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Zusammenfassung

Thema dieser Arbeit sind kollektive Effekte in Zwei-Niveau-Systemen, die allein
durch die Ankopplung aller Systeme an dieselbe dissipative Umgebung hervorgerufen
werden. Wir untersuchen zunächst das Modell eines dissipativen großen Spins.
Dieses Modell dient sowohl zur Beschreibung eines physikalischen Spins unter Einfluß
seiner Umgebung, als auch zur Beschreibung kollektiver Effekte in einem Ensemble
von Zwei-Niveau-Systemen. In diesem Fall läßt sich von der Dynamik eines großen
Pseudo-Spins auf die Polarisierung des Ensembles schließen. Formal ist das Modell
des dissipativen großen Spins die Verallgemeinerung des Spin-Boson-Modells auf be-
liebig große Spins. Zudem enthält das Modell auch das Dicke-Modell, das kollektive
Effekte in Zwei-Niveau-Atomen beschreibt. Das Modell eines dissipativen großen
Spins erlaubt so, das Zusammenwirken von kohärenten Oszillationen und kollek-
tiven Effekten zu studieren.

Zur Beschreibung des großen Spins verwenden wir eine Master-Gleichung, die
in der Born-Markov-Näherung hergeleitet wird. Bei der Berechnung der Raten der
Umgebung nehmen wir eine ohmsche Dissipation an. Wir untersuchen das Modell in
zwei Bereichen, zuerst im Grenzfall schwacher Wechselwirkung zwischen dem Spin
und seiner Umgebung und dann im umgekehrten Fall starker Wechselwirkung. In
beiden Bereichen finden wir gute Übereinstimmung der Master-Gleichung mit den
Ergebnissen des Spin-Boson-Modells. Im Grenzfall schwacher Wechselwirkung zeigt
der große Spin ein superradianzartiges Verhalten, das charakteristisch für das Dicke-
Modell ist. Für einen kleinen oder verschwindenden Energieunterschied zwischen
den beiden Zuständen der Zwei-Niveau-Systeme zeigt sich der Einfluß der nichtre-
sonanten Moden der Umgebung in Schwebungen der kohärenten Oszillationen des
großen Spins. Ein völlig unterschiedliches Verhalten ergibt sich im Bereich starker
Wechselwirkung. Je nach Anfangszustand relaxiert der Spin in diesem Fall zu einem
der beiden polarisierten Zustände. Die Relaxation verläuft näherungsweise logarith-
misch in der Zeit.

Zur experimentellen Untersuchung derartiger kollektiver Effekte schlagen wir ein
System von zwei gekoppelten Quantenpunkten vor. Bei der Berechnung des Tun-
nelstroms durch die Quantenpunkte zeigt sich, dass kollektive Effekte tatsächlich
den Tunnelstrom beeinflussen. So führt das Auftreten der Superradianz in den dop-
pelten Quantenpunkten zu einem Anstieg des Tunnelstroms. Durch entsprechende
Veränderung der Parameter läßt sich auch der umgekehrte Effekt, die Subradianz,
beobachten. Diese führt zu einer Abnahme des Tunnelstroms.
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Abstract

The subject of this thesis are collective effects of two-state systems which are solely
caused by the coupling of all systems to the same dissipative environment. First, we
investigate the model of a dissipative large spin. This model applies to an intrinsic
large spin under the influence of its environment as well as to collective effects in
an ensemble of two-state systems. In that case, the polarization of the ensemble
follows from a large pseudo-spin. Formally, the model is the generalization of the
spin-boson model to spins of arbitrary size. It also includes the Dicke model which
describes collective effects of two-level atoms. Thus, the model of a dissipative large
spin allows to study the combination of coherent oscillations and collective effects.

The large spin is described by a master equation. We employ the Born-Markov
approximation for the derivation of the master equation. The rates of the environ-
ment are calculated for an ohmic dissipation. We study the model in two regimes.
First in the limit of weak interactions between the spin and the environment and
then in the opposite regime of strong interactions. In both regimes we have found
good agreement of the master equation with the results of the spin-boson model.
In the weak-coupling regime, the spin shows a superradiance-like behavior which
is characteristic for the Dicke model. For a small or zero bias the influence of the
nonresonant modes of the environment becomes visible in beats of the coherent os-
cillations of the large spin. A different dynamics is observed in the strong-coupling
regime. There, the spin relaxes towards one of the polarized states depending on its
initial value. The relaxation is approximately logarithmic in time.

We propose an array of double quantum dots for the experimental realization
of these collective effects. For the case of two double quantum dots, we calculate
the tunnel current and find that it is modified by collective effects. The effect of
superradiance in the two double dots leads to an increase of the tunnel current. For
different parameters, also the opposite effect, the subradiance, occurs. This results
in a decrease of the tunnel current.
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Chapter 1

Introduction

Quantum mechanics exhibits phenomena which cannot be understood from a clas-
sical point of view. One of these effects is the tunneling which allows a particle
to cross a classically forbidden region. Tunneling is also an important feature in
one of the simplest, if not the simplest, quantum mechanical system: the two-level
system. A tunnel coupling leads to coherent oscillations in the system which means
that the particle tunnels with a constant frequency between the two states. An
example for such oscillations is found in the ammonia molecule NH3 in which the
nitrogen atom can have two equivalent positions. Oscillations between these states,
the inversion resonance, have already been observed in the early days of quantum
mechanics [1, 2]. Another example is given by an electron in a double quantum
dot [3, 4, 5]. Under appropriate conditions, this system is described by the two
states in which the electron is localized in either of the quantum dots. Coherent
oscillations of the electron between the two dots have only been observed this year
by Hayashi and co-workers [6].

These two-state systems just like any other real system are never entirely isolated
but interacting with their environment. This may be an electromagnetic field, lattice
vibrations, or other external forces. The influence of a macroscopic environment on
a quantum system leads to dissipation and decoherence [7, 8]. Dissipation is the
loss of energy which allows a system to relax to its equilibrium. Decoherence on
the other hand means the disappearance of superpositions and hence of quantum
interferences.

The investigation of a two-state system under the influence of a dissipative envi-
ronment is the subject of the spin-boson model [9, 10]. This model has been studied
extensively by a great number of scientists during the last two decades. It turns
out that the coherent oscillations of the two-state system are damped or even com-
pletely suppressed as a result of interaction with the environment. Still, a closed
solution for all parameters is not known. Depending on the coupling strength and
the temperature, the model shows a rich variety of dynamics as damped oscillations,
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CHAPTER 1. INTRODUCTION

exponential relaxation, or localization.
The spin-boson model describes the physics of a single two-state system. It does

not include any collective effects. These are effects in an ensemble of many particles
that cannot be explained by the behavior of independent particles. Physics offers
numerous examples for collective effects such as phase transitions, magnetism, super-
conductivity, and superfluidity to name but a few [11]. The appearance of collective
effects requires that the particles are interacting with each other. A particular kind of
interaction arises if all particles are coupled to the same dissipative environment. Su-
perconductivity is a spectacular example for such an indirect, environment-induced
interaction. The coupling of electrons in a superconductor to the phonons can lead
to an attractive interaction between the electrons and thus to the formation of a
new ground state – the superconducting state.

Collective effects also appear in an ensemble of two-state systems that are inde-
pendent of each other apart from the coupling to the common environment which
introduces an indirect interaction between the systems. The most prominent effect
is probably the superradiance which was already predicted half a century ago by
Dicke [12]. Superradiance is the collective spontaneous emission of an ensemble of
initially excited two-level atoms interacting with the radiation field – the so-called
Dicke model [13, 14]. The collective decay happens much faster than that of an
independent atom. The duration of the superradiant decay is roughly inverse pro-
portional to the number of atoms in the ensemble. It is accompanied by the emission
of a short and intense radiation pulse.

With regard to the two-state systems, the Dicke model is not as general as the
spin-boson model. Coherent tunneling, an essential part of the spin-boson model,
is not included in the Dicke model. In many applications, for instance in quantum
optics, the restriction of the Dicke model is of no importance. There are, however,
indications that collective effects also occur in two-level systems which show distinct
coherent oscillations. Recently, Ahn and Mohanty suggested that collective effects
of tunneling systems in crystalline micromechanical resonators are responsible for
an unexpected high dissipation observed in these systems [15]. Moreover, we expect
that the technological progress will soon facilitate the experimental realization of
two-state systems that combine coherent tunneling and collective effects. One may
think of several double quantum dots close to each other. Coherent tunneling of an
electron in the double dot as well as the coupling of the dots to the phonons have
been demonstrated experimentally [6, 16]. What are the consequences of possible
collective effects for instance on the tunnel current? Furthermore, the interplay
of coherent tunneling and collective effects is an exciting question from a theoret-
ical point of view. Neither the spin-boson model nor the Dicke model contains a
combination of both effects.

In this thesis, we study collective effects of identical two-state systems which
include coherent oscillations. We employ the model of a dissipative large spin.
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Formally, this is the generalization of the spin-boson model to spins greater than
one half. The connection between the large spin and the ensemble of two-state
systems lies in the fact that the large spin yields the polarization of the ensemble.

At the same time, the model describes an intrinsic large spin in contact with a
dissipative environment. In fact, there are a number of examples for spins greater
than one half. The elements gallium and arsenic used in the majority of modern
solid state experiments have a nuclear spin of 3/2. Another example is given by
molecular magnets. These are molecules of a few metallic atoms. Because of the
magnetic coupling of the atoms, the molecule obtains a large magnetic moment.
The most prominent examples, Mn12 and Fe8, are believed to have a total spin of
ten [17, 18].

The following questions are of particular interest in the investigation of a dissipa-
tive large spin. How does the interplay of coherent oscillations and collective effects
affect the physics of an ensemble of identical two-state systems? Does the effect
of superradiance also appear in this generalized model? How does the behavior of
the spin-boson model change if the spin size is increased? To our knowledge, these
problems have not been addressed yet.

Since two complex models, the spin-boson model and the Dicke model, are con-
tained in the problem of a dissipative large spin we cannot hope to find a closed
solution for the whole parameter space. Instead, we concentrate on two limits,
first the regime of weak coupling between the spin and the environment and sec-
ond the opposite limit of strong interactions. In the theoretical investigation of the
spin-boson system, the functional integral method proved to be a useful tool [10].
Another approach to open quantum systems, a master equation, is often preferred
in the field of quantum optics [19]. In this work, we employ a master equation for
the description of the large spin. The master equation is derived within the Born-
Markov approximation which is perturbative in the spin-environment interaction.
The validity of the Born-Markov approximation seems sometimes controversial in
literature. Our aim is to demonstrate that a careful derivation in the exact eigenstate
basis of the coherent system indeed yields reliable results down to zero temperature
for all parameter values, as long as the dissipative coupling is small. The dissipation
is assumed to be ohmic throughout this work.

Chapter 2 gives a survey of some spin and two-state systems as well as theoretical
models. We present in more detail the systems mentioned above, double quantum
dots, tunneling systems in glasses, and molecular magnets. Then, we discuss the
spin-boson model and the Dicke model. We also introduce the Bloch equations for
the description of a dissipative spin. Finally, we consider the connection between a
large spin and an ensemble of identical two-state systems.

In chapter 3, we investigate the model of a dissipative large spin in the regime
of weak interactions with the environment. In the limit of spin one half where the
model reduces to the spin-boson model, the master equation is transformed into a
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CHAPTER 1. INTRODUCTION

set of Bloch equations. Comparing the solution of the Bloch equations with that
of the spin-boson model in literature confirms that the master equation gives a
reliable description for all temperatures in the limit of weak dissipation. For a finite
bias i.e. an energy difference between the states of the two-level systems we find a
superradiance-like decay of the ensemble. The influence of the nonresonant modes
of the environment becomes visible in beats in the coherent oscillations of the large
spin.

The opposite regime of a strong coupling between the spin and the environment
is considered in chapter 4. We employ a combination of a polaron transformation
and the Born-Markov approximation for the derivation of the master equation. This
allows a perturbative treatment of the tunneling. It is well-known that this approach
fails to describe the spin-boson model for intermediate coupling strengths at low
temperatures. For strong couplings, however, we can reproduce the results of the
spin-boson model. Altogether, we have found an entirely different behavior of the
large spin as compared to the weak-coupling regime. The large spin approaches one
of the polarized states for long times. Which of the two depends on its initial value.
For an ohmic dissipation, the relaxation is approximately logarithmic in the time.

In chapter 5, we return to an ensemble of several double quantum dots. We
address the question of how far the results of the dissipative large spin are applicable
to this system. We calculate the tunnel current through two double quantum dots
with indirect interactions due to the coupling to the same phonons. The system
is not completely identical to an ensemble of two-state systems. On the one hand,
we have to consider leads to enable transport. Thus, apart from the two states
describing an electron in one or the other dot a third state exists when the electron
has left the double dot. On the other hand we allow different parameters in the two
double dots. Despite these differences to the previous chapters, we have found clear
evidence for collective effects in the tunnel current. The appearance of superradiance
in the dots results in an increase of the tunnel current. By an appropriate choice of
parameters, it is also possible to realize the opposite effect, the subradiance. This
leads to a decrease of the tunnel current through the double quantum dots.
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Chapter 2

Dissipative Systems

Before turning to the investigation of collective effects in ensembles of two-level
systems, we familiarize ourselves with dissipative systems and possible theoretical
descriptions in this chapter. Examples for two-state systems and spins from the
field of solid state physics are presented in the first section. We introduce electrons
tunneling between two quantum dots, tunneling systems in glasses, and molecular
magnets. Inherent to these solid state systems are interactions with lattice vibra-
tions. They are considered as a dissipative environment for the systems. In the
second part of this chapter, we will briefly present theoretical models which illu-
minate different aspects of dissipation. These models are the Bloch equations, the
Dicke model and the spin-boson model. We shall return to these models at certain
points of this thesis. Finally, the representation of an ensemble of two-level systems
by a large spin is introduced.

2.1 Spins and Two-Level Systems

Let us begin with considering some dissipative systems. Examples can be found in
practically every field of physics, but we will concentrate here on solid state physics.
Two of our examples, electrons in double quantum dots and two-level systems in

glasses are described under appropriate conditions as two-state systems or equiva-
lently as a ficticious spin one half. Molecular magnets constitute an example for a
greater spin. In principle, dissipation induced collective effects are conceivable in all
three systems. We take these examples as a motivation for the general investigation
of such effects.
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CHAPTER 2. DISSIPATIVE SYSTEMS

2.1.1 Double Quantum Dots

Quantum dots belong undoubtedly to the most fascinating topics in modern solid
state physics. We shall briefly recall some of their features in this section and
make a connection to dissipative two-level systems. A quantum dot is a system of
a few to a few hundred electrons spatially confined to a region of typically some
hundred nanometers [20]. One possible realization is based upon a two-dimensional
electron gas (2DEG) arising at the interface of a semiconductor heterostructure. An
additional lateral confinement in the remaining two spatial directions is achieved
by the application of small metallic gates on the surface of the sample. The gates
create an approximately harmonic potential in which the electrons are trapped. The
physics of the electrons in the quantum dot is governed by the interplay between
their mutual Coulomb repulsion and the confining potential.

At low temperatures, these systems have to be regarded as quantum mechanical
systems. In particular, the electrons in the dot have a partly discrete spectrum as
is known from atoms. For that reason, quantum dots are also refered to as artificial
atoms [21, 22]. In contrast to real atoms, however, their parameters like the number
of electrons and their effective mutual interaction can be adjusted experimentally.
These features make quantum dots very attractive for the investigation of quantum
many-body effects. The Kondo effect, for instance, was detected in quantum dots a
few years ago [23, 24]. Moreover, quantum dots constitute one candidate for a qubit
– the basic element of a future quantum computer [25].

A useful tool for the experimental investigation of quantum dots is the transport
spectroscopy [26]. There, the dot is connected to two leads via tunnel contacts. The
application of a voltage between the leads results in a current as electrons tunnel
from one lead to the dot and then from the dot to the other lead. The tunnel current
as a function of the voltage gives information about the quantum dot such as the
number of electrons in the dot and the spectrum.

Just as real atoms can be combined to form molecules one can also form an
artificial molecule by connecting two quantum dots via a tunnel coupling [4, 27]. For
a weak coupling and a sufficiently strong Coulomb repulsion within each dot, only
one additional electron can tunnel between the two dots while all other electrons of
each dot are restricted to that dot. Then, the double quantum dot can be understood
as a two-level system. The two states correspond to the localized states of the
additional electron in one or the other dot. Due to the tunnel coupling, the localized
states are no eigenstates of the system and one expects coherent oscillations of
the additional electron between the dots [28]. Such oscillations have indeed been
observed in a recent experiment by Hayashi and co-workers [6].

Like any other real system, a quantum dot is not free from influences of the
environment. The main sources of dissipation in quantum dots are interactions with
photons and phonons. Since electrons are charged particles, they interact with the
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2.1. SPINS AND TWO-LEVEL SYSTEMS

electromagnetic field. Thus, excitations or tunnel processes in quantum dots can
be stimulated by irradiation with light. One of the resulting effects is the so-called
photon assisted tunneling [29, 30]. On the other hand, quantum dots can be used to
construct semiconductor lasers [31]. Moreover, lattice vibrations, i.e. phonons, are
always present in any solid state sample. The coupling of the electrons in quantum
dots to the phonons was demonstrated by Fujisawa in L. Kouwenhoven’s group in
Delft [16, 32]. They measured the tunnel current through a double quantum dot
while a small voltage was applied between the two dots. Then, conservation of
energy requires that a phonon is emitted if an electron tunnels from one dot to the
other. The emission becomes visible in the tunnel current [33]. It is possible to
modify the inelastic current by the design of the sample in which the quantum dots
are realized. Changes of the geometry of the sample alter the phonon spectrum and
the electron-phonon coupling in the quantum dots [34, 35].

We conclude that a double quantum dot coupled to the phonons of the sample
can be regarded as a dissipative two-level system. According to the considerations
of the introduction, we might ask whether the behavior changes if two or more
double dots are placed close to each other. The coupling to the same dissipative
environment, the phonons, could lead to some collective effects. We shall come back
to this question in chapter 5 of this thesis. There, we investigate a realistic model for
two double quantum dots with leads and coupling to bulk acoustic phonons. It will
turn out that an important collective effect, the Dicke effect, is indeed observable in
the tunnel current as a function of the voltage applied between the dots.

2.1.2 Tunneling Systems in Crystals and Amorphous Solids

Other examples of dissipative two-level systems are found in crystals and glasses.
The low temperature properties of these systems are determined by tunneling of
atoms, molecules or groups of atoms [36, 37]. Tunneling of atoms has been discussed
from the very beginning of quantum mechanics. It was first observed in ammonia
molecules, NH3, in 1929. Because of the symmetry of the molecule, the nitrogen
atom tunnels between two equivalent positions in the molecule with a character-
istic frequency. Later, it was shown that tunneling of atoms similarly takes place
in crystalline solids where an impurity atom can tunnel between several positions
in the host lattice. It was rather unexpected when thermal anomalies in the low
temperature behavior of glasses implied that tunneling systems also exist in amor-
phous solids. The microscopic nature of these tunneling systems is still not fully
understood.

Let us first consider impurities in crystalline solids. A typical example is a
Lithium atom in a potassium chlorid crystal (KCl). Due to the different size, the
impurity atom does not fit into the KCl lattice. Instead, the host crystal offers
several equivalent positions to the impurity, typically 6, 8, or 12, depending on the
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CHAPTER 2. DISSIPATIVE SYSTEMS

symmetry of the crystal. A tunnel coupling lifts the degeneracy of these states and
at low temperatures it is sufficient to consider only the two lowest states. Moreover,
the impurity atom causes a dipole moment. If the concentration of the impuri-
ties is high enough, and consequently their average distance is sufficiently small,
dipole interaction between the impurities becomes effective. This interaction leads
to decoherence of the two-level systems.

In amorphous solids, on the other hand, the situation is not that clear. The
difficulty arises since systems of quite different microscopic structure show similar
phenomena at low temperatures, e.g. in the thermal and acoustic behavior. A
microscopic explanation of these observations is still not available. Many properties
of amorphous solids, however, can be derived from the so-called tunneling model,
independently suggested by Phillips [38] and Anderson, Halperin, and Varma [39]
in 1972. These authors predict the existence of two-level systems in amorphous
solids. It seems that groups of atoms rather than single atoms or molecules are
tunneling between potential minima. The tunneling systems are coupled to phonons
leading to dissipation. Dissipation of the two-level systems is an important part
of the tunneling model affecting, for instance, the sound velocity and the sound
attenuation. Direct interactions between the tunneling systems are believed to be
of minor importance.

Altogether, we find another example for dissipative two-level systems in cer-
tain crystalline and amorphous solids. The question whether these systems exhibit
collective effects has been addressed recently by Ahn and Mohanty who consider
micromechanical resonators [15]. The quality of such resonators is limited due to
dissipation of the two-level systems in the crystal. The authors suggest that a su-
perradiant decay of the two-level systems leads to an increased dissipation of the
micromechanical resonators. We won’t discuss the details and particularities of tun-
neling systems in glasses and crystals further. We take these systems as a motivation
for the general study of dissipation-induced collective effects.

2.1.3 Molecular Magnets

Another system of interest in this context is given by molecular magnets [17, 18, 40,
41]. These mesoscopic magnets constitute an example for a real spin in contrast to
the description of two-level systems by means of a pseudo-spin. The most prominent
examples for molecular magnets, Mn12 and Fe8, behave like a spin of size J =
10. These systems have attracted much interest both from experimental and from
theoretical side in the last decade. Possible applications include quantum computing
and data storage.

Molecular magnets are clusters of a small number of metallic ions. These clusters
form with regular spacings in certain organic materials. Mn12, for instance, consists
of eight Mn3+ ions and four Mn4+ ions. Oxygen atoms link the manganese ions. The
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structure is accomplished by acetic acids and water molecules [42]. The peculiarities
of these clusters are caused by the magnetic coupling of the metallic ions. As a
consequence, the clusters behave at low temperatures like nanomagnets with a large
spin, e.g. J = 10 for Mn12. The different magnetic molecules in the crystal do not
interact magnetically since the distance between neighboring molecules is too large.
Thus, each molecule can be considered as independent. The magnetic properties
become visible in the magnetization which shows a hysteresis as a function of the
external magnetic field. Such behavior is known from ferromagnetic materials, yet,
the origin is different for molecular magnets. Here, the hysteresis is caused by
exponentially long relaxation times at low temperatures [17].

One property which seems to be common to all molecular magnets is a high
anisotropy. This is accounted for by a quadratic term of one or more spin compo-
nents in the Hamiltonian, for instance J2

z . One should remark, though, that the
Hamiltonian used for the description of molecular magnets is not microscopically
derived from first principles but rather a phenomenological description. Due to the
anisotropy, the ground states of Mn12 and Fe8 are given by the polarized states,
〈Jz〉=±10. The proposal for the implementation of Grover’s algorithm in molecular
magnets is actually based on this anisotropy [43].

Naturally, molecular magnets also interact with the environment. The influ-
ence of phonons becomes visible in thermally activated tunneling between different
spin states. The coupling to the phonons is discussed in [44]. Similarly, molecular
magnets interact with the electromagnetic field. The wavelength of the resonant ra-
diation can be much longer than the distance between adjacent nanomagnets in the
crystal. Then, an identical coupling of many molecular magnets is expected. This is
the typical situation where coherent effects arise. In fact, superradiant transitions in
molecular magnets have recently been predicted by Chudnovsky and Garanin [45].

Molecular magnets constitute another example for dissipative large spins which
are studied in this thesis. The model, that we shall investigate in the following,
however, does not include an anisotropy and we do not expect that the results of
this model are immediately applicable to molecular magnets.

2.2 Theoretical Models

We will now turn to theoretical models describing various aspects of dissipative
spins. The first model to be presented, the Bloch equations, originally applied to
nuclear magnetic moments in an oscillating magnetic field. Collective effects in an
ensemble of spins with indirect interaction due to the coupling to the same reservoir
are studied in the Dicke model. A comprehensive treatment of the influence of
a dissipative environment on the behavior of a spin one half is given within the
spin-boson model.

9
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2.2.1 Bloch Equations

From a classical point of view, a spin or an angular momentum is a vector which
is completely described by its three spatial components. This view is reflected by
the Bloch equations that give the time evolution of the three spin components.
The Bloch equations are closely related to experiments on the nuclear magnetic
resonance (NMR) [46]. There, the spin describes the magnetization of a sample
caused by its nuclear moments. A static magnetic field is applied to the sample in
NMR experiments. In addition, a small oscillating field acts in the plane orthogonal
to the static field. The absorbed energy exhibits a pronounced maximum if the
frequency of the external field is in resonance with the Larmor frequency of the
nuclear spins. Nowadays, NMR is used for the investigation of complex molecules
in chemistry and as a diagnostic tool in medicine.

If the z-axis is chosen parallel to the static magnetic field, the Bloch equations
for the magnetization M in an external magnetic field B read

Ṁx,y = γ (M × B)x,y −
1

T2
Mx,y ,

Ṁz = γ (M × B)z −
1

T1
(Mz −M0).

(2.1)

The equilibrium value of the magnetization in z-direction is given by M0 and γ
is the gyromagnetic ratio. The influence of the dissipation becomes visible in the
relaxation times T1 and T2. These times describe the relaxation parallel, T1, and
orthogonal, T2, to the static magnetic field. In general, they are not equal since the
symmetry is broken by the applied field.

The Bloch equations (2.1) can be derived classically. This approach was chosen
by Bloch in his original work [47]. The equations follow if the magnetization is
considered as an angular momentum on which a torque acts caused by the magnetic
field. Dissipation is taken into account phenomenologically by adding the relaxation
times T1 and T2. Later, Bloch gave a microscopic derivation of these equations [48,
49]. For that, it is sufficient to regard the spin of a single nucleus in contact with
a heat reservoir in thermal equilibrium. Microscopic expressions for the relaxation
times follow from this approach. The derivation is perturbative in the spin-reservoir
coupling and thus the equations are limited to weak dissipation. A similar derivation
of the Bloch equations was given at the same time by Redfield [50]. Therefore,
equations of this type are sometimes refered to as Bloch-Redfield equations.

Similar equations are also used in other fields of physics. The optical Bloch equa-

tions describe a two-level atom in a monochromatic laser field [51]. The two-level
atom is equivalently represented by a fictitious spin one half [28]. The probability
of finding the atom in either of the two levels follows from the z-component of that
spin. The coupling to the electromagnetic field leads to dissipation, in particular to
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spontaneous emission. Then, the equations for the time evolution of the spin com-
ponents are formally identical to the Bloch equations (2.1). The difference between
the energy of the photons and the excitation energy of the atom is identified with
the static magnetic field in (2.1). The Rabi frequency, a measure for the coupling
strength between the atom and the laser field, corresponds to the amplitude of the
oscillating magnetic field. The relaxation times can be expressed by the spontaneous
emission rate Γ as

T1 =
1

Γ
, T2 =

2

Γ
= 2T1. (2.2)

The Bloch equations give a clear description of a spin in a time dependent field
in the limit of weak dissipation. They determine the time evolution of the three
spin components. The Bloch equations are independent of the spin size. For a
spin one half, the density matrix of the spin has three independent entries. They
follow from the knowledge of the three spin components. For larger spins, however,
the dimension of the density matrix increases which is not reflected by the Bloch
equations. In fact, the microscopic derivation of the Bloch equations is strictly
valid only for spin one half, as discussed already by Bloch [48]. For greater spins
the equations are restricted to higher temperatures. A generalization of the Bloch
equations to greater spins was recently given by Apel and Bychkov [52]. However,
the set of equations derived by these authors contains more than three equations
and lacks the clarity of the Bloch equations. In chapter 3 of this thesis we shall
derive a set of Bloch equations for the spin-boson model and show that they give a
good description in the regime of weak coupling to the environment. We shall see
in detail why these equations cannot be generalized to greater spins.

2.2.2 The Dicke Model

In this section, we consider a collective effect of two-level systems that was pre-
dicted almost half a century ago by Dicke [12]. The two-level systems in the Dicke
model are supposed to be independent of each other apart from the coupling to the
common environment. This leads to a collective spontaneous emission, the so-called
superradiance [13, 14]. The effect becomes already visible for only two systems, for
instance two two-level atoms interacting with the radiation field. The Hamiltonian
for a single two-level atom with excitation energy ω0 (~ is set to one) reads [53]

H =
ω0

2
σz +

∑

q

ωq a
†
q
aq +

1

2
σx

∑

q

(γq e
iqra†

q
+ γ∗

q
e−iqraq). (2.3)

The two-level atom is described as fictitious spin one half by the Pauli spin matrices,

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (2.4)
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Spin up corresponds to the excited state and spin down to the ground state of
the atom. The electromagnetic field is represented by a continuum of harmonic
oscillators with creation operator a†

q
for a photon with energy ωq in mode q. The

last term in the Hamiltonian describes the dipole interaction between the atom and
the field with amplitude γq. The rate Γ for spontaneous emission can be derived
with Fermi’s Golden Rule. It turns out that Γ can be written as a sum of rates Γq

for spontaneous emission of a photon in mode q, Γ=
∑

q
Γq.

The extension to two atoms is straightforward. The Dicke effect is most clearly
seen by using singlet and triplet states as a basis for the two pseudo-spins. The
upper triplet state, |T+〉= |↑↑〉, corresponds to two excited atoms whereas the lower
triplet state, |T−〉 = |↓↓〉, corresponds to both atoms in the ground state. The
remaining triplet state, |T0〉= (|↑↓〉+ |↓↑〉)/

√
2, is the symmetric, the singlet state

|S0〉= (|↑↓〉−|↓↑〉)/
√

2, is the antisymmetric combination of one excited atom and
one atom in the ground state. Thus, the decay of two initially excited atoms to their
ground state is equivalent to the transition from |T+〉 to |T−〉. This can happen in
two different ways, either via |T0〉 or via |S0〉, as indicated in Fig. 2.1. Again, we
employ Fermi’s Golden Rule and find for the rates of spontaneous emission,

Γ±
q

=
Γq

2

∣
∣1 ± eiq(r1−r2)

∣
∣2. (2.5)

Here, Γq is the spontaneous emission rate of an independent atom. Γ+
q

is the rate
for transitions in the symmetric channel, |T+〉 → |T0〉 → |T−〉, and Γ−

q
for the an-

tisymmetric channel, |T+〉 → |S0〉 → |T−〉. This splitting of the decay into two
different channels with different rates is the Dicke effect. If the distance |r1−r2|
between the atoms is much smaller than the emitted wavelength, the rate Γ+

q
be-

comes greater than Γ−
q
. Thus, the decay via the symmetric state |T0〉 is faster than

via the antisymmetric state |S0〉. The fast decay is called superradiant and the slow
one subradiant. This phenomenon becomes most spectacular in the limit when both
atoms take the same position, yielding Γ+

q
=2Γq and Γ−

q
=0. Then, the subradiant

decay is completely suppressed and the two atoms decay in a superradiant fashion.
We conclude that the spontaneous emission of two atoms differs from that of an
independent atom as a result of the Dicke effect. The origin of this effect is the indi-
rect interaction between the atoms as caused by the coupling of both atoms to the
same radiation field, i.e. the same environment. This emission characteristics was
verified experimentally by DeVoe and Brewer a few years ago [54]. They measured
the spontaneous emission of two trapped Ba+

138 ions for varying distances between
the ions.

The Dicke effect becomes even more pronounced if the number of atoms is in-
creased. Let us consider N identical two-level atoms which are assumed to couple
identically to the radiation field. This is justified if the distance between the atoms
is much smaller than the wavelength of the resonant photons. The Hamiltonian of
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Figure 2.1: Different decay channels for two excited atoms

this system follows from that of a single atom (2.3),

H =
ω0

2

N∑

i=1

σiz +
∑

q

ωq a
†
qaq +

1

2

N∑

i=1

σix
∑

q

γq (a†q + a−q). (2.6)

We will neglect the vector character of the mode q in our notation from now on
and assume that the coupling fulfills γ∗q =γ−q. The atoms are located at the origin.
Since only sums of the Pauli spin matrices appear, it seems reasonable to define the
new quantity

J =
1

2

N∑

i=1

σi. (2.7)

It follows immediately that J obeys the angular momentum algebra and hence can
be considered as a large spin. With that, the Hamiltonian (2.6) reads

H = ω0 Jz +
∑

q

ωq a
†
qaq + Jx

∑

q

γq (a†q + a−q). (2.8)

The Hamiltonian appears simplified due to the introduction of the large spin. How-
ever, this is only of advantage if we can relate the behavior of the large spin to the
physics of the two-level atoms. This is indeed the case. The z-component of the
large spin yields the polarization of the ensemble, namely the difference between the
number of excited atoms and the number of atoms in the ground state. We cannot
deduce the state of one individual atom from the knowledge of Jz. Yet, the collective
emission of the ensemble is sufficiently described by the large spin. A differential
equation for the time evolution of the large spin can be derived from the Hamilto-
nian (2.8), see [55]. We only mention the important steps in the calculation as they
will be discussed in detail in the subsequent chapters. First, a master equation for
the density matrix of the spin is derived within the Born-Markov approximation.
This approach is perturbative in the coupling of the spin to the environment and
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thus restricted to weak interactions. Moreover, the so-called secular approximation
is applied and the influence of the nonresonant photons is neglected. An equation
of motion for Jz follows from the master equation in the classical limit of a large
spin, when the variance of Jz is believed to be negligible,

d

dt
〈Jz〉 = −Γ

(
J + 〈Jz〉

) (
J − 〈Jz〉 + 1

)
. (2.9)

The rate Γ follows from the spectral function ρ(ω) of the environment (2.14) to be
defined in the next section,

Γ =
π

2
ρ(ω0). (2.10)

Obviously, this equation for Jz is not included in the Bloch equations (2.1). A
quadratic term, 〈Jz〉2, appears in (2.9) due to the collective character of the large
spin, whereas the Bloch equations are linear in the spin components. We choose an
initially polarized ensemble, which means that all atoms are in the excited state at
t=0. This corresponds to the maximum spin value J ,

〈Jz〉0 = J =
N

2
. (2.11)

Then, the solution of the differential equation (2.9) reads

〈Jz〉t =
2J(J + 1) − J eΓ(2J+1)t

2J + eΓ(2J+1)t
. (2.12)

This function describes the collective decay of an initially excited ensemble to the
final state, 〈Jz〉∞ = −J , where all atoms occupy the ground state. In spite of all
approximations made in its derivation, this solution grasps the essential properties
of the Dicke effect. The most striking feature is the dependence on the number
of atoms, N . The decay becomes faster as the number of atoms in the ensemble
increases. The solution (2.12) predicts that the time of the decay is inverse propor-
tional to the number of atoms. During the decay, the excitation energy of the atoms
is transferred to the radiation field. Thus, the intensity of the radiation is peaked as
a function of the time and the width of the peak is also inverse proportional to the
number of atoms. Due to the conservation of energy, the maximum of the intensity,
Imax, increases with the square number of atoms, Imax ∝ N2. For a large number
of atoms, we expect a fast relaxation to the ground state under the emission of a
short and strong radiation pulse, which accounts for the term superradiance. This
behavior has been found experimentally by Greiner and co-workers [56]. They use
a laser pulse to excite Tm3+ ions embedded in a thin slab. The measured radiation
intensity clearly shows a superradiant peak.

The Dicke model does not only include the superradiance effect but also exhibits
other phenomena. Often, the Dicke model is studied in a modified form where the
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large spin couples to a single bosonic mode instead of a continuum. This model
shows a phase transition in the thermodynamic limit of an infinite large spin with
a renormalized interaction strength, as first pointed out by Hepp and Lieb [57, 58].
For a finite spin, numerical diagonalization shows the transition from Poisson to
Wigner level statistics indicating quantum chaos [59, 60].

We conclude that the collective behavior is inherent to a dissipative large spin.
One cannot distinguish, whether the Hamiltonian (2.8) describes a single large spin
or an ensemble of two-level systems. The interesting property of the Dicke model is
that the collective behavior is exclusively caused by the coupling of all systems to
the same environment. No direct interaction between the atoms is considered. We
shall study such dissipation induced collective effects in more detail in this thesis.

2.2.3 The Spin-Boson Model

Subject of the spin-boson model is the physics of a two-state system, a spin one half,
under the influence of a dissipative environment. The latter is modeled by a bath of
harmonic oscillators, that is bosons. While the applications of the Bloch equations
and the Dicke model, for instance in quantum optics, often justify a perturbative
treatment of the dissipation, it is the intention of the investigation of the spin-boson
model to predict the behavior for all parameters, including intermediate and strong
couplings [9]. A comprehensive summary of the dissipative two-state system was
given by Weiss [10].

The original motivation of the spin-boson model was the investigation of macro-
scopic quantum tunneling in an rf SQUID [61]. The question was whether the
quantum phenomenon of coherent tunneling between two separated states can ap-
pear on a macroscopic scale and how dissipation destroys the coherence. A magnetic
flux trapped in an rf SQUID can be described for appropriate parameters as a par-
ticle in a double well potential. The two minima of this potential correspond to
macroscopically different situations where the supercurrent in the rf SQUID has an
opposite sense of rotation [10]. Further applications of the spin-boson model can be
found in almost every field of physics. Apart from the systems already presented
in Sec. 2.1, we mention the inversion resonance in NH3, the motion of a muon in
metals, and electron transfer in chemical reactions.

The Hamiltonian of the spin-boson model reads

H =
ε

2
σz −

∆s

2
σx −

1

2
σz

∑

q

γq(aq + a†q) +
∑

q

ωq a
†
qaq. (2.13)

The first two terms describe the unperturbed two-state system. The description by
the Pauli spin matrices apply to intrinsic spins as well as any other system with
a two-dimensional Hilbert space. The z-component, σz, typically corresponds to
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the experimentally accessible quantity of the system. The energies of the eigen-
states of σz, the so-called localized states, differ by a bias ε. However, these states
are no eigenstates of the Hamiltonian (2.13) due to the tunneling with the matrix
element ∆s yielding coherent oscillations between the two eigenstates of σz. The
dissipative environment is modeled by a bath of harmonic oscillators with creation
operators a†q for a boson in mode q with eigenenergy ωq. As the environment cou-
ples to the z-component of the spin, the interaction depends on the state of the
system and thus acts as a kind of measurement. This is expected to destroy the
phase coherence of the wavefunction. Hence, the physics of the dissipative two-state
system is governed by the interplay between coherent tunneling and localization.
The system shows qualitatively different types of behavior such as damped oscilla-
tions, exponential relaxation, and localization. The influence of the environment is
completely described by the spectral function

ρ(ω) =
∑

q

|γq|2 δ(ω − ωq), (2.14)

where γq is the interaction strength of the mode q. For the so-called ohmic dis-
sipation, the spectral function is assumed to be linear with an exponential cutoff
at high frequencies. A great deal of the numerous publications on the spin-boson
model apply to the ohmic dissipation since this leads to all sorts of dynamics as a
function of the temperature and the coupling strength. We shall discuss the solu-
tions in two regimes of parameters in detail in the following chapters. Although a
two-state system is the smallest non-trivial quantum mechanical system, no exact
solution is known for the dissipative two-state system for all regimes of parameters.
The most suitable method for the theoretical description of the system seems to be
the functional integral approach, on which most of the known results rely.

The Hamiltonian of the spin-boson model (2.13) resembles the Dicke model of a
single atom (2.3). However, the spin-boson model is more general as the Dicke model
does not include tunneling in the unperturbed system. The coupling is different in
these models. We shall come back to the similarities of the two systems and the
physical implications in the subsequent chapters.

Some generalizations of the spin-boson model have been investigated. The driven
two-state system [62] allows for time-dependent parameters, in particular the bias
ε(t) and the tunnel matrix element ∆s(t). The extension to higher dimensions
is studied in the dissipative multi-state system, a tight binding model with con-
stant tunnel rates between neighboring states and coupling to a dissipative environ-
ment [63, 64, 65]. Another approach is to consider excited states in a double well
potential [66]. In chapters 3 and 4 of this thesis we shall discuss another gener-
alization of the spin-boson model where the spin one half is replaced by a greater
spin.
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2.3 The Large Spin and Two-State Systems

A large spin was introduced in the Dicke model to describe the collective behavior
of many two-level atoms, Sec. 2.2.2. We shall have a closer look at the relationship
between the large spin and an ensemble of identical two-state systems in this section.
Then, we will determine the equilibrium value of a large spin in contact with a heat
bath.

Let us first consider a single two-level system. We refer to the two states as
the ground state and the excited state in the following. The two-level system is
equivalently described as a spin one half. Usually, one identifies the two states with
the eigenstates |↑〉 and |↓〉 of the z-component of the spin,

σz |↑〉 = |↑〉 , σz |↓〉 = − |↓〉 , (2.15)

where σz is the Pauli spin matrix (2.4). Thus, spin up corresponds to the excited
state and spin down to the ground state. The expectation value of σz tells in which
of the two states the system is found.

Consider now an ensemble of several two-state systems. The Hilbert space of the
ensemble is the product space of the two-dimensional Hilbert spaces of all systems.
For an ensemble of N systems, its dimension is 2N . A possible basis for the product
space is given by the states

ψα = |m1〉 ⊗ . . .⊗ |mN 〉 , with mi ∈ {↑, ↓}. (2.16)

Here, α labels the 2N basis states ψα. Important for the investigation of collective
effects is the polarization P , defined as the difference of the number of excited
systems, N↑, and the number of systems in the ground state, N↓,

P = N↑ −N↓. (2.17)

We do not take into account the normalization in this definition which can easily be
included by an additional factor 1/N . For a product state in the form of (2.16), the
polarization follows immediately as the sum over the z-components of the spins,

P =
N∑

i=1

〈
σiz

〉
. (2.18)

In the Dicke model (2.6), the two-level atoms are assumed to be identical. Then,
the sum over the Pauli spin matrices in the Hamiltonian can be replaced by the new
quantity, cf. (2.7),

J =
1

2

N∑

i=1

σi. (2.19)
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The new operator J obeys the angular momentum algebra and thus is again a spin,
however, greater than one half. What makes the new operator so useful is the fact
that its z-component describes the polarization of the ensemble, as follows from
(2.18) and (2.19),

〈Jz〉 =
1

2
P. (2.20)

An expectation value of N/2 hence corresponds to an ensemble of exclusively excited
systems while an expectation value of −N/2 corresponds to an ensemble where all
systems are in the ground state. If the number of excited systems equals the number
of systems in the ground state, the expectation value becomes zero.

It is readily verified that the square of the new spin, J 2, commutes with the
Dicke-Hamiltonian (2.8) and with the Hamiltonian of the large-spin model (3.1) to
be studied in the following. In that case, J 2 is a constant of the motion. The states
ψα (2.16), however, are no eigenstates of J 2. Thus, it is preferable to choose another
basis |J,M〉 of simultaneous eigenstates of J 2 and Jz,

J2 |J,M〉 = J(J + 1) |J,M〉 , Jz |J,M〉 = M |J,M〉 . (2.21)

Then, the quantum number J is conserved while the quantum number M yields the
polarization of the ensemble (2.20).

From quantum mechanics [67], we know that the maximum possible value of the
quantum number J is given by half the number of systems, J=N/2. In the further
discussion, we shall restrict ourselves to the N+1 states with maximum J . These
states span a N+1 dimensional subspace of the 2N dimensional Hilbert space of
the ensemble. In order to justify this restriction, we note that the entirely polarized
states lie in that subspace. The state |J,M〉 with M = J describes an ensemble of
excited two-state systems while the state with M =−J corresponds to all systems
in the ground state. Thus, if the initial state of the ensemble is a polarized state,
the ensemble will always stay in the subspace spanned by the states |J,M〉 with
J =N/2 since J is conserved. These states with maximum J are the symmetrized
wavefunctions of J+M excited systems and J−M systems in the ground state [55].
They follow for instance by the successive application of the ladder operator J± (3.4)
to the polarized state

|J,M〉 =

√

(J +M)!

(2J)! (J −M)!
J

(J−M)
− |J,M=J〉 . (2.22)

In the section on the Dicke model, Sec. 2.2.2, we employed triplet and singlet states
for the discussion of two two-level atoms. It turned out that the decay of the two
atoms occurs only in the subspace of the triplet states if the coupling of the atoms
to the radiation field is identical. In fact, the states |J,M〉 with maximum J are
exactly the triplet states for N=2.
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We conclude that an ensemble of N identical two-state systems without direct
interaction can be described by a large spin of size J=N/2. The polarization of the
ensemble follows directly from this large spin.

2.3.1 Thermodynamic Equilibrium of a Large Spin

We shall now determine the thermodynamic equilibrium of a spin of size J which is
described by the Hamiltonian

H = ε Jz + 2Tc Jx, (2.23)

with bias ε and the tunnel matrix element 2Tc. The Hamiltonian will be discussed
in more detail in the next chapter. It is assumed that the spin is in contact with a
heat bath with inverse temperature β=1/kBT . The density matrix ρ follows as

ρ =
1

Z
e−βH , with Z = Tr

{
e−βH

}
. (2.24)

For the Hamiltonian (2.23), the partition function Z becomes

Z =
sinh

(
β∆(J + 1/2)

)

sinh(β∆/2)
, (2.25)

where ∆ =
√

ε2 + 4T 2
c is the level spacing of the Hamiltonian (2.23). Due to the

symmetry of the Hamiltonian, the expectation value 〈Jy〉 vanishes in thermal equi-
librium. The expectation values of the other spin components follow as derivatives
of the partition function. Alternatively, they can be calculated from the density
matrix, 〈Jx,y〉=Tr{ρJx,y}, yielding

〈Jx〉 = −2Tc
∆

J BJ(β∆), 〈Jz〉 = − ε

∆
J BJ(β∆). (2.26)

We used the definition of the Brillouin function BJ(x) [68],

BJ(x) =
(

1 +
1

2J

)

coth
(

x
(

J +
1

2

))

− 1

2J
coth

(x

2

)

. (2.27)

These expressions simplify for a spin one half, J=1/2,

〈Jx〉 = −Tc
∆

tanh

(
β∆

2

)

, 〈Jz〉 = − ε

2∆
tanh

(
β∆

2

)

, (2.28)

We will compare these expressions with the results of the large spin model in chap-
ter 3.
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2.4 Conclusion

In this chapter, we have presented dissipative two-state systems and spins as well
as corresponding theoretical approaches. While a two-state system is equivalently
represented by a ficticious spin one half, a large spin is employed to describe the
collective behavior in an ensemble of two-level systems with identical coupling to the
environment. This description is used, for instance, in the Dicke model. On the other
hand, this means that an intrinsic large spin with dissipation shows identical effects
as an ensemble of two-level systems. We conclude that the model of a dissipative
large spin which we will study in the following applies both to ensembles of two-level
systems and to intrinsic large spins.
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Chapter 3

The Large-Spin Model with
Weak Dissipation

In this chapter, we turn to the investigation of the large-spin model. This model
is a generalization of the spin-boson model to spins larger than one half. The
model applies both on intrinsic large spins and on dissipation induced collective
effects. Such effects occur in ensembles of two-level systems whose sole interaction
is caused by the coupling of each system to the common dissipative environment.
The collective behavior can then be described by a large spin.

The large-spin model contains the spin-boson model and the Dicke model as
different special cases. This indicates how rich and comprehensive the physical
properties of this model are. In this thesis, we concentrate on the investigation
of the model in two limits. This chapter is devoted to weak interactions between
the spin and its environment. The limit of strong interactions is considered in the
subsequent chapter. Both chapters focus on an ohmic dissipation.

We employ a master equation to describe the large spin. This allows to take into
account the influence of the dissipative environment on the spin without the necessity
of solving the environmental degrees of freedom in presence of the large spin. The
master equation is derived in Born-Markov approximation which is perturbative
in the system-environment coupling. The dynamics of the spin follows from the
numerical solution of the master equation.

For spin one half, the master equation can be transformed into a set of Bloch
equations for the spin components. The numerical solution of which is in excellent
agreement with the solution of the spin-boson model for weak ohmic dissipation at
all temperatures. Collective effects appear for spins larger one half. For a strong
bias, we find a superradiance-like behavior. The influence of the nonresonant bosons
of the environment becomes visible in beats in the coherent oscillations of the spin.
Finally, we study the equilibrium values of the large spin.
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CHAPTER 3. THE LARGE-SPIN MODEL WITH WEAK DISSIPATION

3.1 The Large-Spin Model

Different theoretical models were presented in the previous chapter which study the
influence of a dissipative environment on the dynamics of a spin. These models are
basically limited to the smallest possible spin, a spin one half. The spin-boson model
is by definition restricted to a spin 1/2. The same applies to the Bloch equations:
Their derivation is strictly valid at low temperatures only for spin 1/2. An exception
is the Dicke model, which deals with an arbitrary spin. However, this model lacks
generality as it does not include tunneling in the unperturbed system.

In many real systems, however, a spin larger than one half occurs. This may be a
nuclear spin. The elements gallium and arsenic used in the majority of modern solid
state experiments have a nuclear spin of 3/2. We also mention molecule magnets
which have been investigated in a number of recent experiments, cf. Sec. 2.1.3.
The most prominent examples of which, Mn12 and Fe8, are believed to have a total
spin of 10. Moreover, we showed in section 2.3 how a large pseudo-spin describes
collective effects of an ensemble of two-level systems. These systems are assumed
to be independent of each other apart from the coupling to the same environment
which introduces an indirect interaction. Realizations of this model include double
quantum dots, two-level systems in glasses, and registers of solid state qubits all
of which interacting with phonons. In order to investigate such dissipation-induced
collective effects, we employ a generalization of the spin-boson model to larger spins.
The Hamiltonian of this model, referred to as the large-spin model in the following,
is given by

H = ε Jz + 2Tc Jx + Jz
∑

q

γq (a†q + a−q) +
∑

q

ωq a
†
qaq. (3.1)

The crucial point is that Jλ are components of a spin operator J obeying the spin
or angular momentum commutation relations,

[
Jλ, Jµ

]
= i ελµν Jν, with λ, µ, ν ∈ {x, y, z}. (3.2)

We use the Levi-Civita symbol ελµν and set ~=1. The eigenstates |JM〉 of Jz and
J2 are employed to discuss the Hamiltonian,

J2 |J,M〉 = J(J + 1) |J,M〉 , Jz |J,M〉 = M |J,M〉 . (3.3)

The quantum number M takes the 2J+1 values from −J to J . The size J of the spin
is arbitrary but in general larger than one half. If the spin describes an ensemble
of N identical two-level systems, its size is given by J=N/2. The first term in the
Hamiltonian (3.1) describes a ladder of energetically equidistant states with a bias
ε between adjacent states. The next term can be expressed as 2TcJx=Tc(J++J−)
where J± are defined as

J± = Jx ± iJy. (3.4)
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3.1. THE LARGE-SPIN MODEL

Their effect on the states |J,M〉 is to raise or to lower M by one,

J± |J,M〉 = c±J,M |J,M±1〉 , with c±J,M =
√

J(J+1) −M(M±1). (3.5)

Thus, the second term introduces a tunnel coupling between neighboring states with
strength Tc. The tunnel matrix elements, however, are not constant but do depend
on the value M via the prefactor c±J,M . In fact, all collective effects exhibited by the
large-spin model can be traced back to this M -dependent tunnel rate.

The environment and the coupling between the spin and the environment in
the large-spin model (3.1) are similar to the spin-boson Hamiltonian (2.13). The
dissipative environment is modeled by a continuum of harmonic oscillators, hence
obeying Bose statistics. A boson in mode q with eigenenergy ωq is created by
the operator a†q. The coupling between the spin and a boson in mode q has the
strength γq. It will turn out that a single function, the spectral function, is sufficient
to describe the properties of the environment. The coupling is linear in the spin as
well as in the environment. The fact that the environment is coupled to the z-
component of the spin is referred to as diagonal coupling. Naturally, one could also
imagine nondiagonal realizations of the coupling, for instance to the x-component
of the spin [69]. In this chapter, however, we do not have a specific system in mind
requiring a nondiagonal coupling. Therefore, we use the diagonal form as in the
standard spin-boson model.

The large-spin model reduces to the spin-boson model for spin one half. How-
ever, this is not the only conceivable generalization of the latter to larger system
sizes. Another possibility is the dissipative tight-binding model. There, the tunnel
amplitudes between adjacent states are constant. For ohmic dissipation at zero tem-
perature this model shows a transition from diffusion to localization as a function of
the coupling strength [63, 64, 65, 70, 71]. By definition, no collective effects exist.
In the large-spin model, such effects are incorporated due to the spin algebra (3.2).

From the point of view of a many body system, the large-spin model is closely
related to the Dicke model (2.8). The Dicke model employs a large spin to describe
collective effects of an ensemble of identical two-level atoms. The difference between
the large-spin model and the Dicke Hamiltonian is that the latter does not include
tunneling and that the environment is coupled to the x-component of the spin.
For zero bias, ε = 0, the large-spin model can be mapped exactly on the Dicke
Hamiltonian (2.8) by rotation. This will be discussed in detail in section 3.5.

We conclude that the model of a large spin with coupling to a dissipative environ-
ment is closely related to the spin-boson model as well as to the Dicke model. While
the spin-boson model exhibits an extremely rich variety of single particle physics,
the Dicke model shows collective effects. The investigation of a combination of both
systems is a promising undertaking. Yet, it is obvious that a closed solution in the
whole parameter space is an unattainable task. Therefore we concentrate our studies
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CHAPTER 3. THE LARGE-SPIN MODEL WITH WEAK DISSIPATION

on two cases. In this chapter a weak coupling between the spin and the environment
is considered. The strong-coupling limit is investigated in the next chapter. In both
cases the main focus is on the dynamics of the z-component of the spin, Jz, since
this corresponds to the physical observable in most realizations. For an ensemble of
two-level atoms, Jz gives information on the total inversion as explained in Sec. 2.3.

3.2 The Master Equation

The dynamics of the large spin is completely described by its density matrix. We
employ a master equation to determine the time evolution of the density matrix
and thereby the behavior of the spin system. Due to the interactions between the
spin and the environment it is not possible to derive an exact master equation for
only the subsystem of the large spin. Instead, we derive the master equation within
the Born-Markov approximation. This takes into account the interactions to the
environment up to second order. We start with the solution for the spin expectation
values in the noninteracting case. Then, the Hamiltonian is transformed into the
interaction picture, which will be necessary in the course of the derivation of the
master equation.

3.2.1 Free Solution and the Interaction Picture

Let us begin with the dynamics of the large spin in the noninteracting case, given by
H0 = εJz + 2TcJx. The Heisenberg equations of motion for the expectation values
of the spin components read

˙〈Jx〉 = −ε 〈Jy〉 ,
˙〈Jy〉 = ε 〈Jx〉 − 2Tc 〈Jz〉 ,
˙〈Jz〉 = 2Tc 〈Jy〉 .

(3.6)

Initial conditions have to be specified in order to solve this set of differential equa-
tions. Choosing the wave function at t= 0 as an eigenstate |J,M〉 of Jz, cf. (3.3),
we find

〈Jx〉t = M
2Tc ε

∆2

(
1 − cos(∆t)

)
,

〈Jy〉t = −M 2Tc
∆

sin(∆t),

〈Jz〉t = M
1

∆2

(
ε2 + 4T 2

c cos(∆t)
)
.

(3.7)

All expectation values oscillate with a frequency ∆, which is defined as

∆ =
√

ε2 + 4T 2
c . (3.8)
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3.2. THE MASTER EQUATION

The meaning of ∆ becomes clear if we identify the unperturbed system as a spin in
a magnetic field with magnitude ε in z direction and 2Tc in x direction. The total
magnetic field adds up to

√

ε2 + 4T 2
c . Thus, ∆ is the constant level spacing of H0.

For a two-state system, ∆ is the hybridization energy. The free time evolution of the
large spin does not depend on the size of the spin, J , and only trivially on the initial
value 〈Jz〉0 =M . Clearly, no collective effects are expected for the non interacting
case.

The set of equations (3.6) is actually the most simple example for Bloch equa-
tions, as introduced in Sec. (2.2.1). It will turn out that the corresponding equations
do not form a closed set if the coupling to the environment is taken into account. The
description of the dissipative dynamics in a manner similar to (3.6) is not possible
for spins larger one half.

The next step is to transform the Hamiltonian (3.1) of the large-spin system into
the interaction picture. We write the Hamiltonian as a sum of the free part and the
interaction, H = H0 + V , with

V = Jz
∑

q

γq (a†q + a−q). (3.9)

The interaction representation Ã(t) of a time-independent operator A is defined as

Ã(t) = eiH0tAe−iH0t . (3.10)

This transformation can be calculated with help of the Baker-Hausdorff identity,

Ã(t) = A +
[
iH0t, A

]
+

1

2!

[
iH0t,

[
iH0t, A

]]
+ . . .

=
∞∑

ν=0

1

ν!

[
iH0t, . . .

[
iH0t

︸ ︷︷ ︸

ν−times

, A
]]
.

(3.11)

For the spin operator Jz, the ν-fold commutator follows directly from the spin com-
mutation relations (3.2),

[
H0, . . .

[
H0

︸ ︷︷ ︸

ν−times

, Jz
]]

=

{

−i 2Tc ∆mJy, ν = 2m+1, m ∈ �
0

2Tc ∆
m−1

(
2TcJz − εJx

)
, ν = 2m, m ∈ � (3.12)

Thus, the z-component of the spin becomes

J̃z(t) = Jx
2Tc ε

∆2

(
1− cos(∆t)

)
+Jy

2Tc
∆

sin(∆t)+Jz
1

∆2

(
ε2 +4T 2

c cos(∆t)
)
. (3.13)
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CHAPTER 3. THE LARGE-SPIN MODEL WITH WEAK DISSIPATION

In the noninteracting case, the interaction picture is identical to the Heisenberg
picture where the full time evolution of the system is carried by the operators.
Then, we can retrieve the free solution (3.7) using the initial state |J,M〉,

〈Jz〉t = 〈J,M | J̃z(t) |J,M〉 = M
1

∆2

(
ε2 + 4T 2

c cos(∆t)
)
. (3.14)

A similar calculation gives for the boson operators in the interaction picture

ã†q(t) = eiωqt a†q , ãq(t) = e−iωqt aq . (3.15)

Hence, the interaction representation Ṽ (t) of the coupling term follows by inserting
J̃z(t) from (3.13) and ã†q(t) from (3.15) into (3.9).

3.2.2 Born-Markov Approximation

Let us now turn to the master equation for the reduced density matrix of the spin
in the limit of a weak interaction with the dissipative environment. We apply the
Born-Markov approximation to derive the master equation. The Born-Markov ap-
proximation is typically employed in the field of quantum optics to describe the
atom-light interactions [19, 72]. Starting point is the von Neumann equation which
describes the time evolution of the density matrix χ(t) of the whole system consisting
of the large spin and the environment,

˙̃χ(t) = −i
[
Ṽ (t), χ̃(t)

]
. (3.16)

Again, the tilde denotes the interaction picture. The reduced density matrix of the
large spin, ρ(t), follows from tracing over the degrees of freedom of the environment,
also referred to as the reservoir,

ρ(t) = TrRes

{
χ(t)

}
. (3.17)

Due to the interaction between the spin and the environment, correlations of these
subsystems arise and consequently the total density matrix χ(t) cannot be written
as a direct product of ρ(t) and some density matrix of the environment. As we do
not know the exact form of the correlated state, it is pointless to trace over the
reservoir in the present form of the von Neumann equation (3.16). Instead, the von
Neumann equation is integrated and the result for χ̃(t) is inserted on the right hand
side of the very same equation,

˙̃χ(t) = −i
[
Ṽ (t), χ(0)

]
−

∫ t

0

dt′
[
Ṽ (t),

[
Ṽ (t′), χ̃(t′)

]]
. (3.18)

We assume that the spin is prepared in its initial condition and brought into contact
with the environment at time t = 0. Then, the initial density matrix of the total
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3.2. THE MASTER EQUATION

system factorizes, χ(0) = ρ(0) ⊗ R0, where R0 is the density matrix of the envi-
ronment. As a consequence, the first term in (3.18) vanishes if the trace over the
environment is carried out. The reason is that the interaction acting on the envi-
ronment, VRes =

∑

q γq(a
†
q + a−q), changes the particle number while R0 is assumed

to keep the particle number fixed. This is true if R0, describing in general a mixed
state, has no addition that is a superposition of states of different particle number.
In particular, the thermal equilibrium fulfills that condition. Hence, we obtain the
following equation for the reduced density matrix of the spin,

˙̃ρ(t) = −
∫ t

0

dt′ TrRes

{[
Ṽ (t),

[
Ṽ (t′), χ̃(t′)

]]}

. (3.19)

Moreover, we assume that the correlations evolving between the spin and the envi-
ronment are of the order of the interaction strength,

χ̃(t) = ρ̃(t) ⊗R0 + O(V ). (3.20)

The other assumption made in this equation is that the density matrix R0 of the
environment is not influenced by the interaction with the spin and therefore time-
independent. This is the intrinsic property of a heat bath: it can have severe
influence on the system but changes on the bath itself caused by the interaction are
negligible. Later, we will assume that the environment is always in thermal equilib-
rium. The decomposition of the total density matrix in the fashion of (3.20) enables
us to actually calculate the trace over the environment whereas equation (3.19)
by itself is merely a formal statement. Inserting (3.20) into (3.19) shows that the
correlations lead to terms of third order in the interaction strength. The second
order Born approximation consists in neglecting these terms. The resulting master
equation reads

˙̃ρ(t) = −
∫ t

0

dt′ TrRes

{[
Ṽ (t),

[
Ṽ (t′), ρ̃(t′) ⊗ R0

]]}

, (3.21)

which takes into account the interactions up to second order. It would have been fu-
tile to apply the decomposition (3.20) directly to the von Neumann equation (3.16),
since all first-order terms vanish.

The correlation function of the environment, K(t−t′), is defined according to

K(t−t′) = TrRes

{
ṼRes(t) ṼRes(t

′)R0

}
, (3.22)

where VRes is that part of the interaction V which acts on the Hilbert space of the
environment. The correlation function depends only on the time difference t−t′ for
any time-independent form of the interaction, as implied in the definition. With the
specific realization of the interaction as given in (3.9), we find

K(t−t′) =
∑

q

|γq|2
(

eiωq(t−t′) TrRes

{
a†qaqR0

}
+ e−iωq(t−t′) TrRes

{
aqa

†
qR0

})

, (3.23)
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CHAPTER 3. THE LARGE-SPIN MODEL WITH WEAK DISSIPATION

where all combinations of boson operators are neglected that do not conserve the
particle number. The correlation function fulfills K(−t) = K(t)∗. In section 3.3, we
will discuss the correlation function in more detail. The master equation (3.21) can
be written with the correlation function as

˙̃ρ(t) = −
∫ t

0

dt′
([
J̃z(t), J̃z(t

′) ρ̃(t′)
]
K(t−t′)−

[
J̃z(t), ρ̃(t

′) J̃z(t
′)
]
K(t−t′)∗

)

. (3.24)

The great achievement of the Born approximation becomes visible in this form of
the master equation: the entire effect of the dissipative environment appears as
one single function K(t). The second approximation to be applied is the Markov

approximation. For this purpose we have a closer look at (3.24). This equation states
how the changes on the spin subsystem, given by ˙̃ρ(t), depend on the state of the
same system at earlier times, ρ(t′). Loosely speaking, the spin passes information
about its state to the environment at time t′, which is then returned after a delay
t−t′ and weighted by the correlation function K(t−t′). Thus, the function K(t)
acts as a memory function of the environment describing how long information is
preserved in the environment. Here, we consider a dissipative environment with a
huge number of degrees of freedom. The influence of the spin on the environment is
expected to be very small and quickly vanishing. Correspondingly, the memory of
the environment is very short and the function K(t) is peaked around t−t′=0. The
Markov approximation consists in assuming that the width of the function K(t) is
much smaller than the timescale on which the system changes, i.e. the timescale of
ρ̃(t). Then one can replace ρ̃(t′) in the master equation (3.24) by ρ̃(t),

˙̃ρ(t) = −
∫ t

0

dt′
([
J̃z(t), J̃z(t

′) ρ̃(t)
]
K(t−t′) −

[
J̃z(t), ρ̃(t) J̃z(t

′)
]
K(t−t′)∗

)

. (3.25)

It is essential to apply the Markov approximation in the interaction picture, where
the time evolution of the density matrix is exclusively due to the interaction, as can
be seen from the von Neumann equation (3.16). The free time evolution which is
typically much faster is with the operators, cf. Sec. 3.2.1. Note that the Markov
approximation is not unique and that also other forms appear in the literature.
Sometimes, the Markov approximation is performed by replacing the correlation
function by a delta function, K(t)→δ(t), e.g. [73]. The quality of the approximation,
however, depends crucially on the precise realization of the Markov approximation.
In the above form, Eq. (3.25), there is still the integral over dt′ to be evaluated, only
that ρ̃(t) is now outside this integral. Apparently, we would have obtained the same
result if ρ̃(t′) was replaced by ρ̃(t) already in (3.21). The latter form will be used as
a starting point for the calculations in chapter 5 of this thesis.

The last step is to transform the master equation (3.25) back into the Schrödinger
picture. We prefer to solve the master equation in the Schrödinger picture since this

28



3.2. THE MASTER EQUATION

will enable us to calculate the expectation value of any operator without having
to transform that operator into the interaction picture first. Therefore, the rela-
tion (3.10) between the density matrix in Schrödinger and in interaction represen-
tation is differentiated with respect to time, yielding

d

dt
ρ̃(t) = i eiH0t

[
H0, ρ(t)

]
e−iH0t + eiH0tρ̇(t)e−iH0t. (3.26)

Here, H0 is only the spin part of the unperturbed Hamiltonian. Solving this equation
for ρ̇(t) and substituting ˙̃ρ(t) by (3.25), we find the master equation in Schrödinger
representation,

ρ̇(t) = i
[
ρ(t), H0

]
−

∫ t

0

dt′
([
Jz, J̃z(t

′−t) ρ(t)
]
K(t−t′)

−
[
Jz, ρ(t) J̃z(t

′−t)
]
K(t−t′)∗

)

.

(3.27)

Still, one operator, J̃z(t
′−t), enters this equation in its interaction representation.

To obtain an expression with all operators given in the Schrödinger picture, we
insert the interaction representation (3.13) of J̃z(t), resulting in the final form of the
master equation for the large spin,

ρ̇(t) = i
[
ρ(t), H0

]
− 1

∆2
(ε2 Γ + 4T 2

c Γc)
[
Jz, Jz ρ(t)

]

− 2Tc ε

∆2
(Γ − Γc)

[
Jz, Jx ρ(t)

]
+

2Tc
∆

Γs
[
Jz, Jy ρ(t)

]

+
1

∆2
(ε2 Γ∗ + 4T 2

c Γ∗
c)

[
Jz, ρ(t) Jz

]

+
2Tc ε

∆2
(Γ∗ − Γ∗

c)
[
Jz, ρ(t) Jx

]
− 2Tc

∆
Γ∗
s

[
Jz, ρ(t) Jy

]
.

(3.28)

The integrals over the correlation function are defined as

Γ =

∫ ∞

0

K(t) dt,

Γc =

∫ ∞

0

K(t) cos(∆t) dt,

Γs =

∫ ∞

0

K(t) sin(∆t) dt.

(3.29)

The upper limit of the integration is extended to infinity since K(t) is assumed to
be peaked around t = 0 within the Markov approximation. The integrals will be
evaluated in the next section. In the noninteracting case, all bosonic factors vanish,
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CHAPTER 3. THE LARGE-SPIN MODEL WITH WEAK DISSIPATION

Γ=Γc=Γs=0. Then, only the first commutator remains in the master equation and
we retrieve the von Neumann equation for the unperturbed spin in the Schrödinger
picture. From the mathematical point of view, the master equation (3.28) is a
first-order ordinary differential equation for the density matrix ρ(t). With the spec-
ification of an initial value, the master equation has a definite solution. Since the
Hilbert space of the large spin has the dimension 2J+1, the solution of the master
equation requires the integration of a set of (2J+1)2 coupled equations. Although
not all equations are independent of each other as the density matrix is an hermitean
operator, the analytical solution of the master equation is in general unattainable.
Numerically, however, the integration is a small challenge and the solution can be
obtained with standard routines.

3.2.3 Master Equation for the Matrix Elements

For the numerical integration of the master equation it is preferable to express
the density matrix by its elements instead of the operator form (3.28). Then, the
master equation gives a set of (2J+1)2 coupled differential equations. We choose
the eigenstates |J,M〉 of Jz as a basis and express Jx and Jy by combinations of J+

and J− (3.4). Thus, the master equation (3.28) yields for ρM,N =〈J,M | ρ |J,N〉,

ρ̇M,N (t) = i ε (N−M) ρMN(t)

+ i Tc
(
c+J,N ρM,N+1 + c−J,N ρM,N−1 − c+J,M ρM+1,N − c−J,M ρM−1,N

)

+
1

∆2
(N−M)

(
ε2 ΓM − ε2 Γ∗N + 4T 2

c ΓcM − 4T 2
c Γ∗

cN
)
ρM,N(t)

+
Tc
∆2

c−J,M (N−M)
(
εΓ − εΓc + i∆ Γs

)
ρM−1,N(t)

− Tc
∆2

c+J,N (N−M)
(
εΓ∗ − εΓ∗

c + i∆ Γ∗
s

)
ρM,N+1(t)

+
Tc
∆2

c+J,M (N−M)
(
εΓ − εΓc − i∆ Γs

)
ρM+1,N (t)

− Tc
∆2

c−J,N (N−M)
(
εΓ∗ − εΓ∗

c − i∆ Γ∗
s

)
ρM,N−1(t).

(3.30)

For a reasonable spin size J , this equation can be solved numerically with standard
routines. We employ a fourth-order Runge-Kutta method with adaptive step size
control [74].
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3.3 The Bath Correlation Function

We have seen in the previous section that the entire influence of the dissipative
environment on the large spin reduces to a single function, the bath correlation
function K(t). This section is devoted to the evaluation and discussion of the cor-
relation function as well as the calculation of the corresponding rates Γ, Γc, and Γs.

Let us return to the correlation function in the form of (3.23). We assume that
the dissipative environment is a macroscopic system so that the effects of the large
spin on the environment are negligible. Moreover, we consider the simplest case,
where the environment is in thermal equilibrium. This is justified in the majority of
realizations. Then, the trace over the boson operators gives the Bose distribution,

TrRes

{
a†qaqR0

}
=

1

eβωq − 1
, (3.31)

where β is the inverse temperature of the environment, β=1/kBT . The other trace
in (3.23) follows from the boson commutation relations, aqa

†
q = 1−a†qaq. It will turn

out helpful to rewrite equation (3.23) with an extra integration and delta function
as

K(t) =

∫ ∞

0

dω
∑

q

|γq|2 δ(ω − ωq)
e−βωeiωt + e−iωt

1 − e−βω

=

∫ ∞

0

dω ρ(ω)
e−βωeiωt + e−iωt

1 − e−βω
.

(3.32)

In the second line, the spectral function of the environment, ρ(ω), is inserted which
is defined as

ρ(ω) =
∑

q

|γq|2 δ(ω − ωq). (3.33)

This function contains all relevant information on the environment and the coupling
to the spin, apart from the temperature. The definition suggests that the spectral
function is a highly discontinuous function jumping between zero and infinity, in
fact, not a regular function at all. However, the environment was introduced as a
macroscopic system with a continuous spectrum. Then, the sum over the modes q
in the definition (3.33) of ρ(ω) becomes an integral and the spectral function ap-
pears as a well defined function. Naturally, this function depends on the specific
realization of the environment namely the density of states and the distribution of
the coupling strength |γq|2. But since we are not concerned with the details of a
certain environment in this chapter, we prefer to model the spectral function in the
standard way as a power law with an exponential cutoff ωc,

ρ(ω) = g ωse−ω/ωc . (3.34)
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The overall interaction strength is given by g and one distinguishes the cases

s < 1 sub-ohmic,

s = 1 ohmic,

s > 1 super-ohmic.

The linear spectral density is called ohmic, because of the analogy to an electric
circuit with induction, capacitor and resistor [75]: The equation of motion for a
particle in contact to a dissipative environment with a linear spectral function shows
a constant damping term. The same effect is caused by an ohmic resistor in the
electric circuit. We will focus on the ohmic case in the following. In the spin-boson
model, the ohmic dissipation is the most interesting case. It leads to all different
kinds of dynamics, from coherent oscillations to localization, cf. Sec (2.2.3). In
chapter 5, we will also meet a different type of spectral function. There, bulk
acoustic phonons are considered which interact with electrons in double quantum
dots. For s 6=1, the interaction strength g in (3.34) is not dimensionless. This can

be cured by an additional factor ω
(1−s)
c in the definition. We will however use the

previous definition (3.34) in the following.

3.3.1 Calculation of K(t)

For spectral functions of the form of equation (3.34), the correlation function K(t)
can readily be evaluated even at finite temperatures. The integral over dω in (3.32)
is led back to tabulated ones, e.g. Gradshteyn-Ryzhik [76], and for s>0 we find

K(t) = g β−(s+1) Γ(s+ 1)
[

ζ
(

s+1,
1 + βωc − iωct

βωc

)

+ ζ
(

s+1,
1 + iωct

βωc

)]

. (3.35)

Here, ζ(z, a) is the generalized zeta function which can be represented as a series
(see Magnus et al. [77] for further properties of this function),

ζ(z, α) =

∞∑

n=0

1

(n + α)z
, α /∈

{
0,−1,−2, . . .

}
. (3.36)

Consistent with the definition (3.23), the function K(t) has the dimension of energy
squared. Note that we do not distinguish between rates and energies as ~ is set to
one. Fig. 3.1 shows the correlation function for the ohmic case at different temper-
atures. Both real and imaginary part are clearly peaked around t=0 as assumed in
the Markov approximation. The real part of K(t) is symmetric while the imaginary
is antisymmetric, K(−t) =K(t)∗. This follows directly from the definition (3.22).
Moreover, the imaginary part does not depend on the temperature, which becomes
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Figure 3.1: Real and imaginary part of the correlation function K(t),
Eq. (3.35), for an ohmic dissipation (s=1) at different temperatures. ∆
is an arbitrary unit of the energy and we used g=0.1 and ωc=50∆.

obvious by rewriting equation (3.32) as

K(t) =

∫ ∞

0

dω ρ(ω)
[

cos(ωt) coth
(βω

2

)

− i sin(ωt)
]

. (3.37)

In the limit of zero temperature, the bath correlation function can be simplified
considerably. With the help of

lim
T→0

e−βω

1 − e−βω
= 0, lim

T→0

1

1 − e−βω
= 1, (3.38)

the integration in equation (3.32) yields

KT=0(t) = g Γ(s+ 1)
( 1

ωc
+ it

)−(s+1)

. (3.39)

This result can also be obtained directly from the finite temperature expression (3.35).
In order to do that, we consider the two zeta functions separately. The second argu-
ment of the first zeta function in (3.35) goes to one in the limit of zero temperature.
Then, the generalized zeta function reduces to the Riemann zeta function,

ζ(z, 1) = ζ(z). (3.40)

33
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The Riemann zeta function is a meromorphic function with a simple pole at z=1,
cf. [77]. In particular, ζ(s+1) is limited for s>0 and we find

lim
T→0

β−(s+1) ζ
(

s+1,
1 + βωc − iωct

βωc

)

= 0. (3.41)

For the second zeta function, we use the lemma

lim
ε→0

εz ζ(z, εu) =
1

uz
, Re{z} > 0. (3.42)

This can be proven with the series representation (3.36) of the generalized zeta
function. Applying the lemma to the second zeta function in (3.35) yields

lim
T→0

β−(s+1) ζ
(

s+1,
1 + iωct

βωc

)

=
( 1

ωc
+ it

)−(s+1)

. (3.43)

Thus, we recover the result of the direct calculation (3.39). This expression shows
that the width of the correlation function scales with the inverse of the cutoff fre-
quency ωc of the spectral function ρ(ω). For large cutoffs, the width of the peak will
be small – a necessary condition for the validity of the Markov approximation. For
smaller cutoffs, however, the correlation function becomes broader and the Markov
approximation will eventually break down.

3.3.2 Derivation of the Rates

In the final form of the master equation (3.28), the correlation function K(t) does
not enter directly but in form of the rates Γ, Γc, and Γs which are defined as
integrals over the correlation function (3.29). These rates are to be calculated in
this section. First of all, we show that the rates consist of two contributions: one
describing the resonant interaction of the large spin with the environment, the other
the nonresonant interaction. For an arbitrary spectral density, an expression for
the resonant part is derived. In order to calculate the nonresonant parts of the
rates, we concentrate on spectral densities modeled in the fashion of equation (3.34).
Then, analytical expressions can be found for all rates at zero temperature. The
generalization to finite temperatures is discussed for the ohmic case.

Let us first consider an arbitrary spectral function ρ(ω). The calculation of the
rates (3.29) amounts to computing integrals of the form

∫ ∞

0

dtK(t) e±i∆t =

∫ ∞

0

dt

∫ ∞

0

dω ρ(ω)
e−βωei(ω±∆)t + e−i(ω∓∆)t

1 − e−βω
. (3.44)

On the right hand side, K(t) was inserted in the form of equation (3.32). The time
integral can be solved using

∫ ∞

0

dt eiωt = π δ(ω) + iP
1

ω
, (3.45)
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which follows from the Dirac identity. P denotes the Cauchy principal value. Hence,
we obtain for the rates

Γc =
π

2
ρ(∆) coth

(β∆

2

)

− i

2
−
∫ ∞

0

dω ρ(ω)
( 1

ω + ∆
+

1

ω − ∆

)

,

Γs =
1

2
−
∫ ∞

0

dω ρ(ω) coth
(βω

2

) ( 1

ω + ∆
− 1

ω − ∆

)

− i
π

2
ρ(∆).

(3.46)

The remaining rate Γ follows from Γc in the limit of ∆→0. Equation (3.46) shows
that the imaginary parts of the rates do not depend on the temperature – consistent
with the correlation function K(t) (3.37). The physical meaning of the real and
imaginary parts of the rates becomes clear from (3.46). The spectral function ρ(ω)
is only evaluated at the resonant energy ω=∆ in the real parts of Γ and Γc as well
as in the imaginary part of Γs. These parts describe the interaction with bosons of
the environment whose energy is identical to the level spacing ∆ of the large spin.
The other parts, the imaginary parts of Γ and Γc, and the real part of Γs account
for the influence of the nonresonant bosons on the spin system. They typically
result in a renormalization of the spin energy ∆. For the correct description of the
dynamics of the large spin, it is important to take into account also the nonresonant
bosons. On the other hand, the transport properties of quantum dots which are
considered in chapter 5 have been shown to depend negligibly on the nonresonant
parts [78]. Consequently, we will only consider the resonant interaction in chapter 5.
A peculiarity occurs for the real part of the rate Γ: Since this rate results as the
limit ∆ → 0 of the rate Γc it appears that the real part of Γ gives the influence of
bosons with energy zero on the spin. We will also neglect this part in chapter 5 and
find for the rates in that case

Γ = 0,

Γc =
π

2
ρ(∆) coth

(β∆

2

)

,

Γs = −i π
2
ρ(∆).

(3.47)

Let us now turn to the case in which the spectral function is modeled according
to equation (3.34). Then, we aim to calculate the complete rates including the
nonresonant parts. We begin with the rate Γ which follows from Γc in the limit
∆→ 0, cf. (3.29). In this limit, equation (3.46) leads to the Gamma function Γ(s)
for the imaginary part of the rate Γ at s>0. The delta function in (3.45) is counted
only half for the real part due to the lower limit of the integration. Because of the
divergence of the hyperbolic cotangent at ω=0, the real part of Γ depends crucially
on the behavior of the spectral function at small energies, i.e. on the value of the
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exponent s, yielding

Im{Γ} = −g ωsc Γ(s), Re{Γ} =







∞ s < 1,

gπ/β s = 1,

0 s > 1.

(3.48)

Apparently, the Markov approximation breaks down for sub-ohmic spectral functions
for which the rate Γ diverges. The result indicates that the ohmic case is of special
significance and that s=1 is a critical value of the environment. Only then, the real
part of Γ is finite and non-zero. We do not neglect the real part in the calculations
of this chapter. But we made sure that this part does not lead to any qualitative
difference of the results presented in the following.

The rates Γc and Γs are given in principle by (3.46). Yet, the calculation of the
principal value integrals with a spectral function ρ(ω) as in (3.34) is not possible at
finite temperatures. Instead, we restrict ourselves to zero temperature and use the
correlation function K(t) in the form (3.39). An additional exponential cutoff has
to be added to the correlation function for convergence which is later extended to
infinity. Thus, we find from the definition (3.29) at zero temperature

Γc =
i−(s+1)

2
g∆s Γ(s+ 1)

[

(−i)s e−∆/ωc Γ
(

− s,−∆

ωc
− i0

)

+ is e∆/ωc Γ
(

− s,
∆

ωc

)]

,

Γs =
i−(s+2)

2
g∆s Γ(s+ 1)

[

(−i)s e−∆/ωc Γ
(

− s,−∆

ωc
− i0

)

− is e∆/ωc Γ
(

− s,
∆

ωc

)]

.

(3.49)

The infinitesimal negative imaginary part of the second argument of the incomplete
Gamma function Γ(−s, z) is important since Γ(−s, z) has a branch cut for negative
real z [79]. The result can be simplified for positive integer s. This applies to
the majority of physical models. Then, the incomplete Gamma function can be
represented as a series [76],

Γ(−n, x) =
(−1)n

n!

[

Γ(0, x) − e−x
n−1∑

m=0

(−1)m
m!

xm+1

]

, (3.50)

and for a vanishing first argument it is expressed in terms of exponential integrals
Ei(x) and E1(x) [80],

Γ(0, x± i0) =

{

E1(x) x > 0,

−Ei(−x) ∓ iπ x < 0.
(3.51)

Thus, equation (3.49) becomes for s=n

Γc = − i

2
g∆n (Λ+ + Λ−), Γs = −1

2
g∆n (Λ+ − Λ−), (3.52)
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with Λ+ and Λ− defined as

Λ+ = e−∆/ωc

[

− Ei
( ∆

ωc

)

+ iπ − e∆/ωc

n−1∑

m=0

(−1)mm!
(

− ωc
∆

)m+1 ]

,

Λ− = (−1)n e∆/ωc

[

E1

( ∆

ωc

)

− e−∆/ωc

n−1∑

m=0

(−1)mm!
(ωc

∆

)m+1 ]

.

(3.53)

A further simplification follows for the ohmic case, s=1, as the sum vanishes,

Γc =
π

2
g∆ e−∆/ωc +

i

2
g∆

[

e−∆/ωc Ei
( ∆

ωc

)

+ e∆/ωcE1

( ∆

ωc

)

− 2ωc
∆

]

,

Γs = −1

2
g∆

[

− e−∆/ωc Ei
( ∆

ωc

)

+ e∆/ωcE1

( ∆

ωc

)]

− i
π

2
g∆ e−∆/ωc.

(3.54)

The agreement of the real part of Γc and the imaginary part of Γs with the general re-
sult (3.46) in the limit of zero temperature is immediately seen. Since the imaginary
parts of the rates do not depend on temperature, the imaginary part of Γc as given
in equation (3.54) is at the same time valid for all temperatures. This argument,
however, does not apply to the real part of Γs. Thus, for an ohmic spectral density
at finite temperatures, we have found analytical expressions for all rates except the
real part of Γs. This remains to be evaluated numerically at finite temperatures.

3.4 The Spin-Boson Limit

For the smallest possible value of the spin, J=1/2, the large-spin Hamiltonian (3.1)
reduces to the spin-boson model, cf. Sec. 2.2.3. The latter has been studied by
many authors in great detail and results for most regimes of parameters can be
found in the literature. This enables us to compare and to judge the Born-Markov
approximation for J=1/2. It turns out that the Born-Markov approximation gives
reliable results for weak ohmic dissipation at all temperatures.

For easy reference, we repeat the spin-boson Hamiltonian (2.13),

H =
ε

2
σz −

∆s

2
σx −

1

2
σz

∑

q

γq(aq + a†q) +
∑

q

ωq a
†
qaq. (3.55)

The overall interaction strength of the spin-boson model is denoted in the follow-
ing by α. Due to a different definition of the spectral function in the spin-boson
literature, this value differs by a factor of two from the interaction strength g in
our notation (3.34). Thus, the relations between the spin-boson model and the
large-spin model for J=1/2 are

∆s = 2Tc, α =
g

2
, (3.56)
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while the bias ε and the cutoff ωc are identical in both models. Due to the minus
sign in the tunnel term, −∆sσx/2 in (3.55), the x-components of the spins have
opposite signs in the two models, σx=−2Jx. The different signs of the interaction
terms have no consequence as only the square of the interaction coefficient γq enters
the definition of the spectral function.

3.4.1 Results for the Spin-Boson Model

An overview of the spin-boson model was given in section 2.2.3. In this section, we
present the results for small couplings between the spin and the environment, α�1.
It is a priori clear, that the Born-Markov approximation which is perturbative in the
coupling should only be applied in that regime. We follow the work of Weiss [10,
73] who gives approximative solutions for the dynamics of the spin components
for weak ohmic dissipation. Two regimes have to be distinguished: The so-called
Markov regime at intermediate temperatures and the non-Markov regime at low
temperatures. A smooth transition between the two regimes occurs around the
temperature Tb =

√

∆2
r + ε2/kB, with ∆r as defined below.

The solution in the Markov regime, T ' Tb, is obtained by the noninteracting-

blip approximation (NIBA) [9, 10]. For the initial conditions 〈σz〉0 =1 and 〈σx〉0 =
〈σy〉0 =0, the solution reads

〈σz〉t = a1 e
−γrt +

[
(1−a1−〈σz〉∞) cos Ωt+ a2 sin Ωt

]
e−γt + 〈σz〉∞ ,

〈σx〉t = b1 e
−γrt +

[
− (b1+〈σx〉∞) cos Ωt + b2 sin Ωt

]
e−γt + 〈σx〉∞ .

(3.57)

The dynamics of the y-component of the spin follows as the time derivative of the
z-component, 〈σy〉t = 〈σ̇z〉t /∆s, which can be seen directly from the Heisenberg
equations of motion. The parameters in equation (3.57) are defined as

∆r = ∆s

(
∆s

ωc

)α/(1−α)

, ∆T = ∆r

(
2πkBT

∆r

)α

,

γr =
2π α kBT∆2

T

∆2
T + ε2 + (2π α kBT )2

, γ = 2π α kBT − γr
2
,

Ω =

√

ε2 + ∆2
T +

γ2
r

4
− γγr , D = Ω2 + (γ − γr)

2, (3.58)

a1 =
Ω2 + γ2 − ∆2

T − (Ω2+γ2) 〈σz〉∞
D

, a2 =
(γr−γ)a1 + γ

(
1−〈σz〉∞

)

Ω
,

b1 =
−1

D

(
ε∆2

T

∆s
+

ε2(γ2 + Ω2)

γ2 + Ω2 − ∆2
T

〈σx〉∞
)

, b2 =
πα∆2

T/∆s+ (γr−γ)b1 − γ 〈σx〉∞
Ω

.
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The expressions for γr, γ, and Ω apply to the biased system with ε>∆T/2
√

2. The
equilibrium values follow as

〈σz〉∞ = − tanh

(
ε

2kBT

)

, 〈σx〉∞ =
∆s

ε
tanh

(
ε

2kBT

)

. (3.59)

Apparently, these expressions for 〈σz〉∞ and 〈σx〉∞ do not agree with the thermo-
dynamic results (2.28) at low temperatures. In fact, the NIBA results become un-
physical in that regime and indicate that the method fails at low temperatures: The
value of 〈σx〉∞ for instance exceeds the maximum possible value of +1 for 0<ε<∆s.
The equilibrium value 〈σz〉∞ on the other hand predicts a fully localized spin for an
arbitrary small bias.

The regime of low temperatures, T / Tb, is often described as the non-Markov
regime. It should be emphasized, however, that it does not necessarily mean that the
Markov approximation fails in this regime. The quality of the Markov approximation
depends on the exact realization as discussed in section 3.2.2. The solution in the
non-Markov regime is derived by considering interblip correlations [10], yielding

〈σz〉t =
( ∆2

eff

Ω̃2
cos Ω̃t+

γ̃rε
2 + γ̃∆2

eff − γ̃rΩ̃
2 〈σz〉∞

Ω̃3
sin Ω̃t

)

e−γ̃t

+
( ε2

Ω̃2
− 〈σz〉∞

)

e−γ̃rt + 〈σz〉∞ ,

〈σx〉t =
( ε∆2

eff

∆sΩ̃2
cos Ω̃t+ b̃2 sin Ω̃t

)

e−γ̃t −
( ε∆2

eff

∆sΩ̃2
+ 〈σx〉∞

)

e−γ̃rt + 〈σx〉∞ .

(3.60)

The parameters in these expressions are defined as

∆eff = ∆r

[
Γ(1−2α) cos(πα)

]1/2(1−α)
, ∆b =

√

∆2
eff + ε2 ,

Ω̃2 = ∆2
b + 2α

[

Reψ
( i∆b

2πkBT

)

− ln
( ∆b

2πkBT

)]

, γ̃ =
γ̃r
2

+
2π α ε2 kBT

∆2
b

, (3.61)

b̃2 =
∆2

eff

∆sΩ̃

[

πα+
ε(γ̃ − γ̃r)

Ω̃2

]

− γ̃r 〈σx〉∞
Ω̃

, γ̃r = πα coth
( ∆b

2kBT

) ∆2
eff

∆b
,

where ψ(z) is the digamma function. The equilibrium values in the non-Markov
regime are given by

〈σz〉∞ = − ε

∆b
tanh

(
∆b

2kBT

)

, 〈σx〉∞ =
∆2

eff

∆s∆b
tanh

(
∆b

2kBT

)

. (3.62)

These values match with the thermodynamic results (2.28) in the limit of zero
coupling to the environment, α → 0. The different solutions (3.60) and (3.57) agree
for intermediate temperatures, T ≈Tb. We will use these solutions as a reference for
the results of the Born-Markov approximation.
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3.4.2 Born-Markov Approximation for J =1/2

We now return to the master equation (3.28) for the large spin in Born-Markov
approximation. A peculiarity occurs for spin one half: In that case, a closed set of
equations for the expectation values of the spin components follows from the master
equation, comparable to the Bloch equations as presented in section 2.2.1. This set
is found by multiplying the master equation (3.28) with the corresponding spin op-
erator and tracing over the spin degrees of freedom. The products of spin operators
which appear in the course of doing so reduce for J=1/2 to single spin operators or
the (2×2) unity matrix � . The reason is that the Pauli spin matrices together with
the unity matrix form a closed group with respect to the multiplication. Thus, we
find for J=1/2 the Bloch equations

˙〈Jx〉 = − 1

∆2

(
ε2 Re{Γ} + 4T 2

c Re{Γc}
)
〈Jx〉 − ε 〈Jy〉

+
2Tc ε

∆2

(
Re{Γ} − Re{Γc}

)
〈Jz〉 +

Tc
∆

Im{Γs},

˙〈Jy〉 = ε 〈Jx〉 −
1

∆2

(
ε2 Re{Γ} + 4T 2

c Re{Γc}
)
〈Jy〉

−
(

2Tc +
2Tc
∆

Re{Γs}
)

〈Jz〉 +
Tc ε

∆2

(
Im{Γ} − Im{Γc}

)
,

˙〈Jz〉 = 2Tc 〈Jy〉 .

(3.63)

A similar set of Bloch equations was recently published by Hartmann et al. [81]. It is,
however, not possible to extend these equations to a larger spin without additional
approximations. This was already remarked in the original works by Bloch [48, 49].
The difficulty arises because products of spin operators cannot be replaced by a
single spin operator for spins larger than one half. The corresponding equations do
not form a closed set anymore. Hence, we can only transform the master equation
into Bloch equations for spin one half. For larger spins we will have to come back
to the master equation (3.28).

Let us first consider the unbiased system, ε=0. Then, the equations for 〈Jy〉 and
〈Jz〉 decouple from 〈Jx〉 and we find the equation of a damped harmonic oscillator
for 〈Jz〉,

¨〈Jz〉 + Re{Γc} ˙〈Jz〉 + 4T 2
c

(

1 +
Re{Γs}

2Tc

)

〈Jz〉 = 0. (3.64)

This result clearly shows the influence of the dissipative environment on the spin
dynamics: First of all damping is introduced by the interaction with the resonant
bosons, expressed by Re{Γc}. Moreover, the influence of the nonresonant bosons,
Re{Γs}, leads to a shift of the oscillation frequency. The equation for 〈Jx〉 on the
other hand describes an exponential decay to its equilibrium value.
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For an arbitrary bias, ε≥0, the equilibrium values of the spin components follow
from the Bloch equations (3.63). It is readily seen that 〈Jy〉∞ vanishes. The other
two components are

〈Jz〉∞ =
εRe{ε2 Γ + 4T 2

c Γc} Im{Γ−Γc} + ε∆3 Im{Γs}
2∆ Re{ε2 Γ + 4T 2

c Γc}(∆ + Re{Γs}) − 2ε2∆2Re{Γ−Γc}
,

〈Jx〉∞ =
Tc∆

2 Im{Γs}(∆ + Re{Γs}) + ε2Tc Re{Γ−Γc} Im{Γ−Γc}
∆ Re{ε2 Γ + 4T 2

c Γc} (∆ + Re{Γs}) − ε2∆2 Re{Γ−Γc}
.

(3.65)

These expressions simplify considerably in the limit of zero coupling, g→ 0. Ne-
glecting products of the rates in the nominator as well as in the denominator yields
with (3.46)

〈Jz〉∞ = − ε

2∆
tanh

(
β∆

2

)

, 〈Jx〉∞ = −Tc
∆

tanh

(
β∆

2

)

. (3.66)

These results agree with the thermodynamic results (2.28). Since the Born-Markov
approximation gives the correct equilibrium values in the limit of zero coupling for
all temperatures, we have no indication at this point that the Born-Markov approx-
imation breaks down below a certain temperature similar to the noninteracting-blip
approximation.

3.4.3 Comparison of the Different Approaches

After having presented the Born-Markov approximation for a spin one half and
the solution of the spin-boson model with weak ohmic dissipation in the previous
sections, we now compare the two methods for different parameters. Therefore,
the Bloch equations (3.63) which follow from the master equation in Born-Markov
approximation (3.28) are solved numerically. We use the initial conditions 〈Jz〉0 =
1/2, 〈Jx〉0 = 〈Jy〉0 = 0, corresponding to an initially localized system, throughout
this section. Three different regimes of the parameters are investigated, a large bias,
a zero bias, and an intermediate bias. Depending on the temperature, the NIBA
solution or the non-Markov solution of the spin-boson model applies.

We begin with a system of intermediate bias, ε = Tc, at a finite temperature
kBT =2Tc. The cutoff frequency for the ohmic spectral density is chosen as ωc=50Tc
throughout this chapter. With an interaction strength of g=0.1, corresponding to
α= 0.05, cf. (3.56), the transition temperature between the Markov and the non-
Markov regime of the spin-boson model becomes kBTb≈2.0Tc. Thus, the system is in
the Markov regime and the solution of the spin-boson model is given by the NIBA
results (3.57). These results are plotted in Fig. 3.2 as 〈Jz〉 = 〈σz〉 /2 and 〈Jx〉 =
−〈σx〉 /2 together with the solution of the Bloch equations (3.63). The different
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Figure 3.2: Dynamics of the spin-boson model for ε = Tc, ωc = 50Tc,
kBT =2Tc, and g=0.1 (inset g=0.4) according to the NIBA (3.57) and
the Bloch equations (3.63).

methods are in excellent agreement both for 〈Jz〉 and for 〈Jx〉. For an increased
coupling strength, g=0.4, deviations between the different solutions become evident
as shown in the inset of Fig. 3.2. However, this is not surprising as the Bloch
equations are perturbative in the coupling strength and by definition only valid for
small couplings. Apparently, the Born-Markov approximation gives correct results
in the regime of intermediate temperatures and weak interaction.

Next, we investigate the regime of low temperatures, the non-Markov regime,
where the NIBA is not reliable anymore. We consider a symmetric system, ε=0, at
zero temperature. With the other parameters as above, the transition temperature
is finite, kBTb≈1.7Tc, so that the system is clearly in the non-Markov regime. Then,
we have to compare the results of the Bloch equations with the low temperature so-
lution (3.60) of the spin-boson model. For zero bias, the Bloch equations decouple
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and we find the equation of a damped harmonic oscillator for the z-component of the
spin, 〈Jz〉, while 〈Jx〉 decays exponentially to the equilibrium value, as derived in the
previous section. These results agree well with the low temperature solution (3.60)
as can be seen from Fig. 3.3. It should be emphasized that the Born-Markov approx-
imation yields the correct oscillation frequency for weak interaction. For a smaller
coupling, e.g. g = 0.05, the different results for 〈Jz〉 cannot be distinguished (not
shown). The equilibrium value 〈Jx〉∞ of the Bloch equations appears too large as
compared to the low temperature solution in Fig. 3.3. However, it was mentioned
in the previous section that both equilibrium values, i.e. (3.65) and (3.62), approach
the thermodynamic result (2.28) in the limit of zero coupling and hence coincide in
that limit. Thus, we find that the results of the Born-Markov approximation are
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reliable for low temperatures down to kBT =0.
Finally, we compare the different results for a system with a large bias, ε=10Tc.

At a temperature of kBT =Tc also this system is in the non-Markovian regime, since
the transition temperature results as kBTb≈ 10.1Tc. Again, the result of the Bloch
equations is in good agreement with the solution of the spin-boson model (3.60), as
can be seen from Fig. 3.4. The insets of that figure show that also the long-time
behavior of the two methods agree.

We conclude that the Born-Markov approximation which is perturbative in the
system-environment coupling correctly describes the dynamics of the spin-boson
model for weak ohmic dissipation. This applies to all temperatures down to zero
temperature. Both in the intermediate and in the low temperature regime the results
are in good agreement with the respective solutions of the spin boson system. With
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increasing coupling strength, the deviations grow as expected from a perturbative
method. Hence, the spin-boson system is correctly described by the set of Bloch
equations (3.63) for a weak interaction to the environment. This is corroborated
by recent results for the driven two-state system [81]. Moreover, there is no reason
to assume that the Born-Markov approximation breaks down for larger spins. We
expect that the master equation (3.28) is a reliable description for the large-spin
model with weak dissipation.

3.5 Relation to the Dicke Hamiltonian

The close relation between the large-spin model and the Dicke Hamiltonian was
already mentioned at the beginning of this chapter. We will now discuss the con-
nection between these two models in detail. In particular, we consider the effect of
superradiance that is characteristic of the Dicke Hamiltonian, cf. Sec. 2.2.2.

Superradiance is the collective spontaneous emission of an ensemble of initially
excited two-level systems. The indirect interaction between the two-level systems
leading to this effect is caused by the coupling of all two-level systems to the common
radiation field. In the description of a large spin the superradiance effect becomes
visible in an accelerated decay of the z-component of the spin: The time Jz needs
to decay from the initial value 〈Jz〉0 = +J to the ground state is typically inverse
proportional to the size of the total spin, J . The decay becomes faster with increas-
ing spin size. In a semiclassical approximation, the dynamics of 〈Jz〉 is given by
equation (2.12) which is repeated here for easy reference,

〈Jz〉t =
2J(J + 1) − J eΓ(2J+1)t

2J + eΓ(2J+1)t
, (3.67)

with Γ as defined in (2.10). The two most severe approximations made in the deriva-
tion of the semiclassical solution are the secular approximation and the disregarding
of the nonresonant bosonic modes. The secular approximation ignores operator
combinations J+J+ and J−J− in the master equation.

The large-spin model can be mapped exactly on the Dicke Hamiltonian for zero
bias, ε=0. Then, one model is transformed into the other by rotation around the
y-axis. Suppose, we rotate the frame of reference of the large-spin model by π/2.
Then, any operator A is expressed in the rotated frame as

Ā = eiπ/2 JyAe−iπ/2 Jy . (3.68)

The rotation gives for the spin operators J̄x=Jz and J̄z=−Jx. Thus, the large spin
Hamiltonian reads in the rotated frame

H̄ = 2Tc Jz − Jx
∑

q

γq (a†q + a−q) +
∑

q

ωq a
†
qaq. (3.69)
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This form is identical to the Dicke Hamiltonian (2.8) with ω0 =2Tc. Consequently,
the large-spin model exhibits superradiance in its original Jx component.

The superradiant decay of Jx in the large-spin model is best observed if the
initial density matrix ρ0 is chosen such that 〈Jx〉0 = J and 〈Jy〉0 = 〈Jz〉0 = 0. This
is in contrast to the previous section where 〈Jz〉0 was chosen maximum. The initial
density matrix is constructed as ρ0 = |ψ〉 〈ψ| where |ψ〉 is the eigenstate of Jx with
the maximum eigenvalue J . Since the master equation for the matrix elements of
the density matrix (3.30) is expressed with respect to the eigenstates of Jz, one has
to diagonalize Jx in that basis to construct ρ0. This can easily be done numerically
for a reasonable spin size, J .

Figure 3.5 shows the time evolution of the x-component of the large spin, 〈Jx〉,
together with the semiclassical solution of the Dicke Hamiltonian (3.67) for a total
spin of size J = 5 and J = 0.5 (inset) with ohmic dissipation. The deviations
are caused by the additional approximations in the derivation of the semiclassical
solution. Both curves exhibit the typical superradiance property that the time of
the decay decreases with increasing spin size. Moreover, also the form of the curves
change. We showed in the previous section for spin one half and zero bias that
the decay of 〈Jx〉 is purely exponential. This changes for larger spins, as can be
seen from Fig. 3.5. Then, the decay only starts after some delay time. For a
large spin, 〈Jx〉 does not decay completely anymore, in contrast to the semiclassical
solution which approaches −J for large times. This is caused by the interaction
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of the large spin with the nonresonant bosons, which are not considered in the
semiclassical solution. Moreover, the numerical solution for 〈Jx〉 shows an oscillatory
behavior at the beginning of the decay. These oscillations are caused by the operator
combinations J+J+ and J−J− in the master equation which are neglected in the
secular approximation. They describe two boson processes. One can show from
the master equation of the Dicke model that the frequency of these oscillations is
approximately given by 2ω0 =4Tc. We find numerically that the amplitude as well as
the frequency of the oscillations is increased due to the influence of the nonresonant
bosons.

We conclude that for zero bias, ε = 0, the large-spin model becomes identical
to the Dicke Hamiltonian, however in a rotated frame of reference. Therefore, the
effect of superradiance occurs in the decay of the x-component of the large spin,
Jx. For an ohmic dissipation, the time evolution is not satisfactorily described by
the semiclassical solution (3.67). In particular, we find that the decay of Jx is not
complete due to the influence of the nonresonant bosons.

3.6 Results for the Large-Spin Model

In the previous sections, we considered two limits in which the large spin reduces
to familiar models, first the dissipative two-state system and then the Dicke model.
We shall now leave these grounds and turn to the investigation of the large-spin
model with weak ohmic dissipation. Thereby, we focus on collective effects and the
question how the behavior of the large spin changes as the spin size increases. Three
different regimes are studied: a zero bias, ε=0, a strong bias, ε=10Tc, and finally
an intermediate bias, ε=Tc.

3.6.1 Superradiant Dynamics

We saw in section 3.5 that the large-spin model becomes identical to the Dicke
Hamiltonian for zero bias. As a consequence, the x-component of the spin, Jx,
exhibits superradiance. It seems reasonable to ask if a similar statement is also
valid for the z-component: Does Jz decay in a superradiant fashion for appropriate
parameters? The answer is yes, as we will show in the following. We choose a large
bias, ε = 10Tc, to ensure the decay of Jz and calculate the dynamics for different
spin sizes J . We find a superradiance-like behavior which can be seen in Fig. 3.6.
The decay of the normalized z-component 〈Jz〉 /J is plotted in that figure for the
spin sizes J=1/2, 2, 5, and 10 for an initially polarized spin, 〈Jz〉0 =J . It is clearly
visible that the time in which the spin decays decreases with increasing spin size,
similar to the Dicke superradiance. The change of the form of the curves becomes
apparent if the interaction strength in the Hamiltonian (3.1) is renormalized as
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g̃=g/
√

2J . The advantage of the renormalization is that the time scale of the decay
becomes approximately independent of the spin size J . The resulting dynamics of
Jz is shown in Fig. 3.7. For an increasing spin size, the decay is delayed and takes
place more rapidly. The identical behavior is observed from the Dicke superradiance,
cf. Sec 2.2.2.

In summary, we find that the large-spin model exhibits the characteristic features
of the Dicke superradiance for a large bias, ε � Tc. Naturally, the exact dynamics
of the large spin differs from the Dicke model as the Hamiltonians are not identical.
In contrast to the Dicke model the coupling to the environment is diagonal and a
tunnel term exists in the unperturbed Hamiltonian. Yet, despite these differences,
the basic results are the same. The reason is that the superradiance is driven by
the spin algebra on which both models rely. This is expressed in particular by the
state dependent transition rate c±J,M (3.5) which is at maximum for states |J,M=0〉,
corresponding to 〈Jz〉=0. From the point of view of the spin-boson system it appears
that the spin shows collective effects, namely a superradiance-like behavior, once it
is generalized to spins larger one half.

3.6.2 Quantum Beats

We shall return once again to the symmetric case, ε=0. It was shown in section 3.5
that the x-component of the spin shows superradiant behavior. For spin one half,
on the other hand, the dynamics of the z-component is given by a damped oscilla-
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tion (3.64). Already for the next higher spin, J = 1, a new feature appears in the
time evolution of Jz. Figure 3.8 shows the expectation values of Jz and Jx for spin
one at different interaction strengths. A clear beat pattern is visible on top of the
damped oscillations of Jz. With increasing interaction to the environment, the beat
pattern dissolves to a seemingly chaotic behavior. The decay of Jx is superposed
with oscillations of doubled frequency, 4Tc, due to two-boson processes, as explained
in section 3.5. We shall investigate the beat pattern in the following and find that
this is caused by the different corrections to the eigenenergies of the spin resulting
from the coupling to the nonresonant bosons.

Consider a spin one corresponding to a three level system. Without interaction
to the environment, the eigenstates of Jz are degenerate since we assume ε=0. This
degeneracy is lifted by the tunnel coupling in the unperturbed Hamiltonian, 2Tc Jx.
We refer to the eigenstates of H0 as |+〉, |0〉, and |−〉 with the corresponding eigenen-
ergies 2Tc, 0, and −2Tc, respectively. The initial state is chosen as an eigenstate of
Jz and hence not a stationary state of the system. The time evolution is then given
by an oscillation with frequency 2Tc (3.7). Apparently, the unperturbed spin does
not show any beats in the dynamics of Jz. In a second step, the influence of the
dissipative environment is considered. We use second-order perturbation theory to
determine how the eigenenergies of the spin are affected by the environment. There
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are no contributions from the first order. The influence of the environment on the
eigenstates is neglected. The correction to the energy En of the state |n〉 is given in
second order as

E(2)
n =

∑

m6=n

| 〈m|V |n〉 |2
En − Em

, (3.70)

where V is the coupling term (3.9) in the Hamiltonian and the sum runs over all
eigenstates |m〉 of the unperturbed system. We still have to specify the state of the
environment since |n〉 and |m〉 are states of the total system, spin plus environment.
Consistent with the considerations of this chapter, the environment of the initial
state |n〉 is assumed to be in thermal equilibrium. Thus, in order to calculate the
corrections to the eigenenergy of the spin state |+〉, we use

|n〉 = |+〉 ⊗ |ΩT 〉 , (3.71)

where |ΩT 〉 is the equilibrium state of the environment at temperature T . Then, the
correction to the energy E|+〉 of this state follows from equation (3.70) as

E
(2)
|+〉 =

1

2

∑

q

|γq|2
(eβωq − 1)2

( e2βωq

2Tc − ωq
+

1

2Tc + ωq

)

. (3.72)
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For the sake of simplicity we restrict ourselves to zero temperature. Hence, the
second term in the brackets vanishes. Rewriting the sum as an integration and
using the definition (3.33) of the spectral function ρ(ω), yields

E
(2)
|+〉 = −1

2
−
∫ ∞

0

dω ρ(ω)
1

ω − 2Tc
. (3.73)

The integral is written as a principal value integral as we do not consider the influence
of the resonant bosons, ωq=2Tc. They lead to dissipation and thus to the damping
of the oscillations of 〈Jz〉 which is not our concern in the present calculation. If one
wants to take into account also the resonant bosons, an infinitesimal imaginary part
has to be added to the denominator in equation (3.70), cf. [82, 83]. Similarly, we
find for the energy corrections to the other two states, |0〉 and |−〉,

E
(2)
|0〉 = −1

2
−
∫ ∞

0

dω ρ(ω)
( 1

ω − 2Tc
+

1

ω + 2Tc

)

,

E
(2)
|−〉 = −1

2

∫ ∞

0

dω ρ(ω)
1

ω + 2Tc
.

(3.74)

These results show that the corrections to the eigenenergies of the three states differ
from each other. In other words, the eigenenergies are not equidistant anymore,
as depicted schematically in Fig. 3.9. The corrected eigenenergies of the spin are
labeled as

ε+ = 2Tc + E
(2)
|+〉 , ε0 = E

(2)
|0〉 , ε− = −2Tc + E

(2)
|−〉 . (3.75)

Let us consider the effects on the dynamics of the spin. We assume that the
initial state, 〈Jz〉0 = J , is still given by the same superposition of eigenstates as in
the unperturbed case. Then, we find for the time evolution of the z-component,

〈Jz〉t = cos
(ε+−ε−

2
t
)

cos
(ε+−2ε0+ε−

2
t
)

. (3.76)

For the unperturbed spin, the second cosine becomes identical to one and we re-
cover the dynamics as given in (3.7). However, as soon as the spacings between
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the eigenenergies become slightly different due to the coupling to the environment,
equation (3.76) predicts an oscillation with beats for the dynamics of Jz. The os-
cillation frequency ω0 = (ε+−ε−)/2 and the beat frequency ωb = (ε+−2ε0+ε−)/2
follow as

ω0 = 2Tc +
1

4
−
∫ ∞

0

dω ρ(ω)
( 1

ω + 2Tc
− 1

ω − 2Tc

)

,

ωb =
1

4
−
∫ ∞

0

dω ρ(ω)
( 1

ω + 2Tc
+

1

ω − 2Tc

)

.

(3.77)

For an ohmic spectral function, the frequencies can be expressed by exponential
integrals [76] as

ω0 = 2Tc +
1

2
g Tc

[

e2Tc/ωc Ei
(−2Tc

ωc

)

+ e−2Tc/ωc Ei
(2Tc
ωc

) ]

,

ωb =
1

2
g ωc +

1

2
g Tc

[

e2Tc/ωc Ei
(−2Tc

ωc

)

− e−2Tc/ωc Ei
(2Tc
ωc

) ]

.

(3.78)

For a large cutoff frequency, ωc�Tc, the term in the bracket in the expression for
the beat frequency ωb is of the order of Tc/ωc. This can be seen from the series
expansion of the exponential integral function. Hence, the beat frequency is given
in good approximation as

ωb =
1

2
g ωc . (3.79)

The resulting dynamics (3.76) of the z-component of the spin is shown in Fig. 3.10
together with the numerical solution of the master equation. The curves are in
excellent agreement. Naturally, equation (3.76) does not include damping since
dissipative effects of the resonant bosons are not considered in the derivation.

We conclude that the beat pattern in the time evolution of the expectation value
of Jz is caused by the nonresonant bosons of the dissipative environment. They
lead to different corrections to the spin eigenenergies which lift the constant level
spacing. For small interaction strengths, g�1, this results in a beat pattern in the
dynamics of Jz. It turns out that the beat frequency is approximately proportional
to the interaction strength g as well as to the cutoff frequency ωc of the spectral
function, cf. (3.79). It should be remarked that this effect is not restricted to zero
temperature and spin one. Similar beat patterns occur for larger spins, J > 1, and
finite temperatures. The pattern dissolves for high temperatures or high spins. Even
for a finite bias, ε > 0, a beat pattern can be observed. Then, the oscillations are
no longer completely suppressed at certain points like in the unbiased case. This is
comparable to a superposition of two waves with slightly different frequencies but
unequal amplitudes.
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3.6.3 Equilibrium Values

Finally, we turn to the equilibrium values of the large spin for a finite bias. In that
case, the equilibrium values cannot be readily predicted from symmetry considera-
tions as in the unbiased case. Yet, it is well-known, that the thermodynamic results
for a large spin in contact to a heat bath are given by Brillouin functions (2.26). We
compare the numerical results of the Born-Markov approximation with the thermo-
dynamic expressions in the following. It turns out that the results agree for a very
small coupling to the environment.

The equilibrium values 〈Jz〉∞ and 〈Jz〉∞ for a spin J=2 with intermediate bias,
ε=Tc, are shown in Fig. 3.11 as a function of the temperature. The results of the
Born-Markov approximation are in good agreement with the Brillouin functions but
deviate slightly at low temperatures. However, this is not an implication that the
Born-Markov approximation breaks down. The Brillouin functions are derived for
a large spin in contact with a heat bath. Neither the form of the interaction nor
the realization of the bath itself are specified. Consequently, this is only a valid
description for very small coupling strengths. Then, it is justified to neglect the
details of the contact to the heat bath. Indeed, we find that the results of the
Born-Markov approximation agree with the thermodynamic equilibrium values in
the limit of zero coupling, g→ 0, as shown in the inset of Fig. 3.11. For increasing
interaction, the Born-Markov approximation goes away from the thermodynamic
approach, which does not depend on the interaction strength g. A similar behavior
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line) for g=0.005. The inset shows 〈Jx〉∞ and 〈Jz〉∞ for kBT =2Tc as a
function of g (J=2, ε=Tc, ωc=50Tc).

was observed for spin one half. In that case it is possible to show analytically, that
the equilibrium values resulting from the Born-Markov approximation reduce to the
thermodynamic predictions in the limit of zero coupling, cf. Sec. 3.4.2.

3.7 Conclusion

In this chapter, we have investigated the large-spin model in the regime of weak
dissipation. The model is a generalization of the spin-boson model and allows to
study the influence of a dissipative environment on a spin of arbitrary size. This
is not only of interest for intrinsic large spins but applies at the same time to
dissipation induced collective effects. Such effects arise in an ensemble of identical
two-level systems due to the indirect interaction caused by the coupling to the same
environment.

We employ the Born-Markov approximation to derive a master equation for
the large spin. The Born-Markov approximation is perturbative in the system-
environment coupling. It is sometimes argued that a perturbative treatment of the
spin-boson system is only possible for finite temperatures and breaks down below
a certain critical temperature. We find, however, that the numerical solution of
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the master equation for a spin one half with weak ohmic dissipation is in excellent
agreement with the solution of the spin-boson model for all temperatures down to
zero temperature. We conclude that the Born-Markov approximation gives a reliable
description of the spin-boson model with weak dissipation for all temperatures.

The large-spin model is closely related to the Dicke Hamiltonian. For zero bias,
the large-spin model can be mapped exactly on the latter by rotation. This implies
that the x-component of the unbiased large spin exhibits superradiant behavior. A
similar effect is observed in the dynamics of the z-component of the spin for large
bias.

The influence of the resonant and of the nonresonant modes of the environment
can be distinguished. The nonresonant bosons lift the constant level spacing of the
unperturbed spin. This leads to a beat pattern in the coherent oscillations of the
large spin which is best observed in the unbiased system.

The numerical results of this chapter are calculated for an ohmic spectral density
of the environment. However, the master equation (3.28) applies for an arbitrary
spectral function. So do the Bloch equations (3.63) for the spin one half and the
resulting equilibrium values (3.65). Other realizations of a dissipative environment
can readily be investigated using the same method. Only the rates are to be calcu-
lated for different spectral functions. In fact, for spectral functions with a power law
dependence on the frequency as modeled in equation (3.34) the rates are already
given by equations (3.49) and (3.52).
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Chapter 4

The Large-Spin Model in the
Strong-Coupling Regime

We will continue to study the large-spin model in this chapter. While the previous
chapter was devoted to the investigation of the large spin with weak dissipation we
shall now turn to the opposite limit and consider a spin which is strongly coupled
to a dissipative environment. As a matter of fact, we employ the same approxima-
tion for the derivation of the master equation as in the weak-coupling regime, the
Born-Markov approximation. Instead of the spin-reservoir interaction, however, we
consider the tunneling as the perturbation. The basis of this approach is that the
interacting system without tunneling can be solved exactly. The solution follows
from a polaron transformation.

For an ohmic dissipation, the master equation takes a particularly simple form
since some of the bosonic expectation values vanish. This is shown in appendix A.
Only the Fourier transform of one bosonic correlation function enters the master
equation. This is evaluated in two regimes of parameters, first, at zero temperature
and second, for a constant coupling strength between spin and environment, g=1.

The combination of the polaron transformation and the second-order Born ap-
proximation is equivalent to the noninteracting blip approximation for a spin one
half. Consequently, the comparison of the solution of the spin-boson model with the
master equation shows that the latter gives incorrect results for those parameters
where the NIBA fails. For other parameters the results are in good agreement with
the solution of the spin-boson model.

For greater spins, J >1/2, the dynamics of the spin turns out to differ completely
from the two-state system. Depending on the initial value, the z-component of the
large spin relaxes towards one of two possible equilibrium values. These are given
by the polarized states where the spin is parallel or antiparallel to the z-axis. The
relaxation is approximately logarithmic.
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4.1 Polaron Transformation

This chapter deals with the perturbative treatment of the tunneling in the large-
spin model. The point of departure is the solution of the free Hamiltonian without
tunneling to be presented in this section. The solution follows from a canonical
transformation, the polaron transformation. Again, we write the Hamiltonian of
the large-spin model (3.1) as a sum of an unperturbed part and a perturbation,
H=H0 +V . In contrast to the previous chapter, however, the tunnel term is chosen
as the perturbation, V =2Tc Jx. This leaves the unperturbed Hamiltonian

H0 = ε Jz + Jz
∑

q

γq (a†q + a−q) +
∑

q

ωq a
†
qaq. (4.1)

The basis of the considerations of this chapter is that the unperturbed Hamiltonian
can be solved exactly. This is most easily seen by applying the polaron transforma-
tion to H0. The polaron transformation Ā of an operator A is defined as

Ā = eσJzAe−σJz , (4.2)

with σ acting on the bosonic field defined as

σ =
∑

q

γq
ωq

(a†q − a−q). (4.3)

The transformation is unitary if we require γ∗
q =γ−q and ωq=ω−q (ωq is assumed to

be real), yielding σ†=−σ. It is readily seen that the z-component of the spin stays
unchanged by the transformation, J̄z=Jz. The other terms are calculated with help
of the identity (3.11). Then, the transformed Hamiltonian reads

H̄0 = εJz − κJ2
z +

∑

q

ωq a
†
qaq. (4.4)

The new parameter κ is defined as

κ =
∑

q

|γq|2
ωq

= g ωsc Γ(s). (4.5)

The expression on the right-hand side follows for spectral densities of the form
of (3.34). In particular, we find for ohmic spectral densities κ = gωc. As a result
of the transformation, the interaction term between the spin and the environment
has vanished. Instead, we find a new term, −κJ2

z . This reminds of the spin-spin
interaction in the Ising model [84] favoring parallel order of the individual spins
which constitute the large spin. The new term will turn out to be of great importance
to the behavior of the large spin in the strong-coupling regime.
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The solution of the transformed Hamiltonian (4.4) becomes trivial since the two
subsystems, spin and environment, are now separated. The eigenstates of H̄0 are
products of eigenstates of Jz and Fock states of the bosonic field. The solution of
the original Hamiltonian H0 ensues from the back-transformation of these product
states. We will, however, not undertake this task since the result is not required for
the further proceeding. The spectrum, on the other hand, is identical in the original
and in the transformed picture. In the latter, the eigenenergies EM of the large spin
follow immediately from (4.4) as

EM = εM − κM2, −J ≤M ≤ J. (4.6)

Finally, we give the perturbation, V , in the transformed picture,

V̄ = Tc (J+X + J−X
†), (4.7)

where the bosonic operator X is defined as

X = eσ . (4.8)

The perturbation V acting exclusively on the spin in the original Hamiltonian ac-
quires a bosonic part as a result of the transformation. Thus, the tunnel term re-
introduces an interaction between the spin and the environment in the transformed
representation.

The polaron transformation employed in this section has many applications in
solid state physics. The Hamiltonian of an electron interacting with the phonons
of a crystal is solved by a similar transformation [85]. The solution is a polaron

or dressed electron, namely an electron surrounded by a cloud of phonons, which
explains the name of the transformation.

4.2 Born-Markov Approximation

Again, we employ the Born-Markov approximation to derive a master equation for
the large spin. The starting point, however, is the transformed Hamiltonian H̄. The
system-reservoir interaction which is treated perturbatively within the Born-Markov
approximation is now given by the transformed tunnel term V̄ (4.7). We restrict the
investigation to the case of an ohmic dissipation where the master equation takes a
particularly simple form. First, we transform the Hamiltonian into the interaction
picture. This is defined for any operator A as, cf. (3.10),

Ã(t) = eiH̄0tĀ e−iH̄0t . (4.9)

It will turn out to be a great simplification that Jz stays unchanged,

J̃z = J̄z = Jz. (4.10)
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The perturbation V̄ (4.7) becomes in the interaction picture

Ṽ (t) = Tc (J̃+(t)Xt + J̃−(t)X†
t )

= Tc (e
iεte−iκJ

2
z t J+ e

iκJ2
z tXt + e−iεte−iκJ

2
z t J− e

iκJ2
z tX†

t ),
(4.11)

where the interaction representation of X is denoted by Xt. We begin the derivation
of the master equation from the integro-differential equation (3.18) for the density
matrix χ(t) of the total system. This follows directly from the von-Neumann equa-
tion and no approximations have been made so far. Similar to the previous chapter,
we assume that the initial density matrix factorizes in a system and a reservoir part,
χ̄(0) = ρ̄(0) ⊗ R̄0. Yet, the meaning is a different one in the transformed picture.
The assumption corresponds to a situation in which the spin without tunneling and
the environment have been in contact for a long time such that they are in mutual
equilibrium. Then, at t=0, the tunneling is switched on. Again, it is assumed that
the environment always stays in thermal equilibrium. The trace over the reservoir
degrees of freedom yields among others the expectation values 〈Xt〉=TrRes{XtR̄0}
and 〈X†

t 〉. It is shown in the appendix A that these terms vanish for spectral func-
tions of the form of (3.34) with s≤ 1. Thus, in second-order Born approximation
and for ohmic dissipation, we find an equation for the spin density matrix that is
formally identical to equation (3.21) of the weak-coupling regime. The remaining
bosonic contributions to that equation are the four combinations 〈X †

tX〉, 〈XtX
†〉,

〈X†
tX

†〉, and 〈XtX〉. It is possible to assign the time dependency exclusively to the
first of the X operators, since the unperturbed Hamiltonian H̄0 commutes with the
equilibrium density matrix of the environment, R̄0, and due to the cyclic invariance
property of the trace. Let us first consider the terms 〈X †

tX
†〉 and 〈XtX〉 where

either both or none of the operators are adjoint. Also these terms vanish for s≤ 1
as derived in appendix A, that is, in particular for ohmic dissipation,

〈X†
tX

†〉 = 〈XtX〉 = 0. (4.12)

The calculation of the other two bosonic expectation values is given in the next
section. We anticipate that they give identical results and define the correlation
function

C(t) = 〈X†
tX〉 = 〈XtX

†〉. (4.13)

Naturally, this function differs from the correlation function in the weak-coupling
regime, K(t). It follows from the definition that C(t) fulfills

C(−t) = C(t)∗. (4.14)
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Then, the master equation reads in second-order Born approximation

˙̃ρ(t) = −T 2
c

∫ t

0

dt′
{[
J̃+(t) J̃−(t′) ρ̃(t′) + J̃−(t) J̃+(t′) ρ̃(t′)

− J̃+(t′) ρ̃(t′) J̃−(t) − J̃−(t′) ρ̃(t′) J̃+(t)
]
C(t−t′)

+
[
ρ̃(t′) J̃+(t′) J̃−(t) + ρ̃(t′) J̃−(t′) J̃+(t)

− J̃+(t) ρ̃(t′) J̃−(t′) − J̃−(t) ρ̃(t′) J̃+(t′)
]
C(t−t′)∗

}

.

(4.15)

It is well-known that the master equation in second-order Born approximation
is equivalent to the noninteracting-blip approximation (NIBA) for the spin-boson
model with ohmic dissipation. This was first pointed out by Aslangul, Pottier, and
Saint-James [86].

Within the Markov approximation, ρ̃(t′) is replaced by ρ̃(t) and the upper limit of
the integration is extended to infinity, cf. Sec. 3.2.2. The resulting equation simplifies
further if we consider the diagonal elements of the density matrix, ρ̃M,M . The
integrals over the correlation function C(t) can be replaced by its Fourier transform
FC(ω) using (4.14),

∫ ∞

0

dt Re
{
C(t)eiωt

}
=

1

2

∫ ∞

−∞

dt C(t)eiωt =
1

2
FC(ω). (4.16)

Finally, we arrive at the master equation for the large spin with ohmic dissipation,

˙̃ρM,M(t) = − T 2
c c

−
J,M

2 FC

(
ε−κ(2M−1)

)
ρ̃M,M(t)

− T 2
c c

+
J,M

2 FC

(
−ε+κ(2M+1)

)
ρ̃M,M(t)

+ T 2
c c

−
J,M

2 FC

(
−ε+κ(2M−1)

)
ρ̃M−1,M−1(t)

+ T 2
c c

+
J,M

2 FC

(
ε−κ(2M+1)

)
ρ̃M+1,M+1(t).

(4.17)

We like to add some remarks regarding the master equation. In contrast to the weak-
coupling regime, we abstain from the back-transformation of the master equation
into the Schrödinger picture. The reason is that Jz takes the same form in all
pictures, cf. (4.10). Hence, its expectation value follows directly from the density
matrix in the interaction picture,

〈Jz〉t =

+J∑

M=−J

M ρ̃M,M(t). (4.18)

Apparently, the diagonal elements of the density matrix correspond in any picture
to the probability that the large spin is in the state |J,M〉. We note that the nor-
malization of the probability, i.e. the trace of the density matrix, is conserved by
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the master equation (4.17), Tr
{

˙̃ρ
}

=0. The master equation only couples the diag-
onal elements of the density matrix. Thus, it corresponds to a set of 2J+1 coupled
differential equations for a spin of size J . The solution of the full density matrix in-
cluding the nondiagonal matrix elements requires the integration of a set of (2J+1)2

equations. The nondiagonal matrix elements are necessary for the calculation of
the other spin components, in particular Jx. We shall, however, concentrate on the
investigation of Jz in the following. The knowledge of the diagonal matrix elements
is sufficient for this task.

As the diagonal elements of the density matrix, ρ̃M,M , correspond to probabilities,
we can identify gain and loss terms in the master equation: The probability of the
state |J,M〉 is increased by transitions from the neighboring states, |J,M±1〉 →
|J,M〉, weighted with the respective probabilities, ρ̃M±1,M±1. It is decreased by the
reverse transitions, |J,M〉 → |J,M±1〉, weighted with the probability ρ̃M,M . The
influence of the environment on the large spin is described by the Fourier transform
of the correlation function, FC(ω). The argument of which, ω=±

(
ε−κ(2M±1)

)
,

is precisely the energy difference between neighboring states of the unperturbed
large spin, cf. (4.6). Hence, the Fourier transform gives the rate for the emission
or absorption of bosons with the necessary energy for the respective transition. We
can already guess that no absorption is possible at zero temperature. Note that
the Fourier transform FC(ω) is identical to the function P (E) which appears in the
context of a dissipative tunnel junction [26]. The function P (E) determines the
current-voltage characteristics of the junction.

The spin algebra responsible for collective effects in the weak-coupling regime
appears here in form of the coefficients c±J,M (3.5). The effect of the perturbation
strength Tc is merely a scaling of the time, t→ T 2

c t. The final remark concerns
the validity of the Born-Markov approximation. It was already remarked that the
second-order Born approximation is equivalent to the noninteracting-blip approx-
imation for a spin one half. In the course of the derivation of the master equa-
tion (4.17), we applied one additional approximation, the Markov approximation.
Thus, the master equation cannot be expected to yield correct results for parameters
where the NIBA fails.

4.3 The Bath Correlation Function and its

Fourier Transform

We saw in the previous section that the influence of the dissipative environment on
the spin is expressed by a correlation function, similar to the weak-coupling regime.
Moreover, only its Fourier transform appears in the master equation in Born-Markov
approximation (4.17). Both, the correlation function and its Fourier transform are
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calculated for an ohmic dissipation in this section. Since it is not possible to give
a closed expression for the Fourier transform we concentrate on two regimes. First,
we consider an environment at zero temperature with arbitrary coupling strength
to the spin and, second, a constant coupling, g = 1, at finite temperatures. At
this interaction strength, the spin-boson model becomes equivalent to the so-called
Toulouse limit of the anisotropic Kondo model [10].

It is well-known that the definition (4.13) of the correlation function C(t) can be
rewritten as, see e.g. Mahan [85],

C(t) = e−Φ(t), (4.19)

with

Φ(t) =

∫ ∞

0

dω
ρ(ω)

ω2

[(
1 − cos(ωt)

)
coth

(βω

2

)

+ i sin(ωt)
]

. (4.20)

The spectral function of the environment, ρ(ω), was defined in (3.33). As a matter of
fact, the function Φ(t) resembles the correlation function K(t) of the weak-coupling
regime (3.37). We shall, however, not pursue this fact any further for it does not
simplify the following calculations. At zero temperature, the integral in (4.20) is
calculated directly and the correlation function becomes

CT=0(t) = (1 + iωct)
−g. (4.21)

Apparently, this result is nonperturbative in the spin-reservoir interaction since the
coupling strength g enters in the exponent. Only the real part of Φ(t) depends
on the temperature, as follows from the definition (4.20). The calculation of this
function at finite temperatures is given in [87]. The trick is to differentiate Φ(t) with
respect to time and then perform the integration over dω. The result is integrated
over the time yielding the correlation function at finite temperatures,

C(t) = (1 + iωct)
−g

∣
∣
∣
Γ(1 + 1/βωc + it/β)

Γ(1 + 1/βωc)

∣
∣
∣

2g

. (4.22)

Thus, the temperature dependence is expressed by an additional factor which re-
duces to unity at zero temperature. Before proceeding with the Fourier transform
of this function, we shall have a closer look at the zero temperature result (4.21).
The absolute value of CT=0(t) is peaked around t=0 where it takes the value one.
For an increasing argument, the function approaches zero. The Markov approxima-
tion requires that the width of the correlation function is the smallest time scale of
the system. The time t1/2 in which the absolute value of the correlation function
decreases to one half may serve as a measure of this feature. From (4.21) we find
ωc t1/2 =

√
41/g − 1. Similar to the weak-coupling regime the width scales with the

inverse cutoff frequency ωc justifying the Markov approximation for large cutoffs.

63



CHAPTER 4. THE STRONG-COUPLING REGIME

For small interaction strengths, however, the Markov approximation is definitely
not applicable within the polaron picture. This may be clarified by inserting some
typical values used in the previous chapter, g=0.01 and ωc=50Tc. Then, the width
of the peak, t1/2, is of the order of 1028 T−1

c – a preposterous result far beyond the
applicability of the Markov approximation. This underlines that our approach is
only sensible in the strong-coupling regime where g is at least of the order of one.
The conclusion is fully consistent with the assumptions made at the beginning of
this chapter. The derivation of the master equation starts from the interacting sys-
tem taking into account the tunneling perturbatively. This implies that the effects
of the interaction are stronger than the tunneling.

4.3.1 Fourier Transform

The correlation function enters the master equation (4.17) as a Fourier transform
which is calculated in this paragraph. We restrict ourselves to two regimes of pa-
rameters depicted in Fig. 4.1. First, the Fourier transform is determined for zero
temperature. It is known from the spin-boson model that the NIBA fails for 1<g<2
at zero temperature, indicated by the dashed line in Fig. 4.1, see [10]. The second
regime is of interest since the spin-boson model becomes equivalent to the Toulouse
limit of the anisotropic Kondo model for g = 1. Then, analytical results can be
obtained for the spin-boson model. We will discuss this in more detail in the subse-
quent section. The two regimes intersect at the point g=1, kBT =0.

At zero temperature, the correlation function CT=0(t) (4.21) can be transformed
using standard integrals. We find for its Fourier transform FC(ω), cf. (4.16),

FC(ω) =
2π ωg−1

ωgc Γ(g)
e−ω/ωc θ(ω), g > 1, (4.23)

where θ(ω) is the Heaviside step function. For ω=0, the integral only converges if g is
greater than one, underlining once more the restriction of our approach to the strong-

0
1 2
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g

kBT

g=1

kBT =0

Figure 4.1: The Fourier transform FC(ω) is calculated in the two regimes
g=1 and kBT =0, indicated by the blue lines.
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coupling regime. The function FC(ω) vanishes for negative frequencies as already
suspected previously. We have seen from the master equation that FC(ω) then
accounts for absorption of energy from the environment which becomes impossible
at zero temperature.

In the second regime, g = 1, the Fourier transform can be calculated with the
residue theorem. Positive, negative and zero frequency have to be considered sepa-
rately. We recall the property of the Gamma function Γ(z∗)=Γ(z)∗ [80] and rewrite
the Fourier transform (4.16) as

FC(ω) =
−i

ωc Γ(1+1/βωc)2

∫ i∞

−i∞

dz
1

z + 1/βωc
Γ
(

1+
1

βωc
+z

)

Γ
(

1+
1

βωc
−z

)

eβωz.

(4.24)
For positive frequencies, ω > 0, the contour can be closed in the negative real half
plane. The pole at z = −1/βωc lies inside the contour. Moreover, the Gamma
function Γ(z) has simple poles at z=−n, n ∈ �

0, with residues (−1)n/n!, cf. [80].
Thus, the poles of the first Gamma function in (4.24) are also inside the path of
integration while all poles of the second Gamma function are outside. Then, the
Fourier transform can be expressed as a sum,

FC(ω) =
2π e−ω/ωc

ωc Γ(1+1/βωc)2

∞∑

n=0

(−1)n

n!
Γ
(

n + 1 +
2

βωc

)

e−βωn, ω > 0. (4.25)

In the limit of zero temperature, we retrieve the respective result for kBT =0, (4.23)
with g→ 1. At low temperatures, kBT �ωc, the sum can be approximated by the
geometric series,

FC(ω) ≈ 2π e−ω/ωc

ωc Γ(1+1/βωc)2 (1 + e−βω)
, ω > 0. (4.26)

The calculation for negative frequencies, ω < 0, proceeds similarly, only that the
contour has to be closed in the positive real half plane. Then, the poles of the
second Gamma function in (4.24) lie inside the contour, yielding

FC(ω) =
2π eω(β+1/ωc)

ωc Γ(1+1/βωc)2

∞∑

n=0

(−1)n

n!
Γ
(

n+ 1 +
2

βωc

)

eβωn, ω < 0. (4.27)

Also for negative frequencies, we retrieve the zero temperature result (4.23) for g→1.
Again, the sum can be approximated by the geometric series at low temperatures,
kBT�ωc,

FC(ω) ≈ 2π eω(β+1/ωc)

ωc Γ(1+1/βωc)2 (1 + eβω)
, ω < 0. (4.28)
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The results for positive and negative frequencies, (4.25) and (4.27), are related by

FC(−ω) = e−βω FC(ω). (4.29)

This relation is known as the detailed balance symmetry [26]. Hence, the absorption
is suppressed at low temperatures, kBT �ω. At high temperatures, kBT � ω, on
the other hand, absorption and emission become approximately equivalent as one
would expect intuitively.

Finally, the Fourier transform is calculated for zero frequency, ω=0. The value
accounts for transitions without energy transfer between the spin and the environ-
ment, involving some rearrangement of the bosonic state. Due to the absence of the
exponential function, the contour cannot be closed on neither side,

FC(ω=0) =
1

Γ(1+1/βωc)2

∫ ∞

−∞

dt
1

1 + iωct
Γ
(

1 +
1

βωc
+
it

β

)

Γ
(

1 +
1

βωc
− it

β

)

.

(4.30)
Instead, we insert the definition of the Gamma function, valid for a positive real
part of the argument [80],

Γ(z) =

∫ ∞

0

τ z−1 e−τdτ, Re{z} > 0. (4.31)

Then, the integral in (4.30) is of the same form as the one calculated in the previous
paragraph (4.23). The remaining two integrations can be solved elementary. The
second of which results again in a Gamma function and we find for the Fourier
transform at zero frequency

FC(ω=0) =
π Γ(1+2/βωc)

ωc 41/βωc Γ(1+1/βωc)2
. (4.32)

Apparently, the zero temperature limit of this expression exists. It is, however,
not identical to the g→ 1 limit of the zero temperature result (4.23). In fact, the
derivation of the latter is not valid at g=1. We infer that the validity of the Born-
Markov approximation is doubtful at the point g=1, kBT =0. We will have to treat
this point with caution.

The Fourier transform of the correlation function at g=1 and finite temperatures
is given by (4.25), (4.27), and (4.32). Figure 4.2 shows FC(ω) for three different
temperatures. We employ the exact expressions (4.25) and (4.27) and calculate the
series numerically. This method is applied throughout this chapter. It can be seen
from Fig. 4.2 that the absorption is suppressed at low temperatures, cf. (4.29). With
increasing temperature, the absorption grows and the maximum of the emission side
is shifted to higher frequencies.

66



4.4. THE SPIN-BOSON LIMIT

-100 0 100 200
0

0.05

0.1

PSfrag replacements

ω/Tc

F C
(ω

)/
T

−
1

c

kBT = 1Tc
kBT = 10Tc
kBT = 30Tc

Figure 4.2: Fourier transform of the correlation function for different
temperatures (g=1, ωc=50Tc, where Tc is an arbitrary unit of energy).

4.4 The Spin-Boson Limit

Similar to the proceeding in the weak-coupling regime, Sec. 3.4, we will compare our
results for a spin one half with ohmic dissipation to the spin-boson literature. The
case of a spin one half, J=1/2, plays a special part in our approach to the strong-
coupling regime. This becomes obvious in the transformed Hamiltonian H̄0 (4.4)
where a new term appears, −κJ2

z . The term is constant for J =1/2 and hence has
no bearing on the physics of a spin one half. Only for greater spins, J > 1/2, this
term is expected to affect the dynamics.

4.4.1 Solution of the Master Equation

For a spin one half, the master equation (4.17) reduces to two coupled differential
equations for the matrix elements ρ̃1/2, 1/2 and ρ̃−1/2,−1/2,

˙̃ρ1/2, 1/2 = T 2
c

(
−FC(ε) ρ̃1/2, 1/2 + FC(−ε) ρ̃−1/2,−1/2

)
,

˙̃ρ−1/2,−1/2 = T 2
c

(
FC(ε) ρ̃1/2, 1/2 −FC(−ε) ρ̃−1/2,−1/2

)
.

(4.33)

The parameter κ does not appear anymore since the J 2
z term drops out. The meaning

of this master equation is evident. The probability of the states |J,M〉= |1/2,±1/2〉
changes by transitions to and from the respective other state. The rate of these
transitions is given by the function FC(±ε), accounting for the exchange of the
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necessary energy ε with the environment. The dynamics of Jz follows from the
solution of the master equation. For an initially polarized spin, 〈Jz〉0 =1/2, we find
with (4.18)

〈Jz〉t =
( 1

2
− 〈Jz〉∞

)

e−γt + 〈Jz〉∞ , (4.34)

where the equilibrium value 〈Jz〉∞ and the relaxation rate γ are defined as

〈Jz〉∞ = −1

2

FC(ε) − FC(−ε)
FC(ε) + FC(−ε) ,

γ = T 2
c

(
FC(ε) + FC(−ε)

)
.

(4.35)

Thus, the master equation (4.33) predicts an exponential relaxation of Jz to its
equilibrium value. The only exception occurs if FC(ε) as well as FC(−ε) become
zero. Then, the spin remains in its initial state. We shall consider in detail the two
regimes in which the Fourier transform FC(ε) has been evaluated (Fig. 4.1).

4.4.2 Zero Temperature

The Fourier transform FC(ε) for strong couplings, g>1, at zero temperature is given
by equation (4.23). Up to this point, there is no indication that our approach may
fail for these parameters. It is however known that the NIBA gives incorrect results
for 1 < g < 2, see [10]. Since the Born approximation employed in the derivation
of the master equation corresponds to the NIBA, cf. Sec. 4.2, the master equation
cannot be expected to yield reliable results in that regime. Therefore, we restrict
the investigation at zero temperature to stronger couplings, g≥2.

For the symmetric two-state system, the rates vanish, FC(ε = 0) = 0, (4.23).
Then, the master equation (4.33) predicts that the spin stays in its initial state. This
is the well-known localization of the spin-boson model appearing at zero temperature
for interaction strength g≥2. It was first derived by Chakravarty [88] and Bray and
Moore [89] using an imaginary-time path integral method. The results were later
confirmed by Hakim et. al. [90] with a renormalization group treatment. They apply
the polaron transformation and consider the tunneling as a perturbation similar to
the approach of this chapter. Hence, the master equation (4.33) reproduces the
correct result at zero temperature and zero bias for couplings g≥ 2 though it does
not predict the critical value at which the transition to the localization occurs.

For a finite bias, ε>0, the Fourier transform does not vanish anymore. It is finite
for positive arguments, FC(ε)> 0, but it is still suppressed for negative arguments
as absorption is not possible at zero temperature, FC(−ε)=0, cf. (4.23). Thus, the
equilibrium value (4.35) becomes 〈Jz〉∞ =−1/2. In equilibrium, the spin is in the
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state of lower energy with probability one. The relaxation rate (4.35) follows as

γ =
2π T 2

c ε
g−1

ωgc Γ(g)
e−ε/ωc. (4.36)

In leading order in ε/ωc the exponential function is replaced by unity and we find

γ ≈ π (2Tc)
2 εg−1

2ωgc Γ(g)
. (4.37)

The same result follows from a path integral formalism for the spin-boson model [9,
91, 92].

We conclude that the approach based on a polaron transformation combined with
the Born-Markov approximation yields correct results for the spin-boson model at
zero temperature with strong interaction to the environment, g≥2.

4.4.3 Finite Temperatures

For the interaction strength g = 1, the spin-boson model with ohmic dissipation
corresponds to the Toulouse limit of the anisotropic Kondo model. This case is
of special significance to the spin-boson model as it marks the coherent-incoherent
transition at zero temperature in the limit Tc/ωc→0 [10]. Again, we first consider the
symmetric system. The Fourier transform FC(ε=0) is now given by equation (4.32).
The equilibrium value (4.35) becomes zero, as expected for a symmetric system,
〈Jz〉∞=0. The relaxation rate reads

γ = 4−kBT/ωc
2π T 2

c Γ(1+2kBT/ωc)

ωc |Γ(1+kBT/ωc)|2
. (4.38)

In the limit of zero temperature, this rate reduces to

γT=0 =
π (2Tc)

2

2ωc
. (4.39)

This is the correct result for the spin-boson model in the limit of zero temperature. It
can be derived for instance by the direct summation of the exact formal solution [93].
The reason why we can reproduce this result is that the NIBA becomes exact in
that limit [10].

For a finite bias, we employ the relation (4.29) between absorption and emission
yielding the equilibrium value

〈Jz〉∞ = −1

2
tanh

( ε

2kBT

)

. (4.40)
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This, however, is just the NIBA result (3.59) that we have already met in the weak-
coupling regime. It demonstrates once again the close relation between our approach
and the noninteracting-blip approximation. It has been discussed in chapter 3 that
this result becomes unphysical at low temperatures as it predicts an entirely localized
equilibrium value, 〈Jz〉∞=−1/2, for an infinitesimal small bias ε in the limit of zero
temperature. Hence, the master equation (4.33) is not reliable for a finite bias and
g=1 at low temperatures. This had to be expected from the failure of the NIBA in
that regime.

Weiss gives a solution for the spin-boson model with g=1 in the so-called scaling

limit, kBT/ωc→0 [10],

〈σz〉t = e−γt − 2

∫ t

0

dτ
kBT sin(ετ)

sinh(πτkBT )

[
e−γτ/2 − e−γteγτ/2

]
,

〈σz〉∞ =
2

π
Im

{

ψ
(1

2
+

γ

4π kBT
− i

ε

2π kBT

)}

.

(4.41)

The relaxation rate γ is defined identically to equation (4.39) and ψ(z) is the
digamma function. This solution for the equilibrium value is plotted together with
the NIBA result (4.40) in Fig. 4.3. It can be seen that the NIBA deviates from (4.41)
at low temperatures. The different results converge for increasing temperature, as
known from the NIBA. The inset of Fig. 4.3 shows the different solutions for the
dynamics of Jz. The exponential decay (4.34) is in good agreement with the solu-
tion in the scaling limit (4.41). Thus, the spin-boson model with finite bias is well
described by the master equation (4.33) for intermediate temperatures.

From the comparison with the results of the spin-boson model, we learn that
the master equation (4.33) gives incorrect results in the regime where the NIBA
fails. This is hardly surprising. We noted in section 4.2 that the first steps in
the derivation of the master equation, namely the polaron transformation together
with the second-order Born approximation, are equivalent to the NIBA. The master
equation employs one additional approximation, the Markov approximation. In
the other regimes, the master equation reproduces the results of the spin-boson
model. For coupling strengths g≥2 we find the exact analytical expressions for the
dynamics of Jz. The same applies for the unbiased system at g=1 in the limit of zero
temperature. For a finite bias at g=1, the numerical evaluation of the solution of
the spin-boson model in the scaling limit is in good agreement with the exponential
relaxation as predicted by the master equation. We conclude that our approach, the
polaron transformation combined with a Born-Markov approximation, yields good
results for a spin one half with strong coupling to the environment, g≥ 2, at zero
temperature and in the Toulouse limit, g = 1, at finite temperatures. We expect
that the method is likewise reliable for greater spins, J >1/2.
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Figure 4.3: Equilibrium value 〈Jz〉∞ and dynamics of Jz (inset); red:
master equation (4.33), blue: solution in the scaling limit (4.41), (ε =
0.2Tc, g=1, ωc=50Tc; inset: ε=Tc, kBT =0.1Tc).

4.5 The Large-Spin Dynamics

We shall now investigate the influence of the strong dissipation on a spin greater
than one half, J > 1/2. The dynamics of the spin follows from the solution of
the master equation (4.17). The two regimes are considered in which the master
equation has been shown to yield correct results for a spin one half, namely g≥2 at
zero temperature and g=1 at finite temperatures.

4.5.1 Zero Temperature

It was demonstrated in the previous section that an unbiased spin one half is localized
for strong couplings, g≥2, at zero temperature. Greater spins, however, do not show
this phenomenon. This can be seen in Fig. 4.4 which shows the expectation value of
Jz derived from the numerical solution of the master equation for a spin J=3/2 and
different initial values. The most striking feature is the dependence of the long-time
behavior on the initial value. Apparently, there are two distinct equilibrium values,
〈Jz〉∞=±J .

Actually, we can learn a great deal from the unperturbed system, i.e. the
transformed Hamiltonian H̄0 (4.4). The eigenvalues lie on an inverted parabola
as sketched in the inset of Fig. 4.4. Since the expectation value of Jz cannot exceed
the spin size J the minima of the energy are found at the extreme points, 〈Jz〉=±J .
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Figure 4.4: Dynamics of Jz for a spin 3/2 with different initial values
(ε=0, g=2, ωc=50Tc and kBT =0). The inset shows the eigenenergies
of the unperturbed system.

Depending on which side of the parabola the initial value is located, the spin will ap-
proach either of those states for long times. From that picture we can already guess
what the effect of a finite bias will be. A bias shifts the center of the parabola from
zero to ε/2κ. Thus, we expect that the borderline between initial values relaxing to
the different equilibrium values moves accordingly. Even for a finite bias, though,
there are in general initial states from which the spin relaxes to the polarized state
〈Jz〉∞ = +J . This appears contradictory on the first view since that state has the
highest possible eigenenergy for a spin without dissipation. Yet, we must not forget
that the spin is strongly coupled to the environment and that the interaction energy
and therewith the total energy is minimized for a polarized spin. The eigenenergies
of the two polarized states may differ for a finite bias, E+J > E−J . However, a
transition from one to the other requires to overcome a high energy barrier so that
the spin is expected to remain on its side of the parabola.

The dynamics of the large spin as described above also follows directly from the
master equation (4.17). We consider an unbiased system, ε=0. The derivation can
be generalized to a finite bias without difficulty. First, we note that the system is
symmetric with respect to the quantum number M , i.e. |J,M〉→ |J,−M〉. Thus,
we can restrict ourselves to states with positive M . Recalling that absorption is
completely suppressed for zero temperature, the master equation (4.17) reads for

72



4.5. THE LARGE-SPIN DYNAMICS

positive M

˙̃ρM,M(t) = − T 2
c c

+
J,M

2 FC

(
κ(2M+1)

)
ρ̃M,M(t)

+ T 2
c c

−
J,M

2 FC

(
κ(2M−1)

)
ρ̃M−1,M−1(t).

(4.42)

This equation accounts for transitions to higher quantum numbers M , that is
|J,M〉→ |J,M+1〉. Hence, the expectation value of Jz increases until the density
matrix reaches the stationary solution, ρ̃M,M = δJ,M , corresponding to the equilib-
rium value 〈Jz〉∞= +J .

Let us now consider the typical time it takes the spin to relax from a state
|J,M〉 to the next higher state, |J,M+1〉. Imagine the spin is initially prepared
in the state |J,M0〉, i.e. ρ̃M,M = δM,M0

. According to the master equation (4.42),
the probability for that state, ρ̃M0,M0

, decays exponentially to zero. We assume for
the moment that the expectation value of Jz also relaxes exponentially from M0 to
M0+1. This approximation neglects all further transitions from M0+1 to states with
higher quantum numbers M . The justification will become clear in the following.
Then, the transition rate ΓM0→M0+1 with which Jz relaxes follows from the Fourier
transform (4.23) using κ=gωc (4.5) as

ΓM0→M0+1 =
2π T 2

c

ωc Γ(g)

(
J(J+1) −M0(M0+1)

) (
g(2M0+1)

)g−1
e−g(2M0+1). (4.43)

The important feature of this rate is the exponential dependence on the actual state
of the spin, M0. Hence, each transition |J,M〉 → |J,M+1〉 happens much more
slowly than the previous transition, |J,M−1〉→ |J,M〉. It is therefore justified to
assume that one transition is basically finished before the next one becomes effective.
Thus, we find the following picture for the relaxation of Jz to its equilibrium value.
The expectation value rises step by step the ladder of eigenvalues until it reaches the
equilibrium value 〈Jz〉∞=+J . Each step is approximately an exponential relaxation
while the rate of these transitions becomes exponentially damped with increasing
expectation value 〈Jz〉. This behavior can be observed in Fig. 4.5 which shows the
time evolution of Jz for a spin of size J = 4.5 for several initial values on different
time scales. The half-life of each transition as given in the table follows from the

Transition M→M+1 1/2→3/2 3/2→5/2 5/2→7/2 7/2→9/2
Half-life /T−1

c 3.1 98 4700 0.34 · 106

approximate rate ΓM→M+1 (4.43). These numbers are indeed in good agreement
with the numerical solution of the master equation as presented in Fig 4.5.

Finally, we derive an approximation for the dynamics of Jz. According to the
previous paragraph, the time it takes the spin to relax to the state |J,M〉 is roughly
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Figure 4.5: Relaxation of a spin of size J =4.5 for various initial values
on different time scales (ε=0, g=2, ωc=50Tc and kBT =0).

given by the period of the last transition, |J,M−1〉→ |J,M〉. All previous transi-
tions happen much faster and thus are neglected. We take the inverse of the rate
ΓM−1→M (4.43) as a measure for the relaxation time. Then, the time tM after which
the spin is in the state |J,M〉 is given by

tM =
ωc Γ(g)

(
g(2M−1)

)1−g
e−g

2π T 2
c

(
J(J+1)−M(M−1)

) e2gM . (4.44)

Again, the important dependence on the quantum number M is given by the ex-
ponential function. Neglecting the dependence of the prefactor on M yields for the
expectation value

〈Jz〉 = M ≈ 1

2g
ln(t) + C. (4.45)

The constant C accounts for the prefactor in equation (4.44). This approximation
for the expectation value of Jz gives a good description of the relaxation as can be
seen from Fig. 4.6. This figure shows the data of Fig. 4.5 on a logarithmic time scale.
The evolution of Jz is well approximated by the logarithmic relaxation (4.45), since
both curves are parallel. The constant C describing the offset is of no particular
interest and hence is not considered any further. An additional oscillation is visible
in the evolution of Jz, Fig. 4.6. This is caused by the step by step relaxation of the
expectation value and is not reproduced by the approximation (4.45).
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Figure 4.6: Logarithmic plot of the relaxation data of Fig. 4.5 with ini-
tial value 〈Jz〉0 = 1/2 (blue) and the logarithmic approximation (4.45),
without the constant, C=0, (red).

Up to this point, the investigation has been restricted to positive quantum num-
bers M . This is possible as the unbiased system is symmetric with respect to M .
All statements made above equally apply to the negative branch, M < 0. We shall
now consider the influence of a finite bias on the spin relaxation. For the smallest
possible value of the spin, J=1/2, a finite bias changes the spin dynamics from lo-
calization to exponential relaxation, as discussed in section 4.4.2. For greater spins,
however, the consequences of a finite bias are less spectacular. The bias ε changes
the argument of the Fourier transform in the master equation (4.17). It was already
mentioned at the beginning of this section, that this leads to a shift of the parabola
of eigenvalues to the new center ε/2κ. For ohmic dissipation κ is given by κ=gωc,
cf. Sec. 4.1. It is assumed in our model that the cutoff frequency ωc constitutes the
highest energy in the problem, in particular greater than the bias, ε < ωc. Thus,
the center of the parabola is shifted by less than one half. This change is so small
that its influence on the spin dynamics is expected to be insignificant. The exact
symmetry between positive and negative quantum numbers M is lifted by a finite
bias but the considerations made for zero bias are still valid. In particular, the
logarithmic relaxation to the equilibrium values ±J is equally shown by a spin with
finite bias. Altogether, we find that the physics of a dissipative large spin clearly
differs from a spin one half at zero temperature in the strong-coupling regime. The
different behavior is mainly caused by the J2

z term in the transformed Hamiltonian.
The peculiarity of the spin one half is that this term becomes constant and has no
influence on the spin.
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4.5.2 Finite Temperatures

We shall now investigate the dynamics of the large spin in the second regime, g=1 at
finite temperatures. In contrast to the zero temperature regime absorption of energy
from the environment becomes possible such that the large spin is not restricted
to transitions in one direction, |J,M〉 → |J,M+1〉 for M > 0. However, even at
intermediate temperatures the absorption rate is much smaller than the emission
rate. This can be seen from the master equation (4.17). The argument of the Fourier
transform is of the order of gωc. Within this model, the temperature is assumed
to be smaller than the cutoff, kBT <ωc. Hence, the ratio of absorption to emission
becomes much smaller than one, according to (4.29). If the absorption is completely
neglected, the unbiased large spin is again described by the master equation (4.42).
The transition rate ΓM→M+1 at finite temperatures follows from (4.25),

ΓM→M+1 =
2π T 2

c c
+
J,M

2
e−(2M+1)

ωc Γ(1+1/βωc)2

∞∑

n=0

(−1)n

n!
Γ
(

n + 1 +
2

βωc

)

e−βnωc(2M+1). (4.46)

This rate resembles the zero temperature rate (4.43) in one essential point. Both
are exponentially suppressed with increasing quantum number M . Thus, the same
conclusions can be drawn here as in the zero temperature regime. The large spin
relaxes step by step to the equilibrium. At finite temperatures this is only approx-
imately given by the polarized state, 〈Jz〉∞ ≈ ±J . In particular, the relaxation
is logarithmic. Apparently, the constant in equation (4.45) is different for finite
temperatures and we have to insert g = 1. The relaxation of a spin of size J = 7
is shown in Fig. 4.7 for different parameters. The dynamics is well described by
the logarithmic approximation (4.45). Deviations become visible at the end of the
relaxation, 〈Jz〉 ≈ J , for the logarithmic approximation does not take into account
the finite size of the spin. It can be seen from Fig. 4.7 that a finite bias, ε=20Tc,
or a higher temperature, kBT =25Tc, only weakly modify the dynamics of Jz. The
influence of a finite bias was already discussed in the previous section.

We conclude that the dynamics of the large-spin model drastically changes once
the spin size becomes greater than one half. We have investigated the behavior in
two regimes, g≥2 at kBT =0 and g=1 at kBT >0, and find similar results in both
regimes. The spin relaxes to a polarized state, 〈Jz〉∞ ≈±J (the equation becomes
correct at zero temperatures). Which of the two possible values the spin approaches
is determined by its initial value. Positive initial values, 〈Jz〉0>0, decay to +J and
vice versa. This behavior can be understood from the unperturbed Hamiltonian H̄0.
Its energy is minimized by a polarized spin. The relaxation to the equilibrium
values is logarithmic, 〈Jz〉 ≈ ln(t)/2g + C, where the constant C depends on the
other parameters. The influence of the parameters, in particular the bias ε and
the temperature kBT in the second regime, is marginal as long as they are smaller
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Figure 4.7: Relaxation of a spin J =7 (g= 1, ωc = 50Tc, and 〈Jz〉0 =2).
The logarithmic approximation is plotted in black.

than the cutoff frequency ωc. From the point of view of the large-spin model, the
spin-boson model with spin size J = 1/2 appears as an exception. The quadratic
term in the transformed Hamiltonian, −κJ2

z , which governs the dynamics of a large
spin becomes constant for J=1/2 and consequently does not affect a spin one half.
This explains why we find such a different behavior if the spin becomes greater than
one half.

4.6 Conclusion

We have studied the large-spin model with strong ohmic dissipation in this chapter.
In the strong-coupling regime, the interaction with the environment is expected to
predominate the physics of the large spin and we treat the tunneling as a pertur-
bation. The master equation for the large spin is derived by combining the polaron
transformation and the Born-Markov approximation. The effect of the polaron
transformation on the unperturbed spin without tunneling is to decouple the two
subsystems, spin and environment. An interaction is reintroduced by the tunnel-
ing. This new interaction is considered as the perturbation within the Born-Markov
approximation.

For spin one half the large-spin model reduces to the spin-boson model and the
results of the latter are used to check the validity of our approach. It is interesting
to note that the combination of the polaron transformation with the second-order
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Born approximation is equivalent to the noninteracting-blip approximation for the
spin-boson model. Hence, the master equation derived in this chapter is not reliable
for parameters where the NIBA is known to give incorrect results. This is for
instance the case for intermediate coupling strengths, 1<g<2, at zero temperature.
For higher coupling strengths, the results of the spin-boson model are reproduced.
In a second regime, the Toulouse limit, g = 1, the results of the master equation
are in good agreement with the solution of the spin-boson model for intermediate
temperatures.

The physics changes drastically if greater spins are considered. The reason is
that the strong coupling to the environment favors a polarized spin. The energy
of the coupling is minimized if the spin is parallel or antiparallel to that direction
to which the dissipative environment couples. Thus, the equilibrium value is not
unique and the spin relaxes towards one of the polarized states. The initial condition
determines to which of them. This resembles the broken parity symmetry of the one
mode Dicke model in the strong-coupling limit [60].

For an ohmic spectral function with exponential cutoff, the relaxation is approx-
imately logarithmic, 〈Jz〉≈ ln(t)/2g+C. A different long-time behavior is expected
for other forms of the cutoff. The influence of the bias and the temperature on the
large spin is marginal. They do not alter the dynamics qualitatively.

We have found similar dynamics of the large spin in the two regimes that are
investigated. It seems natural to suspect that these results also apply to other pa-
rameters, that is a strong coupling, g > 2, at finite temperatures. Without further
investigation, however, this is merely a speculation. Finally, we note that the dy-
namics in the strong-coupling regime do not show any similarities to the behavior
in the weak-coupling limit as discussed in chapter 3. In fact, the results are quite
contrary. While the spin relaxes faster with increasing spin size in the weak-coupling
regime the relaxation becomes extremely slow for a strong dissipation. Apparently,
the transition between these different behaviors occurs at intermediate coupling
strengths, 0<g<1. This regime, however, is not accessible by the methods chosen
in this work since the tunneling and the dissipation become equally important and
none can be treated perturbatively.

78



Chapter 5

Dicke Effect in Two Double
Quantum Dots

The previous chapters of this thesis were devoted to the investigation of a dissipative
large spin. The spin was used to study collective effects in an ensemble of identical
two-level systems which are interacting with the same environment. No assumptions
were made on the specific form of the two-level systems to ensure a broad applica-
bility of the results. In this chapter, however, we consider a very specific realization
of a two-level system and concentrate on the smallest ensemble which possibly ex-
hibits collective effects: We calculate the tunnel current through two parallel double
quantum dots coupled to a phonon environment. The limitation on a small system
has several advantages. Most of the assumptions and approximations made in the
previous chapters are not necessary anymore. In particular, we are not restricted
to identical two-level systems in the following. Furthermore, the product Hilbert
space of the double dots is used instead of the large spin basis which describes only
a subspace.

Mesoscopic systems as double quantum dots are especially well suited as real-
izations of two-level systems. They allow tuning of the parameters over a wide
range [21, 22]. In double dots, for instance, the level spacing as well as the tunnel
rates can be changed continously by adjustment of the gate voltages. Moreover,
transport spectroscopy is possible in these systems by connection with leads [4, 5,
27, 94, 95]. The influence of the phonon environment can be seen in the tunnel cur-
rent [3, 16, 96]. Designing the geometry of a sample even allows to modify the phonon
environment [34, 97]. The appearance of collective effects in mesoscopic transport
has gained a considerable interest recently. Shahbazyan and Raikh first predicted
the Dicke effect to occur in resonant tunneling through two impurities [98]. The
interaction between the impurities arises due to the coupling to the same leads. No
bosonic environment is considered. Brandes and co-workers predicted superradiance
of quantum dot arrays resulting in an oscillatory photon emission intensity [99, 100].
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The quantum dots in that work are described by a large spin. The investigation of
collective effects of double quantum dots is closely related to the evolution of entan-
glement and hence to quantum dot based qubits [25]. Interactions with phonons,
however, are feared to destroy the coherence in qubits [101].

In this chapter, we study two nearby but otherwise independent double quantum
dots which are coupled to the same phonon environment. The influence of the
resulting indirect interaction on the stationary tunnel current is examined in the
non-linear transport regime. Signatures of super- and subradiance of phonons are
predicted which show up as an increase or a decrease, respectively, of the stationary
electron current. We demonstrate that this effect is directly related to the creation of
charge wave function entanglement between the two double dots, which appears in a
preferred formation of either a charge-triplet or singlet configuration, depending on
the internal level splittings and the tunnel couplings to the external electron leads.

5.1 The Model

We consider two double quantum dots, that are coupled to leads as well as a bosonic
environment. No assumptions are made on the specific realization of the quantum
dots that can be lateral or vertical. Yet, the different dots of one double dot are
referred to as the left and the right dot, respectively. Electrons can tunnel back
and forth between the dots of one double dot but tunneling between the different
double dots is not possible. The leads serve as electron reservoirs and enable the
flow of a current through the system. Each double dot is connected to independent
leads, as depicted in Fig. 5.1. This excludes possible collective effects that arise
if both systems are connected to the same leads [98]. Moreover, both double dots
are coupled to a common bosonic bath describing the interactions of electrons in
the dots with phonons that are inherent to any solid state system. The bosonic
environment has two purposes. First, the emission of phonons makes a current
possible also in the inelastic regime when the energy of electrons tunneling between
the quantum dots is not conserved. Furthermore, the environment introduces an
indirect coupling between the different double dots which are independent otherwise.
The consequences of this coupling are investigated in the present chapter.

The regime of strong Coulomb blockade is considered. Then, the two quantum
dots of one double dot cannot be occupied simultaneously by an additional electron.
It has been demonstrated for this case, that the Hilbert space of each double dot can
by described by a basis of three states only [33]. For the i-th double dot, these states
are |L, i〉, a state with one additional electron in the i-th left dot at eigenenergy εL,i,
|R, i〉 a state with one additional electron in the i-th right dot at eigenenergy εR,i,
and |0, i〉 for no additional electron in either of the two dots. The zero of the energy
is chosen to be the eigenenergy of |0, i〉. However, we do not take into account
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PSfrag replacements

ΓL,1 ΓR,1Tc,1

ΓL,2 ΓR,2Tc,2

Figure 5.1: Model for two double quantum dots coupled to independent
leads and to the same bosonic environment (not shown). The rates Tc,
ΓL, and ΓR will be defined in the text.

Coulomb blockade between different double dots. This is justified for experimental
configurations where the Coulomb interaction between electrons in different double
dots is much weaker than the Coulomb interaction inside one double dot. Hence,
any collective effects that follow from this model result exclusively from the coupling
of both double quantum dots to the same phonons.

Although the system introduced above consists of two double dots we give the
Hamiltonian and the subsequent derivation of the master equation for an arbitrary
number of N double dots. With the help of the operators

nL,i = |L, i〉 〈L, i| , nR,i = |R, i〉 〈R, i| ,
pi = |L, i〉 〈R, i| , p†i = |R, i〉 〈L, i| , (5.1)

sL,i = |0, i〉 〈L, i| , sR,i = |0, i〉 〈R, i| ,

the Hamiltonian can be written as

H =

N∑

i

(

εL,i nL,i + εR,i nR,i + Tc,i(pi + p†i)

+
∑

k

Vk,i c
†
k,isL,i + h.c.+

∑

k

εLk,i c
†
k,ick,i

+
∑

l

Wl,i d
†
l,isR,i + h.c.+

∑

l

εRl,i d
†
l,idl,i

+
∑

q

γq,i (a
†
q + a−q)(nL,i − nR,i)

)

+
∑

q

ωq a
†
qaq .

(5.2)

The matrix elements for the tunneling of the additional electron between the dots is
Tc,i. A phonon in mode q with energy ωq is created by the operator a†q. The coupling
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to the quantum dots is purely diagonal and has the amplitude γq,i for mode q to
the i-th double dot. The electrons in the leads are described by creation operators
c†k,i for an electron in mode k with an eigenenergy εLk,i in the left lead and d†l,i with

eigenenergy εRl,i in the right lead of the i-th double quantum dot. The coupling of
the double dots to the leads has the matrix elements Vk,i and Wl,i and ~ is set to 1.

We consider the limit in which the electron–phonon interaction is identical for
all double dots,

γq,i = γq. (5.3)

This corresponds to the situation where the distance between different double dots
is small as compared to the phonon wavelength. Even if this is not fulfilled, the
assumption of equal coupling to the phonons can be realized experimentally by
placing the double dots in an appropriate phonon cavity or phonon resonator [97].

The Hamiltonian can be split into an unperturbed part H0, the coupling to the
leads He, and the coupling to the phonons Hp,

H = H0 +He +Hp, (5.4)

where

He =
∑

i,k

Vk,i c
†
k,isL,i + h.c. +

∑

i,l

Wl,i d
†
l,isR,i + h.c.,

Hp =
∑

i,q

γq (a†q + a−q)(nL,i − nR,i).
(5.5)

Note that the states |L, i〉 and |R, i〉 are no eigenstates of the unperturbed Hamil-
tonian H0 in presence of tunneling Tc,i between the dots. Consequently, they take a
different form in the interaction picture (3.10),

ñL,i(t) = nL,i −
i Tc,i
∆i

sin(∆it) (pi − p†i )

+
Tc,i
∆2
i

(1 − cos(∆it))
(

(εL,i − εR,i)(pi + p†i) − 2Tc,i(nL,i − nR,i)
)

,

ñR,i(t) = nR,i +
i Tc,i
∆i

sin(∆it) (pi − p†i )

− Tc,i
∆2
i

(1 − cos(∆it))
(

(εL,i − εR,i)(pi + p†i) − 2Tc,i(nL,i − nR,i)
)

.

(5.6)

We used the Baker-Hausdorff identity (3.11) to evaluate ñL,i(t) and ñR,i(t). The
hybridization energy ∆i of the i-th double dot is defined as

∆i =
√

ε2
i + 4T 2

c,i , (5.7)

with the difference of the eigenenergies in the left and in the right dot,

εi = εL,i − εR,i. (5.8)
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5.2 Master Equation

We derive a master equation for the reduced density matrix ρ(t) of the double quan-
tum dots. The current through the system follows directly from the solution of
the density matrix. In principle, it is possible to take into account the coupling
to the phonons to arbitrary high orders by applying a polaron transformation and
by considering the tunneling between the dots perturbatively, corresponding to the
proceeding of chapter 4. A comparison with 2nd order Born-Markov approxima-
tion however shows that the results for the stationary current through one double
dot, as calculated by the two methods, practically coincide for Tc � ε and small
couplings [102]. Hence, we employ the standard Born-Markov approximation as
introduced in chapter 3,

d

dt
ρ̃(t) = −

∫ t

0

dt′ TrRes

{[
Ṽ (t),

[
Ṽ (t′), ρ̃(t) ⊗R0

]]}

. (5.9)

In contrast to the previous chapters, though, we have to deal now with a system
that is coupled to two different environments, the electron leads and the boson bath,
V = He +Hp. The density matrix of the environment is written as a product of the
density matrices of the leads and of the phonons, R0 = R0,e ⊗R0,p, since we do not
consider correlations between the leads and the phonons. The environments’ density
matrices are assumed to be always in thermal equilibrium, as the influence of the
quantum dots on the environments is neglected. Taking into account the special
form of the couplings (5.5), we see that the master equation is greatly simplified as
the trace over mixed products of phonon and lead operators vanishes. Hence, the
master equation can be written as a sum of a lead and a phonon part,

d

dt
ρ̃(t) = −

∫ t

0

dt′ TrRes,e

{[
H̃e(t),

[
H̃e(t

′), ρ̃(t) ⊗R0,e

]]}

+TrRes,p

{[
H̃p(t),

[
H̃p(t

′), ρ̃(t) ⊗ R0,p

]]}

.

(5.10)

Let us first consider the trace over the electron reservoirs. Inserting He (5.5) yields

[
H̃e(t),

[
H̃e(t

′), ρ̃(t) ⊗R0,e

]]

=
[∑

i,k

Vk,i c̃
†
k,i(t)s̃L,i(t) + h.c. +

∑

i,l

Wl,i d̃
†
l,i(t)s̃R,i(t) + h.c. ,

[∑

j,k′

Vk′,j c̃
†
k′,j(t

′)s̃L,j(t
′) + h.c. +

∑

j,l′

Wl′,j d̃
†
l′,j(t

′)s̃R,j(t
′) + h.c. , ρ̃(t) ⊗ R0,e

]]

.

(5.11)
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In the interaction picture, the lead operators c†k,i and d†l,i acquire an additional time-
dependent phase,

c̃†k,i(t) = c†k,i e
i εL

k,i
t, d̃†l,i(t) = d†l,i e

i εR
l,i
t. (5.12)

As the trace over the density matrix R0,e of the leads in thermal equilibrium requires
particle number conservation in each lead separately, only combinations of creation
and annihilation operators in the same lead give a non-zero contribution to the
sum. If all double quantum dots were coupled to the same lead, we would find
additional terms due to correlations in the lead. However, such processes are not
considered in this calculation. Bearing in mind that c†k,ick,i is the number operator
whose expectation value is the Fermi function,

TrRes,e

{

c†k,ick,iR0,e

}

= nF (εLk,i), (5.13)

we can perform the trace over the electron reservoirs. Since we want to describe
transport in the non-linear regime, with a large source-drain voltage between the
leads on the left side and on the right side, the chemical potentials are supposed to
be infinite in the left leads and zero in the right leads. Thus, the Fermi functions
become either one or zero,

nF (εLk,i) = 1, nF (εRl,i) = 0, (5.14)

and the trace reads

TrRes,e

{[
H̃e(t),

[
H̃e(t

′), ρ̃(t) ⊗ R0,e

]]}

=
∑

k,i

|Vk,i|2
{

ei ε
L
k,i

(t−t′)
(

s̃L,i(t) s̃
†
L,i(t

′) ρ̃(t) − s̃†L,i(t
′) ρ̃(t) s̃L,i(t)

)

+e−i ε
L
k,i

(t−t′)
(

ρ̃(t) s̃L,i(t
′) s̃†L,i(t) − s̃†L,i(t) ρ̃(t) s̃L,i(t

′)
)}

+
∑

l,i

|Wl,i|2
{

ei ε
R
l,i

(t−t′)
(

ρ̃(t) s̃†R,i(t
′) s̃R,i(t) − s̃R,i(t) ρ̃(t) s̃

†
R,i(t

′)
)

+e−i ε
R
l,i

(t−t′)
(

s̃†R,i(t) s̃R,i(t
′) ρ̃(t) − s̃R,i(t

′) ρ̃(t) s̃†R,i(t)
)}

.

(5.15)

The last step is to rewrite the sum over the states k in the leads as

∑

k

|Vk,i|2 ei ε
L
k,i

(t−t′) =

∫

dε
∑

k

|Vk,i|2 δ(ε− εLk,i) e
i ε(t−t′) (5.16)

and to assume the spectral function of the lead to be constant,

ΓL,i = 2π
∑

k

|Vk,i|2 δ(ε− εLk,i). (5.17)
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Similarly, ΓR,i is defined as the constant spectral function of the coupling to the i-th
right lead. The integral over dε then gives a delta-function in the time,

∑

k

|Vk,i|2 ei ε
L
k,i

(t−t′) = ΓL,i δ(t− t′). (5.18)

Finally, the first part of the master equation (5.10) takes the form

−
∫ t

0

dt′ TrRes,e

{[
H̃e(t),

[
H̃e(t

′), ρ̃(t) ⊗ R0,e

]]}

=
∑

i

ΓL,i

(

s̃†L,i(t) ρ̃(t) s̃L,i(t) −
1

2
s̃L,i(t) s̃

†
L,i(t) ρ̃(t) −

1

2
ρ̃(t) s̃L,i(t) s̃

†
L,i(t)

)

+ ΓR,i

(

s̃R,i(t) ρ̃(t) s̃
†
R,i(t) −

1

2
s̃†R,i(t) s̃R,i(t) ρ̃(t) −

1

2
ρ̃(t) s̃†R,i(t) s̃R,i(t)

)

.

(5.19)

The trace over the bosonic degrees of freedom differs from the trace over the leads
because all double quantum dots couple to the same bosonic bath. This induces a
coupling between the otherwise independent double quantum dots and results in
collective effects as we will show below. We use the definition (3.22) of the bath
correlation function K(t) to write the trace over the environment as

TrRes,p

{[
H̃p(t),

[
H̃p(t

′), ρ̃(t) ⊗R0,p

]]}

=
∑

i,j

[
(ñL,i(t)−ñR,i(t)), (ñL,j(t′)−ñR,j(t′)) ρ̃(t)

]
K(t− t′)

−
[
(ñL,i(t)−ñR,i(t)), ρ̃(t) (ñL,j(t

′)−ñR,j(t′))
]
K∗(t− t′).

(5.20)

Then, the master equation in interaction picture is the sum of the terms (5.19)
and (5.20) according to equation (5.10). The final step is to transform the master
equation back into the Schrödinger picture, using

ρ̇(t) = −i
[
H0, ρ(t)

]
+ e−iH0t ˙̃ρ(t) eiH0t. (5.21)

Here, H0 is the double quantum dot part of the unperturbed Hamiltonian (5.4),
as the reservoirs have already been traced out. Hence, the back-transformation
of (5.20) results in

e−iH0t

∫ t

0

dt′ TrRes,p

{[
H̃p(t),

[
H̃p(t

′), ρ̃(t) ⊗R0,p

]]}

eiH0t

=

∫ t

0

dt′
∑

i,j

[
(nL,i−nR,i),

(
ñL,j(t

′−t)−ñR,j(t′−t)
)
ρ(t)

]
K(t− t′)

−
[
(nL,i−nR,i), ρ(t)

(
ñL,j(t

′−t)−ñR,j(t′−t)
)]
K∗(t− t′),

(5.22)
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with the operators ñL,j(t
′−t) and ñR,j(t

′−t) in the interaction picture (5.6). We
assume that the correlation function K(t) is peaked around t = 0 such that the
upper limit of the time integral can be extended to infinity. This property of the
bath correlation function is a condition for applying the Markov approximation,
cf. Sec. 3.2.2. The rates Γ, ΓC,i, and ΓS,i are defined according to (3.29) with ∆
replaced by ∆i. Thus, we find for the master equation of an ensemble of double
quantum dots that are coupled to leads and a common bosonic environment:

d

dt
ρ(t) = i

[

ρ(t) ,

N∑

i

(

εL,i nL,i + εR,i nR,i + Tc,i(pi + p†i )
)]

+
∑

i

ΓL,i

(

s†L,i ρ(t) sL,i −
1

2
sL,i s

†
L,i ρ(t) −

1

2
ρ(t) sL,i s

†
L,i

)

+ ΓR,i

(

sR,i ρ(t) s
†
R,i −

1

2
s†R,i sR,i ρ(t) −

1

2
ρ(t) s†R,i sR,i

)

−
∑

i,j

1

∆2
j

[

(nL,i−nR,i),
(
((∆2

j − 4T 2
c,j) Γ + 4T 2

c,jΓC,j)(nL,j−nR,j)

+ 2Tc,j(Γ−ΓC,j) εj (pj + p†j) + i 2Tc,j∆jΓS,j(pj − p†j)
)
ρ(t)

]

+
∑

i,j

1

∆2
j

[

(nL,i−nR,i), ρ(t)
(
((∆2

j − 4T 2
c,j) Γ∗ + 4T 2

c,jΓ
∗
C,j)(nL,j−nR,j)

+ 2Tc,j(Γ
∗−Γ∗

C,j) εj (pj + p†j) + i 2Tc,j∆jΓ
∗
S,j(pj − p†j)

)]

.

(5.23)

Note that the mixed terms i 6= j in the summation over the double quantum dots
are responsible for possible collective effects. Without these terms, the master equa-
tion merely describes an ensemble of N double quantum dots which are completely
independent of each other. This corresponds to a situation in which each double
quantum dot couples to an independent bosonic environment. Then, the density
matrix ρ(t) factorizes and no correlations between different dots evolve. The addi-
tional terms, i 6= j, on the other hand introduce an interaction between the double
dots which is caused by the coupling of the dots to the same environment. For only
one double quantum dot, N =1, we recover the result given in [102] for the matrix
elements of the density operator of such a system.

5.3 Electron-Phonon Interaction

In the derivation of the master equation, we used the definition (3.22) for the corre-
lation function K(t) as already introduced in chapter 3. It was also shown in that
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chapter that K(t) can be written as an integral over the spectral function ρ(ω) of
the environment (3.33). It should be emphasized once again that this spectral func-
tion is of great importance since all properties of both the environment itself and its
interaction to the electrons in the quantum dots enter exclusively into this function.
For the calculations of this chapter, we choose the spectral function of bulk acoustic
phonons with piezoelectric interaction to lateral quantum dots [33, 102],

ρ(ω) = g ω
(

1 − ωd
ω

sin
( ω

ωd

))

e−ω/ωc , (5.24)

where g is the dimensionless interaction strength, ωc the cut-off frequency and the
frequency ωd = c/d is determined by the ratio of the the sound velocity c to the
distance d between two quantum dots. We checked by separate calculations that
the collective effects as presented in the following sections do not depend on the exact
form of the spectral function and do equally appear for other spectral functions like
that of an ohmic bath.

The correlation function K(t) does not enter the master equation directly but
in the form of the rates Γ, ΓC,j, and ΓS,j, defined as different integrals over the
correlation function (3.29). It will turn out to be useful to define linear combinations
of Γ, ΓC,j, and ΓS,j,

αj = 2
(

1 −
4T 2

c,j

∆2
j

)

Γ +
8T 2

c,j

∆2
j

ΓC,j ,

βj =
4Tc,j εj

∆2
j

(Γ − ΓC,j) + i
4Tc,j
∆j

ΓS,j ,

γj =
4Tc,j εj

∆2
j

(Γ − ΓC,j) − i
4Tc,j
∆j

ΓS,j .

(5.25)

If we neglect the principal values in the integration over the correlation function
K(t) [78], as discussed in section 3.3.2, the expressions for the rates Γ, ΓC,j, and
ΓS,j are considerably simplified, see (3.47). Then, we find from (5.25)

αj =
4πT 2

c,j

∆2
j

ρ(∆j) coth
(β∆j

2

)

,

βj =
2πTc,j

∆j
ρ(∆j)

(

1 − εj
∆j

coth
(β∆j

2

))

,

γj = −2πTc,j
∆j

ρ(∆j)
(

1 +
εj
∆j

coth
(β∆j

2

))

.

(5.26)

Thus, neglecting the principal values leads to real parameters αj, βj, and γj. Nev-
ertheless, we will treat them in the following calculations as complex quantities in
order not to restrict the validity of the results to that approximation.
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5.4 Stationary Current through One Double Dot

The master equation (5.23) describes the general case of N double quantum dots
interacting with the same bosonic bath. Before turning to collective effects in the
tunnel current through two double quantum dots, we consider the master equation
for only one double dot, N = 1, and thus without any collective effects. In the
stationary case, ρ̇(t)=0, the master equation is solved analytically and the current
through the double dot is derived from the density matrix. We show that the
inelastic part of the current, which results from the interaction with the phonon
bath, can be approximated by a classical rate equation. The transition rate of
electrons between the left and the right quantum dot follows from Fermi’s Golden
Rule.

5.4.1 Master Equation for One Double Dot

As we consider the stationary current, the density matrix becomes time-independent,
ρ̇(t)=0, and the master equation reduces to a linear system of equations. The three
states |0〉, |L〉, and |R〉 as introduced in section 5.1 of this chapter are chosen as a
basis of the density matrix. Then, the equations for the four matrix elements

〈nL〉 = 〈L| ρ |L〉 , 〈p†〉 = 〈L| ρ |R〉 ,
〈p〉 = 〈R| ρ |L〉 , 〈nR〉 = 〈R| ρ |R〉 (5.27)

form a closed set with the exception of the element 〈0| ρ |0〉. Since the trace of the
density matrix is always equal to 1, this element can be expressed as

〈0| ρ |0〉 = 1 − 〈nL〉 − 〈nR〉 . (5.28)

Thus, we arrive at a linear system of four equations which is solved analytically. We
find for the density matrix elements in the stationary case

〈nL〉 = 1 − Tc(ΓL + ΓR)

D

{

ε(γ+γ∗) −
(
2TC + i(γ−γ∗)

)(ΓR
2

+ α+α∗
)}

,

〈nR〉 =
TcΓL
D

{

ε(γ+γ∗) −
(
2TC + i(γ−γ∗)

)(ΓR
2

+ α+α∗
)}

,

〈p〉 =
ΓL
D

{

T 2
c (β+β∗−γ−γ∗) + iTc(βγ−β∗γ∗) + ΓR(iTc−γ)

(

iε+
ΓR
2

+ α+α∗
)}

.

(5.29)
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The remaining matrix element follows directly, 〈p†〉 = 〈p〉∗, as the density matrix is
a hermitian operator. The denominator D in these equations is defined as

D = −ΓLΓR

(

ε2 +
(ΓR

2
+ α+α∗

)2)

+ εTc

(

ΓL(β+β∗) + (ΓL+ΓR)(γ+γ∗)
)

−
(

2T 2
c (2ΓL+ΓR) + iTc(ΓL+ΓR)(γ−γ∗) − iTcΓL(β−β∗)

)(ΓR
2

+ α+α∗
)

.

(5.30)

The expressions for the matrix elements are simplified considerably if the parameters
αj, βj, and γj become real as assumed in the previous section, Eq. (5.26).

5.4.2 Tunnel Current

The tunnel current through one double quantum dot follows from the time deriva-
tive of the occupation operator of one of the dots, for instance the left one. The
Heisenberg equation of motion gives

〈ṅL〉 = − iTc
~

(〈p〉 − 〈p†〉) +
i

~

∑

k

Vk 〈c†ksL〉 − V ∗
k 〈cks†L〉 , (5.31)

where we reintroduced ~ in order to obtain the current in units of Ampère. Two
parts can be identified in this expression: The first part (∝ Tc,i) gives the change
in the occupation of the left quantum dot due to tunneling of electrons to or from
the right dot. The second part describes the tunneling between the left dot and the
lead. In the stationary case, the two contributions equal each other and the current
operator can be expressed by the number of electrons tunneling between the two
dots,

I =
i e Tc

~
(p− p†). (5.32)

The expectation value of the current results if the solution (5.29) of the master
equation is inserted in this equation,

〈I〉 =
e Tc ΓLΓR

~ D

{

ε (γ+γ∗) −
(
2Tc+ i(γ−γ∗)

)(ΓR
2

+ α+α∗
)}

. (5.33)

A comparison of this expression with the current as obtained by a polaron transfor-
mation is given in [102]. Without interaction to phonons, α=β=γ=0, we recover
the result of Stoof and Nazarov [103] for the tunnel current via two discrete states,

〈I〉 =
e

~

T 2
c ΓR

T 2
c (2 + ΓR/ΓL) + Γ2

R/4 + ε2
. (5.34)

A slightly different result was derived by Gurvitz and Prager [104]. They explain
an additional factor 2 connected with the tunnel rate ΓL in their result by the
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Figure 5.2: Blue: Stationary current through one double quantum
dot (5.33) as a function of the energy bias ε = εL−εR. Red: Inelastic
current from Fermi’s Golden Rule (5.42). The inset shows schematically
the energies and tunnel rates in the double quantum dot. The param-
eters are Tc = 3µeV, ΓL = ΓR = 0.4µeV and the spectral function (5.24)
with g=0.01, T =23mK, ωd=10µeV and ωc=1meV.

consideration of the spin degree of freedom. Equation (5.34) shows that the current
through an ideal double quantum dot which is not coupled to phonons or photons
takes the form of a Lorentz-shaped function centered around zero bias, ε = 0. In
this case, an additional electron can tunnel elastically between the left and the right
quantum dot since its eigenenergy is equal in both dots and consequently the tunnel
current becomes maximal. The Lorentz shape of the tunnel current has indeed be
found in experiments [3, 27].

For finite bias, ε 6= 0, conservation of energy leads to a vanishing current as
the energy of an additional electron is not the same in the left and the right dot.
However, interaction with an environment, for instance a phonon bath, enables
tunneling also for a finite bias if exchange of energy is possible. For negative bias,
ε<0, an electron in the left dot can gain the necessary energy to tunnel to the right
dot by absorption of a phonon. Since this process requires the presence of a sufficient
number of phonons, it is restricted to finite temperatures. The reverse process is
even possible in the limit of zero temperature, T → 0. The electron in the left dot
overcomes a positive bias by emission of a phonon and hence can tunnel to the right
dot. Figure 5.2 shows the current through one double dot (5.33) as a function of the
bias ε for a small temperature, T =23mK. The elastic peak at ε=0 is clearly visible.
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The broad shoulder on the emission side, ε > 0, is due to the interaction with the
bosonic environment. This part of the current is referred to as the inelastic current.
The energies for a positive bias are depicted in the inset. The oscillations in the
inelastic current are due to the choice of the spectral function (5.24). We will come
back to the connection between the spectral function and the inelastic current in the
next paragraph. The shape of the current is in good agreement with experimental
results [16] that were obtained at the same temperature. The absolute values of the
current in Fig. 5.2 are too large as compared to the experiment as we used different
parameters.

5.4.3 Rate Equation

The inelastic current caused by interactions with the environment can be approxi-
mated by a classical rate equation. A rate equation allows to calculate the proba-
bilities for certain states in the double dot from the transition rates between these
states. We introduce this method here not only to give an approximation for the
inelastic current through one double dot. The rate equation will turn out to be very
useful for describing collective effects in many quantum dots.

We will first calculate the rate for transitions of an additional electron from the
left to the right quantum dot using Fermi’s Golden Rule. As we are interested in
the inelastic current, we assume a positive bias, ε>0. The coupling to the environ-
ment Vp (5.5), however, does not introduce transitions between the basis states |L〉
and |R〉 since we assumed a diagonal coupling. In the absence of Tc, |L〉 and |R〉 are
still eigenstates of the interacting system and no transitions occur. In other words,
only the combination of a finite Tc and the coupling to the dissipative environment
results in transitions. Thus, we have to calculate the transition rate between the
eigenstates of the unperturbed Hamiltonian H0 of the double dot, including Tc. The
solutions of H0 are the hybridized states,

|+〉 =
1

√

2∆(∆ + ε)

(
ε+ ∆

2Tc

)

|−〉 =
1

√

2∆(∆ − ε)

(
ε− ∆

2Tc

) (5.35)

expressed in the basis of

|L〉 =

(
1

0

)

, |R〉 =

(
0

1

)

. (5.36)

Without loss of generality we set εL = −εR = ε/2 and find for the eigenenergies of
the hybridized states ±∆/2. From the form of |+〉 and |−〉 in (5.35) we see that the
hybridized states approach |L〉 and |R〉 for Tc�ε.
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We consider transitions from the initial state |i〉 with an electron in the upper
state |+〉 to the final state |f〉 with the electron in the lower state |−〉 under the
emission of a phonon of mode q,

|i〉 = |+〉 ⊗ |0〉p , |f〉 = |−〉 ⊗ a†q |0〉p , (5.37)

where |0〉p denotes any state of the phonon bath. The matrix element with respect
to the interaction operator Vp (5.5) follows as

〈f |Vp |i〉 = −2Tcγq
∆

. (5.38)

Applying Fermi’s Golden Rule (see for example [67]) leads to the transition rate

νi→f =
8π T 2

c

~ ∆2
ρ(∆), (5.39)

where ρ(ω = ∆) is the spectral function of the environment as defined in (3.33).
Similarly, we find for the transition rates of an electron tunneling from the left lead
to the left quantum dot ΓL/~ and for tunneling from the right dot to the right lead
ΓR/~ with ΓL/R as defined in (5.17).
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Figure 5.3: Possible transitions in the rate equation (5.40).

These transition rates are used to model the transport of electrons through the
double quantum dot in the inelastic regime. If no additional electron is in either
of the two dots, an electron can tunnel from the left lead to the left dot with a
rate ΓL/~. This corresponds to transition from state |0〉 to state |L〉 as indicated in
Fig. 5.3. Then, the electron tunnels to the right dot with a rate ν as derived in the
previous paragraph. Actually, we do not have to distinguish between the states |L〉
and |+〉 or between |R〉 and |−〉 since these become identical in the limit Tc � ε.
This distinction was only necessary for the derivation of the rate ν. Finally, the
additional electron can leave the right dot to the right lead, |R〉→ |0〉. As a result
of this cycle, one electron has been transferred from the left to the right lead and
the system returned to the initial state such that the process can start again from
the beginning. Let us consider the change in the probabilities pL, pR, and p0 for the
three states,

ṗ0 = Γ pR − Γ p0,

ṗL = Γ p0 − ν pL,

ṗR = ν pL − Γ pR,

(5.40)
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where we assumed equal tunnel rates to the left and right leads, Γ=ΓL/~ =ΓR/~.
The probability for the state |L〉, for instance, is increased by transitions to this
state weighted with the probability of no additional electrons in the dots, p0, and
decreased by transitions to the right dot, weighted with the probability of an electron
in the left dot, pL. Taking into account the normalization of the total probability,
pL + pR + p0 =1, the rate equation can be solved easily in the stationary case,

pL =
1

2x + 1
, pR =

x

2x+ 1
, p0 =

x

2x+ 1
, x = ν/Γ . (5.41)

The inelastic current through the double dot follows directly from these probabilities
as the number of electrons tunneling through the system per time. For example, we
can count the electrons tunneling from the left to right dot,

Is = e pL ν =
e ν

2x + 1
. (5.42)

This result for the inelastic current is plotted in Fig. 5.2. Despite the simplicity
of the method, it is in reasonable agreement with the result of the Born-Markov
approximation for large ε. The rate equation does not give a vanishing inelastic
current at zero bias, ε= 0, as one should expect. However, this is not surprising,
since in that limit, the state |+〉 and |−〉 are even and odd linear combinations of
|L〉 and |R〉 and transitions between the latter cannot be described by the rate ν.
For small couplings to the environment, the tunnel rate ν between the dots becomes
much smaller than the rates to or from the leads, Γ, and thus x�1. The inelastic
current (5.42) is then well approximated by

Is = e ν =
8π e T 2

c

~ ∆2
ρ(∆). (5.43)

Hence, the inelastic current is proportional to the spectral function for small cou-
plings, in agreement with the similar result deduced from the polaron transforma-
tion [33].

5.5 Collective Effects in Two Double Dots

We shall investigate in this section how the indirect interaction between two double
quantum dots as mediated by the environment changes the tunnel current. Since
the dimension of the density matrix for N double dots grows with 9N , an analytical
solution of the master equation becomes very cumbersome even for N = 2. Hence,
the linear system of equations to which the master equation (5.23) reduces in the
stationary case is solved numerically. This system of equations is given explicitly in
the appendix, Eq. (B.1).
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Figure 5.4: Total current through two double quantum dots as a function
of the bias ε1. The parameters are Tc,1 = Tc,2 = 3µeV, ΓL,1 = ΓR,1 =
ΓL,2 =ΓR,2 =0.15µeV, and for the spectral function g=0.01, T =23mK,
ωd=10µeV and ωc=1meV. These values are used throughout the whole
chapter if not stated otherwise.

The current operator for each of the two double dots is the same as for an inde-
pendent double dot (5.32) as electrons cannot tunnel between the different double
dots. Expressed by the density matrix elements, the current through double dot 1
and 2 reads,

I1 = − 2Tc,1 e

~
Im

{
ρLRLL + ρRRLR + ρ0RL0

}
,

I2 = − 2Tc,2 e

~
Im

{
ρRLLL + ρRRRL + ρR00L

}
,

(5.44)

with the notation of the matrix elements defined as

ρj i i′ j′ = 2〈j| ⊗ 1〈i| ρ |i′〉1 ⊗ |j ′〉2 , i, j ∈ {L,R, 0}. (5.45)

The total current through both double dots, I1 +I2, is shown in Fig. 5.4 as a
function of the bias in the first double dot, ε1, while the bias in the second double
dot, ε2, is kept constant. The overall shape of the current is identical to the case of
an independent double dot, Fig. 5.2. Again, the elastic peak around ε1 =0 and the
inelastic current can clearly be identified. The interesting new feature here is the
additional peak at the resonance ε1 =ε2 on the background of the inelastic current.
This peak is caused by the indirect interaction between the two double dots due
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to the coupling to the same phonon environment. What happens exactly at this
resonance? To answer this question, we shall employ two different approximations.
At first, we will investigate the effects of the indirect interaction in the master
equation and find that they introduce a cross coherence between the two double
dots, which in turn leads to the new peak in the current. A rate equation allows
to connect the additional peak to the Dicke effect by taking into account modified
transition rates. This is fully consistent with the emergence of the cross coherence.

5.5.1 Cross Coherences

The effective interaction between the two double quantum dots results from the
simultaneous coupling of both double dots to the same phonon environment. It ap-
pears in the master equation (5.23) as the mixed terms i 6=j in the summation. In the
explicit form of the master equation (B.1), the effective interaction is connected to
six matrix elements only (and their complex conjugates). These elements are ρRLLL,
ρLRLL, ρRRLR, and ρRRRL, all of which enter the expression for the current (5.44),
and the two cross coherence matrix elements

ρRLRL =
〈
p†1p2

〉
, ρRRLL =

〈
p1p2

〉
. (5.46)

It seems reasonable to suppose that the cross coherences play an important part for
the collective effects. This is indeed confirmed in the following.

We approximate the effects of the indirect interaction by assuming that only
those six matrix elements mentioned above are affected by the interaction. All other
density matrix elements are supposed to stay unchanged. It is shown in appendix B
that the change of the current through the first double dot due to collective effects
can be approximated by

∆I1 = −2e Tc,1 γ2

~ ε1

(

Re
{〈
p†1p2

〉}
− Re

{〈
p1p2

〉})

. (5.47)

Correspondingly, the change ∆I2 of the current through the second double dot is
obtained from ∆I1 by exchanging the subscripts 1 and 2. Hence, the alteration
of the current is proportional to the real parts of the cross coherences

〈
p†1p2

〉
and

〈
p1p2

〉
between the two double dots, which underlines the collective character of the

effect. This result is confirmed by plotting the real parts of the cross coherences
as a function of ε1, Fig. 5.5. One recognizes that

〈
p†1p2

〉
is peaked around ε1 = ε2,

whereas
〈
p1p2

〉
has a peak at ε1 = −ε2. The increase of the current at ε1 = ε2 is

therefore due to the maximum of the first correlation
〈
p†1p2

〉
.

If we neglect the changes of all other elements of the density matrix that are
caused by the effective interaction between the two double quantum dots, the real
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Figure 5.5: Real parts of the cross coherences as functions of the bias
in the first double dot (ε2 =30µeV and the other parameters agree with
Fig. 5.4). The inset compares the approximation (5.48) for Re

{〈
p†1p2

〉}

(dotted line) with the numerical solution (solid line).

part of the cross coherence
〈
p†1p2

〉
can be approximated near the resonance ε1 = ε2

as

Re
{〈
p†1p2

〉}
= −

1
2
(ΓR,1 + ΓR,2)

(
γ1 Re

{
〈p2〉

}
〈nL,1〉 + γ2 Re

{
〈p1〉

}
〈nL,2〉

)

(ε1−ε2)2 + 1
4
(ΓR,1 + ΓR,2)2

, (5.48)

as shown in appendix B. Thus, the cross coherence
〈
p†1p2

〉
is put down to expectation

values of a noninteracting double dot, 〈p〉 and 〈nL〉, which were calculated in the
previous section, Eq. (5.29). One recognizes that

〈
p†1p2

〉
is Lorentzian shaped as

a function of the energy difference ε1−ε2. The result (5.48) is in good agreement
with the numerical solution of the master equation (5.23), as shown in the inset of
Fig. 5.5. A similar expression is also derived for the other cross coherence

〈
p1p2

〉
in

appendix B and will be used in section 5.5.5.
Next, we insert the approximation for the cross coherence in (5.47) and find for

the change of the tunnel current due to interaction effects between the two double
quantum dots around the resonance ε1 =ε2:

∆I1 =
e Tc,1 γ2 (ΓR,1+ΓR,2)

~ ε1
· γ1 Re

{
〈p2〉

}
〈nL,1〉 + γ2 Re

{
〈p1〉

}
〈nL,2〉

(ε1−ε2)2 + 1
4
(ΓR,1+ΓR,2)2

. (5.49)

Again, the change in the current through the second double dot, ∆I2, is obtained by
exchanging the subscripts. For the parameters used in Fig. 5.4, this approximation
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overestimates the actual change in the current by a factor of roughly 3, but provides
a good qualitative description for the effect of the enhanced tunnel current. A
comparison between this result and the numerical solution will be given in a later
section for different parameters.

5.5.2 Singlet and Triplet States

The cross coherence p†1p2 is regarded more closely in this paragraph. We express the
four basis states with an additional electron in each of the two double dots by the
pseudo-triplet and pseudo-singlet states,

|T+〉 = |L〉1 |L〉2 ,

|T0〉 =
1√
2

(

|L〉1 |R〉2 + |R〉1 |L〉2
)

,

|T−〉 = |R〉1 |R〉2 ,

|S0〉 =
1√
2

(

|L〉1 |R〉2 − |R〉1 |L〉2
)

.

(5.50)

The terms triplet and singlet do not refer to the electron spin but to the charge.
It turns out that the cross coherence is closely related to the triplet state |T0〉 and
singlet state |S0〉, as expressed by the operator identity

p†1p2 + p†2p1 = PT0
− PS0

. (5.51)

Here, Pψ is the projection operator on the state |ψ〉, Pψ ≡ |ψ〉 〈ψ|. Hence, the
increase of the stationary current at the resonance ε1 =ε2 is related to an increased
probability of finding the two double dots in a triplet state rather than in a singlet
state,

∆I1 ∝ Re
{〈
p†1p2

〉}
=

1

2

(〈
PT0

〉
−

〈
PS0

〉)
. (5.52)

According to this equation, an increased probability for the singlet state would lead
to a reduced tunnel current. We will come back to that point below.

5.5.3 Dicke Effect

The fact, that triplet and singlet states are connected to a change of the tunnel
current resembles the Dicke effect where the same states lead to a modified emission
rate of excited two level atoms. The Dicke effect of an ensemble of N excited two
level systems was discussed in Sec. 2.2.2. We will recall the basic features for N=2
in order to relate the Dicke effect to the two double quantum dots. The modified
transition rates due to the Dicke effect are then taken into account in a classical
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rate equation to model the transport through the two double dots. It turns out that
the collective effects found in the previous sections are very well described by this
model.

We follow the original work by Dicke [12] who considered the collective decay of
two identical two-level systems, for instance two-level atoms, coupled to the same
radiation field. For our purpose, this system is best described in the singlet and
triplet basis (5.50) where |L〉 corresponds to the excited state and |R〉 to the ground
state. It can be seen directly from the Hamiltonian (2.6) that the singlet state |S0〉
is an eigenstate of the Hamiltonian which consequently does not decay to the ground
state |T−〉. Nor does any triplet state decay to the singlet state. Hence, the decay
of two excited atoms takes place via the triplet states. Moreover, the decay rates
|T+〉 → |T0〉 and |T0〉 → |T−〉 are identical. They are twice as large as the decay
rate of one independent atom. This can be understood directly from |T+〉 which
corresponds to both atoms in the excited state. The rate for the first decay of these
atoms is naturally doubled as it does not play any role which of the atoms decays
first. Since also the second transition, |T0〉→|T−〉, takes place with double the rate,
the total decay of two excited atoms coupled to the same environment is faster than
that of two independent atoms. In any real system, the coupling to the radiation field
is not perfectly identical as assumed above. Typically the coupling constants differ
by a wavelength dependent phase. Then, the decay via the singlet state becomes
also possible but it is much slower than the decay via the triplet states. These two
decay channels are called subradiant and superradiant, respectively. The interplay
between the two decay channels was demonstrated experimentally by DeVoe and
Brewer [54]. They measured the spontaneous emission rate of two Ba+

138 ions in a
laser trap as a function of the ion-ion distance.

These results can be applied to a system of two identical double quantum dots,
that is, at the resonance ε1 =ε2. Accordingly, a singlet superposition in the double
dots leads to a reduced transition of electrons from the left to the right dots and
thus to a decreased current. On the other hand, a triplet superposition results in an
enhanced tunnel current, as observed in the previous section. But then the question
arises why the double dots prefer to form a triplet superposition in the first place.
We employ a classical rate equation similar to that in section 5.4.3 to answer this
question. The collective effects are considered by modified transition rates according
to the Dicke effect.

The possible transitions between the nine states of our model are depicted in
Fig. 5.6. In contrast to the Dicke effect, a third state exists in each of the double
dots such that transitions to and from the singlet state are also possible. Take for
instance the state |0R〉 with an additional electron in the right dot of the second
double dot. A further electron can tunnel into the first double dot with a rate ΓL,1.
We assume that the two additional electrons form a singlet |S0〉 or the triplet state
|T0〉 with probability one half each. The rate equation for the probabilities of the
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Figure 5.6: Possible transitions in the rate equation (5.53).

nine states is given by

ṗ00 = Γ pR0 + Γ p0R − 2Γ p00,

ṗL0 = Γ p00 +
1

2
Γ pT0

+
1

2
Γ pS0

− (ν + Γ) pL0,

ṗ0L = Γ p00 +
1

2
Γ pT0

+
1

2
Γ pS0

− (ν + Γ) p0L,

ṗR0 = ν pL0 + Γ pT− − 2Γ pR0,

ṗ0R = ν p0L + Γ pT− − 2Γ p0R,

ṗT+ = Γ p0L + Γ pL0 − 2ν pT+,

ṗT0
= 2ν pT+ +

1

2
Γ p0R +

1

2
Γ pR0 − (2ν + Γ) pT0

,

ṗT− = 2ν pT0
− 2Γ pT−,

ṗS0
=

1

2
Γ p0R +

1

2
Γ pR0 − Γ pS0

.

(5.53)

The probability to find the first double dot in state |L〉 and the second in state |0〉 is
denoted by pL0. Note the doubled rate 2ν for transitions between the triplet states,
in order to take into account the Dicke effect. The rate ν for transitions between
the dots was calculated in (5.39) using Fermi’s Golden Rule. We assume identical
tunnel rates to all four leads ΓL,1 =ΓR,1 =ΓL,2 =ΓR,2 =Γ.

In the stationary case, the rate equation (5.53) can be easily solved. For the
current through one of the two double dots we obtain

Id = eΓ (p00 + p0L + p0R) =
eν(4x + 1)

9x2 + 5x+ 1
, x = ν/Γ. (5.54)

This can be compared with the tunnel current Is (5.42) through one independent
double dot. The difference ∆I = Id − Is represents the additional current due
to the Dicke effect and is shown in Fig. 5.7 as a function of the dimensionless
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Figure 5.7: Enhancement of the tunnel current ∆I at the resonance ε1 =
ε2 =30µeV as a function of the dimensionless electron phonon coupling
constant g. The additional current vanishes at g≈0.02 when the tunnel
rates between the dots and to the leads become equal, ν=Γ. The inset
shows the difference in probabilities for triplet and singlet.

coupling strength g to the bosonic environment, together with ∆I as obtained from
the numerical solution of the master equation (5.23). Both results agree very well,
indicating that it is indeed the Dicke effect that leads to the increase in the tunnel
current. In addition, we show (Fig. 5.7, inset) the difference between triplet and
singlet occupation probability that follows from (5.53) as

pT0
− pS0

= − 2x(x + 2)(x− 1)

9x3 + 23x2 + 11x + 2
. (5.55)

This is in excellent agreement with the numerical results and underlines that the
change in the tunnel current due to collective effects is proportional to pT0

− pS0
,

as already discussed above. The effect of superradiance amplifies the tunneling of
electrons from the left to the right dots resulting in an enhanced current through
the two double quantum dots.

5.5.4 Current Subradiance

The close analogy with the Dicke effect suggests the existence of not only current
super-, but also current subradiance in the double quantum dots. In the subradiant
regime, the two double dots form a singlet state which diminishes the tunneling
from the left to the right dots leading to a weaker tunnel current. Subradiance
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ε2 = 30µeV. The left inset shows schematically the set-up for ΓR,2 = 0.
The right inset gives the difference of triplet and singlet for that case.

occurs in our system in a slightly modified set-up where electrons in the second
double dot are prevented from tunneling into the right lead, ΓR,2 = 0, as indicated
in the inset of Fig. 5.8. Then, the additional electron is trapped and no current
can flow through the second double dot. Nevertheless, this electron can affect the
tunnel current through the first double dot: Instead of a maximum, we now find a
minimum at the resonance ε1 = ε2. Figure 5.8 shows how the positive peak in the
current I1 develops into a minimum as the tunneling rate ΓR,2 is decreased to zero.
This minimum is indeed related to an increased probability of finding the two dots
in the singlet state |S0〉 rather than in the triplet state |T0〉, as can be seen from the
inset of Fig. 5.8. Thus, in this regime the effect of subradiance dominates, leading
to a decreased current.

This behavior is again consistent with the approximation (5.49) for the change
of the tunnel current through the first double dot, ∆I1. Taking into account the
different non-interacting matrix elements in the two double dots, 〈nL,1〉 6=〈nL,2〉 and
〈p1〉 6= 〈p2〉 due to ΓR,1 6= ΓR,2, we find a negative cross coherence at the resonance
from (5.48). This corresponds to an increased probability for the singlet state and
according to (5.47) to a reduced tunnel current, in agreement with our numerical
solution.
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Figure 5.9: Tunnel current through the second double dot which is
blocked due to a negative bias, ε2 = −50µeV, as depicted in the left
inset (g=0.015). Red: Numerical solution of the master equation (5.23),
the finite offset is the tail of the elastic current at ε2 =0. Blue: Approx-
imation (5.56) for ∆I2. The right inset shows the current I1.

5.5.5 Inelastic Current Switch

Up to now, we have regarded collective effects in the two double quantum dots
connected with the cross coherence

〈
p†1p2

〉
around the resonance ε1 = ε2. However,

the tunnel current can also be changed by the other cross coherence
〈
p1p2

〉
, cf. (5.47).

This cross coherence exhibits a resonance if the bias in one dot equals the negative
bias in the other dot, ε1 =−ε2 (see Fig. 5.5). The effects of

〈
p1p2

〉
on the current

are demonstrated in this section.

We use a fixed negative bias ε2<0 in the second double dot as indicated in the
inset of Fig. 5.9. Consequently, electrons cannot tunnel from the left to the right dot
such that the second double dot is blocked and no current can flow through it. The
presence of the first double dot, though, lifts this blockade and enables a current
through the second double dot if the resonance condition ε1 =−ε2 is fulfilled. The
current I2 is shown in Fig. 5.9 as a function of the bias in the first double dot, ε1.
Due to the coupling to the common phonon environment, energy is transferred from
the first to the second double dot, allowing electrons to tunnel from the left to the
right in the second double dot. At the same time, the current through the first
double dot is decreased (see Fig. 5.9, inset).

We can approximate the current through the second double dot around ε1 =−ε2
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taking into account only
〈
p1p2

〉
in (5.47). Inserting the approximation (B.15) which

is derived in appendix B for the real part of
〈
p1p2

〉
yields for the increase of the

current through the second double dot

∆I2 =
Tc,2 γ1 e

ε2 ~
·

(
ΓR,1+ΓR,2+16α

) (
γ1 Re

{
〈p2〉

}
〈nL,1〉 + γ2 Re

{
〈p1〉

}
〈nL,2〉

)

(ε1+ε2)2 + (1
2
ΓR,1+

1
2
ΓR,2+8α)2

,

(5.56)
with α=α1 =α2 evaluated at the resonance, where both systems are identical except
for the opposite sign of the bias. This approximation again is in good agreement with
the numerical solution of the master equation (5.23), as can be seen from Fig. 5.9.

Our results suggest that the current through one of the double dots can be
switched on and off by appropriate manipulation of the other one. We emphasize
that this mechanism is mediated by the dissipative phonon environment and not
the Coulomb interaction between the charges. As this effect is very sensitive to the
energy bias, it allows to detect a certain energy bias in one double dot by observing
the current through the other double dot.

5.6 Conclusion

In this chapter, we have investigated collective effects in two double quantum dots
and their consequences on the tunnel current. An indirect interaction arises between
the double dots due to the coupling to the same phonon environment. We predict
the emergence of the Dicke effect in this system as a result of the indirect interac-
tion. Depending on the choice of parameters, the two double dots tend to form a
charge-triplet or a charge-singlet superposition leading to an increase or a decrease,
respectively, of the tunnel current.

The occurrence of the Dicke effect in the transport through mesoscopic systems
has already been pointed out by Shahbazyan and Raikh [98]. In their system, the
coupling to the same lead is responsible for collective effects. Usually, the Dicke
effect manifests itself in a dynamic process like the spontaneous emission of an
ensemble of identical atoms [54, 56]. Transport through double quantum dots, how-
ever, allows to study a time independent form of the Dicke effect. Moreover, we
have demonstrated that the change of the tunnel current is connected with an en-
tanglement of the different double dots. This opens the possibility to realize and to
measure specific entangled states of two double dots. In particular, one can switch
from a predominant triplet superposition of the two double dots connected with an
increased tunnel current to a predominate singlet state leading to a reduced current.

The results discussed here were derived for the ideal case of an identical electron-
phonon coupling in both double quantum dots. Furthermore, the Coulomb interac-
tion between the two double dots has not been considered here. In a real experiment,
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these assumption will never be perfectly fulfilled and would lead to deviations from
the collective effects presented above. However, we predict that even in presence
of inter-dot Coulomb interactions, phonon mediated collective effects should persist
as long as a description of the quantum dots in terms of few many-body states is
possible. These many-body states (that would depend on the specific geometry of
the system) would than replace the many-body basis {|0, i〉, |L, i〉, |R, i〉} (i = 1, 2)
used in our model here.

We have derived the master equation for the general case of N double dots but
only focused on N =2 which is the simplest case where collective effects occur. In
general, one of the main characteristics of superradiance is the quadratic increase of
the effect with increasing number of coupled systems, as discussed in chapter 2. For
the spontaneous collective emission from N excited two-level atoms, this means that
the maximum of the intensity of the emitted radiation increases with the square
number of systems, N 2, while the time in which the decay takes place decreases
inversely to the number of systems, 1/N . Therefore, we expect that the collective
effects as presented here become even more pronounced if more than two double
dots are indirectly coupled by the common phonons.
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Chapter 6

Conclusion

The subject of this thesis are collective effects in an ensemble of two-state systems
caused by the coupling to a dissipative environment. The main part of this work,
chapters 3 and 4, is devoted to the investigation of a large spin under the influence of
a dissipative environment. This model applies both to an intrinsic spin of arbitrary
size and to the collective behavior of an ensemble of independent identical two-
state systems. Possible collective effects in such an ensemble are caused by the
indirect interaction between the two-state systems resulting from the coupling of
all systems to the same dissipative environment. A well-known collective effect of
this kind is the superradiance shown by the Dicke model. The model describes an
ensemble of initially excited two-level atoms coupled to the radiation field. The
indirect interaction between the atoms leads to a collective spontaneous emission
– the superradiance. The model of a dissipative large spin studied in this thesis is
more general than the Dicke model since it also takes into account tunneling in the
two-state systems, a feature not included in the Dicke model. Formally, the model of
a dissipative large spin is the generalization of the spin-boson model to spins greater
than one half.

We have investigated the model in two regimes of parameters, in the weak and in
the strong-coupling limit. The results are derived for an ohmic dissipation, yet some
conclusions can be generalized to other forms of the spectral function. The spin is
described by a master equation, derived within the Born-Markov approximation.
This method is perturbative in the spin-environment interaction. A comparison
with the results of the spin-boson model shows that this approach yields reliable
results for all temperatures in the weak-coupling limit. As the spin size is increased
the large spin shows a superradiance-like decay. For zero bias, beats are observed
in the coherent oscillations of the large spin. They are explained by the influence
of the nonresonant bosons of the environment. In the opposite limit, the strong-
coupling regime, a combination of a polaron transformation and the Born-Markov
approximation allows for the perturbative treatment of the tunneling. This method
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is not reliable for intermediate couplings at low temperatures. At finite temperatures
or strong couplings, we have found a good agreement with the results of the spin-
boson model. The behavior of the large spin in the strong-coupling regime differs
entirely from the weak-coupling limit. Collective effects do not lead to an accelerated
dynamics but instead to a slow relaxation. The large spin approaches one of the
polarized states. Which of the two is determined by its initial value. For an ohmic
dissipation, the relaxation is approximately logarithmic in time.

In the last chapter of this thesis, chapter 5, we propose a realistic system in
which dissipation induced collective effects can be detected. We calculate the tun-
nel current through two double quantum dots interacting with the same dissipative
environment, the phonons. Collective effects become indeed visible in the inelastic
tunnel current. We predict that superradiance of the double dots leads to an in-
creased tunnel current while the opposite effect, the subradiance, reduces the tunnel
current.

It seems inevitable in the treatment of such a wide subject that many interesting
questions remain open. We will mention but two points that in our opinion are worth
further considerations. One question mark concerns the thermodynamic limit of an
infinite spin with a renormalized interaction strength. The Dicke model with only
one bosonic mode instead of a continuum shows a phase transition in that limit
[57, 58]. Does a similar phase transition also exist in the model of a dissipative large
spin? Furthermore, we have studied the large spin in the two opposite limits of weak
and strong coupling to the environment. It is hardly surprising that we have found
quite different answers. Yet, this brings up the question of the physics of the large
spin in the intermediate regime. Other theoretical methods than those employed in
this work are necessary to tackle that regime. A perturbative treatment of either the
coupling or the tunneling is not possible since both effects become equally important
in the intermediate regime.
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Appendix A

Bosonic Expectation Values

In the course of the derivation of the master equation (4.17) for the large spin
with strong ohmic dissipation different expectation values of bosonic operators oc-
cur, Sec. 4.2. Some of them lead to the correlation function C(t) of the environ-
ment (4.13), while others give no contribution to the master equation. It is the
purpose of this appendix to show that the expectation values 〈Xt〉, 〈X†

t 〉, 〈XtX〉,
and 〈X†

tX
†〉 vanish for an ohmic dissipation.

The Expectation Value 〈Xt〉

We recall that Xt is the interaction representation of the bosonic operator X (4.8)
and that the expectation value refers to the thermal equilibrium of the environment.
First, we note that 〈Xt〉 does actually not depend on the time,

〈Xt〉 = TrRes

{
XtR̄0

}
= TrRes

{
XR̄0

}
= 〈X〉 . (A.1)

This follows from the cyclic invariance property of the trace and the fact that R̄0,
the density matrix of the reservoir in thermal equilibrium, commutes with the un-
perturbed Hamiltonian H̄0. The next step is to write the expectation value 〈X〉 as
a product over all bosonic modes,

〈X〉 =
∏

q

〈
e(γqa

†
q−γ

∗
q aq)/ωq

〉

q
, (A.2)

since the operator X as well as the equilibrium density matrix R̄0 factorize. The
expectation value on the right hand side of this equation only refers to the mode q.
It is calculated as a sum over all possible occupation numbers nq of that mode,

〈A〉q = (1 − e−βωq)

∞∑

nq=0

〈nq|Ae−βωqa
†
qaq |nq〉 . (A.3)
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The remaining exponential function can be written as a product with the theorem

eA+B = eA eB e−
1

2
[A,B] , (A.4)

which requires that both operators A and B commute with their commutator,
[A, [A,B]]=[B, [A,B]]=0. Thus, we find for the expectation value

〈X〉 =
∏

q

e−|γq |2/2ω2
q

〈
e(γq/ωq) a†q e−(γ∗q /ωq) aq

〉

q
. (A.5)

The expectation value on the right hand side is also referred to as the quantum

characteristic function [105]. It is shown in the same reference that the expectation
value can be expressed by the Bose distribution nB(ω) as

〈
e(γq/ωq) a†q e−(γ∗q /ωq) aq

〉

q
= e−|γq/ωq |2 nB(ωq) . (A.6)

Then, the expectation value of X reads

〈X〉 = e−Φ, (A.7)

with Φ defined as

Φ =
∑

q

∣
∣
∣
γq
ωq

∣
∣
∣

2 (

nB(ωq) +
1

2

)

=
1

2

∑

q

∣
∣
∣
γq
ωq

∣
∣
∣

2

coth
(βωq

2

)

. (A.8)

The right hand side of this equation follows by inserting the Bose distribution nB(ω).
An identical result can be found in [106]. Finally, we express the exponent Φ by the
spectral function ρ(ω) (3.33) as

Φ =
1

2

∫ ∞

0

dω
ρ(ω)

ω2
coth

(βω

2

)

. (A.9)

It follows immediately upon applying the power-law model (3.34) of the spectral
function that the integral diverges to plus infinity for s ≤ 1. In that case, the
expectation value vanishes,

〈Xt〉 = 0, s ≤ 1. (A.10)

Naturally, also the expectation value of the adjoint operator vanishes in that case,
〈X†

t 〉=0. We conclude that for spectral functions with exponents s≤1, the expec-
tation values of single bosonic operators Xt result to zero, in agreement with [86].
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The Expectation Value 〈XtX〉

There are four possibilities to combine two bosonic operators from X † and X. The
mixed pairs 〈X†

tX〉 and 〈XtX
†〉 form the correlation function C(t) (4.13) that was

calculated in section 4.3. We will show in this section that pairs consisting of
identical operators lead to a zero expectation value for ohmic and sub-ohmic spectral
functions of the environment. The mixed pairs can be written as an exponential
function (4.19), the derivation of which is given in [85]. The same calculation yields
for the identical pairs a quite similar result,

〈X†
tX

†〉 = 〈XtX〉 = e−Φ̃(t) , (A.11)

with the new function Φ̃(t) defined as

Φ̃(t) =

∫ ∞

0

dω
ρ(ω)

ω2

[(
1 + cos(ωt)

)
coth

(βω

2

)

− i sin(ωt)
]

. (A.12)

The expression for Φ̃(t) is almost identical to the result of Φ(t) for the mixed operator
combinations (4.20). The only difference is the opposite sign of the cosine and the
sine function. This, however, has an important consequence. We will show that the
function Φ̃(t) diverges for ohmic dissipation. It is therefore sufficient to study the
real part of that function. With ρ(ω) in the form of (3.34) the real part reads

Re
{
Φ̃(t)

}
= g

∫ ∞

0

dω ωs−2 e−ω/ωc
(
1 + cos(ωt)

)
coth

(βω

2

)

> g

∫ ∞

0

dω ωs−2 e−ω/ωc
(
1 + cos(ωt)

)

= +∞, s ≤ 1.

(A.13)

Hence, the expectation values in (A.11) vanish for ohmic and sub-ohmic dissipation,

〈X†
tX

†〉 = 〈XtX〉 = 0, s ≤ 1, (A.14)

as claimed in equation (4.12) of chapter 4.
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Appendix B

Master Equation for Two Double
Quantum Dots

Some parts of the calculations of chapter 5 are given in detail in this appendix. At
first, the master equation (5.23) is presented explicitely for two double quantum
dots. We show in the second part, how the approximations for the change of the
current, ∆I, and for the cross coherences,

〈
p†1p2

〉
and

〈
p1p2

〉
, follow from this master

equation.

Master Equation for Two Double Dots

With the three basis states |L〉, |R〉, and |0〉 for each double quantum dot, the
Hilbert space for N double dots is of the dimension of 3N . Consequently, the den-
sity matrix ρ has 9N entries. For two double dots, N=2, the master equation (5.23)
thus corresponds to 81 coupled differential equations (not all of them independent,
though). It is, however, not necessary to solve all 81 equations since we study the
current which requires the knowledge of six matrix elements only, cf. (5.44). It
turns out that the smallest closed subset of equations, containing the equations for
the desired six elements, consists of 25 equations. The equations for the matrix ele-
ments ρ̇jii′j′ with either i or i′ equal to zero (but not both) need not to be considered.
The same applies to j and j ′. We use the notation (5.45) for the matrix elements.

The mixed terms in the master equation (5.23), i 6= j, describing the indirect
interaction between the two DQDs due to the coupling to the same phonons, are
marked in the following with an additional prefactor q. Setting q=0 results in the
master equation for two completely independent double dots coupled to independent
phonons. The interacting case corresponds to q = 1. Finally, the subset of the 25
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equations follows from the master equation (5.23) as

ρ̇LLLL = iTc,1(ρLLRL − ρLRLL) + iTc,2(ρLLLR − ρRLLL) + ΓL,1 ρL00L + ΓL,2 ρ0LL0,

ρ̇LLLR = iTc,1(ρLLRR − ρLRLR) + iTc,2(ρLLLL − ρRLLR) + ΓL,1 ρL00R

+ γ∗2 ρLLLL − β2 ρRLLR −
(
iε2 +

1

2
ΓR,2 + α2 + α∗

2

)
ρLLLR

+ q
(
(α∗

1−α1) ρLLLR + β∗
1 ρLLRR − β1 ρLRLR

)
,

ρ̇LLRL = iTc,1(ρLLLL − ρLRRL) + iTc,2(ρLLRR − ρRLRL) + ΓL,2 ρ0LR0

+ γ∗1 ρLLLL − β1 ρLRRL −
(
iε1 +

1

2
ΓR,1 + α1 + α∗

1

)
ρLLRL

+ q
(
(α∗

2 − α2) ρLLRL + β∗
2 ρLLRR − β2 ρRLRL

)
,

ρ̇LLRR = iTc,1(ρLLLR − ρLRRR) + iTc,2(ρLLRL − ρRLRR)

+ γ∗1 ρLLLR − β1 ρLRRR + γ∗2 ρLLRL − β2 ρRLRR

−
(
iε1 + iε2 +

1

2
ΓR,1 +

1

2
ΓR,2 + α1 + α∗

1 + α2 + α∗
2

)
ρLLRR

− q
(
(α1+α

∗
1+α2+α

∗
2)ρLLRR + β2 ρRLRR + β1 ρLRRR − γ∗2 ρLLRL − γ∗1 ρLLLR

)
,

ρ̇RLLR = iTc,1(ρRLRR − ρRRLR) + iTc,2(ρRLLL − ρLLLR) + ΓL,1 ρR00R − ΓR,2 ρRLLR,

ρ̇RLRL = iTc,1(ρRLLL − ρRRRL) + iTc,2(ρRLRR − ρLLRL)

+ γ∗1 ρRLLL − β1 ρRRRL + γ2 ρLLRL − β∗
2 ρRLRR

−
(
iε1− iε2 +

1

2
ΓR,1 +

1

2
ΓR,2 + α1 + α∗

1 + α2 + α∗
2

)
ρRLRL

+ q
(
(α1+α

∗
1+α2+α

∗
2)ρRLRL − γ2 ρLLRL + β1 ρRRRL + β∗

2 ρRLRR − γ∗1 ρRLLL
)
,

ρ̇RLRR = iTc,1(ρRLLR − ρRRRR) + iTc,2(ρRLRL − ρLLRR)

+ γ∗1 ρRLLR − β1 ρRRRR −
(
iε1 +

1

2
ΓR,1 + ΓR,2 + α1 + α∗

1

)
ρRLRR

+ q
(
(α2−α∗

2) ρRLRR − γ2 ρLLRR + γ∗2 ρRLRL
)
,

ρ̇0LL0 = iTc,1(ρ0LR0 − ρ0RL0) + ΓL,1 ρ0000 + ΓR,2 ρRLLR − ΓL,2 ρ0LL0,

ρ̇0LR0 = iTc,1(ρ0LL0 − ρ0RR0) + ΓR,2 ρRLRR

+ γ∗1 ρ0LL0 − β1 ρ0RR0 −
(
iε1 +

1

2
ΓR,1 + ΓL,2 + α1 + α∗

1

)
ρ0LR0,

ρ̇LRRL = iTc,1(ρLRLL − ρLLRL) + iTc,2(ρLRRR − ρRRRL) + ΓL,2 ρ0RR0 − ΓR,1 ρLRRL,

ρ̇LRRR = iTc,1(ρLRLR − ρLLRR) + iTc,2(ρLRRL − ρRRRR) + γ∗2 ρLRRL − β2 ρRRRR

−
(
iε2 + ΓR,1 +

1

2
ΓR,2 + α2 + α∗

2

)
ρLRRR

+ q
(
(α1−α∗

1) ρLRRR − γ1 ρLLRR + γ∗1 ρLRLR
)
,

ρ̇RRRR = iTc,1(ρRRLR − ρRLRR) + iTc,2(ρRRRL − ρLRRR) −
(
ΓR,1 + ΓR,2

)
ρRRRR,

ρ̇0RR0 = iTc,1(ρ0RL0 − ρ0LR0) + ΓR,2 ρRRRR −
(
ΓR,1 + ΓL,2

)
ρ0RR0,
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ρ̇L00L = iTc,2(ρL00R − ρR00L) + ΓR,1 ρLRRL + ΓL,2 ρ0000 − ΓL,1 ρL00L,

ρ̇L00R = iTc,2(ρL00L − ρR00R) + ΓR,1 ρLRRR + γ∗2 ρL00L − β2 ρR00R

−
(
iε2 + ΓL,1 +

1

2
ΓR,2 + α2 + α∗

2

)
ρL00R,

ρ̇R00R = iTc,2(ρR00L − ρL00R) + ΓR,1 ρRRRR − (ΓL,1 + ΓR,2) ρR00R,

ρ̇0000 = ΓR,1 ρ0RR0 + ΓR,2 ρR00R −
(
ΓL,1 + ΓL,2

)
ρ0000.

(B.1)

The remaining 8 equations follow immediately since ρ is a hermitian operator,

ρj i i′ j′ = ρ∗j′ i′ i j . (B.2)

Approximation for the Tunnel Current

This system of equations serves as the point of departure for the derivation of an
approximation for the change of the stationary current due to collective effects in the
two double dots. The calculations below are valid for real parameters αj, βj, and γj,
as used throughout chapter 5, but can easily be generalized to complex parameters
if desired. Without any interactions between the two double quantum dots, q= 0,
the density matrix ρ for the combined system is simply the tensor product of two
density matrices for independent double dots. The solution of the density matrix for
one independent double dot is given in (5.29). How does the indirect interaction, i.e.
the terms with the prefactor q in the master equation (B.1), change this solution?
First, we notice that only six matrix elements (and their complex conjugates) occur
in connection with the factor q. These elements are ρRLLL, ρLRLL, ρRRLR and ρRRRL,
all of which enter the expression (5.44) for the current, and the two ‘cross coherence’
matrix elements

ρRLRL =
〈
p†1p2

〉
, ρRRLL =

〈
p1p2

〉
. (B.3)

We assume that only those six elements are affected by the interaction and that
all other elements are identical to the non-interacting case. According to equa-
tion (5.44), the change in the stationary current due to the interaction is then

∆I1 = − 2Tc,1 e

~
Im

{
∆ρLRLL + ∆ρRRLR

}
,

∆I2 = − 2Tc,2 e

~
Im

{
∆ρRLLL + ∆ρRRRL

}
,

(B.4)

where ∆ denotes the difference between the interacting case, q = 1, and the non-
interacting case, q=0.

We will consider the equations for these matrix elements in detail, starting with
the equation for ρ̇LRLL, the complex conjugate of ρ̇LLRL. In the stationary case,
the terms of the right hand side add up to zero. We neglect the matrix elements
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ρRLRL and ρRRLL for non-interacting double dots, q = 0. This is justified as the
cross coherences are then simply the product of the corresponding matrix elements
of independent double dots,

〈
p†1p2

〉
=

〈
p†1

〉
〈p2〉 ,

〈
p1p2

〉
= 〈p1〉 〈p2〉 . (B.5)

These tend to zero in the inelastic regime, Tc � ε, as can be seen from the solu-
tion (5.29) for 〈p〉. Thus, the equation for ρLRLL reduces for q=0 to

(iTc,1 − β1) ρLRRL − (iTc,1 − γ1) ρLLLL + ΓL,2 ρ0RL0 +
(
iε1 −

1

2
ΓR,1 − 2α1

)
ρLRLL = 0

(B.6)
The new term which appears for interacting double dots, q=1, must be compensated
by a change of the matrix elements ρLRLL, ρRLRL, and ρRRLL since the other elements
are assumed not to be affected by the interaction,

(iTc,2 − β2) ∆ρ∗RLRL − (iTc,2 − β2) ∆ρRRLL +
(
iε1 −

1

2
ΓR,1 − 2α1

)
∆ρLRLL = 0 (B.7)

Taking into account only the real parts of ∆ρRLRL and ∆ρRRLL and using (ΓR/2+
2α2)

2 � ε2
2, the imaginary part of ∆ρLRLL becomes

Im
{
∆ρLRLL

}
=

Tc,2 (1
2
ΓR,1+2α1) − ε1β2

ε2
1

(

Re
{
∆ρRLRL

}
− Re

{
∆ρRRLL

})

. (B.8)

A similar approximation is applied to derive the change of the matrix element ρRRLR
that also enters the expression (B.4) for the current ∆I1,

Im
{
∆ρRRLR

}
= −Tc,2 (1

2
ΓR,1+ΓR,2+2α1) − ε1γ2

ε2
1

(

Re
{
∆ρRLRL

}
− Re

{
∆ρRRLL

})

.

(B.9)
Hence, the change of the stationary current due to the indirect interaction is ex-
pressed by the two cross coherence matrix elements as

∆I1 = −2eTc,1
(
ε1(γ2 − β2) − Tc,2ΓR,2

)

~ ε2
1

(

Re
{
∆ρRLRL

}
− Re

{
∆ρRRLL

})

. (B.10)

At low temperatures kT < ε and in the inelastic regime Tc � ε, the parameter
βj is much smaller than γj, as can be seen from (5.26). Moreover, also the term
proportional to Tc,2 is neglected. Then, we find for ∆I the expression (5.47) given
in chapter 5 since ρRLRL and ρRRLL are assumed to vanish in the non-interacting
case,

∆I1 = −2e Tc1γ2

~ ε1

(

Re
{
ρRLRL

}
− Re

{
ρRRLL

})

. (B.11)
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Performing the same analysis for ∆I2 leads to the same expression, with exchanged
subscripts 1 and 2.

In a second step, we approximate the cross coherences ρRLRL =
〈
p†1p2

〉
and

ρRRLL =
〈
p1p2

〉
by a combination of non-interacting matrix elements. In the equa-

tions for ρRLRL and ρRRLL, we assume that all other matrix elements are identical
for q=0 and q=1. Then, the additional term in these equations appearing for q=1
must be compensated by a finite ρRLRL or ρRRLL, respectively,

(
β1 ρRRRL−γ1 ρRLLL+β2 ρRLRR−γ2 ρLLRL

)
−

(
i(ε1−ε2)+

1

2
ΓR,1 +

1

2
ΓR,2

)
ρRLRL = 0.

(B.12)
Again, we use βj�γj and neglect the matrix elements connected with βj. For the
remaining two elements, ρRLLL and ρLLRL, we insert the non-interacting expressions,

ρRLLL = 〈nL,1〉 〈p2〉 , ρLLRL = 〈p†1〉 〈nL,2〉 . (B.13)

The solutions for 〈nL〉 and 〈p〉 are given in (5.29). Neglecting the imaginary part
of 〈p〉, we find the approximation (5.48) for real part of the cross coherence

Re
{
ρRLRL

}
= −

1
2
(ΓR,1 + ΓR,2)

(
γ1 Re

{
〈p2〉

}
〈nL,1〉 + γ2 Re

{
〈p1〉

}
〈nL,2〉

)

(ε1−ε2)2 + 1
4
(ΓR,1 + ΓR,2)2

. (B.14)

A similar calculation leads to the approximation for the other cross coherence ρRRLL
employed in (5.56),

Re
{
ρRRLL

}
=

1
2

(
ΓR,1+ΓR,2+8(α1+α2)

)(
γ1 Re

{
〈p2〉

}
〈nL,1〉 + γ2 Re

{
〈p1〉

}
〈nL,2〉

)

(ε1+ε2)2 +
(

1
2
ΓR,1 + 1

2
ΓR,2 + 4(α1+α2)

)2 .

(B.15)
The main difference between these cross coherences is seen immediately. The real
part of ρRLRL exhibits a resonance if the bias in both double dots becomes equal,
ε1 = ε2, while ρRRLL is resonant for an exactly opposite bias in the dots, ε1 =−ε2.
This property can clearly be identified in Fig. 5.5.
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