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Abstract

This thesis presents an efficient approach to calculate dynamical properties
of solids with strong electron correlations. The fast cluster method, a so-
called finite temperature Lanczos method is combined with the Dynamical
mean-field theory (DMFT) in order to study orbital degenerate systems as
function of temperature. The full local Coulomb interaction was taken into
account in all calculations. A first application is two test systems: 5 + 1 and
5 + 5 Anderson impurity models.

In the case of 5 + 1 Anderson impurity model it is possible to take into
account a large number of eigenstates: Narnoldi > 100. The chemical potential
of the system µ were changed in a broad range which leads to a change of a
multiplet structure of the spectrum. In all this range of chemical potential
µ the ground state of the system is degenerate. At zero temperature it
were found that the temperature Lanczos calculations reproduce the correct
density of states obtained with exact diagonalization if one chooses the set of
ground states which remains the symmetry of the system. If all degenerate
ground states are taken into account than the temperature Lanczos method
reproduces the correct density of states of the test systems with a good
accuracy.

In the case of finite temperaure calculations electron transitions to higher
energy levels become important. Therefore calculations with Narnoldi = 1 do
not reproduce the DOS obtained with exact diagonalitation at any param-
eters. One needs to consider not only the ground state but also low-energy
excited states.

In the second part of the thesis the problem known as double-counting
one for systems with strong electron correlations is considered. We conducted
an extensive study of the charge transfer system NiO in the LDA+DMFT
framework using quantum Monte Carlo and temperature Lanczos impurity
solvers. By treating the double-counting correction as an adjustable param-
eter we systematically investigated the effects of different choices for the
double counting on the spectral function. Different methods for fixing the
double counting correction can drive the result from Mott insulating to al-
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most metallic. We propose a reasonable scheme for determination of the
double-counting corrections for insulating systems.

The last part of the thesis describes the application of the LDA+DMFT
approach with the temperature Lanczos as impurity solver to the ferromag-
netic nickel. The multiplet structure of full d-shell is taken into account. A
satellite peak in spectral function is found around −5 eV .
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Zusammenfassung

In dieser Doktorarbeit soll eine effiziente Methode zur Berechnung dynamis-
cher Eigenschaften von Festkrpern mit starken elektronischen Korrelatio-
nen prsentiert werden. Die Fast-Cluster-Methode, ein sogenanntes finite-
temperature Lanczos, wurde mit der Dynamischen Molekularfeldtheorie (DMFT)
kombiniert, um das Verhalten von Systemen mit entarteten Orbitalen in Ab-
hngigkeit von der Temperatur zu untersuchen. In allen Rechnungen wurde
die volle lokale Coulombwechselwirkung bercksichtigt. Als erste Anwendung
wurden zwei Testsysteme untersucht:5 + 1 und 5 + 5 Anderson-Impurity-
Modelle.

Im Fall des 5+ 1 Anderson-Impurity-Modells ist es mglich, eine groe An-
zahl von Eigenzustnden zu bercksichtigen: Narnoldi > 100. Das chemische
Potential des Systems µ wurde ber einen groen Wertebereich hinweg vari-
iert, was zu einer nderung der Multiplettstruktur des Spektrums fhrt. Im
gesamten Wertebereich von µ ist der Grundzustand des Systems entartet.
Es wurde festgestellt, da finite-temperature Lanczos die aus exakter Diago-
nalisierung erhaltene korrekte Zustandsdichte reproduziert wenn man einen
Satz von Grundzustnden whlt die die Symmetrie des Systems wahren. Wer-
den alle entarteten Grundzustnde des Systems mitbercksichtigt, so repro-
duziert finite-temperature Lanczos mit einer guten Genauigkeit die korrekte
Zustandsdichte.

Im Falle endlicher Temperaturen gewinnen die bergnge von Elektronen zu
hheren Energieniveaus an Bedeutung. Daher reproduzieren Rechnungen mit
Narnoldi = 1 fr keinen Satz von Parametern die korrekte Zustandsdichte. Es
mssen zustzlich zu dem Grundzustand niederenergetische angeregte Zustnde
mitbercksichtigt werden.

Im zweiten Teil dieser Arbeit wurde ein als Double-Counting bekan-
ntes Problem fr Systeme mit starken elektronischen Korrelationen nher be-
trachtet. Wir fhrten im Rahmen von LDA+DMFT eine sorgfltige Unter-
suchung des charge-transfer-Systems NiO durch, und zwar unter Verwendung
des Quantum Monte Carlo sowie des finite-temperature Lanczos Impurity
Solvers. Indem wir die Double-Counting-Korrektur als einen einstellbaren
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Parameter behandelten untersuchten wir deren Einfluss auf die Spektral-
funktion. Unterschiedliche Methoden zur Bestimmung des Double-Countings
knnen das Ergebnis von einem Mott-isolierenden bis hin zu einem nahezu
metallischen Zustand ndern. Wir schlagen eine geeignete Methode zur Bes-
timmung des Double-Countings in einem isolierenden System vor.

Der letzte Teil dieser Arbeit beschreibt die Anwendung von LDA+DMFT
mit dem finite-temperature Lanczos als Impurity Solver auf ferromagnetis-
ches Nickel. Die Multiplett-Struktur der vollen d-Schale wird dabei mitber-
cksichtigt. Wir finden einen Satellit-Peak in der Spektralfunktion bei etwa
−5 eV .
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Chapter 1

Introduction

Describing material properties from the ”first principles” using only infor-
mation about the atomic structure is a great challenge in theoretical physics.
The starting point of the ”theory of everything” is the Hamiltonian for the
system of electrons and nuclei,

Ĥ = Ĥe + Ĥi + Ĥei (1.1)

where Ĥe describes the dynamics of electrons, Ĥi the ion core or nuclei, and
Ĥei their mutual interactions, . The Hamiltonian called ”ab-initio” contains
only the fundamental constants such as electronic charge, electronic and nu-
clei masses etc. The nonreletevistic version of this Hamiltonian reads:

Ĥ = −
~

2

2me

∑

i

∇2
i −

∑

i,I

ZIe
2

|ri − RI|
+

1

2

∑

i6=j

e2

|ri − rj|

−
∑

I

~
2

2MI
∇2

I +
1

2

∑

I 6=J

ZIZJe
2

|RI −RJ|
,

(1.2)

where e, me, ri denote correspondingly electron charge, mass, coordinate and
in analogy ZI , MI , RI are ion charge, mass and coordinate.

It is essential to include the effects of difficult many-body terms, namely
electron-electron Coulomb interactions and the complex structures of the
nuclei that emerge from the combined effects of all the interactions. The
goal of the theory of electronic structure calculations the development of
methods to treat electronic correlations with sufficient accuracy that one can
predict the diverse physical phenomena exhibited in matter, starting from
(1.2). It is most informative and productive to start with the fundamental
many-body theory.

There is only one type of term in the general Hamiltonian that can be
regarded as ”small”, the ratio of electron mass to nuclei one me/MI . A per-
turbation series can be defined in terms of this parameter which is expected
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CHAPTER 1. INTRODUCTION

to have general validity for the full interacting system of electrons and nu-
clei. In the first order approximation in me/MI the kinetic energy of the
nuclei can be ignored. This is the Born-Oppenheimer or adiabatic approx-
imation, which is an excellent approximation for many proposes, e.g. the
calculation of nuclear vibrations modes in different solids. In other cases,
it forms the starting point for perturbation theory in electron-phonon inter-
actions which is the basis for understanding electrical transport in metals,
polaron formation in insulators, certain metal-insulator transitions, and the
BCS theory of superconductivity. In this work we focus on the Hamiltonian
for the electrons, in which the positions of the nuclei are fixed.

Ignoring the nuclei kinetic energy, the fundamental Hamiltonian for the
theory electronic structure can be written as

Ĥ = T̂ + V̂ext + V̂int + EII (1.3)

If we adopt the Hartree atomic units ~ = me = 1, then the different terms
in (1.3) may be written the simplest form. The kinetic energy operator for
the electrons T̂ is

T̂ = −
1

2

∑

i

∇2
i , (1.4)

V̂ext is the potential acting on the electrons due to the nuclei,

V̂ext =
∑

i,I

VI(|ri − RI|), (1.5)

V̂int is the electron-electron interaction,

V̂int =
1

2

∑

i6=j

1

|ri − rj|
, (1.6)

and the final term EII is the classical interaction of nuclei with one another
and contribute to the total energy of the system but are not important for
the problem of describing the electrons. Here the effect of nuclei the electrons
is included in fixed potential ”external” to the electrons. Other ”external po-
tentials”, such as electric fields and Zeeman terms, can readily be included.
Thus, for electrons, the Hamiltonian, (1.3), is central to the theory of elec-
tronic structure.

The fundamental equation governing a non-relativistic quantum system
is the time-independent Schrödinger equation,

ĤΨ({ri}) = EΨ({ri}), (1.7)
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where the many-body wave function for the electrons is Ψ({ri}) ≡ Ψ(r1, r2, . . . , rN),
the spin is assumed to be included in the coordinate ri, and, of course, the
wave function must be antisymmetric in the coordinates of the electrons
r1, r2, . . . , rN .

The expression for any observable is an expectation value of an operator
Ô, which involves an integral over all coordinates,

〈Ô〉 =
〈Ψ|Ô|Ψ〉

〈Ψ|Ψ〉
. (1.8)

The density of particles n(r), which plays a central role in electronic structure
theory, is given by the expectation value of the density operator n̂(r) =
∑

i=1,N δ(r − ri),

n(r) =
〈Ψ|n̂(r)|Ψ〉

〈Ψ|Ψ〉
= N

∫

d3r2 · · · d
3rN

∑

σ1
|Ψ(r1, r2, . . . , rN)|2

∫

d3r2 · · · d3rN |Ψ(r1, r2, . . . , rN)|2
, (1.9)

which has this form because of the symmetry of the wave function in all the
electrons coordinates. (The density for each spin results if the sum over σ1

is omitted.) The total energy is the expectation value of the Hamiltonian,

E =
〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉
≡ 〈Ĥ〉 = 〈T̂ 〉 + 〈V̂int〉 +

∫

d3rVext(r)n(r) + EII , (1.10)

where the expectation value of the external potential has been explicitly
written as a simple integral over the density function. The final term EII is
the electrostatic nucleus-nucleus (or ion-ion) interaction, which is essential
only in the total energy calculation, but is just a classical additive term in
the theory of electronic structure.

The eigenstates of the many-body Hamiltonian are stationary points (sad-
dle points or the minimum) of the energy expression (1.10). These may be
found by varying the ration in (1.10) or by the varying the nominator subject
to the constraint of orthonormality (〈Ψ|Ψ〉 = 1), which can be done using
the method of Lagrange multiplies,

δ[〈Ψ|Ĥ|Ψ〉 − E(〈Ψ|Ψ〉 − 1)] = 0. (1.11)

This is equivalent to the well-known Rayleigh-Ritz principle that functional

ΩRR = 〈Ψ|Ĥ − E|Ψ〉 (1.12)

is stationary at any eigensolution |Ψm〉. Variation of the bra 〈Ψ| leads to

〈δΨ|Ĥ − E|Ψ〉. (1.13)
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CHAPTER 1. INTRODUCTION

The ground state wave function Ψ0 is the state with lowest energy, which can
be determined , in principle, by minimizing the total energy with respect to all
the parameters in Ψ({ri}), with the constraint that Ψ must obey the particle
symmetry and any conservation laws. Excited states are saddle points of the
energy with respect to variations in Ψ.

4



Chapter 2

Density Functional Theory,
Linear Muffin-Tin Orbitals

2.1 Thomas-Fermi approximation

The density functional theory of quantum systems is originated from the
work of Thomas [1] and Fermi [2] written in 1927. Although their approx-
imation is not accurate enough for present day electronic structure calcu-
lations, the approach illustrates the main idea of functional theory. In the
original Thomas-Fermi method the kinetic energy of the system of electrons
is approximated as an explicit functional of the density, idealized as noninter-
acting electrons in homogeneous gas with density equal to the local density
at any given point. Both Thomas and Fermi neglected exchange and corre-
lation among the electrons; however, this was extended by Dirac [3] in 1930,
who formulated the local approximation for exchange still in use today. This
leads to to the energy functional for electrons in an external potential Vext(r)

ETF =C1

∫

d3rn(r)(5/3) +

∫

d3r Vext(r)n(r)

+ C2

∫

d3r, n(r)(4/3) +
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′|
,

(2.1)

where the first term is the local approximation to the kinetic energy with
C1 = 3

10
(3π2)(2/3) = 2.871 in atomic units, the third term is the local exchange

with C2 = −3
4
( 3

π
)
(1/3)

and the last term is the classical electrostatic Hartree
energy.

The ground state energy and electronic density can be found by minimiz-
ing the functional E[n] in (2.1) for all possible n(r) subject to the constraint
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on the total number of electrons
∫

d3rn(r) = N. (2.2)

Using the method of Lagrange multipliers, the solution can be found by an
unconstrained minimization of the functional

ΩTF [n] = ETF [n] − µ

∫

d3r {n(r) −N}, (2.3)

where the Lagrange multiplier µ is the Fermi energy. For small variations of
the density δn(r), the condition for a stationary points is

∫

d3r{ΩTF [n(r) + δn(r)] − ΩTF [n(r)]} →
∫

d3r{
5

3
C1n(r)2/3 + V (r) − µ}δn(r) = 0,

(2.4)

where V (r) = Vext(r) + VHartree(r) + Vx(r) is the total potential. Since (2.4)
must be satisfied for any function δn(r), it follows that the functional is
stationary if and only if the density and potential satisfy the relation

1

2
(3π2)(2/3)n(r)2/3 + V (r) − µ = 0. (2.5)

2.2 The Hohenberg-Kohn theorems

The achievement of Hohenberg and Kohn is the formulation of density func-
tional theory as an exact theory of many-body systems. The formulation
applies to any system of interacting particles in external potential Vext(r),
including any problem of electrons and fixed nuclei, where the Hamiltonian
ca be written

Ĥ = −
~2

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i6=j

e2

|ri − rj|
. (2.6)

Density functional theory is based upon two theorems first provided by Ho-
henberg and Kohn [4].
Theorem 1: For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, except for a constant,
by the ground state particle density n0(r).
Theorem 2: A universal functional for the energy E[n] in terms of the den-
sity n(r) can be defined, valid for any external potential Vext(r). For any
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2.2. THE HOHENBERG-KOHN THEOREMS

particular Vext(r), the exact ground state energy of the system is the global
minimum value of this functional, and the density n(r) that minimize the
functional is the exact ground state density n0(r).

Density functional theory is the most widely used method today for elec-
tronic structure calculations because of the effective approach proposed by
Kohn and Sham in 1965: to replace the original many-body problem by an
auxiliary independent-particle problem. This ansatz, in principle, leads to
exact calculations of many-body systems using independent-particle meth-
ods; in practice, it has made possible to approximate the DFT formulation
that have proved to be remarkably successful. As a self-consistent method.
the Kohn-Sham approach involves independent particles but an interacting
density, an appreciation of which clarifies the way the method is used.

In the Kohn-Sham approach one replaces the difficult interacting many-
body system being described the Hamiltonian (1.2) with a different auxiliary
system that can be solved more easily. Since there is no unique prescription
for choosing the simpler auxiliary system, this is an ansatz that rephrases
the issues. The ansatz of Kohn and Sham assumes that the ground state
density of the original interacting system is equal to that of some chosen
non-interacting system that can be considered exactly soluble (in practice
by numerical QMC scheme) with all the difficult many-body terms incor-
porated into an exchange-correlation functional of the density. By solving
the equations one finds the ground state density and energy of the original
interacting system with the accuracy limited only by the approximations in
the exchange-correlation functional.

Indeed, the Kohn-Sham approach has led to very useful approximations
that are now the basis of most calculations that attempt to make ”first-
principles” predictions for the properties of condensed matter and large
molecular systems. The local density approximations (LDA) or various
generalized-gradient approximations (GGA) are remarkably accurate, most
notably for ”wide-band” systems, such as the group II and II-IV semicon-
ductors, sp-bounded metals like Na and Al, insulators like diamond, NaCl,
and molecules with covalent and/or ionic bonding.

The Kohn-Sham construction of an auxiliary system based on two as-
sumptions.
1. The exact ground state density can be represented by the ground state
density of an auxiliary system of non-interacting particles. This is called
”non-interacting-V-representability” ; although there are no rigorous proofs
for real systems of interest, we will proceed assuming its validity.

7



CHAPTER 2. DENSITY FUNCTIONAL THEORY, LINEAR
MUFFIN-TIN ORBITALS

2.The auxiliary Hamiltonian is chosen to have the usual kinetic operator
and an effective local potential V σ

eff(r) acting on an electron of spin σ at point
r. The local form is not essential, but it is an extremely useful simplification
that is often taken as the defining characteristic of the Kohn-Sham approach.

The actual calculations are performed on the auxiliary independent-particle
system defined by the auxiliary Hamiltonian(using Hartee atomic units)

Ĥσ
aux = −

1

2
∇2 + V σ(r). (2.7)

At this point the form of V σ(r) is not specified and the expressions must
apply for all V σ(r) in some range, in order to define functionals for a range
of densities. For a system of N = N↑ + N↓ independent electrons obeying
this Hamiltonian, the ground state has one electron in each of the Nσ orbitals
ψσ

i (r) with the lowest eigenvalues ǫσi of the Hamiltonian (2.7). The density
of the auxiliary system is given by sums of squares of the orbitals for each
spin

n(r) =
∑

σ

n(r, σ) =
∑

σ

Nσ
∑

i=1

|ψσ
i (r)|2, (2.8)

the independent-particle kinetic energy Ts is given by

Ts = −
1

2

∑

σ

Nσ
∑

i=1

〈ψσ
i |∇

2|ψσ
i 〉 =

1

2

∑

σ

Nσ
∑

i=1

∫

d3r|ψσ
i (r)|2, (2.9)

and we define the classical Coulomb interaction energy of the electron density
n(r) interacting with itself

EHartree[n] =
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′|
. (2.10)

The Kohn-Sham approach to the full interacting many-body problem is to
rewrite the Hohenberg-Kohn expression for the ground state energy func-
tional in the form

EKS = Ts[n] +

∫

dr Vext(r)n(r) + EHartree[n] + EII + Exc[n]. (2.11)

Here Vext(r) is the external potential due to the nuclei and other external
fields(assumed to be independent of spins) and EII is the interaction be-
tween the nuclei.

8



2.2. THE HOHENBERG-KOHN THEOREMS

Solution of the Kohn-Sham auxiliary system for the ground state can be
viewed as the problem of minimization with respect to either the density
n(r, σ) or the effective potential V σ

eff(r). Since Ts is explicitly expressed
as the functional of the orbitals but all other terms are considered to be
functionals of the density, one can vary the wave functions and use the chain
rule to derive the variational equation

δEKS

δψσ∗
i (r)

=
δTs

δψσ∗
i (r)

+

[

δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]

δn(r, σ)

δψσ∗
i (r)

= 0, (2.12)

subject to the orthonormalization constraints

〈ψσ
i |ψ

σ′

j 〉 = δi,jδσ,σ′ . (2.13)

This is equivalent to the Rayleigh-Ritz principle [5, 6].
Using expressions (2.8) and (2.9) for nσ(r) and Ts, which give

δTs

δψσ∗
i (r)

= −
1

2
∇2ψσ

i (r);
δnσ(r)

δψσ∗
i (r)

= ψσ
i (r), (2.14)

and the Lagrange multiplier method for handling the constraints:

δ[〈Ψ|Ĥ|Ψ〉 −E(〈Ψ|Ψ〉 − 1)] = 0

〈δΨ|Ĥ − E|Ψ〉 = 0

this leads to the Kohn-Sham Schrödinger-like equations:

(Hσ
KS − εσ

i )ψσ
i (r) = 0, (2.15)

where the εi are the eigenvalues, and Hσ
KS is the effective Hamiltonian(in

Hartree atomic units)

Hσ
KS(r) = −

1

2
∇2 + V σ

KS(r), (2.16)

with

Hσ
KS(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

= Vext(r) + VHartree(r) + V σ
xc(r).

(2.17)

Equations (2.15)-(2.17) are well-known Kohn-Sham equations, with the re-
sulting density n(r, σ) and total energy EKS given by (2.8) and (2.11). The
equations have the form of independent-particle equations with a potential
that must be found self-consistently with the resulting density. These equa-
tions are independent of any approximations to the functional Exc[n], and
would lead to the exact ground state density and energy for the interacting
system, if the exact functional Exc[n] were known.

9



CHAPTER 2. DENSITY FUNCTIONAL THEORY, LINEAR
MUFFIN-TIN ORBITALS

2.3 LSDA approximation

Solids can be often be considered as close to the limit of the homogeneous
electron gas. In that limit, it is known that effects of exchange and correlation
are local in character, and local density approximation(or more generally
the local spin density approximation (LSDA)), is reasonable, in which the
exchange-correlation energy at each point assumed to be the same as in
homogeneous electron gas with that density,

ELSDA
xc [n↑, n↓] =

∫

d3rn(r)ǫhom
xc (n↑(r), n↓(r))

=

∫

d3rn(r)[ǫhom
x (n↑(r), n↓(r)) + ǫhom

c (n↑(r), n↓(r))].

(2.18)

The LSDA can be formulated in terms of either two spin densities n↑(r) and
n↓(r), or the total density n(r) and the fractional spin polarization ζ(r)

ζ(r) =
n↑(r) − n↓(r)

n(r)
. (2.19)

The LSDA is the most general local approximation. For unpolarized systems
the LDA is found simply by setting n↑(r) = n↓(r) = n(r)/2.

2.4 Linear Muffin-Tin Orbital (LMTO) for-

malism

The LMTO’s calculation scheme [7] is based on the concept of muffin-tin
potential which has proven to be a highly successful approximation of po-
tential of realistic close-packed systems. In this concept the potential for a
solid is approximated by a non-overlapping atomic-like spherical symmetric
potential inside a sphere with radius S, and a constant in the interstitial
region

V (r) =







V (|r|), r ≤ S

Vc, r > S.
(2.20)

Therefore, the Schrödinger equation can be solved exactly in both regions
(r ≤ S and r > S). These solutions are matched at the sphere boundaries
to produce the muffin-tin orbitals. To reduce the effect of interstitial region
one introduces the overlapping atomic spheres which fill the whole volume of
the crystal. In this, the so-called Atomic Sphere Approximation (ASA), the

10



2.4. LINEAR MUFFIN-TIN ORBITAL (LMTO) FORMALISM

volume of interstitial region equals to zero, i.e., the electron kinetic energy
κ2 = ε−Vc in this region becomes a free parameter which can be taken equal
to zero. In this case wave function inside a sphere (for r ≤ S) satisfies to the
radial Schrödinger equation, whereas outside it corresponds to the solution
of Laplace equation ∇2Φ = 0. Therefore, the radial part of the wave function
can be written as

Φl(r, ε) =











ul(r, ε), r ≤ S

[

Dl+l+1
2l+1

( r
S
)l + l−Dl

2l+1
( r

S
)−l−1

]

ul(S, ε), r > S,
(2.21)

where ul(r, ε) is the exact radial solution of Schrödinger equation which is
normalized by one in the MTO sphere with radius S. These functions are not
convenient to use as basis functions because of its divergence for large r. In
order to construct decaying for large r, continuous and smooth in the whole
space basis functions one has to substract the divergent wave Dl+l+1

2l+1
( r

S
)l from

both parts of (2.21)

Φ̄l(r,D) =







Φ(r,D) − D+l+1
2l+1

Φl(S,D)
Φl(S,l)

Φl(r, l), r ≤ S

l−D
2l+1

[ r
S
]−l−1 Φl(S,D), r > S,

(2.22)

where DL(ε) is the logarithmic derivative of the radial part of wave function
at the sphere radius S

DL(ε) = S
u̇l(r, ε)

ul(r, ε)

∣

∣

∣

r=S
. (2.23)

The obtained functions are not (any more) the solutions of Schrödinger equa-
tion inside the atomic sphere. However, it is convenient to use them to built
up the Bloch sums of the crystal. Taking into account all tails of basis func-
tions from the other sites in central sphere at Rs, the Bloch sums can be
written as

χk

L(r, D) =
∑

Rs 6=0

eik·Rs Φ̄L(r − Rs, D), (2.24)

where tails from the center with radius-vector RS are defined by

Φ̄L(r − Rs, D) = ilYL(r − Rs)
∣

∣

∣

r − Rs

S

∣

∣

∣

−l−1 l −D

2l + 1
Φl(S,D). (2.25)

Taking tails expansion in partial waves at the center of sphere and making
the Bloch basis functions continuous and differentiable on the sphere surface,
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one obtains

χk

L(r, D) =







































ΦL(r, D) − Φl(S,D) l−D
2l+1

∑

L′

[

Sk

L′L − D+l+1
l−D

×

×2(2l + 1) δLL′

]

ΦL′(r,l′)

2(2l′+1)Φl′ (S,l′)
, r ≤ S,

Φl(S,D) l−D
2l+1

[

ilYL(r)( r
S
)−l−1 +

∑

L′ Sk

L′L×

×il
′

YL′(r)( r
S
)l′ 1

2(2l′+1)

]

, r > S.

(2.26)

Here, χk

L(r, D) are the so-called muffin-tin orbitals, and Sk

L′L are the struc-
tural constants which are defined via

Sk

LL′ =
∑

R

eik·RSR

LL′, and

SR

LL′ = −
8π(2l + 2l′ − 1)!!

(2l − 1)!!(2l′ − 1)!!

∑

L′′

CLL′′L′(−i)l′′
(R

S

)−l′′−1

YL′′(R),(2.27)

where CLL′′L′ are the Gaunt’s coefficients. YL(R) are the corresponding
spherical harmonics. The solution of Schrödinger equation of the whole crys-
tal is a linear combination of MT-orbitals

Ψk(r) =
∑

L

CL(k)
∑

Rs 6=0

eik·RS χk

L(r − RS, Dl(ε)) (2.28)

which must be exact solution of the radial Schrödinger equation inside of
atomic spheres. According to this condition all tails from other sites and
unphysical terms in MT-orbital, that is proportional to [ilYL(r) rl], have to
eliminate each other inside of all atomic spheres, i.e., the second term in
χk

L(r, D) (Eq. 2.26) will turn to zero. This gives a set of linear homogeneous
equations

∑

L

(Sk

LL′ − δLL′Pl(ε))CL(k)Φ̄l(S,Dl) = 0, (2.29)

where the total information about crystal potential is included in the poten-
tial functions

Pl(ε) = 2(2l + 1)
Dl(ε) + l + 1

Dl(ε) − l
. (2.30)

The crystal structure information is contained in the structural constants
Sk

LL′ (Eq. 2.27). Therefore, the main problem of band structure calculations is
to find eigenvalues and eigenvectors for single atomic sphere with spherically

12



2.4. LINEAR MUFFIN-TIN ORBITAL (LMTO) FORMALISM

symmetric potential and k-dependent boundary conditions which appears
from neighboring spheres. By construction the MTO basis set χk

L(r, D) is
an energy dependent. This considerably complicates numerical evaluation of
the secular equation whose solution defines the energy spectra of the system

det||〈χk

L(r, D)|Ĥ − εÔ|χk

L(r, D)〉|| = 0. (2.31)

Here, Ĥ and Ô are the Hamiltonian and overlap operators, respectively.
To resolve such a difficulty the linear MTO (LMTO) method was intro-

duced which is based on the power expansion of the original MTO’s up to
the linear order in energy. The energy independent LMTO basis set provides
a rapid convergence of the method. Taking into account only linear term in
the Taylor expansion for the MTO basis wave function in an arbitrary energy
point εν one obtains

Φ(r,D) = Φν(r) + w(D)Φ̇ν(R). (2.32)

Here, Φν(r) is the value of wave function at the energy point εν , i.e. Φν(r) =
ul(εν, r). Φ̇ν(r) is the energy derivative of the wave function at the expansion
point Φ̇ν(r) = ∂

∂ε
ul(ε, r)|ε=εν

which is normalized by one in the atomic sphere
with radius S. w(D) is calculated as follows

w(D) = −
Φν(r)

Φ̇ν(r)

D −Dν

D −Dν̇

, (2.33)

where D is the logarithmic derivative on the atomic sphere surface

D =
Φ′(r,D)

Φ(r,D)

∣

∣

∣

r=S.
(2.34)

Dν and Dν̇ are defined via Dν = S Φ′

ν(S)
Φν(S)

and Dν̇ = S Φ̇′

ν(S)

Φ̇ν(S)
, respectively.

The expansion energy point εν is selected within the region of energies
occupied by the valence electrons which is obtained from the solution of the
Schrödinger equation within the atomic sphere. Therefore, if we consider an
arbitrary energy ε, then the LMTO’s have an error of order (ε− εν)

2 within
the spheres.

In the LMTO basis set matrix elements of the Hamiltonian and overlap
matrix inside of sphere can be written as

〈Φ′
L(D′, S)|Ĥ − ενÔ|ΦL(D,S)〉 = δL,L′ wl(D),

(2.35)

〈Φ′
L(D′, S)|ΦL(D,S)〉 = δL,L′ (1 + 〈Φ̇2

νl|ΦL(D,S)〉wl(D)wl(D
′)),

13
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where ΦL(r,D) is orthogonal to Φ̇ν(r) because of the normalization condition
〈Φ(r, ε)|Φ(r, ε)〉 = 1 and ∂

∂ε
〈Φ(r, ε)|Φ(r, ε)〉 = 2〈Φ̇(r, ε)|Φ(r, ε)〉 = 0.

The Hamiltonian Eq.(2.36) describes a single atomic sphere. In order
to build up a crystal where each sphere affects to the energy spectra one
introduces a set of potential parameters wl(D1), SΦ2(D1),Φ

2(D1)/Φ
2(D2)

with D1 = −l − 1 and D2 = l. Using these potential parameters the basis
orbitals χk

L(r, D) can be written as

χk

L(r, D) =
wl(l) − wl(D)

wl(l) − wl(−l − 1)
χk

L(r) = αl(D)χk

L(r), (2.36)

where χk

L(r) is defined according to

χk

L(r) = ΦL(r,−l − 1) − Φl(S,−l − 1)
∑

L′

Sk

L′L

Φ′
L(r, l′)

2(2l′ + 1)Φ′
l(S, l

′)
(2.37)

The Hamiltonian and overlap matrix of the crystal are

Hk

L′L = 〈χk

L′(r)|Ĥ|χk

L(r)〉 = H
(1)
l′ δL′L +

[

− (H
(2)
l′ +H

(2)
l )Sk

L′L +

+
∑

L′′

Sk

L′L′′H
(3)
L′′S

k

L′′L

]S

2
Φl′(S,−l

′ − 1)Φl(S,−l − 1),

(2.38)

Ok

L′L = 〈χk

L′(r)|χk

L(r)〉 = O
(1)
l′ δL′L +

[

− (O
(2)
l′ +O

(2)
l )Sk

L′L +

+
∑

L′′

Sk

L′L′′O
(3)
L′′S

k

L′′L

]S

2
Φl′(S,−l

′ − 1)Φl(S,−l − 1),

with

O
(1)
l = 1 + 〈Φ̇2

νl〉w
2
l (−l − 1);

O
(2)
l =

1 + 〈Φ̇2
νl〉wl(−l − 1)wl(l)

wl(−l − 1) − wl(l)
;

O
(3)
l =

1 + 〈Φ̇2
νl〉w

2
l (l)

2S[(2l + 1)Φl(S, l)]2
;

(2.39)

H
(1)
l = wl(−l − 1) + ενlO

(1)
l ;

H
(2)
l =

1

2

wl(l)

wl(−l − 1) − wl(l)
+ ενlO

(2)
l ;

H
(3)
l =

wl(l)

2S[(2l + 1)Φl(S, l)]2
+ ενlO

(3)
l ,

where H(1), H(2), and H(3) terms can be treated like one-, two-, and three-
centers integrals respectively.
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Chapter 3

Dynamical Mean-Field Theory

The dynamical mean-field theory can be obtained in many ways [8], which
differ between each other for the mathematical formalism adopted and the
degree of complexity. The most pedagogical derivation starts probably from
a comparison with the Weiss molecular field theory for the Ising model.

The Ising model is a lattice of classical spins Si described by the Hamil-
tonian

H = −J
∑

i,j

SiSj − h
∑

i

Si, (3.1)

where h is the energy of single spin in an external(magnetic) field and J is
the ferromagnetic energy due to a spin-spin interaction. To keep the model
realistic the first sum is limited to indexes that run for pairs of nearest neigh-
bors. The presence of the interaction term correlates the spin between each
other. which makes the system hard to solve directly. However, if we focus
on one physical quantity, we can try to reduce it to a simpler equivalent
system that we are able to solve. Let us focus on the magnetization at site i

mi ≡ 〈Si〉, (3.2)

the is the thermal average of a spin at a single site. Our equivalent system is
a lattice of non-interacting spins moving in an effective site-dependent field
heff and the corresponding Hamiltonian is

Heff = −
∑

i

heff
i Si. (3.3)

The effective field should be chosen to reproduce the same magnetization mi

of the original lattice. Calculating the sum over all the possible configurations
for (3.3), we can write down an explicit expression for the effective field:

βheff
i = tanh−1mi, (3.4)
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CHAPTER 3. DYNAMICAL MEAN-FIELD THEORY

where β = 1/kBT . Up to now we have not made any approximations, but
we still have not obtained a relation with the original system. In the Weiss
mean-field theory the effective field is approximated by the thermal average
of the local field seen by a spin at a given site:

heff
i ≃ h + J

∑

j

〈Si〉 = h + Jzmi. (3.5)

In the last step we have contextualized our discussion to a translational in-
variant system with z nearest neighbors for every site. The equation (3.4)
and (3.5) can be solved analytically, leading to the approximated magnetiza-
tion. We have to stress that the procedure of the mapping into an equivalent
non-interacting system is exact with respect to the chosen observable: the
approximation is made when establishing a relation between the Weiss field
and the neighboring sites. Furthermore the approximation becomes exact in
the limit of z → ∞ [9]. This result is quite intuitive: the neighbors of a given
site can be globally treated as bath when their number becomes large.

All these ideas can be easily extended to the Hubbard model [10]. Being a
fully-interacting quantum many-body system, the mapping procedure is not
as obvious as above, but can be established on rigorous basis. For simplicity
we consider the one-band Hubbard model [11, 12, 13]

Ĥhub = −t
∑

R,R′

ĉ+R,σ ĉR′,σ + U
∑

R

nR,↑nR,↓. (3.6)

Instead of the magnetization, we focus on the local Green’s function at a
single site:

Gσ
R,R′(τ − τ ′) ≡ −〈T ĉR,σ(τ)ĉ+

R′,σ(τ
′)〉. (3.7)

Here τ and τ ′ are imaginary times in the Matsubara’s formalism for the per-
turbation theory at finite temperature and T is the time-ordering operator.

As before, we would like to chose the reference system as a single site
embedded in an effective field. Since the Green’s function (3.7) is time de-
pendent, the new field must also evolve in time, i.e. must be dynamical.
The simplest field we can imagine is a bath of non-interacting electrons. The
single site, the bath and their coupling can be described by the following
Hamiltonian:

Ĥeff = Ĥatom + Ĥbath + Ĥcoupling. (3.8)

The first term
Ĥatom = Uĉ+↑ ĉ↑ĉ

+
↓ ĉ↓ (3.9)

is the Coulomb repulsion of two electrons at the atomic site, and ĉ, ĉ+ are the
corresponding spin-dependent annihilation and creation operators. Notice
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that this term comes directly from the initial equation (3.6). To assure a
formal distinction between the operators of the original model and the lattice
model we have omitted the index R. The second term of the equation (3.8)
is

Ĥbath =
∑

k,σ

εk,σâ
+
k,σâk,σ (3.10)

and represents the fictitious sea of electrons whose quantum numbers are
their spin σ and number of site in the bath k. We use â and â+ for the cor-
responding annihilation and creation operators, and εk,σ for the bath orbital
energies. Finally the last term of equation (3.8)

Ĥcoupling =
∑

k,σ

Vk,σ(â
+
k,σ ĉσ + ĉ+σ âk,σ), (3.11)

describes the exchange of electrons between site and bath at an energy εk,σ

with amplitude Vk,σ.
The Hamiltonian (3.8) is a well-known problem in many-body physics: it

is a single impurity Anderson model . In the last 40 years it has been studied
extensively and nowadays can be solved through many methods, depending
on the range of the parameters and on the allowed approximations . By now
we are interested in finding the connection of the parameters εk,σ and Vk,σ

with the full solution of the problem, i.e. the analogous formula to equation
(3.4). To this aim we treat the first term of equation (3.8) as a perturbation
[14]; then the other two terms determine the unperturbed Green’s function of
the bathG0. Passing from the imaginary time τ to the Matsubara frequencies
iωi, we have

Gσ
0 (iωn) =

1

iωn + µ− ∆σ(iωn)
(3.12)

where µ is the chemical potential, which sets the correct number of particles,
and the quantity

∆σ(iωn) =
∑

k

|Vk,σ|
2

iωn − εk

(3.13)

is called hybridization function. In terms of many-body perturbation theory
the full Green’s function of the Hamiltonian (3.8) can be obtained by means
of the Dyson equation

Gσ
imp = [Gσ

0 (iωn)−1 − Σσ
imp(iωn)]−1, (3.14)

where Σimp is the self-energy function and contains all the effects of the
interactions. Σimp depends only on the unperturbed Green’s function G0

and the interaction term equation (3.9). The parameters εk,σ and Vk,σ enter
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CHAPTER 3. DYNAMICAL MEAN-FIELD THEORY

in the full problem only through G0, which takes the meaning of the ”Weiss”
field and which is determined to have the impurity full Green’s function (3.14)
coincide with the local Green’s function (3.7):

Gσ
imp(iωn) = Gσ

R,R′(iωn). (3.15)

The fact the parameters do not appear explicitly in the mapping procedure
makes it more rigorous to redefine the problem in terms of an effective action
formalism [15], instead of the Hamiltonian (3.8). Integrating out the bath
degrees of freedom, we can write down the effective action for the orbital of
the impurity as

S = −

∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

ĉ+σ (τ)[Gσ
0 (τ − τ ′)]−1ĉσ(τ

′)+

U

∫ β

0

dτ ĉ+↑ (τ)ĉ↑(τ)ĉ
+
↓ (τ)ĉ↓(τ). (3.16)

The action S fully determines the dynamics of the local site under consider-
ation: the first term takes into account electrons jumping from the bath on
the site at τ and coming back to the bath at τ ′; the second term includes
the Coulomb repulsion when two electrons with opposite spins are present
on the site at the same time. Now we have the most rigorous expression for
the full Green’s function of the impurity:

Gσ
imp(τ − τ ′) ≡ −〈T ĉσ(τ)ĉ+σ (τ ′)〉S. (3.17)

Anyway we must stress again that in both the formulations in terms of
Dyson’s equation or in terms of the effective action, the central point is
the preservation relation (3.15).

Up to now the representation of the chosen observable of the original
lattice is exact. The approximation is done with the next step: the connection
of the two systems. In the DMFT the lattice self-energy is only local and
coincides with the self-energy of the impurity model:

Σσ
R,R′(iωn) = δR,R′Σσ

imp(iωn). (3.18)

In the reciprocal space it means that the self-energy becomes k-independent.
While the approximation (3.18) can appear rather arbitrary,indeed is

mathematically very similar to equation (3.5). In fact it becomes exact in the
limit of infinite nearest neighboring sites, or equivalently, infinite dimensions,
as was proved by Metzer and Vollhardt in a work [16] that is considered the
first mile-stone of the DMFT. One year later, George and Kotliar [9] com-
pleted the main framework of the theory by proving that in the same limit the
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3.1. EXACT DIAGONALIZATION

Hubbard model can be exactly mapped into the Anderson impurity model.
Their proof is based on the fact that the topology of all irreducible Feynman
diagrams becomes the same in the two systems: simply the local contri-
bution of all the diagrams. The parallelism between the Weiss mean-field
theory for the classical Ising model and the quantum Hubbard model is sum-
marized in Table 3. In addition we show also that the same representation
can be constructed for the Kohn-Sham equations. In this case the original
system is the many-electron Hamiltonian (1.2), and the mapping system is
the non-interacting electron gas (2.16) in the effective potential VKS. The
approximation comes with the LDA exchange-correlation functional (2.18).
It is clear that a strong mathematical connection exists between these gener-
alized mean-field theories. More precisely all the three of them can be seen
as generalization of the thermodynamical Legendre transformation

Before ending the Chapter we should emphasize that the convergence
of the DMFT approximation with respect to the number of neighbors is
very fast, and this makes it applicable also for more realistic cases, like a 3-
dimensional solid. Moreover there are two other limits for which the DMFT
becomes exact:

• in the atomic limit t = 0 the sites are decoupled from each other, so that
the hybridization function ∆(iωn) is zero; as a result the self-energy has
only on-site component, i.e. it is local

• in the non-interacting limit U = 0 the self-energy becomes zero, and
then again trivially local.

Original System Ising Model Hubbard Model Electron Hamiltonian
Mapping System Spins in a Single Impurity Electrons in an

Effective Field Anderson Model Effective Potentail
Selected Observable Magnetization Green’s Function Electron Dencity

mi GR,R′(τ − τ ′) n(r)

Approximation heff
i ≃ h + zZmi Σσ

R,R′ ≃ δR,R′Σσ
imp Exc[n] ≃ ELDA

xc [n]

3.1 Exact Diagonalization

Exact diagonalization methods are important tools for studying the physi-
cal properties of quantum many-body systems. These methods typically are
used to determine a few of the lowest eigenvalues and eigenvectors of mod-
els of many-body systems on a finite lattice. From these eigenvalues and
eigenvectors, various ground state expectation values and correlation func-
tions are easily computed. Although the methods are limited to small lattice
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sizes, they have become increasingly popular because of using with DMFT.
In addition to provideng useful benchmarks for approximate theoretical cal-
culations and quantum Monte Carlo simulations they help to provide insight
into the often subtle properties of unsolvable many-body problems in the
thermodynamical limit.

The expression ”Exact diagonalization” is used to describe a number of
different approaches [8, 17] which yield numerically exact results for a finite
lattice system by directly diagonalizing the matrix representation of the sys-
tem’s Hamiltonian in an appropriate many-particle basis. The simplest, and
the most time- and memory- consuming approach is the exact diagonalization
[18, 19] of the matrix which enables one to calculate all desired properties.
However, the dimension of the basis for a strongly interacting quantum sys-
tems grows exponentially with the system size, so it is impossible to treat
systems with more than a few sites. If only properties of low- or high-lying
eigenstates are required, (in the investigation of condensed matter systems
one is often interested in the low-energy properties), it is possible to reach
substantially larger system sizes using iterative diagonalization procedures,
which also yields result to almost machine precision in most cases. The
iterative diagonalization methods allow for the calculation of ground state
properties and (with some extra efforts) some low-lying excited states are also
accessible. In addition, it is possible to calculate dynamical properties (e.g.
spectral functions, time evaluation) as well as behavior a finite temperature.
Nearly every system and observable can be calculated in principle, although
the convergence properties may depend on the system under investigation.
In chapter 4 we will describe such iterative method - the Lanczos algorithm
- in details.

3.2 Quantum Monte Carlo method. Hyrsch-

Fye algorithm

The quantum Monte Carlo scheme is the most universal tool [20, 21] for the
numerically study of quantum many-body systems with strong correlations.
The auxiliary-field scheme allows to deal with fermionic systems with strong
electronic correlations. The determinantal auxiliary-field algorithm, namely
Hirsch-Fye appeared more than 20 years ago and became nowadays standard
for the numerical investigation [22, 23] of physical models with with strong
interactions, as well as for the quantum chemistry and nanoelectronics. We
regard this method as it is an efficient as impurity solver within DMFT ,i.e.
in solving Anderson impurity model.
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3.2. QUANTUM MONTE CARLO METHOD. HYRSCH-FYE
ALGORITHM

The one band single-impurity model is specified by the imaginary time
effective action:

Seff = −

∫ β

0

dτdτ ′
∑

σ

c+σ (τ)G−1
σ (τ − τ ′)cσ(τ ′)

+

∫ β

0

dτUn↑(τ)n↓(τ
′),

(3.19)

G−1
σ (iω) = iω + µ− ∆σ(iω), (3.20)

where c+σ (τ) and cσ(τ) are Grassmann variables, µ denotes the chemical po-
tential, U is on-site Coulomb repulsion and ∆σ(iω) is a hybridization function
that describes transitions into the bath and back.

The aim of the impurity solver is to compute the Green’s function

G(τ − τ ′) = 〈Tτc
+
σ (τ)cσ(τ ′)〉Seff

=
Tr[Tτe

−Seff c+σ (τ)cσ(τ ′)]

Tr[TτeSeff ]
(3.21)

for a given hybridization function.
The first step in Hirsch-Fye algorithm is a discretization of the impurity

model effective action (3.19):

Seff →
∑

ττ ′σ

c+σ (τ)G−1
σ (τ − τ ′)cσ(τ ′) + Un↑(τ)n↓(τ

′), (3.22)

where the imaginary time is discretized in L ”slices” τ = 1, 2, . . . , L of size
∆τ , and the time step ∆τ is defined by β = L∆τ .

We temporarily introduce the Hamiltonian description of the local im-
purity problem, which permits a local in time description of the partition
function. In order to preserve the standard notations for this model, the
impurity orbital will be taken as a d orbital. The conduction bath orbitals
are numbered from p = 2, . . . , ns, and the impurity orbitals is equivalently
denoted by c1σ ≡ dσ, i.e. corresponds to p = 1. The Hamiltonian of a general
Anderson impurity model reads

H =
∑

p≥2,σ

εpc
+
pσcpσ +

∑

p≥2,σ

Vp(c
+
pσdσ + d+

σ cpσ)

εd

∑

σ

d+
σ dσ + Und↑nd↓

(3.23)

It is written as a sum of terms H = H0 +H i, where H0 is a quadratic in the
fermion operators:

H0 ≡
∑

p≥2,σ

εpc
+
pσcpσ +

∑

p≥2,σ

Vp(c
+
pσdσ + d+

σ cpσ)

+ (εd + U/2)
∑

σ

ndσ,
(3.24)
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whereas H i is a interaction term :

H i ≡ U [nd↑nd↓ −
1

2
(nd↑ + nd↓)]. (3.25)

The discretization allows to write a partition function as

Z = Tr
L
∏

l=1

e−βH = Tre−∆τ [H0+Hi] (3.26)

The follow derivation is based on the Trotter-Suzuki transformation, namely
for operators A and B

e(A+B) = lim
L→∞

(eA/LeB/L) (3.27)

This implies that exp(−∆τ(A+B)) = lim
∆→0

exp(−∆τA)exp(−∆τB)+O(∆τ 2).

Hence the exponential of the Hamiltonian in (3.26) is approximately factor-
ized into Gaussian and interacting parts up to an error of order O(∆τ 2) by
discretizing the imaginary time interval into L slices:

Z ≃ Z∆τ ≡ Tr
L
∏

l=1

e−∆τH0

e−∆τHint

(3.28)

The Green’s function corresponding to Z∆ can be defined analogously, by
using U∆τ ≡ exp(−∆τH0)exp(−∆τH i) and an evolution operator between
time slices:

g∆τ
p1,p2

(τl1 , τl2) ≡ 〈ap1
(τl1)a

+
p2

(τl2)〉

=
TrUL−l1

∆τ ap1
(τl1)U

l1−l2
∆τ a+

p2
(τl2)U

l2
∆τ

TrUL
∆τ

, (3.29)

we l1 > l2 is supposed.
The partition function is further evaluated by transforming the interact-

ing problem into a noninteracting one. This happens at the cost of intro-
ducing auxiliary degrees of freedom and is facilitated by a discrete Hubbard-
Stratonovich transformation [24, 25, 26], applied on each slices:

exp[−∆τH i] =
1

2

∑

s=±1

exp[λs(nd↑ − nd↓)],

cosh(λ) ≡ exp(∆τU/2)

(3.30)
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and after inserting (3.30) into (3.28), the partition function Z∆ is reduced to

Z∆ =
1

2L

∑

s1,...,sL=±1

Z∆
s1,...,sL

=
1

2L

∑

s1,...,sL=±1

detO↑({S} detO↓({S}) (3.31)

with

Z∆
s1,...,sL

=
∏

σ=±1(=↑↓)

Tre−∆τH0

eV σ(s1)

× e−∆τH0

eV σ(s2) · · · e−∆τH0

eV σ(sL)

(3.32)

In equation (3.32), the ns × ns matrix V σ(s) is diagonal with

eV σ(s) =









eλσs · · · · · · 0
· · · 1 · · · · · ·
· · · · · · 1 · · ·
· · · · · · · · · 1









(3.33)

The matrices Oσ({S} have dimensions NsL × NsL and depend on the par-
ticular configuration of the Ising spins denoted by {S}.

The crucial fact noted by Hirsch and Fye is that the Green’s functions
for two different Ising spins configurations, (s1, . . . , sL) and (s′1, . . . , s

′
L), are

related to each other by a Dyson equation. Abbreviating g ≡ g∆τ
s1,...,sL

and
g′ ≡ g∆τ

s′
1
,...,s′

L
, etc, this Dyson equation reads

g′ = g + (g − 1)(eV ′−V − 1)g′. (3.34)

In fact, Eq. (3.34) relates two Green’s functions g and g′ via a projection
operator on the d site, namely [exp(V ′ − V ) − 1]. The presence of this
projection operator comes from the possibility of the integrating out the
conduction band. As a consequence, the Dyson equation (3.34) directly re-
lates the Green’s functions on the d site one to another, and this equation
remains equally valid in the subspace is = 1, i′s = 1. Hence, the d site Green’s
functions G∆τ

s1,...,sL
also satisfy

G′ = G + (G− 1)(eV ′−V − 1)G′, (3.35)

viewed as an L× L matrix equation.
Rearranging Eq. (3.35), it is straightforward to see that Gs′

1
,...,s′

L
for an

Ising configuration (s′1, . . . , s
′
L) can be obtained from Gs1,...,sL

by inversion of
an L× L matrix A, defined in the following equation

AG′ = G,A ≡ 1 + (1 −G)[eV ′−V − 1]. (3.36)
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In the special case in which (s′1, . . . , s
′
L) differs from (s′1, . . . , s

′
L) by the value

of a single spin, say sl, A takes on a special form

A =













1 0 A1l 0 · · ·
0 1 A2l 0 · · ·
· · · 0 All · · · · · ·
· · · · · · · · · 1 0
· · · · · · ALl 0 1













(3.37)

In that case, detA = All = 1 + (1 − Gll)[exp(V
′
l − Vl) − 1]. Expanding A−1

in minors, it can be easily be seen that A−1
lk = 0 for k 6= l. In that case Eq.

(3.36) simplifies to

G′
l1l2 = Gl1l2 + (G− 1)l1l(e

V ′−V
ll − 1)(All)

−1Gll2 , (3.38)

which is a special case of a Sherman-Morrison formula [27]. equation (3.34)
can be also be used to show that

detO′

detO
=

detG

detG′

= detA = 1 + (1 −Gll)[exp(V
′ − V ) − 1]

(3.39)

It is remarkable that all the equations (3.35-3.39) express exact relations
between discretized Green’s functions G∆τ . The only error left is related to
the Trotter-Suzuki decomposition.
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Chapter 4

Finite Temperature Lanczos
Method

As was mentioned above the key quantity on which DMFT focuses is the
local Green’s function. In the case of finite temperatures it is defined on
imaginary time as follows [28]

Gij(τ) = −〈ci(τ)c
+
j (0)〉 = −

1

Z
Tr{e−βĤci(τ)c

+
j (0)}, (4.1)

where τ is imaginary time, c+i (τ), ci(τ) are creation and annihilation opera-
tors acting on site with number i and defined in Heisenberg representation, β
is inverse temperature and average is evaluated on grand canonical ensemble.

One of the advantages of Lanczos method is the capability to calculate
Green’s function on the real energies. It is due that the calculation is based
on the Lehmann representation of the Green’s function. We evaluate this
formula due to Mahan [29]. Using eigenvalues and eigenstates for the system
with Hamiltonian Ĥ :

Ĥ|ν〉 = Eν |ν〉 (4.2)

the expression for Green’s function reads

Gij(τ) = −
1

Z

∑

ν

〈ν|e−βĤci(τ)c
+
j (0)|ν〉,

where Z is a partition function:

Z =
∑

ν

e−βEν (4.3)

25



CHAPTER 4. FINITE TEMPERATURE LANCZOS METHOD

Introducing the unit operator

1̂ =
∑

ν

|ν〉〈ν|

and remember the transformation from Schrödinger to Heisenberg represen-
tation

ĉi(τ) = eτĤ ĉie
−τĤ (4.4)

it yields

Gij(τ) = −
1

Z

∑

µ,ν

e−βEν 〈ν|ci(τ)|µ〉〈µ|c
+
j (0)|ν〉 =

−
1

Z

∑

µ,ν

e−βEν 〈ν|eτĤci e
−τĤ |µ〉〈µ|c+j |ν〉 =

−
1

Z

∑

µ,ν

e−βEνe−τ(Eν−Eµ)〈ν|ci |µ〉〈µ|c
+
j |ν〉

To obtain Green’s function on energy scale one needs to apply the Fourier
transformation

Gij(iωn) =

∫ β

0

Gij(τ)e
iωn dτ (4.5)

Gij(iωn) = −
1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉e

−βEν

∫ β

0

dτ eτ(iωn+Eν−Eµ) =

−
1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉e

−βEν
eiβωn · eβ(Eν−Eµ) − 1

iωn + Eν −Eµ

and with ωn = (2n+1)π
β

called Matsubara frequencies, eiωnβ = −1 for fermions

Gij(iωn) = −
1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉e

−βEν
(−1) · eβ(Eν−Eµ) − 1

iωn + Eν −Eµ
=

1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉

iωn + Eν −Eµ

[

exp(−βEµ) + exp(−βEν)

]

(4.6)
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This Green’s function is well defined i.e. has no singularities on imaginary
axis [30]. Therefore it is suitable as a quantity to be self-consistent within
DMFT iterations. But physical properties, for instance the density of states
is expressed through Green’s function on real energies. The retarded Green’s
function on real energies could be obtained in the same manner as the Green’s
function on imaginary time. One can see that the former is an analytical
continuation of the latter with iωn → E + iδ substitution [29].

GRet
ij (E) =

1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉

E + iδ + Eν − Eµ

[

exp(−βEµ) + exp(−βEν)

]

(4.7)

The direct usage of (4.7) leads to full exact diagonalization method. How-
ever, this method has at least two problems. At the beginning it requires
the full solution of eigenproblem. It is a high memory consuming process.
In terms of Anderson impurity model(AIM) only values of ns of the order
ns = 7 [which leads to the diagonalization of a 1225x1225 matrix in the sector
(n↑ = 4, n↓ = 3)] or ns = 8 (4900x4900) is reachable. If an impurity site in
AIM represents transition element with five orbitals then one could add only
three bath orbitals. That does not allow to much. It is more disappointed if
only low energy states are reasonable in the case of low temperature.

Then one has to evaluate Green’s function due to (4.6) or (4.7). There
are several problems with it from the point of view of float point mathemat-
ics. The main problem is that this expression is very sensitive to errors in
eigenenergies Eν and eigenstates |ν〉. The other one that is no evidence how
much terms in (4.6) one has to take into account to reach enough accuracy.
That is because the sum over eigenstates is not monotonic. Introducing some
notations for convenience

Gξ(E) =
1

Z

∑

µ,ν<ξ

〈ν|ci|µ〉〈µ|c
+
j |ν〉

E + iδ + Eν −Eµ

[

exp(−βEµ) + exp(−βEν)

]

,

where µ, ν < ξ means Eµ, Eν < Eξ. Than the condition can be written as

ξ > ζ ; |Gξ(E) −G(E)| > |Gζ(E) −G(E)|

To understand when could this condition be fulfilled one should imagine the
case |E + Eν − Eµ| ≪ 1, i.e. the energy point E where Green’s function is
evaluated negligible differs from the |Eν −Eµ|. Of cause, one can say that it
does not matter because due to exp[−βEν ] factor. Namely, the summation
has to be evaluated up to ν fulfilled exp[−βEν ] ≪ 1. Well, it is true. But it

27



CHAPTER 4. FINITE TEMPERATURE LANCZOS METHOD

will be nice to have a certain criteria to make cutoff of summation in (4.6).
Now, comes the good news: the Lanczos method does not suffer from these
problems. It allows to solve partial eigenproblem and supplies with iterative
convergence algorithm for evaluating Green’s function (4.6). Since the case
of finite temperature has no principle differences from the zero temperature
case the latter will be considered in detail. Then the finite temperature
extension will be specified.

4.1 The Lanczos method

The Lanczos method is based on iterative algorithm. The initial vector to
start iterations |ν0〉 is chosen. The considerations of the choice will be dis-
cussed later. Then using Hamiltonian Ĥ as generator, new vectors are pro-
duced. The set of vectors is called the Lanczos basis. The iterative procedure
to construct Lanczos correspond to:

|ν1〉 = Ĥ|ν0〉 −
〈ν0|Ĥ|ν0〉

〈ν0|ν0〉
|ν0〉,

|ν2〉 = Ĥ|ν1〉 −
〈ν1|Ĥ|ν1〉

〈ν1|ν1〉
|ν1〉 −

〈ν1|ν1〉

〈ν0|ν0〉
|ν0〉,

|ν3〉 = Ĥ|ν2〉 −
〈ν2|Ĥ|ν2〉

〈ν2|ν2〉
|ν2〉 −

〈ν2|ν2〉

〈ν1|ν1〉
|ν1〉

It can be easily checked that 〈ν0|ν1〉 = 0, 〈ν1|ν2〉 = 0 and so on. In general,
the iterative procedure is specified as follows:

|νi+1〉 = Ĥ|νi〉 − ai|νi〉 − b2i |νi−1〉, (4.8)

where ai =
〈νi|Ĥ|νi〉

〈νi|νi〉
,

b2i =
〈νi|νi〉

〈νi−1|νi−1〉

with b20 ≡ 0 and |ν−1〉 ≡ 0 .
Now, the application this algorithm for partial eigenvalue problem is un-

der consideration. The initial state |ν0〉 should have nonzero overlap with
the ground state [31, 32]. If no a priori information about ground state is
known than arbitrary initial vector |ν0〉 is chosen. But if it is known that the
ground state belongs to the invariant part of Hilbert space described by some
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quantum numbers then the initial vector should belong to the same part of
Hilbert space.

The basis construction proceeds until the Hilbert space dimension is
reached (when full eigenproblem is demanded to be solved) or convergence
criterion is fulfilled. The latter could be 〈νi+1|νi+1〉 < ε . This procedure
brings the Hamiltonian to the tridiagonal form:

H =















a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

...
. . .















(4.9)

In principle, this tridiagonal sparse matrix could be easy diagonalized by
standard mathematic subroutines [33, 34, 35] and full eigenproblem (when
the Lanczos basis covers the whole Hilbert space) could be solved. In practice
it is not so, because of a problem with stability. Stability means how much
the algorithm will be affected (i.e. will it produce the approximate result
close to the original one) if there are small numerical errors introduced and
accumulated.

For the Lanczos algorithm, it can be proved that with exact arithmetic,
the set of vectors |ν0〉, |ν1〉, . . . , |νm〉 constructs an orthogonal basis, and the
eigenvalues/eigenvectors solved are good approximation to those of original
matrix. However, in practice (as the calculations are performed in floating
point arithmetic where inaccuracy is inevitable), the orthogonality is quickly
lost and in some cases the new vector could even be linearly dependent on
the set that is already constructed. As the result, some of the eigenvalues of
the resultant tridiagonal matrix may not be approximations to the original
matrix. Therefore, the Lanczos algorithm is not very stable.

Nevertheless the ground state could be precisely obtained and correspond
dynamical properties could be easily found by the Lanczos scheme.The great
advantage of algorithms is a fast convergence. About 100 iterations or less is
sufficient to reach ground state with a great accuracy. Common explanation
for this rapid convergence lays in nature of iterative diagonalization methods.
They are based on an idea to project the matrix to be treated H onto a
subspace of dimension M ≪ N (where N is the dimension of the Hilbert
space in which the diagonalization is carried out). The latter is cleverly
chosen so that the extremal eigenstates within the subspace converge very
quickly with M to the extremal eigenstates of the system.

It could be illustrated explicitly on two examples. The first is very simple
power method. In this approach, the eigenvector with the extremal eigen-
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value is obtained by repeatedly applying the Hamiltonian to a random initial
state |ν0〉,

|νn〉 = Ĥn|ν0〉

Expanding in the eigenbasis Ĥ|i〉 = Ei|i〉 yields

|νn〉 =
∑

i

〈i|ν0〉 Ĥ
n|i〉

=
∑

i

〈i|ν0〉E
n
i |i〉

It is clear that the state with eigenvalue with the largest absolute value
will have highest weight after many iterations n, provided that |ν0〉 has a
finite overlap with this state. The subspace generated by the sequence of
steps on the power method

{|ν0〉, Ĥ|ν0〉, Ĥ
2|ν0〉, ..., Ĥ

n|ν0〉}, (4.10)

is called the nth Krylov space and is the starting point for the other proce-
dures.

The convergence behavior is determined by the spacing between the ex-
tremal eigenvalue and the next one. In any case, with every new step a
better approximation for the ground state is obtained. All these is true for
the Lanczos method as due to the orthogonal basis produced and therefore
more fast convergence is supplied.

The second algorithm is known as modified Lanczos method [36, 37].
The iterative procedure consist of “2x2” steps. Namely, |ν0〉, |ν1〉 basis is
constructed and the Ĥ represented in this basis is diagonalized. The lower
energy state is taken as the initial for the generation new pair of basis set
|ν ′0〉, |ν

′
1〉 and so on. And again new variational state represented the ground

state is improved in systematic way.
In spite of the advantage of this method the memory limitation impose the

significant restriction on the size of the cluster to be treated. To understand
this point note that the ground state is written as |ψ0〉 =

∑

i |fi〉, where
each |fi〉 basis vector should be expressed in some convenient basis which
Hamiltonian be easy applied to. For instance,in Hubbard model the state of
each site is specified four state basis : |0〉, | ↑〉, | ↓〉, |2〉. The basis dimension
grows exponentially. In result, for Nsite = 16 the total dimension of Hilbert
space is 416 ≈ 4.3 × 109. Such a memory requirement is unreachable for
now-days computers. Fortunately, this problem can be reduced using the
symmetry of the problem to represent the Hamiltonian in a block-diagonal
form. The most obvious symmetry is the number of particles which is usually
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conserved. The total projection of spin Sz
total might also be a good quantum

number. For example, if both number of particle Nparticle and total spin Sz
total

are conserved than the linear size of the Hamiltonian block to be diagonalized
is 12870. The importance of symmetry using is evidence.

How we can obtain the ground state exactly? Each element of Lanczos
basis |νi〉 is represented by a set of coefficients which number is the size of
work basis. In the same time the ground state is expressed by a coefficient set
|ψ0〉 =

∑

i ci|νi〉. Taking into account the number of iterations are required
to reach the ground state (∼ 100) it has to conclude that storing the whole
Lanczos basis is not convenient. The decision is very simple - run Lanczos
procedure twice. First - to obtain coefficients of ground state representation
in Lanczos basis . Second - to restore Lanczos basis vectors (for Lanczos
itself only three vectors is demanded to be store in memory).

4.2 Dynamical properties

4.2.1 Zero temperature

The ability to calculate dynamic properties with fine convergence and in sta-
ble way is the one of the most appealing feature of the Lanczos technique.
Stability is due to the recursion method, i.e. it is the property of clever
numeric scheme. For convenience we derive the required expression of the
Green’s function at zero temperature. The finite temperature extension will
be derived later.

We start from (4.6):

Gij(iωn) =
1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉

iωn + Eν −Eµ

[

exp(−βEµ) + exp(−βEν)

]

Let us regroup the terms

Gij(iωn) =

1

Z

∑

µ,ν

〈µ|c+j |ν〉〈ν|ci|µ〉

iωn + Eν − Eµ
exp(−βEµ) +

1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉

iωn + Eν −Eµ
exp(−βEν)

Now, one performs the limit of β → ∞ after shift E → E −E0 (E0 - is a
ground state energy) and change ν → µ in the first term

Gij(iωn) =
∑

µ

{

〈0|c+j |µ〉〈µ|ci|0〉

iωn + Eµ
+

〈0|ci|µ〉〈µ|c
+
j |0〉

iωn − Eµ

}

(4.11)
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For recursion method it is required to rewrite last expression to contain
Hamiltonian Ĥ instead of eigenenergies Eµ. We make this trick with the
first term:

∑

µ

〈0|c+j |µ〉〈µ|ci|0〉

iwn + Eµ
=

∑

µ

〈0|c+j (Ĥ + iwn)−1|µ〉〈µ|ci|0〉 =

〈0|c+j (Ĥ + iwn)−1
∑

µ

|µ〉〈µ|ci|0〉 =

〈0|c+j
1

iwn + Ĥ
ci|0〉

The second term can be written in the similar way

∑

µ

〈0|ci|µ〉〈µ|c
+
j |0〉

iωn −Eµ

=

〈0|ci
1

iwn − Ĥ
c+j |0〉

As the result

Gij(iwn) = 〈0|ci
1

iwn − Ĥ
c+j |0〉 + 〈0|c+j

1

iwn + Ĥ
ci|0〉 (4.12)

This is exactly the form which Lanczos (recursion) method deals with. For
the simplicity we consider the diagonal case

Gii(iwn) = 〈0|ci
1

iwn − Ĥ
c+i |0〉 + 〈0|c+i

1

iwn + Ĥ
ci|0〉 ≡

G(iwn) = 〈0|c
1

iwn − Ĥ
c+|0〉 + 〈0|c+

1

iwn + Ĥ
c|0〉 (4.13)

Only the first term is considered. To evaluate this expression the Hamilto-
nian will be brought to tridiagonal form by the standard Lanczos recursion
relations. But instead of starting from a random vector as in evaluating the
ground state |0〉 we choose the initial vector as

|φ0〉 =
c+|0〉

√

〈0|c c+|0〉
(4.14)
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and build Lanczos basis

|φk+1〉 = Ĥ|φk〉 − ak|φk〉 − b2k|φk−1〉, (4.15)

where ak =
〈φk|Ĥ|φk〉

〈φk|φk〉
,

b2k =
〈φk|φk〉

〈φk−1|φk−1〉

with b20 ≡ 0 and |φ−1〉 ≡ 0 . To understand this choice let us consider the
identity:

(z − Ĥ)(z − Ĥ)−1 = I,

or in details:

∑

n

(z − Ĥ)mn(z − Ĥ)−1
np = δmp, (4.16)

where Ĥ is a Hamiltonian (represented in Lanczos basis |φn〉 with |φ0〉 defined
in (4.14)) and z - complex variable. With p = 0 (4.16) becomes system of
linear equations :

∑

n

(z − Ĥ)mnxn = δm0 (4.17)

Where
[

~x
]

n
= (z − Ĥ)−1

n0 is vector to be calculated. The first component of

~x is

x0 = (z − Ĥ)−1
00 = 〈φ0|

1

z − Ĥ
|φ0〉, (4.18)

exactly what we are interested in (see (4.12)). Cramer’s rules is used to
evaluate x0

x0 =
‖B̂0‖

‖z − Ĥ‖
, (4.19)

where

z − Ĥ =











z − a0 −b1 0 0 . . .
−b1 z − a1 −b2 0 . . .
0 −b2 z − a3 −b3 . . .
...

...
...

...











, (4.20)
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and

B0 =











1 −b1 0 0 . . .
0 z − a1 −b2 0 . . .
0 −b2 z − a3 −b3 . . .
...

...
...

...











, (4.21)

with the coefficients an, bn defined in Lanczos (4.15). Introducing denotations
Di as matrices with excluded 1 . . . i -rows and columns from

[

z − Ĥ
]

we get

‖z − Ĥ‖ = (z − a0)‖D1‖ − b21‖D2‖,

‖B0‖ = ‖D1‖

Therefore x0 can be found

x0 =
1

z − a0 − b21
‖D2‖

‖D1‖

(4.22)

The ratio of determinants in denominator in (4.22) is easy evaluated in
similar manner

‖D2‖

‖D1‖
=

1

z − a1 − b22
‖D3‖

‖D2‖

(4.23)

This procedure is repeated until the continued fraction is constructed

〈φ0|
1

z − Ĥ
|φ0〉 =

1

z − a>

0 −
b>

1
2

z − a>

1 −
b>

2
2

z − a>

2 · · ·

(4.24)

where the coefficients a>

i and b>

i
2 with ”>” upper subscript are obtained in

Lanczos procedure with c+|0〉 as the initial vector. In the same manner the
corresponding expression for the second term in (4.12) is found

〈φ0|
1

z + Ĥ
|φ0〉 =

1

z + a<

0 −
b<

1
2

z + a<

1 −
b<

2
2

z + a<

2 · · ·

(4.25)
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where again the coefficients a<

i and b<

i
2 with ”<” upper subscript are obtained

in Lanczos procedure with c|0〉 initial vector.
Finally, we obtained:

G(iwn) = G>(iwn) +G<(iwn) = (4.26)

〈0|c c+|0〉

iwn − a>

0 −
b>

1
2

iwn − a>

1 −
b>

2
2

iwn − a<

2 · · ·

+
〈0|c+c|0〉

iwn + a>

0 −
b>

1
2

iwn + a>

1 −
b>

2
2

iwn + a>

2 · · ·

4.2.2 Finite Temperature

The starting point to modify Lanczos technique for a finite temperature again
is the Green’s function in Lehmann representation (4.6)

Gij(iωn) =
1

Z

∑

µ,ν

〈ν|ci|µ〉〈µ|c
+
j |ν〉

iωn + Eν − Eµ

[

exp(−βEµ) + exp(−βEν)

]

This formula could be easy rewritten in different manner:

Gij(iωn) =
1

Z

∑

ν

e−βEν

{

∑

µ

〈ν|ci|µ〉〈µ|c
+
j |ν〉

iωn + Eν − Eµ

+
〈ν|c+j |µ〉〈µ|ci|ν〉

iωn + Eµ −Eν

}

(4.27)

The expression inside the curly braces is equivalent to (4.11) only with
substitution |0〉 for |ν〉. So we can see that only low-energy eigenstates due to
a factor e−βν factor are required. To obtain precisely these states we used the
Arnoldi algorithm [38]. It is like Lanczos algorithms only with the stabilizes
Gram-Schmidt process , i.e. at each iteration new vector is orthogonalized to
previous ones. Latter decides the stability problem consisted in orthogonality
loss. Summarizing all written above, came to the following expression:

G(iwn) =
1

Z

∑

ν

e−βEν [G>(iwn) +G<(iwn)], (4.28)

where G>(iwn) and G<(iwn) are evaluated as

Gν>(iwn) =
〈ν|c c+|ν〉

iwn − a>

0 −
b>

1
2

iwn − a>

1 −
b>

2
2

iwn − a>

2 · · ·

(4.29)
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Gν<(iwn) =
〈ν|c+c|ν〉

iwn + a<

0 −
b<

1
2

iwn + a<

1 −
b<

2
2

iwn + a<

2 · · ·

(4.30)

In practice the sum over eigenstates in(4.28) is restricted due to the e−βEν

factor. Therefore analog of (4.28) for real calculations looks

G(iwn) =
1

Z

Narnoldi
∑

ν=1

e−βEν [G>(iwn) +G<(iwn)], (4.31)

where Narnoldi is the number of first low-energy eigenstates taken into ac-
count.

4.3 Test calculations

Now after all preliminaries were made we can check the efficient of the Tem-
perature Lanczos (Arnoldi) algorithm to compare it with the full diagonaliza-
tion. One this comparison is made for the Anderson impurity model shown
on fig. 4.1.

Vmk

U

bath

Figure 4.1: Anderson impurity model with Ns = 6 Nimp = 5 Nbath = 1

From this picture it is clear that Ns denotes the total number of sites in
Anderson impurity model (AIM). Then correspondingly Nimp - the number
of impurity orbitals, Nbath - the number of sites in the bath (Ns = Nimp +
Nbath). It is convenience to take some notations. Let’s call the Anderson
impurity model with Nimp and Nbath as Nimp + Nbath. For instance, the
AIM with 5 impurity orbitals and 1 orbital in bath is called 5 + 1 AIM.

36



4.3. TEST CALCULATIONS

The hybridization parameters are assumed symmetric and equal ∀ m Vm1 =
0.2 eV (k = 1 - only one bath orbital). The energy of the bath orbital
ε1 = −0.6 eV . Full Û matrix is calculated with parameters U = 4 eV
J = 0.5 eV , where as usual

U =
1

(2l + 1)2

∑

i,j

Uijji (4.32)

J = U −
1

2l(2l + 1)

∑

i,j

Uijij. (4.33)

First we check the case of temperature where Lanczos (Narnoldi = 1) should
work well. The inverse temperature is fixed β = 2 · 104 eV (T < 1 K). Only
chemical potential µ (εd = −µ) is varying. On all figures label ED means full
diagonalization. At Figure 4.2 we can see that calculation with Narnoldi = 1
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Figure 4.2: Density of States for 5 + 1 Anderson impurity model at β =
2 · 104 eV −1, µ = 6 eV, U = 4 eV , J = 0.5 eV , εimp = −µ, εbath = −0.6 eV ,
Vkm = 0.2 eV

reproduces the density of states obtained with full diagonalization. It is again
true for Narnoldi = 3 what is obviously at this temperature. But in the case
of Narnoldi = 2 we see disagreement. It can be understood by analyzing the
multiplet structure of the spectrum. At µ = 6 eV the degree of degeneracy
of the system’s ground state is three. They belong to follow sectors (n↑, n↓):

37



CHAPTER 4. FINITE TEMPERATURE LANCZOS METHOD

(3, 1), (1, 3) and (2, 2). If we take Narnoldi = 1 than we obtain the ground
state from (2, 2) sector. In the case of Narnoldi = 2 we obtain the ground
states from (2, 2) and (1, 3) sectors. Let us to introduce some notations:

Ng.s − total number of ground states |ν〉

a ≡{|ground state〉 ∈ (1, 3)}

b ≡{|ground state〉 ∈ (3, 1)}

c ≡{|ground state〉 ∈ (2, 2)}

Gtrue(iωn) =

Ng.s.
∑

ν=1

∑

µ

{

〈ν|c+|µ〉〈µ|c|ν〉

iωn + Eµ

+
〈ν|c|µ〉〈µ|c+|ν〉

iωn − Eµ

}

Gfull(iωn) =

Narnoldi
∑

ν=1

∑

µ

{

〈ν|c+|µ〉〈µ|c|ν〉

iωn + Eµ

+
〈ν|c|µ〉〈µ|c+|ν〉

iωn − Eµ

}

Gζ(iωn) =
∑

ν=ζ

∑

µ

{

〈ν|c+|µ〉〈µ|c|ν〉

iωn + Eµ
+

〈ν|c|µ〉〈µ|c+|ν〉

iωn −Eµ

}

,

where
ζ = a, b or c

and the orbital indexes are omitted because of the symmetry

Gii = Gjj ∀ i, j

From the Fig. 4.2 we can establish that:

Gtrue =Gc

Gtrue =
1

3
(Ga +Gb +Gc)

Than for Narnoldi = 2 we derive:

Gfull =
1

2
(Ga +Gc) =

1

2
(Ga +Gtrue) 6= Gtrue

So, the disagreement for Narnoldi = 2 is explained by the symmetry of ground
states. We conclude that the ground state from (2, 2) sector has the symme-
try of the system in sense: Gtrue = Gc.

Another interesting case is µ = 9 eV represented at Fig. 4.3. Here the
calculation with Narnoldi = 1 does not fit the full diagonalization density of
states. While Narnoldi = 4 does. The explanation is again contained in the
structure of the spectrum. The ground state is four times degenerate. The
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Figure 4.3: Density of States for 5 + 1 Anderson impurity model at β =
2 · 104 eV −1, µ = 9 eV , U = 4 eV , J = 0.5 eV , εimp = −µ, εbath = −0.6 eV ,
Vkm = 0.2 eV
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Figure 4.4: Density of States for 5 + 1 Anderson impurity model at β =
2 · 104 eV −1, µ = 17 eV , U = 4 eV , J = 0.5 eV , εimp = −µ, εbath = −0.6 eV ,
Vkm = 0.2 eV
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Figure 4.5: Density of States for 5 + 1 Anderson impurity model at β =
2 · 104 eV −1, µ = 29 eV , U = 4 eV , J = 0.5 eV , εimp = −µ, εbath = −0.6 eV ,
Vkm = 0.2 eV
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sectors (n↑, n↓) where they lie are follows: (3, 2), (2, 3), (4, 1) and (1, 4). It
is evidence that no one can choose only one ground state without braking
the symmetry. The consideration of all ground states obviously gives correct
DOS. The scalculation with Narnoldi = 6 is shown at the same Fig. 4.3 to
demonstrate that at the temperature β = 2 · 104 eV −1 only ground states are
important for this system because other states have to high energy.

The value µ = 17 eV correspond to half-filling case. It is expected the
ground state to be most degenerate. It is true - the ground state is six times
degenerate. And again Narnoldi = 1 cannot reproduce true density of states
because of even number of ground states. Only calculation Narnoldi = 6
reproduces DOS obtained with exact diagonalization.
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Figure 4.6: Density of States for 5 + 5 Anderson impurity model at β =
2 · 104 eV −1, µ = 26 eV , U = 4 eV , J = 0.7 eV , εimp = −µ, εbath = −0.6 eV ,
Vkm = 0.2 eV

Now, let us consider the case of µ = 29 eV . It is shown on Fig. 4.5. It is
a very interesting case. The ground state is three times degenerate and the
sectors contained these states are (5, 5), (6, 4) and (4, 6). How it could be
that calculations with Narnoldi = 1, 2 and 3 all fit the correct DOS? The case
Narnoldi = 3 does not require the explanations. The answer for Narnoldi = 1, 2
is an agreement with conclusions described above. The chosen set of ground
states does not brake the symmetry. Namely, at Narnoldi = 1 we get the
ground state from (5, 5) sector while at Narnoldi = 2 we obtain two ground
states form (6, 4) and (4, 6) sectors. This situation is very similar to the
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case µ = 6 eV . The only diference chosing two ground states we remain the
symmetry of the system.

Let us now consider the 5+5 Anderson impurity model. First calculation
is made for the temperature β = 2 · 104 eV −1 at µ = 17 eV corresponding
to half-filling (Fig. 4.6). The ground state is six times degenerate. One can
see that DOS calculated with Narnoldi = 1 does not contain electron pick at
−3 eV . Ground states lie in (n↑, n↓) sectors: (5, 10),(10, 5),(6, 9),(9, 6),(7, 8)
and (8, 7). The calculations with Narnoldi = 4 andNarnoldi = 4 contain ground
states from sectors: (7, 8), (8, 7), (9, 6), (10, 5) and (7, 8), (8, 7), (9, 6), (10, 5),
(5, 10) correspondingly. One can see that DOS obtained in calculation with
Narnoldi = 4 significally differs from Narnoldi = 6 (which considered all ground
states) while other one with Narnoldi = 5 fit Narnoldi = 6 very well. It looks
like ground state from (9, 6) (or (6, 9)) sector has the symmetry of the whole
system. It should be explained in more details. When we speak about the
symmetry of a gound state we actually mean that Green’s function built on
this ground state (4.29) and (4.30) describes the same transitions to excited
states with the same amplitudes as the full Green’s function (4.31).

The other calculation for 5 + 5 AIM carried out with parameters β =
40 eV −1 and µ = 26 eV is represented on Fig. 4.7. The ground state is four
times degenerate. We can see that it is not sufficient to take into account all
ground states at this temperature. One extra excited state were found (four
times degenerated). We can see that with the increasing of temperature
DOS has more picks and they become broader. It is because the excited
states become important.

The tests discussed above show that one has to take into account a mul-
tiplet structure of the spectrum to explain the results. This structure could
have a complicated symmetry. We showed that the finite temperature Lanc-
zos method is important not only at finite temperatures but also at zero
temperature in the case of degenerate ground state.
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Chapter 5

Double Counting in
LDA+DMFT – The Example
of NiO

5.1 Introduction

The combination of the density functional theory (DFT/LDA), a model
Hamiltonian and the dynamical mean field approximation (DMFT) [23], a
methodology commonly referred to as LDA+DMFT, is to date one of the
best approaches for the realistic description of strongly correlated electron
systems [39, 40]. While density functional theory does not include all the
interactions between strongly correlated d or f electrons, it captures some
portion of them through the Hartree and exchange-correlation terms. By in-
troduction of a model Hamiltonian into the calculations one tries to account
for as much of the interactions as possible through the Coulomb interaction
matrix of the impurity model. This ultimately leads to the problem that
some contributions to the interaction are included twice. This has to be
explicitly compensated by adding a shift in the chemical potential of the cor-
related orbitals to the Hamiltonian, leading to the prominent issue of double
counting. The LDA+DMFT Hamiltonian can be written as follows

H = HLDA −Hdc +

+1
2

∑

i,σσ′,mm′m′′m′′′

Umm′m′′m′′′c†imσc
†
im′σ′cim′′′σcim′′σ

where HLDA is the LDA Hamiltonian, c†imσ creates a particle with spin σ in a
localized orbital m at site i and Umm′m′′m′′′ is the Coulomb interaction matrix
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Figure 5.1: Schematic illustration of the effect of the Coulomb interaction on
the energy levels in a Mott-Hubbard (a) and a charge transfer insulator (b).
Figure from [45].

between localized orbitals. Above Hamiltonian contains the double-counting
correction

Hdc = µdc

∑

m,σ

nm,σ,

where nm,σ = c†mσcmσ and µdc is the double-counting potential. How to
choose the double-counting potential in a manner that is physically sound
and consistent is unknown and systematic investigations of the effects of the
double counting in LDA+DMFT on the spectrum are seldom performed.
In the work presented here we attempt to shed some light on the double-
counting problem using the example of nickel oxide (NiO). In recent years a
number of authors applied the LDA+DMFT method in different flavors to
this system generating a body of promising results [41, 42, 43, 44].

5.2 NiO – a charge transfer system

Nickel oxide is a strongly correlated transition metal oxide that is a prototypic
member of the class of charge transfer insulators. According to Zaanen,
Sawatzky and Allen transition metal oxides can exhibit a behavior different
to the classic Mott-Hubbard picture [46]. In a Mott-Hubbard insulator the
charge gap opens through splitting of the d band by the Hubbard U . In the
charge-transfer system the gap typically opens between hybridized ligand p
and transition metal d states and the upper Hubbard band corresponding to
the d states of the transition metal. Thus, it is not only the Hubbard U,
but also the so called charge transfer energy ∆ = |εd − εp| that determines
the size of the gap. In the scheme by Zaanen, Sawatzky and Allen materials
can be classified by their respective values of U and ∆ [47]. For ∆ > U the
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Figure 5.2: Density of states (left) and band structure (right) of NiO as
obtained by LDA calculations. In the band structure the 5 bands crossing
the Fermi level are Ni 3d bands, the 3 bands below correspond to oxygen 2p
states. For further details we refer to the text.

system is a Mott-Hubbard insulator, whereas for ∆ < U it belongs to the
charge transfer class. In general, systems with completely filled d(eg) and
partially filled d(t2g) shells, like titanates, vanadates and some ruthenates
belong to the Mott-Hubbard class. Prominent examples of charge transfer
insulators are NiO, MnO, manganites and cuprates. In these systems the eg

shell is partially filled and the t2g shell is fully occupied.

The density of states and the band structure of NiO as obtained by LDA
(using the PAW [48] based VASP code [49]) are shown in Fig.(5.2). The band
structure shows five Ni 3d bands in the energy window −2.5eV to +1.5eV
crossing the Fermi energy and three separated O 2p bands below, extending
down to −8eV. These bands contain 14 electrons in total, 6 occupy the
oxygen p bands and the remaining 8 the Ni d bands. In contrast to the LDA
prediction NiO is not a metal, on the contrary, experiments revealed a charge
gap of about 4eV [50]. Additionally, it exhibits antiferromagnetic order below
the Néel temperature of TN = 525K. Our computations were carried out in
the paramagnetic phase, which is not problematic, since the gap opened by
electronic correlations does not depend on whether the system is magnetically
ordered. It has been shown in angle-resolved photoemission experiments
(ARPES), that passing the Néel temperature does not qualitatively alter the
valence band spectrum [51].
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Figure 5.3: Spectral functions at β = 5eV−1 for different values of the double
counting µdc obtained with LDA+DMFT (QMC).

5.3 Methodology and Results

The model that has to be used for a simulation of NiO is the five band
Hubbard model which describes the correlated 3d states of Ni. We have
calculated the model parameters of such a model in an ab initio fashion. The
local orbitals are represented by Wannier functions, which have been shown
recently [52, 53, 54] to be a very good choice for a basis set, because they
form a complete basis of the Hilbert space spanned by Bloch functions and
are reminiscent of localized atomic orbitals. Our calculations involved two
different flavours of the LDA+DMFT framework: One uses a projection of
Bloch states on local orbitals represented by Wannier functions [55, 54] and a
Quantum Monte Carlo (QMC) solver [21], while the other employs the Linear
Order Muffin-Tin Orbital method (LMTO) [7] and a finite-temperature exact
diagonalization (ED) solver [56, 57].

The effective Wannier Hamiltonian includes the five 3d bands of nickel as
the correlated subspace and the three 2p bands of oxygen as the uncorrelated
part. The inclusion of the p bands is physically motivated since in a charge
transfer compound the oxygen bands play an important role in the physics
of the system, as was pointed out above. A computation taking into account
only the Ni d states is capable of reproducing the insulating behavior and
the size of the gap as shown by Ren et al. [41]. Additionally, the double
counting is reduced to a trivial shift in calculations that contain only the
Ni d bands, since the full Wannier Hamiltonian belongs to the correlated
subspace. The double counting can thus be absorbed into the total chemical
potential. However, the physics of the charge transfer insulator cannot be
captured without taking into account the ligand p states.

Our calculations were performed at inverse temperature β = 5eV−1,
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Figure 5.4: k-resolved spectral functions A(k, ω) along the line Γ—X in the
Brillouin zone for different values of the double counting µdc obtained using
LDA+DMFT (QMC).

which corresponds to 2321K, using up to 80 time slices and on the order
of ∼ 106 Monte Carlo sweeps in the QMC. In the ED fraction of calculations
we used a ten site cluster (5 impurity levels and 5 bath levels). The tem-
perature used may appear high, yet it is low enough to give a qualitatively
correct description of the physics of the material. Computations at lower
temperatures pose no fundamental problem, the amount of LDA+DMFT
calculations performed for this study would have made them too expensive
though. We have used a Coulomb interaction matrix corresponding to the
parameter values U = 8eV and J = 1eV.

The double-counting potential µdc defined above is found to have profound
impact on the density of states Ni(ω) = − 1

π
Gi(ω) shown in Fig.(5.3) and the

k-resolved spectral function
Ai(k, ω) = − 1

π
Im (ω + µ− εi(k) − Σi(ω))−1 shown along the line Γ—X in

the Brillouin zone in Fig.(5.4). The spectral functions were obtained by the
maximum entropy method [58] from imaginary time Green functions. The
double-counting potential has been treated here as an adjustable parameter
and has been varied between 21eV and 26eV. These values already contain
the intrinsic shift due to the energy of the particle-hole symmetry in the
Hirsch-Fye QMC method that amounts to 34eV with our values of U and
J . The energy of the particle-hole symmetry is obtained from Eq.(5.1) with
n0 = 1

2
.

The most prominent effects of the double counting on the spectral prop-
erties are the shift of the oxygen p bands with respect to the nickel d bands,
as well as the variation in gap size. Plainly speaking, the double-counting
correction allows for a tuning of the spectral properties from a large gap
Mott-Hubbard insulator to a metal. The regime of the charge transfer
insulator, the expected physical state of NiO, lies somewhere in between.
The experimental spectrum, obtained by x-ray-photoemission (PES) and
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bremsstrahlung-isochromat-spectroscopy (BIS) showing both occupied and
unoccupied parts, was obtained by e.g. Sawatzky and Allen [50]. The spec-
trum recorded at 120eV is predominantly of Ni 3d character, while the 66eV
spectrum contains a strong contribution of O 2p at about −4eV [50, 59]. Ad-
ditionally, the detailed decomposition of the spectra showed contributions of
both O 2p and Ni 3d at the top of the valence band [50, 59]. The calculated
LDA+DMFT(QMC) spectral function shown in Fig.(5.3) show basically the
two different physical situations of a Mott-Hubbard Fig.(5.3(a)) and a charge-
transfer insulator Fig.(5.3(b)) mentioned above. Both spectral functions were
obtained for NiO, by varying the double-counting correction. The character-
istic feature of a charge-transfer system, the strongly hybridized ligand p and
transition metal d character of the low-energy charge excitations [45, 50], is
only present in the spectrum in Fig.(5.3(b)). The spectrum in Fig.(5.3(a))
is missing this feature almost completely and shows Mott-Hubbard behav-
ior. This difference underscores the importance of the proper choice for the
double-counting correction.

Let us now turn to the k-resolved spectral functions shown in Fig.(5.4)
and compare them with ARPES data [60, 61]. The uppermost band in
Figs.(5.4(a), 5.4(b)) at ∼ 2eV above the Fermi level is a Ni eg band, while
the other bands can be identified with the ones obtained by ARPES. The
two lowest lying bands correspond to oxygen p states, the bands above are
formed by Ni d states. The characteristic features seen in ARPES, like the
broadening of the oxygen bands around the midpoint of the Γ—X line, are
clearly present. The quantitative features, especially the relative band ener-
gies can strongly differ, depending on the double counting chosen. The bands
in Fig.(5.4(a)) (µdc = 21eV) show a clear separation between the oxygen and
the nickel part at the Γ-point as well as the X-point. At the increased value
of the double counting µdc = 25eV the oxygen bands are shifted towards the
Fermi level, coming to overlap with the Ni d bands at the Γ point as in the
ARPES data. A detailed comparison of the calculated bandstructures with
experiments shows that the bands calculated with µdc = 25eV agree very
well with the experimental data. These calculations reproduce the flat bands
at −4eV and another at about −2eV becomes more prominently visible at
µdc = 25eV, while it is very faint at µdc = 21eV. The dispersive bands in the
region −4eV to −8eV also agree very well with experiment. Our calculations
at this value of µdc yield very similar results as those obtained by Kuneš et
al. [43]. Calculations with other values of the double counting can strongly
differ from the experimental data, as shown by the example of µdc = 21eV
in Fig.(5.4(a)).

The dimension of the problem of the double counting becomes apparent
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Figure 5.5: Surface created by different combinations of the chemical po-
tential µ and the double-counting potential µdc plotted versus the particle
number N obtained with LDA+DMFT (QMC). The particle number has
been color coded: the green plateau corresponds to a particle number very
close to the desired value of N = 14, values below are encoded in blue, values
above in red. Additionally the results produced by different methods to fix
the double counting are indicated. For the AMF and FLL functionals SC
or F in parentheses indicates, that the self-consistent occupancies from the
DMFT or the formal occupancies have been used respectively. For further
details we refer to the text.

if the parameter space of the overall chemical potential µ and the double-
counting potential µdc versus the total particle number in the system N is
examined. The result is shown in Fig.(5.5) with the particle number color
coded. The picture shows that in principle any combination of µ and µdc

that yields a point in the green plateau, corresponding to the desired particle
number N = 14 a priori describes the system equivalently good. The problem
that arises here is that conventionally fixing the total chemical potential µ
in the middle of the gap still leaves one the freedom of choosing different
values for µdc. An additional condition is required to completely determine
the systems position in the (µ, µdc) parameter space and thus in the end
its spectral properties. As we have argued above this choice is of crucial
relevance for the results of the LDA+DMFT simulation and not just an
unimportant technicality. Since other, related approaches, like the LDA+U
method, also include a double counting the problem is not new. Over the
years different analytic methods to fix µdc have been devised. Two prominent
examples are the around mean-field (AMF) [62] approximation and the fully
localized or atomic limit (FLL) [63]. The AMF is based on the conjecture
that LDA corresponds to a mean-field solution of the many-body problem, as
was argued by Anisimov et al. [62]. The resulting double-counting potential
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is
µAMF

dc =
∑

m′

Umm′n0 +
∑

m′,m′ 6=m

(Umm′ − Jmm′)n0, (5.1)

where n0 = 1
2(2l+1)

∑

m,σ nmσ is the average occupancy. We use the global

average and not the spin dependent version proposed in Ref.[63], since we
were performing paramagnetic calculations in which both spin components
are equally occupied. One assumes all orbitals belonging to a certain value
of the angular momentum l to be equally occupied and subtracts a corre-
sponding mean-field energy. This is, however, incorrect, since LDA contains
the crystal field splitting explicitly and will in general not produce equally
occupied orbitals even for weakly correlated systems. The result for the case
of NiO using self-consistent occupancies from the DMFT loop is shown in
Fig.(5.5) labeled (SC)AMF. The value obtained with the formal occupancies
given above ((F)AMF) lies outside of the considered part of the parameter
space at 20.4eV. In both cases the solution corresponds in our case to a Mott-
Hubbard insulator as shown in Fig.(5.3(a)). The AMF functional is known
to produce unsatisfactory results for strongly correlated systems, which led
to the development of another method, the so called FLL.

The FLL functional takes the converse approach to the AMF and begins
with the atomic limit. It has been shown, that this new potential can be
written as a correction of the AMF solution (5.1) in the following form [63]

µFLL
dc = µAMF

dc + (U − J)(n0 − 1
2
).

This addition to the AMF potential has the effect of a shift of the centroid of
the level depending on its occupation. An empty level is raised in energy by
1
2
(U−J) and the converse happens to a fully occupied level. The form of the

functional is based on the property of the exact density functional that the
one electron potential should jump discontinuously at integer electron num-
ber [64], which is not fulfilled in LDA or GGA. Ultimately the FLL leads to
a stronger trend towards integer occupancies and localization. The result of
the FLL, as shown in Fig.(5.5), constitutes a substantial improvement over
AMF, yet still produces too low values. The general problem with analytic
expressions like the ones presented is that their scope is limited to certain
classes of systems that fulfill the assumptions made in the derivation process.
The AMF for example might give good results for weakly correlated systems,
but it certainly fails for the strongly correlated ones. The FLL improves the
situation for insulators, but it is still based on ad-hoc assumptions. Addi-
tionally a certain degree of ambiguity is inherent, since one can compute the
corrections using the formal occupancies given above, occupancies obtained
from LDA or from the self-consistent DMFT loop. Other analytical formulas
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for the double-counting correction have been proposed for the case of NiO,
see e.g. the work by Korotin et al. [44] and Kuneš et al. [42]. Despite giving
reasonable resulting spectral functions analytical approaches to the double
counting are not optimal.

The obvious problems with analytical formulas make conceptually differ-
ent approaches worth exploring. It would certainly be an improvement if
the double counting could be found self-consistently along with the chemical
potential in the DMFT self-consistency loop. Since the double counting cor-
rection is intrinsically an impurity quantity and not a global quantity (like
the chemical potential µ) it would be most desirable to use intrinsic quan-
tities of the impurity like the impurity self-energy or the impurity Green
function to fix it. One possible ansatz using the impurity self-energy Σimp

mm′ is
to constraint the high energy tails in the real part of the self-energy to sum
up to zero

ReTr(Σimp
mm′(iωN ))

!
= 0.

Here, ωN is the highest Matsubara frequency included in the computation.
Physically this amounts to the requirement that the shift in the centroid of
the impurity orbitals contains no static component. The resulting correction
is µdc ∼ 21.3eV and thus very close to the (SC)AMF value shown in Fig.(5.5).
The result produced is thus reasonable in principle in the sense that it pro-
duces an insulating solution. However, the resulting spectrum resembles a
Mott-Hubbard system. Double counting corrections based on the self-energy
have been applied successfully to metallic systems, see e.g. [65].

Another very promising approach, which is in principle based on the
Friedel sum rule [66], is to constraint the total charge in the impurity. This
approach requires that the electronic charge computed from the local nonin-
teracting Green function and the one computed from the interacting impurity
Green function are identical [55]

Tr Gimp
mm′(β)

!
= Tr G0,loc

mm′(β). (5.2)

Alternatively one can also use the Weiss field Gmm′ instead of the local non-
interacting Green function in above equation. Both versions of the method
give very similar results and work very well in metallic systems [55], since in
a metal the total particle number of the system N and of the impurity nimp

are both very sensitive to small variations in µ and µdc. As NiO has a quite
large gap the charge does almost not vary with neither the chemical nor the
double-counting potential in the gap. The constraint of fixed particle number
can thus be fulfilled to a very good approximation in the whole gap region,
the criterion (5.2) essentially breaks down. Since the gap in NiO is large
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Figure 5.6: Ni 3d spectral functions at β = 5eV−1 for µdc = 25.3eV obtained
by LDA+DMFT (ED).

this method fails and drives the system towards a metallic state at double
counting µdc ∼ 26.5eV indicated by the arrow pointing out of Fig.(5.5).

Since the double-counting corrections that we have explored either fail
to reproduce the physics of NiO or are based on analytic arguments that do
not exactly apply to the system a different, sound way fixing the value of the
double counting for insulating systems is needed. Since the double-counting
potential effectively acts like an impurity chemical potential we propose to
find the value at which it lies in the middle of the gap of the impurity spectral
function where the occupation of the impurity is about nimp ≈ 8 particles.
This part of the calculations was done using the exact diagonalization im-
purity solver (see above), which is much faster and uses the full Coulomb
interaction matrix including spin-flip and pair-hopping terms. Additionally
it does not suffer from statistical errors and directly provides data on the real
axis. We used a 10 site cluster with 5 impurity levels plus 5 bath levels and
fit the bath Green function via the level energies and hopping parameters
[57]. An explicit scan of the parameter space revealed that the proper value
for the double-counting correction is µdc ∼ 25eV, basically the same value
found above by inspection and comparison of spectral features to experimen-
tal data. It is indicated as INS in Fig.(5.5). The corresponding lattice and
cluster spectral functions are shown in Fig.(5.6). The proposed criterion thus
produces a double-counting correction that reproduces the spectral features
of the valence in accord with photoemmission measurements and does not
contain ad-hoc assumptions about the system.
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Chapter 6

Satellite in Ni

6.1 Introduction

Electron correlations in transition metals are a basic problem in itinerant
electron ferromagnetism [67]. One way of tackling this problem is by doing
band calculations within the local-density approximation (LDA) [40]. The
LDA is known to work rather well for ground state properties of transition
metals. However, it does not have a firm theoretical ground with respect to
excited states. One well-known shortcomings of the LDA in describing ex-
cited states is known to exist for ferromagnetic nickel, where it overestimates
the band width and the exchange splitting [68, 69] , and where the calculated
energy dispersion does not agree with the quasiparticle bands determined by
angular resolved photoemission experiments [70, 71, 72, 73] . In addition,
the LDA is unable to reproduce satellite peaks in the photoemission spectra,
like the one found around 6 eV below the Fermi level. There has been an
attempt to improve the situation by using the GW expansion [74] . Although
the quasiparticle energies are much improved, the exchange splitting is not
improved and the problem of reproducing the satellite peaks at 6 eV still
remains.

Another way is the mapping of the lattice problem onto an effective im-
purity problem which is solved numerically exactly. The local self-energy is
then determined via a self-consistency procedure. This is called dynamical
mean-field theory (DMFT) [8].

The many-body impurity problem can be solve, in the case of single-band
systems, by using techniques such as numerical renormalization group [75, 76]
(NRG), exact diagonalization [56] (ED), quantum Monte Carlo [21] (QMC),
or other schemes [23] . For computational reasons dynamical correlations
in realistic multiband materials have so far been investigated mainly within
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QMC [77] ,iterative perturbation theory [78, 39] (IPT), and the fluctuation
exchange method (FLEX) [79, 80]. The versatility of the QMC approach is
made feasible by allowing only Ising-like exchange interaction to avoid seri-
ous sign problems at low temperatures [81] . Extensions of QMC including
full Hund’s exchange are presently limited to T = 0 and rather high temper-
atures (T > 1500). Spin-flip interactions at low finite temperatures can be
taken into account in two recently developed schemes [82, 83], namely the
continuous-time QMC method [84, 85] and the combination of the Hirsch-Fye
algorithm with a perturbation series expansion .

The aim of this chapter is to demonstrate that multiband ED/DMFT is
a highly useful scheme for the investigation of Coulomb correlations [86, 87]
in realistic materials.

6.2 Methodology and Results

Let us consider nickel as material whose single-particle properties are char-
acterized by a Hamiltonian H(k), obtained within LMTO (see 4.2). We take
into account 4p,4s, and 3d orbitals so the Hamiltonian is a 9×9 matrix. The
purpose of single-site DMFT [88] is to derive a local self-energy Σ(ω) which
describes the modification of the single-particle bands caused by Coulomb
interactions. The local Green’s function in orthogonal basis is given by the
expression

Gαβ(iωn) =
∑

k

[1̂(iωn + µ) − Ĥ(k) − Σ(iωn)]−1
αβ , (6.1)

where ωn = (2n+ 1)/πkBT are the Matsubara frequencies, µ is the chemical
potential adjusted to the total number of particle Ntotal = 10 (4p04s23d8[Ar]
- electron configuration for nickel)

N =

∫ µ

−∞

N(ε)dε, (6.2)

α, β denotes correspond orbitals, 1̂ - unity matrix, Σ(iωn) - block-diagonal
matrix where only the part corresponded to d-orbitals contains nonzero ele-
ments.

The LMTO Hamiltonian is obtained by means of numerical orthogonal-
ization of Eq. (2.38)

Nickel is a cubic crystal and we can choose cubic basis to simplify the
notations. In this basis Green’s function is diagonal, i.e. (6.1) could be
rewritten as

Gm(iωn) =
∑

k

[1̂(iωn + µ) − Ĥ(k) − Σ(iωn)]−1
m (6.3)
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Since the Green’s function has poles near the real axis we perform the DMFT
iterations on Matsubara frequencies. After convergence is reached we make
extra one iteration on real energy to obtain a spectral density function ρ(E).

Within the DMFT quantum impurity calculations it is necessary to re-
move the self-energy from the central site. Using Dyson equation for this
purpose we obtain the bath Green’s function

G0
m(iωn) = [Gm(iωn)−1 + Σm(iωn)]−1 (6.4)

Within ED/DMFT the lattice bare Green’s function is approximated via
an Anderson impurity model for a cluster Green’s function, where the clus-
ter consists of impurity levels εimp

m=1,...,5 and bath levels εbath
k=1,...,5 coupled via

hopping matrix elements Vmk. That model is represented on Fig. 6.1.

Vmk

U

bath

Figure 6.1: Impurity Anderson Model with Ns = 10 Nimp = 5 Nbath = 5

Thus

G0
m(iωn) ≈ G0,imp

m (iωn), (6.5)

where

G0,imp
m (iωn) =

(

iωn − εimp
m −

Nbath
∑

k=1

|Vmk|
2

iωn − εbath
k

)−1

. (6.6)

Here Nbath is a number of bath orbitals. We use a diagonal bath in our

57



CHAPTER 6. SATELLITE IN NI

calculations, i.e.

Vmk =























Vt2g
, k = m = t2g

Veg
, k = m = eg

0, k 6= m.

(6.7)

Let us rewrite (6.6) as:

G0,imp
m (iωn)−1 = iωn − εimp

m − ∆m(iωn), (6.8)

where ∆m(iωn) is a hybridization function:

∆m(iωn) =

Nbath
∑

k

|Vmk|
2

iωn − εk

(6.9)

For convenience denote

∆̃m(iωn) = εimp
m + ∆m(iωn) (6.10)

Then εimp
m are evaluated to obey the relation

Re ∆̃m(ω → ∞) = 0 (6.11)

Only εbath
k , Vmk parameters are used in fitting procedure to fulfill the rela-

tion (6.5). Actually the DMFT remains a freedom to coincide G0
m(iωn) and

G0,imp
m (iωn). We chose the following relation

∑

iωn,m

∣

∣

∣

∣

[

G0
m(iωn)

]−1
−
[

G0,imp
m (iωn)

]−1

∣

∣

∣

∣

=⇒ min (6.12)

After all impurity parameters are obtained we construct Hamiltonian for
5-band Anderson impurity model

HAIM =
∑

mσ

(εm − µdc)nmσ +
∑

mkσ

[Vmkc
+
mσckσ + h.c.]

+
1

2

∑

σ,σ′

∑

ijkl

Uijklc
+
iσc

+
jσ′clσ′ckσ, (6.13)

where c
(+)
mσ are annihilation (creation) operators for electrons in impurity level

m ≤ 5 with spin σ and nmσ = c+mσcmσ with similar notation. h.c. denotes
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Hermitian conjugate terms. Uijkl is a matrix element of local atomic-like
Coulomb interaction [89, 90]

Uijkl =

∫

drdr′φ∗
i (r)φ∗

j(r
′)uc(r − r′)φk(r)φl(r

′), (6.14)

where uc(r − r′) is the screened Coulomb interaction and the functions φi(r)
from a basis of correlated subspace. In order to calculate Umm′ and Jmm′ one
should know the Slater integrals F k (F 0,F 2,F 4 for d electrons) [90, 89, 62].
The Coulomb parameter U (6.15) could be identified with the Slater integral
F 0. Using properties of the Clebsch-Gordan coefficients one can obtain

Ū =
1

(2l + 1)2

∑

ij

Uijij = F 0 (6.15)

Ū − J̄ =
1

(2l + 1)2l

∑

ij

Uijij − Uijji

= F 0 − (F 2 + F 4),

(6.16)

J̄ =
F 2 + F 4

14
(6.17)

For convinced we accept Ū ≡ U and J̄ ≡ J . To define all three Slater
integrals from U and J one needs to know only the ratio F 2/F 4. This ratio
for all ions(3d elements) is between 0.62 and 0.63. So fixed the ratio at 0.625.
Then the expressions for the Slater integrals are

F 2 =
14

1.625
J

F 4 = 0.625F 2

(6.18)

Parameter µdc is double counting parameter. It is fixed due to relation
NED

Ni ≈ 8 and depends only from Coulomb interaction. Here NED
Ni is calcu-

lated after HAIM is diagonalized and eigenvectors and eigenvalues are found

NED
Ni =

∑

mσ

∑

ν

〈ν|c+mσcmσ|ν〉 (6.19)

µdc is defined approximately in one iteration before self-consistent calculation
starts.

The Hamiltonian (6.13) is to be diagonalize by temperature Lanczos
method. The details of this method was specified in detailed in chapter
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4. Here we just note that parameter Nranoldi(the number of eigenstates taken
into account) was allowed to 20. It is sufficient at the temperature of calcu-
lations β = 10.

The impurity Green’s function is evaluated based on found eigenval-
ues and eigenstates and using temperature Lanczos only with c+|ν〉, c|ν〉
(ĤAIM |ν〉 = Eν |ν〉)as initial vectors (see 4.2):

Gimp(iwn) =
1

Z

∑

ν

e−βEν [G>(iwn) +G<(iwn)],

where

Gν>(iwn) =
〈ν|c c+|ν〉

iwn − a>

0 −
b>

1
2

iwn − a>

1 −
b>

2
2

iwn − a>

2 · · ·

Gν<(iwn) =
〈ν|c+c|ν〉

iwn + a<

0 −
b<

1
2

iwn + a<

1 −
b<

2
2

iwn + a<

2 · · ·

and coefficients a>

i , a<

i , b>

i , b<

i are obtained due to (4.15) (see chapter 4.2).
In analogy to (6.4) the cluster self-energy is calculated due to the expression:

Σimp
m (iωn) = G0,imp

m (iωn)−1 −Gimp
m (iωn)−1 (6.20)

And in the spirit of DMFT [91] we make approximation that the impurity
self-energy coincides with the lattice self-energy

Σm(iωn) ≈ Σimp
m (iωn) (6.21)

The exact diagonalization method involves a projection of the bath Green’s
function G0 onto the space of functions {GNs

0 } built out of Ns orbitals. This
projection operation is not smooth and can lead to convergence brake. To
avoid it we mix actual self-energy with previous one

Σact
m (iωn) = αΣact

m (iωn) + (1 − α)Σprev
m (iωn) (6.22)

The coefficient α could vary. We assign it to α = 0.5.
Now the loop could be schematically represented as

Σ → G→ G0 ≈ Gimp
0 → Gimp → Σimp ≈ Σ. (6.23)
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Figure 6.3: Density of states for nickel. Temperature Lanczos method were
used for Anderson impurity model 5+5. β = 10 eV −1 U = 3.5 eV J = 0.9 eV
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Figure 6.4: Density of states for nickel. Temperature Lanczos method were
used for Anderson impurity model 5+5. β = 10 eV −1 U = 3.0 eV J = 0.9 eV
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The calculations was made for three values of U 3.0 eV , 3.5 eV , 4.0 eV and
correspondingly µdc 21.00 eV , 25.40 eV , 29.60 eV . Exchange Coulomb pa-
rameter J = 0.9 eV , and inverse temperature β = 10 eV . Because of the
problem with fitting procedure (on the stage G0,lattice ≈ G0,cluster) we made
self-consistent calculation for paramagnetic system and only after conver-
gence is reached we perform one iteration for magnetic system with fixed hy-
bridization parameters only introducing spin polarization manually |∆εkσ| =
|εk↑ − εk↓| = 0.4 eV
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Figure 6.2: Density of states for nickel. Temperature Lanczos method were
used for Anderson impurity model 5+5. β = 10 eV −1 U = 4.0 eV J = 0.9 eV

On Fig. 6.4 one can see satellite around −5 eV . It is not well resolved
and not spin-polarized. We suppose that the resolution of the satellite pick
could be improved by increasing the bath discretization. The problem of
spin-polarization is expected to be solve with the program version supplied
spin-polarized fitting procedure.
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Conclusions and Outlook

Different numerical approaches in a solid state physics allow to investigate
systems which could be hardly treated by analytical methods due to com-
plexity [92] or nonperturbative character of the problem [93, 16].

Dynamical mean-field theory (DMFT) [23] has provided an efficient tool
to treat systems with strong electronic calculations. There are two most use-
ful methods used as an impurity solver (to solve eigenproblem for Anderson
impurity model) within the DMFT: Quantum Monte Carlo (QMC) and Ex-
act diagonalization (ED). While each of them has its advantages [94, 95] the
only ED-family methods supply the calculation of Green’s function on real
energy scale, while the QMC evaluates the Green’s function on imaginary
time and therefore entails with a problem of analytical continuation. More-
over the ED-scheme allows to see directly the complicated multiplet structure
of the system. The freedom concerns the geometry of the electronic bath,
and the physical parameters of the orbitals (the site energies and hopping
amplitudes) is another benefit of this method.

In the present thesis the temperature Lanczos method is presented. This
technique provides calculations of spectral functions at finite temperatures.
The method was implemented to model systems presented by clusters de-
scribed Anderson impurity models such as 5+1 and 5+5. It was shown that
even for zero temperature a set of eigenstates has to be taken into account for
proper account for orbital degeneracy. So the temperature Lanczos method
could be called degenerate Lanczos method.

The finite temperature Lanczos technique was also implemented to real
compounds such nickel and nickel oxide. For the nickel 5+5 AIM is used. At
the time when these calculations were made the fitting procedure for finding
parameters of Anderson impurity model could not work with spin-polarized
system. So self-consistent calculations were made in nonmagnetic regime.
After convergence were reached one spin-polarized iteration with fixed bath
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parameters were carried out. The bath is diagonal, so each impurity orbital
connects with it its own bath. It brings our model closer to reality but
from other side only one bath orbital for each impurity site is taken into
account. The single-particle Green’s function for ferromagnetic nickel has
been calculated and satellite pick in the spectral function were found about
−5 eV . We suppose that exactly the small bath discretization leads to not
very well resolved satellite pick in spectral function. We found that the
satellite pick is hardly spin-polarized. It is required to improve the fitting
procedure to deal with spin-polarized bath and we hope that will improve
the results.

For nickel oxide we showed that the double-counting correction in the
LDA+DMFT formalism has to be very carefully assessed when performing
calculations with a correlated and uncorrelated part in the Hamiltonian. We
have examined the influence of the double-counting potential on the spectral
properties using the example of NiO. Different tracks in the search for a
sound double counting were explored. A well defined analytical expression
for the double-counting potential µdc probably cannot be formulated in the
context of LDA+DMFT. Thus, one has to resort to numerical criteria to fix
the value of the double-counting correction. For metals the self consistency
criterion based on the charge Eq.(5.2) works very reliably. It is, however,
not applicable to insulating systems. In such a case we proposed to fix the
value of the double-counting potential by setting it in the middle of the gap
of the impurity spectral function. This criterion led to spectral properties in
good agreement with experiments. Thus, one has to resort to self-consistent
numerical approaches to fix the double-counting correction properly. Further
work, especially the examination of other systems will show if the proposed
methodology can be reliably applied to predict the electronic structure of
correlated electron systems by LDA+DMFT calculations.
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