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Introduction

Power is one of the most important concepts in the social sciences. According to the

often used definition of Max Weber, it is an individual’s ability to enforce his own interest

against the resistance of others (Weber, 1947, p. 28).1 This general definition, however,

can have different instances that apply in different contexts and frameworks. The present

work investigates bargaining and voting situations, and thus relevant are the two specific

notions of bargaining and voting power. In a bargaining situation that is purely concerned

with the division of a unit prize, nothing but the share an individual player gains can be

suggested as defining his power. On the other hand, a player’s power in a voting situation

is commonly defined as his decisiveness, which is his ability, or the likelihood, of turning

a losing coalition into a winning one (see, for instance, Felsenthal and Machover, 1998).

The two notions are not, however, purely unambiguous – most technical frameworks

considered in this work can be interpreted as both bargaining and voting.

Subject of the present work are specific approaches to the measurement of power, its

properties, and possible foundations. The thesis consists of five articles. While not all

of these are necessarily independent, every single paper is fully self-contained and can

be read on its own. The first paper, ‘The Public Good Index with Threats in A Priori

Unions’, is co-authored with Manfred J. Holler from the University of Hamburg, Germany

and Public Choice Research Centre in Turku, Finland. It is published in Essays in Honor

of Hannu Nurmi, Vol. I, Homo Oeconomicus 26(3/4), 2009. A follow-up paper, ‘Ax-

iomatizations of Public Good Indices with A Priori Unions’ has been published in Social

Choice and Welfare 35(3), 2010. Besides Manfred J. Holler, it is co-authored with José M.

1 In the original German version, Weber uses the word ‘Chance’ for what I interpret as ‘ability’. While

‘Chance’ could also be translated by ‘probability’, or simply by ‘chance’, Holler and Nurmi (2010) argue

that it should rather be seen as ‘possibility’ or ‘potential’, an interpretation that is more in line with the

term ‘ability’ used here.
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Alonso-Meijide (University of Santiago de Compostela, Spain), Balbina Casas-Méndez

(University of Santiago de Compostela, Spain), and Gloria Fiestras-Janeiro (University of

Vigo, Spain). The third article, ‘Monotonicity of Power in Weighted Voting Games with

Restricted Communication’ has been written together with previously mentioned José

M. Alonso-Meijide and Stefan Napel from University of Bayreuth, Germany and Public

Choice Research Centre in Turku, Finland. It has been presented at the Mika Widgrén

Memorial Workshop in Turku, Finland (September 2009) and at the Annual Meeting of

the European Public Choice Society in Izmir, Turkey (April 2010). The fourth paper

is a single-authored note, ‘Veto Players and Non-Cooperative Foundations of Power in

Coalitional Bargaining’. It is available as PCRC working paper, and also submitted to

and currently under review for Games and Economic Behavior. ‘Coalitional Bargaining

with Markovian Proposers’ is the last paper, which is single-authored as well and also

available as PCRC working paper. It has been presented at and improved from numer-

ous comments at five occasions, most notably the Annual Meeting of the Public Choice

Society in Monterey, California (March 2010).

The five articles can be seen as falling into three parts. The first two papers deal

with specific measurement of power as they introduce and lay axiomatic foundations

for variants of the Public Good Index for simple games with a priori unions. Standing

alone as second part, the third article identifies and investigates monotonicity concepts

for power in weighted voting games with restricted communication, a different variant of

simple games. As, in a sense, non-cooperative counterparts, the fourth and fifth paper

discuss possibilities of finding non-cooperative support for power indices in the Baron-

Ferejohn model and a wide generalization.

‘The Public Good Index with Threats in A Priori Unions’ introduces four new variants

of the Public Good Index (Holler, 1982) for simple games that have an a priori coalition

structure. In these games, first considered by Owen (1977), there are unions of players

which always vote as a block, such that either all members of a union, or none of them,

belong to a coalition. The first variant, the Union Public Good Index, is closest in spirit

to the original Public Good Index (PGI). It builds on the two assumptions that the
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coalitional value is a public good and only those winning coalitions that are minimal

with respect to both the game and the coalition structure are relevant. The remaining

three variants, called Threat Public Good Indices, distribute power in a two-step way.

First, power is distributed between unions according to the PGI of the quotient game.

Power within unions is then distributed proportional to the players’ threat power, which

is their power in case they leave their union. Each of the three indices considers one

of three canonical coalition structures, or threat games, to arise upon the withdrawal of

some player from his union.

‘Axiomatizations of Public Good Indices with A Priori Unions’ provides axiomatic

characterizations for the Union PGI and Threat PGIs that build on arbitrary threat

games. In addition, it offers two new characterizations for two coalitional extensions of the

Public Good Index that have been previously established in Alonso-Meijide et al. (2008b),

the Solidarity Public Good Index and the Owen Extended Public Good Index. The Union

PGI, characterized in a rather elementary way, differs from the (original) axiomatization

of the Solidarity PGI only in one axiom of symmetry and one of mergeability. The

(new) characterizations of the other five variants are particularly suited to allow for

comparisons betwen them. While all five indices share their being a coalitional PGI

and that they satisfy quotient game property, the characterizations are completed and

distinguish themselves by ‘inner’ axioms that regulate the distribution of power inside

unions. The Solidarity PGI satisfies solidarity, all members of one union receive equal

power. The power a union member is assigned by the Owen Extended PGI is proportional

to his total power in a collection of simple games defined by the essential coalitions of the

original game. As follows straight from the definition, the Threat PGIs distribute power

proportional to the power players have in the threat game. I would like to add that,

instead of only providing extensions of the PGI and corresponding characterizations, the

particular form of the axiomatizations presented here allows to directly obtain analogous

extensions for any other power index. To do so simply requires to consider a coalitional

variant of a given baseline index, and then impose quotient game property and any set

of desired inner axioms.
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The third paper investigates monotonicity of power in a different variation of simple

games, weighted voting games with restricted communication. As introduced by Myerson

(1977), cooperation between players is restricted to those coalitions in which all members

can, directly or at least indirectly, communicate with each other. In contrast to standard

simple games, monotonicity of power in the voting weights of players might be plausibly

violated in situations where better communication possibilities of one player outweigh

another player’s advantage in voting weight. ‘Monotonicity of Power in Weighted Voting

Games with Restricted Communication’ hence sets out to, firstly, identify suitable mono-

tonicity concepts for this framework. Various monotonicy concepts suggest themselves

for both available dimensions, the voting weights of players as well as their communi-

cation possibilities. These monotonicities can deal with either local comparisons of two

players in the same game, or global comparisons of one and the same player in two dif-

ferent games. Secondly, the paper investigates the monotonicity properties of solution

concepts such as, most prominently, the Myerson value (Myerson, 1977), the restricted

Banzhaf value (Owen, 1986), the position value (Borm et al., 1992), and the average tree

solution (Herings et al., 2008, 2010). The results of which values satisfy or violate the

various monotonicities allow to discriminate between the solution concepts, and also pro-

vide some interesting insights in the mechanisms they are based on. The Myerson value

and restricted Banzhaf value satisfy all monotonicities in both weights and communica-

tion possibilities. The position value satisfies none of the monotonicity concepts, and the

average tree solution satisfies all weight monotonicities but none of the communication

monotonicities.

‘Veto Players and Non-Cooperative Foundation of Power in Coalitional Bargaining’,

the note contained in chapter 4, discusses the possibilities of non-cooperative support

for power indices in the Baron-Ferejohn bargaining model (Baron and Ferejohn, 1989).

The discussion is based on the result that veto players either hold all power in this

framework and then share it proportional to their recognition probabilities, or hold no

power at all. Thus, non-cooperative support is restricted to power indices that either

assign all or no power to veto players. While the core and related single-valued solution
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concepts such as the nucleolus can hence be given foundations (Montero, 2006), this is

not the case for popular power indices such as the Shapley-Shubik index (Shapley and

Shubik, 1954). This impossibility highlights a misinterpretation of results of Laruelle and

Valenciano (2008a, and also 2008b, chapter 4.4) who seem to support the Shapley-Shubik

index or, as they say, ‘any reasonable power index’, in the Baron-Ferejohn model. This

interpretation is problematic, however, since arbitrary voting situations are modeled as a

unanimity bargaining game. While the whole point of a non-unanimity voting situation

seems to be that, quite simply, unanimity is not required, the result about veto players

also shows that this incongruence can matter rather significantly.

The fifth paper, ‘Coalitional Bargaining with Markovian Proposers’, provides an exten-

sion of the Baron-Ferejohn model to non-independent proposers. The non-independence

of proposers significantly widens the scope of possible proposer dynamics, for instance it

allows for likely continued offers, alternating proposers (Calvó-Armengol, 2001a,b), and

even deterministic protocols such as clockwise rotating proposers (Herrero, 1985). The

generalization is motivated by a comparison of two canonical proposer dynamics applied

to the particular bargaining situation in which one veto player can create a unit surplus

with either of two minor players. If all players in all rounds have equal probability to

be the proposer (and are thus chosen independently), the veto player holds all power.

He has, however, only half of the power if proposers alternate, that is, it is always the

respondent of a round that becomes proposer in the next round. This shows not only

a quantitative but a qualitative difference between these two proposer dynamics. In ad-

dition, it indicates the possibility of non-cooperative support for power indices that do

not assign all power to veto players – if power behaved ‘sufficiently continuous’ in the

proposer dynamics, support, for instance for the Shapley-Shubik index, could be found

somewhere ‘between’ the independent and the alternating protocol. However, analysis

of bargaining situations with veto players shows the results found in the note are widely

stable. Conversely, that the alternating protocol does not assign all power to the single

veto player in the introductory example seems to be a mere singularity. Thus, the re-

sults show a great stability of support for the core and single-valued concepts such as
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the nucleolus. At the same time, the possibilities of non-cooperative support for indices

that do not assign all or no power to veto players, such as the Shapley-Shubik index, are

further limited to, at most, singular protocols.
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Chapter 1

The Public Good Index with Threats in

A Priori Unions∗

Abstract We consider four variants of the Public Good Index for games with

a priori unions. The first variant extends the original idea of Holler (1982)

assuming that the coalitional value is a public good and only minimal winning

coalitions are relevant. The remaining three variants assign power in a two-

step way. In the first step, power is distributed between unions according

to the PGI of the quotient game. On the member stage, the indices take

into account the possibilities of players to threaten their partners through

leaving their union. We discuss the four indices and compare them to two

extensions previously introduced in Alonso-Meijide et al. (2008b). Theoretical

reasoning and numerical examples demonstrate the various measures may

differ substantially.

Keywords simple game, coalition structure, Public Good Index

JEL Classification C71

∗Published in Homo Oeconomicus 26(3/4), 2009. Co-authored with Manfred J. Holler (University of

Hamburg, Germany and Public Choice Research Centre, Turku, Finland).
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The Public Good Index with Threats in A Priori Unions

1.1 Introduction

Owen (1977) proposed an extension of the Shapley value to games with a priori unions,

i.e., a partition of the set of players which describes an a priori coalition structure. In the

first step, this measure distributes the total value of a winning coalition to the a priori

unions in accordance with the Shapley value. In the second step, once again applying

the Shapley value, the total reward of a union is allocated among its members, taking

into account the possibility of their joining other unions. Using similar reasoning, Owen

(1982) proposed a version of the Banzhaf value for measuring power in TU games with a

priori unions. More recently, Alonso-Meijide et al. (2009b) extended the Deegan-Packel

index to games with a priori unions. In a second paper, Alonso-Meijide et al. (2008b)

discuss two characterizations of the Public Good Index for games with a priori unions.

The first alternative, the Solidarity PGI, stresses the public good property which suggests

that all members of a winning coalition derive equal power. The second one follows Owen

(1977, 1982) and refers to essential coalitions when allocating power shares.

The following paper considers further variants of applying the PGI to games with a

priori unions which differ with respect to the threat potential a player has by his or

her possibility to join players or sets of players outside the a priori union that defines

the membership in the game. The first variant builds on Holler (1982) assuming that

the coalition is a public good and only minimal winning coalitions are relevant when

it comes to measuring power. Here threats have no impact on the distribution of the

coalition value as the coalition value is a pure public good and exclusion and rivalry

in consumption do not apply. The remaining three variants assign power in a two-step

way. In the first step, power is distributed between unions according to the PGI of the

quotient game. On the member stage, the indices take into account the possibilities of

players to threaten their partners through leaving their union.

Obviously, the discussed variants constitute different solution concepts for coalition

games with a priori unions. The discussion will demonstrate that ‘different solution

concepts can...be thought of as results of choosing not only which properties one likes,

but also which examples one wishes to avoid’ (Aumann, 1977, p. 471).

13



The Public Good Index with Threats in A Priori Unions

The paper is organized as follows. In section 2, we provide the analytical tools such

as simple games, power indices, and coalition structures. Section 3 introduces the four

new coalitional Public Good Indices. In section 4, we investigate basic properties and

the relationships of the overall six coalitional PGIs.

1.2 Preliminaries

1.2.1 Simple Games and the Public Good Index

A simple game is a pair (N,W ) of the finite set of players N = {1, . . . , n} and the set of

winning coalitions W satisfying ∅ 6∈ W , N ∈ W and S ∈ W ⇒ T ∈ W for all S ⊆ T . A

coalition S ⊆ N is called winning or losing according to whether S ∈ W or S 6∈ W . A

winning coalition S is a minimal winning coalition (MWC) if each proper subset T ⊂ S

is a losing coalition. We denote the set of minimal winning coalitions by M . Since M

contains all relevant information and is more suitable for what follows, we mainly denote

the game (N,W ) by the equivalent description (N,M) throughout this work.

A power index is a mapping f assigning each simple game (N,M) an n-dimensional

real valued vector f(N,M) = (f1(N,M), . . . , fn(N,M)). Based on the assumptions that

coalitional values are public goods and only minimal winning coalitions are relevant when

it comes to power, the Public Good Index (PGI) proposed by Holler (1982) assigns power

proportional to the number of minimal winning coalitions a player belongs to. Denoting

Mi as the set of minimal winning coalitions containing i, the PGI δ is given by

δi(N,M) =
|Mi|∑
j |Mj |

, i = 1, . . . , n. (1.1)

Holler and Packel (1983) characterize the PGI as the unique power index satisfying

efficiency, symmetry, null player, and PGI-mergeability, the axioms being defined as

follows. An index f satisfies efficiency if
∑

i fi(N,M) = 1 for all simple games (N,M).

Two players i and j are symmetric if S∪{i} ∈W ⇔ S∪{j} ∈W for all S 63 i, j. A player

i is called a null player if S\{i} ∈ W for all coalitions S ∈ W . Power index f satisfies

symmetry if fi(N,M) = fj(N,M) for all symmetric players i and j and null player if

14



The Public Good Index with Threats in A Priori Unions

it holds fi(N,M) = 0 for all null players i. Two simple games (N,M) and (N,M ′) are

mergeable if S ∈ M implies S 6∈ W ′ and S ∈ M ′ implies S 6∈ W . In particular, the sets

of minimal winning coalitions M and M ′ are disjoint. The merged game (N,M ⊕M ′)

of two mergeable games (N,M) and (N,M ′) is defined by M ⊕M ′ = M +M ′. Now, a

power index f satisfies PGI-mergeability if for all mergeable games (N,M) and (N,M ′)

it holds
∑

i |Mi +M ′i |f(N,M ⊕M ′) =
∑

i |Mi|f(N,M) +
∑

i |M ′i |f(N,M ′).

1.2.2 Simple Games with Coalition Structures

For a set of players N , a coalition structure is a partition P = {P1, . . . , Pp} of N , that is,

a set of nonempty and mutually disjoint subsets of N whose union coincides with N . We

also use P as the mapping assigning each player i the union P (i) ∈ P he is a member

of. A simple game with coalition structure is a triplet (N,W,P ), that is, a set of players

N , a set of winning coalitions W , and a coalition structure P on N .

Given such a game, the corresponding quotient game is the simple game (P,WP ) with

player set P and set of winning coalitionsWP . A coalition R ⊆ P in the quotient game is

winning if and only if the coalition of represented unions
⋃
Q∈RQ is winning in (N,W ).

We denote the set of minimal winning coalitions in the quotient game by MP and by

MP
Q the set of minimal winning coalitions containing union Q ∈ P .

In analogy to simple games, we denote simple games with coalition structures by

(N,M,P ) and the corresponding quotient game by (P,MP ). Thus, a union Q’s power

in the quotient game, measured by the PGI, amounts to

δQ(P,MP ) =
|MP

Q |∑
k |MP

Pk
|
, Q = P1, . . . , Pp. (1.2)

A coalitional power index is a mapping f assigning each simple game with coalition

structure (N,M,P ) an n-dimensional real valued vector f(N,M,P ) = (f1(N,M,P ), . . . ,

fn(N,M,P )).

1.2.3 Previous Extensions of the PGI for A Priori Unions

Alonso-Meijide et al. (2008b) introduce two variations of the PGI for a priori unions, the

15



The Public Good Index with Threats in A Priori Unions

Solidarity Public Good Index and the Owen Extended Public Good Index. Both indices

distribute power in two steps. In the first step, they assign power to each union equal to

their PGI in the quotient game (thus satisfying quotient game property). In the second

step, they use alternative methods to distribute the union’s power among its members.

The Solidarity Public Good Index Υ does so giving each union member equal power,

that is,

Υi(N,M,P ) = δP (i)(P,M
P )

1
|P (i)|

, i = 1, . . . , n. (1.3)

Following an idea of Owen (1977), the Owen Extended Public Good Index splits power

within unions according to the possibilities that the subsets of this union have to form

winning coalitions with other unions. For this purpose, a subset S ⊆ Q of union Q ∈ P

is an essential part with respect to coalition R ∈ MP
Q if S ∪

⋃
Q′∈R\{Q}Q

′ is a winning

coalition in (N,M) and T ∪
⋃
Q′∈R\{Q}Q

′ is losing for all T ⊂ S. Denoting the set of

essential parts with respect to R containing player i by ERi (N,M,P ), the Owen Extended

Public Good Index Γ is defined as

Γi(N,M,P ) = δP (i)(P,M
P )

∑
R∈MP

P (i)

1
|MP

P (i)|
|ERi (N,M,P )|∑

j∈P (i) |ERj (N,M,P )|
,

i = 1, . . . , n. (1.4)

1.3 New Variations of the PGI for A Priori Unions

1.3.1 The Union Public Good Index

The first variation for a priori unions we introduce is the Union Public Good Index Λ. As

close as possible to the original spirit of the PGI, it is based on the two assumptions that

the coalitional value is a public good and only minimal winning coalitions are relevant.

The latter assumption does, however, apply to coalitions being minimal also with respect

to the coalition structure. A player’s power is hence proportional to the number of

minimal winning coalitions his union is a member of in the quotient game, that is,

Λi(N,M,P ) =
|MP

P (i)|∑
k |Pk||MP

Pk
|
, i = 1, . . . , n. (1.5)
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The Public Good Index with Threats in A Priori Unions

As with the Solidarity PGI, it is obviously the case that all members of the same union

have equal power, that is, the Union PGI as well satisfies solidarity. However, the Union

PGI is the only of the overall six extensions not assigning power to unions on the basis

of the PGI in the corresponding quotient game.

1.3.2 Power Distribution Based on Threats

There are different approaches to the allocation of power inside unions taking into account

the players’ threat power in case that they leave their union. Several possibilities arise

concerning how the remaining union structure behaves upon withdrawal of a player from

a union. While the union might break up into any possible partition, or even the whole

union structure might change, we consider the three canonical cases in which (i) the

respective union is not more stable than other unions, (ii) all other members of the

respective union and (iii) all other unions are treated symmetrically. In either case, at

the union level, power is distributed according to the PGI of the quotient game. At the

member stage, players receive a share proportional to their power in the the threat game,

that is, the game induced by their withdrawal from their union.

Assuming the least possible degree of stability, the first variant considers that all unions

break up into singletons upon a player’s withdrawal from his union. Power inside unions

is split by the Threat PGI T 1 proportional to the players’ power in the game without

any unions. This approach turns a blind eye on how the union structure behaves in the

long run and, at the same time, takes the reasoning behind the Owen Extended PGI one

step further. Now, as it comes to intra-union allocation of power, subsets of a union are

not allowed to cooperate with other unions only, but also with subsets of other unions.

We thus define

T 1
i (N,M,P ) = δP (i)(P,M

P )
δi(N,M)∑

j∈P (i) δj(N,M)
, i = 1, . . . , n, (1.6)

whenever
∑

j∈P (i) δj(N,M) > 0 and T 1
i (N,M,P ) = 0 otherwise.

Presupposing a greater degree of stability, the second variant considers a breakup

of the leaving player’s union into singletons while all other unions endure. For union

17
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Q ∈ P , denote P/Q = P\{Q} ∪ {{i}|i ∈ Q} as the union structure where Q breaks up

into singletons {i}, i ∈ Q, and define the Threat PGI T 2 by

T 2
i (N,M,P ) = δP (i)(P,M

P )
δ{i}(P/P (i),MP/P (i))∑

j∈P (i) δ{j}(P/P (i),MP/P (i))
, i = 1, . . . , n, (1.7)

whenever
∑

j∈P (i) δ{j}(P/P (i),MP/P (i)) > 0 and T 2
i (N,M,P ) = 0 otherwise.

Finally, the third variant assumes that neither the cooperation of the rest of the union

members nor that of other unions is affected by one member’s leaving his union. By

P/i = P\{P (i)} ∪ {{i}, P (i)\{i}} for a player i and partition P we denote the union

structure in which i separates from his union P (i) and plays on his own. Define the

Threat PGI T 3 by

T 3
i (N,M,P ) = δP (i)(P,M

P )
δ{i}(P/i,MP/i)∑

j∈P (i) δ{j}(P/j,MP/j)
, i = 1, . . . , n, (1.8)

whenever
∑

j∈P (i) δ{j}(P/j,M
P/j) > 0, and T 3

i (N,M,P ) = δP (i)(P,MP ) 1
|P (i)| other-

wise.1

1.4 Basic Properties of Coalitional PGIs

Alonso-Meijide et al. (2008b) provide axiomatizations of the Solidarity PGI Υ and the

Owen Extended PGI Γ. While this does not lie within the scope of our work, we still

want to comment on the basic properties and relationships of the coalitional extensions

of the Public Good Index discussed here.

To begin with, all PGI extensions are efficient values. While all values but the Union

PGI Λ satisfy symmetry among unions, this holds for Λ for equally sized unions only.

1Here, a distinction for whether the denominator is 0 or not is necessary. Consider for instance

N = {1, 2, 3, 4} and M = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. With coalition structure P = {{1}, {2, 3, 4}}, it

is MP = {{{1}, {2, 3, 4}}} and thus δ{2,3,4}(P,M
P ) = 1

2
. However, all members i ∈ {2, 3, 4} constitute

a null union {i} with a power of 0 in their respective threat game P/i. Note this distinction was not

necessary in the case of indices T 1 and T 2 . For both indices it holds that, if all members i ∈ Q constitute

null unions {i} in the corresponding threat games, then union Q is a null union itself. Thus, in case the

denominator is 0, this also holds for δQ(P,MP ) and hence for the overall expression.
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Symmetry inside unions does, however, always apply. While all indices give a power of

zero to null unions, all but the Union PGI Λ and Solidarity PGI Υ necessarily give zero

power to null players – the latter two indices satisfy solidarity property because of which

null players have positive power if their union is not a null union. In addition, all indices

but the Union PGI Λ distribute power in a two-step way such that unions receive overall

power as much as assigned by the PGI in the corresponding quotient game (quotient

game property).

In order to investigate similarities and differences of the overall six PGI extensions,

we start by considering the trivial coalition structures Pn = {{1}, . . . , {n}} and PN =

{{1, . . . , n}}. In games where the coalition structure is given by singletons (Pn), all

coalitional PGIs coincide with the PGI of the game without union structure. However,

in the case PN with one grand union, the Union PGI Λ and the Solidarity PGI Υ amount

to the egalitarian power distribution. While the Owen Extended PGI Γ and Threat PGI

T 1 coincide with the PGI of the simple game without union structure, no statements can

be made concerning the behavior of threat indices T 2 and T 3 . In addition, the following

can be said about trivial coincidences of the various extensions.

The Union PGI Λ and the Solidarity PGI Υ coincide whenever all unions have equal

size.

If at most one union contains more than one member, Threat PGIs T 1 and T 2 coincide.

If at most one union contains two members and all other unions are singletons, threat

indices T 1 , T 2 , and T 3 coincide.

However, we can find significant differences between the indices as in the following

examples.

Example 1.1 The possible gap between the Union PGI and the other coalitional PGIs

becomes apparent in large, star-formed games (N,M) with set of players N = {1, . . . , n}

and set of minimal winning coalitions M = {{1, 2}, . . . , {1, n}}. In the corresponding

game with coalition structure P = {{1}, {2, . . . , n}}, the only winning coalition is the
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N δ Λ Υ Γ T 1 T 2 T 3

1 4
13

1
6

2
18

6
24

4
18

6
30

2
6

2 2
13

1
6

3
18

4
24

3
18

5
30

1
6

3 2
13

1
6

3
18

4
24

3
18

5
30

1
6

4 3
13

1
6

6
18

8
24

6
18

10
30

2
6

5 1
13

1
6

2
18

1
24

1
18

2
30 0

6 1
13

1
6

2
18

1
24

1
18

2
30 0

Table 1.1: Indices for example 1.2.

grand coalition made up by the two unions {1} and {2, . . . , n}. The Union PGI Λ gives

all players in this grand coalition equal power and hence amounts to the egalitarian power

distribution (all players having power 1
n). Satisfying quotient game property as well as

symmetry among and inside unions, all other indices assign power 1
2 to player 1 and

1
2(n−1) to the minor players. Note that the overall power of unions thus sums up to 1

n for

union {1} and n−1
n for union {2, . . . , n} in the case of Λ, while all other indices assign

equal power to the two symmetric unions.

Example 1.2 In general, extensions show different aspects of power. Consider for in-

stance the simple game (N,M) given by N = {1, . . . , 6} andM = {{1, 2}, {1, 3}, {1, 4, 5},

{1, 4, 6}, {2, 3, 4}}. A possible representation as a weighted voting game is (55; 35, 20, 20,

15, 5, 5). So (N,M) is not decisive and the PGI δ(N,M) = ( 4
13 ,

2
13 ,

2
13 ,

3
13 ,

1
13 ,

1
13) is

not monotonic in voting weights. Table 1.1 shows that no two coalitional PGIs are

the same for coalition structure P = {{1, 5, 6}, {2, 3}, {4}}. Given this coalition struc-

ture, any two unions form a minimal winning coalition in the quotient game, that is,

MP = {{{1, 5, 6}, {2, 3}}, {{1, 5, 6}, {4}}, {{2, 3}, {4}}}.

Ignoring symmetry between unions but rather accounting for all players being in an
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equal number of minimal winning coalitions in the quotient game, the Union PGI Λ

distributes power in an egalitarian way. The remaining indices respect quotient game

and symmetry among unions and hence split power equally between unions. While the

Solidarity PGI Υ distributes this power equally among members, the remaining indices

do so only for the symmetric members of union {2, 3}. Concerning union {1, 5, 6}, the

Owen Extended PGI Γ accounts for the essential parts of a player, thus shifting power

towards the major player 1. Threat index T 1 does so to a slightly lesser extent, splitting

power between members according to their PGI δ. Again somewhat less variability is

shown by threat index T 2 , allocating power in union {1, 5, 6} proportional to the members’

power in the threat game with coalition structure P/{1, 5, 6} = {{1}, {2, 3}, {4}, {5}, {6}}.

Finally, the greatest degree of variability is shown by threat index T 3 which allocates

power in union {1, 5, 6} proportional to the members’ power in the games with coalition

structure P/1, P/5, and P/6, respectively. The minor players constitute null unions in

the corresponding threat games such that, explaining the minor players’ dependence on

their union, player 1 receives the whole share of power.
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Chapter 2

Axiomatizations of Public Good Indices

with A Priori Unions∗

Abstract We provide axiomatizations for six variants of the Public Good

Index for games with a priori unions. Two such coalitional PGIs have been

introduced and alternatively axiomatized in Alonso-Meijide et al. (2008b).

They assign power in two steps. In the first step, power is distributed between

unions according to the PGI of the quotient game. In a second step, the

Solidarity PGI splits power equally among union members while the Owen

Extended PGI takes into account so-called essential parts. The other four

coalitional PGIs have been introduced in Holler and Nohn (2009). The first

variant elaborates the original idea of Holler (1982) that the coalitional value

is a public good and only minimal winning coalitions of the quotient game

are relevant. The remaining three variants also use the two-step distribution

where, however, on the member stage they take into account the possibilities

of players to threaten their partners through leaving their union.

Keywords power, simple game, a priori unions, coalition structure, Public

Good Index

JEL Classification C71
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Spain), Gloria Fiestras-Janeiro (University of Vigo, Spain), and Manfred J. Holler (University of Ham-

burg, Germany and Public Choice Research Centre, Turku, Finland).
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2.1 Introduction

Forming coalitions is the most natural behavior in transferable utility cooperative games

(TU games from now on). It is clear that coalitions among players with similar ideology

or culture, or common economic interests, are more likely than others. TU games with

a priori unions were first considered in Aumann and Drèze (1974) who extended the

Shapley value (Shapley, 1953) to this new framework in such a manner that the game

splits into subgames played by the unions isolated from each other. In this case, every

player receives the payoff allocated to him by the Shapley value in the subgame he is

playing within his union. A second approach was considered in Owen (1977) in which the

coalitional value (or Owen value) is defined and characterized. In this case, the unions

play a quotient game among themselves, and each one receives a payoff which, in turn,

is shared among its players in an internal game. Both payoffs, in the quotient game for

unions and within each union for its players, are given by the Shapley value. The Owen

value is a coalitional Shapley value (it coincides with the Shapley value in case that all

unions are singletons) and satisfies the quotient game property, that is, it coincides with

the Shapley value if each a priori union contains one element only and the total power

assigned to the players of an a priori union equals the power of this union in the game

played by the unions.

Using similar reasoning, Owen (1982) proposed an application of the Banzhaf value

(the natural extension of the Banzhaf-Coleman index to the family of TU games proposed

in Owen, 1975b) to the framework of TU games with a priori unions. This measure is

referred to as Banzhaf-Owen value. Here the assessments in each of the two steps are

given by the Banzhaf value. The Banzhaf-Owen value is a coalitional Banzhaf value (it

coincides with the Banzhaf value in case that all unions are singletons) but it does not

satisfy quotient game property (the overall power of members of a union is not necessarily

equal to that union’s power in the quotient game). Alonso-Meijide and Fiestras-Janeiro

(2002) propose a value for TU games with a priori unions which is a coalitional Banzhaf

value and satisfies quotient game property. This value, the symmetric coalition Banzhaf

value, reflects the result of a bargaining procedure by which, in the quotient game, each
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a priori union receives a payoff determined by the Banzhaf value; and, within each union,

the members share this payoff in accordance with the Shapley value.

A particular class of TU games is the class of simple games. In this setting values are

referred to as power indices. They are quantitative measures to express power. In the

literature we can find a series of power indices: the Shapley-Shubik index (defined and

characterized in Shapley and Shubik, 1954, as the restriction of the Shapley value to the

family of simple games), the Banzhaf-Coleman index (Banzhaf, 1965, Coleman, 1971),

the Deegan-Packel index (Deegan and Packel, 1978), the Johnston power index (Jonston,

1978), and the Public Good Index (Holler, 1978). Some of these power indices have a

counterpart in the setting of simple games with a priori unions.

In this paper we focus on the Public Good Index. This power index was explicitly

proposed in Holler (1982) and axiomatized in Holler and Packel (1983) and, recently, in

Alonso-Meijide et al. (2008a). The main assumptions of the Public Good Index are that

only minimal winning coalitions are relevant and only the number of these coalitions a

player belongs to is used to measure power. Alonso-Meijide et al. (2008b) proposed and

characterized two extensions of this power index to the setting of simple games with a

priori unions. The first one, the Solidarity Public Good Index, stresses the public good

property which suggests that all members of a winning coalition derive equal power, irre-

spective of their possibility to form alternative coalitions. The second extension follows

the same line as that considered in Owen (1977) to extend the Shapley value. How-

ever, it employs the Public Good Index as the solution in both steps of the bargaining

procedure. Holler and Nohn (2009) introduce, without yet providing axiomatic charac-

terizations, four different extensions of the Public Good Index. The first variant, the

Union Public Good Index, follows the main argument of the original Public Good Index,

translated to the model with a priori unions, that is, only minimal winning coalitions of

the quotient game are relevant. This index is a coalitional Public Good Index but does

not satisfy quotient game property. The other three variants, the Threat Public Good

Indices, satisfy both properties and take into account, for three canonical scenarios, the

players’ threat power in case that they leave their union.
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In this paper, we provide axiomatic characterizations of the four variants of the Public

Good Index proposed in Holler and Nohn (2009), and two new characterizations of the

two extensions proposed in Alonso-Meijide et al. (2008b). The paper is organized as

follows. In section 2, some basic definitions are introduced. In section 3, we provide

characterizations of different variants of the Public Good Index for games with a priori

unions. Finally, we illustrate and compare these extensions for a real-world example in

section 4.

2.2 Preliminaries

2.2.1 Simple Games and the Public Good Index

A simple game is a pair (N,W ) of the finite set of players N = {1, . . . , n} and the set of

winning coalitions W satisfying ∅ 6∈ W , N ∈ W and S ∈ W ⇒ T ∈ W for all S ⊆ T . A

coalition S ⊆ N is called winning or losing according to whether S ∈ W or S 6∈ W . A

winning coalition S is a minimal winning coalition (MWC) if each proper subset T ⊂ S

is a losing coalition. We denote the set of minimal winning coalitions by M . Since M

contains all relevant information and is more suitable for what follows, we mainly denote

the game (N,W ) by the equivalent description (N,M) throughout this work.

A power index is a mapping f assigning each simple game (N,M) an n-dimensional

real valued vector f(N,M) = (f1(N,M), . . . , fn(N,M)). Based on the assumptions that

coalitional values are public goods and only minimal winning coalitions are relevant when

it comes to power, the Public Good Index (PGI) proposed by Holler (1982) assigns power

proportional to the number of minimal winning coalitions a player belongs to. Denoting

Mi as the set of minimal winning coalitions containing i, the PGI δ is given by

δi(N,M) =
|Mi|∑
j |Mj |

, i = 1, . . . , n. (2.1)

Holler and Packel (1983) characterize the PGI as the unique power index satisfying

efficiency, symmetry, null player, and PGI-mergeability, the axioms being defined as

follows. An index f satisfies efficiency if
∑

i fi(N,M) = 1 for all simple games (N,M).
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Two players i and j are symmetric if S ∪ {i} ∈W ⇔ S ∪ {j} ∈W for all S ⊆ N \ {i, j}.

A player i is called a null player if S\{i} ∈W for all coalitions S ∈W with i ∈ S. Power

index f satisfies symmetry if fi(N,M) = fj(N,M) for all symmetric players i and j,

and null player if it holds fi(N,M) = 0 for all null players i. Two simple games (N,M)

and (N,M ′) are mergeable if S ∈ M implies S 6∈ W ′ and S ∈ M ′ implies S 6∈ W . In

particular, the sets of minimal winning coalitions M and M ′ are disjoint. The merged

game of two mergeable games (N,M) and (N,M ′) is defined by (N,M ∪M ′). Now, a

power index f satisfies PGI-mergeability if for all mergeable games (N,M) and (N,M ′)

it holds

f(N,M ∪M ′) =
∑

i |Mi|∑
i(|Mi|+ |M ′i |)

f(N,M) +
∑

i |M ′i |∑
i(|Mi|+ |M ′i |)

f(N,M ′).

2.2.2 Simple Games with A Priori Unions

For a set of players N , a coalition structure or set of a priori unions is a partition

P = {P1, . . . , Pp} of N , that is, a set of nonempty and mutually disjoint subsets of N

whose union coincides with N . There are two trivial a priori unions for player set N . The

first is the structure where each player forms his own union, that is, N0 = {{i}|i ∈ N}.

The second one, N1 = {N}, consists of the grand union only. We also use P as the

mapping assigning each player i the union P (i) ∈ P he is a member of. Also, P (S) =

{Q ∈ P |Q∩S 6= ∅} for coalition S ⊆ N is the set of unions having a member in coalition

S. A simple game with a priori unions is a triplet (N,W,P ), that is, a set of players N ,

a set of winning coalitions W , and a coalition structure P on N .

Given such a game, the corresponding quotient game is the simple game (P,WP ) with

player set P and set of winning coalitionsWP . A coalition R ⊆ P in the quotient game is

winning if and only if the coalition of represented unions
⋃
Q∈RQ is winning in (N,W ).

We denote the set of minimal winning coalitions in the quotient game by MP and by

MP
Q the set of minimal winning coalitions containing union Q ∈ P .

In analogy to simple games, we denote simple games with a priori unions by (N,M,P )

and the corresponding quotient game by (P,MP ). Thus, a union Q’s power in the
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quotient game, measured by the PGI, amounts to

δQ(P,MP ) =
|MP

Q |∑
k |MP

Pk
|
, Q = P1, . . . , Pp. (2.2)

A coalitional power index is a mapping f assigning each simple game with a priori

unions (N,M,P ) an n-dimensional real valued vector f(N,M,P ) = (f1(N,M,P ), . . . ,

fn(N,M,P )).

2.2.3 Coalitional PGIs and Quotient Game Property

Given a power index g, a coalitional power index f is a coalitional g-value if for all simple

game (N,M) it holds f(N,M,N0) = g(N,M), that is, if f is equal to g in case of any

simple game (N,M) and singleton a priori unions N0.

The following four properties constitute the analogues of the four axioms of the PGI

for coalitional power indices in the case of singleton a priori unions. A coalitional power

index f satisfies

singleton efficiency if for all simple games (N,M) it holds
∑

i fi(N,M,N0) = 1.

singleton null player if for all simple games (N,M) it holds fi(N,M,N0) = 0 for all

null players i in (N,M).

singleton symmetry if for all simple games (N,M) it is fi(N,M,N0) = fj(N,M,N0)

for all players i and j which are symmetric in (N,M).

singleton PGI-mergeability if for any two mergeable simple games (N,M) and (N,M ′)

it holds

f(N,M ∪M ′, N0) =
∑

i |Mi|f(N,M,N0) +
∑

i |M ′i |f(N,M ′, N0)∑
i(|Mi|+ |M ′i |)

.

Perfectly analogous to the axiomatization of the PGI in Holler and Packel (1983), one

finds the following proposition.

Proposition 2.1 A coalitional power index f is a coalitional Public Good Index,

f(N,M,N0) = δ(N,M) for all simple games (N,M), if and only if it satisfies singleton

efficiency, singleton null player, singleton symmetry, and singleton PGI-mergeability.
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A coalitional power index f satisfies quotient game property if for all simple games

with a priori unions (N,M,P ) and all unions Q ∈ P it holds

∑
i∈Q

fi(N,M,P ) = fQ(P,MP , P 0).

In the presence of quotient game property, three of the singleton properties are signifi-

cantly enhanced. Singleton efficiency then induces

efficiency – it is
∑

i∈N fi(N,M,P ) = 1 for all simple games with a priori unions

(N,M,P ).

Singleton null player implies

null union – for all simple games with a priori unions (N,M,P ) and any union Q

which is a null player in the quotient game (P,MP ) it is
∑

i∈Q fi(N,M,P ) = 0.

It does not, however, also imply

null player – for all simple games with a priori unions (N,M,P ) and any null player

i in (N,M) it is fi(N,M,P ) = 0.

In fact there are coalitional indices as for instance the Union PGI and the Solidarity PGI

satisfying singleton null player and null union but not null player. Singleton symmetry

turns into

symmetry among unions – for all simple games with a priori unions (N,M,P ) and

all unions Q,Q′ which are symmetric players in the quotient game (P,MP ) it is∑
i∈Q fi(N,M,P ) =

∑
i∈Q′ fi(N,M,P ).

In analogy to singleton null player (which does not imply null player), singleton symmetry

does not imply

symmetry within unions – for all simple games with a priori unions (N,M,P ) and all

players i, j which are symmetric players in (N,M) and members of the same union it
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holds fi(N,M,P ) = fj(N,M,P ).

Also, note that quotient game property does not necessarily extend singleton PGI-

mergeability to any stronger version of PGI-mergeability.

For coalitional Public Good Indices which satisfy quotient game property we thus find

efficiency, null union, and symmetry among unions while they do not necessarily satisfy

null player, symmetry within unions or any particular form of PGI mergeability. In

addition, for a union Q’s overall power one finds it is equal to its Public Good Index in

the quotient game,

∑
i∈Q

fi(N,M,P ) = δQ(P,MP ).

2.3 Axiomatizations of PGIs for A Priori Unions

2.3.1 The Solidarity Public Good Index

Alonso-Meijide et al. (2008b) introduce and axiomatize the Solidarity Public Good Index

and the Owen Extended Public Good Index. Both indices distribute power in two steps.

In the first step, they assign power to each union equal to their PGI in the quotient game

(thus satisfying quotient game property). In the second step, they use a distinct method

to distribute the union’s power among its members.

The Solidarity Public Good Index Υ stresses the public good property by assigning

equal power to each member of the same a priori union,

Υi(N,M,P ) = δP (i)(P,M
P )

1
|P (i)|

, i = 1, . . . , n. (2.3)

It thus satisfies

solidarity – for all simple games with a priori unions (N,M,P ) it holds fi(N,M,P ) =

fj(N,M,P ) for all players i, j being member of the same union P (i) = P (j).

Alonso-Meijide et al. (2008b) provide an axiomatization of the Solidarity PGI not

using quotient game property but, among others, the following two properties:
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independence of superfluous coalitions – for all simple games with a priori unions

(N,M,P ) and (N,M ′, P ) with MP = M ′P , it holds f(N,M,P ) = f(N,M ′, P ).

PGI-mergeability in the quotient game – for all simple games with a priori unions

(N,M,P ) and (N,M ′, P ) where the quotient games (P,MP ) and (P,M ′P ) are merge-

able, it holds

f(N,M ′′, P ) =

∑
k |MP

Pk
|f(N,M,P ) +

∑
k |M ′

P
Pk
|f(N,M ′, P )∑

k(|MP
Pk
|+ |M ′PPk

|)

for all sets of minimal winning coalitions M ′′ ⊆M ∪M ′ for which M ′′P = MP ∪M ′P .

Proposition 2.2 (Alonso-Meijide et al., 2008b) The Solidarity PGI Υ is the unique

coalitional power index satisfying efficiency, null union, symmetry among unions, soli-

darity, independence of superfluous coalitions, and PGI-mergeability in the quotient game.

There is, however, an obvious alternative.

Proposition 2.3 The Solidarity PGI Υ is the unique coalitional PGI satisfying quotient

game property and solidarity.

Proof

(Existence.) We prove the Solidarity PGI Υ satisfies all listed properties.

Coalitional PGI. It holds Υi(N,M,N0) = δ{i}(N0,MN0
) = δi(N,M) for all i in all

simple games (N,M).

Quotient Game. For all simple games with a priori unions (N,M,P ) and unions Q it

is
∑

i∈Q Υi(N,M,P ) =
∑

i∈Q δQ(P,MP ) 1
|Q| = δQ(P,MP ) = ΥQ(P,MP , P 0).

Solidarity. For all simple games with a priori unions (N,M,P ) it obviously holds

Υi(N,M,P ) = δP (i)(P,MP ) 1
|P (i)| = δP (j)(P,MP ) 1

|P (j)| = Υj(N,M,P ) if P (i) = P (j).

(Uniqueness.) Let (N,M,P ) be a simple game with a priori unions and f be a coalitional

power index. If f is a coalitional PGI satisfying quotient game property, then it holds

for any union Q that
∑

i∈Q fi(N,M,P ) = δQ(P,MP ). If f also satisfies solidarity, we

obtain fi(N,M,P ) = δP (i)(P,MP ) 1
|P (i)| = Υi(N,M,P ) for all i ∈ N . �
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2.3.2 The Owen Extended Public Good Index

In their definition of the Owen Extended Public Good Index Γ, Alonso-Meijide et al.

(2008b) follow an idea of Owen (1977) insofar as power is split within a union according

to the possibilities that subsets of this union have to form winning coalitions with other

unions. For this purpose, a subset S ⊆ Q of union Q ∈ P is an essential part with

respect to coalition R ∈ MP if S ∪
⋃
Q′∈R\{Q}Q

′ is a winning coalition in (N,M) and

T ∪
⋃
Q′∈R\{Q}Q

′ is losing for all T ⊂ S. Denoting the set of essential parts with respect

to R containing player i by ERi (N,M,P ), the Owen Extended Public Good Index Γ is

defined as

Γi(N,M,P ) = δP (i)(P,M
P )

1
|MP

P (i)|
∑

R∈MP
P (i)

|ERi (N,M,P )|∑
j∈P (i) |ERj (N,M,P )|

(2.4)

whenever MP
P (i) 6= ∅ and Γi(N,M,P ) = 0 otherwise, i = 1, . . . , n.

The characterization of Alonso-Meijide et al. (2008b) requires the following three def-

initions. A coalitional power index f satisfies

independence of irrelevant coalitions if for all simple games with a priori unions

(N,M,P ) it holds f(N,M,P ) = f(N,M\{S}, P ) for all S ∈M for which P (S) 6∈MP .

invariance with respect to essential parts if for all simple games with a priori unions

(N,M,P ) and (N,M ′, P ) for which there is R ⊆ P such that P (S) = R for all S ∈

M∪M ′ and ERi (N,M,P ) = ERi (N,M ′, P ) for all i it holds f(N,M,P ) = f(N,M ′, P ).

PGI-mergeability inside unions if for all simple games with a priori unions (N,M,P )

and (N,M ′, P ) where (N,M) and (N,M ′) are mergeable and there exists Q ∈ P such

that P (S) ⊆ Q for all S ∈M ∪M ′, it holds

f(N,M ∪M ′, P ) =
∑

i |Mi|f(N,M,P ) +
∑

i |M ′i |f(N,M ′, P )∑
i(|Mi|+ |M ′i |)

.

Proposition 2.4 (Alonso-Meijide et al., 2008b) The Owen Extended PGI Γ is the unique

coalitional power index satisfying efficiency, null player, symmetry among unions, sym-

metry inside unions, independence of irrelevant coalitions, invariance with respect to es-

sential parts, PGI-mergeability in the quotient game, and PGI-mergeability inside unions.
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Also for this index, we find an alternative axiomatization using coalitional PGI and

quotient game property. The two inner axioms are the following. We say a power index

f satisfies

proportionality with respect to essential coalitions if for all simple games with a priori

unions (N,M,P ) it holds for all unions Q ∈ P and all members i, j ∈ Q that

fi(N,M,P )
∑

R∈MP
Q

fj(Q,ERQ, Q
0) = fj(N,M,P )

∑
R∈MP

Q

fi(Q,ERQ, Q
0)

where ERQ = ∪k∈QERk (N,M,P ) denotes the set of all subcoalitions of union Q which

are an essential part with respect to coalition R in the quotient game.

nonnegativity if f(N,M,P ) ≥ 0 for all simple games with a priori unions (N,M,P ).

Proposition 2.5 The Owen Extended PGI Γ is the unique coalitional PGI satisfying

quotient game property, proportionality with respect to essential coalitions, and nonnega-

tivity.

Proof

(Existence.) We prove the Owen Extended PGI Γ satisfies all listed properties.

Coalitional PGI. For all i and all simple games (N,M) it holds that, if MN0

{i} 6= ∅,

Γi(N,M,N0) = δ{i}(N
0,MN0

)
1

|MN0

{i} |

∑
R∈MN0

{i}

1 = δ{i}(N
0,MN0

) = δi(N,M).

If MN0

{i} = ∅ then also Mi = ∅ and thus Γi(N,M,N0) = 0 = δi(N,M).

Quotient Game. For all simple games with a priori unions (N,M,P ) and unions Q,∑
i∈Q

Γi(N,M,P ) =
∑
i∈Q

δP (i)(P,M
P )

1
|MP

P (i)|
∑

R∈MP
P (i)

|ERi (N,M,P )|∑
j∈P (i) |ERj (N,M,P )|

=δQ(P,MP ) = ΓQ(P,MP , P 0).

Proportionality with respect to essential coalitions. For all simple games with a priori

unions (N,M,P ), all unions Q ∈ P and all members i ∈ Q it holds

fi(Q,ERQ, Q
0) =

|ERi (N,M,P )|∑
k∈P (i) |ERk (N,M,P )|
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and hence also

fi(N,M,P )
∑

R∈MP
Q

fj(Q,ERQ, Q
0) = fj(N,M,P )

∑
R∈MP

Q

fi(Q,ERQ, Q
0).

Nonnegativity is of course satisfied.

(Uniqueness.) Let (N,M,P ) be a simple game with a priori unions and f be a coalitional

PGI satisfying the listed properties. Due to quotient game property it holds for any union

Q that
∑

i∈Q fi(N,M,P ) = δQ(P,MP ). Now, if MP
Q = ∅ for union Q, it is δQ(P,MP ) =

0 and nonnegativity implies fi(N,M,P ) = 0 for all i ∈ Q. Yet, if MP
Q 6= ∅, we find

fi(Q,ERQ, Q
0) = |ER

i (N,M,P )|∑
k∈Q |ER

k (N,M,P )| for any R ∈M
P
Q . Using proportionality with respect to

essential coalitions yields fi(N,M,P ) = cQδQ(P,MP )
∑

R∈MP
Q

|ER
i (N,M,P )|∑

j∈Q |ER
j (N,M,P )| for i ∈

Q where cQ is a constant such that
∑

i∈Q fi(N,M,P ) = δQ(P,MP ). This is guaranteed

just by cQ = 1
|MP

Q |
and hence f coincides with the Owen Extended PGI Γ. �

2.3.3 The Union Public Good Index

Holler and Nohn (2009) introduce four variants of the PGI for a priori unions. The first

variant, the Union Public Good Index Λ, is as close as possible to the original spirit of

the PGI. It is based on the two assumptions that the coalitional value is a public good

and only minimal winning coalitions are relevant. The latter assumption does, however,

apply to coalitions being minimal not only with respect to the simple game but also

with respect to a priori unions. A player’s power is then proportional to the number of

minimal winning coalitions his union is a member of in the quotient game, that is,

Λi(N,M,P ) =
|MP

P (i)|∑
k |Pk||MP

Pk
|
, i = 1, . . . , n. (2.5)

As with the Solidarity PGI, it is obviously the case that all members of the same union

have equal power, that is, the Union PGI as well satisfies solidarity. However, the Union

PGI is the only of the overall six extensions not assigning power to unions on the basis

of the PGI in the corresponding quotient game. We hence provide an axiomatization not

directly using its being a coalitional PGI but more elementary axioms. For this sake, we

say that a coalitional power index f satisfies
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symmetry among players of symmetric unions if for all simple games with a priori

unions (N,M,P ) it is fi(N,M,P ) = fj(N,M,P ) for all members i, j of symmetric

unions P (i) and P (j).

PGI-mergeability among unions if for any pair (N,M,P ) and (N,M ′, P ) where the

quotient games (P,MP ) and (P,M ′P ) are mergeable it holds that

f(N,M ′′, P ) =

∑
k |Pk||MP

Pk
|f(N,M,P ) +

∑
k |Pk||M ′

P
Pk
|f(N,M ′, P )∑

k |Pk|(|MP
Pk
|+ |M ′PPk

|)

for all sets of minimal winning coalitions M ′′ ⊆M ∪M ′ for which M ′′P = MP ∪M ′P .

Proposition 2.6 The Union Public Good Index Λ is the unique coalitional power index

satisfying efficiency, null union, symmetry among players of symmetric unions, indepen-

dence of superfluous coalitions, and PGI-mergeability among unions.

Proof

(Existence.) We prove the Union PGI Λ satisfies all listed properties.

Efficiency. It holds∑
i

Λi(N,M,P ) =
∑
k

∑
i∈Pk

|MP
Pk
|∑

l |Pl||MP
Pl
|

=
∑
k

|Pk||MP
Pk
|∑

l |Pl||MP
Pl
|

= 1.

Null union. By definition it isMP
Q = ∅ for any null union Q and thus Λi(N,M,P ) = 0

for all i ∈ Q.

Symmetry among players of symmetric unions. For players i and j in symmetric unions

P (i) and P (j), it holds |MP
P (i)| = |M

P
P (j)| and thus Λi(N,M,P ) = Λj(N,M,P ).

Independence of superfluous coalitions. Given (N,M,P ) and (N,M ′, P ) with MP =

M ′P it obviously holds Λ(N,M,P ) = Λ(N,M ′, P ).

PGI-mergeability among unions. Given two simple games with a priori unions

(N,M,P ) and (N,M ′, P ) where (P,MP ) and (P,M ′P ) are mergeable it holds for all i

and all sets of minimal winning coalitions M ′′ ⊆M ∪M ′ for which M ′′P = MP ∪M ′P(∑
k

|Pk|(|MP
Pk
|+ |M ′PPk

|)
)
Λi(N,M ′′, P )

= |MP
P (i)|+ |M

′P
P (i)| =

∑
k

|Pk||MP
Pk
|Λi(N,M,P ) +

∑
k

|Pk||M ′
P
Pk
|Λi(N,M ′, P ).
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(Uniqueness.) We prove that any coalitional power index f satisfying the listed properties

coincides with the Union PGI Λ.

First, consider a unanimity game with a priori unions (N, {S}, P ), S ⊆ N . Since

f satisfies efficiency, null union, and symmetry among players of symmetric unions, it

amounts to

fi(N, {S}, P ) =


1∑

Q∈P (S) |Q|
if P (i) ∈ P (S)

0 otherwise

for all i = 1, . . . , n.

Now, let (N,M,P ) be any simple game with a priori unions. Since f satisfies inde-

pendence of superfluous coalitions, we can assume that P (S) ∈ MP for all S ∈ M and

P (S) 6= P (T ) for all distinct S, T ∈ M . Thus, unanimity games (N, {S}, P ), S ∈ M ,

are mergeable in the quotient game. Then, using PGI-mergeability among unions and∑
k |Pk||{S}PPk

| =
∑

Q∈P (S) |Q|, we find for all i = 1, . . . , n that

fi(N,M,P ) =
∑
S∈M

∑
k |Pk||{S}PPk

|∑
k |Pk||MP

Pk
|
fi(N, {S}, P ) =

|MP
P (i)|∑

k |Pk||MP
Pk
|

= Λi(N,M,P ). �

2.3.4 Threat PGIs

There are different approaches to the allocation of power inside unions taking into account

the players’ threat power in case that they leave their union. The union might break

up into any possible partition, or even the whole a priori union structure might change.

Holler and Nohn (2009) elaborate three canonical cases concerning how the a priori union

structure changes upon withdrawal of a player from his union. These are characterized by

the assumptions that the respective union is not more stable than other unions and that

all other members of the respective union and all other unions are treated symmetrically.

For any such case, Holler and Nohn (2009) define a coalitional PGI distributing power

inside unions proportional to the players’ power in the respective threat game.

To take a more general approach, we consider Threat PGIs for any possible way a priori

unions can behave upon withdrawal of a player from his union. We call a mapping TP
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a threat partition if it assigns a pair (P, i), where P is a partition of the set of players N

and i ∈ N a player, another partition TP (P, i) of N such that {i} ∈ TP (P, i). Partition

TP (P, i) can be seen to result when player i leaves his union P (i) in P and plays on his

own.

Now, given arbitrary threat partition TP , we define the corresponding Threat PGI

T TP as

T TPi (N,M,P ) = δP (i)(P,M
P )

δ{i}(TP (P, i),MTP (P,i))∑
j∈P (i) δ{j}(TP (P, j),MTP (P,j))

(2.6)

whenever
∑

j∈P (i) δ{j}(TP (P, j),MTP (P,j)) > 0, and T TPi (N,M,P ) = δP (i)(P,MP ) 1
|P (i)|

otherwise, i = 1, . . . , n.

The three particular cases considered by Holler and Nohn (2009) are the following.

Assuming the least possible degree of stability, Threat PGI T 1 uses threat games N0

where all unions break up into singletons upon a player’s withdrawal from his union.

This approach turns a blind eye on how the a priori union structure behaves in the long

run and, at the same time, takes the reasoning behind the Owen Extended PGI one

step further. Now, as it comes to intra-union allocation of power, subsets of a union are

not only allowed to cooperate with other unions, but also with subsets of other unions.1

The second Threat PGI T 2 presupposes a greater degree of stability by considering a

breakup of the leaving player’s union into singletons while all other unions endure. That

is, the applied threat partition is given by P/P (i) = P\{P (i)} ∪ {{j}|j ∈ P (i)}. The

third Threat PGI T 3 assumes that neither the cooperation of the rest of the union

members nor that of other unions is affected by one member’s leaving his union. The

respective threat partition in which i separates from his union P (i) and plays on his own

is P/i = P\{P (i)} ∪ {{i}, P (i)\{i}}.

Note the following basic statements about the three threat indices T 1 , T 2 , and T 3 .

If at most one union contains more than one member, Threat PGIs T 1 and T 2 coincide.

If no union contains more than two members, Threat PGIs T 2 and T 3 coincide.

1An analogous coalitional power index based on the Shapley-Shubik index is introduced by Alonso-

Meijide and Carreras (2009).
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T 1 typically assigns power greater than 0 to any player who is no null player in (N,M)

and whose union is not a null union in (N,M,P ). Threat PGIs T 2 and T 3 possibly

assign power equal to 0 to a player who is no null player in (N,M) and whose union

is no null union in (N,M,P ).

It holds T 2
i (N,M,P ) = 0 if and only if Γi(N,M,P ) = 0. This comes from the fact

that a player i constitutes a null union {i} in (N,M,P/P (i)) if and only if he is no

member of any essential part.

T 2
i (N,M,P ) = 0 implies T 3

i (N,M,P ) = 0 because i constitutes a null union {i} in

(N,M,P/i) whenever it is a null union in (N,M,P/P (i)).

We now provide a general characterization for any possible Threat PGI – axiomati-

zations for the three Threat PGIs T 1 , T 2 and T 3 are special instances. Given threat

partition TP , we say a coalitional power index f satisfies

TP proportionality within unions if for all simple games with a priori unions (N,M,P )

it holds for all members i and j of the same union Q ∈ P that

fi(N,M,P )fj(N,M, TP (P, j)) = fj(N,M,P )fi(N,M, TP (P, i)).

TP empty threats if for all simple games with a priori unions (N,M,P ) it holds

fi(N,M,P ) = fj(N,M,P ) for all members i and j of the same union Q ∈ P in

case of
∑

k∈Q fk(N,M, TP (P, k)) = 0.

TP proportionality within unions is the main inner axiom determining that power within

unions is split proportional to the members’ power in their respective threat game.2 The

relatively weak property of TP empty threats demands that members of a union share

its power equally whenever they all have zero threat power. For many threat partitions

as for instance N0 and P/P (i) (in cases of Threat PGIs T 1 and T 2 , respectively) it

holds that a union has zero power in the quotient game whenever all members have zero

2Note the particular instance of N0 proportionality within unions is introduced in Alonso-Meijide and

Carreras (2009) to characterize their T 1 -analogue based on the Shapley-Shubik index.
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threat power. In these cases, all members are assigned a power of 0 (and it is possible to

replace TP empty threats by nonnegativity). However, this is not necessarily true for all

threat partitions. For instance, with threat partition P/i (in case of Threat PGI T 3 ) it

is possible that a union is no null union while all members have a threat power of zero.3

Note the combination of TP proportionality within unions and TP empty threats

implies symmetry within unions. Also, certain instances of the two properties as the ones

with threat partitions N0 or P/P (i) do imply null player. However, this does not hold

in general. For instance, T 3 does not satisfy null player but satisfies P/i proportionality

within unions as well as P/i empty threats.4

Proposition 2.7 For any threat partition TP , the corresponding Threat PGI T TP is

the unique coalitional PGI satisfying quotient game property, TP proportionality within

unions, and TP empty threats.

Proof

(Existence.) We show that T TP is a coalitional PGI satisfying quotient game property,

TP proportionality within unions, and TP empty threats.

Coalitional PGI. For any simple game (N,M) it is T TPi (N,M,N0) = δ{i}(N0,MN0
) =

δi(N,M).

Quotient game property. In any simple game with a priori unions (N,M,P ) it holds

for any union Q that
∑

i∈Q T
TP
i (N,M,P ) = δQ(P,MP ) = T TPQ (P,MP , P 0).

TP proportionality within unions. Let i and j be members of the same union Q ∈ P .

3Let N = {1, 2, 3, 4} and M = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. With a priori unions P = {{1}, {2, 3, 4}},

it isMP = {{{1}, {2, 3, 4}}} and thus δ{2,3,4}(P,M
P ) = 1

2
. However, all members i ∈ {2, 3, 4} constitute

a null union {i} with a power of 0 in their respective threat game (P/i,MP/i).
4Consider the game from footnote 3 extended by one null player who joins the union of minor

players. So N = {1, 2, 3, 4, 5}, M = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, and P = {{1}, {2, 3, 4, 5}}. Then

MP = {{{1}, {2, 3, 4, 5}}} and thus δ{2,3,4,5}(P,M
P ) = 1

2
. Also in this case, all members i ∈ {2, 3, 4, 5}

constitute a null union {i} with a power of 0 in their respective threat game (P/i,MP/i). Thus, despite

being a null player in (N,M), player 5 is assigned a power of 1
8
by T 3 .
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Then

T TPi (N,M,P )T TPj (N,M, TP (P, j))

= δQ(P,MP )
δ{i}(TP (P, i),MTP (P,i))∑

k∈Q δ{k}(TP (P, k),MTP (P,k))
δ{j}(TP (P, j),MTP (P,j))

= δQ(P,MP )
δ{j}(TP (P, j),MTP (P,j))∑
k∈Q δ{k}(TP (P, k),MTP (P,k))

δ{i}(TP (P, i),MTP (P,i))

= T TPj (N,M,P )T TPi (N,M, TP (P, i)).

TP empty threats follows directly from the definition of T TP .

(Uniqueness.) We show that any coalitional power index f satisfying the listed properties

coincides with T TP .

Because f is a coalitional PGI satisfying quotient game property, it holds for all sim-

ple games with a priori unions (N,M,P ) that
∑

i∈Q fi(N,M,P ) = fQ(P,MP , P 0) =

δQ(P,MP ) for all unions Q ∈ P .

Since f also satisfies TP proportionality within unions, it holds for i ∈ Q that

fi(N,M,P )
∑
j∈Q

δ{j}(TP (P, j),MTP (P,j)) = fi(N,M,P )
∑
j∈Q

fj(N,M, TP (P, j))

=
∑
j∈Q

fj(N,M,P )fi(N,M, TP (P, i)) = δQ(P,MP )δ{i}(TP (P, i),MTP (P,i)).

In case of
∑

j∈Q δ{j}(TP (P, j),MTP (P,j)) > 0 this implies

fi(N,M,P ) = δQ(P,MP )
δ{i}(TP (P, i),MTP (P,i))∑
j∈Q δ{j}(TP (P, j),MTP (P,j))

= T TPi (N,M,P ).

In case of
∑

j∈Q δ{j}(TP (P, j),MTP (P,j)) = 0, TP empty threats applies such that

fi(N,M,P ) = δQ(P,MP ) 1
|P (i)| = T TPi (N,M,P ). �
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Party Label Seats δ

EAJ/PNV 1 22 0.2143

PSE-EE/PSOE 2 18 0.1429

PP 3 15 0.2143

EHAK/PCTV 4 9 0.1429

EA 5 7 0.1429

EB/IU 6 3 0.0714

Aralar 7 1 0.0714

Table 2.1: The Public Good Index of simple game (N,M)

2.4 An Example

In this section we conclude with a real world example of power measurement with Public

Good Indices for a priori unions. We consider the Parliament of the Basque Country

with 75 seats distributed according to the elections held in April 14th, 2005. The dis-

tribution of seats was the following: 22 seats for the Basque nationalist conservative

party EAJ/PNV (1); 18 seats for the Spanish socialist party PSE-EE/PSOE (2); 15

seats for the Spanish conservative party PP (3); 9 seats for the Basque left-wing party

EHAK/PCTV (4); 7 seats for the Basque nationalist social democrat party EA (5); 3

seats for the Spanish left-wing party EB/IU (6); and, 1 seat for the moderated left-wing

party Aralar (7).

Modelling the situation as a weighted voting game, we denote the set of players as N =

{1, 2, 3, 4, 5, 6, 7}. The quota in the parliament being 38, we have the representation as a

weighted voting game [38; 22, 18, 15, 9, 7, 3, 1] and the set of minimal winning coalitions

amounts to

M = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5},

{2, 3, 4}, {2, 3, 5}, {2, 4, 5, 6, 7}}.
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Union Label Seats δ

EAJ/PNV, EA, EB/IU P1 32 0.3333

PSE-EE/PSOE P2 18 0.2222

PP P3 15 0.2222

EHAK/PCTV, Aralar P4 10 0.2222

Table 2.2: The Public Good Index of quotient game (P,MP )

Notice that there is no null player. Table 2.1 depicts the structure of the Parliament and,

for each party, the value of the Public Good Index δ in simple game (N,M). Note that

here the PGI exhibits non-monotonicity of power: although 2 has more seats than 3,

the latter party is member of two more minimal winning coalitions and hence has more

power.

Taking into account that EAJ/PNV, EA, and EB/IU constituted the government

before the elections, we consider these three parties forming a union P1 = {1, 5, 6}. PSE-

EE/PSOE on the one hand and PP on the other have no strong ties to any other party,

so they are assumed to form unions on their own (P2 = {2} and P3 = {3}, respectively).

The two nationalist parties EHAK/PCTV and Aralar unite as P4 = {4, 7}. The a

priori union structure thus is P = {P1, P2, P3, P4} and the corresponding quotient game

amounts to the 4-player apex game (P,MP ) with

MP = {{P1, P2}, {P1, P3}, {P1, P4}, {P2, P3, P4}}.

Major union P1 forms a minimal winning coalition with any of the three minor unions P2,

P3, and P4, and all three minor unions together also constitute a minimal winning coali-

tion. Table 2.2 shows the corresponding Public Good Index δ. Interestingly, compared

to the singleton a priori union structure, all the minor unions benefit, at least slightly,

from this particular a priori union structure. Major union P1 is the only union with less

power than the total power of its members in simple game (N,M).

Table 2.3 displays all six Public Good Indices with a priori unions considered in this
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Party Label Λ Υ Γ T 1 T 2 T 3

EAJ/PNV 1 0.1765 0.1111 0.2222 0.1667 0.1515 0.1884

PSE-EE/PSOE 2 0.1176 0.2222 0.2222 0.2222 0.2222 0.2222

PP 3 0.1176 0.2222 0.2222 0.2222 0.2222 0.2222

EHAK/PCTV 4 0.1176 0.1111 0.2222 0.1481 0.2222 0.2222

EA 5 0.1765 0.1111 0.0833 0.1111 0.1212 0.1449

EB/IU 6 0.1765 0.1111 0.0278 0.0556 0.0606 0

Aralar 7 0.1176 0.1111 0 0.0741 0 0

Table 2.3: PGIs with a priori unions of simple game with a priori unions (N,M,P )

paper. No two indices coincide, they all highlight different aspects in the distribution

of power in (N,M,P ). Notice that the Union PGI Λ, the only of the six variants not

satisfying quotient game property, assigns to the members of major union P1 = {1, 5, 6}

power greater than that of any other player. Thus, union P1 receives a total power

greater than its power given by the Public Good Index in the quotient game. According

to the Solidarity PGI Υ, most power is assigned to PSE-EE/PSOE (2) and PP (3) which

form a singleton union each and do not have to share their union’s power as given by

the PGI of the quotient game. The Owen Extendend PGI Γ assigns power according to

the essential parts a player is a member of, and thus gives player Aralar (7) a power of

0 despite him being no null player in (N,M). EHAK/PCTV (4) alone is sufficient for

any of its union’s minimal winning coalitions. The same is shown by threat indices T 2

and T 3 , yet not by T 1 .The Owen Extended PGI and the three Threat PGIs however

differ in the distribution of power inside union P1. In particular, T 3 more than any other

index measures a player’s dependency on his union and thus is the only index assigning

0 power to EB/IU (6).
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Chapter 3

Monotonicity of Power in Weighted

Voting Games with Restricted

Communication∗

Abstract Indices which evaluate the distribution of power in simple games

are commonly required to be monotonic in players’ voting weights when the

game represents a voting body such as a shareholder meeting, parliament,

etc. The standard notions of local or global monotonicity are bound to be

violated, however, if players’ cooperation is restricted to coalitions connected

by a communication graph. This paper proposes new monotonicity concepts

for power in games with communication structure and investigates the mono-

tonicity properties of the Myerson value, the restricted Banzhaf value, the

position value, and the average tree solution.
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3.1 Introduction

Power is one of the most important concepts in the social sciences, but difficult to quan-

tify. Attempts to measure specific aspects of it in particular contexts – notably commit-

tees or voting bodies that take ‘yes’-or-‘no’ decisions – have inspired numerous studies

ever since Shapley and Shubik (1954) started to investigate political applications of the

Shapley value. Some power indices, like the Shapley-Shubik index, have been obtained

as specializations of cooperative TU-game values to simple games, in which the game’s

characteristic function v only assumes values in {0, 1}. Others have been introduced

on the domain of simple games and later been extended to general TU-games, see for

instance Banzhaf (1965) and Owen (1975a), or Holler (1982) and Holler and Li (1995).1

And because many contexts make it expedient to incorporate more information than

merely the partition of all subsets of players into winning and losing coalitions into a de-

cision body’s model, various specialized indices have been derived from baseline solutions

such as the Shapley or Banzhaf value. Such a relevant piece of information could be, for

instance, that players belong to a priori unions, which either support or reject proposals

as a block. This case has been investigated by Aumann and Drèze (1974), Owen (1977,

1982), or Alonso-Meijide and Fiestras-Janeiro (2002). Another one is that coalitions can

only form between players that can ‘communicate’ with another; namely, between those

players who are connected in a graph that reflects, e.g., their ideological, social, or spatial

proximity. The latter kind of situations define games with restricted communication or

communication structures. They are the focus of this paper. Values specifically defined

for these situations include the Myerson value (Myerson, 1977), the restricted Banzhaf

value (Owen, 1986), the position value (Borm et al., 1992) and the average tree solution

(Herings et al., 2008, 2010).

Identification of which value or power index is particularly suitable amongst the many

conceivable ones is not easy, even when one restricts attention to situations which can

plausibly be modeled as simple games without additional information. In determining

1See Felsenthal and Machover (2006) for a brief historical survey. Comprehensive introductions to

power measurement are given by Felsenthal and Machover (1998) and Laruelle and Valenciano (2008b).
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whether an index is suitable in a given context (or more suitable than another candi-

date), the respective axiomatic characterizations, probabilistic foundations, and possible

interpretations play an important role. Moreover, the monotonicity properties of a power

index are commonly regarded as a major criterion. They provide a first test of whether

a candidate index fits one’s basic intuition about power in the contemplated context.

Specifically, consider an n-player simple game that is defined by a vector of voting weights

(w1, . . . , wn) and a quota q such that a coalition S ⊆ N ≡ {1, . . . , n} of players wins

(v(S) = 1) iff the combined weight of S’s members exceeds or equals q. It seems quite

compelling to require that a power index is monotonic in the following sense: if player i

has weakly greater voting weight than player j, then a plausible index f should indicate

weakly greater voting power for i, i.e., for all simple games (N, v) with weighted voting

representation [q;w1, . . . , wn] the implication wi ≥ wj ⇒ fi(N, v) ≥ fj(N, v) holds.

Allingham (1975) used this property of local monotonicity in order to characterize

a family of power indices. Satisfaction of local monotonicity – and a related global

monotonicity property that compares a given player’s power across games rather than

power in a given game across players – are by many regarded as a sine qua non for

sensible power measures. For instance, Felsenthal and Machover (1998, 245f.) are explicit

that any a priori measure of power that violates local monotonicity is, in their view,

pathological.

The default identification of more voting weight with more voting power is problem-

atic, however, whenever additional structure such as procedural rules, a priori unions,

or communication restrictions affect agents’ decision making. This may pertain even to

constitutional a priori analysis, which abstracts from issue-specific preferences but, for

instance, needs to account for different decision making protocols. It is easy to construct

examples in which a player’s procedural advantage (for instance, as an agenda setter),

his membership of a particularly strong a priori union or cooperative planning confer-

ence (Myerson, 1980), or his central position in a communication graph dominates the

usually detrimental ramifications of low voting weight. The straightforward monotonic-

ity requirements alluded to above hence need to be adapted if information on top of
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the quota-and-weights summary [q;w1, . . . , wn] is relevant.2 On the one hand, weight

monotonicity requirements should be confined to players and games that, at least, are

comparable in any non-weight dimensions – if not identical. On the other hand, new non-

weight monotonicity requirements should plausibly complement the weight-based ones

for players who have identical weight but can naturally be ordered in other respects.

A detailed investigation of alternative monotonicity definitions that account for the

particular decision structure captured by games with a priori unions is carried out by

Alonso-Meijide et al. (2009a). There, the distinction between monotonicity requirements

at two different levels – namely, between unions and within unions – sheds light on the

relationship of several indices for games with a priori unions and their traditional foun-

dations, and helps to discriminate between them. The present paper proposes a similar

adaptation of the standard notions of local and global monotonicity to power indices for

games with restricted communication. Such games can reflect a variety of social, legal,

or technological constraints on the support which is necessary in order for a motion or

project to be successful. By allowing the formation only of connected coalitions, the

graph may literally describe who can communicate the merits of a proposal to whom or

it could represent hierarchical restrictions. It could reflect ideological distances, which

can only be reconciled in a connected fashion, or physical restraints that, e.g., forbid

the bypassing of an agent who represents the only (indirect) link between others. Spe-

cific examples with linear communication structures include sequencing games, where

customers in a queue with heterogeneous time preferences can switch places in order to

minimize total costs (Curiel et al., 1989), and river games, where neighboring countries

coordinate their use of a river’s water (Ambec and Sprumont, 2002). Real and virtual

social networks have gained enormous scientific attention recently (for overviews, see

Goyal, 2007, Vega-Redondo, 2007, Jackson, 2008), and attest to implicit or explicit re-

strictions in people’s cooperation possibilities in a variety of contexts. They also provide

motivation for value concepts which do not follow simply from restricting an established

2See Holler and Napel (2004a,b) for a general discussion of problems that arise if local monotonicity

is regarded as a characteristic of power per se.
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cooperative solution to connected coalitions – which further complicates one’s selection

between various suggested power measures.

When adapting the baseline notions of local and global monotonicity to values for

games with restricted communication, it is not hard to come up with a long list of al-

ternative conditions for when two players or games might be deemed ‘comparable’ in

their communication possibilities, so that monotonicity of power in weight becomes an

insightful requirement again. Nor is it overly complicated to impose new monotonicity

demands that relate to the power of players with equal voting weight but different com-

munication possibilities. The difficulty, however, is to define notions of comparability

that are, first, not too restrictive and therefore trivial (e.g., requiring local monotonicity

of power in weight only for players that have absolutely identical communication pos-

sibilities). Second, they should not be so permissive as to render all of the established

indices, which are already distinguished by meaningful interpretations and a convincing

axiomatization, non-monotonic (e.g., calling for monotonicity in weight as soon as two

players have the same number of links). Similar concerns apply to partial orderings of

players’ communication possibilities, which are the basis of corresponding monotonicity

conditions. Finally, it seems desirable that new monotonicity notions preserve at least

some of the structural relations that connect local and global monotonicity properties on

the domain of unrestricted simple games (see Turnovec, 1998) or for games with a priori

unions (Alonso-Meijide et al., 2009a).

The remainder of the paper is organized as follows. Section 3.2 introduces our nota-

tion, defines standard power indices and formalizes the conventional notions of symmetry

and monotonicity. Section 3.3 introduces simple games with restricted communication

and several value concepts that serve as power indices for these games. Then section 3.4

devises and investigates monotonicity requirements concerning the weight dimension of

games with communication restrictions, before section 3.5 proposes formalizations of the

intuitive requirement that greater power be indicated for players with better communi-

cation possibilities. Section 3.6 concludes with a discussion relating solution concepts for

restricted communication to the measurement of centrality in social networks.
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3.2 Preliminaries

A (monotone) simple game is a pair (N, v) where N = {1, . . . , n} is the non-empty

and finite set of players and the characteristic function v : 2N → {0, 1} defines whether

any coalition S ⊆ N is winning (v(S) = 1) or losing (v(S) = 0). It is required that

(i) the empty coalition ∅ is losing (v(∅) = 0), (ii) the grand coalition N is winning

(v(N) = 1), and (iii) v is monotone (S ⊆ T ⇒ v(S) ≤ v(T )). A simple game is called

proper if any two winning coalitions have a non-empty intersection, i.e., v(S) = 1 implies

v(N\S) = 0. We call a winning coalition S a minimal winning coalition (MWC) if every

proper subcoalition T ⊂ S is losing, and denote the set of all minimal winning coalitions

for given (N, v) by Mv. Players who do not belong to any MWC are known as dummy

or null players.

A particular type of simple game, with real-world applications that range from share-

holder meetings and hiring committees to the US Electoral College or the IMF’s Board of

Governors, is a weighted voting game (WVG): it is a simple game that can be represented

by a pair [q;w], which consists of voting weights w = (w1, . . . , wn) and a quota q ≤
∑
wi

such that v(S) = 1⇔
∑

i∈S wi ≥ q. Throughout the paper we assume that q > 1
2

∑
iwi,

which ensures properness. Not every simple game allows for a representation [q;w], writ-

ten as (N, v) = [q;w], whilst those which do have many equivalent representations.3 We

denote the set of all weighted voting games by W.

A power index f is a mapping that assigns an n-dimensional real-valued vector

f(N, v) = (f1(N, v), . . . , fn(N, v)) to each simple game (N, v), where fi(N, v) is inter-

preted as player i’s power in game (N, v). The two most prominent power indices are

the Shapley-Shubik index (SSI) (Shapley and Shubik, 1954) and the Banzhaf index (BI)

(Banzhaf, 1965) defined by

SSIi(N, v) ≡
∑

S⊆N\{i}

s!(n− s− 1)!
n!

(v(S ∪ {i})− v(S)) , i = 1, . . . , n, (3.1)

3Taylor and Zwicker (1999) provide a characterization of those simple games which are weighted voting

games.
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where s denotes the cardinality of S, and

BIi(N, v) ≡ 1
2n−1

∑
S⊆N\{i}

(v(S ∪ {i})− v(S)) , i = 1, . . . , n. (3.2)

They are restrictions of particular semivalues for general TU games – the Shapley value

(Shapley, 1953) and the Banzhaf value (Owen, 1975a), respectively – to simple games.

Semivalues are weighted averages of players’ marginal contributions to coalitions

fi(N, v) =
∑

S⊆N\{i}

pS (v(S ∪ {i})− v(S)) , i = 1, . . . , n, (3.3)

where the weights pS depend on a coalition S only via its cardinality s and define a

probability distribution, i.e., pS = ps ≥ 0 with
∑n−1

s=0

(
n−1
s

)
ps = 1 (see Weber, 1988).

Other power indices that we will comment on are the Deegan-Packel index DPI (Deegan

and Packel, 1978) and the Public Good Index PGI (Holler, 1982) given by

DPIi(N, v) ≡ 1
|Mv|

∑
S∈Mv

i

1
|S|

, i = 1, . . . , n, (3.4)

and

PGIi(N, v) ≡ |Mv
i |∑

j |Mv
j |
, i = 1, . . . , n, (3.5)

where Mv
i denotes the set of MWCs containing player i.

Some properties of power indices are widely considered as desirable on the domain of

simple or weighted voting games. For instance, a power index f satisfies the null player

property if it assigns zero power to null players in any simple game (N, v). Another

property of a power index pertains to possible symmetries: for given (N, v), players

i and j are called symmetric if there exists a permutation π on N which (i) maps i

to j and (ii) under which v is invariant, i.e., v(S) = 1 ⇔ v(π(S)) = 1. Identical

marginal contributions of i and j, i.e., v(S ∪ {i}) = v(S ∪ {j}) for all S 63 i, j, are

sufficient for this but not in general necessary.4 However, in the case of weighted voting

4 In order to see the latter, consider (N, v) with minimal winning coalitions Mv = {{1, 2, 3},

{2, 3, 4}, {3, 4, 5}}. Applying the permutation π(1, 2, 3, 4, 5) = (5, 4, 3, 2, 1), one can see that players

1 and 5 are symmetric; but they have different marginal contributions, e.g., to coalition {2, 3}.
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games, symmetry of i and j is equivalent to existence of a representation (N, v) = [q;w]

for which wi = wj . A power index f is called symmetric if it assigns equal power

fi(N, v) = fj(N, v) to symmetric players i and j in any given simple game (N, v). On

the domain of weighted voting games, a power index f is said to be locally monotonic if

wi ≥ wj implies fi(N, v) ≥ fj(N, v) for all (N, v) = [q;w]. It is called globally monotonic

if fi(N, v) ≥ fi(N, v′) for any (N, v) = [q;w] and (N, v′) = [q;w′] with wi ≥ w′i, wj ≤ w′j
for all j 6= i, and

∑
j wj ≥

∑
j w
′
j . If a power index f is symmetric, global monotonicity

of f implies local monotonicity of f . Semivalues, including the SSI and the BI, satisfy

all four properties; DPI and PGI satisfy the null player property and symmetry, but are

examples of indices that are neither locally nor globally monotonic.5

3.3 Power in Weighted Voting Games with Restricted

Communication

A simple game with communication structure is a triplet (N, v, g) where (N, v) is a simple

game and g ⊆ gN ≡ {{i, j} | i, j ∈ N, i 6= j} is an unweighted and undirected graph on N .

In what follows we pay particular attention to weighted voting games with communication

structures or restricted communication, i.e., those cases where (N, v) ∈ W. We denote

the collection of all such games byWG . Two players i and j are able to cooperate directly

or to communicate in (N, v, g) iff the link {i, j} between these two players is a member

of graph g. Those players j that i can communicate with are collected in the set of

neighbors of player i, Ni(g) = {j | {i, j} ∈ g}.

Two players i, j ∈ S are connected in S by g if either i = j or if there exists a path

in g from i to j which stays in S, i.e., there are players k0, . . . , kl ∈ S such that k0 = i,

kl = j, and {k0, k1}, . . . , {kl−1, kl} ∈ g. Coalition S is connected by g if every two players

i, j ∈ S are connected in S by g. Subset T ⊆ S is a component of S in g if it is connected

by g and no T ′ with T ⊂ T ′ ⊆ S is connected by g. Thus, g induces a unique partition

5Consider (N, v) = [51; 35, 20, 15, 15, 15] ∈ W with MWCs Mv = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5},

{2, 3, 4, 5}}. Player 2 is a member of fewer MWCs than, e.g., player 3 – implying PGI2(N, v) <

PGI3(N, v) despite w2 > w3. Also, DPI2(N, v) = 9
60
< 11

60
= DPI3(N, v).
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S/g (say ‘S divided by g’) of any coalition S into its components,

S/g ≡ { {j | i and j connected in S by g} | i ∈ S}. (3.6)

It is S/g = {S} iff S is connected by g. The full graph gN and the empty graph ∅ induce

the trivial partitions S/gN = {S} and S/∅ = {{i} | i ∈ S}, respectively.

The assumption that two players i and j can cooperate directly in (N, v, g) only if

they can communicate, and hence can cooperate indirectly in a coalition only if that

coalition is connected, leads to the restricted game (N, v/g). Its characteristic function

v/g is defined by

v/g(S) ≡
∑
T∈S/g

v(T ), S ⊆ N, (3.7)

i.e., any coalition is split into its components and the coalition’s worth is the total worth

of these subcoalitions.6 In those cases where no winning coalition of (N, v) is connected

by g, in particular also not the grand coalition N , the restricted game (N, v/g) is a

null game with v/g ≡ 0. In all other cases, the restricted game (N, v/g) induced by

(N, v, g) ∈ WG is a simple game, in which a coalition is winning iff it contains a winning

component in g. A communication structure can thus be implicit in the specification

of a standard simple game. Note, however, that the simple game (N, v/g) need not be

a weighted voting game.7 In case of the full graph gN , the restricted game induced by

(N, v, gN ) coincides with (N, v).

We call two players i and j symmetric in (N, v, g) ∈ WG if, for some representation

(N, v) = [q;w], there is a permutation π on N which (i) maps i to j and (ii) leaves weights

w and graph g invariant, i.e., for the permuted weights π(w) ≡ (wπ−1(k))k∈N and the

permuted graph π(g) ≡ {{π(k), π(l)} | {k, l} ∈ g} we have π(w) = w and π(g) = g. This

6 In non-proper simple games, several disjoint subcoalitions T ⊂ S might be winning. Since we have

ruled out this case by looking at quotas q >
∑

i wi/2 only, we could replace
∑
v(T ) by max v(T ).

7Consider, for instance, (N, v) = [4; 2, 1, 1, 1, 2] and g = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. The cor-

responding restricted game (N, v/g) has {1, 2, 3} and {3, 4, 5} as its MWCs. If there existed a

representation [q;w], we would have w1 + w2 + w3 ≥ q and w3 + w4 + w5 ≥ q. This implies

w3 + max(w1, w2) + max(w4, w5) ≥ q and hence existence of a third MWC – a contradiction.
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necessitates, of course, that players i and j have identical weights, i.e., wi = wj . Two

players who are symmetric in a weighted voting game with communication structure are

necessarily symmetric in the corresponding restricted game according to the definition

in section 3.2.8

A power index for (games with) communication structures or restricted communi-

cation is a mapping f that assigns an n-dimensional real-valued vector f(N, v, g) =

(f1(N, v, g), . . . , fn(N, v, g)) to each simple game with communication structure (N, v, g),

where fi(N, v, g) is interpreted as player i’s power in game (N, v, g). Such a power in-

dex f satisfies symmetry (SYM) if fi(N, v, g) = fj(N, v, g) whenever players i and j are

symmetric in (N, v, g). It satisfies component efficiency (CE) if
∑

i∈S fi(N, v, g) = v(S)

for each S ∈ N/g in any given (N, v, g).9

The literature on simple games often distinguishes explicitly between the Banzhaf

value and the Banzhaf index, or the Shapley value and its restriction to simple games,

the Shapley-Shubik index. Here, we prefer to make no such distinction and usually refer

to a ‘value’, even though the corresponding mapping is only considered on the domain

of simple games with communication structure. The first value concept that has been

proposed and axiomatized specifically for situations with restricted communication is

8Requiring only that two players are symmetric in the restricted game (N, v/g) according to sec-

tion 3.2’s definition would be a strictly weaker notion of symmetry. It would have the disadvantage

that players’ asymmetries in weight and communication possibilities might be ‘traded off’ against each

other: in the 3-player game (N, v, g) with (N, v) = [2; 1, 0, 1] and g = {{1, 2}, {2, 3}}, player 1 has more

weight than player 2, but player 2 has more communication links. They are hence not symmetric in

(N, v, g) according to our definition, but happen to be symmetric in the restricted game (N, v/g) (in

which only N is winning). Another weaker alternative to our symmetry definition would require that i

and j are symmetric in (N, v) and that they are symmetric in g, whilst allowing different permutations

π and π′ for weights w and graph g. This would be satisfied by players 1 and 5 in the game with

(N, v) = [4; 1, 2, 1, 1, 1] and g = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. However, player 5 is a dummy in (N, v/g)

whilst player 1 is not; so one could barely call them symmetric. (Note that having the higher-weight

neighbor is not always an advantage: player 1 would become a dummy, whilst player 5 would cease to

be one, if w3 were raised from 1 to 2.)
9Myerson (1977) introduced this property as the defining characteristic of an allocation rule for arbi-

trary TU games with restricted communication.
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the Myerson value MV (Myerson, 1977). Used as a power index for games with com-

munication structure (N, v, g), it assigns the Shapley-Shubik index of the corresponding

restricted game (N, v/g) to each player, i.e.,

MV (N, v, g) ≡ SSI(N, v/g). (3.8)

In the special case of (N, v) being a unanimity game, i.e., v(N) = 1 and v(S) = 0 for

all S ⊂ N , MV indicates the power distribution (1/n, . . . , 1/n) if the grand coalition

is connected by g, and (0, . . . , 0) otherwise. In case of the full graph, MV (N, v, gN )

coincides with SSI(N, v).

Analogously, the restricted Banzhaf index rBI (Owen, 1986) maps any given game

(N, v, g) to the Banzhaf index of the corresponding restricted game (N, v/g), i.e.,

rBI(N, v, g) ≡ BI(N, v/g). (3.9)

Any other value or power index for unrestricted (simple) games, such as DPI or PGI,

could in this fashion be adapted in order to account for exogenously given communication

structures.10 We will refer to the resulting power index for communication structures as

the restricted version of the corresponding index: e.g., the Myerson value is the restricted

SSI. In particular, we will also comment on the restricted DPI and the restricted PGI.

The Myerson value and the restricted DPI and PGI are component efficient, whilst the

restricted Banzhaf index is not. Symmetry of a power index implies symmetry of its

restricted version; hence all four mentioned restricted indices are symmetric.

Operating on restricted game (N, v/g), rather than on (N, v, g) itself, can entail a

significant loss of information. Consider, for instance, a large unanimity game (N, v)

and a graph g in which player 1 is the center of a star. Then the restricted game is a

unanimity game, too, and all players are symmetric in (N, v/g). Therefore, none of the

indices above can distinguish between player 1 in the center and those on the periphery:

MV , rBI, etc. indicate identical power for all players. But all communication which is

10A small caveat is that the restricted game (N, v/g) might be the null game, for which a baseline value

or index could be undefined (because Mv = ∅). We set the power of all players to 0 in this case.
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necessary in order for the grand coalition to be connected involves player 1. This fact

might plausibly give him greater power.

The position value (Borm et al., 1992) follows this line of reasoning.11 It measures

agents’ power in two steps: first, it considers their links as the ‘players’ in an auxiliary

game, the link game. The importance of links is picked up by computing the SSI in the

link game, i.e., assigning SSI values to all links of g. Second, the respective two players

involved in any of the links share its power equally. More specifically, let (g, v/N) denote

the null or simple game played by the links according to the characteristic function v/N

given by

v/N(h) ≡ v/h(N), h ⊆ g. (3.10)

So, in (N, v, g)’s link game (g, v/N), the worth of a coalition h (of links) is equal to the

worth of the grand coalition N (of agents) in the respective restricted game (N, v/h).

A coalition h of links, therefore, is winning iff it connects a winning coalition of (N, v).

The position value PV is then defined by12

PVi(N, v, g) ≡ v({i}) +
1
2

∑
{i,j}∈g

SSI{i,j}(g, v/N), i = 1, . . . , n. (3.11)

The position value, also in general TU games, can be viewed as arising from a scenario

where communication is established link by link in a random order, until all players

cooperate to the highest degree allowed for by the communication technology. Players

start with their respective stand-alone value v({i}) (which is zero except if i is a dictator);

as communication possibilities are activated randomly, one after another, the two players

that are connected by any new link share the generated worth v/N(h∪{{i, j}})−v/N(h)

equally. Then, whenever there is no dictator, PVi is equivalent to player i’s expected

11See van den Brink (2009) for an instructive comparative axiomatization of the Myerson value, the

restricted Banzhaf value, the position value, and also the average tree solution introduced below (for

cycle-free communication situations).
12We slightly generalize the definition of Borm et al. (1992) in order to allow for simple games with a

dictator. Borm et al. restricted attention to zero-normalized games, in which v({i}) = 0 for all i ∈ N .
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gains or, in simple games, half of the probability that one of his links turns a losing

coalition into a winning one.13

The position value satisfies component efficiency and symmetry. For a unanimity

game (N, v) in which N is connected by a cycle-free graph g, players’ position values

PVi(N, v, g) equal half their relative share of total links in g. The position value does

not reduce to any standard power index for the full graph gN : in particular, null players

are assigned a positive position value in (N, v, gN ) whenever there is no dictator in

(N, v).14 Despite its focus on agents’ links instead of agents themselves, the position

value is still a rather close relative of the Shapley value. In particular, it considers all

random orderings of links (rather than players) as equally likely.

The average tree solution ATS – introduced first for cycle-free graphs by Herings

et al. (2008) and later extended to arbitrary communication structures connecting the

grand coalition by Herings et al. (2010) – takes a different approach.15 It assumes that

communication is established in a bottom-up fashion in a random hierarchical structure.

For any sequence of link activations which reflects a particular hierarchy of information

transmission, sequential endorsements, etc., power is ascribed to the unique player who

turns the coalition of previous, hierarchically lower subscribers to the considered motion,

13Due to v/g(S ∪ {i})− v/g(S) = v({i}) + v/g|S∪{i}(N)− v/g|S(N), where g|S = {{i, j} ∈ g | i, j ∈ S}

is the restriction of g to S, the Myerson value can also be written as

MVi(N, v, g) = v({i}) +
∑

S⊆N\{i}

s!(n− s− 1)!

n!

(
v/g|S∪{i}(N)− v/g|S(N)

)
.

MV can thus be seen as capturing players’ expected gains analogously to the position value but when

communication spreads in a lumpy way: players start with their stand-alone values, then one random

player after another brings in all of the communication possibilities connecting him to the players who

have already joined in, and receives the added value v/g|S∪{i}(N)− v/g|S(N). Similar formal relation-

ships between MV and PV have recently been pointed out by Casajus (2007) and Kongo (2010).
14A star h = {{i, j} | j 6= i} with null player i at its center connects the grand coalition, and is a winning

coalition in the link game. Some of i’s links therefore have a positive marginal contribution in the link

game, which implies PVi(N, v, g
N ) > 0.

15Herings et al. (2010) choose one particular class of rooted spanning trees for their extension of the

average tree solution. Baron et al. (2010) provide and axiomatize the average tree solution for any class

of rooted spanning trees.
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project, etc. into a winning one by joining.

More specifically, for a given graph g on N , we call a subgraph t ⊆ g a spanning tree

on connected coalition S if S is connected by t but not by any t′ ⊂ t. A spanning tree

thus represents a minimal sufficient set of communication links whose activation allows

all members of S to cooperate. By its minimality, a spanning tree t does not contain

links connected to any player outside of S. Also, it cannot contain any cycle, i.e., there

do not exist distinct players k1, . . . , kl ∈ S, l ≥ 3, such that {k1, k2}, . . . , {kl−1, kl} ∈ t

and {k1, kl} ∈ t. Therefore, t can be rooted at any j ∈ S, which gives links an orientation

and results in a rooted spanning tree (t, j). A given rooted spanning tree (t, j) reflects a

particular order in which the communication links that suffice to bring all members of S

together might be activated. The set of neighbors of root player j in (t, j) are naturally

called j’s successors, and inductively one obtains the (possibly empty) set of successors

suci(t, j) ≡ {k | {i, k} ∈ t and i 6∈ suck(t, j)} for all i 6= j ∈ S. By subi(t, j) we denote

the set containing player i and his subordinates, i.e., i’s successors, all their successors,

and all subsequent successors. If communication links are activated in a given rooted

spanning tree (t, j) on S in a bottom-up fashion, i.e., from terminal players towards the

root player j level-by-level, then the marginal contribution of player i ∈ S in (N, v) with

rooted spanning tree (t, j) on S is

mv
i (t, j) ≡ v(subi(t, j))−

∑
k∈suci(t,j)

v(subk(t, j)), (3.12)

i.e., it is 1 iff all coalitions comprising a single successor of i and all that successor’s

subordinates are individually losing but turn winning when they all become connected

by player i joining and merging them.

Given graph g, a rooted spanning tree (t, j) on S is called admissible if for all i ∈ S

and all distinct k, k′ ∈ suci(t, j) it holds that subk(t, j) ∪ subk′(t, j) is not connected by

g. So any two players having the same predecessor are not allowed to be connected –
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directly or by their subordinates in (t, j) – in the original graph g.16,17 The average tree

solution ATS now identifies i’s power in (N, v, g) with the average marginal contribution

of player i, computed over all admissible rooted spanning trees that can be constructed

on the component of N which contains i. Formally, denoting the set of all admissible

rooted spanning trees of g on S by TS,g, the average tree solution is defined by18

ATSi(N, v, g) ≡ 1
|TSi,g|

∑
(t,j)∈TSi,g

mv
i (t, j), i = 1, . . . , n, (3.13)

where Si ∈ N/g denotes the component containing i. ATS satisfies component efficiency

and symmetry. In case of a unanimity game (N, v) and any graph connecting the grand

coalition, it is always the root having a marginal contribution of 1 such that ATS assigns

power proportional to the number of spanning trees that can admissibly be rooted in a

player; hence, for a cycle-free graph, ATS assigns equal power to each player. In case of

the full graph gN , the average tree solution coincides with the Shapley-Shubik index of

(N, v).19

We conclude the section with a simple example that illustrates the differences in

16Though the technical frameworks are slightly different, one easily verifies that our alternative defi-

nition of an admissible rooted spanning tree is equivalent to the one in Herings et al. (2010). Rooted

spanning trees as induced by admissible sets of subsets in their definition obviously satisfy our condition.

Conversely, given an admissible rooted spanning tree (t, j) on S satisfying our condition, the correspond-

ing sets of subordinates (subi(t, j))i∈S constitute an admissible set of subsets of S in their definition,

and the rooted spanning tree induced by this coincides with (t, j).
17Herings et al. (2010) provide a mainly technical motivation for this condition. First, only admissible

spanning trees (t, j) guarantee that the marginal contribution of a player in an admissible rooted spanning

tree equals the marginal contribution when he joins the coalition of all his subordinates in the restricted

game, i.e.,mv
i (t, j) = v/g(subi(t, j))−v/g(subi(t, j)\{i}). Second, the class of admissible rooted spanning

trees is the largest class of rooted spanning trees such that the ATS is a so-called Harsanyi solution (see

Baron et al., 2010).
18We slightly generalize the definition of Herings et al. (2010): every component is considered separately

in order to allow for graphs that do not connect the grand coalition N . However note that, since we

restrict attention to proper games, at most one component is winning.
19Given the full graph, any player can have at most one successor in an admissible rooted spanning tree,

i.e., any admissible rooted spanning tree is a linear graph. Then TSi,g represents the set of all orderings

on N .
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the power ascriptions made by the above solution concepts. Consider simple major-

ity voting by three players located on a left-right scale, i.e., let (N, v) = [2; 1, 1, 1] and

g = {{1, 2}, {2, 3}}. The Myerson value and restricted Banzhaf index correspond, respec-

tively, to the Shapley-Shubik and Banzhaf indices of the restricted game (N, v/g) with

Mv/g = {{1, 2}, {2, 3}}; hence, MV (N, v, g) =
(

1
6 ,

2
3 ,

1
6

)
and rBI(N, v, g) =

(
1
4 ,

3
4 ,

1
4

)
. In

contrast, the position value infers power from the (non-proper) link game (g, v/N) with

Mv/N = {{{1, 2}}, {{2, 3}}}. Both links in g, {1, 2} and {2, 3}, are symmetric and have

a Shapley-Shubik index of 1
2 in (g, v/N). The respective two players involved in each link

are assigned half of its power, which yields PV (N, v, g) =
(

1
4 ,

1
2 ,

1
4

)
. Finally, the average

tree solution measures power based on admissible rooted spanning trees. In this case,

where the graph is cycle-free, the admissible rooted spanning trees are graph g rooted in

any of the three players. In all three, it is the central player 2 who turns the coalition

comprising him and his subordinate(s) winning, and so ATS(N, v, g) = (0, 1, 0).

3.4 Monotonicity with Respect to Weights

We will now define two notions of monotonicity for power indices f : WG → Rn which

relate to the voting weights of players. The subsequent section will look at monotonicity

related to players’ communication possibilities.

The first notion of weight monotonicity, local monotonicity with respect to weights,

concerns the comparison of two players in a single game (N, v, g). Roughly speaking, it

postulates that whenever two players are interchangeable apart from one having a greater

voting weight than the other in some representation (N, v) = [q;w1, . . . , wn], the former

player’s power should be at least as high as that of the latter:

Definition 3.1 A power index for communication structures f satisfies local monotonic-

ity with respect to weights (LW) or is LW-monotonic if for each (N, v, g) ∈ WG with

(N, v) = [q;w1, . . . , wn],

fi(N, v, g) ≥ fj(N, v, g)
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holds for any players i and j with wi ≥ wj which are symmetric in (N, v′, g) with (N, v′) =

[q;w′1, . . . , w
′
n], arbitrary w′i = w′j, and w

′
k = wk for all k 6= i, j.

An index is thus required to respect a weight advantage for player i over player j,

provided that both have equivalent communication possibilities in the sense that they

would become symmetric if their weights were equalized (for instance, by setting both to
1
2(wi + wj)).

The second notion of monotonicity concerns the comparison of a single player’s power

across two different games, and is hence referred to as global monotonicity with respect

to weights. It demands that whenever the underlying weighted voting game changes in

a way that can unambiguously be judged favorable for player i – specifically, i’s voting

weight increases and/or voting weight is shifted from others to i – then this should have

a non-negative effect for player i’s power:

Definition 3.2 A power index for communication structures f satisfies global mono-

tonicity with respect to weights (GW) or is GW-monotonic if for all (N, v, g), (N, v′, g) ∈

WG with (N, v) = [q;w1, . . . , wn] and (N, v′) = [q;w′1, . . . , w
′
n],

fi(N, v, g) ≥ fi(N, v′, g)

holds whenever wi ≥ w′i, wj ≤ w′j for all j 6= i, and
∑

j wj ≥
∑

j w
′
j.

As is the case for local and global monotonicity of power indices for games without

explicit communication structure, GW is a stronger requirement than LW in the presence

of symmetry.

Proposition 3.3 If a power index for communication structures f is GW-monotonic

and symmetric, then f is also LW-monotonic.

Proof Let f be a power index satisfying GW and SYM, and consider a game (N, v, g) ∈

WG for which LW would require fi(N, v, g) ≥ fj(N, v, g). Specifically, let (N, v) =

[q;w1, . . . , wn] be such that players i and j with wi ≥ wj are symmetric in (N, v′, g) ∈ WG

with (N, v′) = [q;w′1, . . . , w
′
n] where w′i = w′j = 1

2(wi + wj) and w′k = wk for all k 6= i, j.
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Now, noting that (N, v, g) is more favorable than (N, v′, g) for player i in the sense of

GW and that the reverse is true for player j, GW and SYM imply

fi(N, v, g) ≥ fi(N, v′, g) = fj(N, v′, g) ≥ fj(N, v, g). �

Since all power indices for games with communication structure that we consider are

symmetric, proposition 3.3 facilitates the checking of their monotonicity properties: proof

that f is GW-monotonic implies LW-monotonicity, and an example showing f is not LW-

monotonic rules out GW-monotonicity. The latter immediately excludes the restricted

versions of non-monotonic symmetric indices for unrestricted weighted voting games,

such as the DPI and PGI: they violate LW on the domain WgN ≡ {(N, v, gN ) ∈ WG},

i.e., when players’ communication is restricted trivially by the full graph gN , and thus

a forteriori on WG .

A power index’s being locally or globally monotonic is not typically translated to its

restricted version.20 However, in the case of semi-values, one finds the following result.

Proposition 3.4 The restricted versions of all semivalues – so, in particular, the

Myerson value MV and restricted Banzhaf index rBI – are LW-monotonic and GW-

monotonic.

Proof Let f : WG → Rn be the restricted version of a semivalue f̃ , i.e., f(N, v, g) ≡

f̃(N, v/g). Now consider two games (N, v, g), (N, v′, g) ∈ WG with (N, v) = [q;w1,

. . . , wn] and (N, v′) = [q;w′1, . . . , w
′
n] such that wi ≥ w′i, wj ≤ w′j for all j 6= i, and∑

k wk ≥
∑

k w
′
k. For any S 63 i, choose T ∈ (S ∪ {i})/g with T 3 i. Then it is

20To see this, consider weighted voting game (N, v) = [4; 1, 1, 0, 2, 1, 1, 1] and graph g = {{1, 2}, {2, 3},

. . . , {6, 7}}. The corresponding restricted game has Mv/g = {{1, 2, 3, 4}, {4, 5, 6}} and hence does not

have a representation as a weighted voting game. Now, define a power index f to be the SSI for all simple

games apart from (N, v/g) for which we assume f(N, v/g) = (1/6, 1/6, 1/6, 1/2, 0, 0, 0). The fact that

(N, v/g) is not a weighted voting game ensures that f does not violate local or global monotonicity. In

addition, f is even efficient and symmetric. However, f ’s restricted version violates LW since it assigns

strictly more power to 3 than to 5. It also violates GW since an increase of weight of 1 for player 3 to

(N, v′) = [4; 1, 1, 1, 2, 1, 1, 1] would result in f(N, v′/g) = (0, 2/15, 2/15, 7/15, 2/15, 2/15, 0).
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1 2 3 4 5 6 7 8 9 10 11
1 1 120 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11
1 1 120 0 0 0 0 0 0

q = 3

Figure 3.1: Violation of LW by the position value

v/g(T ) ≥ v′/g(T ) and v/g(T\{i}) ≤ v′/g(T\{i}), and thus

v/g(S ∪ {i})− v/g(S) = v/g(T )− v/g(T\{i})

≥ v′/g(T )− v′/g(T\{i}) = v′/g(S ∪ {i})− v′/g(S).

This and (3.3) imply f̃i(N, v/g) ≥ f̃i(N, v′/g). Hence fi(N, v, g) ≥ fi(N, v′, g) and f must

be GW-monotonic. Because f , as the restricted version of a semivalue, is symmetric, it

must also be LW-monotonic (proposition 3.3). �

In contrast, the position value is not LW-monotonic, and hence – being symmet-

ric – not GW-monotonic. To see this, consider (N, v, g) ∈ WG with eleven play-

ers located on a left-right scale, i.e., g = {{1, 2}, {2, 3}, . . . , {10, 11}}, and (N, v) =

[3; 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1] (see figure 3.1). Players 2 and 10 become symmetric if w2 is

lowered to w10 = 0, and hence LW would require PV2(N, v, g) ≥ PV10(N, v, g). The

corresponding link game (g, v/N) has two disjoint minimal winning coalitions: one com-

prising the four links on the left side of the central player 6, h1 = {{2, 3}, . . . {5, 6}},

and the five links on 6’s right, h2 = {{6, 7}, . . . {10, 11}}. In particular, g’s left-most link

{1, 2} is never necessary for the establishment of a winning coalition, and hence it is a null

player in (g, v/N): player 2’s weight of w2 = 1 makes the inclusion of player 1 redundant.

In contrast, w10 = 0 requires activation of link {10, 11} before a losing coalition on the

right can become winning. The SSI in the link game is then zero for the null link {1, 2},
5
36 for any other link l ∈ h1 on the left side of player 6, and 4

45 for any link l ∈ h2. This

results in position values PV2(g, v/N) = 5
72 <

4
45 = PV10(g, v/N) – a violation of LW.

The average tree solution satisfies both weight monotonicity requirements.21

Proposition 3.5 The average tree solution ATS is both LW-monotonic and GW-

monotonic.

21This proposition holds for average tree solutions based on any class of rooted spanning trees.
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Proof Consider two games (N, v, g), (N, v′, g) ∈ WG with (N, v) = [q;w1, . . . , wn] and

(N, v′) = [q;w′1, . . . , w
′
n] such that wi ≥ w′i, wj ≤ w′j for all j 6= i, and

∑
k wk ≥∑

k w
′
k. Let Si ∈ N/g be the component containing player i. Then, for any arbi-

trary rooted spanning tree (t, j) on Si, we have v(subi(t, j)) ≥ v′(subi(t, j)) because

i ∈ subi(t, j). Moreover, for all k ∈ suci(t, j), v(subk(t, j)) ≤ v′(subk(t, j)) since

i 6∈ subk(t, j). Thus mv
i (t, j) ≥ mv′

i (t, j) for any rooted spanning tree (t, j) on Si,

and therefore ATSi(N, v, g) ≥ ATSi(N, v′, g). So ATS must be GW-monotonic and –

applying proposition 3.3 – LW-monotonic, too. �

3.5 Monotonicity with Respect to Communication

Possibilities

We now investigate local and global notions of monotonicity which relate to players’

communication possibilities. The latter may be judged as better for player i than for j

(or better for a given player in graph g than in g′), for different – some more, some less

compelling – reasons. These will be accounted for by introducing several distinct notions

of local and global monotonicity with respect to communication possibilities. Moreover,

we will suggest a plausible condition relating to the ranking of different players’ gains

from a given change in the communication structure.22

We begin with the rather straightforward requirement that whenever player i would

be symmetric to player j if i’s communication possibilities were restricted (i.e., after

the deletion of some of i’s links) and/or j’s possibilities were expanded (i.e., after the

addition of some links for j), then player i’s power should be no smaller than j’s.

22Since all definitions in this section do not involve any voting weights, they could be extended to

situations where a value f is applied to general TU-games with communication structue (N, v, g). All

statements about relationships of the properties or their satisfaction by the mentioned solution concepts

remain valid as long as the considered TU-games are superadditive.
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Definition 3.6 A power index for communication structures f satisfies local monotonic-

ity with respect to communication possibilities (LC) or is LC-monotonic if for each

(N, v, g) ∈ WG,

fi(N, v, g) ≥ fj(N, v, g)

holds for any players i and j which are symmetric in (N, v, g′) for some g′ with Ni(g′) ⊆

Ni(g) and Nj(g′) ⊇ Nj(g) and Nk(g′)\{i, j} = Nk(g)\{i, j} for all k 6= i, j.

Implicitly, the definition requires i and j to have equal voting weights. Also note that

existence of some g′ satisfying the stated conditions is equivalent to existence of aminimal

g′′ ⊆ g with Ni(g′′) ⊆ Ni(g) and Nk(g′′)\{i} = Nk(g)\{i} for all k 6= i such that i and j

are symmetric in (N, v, g′′).

A first notion of global monotonicity with respect to communication possibilities per-

tains to games involving two graphs g and g′ such that g ⊇ g′ and all additional links

in g involve the same player i. One might plausibly require that i’s power is weakly

greater for communication structure g, since the additional links improve i’s communica-

tion possibilities in absolute terms (but note that i’s neighbor’s may also have improved

possibilities). An alternative second notion looks at games with graphs g ⊆ g′ in which

all links missing in g do not affect i’s direct or indirect cooperation possibilities. Again,

i’s power may plausibly be required to be greater for communication structure g, since

the removed links improve i’s communication possibilities in relative terms: other play-

ers have lost some of their communication possibilities, whilst i has not. This can be

formalized as follows.

Definition 3.7

(i) A power index for communication structures f satisfies global monotonicity with

respect to added communication possibilities (GC+) or is GC+-monotonic if for all

(N, v, g), (N, v, g′) ∈ WG,

fi(N, v, g) ≥ fi(N, v, g′)

holds whenever Ni(g) ⊇ Ni(g′) and Nj(g)\{i} = Nj(g′)\{i} for all j 6= i.
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(ii) The index satisfies global monotonicity with respect to removed communication

possibilities (GC−) or is GC−-monotonic if for all (N, v, g), (N, v, g′) ∈ WG,

fi(N, v, g) ≥ fi(N, v, g′)

holds whenever {S ⊆ N |S is connected on g and i ∈ S} = {S ⊆ N |S is connected on

g′ and i ∈ S} and Nj(g) ⊆ Nj(g′) for all j 6= i.

It is straightforward to check that GC+ is equivalent to the stability condition in Myerson

(1977). The requirement in GC− that the sets of connected coalitions involving player i

are the same in g and g′ necessitates Ni(g) = Ni(g′). The latter condition is also sufficient

for the former when only communication possibilities that connect neighbors of i are lost,

i.e., if {j, k} ∈ g′\g implies j, k ∈ Ni(g).23

Unlike in the case of weight monotonicities, if both types of global monotonicity with

respect to communication possibilities are satisfied by a symmetric power index f , local

monotonicity with respect to communication possibilities does not necessarily hold.

The restricted games (N, v/g) and (N, v/g′) which are induced by two comparable

communication structures g and g′ preserve the notion of g offering better communication

possibilities for a given player than g′ which is underlying GC+ or GC−. Similarly, some

player having greater communication possibilities than another one locally, i.e., in a given

graph, translates into a restricted game that is better for one player than the other. Power

indices for communication structures that are defined as a semivalue of the respective

restricted game, therefore, satisfy all of the monotonicity notions defined above.

Proposition 3.8 The restricted versions of all semivalues – so, in particular, the Myer-

son Value MV and restricted Banzhaf index rBI – are LC-monotonic, GC+-monotonic,

and GC−-monotonic.

23Strengthening GC− to the sole requirement of Ni(g) = Ni(g
′) and Nj(g) ⊆ Nj(g′) for all j 6= i, as

a seemingly natural analogue to GC+, does not provide a suitable monotonicity concept. Consider for

instance 5-player simple majority voting (N, v) = [3; 1, 1, 1, 1, 1] and g = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}.

Removal of link {2, 3} should then constitute an advantage for player 1 while it, however, turns him into

a null player in the corresponding restricted game.
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Proof

(LC) Consider (N, v, g) ∈ WG such that g offers better communication for i than for

j in the sense of LC. Then there is a minimal subgraph g′ ⊆ g with Ni(g′) ⊆ Ni(g) and

Nk(g′)\{i} = Nk(g)\{i} for all k 6= i such that i and j are symmetric in (N, v, g′) with

respect to permutation π with π(i) = j. For this it holds v/g(S ∪{i}) ≥ v/g(π(S)∪{j})

and v/g(S) ≤ v/g(π(S)) for all S 63 i. Hence, v/g(S ∪{i})−v/g(S) ≥ v/g(π(S)∪{j})−

v/g(π(S)) for all S 63 i. This yields the desired inequality for the semi-values of i and j.

(GC+) Consider (N, v, g), (N, v, g′) ∈ WG such that g offers better communication

possibilities for player i in the sense of GC+. Then for any S 63 i, it holds v/g(S ∪

{i}) ≥ v/g′(S ∪ {i}) and v/g(S) = v/g′(S). Therefore, it is v/g(S ∪ {i}) − v/g(S) ≥

v/g′(S ∪ {i})− v/g′(S) and the desired inequality follows directly from the definition of

a semivalue (see equation (3.3)).

(GC−) Consider (N, v, g), (N, v, g′) ∈ WG such that g offers better communication

possibilities for player i in the sense of GC−. For any S 63 i, choose T ∈ (S ∪{i})/g with

T 3 i. For this we also have T ∈ (S ∪ {i})/g′ and thus v/g(T ) = v/g′(T ). Moreover,

v/g(T\{i}) ≤ v/g′(T\{i}). Thus, v/g(S ∪ {i}) − v/g(S) = v/g(T ) − v/g(T\{i}) ≥

v/g′(T )− v/g′(T\{i}) = v/g′(S ∪ {i})− v/g′(S). The desired conclusion follows. �

An analogous statement is not possible for the restricted versions of indices that

build on minimal winning coalitions (or, put differently, averages of marginal contri-

butions with game-specific weights) such as the Deegan-Packel index and Public Good

Index. In fact, both indices satisfy none of the communication monotonicities. Con-

sider for instance the seven-player game (N, v) = [3; 1, 1, 0, 0, 0, 0, 2] with graphs g =

{{1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 7}, {4, 7}, {5, 7}, {6, 7}}

and g′ = g ∪ {{2, 7}} (see figure 3.2). In (N, v, g), player 1 can communicate with all

players while player 2 cannot communicate with player 7 directly. Player 1 should hence

be at least as powerful as player 2 according to LC. However, the MWCs of the restricted

game (N, v/g) are {1, 7}, {2, 3, 7}, {2, 4, 7}, {2, 5, 7}, and {2, 6, 7} such that the DPI

amounts to ( 3
30 ,

8
30 ,

2
30 ,

2
30 ,

2
30 ,

2
30 ,

11
30) and the PGI amounts to ( 1

13 ,
4
13 ,

1
13 ,

1
13 ,

1
13 ,

1
13 ,

5
13) –

a violation LC. In the transition from (N, v, g) to (N, v, g′), GC+ predicts a weak gain of
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Figure 3.2: Violation of LC, GC+, and GC− by the restricted DPI and PGI

1

1

1

3

4

5

1

1

1

2

1

1

1

3

4

5

1

1

1

2

1

3

4

5

1

1

1

2

q = 5

Figure 3.3: Violation of LC, GC+, and GC− by the position value

power for player 2 and, at the same time, GC− predicts a weak loss of power for player

1. However, the MWCs of (N, v/g′) are {1, 7} and {2, 7} such that the DPI and PGI

both amount to (1
4 ,

1
4 , 0, 0, 0, 0,

1
2). With both indices, player 2 loses and player 1 gains

power, in violation of GC+ and GC−.

The position value does not satisfy any of the communication monotonicities either,

not even in perfectly symmetric voting situations. To see this, consider five player una-

nimity voting (N, v) = [5; 1, 1, 1, 1, 1] with graphs g = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}}

and g′ = g\{{1, 2}} (see figure 3.3). With graph g, players 1 and 2 share player 4’s and

5’s sole possibility to communicate with player 3 and should hence have at least as much

power according to LC. However, 4’s and 5’s single links function as veto players in

the link game while 1’s and 2’s communication possibilities in some sense compete with

each other – the position value amounts to PV (N, v, g) = (0.1, 0.1, 0.45, 0.175, 0.175)
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Figure 3.4: Violation of LC, GC+, and GC− by the average tree solution
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Figure 3.5: Spanning trees of the communication structure in figure 3.4 (including link

{2, 3}) admissibly rooted in players 1 (top row) and 2 (bottom row)

and violates both local monotonicities with respect to communication structure.24 In

transition from g to g′, players 1 and 2 lose the communication possibility between

them, which should be detrimental for these players according to GC+. Also, accord-

ing to GC−, it should be weakly beneficial for players 4 and 5 since no cooperation

possibility is lost for them. However, the position value evaluates to PV (N, v, g′) =

(0.125, 0.125, 0.5, 0.125, 0.125), in violation of GC+ and GC−.

Also the average tree solution, as defined by Herings et al. (2010), does not satisfy any

of the communication monotonicities. Consider four player unanimity voting (N, v) =

[4; 1, 1, 1, 1] with graphs g = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} and g′ = g\{{2, 3}} (see

figure 3.4). In general, with unanimity voting, a player’s power is proportional to the

24That the violation of monotonicities arises due to competition between the links of a player obviously

suggests the introduction of some sort of a priori unions in the link game. However, and as noted before,

this then results in the Myerson value; see Casajus (2007) and Kongo (2010).
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number of admissible spanning trees rooted in it. For communication structure g, there

are four admissible spanning trees with players 1 or 4 as the root whilst there are three

rooted in players 2 or 3 (see figure 3.5). The average tree solution, therefore, amounts

to ATS(N, v, g) = ( 4
14 ,

3
14 ,

3
14 ,

4
14) – in violation of LC which requires players 2 and 3 not

to be worse off than 1 and 4. Removal of link {2, 3} makes all players symmetric such

that ATS(N, v, g′) = (1
4 ,

1
4 ,

1
4 ,

1
4). This violates GC+, according to which the loss of their

communication possibility should not be beneficial for 2’s and 3’s power. It also violates

GC−: it requires that 1 and 4 are not harmed by a loss of communication possibilities

between players which they can communicate with directly.

All of the above notions of local or global monotonicity impose requirements on power

in a purely ordinal sense. But power indices come with an at least implicit presumption

of cardinality (in contrast, say, to desirability relations in the tradition of Isbell, 1958).

This motivates to also impose cardinal restrictions for how the addition (or removal) of

links affects the power of players. For example, Myerson (1977) introduced the so-called

fairness property that whenever a single link is added to the communication structure,

the power of the two newly linked players changes equally. In the spirit of Myerson’s

constraint, we find an additional demand very intuitive which concerns power changes

when a link is added to the current communication structure: the power of the two newly

linked players should increase by at least as much as that of those whose communication

possibilities improved only indirectly. This combines the local and global perspective of

our earlier requirements and explicitly treats power indications as cardinal.

Definition 3.9 A power index for communication structures f satisfies highest gains

with respect to added communication possibilities (HC+) if for all (N, v, g),

(N, v, g′) ∈ WG,

fi(N, v, g)− fi(N, v, g′) ≥ fj(N, v, g)− fj(N, v, g′) ∀j 6= i

holds for all i with Ni(g) ⊇ Ni(g′) and Nj(g)\{i} = Nj(g′)\{i} for all j 6= i.

HC+ implies Myerson’s fairness property. In the presence of component efficiency and

symmetry, it is also stronger than GC+-monotonicity and LC-monotonicity.
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Proposition 3.10 If a power index for communication structures f satisfies HC+ and

is symmetric, then f is also LC-monotonic. If f satisfies HC+ and component efficiency,

then it is also GC+-monotonic.

Proof First, let f be a symmetric power index which satisfies HC+. Consider (N, v, g) ∈

WG with players i and j for which LC calls for fi(N, v, g) ≥ fj(N, v, g). Then there is

g′ ⊆ g with Ni(g′) ⊆ Ni(g) and Nk(g′)\{i} = Nk(g)\{i} for all k 6= i such that i and j

are symmetric in (N, v, g′). By HC+, fi(N, v, g)− fi(N, v, g′) ≥ fj(N, v, g)− fj(N, v, g′)

and SYM implies fi(N, v, g′) = fj(N, v, g′). This yields fi(N, v, g) = (fi(N, v, g) −

fi(N, v, g′)) + fi(N, v, g′) ≥ (fj(N, v, g)− fj(N, v, g′)) + fj(N, v, g′) = fj(N, v, g).

Second, let f satisfy HC+ and CE. Consider (N, v, g), (N, v, g′) ∈ WG such that

Ni(g) ⊇ Ni(g′) and Nj(g)\{i} = Nj(g′)\{i} for all j 6= i. Suppose that f violates

GC+, i.e., fi(N, v, g) < fi(N, v, g′). Since HC+ implies that fi(N, v, g) − fi(N, v, g′) ≥

fj(N, v, g)− fj(N, v, g′) for all j 6= i, we must then have fj(N, v, g) < fj(N, v, g′) for all

j 6= i, too. Component efficiency thus entails

∑
S∈N/g

v/g(S) =
∑
S∈N/g

∑
j∈S

fj(N, v, g) <
∑

S∈N/g′

∑
j∈S

fj(N, v, g′) =
∑

S∈N/g′
v/g′(S).

At the same time, for g ⊇ g′ and v being monotone and proper, we must have∑
S∈N/g v/g(S) ≥

∑
S∈N/g v/g

′(S) – a contradiction. �

Since HC+ does not impose requirements when the communication possibilities of

third players deteriorate, one cannot deduce GC− from it, even under the assumption of

component efficiency. The natural variation of HC+ which considers removed rather than

added communication possibilities in the sense of GC− (leading to a property HC− in

analogy to GC−) would do so. However, the corresponding requirement is not satisfied by

any of the power indices for communication structures that we consider, and is therefore

omitted. The same holds for an analogous highest gains requirement concerning voting

weights (namely, a property HW based on the comparability notion underlying GW).

In view of proposition 3.10, the violations of GC+ or LC by the restricted DPI and

PGI, by the position value, and by the average tree solution imply that neither of these
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satisfies HC+. As with the ordinal communication monotonicities, however, the Myerson

value and restricted Banzhaf index satisfy HC+:

Proposition 3.11 The restricted versions of all semivalues – so, in particular, the

Myerson value MV and restricted Banzhaf index rBI – satisfy HC+.

Proof Let (N, v, g) ∈ WG offer better communication possibilities for player i than

(N, v, g′) ∈ WG in the sense of HC+. Then v/g(S ∪ {i}) ≥ v/g′(S ∪ {i}) and v/g(S) =

v/g′(S) for all S 63 i. This implies the following three statements. First, for all coalitions

S 63 i,

v/g(S ∪ {i})− v/g(S) ≥ v/g′(S ∪ {i})− v/g′(S),

i.e., in a transition from g′ to g player i does not lose a swing with coalition S. Second,

for all coalitions S 63 i, j where j 6= i,

v/g(S ∪ {j})− v/g(S) = v/g′(S ∪ {j})− v/g′(S),

i.e., j does not gain a swing with S. Third, for all coalitions S 63 i, S 3 j and S′ =

S\{j} ∪ {i} where j 6= i,

(v/g(S ∪ {i})− v/g(S))− (v/g′(S ∪ {i})− v/g′(S))

≥ (v/g(S′ ∪ {j})− v/g(S′))− (v/g′(S′ ∪ {j})− v/g′(S′)),

i.e., i gains a swing with S whenever j gains a swing with S′. (To see the latter, note

that S ∪ {i} = S′ ∪ {j}, v/g(S)− v/g′(S) = 0 because i 6∈ S, and v/g(S′)− v/g′(S′) ≥ 0

because i ∈ S′). The desired conclusion follows from considering the fact that semi-

values constitute weighted averages of marginal contributions or swings where weights

only depend on the size of the respective coalition. �
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3.6 Discussion

Power indices for voting games with restricted communication try to condense the two-

dimensional resources of players – their weights and their communication possibilities –

into a single number. This is bound to be difficult, and each of the indices investigated

above comes with a different implicit model of how collective decisions emerge from

agents’ interaction along bilateral communication links. The implicit power tradeoffs

across the weight and communication dimensions may stretch one’s intuition about how

power indications should respond to differences in either dimension. This, in our view,

is precisely where well-defined notions of monotonicity can help, because (i) they clarify

intuitions that are initially rather vague, (ii) they allow to transparently connect distinct

requirements for how power indices should behave ceteris paribus, and (iii) they classify

indices according to which intuitive better-than-relations they preserve.

The monotonicity concepts that we have defined above are unlikely to be able to play

a role in axiomatic characterizations of power indices for communication structures be-

cause the same is true for the monotonicities that have been considered for unrestricted

weighted voting games, or for games with a priori unions. Axiomatic characterization

are, of course, very useful – in particular, they illuminate the relation between different

indices. The Myerson value, restricted Banzhaf index, and average tree solution, for

instance, fundamentally differ only by violating a distinct axiom out of the three-axiom

list of component efficiency, collusion neutrality, and the so-called superfluous link prop-

erty (for details, see van den Brink, 2009). But axioms are naturally formulated with

the goal of characterization in mind; they are usually designed, first, to fix a value for

the elements of a basis of a specific space of games and, second, to determine a way

of aggregating different basis games. We regard such cardinal characterizations and the

classifying ordinal requirements investigated in this paper as important complements.

Because power indices for communication structures evaluate both weight and com-

munication resources, they can, trivially, also be applied for the analysis of only weight

differences, or of only communication differences. Regarding weights, restricted versions

of standard power indices, like the Shapley-Shubik index, simply return a known index
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when they are applied to communication situations captured by the full graph; others

define ‘new’ power indices for unrestricted voting games. Analogously, following an idea

of Owen (1986), one might measure the advantageousness of particular network locations,

usually identified with the centrality of players in a communication graph, by applying a

power index for communication structures to a symmetric voting situation, i.e., a voting

rule such as simple majority or unanimity voting.

Table 3.1 reports the Myerson value MV , restricted Banzhaf index rBI, position

value PV and the average tree solution ATS for the communication structure shown in

figure 3.6 (adapted from Jackson, 2008, p. 38) and, respectively, simple majority voting

(q = 4), different supermajority rules (q = 5 and q = 6), and unanimity rule (q = 7).

It can be seen that the ranking of players depends on which symmetric voting rule is

applied. In particular, ties are created or broken in case of MV and rBI, and a strict

ordering is even reversed for ATS.

The most established amongst the many measures of centrality in social networks –

degree centrality, Katz prestige, and Bonacich or eigenvector centrality – rank players 3

and 5 as the most central, followed by player 4, and finally players 1, 2, 6, and 7 (Jackson,

2008, p. 43). This indicates one reason why we did not follow a tempting route to

the possible formalization of monotonicity with respect to communication possibilities:

namely, to require players’ power to be weakly increasing ceteris paribus in a given

measure of centrality. As table 3.1 indicates, none of the established indices would satisfy

this, at least for the most straightforward centrality measures.25 A second reason is that

many centrality measures are very sophisticated summaries of players’ communication

possibilities that themselves need to be checked against various intuitive notions of when a

25Established measures of network centrality could also play a role in the definition of monotonicity with

respect to weights. One could, e.g, demand that player i’s power is at least as great as j’s if wi ≥ wj

and both have equal centrality. However, being highly central but surrounded by low-weight players

may provide worse opportunities than being less central but having high-weight neighbors. Therefore,

it is problematic to base requirements for indices which provide a combined evaluation of the weight

and communication situation on independent measures of players’ communication possibilities and their

weights.
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Figure 3.6: The communication structure from Jackson (2008, p. 38) with four symmetric

voting rules

q = 4

i MVi rBIi PVi ATSi

1, 2, 6, 7 0.06 0.08 0.08 0.00

3, 5 0.17 0.23 0.22 0.00

4 0.42 0.36 0.27 1.00

q = 5

i MVi rBIi PVi ATSi

1, 2, 6, 7 0.03 0.05 0.02 0.00

3, 5 0.30 0.17 0.24 0.43

4 0.30 0.17 0.43 0.14

q = 6

i MVi rBIi PVi ATSi

1, 2, 6, 7 0.07 0.05 0.04 0.07

3, 5 0.24 0.08 0.21 0.29

4 0.24 0.08 0.35 0.14

q = 7

i MVi rBIi PVi ATSi

1, 2, 6, 7 0.14 0.02 0.07 0.14

3, 5 0.14 0.02 0.18 0.14

4 0.14 0.02 0.29 0.14

Table 3.1: Power for the communication structure and voting rules of figure 3.6

player should be regarded as more central, and as more influential a priori, than another

one. Recursing to them in the formalization of monotonicity of power in the context

of restricted communication would in our view be less transparent than the definitions

presented above. Still, future research might make useful attempts in this direction –

and perhaps come up with interesting new power indices by investigating extensions of

centrality measures to the domain of cooperative games with restricted communication.
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We set out in this paper to define notions of comparability for players and games

that are, first, not too restrictive and therefore trivial. Second, they should not be so

permissive as to render all of the established indices non-monotonic. And, third, they

should preserve at least some of the structural relations that connect local and global

monotonicity properties on the domain of unrestricted simple games and for games with

a priori unions. It has turned out that, in particular, the monotonicity notions which

relate to players’ communication possibilities are not as straightforward to define and to

relate at the local and global level as are corresponding notions for games with a priori

unions. This may be regarded as slightly disappointing, but it should not come as a big

surprise: as the plethora of measures which try to assess the centrality of a node in a social

network can attest, the comparison of two players’ respective sets of connections to other

players is considerably harder than that of their weights or a fixed bloc that they belong

to. This is the fundamental reason for examining several notions of local and global

monotonicity with respect to communication possibilities, which cannot unfortunately

be put into neat ‘A and B imply C’-relationships.

Regarding the monotonicity properties of established indices, we find that the Myerson

value and the restricted Banzhaf index are most in line with the notions of monotonicity

proposed in this paper. They satisfy all of the requirements that we have discussed here;

and when they violate yet more demanding restrictions, so do their peers. That the

position value – like the restricted Deegan-Packel and Public Good indices – violates

all of the monotonicities considered in this paper should call for some caution. This is

especially so since the lack of monotonicity with respect to communication possibilities

extends beyond simple games with a weighted voting representation; it applies to the

entire class of superadditive TU-games (cf. fn. 22). The position value is based on a sound

evaluation of the importance of individual links, but simply allocating the contributions

of links half-half to the involved nodes may produce quite puzzling player rankings.

The average tree solution does satisfy both weight monotonicities but none of the con-

sidered communication monotonicities. Again, this non-monotonicity a fortiori pertains

to the whole class of superadditive TU-games. It is, at least partly, due to the restric-
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tion to admissible rooted spanning trees. We show in the appendix that, in contrast

to the average tree solution of Herings et al. (2010), an alternative definition based on

all possible rooted spanning trees satisfies two of the suggested requirements at least in

situations in which no cycles are directly involved in player or game comparisons.

3.A Appendix. The Unrestricted Average Tree Solution

In the main text, we examined the average tree solution suggested by Herings et al. (2010).

It restricts the averaging to a particular class of admissible rooted spanning trees. Baron

et al. (2010), however, have introduced and axiomatized average tree solutions for all

possible classes of rooted spanning trees. In this appendix, we examine the monotonicity

properties of the ‘canonical’ unrestricted variant which is based on the class of all possible

rooted spanning trees.

Define the unrestricted average tree solution uATS by

uATSi(N, v, g) ≡ 1
|T ′Si,g

|
∑

(t,j)∈T ′Si,g

mv
i (t, j), i = 1, . . . , n, (3.14)

where Si ∈ N/g is the component containing i and T ′Si,g
is the set of all rooted spanning

trees on Si for g. uATS satisfies component efficiency and symmetry. It is also LW and

GW-monotonic (see fn. 21). In case of a unanimity game (N, v) with any graph g that

connects the grand coalition, uATS assigns equal power to each player (in contrast to

ATS, which does not do so and even violates the examined communication monotonicities

for unanimity games). The unrestricted average tree solution does not coincide with any

standard power index for the graph gN ; in particular, it then indicates positive power

for null players if there is no dictator.26

The unrestricted average tree solution satisfies LC at least when the communication

possibilities that a player i has in advance of j connect him only to players which would

otherwise, i.e., without the links he has in advance, belong to a different component.

Similarly, it satisfies GC+ at least when the additional neighbors of a player i in game g

26For a given null player i, the star h = {{i, j} | j 6= i} with i at its center is a spanning tree on N . In

rooted spanning tree (h, i), i has a positive marginal contribution, which implies uATSi(N, v, g
N ) > 0.
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are not a member of his component in g′. Before we turn to the formal result, note that

the average tree solution of Herings et al. (2010) does not satisfy LC or GC+ in these

situations: consider (N, v) = [2; 1, 1, 1, 0], i.e., simple majority voting amongst players

1, 2 and 3, with player 4 added as a null player. With a full graph g = g{1,2,3} on the

first three players, one obtains ATS(N, v, g) = (1
3 ,

1
3 ,

1
3 , 0). Then, with link {1, 4} added,

i.e., considering g′ = g ∪ {{1, 4}}, GC+ calls for player 1’s power to be weakly greater

with g′ than with g. Moreover, LC requires 1’s power to be no less than 2’s or 3’s with

communication structure g′. But ATS(N, v, g′) = (2
8 ,

3
8 ,

3
8 , 0) in violation of GC+ and

LC.

Proposition 3.12 Denote the component S ∈ N/g for which S 3 i by Si(g).

(i) For each (N, v, g) ∈ WG,

uATSi(N, v, g) ≥ uATSj(N, v, g)

holds for all players i and j for which there is g′ such that (a) Ni(g′) ⊆ Ni(g) and

Nk(g′)\{i} = Nk(g)\{i} for all k 6= i, (b) i and j are symmetric in (N, v, g′), and (c)

{k, k′} 6∈ g for all k ∈ Si(g)\Si(g′) and k′ ∈ Si(g′)\{i}.

(ii) For all (N, v, g), (N, v, g′) ∈ WG,

uATSi(N, v, g) ≥ uATSi(N, v, g′)

holds whenever (a) Ni(g) ⊇ Ni(g′) and Nj(g)\{i} = Nj(g′)\{i} for all j 6= i, and (b)

{k, k′} 6∈ g′ for all k ∈ Si(g)\Si(g′) and k′ ∈ Si(g′)\{i}.

Proof

(i) First, if Si(g) = Si(g′), then uATSi(N, v, g) = uATSj(N, v, g) by symmetry. So

assume Si(g) ⊃ Si(g′). Let π with π(i) = j be a permutation such that i and j are

symmetric in (N, v, g′). Without loss of generality, let π(k) = k for k 6∈ Si(g′). Every

spanning tree t on Si(g) can be uniquely partitioned into disjoint spanning trees t′ on

Si(g′) and t′′ on Si(g)\Si(g′)∪ {i}. And, conversely, the union of disjoint spanning trees

t′ on Si(g′) and t′′ on Si(g)\Si(g′)∪{i} yields a spanning tree on Si(g). Due to symmetry
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on Si(g′), also π(t′)∪ t′′ is a spanning tree on Si(g) and the transition from (t′ ∪ t′′, k) to

(π(t′) ∪ t′′, π(k)) constitutes a 1-to-1 mapping on T ′Si(g),g
. Now the inequality

mv
i (t
′ ∪ t′′, k) ≥ mv

i (t
′, i) = mv

j (π(t′), j) ≥ mv
j (π(t′), i) = mv

j (π(t′) ∪ t′′, k)

holds for any spanning tree (t′ ∪ t′′, k) on Si(g) and k ∈ Si(g)\Si(g′). And for k ∈ Si(g′)

we have

mv
i (t
′ ∪ t′′, k) = mv

j (π(t′) ∪ π(t′′), π(k)) ≥ mv
j (π(t′) ∪ t′′, π(k)).

It follows that uATSi(N, v, g) ≥ uATSj(N, v, g).

(ii) First, if Si(g) = Si(g′), then g = g′ such that, trivially, uATSi(N, v, g) =

uATSi(N, v, g′). So assume Si(g) ⊃ Si(g′). Every spanning tree t on Si(g) can be

uniquely partitioned into disjoint spanning trees t′ on Si(g′) and t′′ on Si(g)\Si(g′) ∪

{i}. And, conversely, the union of any disjoint spanning trees t′ on Si(g′) and t′′ on

Si(g)\Si(g′)∪{i} yields a spanning tree on Si(g). Consider a given spanning tree t = t′∪t′′

on Si(g) and note, first, that for any k ∈ Si(g′)

mv
i (t
′ ∪ t′′, k) ≥ mv

i (t
′, k).

Second, for k ∈ Si(g)\Si(g′) we have

mv
i (t
′ ∪ t′′, k) ≥ mv

i (t
′, i) = max

k∈Si(g′)
mv
i (t
′, k).

Thus it follows that the average marginal contribution for spanning tree t = t′∪ t′′, taken

over all roots k ∈ Si(g), is weakly greater than the average marginal contribution for

spanning tree t′, taken over all roots k ∈ Si(g′). Since every spanning tree t′ on Si(g′)

corresponds with a constant number |T ′Si(g)\Si(g′)∪{i},g| of spanning trees t = t′ ∪ t′′ on

Si(g), it follows that uATSi(N, v, g) ≥ uATSi(N, v, g). �

In view of the combinatorial difficulties involved with spanning trees in the pres-

ence of cycles, we do not have a conjecture regarding the satisfaction of LC or GC+

by uATS for arbitrary communication situations or arbitrary changes in communica-

tion possibilities, respectively. We know that the unrestricted average tree solution vio-

lates HC+, as the following example shows: consider three-player simple majority voting
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(N, v) = [2; 1, 1, 1] with cooperation structures g = {{1, 2}} and g′ = {{1, 2}, {2, 3}}.

Then uATS(N, v, g) = (1
2 ,

1
2 , 0) and uATS(N, v, g′) = (0, 1, 0). Player 3 does not profit

from their added communication possibility in the same way as player 2 does (in fact,

player 3 does not benefit at all). This is a violation of Myerson’s fairness property and,

therefore, also of HC+.
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Chapter 4

Veto Players and Non-Cooperative

Foundations of Power in Coalitional

Bargaining∗

Abstract In coalitional bargaining of the Baron-Ferejohn type, veto players

either hold all power and share it proportional to their recognition proba-

bilities, or hold no power at all. Hence, in this setting, it is impossible to

provide non-cooperative support for power indices which do not assign all or

no power to veto players. This highlights problems in the interpretation of

results of Laruelle and Valenciano (2008a,b) which are taken as support for

the Shapley-Shubik index and other normalized semi-values.

Keywords coalitional bargaining, power, veto players

JEL Classification C72, C78

∗Currently under review for Games and Economic Behavior, and available as PCRC working paper. I

thank Manfred J. Holler, Stefan Napel, and Maria Montero for very valuable comments.
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4.1 Introduction

An important and often raised question for cooperative solution concepts such as power

indices is whether they can be given non-cooperative support or, equivalently, non-

cooperative foundations. By this it is meant the existence of a non-cooperative game

which, firstly, resembles the cooperative situation at hand in a reasonable way and, sec-

ondly, possesses equilibria whose payoffs coincide with those selected by the solution

concept. As for power indices, the support of the Shapley-Shubik index (Shapley and

Shubik, 1954) has received the greatest attention. Foundations for the more general

Shapley value (Shapley, 1953), of which the Shapley-Shubik index is the restriction to

simple games, have been provided by Hart and Mas-Colell (1996) and Pérez-Castrillo

and Wettstein (2001), among others.1

Coalitional bargaining as introduced by Baron and Ferejohn (1989) and later extended

by Eraslan (2002) and Eraslan and McLennan (2006) considers in its non-cooperative

description of simple games only the most essential features of bargaining. For this

reason, it is of particular interest whether power indices can be supported in this setting.

Based on a result for the power of veto players, this note gives a partial, negative answer

to this question. In addition, it highlights problems in the interpretation of results of

Laruelle and Valenciano (2008a, and also 2008b, chapter 4.4) which are taken as support

for the Shapley-Shubik index and other normalized semi-values.

The note is organized as follows. Section 2 introduces coalitional bargaining and

existent results. The power of veto players is discussed in section 3. Section 4 defines

suitable notions and derives a negative result for the non-cooperative support of power

indices in coalitional bargaining.

1Gul (1989) provides another foundation for the Shapley value. However, his assumptions do not apply

to simple games, and hence his results cannot be interpreted as support for the Shapley-Shubik index.
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4.2 Coalitional Bargaining

This section presents coalitional bargaining games and existent results. Notations and

formulations partly more resemble Eraslan (2002) or Montero (2006), yet only Eraslan

and McLennan (2006) establish the results in this generality.

A coalitional bargaining game is given by a tuple (N,W, p, δ) where (N,W ) is a simple

game, i.e. N is the non-empty and finite set of players and W ⊆ 2N the set of winning

coalitions for which ∅ 6∈ W , S ∈ W implies T ∈ W for all T ⊇ S, and N ∈ W .

The protocol p = (pi)i∈N on N with p ≥ 0 and
∑

i∈N pi = 1 defines the recognition

probabilities of players, and δ with 0 ≤ δ < 1 is the discount factor common to all

players. Then, in every of possibly infinitely many rounds, one player i ∈ N is randomly

chosen as the proposer according to protocol p. Proposer i chooses a feasible coalition

S ∈ Wi = {S ∈ W |S 3 i} and suggests a split of a unit surplus between the members

of S. In some arbitrary order, all respondents j ∈ S\{i} vote on acceptance or rejection

of this offer. Unless all respondents agree, the game proceeds to the next round and

future payoffs are discounted by δ. If respondents agree unanimously, the suggested split

is implemented and the game ends. In addition, players are assumed to be risk-neutral,

i.e. payoffs equal the (possibly discounted) shares received, and to have complete and

perfect information.

Now, restrict attention to stationary strategies for which actions do not depend on past

rounds. Thus, equilibrium strategies can be characterized by the corresponding (and as

well stationary) payoffs v = (vi)i∈N that players expect before any round. Facing the

choice of a coalition, proposer i chooses a coalition according to his selection distribu-

tion λi = (λiS)S∈Wi with positive probability only on feasible coalitions S ∈ Wi which

have maximum excess 1 −
∑

j∈S δvj . Having chosen coalition S, proposer i offers any

respondent j ∈ S\{i} that player’s continuation value δvj , himself receiving his own

continuation value δvi plus the coalition’s excess 1−
∑

j∈S δvj . Irrespective of proposer

or coalition, a respondent j accepts any share equal to or greater than his continuation

value δvj .
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Thus, payoffs v are supported by a stationary subgame perfect equilibrium (SSPE) with

selection distributions (λi)i∈N if and only if, for all i ∈ N ,

vi = pi
∑
S∈Wi

λiS(1−
∑
j∈S

δvj) +
∑
j∈N

pj
∑

S∈Wi∩Wj

λjSδvi (4.1)

and λi = (λiS)S∈Wi puts positive probability only on feasible coalitions S ∈Wi that have

maximum excess 1 −
∑

j∈S δvj . Eraslan and McLennan (2006) show the existence of a

SSPE and the uniqueness of corresponding payoffs. As follows from above characteriza-

tion of stationary equilibrium strategies, all SSPE are efficient (
∑

i vi = 1) and there is

no delay of agreement.

4.3 The Power of Veto Players

Given simple game (N,W ) and protocol p on N , denote ξ(N,W, p) = (ξi(N,W, p))i∈N

as the limit of SSPE payoffs in coalitional bargaining games (N,W, p, δ) as δ → 1.2 Very

commonly, ξi(N,W, p) is interpreted as the (bargaining) power of player i ∈ N . A veto

player i ∈ N is a member of all winning coalitions, i ∈ S for all S ∈ W . Denote the set

of veto players by V .

Proposition 4.1 Let (N,W ) be a simple game and p a protocol on N . Assume the set of

veto players V is non-empty and pi > 0 for some i ∈ V . Then veto players hold all power

and share it proportional to their recognition probabilities, ξi(N,W, p) = pi/
∑

j∈V pj for

all i ∈ V . In particular, all other players have no power, ξi(N,W, p) = 0 for all i 6∈ V .3

Proof The proposition is shown in two steps, (i) pjξi(N,W, p) = piξj(N,W, p) for

all i, j ∈ V and then (ii)
∑

i∈V ξi(N,W, p) = 1. The two statements combined yield

ξi(N,W, p) = pi/
∑

j∈V pj for all i ∈ V .

i) For an arbitrary discount factor δ, consider coalitional bargaining game (N,W, p, δ)

with SSPE payoffs v and selection distributions (λi)i∈N . For a veto player i ∈ V ,

2The theorem of the maximum ensures that the unique payoffs are continuous in δ. Hence, the limit

of payoffs as δ → 1 exists.
3Note that, in footnote 9 of her paper, Montero (2006) also claims, however does not proof, that veto

players hold all power.
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∑
j∈N pj

∑
S∈Wi∩Wj

λjS = 1 and the optimality of i’s selection distribution λi allow

to write (4.1) as vi = pi maxS∈W (1 −
∑

j∈S δvj)/(1 − δ). Thus, for all i, j ∈ V ,

pjvi = pivj and, as δ → 1, pjξi(N,W, p) = piξj(N,W, p).

ii) Fix i ∈ V with pi > 0. Without loss of generality, assume the selection distributions

of players are continuous in δ and denote λ∗j = (λ∗jS)S∈W as the limit of selection

distributions of any player j ∈ N as δ → 1. The limit of i’s equation system (4.1)

for δ → 1 then reads

ξi(N,W, p) = pi
∑
S∈Wi

λ∗iS(1−
∑
j∈S

ξj(N,W, p)) +
∑
j∈N

pj
∑

S∈Wi∩Wj

λ∗jSξi(N,W, p).

Noticing
∑

j∈N pj
∑

S∈Wi∩Wj
λ∗jS = 1 yields

∑
S∈Wi

λ∗iS(1−
∑

j∈S ξj(N,W, p)) = 0.

Given this, Wi = W and the optimality of λ∗i require
∑

j∈S ξj(N,W, p) = 1 for all

S ∈W . Now, for all j 6∈ V , there is S ∈W with S 63 j and thus ξj(N,W, p) = 0. In

particular,
∑

j∈V ξj(N,W, p) = 1. �

Infinitely patient and able to block all proposals, veto players can play off the remaining

players against each other to an extent that none of the latter can expect any positive

share from bargaining. To do so, however, veto players themselves need an at least

arbitrarily small possibility to make offers. In the case of V being non-empty but pi = 0

for all i ∈ V , the power ξi(N,W, p) of any veto player i ∈ V is 0.4

4.4 On the Support of Power Indices

Denote a protocol scheme p as a mapping which assigns to every simple game (N,W )

a protocol p(N,W ) = (pi(N,W ))i∈N on N . Thus, ξ(N,W, p(N,W )) is the bargaining

power supported by protocol scheme p for simple game (N,W ). A power index f is a

mapping which assigns a distribution of power f(N,W ) = (fi(N,W ))i∈N to every simple

game (N,W ).

4 In any coalitional bargaining game (N,W, p, δ), the payoff of any player i ∈ N with pi = 0 is zero,

vi = 0 (see for instance Eraslan and McLennan, 2006). This of course translates to i’s power for simple

game (N,W ) and protocol p.

83



Veto Players and Non-Cooperative Foundations of Power in Coalitional Bargaining

Then, protocol scheme p supports power index f if ξ(N,W, p(N,W )) = f(N,W )

for every simple game (N,W ). Proposition 4.1 and the subsequent comment yield the

following corollary.

Corollary 4.2 There exists no protocol scheme supporting any power index that does

not assign all or no power to veto players.

In particular, coalitional bargaining as considered here does not allow for support of the

Shapley-Shubik index or the (normalized) Banzhaf index (Banzhaf, 1965), Deegan-Packel

index (Deegan and Packel, 1978), or Public Good Index (Holler, 1982). However, there

is the possibility that other solution concepts which do ascribe all power to veto players

can be supported by suitable protocol schemes. For instance, Montero (2006) shows the

nucleolus (Schmeidler, 1969) is even self-confirming, i.e. it is supported by the protocol

scheme which assigns the nucleolus itself as the protocol.

Corollary 4.2 also highlights a misinterpretation of results of Laruelle and Valenciano

(2008a, and also 2008b, chapter 4.4). They investigate non-cooperative bargaining as

in this note, apart from two exceptions. Firstly, they more generally allow for non-

transferable utility, and secondly, they deal with unanimity bargaining only. In this

setting, they consider the Shapley-Shubik index (and other normalized semi-values) of

an arbitrary simple game as the protocol and find it then also emerging as bargaining

power.5 At first sight, the result itself suggests to be taken as non-cooperative support.

The authors seem to understand it this way as well and even say ‘[it] provides a nonco-

operative interpretation of any reasonable power index’ (Laruelle and Valenciano, 2008a,

p. 352). Only note that, in the particular case of unanimity bargaining with transferable

utility, power is always given by the recognition probabilities: proposition 4.1 implies

ξ(N, {N}, p) = p for all sets of players N and arbitrary protocols p on N . So any non-

negative and normalized power index, be it ‘reasonable’ or not, could hence be supported

5 In the more general case of non-transferable utility, bargaining power materializes as the weights

of the asymmetric Nash-solution, the latter arising as the limit of payoffs when players grow infinitely

patient. In the particular case of transferable utility, bargaining power then again corresponds with

payoffs exactly as in this note.
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by using it as a protocol scheme. However, this approach does not seem adequate. The

modeling of an arbitrary voting situation as unanimity bargaining typically bears an

incongruence that, as the results of this note show, can matter significantly.
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Chapter 5

Coalitional Bargaining with Markovian

Proposers∗

Abstract The paper generalizes coalitional bargaining of the Baron-Ferejohn

type (Eraslan and McLennan, 2006) to non-independent proposers. Widening

the scope of possible proposer dynamics significantly, this allows for likely con-

tinued offers, alternating offers (Calvó-Armengol, 2001b), and deterministic

dynamics such as clockwise rotation of proposers (Herrero, 1985). Existence

of stationary subgame perfect equilibria is shown as well as non-uniqueness

of corresponding payoffs. In addition, generalizing a result of Nohn (2010),

we show that veto players hold all bargaining power in case of almost all

protocols.

Keywords coalitional bargaining, Markov process, subgame perfect equilib-

rium, stationary strategies, power, veto players

JEL Classification C72, C78
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5.1 Introduction

In coalitional bargaining as introduced in Baron and Ferejohn (1989), multiple players

bargain non-cooperatively on the division of a unit surplus that can be generated once

by one of given feasible coalitions. In every of possibly infinitely many rounds, one player

is assigned the role of the proposer according to some random protocol. The proposer

can offer a split of the value of 1 to one of the feasible coalitions. If all respondents,

which are the other members of that coalition, accept the proposer’s offer, the surplus is

split accordingly and the game ends. If respondents do not agree unanimously, the game

proceeds to the next round and all possible future payoffs are discounted.

Baron and Ferejohn (1989) consider a simple majority rule defining the feasible coali-

tions, yet the model has been successively extended. Eraslan (2002) more generally allows

for any kind of majority rule with symmetric voters, and Eraslan and McLennan (2006)

implement arbitrary sets of feasible coalitions. Applying the Baron-Ferejohn model to

apex games, Montero (2002) finds that equilibrium payoffs coincide with the kernel of

the grand coalition if the probabilities for being proposer are either equal or proportional

to voting weights. Montero (2006) shows that the nucleolus of a simple game is self-

confirming in the respective Baron-Ferejohn bargaining game, that is, it is obtained as

the equilibrium payoffs whenever it is also used as the protocol. Also, there are models

building on Baron and Ferejohn (1989) in other ways than Eraslan and McLennan (2006).

Banks and Duggan (2000) provide a generalization to a multidimensional spatial model.

Okada (1996) considers arbitrary superadditive transferable-utility games underlying the

non-cooperative bargaining game, and Miyakawa (2009) investigates non-superadditive

bargaining situations.

This paper sets out to extend coalitional bargaining of Eraslan and McLennan (2006).

Instead of modifying which coalitions can be feasible (which has been exhaustively done)

or which values coalitions can have, we relax one key assumption common to all above

models. While we still rely on, except for degenerated cases, protocols that are random,

we waive the assumption that proposers are chosen independently in different rounds. In

a Markovian way, the probability distribution for the choice of a proposer is allowed to
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Figure 5.1: SSPE payoffs of example 5.1 with the independent protocol (left) and the

alternating protocol (right)

depend on the identity of the proposer as well as the coalition of the previous round.

Compared to coalitional bargaining with independent proposers, the scope of possible

dynamics is widened significantly. The non-independence of proposers for instance allows

for likely continued offers in the sense that a proposer can have increased chances of

making a new offer in case his current one is rejected. Not less plausible, respondents can

have greater than normal probability of making an offer in the next round. Taking this to

the extreme where only respondents have the chance of being proposer in the next round,

our model incorporates the proposer dynamics of Calvó-Armengol (2001a,b). The two

papers model bilateral bargaining among multiple players and, as such, are extensions of

the alternating offer model of Rubinstein (1982). However, in contrast to our model, they

only consider exogenous matching of proposer and respondent (Calvó-Armengol, 2001a)

or deterministic, non-random selection of bargaining partners (Calvó-Armengol, 2001b).

Finally, degenerated Markovian dynamics can implement deterministic protocols such as

clockwise rotation of proposers in Herrero (1985), a multilateral extension of Rubinstein

(1982) with unanimity bargaining.

To see what qualitative impact the choice of protocol can make, compare the two

canonical protocols as in the following example.

Example 5.1 Let there be three players c, s1, and s2 such that central player c can

generate the unit surplus with either of the two minor players s1 or s2. Consider, on the
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one hand, the protocol where all players are chosen as the proposer in all rounds with

equal probability (and thus, in fact, independently). On the other hand, as in Calvó-

Armengol (2001a,b), let all players be proposer in the first round with equal probability

and, in all subsequent rounds, let the respondent of the previous round take the role of

the proposer. In addition, let all players have a common unconditional discount factor

δ, 0 ≤ δ < 1. Figure 5.1 shows (stationary subgame perfect) equilibrium payoffs vc of

player c and vs of players s1 or s2 as a function of δ. Both equilibria are symmetric

in that player c proposes to both minor players s1 and s2 with equal probability. In the

case of the independent protocol, player c holds all power (as which payoffs are usually

interpreted when players grow infinitely patient, that is, when δ → 1). However, he only

holds half of the power if proposers are chosen according to the alternating protocol.

The example shows a great sensitivity of the equilibrium payoffs with respect to modeling

assumptions and calls for caution in the comparison of models with different proposer

dynamics. Throughout the literature, one frequently encounters misleading statements

such as one model (typically one that considers independent random proposers) ‘extends’

another one (typically Rubinstein, 1982), irrespective of whether both models are based

on the same proposer dynamics.1 The results in a model with independent random

proposers are not, however, necessarily equivalent to results one would obtain from a

respective extension of Rubinstein (1982) that has, for instance, alternating or clockwise

rotating proposers.

In addition, the example raises the question of whether such qualitative differences

persist in general and, if yes, in what way. More particularly even, it highlights the

possibility of non-cooperative support for power indices in this extended framework.

For the case of independent proposers, Nohn (2010) shows that veto players hold all

1Okada (1996) claims to extend the alternating offer bargaining model of Rubinstein (1982) while he

in fact uses an independent random protocol. Similarly, Montero (2006) says that Baron and Ferejohn

(1989), and thus also herself, ‘build on’ Rubinstein (1982). Laruelle and Valenciano (2008a) suggest they,

by generalizing Binmore (1987), connect Nash (1950) and Rubinstein (1982). Binmore (1987), however,

considers several variations of Rubinstein (1982), and it is only one particular variation with independent

random proposers that is generalized Laruelle and Valenciano (2008a).

89



Coalitional Bargaining with Markovian Proposers

bargaining power and share it proportional to their recognition probabilities, or hold no

power at all. Non-cooperative support for power indices in the Baron-Ferejohn model

with independent proposers is hence restricted to power indices that assign all or no power

to veto players. This, unfortunately, excludes support for popular indices such as the

Shapley-Shubik index (Shapley and Shubik, 1954).2,3 For the voting game underlying

example 5.1, the Shapley-Shubik index amounts to 2/3 for player c and 1/6 for both

minor players s1 and s2. It could hence be supported by a suitable protocol somewhere

‘between’ the independent and alternating protocol if only the limit of payoffs behaved

‘sufficiently continuous’ in the proposer dynamics.

The remainder of the paper is organized as follows. Section 5.2 defines our extension

of coalitional bargaining games to non-independent proposers. A characterization of sta-

tionary subgame perfect equilibria (SSPE), the solution concept we apply, is provided in

section 5.3. Section 5.4 presents and proofs the existence of SSPE for all coalitional bar-

gaining games and some basic proprties of the corresponding payoffs. The non-uniqueness

of the payoffs, in contrast to the case of independent proposers (Eraslan and McLennan,

2006), is shown in section 5.5. Section 5.6 provides and discusses a statement that veto

players hold all power with almost all protocols, and section 5.7 concludes.

5.2 The Coalitional Bargaining Game

Let N be the non-empty and finite set of players. By W ⊆ 2N we denote the set of

feasible coalitions, i.e. those coalitions able to generate a surplus of 1. We assume that

the empty coalition is not feasible, ∅ 6∈ W , and that for every player i ∈ N his set of

feasible coalitions Wi = {S ∈ W |S 3 i} is non-empty.4 We call any pair (i, S) where

2Nohn (2010) makes this point in particular to argue that it is not reasonable to interpret the results

of Laruelle and Valenciano (2008a) as non-cooperative support for the Shapley-Shubik index.
3This contrasts with results for models that incorporate more sophisticated features of bargaining.

Hart and Mas-Colell (1996) or Pérez-Castrillo and Wettstein (2001) support the Shapley value (Shapley,

1953), and thus in particular also the Shapley-Shubik index.
4As in Eraslan and McLennan (2006), it is equally possible to just have non-empty sets of feasible

coalitions Wi, i ∈ N , which satisfy S 3 i for all S ∈ Wi and all i ∈ N . These sets of different players
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i ∈ N is a player and S ∈Wi one of player i’s feasible coalitions a match and denote the

set of matches by M . The protocol is a collection P = (p, (pjT )(j,T )∈M ) that defines the

recognition probabilities for the assignment of proposers. In this, p = (pi)i∈N with p ≥ 0

and
∑

i pi = 1 is the initial protocol for the choice of a proposer in the first round. In

any subsequent round, the recognition probabilities depend on the match of the previous

round. We call pjT = (pjTi )i∈N with pjT ≥ 0 and
∑

i p
jT
i = 1 the conditional protocol for

match (j, T ) ∈M .5 In addition, players have a common discount factor δ with 0 ≤ δ < 1

by which future payoffs are discounted in case of a delay of one round.6,7

do not need to be related in any particular way. That is, in contrast to our definition, it does not have

to hold that S ∈ Wj for all j ∈ S for all feasible coalitions S ∈ ∪i∈NWi. Also with this less restrictive

definition of feasible coalitions, all statements of sections 5.3 and 5.4 remain valid and can be proven

accordingly and without any further effort.
5As a natural approach to non-independent protocols, consider that players attempt to make offers with

rates depending on their current role in bargaining. More specifically, players independently attempt

to make offers after exponentially distributed waiting times, and the player trying first initiates the

next round as the proposer. For each player i ∈ N , let (oi, o
p
i , o

r
i , o

n
i ) denote the nonnegative offering

rates for the first round, for previously being proposer, respondent, or not being involved in bargaining,

respectively (in case a rate is 0, the respective player does not make offers in that particular situation).

Assume the initial total offering rate ō =
∑

i∈N oi as well as all conditional total offering rates ōjT =

op
j +

∑
k∈T\{j} o

r
k +

∑
k∈N\T o

n
k , (j, T ) ∈ M , are positive. Then, in the first round, pi = oi/ō, i ∈ N .

For all rounds following a match (j, T ) ∈ M , pjT
i = op

i /ō
jT for previous proposer i = j, pjT

i = or
i /ō

jT

for previous respondents i ∈ T\{j}, and pjT
i = on

i /ō
jT for players i ∈ N\T not previously involved in

bargaining.
6 It is equally possible to assume individual and conditional discount factors. One then has a collection

of discount factors (δjT
i )i∈N,(j,T )∈M such that the payoff of player i ∈ N is discounted by δjT

i after any

round with match (j, T ) ∈ M . A collection of conditional discount factors thus allows to incorporate

individual time preferences and delays that depend, for instance, on the size of the coalition. While

conditional discount factors might thus in fact have an impact on the selection behavior of proposers, we

do not incorporate them in the model due to a lack of respective analytical statements concerning, for

instance, monotonicities. All statements of sections 5.3 and 5.4, however, can be modified accordingly

and proven analogously without any further effort.
7With respect to footnotes 5 and 6, assume that players i ∈ N have offering rates (oi, o

p
i , o

r
i , o

n
i ) and

unit discount factors δi, 0 ≤ δi < 1, for the discount of payoffs in a unit time interval. For convention,

let ln(0) = −∞ and 1/∞ = 0. Conditional discount factors then arise as the expected discount between

two rounds and amount to δjT
i = ōjT /(ōjT − ln(δi)) for all (j, T ) ∈M , i ∈ N .
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A coalitional bargaining game is defined by the tuple (N,W,P, δ) containing the set

of players N , the set of feasible coalitions W , the protocol P , and the discount factor

δ. Then, in any of possibly infinitely many rounds, a player i ∈ N is chosen to be

the proposer for which the recognition probabilities are given by the initial protocol

p = (pi)i∈N in the first round or by conditional protocols pjT = (pjTi )i∈N after rounds

with match (j, T ) ∈ M , respectively. Proposer i selects one of his feasible coalitions

S ∈ Wi. He suggests a division of the surplus of 1 between him and the respondents

k ∈ S\{i}. The respondents decide in some arbitrary order - which one is irrelevant - on

the proposal’s acceptance or rejection.8 If at least one respondent rejects the offer, the

game proceeds to the next round and all future payoffs are discounted according to the

discount factor δ. Unanimous acceptance, however, leads to the respective division and

terminates the game.

As additional assumptions, we let all players be risk-neutral and identify their utility

with the share they receive. Also, players have complete and perfect information, and

everything is common knowledge.

5.3 Characterization of Stationary Subgame Perfect

Equilibra

Since games of this kind typically have a multiplicity of equilibria and corresponding

payoffs (see for instance the simple majority case in Baron and Ferejohn, 1989), we follow

the literature in that we restrict attention to stationary strategies, and hence solve for

stationary subgame perfect equilibria (SSPE). While the plausibility of this restriction

is certainly open for debate, note that SSPE do not only constitute subgame perfect

equilibria in the class of stationary strategies but, more generally, also in the class of all

possible strategies.9

Strategies of players are stationary whenever actions are both time-homogeneous and

8Note that the decision order might not be irrelevant if the protocols are allowed to be conditioned on

the identities of those respondents that reject on offer.
9This holds in general for Markov strategies, see Fudenberg and Tirole (1991, p. 501).
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independent of previous rounds. In contrast to coalitional bargaining models which use

independent proposers, we yet allow for actions depending on the current match. In any

round, a player i ∈ N who has been chosen as the proposer selects a feasible coalition

S ∈ Wi according to a stationary coalition distribution λi = (λiS)S∈Wi . Conditional on

having selected coalition S ∈ Wi, he suggests a split xiS = (xiSk )k∈S of the surplus of 1

between the members of that coalition. The decisions about acceptance or rejection of

respondents k ∈ S\{i} depend only on the offer itself and the current match (i, S) ∈M .

Strategies being stationary, the payoffs players expect before any round at most de-

pend on the match of the last round. Given current match (j, T ) ∈ M , denote by

vjT = (vjTi )i∈N the conditional payoffs of players before next round. By v = (vi)i∈N we

denote the payoffs players expect before the game. Stationarity allows to characterize

the strategies by the corresponding conditional payoffs.

Proposition 5.2 SSPE strategies are characterized by the corresponding conditional

payoffs (vjT )(j,T )∈M as follows.

(i) Given current match (i, S) ∈ M , respondents k ∈ S\{i} accept any share xiSk not

exceeded by their continuation value δviSk .10,11

(ii) Having chosen coalition S ∈ Wi, proposer i ∈ N offers any respondent k ∈ S\{i}

that player’s continuation value, xiSk = δviSk , and his own share amounts to xiSi =

1−
∑

k∈S\i δv
iS
k .

(iii) Any player i ∈ N uses a coalition distribution λi with positive probability only on

coalitions S ∈Wi which maximize 1−
∑

k∈S\{i} δv
iS
k .

10Here, it is crucial that respondents do not decide simultaneously but successively in some arbitrary

order. Simultaneous decisions of two or more respondents allow arbitrary threats to the proposer as in

Haller (1986).
11Note there are SSPE in which respondents decide differently. This is possible, however, only where

another respondent already has, or certainly will, reject an offer. Hence, all these SSPE are equivalent

in outcome and payoffs.
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Proof

(i) Consider proposer i ∈ N suggesting split (xiSk )k∈S to coalition S ∈Wi. Respondents

decide in some arbitrary order on the proposal’s acceptance. In case that any respondent

rejects, respondent k ∈ S\{i} alternatively expects δviSk by continuation of the game in

the next round. So acceptance (rejection) is a best response for respondent k ∈ S\{i} in

case that xiSk > δviSk (xiSk < δviSk ) and it is a strictly best action if and only if all previous

and subsequent respondents accept. Being offered his reservation value, xiSk = δviSk , the

respondent is indifferent and can well accept (and, in fact, acceptance in this case is

necessary to find a best action for the proposer in (ii), and thus for the existence of a

SSPE).

(ii) Consider a proposer i ∈ N making an offer to coalition S ∈Mi. Given respondents’

behavior according to (i), offering xiSk = δviSk to all respondents k ∈ S\{i} and keeping

xiSi = 1 −
∑

k∈S\{i} δv
iS
k for himself is the most profitable among all accepted offers.

Moreover, due to 1 −
∑

k∈S\{i} δv
iS
k > δviSi , making this offer is strictly better than

continuation of the game in the next round due to a rejected offer.

(iii) Follows directly given later behavior as described by (i) and (ii). �

Note that, unlike in the case with independent proposers, proposer i ∈ N does not

typically choose a coalition S ∈ Wi with maximum excess 1 −
∑

k∈S δv
iS
k . Since his

continuation value δviSi possibly depends on S, maximization of the excess 1−
∑

k∈S δv
iS
k

is not necessarily equivalent to the maximization of his share 1 −
∑

k∈S\{i} δv
iS
k . Thus,

depending on the protocol, it is even possible that players propose to coalitions which

are not minimal.12

By proposition 5.2, any stationary subgame perfect equilibbrium is fully described by

its conditional payoffs (vjT )(j,T )∈M and coalition distributions (λi)i∈N . The following

proposition gives a necessary and sufficient condition for when conditional payoffs and

12Consider N ∈ W and a protocol P with piN
i = 1, i ∈ N . In this case, proposing to the grand

coalition would make a player be the proposer in the next round with certainty. Then being the only

possible proposer when always offering to the grand coalition, any player could then expect the whole

unit surplus, compare proposition 5.5. Thus, this selection behavior is subgame perfect.
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coalition distributions are supported by a SSPE.

Proposition 5.3 A collection of conditional payoffs (vjT )(j,T )∈M is supported by a SSPE

with coalition distributions (λi)i∈N if and only if

for all matches (j, T ) ∈M and all i ∈ N it holds

vjTi = pjTi
∑
S∈Wi

λiS(1−
∑

k∈S\{i}

δviSk ) +
∑

k∈N\{i}

pjTk

∑
S∈Wk:S3i

λkSδv
kS
i (5.1)

and for all i ∈ N it holds that λi maximizes∑
S∈Wi

λiS(1−
∑

k∈S\{i}

δviSk ) (5.2)

given constraints λi ≥ 0 and
∑

S∈Wi
λiS = 1.

Proof

(Only if.) Let conditional expectations (vjT )(j,T )∈M and coalition distributions (λi)i∈N

be supported by an SSPE. Then strategies according to proposition 5.2 yield conditional

payoffs as in (5.1) and coalition distributions satisfying (5.2).

(If.) Assume (vjT )(j,T )∈M and (λi)i∈N satisfy (5.1) and (5.2) and consider strategies as

follows. Let coalition distributions be given by (λi)i∈N . Given player i ∈ N proposes to

coalition S ∈Wi, let him offer δviSk to any respondent k ∈ S\{i} and keep the remaining

1−
∑

k∈S\{i} δv
iS
k for himself. Let respondents k ∈ S\{i} accept any share not exceeded

by their reservation value δviSk . Due to (5.1), these strategies generate conditional payoffs

again given by (vjT )(j,T )∈M . Thus, from (5.2) and proposition 5.2 it follows that these

strategies constitute a SSPE. �

Note that, for given coalition distributions, conditional payoffs correspond in a one-

to-one fashion with the offers made. Also, conditional payoffs vjTi where (j, T ) ∈ M

and i 6∈ T\{j} are redundant in the equilibrium characterization and one can restrict

attention to the conditional payoffs of previous respondents, vjTi for which (j, T ) ∈M and

i ∈ T\{j}. Thus, a stationary equilibrium characterization based on conditional payoffs

is equivalent to a characterization based on offers as in Calvó-Armengol (2001a,b).
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5.4 Existence of Stationary Subgame Perfect Equilibra

The propositions of the previous section allow for the following statement.

Theorem 5.4 In any coalitional bargaining game (N,W,P, δ), there exists a stationary

subgame perfect equilibrium.

Proof We prove the theorem in three stages. We first show, (i), that for any given

collection of coalition distributions (λi)i∈N , there is one unique solution (vjT )(j,T )∈M to

equation system (5.1). Then, (ii), any such solution constitutes a collection of nonneg-

ative and normalized vectors and is hence feasible as a collection of conditional payoffs.

Finally, (iii), Kakutani’s fixed-point theorem is applied to show the mutual existence of

(vjT )(j,T )∈M and (λi)i∈N such that (5.1) and (5.2).

(i) For a given collection of coalition distributions (λi)i∈N , assume there are two dis-

tinct solutions (vjT )(j,T )∈M and (wjT )(j,T )∈M to equation system (5.1). For any match

(k, S) ∈ M , denote NkS
+ = {i ∈ N |vkSi − wkSi > 0} and fix one match (j, T ) ∈ M such

that
∑

i∈NjT
+

(vjTi − wjTi ) is maximal among all
∑

i∈NkS
+

(vkSi − wkSi ), (k, S) ∈ M . In

particular, it holds

∑
i∈NjT

+

(vjTi − w
jT
i ) >

∑
i∈S∩NjT

+

δ(vkSi − wkSi )

for all (k, S) ∈ M . Also note that from (5.1) it follows
∑

i∈N v
kS
i = 1 for all (k, S) ∈

M . Thus,
∑

i∈N (vkSi − wkSi ) = 0 for all (k, S) ∈ M and hence
∑

i∈NjT
+

(vjTi − w
jT
i ) ≥

−
∑

i∈N\NkS
+

(vkSi − wkSi ) for all (k, S) ∈M . In particular,

∑
k∈NjT

+

(vjTk − w
jT
k ) > −

∑
k∈S\NjT

+

δ(viSk − wiSk )

for all (i, S) ∈M . Thus, summing up equation system (5.1) over i ∈ N jT
+ for both v and

w and considering the difference, we find the following contradiction.
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∑
i∈NjT

+

(vjTi − w
jT
i )

=−
∑
i∈NjT

+

∑
S∈Wi

pjTi λiS
∑

k∈S\NjT
+

δ(viSk − wiSk )

+
∑

k∈N\NjT
+

∑
S∈Wk

pjTk λkS
∑

i∈S∩NjT
+

δ(vkSi − wkSi )

<
∑
i∈NjT

+

∑
S∈Wi

pjTi λiS
∑

k∈NjT
+

(vjTk − w
jT
k )

+
∑

k∈N\NjT
+

∑
S∈Wk

pjTk λkS
∑
i∈NjT

+

(vjTi − w
jT
i )

=
∑
i∈NjT

+

(vjTi − w
jT
i )

Hence, linear equation system (5.1) always has a unique solution.

(ii) Consider any given collection of coalition distributions λ = (λi)i∈N . For any match

(j, T ) ∈M and player i ∈ N , define the mapping f jTi by

f jTi ((xj
′T ′

i′ )(j′,T ′)∈M,i′∈N )

= pjTi
∑
S∈Wi

λiS(1−
∑

k∈S\{i}

δxiSk ) +
∑

k∈N\{i}

pjTk

∑
S∈Wk,S3i

λkSδx
kS
i .

In case that (xj
′T ′

i′ )i′∈N is a nonnegative and normalized vector for any match (j′, T ′) ∈

M , then also (f jTi ((xj
′T ′

i′ )(j′,T ′)∈M,i′∈N )i∈N is nonnegative and normalized for any match

(j, T ) ∈ M . From f ’s continuity and Brouwer’s fixed-point theorem, it follows the exis-

tence of a collection (vjTi )(j,T )∈M,i∈N of nonnegative and normalized vectors which con-

stitutes a fixed-point of (f jTi )(j,T )∈M,i∈N or, equivalently, which satisfies linear equation

system (5.1).

(iii) For any given collection of coalition distributions λ = (λi)i∈N , denote by v̄jT (λ) =

(v̄jTi (λ))i∈N for every match (j, T ∈ M) the corresponding conditional payoff vector re-

sulting from linear equation system (5.1). For any collection of conditional payoff vectors

(vjT )(j,T )∈M , denote by λ̄((vjT )(j,T )∈M ) the set of collections of coalition distributions
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solving optimization problem (5.2). By the theorem of the maximum, λ̄((vjT )(j,T )∈M )

is upper semi-continuous in (vjT )(j,T )∈M . Since (v̄jT (λ))(j,T )∈M is continuous, also

λ̄((v̄jT (λ))(j,T )∈M ) is upper semi-continuous. Kakutani’s fixed-point theorem ensures

the existence of a collection of coalition distributions λ∗ with λ∗ ∈ λ̄((v̄jT (λ∗))(j,T )∈M ).

By construction, the pair (v̄jT (λ∗))(j,T )∈M and λ∗ satisfy linear equation system (5.1) and

optimization problem (5.2) and hence are, by proposition 5.3, supported by a SSPE. �

The (ex-ante) payoffs v in a SSPE with conditional payoffs (vjT )(j,T )∈M and coalition

distributions λ = (λi)i∈N then amount, for i ∈ N , to

vi = pi
∑
S∈Wi

λiS(1−
∑

k∈S\{i}

δviSk ) +
∑

k∈N\{i}

pk
∑

S∈Wk:S3i
λkSδv

kS
i . (5.3)

This and the equilibrium condition for conditional payoffs, proposition 5.3, give rise to

the following basic properties of SSPE payoffs.

Proposition 5.5

(i) There is no delay of equilibrium and all SSPE are efficient,
∑

i∈N vi = 1.

(ii) For all i ∈ N , if pi > 0, then vi > 0.

(iii) For all i ∈ N , if pi = 0 and pjTi = 0 for all (j, T ) ∈M , then vi = 0.

Proof

(i) Follows from proposition 5.3 and by summing up equation (5.3) over all i ∈ N .

(ii) From equation (5.1), it is
∑

i∈N v
jT
i = 1 for all (j, T ) ∈ M . Hence, 1 −∑

k∈S\{i} δv
iS
k > 0 for all S ∈Wi. Thus, if pi > 0, then vi > 0.

(iii) Let pkSi = 0 for all (k, S) ∈ M and choose a particular (j, T ) ∈ M for

which vjTi is maximal among all vkSi , (k, S) ∈ M . Equation (5.1) reads vjTi =∑
k∈N\{i} p

jT
k

∑
S∈Wk:S3i λkSδv

kS
i which implies vjTi ≤ δvjTi . This can be satisfied

only by vjTi = 0, and thus also vkSi = 0 for all (k, S) ∈ M . If in addition pi = 0, then

equation (5.3) yields vi = 0. �

Part (i) of the property states that players reach an agreement in the first round and

share the entire unit surplus. Parts (ii) and (iii) constitute the analogues to the fact that,
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in the case of independent proposers, a player expects a positive share from bargaining

if and only if he has the chance of making offers. In our model, it is sufficient for a

positive ex-ante payoff to have the chance of being proposer in the first round, even if all

conditional recognition probabilities are zero. To have an ex-ante payoff of zero, however,

requires more than not having the chance of being proposer in the first round – a player

must also not expect a positive share from being respondent. The latter is given, for

instance, whenever all conditional recognition probabilities are zero.

Other candidates for properties typically include monotonicities of SSPE payoffs.

Eraslan (2002) shows that, in case of independent proposers and a symmetric voting rule

defining the feasible coalitions, payoffs are weakly monotonic in the respective recognition

probabilities. Finding similar monotonicities in this much wider framework is difficult for

analytical reasons. However, it is also not straightforward how the protocol should typi-

cally change to favor a player, and seemingly advantageous changes might still turn out

to be detrimental to the respective player if this lets other players propose to coalitions

he is a member of less often.13

5.5 Non-Uniqueness of Stationary Equilibrium Payoffs

Eraslan and McLennan (2006) show that, while there may be a multiplicity of stationary

subgame perfect equilibria, the corresponding (ex-ante) payoffs are unique in the case

of independent proposers. In the general case of possibly dependent proposers, we find

this uniqueness not to hold anymore. To see this, consider the bargaining situation from

the introductory example with an arbitrary number of players and alternating protocol.

In general, the alternating protocol can only be considered for games with no feasible

singleton coalition, i.e. {i} 6∈Wi for all i ∈ N . Initially, it assigns equal probability to be

13Even in much simpler situations, not all intuitive monotonicities hold, for instance that players’

payoffs are non-decreasing in their patience. Kawamori (2005) considers the setting of Eraslan (2002)

with independent proposers bargaining under a symmetric non-unanimity voting rule. Given equal

recognition probabilities and sufficiently similar discount factors, payoffs of players are proportional to

their inverse discount factors. This result corrects a false proposition of Eraslan (2002).
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the proposer to all players and, in all subsequent rounds, the respondents of the previous

round have equal probability to be the proposer. Formally, pi = 1/|N | for all i ∈ N and

for all (j, T ) ∈M , pjTi = 1/(|T | − 1) for i ∈ T\{j} and pjTi = 0 for i 6∈ T .

Example 5.6 Let there be 1 + n ≥ 3 players, N = {c, s1, . . . , sn}, such that central

player c can create a surplus of 1 together with any single minor player s1, . . . , sn. The

feasible coalitions are hence given by Si = {c, si}, i = 1, . . . , n. Let proposers be assigned

according to the alternating protocol and let players have a discount factor δ, 0 ≤ δ < 1.

Restricting attention to the conditional payoffs of previous respondents, the particular

instances of equation system (5.1) arise to

vsiSi
c =

∑
j=1,...,n

λcSj (1− δvcSj
sj ), i = 1, . . . , n, (5.4)

vcSi
si

= 1− δvsiSi
c , i = 1, . . . , n. (5.5)

Conditional payoffs thus happen to be independent of player c’s coalition distribution λc =

(λcS1 , . . . , λcSn) and, more precisely, the conditional payoff, or share, of any proposer is

that of the proposer in a 2-player Rubinstein alternating offer game (Rubinstein, 1982),

vsiSi
c =

1
1 + δ

, i = 1, . . . , n, (5.6)

vcSi
si

=
1

1 + δ
, i = 1, . . . , n. (5.7)

In particular, there is an SSPE for every possible coalition distribution λc of player c.

Unlike in the case with independent proposers, ex-ante SSPE payoffs v coincide only if

players are myopic,

vc =
1 + nδ

(1 + n)(1 + δ)
, (5.8)

vsi =
1 + λcSiδ

(1 + n)(1 + δ)
, i = 1, . . . , n. (5.9)

Interestingly, the multiplicity of stationary equilibrium payoffs found for non-zero dis-

count factors seems to be a mere singularity. If the alternating protocol is slightly per-

turbed, the selection probabilities of player c do not drop out in equations (5.4) and (5.5)

and only a single coalition distribution of player c constitutes an equilibrium.
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5.6 The Power of Veto Players

Given non-empty and finite set of players N , set of feasible coalitions W and protocol

P , denote by ξ̄ the non-empty and compact set of all limit points of (ex-ante) SSPE

payoffs in coalitional bargaining games (N,W,P, δ) as δ approaches 1. Very commonly,

a vector ξ = (ξi)i∈N that lies in ξ̄ is interpreted as (bargaining) power for the described

situation. While this seems to be problematic whenever power is not unambiguous, one

can still interpret it as power for a given limit of stationary equilibria. In the case of

unique SSPE payoffs such as with independent proposers (Eraslan and McLennan, 2006),

it follows anyway that ξ̄ contains a single element only. We say that ξ ∈ ξ̄ is obtained by

a collection of coalition distributions λ = (λi)i∈N if there is a sequence of SSPE in games

(N,W,P, δ) that have collections of coalition distributions converging to λ and payoffs

converging to ξ as δ approaches 1.

A veto player i ∈ N is a member of all feasible coalitions, i ∈ S for all S ∈ W , and

is thus able to block all proposals. Denote V as the set of veto players. For the case

of independent proposers and some veto player having positive recognition probability,

Nohn (2010) shows that veto players hold all power. The following proposition generalizes

this result to coalitional bargaining with non-independent proposers.14

Proposition 5.7 Let N be a non-empty and finite set of players, W a set of feasible

coalitions, and P a protocol. Assume the set of veto players V is non-empty and let there

be a veto player i ∈ V such that pjTi > 0 for all (j, T ) ∈ M . It then holds for all ξ ∈ ξ̄

that
∑

i∈V ξi = 1 and, in particular, ξi = 0 for all i 6∈ V .

Proof Consider ξ ∈ ξ̄ obtained by λ = (λi)i∈N and denote by ξjT = (ξjTi )i∈N the

corresponding limit of conditional payoffs after match (j, T ) ∈ M . Let i∗ be a veto

player such that pjTi∗ > 0 for all (j, T ) ∈M . We prove the proposition in seven steps.

14 If one does not assume a common set of feasible coalitions but possibly unrelated individual sets of

feasible coalitions as mentioned in footnote 4, the proposition requires the following condition. The set

of veto players V is non-empty and there is a veto player i ∈ V such that (i) pjT
i > 0 for all (j, T ) ∈M

and (ii) for all j 6∈ V there is S ∈Wi for which S 63 j.
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(i) With ξjT , (j, T ) ∈M , and λ = (λi)i∈N arising as limits of conditional payoffs and

coalition distributions of SSPE, proposition 5.3 yields for all matches (j, T ) ∈M and all

i ∈ N that

ξjTi = pjTi
∑
S∈Wi

λiS(1−
∑
k∈S

ξiSk ) +
∑
k∈N

pjTk

∑
S∈Wk:S3i

λkSξ
kS
i . (5.10)

Also, for all i ∈ N it holds that λi maximizes
∑

S∈Wi
λiS(1 −

∑
k∈S\{i} ξ

iS
k ) given con-

straints λi ≥ 0 and
∑

S∈Wi
λiS = 1.

(ii) A match (i, S) ∈ M is said to be directly accessible from match (j, T ) ∈ M if

pjTi λiS > 0. Due to pjTi∗ > 0 for all (j, T ) ∈ M , all matches (i∗, S) where S ∈ W and

λi∗S > 0 are directly accessible from any other match. A match (i, S) ∈ M is said to

be accessible from match (j, T ) ∈M if there is a chain of matches leading from (i, S) to

(j, T ) in which any match is directly accessible from its predecessor. Let M∗ be the set

of all matches that are accessible from matches (i∗, S), S ∈ W . All matches in M∗ are

accessible from each other.

(iii) Consider i ∈ V and choose (j, T ) ∈ M∗ such that ξjTi is minimal among all ξkSi ,

(k, S) ∈M∗. Due to
∑

k∈N p
jT
k

∑
S∈Wk

λkS = 1, equation (5.10) for (j, T ) and i requires

ξkSi = ξjTi for all (k, S) ∈ M∗ that are directly accessible from (j, T ). Iteration yields

ξkSi = ξjTi for all (k, S) ∈M∗.

(iv) Consider i ∈ V and choose (j, T ) ∈ M such that ξjTi is minimal among all ξkSi ,

(k, S) ∈ M . Assume ξjTi < ξkSi for (k, S) ∈ M∗. Note that pjTi∗
∑

S∈W λi∗S > 0 and

(i∗, S) ∈M∗ for all S ∈W with λi∗S > 0. Thus, we have ξjTi <
∑

k∈N p
jT
k

∑
S∈Wk

λkSξ
kS
i ,

a contradiction to equation (5.10) for (j, T ) and i. Thus, it needs to be ξjTi ≥ ξkSi for

(k, S) ∈M∗.

(v) For i ∈ V for which there is (j, T ) ∈ M∗ with pjTi > 0, (iii) and equation (5.10)

require
∑

S∈Wi
λiS(1 −

∑
k∈S ξ

iS
k ) = 0. Given optimality of λi, this is equivalent to∑

k∈S ξ
iS
k = 1 for all S ∈W .

(vi) Let i 6∈ V . By (v), ξi∗Si = 0 for all S ∈ W for which i 6∈ S. Note there

is at least one such coalition S ∈ W . Equation (5.10) for (i∗, S) and i yields 0 ≥∑
k∈N p

i∗S
k

∑
S∈Wk,S3i λkSξ

kS
i . This requires ξjTi = 0 for all (j, T ) ∈ M∗ which are
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directly accessible from (i∗, S) and for which T 3 i. In particular, ξi∗Ti = 0 for all

T ∈Wi∗ where (i∗, T ) ∈M∗ and T 3 i.

(vii) From (vi), ξi∗Si = 0 for all i 6∈ V , S ∈W where (i∗, S) ∈M∗. Thus,
∑

i∈V ξ
i∗S
i =

1. Due to (iii),
∑

i∈V ξ
jT
i = 1 for all (j, T ) ∈ M∗. By (iv),

∑
i∈V ξ

jT
i = 1 for all

(j, T ) ∈ M . Thus, for the ex-ante power of veto players,
∑

i∈V ξi = 1, and ξi = 0 for all

i 6∈ V . �

Proposition 5.7 states that veto players hold all power if there is a veto player who always

has positive conditional recognition probability. Infinitely patient and able to block all

unsuitable proposals, veto players can play off the remaining players against each other

such that the latter can not expect any positive share from bargaining. To do so, however,

veto players need the possibility of making offers themselves – proposition 5.5 yields that

if pi = 0 and pjTi = 0 for all (j, T ) ∈ M for some i ∈ N , then ξi = 0 for all ξ ∈ ξ̄. Also

note that, being infinitely patient and always certainly involved in bargaining, initial

recognition probability of a veto player does not matter for the proposition to hold.

Unlike in the mentioned case of independent proposers, however, we are not able to

specify how exactly power is distributed among veto players. For the case of indepen-

dent proposers and some veto player having positive recognition probability, Nohn (2010)

shows that, as players grow infinitely patient, bargaining essentially turns into unanim-

ity bargaining between the veto players only who then share all power proportional to

their recognition probabilities. Britz et al. (2010) investigate unanimity bargaining with

non-transferable utility where an irreducible and aperiodic Markov chain defines the

proposers. The stationary distribution of this process then materializes as the weights

of the asymmetric Nash solution to which payoffs converge as players grow infinitely

patient.15,16 For our case of transferable utility, this means that payoffs in unanimity

bargaining are given by the stationary distribution of proposers. Thus, consider the fol-

lowing. Given protocol P and a collection of coalition distributions λ = (λi)i∈N , the

15The asymmetric Nash solution is introduced in Kalai (1977).
16Britz et al. (2010) actually consider a risk of breakdown instead of discount factors. Technically,

the two approaches are equivalent, and a vanishing risk of breakdown corresponds with players growing

infinitely patient.
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probability that j ∈ N will be proposer in the next round if i ∈ N is the proposer

in this round amounts to pij =
∑

S∈Wi
λiSp

iS
j . These transition probabilities, (pij)i,j∈N ,

constitute a Markov chain on N which has, under the conditions of proposition 5.7, a

stationary protocol π = (πi)i∈N uniquely defined by πi =
∑

j πjp
j
i for all i ∈ N and

π ≥ 0.17,18 In the long run, and given that all offers are rejected, all players i ∈ N are

proposer in a relative share of πi of all rounds.

Conjecture 5.8 Let N be a non-empty and finite set of players, W a set of feasible

coalitions, and P a protocol. Assume the conditions of proposition 5.7 to hold and let ξ ∈ ξ̄

be a power distribution obtained by λ = (λi)i∈N with stationary protocol π = (πi)i∈N . It

then holds ξi = πi/
∑

j∈V πj for all i ∈ V , and, in particular, ξi = 0 for all i 6∈ V .

Note that veto players do not in general hold all power if for any match there is some,

while possibly different, veto player that has positive recognition probability in the next

round.19 Although it suggests itself as a natural analogue to the statements in Nohn

(2010) and Britz et al. (2010), it is neither sufficient for proposition 5.7 or conjecture

5.8 to hold that veto players have the possibility of recurrently making offers in the

long run: if the proposer process is aperiodic and irreducible and some veto player has

positive stationary recognition probability, it may still be that veto players do not hold

17For general information on aperiodic and irreducible Markov chains and stationary distributions, see

Karlin and Taylor (1975).
18Note that, under the conditions of proposition 5.7, this Markov chain possibly is aperiodic and irre-

ducible only on a subset of players N∗ ⊆ N . For this, it holds πi = 0 for all i 6∈ N∗.
19Let N = {c1, c2, s1, s2} with feasible coalitions Si = {c1, c2, si}, i = 1, 2, and a protocol as follows.

Let initial recognition be equal, pci = psi = 1/4, i = 1, 2. Given previous coalition Si, i = 1, 2, let ci

and si have equal probability 1/2 to be the proposer in the next round. Then, selection probabilities

λciSi = 1, i = 1, 2, constitute an SSPE. Once a coalition Si, i = 1, 2, has arisen in the first round, the

game virtually becomes two-player unanimity bargaining between ci and si. Selecting the other feasible

coalition is not an option for either veto player since the protocol then denies him the possibility of

making any further offer in the future. Thus, the protocol prevents the effective use of the strategic

possibilities that come with both veto players’ veto. As players grow infinitely patient, power amounts

to ξci = ξsi = 1/4, i = 1, 2.
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all power.20,21

Note, however, that the requirement that one veto player always has positive recog-

nition probability is a sufficient but at the same time not a necessary condition. Nor is

it necessary that there is always some, while possibly different, veto player who can be

proposer. Unlike in the star with alternating protocol, where the veto player only holds

half of the power (example 5.6), a single veto player can hold all power also with the

alternating protocol. If he needs the support of all but one of at least 3 minor players to

create the unit surplus, he is assigned all power by the alternating protocol.22 That the

veto player nevertheless holds all power in this example but not in the star – a situation

in which he needs less support by the minor players – is a technical peculiarity of the al-

ternating protocol for which we cannot, unfortunately, provide an intuitive explanation.

Equally counterintuitive, that the alternating protocol does not assign all power to veto

players neither translates to when the single veto player in the star is replaced by two

or more veto players.23 In this light, it seems the qualitative results of Calvó-Armengol

(2001a,b) do not, at least not in general, extend beyond bilateral bargaining.

20Assuming aperiodicity also suggests itself because there is a period of 2 in the star with alternating

protocol (example 5.6) where the single veto player does not hold all power. Marginal perturbations of

the protocol simultaneously ensure both aperiodicity and that the veto player holds all power.
21Consider N = {c, s11, s12, s21, s22} with feasible coalitions Si = {c, si1, si2}, i = 1, 2, and alternating

protocol. Let c propose to S1 and S2 with equal probability. The corresponding chain of proposers is

aperiodic and irreducible and has a stationary protocol π with πc = 1/3 and πsij = 1/6 for i, j = 1, 2.

So πc > 0, but power coincides with the stationary protocol, ξc = 1/3 and ξi = 1/6 for i, j = 1, 2.
22Let N = {c, s1, . . . , sn}, n ≥ 3 with feasible coalitions Si = N\{si}, i = 1, . . . , n and alternating

protocol. Consider symmetric selection behavior of the central player, λcSi = 1/n for all i = 1, . . . , n,

and as well of all minor players, λsiSj = 1/(n − 1) for i, j = 1, . . . , n where i, j = 1, . . . , n and i 6= j.

Then c holds all power, ξc = 1 and ξsi = 0 for all i = 1, . . . , n.
23Let N = {c1, . . . , cm, s1, . . . , sn}, m ≥ 1 and n ≥ 2, with feasible coalitions Si = {c1, . . . , cm, si},

i = 1, . . . , n, and alternating protocol. Assume symmetric selection behavior of the central players,

λciSj = 1/n for i = 1, . . . ,m, j = 1, . . . , n. If m = 1, then ξc = 1/2 and ξsi = 1/(2n) for all i = 1, . . . , n.

If m ≥ 2, then ξci = 1/m for i = 1, . . . ,m and ξsi = 0 for i = 1, . . . , n.
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5.7 Conclusion

In the Baron-Ferejohn model, protocols not assigning all power to veto players are a

mere singularity also with non-independent proposers – arbitrarily small perturbations

of any protocol ensure that veto players hold all power. This at last rejects the initial

hope of finding support for power indices such as the Shapley-Shubik index somewhere

‘between’ the independent and alternating protocol. Any non-trivial convex combination

of these two protocols assigns all power to veto players. Thus, the possibility of non-

cooperative support for power indices that do not assign all power to veto players is

further limited and restricts at most to singular cases such as the alternating protocol.

However, even this does not always not assign all power to veto players, because of which

such non-cooperative foundations seem even less likely. Instead, our results indicate a

great stability of the support that has been found for the core (Yan, 2002) and related

single-valued solution concepts such as the nucleolus (Montero, 2006).

Foundations of indices not assigning all power to veto players could, at least possibly,

be found if the model was further extended. For instance, the probabilities for the next

proposer might plausibly depend on the identities of those respondents that reject an

offer, resulting for instance in an alternating protocol where only rejecting respondents

have the chance of being proposer in the next round. In addition, the particular offer

made by a proposer might play a role in his probability to make a new offer, for instance

could this probability be lower the further his offer is away from an acceptable one.

These generalizations, and also the questions of when SSPE payoffs are unique in this

framework and whether or not conjecture 5.8 does hold, are left for future research.
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