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Zusammenfassung

Programmierprobleme stellen eine große Herausforderung für die Entwicklung eines

Tutorensystems dar, weil sie auf viele verschiedenen Art und Weise gelöst werden

können. Um dem Studenten beim Lösen eines Programmierproblems effektiv helfen

zu können, muss das Tutorensystem einen großen Raum von möglichen Lösungen ab-

decken und die Ursache eines Fehlers identifizieren können, wenn eine Lösung fehler-

haft ist. Die constraint-basierte Technik ist einer der viel versprechenden Ansätze

zur Modellierung von Wissen für Tutorensysteme. Das Ziel dieser Arbeit ist, die

Verwendbarkeit dieses Ansatzes in der Domäne der Programmierung zu untersuchen.

Dabei fokussiert die Arbeit auf Logikprogrammierung.

Diese Arbeit stellt ein zweistufiges Tutorenmodell vor: Analysieren einer Auf-

gabenstellung vor der Implementierung. Für beide Schritte wird der Lösungsraum

auf der Grundlage von Constraints im Zusammenspiel mit einer Semantiktabelle mo-

delliert. Die Semantiktabelle dient dazu, die semantischen Anforderungen einer spe-

zifischen Aufgabe zu repräsentieren. Außerdem wird von Transformationsregeln Ge-

brauch gemacht, um die Abdeckung des Lösungsraums zu vergrößern. Um hochwer-

tige Rückmeldungen zu einer Studentenlösung liefern zu können, müssen Hypothesen

über die Lösungsvariante des Studenten hinsichtlich ihrer Plausibilität bewertet wer-

den. Zu diesem Zweck schlägt diese Arbeit vor, jedes Constraint mit einem Gewicht

zu erweitern. Constraint-Gewichte werden eingesetzt, 1) um das Fehlerdiagnosever-

fahren zu steuern; 2) um eine Entscheidung für die plausibelste Hypothese über die

Intention des Studenten im Hinblick auf die implementierte Lösungstrategie zu treffen;

und 3) um Prioritäten für die Fehlernachrichten zu setzen. Mit Hilfe von gewichteten

Constraints und dem zweistufigen Tutorenmodell wurde ein Tutorensystem für die

Logikprogrammierung entwickelt.
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Im Rahmen einer Offline-Evaluation wurde es gezeigt, dass das System eine rela-

tive hohe Diagnosegenauigkeit erreichte. In 90,8% der Implementierungen konnte die

Lösungsstrategie korrekt bestimmt werden, und in 92,7% dieser Fälle wurden auch die

Fehler korrekt diagnostiziert. Eine Online-Evaluation mit Studenten einer Lehrver-

anstaltung zur Logikprogrammierung ergab, dass durch die Arbeit mit dem System

eine Verbesserung der Fertigkeiten in der Logikprogrammierung mit einer Effektstärke

von zwischen 0,23 und 0,33 Standardabweichungen erreicht werden konnte.
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Abstract

Programming problems constitute a significant challenge for the development of tu-

toring systems, because they can be solved in many different ways. To help the

student solve a programming problem effectively, the tutoring system must be able

to cover a large space of possible solutions. If a student solution has shortcomings,

the system must be able to identify the reason why that solution is not correct. In

the state of the art, one of the most promising approaches to modelling knowledge for

tutoring systems is the constraint-based technique. This approach uses constraints to

model a space of correct solutions, rather than enumerating them. The goal of this

thesis is to investigate the applicability of this approach to develop tutoring systems

for programming with the focus on logic programming.

This thesis presents a two-stage coaching strategy as a tutoring model which is

intended to support the student in analysing a programming task prior to the im-

plementation itself. For both coaching stages, the solution space is modelled on the

basis of constraints in combination with a semantic table which is used to represent

semantic requirements for a specific programming problem. In addition, transforma-

tion rules are used to extend the space of possible implementations. To be able to

provide qualitative feedback on the student solution, hypotheses about the student’s

solution variant need to be evaluated with respect to their plausibility. For this pur-

pose, this thesis proposes to enrich each constraint with a weight value indicating

the importance of that constraint. Constraint weights serve three purposes. They

are used to 1) control the process of error diagnosis, 2) to hypothesize the student’s

intention in terms of the implemented solution strategy, and 3) to prioritize feedback

messages according to the severity of diagnosed errors.
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To explore the capability of weighted constraints and the usefulness of the two-

stage coaching model, a web-based tutoring system for logic programming has been

implemented. Two evaluation studies have been conducted for this system. The first

one showed that the system achieves a high diagnostic accuracy. In 90.8% of the

student implementations the solution strategy could be hypothesized correctly and

in 92.7% of cases, in which the solution strategy could be determined, errors were

diagnosed correctly. The second study provided the evidence that the system did

contribute to the improvement of the students’ programming skills. The students

who used the system outperformed their peers of the control group by an effect size

between 0.23 and 0.33 standard deviations.
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Chapter 1

Introduction

1.1 Motivation

Recently, a study commissioned by the Bertelsmann foundation showed that in

Germany almost 1.1 million school students require private tuition (“Nachhilfe” in

German) regularly, and for this purpose around 950 million to 1.5 billion Euro are

being spent every year (Klemm and Klemm, 2010). The authors of the study also

point out that private tuition has benefits for the learning performance of students.

However, private tuition is expensive. Not all parents can afford this kind of learning

support for their children. This impairs the equality of opportunity of the education

system. A possible solution to this problem is to provide students with information

technology enabled learning tools after school, thus reducing the demand for private

tuition. Several studies have reported on the effectiveness of deploying information

technology in education (Regian, 1997; Kadiyala and Crynes, 1998).

Programming courses constitute an indispensable part of the study of informatics

because programming knowledge, either imperative, object-oriented, or functional,

is the prerequisite for other courses of this study. A computer programming course

may take place in many forms: e.g., lecture, homework and practical session or a

combination of them. In spite of the substantial effort involved in teaching, learning

to program is challenging for many beginners and the acquisition of programming

skills is difficult. Soloway et al. (1982) and McCracken et al. (2001) have shown that

students still have a lack of programming competence after a full year of programming

1



2 CHAPTER 1. INTRODUCTION

instruction.

The motivation of this thesis is to discuss how information technology can be

used to relieve the difficulties of programming learners and to help them improve

their programming skills.

1.2 Tutoring Systems

The application of information technology in education goes back to the beginning

of the 20th century when Pressey (1927) built a machine providing multiple-choice

questions for learners. From the early 1960s, educational researchers and training

developers used computers to solve their practical problems, e.g., creating electronic

course books, and computer-aided instruction (CAI) systems began to take shape.

The learning principle underlying CAI systems was based on the behaviouristic theory

which assumes that learning is a process of memorizing, demonstrating, and imitating

(Skinner, 1958). Based on this principle, learning strategies targeted primarily at

memory tasks and recall. Thus, drill exercises aimed at testing whether the students

had acquired sufficient knowledge so far and how to reinforce the required knowledge

(Suppes et al., 1968).

Since the CAI systems were too rigid and could not provide learning material to

the students individually, in the mid 1970s, they were improved to be adaptive, i.e.,

curriculum lessons, exercises and feedback were provided according to the current

knowledge of each student. Such systems were referred to as adaptive computer-aided

instruction systems.

Adaptive computer-aided instruction systems became Intelligent Tutoring Sys-

tems (ITS), when researchers changed their focus on two aspects. First, the learn-

ing principle was shifted from learning-by-memorizing to learning-by-problem-solving

which corresponds to the constructivist learning theory (Dewey, 1910; Sleeman and

Brown, 1982). According to this theory, students construct new knowledge from

their own experience, and they are required to engage actively in the learning pro-

cess. Thus, developers of ITS emphasized on providing compelling practical exercises

to the students rather than offering only course books and drill exercises. Second, ITS

are more “intelligent” than adaptive CAI systems because ITS are able to diagnose
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errors in student solutions, make assumptions about the student’s current knowledge,

and adapt instruction according to the student’s need (Shute and Psotka, 1996, p.

576). These abilities are derived from the underlying models of the system. Typically,

an intelligent tutoring system contains four types of knowledge: a domain model, a

student model, a tutoring model, and a communication model (Woolf, 2009).

A domain model represents knowledge about the domain being tutored. This

type of knowledge may include facts, definitions, and problem solving algorithms of

a domain and serves two purposes: 1) diagnosing errors in student solutions, and 2)

presenting new lessons or new problems (which can be hard-coded or dynamically

generated). A student model is the representation of information about the state

of knowledge (including correct knowledge and misconceptions) of each student (or

a group of students). The student model serves to plan and control the interaction

with the student: e.g., selecting an appropriate problem/lesson or modulating feed-

back messages. Commonly, results from diagnosing errors in student solutions (e.g.,

misconceptions, time spent on problems, requested corrective hints, correct answers)

are the most important source of information which can be used to make assump-

tions about the student’s performance of the domain being learned. Additionally,

information about learning styles, affective state (boring, interesting), or the learning

pace of the student can also be used to improve the quality of the student model. A

tutoring model encapsulates the pedagogical expertise which is used to decide on a

pedagogical action (e.g., choose next lesson or problem for presenting), and includes

methods for reasoning about feedback messages. The communication model is re-

quired to manage the communication between the student and the tutoring system.

A typical intelligent tutoring system exploits the four types of knowledge in a cyclic

way. First, the system uses domain knowledge to select customized problems/lessons

for presentation to the student and diagnosis of errors in the student solutions. Then,

the system reasons about the student’s current knowledge state and updates the stu-

dent model. Finally, the system applies tutoring and communication knowledge to

select appropriate feedback and to choose the style of presentation.

In reality, the demarcation between ITS and CAI systems is not always clear

because many CAI systems also exhibit one or more “intelligent features” of ITS
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(Wenger, 1987). Thus, in this thesis, all types of computer-aided systems (CAI, adap-

tive CAI, and ITS) are referred to as tutoring systems . Whether a tutoring system

is intelligent or not, this depends on how much “intelligence” has been implemented

in it.

1.3 The Problem of Error Diagnosis

Error diagnosis plays a key role in an intelligent tutoring system. Diagnostic

information which is obtained from diagnosing errors in student solutions serves to

form and upgrade the student model - the component which enables the adaptivity of a

tutoring system. A faithful student model needs to be updated dynamically because

the student can make improvement during the learning process. Thus, diagnostic

information must be accurate and plausible. This requires an adequate domain model

which is able to cover the space of all possible solutions for a given problem and a

mechanism to derive the reason why an erroneous solution does not belong to that

space.

For a problem in the domain of programming, the solution space can be very

large because there are alternative solution strategies to be applied. A solution strat-

egy is a way to solve a class of frequently occurring problem situations. According to

Pennington and Grabowski (1990); Weiser and Shertz (1983); Hoc (1988), expert pro-

grammers have several solution strategies at hand after the characteristics of a given

problem have been identified. The concept of solution strategy will be discussed in

more details in Section 2.3. In addition to the number of possible solution strategies

for a given programming problem, each of them can be implemented in many variants

using different programming constructs. Therefore, in order to give high quality feed-

back on errors occurring in a solution, it is necessary to build a hypothesis about the

student’s solution variant, then identify and explain errors based on that hypothesis.

Otherwise, diagnostic information will not be useful because it can be confusing to

the student. The first question a tutoring system for programming needs to answer

is: Which solution strategy did the programmer choose?

The problem of error diagnosis in a program can be illustrated using the sample

task Investment : “Write a predicate/function to compute the return after investing
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an amount of money at a constant yearly interest rate”. To solve this problem, the

following strategies can be applied:

1. Analytic strategy : The profit of investing a sum of money Sum with a yearly

interest Rate after a Period of years is calculated based on a mathematical

geometric series like Sum*(Rate+1)^Period.

2. Tail recursive strategy : A variable can be used to accumulate the sum of invest-

ing money and its interest after each year.

3. Recursive and arithmetic before strategy : The calculation of the profit of invest-

ing a sum of money goes back year after year to the first year of investment,

then the return of each year is determined by summing up the investing money

and its interest.

4. Recursive and arithmetic after strategy : The return is calculated recursively

on a new period, then the new period is checked whether the old period is

an increment of the new one. Following this strategy, a new period is not

calculated, rather tested.

To answer the question above, the most plausible hypothesis about the student’s

intention of choosing the solution strategy needs to be decided in order to provide

appropriate feedback.

The solution space of a programming problem not only is determined by the

number of possible solution strategies, but also by the number of alternative imple-

mentation variants. Each of the solution strategies for the problem Investment can be

implemented in many ways. Thus, to diagnose errors in a student solution, a tutoring

system needs to answer the second question: How did the programmer implement the

chosen solution strategy?

To investigate the problem of error diagnosis in a tutoring system for program-

ming, this thesis takes logic programming as a study case due to two reasons. First,

the dual semantics of this programming paradigm is an attractive feature: a logic

program1 can be interpreted either declaratively or procedurally (Brna, 2001). Thus,

1We use the term “program” only when discussing about the specific domain of programming.
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the techniques which are used to model the procedural elements of a logic program

can be learned and may be partly transferred to procedural languages. Second, since

a logic programming language can be understood as the relational calculus enriched

with recursion and function symbols, the techniques used to diagnose logic programs

may also be applied to the paradigm of declarative programming in general.

Table 1.1: Implementation of four solution strategies for the problem Investment
Analytic Tail recursive Rec arith before Rec arith after

inv(S,R,P,Ret):- inv(S, ,P,Ret):- inv(S, ,P,Ret):- inv(S, ,P,Ret):-
Ret is S*(R+1)^P. P=0, P=0, P=0,

S=Ret. S=Ret. S=Ret.
inv(S,R,P,Ret):- inv(S,R,P,Ret):- inv(S,R,P,Ret):-
P>0, P > 0, inv(S, R, NP, NS),
NS is S*R+S, NP is P-1, P is NP +1,
NP is P-1, inv(S,R,NP,NS), Ret is NS+R*NS.
inv(NS,R,NP,Ret). Ret is NS + R*NS.

Table 1.1 shows the implementation of those four solution strategies in a normal

form in Prolog (cf. Section 3.7.1), where the four argument positions of the predicate

inv represent start money, yearly interest rate, period of investment, and return. For

each solution strategy, many semantic-preserving variants can be implemented. For

instance, the tail recursive strategy can be implemented in many ways by varying

the order of the two clauses or the order of the second and the third subgoal of the

second clause, choosing one of two unification techniques (implicit and explicit), or

using the commutative and distributive laws in mathematics to transform arithmetic

expressions as illustrated in Figure 1.1. In total, there might exist several thousands

of correct implementations for the problem Investment. If helper predicates are de-

ployed to modularize a code, the solution space for this problem becomes open-ended,

because defining helper predicates is beyond the scope of any anticipation. Thus, a

hypothesis about the intention of the student choosing an implementation variant is

also required to provide an appropriate corrective hint.

For instance, we assume that a student has intended to implement the tail recursive

In general cases, we use the term “solution”. A program which is created by the student is then
referred to as student program.
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strategy. However, she2 has implemented a wrong guard which should check whether

the investment period is positive like P>=0 (compare with the second column of Table

1.1). Trying to answer the second question means in this case to hypothesize whether

she intended to implement the guard like (X>0) or (X>=1). For the former, we can

suggest to correct the error by changing the operator to X>0, and for the latter

the operand on the right hand side should be corrected to value 1. Hypothesizing

a student’s intention is meant to answer the two questions above: which solution

strategy did she choose and how did she implement that solution strategy?

The problem being addressed in this thesis is therefore how to model a large solution

space for a programming problem provided by a tutoring system for logic programming

and how to diagnose errors in the student programs accurately in accordance with the

student’s intention.

Figure 1.1: Implementation variants of the tail recursive strategy.

1.4 The Approach

Over the last two decades, numerous approaches to error diagnosis in the do-

main of programming have been devised, such as the plan and bug library-based

2For the sake of brevity, we use “she”, “herself”, “her”, ect., generally to refer to both genders.



8 CHAPTER 1. INTRODUCTION

(Johnson, 1990; Looi, 1991; Weber and Brusilovsky, 2001), program transformation-

based (Gegg-Harrison, 1993; Vanneste, 1994; Hong, 2004), model tracing (Anderson

and Reiser, 1985) and constraint-based modelling (CBM) techniques (Ohlsson, 1994;

Ohlsson and Mitrovic, 2006). Among these, cognitive learning theories underlie the

model tracing and CBM approaches which have been applied successfully to build

tutoring systems.

In a model-tracing tutoring system, domain knowledge is represented by an expert

model and a library of buggy rules . The expert model represents one or more “ideal”

solution paths to a given problem, and buggy rules3 anticipate possible erroneous

problem solving steps of the student. Error diagnosis and instruction are carried out

by tracing every problem solving step of the student. Whenever the student solution

deviates from the expert model, the system provides diagnostic information based on

buggy rules. Model-tracing tutoring systems have proven to be successful in several

domains, e.g., Physics (VanLehn et al., 2005) and Algebra (Heffernan et al., 2008).

Recently, the constraint-based modelling approach, which focuses on static cog-

nitive states rather than problem solving processes, has been showing great promise

as an alternative. A constraint represents a domain principle or specifies a property

of correct solutions. A set of constraints divides the space of solutions into two sub-

spaces: the inner space for correct4 and the outer space for incorrect solutions as

Figure 1.2 illustrates. Whenever a solution violates a constraint, that solution falls

into the outer space, and a CBM tutoring system derives a feedback associated to

that violated constraint.

The CBM approach has been employed successfully to develop a SQL tutoring

system (Mitrovic et al., 2001) and to diagnose grammatical errors in natural language

utterances (Menzel, 1988). Researchers agree that this approach is promising due to

the following factors:

• A separate expert model is not necessary because the expert information is

encapsulated in the constraints (Ohlsson, 1994). Creating an expert model by

3Buggy production and buggy rules are the terminology in the literature of model-tracing tutors.
4From now, if not explicitly discussing about incorrect solutions, the term “solutions” indicates

correct solutions.
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Figure 1.2: A solution space determined by the constraints

modelling a large number of solution paths, e.g., several thousands of solutions,

is a laborious undertaking compared to the task of collecting a limited set of

domain principles and properties of correct solutions for a problem.

• A constraint-based system does not require anticipating erroneous behaviours

of students.

• The constraint-based approach is more tolerant than the model tracing one with

regards to the incompleteness of the knowledge base. A model-tracing system

flags a correct solution as erroneous if it does not meet the problem solving

steps specified in the expert model, whereas in a constraint-based system, an

erroneous solution is still considered being correct as long as no constraint is

violated (Mitrovic and Ohlsson, 1999).

In particular, with respect to the domain of programming, the constraint-based

approach is superior to model-tracing due to two reasons. First, programming is an

iterative process, i.e., the programmer develops a program by refining and revising it

incrementally whereas the model-tracing approach tends to model a linear problem

solving process: problem solving is viewed as a sequence of many steps. Model tracing

approach can be applied in the domain of programming under assumption that the

process of problem solving of the student can be observed and guided strictly by the

tutoring system, for instance, the LISP-Tutor (Anderson and Reiser, 1985). Second,

the constraint-based approach models a space of correct solutions while the model-

tracing approach requires to enumerate each correct solution path and to anticipate

a number of erroneous paths. Creating an expert model by modelling a number of
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solution paths, e.g., several thousands solutions, is a laborious undertaking compared

to the task of collecting a small set of principles of a programming language and

properties of correct solutions. Thus, the constraint-based approach is applicable

to build an exploratory learning environment which encourages students to create

their own solutions to problems creatively (Gutierrez-Santos and Mavrikis, 2008).

Therefore, this thesis adopts CBM as the basic approach to diagnosing errors in logic

programs.

However, the constraint-based approach comes with several weaknesses with re-

spect to error diagnosis. First, this approach is not able to evaluate the plausibility

of hypotheses about different solution variants for a problem. Constraints might be

satisfied under the assumption of one solution strategy, but could be violated in the

context of another strategy. If the dependence between constraints and a specific

solution strategy is not explicitly modelled, diagnostic information which is derived

from a violated constraint might be deceptive to the student, because the solution

strategy the student intended to implement might not agree with the one based on

which constraints are checked. Therefore, this problem raises the need to enhance

the constraint-based error diagnosis with the capability of hypothesizing the student’s

intention.

In order to choose the most plausible hypothesis, approaches to softening con-

straints in constraint satisfaction problems (CSPs) can be exploited. The most popu-

lar frameworks considering soft constraints include fuzzy CSPs (Dubois et al., 1996),

partial CSPs (Freuder andWallace, 1992), cost-minimizing CSPs5(Schiex et al., 1995),

and probabilistic CSPs (Fargier and Lang, 1993). Among these, this thesis proposes

to adopt the probabilistic CSPs approach because it does not evaluate a constraint

system partially (like the partial CSPs framework) and nor is it necessary to specify

constraints with possible instantiations of constraint variables in advance (like fuzzy

and cost-minimizing CSPs frameworks). The probabilistic CSPs approach requires

that each constraint is associated with a probability indicating the importance level of

that constraint. This approach has been applied successfully to enhance the quality

5In the literature, researchers refer to this kind of problems as weighted constraint satisfaction
problems. We avoid to use this notion because we will use the term weighted constraint to describe
the importance of a constraint later.
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of error diagnosis, e.g., for natural language sentences (Menzel and Schröder, 1998),

or to diagnose the shortcomings of intermediate hypotheses of a natural language

parser with the goal to guide the system towards an optimal parsing result (Foth,

2007). Following the probabilistic CSPs approach, we enrich constraints with heuris-

tic information referred to as constraint weight which indicates the importance of each

constraint. We use constraint weights to serve three essential purposes: 1) to control

the process of error diagnosis, 2) to decide on the most plausible hypothesis about

the strategy underlying a student solution, and 3) to prioritize feedback messages

according to the importance of each diagnostic information. The first and the second

purpose can be achieved by generating and evaluating hypotheses about the solution

strategy and the implementation variant of the student. The third purpose can be

realised using the weight values of violated constraints to distinguish the severity of

each error.

The second weakness of the constraint-based approach is the incoherence of feed-

back messages which are derived from violated constraints. Individual constraints

encode domain principles which represent pieces of domain knowledge. But, the

domain principles are not always orthogonal. Hence, feedback messages which are

derived from these constraints are not related to each other. As a result, unrelated

feedback messages are returned to the student, and this may lead to potential confu-

sion of the student (Kodaganallur et al., 2005). Thus, a means to bind the feedback

messages together is required. In the course of applying constraints to create the

domain model, this thesis proposes to model standard solution strategies which are

noted as patterns. Similar notions can be found in the object-oriented programming

paradigm (Gamma et al., 1995). Constraints modelling patterns are referred to as

pattern constraints. Since violated pattern constraints flag errors in the context of a

standard solution strategy, pattern-related feedback messages can be presented in a

coherent manner.

In order to diagnose the semantic correctness6 of a student solution, it is necessary

to model semantic properties for each solution strategy for a given programming

6The meaning of a program is considered as its semantics. A programmer who can write a program
in some programming language has at least an informal understanding of what that program means.
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problem. In principle, constraints alone can be used to model the semantic properties

as Ohlsson proposed (Ohlsson, 1994). However, these constraints would be very

complex and problem-specific. Every time a new problem needs to be integrated

into a CBM system, it is necessary to specify new problem-specific constraints. This

is not an easy task for problem authors who are not familiar with the constraint

representation. Instead, Mitrovic et al. (2007) suggested to use an ideal solution to

encapsulate the semantic information required for each problem. However, identifying

an ideal solution within a large solution space for a programming problem is not

an easy task. Furthermore, an ideal solution represents a single solution strategy

while there may exist alternative solution strategies to solve a programming problem.

Therefore, this thesis suggests to define a semantic table which represents the semantic

information required by each possible solution strategy. The concept of using the

semantic table comprises of two ideas: 1) modelling alternative solution strategies

and 2) modelling generalised implementations.

In addition, this thesis focuses on the following issues which have not (or very

little) been addressed in existing tutoring systems for programming: 1) coaching the

students during the phase of the task analysis in addition to the implementation phase,

2) communicating with the students using both basic and high level programming

concepts, and 3) supporting a free exploration of solutions to a programming problem.

To address these issues, this thesis proposes a two-stage coaching strategy which

requests the student to analyse the programming task prior to the implementation.

The results of the task analysis are specified in form of a predicate signature to be

implemented. Using the information of the specified predicate signature, the diagnosis

process is able to derive some cues about the intention of the student, namely the

purpose of each argument position. For implementing a solution, a free form user

interface is provided. On each coaching stage, feedback messages are formulated in

terms of basic and high level knowledge.

1.5 Research Goal and Hypotheses

Programming is a complex domain. A programming problem can be solved by

alternative solution strategies and implemented in different ways. The goal of this
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thesis is to explore the potential and the limitations of the CBM technique with

respect to developing tutoring systems for programming, where logic programming is

focused and taken as a study case. This thesis proposes, and experimentally evaluates

the following hypotheses:

• Hypothesis 1: It is possible to build a domain model that covers a large

solution space for a logic programming problem using the representation of

weighted constraints, semantic tables, and a set of transformation rules.

• Hypothesis 2: Using the representations defined in Hypothesis 1, it is possible

to develop an algorithm to diagnose errors in a logic program and to hypothesize

the solution strategy correctly.

• Hypothesis 3: Using constraint weights, it is possible to prioritize diagnostic

information according to the importance of errors.

• Hypothesis 4: It is possible to create a knowledge base of standard solu-

tion strategies in logic programming using weighted constraints and to group

feedback messages in a coherent manner.

• Hypothesis 5: A tutoring system for logic programming, which is developed

on the basis of weighted constraints, semantic tables, a set of transformation

rules, and the two-stage coaching model, is able to help students improve their

skills in solving logic programming problems.

1.6 Overview

The remainder of the dissertation is structured as follows:

Chapter 2 introduces tutoring by coaching which, we argue, is capable of help-

ing students solve programming problems. Relevant characteristics of the domain

of programming are identified: the phases of the programming process and the re-

quired programming knowledge, the factors which determine the solution space of a

programming problem. Existing tutoring systems for programming are reviewed and

classified based on these characteristics to give us a picture of their capability. Finally,
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this chapter reviews existing approaches to error diagnosis, discusses the applicability

of the constraint-based approach in the domain of programming and the weaknesses

which need to be addressed.

Chapter 3 is in many ways the center piece of the dissertation. It presents the

tutoring model and the domain model for a tutoring system which is intended to help

students solve problems in logic programming. As a tutoring model, the chapter pro-

poses a two-stage coaching strategy: the task analysis prior to the implementation.

The chapter also presents how to model the solution space for a logic programming

problem using weighted constraints, semantic tables, and transformation rules. Fi-

nally, this chapter demonstrates how error diagnosis can be carried out based on this

domain model.

Chapter 4 illustrates a tutoring system for logic programming (INCOM) which has

been implemented according to the proposals presented in Chapter 3. The chapter

describes the architecture of the system.

Chapter 5 reports two evaluation studies. The first one aims at evaluating the

quality of diagnostic results provided by the system. The goal of the second one

is to investigate the effectiveness of the system with respect to improving the pro-

gramming skills of students. The evaluation studies show that the tutoring system

INCOM, which is built on the basis of weighted constraints, semantic tables, transfor-

mation rules, and the two-stage coaching model, provides fairly accurate diagnostic

information compared to other existing tutoring systems for programming, and stu-

dents who used the system to solve logic programming problems did outperform the

participants of the control group.

The dissertation concludes with Chapter 6. It summarizes the general arguments

of the dissertation, discusses the main findings, reviews the main contributions, and

proposes future work.



Chapter 2

Tutoring Programming

2.1 Tutoring By Coaching

Programming is a domain in which not only the ability to reproduce knowledge,

but also the skill to solve problems is the focus of attention of the instruction. There-

fore, tutoring programming should promote learning by doing. Like classroom in-

struction, tutoring can be performed in many forms, one of which is coaching the

student solving problems. Brown et al. (1989) defined coaching as “the learning sup-

port aimed at improving the performance of a student during the carrying out of a

task”. This way, the tutor helps the student to overcome impasses along the process

of problem solving by providing targeted feedback or solution hints (VanLehn et al.,

2003; Merrill et al., 1992). The goal of coaching is to bring the performance of the

student closer to that of an expert (Collins et al., 1989).

2.2 Programming

2.2.1 Programming Phases

Researchers agree that the process of programming can be divided into four phases

(Pennington and Grabowski, 1990; Feddon and Charness, 1999):

1. Task analysis : In this phase, the programmer tries to understand the problem.

To achieve this, she needs to have enough knowledge in the problem domain,

e.g., basic knowledge in finance is required to calculate the compound interest

15
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of investment. The result of problem understanding is a mental conception of

the problem which should be documented in an appropriate form (e.g., a list of

parameters which represent information and goals in the problem description).

2. Design: The programmer decomposes the given problem and produces the de-

scription of the program in an intermediate representation (e.g., schema-like

code, diagrams, or a modelling language like UML).

3. Implementation: The programmer converts the designed solution into program

code of a specific programming language.

4. Validation: The programmer tests whether the program fulfils the requirements

specified in the problem description. In the negative case, the program needs

to be debugged and repaired.

In practice, expert programmers do not follow these phases strictly, and rarely

complete one task before moving on to the next phase. Rather, they interweave

work on various phases (Malhotra et al., 1980). However, Feddon and Charness

(1999) recommended that programming beginners should not be allowed to practice

programming like experienced programmers. Similarly to learning writing alphabetic

characters by hand, beginners strictly have to follow the instructions of how to draw

a character, whereas “experienced” people do not have to.

There are two views of how the process of programming should be carried out:

linear or iterative (Larman and Basili, 2003). According to the first view, it can be

seen as flowing steadily downwards through the phases, and this is called a waterfall

model. However, this model has been criticized as being impractical because it is

almost impossible to get one phase of a software product’s life cycle perfectly finished

(even for a trivial software project) before moving on to next phases.

The second view is represented, for instance, by the spiral development model,

which combines elements of design and prototyping-in-stages. That is, the process

of programming starts initially with a small portion of requirements and is executed

through the required phases. The resulting prototype is extended incrementally ac-

cording to new requirements. According to this view, the phases of a software devel-

opment process can be re-visited iteratively many times.
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Figure 2.1: An iterative process of programming

In reality, programmers (even experts) rarely produce a correct program on the

first attempt. Thus, this thesis adopts the view that programming is an iterative

process. This view corresponds to the process of solving a general problem (Figure

2.1) (Gick, 1986). In the first phase, the solver has to understand a given problem

and mentally maps this information onto her prior knowledge of the problem domain.

In the second phase, a solution is designed and planned. If the solver is an expert,

who possesses a rich amount of solution schemas (e.g., programming plans, program-

ming techniques), which can be called tacit knowledge and have been built from the

experience of solving a wide range of problems, she can skip this phase and starts

to implement it. A beginner, however, tends to be less systematic (Pintrich et al.,

1987). She does not have a suitable solution schema at hand, and thus, she has to

search for a solution in a trial-and-error manner. Therefore, coaching a student solv-

ing programming problems should aim at transferring this kind of tacit knowledge to

programming learners.

In the third phase, the designed solution is implemented by applying constructs of

a formal language, e.g., a specific programming language. By entering the last phase,

the solver validates the correctness of her implementation. If the implementation does

not solve the given problem, the solver has to iterate through the implementation

phase in order to detect wrong applications of the formal language. Alternatively,

she can go back to the second phase to devise a new solution design, or to the task

analysis phase to revise the knowledge required in the domain of the given problem.
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2.2.2 Knowledge Required for Programming

What kind of knowledge should a programming learner acquire? To develop a

program successfully, a programmer needs to have a range of different types of know-

ledge which correspond to the phases of programming as Table 2.1 shows (Pennington

and Grabowski, 1990). With respect to tutoring a programming language, we assume

that the student has enough knowledge of a certain problem domain. With respect

to tutoring beginners in programming normally two types of programming knowledge

are focused: the programming language and algorithms.

Table 2.1: Knowledge required for different phases of programming
Phase Knowledge Type

Task analysis Domain knowledge (e.g., finance)
Design Design strategies, algorithms, design language
Implementation Programming language, programming conventions
Validation All knowledge types, debugging, testing strategies

Shneiderman (1977) distinguished between syntactic and semantic knowledge of

a programming language. Syntactic knowledge is constituted by the constructs of

a programming language. Semantic knowledge is divided into low and high level.

Low level knowledge represents the semantics of a programming construct. High

level knowledge includes the semantics of stereotypic compositions of programming

constructs which are used to solve particular programming problems. In summary,

we distinguish three levels of programming knowledge.

• A programming primitive is a syntactic construct of a programming language.

• A basic programming concept is the semantic interpretation of a programming

primitives. For example, several procedural languages, the operator “=” is

used to assign a value to a variable, where in logic programming languages this

operator has the meaning of unification.

• A high level programming concept is the semantic interpretation of a compo-

sition of several basic concepts. This type of knowledge is often conceived as

tacit knowledge acquired by programming experts from their programming ex-

perience. In specific languages, researchers referred to instances of this type of
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programming knowledge as schemas (Rist, 1989), programming clichés (Waters,

1994), or programming plans (Johnson and Soloway, 1985). Recently, with the

establishment of object-oriented programming languages like Java and C++,

the gang of four (Gamma et al., 1995) proposed design patterns to represent

tacit knowledge underlying object-oriented programs.

2.3 Two Levels of Solution Variability

2.3.1 Solution Strategy

Given a problem in a particular domain, an expert might have different solution

strategies at her disposal (Le et al., 2010). Intuitively, a solution strategy is based

on the available means which can be used to deal with frequently occurring problem

situations. For instance, in the domain of travel planning, the task could consist in

finding a route between two places. Depending on the available means of transporta-

tion different strategies can be applied: e.g., driving by car, taking a train, or taking

a flight. In the domain of geometry, alternative solution strategies are based on the

available theorems which have been proven. The task is to prove that the triangle

ADE is isosceles given that angel <ABC is equal to angle <ACB (Figure 2.2), we

either have to prove that DE is parallel to BC or that AD=AE holds.

Figure 2.2: A sample task in geometry.

Similarly, in the domain of programming, almost always different solution alterna-

tives are available. In addition to different types of programming knowledge required

for each phase of the process of programming, researchers suggested that expert pro-

grammers have some kinds of knowledge about problem categories and associated
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solution strategies1 (Pennington and Grabowski, 1990; Weiser and Shertz, 1983; Hoc,

1988). That is, when a problem is given to an expert, she will identify its charac-

teristics by associating it with previously solved problems and assign that problem

to a solution strategy which might be applied to solve problems of that type. For

instance, if the task is to write a function for the return on investment, four possible

solution strategies can be applied (cf. Table 1.1). However, it is not always possible

to determine a solution strategy immediately because most real-world programming

problems are too complex to be assigned to a single category. Hoc (1988) suggested

that the task of identifying the programming problem category and an appropriate

solution strategy should take place in the design phase, where a complex program-

ming problem can be decomposed into sub-problems for which solution strategies can

be identified. The solution strategy for a complex programming problem can be built

up from a combination of solution strategies applied to these sub-problems.

Pertaining to tutoring, identifying the strategy underlying a solution is an impor-

tant issue. If feedback is meant to help the student improve her solution, it always

has to be contextualized according to the solution strategy the student is obviously

applying. Otherwise, it will not agree with the intention of the student and becomes

useless or even confusing. This happens, for example, if the student has intended to

implement the analytic strategy for the problem Investment, but the tutoring system

returns corrective hints in the context of a normal recursive strategy.

In general, a solution strategy forms the basis for the process of finding a solution.

However, it might be difficult to hypothesize the solution strategy from the solution

itself if it contains too little information about the solution process as it is typical for

simple arithmetic tasks. For example, in the domain of fractions, if a task is to find a

correct number to replace the question mark for the equation: 12/15=?/5, a solution

strategy can hardly be derived from a wrong answer. But if the solution to be provided

by the student is richer in information (e.g., a travel plan, a proof, or a program),

then there is a chance of inferring the solution strategy directly from the solution

structure. In the domain of programming, for example, if the problem Investment

is solved using Prolog, the implementation of the analytic solution strategy contains

1The authors referred to a solution strategy as “problem solution plan”.
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one clause executing an analytic formula, whereas the implementation of the tail

recursive strategy contains two clauses: a base case and a recursive case (cf. Table

1.1). The choice of the solution strategy is an important design decision during

creating a solution.

Note, other researchers may use different terms to describe the notion of solution

strategy equivalently: for instance, problem-solving procedure (Mitrovic et al., 2007),

programming technique (Hong, 2004), program schema (Gegg-Harrison, 1993), or

programming plans (Johnson, 1990). In addition to solution strategies which lead

to correct solutions, Ohlsson and Bee (1991) considered also inadequate solution

strategies. Anticipating inadequate solution strategies is possible but difficult because

they might be specific to a certain population of students (Vanneste, 1994). In this

thesis, we only regard solution strategies which lead to correct solutions.

2.3.2 Implementation

Once a problem solver has decided to use a specific solution strategy to solve a

given problem, she is faced with the issue of how to use the available means for the

implementation. That includes finding out how the different available constructs of a

particular domain can be applied and arranged in the context of the chosen solution

strategy. If in the domain of travel planning, a problem solver has chosen the strategy

of using a car, she can find many different routes by combining different roads. Or, if

travelling by train, the planner also can combine different train connections to reach

the desired destination. If a problem solver has decided for a solution strategy to

solve the geometry problem above (e.g., using the theorem that the triangle ADE is

isosceles if DE is parallel to BC), there are multiple ways to arrange the argument

statements within a proof.

Similarly, in the domain of programming, a programmer has to apply the prim-

itives of the programming language being used. On the implementation level the

variability of a program is determined by the following factors:

1. The existence of semantically equivalent syntactic reformulations including the

choice between alternative basic concepts: for instance, an arithmetic expression

can be constructed using different combinations of arithmetic operators (+, -,
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*, :, =, <, >, etc.); or explicit vs. implicit unification in Prolog; or before-

incrementing (++i) vs. after-incrementing (i++) in Java).

2. The existence of alternative sequential orderings of programming constructs:

within an implementation option, the sequential order of statements can some-

times be changed without changing the semantics. For instance, the order of

subgoals and clauses in Prolog, or the order of statements in imperative pro-

gramming languages).

3. The option to introduce identifiers according to individual preferences.

4. The possibility tomodularize a program into simpler functional units by defining

helper predicates (or functions).

As a result, to implement a solution strategy, there are numerous implementation

variants (cf. Figure 1.1). In general, the solution space of a programming problem is

open because it is not possible to anticipate all possible helper functions/predicates

chosen by the student.

2.4 Classification of Problems

With respect to tutoring, given a limited set of solution strategies and formal

constructs of a domain, a potentially very large space of solutions can be derived for a

general problem. Based on the variability of solutions on the levels of solution strategy

and implementation, Le et al. (2010) classified general problems into five classes

according to an increasing size of the solution space. We adopt this classification for

programming problems.

Class 1: one solution strategy, one implementation. Problems of this level can

be solved only according to a single solution strategy and have only one solution. In

many cases, the description for problems of this class can be specified in a way that

the solution is unique. This kind of problems is suited to recall basic knowledge of the

domain being taught because the unique solution can be used to address a concept

which should be learned.

Class 2: one solution strategy, alternative implementation variants. On the second

level, problems can be solved according to a single solution strategy which, however,

can be implemented in many different ways. Problems on this level are typically
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precisely specified so that the space of possible solutions is narrowed down to a single

solution strategy, or the input is restricted by pre-specified solution templates.

Class 3: a limited number of alternative solution strategies. In this class of prob-

lems, the student is free to choose one of several known alternative solution strate-

gies and implements it according to her preferences. This kind of problems is more

challenging than Class 2 and 3 because students have to make appropriate design

decisions, i.e., choosing between solution strategies and implementation variants, in-

stead of simply applying a predefined solution template. In the case that a student

solution does not satisfy the requirements of a given problem, appropriate feedback

can only be given to the student if the system has a reasonable hypothesis about the

underlying solution strategy being most likely applied by the student.

Class 4: a great variability of possible solution strategies while the correctness of

any given specific solution can still be verified. In this class, the problem is so complex

that it needs to be solved by dividing it into sub-problems, which can be solved using

different solution strategies. Since the combination of solution strategies results in a

new solution strategy for the overall task, the number of these combinations is not

known a priori.

Class 5: a great variety of possible solution strategies and the correctness of so-

lutions cannot be verified. Problems of this class typically require solutions not only

to fulfil certain testable functional requirements (cf. Class 4), but additionally their

solutions should be considered “useful” and “acceptable” by a large number of stake-

holders. The latter requirement usually results in controversial opinions which make

solutions not formally verifiable.

2.5 Tutoring Systems for Programming

There exist numerous attempts to build tutoring systems for programming. How-

ever, few of them have been shown to be successful in helping students to improve

their programming skills. Many systems have been reviewed in the studies of (Ducassé

and Emde, 1988; Deek and McHugh, 1999). In this section, we take only systems into

consideration, for which their effect of helping students or their diagnostic capability

has been evaluated. We propose to classify them based upon the support phases for
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the process of programming and the possible variability of programming solutions.

This classification aims at identifying the capability of existing tutoring systems for

programming.

LISP-Tutor (Anderson and Reiser, 1985; Anderson et al., 1995): This tutor

presents to the student a problem description containing highlighted identifiers for

functions and parameters which have to be used in the implementation. To solve a

programming problem, the student is provided with a structured editor which auto-

matically balances parentheses and guides the student through a sequence of tem-

plates to be filled in. When the student types a LISP keyword, a new template is

presented. If, for example, the construct prog (which can be used to implement an

iteration) is entered, the tutor provides the following template:

(prog <LOCAL VARIABLES>

<INITIALIZATIONS>

<BODY>

< REPEAT>)

The symbols in angle brackets indicate place-holders that must be replaced by

the student. Each student’s input is monitored by the system. Whenever she makes

a mistake, the tutor interrupts the process of programming and provides feedback

immediately. The authors claimed that the system is able to support the student both

during the implementation and the planning phase where the tutor works through

the algorithm with the student step by step (Anderson and Reiser, 1985, p. 161),

thus this system helps students acquire LISP primitives as well as basic programming

concepts. The system allows the student to define new helper functions, but the

intended purpose of the helper function has to be selected from a menu presented by

the tutor. Moreover, an expression can be reformulated using different programming

primitives. However, the student is neither allowed to apply alternative solution

strategies to solve a given problem, nor to vary the sequential orderings of clauses in

the prescribed templates. Only the argument positions within a slot of a template

can be changed. This is considered a syntactic reformulation. It has been shown that

students who used this system could achieve a certain competence level in 1/3 time

compared to a traditional learning environment, and that the students who used this



2.5. TUTORING SYSTEMS FOR PROGRAMMING 25

system for a period of one semester outperformed students in a corresponding control

condition by an effect size of 1.0 standard deviation.

SQL-Tutor (Martin, 2001; Mitrovic et al., 2004): This tutor requests the student

to define a SQL query to retrieve the appropriate data. SQL is not an universal

programming language due to the underlying simple machine model. In fact, a SQL

query is used to select data from a data base, but it cannot be used to process data

like a program. For this reason, several database vendors devise their own languages,

e.g., PL/SQL for Oracle, to enable software developers to query data, process them,

and update the database accordingly.

When solving a problem, the system presents the student with a structured solu-

tion template which consists of pre-specified ordered slots for SQL constructs to be

filled: SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER BY (Mitro-

vic et al., 2004, p. 415). Thus, the system restricts the possibility of changing the

order of SQL statements. However, it allows the student to apply alternative solution

strategies as the authors stated: “Constraint-based modelling can handle creativity

because the student is free to use a novel problem-solving procedure without the sys-

tem intervening” (Mitrovic et al., 2007, p. 39), and there exists the possibility to

reformulate the expression within an SQL statement. The system mainly supports

students to construct a query for a given problem, this way, the student is able to

acquire basic concepts of SQL2. This system has been shown being effective to help

students improve their skills to define SQL queries: the students who used this tutor

for two hours could improve their skills by 0.65 standard deviation compared to the

control group (Mitrovic and Ohlsson, 1999).

ELM-ART (Weber and Brusilovsky, 2001): This system for tutoring LISP is

intended to help students on different skill levels. The users of ELM-ART have the

choice among different support levels: listener, editor or exercise level. Among them,

the listener level offers the least support: the student is allowed to solve a program-

ming problem without any restriction (like solution templates). On the editor level,

the student is presented with solution slots to fill in. On the exercise level, the stu-

dent is similarly restricted like on the editor level, but has more support: the program

2Comparable high level programming concepts in SQL cannot be identified.
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of the student is evaluated dynamically using test cases. The system is intended to

help students acquire the correct application of primitives and the basic concepts of

LISP. The system provides three kinds of feedback: 1) information resulting from

testing the solution using test cases, 2) results from error diagnosis in the code, and

3) similar examples to the given programming problem. The system is not able to

support alternative solution strategies as the authors stated: “for most of our exer-

cises there is only one algorithm consisting of a single reference function” (Weber

and Möllenberg, 1995, p. 387). Therefore, the system supports only the possibility of

syntactic reformulation to vary the implementation of a solution strategy. This sys-

tem has been reported being effective in improving students’ programming skills: the

percentage of correct solutions to three final programming problems after completing

six lessons in LISP using the system ELM-ART was between 87% and 96% (Weber

and Brusilovsky, 2001, p. 377).

GIL (Reiser et al., 1988, 1992): The authors of this system promoted the idea of

using a graphical representation for programs. That is, given a programming prob-

lem the student is requested to build a program by connecting objects representing

program constructs together into a graph. The student is allowed to arrange the

graphical objects in any way so that the resulting graph meets the problem’s spec-

ification. The tutoring system monitors the student’s problem solving and provides

guidance upon request. This system is intended to help students in the planning phase

to acquire basic concepts of LISP. It has been reported that students using GIL were

able to reach similar levels of competence in about half the time in comparison to a

corresponding control group (Reiser et al., 1992).

PROPL (Lane, 2004): The author introduced the notion of pre-practice tutoring

which addresses the activities of analysing a task and planning a solution. The system

does not support a specific programming language. Communication patterns were

used to help students develop both an understanding of the problem and possible ways

to solve it using pseudo language. Therefore, we were not able to identify whether it

is possible to vary programming solutions on the implementation level. This system

does not support alternative solution strategies, because for each problem the exercise

author specifies one corresponding pseudo-code solution (Lane and VanLehn, 2005,
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p. 7). PROPL has been evaluated with the programming languages Java and C

(Lane and VanLehn, 2005, p. 10) and it has been reported that students who used

this system were frequently better at creating algorithms for programming problems

and demonstrated fewer errors in their implementation.

Table 2.2: A classification of tutoring systems for programming
System ASS SR AO MP NI Phase Knowledge

LISP-Tutor x x x plan, impl. primitives, basic
SQL-Tutor x x - impl. primitives, basic
ELM-ART x x impl. primitives, basic

GIL x - plan basic
PROPL - - - - analysis, plan basic

ASS: alternative solution strategies; SR: syntactic reformulations; AO: alternative

orderings; MP: modularizing programs; NI: naming identifiers.

Table 2.2 represents a classification of the tutoring systems for programming with

respect to the solution variability. If a table cell is filled with the sign x or empty,

indicating that a system supports a corresponding possibility of varying a solution or

not, respectively. If a table cell is filled with the sign -, it means that no corresponding

information was available. The table shows that most of the existing systems support

the possibility of syntactic reformulations. None of the existing systems supports all

aspects of solution variability (cf. Section 2.3). We also notice that only two systems

(LISP-Tutor and PROPL) were intended to support different phases of the process

of programming, and all of them focused rather on the primitives and basic program-

ming concepts of a specific programming language than on high level programming

knowledge.

Although all of the tutoring systems for programming mentioned above have been

documented being effective in improving the programming skills of students, none of

them has been evaluated with respect to their diagnostic capability. Indeed, these

systems do not require a sophisticated diagnostic capability because they constrict

the student’s freedom due to the restricted ability of the underlying error diagnosis

approach (Deek and McHugh, 1999), and thereby narrow down the possibilities to

develop creative solutions. For instance, using the LISP-Tutor the student has to code

a program in a top-down manner and the program is generated by the templates in a
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strictly left-to-right direction (Anderson and Skwarecki, 1986). GIL, a model-tracing

system which supports students to construct graph-based programs, also restricts the

student to a top-down problem solving manner. The SQL-Tutor offers the student

more possibilities to vary a solution than the LISP-Tutor, the student is allowed

to choose one of three alternative solution strategies3: a query can be defined by

referencing a table either in the FROM clause, or in the WHERE clause, or in a JOIN

expression (Martin, 2001, p. 35). The semantic correctness of a student solution

is evaluated using an ideal solution which assumes that the student solution must

contain certain structural components (which can be composed in different ways). In

PROPL, the intention of the student is determined in the task analysis phase based

on the selected communication patterns, thus error diagnosis was not necessary in

this system.

There exist other systems, which attempted to support all possible sources of vari-

ability of solutions both on the solution strategy and the implementation level (Table

2.3). Although they have been evaluated with respect to their diagnostic capability,

there is no evidence about their learning benefits. These systems can be referred to as

program analysers . The column Intention analysis describes the capability of the sys-

tems to hypothesize the solution strategy underlying the student solutions correctly.

This capability is also referred to as “program analysis” or “algorithm recognition”

in the literature. The column Diagnostic validity describes the validity of error di-

agnosis of each system. The diagnostic validity usually depends on the results of

intention analysis, because if the intention of the student is hypothesized wrongly, as

a consequence, errors are detected based on that wrong hypothesis result.

From the table, it is obvious that the MENO-II system (Soloway et al., 1983) has

poor diagnostic capabilities, because the system has been built with an anticipated

library of errors for a simple programming task, but was evaluated using another more

complex programming problem which resulted in a higher variability for implementing

a solution. Except MENO-II, other systems like APROPOS2 (Looi, 1991), ADAPT

Gegg-Harrison (1993), and Hong’s tutor (Hong, 2004), which have been evaluated

based on the single problem of reversing a list in Prolog, achieved a relatively high

3Mitrovic et al. (2004) used the notion of problem-solving procedure.
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capability of hypothesizing the student’s intention in over 80% of cases and a good

rate of diagnostic validity (between 69% and 94%4). In particular, ADAPT has been

tested on 125 student programs (including the 55 student programs given in (Looi,

1991)) and is able to recognize a larger set of correct solutions than APROPOS2.

No information is available about how ADAPT has been evaluated, nor about its

diagnostic capabilities.

PROUST(Johnson, 1990) has been evaluated based on two programming prob-

lems: the Rainfall5 and the Bank problem6. The system has been reported being able

to analyse7 81% of student programs for the first problem completely and to identify

94% of the bugs in these programs correctly. For the second problem, the accuracy

of program analysis decreased to 50% while 91% of the bugs have been detected. Ac-

cording to the author, the result of intention analysis in the implementations for the

Rainfall problem was better than the one for the Bank problem because the second

problem required more complex solutions than the first one.

That these systems (cf. Table 2.3) have not been evaluated with respect to their

learning benefits might be explained by the fact that they were built for a small

number (between one and two) of programming problems. From the shortcomings

of the systems described in Table 2.2 and Table 2.3 a need to focus on the following

issues can be derived: 1) coaching the students in different phases of the programming

process in addition to the implementation phase, 2) supporting the full range of

variability of solutions for programming problems, and 3) communicating high level

programming concepts to the students.

4This percentage is calculated by: 1− No(NotDetected)+No(FalseAlarms)
No(Errors) .

5The Rainfall problem requires writing a program in Pascal which prompts the user to input the
amount of rainfall of a day, and calculate the average rainfall per day. Note: since rainfall cannot
be negative, the program should reject negative input. The program should read data until the user
types 99999. This is a sentinel value signalling the end of input.

6The Bank problem requires writing a Pascal program that processes three types of bank trans-
actions: withdrawals, deposits, and a special transaction that says: no more transactions follow.
The program should start by asking the user to input an account id and an initial balance.

7Johnson distinguishes between complete and partial analysis. An analysis is complete if a
complete interpretation was generated, for which interpretation assessment could not find any in-
consistencies. A partial analysis means that a part of the program was analysed. For comparing the
capability between systems, we just compare the complete analyses of PROUST with other systems.
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Table 2.3: Program analysers
System Language Intention Analysis Diagnostic Validity

PROUST (Rainfall) Pascal 81% 94%
PROUST (Bank) 50% 91%
MENO-II Pascal 27% -
APROPOS2 Prolog 80% 95%
ADAPT Prolog - -
Hong’s tutor Prolog 80% 69%

2.6 Approaches to Error Diagnosis

In general, approaches to error diagnosis in programs can be classified into two

groups. The first group includes the approaches which are specific to the domain of

programming: plan and bug-based, and transformation-based techniques. We use the

term “program” to describe the solution for a programming problem when discussing

these specific approaches. The second group includes general approaches, which can

be applied in different domains: model-tracing and constraint-based techniques.

2.6.1 Library of Plans and Bugs

Although PROUST, ELM-ART, and APROPOS2 diagnose errors in programs

implemented in different programming languages (Pascal, Lisp and Prolog), these

systems work on the same principles: 1) modelling the domain knowledge using pro-

gramming plans and buggy rules, 2) identifying the intention by matching the student

program against anticipated programming plans, and 3) detecting errors using buggy

rules which re-present common bugs made by students.

Each programming problem, which is posed to the student, is represented inter-

nally by a set of programming goals and data objects. Programming goals are the

requirements which must be satisfied, while data objects are manipulated by the

program. For example, the programming goal Sentinel-Controlled-Input (Johnson,

1990), which reads numbers in a sequence until some designated sentinel value is

reached, can be specified like in Figure 2.3. The representation of programming goals

has two important slots: Form and Instances. The slot Form shows the name of a

possible function and two input parameters ?Input and ?Stop which represent the
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input and the sentinel values. The slot Instances indicates that this programming

goal can be implemented using one of five different plans (Johnson, 1990).

Figure 2.3: A definition for the goal Sentinel-Controlled-Input in PROUST.

A programming plan or an algorithm represents a way to implement a correspon-

ding programming goal. To realize a goal, there might be more than one possible

plan. In contrast to PROUST, APROPOS2 uses the concept of algorithms instead of

programming plans. The author argues that the representation of programming plans

is suited best for imperative languages like PASCAL where keywords for programming

constructs, e.g., FOR-DO, or WHILE-DO, can be used to anchor program analysis.

Thus, he proposed to use algorithms as high level concepts in Prolog, and defined this

notion as follows: “An algorithm is a particular way of solving a problem that specifies

a strategy for the problem’s solution but leaves out details of the implementation”.

According to this definition, an algorithm is comparable to a composition of several

programming plans. Figure 2.4 illustrates one sample plan which implements the goal

Sentinel-Controlled-Input. This plan uses a WHILE loop to read in the value ?Input

until it agrees with the ?Stop constant.

Common bugs are normally collected from empirical studies and represented as

buggy rules. While PROUST contains only buggy rules, ELM-ART adds two more

types: good and sub-optimal rules which are used to comment good programs and

less efficient programs (with respect to computing resources or time), respectively.

APROPOS2 uses another representation of common bugs which are referred to as
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Figure 2.4: A plan for implementing the goal Sentinel-Controlled-Input in PROUST.

buggy clauses. Both buggy clauses and buggy rules serve the same purpose.

In general, a system of this class performs error diagnosis by synthesis in three

steps. First, it looks up the problem description and identifies goals to be imple-

mented. Second, it generates a variety of different ways to implement each goal, and

derives hypotheses about the plans the programmer may have used to satisfy each

goal. Each hypothesis is a possible correct program of the corresponding goal. Third,

if the hypothesized plan matches the student program, the goal is implemented cor-

rectly. Otherwise, the system looks up the database of buggy rules to explain the

plan discrepancies.

The procedure of error diagnosis in APROPOS2 exploits algorithms as high level

programming concepts instead of programming plans and is carried out in a similar

way. First, appropriate algorithms for a given problem are selected, and various

possible programs are generated. Second, each generated program is matched against

the student program, and the best algorithm is identified using a heuristic search

technique. The third step employs buggy clauses to identify errors.

In principle, all three systems are able to identify the intention implemented in

the student program using plan/algorithm matching, and detect errors using buggy

rules/buggy clauses.

This approach has been proven useful to identify the intention underlying student

program using programming plans. However, it is often criticized as being laborious,

because a programming goal can be implemented according to many different pro-

gramming plans and if a programming problem consists many programming goals to

be satisfied, the space of combinations of programming plans would be very large. In
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addition, specifying buggy rules or buggy clauses requires an extensive study of mis-

conceptions of the students. Such a study normally needs a large corpus of student

programs. However, a library of buggy rules or buggy clauses might be specific to a

certain population of students. Studies have shown that bug libraries cannot be used

effectively with a new student population (Payne and Squibb, 1990). Johnson (1990)

stated that PROUST was able to analyse the intention in 81% of the programs for

the Rainfall problem which was assigned to a class of novice programmers (maybe at

the Yale University, where the author was working). When this system was evaluated

at two Belgian universities (UFSIA, Antwerpen and K.U. Leuven Campus Kortrijk),

Vanneste (1994) reported that this rate dropped to less than 10%. To improve the

ability to analyse programs created by a new student population, PROUST’s library

of buggy rules needs to be extended considering additional erroneous programming

behaviours of the students.

2.6.2 Program Transformation

While the approach of using plan and bug libraries compares student programs to

a set of anticipated correct programs and bugs, the transformation approach uses a

single reference program to check the correctness of the student’s one. The trans-

formation approach can be divided into two classes: program-to-abstraction and

program-to-program. In the first class, a student program and a reference program

are transformed to higher level abstractions which are then compared to each other.

In the second class, a reference program in normal form is transformed to the best

representative one which is then compared to the student program.

Hong’s Prolog tutor belongs to the first class. This system intends to transfer two

kinds of programming knowledge to students: high level programming techniques8

and basic programming concepts of logic programming. The domain model of the

system consists of several high level programming techniques and each of them is

represented by a set of grammar rules which are used to parse the student program.

The system iteratively uses the sets of grammar rules to parse the student program.

8Actually Hong uses the term “programming technique” to describe high level concepts to solve a
typical problem. This term might be confused with the notion of programming techniques proposed
by Brna et al. (1999). To avoid this confusion, we use the term “high level programming techniques”.
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If the parsing procedure does not finish successfully, that means, the selected set

of grammar rules has not been completely exploited and the strategy of the student

program cannot be identified. In this case, the system uses one of the possible solution

strategies specified for a given problem to guide the student. Otherwise, the solution

strategy has been identified, and the system diagnoses errors in the student program.

The system uses the same set of grammar rules, with which the solution strategy

has been identified, to parse a corresponding reference program. For each possible

solution strategy specified for a problem, there is a corresponding reference program.

The parse tree of the student program is compared against the one for the reference

program. The differences between the two parse trees indicate errors in the student

program.

Whereas Hong’s tutor transforms both the student and the reference program

to higher-level abstractions, ADAPT transforms a Prolog program to another one

(Gegg-Harrison, 1993). The error diagnosis process is divided into two steps. First,

for a given problem, the system begins with a single reference program in normal

form, generates a set of representative programs using a set of Prolog schemata

(cf. Section 3.1.3). Then the algorithm underlying ADAPT transforms the most

appropriate representative program into a structure that best matches the student

program. The second step detects errors by matching the student program and the

most representative one. If there are no mismatches, the student program is correct.

Otherwise, the system attempts to explain mismatches by searching rules in the bug

library. The program-to-program transformation model of ADAPT and the program-

to-abstraction transformation model of Hong’s tutor are illustrated by Figure 2.5.

The transformation approach is very comfortable for the author of an exercise

because only one or a few reference programs are required, and specifying a reference

program in normal form is a simple task. However, to the best of our knowledge, none

of the systems mentioned above has been evaluated with respect to its effectiveness of

tutoring. A possible explanation might be that a transformation algorithm is difficult

to develop because it has to be verified that the transformed program produces the

same results as the initial one. Even if there exists a transformation algorithm, it

can only be used for a small class of programs. For example, ADAPT is only able to
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(a) Program-to-abstraction transforma-
tion

(b) Program-to-program transformation

Figure 2.5: Two different transformation models

accept a class of programs for the list reversal problem9.

2.6.3 Model-Tracing

The model-tracing approach is based on the cognitive theory ACT-R of skill acqui-

sition (Anderson, 1993; Anderson et al., 1995). A cognitive skill can be conceived of

as a subset of units of goal-related knowledge. The ACT-R theory can be summarized

by means of three principal tenets:

1. There are two types of knowledge: declarative and procedural. In order to be

able to solve a problem, some declarative knowledge is required. Declarative

knowledge can be acquired by being told by a tutor or by reading a book, while

procedural knowledge can only be acquired by performing a task.

2. Declarative knowledge can be converted into procedural one. The theory as-

sumes that the student could exploit various types of instructions (e.g., feed-

back on errors, correction proposals, or analogy) to generate problem-solving

behaviour. That is, the student is able to employ declarative knowledge to solve

9The class of programs is defined by: “1) remove a single element from the front or back of
their input list, 2) use simple variations of standard append3 for input decomposition and output
composition, 3) restrict the use of increasing arguments (i.e., arguments increase in length on each
pass) to those that are necessary for the computation (e.g., accumulators) for outputs, 4) use a single
recursive clause” (Gegg-Harrison, 1993, p. 8).
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new problem tasks successfully.

3. Errors can be reduced. The theory claims that by practising with many prob-

lems of the same type, the student will produce fewer errors and construct a

solution faster, because she has internalized this type of declarative knowledge

and transformed it into procedural skills.

An elementary unit of procedural knowledge can be represented as a production

rule which associates a problem solving situation (S) and a goal (G) with actions (A).

The action A yields a new simpler situation and a smaller goal. For example, the

following production rule recommends the sailor who is sailing in the evening (S): if

he wants to sail to the west (G) he should follow the direction the sun is setting (A).

IF the goal is sailing to the west direction and it is evening,

THEN sailing to the direction of the sunset

The core of a model-tracing tutoring system is the cognitive model which consists of

problem-solving rules of an expert and typical erroneous behaviours of a population

of students. Internally, a cognitive model is represented by a set of production rules

which can be combined to form “ideal”and “buggy” solution paths for a certain

problem (Anderson et al., 1995). An ideal solution path represents the problem

solving rules which lead to a correct solution, while a buggy one anticipates possible

erroneous students’ problem solving steps. When the student inputs a solution, the

system monitors her action symbol by symbol and generates a set of possible correct

and buggy paths. Whenever a student’s action can be recognized as belonging to a

correct path, the student is allowed to go on. If the student’s action deviates from the

correct solution paths, the system generates instructions to guide the student towards

a correct solution. Model-tracing tutors are able to give three types of feedback to

students: flag feedback (also referred to as confirmation feedback in (Fleming and

Levie, 1993), cf. Section 3.9), error explanation messages, and a chain of correction

hints. The first type simply indicates the correctness of the student solution. An error

explanation message is generated from an appropriate buggy rule which explains the

error made by the student. If a student is stuck and needs help, she can request a

hint to receive the first element of a chain of hints which suggests things the student

should think about. If the student needs more help, she can continue to request a
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more specific hint until the last message is delivered that usually tells the student

exactly what kind of action to perform. This type of feedback is generated from the

information of the correct path which has been assumed to be the one the student

is following (Heffernan et al., 2008). The model-tracing approach has been applied

to building ITS not only in the domain of programming (e.g., the LISP-Tutor), but

also in other domains such as Algebra (Corbett et al., 1997), and Physics (VanLehn

et al., 2005).

With respect to diagnosing errors in student solutions, the model-tracing approach

has demonstrated the following strengths in the LISP-Tutor. First, a model-tracing

system is able to diagnose the student’s intention by monitoring and relating the

student’s problem solving steps to the correct solution paths captured in the cognitive

model (Anderson et al., 2010). Problem solving steps are derived based upon empirical

research studies about how students learn to program LISP. A correct solution path in

LISP programming is described as a sequence of problem solving steps which lead the

problem solving process to a gradually simpler situation. For example, “If the goal

is to combine LIST1 and LIST2 into a single list, THEN use the function APPEND

and set as subgoals to code LIST1 and LIST2” (Anderson and Reiser, 1985) is a

problem solving step which is necessary when the situation requires to concatenate

two lists together. Whenever a problem solving step has not been carried out by the

student successfully, the system can diagnose the error immediately even though only

a partial solution is available so far. Second, correction hints which are generated

from the “ideal” solution paths point to the next steps the student has to perform.

Using this kind of information, the student can overcome impasses and go on with

solving the given problem although she might not understand why she has to carry

out that proposed step.

The model-tracing approach has been criticized as being too restrictive because

of the following reasons (Anderson et al., 1995). First, the model-tracing approach

tries to pull the student back on the paths leading to correct solutions, whenever

the system diagnoses that the student’s problem-solving step strays away from the

correct solution paths or matches any buggy rule captured in the cognitive model. In

principle, production rules can be used to model all possible correct solution paths,
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however, this would be a substantial task for modelling (Martin, 2001, p. 27). Thus,

often only few solution paths are modelled, e.g., in the ACT programming tutor (An-

derson et al., 1995). If the given problem is complex enough to be solved in many

ways, e.g., a solution can be varied both on the solution strategy and implementa-

tion level, limiting the space of possible solutions to a few number of anticipated

correct solution paths will exclude valid solutions (Deek and McHugh, 1999). Specif-

ically, programming is a domain in which a student is allowed to create a program

creatively. Researchers advocate the idea that programming learners should produce

and debug errors in their programs in order to evolve their knowledge of programming

and strengthen their problem solving skills (Eisenstadt et al., 1993; Vanneste, 1994).

Limiting programming learners to certain solution paths restricts their creativity al-

though it is arguable whether or not such a limitation affects learning.

Second, with respect to the process of programming, the model-tracing approach

tends to support a linear problem solving process because the interaction style is very

restrictive as researchers stated (Anderson and Skwarecki, 1986; Bonar and Cun-

ningham, 1988). For example, using the LISP-Tutor, the student is requested to

implement a program in a top-down and left-to-right manner. That is, after filling

in a template correctly, a new template is presented to be completed. There is no

possibility to go back to the last template for changes. In later model-tracing systems,

e.g., Andes, a tutoring system for Physics (VanLehn et al., 2005), the student can

also work with the mode feedback-on-demand, and is allowed to undo the last steps

to correct her solution. In this case, a new solution path has to be established by the

system. In case no solution path can be found, that is, the student may have per-

formed an action that is neither on a correct path nor can it be interpreted by means

of buggy rules, the approach may use repair theory to overcome this impasse (Brown

and VanLehn, 1980), by backtracking and suggesting alternative actions. However,

backtracking is non-trivial to implement since the point where to repair is rarely clear,

and the repairer may encounter an exponential combinatorics of potential paths (Self

et al., 1994). Using this mechanism, the system would allow the student to derive her

implementation in an iterative process of refinement and revision steps.
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2.6.4 Constraint-based Modelling

While the model tracing approach focuses on the acquisition of cognitive skills

based on procedural knowledge, the constraint-based approach is based on a “theory

of learning from performance errors” (Ohlsson, 1996) which emphasizes the role of

declarative knowledge. According to this theory, the learning process is divided into

two phases.

In the first phase, it is expected that task-specific behaviour is generated. Like

the ACT-R theory, two types of knowledge are distinguished: procedural10 and decla-

rative. The declarative knowledge is classified into principled knowledge and factual

knowledge. The former consists of assertions about universals while the latter de-

scribes particular objects or events. The theory assumes that a student possesses

some knowledge of both types prior to solving a problem. Adopting existing proce-

dural knowledge, which might be general, the student performs a sequence of task-

specific actions. She uses declarative knowledge to evaluate the performed actions. It

is expected that the learner produces a lot of errors, because she is unfamiliar with a

new problem type, although she possesses some knowledge for solving problems.

In the second phase, the theory assumes that a student is able to learn from her

errors. An error is conceived of as a conflict between what the student believes to

be true and what she perceives to be the case. For example, a sailor is trying to

sail eastward (believe), but she encounters the sun sets in the sailing direction which

indicates that she is moving in the wrong direction (perception). The student needs

to go through two steps: 1) detecting errors, and 2) correcting errors. For error

detection, principled knowledge is required. In the example of sailing a boat, the

sailor catches the mistake by herself using the principled knowledge - that the sun rises

from the east and sets in the west. Errors can also be pointed out by another person

who might indicate that some principles of the task domain have been violated, and

some executed actions should be corrected. Correcting errors also requires principled

10Actually, Ohlsson uses the term “practical knowledge” and avoids the term “procedural knowl-
edge” because the latter is easily misunderstood as referring exclusively to knowledge about algo-
rithms or formal procedures, even though the intended concept is the knowledge underlying action
generally. For the purpose of comparison between the ACT-R and the theory of learning from
performance errors, in this thesis the term “procedural knowledge” is used.
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knowledge to identify the incorrectly performed actions and to recognize the situations

which lead to initiating the actions. By revising the situations, such ineffective actions

can be avoided in the future, and thus procedural knowledge becomes internalized.

The theory proposes that an elementary unit of principled knowledge is repre-

sented as a state constraint. Formally, a constraint C is an ordered pair <Relevance

part, Satisfaction part> (Ohlsson and Rees, 1991). The relevance part describes the

problem situation for which the constraint is relevant, and the satisfaction part en-

codes the conditions which have to be satisfied in order to fulfil the problem situation

described in the relevance part. For example, the following constraint expresses a

navigation principle of sailors:

IF the evening is approaching and the sailor wants to sail in the west

direction,

THEN the sailor ought to follow the direction of the sunset.

Tutoring systems can be developed on the basis of constraints. The domain model of

a constraint-based tutoring system is represented by a set of constraints. Constraints

are used to model the principles of a specific domain and properties of correct solu-

tions for a problem. Thus, constraints rather span a space of correct solutions (and

a space of incorrect solutions) than model each correct solution. Given a student

solution to be diagnosed, the relevant constraints are identified and evaluated. If the

solution violates one or more constraints, the solution does not fall into the space

of correct solutions, and the observed constraint violations are used as diagnostic

information.

One of the advantages of the constraint-based approach is that it neither requires

to enumerate every correct solution for modelling nor is it necessary to anticipate

errors which can be made by the students (Ohlsson, 1994; Mitrovic et al., 2004).

Instead, a limited number of domain principles and properties of correct solutions

for a problem needs to be specified. Thus, from this point of view, using constraints

to model the space of correct solutions for a programming problem, which can be

solved by several thousands of implementation variants, is more appropriate than the

model-tracing approach. Indeed, researchers have reported that the development of a

model-tracing tutor requires more time and effort than a comparable constraint-based
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one for the same tutoring domain (Mitrovic et al., 2003; Kodaganallur et al., 2005).

With respect to the applicability of the constraint-based approach, Kodaganal-

lur et al. (2005) stated that the constraint-based approach is applicable to problems

which contain rich enough information in their solutions. For example, a solution

for a statistical hypothesis testing problem is merely ”reject” or ”do not reject” a

null hypothesis, and thus does not contain enough information for a constraint-based

tutor to provide accurate feedback. On the contrary, a program contains rich infor-

mation, and thus the constraint-based approach should be applicable to the domain

of programming.

However, the constraint-based approach has several weaknesses which need to be

addressed when applying it to the domain of programming. First, constraints can

be used to model all properties of correct solutions according to Ohlsson (1996), but

they can become problem specific and relatively complex. For instance, the following

constraint is specified to require that if the student intends to implement the analytic

solution strategy (e.g., inv(S,R,P,Ret):-Ret is S*(R+1)^P.), then the exponent term

of the analytic formula must be implemented correctly. Note that for the sake of

simplicity, this constraint assumes that the order of the argument positions in the

clause head is fixed.

IF In the solution a calculation subgoal exists

AND one multiplication term exists on the RHS of the calculation

AND the multiplication term consists of two product factors

AND one product factor is a variable unified with the 1st argument

position of the clause head

the second product factor is an exponential term

THEN the exponent of the exponential term is unified with the 3rd argument

position of the clause head

AND its basis is a sum of the value 1 and a variable unified with the 2nd

argument position of the clause head

This constraint has been specified with five propositions in the relevance part and

two in the satisfaction part. Such a highly specific constraint, whose relevance part

contains many conditions, tends to fail in erroneous situations, because its relevance
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part is not robust against minor deviations from the specified situation. A complex

constraint with a conjunction of conditions in the relevance part becomes irrelevant

for a student solution, if only a single one of the conjuncts fails. Thus, the constraint

can be satisfied even though this undesired result might have been caused by another

error elsewhere in the student solution. This leads to the paradox that constraints

that are meant to diagnose errors can be completely neutralized by other errors. The

potential that complex constraints might become useless is obvious when specifying

constraints for the domain of programming.

Instead of specifying problem-specific requirements in constraints, Ohlsson and

Mitrovic (2006) suggested to use an ideal solution which is meant to capture the

characteristics of correct solutions and constraints have to be specified to compare the

necessary components of the ideal solution with the components of a student solution.

This way is similar to other approaches to error diagnosis. The plan-based approach,

for instance, uses a set of programming plans to anticipate possible algorithms for a

given problem. The transformation approach needs a reference program to compare

it with the student solution. In model-tracing tutors, this is achieved by specifying

an expert model which consists of possible solution paths.

The approach of using an ideal solution to encapsulate the semantic requirements

of solutions to a problem has the advantage that complex constraints can be avoided

to a certain extent. Furthermore, it is not necessary to specify new constraints for a

new exercise because problem-specific requirements are contained in the ideal solution

of that exercise, assuming that the existing set of constraints can cover the learning

domain sufficiently.

However, choosing an ideal solution among many alternatives for a programming

problem is not an easy task. In addition, even if an ideal solution could be identified,

the strategy underlying the ideal solution might not agree with the student’s inten-

tion, and the resulting diagnostic information would mislead students. This problem

has been identified by (Martin, 2001, p.43) when investigating the applicability of

the CBM approach in the domain of SQL, as well discussed in (Kodaganallur et al.,

2006, p. 321) and (Woolf, 2009, p. 85). This is the second shortcoming of the

constraint-based approach. To solve this problem, Martin (2001) suggested a reverse
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engineering technique which uses elements of an ideal solution and information from

each violated constraint in order to construct a correct solution on the basis of the

student solution. This technique aims at developing a problem solver to generate a

correct solution which follows the same solution strategy as the one of the student

solution, and correction hints are based on the generated correct solution. This tech-

nique works well in the domain of SQL, however, it remains an open question whether

this technique can be applied to other domains (Martin, 2001, p. 8). Developing a

problem solver could be possible for rather simple problem domains (Mitrovic et al.,

2007, p. 40), however, in many domains it can be very difficult. Indeed, building

a problem solver for programming problems is an issue which still does not have a

solution. So far, various code generators have been developed, however, they can only

generate a frame of code. Human programmers are required to adjust the generated

code to satisfy the requirements of a problem. Furthermore, in a complex domain

like programming, the implementation of two different solution strategies for a given

programming problem can be totally different, i.e., some components required by a

solution strategy may not be needed in the implementation of another solution strat-

egy (e.g., the implementation of the tail recursive strategy vs. the analytic solution

strategy in Table 1.1). Therefore, the approach of applying the reverse engineer-

ing technique to build a problem solver for the domain of programming cannot be

promising.

This problem raises the need to hypothesize the strategy underlying a solution

during the process of diagnosing errors. Thus, it is required to enhance a constraint-

based tutoring system for programming with the capability of diagnosing errors in

accordance with the student’s intention. The issue of identifying the student’s inten-

tion also occurs in model-tracing systems: the student’s problem solving steps are

matched against paths of cognitive actions captured in the cognitive model. When-

ever, for instance, the LISP-Tutor has difficulties to select a path of the student’s

problem solving from a set of alternatives, the student is requested to identify the

proper interpretation of her action from a disambiguation menu.

Neither the constraint-based nor the model-tracing approach provide appropriate

means to distinguish severe errors from minor ones. Model-tracing systems tend to
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present a feedback message immediately whenever the student’ problem solving step

deviates from the expert model whereas constraint-based systems tend to present a

list of errors in arbitrary order. Here, a selection criterion is needed.

The constraint-based approach has another weakness with respect to the quality

of feedback. Researchers agree that a model-tracing tutoring system can provide

a more comprehensive and goal-targeted feedback than a comparable CBM system

(Mitrovic et al., 2003; Kodaganallur et al., 2005). This claim is true due to two

reasons. First, in addition to error explanation messages which are generated from

buggy rules, the expert model of a model-tracing system is able to provide the student

with a sequence of problem solving actions, which force her to always stay on a correct

solution path, while a constraint-based system only provides explanations of a possible

error. Nevertheless, a constraint-based tutoring system can also provide corrective

feedback messages through processing diagnostic information. Menzel (1992), for

instance, combined diagnostic results to generate corrective hints in the domain of

natural language grammar. Note, that a model-tracing system can provide corrective

feedback in addition to error explanations, but has to pay a higher cost (Mitrovic

et al., 2003; Kodaganallur et al., 2005). That is because the development of an expert

model of the model-tracing system requires to enumerate each possible solution path,

and the library of buggy rules needs to anticipate all possible errors the students may

produce. If a model-tracing system allows the student to develop a program in a

creative way, that is, a solution can be varied on the level of the solution strategy and

the implementation level, creating a cognitive model for the domain of programming

would not be an easy task.

The second reason for the lower quality of constraint-based feedback is that con-

straints model knowledge units (e.g., domain principles) which are largely unrelated

to each other, and thus the feedback messages generated from constraint violations

may become incoherent. For example, two basic principles in the domain of logic

programming are: 1) If a calculation subgoal is implemented, then the operator is/2

is used; 2) If a recursive case is implemented, then there exists an input variable

which is decomposed recursively in the clause body. If a minor error exists in a solu-

tion, e.g., the third subgoal of the second clause of the tail recursive implementation
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(NP is P-1, cf. Table 1.1) is wrongly coded like NP = P-1, then constraints which

model these two principles (and many others) will be violated. The first constraint is

violated because in logic programming, this code is interpreted as a unification (due

to the operator =) while a calculation subgoal is expected. The second constraint

is violated, because a subgoal which decomposes a value (if the input variable is a

list) or decrements it (if the input variable is a number) is required to implement a

recursive case, but the wrongly coded subgoal does not satisfy this requirement.

2.6.5 A Summary of The State of The Art

We have investigated four of the most promising approaches to error diagnosis in

tutoring systems for the domain of programming: using a library of plans and bugs,

program transformation, model-tracing, and constraint-based modelling. Table 2.4

summarizes the first two approaches and their (dis)advantages.

Table 2.4: Plans and bugs-based vs. program transformation-based approach
Plans and bugs Program transformation

Modelling techniques programming plans/ reference programs
algorithms transformation algorithm (TA)
buggy rules/clauses

Intention analysis plan/algorithm matching capable
Error detection buggy rules/clauses program/abstraction matching
Ranking of errors not capable not capable
(Dis)advantages laborious modelling comfortable modelling

(an extensive library of (few reference programs)
plans & bugs)

a TA is applicable to only
a small class of programs

While the approach of using a library of plans and bugs and the transformation-

based approach simply serve the purpose of error diagnosis specific for the domain

of programming, the model-tracing and the constraint-based approaches are based

on cognitive learning theories and can be applied to different domains. Table 2.5

summarizes these approaches and their (dis)advantages with respect to developing

tutoring systems for the domain of programming.

The next chapter will propose solutions to enhance the diagnostic capability of



46 CHAPTER 2. TUTORING PROGRAMMING

Table 2.5: Model-tracing vs. constraint-based approach
Model-tracing Constraint-based

Cognitive theory ACT-R learning from errors
Modelling techniques production/buggy rules constraints

Modelling work more laborious less laborious
Intention analysis path tracing not sufficient
Error detection buggy rules constraint violations
Ranking of errors not capable not capable
Feedback more goal-directed less goal directed

(explanatory & corrective) (tend to be explanatory)
(can be corrective)

the constraint-based approach to be able to analyse student’s intention during the

process of error diagnosis and to rank the severity of diagnosed errors.



Chapter 3

A Coaching System For Logic

Programming

Since students experience different difficulties when solving programming problems,

it would be helpful to provide them guidance according to the programming phases.

Therefore, the first purpose of this chapter is to present a two-stage coaching strategy

as a tutoring model: task analysis prior to implementation.

The second purpose of this chapter is to propose an approach to model the solution

space for a programming problem in a tutoring system for logic programming and di-

agnose errors in logic programs accurately through the use of weighted constraints. To

model the solution space, two additional model components are required: a semantic

table and a set of transformation rules. The semantic table represents the semantic

information required to solve a problem. Constraints are used to check the seman-

tic correctness of the student solution with respect to the requirements specified in

the semantic table and examine general well-formedness conditions. Transformation

rules extend the space of solutions further. In addition, the approach presented here

adopts soft computing techniques for solving constraint satisfaction problems in order

to enhance the capabilities of error diagnosis. For that purpose, each constraint is

associated with a constraint weight, a heuristic information indicating the importance

of the constraint. Primarily, constraint weights serve to control the process of error

diagnosis. In addition, they are used to hypothesize the strategy implemented in the

student solution and to rank feedback messages according to the severity of diagnosed

47
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errors.

All design proposals made in this chapter have been implemented in a system

(INCOM), which is used to test the hypotheses specified in Chapter 1.

3.1 Logic Programming - A Case Study

Logic programming is based on first order logic. A logic program is composed of

facts and rules. Facts describe the relationships between objects, and a rule defines

a new relationship based on existing relationships (Sterling and Shapiro, 1994, p. 11,

18). Although, logic programming languages are declarative ones, a logic program can

be viewed both declaratively and procedurally. From the declarative view, a fact is

represented by a n-tuple relationship and a rule can be conceived of as a conjunction

of existing relationships. From the procedural view, a rule can be regarded as a

sequence of function calls, and a logic program can be interpreted as a procedure of

instruction statements.

3.1.1 Simplified Prolog

Following the goal of helping students to acquire basic and high level concepts in

logic programming, we restrict our attention to a subset of the language Prolog in

order to avoid a too high cognitive load of programming beginners and to provide them

with plausible feedback about errors occurred in their solutions. This subset includes

built-in predicates and functions as well as the operators: =, =:=, =\=, ==, \==,

>, >=, <, =<, =.., +, -, *, /, ^. Moreover, ‘is’ can be used to evaluate arithmetic

expressions. Although this set of built-in predicates and functions is relatively small,

it can be used to solve a large range of programming problems. According to text

books for Prolog (e.g., Brna (2001)), higher-order predicates including declarative

predicates (e.g., findall/3, bagof/3, setof/3) and non-declarative ones (e.g., assert/1,

retract/1 used to manipulate the database) are normally tutored once students have

learned the primitive built-in predicates.

A Prolog program contains several predicate definitions, each of them is composed

of one or more clauses . A clause representing a fact consists of only a clause head ,

whereas a clause representing a rule consists of a clause head and a clause body . The
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clause body is composed of several subgoals which represent a conjunction of rela-

tionships. Each subgoal in turn has a functor and several arguments . If an argument

represents an arithmetic expression, it is regarded as a summation of terms which

can be decomposed according to the following rules. Note, we consider only a limited

subset of arithmetic expressions:

summation := multiplication-term | multiplication-term algebraic-sign

summation

multiplication-term := [algebraic-sign] product-factor | [algebraic-sign] product-
factor {*, /} multiplication-term

product-factor := base-item | exponential-term
exponential-term := base-item ^ base-item

base-item := variable | number

algebraic-sign := + | -

Figure 3.1 illustrates the structural hierarchy of a predicate. The hierarchy has five

levels: clauses on the first, clause head and subgoals on the second, functor and ar-

guments on the third, multiplication terms on the fourth, algebraic sign and product

factors on the fifth level.

3.1.2 Solution Space

Despite the small set of built-in predicates mentioned above, Prolog allows us to

create a large solution space for a logic programming problem. In the following, we

discuss the factors which determine a solution space (cf. Section 2.3) to the case of

logic programming.

Syntactic reformulation

Each subgoal is associated with a role: (de)composition, recursion, calculation,

arithmetic test , unification, term test , or user-defined . A role of a subgoal can be

implemented in different ways. We define the role of each subgoal type formally based

on the terminology and notation in (Lloyd, 1987).

Ci is a clause.

Θ is a list of subgoals.
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Figure 3.1: The structural hierarchy of a Prolog predicate.

Si is a subgoal.

ti, ui are terms.

x, y, z are variables.

ci is an atom.

A (de)composition subgoal composes an argument using other variables or decom-

poses an argument into several variables or constants. A (de)composition can be

established implicitly at an argument position or can be represented explicitly as a

separate subgoal. List is the most frequently used data structure for (de)composition.

Definition 3.1.1 Let X be a clause of the form p(t1,...,tn):-Θ. ti (1≤i≤ n) is an

implicit (de)composition if ti = [x1, .., xq|y] (1≤q) or ti = [x1, .., xm] (1<m).

Definition 3.1.2 Let X be a clause of the form p(t1,...,tn):-Θ. ti (1≤i≤ n) is an

explicit (de)composition if ti is a variable z, z = [x1, .., xq|y] ∈ Θ (1≤q) or z =

[x1, .., xm] ∈ Θ (1<m).

Definition 3.1.3 Let X be a clause of the form p(t1,...,tn):-Θ. If ti (1≤i≤ n) is
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an explicit (de)composition, ti is a variable z, z = [x1, .., xq|y] ∈ Θ (1≤q) or z =

[x1, .., xm] ∈ Θ (1<m), then a variant of (de)composition is an implicit (de)composition

on the argument position ti for which the following condition holds: ti = [x1, .., xq|y]
or ti = [x1, .., xm].

Let X be a clause of the form p(t1,...,tn):-Θ. If ti (1≤i≤ n) is an implicit (de)-

composition, ti = [x1, .., xq|y] (1≤q) or ti = [x1, .., xm] (1<m), then a variant of

(de)composition is an explicit (de)composition on the argument position ti for which

the following conditions hold: 1) ti is a variable z; 2) z = [x1, .., xq|y] or z = [x1, .., xm]

is a subgoal in the clause body.

For example, the argument position X in the clause p(X,Y):-X=[H|T], p(T,Y).

is (de)composed into a list [H|T] explicitly according to Definition 3.1.2, and the first

argument position of this clause p([H|T],Y):-p(T,Y). is (de)composed implicitly

according to Definition 3.1.1.

A recursive subgoal has the same functor and the same arity as its clause head.

The following definition for recursive subgoals includes both decreasing recursion and

increasing recursion defined by Gegg-Harrison (1993).

Definition 3.1.4 Let X be a clause of the form p(t1,...,tn):-Θ. If ∃p(u1, .., un) ∈ Θ,

then p(u1, .., un) is a recursive subgoal in X

A calculation subgoal is used to evaluate an arithmetic expression using the oper-

ator “is”.

Definition 3.1.5 ta is an arithmetic expression if ϑ is the set of operators which are

used in this expression and ∀ε ∈ ϑ, ε ∈ {+,-,*,/,^}
Definition 3.1.6 S is a calculation subgoal if ∃S ∈ Θ and S has the form tx is ta

where ta is an arithmetic expression and tx is either a numeric atom or a variable.

The calculation subgoal tx is tv is a variant of S if ta can be transformed to tv applying

the distributive and commutative laws of mathematics. For example, applying the

distributive and commutative law to the arithmetic expression S is M*X+N*X, it can

be transformed to: S is (M+N)*X, or S is X*N+M*X.

An arithmetic test subgoal is used to compare two instantiated arguments which

are of type number. There are two classes of arithmetic test subgoals. The first one

applies the operators: <, >, =< and >= to test whether a number is greater/smaller
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than another one. The second class applies the operators: =:= and =\= to test

whether two expressions evaluate to the same number or not.

Definition 3.1.7 revo is a function which finds a reverse operator for an arithmetic

comparator according to the following rules:

• revo(>) = <

• revo(<) = >

• revo(=<) = >=

• revo(>=) = =<

Definition 3.1.8 If S is an arithmetic test subgoal tx
.
= ty ∈ Θ,

.
=∈ {=:=, =\=},

and tx, ty are arithmetic expressions, then ty
.
= tx is a variant of S.

If S is an arithmetic test subgoal tx ▹ ty ∈ Θ, ▹ ∈ {=<,>=, >,<}, and tx, ty are

arithmetic expressions, the following expressions are variants of S where revo(▹) = ◃:

• ty ◃ tx

• tx − ty ▹ 0

• ty − tx ◃ 0

• 0 ◃ tx − ty,

• 0 ▹ ty − tx

According to Definition 3.1.8, an arithmetic test subgoal whose operator is an ele-

ment of the set {=:=, =\=} can be reformulated by transposing its arguments. An

arithmetic test subgoal, whose operator is an element of the set {=<,>=, >,<}, for
example, X<Y, can be reformulated in one of the following forms: Y>X, X-Y<0, Y-X>0,

0>X-Y, 0<Y-X.

A unification subgoal unifies two structures, or two variables, or assigns a value to

a variable using the operator =. The unification subgoal is referred to as an explicit

unification. A unification can also occur if two different argument positions have the

same variable name or variables within two terms at the argument positions have the

same name. This case is called implicit unification or co-reference. For instance, there

is an implicit unification in the clause member(H, [H|T]). using the co-reference

variable H at two argument positions, whereas the clause member(X,[H|T]):-X=H.
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uses a subgoal to unify two argument positions explicitly. We define the two variants

of unification formally:

Definition 3.1.9 Let X be a clause of the form p(t1,...,tn):-Θ. υi is a set of variables

existing in term ti and υj is a set of variables existing in term tj, (1≤ i, j ≤ n, i ̸= j).

There exists an implicit unification between two arguments in ti and tj if ∃x, x ∈ υi

and x ∈ υj.

Definition 3.1.10 Let X be a clause of the form p(t1,...,tn):-Θ. υi is a set of vari-

ables existing in term ti and υj is a set of variables existing in term tj, (1≤i,j≤ n,

i̸=j). There exists an explicit unification between two arguments in ti and tj if

• ∃x ∈ υi ∧ ∃y ∈ υj, x ̸= y,

• ∃x ⋄ y ∈ Θ or ∃y ⋄ x ∈ Θ where ⋄ is the unification operator =

A term test subgoal is used to test whether two terms are equivalent using the

operators: == and \==. We also include the operator \= into the class of term

test because it tests whether two terms are not unifiable. The arguments of a term

test subgoal can be transposed without changing the semantics of the subgoal.

Definition 3.1.11 S is a term test subgoal x ◦ y ∈ Θ, if ◦ ∈ {==, \==, \=}. y ◦ x
is a variant of S.

A subgoal is considered user-defined if the student defines a helper predicate

explicitly which is called by its main predicate. We will discuss the role of helper

predicates in Section 3.1.2.

Definition 3.1.12 Let X be a clause of the form p(t1,...,tn):-Θ1, Y be a clause of the

form p(tv1,...,tvn):-Θ2. Y is a syntactic reformulation of X,

• if ∃ti, (1≤i≤ n), ti is a (de)composition and ∃tvi is a variant of (de)composition

of ti;

• if there is an unification between two arguments in ti, tj (1≤i,j≤ n, i ̸=j), and

there is a variant of unification between two arguments in tvi, tvj;

• if S is an arithmetic test subgoal ∃S ∈ Θ1 and ∃Sv ∈ Θ2, Sv is a variant of S;

• if S is a calculation subgoal ∃S ∈ Θ1 and ∃Sv ∈ Θ2, Sv is a variant of S;

• if S is a term test subgoal ∃S ∈ Θ1 and ∃Sv ∈ Θ2, Sv is a variant of S.
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Alternative Sequential Ordering

Since a rule can be interpreted as a sequence of logical relationships, from the

declarative perspective, the ordering of subgoals within a clause and clauses within

a predicate can be rearranged without changing the semantics of a logic program.

Nevertheless, efficiency might be an issue, because the order of clauses affects the

search space of the Prolog interpreter. The issue of termination is also important.

Since the interpreter of a logic programming language processes a logic program

procedurally, not always the permutation of a program leads to a new program which

can safely terminate. The problem of detecting infinite loops in general logic programs

is not decidable, although several attempts have been made to prove the termination

properties for a restricted class of logic programs (Bol, 1995; Gelder, 1989). Since

logic programming languages are declarative, we allow students to arrange the order

of subgoals and clauses freely, except in cases where an arithmetic subgoal (arithmetic

test or calculation) is used. In such a case, the order of subgoals within a clause must

be kept because the variables in this subgoal must have been instantiated before they

can be processed. We define alternative sequential ordering variants for subgoals

within a clause and clauses within a program formally as follows:

Definition 3.1.13 An ordering >o on a set of subgoals (or clauses) is a sequence

S1 >o S2 >o S3 >o ... of subgoals (clauses).

Definition 3.1.14 ∃Si, Sj ∈ Θ, (i ̸= j), Si, Sj /∈ {calculation, arithmetic test}, alter-
native sequential ordering variants of Si and Sj are Si >o Sj and Sj >o Si.

Definition 3.1.15 If Ci, Cj(i ̸= j) are two clauses of a program, alternative sequen-

tial ordering variants of Ci and Cj are Ci >o Cj and Cj >o Ci.

Definition 3.1.16 I is an implementation of a predicate. J is a variant of I

• if a clause of J is a syntactic reformulation of a clause of I;

• if the sequential ordering of subgoals within a clause of J is an alternative se-

quential ordering of subgoals within a clause of I;

• if the sequential ordering of clauses within the implementation of J is an alter-

native sequential ordering of clauses of I.
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Solution Strategy

In 2.3.1 we have intuitively defined the term solution strategy. Here, we character-

ize this notion more formally. Note, the formal definition of this term is specific and

serves to design our coaching system for logic programming. It is not used to compare

the complexity of programming problems provided by different tutoring systems.

Definition 3.1.17 α is a solution strategy to a problem. If I is an implementation

of α, then the variants of I are also implementations of α.

Definition 3.1.18 Two solution strategies α and β to solve a problem can be called

different if χ and ψ are the sets of implementation variants of α and β, then I ∈ χ→
I /∈ ψ.

Helper Predicates

A Prolog programmer has the possibility to modularize a program by defining

new helper predicates which are called as subgoals in the clause body of the main

predicate. Formal definitions for helper predicates and main predicates can be found

in (Gegg-Harrison, 1993). There are two cases where a helper predicate is necessary:

1) modularising a program in functional units which can be reused, and 2) defining

an accumulative predicate. The first case is illustrated by the following example. The

task of determining a list of persons (each element of the person list is a pair of name

and age) whose age is greater than 18 can be implemented in adult/2 using the helper

predicate greater18/1 :

adult([],[]).

adult([(N,A)|T], [(N,A)|R]):-greater18(A), adult(T,R).

adult([(N,A)|T], R):-adult(T,R).

greater18(X):-X >= 18.

An accumulative predicate is a special form of a helper predicate which accu-

mulates a series of values recursively into an argument. For example, the predicate

sum/2 which sums all integer elements of a list can be implemented by defining an

accumulative predicate sumAcc/3 which accumulates all integer elements into an ac-

cumulator argument and passes the accumulator value to the result argument when

the list is empty.



56 CHAPTER 3. A COACHING SYSTEM FOR LOGIC PROGRAMMING

sum(List, Result):-sumAcc(List, Result, 0).

sumAcc([], Sum, Sum).

sumAcc([H|T], Sum, Accu):- NewAccu is Accu+H, sumAcc(T, Sum, NewAccu).

Introducing Identifiers

The last possibility of varying a program is the option of introducing identifiers.

Like in all programming languages, a Prolog programmer is able to name a predicate

or variables according to her individual understanding.

3.1.3 High Level Programming Knowledge

Prolog Schemata

A Prolog schema is a generalization of a class of Prolog programs which share a

common structure. The syntactic structure of a Prolog program represents a parti-

cular function. Gegg-Harrison (1999) has developed fourteen solution schemata which

can be used to solve a range of typical list processing problems in Prolog. For example,

the following schema A describes a class of programs whose goal is to access and

process every element of a list. length/2, sum/2, and reverse/2, which should count

the length of a list, sum all integer elements of a list, and reverse a list, respectively,

share the same schema A.

schema_A([], <<&1>>).

schema_A([X|Xs], <<&2>>):-

<pre_pred(<<&3>>,X,<<&4>>),>

schema_A(Xs, <<&5>>)

<,post_pred(<<&6>>,X,<<&7>>)>.

To describe schemata, Gegg-Harrison devised a schema language. In addition to

normal Prolog constructs and variable representation, the schema language employs

schema variables << &1 >>,...,<< &7 >> which represent place holders for any

number of data arguments. The pre pred and post pred components exemplify sub-

goals which are invocated before or after calling the recursive subgoal. The single

brackets indicate that the existence of pre pred and post pred are optional.
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Prolog programming techniques

Opposed to Prolog schemata, which represent standard structures of Prolog pro-

grams, Prolog programming techniques capture semantic relationships and are nor-

mally used by Prolog experts in a systematic way to achieve a certain computation.

As such, programming techniques say something about the computation being un-

dertaken rather than simply providing a syntactic pattern. Programming techniques

can be used in different contexts. For instance, decomposing a list is a Prolog pro-

gramming technique which can be applied to count the elements of a list or to double

the integer elements of a list. A technique can be so basic that it applies to only

parts of a complete procedure, e.g., the same technique requires two arguments to

be co-referenced, i.e., to share the same value; or the list-head technique describes an

argument whose value in the head is the list and whose value in the recursive subgoal

is its tail (Bowles and Brna, 1999). Several basic techniques can be combined together

in a procedure and build a new more complex technique, e.g., the test-for-existence

technique, which is used to determine that a list of objects has at least one object

with a specified property, is composed of many basic techniques (Brna et al., 1999).

Prolog Patterns

Since a Prolog schema represents common solutions for a class of typical problems,

it can be considered a Prolog pattern. In general, a pattern describes a space of

similar problems and a space of solutions, which have worked well in the past and

can be applied again to similar problems in the future (Beck et al., 1996). The term

pattern has been adopted in the software development from the work of Christopher

Alexander, who was exploring patterns in architecture (Alexander, 1979). Gamma

et al. (1995) devised design patterns for the paradigm of object-oriented programming.

Similarly, there exist patterns in designing Prolog programs. Brna (2001) defined

four Prolog patterns which can be applied to solve problems using recursion:

• Test-all-elements : If the problem is to determine whether all elements of a

collection (e.g., a list) have a desired property, then this pattern can be applied.

• Test-for-existence: Similarly to the previous pattern, this one is used to check

whether at least one object of a collection (e.g., a list) has a desired property.
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• Process-all-elements : This pattern describes the standard solution for the prob-

lem of processing all elements of a collection.

• Process-all-accumulator : This pattern exploits the tail recursive strategy (cf.

Section 1.3) to solve the same class of problems as the pattern Process-all-

elements.

For example, if the problem consists in processing all elements of a list, we can use

the pattern Process-All-Elements to define a predicate. The structure of this pattern

corresponds to schema A mentioned previously. The semantics of this pattern can be

described as follows:

• in case the input list is empty, the result of processing the elements in this list

is an empty list (for list processing) or 0 (for arithmetic processing);

• in other cases (the input list is not empty), the rest of the list is processed, and

the total result of the whole list is constructed (or calculated) by processing the

head of the list and the result of the rest list.

Since a Prolog pattern can be specialised by inheriting the characteristics of a

super-pattern and adding new Prolog programming techniques, patterns can be or-

ganised in a hierarchy (Figure 3.2) as proposed in (Hong, 2004)1.

3.2 Requirements

To investigate the applicability of the constraint-based modelling approach for

building tutoring systems in the domain of programming, we develop a tutoring sys-

tem for logic programming. This system is intended to help students of a logic

programming course solve homework exercises. The system is required to have the

following characteristics, while the arguments for these requirements are discussed in

the subsequent sections:

1. Tutoring strategy: Since students may have difficulties during different phases

of the programming process, coaching is required in each of these phases (with

the focus on the analysis and implementation phases) to help students solve

programming problems.

1Actually, Hong (2004) organised programming techniques in a hierarchy.
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Figure 3.2: A small hierarchy of Prolog patterns.

2. Problem Types: In this thesis we focus on programming problems which

require the skills to define predicates using facts and rules. In particular, the

application of recursive programming techniques is emphasized, because for

most novice programmers recursion is a difficult programming concept (Haynes,

1995). Students are provided with programming problems which may be solved

by applying several different solution strategies (which can be anticipated) and

each solution strategy can be implemented in many variants. Students are

allowed to develop creative solutions for this type of problems, that is, they

have the possibility to apply alternative solution strategies, choose syntactic

reformulations, vary alternative sequential orderings of subgoal/clause, define

new helper predicates, and to introduce identifiers of their choice for variables

or predicate names.

3. Error diagnosis: The system is capable to diagnose errors in student solutions

accurately. For this purpose, it must be able to evaluate hypotheses about dif-

ferent possible solution variants created by students, i.e. the student’s intended
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solution strategy underlying a solution must be determined and the implemen-

tation variant has to be hypothesized correctly.

4. Ranking feedback’s severity: Feedback messages should be ranked according

to the severity of underlying errors (e.g., severe errors are shown first) in order

to give students an idea about the issues considered most important and the

error to be removed solved first.

5. Technical Aspects: Since the system is intended to be used to support stu-

dents solving homework exercises, it should be accessible from home, and thus

it should be implemented as a web-based system.

3.3 Conceptual Design

In order to fulfil the first requirement of a tutoring system for logic programming,

we propose a two-stage coaching strategy (Section 3.4). This tutoring model is in-

tended to coach students during the task analysis and the implementation phase of a

programming process.

To satisfy the second requirement, we focus on programming problems of the

complexity level three according the classification of problems described in Section

2.4. From the perspective of ITS development and tutoring programming, this class of

programming problems seems to be most attractive, because at this level of ambition

programming is less focused on technical foundations, rather starts to develop into a

real problem solving activity. The programming problem Investment , for instance, is

an appropriate exercise assignment to be used in a tutoring system for programming,

because it is complex and challenging enough both for the student to solve and for the

system to diagnose errors. The students are required to have a range of knowledge

of basic concepts including recursion, unification, arithmetic test, term test, and

arithmetic calculation. Such a problem is a typical homework assignment given to

students in the second part of a three-month curriculum of the logic programming

course running at the Department of Informatics, University of Hamburg.

The third and the fourth requirements for a tutoring system in the domain of

logic programming can be realised using the concepts of weighted constraints (Section

3.5) and semantic table (Section 3.6 and 3.7). Constraints and semantic table are



3.4. A TWO-STAGE COACHING MODEL 61

used to span a large solution space for each programming problem. In addition,

transformation rules which transform arithmetic expressions or a certain class of

programs can be exploited to further extend the solution space. Constraint weights

serve to control the process of error diagnosis. Furthermore, constraint weights can be

used to decide on the most plausible hypothesis about the student’s solution strategy

underlying her solution and to rank the feedback messages according to the severity

of errors.

The fifth requirement can be fulfilled using web technology and is described in

Chapter 4. In the following subsequent sections, the concepts we propose to build a

tutoring system for logic programming are elaborated in more details.

3.4 A Two-Stage Coaching Model

3.4.1 A Preliminary Study

A preliminary study has been conducted during the winter term 2004/05 at the

University of Hamburg. The goal of this study was to evaluate the capability of a

diagnostic component, to collect student programs, to identify the difficulties of the

students while solving logic programming problems, and to determine where in the

process of programming they are usually stuck. Students of the logic programming

course have been invited to consult a web-based system when experiencing difficulties

in solving their homework assignments. This system was a former version of INCOM

and consisted of mainly a diagnostic component, which was able to identify errors

in a few logic programs. The system attempted to diagnose errors in student solu-

tions and returned diagnostic information based on which students should be able to

improve their solution successively. The system provided students with four exercise

assignments:

1. Define a predicate which specifies the relationship between a list and its prefix.

2. Write a function to convert Peano numbers to integer numbers.

3. Write a predicate which defines an even Peano number.

4. Write a function to compute the sum of compound interest for a given amount,

an interest rate and a duration in years.
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Totally, 261 log files which have been created by 99 users were collected. Each log

file contained records of interactions of a user using the system to solve a task on one

day. That is, if a user was engaged with the same task many times a day, the system

created only one log file.

By analysing the log files, errors were collected and assigned according to the

phases of the process of programming: 1) task analysis, 2) solution design and 3)

implementation. The columns Analysis, Design and Impl. of Table 3.1 show the

proportion of false attempts during the corresponding programming phases. The

second column indicates the absolute number of false and total attempts to solve the

tasks. The proportion of syntax errors is not reported because we only investigated

the semantic correctness of a solution.

Although the error rate on the implementation phase was highest for Task 1

(54.9%), 2 (51.4%), and 4 (46.8%), the error rates of the task analysis and solution

design phase were also remarkably high, e.g., students made 70% of errors in the phase

of analysing Task 3, indicating that students mainly had difficulties in specifying the

clause head for a predicate definition for Peano numbers correctly; 42% of students’

attempts for Task 4 were not successful at finding appropriate clauses or subgoals.

This result reveals the need for a coaching approach which is able to provide specific

help corresponding to the phases of the process of programming.

Table 3.1: Error rate in the programming phases
Task False/Total Attempts Analysis Design Impl.

1 70/91 7% 20% 54.9 %
2 205/242 25% 18% 51.4%
3 210/246 70% 17% 8.9%
4 147/149 9% 42% 46.8%

The result of the previous study points out students’ difficulties not only during

the implementation phase of the process of programming, but also during the phases

of task analysis and solution design. Therefore, students need appropriate feedback

which matches the activity of the programming phase they are currently engaged

in. The following example illustrates the problem of providing students with inap-

propriate feedback. The third exercise assignment of the previous study requests the
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students to define a predicate which tests whether a Peano number is even. A student

submitted the following solution.

peano_even(Peano).

peano(Peano, Number):-peano(s(X)+2).

For this problem, the system expected a correct solution, e.g., like the following:

peano_even(0).

peano_even(s(s(X))):-peano_even(X).

The student implemented two predicates: peano even/1 and peano/2. Since the

number of argument positions of the latter one did not meet the requirements of the

problem, the system assumed that peano even/1 was intended to solve it. The system

returned the corresponding diagnostic information:

Error 1 A base case (2. Clause) is superfluous.

Error 2 A recursive case is missing.

Error 3 The first argument position in the base case (1. Clause) should be 0.

We can guess that the student intended to implement the second clause as a recur-

sive case for the predicate peano even/1, but maybe she mistyped the name of the

predicate. In addition, we notice that the second clause specifies a predicate which

has two argument positions Peano, Number, but none of them has been used in the

clause body. Hence, we could assume that she was not sure about how many ar-

gument positions are needed to solve the given problem. That means, she was not

able to fully analyse the task. Therefore, feedback concerning solution design (Error

1 and 2) and implementation (Error 3) are not helpful for the student in this case.

Instead, we need to help the student to properly analyse the task requirement. This is

the motivation for us to develop a coaching strategy which helps students during the

different phases of the process of programming. The goal is to provide appropriate

feedback on different programming phases.

This thesis proposes a coaching model which consists of two stages. On the first

stage, the students are requested to analyse a given programming task. Once they

provide an appropriate result of their task analysis, they enter the second stage which

focuses on the implementation. This two-stage coaching model does not include a

separate stage for designing solutions. We assume that design activities can also be
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included in the second coaching stage and design skills can be acquired by providing

feedback in terms of high level programming concepts, e.g., logic programming tech-

niques. We focus on the task analysis and implementation phases of the programming

process because these activities are considered two key issues of programming (Jef-

fries et al., 1981; Guzdial et al., 1998): 1) The decomposition problem is to identify

the goal and information needed to solve the programming task; 2) The composi-

tion problem is to put the components (e.g., programming plans, schemata or other

high-level programming concepts) together so that the programming task is solved

correctly. Furthermore, Table 2.2 (cf. Section 2.5) reveals that the majority of ex-

isting systems for programming does not distinctly address the task analysis phase

during programming, rather they tend to support implementation activities. The

proposal of a two-stage coaching model in this thesis is meant to fill this gap.

The proposed two-stage coaching approach allows the student to iteratively refine

a predicate signature and an implementation during each stage. From the point of

view of software engineering, however, it resembles the water fall model which has

been criticized as being impractical and not realistic. However, in a first attempt a

trade-off between the didactic advantages and the real practice of programming has

to be found.

From a didactic point of view, the appeal for coaching distinct phases of program-

ming is supported by the findings of previous research which investigated typical

behaviours of programming learners. First, several studies have shown that the first

step most novice programmers carry out when writing a program is typing in code

(Pintrich et al., 1987; Wender et al., 1987), and especially, they tend to deal with

syntactic aspects of a programming language primarily (Pennington, 1987). Often,

they analyse a task and design a solution in the middle of the coding process (Perkins

et al., 1989, p. 257). This phenomenon might be explained by two hypotheses. First,

we assume the student understands a problem expressed in a natural language, but

she is not able to identify the information or goals given in the problem description

which are initial keys to start coding a program. Second, even if the student is able to

identify important information given in the problem description, she does not know

how to “translate” it into expressions of a specific programming language. Thus, it is
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necessary to train novice programmers on how to carry out task analysis successfully.

A second typical behaviour displayed by many programming learners is using pro-

gram output artifacts as a means to assess program quality (Joni and Soloway, 1986).

They repeatedly change minor things in their program in the hope that changes might

produce the desired program output. This kind of behaviour is usually accounted to

poor planning. Hence, coaching students on different phases would motivate them to

pursue a more systematic approach.

Furthermore, since programming is a complex problem solving activity, and the

branching factor for non-trivial design tasks can be quite large (Soloway et al., 1988),

a great number of decisions, that need to be taken, can make programming difficult for

the learner. As a result, most programs are erroneous, because learners have to focus

on many issues at a time, e.g., understanding the given problem, designing a solution,

applying the syntax of a new programming language. According to the cognitive

load theory, such a situation is not beneficial for learning if too many new topics are

addressed at once, learning is hindered (Sweller, 1994). Therefore, supporting distinct

phases would reduce the cognitive load of the student, because students are forced to

only concentrate on necessary activities of each specific programming phase.

Some attempts have been made to coach students during different phases of the

programming process (cf. Section 2.5). The LISP-Tutor supported students in the de-

sign and implementation phases, whereas the PROPL system focused on the task ana-

lysis and design phases of the process of programming. Finally, the system BRIDGE

(Bonar and Cunningham, 1988) was intended to guide a programming learner through

the phases of task analysis, design and implementation. Unfortunately, the literature

provides no information about a formal evaluation.

3.4.2 Task Analysis

Task analysis aims at establishing an understanding of the given problem and

developing a mental representation of the task (Lane, 2004). To help students to

understand a given problem, BRIDGE (Bonar and Cunningham, 1988) guides them

to identify and refine the goals for the code by selecting simple patterns of natural

language phrases. Similarly, PROPL coaches students to understand a given problem
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by holding a conversation. The system asks questions about the information in the

problem statement and allows students to answer them using unrestricted natural

language. For this purpose, the author of PROPL studied conversations between

human tutors and students during numerous tutoring sessions and identified common

communication patterns. Using natural language to conduct a conversation between

students and the system as they do with human tutors is one of the strengths of

PROPL. However, this approach suffers from the limited completeness of the database

of communication patterns.

As an alternative, this thesis proposes to help students to understand a program-

ming problem by requesting them to reproduce information and goals given in the

problem description in form of an adequate predicate signature which consists of the

following components:

• A predicate name which is the identifier of the predicate to be implemented;

• Argument names which serve as unique identifiers for the argument positions

of the predicate;

• Meaning(Ai) represents the purpose of the argument position Ai. This kind

of information is selected by identifying an appropriate concept used in the

problem description;

• Type(Ai) represents the data structure for the argument position Ai. Actually,

logic programming does not require to specify data types for variables, the com-

putation is based on unification techniques. However, from a pedagogical point

of view, it might be useful to request the student to specify the data structure

she intends to use at the particular argument position. Most frequently used

data structures in logic programming are atom, list and number. Apart from

these data structures, other terms can be classified as arbitrary type;

• Mode(Ai) is the calling mode for the argument position Ai. For a given predicate

whose number of argument position is greater than 0, each argument position

can be specified to be in one of three calling modes: Input (+), output (-) or

indeterminate (?).

Prolog experts recommend learners to comment their code in order to indicate

a predicate’s intended usage. The predicate signature above is consistent with the
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annotation found in many Prolog libraries2 (Brna, 2001), e.g., SWI-Prolog.

Specifying a predicate signature in this way, the student is free to place the position

of each argument and to name the identifiers according to her understanding of a given

problem. As long as the signature input from the student is not yet appropriate with

respect to the problem, the student is advised by the system on how to extract

important information and goals from the problem description.

Often, problem statements may indicate explicit information and goals which can

be identified immediately. However, sometimes information can also be hidden in a

problem statement and cannot be identified directly. For example, the problem state-

ment “Write a predicate which reverses the order of the elements of a list” contains

the noun “list” which can be used to model an argument position which has the data

structure “list”. To implement this predicate we need a second argument position

which represents the output of a reversed list. Unfortunately, no such information

is indicated explicitly in the problem description for the second required argument

position. In such a case, it is necessary to elicit information hidden in a problem

statement to help the student specify an appropriate predicate signature. One ap-

proach is that the exercise author should revise the problem statement so that the

nouns, which should be used to represent required argument positions, occur in the

problem statement.

Under the assumption that the students are able to derive a proper understanding

from the natural language problem description, we suggest to provide feedback by

highlighting important noun phrases in the problem statement and to give the student

hints on how to elicit information from the highlighted terms. This feature seems to be

advantageous from a pedagogical point of view. The student is requested to read the

problem text thoroughly and to think about highlighted noun phrases in the problem

description. She is left to reason about the required information communicated by

them. This kind of feedback may not be as helpful as the one produced by BRIDGE

and PROPL. These systems establish a dialogue with the student, e.g., asking about

the kind of information the student can identify in the problem description. Building

2In standard libraries, the componentMeaning(Ai), which conceives the purpose of each argument
position, is normally represented in free-text natural language which, however, cannot easily be
understood by a software system.
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a natural language dialogue system, however, is not the focus of this thesis.

The approach of supporting students in analysing a problem by specifying a predi-

cate signature still has several limitations. First, this coaching approach is not able to

cover all possible understanding problems. For instance, if the student did not know

the concept of Peano numbers, then coaching her to specify a predicate signature for

a task of checking whether a Peano number is even would not help her further. This

kind of knowledge should have been acquired during lectures or from text books but

not on the stage of task analysis. Second, the requirement to specify noun phrases for

the argument positions of a predicate signature explicitly, might easily render the task

description look artificially. For example, most exercise descriptions do not include

the noun phrase which represents the result of a computation, like for the problem

of reversing a list mentioned above. An approach which could help students to think

about hidden information (e.g., the nouns representing argument positions, or the

data structure of an argument position) is desired. Third, it is not always possible to

derive a unique data type for an argument position from a noun phrase if the noun

phrase does not indicates a data type explicitly. For example, a noun phrase like

“A pair of persons” does not point to a specific data type. Therefore, various data

types can be used: e.g., a list [A,B], a predicate relation p(A,B), or two argument

positions can be used to represent two persons A and B. In such a case, if the student

is forced to use the predicate signature exactly as specified by the exercise author,

this will narrow down the space of solution variability considerably. Despite of these

limitations, there are reasons to believe that analysing a programming problem by

specifying a signature prior to the implementation is a good programming practice.

From a pedagogical point of view, guiding the student to focus on the implementa-

tion once she has finished the task analysis phase helps her not to stray away from

the implementation goal. From a technical point of view, the task analysis stage not

only encourages the student to practice analysing tasks, but also provides valuable

information which helps to make the subsequent error diagnosis more accurate. We

will discuss the issue of error diagnosis in Section 3.8.

Once the student has provided an appropriate signature, which satisfies the given

problem, the system guides her to the second stage where she is allowed to design
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and implement a program.

3.4.3 Implementation

If the student has specified an appropriate predicate signature, she is guided to

the second stage where she is asked to implement a predicate for a given problem

by taking the specified predicate signature into account. Therefore, the information

about the agreed upon predicate signature is displayed:

1. predicate name(Mode(A1)Type(A1), Mode(A2)Type(A2), ...)

2. predicate name(Meaning(A1), Meaning(A2), ...)

A predicate is implemented by defining clauses. To be able to follow the intention

of the student, for each clause, the system asks her to additionally specify the type of

the clause she intends to implement. In logic programming clauses can be classified

into three types: recursive case, base case, and non-recursive. Recursive cases are

clauses which compute an argument recursively. Base cases represent clauses which

define the conditions under which a recursion terminates. Clauses of other types can

be assigned to the non-recursive cases.

If necessary, the student can revise the specified predicate signature, e.g., by

changing the order of the argument positions. Furthermore, if she needs to define

a helper predicate or an accumulative predicate (if the problem can be solved accu-

mulatively), she also can use the option to specify an additional signature for the

new helper predicate. If the student implementation, including the main predicate

and the helper predicate, does not fulfil the goals specified in the given problem, the

system provides feedback to improve the implementation. We will discuss feedback

types in Section 3.9.

3.5 Modelling Programming Knowledge

3.5.1 A Constraint-based Model

In order to coach the student at both stages, helpful feedback about the short-

comings of her solution3 is desired. Hence, the solution is subjected to a thorough

3The term solution is used in general. It can be a predicate signature or an implementation.
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diagnosis. In this thesis, constraints are the basis for the process of diagnosing errors.

The basic idea of constraint-based diagnosis is building a model which represents

the space of correct solutions and checking whether a solution is licensed by this

model. The constraint representation described in Section 2.6.4 can be used to model

different types of knowledge.

First, whenever a given problem domain is characterized by certain principles,

they can be modelled by means of general constraints according to the following

schema:

Type (1)

IF problem situation X is relevant

THEN condition Y must be satisfied

where the problem situation X and the condition Y can be composed of many ele-

mentary propositions using conjunction or disjunction operators.

Second, constraints can be used to model specific properties of correct solutions.

If a solution violates a constraint, the solution does not satisfy a semantic requirement

of correct solutions. This way of using constraints as the only means to model correct

solutions has been proposed by Ohlsson (1994), but it comes with two disadvantages

(cf. Section 2.6.4): constraints may become very complex and are problem-specific.

An alternative approach is using an ideal solution to capture the semantic correctness

required to solve a given problem and constraints are used to establish the relation-

ship between the student solution and the specified ideal solution (Mitrovic et al.,

2007). The ideal solution then defines the canonical solution strategy the student has

to follow. Thus, a constraint-based tutor which uses an ideal solution to check student

solutions might provide misleading feedback, if the student follows an alternative so-

lution strategy not corresponding to the one underlying the ideal solution (cf. Section

2.6.4). To address this issue, Martin (2001) suggested building a problem solver which

constructs (partial) correct solutions following the same solution strategy as the one

of the student solution. This technique has been applied successfully in the domain

of SQL, but building a problem solver is not an easy task for all domains (Mitrovic

et al., 2001, p. 932). To address this problem, the thesis adopts a so-called semantic

table which represents information required by correct solutions to a problem. The



3.5. MODELLING PROGRAMMING KNOWLEDGE 71

concept of semantic table comprises two ideas: 1) it captures several solution strate-

gies, and 2) it represents model solutions in a generalised form which is able to cover

implementation variants created by alternative orderings of program statements (cf.

Section 3.1.2). The relational representation of semantic correctness of a solution

has the advantage that information from the table can be accessed directly without

parsing the model solution. The semantic table can be instantiated in two ways:

signature table and implementation table. The first one is used to diagnose errors in

a predicate signature, and the second serves to diagnose errors in an implementation.

How each type of semantic table is defined and how its information can be accessed,

will be demonstrated later in the specific case of error diagnosis. The constraints,

which use information from the semantic table to check the semantic correctness of

the student solution, are called semantic constraints and have the following general

form:

Type (2)

IF in the semantic table, a component X exists and satisfies condition α

THEN in the student solution, a corresponding component must exist and satisfy

condition α

Constraint schema Type (2) can be specialized further to check for missing or super-

fluous components in the student solution (Type (2.1) and (2.2)) or to check whether

a component in the student solution has a required property (Type (2.3)).

Type (2.1)

IF in the semantic table, a component X exists

THEN in the student solution, a component corresponding to X must also exist

Type (2.2)

IF in the student solution, a component Y exists

THEN in the semantic table, a component corresponding to Y must also exist

Type (2.3)

IF in the semantic table, a component Z exists and has property A

THEN in the student solution, a component corresponding to Z must also exist

and have property A
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3.5.2 A Formalism For Weighted Constraints

Constraint-based error diagnosis can be conceived as a constraint satisfaction

problem. If a student solution is correct, then all constraints will be satisfied. If

an erroneous student solution is evaluated, an inconsistency between the erroneous

student solution and the constraint system occurs, i.e., several constraints will be

violated. In this case, the problem of error diagnosis is considered over-constrained.

The goal of constraint-based error diagnosis is not to search a correct solution, rather

to identify the constraint violations which lead to the inconsistency between an erro-

neous solution and the constraint system.

To deal with the issue of over-constrained satisfaction problems, researchers at-

tempt to distinguish the level of importance between constraints, e.g, hard constraints

represent conditions which must always be hold and soft constraints represent prefer-

ences which should be satisfied when possible. Several techniques have been devised

to express soft constraints and to allow them being violated. The most popular ap-

proaches include fuzzy constraint satisfaction problems (CSPs) (Dubois et al., 1996),

cost-minimizing CSPs4 (Schiex et al., 1995), partial CSPs (Freuder and Wallace,

1992), and probabilistic CSPs (Fargier and Lang, 1993).

A partial CSPs framework attempts to soft a constraint satisfaction problem by

changing the domain of variables/constraints or a constraint system in several ways:

1) enlarging the domain of a variable, 2) by enlarging the domain of a constraint, 3) by

removing variables of a constraint, or 4) by removing a constraint from the constraint

system. This approach is not appropriate to enhance the capability of constraint-

based error diagnosis of a CBM tutoring system due to the following reason. To choose

the most plausible solution strategy we need to consider all possible evidences (based

on used programming constructs), whereas a partial CSPs framework attempts to

eliminate constraints which can be violated by a student solution and thus, evidences

supporting the process of hypothesizing the student’s intention during error diagnosis

are also eliminated. As a consequence, the diagnosis capability of a CBM tutoring

4In the literature, researchers refer to this kind of problems as weighted constraint satisfaction
problems. We avoid to use this notion because we will use the term weighted constraint to describe
the importance of a constraint later.
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system would be degraded.

Whereas a partial CSPs framework requires to satisfy a partial set of constraints,

the fuzzy CSPs and the cost-minimizing CSPs approaches allow all constraints to

be satisfied by defining a preference ranking of the possible instantiations according

to some criteria depending on the constraints and the solution of a fuzzy/ cost-

minimizing constraint satisfaction problem is the one which meets the highest satis-

faction degree. While the fuzzy CSPs framework associates a level of preference with

each instantiation of variables in each constraint, in a cost-minimizing CSP frame-

work instantiations are assigned with a cost. A fuzzy CSP framework searches a

solution by maximizing the satisfaction degree of the least preferred constraint. The

goal of a cost-minimizing CSP framework is to find a solution which minimizes the

total sum of costs of the chosen instantiation for each constraint. These approaches

are best suited to problem situations where preference levels for certain instantiations

of the constraint variables are available. These approaches are not appropriate to en-

hance the capability of constraint-based error diagnosis due to two reasons. First,

the problem of error diagnosis in a CBM tutoring system is a situation where it is

almost impossible to specify instantiations of constraint variables in advance because

the amount of constraints required to model domain knowledge is relatively high and

the space of possible instantiations is large. Second, fuzzy CSPs and cost-minimizing

frameworks normally require that the set of constraint variables of the problem is

known in advance. In the case of diagnosing a program, the mapping between the

components of a student solution and a set of constraint variables is not unique, i.e.,

several components of the student solution may be associated to the same constraint

variable, and thus, constraints cannot be evaluated.

A probabilistic CSPs framework, finally, contains a set of constraints, each of them

is associated with a probability of relevance. That is, some constraints are relevant to

the real problem with a complete certainty, and some others may or may not be rele-

vant to a problem. It is assumed that the probabilities of two different constraints are

independent from each other because each constraint is intended to represent a piece

of knowledge. A solution of the probabilistic constraint satisfaction problem is an

instantiation of all variables which has the highest probability. A probabilistic CSPs
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framework can be used to model situations where each constraint can be specified

with a certain probability. Since such a situation is applicable to the domain of logic

programming, this thesis adopts the probabilistic approach to enhance the diagno-

sis capability of traditional CBM tutoring systems. In the approach pursued here, a

probability associated with each constraint indicates a measure of the importance of a

constraint and being referred to as a constraint weight. By applying the probabilistic

CSPs approach, the determination of importance level for constraints resembles the

correction of written examinations by a human tutor: if a student solution contains

more important components, then it receives a better mark. The primary goal of us-

ing constraint weights is to choose the most plausible hypothesis about the solution

variant submitted by the student during the process of error diagnosis.

To find a solution for a probabilistic constraint satisfaction problem, which is a

complete instantiation of variables, researchers usually propose a multiplicative model

(Fargier and Lang, 1993; Shazeer et al., 1999). That is, the probability of a solution

is computed by taking the constraints violated by that solution into account and

multiplying their weights. The solution which has the highest probability is considered

the most probable one. Similarly, following the goal of searching the most plausible

hypothesis about the student’s solution variant, we need to evaluate the plausibility

of all possible hypotheses. For this purpose, we also apply a multiplicative model.

Constraint weights are suggested to be taken from the interval [0; 1], where a value

close to 1 represents the weight for least important constraints and 0 indicates the

weight for constraints which model the most important requirements. The constraints

of the latter type can be considered hard constraints. If a hard constraint is violated,

the plausibility score becomes 0, and we know that an important requirement has not

been satisfied. The importance of a constraint is determined based on the role of the

components being investigated. Constraints checking a component which contributes

more information to the overall correctness of the solution should receive a weight

value tending to the value 0. Constraint weight values need to be adjusted manually

to yield acceptable diagnostic results.

Another way to calculate the plausibility score would be to add up the weights of

all constraint violations. However, applying such an additive model does not allow us
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to trace whether hard constraint violations have contributed to the plausibility score.

As discussed in Section 2.6.4, constraints, which are solely based on a binary logic

(violated or not), do not contain sufficient information to decide on the most plausible

hypothesis about the solution strategy implemented in the student solution. A simple

approach to compare different hypotheses is to count the number of constraints which

are violated by each hypothesis (Menzel, 1992). However, this kind of measure is

too gross and may result in inaccurate diagnostic information. On the course of

diagnosing errors, the secondary goal of using constraint weights is to determine the

most plausible solution strategy underlying the student solution. In addition to the

goals of diagnosing errors and determining the most plausible strategy underlying

the student solution, constraint weights can serve to prioritize feedback messages

which explain errors occurred in the student solution. Hence, the use of constraint

weights meet the third and the fourth requirement for the coaching system for logic

programming (cf. Section 3.2).

With the inclusion of constraint weights, the representation of a weighted con-

straint specified in a CBM tutoring system consists of the following components:

1. ID: An unique identification name of a constraint. The constraint ID is used as

a reference to control the diagnosis process.

2. Relevance (IF): Conditions under which the constraint is relevant.

3. Satisfaction (THEN): Conditions which a correct solution has to satisfy.

4. Weight: The importance of the constraint.

5. Hint: The error explanation to be displayed in case the constraint is violated.

3.6 Modelling The Space of Predicate Signatures

A predicate signature is composed of a predicate name and a set of argument

positions, each of them consists of its meaning, a data type and a calling mode

(Figure 3.3). The structural hierarchy of a predicate signature includes two levels:

Predicate name and argument positions on the first level; The argument’s meaning,

the data type and the calling mode on the second one.

A constraint-based model for a predicate signature can be built applying the con-

straint schemas described in the preceding section to the components of the predicate
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Figure 3.3: The structural hierarchy of a predicate signature.

signature. For example, the constraint schema Type (1) can be used to define a con-

straint D1 which requires that the name of the predicate being specified is different

from the built-in predicates.

ID D1

IF a predicate name is N

THEN N must be different from the name of built-in predicates

WEIGHT 0.1

HINT It is not allowed to redefine a built-in predicate.

Contrary to general constraints, which solely operate on the student solution, seman-

tic constraints establish an interaction with a semantic table. Requirements for the

components of a predicate signature are modelled in the signature table. Each entry

of the table consists of a 5-tuple ⟨predicate name, argument name, meaning, data

type, calling mode⟩. The first two columns of the table represent the identifiers for

a predicate and for an argument position. They are mapped to the corresponding

predicate’s identifier and argument positions of the student’s predicate signature. It

is not required that the identifiers in the student’s predicate signature have to be the

same as the ones specified in the semantic table. The column representing the mean-

ing of an argument position contains a list of possible relevant concepts which occur

in the problem description and might be used to describe that argument position. An

argument’s data type and calling mode are selected from a list of possible values (e.g.,

an argument’s data type can be either an atom, a list, a number or an arbitrary data
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Table 3.2: A signature table for the problem Investment
Predicate Arg. Position Meaning Type Mode

p Arg1 “Start Money” number +
p Arg2 “Interest rate” number +
p Arg3 “Investment period” number +
p Arg4 “Return on investment” number -

structure) according to the meaning of the argument position. This way, a semantic

table of this type covers the space of possible predicate signatures which may have

different order of the argument positions or identifier names.

A signature table for the problem Investment can be represented by Table 3.2,

which shows that a predicate to be implemented needs four argument positions. They

represent the initial investment sum, the yearly interest rate, the investment period,

and the return on investment. The first three argument positions are of input mode

and the last one is of output mode. Using information in the signature table, con-

straint schema Type (2.3) can be instantiated to specify constraint D2 which checks

the type of an argument position.

ID D2

IF in the signature table, the argument position represents meaning

concept X has type atom

THEN in the student’s predicate signature, an argument position corre-

sponding to X is specified with type atom

WEIGHT 0.3

HINT The mode specified for this argument position does not correspond

to the problem description.

The constraints (both semantic and general) which are defined for this stage of coach-

ing are called declaration constraints. With respect to specifying the weight value for

declaration constraints, the predicate name and the argument positions are the most

important components of the predicate signature, and thus have a constraint weight

close to the value 0. The components within an argument position (the argument’s

meaning, the data type and the calling mode) are less important, because they belong

to a lower level of the structural hierarchy. Therefore, they should be specified with
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a weight closer to the value 1. For example, we have chosen the weight value 0.1 for

constraint D1 which is defined to examine whether the student has reused the predi-

cate name of a built-in predicate. Constraint D2, checking the mode of an argument

position, is weighted as being less important (0.3).

3.7 Modelling The Space of Implementations

To diagnose errors in the implementation, a tutoring system must be able to cover

the space of possible implementations for a programming problem and to identify the

reason why a solution does not belong to that space. In this section, we attempt to

achieve the first goal.

In Section 2.3 we have distinguished two levels of solution variability: solution

strategy and implementation. On the implementation level, the factors which deter-

mine the solution space for a programming problem are: 1) the existence of syntactic

reformulations, 2) the possibility of reordering the sequence of programming con-

structs, 3) the option of naming identifiers, and 4) the possibility of defining new

helper predicates.

We apply the concept of the semantic table and weighted constraints (cf. Section

3.5) to model the space of implementations for a logic programming problem. An

implementation table is specified to represent alternative solution strategies for a

given problem description. A matching process matches the student implementation

against components of each solution strategy described in the implementation table

and results in mappings. Thus, identifier names do not play a role in the process of

error diagnosis because the object underlying an identifier name can be identified by

means of these mappings. Constraints are used to check the semantic correctness as

well as the well-formedness of the implementation based on the resulting mappings.

Furthermore, transformation rules are used to cover a large space of semantically

equivalent variants of arithmetic expressions and helper predicates.

3.7.1 An Implementation Table

The hierarchy of a Prolog predicate consists of the following components: clause,

clause head, subgoal, functor and argument. For arithmetic expressions, the hierarchy
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includes multiplication term, algebraic sign and product factor.

Since the implementation table is used to represent the relationship between com-

ponents of a predicate, the hierarchy of the predicate is flattened so that each entry

of the table includes all components of a predicate. In addition, since alternative

solution strategies may exist, each entry must also indicate the solution strategy ex-

plicitly. Hence, each entry of the table consists of a tuple representing the relational

relationship between the following components: a solution strategy, a clause head and

a subgoal.

To model a possible solution strategy for a problem, a unique identifier is specified

in the column solution strategy. The required components of the solution strategy

are modelled in the columns clause head, subgoal of the table. Several table entries

with the same solution strategy identifier build a generalised solution description

(GSD) which represents the semantic requirements of each solution strategy. Since the

relational representation allows us to access clauses and associated subgoals directly,

these components are not restricted to a particular sequential ordering. Thus, the

implementation table serves two modelling purposes: 1) alternative solution strategies

and 2) alternative sequential orderings. However, if the sequential ordering of the

subgoals has to be restricted (e.g., in case of an arithmetic test or a calculation

subgoal), then the order of the entries must be specified accordingly i.e., the subgoal

which has to precede another one on the sequence needs to be specified with a lower

index value. Clause head and subgoals are represented in a normal form according

to the following rules:

• A clause head must be of the form: p(x1, ..., xn) where x1, ..., xn must be vari-

ables.

• All variables of the clause head must be distinct, that is xi ̸= xj (i ̸= j).

• An arithmetic expression is represented as a sum of multiplication terms without

nested expressions.

To specify a clause in the semantic table, according to these rules, unification between

the arguments of the clause head or (de)composition at an argument position must be

made explicit by means of a subgoal. The dependencies between the arguments are

represented implicitly by co-reference requirements between these subgoals. Thus, the
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Table 3.3: An implementation table for the problem Investment
Str. CI Head SI Subgoal Description

1 1 p(S,R,P,Ret) 1 Ret is S*(R+1)^P Using a formula

2 1 p(S, ,P,Ret) 1 P=0 Recursion stops
2 1 p(S, ,P,Ret) 2 Ret=S Return equal start money
2 2 p(S,R,P,Ret) 1 P>0 Check period
2 2 p(S,R,P,Ret) 2 NS is S*R+S Calculate new sum
2 2 p(S,R,P,Ret) 3 NP is P-1 Update period
2 2 p(S,R,P,Ret) 4 p(NS,R,NP,Ret) Recur with new period

3 1 p(S, ,P,S) 1 P=0 Recursion stops
3 2 p(S,R,P,Ret) 1 P > 0 Check period
3 2 p(S,R,P,Ret) 2 NP is P-1 Update period
3 2 p(S,R,P,Ret) 3 p(S,R,NP,NS) Recur with new period
3 2 p(S,R,P,Ret) 4 Ret is NS + R*NS Calculate return

4 1 p(S, ,P,S) 1 P=0 Recursion stops
4 2 p(S,R,P,Ret) 1 p(S,R,NP,NE) Invest. of remaining period
4 2 p(S,R,P,Ret) 2 P is NP+1 Update remaining period
4 2 p(S,R,P,Ret) 3 Ret is NE+R*NE Calculate return

Str. 1: analytic strategy; Str. 2: tail recursive strategy; Str. 3: recursive and

arithmetic before strategy; Str. 4: recursive and arithmetic after strategy; CI: clause

index; SI: subgoal index

normal form representation has the benefit that it reveals the underlying programming

techniques, e.g., unification.

For example, Table 3.35 shows the generalised solution descriptions of the four

solution strategies which can be applied to solve the problem Investment, where the

column Description serves to explain the necessity of each subgoal. The fourth part

of this table, for instance, describes the required semantics to implement the solution

strategy recursive and arithmetic after. It requires two clauses: a base case and a

recursive case. The recursive clause requires the existence of a recursive subgoal

for a new period, an update for a new investment period, and a calculation of the

aggregated return of investment.

Representing semantic requirements of solution strategies using the concept of

the semantic table is more advantageous in comparison to the approach of using an

5This table serves as illustration. In reality, it contains no redundant data.
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ideal solution. First, the semantic table can cover alternative solution strategies for a

problem whereas an ideal solution represents only a single solution strategy. Second,

information about the required components for the implementation of a solution

strategy can be easily accessed by an appropriate query, whereas an ideal solution

needs to be decomposed first before it can be used. Thereby, the diagnosis becomes

more adequate on the conceptual level and the resulting feedback is more useful.

However, a semantic table can only be specified with a limited number of different

solution strategies for a programming problem.

3.7.2 Weighted Constraints

We apply the constraint schemata to define constraints to span the space of correct

implementations for a logic programming problem. All constraints defined for the

purpose of modelling a space of implementations are referred to as implementation

constraints . They are divided into the following types:

General Constraints

First, applying the constraint schema Type (1) we are able specify general con-

straints which express general semantic principles of the programming language. They

are not specific to any task and must be satisfied by any correct implementation. Ge-

neral principles of this kind are, for instance, the existence requirements of base cases

and recursive cases for a recursive implementation. Modelling this principle as a ge-

neral constraint (G16), the problem situation, which will be specified in the relevance

part of the constraint, is implementing a recursive predicate, and the condition which

must be satisfied is the existence of at least a base case and a recursive case.

ID G1

IF The student indicates (by entering an appropriate clause type) that

predicate p is intended to implement a recursion

THEN There exists at least a base case and a recursive case

HINT A base case or a recursive case is missing.

6We intend not to mention the constraint weight in the examples for constraints in this section,
because we discuss the choice of the weight value in Section 3.7.2.
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Since constraint G1 is formulated in natural language in order to provide a comfort-

able understanding, it looks simple. Internally, it is very complex and this has a

major impact on the accuracy of diagnostic results (as discussed in Section 2.6.4).

Thus, constraint G1 can be broken down into two constraints: one checks the exis-

tence of base cases (G1.1), and another one for recursive cases. This has the advantage

that feedback becomes more accurate because the diagnostic result indicates precisely

whether the existence of base cases or recursive cases is the reason of the error.

ID G1.1

IF The predicate p is intended to implement a recursion

THEN There exists at least a base case

HINT A base case is missing.

In addition to checking the semantic correctness of an implementation on the basis

of structural components, the instantiation of an argument position contributes to

the semantics of a predicate (Vasconcelos, 1995). The instantiation state of an ar-

gument can be obtained starting from the already specified predicate signature (cf.

Section 3.4.2). It determines the calling mode of argument positions, which then are

propagated into all argument positions within the clause from left to right. An in-

stantiation state of an argument is either “instantiated” or “free”. Such information

cannot be read off from the structure of a Prolog predicate definition alone. The infor-

mation about the instantiation state of each argument can be represented as a tuple

of <argument position, argument value, instantiation state>, where argument posi-

tion includes a clause index, a subgoal index and an argument index, and argument

value indicates the term/variable representing that argument.

Constraint G2 is a general constraint which checks the instantiation state of argu-

ments of an arithmetic test. The principle requires that two operands of an arithmetic

test, e.g., X>Y, must have been instantiated to a value before they can be compared.

Here, the problem situation is an arithmetic test between two arguments, and the

satisfaction condition requires that the arguments must be instantiated.
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ID G2

IF X is a variable existing in an arithmetic test subgoal

THEN X has the instantiation state instantiated

HINT The operands of an arithmetic test must be instantiated to be executable.

Pre-implementation Constraints

Pre-implementation constraints check whether an implementation is appropriate

according to the information provided by the predicate signature and the specification

of clause types. The constraint schema Type (1) can be instantiated to define pre-

implementation constraints. For instance, the following constraint Pre1 checks the

data type compatibility between the predicate signature specified by the student and

her implementation. The relevance part of this constraint describes the problem

situation of specifying an argument position in the implementation according to the

information in the predicate signature, and the condition which is defined in the

satisfaction part requires that the value of the argument position must correspond to

the specification.

ID Pre1

IF In the student implementation, the value at the argument position X is

of type Type X

AND in the predicate signature which has been specified by the student,

the data type of the argument position X is π

THEN Type X is identical to π

HINT You have specified π as a data type for the argument position X. Hence,

the value of X should correspond to π.

Semantic Constraints

Semantic constraints can be defined applying the constraint schemata Type (2),

(2.1), (2.2), and (2.3). For example, the following semantic constraint is defined to

examine whether an arithmetic test subgoal (e.g., X < 1) specified in the GSD also

exists in the student implementation:
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ID S1

IF An arithmetic test subgoal X ▹Y , which compares X with Y , is specified

in the GSD

THEN A corresponding subgoal comparing a variable SX with SY exists in the

student implementation

HINT In the clause body, a subgoal which tests SX with SY is missing.

Similarly, constraint schema Type (2.2) can be applied to define a constraint to check

whether an arithmetic test subgoal is superfluous in the student implementation. In-

stances of constraint schema Type (2.3) can be used to examine the required property

of a specific component. For example, the following constraint checks the required

value of the operand of an arithmetic test.

ID S2

IF An arithmetic test X ▹ Y is specified in the GSD

AND Y has value N

AND there exists a corresponding subgoal SX ▹ SY in the student im-

plementation

THEN SY has value N

HINT The subgoal requires to compare SX with value N .

Similar semantic constraints for implementation are defined for all components of a

logic program: clause, clause head, subgoal of different types (decomposition, recur-

sion, calculation, arithmetic test, unification, term test and user-defined), argument

and functor, and particular components of an arithmetic expression (multiplication

term, algebraic sign and product factor).

To model syntactic reformulations, constraint schema Type (2) can be instantiated

and the disjunctive connector (OR) is used to enumerate different possible variants

of an implementation in the satisfaction part of a constraint. For example, constraint

S3 checking the correctness of an arithmetic expression generalises across a range of

arithmetic comparators (>,<,>=,=<) and their commutative variants, where ▹s is

an arithmetic comparator in the student solution. For example, both cases X<1 and

1>X should satisfy that constraint:
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ID S3

IF In the GSD, there exists an arithmetic test X ▹ Y

AND SX▹sSY is a corresponding subgoal in the student implementation

THEN ▹s is identical to ▹, and SX, SY correspond to X, Y

OR ▹s = revo(▹), and SX, SY correspond to Y,X

HINT Either the operator ▹s or the operand arguments are wrong.

Pattern Constraints

Pattern constraints model standard solution strategies. They are used to build

hypotheses about the solution strategy implemented by the student, and to derive

strategy-related feedback. Pattern constraints are partly redundant to semantic con-

straints, but can be used to enhance the explanatory quality of the diagnostic results.

Hence, they are not mandatory. When specifying the solution strategy for each prob-

lem in the semantic table, a corresponding pattern name can be associated. However,

not always a suitable pattern can be found for all possible exercise types and solution

strategies because the solution strategy might be too specific for a certain problem

and cannot be applied to solve common problems

The pattern Process-All-Elements (cf. Section 3.1.3) has the property that a

base case is required. This property can be represented by the pattern constraint

Process-All-Elements. The relevance part of this constraint checks whether this

pattern name is specified in the semantic table (if a pattern is available). The satis-

faction part requires the existence of a base case in the student solution.

ID Process-All-Elements

IF The pattern test all elements is implemented

THEN A base case must exist

HINT A recursion needs a base case to terminate.

Constraint Weight

The weight value for the implementation constraints is determined based on the

importance of each component within a predicate. Given the fact that a clause con-

tributes more information to the overall correctness of the solution than an argument

or a functor, a constraint which examines an argument should be specified as being
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less important compared to a constraint considering a subgoal.

The pre-implementation constraints are considered most important because they

require that the student must implement a predicate corresponding to her intention

(in terms of the specification of the predicate signature and clause types). If one of

the pre-implementation constraints is violated, it indicates a severe error. Therefore,

we assign pre-implementation constraints with weight value 0.

Table 3.4 contains weight values which have been chosen for the constraints check-

ing the implementation of a Prolog predicate.

Table 3.4: Used constraint weights
Constraint Weight Checking Issues

0.00 Compatibility between implementation and intention
0.01 Clause existence
0.1 Subgoal existence
0.3 Correctness of comparison operators/operands
0.5 Argument existence, position, co-reference
0.7 Subgoal order, factors of a multiplication term

3.7.3 Transformation Rules

Arithmetic Expressions

A programming technique or a construct can be instantiated in many different

ways. Especially, arithmetic expressions allow a great variety of equivalent formula-

tions. In order to represent the space of alternatives in a general manner, transfor-

mation rules can be defined to cover the most important practical cases. We consider

only arithmetic expressions according to Definition 3.1.5. Transformation rules pro-

duce semantically equivalent distributive and associative reformulations which then

can be checked against the student solution.

• Rule 1 transforms the normal form to the simplified form applying the distribu-

tive law: A ◦X ± B ◦X → (A± B) ◦X where the operator ◦ is either * or /.

If A and B are numbers, then (A±B) ◦X can be transformed to M ◦X where

M = A±B. For example: (2 + 3) ∗X → 5 ∗X.
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• Rule 2 transforms a product/additive term applying the commutative law: A ∗
B → B ∗ A and A+B → B + A.

Helper predicates

As indicated in Section 3.1.2, there are two cases to define a helper predicate: 1)

modularising a program for the purpose of reusing certain code, and 2) defining an

accumulative predicate.

For the first case (for an example see Section 3.1.2), the transformation techniques

unfolding/folding developed by Tamaki and Sato (1984) can be applied in order to

embed the implementation of the helper predicate into the main one. This results

in a new predicate without a subgoal calling a helper predicate. Based on the trans-

formed predicate, error diagnosis is executed as usual. However, the unfolding/folding

transformation techniques cannot be applied to cases where both the helper and the

main predicate are recursive ones. This restriction can be represented in form of an

appropriate constraint. For the second case, we anticipate a helper predicate and

specify it in the semantic table for diagnostic purposes.

We have shown in Section 3.6 and 3.7 that weighted constraints, the semantic table

and transformation rules can be used to create a model which covers a large solution

space for a logic programming problem. The option of introducing identifier names

can be realised by matching the student solution against the information specified in

the semantic table during the process of error diagnosis (cf. Section 3.8).

Table 3.5: Modelling techniques
Technique is/are used to model

Signature table predicate signatures
Implementation table alternative solution strategies,

alternative sequential orderings
obligatory solution elements

Weighted constraints syntactic reformulations
Transformation rules helper predicates,

syntactic reformulations of arithmetic expressions
Matching process identifier names

Table 3.5 summarizes the purpose of the proposed modelling techniques. As a
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conclusion, our Hypothesis 1 that it is possible to build a domain model that covers

a large solution space for a logic programming problem using the representation of

weighted constraints, semantic tables, and a set of transformation rules has been

confirmed.

3.8 Error Diagnosis

In the preceding sections, we did model a space of solutions for both coaching

stages on the basis of weighted constraints. In this section, we use these models to

diagnose errors in the student solutions.

Although a predicate signature and a predicate implementation have different

structure, they have one characteristic in common, they can be constructed in many

ways. Thus, the process of diagnosing errors in both types of solutions is based on

the same principle: 1) generating hypotheses about possible variants of the student

solution by matching components of the student solution against the corresponding

ones in the semantic table and 2) evaluating hypotheses by checking the relevant

constraints.

3.8.1 Hypothesis Generation

Since the components of a solution form a structural hierarchy with several levels,

e.g., the structure of a Prolog predicate (cf. Figure 3.1) or the structure of a predicate

signature (cf. Figure 3.3), hypotheses about a student solution can be generated

subsequently on each level of the structural hierarchy.

Definition 3.8.1 Let be G the set of n components in the semantic table and S a

set of m components in the student solution on the same level k of the structural

hierarchy. hk(G,S) is a hypothesis of the components on the level k if:

hk(G,S) = {map(gi, sj)|gi ∈ G, 1 ≤ i ≤ n, sj ∈ S, 1 ≤ j ≤ m}
and map(gp, sp),map(gq, sq) ∈ hk → gp ̸= gq, sp ̸= sq.

A complete space of hypotheses on the level k is: Hk := {hk(G,S)|hk(G,S) is a

hypothesis of the components on the level k}.
The number of hypotheses generated in the sense of Definition 3.8.1 by mapping

n elements of the student solution to m elements of the semantic table is calculated
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according to the following formula:

(1): |H| =


n!, if n=m,

n!
(n−m)!

, if n > m,

m!
(m−n)!

, if m > n

For example, at the clause level (level 1) of the structural hierarchy of a predicate, a

student solution has two clauses S = {SC1, SC2} and in the implementation table,

a selected generalised solution description has also two clauses G = {C1, C2}. The

complete space of hypotheses on the clause level includes 2! elements:

Hclause(G,S)={{map(C1,SC1), map(C2,SC2)}, {map(C2,SC1), map(C1,SC2)}}7.
If there exists the level k + 1 in the structural hierarchy of a solution, then each

element mapλ ∈ hk will initiate a new hypothesis generation on the level k + 1 and

results in Hk+1(mapλ) elements according to Formula (1). For each hk, the number

of hypotheses generated on level k+1 is calculated by multiplying the number of the

complete space of hypotheses generated for each element mapλ:
∏|hk|

x=1 |Hk+1(mapλ)|.
The total number of hypotheses which can be generated on the level k+1 is the sum

of all hypotheses generated from each element hk:

|Hk+1| =
∑

y=1 1
|Hk|

∏|hk|
x=1 |Hk+1(mapλ)|

For example, the space of hypotheses on the clause level above Hclause includes two

elements. The first one is {map(C1, SC1), map(C2, SC2)} which initiates generating

hypotheses on the subgoal level (level 2). If map(C1, SC1) generates |H(map1)|
elements and map(C2, SC2) generates |H(map2)| elements according to Formula (1),

then the first hypothesis of Hclause initiates generating |H(map1)| ∗ |H(map2)| new
hypotheses on the level 2 of the structural hierarchy. Assuming the second element of

Hclause initiates generating |H(map3)|∗|H(map4)| hypotheses. In total, on the second

level, |H(map1)| ∗ |H(map2)| + |H(map3)| ∗ |H(map4)| hypotheses are generated.

A hypothesis about a student’s solution variant includes hypotheses on each level

of the structural hierarchy: h(solution) :=
∪K

k h, where K is the number of levels of

a structural hierarchy.

7To simplify the presentation, we use the name of the level (e.g., clause level) instead of using
the index number (level 1).
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Depending on the number of levels and the number of components on each level

of the structural hierarchy, the space of hypotheses can become very large. As a con-

sequence, the subsequent hypothesis evaluation process would be resource intensive,

and the resulting long response time would not be acceptable for a tutoring system.

Therefore, it is necessary to narrow down the space of hypotheses to an acceptable

size as long as the accuracy of the error diagnosis is still acceptable. One way is re-

stricting the space of hypotheses by taking matching rules into account to build only

the meaningful hypotheses. For example, clauses of type base case in the student

solution should only be mapped to clauses of the same type in the semantic table.

In addition, Beam search, a heuristic technique normally used to solve constraint

satisfaction problems (Bain et al., 2004), can be exploited to restrict the space of

generated hypotheses. Beam search uses breadth-first search to build its search tree.

At each level of the tree, it generates all successors of the states at the current level,

sorts them in order of increasing heuristic values, and stores a pre-determined number

(which is called the Beam criterion) of states at each level.

While the standard Beam search technique deploys the Beam criterion immedi-

ately to restrict the generation of search paths, we need to apply the Beam criterion

after the inspection of the alternatives. This is caused by the fact that the plausibil-

ity of hypotheses is measured by the accumulated constraint weights and constraints

can only be applied to complete mappings. Therefore, the space of hypotheses can

only be pruned after the complete space of hypotheses has been generated on each

level. Only a number of the most plausible hypotheses are taken. Still by reducing

the number of promising hypotheses on a lower level, a smaller set of combinations

with hypotheses on a higher level have to be checked. This leads to a reduction of

the global space.

Since the approach takes local decisions to narrow down the space of hypotheses, it

does not require as much resources as a complete search. However, it may produce less

accurate error diagnoses because we leave out hypotheses which do not lie within the

Beam criterion. Which approach of hypothesis generation (restricted or unrestricted

hypothesis space) should be used depends on the depth and the width of the structural

hierarchy. Empirical results on the generation of hypotheses for implementation are
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given in Section 3.8.4.

3.8.2 Hypothesis Evaluation

The plausibility of each generated hypothesis H is evaluated based on the relevant

constraints. The plausibility score is computed multiplying the scores of all constraint

violations according to the following formula:

(2): Plausibility(H) =
∏N

i=1Wi, where Wi is the weight of a violated constraint.

That score is used to decide on the most plausible hypothesis about the student’s

solution variant. A higher plausibility score corresponds to a more plausible hypoth-

esis. Based on the selection of the best hypothesis, diagnostic information about

shortcomings of the student solution can be derived from the constraint violations.

We apply the general process of error diagnosis described above to diagnose er-

rors in the predicate signature and the implementation. The specific procedures are

referred to as signature diagnosis and implementation diagnosis, respectively.

3.8.3 Signature Diagnosis

Hypothesis Generation

In order to generate hypotheses about the student’s predicate signature, it is

matched against the corresponding components specified in the signature table. The

component types of a predicate signature are predicate name, argument positions,

an argument’s meaning, data type and calling mode. The structural hierarchy of a

predicate signature includes two levels (cf. Figure 3.3).

On the first level, the predicate name and the argument positions of the student’s

predicate signature are matched to components of the same type in the signature

table. The size of the complete space of hypotheses generated at this level is computed

according to Formula (1), because the student is allowed to specify the argument

positions in an arbitrary order. Since the number of argument positions required for

a predicate is usually low, and the structural hierarchy of a predicate signature has

few levels, it is possible to generate the complete space of hypotheses about a student’s

predicate signature. Once the hypotheses on the first level have been generated, the

matching process continues on the second level to map the components of an argument
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position (argument’s meaning, data type and calling mode) of the student’s predicate

signature to the corresponding entries in the signature table. This matching results in

one bijective mapping because an argument position consists of only one component

of type meaning, one of data type and one of calling mode. Also the matching rules,

which allow the matching process to only map components of the same type, are

taken into account. For example, consider the following signature for the problem

Investment provided by the student.

Predicate name invest

Argument Type Calling Mode Meanings

Arg1 Number Input “Money”

Arg2 Number Input “Rate”

Arg3 Number Input “Period”

Arg4 List Input “Return”

The student has specified four argument positions. The signature table (Table 3.2)

has also been specified with four argument positions for this problem. Hence, the

signature diagnosis process generates 4! = 24 signature mappings. One of them

is the following hypothesis mapping Y which consists of 4 entries representing the

mapping of four pairs of argument positions. Each entry has two parts. The left part

represents information about each argument position specified in the signature table,

whereas the right one corresponds to the specification provided by the student. Each

part consists of a predicate name, an identifier for each argument position, a calling

mode, a data type, and an appropriate meaning concept identified in the problem

description.

Hypothesis Y=

{map((p, Arg4, output, number, Return), (invest, Arg4, input, list, Return)),

map((p, Arg3, input, number, Period), (invest, Arg3, input, number, Period)),

map((p, Arg2, input, number, Rate), (invest, Arg2, input, number, Rate)),

map((p, Arg1, input, number, Money), (invest, Arg1, input, number, Money))}
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Hypothesis Evaluation

After the hypotheses have been generated, the plausibility of each hypothesis is

computed by checking declaration constraints. The most plausible hypothesis is the

mapping which yields the highest plausibility score. Based on the best hypothesis, we

are able to infer the signature of the predicate which the student intends to implement.

In the example above, after computing the plausibility of 24 signature mappings,

the mapping Y is considered the most plausible one, because it has the highest

plausibility score. It violates two declaration constraints.

The first one examines the calling mode of each argument position. It is violated by

the input mode of the 4th argument position which represents a return on investment

because this should be specified with an output calling mode.

The second constraint examines the data type of argument positions. It is violated

by the list data structure specified for the 4th argument position because a return on

investment should be a number, not a list. Derived from the two constraint violations,

the following hints are returned to the student to help her working on the task analysis.

Hint 1 The calling mode for the 4th argument position is not appropriate. Input

mode is used to represent any information given in the problem state-

ment. Do you really want to use “Return” as input? Consult the problem

statement again.

Hint 2 The type of the 4th argument position is not appropriate. Do you really

want to use “’Return” as a list? Consult the problem statement again.

3.8.4 Implementation Diagnosis

Hypothesis Generation and Evaluation

Once the system has accepted the predicate signature provided by the student,

i.e., no declaration constraint is violated, she is allowed to implement the intended

predicate. Given a predicate implementation, the error diagnosis process generates

hypotheses about it by matching the student implementation against each of the

generalised solution descriptions. The matching process results in the space of hy-

potheses Hstrategy = {map(gsd1, SP), map(gsd2, SP),...}, where SP is the student
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implementation, gsdi is a generalised solution description specified in the implemen-

tation table, and map(gsdi, SP) represents a global mapping . This level of matching

is referred to as strategy level . Global mappings are used to find an answer for the

question (cf. Section 1.3): Which solution strategy did the student choose?

Then, it is required to generate hypotheses about the student’s implementation

variant on each level of the structural hierarchy. Since a predicate forms a structural

hierarchy of five levels (cf. Figure 3.1), the matching process on the strategy level

initiates matching on each level of the structural hierarchy. The matching process

maps the components of the student implementation against the corresponding ones of

the selected generalised solution level after level. The matching process results in local

mappings which represent hypotheses about the student’s implementation variant on

each level of the structural hierarchy. They are used to build global mappings and to

find an answer for the question (cf. Section 1.3): How did the student implement the

chosen solution strategy?

Once the hypotheses on the strategy level have been generated, i.e., the global

mappings are completely filled with local mappings, the second step of the implemen-

tation diagnosis process is evaluating each hypothesis with respect to its plausibility

using implementation constraints. The hypothesis on the strategy level which has

the highest plausibility score is considered the most plausible one. The generalised

solution description which has been chosen for that hypothesis is taken as the solu-

tion strategy being implemented in the student program. Diagnostic information is

derived from constraint violations resulting from the plausibility computation of the

selected hypothesis.

In principle, the space of hypotheses about the student’s implementation variant

on each level of the structural hierarchy could be generated completely. However, this

would result in a very large space, because the structural hierarchy of an implemen-

tation has many levels and on the subgoal level many subgoals may exist. Therefore,

we deploy a Beam criterion to restrict the space of hypotheses.

The plausibility of each generated hypothesis can be used as a Beam criterion

to restrict the space of hypotheses to the most plausible ones: Only a fraction of z

(0 ≤ z ≤ 1) most plausible hypotheses of the complete space are selected for each
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level. If z=1, the restricted space of hypotheses becomes maximal. The special

case z=0 means that the restricted space includes only one best hypothesis for each

level. In order to choose the best value z for hypothesis generation, we vary the

value z and notice the time consumption of the error diagnosis for a number of

student implementations. We have run INCOM on 52 student implementations of six

different problems including the problem Investment. Table 3.6 shows the relation

between time consumption and diagnostic accuracy which is determined using a gold

standard (which is described in Section 5.2). The first column represents the Beam

value. The second column shows how much time the system needed for diagnosis

per problem and the third column indicates whether the diagnosis is accurate. The

error diagnosis is considered accurate, if each of diagnosed errors are in accordance

with the specified gold standard. The table points out that for z below 0.3, the error

diagnosis becomes inaccurate. The standard guideline for ideal web response times

(Nielsen, 1993) suggests that a response time above 10 seconds can be considered

unacceptable, the user is likely to leave the site or system. Hence, the time consumed

by INCOM to diagnose a student solution is acceptable, because even for the highest

Beam criterion z the error diagnosis maximally consumes 3.2522 seconds.

Table 3.6: Time consumption and diagnostic accuracy
Beam Time (sec) Is diagnosis accurate?

1.0 3.2522 Yes
0.9 3.2942 Yes
0.8 3.1984 Yes
0.7 1.8806 Yes
0.6 1.7405 Yes
0.5 1.7953 Yes
0.4 1.7345 Yes
0.3 1.7026 No
0.2 1.7037 No
0.1 1.7029 No
0.0 1.5801 No
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Algorithms

The process of implementation diagnosis includes two loops of hypothesis ge-

neration and hypothesis evaluation (cf. Algorithm 1). The outer loop is generating

and evaluating global mappings whereas local mappings (of clauses, head/subgoals,

arguments/functors, multiplication terms, factors/algebraic signs) are generated and

evaluated in the inner loop. The outer loop starts with matching the student imple-

mentation against each of the generalised solution descriptions. This calls the inner

loop to generate local mappings on the levels of structural components. After the

local mappings on the deepest level (arguments/functors if no arithmetic expression

exists, or factors/algebraic signs if arithmetic expressions exist) have been generated,

their plausibility is evaluated, and the best ones are selected using the Beam criterion.

The best selected local mappings on the lower level are used to multiply the space

of local mappings on the next higher level. This procedure of generating hypotheses,

selecting the best ones using the Beam criterion, and multiplying the space of local

mappings of the next level continues up to the clause level, the highest one of the

structural hierarchy. At this level, the process of generating global mappings is com-

pleted. The outer loop is finished by evaluating the global mappings with respect to

their plausibility and choosing the best global mapping for the selected generalised

solution description.

If arithmetic expressions are to be matched, the expressions of the student solution

and the ones in the semantic table are decomposed according to the rules defined in

Section 3.1.1. Matching an arithmetic expression of a student implementation against

a corresponding one specified in the implementation table means matching the mul-

tiplication terms and factors/algebraic signs. The space of variants of arithmetic

expressions can be extended by transforming the arithmetic expressions in the se-

mantic table using the transformation rules described in Section 3.7.3. In case, the

student uses neutral arithmetic expressions, e.g., X is A − 1 + 1, the system will

indicate that the neutral expression −1 + 1 is superfluous. Such a system’s feedback

is justified, because this superfluous term is not useful. Algorithm 2 implements this

generation of mappings for arithmetic expressions.

The inner loop of the implementation diagnosis generates and evaluates local
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Input: GSD: A set of generalised solution descriptions; SP : a student
implementation; z: the Beam criterion

Output: A set of best global mappings for each of the generalised solution
descriptions

foreach gsd ∈ GSD do
Generate mappings of clauses between gsd and SP ;
foreach clause mapping HC do

Generate mappings of subgoals;
foreach subgoal mapping HG do

if subgoal is a arithmetic calculation then
Generate mappings of arithmetic expressions (see Algorithm 2)
Select the best arithmetic expression mappings using Beam
criterion z;

end
else

Generate mappings of arguments;
foreach argument mapping HA do

Evaluate the plausibility of each argument mapping HA;
end
Select the best argument mappings using Beam criterion z;

end
Evaluate the plausibility of each subgoal mapping HG;

end
Select the best subgoal mappings using Beam criterion z;
Evaluate the plausibility of each clause mapping HC;

end
Choose the best clause mapping for the selected gsd;

end
Algorithm 1: The algorithm of generating hypotheses about the strategy im-
plemented in a solution
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Input: SUT : a set of summands of an arithmetic expression specified the
semantic table; SU : A set of summands specified in the student
implementation; z: the Beam criterion

Output: The most plausible mapping of arithmetic expressions

Generate mappings of summands between SUT and SU ;
foreach summand mapping SM do

Generate mappings of factors/algebraic signs;
foreach factor/algebraic sign mapping FM do

Evaluate plausibility of FM ;
end
Select the best factor/sign mappings using Beam criterion z;
Evaluate plausibility of each summand mapping SM ;

end
Return arithmetic expression mappings including summand mappings and
factor/algebraic sign mappings;

Algorithm 2: The algorithm of matching arithmetic expressions

mappings on the levels of components according to Algorithms 3 and 4, respectively.

Figure 3.4 illustrates the flow of the implementation diagnosis. We notice that

along the process of implementation diagnosis, implementation constraints are in-

voked two times: 1) to evaluate local mappings, and 2) to evaluate global mappings.

Why do we not exploit constraint violations which resulted from evaluating local

mappings to evaluate global constraints to reduce resource consumption? The rea-

son is that evaluating local mappings invokes semantic constraints which check the

co-reference between the arguments existing within a structural component, e.g., a

subgoal, and other arguments outside of it. However, at the time of evaluating a

local mapping, the antecedents which should be co-referred with arguments within

a component may not be available, because other local mappings have not yet been

evaluated. In this case, such semantic constraints may not be relevant, or might

be relevant but refer to the wrong antecedents. Thus, they should only be invoked

to evaluate global mappings after all local mappings are completely available. This

type of semantic constraints has been noted as context sensitive constraints in (Foth,

2007, p. 63). Since we focus more on diagnostic accuracy than resource consump-

tion, the process of implementation diagnosis in INCOM invokes all implementation
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Input: Level K; X: a set of expressions in the semantic table; Y is a set of
expressions in the student implementation;

Output: A set Z of local mappings on the level K

initialize Z=[];
if x ∈ X contains transformable expressions then

apply mathematical transformations to create variants of x and add them
to X;

end
if X is empty and Y is not empty then

take y ∈ Y ;
add map(NIL, y) to Z;

else if Y is empty and X is not empty then
take x ∈ X;
add map(x,NIL) to Z;

else forall the x ∈ X and y ∈ Y do
add map(x, y) to Z;

end
Algorithm 3: The algorithm of generating local mappings.

Input: Level K; Z: A set of hypothesis mappings
Output: Plausibility score of each hypotheses

Select constraints for the current diagnosis level;
Compute the plausibility Plausibility(z) for each mapping z ∈ Z;
Algorithm 4: The algorithm of evaluating the plausibility of hypotheses.
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constraints during the evaluation of both local mappings and global mappings.

Figure 3.4: The generation of hypotheses about a student implementation

An Example

Assuming, the student has specified an appropriate signature as follows:

Predicate name invest

Argument Type Calling Mode Meanings

Arg1 Number Input “Money”

Arg2 Number Input “Rate”

Arg3 Number Input “Period”

Arg4 Number Output “Return”

INCOM allows her to implement a predicate to solve the problem Investment follow-

ing any solution strategy she prefers, e.g.:
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Clause Type Implementation

SC1 base invest(S, , 0, S).

SC2 recursive invest(S, Z, A, E):- Ab is A-1, invest(S,Z,Ab,E), E is S*(1+Z).

According to the algorithm of the error diagnosis, the student implementation is

matched to each of the generalised solution descriptions. First, it is matched to the

generalised solution description of the analytic strategy. Then, the matching process

successively iterates through the tail recursive, the recursive and arithmetic after, as

well as the recursive and arithmetic before strategy.

In this example, the matching between the student implementation and the ge-

neralised solution description of the strategy recursive and arithmetic before (cf. Ta-

ble 3.3) on the clause level results in a single mapping H which has two entries. The

first component of each entry represents the expression specified in the generalised

solution description and the second one is provided by the student implementation.

Hclause={map(C1, SC1), map(C2, SC2)}

Second, on the subgoal level, the subgoals of the student’s clause are mapped

against the subgoals of the corresponding clause of the generalised solution descrip-

tion. For example, taking the second map of the mapping H above, subgoals of C2

are matched against subgoals of SC2. Considering, for instance, only arithmetic cal-

culation subgoals, matching the two arithmetic calculation subgoals of the student’s

clause SC2 against two arithmetic calculation subgoals of the generalised solution

description’s clause C2 results in two mappings of arithmetic subgoals:

Hsubgoal(calculation)={map(NP is P-1, Ab is A-1), map(Ret is NS+R*NS, E is

S*(1+Z))}
Hsubgoal(calculation)={map(Ret is NS+R*NS, Ab is A-1), map(NP is P-1, E is

S*(1+Z))}

Similarly, the recursive subgoal of the student’s clause is mapped to a corresponding

subgoal of the recursive clause of the generalised solution description:

Hsubgoal(recursion)={invest(S,Z,Ab,E), inv(S,R,NP,NS)}
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In the second clause of the student implementation, there is no arithmetic test for

the third argument of the clause head before it is decremented by 1, while in the

implementation table (cf. Table 3.3), an arithmetic test for this argument position is

required. Thus, it results in the following mapping Hsubgoal(arithmetic test). In total,

2*1*1=2 mappings are generated at this level.

Hsubgoal(arithmetic test)={map(P > 0, NIL)}

Third, on the argument and operator level, the arguments of a student’s subgoal are

matched against the arguments of the corresponding subgoal of the generalised solu-

tion description. For example, the arithmetic subgoal of the student implementation

Ab is A-1 is matched against the subgoal NP is P-1 of the generalised solution de-

scription. Considering the matching rules for arithmetic calculation, e.g., arguments

on the left hand side are matched together, and similarly for the arguments on the

right hand side:

Hargument={map(NP, AB), map(P-1, A-1)}

Fourth, on the summand level, the arguments on the right hand side of the arithmetic

calculation subgoals are matched. For example, the map(P-1, A-1) yields the following

mappings:

H1multiplication={map(P, A), map(-1, -1)}
H2multiplication={map(P, -1), map(-1, A)}

Fifth, on the last level, the factors of the student’s multiplication term are matched

to the ones of the corresponding multiplication term in the generalised solution de-

scription, and similarly for algebraic signs. For example, the map(P,-1) results in the

following mapping:

Hfactor={map(+,-), map(P,1)}

After local mappings have been generated on the factor/algebraic sign level, their

plausibility is evaluated by invoking the constraints of that level. Based on the plau-

sibility score of each local mapping, a set of best mappings is selected according the

Beam criterion and used to multiply the space of local mappings on the next higher
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level, namely the multiplication terms. Again, each of the local mappings on the

multiplication term level is evaluated with respect to its plausibility. The process of

evaluating local mappings, choosing the best ones, and extending the space of map-

pings on the higher level continues until the clause level is reached. At this level, a

space of global mappings for each generalised solution description is established.

We evaluate the plausibility of these global mappings and determine the one which

has the highest score for each generalised solution description. According to the first

column of Table 3.7, the hypothesis that the student has implemented the strategy

recursive and arithmetic before is most plausible because it has the highest plausibility

score (0.035). The second column of the table shows diagnoses resulting from the

evaluation of each hypothesis. The evaluation of the plausibility of the most plausible

hypothesis yields the following diagnostic information:

Hint 1 The variable in A-1 should be tested against a number.

Hint 2 A co-reference between the argument S in the 3rd subgoal and the

argument E in the 2nd subgoal is required.

Hint 3 The co-reference between the argument E in the clause head and

the 4th argument in the 2nd subgoal is not necessary.
We have shown in Section 3.8.3 and 3.8.4 that using the modelling concepts

(weighted constraints, semantic table, and transformation rules), it is possible to

develop an algorithm to diagnose errors in a logic program and to hypothesize the

strategy underlying a solution correctly. Therefore, Hypothesis 2 has been confirmed.

3.9 Feedback

To be able to help the student on each coaching stage, useful feedback is required.

Feedback can take different forms. Fleming and Levie (1993) suggested five types of

feedback: Confirmation indicates whether a solution is correct or incorrect; Corrective

feedback provides information about a possible correct response; Explanatory feed-

back explains why a response is incorrect; Diagnostic feedback attempts to identify

misconceptions by comparing the student solution with common errors; and elabo-

rative feedback provides additional related information. Since the constraint-based
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Table 3.7: Plausibility of hypotheses about the implemented solution strategy
Str (Score) Weight; Hints

1 (0.000001) 0.01; If you want to implement a non-recursive predicate, at least
a non-recursive clause must be defined.
0.01; invest/4 has more base cases than required.
0.01; invest/4 has more recursive cases than required.

2 (0.005) 0.1; A calculation for the argument S in the 2nd subgoal is required.
0.1; A variable in A-1 should be tested against a number.
0.5; The co-reference between S in the clause head and the 1st
argument in the 2nd subgoal is not necessary.

3 (0.035) 0.1; The variable in A-1 should be tested against a number.
0.5; The co-reference between the argument E in the clause head
and the 4th argument in the 2nd subgoal is not necessary.
0.7; A co-reference between the argument S in the 3rd subgoal and
the argument E in the 2nd subgoal is required.

4 (0.0036015) 0.1; A calculation for the argumentA in the clause head is required.
0.3; The result of an arithmetic calculation must be passed to the
clause head. Unify Ab in the 1st subgoal and the 3rd argument in
the clause head.
0.5; The co-reference between E in the clause head and the 4th
argument in the 2nd subgoal is not necessary.
0.7; The 2nd subgoal must be executed before the 1st one.
0.7; The argument S in the 3rd subgoal should be co-referenced
with the 4th argument in the 2nd subgoal.
0.7; The algebraic sign of the summand -1 does not satisfy the
problem.
0.7; The argument A in the 1st subgoal should be co-referenced
with the 3rd argument in the 2nd subgoal.

Str 1: Analytic strategy; Str 2: Tail recursive strategy, Str 3: Recursive and

arithmetic before strategy; Str 4: Recursive and arithmetic after strategy

approach is able to yield error explanations derived from constraint violations, cor-

rective, explanatory and diagnostic feedback can be supported directly. To generate

corrective or elaborative feedback, diagnostic results derived from constraint viola-

tions need to be processed further and additional information sources are required

(e.g., a course book). In this thesis, we focus on explanatory feedback.
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3.9.1 Feedback Messages

It is important on which level of programming knowledge a feedback message

should be provided. In accordance with general behaviours of programming learn-

ers, novice programmers in logic programming often work on the syntax instead of

concentrating on the more abstract level (VanSomeren, 1990; Gegg-Harrison, 1999).

This issue can be addressed by making high level programming concepts in logic pro-

gramming explicit to the students. Studies have shown evidence that by teaching

high level programming concepts, students acquire remarkable learning effects (Brna,

1993; Návrat and Rozinajová, 1993; Hietala, 1993; Sollohub, 1991).

Several researchers discussed the strengths and weaknesses of the two types of

high level knowledge with respect to teaching logic programming. Brna (1993) taught

his students logic programming by introducing Prolog programming techniques and

requesting them to solve typical Prolog problems. The author reported that his

students practiced the application of techniques with interest. However, they found it

difficult to choose the appropriate technique as a first step of writing simple programs.

Another approach to making high level programming knowledge in Prolog explicit

to students is applying Prolog schemata. When developing Prolog schemata, Gegg-

Harrison (1999) had in mind the initial purpose of helping students to learn recursive

programming because Prolog is not a keyword-based language and this characteris-

tic makes programming difficult. He proposed a guiding-based approach to tutoring

recursive programming. First, a Prolog schema is introduced to the student, and

several sample predicates which are instances of that schema are presented. Then, a

problem is posed, and the student is requested to fill in the slots of the introduced

schema. Similarly, Bieliková and Návrat (1998) applied a schema-based approach

to teach programming in Prolog and LISP. The authors presented a catalogue of

schemata to the student, explained every schema, and requested her to apply it. The

study reported that schemata influenced the student’s programming performance

positively. However, some researchers doubt its learning effect due to the following

reasons. First, although the student might acquire procedural knowledge about high

level concepts by applying schemata, the task of filling-in templates might rather help
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her to memorise the schemata and to adapt code structures (Bowles and Brna, 1999).

The student may not understand why the slots of such templates are necessary to

solve a given problem. Furthermore, the schema-based tutoring approach does not

require the student to address the principles of how the slots of a schema work to-

gether. Therefore, she would not be able to transfer the “skill of filling-in slots” into

other problem contexts where another program structure is required. Second, filling

in the slots of a schema template just satisfies the existence requirement of several

schema components. But, solving a logic programming problem requires more skills

than merely filling-in slots (Vasconcelos, 1995), e.g., unification of arguments, deter-

mination of the number of required argument positions, determination of argument

and subgoal order. That is why the coaching model of INCOM favours to formulate

feedback messages in terms of programming techniques to help students develop the

skills of using high level programming concepts in logic programming. In addition

to the purpose of conveying high level programming concepts to students, feedback

messages are also intended to capture basic concepts.

3.9.2 Ranking and Grouping Feedback Messages

By means of constraint weights, feedback derived from constraint violations can be

presented in a preferred order, e.g., severe errors are presented first (cf. Table 3.7). In

addition, error information of the same hypothesis level can be grouped to establish

a contextual connection between different feedback messages. For example, errors

on the highest level (clause level) are presented first. In this manner, the student

learns to start the implementation with a coarse design first, and then refine it.

Thus, Hypothesis 3, that using constraint weights, it is possible to prioritize feedback

according to the importance of errors can be considered true.

Since Prolog patterns can be modelled using weighted constraints (cf. Section

3.7.2), optionally, strategy-related feedback messages can be grouped together and

presented in a coherent manner to the student (if a pattern has been found in the

student implementation). This should keep the student to concentrate on the strategy

she is implementing. Therefore, Hypothesis 4, that it is possible to create a knowledge

base of standard solution strategies in logic programming using weighted constraints
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and to group feedback messages in a coherent manner can be accepted.

3.9.3 Error Location

A feedback message could confuse the student, if it does not indicate where the

error is located in the student solution. This can happen because the structure of a

solution may be very complex and may consist of many components of the same type.

Therefore, in addition to a feedback message, a corresponding pointer to the error

location is desired. If a student’s predicate signature is not appropriate, a feedback

message indicates the position of the erroneous component in the structure, e.g.,

argument mode of an argument position X is not correct. If a student implementation

is erroneous, a feedback message is associated with one of the following types of

error location with increasing degree of detail: clause, subgoal or clause head, and

argument.

3.10 Limitations

Using weighted constraints, semantic table and transformation rules, our approach

is able to model a fairly large solution space. Nevertheless, it suffers from two limi-

tations. First, we want that the student develops her creativity as much as possible,

e.g., by defining helper predicates in addition to a main predicate. However, it is

not always possible to transform a predicate definition using a helper predicate into

a predicate definition without using one, e.g., if both the main predicate and the

helper predicate require recursion as part of the solution strategy, the unfolding/fold-

ing transformation techniques are no longer applicable. For such a case, normally a

verifiable complex transformation algorithm needs to be devised. Another way which

remains is anticipating and specifying possible helper predicates in the semantic ta-

ble. Unfortunately, the space of possible helper predicates which students can define

is open-ended, and anticipating such helper predicates seems to be impossible. This

might be a general limitation for a tutoring system for programming.

The second limitation of our approach is that the diagnostic abilities of the system

are strictly limited by the completeness of the entries in the implementation table. In

case, a student follows an unexpected but correct strategy, the system chooses from
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the available generalised solution descriptions the one, which is most similar and

“forces” diagnosis on it. In order to overcome this problem, it could be possible to

deploy a verifiable transformation algorithm which transforms an implementation of a

solution strategy to another strategy, e.g., the transformation algorithm developed by

Gegg-Harrison (1993), to extend the space of possible implementation variants used

by the student. As a result, the solution strategy invented by the student is considered

the same one specified in the implementation table according to Definition 3.1.17 (if

an verifiable transformation algorithm could be used). Another approach to overcome

this limitation would be to specify strategy-independent requirements for a solution,

e.g., based on a formal specification of the task and a model of the semantics of the

programming language.



Chapter 4

Implementation

The purpose of this dissertation is to explore the capability of the weighted constraint-

based approach in diagnosing errors and to evaluate the usefulness of diagnostic infor-

mation in terms of improving programming skills in logic programming. INCOM, a

tutoring system for logic programming has deployed the conceptual design described

in the previous section and has been implemented according to the requirements

specified in Section 3.2 to serve both purposes. This chapter gives an overview of the

current implementation.

4.1 Architecture

The architecture of INCOM consists of three layers (4.1): user interface, back-

end, and knowledge base. The user interface is used to present the description of

a problem, provide the possibility to read the student solution, and show feedback

messages. The back-end components (a parser , a matcher , and a general constraint

evaluator) process the student input and evaluate her solution to a given problem.

The back-end components work as follows. The parser extracts the student input,

reads corresponding information from the semantic table, and transforms both into an

internal representation called assertions. The matcher tries to match the assertions of

the student’s input against the ones of the semantic table taking matching rules into

consideration. After the matching process has generated hypotheses, the constraint

evaluator consults the knowledge base (including the semantic tables and the weighted
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constraints) to evaluate each hypothesis with respect to its plausibility. The diagnostic

information of the best hypothesis is then presented to the student via the user

interface.

Figure 4.1: The architecture of INCOM

Since INCOM should be a web-based system to satisfy the requirements specified

in Section 3.2, its user interface has been implemented using the Java ServerPages

technology. The parser, the matcher, the constraint evaluator, as well as the know-

ledge base have been implemented in Prolog. The communication between the user

interface and the backend components is established by a Tomcat web-server. Thus,

INCOM can be run on every platform where Java, Tomcat and Prolog are available.

4.2 User Interface

The user interface of INCOM has two functionalities which are supported by

most programming environments: providing text fields for the solution and displaying

diagnostic information. The user interface is divided into three sections (Figure 4.2).

The top section is used to display a problem description, the middle one allows the

student to input her solution, and feedback messages are displayed iteratively on the

bottom section of the interface.

Since INCOM is designed to support the two-stage coaching approach, for each

stage it provides an appropriate working environment. Figure 4.2 and Figure 4.3

show the screen layout for the stage of the task analysis and the implementation,

respectively.

Corbett et al. (1997) proposed two principles for the design of the problem solving

environment of an ITS :
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Figure 4.2: The user interface for task analysis.

1. The user interface should approximate the real world problem solving environ-

ment.

2. The problem solving environment should facilitate the learning process.

The first principle ensures that the student is able to solve similar problems in other

environments or in the real world, where the same problem solving environment is not

available. The second principle intends to maximize the transfer of domain knowledge

to the student. These two principles are conflicting. Using a complex problem solving

environment, which reflects the real world, learning is rather hindered because the

student needs to understand the functionality of the environment first, before she

begins to solve the problems. The student has to consider many interwoven aspects

which are not always directly relevant to the problem.

Using the screen layout for the stage of task analysis, the student has to fill in

values into pre-specified templates to specify the signature: argument positions, data

type, calling mode, and meaning. This kind of layout corresponds to the second
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Figure 4.3: The user interface for implementation.

principle, because from a pedagogical view, it reduces the cognitive load and helps

the student to remember what to do when she is requested to specify the predicate

signature.

Unlike the working environment for task analysis, where pre-specified structures

or menu choices are used, the screen layout for the implementation stage allows the

student to input her solution in a free form because the student should be able

to develop programming solutions creatively. Although the student is moderately

restricted to solution templates (the distinction between a clause head and a clause

body is given), this kind of layout still agrees with the first principle above.

4.3 Back-End Components

We assume that the student is able to understand a problem description and

system feedback presented by INCOM. In the opposite direction of communication,

students’ input needs to be translated into an internal form which can be processed
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by the system. The parser is responsible for this task.

Because the syntax of a Prolog predicate is very simple, the relationship between

the components of a predicate implementation needs to be extracted in order to

reflect the complete semantics underlying that predicate. Part of the parsing task is

supported by the solution templates of the user interface, namely by the slots for each

clause (cf. Figure 4.3). The relationships between the components of a predicate are

represented by means of the following relational representation:

head argument(clause index, clause type, helper predicates, head name, head length,

argument index, argument type, argument value)

body argument(clause index, subgoal index, functor, subgoal type, subgoal length,

argument index, argument type, argument value)

In addition, the instantiation states of all arguments within a clause also need to

be extracted. An instantiation state of an argument is either instantiated or free and

is represented in a relational form:

argument mode(clause index, subgoal index, argument index, value, instantiation

state)

After the assertions head argument, body argument, and argument mode have been

extracted from the student solution and the chosen generalised solution description,

the matcher matches the assertions of the student solution against the ones of the

generalised solution description.

The general constraint evaluator is implemented using the unification mechanism.

After relevant constraints have been selected for evaluation from the knowledge base,

the relevance part of each constraint is unified with the available assertions. If the

unification is successful, the constraint is relevant and its satisfaction part is unified

with the existing assertions. If the second unification is also successful, the constraint

is satisfied, otherwise it is violated.

4.4 Knowledge Base

The knowledge base consisting of semantic tables and constraints is represented

as Prolog relational facts. In order to construct a semantic table for a problem, we
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Table 4.1: Number of constraints
Constraint Type Number

Declaration 15

Implementation
General principle 7
Pre-implementation 13
Semantic 96
Pattern 16

Total 147

collected student solutions from past written examinations and homework assign-

ments. After that, we analysed student solutions aiming at identifying possible solu-

tion strategies, which students might have applied. Finally, each identified solution

strategy is modelled in the semantic table.

Defining constraints is the knowledge acquisition process which collects principles

of the domain and extracts properties of correct solutions for a given problem. We

have identified principles of the domain of logic programming from standard works,

e.g., (Brna, 2001; Sterling and Shapiro, 1994), and extracted properties of correct

solutions based on our corpus of collected student solutions. Currently, the knowledge

base of INCOM contains 147 weighted constraints as indicated in Table 4.1 and four

patterns (cf. Section 3.1.3).



Chapter 5

Evaluation

5.1 Goals

Systematic evaluations are an essential element of research in the fields which rely

on the use of incomplete knowledge components, apply heuristic decision methods,

and involve user interactions. In this respect, the tutoring system for logic pro-

gramming INCOM is concerned with the problem of completeness of its modelling

components (weighted constraints, semantic tables, transformation rules), the choice

of constraint weights and the usability of the user interface.

The completeness of the model components cannot be checked by local software

tests, because the complexity of the system’s error diagnosis reaches a high degree even

for a relative simple problem. For this reason, a systematic evaluation is necessary for

a particular tutoring system. A systematic evaluation can be carried out in different

ways and on different levels, e.g., internal vs. external evaluations depending on the

development phase the system currently is in.

During the development of a tutoring system, the diagnostic accuracy is most

important because it is the foundation, on which a student model is built and feed-

back is produced. High diagnostic accuracy is one of the requirements of INCOM (cf.

Section 3.2). Internal evaluations with respect to diagnostic accuracy are rarely con-

sidered when evaluating a tutoring system. Instead, we can find examples of external

evaluation methodologies which are based on comparing the learning effectiveness

between a control and an experimental group or on the difference between the results
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of a pre- and a post-test, e.g., (VanLehn et al., 2005; Anderson et al., 1993). One of

the reasons for this tendency might be that so far mostly problems have been consi-

dered, for which a student has a little room to develop a solution creatively. Thus, for

such problems, the evaluation of diagnostic accuracy is not an issue. This situation

is different when the student is invited to produce a solution within a large space

of possibilities (e.g., alternative solution strategies are possible). Here we need to

distinguish the two aspects of diagnosis: 1) Whether the system was able to correctly

determine the solution strategy chosen by the student and to identify its components

(intention analysis) and 2) whether it was able to correctly diagnose the errors in the

student solution (diagnostic validity). For this reason, a study has been conducted in

2008 to evaluate the diagnostic ability of INCOM.

In addition, the end goal of INCOM is to improve students’ skills in logic pro-

gramming, and thus an external evaluation is required to determine to what extent

diagnostic information can be used as feedback by the students and whether the two-

stage coaching model is useful (cf. the first requirement specification of INCOM in

Section 3.2).

5.2 Diagnostic Accuracy

Since the goals of the evaluation of diagnostic accuracy are two-fold, the study is

comprised of two parts: evaluating the accuracy of intention analysis and the diag-

nostic validity. To conduct these experiments, we collected exercises which meet the

requirements of INCOM specified in Section 3.2, and solutions from past written ex-

aminations. The examination candidates had attended a course in logic programming

which was offered as a part of the first semester curriculum in Informatics. The fol-

lowing seven problems have been collected from the written examinations of the years

1999 and 2000. The description for the second problem can be found in Appendix A.

1. Access to specific elements within an embedded list;

2. Querying a data base and applying a linear transformation to the result;

3. Modification of all elements of a list subject to a case distinction;

4. Creation of an n-best list from a data base;

5. Computing the sum of all integer elements of a list;
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6. Counting the number of elements in an embedded list;

7. Finding the element of an embedded list which has the maximum value for a

certain component.

For these problems, 221 student solutions were selected according to the following

criteria:

• Any piece of code which satisfies minimal requirements of interpreting it as a

Prolog program is considered a solution,

• syntax errors in the solutions are ignored (because during the written examina-

tion the students did not have access to a computer), and

• both correct and incorrect solutions are taken into account.

After collecting student solutions, each of them was complemented with an appro-

priate predicate signature, because during the examination, students were not asked

to provide that information. Therefore, this evaluation study addressed only the

capability of diagnosing errors in student implementations.

5.2.1 Intention Analysis

Design

The evaluation of intention analysis is meant to determine the number of student

solutions, which can be analysed and whose solution strategy is identified correctly

by the system. In the literature, this kind of evaluation is also noted as algorithm

analysis (Johnson, 1990; Looi, 1991) because the approach of identifying the solution

strategy is based on anticipated algorithms for a programming problem.

The evaluation of intention analysis of INCOM required to involve a human ex-

pert who inspected every student solution manually. Student solutions which could

not even be understood by the human expert, were sorted out to the group “not

understandable” (see an example in Appendix G). All “understandable” solutions

were input into the system which resulted in a list of violated constraints. The hu-

man expert examined the list of violated constraints and decided whether the system

analysed the student solution correctly. Accordingly, it is assigned to the categories

“correctly analysed” or “incorrectly analysed”.
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Table 5.1: Evaluation of the intention analysis
Task Solution Not Understandable Correctly A. Incorrectly A.

1 10 0 10 0
2 11 0 10 1
3 6 2 3 1
4 17 1 16 0
5 58 2 54 2
6 81 0 79 2
7 38 2 34 2

Sum 221 7 206 8
A.: analysed

Results

Table 5.1 summarizes the statistics of the evaluation. The amount of available

student solutions is indicated in the second column. The third column represents

the number of solutions which are sorted to the category “not understandable”. The

fourth and the last column show the amount of solutions which belong to the category

“correctly analysed” and “incorrectly analysed”, respectively.

On average, 87.9% (s.d.=17.1%) of the collected student solutions could be ana-

lysed correctly by INCOM (Le and Menzel, 2008a). The ratio between “not under-

standable” and “incorrectly analysed” solutions is 7:8 indicating that almost half of

the solutions, for which INCOM is not able to produce a correct analysis, cannot be

understood by the human expert either. Those solutions, which could not be un-

derstood by the human expert, have been implemented with many arbitrary helper

predicates (Appendix G, Example 2).

Two reasons made the analysis of INCOM fail. First, the students tried to define

helper predicates which were not included in the semantic table. This is a limitation

of the semantic table which has been used to model the space of implementations

(cf. Section 3.10). Second, the system’s parser interpreted the solutions differently

from the intention of the student. For instance, the expression G2 is G*1,02 can be

understood by a German human expert because in German the decimal comma is used

instead of a decimal point, but was misinterpreted by the system as a concatenation

of two subgoals: G2 is G1 and 02.
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5.2.2 Diagnostic Validity

Design

The goal of evaluating the diagnostic validity is to determine whether the diagnos-

tic result is acceptable with respect to a gold standard which is specified by human

experts of a domain. The task of specifying a gold standard is not easy because by

adopting individual perspectives or preferences, human experts tend to disagree in

their judgements as the complexity of problems is increasing. If agreement can be

established at all, still resource requirements are high. Therefore, any gold standard

in an open-ended domain is a compromise between the desirable and the possible.

In other systems, e.g., PROUST, APROPOS2 and Hong’s Prolog tutor, the gold

standard for evaluating the diagnostic ability has been specified by hand analysis.

That is, a human expert analysed each student solution and detected errors indepen-

dent from any diagnostic result. The list of detected errors is used as a gold standard

against which the diagnostic validity of the system is checked. However, it is difficult

to specify such a gold standard for a constraint-based system because of the following

reasons. First, the human expert has to know the large set of constraints (at the time

of this evaluation study, INCOM included about 110 constraints) which represent er-

ror types, and relate every error detected in a program to a corresponding constraint.

This is a very laborious undertaking for a human expert. Second, a constraint can

be relevant to a solution many times. If a human expert has to assign a detected

error to one of the existing constraints, she would have to iterate through the list of

constraints as many times as the system does. This is a bothersome and error prone

task. Hence, we specified the gold standard in a way that provides a balance between

human and system orientation.

A human tutor of the logic programming course has been invited to check all

errors diagnosed by INCOM for every student solution, either confirming or rejecting

it. In addition, the human tutor had the possibility to give a comment to each of the

errors. Finally, he had the option to add general comments which are not specific to

the presented errors, for example, if he thought that crucial errors have been missed.

The gold standard is derived from both the system’s diagnosis and the comments of
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Table 5.2: Categories for Precision and Recall
Should-be errors Should-not errors

Retrieved errors A B
Not retrieved errors C

the human expert. For the evaluation, we only selected student solutions which have

been classified as understandable by a human tutor, a category which has already

been used for the evaluation of the intention analysis.

Results

To measure diagnostic validity, well known measures from information retrieval

(Rijsbergen, 1979) are applied, since both are subset selection problems sharing the

same kind of error characteristics: over-generation (too many bugs have been re-

ported) or under-generation (too few bugs have been reported). In such a situation,

Recall and Precision are appropriate quality measures, which are defined with respect

to Table 5.2 as follows:

Recall = A
A+C

; Precision = A
A+B

The categories retrieved and not-retrieved errors are produced by the system’s

diagnosis, whereas should-be and should-not errors need to be determined by human

judges. Under these definitions a high precision means that the model is based on

fairly reliable constraints, which have a low risk of producing false alarms, i.e., the de-

veloper was careful to avoid particularly risky constraints. A high recall, on the other

hand, means that the diagnosis has a good coverage, i.e., it considers a sufficiently

rich set of relevant constraints.

Table 5.3 summarizes the results of system diagnoses of INCOM (Le and Menzel,

2008b). It shows that with values between 0.901 and 1.000 recall is high. That means,

the constraint set of the system has been well developed and the knowledge base of

the domain is large enough. We also notice that precision is always lower than recall.

That is, the diagnosis emphasises quantity more than quality. In particular, the low

precision of Task 1 points to a particular weakness of the constraints relevant for this

problem task.



5.2. DIAGNOSTIC ACCURACY 121

Table 5.3: Evaluation of the diagnostic validity
Task 1 2 3 4 5 6 7 Average

Recall 0.948 1.000 1.000 0.901 1.000 0.981 0.952 0.969
Precision 0.843 0.875 1.000 0.891 0.974 0.953 0.952 0.927

Two main classes of errors which have been marked as false diagnosis by the

human tutor can be identified. The first one relates to cases where the constraints

are too rigid. For instance, at the time of this evaluation, INCOM did not allow a

constant to be assigned to a variable using the operator is, e.g., X is 0, although

0 is a valid arithmetic expression. Therefore, the human tutor considered this kind

of error detected by INCOM not acceptable. The second class of errors which have

been interpreted as false diagnosis by the human tutor occurred when two arguments

of a subgoal are swapped. In this case, the system detected several errors: e.g.,

superfluous/missing co-reference between two variables (cf. Section 3.8.4). Instead of

receiving many errors considering co-references between variables, the human tutor

expected a more compact feedback which should show the student what she has to

do. To remove this deficiency of INCOM, diagnostic results need to be compressed

similar to the proposal in (Menzel, 1992).

There were seven student solutions which have been implemented using helper

predicates, but could not be understood correctly by the system. The system INCOM

has been extended with the ability to correctly process them. In the most recent

evaluation, the performance of the intention analysis of INCOM raised to 90.8%.

5.2.3 Related Work and Discussion

To check whether the diagnostic ability of INCOM is competitive, we compare it

with results from PROUST (Johnson, 1990), APROPOS2 (Looi, 1991), and Hong’s

Prolog tutor (Hong, 2004) with respect to the intention analysis and diagnostic valid-

ity because these systems provide similar difficult problems, e.g., the rainfall problem

(PROUST), the list reversal problem (APROPOS2 and Hong’s Prolog tutor), which

can be assigned to the third class of the problem classification (cf. Section 2.4). In

PROUST, programming plans are used to perform intention-based diagnosis of er-

rors in PASCAL programs, APROPOS2 follows an algorithm-based approach, and
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Hong’s Prolog tutor applies a transformation technique to diagnose errors in Prolog

programs. These systems have been evaluated based on the following measures: 1)

the percentage of programs whose solution strategy is identified correctly, 2) the per-

centage of correctly recognised (not recognised) errors, and 3) number of false alarms

which are errors detected by the systems but not noted by a human tutor. Note, that

for these systems no learning benefits have been reported yet. We compare INCOM

with these three systems by calculating the Recall and Precision measures based on

the statistics reported in the corresponding literature and under the assumption that

the gold standard of these systems has been specified comparably.

The comparison in Table 5.4 shows that PROUST is superior with respect to

intention analysis (96%)1 but its precision (0.88) is lowest. Hong’s Prolog tutor

achieves the highest precision (1.0), however, at the cost of a low recall (0.69). Overall,

INCOM combines an acceptable quality of intention analysis (90.8%) with a high

diagnostic accuracy (0.93) compared to the other systems. Note, the method we used

to determine the gold standard is based on actual system diagnoses. Therefore, it

seems that the precision of the system’s diagnosis is too optimistic.

Table 5.4: A comparison of the diagnostic accuracy
System Intention Analysis Precision Recall

INCOM 90.8% 0.9266 0.9688
PROUST 96% 0.8787 0.8143

APROPOS2 80% 0.9580 0.9913
Hong’s Prolog tutor 80% 1.0000 0.6886

With respect to evaluating the diagnostic validity, our methodology shares a fun-

damental shortcoming with other methods because it assumes that “the correctness

of diagnoses can be unambiguously determined” (Legree et al., 1993). Unfortunately,

this assumption is not realistic in a domain like logic programming which allows alter-

native solution strategies and different implementation variants. Therefore, a second

human expert, namely the system developer, was asked to assess the comments pro-

vided by the first human expert, and conflicting opinions were expected. Indeed,

1Note, in this evaluation both complete and partial analyses have been counted as positive, and
we take only the statistics of the problem Rainfall into account.
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while defining the gold standard for our evaluation of diagnostic validity, the system

developer did not agree with 3 of 535 comments which the human expert made for

the system’s diagnosis while specifying the gold standard. The disagreement was

eventually resolved by directly negotiating the gold standard.

The use of recall and precision helps us to tailor the diagnosis according to our

requirements. In our opinion, a coaching system would be more useful if it could

provide an extensive knowledge base. That is, recall should be maximized. However,

if recall increases, precision might decrease because the diagnosis could become less

accurate if a wider range of bugs is considered. The recall value of our system is

higher than the precision. This agrees with our intention.

5.3 Learning Effect

The evaluation of learning effect aims at answering the question whether stu-

dents improve their programming skills after using the system INCOM. The study

was conducted with students who were attending a course in logic programming.

The experiment took place in the computer pools of the Department of Informatics,

University of Hamburg during regular classroom hours, where normally students are

expected to demonstrate their homework in the presence of a human tutor. The stu-

dents were given credits for participating in the study but had the possibility to opt

out. The students were separated into two groups: a control and an experimental

group. In order to balance the two groups in terms of students’ performance and size,

the achievement score of the preceding sessions for each student was summed up, and

the two groups were balanced using these scores so that the difference between the

total scores of the two groups was minimal. Students, who came late, were allowed

to join the experiment, but were not taken as valid cases of the study. This study

includes two evaluation sessions (in order to enrich the evaluation data): the first one

took place in 2009 and the second one in January 2010. In the first session, three

invalid cases were not considered and in the second one, four invalid cases were re-

moved. Table 5.5 shows the size of the control group and the experimental one after

omitting invalid cases. We assume that the participants of two experiment sessions
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were not the same students2.

Table 5.5: Number of experiment participants
Round Control Group Experimental Group

1 17 18
2 16 16

5.3.1 Design

A pre-test was administered to both control and experimental group in order to

ensure initial comparability on the dependent measures. The students were required

to complete the pre-test within 10 minutes. After that, they were given five problems

(Appendix C) which were collected from the homework and examinations of former

years of the same course. The time for this part of experiment session was limited to

60 minutes. The participants of the experimental group were asked to read a short

tutorial (Appendix B) which explains the user interface of the system. The partici-

pants of the control group were provided with the normal environment consisting of

an editor and an interpreter (in our case SWI-Prolog). Both the system INCOM and

the Prolog interpreter were started before the experiment session begun.

A post-test (to be completed within 10 minutes) was given to the participants

of both groups after completion of the experiment session. Pre- and post-test were

made comparable by a counter-balanced design of the test items. Specifically, two

test versions were developed: Test A (Appendix A) and Test B (Appendix D). Test

A was assigned as pre-test and Test B as post-test to 50% of the participants of the

control group, and the rest of the control group had Test B as pre-test and Test A as

post-test. The same was done for the experimental group.

At the end, the students of the experimental group were given a questionnaire

(Appendix E) in order to express their opinions about the usefulness of the system.

The participants of the other group were given questions about the difficulty of the

test and experiment exercises. Student solutions of tests and of experiment exer-

cises were collected to be used for analysis. In addition, students’ responses to the

2If a student cannot pass the examination, she is allowed to attend the course again.
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questionnaire were used as subjective data. The whole process including pre-test,

experiment session, post-test, and questionnaire was limited to 90 minutes.

5.3.2 Results

Learning Gains

A pre or post-test could be scored maximally with nine points. Comparing the

results of the pre-test of the control and the experimental group, we did not find

a statistically significant difference (p=0.07 for the first session and p=0.48 for the

second one with a significance level of 0.05). Therefore, we can assume that the

groups were fairly balanced.

In order to determine whether the system is effective in improving the program-

ming skills of the students, learning gains were calculated as the difference between

post-test and pre-test scores. Table 5.6 shows the development of scores from pre-test

to post-test. The third column represents the learning gains of each group and of each

experiment session. The last column shows whether the difference between pre- and

post-test is statistically significant (at the 5% level). The table shows that during

the first session the experimental group made a significant improvement (Gain=1.25;

p<0.01) whereas the control group did not (Gain=0.74; p=0.27). During the second

session, both groups did achieve significant learning gains.

Table 5.6: Learning gains
Group Session Learning gains (s.d.) Significant (p value)

Control 1 0.74 (2.64) No (0.27)
Experimental 1 1.25 (1.81) Yes (0.01)

Control 2 1.28 (1.45) Yes (0.003)
Experimental 2 1.81 (1.79) Yes (0.001)

Difference Between The Experimental Group and The Control Group

The indicator of learning gains clearly shows that the participants of the experi-

mental group of both evaluation sessions improved their programming skills. However,

the control group made progress on average as well (though this was not statistically

significant for the control group of the first session).
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In order to compare the improvement between the experimental and the con-

trol group, we compute the effect size Cohen’s d3 as a standardized mean difference

between the two groups.

Table 5.7 summarizes the learning gains of the two experiment sessions. The third

column of the table shows that in both sessions the learning gains of the experimental

group were not significantly better than the one of the control group. At the first

session the effect size of learning gains between the experimental and the control group

is small (d=0.23). According to (Wolf, 1986), this effect size indicates an educational

significance, i.e., something was learned due to the use of INCOM compared to a

standard programming environment. The learning effect of the second session was

better than at the previous one (d=0.33), although it is also small. In general, in

both sessions, the results show a stable trend of the development of learning gains of

the experimental group: the experimental group did outperform the control group by

a small effect size between 0.23 and 0.33 standard deviations.

Table 5.7: The effect size Cohen’s d
Session LG(Con)>LG(Exp) Cohen’s d

1 p=0.50 0.23
2 p=0.36 0.33

Students Attitude

Based on a questionnaire, we identified the attitude of participants towards the

system. It contained the following questions, for each question, participants were

asked to provide their opinion on a scale between 1 (very negative) and 5 (very

positive). We accumulated the results of the questionnaire of two experiment sessions.

1. Is the user interface comprehensible?

2. Did the two-stage coaching model help you?

3. How precise is the information about the location of the error?

4. How comprehensible are the system hints?

3d= gain(experimental)−gain(control)√
variance(experimental)+variance(control)

2

; Cohens Rules-of-Thumb: small effect (d=0.2), medium

effect (d=0.5), large effect(d>0.8)



5.3. LEARNING EFFECT 127

5. Did system hints motivate you to continue working on your solutions?

6. Did the system help you to find a solution for a problem task?

7. Would you be able to solve other problems of the same type as the experiment

exercises?

8. Would you use this system to do your homework?

9. How difficult did you find the exercises?4

With respect to the difficulty of the experiment exercises, 50% of the participants

(of the control and the experimental group) rated from difficult to very difficult and

21% of them found the exercises simple or very simple.

Figure 5.1 shows that most students agreed that the system was able to provide

precise error location (44%) and the proportion of participants who rated feedback

messages positively is as high as the one who rated negatively (39%). However, with

respect to the user interface and the two-stage coaching strategy, a high number of

participants were not satisfied (Figure 5.2).

Figure 5.1: Participants’ ratings on the precision of error location and the expressiveness

of feedback messages

Overall, the participants were motivated to work with the system (56%) and they

felt confident to solve problems of the same type (46%) (Figure 5.3). However, a

relative high proportion of participants (47%) denied the helpfulness of the system

and 59% of them would not deploy the system for homework (Figure 5.4). Despite

this cautious self-assessment, the statistic results in the previous section showed that

4For this question, an answer with 1 indicates “very difficult”, and 5 for “very simple”.
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Figure 5.2: Participants’ ratings on the user interface and the tutoring model

at least some of them have made moderate learning gains.

Figure 5.3: Participants’ ratings on their motivation and their transferability

Figure 5.4: Participants’ ratings on the helpfulness and the deployment of the system

In addition to the nine questions in the questionnaire, the participants of the

experimental group had the opportunity to express their opinion about the system
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INCOM freely. Thirteen of total 34 participants gave free comments which are sum-

marized in Table 5.8. Unfortunately, all the comments refer to negative aspects of

the system.

Table 5.8: Free comments provided by the experimental group
Comment Participant #

System requires much more time to become familiar with 6
Feedback is helpful, but does not point to a corrective action 2
System is useful, but restrictive 3
System is slow 2

5.3.3 Related Work and Discussion

In this evaluation study, both the empirical data (pre/post-test statistics) and the

subjective students’ attitudes towards the system gave evidence that the system has

helped students to improve their skills in logic programming. The empirical results

indicated that the students who used the system outperformed the control group

by between 0.23 and 0.33 standard deviation. Given the degree of difficulty of the

problems to be solved and the relatively short exposure time of 60 minutes, this is a

remarkable result. Other studies with different systems and within different tutoring

domains reported higher learning gains but after longer tutoring periods as shown in

Table 5.9. However, a truly long-term study makes extremely difficult to factor out

properly the various contributions which might have influenced the learning process.

Table 5.9: Learning benefits of different tutoring systems for programming
System Period Effect size

INCOM 60 minutes 0.23-0.33 s.d.
LISP tutor 1 semester 1.00 s.d.
SQL tutor 120 minutes 0.65 s.d.

In addition to the statistical results, the responses to a questionnaire confirmed the

usefulness of diagnostic information provided by INCOM: students were motivated

to continue working on their individual solution. Therefore, we can conclude that

Hypothesis 5 (cf. Section 1.5) is true.
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Similar to a classroom session where a human tutor would expect that students

achieve learning gains within 90 minutes, the study has also demonstrated that stu-

dents who used INCOM for the same period did improve their programming skills.

The study, however, was not able to identify the most relevant factors contributing

to this improvement. It could be accounted to the feedback of the system, to the

guidance of the user interface which forces students to work systematically, or even

to the recall of previously learned concepts by being exposed to the terminology of

the user interface and the system feedback.

We take the subjective results seriously and attempt to find out which reasons

lead to the attitude that most students denied the helpfulness and the deployment of

the system for homework. There may be several reasons. First, the students may be

not aware about their learning progress while using the system because the time of

using the system was too short.

Second, they needed much time to become familiar with the functionality of the

system. Five of total thirteen comments addressed this issue. Note, not all of the

participants did give comments. In particular, participants of the experimental group

spent between 29% (at the second session) and 36% (at the first session) of 60 minutes

to analyse the five programming tasks. This is a remarkable amount of time compared

to the remaining time for the implementation stage during which the main activity

of the process of programming takes place. Therefore, we can suspect that the first

stage is one of the reasons why the usefulness of the system was rated negatively.

Maybe feedback of this coaching stage was not sufficient enough because it could not

elicit information (e.g, nouns which can be used to represent a parameter position of

a predicate) hidden in the problem statement as we discussed in Section 3.4.2.

Third, the quality of feedback also plays an important role for the usefulness of

the system. A clear positive attitude of the participants with respect to the compre-

hensiveness of feedback could not be determined (cf. Figure 5.1). One participant

commented that system’s feedback was of little use if it only explained the error

without giving a recommendation how to correct a solution. Indeed, we intended to

formulate feedback messages on the high level of programming knowledge (cf. Section

3.9) and assumed that the students are able to derive a corrective action from the
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feedback message. To find out which feedback messages were not useful we analysed

the logged data. We sort the errors according to the levels of the structural hierarchy

of a predicate.

Table 5.10: Percentage of not fixed errors
Hierarchy level Error Seen Not fixed
Clause 29 18 10 (55.6%)
Subgoal 473 150 60 (40%)
Argument 899 189 64 (33.9%)
Multiplication terms 38 13 5 (38.5%)
Product factor 216 61 19 (31.1%)

The second and the third column of Table 5.10 show the number of errors which

have been made and whose feedback messages have been read by the participants,

respectively. The last column indicates the proportion of not fixed errors, i.e., after

seeing the feedback message the error was still not removed on the next solution

attempt. The table indicates that feedback messages which indicate errors on the

clause level were most ineffective (55.6%). This class of feedback messages might be

one of the reasons which decreases the usefulness of feedback although the precision

of error location was rated positively.
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Chapter 6

Conclusions

6.1 Summary

Constraint-based modelling is a relative new and promising approach to domain

and student modelling in tutoring systems. Instead of capturing the solution process

as an admissible sequence of problem solving steps, the constraint-based approach

specifies the properties which a correct solution should have. This approach has

been proven successful in diagnosing errors in German utterances and in building a

tutoring system for SQL. The goal of this thesis was to investigate the applicability

of this approach to develop tutoring systems in the domain of programming where

logic programming is focused.

As a tutoring model this thesis proposed a two-stage coaching strategy: analysing

the task first, and then implementing a solution. During the first stage, the system

requests the student to analyse the given task and to transform the analysis result

into an adequate signature for the predicate to be implemented. If the signature

is not yet appropriate, the system provides feedback and suggests the student to

exhaust the information given in the problem statement. This analysis stage not only

encourages students to practice the analysis of programming tasks, but also provides

valuable information about the student’s intention, i.e., the number and the meaning

of arguments, which helps to make the subsequent diagnosis of the implementation

more accurate.

To be able to coach students on both stages, we need to provide helpful feedback

133
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about the shortcomings in their solutions. For a programming problem, the solution

space can be very large: a problem can be solved by applying alternative solution

strategies, and each of them can be implemented in different ways. However, the

traditional constraint-based approach is not able to evaluate hypotheses about the

student’s solution variant with respect to their plausibility. Thus, this thesis adopted

a soft computing approach for solving constraint satisfaction problems to enhance the

diagnostic capability for constraint-based tutoring systems. The main claim of the

thesis was that constraints could be enriched with a heuristic component to evaluate

the plausibility of hypotheses: constraint weights.

To model the solution space for a logic programming problem, the following tech-

niques have been deployed: weighted constraints, semantic tables, and transformation

rules. The semantic table is specified to represent semantic requirements to solve a

given problem. Weighted constraints are used to model general principles of the do-

main and to establish a mapping between the student solution and the requirements

of the semantic table.

To coach students during the first stage, weighted constraints and a signature table

(an instance of the semantic table) have been used to model a space of predicate

signatures which are required to diagnose shortcomings in the predicate signature

specified by the student.

To model the space of implementations for the second coaching stage, in addition

to weighted constraints and the implementation table (an instance of the semantic

table), transformation rules have been exploited to generate possible implementa-

tion variants of an arithmetic expression (if an arithmetic expression is required) and

to cover implementations using helper predicates. Together the implementation ta-

ble, constraints and transformation rules span a fairly large space of implementation

variants for a programming problem.

An error diagnosis algorithm has been developed on the basis of the proposed

modelling techniques and makes use of constraint weights. In principle, diagnosis

is carried out as an interaction of hypothesis generation and hypothesis evaluation.

Hypotheses are interpretation variants for the student solution. They are generated

by iteratively mapping semantic components of the student solution to the ones in the
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semantic table on all levels of the structural hierarchy of a solution. Each hypothesis

is evaluated based on the relevant constraints. The plausibility of each hypothesis is

computed by multiplying the weight value of all violated constraints into an overall

score for the particular mapping. That score is used to decide on the most plausible

interpretation.

To investigate the capability of weighted constraints and the usefulness of the

proposed two-stage tutoring model, a tutoring system for logic programming has been

implemented and two evaluation studies have been conducted. In the first study, the

system has been evaluated with respect to its diagnostic capability. The evaluation

study showed that the system was able to hypothesize the strategy in 90.8% of the

student implementations and to diagnose errors correctly in 92.7% of the cases, in

which the strategy was correctly identified. In comparison to other existing tutoring

systems for programming, the diagnostic accuracy of the system implemented for this

thesis (INCOM) is competitive, and thus the proposed Hypothesis 1 and 2 have been

confirmed:

• Hypothesis 1: It is possible to build a domain model that covers a large solu-

tion space for a logic programming problem using the representation of weighted

constraints and semantic tables, and a set of transformation rules.

• Hypothesis 2: Using the representations defined in Hypothesis 1, it is possible

to develop an algorithm to diagnose errors in a logic program and to hypothesize

the strategy underlying a solution correctly.

The primary use of constraint weights was to control the process of error diagnosis.

During this process, the interaction between hypothesis generation and hypothesis

evaluation makes use of constraint weights to decide on the most plausible hypothesis

about the solution strategy pursued by the student. In addition, weight values of the

violated constraints have been used to determine the order in which feedback messages

are presented to the student. Thus, Hypothesis 3 can be considered true: Using

constraint weights, it is possible to prioritize feedback according to the importance of

error.

In the course of modelling the solution space for logic programming problems,
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weighted constraints were an effective means to model general domain principles which

are not specific to a programming problem. Since standard solution strategies, which

are conceived of as patterns, can be applied to solve a certain class of problems and are

also not specific to a problem, we deployed weighted constraints to model standard

solution strategies. Therefore, Hypothesis 4 can also be considered true: It is

possible to create a knowledge base of standard solution strategies in logic programming

using weighted constraints and to group feedback messages in a coherent manner.

The second evaluation study has been conducted to investigate the learning effec-

tiveness contributed by the system INCOM. The evaluation study showed that the

students of the experimental group who used the system made significant learning

gains and outperformed the control group by between 0.23 and 0.33 standard devia-

tions. This indicates that the system had a small effect on the process of improving

the programming skills of students. In addition, when evaluating the students’ at-

titudes, we noticed that most students agree that the system provides precise error

locations, that they are motivated by the system, and that they are confident to be

able to solve programming problems of the same type. Therefore, Hypothesis 5 has

been confirmed: A tutoring system for logic programming, which is developed on the

basis of weighted constraints, semantic tables, a set of transformation rules, and the

two-stage coaching model, is able to help students improve their skills in solving logic

programming problems.

Although the weighted constraint-based error diagnosis approach proposed in this

work has shown encouraging results, it has some limitations. First, it is not possible

to diagnose arbitrary helper predicates defined by the student because we are not able

to anticipate all possible helper predicates the student intends to use. Currently, we

are only able to handle two cases of helper predicates: accumulative predicates and

helper predicates used to extract a part of code from its main predicate. For the first

case, we anticipate the implementation of the accumulative predicate by specifying

appropriate components in the semantic table. For the second one, we apply the

folding/unfolding transformation techniques to embed the code of the helper predicate

into its main predicate. However, these techniques can only be applied if not both

the helper predicate and the main one implement a recursion.
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The second limitation of the approach proposed in this thesis is that the semantic

table covers only possible solution strategies which can be anticipated by the problem

author. If the student develops a new solution strategy which has not been specified in

the semantic table, the system matches the student implementation to the most likely

generalised solution description, and the resulting feedback will not be in accordance

with the intention of the student.

With respect to the coaching strategy, the two-stage coaching model did not re-

ceive a high acceptance from the participants of the evaluation study. This might

be explained by two reasons. First, students were not familiar with the requirement

that a programming task needs be analysed prior to the implementation. Second,

the coaching during the task analysis was not effective to help students understand

the problem. Students were required to identify information and goals given in a

problem statement. However, some information (e.g., the data type for an argument

position) could not always be identified directly from the problem statement and the

coaching strategy has no means to help students reason about such information. As

a consequence, participants of the experimental group needed a lot of time for the

task analysis stage: they spent almost 32.5% of total experiment time (60 minutes)

to analyse five programming tasks.

6.2 Thesis Contributions

This dissertation builds on previous research on cognitive modelling approaches,

intelligent tutoring systems for programming, techniques of program analysis, and

constraints satisfaction problems. It is novel in several ways:

Contribution #1: This thesis applied the constraint-based modelling approach

(Ohlsson, 1996) to model the solution space for a programming problem. In addition,

this thesis adopted the idea of the probabilistic approach to solving constraint satis-

faction problems to enhance the error diagnosis capability of constraint-based tutoring

systems. That is, each constraint is associated with a heuristic value - a constraint

weight. In this thesis, the strengths and weaknesses of the weighted constraint-based

approach have been investigated to develop tutoring systems in the domain of logic

programming. Constraint weights served three purposes: 1) controlling the process of
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error diagnosis, 2) hypothesising the strategy underlying the solution correctly, and

3) ranking feedback messages according to the severity of diagnosed errors.

In the course of checking the semantic correctness of the student solution, weighted

constraints not only were used to check the structure of the solution, but also served

to model the sequential order of programming constructs, e.g., the sequential order

of two subgoals. Furthermore, weighted constraints can be used to check the state

of variables (in logic programming, the state of a variable can be either instantiated

or free). Thus, a small aspect of procedural programming had been modelled using

weighted constraints. Whether this approach can be applied to the domain of state-

dependent programming languages, remains open.

Contribution #2: With respect to presenting feedback, this thesis has introduced

the necessary means to prioritize feedback. An additional benefit of using weighted

constraints is that errors which are derived from violated constraints can be dis-

tinguished according to their severity because each constraint is attached with a

constraint weight indicating its importance. Thus, feedback messages can be ranked

according to importance. In traditional constraint-based tutoring systems, such an

ability is not available. Model tracing tutors, for instance, present feedback in the

order in which the problem solving steps have been specified in the model.

Contribution #3: In terms of grouping diagnostic results, this thesis adopted

the concept of patterns to describe standard solution strategies in the domain of logic

programming. Again, weighted constraints were used to model patterns. Errors which

were derived from constraint violations of the same pattern can be grouped together,

and feedback messages can be presented in a coherent manner. This way, students

are motivated to focus on the solution strategy being implemented. None of the

existing tutoring systems for programming which have been reviewed in Section 2.5

has addressed this issue so far.

Contribution #4: The representation of the semantic table can also be consid-

ered a contribution of this thesis because it implements two new ideas. First, the

semantic table is used to represent alternative solution strategies of implementation

for a given programming problem, instead of using a single expert model or a single
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ideal solution like in other existing constraint-based tutoring systems. Second, se-

mantic requirements are represented by generalised model solutions. Thus, different

implementation variants are covered. In addition, separating the representation of

semantic requirements from constraints has the advantage that constraints become

problem-independent and need not to be re-specified if new problems are added.

Contribution #5: With respect to modelling a tutoring strategy for tutoring sys-

tems in the domain of programming, this thesis has introduced a two-stage coaching

model which requires students to analyse the programming task prior to the imple-

mentation. The separation of coaching during the phase of task analysis from the

phase of implementation has not been addressed (or very little) by existing tutoring

systems for programming so far (Note that, only systems, which have been evaluated

with respect to learning benefits, are considered).

6.3 Future Research

Research question #1: In this thesis, it has been shown that the system IN-

COM, which has been built using weighted constraints, semantic tables, and transfor-

mation rules, and applying the proposed two-stage coaching model, was able to help

students improve their programming skills in logic programming. However, feedback

quality needs to be improved. Especially, error diagnoses concerning the existence

of co-references should be able to explain why such components are required. In the

example of diagnosing errors in the student implementation demonstrated in Section

3.8.4, the system generated Hint 2, which indicates that the student has missed a

co-reference between two positions B and C, and Hint 3 which shows the co-reference

between two positions A and B is superfluous (Figure 6.1).

Figure 6.1: Compressible diagnostic results
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Menzel (1992) suggested compressing diagnostic results by combining appropriate

diagnostic results to generate corrective hints that show what kind of action the

student has to carry out to improve her solution. For example, since changing a

variable in the clause head is less likely than in the body, Hint 2 and Hint 3 can be

combined into a corrective hint: Change the variable at position B. Such a corrective

hint shows the student what she has to do. Which kind of diagnostic results can be

compressed to generate corrective hints, is a question for further research.

The approach of compressing diagnostic results has the advantage that its feedback

message provides a clear guidance which action needs to be performed. However,

this kind of information does not explain why this action is necessary or why those

components (e.g., co-references) are required or not. Since semantic constraints are

used to compare the existence of components of a generalised solution description with

the student solution, feedback messages about the existence of required components

can be derived; no further information about the reason of the existence of such a

component is available. To enhance feedback messages with such information it would

be necessary to include an explanation about the necessity of each component into

the semantic table. Alternatively, a mechanism to infer this kind of information from

constraint violations might be devised. For example, the corrective hint above can

be extended to: Change the variable at the position B to establish the co-reference

between the positions B and C because the total investment is calculated by summing

the interest of the decremented period and the current amount of money.

Research question #2: In Section 3.5.1 we discussed two approaches to model

properties of correct solutions for a problem: using either constraints or a higher ab-

straction of correct solutions. We chose the latter approach and proposed the concept

of a semantic table, because it makes the authoring process easier and the constraint

specification is simpler than the former approach. We also might think about a com-

promise approach: i.e., the author may provide abstractions of correct solutions while

the system tries to infer problem-specific constraints from them. Constraints which

share their commonalty among different solution strategies can be merged. For ex-

ample, both the tail recursive and the recursive arithmetic before strategy which are

used to solve the problem Investment (cf. Table 1.1) require that the investment
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period is decremented recursively. A constraint representing this requirement can be

shared across these two solution strategies. If a student implemented the decrement

of investment period wrongly, this constraint would be violated and an additional

feedback, for instance, “The investment period needs to be decremented recursively”

could be provided to the student. With respect to resource consumption, this com-

promise approach would need more time to infer problem-specific constraints from

semantic table and to check their consistency. But, could the constraints which share

their commonalty across solution strategies be exploited to enhance feedback? This

needs to be investigated.

Research question #3: In the previous chapter we have presented two eval-

uation studies which concern the diagnostic quality of a weighted constraint-based

tutoring system for logic programming and the effectiveness of using diagnostic in-

formation for tutoring purposes. The results of the studies convince us that using

weighted constraints together with a semantic table and transformation rules, we are

able to model a large space of solutions for logic programming problems, and the

tutoring system built on the basis of these modelling techniques can contribute to en-

hanced programming skills in logic programming. Can this technology also be applied

to other programming paradigms, for instance, functional or imperative programming

languages? This is a motivation for further research. We believe that it is possible to

transfer this kind of technology to functional programming languages because they

are also instances of the declarative programming paradigm. This characteristic, the

atemporal nature, of declarative programming languages makes possible to formulate

and to check the well-formedness conditions for a program in a static manner.

Considering imperative programming languages, the application of the weighted

constraint-based model can be limited. In principle, the space of solutions can be

modelled applying weighted constraints, the semantic table and transformation rules,

and the semantic correctness of a solution can be checked on the basis of its struc-

ture. In addition, the requirements for ordering programming constructs, which is an

important characteristic of the imperative programming paradigm, can be specified

in the semantic table. However, checking the correctness of an imperative program in

this way is not sufficient. The most crucial difference between the logic programming
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paradigm and the imperative one is that programming languages of the latter class

are state-dependent, i.e., the behaviour of the program depends on the history which

lead to the current state. This cannot be read off from the program text alone. For

the system INCOM, we did consider the instantiation state of each variable. We

derived the instantiation state of an argument from a specified predicate signature,

which determines the calling mode of each argument position, and the instantiation

state of all arguments is propagated through the clause from left to right. Note, in

logic programming, the instantiation state of an argument can be changed from free

to instantiated, and once the argument is instantiated, its state cannot be changed.

In an imperative implementation, however, the state of variables can be changed dy-

namically and the instantiation state not only can be either free to instantiated, but

also includes the actual value. How the weighted constraint-based model can be com-

bined with other techniques, for instance, machine learning or collaborative learning

techniques, to develop tutoring systems for imperative programming, this deserves

further investigation.

Research question #4: We have applied weighted constraints in the domain of

logic programming which has a large solution space but solutions can be verified by

means of a test bed. The application of weighted constraints may also be promising

when not only the solutions can be verified as being correct, but solutions should

also be considered acceptable with respect to aesthetics and individual preferences.

For instance, appealing programs and a program layout helpful for understanding

(e.g., indentation rules) are preferred. These characteristics introduce aspects of ill-

definedness into programming tasks (Lynch et al., 2009). Here, constraint weights

could also be useful. The scale of acceptability could be measured by the total weight

value of violated constraints which represent aesthetic criteria. A general question,

how the aesthetic criteria should be modelled using weighted constraints, needs to be

answered in future research work.

Future Work: Although the system INCOM has demonstrated its effectiveness

in helping students improve their skills in logic programming, the system needs to

be improved further. First, the two-stage coaching strategy should be more flexible

to allow the student to submit an incomplete/inappropriate predicate signature and
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the student should have the possibility to revise the predicate signature iteratively.

This improvement is necessary because during the stage of task analysis the student

is required to take an initial decision (e.g, choosing argument positions, data type and

calling modes) and taking such a decision on an abstract level without having the

possibility to use concrete programming constructs could be difficult for beginners.

The second aspect of the system which should be improved is the coaching strategy

on task analysis. It should be able to provide hints to help students elicit information

(e.g., representing argument position or its data type) hidden in the problem state-

ment instead of requesting the exercise author to express all information explicitly,

because deriving an argument position and determining its data type are important

learning goals.
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Appendix A

Test A

A.1 Original Version

Aufgabe 1: Unifizieren Sie die folgenden Ausdrücke und geben Sie für den Fall,

dass die Unifikation erfolgreich ist, die dabei erzeugten Variablenbindungen an.

groesser(F,blau) groesser(super,T)

r(Q,f(t,b),Q) r(d(t),f(H,b),d(H,b))

p([T|T],T,[Q|R]) p([[f,g],f,g],D,D)

1+1+1=3 Punkte

Aufgabe 2:

Gegeben sei die Liste der Zuschauerzahlen eines Tages für eine Reihe von Fernseh-

programmen. Für jede Sendung enthält die Liste eine Teilliste mit den Angaben zu

Sender, Titel der Sendung und Zuschauerzahl (in Tausend), wobei die Eintragungen

zu den Sendungen nach fallender Zuschauerzahl sortiert sind. Die Gesamtliste sei

als Argument des einstelligen Prädikats zuschauer1 in der Datenbasis des Prolog-

Systems abgespeichert:

zuschauer(

[[ard,goldmelodie,5300],

[rtl,blutrausch,4200],

[sat1,ran_an_die_bouletten,3500],

[ottifanten_kanal,greif_den_zaster,3300],
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...

[arte,spannende_wissenschaft,3]]).

1. Definieren Sie ein rekursives Prädikat, das aus einer gegebenen Liste mit

Zuschauerzahlen eine neue Liste berechnet, die die N meistgesehenen Sendungen

des Tages enthält. In der erzeugten Liste soll jede Sendung wiederum durch eine

dreielementige Teilliste aus Sender, Titel und Zuschauerzahl beschrieben sein.

Beachten Sie insbesondere den Fall, bei dem N größer ist als die Länge der

gegebenen Liste.

2. Definieren Sie ein rekursives Prädikat, das aus der gegebenen Gesamtliste mit

Zuschauerzahlen eine neue Liste berechnet, die nur die Angaben für die Sendun-

gen eines bestimmten, aber frei wählbaren Senders enthält. Die ursprüngliche

Sortierreihenfolge soll bei der Berechnung nicht verändert werden.

Hinweis: Der Operator zur Negation einer Unifikation ist: Term1 \= Term2. Bitte

benutzen Sie keine Systemprädikate, keinen Cut (!), und keinen Disjunktionsoperator

(;)

2+4=6 Punkte

A.2 English Version

Exercise 1: Unify the following expressions. In the positive case, please show

the unified values of the variables.
groesser(F,blau) groesser(super,T)

r(Q,f(t,b),Q) r(d(t),f(H,b),d(H,b))

p([T|T],T,[Q|R]) p([[f,g],f,g],D,D)

1+1+1=3 Points

Exercise 2:

A list represents the size of the audience for a series of TV programs. Each list

element is a sublist with information about the TV station, the program title and the

size of the audience (in Tsd). The list is ordered in descending order according to the

size of the audience and is implemented as an argument of the predicate audience/1

in the database of the Prolog system: audience([[TV1, Pro1, 5300], [TV2, Pro2,
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4200],...,[TVn, ProN, 3000]]).

audience(

[[ard,goldmelodie,5300],

[rtl,blutrausch,4200],

[sat1,ran_an_die_bouletten,3500],

[ottifanten_kanal,greif_den_zaster,3300],

...

[arte,spannende_wissenschaft,3]]).

1. Please define a recursive predicate which builds a new list containing the N

most popular programs of the day. In the new list, each program should be

described as a three-element-list of a TV station, program title and the size of

the audience. Consider also the case when N is greater than the length of the

given list.

2. Please, define a recursive predicate which builds a new list of programs for

a given TV station. The original order of the list should be kept.

Note: The operator for negating a unification is Term1 \= Term2. Please do not use

system predicates, a Cut (!), or the disjunction operator (;). 2+4=6 Points
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Tutorial

B.1 Original Version

Die Lösung einer Programmieraufgabe mit dem Lernsystem erfolgt in zwei Phasen:

Prädikatsdeklaration und Prädikatsdefinition. In der ersten Phase sollen Sie die

Aufgabenstellung analysieren und die benötigten Argumentpositionen, Argument-

typen und Argumentmodi identifizieren. Abbildung B.1 zeigt Ihnen die notwendigen

Schritte. Wenn Sie Schwierigkeiten mit der Benutzungsschnittstelle für die Prädikats-

deklaration haben, können Sie unterPrädikatsdeklaration: Hinweis Erläuterungen

zu den Arbeitsschritten dieser Phase finden.

In der zweiten Phase haben Sie die Mäglichkeit, die Prädikatsdefinition selbst

einzugeben. In dieser Phase soll Ihnen das System helfen, ein Prädikat zu definieren,

das den Anforderungen der Aufgabenstellung und den Festlegungen der Prädikats-

deklaration entspricht. Abbildung B.2 zeigt Ihnen die notwendigen Schritte. Wenn

Sie Schwierigkeiten mit der Benutzungsschnittstelle für die Prädikatsdefinition haben,

können Sie unter Prädikatsdefinition: Hinweis Erläuterungen zu den Arbeitss-

chritten dieser Phase finden. Bitte beachten Sie auf folgende Hinweise: 1) Bitte

benutzen Sie keine History-Elemente des Browsers: Nach-vorne, Zurück, und Ab-

brechen; 2) Bitte benutzen Sie keine Systemprädikate, keinen Cut (!), und keinen

Disjunktionsoperator (;).
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Figure B.1: A tutorial for the first coaching stage: task analysis

B.2 English Version

The system INCOM requires you to go through two phases in order to be able

to solve a programming problem successfully: specifying a predicate signature and

implementing a predicate. During the first phase, you should analyse the descrip-

tion of the given problem task. That is, you have to identify the required number

of argument positions, and to specify the data structure, and the calling mode for

the identified argument positions. Figure B.1 shows the steps required to specify a

predicate signature. If you have any difficulty, you can find further information by

clicking on the link Prädikatsdeklaration: Hinweis.
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Figure B.2: A tutorial for the second coaching stage: implementation.

During the second phase, you have the possibility to input your predicate def-

inition. The system attempts to help you to define a predicate which satisfies the

requirements in the problem description and corresponds to the predicate signature

you have specified. Figure B.2 shows the necessary steps. If you have any difficulty

with the user interface of this phase, you can look for help by clicking on the link

Prädikatsdefinition: Hinweis. Please consider the following remarks while using

the system: 1) Do not use the History buttons of the browser: Go-forward, Go-back,

and Stop; 2) Do neither use system predicates which are not listed, nor the Cut (!)

or the disjunction operator (;).
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Experiment Exercises

C.1 Original Version

Aufgabe 1: (maximale Bearbeitungsdauer 35 Minuten)

Ein Geldbetrag, der mit einem (jährlichen) konstantem Zinssatz verzinst wird, wächst

exponentiell und kann nach der rekursiven Berechnungsvorschrift:

Bi = Bi für i=0;

Bi= (1+Z)*Bi−1 sonst,

ermittelt werden, wobei Bi das Endguthaben nach dem i-ten Anlagejahr und Z

der Zinsfaktor ist (d.h. für 5% Zinsen ist Z = 0.05).

1. Bilden Sie die angegebene Berechnungsvorschrift in ein rekursives Prolog-

Prädikat ab.

2. Definieren Sie ein nichtrekursives Prädikat mit der gleichen Signatur wie in

Aufgabenteil 1.

3. Wandeln Sie Ihre Lösung für Aufgabenteil 1 in ein endrekursives Prädikat

um, d.h. der rekursive Aufruf muss das letzte Teilziel im Körper der Klausel

sein.

Aufgabe 2: (maximale Bearbeitungsdauer 25 Minuten)

Ein Produktverzeichnis sei als Liste implementiert, wobei jedes ungeradzahlige Listen-

element eine Produktbezeichnung und jedes geradzahlige Listenelement eine Wert-

angabe in Euro ist, z.B. [bett, 1600, schrank, 900, sofa, 3300, ..., schlafzimmer, 4200].
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• Definieren Sie ein Prädikat, das den aktuellenWert des Produktbestandes berech-

net.

• Definieren Sie ein Prädikat, mit dem für die gegebene Produktliste beliebiger

Länge eine neue Liste berechnet wird, die die folgendenWertanpassungen berück-

sichtigt:

1. der Wert aller Produkte bis einschließlich 3000 Euro wird um 3% erhöht;

2. der Wert alle Produkte oberhalb von 3000 Euro wird um 2% erhöht.

Hinweis: Die Darstellung für 3% und 2% entspricht 0.03 und 0.02 in Prolog.

C.2 English Version

Exercise 1: (Time limit: 35 minutes)

The return of investing an amount of money at a constant yearly interest rate can be

computed according to the following recursive rule:

Bi = Bi for i=0;

Bi= (1+Z)*Bi−1 otherwise,

where Bi represents the return of an investment period of i years, and Z is the

yearly interest rate (e.g., for 5% interest rate, Z = 0.05).

1. Please map the given recursive rule to a recursive Prolog predicate.

2. Please define a non-recursive predicate with the same signature as in Assign-

ment 1.

3. Please convert your solution for Assignment 1 into a tail recursive predicate,

i.e., the recursive subgoal must be the last one in a clause body.

Exercise 2: (Time limit: 25 minutes)

A product database is implemented as a list whose odd elements represent names

and even elements represent a price in Euro. For example: [bed, 1600, cupboard,

900, sofa, 3300, ..., sleeping room, 4200].

• Define a predicate which calculates the current value of the product inventory.

• Define a predicate which creates a new product list according to the following

rules:
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1. Value of products less or equal 3000 Euro will be raised 3%

2. Value of products above 3000 Euro will be raised 2%

Notice: the representation of 3% and 2% corresponds to 0.03 and 0.02 in Prolog,

respectively.
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Test B

D.1 Original Version

Aufgabe 1: Unifizieren Sie die folgenden Ausdrücke und geben Sie für den Fall,

dass die Unifikation erfolgreich ist, die dabei erzeugten Variablenbindungen an.

alter(hans,E) alter(F, klein)

t(x,y,y) t(A,B,A)

p([[[m], m], m, [m]], [m]) p([[A|B]|C], A)

1+1+1=3 Punkte

Aufgabe 2: Der Bestand an Kraftfahrzeugen einer Firma sei als Liste von zwei-

elementigen Listen gegeben, wobei das erste Element einer Unterliste das polizeiliche

Kennzeichen und das zweite das Baujahr angibt, z.B.

[[hh-gu_12-67, 2002],

[hh-wa_34-25, 1999],

..., [hh-ba_39-29, 2003]]

Die Leitung des Unternehmens benötigt einen überblick über die Altersstruktur

der vorhandenen Fahrzeuge und bittet Sie um verschiedene Informationen. Definieren

Sie geeignete rekursive Prädikate um den jeweiligen Informationsbedarf zu befriedi-

gen. Hinweis: Bitte benutzen Sie keine Hilfsprädikate.

1. Wieviele Kraftfahrzeuge sind derzeit im Bestand? (2 Punkte)

2. Welche Fahrzeuge sind älter als 5 Jahre? (Das aktuelle Jahr ist 2009) (4 Punkte)
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2+4=6 Punkte

D.2 English version

Exercise 1: Unify the following expressions. In the positive case, please show

the unified values of the variables.
alter(hans,E) alter(F, klein)

t(x,y,y) t(A,B,A)

p([[[m], m], m, [m]], [m]) p([[A|B]|C], A)

1+1+1=3 Points

Exercise 2: The car store of a company is implemented as a list of two-element

lists, where the first and the second element represent the licence number and the

year of construction of each car, respectively. For example,

[[hh-gu_12-67, 2002],

[hh-wa_34-25, 1999],

..., [hh-ba_39-29, 2003]]

The management of the company needs an overview of the age structure of the

existing cars and ask you for information. You are requested to define appropriate

recursive predicates to deliver the required information. Note: Please do not use

any helper predicate.

1. How many cars are there in the current inventory? (2 Points)

2. Which cars are older than 5 years? (The current year is 2009) (4 Points)

2+4=6 Points
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Questionnaire

E.1 Original version

Sie haben an einer Übungssitzung mit dem System INCOM teilgenommen. Bitte

geben Sie uns Ihre Einschätzung. Dabei bedeutet 1 Stern “Sehr schlecht” und 5

Sterne “Sehr gut”. Vielen Dank.

• Besuch der Vorlesung “Logikprogrammierung” im Semester: WS .

• Als wie schwer empfanden Sie die Aufgaben der Übungssitzung? (1: sehr

schwer, 5: sehr einfach)

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Ist die Benutzerschnittstelle selbsterklärend?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Sind die Angaben zum Ort eines Fehlers ausreichend?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Sind die Systemhinweise (Feedback, Korrekturvorschläge) verständlich?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Haben die Hinweise Sie motiviert, an der Lösung einer Aufgabe weiterzuar-

beiten?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]
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• Hat Ihnen die Aufteilung des Programmierprozesses in Deklarations- und Defi-

nitionsphase geholfen?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Hat Ihnen das Lernsystem geholfen, eine Lösung für eine Aufgabe zu finden?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Konnten Sie durch dieses System Ihre Kenntnisse in der Logikprogrammierung

verbessern?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Würden Sie ein solches System zum Lösen Ihrer Hausaufgaben benutzen?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Nachdem Sie mit dem Lernsystem gearbeitet haben, würden Sie weitere Auf-

gaben aus der gleichen Problemklasse lösen können?

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ]

• Sie können uns weitere Anregungen, Kritik und Vorschläge hier mitteilen. Wir

bedanken uns dafür bei Ihnen sehr herzlich.

E.2 English version

You have participated in an experiment session using the system INCOM. Please

tell us your opinion by rating between 1 star (“Very bad”) and 5 stars (“very good”).

Thank you.

• How difficult did you find the experiment exercises? (1: very difficult, 5: very

simple)

• Is the user interface comprehensible?

• Is the error location sufficiently precise?

• Are the feedback messages comprehensible ?

• Did the system feedback motivate you to continue solving a problem?

• Did the separation of the process of programming into two the stages for spec-

ifying a signature and implementing help you?

• Did the system help you to find the predicate solution for a given problem?
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• Could you improve your knowledge in logic programming?

• Would you use such a system to do your homework?

• After using this system, would you be able to solve other problem tasks of the

same type?

• You can tell us your comment, critique, and suggestion here.



Appendix F

A Programming Task: Calculate

salaries

A salary database is implemented as a list whose odd elements represent names and

even elements represent salary in Euro. For example: [meier, 3600, schulze, 5400,

mueller, 6300, ..., bauer, 4200]. Define a predicate which sums all saleries for a list of

arbitrary length.
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A Sample Student Solution

G.1 Example 1

The following student solution was intended to solve the problem Exercise 2 in

Appendix A. It is uncertain whether the student intended to implement the predicate

liebsten/3 using normal recursion or using tail recursion by defining an accumulative

predicate lieb/4. If she intended to implement the normal variant of recursion, then

the recursive case of liebsten/3 is not correct and the third clause is superfluous. If

she intended to implement a tail recursion, then the first clause is superfluous, the

update of the accumulator argument is not correct, and a base case for the accumu-

lator predicate lieb/4 is missing. Since we have to provide manually an appropriate

predicate signature for each student solution in the test corpus, we are not sure which

solution strategy the student implemented. Thus, we assigned this solution to the

group not understandable.

% liebsten(TopN, [Zuschauer], [])

liebsten(N, [], []).

liebsten(N, [Zuschauer], Erg):-lieb(N, [Zuschauer], [], Erg).

lieb(N, [H|T], Acc, Erg):-

N1 is N-1,

Acc1 is [H|Acc],

lieb(N1, T, Acc1, Erg).

160



G.2. EXAMPLE 2 161

G.2 Example 2

The following student solution for the problem task Sum salaries is a typical

candidate of the group not understandable because it is implemented with many

unnecessary helper predicates, e.g., odd/1, even/1, and thus, we are not able to

hypothesize their purpose in the context of the solution.

gehalt([K|R]) :- R>0, R

gehalt1([], X,F).

gehalt1([K|R], X,F):-

X1 is X+1,

odd(X1), gehalt1(R,X1, F);

X1 is X+1, even(X1), F1 is F+K,

Gehalt1(R, X1, F1).

Gehalt(L,R):-gehalt1(L, 0,0).

Odd(X):-1 is X mod Z.

Even(X):- 0 is X mod Z.
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