly flow pattern. That is, because the density of
high EGI values decreases while the density of high SPI values increases. As
the relation between EGI and SPI is still present in the scenario climate, the
noted SPI increase in the scenario must result from another mechanism as, for
example, moisture rising in a warmer climate. (ii) The seasonal variability of ex-
treme wet SPI frequency changes (A1B-scenario minus CTL-control, Figure 2.5)
are related to EGI (or flow pattern) density changes (A1B-CTL, 2.6). That is,
the largest extreme wet SPI frequency increase occurs in summer and autumn,
which corresponds to the increasing density of positive EGI or, to higher EGI
values occurring more often (see anomaly pattern in Figure 2.3 a)). In addition,
extreme wet SPI frequencies rising less in spring than in winter (Figure 2.5) is
consistent with a stronger decrease of density of positive EGI.

2.6 Summary and conclusions

Extremes of dryness and wetness in Iceland are analyzed in terms of the standard-
ized precipitation index (SPI). Observed geopotential height anomalies compos-
ited about extreme SPI events show a dipole like structure representing steering
centers over Europe’s west coast and Greenland’s South. The Europe-Greenland
Index (EGI) of geopotential height differences reverses sign from wet to dry
events. The analysis of observations is compared with transient 20th century
(ensemble) simulations followed by the same analysis of the future A1B-scenario.
Some results are summarized:

1. Agreement between observed and simulated transient 20th century precip-
itation (SPI) statistics can be considered as good and the observed SPI-
circulation relation is also found in the simulation.

2. No significant differences appear in the frequencies of the monthly SPI
classes (per year) and monthly SPI extremes (per season) between present
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day climate (20th century stabilization runs) and pre-industrial (CTL) sim-
ulation.

3. Significant and large differences occur in the frequencies of the severe and
the extreme wet SPI classes between scenario (A1B) climate (21st cen-
tury stabilization runs) and the pre-industrial (CTL) climate (stabilization
runs).

4. Extreme wet SPI frequencies increase in winter and spring of the scenario
climate. This is not a result of intensifying flow anomalies but may be
related to other mechanisms as, for example, moisture rising in a warmer
climate.

5. But, the seasonally differing responses in scenario frequencies (of extreme
wet SPI classes) are consistent with the changing anomalous flow pattern.

These analyses add information to Iceland climate studies introducing
monthly precipitation extremes in terms of dryness and wetness and their pos-
sible link to an atmospheric circulation pattern steered by geopotential height
anomalies over Greenland and Europe. New are the methods introduced for an-
alyzing extremes under changing climate conditions and linking this with the
associated atmospheric flow pattern. However, to aid decision making based
on future scenarios requires test and analysis of other climate change scenarios
and different climate models. Extension to other regions governed by different
circulation regimes and climates will be presented in due course.

2.A Cyclone density analysis

This appendix presents results of cyclone tracking analysis applied to spells of
wetness and dryness in Iceland. The tracking algorithm is applied as described
in detail by Schneidereit et al. (2007) (see also references therein) with two ex-
ceptions: the minimum cyclone lifetime is 48 hours and their minimum travel
distance is 1000 km. The winter season is considered. Cyclone densities for
wet extremes (Figure 2.7 a)) show enhanced magnitude near 60◦ North with
a southwest-northeast orientation along the Greenland trough anomaly and its
largest gradient. The pattern is similar to the winter mean density. For dry
conditions (Figure 2.7 b)) cyclone activity is enhanced and more zonally oriented
along 50◦ North.

In addition, cyclone density change is presented for scenario (A1B) minus
transient 20th century simulation. For extreme wet conditions (SPI ≥ 1.5) the
density is strongly reduced in Norwegian-Barents Sea (up to −10%, Figure 2.7
c)), consistent with the reduced EGI (Figure 2.6, top right panel). That is, the
increasing SPI change in Iceland (Section 2.5) cannot be related to an increasing
number of cyclones.
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(a) Transient 20th century: severe and extreme wet con-
ditions

(b) Transient 20th century: severe and extreme dry con-
ditions

(c) Scenario minus transient 20th century: cyclone den-
sity change

Figure 2.7: Cyclone densities of the transient 20th century simulation in winter
(DJF, 1950- 2000) corresponding to observed severe and extreme a) wet (SPI
≥ 1.5) and b) dry (SPI ≤ −1.5) conditions in Iceland. The contour intervals are
5%. c) Mean cyclone density change between scenario (A1B) and transient 20th
century simulation climate for severe and extreme wet conditions. Continuous
lines show positive and dashed lines negative differences, with contour intervals
of 2%.





3 Implications for drought monitoring
and projection - SPI bias

The applicability of the Gamma distribution (GD) for monthly precipitation sums
is reconsidered. The motivation for this study is the observation that the GD fails
to represent precipitation in considerable areas of global observed and simulated
data. This misinterpretation may lead to erroneous Standardized Precipitation
Index (SPI), model evaluations and climate change assessments. In this study, the
GD is compared to the Weibull (WD), Burr Type III (BD), exponentiated Weibull
(EWD) and generalized Gamma (GGD) distribution. These distributions extend
the GD in terms of possible shapes (skewness and kurtosis) and the behavior for
large arguments. The comparison is based on the Akaike information criterion,
which maximizes information entropy, and reveals a trade-off between deviation
and the numbers of parameters used. We use monthly sums of precipitation
given by England-Wales, CRU and ECHAM5 data sets for 12 individual months
of the year. Weibull type distributions give distinctly improved fits, while the
worst results are obtained for the GD. This is obtained by a global assessment of
observed and simulated data throughout the whole year.

3.1 Introduction

The Standardized Precipitation Index (SPI) is widely applied for the description
of extreme dryness or wetness. An increasing number of publications uses the
SPI to diagnose observed precipitation deficits or excesses and analyze its vari-
ability. The SPI is further applied as a monitoring tool, which is able to give
the actual state of meteorological, agricultural and hydrological droughts. The
World Meteorological Organization (WMO) recommends the SPI to characterize
meteorological droughts by all meteorological and hydrological services (WMO
press release No. 872, December 2009). Newer applications use the SPI for diag-
nosing future drought occurrences in climate change scenarios (Sienz et al., 2007;
Burke and Brown, 2008).

One reason for the wide appliance of the SPI is its simplicity compared to other
drought indicators, such as the Palmer drought severity index (PDSI; Palmer
(1965)). Only precipitation is needed as input quantity, contrary to the PDSI,
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where in addition temperature and local available water content of soil are re-
quired. Although regarded as a simple measure, the SPI has its restrictions
concerning the sample size and in arid environments. Wu et al. (2005) presented
a critical assessment of sample size impacts. Furthermore, months without pre-
cipitation create a lower bound in the SPI, leading to problems with drought
indication (Wu et al., 2007).

For the calculation of the SPI the probability distribution of precipitation is
of importance. This has been demonstrated by Guttman (1999), who concluded
that “the SPI should not be used widely until a single probability distribution is
accepted as a standard”. Guttman (1999) compared different distributions with
a regional drought model and proposed the three parameter gamma distribution
as standard. The Gamma distribution with either two or three parameters is now
widely applied in hydrological and climatological science. However, several au-
thors pointed out that the GD can lead to problems and does not fulfill goodness
of fit criteria (Lloyd-Hughes and Saunders, 2002; Sienz et al., 2007).

Apart from applying the distribution of precipitation for SPI calculation, the
distribution itself is of interest and there is a long history of applying and com-
paring different kinds of distribution functions (Groisman et al., 1999; Mielke and
Johnson, 1974). The knowledge about the underlying distribution is of impor-
tance, because every probabilistic property of precipitation is derivable therefrom.

It is worth mentioning that nearly each SPI analysis could comparably be
done in terms of the estimated distributions. However, some additional effort is
needed because of the missing standardization. It is the standardization, which
makes the SPI to the preferred method in analyses, where relative deviations from
a climatological mean state are of interest. But the SPI is useless in applications,
where direct precipitation properties should be described. Here, the distribution
itself gains in importance, as for example precipitation climatology, climate model
evaluations or analyzing climate change by comparing distributional properties
for present and future climates.

In this chapter we investigate the GD as the standard distribution for monthly
precipitation. One of the main findings is that the GD describes precipitation
not adequate in many parts of the world, leading to biases in the description
of precipitation. In cases where the GD is the wrong assumption, the error
will propagate also into the calculation of the SPI. The consequence is a biased
SPI, mainly affecting the SPI extremes, leading to underestimation, respectively
overestimation, of extreme dryness or wetness.

A comparative method is used to demonstrate that SPI biases arise from
wrong distributional assumptions. Therefore, four further distributions, the
Weibull (WD), Burr Type III (BD), exponentiated Weibull (EWD) and the gen-
eralized Gamma distribution (GGD) are compared to GD. The comparison uses
the Akaike information criterion (AIC), which quantifies the information gain or
loss by the chosen statistical model (the distribution). This is supported by a
simulation study where the performance of different model selection criteria are
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analysed. Further, the outcome serves as guide for the interpretation of the later
results.

The actual analysis of precipitation data uses multiple data sets, ranging from
single observed time series up to precipitation simulated by an actual coupled
climate model. This avoids, at least to some kind, that the results are bounded
to local areas or the usage of a particular data set.

The chapter is structured as follows: In Section 3.2 applied methods and used
data sets are introduced. A simulation study provides a basis for the further
analysis is given in Section 3.3. Subsequently precipitation data sets are inves-
tigated (Section 3.4), including observed precipitation (Sections 3.4.1 and 3.4.2)
as well as climate model output (Section 3.4.3). The results are discussed and an
outlook is given in Section 3.5.

3.2 Methods and Data

3.2.1 Standardized Precipitation Index (SPI)

The SPI was introduced by McKee et al. (1993) to classify and monitor dry-
ness and wetness. The calculation of the SPI is based on an equal probability
transformation: monthly precipitation is transformed to a standard normal dis-
tribution1 to yield SPI values by preserving probabilities. The standardization
ensures, that the SPI gives a uniform measure in different climate regimes or
under seasonal dependance. The SPI definition is given in Table 3.1. The SPI
can be constructed for timescales ranging from months to years and therewith
enables the description of meteorological, agricultural and hydrological drought.
The following analysis is restricted to the monthly time scale.

1given by mean, µ = 0 and standard deviation, σ = 1

SPI intervals SPI classes P[%]

SPI ≥ 2 W3: extremely wet 2.3
2 > SPI ≥ 1.5 W2: severely wet 4.4

1.5 > SPI ≥ 1 W1: moderately wet 9.2
1 > SPI > −1 N0: normal 68.2

−1 ≥ SPI > −1.5 D1: moderately dry 9.2
−1.5 ≥ SPI > −2 D2: severely dry 4.4

SPI ≤ −2 D3: extremely dry 2.3

Table 3.1: Standardized Precipitation Index (SPI) classes and corresponding
event probability (P).
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The transformation depends on the assumed statistical distribution of precip-
itation. Distributions are calculated for each month separately. As consequence
seasonal dependance vanishes, but on the other hand the sample size is reduced.
A false distribution type leads to systematic errors, which are most severe at the
upper and lower tails and, therefore, for the extreme values. This observation
was one motivation for the present analysis.

3.2.2 Distribution functions

The observed monthly precipitation sums are described by asymmetric and posi-
tively skewed distribution functions. In the present analysis the Gamma distribu-
tion (GD) is compared to four other admissible distributions: the Weibull (WD),
Burr Type III (BD), exponentiated Weibull (EWD) and generalized Gamma dis-
tribution distribution (GGD). These distributions have two or three parameters
(dimensions) and reveal flexibility that increases for the higher dimensional dis-
tributions.

For all distribution functions used in this study the minimal set of parameters
includes scale (σ) and shape parameter (γ). The three parameter distributions,
which include partly the lower dimensional ones as subset, are extended by an
additional shape parameter (α). Below main properties of these types are sum-
marized.

(i) The Gamma distribution (GD) is the recommended distribution for SPI
calculations (Guttman, 1999):

f(x) =
1

σΓ(γ)

(x

σ

)γ−1

exp
(

−
x

σ

)

(3.1)

Γ is the gamma function.

(ii) The Weibull distribution (WD) with the same number of parameters as the
GD, is given by:

f(x) =
γ

σ

(x

σ

)γ−1

exp
(

−
(x

σ

)γ)

(3.2)

The WD is widely used for the analysis of wind speed, but rarely for pre-
cipitation. An exception is Reeve (1996) applying WD for Indian rainfall.

(iii) The Burr Type III distribution (BD) extends the parameter space by an
additional shape parameter (α):

f(x) = αγ
(x

σ

)−γ+1
[

1 +
(x

σ

)−γ
]−α+1

(3.3)

The BD extends the flexibility of the GD in terms of kurtosis and skewness
(Rodriguez, 1977; Tadikamalla, 1980). An early precipitation application
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is is the study of Mielke and Johnson (1974), using a Beta distribution
associated with the BD by a parameter transformation. Note: the BD is
a special case of the Kappa 4 distribution (Hosking, 1994). The Kappa
distribution was applied for SPI comparison (Guttman, 1999) and heavy
precipitation events (Kysely and Picek, 2007).

(iv) The exponentiated Weibull distribution (EWD) is also a three parameter
distribution:

f(x) =
αγ

σ

(x

σ

)γ−1 [

1− exp
(

−
(x

σ

)γ)]α−1

exp
(

−
(x

σ

)γ)

(3.4)

The EWD extends the WD by a factor including a stretched exponential
term and a shape parameter α. For α = 1 the WD is obtained.

(v) The generalized Gamma distribution (GGD):

f(x) =
α

σΓ(γ)

(x

σ

)αγ−1

exp
(

−
(x

σ

)α)

(3.5)

This version includes as special cases the gamma distribution (for α = 1)
and the Weibull distribution (for γ = 1).

3.2.3 Parameter estimation

The parameters are estimated by the Maximum Likelihood Method, which is the
most general approach for estimation and can be used for all selected distribu-
tions. Furthermore it gives the maximized likelihood as a result, which is the
basis for Akaike’s information criterion (AIC). The maximum likelihood is calcu-
lated by minimizing the negative log-likelihood function. A main criterion in the
optimization algorithm is the application of equal conditions for the five distribu-
tions. To avoid erroneous detection of local minima the optimization is initialized
by the minimum on a coarse grid in the parameter space. The optimization is
performed by a Quasi-Newton-Method. In a few cases where convergence can
not be obtained, a simplex or simulated annealing procedure is applied. Due to
the combination of these methods optimized parameters can be determined at all
grid points of the data sets.

3.2.4 Validation and comparison of distribution functions

There are two fundamentally different concepts for the assessment of statistical
models. On the one hand there are classical tests, like goodness of fit (GOF)
or Likelihood-Ratio. On the other hand models can be compared in terms of
information gain and loss, for example the Akaike Information Criterion (AIC).
The Likelihood-ratio test can not be applied here, because it requires nested types
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of distribution functions. Sets of distribution functions are nested if functions
with the smaller numbers of parameters are embedded in the parameter space
of the higher dimensional distribution. Therefore, this test is only applicable
for the comparison of WD and the EWD, with respect to an additional shape
parameter, as well as the nesting of GD and WD into the GGD. In the following
GOF, therefrom derivated quantities and the AIC are introduced. Their potential
for model selection is investigated by a simulation study.

Goodness of Fit test (GOF)

GOF are applied to determine the validity of the estimates. A general ap-
proach are bootstrap procedures (Davison and Hinkley, 2003), which are ap-
plicable for all distributions. If critical values can not be calculated analyti-
cally, bootstrap procedures are a possible approach. The parametric bootstrap
is able to obtain critical values by the creation of random samples from the esti-
mates. Since there is a sensitivity to the test statistic, two different statistics, the
Kolmogorov-Smirnov statistic (KSS) and Anderson-Darling statistic (ADS) are
compared. The p-values, p are given by the number of bootstrapped statistics,
s∗i , which are greater than the statistic of the original sample, s0, divided by
the the number of bootstrapped replicates, nB (p = (#s∗i ≥ s0)/nB; nB = 1000
throughout the chapter).

Derivated quantities

There are two outcomes from the GOF, which may be used for model compar-
ison: the test statistic and the bootstrapped p-values. The test statistic describes
the deviation between the estimated model and the data. The best model is cho-
sen according to the smallest test statistic. The p-values are obtained from the
statistics resulting from the bootstrap samples. In addition to the test statis-
tic the p-values include the impact of sample variability. The largest p-value
determines the preferred model.

Akaike’s information criterion (AIC)

The AIC is a versatile method for model selection and is based on the Kullback-
Leibler Information which compares models in terms of information gain and loss
with respect to an unknown truth (Akaike, 1974; Burnham and Anderson, 2002).
AIC is the relative expected Kullback-Leibler Information given by:

AIC = −2 log(L(θ̂|y)) + 2K (3.6)

with maximized Likelihood (L(θ̂|y)), estimated parameters (θ̂) dependant on the
data (y) and the number of parameters (K). The term, 2K corrects the maxi-
mum likelihood bias, as an estimator for the Kullback-Leibler Information and is
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interpreted as penalty term for higher model dimension. For small sample sizes
n in relation to the number of estimated parameters, the modification:

AICc = −2 log(L(θ̂|y)) + 2K

(

n

n−K − 1

)

(3.7)

has found to be useful (Burnham and Anderson, 2002) and is applied in the
following. AICc approaches AIC for large n.

The optimum model is determined by the minimum AIC value (AICmin)
within the set of models, i with AIC values AICi. The AIC differences (AICD)
between the models are important for the comparison and ranking of the models:

AICDi = AICi − AICmin (3.8)

The best model achieves AICD = 0 with this definition. Models with AICD near
0 are not clearly distinguishable from AICmin. In cases like this it is likely, that the
model with AICmin will change from sample to sample. Burnham and Anderson
(2002) give guidelines for the interpretation of AICD, which are reproduced in
Table 3.2.

3.2.5 Data

Different kinds of data sets are used in the following. Simulated data, with known
outcome is created to enable the validation of the statistical methods and to gain
guidelines for the later analysis. The actual analysis ranges from a single observed
time series to a global precipitation data set produced by a climate model.

• Simulated data: for different sample sizes (20 to 2500), 5000 Gamma dis-
tributed random samples have been created with given scale (σ = 20) and
shape (γ = 0.6) parameters.

• England and Wales precipitation time series: one of the longest observed
precipitation time series, starting in the year 1766 and reaching up to the
present-day (Alexander and Jones, 2001). Here, the years up to 2007 are
used.

AICD Model support

0-2 substantial
4-7 considerably less
> 10 essentially none

Table 3.2: AICD and their interpretation in respect to the achieved strength of
model support.
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• Observed high-resolution precipitation data set: the Climatic Research Unit
(CRU) data set covers the global land areas in 0.5 degree resolution and time
period from 1901 to 2002 (Mitchell and Jones, 2005). The following analysis
is restricted to grid points, where at least 1 station is present over the whole
time period. This avoids problems arising from the interpolation scheme,
filling observational gaps in time and space. Under this restriction two
larger regions (Europe (EU; 11◦W−26◦E and 35◦N−72◦N) and contiguous
United States (US; 126◦W−60◦W and 24◦N−50◦N)) have full data coverage
and are analyzed separately.

• Precipitation from coupled atmosphere-ocean climate model: simulated
precipitation in T63 spectral resolution (about 2.8◦) from the coupled cli-
mate model ECHAM5/MPI-OM (Roeckner et al., 2003; Marsland et al.,
2003). The pre-industrial control experiment with constant greenhouse gas
concentrations as observed in 1860 with an integration time of 500 years is
used. The above given regions are investigated, together with all land and
ocean grid points from 60◦S − 85◦N.

A threshold of 0.035 mm/month is used throughout, to separate months with
and without precipitation and distributions are calculated if at least 50 values are
present. Observed time series are tested for linear trends. For a positive outcome
(significance level of 95%) the time series are detrended.

3.3 Simulation study

In this section the methods are assessed to determine the best distribution for
precipitation data. Given that the GD is most widely applied, a set of gamma
distributed random numbers is used as a reference. Since the distribution of the
data is known it is possible to determine the conditions which are necessary to
reject other kinds of distribution functions. Here, the alternative is limited to the
WD. The impact of this restriction is discussed below.

Goodness of Fit test (GOF)

GD and WD are estimated and GOF are performed with a chosen significance
level of 0.05. The expected rate of null hypothesis acceptance for the GD is 95%.
In 5 % of the cases the null hypothesis will be rejected according to Error Type I.
For the simulated data, good agreement with the theoretical value is achieved for
all sample sizes and both statistics used, with deviations below 1% throughout
(Figure 3.1 a)).

Ideally the WD should be rejected in all samples, but this is far from be-
ing reached. For small sample sizes the WD is accepted nearly as often as the
GD (Figure 3.1 a)). For increasing sample sizes the acceptance rate decreases,
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Figure 3.1: Simulation study: a) Rate of null hypothesis acceptance, with either
GD or WD as 0 hypothesis. b) Number of times where the GD is selected as
the preferred model. The gray line gives the rejection rate of the WD, according
to GOF with ADS. c) Number of times where GD (WD) reaches AICD equal or
smaller than 2 (4).

but only slowly. At sample size 100, which is close the number of observations
typically available, the WD is still accepted in more than 80% of times. ADS
performs considerably better than the KSS, as the faster decrease demonstrates.

Interpreting the GOF for the WD in Figure 3.1 a) in terms of power of the sta-
tistical test under the alternative hypothesis, that the data follows a GD, demon-
strates that the power is low. While here, with the knowledge of the simulation
setup, the alternative could be reduced to a single distribution, in the following
section the power is even lower, because the set of alternative distributions is
larger (and even unknown). The reason for this is due to the similarity of the
chosen distribution functions and the large sample variability for small samples.
To conclude, for the aim to find the best distribution for monthly precipitation
GOF are a basic requisite, although they are not sufficient. The simulation study
illustrates that the power of the test is weak. This is enforced for small sample
sizes, where similar types of distributions are nearly indistinguishable.

Derivated quantities

Derivated quantities improve considerably the decision for the GD as the
preferred model. The rejection rate of the WD, interpretable as measure for pre-
ferring the GD on the basis of GOF, is exceeded with all other quantities (Figure
3.1 b)). But sample sizes of at least 50 are needed for the KSS to favor the GD
more often. The ADS and the bootstrapped p-values yield higher percentages.
The GD is most often selected with p-values resulting from the ADS. It is worth
noting, that ADS even outperforms bootstrapped p-values based on KSS. The
reason is that the KSS is based on the maximum deviation occurring mainly at
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tails. But, systematic errors will also show up with small differences near the cen-
ter. They are also accounted for with the ADS, which is an integrated measure
over all deviations.

Akaike’s information criterion

AICD as model selection criterion outperforms the previous methods, improv-
ing the choice for the GD as the preferred model. The blue line gives the number
of times where the GD yields the AIC minimum (AICD = 0; Figure 3.1 b)). In at
least 70% of the cases the GD is favored for sample sizes of about 100. According
to Table 3.2 models with strong support for the data are given by AICD ≤ 2.
Most AICD of the GD are located inside this bound and the percentages exceed
90% independent of sample size (Figure 3.1 c)). This shows that, in the event
of the WD reaches the AIC minimum the difference to the GD is small in the
majority of cases. The GD has strong support in more than 90% (and 95% for
AICD ≤ 4) of the cases, independent of the sample size. Since also higher WD
percentages are achieved, the best distribution decision is hampered unless very
large sample sizes are present.

Summarizing

The presented results are sensitive to the GD parameters of the simulated
data. The same analysis redone with different combinations of scale and shape
parameters yields almost no impact of the scale parameter. Higher shape param-
eters however, improve the decision for the GD (not shown). Due to monthly
precipitation yields in most situations shape parameters exceeding the given one,
the simulation study represents, at least to some kind, the lower border in decision
making.

To conclude: the AIC outperforms the other methods. Therefore, the AIC is
applied in the following analysis. However, as shown, the rate of preferring the
GD is still low for sample sizes typically available in meteorological applications.
The reasons for this are sample variability and the similarity of the chosen dis-
tributions. It can be expected, that the rate of accepting the GD as the AIC
best model is further decreased if the set of alternatives is enlarged. In the later
sections these problems are overcome in two ways. Sample size effects are avoided
by accounting also for higher AICD. That is, if the GD is the true distribution,
the achieved AICD are almost always below 4. This property has been demon-
strated to be independent of the sample size (Figure 3.1 c)). Further, a stepwise
comparison helps interpreting the results, if the set of alternatives is large.
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3.4 Precipitation distributions and SPI

Observed and simulated precipitation data sets are investigated. The observed
data sets (Section 3.4.1 and 3.4.2) deal as case studies related to drought mon-
itoring, whereas climate model precipitation (Section 3.4.3) exemplifies drought
projection studies. Throughout AIC best distributions are determined for each
month separately analog to SPI calculation. Resulting SPI time series are com-
pared with respect to deviations from defined SPI classes.

3.4.1 England Wales precipitation time series

The England Wales precipitation data set consists of a single time series. This
eases analysis and enables the visualization of the results on a monthly basis,
contrary to the later sections where gridded precipitation fields are of interest.

Distribution comparison

The GD reaches the AIC minimum in only one month (Figure 3.2). In all
other months the AICD are greater than 2 and even exceed 7 in the majority of
cases. The WD approaches most frequently the AIC minimum (9 months) and
AICD smaller than 2 for the rest of the months, with the exception of November.
Although the higher dimensional BD reaches smaller AICD than the GD partly,
the information gain by the additional parameter is low compared to the WD.
From the above it follows that small AICD are expected for the EWD and GGD
given their relation to the WD (Section 3.2.2). This is the case and AICD around
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Figure 3.2: England Wales precipitation, AICD separately for each month.
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2 for EWD (GGD) are a result of the additional shape parameter, penalized in
the AIC calculation.

The GD fails to represent adequately England Wales monthly precipitation.
With the restriction of November the WD outperforms the GD. A thereto compa-
rable information gain is given by the EWD and GGD. The BD demonstrates that
higher dimensional distributions do not necessarily improve the results. From the
viewpoint of just using a single distribution the WD is preferred, due to the low
number of model dimensions.

SPI

The impact of the assumed distribution on the SPI time series is analyzed.
At first SPI is calculated based on either the GD and the WD and their usability
for the description of precipitation and its extremes is investigated. SPI series
are expected to be standard normal distributed, with SPI wet (dry) extremes
exceeding 2 (falling below -2).

Even by visual inspection of SPI time series a shift to lower values is obvi-
ous for GD transformed precipitation (Figure 3.3 a)). Contrary to the expected
number of extremes with probability of 2.3% (Table 3.1) extreme dry conditions
occur more often (3.41%) than extreme wet conditions (0.96%). The WD trans-
formed SPI is evenly scattered, approaching adequate equal probabilities of 2.31%
(2.1%) for extreme wet (dry) conditions (Figure 3.3 b)). A summarized presen-
tation highlights the tail deviations. Therefore the differences from the expected
probabilities of the SPI classes (Table 3.1) are calculated. Consistent with the
previous findings, the deviations are largest for the SPI based on the GD (Figure
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Figure 3.3: SPI time series from England Wales precipitation. SPI transforma-
tion based on a) GD and b) WD. Wet (dry) SPI extremes are highlighted in blue
(red).
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Figure 3.4: Deviations from expected SPI probabilities in percent. SPI time
series are constructed with a) GD, b) WD, c) BD d) EWD and GGD e).

3.4 a)). Extreme dryness (wetness) is clearly overestimated (underestimated) and
is detected around 40% (60%) more (less) often. All other distributions reduce
this bias. Minor deviations are achieved with the Weibull Type distributions
(WD and EWD) and the GGD.

Quantile-quantile plots in terms of SPI values are calculated to associate SPI
deviations to goodness of fit. Empirical SPI values are obtained by utilizing
empirical probabilities for the probability transformation. The standardization
enables the presentation of all months in a single plot. The GD underestimates
the SPI at the tails (Figure 3.5 a)). Most values drop below the straight line and
are partly located outside the confidence bound2. Further, the GD shows a slight
tendency to overestimate the SPI at the center. These properties together lead

2Confidence intervals are calculated with 1000 samples of standard normal distributed data.
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Figure 3.5: SPI quantile-quantile plots based on a) GD and b) WD transfor-
mations and empirical SPI values. 95% confidence intervals for standard normal
distributed data is given by red lines.
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to a curvature. In contrast, WD transformed SPI values are equally scattered
around the straight line, with almost all values inside the confidence bounds
(Figure 3.5 b)). The quantile-quantile plots demonstrate that the differing SPI
time series (Figure 3.3) are not related to random variability. In fact, choosing the
GD for SPI calculation leads to systematic deviations, most pronounced at the
tails, leading to overestimation respectively underestimation of extreme dryness
or wetness.

3.4.2 Observed high resolution precipitation data set

The analysis is extended to clarify, if the presented results are specific to the
chosen data set. Therefore European precipitation is investigated grid point wise
in the high resolution CRU data set. For the selected region this results to more
than 37000 months for which distributions are estimated and compared.

Distribution comparison

A summarized presentation is used to combine calculated AICD into a single
figure. Therefore the number of times a distribution reaches values equal or be-
low to a given AICD in percent of all grid points and months are shown. In this
way the percentages for AICD = 0 achieved from the single distributions sum up
to 100%. Further, the cumulative way of construction leads to increasing curves
for increasing AICD. Distribution functions with good data support should show
a rapid increase and approach 100% quickly, preferably before AICD around 4.
Higher AICD indicate considerably lower model support. For ease of interpreta-
tion the GD is at first compared to each other distribution separately, followed
by an overall comparison. Additionally, a reference data set is created, consisting
of values simulated with the previously estimated parameters of the GD and a
sample size equivalent to the observed one. Therefrom derived results show the
expected result under the gamma hypothesis.

Beginning with the reference data set, the GD gives most frequently the AIC
best model in comparison with all alternatives (WD, BD, EWD and GGD; Figure
3.6, black dotted lines). The AICD rates start around 80% and more, approach-
ing 100% quickly. The frequencies for the alternatives show different behavior
reflecting their ability to reproduce the GD properties (Figure 3.6, red dotted
lines). The BD shows lowest rates, exceeded by the WD, whereas the EWD
and the GGD rates increase strongest and approach 100% for small AICD. This
points to good estimates, which follows natural for the GGD, because the GD
is a special type of the GGD, so that the differences in AIC are mainly a result
of the additional parameter. This argumentation does not hold in case of the
EWD. However, the similar behavior of EWD and GGD demonstrates the EWD
potential to reproduce GD characteristics.
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Figure 3.6: AICD frequencies: number of times a distribution yields AICD
smaller or equal than a given value for the European region (CRU data set). The
GD (black lines) is compared to a) WD, b) BD, c) EWD and d) GGD (red lines).
Dotted lines show the respective outcome under the gamma hypothesis.

Analyzing CRU precipitation in terms of information criteria leads to pro-
nounced different frequencies than expected, according to the GD assumption.
The GD rates are lowered, whereas rates of all alternatives are increased (Figure
3.6, continuous lines). The BD achieves the smallest, but still an remarkable in-
crease. The WD, EWD and GGD even exceed the accordant GD frequencies for
Europe (GGD at least for AICD > 1). Therefore, each of the three distributions
is superior to the GD in their ability to describe European monthly precipita-
tion. It is further notable, that neither the GD nor the WD achieves frequencies
of 100% for sufficient low AICD. This demonstrates that, none of the chosen two
parameter distributions is able to represent European precipitation completely.
Below, an overall comparison guides the decision, if one or both distributions can
be excluded.

The AICD frequency comparison using all distributions negates this (Figure
3.7). Incorporating BD and EWD in the AICD calculation, resulting GD and WD
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Figure 3.7: AICD frequencies for a) the European region and b) the contiguous
United States. AIC comparison with GD, WD, BD and EWD.
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AICD frequencies are just slightly lowered compared to Figure 3.6 a). Note that
the outcome is equal in each case: replacing the EWD by the GGD or including
both (not shown). Because of minor advantages of the EWD, the discussion
is restricted to this distribution to simplify matters. The BD frequencies are
strongly decreased in comparison to Figure 3.6 b), pointing to minor importance
of this distribution for EU precipitation. The EWP frequencies yield a similar
reduction for small AICD. But by contrast, the rate increases fast and exceeds
the GD and WD rates towards higher AICD. This characteristic is a result of the
additional parameter penalized by AIC for months where GD and WD achieve
small AICD.

These results are not restricted to the European region. The outcome is
similar for the contiguous United States (US; Figure 3.7 b)). The agreement is
largest for the BD and EWD frequencies, with just a small offset compared to
Figure 3.7 a). Notable differences are the increased (reduced) percentages for the
GD (WD), leading to almost equal frequencies.

As the GD and WD are not able to describe EU (US) precipitation sufficiently
for all grid points and months, a single two parameter distribution is not recom-
mended for SPI calculation. However, due to their yielded high percentages they
can not be excluded. It follows, that a mixture of the GD and WD is a possible
solution, given that a complete coverage is achieved for small AICD. The higher
dimensional distributions (EWD and GGD) are another suitable possibility. Here
one has the advantage of using just a single distribution, although in expense to
increasing variance.

SPI

Likewise for the EWP (Section 3.4.1, Figure 3.4) deviations from the SPI
classes are shown, including all grid points and months. Noting that, due to
the large number of distributions SPI biases may cancel each other out and
further, inclusion of months with small AICD will reduce the overall SPI dif-
ferences. Nonetheless, the GD transformed SPI leads to largest deviations at
the tails (Figure 3.8 a)). As before extreme dryness (wetness) is overestimated
(underestimated). More than 30% to much (less) extreme drought (wet) events
are observed in the considered time period and region. The BD underestimates
both extremes (Figure 3.8 c)), whereas the WD and even more the EWD and
GGD reduce SPI differences (Figure 3.8 b), d) and e)). Additional SPI deviations
for month with AICD ≤ 2 are given, verifying bias reduction for distributions
with strong support for the data. Contrary to the GD, WD and BD, the EWD
and GGD yield no further reduction, consistent with the fast approach of 100%
coverage in Figure 3.7 a).
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Figure 3.8: Deviations from expected SPI probabilities in percent for all grid
points and months (black) and for distributions achieving AICD ≤ 2 (red). SPI
time series are constructed with a) GD, b) WD, c) BD, d) EWD and e) GGD. The
number of times each distribution approaches AICD ≤ 2 is given in parentheses.

3.4.3 Precipitation from a coupled atmosphere-ocean cli-
mate model

For climate change projections of future drought occurrences in terms of the SPI,
an essential requirement is the SPI calculation of a reference climate state. This
might be either the present or a climate undisturbed by anthropogenic greenhouse
gas emissions. Therefore precipitation distributions and therefrom derived SPI
are evaluated in a pre-industrial control simulation (ECHAM5/MPI-OM), with
an integration time of 500 years and constant greenhouse gas levels fixed at their
year 1860 values.

Distributions

At first, European precipitation is analyzed, comparing the distributions sep-
arately. Under the Gamma hypothesis (Figure 3.9, dotted lines), the GD yields
higher frequencies in relation to the CRU data set (Figure 3.6), whereas the the
frequencies of the alternatives (WD and BD) are reduced. This difference is due
to the larger sample size, helping to distinguish between the distributions. The
sample size is of minor importance for distributions including the GD as subset
(EWD and GGD), leading to similar frequencies in Figure 3.6 and Figure 3.9 c)
and d).

The GD frequencies are strongly reduced for ECHAM5/MPI-OM precipita-
tion (Figure 3.9, continuous lines) and each of the alternatives outperforms the
GD in terms of AIC. Depending on the alternative the GD is not supported ac-
cording to AIC in around 60% (BD) or even more (WD, EWD and GGD) of all
grid points and months. The marginal increase of the frequencies in Figure 3.9
a) and b), remaining below 100% for high AICD demonstrates that beside the
GD, neither the WD nor the BD alone is able to cover European precipitation
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Figure 3.9: Like Figure 3.6, AICD frequencies for the European region
(ECHAM5 data set).

completely. This is in contrast to the EWD and GGD, yielding AICD below 3 in
all cases.

A comparison using all distributions guides the decision for the preferred one.
Analog to the CRU data set, the EWD and GGD are found to be exchangeable,
resulting to similar results, but slightly higher frequencies for the EWD through-
out. Therefore, the GGD is omitted for AICD calculation below. The GD yields
the lowest frequencies, which are even exceeded by the BD (Figure 3.10 a) and
b)). This is in contrast to the CRU data set, together with lower WD frequencies
(Figure 3.7 a) and b)). The WD however, achieves still high rates in the European
region, but not for the contiguous United States. The EWD outperforms all other
distributions, even for AICD below 2 and yields the AIC best model in around
40% of times. This is mainly related to the minor importance of GD (GD and
WD) in Figure 3.10 a) (Figure 3.10 b)) and therefrom reduced impact of nesting.
Concluding that, for a complete coverage the higher dimensional distributions
(EWD or GGD) are essential. However, the EWD frequencies do not achieve
100% sufficiently fast, most noticeable in Figure 3.10 b) and c). Given that the
EWD is an extention of the WD and is able to reproduce GD characteristics,
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Figure 3.10: Like Figure 3.7, based on the ECHAM5 data set. Additional a
comparison is given, using all land and ocean grid points (c).
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Figure 3.11: Like Figure 3.8, for the European region (ECHAM5)

this limit has to be related to the BD and implies that the BD is needed as well.
It is further noteworthy, that the global analysis, including land and ocean grid
points yields a distinct difference to the aforementioned results. There, the GD
frequencies exceed the ones from the WD (Figure 3.10 c)). This reversed order
results from the involved ocean grid points, as the global land area comparison
is rather similar to US region (not shown).

SPI

Based on ECHAM5 precipitation the deviations from the expected SPI proba-
bilities are given in Figure 3.11 restricted to the EU region. The largest differences
occur again with the GD. The error is scaled down with the WD and minimized
with the EWD and GGD. Further, selecting those distributions given by strong
support for the data (AICD ≤ 2) reduces the deviations.

3.5 Summary and conclusions

Different data sets are analyzed with the aim to verify the Gamma distribution
for monthly precipitation sums. The motivation is given thereby, that the GD
is widely applied for SPI calculation, model evaluation and climate change as-
sessment. The validation uses the AIC, accounting for information gain or loss,
weighted by the numbers of parameters involved. This approach is founded by a
simulation study. The main results are summarized:

• The GD fails to represent precipitation in considerable areas of global ob-
served and simulated data. This failure leads to an overestimating (under-
estimating) of extreme dryness (wetness).

• Improved results are attained with the WD, mainly for the European region,
but also for the contiguous United States and global land areas in ECHAM5.
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• It is noteworthy, that higher dimensional distributions do not necessarily
improve the results, as shown by the BD.

• The EWD and the GGD are the most flexible distributions. They are able
to yield accurate estimates in almost all areas, resulting in smallest SPI
deviations.

Furthermore, notable differences are detected between the two data sets CRU
and ECHAM5, for example the pronounced lower GD frequencies in the model
simulation. This points to climate model bias in the precipitation routines. How-
ever, the precipitation time series in the two data sets represent grid boxes of
different size and it is so far unknown, how interpolation algorithms change dis-
tributional properties or the distribution itself.

Concluding that the chosen distribution has a large impact on the SPI, there
are two different ways to overcome this problem. Firstly, from the viewpoint of
bias-variance adjustment, the preferred SPI calculation should be done stepwise
with multiple distributions. That is, using lower dimensional distributions as long
as they are appropriate (AICD ≤ 2) and changing to the higher dimensional ones
for the remaining grid points. Secondly, if comparability and reproducibility are
important a feasible solution is the usage of the most general distribution (EWD
or GGD). However, this involves an increase of variance.



4 Extreme value statistics for North At-
lantic cyclones

Extremes of the cyclone intensity measures geopotential height (z1000), mean hori-
zontal gradient (∇z), cyclone depth (D), and relative vorticity (ζ850), are analyzed
in re-analysis data (ERA40) and model simulations (ECHAM5/MPI-OM) in the
North Atlantic region for extended winter seasons. Generalized Pareto distribu-
tions (GPD) are estimated for model validation and climate change assessment.
Covariates, linear trend and North Atlantic Oscillation (NAO) are included to
analyze the dependancies of the extremes.

In ERA40 no significant linear trend can be detected, while evidence for a
NAO impact on z1000, ∇z, and ζ850 extremes is found. Model validation yields
good agreement with consistent scale and shape, but a shift to lower values is
notable. Like in ERA40 no trend is found in the simulation. The evidence for a
NAO impact on cyclone extremes is less corroborated in the simulation, pointing
to sample size effects.

In the warmer climate scenario (A1BS) extreme value statistics shows an in-
tensification for all variables. Significant differences in GPD are obtained through
testing for lower (higher) parameters. In contrast, considering all cyclones an in-
crease is only present for z1000, while a decrease is found for ∇z and ζ850 and no
change for D.

4.1 Introduction

Extratropical cyclones are the major source of intra-annual climate variability in
midlatitudes. Huge damage is caused by intense storms and heavy precipitation
associated with extraordinary intense baroclinic vortices. The growth and inten-
sity of these vortices are determined by sea surface temperatures, baroclinicity
and large scale teleconnections (for example the North Atlantic Oscillation, NAO)
which might be altered in an anthropogenic climate change (Pinto et al., 2009).
Thus, the identification of possible changes of extratropical cyclone extremes is
an important issue in the assessment of anthropogenic climate change.

The dominant mode of variability in the North Atlantic region is the NAO.
During the strong positive phase of the NAO cyclone tracks tend to have a more
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northeastward orientation (Gulev et al., 2001). On the other hand, the variability
of the NAO itself is substantially influenced by extratropical cyclones (Löptien
and Ruprecht, 2005). However, the cyclone influence on the NAO typically occurs
at different time scales (> 10 days) than the influence of the NAO to cyclone
activity itself (Benedict et al., 2004). Furthermore, suitable growth conditions
for extreme cyclones occur in wider areas during the positive phase of the NAO
(Pinto et al., 2009).

A common approach to investigate the characteristics of extratropical cyclones
in large data sets is to determine individual cyclones, their tracks and their life
cycles by using numerical detection and tracking algorithms. Various methods
have been proposed and successfully applied to observations and model data
for present day, paleo-climate and anthropogenic climate change scenarios (for
example Murray and Simmonds (1991), Hodges (1994), Blender et al. (1997)).
Evidence for anthropogenic changes in extratropical cyclone activity and charac-
teristics is documented in many recent model studies (see Ulbrich et al. (2009)
and references therein).

For the northern hemispheric winter the majority of scenario simulations show
a slight decrease of the total number of cyclones (Bengtsson et al., 2009), while,
on the other hand, there are hints that the number of intense cyclones increases
(Lambert and Fyfe (2006); defining intense cyclones as systems with core pres-
sure less than 970 hPa). However, models do not agree with respect to these
conclusions, in particular if individual regions are considered.

The definition of an extreme event and how its been analyzed influences the
results. In most studies, extreme cyclones are defined by a measure of their
strength (e.g. the central pressure or the pressure gradient). A cyclone is con-
sidered extreme if its strength exceeds a subjectively chosen threshold or if it
belongs to upper percentiles of the distribution associated with intense cyclones.

Recently, the assessment of exceptional and rare events by extreme value
statistics has become a widely-used technique in the analysis of observational and
model data (Katz et al., 2002; Kharin and Zwiers, 2005). Methods and concepts
like, for example, the generalized extreme value (GEV) distribution, return values
and statistical modeling based on maximum likelihood estimation in presence of
covariates contribute substantially to the understanding of extreme events and to
quantify potential changes of climate extremes due to anthropogenic forcing. An
early application of extreme value statistics for extratropical cyclones is the work
of Della-Marta and Pinto (2009). Here, their work is extended through analyzing
influences of linear trend and NAO. Further, detection of changes in cyclone
parameters due to greenhouse gas warming are not restricted to return value
analysis: additionally, the changes in the parameters of the GPD distributions
are analyzed.

The aim of this chapter is to analyze the life cycles of intense extratropical
cyclones using extreme value statistics. Using a detection and tracking algorithm
individual cyclone tracks are extracted from re-analysis data and coupled model
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simulations for present-day (20th century) and a moderate greenhouse warming
scenario (IPCC A1B). Extreme value statistics is applied to compare cyclone
extremes simulated by the model with observations and to assess possible changes
due to anthropogenic forcing. Furthermore, the relation between the extremes
in cyclone parameters and the NAO are investigated. The analyses concentrate
on the North Atlantic region during the extended Northern Hemispheric winter.
In Section 4.2 the data used and the methodologies are introduced. The results
are presented in Section 4.3. Conclusions, discussion and an outlook follows
in Section 4.4.

4.2 Data and Methods

North Atlantic/European cyclones are analyzed in the re-analysis data of the Eu-
ropean Center for Medium-Range Weather Forecasts (ERA40) and in simulations
with the coupled atmosphere ocean model ECHAM5/MPI-OM. Extreme value
statistics is applied to these data sets for extended winters (October-March).
The relationships between extreme cyclone properties and the North Atlantic
Oscillation (NAO) are considered.

Data

The re-analysis encompasses the last half of the twentieth century from Septem-
ber 1, 1957 to August 31, 2002 (Uppala et al., 2005). The data are computed at
T159 spectral resolution on 60 vertical levels and stored with 6 hourly time steps.
Here they are mapped to a spatial grid corresponding to T63 spectral resolution
to enable an unbiased comparison with the model simulation.

The coupled atmosphere ocean model ECHAM5/MPI-OM uses an atmo-
sphere with T63 spectral resolution on 31 vertical levels (Roeckner et al., 2003).
The ocean MPI-OM model has a 1.5◦ resolution on 40 vertical levels (Marsland
et al., 2003). The coupling between atmosphere and ocean is implemented with-
out flux corrections (Jungclaus et al., 2006). The data are available every 6 hours.
Three model experiments are analyzed which are part of the IPCC contribution
(for further details on the IPCC scenarios see Nakićenović et al. (2000)):

(i) 20C, 20th century: The twentieth century simulation (20C) for the period
from 1957 to 2000 simulated with observed greenhouse gas concentrations,
aerosols, and solar and volcanic forcing is compared with ERA40 re-analysis
data.

(ii) 20CS stabilization: After the year 2000, greenhouse gas concentrations are
fixed at their 2000 level. This commitment experiment 20CS is analyzed
during the 2005-2100 period.
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(iii) A1BS stabilization: To assess the potential impact of anthropogenic green-
house forcing, the stabilization run of a A1B scenario is analyzed. The
A1B scenario describes a climate under gradual CO2 increase from 2000
to 2100. A stabilization run extends this scenario with fixed greenhouse
gas concentrations at the level of 2100. For one ensemble member of the
A1B scenario, the stabilization run is extended about another one hundred
years (2200-2300). To ensure the best stationarity, this extended stabiliza-
tion time period is chosen for the analysis, beginning at 2205. However,
the stabilization run of the twentieth century (20C) ended in 2100. There-
fore the analysis is based on the stabilization run for the time period from
2005-2100.

The cyclone identification is based on the detection of minima in the 1000
hPa geopotential height field (Blender et al., 1997). To avoid erroneous detec-
tions, the cyclones must exist at least two days with a minimum mean horizontal
gradient of 30gpm/1000km. The cyclones are identified in the Northern Hemi-
sphere (20◦N−80◦N) but the extreme value statistics is restricted to cyclones
which attain an extremum in the North Atlantic sector (30◦N - 80◦N, 80◦W -
40◦E).

This study focuses on the following cyclone parameters: geopotential height
in the center of a cyclone (z1000), mean horizontal gradient of the geopotential
height in the neighborhood (∇z), cyclone depth (D), all measured at 1000 hPa,
and relative vorticity in the cyclone center at 850hPa (ζ850). z1000 and ζ850 are
directly extracted from the data sets. ∇z is measured by the horizontal average of
the calculated grid point gradients in a region corresponding to roughly 1000 km
distance (Sickmöller et al., 2000). By fitting a Gaussian function to the cyclone
center and the surrounding height field, D is defined as the difference between
a fitted environmental value and the geopotential height in the cyclone center
(i.e. D is positive). A description of this method is given in Schneidereit et al.
(2010). These four quantities describe different physical meaning and spatial
characteristics. Although z1000 characterizes the local geopotential height field at
the cyclone center, the variable D imply information of the wider environment
(roughly 1000 km). ∇z and ζ850 characterize the extratropical cyclone on the
local scale in the cyclone center. The dynamical characteristics ∇z and ζ850 are
in close relationship. The extremum for each cyclone property (minima for z1000,
maxima for ∇z, D and ζ850) during their individual cyclone life cycles is chosen
for further analyses. For convenience, the signs for the z1000 minima are reversed
to attain positive values for all variables considered.

EOF analysis is applied to monthly mean sea level pressure anomalies and
used to determine the NAO by the leading principal component, in the region
20◦N−80◦N and 80◦W−30◦E. For ERA40 data the pressure field is interpolated
to T63 resolution.
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Extreme value statistics

There are two widely applied approaches to achieve extreme value distribu-
tions for identical and independent distributed random samples, X1, X2, ..., Xn.
One is based on division into blocks of the sample for which the block maxima are
used to estimate the generalized extreme value distribution. The other method
uses all data exceeding some well defined threshold, u. The resulting distribution
function, for y = Xi − u given Xi > u, is the generalized Pareto distribution
(GPD):

H(y) =

{

1−
(

1 + ξy
σ

)−1/ξ
, for ξ 6= 0

1− exp
(

− y
σ

)

, for ξ = 0
(4.1)

with the parameters: scale, σ and shape, ξ. ξ determines the overall behavior
of the distribution. The three possible extremal types are: Fréchet ξ > 0 ,
Gumbel ξ = 0 (achieved by taking the limit ξ → 0), and Weibull ξ < 0. In this
chapter, the threshold method is applied because more values are incorporated
into distribution estimation than with the block maxima approach. However,
finding an optimal threshold, u is critical. Two graphical methods exist which
are used in the following: the mean residual life plot and fitting over a range of
thresholds (for details see Coles (2003)).

The estimated distributions are interpreted in terms of their return levels
(quantiles), zN , which are exceeded once every N years:

zN =

{

u+ σ
ξ

[

(Nnyku/n)
ξ − 1

]

, for ξ 6= 0

u+ σ log (Nnyku/n) , for ξ = 0
(4.2)

ny are the number of cyclones per year and the number of values exceeding u
are given by ku. Note that ku/n is the estimate for the exceedance probability.
Plotting zN on a logarithmic scale gives return level plots guiding the decision
which extremal type is present. That is, return level curves following a straight
line result from Gumbel type distributions; the Fréchet (Weibull) type shows up
with concave (convex) curves.

If data points and confidence intervals are included into the return level plots
goodness of fit can be derived, which are performing well in the subsequent esti-
mations. The confidence intervals are calculated with profile-likelihood method
(Coles, 2003) and enable also statements about the significance of return level
differences. According to Kharin and Zwiers (2000) differences between two re-
turn levels are significant at the 1% level if their 90% confidence intervals do not
overlap.

Cyclone life cycles are serial dependant, with increasing (decreasing) values
before (after) an approached maximum. This will harm the independence as-
sumption and affects the uncertainty analysis, so that confidence bounds are



60 Extreme value statistics for North Atlantic cyclones

expected to be too narrow. Furthermore, GPD estimates on short time spans
may be dominated by few strong and long-lasting cyclones. This problem is
omitted by using one value, that is, the maximum during the cyclone life cycle.
This is similar to standard declustering schemes but, for the problem at hand,
the clusters are physically defined. Note that, beside serial dependant life-cycles,
cyclone occurrences cluster in time (Mailier et al. 2006). This clustering may
also hold for extreme cyclones, but is not considered in the following.

For observations and transient climate model simulations the extremes may
potentially change in time. Such nonstationarities are accounted for by including
covariates in the scale parameter and assuming a linear change with time:

σ(t) = α0 + α1t , (4.3)

For the cyclone intensity measures, the time steps have to account for discontinu-
ous occurrence of the life cycle maxima. The method is analog to generalized lin-
ear modeling. Comparing stationary and trend models enables conclusions about
trend significance with the test and criteria described below. This method for
trend detection in extremes outperforms other methods, like linear least squares
estimation or even Kendall’s trend test (Zhang et al., 2004). The main advan-
tage is, that the residuals are not restricted to normal distributed values, which
is a wrong assumption in the extreme value context. In the same way, the scale
parameter dependance of the NAO time series can be modeled as:

σ(t) = β0 + β1NAO(t) (4.4)

Combining Equation 4.3 and 4.4 allows to distinguish between the two different
impacts. Equivalent, the shape parameter can be modeled with time dependan-
cies as well.

Each of the assumptions increases the number of parameters to be estimated.
Instead of σ, one has to estimate α0 and α1 to include the linear trend. To
avoid overfitting and to test for significant improvement of higher dimensional
statistical models log-likelihood ratio tests (LLR-test) are performed (details are
given in Coles (2003)). The significance level is set to α = 0.05 throughout (LLR-
tests and other applied tests). This kind of test is only applicable in the case of
nested models, i.e. models with less parameters have to be in subset of models
with more parameters. This restriction is overcome by using Akaike’s information
criterion (AIC, Akaike (1974)):

AIC = −2 log(L(θ̂|y)) + 2K

(

n

n−K − 1

)

(4.5)

with maximized Likelihood, L(θ̂|y), number of estimated parameters, K, and
multiplier, n/(n − K − 1). This is a small sample size extension of Akaike’s
original definition (Burnham and Anderson, 2002). From a set of models with
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AICi (i is the model number), the best model is the one with the minimum AIC
value AICmin. Akaike differences (AICD) are calculated to rank and compare the
models:

∆i = AICi − AICmin (4.6)

A guideline for AICD is: ∆i < 2 gives models with strong, 4 < ∆i < 7 consid-
erably less and ∆i > 10 no support (Burnham and Anderson, 2002). Further
interpretation is achieved with Akaike weights (AICW)

wi =
exp(−0.5∆i)

∑J
j=1 exp(−0.5∆j)

(4.7)

which give the probability that model i is the best one for the given data.
Differences in extremes are commonly analyzed in terms of return levels and

respective confidence intervals. Additional, extreme value distributions can be
compared in terms of their parameters by performing tests for increased or de-
creased scale or shape parameters. In the following, this is done with the method
of time dependant parameters. The data sets of interest (for example ERA40
and 20C) are merged and analyzed together. Instead of time t (Equation 4.3),
a step function is included with values of -1 (1) over the time period of the first
(second) data set. The scale parameter depends on the selected threshold. To
simplify interpretation the higher threshold of the two data sets is applied. With
this concept different statistical models are built, ranging from the "stationary"
model with no difference between the parameters of the two data sets to the
model, where both the scale and shape parameter are allowed to change. The
different models can then easily be compared and tested employing LLR-test and
AIC. With the best model obtained in this way it is possible to reconstruct return
level plots for each data set separately. Scale and shape parameters are achieved
from the combined model. According to Equation 4.2 the number of cyclones per
year and the exceedance probability are also required which, however, are easily
calculated for the corresponding data sets (note: these quantities do not affect
model estimation). Confidence intervals can be calculated by resampling.

4.3 Extreme value statistics and cyclone life cy-

cles

In the following, life cycle maxima of the cyclone intensity measures geopoten-
tial height (z1000) mean horizontal gradient (∇z), cyclone depth (D) and relative
vorticity (ζ850) are analyzed. First, overall density estimates are compared, fol-
lowed by an investigation of present day extremes and their potential dependance
on covariates. The impact of greenhouse gas warming on the extreme statistics
concludes this section.
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4.3.1 Density estimates

Before analyzing extreme values, estimates for the overall distributions of the
variables of interest are evaluated for all data sets (Figure 4.1). All estimates
show uniform distribution functions. While the central geopotential height, z1000
is nearest to a Gaussian distribution, the other quantities are positively skewed
(Figure 4.1 a)). The skewness, an important quantity affecting the extremes, is
reproduced by ECHAM5/MPI-OM. The deviations between observed (ERA40)
and model simulated data (20C) are small. The densities agree well, with the
exception of the relative vorticity, ζ850 where the ECHAM5/MPI-OM density is
slightly shifted to lower values (Figure 4.1 d)). Comparing the differences in the
mean underlines this. A t-test shows no significant differences between ERA40
and 20C in the z1000, ∇z, and D. But the mean ζ850 in 20C is significantly lower
than in ERA40.

The transient (20C) and stabilization (20CS) model runs give nearly identical
results. Despite an assumed higher variability in 20C, probably associated with
increasing greenhouse gas forcing, the distributions of the cyclone parameters
remain largely unaffected compared to 20CS. This may be an indication of the
small importance of the forcing during this (relatively short) time period com-
pared to the natural variability of the system. Larger, but still small differences
are visible, if the two stabilization runs 20CS and A1BS are compared. The tail

−200 0 200 400 600 800

0.00

0.05

0.10

0.15

0.20

0.25

− z1000  [gpm]

D
en

si
ty

×
0.

01

ERA40
20C
20CS
A1BS

a) Geopotential

0 200 400 600

0.0

0.1

0.2

0.3

0.4

0.5

∇z  [gpm/1000km]

D
en

si
ty

×
0.

01

ERA40
20C
20CS
A1BS

b) Gradient

0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

D  [gpm]

D
en

si
ty

×
0.

01

ERA40
20C
20CS
A1BS

c) Depth

0 10 20 30

0

2

4

6

8

ζ850  [1/d]

D
en

si
ty

×
0.

01

ERA40
20C
20CS
A1BS

d) Vorticity

Figure 4.1: Kernel density estimates for maximum cyclone life cycle properties of
a) geopotential height, z1000, b) mean horizontal gradient, ∇z, c) cyclone depth,
D and d) relative vorticity, ζ850. Used are all data sets in this study, re-analysis
(ERA40), transient (20C) and the stabilization model runs (20CS and A1BS).
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behavior shows slight differences for z1000 and D (Figure 4.1 a) and c)). The
distributions of ∇z and ζ850 are shifted to lower values (Figure 4.1 b) and d)).
Testing for differences in the mean gives a significant higher z1000 in A1BS, no
change for D, and significantly reduced values for ∇z and ζ850.

4.3.2 Extremes of the present day climate

Extreme value statistics is applied to compare the models (20C) present day
climate with observations (ERA40) and to access the dependance on linear trend
and NAO.

Return level estimates

Comparing ERA40 and 20C, Figure 4.2 displays return level plots. For return
periods below 1 year the return values are significantly lower in 20C for z1000, ∇z
and ζ850. This shift is not present for D. For the local measures z1000, ∇z
and ζ850, the results indicate Weibull-type distributions for both data sets with
comparable shapes. The estimated shape parameters, ξ̂, together with scales,
σ̂ and thresholds, u are given in Table 4.1 and 4.2. For these two parameters
the model exhibits longer return times (lower return levels) compared to the
observations. For the integral (large scale) measure D virtually no difference
occur for return periods up to about 10 years. However, while the shape hints to
a Weibull-type distribution for ERA40, a Gumbel-type distribution is plausible
for the model (ξ̂ = −0.003; see Table 4.2), though this might be caused by
sampling errors for long return periods.

To clarify the observed differences in return levels, the GPD are investigated.
Return levels are controlled by scale and shape. For z1000 the estimated pa-
rameters, σ̂ and ξ̂ are similar for 20C and ERA40 (Table 4.1 and 4.2). Larger
differences occur for the other quantities, where the scale, the shape or both are
affected. One example is the shape parameter for the depth, D, which is con-
sistent with ξ = 0 in 20C, but not in ERA40. To decide whether the extreme
value distributions are significantly different between the two data sets or, if one
distribution could be found that fits the quantities from both data sets equally
well combined estimates are calculated (see Section 4.2). The statistical model
set consists of four models: (i) "stationary", no time dependance, i.e. the same
parameters in ERA40 and 20C, (ii) σ(t), (iii) ξ(t) and (vi) σ(t) and ξ(t). In (ii)
- (iv) the parameters are allowed to be different in ERA40 and 20C.

Applying LLR-test to the statistical models reveals no significant differences
in the parameters between ERA40 and 20C for all four cyclone properties (all p-
values are higher than 0.15). Furthermore, the AIC minimum is reached with the
"stationary" model, with just one exception (not shown). The vorticity reaches
the AIC minimum with the σ(t) model. However, the "stationary" model is very
near to this minimum (with AICD = 0.003) and is preferred due to lower number
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Figure 4.2: Return level plots for a) geopotential height, z1000, b) mean hor-
izontal gradient, ∇z, c) cyclone depth, D and d) relative vorticity, ζ850. The
empirical (points) and estimated return levels (lines) have the same colors for
ERA40 (blue) and 20C (red). 95% confidence intervals are shown for ERA40
(gray shaded) and 20C (dashed lines).

of parameters. Note that from the combined models reconstructed return levels
(not shown) are similar to the curves in Figure 4.2. However, the crossing between
20C and ERA40 curves in Figure 4.2 b) (∇z) and Figure 4.2 d) (ζ850) vanishes
as an effect of the similar extreme value distributions.

Since, the estimated parameters agree in both data sets, the differences in the
return levels result solely from a shift in the location of the distributions. If the
thresholds agree, this shift is expressed through differing exceedance probabilities
(Equation 4.2). For ∇z the exceedance probabilities are 0.044 (0.033) in ERA40
(20C). The same argument holds for z1000 (ζ850) with probabilities 0.036 (0.067)
in ERA40 and 0.026 (0.052) in 20C respectively. The exceedance probabilities
for D reach the same rounded value of 0.073 in ERA40 and 20C. The effect of
consistent parameters and exceedance probabilities leads to identical return levels
from combined model approach (not shown).

To summarize, GPD with the same scale and shape parameters are found in
ERA40 and 20C for each cyclone quantity. Reduced return levels in 20C (z1000,
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ERA40 u σ̂ ξ̂ ∆stat ∆trend ∆NAO β̂1

z1000 380 58.39 (4.33) -0.089 (0.052) 6.5 (0.037) 7.7 (0.02) 0.0 (0.943) 7.42 (2.34)
∇z 360 53.31 (3.42) -0.095 (0.043) 1.7 (0.273) 3.7 (0.099) 0.0 (0.628) 3.9 (1.97)
D 320 64.38 (2.66) -0.046 (0.029) 0.0 (0.554) 2.0 (0.203) 1.7 (0.243) 1.08 (1.8)
ζ850 20 3.08 (0.16) -0.191 (0.033) 1.9 (0.255) 3.9 (0.094) 0.0 (0.651) 0.171 (0.085)

Table 4.1: Estimated parameters scale, σ̂ and shape, ξ̂ as well as determined
thresholds, u for the selected cyclone properties: geopotential height, z1000, mean
horizontal gradient, ∇z, cyclone depth, D and relative vorticity, ζ850 for obser-
vations (ERA40). AICD for the "stationary" (∆stat), linear trend (∆trend) and
NAO model (∆NAO) are given with AICW in parentheses, as well as estimated

slope, β̂1 for the NAO model. The standard deviation for estimated parameters
is given in parentheses.

20C u σ̂ ξ̂ ∆stat ∆trend ∆NAO β̂1

z1000 360 56.8 (4.17) -0.088 (0.051) 0.0 (0.415) 1.1 (0.243) 0.4 (0.342) 3.435 (2.678)
∇z 350 48 (3.33) -0.054 (0.048) 0.9 (0.335) 2.6 (0.143) 0.0 (0.522) 3.906 (2.235)
D 350 62.23 (3.51) -0.003 (0.042) 1.8 (0.251) 2.9 (0.141) 0.0 (0.608) 4.599 (2.308)
ζ850 20.5 2.55 (0.17) -0.118 (0.045) 0.0 (0.528) 2.0 (0.199) 1.3 (0.273) 0.088 (0.103)

Table 4.2: Like Table 4.1, but for the transient climate model simulation (20C).

∇z and ζ850) result from lower locations of the GPD, which are expressed through
smaller exceedance probabilities for agreeing thresholds. A smaller number of
threshold crossings may be a direct effect of the lower resolution in 20C, since
higher resolution also results in strengthening of cyclones on larger scales as show
by Jung et al. (2006) for the ECMWF model.

Trend and NAO dependance of extremes

There is evidence, that cyclone properties have changed in the recent past
(Ulbrich et al. (2009) and references therein). However, trend analysis using a
generalized linear models approach with extreme value distributions has not been
undertaken so far. Impacts on the extremes by the covariates, linear trend and
North Atlantic Oscillation (NAO), are investigated in ERA40.

LLR-tests applied for the trend model yield p-values higher than 0.3 for each
cyclone property. This excludes an influence on the extremes by a linear trend.
This is further confirmed by the AICD, where the ranking gives the weakest
support for the model with linear trend (Table 4.1). So that, the trend component
(Equation 4.3) does not improve model fits and the stationary model would be
preferred, if this two models are considered.

Using the NAO as covariate (Equation 4.4) leads to differing findings. For
the geopotential height, z1000, the applied LLR-test gives high significance for the
NAO outperforming the stationary model (p-value lower than 0.005). The LLR-
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test is passed too, if the vorticity, ζ850, is considered. The depth, D, fails the test.
The p-value for the gradient, ∇z, is just slightly higher than the chosen α (p-value
= 0.054). The AIC best model is achieved with the NAO as a covariate with ∇z,
as for z1000 and ζ850. Furthermore the estimated β̂1 is high enough to exclude
β1 = 0 compared to the given range by the standard deviation. Giving weight
to the conclusion that the NAO improves model fits also for ∇z. However, the
strength of support is lower as for z1000 and reaches nearly the same probability
as ζ850.

The observed NAO exhibits decadal-like trends, being upward directed from
the sixties until the end of the eighties. This together with an assumed increase
in the cyclone quantities through greenhouse gas warming might be interpreted
as the NAO just reflecting this upward trend. This possibility however, could be
excluded through the given trend analysis, stating no significant trend.

In summary, strong support is found that the NAO has an impact on the
geopotential height, z1000, extremes. The same holds also for ∇z and ζ850, but
with restrictions on the strength of evidence. This is consistent with results found
by Pinto et al. (2009), that is, higher cyclone intensities (∇2p) and deeper cores
are related to the daily projected positive NAO phases. Here we extend this find-
ing to the gradient, ∇z. Furthermore covariate modeling with the monthly NAO
leads to the probabilistic interpretation that, in months with positive (negative)
NAO, the probability of extreme intense cyclones is increased (decreased).

In agreement with ERA40 no significant trend could be found in 20C in none
of the cyclones quantities (p-values higher than 0.3). With AIC decision making
is hampered because all AICD are smaller than 3, demonstrating plausibility for
each model. But the trend model gives highest AICD and the estimated slope,
α̂1, is smaller than the corresponding standard deviation (not shown). Therefore,
the trend exclusion with AIC is not as strong as in ERA40.

With the NAO-model an improvement is only present for depth, D, with an
achieved p-value near the significance level (p-value: 0.052). Most striking is the
strongly reduced evidence of the NAO impact on z1000 extremes in 20C, which
is clearly present in ERA40 (see AICW values in Table 4.2). The small AICD
however, indicates an improvement of the model fit, confirmed by β̂1 with smaller
standard deviation than parameter estimate. But the improvement is to weak to
separate it from the stationary model on the basis of AICD alone.

Further differences are found for the NAO influence on D and ζ850 extremes:
AICD gives weak support for D in 20C (probability around 60%), which is not
present in ERA40. The weak support for ζ850 in ERA40 is vanished in 20C showed
by the parameter estimate, β̂1, including 0 if referred to the standard deviation.
The dependance of ∇z on the NAO is the same in ERA40 and 20C, with slightly
reduced probability.

To summarize, the differences between observed (ERA40) and modeled (20C)
cyclone dependancies consist mainly in the strength of support for the statistical
models chosen. Differing findings may not necessarily result from a dynamic
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response missing in the model. Another possibility is the time evolution of the
observed NAO in the ERA40 period, which exhibits decadal trends. A phase
shift of these trends in the model could be an explanation. Note that the overall
agreement with ERA40 is higher in 20CS (see below) reflecting a strong sensitivity
to the sampling size (which is, of course, also true for ERA40).

Excursion: NAO and z1000 extremes in ERA40

The impact of the NAO on the z1000 return levels is illustrated in Figure 4.3
a). The lines correspond to "NAO-worlds", i. e. the NAO is hold fixed on the
selected levels from -2 to 2 and are calculated with the determined parameters
from the covariate model. Using Equation 4.4 with estimated β̂1 from Table 4.1
results in a scale parameter difference of almost 30 gpm between NAO = -2 and
NAO = 2. This difference has a large impact on the calculated return levels. The
return level which is exceeded once every 100 years with NAO = -2 is roughly
570 gpm (lower horizontal gray line). The return period is largely reduced with
NAO = 2, the same level is now exceeded every 3-4 years or, on the other hand,
the 100 year return level is increased up to more than 700 gpm (upper horizontal
gray line).

Note that the stationary model (gray line in Figure 4.3 a)) gives similar results
as NAO = 1 and not, as one might expect the neutral NAO = 0 case. The reason
for this departure is the disproportional occurrence of threshold exceedances,
as there are 73.9% (26.1%) threshold crossings in the positive (negative) NAO
phase. This difference in number affects the maximization procedure, which is
dominated by the majority of values.

Figure 4.3 b) confirms the results with another method. Here, compositing
extremes is applied to achieve GPD for the case where the NAO is greater (less)
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Figure 4.3: NAO impact on geopotential height, z1000 extremes. a) Return
levels for given NAO value from -2 to 2, influencing the GPD scale parameter.
b) Histograms, as well as estimated density for GPD, for composites of z1000
extremes, where NAO exceeding (falling below) 0.5 (-0.5) and all values together.
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than 0.5 (−0.5). The gray line gives the resulting distribution of the stationary
fit (using all values above the threshold). The estimated distributions agree well
with the corresponding histograms. The impact of the NAO on the extremes
gives higher (lower) densities for NAO < −0.5 (NAO > 0.5) for small values.
This relation is reversed for values exceeding ≈ 425 gpm. The deviations of the
NAO > 0.5 (NAO < −0.5) distributions, compared to the fit with all values, are
small (large).

Life cycles and spatial occurrence of extremes

The mean life cycles of the four cyclone parameters are shown in Figure 4.4 for
all cyclones in ERA40 and 20C, as well as the 95% and 5% quantiles. Additionally,
the individual life cycles of the five most extreme cyclones are included, whereas
extreme is related to z1000. For all parameters, the mean life cycles are in good
agreement between ERA40 and 20C. If the life cycles of the five most extreme
cyclones in the respective parameter are considered, the good agreement is con-
firmed (not shown). An extreme cyclone in z1000 may not naturally belong to
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Figure 4.4: The five most extreme life cycles in respect of z1000 centered about
the extremum for a) geopotential height, z1000, b) mean horizontal gradient, ∇z,
c) cyclone depth, D and d) relative vorticity, ζ850 for ERA40 (solid) and 20C
(dashed). Ninety percent of the data (confined by the 5 and the 95 quantile) are
presented by shaded (framed) region for ERA40 (20C).
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an extreme cyclone in the other variables. However, nearly all extreme cyclones
with respect to z1000 belong to the most extreme upper 5% in the other variables
for ERA40. The same holds if another reference parameter is chosen. Similar
results but with reduced absolute values in terms of z1000 occur in 20C.

The spatial density estimates of the locations where the life cycle maxima
occur are shown in Figure 4.5 for the selected quantities geopotential height, z1000
and the relative vorticity, ζ850. Only cyclones are included whose maxima pass
the according threshold (see Table 4.1 and 4.2). Comparing the density maxima
of z1000 and ζ850 for ERA40 (Figure 4.5 a) and c), respectively) yield two different
positions of the centers. The spatial density estimates with respect to the gradient
(not shown) indicate a maximum in between the maxima of ζ850 and z1000. Note
that, the spatial density estimates consider the maxima of extreme cyclones in
the accordant parameter only. Therefore, the number of the considered cyclones
varies.

For example, a spatial large cyclone with very deep core pressure does not nec-
essarily exhibit a strong wind field and high vorticity values. This circumstance
could be responsible for the different cyclone extreme behavior. Considering only
cyclones belonging to the intersection of extreme events in both cyclone variables,
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Figure 4.5: Spatial density estimates of the most extreme cyclones (values above
thresholds) in the centered geopotential height, z1000 (upper panels) and the rel-
ative vorticity, ζ850 (lower panels) for ERA40 (left) and 20C (right).
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z1000 and ζ850, the spatial density maxima of z1000 is shifted to lower latitudes (not
shown) overlapping with the maxima in ζ850. The determined cross correlation
function (not shown) of the extreme cyclone life cycles suggest to a time shift
(roughly 6 hours) between the vorticity and central geopotential height. This is
consistent with Bengtsson et al. (2009) showing that vorticity reaches the max-
imum before surface pressure. From the geostrophic adjustment it would follow
that the mass field leads the wind field if the considered scale is greater than the
Rossby radius of deformation. Note that our results indicate the opposite case.

In 20C, the spatial density estimates of the four parameters correspond to the
densities of ERA40. Due to a coarser resolution the spatial variability is smaller
in the simulation.

4.3.3 Extremes changing with greenhouse warming

The stabilization model runs 20CS (present day) and A1BS (greenhouse warming
scenario) are investigated for changing cyclone extremes.

Return level estimates

Changes of the return periods (levels) are displayed in Figure 4.6 comparing
20CS and A1BS. For a better comparison, the stabilization run 20CS is used
instead of the transient run 20C. It should be noted that a comparison between
20C and 20CS yields differences in the estimated parameters (Table 4.2 and
4.3). For all four cyclone properties a higher scale and lower shape parameter
is found in 20CS. The 20CS return level curves, however, are located inside the
20C confidence bounds over the full range of return periods (not shown). An
explanation for the differences is the smaller sample size in 20C, resulting in
large variability from sample to sample, together with sensitive shape parameter
estimation and compensating effects between the two parameters.

The return levels show qualitatively consistent results for all variables which,
however, vary in detail. In the A1BS climate, a significant shift towards higher
return levels (shorter periods) is only found for z1000 up to return periods of about
10 years. The tendency to stronger cyclones is still present but less notable for
∇z and ζ850. For D a consistent shift can be seen for longer (> 6 years) and
shorter (< 1 year) periods while medium periods show only a very week signal.
Remarkable is the change from Weibull to Gumble type distribution, indicated
by the approximate straight return level curve for D in A1BS. This is confirmed
through the estimated shape parameter, where ξ = 0 is included in the interval
given by the standard deviation. However, changes in terms of return levels are
not significant for ∇z, ζ850 and D.

Deeper insight into the observed return level changes can be achieved by
analyzing the GPD parameters. In 20CS and A1BS similar shape parameters
are found for z1000, ∇z and ζ850 (Table 4.3 and 4.4), while the scale parameters
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Figure 4.6: Like Figure 4.2, for the 21th (22th) stabilization run 20CS (A1BS).

are increased in A1BS. Different behavior is found for depth, D with lower scale
and higher shape parameter in A1BS. Combined estimates are calculated and
LLR-tests are applied in two steps: first, σ(t)- and ξ(t)-models are compared to
the "stationary" model (LRT-test 1) and second, the model allowing for different
σ and ξ parameters in the data sets is compared to all lower dimensional models
(LRT-test 2). For z1000, ∇z and ζ850 the "stationary" model with the same
parameters in 20CS and A1BS is implausible (Table 4.5): LLR-test1 favors the
σ(t)-model against the stationary model since the p-values are all lower than 0.01.
Also, the ξ(t)-model shows an improvement, but the reason for this seems to be a
compensating effect. This is demonstrated by LLR-test2, because the combined
model (σ and ξ are allowed to change; Table 4.5) outperforms the ξ(t)-, but not
the σ(t)-model, demonstrating that a change in the scale is sufficient to describe
the changes that occur in A1BS. Accordingly the AIC minimum is achieved by
the σ(t)-model with AICW above 0.5. Interestingly, for ζ850 extremes, where the
smallest differences in the return levels are obtained, the highest confidence is
found for different scale parameters (AICW; wζ = 0.726). For D, a single time
dependant model does not give an improvement compared to the "stationary"
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20CS u σ̂ ξ̂ ∆stat ∆NAO β̂1

z1000 360 61.37 (2.98) -0.169 (0.034) 17.1 (0) 0 (1) 7.32 (1.543)
∇z 350 54.33 (2.37) -0.146 (0.028) 5.2 (0.068) 0 (0.932) 4.19 (1.509)
D 400 75.31 (4) -0.124 (0.038) 0 (0.687) 1.6 (0.313) 1.771 (2.674)
ζ850 21 2.75 (0.13) -0.151 (0.031) 0 (0.712) 1.8 (0.288) 0.034 (0.076)

Table 4.3: Like Table 4.1, for the 21th. century stabilization run (20CS).

A1BS u σ̂ ξ̂ ∆stat ∆NAO β̂1

z1000 360 72.43 (2.8) -0.21 (0.024) 3.9 (0.122) 0 (0.878) 4.497 (1.737)
∇z 300 66.27 (2.04) -0.138 (0.02) 0 (0.664) 1.4 (0.336) 1.091 (1.356)
D 450 62.75 (4.04) -0.013 (0.044) 0 (0.712) 1.8 (0.288) 1.26 (2.71)
ζ850 19 3.26 (0.11) -0.149 (0.02) 0.5 (0.438) 0 (0.562) -0.111 (0.071)

Table 4.4: Like Table 4.1, for the 22th. century stabilization run (A1BS).

model, but allowing for changes in both parameters outperforms all other models.

NAO dependance of extremes

For both runs (20CS and A1BS) strong support is found for a link to the
NAO for z1000, but with reduced strength in A1BS (β̂1 reaches 7.3 gpm in 20CS,
but only 4.5 gpm in A1BS). That is, other parameters controlling z1000 are more
important in A1BS than in 20CS. The results may suggest that the increased
return levels in A1BS do not result from changed NAO regimes.

For D both data sets do not support a link. Differences are found for ∇z
and ζ850: While for ∇z a link is supported in 20CS only, the opposite is true for
ζ850. Note that the results for 20CS and 20C differ with respect to the NAO link,
which is most probably due to the different sample size.

LLR-test 1 LLR-test 2 AICD (AICW)
σ(t) ξ(t) Stat. σ(t) ξ(t) Stat. σ(t) ξ(t) σ(t); ξ(t)

z1000 0.002 0.057 0.001 0.329 0.008 7.7 (0.013) 0 (0.603) 6.1 (0.028) 1.1 (0.356)
∇z 0.006 0.025 0.006 0.78 0.114 5.4 (0.038) 0 (0.573) 2.4 (0.171) 1.9 (0.218)
D 0.259 0.635 0.025 0.053 0.029 1 (0.268) 1.7 (0.185) 2.8 (0.11) 0 (0.437)
ζ850 0 0.001 0 0.966 0.003 18.6 (0) 0 (0.726) 9 (0.008) 2 (0.266)

Table 4.5: Statistical model building to test for differences between 20CS and
A1BS. Estimated p-values according to log-likelihood ratio tests (LLR-test).
LLR-test1 tests for significant improvement of the time dependant models (σ(t)
or ξ(t)) against the "stationary" model, while LLR-test2 tests the combined
model (σ(t) and ξ(t) are time dependant) against the lower dimensional mod-
els ("stationary", σ(t) or ξ(t)). Further, AIC differences (AICD) are given with
corresponding AIC weights (AICW) in parentheses for all models in the set.
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In contrast to the trend analysis (Section 4.1), differences are found between
20CS and A1BS cyclone extremes, indicating that a linear trend should be present
in 20C. The trend on the chosen ERA40 time period, however, is too small to be
detectable. Trend detection is further hampered through the presence of NAO,
which increases the variability, but this problem is minimized through the method
of statistical model building, which is able to separate different impacts on the
extremes.

Life cycles and spatial occurrence of extremes

Similar to Figure 4.4, the five most extreme life cycles with respect to z1000
in the four parameters and the mean life cycles are shown in Figure 4.7 for 20CS
and A1BS. If the mean life cycles in z1000 are considered, a deepening of the
cyclones is found in A1BS. Additionally, the variability in z1000 increases. The
five most extreme life cycles corroborate this finding by showing a decrease in the
central geopotential height (higher z1000 values). Considering the mean life cycles
in the gradient, ∇z, the relative vorticity, ζ850, and the depth, D, yields opposite
conclusions. While the maxima in the gradient and the vorticity decrease, the
maxima in the depth are unchanged. Note that the life cycles with respect to
z1000 in ∇z, ζ850 and D belong to the upper 5% of the cyclones.
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74 Extreme value statistics for North Atlantic cyclones

Indicated by Figure 4.6 the extreme cyclones intensify in the warmer climate.
Ensuring that this strengthening is not a consequence of a northward displace-
ment of the cyclone tracks, spatial density estimates of the extreme cyclones are
compared in Figure 4.8. The comparison between the density maxima in the
geopotential height reveal no appreciable northward shift of the extreme cyclones
between 20CS and A1BS. This is confirmed by spatial density differences yielding
no systematic, but rather small and noisy departures (not shown). The density
estimates of the other three parameters (ζ850, ∇z and D) indicate a slight increase
of the affected area with no northward displacement in connection with a smaller
density maximum. Therefore, the intensification of the extreme cyclones found
in a warmer climate scenario is supported.

4.4 Summary, conclusion and discussion

Extreme value statistics is applied to extremes of four parameters characterizing
cyclone life cycles: central geopotential height (z1000), mean geopotential height
gradient (∇z), cyclone depth (D) and relative vorticity (ζ850). The present-day
climate of the coupled atmosphere ocean model ECHAM5/MPI-OM is compared
with ERA40 re-analysis and with a global warming scenario (A1BS). The study
focuses on extreme midlatitude cyclones in the North Atlantic during extended
boreal winters (October-March). Additionally, the present-day data (ERA40,
20C) is analyzed with respect to a possible trend and a potential link to the
North Atlantic Oscillation (NAO) is investigated.

In general, the model results are similar in terms of distributions, trends, life
cycles and density estimates compared to ERA40. The extreme value statistics
(return level plots) for z1000, ∇z and ζ850 indicate reversed Weibull-type distri-
butions, implying an upper bound. When analyzing the relatively short ERA40
time period, no significant linear trend is detected for ERA40 and 20C simula-
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Figure 4.8: Spatial density estimates of the most extreme cyclones (values above
thresholds) in the centered geopotential height, z1000 for 20CS (left) and A1BS
(right).
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tion. The use of a linear trend model is questionable under the assumption of
a nonlinear forcing, but higher order polynomial or exponential trends can be
approximated through linear models on short time spans. Life cycles of extreme
cyclones respective to one cyclone parameter show that these cyclones also be-
long to the upper tails of the distributions in the other parameters for both,
ERA40 and 20C. Density estimates of extreme cyclones in the four cyclone vari-
ables of 20C show similar spatial distributions as ERA40. For both data sets,
the maximum density in vorticity is located more south than the maxima of the
geopotential height.

Apart from these similarities, some differences between the data sets can
be noted: The depth, D, shows a Gumbel-type distribution for 20C, while a
Weibull-type is obtained for ERA40. In addition, 20C shows lower return levels.
The threshold is rarely exceeded, which might be a direct consequence of the
lower resolution. In 20C the link between NAO and z1000 is less evident than in
ERA40. However, much stronger evidence is found in 20CS which may indicate
that 40 years of data are not enough to give robust results.

The comparison between the two stabilization runs (20CS, A1BS) using ex-
treme value statistics yields an intensification of the extreme cyclones in the North
Atlantic region. The return levels show an increase for all parameters under con-
sideration, but different in strength: smaller changes for gradient and vorticity
and stronger for geopotential and depth. This intensification results in increased
scale parameters for z1000, ∇z and ζ850. Additionally, the exceedance probabil-
ity increases for z1000. For D a decreased scale and increased shape parameter is
found. Further analysis indicates that the deepening in z1000 is not a consequence
of a northward shift, but could be attributed to changes in the mean sea level
pressure (Fink et al., 2009).

Comparing this results with the findings of Della-Marta and Pinto (2009),
some differences can be identified. In contrast to their work z1000 return values
increase for return periods up to 10 years. However, the results of the vorticity
agree. The difference could be attributed to the distinct analyzed time period
(transient instead of stabilization model run) or the applied tracking algorithm.
An extension is the analysis of GPD parameters. With the exception of D, each
cyclone quantity (z1000, ∇z and ζ850) shows a higher scale parameter in A1BS.
Demonstrating that significant different parameters do not necessarily yield a
significant difference in return values.

Extreme cyclones and their trends have been analyzed in both model simu-
lations and observations (re-analyses). However, a comparison with the results
presented here is hampered by (i) different cyclone identification and tracking,
(ii) different definitions of cyclone extremes and intensity measures, and (iii) dif-
ferent methodology to assess there statistics. Although for the entire Hemisphere,
Ulbrich et al. (2009) already noted that dependant on the definition of extreme
cyclones both an increase and a decrease in extreme cyclones can be found for
the Northern Hemisphere: analyzing extreme cyclones in the upper percentage
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of extremely low sea level pressure they detect an increase of extreme cyclones in
a A1BS greenhouse warming scenario, while the definition of extremes by high
values in the pressures Laplacian yields a decrease.

Despite the limited comparability the following similarities and differences
with regard to recent studies might be noted: A link to NAO is confirmed by
Pinto et al. (2009) showing that the number of extreme cyclones is enhanced in
positive NAO phase in the NCEP/NCAR re-analyses. The absence of a significant
trend in the cyclone parameters for the whole North Atlantic is consistent with
the findings of Raible et al. (2008) (using NCEP/NCAR and ERA40 re-analyses).
But, dividing the North Atlantic region in a high latitude and a midlatitude part,
similar to the defined regions of Wang et al. (2008), Raible et al. (2008) find
a dipole-like trend pattern in cyclone activity (in agreement with Wang et al.
(2008)) and intensity.

Based on a multi-model perspective, there is a reduction in the total number
of cyclones on the hemisphere in warmer climate simulations, whereas an increase
is found in intense systems (Lambert and Fyfe, 2006). The decrease of the total
number of cyclones in the Northern Hemisphere is supported by several other
studies (Bengtsson et al., 2006; Finnis et al., 2007; Löptien et al., 2008; Pinto
et al., 2009). Comparing twentieth century to warmer climate simulations, a
northward shift of all detected cyclones is found. Cyclone density increases near
the British Isles during the transient A1B scenario, while this increase is absent
in the stabilization runs (not shown).

Consistent with the results presented here, Löptien et al. (2008) observe
stronger deepening rates. However, they do not find significant changes in cyclone
intensity (minimum central pressure during the cyclone life cycle). Deeper central
core pressures of the 100 most intense cyclones were found in scenario A1BS, but
interpreted as a result of a northward shift of cyclone tracks (Bengtsson et al.,
2009).

An increased track density and intensity of extratropical cyclones is found near
the British Isles in warmer climate scenarios (Ulbrich et al. (2009) and references
therein). The same holds for extreme cyclones (Pinto et al., 2009) and is detected
in multi-model analysis (Leckebusch et al., 2006).

Evaluating the present study concerning a possible change it is interesting
to note that if all detected cyclones are used a strengthening can only be found
for z1000. The other parameters would indicate no change (D) or a weakening
(∇z, ζ850). This demonstrates potential advantages of analyzing the extremes
directly. As presented here, extreme value statistics appears to be an appropriate
and powerful method. In addition, accounting every cyclone only once to avoid
intense and long living cyclones to be disproportionately weighted and to ensure
independent data is preferable.

To supplement this study it may be useful to analyze and compare cyclones de-
tected from the vorticity field and to ascertain the causes of the different positions
of the density maxima found for the different cyclone parameters. Regarding the
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cyclone variable D, one can only speculate why D differs in general for the other
results. Here, further analyses are needed, for example, regarding the sensitivity
to the particular definition of D.

Furthermore, possible links between North Atlantic cyclone extremes and vari-
ability modes other than NAO may be detectable (for example, El Niño / South-
ern Oscillation (ENSO) or the stratospheric circulation). Since it is possible to
identify a significant change of extreme cyclones analyzing the A1BS stabilization
run, but not within the ERA40 period, the question arises how sufficiently large
the sample size should be for trend identification.

Considering the North Atlantic basin the determining factors for a cyclone
to belong to an extreme event changes in A1B. Due to an enhanced low-level
temperature gradient in the central North Atlantic, the low-level baroclinicity
increase (Bengtsson et al., 2006). This region is also characterize by an eastward
shift of the polar jet stream into Europe and increased upper air baroclinity
(Pinto et al., 2007), which are related to extreme cyclones.

The present work can be integrated in the context of statistical analysis of
cyclone extremes in re-analysis, present-day and future scenarios. Understanding
the physical mechanisms behind the changes on cyclone extremes and the different
behavior of cyclone variables on NAO are part of further analysis.





5 Extreme event return times in long-
term memory processes near 1/f

The distribution of extreme event return times and their correlations are ana-
lyzed in observed and simulated long-term memory (LTM) time series with 1/f
power spectra. The analysis is based on tropical temperature and mixing ratio
(specific humidity) time series from TOGA COARE with 1 min resolution and an
approximate 1/f power spectrum. Extreme events are determined by Peak-Over-
Threshold (POT) crossing. The Weibull distribution represents a reasonable fit
to the return time distributions while the power-law predicted by the stretched
exponential for 1/f deviates considerably.

For a comparison and an analysis of the return time predictability, a very
long simulated time series with an approximate 1/f spectrum is produced by a
fractionally differenced (FD) process. This simulated data confirms the Weibull
distribution (a power law can be excluded). The return time sequences show
distinctly weaker long-term correlations than the original time series (correlation
exponent γ̄ ≈ 0.56).

5.1 Introduction

Long-term memory (LTM) is a ubiquitous phenomenon in natural time series and
mainly identified by power-laws characterized by a single correlation exponent
γ in the correlation function, C(t) ∼ t−γ (Fraedrich and Blender, 2003). In
many observed time series, predominantly sea surface temperatures, 1/f power
spectra are found related to small γ (Weissman, 1988; Monetti et al., 2003). In
the current discussion on anthropogenic climate change, the simulation of LTM
becomes relevant since anthropogenic trends may be masked by low frequency
internal variability (Blender and Fraedrich, 2003).

Even weak LTM (with γ slightly below 1) has considerable impacts on return
times of extreme events (Altmann and Kantz, 2005; Eichner et al., 2007). An
obvious reason for this effect is the clustering of threshold crossings during periods
with high averages (Bunde et al., 2005). The distribution of return times tr in the
presence of LTM is approximately given by a stretched exponential, p ∼ exp(−tγr ),
where the exponent is assumed to be identical to the correlation exponent γ.
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The stretched exponential is motivated by the study of Newell and Rosenblatt
(1962) who derived an upper bound for the probability of no zero crossings in
power-law correlated Gaussian processes. Olla (2007) applied an ǫ-expansion
for γ = 1 − ǫ and obtained a stretched exponential distribution with exponent
γ. Stretched exponential distributions are found for linear systems with LTM
(Altmann and Kantz, 2005). There are classes of nonlinear dynamical systems
which show algebraic (power-law) distributions (Zaslavsky, 2002). For inter-event
distributions of earth quakes Corral (2004) suggests a gamma distribution. The
long-term memory does not only alter the distribution of return times but also
their temporal correlations which are the basis for the return time predictability
(Bunde et al., 2004; Altmann and Kantz, 2005).

The present study is motivated by the abundance of observed nonstationary
1/f time series which are at the border of stationarity. The aim of this chapter
is to analyze extreme event return time statistics in high resolution observa-
tions of tropical boundary layer temperature and humidity which both reveal a
1/f−spectrum. The results are compared with a simulated time series obtained
by a long simulation of a stationary fractionally differenced process (FD) with a
power spectrum in the vicinity of the 1/f . To evaluate potential predictability,
long-term correlations of return times in this time series are estimated.

The chapter is organized as follows: In Section 5.2 LTM is defined and avail-
able results on return time distributions are summarized. The long term memory
properties and the return time distributions of the observational data are deter-
mined in Section 5.3. In Section 5.4 simulated time series are compared and the
correlation properties of the extreme event intervals are analyzed. The Section
5.5 concludes with a summary and discussion.

5.2 Estimating long-term memory and extreme

event return time statistics

For the estimation of long-term memory (LTM, Beran, 1994) several methods
are available. We compare results of the Detrended Fluctuation Analysis (DFA,
Peng et al., 1994) with fits of FARIMA(p,d,0) processes (Hosking, 1981). The
FARIMA processes are able to assess the contributions of short- and long-term
components. The distribution of the extreme event return times is altered in
the presence of LTM since long periods with anomalous low or high persistent
deviations occur. The correlations between successive extreme event return times
are useful for the prediction of extreme event return times.
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5.2.1 Long-term memory analysis

A time series has long-term memory (LTM, also denoted as long-term persistence)
if the correlation function C(t) is not integrable (Beran, 1994). For a long-term
power-law decay, C(t) ∼ t−γ , LTM is equivalent to γ > 0. Empirical time series
have LTM if the autocorrelation follows a power-law with exponent 0 < γ < 1
for the largest time scales present. LTM is ubiquitous in nature and shows up
mainly in temperature records (Fraedrich and Blender, 2003; Huybers and Curry,
2006). The exponent β of the power spectrum, S(f) ∼ f−β, and the correlation
exponent are related by β = 1 − γ, hence the power spectrum increases with
decreasing frequency for γ < 1.

To determine LTM properties two methods are applied: (i) Detrended fluctu-
ation analysis (DFA, Peng et al., 1994), and (ii) the estimation of the parameters
in FARIMA(p,d,0) processes (Hosking, 1981). The two methods are indepen-
dent complements for the analysis of our data and inhibit an erroneous detection
of LTM: While there is a known LTM detection problem in the DFA in short
term memory time series (Maraun et al., 2004), this method does not require any
model assumption (for example normality of the data). The FARIMA process is
ideal for the detection of short- and long-term memory, in addition, it allows a
significance test for the number of parameters, however, normality of the data is
required.

(i) The DFA determines fluctuations F (τ) on time scales τ in stationary
anomaly sequences with LTM. Trends in the time series can be eliminated by
extensions of the DFA (Fraedrich and Blender, 2003).

(ii) To assess the contributions of short- and long term memory components,
fits of autoregressive processes (AR) and fractionally integrated autoregressive
process are considered. In the following, FAR is used as a short notation for
FARIMA(p,d,0) (Hosking, 1981) which includes an autoregressive (AR) process
of order p and a fractionally differenced (FD) process with dimension d.

The AR process is defined by

φ(B)xt = ǫt (5.1)

where B is the backshift operator defined by Bxt = xt−1, and ǫt is white noise.
Using the coefficients an, the polynomial φ(B) is

φ(B)xt = xt −

p
∑

n=1

anxt−n (5.2)

The FD process (Hosking, 1981) is derived from

(1− B)dxt = ǫt (5.3)

and leads to an AR process of infinite order

xt =

∞
∑

n=1

anxt−n + ǫt, an = −
Γ(n− d)

Γ(−d)Γ(n+ 1)
(5.4)
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For low frequencies the FD process shows a scaling power spectrum S(f) ∼ f−β

with spectral exponent β = 2d and correlation exponent γ = 1− 2d.
The FAR process is given by the combination

φ(B)(1− B)dxt = ǫt (5.5)

and is determined by p coefficients in the AR and the dimension d.

5.2.2 Extreme event return distributions

An extreme event in a time series xi, i = 1, . . . , N , crosses a given threshold
q with xi > q. The return time tr between two extreme events is the time
interval between two events with xi > q and xi+tr > q and lower values xj < q
in between, i < j < i + tr. The mean return time Rq depends on the threshold
q and is approximated by the probability distribution function (pdf) D(x) of the
time series

R−1
q =

∫

∞

q

D(x)dx (5.6)

In the present chapter, the threshold q is determined to obtain a specific value
of Rq. For uncorrelated data, the return times are exponentially distributed
following a Poisson process

pq(tr) =
1

Rq

exp(−tr/Rq) (5.7)

LTM leads to periods with anomalous persistent low or high deviations. During
such periods extreme high values are either rare (for low anomalies) or frequent
(during high anomalies). Thus return time statistics shows clustering which is
not observed in time series without memory.

For LTM time series stretched exponential return time distributions are sug-
gested (Bunde et al., 2004; Altmann and Kantz, 2005; Eichner et al., 2007)

pq(tr) ≈
aγ
Rq

exp[−(bγtr/Rq)
γ] (5.8)

Note that the scaling exponent γ is conjectured to be equal to the correlation
exponent which characterizes LTM. The coefficients aγ = γΓ(2/γ)/Γ2(1/γ) and
bγ = Γ(2/γ)/Γ(1/γ) are determined by normalization of pq and the condition for
the mean, Rq =< tr >; Γ is the gamma-function.

In the limit γ → 0, the stretched exponential approaches a power law

log pq(tr) ∼ −s log tr + const (5.9)

with the exponent
s = lim

γ→0
γbγγ = 1.5 (5.10)
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Altmann and Kantz (2005) and Eichner et al. (2007) consider the correlation
exponents 0.05 < γ < 1 that is, between almost 1/f and white noise. Eichner
et al. (2007) show that the stretched exponential is valid for several types of
distributions D.

For small return times, tr ≪ Rq, the observed distribution deviates from the
stretched exponential (5.8) and scales as (see Eqs. (10) in Eichner et al., 2007).

Rqpq(tr) ∼

(

tr
Rq

)s′

(5.11)

with the proposed value s′ = γ′−1, γ′ ≈ γ for Gaussian density. For large return
times (tr ≫ Rq) the limit of the distribution (5.8) is

Rqpq(tr) ∼ exp[−(btr/Rq)
γ] (5.12)

The stretched exponential is accepted as an approximate representation for linear
LTM processes (Altmann and Kantz, 2005; Eichner et al., 2007).

An alternative to the stretched exponential distribution (5.8) is the Weibull
distribution (Sornette, 2006; Abaimov et al., 2007) with the scale parameter τ
and the shape parameter γ

pW (tr) =
γ

τ

(

tr
τ

)γ−1

exp[−(tr/τ)
γ ] (5.13)

Note that the Weibull distribution for γ < 1 is frequently denoted stretched
exponential distribution; this, however, differs from (5.8) by the prefactor ∼ tγ−1.
Without reference to Weibull, the power-law (5.11) is suggested by Eichner et al.
(2007) in their Eq. (10) to correct the pure stretched exponential, ∼ exp(−tγ),
for small return times.

The advantages of the Weibull distribution for the characterization of extreme
event return times are:

(i) The Weibull distribution (5.13) combines (5.8) and the short time limit
(5.11) and describes the observed distribution in a wide range of return
times.

(ii) The cumulative distribution function is known, FW (tr) = 1−exp[−(tr/τ)
γ ],

and the mean recurrence time is determined by R = τΓ(1 + 1/γ). This
cumulative distribution function is useful for statistical analyses.

(iii) According to Sornette (2006) power-laws can be approximated by the Weibull
distribution in arbitrary intervals to any prescribed accuracy.

The fit of the discrete power-law and Weibull distribution to the return time
series is performed following Clausset et al. (2007). The approach fits the pa-
rameters of the distributions (exponents for power-laws; shape and scale pa-
rameters for Weibull) using Maximum Likelihood estimation and determines an
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optimal range (restricted by a minimum return time cutoff) by minimizing the
Kolmogorov-Smirnov distance.

The correlations between successive extreme event return times are one of
the most useful aspects in practical applications of extreme value theory. Given
time series with weak LTM (correlation exponents γ = 0.4 and 0.7), Bunde et al.
(2004) analyze the respective return times arranged in a sequence, and find their
long-term correlation exponents γ to be similar to the exponents of the original
time series. It is expected that this relationship changes distinctly for very strong
LTM due to its close vicinity to the nonstationarity threshold 1/f .

In this chapter, extreme events are determined by the Peak-Over-Threshold
(POT) method with different thresholds q, which are adjusted for mean return
times Rq. The detrended fluctuation analysis (DFA) is employed to determine
the LTM of the observational data and the recurrence times in the simulated
data. Fits of FARIMA process support the LTM analysis of observational data.
The time series are simulated by fractionally differenced processes (FD, Hosking
(1981)). The fits of the power-law and the Weibull distributions are performed
by the code available from Clausset et al. (2007). For all other calculations we
use the statistics software R (R Development Core Team, 2005).

5.3 High resolution observational data

The observed time series analyzed in this study are obtained during the TOGA-
COARE experiment (November 1992 – February 1993, Data Processing Cen-
ter/Data Archive and Distribution Center for COARE Surface Meteorological
Data, Florida State University, COARE-MET; Webster and Lukas (1992)). The
aim of the international field experiment TOGA COARE during 1992-1993 was
to study the atmospheric and oceanic processes over the western Pacific. The
data measured at the Research Vessel (R/V) Kexue (3.9◦S, 155.9◦E) encom-
passes boundary layer near surface air temperature and the mixing ratio with
one minute resolution (Figure 5.1); this data set has been corrected by Lucas and
Zipser (2000). In the air temperature time series the diurnal cycle (daily mean
with 1 min resolution) is removed for the analysis. The weak diurnal cycle in the
mixing ratio is not removed since this does not change the result.

The mixing ratio (Figure 5.1 c)) reveals the presence of a large scale event
during the first part of the time series (due to a passing 40-day wave). The
fluctuations of the temperature and the mixing ratio are characterized by a 1/f
power spectrum in a wide range of time scales (Yano et al., 2001; 2004). Only
a part of this time series (8.8 · 104 time steps, roughly 61 days) is analyzed to
keep the number of missing values below < 5%. The missing values are replaced
by the mean and no attempt has been made to determine the effect of these
replacements.
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Figure 5.1: Observations of a) atmospheric near surface temperature and and
c) mixing ratio; corresponding frequency distributions in b) and d).

The overall behavior of the data indicates nonstationarities in both time series.
The frequency distributions for both time series (Figure 5.1 b) and d)) show
deviations from Gaussian, which are, however, not substantial and presumably
related to the nonstationarity.

5.3.1 Long term memory analysis

To determine LTM properties of the two observed time series two methods are
applied (see Section 5.2.1): (i) Detrended fluctuation analysis (DFA, Peng et
al., 1994), and (ii) an estimation of the parameters in FARIMA(p,d,0) process
(Hosking, 1981).

(i) The DFA spectra in Figure 5.2 a) and b) show scaling fluctuation spectra,
F (τ) ∼ τα, with exponents α ≈ 1 . . . 1.1 close to a 1/f−spectrum (α = 1) for
the temperature and the mixing ratio. The power spectrum is closely related
to F (τ) and scales as S(f) ∼ f−β with exponents β = 2α − 1 ≈ 1 . . . 1.2; the
correlation exponents are γ = 1 − β ≈ 0 · · · − 0.2. Note that the temperature
fluctuation spectrum in Figure 5.2 a) approaches α ≈ 1 (γ = 0) for long time
periods (tr > 103 min) during two decades. An analysis of a trend-eliminating
version of the DFA yields the same exponents.

(ii) Short- and long term memory contributions are assessed by fits of autore-
gressive processes (AR) and fractionally integrated autoregressive process (FAR);
see Section 5.2.1. To determine the optimal number of parameters in the FAR
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Figure 5.2: DFA fluctuation function of a) atmospheric near surface temperature
and b) mixing ratio at R/V Kexue. The solid (red) lines indicates α = 1.1, the
dashed (blue) lines represents a 1/f−spectrum (α = 1).

fit, the Akaike information criterion (AIC) is used based on the minimum of

AIC = −2 log(L) + 2k (5.14)

where L is the maximized likelihood function and k the number of estimated
parameters. For temperature and mixing ratio it appears that the FAR process
is superior to AR processes for small numbers of coefficients (Figure 5.3 a) and b)).
The mixing ratio shows a higher preference for the FAR than temperature, which
can be explained by the higher degree of scaling (Figure 5.2 b)). Furthermore, a
maximum likelihood ratio test (99% significance) supports a lower degree of the
autoregressive component in the FAR for the mixing ratio.

Likelihood ratio tests are performed to test whether higher order models give
significant improvement compared to lower order models. FAR-models are tested
against all (AR and FAR) lower order models, while the test for the AR-models
is only performed for lower order. Filled symbols (Figure 5.3) show significance
against lower order models on the 99% significance level.

For both observed data sets FAR-models outperform the ARs for all model
orders below p = 7 according to the Akaike information criterion and the like-
lihood ratio test. Even for temperature (Figure 5.3 a)), where the information
criterion looks quite similar for higher model orders, the likelihood ratio test
prefers the FAR-models. However, the likelihood ratio test for temperature does
not indicate an optimal model order. The mixing ratio (Figure 5.3 b)) can best
be characterized by an FAR-model including four additional AR coefficients with
the correlation exponent γ ≈ 5 · 10−4. Since the model of choice is less clear for
the temperature we consider the correlation exponents and their standard devia-
tions. The correlation exponents decay from γ = 0.016 for p = 0 to γ ≈ 10−4 for
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Figure 5.3: Akaike Information Criterion (AIC) for AR (△) and FAR (◦) models:
a) air temperature and b) mixing ratio. Filled symbols show significance against
lower order models according to likelihood-ratio tests.

p ≥ 2; the standard deviations are below ≈ 2 · 10−3. In summarizing we conclude
that the spectra of both observed time series can be considered as 1/f .

5.3.2 Return time distributions

The return time distributions pq(tr) for temperature and mixing ratio are deter-
mined for the mean return time Rq = 100 (5.6). For the data the complementary
cumulative distribution function (CCDF) is determined, CF (tr) = 1 − F (tr),
where F (tr) is the cumulative distribution function. Scaling of the distribution
function is preserved in the CCDF with an exponent reduced by 1. Unfortunately,
a fit of the stretched exponential distribution is inhibited by insurmountable nu-
merical difficulties.

The distributions in Figure 5.4 a) and b) are compared with the fits of Weibull
distributions (5.13) and power-laws. The Weibull parameters, the power-law ex-
ponents, and the cutoffs are given in Table 5.1 together with confidence inter-
vals, which are determined by resampling with replacement (1000 samples). For
temperature and mixing ratio the power law exponent s = 1.5 lies outside the
confidence intervals. The cutoffs are determined by minimizing the Kolmogorov-
Smirnov test statistic. The power-law fits are compared with the power-law
s = 1.5 predicted by the limit of the stretched exponential for 1/f noise (5.9,
5.10). The return time distributions for the two observed time series are reason-
ably well approximated by Weibull distributions in a wide range of return times.
Note that the power-law fits are restricted to narrow ranges (in particular for the
mixing ratio) and are obviously worse approximations for the observed distribu-
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Figure 5.4: Complementary cumulative distribution functions for the return
times in a) air temperature, b) mixing ratio, and c) 1/f simulated data. Dashed
(red) curves denote Weibull distributions (5.13) and solid (blue) power-laws dis-
tributions. Vertical lines denote cutoffs kmin. The solid black lines denote the
exponent 1.5 for the same cutoffs as the fits (this overlaps with the blue line in
c)). In c) the 95% confidence interval is gray shaded.

tions. The power-law exponents for air temperature (s = 1.74) and mixing ratio
(s = 1.8) differ substantially from 1.5, since this value is beyond the confidence
intervals (Table 5.1).

5.4 Simulated data

Simulated time series with self-similar LTM are generated by a linear autoregres-
sive process. As the AR part (5.2) is responsible for short memory, the simulated
data is simulated by an FD process (5.4), see Figure 5.5 for the time series and
the Gaussian frequency distribution. The power spectrum exponent is chosen as
β = 0.99 (d = β/2 = 0.495, γ = 0.01) to obtain an approximation for a stationary
time series with a 1/f power spectrum. To inhibit the impact of finite size effects
in the comparison with observational data, the total length of the simulated time

temperature mixing ratio simulated data

shape γ 0.21 (0.17, 0.27) 0.15 (0.11, 1.88) 0.19 (0.15, 0.25)
scale τ 0.36 (0.04, 1.94) 0.003 (10−5, 0.04) 0.29 (0.01, 2.68)
exponent s 1.74 (1.66, 1.85) 1.80 (1.69, 1.94) 1.53 (1.49, 1.57)
cutoff kmin 4 (8) 5 (46) 5 (10)

Table 5.1: Values of: estimated parameters for Weibull and power-law distri-
butions (with 95% confidence intervals), and cutoffs for the Weibull (power-law)
distribution.
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Figure 5.5: a) Simulated data (FD with γ = 0.01) and b) frequency distribution.

series is identical with that of the observed data (N = 8.8 ·104). For the following
analysis of the LTM in the return time sequence, however, a very long time series
of N = 108 is simulated.

5.4.1 Return time distributions

The distribution pq(tr) for the return times tr is determined for a threshold q
related to a mean return time Rq = 100. The analysis is analogous to Section
5.3.2. The distribution (Figure 5.4 c)) is well approximated by a Weibull dis-
tribution. The 95% confidence interval (gray shaded) is determined by creating
1000 time series with the same parameters. The shape and scale parameters are
γ = 0.2 and τ = 0.29, respectively. The validity of the power law fit, pq ∼ t−s

r

with the exponent s = 1.53, is restricted to tr ≈ 10 . . . 500. The deviation from
s = 1.5, which is the 1/f limit of the stretched exponential, might originate in
either: (i) The conjecture that the stretched exponential exponent (see Equation
5.8) is identical to the correlation exponent γ is not valid. (ii) The stretched
exponential is not valid for very small γ = 0.01, i. e. near 1/f .

5.4.2 Potential predictability of extreme event return times

For time series with weak LTM (correlation exponents γ = 0.4, 0.7, Bunde et al.,
2004) the sequences tr(n) composed of extreme event return times show long-term
correlations with similar LTM as the time series itself. To analyze this behavior
in the vicinity of 1/f noise, the correlation exponent is γ = 0.01 (as in Section
5.4.1) and the extreme events are based on different thresholds providing the
mean return times Rq = 10, 100, 1000, 10000. The total length of the time series
is N = 108. Note that this is two decades longer than N = 221 ≈ 2.1 · 106 in
Eichner et al. (2007). The sequence of the return times is analyzed by detrended
fluctuation analysis (DFA). Figure 5.6 shows that the long-term correlation of the
return times is described by a power-law fluctuation function F (n) ∼ nα with
α ≈ 0.72 independent of the threshold and the mean return time; the index n
enumerates the return times. This corresponds to the power spectrum exponent
β ≈ 0.44 (using β = 2α − 1) and the correlation exponent γ ≈ 0.56. Thus the
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Figure 5.6: DFA fluctuation functions for the sequence of return times obtained
with a FD (γ = 0.01) and different thresholds corresponding to the mean return
times Rq as indicated. n enumerates the return time sequence. The solid lines
show the LTM exponent α = 0.72.

sequence of extreme events in time series near the 1/f−limit shows distinctly
weaker long-term correlation properties than the original time series.

5.5 Conclusions

This chapter presents an analysis of the extreme event return time statistics
for observed and simulated data with 1/f power spectra. The observed data is
given by measurements of temperature and mixing ratio during TOGA-COARE
(November 1992 – February 1993) at the research vessel Kexue. In the time
series of one minute resolution, 61 days with low numbers of missing values are
extracted. Both time series show a scaling power spectrum, S(f) ∼ f−β, with
β = 1 . . . 1.2; the correlation exponent in C(t) ∼ t−γ is related by γ = 1 − β.
This result is determined by detrended fluctuation analysis and substantiated by
a fit of a FARIMA(p,d,0) fractionally differenced autoregressive process which
yields d ≈ 0.5 for the long-term behavior (β = 2d). Hence, both time series are
considered as 1/f noise.

Extreme events are determined by Peak-Over-Threshold (POT) crossing. The
observed return time distributions pq(tr) are compared to a stretched exponen-
tial, ∼ exp(−tγ), and a Weibull distribution, ∼ tγ−1 exp(−tγ). According to the
approach by Altmann and Kantz (2005) and Eichner et al. (2007), the stretched
exponential distribution converges to a power-law pq(tr) ∼ t−s

r with s = 1.5 for
γ → 0.

The return time distributions for the two observed time series are better
approximated by a Weibull distribution than by a power-law. If a power-law is
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fitted in the intermediate range of return times, the temperature yields a power-
law exponent s = 1.74, while the mixing ratio yields s = 1.8; both are distinctly
different from the stretched exponential limit.

Simulated data is generated by a fractionally differenced autoregressive pro-
cess with a power spectrum in the vicinity of the stationarity threshold, β = 0.99
(γ = 0.01). As for the observational data, the Weibull distribution yields a con-
vincing representation of the return time distributions, while a power-law can be
excluded.

The simulated data is used to evaluate the potential predictability of the
extreme event return times. The LTM in the sequence of return times is analyzed
by the detrended fluctuation analysis and reveals a power law fluctuation function
F (n) ∼ nα with α ≈ 0.72 (correlation exponent γ̄ ≈ 0.56). Thus, the return time
sequences show weaker long-term correlations than the original time series. This
values is independent of the threshold and the mean return time. A possible
reason is that short term random effects lead to level crossings which, thereby,
perturb the overall LTM of the original time series.

The analysis leads to the following main conclusions for the behavior of ex-
treme event return times in the 1/f limit:

(i) The return time distributions for time series in the vicinity of a 1/f power
spectrum are well approximated by the standard Weibull distribution. This
is suggested by the observed time series and substantiated by the simulated
data. The stretched exponential (which differs from Weibull by the absence
of a pre-factor) is likely to be convenient for weak LTM.

(ii) The sequence of return times shows LTM with F (n) ∼ nα with α ≈ 0.72
which is weaker than in the original time series (α = 0.995). However,
the correlation C(n) ∼ n−0.56 is still promising for the prediction of return
times.

Future analyses should consider the Weibull distribution as an alternative
to the stretched exponential return time distribution for a wide range of LTM
correlation coefficients γ.





6 Summary and conclusions

Different aspects of extreme events are considered. This involes their description,
as well as their relation to climate variability and their potential intensificaion
under changing climate conditions. The influence of long-term dependence on
the extreme event return times is investigated. The main findings are restated.

Standardised Precipitation Index (SPI)

The SPI is introduced conceptual in Chapter 2. An extension is presented to
apply the SPI in climate change scenarios. This enables the detection of extreme
dryness and wetness changes due to greenhouse gas forcing. Problems going
along with the distribution function of precipitation are noted briefly in Chapter
2 and discussed in detail in Chapter 3. The Gamma distribution (GD) is found
the less flexible one, leading to systematic overestimation (underestimation) of
extreme dryness (wetness). Solutions are presented to minimize this bias. That
are: multiple distributions or a more general one, such as the exponentiated
Weibull (EWD) or generalized Gamma (GGD) distribution can be used for the
SPI calculation. The consideration of comparability, reproducibility and bias-
variance adjustement guides the decision for the preferred method, depending on
the situation at hand.

The SPI is used to analyse extreme dryness and wetness in Iceland (Chapter
2). These extremes depend on a distinct dipol pattern in the geopotential height
field. The Europe-Greenland Index is derived from the geopotential height differ-
ences between the two poles and therewith the extremes are related to the sign of
the index. Severe and extreme wet conditions occur significant more often in the
warmer climate scenario of the 21th century (A1B). The increase is seasonally
different, which results from intensified (reduced) flow anomalies.

Extreme value statistics

Extreme value statistics is applied to North Atlantic cyclones in Chapter 4.
Generalized Pareto distributions are analysed in terms of return levels and the pa-
rameters of the distribution to detect changes in the cyclone extremes. A method
based on covariates is proposed for the identification of differenences between cli-
mate change scenarios. This method enables the application of likelihood-ratio
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test or information criteria (AIC) for the distribution parameters between two
climate states. It is demonstrated that, in situtaions where return level changes
are small and not significant, it is still possible to detect significant differences in
the parameters, if this approach is applied.

Different measures are analysed, which are related to cyclone intensity: geopo-
tential height, mean horizontal gradient, cyclone depth and relative vorticity. The
extremes of the chosen cyclone properties depend on the NAO, with exception
of the cyclone depth. In re-analysis data (ERA40) no significant linear trend is
detected. However, all variables show an intensification in the warmer climate
scenario (A1B).

Return time analysis

The presence of long-term memory in time series alters the occurrence of
extremes. The extremes tend to cluster in time, depending on the the strength of
memory. One characteristic of long-term memory processes is a power-spectrum,
that follows a power-law. If the strength of memory increases, the spectrum
approaches the limit 1/f (f , the frequency). Processes with this property are
called 1/f noise. Observed air temperature and mixing ratio time series in high
temporal resolution exhibit spectra sufficiently close to the given limit and can be
considered as 1/f noise (Chapter 5). These time series, together with simulated
ones, reproducing their properties are investigated in respect to their extreme
event return times.

It is shown, that the return time distributions follow a discrete Weibull distri-
bution. This is in contrast to preceding studies of other authors, who proposed
a power-law distribution for the 1/f limit. However, a direct comparison yields
improved estimates for the Weibull, whereas a power-law distribution deviates
substantially. Further, the return time series shows distinctly weaker long-term
correlation properties than the original time series.
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