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Abstract

This thesis is devoted to new numerical approaches for the treatment of strongly cor-

related systems: The dual fermion perturbation theory is generalized to much broader

scope, which is not limited to the treatment of correlated lattice models. By considering

three different problems, it is shown that the dual fermion scheme is a formalism, which

allows to perform a perturbation expansion around an exactly solvable reference system,

which has been optimized for the investigation of the particular physical situation. The

three examples are:

• The superperturbation impurity solver for quantum impurity problems. Here a

finite size system, which can be solved using exact diagonalization, is used to

approximate a bath with a continuous energy spectrum. Several exact limits of

the approach are discussed and a way to directly compute the density of states on

the real axis is introduced. The meaning of the reference system is analyzed in

terms of the Kondo problem and a possible application as a solver for the DMFT

is discussed. At the end of the chapter a renormalization procedure is formulated,

which alleviates the non-causality problem, that can occur at low temperatures.

• The variational lattice approach (VLA). The VLA is a variant of the classical dual

fermion approach, which also utilizes exact diagonalization as an impurity solver

for the reference system. Using this approach the Mott metal insulator transition is

analyzed and the results are compared to a previous CDMFT study. By employing

Padé analytic continuation the pseudogap formation in the bad-metal regime is

investigated.

• The superperturbation impurity solver for quantum impurity problems out of equi-

librium. At the end of the thesis the dual approach is generalized to systems out

of equilibrium within the Keldysh framework. A discretization scheme for the

numerical treatment is discussed and first results are presented.





Kurzzusammenfassung

Diese Arbeit ist neuen numerischen Ansätzen für die Behandlung von stark korrelierten

Systemen gewidmet. Die Methode der dualen Fermionen wird in ihrem Bedeutungsrah-

men erweitert, der nicht auf die Behandlung von korrelierten Gittermodellen begrenzt

sein muss. Anhand von drei Problemstellungen wird gezeigt, dass die duale Störungstheorie

ein Formalismus ist, der es erlaubt eine Störungsentwicklung um ein exakt lösbares

Bezugssystem zu formulieren, welches für die Untersuchung des vorliegenden physikalis-

chen Problems optimiert wurde. Die drei Beispiele sind:

• Das Superperturbations Verfahren zur Lösung von quantenmechanischen Stör-

stellenproblemen. Hierbei wird eine Näherung für eine Störstelle in einem Bad

mit kontinuierlichem Energiespektrum mit Hilfe eines Bades endlicher Größe kon-

struiert, welches dann durch exakte Diagonalisierung gelöst werden kann. Danach

werden mehrere exakte Grenzfälle der Theorie erörtert und eine Methode zur di-

rekten Berechnung der Zustandsdichte auf der reellen Achse vorgestellt. Die Be-

deutung des Referenzsystems wird im Kontext des Kondo Problems analysiert und

eine Anwendung der Methode als Lösungsverfahren für die dynamische Molekular-

feldtheorie diskutiert. Am Ende des Kapitels wird ein Renormierungsverfahren

eingeführt, das Nicht-Kausalitätsprobleme, die bei tiefen Temperaturen auftreten

können, behebt.

• Die Variations-Gitter Näherung (VLA). VLA ist eine Variante des klassischen

Ansatzes dualer Fermionen, welche auch exakte Diagonalisierung zum Lösen des

Störstellenproblems einsetzt. Mit Hilfe dieser Methode wurde der Mott Übergang

analysiert und mit den Ergebnissen früherer CDMFT Untersuchungen verglichen.

Um die Pseudo-Bandlücke im metallischen Regime zu untersuchen, wurde eine

analytische Fortsetzung mit Hilfe von Padé auf die reelle Achse durchgeführt.

• Das Superperturbations Verfahren zur Lösung von quantenmechanischen Stör-

stellenproblemen im Nichtgleichgewicht. Am Ende der Arbeit wird der Ansatz

der dualen Fermionen auf Nichtgleichgewichts Systeme verallgemeinert. Dies wird



vi

mit Hilfe der Keldysh Theorie bewerkstelligt. Ein Schema zur numerischen Be-

handlung der auftretenden Größen wird eingeführt und erste Ergebnisse werden

präsentiert.



“I may not have gone where I intended to go, but I think I have ended up where I needed

to be.”

Douglas Adams

English humorist & science fiction novelist (1952 - 2001)
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Chapter 1

Introduction

Understanding and controlling the physical properties of solid state materials is an as-

pect of condensed matter physics, which pervades everyday life. The development of

transistors and semiconducting devices on the nanoscale level affected the progress in

modern telecommunication techniques with such a strong impact that the change in our

society is comparable to that caused by the invention of the steam-engine in the 18th

century.

Today, personal computers can be found in nearly every household and almost every

machine is controlled by this kind of device. This historical success has two main in-

gredients: Understanding of the underlying physical concepts and, deduced from this

knowledge, the ability to control these features.

A subclass of modern materials, which can be efficiently controlled by external parame-

ters, are strongly correlated compounds. In this case the term correlated means that the

electrons in the system can no longer be described in an effective single particle picture,

but one has to rely on methods which take into account the effect of electron-electron

interaction on the quantum nature of the particles itself. These compounds are often

made of atoms with open d- or f-shells, which leads to a sensitive equilibrium of two

fundamental properties of the electrons, their particle- and wavelike character. If the

Coulomb interaction is of the same order as the kinetic energy of the conducting elec-

trons, a strong competition between a growing localization and the tendency towards

1



2 1. INTRODUCTION

a free motion dominates the physical properties of these materials. This fragile bal-

ance can be easily changed by adjusting external control parameters such as pressure or

temperature. Consequently, strongly correlated materials fulfill the first requirement for

future applications: Their behavior can be technically controlled very easily.

The second ingredient, understanding the properties of correlated systems is a not so

easy task to accomplish. In principle all properties of an electron system are described

by a N -electron Hamilton operator in the Born-Oppenheimer approximation

H =

N∑
i=1

(
~2

2m
∇2 + V (ri)

)
+ e2

∑
i<j

1

|ri − rj |
, (1.1)

but since N is of the order of 1023 a full solution of the corresponding Schrödinger equa-

tion is not possible. The situation can be compared to the analysis of the human genome:

The structure of the DNA is known, but the practical meaning of the genetic code is

often obscure, because the amount of information embedded in the DNA is extremely

huge. In equation (1.1) the situation is the same: The main ingredients, the expression

for the interaction and the kinetic energy are known, but the complexity of the problem

makes it impossible to find a solution which depends on all 1023 degrees of freedom.

Therefore proper approximation schemes to the correlated many body problem have to

be found.

In the case of weak correlations several notable approaches such as the Landau Fermi-

liquid theory or the density functional theory (DFT) have been introduced. The DFT

for example is nowadays a very common tool for the description of realistic materials

and is able to reproduce experimental results to a very high accuracy. The basic idea of

the approach originates from two theorems by Kohn and Hohenberg, which state that

the ground state energy of an electronic system minimizes an universal functional of the

ground state density, which only depends on three spatial coordinates. This reduction

from 1023 degrees of freedom to 3 is the main reason for the success of the density func-

tional theory and related approaches.

Although the DFT is a very successful theory, it fails to describe systems where strong

correlations are the important ingredient, as for example the Mott metal-insulator tran-

sition. In these cases another route is taken: The problem is mapped onto a minimal
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model, which exhibits the same characteristic features. One of the simplest descriptions

of correlated fermions on a lattice offers the Hubbard model:

H = −t
∑
〈ij〉,σ

(c∗i,σcj,σ+ h.c.) + U
N∑
i=1

n↑in
↓
j , (1.2)

where 〈ij〉 indicates a sum over nearest neighbors. Even though the latter Hamiltonian

is a strong simplification in comparison to Eq. (1.1), the complexity is still very high and

an approximation has to be applied in order to find a solution. A very simple approach

is perturbation theory: A solution is searched in a region where either the interaction

U or the hopping t is small. The starting point of such a perturbation expansion is

consequently the free lattice or the interacting atom. But one can imagine that it is

extremely hard for a perturbation expansion to reach the other limiting case, therefore

perturbative approaches often fail in the intermediate regime where a phase transition

takes place.

A way out of this dilemma was the invention of the dynamical mean field theory (DMFT).

Here the basic idea is to replace the correlated lattice by an impurity embedded in an

effective medium plus a self-consistency condition. Nowadays such an impurity problem

can be solved exactly with the help of continuous-time quantum Monte Carlo. The effi-

ciency of these solvers had a very strong impact on the promotion of this theory.

One important feature of the DMFT is that the theory is exact in both of the above

described limits and offers therefore a more adequate description of correlated systems

in the intermediate regime. Additionally it was shown by Metzner and Vollhardt that

the DMFT is also exact in an infinite coordination number limit. In lower dimensions

the DMFT still catches local temporal quantum fluctuations, but spatial correlations are

neglected. Several cluster extensions of the DMFT have been discussed in the literature,

which were able to alleviate the problem as long as only short ranged non-local correla-

tions were concerned.

An important extension to the DMFT was brought up by Rubtsov and coworkers, who

were able to construct a perturbation expansion around an arbitrary impurity prob-

lem by applying a fermionic Hubbard-Stratonovich transformation to new so-called dual

variables. The approach, called dual fermion, has been successfully applied to several
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Figure 1.1: General concept of the dual perturbation theory: Instead of expanding a
large interacting system (blue box) in a small parameter (horizontal arrow), a reference
system (green box) is constructed, which contains as much of the essential physics as
possible. A transformation to new fermionic variables allows to formulate a perturbation

expansion in the difference between both systems.

strongly correlated problems.

This thesis intends to show that the perturbation theory introduced by Rubtsov is an

approach of a much broader scope and that the theory can be easily adapted to very dif-

ferent physical problems. The basic idea is illustrated in figure 1.1. Suppose the solution

of an interacting fermionic problem (blue box) is required, but the amount of correlated

degrees of freedom makes a numerical or analytic treatment impossible. As described

earlier a standard approach would be to expand in a hopefully small parameter and

to find an approximate solution (horizontal arrow), which often ends up in the earlier

described problems. An alternative scheme (lower arrow) is to construct a reference sys-

tem (green box), which already contains as much of the essential physics as possible and

to solve this system exactly. The dual approach then allows to perform a perturbation

expansion in the difference between the reference and the full system. In this thesis

three possible variants of the scheme are discussed: The superperturbation solver for

the Anderson impurity model, which uses a finite-size reference system to approximate
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a continuous bath, the variational lattice approach (VLA) for correlated lattices, a vari-

ant of the original dual fermion, which is also based on exact diagonalization, and the

superperturbation solver for time dependent problems, which is able to treat systems

out of equilibrium.

1.1 Structure of the thesis

This thesis is organized as follows: In the first chapters we review the theoretical back-

ground of the dual fermion perturbation theory. This includes a discussion of the An-

derson impurity model, as the prototype of a reference system (chapter 2), and a survey

of efficient numerical methods to solve this model (chapter 3).

In chapter 4 the dual theory for the equilibrium case is deduced. In comparison to earlier

derivations the formulation will be general enough to hold for all equilibrium variants of

the dual theory: the superperturbation, the VLA and the lattice dual fermion.

In chapters 5 and 6 the superperturbation solver and the VLA will be introduced. Given

that the dual theory has been already discussed in chapter 4 those sections will mainly

focus on the results, but they will contain enough background information to read them

separately from the rest of the thesis.

Chapter 7 has an exceptional position in this thesis. The superperturbation solver will

be generalized to non-equilibrium phenomena, therefore it is necessary to review the

Keldysh theory for systems out of equilibrium and to reformulate the dual theory in this

formalism. In the last chapter the results are summarized and several possibilities for

future projects are discussed.





Chapter 2

Anderson Impurity model

U

Bath

H
yb
ri

di
zation

Figure 2.1: The Anderson impurity model describes an interacting impurity coupled
to a free electronic bath.

As already mentioned in the introduction, it is the main intention of this thesis to show

that the recently developed dual fermion approach can be understood as a general frame-

work to do a perturbation expansion of a large interacting fermionic system around a

non-trivial starting point. In the following chapter we would like to present the proto-

type of such an initial reference system: the Anderson impurity model (AIM).

The AIM was introduced by Anderson [1] to describe the behavior of a magnetic moment

in a metallic host. The system is described by an interacting impurity, embedded in a

bath of free electrons. The bath electrons are allowed to hop on and off the impurity

and if two electrons with opposite spin occupy the impurity at the same time, they have

7



8 2. ANDERSON IMPURITY MODEL

to pay the price of a local Hubbard U . This combination of time depended retardation

effects and fermionic interaction can lead to interesting new many body phenomena such

as a Kondo resonance [2]. Despite the zero dimensional nature of the problem, the nu-

merical solution of the model is a quite challenging task. Nevertheless, there a many

highly efficient solvers available [3–5], so that it is possible to use the AIM as a starting

point for our perturbation theory.

In the following we start by introducing the Hamiltonian of the AIM and derive the

equilibrium action formulation of the system in its discretized version. In doing so we

try to indicate the possible differences to the AIM on the Keldysh contour, described in

chapter 7.

2.1 From the Hamiltonian to a coherent state path integral

formulation

The Hamiltonian of a general AIM can be written in the following form:

H =
∑
kα

εbkαb
†
kαbkα +

∑
α

εcαc
†
αcα +Hloc[c

†, c] +
∑
kαβ

(
V αβ
k c†αbkβ + V ∗βαk b†kαcβ

)
. (2.1)

In this expression Greek letters are used as a combined index for orbital and spin degrees

of freedom, b† and b are the bath, c† and c the impurity creation and annihilation

operators.

The first term describes the dispersion of the free electronic bath. States with different

momentum have been labelled by an additional index k. The interacting impurity is

characterized by the second and third expression. The second one defines the free energy

spectrum of the impurity and Hloc is some local electron-electron interaction. The last

part describes the hoping of an electron from the bath to an impurity state and the

reverse process.

Most of the approaches to solve the AIM discussed in this thesis rely on the coherent

state path integral formulation of the problem. In the following this representation of

the AIM is deduced. Therefore the partition function is written as a trace over coherent
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states:

Z = Tr e−βH =

∫ ∏
α

d(c∗α, cα) e−
∑
α c
∗
αcα〈−c|e−βH |c〉. (2.2)

The key idea to reformulate the last expression in a path integral manner is to rewrite

the expectation value of the partition operator as an integral over an imaginary time

evolution operator U(τ, τ ′) = exp(−(τ − τ ′)H) on the interval
[
0, β
)
. Afterwards the

integral is linearized by insertion of coherent state unity matrices on a infinitesimal dense

time grid and by utilization of the composition property of the imaginary time evolution

operator. The minus sign in the bra vector of Eq. (2.2), a direct consequence of the

anti-commuting character of the fermionic operators, will define the boundary conditions

on the imaginary time interval. The completeness relation for coherent states reads:

1F =

∫ ∏
α

d(c∗α, cα) e−
∑
α c
∗
αcα |c〉〈c|. (2.3)

Applying the described steps, the partition function can be written in the following form:

Z = lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
−

∑
α c
∗
αkcαk〈−c1|e−∆τH |cM 〉 . . . 〈c2|e−∆τH |c1〉 (2.4)

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
−

∑
α c
∗
αkcαke−c

∗
1cM−∆τH(−c∗1cM )×

· · · × ec∗3c2−∆τH(c∗3c2) × ec∗2c1−∆τH(c∗2c1)

(2.5)

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
−S(c∗αk,cαk), (2.6)

with the following expression for the discretized action:

S(c∗αk, cαk) =∆τ
∑
k=2

[∑
α

c∗αk
(cαk − cαk−1

∆τ

)
+H(c∗αk, cαk−1)

]
+∆τ

[∑
α

c∗α1

(cα1 + cαM
∆τ

)
+H(−c∗α1, cαM )

]
.

(2.7)
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S(c∗αk, cαk) =

M∑
j,k=1

c∗jS
(α)
jk ck

S
(α)
jk = G−1

0 =

(
G−1

imp V̂

V̂ G−1
bath

)
=



1 0 +ai 0 0 −v
−ai 1 0 v 0 0

0 −ai 1 0 v 0

0 0 −v 1 0 +ab
v 0 0 −ab 1 0
0 v 0 0 −ab 1



Example 2.1: Example of an interaction free two site model. The Hamiltonian is
given by H = εic

†c + εbb
†b + (V c†b + h.c.). In this special case the discretized action

can be represented as a matrix, which is diagonal in time but nondiagonal in orbital
indices. Terms in the right upper edges (red) are a direct consequence of the antiperiodic
bounding conditions on the imaginary time contour. These terms correspond to ρ
terms in Kledysh theory. The following abbreviations have been used: v = V∆τ ,

ai/b = 1−∆τεi/b.

The last line of Eq. (2.7) corresponds to a boundary condition term caused by the anti-

commuting properties of the fermionic operators1, which states that the system should

be anti periodic on the imaginary time interval. An example for a discretized action is

given in Ex. 2.1.

Taking the limit ∆τ → 0, the action can be written in a continuous form:

S =

∫ β

0

(∑
α

c∗α(τ)(∂τ − µ+ εcα)cα(τ) +
∑
kα

b∗kα(τ)(∂τ − µ+ εbkα)bα(τ)

+Hloc[c
∗, c] +

∑
kαβ

(
V αβ
k c∗αbkβ + V ∗βαk b∗kαcβ

))
dτ.

(2.8)

Here the reader should be aware that the boundary term of Eq. (2.7) is implied. In

addition to that it has to be clear that Eq. (2.7) is the only discretization of expression

(2.7) which will give the right physics. This is important if for some reason a discretiza-

tion is necessary.

In the next step the action is reduced to a form, which only depends on impurity degrees

1In comparison to the Keldysh formalism introduced in chapter 7, this term is replaced by an analogous
expression containing the density matrix at the starting time.
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of freedom. This is done by integrating out the Gaussian bath by application of the

following identity for Grassmann numbers:

∫ n∏
i=1

d(b∗i , bi) exp
(
−b∗i (G−1

0 )ijbj + c∗i V̂ijbj + b∗i V̂
†
ijcj

)
=

detG−1
0 exp(c∗i

[
V̂ (G−1

0 )−1V̂ †]
ij
cj). (2.9)

With this the action can be written in its final version, only depending on impurity

indices, but with an additional integration variable τ ′, which is caused by the Gaussian

part being no longer diagonal in time:

S =

∫∫ β

0

(∑
αβ

c∗α(τ)

[
(∂τ − µ− εcα)δαβδ(τ − τ ′)

+
(
V̂ (∂τ − µ− εbα)−1V̂ †)

αβ

]
cβ(τ ′) +Hloc[c

∗, c]

)
dτdτ ′

(2.10)

=

∫∫ β

0

(∑
αβ

c∗α(τ)

[
(∂τ − µ− εcα)δαβδ(τ − τ ′) + ∆αβ(τ − τ ′)

]
cβ(τ ′)

+Hloc[c
∗, c]

)
dτdτ ′,

(2.11)

with ∆αβ(τ − τ ′) = (V̂ (∂τ − µ − εbα)−1V̂ †)αβ. In the case at hand, the problem can

be further simplified by introducing Matsubara frequencies, which automatically take

care of the antiperiodic boundary conditions.2 The Fourier transform is defined in the

following way:

c(τ) =
1

β

∑
ωn

c(ωn)e−iωnτ (2.12)

c∗(τ) =
1

β

∑
ωn

c∗(ωn)e+iωnτ . (2.13)

2In the Keldysh theory, there is no frequency representation, which automatically takes care of the
boundary conditions. This is one of the major difficulties one encounters when working on the Keldysh
contour.
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After performing the Fourier transform the final result reads:

S =− 1

β

(∑
αβ
ωn

c∗α(ωn)
(

(iωn + µ− εcα)δαβ −∆αβ(iωn)
)
cβ(ωn)

)
+Hloc[c

†, c] (2.14)

=− 1

β

(∑
αβ
ωn

c∗α(ωn)
(

(G0)−1
αβ

)
cβ(ωn)

)
+Hloc[c

†, c], (2.15)

with

∆αβ =
∑
k,γ

VkαγV
∗
kγβ

iω − εkγ
(2.16)

and

(G0)−1
αβ = (iωn + µ− εcα)δαβ −∆αβ(iωn). (2.17)

2.2 Dynamical Mean Field Theory

In this paragraph the dynamical mean field theory (DMFT) is reviewed as one appli-

cation of the AIM. The intention is to show that the description of strongly correlated

systems by means of a quantum mean-field, which fully takes into account local fluctu-

ations, has great advantages over a standard perturbation theory and is a good starting

point for a general perturbation theory. Today the DMFT is a standard tool for the

investigation of strongly correlated lattices [6] and has been applied in the equilibrium

and non-equilibrium case to various models and real materials [7–9].

The main concept of the DMFT is to replace the correlated lattice by a single impurity

embedded in a self-consistent effective medium. In contrast to a classical mean field

approach the effective medium in the DMFT is represented by an energy dependent

function and therefore takes fully into account local temporal fluctuations, whereas spa-

tial correlations of the lattice are frozen out. The energy dependence of the Weiss field

in combination with a fixed chemical potential allows to automatically calculate quan-

tities in the thermodynamic limit. Additionally the DMFT combines two very different

energy scales in one single approach: The method is able to treat large atomic energies,

stemming from the impurity, on the same footing with small excitations on the Fermi
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level described by the Weiss field. Consequently, it is possible for example to describe

the physics of Hubbard satellites and Kondo resonances in the same model.

Furthermore it has been shown that the DMFT is exact in various limits. The method

gives the correct results for an interaction-free lattice as well as for a non-coupled com-

pound of atoms. A very special case is the limit of a lattice with an infinite coordination

number. It has been observed by Metzner and Vollhardt [10] that in this case the spatial

correlations of the lattice vanish and the DMFT equations become exact.

In realistic situations with dimensionality lesser than infinity the DMFT has often proven

to be a good approximation. In cases where spatial correlations can not be neglected,

various cluster extensions [11] of the DMFT like the CDMFT, DCA and VCA are avail-

able, which take into account short ranged spatial correlations.

2.2.1 Cavity construction

There are several ways to derive the DMFT equations, among others the possibility

to deduce the DMFT as a zero order approximation of the dual perturbation theory

described in this thesis. Here we introduce the so-called cavity construction. The key

idea is to focus on one lattice site and to integrate out the effect of the remaining sites.

The main concept of this construction is depicted in Fig. 2.2. Here we perform the

construction for a one-orbital, spin-diagonal Hubbard model on a hypercubic lattice.

The corresponding action can be written in the following form:

S =
∑
i

SSite
i +

∑
〈ij〉

Shop
ij , (2.18)

with

SSite
i =

∑
σ

∫ β

0
dτ c∗iσ(τ)[∂τ − µ]cjσ(τ) + SNG[c∗i , ci] (2.19)

Shop
ij =

∑
σ

∫ β

0
dτ [tijc

∗
iσ(τ)cjσ(τ) + tjic

∗
jσ(τ)ciσ(τ)]. (2.20)
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Effect of other 
sites enters as 
dynamical mean field 

A single site 
(impurity) under the 
influence of an 
external field 

Selfconsistency 

Interacting sites, 
hopping between  
sites 

Figure 2.2: Illustration of the cavity construction for the DMFT: The interacting lat-
tice (upper left) is replaced by a single site which exchanges particles with an electronic
bath (upper right). The bath is given by the cavity, i.e. the lattice with one site missing
(lower right). Since the cavity correlators are not known a priori, the problem is solved
in a self-consistent manner in the d =∞ limit, when non-local correlations in the cavity
can be neglected. In this case the problem can be reduced to the solution of an AIM

with a self-consistency condition.

SSite
i is the local contribution for site i containing a non-Gaussian interaction part, which

is abbreviated with SNG. Shop
ij describes nearest neighbor hopping. To end up with a

formulation in which one site is separated from the rest of the lattice, the action in (2.18)

is reformulated in the following way:

S = SSite
0 + Sc + S∆. (2.21)

Here SSite
0 represents all action components which are local on the separated site, which

is called site zero in the following. Sc is the action of the cavity, it contains all on-site

terms and hoppings of the lattice excluding site zero. S∆ contains all hopping terms
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from the cavity to site zero and back. The formal definition of Sc and S∆ is given in the

following:

Sc =
∑
i 6=0

SSite
i +

∑
〈ij〉
i,j 6=0

Shop
ij , (2.22)

S∆ =
∑
j

Shop
0j . (2.23)

Now the cavity is integrated out by defining the effective action of site zero as an integral

over all remaining degrees of freedom:

1

Zeff
e−S

eff
[c∗0, c0] =

1

Z

∫
e−S[c∗i ,ci]D[c∗i 6=0, ci 6=0]. (2.24)

These integrals are evaluated by Taylor expansion of S∆. The resulting terms are then

averaged over Sc.

Z =

∫
e−S[c∗i ,ci] =

∫
e−S

Site
0

∫
e−S

c
∞∑
n=0

1

n!
(S∆)nD[c∗i 6=0, ci 6=0]D[c∗0, c0] (2.25)

=

∫
e−S

Site
D[c∗0, c0]Zc

∞∑
n=0

1

n!
〈(S∆)n〉c (2.26)

The first non-trivial term in this expansion is given by:

1

2!
〈(S∆)2〉c =

∑
σ

∫∫ β

0
dτdτ ′ c∗0σ(τ)

∑
ij

t0itj0〈ciσc∗jσ〉c c0σ(τ ′). (2.27)

This expression describes a sequential hopping process, where an electron hops from site

zero to site i and propagates in the cavity from i to j via the correlator 〈ciσc∗jσ〉c and

hops back to site zero. The general result for Eq. (2.26) involves all orders of correlation

functions of the cavity and takes the following form:

Seff = SSite
0 +

∞∑
n=0

∑
σ

∑
i1...jn

∫
· · ·
∫ β

0
dτ1dτ

′
1 . . . dτndτ

′
n t0i1tj10 . . . t0intjn0

×c∗0σ(τ1)c0(τ ′1) . . . c∗0σ(τn)c0(τ ′n)Gcσ
i1j1...injn(τ1, τ

′
1, . . . , τn, τ

′
n).

(2.28)
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The last equation is no simplification in comparison to the initial action formulation in

Eq. (2.18), since the correlators of the cavity are not known. It was the observation

of Metzner and Vollhardt [10] that Eq. (2.28) strongly simplifies in the limit of infinite

coordination number. In this case the hopping amplitude tij has to be rescaled by a

factor of 1/
√
z, wherein z is the coordination number. This necessity could be best

understood by reviewing Eq. (2.27). In this case the summands have to be proportional

to 1/z2 in order to keep the two dimensional sum over nearest neighbors finite. Since

the single particle Green’s function is in the lowest order proportional to t|i−j|, with

|i − j| being the Manhattan distance of the lattice, the total summand is proportional

to t4 on a hyper-cubic lattice. Hence a scaling tij → t̃ij/
√
z will keep the lowest order

term finite. All terms which involve higher order Green’s function vanish in the z →∞
limit, because they are proportional to (1/z)n−2, with n being the expansion order of

Eq. (2.28). Consequently, only the contribution of Eq. (2.27) survives. This leads to

the following definition for the effective action in the infinite coordination number limit:

Seff =
∑
σ

∫ β

0
dτ

∫ β

0
dτ ′ c∗0σ(τ)

[
∂τ − µ− ε0 −

∑
〈ij〉

t0iG
cσ
ij tj0

]
c0σ(τ ′) + SNG[c∗0, c0]

(2.29)

=
∑
σ

∫ β

0
dτ

∫ β

0
dτ ′

[
−c∗0σ(τ)(Gσ(τ − τ ′))−1c0σ(τ ′) + SNG[c∗0, c0]

]
. (2.30)

Here the Weiss function Gσ has been defined in the following way:

(Gσ(iω))−1 = (iω + µ− ε0)−
∑
〈ij〉

t0iG
cσ
ij tj0. (2.31)

This equation is extremely important, because it connects Gσ with the cavity Green’s

function Gcσ
ij . The last step to receive a closed set of equations is to relate the cavity

Green’s function to the Green’s function of the original lattice. In general this step is

more involved but takes a very simple form on the Bethe lattice [12] in infinite dimensions.

A mathematical representation of this lattice is a Cayley tree with infinite connectivity.

A Cayley tree of connectivity 3 is depicted in Fig. 2.3. In this special geometry nearest

neighbors of site zero are disconnected in the cavity, if site zero is removed. Consequently,
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Figure 2.3: Cayley tree for coordination number z = 3.

the cavity Green’s function is diagonal in nearest neighbor indices: Gcσ
ij = Gcσ

ii δij .

Additionally, the cavity Green’s function is equal to the Green’s function of the full

lattice G, since the removal of site zero doesn’t matter in the limit of infinite coordination

number. For the Bethe lattice the final DMFT equation, which connects the Weiss

function to the Green’s function of the full lattice, reads:

(Gσ(iω))−1 = (iω + µ− ε0)− tGσ(iω)t. (2.32)

This non-linear equation is technically solved by a self-consistent iteration with a guess

for the initial Weiss function. So normally the scheme is started by either taking the free

or the atomic limit.

In the following we will briefly review the self-consistency loop in its general form.

This loop is depicted in Fig. 2.4. To start the iteration, a guess for the Weiss field G
is generated by employing the atomic Green’s function or by just setting the self-energy

to zero. With this initial assumption for G the AIM is well defined and can be solved

by various methods, which will be described in the next chapter. The result of the

numerical evaluation is the impurity Green’s function, which is abbreviated by g. Using

this function and the input Weiss field G, it is possible to extract the self-energy by

applying Dyson equation:

Σ(iω) = G−1(iω)− g−1(iω). (2.33)
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Impurity solver: 

Σ(iω) = iω + µ−∆(iω)− g−1(iω)

gαβ(iω) = −�cα(iω)c∗β(iω)�

Σ(iω) = G−1(iω)− g−1(iω)

G−1
latt(iω, k) = iω + µ− hk − Σ(iω)

G−1
latt(iω, k) = g−1(iω) + (∆(iω)− hk)

∆new(iω) = iω + µ− Σ(iω)

−(
1

Nk

�

k

Glatt(iω, k))
−1

G−1
new(iω) =

�
1

N

�

k

Glatt(iω, k)

�−1

+Σ(iω)

Figure 2.4: Illustration of the standard DMFT cycle (upper equations are formulated
in terms of the hybridization function ∆, lower equations in terms of G): The self-
consistency loop is started in the left box with an initial guess for the Weiss field, which
specifies the AIM. In the next step the impurity problem is solved and an impurity
Green’s function is determined. From this quantity the local self-energy is obtained.
Afterwards the self-energy is used to construct the lattice Green’s function and a new
Weiss field. With the new Weiss field the self-consistency loop is started again. Self-
consistency is reached when the local Green’s function is equal to the impurity Green’s

function.

In a next step Σ is used to construct an expression for the lattice Green’s function. This

is done by assuming that the temporal correlations of each site in the lattice can be

described by the self-energy of the AIM:

G−1
latt(iω, k) = iω + µ− hk − Σ(iω). (2.34)

To obtain a new expression for the Weiss field, the lattice Green’s function is integrated

over k to construct its local counterpart. From this expression the self-energy is removed
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by again using a Dyson like equation:

G−1
new(iω) =

(
1

N

∑
k

Glatt(iω, k)

)−1

+Σ(iω). (2.35)

The described scheme is then iterated until the local part of the lattice Green’s function

is equal to the impurity Green’s function:

1

N

∑
k

Glatt(iω, k) = g(iω). (2.36)

Normally the convergence in the number of iterations is quite fast but can be exponen-

tially hard near a phase transition. In those cases it might be necessary to introduce an

additional mixing between different iterations.





Chapter 3

Impurity Solvers

A crucial part of this thesis is the development and application of efficient quantum

impurity solvers. The possibility to construct a perturbation theory such as dual fermion,

which is basically defined as an expansion around some optimized impurity problem, is

based on the fact that a solution to these impurity problems can found very efficiently.

We therefore review the basic principles of modern impurity solvers in this chapter and

explain their differences.

3.1 Exact Diagonalization

In this section we outline the exact diagonalization approach as a solver for the Anderson

impurity model introduced in the last chapter. The main idea behind this method is to

access the eigenvalues and eigenvectors of the system by diagonalization of an effective

Hamilton matrix. Since the Hilbert space of an interacting fermionic system grows

exponentially with the system size, this method requires a suitable approximation to

the full system, which allows to describe an infinitely large system by a matrix of finite

dimension. The Hamilton matrix scales with the number of sites N as

dimHN = 4N = 22N . (3.1)

21
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As a consequence, the number of sites in a full diagonalization scheme is limited to a

range of 6 − 9 sites, depending on the symmetries used. If only the low lying energies

are needed an iterative solver such as the Lanczos method [13] can be employed. Here

the maximum number of sites lies in a range of 11 − 16 sites. The world record is held

by Yamada et al. [14], who calculated 12 fermions on a 24 site lattice. But compared to

the number of sites one is normally interested in 24 sites is still rather small.

The Hamilton operator of the AIM can be written in the following form:

H =

Nb∑
k

εbkb
†
kbk + εcc†c+Hloc[c

†, c] +

Nb∑
k

(
Vkc

†bk + V ∗k b
†
kc
)
. (3.2)

The corresponding action is given by:

S = − 1

β

(∑
ωn

c∗(ωn)
(
(iωn + µ− εc)−∆(iωn)

)
c(ωn)

)
+Hloc[c

†, c]. (3.3)

The dimension of the Hamilton matrix corresponding to Eq. (3.2) is mainly determined

by the number of bath sites Nb. If a continuous density of states for the bath is assumed,

Nb is infinitely large. At first sight, an obvious approximation would be to truncate the

sum in Eq. (3.2) and thereby limit the number of bath sites. The problem with that

approach is the lack of a good criteria to determine which bath levels should enter the

actual simulation.

Caffarel et al. [5] proposed a different method. Instead of limiting the calculation to a

finite subset of bath sites, the exact hybridization function ∆ in Eq. (3.3) is approximated

by a function ∆n. This function ∆n is constructed with the help of an effective system

with lesser bath sites HN .

HN =
N∑
k

ε̃kb
†
kbk + εcc†c+Hloc[c

†, c] +
N∑
k

(
Ṽkc

†bk + Ṽ ∗k b
†
kc
)
. (3.4)

The corresponding effective action reads:

SN = − 1

β

(∑
ωn

c∗(ωn)
(
(iωn + µ− εc)−∆N (iωn)

)
c(ωn)

)
+Hloc[c

†, c]. (3.5)
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Δ(iω)

Δ(ω)

ω

Figure 3.1: Illustration of the fitting procedure used by Caffarel et al. [5]. The smooth
hybridization function ∆(ω) is represented by a collection of auxiliary energies ε̃ and

weights Ṽ . The approach involves minimization on the imaginary axis.

The function ∆N can be calculated using Gaussian integration:

∆N (iωn) =

N∑
k

ṼkṼ
∗
k

iωn − ε̃k
. (3.6)

It is important to note that the bath sites occurring in the system HN need not to occur

in the former system H, but the parameters ε̃bk and Ṽk are chosen in a way to minimize

the difference between ∆ and ∆N . This difference is measured by a predefined distance

function:

d =
1

Nω

Nω∑
ωn

ω−sn |∆n(iωn)−∆(iωn)|2. (3.7)

Note that the distance between ∆ and ∆n is measured on the imaginary axis as depicted

in Fig. 3.1. The actual details of the distance function play only a minor role. They just

define in which region on the imaginary axis the distance between ∆N and ∆ should

receive a higher weight. If Nω is small and s is large the agreement on small frequencies

will be enhanced. On the contrary if Nω is large and s = 0 the agreement is shifted

to large frequencies, which leads to a good coincidence in the asymptotic region. Nu-

merically the multidimensional minimization is done using a conjugate gradient method
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Figure 3.2: Convergence of ∆N to ∆ with increasing number of bath sites. Left:
Imaginary part of the hybridization function for different number of bath sites. The
parameters of HN were fixed in such a way that the first N frequencies are equal. Right:

Distance between ∆ and ∆N

taken from the GNU scientific library [15]. A detailed introduction to the fitting proce-

dure on the imaginary axis can be found in [6, 16].

In the following an example for the single impurity Anderson model is discussed: A

single orbital impurity in a semicircular density of states. The interaction strength is

U/D = 1 where D is half the bandwidth D = 2t with β = 50.

Fig. 3.2 shows the convergence of ∆N to ∆ with increasing number of bath sites.

In these calculations the parameters ε̃k and Ṽk of the reference system HN have been

determined in such a way that on the first N frequencies ∆N equals to ∆. Thus the

difference between both hybridization functions is zero at the beginning. The resulting

Green’s function compared to the exact result obtained from a continuous-time quantum

Monte Carlo simulation is shown in Fig. 3.3(a). Already with 3 bath sites the difference

to the exact result is only visible if a strong zoom is applied to the figure. The reason for

this strong convergence is the exponential drop of the distance function with increasing

number of bath sites as shown in Fig . 3.3(b).

The results on the real axis shown in Fig. 3.4 are hard to compare with those obtained

from Monte Carlo. The reason for this is the fact that in exact diagonalization the den-

sity of states can be calculated exactly from the Lehmann representation of the Green’s

function. In a continuous-time quantum Monte Carlo simulation the density of states is

obtained by analytic continuation using the maximum entropy method. This procedure

gives only a qualitative result, because the problem of finding the density of states from
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Figure 3.3: (a) Convergence of G(τ) with increasing number of bath sites. (b) De-
pendence of the distance function on the number of bath sites. The blue dot shows the
norm of ∆, i.e. the norm with no bath site. For the norm we have chosen Nω = 200

and s = 2.

noisy Monte Carlo data is an ill conditioned problem. Nevertheless one can see that

with an increasing number of bath sites the exact diagonalization results approach the

Monte Carlo curve.

In the following sections we briefly review how one can extract physical information from

the eigenvalues and eigenvectors, i.e. how to calculate the one particle Green’s function

and higher order correlators.

3.1.1 Full Diagonalization

As the name indicates the full diagonalization method is designed to compute the full

spectrum and all corresponding eigenvectors from a Hamilton matrix H. Since various

numerical algorithms are known for such a purpose, the actual step of diagonalizing

the matrix is not the crucial part of the scheme. In the past, several algorithms, such

as the Jacobi method [17, 18] or the QL QR method [17, 19] have been proposed. In

addition to that many of these algorithms have been successfully implemented in several

programming languages and are available as open source code [15, 20].

As explained in the last section the main bottleneck of the approach is the matrix size of

the Hamiltonian. The actual art of the technique is to reduce the matrix size by utilizing

every possible symmetry present. In the following we give a short list of symmetries for
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Figure 3.4: Left: Convergence of the density of states with increasing number of bath
sites on the real axis. For the exact diagonalization the data have been achieved using
the Lehmann representation, for the Monte Carlo using the maximum entropy method.
Right: Convergence of ∆N on the real axis. The vertical lines indicate the height of a
single Lorentzian defined by the parameters ε̃ and Ṽ , ∆N

k (ε̃) = V 2/(πδ). Parameters:
β = 50, U/D = 1.

the single impurity Anderson model, which have been used for the calculations in this

thesis.

Particle number conservation: H commutes with the total particle number

[H,Ntot ] = 0, Ntot =
∑
i,σ

ni,σ.

SU(2) spin symmetry: H commutes with all components of the total spin

[H,Sα ] = 0, Sα =
1

2

∑
i,νµ

c†iµσ
α
µνciν .

where σα denotes the Pauli matrices, and µ, ν ∈ {↑, ↓}.
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symmetry

H H'

Figure 3.5: The usage of symmetries in the construction of a Hamiltonian leads to
a block structure in the corresponding Hamilton matrix. The advantage of this block

structure is that each block can be diagonalized separately.

The combination of both symmetries leads to the conservation of the total number of spin

up and spin down electrons. As a consequence, the Hamilton matrix acquires a block

diagonal form, if the basis states are sorted according to Nσ. Therefore the numerical

effort to diagonalize the matrix is strongly reduced.

3.1.2 Calculating correlators

An n-particle correlator is defined as a time ordered expectation value of n creation and

n annihilation operators.

F (τ1, . . . , τn) = 〈Tc(τ1)c†(τ2) . . . c(τn−1)c†(τn)〉 (3.8)

= 〈TÔ1Ô2 . . . Ôn−1Ôn〉 (3.9)

Here time ordering means that operators with larger imaginary time τ stand to the left.

With this in mind Eq. (3.9) can be transformed to a sum over all possible permutations

of the involved operators. The hat over the operator indicates that Ô is an operator in

the Heisenberg form with all its time dependence. The index i = 1 . . . n is a combined

index and stands for time, spin and orbital degrees of freedom.

F (τ1, . . . , τn) =
∑
π∈Sn

(−1)πθ(τπ1 > · · · > τπn)〈Ôπ1 . . . Ôπn〉 (3.10)



28 3. IMPURITY SOLVERS

Now the only thing left is to find an efficient way to calculate the τ dependent expectation

value of 2n fermionic operators. As long as the Hamiltonian of the system does not

explicitly depend on time1 the imaginary time evolution operator can be written as

U = exp(−τH) . In addition to that the expectation value can be expressed as a trace

over eigenstates, which is essentially the Lehmann representation of the correlator:

F (τ1, . . . , τn) =
∑
π∈Sn

(−1)πθ(τπ1 > · · · > τπn)

× e−βEn

Z

∑
n

〈n|eHτπ1Oπ1e
−Hτπ1 . . . eHτπnOπne

−Hτπn |n〉.
(3.11)

Now O is an operator in the Schrödinger picture without any time dependence left. The

open question now is how to calculate the exponent of Hτ . In principle the exponent

of a matrix is defined as its Taylor expansion, but there are several other techniques

known to calculate the exponential in more efficient ways [21]. In the following it will be

shown that the matrix exponential can be calculated if the problem is expressed in the

eigenbasis.

Another quite promising way mentioned in the literature is to calculate the exponential

in the so called Krylov-space [21, 22]. This method has been already used in the context

of the hybridization expansion quantum Monte Carlo [23], and is now subject of an

ongoing diploma thesis in the context of the Lanczos method. This approach might

be still useful if the dimension of the Hilbert space is large and a calculation of the

exponential in the eigenbasis would be unfeasible. In section 3.1.3 the basics of this

quite promising technique will be explained.

In order to calculate the exponent in Eq. (3.11) in the eigenbasis, identity matrices

1 = |m〉〈m| are inserted between the creators and annihilators.

F (τ1, . . . , τn) =
∑
π∈Sn

(−1)πθ(τπ1 > · · · > τπn)

× e−βEn

Z

∑
n,m...k

〈n|eEnτπ1Oπ1 |m〉〈m|e−Emτπ1 . . . |k〉〈k|eEkτπnOπne−Enτπn |n〉
(3.12)

1The case of a time dependent Hamiltonian will be treated in chapter 7.



3.1. EXACT DIAGONALIZATION 29

So Eq. (3.9) has been reduced to a representation, which only contains the matrix

elements of all creation and annihilation operators in the eigenbasis and all eigenenergies.

The main drawback of this formulation is the multidimensional sum in front of the

matrix elements. Since the Hilbert space grows exponentially one might have a chance

to diagonalize the problem, but the repeated summation over all states might become an

impossible task. As long as one is only interested in observables, which depend on τ only,

the multidimensional sum can be converted to a more efficient product of matrices. But

if one is interested in a representation on Matsubara frequencies the direct evaluation

of nested sums is unavoidable. Even for a cluster of 4 sites in total as described in Fig.

3.6(b), this task can take half a day on a modern 8 CPU cluster.

To optimize the calculation of correlators, which require the evaluation of nested sums,

the following standard procedures were applied:

Precalculation of exponential factors: In a nested loop the calculation of an expo-

nential factor is most expensive. Although the number of eigenenergies is large,

they can be easily stored. So it is possible to precalculate the factors exp(−βEi)
or even the numerical expression for exp(−βEiτj) if one works on a finite τ -mesh.

Normally such a simplification can speed up the calculation time by 2 orders of

magnitude.

Truncation of sums: In principle there are two possible ways to truncate the multi

index sum in Eq. (3.12). If all energies lie above a predefined threshold the

exponential factors will be small and can be neglected to a certain accuracy. This

approximation corresponds to the fact that transitions in the high energy regime

play only a minor role. This procedure involves the risk, that if the threshold

is not chosen with care one loses easily essential physics. A second truncation

scheme is to limit the outer summation, which is damped by the statistical factor

exp(−βEn) and to fully account all other index summations. This approximation

is not as severe as the one mentioned before, since the basic transitions in every

energy range are included.

Employing symmetries: Since the basis has been constructed in such a way, that all

eigenenergies correspond to a certain spin and particle number Nσ, the expectation
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value of Eq. (3.12) will only be non-zero if Nσ for the starting state is the same as

for the ending state. So it is checked if applying all creators and annihilators will

end in the same symmetry sector.

So far only the formulas for correlators in τ -representation were given, but very often

one is interested in its Fourier transform on Matsubara frequencies. These quantities are

heavily used throughout this thesis in the context of the dual perturbation technique,

although the dual perturbation is not limited to the Matsubara case, as we will see in

chapter 7. The Fourier transform of an n−particle correlator is introduced by defining

c(τ) =
1

β

∑
ωn

e−iωnτ c(ωn) (3.13)

c(ωn) =

∫ β

0
dτe+iωnτ c(τ) (3.14)

c†(τ) =
1

β

∑
ωn

e+iωnτ c†(ωn) (3.15)

c†(ωn) =

∫ β

0
dτe−iωnτ c(τ). (3.16)

In principle the transformation from τ to ωn and back can be done numerically, but since

we already have an analytic expression for the τ -representation of the correlators in Eq.

(3.12) it is possible to derive explicit formulas for the Fourier transform of n−particle

correlators. In the next two paragraphs the definition and formulas for the one-particle

and two particle Green’s function are given.

3.1.2.1 One particle Green’s function

The one particle Green’s function is defined as

gαβ(τ1, τ2) = −〈Tcα(τ1)c†β(τ2)〉. (3.17)

Where α and β are combined indices for spin and orbital degrees of freedom. Using the

cyclic invariance of the correlator, Eq. (3.17) can be rearranged in such a way, that the
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Green’s function only depends on the time difference:

gαβ(τ1 − τ2) = −〈cα(τ1 − τ2)c†β(0)〉. (3.18)

In the last step it has been used that the Green’s function is always time ordered, if the

last time is set to zero. Using the Hamiltonian eigenbasis, this expression can be written

in the following way:

gαβ(τ1 − τ2) = gαβ(τ̃) =
1

Z

∑
n,m

〈n|cα|m〉〈m|c†β|n〉e−βEneτ̃(En−Em). (3.19)

The expression for the Fourier transformed Green’s function reads:

gαβ(iωn) =
1

Z

∑
n,m

〈n|cα|m〉〈m|c†β|n〉
iωn + En − Em

(
e−βEn + e−βEm

)
. (3.20)

3.1.2.2 Two particle Green’s function and vertex

The two particle Green’s function is defined as:

χ1234(τ1, τ2, τ3, τ4) = 〈Tc1(τ1)c†2(τ2)c3(τ3)c†4(τ4)〉. (3.21)

Again one can use the cyclic invariance to eliminate the dependence on the last time:

χ1234(τ̃1, τ̃2, τ̃3) =〈Tc1(τ̃1)c†2(τ̃2)c3(τ̃3)c†4(0)〉. (3.22)

=〈TO1O2O3c
†
4(0)〉 (3.23)

Here τ̃i is just the difference between τi and τ4. Since the last time is set to zero the time

ordering operator only acts to the first three times. The reader should be aware of the

fact that, with fixing the last time to be zero, the condition of energy conservation in

terms of Matsubara frequencies has also been fixed to ω1−ω2 = ω4−ω3. Repeating the

steps mentioned in the last section the expression of the two particle Green’s function is
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given by:

χ1234(τ̃1, τ̃2, τ̃3) =
∑
π∈Sn

(−1)πθ(τ̃π1 > τ̃π2 > τ̃π3)
∑
ijklm

〈n|Oπ1 |k〉〈k|Oπ2 |l〉〈l|Oπ3 |m〉〈m|c†4|n〉

× e−βEneτ̃π1 (En−Ek)eτ̃π2 (Ek−El)eτ̃π3 (El−Em).

(3.24)

To derive a representation on Matsubara frequencies the last equation will be Fourier

transformed analytically.

χ1234(ω1, ω2, ω3) =

∫ β

0
dτ̃1

∫ β

0
dτ̃2

∫ β

0
dτ̃3

∑
π∈Sn

ei(ω̃π1 τ̃π1+ω̃π2 τ̃π2+ω̃π3 τ̃π3 )

× (−1)πθ(τ̃π1 > τ̃π2 > τ̃π3)〈Oπ1Oπ2Oπ3c
†
π4

(0)〉
(3.25)

=
∑
π∈Sn

∑
1,2,3,4

φ(E1, E2, E3, E4, ω̃π1 , ω̃π2 , ω̃π3)

× (−1)π〈1|Oπ1 |2〉〈2|Oπ2 |3〉〈3|Oπ3 |4〉〈4|c†4|1〉
(3.26)

In the last step it was necessary to account for the correct sign of the Matsubara fre-

quencies: Since a time τ̃πi and the corresponding frequency ω̃πi stay with the permuted

operator, it is possible that the corresponding frequency enters with positive or negative

sign, depending on Oπi being a creator or annihilator. Consequently the frequency is

ω̃πi = −ωπi for creators and ω̃πi = +ωπi for annihilators. The function φ is the Fourier

transform of the time evolution operators in the eigenbasis plus the statistical weight:

φ(E1, E2, E3, E4, ω̃π1 , ω̃π2 , ω̃π3) =

∫ β

0
dτ̃1

∫ β

0
dτ̃2

∫ β

0
dτ̃3 e

i(ω̃π1 τ̃π1+ω̃π2 τ̃π2+ω̃π3 τ̃π3 )

× e−βE1eE12τ̃π1eE23τ̃π2eE34τ̃π3 .

(3.27)

Here Eij is a short-hand notation for Ei − Ej . The Fourier transform can be done

analytically, but special attention has to be paid to possible degeneracies. For the final

result one gets:
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Figure 3.6: Two-particle Green’s function χ↑↓αβ(ω1, ω2,Ω) in dependence of ω1 for fixed
Ω and ω2. The results are shown in (a). The underlying model (b) has been chosen as
asymmetric as possible for testing purposes. Different curves correspond to a specific

choice of orbital indices. β = 50

φ(E1, E2, E3, E4, ω̃π1 , ω̃π2 , ω̃π3) =
1

iω̃π3 + E34
(3.28)

×
[

1− δE24
ω̃23

i(ω̃π2 + ω̃π3) + E24

(
e−βE1 + e−βE2

iω̃π1 + E12
− e−βE1 + e−βE4

i(ω̃π1 + ω̃π2 + ω̃π3) + E14

)
+δE24

ω̃23

(
e−βE1 + e−βE2

(iω̃π1 + E12)2
− β e−βE2

iω̃π1 + E12

)
− 1

iω̃π2 + E23

(
e−βE1 + e−βE2

iω̃π1 + E12
− (1− δE13

ω̃12
)

e−βE1 − e−βE3

i(ω̃π1 + ω̃π2) + E13
+ βe−βE1δE12

ω̃12

)]
.

Here again a short-hand notation for the Kronecker deltas has been introduced: δEklω̃ij2
=

δω̃πi ,−ω̃π2
· δE1,E2 . These Kronecker deltas have to be understood in such a way that the

expression in brackets behind the Kronecker delta vanishes if δEklω̃ij2
= 0, even though in

most cases the corresponding denominator diverges.

In Fig. 3.6 a continuous-time quantum Monte Carlo calculation of the two-particle

Green’s function is compared to the result of an exact diagonalization simulation of

the same model. The underlying model has been chosen in the most asymmetric way

to have a reliable test for both methods. A sketch of the employed geometry with

all corresponding parameters is depicted in figure 3.6(b). To compare both results a
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Figure 3.7: Composition of the two-particle Green’s function. The two main building
blocks are the fully irreducible vertex part and the trivial reducible part, consisting of

two fermionic propagators.

representation of the two-particle Green’s function in dependence on two fermionic and

one bosonic frequency is chosen χ(ω, ω′,Ω). Here the condition of energy conservation

reduces to the conservation of the transferred bosonic frequency Ω = ω1 − ω2. For the

connection between three fermionic frequencies and the representation in Fig. 3.6(a) one

has:

ω1 = ω + Ω ω2 = ω (3.29)

ω3 = ω′ ω4 = ω′ + Ω. (3.30)

Since the exact diagonalization as well as the the continuous-time quantum Monte Carlo

give exact results for the described model the results are indistinguishable.

The key quantity in this thesis is not the two-particle Green’s function, but the full

irreducible vertex part of it. This part will serve as the interaction of the auxiliary

fermions introduced to formulate the dual perturbation theory as we will see later. The

two-particle Green’s function can be separated into two parts: One part, the vertex,

which contains all irreducible diagrams, and a trivial reducible part. Here reducibility

means that a diagram can be cut by severing two fermion lines. This situation is shown

in Fig. 3.7. The formal definition of the vertex reads:

γ1′2′3′4′ = g−1
1′1g

−1
3′3(χ1234 − g12g34 + g14g32)g−1

22′g
−1
44′ . (3.31)
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3.1.3 Lanczos Method

The Lanczos method is a widely used scheme to calculate iteratively the extremal eigen-

values of sparse matrices. The key idea is to represent the Hamilton operator in the

so-called Krylov space. This vector space is spanned by a basis set, which originates

from successive application of the Hamiltonian on a random starting vector φ0.

Km(H,φ0) = span {φ0, Hφ0, . . . ,H
mφ0} (3.32)

The representation of H in the Krylov space Hm has the key feature that its low lying

spectrum converges towards the spectrum of the original Hamiltonian H with increasing

dimension of the Krylov space. The method is designed in such a way, that the procedure

can be applied iteratively. The dimension of Hm is successively increased until the low

eigenvalues are converged to the wanted accuracy. The convergence is rather fast and is

one of the reasons for the great success of the Lanczos approach. In practice the size of

Hm is of the order 100−400 whereas the size of the original Hamiltonian is exponentially

large as described in the introduction. In addition to that the technique is only based

on the multiplication of sparse matrices with vectors, which can be implemented very

efficiently.

A way to construct an orthonormal basis of the Krylov space is the Arnoldi algorithm,

which is presented in the following:

1. set φ1 = φ0/ ||φ0||, this is the first basis vector and starting point of the iteration.

2. compute z = Hφi, to enlarge the Krylov space.

3. calculate the projections of z onto the other basis vectors: hij = φTi z.

4. subtract the projections from z to gain the linear independent part of z:

z̃ = z − hijφi.

5. normalize z̃ to obtain the new basis vector.

6. jump to 2.
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3.1.3.1 Approximation of matrix functions in the Krylov framework

Besides its great success in calculating the extremal eigenvalues of a Hamiltonian, the

presented approach is also capable of constructing good approximations of matrix func-

tions. The reason for this is that the representation of H in the Krylov space Hm has

not only the same extremal eigenvalues, but also agrees in the first m moments with the

original Hamiltonian. In other words: Any polynomial function qm−1 of order m− 1 can

be represented exactly in the Krylov space.

qm−1(H)φ0 = φmqm−1(Hm)e1 (3.33)

Here e1 is the unit vector in the Krylov space. As a consequence the Hamilton matrix

on the Krylov space Hm can be used to construct a polynomial approximation to any

function of the original Hamilton operator. This approximation will be exact up to order

m− 1. If f(H) is the function to approximate one gets:

f(H)φ0 ≈ φmf(Hm)e1. (3.34)

The two main applications of this procedure are the calculation of the one particle Green’s

function and the computation of the time evolution operator in higher order correlators.

The latter has already been useful in terms of the hybridization expansion quantum

Monte Carlo and could be quite promising in the Keldysh framework, where most of the

computational time is spent to compute the matrix exponentials in the eigenbasis.

The procedure could also be applied to compute the Fourier transform of the two particle

Green’s function in the equilibrium context. But in this case a direct expression of the

two particle correlator in terms of H is not known yet. One would have to calculate

the correlator in dependence on three imaginary times and then to Fourier transform

numerically. At the moment it is not clear, if this procedure is advantageous, since the

numerical Fourier transform is a hard task.
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3.2 Monte Carlo

The term Monte Carlo summarizes various algorithms, which are applied in nearly all

fields of sciences. They all have in common, that they are used to solve problems of high

dimensionality. The large phase space of these problems often arises, when large degrees

of freedom interact with each other and a picture of decoupled degrees of freedom is

insufficient.

The method has become a standard tool in physics [24–27], pure mathematics [28], opti-

mization problems [29], chemistry [30], and even social sciences [31]. All these problems

need at some point the numerical treatment of large sums or integrals. In one dimension

there are standard quadrature rules such as the Simpson formula [17] or the Gauss-

Kronrod procedure [17] available to handle such integrals. All these methods in their

non-adaptive formulation divide the integration area in equal spaced nodes and evaluate

the integral over this grid. If an algorithm employs N nodes, which leads to a grid spac-

ing of h, the error will be of the order O(hp), where p is the order of the algorithm. If the

dimensionality of the problem is now enlarged d times, the number of points needed to

keep the grid spacing unchanged increases to Nd. For 100 points in the one dimensional

unit interval, this would require 1020 points in 10 dimensions. It can easily be shown that

the numerical solution of the above problems with the help of quadrature rules would

often exceed the lifetime of the universe, even if the grid size is chosen in a moderate

way. The exponential growth of the numerical effort with larger dimensionality has been

named by Bellmann [32] the curse of dimensionality.

This strong dependence on the details of the grid has led to the search for algorithms

that are independent of dimensionality. This requirement is fulfilled by Monte Carlo

methods.

The crucial idea is that most high dimensional integrals or sums are taken over functions,

which are strongly peaked in the integration area. Consequently most nodes used for a

standard quadrature rule integration would in most cases have zero contribution to the

total integral. The basic idea of Monte Carlo is to stochastically sample the parameter

space and only evaluate those nodes which have a strong contribution to the integral.

This procedure is called importance sampling. The main concept can be understood by
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looking at the following formula:

〈A〉 =
∑
x∈Ω

P (x)A(x) = lim
n→∞

1

N

N∑
i=1

A(xi). (3.35)

Here Ω is the high dimensional parameter space and P (x) some probability distribution

of the function values A(x). Eq. (3.35) now states that this sum is equal to a large av-

erage taken over function values, whose xi are distributed according to P (x). According

to the central limit theorem, which applies if A(x) is well-behaved, such a procedure

converges to the limiting distribution with an error 1/
√
N and is therefore independent

of dimensionality. In comparison to Simpson’s rule a Monte Carlo algorithm is superior

in dimensions d > 8. In the following we describe how the concept of Monte Carlo can

be applied to the Anderson impurity problem.

3.2.1 Applying Monte Carlo to the Anderson impurity model

The idea behind imaginary time quantum Monte Carlo is to stochastically sample the

partition function of the problem, using the action description of the fermionic system:

Z = TrTe−S . (3.36)

The action of the Anderson impurity model (AIM) can be written as [33],

S = −
∫ β

0
dτ

∫ β

0
dτ
′∑
σ

c†σ(τ)G−1
0,σ(τ − τ ′) cσ(τ

′
) + U

∫ β

0
dτ n↑(τ)n↓(τ). (3.37)

In this formulation cσ and c†σ are anti-commutative fermionic operators and G0,σ(τ) is the

time dependent bare Green’s function. Its representation in the Matsubara formalism

reads

G−1
0,σ(iωn) = iωn + µ−∆(iωn) (3.38)

∆(iωn) =
∑
k

|Vk,σ|2
iωn − εk,σ

. (3.39)
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Where ∆(iωn) is the hybridization function. The full impurity Green’s function can be

defined with the help of Eq. (3.36) as:

G(τ, τ
′
) = − 1

Z
Tr [Tc(τ)c†(τ ′)e−S ] (3.40)

The starting point of path integral QMC is to partition the problem space in such a way

that the partition function can be rewritten as a sum over single configurations of the

underlying problem space.

Z =
∑
i

Zi (3.41)

The difference between the known QMC algorithms is expressed in the way how the

partitioning of the problem space is reached. The expectation value of an observable

such as the impurity Green’s function can then be written as an average of all these

configurations:

G(τ, τ
′
) =

∑
i

Zi
Z
Gi(τ, τ

′
). (3.42)

The last equation is exactly of the same form as Eq. (3.35). The term Zi/Z should be

interpreted as a probability distribution for the configuration dependent observables Gi.

It is straightforward to design a Monte Carlo technique to evaluate Eq. (3.42). The only

drawback is that Monte Carlo requires that the underlying probability distribution is

well defined, but the anti-commutative properties of fermionic Grassmann numbers can

lead to a negative weight for some configurations, Zi < 0. This issue is known as the

fermionic sign problem and can be exponentially hard [34]. In the following we describe

the underlying concepts of a Monte Carlo algorithm.

3.2.2 Markov chain and the Metropolis-Hastings algorithm

If we want to construct a Monte Carlo algorithm, which is able to numerically calculate

an expression like Eq. (3.42), we are facing two problems: First the overall scaling

variable Z is unknown and can not be calculated easily and second the parameter space



40 3. IMPURITY SOLVERS

is often so huge, that an efficient way to generate new configurations Zi is needed. These

two problems are solved with the concept of a Markov chain [35] and the Metropolis-

Hastings [36, 37] algorithm.

The idea of sampling the problem space doing a sequence of steps with limited radius

is based on the concept of Markov Chains. A sequence of configurations X1, . . . Xt is

called a Markov chain of first order if the occurrence of a new configuration Xt+1 only

depends on the previous chain element Xt, which essentially means that the chain has

no memory. The strict mathematical definition is:

P (Xt+1 = St+1|Xt = St, . . . , X0 = S0) = P (Xt+1 = St+1|Xt = St). (3.43)

Here St denotes a certain configuration. In addition to that the Markov chain has to

fulfill two more requirements in order to resemble the probability distribution P (x).

ergodicity: The algorithm must have access to all possible configurations.

detailed balance: The transition probability Π fulfills:

P (Xt)Π(Xt → Xt′) = P (Xt′)Π(Xt′ → Xt). (3.44)

In this notation Π(Xt → Xt′) is the transition matrix from a configuration Xt to a

configuration Xt′ . With the following abbreviations, Xt = a, Xt′ = b, the transition

matrix is normalized such that
∑

b Πab = 1 holds.

In order to have a working Monte Carlo algorithm, there is still a criterion missing, which

tells us, whether a new configuration should be accepted or refused. Such a criterion

has been proposed by Metropolis [36] and was generalized by Hastings [37] afterwards.

The Metropolis-Hastings algorithm can be deduced from the detailed balance condition

in the following way. In the short notation the detailed balance condition reads:

Πab

Πba
=
P (b)

P (a)
. (3.45)

Now the matrix elements of the transition matrix are split up in a probability to propose

a certain change in the configuration Πprop and a probability to accept such a change
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Πacc. The transition matrix then reads Πab = Πprop
ab ·Πacc

ab . From equation (3.45) follows:

Πprop
ab Πacc

ab

Πprop
ba Πacc

ba

=
P (b)

P (a)
. (3.46)

This can be changed into the following condition.

Πacc
ab

Πacc
ba

=
P (b)Πprop

ba

P (a)Πprop
ab

(3.47)

It can be easily seen that Eq. (3.47) is fulfilled by the following ansatz for the acceptance

probability.

Πacc
ab = min(1,

P (b)Πprop
ba

P (a)Πprop
ab

) (3.48)

This is the general formulation for Πacc
ab of Hastings. The great advantage of Eq. (3.48)

is that the knowledge of the overall scaling variable Z is no longer required. The decision

whether an update is performed or not is only based on the relative weight between the

old and the new configuration. In many situations, such as in various spin models, the

proposal probability of a new configuration and its reverse are equal. This leads to the

following expression:

Πacc
ab = min(1,

P (b)

P (a)
). (3.49)

In the remaining part of the chapter we will introduce several Monte Carlo algorithms

for the Anderson impurity model. All these methods have in common, that at some

point the above described formulas will be used. So in the following part we will not go

into further detail how the actual implementation is done, but we will focus on how the

partitioning of the problem space is reached.

3.2.3 Hirsch-Fye Quantum Monte Carlo

As the first example of Monte Carlo based solvers for the Anderson impurity model we

introduce the algorithm of Hirsch and Fye [38]. It was the first quantum Monte Carlo
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solver applied to the DMFT problem [39] and is nowadays still in wide use for realistic

structure calculations [40–42].

The key idea of the approach is to discretize the imaginary time domain and to transform

the remaining discrete problem of interacting fermions with the help of the Hubbard-

Stratonovich transformation [43, 44] to a problem of non-interacting fermions coupled

to a time-dependent Ising-like field. The different configurations of the field are then

sampled with the help of a Monte Carlo algorithm. The method is exemplified by the

single impurity Anderson model:

H =
∑
k≥1,σ

εkb
†
kσbkσ +

∑
k≥1,σ

Vk(d
†
σbkσ + b†kσdσ) + µ̃

∑
σ

nσ︸ ︷︷ ︸
H0

+U [n↑n↓ −
1

2
(n↑ + n↓)]︸ ︷︷ ︸

Hi

.

(3.50)

The Hamiltonian consists of two parts, a Gaussian part H0 and an interaction term Hi.

The chemical potential is chosen in a way that µ̃ = 0 corresponds to half filling. k =

1, . . . , ns labels the bath electrons denoted by their annihilation and creation operators

b and b†. The impurity site is labelled with d and corresponds to the index k = 0, so

that d = b0. The corresponding action reads:

Z = Tr e−β(H0+Hi). (3.51)

The first step towards the Hirsch-Fye algorithm is to discretize the imaginary time

interval [0, β] in N equal time slices of the length ∆τ = β/N . With this Eq. (3.51) is

written as

Z = Tr
N∏
n=1

e−∆τ(H0+Hi). (3.52)

The crucial step of the derivation is the Trotter-Suzuki breakup [45, 46] of the partition

function, which has the following form:

e−∆τ(A+B) = e−∆τAe−∆τB +O(∆τ2). (3.53)
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This variant of the Baker-Campbell-Hausdorff expansion introduces an approximation to

Eq. (3.52), which is only valid for small ∆τ . The consequences of this systematic error

of the order O(∆τ2) are discussed in the later part of this section. With this identity

Eq. (3.51) reads:

Z ≈ Z∆τ ≡ Tr
N∏
n=1

e−∆τH0e−∆τHi +O(∆τ) (3.54)

A formula for the Green’s function corresponding to Eq. (3.54) can be achieved in a

similar way by discretizing the imaginary time evolution operator and again apply Eq.

(3.53): U∆τ ≡ exp(−∆τH0) exp(−∆τHi).

g∆τ
k,k′(τn1 , τn2) ≡ 〈bk(τn1)b†k′(τn2)〉

=
TrUN−n1

∆τ bk(τn1)Un1−n2
∆τ b†k′(τn2)Un2

∆τ

TrUN∆τ
(3.55)

This definition is valid for n1 > n2 and in accordance with [6] we omit the usual minus

sign in the definition of the Green’s function. As mentioned above the d-site Green’s

function is defined as the zeroth component of g: G∆τ (τn1 , τn2) = g∆τ
00 (τn1 , τn2). The

next important step of the derivation is a discrete Hubbard-Stratonovich transformation,

which converts the problem of interacting fermions in Eq. (3.54) to a problem of non-

interacting fermions exposed to an Ising-like field. The transformation is done on each

time slice separately and reads

e∆τHi =
1

2

∑
s=±1

eλs(n↑−n↓) (3.56)

λ = arccosh(exp(∆τU/2)). (3.57)

Inserting the result of this transformation in Eq. (3.54) yields:

Z∆τ =
1

2N

∑
s1,...,sN=±1

Z∆τ
s1,...,sN

(3.58)
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with

Z∆τ
s1,...,sN

=
∏
σ=±1

Tr e−∆τH0eV
σ(s1)e−∆τH0eV

σ(s2) . . . e−∆τH0eV
σ(sN ). (3.59)

The diagonal matrix V should not be confused with the hybridization matrix, it is rather

given by V σ
k,k′ = diag V [exp(λσsn), 1 . . . 1] and is of the order ns × ns. A consequence

of the utilized transformation is that all remaining terms in Eq. (3.58) are now bilinear

and Wick’s theorem is therefore applicable. This in mind Z∆τ can be rewritten as a

product of determinants:

Z∆τ =
∑

s1,...,sN=±1

detO↑(s1, . . . , sN ) detO↓(s1, . . . , sN ). (3.60)

The matrices Oσ are connected to the configuration dependent Green’s function as

(Oσ)−1(s1 . . . sn) = gσ(s1 . . . sn). Since all bath states are involved in the derivation,

the matrices Oσ(s1, . . . , sn) are of the order nsN × nsN . Due to the fact that the ma-

trices Oσ need direct manipulation in order to compute Z∆τ , the algorithm up to now

would be infeasible, because of the large matrix sizes. The main finding Hirsch and Fye

did to make their algorithm numerically feasible was that Green’s functions of different

configurations S = s1, . . . , sN and S′ = s′1 . . . s
′
n are connected via a Dyson-like equation.

g′ = g + (g − 1)(eV
′−V − 1)g′ (3.61)

It can be seen rather easily that (eV
′−V − 1) is a projection operator on the d-site. So

Eq. (3.61) also holds for the impurity Green’s function.

G′ = G+ (G− 1)(eV
′−V − 1)G′ (3.62)

These equations represent an enormous reduction of the complexity of the problem and

resemble the fact that a non-interacting bath can be always integrated out. Eq. (3.62)

is now of the order N ×N , which is in most cases no challenge for modern computers.

A matrix that changes one configuration to another can be found from Eq. (3.62).

T G′ = G, T ≡ 1 + (1−G)[eV
′−V − 1] (3.63)



3.2. MONTE CARLO 45

As a consequence the Hirsch-Fye algorithm works in the subspace of impurity orbitals.

It starts with a configuration-dependent Green’s function with all Ising spins set to

zero. The physical Green’s function is then calculated by averaging over all possible

configurations of the Ising field via local updates using Eq. (3.63). Since the effort to

sum up all possible spin arrangements grows exponentially, a Markov chain Monte Carlo

sampling is usually used for the task. The Monte Carlo weight of a configuration is

directly connected to the matrix T :

∏
σ

detOσ(S′)

detOσ(S)
=
∏
σ

detGσ(S′)

detGσ(S)
=
∏
σ

det T . (3.64)

As long as local updates are concerned, the matrix T can be updated very efficiently via

a Sherman-Morrison formula [47].

As mentioned earlier in this section, the shortcoming of the Hirsch-Fye approach is

the systematic error introduced through the discretization of the imaginary time. In

the metallic regime the impurity Green’s function can exhibit a rapid, non-uniform τ -

dependence in the low temperature regime. These strong τ dependencies can only be

reproduced, if the imaginary grid is very fine. This leads to huge matrix sizes and

therefore to a high numerical cost. In the Hirsch-Fye community a choice of N = βU is

often used, but there are known examples were a choice of N = 5βU is necessary to get

the systematic error below the statistical one.

A way to circumvent the problem of finite grid sizes has been proposed recently [48, 49].

In this approach multiple calculations for different grid sizes were performed in parallel

and a final result was obtained via extrapolation to zero grid size. At the moment it

is not clear if this method is still competitive to the methods of later sections like the

continuous-time quantum Monte Carlo.

Like all fermionic quantum Monte Carlo methods the Hirsch-Fye also exhibits a sign

problem. But it can be shown that this sign problem is absent for the case of the single

band Anderson impurity problem [50].
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3.2.4 Continuous-Time quantum Monte Carlo

As mentioned in the last section the Hirsch-Fye method suffers from a systematic error

that originates from the discretization of the imaginary time domain. This shortcoming

limits the method to relatively high temperatures and makes realistic structure calcula-

tions for multi-orbital systems numerically costly. In this paragraph a complementary

approach to the Hirsch-Fye method is introduced, the continuous-time quantum Monte

Carlo (CTQMC). The main difference between both approaches is that the CTQMC

does not depend on a discrete imaginary time grid and is therefore the first Monte

Carlo method for the AIM without any systematic error. The main concept behind the

CTQMC is to expand the partition function of the problem and to sample the infinite

series using a Markov chain Monte Carlo. Up to now there are known two implementa-

tions of the CTQMC. First Rubtsov and coworkers [4, 51] developed a CTQMC algorithm

based on the expansion in the interaction. This procedure is known as the weak-coupling

expansion quantum Monte Carlo. Later Werner [3, 52] introduced a procedure that ap-

plied an expansion in the hybridization, the so-called strong-coupling expansion quantum

Monte Carlo.

At some point both procedures face the evaluation of an infinite sum, which has its

source in the Taylor expansion of an exponential in the partition function:

Z =
∑
k

∫ β

0
dτ1 . . .

∫ β

0
dτk ρ(τ1, . . . , τk) (3.65)

In this formula ρ(τ1 . . . τk) is some probability density and k the order of the expansion.

The details of ρ depend on the quantity chosen to expand in. It is easy to see that for

any given order the evaluation of the k integrals applying a Monte Carlo procedure is

possible. A brute force approach would be to truncate the expansion order at a value

k = kmax and to evaluate the integrals for every order separately. But this modus

operandi would again introduce a systematic discretization error to the procedure. A

more adequate integration procedure was introduced by Prokof’ev et al. [53]. They

proposed a Monte Carlo method for quantum lattice models, where all orders of a similar

expansion are sampled at once. This is done by allowing updates in the configuration

space, which lead from one expansion order to another. It is possible to evaluate the
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infinite sum in Eq. (3.65) without any additional systematic error. In the case of the

Anderson impurity problem, ρ consists of an even number of creation and annihilation

operators. To formulate an update that will raise the expansion order means to insert

an additional pair of operators into ρ. The removal of two operators would correspond

to a lowering of the expansion order. Therefore it is in principle possible to formulate an

ergodic Monte Carlo algorithm for the problem at hand. The reason that this procedure

is also numerical feasible is that the importance of higher order terms in the sum of Eq.

(3.65) are exponentially damped due to an 1/k! factor, which arises in the expansion

of the exponential. Consequently this procedure will not end up in the summation of

infinite high orders. The details of the algorithm can have a great impact on the average

perturbation order and can therefore lead to great performance differences [54].

For the above CTQMC variants such as the weak- and strong-coupling expansion one

has to show in addition to the ergodicity that the detailed balance condition is fulfilled.

In the following two paragraphs we briefly describe both methods and illustrate how the

detailed balance condition can be fulfilled. In order to derive both methods we will stick

to the single orbital case, but elaborate descriptions for the multi orbital case can be

found in the literature [51, 52].

3.2.4.1 Hybridization algorithm

In order to derive the strong-coupling expansion algorithm we begin again with the

action formulation of the Anderson impurity problem. The action reads

S = −
∫ β

0
dτ

∫ β

0
dτ ′
∑
σ

c∗σ(τ)G−1
0,σ(τ − τ ′)cσ(τ ′) + U

∫ β

0
dτ n↑(τ)n↓(τ), (3.66)

and can be split up into an atomic part and a hybridization term describing the coupling

to the bath, S = Sat + S∆.

Sat =

∫ β

0
dτ

∫ β

0
dτ ′
∑
σ

c∗σ(τ)[∂τ − µ]cσ(τ ′) + U

∫ β

0
dτ n↑(τ)n↓(τ) (3.67)

S∆ =−
∫ β

0
dτ

∫ β

0
dτ ′
∑
σ

cσ(τ)∆(τ − τ ′)c∗σ(τ ′) (3.68)
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In the following we chose the path integral representation for the partition function.

This makes the derivation easier, because the time ordering operator does not appear

explicitly in the formulas. We begin with the expansion in S∆. For simplicity only one

spin species is taken into account.

Z =

∫
D[cc∗] exp(−Sat) exp(−S∆) (3.69)

=

∫
D[cc∗] exp(−Sat)

∑
k

1

k!
(−S∆)k (3.70)

=

∫
D[cc∗] exp(−Sat)

∑
k

1

k!
(

∫ β

0
dτ

∫ β

0
dτ ′c(τ)∆(τ − τ ′)c∗(τ ′))k (3.71)

The reader should be aware, that the interchange of creation and annihilation opera-

tors in equation (3.68) has saved an additional (−1)k factor in latter expression. The

intermediate result for Z reads:

Z =

∫
D[cc∗] exp(−Sat)

∑
k

1

k!

∫ β

0

k∏
i=0

dτi

∫ β

0

k∏
i=0

dτ ′i c(τi)c
∗(τ ′i)

k∏
i=0

∆(τi − τ ′i). (3.72)

In principle Eq. (3.72) is of the same form as Eq. (3.65). Hence a Monte Carlo sampling

of the above formula would be possible. But such a sampling would lead to a grave

sign problem, since the terms in Eq. (3.72) can be either of positive or negative weight.

The main finding of Werner [3] was that Eq. (3.72) can be regrouped in such a way

that a term with positive weight and one with negative contribution are combined into

a determinant. To see this we multiply above formula with a factor 1 = k!/k!.

Z =

∫
D[cc∗]e−Sat

∑
k

1

k!

∫ β

0

k∏
i=0

dτi

∫ β

0

k∏
i=0

dτ ′i

×
k∏
i=0

c(τi)c
∗(τ ′i)

k∏
i=0

∆(τi − τ ′i) ·
k!

k!

(3.73)

Now k! times the product of Grassmann numbers can be written as a sum over all

possible permutations of either the c(τi) or the c∗(τ ′i) in the product, where the order

of the remaining species is kept fixed. Depending on the sign of the permutation the
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product is multiplied by a minus one factor. In the following we chose the permutations

of the c∗ operators.

Z =

∫
D[cc∗]e−Sat

∑
k

1

k!

∫ β

0

k∏
i=0

dτi

∫ β

0

k∏
i=0

dτ ′i

×
k∏
i=0

∆(τi − τ ′i) ·
1

k!

∑
Π∈Sn

(−1)πc(τ1)c∗(τ ′π1) . . . c(τk)c
∗(τ ′πk)

(3.74)

If we now rename τ ′πi = τ ′i , Eq. (3.74) can be equated to

Z =

∫
D[cc∗]e−Sat

∑
k

1

k!

∫ β

0

k∏
i=0

dτi

∫ β

0

k∏
i=0

dτ ′i

k∏
i=0

c(τi)c
∗(τ ′i)

× 1

k!

∑
Π∈Sn

(−1)π∆(τ1 − τ ′π1) . . .∆(τk − τ ′πk).
(3.75)

Here the last part represents a determinant of a square k× k matrix. So we end up with

the following formula for Z.

Z =

∫
D[cc∗]e−Sat

∑
k

1

k!

∫ β

0

k∏
i=0

dτi

∫ β

0

k∏
i=0

dτ ′i

k∏
i=0

c(τi)c
∗(τ ′i)

1

k!
det∆i,j |k×k (3.76)

=Zat
∑
k

1

k!

∫ β

0
dτ1

∫ β

0
dτ ′1 . . .

∫ β

0
dτk

∫ β

0
dτ ′k〈c(τ1)c∗(τ ′1) . . . c(τk)c

∗(τ ′k)〉0

× 1

k!
det∆i,j |k×k

(3.77)

=Zat
∑
k

Zk (3.78)

In the last step the product of Grassmann numbers has been written as an expectation

value in the atomic basis 〈A〉0 =
∫
D[cc∗]Ae−Sat/Zat. So the partition function has

become a sum over configuration depended partition functions Zk, which are a product

of an atomic expectation value, representing the degrees of freedom of the atomic cluster

and a hybridization term which corresponds to the bath degrees of freedom.
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β 0 β 0

−+

τ1 τ ′1 τ2 τ ′2

Figure 3.8: Complete set of diagrams at k = 2 contributing to Eq. (3.80). The left
term enters with a positive sign, the right one with a negative sign. Blue dots illustrate
an annihilation operator, red ones creation operator. Lower lines represent negative

time differences, here Eq. (3.81) should be used.

Diagrammatic representation The partition function of a given order Zk can be

expressed in terms of diagrams. These diagrams have no special physical meaning but

illustrate the parametrization of the configuration space and make it easier to understand

the process of Monte Carlo updates. To illustrate the diagrammatic representation of

Zk we write Eq. (3.77) for k = 2:

Z2 =
1

4

∫
D[cc∗]

∫ β

0
dτ1dτ

′
1dτ2dτ

′
2〈c(τ1)c∗(τ ′1)c(τ2)c∗(τ ′2)〉0

×
∣∣∣∣∣∆(τ1 − τ ′1) ∆(τ1 − τ ′2)

∆(τ2 − τ ′1) ∆(τ2 − τ ′2)

∣∣∣∣∣
(3.79)

=
1

4

∫
D[cc∗]

∫ β

0
dτ1dτ

′
1dτ2dτ

′
2〈c(τ1)c∗(τ ′1)c(τ2)c∗(τ ′2)〉0∆(τ1 − τ ′1)∆(τ2 − τ ′2)

− 〈c(τ1)c∗(τ ′1)c(τ2)c∗(τ ′2)〉0∆(τ1 − τ ′2)∆(τ2 − τ ′1)].

(3.80)

The last equation can now be interpreted as an integral over two sorts of τ -dependent

diagrams. The atomic expectation value represents a set of two time intervals where

a particle is present on the atomic cluster. These intervals are called segments. The

hybridization function ∆ can now be viewed as a connecting line between these segments.

An illustration of a pair of diagrams for the simple case of k = 2 can be found in Fig.

3.8. In the evaluation of diagrams, positive and negative time differences are possible in

the argument of ∆. But it is only necessary to store ∆ for either positive or negative

values because the hybridization function is antiperiodic in the imaginary time domain:

∆(τ − τ ′) = −∆(β − τ + τ ′). (3.81)
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Figure 3.9: Diagrams contributing at k = 3. Conventions are the same as in Fig. 3.8

The set of diagrams for the case of k = 3 is shown in figure 3.9 for the sake of complete-

ness.

Monte Carlo sampling The procedure of Monte Carlo sampling can be understood

very easily in the language of diagrams. To ensure ergodicity two sorts of updates are

necessary. On the one hand a class of updates that conserves the perturbation order is

needed, on the other hand there should be a mechanism, which allows transitions from

one order to another. In the first case ergodicity is ensured by allowing a segment to

move its position in the imaginary time domain and to change its length. In the latter

case the transition to a higher perturbation order is reached by inserting a new segment

or, for the reverse step, by removing a segment. These updates ensure ergodicity for the

algorithm at hand. Other updates are in principle not needed, but can lead to shorter

autocorrelation time [54].

To ensure the detailed balance condition, we make use of the Metropolis Hastings [36, 37]

algorithm. A configuration of perturbation order k can be specified by the times of the

fermionic creation and annihilation operators, ck = {τ1, τ
′
1 . . . τk, τ

′
k}. The weight of

such a configuration is given by the product of the atomic expectation value and the
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determinant of the hybridization function ∆:

Wk ≈ 〈c(τ1)c∗(τ ′1) . . . c(τk)c
∗(τk〉0 × det∆ij . (3.82)

The corresponding probability of such a configuration is a product of the weight times

a dimensional factor, which conserves the units: P (ck) = Wk and P (ck+1) = Wk+1dτ
2.

The last ingredients to the Metropolis Hastings algorithm are the probabilities to propose

a move to a higher or lower perturbation order. Since lowering the perturbation order is

equivalent to remove a pair of operators and the probability to choose a certain segment

is 1/(k + 1), the probability to propose a transition from order k + 1 to k is Πprop
k+1→k =

1/(k + 1).

The reverse process, raising the perturbation order and inserting a segment, consists of

two steps. First a creation operator is inserted at time τ ′i somewhere in the imaginary

time domain with probability dτ/β. If τ ′i does not fall into an already occupied segment,

which is forbidden by the Pauli law, an annihilation operator is placed in a second

step between τ ′i and the starting point of the next segment τ ′i−1. The probability for

this is dτ/lmax, where lmax = |τ ′i−1 − τ ′i |. The overall proposal probability is thus

Πprop
k→k+1 = dτ2/(βlmax). With these definitions the final acceptance criterion reads:

Πacc
k→k+1 = min(1,

β lmax
k + 1

Wk+1

Wk
), (3.83)

and the detailed balance condition is implicitly fulfilled.

Segment code In the last paragraph it has become clear, that the main numerical ef-

fort of the strong-coupling CTQMC (SCTQMC) lies in the treatment of the determinant

of the hybridization function and in the evaluation of the atomic expectation value. If

the average expansion order is high, both tasks can be quite elaborate. As we have seen

in section 3.2.3 modifications in the hybridization matrix can be again addressed with

the help of Sherman Morrison formulas [47]. In principle one is left with the enumera-

tion of the τ -dependent correlator in the atomic basis. To accomplish this task the given

atomic cluster is diagonalized and the imaginary time evolution operator U = exp(−Hτ)

is represented in the eigenbasis. With this, one gets a Lehmann-like representation for
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the higher order correlators:

〈. . .〉0 =
1

Zat
TrTτe

−Satcα(τ1)c†β(τ ′1) . . . (3.84)

=
1

Zat

∑
{n}

e(τ1−β)En1 〈n1|cα|n2〉eEn2 (τ ′1−τ1)〈n2|c†β|n3〉 . . . . (3.85)

Here the sequence of operators is not necessarily the one illustrated, but rather the one

given by the time ordering operator. For an arbitrary atomic cluster the evaluation

of Eq. (3.85) at order k would involve the matrix product of 2k matrices. Since the

Hilbert space grows exponentially with the number of sites, the enumeration of the

atomic expectation value can become the bottleneck of the procedure.

A way to reduce the numerical effort is to follow the route described on page 29 and

to take into account the conservation of atomic quantum numbers. In this section we

would like to present a special case of the SCQMC known as segment code. This variant

of the SCQMC will lead to a very fast way to calculate the atomic expectation value.

An alternative implementation to the segment code, which allows to take into account

general interactions, is the recently developed Krylov solver. This solver applies the ideas

presented in section 3.1.3 in order to speed up the computation of the atomic trace. A

detailed introduction can be found in reference [23].

The segment code can be employed if the Hamilton operator of the system can be

expressed with the help of density operators only. In this case the Hamiltonian commutes

with these operators and the occupation in a given particle number state is a good

quantum number. In this case we choose the particle number basis as a natural basis

of the problem. As a consequence, there are only two possible values for the product of

the matrix elements of the correlator, zero or one. The eigenvalues of the exponential

can be expressed with the appropriate combination of density operators. In the end we

obtain the following expression for the atomic expectation value:

〈. . .〉0 = eµ
∑N
n=0 lne−

∑
m<n Umnl

O
mn . (3.86)

In this notation ln is a measure for the imaginary time at which an electron is present

on the cluster n. lOmn describes the overlap of occupied segments of orbital m and n.
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β 0

| ↑〉

| ↓〉
0

Figure 3.10: Conventions are the same as in Fig. 3.8. The green region represents the
time interval at which two electrons are present on the impurity and an energy price

has to be paid.

In figure 3.10 an example is given for the one orbital case with Hubbard interaction

U . If two electrons are present in the same orbital but with different spin, an energy

price U has to be paid. So the high dimensional matrix multiplication simplifies to the

determination of the overlap of different segments, which is in general a much more easier

task.

Measurement of Green’s function One of the most important observables in cor-

related many body problems such as the AIM is the Green’s function of the impurity.

Once this quantity is calculated, it can be used to determine the density of states on the

impurity via analytic continuation. The Green’s function is therefore directly related to

experimentally accessible quantities and can be written in the following way:

G(τ, τ ′) = −TrTτ c(τ)c†(τ ′) exp(−S). (3.87)

In order to measure this quantity we follow the main idea of Eq. (3.42) and determine

the Green’s function as an average over all possible Monte Carlo configurations.

G(τ, τ ′) = Zat
∑
k

1

k!

∫ β

0
dτ1 . . .

∫ β

0
dτ ′kG

k(τ, τ ′)〈c(τ1) . . . c∗(τk)
′〉0

1

k!
det ∆k (3.88)
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Here Gk(τ, τ ′) is the configuration dependent Green’s function which is defined as follows:

Gk(τ, τ ′) =
〈c(τ)c∗(τ ′) c(τ1) . . . c∗(τ ′k)〉0

〈c(τ1) . . . c∗(τk)′〉0
=
〈k + 1〉0
〈k〉0

(3.89)

With the abbreviations for the atomic expectation values in the last equation, the inte-

grand of Eq. (3.88) can be rewritten in the following way:

〈k + 1〉0 det ∆k =
〈k + 1〉0
〈k〉0

〈k〉0 det ∆k (3.90)

=
det ∆k

det ∆k+1
〈k + 1〉0 det(∆k+1) (3.91)

The last two equations give rise to two different definitions of the configuration dependent

Green’s function. One can either insert two new operators into the atomic expectation

value and calculate the ratio of both traces (Eq. (3.90)), or remove a row and a column

from the hybridization matrix and calculate the ratio of determinants (Eq. (3.91)). In

the language of the formerly discussed segment picture the first would correspond to

inserting a pair of unconnected operators into a configuration, the latter to choosing two

operators and cutting all the connecting hybridization lines.

Since Eq. (3.90) again involves the manipulation of determinants, it can be coded very

efficiently and is therefore the standard definition of the configuration dependent Green’s

function in modern SCCTQMC codes. The ratio of a matrix’s determinant and a de-

terminant of the same matrix, but with one column and one row missing, can be easily

computed if one takes into account the following formula from linear algebra:

(∆k)−1
ji = Mk

ji =
(−1)i+j

det ∆k
∆k−1
ij , (3.92)

where Mk
ji is the inverse of the hybridization matrix and the quantity which is stored and

manipulated in the codes. Besides the factor (−1)i+j Eq.(3.92) is already the wanted

determinant ratio of Eq. (3.91). But this factor is compensated by the fact, that if one

chooses a pair of operators to cut all hybridization lines, they have to be commuted to

the beginning of the atomic trace, which again gives rise to the same (−1)k factor. The

final measurement of the Green’s function in one Monte Carlo configuration is given by
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the following equation.

GσC(τ, τ ′) =
k∑
i,j

Mσ
jiδ̂(τ − τ ′, τi− τ ′j) with: δ̂(τ, τ ′) =

δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′ + β)) τ ′ < 0
(3.93)

The measurement of the impurity Green’s function can be realized in the following way:

If a new Monte Carlo configuration is accepted, the M matrix will be updated and the

Green’s function can be measured at the time differences occurring in the configuration

according to Eq. (3.93).

A similar expression can be derived for the case of the two particle Green’s function,

which is given here just for completeness.

χσσ
′

abcd(τ1, τ2, τ3, τ4) =

k∑
ab

k∑
cd

(Mσ
baM

σ′
dc − δσσ′Mσσ

daM
σσ
bc )

× δ̂(τ1 − τ2, τa − τ ′b)δ̂(τ3 − τ4, τc − τ ′d)δ̂(τ1 − τ4, τa − τ ′d)δ̂(τ3 − τ2, τc − τ ′b)
(3.94)

Although the last equation looks like a consequence of Wick’s theorem, the reader should

be aware that the underlying action is non-Gaussian and therefore Wick theorem is not

applicable. The last equation is rather a consequence of a generalized version of Eq.

(3.92) for second order minors.

3.2.4.2 Weak-coupling algorithm

The starting point of the so-called weak-coupling CTQMC is, in contrast to the method

described in the last section, an expansion in the interaction strength U . The action of

the AIM is split up into a quadratic Gaussian part and a non-Gaussian interaction part,

S = S0 + SU . With the following definitions for S0 and SU :

S0 = −
∑
σ

∫ β

0

∫ β

0
dτdτ ′c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) (3.95)

SU = +

∫ β

0
dτUn↑(τ)n↓(τ). (3.96)
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Here G0(τ, τ ′) is the bare Green’s function, i.e., the Green’s function of the non-inter-

acting problem. In order to make an expansion in U , the path integral formalism is

again used. The partition function reads:

Z =

∫
e−S0e−SUD[cc∗]. (3.97)

Performing the Taylor expansion one gets:

Z =

∫
e−S0

∞∑
k=0

(−1)k

k!
Uk
∫ β

0
dτ1 . . .

∫ β

0
dτk n↑(τ1)n↓(τ1) . . . n↑(τk)n↓(τk) (3.98)

Z =Z0

∞∑
k=0

(−1)k

k!
Uk
∫ β

0
dτ1 . . .

∫ β

0
dτk 〈n↑(τ1)n↓(τ1) . . . n↑(τk)n↓(τk)〉0 (3.99)

In the last step the definition for the expectation value in the interaction free system has

been used:

〈. . .〉0 =
1

Z0

∫
. . . e−S0D[cc∗]. (3.100)

Taking into account that S0 is per definition Gaussian, and therefore Wick theorem is

applicable here, Eq. (3.99) can be further simplified. The trace over fermionic operators

can be expressed as a sum over all possible contractions leading to a fermionic determi-

nant. If special attention is paid to the fact that the occupation number operator can

be expressed using the bare Green’s function, one ends up with the following formula:

Z =Z0

∞∑
k=0

(−1)k

k!
Uk
∫ β

0
dτ1 . . .

∫ β

0
dτk

∏
σ

detGσ0 . (3.101)

The last equation is of the same form as Eq. (3.77) in the strong-coupling case. The

weight of a configuration consists of a fermionic determinant combined with a term

describing the interaction on the impurity. In the preceding section this interaction was

given by the expectation value of impurity creation and annihilation operators, here it

is just the bare electron-electron interaction U . It is not astonishing that Eq. (3.99) can

be expressed in a diagrammatic way as in the last section. Figure 3.11 shows a typical

configuration for the case k = 2. In contrast to the strong-coupling expansion, there is

no segment picture in the weak-coupling case, because the interaction is local in time.
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β 0 β 0

β 0 β 0

Figure 3.11: Diagrammatic representation of a typical weight configuration in the
weak-coupling expansion for expansion order k = 2. Interaction vertices are placed
locally in time and are then connected with the free propagator, which originates from

the fermionic determinant. In this figure spin-conservation is assumed.

A typical configuration of order k consists of k interaction vertices placed between 0 and

β. The vertices are then connected via the free propagator, the bare Green’s function

G0. If the problem is spin diagonal one gets 2 · k! diagrams for expansion order k.

In terms of Monte Carlo weights Eq. (3.99) can be expressed as:

Z = Z0

∞∑
k=0

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk sgn (Wk)|Wk|, (3.102)

with

Wk = (−1)kUk
∏
σ

Gσ0 . (3.103)

In the last step the integration boundaries have been rewritten to reach an explicit time

ordered representation and to cancel the 1/k! factor in front of Wk. In Eq. (3.101) all k!

permutations for a given set of times contribute equally to the integral. Therefore it is

possible to rewrite the integral in such way that the k! term cancels. An additional sign

is not required since all permutations can be transformed into each other by permuting

an even number of Grassmann variables. The final equation is in principle of the same

form as Eq. (3.42), but has a grave shortcoming: the alternating-sign nature of the

Monte Carlo weight makes it numerically impossible to acquire good statistics because

of the inherent sign problem. The main contribution of Rubtsov and coworkers [4, 51]
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was to find that the theory can be rewritten in such a way that the sign problem is

suppressed or even vanishes completely for the one orbital case.

α-parameters The main idea to eliminate the sign problem caused by the definition

of Eq. (3.103) is to introduce additional free parameters, which can be chosen in such

a way to eliminate the sign problem. This is done by adding a Gaussian term to the

action part S0 and subtracting the same term from the expression for the interaction

part SU . The only requirement to this additional action part is that it is quadratic, so

that Wick’s theorem is still valid.

This procedure is possible because Monte Carlo is employed to sum up the whole pertur-

bation series. In this case it does not matter if a quadratic action term is shifted from the

exactly solvable part S0 to SU , as long as the total action stays unchanged. In chapter

5 a similar trick is used to alleviate the non-causality problem of the superperturbation

theory at low temperatures, but only a partial series is summed up there. In that case

it will also be important that the shifted part is rather small.

In the weak-coupling case the additional free parameter is called α-parameter and is just

a c-number and not a Grassmann variable. In principle this number can depend on spin,

site and τ , but for the following derivation only the spin dependence is considered. The

α-dependent term is introduced as follows:

S0 =−
∑
σ

∫ β

0

∫ β

0
dτdτ ′c∗σ(τ)G−1

0 (τ − τ ′)cσ(τ ′)− Uα−σnσ(τ) (3.104)

SU =

∫ β

0
U [n↑(τ)− α↑][n↓(τ)− α↑]. (3.105)

The steps to follow are the same as described above: The Taylor expansion in U is

performed and afterwards Wick’s theorem is employed. This procedure ends up in an

equation very similar to Eq. (3.103).

Z =Z0

∞∑
k=0

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk sgn (Wk)|Wk| (3.106)

Wk =(−1)kUk〈(n↑(τ1)− α↑)(n↓(τ1)− α↓) . . . (n↑(τk)− α↑)(n↓(τk)− α↓)〉0 (3.107)
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=(−1)kUk
∏
σ

G̃σ0 (3.108)

with:

G̃σ0 (τi − τj) = Gσ0 (τi − τj)− α · δ(τi − τj). (3.109)

The fact that the α-parameter only occurs on the diagonal of G̃σ0 is owed to α being a

normal c-number and not a Grassmann variable.

To eliminate the sign problem for the single orbital half filled case any choice of α is

sufficient, if the following condition between α↑ and α↓ holds.

α = α↓ = 1− α↑ (3.110)

Away from half filling a sign problem only occurs if α lies between zero and one. In

practice an α-parameter slightly above one is used. The method described here is also

applicable to the multi orbital case. But a proper choice of α-parameters to completely

alleviate the sign problem in this case has not been found yet.

Monte Carlo sampling The procedure of Monte Carlo sampling is very similar

to the case of the strong-coupling expansion. To reach ergodicity one again only needs

in principle two updates. One that preserves the expansion order and only rearranges

the position of interaction vertices and one that allows to go from one expansion order

to another. The latter can be easily reached by an update inserting or removing an

interacting vertex. To show that the proposed approach also fulfills the detailed balance

condition, one again employs the Metropolis-Hastings [36, 37] algorithm. To do so we

define the necessary probabilities. The probability of configuration ck is given by its

weight times a dimensional factor to conserve the units:

P (ck) = |Wk| = Uk det G̃σ0 |k det G̃−σ0 |k (3.111)

P (ck+1) = |Wk+1| = Uk+1 det G̃σ0 |k+1 det G̃−σ0 |k+1. (3.112)

The probabilities to propose a transition from one expansion order to another can be

constructed in the following way: The probability to have a transition from order k + 1
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to k is the probability to pick one of the k + 1 interaction vertices and remove it. The

probability is thus given by

Πprop
k+1→k =

1

k + 1
. (3.113)

The term for the reverse step is constructed in a similar way. The probability to insert

a vertex in the imaginary time domain between zero and β is just:

Πprop
k→k+1 =

dτ

β
. (3.114)

If the above definitions are inserted in Eq. (3.48) one ends up with the following formula

for the acceptance criterion that automatically fulfills the detailed balance condition.

Πacc
k→k+1 = min(1,

βU

k + 1

det G̃σ0 |k+1 det G̃−σ0 |k+1

det G̃σ0 |k det G̃−σ0 |k
) (3.115)

Measurement of Green’s function The impurity Green’s function for a single

orbital model with a spin diagonal Hamiltonian is defined as follows:

Gσ(τp − τq) = −〈Tτ cσ(τp)c
†(τq)〉. (3.116)

Starting from this definition a similar expansion to the one described in this chapter

is possible. This would correspond to developing a Monte Carlo sampling in terms of

the Green’s function rather than in terms of the partition function. In the following a

different route is described. The sampling is done in terms of the partition function and

an estimator for the Green’s function is developed. It is not clear if this procedure is

efficient, because it assumes that there is a large overlap between the partition function

and other observables such as the Green’s function. Practical experience shows that a

weight formulation in terms of the partition function is very successful. The estimator

is described similarly to the one in the strong-coupling case:

〈Gσ(τp − τq)〉est =
〈cσ(τp)c

†
σ(τq)

∏k
i=1(n↑(τi)− α↑)(n↓(τi)− α↓)〉0

〈∏k
i=1(n↑(τi)− α↑)(n↓(τi)− α↓)〉0

. (3.117)
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Applying again Wick’s theorem, the estimator can be regrouped in the following way:

〈Gσ(τp − τq)〉est =
G̃σ0 |(k;Gσ0 (τp−τq))

G̃σ0 |k
, (3.118)

where the nominator of Eq. (3.118) has been defined as:

G̃σ0 |(k;Gσ0 (τp−τq)) =

(
G̃σ0 |k Gσ0 (τi − τq)

Gσ0 (τp − τj) Gσ0 (τp − τq)

)
. (3.119)

The determinant can be calculated using inverse matrix formulas [55].

det G̃σ0 |(k;Gσ0 ) = det G̃σ0 |k
(
Gσ0 (τp − τq)−

∑
ij

Gσ0 (τp − τi)(G̃σ0 |k)−1Gσ0 (τj − τq)
)

(3.120)

With this, the expression for the Green’s function estimator reads:

〈Gσ(τp − τq)〉est = Gσ0 (τp − τq)−
∑
ij

Gσ0 (τp − τi)Mσ
i,jG

σ
0 (τj − τq). (3.121)

As can be seen from the last equation, the impurity Green’s function is measured as a

correction to the bare Green’ function, which is a direct consequence of the expansion in

the interaction. The bare Green’s function is so to say the zeroth order approximation

in this case. Estimators for higher order correlation functions can also be easily derived.

Because S0 is quadratic Wick’s theorem can be applied to express a n-particle Green’s

function as contractions of the single particle one. For further reading see ref. [56].



Chapter 4

Dual fermion perturbation theory

In the many-body theory of solids, one is often interested in the solution of systems

with a large number of interacting degrees of freedom. Even though the conceptual for-

mulation of these models might be simple, the exact solution is quite often beyond the

possibilities of modern analytical and numerical approaches.

A prototype of such a system is the class of Hubbard type [57] models. Even tough

the model is already known for decades and is often classified as ’a highly oversimplified

model’ [58], the literature still lacks of a comprehensive solution for these kinds of sys-

tems. Due to the complexity of the task, most approaches to solve these systems rely

on some kind of approximation. A common scheme is to expand in a small parameter.

For the Hubbard model this parameter could be the electron-electron interaction or the

inter-site hoping. The problem with this strategy is that in most situations interesting

physics is caused by two or more competing phases and therefore no small parameter can

be found. A perturbation expansion will lead to poor results in these cases. The main

drawback is that the starting point of the perturbation theory is often oversimplified

and does not give a proper description of the physical state of the system. In the case

of the Hubbard model and small interaction the starting point of the expansion is the

non-interacting system. In the case of a small inter-site hopping the system is expanded

around the atomic solution.

In this chapter we describe a different kind of perturbation theory. The main innovation

63
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will be that a series expansion is not done around a simple starting point, but around

an exactly solvable reference problem, which already contains essential physical informa-

tion. The key idea is to include as many degrees of freedom in this reference system as

possible and to solve it exactly by numerical or analytical techniques. The information

not included is then added by a perturbation expansion around this reference system.

This kind of approach was first introduced by Rubtsov [59] in the context of O(N) mod-

els. Later the theory was applied to the two-dimensional Hubbard model under the name

of dual fermion approach (DF) [60]. The motivation for the work was to find a pertur-

bation expansion around the DMFT solution in order to treat non-local correlations. In

this case the reference system was the solution of the DMFT and the full system the

whole lattice problem. Meanwhile this approach has been successfully applied to the

two-dimensional Hubbard model on a square [60, 61] and triangular lattice [62] and has

also been used in the context of superconductivity [63]. In a recent paper it was shown

that the underlying perturbation expansion of the dual fermion technique has superior

convergence properties over standard diagrammatic approaches [64].

In a later paper we showed that the concept first described in the dual fermion context

is general enough to describe also Anderson impurity models. Here an impurity problem

with a continuous energy spectrum in the bath is approximated by a finite size effective

reference problem with the same interaction [65].

In this chapter we like to give a brief introduction to the underlying perturbation expan-

sion of these approaches. During the derivation we will use the most general formulation

of the theory, which will allow us to show that the dual fermion technique and the su-

perperturbation method are special cases of the same theory.

For a more pedagogical introduction to the formal details of the theory we recommend

the interested reader reference [56]. Although the superperturbation method on the

Keldysh contour is also based on the described approach here, it will be introduced

in chapter 7 separately, because it needs the concept of non-equilibrium perturbation

theory.
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4.1 Derivation of the dual action

As described earlier the aim of this section is to formulate a perturbation expansion of a

problem with many degrees of freedom around an easier to solve model. In the following

we will entitle the first one as full system and the second one as reference system. The

action of the full system can be written in the following way:

SF[c∗, c] = − T

Nk

∑
kωab

c∗kωa[(iω + µ)1−�(k, ω)]abckωb +
∑
i

SNG[c∗i , ci]. (4.1)

Here the notation has been chosen in such a way that the action is able to describe lattice

problems as well as Anderson impurity models. The key quantity is �(k, ω). For a lattice

model it is jut a placeholder for the dispersion εk. An Anderson impurity model can be

described if a hybridization function ∆(iω) is inserted for �(k, ω). During the derivation

we will stay with the most general formulation of the problem. The different flavors of

the theory, depending on the actual details of �(k, ω), will be introduced in section 4.3.

In equation (4.1) SNG stands for some local non-Gaussian part in the action. In principle

the actual form of SNG does not matter, the only requirement for the steps to follow is

that this part of the action is local. For a not so exotic model SNG will just be the local

Coulomb interaction. The derivation will be done in the multi orbital formulation, so

that Latin indices describe orbital and spin degrees of freedom, spatial coordinates are

denoted by i and k vectors by k. T is the temperature and Nk the number of k points.

Local problems arise from Eq. (4.1) if Nk is set to one. The following conventions for

sums are introduced:

T

Nk

∑
k

≡
∑k

and T
∑
i

≡
∑i

. (4.2)

With this Eq. (4.1) takes the following form:

SF[c∗, c] = −
∑k

ab

c∗kωa[(iω + µ)1−�(k, ω)]abckωb +
∑
i

SNG[c∗i , ci]. (4.3)

In order to introduce the reference system, the key step is to add and subtract a local

frequency dependent function 4(ω). In doing so the full action can be rewritten in the
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following way1:

SF[c∗, c] = SRef[c∗i , ci]−
∑k

ab

c∗kωa[4(ω)−�(k, ω)]abckωb (4.4)

SRef[c∗i , ci] = −
∑i

ab

c∗iωa[(iω + µ)1−4(ω)]abciωb +
∑
i

SNG[c∗i , ci]. (4.5)

At this point it is important to note the following facts:

1. Eq. (4.4) is an exact reformulation of the initial action in Eq. (4.1).

2. The function 4(ω)ab is not specified at the moment. To stress this fact we have

chosen to denote the function with a triangle, rather than a Greek letter.

SRef is the action of the reference problem. At the moment this part of the action is most

general, the only requirement is that the reference problem can be solved exactly. It can

already be seen at this early point of the derivation that the reference system described

in Eq. (4.5) is far away from being a trivial starting point for a perturbation expansion.

SRef has the same interaction as the full system and the function 4(ω) allows to take

care of temporal quantum fluctuations.

The second term in Eq. (4.4) is the difference between the full problem and the reference

system. The goal of the following part is to formulate a perturbation theory in this term.

Consequently 4(ω)−�(k, ω) will be the small parameter of the theory.

Technically this perturbation expansion is not straightforward. Since SRef contains a

non-Gaussian part it is not possible to expand in 4(ω) − �(k, ω) and to evaluate the

expectation values using Wick’s theorem. Instead, a different scheme is applied: Via

a Hubbard-Stratonovich transformation new auxiliary Grassmann variables are intro-

duced. In the second step one integrates out the old variables and reaches an exact

reformulation of the problem in the space of the new variables. In the context of lattice

problems these auxiliary quantities have been called dual fermions. In the following we

will also use this nomenclature. In the dual space it is then possible to expand in the

dual interaction and to construct a Feynman-like perturbation theory for the problem.

1In this step, all k-dependent sums over local functions have been Fourier transformed to their spatial
counterparts.
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Once a partial series has been summed up in the dual space, it is possible to transform

back to the old variables, since all transformations have been exact.

The Hubbard-Stratonovich transformation is a standard tool in many body physics [33]

and can be written in the following form2:

ec
∗
1n12D

−1
23 n34c4 =

1

detD

∫
D[f∗, f ]e−f

∗
1D12f2+f∗1 n12c2+c∗1n12f2 . (4.6)

In order to introduce dual variables the choice of the matrices nij and Dij is not unique.

But to end up in a most simple form of the theory, both matrices have been chosen in

the following way:

n = −g−1(ω)

D = g−1(ω)[4(ω)−�(k, ω)]−1g−1(ω)

→ n12D
−1
23 n34 = [4(ω)−�(k, ω)]14. (4.7)

In this definition g(ω) is the Green’s function of the reference problem. If the transfor-

mation is applied to the second term in Eq. (4.4), SF can be brought into a form, which

now contains old and new variables:

SF[c∗, c, f∗, f ] =SRef[c∗i , ci] + SC[f∗i , fi, c
∗
i , ci]

+
∑k

ab

f∗kωa[g
−1(ω)[4(ω)−�(k, ω)]−1g−1(ω)]abfkωb,

(4.8)

with:

SC[f∗i , fi, c
∗
i , ci] =

∑i

ab

f∗iωag
−1(ω)abciωb +

∑i

ab

c∗iωag
−1(ω)abfiωb. (4.9)

In this form SF consists of the action of the reference problem, a Gaussian term, which

only contains dual variables and a part which describes the coupling between the ref-

erence system and the dual space, SC. Since the coupling terms only contain local

quantities, it is already clear at this point that the coupling of dual fermions to the ref-

erence system is purely local. That implies that all quantities necessary to perform the

2The reader should be aware that this identity holds regardless of the sign of the matrix n. Therefore
some signs in the subsequent derivation might differ from formulations in the literature, but will end in
the same results. In this work we have chosen the same convention as in [56].
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perturbation expansion can be extracted from the exact solution of the reference prob-

lem. This point, which is seen rather easily from Eq. (4.9), is one important condition

for the practicability of this theory.

To derive a representation, which only depends on the dual variables, it is necessary to

integrate out the old variables. This is done by introducing the following identity:∫
exp(−(SRef[c∗i , ci] + SC[c∗i , ci, f

∗
i , fi]))D[c∗i , ci]

!
= ZRef exp(−

∑i

ab

f∗iωag
−1(ω)abfiωb + V[f∗i , fi]).

(4.10)

The last equation has to be understood as a defining equation for an up to now not

specified interaction in the dual space V. The old variables are integrated out by choosing

this dual potential in such a way that identity (4.10) holds.

Technically this is done by expanding Eq. (4.10) in a Taylor series and comparing the

coefficients of both sides with each other. In the following we will briefly summarize

the results of this expansion. For shorter expressions and since all indices are local

anyway, spatial and orbital degrees of freedom are combined in a number, summation

over repeated indices is assumed. For the left-hand side this leads to the following series:∫
exp(−(SRef[c∗i , ci]+S

C[c∗i , ci, f
∗
i , fi]))D[c∗i , ci]

=
∑
n

〈 1

n!
(f∗1 g

−1
12 c2 + c∗1g

−1
12 f2)n〉0

(4.11)

= 1− g−1
12 f

∗
1 f2 +

1

4
χ

(4)
2367g

−1
12 g

−1
34 g

−1
56 g

−1
78 f

∗
1 f4f

∗
5 f8 ± . . . . (4.12)

Here the exponential of SC has been expanded and the resulting terms have been av-

eraged in the basis of the reference system, denoted by the expectation value symbol

〈. . .〉0 =
∫
. . . exp(−SRef)D[c∗, c]. Consequently, all occurring products of c-variables

could be replaced by n-particle Green’s functions of the reference problem.

With the following ansatz for the dual potential,

V[f∗i , fi] =
∑
i

νi[f
∗
i , fi] = k2

12f
∗
1 f2 + k4

1234f
∗
1 f2f

∗
3 f4 + . . . , (4.13)
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it is possible to write down the expansion for the right-hand side of Eq. (4.10) 3:

exp
(
−(f∗1 g

−1
12 f2) + V[f∗i , fi]

)
= 1−

(
f∗1 g
−1
12 f2 + k2

12f
∗
1 f2

+k4
1234f

∗
1 f2f

∗
3 f4 + . . .

)
+

1

2!

(
f∗1 g
−1
12 f2f

∗
3 g
−1
34 f4 + . . .

)
− 1

3!
. . . .

(4.14)

A comparison of the series expansion of the left-hand and right-hand side yields the final

result for the dual interaction potential:

V[f∗i , fi] =
∑
i

νi[f
∗
i , fi] = −1

4
γ

(4)
1234f

∗
1 f2f

∗
3 f4 +

1

36
γ

(6)
123456f

∗
1 f2f

∗
3 f4f

∗
5 f6 ∓ . . . . (4.15)

Subsequently the action in the dual space can be formulated in the following way:

Sd[f∗, f ] = −
∑k

ab

f∗kωa[G
d
0(ω,k)]−1

ab fkωb + V[f∗i , fi], (4.16)

with Gd
0 being the bare dual Green’s function:

Gd
0(ω,k) = −g(ω)[g(ω) + [4(ω)−�(k, ω)]−1]−1g(ω). (4.17)

A back transformation to c-fermions can be also formulated in an exact way, see Ap-

pendix A for the non-equilibrium case. In the situation at hand the back transformation

has the following form:

G(ω,k) = (4(ω)−�(k, ω))−1 + [g(ω)(4(ω)−�(k, ω))]−1

×Gd(ω,k)[(4(ω)−�(k, ω))g(ω)]−1. (4.18)

At this point it is important to note that the final result for the dual action is just a

reformulation of the initial action in Eq. (4.1). Up to now no additional approximation

has been made and all transformations have been exact.

On the other hand, the latter action exactly describes the physical situation we wanted

to achieve: The full problem can be described by an expansion around a reference prob-

lem. This is true since the interaction-free dual problem exactly corresponds to a zero

3Only terms up to fourth order in f are displayed.
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order approximation to the full problem. The bare dual propagator Gd
0 contains the

information of the reference problem as well as the difference of the full and the refer-

ence system. Now a series expansion around the reference system can be achieved by

performing a diagrammatic expansion in the dual potential. This is possible since Wick’s

theorem is applicable in Eq. (4.16).

In addition to that this diagrammatic technique promises good convergence properties,

since the dual potential has a very advantageous form. The n-particle interaction of

the dual fermions is the exact n-particle reducible vertex of the reference problem. This

interaction is already frequency dependent and contains screening effects. In comparison

to the initial Coulomb interaction, the problem has been rewritten in a formulation,

which reduces the interaction. This means that the non-quadratic term in the initial

action has been minimized in the dual formulation [61]. In the following we describe

briefly why the dual interaction is small.

Although the dual action contains interaction terms up to all orders one can see that

higher orders of the dual interaction only play a minor role. On the one hand, higher

order terms involve many-particle interactions, which are diminished by phase space

arguments [66], on the other hand, their contribution will be small because of the prop-

erties of the expansion. In a perturbation expansion in the dual potential two quantities

will enter, the dual Green’s function and vertices up to all orders. If the interaction is

small all vertices are small and the weight of higher order vertices will decrease rapidly:

γ(4) ≈ U, γ(6) ≈ U2, . . . . In this case the dual potential can be reduced to a four particle

interaction term.

In the opposite case of strong interaction and weak hybridization, i.e. an expansion

around the atomic limit, the dual Green’s function itself is small. As a consequence

all higher order diagrams with many connecting lines will be small. Consequently the

perturbation expansion will converge in both limits. In between a good convergence

can not be proven analytically but numerical results suggest a good convergence in the

intermediate regime [64]. In most cases it is a good approximation to truncate the dual

potential after γ(4).

In the next section it will be explained how the dual perturbation theory is constructed.
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4.2 Construction of the dual diagrammatic technique

The final version of the dual action in Eq. (4.16) allows to formulate a standard Feynman-

like perturbation theory in the dual potential. The key concept is to expand the expec-

tation value for the dual Green’s function in the non-quadratic part of the action and

to employ Wick’s theorem to solve the necessary integrals by summing up all possible

contractions. This leads to the construction of diagrams for the dual Green’s function.

Diagrams for the self-energy are then obtained by cutting the external lines of these

diagrams, which leads to the possibility to gain an approximation for the dual Green’s

function by solving Dyson’s equation. In the following it will be shown how the two

lowest-order diagrams can be constructed.

The expectation value for the dual Green’s function can be expressed in the following

form:

Gd
12 = −〈f1f

∗
2 〉 = −Zf

Z

∫
f1f
∗
2 e
−Sd[f,f∗]D[f∗, f ]. (4.19)

The dual action is rewritten in the subsequent shorthand notation

Sd[f∗, f ] = Sd
0 [f∗, f ] + V[f∗i , fi], (4.20)

and is inserted in Eq. (4.19). Afterwards a series expansion in the dual potential is

performed:

Gd
12 =− Zf

Z

∫
f1f
∗
2 e
−

∑
i νi[f

∗
i ,fi] e−S

d
0 D[f∗, f ] (4.21)

=− Zf
Z

∫
f1f
∗
2

(
1−

∑
l

νl[f
∗
l , fl] +

1

2!

∑
lm

νl[f
∗
l , fl]νm[f∗m, fm]

− 1

3!

∑
lmn

νl[f
∗
l , fl]νm[f∗m, fm]νn[f∗n, fn] + . . .

)
e−S

d
0 [f∗,f ]D[f∗, f ].

(4.22)

Now the expression for the dual potential is inserted in the Eq. (4.22) and the integrals

are solved using Wick’s theorem. Since it is the goal to deduce an expression for the

two lowest diagrams, only the first term of the dual potential is inserted in Eq. (4.22).

A generalization to diagrams containing contributions of higher order terms of the dual

potential is straightforward and can be found in [56].
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Figure 4.1: All possible contractions and the corresponding diagrams of the integral
in Eq. (4.24). Diagrams a.) and b.) are disconnected and do not contribute to the dual
self-energy. The remaining diagrams are topologically equivalent and can be taken into

account by an additional symmetry factor.

The zero-order approximation to the Green’s function is the bare dual Green’s function,

which is defined as the expectation value of two Grassmann numbers using the quadratic

part of the dual action:

Gd0|12 = −Zf
Z

∫
f1f
∗
2 e
−Sd

0 D[f∗, f ]. (4.23)

An expression for the bare dual Green’s function in terms of reference quantities has

been already given in Eq. (4.17).

The first-order correction contains the dual potential linearly. Therefore all diagrams

derived from this order are purely local. The diagram containing γ(4) can be derived

from the following integral and its contractions:

−Zf
Z

∫
f1f
∗
2

1

4
γ

(4)
iabcdf

∗
iafibf

∗
icfid e

−Sd
0D[f∗, f ]. (4.24)

Fig. 4.1 shows all possible contractions of the 6 Grassmann numbers in the last equa-

tion. The first two diagrams do not contribute to the dual self-energy since they are

disconnected. The remaining four diagrams are all topologically equivalent. Their con-

tribution to the dual self-energy can be combined in the following expression for the first
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c.)b.)a.)

d.) e.) f.)

Figure 4.2: First few diagrams contributing to the dual self-energy.

local diagram:

Σ
d(a)
ii |ab = −γ(4)

iabcdG
d
iidc. (4.25)

The last equation corresponds to diagram a.) of Fig. 4.2. All higher order diagrams

are constructed in the same way. For a certain expansion order of Eq. (4.22), the

corresponding integrals are calculated by summing up all non zero contractions. This is

done by drawing the diagram of one contraction and then by multiplying this diagram by

a weight factor, which corresponds to the number of topologically equivalent diagrams.

For the next order in γ(4) one has to solve the following integral:

−Zf
Z

∫
f1f
∗
2

1

4
γ

(4)
iabcdf

∗
iafibf

∗
icfid

1

4
γ

(4)
jefghf

∗
jefjff

∗
jgfjh e

−Sd
0D[f∗, f ]. (4.26)

In this case there are 16 different contractions, which lead to a non zero contribution and

which are again topologically equivalent. The total contribution to the dual self-energy

is given by:

Σ
d(b)
ijah = −1

2
γ

(4)
iabcdγ

(4)
jefghG

d
ijbgG

d
jifcG

d
ijde. (4.27)

The corresponding diagram is depicted in Fig. 4.2 b.), for completeness the first higher

order diagrams are also shown.
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The diagrams discussed so far are the first and simplest contributions to the dual self-

energy. But the reader has to be aware that the qualitative contribution to the pertur-

bation theory is different for both diagrams. Since diagram a.) only contains one vertex,

the contribution to the dual self-energy will be purely local, even if the full problem is a

lattice model. So if the perturbation theory is intended to describe non-local correlation

effects, at least diagram b.) has to enter the perturbation series. For a purely local

problem cutting the expansion after diagram a.) can be a good approximation, as we

will see in chapter 5. Even though the theory is constructed in such a way that the

dominant effects of the perturbation series are carried by low order diagrams, it is in

some cases necessary to include higher order diagrams or special sub classes of diagrams

to describe special physical situations [64].

One of these examples is the description of long ranged spatial correlations, as for ex-

ample in the case of the 2d Hubbard model in the vicinity of the pseudo-gap formation.

Here it is necessary to sum up a ladder of diagrams in order to describe correctly the

physical situation. The reason for this is that, as mentioned earlier, the coupling of

dual fermions to the reference problem is purely local. As a consequence all spatial

correlations are carried by the connecting lines of the diagrams. Since the spatial scope

of the dual propagator is limited, one has to include diagrams with many vertices and

propagators into the self-energy in order to describe long range spatial correlations.

The construction of a ladder dual fermion approximation (LDFA) was first described

in [64], and is similar to the FLEX [67–69] approach, even though the quality of the

approximation is totally different in both cases. Whereas the FLEX is an expansion in

the bare interaction, the LDFA expands in the reducible vertex of the reference problem.

As mentioned earlier, this improved starting point of the expansion promises better con-

vergence properties.

The main idea of the LDFA is to find an approximation to the full vertex of the full

problem. This is done by iteration of the Bethe-Salpeter equation, with the full ver-

tex of the reference model being an approximation for the irreducible vertex of the full

problem. When an approximation for the full vertex is reached, the Schwinger-Dyson

equation is used to obtain the dual self-energy. At the moment the LDFA is the state of

the art implementation of the dual fermion perturbation theory.
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Figure 4.3: First diagrams contributing to the ladder dual fermion approximation and
the corresponding dual Luttinger-Ward functional.

Another important extension of the theory is the formulation of a conserving approxi-

mation in the Baym-Kadanoff sense [70, 71]. Since the transformations to dual variables

and back are exact, it is sufficient to obtain a conserving approximation in the dual

space. As a consequence, energy, particle number and momentum will be also conserved

in terms of real fermions.

Technically such a theory can be constructed in terms of skeleton diagrams, that means,

connecting lines have to be understood as fully renormalized propagators. Numeri-

cally such a skeleton diagram is computed by calculating an approximation for the dual

Green’s function and then by inserting this Green’s function again into the diagrams

until a self-consistency is reached. Mathematically a conserving approximation can be

constructed as a functional derivative of a Luttinger-Ward functional. The functional

corresponding to the LDFA is depicted in Fig. 4.3.

4.3 Overview of different flavors of the theory

In the following it is shown that the dual fermion perturbation theory is able to describe

a great variety of models. We give an overview of systems, that can be treated, and

show how approximations to these problems can be constructed by varying the reference

system. The main focus will be to show the scope of the approaches and to clarify

their differences. For a more complete description of the methods we refer the reader
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Table 4.1: Overview of different flavors of the dual theory,
depending on the actual form of �(k, ω) and 4(ω).

�(k, ω) 4(ω) Name

εk/hk ∆(ω) Dual Fermion

εk/hk ∆N(ω) VLA

∆(ω) ∆N(ω) Superperturbation

εk/hk ∆N(t, t′) VLA on Keldysh contour

∆(t, t′) ∆N(t, t′) Superperturbation on Keldysh contour

to the corresponding chapters. For a quick reference the different methods have been

summarized in table 4.1 and diagram 4.4.

4.3.1 Dual fermion

The original dual fermion method has been developed with the intention to include non-

local correlations in the description of lattice problems, starting from a local reference

system. The main idea was to solve the Anderson-type reference problem efficiently

with the help of modern impurity solvers, and to treat all non-local effects perturba-

tively. This idea is illustrated in Fig. 4.5. To deduce the correct formulation of the

theory from the derivation of the last section, �(k, ω) has to be replaced by the disper-

sion relation of the lattice εk and 4(ω) by a hybridization function, ∆(ω), describing

the local problem. Since the local reference system has not been specified so far, the

choice of the hybridization function is in principle not fixed and an additional condition

is necessary to choose ∆(ω) in an optimal way.

Such a constraint can be the elimination of purely local diagrams in the perturbation

series. This can be achieved by requiring that the local contribution of the bare dual

Green’s function is zero. But this condition is exactly equal to the DMFT self-consistency

equations for the hybridization function ∆(ω). This circumstance leads to a very im-

portant connection of the DMFT approach and the dual fermion method: From a dual

fermion point of view the DMFT corresponds to the best possible local approximation



4.3. OVERVIEW OF DIFFERENT FLAVORS OF THE THEORY 77

General	
  dual	
  fermion	
  
perturba1on	
  theory	
  

Equilibrium	
   Non-­‐
equilibrium	
  

Local	
   Nonlocal	
  

Superper-­‐
turba1on	
  

Con1nuous	
  
bath	
  

Discrete	
  
bath	
  

Local	
  

Superper-­‐
turba1on	
  on	
  

Keldysh	
  contour	
  

Dual	
  
Fermion	
   VLA	
  

Nonlocal	
  

VLA	
  on	
  
Keldysh	
  
contour	
  

Figure 4.4: Overview of the different methods described in this thesis and their rela-
tion.

of the full system.

Nevertheless the DMFT hybridization function might not be the optimal choice for the

reference problem if non-local diagrams are included. Therefore the DMFT hybridiza-

tion function is chosen as a starting point for ∆(ω) and afterwards an optimal choice for

the reference system is determined self-consistently. The reader should be aware, that as

soon as ∆(ω) differs from the DMFT self-consistency solution, local diagrams contribute

again to the series expansion. An introduction to the dual fermion calculation scheme

can be found in [72].

4.3.2 Variational lattice approach

The freedom of choice for the local function 4(ω) leads to the development of the

variational lattice approach (VLA). The idea behind the VLA is to take a finite number
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Figure 4.5: Illustration of the dual fermion method: The original lattice problem
(blue) is replaced by a collection of local Anderson-type reference problems (red circles).

All non-local effects enter via the dual perturbation expansion (green particles).

Figure 4.6: Illustration of the variational lattice method: The original lattice problem
(blue) is replaced by a collection of local Anderson-type reference problems with a finite
number of bath sites. All non-local effects enter via the dual perturbation expansion

(green particles)

of bath sites coupled to an interacting impurity as a reference system for the full lattice

problem. This finite system can be solved using exact diagonalization, which promises a

good possibility to do analytic continuation of the final result, because of the numerical

precision inherent from the ED solution. In the following the hybridization function for

this reference model is denoted by ∆N(ω), where N is the number of bath sites. The

conceptual idea of the VLA is depicted in Fig. 4.6. It is important to note that this

approach does not necessarily need a convergence in the number of bath sites as for
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example the DMFT with ED as solver. The fundamental difference is that in the dual

fermion approach the local hybridization function can be arbitrary, which means if all

possible diagrams are summed up then every 4(ω) will lead to the solution of the full

problem. In the DMFT a convergence in the number of bath sites is needed, because

the self-consistency condition can not be fulfilled on the finite subspace of ∆N(ω). This

implies that in the VLA a small number of bath sites and diagrams might be sufficient

to get a good approximation for the lattice model.

Because of its construction the VLA is somewhat similar to the hybridization expansion

technique for lattice models [73–77]. In the latter approach a perturbation around the

atomic limit is performed, which corresponds to the VLA, if the hybridization function

is zero for all frequencies. So the VLA can be seen as a generalization of the latter

approach. In this sense the VLA is variational, because the additional bath parameters

allow to optimize the function ∆N(ω). In the hybridization expansion such a variation

is not possible because of the missing bath.

4.3.3 Superperturbation

The superperturbation (SPERT) is a solver for Anderson impurity models. The full

problem is characterized by a hybridization function ∆(ω), which replaces �(k, ω) in

the former derivation.

Such a problem can be solved by methods like the CTQMC or the ED. But both meth-

ods have their drawbacks: The CTQMC relies on statistical methods such as MAXENT

to continue the final data to the real axis because of the statistical error inherent to the

method. The ED on the other hand makes it possible to calculate quantities directly on

the real axis, but the result is only valid in the limit of an infinite number of bath sites.

Consequently one is faced with an exponentially growing Hilbert space when using this

method.

The idea of the SPERT is to improve the exact diagonalization result via perturbation

expansion. Therefore a system with a small number of bath sites, described by a hy-

bridization function 4(ω) = ∆N(ω), is chosen as a reference system. The expansion is

constructed in such a way that it is possible to converge to the exact result using two
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Figure 4.7: Concept of the super perturbation solver: The Anderson impurity problem
with a hybridization function ∆(ω), is described by a reference system with a small
number of bath parameters. Then the difference is treated perturbatively by dual

fermions (green dots).

opposite ways. First by improving the reference system by including more bath sites,

and second by including higher orders into the series. In addition to that the superior

possibility of ED to continue data to the real axis is preserved, because the SPERT is

based on ED data.

Like the VLA the SPERT can be seen as a generalization of the hybridization expansion

solver for impurity problems proposed in [78] to reference system including a bath. The

concept of the SPERT is illustrated in Fig. 4.7.

4.3.4 Systems out of equilibrium

The dual perturbation theory is general enough to describe systems out of equilibrium.

The concept of the method stays the same, the full problem is described by a smaller

reference system and the difference of both problems is treated perturbatively. The

only differences are the details of the involved quantities and the underlying theory. In

the non-equilibrium case the hybridization function will not depend on one imaginary

time frequency, but on two time arguments, 4(t, t′) = ∆(t, t′). In addition to that the

perturbation expansion is constructed with the help of the Keldysh formalism and not

on Matsubara frequencies. Besides these changes all equations will be very similar.

It is in principle possible to formulate a general dual fermion technique, a VLA, and

a SPERT for the non-equilibrium case. In this thesis the SPERT for a system out of

equilibrium is described in Chapter 7 and a formulation of the VLA is planned.



Chapter 5

Superperturbation solver for the

Anderson impurity problem

The investigation of modern materials and their compounds is one of the main aspects

of modern condensed matter theory. If the material under consideration exhibits strong

correlations, most approaches rely in one way or the other on the solution of an Anderson

impurity model. The LDA+DMFT approach for example is one of the most common

approaches in this case.

As mentioned in Chapter 3, there are several solvers available. Continuous-time quan-

tum Monte Carlo algorithms for instance are today efficient enough to treat 5 or 7 orbital

systems in the DMFT approach. Nevertheless, they suffer from some severe drawbacks:

All available implementations work on the imaginary time axis and need a complicated

continuation to the real axis, which is up to now an ill-posed problem. Additionally, the

stochastic nature of quantum Monte Carlo causes a strong fermionic sign problem away

from half-filling if complicated interaction terms are involved.

An alternative is the exact diagonalization (ED). Here the continuous bath is discretized

by a collection of effective bath sites. This approach has no problems with analytic

continuation, since an analytic representation of the Green’s function is known and all

quantities are numerically exact up to floating point precision. However the disadvantage

of the scheme is that the method only converges to the exact result in the limit of infinite

81
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number of bath sites. Even though this convergence is exponentially fast for quantities

on the imaginary axis, the limit of a continuous bath is often hard to reach, due to the

also exponentially fast growing Hilbert space. At the moment the world record in the

total number of sites is of the order of 16. This means that for a 5 orbital model only

2 bath sites for each orbital are available at maximum. This limits the approach to

systems with a few orbitals only.

There are also alternative solvers available, which work by perturbation expansion around

some trivial limits. These solvers are the IPT [79, 80], the FLEX [67], the NCA [81]

and the hybridization expansion solver [78]. All these algorithms are limited to a small

parameter window and fail outside this region. The FLEX and the IPT are applicable

in the weak-coupling case, the hybridization solver in the strong coupling area.

In the following chapter we will introduce a solver, which combines the strength of all

mentioned methods, the superperturbation solver for the Anderson impurity model. The

key idea is to apply a dual transformation in order to expand around an exact diagonal-

ization result. This procedure promises good possibilities to do an analytic continuation,

because all data will be numerically exact and analytic formulas are known for all quan-

tities and transformations. Additionally, this perturbation expansion will have a non

trivial starting point: the exact diagonalization result. This allows to converge to the

exact result in two ways: First by improving the ED starting point by including more

bath sites and making the perturbation smaller, and second by including more diagrams

into the perturbation expansion. Additionally the method at hand has two exact limits,

the weak-coupling limit and the strong coupling regime.

The presented results have been obtained in collaboration with Hartmut Hafermann,

who provided the general dual fermion code to treat more than one diagram and per-

formed the part of the simulations that compared the Kondo temperature to NRG (Fig.

5.7). Some of the results have been already published in [56, 65].
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5.1 Dual formulation of the problem

In the following section we will briefly review the main steps of the dual transformation in

the superperturbation case and give a collection of the main formulas. A detailed deriva-

tion in its most general form can be found in chapter 4. The model under consideration

is the Anderson impurity model with the following Hamiltonian:

H =
∑
kα

εbkαb
†
kαbkα +

∑
α

εcαc
†
αcα +Hloc[c

†, c] +
∑
kαβ

(
V αβ
k c†αbkβ + V ∗βαk b†kαcβ

)
. (5.1)

The definitions concerning indices and abbreviations are the same as in Eq. (2.1) in

chapter 2. Greek letters are used as a combined index for orbital and spin degrees

of freedom. b† and b are the bath, c† and c the impurity creation and annihilation

operators. Hloc is the local electron-electron interaction, V αβ
k the transition amplitude

for a hopping process from the bath to an impurity orbital. To derive a dual formulation

of the problem, the action representation of the AIM is employed:

SF[c∗, c] = −T
∑
ωab

c∗ωa[(iω + µ)1−∆(ω)]abcωb + SNG[c∗, c]. (5.2)

Here ∆(ω) is the hybridization function of the full system, which has been obtained

from Eq. (5.1), by integrating out the bath degrees of freedom. The key idea of the

superperturbation is to add and subtract the hybridization function ∆N(ω) of a properly

chosen reference system, where N is the number of bath sites used in the reference

problem. Properly chosen means in this case that the reference system is already a good

approximation to the full system and that some essential physics is already captured. In

principle the choice of ∆N(ω) is arbitrary, but since it is the aim to perform a perturbation

expansion in D = ∆N(ω)−∆(ω), it is clear that the quality of the approach will depend

on the chosen reference problem. The applied procedure of choosing the reference system

is discussed in the next section. After this step the action of the full system reads:

SF[c∗, c] = SRef[c∗i , ci]− T
∑
ab

c∗ωa[∆
N(ω)−∆(ω)]abcωb (5.3)

SRef[c∗i , ci] = −T
∑
ab

c∗iωa[(iω + µ)1−∆N(ω)]abciωb + SNG[c∗, c]. (5.4)
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This expression has a very convenient form: It consists of the action of a finite reference

system with the same interaction as the full problem and an additional part, which

is the difference of both systems: D = ∆N(ω) − ∆(ω). To formulate a perturbation

expansion in this quantity it is necessary to change to the dual space, since in the c-

fermion representation the action contains a non-quadratic part and Wick’s theorem is

not applicable. The main steps of this transformation have been presented in Chapter 4

and will only be briefly discussed here. In a first step dual variables are introduced using

an exact Hubbard-Stratonovitch transformation. The transformation can be written in

the following way:

ec
∗
1n12T −1

23 n34c4 =
1

det T

∫
D[f∗, f ]e−f

∗
1 T12f2+f∗1 n12c2+c∗1n12f2 , (5.5)

where n and T have the following form:

n = −g−1(ω)

T = g−1(ω)[∆N(ω)−∆(ω)]−1g−1(ω)

→ n12T −1
23 n34 = [∆N(ω)−∆(ω)]14 = D. (5.6)

After the transformation, the resulting action is a mixed representation of c- and f -

fermions:

SF[c∗, c, f∗, f ] =SRef[c∗, c] + SC[f∗, f, c∗, c]

+ T
∑
ab

f∗ωa[g
−1(ω)[∆N(ω)−∆(ω)]−1g−1(ω)]abfωb,

(5.7)

with:

SC[f∗, f, c∗, c] =T
∑
ab

f∗ωag
−1(ω)abcωb + T

∑
ab

c∗ωag
−1(ω)abfωb. (5.8)

The remaining c-fermions are integrated out by introducing a dual interaction potential,

which is chosen in such a way, that the following identity holds:∫
exp(−(SRef[c∗, c] + SC[c∗, c, f∗, f ]))D[c∗, c]

!
= ZRef exp(−T

∑
ab

f∗ωag
−1(ω)abfωb + V[f∗, f ]).

(5.9)
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After expanding both sides in powers of f and comparing the coefficients, the final dual

action has the following form:

Sd[f∗, f ] = −T
∑
ab

f∗ωa[G
d
0(ω)]−1

ab fωb + V[f∗, f ], (5.10)

with Gd
0 being the bare dual Green’s function

Gd
0(ω) = −g(ω)[g(ω) + [∆N(ω)−∆(ω)]−1]−1g(ω) (5.11)

and V[f∗, f ] the dual potential:

V[f∗i , fi] =
∑
i

νi[f
∗
i , fi] = −1

4
γ

(4)
1234f

∗
1 f2f

∗
3 f4 +

1

36
γ

(6)
123456f

∗
1 f2f

∗
3 f4f

∗
5 f6 ∓ . . . . (5.12)

The dual perturbation theory is then formulated in a standard way by expansion in the

dual potential and application of Wick’s theorem. The diagrams are the same as already

discussed in chapter 4, see Fig. 4.2. After summing up a sub-class of diagrams the dual

Green’s function can be transformed back by the following exact relation:

G(ω) = (∆N(ω)−∆(ω))−1 + [g(ω)(∆N(ω)−∆(ω))]−1

×Gd(ω)[(∆N(ω)−∆(ω))g(ω)]−1, (5.13)

where G(ω) is the Green’s function of the full system and g(ω) the Green’s function of

the reference system.

5.1.1 The first diagram

In the following a special representation of the first diagram is presented, which does

not require the explicit calculation of the vertex. The formulation in this section was

introduced by X. Dai [78] in the case of the hybridization expansion solver for the An-

derson impurity problem, which has a similar form as the superperturbation solver. As

a start we split the calculation of the first diagram into two parts: One containing the
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two particle Green’s function and the other containing the trivial contribution only:

Σ
d(a)
12 = −γ1234G

d
43 (5.14)

= g−1
11′g

−1
33′(χ1′2′3′4′ − g1′2′g3′4′ + g1′4′g3′2′)g

−1
2′2g

−1
4′4G

d
43 (5.15)

= g−1
11′g

−1
33′(χ1′2′3′4′)g

−1
2′2g

−1
4′4G

d
43 + g−1

11′g
−1
33′(−g1′2′g3′4′ + g1′4′g3′2′)g

−1
2′2g

−1
4′4G

d
43 (5.16)

= Σd0
12 + Σd1

12 (5.17)

Both terms can be significantly simplified if one performs the multiplication of the

Green’s functions with their inverse. For Σd0
12 this leads to the following result:

Σd0
12 =g−1

11′g
−1
33′(χ1′2′3′4′)g

−1
2′2g

−1
4′4G

d
43 (5.18)

=− g−1
11′g

−1
33′(χ1′2′3′4′)g

−1
2′2g

−1
4′4g45∆d

56g63 (5.19)

=− g−1
11′(χ1′2′65)g−1

2′2∆d
56 (5.20)

=− g−1
11′(χ1′2′3′4′)g

−1
2′2∆d

4′3′ . (5.21)

In this expression the important quantity ∆d has been introduced. It has the following

definition:

∆d
12(ω) = [g(ω) + (∆N(ω)−∆(ω))−1]−1

12 (5.22)

and is connected to the bare dual Green’s function by the subsequent relation:

Gd
0 = −g∆dg. (5.23)

The expression for the second part of the first diagram can also be strongly reduced by

explicitly writing out all contributing terms:

Σd1
12 =g−1

11′g
−1
33′β(−g1′2′g3′4′ + g1′4′g3′2′)g

−1
2′2g

−1
4′4G

d
43 (5.24)

=− g−1
11′g

−1
33′β(−g1′2′g3′4′ + g1′4′g3′2′)g

−1
2′2g

−1
4′4g45∆d

56g63 (5.25)

=− g−1
12 β Tr(∆dg) + ∆d

12. (5.26)

The expression for the total self-energy contribution of the first diagram reads:

Σ
d(a)
12 = −g−1

12 β Tr(∆dg) + ∆d
12 − g−1

11′(χ1′2′3′4′)g
−1
2′2∆d

4′3′ . (5.27)
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The main finding of X. Dai was that the spectral representation of the second part in

Matsubara frequencies can be written in a very advantageous form:

Σ
d(0)
12 (iω) =

1

β

∑
iωn′

χ1234(iω, iω, iω′, iω′)∆d
43 =

∑
34

∑
ijkl

×

+〈c1c
∗
3c4c

∗
2〉ijkl

[ R34(Ej , Ek)

Ejl(iω − Eji)
+
R34(El, Ek)

Elj(iω − Eli)
+

Q34(iω,Ei, Ek)

(iω − Eli)(iω − Eji)
]

+〈c1c4c
∗
3c
∗
2〉ijkl

[ R34(Ek, Ej)

Ejl(iω − Eji)
+
R34(Ek, El)

Elj(iω − Eli)
− Q34(−iω,Ek, Ei)

(iω − Eli)(iω − Eji)
]

+〈c∗3c4c1c
∗
2〉ijkl

[ R34(Ek, Ej)

Eki(iω − Elk)
+
R34(Ei, Ej)

Eik(iω − Eli)
− Q34(−iω,El, Ej)

(iω − Eli)(iω − Elk)
]

+〈c4c
∗
3c1c

∗
2〉ijkl

[ R34(Ej , Ek)

Eki(iω − Elk)
+
R34(Ej , Ei)

Eik(iω − Eli)
+

Q34(iω,Ej , El)

(iω − Eli)(iω − Elk)
]

+〈c4c1c
∗
3c
∗
2〉ijkl

1

(iω − Ekj)(iω − Eli)
×[

R34(Ek, El)−R34(Ej , Ei) +Q34(iω,Ej , El)−Q34(−iω,Ek, Ei)
]

+〈c∗3c1c4c
∗
2〉ijkl

1

(iω − Ekj)(iω − Eli)
×[

R34(El, Ek)−R34(Ei, Ej) +Q34(iω,Ei, Ek)−Q34(−iω,El, Ej)
]
,

(5.28)

with the following definitions for the matrix elements:

〈OaObOcOd〉ijkl = 〈i|Oa|j〉〈j|Ob|k〉〈k|Oc|l〉〈l|Od|i〉. (5.29)

The functions R and Q are direct consequence of the Fourier transform and have the

following definition:

R12(Ei, Ej) =
1

Z
(e−βEi + e−βEj )

1

β

∑
iω′

∆d
12(iω′)

iω − Eij
, (5.30)

Q12(iω,Ei, Ej) =

−
β
Z e
−βE2∆d

12(iω) for Ei = Ej

1
Z (e−βEi − e−βEj ) 1

β

∑
iω′

∆d
12(iω′)

iω′−iω−Eij else.
(5.31)
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Special attention has to be given to the divergences in the first 4 lines of Eq. (5.28).

They can be lifted by application of L’Hosptial’s rule, which results in the following

formulae:

first line: Elj → 0 :
R(1)

34 (Ej , Ek)

iω − Eji
+
R34(Ej , Ek)

(iω − Eji)2
(5.32)

second line: Elj → 0 :
R(2)

34 (Ek, Ej)

iω − Eji
+
R34(Ek, Ej)

(iω − Eji)2
(5.33)

third line: Eik → 0 :
R(1)

34 (Ek, Ej)

iω − Elk
− R34(Ek, Ej)

(iω − Elk)2
(5.34)

fourth line: Eik → 0 :
R(2)

34 (Ej , Ek)

iω − Elk
− R34(Ej , Ek)

(iω − Elk)2
. (5.35)

Here the notationR(1)
12 (Ei, Ej) = ∂R12(Ei, Ej)/∂Ei andR(2)

12 (Ei, Ej) = ∂R12(Ei, Ej)/∂Ej

have been used. These derivatives evaluate to:

R(1)
12 (Ei, Ej) =

1

Zβ
(e−βEi + e−βEj )

∑
iω′

∆d(iω′)

(iω′ − Eij)2
− e−βEi

Z

∑
iω′

∆d(iω′)

iω′ − Eij
(5.36)

R(2)
12 (Ei, Ej) = − 1

Zβ
(e−βEi + e−βEj )

∑
iω′

∆d(iω′)

(iω′ − Eij)2
− e−βEj

Z

∑
iω′

∆d(iω′)

iω′ − Eij
. (5.37)

The advantages of the formulation at hand can be summarized in the following two

points:

Computational speed up: The main numerical effort in calculating the first dia-

gram stems from its frequency dependence. In the present formulation the major

contribution originates from the loop over Matsubara frequencies in the functions

R and Q. Since both functions only depend on energy differences, they can be

precalculated and stored in memory. The additional utilization of degeneracies

can decrease the numerical effort even further. In comparison to the ’standard’

computation of the vertex the speed gain is two orders of magnitude.

Analytic continuation: In this formulation it will be possible to do an exact analytic

continuation of the first diagram without the usage of any additional method like

Padé or MAXENT. The continuation requires the transition from iω → E + iδ.
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Special care has to be taken concerning the functions R and Q, this will be done

in section 5.6.

5.2 Exact limits of the theory

In this section it will be shown that the superperturbation impurity solver naturally

incorporates three exact limiting cases, the weak- and strong-coupling regimes and the

limit of an infinite number of bath sites. In order to discuss the first two cases we assume

that the perturbation expansion is done around the atomic limit, which means D = −∆.

5.2.1 Weak-coupling limit

The first exact limit of the theory is the limit of weak interaction and large hybridization.

For this problem it is possible to write down an analytic representation of the vertex in

the single band atomic limit:

γ↑↓(ω1, ω2, ω3, ω4) =− U +
U3

8

ω2
1 + ω2

2 + ω2
3 + ω2

4

ω1ω2ω3ω4
+

3U5

16ω1ω2ω3ω4

+ β
U2

4

1

1 + eβU/2
2δω2,−ω3 + δω1,ω2

ω2
2ω

2
3

(
ω2

2 +
U2

4

)(
ω2

3 +
U2

4

)
− βU

2

4

1

1 + e−βU/2
2δω2,ω3 + δω1,ω2

ω2
1ω

2
3

(
ω2

1 +
U2

4

)(
ω2

3 +
U2

4

)
,

(5.38)

γ↑↑(ω1, ω2, ω3, ω4) =β
U2

4

δω1,ω2 − δω2,ω3

ω2
1ω

2
3

(
ω2

1 +
U2

4

)(
ω2

3 +
U2

4

)
. (5.39)

For small U the leading order of γ↑↓ is −U and the limit of the bare dual Green’s function

is:

lim
∆→∞

Gd
0 = − lim

∆→∞
g(g −∆−1)−1g (5.40)

= −g, (5.41)

where g is the atomic Green’s function. For weak interaction g can be approximated

by the bare Green’s function, since the self-energy is almost zero. Consequently the
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superperturbation expansion is totally equivalent to the standard expansion in U in the

case of weak interaction and strong hybridization. This naturally implies that the theory

is exact for U = 0.

5.2.2 Strong-coupling limit

In the following it is shown that for the weak hybridization limit the results of X. Dai in

[78] are recovered. Starting from the atomic limit the following approximation for the

dual Green’s function is used:

Gd = Gd
0 +Gd

0Σ
d(a)
0 Gd

0 . (5.42)

Here Σ
d(a)
0 is the already known expression for the first diagram:

Σ
d(a)
0 |12 = −γ1234G

d
0 |43. (5.43)

Approximation (5.42) can be simplified further by inserting the explicit definition of the

bare dual Green’s function and exploiting that g∆d = [1 + (gD)−1]−1 holds:

Gd = Gd
0 + [1 + (gD)−1]−1

((
χ− χ0

)
∆d
)

[(Dg)−1 + 1]−1. (5.44)

In order to derive an approximation for the c-Green’s function, Eq. (5.44) is inserted

into the expression for the back transformation (5.13):

G =A+B, (5.45)

with

A =D−1 + (gD)−1Gd
0(Dg)−1 (5.46)

B =(gD)−1[1 + (gD)−1]−1
((
χ− χ0

)
∆d
)

[(Dg)−1 + 1]−1(Dg)−1. (5.47)

Both terms can be simplified further:

A =D−1 + (gD)−1Gd
0(Dg)−1 (5.48)
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=D−1 −D−1∆dD−1 (5.49)

=D−1 −
[
DgD +D

]−1
(5.50)

=g(Dg + 1)−1. (5.51)

B can be brought into a more convenient form if one simplifies the coefficients on the

left and right:

(gD)−1[1 + (gD)−1]−1 =
[
Dg + 1

]−1
(5.52)

[1 + (Dg)−1]−1(Dg)−1 =
[
gD + 1

]−1
. (5.53)

The final result for the c-Green’s function reads:

G = g(Dg + 1)−1 +
[
1 + gD

]−1
((
χ− χ0

)
∆d
)[
Dg + 1

]−1
. (5.54)

In order to recover the strong-coupling limit, we expand to first order in D = −∆→ 0,

which gives the following result:

G12 =g12 − [gDg]12 +
(
χ1234 − χ0

1234

)
D43 (5.55)

=g12 − [gDg]12 + χ1234D43 − g12 Tr(Dg) + [gDg]12 (5.56)

=g12 + χ1234D43 − g12 Tr(Dg) (5.57)

=g12 − χ1234∆43 + g12 Tr(∆g). (5.58)

The last expression corresponds exactly to the results obtained by X. Dai in [78] for the

strong-coupling impurity solver. The different sign in front of χ is due to a different

definition for the two particle Green’s function in [78].

5.2.3 Large number of bath sites

As we have seen, the present solver is exact in two very opposite limits, the weak- and

strong-coupling regime. This unique situation promises also a good convergence in the

intermediate region.

The situation can be further improved by changing the starting point of the perturbation
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expansion. On the one hand it is possible to alter the frequency dependence of the

reference system by changing the weight function or on the other hand it is possible to

increase the number of bath sites in order to make the perturbation smaller. This is

possible because the theory is naturally exact in the limit of an infinite number of bath

sites, when the reference system coincides with the full system. This statement sounds

trivial but is actually a very unique situation. The present solver is exact in two opposite

limits and in the intermediate regime a convergence of the theory can be achieved by

including more bath sites. This implies that one is able to adjust the reference system

to the needs of the actual problem. Such a procedure is not possible in the ’standard’

perturbation theory, where one is in most cases limited to an easy starting point.

Choice of the reference system In principle the effective parameters of the ref-

erence system can be determined as described in section 3.1, by the minimization of a

predefined weight function:

d =
1

Nω

Nω∑
ωn

ω−sn |∆n(iωn)−∆(iωn)|2. (5.59)

By fixing the parameters Nω and s it is possible to fix the region where the difference of

both hybridization functions receives a higher weight. In this chapter we use a different

strategy. Since all calculations were performed at half-filling, a N -bath site reference

system has N free parameters to choose. These parameters were determined in such a

way that both hybridization functions coincide exactly on the first N frequencies. This

procedure naturally improves the result of the perturbation expansion at low frequencies

and is advantageous if one is interested in the physics at the Fermi level.

5.3 A first test

To test the presented approach, various approximation schemes of the superperturba-

tion were benchmarked against CTQMC calculations. As a first test a single impurity

Anderson model with Hubbard interaction HInt = Un↑n↓ and a semicircular density of



5.3. A FIRST TEST 93

(0)

∆

(3)

(1)

∆(2)

∆

∆
exact−0.7

−0.5

−0.4

−0.3

−0.65

 0  0.2  0.4  0.6  0.8  1  1.2  2 1.5 1.4  1 0.5 0

 2 1.5 1 0.5 0

−0.1

−0.2

−0.3

−0.4

−1

initial
a

ctqmc

a,b,c
a,b

 0.5 0.45 0.4 0.35 0.3

−0.55
−0.575

−0.6
−0.625

−0.9

−0.8

−0.6

iωiω

I
m
G
(i
ω
)

I
m
∆
(i
ω
)

Figure 5.1: Results for a superperturbation calculation with Hubbard interaction and
a semicircular density of states. The parameters are: β = 30 and U/(2t) = 3. Left:
Dependence of the superperturbation result on the number of bath sites used. The
calculations have been performed including the first two box diagrams. Already one bath
site gives a good approximation, even though the difference between the hybridization
function of the full system and the reference system is quite high, as shown in the inset.
Right: Dependence on the number of diagrams used. Calculations were performed for
one bath site. An increase in the number of diagrams leads to fast convergence of the
perturbation series. The curves for two and three diagrams are nearly indistinguishable,
the curve including three diagrams is closer to the exact result. The most prominent

effect is carried by the first diagram, which gives by far the largest correction.

states with bandwidth W = 4t was considered:

∆(iω) =
2t2

iω + i
√

4t2 − (iω2)
. (5.60)

First the dependence on the total number of bath sites in the reference system was

investigated. Therefore, several simulations with a varying bath cluster size from 0 to 3

were performed for a fixed number of diagrams. The effective parameters of the refer-

ence system were chosen in such a way that the hybridization function of the full system

coincides with the one of the reference system on the first N Matsubara frequencies.

The left part of figure 5.1 shows the results of calculations performed for β = 30 and

U/(2t) = 3 at half-filling. The dual self-energy was approximated by the first two boxed-

type diagrams (diagrams a.) and b.) in figure 4.2) and was computed in a self-consistent

manner, leading to a conserving approximation in the Baym-Kadanoff sense.

The convergence towards the exact CTQMC result (black line) is exponentially fast as

one expects since the method is based on exact diagonalization. Already one bath site



94 5. SUPERPERTURBATION SOLVER FOR THE ANDERSON IMPURITY PROBLEM
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Figure 5.2: Maximum entropy density of states for CTQMC data and superperturba-
tion calculations including no (∆(0)) and one (∆(1)) bath site. Whereas the perturbation
around the atomic solution shows no resonance at the Fermi level, the one bath solution

exhibits a clear Kondo resonance.

gives a good approximation to the exact solution, even though the difference in the hy-

bridization functions is quite high, as shown in the inset. The improvement of the ED

result can be visualized, if one compares the red curve of the left figure (SPERT solution)

to the blue curve of the right plot, which shows the ED result for one bath site. The

dual correction is quite large.

In order to investigate the convergence properties of the dual perturbation series, the

amount of bath sites was fixed to one and the simulations were repeated for different

number of diagrams. The right plot of Figure 5.1 shows the results. The most promi-

nent correction is carried by the first diagram. The inclusion of higher orders gives only

little improvement, as one sees in the inset. From both investigations one can conclude

that for the applied parameters, an approximation including only one bath site and the

first dual diagram gives an already good approximation to the problem, even though the

difference between the solution of the reference system and the full system is quite large.

In the investigation of the Anderson impurity model, one is often not interested in

the Green’s function on Matsubara frequencies, but in its analytic continuation to the

real axis, the density of states. In order to compare the density of states calculated in

the superperturbation framework to CTQMC data, we employ the maximum entropy

method. For CTQMC the application of this method is necessary, because the data sets

contain statistical noise. In the superperturbation case this procedure is in principle not

necessary, because the data is numerically exact, but in order to treat both methods on
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the same footing MAXENT has been used in both cases. Results for a direct analytic

continuation or a continuation via Padé will be discussed in section 5.6.

The left plot of figure 5.2 shows the maximum entropy density of states of CTQMC data

and superperturbation results for zero bath sites (∆(0)) and for one bath site (∆(1)). The

parameters and the approximation of the dual self-energy are the same as in figure 5.1.

In accordance with reference [78] we were not able to find a quasiparticle peak at the

Fermi level, when starting from the atomic reference system, but the solution including

one bath site already exhibits a Kondo resonance and is in good agreement with the

CTQMC result.

5.4 Application in the DMFT framework

In the last section it was shown that the superperturbation solver gives good approxima-

tion to the Anderson impurity model, even if the number of bath sites is small and only a

few diagrams are taken into account. In the following it will be shown that the superper-

turbation gives also reliable results when the method is applied in self-consistent DMFT

calculations. It is not a priori clear that the results of the superperturbation remain sta-

ble in an iterative procedure like DMFT. Systematic errors could increase from iteration

to iteration and lead to a break down of the approximation. We therefore benchmark

the superperturbation against CTQMC in a DMFT calculation. In the following a two-

dimensional Hubbard model with nearest neighbor hopping is considered and the point

of the Mott insulator transition is investigated. From CTQMC calculations it is known

that in the DMFT framework the transition takes place at a critical U of Uc = 9.35 and

a temperature of T/t = 0.1.

Several simulations for different U were performed and compared to the CTQMC result.

In the superperturbation calculations the implementation of section 5.1.1 has been used,

i.e., only the first box type diagram without any self-consistency in the dual diagram-

matic technique has been considered.

The four plots in figure 5.3 show the results for different number of bath sites. The

upper row corresponds to calculations performed with one bath site, the lower row to
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Figure 5.3: DMFT analysis of the Mott metal insulator transition in the 2D-Hubbard
model. The left column shows results for the self-consistent local Green’s functions.
Solid lines correspond to exact CTQMC data, dashed lines to SPERT results. The
right column shows the corresponding hybridization functions. In the upper row results
including 1 bath site are illustrated. Here some small deviations in the local Green’s
function in the vicinity of the transition are visible. In the lower row results including

three bath sites are depicted, they completely coincide with the CTQMC results.

calculations including three bath sites. From the upper left plot it is clear that, as in

the last section, a calculation including only one bath site is also a good approxima-

tion for the DMFT. Solid lines correspond to the exact CTQMC result, whereas the

superperturbation results are depicted using doted lines. As one can see, the results are

in a very good agreement. From both calculations it is clear that a transition occurs

between U = 9 and U = 9.5, which can be deduced from the different bending at low

frequencies. The discrepancy between the SPERT and the exact result increases near

the transition. This is understandable, because the number of iterations to converge the

DMFT self-consistency equations increases exponentially at the transition. Nevertheless

the SPERT is very stable in the DMFT process, even though the difference in the hy-

bridization functions is quite large, as shown in the plot on the right side. The same
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Figure 5.4: Hysteresis in the quasiparticle weight for the 2D-Hubbard model at β =
20, calculated in the superperturbation scheme. Two different curves are clearly visible

in the coexistence region.

calculations have been performed including 3 bath sites. Here (lower row) no difference

between the SPERT and the CTQMC is visible.

In order to demonstrate that the SPERT is also capable to investigate the phase bound-

ary of the Mott metal insulator transition a hysteresis in the quasiparticle weight was

calculated. In the underlying half-filled case, Z is inversely proportional to the effective

electron mass:

Z =
me

m∗
. (5.61)

The quasiparticle weight is defined as a derivative of the self-energy on the real axis, but

can be obtained approximately on the imaginary axis using Cauchy-Riemann conditions

and an approximation for the first derivative:

Z =
[
1− dRe Σ(ω)

dω

]−1

ω=0
≈
[
1− Im Σ(iω0)

ω0

]−1
. (5.62)

Figure 5.4 shows the results for β = 20. A hysteresis is clearly visible, which proves the

coexistence of two different phases. The width of the hysteresis and its position are in

good agreement with the phase diagram in reference [82].
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5.5 The superperturbation solver and Kondo physics

Although it is known in the literature [2] that the Kondo problem is non-perturbative, a

quasiparticle peak was observed in superperturbation calculations including one or more

bath sites (see section 5.3). Because the SPERT itself is a perturbation expansion, the

natural question arises to what extent Kondo physics is included in superperturbation

results. To answer this question, this section is dedicated to the magnetic properties of

the SIAM. We investigate the impurity susceptibility using SPERT and compare again

to CTQMC. From these calculations the Kondo temperature is extracted and compared

to NRG results.

The magnetic susceptibility is defined as the derivative of the magnetization with respect

to the field:

χ =
∂M

∂h

∣∣∣
h=0

. (5.63)

Since data sets obtained from SPERT are numerically very precise the magnetization

can be easily calculated by a direct discretization of the last equation:

χ =
M(h0)−M(0)

h0
. (5.64)

In numerical calculations the discretization in the magnetic filed was fixed to h0/D =

10−5. The magnetization is perfectly linear in this regime, so that the susceptibility can

be computed nearly without any discretization error. Figure 5.5 shows the results of these

investigations for different U . Before the SPERT results are discussed, we would like

to comment on the CTQMC data. For high temperature the CTQMC results (dashed

lines) fall off like 1/T , which indicates that the thermodynamics is governed by a local

moment, which has formed on the impurity. For very low temperature the susceptibility

saturates to a constant value. This behavior is typical for the formation of a singlet

and indicates that the impurity electron is screened by the bath, which is the essential

mechanism behind the Kondo effect.

The SPERT curves (solid lines upper row) mimic this behavior, but fail to follow the

exact result for very low temperature. Here a clear deviation is visible. Again the results

can be improved by including an additional bath site (upper right plot), but the 2 bath
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Figure 5.5: Magnetic susceptibility of the SIAM calculated with ED (lower row) and
SPERT (upper row) in comparison to CTQMC data (dashed lines) for different values
of U . The SPERT approximation breaks down for very low temperature. The reason
for this behavior is the formation of a local moment in the reference system, because
the hopping v(T ) tends to zero for low temperatures and the impurity gets decoupled
from the bath. Including one more bath site (right column) improves the result, but

cannot recover the formation of a singlet.

site solution also breaks down at low temperature. The reason for this becomes clear,

if one looks at the solution of the reference system. The ED curves in the lower row

diverge as 1/T as the temperature tends to zero. This divergence is again owed to the

formation of a local moment on the impurity, which is connected with the choice of the

effective parameters for the reference system. For a semicircular density of states and

one bath site, the temperature dependence of the hopping amplitude can be written

down explicitly, if one requires that the hybridization function of the reference system

and the full system are equal on the first Matsubara frequency:

v(T ) = t

√√√√ 2

1 +

√
1 +

(
2t
πT

)2 . (5.65)
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ison to ED. For one bath site the results are drastically improved in comparison to a
temperature dependent v(T ), because the ground state of the reference system itself is
a singlet. The inclusion of an additional bath site gives no improvement because the

ground state is a free moment.

Apparently the limit v(T ) is zero for very low temperature:

lim
T→0

v(T ) = 0. (5.66)

This implies that the impurity gets decoupled from the bath in the T = 0 limit. Con-

sequently, the susceptibility of the reference system behaves like a free moment in this

limit and the SPERT breaks down, because the perturbation series cannot recover the

formation of a singlet. For two bath sites the same effect occurs, but the decoupling from

the bath in the low temperature regime is slower than for one bath sites. This leads to

a slower breakdown of the perturbation theory.

The superperturbation results can be improved drastically, if one starts the perturba-

tion expansion from a reference system, which has singlet ground state. This situation

can be reached for a system with an odd number of bath sites, if the hopping is fixed to

a temperature independent value. Figure 5.6 compares the results for one and two bath

sites. For one bath site (left curve) the ED results again falls off like 1/T for high tem-

peratures, but are constant in the low temperature regime. The corresponding SPERT

curves nicely follow this trend and no breakdown is visible in the T → 0 limit. Only a

small difference in the height of the plateau is noticeable for the v = 0.5 curve. If the

hopping is fixed to another value (v = v(T = 0.05)) an agreement within the CTQMC
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error bars can be reached. Unfortunately, no recipe for the optimal choice of the hopping

parameter for a given U was found.

If the bath is extended by an additional site the results are not improved, but again

breakdown at low temperatures (right plot). The reason for this behavior is obvious:

The ground state of the reference system is not a singlet, but a free moment.

Consequently, the choice of the reference system is extremely important. The superper-

turbation gives the best results, if the main physics is already included in the reference

system. In the case of the SIAM and the investigation of the magnetic susceptibility this

means to start from a reference system with an odd number of bath sites, which leads

to a singlet ground state.

The temperature at which the formation of the singlet starts is called Kondo temper-

ature Tk. This point is usually defined as the temperature, at which the susceptibility

reaches 70% of its maximum value, but can also be defined as the full with at half

maximum (FWHM) of the Kondo resonance. The characteristic feature of the Kondo

problem is that Tk scales exponentially with the effective coupling J = t2/U :

Tk = D exp 1/g with: g = N(0)/J. (5.67)

1The NRG results have been gratefully provided by Prof. Frithjof Anders, University of Dortmund.
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This formula is valid for a wide band density of states, where D is the width of the

band, N(0) the density of states at the Fermi level and J the coupling constant. In

order to see if the superperturbation can recover this exponential scaling, the Kondo

temperature has been determined in susceptibility calculations. The results in compar-

ison to NRG are depicted in figure 5.7. From the inset, which shows the same data

with a logarithmic scale, one can see that the NRG scales perfectly exponentially with

U . The superperturbation, on the other hand, does not follow this exponential trend,

but clearly deviates from the NRG. It follows that the SPERT does not incorporate the

correct scaling. The reason for this is the fact that only the first diagram has been used

in the SPERT calculations. It is nearly impossible to recover the exponential trend in

the interaction by summing up a finite number of diagrams. A better approach would

be to sum up an infinite series like in the ladder dual fermion or like in a dual Parquet

approach. Unfortunately, none of this schemes has been implemented yet.

An alternative way to solve the scaling problem would be to choose the hopping param-

eter v(U) of the reference system in such a way that a part of the exponential scaling

is already included in the reference system. But this approach also needs some further

analysis of the reference system properties, which has not been done at the moment.

5.6 Analytic continuation to the real axis

So far the superperturbation scheme has been formulated on the imaginary axis using

Matsubara frequencies, but the actual quantity of interest, the density of states (DOS),

requires information on the real axis . Today, there are several methods available to

extract this information from the imaginary time data via an analytic continuation.

One of those is the already mentioned maximum entropy method or the Padé approach.

Since analytic continuation is in general an ill posed problem, both methods suffer from

serious drawbacks. The MAXENT is designed for data containing statistical noise and

has therefore a bad resolution on the real axis. Very fine structures, like multiplets for

example, are very hard to resolve using this method. The Padé has a higher resolution

on the real axis but requires very accurate input data, because the solution of a badly

conditioned linear system of equations is needed to perform the continuation.
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Since the SPERT is based on the exact diagonalization of a reference system, the best

way to access real axis information is to directly compute on the real axis. In ED this

is easily done by directly performing the transition iω → E + iδ, where δ is a small

broadening parameter. For the one particle Green’s function this leads to the following

formula:

g(E + iδ)αβ =
1

Z

∑
n,m

〈n|cα|m〉〈m|c†β|n〉
E + iδ + En − Em

(
e−βEn + e−βEm

)
. (5.68)

From latter expression the DOS can be obtained as the negative imaginary part:

DOS(E) = − 1

π
Im g(E + iδ). (5.69)

Since all dual transformations can be written down analytically, such a transition is

also possible in the SPERT case. Special attention has to be paid to the calculation of

diagrams, since these computations involve summations over fermionic loops, where the

continuation is more involved.

In the following the analytic continuation of the first diagram (diagram a.) of Fig. 4.2)

is discussed. We use the formulation of section 5.1.1 for this purpose.

Here the analytic continuation reduces to the continuation of the function Q(iω,Ei, Ej).

Since R(Ei, Ej) does not depend on iω the function can be in principle calculated using

definition (5.30). In order to treat both function evaluations on the same footing, we

discuss in the following how R and Q can be calculated via an integral along the real

axis.

The general idea is very simple and can be found in nearly every textbook about quantum

field theory. If one wants to find an analytic continuation of a Matsubara sum, the

problem can be rewritten as a sum over residues of the function itself times the Fermi

function, which has poles of first order at the Matsubara frequencies:

1

β

∑
iω

F (iω) = − 1

2πi

∮
C

F (E)

eβE + 1
dE. (5.70)

Such a situation is depicted in Fig. 5.8. The contour which is used for the integral

corresponds to the first picture. If the function is analytic in the rest of the complex

plane, one can deform the contour as long a no other singularity is crossed. This makes
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Figure 5.8: Illustration of the conversion of a Matsubara sum into a contour integral.
In a first step the sum is replaced by an integral over the function itself times the Fermi
function, which has poles at Matsubara frequencies. In the second and third step the
contour is deformed to two line integrals along the real axis. The illustrated contour

deformation can be applied in the calculation of R.

it possible to replace the first contour by a contour along the imaginary axis and in

the second step to deform the contour to a path along the real axis (last picture).

Consequently, the summation over Matsubara frequencies has been replaced by two line

integrals: One integral from minus infinity to plus infinity above the real axis, and one

line integral backwards below the real axis. This leads to the following expression for R:

R(E1, E2) = −X1 +X2

2πi

[∫ ∞
−∞

∆d(z+)f(z+)

z+ − E12
−
∫ ∞
−∞

∆d(z−)f(z−)

z− − E12

]
dz, (5.71)

where z± = z ± iε, with ε < π/β, and Xi = exp(−βEi)/Z. For Q the situation is

similar, but one has to take into account an additional pole in the imaginary plane at

z = iω + E12:

Q(iω,E1, E2) = (X1 −X2)

[
− 1

2πi

(∫ ∞
−∞

∆d(z+)f(z+)

z+ − iω − E12

−
∫ ∞
−∞

∆d(z−)f(z−)

z− − iω − E12

)
− Res(iω + E12)

]
.

(5.72)

The minus sign in front of the residue arises form the clockwise orientation of the contour.

Now the crucial point is to calculate the residue before doing the analytic continuation.
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Figure 5.9: Construction of the contour integral to calculate Q. In comparison to Fig.
5.8 one has to take into account an additional pole at z̃ = iω + E12.

For the residue one gets the following expression:

Res(iω + E12) =f(iω + E12)∆d(iω + E12) (5.73)

=
1

eβ(iω+E12) + 1
∆d(iω + E12) (5.74)

=
1

1− eβE12
∆d(iω + E12). (5.75)

The final result for Q(iω,E1, E2) reads:

Q(iω,E1, E2) = (X1 −X2)

[
− 1

2πi

(∫ ∞
−∞

∆d(z+)f(z+)

z+ − iω − E12

−
∫ ∞
−∞

∆d(z−)f(z−)

z− − iω − E12

)
− 1

1− eβE12
∆d(iω + E12)

]
. (5.76)

Now the analytic continuation can be performed by replacing iω with E + iδ:

Q(z̃, E1, E2) = (X1 −X2)

[
− 1

2πi

(∫ ∞
−∞

∆d(z+)f(z+)

z+ − z̃ − E12

−
∫ ∞
−∞

∆d(z−)f(z−)

z− − z̃ − E12

)
− 1

1− eβE12
∆d(z̃ + E12)

]
, (5.77)

with z̃ = E + iδ and z± = z ± iε. The last expression completes the analytic contin-

uation. R and Q have been rewritten as a contour integral along the real axis and all



106 5. SUPERPERTURBATION SOLVER FOR THE ANDERSON IMPURITY PROBLEM

other quantities can be calculated by a substitution of iω with E + iδ.

Nevertheless a few remarks are necessary. First of all the reader should not mix the two

quantities ε and δ. The first one is the distance of the integration contour to the real

axis, the latter one the broadening of the final solution. In any case, δ should be greater

than ε, because the residue was supposed to lie outside the contour.

Numerically the evaluation of the real axis integrals is not very difficult and a simple

quadrature rule (Simpson for example) is sufficient to solve the integrals. For low tem-

peratures one should be aware of the fact that ∆d itself has a second order pole at zero.

This makes it hard to compute the integrals numerically on a fixed grid. In this case the

contour integrals were solved by an adaptive Gauss-Kronrod rule taken from the GNU

scientific library [15].

Figure 5.10 shows some illustrative results. In the upper left plot the calculation on

the real axis (CORA) is compared to an analytic continuation using Padé and the initial

solution of the reference system. The ED curve has a clear splitting at the Fermi level,

whereas the CORA curve exhibits a Kondo peak. The CORA is in a good agreement

with Padé. The lower left plot shows an additional example with an applied magnetic

field. Here the splitting of the peaks is clearly visible and the CORA is again in good

agreement with Padé. For completeness the data on Matsubara frequencies have been

added on the right.

5.7 The non-causality problem

From reference [78] it is known, that the strong-coupling solver for the Anderson impurity

model exhibits a non-causality problem for certain parameters. This non-causality is an

artifact of the perturbation expansion around the atomic limit and manifests itself as a

negative density of states, which is caused by a pole on the upper complex plane of the

Green’s function. Since the SPERT is closely related to the strong-coupling solver (see

section 5.2.2), non-causal behavior can also occur in the superperturbation.

Figure 5.11 shows the result of SPERT calculations with a one-bath-site reference

system for different β. The interaction was U/D = 3 and the broadening δ was fixed to

δ/D = 0.3. Blue curves show simulations with a fixed hoping amplitude in the reference
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Figure 5.10: SPERT calculations on the real axis (CORA). The upper row shows an
example for β = 10 and U/D = 3. Here the agreement between CORA and Padé is
good, but the CORA shows a more detailed resolution on the real axis. The lower row

shows the same system with an applied magnet field: B/D = 0.05.

system (v/D = 0.5) and red curves correspond to data sets with a temperature dependent

hopping parameter as discussed in section 5.2.3. Both procedures develop sharp kinks

in the low temperature regime and the red curves are non-causal above β = 50. For

the blue curves all data sets seem to be causal, but it should be clear that a smaller

parameter δ would have produced a negative density of states even for the blue data

sets.

The non-causality problem can be best understood, if one analyzes the effective action

of the superperturbation expansion. For low temperatures the DOS of the reference

system is given by a collection of delta peaks. Now the superperturbation tries to shift

and broaden these peaks in such a way that they recover the solution of the full system.

But the shift of an infinitesimally sharp delta peak to a new position is nearly impossible
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Figure 5.11: Temperature dependence of SPERT calculations for a reference system
including one bath site. The interaction was U/D = 3 and the broadening δ was fixed to
δ/D = 0.3. Blue curves show data with a fixed hopping, red curves with a temperature

dependent one. parameters: U/D = 3 and δ/D = 0.3.

for a finite order perturbation theory. Therefore the superperturbation gets more and

more problems in the DOS at low temperatures. We would like to mention that even

if it is complicated to obtain a causal DOS at low temperatures, the thermodynamic

properties, which can be accessed using imaginary time data, are in most cases very

reliable and in good agreement with other methods. From Padé one knows that a slight

change of the Green’s function on Matsubara frequencies can cause a totally different

DOS on the real axis, even though the change was very small and the thermodynamics

did not change.

To elucidate the problem in a little more detail, we discuss in the following the expansion

around a half filled atomic reference system for T = 0, which was first discussed in [83]. In

this case the atomic Green’s function has only two poles at ±U/2 and is totally analytic
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in the rest of the complex plane. This also applies for the hybridization function, which

is analytic by construction. Consequently, the only place were non-causal behavior can

arise is the dual perturbation expansion. We therefore analyze the pole structure of the

dual Green’s function. In this case the bare dual Green’s function can be written in the

following form:

Gd
0 = −g

[
g −∆−1

]−1
g (5.78)

= − ∆

g−1(g−1 −∆)
(5.79)

≈ − ∆

(ε− U/2 + i0+)(ε− U/2 + i0+ −∆(U/2))
(5.80)

Since we are only interested in the pole structure of the bare dual Green’s function and

the problem is half filled only contributions for a positive ε have been taken into account.

The hybridization function has been approximated by its value at the atomic pole, since

here the contribution of ∆ is the largest. From the last equation one can deduce that

the bare dual Green’s function is still analytic and has two close poles, one at U/2 and

an additional singularity at U/2 + ∆(U/2). Consequently, a non-causality has to enter

via the dual self-energy. We therefore analyze the dual Dyson equation:

Gd =
1

(Gd
0)−1 − Σd

(5.81)

=
∆

g−1(g−1 −∆)− Σd∆
(5.82)

≈ ∆

(ε− U/2 + i0+)(ε− U/2 + i0+ −∆(U/2))− Σd∆(U/2)
. (5.83)

The poles of this expression are given by the following solution of a quadratic equation:

εpole =
U −∆(U/2)

2
±
√(U −∆(U/2)

2

)2
+ Σd∆(U/2)− U

2

(U
2

+ ∆(U/2)
)
. (5.84)

It is clear that εpole can develop an imaginary part if the discriminant is negative. This

is the case for

Σd < −∆(U/2)

4
. (5.85)
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So the dual self-energy can bring the already very close poles of the bare dual Green’s

function even closer together, until they form an imaginary part and become complex.

From this analysis we can conclude that the non-causality behavior has its origin in the

shifting of atomic poles. This result suggest a very simple solution to the problem: One

should require that the dual self-energy is zero at the poles of the reference system. A

possible way to fulfill this additional condition is discussed in the following section.

5.8 Renormalization of the superperturbation theory

In the last section it has become clear that the non-causality problem is connected to

the shifting of poles in the reference system due to the dual self-energy. In this section

we show how this problem can be solved by the additional requirement that the dual

self-energy vanishes at the poles of the reference system. The key idea is to introduce an

additional parameter by adding and subtracting a quadratic term to the action. The free

parameter is then chosen in such a way that the dual correction vanishes at the atomic

poles. This idea was first introduced in [83] for the T = 0 case for an expansion around

the atomic problem. In this section the scheme is generalized to finite temperatures. We

start by writing down the action of the full problem:

S = − 1

β

(∑
nσ

c∗σ[iωn − µ−∆(iω)]cσ − U(n↑ − 1

2
)(n↓ − 1

2
)
)
. (5.86)

Here µ = 0 corresponds to the half filled case, which is considered in the following. Now

the Gaussian part ±λ · iω is added and subtracted. Afterwards the action is split up into

an atomic part and a part which will be treated by the perturbation expansion:

S = Sλ =− 1

β

(∑
nσ

c∗σ[iωn − µ]cσ − U(n↑ − 1

2
)(n↓ − 1

2
)
)
− λ · iωc∗σcσ︸ ︷︷ ︸

Sat
λ

(5.87)

+
1

β

(∑
nσ

c∗σ∆(iω)cσ

)
+ λ · iωc∗σcσ︸ ︷︷ ︸

S∆
λ

. (5.88)
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Both terms can be simplified further:

Sat
λ = − 1

β

(∑
nσ

c∗σ[(1− λ)iωn − µ]cσ − U(n↑ − 1

2
)(n↓ − 1

2
)
)

(5.89)

S∆
λ =

1

β

∑
nσ

c∗σ∆̃(iω)cσ, (5.90)

with ∆̃(iω) = ∆(iω) + λiω. With a few redefinitions the ladder formulation of the

problem can be evaluated using the existing code. The easiest term to handle is S∆: By

replacing ∆ with ∆̃ this part of the action is identical to the representation without λ.

The computation of Sat
λ via exact diagonalization is a bit more involved. In order to find

a Hamilton representation, one has to rescale Sat
λ in such a way that the λ parameter

vanishes. This is done by rescaling the creation and annihilation operators, which leads

to a redefinition of the physical parameters.

Sat
λ = S̃at = − 1

β

(∑
nσ

c̃∗σ[iωn − µ̃]c̃σ − Ũ(ñ↑ − 1

2
)(ñ↓ − 1

2
)
)
, (5.91)

where the following rescaling of operators has been done:

c∗σ =
1√

1− λ
c̃∗σ = Rc̃∗σ (5.92)

cσ =
1√

1− λ
c̃σ = Rc̃σ. (5.93)

The new parameters are given by:

µ̃ = RµR =
1

1− λµ (5.94)

Ũ = RRURR =
1

(1− λ)2
U. (5.95)

The expression in Eq. 5.89 can thus be calculated by diagonalization of a Hamiltonian

using rescaled parameters. Additionally, one has to take care about the rescaling of

the one particle and two particle Green’s function, which is caused by the rescaling

of operators. In the diagonalization process c-Green’s functions are calculated, but

c̃-Green’s functions are required. Therefore, one has to multiply every creation and
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annihilation matrix obtained from ED with a factor R−1. For the one and two particle

Green’s function one gets:

g̃ =〈c̃c̃∗e−S̃at〉 = 〈R−1cc∗R−1e−S
at
λ 〉 = (1− λ)gλ, (5.96)

χ̃ =〈c̃c̃∗c̃c̃∗e−S̃at〉 = 〈R−1R−1cc∗cc∗R−1R−1e−S
at
λ 〉 = (1− λ)2χλ, (5.97)

where gλ and χλ are the results from exact diagonalization and g̃ and χ̃ the quantities

needed in the perturbation expansion.

Now we are able to perform a superperturbation calculation for a given λ. The parameter

U has to be rescaled, while ∆ is replaced by ∆̃ and every fermionic operator is multiplied

by R−1. All these changes can be implemented in a few lines of code. In order to settle

the non-causality problem, it is necessary to choose the parameter λ in such a way that

the real part of the dual self-energy vanishes at the poles of the atomic reference problem:

Re Σd(εpole) = 0. (5.98)

Technically, this is done by a standard steepest descent minimization of the absolute

value of Re Σd(εpole). The computational effort for this procedure is low, since the

dimension of the Hilbert space is only 4 in this case.

Figure 5.12 shows the result of such a renormalization in dependence of λ. For β = 20

and an unscaled U of U = 3, the solution of the rescaled problem is shown. Grey curves

correspond to a solution with a negative density of states, yellow curves to a result,

which is entirely positive, and the red curve corresponds to λ ≈ 0.12, which fulfills

condition (5.98). The fulfillment of this condition leads to a positive spectral weight

and all sharp kinks have vanished from the solution. Figure 5.13 shows the real part of

the corresponding dual self-energies on the real axis. The data has been obtained via

Padé, since a direct calculation on the real axis leads to problems caused by the changed

analytic properties of ∆̃. The curves are very flat in the region of the atomic pole (U/2),

but in the zoom it is clearly visible that the fulfillment of Eq. (5.98) is reached for

λ ≈ 0.12.

The dependence of the scaling parameter λ on the interaction strength is illustrated in

figure 5.14. For low temperatures and a small interaction, λ is largest. If the temperature
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Figure 5.13: Real part of the dual self-energy. Parameters correspond to figure 5.12.
In the inset it is shown how the fulfillment of condition (5.98) is reached for λ ≈ 0.12.

gets higher, the average λ drops, because the non-causal behavior itself is reduced. For

very small interactions the minimization procedure was not able to find a valid solution

for λ. The values in the plot have been set to zero in this case. The reason for this

behavior is that the real part of the dual selfenergy does not cross the real axis in this
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Figure 5.14: left: dependence of the renormalization parameter λ on the interaction
strength. For small U and large temperatures no λ could be found, because of the
analytic features of Σd(E). right: Σd(E) for U = 2.3 and β = 5. For these parameters
the atomic pole falls into the dipped region and condition (5.98) can not be fulfilled any

more.

parameter regime, as one can see in the right plot of figure 5.14. In this case the condition

(5.98) can only be fulfilled by a very large negative λ, which is unphysical, because the

non-causality is small here.

In this section it has been shown, that by renormalization the superperturbation theory

can be turned into a causal approach. Nevertheless, this procedure does not apply to

a reference system with an arbitrary number of bath sites. The reason for this is, that

for every pole in the reference system an additional scaling parameter is required. The

question is, if by including an additional bath site the number of possible free parameters

grows faster than the number of poles in the reference system. Since an additional bath

site contributes only two extra parameters, the hopping to the bath and the chemical

potential on the bath, the dimensional limit of rescalable problems might be very low.

Consequently a deep analysis of the reference system’s pole structure is necessary.

We like to stress, that even though the presented scheme might be only a solution for

the expansion around the atomic problem, it is also the solution for the non-causality

problem of the strong-coupling solver presented by Dai and coworkers [78]. The same

rescaling should apply here.
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Figure 5.15: Example of a CORA calculation for a multi-orbital case. A three orbital
impurity with U = 1.5, U ′ = 0.7, J = 0.4, µ = 3.02 and β = 15 is embedded in a bath
with a constant density of states in the energy window |ε| < D = 2. The coupling to
the bath was given by v = 0.1. The hybridization was approximated by one bath site.
In the CORA data set the evolution of small features in the density of states is clearly

visible. In the Padé curve these small features have vanished.

5.9 Application to multi-orbital systems

In the following we briefly discuss the applicability of the superperturbation scheme as

a solver for multi-orbital Anderson impurity problems. The generalization of the theory

to these kind of models is straight forward and can be done without any fundamental

problem.

Nevertheless the maximum number of sites in the presented full diagonalization imple-

mentation of the SPERT lies in the range of 6 − 7 sites in total. This implies that the

number of bath sites per impurity orbital is strongly restricted.

There are two possible ways out of this dilemma. First one can extend the number of

bath sites drastically by employing a Lanczos type of solver for the ED part. This kind of

’Krylov superpertubation’ requires a reformulation of the theory in terms of a continuous

imaginary time τ , because the direct calculation of the vertex on Matsubara frequencies

is not possible using this framework. The reformulation is straight forward, but comes

with the price of a discretization error, when numerically treating the imaginary time.

Another approach would be to approximate the bath by a few sites only. An extreme
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example would be to replace the whole bath by one single site. This procedure is possi-

ble, but the drawback is that the reference system might not contain the symmetry of

the full system and it is a priori not clear if the SPERT is strong enough to overcome

this difficulty.

Since the Krylov implementation of the SPERT is still a future project, we present an

example for a multi-orbital SPERT calculation based on full diagonalization. Figure

5.15 shows the results. A three orbital impurity has been embedded in a bath, which

corresponds to a flat density of states in the energy window |ε| < D. The coupling to the

bath was moderate and has been approximated by a single bath site, which was equally

connected to all impurity orbitals. In this parameter regime non-causal behavior did not

occur. In comparison to the solution of the reference system a clear shift of nearly all

peaks in the CORA is visible. The Padé solution is in good agreement with the CORA

data, but fails to reproduce very small features. The reason for this is that analytic

continuation using Padé gets more complicated if the function on the real axis has rich

structure. This is exactly the case in multi orbital systems.

5.10 Conclusions

It was demonstrated that the superperturbation scheme is an efficient approximate solver

for quantum impurity problems. The theory is exact in the strong- and weak-coupling

case and gives also reliable results in the intermediate interaction regime at low tempera-

tures. Additionally, the order of approximation can be controlled by the size of the bath.

It was shown that the theory can be applied in a self-consistent DMFT scheme and gives

nearly the same results as CTQMC on the imaginary axis. Using the example of Kondo

screening, the role of the reference system was investigated in detail. It was shown, that

the best results are obtained, if the reference system incorporates the symmetries of the

full system.

A direct formulation of the superperturbation on the real axis including the first diagram

was introduced and compared to existing methods like Padé. At low temperatures it be-

came visible, that the method exhibits non-causal behavior, which arises in the vicinity
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of the atomic poles. This problem could be solved in the case of an expansion around

the atomic problem by a renormalization of the theory. The applicability of the method

to multi-orbital problems was discussed in the last section.

As mentioned in the previous section, future efforts will concentrate on generalizing the

theory to the multi-orbital case and to change from a full diagonalization scheme to a

Krylov type of solver in the ED part. Additionally, it would be interesting to extend the

perturbation expansion from a few diagrams to the summation of an infinite series like

in the FLEX or parquet, in order to investigate the Kondo scaling in some more detail.





Chapter 6

The variational lattice approach

Understanding strongly correlated electron physics is one of the major challenges of

condensed matter theory. Quantum lattice models are a prototype of such correlated

systems, where the interplay of Coulomb repulsion and free electron motion can lead to

totally new and unexpected phenomena. One successful approach to address interact-

ing lattice fermions is the dynamical mean field theory (DMFT) [6, 84]. The key idea

of the DMFT is to replace the lattice by an interacting impurity in an effective, self-

consistent, frequency dependent bath. Consequently, the DMFT fully takes into account

local quantum fluctuations, whereas spatial correlations are frozen out. The DMFT has

been successfully used to describe the Mott-Hubbard transition [6, 84] and is nowadays

a widely used tool in realistic electronic structure calculations [7, 85, 86].

However there are may cases where the k-dependence of the problem plays a crucial role.

Such problems are: The formation of the Luttinger liquid in low dimensions [87, 88], the

physics of systems near quantum critical points [89] or the formation of d-wave supercon-

ductivity [90]. In all these examples non-local correlations are essential. By construction

the DMFT is not a proper tool to describe these problems.

If the spatial correlations are only short ranged, there has been some effort to go beyond

the DMFT via various cluster extensions, such as the dynamical cluster approximation

(DCA) [11], real space periodic [91] and free cluster approaches [92], as well as the

119
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cellular-DMFT [93] (CDMFT) and the variational cluster approach [94]. These tech-

niques were able to introduce short range correlations into the DMFT scheme, but also

lack the description of long range correlations.

A way to overcome the limitation of short range correlations in the DMFT is to perform

a diagrammatic expansion around the DMFT solution. This approach was utilized in

the so called dynamical vertex approximation [95] and similar methods [96].

In this chapter we introduce a new and efficient strategy to treat non-local correlations,

the variational lattice approach (VLA). The VLA is a combination of the dual fermion

approach for k-dependent problems and the exact diagonalization technique. The key

idea is to take a reference system with a finite number of bath sites and to perform a

perturbation expansion in ∆N − εk, where ∆N is the hybridization function of the finite

reference system and εk the dispersion of the lattice. Since the hybridization function is

not specified in the derivation of the dual theory, any hybridization function will lead to

the exact result if all diagrams are summed up.

The VLA can be seen as an extension of previous work by Pairault and coworkers [73, 74],

who proposed a hybridization expansion around the atomic limit. Like in the SPERT,

it can be shown that the VLA is equivalent to this scheme in the limit of weak hy-

bridization. In comparison to an expansion around the atomic solution, the VLA has

the advantage that by including a discrete bath, the reference system can be adjusted

to the physical problem at hand and is therefore in a sense variational. Additionally

the VLA is much faster than standard dual fermion approach using CTQMC as solver.

Therefore, the VLA is a good opportunity to calculate the phase diagram of the Mott-

Hubbard transition.

This chapter is organized as follows: First the dual formalism is briefly summarized for

the VLA, then a small benchmark model is discussed. Afterwards the phase diagram for

the MIT transition is discussed in the VLA approximation.

Parts of the simulations for the MIT phase diagram (determination of the crossover line

and data points at very low temperatures) have been performed in collaboration with

Aljoscha Wilhelm.
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6.1 Formalism

In this section we briefly review the dual fermion derivation in the context of k-dependent

problems and highlight the differences between the VLA and the DF using CTQMC as a

solver. For a more detailed derivation with many useful remarks we recommend reading

chapter 4. The action of the interacting lattice can be written down as follows:

SF[c∗, c] = − T

Nk

∑
kωab

c∗kωa[(iω + µ)1− εk]abckωb +
∑
i

SNG[c∗i , ci]. (6.1)

Here εk denotes the free dispersion of the lattice and SNG[c∗i , ci] is the local Coulomb

interaction. Latin letters are a combined indices for orbital and spin degrees of freedom.

The key strategy of the approach, like in the DMFT, is to introduce a frequency de-

pendent hybridization function ∆N(ω). This function is just added and subtracted to

Eq. (6.1). In the case of the VLA this hybridization function is given by a few bath

sites, which are coupled to the impurity. The hybridization function is determined by

the hopping amplitudes and the energy levels of the bath:

∆N(ω)ab =

N∑
i

VaiV
∗
ib

iω − εi
. (6.2)

After adding and subtracting ∆N(ω) the action reads:

SF[c∗, c] = SRef[c∗i , ci]−
∑k

ab

c∗kωa[∆
N(ω)− εk]abckωb (6.3)

SRef[c∗i , ci] = −
∑i

ab

c∗iωa[(iω + µ)1−∆N(ω)]abciωb +
∑
i

SNG[c∗i , ci]. (6.4)

In this equation the same conventions for the sums as in chapter 4 (see Eq. (4.2))

have been used. Now the key idea is to solve the reference problem exactly and to

formulate a perturbation expansion around this exact solution, which formally means

to expand in ∆N(ω) − εk. The fact that SRef has non-Gaussian components makes a

standard diagrammatic expansion not applicable, since Wick theorem does not apply. To
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circumvent this problem, new fermionic variables are introduced via an exact Hubbard-

Stratonovich transformation. After integrating out the old c-variables a perturbation

expansion in the dual space will be possible. This expansion will exactly correspond

with a perturbation series around the reference system in terms of ∆N(ω) − εk. In the

case of the VLA the Hubbard-Stratonovich transformation takes the following form:

ec
∗
1n12D

−1
23 n34c4 =

1

detD

∫
D[f∗, f ]e−f

∗
1D12f2+f∗1 n12c2+c∗1n12f2 , (6.5)

with

n = −g−1(ω)

D = g−1(ω)[∆N(ω)− εk]−1g−1(ω)

→ n12D
−1
23 n34 = [∆N(ω)− εk]14. (6.6)

Here g(iω) represents the impurity Green’s function of the reference system. For a shorter

notation we have changed from Latin characters for the indices to numbers. After the

transformation the action reads:

SF[c∗, c, f∗, f ] =SRef[c∗i , ci] + SC[f∗i , fi, c
∗
i , ci]

+
∑k

ab

f∗kωa[g
−1(ω)[∆N(ω)− εk]−1g−1(ω)]abfkωb,

(6.7)

with:

SC[f∗i , fi, c
∗
i , ci] =

∑i

ab

f∗iωag
−1(ω)abciωb +

∑i

ab

c∗iωag
−1(ω)abfiωb. (6.8)

Note that because of the local character of the impurity Green’s function, the k-summation

in (6.8) could be replaced by an equivalent summation over sites. Hence the coupling

of the auxiliary fermions is purely local and SC decomposes in a sum over local terms.

With this in mind the change of variables can be completed by integrating out the old

variables. This is done by introducing the following identity:∫
exp(−(SRef[c∗i , ci] + SC[c∗i , ci, f

∗
i , fi]))D[c∗i , ci]

!
= ZRef exp(−

∑i

ab

f∗iωag
−1(ω)abfiωb + V[f∗i , fi]).

(6.9)
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The last equation has to be understood as a defining equation for the dual potential V,

which is chosen in such a way that the last identity holds. This is done by expanding

both sides in terms of dual variables and integrating out the c-part. Then both sides are

compared order by order, which results in a definition of V in terms of a series:

V[f∗i , fi] =
∑
i

νi[f
∗
i , fi] = −1

4
γ

(4)
1234f

∗
1 f2f

∗
3 f4 +

1

36
γ

(6)
123456f

∗
1 f2f

∗
3 f4f

∗
5 f6 ∓ . . . . (6.10)

In this equation γ4 and γ6 are the exact irreducible vertices of the impurity problem,

which have been already defined in previous chapters. With the final definition of the

dual potential, the expression for the dual action reads:

Sd[f∗, f ] = −
∑k

ab

f∗kωa[G
d
0(ω,k)]−1

ab fkωb + V[f∗i , fi], (6.11)

with Gd
0 being the bare dual Green’s function:

Gd
0(ω,k) = −g(ω)[g(ω) + [∆N(ω)− εk]−1]−1g(ω). (6.12)

Up to now Eq. (6.11) is just an exact reformulation of Eq. (6.1), in terms of dual

variables. The great advantage of the latter formulation in comparison to the initial one

is that now the Wick theorem is applicable and a perturbation expansion in the dual

potential is possible. This expansion exactly corresponds to an expansion around the

reference problem in terms of ∆N(ω)−εk and can be done by applying the diagrammatic

rules explained in chapter 4. This leads to the same diagrams as for the standard dual

fermion approach. After summing up a subclass of diagrams the dual Green’s function

can be transformed back using the following identity:

G(ω) = (∆N(ω)− εk)−1 + [g(ω)(∆N(ω)− εk)]−1

×Gd(ω)[(∆N(ω)− εk)g(ω)]−1. (6.13)
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Figure 6.1: Calculation procedure of the VLA: The scheme includes an outer loop,
which updates the hybridization function until a self-convergence in the effective bath
parameters is reached. The inner loop corresponds to the calculation of dual skeleton

diagrams, which lead to a conserving approximation.

6.1.1 The meaning of ∆N(ω) and the calculation procedure

Up to now the hybridization function of the reference system has not been specified and

enters therefore as an arbitrary quantity. This essentially means that Eq. (6.11) is an

exact reformulation of the initial action in Eq. (6.1) for any function ∆N(ω). Therefore,

the VLA is totally different from approaches as for example DMFT employing exact

diagonalization as a solver. In the latter case the DMFT self-consistency can be reached

only in a subspace, which is spanned by the finite number of bath sites. Such a restric-

tion is a priori not given in the VLA.

Nevertheless, it should be clear that as soon as any approximation is applied to the

approach the actual configuration of the reference system plays a crucial role and one

should expect differences for a varying number of bath sites. Consequently, the choice

of the bath parameters gets very important, if only a subclass of diagrams is calcu-

lated. In order to optimize these parameters, a self-consistent calculation procedure is

applied, which is depicted in figure 6.1. To begin the iteration, a starting guess for the

hybridization function is constructed using the interaction-free solution:

∆init(iω) = (iω + µ)−G−1
0loc(iω). (6.14)
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The same starting guess can be applied in the DMFT case, as already discussed in

paragraph 2.2. Afterwards ∆init is mapped onto the exact diagonalization impurity

problem. This is done in the same way as described in chapter 4: we require that ∆init

coincides with ∆N on the first N frequencies, where N is the number of bath sites:

∆init(iωn)
!

= ∆N(iωn) for 1 ≤ n ≤ N. (6.15)

The defined impurity problem is solved via exact diagonalization and the impurity

Green’s function g and the vertex γ are calculated. These quantities then enter the

dual perturbation series. First, the initial dual Green’s function is constructed and a

subclass of diagrams is summed up. Afterwards, a new dual Green’s function is calcu-

lated using Dyson’s equation and the dual diagrams are again computed. This process

is iterated until convergence, which means that
∑nc

n |Gd
i+1(iωn)−Gd

i (iωn)| < ε. Here i is

the iteration number, nc a cutoff for the Matsubara sum and ε a predefined convergence

parameter. The described inner loop is necessary to calculate dual skeleton diagrams

and leads to a conserving approximation. From the converged dual Green’s function it is

possible to construct a hybridization function using the following formula from ref. [56]:

∆new = ∆old + g−1Gd
locG

−1
loc. (6.16)

Here g is the Green’s function of the reference system, Gd
loc the local part of the dual

Green’s function and Gloc the local average of the lattice Green’s function. The new ∆

is then again mapped onto impurity parameters and the loop starts again.

The self-consistent iteration is stopped, when a convergence in the effective parameters

of the bath is reached. Since the hybridization function is an arbitrary quantity in the

dual theory, condition (6.16) is not unique. This update formula rather corresponds to

the condition that the local part of the dual Green’s function is zero:

Gdual
ω,r=0 = 0. (6.17)

This requirement corresponds to the minimization of purely local diagrams, which are

automatically taken into account by this condition. For the VLA it should be clear that

Eq. (6.16) can only be fulfilled approximately, because we are working with a finite
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Figure 6.2: Illustration of the benchmark model (left) and the basic idea of the VLA
approximation in this case (right). The model is given by a six site ring with onsite
Coulomb interaction and nearest neighbor hopping. The basic idea of the VLA is to
solve the reference system (blue cluster: impurity + one bath site) exactly and to treat

the non-local correlations perturbatively (green arrows).

number of bath sites. Therefore, all diagrams contribute to the dual self-energy, even

though the result has been already converged.

In the following a benchmark calculation is discussed.

6.2 A first test

To test the method, an exactly solvable problem was calculated in the VLA approxi-

mation and the results were compared to the exact data sets. As a benchmark a one

dimensional six site ring with onsite Coulomb interaction and nearest neighbor hopping

was chosen. The local density of states was calculated in three different ways: First by

exact diagonalization of the Hamiltonian, which yields in the exact result, second by

DMFT using a three bath site reference system, and by the VLA using a one bath site

reference system.

It should be clear that this kind of benchmark is one of the hardest tests one can choose

to analyze the method. The DMFT is exact in infinite dimensions and will with no doubt

fail to describe a one dimensional system if the interaction is strong enough. Since the

VLA is in some sense a perturbation expansion around the DMFT result, it will be very
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Figure 6.3: Results for a half-filled six-site ring with β = 10 and a bandwidth of
W = 4. The upper row shows the results for U = 4, the lower one for U = 6. In the
weak interacting case the DMFT as well as the VLA are in good agreement with the
exact result. If the interacting is larger the DMFT breaks down, but VLA manages to
capture the essential insulating physics. For the calculations a dual ladder of 9 vertices

was summed up. The analytic continuation has been done via Padé.

hard for the method to correct the DMFT behavior. An illustration of the basic idea of

the VLA is illustrated in figure 6.2 using the benchmark model as an example.

The results of the benchmark simulation are depicted in figure 6.3. For a bandwidth of

W = 4t = 4 and β = 10 the model has been solved for two values for U . The upper row

shows the results for U/t = 2, the lower one for U/t = 6. In the left column the local

Green’s function is shown, in the right one the corresponding density of states.

In the weakly interacting case both methods, the DMFT and the VLA, are in good

agreement with the exact result. However, the VLA is closer to the exact solution than

the DMFT curve. The imaginary parts of the local Green’s function almost lie on top of

each other. Also the density of states obtained from the VLA reproduces the gap better

than the DMFT.

In the strong interacting case, the difference between the DMFT and the VLA is more
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pronounced. The DMFT solution breaks down and indicates a metallic solution, whereas

the VLA gives an insulating result. Although the VLA fails to reproduce the correct

band gap, it succeeds in reproducing the depth of the gap and improves the width in

comparison to the DMFT. Therefore the lower right plot is a very illustrative result.

The VLA is in a sense a perturbation around the DMFT and has therefore nearly the

same band gap, but succeeds in recovering the essential insulating physics, which is a

consequence of the dual perturbation series. To obtain this result, a dual ladder with

a maximum of 9 vertices was summed up. The ladder dual fermion approach was not

applicable here, because the eigenvalue of the Bethe-Salpeter equation was larger than

one.

6.3 The Mott transition in the VLA-Framework

Interaction driven metal insulator transitions (MIT) are a fundamental problem in con-

densed matter theory. If the local Coulomb repulsion is of the same order as the kinetic

energy, the interplay of wave-like characteristics and an increasing localization of the

conduction electrons leads to rich and unexpected physics. Inspired by previous works

[56, 82], this section is therefore dedicated to the Mott insulator transition in the 2D

Hubbard model.

In a recent CDMFT study on a 4 site plaquette, Park and coworkers [82] found strong

corrections to the paramagnetic DMFT phase diagram. Induced by short ranged an-

tiferromagnetic correlations the critical UC of the Mott transition was reduced form

UDMFT
C = 9.35t to UCDMFT

C = 6.05t. While the transition stayed first order, the shape of

the transition lines was dramatically changed: A metallic ground state is preferred over

a paramagnetic insulator in single site DMFT at low temperatures, whereas the insula-

tor dominates in the CDMFT solution, because the entropy is reduced by formation of

singlets.

Motivated by these findings Hafermann approached this problem in an intensive dual

fermion study [56]. But because of the highly demanding numerical costs it was only

possible to give a rough estimate for the transition lines, since most of the calculations

were not converged.
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In this section we solve the problem in the VLA framework using the first two dual

diagrams (diagrams a.) and b.) in Fig. 4.2) and a reference system including one bath

site. In this case the numerical effort for solving the impurity problem is strongly re-

duced in comparison to a CTQMC study and becomes only considerable at very low

temperatures. During the simulation several methods to determine the phase boundary

were tested and will be introduced in the following.

At low temperatures the Mott transition can be visualized by a hysteresis in some system

quantity, which indicates the coexistence of two possible solutions. For the position of

the transition line it does not matter which quantity is taken into account to investigate

the hysteresis, but parameters of the reference system are calculated most easily. The

double occupancy of the reference system 〈nn〉Ref, or the effective hopping parameter to

the bath v are such parameters. Figure 6.4 compares several of these system quantities

in dependence of U for β = 12.5. The upper right plot shows the double occupancy of

the reference system. The graph clearly shows two separate solutions in the coexistence

region. To obtain these data points, two independent calculations were started, one be-

ginning with a small U and the other with a large one. When the simulation has been

converged for a fixed value of U , the converged hybridization has been used to start the

calculation for the next value. The red curves correspond to simulations where U was

increased from a small value of U to a large one. The green curves show the reverse

process: U is decreased from a large value. The position of the transition has been

defined as the point between the last metallic solution and the next insulating result.

The error of this value is given by the distance between these two points. The plot to

the left illustrates the behavior of the imaginary part of the local Green’s function for

points marked in the right figure. The green and magenta curves indicate an insulating

solution because the graph tends towards zero for low frequencies. The red and blue

curves correspond to a metallic solution. The lower right figure shows the hysteresis in

the hopping parameter v. The position of the phase transition is the same. In this case

the metal insulator transition can be interpreted as reduction of the hopping amplitude

of the reference system.

A more mathematical definition of the coexistence region can be formulated in terms

of a stability analysis of the VLA parameter space. If the VLA self-consistency loop is

interpreted as the repeated application of a function F on the effective parameters of
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Figure 6.4: Hysteresis in references system quantities for β = 12.5: Upper right:
double occupancy of the reference system. Lower right: hopping parameter of the
reference system. Lower left: maximum eigenvalue of the Jacobi matrix of the self-
consistency loop. In all plots a clear coexistence of two solutions is visible, and all
transition points coincide. All the calculations have been converged separately. Upper
left: Examples for the imaginary part of the local Green’s function for the U values
marked in the right figure. The calculations have been done including the first two dual

diagrams (diagrams a.) and b.) of Fig. 4.2)

.

the bath x, a stability analysis known form classical chaos theory is possible. In this

language the self-consistency loop has to be interpreted as an iterated function, which

is comparable to the logistic map:

xi+1 = F (xi). (6.18)

In this case x represents the effective bath parameters of the reference system and F

is a full VLA loop as depicted in figure 6.1. The fixpoint condition of this iteration

is: F (x∗) = x∗. A fixpoint becomes unstable and a second one arises, if the largest

eigenvalue of the Jacobian matrix of F is larger than one. For the present case this
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means a solution becomes unstable, if the derivative with respect to the hopping is

greater than one:
F (v + ∆v)− F (v)

∆v
> 1→ unstable. (6.19)

The results of such an analysis are depicted in the lower left plot of figure 6.4. At the

boundary of the coexistence region the eigenvalues of the up and down curve tend to one

indicating the coexistence region. Both curves do not reach one, because of the finite

step size used. This kind of investigation has been first presented by Hugo Strand1 in

the DMFT context at the Les Houches summer school on ”Modern theories of correlated

electron systems” (2009), but the scheme has not been published so far.

At very low temperatures the full convergence of a hysteresis near the transition point is

numerically very expensive, because the number of iterations needed to converge grows

exponentially. Therefore, a different scheme has been applied in this case, which takes

advantage of this exponential divergence. Before the simulation starts, a convergence

criteria is defined and the number of iterations to fulfill this criteria is plotted against

U . An exponential increase of the iteration number indicates the transition point. Such

an analysis is depicted in figure 6.5. In comparison to a full convergence the amount

of iterations needed to find the transition is drastically reduced. In the present scheme

the maximum number of iterations was 26, a full convergence often took more than 90

1Department of physics, University of Gothenburg
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in the 2D Hubbard model calculated in the VLA framework with one bath site in the
reference system and the first two dual diagrams (diagrams a.) and b.) in figure 4.2).

The critical U is UVLA
C = 6.4± 0.1

iterations.

At high temperatures the transition from a metallic to an insulation state is given by a

smooth crossover. The position of this line has been determined as the maximum slope

of the effective hopping parameter in dependence of U .

The final phase-diagram is depicted in figure 6.6 and shows similar characteristics as

the CDMFT study by Park et al. [82]. The critical U is reduced in comparison to single

site DMFT from UDMFT
C = 9.35t to UVLA

C = 6.4 ± 0.1. In comparison to reference [82]

the value is slightly above the result of the CDMFT study. The reason for this is the

magnitude of antiferromagnetic correlations taken into account. The CDMFT analysis

was performed using a 4 by 4 plaquette, which implies that a perfect singlet formation is

favored at low temperatures and consequently leads to a very low critical U . The VLA

approximation is not limited to these nearest neighbor correlations, which means that
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spatial correlations enter the approach, which reduces the formation of a perfect singlet.

Consequently the critical U is lifted and lies above the CDMFT value.

In accordance to the work by Park the transition stays first order and the form of the

transition lines is very similar to the CDMFT results. The metal is favored over the

insulator at higher temperatures below the critical point. For low temperatures above

the critical U insulating behavior dominates the phase diagram, because of a lower

entropy induced by rising antiferomagnetic order.

6.4 Pseudogap Formation

One characteristic feature of a rising antiferromagnetic order is the formation of a pseu-

dogap in the local density of states in the bad metal regime. This feature has been

obtained in the ladder dual fermion approach (LDFA) by Hafermann and coworkers

[64]. Until now the pseudogap formation was only discussed in the k-averaged density

of states. A k-resolved investigation of the problem is still missing, because the analytic

continuation of CTQMC data is a complicated problem. The reason for this is the poor

resolution of the applied MAXENT method on the real axis. In comparison to that

the VLA framework offers the great opportunity to use the Padé analytic continuation

instead of the MAXENT, because the method provides numerical exact data. This ap-

proach offers a good resolution on the real axis.

In this section we present the results of calculation performed at β = 5 for U = 4. The

lattice problem was solved using a three bath site reference system and summing up the

fully renormalized dual ladder. The basic concepts of the ladder diagrammatic technique

are discussed in [56]. In this parameter regime a fully self-consistent VLA iteration is

not crucial, therefore the results have been obtained in a single shot calculation, using

the non-interacting hybridization function as an input.

The right plot of figure 6.7 shows the k-averaged local density of states. The DOS

clearly exhibits a gap at the Fermi level of the order J = 2t2/U = 0.5. To analyze

the opening of the pseudogap in k-space, the spectral function was calculated on high
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symmetry lines in the Brillouin-Zone:

X →M ′ → Γ→ X →M →M ′ → Γ. (6.20)

The left plot of figure 6.7 shows the non-interacting band and the symmetry points

marked in the Brillouin-Zone (inset).

Figure 6.8 shows the result of the VLA calculation. The band is broadened by the

interaction and a pseudogap is visible whenever the Fermi level is crossed. This is the

case from X →M ′ and at the X and M ′ point. An additional many body effect is visible

at the band edge in the vicinity of the Γ and M point. Here the noninteracting density

of state has been washed out and is broadened. This effect leads also to a broadening of

the local density of states and is visible as pronounced shoulders at E = ±5. The reason

for this effect is not clear at the moment and deserves further detailed analysis.
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X → M → M ′ → Γ.. The pseudogap is clearly visible whenever the Fermi-level is
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6.5 Conclusions

In this section we presented a very efficient numerical scheme to treat spatial correlations

in fermionic lattice models, the variational lattice approach (VLA). The VLA can be

seen as a generalization of the hybridization expansion around the atomic solution by

Pairault and coworkers [73, 74] to a perturbation expansion around a finite size impurity

model, which can be solved by exact diagonalization. In comparison to the hybridization

expansion the VLA is not only exact in the strong-coupling regime, but also in the

opposite case, the weak-coupling limit. The restriction to impurity problems with a small

Hilbert space makes the VLA numerically more efficient than previous implementations

for arbitrary impurity models, which had to be solved by CTQMC. In addition to that

the usage of ED generates numerical exact data, which are very easy to map to the real

axis via Padé.

Using theses advantages the VLA resolved several open questions in the analysis of the
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2D Hubbard model within the dual fermion approach. The paramagnetic phase diagram

of the Mott metal insulator transition was calculated. It was found that the critical UC

is UVLA
C = 6.05t, which is slightly above the result of a recent CDMFT study by Park

and coworkers [82].

In addition to that the formation of the pseudogap could be resolved in k-space, which

had not been possible in the original CTQMC based dual approach, because of the bad

real axis resolution of MAXENT.



Chapter 7

Superperturbation method on the

Keldysh contour

The description of time dependent phenomena plays a key role in the theory of strongly

correlated systems, especially in the field of condensed matter physics. Experimental ad-

vances in the last decade allow us to access system information at very short time scales

as well as at very short distances. This combination of temporal and spatial precision

permits the exploration of the very quantum nature of many-body problems in its full

complexity.

Prominent examples for these developments are the non-equilibrium transport through

nano-devices [97] or matter exposed to strong periodic time dependent fields. In both

situations one is interested in the steady state behavior of the system in order to estimate

the applicability of these systems for future technologies.

Direct access to the real-time evolution of a system can be gained in pump-probe ex-

periments [98] such as FLASH or SLAC, or by new spectroscopy methods in cold atom

experiments [99]. These measurements give direct access to the time evolution on very

short time scales and allow to explore fundamental questions in modern condensed mat-

ter theory.

Unfortunately, the theoretical description of these experiments is quite a challenging

137
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task. Even though many schemes of equilibrium physics have been generalized to non-

equilibrium problems, they often suffer from serious problems arising from the time-

dependent nature of the set-up. One example we will deal with is the time-dependent

Anderson impurity problem. In the equilibrium case this model is in principle well

understood, because there are many efficient solvers available, see chapter 3. In the

non-equilibrium situation most of them are not adequate. The exact diagonalization

scheme can only describe closed systems and fails to be a good starting point for the

investigation of open systems.

As in the equilibrium case, there are diagrammatic Monte Carlo methods available, but

they suffer from a dynamical phase problem, which arises due to the sampling of a com-

plex time evolution operator exp[−itH]. This problem is present even if the inherent

fermionic sign problem is absent. Since the average sign of a simulation drops expo-

nentially with the perturbation order, these methods are limited to very short times.

Consequently, only situations with a very low perturbation order such as the weakly

interacting or the strong-coupling case can be treated by these stochastic approaches.

In this chapter we present a new solver for the time-dependent Anderson impurity model,

which is based on the earlier described dual transformation. The key idea is, like in the

equilibrium case, to solve a reference system with exact diagonalization and to perform a

perturbation expansion in the difference between the hybridization function of the finite

system and the full system. This solver will be exact in both limits, the weak- and the

strong-coupling regime. Therefore, this scheme can be a good candidate to address the

intermediate interaction regime, where other solvers are inappropriate.

This chapter is organized as follows: At the beginning the concept of a closed time

contour will be briefly reviewed. It will be explained, how this contour can be properly

discretized in order to numerically treat objects, which depend on a continuous time

argument. For this purpose we will deduce a discretized action representation and dis-

cuss the Green’s function for some examples. After that the dual perturbation theory is

generalized to the non-equilibrium case and the calculation of the Green’s function and

the two-particle Green’s function in the exact diagonalization scheme is discussed. In

the last part of the chapter some results will be presented.
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7.1 The concept of a closed time contour

In quantum statistical mechanics every observable O is associated with a hermitian op-

erator Ô. Its expectation value is given by 〈Ô〉 = Tr{ Ôρ0 }, where ρ0 is the density

matrix of the system governed by a Hamiltonian H0. As long as ρ0 commutes with the

Hamiltonian [ρ0, H0] = 0, the expectation value of Ô will not have any time dependence.

In the following we would like to consider a situation, in which the system is in equilib-

rium for times smaller than t0 and is then perturbed by a sudden switch of some not

specified internal parameter1.

In this case the expectation value of Ô is given by the average of Ô in the Heisenberg

picture traced over the initial density matrix ρ0.

O(t) = 〈ÔH(t)〉 = Tr{ ÔH(t)ρ0 } = Tr{ Û(t0, t)ÔÛ(t, t0)ρ0 } (7.1)

Û(t, t′) is the evolution operator of the system. It obeys the following differential equa-

tions:

i
d

dt
Û(t, t′) = Ĥ(t)Û(t, t′), (7.2)

i
d

dt′
Û(t, t′) = −Û(t, t′)Ĥ(t′) (7.3)

with the boundary condition: Û(t, t) = 1. Ĥ is the fully time dependent Hamiltonian of

the system. The formal solution of theses equations reads:

Û(t, t′) =

T̂ exp
(
−i
∫ t
t′ dt̄Ĥ(t̄)

)
t > t′

ˆ̄T exp
(
−i
∫ t
t′ dt̄Ĥ(t̄)

)
t < t′.

(7.4)

Where T̂ is the time ordering operator which reshuffles the operators to a chronological

order with earlier times to the right. ˆ̄T is the anti-chronological time ordering operator,

which rearranges later times to the right.

Reading the time arguments of Eq. (7.1) from left to right, one sees that the time

1The theory at hand is in principle able to treat any kind of time dependence, but a most general
perturbation requires much more complicated numerical framework.
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Figure 7.1: Illustration of the Keldysh contour: the contour starts and ends at t0.
Times are ordered in such a way that points on the lower branch (-) are always later
than points on the upper branch (+), even if they are closer to t0. In the depicted case

the points ABC are ordered in the following way: A < B < C.

evolution of the observable can be defined along a time contour which starts at t0,

propagates to t, and goes back again to t0. Such a contour is depicted in Fig. 7.1 and

is generally called Keldysh contour. On this contour the time evolution operator can be

defined with the help of a time-ordering operator along the contour T̂C , which arranges

operators according to the position on the contour. For further details see the caption

of Fig. 7.1. With this the time-evolution operator can be written in the following form:

Û(t, t′) = T̂C exp
(
−i
∫ t

t′
dt̄Ĥ(t̄)

)
. (7.5)

The whole time evolution of the system can be viewed as an initial value problem. At

time t0 the system is prepared by an initial density matrix ρ0 and then evolution is

governed by Eq. (7.5). The drawback of this formulation is that in order to use it,

the initial density matrix ρ0 must be known for the complete system. In terms of the

AIM this means that ρ0 must be given for the impurity and the bath as well. In cases

where the system is correlated before time t0 and already coupled to a bath it is nearly

impossible to obtain the exact expression for ρ0. In those cases it is necessary to extend

the contour in Fig. 7.1 to imaginary times as described in [100].

In the following section it will be shown how the path integral theory can be formulated

along a discretized Keldysh contour.
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7.2 The coherent state path integral in the Keldysh for-

malism

In the following an expression for the discretized action on the Keldysh contour will

be deduced. The derivation will follow the formulation used in reference [101]. The

partition function of a system out of equilibrium can be written in the following way:

Z = Tr{ ρ0ÛC } =

∫ ∏
α

d(c∗α, cα) e−
∑
α c
∗
αcα〈−c|ρ0ÛC |c〉. (7.6)

Here ÛC is the time evolution operator along the whole contour and ρ0 the initial density

matrix. The trace over both quantities has been written in terms of coherent states,

where α labels states in the occupancy number basis. The additional minus sign in

front of the bra vector is a direct consequence of the anti periodicity of the fermionic

operators. To end up with a discretized version of the path integral, the time evolution

on the contour is split up in small time intervals ∆t. This is done by inserting coherent

state identity matrices at each time point on the discrete grid. The identity matrix in a

coherent state representation reads

1k =

∫ ∏
α

d(c∗αk, cαk) e
−

∑
α c
∗
αkcαk |ck〉〈ck|, (7.7)

where k labels the time of the insertion. In the following the Keldysh contour is dis-

cretized using M time points. The index i labels the turning point of the tip and Û±∆t is

an abbreviation for the time evolution operator on the time interval. For the discretized

version of the partition function one gets:

Z = lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
−

∑
α c
∗
αkcαk〈−c1|ρ0|cM 〉 . . . 〈ci+1|Û−∆t|ci〉

× 〈ci|Û+∆t|ci−1〉 . . . 〈c2|Û+∆t|c1〉
(7.8)

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
−

∑
α c
∗
αkcαke−c

∗
1cM ρ̂0 × · · · × ec∗i+1ci+i∆tH(c∗i+1ci)

× ec∗i ci−1−i∆tH(c∗i ci−1) . . . ec
∗
2c1−i∆tH(c∗2c1)

(7.9)
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iG−1
jj′ =


−1 −ρ0

h+ −1
h+ −1

h− −1
h− −1



Example 7.1: Discrete version of G−1(t, t′) on the Keldysh contour for a single non-
interacting site. h± = +1∓ iH∆t

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
i
∑
jj′ c

∗
jG
−1
jj′cj′ with: j ≡ αk (7.10)

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗αk, cαk)e
iS(c∗,c), (7.11)

with the following expression for iS:

iS(c∗, c) = + ∆t
M∑

k=i+1

[∑
α

−c∗αk
(cαk − cαk−1

∆t

)
+ iH(c∗αk, cαk−1)

]

+ ∆t

i∑
k=2

[∑
α

−c∗αk
(cαk − cαk−1

∆t

)
− iH(c∗αk, cαk−1)

]
−

∑
α

c∗α1ρ0cαM .

(7.12)

The expression for S consists of three major parts: the first one describes the discrete

time evolution backward in time along the lower branch of the contour, the second

one the evolution forward, and the third one represents the boundary condition of the

fermionic states. Taking the limit ∆t to zero the action can be written in its continuous

form:

Z =

∫
D[c∗, c] exp(iS[c∗, c])

=

∫
D[c∗, c] exp

(
i

∫
C
dt

∫
C
dt′
[
c∗(t)i∂t′δ(t− t′)c(t)−H

(
c∗(t), c(t′)

)])
.

(7.13)
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iG−1
jj′ =

(
G−1

imp V̂

V̂ G−1
bath

)
=



−1 0 −ρi0 0 0 −ρib0
h+ −1 0 v+ 0 0
0 h− −1 0 v− 0

0 0 −ρbi0 −1 0 −ρb0
v+ 0 0 h+ −1 0
0 v− 0 0 h− −1



Example 7.2: Example of an interaction-free two site model. The Hamiltonian is
given by H = εic

†c + εbb
†b + (V c†b + h.c.). In this special case the discretized action

can be represented as a matrix, which is diagonal in time but non-diagonal in orbital
indices. Terms in the right upper edges (red) are a direct consequence of the anti-
periodic bounding conditions on the time contour. The following abbreviations have

been used: v± = ∓iV∆τ , h± = +1∓ iH∆t.

Here the last equation has just a symbolical meaning. All the signs depend on the di-

rection on the contour and the term which corresponds to the boundary condition has

vanished in the continuous representation. It is important to note that the discrete for-

mulation of Eq. (7.12) is the natural way to define the matrices when doing numerics.

If we had started from the continuous action, the very important boundary term would

have been missing.

In the following we will discuss the example of a non-interacting two site problem. The

expression for G−1(t, t′) is given in example 7.2. The inverse Green’s function decouples

into four blocks: the upper left part is the inverse Green’s function of the impurity site,

the lower right one the inverse Green’s function of the bath site. Because the problem

is totally decoupled in the inverse representation, the structure of both matrices is the

same as for the single non-interacting fermionic site in example 7.1. Both blocks are

then coupled via an off-diagonal block, which consists of the time dependent coherent

state matrix element of the hopping amplitude.

The key quantity to perform a dual series expansion is the hybridization function ∆(t, t′).

To construct this quantity one has to change from a path integral representation, which
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involves all bath indices, to a formulation which only involves impurity quantum num-

bers. This is done by integrating out the non-interacting degrees of freedom:

Z = lim
M→∞

∫ M∏
k=1

∏
α

d(c∗j , cj′)e
i
∑
jj′ c

∗
jG
−1
jj′cj′ |jj′ ∈ bath and imp. indices. (7.14)

= lim
M→∞

∫ M∏
k=1

∏
α

d(c∗j , cj′)e
i
∑
jj′ c

∗
j [G−1

imp−∆]jj′cj′ |jj′ ∈ imp. indices., (7.15)

with the following definition for the hybridization function:

∆(t, t′) = V̂ ĜbathV̂
†. (7.16)

This formula is already known from the equilibrium case in chapter 2, but the quantities

V̂ and Ĝbath have a totally different meaning. Whereas V̂ was a scalar in the equilibrium

context, it is a fully off-diagonal time-dependent matrix in the non-equilibrium case.

Consequently, example 7.2 can be understood as a recipe to calculate the hybridization

function of a finite reference system: all formulas of the equilibrium case can be applied,

but all involved quantities have to be replaced by their non-equilibrium counterparts,

which essentially means to replace a scalar hopping parameter by a matrix with time

indices. The structure of this matrix will be as described in example 7.2.

Furthermore, one can deduce some important side remarks for numerical calculation

from Eq. (7.16) and example 7.2. The first one involves the structure of the time grid.

In most works the grid is chosen in such a way that all points are equidistant and the

number of points on the upper and lower contour is equal. This approach leads to the

time step between the last point on the upper contour and the next one on the lower

contour being zero. This causes a vanishing matrix element in V̂ and leads to a singular

matrix for ∆(t, t′). This fact can lead to a break down of the dual theory, because an

inversion of ∆(t, t′) is unavoidable in some cases. This problem can be cured if an

additional point at the tip of the contour is introduced, which neither belongs to the

upper nor the lower contour. This additional point has no other consequences and can

be treated without any further problems. An illustration of the discrete Keldysh contour

is given in Fig. 7.2, the structure of a general time matrix, which depends on orbital

and spin indices, is explained in Fig. 7.3.
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1 2 3 4 5 6 7 8

9

1 2 3 4 5 6 7 8

+

-

Figure 7.2: Illustration of the discrete Keldysh contour: All time points are equidis-
tant. Points with the same Latin index have the same absolute time value, but the time
on the lower branch is greater than the one on the upper branch. The point on the
tip of the contour is essential for numerical calculations, because it reduces problems

concerning singular matrices drastically.

Another issue in the inversion procedure can occur, if the off-diagonal elements ρib0 and

ρbi0 of the density matrix vanish. This happens, if the impurity is totally decoupled from

the bath for times smaller than t0. In that case V̂ becomes also ill conditioned. This

problem can be cured by introducing an infinitesimally small hopping parameter for

times smaller than t0.

7.3 Dual perturbation theory on the Keldysh contour

In this section we will generalize the dual perturbation theory to the case of non-

equilibrium systems. On the one hand this derivation will be a generalization, because we

will deal with time-dependent objects, on the other hand it will be less general than the

equilibrium dual fermion derivation described in chapter 4, because the present derivation

is limited to local problems. This section will be exclusively on the superperturbation

method on the Keldysh contour only. A generalization to k-dependent problems is pos-

sible and will definitely be a future project. For a more detailed introduction to the dual

theory we suggest to read chapter 4 first. In this section we will discuss differences to

the equilibrium case, but general remarks to the dual theory will not be repeated. We

also stick to the notation used in chapter 4. We start by writing the action of the full

system:

SF[c∗, c] =
∑
tt′

∑
ab

c∗at[G
−1
0tt′ −∆tt′ ]abcbt′ + SNG[c∗, c]. (7.17)
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1
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3
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+
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t
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Figure 7.3: Structure of a discretized two times matrix on the Keldysh contour. Such
a matrix normally depends on 6 indices, where the structure has been defined as follows:
The outer indices m, m′ are orbital quantum numbers. σ, σ′ are spin degrees of freedom,
which build 4× 4 blocks in the orbital matrix. Each spin block consists of a t t′ matrix.
The composition of such a time block is depicted on the right side: each time runs
along the discretized contour, first along the upper branch (+), then along the lower
one (−). To illustrate the time labeling the unfolded contour has been included at each
side of the matrix. The Latin numbers along the contour label the absolute time value
of each point. Points with same index have the same absolute value, but lie on different

branches of the contour. The point number 4 symbolizes the tip of the contour.

To stress that we are working on a time grid, we explicitly write the indices of the

time-dependent matrices. Indices for orbital and spin degrees of freedom have been

summarized in Latin letters. SNG[c∗, c] is some local interaction. The reader should

note that in the Keldysh theory the action is defined with i in the exponent like in the

T = 0 equilibrium theory: Z =
∫
D[c∗, c] exp(iSF[c∗, c]).

In the next step the hybridization of the reference system ∆̃tt′ is added and subtracted:

SF[c∗, c] =SRef[c∗, c] +
∑
tt′

∑
ab

c∗at[∆̃tt′ −∆tt′ ]abcbt′ (7.18)

SRef[c∗, c] =
∑
tt′

∑
ab

c∗at[G
−1
0tt′ − ∆̃tt′ ]abcbt′ + SNG[c∗, c]. (7.19)

Even though the last step seems trivial, it has some major issues, which are not apparent

when looking at the formulas. One has to be aware that in the non-equilibrium case

the action representation always involves boundary conditions that enter the discrete
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matrices as has been shown in example 7.1 and example 7.2. When we add and subtract

∆̃tt′ and rewrite the action as a part, that we call reference system and a difference,

we assume that both systems have the same ρ contribution on the impurity. The other

parts of the density matrix are less important, because the differences in these terms will

be treated perturbatively by doing an expansion in ∆̃tt′ −∆tt′ . In the equilibrium case

it was not necessary to discuss the boundary conditions of the action, because they were

automatically fulfilled when working with Matsubara frequencies.

Now dual variables are introduced via a Hubbard-Stratonovich transformation. The

transformation can be written in the following form:

ec
∗
1n12D

−1
23 n34c4 =

1

detD

∫
D[f∗, f ]e−f

∗
1D12f2+f∗1 n12c2+c∗1n12f2 (7.20)

with the following definitions for n and D:

n = ig−1
12

D = ig−1
12 [∆̃−∆]−1

23 g
−1
34

→ n12D
−1
23 n34 = i[∆̃−∆]14. (7.21)

After some straightforward algebra the partition function can be brought into the fol-

lowing form, which contains dual and c-fermions:

Z = exp

(
iSRef[c∗, c] + i

∑
tt′

∑
ab

c∗at[∆̃−∆]cbt′

)
(7.22)

= Zf exp

(
i
{
f∗1 [−g−1(∆̃−∆)−1g−1]12f2 + f∗1 g

−1
12 c2 + c∗1g

−1
12 f2 + SRef[c∗, c]

})
(7.23)

= Zf exp(iSF[c∗, c, f∗, f ]), (7.24)

with

Zf = det(−ig[∆̃−∆]g). (7.25)

Analogous to the equilibrium case, the action can be split into three parts: Two parts,

which contain either c-fermions or dual variables, and a part that describes the coupling

of the first two and consequently contains a mixture of both variables:

SF[c∗, c, f∗, f ] = SRef[c∗, c] + SC[c∗, c, f∗, f ]− f∗1 [g−1(∆̃−∆)−1g−1]12f2, (7.26)
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with:

SC[c∗, c, f∗, f ] = f∗1 g
−1
12 c2 + c∗1g

−1
12 f2. (7.27)

In the last equation we have combined temporal, orbital and spin indices into num-

bers. To integrate out the c-fermion part, the following defining equation for the dual

interaction potential V is introduced:∫
exp
(
i(SRef[c∗i , ci] + SC[c∗i , ci, f

∗
i , fi])

)
D[c∗i , ci]

!
= ZRef exp

(
i(−

∑
12

f∗1 g
−1
12 f2 + V[f∗, f ])

)
.

(7.28)

The c-fermions are integrated out by choosing the dual potential in such a way that the

last equation holds. This is done by series expansion of both sides and by comparison of

the different orders. For the left hand side of Eq. (7.28) we get:∫
exp(i(SRef[c∗i , ci]+S

C[c∗i , ci, f
∗
i , fi]))D[c∗i , ci]

=
∑
n

〈 i
n

n!
(f∗1 g

−1
12 c2 + c∗1g

−1
12 f2)n〉Ref

(7.29)

= 1− if∗1 g−1
12 f2 +

1

4
g−1

11′g
−1
33′χ1′2′3′4′g

−1
2′2g

−1
4′4f

∗
1 f2f

∗
3 f4 ± . . . (7.30)

In order to expand the right hand side, the following ansatz for V[f∗, f ] is chosen:

V[f∗, f ] = c2
12f
∗
1 f2 + c4

1234f
∗
1 f2f

∗
3 f4 + . . . . (7.31)

Finally, the right-hand side can be brought into the following form:

exp
(
i(−f∗1 g−1

12 f2 + V[f∗i , fi])
)

= 1 + i
(
−f∗1 g−1

12 f2 + c2
12f
∗
1 f2

+c4
1234f

∗
1 f2f

∗
3 f4 + . . .

)
− 1

2!

(
f∗1 g
−1
12 f2f

∗
3 g
−1
34 f4 + . . .

)
− i

3!
. . . .

(7.32)

Now both sides are compared order by order to fix the unknown coefficients cn. One

can easily see that because both sides already contain the same quadratic part, c2
12 has
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Figure 7.4: Composition of the two-particle Green’s function. The two main building
blocks are the fully irreducible vertex part and the trivial reducible part, consisting of

two fermionic propagators.

to be zero. For c4
1234 one gets:

ic4
1234 =

1

4
g−1

11′g
−1
33′χ1′2′3′4′g

−1
2′2g

−1
4′4 +

1

2
g−1

12 g
−1
34 . (7.33)

The last term can be symmetrized:

1

2
g−1

12 g
−1
34 f

∗
1 f2f

∗
3 f4 =

1

4
g−1

12 g
−1
34 (2f∗1 f2f

∗
3 f4) (7.34)

=
1

4
g−1

12 g
−1
34 (f∗1 f2f

∗
3 f4 − f∗1 f4f

∗
3 f2) (7.35)

=
1

4
[g−1

12 g
−1
34 − g−1

14 g
−1
32 ]f∗1 f2f

∗
3 f4 (7.36)

=
1

4
g−1

11′g
−1
33′(g1′2′g3′4′ − g1′4′g3′2′)g

−1
2′2g

−1
4′4, (7.37)

which leads to the following final result:

c4
1234 =− i

4
g−1

11′g
−1
33′(χ1′2′3′4′ + g1′2′g3′4′ − g1′4′g3′2′)g

−1
2′2g

−1
4′4 (7.38)

=− i

4
g−1

11′g
−1
33′(χ1′2′3′4′ − χ0

1′2′3′4′)g
−1
2′2g

−1
4′4 (7.39)

=
1

4
γ1234, (7.40)

with

χ0
1′2′3′4′ = g14g32 − g12g34. (7.41)

The reader should notice that in the non-equilibrium case the definition of the vertex

part is different from the equilibrium case. To illustrate the differences, Fig. 7.4 shows

the definition of the vertex in the Keldysh theory. The definition for the equilibrium
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vertex is shown in Fig. 3.7 in Chapter 3. With the final result for the first term of the

dual potential, the dual action can be written as follows:

Sd[f∗, f ] = f∗1 (Gd
0)−1

12 f2 +
γ1234

4
f∗1 f2f

∗
3 f4 + . . . (7.42)

with the following definition of the bare dual Green’s function:

Gd
0 = −g[g + (∆̃−∆)−1]−1g. (7.43)

Our aim is to retrieve an expression for the lowest order diagram of the dual theory on

the Keldysh contour. This is done by expanding the expression for the dual Green’s

function in terms of the dual potential. The Green’s function is defined as follows:

GD = −i
∫
D[f∗, f ]f1f

∗
2 e
iSd[f∗,f ]. (7.44)

The action is given by Sd[f∗, f ] = SD
0 [f∗, f ] + V[f∗, f ], so that the lowest order of the

Green’s function reads:

GD ≈ GD
0 − i

∫
f1f
∗
2 iVeiS

D
0 D[f∗, f ] (7.45)

= GD
0 +

∫
f1f
∗
2

γ1′2′3′4′

4
f∗1′f2′f

∗
3′f4′e

iSD
0 D[f∗, f ]. (7.46)

The integral is solved via Wick theorem. Summation over all 4 contractions yields in

the final result:

GD
12 ≈ GD

012 − iγ1′2′3′4′G
D
011′G

D
02′2G

D
04′3′ . (7.47)

A graphical interpretation of latter equation in terms of diagrams is shown in Fig. 7.5.

After calculating an approximation to the dual propagator the result can be exactly

transformed back to c-fermions using the following expression:

G = (∆̃−∆)−1 + [g(∆̃−∆)]−1Gd[(∆̃−∆)g]−1 (7.48)

Here g is the Green’s function in terms of c-fermions and gd the dual propagator. A

derivation of this relation can be found in appendix A.
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Figure 7.5: Illustration of the lowest order contributions to the Keldysh Green’s
function: The full dual propagator can be approximated by the bare dual propagator

plus the first diagram with external lines.

7.4 Calculating one and two particle Green’s function in

the exact diagonalization scheme

In the last section it has become clear that the key ingredients to construct the su-

perperturbation theory are the one and two particle Green’s function of the reference

system. In the following we will give the formulas of those quantities in the Lehmann

representation. We start with the one particle Green’s function. This quantity depends

on two times and two indices:

Gαβ(t, t′) = −i〈TCcα(t)c†β(t′)ρ0〉. (7.49)

To derive the spectral representation, identity matrices are inserted between the opera-

tors, and the time-evolution operator is written in its diagonal form:

Gαβ(t, t′) =
1

Z

∑
o,i,j,k

− i〈o|i〉〈i|cα|j〉〈j|c†β|k〉〈k|o〉e−βEoei[Eit+Ej(t
′−t)−Ekt′] · θC(t− t′)

+ i〈o|i〉〈i|c†β|j〉〈j|cα|k〉〈k|o〉e−βEoei[Eit
′+Ej(t−t′)−Ekt] · θC(t′ − t).

(7.50)

Here |o〉 labels the eigenvectors of the auxiliary Hamiltonian H0, which describes the

system before the perturbation at t0. Z is the partition function corresponding to the

density matrix ρ0. t and t′ are times on the Keldysh contour, which means that the
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theta functions are defined as follows:

θC(t′ − t) =

0 if t > t′

1 if t < t′,
(7.51)

where the relation symbols order the times along the contour, as explained in Fig. 7.1.

The formal definition of the two particle Green’s function is given by the following

expression:

χαβγδ(t1, t2, t3, t4) =〈TCcα(t1)c†β(t2)cγ(t3)c†δ(t4)ρ0〉 (7.52)

=〈TCO1O2O3O4ρ0〉. (7.53)

Here it was necessary to introduce abbreviations for the operators, in order to rewrite

the time-ordered product as sum over all possible permutations multiplied by a theta

function in the four time arguments:

χαβγδ(t1, t2, t3, t4) =
∑
π∈Sn

(−1)πθC(tπ1 > tπ2 > tπ3 > tπ4)

×
∑

o,i,j,k,l,m

〈o|i〉〈i|Oπ1 |j〉〈j|Oπ2 |k〉〈k|Oπ3 |l〉〈l|Oπ4 |m〉〈m|o〉

× ei[Ei(tπ1 )+Ej(tπ2−tπ1 )+Ek(tπ3−tπ2 )+El(tπ4−tπ3 )+Em(−tπ4 )]

× e−βEo/Z.

(7.54)

The reader should notice that for a given time combination only one permutation con-

tributes to the final result. This situation is quite different from the equilibrium case

where an explicit summation over all permutations was required to obtain a representa-

tion of the two-particle Green’s function on Matsubara frequencies.

Numerical considerations Even though the formulas for the spectral representa-

tions look quite simple, their numerical evaluation is a challenging task. In the following

we would like to describe where the numerical difficulties arise in comparison to the

equilibrium case.

The most apparent issue is that the numerical description of time-dependent phenomena
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requires the discretization of a formal continuous time argument. By choosing a finite

time step ∆t, a discretion error is introduced to the problem. To overcome this issue,

it is necessary to perform the limit ∆t to zero. Consequently several calculations for

different grid sizes have to be performed in order to do an extrapolation to the con-

tinuous time limit. Additionally, there is no cyclic invariance on the real time axis.

Consequently, all quantities depend on one more time argument than in the equilibrium

theory. The Green’s function is a matrix in two times and the two particle Green’s func-

tion depends on four times. The combination of the systematic discretization errors and

the additional time argument leads to large time matrices, which need a great amount

of computer memory. In the case of the two particle Green’s function the demand on

computer memory is so huge that it can not be stored on a VLM2 machine with 250 Gb

memory. If the two particle Green’s function is required during a simulation, it has to

be recalculated each time. In the equilibrium case the numerical effort is by far smaller.

All quantities depend on less time arguments and there exists a natural discretization

of the problem: the Matsubara formalism. Matsubara frequencies are by construction

discrete and in most cases the calculation of a few function values on small frequencies

is enough because the high energy tail only contains trivial information.

Furthermore, the computation of a Green’s function matrix element for a given time

combination is more expensive in the non-equilibrium case than in the equilibrium one.

Because the expectation value is constructed as a trace over the initial density matrix,

two more identity matrices have been inserted in the spectral representation of the one

and two particle Green’s function. In the equilibrium case the calculation of the single

particle Green’s function requires a loop over N2 indices, where N is the dimension of

the Hilbert space. The same calculation in a non-equilibrium situation requires a loop

over N4 indices.

Because of the numerical requirements of a non-equilibrium simulation, the developed

computer code has been highly optimized. It contains all optimizations mentioned in

section 3.1.2 and has been additionally improved by precalculating all non-zero matrix

elements of the two particle Green’s function in Eq. (7.54). This procedure makes the

calculation of the vertex part very efficient during the computation of the first diagram.

Nevertheless, all simulations were highly demanding and it was necessary to parallelize

2VLM- Very Large Memory.
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Figure 7.6: First test of the superperturbation method on the Keldysh contour. (a)
the model under consideration consists of one interacting site coupled to one bath
site (upper left picture). The time dependence consists of a sudden switch in the
hopping amplitude from an infinitesimally small value to a non-zero one. The reference
system is prepared in the same way, but the hopping is switched to a lower value
(lower left picture). (b) Plot of nσ(t) for the full system, the reference system and
different degrees of approximation. The zero-order curve corresponds to a dual theory
without any diagram, the first-order curve to a solution including the first diagram.
Both curves are shifted from the reference solution towards the exact result. The data
points corresponding to the solution with the first diagram are in good agreement with
the solution of the full system. The calculations have been done for the following

parameters: β = 5, U = 2, v = 0.5, ṽ = 0.4, B = 0.001.

the code. The following results were obtained on a machine with 32 processors and 250

GB RAM. The total computation time was of the order of 24 hours for a single task.

7.5 A first test

As a first test the time evolution of an exactly solvable model was calculated. Figure

7.6(a) shows the model under consideration. The full system consists of an interacting

site coupled to one additional bath site. At time t0 the system is prepared in such a way

that both sites are half filled and the spin degeneracy on the interacting site is lifted via a

small magnetic field. Both sites are coupled with an infinitesimally small coupling. The

time dependence of the full system consists of a sudden switch in the hopping amplitude
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Figure 7.7: The plot shows the same calculation as in Fig. 7.6(b), but for longer
times.

to a non-zero value.

The reference system, which is used as a starting point for the perturbation expansion,

is modeled in the same way, but the hopping is switched to a different value. Fig. 7.6(b)

shows the time dependence of the occupation number on the interacting site for small

times. The black dotted curve is the exact time evolution of the full system, the blue

curve is the time evolution of the reference system. The green and red data points show

different expansion orders in the dual potential. The green points correspond to a dual

theory without any diagram, the red curve to the solution including the first diagram.

As one can see, both approximations improve the solution of the reference system to-

wards the solution of the full system and the order of the curves is as expected: The

solution including the first diagram gives the best improvement. Fig. 7.7 shows the time

evolution of the system for longer times. The superperturbation theory remains in quite

good agreement with the exact result.

To overcome the systematic discretization error in the time argument, several simu-

lations for different grid sizes have been performed and the limit to a continuous time
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Figure 7.8: Dependence of the grid size on the final result. (a) Regression curve for
the nσ(t = 0) point of Fig. 7.7. In this case a quadratic regression has been performed.
(b) Plot of nσ(t) for different ∆t. The dependence of the result on ∆t is quite strong.
The reason for this behavior is that the effect of the initial magnetic field is very small,

so that a high precession in the final result is needed to see the small effect.

variable has been done numerically by quadratic regression. The final result can be

expanded into a Taylor series in ∆t around the continuous solution:

nσ(t,∆t)|∆t=0 ≈ nσ(t, 0) + a ·∆t+ b · (∆t)2 ± . . . . (7.55)

The three constants a, b and the solution for a continuous time, nσ(t, 0), have been

calculated by quadratic regression. The procedure is depicted in Fig. 7.8(a) for the time

point t = 0. Here the dependence on ∆t is almost linear, but the quadratic regression

was necessary to resolve the effect of the small initial magnetic field. The differences in

n↓(t) for different ∆t are shown in Fig. 7.8(b).

7.6 Outlook

In this chapter it has been demonstrated that the dual perturbation theory is gen-

eral enough to treat time dependent phenomena. Illustrated for the superperturbation

method it was shown, that all formulas can be generalized in terms of the Keldysh for-

malism.

The presented work has many possibilities for future generalizations and extensions.



7.6. OUTLOOK 157

As indicated in Chapter 4, it is possible to generalize the described theory to treat

k-dependent lattice problems like in the VLA approach. To do so, it is necessary to for-

mulate the VLA on the Keldysh contour and to include at least the first two diagrams

into the dual self-energy, because an approximation including only the first diagram

will still be local. Such a scheme would be the first extension of the DMFT to a non-

equilibrium situation and a great breakthrough in the field.

Additionally, a great future challenge will be the description of multi-orbital systems.

Here the total number of sites in the reference system is a real limitation of the approach.

Even though our computer code is highly optimized, it is not possible to treat more than

4 sites in total for a long end time. The reason for this constraint is twofold: On the one

hand the Hilbert space grows exponentially with the size of the reference system, on the

other hand the continuous time argument requires more and more computer memory if

larger end times are desired.

Both problems can be circumvented by more sophisticated numerical algorithms, which

have not been implemented yet. The complication of a huge Hilbert space can be treated

in a Krylov-like scheme, where the time evolution operator exp(−iHt) is approximated

as described in section 3.1.3. This procedure will allow the calculation of real-time cor-

relation functions for higher system sizes of the order of 10 sites in total. Such a solver

is the topic of the ongoing diploma thesis of Nadine Weißfahl.

The continuous time argument and the accompanying discretion error can be cured by

a transformation to a discrete basis set for continuous functions. This idea was first

discussed in the diploma thesis of Lewin Boehnke for the equilibrium case and goes back

to an idea of Olivier Parcollet. At the moment a publication is in preparation. Such a

discrete basis is formed by Legendre polynomials, which are the solution of the following

differential equation:

d

dt

[
(1− t2)

d

dt
Pl(t)

]
+ l(l + 1)Pl(t) = 0. (7.56)

These functions are complete on the interval Il = [−1, 1], but can also be a basis for

functions on arbitrary intervals, because two intervals can be mapped on each other by a

linear transformation. Figure 7.9 shows the first 6 Legendre polynomials on the interval

Il. The expansion of a function f(t) in Legendre Polynomials has the following form:
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Figure 7.9: First 6 Legendre polynomials.

f(t) =
∞∑
l=0

clPl(t). (7.57)

In which the coefficients can be calculated by the following integral:

cl =
2l + 1

2

∫ 1

−1
dtf(t)Pl(t). (7.58)

The l dependent prefactor in front of the integral is an additional normalization factor,

which is required because the polynomials are orthogonal but not orthonormal. The

great advantage of the Legendre basis set is that the basis is countable by construction

and no artificial discretization is needed when describing continuous functions. In this

sense the Legendre basis is comparable to Matsubara frequencies, which are also discrete.

The only systematic error enters at the point, where the number of Legendre polynomials

is truncated in the description of a function. This kind of approximation is well known

from the Matsubara case, where the high energy tail contains very low information and

is normally also cut. In the Legendre case it can be shown that the expansion coefficients

drop exponentially if the function under consideration is continuous. For the Keldysh

Green’s function this means that the matrix dimension in Legendre coefficients can be
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Figure 7.10: +− block of the Keldysh Green’s function in the Legendre basis. Because
the +− block does not contain a jump on the diagonal, the Legendre coefficients drop

exponentially fast to zero.

decreased drastically in comparison to a discrete time description. In the following some

preliminary results are presented. Figure 7.10 shows the real part of the +− block of the

Keldysh Green’s function in the Legendre basis. As one can see, the absolute value of the

matrix elements drops very quickly and for indices larger than 18 the matrix elements

are nearly zero. The data has been calculated by directly evaluating an expression for

the +− Green’s function in Legendre coefficients in its spectral representation:

G+−
αβ (l, l′) =

∑
0,i,j,k

〈0|i〉〈i|c†β|j〉〈j|cα|k〉〈k|0〉e−βE0AljkA
l′
ij . (7.59)

The factors Aljk and Al
′
ij are the Legendre coefficients of the exponential factors in Eq.

(7.50). They can be easily evaluated by applying a recursion formula.

To illustrate the power of the method, the time dependence of the occupation number

was extracted from the Keldysh Green’s function in Legendre polynomials and compared

with the exact result calculated within the Lehmann representation of the expectation

value nσ(t). Figure 7.11 shows the results. In the upper left plot the exact time evolu-

tion (black dots) is compared with different orders of truncation in the Legendre basis.

As one can see, even a small matrix size like 15 × 15 gives good results. The figure to

the right shows a detailed zoom of the left one. The small differences in the curves for
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Figure 7.11: upper left: Comparison of the time evolution of the density n(t), calcu-
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cients is larger than 20, the back transform can’t be distinguished from the exact result.
lower row: Real part and imaginary part of the exponential exp(iEt) for the largest
energy difference (E = 4.03) and its representation through Legendre polynomials up to
order nl = 20. The maximal order is clearly insufficient for an accurate representation,

even though the total Green’s function is well reproduced.

different Legendre cutoffs are visible here, but a total number of 20 × 20 coefficients is

enough to exactly describe the time evolution of the system. If the time argument would

have been discretized in the standard way, the matrix would have been of the order

120× 120. The absolute memory gain is enormous.

The surprising thing about the expansion in Legendre polynomials is that even though

the Green’s function can be described by a few coefficients, these coefficients are not

sufficient to model every exponential factor in the standard spectral representation in

Eq. (7.50) up to the same precession one is able to reach for the total Green’s function.

The figures in the lower row show the time evolution for the exponential exp(iEt) with
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the highest Energy in the test system. As one can see the deviation from its Legendre

representation is quite large, even though the whole Green’s function is well described by

the same number of coefficients. This implies that the transformation to the Legendre

basis set works as some kind of filter, which is able to exclude the effect of high frequency

contributions to the final result.

Up to now, only the +− block of the single particle Green’s function has been calcu-

lated using its spectral representation in Legendre polynomials. A generalization to the

Green’s function on the whole contour is still needed, but it is in principle no problem.

One issue might be that the whole Green’s function includes discontinuities on the diag-

onal, which are caused by the anti-commuting behavior of the fermionic operators. It is

well known that the description of such a jump in terms of a Legendre basis can increase

the number of needed coefficients, but is still possible on a modern computer. One might

argue that the representation of the Green’s function in the Legendre basis including the

jump on the diagonal might be as complicated as working with the discretized scheme

introduced at the beginning of the chapter. But the opposite is the case: The real per-

formance gain will not be the storage of the single particle Green’s function, but the

evaluation of the first diagram. This calculation involves the computation of the vertex,

which has no discontinuity, because the jumps of the two particle Green’s function cancel

out with those of the trivial part. This implies that the the sum over the fermion loop

in the first diagram can be accomplished with exponentially few coefficients, which is

an enormous speed gain in comparison to the standard discretization described in this

chapter.





Chapter 8

Conclusions

The intention of this thesis was to generalize the dual fermion approach to a broader

scope. Therefore, several new algorithms for the treatment of strongly correlated sys-

tems have been introduced. The key idea of all these new methods is to approximate a

large interacting fermionic system by a smaller exactly solvable system, which has been

optimized for the physical situation at hand. The dual perturbation theory then allows

to formulate a series expansion around this reference system. Because the reference

system itself already contains much of the essential physics, this kind of perturbative

approximation is better suited for the investigation of phase transitions than standard

perturbation theories such as the weak- or strong-coupling expansion.

In the second chapter the prototype of such a reference system, the Anderson impurity

model, was introduced. Despite of its zero-dimensional character, the model is able to

describe rich physics, because local quantum fluctuations are fully taken into account. A

very important application of the AIM, the DMFT, is reviewed at the end of the chapter.

The success of the AIM as a starting point for the investigation of strongly correlated sys-

tems is based on the availability of a huge number of very efficient solvers for the model.

In the third chapter we therefore discuss the technical basis of the dual approach: effi-

cient impurity solvers. A brief review of the exact diagonalization and several quantum

Monte Carlo approaches is given.

In order to demonstrate that all approaches described in this thesis are based on the

163
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same fundamental idea, we gave a general derivation of the dual fermion approach for

the equilibrium case in chapter 4. Based on this derivation the differences between all

described schemes have been discussed.

The first example, the superperturbation solver for the Anderson impurity model, has

been discussed in chapter 5. Here an impurity problem with a continuous energy spec-

trum in the bath is approximated by a discrete reference system, which can be solved

using exact diagonalization. It was shown that the SPERT is exact in the weak- and

strong-coupling regime and additionally allows to converge exponentially fast to the ex-

act result by increasing the number of bath sites. Based on an investigation of the Kondo

problem, it was shown that a Kondo like peak can be found in the lowest order approx-

imation by taking into account just a single bath site. A comparison with NRG results

revealed that although a quasi-particle peak at the Fermi level can be reproduced, the

typical exponential scaling of the Kondo temperature is not reproduced by this lowest

order approximation. Nevertheless, a good description of the singlet formation in the

magnetic susceptibility at low temperatures was obtained, if the reference system itself

has a singlet ground state.

Additionally, it was shown that the approach allows to directly calculate the density of

states on the real axis. A non-causality problem, which forms at low temperatures in

the vicinity of poles in the reference system, was alleviated by generalizing a recently

developed renormalization scheme. Furthermore, a first multi orbital test calculation

was presented.

An efficient approximation for correlated lattices, the variational lattice approach has

been introduced in Chapter 6. In this case the reference system is also given by a discrete

Anderson impurity problem. In comparison to the CTQMC implementation, the VLA

offers a much more efficient numerical treatment of correlated lattices. Applying this

scheme it was possible to determine the phase diagram of the Mott metal-insulator tran-

sition in two dimensions. In comparison to an earlier CDMFT study on a 4 site plaquette

it was shown that the critical U is increased from UCDMFT
C = 6.05 to UVLA

C = 6.4± 0.1.

The reason for this increase is that the VLA takes into account long-ranged spatial cor-

relations, which break the perfect singlet formation, which is possible in the CDMFT on

a plaquette. Since the results of the VLA contain no stochastic noise, the approach offers

the possibility to perform an analytic continuation using Padé. Applying this technique
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it was possible to show that the pseudogap opens directly on the Fermi surface in the

bad metal regime. A high resolution analysis of the band structure has not been possi-

ble in the standard CTQMC implementation of dual fermion, because of the insufficient

resolution of MAXENT.

At the end of the thesis it was demonstrated that the dual fermion ansatz is not limited

to the equilibrium case. In chapter 7 the method was generalized to non-equilibrium

phenomena by formulating the theory in the Keldysh framework. Taking the super-

perturbation as an example, it was shown that the method is numerically feasible and

first benchmark calculations have been presented. At the end of the chapter a possible

extension in terms of Legendre polynomials has been discussed.

Summarizing the results of the previous chapters, we have demonstrated that the dual

fermion approach is a fairly general method and can be interpreted as a kind of super-

perturbation theory. Here ”super” means that the perturbation expansion is performed

around a non-trivial exactly solvable starting point.

In principle, for all presented approaches two possible extensions are imaginable: An

improvement of the exact diagonalization impurity solver or an extension of the order

of dual diagrams taken into account. The first improvement would allow to extend the

described approaches to the investigation of multi-orbital system. In order to do this

a formulation involving a Krylov solver would be necessary but could be accomplished

very easily. The second generalization, an increase in dual diagrams, could be applied in

cases, where an increase in the number of bath sites does not suffice. Such a case is the

investigation of the Kondo scaling. Here a FLEX or Parquet approach would be useful.

The method with the widest future applicability is the superperturbation solver for the

non-equilibrium case. Because other solvers suffer from great drawbacks, such as the

dynamic phase problem, the SPERT could be of great help in this fast developing field

of physics.





Appendix A

Connection between Gd and G

In this section an exact relation between the dual Green’s function for f -fermions and its

counterpart for c-fermions is established in terms of the Keldysh formalism. To derive

this connection, we start by introducing a differential identity for the c-Green’s function.

This is done by revisiting the exact relation between the action formulation in dual and

c-space:

Z =

∫
exp(iSF[c∗, c])D[c∗, c] = Zf

∫
exp(iSF[f∗, f, c∗, c])D[f∗, f, c∗, c], (A.1)

with Zf = det[−ig(∆̃ −∆)g]. Now the lefthand site of latter equation is written in its

full form and the term ∆ab
tt′ is reinterpreted as a source field.

Z =

∫
D[c∗, c] exp

(
i

{∑
tt′

∑
ab

c∗at[(G
0
tt′)
−1 −∆tt′ ]abcbt′ + SNG

})
. (A.2)

A functional differentiation with respect to ∆ab
tt′ yields:

δZ[∆]

δ∆ab
=

δ

δ∆ab

∫
D[c∗, c] exp(iSF[c∗, c]) (A.3)

= −i
∫
D[c∗, c]c∗acb exp(iSF[c∗, c]) (A.4)

= −Zgba. (A.5)
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The desired connection for the c-Green’s function is consequently given by:

g = − 1

Z

δZ[h]

δ∆
. (A.6)

To derive a functional connection between the dual Green’s function gd and g the dif-

ferential operator −1/Z(δ/δ∆) is applied to the righthand site of eq. (A.1). Special

attention has to be given to Zf , which also contains ∆:

− 1

Z

δZ

δ∆
= − 1

Z

[
δZf
δ∆

Z

Zf︸ ︷︷ ︸
A

+Zf
δ

δ∆

(
Z

Zf

)
︸ ︷︷ ︸

B

]
, (A.7)

with Z/Zf =
∫

exp(iSD[c∗, c, f∗, f ])D[c∗, c, f∗, f ]. In the next step the quantities A and

B are evaluated. For the computation of A the following relation for the differential of

a determinant is needed: ddet(C) = det(C) Tr{C−1dC }.

Zf
Z
Aml =

δZf
δ∆

=
δ

δ∆lm
det(−ig(∆̃−∆)g) (A.8)

= −Zf Tr{ [g−1(∆̃−∆)−1]fa′g
−1
a′b′gb′b

δ∆bc

δ∆lm
gcd } (A.9)

= −Zf [g−1(∆̃−∆)−1]fb
δ∆bc

δ∆lm
gcf (A.10)

= −Zfg−1
ff ′ [(∆̃−∆)−1]f ′lgmf (A.11)

= −Zf (∆̃−∆)−1
ml (A.12)

The second term can be elaborated with an expression for the derivative of an inverse

matrix: ∂A−1/∂alm = −A−1∂A/∂almA
−1.

Bml = Zf
δ

δ∆lm

∫∫
D[f∗, f, c∗, c] exp(iSRef + iSSC + if∗1 [−g−1(∆̃−∆)−1g−1])12f2

(A.13)

= Zf

∫∫
D[f∗, f, c∗, c] exp(iSF)f∗a

δ

δ∆lm
{−i[g−1(∆̃−∆)−1g−1]abfb} (A.14)

= Zf

∫∫
D[f∗, f, c∗, c] exp(iSF)i{f∗a [g−1(∆̃−∆)−1]al[(∆̃−∆)−1g−1]mbfb}

(A.15)
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= −Z(∆̃−∆)−1g−1gdg−1(∆̃−∆)−1 (A.16)

= −Z
[
g(∆̃−∆)]−1gd[(∆̃−∆)g]−1

]
ml

(A.17)

If the reults for A and B are inserted back in Eq. (A.7) one yields in the desired

connection between the dual and the c-Green’s funtion:

g = (∆̃−∆)−1 + [g(∆̃−∆)]−1gd[(∆̃−∆)g]−1 (A.18)
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und das Generieren diverser LDA Hamiltonians. Des Weiteren möchte ich mich bei all je-
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relevanten Fragen. Ich möchte an dieser Stelle auch den immer freundlichen Men-

schen der Verwaltung danken, die mich bei vielen bürokratischen Vorgängen unterstützt
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