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Abstract

HIS THESIS DEALSWwith the mutual interaction of non-equilibrium conduction electrons and

spatially inhomogeneous ferromagnetic order parameters. For this purposcollinear mag-

netotransport is studied within linear response theory by means of a sesitialasansport
framework. Particular emphasis is attached on spin-dependent trapspoerties with the prospect
of spintronics applications. The magnetic vortex is as a selected aspesttgated in detail concern-
ing current-induced magnetization dynamics.
For the case of a magnetic vortex the distinct manipulation of the magnetizatioretgidithe spin-
transfer torque phenomenon is exploited in a proposal for an unamlsiguriiing and reading mech-
anism for a non-volatile magnetic memory device. A realization of a vortexoraraccess memory
(VRAM) containing vortex cells that are controlled by alternating curremiy & proposed. In a
collinear electric current and magnetic field arrangement the dynamics wbttex is entirely con-
trolled by its handedness that is defined as the product of the vortelédmdopological quantities
chirality and core polarization. The vortex handedness as a bit repatisa allows direct mecha-
nisms for reading and writing the bit information. The proposed scheme aitansferring the vortex
into an unambiguous binary state regardless of its initial state within a sulse@al time scale.
The coupling of electric current and magnetization is investigated on two lef/alsstraction. First,
for the case of a magnetic vortex the mutual dynamical coupling of currehireagnetization is in-
vestigated by means of classical electron transport theory with emphas@neimear effects. The
anisotropic magnetoresistance effect is considered within a classicabapo electrical transport in
terms off phenomenological transport coefficients that govern realistiertt paths via macroscopic
transport equation. This treatment covers the effect of spin-orbitictiens on electron transport and
the spin-transfer torque on a macroscopic level. The mutual non-linpandence of spin-polarized
electric current and magnetization dynamics is considered numerically byosedistently solving the
constituting equations, the extended Landau-Lifshitz-Gilbert equatiofPars$on’s equation. Here-
from, a non-linear influence of the anisotropic magnetoresistance on ttex\gyration is deduced
that results in a geometry-dependent renormalization of the spin-traosfeie coupling parameter.
Secondly, a semiclassical transport framework is developed that tteetioa and spin transport on
equal footing and allows for an accurate description of magnetotrarig@patially strongly varying
magnetization textures. The formalism fully accounts for the quantum meethaittre of the con-
duction electron’s spin degree of freedom while it treats its spatial and mametegrees of freedom
quasiclassically. For general spatially slowly varying magnetization textiegsansport coefficients
for the charge current, the spin-transfer torque, and the spinatuaesor are derived in terms of
microscopic scattering times. Concerning general, spatially slowly varyingetiagtion textures a



description of adiabatic non-collinear magnetotransport is proposedms trafour channel model
that comprises additionally to the majority and minority spin-channels familiar frafmear mag-
netotransport, two transverse channels that are responsible forithigaspsfer torque. The resulting
expression for thelegree of non-adiabaticitidentifies the intrinsic twist of spin channels in non-
collinear magnetization textures as the origin of non-adiabaticity.

In the case of a domain wall the transport framework allows for the andlytizaputation of the
spatially resolved spin-transfer torque, domain-wall resistivity and momremtansfer. They are
identified as processes of successive order by a perturbativasapaf the kinetic equation in the
magnetization twist. In narrow domain walls it turns out that the treatment ofledgharge and
spin transport offers startling insight in fascinating physics in an interrteetiansport regime that
comprises diffusive charge transport and ballistic spin transport aatime time. In the case of bal-
listic spin transport the spin-transfer torque as well as the local dedneeneadiabaticity oscillate
within the region of the domain wall. For narrow domain walls the degree ofadiabaticity is
strongly enhanced due to spin mistracking and exhibits a sign change inddgpe on the domain-
wall width that suggests the possibility for a geometrical control of domaindyalhmics and opens
new perspectives for memory applications and domain-wall logic. Thastenstreatment of charge
and spin transport within the semiclassical framework discovers a natmalection between the
non-adiabatic spin-transfer torque and the intrinsic domain-wall resistagityell as the momen-
tum transfer. In particular, the enhanced non-adiabaticity due to spin okistgais unambiguously
identified as the origin of domain-wall resistivity and momentum transfer. Hoélations in the
spin-transfer torque, the domain-wall resistivity and the momentum traasfeof quantum origin
and emphasize the particular role the spin degree of freedom of the atmdalectrons takes with
respect to non-collinear magnetotransport. A sign change with the donadlimAdgth stems from the
enhanced coupling of conduction electron spin and local moments in ndomain walls and sheds
light on the long-standing controversy about the sign of the domain-vegaditigty. To observe a sign
change a combination of three ingredients is required: consistent treatfrteansverse degrees of
freedom with respect to spin mistracking, spin-dependent impurity scafteuich that the current is
carried by the minority electrons, and ballistic spin transport to mediate thessatgewithin the spin
sector.



Inhaltsangabe

wicht-Leitungselektronen und rdumlich inhomogenen ferromagnetischdmu@gsparame-

tern. Hierzu wird innerhalb der Theorie der linearen Antwort nicht-ko#inee Magnettrans-
port mittels einer halb-klassischen Transporttheorie untersucht. BessoBdachtung wird dabei auf
Spin-abhangige Transport-Phdnomene gelegt, die geeignet ersghéingendung in spintronischen
Bauteilen zu finden. Ferner wird der magnetische Vortex als ausgewalekt strominduzierter
Magnetisierungsdynamik eingehend betrachtet.
Anhand der Manipulation der Magnetisierungstextur vermoge des SginrBbyment-Ubertrages wird
fur einen magnetischen Vortex der Vorschlag eines eindeutigen LedeSahreibmechanismus fur
eine nicht-flichtige magnetische Speichereinheit herausgearbeitet. Eatisi®ung eines Vortex
Random-Access Memory (VRAM) wird vorgeschlagen, das aus Zellégebaut ist, die Vortizes
enthalten, und einzig durch Wechselstrome kontrolliert wird. Hierbei wiedd/namik der Vor-
tizes in einer kollinearen Anordnung von elektrischem Strom und magnetisételd mit Hilfe der
Handigkeit des Vortex kontrolliert, die als Produkt der booleschen leg@zhen Grol3en Chiralitat
und Kern-Polarisierung definiert ist. Die Handigkeit des Vortex bietbeneader Bit-Darstellung ins-
besondere die Mdglichkeit eines direkten Schreib- und Auslese-Mesrhas der Bit-Information.
Der vorgeschlagene Entwurf erlaubt es, den Vortex innerhalb egitskala, die sich unterhalb des
Bereichs von Nanosekunden befindet, unabhangig von der Ausigarfegguration in einen eindeuti-
gen Binérzustand zu versetzen.
Die Kopplung zwischen elektrischem Strom und Magnetisierung wird aef Alstraktionsebenen
betrachtet. Zuerst wird der Einfluss der wechselseitigen dynamischgriufg von Strom und Mag-
netisierung anhand des anisotropen Magnetwiderstandes auf die stnarame Vortex-Gyration mit-
tels klassischem Elektronentransport untersucht, wobei besongahtBng nicht-linearen Effek-
ten zukommt. Der anisotrope Magnetwiderstand findet in einer klassischeEmgiehensweise an
den elektrischen Transport vermdge phanomenologischer Trarépeifizienten Berlicksichtigung,
die auf Basis der makroskopischen Transportgleichung die Bereghratistischer Strompfade reg-
ulieren. Der Einfluss der Spin-Bahn-Wechselwirkung auf den Elaktmransport und Spin-Drehmo-
ment-Ubertrag wird somit auf makroskopischer Ebene betrachtet. Die Bleingnder wechselseiti-
gen, nicht-linearen Abhangigkeit von spin-polarisiertem Strom und Mggjarungsdynamik erfolgt
numerisch, indem die konstituierenden Gleichungen — die erweiterte Laiif$aitz-Gilbert und die
Poisson Gleichungen — selbstkonsistent geldst werden. Hieraus kanicle-linearer Einfluss des
anisotropen Widerstandes auf die Gyration des Vortex gefolgert wetss in einer geometrieab-
hangigen Renormierung des Kopplungsparameters des Spin-DrehmObratitages resultiert.

D ie vorliegende Arbeit befasst sich mit der wechselseitigen Abhangigkeiticht-Gleichge-



Des Weiteren wird ein halbklassischer Transport-Formalismus entwickelkjm gleichberechtigte
Behandlung von Elektron- und Spin-Transport und somit eine akk@asehreibung von Magnet-
transport in raumlich stark variierenden Magnetisierungtexturen erlaMgirend der entwickelte
Formalismus die quantenmechanische Natur des Spins des Ladungsslekiikommen berick-
sichtigt, werden rdumliche und Impulsfreiheitsgrade quasi-klassiscmtelhaFir generelle, rAum-
lich schwach variierende Magnetisierungstexturen werden die Tretkepéizienten fir den Ladungs-
strom, den Spin-Drehmoment-Ubertrag und den Tensor des Spin-StroAt@singigkeit von mikros-
kopischen Streuzeiten berechnet. Soweit es generelle, rdumlich langsarende Magnetisierungs-
texturen anbelangt, wird eine Beschreibung adiabatischen, nicht-ke#im&tagnettransports geman
eines Vier-Kanal-Modells vorgeschlagen, das neben den Majoritats-Minoritats-Spin-Kanélen
des kollinearen Magnettransports zusatzlich zwei weitere transveraabddaufweist, die den Spin-
Drehmoment-Ubertrag konstituieren. Der abgeleitete Ausdruck fiir dad @r Nicht-Adiabatizitat
identifiziert die intrinsische Verdrehung der Spin-Kandle als dessen shidpische Ursache.

Fur den Fall einer Domanenwand erlaubt die entwickelte Transport-Uimgelbe analytische Berech-
nung des raumlich aufgelésten Spin-Drehmoment-Ubertrages, des DowainkeWiderstandes und
des Impulsiibertrages. Sie werden als Prozesse aufeinander faidg@rahung einer Stérungsent-
wicklung der kinetischen Gleichung in der Verdrehung durch die Mageatizgtextur identifiziert.
Fir besonders schmale Wénde stellt sich heraus, dass die gemeinsamd|&ai von gekoppeltem
Ladungs- und Spin-Transport Uberraschende physikalische Eiesinach sich zieht, sofern diffuser
Ladungstransport und ballistischer Spin-Transport vorliegt. Im Fallestischen Spin-Transports o0s-
zilliert sowohl der lokale Spin-Drehmoment-Ubertrag als auch der lokaad @er Nicht-Adiabatizitat
innerhalb der Domanenwand. Aufgrund von Spin Mistracking erhdhtdsic Grad der Nicht-Adiaba-
tizitat in schmalen Wanden drastisch und weist darliber hinaus eineridfmaevechsel in Abhangig-
keit der Domanenwandbreite auf, der die Moéglichkeit der Kontrolle tilebDdmanenwanddynamik
vermoge der Probengeometrie in Aussicht stellt und somit neue PergpekinSpeicheranwendun-
gen und Domanenwandlogik aufzeigt. Die konsistente Behandlung vamgadund Spin-Transport
innerhalb der geschaffenen halb-klassischen Transport-Umgemth@lit auf natirliche Art und
Weise die Verbindung zwischen dem Nicht-Adiabatischen Spin-Drehmobiegitrag und dem in-
trinsischen Domanenwand-Widerstand beziehungsweise dem Imputagbénsbesondere wird die
erhohte Nicht-Adiabatizitat aufgrund des Spin Mistracking eindeutig aladbiesdes Domanenwand-
Widerstandes und Impulsibertrages identifiziert. Die generisch aufiexiedszillationen im Spin-
Drehmoment-Ubertrag, im Doméanenwand-Widerstand und im Impulsiibdiigan somit ihre Ur-
sache in der quantenmechanischen Natur des Spins und betonen diddved®olle, die dem Spin-
Freiheitsgrad der Leitungselektronen in nicht-kollinearem Magnettratwpkommt. Die Gegenwart
eines Vorzeichenwechsels in Abhangigkeit der Breite der Doméanenwesottiert aus der stark er-
héhten Kopplung zwischen dem Spin des Leitungselektrons und dernokedgnetischen Momente
in schmalen Domanenwénden; insbesondere gibt sie Aufschluss Ubbengliwahrende Kontroverse
um das Vorzeichen des Domanenwand-Widerstandes. Die Existenz\Marmschenwechsels er-
fordert eine Kombination von drei Voraussetzungen: konsistenteri8iiag von transversalen Frei-
heitsgraden aufgrund des Spin Mistrackings, spin-abhéangige Sgreuuxerunreinigungen, so dass
der Strom hauptséchlich von den Minoritats-Ladungstragern getragdnuwnd ballistischer Spin-
Transport, auf Grund dessen die Koharenz im Spin-Sektor gewdétlisis
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Chapter 1

Introduction

NCE THE DISCOVERYof the anisotropic magnetoresistance effect in 1856 [1], electron trans-

ort in ferromagnetic materials has constantly been a topic of interest. Agrimsimproperty

f elementary particles the electron possesses both a charge and aggpm afdfreedom. In
non-magnetic metals the spins of the electrons are usually randomly oriemtehb arot play a role
with regard to transport. In ferromagnets the electric current beconmepsiarized through spin-
dependent electron scattering and magnetotransport in ferromagnetis extiihits a lot of features
that are absent in non-magnetic metals. [2—4] The essential entrance netotagnsport in ferro-
magnetic metals is to recognize the separation of the dynamics of itinerant e¢eatrthe Fermi
level from the collective dynamics of the localized moments that constitute the &=tiimi sea. [5]
Accordingly, the interplay of currents and magnetization textures relienn@xehange interaction
between the spin of the conduction electrons and the localized magnetic momecusirhst to the
elementary charge the spin takes on two possible configurations, up arwitiwrespect to a quan-
tization axis, for instance given by the magnetization. Consequently, tenspperties in magnetic
materials are spin dependent, i.e., they depend on the two possible cdidigaifar the spin. The
exchange interaction between the spin of the conduction electron and #ierioments results in
transport anomalies and macroscopic quantum effects that are noteXfim classical electrody-
namics and provide various novel perspectives, for instance fonitsdtutilization or the study of
non-equilibrium spin systems. The interdigitation of the charge and the spieelef freedom of the
conduction electron constitutes the central theme of spin electronicspimronics research. [6—11]
From an application-oriented aspect the incorporation of the spin deffeeedom via the mutual
exchange interaction of conduction electrons and local moments opensyhe wither manipulate
magnetization dynamics by means of an electric current or to alter the cfiosgtity tuning the mag-
netic configuration. Both mechanisms are prime examples of the researcbf feglhtronics, where
the charge of the electron cannot be separated from its spin degreedbdin causing the interdepen-
dence of current and magnetization.

In mesoscopic ferromagnets, a multi-domain structure that consists of sdégiarich the magneti-
zation points in different spatial directions is energetically more favorabledhmonodomain. This is
due to the long-range demagnetization energy that overcomes the stgetesachange energy in sam-
ples of considerable spatial extensions. The individual domains aagased by domain walls, i.e.,
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localized topological defects in the magnetization texture, where the magnetizatinges continu-
ously. [12, 13] Owing to the exchange interaction, magnetotransporhsstise to inhomogeneities
in the magnetization texture, where a domain wall constitutes the simplest, niah#trodel system.
A spin-polarized current traversing a non-collinear magnetization tegiags a spin-transfer torque
on the local magnetization, i.e., a direct transfer of spin-angular momentuvedre the conduction
electrons and the local magnetization due to the exchange interaction5]I#hi& provides the pos-
sibility to manipulate the magnetization configuration by means of a spin-polarizeeht. As the
converse effect to the spin-transfer torque, domain walls are found difyrtbe electron transport
due to their non-collinear magnetization texture. The adiabatic separation initgnajed minority
spin channels collinear with the local magnetization that applies to wide walls isngerwalid in
narrow domain walls as the coupling between the spin of the conduction electddhe local magne-
tization gets drastically enhanced and the spin channels mix in the non-adiaigatie. The charge
of the electron cannot be separated from its spin degree of freeddmaasrow domain walls alter
the electrical transport significantly by introducing a contribution to the ébattresistance. It is of
experimental evidence that the resistivity correction linked to a domain wallemiagnce or decrease
the electrical resistivity compared with the case without a domain wall. [16]

Today, the present information technology is based on magnetism andel#ensport, whereas
until recently the spin of the conduction electron has been ignored anatidgeive an application.
The discovery of the giant magnetoresistance effect by Griinbergexhoh 1988 [17, 18], who shared
the Nobel Prize for Physics in 2007, marked the dawn of spintronics emoteld a paradigm shift for
the storage industry. [6, 7] By exploiting the spin degree of freedom itiret gnagnetoresistance ef-
fect led to a revolutionary increase in the storage capacity of hard dibkesgiant magnetoresistance
effect provides a read-out of the binary information by purely eleatednmeans and thus replaced
the conventional, well-established but inefficient read-out based md&gs law by means of an
induction coil. [11] The commercial success of the giant magnetoresisbasel devices renewed
the interest in the rather old research topic of magnetotransport owing talitsalegical relevance.
In the way the giant magnetoresistance effect serves as the readingmsachor today’s memory
devices, its inverse effect, the manipulation of the magnetization by meansggithtansfer torque
effect is a promising candidate to take over the role of the write mechanisnturefmemory de-
vices. [6, 7, 19-21] Until recently the binary information was entirely writienording to Ampeére’s
law by means of the Oersted field accompanying a current flow. This indioeipling of current and
magnetization based on Maxwell's equations of classical electrodynamgsttae problem of scala-
bility. Keeping the current density constant, the current decreasesdrgaking the size of a device.
The Oersted field whose task is to switch the magnetization within a storage cedpisriional to
the current itself. Thus, a higher current density is needed to achievfeettt strength necessary for
switching. The situation is different concerning the direct manipulation ofrtagnetization via the
current. The spin-transfer torque is proportional to the currentityesnsd thus the current needed for
switching is reduced by shrinking the size of a device. Moreover, caadpaith a magnetic field,
an electric current is much more appropriate to operate a device, sinage biedaandled with high
precision and it can be spatially restricted. In addition, the employment dfielearrents avoids the
generic crosstalk between magnetic-based devices due to field legR2y@8] Thus, higher storage



densities as well as shorter access times along with lower power consunmgtjsaible in magnetic
random access memories using the spin-transfer torque. Nowadaytsasysfer torque devices con-
sist in the majority of cases of multilayer structures that are composed of tiagnd non-magnetic
elements. However, devices with a similar functionality but relying on the dispiaat of domain
walls announce more simplicity in the manufacturing process and, foremasths\yg current den-
sities that are up to two orders of magnitude smaller compared with multilayer dejdde-28] The
total current needed to induce domain-wall motion decreases with degegstem size, whereas the
equivalent magnetic field to achieve the same translation of a domain wallsesrd29] Besides be-
ing a candidate for information storage [19-21] current-induced domalhmotion is considered as
the future alternative to electronic logic circuits. [24, 28, 30] One utopixigwmeleon processonat
combines storage and logic within one unit and allows for reconfigurabigatng. [11, 24, 28, 31—
33]

Due to enormous developments in the processing technology of nanostruatul experimental im-
provements stimulated by the perspective of technological applications tnedadvent of spintron-
ics, non-collinear magnetotransport more and more turned into one of thaativstresearch fields in
the solid-state research community within the last few years. [16] Collineanetatgansport is quite
well understood since Mott's proposal in 1936 to divide the entire Feraxdbelectrons into two spin-
dependent subsystems corresponding to the majority and minority chargegscaach contributing
separately and in parallel to magnetotransport. [34] In contrast, the sitweitio non-collinear mag-
netotransport is less clear to date and its investigation is restricted to theastairpthe following
we understand by non-collinear magnetotransport electron transortiihiomogeneous, continuous
ferromagnet that contains a non-collinear magnetization texture. Fromdarfuental point of view
the interplay between electron transport and magnetization dynamics pitees etically appealing
problem as it involves the interaction between the non-equilibrium conduetemtrons and the lo-
calized magnetic moments. In non-collinear magnetization textures the spiredddgreedom of
the electron gains importance due to the twist of spin channels in the presfemsgpatially varying
magnetization texture. This twist affects the electron transport as well dsdhlemagnetization at
the same time. Since the beginning there exist two distinct communities, who eitusr da the
modification of the electron transport or on the magnetization dynamics asehdhycspin-polarized
currents, although both phenomena are but different aspects ofrtieensatual exchange interaction.
This thesis aims at a different approach: Both phenomena should bie@mtsas being inverse to
each other as a separated treatment obscures their intimate relation. Bpdoouthe response of the
conduction electrons to an electric field in the presence of a spatially vanaggetization both phe-
nomena turn out to be different aspects in an unifying treatment. Thisquiapnot only enables the
explicit calculation of the spin-transfer torque and the domain-wall re#isfir a given magnetiza-
tion texture but also provides a natural explanation of both phenomena bgligatausing each other.

It dates back to 1973 when Berger was the first to realize that an elegtrient provides the pos-
sibility of a distinct control of the magnetization. [35] By theoretical consitiens he addressed the
possibility to drive a domain wall by means of an electrical current. In 1984a& again Berger
who investigated the effect of the force that arises from the reflectidheofonduction electrons at
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the domain wall. [2] The effect is nowadays referred taraamentum transfeand originates from
the sd exchange interaction. Earlier in 1978, Berger predicted that the ctodwaectrons should
exert a torque on the domain wall based on ghieexchange interaction that tends to cant the local
spins. [3, 36, 37] In 1992 Berger showed that the torque that is rmygachlledspin-transfer torque
can result in a translation of the domain wall driven by a pulsed spin-pethdarrent. [38]

After the pioneering works of Berger, it lasted until 1996, when Slowskée[14] and Berger [15]
independently developed a theory of magnetization reversal by cunremtltilayer structures with
non-collinear magnetic elements. This discovery paved the path for the tist@amipulation of the
orientation of a ferromagnetic layer without the deployment of external etagfields. Though
the spin-transfer torque responsible for the reversal was essentialathe torque as proposed by
Berger in Ref. [38], the technologically appealing propose of magnetizaéieersal in small pil-
lar structures drew the attention of many solid-state researchers on thetmpéntailed extensive
studies. [39-46] More and more sophisticated experiments on continuguetization textures de-
manded more elaborate theoretical studies. [5, 47-49] In 2004 Tatdradmmo succeeded in the
derivation of the equation of motions for a rigid domain wall under the inflaesfca current. [49]
The equations of motions are essentially the ones proposed twenty yedmgBgrger [2, 38], but are
derived from a microscopic theory without phenomenological assumpiothsembiguities. [49, 50]
It also dates to 2004, that, after preliminary works by Bazaliy et al. [4d] Bernandez-Rossier et
al. [51], Zhang and Li proposed the macroscopic description of thetsmisfer torque for general,
continuously slowly varying magnetization textures based onsdhexchange interaction. [5] Since
then the impact of spin-polarized currents on the dynamics of continuousetizgtion textures is
described by the meanwhile established concept of the transfer of mgiiaa momentum from the
conduction electrons to the local magnetization. The seminal work of Refe§fured the intro-
duction of the non-adiabatic spin-transfer torque that accounted faxberimental mystery about
the terminal velocity in current-induced domain-wall motion. [26, 52] Thenplheenology of the
non-adiabatic spin-transfer torque relates the terminal domain-wall vetocityhenomenologically
introduced, constant material parameter,dbgree of non-adiabaticityand its relation to the Gilbert-
damping. [5] The most remarkable consequence of this proposal is #yeendence of the degree of
non-adiabaticity and thus the terminal domain-wall velocity with respect to theacteristics of the
domain wall, i.e., the width and the type of the domain wall. [5, 48] However, tea@imenological
introduction of the spin-transfer torque raised the question for its micpisawigin and strength.
Accordingly, the microscopic derivation of the phenomenological paras)ates spin-transfer torque
coupling coefficient and the degree of non-adiabaticity, is currentlyobiiee most urgent theoretical
issues in current-induced magnetization dynamics. [5, 48, 53-60]

The validity of the phenomenological spin-transfer torque as propog&kb [5] is limited to adia-
batic magnetotransport through wide domain walls. The adiabatic approximesiolts in a spatially
independent response that provides constant coupling coeffioidritd) can be regarded as material
parameters independent of the details of the magnetization texture. The sitaaliiberent in narrow
domain walls. As a consequence of the strong spatial variations of thenhmraénts the mixing of
spin channels in narrow domain walls allow the anticipation of a spatially inhoneogsiresponse
of the conduction electrons that significantly affects the magnetotrarespabthe dynamics of narrow
domain walls. While in bulk ferromagnets the typical width of a domain wall is detexthby the



properties of the material, in ferromagnetic nanowires the transition fromteviakerrow domain walls
takes place smoothly. Here, the width of a domain wall depends additionallye@athple geometry
and can be experimentally tailored. A consistent theory of spin-transtgrédhat is also applicable
to the technologically relevant narrow domain walls is still missing and the impdeéapin-transfer
torque in narrow domain walls, for instance on the equilibrium configuratioonahe dynamic of
narrow domain walls, is not assessable to date. High precision experirmehtheaperspective of
technological usability substantiates the need for a tractable transpoeviiark that interconnects
both impacts of the exchange interaction, the spin-transfer torque andrirerdwall resistivity. In-
sofar a sophisticated approach to non-collinear magnetotransportissaeyg that considers electron
and spin transport on equal footing and allows the microscopic derivatitre spin-transfer torque
and the electrical resistivity for general magnetization textures. Thdasaent of such a transport
framework constitutes an essential step towards a consistent description-oollinear magneto-
transport in accordance with current-induced magnetization dynamics.

In this thesis, a transport framework is developed that operates on tHadetbetween spin-transfer
torque and domain-wall resistivity and facilitates the description of non-eallimagnetotransport in
narrow domain walls. By treating charge and spin transport on equtihdpthhe open gap between
the phenomena of spin-transfer torque and domain-wall resistivity isctld$e framework provides

explanations for urgent questions, for instance as it concerns theedefghon-adiabaticity or the sign
of the intrinsic domain-wall resistivity, and is employed to study the variatioreoisport coefficients

and coupling constants that occur during the crossover from the gidiab#éhe non-adiabatic trans-
port regime. This thesis is subdivided into three main parts.

After a short introduction in chapter 2 to the fields of magnetism, currenegdiumagnetization
dynamics and electron transport in non-magnetic metals, chapter 3 prasaataory device that is
based on the handedness of a magnetic vortex, which is defined as doetprbthe intrinsic vortex
properties chirality and core polarization. The handedness as a lesesyation allows for a writing
process that requires no preceding reading operation. The comgtieation of current-induced
magnetization dynamics in a spintronic device serves as a motivation for ted teis thesis.

Chapter 4 investigates by numerical simulations the current-driven gypimsmotion of a magnetic
vortex in square thin-film elements in the presence of an inhomogeneawnictiow due to the

anisotropic magnetoresistance. The consideration of realistic currénibutions due to magnetore-
sistance effects in the resistivity tensor of Ohm’s law allows for the sel§istant computation of
current-induced magnetization dynamics. A numerical study of the non-liesponse of the mag-
netic vortex with respect to the applied current density is reported.

Chapter 5 is devoted to non-collinear magnetotransport and lays the ttbabfeundation for the
phenomenological theory as employed in the preceding chapters. Fimtesagkinetic equation is
derived that takes into account coupled charge and spin transpeorthd-oase of general, spatially
slowly varying magnetization textures a non-equilibrium solution is preseritethlly, the kinetic
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equation is solved perturbatively for the case of an one-dimensionalidawa#l, which allows for
the spatially resolved computation of the spin-transfer torque, the domdliresiativity and the mo-
mentum transfer.

This thesis ends in chapter 6 and 7 with a conclusion and an outlook.



Chapter 2

Electron transport and magnetism

HIS CHAPTER PROVIDESa basic introduction to the fields of magnetism, current-induced
magnetization dynamics and electron transport in non-magnetic metals.

2.1 Thesd model of ferromagnetism

A ferromagnet is characterized by undergoing a phase transition dtcaldemperature (the Curie
temperaturd ). Below T the ferromagnet enters an ordered magnetic phase and exhibits a macro-
scopic magnetic moment. Ferromagnetism is a correlated state in which the tspiona symmetry
is broken spontaneously due to the exchange interaction. The exclegetion is an effective
spin-dependent interaction that is of purely quantum mechanical origglowBI~ the electrons
within a ferromagnet collectively align their spins and form a macroscopiostagtion in order
to reduce the strong Coulomb repulsion between the electrons. [61, 68tdingly, ferromagnetism
is a collective many-body phenomenon. The Pauli principle requires thah#my-body wave func-
tion is antisymmetric under particle-permutations due to the fermionic nature ofeitteoms. The
Coulomb repulsion between individual electrons can be reduced byrameed spatial separation of
the electrons due to a reduction of the overlap of their wave functions.régisres the spatial part
of the wave function to be antisymmetric. Due to the Pauli principle this forcespimepart of the
wave function in turn to be symmetric and the electrons collectively align theis gpid form the
macroscopic moment. The order parameter associated with the spontayewostiy/-breaking is
the magnetizationi (7, t).

In ferromagnets the time-reversal symmetry is broken due to the exchaegection. In theoretical
models of ferromagnetism the magnetization is modeled by a Zeeman-like mean (fi¢ld that acts
on the spin of the electrons comparable to an external background mafigldtifl2] The magnetic
field analogy is justified through the pseudovector character of the magitizhat is odd under
time-reversal.

As proposed by Refs. [2, 3, 5, 49, 63] spin-dependent tranpperiomena as the spin-transfer torque
and magnetoresistive effects can be understood by recognizing tveoediffkinds of electrons that
exhibit a separated dynamic. In a certain class of ferromagnets the dynafrttee itinerant con-
duction electrons, which carry the electric current and stem from theifsenface can be separated
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from the localized moments that constitute the local magnetization and originatéfecentire Fermi
sea. Both kinds of electrons, itineranélectrons and localized electrons participate in a mutuad
exchange interaction. In the course of this thesis it will be shown that dewslrresistivity and
spin-transfer torque can be interpreted as different aspects of ttlimmrge interaction. In thed
model of ferromagnetism the electrons are separated into itinemettrons that do not contribute
to the magnetization and localizedelectrons that constitute the local magnetic moments. [64] The
sd picture is motivated by the specific band-structure of a certain classrohfagnets. [34] Thd
electrons possess quite flat bands that constrain their mobility due to a tEg®/e mass. The flat
bands prevent thé electrons from participating in transport. In turn, transport is entirelyilzed to

the itinerants electrons whose interaction with each other is negligible compared to the tiaarac
with thed electrons. Whether the validity of a such model with a separated dynamiclisadgg for

a given ferromagnet or not must be decided by ab-initio band-structlcalations. [65]

A point of view opposite to thed model is the picture of an itinerant ferromagnet, where all electrons
contribute to the magnetization. [66] Both scenarios, itinerantsainthodel, provide extreme cases
that do not hold for actual ferromagnets. A realistic ferromagnet is stra@in between these mod-
els. In real materials the hybridization of tidbands with thes band can be quite strong and thus their
distinct treatment is often not well justified. [67] However, it turned out thast physical properties

of the ferromagnet do not depend essentially on the nature of the emplmassl. [68]

In the sd model thed electron shells are treated as local momehthat interact with the spin of the
conduction electrong through the locabd exchange integralsq

2Jsd =
Hog = — hs"s -3, 2.1)

whereJgqis a measure of orbital overlap betweeandd electrons.

The separation in two kinds of electrons is motivated by the different rsspaf the conduction elec-
tron 5 and the local moment$ with respect to an external electric field. While the magnetotransport is
provided by fask electrons close to the Fermi surface, the collective magnetization dynamitssinv

d electrons from the entire Fermi sea whose response to an electric fiedigilvie. The high mobil-

ity of the s electrons can be understood in terms of that the tunneling matrix elemenglietrons is
much larger than fod electrons. [69, 70] The itinerantelectrons are delocalized and their extended
wave function interacts with a large number of localized moments. Mesoscojgjoettaransport
deals with the interaction between conduction electrons and topologicaksl@fehe magnetization
texture, i.e., domain walls (cf. section 2.4 and 5.1.1 for a detailed discussiength scales). A
domain wall comprises numerodselectrons and constitutes in this sense a macroscopic object. In
order to consider the effect of spin relaxation and non-adiabaticitgctlyr the spin of the conduc-
tion electronss’ must be treated fully quantum mechanically. [71] The spin of the condudéaitren

§ sees a large number of localized moments and only the mean field created bgahedmments
affects the dynamics of the conduction electrons. Due to strong ferroiti@goeelations between
the local moments, their collective dynamic is much slower than the dynamics of the spin of the
conduction electrong. Accordingly, the local momentS can be treated as a classical molecular field

(8) = —Smm(7,t), (2.2)
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which neglects quantum fluctuatiodsS of the local momentss. Equation (2.2) yields usually a
very good approximation, as the localizécrbital electron spinsS possess a very large net spin
S > AS and exhibit strong ferromagnetic correlations that efficiently suppnesstgm fluctuations.
This results in much slower semiclassical dynamic of the local moments compéhetthevdynamic
of the spin of the conduction electrén[5, 72] The mean-field description as provided by Eqg. (2.2) is
in accordance with the collective magnetization dynamics in terms of the microtiagroelel as will
be discussed in section 2.2 and perfectly suited for the description of cogsosnagnetotransport
(cf. section 2.4 for a detailed discussion). A description of the magnetizdyioamics by means of
the classical Landau-Lifshitz-Gilbert equation focuses on the longlemagth dynamics and neglects
quantum fluctuations that occur on a much shorter time scale.

By considering Eq. (2.2) thed Hamiltonian of Eq. (2.1) can be rewritten as

Ha = Jsoo - T?l(F, t)a (23)

where we introduced half the exchange splittihg:= S.Jsqand employed the representation of spins
via Pauli matrices’ = h/24. The sd Hamiltonian in Eq. (2.3) destroys the time-reversal symmetry
within the electron system and causes an exchange splitting of the previegglgerate energy levels.
Choosing the effectived Hamiltonian in Eq. (2.3) as a starting point for the derivation of a transport
equation, we are not concerned about the microscopic origin of therdgakinhomogeneous mag-
netizationmi (7, t). Itis sufficient just to assume its existence.

2.2 Micromagnetic model

At long wavelengths the dynamics concerning the ferromagnetic ordemgder is phenomenolog-
ically described by the micromagnetic model in terms of the Landau-Lifshitz-Gi(beG) equa-
tion. [73] The micromagnetic model is a semiclassical continuum model thadsséorthe descrip-
tion of magnetization dynamics in a certain class of ferromagnets, for insthedeansition metal
ferromagnets Co, Fe, Ni. Instead of focusing on individual atoms, theomagnetic model adopts a
continuum description of the microscopic spin system in terms of a smooth edtbm (7, ¢) that
captures the collective, slow magnetization dynamics at mesoscopic lenigth Sdae micromagnetic
model is designed to describe magnetization processes, such as magstetiediy and domain-wall
motion. In this sense the micromagnetic model provides the link between miciosgamtum the-
ory by containing a continuum expression of the quantum mechanicahegehnteraction [74] and
the macroscopic theory of Maxwell’s electrodynamics. It is an experimentallljustified fact, that
along with a small set of parameters the Landau-Lifshitz-Gilbert equatmndes an adequate way
to describe the spatially non-uniform magnetization dynamics of a ferrorhamgtiie sub-micrometer
regime. The classical mean-field treatment of the magnetization neglectsmeardishort-time fluc-
tuations, such as magnetic noise. Owing to the continuum approximation, themagmetic model is
limited to the description of smooth magnetization textures. This precludes stiohgiyogeneous
magnetic configurations on the atomic scale.

An arbitrary magnetic configuration is associated with a distinct free enérjg sum of all pos-
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sible magnetic configurations constitutes the free energy functional

F[ﬁi(?)] = Fexchange+ Fanisotropy+ Fzeemant Fdemagnetization (2-4)

of the spatially inhomogeneous magnetic configuratig(). At temperatures well below the Curie
temperatureél- the free energy functional in Eq. (2.4) attains a minimum at a finite magnetization
(m(7) # 0) that points in an arbitrary direction. The free energy in Eq. (2.4) ctmefsseveral con-
tributions that possess clear physical interpretations while their mathematinalkchn be deduced
by symmetry arguments. The micromagnetic model treats the long-ranged matipel&cinterac-
tion, the strayfield within a ferromagnet, as well as local magnetic interactiarisas the Zeeman
interaction explicitly while it employs a gradient expansion for the short-rduggentum mechanical
interactions. Zeroth-order gradients in the energy functional are theetiagr crystalline anisotropy
interaction due to spin-orbit interactions and the Zeeman interaction with amaieagnetic field.
The anisotropy energy sums up band structure effects induced bywdpiriateraction that try to
correlate the direction of the magnetization with the underlying atomic lattice. THagegradient
term that is allowed by spatial inversion symmetry is of second order and ¢giirdum mechanical
exchange energy. The exchange interaction takes into accounyesagigtions due to magnetiza-
tion gradients and is characterized by the exchange condtaalso called spin stiffness that is a
well known material parameter. [72] The microscopic origin of the exchamigraction is the strong
Coulomb repulsion between electrons (cf. discussion in section 2.1). Be®Wurie temperature
the parallel alignment of the electron spins is energetically more favorattlesfandividual electrons
and the exchange interaction reflects the decrease of energy thas émca parallel orientation of
the magnetic moments. [61, 72]

The different interactions that are associated with the individual cotiitgito the free energy in
Eqg. (2.4) act on different length scales. A striking consequence iddhédrger samples sizes the
magnetic ground state is in general spatially non-uniform. At a certain sibe apecimen it is ener-
getically more favorable to divide the whole ferromagnet in magnetic domainsiiffiinent spatial
orientation. [72, 75] The formation of domains is a bulk effect that beca@negyetically more favor-
able with increasing sample size. The separation in magnetic domains redeitmsgHtange dipolar
energy for all spins comprised within the specimen. In contrast, the costiaege energy concerns
solely the spins at the boundaries of the domains that form the domain walTtieééigh the mag-
netic dipole interaction is much weaker than the exchange energy, the diptdaftect prevails at
a certain sample size over the expense in exchange energy due to theulanlger of involved spins.
Possible outcomes are highly non-trivial magnetization patterns in depssndéthe geometry of the
specimen, for instance a domain wall or a magnetic vortex. [77—79]

The formation and time-evolution of a magnetization texture is described by thealualifshitz-
Gilbert equation. It is governed by the effective field that is determinetth@shermodynamically
conjugate with respect to the magnetization

1 SF[m(7)]
poMs  om(r)

ﬁeff = - (2.5)
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with constant saturation magnetizatid#. In equilibrium the general form of a dynamic equation
for the magnetization that is in accordance with symmetry considerations lead&doh equation

dm(r,t) dm(r,t)
dt dt

Equation (2.6) is referred to as the Landau-Lifshitz-Gilbert equationd@hand determines the time-
evolution of the magnetization within a ferromagnet, wheiie the gyromagnetic ratio and is the
phenomenological Gilbert damping. [80, 81] In this sense the free gnergq. (2.4) allows via
Eqg. (2.5) and Eq. (2.6) the phenomenological description of the collectagnetization dynamics
without dissipationd = 0).
The Landau-Lifshitz-Gilbert equation (2.6) preserves the magnitudeeghtgnetization at any point
in space” and timet

= —ymi(7, 1) X Het + (7, t) x

(2.6)

Ld ., o ., dn(ft)
5%(7”( , 1)) =m(7,1) dt
- dm(r,t
= m(7,t) (—’ym(ﬁ t) X Heft + am(7,t) x mc(l:fa’ )>
=0. (2.7)
Accordingly, the magnetization constitutes therefore an unimodular vectdr|fig(r,¢)|| = 1 or

—

m(7,t) = M(7,t)/M,, respectively. As a consequence the micromagnetic model is unable to de-
scribe abrupt magnetization textures with a strong canting of the local momeats atomic length
scale. Instead, the mesoscopic description of magnetization dynamics a.®qs suited to de-
scribe macroscopic magnetization configurations and is thus in accord@hdiie mesoscopic ap-
proach to electron transport as pursued in this thesis (cf. section 2.4).

The first term in the Landau-Lifshitz-Gilbert equation (2.6) describegptheession of the magnetic
moments around the effective field that is defined in Eq. (2.5). It poinfsapelicular to the magneti-
zation and the precession term preserves the energy. To accodigdigpation, which is generically
present at the macroscopic level, a damping texna] is usually added. The second term in Eq. (2.6)
is of phenomenological origin and accounts in a local and isotropic maonerrelaxation mecha-
nism that tends to align the magnetization in equilibrium with the effective field Gilleert damping
parametrizes a dynamic correction to the instantaneous effective fielcctimatras for the finite time
delay that is needed for all relevant microscopic degrees of freedaata to the local magnetiza-
tion.

Let us prove that the Gilbert damping causes energy dissipation. Thaf cdtange of the total energy
reads

— — [ = — [ — — [ — 2
1 dF[m(7),t] _ 1 /d3r 5F[171£T)] dm(7,t) _ _a/ Br dm(7,t) 7 2.8)
oM dt oM om(7) dt ~ dt
where we employed the Landau-Lifshitz-Gilbert equation (2.6) in the skestap in Eg. (2.8). As
a > 0, it follows from Eg. (2.8) that the change in energy is negative and thee@ittamping trans-
fers energy from the magnetic system to the lattice. We note that the Gilberistdissipative in the

sense that it violates the time-reversal symmetry of the Landau-Lifshitzi&ghaation (2.6).
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Though this is not part of this thesis, a few remarks concerning the ptemaogical damping term
are required. First, the assumption of a single scalar damping paraméistead of a damping
tensor that accounts for anisotropic energy relaxation is surely a simpdificaf the problem. In a
huge class of problems this does not matter, as many magnetic quasi-staédipspgdor instance
a magnetic hysteresis, are not sensitive to the damping parameter. Instaotcpasi-static pro-
cesses, the nature of the damping becomes essential in the investigatioraoficl magnetization
processes, for instance domain-wall motion. The introduction of sepbeEiomenological damp-
ing constants is not satisfying from a theoretical point of view, as the dammpethanism is under
strong debate. [80, 82—91] However, recently a microscopic dernivatiche Gilbert damping from
relativistic origins succeeded. [92] In particular for conducting fexagnets, Ref. [93] proposes a
spatially dependent damping tensor by assuming that in current-inducettizagion dynamics the
main source of energy relaxation is due to Joule heating of the conductaroeke Due to the spatial
dependence of the damping tensor, this can modify the dynamics of nasroaim walls in an essen-
tial manner and requires a reexamination of micromagnetic simulations in thefeasesmt-induced
magnetization dynamics.

2.3 Spin-transfer torque and transport properties

In conducting ferromagnets the electric current density constitutes ayreamtcal variable concern-
ing the manipulation of domain walls. The mutual interaction of the spin of the atioduelectron
with the domain wall results in a novel class of phenomena. Among these, iygementary mech-
anisms are commonly accepted to induce domain-wall motion by means of an etaeateist. Both
effects are entirely different in their mode of operation, though both &imsethe interaction between
the local magnetization and the spin of the conduction electrons. The fast,ghe spin-transfer-
torque effect, is most important for spatially slowly varying magnetization testand is proportional
to the spin polarization of the current as it transfers spin-angular momdrdonthe non-equilibrium
conduction electrons to the spatially inhomogeneous magnetization texturesedted effect, mo-
mentum transfer, takes into account the partial reflection of the condwtéotrons at the magnetiza-
tion texture and is proportional to the charge current that is altered due &xtta resistivity caused
by a spatially strongly inhomogeneous magnetization texture. A conductiancgidbat is reflected
by the domain wall transfers its linear momentum to the wall, which results in donmealirmaetion.
The momentum transfer effect is usually of minor importance except forabe af very narrow do-
main walls. In this thesis we exclusively investigate domain walls with widths larger tthe Fermi
wavelength. In this regime the semiclassical description of magnetotratispalid.

In this section, we will give an introduction to the spin-transfer torque phmmon, that constitutes
the most important and interesting manifestation of the impact of the currentrentoagnetization
for continuous, spatially slowly varying magnetization textures. We follow tkfical development
of the spin-transfer-torque effect and start from the idea of angutementum conservation. By gen-
eralizing the spin-transfer torque to situations where angular momenturargatien fails, we arrive
at the most recent and most general picture of current-induced ®eagueaused by current-carrying
quasiparticles. We will discuss the proposed mechanisms responsible &pithtransfer torque and

12
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report about the ongoing controversy that concerns a non-adiajgatidbution to the spin-transfer
torque.

In ferromagnetic materials the electric current is spin-polarized due tadggandent scattering. This
gives rise to the possibility that the spin-angular momentum, as carried byithpaprized conduc-
tion electrons, is transferred from the non-equilibrium conduction elestto the local moments,
which results in a spin-transfer torque on the local magnetization. Respmffwilthe transfer of
spin-angular momentum is the exchange interaction between the conductivoreeand localized
d electrons of the ferromagnet. Without spin-orbit interactions, there areéweessary requirements
for the presence of the spin-transfer-torque: a non-equilibrium sityat®, a current flow and the
presence of a non-collinear magnetization texture.

In 1996 Slonczewski [14] proposed a spin-transfer torque for midgnnon-magnetic multilayer,
for instance F(erromagnet)1/M(etal)/F(erromagnet)2 hybrid systerrs\alves)

TSlonczewski= SR PPN x (M x Mp). (2.9)

In the following we denote current-induced torques that can be added tatidau-Lifshitz-Gilbert
equation (2.6) byr. The applicability of Eq. (2.9) is restricted to multilayer systems and can be
viewed as the inverse of the giant magnetoresistance effect. The mainekliea lEqg. (2.9) rests on
the concept of conservation of spin-angular momentum. A net flux of gphermt into a volume of
magnetic material results in a torque that acts on the same volume. Equation @.®asrospin
equation andVi = M,m represents the uniform magnetization of the free ferromagnetic layer F2
with saturation magnetization/,, while Mp symbolizes the magnetization of the fixed layer that
acts as a spin-polarizer for the electric current traversing the multilaygstste. The macrospin
approximation assumes that spatial variations in the magnetization texture witmmpéesare frozen
out. Then, the magnetization remains spatially homogeneous within each layearabe treated as
one macrosping; is a model-dependent function proportional to the current density, vagplends
on the relative orientation between the fixed and the free layer.

It took about two years from the proposal and mathematical formulationeo$pim-transfer torque
in magnetic multilayers [14] to its generalization for arbitrary, spatially slowlyway magnetization
textures by Bazaliy et al. in 1998. [47] Guided by the idea that there missteegeneral counteraction
of the current onto the magnetization, Ref. [47] proposed a continuurargkzation of the spin-
transfer torque within a ballistic transport model for half-metallic materials.J5436] Later in 2003,
Fernandez-Rossier et al. [51] recognized that it is the spin curaémérthan the charge current that
affects the magnetization dynamics. In this manner, Ref. [51] generalieeeshlt of Ref. [47] from
half-metallic to arbitrary ferromagnets. Taking both findings together, tbidtein a straightforward
manner in the final form of what is nowadays called the adiabatic spinféraiasque

P -

Faol ) = ~ER N7 < () x (el - )M (7). (2.10)

Here P is the diffusive spin polarization of the electric currggtr) that links the charge current to
the spin current.
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It is worth noting, that the adiabatic spin-transfer torque of Eq. (2.1@)tha Slonczewski torque
for multilayer structures in Eq. (2.9) exhibit similar mathematical forms. Due to thible cross
product both kinds of spin torque have in common that the resulting torgtleeanagnetization van-
ishes when the magnetization texture is collinear. A closer examination retfedlthe Slonczewski
torque in EqQ. (2.9) is a special case of the adiabatic spin-transfer tondog. (2.10) that is valid
for continuous slowly varying magnetization textures: Integration of E4.0)2across the layers by
assuming a homogeneous monodomain for each layer, as required by tlespiraapproximation,
directly recovers Eg. (2.9) from Eq. (2.10). But caveat, as the dtiarfghe Slonczewski torque in
multilayers is mainly determined by the non-magnetic interface, the spacer tlaggmefacto; in
Eqg. (2.9) cannot be identified with the diffusive spin polarizati®wof the bulk ferromagnet. More-
over, it can be orders of magnitude larger in dependence on the pespafrthe interface. [94, 95]

In the adiabatic regime it is assumed that the magnetization varies spatially slaMliguenthe spin
direction of the non-equilibrium conduction electrons follows the magnetizaiitiabatically. This
situation holds for continuous ferromagnets with wide domain walls, such tbatpim of the con-
duction electrons has enough time to comply with the local magnetization. Assaddrby Li and
Zhang [94, 96], the adiabatic spin-transfer torque in Eq. (2.10) folldinectly from the adiabatic
approximation that the polarization of the spin current is aligned with the locghat&ation. In
this case the spin-current tensor can be assumed to be the tensort pfatiecflow direction of the
conduction electrong(7) and the local magnetizatiofi(7) [94, 96]

. P.
Jad(T) == Z;J Je(T) @ m(T). (2.11)

At this point of the discussion, we will focus on the idea of conservatiogpiri-angular momen-
tum [95] that allows computing the spin torque by considering the net chiargpen current before
and after the interaction with the magnetization of the ferromagnet. The arguuhangular mo-
mentum conservation serves to relate the spin-transfer torque directly &mgfudar momentum as
lost or gained by means of the spin current. This is sometimes referred te lagdkkeepingheory
of spin-transfer. [95] Whenever the flow of spin-angular momentumsbasces or sinks, the spin
current is not conserved and spin-transfer torque arises due tatiséar of spin-angular momentum.
A necessary condition for a non-conserved spin current are inhemedties in the magnetic configu-
ration. In spatially varying magnetization textur@s,,—,«rﬁ(ff) # 0, the spin current in Eq. (2.11) is not
conserved. The prime examples are either a non-collinear magnetizatiigucation in a multilayer
structure, for instance a spin valve, where the spin current is filteratibogdjacent ferromagnetic
layer oriented non-collinear to the first layer or an extended domain wallsgecial case of a spa-
tially inhomogeneous magnetization pattern. In both cases the flow of sputaamgomentum is
altered by the magnetization that exerts a torque on the spins of the condeletttnons in order to
reorient them. Vice versa, due to conservation of angular momentum thequilibrium conduction
electrons exert an opposite torque of equal strength on the magnetizitiom ferromagnet — the
spin-transfer torque.

A torque is the time rate of change of angular momentum and by conservatargofar momen-
tum, the spin torque can thus be related to the loss or gain of the spin-anguhantumn of the spin
current. To capture these ideas more quantitatively, let us define thelspént densitny(F) asin
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2.3. Spin-transfer torque and transport properties

Eqg. (2.11) by a tensorial quantity, which has both, a direction of flow ihgpace and a direction
in spin space. Relying on conservation of angular momentum, the spineraogfue acting on the
magnetization of a small volume of the ferromagnet is determined by the nefffioneequilibrium
spin current through the surface of the small volure

Tsrr = — / dPriJ(7), (2.12)

wheref7 is the spatial position and is the interface normal for each surface of the volureDue
to the theorem of Gaul3, Eq. (2.12) is equivalent to the volume integraltbgedivergence of the
spin-current density within the small volume

fSTT = — / d37‘ ﬁrf‘j(f') (213)
4

Due to the tensorial nature of the spin-current denﬁg(y*), its spatial divergence is a vector in spin
space. However, the magnetization dynamics is governed by the spiretdeqsity. [5] From the
differential form of Eq. (2.13) it follows that the spin-torque density igegi by the divergence of the
spin-current density [94]

peP = ~ y pelP - . = L

Viedad ) = 3= Veliel®) © M (7)) = Fom (el - Vo) M () (2.14)

where we considered local charge neutrawe(ﬁ = 0in the second step of Eq. (2.14). The torque
in Eq. (2.14) is exactly the adiabatic spin-transfer torque of Eq. (2.10¢eed by Refs. [47, 49, 51,
94, 96, 97].

The situation sketched thus far is known asltbekkeepingheory of the spin-transfer torque, where
it is assumed that the total spin-angular momentum is entirely transferredteospin current to the
local magnetization. In the course of time, discrepancies between thesbexpariment required the
development of a more general concept of the spin-transfer-tof§uErom a theoretical point of
view, according to Ref. [95], the main obstacles with lo@kkeepingheory are:

¢ In the bookkeepindheory of the spin-transfer, the distinct difference between the coioduc
electrons and the localized electrons that constitute the magnetization is fmiskw partic-
ular for transition metal ferromagnets it is well known that both kinds of elastgarticipate
in transport (cf. section 2.1).

e Thebookkeepingheory of spin-transfer is based on conservation of spin-angular ntamen
The question at hand is, whether spin-transfer also occurs in systemstwaitiy spin-orbit
interaction where the spin-angular momentum is not conserved.

These inconveniences have been resolved by the introduction of a emeeatjconcept of the spin-
transfer torque [5, 48, 49]: The current-induced torques arisa momisalignment between the
current-carrying quasiparticles, the induced magnetization of the naifibemym conduction elec-

trons and the collective degrees of freedom comprised within the fermetiagrder parameter. At
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Chapter 2. Electron transport and magnetism

this point it is necessary to briefly comment on the concept formation forutrert-carrying quasi-
particles. Within the giant magnetoresistance or tunneling magnetoresistanosuaity the out-of
equilibrium magnetization of the conduction electrons is called spin accumulatidiffusive sys-
tems, whereas it is called spin density in ballistic systems. As this is not a stersthdgnotation
we decide to refer simply to the magnetization of the conduction electrons gedmet this will not
create much confusion.

In situations, where the spin is (approximately) conserved the concepirmdnt-induced torques
reduces to théookkeepingheory and the idea that the spin-transfer torque arises from the spin cur
rent. [95] Thus the current-induced torque picture can be seen aseajeation of thdbookkeeping
theory. The benefit of the current-induced torque picture rests omathéhfat it can be applied to sys-
tems where the spin is not conserved, for instance to systems with spirirtebétction. Moreover,
it explains the fact that the spin-transfer torque acts on the antiferratiagnmder parameter, even
though there exists no relation between the spin-transfer torque and thepintd95]

The picture of current-induced torques exhibits some subtleties that weisaliss in the follow-

ing. This picture is of particular importance for this thesis, as we will adopirthee general picture
of current-induced torques along with a linear response calculation ehagmetization of the con-
duction electrons in section 5 of this thesis. The spin-transfer torques drig®a the misalignment
of the non-equilibrium transverse magnetization of the conduction eleatritéimshe local moments.
The determination of the spin-transfer torque then reduces to the taskirohtsg the transverse
non-equilibrium magnetization of the conduction electrons in the preserggi@tn non-collinear
magnetization texture.

The current-induced torque picture started out in 2004, when Zhahbi§5] recognized that besides
the adiabatic spin-transfer torque a second torque perpendicular tdi#tiatc spin-transfer torque
in Eq. (2.10) must be present to lift the mystery about experimentally obdelocities in current-

induced domain-wall motion. [26] The adiabatic torque of Eq. (2.10) ptediczanishing terminal
velocity for a domain wall, as the energy due to the current is pumped cooslyiato the rotation

of the wall and is thus no longer available for a translational motion. [5, 2896] By adopting a

phenomenological spin-diffusion equation that relaxes the transvegeetigation of the conduction
electrons to the local magnetization by means of spin-flip processes, theintoaccount a finite

lag of the magnetization of the conduction electrons due to non-consgired $n addition to the

adiabatic torque in Eq. (2.14) they derived a non-adiabatic spin-traiosfgie that originates from the
counteraction of the non-conserved non-equilibrium magnetization obitduction electrons on the
local magnetization. The non-adiabatic component of the spin-transtpretds taken into account
by adding the term

7_')non-ac(f’) = —Mg\];f
to the Landau-Lifshitz-Gilbert equation (2.6). The non-adiabatic torquEgin2.15) points perpen-
dicular to the adiabatic torque in Eqg. (2.10) and the local magnetizﬁ’lo?) and describes in general
the mistracking between the conduction electron spin and the local magnetizaliermechanism
for the mistracking can be either spin relaxation that is always presenngsakthe spin is not
completely conserved or the spin mistracking due to the non-adiabaticity aseohdhy a spatially

M (7) % (Je(7) - V)M (), (2.15)

16



2.3. Spin-transfer torque and transport properties

strongly varying magnetization texture. The magnitude of the non-adiabatjgetas parametrized
by the non-dimensionalegree of non-adiabaticity that is defined as the ratio of the non-adiabatic
and the adiabatic torque and is sensitive to microscopic characteristiextedfby the phenomeno-
logical nature of their spin-diffusion equation, Zhang and Li intuitivelyroled that the predominant
mechanism to relax the transverse magnetization of the conduction electspia-ilip scattering
and consequently their proposed value for the degree of non-adigbetans

Tsd
¢t = = (2.16)

Tst

In Eq. (2.16),75" is the phenomenologically introduced spin flip-relaxation time that servespis a s
sink and relaxes the macroscopic transverse magnetization of the condeietixdrons to the local
magnetizationrgq is the precession time of the conduction electrons around the local magnetizatio
associated with thed interaction. Zhang and Li estimated a valuet6f ~ 102 that corresponds

to a value ofr3- ~ 10712 s without microscopically specifying the mechanism that relaxes the trans-
verse magnetization of the conduction electrons. Typically all kinds of flipiseattering processes
with or without momentum conservation contribute to the relaxation of the oatoitibrium mag-
netization of the conduction electrons. [98] Due to spin-orbit scatteringripyrities and defects
72 is expected to be non-zero at zero temperature and could obtain additmabutions at finite
temperatures from electron-magnon scattering. However, we will coitfisaction 5 that the phe-
nomenologically introduced transverse relaxation titfe, which is responsible for the relaxation of
the transverse conduction electron magnetization, turns out to arise imeticlapproach from lon-
gitudinal relaxation times, familiar from collinear magnetotransport, due to thedhspin channels

in non-collinear magnetization textures.

The most general spin-transfer torque valid for spatially slowly magnetizé&ixtures can be ex-
pressed as the leading order terms of a spatial gradient expansioriritteacurrent density}(?) [95,
99]

Fora(7) = Tad )+ fronad ) = L2 (Gur) - 9317 — EETEN(7) x () - 9307 2.47)
S

We note that both terms in Eq. (2.17), the adiabgi¢”) and the non-adiabatin-ad ) spin-transfer
torque, constitute the only two possible terms linear in current and first ordpatial derivatives of
the magnetization and are therefore quite geneButh torques are generated by theinteraction.
While the prefactor of the adiabatic torqtg(7) is determined by spin-angular momentum considera-
tions as discussed above, the strength of the non-adiabatic toegug ™) is at this phenomenological
stage arbitrary. Its strength depends on microscopic details and is areqtézed phenomenolog-
ically by thedegree of non-adiabaticity. The non-adiabatic torque is in general smaller than the
adiabatic torque and its existence requires an additional microscopic nsohidwat remains to be

IStrictly speaking the terminology that distinguishes between the adiabatic ammbithadiabatic torque is incorrect,
since both terms belong to the same order of a gradient expansion in ¢imetization. Throughout this thesis, we decided
to adopt this terminology to avoid confusion, since it is well established wittennthgnetic community. As will be
elaborately discussed in section 5.5 the non-adiabatic spin-transfeetorgq. 2.15 competes with other, true non-adiabatic
contributions for the dynamics of narrow domain walls. [58, 71]
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Chapter 2. Electron transport and magnetism

identified. [100] The most commonly accepted mechanisms are either spiatiefas] or spin
mistracking [2]. At this point of the discussion we like to mention that the adiabatipie can be
derived as a reactive term from an energy functional, whereas th@diabatic torque is dissipa-
tive. [47, 49, 51, 95]

A very remarkable point is that the spin-transfer torque in Eq. (2.17)edsas thedegree of non-
adiabaticity¢ applies to any spatially slowly varying magnetization texture and does nohdejre
details of the magnetization texture as long as we stay in the adiabatic traregporer This implies
that the terminal velocity of a domain wall is independent of the type of the dowedinfor instance
Bloch, Néel or vortex wall.

The adiabatic and non-adiabatic spin-transfer torque terms are fullgctearzed by means of three
parameters: the diffusive spin polarizatidhof the electric current, the saturation magnetization
M, and the degree of non-adiabaticity[99] If we add the spin-transfer torque in Eq. (2.17) to the
Landau-Lifshitz-Gilbert equation (2.6), we note that odd spatial grésl@opear that were absent in
equilibrium. This is conceivable as the presence of the current brealsp#tial inversion symmetry.
In the absence of currents, it is the exchange contribution that is ofidexder in the spatial deriva-
tives (cf. section 2.2) that constitutes the leading order term in the graaipansion.

The microscopic origin as well as the macroscopic properties of the spisféraorque are currently
under strong debate. In particular the non-adiabatic spin-transfaretasgstrongly debated, as its
value differs by orders of magnitude in theoretical predictions and in measnts. [5, 53-55, 101-
110] The phenomenological explanation for non-adiabaticity is the followBigce the exchange
interactionJsq is not infinite, the conduction electron spin does not perfectly align with thal loc
magnetization and the total spin is not entirely conserved. For exchangecines large compared
with transverse spin relaxatidty Jsq > rszf'- this effect becomes negligible and the total spin can be
regarded as conserved within a good approximation. This general s@hgniment dephases with a
characteristic relaxation time and acts as a correction to the adiabatic syEfettanque. The feature
of non-adiabaticity is not accessible in theokkeepingicture, which assumes the total conservation
of spin.

The applicability of the presented theory concerning the spin-trangfgudas restricted to spatially
slowly varying magnetization textures. In the non-adiabatic regime assowitkes spatially strongly
varying magnetization the spins of the conduction electrons cannot follovotaé magnetization.
Here, the spin-transfer torque should depend on the detailed struétilme magnetization texture.
If the spatial gradient of the magnetization across the wall becomes togQ &afoete angle due to
spin mistracking between conduction electron spins and local magnetizases and introduces a
spatially dependent non-adiabatic pressure on the wall. The relativetamperof these non-adiabatic
corrections depend crucially on the width of the domain wall. [58, 59, 111]

Thus far, a consistent theory that mediates between both, the adiabatjmotriaregime through wide
domain walls and the non-adiabatic regime of narrow walls is missing and batheg@re strictly
disconnected in the treatments of the spin-transfer torque. Section 5 ofdhis th concerned with
the derivation of a general theory that allows for the computation of thetsgmsfer torque in strongly
varying magnetization textures. Already at this point some features ofeaajeheory can be antic-
ipated. In narrow domain walls the direction of the torque should be givem ¢pin accumulation
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2.4. Electron transport in non-magnetic materials — the kinetic equation

that is not linked to the local magnetization. Therefore we expect spatiglgndient transport coef-
ficients. Furthermore, the spin should be treated accurately in a quantunamiead manner and not
in the diffusive approximation. The quantum interference in the spin sshtmrld cause interesting
spin-angular momentum physics in narrow domain walls, if the spin transged fdace in the bal-
listic regime.

In conclusion, in a continuous ferromagnet the influence of a spinipethcurrent on the time evo-
lution of the magnetization is considered within the extended Landau-LifshiieiGequation [5]

dM (7, t - Lo a - dM (7t
Cgt) = 77M(T’t) X Heff(r,t) + EM(T’t) X d(t)
b' - - -, — -
— 3 M) (3170 % (G(70) - VRN (7))
b - . I

whereb; := Pjup/[eM;(1 + £2)] is the coupling constant between current and magnetizaftipis,
the diffusive spin polarization\/; is the saturation magnetizatiamjs the Gilbert damping parameter
and¢ is the degree of non-adiabaticity. Note that a fagtomppears in the denominator of the coupling
constant between current and magnetization according to Ref. [5]séalyé < 1, this factor is
too small to be of practical importance and thus has been neglected in tlse @fuhis section (cf.
section 5.4 for a discussion concerning its physical meaning).

2.4 Electron transport in non-magnetic materials — the kinetic equation

This section introduces the semiclassical description of electron tramspemnns of the kinetic equa-
tion, the Boltzmann equation. Transport is a branch of non-equilibriunmtb@ynamics. The charge
carriers are not isolated from their environment and continuously garggmue to the acceleration
by an external electric field. At the same time scattering limits the motion of the chargers by
dissipating energy to the lattice. The randomly distributed impurities within a sampleliess lattice
vibrations in terms of phonons cause deviations from the strict periodicityeofattice. This results
in scattering of the charge carriers. Irreversible processes estabtisinaintain thermal equilibrium.
For a dc electric field the acceleration is exactly balanced by collisionstsath steady current flow
arises. Up to date an a priory theory of transport is missing in the sendbdéhmaticroscopic transport
equations have never been rigorously deduced from microscopiti@miaf motions. [112] Micro-
scopic collisions introduce irreversibility on the macroscopic level thoughiiderlying microscopic
laws are invariant with respect to time-reversal.

Electron transport in non-magnetic metals based on the Drude form otictvity [113] has been
successful in predicting transport properties in terms of the relaxationagopeximation. [76, 114]
The most important quantity concerning the relaxation-time approximation is the fresapath of
the electrons. The mean free path is given by the distance that an eleetrels &s a free particle
between adjacent collisions. In non-magnetic metals the Fuchs-Sondheguer slerves to experi-
mentally determine the mean free path of the conduction electrons. [115H#&1&] the resistance is
measured with a concomitant variation of the thickness of the thin film.
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Chapter 2. Electron transport and magnetism

Table 2.1: Different levels of abstraction concerning electron trahapéerromagnetic metals.

Level of description || microscopic | mesoscopic | macroscopic |
Hierarchy of length| kr! < lex < A | A > A
scales (atomic distances (width of a domain| (domain structures)
below the exchange wall)
length — end of

micromagnetic
continuum model)
Governing equations || Schrodinger eq. kinetic eq. macroscopic transpot
(Boltzmann eq.) eq. (Ohm’s law)

—

An approach to transport depends crucially on the involved length or tialessof the system. The
main task is to employ suitable simplified models that capture the essential physicspadrt in gen-
eral constitutes a complicated non-equilibrium many-body problem. In pahaiformal solution of
the Schrédinger equation would equip us with all the necessary correfatiotions of the interacting
many-body system. However, as it concerns mesoscopic transportphatknowledge of all the
microscopic details is not required focusing on the dynamics that happeedistinct time and length
scale, for instance as set by the external perturbations.

Table 2.1 depicts the hierarchy of length scales in descending ord=eiisibility appears at the tran-
sition from the microscopic to the kinetic level. Throughout this thesis we puftsikinetic method
that is most appropriate for a description of electron transport on magiodength scales. Here, the
spatial and momentum degrees of freedom can be treated classically asrbgcopic dynamics that
takes place on the much smaller length scale of the Fermi wavelength candgadied. The kinetic
description of transport in terms of the distribution function is referred g8easclassical as the quan-
tum mechanical non-locality is integrated out. It is assumed that the positiothamdomentum of
the charge carriers are simultaneously well defined in analogy to a localaexpacket. In this sense
coherence effects are neglected and the description is restricted to thecoys level. A benefit of
semiclassical transport results is that they yield quantitative results in tenmisrafscopic scattering
times that can be compared with results from full quantum mechanical tegmiqu

The focus of this thesis rests on mesoscopic transport in inhomogemaesisscopic ferromagnets.
A semiclassical formulation of transport requires the smooth variation of Woéved transport fields
on atomic length scales, i.e., a slow variation compared to the Fermi wavelentjth cénduction
electrons. In the case of magnetotransport this poses a constraint patiad variation of the elec-
tric field and the macroscopic magnetizatidri) (cf. section 5.1.2). The relevant length scale of
magnetotransport exceeds the Fermi wavelet@;hﬁ(m ~ A7! < kg. Therefore, it is appropriate
to treat the spatial and the momentum degrees of freedom semiclassically ietotegmsport.

The important parameter for transport in narrow domain walls is the spatiatiea of the magneti-
zation texture (cf. section 5.5) and the kinetic method is adequate to propezlyhia into account.
Moreover, the kinetic method provides accurate results for ballistic as svdiffasive transport. This
is important for non-collinear magnetotransport as spin transport té&es either in the ballistic or
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2.4. Electron transport in non-magnetic materials — the kinetic equation

the diffusive regime (cf. section 5.1.2), in particular the kinetic approaotiges the possibility to
study transitions between both transport regimes.

2.4.1 Semiclassical theory of electron transport

Throughout the following we restrict ourselves to one single band amdftive drop any reference to
a band index for convenience. Conduction electrons in metals constitutiely tigenerate fermionic
system that must be described by quantum statistics. In thermal equilibriuavehege occupation
number of an electron in the statewith energye;; is given by the Fermi function

1

eBleg—ro) 41’ (219)

Flep) =
with temperatured = 1/kg7" and equilibrium chemical potential,. The deployment of the Fermi
function takes into account the statistical nature of the charge carrigrdissnguishable fermions.
When treating electron transport one has to consider that electrons in adiéand particles. The
group velocity of a wavepacket of Bloch states describes the electrding periodic potential of the
lattice. It is determined by the slope of the band dispersion

€

Eal!

(2.20)

= Vi

|

Equation (2.20) states that the velocity of a semiclassical electron is givemis ¢ the group veloc-
ity of the underlying wavepacket. [76] For a gas of free and indepgrelectrons;: = ﬁ2E2/(2m)
and the kinetic expression (2.20) reflects that there is no interaction betheelectrons. Interac-
tions between the conduction electrons would modify the enefgynd thus the Bloch velocity in
Eq. (2.20).

The effective mass tensor is defined according to

1 P 100k
h2 Ok;ok; — hok;

= (MY, (2.21)

It governs the inertia response of the charge carriers with respectoiee [112] The sign of the
effective mass tensor (2.21) determines the nature of the charge €diwigpositive values the trans-
port is carried by electrons, for negative values holes dominate the@twns

The semiclassical equations of motions for electron transport read [76]

or
5 = % (2.22)
Ok _ _ zon o B

ha = —eE(7) — ev; x B(7). (2.23)

Equations (2.22) and (2.23) describe the dynamics of Bloch electrons ak efectromagnetic
fields. [76] The semiclassical relations (2.22), (2.23) hold for suffitiemeak external electromag-
netic fields, such that interband tunneling is absent. [76]
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Chapter 2. Electron transport and magnetism

2.4.2 The Boltzmann equation

The kinetic description of transport in terms of the Boltzmann equation is acipssical theory that
combines the quantum mechanical nature of the electronic structure (cf2.EQ)) with a classical
description of transport. In the periodic potential of the lattice the electraasstae Bloch states
with wave functionsW;(7) = uE(ﬁeiEF. The Bloch momentum is not a good quantum number
and therefore not appropriate for a description of electron transpostead wave packets can be
constructed from the Bloch states. These wave packets move with griagitye:- as it is given
by Eq. (2.20). In analogy to elementary wave mechanics the wave paekebedreated as particles
that are accelerated due to the electric field and scattered at crystaléctmr$ and enable a local
description of transport. The central quantity in the kinetic method is the pilapalistribution
function f(7, ) that measures the number of electrons in/tkl state in a small neighborhood of
7 at timet. All macroscopic quantities of interest can be directly computed from the distib
function. The distribution function obeys a flow equation, the kinetic or Boltemequation that
describes a non-equilibrium problem in response to arbitrary, extietds. It determines the phase-
space trajectory of the distribution functigh(+, ¢).

The equation of motion for the distribution function can either be derivedickaly from the Liouville
theorem that states the conservation of probability or quantum mechanicattytifie one-particle
density matrix. [117] The quantum mechanical approach serves in séctidor the derivation of the
kinetic equation for ferromagnets with a non-collinear magnetization texturhig\point we pursue
the classical derivation. The Liouville theorem implies a conservation lathé&odistribution function.
The phase-space density, i.e., the distribution function, is conservedas$ieace of collisions. This
corresponds to the vanishing of the total derivative with respect to time

(1) O | oF

0 dt ot 3

Viefa (7 t). (2.24)

2.4.2.1 Steady state Boltzmann equation for electrons

The kinetic equation for electron transport in metals follows from the combmafi&q. (2.24) with
the semiclassical equations of motions for electron transport (2.22) @) (2

W’“(,g:’ﬂ + 5V (7 1) — % (E(f‘) + T E(F)) VoS (7 t) = 0. (2.25)
Equation (2.25) constitutes the deterministic flow part of the kinetic equatiagldotron transport in
non-magnetic metals. The deterministic flow part of the Boltzmann equation @2&mines the
phase-space trajectory of the distribution functjtxt, ¢). The acceleration due to the presence of
external forces is balanced by microscopic collisions to maintain a steatgntdiow. The micro-
scopic collisions are usually modeled in terms of a collision integral that is guitestbmenologically
to the r.h.s. of the Boltzmann equation (2.25). This is the point, where iribilgyscomes into play.
The statistical character of the collision term breaks the time-reversal syynofetie Boltzmann
equation. Though the flow part as well as the underlying microscopic leisnaariant with respect
to time-reversal, the collisions break the time-reversal symmetry on the mesoksael thereby in-
troducing irreversibility to the kinetic description. As a consequence thdtirgs full Boltzmann
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2.4. Electron transport in non-magnetic materials — the kinetic equation

equation turns into an integro-differential equation for the distributiontfang;(7, ). The individ-
ual parts of the Boltzmann equation possess clear physical interpretafio@slistribution function
changes with time in the neighborhood af through the following mechanisms: [112]

o Diffusion: The spatial motion with Bloch velocity;: causes electrons to enter (leave) the re-
gion dr’ from (to) neighbouring regions. In the presence of spatial fluctuatiendidribution
function varies from point to point due to diffusion processes

Of- (7t .
ka(t)‘diﬁusion =g Vi fp (7, 1). (2.26)

e External fields: The charge carriers are driven by external fifitiss changes the occupation
number of the Bloch staﬂéaccording to

Of(7,t)

g Ifeld := ¢ (E(F) + %ﬁg(f) x E(F)) Viefa (1), (2.27)

h

A steady current flow requires the presence of an external field.

e Scattering: Besides the acceleration due to external fields the wavepatBtoch electrons
are scattered incoherently by impurities within the sample. Scattering cauaratimn of
the distribution function and is qualitatively a different feature compared thighcoherent
acceleration due to external fields. Scattering results from deviations sfribt periodicity of
the lattice and can be considered by the introduction of a correction terntolliston term

ofp(7t)

57 lcob (2.28)

resembles the difference between the gain and loss rate for the: siage timet. Collisions
are responsible for thermal equilibrium. Let us restrict ourselves to elagtigrity scattering
and inelastic electron-phonon scattering. Electron-electron scatteriognies only important
at low temperatures and is therefore disregarded. [117] The fo¢hsdhesis rests on transport
in ferromagnets at ambient temperatures that is dominated by electronfpbceitering. [76,
117]

For our purpose it is sufficient to treat elastic scattering from dtate &’ at a fixed timet = ¢o.

If &’ lies in the rangelk’, the probability of a transition into the stattds given by

o (PR = [P = f, (7)) Py d, (2.29)
WherePM, is the transition rate frorh — &’. The weighting factoyf(7) (1— f;, (7)) takes into
account the probability that the initial stdtés occupied (that the final statéis not occupied).
The factorl — f7,(7) is due to the fermionic nature of the conduction electrons and accounts for
Pauli’'s exclusion principle that considers that the final state not occupied and thus available

for the scattering process.
The inverse process reads

o £ (PR = fr, (M = fr(7) Py zdk. (2.30)
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Summation over all initial and final stat&syields the collision integral

O fz(7
&) |col Z/dgklpg’;;/f,;v(??)(l — fz(7))

ot
- /d%'P,;,,,gf,;(F)(l — fu (). (2.31)
The collision probabilities”; ;;, depend at low temperatures on the impurity potential as well
as the density of states and can be evaluated accordiegnu’s Golden Rule
2m 9
Prjp = — vimplN (€r) Ty g I°0(e; — €), (2.32)

wherevimp is the impurity concentrationy (er) denotes the density of states taken at the Fermi
level (the density of states is usually constant in the relevant energg);ahgd-function con-
siders elastic scattering afid ;, is the transition matrix element that characterizes the scattering
process

1 S _
Ter = / B ()T (7). (2.33)

Equation (2.33) describes the transition of an electron from the initial $tgt€) to the final
state¥, () in the presence of the quantum mechanical scattering potéhtidle note that in
ferromagnets all quantities become additionally spin-dependent.
According to the principle of microscopic reversibility - follows for elastic impuscattering
from Eqns. (2.32) and (2.33)) directly from the fact tiats hermitian - the intrinsic transition
rates are symmetric

Pep = Po (2.34)
and Eq. (2.31) simplifies accordingly to

Of5(7) B .
gt ol = /dBk’Pg,g, [fo (ML = f(?) = fr(7) QL = fr(7)]

= /dSk’PE,E, [fo (P) = f2(7)] - (2.35)

Equation (2.35) marks the final expression for the collision integral.
The interplay of the contributions (2.26), (2.27) and (2.28) determinesdherBann equation
Ofp(r,t)  Ofp(7,1) Of(7,) Of (7, 1)

o ot |diffusion + o [field + ot |col- (2.36)
In the steady state the left hand side of Eq. (2.36) vanishes and Eq). (@dé@es to
ofz(r ofz(r ofz(r
_gi)|diffusion - gi)‘field = gi ) |col- (2.37)

Equation (2.37) explicitly states that the changes due to diffusion and ekféglis are balanced

by collisions. Inserting the expressions (2.26), (2.27) and (2.31) i(Z&87) and disregarding the
magnetic field(l? = 0) we arrive at the Boltzmann equation for electron transport in non-magnetic
materials

Vi () = TE(MVpfe(7) = [dK P [fo(P) = fr(P)] - (2.38)
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The validity of the Boltzmann equation assumes that the distribution fungfion varies slowly
compared to the Fermi wavelength or atomic distances. This is fulfilled when the frez path of
the electrons is large compared to the Fermi wavelehggr> k:F‘l. Then the quasi—momentuﬁw
of the Bloch state is a good quantum number and serves for an apprafeseption of transport.
At interfaces, appropriate boundary conditions must be chosen to magieitewise solutions of
Eq. (2.38).

2.4.2.2 Linearized Boltzmann equation for electrons

When considering electron transport in metals or good conducting semictong, the full Boltz-
mann equation is unnecessarily complicated. In this case it is sufficientus éocthe linear response
of the charge carriers with respect to the electric field. As long as devgatiom Ohm'’s law can
be neglected, transport is described appropriately by focusing on teilied Boltzmann equation
with respect to the external field. In the case of small applied field stretrgiiisport in metals takes
place close to equilibrium and can be described by a field-induced smalbsliife Fermi sphere,
i.e., transport at considerably low temperatures with respect to the Feengyeis dominated by elec-
trons at the Fermi surface. The occupancy of states far away froFetimai energy does not change,
as these states do not participate in the transport. A scattering processigaake place when the
transfered energy lasts for the electron to leave the Fermi sphere. Adhoperatures all states within
the Fermi sphere are occupied and all scattering events that would scediectron inside the Fermi
sphere are forbidden due to the Pauli exclusion principle.

In linear response, deviations from the spatially homogeneous equilibraritdtion functionfo(e];)
(cf. Eq. (2.19)) are parametrized by the non-equilibrium distributiontfang;(7)

0f%(ez
) = 17(eg) + 05 L) 2:39)
k

Inserting the ansatz (2.39) into the Boltzmann equation (2.38) leads to

- 0 0 € . 0
o (Vra() ( ! a( k)> B! (2.40)
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k
where we neglect the term proportional&c(g,;(?) der ) /OEE as a term of second order in the
electric field. Note that the non-equilibrium distribution itself is linear in the eledigld g; ()

vz E(r). A term of higher order in the electric fielt(7) results in deviations from Ohm’s law. The
equilibrium distribution functionfo(eE) in the statek depends solely on the energy. As we are
dealing with elastic impurity scattering, which does not change the energg péitticle the equality
f2(ez) = f%(eg) holds. Moreover, it follows directly from the Boltzmann equation (2.38) in the
absence of external fields that the scattering term (2.31) vanishesilitbegun
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ol = 0. (2.41)
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With these considerations, we arrive at the linearized Boltzmann equation

_’Eﬁfgl;;(m — €E(77‘) _)E = /Fsdzklpag, [gE’ (F) — gE(F)] s (242)
where the three dimension&l integration is restricted to a surface integral over the Fermi surface.
This reflects that only electrons in the vicinity of the Fermi surface participateansport. The
notation on the r.h.s. of Eq. (2.42) should be understood as follows

/FSko'P,;,;/ L[ (P) = [(P)] = /dgk‘/5(€;;/ —er) Py [fi () = fr(P)] (2.43)

where we employed the following property of the Fermi-function at low tempera compared to
the Fermi energy
df°(ex)
B Oer;

= (e — €F). (2.44)

2.4.2.3 Collision integral in the relaxation-time approximation

The remaining difficulty in solving the linearized Boltzmann equation (2.42) @stdhe collision
integral on its right hand side. In general, the Boltzmann equation is andntiEffierential equation.
A common simplification is to treat the collision integral within the relaxation-time appratxon. In
this case the discrete spectrum of the collision integral is substituted by @te, snfinitely degener-
ate eigenvalue: a relaxation time Descriptively, the relaxation-time approximation does not focus
on the collisions themselves but on the mean free path of the electrons betdjaeant collisions.
In the relaxation-time approximation the Boltzmann equation (2.42) reducesfteratial equation
that enables analytic solutions.

The relaxation-time approximation describes the collisions of the conducticinaie as random, un-
correlated effects and assumes that the precise form of the non-equiliistribution functiony;:(+)

is irrelevant for the scattering process. The relaxation-time approximagsunraes that an electron
experiences a collision in an infinitesimal time interdaivith probabilitydt /. We will treat the col-
lision term in the simplest manner, by s-wave scattering, which results in a mamémdependent
relaxation time. The collision integral in Eq. (2.31) consists of two terms. Thamiintg electrons

(1) , .
N L G o)) (2.45)
and the outgoing electrons
Of(7) .
5 1ol = —f(7) [ Py (1= f (7). (2.46)
With the definition of the relaxation time
1
~ = /d?’k:’PE,E/(l L), (2.47)

the relaxation-time approximation assumes that the incoming electrons in EqQ.¢@iae associated
with the equilibrium distribution [76]

ofe(™ in ()

gt T T

(2.48)
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2.4. Electron transport in non-magnetic materials — the kinetic equation

while due to Eq. (2.47) the outgoing electrons in Eq. (2.46) are determingiebiyll distribution

function of-(7) ()
#(r #(r
5p lool = =7 (2.49)
Combining Eqgns. (2.45) and (2.46) yields the collision integral in the relaxdtiom approximation
ofz(7 f2(7) — fO(ez
gi oo = - Y0 - () (2.50)

Equation (2.50) causes the full distributigp() to relax towards the equilibrium distributiqf?(e];)
within a characteristic time scale set by
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Chapter 3

The vortex random-access memory

This chapter has been published slightly modified in Ref. [118], S. BehBerKriger, A. Drews, M.
Bolte, G. Meier, and D. Pfannkuche, Current controlled random-asgaemory based on magnetic
vortex handedness, Appl. Phys. L&®, 142508 (2008)

tices is presented. We propose a realization of a vortex random-accessryn@/RAM)

containing vortex cells that are controlled by alternating currents only.pféy@osed scheme
allows to transfer the vortex into an unambiguous binary state regardiéssimfial state within a
sub-nanosecond time scale. The vortex handedness defined astihet pfachirality and polarization
as a bit representation allows for reading and writing of the bit informatiore. MIRAM is stable at
room temperature.

THE THEORETICAL FOUNDATION for a non-volatile memory device based on magnetic vor-

3.1 Motivation

The perception that magnetization dynamics is tunable by spin-polarizezhtsipaves the path for
the development of new kinds of memory devices. Its boolean topologicaititjes distinguish
the magnetic vortex to be a natural candidate for memory application. In thigechave propose
a realization of a vortex random-access memory (VRAM) that is controlledlteynating currents
only. Due to alternating current excitations, the main benefit of the VRAM igpiezation at a lower
current density compared with domain-wall motion in racetracks [19] orliglsing in multilayer
as used in current magnetic random-access memories [25-28].

3.2 Equation of motion for the magnetic vortex

This section sketches the derivation of the equation of motion for a magnetexwwonfined in a
square thin-film element for a collinear electric current and magnetic fiedthgement. The vortex
motion takes place in two spatial dimensions. It is characterized in terms oflteeto@ coordinates
(X,Y) that are canonically conjugated variables for the vortex. [71, 119]eThmtions of motion
provide the analytical solution that serves as the basis for the memorysaigzooutlined in the next
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Chapter 3. The vortex random-access memory

section.
Thiele recognized in 1973 [120, 121] that if it is plausible to assume that aetiagtion pattern keeps
its rigid shape during its motion, then the Landau-Lifshitz-Gilbert equation) a6 be rewritten
in an equation for equivalent forces acting on a rigid magnetization patiereddacing the time
derivatives of the magnetization with its spatial gradients that move undemstac velocityy =
(dX (t)/dt,dY (t)/dt)T
‘Wg’” = - (W;) M(7,4). (3.1)
The Thiele equation translates the torques on the local moments to equivalezg bn the whole
rigid magnetization texture and thus introduces a description in which the statietirgion texture
moves as a quasiparticle under the influence of external forces.
Thiaville et al. [48] extended the Thiele equation to take into account the ndduef a spin-polarized
current (cf. Eq. (2.18))
FiGx (U+ bjj‘) 4D <0A7+ gbjj') —0. (3.2)
For the case of a magnetic vortex, Eg. (3.2) describes the balancece$ facting on the vortex core
that moves under the velocity The Thiele equation (3.2) constitutes a system of two coupled first-
order differential equations that can be decoupled to yield one equdtimotion of second order.
However, owing to the fact that the vortex is a topological object destilygwo conjugated spatial
coordinates, the vortex responds instantaneously to an externalbagidarand in this sense does
not possess an inertia mass. This stands in contrast with an one-dimédsioadn wall. Here, the
conjugated variable is the out-of-plane tilting angle, which is able to stor@wmiee to finite out-
of-plane angles. The stored magnetic energy and the inert resperseige to a finite domain wall
mass. [122]
External driving mechanism as magnetic fields and spin-polarized ¢sicanse a deflection of the
vortex core from its equilibrium positioaX,Y’) = (0,0). The deflection is balanced by an internal
force arising from a combination of the demagnetization and exchangedigdd® the magnetostatic
energy as caused by the deflected vortex. The restoring force fasethe confinement of the vortex
within a thin-film element. The effective fordé originates from the effective fiello¢ and accounts
for external forces, for instance an external applied Zeeman fieldglss internal forces, such as
the restoring force due to the demagnetization and exchange fields. fidieogic force is associated
with the gyrovectoiG and composed of a part that takes into account the motion of the vortex and a
driving part due to the adiabatic spin-transfer torque that causes ttex¥o move perpendicular to
the direction of the current flow. The dissipation tefirtakes into account the dissipation due to the
Gilbert dampingx ot and of the non-adiabatic spin-transfer torquébjfthat pushes the vortex in
the direction of the current flow. The dissipative tersnd) depend on the magnetization texture that
reads in spherical coordinates
sin 6 cos ¢
M(7) = Mg | sinflsin¢ | . (3.3)
cos

The profile of a vortex is parametrized by the out-of-plane afigled the in-plane angle
¢=p0+ gc. (3.4)
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3.2. Equation of motion for the magnetic vortex

Here, 3 denotes the real space angle arid the chirality of the vortex. [123] For a vortex in a thin-
film element the stable chiralities aret 1.

In the following, we apply the equation of motion (3.2) to a static vortex that maitesconstant ve-
locity . The motion of the rigid vortex is described in terms of collective, time-depdrm®rdinates
(X (t),Y(t)) that determine the position of the vortex core. The equivalent force éndiy

. - 0 - 01 = -
F=— a3 #0) = 7)== | (Heft - M). 35
o [ | (920) g+ (Fe0) | (e 21 35)
Owing to its particular magnetization texture a vortex experiences a gyrofape perpendicular to
its velocity. This unusual feature is related to the topological charactereahtgnetic vortex. [59]
The gyrotropic force is controlled by the gyrovector

- M, - -

G = —f/ Brsinf(Ve0 x Vird) = Gols, (3.6)
that points out-of-planex(direction) and the ter x 7 in Eq. (3.2) results in the in-plane precessional
motion of the vortex. The dissipation tensor for the vortex takes the form

1

M, . e

D:—% / Br (V=0Vr0 +sin® OV ¢V ¢) = Do | 0 (3.7)
0

S = O
o O O

Considering the explicit shape of the gyrovector (3.6) and the dissiptimsor (3.7) results in an
equation for the velocity of the vortex-core [123]

7= (G2 + D2a?)"! [é x F' — DoaF — (G2 + D2a€)b;j + b;DoG x j(& — a)] . (38

The equivalent force that acts on the vortex consists of two parts: sherireg force for the vortex
due to the demagnetization and exchange fields that is of purely geomeaticed and the force due
to the interaction of the external magnetic field with the homogeneous domaiedafiér force is
independent of the position of the vortex core. The sum of both fosaedsr

F = —V; (Ezeemant Edemag = toMsHltcg, — mw? (X&, + YE,), (3.9)

where! (t) is the sample length (thickness) ando? parametrizes the restoring, harmonic poten-
tial. [123]
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Figure 3.1: (Color online) The fourfold degenerate ground state of anet@gvortex in a thin-film
element with chiralitye = £1 and core polarizatiop = +1. The white arrows illustrate the sense
of rotation of the in-plane magnetization. The magnetization in the center pointd plane. The
height indicates the out-of-plane magnetizatidn while the colors visualize the component of the
in-plane magnetization/, normalized to the saturation magnetizatitf.

3.3 Current controlled random-access memory based on magnetic vor-
tex handedness

The perception that magnetization dynamics is tunable by spin-polarizezhtaifi4, 15] triggered an
intensive investigation of applications within the last years. Compared with agtiadield, an elec-
trical current is much more appropriate to control a device, since it chaféled with high precision
and can be spatially restricted. Recently, it has been suggested to emppmjatieation of a mag-
netic vortex core for data storage. [124] This is motivated by the expetahdiscovery [125, 126]
and numerical investigation [127, 128] of vortex-core switching in variecenarios. In a ferromag-
netic thin-film element a vortex state with a core of a few nanometers [129}1sefb due to the
interplay of exchange and demagnetization energy. The in-plane magiogtizarls around a sharp
singularity in the center, where the magnetization is forced out of plane to mingxit®nge energy.
Despite its complex structure the magnetic vortex in many ways behaves asipagicle only char-
acterized by the polarizatign the chiralityc, and the coordinate’¥ andY of the vortex core in the
sample plane as illustrated in Fig. 3.1.

The vortex core pointing up (down) denoted by the polarizagiea +1 (p = —1) provides a basis
for a binary logic. The chirality characterizes the sense of rotation of thdaime magnetization. For
c = 41 (¢ = —1) the magnetization curls counterclockwise (clockwise) around the core fdrro-
magnetic square or circular thin-film element with no crystalline anisotropy, reape of permalloy
(Py=NigoFey), the vortex state constitutes the energetic ground state, which is foudgkhdrate
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3.3. Current controlled random-access memory based on magnetic vaneedness

due to the combinations of chirality and polarization (cf. Fig. 3.1). To chdisgeolarization, the
vortex has to overcome an energy barrier, which is of the order of tetr@hwolts. [130] Hence, the
vortex core is quite stable against thermal fluctuations at room temperatoragmetic stray fields
in the millitesla regime. The benefit of using magnetic vortices in a memory deviceilsrthate
smallness and their generic existance. Therefore, the vortex is ajgpeciar serve as a non-volatile
storage device.

We present a memory device based on the magnetic vortex handednass dsfihe produeip of
chirality and core polarization. The application of the handedness as @pbésentation allows bit
writing without the knowledge of the initial magnetization state as well as a dieadimg of the bit
information. Consequently, a main advantange is that the writing procagsagqo preceding read-
ing operation.

Recently, it has been shown that a vortex confined in a thin-film elemefurper elliptical rota-
tions around its equilibrium position when excited by an alternating curr@g, [126, 131-135] or
magnetic field [123, 131, 136]. We propose that a collinear arrangenhetdctrical current density
and magnetic field as depicted in Fig. 3.2 (a) yields a way to employ the magndég agsra storage
device.

A possible technical realization of the vortex random-access memory (VMR&&hown in Fig. 3.2
(b), where the ferromagnetic cells are aligned on a strip line. Each stosdigeontains a vortex.
The injected current splits up in two parts: one flowingridirection through a distinct cell and the
other flowing iny direction underneath the cell array. While the first part of the currewsfitraight
through the ferromagnetic material of the selected VRAM cell, the seconapidre current passes
by the VRAM cells in a strip-line beneath the cells. The current girection is the writing current,
which excites the vortex of a single cell due to the spin-torque effect.3®, The role of the second
current is to create an alternating, spatially homogeneous Oersted field ¢eltr@bove it, which
results in a precession of the vortices in the cells (cf. Fig. 3.2 (b)). Tthesscheme proposed in
Fig. 3.2 (a) provides a parallel arrangement of electrical currendijeand magnetic field. For a
current density] = jé, and a magnetic fieldl = Hé, the equation of motion for the quasiparticle
vortex reads [123]

. 2

X T —pw)\ (X —vj — wfim%vj vHwe [ pw

= . 3.10
()= )6 (emy™) o (s (.10

The equation of motion (3.10) follows from substituting the gyrovector ($é)the expression for the
force (3.9) into Eq. (3.8). The free angular frequency: —pGomw? /(G2 + D3a?) and the damping
constanl’ = —Dyamw?/ (G2+D3a?) (cf. Eq. (3.9)). [123] The driving velocity due to the magnetic
field H isvy = vHI/(2m) with the edge lengthof the cell. The driving velocity of the currentig =
b;j. The coupling constant between the current and the magnetizatprds; iz /[eMs(1 + £2)],
whereP is the spin polarization}/, the saturation magnetizatiohthe degree of non-adiabaticity, [5]
anda the phenomenological Gilbert-damping parameter. The resonancerimgqoiethe vortex due
to the demagnetizing field [123] is., andG (3.6) andD, (3.7) are constants of the gyrovector and
dissipation tensor, [120] respectively. A special feature of Eq. {dslthat a parallel or antiparallel
arrangement of current density and Oersted field leads to either anaamhant or a quenching of the
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Chapter 3. The vortex random-access memory

Figure 3.2: (Color online) (a) A single vortex random-access memory (MRéell with collinear
current and Oersted field. (b) Possible technical realization of a VRH.cells are arranged in a
two-dimensional array from which one row is depicted. The high-ohmimpkoy squares constitute
the memory cells while the gold strip lines supply the read-write current. Ogka)ftircles sym-
bolize open (closed) switches that are used to store information in an indivddll. The numbers 0
and 1 denote the switches, which have to be activated to write the accordinghe activated cell.
The configuration shown here writes a binary "zero" into the third cedl &reow).
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3.3. Current controlled random-access memory based on magnetic vaneedness

gyration amplitude of vortex motion in agreement with the results for antivortjt83] The steady-
state solution of Eq. (3.10) with harmonic current excitation for which the et@gfield and the
electrical current density are of the for(t) = Hoe™* andj(t) = joe™* yields [123]

X et Ly + (vHep — vy) i
T2 (02 r teo ) - : (3.11)
Y w2 + (ZQ + F)2 (UHCp - U]) pw + o (UHCp + TUJ> ZpQ
under the assumption that the squared Gilbert-damping parameter is afadt (1), and thus the

damping constant is small compared to the frequefi@y<€ w?). At resonance{f = w) and for
weak dampingl{ < w) the steady-state vortex motion is a circle with radius

2 _ |UHCp — v]‘
2r
which depends on the vortex handedngss/Nhen the driving velocities of field and current are equal
(lvn| = |y]), Eq. (3.12) yields a doubling or a quenching of the gyration amplituderdtgye on the
handedness.
The key mechanism of the VRAM is to employ that the gyration amplitude behaypesiely for the
casegp = 1 andcp = —1 without the need to determine the absolute valuesoop separately. From
the viewpoint of binary logic the proposed arrangement reduces thfelfddegenerate vortex ground
state to two distinctp states with two representations representing the single bit. In the following let
us define the "zero" ("one") byp positive ¢p negative).
Recent numerical investigations of the vortex-core switching have shmatrthe switching depends
only on the velocity of the vortex [138, 139] and thus on the radius oftgyra Furthermore, the
critical velocity for switching was found to be an intrinsic parameter and éelues not depend
on specific properties of the driving force. [138] There exist theoaieout the critical velocity for
switching. [126, 139] For permalloy Guslienko et al. estimatggich ~ 320 m/s while Yamada et al.
foundugitch = 250 m/s "regardless of the excitation current density” (cf. Ref. [126])cdkding to
Guslienko et al., [139] the critical velocity is proportional to the saturationmatigation or the square
root of the exchange constant. Thus for permalloy structures (eget@mstant ofd = 13 - 10712
J/m, lateral sample size 800 nm, and a thickness @) nm), the critical current density is3 - 10!
A/m? for pure current excitation and a critical velocity @fitch ~ 320 m/s. This corresponds to a
current of~ 0.5 mA and an absorbed power 217 xW. Thus, if for |v4| = |vj| the current amplitude
is tuned to more than half of its critical value that is defined as the current adglitaeded for
switching the vortex due to current alone, the vortex ends up with a dis@mctddness. In the case
of current parallel to field, a quenching of the vortex motion occurs &sitive cp (cf. Eqg. (3.12))
and the values of andp remain the same. For negativg, a doubling of the gyration amplitude
and therefore a switching of the vortex occurs, since the radius attaimsitical value. While the
polarization changes during the switching process, the chirality is catheAfter the switching the
vortex comes to rest being now in the opposjistate, which immediately leads to cancellation of the
driving forces. The subsequent free damped oscillation results inrechimg of the vortex rotation.
Irrespective of the starting configuration, this writing process leads tdefieed propertyp = +1
representing the binary value "zero". Accordingly to write the binare"ap = —1, the direction
of the spin-torque has to be inverted. This can be achieved by revengrdirection of the current
flowing in oppositex direction through the celk{ — —v;) as shown in Fig. 3.2 (b). The information

R(vy,vj, T, ep) = /(RX)2 + (RY) (3.12)
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is permanently stored in the magnetic-vortex configuratipaven when the current is switched off.
Instead of using an alternating current it is possible to operate the VRAMsRitht current pulses
v,ﬂ andvjp. Numerical investigations have shown that pulses offer the advantagetek switching
that is up to one order of magnitude faster than switching by alternatingntsirf@27, 140] If we
choose a collinear arrangement for current and field and considghthdamping constant is small
compared with the frequency of the free vortéx< w), Eq. (3.10) reduces to

X (T —pw X vPep —oP
(Y)_(pw _p)(y)+(” O ) 613

The last term is the driving force. Equation (3.13) states that the actidroof current and magnetic
field pulses compensate or amplify each other depending on the hangledlties vortex.

In principle, a vortex excitation in a collinear alignment of current and fielda:be replaced by a ro-
tating magnetic field making use of the polarizatioimstead of the combined quantity. [141, 142]
However, a setup with a rotating field requires two currents with a phade$hif2 (cf. Ref. [142]).
We want to point out that a main advantage of our concept is to use orgntanly.

For the reading mechanism it is necessary to determine the progastthe bit information is en-
coded in the handedness. If current and field are aligned paralleljriheytvalue "zero" ("one")
corresponds to a resting (rotating) vortex. In the absence of cuarghfield, precession or cessa-
tion of precession of the vortex holds no information about the actual mestaty of the VRAM
cell. Thus a small reading current, together with the magnetic field in the collaremngement,
is needed to determine thp state. For parallel current and field, reading collimates in the task of
distinguishing a vortex at restf = +1) from a rotating vortexdp = —1). The proposed VRAM
realization in Fig. 3.2 consists of a two-dimensional array of permalloy celle rdtating vortex
creates a time-varying magnetic flux that can be measured by placing a pikygimduction loops)
above the storage cell or by detecting resistance changes. [143Td4dhd out the information a
lower current density compared to the writing current density has to lik éseurrent density less
than half of the critical current density has neither an influence on theipatian nor on the chiral-
ity. Thus, the VRAM cell can be read out an infinite number of times withowictifiig its binary state.

In conclusion we propose a magnetic vortex random-access memory (YRAM collinear cur-
rent and field arrangement, we established an one-to-one corresmeanalf the vortex handedness to
the binary values "zero" and "one". The VRAM needs not be readcbsed preceding the writing and,
in general, allows an infinite number of read and write operations. This idwamtage compared with
existing memory technologies, such as the FLASH memory, which requires &sdsing procedure
of the present memory state. [145, 146] The VRAM concept is non-vokatidefulfills the stability
requirements for a memory device, since the vortex state is stable againstaempand magnetic
fields as long as they remain in the millitesla regime. The VRAM shows a good steayior, in
general no material fatigue, and is foremost a fast memory concept.
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Chapter 4

Influence of iInhomogeneous current
distribution on vortex motion

magnetic vortices in small thin-film elements is investigated by numerical simulatidns. |
is found that the deflection of the gyrating vortex scales quadratically withatth@ of the
anisotropic magnetoresistance. The enhancement of the gyration amptialds with the funda-
mental ratio between the dissipation tensor and the gyrovector and is detebyities lateral sample
size and the sample thickness. The counteraction of the magnetization toriret coanifests itself
in a geometry-dependent renormalization of the spin transfer-torqumicgyparameter.

THE INFLUENCE OFinhomogeneous current paths on the gyroscopic motion of currergrdriv

4.1 Anisotropic magnetoresistance

Transport in ferromagnetic metals exhibits remarkable features compérettamsport in non-mag-
netic metals. The oldest known phenomenon is the anisotropic magnetormesiataamall magnetic
fields (< 1 T). [1] Applying a magnetic field parallel (perpendicular) to the directionheaf current
flow results in a hysteretic behavior of the resistance. The electric régisivgoverned by the
magnetization within the sample that corresponds in ferromagnetic metals to fezidtstup tox 1

T and thus usually dominates the external applied field. Nevertheless, tinetizatjon configuration
of the sample is controlled by the external field. It turns out that for trangitietals the resistance of
the sample is higher for a parallel alignment of current and magnetizatioacddingly lower for
a perpendicular orientation of both. The total sample resistivity obeys ldieore

p=pL+Apcos’(£(j, M))), (4.2)

wherep (p1) are the resistances for the sample being saturated due to an externationfgjae
parallel (perpendicular) to the current flow adé = p| — p. > 0 measures the anisotropy in the
resistivity. [147, 148] Thus, the anisotropic magnetoresistivity dependle mutual angl&(]’, M )
that encloses the electric current with the local magnetization, which in tyends on the direction
of the external magnetic field. The brackets in Eq. (4.1) denote an awgrager the sample, where
a constant current density throughout the sample is assumed.

A microscopic explanation of the AMR effect dates back to 1951 [149] &l / 75 [147, 148]:
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The conduction electrons are coupled to the local magnetization by meapis-afrbit interactions
via scattering processes. The individual scattering events give risespinaasymmetric lifetime,
whereas the asymmetry depends on the angle between current and nadigmetj247, 148] The
conduction electrons possess a larger scattering cross section foeaoliilgnment of conduction-
electron spin and magnetization and a smaller scattering cross section fwetrsmalignment due to
an asymmetric density of states. We note at this point that the precise mechaniekmAMR effect
in transition metals is still elusive and a matter of current research. [180, 15

4.2 Influence of inhomogeneous current distributions on the motion of
magnetic vortices

4.2.1 Introduction

Today’s interest in spin-transfer torque phenomena can be trackddiés technological importance
with the perspective of being the future in magnetic technology. At the samepimé¢ransfer torque
poses a theoretically appealing problem as it involves the interaction oéquilibrium conduction
electrons with the ferromagnetic order parameter, i.e., the magnetization. demstending of the
mutual interplay of both, current and magnetization, allows for a controlledpgukation of magneti-
zation reversal and thus paves the path for current-controlled magtwage devices. Considering
the mutual influence of electrical current and magnetization on equal fpptovides the basis to
a variety of fascinating non-linear spin-dependent phenomena. Whilertipge of a spin-polarized
current influences the local magnetization [14, 15], vice versa the rtiagtien influences the current
flow via the anisotropic magnetoresistance (AMR). [1] The microscopidroafithe AMR is spin-
orbit coupling. [148] Due to an asymmetric density of states the conductiotv@bs possess a larger
scattering cross section for collinear alignment of conduction-electronas magnetization and
consequently a smaller scattering cross section for transverse alignmassic@lly spin-orbit cou-
pling results in local resistance variations. [147] A transfer of spindlrgnomentum from itinerant
s-like conduction electrons to localizetielectrons (spin-transfer torque) emerges in non-collinear
magnetization patterns. It is accompanied by local resistance changtstiaeAMR effect. An in-
crease of the resistivity leads to a local reduction of the current defi$ity.causes a locally reduced
spin-transfer torque acting on the magnetization dynamics. In turn, the timdioa influences the
local resistivity. As a result, the mutual influence of current and magtietizeauses non-linear ef-
fects in the linear regime of electron transport.

Due to the non-collinearity, but high symmetry of its magnetization pattern and dsigarticle-
(soliton)-like behavior, the magnetic vortex in a micro- or nanostructuredfifnirelement is a prime
example to study the interplay of electrical current and magnetization. \lgredlux-closured states
where the in-plane magnetization curls around a few nanometer large gitar [129] to minimize
the overall energy. Large angles between neighboring magnetic momeahts kdrastic increase of
the exchange energy. [152] To overcome this situation the magnetizatiaweésifout-of-plane form-
ing the vortex core in the center of the thin-film element. In ferromagneticredgha-film elements
the vortex constitutes the energetic groundstate being fourfold de¢enierato the boolean vortex
properties chirality and core polarization. Chirality and core polarizatiert@vological quantities

38



4.2. Influence of inhomogeneous current distributions on the motion of rtiagoetices

j (Arm?)
s . x 1010
P P e e e N N N -
A A e e N N L § F12.75
J ll//(‘//kd—i—ﬂ-_\‘\\\\\\ e
A A A S AP el e O L .
I R v S e et S W N 1065
Vi b -
. IBEREY 1 26
£ [EEEE I
I R it 1 42.55
I b1
i |
VNN N NSNS~ vy 7 g 2 4SS 2.45
VAN NN SN > v 7y r g A4S 24
&\\\\\\ﬂﬂ**aﬂl///ff
T e S e = P P O 4y 2.35
N N
RS 2.3

Figure 4.1: (Color online) Inhomogeneous current distribution of a magwertex in a200 x 200 x
20 nm? permalloy square. The arrows sketch the in-plane magnetization while the(daldx to
bright) scales with the current density. The current flowing from lefigbtrtends to flow through the
vortex core. The gray areas indicate the non-magnetic ohmic contacts.

that characterize a vortex. A chirality efl (—1) denotes a counterclockwise (clockwise) curling of
the magnetization around the vortex core while a polarizationlof—1) labels the out-of plane direc-
tion of the magnetization in the vortex core, up (down) respectively. Recgeriments showed that
spin-polarized electric currents cause the vortex to precess. [186138, 153] Hitherto, analytical
expressions as well as micromagnetic simulations confirming the elliptical gy@ftiaortex cores,
take a homogeneous current flow into account neglecting the effechomiogeneous current paths
occurring in real samples due to the AMR. The process of vortex-agitetsng is of fundamental
interest and still an open question. Moreover it is of general interesfréex-core switching is the
key ingredient in recent memory device proposals. [118, 154] Thusofih, a detailed understanding
of current-driven vortex dynamics and the purpose of technical utilizatids crucial to consider
realistic current paths.

In this chapter we investigate the current-driven gyroscopic motion of anet@gvortex in square
thin-film elements in the presence of an inhomogeneous current flow exdgngépicted in Fig. 4.1.
In the case of a homogeneous current the vortex gyration is topologicaltime as the gyrotropic
force that acts on the vortex and is responsible for its gyration solelyndspm the vortex’ polariza-
tion but is independent of the size of the vortex core. [120] We condluakein the case of a vortex
the non-linear effect of the counteraction of the magnetization on thertueis to an enhancement
of the gyration amplitude while it does not affect the quasiparticle like behatithe vortex at all,
e.g., no shape deformations are visible. As a consequence, the catisidef realistic current dis-
tributions leads to a geometry-dependent correction of the vortex’ motion.

This chapter is organized as follows: In section 4.2.2 we explain how tademshomogeneous
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current paths due to non-collinear magnetization textures in the time-evoliitiba magnetization.
Section 4.2.3 investigates the gyroscopic motion of magnetic vortices and @sipathomogeneous
with the inhomogeneous case. Section 4.2.4 yields a theoretical explanai@sahulated findings.
Section 4.2.5 summarizes our findings of the amplitude enhancement in an ahaygicession for
the renormalized spin-transfer torque coupling parameter. Section 4.2n@sattethe highly non-
linear regime of vortex-core switching. This chapter ends in Section 4.2.7awitimclusion.

4.2.2 Numerical simulations

In a continuous ferromagnet the influence of a spin-polarized cuoreithe time-evolution of the
magnetizatiod\Z(F, t) is considered by the extended Landau-Lifshitz-Gilbert equation (cficge2.2
and 2.3) [5]

dM (7, 1) - R o . . dM(Ft)
=M H, =M S
o M (7, t) x Heg(7,t) + Y (7, t) x o
bi - " O
= M0 x (M0 x (77,0 VN7 0)

b . L

whereb; = Pjup/leMy(1+4£%)] is the coupling constant between current and magnetizatiamthe
absolute value of the spin polarization aht} is the saturation magnetization. The terms containing
the Gilbert damping. and the degree of non-adiabaticftyare dissipative in the sense that they break
the time-reversal symmetry of the Landau-Lifshitz-Gilbert equation, i.e., &neyodd under time-
reversal transformation— —t, Hett — —Hett, j — —j, M — —M. [155]

The electronic transport is treated classically and calculated quasi-staficatiya local version of
Ohm’s law

j(7) = o (M E(T), (4.3)
while local charge neutrality is consideréd;j(7) = — 2 p(7) = 0,
Vi () = Vz [o(?)V(7)| = 0. (4.4)

The influence of the magnetization on the current flow is incorporated i(@Et).via a magnetization-
dependent conductivity tensef7) = o (M (7)). The shape of the conductivity tensor accounts for
the AMR, such that the resistivity locally obeys the relation

—

p=pL+Apcos®(£(5, M)), (4.5)
which reflects theos?-resistance dependence on the angle between local current andtizetipre
The AMR ratio in thin-film elements

PI—PL_  Ap
p+pL ptpL’

PAMR = (4.6)

characterizes the strength of the AMR effect. The material parametéys ) are the resistances for
the sample being saturated due to an external magnetic field parallel (perpardo the current
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flow. Thus, the anisotropic magnetoresistivity is the change in resistance between a parallel and a
perpendicular directed magnetization with respect to the applied current.

In order to compute realistic current paths that take into account the amgnimagnetoresistance,
we now derive the general shape for the conductivity tensor in anpitnagnetization textures. In the
local reference frame of the magnetization, the resistivity tensor is dibfginaection C)

pr. 0 O
0 0 pH

where we let the magnetization w.l.o.g. pointdrdirection. The two different elements of the re-
sistivity tensor in Eq. (4.7) are the phenomenological resistivities intratlicd&q. (4.1) and take
into account that the resistivity is different for a parallel compared torpgpalicular alignment of
current and magnetization. The next step is to perform a local rotationtfre reference frame of the
magnetization to the laboratory frame. This transformation is most easily catridyy decomposing
Eq. (4.7) according to

0 00

p=pil+(py—pL) [0 0 0]. (4.8)

0 01
The first part in Eq. (4.8) is manifest invariant with respect to rotatiomstha second part can be

transformed by introducing the laboratory basis elements with respect to theetization, which
point in the cartesian directions of the laboratory frame

em; =\, t=2y,z (4.9)

my;

The precise shape of the first two components are not important anddglested in Eq. (4.9). By a
projection of Eq. (4.8) on the laboratory basis as provided by Eq. (4.9)

Apép, -

J

o O O
o O O

0
1

we attain the shape of the resistivity tensor in the laboratory figme: p 6;; + Apmym;, 1,5 =

m7y72

2

my

MgMy  MgM,
p=prLl+Ap | mymy mf/ mym; | . (4.12)
MgM,  MyMm, mz
With the help of the identityn? + m2 + m2 = 1, the general resistivity tensor in Eq. (4.11) can be
written as

pL(mg +m?) + png Apmgmy Apmgm,
p= Apmgmy p1(m2 +m?) + png Apmym, . (412
Apmgm, Ap MyMmy pL (m:% + mz) + png
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Figure 4.2: (Color online) Self-consistency loop for the numerical computaticcurrent-induced
magnetization dynamics. The physical quantities in the boxes are solutiorsazfultions as denoted
by the arrows. The anisotropic magnetoresistance is considered withinretizagion-dependent
conductivity tensoe (M (7)). The current pathg(i") are obtained from Ohm’s law and are incorpo-
rated via the spin-transfer torque (STT) in the Landau-Lifshitz-Gilddr€) equation.

The final shape of the resistivity tensor reads whith= M7

) pL(MZ+ M2)+ py M ApM, M, ApM, M,
h= 1 ApM, M, pL(MZ + MZ) + py M ApM, M,
s ApM, M, ApM,M, pL (M2 + M2) + p; M2

(4.13)
Owing to the local form of the resistivity tensor in Eq. (4.13), the corredpmnconductivity tensor
is obtained by inverting Eqg. (4.13)
F=p L (4.14)

It follows from Eq. (4.5) or (4.13) that for non-collinear magnetizationtdexs the magnetization
influences the current via the anisotropic magnetoresistance by a spaigfilygszconductance. Fig-
ure 4.1 depicts the solution of the current density for a current passitagaetic vortex structure in
a permalloy square. The arrows sketch the in-plane magnetization of tle& earling counterclock-
wise around the vortex core in the center. The sample dimensioa8@se200 nn? with a thickness
of 20 nm. Dirichlet boundary conditions are imposed on the current biasdsbs (gray bars on the
left and right hand side in Fig. 4.1) to fix the potential of the probes. VoanNenn boundary condi-
tions ensure that no current leaves the sample through the upper oskmple boundaries. Thus the
current flows from left to right. The current favors the vortex cagutting in a higher local current
density (bright color). In areas where the current is aligned perpelad to the magnetization the
conductivity is higher than in areas where the current is aligned paralieétmagnetization.

In the numerical simulations the mutual influence of current and magnetizatiakeis into account
by gradually plugging the numerical result for the magnetization from E8g) {dto the conductivity
tensor of Eq. (4.3), calculating the current from Eq. (4.3) for the ddsime-stepA¢ of Eq. (4.2),
and iterating this procedure. The self-consistent calculation schemesfootimteraction of the mag-
netization on the current is illustrated in Fig. 4.2. The approach is justifiealiseche band structure
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Figure 4.3: (Color online) Mean x component of the magnetization of a magratiex in a200 x
200 x 20 n? permalloy square versus time. The different lines are the average x cemipof the
magnetization belonging to the indicated timestep for the calculation of the cpathrst.

responsible for the electronic transport relaxes orders of magnitstier fa,s ~ 10~'4s) than the
typical time scale of magnetization dynamics that is set by the Larmor frequereyy M, and is

on the order of; ~ 10~'! — 10~'?s. There exist a separation of time scales in the fast electronic
dynamics of the conduction electrons and the comparatively slow collegthaics of the localized

d electrons that constitute the magnetization. [156] From the viewpoint of theawuwletion of the
magnetization the current flow is always in its steady state and can be conguatgiestatically by
means of Eq. (4.3). The spin-transfer torque on the contrary is locallulaiedl by the inhomo-
geneous current densiﬁ(?) and acts on spatial inhomogeneities of the magnetization texture (cf.
Eq. (4.2)). The local conductivity(M(F)) and thus the inhomogeneous current is determined by the
magnetization itself and therefore varies on the time scale of magnetization dgndrhics, to cap-
ture the effect of the AMR on the vortex motion it is sufficient to compute theectipaths on the time
scale of vortex dynamics. Figure 4.3 depicts the mean x component of theetizagjion of a gyrating
vortex in its steady state. The sample dimensiong@dex 200 nn? with a thickness of 20 nm and

an AMR ratiopamr = 0.5. As long as the time interval for a new current path calculation is below
At = 10~ s the result for the gyration amplitude is not affected and the physicdisesea indepen-
dent of the unphysical time-interval for the current path calculation. dlbservation is in agreement
with the Larmor frequency that takes for permalloy (PysiRiey) a value ofwpy = 1.77 - 101571,
Furthermore it is consistent with the adiabatic approximation that spin andecharrents are gov-
erned by the instantaneous magnetization that is implicitly assumed in the spiieittangue terms

of Eq. (4.2).

In the case of harmonic excitations the vortex performs elliptical rotatio28] [At resonance the
amplitude of the vortex core displacementidrandy direction is the same and the orbit is a circle.
The ratio between the semi-axes is given by the ratio between the freqoktheyexcitation and the
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resonance frequency. [123] The sense of rotation of the vortexnisatled by its polarization, i.e.,
p = +1 (p = —1) causes a counterclockwise (clockwise) gyration of the vortex counarits equi-
librium position. The analytic equation of motion for an applied homogeneausrdun z direction
reads for the quasiparticle coordinates of the vortex core [123]

X T - X P Y
) = P N R (4.15)
Y pw =T Y 2412 o Y47

The free angular frequency = —pGomw? /(G2 + D2a?) and the damping constafit= —Dyam
w?/(G3 + D3a?), as well as the constants, of the gyrovector and, of the dissipation tensor are
defined in Ref. [123] (cf. section 3.2). Figure 4.4 depicts the analyttealdy-state trajectory of a
vortex according to Eq. (4.15). The snapshots are the spatially resolagdetization patterns and
their corresponding current densities in the sample plane for four exgngaaitions.

4.2.2.1 Numerical discretization of the extended Landau-Lifshitz-Gillert equation

An analytic solution of the Landau-Lifshitz-Gilbert equation (4.2) is possiblg in low-dimensional
scenarios that possess a high symmetry. In the general case, the gomtimcromagnetic model must
be solved numerically by means of a tempo-spatial discretization on a gridislthésis a finite-
difference method-based Poisson solver in MATLAB has been dewtl¢p&7] The integration of
the Poisson solver and the micromagnetic solvéBMwritten by Massoud Najafi in MATLAB, hap-
pened in close collaboration with Massoud Najafi.

In order to capture important dynamical effects in mesoscopic samplesasubdmain wall defor-
mation or transformation, in particular the formation of vortex structures, it i®impt to treat the
long-ranged magnetic dipole interaction accurately. In micromagnetic simul#ti®nsagnetic dipole
interaction is treated in a mean-field way by a continuum limit of the dipole-dipoleaictien between
the individual discretization cells. [158] This involves an interaction betwaseh discretization cell
with every other cell and is thus computationally demanding.

As a classical continuum theory, the micromagnetic model possesses somedimigsring its range
of applicability. First, by implication of the gradient approximation for the exgeaenergy (cf.
section 2.2), large angles between the magnetization vectors of neighbm@ngtidation cells are
forbidden. This demands small discretization cells and thus limits the size of tiy@esathat can
be treated in a reasonable computational amount of time. More preciselglantorresolve micro-
magnetic structures in micromagnetic simulations properly, the simulation cell sizesiguisicantly
below the exchange length

2A
poM2’

s

Lex — (4 16)

that sets the relevant length scale in the micromagnetic model. Secondly, ssieatleontinuum the-
ory, singularities such as Bloch points are forbidden, though they areelln lattice models. [159]
Bloch points appear in micromagnetic simulations, for instance during the aioihilaf vortex-
antivortex pairs as an artifact of the spatial discretization.
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(b)

Figure 4.4: (Color online) Steady-state trajectory of a current-drivegnietic vortex in 200 x 200 x

20 nm® permalloy square. (a) The line represents the analytical trajectory. dte@nrk the positions
of the vortex core that corresponds to the particular inset. (b) The ideptst the numerical results
of the self-consistently calculated mutual current and magnetization dynahhiesipper row shows
the spatially resolved magnetization where the arrows indicate the in-planestizagion. The lower

row displays the current density with the same scale as in Fig. 4.1.
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4.2.3 Numerical results for coupled current and magnetizabn dynamics

To investigate the influence of inhomogeneous current distributions on teati@vortex by means
of the coupled Egns. (4.2) and (4.3), we conduct micromagnetic simulatdmperform simulations
for magnetic thin-film elements with different lengthand thicknessessfor various current densities
and AMR values. In the following, the parameters of polarization and chiratéynot varied. It
follows from symmetry considerations that they do not influence the dufiem in perfect square
elements. We use the material parameters of permalloy, i.e., an exchangmtohd = 13 - 10712
J/m and a saturation magnetizationf = 8 - 10> A/m. For the Gilbert damping we assume a value
of a = 0.01, which is affirmed by recent experiments. [160—162] The degree mfadiabaticity¢ is
set to be equal te. [103, 163]

The simulation cells are chosen to be one cell of thickméiss direction and 2 nm in: andy direc-
tion, which is well below the exchange length of permalloy. The position oftiex is characterized
by the maximum amplitude of the out-of-plane magnetization. It is determined bytenpatation
with the Lagrange polynomial of second order of the respective simulagibmvith maximum out-
of-plane magnetization and its next neighbors.

To deduce the influence of inhomogeneous current paths on the vortexhmalternating currents
Pj’(F, t) = P]'(F) cos Qt flowing spatially inhomogeneously in direction are investigated. Even
in simulations with idealized values of the AMR ratigur as high as 5% no deformation of the
vortex structure is visible and no deviation from the quasiparticle behagturs. This suggests that
the rigid particle model in Eq. (4.15) is sufficient to describe the vortex ilyesin the presence of
inhomogeneous currents with a concomitant renormalization of the coupliagnpters due to the
counteraction of the magnetization by means of the AMR. To investigate thediepee of the gy-
ration amplitude on the AMR ratio, we excite the magnetization20Gx 200 x 20 nm* permalloy
square for different current densitigsat the vortex resonance frequency of 4.4 GHz in the vortex’
gyrotropic mode. At about 100 ns the vortex gyration has reached idyst¢éste and the amplitudes
for different AMR ratios and current densities are compared. A variaifathe AMR ratio is achieved
by varying the parallel resistivity;| while fixing at the same time the perpendicular resistiyity

The gyration amplitude depicted in Fig. 4.5 exhibits a quadratic amplitude enhantavith the
AMR ratio and an offset of one (dashed red line). Similarly the total samplstamceR (solid blue
line) increases quadratically. The mutual coupling of inhomogeneousntilow and magnetization
dynamics leads to a non-linear response of the vortex motion and in termstbeleansport causes
the vortex to act as a non-linear medium for the electric current. In theofaeeAMR and a homo-
geneous current flow the gyration amplitude of the vortex scales with thentufensity.

However, instead of focusing on the AMR ratio, we decided to investigatbehavior of the gyra-
tion amplitude with the anisotropic resistivityp. Figure 4.6 depicts a linear increase of the gyration
amplitude (dashed red line) as well as a concomitant linear increase of theatmigle resistancg
(solid blue line) withAp

A
FAMR = <ap + 1) Thomm, (4.17)
pPL

where the free parameteris the amplitude scaling angon, is the steady-state radius in the presence
of a homogeneous current flow. Due to the inhomogeneous currerdfil@vhanced force acts on the
vortex that causes a stronger deflection and an enhanced gyration deplitmpared to a homoge-
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Figure 4.5: (Color online) Enhancement of the gyration amplitude of a vaiexo the anisotropic
magnetoresistance ratio (dashed red line) for a current denslty of0'° A/m? in 2200 x 200 x 20

nm?® permalloy square. Increase of the total sample resistance versus thgs@litRblue line). The
symbols denote the numerical results while the lines are quadratic fits.
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Figure 4.6: (Color online) Enhancement of the gyration amplitude of a vditiexto the anisotropic
magnetoresistivity (dashed red line) for a current densitg.6f. 10'° A/m? in a200 x 200 x 20
nm® permalloy square. Increase of the total sample resistance versus thalimed anisotropic
magnetoresistivity (solid blue line). The symbols denote the numerical reshiks the lines are

linear fits.
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Figure 4.7: (Color online) Enhancement of the gyration amplitude of thewartéhe steady state
for a 200 x 200 x 20 nm?® permalloy square. (a) Radius enhancement versus current density fo
homogeneous current flow. (b) The amplitude scalingf Eq. (4.17) in dependence of the current
density.

neous current.

Next, we investigate the enhancement of the gyration amplitude with respee &pphied current
density. Figure 4.7 (a) depicts the steady-state radii for a homogenawastdlow in 8200 x 200 x 20
nm?® permalloy square. There exist three regimes of translational vortex mdtlese regimes de-
pend on the applied current density and thus on the deflection of the wortexrom its equilibrium
position. The vortex can be regarded as a quasiparticle that moves itoanggotential (cf. sec-
tion 3.2). [123] The restoring potential is caused by the demagnetizatiogyeard the exchange
energy due to the finite sample size and enhances with larger deflectiores\afrtbx core from its
equilibrium position. The linear regime with current densities of aBdut10° — 2 - 10'°A/m? yields

a linear increase of the steady-state amplitude with the applied current dehsitiye non-linear
regime2 - 10'Y — 2. 10! A/m? the amplitude increases in a sublinear manner. Finally there exists the
highly non-linear regime of vortex-core switching, which starts at agprately2 - 10'' A/m? with no
steady-state radius due to multiple vortex-core switching. Every regimeriacteeazed by a different
dependence of the vortex motion on the applied current density. In the liegiane of the vortex
gyration, the vortex moves in a parabolic potential and the enhancemeetstbtidy-state amplitude
scales linearly with the applied current density (indicated by the line in Figad)7At higher current
densities the enhancement flattens due to steeper non-linearities in thmggstdential.

Figure 4.7 (b) depicts the amplitude scaliglue to the AMR as determined by Eq. (4.17) with the
applied current density with the applied current density in reference torengeneous current flow.
A variation of the applied current density leaves the linear dependertbe ahisotropic magnetore-
sistivity unaffected but alters its slope, the amplitude scadings illustrated in Fig. 4.7 (b). In the
linear regime of vortex motion we find an almost constant amplitude scaling indepeof the ap-
plied current density. The harmonic potential does not affect the amplécaéang and it attains a
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Figure 4.8: (Color online) Geometry dependence of the amplitude scaliig tfzg linear regime of
vortex motion for a current density af5 - 10° A/m? and (b) in the non-linear regime for a current
density of7.5-10'% A/m2. In the non-linear regime the geometry dependence of the amplitude scaling
holds for different sample thicknesseimdividually.

constant value. At abou - 10'°A/m? the vortex enters the non-linear regime of the vortex gyra-
tion and the amplitude scalingdecreases with increasing applied current density until the regime of
vortex-core switching is reached (cf. Fig. 4.7 (b)). The decreaskeo$caling is thus a direct con-
sequence of the steeper confining potential: Due to a non-linear restorgggthe amplitude scaling
decreases along with the flattening of the amplitude enhancement in the nanrégane of vortex
motion. Besides the non-linear restoring force there is a second reasmmsible for the decrease
of the amplitude scaling. Micromagnetic simulations confirm a deformation of thexvoore in the
non-linear regime of vortex motion due to the gyrotropic field [126, 139]reMwrecisely the vortex
core shrinks with increasing applied current density. A smaller vortexiodihe presence of an inho-
mogeneous current flow results in a lower increase of the gyrotropie fam the vortex and thus in a
lower scaling (cf. section 4.2.4 for a detailed discussion). Note that therdudependence af j) in

the non-linear regime of the vortex gyration expresses directly the noarlomipling of the current
due to the counteraction of the AMR. These findings have an importanexperiments [132] and
memory applications [118], since vortex-core switching depends criticalth@ radius of the vortex
gyration. [164]

As with the current density, the geometry of the thin-film element affects @lengoof the gyration
amplitude. To deduce the geometry dependeneg wk perform simulations on squares with various
length! and thicknessess The value of the scaling is the sole fit parameter and is thus a function of
the applied current density and the sample geometeya(j, [, t). Figure 4.8 (a) depicts a logarithmic
geometry dependence of the scalinfpr a current density of.5 - 10° A/m? and for sample lengths
of [ =200, 300, 400 nm and thicknesseg ef 10, 20, 30 nm. Varying in turn the current density, the
amplitude scaling always exhibits the functional behavior (cf. Fig. 4.8)

a(g,l,t) = k(j,t) log(c ), (4.18)
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Figure 4.9: (Color online) Dependence of the fit parameteiefined in Eq. (4.18) on the applied
current density for the linear and non-linear regime of vortex motion.

wherex(j,t) and((j,t) are fit parameters anl = /2A/uoM?2 is the exchange length. The ex-
change length relates the exchange constantthe saturation magnetizatidd; and sets the relevant
length scale in micromagnetism. While the paramétiralmost constant the run afwith the cur-
rent density is depicted in Fig. 4.9. Analogously to the situation illustrated in Figbd we find two
different reaction regimes. The linear regime of vortex motion yields a congtaameterk that is
independent of the applied current density and the sample geometry. dortHaear regime of vor-
tex motionk(j, t) is decreasing with the applied current density and according to Fig. 4dgends
moreover on the sample thicknes&f. section 4.2.4 for a detailed discussion).

In conclusion the transition in the vortex motion from the linear to the non-lireginre marks the
transition from a linear transport regime with no explicit current depecelefu(/, ¢t) to a non-linear
transport regime witl (7, [, t) depending now explicitly on the current density. The logarithm of the
ratiol/ </t is proportional to the ratio of the constants belonging to the dissipation tenddhe gy-
rovectorDy /Gy o log(l/+/t) (cf. Ref. [164]). The ratio of dissipation tensor and gyrovector is in
turn proportional to the ratio of dampirigand the free frequency: Dy/Gy x I'/w. [123] Thus the
geometric dependence in Eq. (4.18) is linked to characteristic quantities afittent-driven vortex.

4.2.4 Theoretical explanation

In this section we give a theoretical explanation why inhomogeneoustynains affect the gyration
amplitude of the current-driven vortex. As confirmed by micromagnetic simulgtibe vortex keeps
its static structure and no deviation from the particle-like behavior occuenekcited with a spin-
polarized current. Therefore, the static motion still can be described yhikée equation [120] with

the expansion by Nakatani et al. [48] to include the action of a spin-pethdarrent

F+ G x (§4b;7) + D(ai + £b;]) = 0. (4.19)
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4.2. Influence of inhomogeneous current distributions on the motion of rtiagoetices

Here, F is the restoring force due to the demagnetization and exchange fields thatfsten the
effective field,D is the diagonal dissipation tensor afids the gyrovector (cf. section 3.2). Besides
the gyrotropic force the gyrovector constitutes the driving force duegtadinrent of Eq. (4.19), while
the dissipation tensor resembles the loss of energy occurring in magnaéémsysvhich is referred
to damping of the electron system. Note the two distinct origins of dissipation,réheeim in the
expression of the dissipation tensor of Eq. (4.19) is the usual Gilbert idgngb the localizedd
electrons, while the second term describes spin relaxation of the itineedgttrons parametrized by
the degree of non-adiabaticity [5] The magnetization is a vector field of uniform length that can
be expressed in dependence of two coordinates: for the vortex thegmgked changes in radial
direction and the azimuthal angtecharacterizes the curling in-plane magnetization. Equation (4.19)
represents an already integrated version of the Thiele equation thatessw spatial dependence
either of the velocityi nor of the currenj. Considering realistic current paths this assumption clearly
does not hold and we have to consider the full integral Thiele equaticgj [12

o [ av[(90) 5+ (Feo)

_ Mspo dV sin 0(V - - 7+ b7

L0 [ avsino(9e6 x Tr0) x (74 4,7(7)

M Vi Vi 1 v Y i j
_% / dV (V#OVr0 + sin® 0V oV ) (ot + £b;5 (7))
. (4.20)

(Heff'M)

However, the simulations presented in section 4.2.3 indicate that a descriptronex motion in
terms of collective coordinates by an integrated version of the Thiele equsttilboffers a good de-
scription for the case of inhomogeneous current paths. The employrhémd otegrated version
of the Thiele equation is possible with a proper renormalization of one of tingliog parameters in
Eqg. (4.19). In afirst approximation of homogeneous current pathsotitex motion is independent of
the size of the vortex core and thus considered to be of topological nfitR63 A spatial dependence
of the current in the integrands of Eq. (4.20) requires corrections aedpwith the homogeneous
case. As addressed in Ref. [165] the velocity in Eq. (4.19) must be mibdiifimatch with detailed
micromagnetic simulations. For the case of a vortex confined in a thin-film eletmemigid parti-
cle approximation is only approximatively fulfilled as the velocity within the vorteseds different
compared to the velocity in the domains. There is no general rule how to trefifications of the
quasiparticle picture. In order to modify Eq. (4.19) as little as possible anditdaimaa quasi-linear
structure of the Thiele equation with respect to the current density, wdedax attribute the renor-
malization to the spin-transfer torque coupling paramitevhose derivation has been performed for
a homogeneous current flow. [5] This approach is motivated by the fioitpeonsiderations. The
gyrotropic force that arises due to the adiabatic current term (cf. Z&220)) reads for the case of a
magnetic vortex [123]

. I Ms . — — 2/
G x bjj = —% /dV sin (V0 x Vi) x bjj(r)

27 M .
= POy e« byj
v

= b;Goé, X J. (4.21)
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Chapter 4. Influence of inhomogeneous current distribution on vortéfomo

Except for the small area of the vortex cofeis almost constant and thig-6 in the integrand of
Eq. (4.21) vanishes. This restricts the integration to the region of the vootex Though defined as
an integral over the whole sample the gyrovector is primarily located at thexvoore. Due to the
spatial integration the renormalized spin-transfer torque coupling carpdeeted to depend on the
set of all possible parametdrs= b; (3, p||, p... 1, t).

If we rearrange the modified version of Eq. (4.19) as follows

G27 ~ (G2 + D2a?)7 = G x F — DyaF — (G2 + D2ag)b;]

+ bjDoé X 5(5 — Oé)
~ G x F — DyaF — G2b;7, (4.22)

we deduce that the driving part proportional to the curﬁ@ﬁﬂs primarily given by the square of the
gyrovector, where, as usually, we have assumgfl < 1. The influence of the cross product term
in Eqg. (4.22) can be disregarded, since we emplayed ¢ in the simulations. [103] Note that in
contrast to the gyrovector the dissipation tensor
D= Mt [ 1y (5,090 + sin? 05 6=

o [V (70950 4 sin 6969 0), (4.23)
attains its contributions mainly in the domains due to the change in the second teha inyplane
angle¢ (cf. Eq. (3.4)), while the contribution from the vortex core is small. It is littieeted by the
current flow as it contributes to the driving force via the non-adiabatietspnsfer torque and is thus
suppressed by factors of, o? andDy /G (€ — a) (cf. Eq. (4.22)).

To summarize, in the case of current excitations the driving force actseomatiex core, while
the energy dissipation mainly takes place in the domains of the Landau pattexprassed by the
second term on the right hand side of Eq. (4.22). These circumstaacadso be directly understood
from the Landau-Lifshitz-Gilbert equation (4.2). The spin-transfegueris proportional to the spa-
tial derivative of the magnetization, hence the spin transfer-torqueilootidn is located in the center
region while its influence is negligible in the almost uniform domains. In discsdtaional sym-
metry does not allow internal domain walls and the vortex exhibits similar beh§{/&8] Thus, the
contribution to the spin-transfer torque of the four Néel walls is small. Thisals a striking differ-
ence between inhomogeneous current and magnetic field excitations. Wioiledgeneous magnetic
fields cause deformations of the vortex structure, the electrical currainty affects the vortex core
and the vortex structure is kept stable, even in the case of a strong ineoewmgs current flow. This
contrasts with alternating, homogeneous field and current excitationethdit for the vortex in sim-
ilar magnetization dynamics.

Taking now the AMR effect into account the current tends to flow thrahighvortex core resulting in
a locally higher current density compared with the homogeneous cas@cthgence of the locally
higher current density in the vortex core coincides with the location of thevggtor that constitutes
according to Eqg. (4.22) the driving force. An enhanced gyrotropizefacts on the vortex and a bigger
amplitude results for the vortex gyration compared with a homogeneousitfiow. The stability of
the vortex during the motion must be addressed to the high symmetry of the pattern, such that
internal stresses compensate each other and the magnetic configuratiwheals is not affected.
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Figure 4.10: (Color online) Comparison of the enhancement slope fanpleaize off = 300 nm
and three different thicknesses- 10, 20, 30 nm for a current density of = 2.5 - 101°A /m?.

As mentioned in the context of Eq. (4.21), in the case of inhomogeneortentpaths the geometry
of the thin-film element influences the coupling paramé;eind thus the amplitude scaliag The
numerical simulations in Fig. 4.8 exhibit for the amplitude scalirg logarithmic geometry depen-
dence proportional to the ratio of dissipation tensor and gyrovefigfG, « (log! — const. - logt).
Owing to the integration over the sample in the expression for the gyrovetidd. (4.21)), the lat-
eral size of the sample gains its importance for the vortex motion due to the inleoribgof the
current flow. In the preceding section we have determined the exagteggodependence from mi-
cromagnetic simulations. In samples with a larger sample ldrig#ndriving force is bigger resulting
in an enhanced gyration amplitud?; (x logl). At the same time the amplitude scalingncreases
with decreasing sample thicknezsﬁ}j x log1/t). The connection of the increase in the gyration
amplitude with decreasing sample thickness exemplarily depicted in Fig. 4.10 for a fixed sample
length ofl = 300 nm and a current density gf= 2.5 - 10'°A /m?. For smallert a higher gyrotropic
force acts on the vortex caused by the AMR effect.

As discussed, it is the vortex core that controls the dynamic behavior ebtiex state in the case
of excitation due to a spin-polarized electric current. With the particular r@levtitex core takes
in current-driven vortex dynamics, the origin of the decrease of therfagj, ¢) in the non-linear
regime of vortex motion as depicted in Fig. 4.9 becomes comprehensible. Tie& ¢ore shrinks
with increasing applied current density due to the non-linear restoringnfaitexperienced by the
vortex caused by larger displacements from the equilibrium position. Tondibia same amplitude
scaling in the presence of the non-linear potential as compared to the lamarthe local current
density within the core would have to become even more inhomogeneous tharlimetr regime of
vortex motion. As a consequence, the gyrotropic force on the vortexharsd:(j,t) decreases. In
addition, the vortex reaches with smaller sample thickméke non-linear regime for lower current
densities or deflections from its equilibrium position. For small aspect rgtiog 1 the frequency
of the vortex is approximately proportional to the aspect ratio itsel ¢ /1. [167] In turn, the vortex
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displacement is inversely proportional to the aspect ratiol/t. This means that the non-linearities
set in earlier with lower sample thicknesslue to a larger displacement of the vortex. A change in
the sample thicknegsaffects the shape of the non-linear potential. The consequence is treiogc
thickness dependence &fj, t) in the non-linear regime, while the sample lengfitays a minor role.
The observations of section 4.2.3 are a constant amplitude sealmtie linear regime of small de-
flections of the vortex core independent of the applied current dehsitye non-linear regime(j, t)
decreases with higher current densities as a direct consequeneenafitinear potential felt by the
vortex.

4.2.5 Renormalization of the spin-transfer torque couplilg parameter

As discussed in the preceding sections, considering the influence of igleoeaus current paths
on the gyrotropic motion of a magnetic vortex modifies the spin-transfer tazqupling parame-
ter b;. The renormalization involves a dependence on the geometry, the electeatcand on the
parameters that characterize the AMR effér;(;j, p|> pL,1,t). Note that the explicit current depen-
dence ob; in the non-linear regime of vortex motion expresses the non-linear couglngrent and
magnetization. The counteraction caused microscopically by spin-orbiaatitem renormalizes the
spin-transfer torque coupling parameter according to

Bj(j»PHvPLLt) = <a(j7lat)ﬁf +1> ij (424)
) L
a(jg,l,t) = k(j,t)log( K %) (4.25)

With respect to a description of vortex motion in terms of collective coordiné}@‘sacts as a renor-
malized velocity due to the current in the equations of motion (4.15). The amwetitsh of the mag-
netization by means of the anisotropic magnetoresistivity results for thentwirgen vortex in a
geometry-dependent renormalization of the spin-transfer torque cgygimmeter and can be inter-
preted as a correction to the entirely topological motion of vortices in themres# a homogeneous
current flow. For small deflections in the linear regime of vortex motion theection due to the AMR
effect is small and the quasiparticle approximation remains applicable. Tia¢i@us of motion keep
their shape and maintain their validity as effective equations of motion comptisngpunteraction
of the magnetic vortex on the electric current via the AMR effect. For high#lections, in particu-
lar in the regime of vortex-core switching (cf. next section), the countiera of the AMR leads to
non-linear effects that have to be identified by detailed self-consistenbmégmnetic simulations.

4.2.6 Influence of the anisotropic magnetoresistance on theghly non-linear regime
of vortex-core switching

If the vortex gyration exceeds a critical velocity (320 m/s for Py), the highly non-linear regime
of vortex-core switching is entered. [126, 139] The vortex-core $vitpis accompanied by a halo
formation — a region with opposite oriented out-of-plane magnetization is foohed to the vortex
— and subsequent vortex-antivortex nucleation and annihilation. 288}o the non-trivial topology
of the combined vortex-antivortex state it is crucial to consider realistienupaths. The gyrotropic
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Figure 4.11: (Color online) Current density of a magnetic vortex20@x 200 x 20 nm® permalloy
square at the critical velocit320 m/s for vortex-core switching.

field responsible for the vortex-core distortion and the subsequeetrewersal at higher gyration
amplitudes forms a dip with out-of-plane magnetization in the inside of the vortex. ¢139] An
exemplary current density is depicted in Fig. 4.11 that reveals the compldttg current paths in
the regime of vortex-core switching as a direct consequence of the conipterted magnetization
texture. Thus far, we have considered the steady-state radius of ttex.vd.et us now turn the
attention to the time-domain. A question of experimental and applicational relevaribe time
between excitation of the vortex and its switching. Figure 4.12 depicts the timn@edaquntil the
vortex reached its critical velocity for switching with respect to the AMR ralibe particular point
in time in Fig. 4.12 corresponds to the critical velocig2( m/s relates to a radius 2.8 nm at a
frequency of4.4 GHz) that was found to be the universal criterion for vortex-core $ivitg: [139] A
higher AMR ratio linearly reduces the time until vortex-core switching sets in.

4.2.7 Conclusion

In conclusion the counteraction of the magnetization on the current-dmagmnetic vortex results
in a geometry-dependent renormalization of the spin-transfer torquaicgyparameter by means of
the anisotropic magnetoresistivity. This can be interpreted as a correctiba topological motion
of vortices in the presence of a homogeneous current flow. Thematiaed coupling parameter
depends on the ratio of the dissipation tensor and gyrovector that constitinisic vortex’ properties
that are determined by the geometry of the thin-film element, namely its size and kisetbsc In the
non-linear regime of vortex motion the change in the shape of the vortexezptieitly introduces
a non-linear dependence of the renormalized spin-transfer coupliagipter on the current density.
The results are obtained by micromagnetic simulations taken the spin-trarsjiee ts well as the
inhomogeneity of the current flow into account. Incorporating the coadtien of the magnetization
onto the current flow provides a non-linear coupling of mutual curredtraagnetization dynamics.
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Figure 4.12: (Color online) Time until a critical velocity 820 m/s is reached for a vortex in a
200 x 200 x 20 nm? permalloy square in dependence of the AMR ratio.

For experimental and technical implications we identified the AMR as a cand@etduce the time
until the critical velocity for vortex-core switching is reached.
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Chapter 5

Non-collinear magnetotransport

Parts of this chapter have been published slightly modified in Ref. [L6Bpens and D. Pfannkuche,
Width dependence of the nonadiabatic spin-transfer torque in narrovatiowalls, Phys. Rev. Lett.
105 177201 (2010)

N THIS CHAPTERWe generalize the kinetic equation to non-collinear magnetization textures and

investigate some important aspects of non-collinear magnetotransportpifidependent trans-

port coefficients for the itinerant electrons are calculated by means abtivequilibrium, linear
response to a current-inducing electric field. To capture various gpantient transport phenom-
ena, we develop in section 5.1 a formalism that treats electron and spindraospequal footing.
In section 5.2 we review collinear magnetotransport to get familiar with spdesntent concepts in
transport. In section 5.3 we derive a general equilibrium solution foramtlinear magnetization
textures that serves as a starting point for the derivation of a genegaf liesponse kinetic equation.
Section 5.4 exhibits the derivation of a general non-equilibrium solutiosgatially slowly varying
magnetization textures. This yields global transport coefficients sucheash#rge and spin current
conductivity, as well as the spin-transfer torque and the degree eddiabaticity. This chapter closes
with section 5.5 that provides an analytical solution of the generalized kingtigtion for the case
of an one-dimensional domain wall and the derivation of the local spirsfeeatorque, domain-wall
resistivity and momentum transfer within the domain wall. It turns out that théntess of coupled
charge and spin transport offers startling insight into an intermediateptretregime that comprises
diffusive charge transport and ballistic spin transport at the same timearfow domain walls the
spin degree of freedom significantly influences the magnetotranspotbdan enhanced coupling of
the spin of the conduction electron with the local magnetization.

In monodomain ferromagnets with a collinear magnetization texture the magnetidistioguishes a
natural global quantization axis. The spin of the conduction electron coramitte the total Hamil-
tonian and thus is a conserved quantity with respect to transport, if wechsgla-flip scattering pro-
cesses. In this case transport can be well described in terms of the majarityinority electrons with
respect to the global quantization axis. This is the basic idea behirtd/theurrent modej34, 169],

where all physical quantities are spin dependent in terms of majority (minofiy), charge carri-
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Chapter 5. Non-collinear magnetotransport

ers. However, transport in non-collinear magnetization textures is manpluxated. Here, a natural
choice is to align the quantization axis with the local magnetization. The consegjoéthis choice

is that the quantization axis now varies spatially. The majority or minority electom®0o longer
eigenstates of the underlying Hamiltonian and the spin channels mix in the peesktan electric
field. A key feature of non-collinear magnetotransport is that the chanixéeng gives rise to trans-
verse magnetization of the conduction electrons.

Compared to electron transport in non-magnetic materials, transport amfagnets with collinear
magnetization patterns demands a doubling of the degrees of freedom theelifted spin degen-
eracy within a ferromagnet. In turn, transport in ferromagnets with acotimear magnetization
texture requires the treatment of full Pauli spin space in tern »f2 spin 1/2 density matrices.
Compared with collinear magnetotransport, this corresponds to a furtbbtimp of the degrees of
freedom. The additional degrees of freedom take into account tnaesspin dynamics.

Throughout this thesis, we restrict ourselves to stationary non-equitibpitoblems, although our
formalism can be easily extended to capture time-dependent phenomendisiritbution function in
non-collinear magnetization textur§,§(F) is a2 x 2 matrix in Pauli spin space. Pauli spin space is the
space of the Hermitia2 x 2 matrices that is spanned by the four basis elemght&}. Here,1 is the
unity matrix ands is a vector that contains as components the three Pauli matticés= z, y, z as
defined in appendix A. We will refer to the subspace spannedds/the charge subspace and the sub-
space spanned ki as the spin subspace. Furthermore, we will refer to the expectation apeo
space as magnetization space. The off-diagonal elements of the distrimatox fE(F) describe
transverse spins that have to be taken into account, since the spin ofnithection electrons does
not commute with the total Hamiltonian in non-collinear magnetization textures. [B&]cbnnec-
tion with thetwo-current models provided by the following: In collinear patterns the off-diagonal
components vanish and the distribution matrix becomes diagonal in Pauli sgie.spn this case
the diagonal entries of the distribution function reduce to the majority (minorisyoimtionsfg(F)

(f]% (7). These are the distribution functions familiar from collinear magnetotrahspor

In general, the spin-dependent distribution mafg;i((r*) can always be locally diagonalized by an uni-
tary rotation in spin spact(). The magnetization is strong in ferromagnets, with corresponding
field strengths up tez 1 T and we can neglectdependence dff;(r). In this case the rotation is
independent of the actual position on the Fermi surface. Then theayelribution function can be
related to the majority;@(?)) and minority (f%(f‘)) distribution functions that are locally well defined
in the following manner

F =0 (57 ° Vo 5D

R 0 fun)F '

The difference between a collinear and a non-collinear magnetizationgagttirat in the collinear
case the rotatiorﬁf,;(ﬁ does not depend on position, whereas in the non-collinear case themotatio
U;(7) depends explicitly on position. In this connection offdiagonal elements in itebaition
matrix corresponds in the collinear case to additional gauge degreesedbfn that stem from an
inappropriate choice of the quantization axis and can be gauged awaylbigad rotationﬁE(F) to
the reference frame of the magnetization. In the non-collinear case the sitisatistinct different:
the local unitary rotatiorf],;(?) does not commute with spatial derivatives or spin-dependent quan-
tities and the off-diagonal elements are not dispensable degrees ddbrinegs in the collinear case.
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Rather, they are needed for an appropriate description of non-collm@gnetotransport. However,
the macroscopic observables are obtained by tracing out Pauli spie. Sfiae transformatioﬁf,g(f‘)
solely acts on the spin subspace and the charge quantities are thus mavefiesht with respect to
unitary transformations in Pauli spin space. Hence, the rel@fg()ﬁ = fg(F) + f%(?) always holds
for the charge distribution.

The macroscopic observables are given in terms of the ensemble avefalje distribution matrix.
The expectation value with respect to momentum considers the many-bodg oateansport. The
charge density.(7) and the local magnetization of the conduction electr@i{s)) are related to the
zeroth moments of the distribution matrix

)= [ aX Ty 52)
n(r) = —e (271')3 w\") :
6 = -1 [ ST ye 5.3
a\r - ,U/B (27T)3 k r O’? -
while the chargg () and the spin current(7) are given in terms of the first moments
—_ ek s
J(r) = —e/ WUETr Tz (7), (5.4)
J(7) =~ /d%*@ﬂﬁ(*)* (5.5)
)= —uB (277)3vk w(r)o. .

The spin current in Eqg. (5.5) is a tensorial quantity constructed by artpnsduct between the spatial
flow direction and the direction in magnetization space. The spatial diveggefnthe spin current
tensor yields a vector in magnetization space.

The distribution matri>gfl—€»(F) can be represented in Pauli spin space according to

£ (= 1 — T (= Z (=
f) = 5 (PO + FEPow + FLF)oy + Fi()o)
RS GRS GGG
2\FE@) +ifl®) 2 - F2()
The separation of Pauli spin space into the charge subspdcand the traceless spin subspacé

becomes directly evident from Eq. (5.6). The transition fifrto the SU(2) spin subspace is carried
out by expanding a vectot = (Az, Ay, A,)T € R? in terms of the Pauli matrices (cf. appendix A.1)

(5.6)

(5.7)

. AZ Am_A
A.g;ZAiai:A;pUerAy%JFAZUZ:(A +iA AZ y>'
i T Yy z

The inverse mapping from Pauli spin space, the sum of the chargeamgbapd theSU(2) spin
subspace, t&* is achieved by taking the trace with the corresponding Pauli matrix

FEF) =Tt fe(Pow, =029,z (5.8)

where we employed the notatiey = 1. The transformations betwedt and Pauli spin space are
unique as the directives (5.7) and (5.8) constitute bilinear maps.
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In the decomposition (5.6) the distributig”rg(ﬁ is the charge distribution function that counts the
number of conduction electrons and accordingl%(?)d?’rd?’k is the number of electrons in the
semiclassical phase-space eleméhtd®k about the point(7, E). The vectorial distribution func-
tion f%(v?) = (fg(F), f%(?), fg(f‘))T is the macroscopic spin distribution function or the distribution
function of the magnetization of the conduction electrons ﬁé(d‘)d%d% is the expectation value
for the spin in the spatial direction= x, y, z in the semiclassical phase-space eleniénit*k about
the point(7, E). In view of the statistical interpretation by means of Eq. (5.2), the distributidgheo
charge carrier$§(?) must be positive and finite. To secure a positive definite charge sudshadli-
agonal entries, i.e., the spin up and spin down distributions, must be p@ta'fimﬁef%(?), fé(?) > 0.

In contrast, the spin distributiorf%(?) are real.

Let us now focus on the distribution matrix itself. Analogously to the density maftg(xf) must be
Hermitian. Its norm is the charge distribution fl,';(?) = fg(F). The most general ansatz for the
Hermitian distribution function reads

e (L
fel?) = (f ) (fku(;?) ) . (5.9)

N R NUR R ()
=5 i@ =@ | = -SEm (5.10)
) = fi () S ) = ()

The spin accumulation in Eq. (5.10) is obviously real, as required. A cdsgmaof Eqg. (5.9)
and (5.10) illustrates that the complex off-diagonal entry of the trans\spim-distribution function
kIl(F) constitutes the transverse parts of the macroscopic spin distribution, thecspimulation.

In the next section we will generalize the kinetic equation for general ntiagtien textures. This
concerns the derivation of the deterministic flow part for the distribution mﬁgﬂi) and a general-
ization of the collision integral[f;:(7)]. Throughout this thesis, we want to pursue a phenomenolog-
ical parametrization of the collision integral in terms of relaxation times. In génére relaxation
times can exhibit a non-trivial spin structure and do not have to commute withigtréoution matrix
[fz(7), Z[f=(M)]] # 0. As we are dealing with spin-dependent particles, we focus on two eliffer
types of spin-dependent scattering at magnetic impurities: Spin-congessattering that preserves
the spin but relaxes the momentum to the lattice and spin-flip scattering that flipgithel he spin-

flip scattering events are, e.g., due to spin-orbit interactions with magneticitrapiand conserve
the momentum.
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5.1. Derivation of the kinetic equation for general magnetization textures

5.1 Derivation of the kinetic equation for general magnetization tex-
tures

This section sketches the derivation of the deterministic flow part of the kiegtiation for general,
non-collinear magnetization textures. A rigorous definition of the distributimetfon follows from
the one-particle density matrﬁ(ﬁ, 9, t) that is defined as follows [114, 117]

p(F1, o, t) = (UT (7, )T (71, 1)) = Tr pWT (7, £) U (71, 1), (5.11)

wherep is the full density matrix of the system and (7, ), ¥(7, t) are the creation and annihilation
operators in the Heisenberg picture of second quantization. The otielgpdensity matrix can be
expressed in relative’ = | — 7% and center of mas$= (7 + 7)/2 coordinates

—/ —/
A T

2., o 2,5, T PPN
p(rl,rg,t):p(r+§,r—5,t):p(r,r’,t). (5.12)
The spin is entirely a quantum mechanical concept that does not p@sskssical analogue. The
starting point for a derivation of a generalized kinetic equation that gewetrarge and spin transport
must thus be an equation that governs quantum mechanical dynamics. Theviahagon of the

one-particle density matrig obeys the quantum Liouville or the von Neumann equation [114]

ap(t
mgi) = [H, p(t)]. (5.13)
The total time derivative of the density matrix is always equal to zero, thisctsfthe conservation of

probability.

The aim of this section is to derive an equation of motion for a semiclassidalggmeof the quantum-
mechanical density matrix, called the Wigner distribution, that reduces to te&dequation in the
classical limit. [114] The resulting equation is a kinetic equation that will seovehie description
of non-collinear magnetotransport. To attain a kinetic equation we perfoiigaer transform by
separating the spatial and momentum degrees of freedom into slowly vasiingr of mass coordi-
nates” and fast varying relative coordinat&& The fast varying relative coordinat&sthat oscillate
with the Fermi wavelength are integrated out by performing a Fourier temsivith respect to”’'.
This leaves a dependence on the slowly varying center of mass coosdireate as a result of the
Fourier transform on the momentum [117, 170] The new coordinate*‘sﬁ allow for an expansion
of gquantum mechanical commutators in Poisson brackets that operate sicatlghase space (cf.
appendix B for details of the transformation). [170] As the Wigner tramsfacts only on the spatial
and momentum operators, this method keeps the spin explicitly quantum medligarticam this
starting point the collision integral that is responsible for the irreversibility énkiimetic equation is
purely phenomenological (cf. section 5.1.3).

The connection of the density matrix a quantum mechanical operator on Hilbert space, with the
Wigner distribution, a smooth function on classical phase space, is pdobvydine Wigner transform.
In the semiclassical limit the Wigner function reduces to the distribution funatiotihé kinetic equa-
tion p WL, f,;(f”). According to the general definition of the Wigner transform given in(Bdl) the
distribution matrix is defined as

A PO A LA
fic»(r):/d?’r’p(r—{—Z,T—2)6””. (5.14)
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Chapter 5. Non-collinear magnetotransport

The starting point for a derivation of a generalized kinetic equation is a sdopic Hamiltonian. We
consider asd-Hamiltonian (cf. section 2.1) for non-interacting conduction electronsateatoupled
to the spatially varying ferromagnetic order paramet¢r, ¢) in the mean field approximation

n? -
H = |5 Vi+ eVeulF 1) | 1+ Jo? - (). (5.15)

Vext(7, t) is the electric potential that gives rise to an external electric field/aggis the sd exchange
integral that equals half the exchange splitting. The Hamiltoniar2ig & matrix in Pauli spin space,
the space of the Hermitighx 2 matrices. The Hamiltonian (5.15) decomposes in three parts

H = Hy + Hy + Hgy. (5.16)

The sd exchange interaction pafsq of the Hamiltonian (5.15) can always be locally diagonalized
by an unitary rotation in spin spaqfé(f‘) (cf. Eq. (A.9)). The rotatiorf](F) corresponds to a gauge
transformation in spin spatéhat aligns the quantization axis with the local moments. The spatial de-
pendence it/ (7) is entirely determined through the magnetization patt&ttr( — U (17:(7))). The
difference between a collinear and a non-collinear magnetization texturatimttihe collinear case
the rotationl/ does not depend on position and commutes with the total Hamiltonian (5.15)-Ther
fore UHU' diagonalizes the full Hamiltonian (5.15). In the non-collinear case the rotétiai())
depends on position due to the spatially varying magnetizaitigr) and therefore does not commute
with the kinetic termHj in the total Hamiltonian (5.16). As a consequence the Hamiltonian (5.15)
is not diagonalized and spin-dependent gauge potentials appear inrts®itnaed Hamiltonian as a
consequence of the gauge transformation. [171] In an inhomogef@onmagnetic order parameter
the gauge transformatidii(s72(7)) maps the spins of the conduction electrons to conduction electrons
spins in an uniform ferromagnet that are additionally interacting with spirewi@ent gauge fields (cf.
section 5.5.4 for further discussions).

5.1.1 Wigner transform and gradient expansion

In this section, we perform the Wigner transformation individually on allehiegms of the Hamilto-
nian (5.16) to derive the deterministic flow part of a generalized kinetictegqudf we assume that the
density matrix and transport fields vary slowly in space with respect to ttrei Reavelength, we can
perform a gradient expansion to obtain the semiclassical equation of motitrefdistribution func-
tion that is the kinetic equation. In inhomogeneous magnetization texture the mastamtpnterac-
tion is thesd interaction that can be quite strong in ferromagngtger ~ O(0.01 — 1). The strong
exchange interaction between the local moments causes numerous lodadige to be coupled
within a length scale\ forming the macroscopic magnetization textuti¢r, t). The typical length
scale) of the magnetization as well as the electric transport field vary spatially slapared with
the Fermi wavelength that sets the length scale for the conduction elekgrbnaccordingly, a semi-
classical treatment of the conduction electrons is well justified as long asnidé@ion holdskg\ > 1
(cf. section 2.4). The situation is different as it concerns the spin ofdhduction electron. Here, the

The gauge transformation as defined in Eq. (A.9) corresponds to-almaianSU (2) gauge transformation that intro-
duces in general three independent gauge fields (cf. commentséndip@).
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5.1. Derivation of the kinetic equation for general magnetization textures

relevant length scale is determined by the precession length of the spirsaufritiuction electrons

T hvg

= = (5.17)
[k — kgl s

Asd .

In other communities\gq is also called the ferromagnetic coherence or transverse spin-deghasin
length. [172—174] The precession length in Eq. (5.17) can be of ther agithe length scale of the
magnetization, for instance the width of a narrow domain walt A\sq > k;l (cf. discussion in
section 5.5). This demonstrates the need to consider the full quantunenoberoncerning the spin
degree of freedom. A spin state that is not collinear to the magnetization ismajoaity, minority
eigenstate of the ferromagnet that are associated with different Fenraiweatorsk ., k}m Instead,
a Bloch state with arbitrary spin direction is composed of a coherent lin@albioation of majority,
minority spin states. The linear coefficients of the majority and minority spins dscifatially as a
function of position, which is equivalent to a precession around the fooatents. When injecting a
spin current that is composed of many majority and minority states with diffeentor frequencies
with polarization non-collinear to the homogeneous ferromagnet they irgedifestructively inside
the homogeneous ferromagnet. As the macroscopic spin current is detdriirall wave vectors
at the Fermi energy, where each corresponds to a different gieodsngth (5.17), this results in an
efficient relaxation of the non-diagonal terms in the density matrix that aceceded with transverse
spins. The macroscopic spin current is given by the integral over thmiBerface and the strongly
oscillating integrand cancels out due to destructive interference chysibe sd exchange splitting
except for the vicinity of the injection interface. Typically the transversammnent of the incident
spin currents are absorbed within the very short length skgle[173, 175] In turn the absorbed
angular momentum is transferred to the ferromagnet and acts as a sgifeittanque on the homo-
geneous domain. This is the microscopic picture oflihekkeepingheory of spin-transfer torque
(cf. discussion in section 2.3). In contrast, in normal metals the just mentiey@thsing mecha-
nism of transverse spins is absent. Here, the spin part of the waviiolusmcemain coherent on the
length scale of the spin-diffusion length that is associated with weak spisetipering and can be of
O(um). [174]
However, to properly take into account the influence of the spin dedreeaslom of the conduction
electrons onto transport, the above stated arguments outline the need thdrggin in a full quan-
tum mechanical manner while we pursue a gradient expansion for the apdecnomentum variables.
This approach treats the motion of the distribution matrix in phase space semallgsghile it keeps
the spin degree of freedom fully quantum mechanically. Consequentlgpthevariables, | remain
discrete quantum mechanical variables and2the2 matrix structure of the Hamiltonian (5.15) and
the density matrix (5.13) directly translates to the distribution mfﬁﬂf’).
To perform a gradient expansion, we must establish a connection beawfak quantum mechanical
operatorO (7, ) on Hilbert-space and a smooth function on classical phase @(até). A con-
nection is provided by the Weyl-Wigner transformation as defined in Eq).(A.20] As demonstrated
in appendix B, the Wigner transform of a product of two operatbend B leads to an expansion in
phase space [170]

1

AB Y5 A BB E) + o (VAF Y

= B(7,F) = ViAF B)VB(7.F)) + ... (5.18)
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Chapter 5. Non-collinear magnetotransport

A(T, E), B(T, E) are the Wigner transforms of the operatetsand B that are defined according to
Eqg. (B.1). Ther.h.s. of Eq. (5.18) constitutes a gradient expansiotaesical phase space up to first
order in the phase-space gradients. According to Eq. (5.18), a commistaansformed as

(A, B] M5 (AR &
— [A(F,F), B(7, F)] —i{A(F,E),B(*, k:)} 4, (5.19)

where the first term in the expansion 5.19 constitutes the commutator of twiiofusion phase space
and we introduced the classical Poisson bracket

{A(: %), B(7, k)} = VRAR BV B(F R) — VAR F)VEB(RE).  (5.20)

Usually, the ordinary commutator of two Wigner transforms as it appearseonhts. of Eq. (5.19)
is identical zero, as functions on phase space commute. Due to the spiarstrafcthe distribution
matrix, we cannot simply discard the zeroth-order terms of the gradiemaineign (5.19). Aiming
at the linear response of the system to an external electric field we didrbiggner terms in the
gradient expansion (5.18). Expressions indicated by dots in Eq. (&d®9ly produce higher order
terms in the electric field. Equipped with the identification Eq. (5.14) and thetnbieenf the Wigner
expansion (5.19), we are now able to perform the gradient exparwidmef Hamiltonian (5.16).

As discussed above the dynamic of the conduction electrons takes placecbnfaster time-scales
compared with the slow collective magnetization dynamics. [156] To capturesgsential influence
of magnetotransport on a mesoscopic time scale that determines the dynarttiesrfoicromagnetic
model, it is sufficient to consider magnetotransport in the steady state.rdhegly, in this thesis
we are interested in stationary magnetotransport, i.e., we assume time-indepesmasport fields
(7, t) — m(7, o) := m(F), E(F,t) — E(F,t9) := E(F), H — 1. Thus we consider Eq. (5.13)
in the steady state

[H 5% = 0. (5.21)

We now perform the gradient expansion of Eq. (5.21) for the individags of the Hamiltonian (5.16)

2 2
~1 W.T, % P = TN £ = 7
[Ho, 7] = 5~ [—K°1, ()] —ZT(VF(—/?Z) Vifg(®) = V(=K Ve fi(F)
=0 =0
ih? - = . e 2 P o
= —Hk} . VFfE(r) = —ih P V,—s E(T), (522)

= ieE(7) - Vi fz(F), (5.23)
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5.1. Derivation of the kinetic equation for general magnetization textures

2

7]
= iJsa Y €ijpfL(F)m! (F)og — iJsaV (& - (7)) Vi f(7)
4,5,k

= s (F(F) % (7)) = i sV o(& - 17(7) Vi f (7). (5.24)

In Eq. (5.22) we employ; = hk/m and that the Wigner transform &2 is equal to—k? due to
the Fourier transform contained in the Wigner transform. In the uppelitasof Eq. (5.24) the re-
lation (A.2) comes into operation. Note that expression (5.24) holds fargegpins, as we employ
the fundamental commutation relations for spins, not just properties of &pjpatticles.

According to Eg. (5.13), the collection of the individual terms (5.22) - (b&hstitutes the general-
ized flow part of the kinetic equation in the steady st&gﬂ;(?} =0)

0=—— [ — ihT - N fo(F) +ieB(F) - Vo fo(7) + iJsdd (f};»(f‘) X Tﬁ(f’))

= B Vgl — CE ) - Vfelr) — 220 (59 x () + 2595 - (79) P )
=i Fef0) - 25 (700 () - (FEG) - 2946 7)) Fefelr). - (625)

The r.h.s. of Eq. (5.25) is the generalized flow part of the kinetic equatatrstrves for a semiclas-
sical description of non-collinear magnetotransport.

5.1.2 Physical interpretation of the individual terms of the flow part of the generalized
kinetic equation and an introduction to transport regimes

Compared with the flow part of the Boltzmann equation (2.25) that constitutdsribtic equation
for electron transport in non-magnetic materials, the deterministic flow p#reafeneralized kinetic
equation (5.25) exhibits two extra terms in addition to the diffusion and the dmift te

Jed

R JSd R €= —»)
2h

0 Velfg(7) +15500 (@), fy(7)] = 3 E() - Vifp(7) + SAV A i), Vifp(7)}. (5.26)
In the last term of Eq. (5.26) we employ the anticommutator. Due to the property ¢f the Pauli
matrices, the last term in Eq. (5.25) contains an unphysical imaginary plaig.iriconvenience can
be removed by taking the real part of Eqg. (5.25). According to relatioB)(#is is equivalent to
the anticommutator notation. The anticommutator provides a symmetrization of thecpaidwo

observables and presents the common way to quantize classical expsegki6)]
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Chapter 5. Non-collinear magnetotransport

The physical meaning of the drift and diffusion term in Eq. (5.26) hasdiréeen discussed in sec-
tion 2.4.2.1. Additionally, two new terms that are proportional to the magnetizatiour in Eq. (5.26)

due to the interaction of the conduction electron spin with the local moments. stéeyfrom the
commutator of thed-Hamiltonian with the density matrix and express the impact of the non-collinear
magnetization texture on transport.

The second term in Eq. (5.26) is a reformulation of the second term in E2p)(&nd describes a
precession of the spin-dependent part of the distribution functiomdrthe local magnetization. The
Larmor frequency of the precession is determined bythexchange interaction

wsd = 1/7sd = Jsd/h. (5.27)

The fourth term in Eq. (5.26) is proportional to the gradient of the magnigtizaMathematically this
term exhibits the same structure as the drift term proportional to the electdc Tibus, the fourth
term of Eq. (5.26) constitutes an additional drift term for the distributiorction that drives charge
and spin distributions in the presence of a non-collinear magnetization teAtmen-collinear mag-
netization texture acts as an effective transport field on the distribution matrix

Let us expand Eq. (5.26) in terms proportionalltand & to clarify the physical meaning of the
two new terms. The expansion results in two separate equations for tigedﬂributionfg(?) and

the spin distributiory; ()

e Vet — SE) - Vs + 22 (Vi) - (Vo) = 0, (5.28)
o Vefii) = 22 (Joli) % i) — SEG) - Fefeti) + 22 (Vo)) - (Vs = 0.

The short hand notation that we employ in Egns. (5.28) and (5.29) andjtioat the rest of this thesis
implies implicitly the following vector structure(ﬁ,:vﬁ(?)) : (ﬁ,;f%(v?)) =3, ; Vim? (7F) VL fL(7).
Corresponding vector structures apply to similar terms. The charge dﬁzirilggﬁc?(q?) couples to the
spin-distribution distributiorﬁ»(F) due to the non-vanishing magnetization gradient (cf. Eq. (5.28)),
while the spin distribution in addition precesses around the local magnetizatidaq (5.29)). The
last terms in Egns. (5.28) and (5.29) vanish in collinear magnetization texthieze charge and spin
degree of freedom decouple in contrast to non-collinear magnetizatiaumesx

In general, there are four independent length scales present in totignsport. With respect to
mesoscopic magnetization textures as considered in this thesis the lengthresadlesdered in as-
cending sequence: the Fermi wavelength, dligorecession length or the mean free path and the
characteristic length of the structure that is the geometric length (for instlaac®main-wall width).
The coupling of charge and spin transport as it results from Eqns8)(&ritd (5.29) introduces the
possibility of new intermediate transport regimes that are absent in nonetimgnd collinear trans-
port. Usually, there are two limiting regimes in transport. In ballistic systems the freapath of
the electron exceeds the system size and the transport propertieteanaiaed entirely by the geom-
etry. In this case scattering processes are negligible concerning igtames of the specimen and the
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5.1. Derivation of the kinetic equation for general magnetization textures

deterministic flow part of the kinetic equation governs the physics. In difiisy/stems the mean free
path is shorter than the system size, the geometry becomes negligible andhépeitrés dominated
by impurity scattering comprised within the collision integral of the kinetic equation.

A new length scale emerges for spin transport from Eq. (5.29) due torésemqce of the two new
terms: the precession length of the spin around the local magnetization withetheehcy set by
the sd interaction defined in Eq. (5.27). According to Eq. (5.26) the precessidetermined by
the deterministic flow part. The mean free path is set by the relaxation times dpimtdependent
impurity scatteringr®, s =7, | that characterize the time between two adjacent scattering events for
the two spin species. If the predominant time-scale for transport is givehebcoherence time or
Larmor precessionsg, we will refer to this transport regime dmallistic spin transport More pre-
cisely7sg/T° < 1 applies to strong ferromagnets and designates the regime of ballistic spipomans
where the spin has enough time to precess around the local magnetizatieetgradual collisions.
Tsg/T° > 1 distinguishes the diffusive spin transport regime of relatively dirty systeHesre the
precession of the transverse magnetization is damped out due to relaXaticontrast, the charge
transport is entirely diffusive for the mesoscopic structures that auickgssical transport formal-
ism aims at. In this connection, the interesting possibility of an intermediate tndmegome arises:
ballistic spin transportwhere the charge transport is diffusive while the spin transport is tialis
the same time. Section 5.5 demonstrates that the regime of ballistic spin trandpistfescinating
physical consequences for narrow domain walls.

Besides the common discrimination between diffusive and ballistic transporgaiinear magneto-
transport gives rise to two different transport regimes in discriminatigdh@fmagnetization texture
itself. In the regime okdiabatic magnetotransport the magnetization varies slowly in space, such
that the conduction electron spin precesses with small angle around thenlagaetization. The
spin of the conduction electron resides in its majority or minority spin state duragyakersal of
the magnetization texture. The conduction electron spin can follow the localetiagtion and no
scattering with the magnetization texture takes place. As a result, the adiahagjootrtacoefficients
do not depend on the details of the magnetization texture. Indheadiabatictransport regime, the
magnetization varies strongly and the conduction electron spin cannot ftiilwocal magnetiza-
tion. During the traversal of spatially strongly inhomogeneous magnetizatitureés, the spin of the
conduction electron resides in a coherent superposition of majority anditpistates. In this case
spin-mistracking occurs due to the mixing of spin channels. The transpeificients attain an ex-
plicit dependence on the characteristics of the magnetization texture. Whftcugin sections 5.4
entirely on adiabatic magnetotransport, the explicit solution of the kinetic equiatidghe case of a
domain wall in section 5.5 grants an insight in the non-adiabatic regime, whehargeresting phe-
nomena as domain-wall resistivity and momentum transfer emerge due to the ofigipig channels
caused by the enhanced spatial variations of the magnetization texture.

In the case oadiabatictransport we expect to attain global transport coefficients. In thisesémns
conduction coefficients are global as they do not depend on positiotihe Inon-adiabatic case the
transport coefficients depend on the characteristics of the magnetizatioretand are therefore local.

At this point of the derivation, it is inevitable to check, whether the generalfiow part as given
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Chapter 5. Non-collinear magnetotransport

in Eq. (5.26) reduces to the two-current model in collinear magnetizationrésxtin homogeneous
ferromagnets the precession of non-equilibrium spins insthexchange field of the homogeneous
magnetizationn results in an effective relaxation of the transverse magnetization of thducbaon
electrons on the scale of the precession length (5.17). [174] Congggqulee spin part of the distri-
bution matrix is aligned with the constant magnetization

Fol) = 5 [£ 1 4 1P (5 - )] (5.30

In collinear magnetization textures, we can adjust the quantization axis withdhlenh@agnetization
by a global unitary rotatiod’ such that/ (& - m (7)) Ut = .. If we apply the rotation to Eq. (5.26)
and insert Eq. (5.30), the commutator vanishes and the last part is zeto ¥ig(a - (7)) = 0.
Accordingly, we obtain the flow part of the two-current model for collmeegnetization patterns
(cf. section 5.2)

(- ﬁﬁ)f]gollinear(f‘) _ %E(F} ) 6Eflgollinear(7—,o). (5.31)

with the diagonal distribution matrix that contains the majority, minority spin distribation

@) 0
0 fi(

Note that off-diagonal terms in the distribution matrix correspond in the collicase to additional

gauge degrees of freedom that must be only taken into account, whdsiniog two homogeneous
non-collinear ferromagnets, for instance within a spin valve, but anendaht in a homogeneous
ferromagnet. [174]

J?’gollinear(F) _ % [fksharg(l(ml + fgpin(?;»)az} _ ( 7:‘)) = U AE(F)UT. (5.32)

5.1.3 Generalized collision integral in the relaxation-tme approximation

The collision term bears a particular meaning in a kinetic description of tranapadt governs the
physics (cf. section 2.4). In the previous section, we generalized thvepfiot of the kinetic equa-
tion for non-collinear magnetization textures. The collision inte@'vfgfj;(?)] constitutes the r.h.s. of
the kinetic equation (cf. section 2.4) and requires a generalization to Rémlsgace. In general,
the collision integral exhibits a non-trivial spin structure, such fifigt”), Z[f:(7)]] # 0, where the
details depend on the specific microscopic model. The derivation of its dotumalis subject to a
microscopic theory, for instance a Keldysh approach and is beyondalpe sf this thesis.

Instead of introducing a multitude of phenomenological relaxation times at tlig, pee refer to
the comments in section 5.3.3 and restrict ourself throughout this thesis t@hteglesverse spin
relaxation and consider longitudinal spin relaxation only. Then, the collisiyral is composed
of a part due to momentum relaxation and due to spin #iffs(7)] = Zme[ /(7)) + Zsi[ f(7)]. We
limit ourselves to the simplest non-trivial form by parameterizing the collisiorgmaten terms of
three independent relaxation times: the momentum relaxation tifp@gheres = {7, |} denotes the
relaxation of majority and minority charge carriers and a single scalar spirefaxation timerg;.
Keeping the quantization axis parallel to the local magnetization allows us teaedpkacollision inte-
gral by a momentum relaxation-time matrix-approximation in spatially varying magtietiztextures

Toel f(7)] = *%{f_l(F)v (f5(7) = fedri(7), €))}- (5.33)
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5.1. Derivation of the kinetic equation for general magnetization textures

Note, however, that we account for a coherent spin rotation acagyditi—!(+) is the momentum
relaxation-time matrix that preserves the spin in homogeneous ferromaDueto the inherent spin
structure, a symmetrization of the product of the relaxation-time matrix and ttrddigon matrix is
required in Eq. (5.33). This avoids unphysical imaginary parts (cf.udision in section 5.1.2). With
this generalization the influence of the magnetization texture on the solution kingiec equation
is twofold: first the magnetization appears directly in the flow part of the kimgfimtion and second
the magnetization determines the collision integral.

In addition, we introduce a scalar spin-flip relaxation timg where it is assumed that no spin di-
rection is preferred, i.e., the transition probability is the same from up to dodrvige versa. We
consider the spin-flip to be an elastic process, which does not transfieentom. The generalization
of the spin-flip part of the collision integral reads

Tl fo(7)] = ——E , (5.34)

with the abbreviation [177]

(5.35)

| =

() = ﬂﬁ@)-

FTr f(7)5 = (f,;(?) —1—

The expression for the spin-flip in Eq. (5.35) is a projection onSh&2) spin subspace. In sec-
tion 5.2, we show that the generalized collision integral given by (5.33)(ar3d) reduces to the
collision term of the two-current model in collinear magnetization patterns.atticolar, it will be
discussed in section 5.2.2 that Eq. (5.35) constitutes an appropriatssppréor the spin flip.

5.1.3.1 Inverse momentum relaxation-time matrix

As discussed in the last chapter we must generalize the spin-conseslamgtion times-', 7! that
are well defined in collinear magnetization patterns to non-collinear magnetizattterns. This can
be achieved with the help of the unitary rotation (A.9). Keeping the quantizakinparallel to the
local magnetization results for spatially varying magnetization textures in a momemtaxation-
time matrix

A

Equation (5.36) generalizes the two-current model [34] for generghetization texturesﬁ(m(f’))

is the unitary rotation matrix as defined in Eq. (A.9). The spin-conservitaxaton-time ma-
trix (5.36) is diagonal in the reference frame of the magnetization and therehly takes longi-
tudinal spin relaxation into account. An occupation of off-diagonal elésignthe local reference
frame of the magnetization would correspond to the introduction of traresggia relaxation. With
the magnetization angles ¢, as defined in Eqns. (A.7) and (A.8) the general result for Eq. (5.36)
reads

(5.37)

. % (TT +7b 4+ (7T = 71) cos 9) %eiw(TT —7!)sing
T = , '
set(rl —rhsing 3 (el (=) cosd)
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The next step is to invert the magnetization dependent spin-consentma@tien-time matrix in
Eq. (5.37)

1 T+ 7+ (7t —7T) cosd e @ (rt —71)sin6
T = —— ) ) . (5.38)
2717l e (rt —71)sin 6 T+t (7T = 7H) cos 6
It is useful to decompose Eq. (5.38) into components
7=+ g C? (5.39)
with
1.1 1
o-1_ ~,+ 1
(T ) - 2(7_T + TL)’ (540)
(r%)~ = 1(i - i)sin&cowb (5.41)
271 7l ’ '
g1 111
(1Y) = =(— — —)sinfsin ¢, (5.42)
2° 71 7l
1.1 1
-1 _ -~ =
(%) 2(7—T 7_l)cos 6. (5.43)

Note from Eqgns. (5.40) to (5.43) that an inhomogeneous magnetizationrpsdiefy influences the
spin-dependent part of the relaxation-time matrix while the charge(p@rt! in Eq. (5.40) remains
unaffected. Thus, the magnetization pattern leaves the total relaxation tinleef@ectrons un-
changed, but alters only the relaxation times of the different componerite afpin distributions.
Equations (5.40) to (5.43) explicitly refer to the magnetization in sphericabiouates. Alternatively,
the spin-conserving relaxation time can be written in terms of the local magnatizatio

F1 () = = [(1 + 1) 1+ (1 - 1) (7 ﬁz(ﬁ)]

(7o' + 7 (G ()] (5.44)

The inverse momentum relaxation-time matrix (5.44) generalizes the momentuerdogselax-
ation timesr!, 7! to arbitrary non-collinear magnetization textures. We note that off-diddgermas
in the relaxation-time matrix (5.44) originate from the spatially varying magnetizafidanture mi-
croscopic calculation of the collision integral is necessary to shed lighhappropriate form and
to consider transverse relaxation. We just note here that the generabmtalls us that transverse
relaxation times are associated with gradient corrections, becausatides\wf the magnetization are
perpendicular to the magnetization itself.
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5.1. Derivation of the kinetic equation for general magnetization textures

5.1.4 Generalized equilibrium kinetic equation

In the previous section we derived the generalized kinetic equation &gerand spin transport in
continuous non-collinear magnetization textdres

A~

BV fo() 4 2@, o) — LBV
+ 220G o (), Vo) = L) (5.45)

fE(F) is the spin-dependent matrix distribution function that contains the changibdi®on function
and the three spin distributions. In equilibrium the collision inte@r{gf};(?)] and the electric field?
vanish and Eq. (5.45) reduces to the equilibrium kinetic equation

Jsd

TV feq(1Ti(7), €) +¢%[5m(f), Feq((7), €)] + {v +(G1(F)), Vi feq(Ti(7), €)} = 0. (5.46)

In the following sections the calculation of transport properties shall Henpeed in linear response to

an external electric field by considering small deviations from the equilibridemce, for expansions
around the equilibrium the first task is to determine the equilibrium solution frqn{ge46). For this
purpose, we will distinguish two different cases: first a homogeneogs@tization pattern with no
spatial varlatlonsWr(am( )) = 0) in section 5.2 and secondly general non-collinear magnetization
patterns ¥ (&i(7)) # 0) in section 5.4.

2Throughout the rest of this thesis we employ an implicit notation for scatayzts for the sake of simplicity of
notation.
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Chapter 5. Non-collinear magnetotransport

5.2 Collinear magnetotransport — the two-current model

In the previous section we derived a generalized kinetic equation to extaegdetotransport to non-
collinear magnetization textures. In order to understand the implications oftierajized kinetic
equation (5.45) for non-collinear magnetotransport as it will be disduissthe following sections,
it is instructive to first review collinear magnetotransport. This familiarizewitis spin-dependent
concepts and facilitates the comprehension of non-collinear transpod.fdmomagnetic material
most scattering events conserve the spin direction of the incident eleatrtaraperatures low com-
pared with the Curie temperature. Relying on the proposal by Mott [178] that dates back to
1936, majority and minority electrons can be treated independently as if thrgyccarents in paral-
lel. Mott proposed that scattering frogto d bands dominates the transport in transition metals and
as a consequence of the spin-splitting of drstates, he addressed thescattering to cause different
mean free paths or relaxation times () for the majority (minority) charge carriers. [34, 180] The
essence of the two-current model is to recognize that majority and minoirity spntribute unequally
to the electron transport because of two reasons: first the densityted sfamajority, minority spins
at the Fermi level is usually different, and secondly, the mobility is usuallewmdifft for the majority
(minority) charge carriers due to different relaxation timés# +. The different density of states
at the Fermi level is in ferromagnets due to a lifted degeneracy by means et¢hange interaction.
Different relaxation times are either due to different scattering rates frityaminority carriers as
a consequence of asymmetric spin-dependent impurity scattering or ardi@tt consequence of
the different density of states. As it follows froRermi’s golden rulethe relaxation times depend
on the transition matrix elements as well as on the density of states (cf. EQq) {{2.82ction 2.4)
and the dominating contribution depends on the material and the kind of imputitie®nclusion,
the consequence of this view are different conductivities due to différ@nd structures for majority
and minority charge carriers. [181] The treatment of majority and minoritytrelles in individual
channels is referred to as ttveo-current model[34, 169, 180] The individual channels communicate
by spin-flip processes. The distribution functi¢£1(F) obtains a spin index = {7, |} that labels
the two possible spin directions and obeys a spin-generalized versioa Bbttzmann equation for
non-magnetic metals (2.42)

GVef3(7) = 3 BV f() = ZIf). (5.47)

A coupling of the two spin channels in Eq. (5.47) is considered within the cMIisitmgraII[f]:j.(F)]
via spin-flip processes at magnetic impurities.

5.2.1 Equilibrium solution

In a homogeneous or monodomain ferromagnet the magnetization always @loing a distinct di-
rection. We will choose this axis as spin quantization axis

m = &y, = const.. (5.48)

In equilibrium, the electric fieldZ () and the collision integraI[fg(F)] vanish. In the case of a
constant magnetization, the equilibrium kinetic equation (5.46) reduces to
. Jsd

i~ el =0, (5.49)

€q
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5.2. Collinear magnetotransport — the two-current model

and constitutes a contraint on the equilibrium distributf@&’i'(e) in collinear magnetization textures.
Condition (5.49) requires the equilibrium distribution to be diagonal in spinespa

fcoll( ) % [fcharge(G’ Jsd>1 + fspin(€7 Jsd)Uz] 7 (5.50)

where we introduced a charg&€'@99, .Jsq) and a spinfSP"(e, Jsg) distribution function that remains
to be determined. On the other hand, the underlying Hamiltonian (5.15) is radialgpindependent.
Its energy spectrum can be directly obtained by a diagonalization anditexailgpin-splitting in
majority and minority electrons with two energy levels that are separated bghkadkchange energy
splitting Jsg

- h2k2

H= 2m
The collision integral vanishes in equilibrium and forces the distributioneaf fnajority and minority
electrons to be spin-resolved Fermi-Dirac distributions

+ Jsqo, = € + Jsq0 5. (5.51)

1

Y O R —
f(E, Jsd) Bl Jsg—1) +1

, (5.52)

with electrochemical potentiad.
Alternatively, the solution to Eq. (5.49) can also be directly obtained fromatisatz of a matrix-
valued Fermi-Dirac distribution

F&M(e) = [exp(B(el + Jsgoz — p)) + 1] !
exp(f 6+Jsd— @)+ 171 0 )

( [exp(B(e — Jsg— ) + 1]
f (e, +Jsd 0
6 —Jsd)
1
5
1

(6, +Jsd) + f(e, —Jsd)) 1 + (f(€, +Jsa) — f(€, —Jsd)) 0]

[fch"’“g%e Jsd) 1+ [P (e, Jsa)o-] - (5.53)

The equilibrium solution Eq. (5.53) is the equilibrium solution of the two-currandel with the
following definition of the minority and majority electron distributions

1

fl(e) = B Ts ) 1 1 =f(€, +Jsd), (5.54)
1
fte) = e f(e, —Jsd). (5.55)

5.2.2 Non-equilibrium solution

In the non-equilibrium caseF{( # 0, I[fg(?)] # 0), in linear response to an electric field, the
spin-generalized version of the Boltzmann equation reads for the twentunodel [182]

gD g - g0

T8 27gt

(5.56)
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that determines the non-equilibrium distributigE(F) = fg(F) — féq(€)- Equation (5.56) is de-
rived by inserting the equilibrium solution (5.53) in the Boltzmann equation {=Ad linearizing it
with respect to the electric field. We choose the simplest non-trivial angathé relaxation times
by parameterizing the collisions in terms of twpinconserving relaxation times’ that character-
ize at finite temperature the relaxationmbmentumo the lattice within each spin channel and one
single,momentuneonserving spin-flip relaxation time; that couples the two spin channels (cf. sec-
tion 2.4.2.1 for a discussion of the scattering processes in non-magnetic)matédsy temperatures,
75 depends on the spin-dependent impurity potential and the spin-depeatetesity of states (cf.
Eqg. (2.32)). [183] Note that the spin-flip scattering balances the spinbdisans of both channels
in a rate equation: a loss in thechannel is compensated by a gain in thechannel. Thus, spin-
flip processes transfer momentum between both channels. Spin-flip evenésg., due to spin-orbit
coupling at magnetic impurities or the interaction with magnons. Electron-magattersng partly
conserves the momentum of the electrdh: — & + q. Here, k is the momentum of the incident
electron/:’ is the momentum of the scattered electron @ngpresents the momentum of the magnon.
At finite, but relatively low temperatures, the momentum of the magnon is negligpiohpared to the
Fermi momentunke (|¢] < kg) and the momentum of the scattered majority electrons is almost com-
pletely transferred to the minority electron and vice versa. Since spin-fipepses approximately
conserve momentum, they cannot directly result in additional dissipationdarttarge current. [98]
For simplifications we assume an equal probability for a spin flip from up tandovd vice versa.
In the bulk ferromagnet the majority, minority distributions are spatially inde«peh(z}%(?) — g%)
and Eq. (5.56) reduces to

S —S8

9% 95— 9% W P s
; Tsf = QUEEaEfeq(G). (557)

A decoupling of Eqg. (5.57) yields

g% _ eTS [2Tsfaefgq(€) + Tis_(aeféqq&) + aef(;cf(e))] _.EE,*' (5.58)
75 + 775 + 27t

Equation (5.58) marks the result for collinear magnetotransport that aftowthe computation of
transport coefficients.

But before we discuss the transport coefficients, we first want terinedthe result for the non-
equilibrium distributions (5.58) from the matrix form of the kinetic equation (b.€m the one hand
it is a good way to become familiar with the matrix structure of the generalized kiegtiation in
non-collinear magnetization textures, on the other hand it is a test to cortetiher the more general
matrix form (5.45) reproduces the right limit in collinear magnetization textuliese neglect the
spatial dependence of the magnetization and insert the equilibrium solutk®) (Bto Eq. (5.45), the
non-equilibrium kinetic equation reads -with the collision integral specifiegatien 5.1.3-

J 1 sfgcoll
Jsdr o coll ~ g feoll ~—1 acoll k
z?[az,ggo | — etz Edefeq (€) = —5{7 l,g]%c’ } - T‘:f (5.59)

Due to the diagonal spin-structure of the equilibrium solution (5.53), théreléield part on the I.h.s.
of Eqg. (5.59) is diagonal too. Considering relation (5.48), the momentuatéda time matrix is
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5.2. Collinear magnetotransport — the two-current model

diagonal according to its definition in Eq. (5.44). Taken all this togetheriresthe non-equilibrium
distribution matrix to be diagonal

1

~coll __ charg spin

g2 = 5 [o7 + %] (5.60)
where we introduced the non-equilibrium distributi I I analogously to Eq. (5.50). By means of
Eq. (5.60), we compute the spin-flip distribution from Eq. (5.35)

~coll
sfacoll _ [ ~coll ]lTI‘gE
9 =\ 9 5

o 1 charg spin charg
=3 [g,; 1+ g0, — g2 eﬂ}

o 1 spin

The generalized definition of the spin-flip scattering in Eq. (5.35) sedbasspin-flip processes
act only on the spin channel (v@p'r) while it causes no momentum dissipation and thus does not

contribute to the resistance of the charge channeb@??e{g‘ﬁ. The role of spin-flip scattering will now
be illustrated in more detail. But before we must discuss momentum scatteriadgo Pelation (5.48)
the momentum relaxation time matrix in Eq. (5.44) reduces to

P = % 7M1+ 770 (5.62)

An evaluation of the anticommutator in Eq. (5.59) yields
1 R 1 _ _ ;
5{%71’92‘0”} = g{ [Tc ! + 7 10‘z} ) [gg‘harge]l + gzpmo'z:|}
1 . .
=7 {(chlg’%harge_i_ Tgng’pln> 14 (7_6—192|Om+ 7_L(:lg]%harge) Uz} ‘ (5.63)

Due to the spin structure of the Eqgns. (5.60), (5.61) and (5.63) the kimgtatien can be decomposed
into the charge channet 1 and the spin channet o,

1 ; .
5 (le—lg;harge_{_ Tg—lg;pm) _ eUEE@fCharge(E, Jed), (5.64)
1 . 1 o . .
3 (Tc—lgzpm + Ts_1gl§harge> + T—fgzpm = eUEEQEfSp'n(e, Jsd)- (5.65)
s

The spin-flip term solely appears in the spin channel (5.65). As a disspattocess for the spin
sector it limits the spin current while it does not directly affect the chargesprart.
We now link the equilibrium spin distribution to the charge distribution

Oef (e, Jsa) = PO, Jsa), (5.66)

where the polarizatio® is a constant at the Fermi energy and given by
05, ) 0.(110) — 5(e)) _ (=) (5.67)
O fehaoqe Jog)  Oc (f1(e) + fi(e)) (nT + Lﬁ) . .

mT

P
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Chapter 5. Non-collinear magnetotransport

Equation (5.67) links the polarizatioR? to the majority, minority densities (effective masses)
(m®), wheres = {1,—1} = {7, |} denotes the majority, minority case. A proper definition of the
polarization is a non-trivial task (cf. Ref. [69] and references ingr&Ve only want to mention here
that the definition (5.67) is appropriate in terms of transport as it links thaldisons of majority
and minority electrons, that are the important quantities in transport.

With the introduction of the polarizatioR in Eg. (5.66) the solution to Eqns. (5.64) and (5.65) reads

charge  2€TcTs (2775 + (75 — P7e) 7sf) 7-Fo feharge . 1 5.68
E 27—c7—52 i Tof (7_52 _ 7_02) vk ef %67 Sd)> ( : )
i 2et. 15Tt (T — P7s) _, =
gpln - _ clsls c S —»_‘Ea charg J . 569
k 27,72 + 1ot (T2 — Tf)vk [T Jsa) ( )

The majority, minority distributions follow by inserting the definition of the relaxatiomes 7, =
(F + T%)_l, = (%4 - T%)_l and after a decomposition of the charge and spin channel

TT

1 i Tt (L+P)] . -
1 _ +, charge spiny S L charg
9= 50 G = e g TREOS e Jsd), (5.70)
1 i (1 P)] . -
I _ 1/ charge spiny S . charg
9; = 2(913 9z )=e T 1 27 U EO f e, Jsd)- (5.71)

We note that Egns. (5.70) and (5.71) coincide with the result in Eq. (5.88 e identification
20 foq(€) = (1 + sP)0. fNe, Jsa), (5.72)

Accordingly, the generalized kinetic equation (5.45) reduces to the twertumodel in collinear
magnetization textures.

As a closing remark to this chapter, we would like to discuss the conductioficieets in collinear
textures. As we are dealing with single particle distributions the macroscopantis computed by
the momentum average of the charge distribution (cf. Eq. (5.4))

= — ¢ &k T charge
Jcharge= (2713 &9;;

_ en [(1+P)tl + (1 — P)rh)rsi + 27171 £ (5.73)
m(7! + 7 4 27¢)

and the spin current of the spin distribution (cf. Eq. (5.5))

2 d3k7 - _spin
Jspin = —UB (27) UE9r

_ @62717'3]‘ [(1 + P)TT —(1- P)Tl] 7 (5.74)
e m(r!T + 7 + 27¢) ’ '

Equations (5.73) and (5.74) are the results that will now be discussedenaséimiting cases of
interest.
First we turn off spin-flip scattering{ — oc) and obtain the well-known results for the two-current
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5.2. Collinear magnetotransport — the two-current model

model
. - TL =
lim ]charge— — [ 1+P)r'+(1—-P)r } E
Tgf—00 2m
”lTl ) TEPRAN
— 2 EE(J —i—a)E, (5.75)
lim  jspin = N—— {(1 +P)rl —(1 - P)T‘L} E
Tsf—o0 P 2m
-1 LI\ .
_HB2 (DT T \p_ KB (UT — Ul> b, (5.76)
e m! mi e

where we introduced the spin resolved conductivitiés o!. In the second step we employ the
identifications

.
n n
1
1-P)~ =2 (5.77)
m m!

Next we consider the opposite limit of dominating spin-flip scattering { 0). In this limit the
population of both channels is equal to 1/2 and thus the spin current tereloto

- 22n [1 117" -
_élfrilojcharge: e |:TT 7_4 E, (5.78)
T5f—0

As expected, strong spin-flip scattering limits the spin current while it doesffect the charge
current. Furthermore, the result for the charge current in Eq. (51@&3% no longer depend on the
spin polarizationP of the current. In the limit of two equal channels' (= 7! = 1) the charge
conductivity reduces to the Drude formuta= <"*.

At last we consider equal scattering rates for both spin channkls ¢} = 7)

2 1 l
- e"TNnN = n n —
Jcharge= = 627' [mT ml] E, (580)
- Pe2n 1 1717 1 117 t[al i
Jopn = BT [ ; ] F=tB [ ; ] [”T - ”J £ (5.81)
e m T  Tsf e T  Tsf m m

From Eqgns. (5.80) and (5.81) we see that in symmetric channels the spilodlmot affect the charge
current while it serves as a source of extra resistance for the spimehals expected for equal re-
laxation timesr! = 7! the polarization does not influence the charge current but has an iomptu
spin current.

As a concluding remark we like to mention that the essence of collinear magmsijotrt can be

comprised within a two-channel equivalent circuit. This model has betemgxely used to interpret
the giant magnetoresistance and the tunneling magnetoresistance effet693182]
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5.3 Non-collinear magnetotransport

This section focuses on the general equilibrium solution to the kinetic equiatiaon-collinear
magnetization textures. The general equilibrium solution permits the derivatiangeneral non-
equilibrium linear response kinetic equation that will be solved in the sules¢gections for several
different limiting cases.

5.3.1 Equilibrium solution for general non-collinear magneization textures

In non-collinear magnetization textures théHamiltonianH,, = Jsqo'mi(7) is spatially dependent
and does no longer commute with the complete Hamiltonian (5[&5)4] # 0. Consequently, the
electron-spirg is no longer a constant of motidn Spatial derivatives of the magnetization do not
vanish ﬁ;(&m(v?)) # 0) in the generalized kinetic equation (5.45) and two extra terms proportional
to the gradient of the magnetization appear in the equilibrium kinetic equatid) (5.4

V fnon Co”(?ﬁ(f‘), )—i—Zﬁj[ﬁﬂ(F) fnon coll( (7?),6)]

h
+ 220G (Gm(), © AN (7), )} = 0. (5.82)

Equation (5.82) consists of four coupled partial differential equatiordetermine the equilibrium
dlstnbutlonfnon coll;7,(7), €) in non-collinear magnetization textures. In general, its solution depends
crucially on the imposed boundary conditions. The intention of this chapterdsrive a general
analytical solution by employing some physical intuition about the solution. FKistransverse
components should appear in an equilibrium solution. Transverse conipagsult in a torque on

the local magnetization and cause dynamics in the time-domain that should beiatesguilibrium.
Accordingly, our first assumption is that the spin part of the equilibriumtsmiypoints parallel to the
local magnetization. This secures that majority and minority channels areefieied with respect to

a spatially varying quantization axis in non-collinear magnetization textures.

Assertion The equilibrium distribution in non-collinear magnetization textures is given by

fooneolmi (), e) = % £, Js) 1+ JsaDryf (e, Jsa) (3770(7))] - (5.83)

3This must be distinguished from the spatially homogeneous case, whetetah angular momentum is still a good
guantum number in contrast to the individual orbital and spin quantunbarsn[176]
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Proof For the three terms of Eq. (5.82) the insertion of solution (5.83) in Eq. yi8RIs individually

TV 7 fom ol 7i(7), €) = %Jsdajsdfsmn(e, Jsa) UV r(&(7)), (5.84)
J;d[ﬂ (), f non coll(m(F)7 €)] =0, (5.85)
JSd{V (G (), Vi fEg (), )} = JSda S, Jsa) TV 7 {1, (F07(7))}

— 5589,0,,,e, 1) {59, (7))

Jsd fcharge( Jd "Eﬁ (Em(F))
8 0ref e, Zm (F) (5 ) m () {o™, 0"}

590,04 (e, Jud () (5 )

e [N, Jsa) TV (G11(F)). (5.86)

J -
Sd@ fcharg%€ Jd HEV (Em(—»))

Jsd

The equilibrium equatlon (5.82) is solved by Eq. (5.83) for all functionsfiliill the relation
Oc fNe, Jsa) = — 0y P(e, Jsa)- (5.87)

To uniquely determine the general non-equilibrium solution (5.83), one ass@mption is necessary.
The charge distribution that describes the charge transport should bartte for a spatially homoge-
neous and a spatially inhomogeneous magnetization texture. More prettisehas been implicitly
assumed by choosing the charge part in the ansatz (5.83) spatially iddepeim section 5.2 we de-
duced that the vanishing of the collision integral in equilibrium demands thathidwege distribution
function is the sum of the spin-up and spin-down Fermi-Dirac distributiohasve will identify the
charge component in non-collinear magnetization textures with the collinear on

Froneai(e, Jsa) = feon *Xe, Jsa) = f1(€) + f4(e), (5.88)
where f1(e) and f!(¢) are given in Eqns. (5.54), (5.55). Equations (5.83) and (5.88) deterthin
general non-collinear equilibrium distribution

non COII( (F) ) [((65(6+J5d7#) + 1)71 + (eﬁ(efJSdf,u) + 1)71> 1

+ zdﬁ (coshQ(g(e + Jsd— ) + cosh*Q(g(e — Jsd — M))) (5’771(7”))} (5.89)

In summary, the equilibrium distribution function for non-collinear magnetizatgstures (5.89) is
the general unambiguous solution that is derived under two additionahasens: the spin part of
the distribution function points in the direction of the local magnetization and thmgelpart is the
same in the collinear and non-collinear case and therefore spatially irdkgen

We can express the matrix equilibrium distribution in Eq. (5.89) through glgialig and spin-down
distributions by employing the projector in the local reference frame of thenatagtion

() = 22 OR0) (5.90
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Figure 5.1: (Color online) The global charge equilibrium distribution fdlimear and non-collinear
magnetization textures for an inverse temperafiireé = Jgg.

wheres = 1 (s = —1) labels minority (majority) electrons. The spin up (spin down) expectation
value is computed as

() =T [ () fogeem (). o)
= % [, Jsa) + sTsaD sy f P (€, Jsa)] - (5.91)

The result in Eq. (5.91) reflects that the equilibrium splitting for spin up awehdstill holds in non-
collinear magnetization textures. This provides an essential justification ahdsz (5.83).

Despite of the different shapes of the global spin-distribution functiorthéncollinear and non-
collinear case, their integrals that determine the macroscopic transppértes by the Eqns. (5.2)
to (5.5) are equal.

Figure 5.1 depicts the equilibrium charge distributifit2'99e, Jsq) that is equal for homogeneous
and inhomogeneous magnetization textures. In equilibrium the magnetizatiom phtés not affect
the distribution of charge carriers. Figure 5.2 depicts the spin distributiondmogeneous and in-
homogeneous magnetization textures for a thermal enefgyequal to thesd-splitting energy.Jsg.
Temperatures above thel-splitting only cause small deviations compared with the collinear case
(cf. Fig. 5.2). Deviations occur if the temperature sinks below the ex@haplifting Jsq. Figure 5.3
depicts the spin distribution for non-collinear magnetization patterns for ffifiexeht inverse temper-
aturess. For higher temperatures (lowg) the distribution approaches the collinear shape of Fig. 5.2
(blue curve). For temperatures lower than #deexchange splitting energysq deviations occur and
alter the shape of the spin distribution substantially. This is a hint that the gtagkpansion is
implicitly a high temperature expansion and thus only valid for temperaturesdheyd-splitting
energy. This conjecture is supported by the shape of the equilibriundgginibution function (5.89).

It is proportional toJsq/kgT and thus resembles a first-order expansion term in the dimensionless
parametet/sy/kgT. Such an expansion requirdsy/ksT < 1. During the derivation of the general
kinetic equation (5.45), we expanded the quantum mechanically commutaterdsttisity matrix and
the Hamiltonian systematically in Poisson brackets. We truncate the exparigiothaffirst Poisson
bracket. This cut-off corresponds to the classical lirhitf 0) and neglects quantum corrections that
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fspin(e)
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Figure 5.2: (Color online) The global equilibrium spin distribution for collinélalue) and non-
collinear (red) magnetization textures for an inverse tempergute= Jgq.

fspin(E)
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Figure 5.3: (Color online) Temperature dependence of the global edquililspin distribution func-
tion in non-collinear magnetization textures.
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Figure 5.4: (Color online) The global spin-up (blue) and spin-dowd)(eguilibrium distributions for
an inverse temperaturg' = Jsg. The solid lines represent the collinear situation, while the dashed
lines depict the distributions for non-collinear magnetization textures.

arise as higher-order Poisson brackets. Quantum effects becomémporgant at low temperatures
while they are negligible for higher temperatures. The expansion that tedtts (5.45) as well as
its equilibrium solution in Eq. (5.89) is therefore correct until the temperaapmoaches thed-
splitting. Figure 5.4 depicts the differences in spin-up and down distributmmisdmogeneous and
inhomogeneous magnetization textures for an inverse temperature equahtaghetization energy
and supports the physical conjecture that the spin-up and spin-ddwimgmf the collinear situation
also holds in the non-collinear case. Deviations appear at lower tempsraiug to quantum effects.
The equilibrium distribution for inhomogeneous magnetization patterns pointylotthe direction
of the magnetization. Thus, the second term in the equilibrium kinetic equati®®) (& automati-
cally zero. The spatial variation (first term of Eq. (5.82)) must be comsgten by a change of the
spin-distribution in energy space. The space-momentum coupling in the tmradbt&q. (5.82) stems
from the Wigner transform and is a pure quantum mechanical effectidis & non-commutation of
the position and momentum operators and as a result the Hamiltonian contrariyttortftogeneous
case is not diagonalized by a local unitary rotatiofmi(i”)). In non-collinear magnetization textures
the rotation no longer commutes with the kinetic endigym.(r)), p;1] # 0, i = z,y, z. [63] The
non-vanishing commutator induces a twist that translates in the semiclassieat kdguation to a
spin-position coupling term that in turn induces a change in the momentum diistnitiai the pres-
ence of a spatial varying magnetization. Consequently, a non-collinearatization texture exerts a
driving force similar to the electric field on the distribution function.

The transition from a situation in a domain with its collinear background magnetizetia non-
collinear magnetization is not continuous. A collinear and a non-collinear etizgtion are distinct
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cases with respect to spin transport due to the quantum mechanical ofatveeconduction electron
spin. This becomes manifest in different equilibrium conditions that resultfi@rent equilibrium
solutions concerning the distributions of conduction electron spins. Thithegequilibrium solution
for non-collinear magnetization textures (5.82) do not coincide with the equitibsolution for the
collinear case in Eq. (5.53) it provides also a solution for the collinear. dase difference does not
affect the calculation of transport properties and can be considsracdqaantum mechanical effect
that shows up at temperatures in the regimdgfin slightly different equilibrium spin distributions
(cf. Fig. 5.2).

5.3.2 Identification of the polarization

A priori it is not clear how a proper definition of the polarization should Itik& in a ferromagnet
(cf. Ref. [69] and references therein). A definition of the polarizatioierms of the difference in the
density of states of majority and minority electrons is indeed appropriate in equitipbut suffers

from the fact that this tells us little about the relation to transport propertibsis,Twe are in need
of an identification of the polarization in terms of transport properties. Kewehe equilibrium

solution of the generalized kinetic equation (5.89) allows for an identificatidheopolarization in

terms of our model parameters. The polarization is no longer just a paraméedetermined from
experiment but is directly related to quantities that are relevant for transjo the spirit of the

identification (5.66), we link the spin distribution to the charge distribution by meén

JsdOc [P (e, Jsg) = —Jsad2 e, Jsg) — PO fNRe, Jsq). (5.92)

In contrast to collinear magnetotransport, where the polarizatidras been introduced as a phe-
nomenological parameter (cf. Eq. (5.66)), the equilibrium solution to thergéired kinetic equation
allows for a direct calculation. Integration of Eq. (5.92) over momenturfi % yields the expres-
sion for the macroscopic polarization

P = Jst(EF)

_ 3 Jsd
2 €
kr —kp
kL + kY

~ 3 (5.93)
which is a proper ballistic definition of the spin polarization of the current wétspect to trans-
port. [16, 69, 172] We note that the identification in Eq. (5.93) is restrictdthéar response and
reflects what is expected for an exchange spin-split band for itinetactrons. [184] Solely quanti-
ties at the Fermi surface that constitutes the only relevant energy scalean tasponse theory are
present. Moreover, the identification (5.93) holds strictly speaking omlga fingle parabolic band.
As a macroscopic observable, an identification of the polarization is ondpnedle on the macro-
scopic level (after the momentum integration) to remove any energy depenitets definition. Note
that the identification of the polarization (5.93) is valid in the semiclassical limit upgbdrder in
h. Quantum corrections that correspond to higher-order terms in the sesidebexpansion of the
kinetic equation might eventually modify the result in Eq. (5.93).
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The polarization in Eq. (5.93) is given by the ration «af exchange splitting to the kinetic energy
(Fermi energy) and thus provides a clear interpretation in the one-paitige. [53] Moreover, it
constitutes a proper definition with respect to the relevant transportigesiin magnetotransport in
the sense as discussed above.

As a remark, we would like to mention that the same expression for the polaniZ&at8) appears in
Eqg. (32) of Ref. [185] without a traceable derivation. Thus, in cosioln, our microscopic derivation
allows for a calculation of the polarization of the current by relation (5.8@t has been introduced
previously phenomenologically in the literature. [5, 185]

5.3.3 Linearized non-equilibrium kinetic equation for geneal non-collinear magneti-
zation textures

In order to solve the kinetic equation and calculate conduction coefficiethiave to specify the
collision integral. In the further derivations we consider weak ferroratgyf/sg < €r) and we
disregard gradient corrections to the collision integral. This corresptorallocal collision integral by
neglecting corrections of ordé€?(.Jsq/eg). Despite this restriction, the formalism should capture the
essential physics for transition-metal ferromagnets. [53] The cordidernf realistic band structures,
spin-orbit coupling, and Coulomb interactions should provide more impoctangéctions compared
to gradient corrections to the collision integral as long.Ag &« €F). Gradient corrections cannot be
neglected when the exchange energy is of the order of the Fermi ef&2fy

The collision integral in the relaxation time approximation (cf. section 5.1.3) reads

T1Fe() = ZUl) + Zolf7)
= S ). (Fel7) — FedT(7), ) - -

If an external electric field is applied, the electrons as well as the sping aen-equilibrium and
as a consequence a steady current flows. We want to determine theréapanse solution to the
distribution functions for the non-equilibrium case ¢ 0, f[f‘,;(f‘)] = () and consider small electric
fields such that the system is still close to equilibrium where it is sufficientdaosfon deviations that
are linear in the electric field. A linearization of the general kinetic equatigtb§For small electric
fields is achieved by parameterizing the non-equilibrium distribution as a ld®aation from the
equilibrium solution

(5.94)

() = Jeami(), €) + G(7), (5.95)
where g (7) is the non-equilibrium shift proportional to the electric field and the relaxatioes.
Inserting the ansatz (5.95) into the kinetic equation (5.45) yields, by retasmiygerms linear in the
electric field,

5 o7, €) + e el + G, fooii(7), )] + 82 G, ()]
5 BV e feqi (7). ) + O(EV ()
PTG, T e (7). ) + ST, Fdels)
sfx 7
= ), g5} - 5.9
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5.3. Non-collinear magnetotransport

Insertion of the equilibrium solution (5.83) simplifies Eq. (5.96) with the helpaf(&.82)

sfr 7
BV + 5 (7 (), 59} + 4 ), )
PG (), V() = engB (7 )a Feal (7). ). (5.97)

Equation (5.97) is the non-equilibrium kinetic equation valid for general migzation textures. In the
next sections we will solve Eq. (5.97) by imposing different limiting conditionghie magnetization
texturem (7).

To proceed further on in the derivation, we have to specify the relaxtititas of section 5.1.3 that
appear in Eq. (5.97). For the spin-conserving relaxation time matrix we find

L), 35()
— L) A7 @) L P+ 5)
= [0 1) + (0 1, G (e)

+ g (M) (0 ()7, 1} + {(7) 7 (7)), G (7)& }
= % [(P) T gL+ (7)) 7 (M + () (7)) g (M7 + (7) " (172 (7) g (7) 1]
1

=1 ()7 gz (7) + () (™) G(7) 1+ (7)) 7 g (F) + ()~
The spin-flip relaxation term (5.35) yields

—~
3
—~
3
~—
N—
N
)
—~
3
~—
SN—
S
—~
ol
©
(e3)
N

I S
(") = 2 9x (). (5.99)
The commutator in the kinetic equation (5.97) evaluates as follows
Jsdro o s () Jsd
Z%[Jm(F‘%gE r) = Zi Zm“ F)gk F)[O—,U«:UV]
_ Jsdy; i G- (7 5.100
=520 3 cupmt (MgE(F)o, = —& () x Gy(7) . (5.100)

HsVsp

where we introduced the abbreviatign= 2.Js4/ .

The expressions for the relaxation times in Eqns. (5.98) and (5.99) alldlvd@lecomposition of the
linearized non-equilibrium kinetic equation (5.97) into the charge distributimhthe three macro-
scopic magnetization distributions that govern the magnetization of the conuwdtictrons. The
decomposition is achieved by employing relation (5.8) and results in two colpletic equations
with a scalar distribution functiog () for the charge non-equilibrium distribution (Eg. (5.101)) and
a vector distributiorg;: () for the non-equilibrium spin distribution (Eq. (5.102))

0oV rg(F) + 7 Lgg(F) + (7)1 (7)) G (7)
+

2 (Vemi(7) - (Vg (7)) = etpE (R0 e, Jsa), (5.101)
GV i (F) — 7 (1) % Gz (7)) + 75" G (7) + (7)1 (03(7) g5 (7)
+%’(€T (7)) - (Vigp(7) = —Jsoe (T E(7)mi(7)07 fe, Jsg).  (5.102)
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Chapter 5. Non-collinear magnetotransport

In Eqg. (5.102) we introduced the abbreviation
TJ:1 =714 7'5?1. (5.103)

In section 5.1.3 we gave explicit expressions for the spin-conseniaxateon times

1 _ 1/1 1 _
5(70) - 5 (ﬂ + Tl> =71 (5.104)
SO 0w = <:T - Tll> () = 7 (7). (5.105)

- (VGe(7) = e B (7). f e, Jsa), (5.106)

(Veii(7) - (Vigg(7) = —Jsae (T E ()i (7)07 f"*Ne, Jsa).  (5.107)

The two coupled equations (5.101) and (5.102) are the general equétiothe non-equilibrium
charge and spin distributions in the presence of an external electric fidldux phenomenological
parametrization of the collision integral in terms of relaxation times. The scoje ofext sections is
to focus on the solution of the kinetic equation in certain special limiting casese pecisely, first
we will derive local transport coefficients for general spatially slovdyying magnetization textures
in section 5.4 (cf. appendix C for the inclusion of spin-orbit interactiomcdddly we solve an one-
dimensional version of (5.97) for the case of a domain wall. This grantssaghininto the regime of
non-adiabatic spatial variations of the magnetization as will be discussectiorsg.5.
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5.4. Adiabatic magnetotransport — constant transport coefficients

5.4 Adiabatic magnetotransport — constant transport coefficients

This section provides the linear response solution of the non-equilibriueti&iequation for general,
spatially slowly varying magnetization textures. A smooth magnetization texturgeahias spatially
slowly allows for a gradient expansion in the magnetization, such thatdecdngher spatial deriva-
tives can be neglected, as they are small compared to the magnetization iteeffret derivatives.
This condition characterizes the regimeagliabaticmagnetotransport where the conduction electron
spin can follow the local magnetization adiabatically. The transport coeftcteirn out to be con-
stant and the spatial dependence of the spin-transfer torque is enéteiynined in terms of the local
magnetization.

The characterization of the regime adliabaticmagnetotransport becomes most evident in the case
of a domain wall. If the thickness of the domain walls much larger than any characteristic length
scale relevant for magnetotransport$ kg ! rTsd, vETS), NO SpPin mistracking occurs when the con-
duction electron propagates through the domain wall and the spins of tHaat@mn electrons follow
the local magnetization adiabatically. In this case the spin resides in either thetynajoninority
channel and domain walls exhibit an intrinsic Ohmic resistance that is negligibipared with the
bulk resistance or magnetoresistive effects, for instance the anisotnagieetoresistance. The situ-
ation changes in narrow domain walls where- versg, vpre. > k:;l. Here, the conduction electron
spin cannot follow the spatially abrupt changing magnetization and spin nkistgadue to a mixing

of spin channels occurs. The transition from the adiabatic transpomeey the transport regime
of narrow domain walls introduces a spatial dependence of the spiridraosjue on the details of
the magnetization texture and involves an intrinsic domain-wall resistivity.dMediomain walls and
non-adiabatic transport are the subject of section 5.5.

In 2004 Zhang and Li derived two contributions of the spin-transfequerfor general, spatially
slowly varying magnetization patterns based on a phenomenological diffegitation, the adiabatic
and the non-adiabatic spin-transfer torque. [5] While the adiabatic tdragibeen already suggested
by other authors [47, 49, 51, 97], Zhang and Li were the first to ggepghe non-adiabatic torque.
Since the proposal of the general mathematical form of the spin-transfere, numerous researchers
attempted with various methods at deriving microscopic expressions fopitnéransfer torque. The
aim of these efforts is to shed light on the microscopic origin of the spinfeamnsrque. In this
context, the degree of non-adiabaticity that parametrizes the strengthrdrkediabatic torque has
attracted special interest. As noted exemplarily, Xiao, Zangwill and Stilestezpnumerical deriva-
tions of the spin-transfer torque within an one-dimensional domain wall.T[Béir results cast doubt
on the existence of the non-adiabatic torque at all and consequentlyldivey¢c= 0. [56] However,
the magnitude as well as the microscopic origin of the non-adiabatic spirferdaasjue are under
debate and its derivation is one of the most urgent issues in currenteidauagnetization dynamics.
Let us briefly mention the most prominent microscopic derivations that incledeah-adiabatic spin-
transfer torque. Tserkovnyak, Skadsem, Brataas and Baueederkinetic equation within the local
density approximation. [53] They phenomenologically introduced a trass#pin relaxation time as
the origin of non-adiabaticity. Tatatara, Kohno et al. employed imaginary tintbeds to calculate

87



Chapter 5. Non-collinear magnetotransport

the transport coefficients perturbatively. They performed a full turarmechanical linear response
calculation by means of the Kubo formula [54, 57, 58], the Mori formuld 581 a spin continuity
equation [60]. Besides the known torques, they also derived a nahfoa-adiabatic spin-transfer
torque. [59] Duine et al. employed the functional Keldysh method and itrasinto all previous
authors an itinerant model of ferromagnetism. [55] The functional Kélagsethod enabled them to
derive a stochastic version of the Landau-Lifshitz-Gilbert equatiofiifide temperatures. By adopt-
ing the same impurity model as Ref. [59], they obtained the same results foatispart coefficients
and the degree of non-adiabaticity. Piéchon and Thiaville employed a kiggetitien similar to ours,
but the results of their calculations suffered from an incorrect equilibsalution. [186]

Section 5.4.1 provides the non-equilibrium solution of the kinetic equation doemgl, spatially
slowly varying magnetization textures. In section 5.4.2 the transport deetfficare calculed from
the distribution functions as obtained in the previous section. The main res$uhis Gection are
summarized in section 5.4.4 before we close with a comparison of our resultheititerature in
section 5.4.5.

5.4.1 Non-equilibrium solution for adiabatic magnetotrarsport

In contrast to the equilibrium solution (cf. section 5.3.1) that is valid for gggnaon-collinear mag-

netization textures a closed solution to the non-equilibrium kinetic equation31(5ahd (5.102) is

not possible. The solution of the coupled partial differential equatiopemt crucially on the im-

posed boundary conditions. Moreover, due to the non-trivial commutedlations for the spin non-

equilibrium, transverse components of the spin distribution emerge in noneasllimagnetization

textures that cannot be neglected in the presence of the electric fieldkinis.

However, in the regime of adiabatic magnetotransport bulk solutions thaidependent of the de-
tails of the magnetization texture are expected for the transport coefficienisés sense the transport
coefficients in adiabatic magnetotransport are material parameter as thez&ton of the spatial

and the momentum dependence holds for non-equilibrium. In adiabatic margnefmort the spatial

dependence of the distributions functions must entirely be given in terme afidignetization

Fe () = fp(m (). (5.108)

In this case the macroscopic physical quantities are computed from the(E@)s(5.3) and (5.4), (5.5)
by virtue of the substitutionE(F) — f,;(m(v?)). The aim of this section is the calculation of transport
coefficients from the coupled equations (5.106) and (5.107) up to fiiasiad derivatives of the mag-
netization. The gradient expansion in the magnetization restricts the validitg ofshlts to spatially
slowly varying magnetization textures, but removes the direct spatial depea of the distribution
functions according to (5.108) and enables a closed solution. With thpgutisge of obtaining con-
stant conduction coefficients, we refrain from an actual computationeoflistribution functions
themselves, but instead focus on the derivation of the transport ¢eefic This procedure fits very
well to the adiabatic transport regime, where the details of the magnetizatioretdxtnot play a role
with regard to the transport coefficients that turn out to be material paresnete
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5.4. Adiabatic magnetotransport — constant transport coefficients

As discussed in section 5.3.2, we relate the spin paﬂ%@(frﬁ(?),e) to the charge part by the in-
troduction of the polarization (cf. Eq. (5.92))

JSdaJsdepin(ﬁ, Jsd) — PfCharg%E, Jsd) (5109)

The link to microscopic parameters is established by means of relation (5.9%B)th& introduction
of the polarization in Eq. (5.109), the equations to solve for the non-equitibdistributionsg; () =
F2(F) — feq(m(7), €) that is linear in the electric field(7) now read

(Vi) - (V7)) = eTp B ()0 e, Jso), (5.110)
59 Ge(F) 7 (7) x o) + 77 () + 75 () g7
FIG (7)) - (V) = PGBm0 e, Jog). (5111)

For further calculations it is convenient to expand the spin-depen@enopthe distribution matrix
in the local reference frame of the magnetization. We choose the followsaafor the distribution
functions in order to linearize Eqgns. (5.110) and (5.111) with respecetmtgnetization

(7, k), (5.112)
7 ()T (7) —|—Zg VR)m(F) + E:gL (k)m(7) x (&Y )m(7), (5.113)
J

wheree}, j = x,y,z are a complete set of unit vectors in real space that serve as tensdigaisin
Note that the vectorsi(r), 3_;(€; &,V ) () and}_; m(r) x (eJV =)m(7) are linearly independent
from each other due to the relation (A 5). They form a basiBdthat allows for the expansion of
any vector. The ansatz (5.113) corresponds to a gradient expansfanspatially varying reference
frame of the magnetization, where we truncate the expansion after dexs/ati first order. This
expansion is valid as long a8 > (ﬁmﬁ)? Including higher derivatives of the magnetization
in the expansion (5.113) would be redundant as the Ansatz (5.113jitatess already a basis of
R3. Higher derivative terms could be expanded in the basis (5.113). Thiklwesult in spatially
dependent expansion coefficients, which transcend the adiabatmxapption.

For brevity we will omit the explicit reference to the spatial dependenceeofithgnetization and the
electric field throughout the rest of this section.
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Chapter 5. Non-collinear magnetotransport

5.4.1.1 Gradient expansion with respect to the magnetization

If we insert the ansatz (5.112) and (5.113) in the kinetic equation for taeyeldistribution (5.110),
we end up in linear order of the magnetization gradient with

= UL E(F)0 "9, Jg). (5.114)

In Eq. (5.114) we employed the relation (A.5), as any spatial derivatitheeanagnetization is perpen-
dicular to the magnetization itself. Next we perform the same proceduredyiimgsthe ansatz (5.112)
and (5.113) in the vectorial spin part of the kinetic equation (5.111). Upsioderivatives of the mag-
netization Eq. (5.111) then reads

J J
Jsde o -
75 g (7) + Vi () + O(V)?)
= Pet: Emd, f%Ne, Jsg). (5.115)

A decomposition of Eq. (5.115) into the three linear independent unit \&aﬁto@j(éjﬁﬂm and
2 -m x (e;V *ﬂ)m yields with Eq. (5.114) four determining equations for the non-equilibriurtriis
butions g (7), g (k k), m(k) andgf)(E). The determining equations are independent of the mag-

netization. This can be understood as follows: As we restrict ourselvesatially slowly varying
magnetization textures, we skip all terms that are of the o@i(eﬁ m). In this order of the ex-

pansion, the expansion coeﬁicie@tﬁ(ﬁ), gi)( k) andgi)( k) are spatially constant and thus cannot
depend on the magnetization.
In the adiabatic regime in the presence of a spatially slowly varying magnetizaxitume the follow-
ing set of coupled equations remains to be solved in order to calculatedrapspperties
*Eﬁ 2 (7) + 710 gk(f") + 77 g (k) = 61)~E8 99 Jsg), (5.116)
T g,ﬁ(/%’) + 7, gp(F) = PetzEO. fchafge(e Jsd), (5.117)

> 6@ gn(R) + 92 (F) + 779 (R) + 50 6@V )gp(M) =0, (5.118)
—19 (R + g () = 0. (5.119)
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We are interested in bulk conduction properties in the presence of a hoarmgeelectrlc field
E = const. and neglect the spatial dependence of the charge distribgtioh = g(k ). In this
case Eqgns. (5.116) to (5.119) reduce to a set of four coupled aigeioraations. This presents a huge
simplification in comparison to four coupled partial differential equationsweastarted with. Ac-
cording to Eq. (5.108), the choice of the product ansatz in Eqns. (batitR(5.113) shifts the spatial
dependence from the distribution function onto the magnetization. This réastitts homogeneous,
spatially independent equations (5.116), (5.117), (5.118) and (5fad e expansion coefficients,
the four distribution functiong(k), g7 (k). gf)(g), gf)(E) and confirms our physical conjecture that
led to the ansatz (5.108). In the adiabatic approximation, the distribution fasaihibit solely the
necessary spatial dependence that arise from the expansion in tilaéysparying reference frame of
the magnetization.

Equations (5.116) and (5.117) determine the charge distribution and thef plae spin distribution
that points collinear to the local magnetization. They coincide with the two-tiumedel in collinear
magnetization textures (cf. Eq. (5.68) and (5.69)). Equation (5.119)lesuboth transverse parts
of the spin distribution. In turn, Eq. (5.118) establishes the connectioneleatthe transverse spin
distributions and the charge and the collinear distributions.

A decoupling of Eq. (5.116) and (5.117) yields the non-equilibrium soldtiothe charge distribution
and the longitudinal spin distribution that is collinear with the magnetization

P cls P
g(y = s (P — - ™) 5 T 0. f9e, Jsg), (5.120)
TeT4 — Tg
- et Ts (PTs — Tc) o = schan
gﬁl(k’) = — 3 ’UEEaef ge(e, Jsd)- (5.121)

TeT+ — Tg
We note that the distributions in Egns. (5.120) and (5.121) coincide with gmgetand spin distribu-
tions of the two-current model (cf. Egns. (5.68) and (5.69)). Thiggody agrees with the adiabatic
approximation. A majority, minority spin resides in its spin state during the travefrtae spatially
slowly varying magnetization texture. Except for the weak scattering atfpirmpurities there is
no mixing of channels and both kinds of spins can be treated separately.
To solve for the perpendicular spin distributions, we insert Egns. (bdafd (5.121) into Eqg. (5.118)
under consideration of Eq. (5.119). During the derivation we employedeiation

hz% &V )0z E0. fM9e, Jsq)

— Z(s” (@M E)Df* e, Jsa) +Z§U (&0;)0-E92 fa9e, Jog), (5.122)

where the effective mass tensME‘ is defined in Eq. (2.21). The result for the transverse spin
distributions reads

> T4 Ts
o) =~ i

L+ 72) (rery — 72)

[ (Jsdz i ( é}Mq VEV (P14 — 75) 2(52] (€:07) UkET+(PTS - Tc)> D f9Y e, Jsq)

+ Jsdz 515 (E77) 0 Bro(Pry. — 74) 0 fchafg‘f(e, Jsd) } . (5.123)
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9P (k) = yrg MV (B)
o eyTiTs
(4 ) (rers — 79)

[ (Jsdz 0ij (@M EYTe(Pry — 1) = Y i@t o B (P — TC)> O 9 e, Jsq)

+ Jsdz 513 (E50:) U Ere(PTy. — 75)02 FONa9Ye, Jsd)} . (5.124)

We note from Eq. (5.124) the simple proportionality among the two transvésidtion functions
g( )(kz) andg( )(k) Though the factor of proportionalityr, depends on the specific form of the
collision integral, the proportionality itself is generic on the level of the distrilbufi;ctions. As
we will be shown in section 5.4.2.2, the factor of proportionality correspémdse degree of non-
adiabaticity. In this connection, the degree of non-adiabaticity does pendeon the band-structure
and must be regarded as quite general because it constitutes a relatiearbdistribution functions.
The four distributions (5.120), (5.121), (5.123) and (5.124) canWwetten in the form of a distribu-
tion matrix

+ 220V B @V @) + 30 0P (B)g - () x (@V)m)). (5125)

Equation (5.125) constitutes the general non-equilibrium distribution matlick fea small external
electric field and spatially slowly varying magnetization patterns. If we pra@jatthe spin up (spin
down) components of Eq. (5.125) with the help of the projector that is dkficeording to Eq. (5.90),
we obtain

(g%) = Tr [u (mi(7)) g (7)]
(

1 -
= T [g(k)]l + g

+ Z o7 (R)() x (&) (@) + sg(R) (@) + sga (F)1

s@m() - 3 o (@ T @) + s(@m() - 3 o P Ryii() x (& V) (@(7)]

1

= 3 |9(F) + s9:(R)|. (5.126)

During the calculation of Eq. (5.126), we employed relation (A.5) and thpgstg of the Pauli matri-
ces to be traceless. The message of Eq. (5.126) is that even in non+agnilibglobal separation in
spin up, spin down channel holds for spatially slowly varying magnetizatidones. This is expected
from the adiabatic approximation, where the variation in the magnetization heppeslowly that the
spin of the conduction electron can follow the local magnetization. In this theesepin resides in
either the majority or minority channel that as a consequence must be welédefAnalogously
to collinear magnetization textures the charge transport coefficients tireyedetermined in terms

92



5.4. Adiabatic magnetotransport — constant transport coefficients

of the spin up and spin down distribution functions. Moreover, they analeq the distributions in
collinear magnetotransport. This reflects that adiabatic magnetotranspemdt result in an intrinsic
resistivity due to the magnetization texture. The global separation in spincugpam down distribu-
tion functions justifies our choice in introducing the polarization as in Eq. }5.92

In addition to collinear magnetization textures two extra transverse chamnefge The off-diagonal
components in the matrix notation (5.125), the transverse distribution fun@ti&r@g), gf)(E) are
responsible for anixing conductancéhat constitutes the transverse magnetization of the conduction
electrons and the spin-transfer torque (cf. section 2.3).

Compared with collinear magnetotransport, the situation is the following: addltidoahe familiar
charge and longitudinal components, two components, transverse to déhenlagnetization, emerge
in non-equilibrium. They are due to the twist of the two spin channels in thepcesof a spatially
varying magnetization. Together with the two channels already familiar frdinear magnetotrans-
port this constitutes the framework offaur channel modethat describesdiabatic non-collinear
magnetotransport appropriately.

5.4.2 Global transport coefficients

In this section we derive the transport coefficients for the chargeicythe spin current and the spin-
transfer torque based on a simple parabolic band-structure from thibwisin functions (5.120),
(5.121), (5.123) and (5.124).

5.4.2.1 Charge conductivity

The knowledge of the distribution functions in Eqgns. (5.120), (5.1211,2%) and (5.124) enables
us to calculate the bulk conduction coefficients in the presence of a spatatiggeneous external
electric field. To calculate the ohmic conductivity we focus on the chargeeaailibrium distribution

function

- eTeTs (P14 — 74

T EQ f%Ne, Js). (5.127)

TeTy — T2

As the equilibrium parfeq(e) yields no current, the current is computed by tracing out the momentum
of the non-equilibrium charge distribution

- Bk -
J= —e/wv;gg(k)
27,75 (PTy — T5) A3k charg .
= Uy @ Uz (—0k , E. 12
TeTy — T2 [/ (2m)3 K ® Ug(—0cf Te JSd))} (5.128)

The transition metals exhibit in general very involved band structureg] [M8vertheless, transport
in metals is dominated by the free-electron-like behavior that stems mostly froap tiends. [34]

Therefore, a free-electron model should provide at least an attequalitative description. Through-
out this thesis we consider a free-electron picture for the calculationreffoat properties. Further-
more, we will not consider asymmetries in the conduction quantities due tolapi&atropies. Thus,
the calculations are conducted for bulk materials without crystalline anigofi@mpinstance crystals
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of cubic symmetry. Then we can average oﬁapace by exploiting the identity

As thek integration in Eq. (5.128) only depends on the energy, we can simplify the atiteg
d®k
/ o) — /de Ne), (5.130)
by introducing the three-dimensional density of states
V2
N(e) = v2me, (5.131)
m2h3

The integral for the current in Eq. (5.128) reads with the help of Eq3(.&and the fact that the
energy derivative of the Fermi-Function can be approximated for low teatyes with respect to the
Fermi energy by a delta function

R P (Pry —75) 1 9 "
J = P R /deN(e)vlz(S(e —ep)E

e?1e1s (PTy — Ts)

1. .,
5 —5%(ep)N(ep)E
TeT4 — T2 3
2 - —
_ enTeTs (P1y TS)E. (5.132)

m (Ter — 72)

The density of the conduction electrons is defined as
L o
n=gmo (ee) N (eF). (5.133)

For a homogeneous applied electric field, the current in Eq. (5.132) yiedd3hmic bulk conductivity

e’nt.1s (P — 7)

o= . (5.134)

m (1ot — 72)

The corresponding ohmic resistivity is obtained by the inverse of the abinidy in Eq. (5.134)

1 m(Tc7—+ _7'52)
P=5= e2nt.ts (P14 — 7s)

(5.135)

Equation (5.135) reads expressed in terms.pf; andrg;

m [7‘67'52 + (72 - TCZ)Tsf}

e2nt.7s [Te(Ts — PTet) + TsTsi]

p= (5.136)

or equivalently by the spin up and spin down relaxation timgs-

m (77 + 71 + 27)
en[(1+P)rT + (1 — P)yth)rse + 27171

p= (5.137)
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Equation (5.137) coincides with the result of the two-current model (@f(E73)). Thus, all limiting
cases for the charge conductivity discussed in section 5.2 are still valghirally slowly varying
magnetization patterns. In the case of vanishing spin-flip scattering thevigsigduces to

m (7'02 — 7'52) 2m
li = = . 5.138
Tsflinoop e2nt.ts (Pt — 75)  e*n[(1+ P)r! + (1 — P)7!] ( )

With the obvious identifications

\
n n
l
1-pP)L =2 (5.139)
m m

the result in the absence of spin-flip scattering Eqg. (5.138) coincides itiwtitchannel model, i.e.,
resistance of the two spin channels running in parallel

11 [N Bt
lim p:|:€2<n7+n7—>:| . (5.140)

Tgf—00 mT ml

5.4.2.2 Conduction coefficients for the spin-transfer torque

As introduced in section 2.3, we adopt the current-induced torque pid@BE The spin-transfer
torque is then given by the counteraction of the magnetization of the condwgatrons on the
local magnetization. The transfer of spin-angular momentum of the spinizeada electrons to the
localizedd electrons is accomplished via thé exchange interaction. The torque is a geometric effect
that stems from the directional mismatch between the magnetization of the condeletitrons and
the local magnetic moments

—\

Ts11(7) = —(

= — (G (7))neq X (7). (5.141)

In Eq. (5.141),7(7) represents the magnetization of the localizeglectrons and (7)) comprises
the magnetization of the itinerantlectrons. In Eq. (5.141) we introduced the characteristic time that
belongs to thed exchange interaction

2 h
Ted= — = —. (5.142)
Y Jsd
Tsd IS the inverse frequency with which the conduction spins precess atbamgdcal magnetization.
According to its definition in Eq. (5.141), the calculation of the spin-transfefue reduces to the
task of determining the magnetization of the conduction elect(@(s)). The magnetization of the

itinerants electrons splits into two parts
(3(7)) = (F(7))ea+ (3(7)nea (5.143)
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Chapter 5. Non-collinear magnetotransport

The first partin Eq. (5.143) stems from the equilibrium distribution and pomtiparallel to the local
magnetization of the electrons

. 3
(3(7))eq = —MB/ (d ]; Trfeq( m(7), €)d = —Pugnm(r). (5.144)

The second part#(7) ))neq is induced by the electric field. The longitudinal component of the non-
equilibrium magnetization,; (k ) is odd in the velocity (cf. Eq. (5.121)) and consequently vanishes
due to the momentum integratibn

. 3 .
{0(7))nea = —he / (;l ljggm(k)m(F) =0. (5.145)

Accordingly, the non-equilibrium magnetization of the conduction electraistp perpendicular to

the local magnetization. Furthermore, it is obvious from the definition of thretspnsfer torque in

Eq. (5.141) that only the transverse part of the magnetization of the ctiodualectrons contributes

to the spin-transfer torque. This is the reason why we substltu‘i(e?j> with ((7 ) )neqin EQ. (5.141).

The non-equilibrium parts are according to Eq. (5.145) transverse tm¢aé moments and stem
from gi)( k) and g(2)( k). They serve for the computation of the transverse magnetization of the
conduction electrons in the following. These are the contributions thasacicaunteraction on the
local magnetization of the localizetlelectrons and causes the spin-transfer torque.

Adiabatic spin-transfer torque In this section we derive the transport coefficients responsible for
the adiabatic spin-transfer torque in terms of microscopic relaxation times.tefims that consti-
tute the adiabatic spin-transfer torque stem from the non-equilibrium fmngffé(l%'). The local
magnetization of the conduction electrons is obtained by tracing out the momeattiof the spin
distribution

L (ad(Pneg = 1 / SZ O Eyi(r) x (&) ). (5.146)

Tsd

Computation of Eq. (5.146) yields the adlabatlc spin-transfer torque @diogoto Eq. (5.141). The
adiabatic distribution functlogi)( k) is given by Eq. (5.124)

eYTITs
(147273 (4 — 72)

[ (Jsdz i ( é}Ma VEVro(Pry — 75) + Z i (€ E)UEET+(TC - PTS)> De fN9 e, Jsq)

P (k) = -

+ Jsdz bij (€; _'12 ﬁETC(PT+ - TS)aleCharge(e, Jsd)}
=¢ Z@] (@M E)Df e, Jsa) + 02251] (€0;)0=E9, f9Ne, Joq)

+c Z 87 (8:0;) T ED? M99 e, Jog). (5.147)

“In contrast, the non-equilibrium component collinear to the local magmietrizg‘,ﬁ(lg) gives rise to a non-vanishing
spin-current tensowhose modulus coincides with the spin current in the two-current motiedéction 5.4.2.3).
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5.4. Adiabatic magnetotransport — constant transport coefficients

Inserting the distribution function of Eq. (5.147) into Eq. (5.146) requioesarry out three different
integrations. As explained in the previous section, we restrict ourselas iiurther calculations to
the case of crystal cubic symmetry (cf. Eq. (5.129)) and one parataniid.dn this case the effective
mass tensor reduces to a constant effective mgss

Evaluation of the first term in Eq. (5.147) yields

dSk 5 17 h C1 - dgkf h
C1 / W ;5”(62]\4]; E)aefc argE(E’ JSd) = _% ;&J(SZE)/ (27r)3(_06fc argE(G’ Jsd))

— AN (@) /deN(e)5(6 — &)

7

_ 1N (er) Z 5@,],(6—%5). (5.148)

The second term in Eq. (5.147) is evaluated under consideration ofl&tieng5.129)

dgk h C2 o o= d k _,2 h
% | Gy 2 BuETEOS e ) = =3 T GE) [ s -0 )

= _%2 Z 85 (& E) 5> (er) N (er)

m

EEN" 5 (EE). (5.149)

We now rewrite the third term in Eq. (5.147) after applying the identity in Eq.2®).5nd a partial
integration, where the constant terms vanish due to the periodicity of theateddunctions on the
Bravais lattice [76]

3
/ d3 k3 25” (€i%) UEEagfcharge(E, Jsd) = c1 225@651?”/ (d 7;3 : ya? Fohaeg e g
v i

¢ d? k
=f;zzémew’/ ST
= Zéwe“Ey/ &3 /; (vu u) < _ 8€fcharge(6’ Jsd))
_a L= A3k
~m ZZ: dij (€ E) / Wfs(ﬁ — €F)

_ Cl*’\jﬁ > b (@) (5.150)

Note that the cancellation of the contributions in Eqns. (5.148) and (5.1&@)ésuliarity of the sim-
ple parabolic one-band model that does not hold for realistic band stesctu

The result for the local magnetization of the itinerant electrons is givendosutim of the Eqns. (5.148),
(5.149) and (5.150)

(G Pneq = — 2 () x (A7), (5.151)

Tsd
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with the definition of the transverse spin current

JoanS = oSanE. (5.152)

The transverse spin conductivity reads

1 enyrits (1o — Pry)
ream(1+1772) (e —72)'

trans __
spin —

(5.153)

Expressing the transverse spin conductivity in terms of the spin up andlspin relaxation times
and thesd exchange time defined in EqQ. (5.142) yields the final result

trans __
spin —

8e2n(r1)2(r4)2 3 [(1+ Pyl —(1— P)Tl]
m(t1 4+ b+ 27f) (t27sm ! (Tsm! + 27 (71 + 271)) + 72(7H)2 (71 + 271)2 + 16(71)2(71)%73))
(5.154)

In contrast to the charge conductivity in Eq. (5.134), the transveligecspductivity in Eq. (5.154)
additionally depends on th&i-exchange timesg. We note that the transverse spin conductivity
possesses the right limit when turning off théinteraction. The transverse spin conductivity and
thus the spin-transfer torque vanish with vanishidgxchange splittingsg — 0)

lim ofans— (. (5.155)

- spin
Tsd o

By contrast, in the case of dominatind-splitting Jsg — oo, the transverse spin conductivity reduces
to 1/2 of the spin-conductivity in the two channel-model (cf. Eq. (5.74))

e*nrt [(1 +P)rl — (1 - P)Tl}

lim_odih® = 5.156
roqs0 SPIN 2m(rd + 71 + 27¢) ( )
In the absence of spin flip scattering the transverse spin conductivitgesdo
lim otrans _ 4e2n(11)2(rl)? [(1 +P)rt —(1— P)Tl]
Tof—00 spin m [Tszd(TT + 7—1)2 + (47—T7-l)2]
8(11)2(r1)? o [nI7T1 nlrl
—_ 6 J—
[Tsd(TT +7hH)2 + (4TTTl)2} m! m!
1 1 2
— - ;=2 [+ Py = (1= )]
4 1 Tsd(%ﬂrﬁ) m
+ 4
L ) [(1+P)rT = (1= P)rt] (5.157)
Tl S, ' '

Apart from a prefactor Eq. (5.157) coincides with the spin current efttho-current model (cf.
Eqg. (5.74)). The prefactor exhibits a standard Cauchy distribufi@fs—o) = 1/1 + (£]st—0)?, @

Lorentz distribution with width, for the parametef|s—g = 7sa(7' + 71)/47 17! that coincides with
the degree of non-adiabaticity (cf. Eq. (5.163)) in the absence offipigeattering. The prefac-
tor resembles the degree of coherence between the majority and minorityhgpinet. Figure 5.5
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Figure 5.5: (Color online) Spin coherence factor for the transvelisespductivity in the absence of
spin-flip scattering.

depicts the resonant behavior of the coherence factor for the tramssgin conductivity in the ab-
sence of spin-flip scattering. The resonance curve reaches its maxwndoriinatingsd-interaction
(1sd¢ — 0) that corresponds to small values of non-adiabatigiy(, — 0) and reduces in this limit
to 1/2 of the spin current of the two-current model (cf. Eq. (5.74)). Intcast, for higher values
of non-adiabaticity {|s;—9o — o) the transverse spin conductivity monotonously decreases. In this
case the enhanced non-adiabaticity suppresses the efficient trahsfgn-angular momentum and
an enhanced spin relaxation reduces the spin-transfer torque.

While the charge transport is entirely diffusive, different value§ gf, distinguish different transport
regimes for the spin transport. The regime of small valueg{¢fst—o) is the regime where the spin
transport is diffusive withsg/7. > 1 that corresponds t§lsi—o > 1/2. In this case the spin transport
is dominated by scattering at (magnetic) impurities. Due to the twist of spin clsatime collisions
destroy the coherence in the spin sector and as a result decreadectbrogfin the transfer of spin-
angular momentum (cf. Fig. 5.5). The contrary case witfir. < 1 or &|st—¢ < 1/2 constitutes the
regime of ballistic spin transport, where the spin has enough time between tigmoos to precess
around the local magnetization. In this case the deterministic flow part of tetkaguation (5.45)
is predominant for the spin transport and the coherence in the spin settances the spin-transfer
torque. In general, the spin coherence factor takes into accountattiatib spin transport enhances
the spin-transfer torque while diffusive spin transport results in aedeer of the spin-transfer effi-
ciency. For a more detailed discussion of the contribution of spin mistrackingrteadiabaticity we
refer to section 5.5, where we explicitly solve the kinetic equation in the casel@fain wall.

Dominating spin-flip scattering suppresses the transverse spin coriyuctiv

lim og5ih®=0, (5.158)

T5f—0
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and thus no spin-transfer torque arises. This is reasonable as in thitheanduction electron spin
relaxes instantaneously such that no transfer of angular momentum toakizddd electrons is pos-
sible and no spin-transfer torque takes place. The adiabatic spindraosjue follows by inserting
the result (5.151) into Eqg. (5.141)

Fadl ) = —LE M () x M (F) x (T ) M (7). (5.159)

S

Non-adiabatic spin-transfer torque In this section we derive the conduction coefficient respon-
sible for the non-adiabatic spin-transfer torque. The terms that conttitptibe non-adiabatic spin-
transfer torque stem from the non-equilibrium functyfﬁ(ﬁ). The local magnetization of the con-
duction electrons evaluates to

1 o N B d k’ o I =
7<O‘n0n_ac(7")>neq: M / 3 ]’C 6 VF‘ m(T’) (5160)

Tsd

and serves for computing the spin-transfer torque accordmg to E4.1(5.The non-adiabatic distri-
bution functiong(j)(E) is linked to the adiabatic distribution by means of (cf. Eq. (5.123))

N
dO ) = Lwi ). (5.161)

and thus the magnetization of the conduction electrons is calculated andjogmtise preceding
section

— (Granadneq = —2 MBS Jrans i 7). (5.162)

where the transverse spin current is defined in Eq. (5.152). The ettiebn the non-adiabatic and
adiabatic spin-transfer torque determines the pararjetenon-adiabaticity

o 1 o h o Tsd
Y7+ 2Jsdr+ 274
Tsd {1 1 2

==|=+—4+—]. 5.163
4 <7’T + Tl + Tsf> ( )

The expression for the degree of non-adiabaticity in Eq. (5.163) is reremti®fMatthiessen’s Rule
except that the degree of non-adiabaticitis not an ohmic resistance but a measure for spin relax-
ation. [76, 117, 188] The additivity of single relaxation times that appeauimuodel reflects the
statistical independence of the individual sources of scattering thatlmae to the degree of non-
adiabaticity. All sources of spin-dependent scattering contribute in @al @gnner. The strength of
the degree of non-adiabaticity solely depends on the relaxation times anaohttioes collisions. It is
not affected by the band structure.

For equal up and down relaxation times= 7!, ¢ reduces to

¢ T (1 N 1) . (5.164)

T Tsf
For metallic films, usually the relatior; > TT, 7t holds and one can neglect the spin-flip contribution

to the degree of non-adiabaticify
The local non-adiabatic torque is obtained by inserting the result (5.1&2).i(5.141)

Thon-ad ) = :}ZﬂM( ) X (ﬁggwp)M(F). (5.165)
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5.4.2.3 Conduction coefficient for the spin-current tensor

The definition of the spin-current tensor is given in Eq. (5.5). Solely téhaisare even in the velocity
Uy survive the momentum integration. As a consequence the equilibrium pére afpin current
vanishes

Jeq(7) = 0, (5.166)

and the spin current is entirely determined by the collinear non—equilibriunpooentgm(ﬁ)

. 3k o
ned ) = 1o [ G557 @ 95 (B ()
Bk eT+Ts (PTs — T¢) I
Pry — .,
_ <_6/J'B7_+TS( 7—82 TC)) E®1ﬁ(f’)
TeTy — T
= %jspin@ T?L(F) (5.167)
The spin current is given by
jspin = UspinE, (5.168)

with the definition of the spin current conductivity

2175 (P — 7¢)
Ospin = — o 2
cl+ TS

e’nret [(1+ P)7l — (1 — P)Tl]

= . 5.169
m(7! + 7 + 27¢) ( )

In contrast to collinear magnetotransport, the spin current is no longectanbut a tensor with a
direction of flow and a direction of polarization. However, in spatially slovdyying magnetization
textures the spin current from collinear magnetotransport coincides véthdimponent parallel to
the local magnetization in the spin-current tensor (cf. Eq. (5.74)). All limitages for the spin
current in the two-current model are thus valid for the spin-currersioieim spatially slowly varying
non-collinear magnetization textures.

The spin-current tensor in Eq. (5.167) flows in real space in the diregfithe electric field and points
in magnetization space in the direction of the local magnetization. This is exgemtethe adiabatic
approximation. [56, 96, 97] Due to the pairwise cancellation between fdrarad backward moving
spins, transverse components are absent in the spin-current t&asbe cancellation is exact within
each band, this result should not be affected by realistic band stre@ndeintraband scattering that
we do not consider within this thesis. [56] Our result for the spin-caremsor in Eq. (5.167) thus
confirms the conjecture that in the adiabatic approximation the polarization spiheurrent tensor
points along the local magnetization. [5, 52] This is an essential justificatahjsafeature has been
introduced by hand in the phenomenological diffusion equation of Rgfh{h serves as a key ingre-
dient for the computation of the non-adiabatic spin-transfer torque. [65]
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Figure 5.6: (Color online) Diffusive spin polarization of the electric cotreoncerning the spin-
transfer torque in dependence of transport regjmesq/7. and anisotropy of scattering= 7' /7!
for st = 11072 s andrsg = 4.136 - 1071 s.

5.4.3 Spin polarization of the current

The microscopic expressions for the charge conductivity in Eq. (54r3dthe spin conductivity that
determines the transverse spin current in Eq. (5.153) allows the determioétioe diffusive spin
polarization for the spin-transfer torque according to

girans

F’j — spin 7§ Ospin . UT - O-i —. Ppoll. (5170)

Ocharge  Ocharge ol +ol J

The diffusive spin polarization in Eq. (5.170) constitutes the appropréat®if to convert the charge
current into the transverse spin current that is responsible for tharspisfer torque (cf. Eq. (2.10)
and (2.15)). We note that the diffusive spin polarization in Eq. (5.17@)chvserves to convert the
charge current into the transverse spin current in the phenomendltugcay of Ref. [5], do not
coincide with the common definition of the longitudinal spin polarization of the tuwwenit model
Pj°°” = (ol — o) /(o1 + 1) valid for collinear magnetotransport in monodomain ferromagnets (cf.
section 5.2). It is the transverse spin currest (fggip,S) that constitutes the spin-transfer torque in
non-collinear magnetization textures and not the longitudinal enesgin = (aT — al)) as given by
Eqg. (5.169). We note that for spatially slowly varying magnetization texturedatigitudinal spin
polarizationPf! = P}ong coincides with the collinear spin polarization.

Figure 5.6 depicts the diffusive spin polarization in dependence on tlzeneters) = 75q/7. that
characterizes the transport regime and the anisotropy of scatteriagr' /7!. The diffusive spin
polarization of the current increases by increasing the anisotropy irethration times3 and by
decreasing the transport regime n — 0 corresponds to an enhanced splitting Jsq4 — oo and
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enhances the polarization of the electric current as it concerns th@draasspin current. The de-
pendence of the diffusive spin polarization on taksplitting Jsq is a new feature that is absent in
collinear magnetotransport. At this point we just note that 1 corresponds to ballistic spin trans-
port, whilen > 1 characterizes diffusive spin transport (cf. section 5.5.5.2 for a detditzussion
of this point). Experimental values gfread for Py (=NdpFex): Bpy ~ 7.67. [189] The parameters
employed in Fig. 5.6 are chosen such that the spin polarization agrees gétit experimental data
P; ~ 0.4 for Py. [190]

5.4.4 Summary

The main result of this section is the consistent derivation of the spin-tnratfjue from a micro-
scopic theory that starts with the Hamiltonian as expressed by Eq. (5.16)e@ation confirms that
the non-adiabatic spin-transfer torque is a generic feature in non-@lin@gnetotransport. The full
spin-transfer torque in spatially slowly varying magnetization textures is tineo$the adiabatic and
the non-adiabatic spin-transfer torque and given by

7_"STT = 7_"ad + 7_"non—ad

Vi T(7) x (7TaNSS ) W7 (7 £ oo o ranss
= —JESM (7) % M () x (JepnNz) M (7) - :]DQM(T) X (JeanN ) M (7). (5.171)

s

Their constituting transport coefficient is the transverse spin condiyctinat determines the trans-

verse spin current via the relatiéﬁ’ﬁﬂsz agggf

trans __
spin —
862n(77)2(7l)27§’f [(1 + 1’3)7'T - (1- P)Tl]
m(T! + 74+ 27f) (T2q7sim ! (1sm! + 27 (76t + 271)) + 72472 (st 4 271)2 + 16(71)2(71)272))
(5.172)

Furthermore, our model allows for a determination of the degree of niafatitity in terms of mi-

croscopic scattering times
1 1 2
=102 4~ 4 7). (5.173)
4 \ 1 7L 1y

All sources of scattering contribute to the degree of non-adiabaticity i(BELZ3) due to the spatially
vayring magnetization that causes a twist of the spin channels. Up to fasalsgradients in the
magnetization, the spatial and the energy dependence of the distributaiofufactorize in spatially
slowly varying magnetization textures. The factorization results in fourledlalgebraic equations
for globally defined non-equilibrium functions that completely deterraitiabaticmagnetotransport.
The separation in a global spin-up and spin-down channel that wefbawe in the equilibrium
case (cf. section 5.3.1) is also present in non-equilibrium. In the presgnan electric field the
local magnetization of the conduction electrons acquires two transveqdeitty non-equilibrium
components in addition to the usual equilibrium component. Thus, in addition tepitheup and
spin down channels of collinear magnetotransport (cf. section 5.2), xwa, dransverse channels
emerge in non-collinear magnetotransport. They are global in the seridbehisspatial direction
is distinct perpendicular to the direction of the local magnetization while their imagnremains
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spatially constant.

In summary, we find thaadiabatic non-collinear magnetotransport can be described in terms of a
four channel modelThe physical significance of the individual channels is the followingilgvine
spin up and spin down channels are responsible for the Ohmic conduetidtyhe spin current, the
two transverse channels give rise to the adiabatic and the non-adiabaticagysfer torque. In this
framework the adiabatic as well as the non-adiabatic channel arisda@lyerom the twist of spin
channels in the presence of a spatially varying magnetization texture. \jgé thdocurrent-induced
torque picture (cf. section 2.3), where the transverse magnetization cbtigeiction electrons exerts
a torque on the local moments and the identification of the transverse chaithetlse spin-transfer
torques stems from directional mismatch. The difference in modulus of thediabatic and the
adiabatic channel defines the degree of non-adiabaticity, whose onidimagnitude are currently
under hot debate in the magnetic community.

5.4.5 Conclusion and comparison with results of the literaire

In this section, we discuss the results concerning the spin-transfeetorgpatially slowly varying
magnetization textures as obtained in this section and contrast them with résh#diterature. Ta-

ble 5.1 presents a selection of the most prominent results of the literatureatbalbioed the degree
of non-adiabaticityt and the methods that were employed for its derivation. The third column of Ta-
ble 5.1 specifies, whether the authors employed a localized or an itineraet aiddrromagnetism.
Zhang and Li [5] employed a phenomenological macroscopic diffusioatean that does not allow
for the computation of transport coefficients. By physical intuition, theyeitkto a phenomenolog-
ically introduced spin-flip relaxation time. Tserkovnyak, Skadsem, BrataskBauer [53] linked

to a phenomenologically introduced transverse spin-relaxation time. Kohtera] and Shibata [54]
and Duine, Naez, Sinova, and MacDonald [55] employed the same microscopic impurityl mode
consequently derived the same expressiog f@ue to their full microscopic approach they were able
to separate the spin-relaxation timginto transverse and longitudinal parts. A symmetric treatment
of the scattering rates reduces their result to those of all other authitihsther exception that their
relaxation time is a mix of transverse and longitudinal spin relaxation.

As already discussed in section 2.3, Zhang and Li [5] introduced phenologically a relaxation
time 74~ that served as a mechanism to relax the transverse magnetization of thetimmelec-
trons to the local magnetization. Their phenomenological macroscopicaghpdid not allow them
to specify a microscopic process responsible for the relaxation. Quit ne€q. (5.163) relates their
phenomenological spin-flip relaxation time to the spin-conserving, momentarat®n times- ', 7t
and the momentum conserving, spin-flip relaxation titgdamiliar from collinear magnetotransport

(cf. section 5.2)
1 1/1 1 2
—r == ( 4+ — + ) ) (5.174)

T4 A \rT T g

A central result of our derivation is that either processes that comserdo not conserve the mo-
mentum contribute cumulatively to the total relaxation of the transverse magi@tizacording to

relation (5.174). [190] Expressed in more technical terms, all relaxatiotepses that reside in the
charge subspace contribute in the net result to the relaxation of thedraaswagnetization of the
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Table 5.1: Comparison of the result for the degree of non-adiabaticitjifferent approaches.

author | method | model| ¢ | comment / microscopic origin

Zhang, Li [5] phen. spin-| loc. N spin-relaxation of conduction electrons
continuity £ = %S? due to spin-flip scattering
eq.

Tserkovnyak, LDA kinetic | loc. N phenomenological spin-dephasing time:

Skadsem, equation §= T%d transverse spin relaxatiagp /

Brataas, and & = aLpa

Bauer [53]

Kohno, Tatara, microscopic | loc. N spin-relaxation modeled by quenched

and Shibata [54] (imag. time &= %Td magnetic impurities, fully quantum me-
methods) chanical calculation /

spin-dependent scattering# «
Duine, Nihez,| microscopic | itin. | same as same impurity model as Kohno et. al.|/

Sinova, and Keldysh Kohnoet.| £ # «
MacDonald al.
[55]

conduction electrons. In this sense spin-independent as well as eypémdient impurity scattering
contribute to non-adiabaticity due to the non-trivial spin-structure of thigildision matrix. There
exists a lot of confusion about this point in the literature. The reason ferstams from the ab-
sence of a consistent terminology with respect to scattering in non-collimegnetization textures.
This rests on a subtle reasoning. In collinear ferromagnets there exigind®s of scattering: spin-
conserving and spin hon-conserving scattering. On the contraryatraby varying magnetization
textures the wavefunctions of the itinerant electrons do not belong to agginstate and therefore
the spin channels are generically mixed. [63] Since the spin is not a g@wdwim number it is mean-
ingless to distinguish between spin-conserving and spin-flip scatteringiieaiinear magnetization
textures. However, our conclusion must therefore be: As long as titeiction electron does not pass
the spatially inhomogeneous magnetization texture ballistically (without scattetfiegnicroscopic
origin of non-adiabaticity rests on the intrinsic twist of channels in non-callimeagnetization tex-
tures due to the magnetization twist (cf. section 5.5 for a detailed discussioms & a gauge field)
and does not depend on a special kind of impurity potential. Thus, nibésng at spin-flip impurities
alone, but all kinds of scattering contribute in a statistically independent enaomon-adiabaticity
due to the twist of spin channels. The intrinsic twist of channels has bestooked thus far. In this
connection, non-adiabaticity appears as a general property of ér@eswnagnetization dynamics that
does not rely on the specific nature of the impurities, whereas the strentjih won-adiabaticity is
determined by the kind and concentration of the impurities.

In the absence of spin-flip scatteri6geduces to the expression

lim ¢=—2% "1/ (5.175)
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and is thus still finite. The result in Eq. (5.175) contrasts the conjecturghtbgiarametef is due
to spin-flip impurities alone. [5] A fact that becomes in particular apparelivatemperatures. At
low temperatures no scattering at spin-flip impurities takes place-(0, 1/7ss — 0) [98], whereas
1/75 # 0 stays finite due to the spin-conserving intrachannel scattefing' that does not vanish
in the limit of low temperatures. The physical reason for a vanishjng at low temperatures is that
the scattering at the weak spin-orbit potentials leads to an almost zero maarofiéhe scattered
wavevectori’. At finite temperatures, the non-zero value f@r is ascribed to spin-flip scattering at
magnons that partly conserves the momentum. [98] Scattering at spin-flipifilepafso contributes
to non-adiabaticity but was shown in this work not to be the sole ingrediehtieast for clean
transition metals to be of minor importance.

Vanhaverbeke and Viret pointed out that the existence of a non-dididbeque requires that the
total spin comprising conduction electrons and local magnetization is nogew@us [22] To fulfill
this condition the transverse spin-flip scattering eveéfs must not conserve the total magnetiza-
tion. The microscopic condition for this is that the total scattering Hamiltonian doesommute
with the total spin of the conduction electron. Due to the non-trivial spin stramf the distribution
matrix and the collision integral (cf. section 5.1.3) this condition is always fulfile soon as the
magnetization texture is non-collinear. In this sense, the appearancenoirtfagliabatic spin-transfer
torque is generic and does not depend on the details of scattering, asltregspin of the conduction
electron is properly taken into account. Our result for the non-adiahaitietsansfer torque is thus
in agreement with the arguments presented in Ref. [22]. Note that thediaoa#ic spin-transfer
torque would be absent if we assume conservation of the total spin-amgoiaentum and compute
it from the divergence of the spin current in Eqg. (5.167). [51, 958 mhcessary ingredient for a finite
non-adiabatic component of the spin-transfer torque is impurity scattasrtge conduction electron
does not traverse a mesoscopic ferromagnet without collisions.

Tserkovnyak, Skadsem, Brataas, and Bauer [53] claimed that traesspin relaxation is the mi-
croscopic process responsible to relax the transverse magnetizatianaafritiuction electrons. We
showed without introducing any additional transverse mechanism to refamagnetization of the
conduction electrons [98], for instance by means of spin-orbit interastithat longitudinal relax-
ation alone suffices to explain the appearance of non-adiabaticity due ist aftthe spin channels in
non-collinear magnetization textures. We do not consider transversatiets though it would also
contribute tag in our model. In this sense transverse spin relaxation is not the microsaugirc of
non-adiabaticity.

Xiao, Zangwill, and Stiles questioned in general the existence of a nobaiiacomponent of the
spin-transfer torque due to a relaxation of the non-equilibrium transvaegynetization of the con-
duction electrons toward an alignment with the local magnetization. [56] Henveven though the
phenomenological mechanism of Ref. [5] can be doubted, the appeashthe non-adiabatic torque
takes place on equal ground with the adiabatic torque and thus is geneudcapmroach. Through-
out their calculation, Ref. [56] employed the spin-resolved Fermi distribsitidrcollinear magneto-
transport and thus did not take properly into account the twist of the $@innels in non-collinear
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magnetization textures due to the non-trivial commutation relations for the spin.

Finally, we compare our result for the conductivity of the transverseapiient as given in Eq. (5.154)
with the different microscopic approaches of Refs. [54, 55]. To thisrgitewe focus on our re-
sult in the case of vanishing spin-flip scattering as given by Eq. (5.18Bi7)his case our result in
Eqg. (5.157) reduces to 1/2 of the result of Zhang and Li [5] with the gtkae that the relaxation
mechanism is dominated by spin-conserving and not spin-flip impurities.réicggdy, our degree of
non-adiabaticity is then given by Eq. (5.175). A comparison with the exmesf Eq. (23) from
Ref. [54] identifies their microscopically calculated spin up and spin dolexa&on times with ours.
Nevertheless, the spin coherence factor that we discussed in detaitions®.4.2.2 is absent in the
results of Refs. [54, 55]. This is not surprising as their calculations gregla perturbative treatment
with respect to a gauge field and this approach restricts the validity of tHeulatons to the regime
of ballistic spin transport. [58] For isotropic impurities the result for the degsf non-adiabaticity
of Ref. [54] agrees with ours with appropriate modifications of notationlse duthors employed
a quantum mechanical impurity model that allows for a microscopic calculatidheofelaxation
times. In the absence of isotropic impurities a striking difference arises bpnttlieir and our results:
While their result for¢ is proportional to the difference in spin up and spin down relaxation times
and spin-independent impurity scattering drops out of their expressigndur result is proportional
to the sum of spin up and spin down relaxation times (cf. Eq. (5.163)) andrirdepends on spin-
independent momentum relaxation. Moreover, in contrast to our resutiutheme of Refs. [54, 55]
provides the possibility of negative values fodue to spin relaxation dependent on the kind of im-
purities. In spatially slowly varying magnetization textures negative valugsané experimentally
not reported up to date. The main concern with the methods as adoptedyF3eb5] is that they
performed a perturbative expansion around a homogeneous magnatiZéim® interesting question
is, whether they missed some important physics, for instance non-adiabatictynparison with an
expansion around an inhomogeneous magnetic equilibrium configurati®]. Ve note, however,
that a repetition of their calculations in an adiabatic spin frame for the condueksztrons raised
some unresolved questions in the case of anisotropic impurities. [57]

At last, we like to make a few comments about the value of the degree of nalpadidity itself. The
determination of its value is crucial for the experimental understandingroérmsinduced magneti-
zation dynamics and currently hotly debated. [5, 53-55, 101] For a leriggh¢ has been estimated
to equal the Gilbert damping (for permalley ~ 0.01 [72]). Recently, some experimental values
for permalloy of¢ =~ 0.01 — 0.1 have been reported. [102—-109, 191, 192] This differs by onerorde
of magnitude. However, our derivation shows that for general spasikiyly varying magnetization
texturest depends inversely on the spin-conserving relaxation time that is usualbyrdeeof magni-
tude smaller compared with what is usually assumed for transverse spiekdiiation times. [5] This
finding is in accordance with the experiments that fogrd be about one order of magnitude larger
thana. [104, 105] In this context, we note in passing that a recent publicatiomoges to measure
the degree of non-adiabaticity for the case of a magnetic vortex. [165]pfésented measurement
scheme allows the determination of the degree of non-adiabaticity from the dgfiéction of the
vortex core, which facilitates an accurate determinatiofy ¢fowever, in section 5.5 we will see that
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there are two different contributions to the degree of non-adiabaticitytiss from different origins.
On the one hand a finite non-adiabatic component originates from spiratielaof the transverse
magnetization of the conduction electrons and can be regarded as antonsterial parameter as it
is independent of the actual magnetization texture. This case is dominattiallgpslowly varying
magnetization textures and has been discussed in this section. On the olthef ban drastically
increase in narrow domain walls due to the non-adiabaticity as introducecekstringly varying
magnetization texture (cf. section 5.5 for a detailed discussion). Keepinmthimd, it is not that
astonishing, that the experimental resultsfaary by one order of magnitude, as it is up to date not
clear how to separate both contributions in experiments.

At this point of the discussion, we like to make a statement concerning the refmtioveert and the
Gilbert dampingx. £ anda are the dissipative parameters that enter the generalized Landau-Lifshitz
Gilbert equation (4.2) and the ratfg'« determines the terminal velocity of domain-wall motion. [5]
Moreover their relation is of high interest as= £ allows for peculiar magnetization dynamics. The
equality causes Galilean invariance at a macroscopic level and allowsefdrithof static magneti-
zation patterns. [53, 55, 101] Thus some authors claimdhat¢ holds [53, 101], while other found
that an equality is not a general property but occurs only accidentallggnific models. [54, 55]
Though the here presented formalism is also capable to discuss the refation mon-adiabatic
component of the spin-transfer torque and Gilbert damping we do nstetthis throughout this
thesis for the following reason: Transverse magnetization of the conduslgatrons and thus the
spin-transfer torque is purely a non-equilibrium feature. On the othad btize Gilbert damping is
primarily an equilibrium phenomenon & 0), though it will surely experience a renormalization in
non-equilibrium. [5, 47, 51] In our opinion, a computation of the renormabras useless without
identifying a microscopic expression for the equilibrium value. Accordinglycannot contribute to
the controversy about the relation @fand¢, as we only computé in this thesis. But we want to
mention here that our result supports the experiments for permalloy [D84 tHat founda # £ in
general. As all kinds of scattering mechanisms contribute dae to the twist of spin channels, an
equality of¢ anda seems to be rather unlikely. The potential disorder breaks any relatioedmdw
and¢ at the macroscopic level. [155] Recently, experiments in permalloy wirescapih vanadium
find that the doping concentration affects the valug lofit has no effect on. [190] This experimental
finding supports the arguments that arguesfef £.
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5.5 Local spin-transfer torque and resistivity within a domain wall

This section is devoted to an analytical solution of the general kinetic equatih) for the particular
case of an one-dimensional domain wall. A perturbative expansion in thaidewall width allows
for an analytical solution of the kinetic equation. The individual orderexpiansion exhibit a clear
interpretation in terms of physical processes. Thus, the perturbatatenteat results in an unifying
perspective of the complex physical mechanisms that are involved inagitmear magnetotransport.
The zeroth-order solution is the bulk solution of a homogeneous monodomfaariirst-order correc-
tion yields the transverse magnetization of the conduction electrons thaitetmssas a counteraction
on the local magnetization the spin-transfer torque. The second-aidéios yields a correction to
the charge current and gives thus rise to an intrinsic domain-wall refistihile the spatial mod-
ulations of the longitudinal component of the conduction electron magnetizatgoresponsible for
momentum transfer. It turns out that in spatially strongly varying magnetizéixires it is spin
mistracking, i.e., the inability of the of the conduction electron spin to follow thed Imegnetization
that gives rise to a contribution to the non-adiabatic spin-transfer tongqdeets as the source of
domain-wall resistivity and momentum transfer.

In mesoscopic ferromagnets, a domain structure consists of regions in thkimagnetization points
in different spatial directions. A domain structure is energetically moreréole compared with a
monodomain. This is due to the long-range demagnetization energy thabme=rén specimens of
considerable spatial extensions the short-range exchange enbgyolindaries between individual
domains provide a smooth change of the spatial direction of the magnetizatienhdmogeneous
domains are separated by topological defects, domain walls, where thetmatjon changes contin-
uously. A domain wall modifies the electron transport due to its spin structgrésahus a prime ex-
ample of the research field of spintronics, where charge transpoféced by the spin degree of free-
dom of the electron and vice versa. Even a single domain wall exhibits arsiotnragnetoresistance
and the determination of its strength and sign attracted a lot of interest. [3163,183, 185, 193—
216] Up to date, the problem of domain-wall magnetoresistance is not ultimatebds particularly
with regard to the sign of the resistivity correction. [16]

In specimens that are smaller compared with the typical size of a domain(f),G magnetic field
sweep will result in the nucleation, depinning, motion, and subsequeittilation of few disjoined
domain walls. Providing that domain walls exhibit an intrinsic magnetoresistivigyjnttidence of
single domain walls results in discrete jumps in the measured resistivity. In buliles these tiny
jumps are hard to measure, since the contribution of many domain walls will masksleevation
of single domain walls where the low field magnetoresistance simply reflects thainl@onfigu-
ration. [207] It is worth noting that recent progress in the processidgntdogy of nanostructures
enables the fabrication of samples that contain single narrow domain wa&l|s21¥] For instance,
the short linear walls for that we analytically calculate the spin-transfeu¢oig section 5.5.5 are
expected to be present in nanometer-sized constrictions [218-22@xpedmental investigations
of linear domain walls already take place. [221] As addressed by R28],[2 geometrically con-
strained linear wall differs from the usual Bloch or Néel wall and ttemeetonstitutes a new kind of
domain wall. However, in ferromagnetic materials with strong (perpendical@sptropy, the pre-
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dicted domain-wall width is solely a few nm. [222] In this sense, the presafint@row domain walls
in this class of materials is generic. An efficient current-induced displacemenarrow domain
walls that cannot be explained with small values of non-adiabaticity hasrbeently reported. [223]
For ferromagnets without strong anisotropy the domain-wall width candwecesl by reinforcing the
shape anisotropy [212] or by a trapping of the domain wall in a curremfifeed-path geometry [224].
Furthermore, narrow domain walls appear in hano contacts. [25, 280,22B] Here, the width of
the domain wall can be varied by means of the length of the constriction. Howfey atomic scale
domain walls where the conductance is quantized precession of the tiondelectrons is forbidden
due to vanishing transverse spin expectation values. [226]

In narrow domain walls the precession lengghsq of the spins of the conduction electrons approaches
the domain-wall width\. Furthermore the spin relaxation lengtar. is usually of the same order.
The interplay of these three length scales promises non-classical fedtied¢o the quantum nature
of the spin of the conduction electron spin. Accordingly, a comprehertditine interplay between
current and domain walls that are of intermediate width is a current issue.

The perception that a domain wall alters the electron transport propedaties back to 1973. [193,
194] The same year also noted the proposal of the influence of spirizeal@urrents onto the mag-
netization dynamics. [35] Since the beginning there are two communities, whey &itus on the
influence of domain walls on the electronic transport (the phenomenomdfiction modulation) or
on the influence of the current on the domain wall (domain-wall motion), afthdnoth phenomena
are but different aspects of the mutudlinteraction. This separated treatment somehow obscures the
intimate relation of both effects, though they can be considered as beingérteeeach other. In a
preceding section of this thesis, we developed a semiclassical transpoeivork that treats electron
and spin transport on equal footing. The formalism keeps the conduglgoiron’s spin degree of
freedom fully quantum mechanically while it treats its spatial and momentum eegfefreedom
quasiclassically. In this section, we apply our formalism to a Bloch wall alalilede the spatially
resolved spin-transfer torque, domain-wall resistivity and momentumfégnranghin the same frame-
work. Our perturbative treatment connects both aspects ofdheteraction mentioned above. In
particular, they are identified as mutually causing each other. This prowidasiral interpretation of
the involved physical processes. It turns out that the treatment ofemboparge and spin transport
offers startling insight in fascinating physics in an intermediate transpgirheethat comprises diffu-
sive charge transport and ballistic spin transport at the same time.

This section is organized as follows. First, we give a survey of the literednd review the re-
sults for the domain-wall resistivity in section 5.5.1 and the spin-transfeuéoirgsection 5.5.2. In
section 5.5.4 we derive a non-equilibrium kinetic equation for generablomensional domain wall

profiles. Section 5.5.5 is engaged with a perturbative analytical solutioa fimear domain wall

profile. The perturbative approach provides the calculation of thetspisfer torque, the domain-
wall resistivity and the momentum transfer in the regimes of ballistic and diffusgin transport and
enables us to analytically study the crossover between the regimes.
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5.5.1 Domain-wall magnetoresistance

Thus far, the magnetoresistance observed in bulk ferromagnets is welistiood in terms of magne-
toresistance effects, such as the anisotropic magnetoresistance48}@r the ordinary magnetore-
sistance [205-207]. In macroscopic bulk samples complex domain corftgiwaccur where the
magnetization changes slowly and it is sufficient to consider the influenite @iverage magnetiza-
tion on the electron transport. The situation changes in mesoscopic, lowslonahscenarios, where
the magnetization varies spatially more rapidly in narrow, single domain wall®, lttex interaction
of the spin of the conduction electron with the spatially varying magnetizatiorsdherelectronic
transport properties significantly.

In this section we will shortly mention some of the most important results on domalinresgistivity.

A extensive review is given, for instance by Ref. [16]. The firstexkpents that demonstrated domain
walls to be a source of electrical resistance have been performed ontiiskers in 1968. [227] The
first studies of intrinsic domain-wall resistivity date back to 1973, wherer€a and Falicov stud-
ied electron transport through a sharp domain wall in terms of tunneling, %] They found an
exponentially small magnetoresistance due to the backscattering of the mdeatitbe domain wall.
Berger invented a classical model that proposed a domain-wall resistiatyo scattering of the con-
duction electron with the wall. [3] Based on their investigations, domain walls width& exceeding
the Fermi wave-length > k;l have been considered for a long time to be negligible with respect
to electron transport in transition metal ferromagnets and this view chamigdegently. [211] Ow-
ing to the progress in the fabrication of nanostructures, the discovaéhgeafiant magnetoresistance
effect [17, 18] stimulated new experiments concerning the intrinsic domaihr@sistivity. The first
direct observation of electron scattering at ferromagnetic domain walls @edcomitant enhance-
ment of the resistance in the presence of domain walls dates back to 109 Reference [201]
investigated striped domain walls in thin-films of cobalt with domain-wall width tocdlaogaccount
for quantum mechanical reflections. This investigation has induced aredneterest of theoreticians
in the topic. Tatara and Fukuyama employed a diagrammatic technique to compdtertam-wall
resistivity. [111] They predicted a negative domain-wall resistivity duguantum effects, i.e., the
destruction of weak-localization of the electrons by dephasing. The donaimestroys the inter-
ference among the electrons and thus contributes a negative quantegtioorto the resistivity that
can overcome the classical increase due to reflections of the conduletitrors at sufficiently low
temperatures. [228] Levy and Zhang calculated the twist-induced tiomeaf the spin eigenstates
in the presence of a domain wall and found a positive domain-wall resistivigyto spin-dependent
impurity scattering. [63] Van Hoof et al. computed the domain-wall magnettaesis in the ballistic
limit with various methods. By first-principles calculations they found that reéalisnd-structures
enhance the domain-wall magnetoresistance by orders of magnitude.e,Heedomain wall geo-
metrically trapped in a nanostructured point contact can enhance the towgEtance up to 70
due to its small domain-wall width. [195] Brataas, Tatara and Bauer gerestdhe calculations of
Ref. [111] to asymmetric impurity scattering lifetimes and screening of the donaipatential and
obtained qualitatively similar results. [196] Based on a semiclassical treataeiorkom, Brataas
and Bauer considered diffusive transport and calculated the eledémsities in the presence of a
domain wall. [183] They found that a modified magnetization by the redistribatighe electrons
between the majority and minority channels causes the domain-wall resistivigyoditive or nega-
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tive depending on the difference between the spin-dependent saatifsiimes. Simanek and Rebei
performed a gauge-transformation on the Hamiltonian level and subgssoderived a kinetic equa-
tion that served for computing an intrinsic domain-wall resistivity by meansefékulting macro-
scopic equations. [185, 197] They traced back the origin of domainresibtivity to a quenching of
the spin accumulation in the presence of the domain wall due to the rapid tremgrecession and
predicted an oscillation of the resistivity with the domain-wall width. [197] Heeveobjections arose
that their kinetic equation contains a term that violates particle number catiser{198] Dugaev et
al. took into account the interaction between the conduction electrons kndbatad the modification
of the spin and charge distributions due to the domain wall, the relaxation timesllaasixcharge
and spin conductivities. [199] Bergeret, Volkov and Efetov derivédghatic equation and solved it
in the diffusion approximation for either small or wide domain walls. [198] A Ksldapproach that
does not suffer from a phenomenological introduction of relaxation tirasgécently been given in
Ref. [200]. They obtained similar results as Ref. [196].

It is of experimental evidence that a domain wall contributes either an efinaesistance, that cor-
responds to a positive intrinsic domain-wall resistivity [201-203, 212, 215, 216] or a decrease in
resistance, that corresponds to a negative intrinsic domain-wall rdgi$204—210, 213]. All theo-
retical attempts that calculated the intrinsic domain-wall resistivity found pesitivrections except
for Refs. [111, 183, 200]. Reference [111] traced back the oa§imegative domain-wall resistivity
to the dephasing of the conduction electrons leading to a breakdown &flaesization. This is a
low temperature effect and cannot explain the observed negativearesis at ambient temperatures
(cf. [205-207]). Thus, Refs. [183, 200] provide the sole expiana of negative intrinsic domain-wall
resistivity at ambient temperature. While Ref. [183] claimed that the origiregative domain-wall
resistivity is associated with the kind of impurities and thus links negative dowalinresistivity
to spin-dependent impurity scattering, Ref. [200] pointed out that a tieaband structure can also
lead to negative domain-wall resistivity. If the band structure is the dominatffegt, first-principle
band-structure calculations are needed to clarify whether a materialtexhipositive or a hegative
domain-wall resistivity.

5.5.2 Spin-transfer torque versus momentum transfer

The first proposal that an electric current exerts a force on a donadirand causes its motion goes
back to the early seventies by Berger. [2, 3, 35] The experimental dgration of current-induced
domain-wall motion dates back to 1985. [229, 230] It lasted almost twentyéaes from Berger’'s
pioneering work [35] to the proposal in 1996 independently by Slonskejt4] and Berger [15]
that the spin-transfer torque is established as an important effect in theetittagommunity and
thirty years to the first experimental observation of the spin-transfenéoeffect [231]. Since then a
variety of theoretical attempts aimed at establishing a tractable theory of thapafier torque. The
theoretical challenge of computing the interaction of electrical currentt@derromagnetic order
parameter is that it constitutes an interesting non-equilibrium transpotepnob

Tatara and Kohno presented a self-contained theory of current agietieation and compared the
limiting cases of domain-wall motion due to spin-transfer torque and momentusfigrad9] Waintal
and Viret considered ballistic transport and computed a spatially oscillatimgdiabatic torque due
to the Larmor precession of the conduction electrons around the locaketieagion. [172] The non-
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local oscillatory torque is of quantum origin and arises from the non-ataty that is associated
with the finite width of the domain wall. Zhang and Li proposed a general yhafthe spin-transfer
torque with constant transport coefficients for spatially slowly varying metigation textures. [5]
Xiao, Zangwill and Stiles found by numerical calculations a non-local ®that becomes significant
in narrow domain walls. [56] Their results casted doubt on the existentteeafon-adiabatic torque
as proposed by Ref. [5]. Vanhaverbeke and Viret studied analytiaatiynumerically the evolution
of the spin of the conduction electrons when passing a domain wall by méangusely classical
time-dependent Larmor equation. [22] They found the non-adiabatietigmsfer torque about one
order of magnitude larger compared to the general value of Ref. [5] f@lidvide domain walls.
Moreover, they reported on oscillations in the non-adiabaticity with a concotrstgn change for
narrow walls. Taniguchi et al. extended the worlGifanek and Rebei [185, 197] and calculate the
local spin-transfer torque within a domain wall in the diffusive approximabiypeolving macroscopic
transport equations. [232] By considering the macroscopic transgortions of Ref. [185, 197],
they restricted themselves to the regime of diffusive transport and do keotrteo account possible
quantum coherence effects in the spin sector. In accordance withi2Rgfthey found that the non-
adiabaticity enhances about one order of magnitude in narrow domain Wailtswart and Egger
derived classical Bloch-Redfield equations by taking into account sfaxation due to a Caldeira-
Leggett bath. [233] This enabled them to calculate higher-order spisféatorque terms that they
show to be responsible for a shape-deformation of the domain wall.

5.5.2.1 Phenomenological explanation of the spin-transfer torquena the momentum transfer
effect

There are basically two mechanisms that cause current-induced domameatian: spin-transfer
torque and momentum transfer. Both mechanism dominate in different regimesraing the width
of the domain wall: In the regime of narrow walls, for instance at sharp axted such as giant mag-
netoresistance devices or point contacts, momentum transfer dominatieis. dase the domain wall
translates due to the reflection of the conduction electrons at the wall. Inrtiuegs the spin is pre-
served and no transfer of spin-angular momentum, i.e., no spin-trangfeetoccurs. In contrast,
in the regime of wide domain walls, the reflection probability for the conductiortrele is strongly
suppressed and the spin-transfer torque effect is predominant, tHeréomain wall translates due
to the transfer of spin-angular momentum between wall and conductioncgietMicroscopically the
transfer of spin causes spin-flips that take place in discrete unitsh&croscopically the conduction
electron magnetization precesses around the local magnetization ansl@émsgie on the local mag-
netization. Though momentum transfer and spin-transfer torque are derdgpinct phenomena in
their mode of operation, both phenomena occur at the same time in domain walterofiediate
width. Their relative ratio depends crucially on the geometry and on trainsgpmmeters.

In domain walls of medium width, spin mistracking of the conduction electron $pithe predom-
inant effect. The strong spatial variation due to the domain wall reducealifiey to track the
local moments. This results in an enhancement of the non-adiabatic spfetreorque. [22, 232]
Moreover, spin mistracking is responsible for a considerable domainregaditivity and momentum
transfer due to the mixing of spin channels in narrow domain walls. [63].spireof the conduction
electron cannot follow the local magnetization and gets scattered by the wall.
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Figure 5.7: (Color online) Sketch of a transverse domain wall (Bloch wiall)e( region) enclosed
between two homogeneous adjacent domains (green regions).

We define the degree of spin mistracking by the relevant transport penanagecording to
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(5.176)

Here, vg is the Fermi velocity\ is the domain-wall width andsq = 1/ Jsq is the precession time
associated with thed interaction. According to Eq. (5.176) the degree of spin mistrackiigyde-
termined by the ratio of the rate of the rotation of the local moments within the domdiyand
the precession frequency of the spins of the conduction electrondtbariocal momentssy. For
a given exchange interactiofyy, the degree of spin mistracking is entirely determined by the width
of the domain wall. Wide wallsX — oo) correspond to small values of spin mistrackipg< 1).
This is the adiabatic limit, where the spin of the conduction electron resides in itsitpajominority
spin state during its traversal of the domain wall and no mixing of spin chanoelss. Narrow walls
(0 = 1) constitute a more abrupt transition. Here, the ability of the conduction etesfiia to track
the local moments decreases until it cannot longer follow the local magnetizaiioa consequence,
the spin of the conduction electron resides in a coherent superpositioajofity and minority spin
states due to the strong magnetization twist. This condition characterizes tiagliatatic transport
regime, where spin mistracking dominates the magnetotransport.

To understand the involved magnetotransport within a domain wall and toagpreenomenologi-
cal explanation of what happens to the spin of the conduction electron priopagating through a
domain wall, we follow Ref. [172] and sketch their heuristic explanation ofsghia-transfer torque
effect. As depicted in Fig. 5.7, the model system of a domain wall can beedivido three regions.
Two homogeneous domains are connected by a domain wall of Iengthere the magnetization
changes continuously. An electron that traverses the domain wall initiallgshssin aligned with the
magnetization of the adjacent homogeneous domain. Due to the electric fielshhection electron
propagates through the wall.
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The parametep separates the adiabati¢ &« 1) from the abrupt caseo(>> 1) and characterizes the
predominant effect in both limits. In the adiabatic case-{ oo, o — 0) the conduction electron spin
starts and ends with the spin of the respective adjacent domain. Whendtrerelenters the domain
wall the local moments change slightly their direction and cause a small angledretiae conduction
electron spin and the magnetization. As a result of the small angle the spin cdridaction elec-
tron starts to precess around the local moments. The precessional motipeligrgposed to the drift
through the domain wall as induced by the electric field. If the spatial variafitime local moments
is slow enough the precession allows the spin of the conduction electrockdhialocal magnetiza-
tion. The precession frequency is set by henteractionwsg = 1/7s4. At the end of every period
of precession the electron has traveled a distanegf and is again aligned with the local magne-
tization. The precession stops by reaching the end of the domain wall Wigecenduction electron
spin is aligned with the magnetization of the homogeneous adjacent domain toltheDiging its
constant precession it covers a rotationr@nd looses quantum mechanically an angular momentum
of h. As a counteraction that relies on conservation of angular momentum, atofegual mag-
nitude and opposite sign is exerted on the local magnetization and the domainanslates by a
change of the local moments. The spin-transfer torque is a local pheparmagd the exchange of
spin-angular momentum between the wall and the conduction electrons $h#is i@ domain-wall
motion occurs locally. No momentum scattering with the magnetization texture taleesgnid no
domain-wall resistivity is present in the adiabatic limit as every electron paesedomain wall. A
sharp domain wallX — 0, o — o) constitutes an abrupt change in the magnetization texture, for
instance the anti-parallel aligned layers within a spin valve. In the abrupt linsitsrirall width of
the domain wall does not allow for a complete rotation of the conduction elesprion The different
band-structures of the anti-parallel aligned homogeneous domainsaraaffective potential barrier
that causes scattering of the conduction electrons. The spin eithes ghesdomain wall with no
change of its spin direction or is reflected by the domain wall. An abrupt wHlaet as a source of
extra resistance as it causes reflection of the conduction electronsefldation results in a transfer
of momentum between conduction electron spin and domain wall, which leadsifoaf the whole
magnetization configuration. This is the descriptive origin of domain-wall mati@to momentum
transfer. [49] Momentum transfer acts comparable to a magnetic field orothaid wall as a whole
and in this sense constitutes a non-local effect. [56, 59, 172, 191]

For an infinitely strongsd interaction.Jsg, N0 precession occurs and the spin of the conduction elec-
tron follows the local moments in perfect adiabaticity, such that no spin mistigaciccurs. In this
case the transfer of spin-angular momentum between the spin of the tondelectron and the local
moments is complete, in the sense that no dissipation occurs. In the pertdzdtadcase dissipa-
tion solely takes place in the sector of the local moments by means of Gilbert dardpfimgte sd
interactionJsq results in precession of the spin of the conduction electron around tHenooaents.
For finite Jsq the tracking is not perfect and the transfer of angular momentum betweespitis of
the conduction electrons and the local magnetization does not have to beetming some angular
momentum may be dissipated in the sector of the conduction electrons. Taéémanain sources of
spin-dissipation in the conduction electron sector: spin relaxation due toiljnpoattering and spin
mistracking due to a spatially strongly varying magnetization texture. [5, 2Zi2],Spin relaxation is
always present whether the spin of the conduction electron can folloWe¢aémagnetization adia-
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Chapter 5. Non-collinear magnetotransport

batically or not. Spin mistracking is a feature that arises from the strong rizagien twist and is
linked with a non-adiabatic traversal of the conduction electron througtiraw domain wall. How-
ever, all deviations from perfect adiabaticity (complete transfer of langmomentum) give rise to a
non-adiabatic spin-transfer torque and to a non-zero degree ahdiabaticitys. [5] For wide do-
main walls (. — oo) spin mistracking does not play a role and the non-adiabatic spin-transfieie
is entirely caused by spin relaxation. In the regime of narrow domain wallenwhe domain-wall
width approaches the precession lengih~{ 1), the fastsd precession of the conduction electron
spin around the spatially changing local magnetization does not preseraaghlar momentum. The
reason is that the spatial variations of the local mom#i{ts) become so strong that thé precession
frequency does not suffice to track the local moments. This implies a riabadit passage through
the domain wall. Here, the spin does not reside in its majority or minority spin statgesgijpiect to
the adjacent homogeneous domain during its traversal of the domain wallis loothtext the non-
adiabatic spin-transfer torque acquires an additional contribution due gp#itially strongly varying
magnetization texture that arises due to channel mixing caused by spin nirggrackis effect ob-
viously increases with decreasing domain-wall width and provides a dexxonribution besides spin
relaxation to the non-adiabatic spin-transfer torque in narrow domain wWéiéscontribution from the
spatially constant finite delay due to spin relaxation must thus be discriminatadtie contribution
due to spin mistracking. While the contribution due to spin relaxation is determynibe parameters
of the material, the contribution due to spin mistracking depends on the details ofanetization
texture. It is worth noting that the contribution of spin mistracking to the degogeadiabaticity
removes the independence of the spin-transfer torque from the dorallinddth X\ that holds in the
adiabatic transport regime for wide domain walls. [48]

Besides the increase of the non-adiabaticity, the enhanced inability ofithefs¢pe conduction elec-
tron to follow the local moments with decreasing domain-wall width causes a spimralation at
the wall. The spin accumulation translates into a charge accumulation due to éneninboupling
of charge and spin degree of freedom as provided by the magnetizaigirinwhe presence of the
domain wall. The charge accumulation induces a potential barrier, whichgés excess resistiv-
ity. [182, 215] In narrow walls § ~ 1), the considerable amount of spin accumulation leads to a
resistivity-correction due to the presence of the domain wall. [185] Quantachanically a conduc-
tion electron that resides in a majority spin state obtains due to the magnetizaticartadnixture of
the minority spin state, which acts in combination with the spin polarization of theieleatrent in a
ferromagnet as the source of spin accumulation in the vicinity of the wall. Xdess resistance in nar-
row walls stems from the mixture of spin channels that removes the possibilityighecnducting
shunt channel as present in homogeneous ferroma®)fg2s185, 197]

A second analogy to understand the intrinsic domain-wall resistivity resits afose relation to the
giant magnetoresistance effect. A spin valve with anti-parallel magnetizezhfagnetic layers is
equivalent to an abrupt domain wall and constitutes a large potential ibfrithe spin-polarized
electrons that causes scattering and subsequent reflection of theetionaklectrons. A domain wall
of finite width can be approximated by a multitude of interfaces with succepsiential steps. For
wide walls the equivalent number of layers tends to infinity and the heighaaf potential barrier
tends to zero. Consequently, no reflection at potential steps or resissamesent. With decreasing

5This effect is also responsible for the giant magnetoresistance effectgnetic multilayer.
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5.5. Local spin-transfer torque and resistivity within a domain wall

domain-wall width the height of the potential steps increases gradually metisloarp interface with
an abrupt transition is reached. As the reflection probability is propofttorthe barrier height, the
intrinsic domain-wall resistivity increases with decreasing domain-wall width.

5.5.3 Transport characteristics for different types of donmain walls

The domain-wall width\ constitutes the most important parameter, as it concerns magnetotransport
through a domain wall. It governs the coupling between the spin of the ctindielectron and the
domain wall. The calculation of transport properties requires differemtrtitical treatments in depen-
dence on the domain-wall width. Concerning ballistic spin transport a ctesization of domain-wall
magnetotransport in terms of the degree of spin mistrackiaggiven by Eq. (5.176) is possible. Al-
though there is a smooth transition between them, there are mainly three typesahdvalls: wide,
narrow and sharp domain walls (cf. first row in Table 5.2). Dependintdpeiype of the domain wall
different technical approaches to the problem are more appropriateaced with others. While the
adiabatic regime is best suited for a perturbative expansion in the magnetizeisg, a perturbative
expansion around an uniform magnetic state fails for the sharp wall. 4 s¥adl defines a quantum-
mechanical scattering problem. Accordingly, every domain-wall type yieldsitsdistinct physics.
The physics of the three domain wall types has been discussed in theysreeiction. This situation
is illustrated in Table 5.2. For narrow domain walls the mechanisms of spin relaxatib reflec-
tion as origins for the non-adiabatic spin-transfer torque and domairregdtivity, respectively, are
listed for completeness. The mechanisms of spin relaxation and reflectiohraneor importance in
narrow domain walls and therefore put in parentheses. As long as dptrinteractions can be disre-
garded, there exists no coupling between real space and spin spidbe anguments and calculations
of this section apply to both kinds of domain walls, Néel and Bloch walls.

As the domain wall constitutes a macroscopic object it can be treated classidadlseas the spin
of the conduction electron should be treated quantum mechanically (clusdisos in section 2.1
and 5.1.1). [58, 100] For a domain-wall width that exceeds the Fermilemgth)\ > k- ', magneto-
transport through a domain wall is a semiclassical transport problemr tatrea coherent qguantum-
mechanical wave problem. [22, 100] The spatial coherence of thefwat®n inside the domain
wall is broken due to impurity scattering of the conduction electrons. In tisis aalescription of the
spin-transfer torque and the domain-wall resistivity in terms of local tremgpefficients is justified
as long as the domain-wall width exceeds the Fermi wavelehghk;l.

The focus of this section rests on narrow domain walls. Only recently atighes have been pub-
lished that are concerned with domain walls of intermediate width. [22, 232eViRef. [22] em-
ployed a rather phenomenological approach, the calculations of R32f §2e restricted to the diffu-
sive approximation. We note here that there exist objections about thiickégeation as derived by
Ref. [232]. [198] However, as the presented analysis will show, llysipally most interesting regime
comprises ballistic spin transport that is not accessible by the entire dé@fapproach of Ref. [232].

5.5.4 General non-equilibrium kinetic equation in the pregnce of a domain wall

This section sketches the derivation of the general one-dimensionaickagation for arbitrary
domain-wall profiles. In the following, we consider a domain wall that is erdbddn a bulk system.
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Table 5.2: Transport characteristics for different types of domain walls

Domain wall type|| sharp g — o) | narrow @ ~ 1) | wide (o — 0)
Domain-wall material magnetization texture | material
magnetotransport

governed by

Problem type scattering non-adiabatic adiabatic

Most important|| band structure spatial variations nature of impurities
property

Most appropriate
method

gm a priori scattering
problem

kinetic approach; take
properly into account
spatial variations

sgm perturbative ex{

pansion around unit

form ground state

Features

domain-wall resistivity,
momentum transfer

spin-transfer  torque
domain-wall resistivity,
momentum transfer

, spin-transfer torque

Origin of non- || none spin  mistracking spin relaxation

adiabatic  spin- (spin relaxation)

transfer torque

Origin of || reflection spin  mistracking none

domain-wall (reflection)

resistivity

References [49, 172, 193—| [22, 232] [49, 63, 183, 185, 196
196, 198] 198]
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5.5. Local spin-transfer torque and resistivity within a domain wall

Since the domain wall is a macroscopic object, we treat it classically. The figdrtescription

in the sd Hamiltonian (5.15) inherently neglects quantum fluctuations of the local mométies.
focus on a quasi one-dimensional wire extended: idirection and on a transverse domain wall.
The quasi-translational invariance in the plane reduces the problem to one spatial dimension and
the distribution function depend solely on thecoordinate fE(F) — f,;(x)). A domain wall is
parametrized by a constant anglend a spatially dependent angt¢r), where¢(z) denotes the
angle between the local moments and thaxis (cf. Fig. 5.7). A transverse domain wall or a Bloch
wall is parametrized by the anglés= 7/2, ¢ = ¢(z) according to

cos 0
m(z) = | sinf-sing | = | sing(z) | . (5.177)
sinf - cos ¢ cos ¢(x)

The domain wall as given in Eq. (5.177) bears the advantage of strictlyg Ipgirpendicular to the
current flow and is thus not subject to extrinsic magnetoresistanceasefilez the anisotropic mag-
netoresistance. This allows for a direct determination of the intrinsic domalinresistivity. We
note that it is experimentally feasible to disentangle the contribution of the intritmsitain-wall
resistivity from the contribution of the anisotropic magnetoresistance orrttirasy magnetoresis-
tance. [202, 207, 211, 234] Since no coupling between spin andpaeé $s provided by our model,
for instance by spin-orbit interaction, the calculation for a Néel wall @eds analogously to that for
the Bloch wall in Eq. (5.177) by an interchange of the variaBl@e®add. Consequently, the results of
this section apply to both types of domain walls as long as spin-orbit interactiohecdisregarded.
Another quantity of interest is the magnetization twist)(z) that determines the gradient of the
magnetization irx direction

0 0
Oprii(z) = dfl(;) osd(z) | = dif) ma(z) | . (5.178)
— sin ¢(x) —my ()

To attain at analytical solutions, it is appropriate to perform a transformstioine local reference
frame of the domain wall. This is achieved by a local gauge transformationrirsppce arranged by
the unitary rotation matrix

U(p(x)) = e=i%0e — cos qﬁ(;:)]l —isin qﬁ(;)ax. (5.179)

Per construction the gauge transformation (5.179) aligns the magnetization thithdomain wall
with the z axis of the rotating reference frame

U(¢()) (@) U (d(x)) = 0. (5.180)
Applying the gauge transformation (5.179) to the gradient of the magnetiatibr8) yields
d
U(0())0, () U (6(x) = ©90) g, (5.181)

Let us now investigate the impact of the gauge transformation on the degivati

U(H() 2! (8()) = D1 +U(x)) (0.U' (6(2)))

i dg(x)
=01+ = -
Or1 + 2 dx ?

(5.182)
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The gauge transformation introduces via Eq. (5.182) a covarianiatiggv
D, = 0;1 +iA(z), (5.183)

along with a respective gauge connection that is given by the local gmlgatial/f(a;) determined
by the magnetization twist

o Lldg(a)

A(w) = —iU(¢() 0t (6(x)) = A(2)d,  Alz) = 5= 8. (5.184)

In this sense, the gauge fiejﬂa:) comprises the spatial dependence of the axis of quantization. In
the case of an one-dimensional domain wall, the spatial variation is pararddisizene single an-

gle ¢(x) and the gauge transformation is a special case of the gefi€r@) gauge transformation
mentioned in the beginning of chapter 5. More precisely, for the case ofmaid wall the gauge
transformation is a locdl/ (1) that introduces one local transverse gauge figld) instead of three
independent gauge fields in the genef&l(2) case. [101]

After the preliminaries, we now derive the general kinetic equation forraaito wall. An one-
dimensional version of the generalized kinetic equation (5.97) readsagstranslational invariance
in theyz plane

sfo (o
ufge) + 3 (5 (7). 35 + ) — g, gy
+%’{ax(5m(x))7 akzgﬁ(x)} = eUxEmaefeq(’fﬁ(l‘), 6). (5185)

The next step is to perform the gauge transformation (5.179) on Eq5(5.18

sfr T
U (10, @) U+ U5 (). )t + U

Tsf
Jsd
2h

’y - = A
Ut — UG (), g (@)U’

U0, (F17(2)), Ok, G (@) WU = v, B (O feeii(x), €) ) U, (5.186)

where we omitted the argument@fo(z)) for brevity.
Equation (5.186) holds a few terms to evaluate. Let us start with the kinetic term

U (020:5(@) U = U, (Du3p(@U") = Un,ge(e) (2.U7)

0,U UG () ) — U (x)UU (8qu )

89001@5(90)) — va g (x)U (@:UT)

= 0, 0uG(@) + vl (") (@)

= 0,0,07() + 10, [AF, gz (2))], (5.187)

= Uv,

= U,

[N N I e N T

where we introduced the gauge transformed distribution matrix

9p(x) = UGz (x)UT = % [s?,;(x)l - é}g(x)(ﬂ : (5.188)
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Equation (5.188) yields the non-equilibrium distribution matrix in the referdramae of the local
magnetization that is given by the orthonormal basis(d,¢(x)) ™" m(x) x Oum(x), (x¢(z)) ™"
Ogmi(z), m(x)}.

Thus far, the validity of Eq. (5.187) is general for spatially one-dimeraiproblems. Next we em-
ploy the explicit form of the gauge transformation (5.179) for the casedwoinaain wall and evaluate
the commutator in Eq. (5.187)

U (0a0rig@)) U = vai(@) + e D o G
= va0ufiele) + 2L (15, 1)g0) + o2, 0,)52))
= 0aufg(n) + 2D Lo (a0 — gl
= 0070 - 20D (U)o - i)y, (5189)

The spin-conserving scattering term transforms as follows

SULR (i), gyt = (g ()t Uy
= LU [+ ] U ()
f{[< S UG @)U ()}
= (T @) + (o (@)
— [t (10 1) + (1,8} 5() )
r ({az,n}gk ) + {02, 5)Gg(@) ) |
9

() + 577 (0:55(0) + 15 ) | (5.190)

where we employed the anticommutation relation of the Pauli matrices as given({A.B)y
The spin-flip term transforms according to

sf~
gple) o 1
Uu U =—=ug; U
Tsf 27¢f gk(l‘)O'
1 :,(
= ~(x)o
27_ngk
sfx
(T
_ @), (5.191)
Tsf
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The precession term turns into

*zli [Fm (), g (x)U' = f%[um(x)w,uga(x)w]
= il G5(2)]
= 1 (o= 1ag(@) + [0, 815 (x))
= _41Z.2i6z,u,1/§£(x)0'z/
- —% (gg(;p)ay — f}%(x)am> . (5.192)

The spatial derivative of the magnetization term transforms as follows

Isdy o (g ; i Jsd
B840, (@), O, ) = 2

J. - .
= S HUOG (@)U, Oy, U ()T}

o
 Jea dé(z) -
- 2h dx O-y7akmgk('r)}

— ﬁ;d(flf) <{Uy’ 1} 0k, g (z) + {O'y’g}a’%éﬁ(xw

. Jsado(x) ~ ~y
= 200 (000, 55(x) + 10,5%(a) )

_ 1 dg(z)

N 2Tsd dx

{UO (G () UT, UOy, g (x)UT}

(Uyakzé,;(:r) + Mkmﬁ}g(x)) , (5.193)

where we employed relation (5.181) and that the gauge transformation seimdient oft (cf. defi-
nition of ¢/ in Eq. (5.179)). Finally the electric field term remains to be transformed

vy Bl (ae Feq((2), e)) Ut = gvxExﬁe ( Fehaoqe et

+ Js0sg e, Jsd)um(x)5MT>

e

= 0B (0, Jua) L — Jsad2 P9, i)

K
_ ngEx (ae FOMAOR e Jo )T — L §2 fehargq Jsd)az).
Tsd
(5.194)
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Collecting the individual results from Eqgns. (5.189) to (5.194) yields theeg# gauge transformed
kinetic equation

) 1 1 dé(z),, 1
(7)) + — () + — Yir) + —gi(z) ) 1

~X 1 ~X =
+ <v16xg,;(x) + =g; (@) + 79,%(%)) o
T

1d 1 d
+ (w0520 + =080, g0 - 320 + 2at(e) + 0. G g5 0) ) o

. 1 _ do(x) y 1_,
+ (va;@xg,;(a:) + 2—7_59,—5(33) ~ Ve gp(x) + ;g,;(a:) o,

h
= e, B, (ae FOMAOR e J )T — L 92 fehargq Jsd)az>, (5.195)
Tsd

where we introduced the abbreviatior= - + .
Now we want to employ the vector notation of the charge and the three comigarfethe macro-

scopic spin distribution function(z) = {Jg(z), Gp(x)}" = {Fg(x), 3% (x), §%(x), §2(«)}". They
are obtained by taking the expectation value in Pauli spin space by mearmsrefdtion (5.8). Then

Eqg. (5.195) can be written in a compact matrix notation as follows

~ 1 1 dé(z) 1 ~
9z(@) 27c 0 Tsd v Ok, 27 9z (@)
97 () 0 z gl 0 g ()
v a Nk + T Nk
e | %R, - 1 w2 |5
() N AT
e e, Jsa)
0
= ev F, 0 (5.196)
—%83f0harge(€,=]sd)
With the help of the relation = %Sd = Tlsd Eqg. (5.196) turns into
1 1
E 0 O 275
~ 0 L2 0|,
Uxaxg]}'(x) + 0 _2 id 0 g];(x)
Tsd T
= 0 0 1
00 0 O 0010
dp(x) |0 0 0 O] = hug dg(z) |0 0 0 0 >
- e .5~
T oo o 1| P e |10 o o %@
00 -1 0 0 0 0O
e e, Jsa)
0
= ev, F, 0 (5.197)
_%@G%ccharge(e’ Jsd)
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In Eq. (5.197) we employ the vector notation of the charge and the threeoremis of the macro-
scopic spin distribution functioﬁi,;(m) = {gz(7), gg(x), g%(m), §2($)}T_ Equation (5.197) is the non-
equilibrium kinetic equation that is valid for general one-dimensional dowaihprofiles. Besides
the drift, diffusion and relaxation terms, two terms proportional to the magtietizewist 0, ¢(z)
arise as a consequence of the gauge-transformation. The secomd®ftdhms contains an energy
derivative and thus characterizes the influence of the band-struditeréo non-adiabaticity. In the
extreme adiabatic limitd, ¢(x) — 0) these contributions vanish.

Equation (5.197) is still a very involved equation due to the simultaneous spadignergy derivative.
In dependence of the complexity of the wall type, Eq. (5.197) has to bedolymerically. In this
case, Eq. (5.197) is the starting point for a numerical implementation. Howewhe next chapter
we want to pursue a different approach and focus on the simplest devahitype that allows for an
analytical treatment.

5.5.5 Perturbative solution of the kinetic equation for a denain wall

To obtain analytical results, we now solve the kinetic equation (5.196) fosithplest domain-wall
profile: a 180 linear domain wall. We believe that even this simplest wall type comprises thetiesse
physics. A linear wall is parametrized by

= const. , (5.198)

where\ constitutes the domain-wall width, usually a compromise between exchanggy ehand
the shape-anisotropy enerdg§, A = /A/K. The linear wall specified in Eq. (5.198) is a finite part
of an one-dimensional spin spiral with constant magnetization twist [63]

s

O () = 3= const. . (5.199)

Note that the local gauge potential becomes constant in this case and glestigensformation (5.179)
corresponds to a globéal(1) gauge transformation. The constant gradient in Eq. (5.199) removes the
explicit spatial dependence from the kinetic equation (5.196). This yiel@aarmous simplification

of the calculations and provides the possibility to obtain analytical resultsiein of the huge pa-
rameter space, analytical solutions are eligible as they provide the possib#itydy the transition
between different transport regimes.
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5.5. Local spin-transfer torque and resistivity within a domain wall

In the case of a linear wall the kinetic equation (5.197) reads

gz () o 00 0 o\ [gp(@)
~ 1 2 ~
Sk E A
95(“@ (1) TTeg T (1] gE(x)
~z ~Z
g;(x) o 0 0 2 ) \G@
00 0 0\ (/g 0010 9z(@)
1 00 0 O0f]gix 0000 gy (@
+ < |7 i s o | %)
A 00 0 1||d)| 7sa|l 0 00 gz (x)
00 —1 0/ \g(x) 0000 gz(x)
8 fcharge(ﬁ Jd
— v, E, (5.200)

)

The thickness of the wall is an important parameter, as it governs the coupling between the domain
wall and the conduction electrons. From Eq. (5.200) different regiraggaly emerge that depend
on the domain-wall width\. For wide walls f — oo) the spin of the conduction electron follows
the magnetization of the domain wall adiabatically and the change in momentum ishiggigall.
For smaller wall widths, we perturbatively approach the regime of narmwaih walls. The spatial
variations become important and the spin of the conduction electron camuetr [follow the mag-
netization adiabatically. The consequence is a finite change in momentum tisesamn intrinsic
domain-wall resistivity and a momentum transfer. For sharp walls« 0), the spatial variations
are unimportant as the change in momentum due to scattering at the domaintirally eiletermines
the magnetotransport. This regime is entirely dominated by the band strucheendin points are
summarized in Table 5.2.

Even in one spatial dimension the general non-equilibrium kinetic equatia@Qpis a complicated
partial differential equation in space and momentum and domain-wall magaretptrt constitutes an
involved problem. To solve this, we will perform a series expansion of timeaquilibrium distribu-
tion matrix in inverse powers of the wall width. The physical idea behind thisigEative expansion
is to perform a perturbation expansion around the perfect adiabatic limitnfitiitively small slope
(A — o0). The expansion takes place in the magnetization twist that characteriziegighef the
magnetization texture in terms of inverse powers of the domain-wall width (¢f. (£199)). To
check the regime of validity concerning such a perturbative expansidn'ina dimensional analysis
is required. The necessary condition for the perturbative expangilonvg from the kinetic equa-

__h azfcharget6 Jsq

Tsd €
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tion (5.200)

1 1
N x xJ ae xax -
3 (V2 + vodsdle) K (v + T>

VT 1+ 0,70,

N ST T

A Jsd
1+ %
YT 94 029, (5.201)
A €F

wherer stands for the characteristic time scale of the system associated with the thére@ecgaath
or the coherence length. The spatial variations are sé by (v,7)~!. To perform a dimensionless
perturbative expansion, we will pursue an expansion in the parameter

lmfp

K= (5.202)
wherelmgp is the mean free path set either by the collisiops. or thesd precessiongrsq. The con-
siderations in Eqg. (5.201) confirm the conjecture that a perturbativéi@olof the kinetic equation
in inverse powers of the wall width is appropriate forkk 1, i.e., as long as the domain-wall width
does not exceed the mean free path. This restricts the validity of ouragdpto diffusive charge
transport. Note that an expansions#ncorresponds to a perturbative expansion in the gauge field
A(z) < 0z¢(z) < 1/ (cf. Egns. (5.184) and (5.199)) that comprises the twist of the magnetizatio
texture due to the domain wall. [58] The final results will be independehspfind the identification
of Imfp Will take place in the retrospective when examining the macroscopic variables
In perspective of a perturbative treatment, we rearrange the kinetatiequor a linear domain
wall (5.200) as follows

Imip (V505 + A) Gz(@) + & (VB + COk,) §z(%) = lmipva EoD(e), (5.203)

where we employ the definitions

1
w 0 0 5
0 2 0
A= 0 2 i N E (5.204)
1 'sd ! 1
275 0 0 7
00 0 0
Ben|0 0 O Of (5.205)
00 0 1
00 -1 0
0010
c— |V o oor (5.206)
|1 0 0 0
000 0
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De fM9N e, Jsq)

5 0
D(e) =e 0 . (5.207)
_ Thdaszharg%@ Jsd)

The matrix.A in Eq. (5.204) determines the homogeneous solution of the kinetic equatioexand
hibits a block-diagonal form if we exchange the last with the central liné® tfansverse channels
g%(x), g%(m) that are given by the second and third columns in the matrix notation decoapidtie
chargeg; (=) (first column) and Iongitudinajg(:c) (fourth column) channels. The matricBg5.205)
andC (5.206) originate from the gauge transformation and are thus associgheti@magnetization
twist that comprises the spatial variations and couples the otherwise higérgl channels.

A perturbative expansion ir fulfills the ansatz

§
??‘ll

=3 w50 (@) = V(@) + kg (@) + K25 (@) + . (5.208)
i=0

where we truncate the expansion after the second order. Insertingsht 45.208) into the kinetic
equation (5.203) yields the result up@x?)

(lmfpvxaxgl(zo) (x) + lmprgg)) (x) — lmfpvaxﬁ(e))
+ i (szpvxaxg“]g” (2) + Imip AL (2) + 0BG () + CO, G (x))
+ K2 (lmfpvxaxig) (x) + lmprglg (x)+ szg(l)( )+ Cok g(l)( ))
+O(K%) = 0. (5.209)

As will be shown in the following, the particularity of the perturbative applo@ that every order of
the expansion in Eq. (5.209) can be associated with a physical prodess.instead of solving the
kinetic equation numerically in a brute force manner, every order of tharsipn supplies us with a
clear semiclassical interpretation of the involved physical processes.

5.5.5.1 Zeroth-order solution — the perfect adiabatic limit

In the zeroth-order approximation, i.e., the perfect adiabatic limit, we expeeproduce the mon-
odomain result without transverse magnetization of the conduction elecin@rsverse components
{0ym(x), m(z) x d,m(x)} vanish in the limit of an infinite domain wall due to its vanishing slope
(A — oo, k — 0). Here, the zeroth-order approximation is exact. The spin of the ctindwlectron

is able to follow the local magnetization in perfect adiabaticity and no mixing of theritygminority
spin channels occurs.

Gathering all termsx x° from Eq. (5.209) yields

Ve () + AGY () = va EoDe). (5.210)
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Equation (5.210) reads in components

O gg(x) w0 0 5\ (g e f9e, Jsd)
(0) gz 12 (0) gz
9% () z Tsd 0 9z (v) o 0
» 'sd T o h h
gz () L o0 o L) \Ozw — o 02 f9%e, Js)
(5.211)
A reordering of Eq. (5.211) yields
Oge@\ [ o 0 0 (V@) O[T, Jeg)
©g2(x) o 00 0O ]| — 02 [9e, Joa)
vx&g (0) ~x( ) + 0 0 1 2 (0) ~x( ) = 67_}3517/'3,j sd ,
g Pl | g 0
©g(x) 00 - = ©g(x) 0

(5.212)

and exhibits explicitly the block diagonal structure of the zeroth order. Xpe&ed the transverse
magnetization dynamics decouples from the charge and longitudinal dyndtguesation (5.212) can
be simplified by means of a complexification of the transverse components

grx) = gE () + igl(x). (5.213)
This leads to
(U)gg(x) 218 213 0 (0)§;;(33)
vale | VG2) |+ [ 7 0 O ()
0) ~tran 1 - 2 0) xtran
Ogensa) ) \o o (2-ig)) \ D5
e fM9e, Js)
= ev, By —%83 feharege Jgg) | . (5.214)
0

As the transverse components decouple from the charge and longitcolinpbnents, it can be solved
according to
(é—zi)z
T Tsd

(O)Q/gans(a:) = const. - e ve . (5.215)
From the boundary conditioﬁéans(o) = 0, itimmediately follows
(©)ganyz) = 0. (5.216)

As expected, there is no transverse magnetizati@®(ik’). The result (5.216) agrees with symmetry
considerations: The spin-transfer torque is sensitive to the sens¢atibnoof the local moments
within the domain wall and thus aP(x'). In absence of the magnetization twist, no transverse
magnetization dynamics and therefore no spin-transfer torque takeq plasection 5.2).
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5.5. Local spin-transfer torque and resistivity within a domain wall

With the elimination of the transverse components, we end up with two coupledi@ugi for the
zeroth-order charge and collinear spin distributions

R 1 1 0)~_, ) charge
k(x) 27, 2T, gk(x) ef

I R 7 =ev,E, . (5.217
g(@) < > <<0>gg<x> B R i P ) Rl

Equation (5.217) recovers exactly the equations that constitute the twentunodel for a homoge-
neous monodomain (cf. Eq. (5.56)). Accordingly, the spatially homogeneenoth-order solutions
reads after a decoupling of Eq. (5.217)

_ 2ercTs [hTCTSfﬁngharge(e, Jsd) + TsTsd(27 + Tsf) O fEMAYe, Jsd)}

0)5., E 5.218

L Tsd [27c72 + Tt (T2 — 72)] Vo B, ( )

052 = _ 2eTeTsTsf (102, Jsa) + Tersade fNNHe Jed)] (5.219)
z Tsd[2772 4 7t (72 — 72)] o .

Equations (5.218) and (5.219) coincide with the spatially independenequoifibrium distributions
of the two-current model (5.68) and (5.69). With the help of the polarizajieen in Eq. (5.92), the
electric current and the spin current read

3
.(0) d’k .
]éharge: _e/ (271_)37):5:0)915
€2 [hN(eF)Tsf(TT — 71 + nrsa(rem T + T (7 + ZTT))]
mTsd(T! + 74 + 27%¢)
en [((1 + P)TT +(1- P)Tl)Tsf + QTTTL}

- E,, 5.220
m(t! + 7 + 27¢) ( )

(0 3k s
Jépi)n: NB/ (277)309(E0)9E

_bB e27gt [nTSd(TT — 7)Y+ AN (ep) (7T + Tl)]

T

E,
e mTsa(T! + 74 + 275f)
_ @eZnTsf [(1 +P)rl —(1- P)Tl} E (5.221)
e ’m(TT +7l 4+ 27sf) v .

For an infinite domain wall the quantization axis varies spatially infinitely slowly,sihi@ of the
conduction electron follows the local magnetization in perfect adiabaticitytteaderoth-order so-
lutions in Egns. (5.220) and (5.221) are spatially independent. This is aragamce with that result
for the zeroth-order in Egns. (5.220) and (5.221) coincides with the dwmain solution as given in
Eqns. (5.73) and (5.74).

These considerations illustrate that the perturbative approach condsspo an expansion around a
spatially homogeneous groundstate as provided by the perfect adiabatic limit.
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Chapter 5. Non-collinear magnetotransport

5.5.5.2 First-order solution — spin-transfer torque

In the preceding section, we calculated the zeroth-order solution thatideswith the spatially
independent homogeneous solution
2eT,Ts
= realrr? (2 72
thTsfaZfCharge(E, Jsd) + 7's7'sd(27'c + Tsf)aefChargetﬁa Jsd)
0
0

—Tsf [hTsaszharge(E; Jsd) + TcTsdaefCharge(ﬁv Jsd)]

(0)

I
(5.222)

The determining equation for the first-order solution follows from Eq. (82§ a comparison of the
coefficients proportional te

0p02 (1) + AG () = —Ih, (vag“éO) +COy, 5}%0)) . (5.223)
The zeroth-order solution in Eq. (5.222) provides the solution of Eq28),2vhich yields the trans-
verse first-order components of the distribution matrix u®t@>). This is a general feature of the
perturbative approach: Corrections to the charge and longitudinalaoenp emerge in even orders
of x, while transverse components are present in odd ordersTiis perturbative feature is in accor-
dance with physical considerations. The perturbative paramésguroportional to the magnetization
twist (cf. Eq. (5.199)). The spin-transfer torque depends on theesafirotation and is thus associated
with odd orders of the magnetization twist. In contrast, domain-wall resistiaiiyraomentum trans-
fer are associated with the energy of the domain wall and cannot depethé sign of the rotation.
Thus, domain-wall resistivity and momentum transfer are associated withoegters ofi.

In the limit of wide walls ¢ < 1), the zeroth and the first order of theexpansion constitute the
adiabatic solution in consistence with the adiabatic approximation (cf. sectipnhdre the spin
of the conduction electron follows the local magnetization adiabatically andtmesic domain-wall
resistivity or momentum transfer of the conduction electrons to the domain e@lte Domain-wall
motion in this order ok is possible solely due to the spin-transfer torque.

The I.h.s. of the spatial differential equation in Eq. (5.223) possessesihe structure as the |.h.s.
of the zeroth-order differential equation (5.223). Thus the decomposititansverse and longitudi-
nal degrees of freedom that we found for the zeroth order also fmidise homogeneous first-order
equation (5.214). The coupling of the majority and minority channels to theveesesdistributions is
provided by the magnetization twist. Note that the matri8e8 on the r.h.s. of Eq. (5.223) originate
from the gauge transformation, i.e., the magnetization twist. Accordingly, it isghgal variations
due to the presence of the domain wall that cause non-vanishing tra@slistributions.

The perturbative approach offers two distinct advantages. Firstoilyged partial differential equa-
tions in space and momentum reduce in every order to coupled first-patalgifferential equations
and for the one-dimensional case an ordinary differential equationimert@be solved. Secondly,
the transverse channels decouple in every order from the charderggitlidinal components. Thus,
at least in principle the problem becomes integrable. The recursive soprogedure satisfies auto-
matically the appropriate boundary conditions fgr
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5.5. Local spin-transfer torque and resistivity within a domain wall

To proceed further on and to solve Eq. (5.223), we have to calo&;@ﬁ%o)

=(0) 2eT.Ts

Ok,

= E
Ted[27e72 + 75t (T2 = 72)]

h [%TsTsd(ZTc + Tsf)aefCharge(e’ Jsd)

( ;

—hTsf[ TeTsdDe fcharg% Jsd)

+ (%TCTSf + TsTsd (27c + Tsf) v ) D2 fN9q e, Jsq) 4 hirersv20? fON9g e, Jsd)}

0
\ )
(L7, + rersq?) 02 FNA0Ke, Jog) + w202 FOharoqe, Jsd)}
(5.224)

where we employed the relation

1 Oe
h Ok,

The boundary conditions of the adjacent homogeneous domains foralgednd longitudinal com-
ponents as given by Eq. (5.57) are already implemented in the zerothsotdgon. Thus in all higher
orders the corresponding spatial differential equations remain to bedsalith vanishing boundary
conditions. A solution of Eq. (5.223) with vanishing boundary conditiﬁg)(o, A) = 0) at the
beginning and the end of the domain wall, yields the first-order results

1
0k, Oc [ e, Jsa) = 7=~ 02" Ne, Jsa) = va07 F e, Jso). (5.225)

Wg-(z) =0, (5.226)

(1 )gz(x) 0. (5.227)
The first-order ink does not yield a correction of the majority, minority distributions. This is in
accordance with the perfect adiabatic limit. Wide wals+{ oo) correspond to small values of spin

mistracking ¢ — 0). In the adiabatic approximation the conduction electron spin can follow tiaé loc
magnetization and no intrinsic domain-wall resistivity due to spin mistrackingrsccu

A complexification of the transverse first-order distributiohg"{z) =g (z) + z(l)g (z) results
in the following differential equation for the first-order transverse canems
1 2
(1) ~tran - _ ;2 ) (Dgtran —
Up0y g (@) + (7~_ ZTsd) 9z ) = iD(e), (5.228)

where we employed the abbreviation
2mwer. Ty
Imipm ey (27072 + Tsi(12 — 72))

[0, Jsa) sl (27 + 7sr) — M3 TeTsars)

D(e) = —

+ 92 foha9g ¢ Jg)h (AreTsi + 2m1}§7'37'sd’7'c)
+ 0P foh9e, Jsd)h2mvz7'c7'sf} : (5.229)
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Chapter 5. Non-collinear magnetotransport

The general solution to Eq. (5.228) reads

(i),

gganS(l,):i( Dle) |4 Fi)e = | (5.230)

1,2
T Z‘rsd)
The thus far arbitrary functiod’(v;) in Eq. (5.230) is determined by the boundary conditions at the
beginning ¢ = 0) and end £ = \) of the domain wall. [235] Let us choosj%ans(o) = 0 for all

rightmoving transverse spins with > 0 and accordinglygga”S(A) = 0 for all leftmoving transverse
spins withv,, < 0. Then the solutions for the transverse distributions read

D(e) _ (%ﬂ%jhg

Dgtensz) = i l—e = : (ve > 0), (5.231)

(Dglransz) = i 1—e . (v <0). (5.232)

Rl ey
T ’Tsd

By employing of thed-function the solutions Eqgns. (5.231) and (5.232) can be combined attelnvr
in a compact manner

D(e)

g iy
—— | O(vz) 1—6_#“’ + O(—vy) 1_6( %sd>(/\_$)

(-2
()

= —4mi [Ovy) [ 1—e e T +0(—vg) | 1—e v

giErse) =

eEa;TCQTSTSf
ImfprTsd (2772 + 7t (12 — 72)) (27c(Tsd — 2i7sf) + TsfTsd)

[&f char9q e, Joa) rsd(fis (27 + Tsr) — MU TeTsaTst)
+ 862f°harg€(e, Jsa)h (thTsf + 2mv3237'57'5drc)
+ 02 e, Jsa) v (5.233)

The factorization of the spatial and the momentum dependence of the nditrégm distribution
functions that we found for the adiabatic case in section 5.4 does notdvaiehf (5.233) except for
the limit (A — o0). The intertwinement marks the departure from adiabaticity by introducing no
adiabatic corrections due to a finite domain-wall width. In the adiabatic appation the spin resides
in its majority, minority spin state during the traversal of the domain wall and the etelyansport
can be viewed to be composed of two separate electron gases for the mamjdrityinority electrons,
respectively. [236] Additionally, the majority and minority spins are subjeetdditional gauge po-
tentials induced by the spatial variations in the magnetization texture. This teBuliection 5.4 in
the transverse magnetization of the conduction electrons with a spatially mbastde between the
spin of the conduction electron and the local moments. By decreasing themndaadawidth A\, more
precisely when approaching (— 1), the spin can no longer follow the local moments and does no
longer reside in its initial spin state during the traversal of the domain wall. fihecbannels mix and
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5.5. Local spin-transfer torque and resistivity within a domain wall

a majority, minority spin of the adjacent homogeneous domain acquires a pafrtioe opposite spin
component. As a consequence, the spin of the conduction electronsat@esform an adiabatic pas-
sage through the domain wall. The emergence of an opposite spin compenestas a definition of
a non-adiabatic traversal through the domain wall and constitutes thenresspin mistracking and
spatial precession. [236, 237] A superposition of majority and minority sigienstates causes spatial
oscillations. [173, 197] A non-adiabatic traversal of the domain wall intced a spatial dependence
to the transverse distribution functions according to Eq. (5.233) and thuspth-transfer torque that
is absent in the adiabatic limit (cf. section 5.4). Non-adiabatic correctiom$ada finite width of the
domain wall are thus comprised inherently by the presented formalism.

According to Eqg. (5.3) the macroscopic magnetization of the conduction @bactollows from
Eq. (5.233) by taking the expectation value with respect to momentum. Theatadous sketched in
appendix E. The entire linear response, complex first-order magnetizatida in short hand notation

<(1)6tran5(x)> _ —@i N Tyt

e 7T2m7'so|(27',;7'32 + Tst (7'52 - 7'(:2)) A

[A(z) + AN —2x)] E;, (5.234)
where we employed the definition of the functions

3hT,
A(z) = 27sqTst <; - 7'c7'sd>
MUE

1,1 ;2
(2TC+Tsf ZTsd):c

3h 3h? 1
+e F |:2Tsd7'sf <TcTsd - T;) —zA <25 + TSd) + x2A227
Mg M VpTsd  2UF AVET Tet
. 1 1 2 3hts (2 q - 1
+ E|(< +— - 7,> ) PAM — e, (5.235)
2T, Tt Tsd/) VF MURTCTsf BURTE TsdTgt
A = 27.(Tsd — 2i7sf) + TsiTsds (5.236)

and the integral exponential function is defined in Eq. (E.12). The ré&s@i84) yields the transverse
conduction electron magnetization up to ord¥?).

The cartesiarr andy components of the transverse magnetization of the conduction electrons are
given by the real and imaginary part of Eq. (5.234) according to

(Otrandx)) = (0 (2)) + {0y (2)). (5.237)

In the current-induced torque picture the transverse compogen(is)), (6,(x)) constitute the spin-
transfer torque according to Eq. (5.141) as a counteraction on thenagaietization. [5] While the
real part corresponds to the adiabatic spin-transfer torque

) = R((Guand ) = —(6(2)), (5:238)
Tg-?--r}'adiabaﬁf:c) _ _:sd%«&trans(w») - _Tid<§y(;p)>7 (5.239)

the imaginary part yields the non-adiabatic spin-transfer torque. Thetrspisfer torque in the
Egns. (5.238) and (5.239) consists of a spatially dependent oscillatthg apatially independent
part. The spatially varying part is caused by the magnetization texture anet idfect is small for
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Chapter 5. Non-collinear magnetotransport

wide domain walls. In the limit of wide domain walls the spatially dependent, oscillatngwll
average to zero and the spin-transfer torque will become constantandacce to what is found in
section 5.4.

The spatially independent part of Eq. (5.234) holds the following cohstamtributions to the spin-
transfer torque

1 .
(I)TSa'(Ij'T = :%«(UUtranQ)

sd

TUB
= LR o2
- 1 5
(1) pon-ad _ _T—w%«(l)atra@)
_ Tugé trans (5'241)

26\ Ospin Lz

By considering the magnetization twist in Eq. (5.199), except for a fadthfthe results (5.240)
and (5.241) agree with the spin-conductivity of transverse magnetizatitantcs that has been de-
rived for general, spatially slowly varying magnetization textures in sectib2 2 (cf. Eqns. (5.151),
(5.152) and (5.154)). The different numerical factor stems from the mameintegration. In sec-
tion 5.4 we focus on bulk properties and employed the velocity average i{pEG9). More realistic
domain-wall profiles would alter the geometric prefactor in Egns. (5.240)%241), but would not
affect the result in a qualitative manner, i.e., in terms of its dependencédaxation times.
The degree of non-adiabaticity is defined as the ratio of the non-adialatithe adiabatic spin-
transfer torque. In the model of an one-dimensional domain wall the éedreon-adiabaticity is
given as

B %<(1)&tran3

$= TR (@gvans
= —tan al“g<(1)5trans>

1 1 2
:Tsd< P > (5.242)

4?7’l7'75f

that agrees with the result for general, spatially slowly varying magnetizégidnres as given in
Eq. (5.163) and underlines its generic meaning for adiabatic magnetairansp

Let us now focus on the full spatial dependence of the general sol(8i@B84). The definition in
Eqg. (5.242) serves for a generalization of the degree of non-adidp&ticfinite domain-wall widths.
For a domain wall the degree of non-adiabaticityaries spatially according to

&(x, \) = — tanarg(Gyandx)). (5.243)

The generalized degree of non-adiabaticity (5.243) is composed ofktatdpart due spin relaxation
given by Eq. (5.242) and a spatially varying part, which is caused bymsjgitnacking due to the mag-
netization texture. [172] Both parts stem from entirely different origins$ ame often confused in the
literature. The spatially independent part in Eqg. (5.242) has alreadyderéved in section 5.4 and
attributes a finite degree of non-adiabaticify£ 0) due to spin relaxation. We explicitly note at this
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5.5. Local spin-transfer torque and resistivity within a domain wall

point that the common terminology to refer to the contribution due to spin relaxagionn-adiabatic
is accidental (cf. comments in section 2.3). However, in order to avoicusanf we will stay with
this widely established terminology. In section 5.4 we have explicitly shown tbgirdsence of the
contribution due to spin relaxation is generic in the adiabatic case as long apithtransfer be-
tween the conduction electrons and the local magnetization does not complmteirve the spin.
The thereby introduced non-adiabaticity due to spin relaxation results instieet finite delay of the
magnetization of the conduction electrons, even in the extreme limit of infinitely wédls. Due to
the independence with respect to the magnetization texture, the contribuspmoglaxation to the
degree of non-adiabaticity must be viewed as a constant material pardna¢epends solely on the
microscopic parameters of relaxation times and exchange splitting. In dptitraspatially depen-
dent part that is given b¢(z, A) — &) takes into account the non-adiabatic passage of the spin of the
conduction electron through the wall, i.e., spin mistracking due to the enhanaeting between the
spins of the conduction electrons and the local moments in narrow domain \watlgs connection
the contribution due to spin-mistracking constitutes a truely non-adiabatidtadian (cf. footnote
in section 2.3) in addition to the constant contribution due to spin relaxation i(bE212). The con-
tribution due to spin mistracking averages out for wide domain walls,\) — &, for A — oc) and
is not a property of the material but depends crucially on the details of thaeatiagtion texture. In
order to separate both contributions, we focus in the following sectionsctthesase contribution to
non-adiabaticity caused by the magnetization texture by means of dividingntine @egree of non-
adiabaticity by the degree of non-adiabaticity that stems from spin relaxgtionX)/<).

It is really interesting that the contribution due to spin mistracking simply renoresatize constant
part due to spin relaxation and can thus still be incorporated in the claksicdhu-Lifshitz-Gilbert
phenomenology. This fact owes to our semiclassical approach. In gotrgum mechanical ap-
proaches true non-adiabatic contributions are per definition non-lodalannot be comprised within
local spin-transfer torque terms. [56, 58, 71, 172] However, fod#seription of domain-wall dynam-
ics in terms of collective coordinates it is found to be of general validity tbatlncal contributions
can always be summed up to renormalize the degree of non-adiabaticity ifiettive equation of
motions for a domain wall (cf. discussion in section 5.5.5.3). [58, 71]

In the regime of wide domain walls the terminal domain-wall velocity is proportitmgl« and thus
independent of the shape and the width of the domain wall. [5, 48] This stemsilfie factorization
of spatial and momentum dependence of the distribution functions in adiabagieto&ransport and
has been extensively discussed in section 5.4. This curiosity is lifted iomawomain walls, where
the width and the shape of the domain wall determines the degree of noatatgtvia Eq. (5.243)
and thus the domain-wall velocity. In this context, the cas€ ef a that corresponds to Galilean
invariance and the drift of the whole magnetization pattern with the curremotdoe deduced from
general principles but our microscopic derivation shows that the eqgality takes place only acci-
dentally. [155]

The total torque is obtained by summing up the local magnetization of the conalatgiirons (5.234)
within the domain wall. Instead of directly integrating Eq. (5.234), it is more @mate to inter-
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change the order of the spatial and the momentum integrations. We obtain
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where the incompletE-function is defined in Eq. (E.13). Note that thé\ dependence of Eq. (5.244)
secures that the spin-transfer torque remains finite, even in the limit of watle @&k — oc). Here,

the oscillations wash out, the influence of the non-adiabaticity due to spin rkisiga@nishes and
the spin-transfer torque approaches its constant value corresgaodim adiabatic traversal of the
domain wall. In contrast, higher-order correctionscisuch as the domain-wall resistivity vanish in
the adiabatic limi{\ — oo).

The results for the transverse magnetization of the conduction electr@3g)and (5.244) announce
that the exponential decay of the oscillations in the spin-transfer torgugds by the mean free
path that is set by the collisiong7.. In contrast, the imaginary parts in the exponential and related
functions exhibit a periodicity that can roughly be estimated as

AF = TTUFTsg- (5.245)

The wavelength as defined in Eq. (5.245) should not to be confused witthotimain wall lengthi.
Interestingly, the spatial modulations of the precession angle takes pladb&ithme period that sets
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5.5. Local spin-transfer torque and resistivity within a domain wall

the frequency for the precession of the conduction electrons aroeridahl moments. Both origi-
nate from thesd interaction. The wavelength as defined in Eq. (5.245) coincides with theretiite
in momentum between spin up and spin down electrgns: w/\k,@ — k,i:] that arises within a ferro-
magnet due to the exchange splitting. [172, 173, 197] When injecting azeaglectron beam into
a collinear ferromagnet with spin polarization and magnetization being rlbnezr to each other
the electrons precess around the local moments with the same wavelengierabygiEq. (5.245)
until their spins relax due to spin-dependent scattering or the dampingcthygshe local moments.
It follows from quantum mechanical considerations that spatial prexesscurs when a coherent
superposition of majority and minority states possesses the same Fermi boeudjiferent wave-
vectors. [173]

Before proceeding to discuss the results as given in Eqns. (5.234(5d&#) in more detail, let
us compare the presented results with the work of Tatara et al. [49, 5&1h9They performed a
perturbative expansion in a gauge field that comprises the magnetizatioretartlifound non-local
contributions showing up &P ((keX)~2). [59] Descriptively non-adiabatic corrections are associated
with scattering of the conduction electrons at the domain wall that becomestanpiorabrupt walls,
when the domain-wall width approaches the Fermi wavelelﬁcg~1;hk;1 of the conduction electrons.
The domain-wall width approaching the Fermi wavelenytk k,;l marks the breakdown of a semi-
classical description of magnetotransport. As it concerns the degremeddiabaticity the contribu-
tion to reflection must be discriminated from the contribution due to spin mistraelsimgmputed in
this thesis. Spin mistracking becomes already important@t ~ \. The relation/sq/er = veTsdke
determines the dominant correction in narrow domain walls. As long as theticond > kg '
holds, spin mistracking sets in earlier compared with non-local quantum mieahaorrections due
to reflection. This is the case for weak ferromagnétg/r < 1), whereas for strong ferromagnets
Jsa/er ~ O(0.1 — 1) it would be really interesting to determine the dominant correction. [238]

Definition of spin transport regimes As discussed in section 5.1.2, charge transport in mesoscopic
magnetotransport is entirely diffusive for typical domain-wall widths imdaragnetic transition met-
als, while spin transport is diffusive or ballistic. As it concerns the spinspart, the result for the
spatially resolved transverse magnetization of the conduction electror¥t(®8 well as the inte-
grated spin-transfer torque (5.244) is not restricted to one transpgirne or the other and is in
general valid as long as the perturbative condifigg < A is fulfilled. The mean free path is deter-
mined either by the precessioprsg Or spin relaxationgr..

It is appropriate to introduce the parameter

n=—, (5.246)
Te

to characterize the spin transport regime< 1 defines the regime of ballistic spin transport valid
in strong ferromagnets, where, between two collisions, the spin has letioug to precess around
the local magnetization. In contrany,> 1 distinguishes the diffusive transport regime in relatively
dirty systems where the precession of the transverse magnetization is daotkak to relaxation.
As it concerns experiments, ferromagnetic transition metals are suppobedridhe ballistic spin
transport regime withy < 1.
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Both transport regimes will be discussed individually in the following. For ploigpose we visualize
the results of Eqns. (5.234) and (5.244) with the following set of paraméteoughout all plots:
st = 107125, 75 = 4.136 - 1071 5,0 = 1.33 - 105 m/s.
Moreover, we introduce the parameter '

8= % (5.247)
which characterizes the anisotropy of scattering and yields the ratio betweeveraged electron
momentum lifetimes for majority and minority spins. The ratialetermines whether the electric
current is carried by majority or minority electrong. > 1 translates ta-! > 7! and the majority
electrons dominate the transport, white< 1 corresponds to'! < 7! and the current is carried
mainly by the minority electrons due to a higher resistivity for the majority electrons

Ballistic spin transport This section is concerned with the physically most interesting transport
regime ¢ < 1), where the shortest time is set by the coherence tigehe inverse frequency with
which the conduction spins precess around the local magnetization. fitleeigonduction electron
is scattered many times during its traversal of the domain wall and the changedrais far away
from being in the ballistic regime, the spin transport is ballistic with respect taagted precession.
There are two possible casegs2 1.

First, we focus on the regim@ < 1. Figure 5.8 depicts the result (5.234) for the spatially varying
componentgo,(x)) and(oy(x)) of the magnetization of the conduction electrons that correspond to
the adiabatic and the non-adiabatic spin-transfer torqug ter(0.57 and three domain-wall widths.
Both components oscillate within the domain wall due to gieexchange interaction that causes a
precession around the local moments. [22, 172] When the electronaay@®the domain wall the
guantization axis changes and the electric field assembles transversdinzdigmeof the conduction
electrons. The oscillations are damped due to spin decoherence cgusgulbity scattering rather
than due to an averaging process and the sign change in the averaggiaoatic spin-transfer torque
(cf. Fig. 5.8 (c)) must be unambiguously attributed to spin-dependetiesng. [22] A particular
feature of the domain-wall profile with constant gradient is that for lodigenain-wall widths the os-
cillations are almost completely damped out such that the transverse magnetitigtis at a constant
angle with the local magnetization. This is due to the spin decoherence dausegurity scatter-
ing. The spatial oscillations of the torques are generic and thus alsopresenooth wall profiles.
The pronounced behavior at the boundaries of the domain wall trackgdéhe non-differentiable
transition between the homogeneous domain and the linear wall. The linearefa# pith constant
magnetization gradient is also responsible for the alignment in the middle of wideid walls as de-
picted in Fig. 5.8 (a). The constant angle characterizes an adiabatagpasfthe domain wall. More
realistic, smooth domain-wall profiles will exhibit an intermediate behavioreHascillations at the
boundaries will be less pronounced due to a smooth transition but in turnesgligts throughout the
entire domain wall due to a non-constant magnetization gradient. It canpleeted that both influ-
ences counterbalance each other for reasonable domain-wall widthatrttie precise domain-wall
profile is therefore not crucial for the qualitative behavior. Howeaeaguantitative analysis requires
the numerical solution of the kinetic equation for different wall profilesegéhwill clarify the influ-
ence of specific domain-wall profiles on the spatial variation of the magtietizaf the conduction
electrons. The end of the domain wall represents again a change ofahgzaqtion axis with con-
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Figure 5.8: (Color online) Cartesian components of the magnetization of tiduction electrons
within domain walls of different width\ for Img = 5.49 nm. (a)A = 200 nm, (b)A = 100 nm and (c)
A =20 nm. The transport regime is ballisti¢ £ 0.62) with a ratio of relaxation times smaller than
one (3 = 0.57). The dashed black line represents the average magnetization while theoltee
line depicts its spatially independent part. The frequency of the oscillatiatetésmined by thed
interaction.
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Chapter 5. Non-collinear magnetotransport

comitant oscillations.

For finite wall widths, the spatial averaged spin-transfer torque deviiatesthe constant value as
proposed by the adiabatic theory of the spin-transfer torque. [5] pagas oscillations of the spin-
transfer torque cause a different spatial average and are thusafunsefor the deviations that be-
comes negligible for wide walls. For infinite wide walls (~ oo) the oscillations average out and
the constant value as proposed by the adiabatic theory of the spiretréorsfue is recovered. Notice
how close the spatially averaged quantities as indicated by the dashed b&cklifig. 5.8 (a), (b)
remain to the spatially constant value of infinitely wide walls marked by the dottedlinkeis. This
states impressively why the assumption of a constant spin-transfer torqugeout to be a reasonable
approximation for wide domain walls in the adiabatic regime, though the spatistirsature is quite
inhomogeneous. In contrast, for narrow walls as depicted in Fig. 5.@¥¢eye deviations comprising
a sign change occur.

A spatially varying magnetization of the conduction electrons that constitutespidransfer torque
implies a spatially varying coupling between current and magnetization. Thidssiia sharp contrast
to the adiabatic case that predicts a constant coupling. [5, 48] Micrortiagimaulations should be
conducted to properly estimate the consequences of the spatial oscillafiboartresult in domain-
wall distortion and even in transformation. A current-induced deformatidgheodomain-wall struc-
ture has been experimentally observed. [233, 239]

As addressed by Ref. [172], a spatially oscillating spin-transfer tamayeenhance the depinning of
domain walls. An enhancementin the depinning probability correspondsstereate of the threshold
current needed to induce domain-wall motion and is of particular technologiegest. [19, 22, 29]
However, these conjectures should be confirmed with detailed micromagnatiasons.

Figure 5.9 depicts the total adiabatic and non-adiabatic spin-transferet¢sod4) and the non-
adiabaticity exclusively caused by spin mistracking due to the spatially streagling magnetization
texture. In the case of narrow domain walls the degree of non-adiabdtidipicted in Fig. 5.9 (c)
increases drastically. This is a direct consequence of the strong systiiddtions in narrow domain
walls that cause considerable deviations of the average from the spatiadipat spin-transfer torque.
For finite wall widths it is spin-dependent scattering that results in an geex@in-transfer torque that
deviates from the constant value expected from the adiabatic approxinfafi@h In this sense scat-
tering is responsible for a considerable change in the total spin-trangfee that acts on the domain
wall. This is somewhat reminiscent to the adiabatic case: Here, scatterisgscadinite degree of
non-adiabaticity due to spin relaxation. Without the presence of spin telesthe spatial oscillations
due to spin mistracking would be symmetric and yield a zero average. [1 €28 average would
not alter the constant value and the total spin-transfer torque on the derakiwould be the same for
narrow and wide domain walls, though its spatial substructure is entirelyatiffeThis is the result
of the ballistic quantum mechanical calculation by Ref. [172]. This imprebsatates the influence
of scattering on the spin-transfer torque. The enhanced degree-aithabaticity underlines the need
for micromagnetic simulations to properly estimate the consequences of thie drasase that can
result from domain-wall distortion to even transformations in the wall strectur

A very exciting feature fos < 1 is, that the non-adiabaticity changes its sign with the domain-wall
width X in narrow domain walls. As the final domain-wall velocity is set by the réfio [5], a vari-
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Figure 5.9: (Color online) Integrated torques for different domain-walths \. (a) The adiabaticag
and (b) non-adiabatic spin-transfer torgwen-ag () The degree of non-adiabaticity The solid red
line indicates the regime where the perturbation theory starts to be unreliable.
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ation of¢ with the domain-wall width allows tuning domain-wall motion by meang ofor instance
via the (shape) anisotropy (cross section of the wire). Provided thatoitmain wall keeps its rigid
shape, a sign change gnwould result in a reversed motion of the domain wall. As addressed by
Ref. [183],5 < 1 corresponds to an impurity-specific negative correction to the resistwitpased
by the domain wall (cf. section 5.5.5.3). Moreover, at certain widths thaespond t€ = 0, the
conduction electron spin is able to follow the magnetization in perfect adiabatiwityadditional dis-
sipation by the magnetization texture is absent. Likewse, 0 implies intrinsic pinning [49] and a
vanishing terminal velocity of the domain wall. This provides a geometric trapyitige domain walll
that does not rely on pinning centers. Furthermore, the equal§y-etx is possible. For the special
case of = « solutions of the Landau-Lifshitz-Gilbert equation exist that possessnthireffﬁ(v7 —t)

in accordance with Galilean invariance. [55, 101] This means that anaagbgtatic sqution%(F)

of the Landau-Lifshitz-Gilbert equation moves at a constant velatigjthout deformations. Thus,
¢ = « causes Galilean invariance at a macroscopic level and allows for thefdsititic magnetiza-
tion patterns as a whole. Moreovér= « implies the absence of a current-induced ferromagnetic
instability [53, 155]. The oscillations in the non-adiabaticity in Figs. 5.9 ()afe of quantum origin
and emphasize the particular relevance and the corresponding speatiadent of the spin degree of
freedom with respect to non-adiabatic magnetotransport in narrow damadismmwhere the coupling
of conduction electron spin and local moment is enhanced.

Next, we focus on the regime withh > 1. Figure 5.10 depicts thgr,) and(o,) components of the
magnetization of the conduction electrons according to Eq. (5.234) fae thfierent domain-wall
widths ands = 1.2. Compared to the case @f < 1 depicted in Fig. 5.8 the spatial oscillations are
less pronounced and the idea of a spatially constant spin-transfeetoagube more reliably sus-
tained. As a consequence the average torque indicated by the bladddeshkeeps quite close
to the spatially independent part (blue dotted line). Though the deviatiorriowaomain walls is
measurable as indicated in Fig. 5.10 (c), the most important point is that forl no sign change
of the spatially averaged non-adiabatic spin-transfer torque occudéreét consequence of the less
pronounced spatial oscillations f@r> 1 is a smoother dependence of the spatially integrated spin-
transfer torque on the domain-wall width as depicted in Fig. 5.11. In pantjewasign change in the
non-adiabatic spin-transfer torque occurs (cf. Fig. 5.11 (b), Td)g obvious conclusion is therefore
that constant transport coefficients, in particular a congtaate much better justified for the case of
B > 1. Nevertheless, the increase in magnitude of the non-adiabaticity by dexyebomain-wall
width is generic (cf. Fig 5.11 (c)).

Diffusive spin transport In the diffusive transport regime the mean free path is givendsy that
constitutes the shortest length scale besides the Fermi wavelength in doalmagnetotransport.
Spin relaxation dominates the spin transport and suppresses the meoédise conduction electrons
around the local magnetization. In this sense the absence of spin mistrackimply a consequence
of the absence of precession. The magnetotransport is dominated bytyngoattering. Again, the
two alternative caseg, = 1, have to be distinguished.

Figure 5.12 depicts the result (5.234) of the,) and (o,) components of the magnetization of the
conduction electrons for three different domain-wall widths and a vélge-e 0.57. Although clearly
present, the spatial oscillations are much less pronounced in the difftesiggport regime compared
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Figure 5.10: (Color online) Cartesian components of the magnetization obtidtiction electrons
within three domain walls of different width. (a) A =200 nm, (b)A = 100 nm and (ch =20 nm. The
transport regime is ballistie)(= 0.62) with a ratio of relaxation times larger than one=£ 1.2). The
dashed black line represents the average magnetization while the blue dattdedints its spatially
independent part.
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Figure 5.11: (Color online) Integrated torques for different domaifi-wiaths \. (a) The adiabatic
Tad @and (b) non-adiabatic spin-transfer torgtign-a¢ (C) The degree of non-adiabaticity The solid
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Figure 5.12: (Color online) Cartesian components of the magnetization obtidtiction electrons
within three domain walls of different width. (a) A = 200 nm, (b)\ = 100 nm and (c)\ = 20
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Tag @nd (b) non-adiabatic spin-transfer torgtign-ag (C) The degree of non-adiabaticigy The solid
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to the ballistic transport regime depicted in Fig. 5.8. A direct consequenca ihéhspatially averaged
part (black dashed line) remains much closer to the spatially independieatigindicated by the blue
dotted line. While the adiabatic torque stays quite constant with the domain-wéil agalepicted by
Fig. 5.13 (a), the strength of the non-adiabatic torque decreases wriéadery domain-wall width
but no recurring sign change occurs (cf. Fig. 5.13 (b), (c)).

Next, we investigate the regime with > 1. Figure 5.14 depicts ther,) and (o) components
of the magnetization of the conduction electrons for three different domalinwidths and a value
of 3 = 1.2. As expected the regime of diffusive spin transport shows in genessldesnounced
behavior. In particular no sign change occurs. Both components of thlesfin-transfer torque as
depicted in Fig. 5.14 coincide to a good extend with the spatially constant vdlhesame holds for
the integrated quantities as depicted in Fig. 5.15. This clearly states that tealiadmatic torque is
determined by spin relaxation in the diffusive regime of spin transport. melasion, the regime of
diffusive spin transport with# > 1 comes closest to the assumption of constant coupling parameters
for the spin-transfer torque, that are independent of the width of theagtowall.

Crossover from the ballistic to the diffusive regime of spin transpet The analytical solution in
Eq. (5.244) facilitates the analytical study of the crossover from the baligstiee diffusive regime of
spin transport. For this purpose, we focus on the integrated spingransfjue given by Eq. (5.244)
and compare it with the domain-wall widghalong with
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Figure 5.14: (Color online) Cartesian components of the magnetization obtidtiction electrons
within three domain walls of different width. (a) A =200 nm, (b)A = 100 nm and (ch =20 nm. The
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5.5. Local spin-transfer torque and resistivity within a domain wall

¢ the parameter that indicates the predominant spin transport regimesq/ 7.,

e the ratio of relaxation times3? = 71 /7.

Figure 5.16 and 5.17 depict the integrated adiabatic and non-adiabatic cemgohthe spin-transfer
torque and the degree of non-adiabaticity in dependence of the domkiwigta \ and the transport
regimen = 7sq/7. for § < 1 andg > 1, respectively. While the diffusive regime (> 1) yields
mainly a monotonous behavior of the torques, oscillations occur in the balligimeey < 1). In
general, the oscillations wash out when approaching the diffusivepiainggime § > 1) and be-
come less pronounced with larger domain-wall widthThe overall periodicity of the oscillations is
given by the wavelengthr as indicated in the plots\f = 17.23 nm for the employed parameters).
For 3 < 1 as depicted in Fig. 5.16 the oscillations are more pronounced compared withgbsite
case (0 > 1) shown in Fig. 5.17. In particular, the strong spatial oscillationsfor. 1 in narrow
domain walls (cf. Fig. 5.8) cause negative values for the non-adiabatig¢rapsfer torque and the
degree of non-adiabaticity (cf. Fig. (5.16) (b), (c)). The degremoniadiabaticity oscillates with the
domain-wall width) and yields as a consequence a recurring sign change. In contrast,>fol
(cf. Fig. 5.17 (b), (c)) the non-adiabatic spin-transfer torque andégece of non-adiabaticity remain
strictly positive. They always exceed a value of one that charactguinesspin relaxation. In the
diffusive regime { > 1) spin transport is dominated by impurity scattering and the spatially averaged
gquantities remain close to the contribution due to spin relaxation for all valués &$ indicated by
the spatially resolved solutions of the preceding section, spatial oscillatimusrie negligible in the
regime of diffusive spin transport. Due to the absence of precesgionpsstracking plays no role
and the degree of non-adiabaticity tends to the value for pure spin relaXatioFig. 5.16 and 5.17
(c)). By decreasing the impurity scattering. (— oo, — 0) the ballistic regime«{ < 1) is ap-
proached and spin mistracking increases. Note that though fer 0 the contribution due to spin
mistracking enhances, the overall degree of non-adiabaticity (5.24@ tikeewise to zeros( — 0,

& — 0). The limitn — 0 corresponds tdsq — oo and as discussed in section 5.5.2.1, an infigite
exchange interaction permits perfect spin transfer due to the completereatisn of spin-angular
momentum. Consequently, in the limit of infinite exchange interactipr~( 0), no non-adiabatic
spin-transfer torque is present at all.

Figure 5.18 and 5.19 depict the integrated spin-transfer torque anddheedef non-adiabaticity in
dependence of the domain-wall widthand the ratio of relaxation times = 7' /7! for either bal-
listic (n < 1) or diffusive (7 > 1) spin transport. In the regime of ballistic spin transpart< 1)
strong oscillations in the non-adiabatic torque and the degree of nonatidigboccur as depicted in
Fig. 5.18 (b), (c). The oscillations are absent in the regime of diffugve tsansport (cf. Fig. 5.19
(b), (c)). A comparison of the ballistic (cf. Fig. 5.18) with the diffusivesedcf. Fig. 5.19) shows for
B#,n < 1 acomplex behavior including sign changes of the degree of non-adip&t{cf. Fig. 5.16
(c)). In particular, it can be deduced from Fig. 5.18 (c) thahanges sign at approximately a value
of 3 = 0.6 for the given parameters.

From the Figs. 5.16 and 5.18 we conclude that there exist a quite braaterefjballistic spin trans-
port with a ratio of the relaxation times smaller than ofigr( < 1) that provides the possibility to tune
the degree of non-adiabaticigyby means of the domain-wall width. As addressed by Ref. [183],
the physical significance fg# rests on its relation to the intrinsic domain-wall resistivity. > 1
corresponds to a positive intrinsic domain-wall resistivity, wiillec 1 results in a negative intrinsic
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Figure 5.16: (Color online) (a) Adiabatic spin-transfer torgye (b) non-adiabatic spin-transfer
torque mhon-ag @nd (c) degree of non-adiabatici§yfor various domain-wall widths\ and transport
regimes) = 7sq4/7. for a negative intrinsic domain-wall resistivity (= 0.6).
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Figure 5.17: (Color online) (a) Adiabatic spin-transfer torqyg (b) non-adiabatic spin-transfer
torque mhon-ag @and (c) degree of non-adiabatici§yfor various domain-wall widths\ and transport
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Figure 5.18: (Color online) (a) Adiabatic spin-transfer toragig (b),(c) non-adiabatic spin-transfer
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Figure 5.19: (Color online) (a) Adiabatic spin-transfer torgqug (b) non-adiabatic spin-transfer
torquemon-agand (c) degree of non-adiabaticgyor various domain-wall widths and anisotropy of
scatterings = 7! /7! in the regime of diffusive spin transporj & 2).
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domain-wall resistivity (cf. discussion in section 5.5.5.3). Spin relaxation iralnées determined by
the topology of the Fermi surface and dominated by hot spots on the Fefate240] Thus, relax-
ation times in metals and semiconductors can be tailored by modifications of thetbactdre, such
as doping or alloying. Consequently, the ratio of relaxation tig\eefined in Eq. (5.247) is mainly
determined by the kind of impurities. [183] There exist model calculationspiteatict that the ratio
of relaxation times varies frorfi = 0.2 — 30 for Ni. [241, 242] As pointed out by Ref. [183], though
[ is experimentally not available, the experimental ratio of resistivities as giydRefs. [11, 169] is
in a reasonable agreement with the calculated values.fétowever, spin valve experiments allow
the determination of the majority relaxation time and the calculation of the minority telaxane
can be accomplished by means of the two-current model in terms of the Bohzegamation. [189]
The determined values gfread for Py (=NipFeyo) and Fe, respectivelyipy ~ 7.7, fre ~ 0.7. [189]
Accordingly, the dependence giprovides the possibility to experimentally test the sign dependence
of the degree of non-adiabaticity by doping samples with impurities of diftdyge and concentra-
tion. In this context systematic, experimental studies of the degree ofdiahadicity in dependence
of concentration and nature of impurities as well as the domain-wall widtregrered. [190]

Finally, we like to comment about experimental results concerning the nabait spin-transfer
torque. First of all, an experimental discrimination of the degree of n@abatcity is problematic,
since it is usually extracted from dynamical observations of domain-wall matydfitting the mea-
sured data to numerical simulations. [102—-109, 190-192] This methodifgoeguwith a high degree
of uncertainty, as the analysis is highly susceptible to sample inhomogenetiete®fields or un-
certain material parameters, for instance Gilbert dampirgy shape anisotropyt. Consequently,
the results for the value of reported in the literature [102-109, 191, 192] differ by one order of
magnitude. However, a quantitative analysis suffers up to date from threkpowledge of the in-
put parameters. As discussed in section 5.4.5, one order of magnitueleerdifé in the degree of
non-adiabaticityt can be already explained by the uncertaintydrsplitting Jsg and relaxation time
T.. However, if non-adiabatic corrections are present, one order ofitoag difference for the same
material can be readily explained by the impact of the magnetization textuge &g it concerns
the dynamical determination gfas extracted from domain-wall motion, a further problem is that the
contributions of spin mistracking or other non-adiabatic sources camndistinguished from each
other, which already led to confusion about interpreting experimental [22a] This substantiates
the need for systematic experimental studies of the degree of non-adigltiait circumvents its
extraction from dynamical data. [244]

As it concerns narrow domain walls, much less experimental data is avaiRétently, Feigenson
et al. [223] reported the observation of a remarkably high valug =f 0.5 in SrRuG;, an itinerant
ferromagnet with perovskite structure. [58, 71, 215] Here, the domalits\are very narrow with
approximately a width of 3 nm due to a very strong uniaxial anisotropy ofialibT. Furthermore,

it is reported that the domain wall moves with the current (against the eldtdw) which disagrees
with the present theories of spin-transfer torque and momentum trafZf8t. The possibility of a
sign change of the non-adiabatic spin-transfer torque in dependétieedomain-wall width as out-
lined by the presented results serves for an explanation of this experifieditag. Furthermore, the
large value of ~ 0.5 is too high to originate from spin relaxation. However, following the preskente
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5.5. Local spin-transfer torque and resistivity within a domain wall

analysis it can be attributed to spin mistracking caused by the spatially strarglpg magnetization
texture.

Recently, an experimental investigation of the degree of non-adiabaticigriovn domain walls (1-
10 nm) for CoNi and FePt wires reported tifastays small and quite insensitive with respect to the
domain-wall widthA. [110] From the presented analysis such a behavior exists for a praegime

of n = 0.6 andg = 0.7 (cf. Fig. 5.18 (c)). We note that a value Gf~ 0.7 is in agreement with
experimental results on Fe impurities. [189]

Conclusion and comparison with results of the literature Vanhaverbeke and Viret employed a
phenomenological, macroscopic Landau-Lifshitz equation that doesk®oirttm account the charge
transport, the quantum nature of the spin of the conduction electron edependent scattering. [22]
In particular, Vanhaverbeke and Viret presented numerical resuttdadlea not provide explanations.
In contrast, our analytical calculation for narrow domain walls revealsxphkoé dependence of the
spin-transfer torque on the material parameters (foremost on the spémdient scattering times,
7). The crucial point in narrow domain walls is the damping of the precessiive @onduction elec-
trons due to decoherence. While Vanhaverbeke and Viret numericakyrttmaccount the damping
of the oscillations in the spin-transfer torque by averaging "on the diftatieections the Fermi ve-
locity can take on the Fermi sphere” (page 3 in Ref. [22]), our methodesetae damping to the
spin-dependent scattering times. In particutar< 7' turned out to be the essential requirement for
a sign change in the degree of non-adiabaticity. Our conclusion thatdhtrasts with Vanhaverbeke
and Viret reads: The averaging process over the Fermi spherendbeause a sign change, instead
the sign change stems from the fact that the current is dominated by the miledtsons {1 < 7).
Thorwart and Egger derived classical Bloch-Redfield equation®btained detailed results for non-
adiabatic higher-order terms in the spin-transfer torque. [233] Theyosnegb purely classical equa-
tions of motions that are generally limited to one spatial dimension and derivied gloefficients for
the higher-order terms. However, no discussion of the dependerice nbn-adiabatic spin-transfer
torque on the width of the domain wall is provided. Their corrections shaelthérefore interpreted
as corrections to the first-order material parameters, independent ofabeetization texture, but
do not indicate a non-trivial dependence of the spin-transfer torgubeowidth of the domain wall
for narrow domain walls. In contrast, in this thesis the spin-transfer targnarrow domain walls
is computed by means of local distribution matrices. This allows to trace backitie of the in-
crease in the degree of non-adiabaticity and its dependence on the deallaividth. Consequently,
our expressions explicitly take into account the magnetization texture. Thigyigat importance,
since with the perspective of future micromagnetic simulations the locality ofexivedi spin-transfer
torque promises rich current-induced magnetization dynamics that is regsdigle by the average,
global description as it is provided by Thorwart and Egger. Our critafube work of Thorwart and
Egger bases on the following argument: In our manuscript we demonsteatedhl to consider cou-
pled charge and spin transport in narrow domain walls. In particulartaltiee magnetization twist
the charge along with the longitudinal channel constitute the origin of thetsgigfer torque that
result for narrow domain walls in the local, spatially dependent non-atitatxarections. Thorwart
and Egger do not consider the charge current that in their model plesoiiom the spin sector and a
contribution of the charge transport to the spin-transfer torque is nded in their concept. This
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Chapter 5. Non-collinear magnetotransport

point we put in question as it concerns the correct description ofwatoonain walls.

Taniguchi, Sato, and Imamura considered the macroscopic transpattaerguof Refs. [185, 197] by
applying the diffusive approximation to the Boltzmann equation. [232] Adiogty, they restricted
themselves to the regime of diffusive transport and did not take into atpossible coherence ef-
fects in the regime of ballistic spin transport. In the diffusive regime, the sairsport is dominated
by spin relaxation and the influence of spin mistracking due to the magnetizatiaretés negligible.
Furthermore, they did not consider spin-dependent scattering. éiogly, they did not observe a
sign change in the non-adiabatic spin-transfer torque with the domain-vah.w

In summary, with the onset of spin mistracking in narrow domain walls, the dejmon-adiabaticity
¢ ceases to be a material parameter but depends crucially on the setroépansa), Jsg, 71, 74. This
yields a huge parameter space for tailoring nanowires with desired fualitjofor technological
applications. [19, 20]

5.5.5.3 Second-order solution — domain-wall resistivity

In the preceding sections the zeroth and first-order solutions havech&ritated that yield the spa-
tially independent bulk solution and the transverse magnetization of the ciionlelectrons, respec-
tively. In this section we compute the second-order of the non-equilibristrittition functions that

introduces a non-adiabatic, spatially-dependent correction to the majodtanority spin channels

as a consequence of the strong magnetization twist in narrow domain wakscofiection to the

charge channel leads to an intrinsic domain-wall resistivity and to a spatihliyriageneous electron
density. The correction to the longitudinal component of the magnetizatioreafadhduction elec-

trons is responsible for momentum transfer between the conduction ekatrdithe domain wall and
a spatial dependence in the longitudinal spin current.

For every order of the expansion, the spatial differential equation on the left hand side obE2119)
exhibits the same shape as the zeroth-order differential equation in.B40)5In this sense, the de-
composition in transverse and longitudinal degrees of freedom is patittely exact. We proceed
with the complexified kinetic equation as given by Eq. (5.214). The firstrogdlution reads

WGe(a) = —dmi |O(vy) (1= % " | +0(-v) [1—e o O
6E$TC2TSTSf
ImtpmiTsd (2772 + Tsf (72 — 72)) (27¢(Tsd — 2i7sf) + TstTsd)
|0 /"9 e, o) s (27 + 7st) — mv2reTsars)
+ 02 fNe, Jsa)h (et + 2mu2TsTsqre)
0
+ 02 foh9Ye, Jsd)hQWUchTsf} 0f- (5.248)
1
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5.5. Local spin-transfer torque and resistivity within a domain wall

The determing equation for the second-order solution follows from EB0% by a comparison of
the coefficientsx x?

00,50 (@) + AFE (@) = ~lofy (B3 (@) + €O, 7 (@) ) (5.249)
The derivative with respect th, of the first-order solution (5.248) reads

O ~(1)($)

z
21

= 2miz3 [@(Um) <8efCharge(€> Jsd) (dle_%xv + d2€ w® ds (1 - €_Tw$> Ux)
+ agfcharge(c Jsd) (d467%xv + dse s ¥+ dg (1 — efix> vy + d7 (1 — ef%x> v%)

+ 92 99 e, Jsy) (dge_%x +dg (1 - e_Tslcz) ve + d1o (1 - 6_%x> Ui)
+ 02 M, Jsg)diy (1 - e—%x) vg) +O(—v,) (x — (z — A))} 8 , (5.250)
1

with the abbreviations are given in appendix F. For the determination of to@deorder solution, we
neglect in the following the contribution due to spin-flip scattering by taking the lirgit-¢ oo) of

Eq. (5.249). This means, the spin-dependent momentum relaxationztimesare from now on the
sole remaining scattering times. With this simplification the second-order equaii#®9} reduces to

(2),&];’(37) 2}—6 23’3 0 (2)§E(x) %Al
vde | D5 |+ lm om0 5er) | = [ o, | G2s)
(2)ggans(x) 0 0 (2—1_6 — Z%sd) (Q)anns(x) mfp 0

where we introduced the abbreviations

A = < lim ak tranS(x> (5.252)
’Tsf—>00

Ay =S < lim *fa”S(x ) . (5.253)
’Tsf—>00

The explicit expressions for the Eqgns. (5.252) and (5.253) can el fouappendix F.

From Eq. (5.251) the influence of the imaginary part of the transveisedsgiribution on the ma-

jority and minority channel can be recognized. According to Eq. (5.2%)jrttaginary part of the

transverse first-order distribution acts on the r.h.s. of Eq. (5.251) ashamogeneity for the sec-
ond order Eq. (5.251). The channel mixing stems from the gauge tramsion as caused by the
magnetization twist. According to Eq. (5.239) the imaginary part of the trass\distribution con-

stitutes the non-adiabatic spin-transfer torque. In this sense, the radratd spin-transfer torque
accounts for a non-vanishing second-order result. The magnetizatistrctwaples the majority and
minority channels with the non-adiabatic transverse spin channel thapisnsble for a correction

of the charge and longitudinal channels. In this sense, transversacpimulation as provided by
the non-adiabatic channel is the origin of domain-wall resistivity and mometramsfer.
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Chapter 5. Non-collinear magnetotransport

As discussed in section 5.2, in the absence of spin-flip scattering the kigetti@n in a homoge-
neous domain without magnetization twiét.¢(x) = 0) is diagonal in the majority, minority basis.
The majority and minority channels completely decouple and can be treatedtedpaiccordingly,
without the presence of spin-flip scattering the majority, minority basis constiéuteore appropriate
basis for the solution of Eq. (5.251). A diagonalization of Eq. (5.251)esmonds to a transformation
to the majority, minority spin basi{s@)gg(x),@) gl%(x),@) ggans(x)}T. In this new basis, Eq. (5.251)
reads

1 ~
0 V2O + =y 0 (Z)QE(x)
1 - 2 ~
0 0 Uxax =+ (E - Z@) (Q)anns(l‘)
A1 + v37sdA2
= A —vpmsgDa |- (5.254)
lmprsd 0

In the diagonal basis the three independent Eqns. (5.254) are nitysedged and yield as general
solutions

z T

(2) ) — - _vx‘rT T
gh@) = (14 F(Fpe =) e SERRS) (5.255)

= l
@5l (z) = (1 + F()e i) T [A) — vprsaa), (5.256)

k lmprsd
2) ~tl 77(2%_1%1):1:

gy z) = F(5;)e v . (5.257)

Analogously to the first-order solution, the arbitrary functidng’;;) are determined by vanishing
boundary conditions at the beginning and the end of the domain wall for &ate Eqns. (5.255)
to (5.257) individually. This results immediately in a vanishing second-ordasterse distribution

(2)ghany) = 0. (5.258)

As discussed in the previous chapters corrections to the transversetimation of the conduction
electrons solely emerge in odd ordersof The reason for this is that transverse corrections are
sensitive to the sense of rotation of the local moments within the domain wall.

The necessary boundary conditions for the homogeneous domain eaeyaimplemented in the
zeroth-order majority and minority distribution functions. Thus all higheemdf the perturbative
expansion must be solved with vanishing boundary conditions. As in teeot#se first-order solution
this determines the functiofi(v;;) and yields for the sum of all rightmoving{ > 0) and leftmoving

(v < 0) majority, minority distribution functions

S

D) = 6 (u,) 2 (1 % cosh 2<—A>>

N lmprsd 2?}3;7'5

2 (1 —
+ SU;TsdA2 <26—2”27'5 sinh M) }, (5.259)

20,75
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5.5. Local spin-transfer torque and resistivity within a domain wall

wheres + 1 stands fors = {7, | } and denotes the majority, minority character.

We note from Eq. (5.259) that the solutioﬁégg(a:) and(Z)g}’%(af) are symmetric with respect to the
transformations

(5.260)
The final result for the spin-dependent second-order non-equitibdistributions reads
(2) =5 2nTs - T+
gple) =+ Zae 2vwe O(vg)
mfp7sd
[0/, Jsa) A, A, v2) + 02 F9Re, Joa) B, A, v,)
+ 02 fHe, Js) O, A, ve) + O F e, Jsd) D(x, A, vg)| (5.261)
with the following abbreviations
_(.-27 7 S A— 2z
Az, A\ ) = (vm dy + d2) H(x, A\, vy) <1 — e 2w cosh Dot )
3~ A . 2(]} ~
_|_ STSd,Um62€ 2ug TS g([L’, )\, Ux) Slnh v S + Vg |:ng($, )\, U:E)
T
- -2 2 — A
+e Toars (—ng(x, A, ;) cosh A—2e + s7saC1G (x, A, vy ) sinh < > } ,
20,78 20,78
9273 37 A A— 2z
B(z, A\, vg) (vx dyH(x, N\, vz) + vpdeZ(x, A, v;,;)) 1 — e 2 cosh T
VT
. _ ~ A—2
+ Uy [d5I(af, A\ vg) +e T < — dsZ(x, A\, vy) cosh ZE
VT
2 — A
+ s7sdC3G (x, A, vy) sinh * )} ,
20,75
C(z, N\ vg) = <J7H(:U A, Ug) + vadsT(x, A vx)) 1 — ¢ %7 cosh A2
) ) ) 9 ) ) 2'Um7-s
A 2 — A
+ sTsqUEse TioTe G(x, A\, vy) sinh L,
20,75
3 g —_ A _ )\ - 2:1:
D(x, A\ vy) = vodoZ(z, A\, vz) [ 1 — e 2027 cosh vl B (5.262)
VT

To determine the macroscopic quantities according to Egns. (5.2) to (5.5)aweeto carry out the
momentum integration of Eq. (5.261). The currents are obtained the samieyveayinclusion of a
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factorwv, that we add in brackets in the following

3
@3 () D5%(2)) = —r? / (;ﬁf;,w ®g2(x) O(u)

275 m3 d3v
2 >
= —K - 22/(27Th)3 O(vy)
B

(va)e T |0 fPTRe, Joa) A, A, v) + 2 P Re, Jog) B(w, A, )

+ 02 FA9Ye, Jog) O, A, ve) + 02 FHOe, Jsg) D(w, A, w} , (5.263)

The ¢ integration is trivial and th@&-function restricts theos # integration. The higher derivatives of
the Fermi function in Eq. (5.263) are shifted by means of partial integrations

s . \/iTst ~ 00 1
@ ($)<(2)] (z)) = /{2277713\/777”%‘;37'5(:122/0 dE/O d(cos0) (_86fcharge(€’ Jsd))

(A A va)ve(ue)e™ 5 — 0 (Velun)e 5o Bla, A ) )
x+ A

+ 352 <\/g<vx>e*2uzfc C(z, \, Uz)) — 8? (\/E@x)e*%D(:p, A, vm)) ]
(5.264)

The calculation of the energy derivatives provides the analytical iniegraf Eq. (5.264). The calcu-
lation is too extensive to be presented here and we refrain from givalgteral results at this point.
However, the second-order solution holds a few interesting quantities kkerection to the charge
current that gives rise to an intrinsic domain-wall resistivity

Tgd®) = € (P51 (2) + @ (@) (5.265)
a spatially varying electron density
n®(z) =e <(2)TLT($) + @yl (a:)) , (5.266)
a spatially varying: component of the magnetization of the conduction electrons
(V6 (2) = o (Pn!(2) =P () ). (5.267)

and a spatially varying longitudinal spin current
onl@) = e (P51 (@) =2t @) (5.268)

Domain-wall resistivity In this section the intrinsic domain-wall resistivity is derived. It follows
from symmetry considerations that resistivity corrections appear in ttendewrder of the magneti-
zation twistk o 0,¢(z). The intrinsic resistivity of a domain wall is degenerate with respect to the
sense of rotation of the local moments within the domain wall. The domain-waltivégiss thus
associated with the energy of the domain wall and is of even order in the timgioa twist. In
contrast, the spin-transfer torque as calculated in the previous sectiendfeon the sense of rotation
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5.5. Local spin-transfer torque and resistivity within a domain wall

and is therefore present in odd orders of the magnetization twist.
The total charge conductivity in the presence of a domain wall reads woitthforder ins<

Otot = 00 + Odw + 0(54)
=o9(1—-2), (5.269)

whereoy is the bulk conductivity in Eq. (5.220) and

Z =W (5.270)

g0

symbolizes the correction due to the presence of the domain wall. The dimitghumrrection trans-
lates into a resistivity correction

Pdw = Ptot — PO
= Po [(1 - 7)) - 1}

~ Zpo

Odw

== 271
- (6.271)

where we employed thaf| < 1.

Figure 5.20 depicts the spatial dependence of the intrinsic domain-waliviégigithin the region
of the domain wall for two domain walls of different width The resistivity correction gets more
important by decreasing the width of the domain wall. The local resistivityection changes sign
within the domain wall, starting from a negative correction at the beginning tsiiye correction at
the end. In the regime of ballistic spin transport depicted in Fig. 5.20 (alh€l)scillations are more
pronounced compared with the diffusive regime as illustrated in Fig. 5.20d}c)

Figure 5.21 depicts the spatially varying correction to the homogeneousoeletdnsity due to the
presence of a domain wall for two different domain-wall widths. Theexdion to the electron density
becomes more important with decreasing domain-wall widtm all cases the correction to the elec
tron density changes sign within the domain wall, starting from a positive atarneat the beginning
and ending with a negative correction. In the regime of ballistic spin trahgppicted in Fig. 5.21
(a), (b) the oscillations are more pronounced compared with the diffusgime in Fig. 5.21 (c), (d).
The pronounced corrections to the resistivity and electron density aetiieriing and the end must
be attributed to the linear domain-wall profile (cf. discussion in section 5.5Ac2prdingly, the cor-
rections become less pronounced in the middle of the domain wall according d¢ortstant gradient
in magnetization. The oscillations are damped out due to impurity scattering. rékenge of the
strong magnetization twist at the beginning of the domain wall causes an detiomof conduction
electrons. A higher local electron density results in a reduced locativégis If we compare the
resistivity correction in Fig. 5.20 with the local electron density in Fig. 5.21 we &n affirmation
of this classical conjecture. Note, however, that a relation between #rgechccumulation and the
electric current is in general established by the non-local macroscaepgport equations. A spatially
varying density of the conduction electrons due to the presence of a demthirould be experimen-
tally observed by scanning tunneling microscopy (STM).
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Figure 5.20: (Color online) Spatially resolved resistivity correction within tdemain walls of dif-
ferent width\. Left: A = 20 nm. Right:A = 100 nm. (a) The transport regime is ballistic=£ 0.62)
with a ratio of relaxation times smaller than ong £ 0.57). (b) The transport regime is ballistic
(n = 0.62) with a ratio of relaxation times larger than ong=£ 2). (c) The transport regime is diffu-
sive (7 = 1.2) with a ratio of relaxation times smaller than o€ 0.57). (d) The transport regime
is diffusive (7 = 1.2) with a ratio of relaxation times larger than onge£ 2).
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Figure 5.21: (Color online) Spatially resolved correction to the electrositewithin two domain
walls of different width\. Left: A = 20 nm. Right:A = 100 nm. (a) The transport regime is ballistic
(n = 0.62) with a ratio of relaxation times smaller than orie£ 0.57). (b) The transport regime is
ballistic (7 = 0.62) with a ratio of relaxation times larger than ong<£ 2). (c) The transport regime
is diffusive (7 = 1.2) with a ratio of relaxation times smaller than ore=£ 0.57). (d) The transport
regime is diffusive ¢ = 1.2) with a ratio of relaxation times larger than orig-£ 2).
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Let us turn the attention to the experimentally most relevant quantity of the totasictdomain-
wall resistivity that is obtained by summing up the local conductivity correctighin the domain
wall and calculating the total intrinsic domain-wall resistivity according to B{1). Figure 5.22
depicts the total intrinsic domain-wall resistivity in dependence on the domalinaidth \ and the
parameter that indicates the transport regimethat characterizes the ratio of the relaxation times,
respectively. In general, oscillations in the resistivity occur in the limit of kallispin transport

(n < 1) and are washed out when approaching the diffusive regime {). The sign of the domain-
wall resistivity depends fof < 1 in a non-trivial manner on the set of all parameters, foremost on
the width ) of the domain wall. In the case of < 1 an enhancement or a suppression of the electron
transport depends on the ratio of the domain-wall williih comparison with the wavelengtty of

the conduction electrons as defined in Eq. (5.245). The oscillatiodspofiith A coincide with the
oscillations in the non-adiabatic spin-transfer torque found in narrow otowels for ballistic spin
transport § < 1) (cf. Fig. 5.16 (b)). The sign of the resistivity correction depends eratility of the
precessing conduction electron spins to track the local moments: A positimeaid-wall resistivity
corresponds to a lag of the spin of the conduction electron compared toctdeioments, while a
negative resistivity relates to itinerant spins that are running aheacdrdiogly, Ap is positive for

(n + 3/4)Ag, negative for(n + 1/4)Ag and tends to zero fom + 1)/2Ar, n € Ny. In analogy to
other spin-controlled architectures [245], the precessing conduelmtron spin is found to deter-
mine the electrical transport properties in narrow domain walls. Due to thegstnagnetization twist

in narrow domain walls the majority, minority channels get mixed. A majority electrdémt on the
domain wall attains a minority contribution and vice versa. The coupling of theagabatic channel
to the majority and minority channels causes a redistribution within the majority anditpiolban-
nels. According to Eq. (5.251) transverse spin accumulation causesmferdwall resistivity and
the oscillations in the transverse spin accumulation directly translate to the dwalhiresistivity.
Hence, the oscillations with the domain-wall widtloriginate from the precession of the transverse
spin accumulation around the local magnetization. [197]

For 3 > 1 as depicted in Fig. 5.22 (a) the current is mainly carried by the majority electod the
domain wall constitutes an entirely positive resistivity correction. This caattodbuted to enhanced
scattering as caused by the spatially strongly varying magnetization textymixig the majority
and minority channels the presence of the domain wall removes the highatmgdshunt channel
present in a homogeneous ferromagnet. [63] In this case domain-willivity can be regarded as
the continuous analogue of the giant magnetoresistance effect in multitayeuses. The resistance
is higher for the antiparallel alignment between free and fixed layer — tleeceirtains a domain wall
—and lowered in a parallel reorientation of the free and fixed layer blyapgpan external magnetic
field — by saturating the sample —. For very narrow domain walls the resistvitgation approaches
the percent regime. This is in accordance with experimental findings gbsitive domain-wall re-
sistivities. [215]

In the opposite casel(< 1) as depicted in Fig. 5.22 (b) the current is mainly carried by the minority
electrons. Interestingly, the case®k 1 provides the possibility that the presence of a domain wall
lowers the resistivity of a nanowire. This can be understood in terms ofViransport as provided
by the minority electrons. [16] The origin of negative domain-wall resistivitsts on the different
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Figure 5.22: (Color online) Color-coded intrinsic domain-wall resistivity @ngent versus domain-
wall width A and the parameter that characterizes the transport regimesq/ 7. (a) with 5 = 2 and
(b) 6 = 0.6. The spin transport is (c) ballistic= 0.62 and (d) diffusiven = 2.07.
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relaxation times of the two spin channels that get mixed due to the spatially str@rgigg magneti-
zation. The magnetization twist leads to a redistribution between majority and miakadtyons that
is also responsible for the spatially inhomogeneous electron density asediapi€ig. 5.21. [183] As
can be understood from the spin-dependent Drude formula of ctivitjue® = ¢?n*7* /m, a change
in the spin-resolved number density causes a different spin-resolved conductivity [183] A pos-
sible outcome of the redistribution is a higher conductivity compared with the gensmus case
with no domain wall. In this case, it would be interesting to observe the reditnibaf the spin-
resolved electron density’ within a domain-wall by spin-polarized scanning tunneling microscopy
(SP-STM). We note that local changes in the spin-dependent bamtuseralue to the presence of a
domain wall have already been observed. [246]

Negative domain-wall resistivity is a pure quantum mechanical effecotigihates from the continu-
ous spatial variation of the magnetization within the domain wall. Accordinglatiegdomain-wall
resistivity does not possess a giant magnetoresistance analogue. gagpott in transition metal
ferromagnets takes place in the ballistic regime<( 1). As discussed in the previous section, the
non-adiabatic spin-transfer torque is composed of a contribution duatoetgxation and a contribu-
tion due to spin mistracking. For ballistic spin transport in narrow domain wallsmsjstracking has
been found to constitute the predominant contribution to the non-adiabatitrapgfer torque (cf.
Fig. 5.16). Consequently, the presented analysis confirms spin mistrakihg microscopic origin
of domain-wall resistivity in the regime of ballistic spin transport, whereas rgbéxation dominates
in the diffusive regime of spin transport. In the diffusive regime of spingpmrt the spin-dependent
scattering mechanism prevails over the spin mistracking as the cohereesgimn of the conduction
electrons is suppressed due to impurity scattering. [197] The resulteépid-ig. 5.22 (b) sheds light
on the long-standing controversy about the sign of the domain-wall ketsistThe sign change that
has been found in the non-adiabatic spin-transfer torque for spatialygtyrvarying magnetization
textures directly translates to the intrinsic domain-wall resistivity. This seasemn explanation for
the seemingly contradictory experimental findings concerning the sign afahlmin-wall resistiv-
ity. [201—-211] For instance, Rudiger et al. [207] reported a negativimsic domain-wall resistivity
on Fe wires. As already discussed in the context of the degree ofdiabadicity, the experimental
results corroborate the presented explanation as it holds fGgd=e 0.7. [189]

Conclusion and comparison with results of the literature While it is a generally accepted con-
sensus that intrinsic domain-wall resistivity is proportional to the inversargg of the domain-wall
width (o< A~2), the sign of the correction is still an open question. [16, 63, 196, 2(®]-1te here
presented results outline the possibility of a negative domain-wall resistivityttaus contrast with
the results of Refs. [63, 196] that obtained an entirely positive intrinsicaiio-wall resistivity.

Levy and Zhang [63] developed the idea of a continuous version ofili¢ gnagnetoresistance ef-
fect and calculated the domain-wall resistivity due to spin-dependettesng. The presence of
the domain-wall mixes the majority, minority channels and the presence of a derathicloses the
high conducting shunt channel present in a homogeneous magnetizatime t8 hey concluded that
the presence of a domain wall enhances the resistivity and that the introms@iwall resistivity
vanishes for equal scattering timgs £ 1). As depicted in Fig. 5.22 (c), (d) this prediction is not
affirmed by the presented results. The reason for this is that they onlyirttmlccount the twist-
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5.5. Local spin-transfer torque and resistivity within a domain wall

induced correction of the spin eigenstates due to spin-dependent impmatityréng and neglected the
influence of spin mistracking due to the magnetization twist. Their results $rdfarthe usage of an
oversimplified Boltzmann equation that does not properly take into accoeititsthsverse degrees of
freedom. [196] The here presented results refute their statement thahisracking by itself does
not produce excess resistance. [63]

Simanek [185] calculated the excess resistance of a domain-wall duegwedrae spin accumulation
caused by the magnetization twist. He did not take into account the effea afdlgnetization twist
on the relaxation times and his calculation thus constitutes a somehow complenagpesgch to
Levy and Zhang [63]. By neglecting the impact of the spin degree oflém@eon the impurity scatter-
ing, he obtained an entirely positive correction for the domain-wall registiv

To draw a conclusion, the here presented results confirm the conjeéReds. [201, 202] that intrin-
sic domain-wall resistivity in narrow domain walls must be attributed to a combinafispin mis-
tracking and spin-dependent scattering. Spin-dependent scattérad)is ascribed to be the origin
of the giant magnetoresistance effect and dominates in the regime of\wbfn transport;( > 1).
Spin mistracking is predominant in the regime of ballistic spin transppkt (1) and constitutes in
this context an additional feature taking into account the continuous variafithe magnetization
texture within the domain wall. Accordingly, domain-wall resistivity can be pasitir negative and
can be anticipated to be present in materials With 1 that exhibit no giant magnetoresistance effect.
Levy and Zhang [63] showed in their calculations that spin-dependariiesing contributes always
a positive intrinsic domain-wall resistivity without considering spin mistrackiBignanek and Rebei
calculated the domain-wall resistivity exclusively due to spin mistracking &udfaund an entirely
positive contribution. [185, 197] The obvious conclusion is therefoa tite interplay of spin mis-
tracking and spin-dependent impurity scattering in the regime of ballistic spisgoat is responsible
for negative values of the intrinsic domain-wall resistivity. A negative domall resistivity must
thus be attributed to the quantum mechanical nature of the spin degreeddiinend arises in harrow
domain walls if the current is mainly carried by minority charge carriers.

In the diffusive regime the spin transport is dominated by spin relaxatiorttendhfluence of spin
mistracking due to the magnetization texture is negligible. Accordingly, the maitt ofshis section
— oscillations of the resistivity with the domain-wall width including a sign charsyesaised by spin
mistracking — are not present in the results of Ref. [183].

In summary, our investigations illuminate the possibility of a positive or a negatisiasic domain-
wall resistivity in dependence of the width of the domain wall. The deperaehthe sign of the
resistivity correction org can be tested experimentally by intentionally doping wires with different
kinds of impurities. The predicted oscillations should become observabledrnasion of the domain-
wall width A. This can be achieved by either a variation of the cross section of the iaitee/change

in the shape anisotropy or in a nanocontact by a variation of the length obttstriction. [220] The
local variation of the resistivity may result in interesting effects, for instathermoelectric effects
like the Peltier effect. To draw an analogy, a narrow domain wall is hereagive of a junction of
two metals with different conductivities.
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Chapter 5. Non-collinear magnetotransport

Momentum transfer As previously mentioned there are two different physical mechanismehat r
sult in domain-wall motion, spin-transfer torque and momentum transferelprésented formalism
domain-wall resistivity and momentum transfer occur as corrections ofisearder of the expansion
of the non-equilibrium distribution in the inverse wall width. Momentum transéaT be associated
with the reflection of conduction electrons due to the strongly varying magtietiztexture and is
thus intrinsically related with domain-wall resistivity. [59] In the equations otiorofor the do-
main wall, momentum transfer acts analogously to the non-adiabatic spinetraosfue as force
on the center of mass of the domain wall and results in its translation. Momentosietrahus
determines the dynamics of narrow domain walls, in particular the terminal velp&®ty59] As a
consequence, momentum transfer and non-adiabatic spin-transfiee tme experimentally not dis-
tinguishable by observing domain-wall motion, which led to confusion in ingtimg experimental
data. [243] The main controversy about momentum transfer centeradaitsuorigin. Some au-
thors claim that momentum transfer is of quantum mechanical origin and dhere$sentially non-
local. [56, 59, 156, 172, 191] We note that Tatara et al. interpret theaapnce of a non-local torque as
the end of the classical Landau-Lifshitz-Gilbert phenomenology compristal spin-transfer torque
terms. [59] However, at the level of the description of domain-wall motion imseof collective
coordinates the non-local momentum transfer renormalizes the total ddgrer-adiabaticity

ot = E(A) +Eut = E+ (E(A) = &) + &wT, (5.272)

where the total degree of non-adiabatidjfy is composed of a part due spin relaxatton this con-
tribution is already present in adiabatic magnetotransport —, a part dpmtmistracking({ () — &)

— this part takes into account the finite domain-wall width in narrow domain walfsd-a part due to

the reflection forc&yt — the conduction electrons maintain their spin but transfer momentum to the
domain wall —.

In our semiclassical framework momentum transfer is necessarily a loaatityu However, it is
important to note that solely the momentum transfer averaged over the whoirdwall enters the
equation of motion for the domain-wall quasiparticle and there is no way to iechamentum trans-

fer as a local term within the spatially resolved Landau-Lifshitz-Gilberagiqu.

The origin of momentum transfer rests on the spatial variation of the longituctingoonent of the
out-of-equilibrium magnetization of the conduction electrons. The phyprcaess behind momen-
tum transfer is that a spatial gradient in energy causes a force. Thistiisct different from the
spin-transfer torque as defined in Eq. (5.141). The energy of intstews from thesd exchange
interaction between the magnetization of the conduction electrons and thelagaétic moments

= Jo(G (7)) - mi(F). (5.273)
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5.5. Local spin-transfer torque and resistivity within a domain wall

Momentum transfer is the force that stems from the spatial gradient ofdtiechange interaction
energy (5.273) [49, 58]

Fyr (7) = =V Ewr ()
= sV () - (7))
= —JsaV ({5(7)neq- 7(7)) (5.274)

The equilibrium component of the magnetization of the conduction electrors. i(bEL44) is always
collinear with the local magnetization with a fixed length. Consequently, the tevpogional to the
equilibrium magnetization of the conduction electrons yields a constantyetiegis negligible for
the force. This reflects that momentum transfer is a non-equilibrium pher@mme

For our purpose of the case of an one-dimensional domain wall, momentusfetraan be expressed
in terms of the gauge transformed quantities in the reference frame of thewall — ¢,)

Fyr (7) = —Jsg¥ s <<<?(F)> : gz)
= —JsdV(6.(2)). (5.275)

We derive Eq. (5.275) by noting that the energy in Eq. (5.273) is a sealkhitherefore invariant
with respect to rotations. Transverse parts proportional to the desvatithe magnetization point
perpendicular to the magnetization and therefore do not play a role footbe 5.275). For the
domain wall the sole non-vanishing gradient points idirection and the momentum transfer reads
d (2)5

Fur (2) = —Jaa-—(P5:(2), (5.276)
up toO(x*). In the quasiparticle picture an inertia mass can be associated with the dorfiajh2@
Hence, momentum transfer constitutes a real force on the domain wall. Ib&he total force that
acts on the center of mass of the domain wall follows from averaging the moménatnsier over the
width of the domain-wall

1
Fut = )\/ dxFy ()
0

= 2105, (3) ~ (P5.(0)] (5277)

Momentum transfer and non-adiabatic spin-transfer torque take the starie the equation of mo-
tion for a domain wall. [59, 191, 247] Therefore, it is suggestive to compath. Though non-
adiabatic spin-transfer torque and momentum transfer are procestiferant order in the mistrack-
ing parameter as defined in Eq. (5.202), they have comparable magnituateaw mlomain walls due
to the smallness of the non-adiabatic spin-transfer torque. A comparisatioéllows distinguishing
the dominant contribution for domain-wall motion: either the direct influencéh@fcharge current
by means of momentum transfer or its indirect influence in terms of the spientwtue to the non-
adiabatic spin-transfer torque.

Figure 5.23 depicts the interpolated ratio between momentum transfer aratliadratic spin-transfer
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Figure 5.23: (Color online) Interpolated ratio between non-adiabatictspnsfer torque and momen-
tum transfer for various domain-wall widths For the transport regimes= 7s4/7. () with3 = 0.75
and (b)g = 2.
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torque that is given by

E0)  mronas o dr () x T2 - ({57E8) < ()
1
A

X
a 5H o

(5.278)

The blue region denotes the parameter subspace where the momentuer tsath@finant, while the
white area designates the realm of the non-adiabatic spin-transfer témgbe diffusive regimesf >

1) the spin-transfer torque always dominates the domain-wall motion, wharéae ballistic regime
(n < 1) the dominant driving mechanism depends crucially on the set of paranéiere, due to
the vanishing of the non-adiabatic spin-transfer torque (cf. Fig. 5.1&)entum transfer constitutes
the dominant driving mechanism for half-integer or integer wavelengtlefised! in Eq. (5.245). To
conclude, in the regime of ballistic spin transport no general answeregivén.
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Chapter 6

Conclusion

HIS THESIS IS DEVOTEDtO the interplay of inhomogeneous currents and magnetization tex-

tures. The methods employed throughout this thesis range from analwlicalation to nu-

merical simulation and cover aspects from macroscopic current-inducedetizggion dy-
namics to the semiclassical description of non-collinear magnetotransport.

As an application of the spin-transfer-torque phenomenon within a npimtirgnic device, a mag-
netic Vortex Random-Access Memory (VRAM) is proposed. It is found tha vortex handedness
defined as the product of its topological quantities core polarization d@radighcontrols the dynamic
behavior of the magnetic vortex in a collinear current and magnetic fieldggrmaent. An one-to-one
correspondence of the vortex handedness to the binary value$ &refdone" is established, which
serves as a representation of the logical states in an unambiguous maheevriting mechanism
bases on current-induced field assisted vortex-core switching, whitealdeout mechanism employs
a variation of the vortex’ gyration amplitude. The VRAM needs not be reaatased preceding the
writing and, in general, allows an infinite number of read and write operatibnis is an advantage
compared with existing memory technologies, such as the FLASH memory, wdtclires a slow
erasing procedure of the present memory state. The VRAM concephisatatile and fulfills the
stability requirements for a memory device, since the vortex state is stable tagamerature and
magnetic fields as long as they remain in the millitesla regime. The VRAM shows asgatidg
behavior, in general no material fatigue, and is foremost a fast memaoogpt

By self-consistently considering the mutual interdependence of spimiedaelectric current and
magnetization dynamics, the non-linear response of a magnetic vortex gppiiedacurrent density
in the presence of the anisotropic magnetoresistance is investigated. Hithedretical studies of
current-induced magnetization dynamics disregarded the counteractioa miagnetization onto the
current flow. The effect of the anisotropic magnetoresistance on texvgyration is taken into ac-
count by self-consistently solving the extended Landau-Lifshitz-Gikguation and Poisson’s equa-
tion. This provides a realistic treatment of electron transport on the magricdevel. Incorporating
the counteraction of the magnetization onto the current flow provides dimear-coupling of mu-
tual current and magnetization dynamics. The counteraction of the magivetibyg means of the
anisotropic magnetoresistivity results for the current-driven magnetiexor a geometry-dependent
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renormalization of the spin-transfer torque coupling parameter and ciatelpereted as a correction
to the entirely topological motion of vortices in the presence of a homogemeorent flow. In the
non-linear regime of vortex motion the change in the shape of the vortexegpiigitly introduces
a non-linear dependence of the renormalized spin-transfer coupliagipger on the current density.
For experimental and technical implications the anisotropic magnetoresistadentified as a mech-
anism to reduce the time until the critical velocity for vortex-core switchingdshed. The results are
obtained by micromagnetic simulations taken the spin-transfer torque as el imhomogeneity of
the current flow into account.

The construction of a semiclassical transport framework is reporteduthaticcounts for the quan-
tum mechanical nature of the spin of the conduction electron. The frarkgwovides the local
description of coupled charge and spin transport for general, aliingar magnetization textures and
establishes a natural link between the phenomena of spin-transfer arquBmain-wall resistivity.
An equilibrium solution for the kinetic equation in non-collinear magnetization testis derived.
The equilibrium solution takes into account the fully spatially inhomogeneousatiagtion texture
and serves as a starting point for the derivation of a general lingaonies kinetic equation. The equi-
librium solution provides a ballistic, microscopic expression for the spin zalhon of the electric
current.

For general, spatially slowly varying magnetization textures the solution ofdhesguilibrium ki-
netic equation provides transport coefficients for the charge cuttemtspin current and the spin-
transfer torque in terms of microscopic material parameters. An exprefgsidme degree of non-
adiabaticityin terms of microscopic scattering times is given that is not affected by a spbaiid
structure. The diffusive, transverse spin polarization is found totitatesthe appropriate factor be-
tween the electric current and the transverse spin current that deterth@spin-transfer torque. It
differs from the longitudinal spin polarization of collinear magnetotrarnsgad exhibits additionally
a dependence on the exchange splitting. The transport coefficighefepin-current tensor confirms
the wide-spread conjecture that in the adiabatic approximation the polarizdtibe spin current
tensor is aligned with the local magnetization. This provides an essential pistificas this feature
has been introduced by hand as a key ingredient in seminal worksroong#he spin-transfer torque.
The universality of the non-equilibrium solution for spatially slowly varyinggmetization textures
suggests the description afliabatic magnetotransport in terms offaur channel model In addi-
tion to the majority and minority channels familiar from collinear magnetotranspartiansverse
channels, associated with the spin-transfer torque, arise due to thawiaincoupling of current and
magnetization. The presence of both transverse channels is geneideatifies the adiabatic as well
as the non-adiabatic spin-transfer torque on equal grounds. Thiésrbgyhlight the importance of
the quantum nature of the spin degree of freedom for a consistent trgatimeon-collinear mag-
netotransport. The twist of spin channels in non-collinear magnetizatiorréextiidentified as the
microscopic origin of a non-adiabatic spin-transfer torque whose ekistsrshown not to rely on a
specific microscopic impurity model.

For the case of an one-dimensional domain wall a perturbative, analjtiosoof the kinetic equa-
tion is presented that allows the spatially resolved computation of the spirfietr&msgjue, the domain-
wall resistivity and the momentum transfer. Though strict quantum mechdedmiques possess
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their advantages in the extreme cases of either wide or sharp domain waklindtie approach is
best suited to take into account the spatial variations that dominate the maamspoit in narrow
domain walls. By narrowing the domain wall, the spin channels get mixed, tigicgwf conduction
electron spin and local moment is drastically enhanced and the spin of tleatimm electron cannot
follow the local moments adiabatically. During the traversal of a narrow domalhthe spin of the
conduction electron resides in a coherent superposition of majority anditpigpin states. With the
enhanced coupling between the spin of the conduction electrons andahelmments in narrow do-
main walls, non-adiabatic corrections introduce a spatial dependencettaribport coefficients that
transcend the adiabatic approximation of a spin-transfer torque with corestapling coefficients.
Accordingly, a reduction of the domain-wall width enhances the impact afghedegree of freedom
onto transport characteristics. The spin of the conduction electromuats the magnetotransport in
narrow domain walls and the transport coefficients are found to depedetails of the magnetiza-
tion texture. In the case of ballistic spin and diffusive charge transpegpm-transfer torque as well
as the locablegree of non-adiabaticitgscillate within the domain wall due to the precession of the
spin of the conduction electron in the exchange field created by the riimeeao, local moments. In
narrow domain walls the spatially strongly inhomogeneous torque caused bgrttbination of spin
mistracking due to the strong magnetization twist and impurity scattering leads tera $ecrease
in the degree of non-adiabaticitySpin mistracking in combination with impurity scattering cause a
strong deviation of the average spin-transfer torque from the spatiapérdient, adiabatic value for
wide walls. In narrow domain walls thdegree of non-adiabaticitgeases to be a constant material
parameter and its dependence on the characteristics of the magnetizatioa teriaves the inde-
pendence of the domain-wall velocity from its width. The oscillations with the waditthe domain
wall including a sign change in the totdégree of non-adiabaticityuggest a geometrical control of
domain-wall motion by manipulating the width of the domain wall and open new eetigps for
memory applications and domain-wall logic.

The perturbative solution of the non-equilibrium kinetic equation in inverseeps of the domain-
wall width unambiguously identifies the transverse spin accumulation thatisnsidle for the non-
adiabatic spin-transfer torque as the origin of intrinsic domain-wall reiistimd momentum transfer.
This impressively states the intimate connection of converse aspects ofctienge interaction be-
tween itinerant and localized moments and provides a natural explanatiomafirdwall resistivity
in terms of the non-adiabatic spin-transfer torque by relating the dissipativ@onent of the spin-
transfer torque to the charge resistivity. For ballistic spin transport imwatomain walls a combina-
tion of spin mistracking and spin-dependent scattering is responsiblectorssderable domain-wall
resistivity. The redistribution of the conduction electrons between majoriyvanority bands due to
the presence of the domain wall results in an oscillation of the domain-wallivégisvith the width
of the domain wall including a sign change. The sign change in the nonaitiagpin-transfer torque
directly translates to the domain-wall resistivity and in this sense constitutesgis.ofhe sign of
the intrinsic domain-wall resistivity depends on the width of the domain wall, weigbidates the
long-standing experimental controversy about the sign of the domairregditivity. Furthermore,
non-adiabatic spin-transfer torque and momentum transfer are fourmhtpete for the dominant
non-adiabatic driving mechanism in narrow domain walls.

The oscillations in the non-adiabatic spin-transfer torque and the domdliresiativity are of quan-
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tum origin and highlight the particular relevance of the spin degree ofiér@ewith respect to mag-
netotransport in narrow domain walls. A sign change in the non-adiabatiitytree domain-wall
resistivity is a pure quantum mechanical effect, enabled by coherertbe spin sector and origi-
nating from the continuous spatial variation within the domain wall. Neceseguirements are (1)
ballistic spin transport that causes mistracking between the spin of the ci@mrdelectron and the
spatially varying local moments in narrow domain walls and (2) spin-depénmuguarity scattering
such that the current is mainly carried by the minority electrons. If thesedignts are present, the
laws of classical electrodynamics and thermoelectrics acquire subtletonedue to macroscopic
quantum effects in strongly inhomogeneous ferromagnetic order paramete

176



Chapter 7

Outlook

RTS OF THIS THESIshave been spent on the development of a semiclassical transport frame-
ork of coupled charge and spin transport. The framework allows ®isthdy of magne-
totransport in spatially strongly varying magnetization textures that tradsdiie adiabatic

regime. The presented transport framework provides the appropriatiéionitto deal with the more
and more involved questions concomitant to the current experimentalssodn particular, the inves-
tigations as presented in section 5.5 underline the growing importance ofithéegpee of freedom
for current-induced magnetization dynamics in narrow domain walls. Hexénblved coupling due
to thesd exchange interaction provides the perspective for a rich phenomenoiagyrent-induced
magnetization dynamics and transport anomalies. Accordingly, all phyaigalcomprised by clas-
sical electrodynamics and thermodynamics deserve a detailed reexaminaligcotger deviations as
caused by the quantum mechanical nature of the spin degree of fremdbits impact with respect
to transport in narrow domain walls.

In this connection future questions and tasks appear:

e The results of this thesis substantiate the need for self-consistent micreticagimulations
comprising a spatially resolved spin-transfer torque as computed by theclkeqeation. This
requires the development of a new simulation tool that takes into account tiualnsurrent
and magnetization dynamics based on a self-consistent solution of theu-hifslaitz-Gilbert
equation and the kinetic equation. Within this framework, dynamical prosess&cerning
current-induced magnetization dynamics can be studied. In the regime ofibaltiz trans-
port the strong spatial dependence of the spin-transfer torque sbeuéken into account in
micromagnetic simulations to study its influence on the domain-wall profile andtigates
deviations from the quasiparticle approximation. Highly non-linear effeatshe expected
in spatially strongly varying magnetization textures. In particular, it would berésting to
investigate the consequences of the spatially oscillating spin-transfeetorgthe depinning
characteristics of domain walls. Here, the strong spatial inhomogeneity apithdaransfer
torgue can be expected to result in an increase of the depinning probability
Besides an one-dimensional domain wall, the magnetic vortex constitutesal spoedestined
model system to study the consequences of the spin degree of freedament-induced mag-
netization dynamics. The vortex core is usually of the order of ten nancsremerthus very
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small. This along with its highly non-collinear magnetization pattern distinguishesadeetic
vortex as a model system to prospect for macroscopic quantum effettoapled non-linear
current and magnetization dynamics. It would be important to determine theedéesistiv-
ity of the vortex pattern.

e The kinetic equation for arbitrary, smooth domain-wall profiles requiresraemical solution.
In this context, it would be interesting to study the influence of the domain wathkcieristics
on the spatial structure of the spin-transfer torque. This is in particulaestieg with respect
to the spatially averaged spin-transfer torque and the degree of aratidity.

e Detailed studies will serve to discriminate the leading driving mechanism in thentige of
narrow domain walls, either spin-transfer torque or momentum transfer.

e Thus far, only the transverse magnetization within the region of the domainhaalbeen
considered. In both directions away from the wall, the transverse magtetizof the con-
duction electrons will decay exponentially. The decay of transverse etiagtion outside the
domain wall will leave some spin-angular momentum behind in the adjacent hoemggefer-
romagnetic domain and cause there some spin-transfer torque. AsseitibgsRef. [22], the
excess angular momentum may result in spin waves, i.e., large magnon emistiendio-
mains. For larger spin currents, it is conceivable that the magnetizatiantéhre domain
wall will be destabilized with subsequent domain wall nucleation in the adjdmenbgeneous
domain. [248] This is referred to as tkpin-wave instabilitywhere above a critical spin cur-
rent the groundstate of a ferromagnet is a multidomain state instead of a hoegogelomain.
Micromagnetic simulations should be conducted to study the possibilities as owthogd.

¢ At finite temperatures thermal excitations cause stochastic fluctuations ottieragnetiza-
tion. In non-equilibrium additionally fluctuations in the current are presemé description of
current-induced magnetization dynamics at finite temperature takes placengdéstochas-
tic Langevin equations. It is common practice to capture temperature effeatsrbducing
stochastic fields to the equations of motions. Invoking the fluctuation-dissipdtmrem the
noise correlators of the stochastic fields are related to the dissipativicere$ of the theory.
This closes the gap to the results of this thesis. The dependence of the dégon-adiabaticity
on the domain-wall width appears in the auto-correlator for the stochastitieleurrent and
indicates, at least for narrow domain walls, non-linear domain-wall dyraatitinite temper-
atures. However, it is not from a priori clear that the fluctuation-disgipaheorem holds in a
non-equilibrium situation. We note that the functional Keldysh method endigeterivation of
a stochastic version of the Landau-Lifshitz-Gilbert equation for finite teatpees, which con-
tains exactly the noise correlator as expected from the fluctuation-dissiphéorem without
resorting to it. [55]

e The extension of the presented transport formalism to the time-domain is sfoaigard. Here,
numerical investigations of time-dependent spin transport becomes impiortae context of
ultrafast magnetization processes.

e Time-dependent ferromagnetic order parameters give rise to a spitibciotr to the electro-
motive force via Faraday’s law. [249] The non-conservative spicef® convert stored magnetic
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into electric energy. For instance, a moving domain wall in a nanowire is feamuce a

measurable electromotive force. [250] Electromotive forces can bidtudthin the presented
framework by means of time-dependent unitary rotations that introduce tipendent gauge
fields in the non-steady state. As addressed by Refs. [247, 251-25%&]rrow domain walls
non-adiabatic corrections to the adiabatic Berry-phase electromotive fecome important.
The non-adiabatic corrections are characterized by means of theeddgren-adiabaticity and
the domain-wall resistivity as computed in this thesis. They contribute on toeafdiabatic

electromotive force in narrow domain walls.

The distribution functions that constitute tfor channel modehay serve as the starting point
for numerical studies of the influence of real band-structuresdimbatic non-collinear mag-
netotransport.

In appendix D of this thesis the influence of spin-orbit coupling has bdemtmto account
via the anisotropic magnetoresistance effect and a computation of the sgatialiyogeneous
electric field within the sample. This electric field (cf. appendix D for the chseMNeéel wall)
can be employed for the numerical derivation of the spin-transfer tdoguacorporating it
within the kinetic equation. A combination of both tools, the Poisson solver anHitle¢ic
equation solver will serve as a first approach to consider spin-orbitattien in the kinetic
equation. To capture the impact on magnetization dynamics, this can be dieoensistently
in combination with the Landau-Lifshitz-Gilbert equation.

The kinetic framework can be extended to include correlation effectanstaince Coulomb
interaction due to electron-electron interaction.

The collision integral has been introduced on phenomenological gronniis thesis. There-
fore, a microscopic derivation of the collision integral is required, fotanee via a Keldysh
approach. A systematic computation of gradient corrections will facilitate thedaction of

transverse spin relaxation to the collision integral. Gradient correctionddshecome impor-
tant in strong ferromagnets, where the exchange splitting approachesrtheenergy. [53, 82]
The investigation of transverse spin relaxation processes from migigsoogins is needed
to further clarify the microscopic origin of the degree of non-adiabaticitgrddver, gradient
corrections to the collision integral are expected to be at the origin of thé+splireffect.

Thermal gradients induce a non-equilibrium situation similar to that created bleetric field.
The combination of thermal gradients and spin-dependent transpestrige to a novel domain
of physics in inhomogeneous ferromagnetsgnetocaloritronior spin caloritronics Already
at this stage, a huge class of novel phenomena can be anticipated inm damain walls, for in-
stance a spin Seebeck effect, a Peltier effect as already discussedatontkxt of domain-wall
resistance or an anomalous Nernst effect. Within ferromagnetic metalsithBegbeck effect
is generically present in the presence of temperature gradients. [B&43in Seebeck effect
constitutes a method to generate a pure spin current without electric tsurféis provides the
possibility for thermally induced domain-wall motion. [255] The reversectfie thermally in-
duced domain-wall motion is the magnetocaloritronic cooling or power generasiégnduced
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by field-induced domain-wall motion. The kinetic description of transpontisesd through-
out this thesis allows for a natural incorporation of thermal effects amdtitotes the ideal
framework for the derivation of spin-dependent thermal responsiicdents and the study of
spin-dependent temperature effects.

The investigation of the spin-transfer torque effect in ferromagnetic semictors promises
interesting new physics. [27, 256—258] Large non-adiabatic correx#inable domain-wall mo-
tion at much lower current densities. In ferromagnetic semiconductorxfgegimentally de-
termined critical current density for moving domain walls is 2 to 3 orders of iaggsmaller
compared with ferromagnetic metals. [27, 256, 257] One possible explardatithis finding
is the strong intrinsic spin-orbit interaction that causes an enhanceddil@etion at the do-
main wall and serves for an enhanced non-adiabatic torque and thugeandaobility in hole
current-driven domain-wall dynamics. [258] Recently, it has beewshbat Rashba spin-orbit
interaction can drastically enhance the degree of non-adiabatig$9]

In magnetic semiconductors, for instance GaMnAs, the non-adiabaticittherefficiency of
the spin-transfer torque on domain-wall motion is enhanced due to ancatwahprecession
time compared with ferromagnetic metals. [22] Furthermore, the typical domalinaidth in
semiconductors is usually very small due to a large anisotropy. Both fact$dem enhance-
ment of the spin mistracking and provide an earlier access to the non-tdli@game.

An appropriate description of magnetotransport in semiconductors esathie full consider-
ation of spin-orbit interactions within the kinetic equation. A combination of arge and
spin-orbit interaction promise various novel phenomena for currenegdimagnetization dy-
namics in magnetic semiconductors. Accordingly, the spin transfer in magasticanductors
deviates from the spin-transfer torque as considered in this thesis in maostamipaspects. It
has been proposed by Ref. [260] that an electric current can irltmeue on the magneti-
zation in a homogeneous domain without the key ingredient of a non-collinagnetization
texture. This spin transfer effect can be viewed as the recipro@dtedf magnetoresistance
and thus a system that exhibits the anisotropic magnetoresistance is predliesdbit spin-
orbit induced spin transfer. Moreover, the large spin-orbit couplirtgérconduction band may
result in drastically enhanced values for the degree of non-adiabaticity.

The task is to extend the transport formalism and apply it to low-dimensionatseductor
systems. Therefore, Rashba and Dresselhaus spin-orbit interact&entaken into account
along with an appropriate periodic spin-orbit potentig}”, k, &) in the Hamiltonian that gives
rise to new terms in the kinetic equation. This requires the knowledge of #netieéf spin-orbit
potential that can be due to impurities, host atoms or structural confinementhd-case of
hole mediated transport in magnetic semiconductors, like GaMnAs, the titemieéithe kinetic
equation must start from the Kohn-Luttinger Hamiltonian. [261]



Appendix A

Properties of Pauli spin space

Throughout this thesis we employ the following representation of the Paulicestr

0 1 0 —i 1 0
Oz = (1 0) , Oy = <z 0> , Oy = (0 _1> . (A1)

The Pauli matrices;, i = z, y, z, are the generators of ti$4/(2) algebra and satisfy the commutation
relations

[0i,05] = 2i Z €ijkOk 1,5,k =x,y,2. (A.2)
k

Due to their anticommutation relations the Pauli matrices obey a Clifford algebra
{0’2‘,0']‘} :25@'1 i,j =T,Y,%. (A3)
According to Eqgns. (A.2) and (A.3) it holds for the product of two Paultnnas

Ui'o'j:éij]l+izeijko'k 1,] =T,Y, 2. (A4)
k

The magnetization is described by a vector figld") = (m., m,, m.)? of constantlength7(7)|| =
1. Owing to the fact that the magnetization is an unimodular vector field, anyatigsg is perpendic-
ular to the magnetization itself

0= ;1 = 0;(um) = 2m(Bim), i=t,,y, 2 (A.5)

Furthermore, the magnetization can be parametrized in spherical coosdiyatee two angleg and
¢. They obey the following relations

L =/m2 +mZ +m2, (A.6)
\/ M2 +m2 "~

0 = arccan ———,
my

¢ = arctan My, (A.8)
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Appendix A. Properties of Pauli spin space

The most general, localU (2) gauge transformation is given by a Wigner rotation according to [262]

L 0(7)

fiL(F)U —i—5*oy

e

U8, 6(M) = e
- (cos @6_#’(;) —sin @e‘i@)

. - $(7) ; 6(7)
sin @el 2 cos @e’ 2

(A.9)

# and ¢ are given by Eqgns. (A.7) and (A.8) and define the spatially varyingeatse frame of the
local magnetization. The matriX in Eq. (A.9) provides the transformation between the global spin-
coordinate system and the reference frame of the local magnetization.



Appendix B

The Wigner transformation

The non-commutativity of position and momentum precludes the specificatiorpoin&in phase
space due to Heisenberg's uncertainty principle. Accordingly, theegiraf a Liouville distribution
function that operates on classical phase space is problematic with trespeguantum mechanical
formulation of transport. The most prominent solution to this problem datdstbdeugene Wigner
and Hermann Weyl: They proposed the definition of a quasi-probabilityilalittsn. For the above
stated reasons the quasi-probability distribution must not exhibit all thentessproperties of an
ordinary probability distribution. More precisely the Wigner distribution magpadegative values
for non-classical states. This property can in turn be employed to idertifyctassical states (cf.
section 5.3.1).

According to Wigner the connection of an arbitrary operaf#,, 7) on a Hilbert space with a
smooth functiorO (7, E) on phase space is established by means of a Fourier transform witlatrespe
to the fast varying relative coordinafé = r; — 7%

Pt A T_‘)/ ’I?/ =
(Xﬁ@:i/d%%ﬂf+2,F—2)dm, (B.1)

wherer’ = (7 + 72)/2 denotes the center of mass coordinate.
The composition of two operatofs = A o B is given by

@&@z/ﬁWMHWBWﬁ» (B.2)

Accordingly, the Wigner transform of a product of two operatdrand B yields with the definitions
Egns. (B.1) and (B.2)

aﬁﬁz/ﬁ%%%ﬁw+§jWWWf—gwﬁ

d3k/d3k//
_ 3,.7 .13 1 1

Pl o, T8

A( 7k1>B

\)
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/ &K, Pk

C(F k)= [ d*'d®
k)= [ d o
7 pa b U L . ~
A4 2T+ 2 VB(F + ;" 2 ek iR (PR =) i (7).
The next step is to introduce new coordinates
ey} — —/ _» E
T r+ 9
ey — —/ - B
pr=r-r—g,

—_

whereas the coordinate transform (B.4) does not change the intecaalires

a or 1 1
| det | 92, BP | = | det 2 | =]-1].
8 1 -1

8?’ ap 2

Equation (B.3) transforms under the coordinate transformation (B.4)diogoto

d3 k/ d3 k! >/ .
LA(F+ 5 K)B(F +

C(7 k) = / d*F'dp / 7(270

g ) =) =i (=5 iR ()

(B.3)

(B.4)

(B.5)

(B.6)

Renaming the variables of integratioh— 7/ o’ yields
= dgk'ldg _'/ = ﬁ - =1 P A
> T — 3.1 33 ’ 2 P i7" (k—kY)+p(ky —k))
O R /drdp/@ﬂm 21wv+T1w
Introducing again new coordinatés- &/ — Eg, /2’1 k — k1 yields as the final result
. By d3k 5o e
5 N 3 143 1 2 P i(pk1—7"k2)
= ——A k k1)B —. k + ko)et'? . B.8
Crh) = [ @iy [ SR AG TR BB L+ e ®.9)
The next step is to perform a series expansion of the functignst- =, k + k1), B(7 + £,k + k2)
under the mtegral with respect to the small relative coordinatgs and momentai:}, Eg
A( + o k:—}— kl) _ e[(r V?)+(k1vk‘)]A(,’:: E)
= A(7, k)
7! o - o -
+|(GF0+ B A6
1,75 7o oo S -
+ 5 | (G 425 VR (V) + (- Vp)? | AR R) + .., (B.9)
and
B(i+ £, K+ kz) = el 5V B0l B )
= B(’Fv _»)
+ (V) + (R2Vp)| BGR)
L1rpa 2 P\ (7 S 72 \2 S
+ B (§VF) + 2(§VF)( QVE) + (kgv,;) B(7 k) + (B.10)



Inserting the expansions (B.9) and (B.10) into Eqg. (B.8) yields for thetaerder the result
A(F. k) B(7. k) / d®r'd®p / UUCLRE S
’ (2m)°
— AR, R)B(F, z%’)/ds '@ p 53 (7)) (—i)
= A(F,k)B(7, k). (B.11)

The first-order terms of the expansion are set to zero by means of théuiiteon, for instance

Blid3ky 7' =
[ iy [ InA

oo B)B(7 ’;;’)ei(;%—v?’l?z)
T

3l

=/
= BER) [ dr'dp (TGRS (950 ()
=0. (B.12)
The same result as in Eq. (B.12) holds for all other first-order terms a&fa¢horder vanishes exactly.

In the second order all asymmetric terms vanish for the same reason asttoedar terms. Only the
mixed first-order terms yield a non-vanishing result, for instance

Bkid3ky 7 = N e
/d3r’d3p /(217T)62(2v ) A(7, K) (F2V ) B( k) PR =Tks)

Bhy 7 e e
_ / i’ / 2 (L5 ) A, R)(Fa¥ ) B(F, Fye 7 e, (B.13)

It is appropriate to proceed further on in components, whereas all terhs vanish due to the
integration over the delta-functions. After the integration over the remairghg flinctions is carried
out the remaining terms= j read

d37“,
:Z/dz '/dk? LV AG R)(KyVL) B(F, K)e ™"
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where we employed the following identity in the second line of Eq. (B.14)
di?”/ i —gip il diT’/ i i il
Z/ (27r)3r/€ 2 :Z/(QW)SZVer 2

. . d3’l”, i /iki
—2V22/<27r)3e e

= iV}, 0(—kb). (B.15)

An interchange oV -, ﬁ,; introduces a sign. Thus, up to the fourth order the Wigner transform of a
product of two operators reads according to Eq. (B.3)

C(7, k) = A7, k)B(7, k)
A, B)VB(F, /2)) +o (B.16)

which is the sought result as employed in Eqg. (5.18).
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Appendix C

Incorporation of spin-orbit interaction
Into adiabatic magnetotransport

This appendix considers the inclusion of intrinsic spin-orbit interactions wiligisemiclassical trans-
port framework. This results in tensorial transport coefficients thatpeise the anisotropic magne-
toresistance as well as the anomalous Hall effect. As a non-equilibriunoptenon the spin-transfer
torque exhibits the anisotropic magnetoresistance but not the anomalousffelet] This provides
a microscopic justification for the phenomenological resistivity tensor thmaésen the macroscopic
approach to transport in chapter 4 for the investigation of current-edio@gnetization dynamics via
the calculation of realistic current paths. Furthermore the degree chdiaaticity is not affected by
intrinsic spin-orbit interactions.

C.1 Introduction to electron transport in the presence of spin-orbt in-
teractions

In the preceding section we derived global magnetotransport coatidie the presence of general,
spatially slowly varying magnetization textures. Hitherto, we have negleciaebdpit interactions
though they are ubiquitous in realistic materials. In this section, we adjust tinisgyal rederive the
transport coefficients of the previous section in the presence of sbinhitteractions. The incorpo-
ration of spin-orbit interactions turns the conductivities of the chargesntirthe spin-transfer torque
and the spin current into tensorial quantities.

Magnetoresistive effects, such as the anisotropic magnetoresistaviéd) (&) or the anomalous Hall
effect (AHE) [263, 264] are ascribed to originate from the interplathefspin-orbit interaction and
the magnetization. [147, 148, 265, 266] In the macroscopic transpoatieq, Ohm’s law, magne-
toresistive effects due to spin-orbit interactions are comprised within alglohductivity tensor (cf.
chapter 4). In the regime of spatially slowly varying magnetization textures eaeporate spin-orbit
interactions by comprising their effects on the band structure due to a modificdtibe Bloch ve-
locity of the conduction electrons within the anomalous velocity. We exploit tleatémiclassical
theory of electron transport induced by the Berry curvature in Bloctubaxplains the occurrence
of the anomalous Hall effect and the anisotropic magnetoresistance in to@gnsport. While the
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Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

anomalous velocity modifies the non-equilibrium components by introducingniseteopic mag-
netoresistance effect, it introduces an anomalous Hall effect via thkbeigun part of the distribu-
tion function. Thus, for the charge and spin current we find an anom#lalieffect besides the
anisotropic magnetoresistance. In this case the conductivity is a tensorffadibgonal elements. In
contrary, the spin-transfer torque that arises due to the non-equilittramaverse magnetization of
the conduction electrons does not exhibit an anomalous Hall effect, hhibfeptures the anisotropic
magnetoresistance. The physical reason for this is simple to comprehemttansverse magnetiza-
tion of the conduction electrons is explicitly a non-equilibrium feature thatireg the presence of a
finite external electric field (cf. section 5.4). On the other hand in line@orese the anomalous Hall
effect is related to the equilibrium distribution and is thus not present in hetigmsfer torque.

The anomalous Hall effect has been a puzzle for over fifty years.xfensive coming to terms with
the past is beyond the scope of this thesis. For a review however, erdodRef. [267]. Recently, a
semiclassical theory induced by the Berry curvature in Bloch bandsrhasyed. [268] Compared to
non-transparent quantum mechanical calculations, a semiclassical tffews the advantage that it
deals with gauge invariant quantities that possess a clear semiclassigakitaton. This allows for
the development of a physical intuition about the underlying microscopegses. In ferromagnetic
metals the anomalous velocity in terms of the Berry phase was predicted tisgite the spontaneous
Hall conductivity. [268] The Berry phase approach is applicablelfawly varying perturbations and
is a geometric phase that a wave function acquires when a quantum sysigijeist to an adiabatic
evolution. Aharonov and Bohm were the first to realize that the impact ofgmeti field on quantum
mechanics is twofold. On one hand it determines the classical trajectory theeltorentz force and
on the other hand it contributes to the phase accumulated along the traj@dtersecond effect is a
pure quantum mechanical effect that possesses no classical analbti® evolution of the particle
or wave packet takes place in an adiabatic manner, the contribution to the depends solely on
the phase-space trajectory and not on the rate of motion along the trajd2&88y The spin-orbit
interaction can be associated with a Berry phase that causes a naoatlasemalous velocity due
to the non-commutativity of the position operator and the spin-orbit Hamiltor2gi0, [271]

The Hall current is anomalous in the sense that it is dissipationless as nadb@spend on scattering
times. This expresses the fact that the Hall current is linked to the equililefistnibution and not to
the non-equilibrium one. In Ref. [265, 272] the Hall current is calcal@ie full quantum mechanical
manner. They traced back the origin of the anomalous Hall effect to spibkuteractions of the spin-
polarized conduction electrons that leads to a population imbalance as thestiersal symmetry is
spontaneously broken due to the magnetization. This leads in turn to a Halhtproportional to the
magnetization.[265] In the theory to the anomalous Hall effect two diffarecitoscopic origins were
proposed and are controversially discussed in the literature up to dagexiimsic contribution due
to asymmetric scattering [266, 273—-275] and an intrinsic, scattering fraglmation that stems from
the equilibrium distribution induced by the Berry curvature that causesariis of the Bloch bands
in the presence of an external electric field. [265, 271] The extringitribotion yields dissipative
transport coefficients that are expressed in terms of states at the Feehérel are determined by
scattering mechanisms due to the non-equilibrium distribution function. Thesittian topological
contribution is non-dissipative as it does not depend on scattering timisseXpressed in terms of
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C.1. Introduction to electron transport in the presence of spin-orbitictiens

equilibrium response of all states below the Fermi level. [276] The partiukbout the intrinsic
contribution is that it occurs due to a change in wave packet group veliocttye presence of an
external electric field that is applied to the ferromagnet. In contrast to thiesg contribution, the
intrinsic contribution is carried by the entire spin-orbit coupled Fermi sesaa Aonsequence, trans-
port length scales such as the mean free path or, in terms of the spin, thadifimion length are
absent in the intrinsic contribution.

The anisotropic magnetoresistance effect states that the resistivity iediffer a parallel alignment
of electrical current and magnetization compared to a perpendicular alngrfoie chapter 4). The
microscopic origin of the anisotropic magnetoresistance is traced back torgiirinteractions of
the polarized conduction electrons. [147, 148] The connection with thaeatiagtion stems from the
fact that the net effect of the spin-orbit interaction is proportional taettient to which the spins are
aligned and thus points in the direction of the spin-orbit force. [265]

In metallic systems spin-orbit interactions are subject to the same impurities tis# tiee direct
potential scattering. However, first-principle calculations of the anomalialissffect show that the
origin of the anomalous Hall effect is primarily intrinsic for transition metal deragnets. [277].
However, in this appendix we focus on intrinsic spin-orbit interactionsraaglect scattering contri-
butions in the presence of spin-orbit interaction.

Recently it was proposed [268, 278] that the semiclassical equationstafrmior electron trans-
port (2.22), (2.23) acquire a modification for a magnetic Bloch band (MBBYIBB arises when an
electron is simultaneously subject to a periodic potential and a magnetic fieldevidn the follow-
ing semiclassical equations were proposed to account for the semidialysiaaics of electrons in
magnetic Bloch bands [268, 278]

S l; N -
B = VE% —k x €, (C.l)
hk = —eE(F) — ety x B(7), (C.2)

where(} is the curvature of the Berry phase that accounts for the anomalous velbo#yequations
can be derived by using a time-dependent variational principle in a hgignaformulation [268, 278]
or a Hamiltonian approach by formally diagonalizing the Hamiltonian of electroasigstal subject
to electromagnetic perturbations with accurad279]. The Berry curvature represents a topological
term and can be considered as an effective momentum dependent mégltetithe effective spin-
orbit field causes a gauge connection to the coordinate operator atetsehe coordinates to become
non-commutative. Analogously to the Peierls substitution that introduces aetiafigld to Eq. (C.2),
the equation of motion for the coordinate (C.1) obtains a new term propdrtmtiee curvature of its
respective gauge connection, the Berry curvature.

The semiclassical description of transport provides the possibility to inteosloio-orbit interactions
in the kinetic equation in a clear and simple manner. It takes into accountanedldbructure effects
of the ferromagnet in terms of a gauge field in reciprocal space, thg Blease. [269] A combination
of Egns. (C.1) and (C.2) tells us that the Fermi velocity is not simply given élibpe of the band

1\We like to mention at this point that a quantitative modeling of impurity scatterineglistic ferromagnets with extreme
complicated band-structures has not succeeded to date. [277]
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dispersione; (cf. Eg. (2.20)) but additionally by an electric field dependent term tbatprises
the Berry curvaturé? of the Bloch state. [271] Due to the modified Bloch velocity the effect of the
electric field attains a second meaning. First, it drives the electrons in théednf of the Boltzmann
equation (2.27) and secondly it gives rise to a correction to the Fermiityetbat mixes the bands at
each value of:. [280]

C.2 Modification of the semiclassical theory of electron transport in the
presence of spin-orbit interactions

In this section we derive a modified Bloch velocity to capture the influencpinfarbit interactions
on magnetotransport. The modified or anomalous velocity comprises theafiegeometric Berry
phase that captures the influence of spin-orbit interactions on the bactuse. Two ingredients are
indispensable for the existence of anomalous velocities. There must b arfagnetization to de-
stroy the time-reversal symmetry of the basic lattice and the spin-orbit intarahibcommunicates
the lack of time symmetry to the periodic potential of the conduction electrons rystbent. [270]
In combination with the kinetic equation, the anomalous velocity allows for theatén of transport
coefficients. The kinetic description of electron transport assumesnteracting particles that are
occasionally scattered by phonons, imperfections and impurities. Betweardihidual collision the
conduction electrons are not affected by interactions and can be teesabes particles. However, an
interaction with an additional potential, e.g., a Coulomb or an effective spiiateraction poten-
tial, will subsequently alter the energy of the particles and consequently their velocity according to
Eq. (2.20).

In absence of an external magnetic field but in the presence of a finitestigagionM (7) = M m(7)
the semiclassical equations of motion (C.1) and (C.2) read [268, 271, 278]

780 = v + (k) x k, (C.3)
Bk = —GE(F) — eMOMSUE x m(7). (C.4)

As already mentioned in the beginning of this section, the additional term in thiglassical ve-
locity (C.3) comprises the effect of the spin-orbit interaction on the caimmluelectrons in terms of
the Berry curvature terrﬁ(E). [269] A combination of Egns. (C.3) and (C.4) yields the modified or
anomalous Bloch velocity

N S € =/ =7
520 = G+ 7 E() x () —

e,U/OMs S
k h

Q(k) x v x m(r). (C.5)
The Berry curvature correction to the group velocity of the Block waweketrenders the velocity
non-collinear to its momentum. This is the reason for the denotatiomalouselocity.

To proceed further on in the derivation we have to make an assumptiontabderry curvatur€(k).
First, the Berry curvature points in the direction of the magnetization of théumtion electrons. This
circumstance is a well known fact from the theory of the anomalous Hakteff265, 271] Secondly,
we parametrize its strength by the spin-orbit interaction consXad@E). These two assumptions
completely determine the Berry curvature for our simplified one-band model

Q7 k) = Aso(K) (3(7)). (C.6)
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The factorization of the spatial and the momentum dependence in Eq. (C.&ypgcal feature of
adiabatic transport (cf. section 5.4). The transport fields are spatiaijysvarying and the Berry
curvature and the magnetization can be treated in the spirit of mean field.theory

According to Eq. (5.143) the magnetization of the conduction electrons sphis @guilibrium part
antiparallel to the magnetization (5.144) and two non-equilibrium parts (5ab(5.160) transverse
to the magnetization. The non-equilibrium components and the current coale integral relation.
As the non-equilibrium components result in higher-order terms in the eldigtidcwe can neglect
them in our linear response approach. Inserting the magnetization ofilaa@n electrons (5.144)
into Eq. (C.5) yields the final result for the anomalous velocity by means of&8§)

R o usePnA E) = o pueugMsPnA k R L -
1)502 e sol )E(F) x m(r) + - sol )m(r) X U x m(T) + O(E?)
- usepoMsPndso(k) L uBePn)\so(k‘)E»(F) < ()
h k h
_ NBeﬂoM;iP nAsolk) (173 (7)) (7). (C.7)

The modified Bloch velocity (C.7) is the starting point for the calculation of dltlaasport coeffi-
cients in the presence of spin-orbit interactions.

C.3 Global transport coefficients in the presence of spin-orbit inteac-
tions

In this section we compute the global conduction coefficients in slowly vanyiagnetization tex-
tures in the presence of spin-orbit interactions. Adequate for theiggnrof mesoscopic systems is
a semiclassical formulation of transport that explicitly exploits the smooth variafitansport fields
on atomic length scales. The idea is to combine the semiclassical equationsdapthalous veloc-
ity (C.7) and the generalized kinetic equation (5.45). The influence of thmalous velocity on the
transport theory is twofold. First, it enters in the macroscopic expressidghe currents in Eq. (5.4)
and (5.5). Secondly, it modifies the kinetic equation (5.45) that goverrdigtrédoution function.

To derive explicit expressions for the entries of the conductivity temwgefocus on a band structure
that consists of one parabolic band throughout the rest of this sectienalMady employed this
oversimplified band structure in section 5.4, where we neglecteﬁ-d@endence of the relaxation
times. In this approximation it is consistent to also neglecttdependence in the spin-orbit coupling
parameteRsq(k) and we sef\so(k) = Aso(er) throughout the rest of this section.

The appearance of the electric field in the second term of Eq. (C.7)igpes® a Hall current perpen-
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dicular to the magnetization and the electric field

= = —¢ d*k —»sofcharge(6 J

(2m)?
e2Pn - A3k -
= MB _’<7?)/ (27_[_)3 So(k>fCharg%67Jd)
= oaneE x (7). (C.8)

The anomalous Hall conductivity is thus related to the equilibrium distribution

uge’Pn / A3k
(2

OAHE = — ) 5 Aso(k £) f99e, Jsq)
MBe
TASO( )/ch;harge(&t]sd)
B pee? Pn®Aso(€F)

- (C.9)

The result for the anomalous Hall conductivity in Eq. (C.9) states that thmalous contribution to
the Hall effect is entirely of topological nature such that all states below¢neni energy participate
to the Hall current as it is associated with the equilibrium distribution. Furtherntbe anomalous
Hall current does not depend on scattering times and is thus dissipationless

C.3.1 Conductivity tensor for the charge current
The non-equilibrium charge distribution function is derived in Eq. (5.H2@) can be abbreviated to

E€TcTs (PT+ - Ts) 1—)»EE’8€fcharge(67 Jsd)

k) =
g(k) TeTy — T2

= 2 (0,E) 0 f"Ne, Jog). (C.10)

In the presence of spin-orbit interactiOkso( k ) # 0), the non-equilibrium charge distribution follows
from a substitution of the velocityv;; — vﬁ °)

—_
:U

ES fcharge(6 J d

( MBGMOM PnAso(E)

Il
[1]

(U-E)0 f9e, Jog)

= ,u,BequsPn)\so(E)
- h

(M(F) ) (11 (7) E) D "9 e, Jog) + O(E?). (C.11)

The new charge distribution function (C.11) now drifts in the presenceiofarbit interactions ac-
cording to the semiclassical equations of motions (C.3) and (C.4). The valfditg aon-equilibrium
distribution (C.10) is limited to linear response, as we neglect terms that atighadrtorder in the
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electric field. The current is computed by integrating out the momentum weiglitiethe spin-orbit
modified velocity

. Bk .
soj(f») _ —e/ UISOSOg(k)

(2m)3
)
— A3k psepoMsPnso(k L=
—6:/ (QW)gaefCharge(e, Jsd)[ (1 + - SO( ) E( EE)

pepoMsPn k usepoMsPn k N n 2
- tocsoMoPrdsolh) () | pocpolaPrAssk) ) v i vy (9 )

_ MBQMOM%Pn)\so(E) (1 n MBeﬂoMsfiPn)\SO(E)) (7

- 2
n (MBCHOMsth)\so(k) ) () ((7)T) (7 (7)) (m(f)ﬁ)] . (C.12)

The expression (C.12) reflects the twofold impact of the anomalous velbtiyldition to the direct
contribution in the expression for the current (C.12), the anomalousityetmntributes in an indirect
manner to the solution of the kinetic equation that is the distribution function (CQdryying out a

similar calculation as in section 5.4.2.1 and in particular exploiting the relation (byi&léls for the
current

—

E

SO0\ 2
- = epoMsPnlso(k .
% (F) = [ /deN(e) (1 4 HBEHO - sol )> vgé(e — €F)

= M, Pk M, PrsoF) )
e /deN(e)uBe'uo nAso(k) 9 4 MBEHO nAso(k) 726(e — )
3 h " '
(7(7) E)mi(7)
_ e*nr.ts (P — 7s) 1+ petioMs Prdso(cr) i E
m (TCT+ - TSQ) h
e*n7ety (PTs — 75) ppepio MsPnso(cr) oM PnAsolcF) 2
— 2 n _‘E 7 ‘
m (7em4 — 72) h < i h ) e

(C.13)

The result (C.13) determines the global bulk conductivities parajlednd perpendiculas to the
magnetization as well as the Hall conductivityy for the charge current. The individual contribu-
tions can be decomposed according to their vector structure

o )xs e _’| e (
=0, (E - (ﬁi(f’)E)qﬁ(ﬂ) — o (7) x E + o)) (i (7) E)m(7),

(01 — L) (M(F) E)iii (7). (C.14)

I
Q
'_
=
|
9
T
)
3
3
X
STl
+

Xiii



Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

A comparison of Egns. (C.13) and (C.14) identifies the individual entfiseoconductivity tensor

27,7 (PTy — T M P 2
S e“nt.1s (P14 : Ts) - LBELLY nAso(€r) 7 (C.15)
m (et — T2) h
2Pn2)\
ol = FE sol€r) (C.16)
2
cls P — s
- :enTT( Ty — Ts) (C.17)
I m (et — T2)
cl+ s
The three conductivities given in Eqns. (C.15) to (C.17) define a cdivitycensor
o1 OHal O
%0 =|—-onar oL 0], (C.18)

0 0 o
where we assumed w.l.0.g. that the magnetizafiopoints inz direction. The corresponding resis-
tivities are obtained by inverting the conductivity tensor (C.18)

oL
2 2
o1+ Ofa

— 7eTs (P14 — 75) (A + MBCMOMsPn)\so(ﬁF))2

2
e2h2mn, (TCT+ . 7_2) [(#BP”230(€F)>2 i (TcTs (TsP7—+)(th,uBequsPn)\so(eF))Q) ]

pL =

)

s RPm(r2—7cTy)

(C.19)
0
PHall = ﬁ
_ PrpAso(€r) . (C.20)
e2h (/LBPn%so(q:))2 X (chs(fsPT+})1§Z+(¢§;_61:STI\+4§PMSO(6F))2) ]
m (TeTe — 7'52
Pl = ;H = eQnTC(TS P _)TS). (C.21)

The parallel resistivity coincides with the conductivity in absence of spiit-anteractions (cf.
Eq. (5.135)).

In conclusion, we derived an AMR like behavior for the charge cuméth the anisotropic magne-
toresistivity given by

Ap=p|—pL
 om(rery — 72

enTers (PTy — Ts)

TeTs (P14 — 75) (B + MBe,uoMé,,Pn)\so(q:))2

2
e2rmn (1o — T2) [(HBPnQSO(EF)f + (TCTS(TSPT+)(M“Be“f’MSP")‘SO(EF))Q) ]
S

RPm(r2—7cTy)
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C.3. Global transport coefficients in the presence of spin-orbit inferesc

Ap = (62mn)71 (:T + 7_11) (7—1T - 71i>
[ m2(t1)2(rH)2 (11 + 71 + 27¢p)
T+ 7H(F = [(A+ P)rT + (1 — P)1d)1ep + 27171
(P + peepoM,Prdso(e))” (1 + ) (rt — 1)
B2 47+ 2me) (e — )
(L4 P)rT+ (1 — P)yrh )1+ 271 7] ]

(C.22)

2

i1 PrAso(ep) 2 (h-{-uBeuo]\/fsPn)\so(q:)) (((1+P)TT+(1—P)Tl)TSf+2TTTl) 2
|:( h ) +( ﬁ,an(TT+Tl+2TSf) ) i|

Figure (C.1) depicts the behavior of the anisotropic magnetoresistivity éarttarge current

Ap P —PL
py+pL ptpL’

PAMR = (C.23)

in dependence of the effective parameter that parametrizes the stréitgthspin-orbit interaction
¢ = pepoMsPnso(er), (C.24)

and for different ratios of the relaxation timgs = 7'/7!. Experimental values for the ratio of
relaxation times are in betweeh = 0.2 — 30. [183] The charge anisotropic magnetoresistivity is
mainly positive but can obtain also negative values for large valuegs ax depicted in Fig. (C.1)
(b). The window of negative values for the anisotropic magnetoresistd@creases gsdecreases.
Due to the indirect coupling via the macroscopic magnetization in Eq. (C.2) tlesictAMR is too
weak to constitute the dominant contribution. Accordingly, the dominant pahet@AMR must be
attributed to the extrinsic mechanism via scattering.

However, itis instructive to examine the AMR ratio (C.22) in certain limiting caBesa better survey
they are listed in Table C.1. The limit of dominating spin-orbit interaction redtieeperpendicular
resistivity to zero and should therefore not be taken too literally. In Tablew2 employed the
abbreviation

0= ((1 + Pyl 4 (1 - P)Ti) , (C.25)

in the expression for vanishing spin-flip scattering. Figure (C.2) depietsehavior of the anomalous
Hall magnetoresistivity

pane = A (C.26)
p||+pL

for the charge current in dependence of the effective spin-orbitaictien parametef as defined in
Eq. (C.24) for various ratios of the relaxation tim@sThe anomalous Hall magnetoresistivity turns
to zero for|¢| — oo.

C.3.2 Conductivity tensor for the spin-transfer torque

The transport coefficients for the spin-transfer torque in the presehespin-orbit interaction are
associated with the transverse non-equilibrium distributions (5.123) ab@4()6 The adiabatic non-
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Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

PAMR
() 1.0+
0.8 — B=02
i — pB=6.2
6l
I — p=122
O¥r . B=182
025 — B=242
I I I I éf ><10—35
-1 -0.5 0.5
(b)
PAMR — B=15
0.001C
0.000¢ =20
0.000€F —  B=25
0.0004f
[ —  B8=30
\ 0.000z}
-5 43 = r 1 2 3 4 5
—0.000z
—0.0004F

Figure C.1: (Color online) (a) The anisotropic magnetoresistivity for tlegancurrent in dependence
of the effective spin-orbit interaction parametefor various values of the ratios of relaxation times
B = 11 /7t for a fully polarized current® = 1). (b) The same as (a) for small values¢adind high
ratios of the relaxation times.
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C.3. Global transport coefficients in the presence of spin-orbit inferesc

Table C.1: Several limiting cases for the anisotropic magnetoresistivity fahiuge current.
limit Ap

m¢(W?m?¢+e2 M2 (h+)?(2h+Q)pdT?)

T — 1l —
T T T e2?m2n2r+et M2n(h+()*p3r?

equal spin conserving scattering times

2m¢ (262 1P M2 30 +4e RM2C2 2 + €2 M2 (3 30 +H2¢ (4mP+ 5e2 M2 2 p?))

Tsf 7 0 (2R MZ3 02 +Ac2 13 M2C 2P +4e2AM2(3 3 02 +e2 MECA 20 1 22 (2 (2m 2+ 3e2 M2 i)
spin-flip scattering off
0 m¢(rt 1) (RPm?((rh)? +2rm?(rl T+ (RPmP (e M2 (h4-0)? 2h+-Opd (1)) (71)?)
Tst — 2e2n7 L1 (R2m2 3 (7 1) 2+ 2R2m2 3 r i |+ (R2m2 (2 +4e2 M2 (h+-C) A2 (r1)2) (71)2)
dominating spin-flip scattering
Aso(€r) — 0 no AMR when spin-orbit interaction is turned off

m(TT 47l +2’Tsf)
e2n[((1+P)TT +(1-P)7! )Tsf—&-QTTTl]

Aso(€F) — 0
(A — 0) (prob-
lematic limit | dominating SOI

cf. text) charge resistivity (cf. Eq. (5.137))
P—0 no AMR when polarization is turned off
PAHE
0.3 — B=02
0.2} — p=62
0.1 o122
| | é« X10—35
0.5 1 — B=182

— B=242

Figure C.2: (Color online) The anomalous Hall magnetoresistivity for thegeheurrent in depen-
dence of the effective spin-orbit interaction paraméter
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Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

equilibrium contribution (5.124) reads

2
(2) E _ 6")/T+T5
W= T = )

JsdTe(PT+ — Ts) = . = o h
[ . Zi:%(@ivk)(%E) + Zi:%(e DUET (e PTs)]aefC 79, Jsd)

JsdTe(PT7. — T5) , = ., = L =
;qucsij[ e = >(eiv,;)( B + 7y (1o — Pry) (& ,;)UEE} D fM9Y e, Jsq).

(C.27)

Analogously to section 5.4.2.2 the first term exactly cancels for the simple ame fhodel due to
the momentum integration by an integration of parts. Thus, we focus on thedatleobtain the

spin-orbit corrected non-equilibrium transverse spin distribution to teedinder in the electric field
by virtue of the substitutiowy; — 7=°)

so 2 - Z(SU 7S —»soE Efchargie’ Jsd)

- 2
epoMsPnAso(k o 2
_ \Ijaﬁfchafgig Jsd) Z 51;]' |: (1 + HUBELO s SO( )) (ei E) (UEE)

peefioMs Prso(k) pepo M Prso(k) \ . .
_ 1+ ( ;
h h

pgetto M Prdsolk) (

n <u56u0M5Pn)\SO(E)

(C.28)

The magnetization of the conduction electrons follows from the momentum ititegtender consid-
eration of the relation (5.129)

1 en o a3 k . e
%<S°Uad(7")>neq: —% % 2 (k) Zm (€;Vi)mi(r)
- 2
_ ¥ / . < uBeungth)\so(k)> 725 )
() x (EV7)i(r)
= M,P k M.P i
; e/dEN(E)MBeuo sPrsolk) 9 4 HBEHOZs nAsolk) T26(e — €F)
3 h h k
() x (A7) E)(m(7)V #))i(7)
= —ER(7) x (TN (7). (C.29)
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C.3. Global transport coefficients in the presence of spin-orbit inferesc

The same calculation appIies@&’énon-ao(F)>neq and the full spin-transfer torque including spin-orbit
interaction reads

-S0 | =S50
7-STT = Tad + Thon-ad

4;

= BNy x NE() x (TR ) M (7) — 125 (7) (75505 ) I (7).

; eM?
(C.30)
with the transverse spin-orbit spin current defined as
M, Prrso®) )
puepo Vg7 =
soj‘ggﬂs_ tsrglrr}s <1 + - SO ) B
M, Pnso(k MPndso(k)\ ., = o

— olgpetrecto M Pl <2+ packoMePrdsel )) A EyEE). (3D

In contrast to the charge current (C.13) no transverse Hall cuapgrgars in the conductivity tensor
of the transverse spin current. The global bulk conductivities pat#]PéFand perpendiculara"Sto
the magnetization read

2
UtLrans: Utsrsliﬂs(l + ,UBe,U«OMsth/\so(EF)> , (C.32)
U}t_:glr}s_ 0, (C.33)
ptans _ gtans (C.34)

The reason for the vanishing Hall conductivity is that the transverse @tiagtion of the conduction
electrons is a pure non-equilibrium phenomenon. We recall from sectoB.? that in equilibrium

the magnetization of the conduction electrons is aligned antiparallel to the logaktieation. Thus,

the absence of a transverse equilibrium component is responsible forisking of an anomalous
Hall effect in the transverse spin current. Noting that the intrinsic coritobio the anomalous Hall
effect dominates over an extrinsic contribution this result provides amngakjustification for the

shape of the resistivity tensor as employed in section 4. [277] Similar to tmgecharrent the parallel
resistivity in the transverse spin current coincides with the conductivitsemce of the anisotropic
magnetoresistance (cf. Eq. (5.172)).

The corresponding resistivities for the transverse spin current read

1 1 peetoMs Prdsoler) \
thr_ans: trans — (Uggi?’ (1 * Sh e ’ (C.33)
o1
plrans _ o (C.36)
1 _
pﬂans otrans — = ( gglrf:s) (€.37)

In conclusion, for the transverse spin current that constitutes thetrgpisfer torque we find no
anomalous Hall effect but an anisotropic magnetoresistance with an apisotnagnetoresistivity
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Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

Prane ()

1.5F

L \\\\\\\\\\\\\\\\\\\7\\\\\\\\\\((h)
-25 -2 -15 -10 -05 i 05 1.0

_osh

Figure C.3: (Color online) The anisotropic magnetoresistivity for the tramsgvspin current that
constitutes the spin-transfer torque in dependence of the effectiv@dptrinteraction parameter.

that reads
A trans __ trans trans
Pspn = P — PL
)
($ﬂ11_<H¢mMMJm¢@>:

h

_ ps o MsPmso(ep) (20 + ppepoMsPndso(€r)) (77 + 7 + 27¢))
8¢2 (h + ppepoMsPnso(er))? (71)2(71)273 [(1 + P)71 — (1 — P)7l]
(

T
(ngTszT(TszT + 2Tl(Tsf + QTT)) + 7'5(,(7'1)2 Tsf + 2TT)2 + 16(TT)2(TL)2T§>

(C.38)

The anisotropic magnetoresistance for the spin-transfer is given by

trans __ trans
trans

P P
AMR — phrans + thr_ans
_¢@2r+¢
2n2 7
where we employed the definition of the effective spin-orbit interactioarpater¢ in Eq. (C.24).
From Eq. (C.39) we conclude that the anisotropic magnetoresistance slyedgtermined by the
spin-orbit interaction parameteg, and the conduction electron density
Figure (C.3) depicts the behavior of the anisotropic magnetoresistivity édralmnsverse spin current
that constitutes the spin-transfer torque in dependence of the effgptiv@rbit interaction parameter
¢ as defined in Eq. (C.24). In contrast to the charge current, the ampgoimagnetoresistance for the
spin-transfer torque is entirely of topological nature, i.e., it does namtpn scattering times. This
allows for large values of the anisotropic magnetoresistance that arpeated for the charge current
from Eq. (C.23) but restricts somehow the parameter rang&sfoer). As depicted in Fig. (C.3) the
anisotropic magnetoresistance is strictly positive definite for positiver), while for small negative

(C.39)
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C.3. Global transport coefficients in the presence of spin-orbit inferesc

Table C.2: Several limiting cases for the anisotropic magnetoresistivity farahsverse spin current

that constitutes the spin-transfer torque.

limit

Aptrans

spin

rl=rl=7

m¢(2h4-C) (T+7gf) (2TTSQdTSf+Ts2dTSQf+7'2 (ngd+47'82f))
2€2nP(h+<)27‘37§’f

equal scattering rates

m¢(2h+¢) (Téd(TT+Tl)2+(4TTTi)2)

Tsf — OO
4e2n(h+¢)2(r1)2(71)2[ (14 P)rT —(1-P)7!]
spin-flip scattering off
Tst — 0 no spin-transfer torque in dominating spin-flip scattering
Ted — 0O no spin-transfer torque in vanishing sd exchange
2m¢(2h+0) (71 +7! +27¢)
Tsd — 0 e2n(h+¢) 1| (14 P)7T —(1-P)7!]
dominating sd exchange
Aso(€p) — 0 no AMR if spin-orbit interaction is turned off

m(rT 7 2rgp) (r2grstr ! (rp! 427 (g2 ) +r2(m 1) (127 ) 24 16(r )2 (1) 272 )

Asol€F) — 00 sf
8e2n(71)2(r1)2 7% [(1+P)rT —(1—-P)7!]

(h—0)

(.prf)blematic dominating SOI

limit cf. text) transverse spin resistivity (cf. Eq. (5.172))
P—0 no AMR when polarization is turned off
M, —0 no AMR if magnetization is turned off

values ofAso(er) a small window for negative AMR ratios occurs.

Several limits of interest for the anisotropic magnetoresistivity in Eq. (C.B®8)etransverse spin
current are listed in Table C.2. As in the case of the anisotropic magnetonesista the charge
current the limit of dominating spin-orbit interaction reduces the perpelagicesistivity in the trans-
verse spin current to zero and should therefore not be taken too literally

The degree of non-adiabaticityis not affected by intrinsic spin-orbit interactions and remains the
same as in Eq. (5.163) without spin-orbit interactions. This is due to thehatthe degree of non-
adiabaticity in our model occurs due to scattering and not affected by tiedteucture. However,
spin-flip scattering is caused by extrinsic spin-orbit interactions due toicollist magnetic impuri-
ties and spin-orbit interactions contribute in this sense in an extrinsic mangier to
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Appendix C. Incorporation of spin-orbit interaction into adiabatic magnetspart

C.3.3 Conductivity tensor for the spin current

In the presence of spin-orbit interaction the spin-current tensor islesd according to

3

soj(f) = _MB/ <;l7r];3

S0g @ Tr (7). (C.40)

The surviving terms of the momentum integration yield the result for the spiemitensor in the
presence of spin-orbit interaction

~ 3 —
2709 = ~tto [ yaic ® (PI™9%e, Jaahis() + g (Fy(7))

— % SO pin @ 114(7). (C.41)

The spin current constitutes the spatial part of the spin-current témsiodistinguishes its direction
of flow

so7  _ e2nret [(1 4+ P)7! — (1 — P)r!] - 1ge oM, Prsole) 2E
Jspin (TT I o) -
2P2 2)\
+ HBE . so(€F) =
enrst [(14 P)7! = (1 = P)7!] pgepsn My Prdsoler)
(TT+Tl+2TSf) h

(2 N ,MBGMOMsth)\SO(GF)> (m(ﬂﬁ)ﬁi(ﬁ (C.42)

E x ()

The spin part of the spin-current tensor always points in the directigheofocal magnetization.
In the adiabatic approximation the spin-current tensor does not obtaisvérse components (cf.
section 5.4.2.3). This also holds in the case of spin-orbit interactions. diduction coefficients
read

spin e2nrss [(1 + P)TT (1— P)Tl] uepioMsPnso(€)
o = 7 I , (C.43)
m(7! + 74 4 27¢) h
. 2P2 2
ot = 1O sl ) (C.44)
e*nrst [(14+ P)r! — (1 — P)r!
ipm _ s [ ] ] (C.45)

m(7! + 7 + 27¢)
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C.3. Global transport coefficients in the presence of spin-orbit inferesc

The corresponding resistivities for the spin current are obtained leyting the conductivity tensor

spin
spin _ o
1 spin spin
(Ufl )%+ (UHF;II)2

-1

2

e P?nso(€r) 2 Tef [(1 +P)rl — (1 - P)Tl] (h+ mgeuo]WsPn)\so(q:))2

= | (BB
h R2m (71 + 7 + 271)

7t [(1+ P)7! — (1 — P)r}] (h + ppepo Ms Prdso(er))?

C.46
e2h?mn (71 + 74 + 27¢) ’ ( )
spin
psHpiIT _ _ OHall
T
P2
_ ,UB)\SO(EF) = (C.47)
o2k <,u,BP2n)\so(q:) ) 2 n 7'Sf[(lJrP)7—T 7(17P)Tl] (th,uBe,qusPn)\so(q:))2
h h2m(TT+Tl+ZTSf)

P = Uﬁpm " nrgt[(1+ P)rl — (1— P)rl]’

The parallel resistivity coincides with the spin current resistivity in the mbsef spin-orbit interac-
tions and equals the spin current in the two-current model (5.74).
In conclusion, we find an AMR like behavior for the spin current with this@tnopic magnetoresis-
tivity given by
Apspin _ p|s|pin _ pjf)in
B m(r! + 7! + 27¢)
~elnrge[(1+ P)r! — (1 — P)7l]

B (MBPQnASO(eF)>2 N <Tsf [(1 +P)rt —(1— P)Tl] (h+ uBequsPnAso(ep))2>2

-1

h R2m (71 + 7 + 27%)

st [(1+ P)7! — (1 = P)rt] (h+ pepio M Pniso(er))?
e2h2mn (1 + 7 + 27%) '

(C.49)
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Appendix D

Calculation of the local electric field due
to the anisotropic magnetoresistance
within a Néel wall

In this appendix we analytically calculate the spatially inhomogeneous elecitiiddie to the anisotro-
pic magnetoresistance within a Néel wall. A Néel wall occurs in ferromagmetes with small
cross sections. The analytical result may serve in combination with a nuirsgiation of the non-
equilibrium kinetic equation for a domain wall (5.197) for the computation of phe-sansfer torque
or the domain-wall resistivity in the presence of spin-orbit interactions.

A domain wall is parametrized by a constant angjland a spatially varying angle(z). A typi-
cal domain-wall profile is parametrized by

¢(x) =7 — 2arctan (exp a > , 0<x <), (D.1)

0= g = const. , (D.2)

where \ is the domain-wall width and:, is the center of the domain wall. The domain-wall pro-
file (D.2) is a soliton solution that minimizes an energy functional in one infinitiadpdimension.
The width of the domain wall is a compromise between exchange and anisetrepyy

A= \/? (D.3)

whereA is the exchange stiffness aidis the shape anisotropy constant due to the demagnetization
field.
A one-dimensional Néel wall is parametrized by

sin @ - cos ¢ tanh (™)
m(z) = | sinf-sing | = | cosh™(£5%2) | . (D.4)
cos 6 0

The z andy component of the magnetization within the wall are shown in Figs. D.1 and D.2. Th
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Figure D.1: (Color online) component of the magnetization within a Néel wall.

X(2)

2 4

Figure D.2: (Color online)y component of the magnetization within a Néel wall.
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Appendix D. Calculation of the local electric field due to the anisotropic magestiance within a
Néel wall

magnetization turns by 18®ver the domain wall. At the wall’s center that is located at the origin of
the coordinate system the magnetization points perpendicular to the wire avsttiexr: axis.

The calculation of the local electric current proceeds by solving Pdssqgnation (4.4) for the elec-
tric Potential®(7) (cf. section 4.2.2)

Vi [ ((7) V()| =o0. (D5)
In one spatial dimension Eq. (D.5) reads
O (00 (17(2)) 0, ()] = O, (D.6)
where the conductivity follows from the inverse of the resistivity
020 (M) = g (7)) (D.7)

In the one-dimensional case the resistivity reads

pex() = pi + Apcos® ¢ = ol tanhQ(x — xo) +pL cosh_Q(?), (D.8)
with the abbreviatioml\p = p;| — p, . Equation (D.7) yields the conductivity
1
= -1 —
Ua:x(l‘) = Prx (.13) ol tanh2(“j\x°) +p1L COSh_2(%)
1
= : D.9
|| — Apcosh_Q(%) (D-9)
The derivative of the conductivity in Eq. (D.9) is given by
tanh(%520)
0z () T O (D.10)
2O (L) = - . .
A(p| — Apcosh™?(25E0))?2
With the result of Eq. (D.10) Poisson’s equation (D.6) reads
B tanh(*570)
( 1 )+ () o
p| — Apcosh™?(Z520) A(p|| — Apcosh™?(2520))2 ' '
A solution for Eq. (D.11) is provided by
() = [2(x — z0)p)| — 2/\Aptanh(x — »To)]cl + ca. (D.12)
The constants,, ¢, are determined by the boundary conditions
(I)($)|z:x0 = Py, (D13)
&' ()| y=zy = —Fo- (D.14)
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Figure D.3: (Color online) Spatially inhomogeneous distribution of the electid fvithin a Néel
wall due to the anisotropic magnetoresistancepfor= 0.2, p) = 0.1, andzg = 0.

The boundary condition (D.13) fixes the potential and yielfls= ¢¢ and (D.14) relates; to the
external applied electric field by

E
e = -2 (D.15)
2p1
Thus the electric potential in a Néel wall is found to be
@ Pll Ap T — %o
(x) = ®o — [(x — x9)— — A— tanh( )] Eo. (D.16)
pL pL
The electric potential (D.16) gives rise to an electric field
’ Eo _9,L — X0
E(z) = —®'(z) = —(p)| — Apcosh™*(———)). (D.17)
pL A
The electric current is calculated via Ohm’s law
. Ey
j(x) = 04z(z)E(x) = — = const. . (D.18)

a pL
From Eq. (D.18) it immediately follows that the electric current is consejfad = 0. The calcula-
tion is consitent as can be seen by calculating the resistivity

px) = E(x)) = pj| — Apcosh™(

T — xg

A

), (D.19)

j(z

which is the inverse of the conductivity (D.9). Due to the anisotropic magesigiance the resistivity
is lowest at the center of the Néel wall. The driving electric field has toedeer when approaching
the wall’s center to obtain a steady current flow due to an increase in thectirity by means of the
perpendicular alignment of current and magnetization. At a large distemoethe wall’s center the
local resistance as well as the electric field attain their maximum values.
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Appendix E

Momentum integration of the first-order
transverse distribution

To determine the magnetization of the conduction electrons via Eq. (5.3), weettidrace out the
momentum in Eq. (5.233). With some abbreviations Eq. (5.233) reads

(Mghansz) = —dmiz [@(vx) (1 . e—%x) +O(—vy) (1 _ e%ﬂ—w))]
011219, Jsg) (e + ca0?)
+ 92 fh9e Jsg) (cs + cav?)
+ 9 feharag Jsd)%vg} . (E.1)

The constants are defined as follows

.2
=

21 = )
Tsd

1
F

eEngTsTsf

z9 = - ,
nfpmTsd (2772 + 7ot (72 — 72)) (27¢(Tsd — 2i7sf) + TsfTsd)

c1 = hreTsd(27 + Tsf),
Cy = _mTcTs2d7—Sf7

c3 = W27, T,

c4 = 2hmTgTsgTe,

cs5 = W2mTeTst. (E.2)
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The momentum integration is most easily carried out in spherical coordif@atésy) of velocity
space, where we parametrize the velocity space suchvthatv cos ¢

d*k (1) tran 3
— KB x) = dmirkugzom

2
/(267[:2])3 [@(U;p) (1 — e‘%x> +O(—vy) (1 _ e%()\—x))}

[(01 + c203) 0 f9e, Joa)
+e 82f(:harge(6 Jsd + C4v282fcharg%€7 Jsd)
+ 5028 feharog Jsd)} . (E.3)

A conversion of the velocity integration into an energy integration yields asutr

d®k ~
e B/ g Ok ) =

: 27
ZRI;BZZ;S\\CET / de/ d(cos0) / do O(cosh) /e

[(1 e > (c1 + c202) D f3 e, Joq)
+ <1 — e_éJC) c;;@?fmarge(e, Jsd) + <1 — e_%x) cwi@ffmarge(e, Jsd)
+ <1 - 67%96) 05v283fCharg€(6 Jsd) }

lHMBZQfm 2m
2772713\F / de/ d(cos ) dgp O(—cosf) /e

[ (1 _enm A )> (c1 + czvm)(‘)efCharge(e, Jsd)
+ (1 — 6%0‘71)> c;;@?fCharge(e, Jsd) + (1 — 6%0‘72)> cwi@?fCharge(e, Jsd)

+ <1 e ”T)> 50203 fE9g e, Jsd)} . (E.4)
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Appendix E. Momentum integration of the first-order transverse distribution

The ©-function restricts theos § integration. Let us now get rid of higher derivatives of the Fermi
function in Eq. (E.4) by means of partial integrations

3k .

iHMBZ2\@m2 /OO /1 2 charg
N de ; d(cosf) ; dep O f" 3N e, Jsq)

[Ve(er + exv?cos?0) (1= ¢ vomo?)
30 [JE (1 - e*flew)}
— c4cos? 09, [ﬁz;? (1 - e_ile”ﬂ
+ e cos? 002 [/eu? (1 - e"7an” ) ||

ik za/2m? [ 0 2 )
* om2h3/m /0 d6/1 d{cosf) 0 d 0 [ e, Jsa)

|:\/g(01 + cv® cos® ) (1 - eﬁ(x—x))
- [V (1 - o)
— ¢4 082 00, [\@;2 (1 _ eﬁﬁ&—x))}
+ ¢5 cos? 002 [\/@2 (1 _ evfﬁwx))} } (E.5)

An evaluation of the energy derivatives yields

_ =1\ 1 A 21T __ 2
a |: (]_ — vcc}sex) — |: <]_ — ’UCOSQx> — vcosGm] s E6
. [Ve e | = Vo v e p Lo (E.6)
=2 o\ 1 s 2T =
85 |:\/EU2 (1 —e vcc}sém)_ — m |:3U (1 —e Ucc}s@l‘) _ C01806 ucc}sgwj| , (E?)
862 |: €’U2 (]_ — e_vczc}sex)- =
_ 1 = Jvzix _ =1 2252
- 3 2 (]_— ucos@x) —_ 'ucos@x— 1 vcosGI .
V2mmu3 [ v ¢ cosf © cos20°
(E.8)

The corresponding derivatives ofcsa(3 =) are obtained by replacing— (z — A). The integration
over ¢ is trivial and the integration overis carried out by approximating the derivative of the Fermi
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function with a delta function

Ak .

_ Uekinzy /1 dt( [—esm + cim®g] + ¢ [3¢5 + mog (comug — 3eq) ] )
mh3vg -1 F ] ]

0 2@y ! _ae
+ [—305 — mu (Cva,Q: — 304)] </ dt t>e F + / dt t2e th>
-1 0

0 21 (\— 1 _ze
4+ 2L (C4mv,2: — 3c5) <(3: - )\)/ dt e + x/ dtte ”Ft>
UF -1 0

0 21—
+ (o2 (como - eam®ol = 2t (o = 2)?)] [ arete O
-1

1
+ [ve? (csmug — crm®vf — cs2iz?)] / dte
0

_ 0 . B 1 _zz
N [WM} / gt Lo [CBWW] / dt Lo F] (E.9)
’UF _1 t ’UF O t

where we substitutecbs 6 = ¢ for brevity.
The spatially independent part of the transverse conduction electrametieagion reads

<(1)6tran3 = _ sy <2 [—Csm + C1m21;,%} + % [305 + mu (czmv,% - 304)])

mh3vg
L) 2i627'37'37'52fv|: (mv%TCTsd — 3717'5) B
e 3R3T (27,72 + T (12 — 72)) (27e(Tsd — 207sf) + TsfTed)
_ —@iﬂ' 2627'027'57'3f (nTcTsd — BN (€g)Ts) B
eX m (27,72 + T (72 — 72)) (27.(Ted — 207sf) + TefTsd)
_ _me 26272152754 (T — PTs) E,. (E.10)

eX m (2772 + 75t (72 — 72)) (270 (Tsd — 2i7Ts) + TsiTsd)
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Appendix E. Momentum integration of the first-order transverse distribution

Evaluation of the momentum integration yields for the spatially dependent pamt st

((1)5_trans(l,)> _
ikpB 22 ) 2
_ p [ [—305 — MUE (CQmUF — 304)]
1 2e=X) z1(x — N)
{61)'% <v|:e F (21),% —wvpz (= A) + 25 (2 — )\)2> — 2} (x — X)* (0, —T))]
1 ,ZvlJ 21T
+ 6711,?; (vpe F (20f — veziz + 272%) — 22°T(0, U—F)>
z
+ [Ui (C4mv,2: - 305)}
-\ z1(z=X) Y
e ( (k-1 (@ X)) + 2 (- AT, —zl(”“")>>
+ @ <vpe F (v — 21) + 272°T(0, UF)> ]
z1(z—=X) _ )\ _ )\
+ vg? (c;;mv,% —eymPug — 522 (x — )\)2> [e P4 MF(O, _al ))
UF VE
2 2 .24 .22 g _ AT AE
+ [vg? (csmug — cym®vg — c52727) | [e o (0, o )
csmz 21 (x — N) 2
+ (x =N I(0, ———) +2I'(0, —) , (E.11)
VF VF VE
where the integral exponential function is defined as
00 e—zt
Ei(z) = / dt T (E.12)
1
and the incomplet&-function is given by
I(a,z) = / dtt* et (E.13)
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The complete result reads after some reordering

(Dglrang )y — (Dgtrany (1) ztrans gy
 iKuBZ)
~ 6h3Tud

{21”: (305 + m(—3c3 + vE(—3cq + 3cym + cym;,%)))

z1@

+e °F ( — 6c5vE + 6csmuE + 604mv§ — 601m20,§

— 202m2v,5: — b6esz1x + 02m2véz1x — @m%éz%:f)

21
+mPvEznx (6¢1 + czz%acz) EI(;—) +(z — (A—2x)) ] E,
F
UB . e2nTiTyTer

i .
eX  2m7sq (2772 + 7ot (72 — 72)) (270 (Tsd — 2i7sf) + TsiTsd)

3hTs
[27'sd7'sf —5 — TcTsd
MUE

112,
_ (270 "7t Tsd) 3hTs
+e F [QTsdef TeTsd — — 5
mug

o 3h? (27'c (Tsd - 2iTsf) + 7'sd7'sf) i Tsd (27'c (Tsd - 2iTsf) + 7'sd7'sf)
m2vRTsg 20

12 (27¢ (Tsd — 2iTsf) + 7'sd’fsf)g }
4U,%7‘Jsf

n Ei((l L Z-Q) y [m (37”5 (27 + 7sf) (27 (Tsd — 2i7st) + Tsdef)>

Te Tst  Tsd) UE MURT Tst

8 [ (27 (Tsa — 2i7st) + TedTsi)
ST TsaT

)} Yo (A—a)]. (E.14)

The total torque is obtained by summing up the conduction electron magnetizatiat) (ithin the
domain wall. Instead of directly integrating Eq. (E.14), it is more appropriatgéochange the order
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Appendix E. Momentum integration of the first-order transverse distribution

of the spatial and the momentum integration. Thus, we perform first the lapsggration of Eq. (E.1)

A
(gl / dz (V612r))

dgk A ~tran
:_"WB/W/O dxg]; 1=z)

Bk =
= ATikpB 22 / (271')3/0 dzx ©(vy)2 <1 — e 2z cosh m (22 — /\)>
[0/, Jsd) (1 + e202)
+ affCharge(e, Jsd)(c3 + cwi)

+ 83fCharge(e Jsd 051)%}

=38 O(v,) A= (1—e
= 8mikugzam / Ok (vg) o e vz

{@f chargg e Jsa) (c1 4 cov?)
+ affCharge(e, Jsd)(c3 + cwi)
+ 93 peharag Jsd)q:,vﬂ . (E.15)

The velocity integration is carried out in spherical coordinates analbgas®efore, where the deriva-
tives of the delta function are shifted by partial integrations. The resulhtotal transverse magne-
tization reads

(1) glrans, _ 1KUBZ2
(o 12R3 v

Z1A
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—)\[24v|:(05 <1+e “F)
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Appendix F

Abbreviations for the second-order

distribution

This appendix provides some abbreviations as employed in the secosrdsolation in section 5.5.5.3.

In Eq. (5.250) the derivative with respect kg of the first-order solution (5.248) contains the fol-

lowing abbreviations

1 1 .2
n=—+——i—,
27, Tsf Tsd
eE hr.Ts
Z3

dy = hatsTsd (27c + Tsf) A,

dy = —maT ToqTsiA,

ds = 4m7—37—53d7—52f,

dy = h2(137'c7'5fA,

ds = 2hmaTsTsar A,

de = —2hmr.TeTerst (67, + Tsf)
dy = 2m27-027-33d7—52f,

dg = thxTcTsz,

2 2 2
dg = —6h“mT. TsdTss,
2 2 9
dig = —4hm T, TsToyTsf,
2.2 2 2
di1 = —2R"M T TsdTs-
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The explicit expressions as used in Eq. 5.251 read

Ay =S lim 8, MgEYz)
Tsf—o0 k
. char 7
= Zpe vzTe [&f e, Jsq) ( 1H(z, A\ vg)vy, —l—dgH(az A, Ug) —l—d51(9: A, V) x)
+ 82fcharge(6 J d (
) (i
)doT

+ 84fcharge(6 J d

(2, M, )02 + dsT (2, X, va)vs -+ dZ (2, A, vy )0 )
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with the following definitions
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Appendix F. Abbreviations for the second-order distribution

XXXVili
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~ 1
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