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Abstract

Nowadays micromagnetic simulations are the third pillar for the investigation of micro and
nanostructured ferromagnetic materials. Micromagnetic simulations are used, where analy-
ical calculations are too complex or experimental measurements are not available. Recently
the influence of electric currents and temperature on the local magnetization has become a
research priority, as these two phenomena led to novel memory devices like the the STTRAM
or the racetrack memory. Generally the research interest is changing to the simulation of ex-
perimental setups including more and more physical phenomena. Therefore micromagnetic
simulators are required that allow conveniently to perform simulations and to include new
phenomena. The present work deals with the design of the finite-difference-method based
micromagnetic simulator M3S. The computational science focus of this design is the evalua-
tion of computational science integrated development environments (CSIDEs) as the devel-
opment basis combined with advanced software engineering concepts like object-oriented
programming (OOP) and test-driven design (TDD). Important requirements for a micromag-
netic simulator are identified and their realization possibilities using CSIDEs are evaluated
by comparing three different CSIDE based M3S prototypes. The evaluation revealed that us-
ing actual CSIDEs reduces the software complexity of a simulator significantly compared to
pure C/C++ or FORTRAN solutions, while maintaining a competitive runtime performance.
The physical focus of the design of M3S is the investigation of ferromagnetic systems effected
by a current flow. Therefore the spin-transfer torque and the anisotropic magnetoresistivity
(AMR) effect as two important phenomena are integrated into M3S. The validation of the
former extension has been addressed by proposing a new standard problem. The high sen-
sibility of the proposed problem to errors is shown on the basis of typical error cases. Further
the simulation results of different micromagnetic simulators are compared with an experi-
mentally validated analytical model. It turns out that the proposed problem can discriminate
errors larger than 3 %. The simulation experiment used for the proposed standard problem
further revealed good properties for the measurement of the degree of non-adiabaticity. As
a result a robust measurement scheme for this value has been proposed. The measurement
scheme is robust against typical falsifying uncertainties occuring in experimental measure-
ments. The scheme thus allows an estimation of the degree of non-adiabaticity with an
accuracy of 5 %.
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Zusammenfassung

Heutzutage stellt die mikromagnetische Simulation die dritte Säule bei der Untersuchung
mikro- und nanostrukturierter ferromagnetischer Materialien dar. Mikromagnetische Sim-
ulationen werden dort eingesetzt, wo analytische Berechnungen zu komplex und ex-
perimentelle Messungen nicht realisierbar sind. Die Einflüsse von elektrischem Strom
und Temperatur auf die lokale Magnetisierung sind aktuelle Forschungsschwerpunkte, da
diese beiden Phänomene erfolgreich zur Entwicklung neuartiger Speichermedien, wie z.B.
dem STTRAM oder dem Racetrack Speicher führten. Generell lässt sich ein Wandel des
Forschungsinteresses zur Simulation experimenteller Versuchsaufbauten unter Berücksich-
tigung von immer mehr physikalischen Phänomenen feststellen. Dies erfordert mikromag-
netische Simulatoren, die sowohl das Durchführen von Simulationen als auch das Einar-
beiten neuer Phänomene komfortabel ermöglichen. Die vorliegende Arbeit behandelt den
Entwurf des mikromagnetischen Simulators M3S auf Basis der finiten Differenzen Methode.
Aus Sicht der rechnergestützten Naturwissenschaften wird bei diesem Entwurf der neue
Ansatz der “computational science integrated development environments” (CSIDEs) kom-
biniert mit fortschrittlichen Software-Entwurfstechniken, wie objektorientierter Program-
mierung und testgetriebenem Entwurf, verfolgt. Zunächst werden hierzu wichtige An-
forderungen an einen mikromagnetischen Simulator identifiziert und darauffolgend die
Realisierungsmöglichkeiten anhand dreier M3S Prototypen miteinander verglichen. Diese
Analyse zeigt, dass der Einsatz aktueller CSIDEs die Softwarekomplexität eines Simulators
im Vergleich zu reinen C/C++ oder FORTRAN Lösungen signifikant reduziert und zeitgleich
zu einer vergleichbaren Laufzeitperformanz führt. Aus Sicht der Physik steht beim Entwurf
von M3S die Untersuchung von stromgetriebenen ferromagnetischen Systemen im Fokus.
Hierzu wurden das Spintransfermoment und der anisotropische Magnetowiderstandeffekt
(als zwei wichtige Phänomene) in M3S integriert. Zur Validierung der erstgenannten Er-
weiterung, wurde ein neues Standardproblem vorgeschlagen. Die hohe Fehlersensibilität
des Vorschlags wird anhand typischer Fehler demonstriert. Weiterhin werden die Simu-
lationsergebnisse verschiedener Simulatoren mit einem experimentell validierten, analytis-
chen Modell verglichen. Es zeigt sich, dass das Problem Fehler größer als 3 % aufdecken
kann. Das im Standardproblem genutzte Simulationsexperiment zeigte weiterhin gute
Eigenschaften für die Messung des Grades der Nichtadiabatizität. Als Ergebnis wurde eine
Messmethode zur Bestimmung dieser Größe vorgeschlagen, die robust gegen typische ver-
fälschende Einflüsse, die bei bisherigen Experimenten auftraten, ist. Sie ermöglicht daher
die Bestimmung des Grades der Nichtadiabatizität mit einer Genauigkeit von 5 %.
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Chapter 1

Introduction

Ferromagnets are used in devices that require nonvolatile storage of information, like hard
disks in which they are in use for more than 50 years.1 Recently, the field of research has
been extended to the development of nanometer-sized ferromagnetic nonvolatile storage
devices that offer a high storage density accompanied by a high data rate.2, 3 The magneto-
resistive random access memory (MRAM) has been developed as a novel nano-structured
ferromagnetic memory module.4 To write information in such an MRAM-cell an Oersted
field is applied to switch the cell.4, 5 As explained by various authors there are different
restrictions using an Oersted field.6, 7These limit the storage density of the MRAM due to
field leakages. To make the MRAM competitive with other memory technologies like the
dynamic random-access memory (DRAM), the static random-access memory (SRAM), or
the Flash memory, the storage density needs to be significantly increased.2, 3

In 1996 it was predicted8, 9 that a spin-polarized current flowing through a ferromag-
netic conductor can apply a torque to its magnetization. Since its discovery the so-called
spin-transfer torque (STT) has been considered as a key mechanism to increase the storage
density and has led to a new generation of storage devices.10–13 Two promising proposals are
the spin-transfer torque random-access memory (STTRAM)10 and the racetrack memory.11

The STTRAM is an MRAM which uses the spin-transfer torque instead of the Oersted field
for the writing process. The racetrack memory stores bits along a single ferromagnetic wire
by domain walls. To read and write information, a current is applied along the wire that
moves the bits to a reading or writing unit. The lesson learned from other memory devices
such as the DRAM or the SRAM is, that it is necessary to develop analytical descriptions,
compact models, and powerful simulation tools2, 3 to optimize the properties of a memory
device.

For the simulation of ferromagnetic structures that are influenced by magnetic fields
like an Oersted field, micromagnetic simulators are well accepted. These simulators need
to be extended by the interplay of the magnetization and the current flow to be suited for
the simulation of current-carrying ferromagnetic structures. But to extend these simulators
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by new physical phenomena the micromagnetic model14 needs to be extended first. The
micromagnetic model describes appropriately the dynamics of the magnetization in ferro-
magnetic micro- and nano-structures. In this model the magnetization is assumed to be
a spatial- and time-dependent continuous function. The magnetization dynamics are de-
scribed by the Landau-Lifshitz-Gilbert (LLG) equation15 including the energy contributions
of the anisotropy, the exchange interaction, the magnetostatic interaction, and the Zeeman
energy.

As proposed by Slonczewski8 and Berger,9 the spin transfer torque can be included in
the micromagnetic model by adding current dependent spin-transfer torque terms to the
LLG equation. As the spin transfer torque is not fully understood, only descriptions for two
special cases exist. The first description has been developed by Slonczewski;8, 16 it accurately
describes the torque arising from currents traversing through interfaces between ferromag-
nets and non-magnets as can be found in the STTRAM. In such an STTRAM the influence of
the magnetization on the current is considered to depend on the structure of the multilayer
by the giant magneto-resistivity (GMR)17 or the tunnel magneto-resistivity (TMR)18 effect.
The second was developed by Bazaliy et al.19 and has been extended by Zhang and Li20

and Thiaville et al.21 It deals with the spin-transfer torque due to continuous changes in the
magnetization, e.g. due to domain walls or magnetic vortices. Since in this case the current
flow is influenced by the magnetization through the anisotropic magneto-resistance (AMR)
effect. The AMR needs to be considered self-consistently, in order to cover the interplay of
the current and the magnetization.

The investigation of the STTRAM is only one example for the importance micromag-
netic simulations have gained during the last decade. The importance of micromagnetic
simulations rests on the possibility to make predictions and interpretations of the dynamic
behavior of complex ferromagnetic systems. Considering that the communities research
interest is moving to the simulation of real experimental setups including more physical
phenomena, two demands will face up.

1. The demands for computation performance is further increasing. Current trends in
the computer hardware show that a further increase in computation performance is
only possible by parallel computing.22–24 Thus the only possibilities to comply the
demands to the runtime of a micromagnetic simulation are to optimize the algorithms
and to parallelize them on novel hardware architectures.

2. With the new possibilities micromagnetic simulation offers for the investigation of fer-
romagnetic systems its user community grows. Most of the new community members
will be physicists with a restricted knowledge in numerical analysis and software de-
velopment. These users are expected to concentrate on their subject and thus need
tools that are convenient to use and to extend.

These demands are concurrent, as the performance optimization and parallelization of a
large program increases its software complexity drastically. Thus the hurdle to perform
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Introduction

micromagnetic simulations and to change the simulation to the users needs is increased.
The conflict between runtime performance optimizations and maintainable software can
be found in most computational science areas.25 The experiences of the last decades in
the scientific computing community have shown that this conflict could only be handled
by prioritizing the software quality criteria portability and maintainability equally to the
runtime performance of a scientific program.25, 26

As a consequence scientific software environments like MATLAB, Mathematica,27–29

Java30 and its built-in scripting engine,31 and Python32 combined with basic numerical C/C++
and FORTRAN libraries33, 34 have been developed. As introduced by Hudak et al.35, 36

these so-called computational science integrated development environments (CSIDE) offer
a better balance between the software quality criteria compared with a pure C/C++ or
FORTRAN solution.

In addition to these criteria, the correctness and trustworthiness of software applica-
tions have to be ensured. Checking the correctness of a scientific software application is
a difficult task. Many well-established validation methods that are used in the software
development of enterprise software applications are not directly applicable to the de-
velopment of scientific software.25, 26, 37–39 Especially complex simulators are used when
the mathematical models cannot be solved analytically. In such a case, it is difficult to
find simulation problems with a known behavior that can be used as system tests. The
comparison with investigations on real systems is also difficult for several reasons:

• The simulation is consulted for systems that cannot be investigated in reality.

• Real experimental results can only be used for a qualitative comparison, as the experi-
mental results are affected by parasitic influences.

Referring to the scientists intuition for the expected behavior of the real system is often
the only way to identify system-test specifications. In the micromagnetic community this
problem has been faced by the Micromagnetic Modeling Activity Group (µMag).40 This
group has collected system test specifications for micromagnetic simulations, so-called
standard problems. Until now, four standard problems have been published by µMag
including the anisotropy, the demagnetization, the exchange, and the Zeeman field. Since
their publication, these problems were referred in many following research activities to
investigate the accuracy of the applied mathematical and numerical algorithms.40

In summary this thesis deals with the design and development of a finite-difference-
method based micromagnetic simulator that allows to investigate ferromagnetic systems
effected by a current flow. Furthermore the validation of the numerical models is discussed.

Another aspect is to see, if the use of a CSIDE to develop a complex simulator really
reduces the software complexity and thus increases its usability while resulting in a

8



reasonable runtime performance. This investigation is important, as commonly CSIDE are
used to prototype a scientific software application which is later reimplemented in C/C++
or FORTRAN to increase the runtime performance. The question is now, if the current state
of CSIDE really necessiates a full reimplementation.

This thesis is organized as follows:

Chapter 2 gives an overview of the fundamentals this thesis is based on. Section 2.1
summarizes aspects to be considered when developing scientific software. The section gives
an overview of actual trends in the scientific computing community, and introduces the new
approach of scientific development environments. Section 2.2 introduces the micromagnetic
model, the spin-transfer-torque extensions, and the AMR effect. Finally Sec. 2.3 reviews
existing micromagnetic simulators and the possibilities for the validation of these simulators.

Chapter 3 presents a micromagnetic simulator prototype written in MATLAB.41 Based
on this prototype benefits and pitfalls of using a CSIDE in general and MATLAB in detail
for the development of a complex simulator are discussed. The validity of the prototype is
proved by results for standard problem No. 4 and the Larmor-precession test. Further algo-
rithmic runtime optimizations and possibilities for parallelization are identified and their
feasibility using MATLAB is determined. Finally it is evaluated, if the restrictions identified
for MATLAB are general restrictions of CSIDEs or only MATLAB specific. Therefore the
MATLAB prototype is compared with two other prototypes written in Java/Java Scripting
API (JSA)30, 31 and Python/SciTools.32, 42

Chapter 4 deals with the integration of the spin-transfer torque extensions and the
AMR effect into the micromagnetic simulation. Section 4.1 presents discretized models
and implementation details of the spin-transfer torque extension. The verification of the
spin-transfer torque extension for a spin valve has been prooven by comparing simulation
results with the results published by Berkov and Gorn.43 The correctness of the spin-transfer
torque extension for continuously variable magnetization textures has been verified by
a system test developed during this work. This system test has been proposed as a new
standard problem and is presented in Sec. 4.2. Section 4.3 at last discusses a proposal for a
robust measurement scheme for the degree of non-adiabaticity with a great accuracy of 5 %
that is one order better than previous measurements of this property.

Chapter 5 concludes the thesis and describes possible future work.
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Chapter 2

Fundamentals

This chapter introduces common challenges for the development of scientific software and
reviews current trends to handle these challenges, focusing on the approach of computa-
tional science integrated development environments (CSIDE)35, 36 and test driven design
(TDD).44

2.1 Development of scientific software

Computer based numerical analysis replaced scientific assistants that performed the numer-
ical analysis by hand. Numerical analysis, recently also called scientific computing nowadays
is one of the three pillars of computational physics.45, 46 Landau46 and Basili et al.47 sum-
marized that most of the computations are performed on desktop computers rather than on
supercomputers. Since the hardware architecture also for desktop computers has changed to
parallel computer architectures, the parallelization of the sequential algorithms has become
an important method to increase the runtime performance.24 On the other hand the develop-
ment of scientific software is different to the development of commercial application.38 The
requirements for a scientific program are not clear; often they are a result of the develpment
itself since intermediate solutions help the scientist to identify requirements. In this sense,
scientific software development is following an experimental approach.

2.1.1 Trends in scientific software development

Scripting and opportunistic programming

Scripting has evolved to an important method in computational sciences and scientific
computing. This is due to the simplification that scripting offers non-experienced users. As
explained by Ousterhout et al.48 the scope of scripting languages is more likely the connection
of system functionality rather than offering the possibility to efficiently implement new
system functionalities. That is why they are also called glue languages or system integration
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2.1. Development of scientific software

languages. Scientists started to use scripting with the upcoming of TCL and Perl at the end
of the 1970ś. At that time scripting was mainly used to write small programs for automated
simulation runs or for the development of graphical user interfaces (GUIs). It was also used
on supercomputers to organize and schedule distributed jobs. Recently many scripting
languages exist that are used by scientists.

Brandt et al.49 describe the way non-experienced software developers implement software
as opportunistic programming. Their case study showed, that non-experienced users do not
write a code from scratch. They try the copy-and-paste programming and develop the code
in an experimental way. This means, they take code snippets from a knowledge base (for
instance via the world wide web) and modify it to get the desired functionality. Concerning
the software engineering knowledge of scientists and their experimental way to develop
scientific software, opportunistic programming fits well to scientists with a low experience
in software development.

Numerical libraries and domain specific frameworks

Most of the investigated problems in computational physics are described by models ex-
pressible in mathematical notations, which can be represented by discretized computational
models and then solved by a computer. During the last decades numerical libraries50–53

have been developed using mainly the programming languages C/C++, and FORTRAN, as
well as recently Java. These libraries all together implement most of the basic numerical
algorithms in an optimal way. An overview of existing libraries has been given for instance
by the NetLib project54, 55 or the Java Numerics Group.56

Another trend is, that a variety of domain specific frameworks have been developed
for many areas of scientific computing. An overview of these frameworks is given by
Steinhaus.57 As investigated by Carver et al.26 many scientific software is written in pure
C/C++ or FORTRAN. For the development scientifists prefer Unix based editors more than
integrated development environments (IDEs). Numerical libraries are often used, while do-
main specific frameworks do not have this acceptance. A review of existing micromagnetic
simulation packages and the used approaches is given in Sec. 2.3.

The decision for the use of a standard numerical libraries/domain specific framework
or an own implemented library is an example for a so-called make or buy decision. The make
or buy decision is a general management concept, that applied to software products decribes
the decision between the development of a piece of software inhouse or the purchase of a
license for an externally provided piece of software that offers the desired functionality.58

The benefits of an inhouse development is that the developer has the full control of the
software and can change it to its needs. The benefit of a purchased software is that the
software commonly is extended during the time by the external provider and often includes
better optimized algorithms as an inhouse software. Hence often, with the purchased
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software its included knowledge is purchased too. The new trend for open-source libraries
offers here a new option, as in contrast to a purchased software an open-source software can
be changed to the users needs.59

Parallel computing

Current trends in the computer hardware indicate that the future computer architecture also
on desktop computers will be a parallel architecture.22–24

Here the community offers a variety of parallel hardware architectures. For example
using field programmable gate arrays (FPGA) for reconfigurable computing,60 or CUDA61

on general purpose graphical processing units (GPGPU) has become competitive to well-
established techniques like symmetric multiprocessing (SMP) and cluster-based parallelization
using the message passing interface (MPI).62, 63 Looking at the top 500 list,64 that lists the 500
fastest supercomputers of the world, shows that the next step is a combination of these
techniques. This trend shows, that further advances of the hardware can be expected in
future.

Parallelizing scientific software is a difficult task. Thus spending effort on the run-
time performance optimization for a given hardware25 can result in lost time, if the
hardware renewing period is too short. At the same time scientific software has been
developed without the view on the later parallelization of the code which complicates the
parallelization process.

Several strategies may be applied on sequential algorithms to run them on parallel
hardware:65

• Run the highly optimized sequential program tasks in parallel to perform parameter
sweeps. This tactic is limitedly applicable as the simulation of micromagnetic problems
has increased in complexity and the run time of a single simulation has exceeded a
critical value.

• Use special compilers that are able to identify parallelization possibilities. This tactic
is limited as parallelization possibilities can be located only on a high level beyond the
scope of a compiler resulting in a worse performance gain compared to a manually
performed parallelization.

• Use numerical libraries to express the algorithms and replace them by parallel ver-
sions. This tactic is the most promising tactic but its success depends on the existence
of appropriate numerical libraries that offer the required functionality.

• For special cases, parallelized domain-specific frameworks have been developed.
These frameworks can appropriately take the parallelism at different levels into ac-
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2.1. Development of scientific software

count. In comparison to numerical libraries, adaptations concerning new hardware
architectures need more time due to the smaller user community.

The aim of these strategies is to reduce the effort for using the parallel resources efficiently
and to prevent scientists from reinventing the wheel. While the first two strategies necessiate
no change of the source code to parallelize the code, the third and fourth strategy require
sophisticated parallization knowledge that scientists usually do not have. The solution to
consult an expert to perform the reconstruction * yields the problem that such an expert
does not understand a software with a low intrinsic quality, so it is difficult to change the
code. This can necessitate prior refactoring steps to increase first the intrinsic quality.

2.1.2 Scientific development environments

Scientific development environments or, as introduced by Hudak et al.35, 36 so-called com-
putational science integrated development environments (CSIDE) like MATLAB, Maple,68

Mathematica,69 O-Matrix,70 Octave,71 SciLab,72 or Python/SciTools32, 42 with the flexibility of a
mathematically motivated scripting languages and integrated development environments
(IDEs) as well as an extensive data analysis and visualization functionality have been
developed based on numerical libraries.27–29, 35, 36 These environments simplify the instal-
lation and access to the underlying libraries. Further they offer an interpreted scripting
language that allows the interactive implementation of scientific models and user specific
analysis functionality. Finally most of the environments handly and hide compatibility
problems between different necessary libraries from the user, by offerening anconsistent
superimposed application programming interface (API).

As summarized by Carver et al.26 the acceptance of a CSIDE depends on:

“ To be adopted by scientific and engineering programmers, a programming language
has to be easy to learn, offer reasonably high performance, exhibit stability, and give
developers confidence in the validity of the resulting machine instructions. ”

This work exemplary focuses on the CSIDEs MATLAB, Java/JSA and Python/SciTools.
MATLAB and Python/SciTools have been chosen as they represent well-established CSIDEs
within the scientific community and are based on C/C++ or FORTRAN. Java is a young pro-
gramming language and not established in the high performance and scientific computing
community yet. Although itoffers unique possibility, like a just in time (JIT) compiler or
a garbagecollector,30 that cannot be found in C/C++ orFORTRAN. In the following a short
overview of the main propertiesfor all three CSIDEs is given. A more detailed review and
comparison betweenthese three CSIDE is given in Sec. 3.3.

*A reconstruction is “the transformation from one representation form to another at the same relative abstraction
level, while preserving the subject system’s external behavior (functionality and semantics)”.66, 67
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MATLAB

MATLAB41 became the leading scientific computing environment during the last decades.73

Its success can be attributed to five of its main ideas:

• It offers a mathematically motivated scripting language that allows to formulate matrix
operations in a clear and short way. The conformity to mathematical notations reduces
the effort to learn the programming language, and to identify errors in the resulting
implementation.74

• Established numerical frameworks like the basic linear algebra subroutines (BLAS),51

LAPACK,53 FFTW50, 75–78 are made available by the MATLAB runtime environment.
Here compatibility and installation problems are hidden.41

• Compiled versions of the runtime environment are provided for many operating sys-
tems.

• A documentation, a knowledge base, and an interactive runtime environment are pro-
vided. Thus, the needed functionality can be developed by copying and pasting to-
gether code snippets from example code listings.49

• Through its license it is available at many universities. In addition, there exist many
open-source tools that offer a translation of a MATLAB program into an open-source
version or to compile it to a stand alone program.

From the software engineering point of view MATLAB offers a debugger, a code Lint-like
tools for static analyzis of source code,79 and a performance analyzing tool that includes
code coverage metrics. Test packages have only been published as third-party projects.80

One drawback of MATLAB is, that all C/C++ or FORTRAN based framework func-
tions are not open source and thus not changeable if necessary. This circumstance leads
to the development of several concurrent open-source or license-free alternatives that
directly aim to provide a MATLAB derivative.71, 72, 81 The optimization and parallelization
of MATLAB script routines is a difficult task. MATLAB offered a solution for this problem in
2006 with the distributed computing toolbox and later with the parallel computing toolbox.
The use of these toolboxes results in a parallelization with a poor speed-up. Several free
solutions have been provided by the community.82–85

Python/SciTools

Python is a powerful scripting language that supports many software engineering concepts
and is well-suited for large development projects.86 It is widely used on Unix systems and
recieved a large acceptance in the scientific computing community.
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2.1. Development of scientific software

Python combined with the numerical libraries collection SciTools,42 the interactive Python
shell IPython33 and the IDE Eclipse results in a powerful CSIDE comparable to MATLAB:46

• Eclipse87 has been chosen, as it is a well-established software development environ-
ment, and combined with the Pydev project88 it offers support for a wide range of
software engineering concepts like refactoring and autocompletition for Python.

• IPython33 has been chosen, as it is an extension of the interactive shell of Python, that
offers syntax highlighting and autocompleting. It offers an exhaustive package for
parallel computing in Python.

• SciTools42 is a collection of different well-established numerical Python libraries. The
collection includes the numerical capabilities of the Python libraries NumPy89 and
SciPy,90 which themselves interface well-established numerical C/C++ and FORTRAN
libraries.51, 53, 91 This combination results in a simple and clear similar to the API pro-
vided by MATLAB.34

• Python offers the automated testing frameworks PyUnit92 and py.test93 including test
driver and test coverage tools. The main difference between the PyUnit and py.test tool
is that PyUnit corresponds to the general xUnit specification94 while the py.test package
is less restrictive considering the structure of a test function.

Java/JSA

This approach is a step back compared to the previous prototypes. In this approach the
physical core is implemented in Java similar to the architecture of OOMMF. Scripting is
used here to implement the user script. This approach has been chosen to see if Java as
upcoming programming language in the scientific computing community is competitive in
this comparison.

In the newest version Java 1.6.0_20 offers following important programming language
elements by default:

• The Java Runtime Environment (JRE) makes Java a platform independent programming
language. The basic idea is “compile once, run everywhere”. Technically this is realized in
Java by splitting the compilation of a Java program into two steps. In the first step the
Java program code, also called source code, is compiled to a system independent inter-
mediate code called byte code. In the second step the byte code is executed on the users
system calling the JRE. In the first versions of the JRE the byte code was interpreted
at runtime resulting in a low runtime performance especially compared to C/C++ or
FORTRAN. In the current version of Java the JRE uses a just in time (JIT) compiler. In
contrast to the interpreter, the JIT-compiler compiles the byte code to machine code,
the first time the byte code is used. The JRE allows platform independency and the
use of system-specific compilation settings as the JRE knows the system details when
calling the JIT.
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• In contrast to C/C++ or FORTRAN, Java includes a so-called garbage collector that han-
dles the freeing of the memory and thus releases the user from one of the most severe
causes of programming errors. Especially in concurrent programs it is difficult to iden-
tify, if a memory is used by other threads or not. While the garbage collector in the first
Java versions was a reason for a low runtime performance, in the newest Java version †

special garbage collections for concurrent and parallel programs are included.

• Similar to the Python approach the IDE Eclipse is used, as Java combined with Eclipse
offers extensive refactoring functionality.

• The Java Scripting API (JSA) is included in Java since the version 1.5. It offers by default
engines to Groovy95 or Java Script96 but also allows to implement new engines for own
scripting languages. JSA can either be used to provide a scripting API for the user
script or to implement a domain-specific scripting API interfacing a domain-specific
Java package. In the following, the Java Script engine is chosen as first approach. Java
Script has been chosen due to its wide distribution in the computer science community.
It is well known by many users and supports many structures like inheritance that are
important to include user-specific code.

• A wide range of tools for runtime profiling, test coverage measurement, object-
oriented analysis, and refactoring, that simplify the software development, exist for
Java. In this project the test coverage tool EMMA97 was used. In contrast to the
MATLAB profiler EMMA offers to measure the (C0) and (C1) test coverage for all ex-
isting unit tests. The (C0) and (C1) test coverage measures will be explained in the
following.

2.1.3 Validation and verification of scientific software

Several authors emphasize the importance of validation and verification of scientific soft-
ware, since their subject is to proof, if the results appropriatly describe the reality.26, 37, 47, 98, 99

The article of Hook and Kelly37 points out, that no coherent definition exists accross the
computational-science and engeneering communities due to the synonymos use of the terms
validation and verification. In the following the definition of Hook and Kelly for the terms
validation and verification are introduced:

• “Validation for scientists primarily means checking the computer output against a reliable
source, a benchmark that represents something in the real world. In the literature, validation
is described by scientists as the comparison of computer output against various targets such as
measurements (of either real world or bench test events), analytical solutions of mathematical
models, simplified calculations using the computational models, or output from other computer
software. Whether that target is another computer program, measurements taken in the field,
or human knowledge, the goal of validation is the same: is the computer output a reasonable
proximity to the real world?”

†in this thesis this was version 1.6.0_20
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• “Verification is also described as a comparison of the computer output to the output of other
computer software or to selected solutions of the computational model. Roache succinctly calls
verification “solving the equations right”.99 This includes checking that expected values are
returned and convergence happens within reasonable times. The goal of verification is the as-
sessment of the suitability of the algorithms and the integrity of the implementation of the
mathematics.”

Hook and Kelly identify validation and verification as software test goals
and introduce a new model for testing scientific software as shown in Fig.
2.1 that sets these test goals in relation. In this model the new test goal
code scrutinization is introduced as: “Code scrutinization addresses code faults
that arise in the realization of models using a computer programming language.”

Figure 2.1: Model of Testing scientific software, modified from Hook and Kelly.37

This work covers these test goals by applying dynamic software test methods on the
software. A dynamic software test method proves a program component by running the
component with well-chosen input data and comparing the results with expected reference
values.44, 100 This can be performed manually or by automated testing. Such an procedure
tests the component randomly. It cannot prove the correctness of the component but allows
to check its correctness for typical cases, i.e. wrong types or wrong number of arguments.
Dynamical software test methods are further subdivided in black-box and white-box tests.44

A black-box test is a test that is derived from the specification for the component and
is also called functional test. The challenge of such atest is to derive suitable test data from
the specification. This can be donefor instance by using the equivalence partitioning and
the boundary valueanalysis methods.101, 102

A white-box test is a test that is derived from the source code of the component. Here
the problem can occur that the developer is routine-blinded and does not test the compo-
nent appropriately.
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Since an automated dynamic test runs a component for distinct use cases and checks
the results against expected results, the test simultaneously includes a description of the use
case. In this way the test is simultaneously a documentation of the use case of the tested
component and a working example for its usage. Since from the validation perspective
each test has to run correctly, the developer spends time to keep the tests up-to-date. This
means that in contrast to other documentation the dual nature of a dynamic test results in
an up-to-date documentation of the code.44

System-/unit-tests

A test can be categorized by the object under test. One distinguishes between system and
unit tests.

System tests use the whole software system or a distinct subpart of the system as a
test object. A system test checks the expected behavior of the software system from the userś
(or specifications) point of view and is an example for a black-box test.44 System tests cover
large-grained functionality in order to help developers to find bugs. Therefore in addition
so-called unit tests are used.

Unit tests use the smallest testable program units of the software system as test ob-
jects. Through the small size of the units, their behavior remains manageable and the test
can be defined specifically, whereby in an error case the error cause can be located quickly.
Unit tests are an example for white-box tests as they are commonly implemented and run by
the software developers, who know the internal structure of the software.44 They represent
the knowledge of the developer about the specific unit and give an overview of the usage
and functionality of the unit.

Automated testing

In the last decade, the use of automated testing has shown a huge potential to help devel-
opers handling complex software systems. This is based on the fact that in large software
systems an error cause and its effect can be far away from each other. Finding these errors
by debugging is a hard job.

Automated testing differs from dynamical testing as the test run and the check of the
results are automated. Therefore expected reference values are needed that allow for a
comparison with the current results of the test object. In this way automated testing offers
a solution for identifying side effects of a change. When the developer makes changes to
one unit, all tests can be run afterwards automatically to see if the tests for other units are
effected by the change. A precondition for this way of using tests is a high test coverage of
the code. Otherwise a change could effect untested parts of the software.
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Many units are not runnable in a stand-alone mode because they depend on the envi-
ronment they are integrated in. To be able to run them in a test, the original environment is
replaced by the test environment. If components used in test environments have an internal
state, they have to be instantiated to a well-defined state before a test run and reset to a
default state after the test run. It is necessary to ensure that errors in the test are caused by
the test object and not by the test environment due to an unexpected state. Another essential
element of automated testing is the test driver. The test driver performs all automated tests
and generates the test report.

Automated testing supports the opportunistic programming because of the documenting
nature of tests.49 A new user can run an automated test conveniently for instance in debug
mode and learn, how different components are connected. Automated testing hence offers a
knowledge base for the usage of the software systemand in this way supports opportunistic
programming.49

Test coverage

The benefits of automated testing arise with a high test coverage. The test coverage measures
the percentage of code covered by the execution of all tests. A low test coverage means that
large parts of the program are not passed when running all tests and errors in these parts
are not detected. The amount of test coverage therefore indicates how much the developer
can trust in the existing test cases. The literature distinguishes between three methods to
estimate the test coverage:

• The statement coverage (C0) with C0 = executed SLOC/total SLOC, where SLOC is the
source lines of code. The statement coverage is the simplest measure and its signifi-
cance is debated in the community.100

• The branch coverage (C1) with C1 = executed primitive branches/ total primitive
branches. A primitive branch means here, that a conditional statement results in two
optional parts of a program that are executed depending on the condition. The branch
coverage is a much better measure as it allows to detect errors in branch conditions. Its
limits are reached when dealing with loops.44

• The path coverage (C2) with C2 = executed primitive paths / total primitive paths. A
primitive path means here one possible combination of statements in a procedure. A
procedure can have an unhandleable numbers of paths. Thus the path coverage is the
most extensive measure, but it can handle loops. To make the path coverage resonable
additional restrictions are needed to reduce the investigated numbers of paths.44
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2.2 Micromagnetic modeling

In the following, the micromagnetic model as reviewed by Parkin et al. and Cimrák is in-
troduced.103, 104 Then a review of the actual micromagnetic simulator landscape is given.
Since the focus of this work is the development of a finite-difference-method (FDM) based
micromagnetic simulator, in Sec. 2.2.2 the finite-difference-method as well as in Sec. 2.2.3 the
FDM-based discretized micromagnetic model are introduced.

2.2.1 Micromagnetic model

For the description of the magnetic properties of ferromagnetic structures, the widely ac-
cepted model is the micromagnetic model. In 1935, Landau and Lifshitz15 laid the founda-
tion to this theory, with major contributions coming later from Gilbert, Néel, Bloch, Brown,
and many others.14, 105–107 Several reviews and books103, 104, 108–110 describe this theory in
detail. Common to other physical systems, this model describes an energy minimization
process, where the magnetization tries to reach the energy minimum. In the micromagnetic
model,107 the magnetization dynamics are described by an ordinary differential equation of
the time evolution, the so-called Landau-Lifshitz-Gilbert (LLG) equation.15 This equation
describes the magnetization dynamics caused by an effective field.

Landau-Lifshitz-Gilbert (LLG) equation

The Landau-Lifshitz (LL) -equation describes the motion of the magnetization under the
influence of an effective field. It was extended by Gilbert et al.106, 111 to the Landau-Lifshitz-
Gilbert equation, where the phenomenological Gilbert-damping was added. This extension
allowed to describe the experimentally observable damping in ferromagnetic structures.

The implicit Landau-Lifshitz-Gilbert equation is given by104

d ~M
dt

=− γ ~M× ~Heff +
α

Ms
~M× d ~M

dt
(2.1)

with the magnetization ~M, the gyromagnetic ratio γ , the Gilbert damping parameter α ≥ 0,
the saturation magnetization Ms, and the effective field ~Heff. As shown in Fig. 2.2 the LLG
describes a damped precession of the magnetization around the effective field. Equation
(2.1) can be written in the explicit form

d ~M
dt

=− γ
′ ~M× ~Heff−

αγ ′

Ms
~M×

(
~M× ~Heff

)
(2.2)

with the abbreviation γ ′ = γ/(1+α2).
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Figure 2.2: Trajectory of the normalized magnetization ~m = ~M/Ms due to an effective field
Heff. The magnetization performs a damped precession around the effective field.

Effective field

In the micromagnetic model the effective field is a superposition of the external or Zeeman
field and the intrinsic fields. The intrinsic fields consist of the crystalline anisotropy, the
demagnetization, and the exchange field. These fields are material and geometry dependent.
With these four contributions to the effective magnetic field, it is possible to describe most of
the experimentally observed magnetic behavior.109 As this thesis restricts its investigations
to the material Permalloy which has no crystalline anisotropy, this field is excluded from the
further introduction. Parkin et al.103 explain that the effective field can be derived from the
total magnetic energy according to

~Heff =−
1
µ0

δ E

δ ~M
. (2.3)

here µ0 is the magnetic permeability of the vacuum.

Exchange field

The exchange field is of quantum mechanical origin and is usually described as104, 112–114

Eex =−
A

M2
s

∫

V

(∇~M)2d3r. (2.4)
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As given by Eq. (2.4), the exchange energy depends on the spatial change of the magnetiza-
tion direction. The exchange-energy minimum is reached, when all magnetic moments are
aligned parallel. Equation (2.3) results in the exchange field

~Hex =
2A

µ0M2
s

∇
2 ~M. (2.5)

where A is the exchange coupling constant and Ms is the saturation magnetization. For this
field the exchange length of Λ =

√
2A/µ0M2

s defines the length scale.103, 104

Demagnetization field

The demagnetization field represents the magnetostatic interaction of the elementary mag-
netic moments within the magnetic body over long distances.103, 104 This energy is given by

Edemag =−µ0

2

∫

V

~M(~r)~Hdemag(~r)d
3r. (2.6)

The corresponding demagnetization field is given by

~Hdemag(~r) =−
1

4π

∫

V

(∇~g(~r−~r′))~M(~r′)d3r′. (2.7)

where ~g =~r/ |~r|3, and V is the volume of the sample. The demagnetization field forces the
magnetization to align parallel to the surface of the ferromagnetic sample to avoid surface
charges. The exact calculation of ~g depends on the discretization method. Equation (2.7)
describes a spatial convolution of ∇~g and ~M.

Zeeman field

The Zeeman field is an external field and can have different sources. Thus its exact descrip-
tion depends on the concrete setup. In the general form it is given by

~EZeeman =− 1
µ0

∫

V
~HZeeman · ~M. (2.8)

where ~HZeeman is the Zeeman field.103, 104
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2.2.2 Discretization: finite difference method

Since the focus of this thesis lies on finite-difference-method based simulators, this sub-
section the finite difference method (FDM).

FDM is a method to solve partial differential equations numerically. The basic idea of
FDM is to discretize the reference function f (x) at discrete grid points xi and to replace the
spatial derivatives by finite differences115, 116 between the grid points. Many FDM-based
micromagnetic simulators117–122 use a regular grid as it allows to apply fast convolution
methods for the calculation of the demagnetization field as explained in Sec. 2.2.3. For each
grid point a corresponding volume is needed. Such a regular grid is shown in Fig. 2.3.
Here the space is subdivided into a regular grid, where the function value is assumed to be
located at the center of the cuboid.

Figure 2.3: Resulting regular grid of cuboid using the finite difference method. The spatially
resolved function value is assumed to be located at the center of each cuboid.

First- and second- order derivatives

In the micromagnetic model the calculation of the gradient and the Laplacian of the mag-
netization is necessary. The components of the gradient as well as the Laplacian are given
by the spatial derivatives in each direction. In the following the calculation of the first and
second derivative of the one dimensional function f (x) is explained.
Based on the Taylor expansion115 the first derivative from the two point central, forward, or
backward approximation of the derivative is given by

f ′(x) =
f (x+∆x)− f (x−∆x)

2∆x
+O(∆x2), (2.9)

f ′(x) =
f (x+∆x)− f (x)

∆x
+O(∆x), (2.10)

f ′(x) =
f (x)− f (x−∆x)

∆x
+O(∆x). (2.11)

here O(∆x) indicates the error. The forward and backward cases are used, when x is at the
border of the sample.
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The second derivative can be derived from the Taylor expansion as well. The three
point central, forward, and backward approximation are given by

f ′′(x) =
f (x+∆x)−2 f (x)+ f (x−∆x)

∆x2 +O(∆x2), (2.12)

f ′′(x) =
f (x+2∆x)−2 f (x+∆x)+ f (x)

∆x2 +O(∆x2), (2.13)

f ′′(x) =
f (x−2∆x)−2 f (x−∆x)+ f (x)

∆x2 +O(∆x2). (2.14)

A detailed discussion of more accurate approximations of the first and second derivative
can be found in.115, 116, 123, 124 In the following the approximations of the gradient and the
Laplacian using Eq. (2.9) - (2.11) as it is used in many micromagnetic simulators is presented.

Gradient and Laplacian on regular grids

The gradient of a scalar field for a specific grid point is given by

∇ f (~ri, j,k) =




∂x f (~ri, j,k)

∂y f (~ri, j,k)

∂z f (~ri, j,k)


. (2.15)

The gradient can be calculated from Eq. (2.15) by replacing ∂d f (~ri, j,k) by the approximation
given by Eq. (2.9), where d ∈ {x,y,z} denotes the direction. This results in

∇ f (~ri, j,k) =




f (~ri+1, j,k)− f (~ri−1, j,k)
2∆x

f (~ri, j+1,k)− f (~ri, j−1,k)
2∆y

f (~ri, j,k+1)− f (~ri, j,k−1)
2∆z


, (2.16)

where ~ri+1, j,k = (x+∆x,y,z) is the next grid cell in x - direction, ~ri, j+1,k = (x,y+∆y,z) is the
next grid cell in y - direction, and~ri, j,k+1 = (x,y,z+∆z) is the next grid cell in z - direction.

The Laplacian of a scalar field for a specific grid point is given by

∇
2 f (~ri, j,k) = ∂

2
x f (~ri, j,k)+∂

2
y f (~ri, j,k)+∂

2
z f (~ri, j,k). (2.17)

The Laplacian can be calculated from Eq. (2.17) in the same manner as shown in Eq. (2.16)
by replacing ∂ 2

d f (~ri, j,k) by Eq. (2.12) - (2.14).

Three-dimensional convolution on regular grids

For the implementation of the demagnetization field it is necessary to calculate a three-
dimensional convolution. The three-dimensional convolution of the functions f and g is
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given by:125

h(x,y,z) =
∫ ∫ ∫

f (x− x′,y− y′,z− z′) ·g(x′,y′,z′)dx′dy′dz′. (2.18)

In discretized form this results in

h(xi,y j,zk) = ∑
k′

∑
j′

∑
i′

f (xi− xi′ ,y j− y j′ ,zk− zk′) ·g(xi′ ,y j′ ,zk′). (2.19)

If using a regular grid, the convolution can be calculated by the fast convolution method,
which is based on the fast Fourier transformation (FFT) and is given by

h(x,y,z) = F−1{F{ f (x,y,z)}∗F{g(x,y,z)}}, (2.20)

where S = F{} is the Fourier transformation of the function s and F−1{S} is the inverse
Fourier transformation of the function S.

2.2.3 Discretized model

In this sub-section the finite difference method is applied to the micromagnetic model.
Fiedler and Schrefl126 summarize the use of FDM as “Replacing both space and time derivatives
by their FD approximations . . . is called an explicit-type marching process”.

To understand the time and space complexity for the micromagnetic model calcula-
tion, the spatially dependence of the LLG and each field are listed. To increase the
readability the following abbreviations are used if possible:

• ~Mi, j = ~M(ti,~r j) is the magnetization at the i-th time step ti and the position of the j-th
cell~r j. Here the cell index j is a linearization of the cell indices ( jx, jy, jz).

• ~Mi, j+∆x = ~M(ti,~r j + ~∆x) is the magnetization at the i-th time step ti and the position of
cell~r =~r j +(∆x,0,0). This is defined in the same manner for ∆y and ∆z.

• For the spatial dependency all indicates all cells, and nn indicates the next neighbors
to the j-th cell.

In the following the discretization of the LLG and the intrinsic fields are discussed in more
detail.

Landau-Lifshitz-Gilbert (LLG) equation

As introduced in Sec. 2.2, the LLG describes a first order partial differential equation, that
can be discretized using the finite-difference method by the separation of the time and spatial
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dependency:

d ~Mi, j

dt
=−γ

′ ~Mi, j× ~Heff,i, j−
γ ′α
Ms

~Mi, j× ~Mi, j× ~Heff,i, j. (2.21)

The separation of the time and spatial dependence necessitates to choose time steps that are
sufficiently small. Otherwise a stable solution cannot be obtained in all cases.126

Commonly explicit Runge-Kutta algorithms of forth- and fifth- order127, 128 as well as
implicit Gauß-Seidel solvers129 with an adaptive time-step control are used for solving this
equation. Since standard ODE solver do not take the constraints of

∣∣∣~M
∣∣∣ = Ms into account,

this aspect has been addressed by several works130, 131 and has been reviewed by Cimŕak.104

In this thesis a renormalization of the magnetization after each timestep is used.

Effective field

The discretized effective field for a grid point~r j is given by

~Heff,i, j(~rall, ~Mi,all) =~HZeeman,i, j + ~Hexch,i, j(~rnn, ~Mi, j, ~Mi,nn)

+ ~Hdemag,i, j(~rall, ~Mi,all).
(2.22)

It is a superposition of all magnetic fields at that grid point. Due to the demagnetization
field, the effective field depends on all cell positions~rall and all magnetization values ~Mi,all .

Exchange field

The exchange field is approximated by the Laplacian of the magnetization as given by
Eq. 2.5. As shown by Donahue et al.113 the exchange field is accurately approximated using
the three-point approximation of the Laplacian Eq. (2.17) resulting in

~Hexch,i, j(~r j, ~Mi, j, ~Mi,nn) =
2A

Ms
2µ0

(
~Mi, j+∆x−2~Mi, j + ~Mi, j−∆x

∆x2

+
~Mi, j+∆y−2~Mi, j + ~Mi, j−∆y

∆y2

+
~Mi, j+∆z−2~Mi, j + ~Mi, j−∆z

∆z2 )

=
2A

Ms
2µ0

∑
k∈nn

~Mi,k− ~Mi, j

|~rk−~r j|2

, (2.23)

where µ0 is the permeability of vacuum, A is the material dependent exchange constant, and
nn = {±∆x,±∆y,±∆z}. Due to the physical origin of the exchange field, this approximation
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is valid only if |~rk−~r j| is significantly below the exchange length Λ and the angular change
of the magnetization between two neighboring points is below a maximum angle.114

Donahue et al.114 summarized the possible solutions in order to consider the bound-
ary of the sample as it was used by others.132, 133 In this work the boundaries are taken into
account by ∂iHexch = 0. The resulting three-point approximation of the Laplacian114 for a
boundary cell at~r j, where the neighboring cell at~r j+∆x is outside, results in

~Hexch,i, j(~r j, ~Mi, j, ~Mi,nn) =
2A

Ms
2µ0

(−
~Mi, j− ~Mi, j−∆x

∆x2

+
~Mi, j+∆y−2~Mi, j + ~Mi, j−∆y

∆y2

+
~Mi, j+∆z−2~Mi, j + ~Mi, j−∆z

∆z2 )

. (2.24)

Demagnetization field

The demagnetization field is given by

~Hdemag,i, j(~rall, ~Mi,all) = ∑
k∈all

N̂(~r j−~rk,τ j,τk) · ~Mi,k. (2.25)

It describes a spatial convolution of the magnetization with the so-called demagnetization
tensor. Here N̂(~r j −~rk,τ j,τk) is the demagnetization tensor for two cuboidal ferromagnets
separated by the distance vector ~R =~r j−~rk, τ j is the volume of the j-th cuboid, and τk is the
volume of the k-th cuboid. The demagnetization tensor for the cuboid at point~ri is given by

N̂ jk(~r j−~rk,τ j,τk) =
1

4πτ j

∫

τ j

∫

τk

∇ j∇k(
1

|~r j−~rk|
)dτ jdτk. (2.26)

Newell et al.134 showed how to solve Eq. (2.26) for such two separated cuboidal ferromag-
nets. Their solution can conveniently be applied to grids of cuboidal ferromagnets and
thus can be used to calculate the demagnetization tensor for FDM-based discretizations of
a ferromagnetic structure. In general this way of calculating the demagnetization field is
expensive, as the demagnetization tensor has to be calculated for each possible distance
vector between two cuboidal ferromagnets. For an irregular grid discretized by N cells this
results in N2 distance vectors. Using a regular grid reduces the number of distance vectors
between all grid points significantly to NDV = (2px− 1) ·(2py− 1) ·(2pz− 1), where pd is the
number of grid points in the x,y,z - direction. This allows to calculate an extended demag-
netization tensor of dimensions (Px,Py,Pz) = (2px−1,2py−1,2pz−1) for all distance vectors.
The temporal independency of the tensor allows to reduce the number of calulations to one
and so to reduce the time and space complexity.103 The tensor for a grid point is then given
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by the corresponding window of the extended tensor.

A regular grid also allows to calculate the convolution using fast convolution algo-
rithms. The corresponding algorithm is exemplary depicted for the quasi 2D case (only
one layer in z-direction) in Fig. 2.4. As explained in detail in the caption of this figure,
this algorithm is given mainly by five steps. The previously mentioned windowing of
the demagnetization tensor, which is necessary in the direct convolution algorithm, was
not applicable for the fast calculation algorithm. Hence the expanded demagnetization
field includes physically invalid regions, where the magnetization and the corresponding
demagnetization tensor overlapped only partially. Thus in the final step of this algorithm
the physically valid region of the expandend demagnetization field needs to be cut out.

Figure 2.4: Scheme of the necessary steps to calculate the demagnetization field in the quasi
2D case (only one layer in z-direction). In step 1 each component of the magnetization is
expanded to (Px, Py) to fit to the size of the expanded demagnetization tensor. In step 2 the
expanded magnetization is transformed to the Fourier space. In step 3 the expanded demag-
netization field is calculated in the Fourier space by multiplying the expanded magnetiza-
tion and the expanded demagnetization tensor in the Fourier space. In step 4 the expanded
demagnetization field is transformed back into the real space. In step 5 finally the physi-
cally valid region of the expandend demagnetization field is selected including the desired
demagnetization field.
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2.2.4 Extended models for current interaction

One goal of the present work is to integrate the spin-transfer torque and the anisotropic
magnetoristivity (AMR) effect into M3S. In this sub-section the physical models describing
this two phenomena are introduced.

In 1996 it was predicted8, 9 that a spin-polarized current flowing through a ferromag-
netic conductor can apply a significant torque to its magnetization. Theoretical extensions
of the micromagnetic model have been proposed for two cases. The first case is given by
a current flowing through a ferromagnetic sample, where the magnetization can change
continuously. This case is called spin-transfer torque in continuously variable magnetization.
The second case is given by a current flowing through a ferromagnetic multilayer system.
The multilayer system is usually denoted as a spin valve. Here the magnetization changes
discontinuously. This case is called spin-transfer torque in a spin valve.

The spin transfer torque describes only one direction of the interaction between a cur-
rent flow and the magnetization. It has been shown that the difference in the relative
orientation between the magnetization and the current, leads to local changes in the
resistivity and so to changes in the current direction. In a system with continuously variable
magnetization this leads to the AMR effect, while in a spin valve the giant magneto-
resistivity (GMR) or tunnel magneto-resistivity (TMR). Concerning the effects of a current
on the magnetization, this thesis focuses on the spin transfer torque in continuously variable
magnetization and the AMR effect.

In the following all extensions of the LLG are given in implicit and explicit expres-
sion. The implicit expression is often more intuitive, while the explicit expression is
implemented in the following.

Spin-transfer torque in a spin valve

A spin valve is a multilayer system, consisting basically of two ferromagnetic lay-
ers that are connected by a nonmagnetic spacer as shown in Fig. 2.5.
In such a magnetic multilayer system the magnetization changes abruptly at the connect-
ing interfaces of the magnetic layers. For a spin valve where the currents flow perpendicular
to the plane (CPP), Slonczewski8, 16 has introduced a spin-transfer torque extension to the
original LLG, which then became the so called Landau-Lifshitz-Gilbert-Slonczewski equa-
tion (LLGS)8, 16, 43, 135, 136 and is given by

d ~M
dt

=−γ ~M× ~Heff−
γa j

Ms
~M×

(
~M×~p

)
+

α

Ms
~M× d ~M

dt
. (2.27)
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Figure 2.5: Sketch of a spin valve. The electrons flow in −z-direction and cross the fixed
ferromagnetic layer FM1 first. FM1 polarizes the current in the direction of its magnetization
called ~p. The spin-polarized current influences the second ferromagnetic layer FM2 via the
spin-transfer torque.

Here a j is the current density dependent coupling constant between the current and the
magnetization. Equation (2.27) is given in its explicit form as

d ~M
dt

=− γ
′ ~M× ~Heff−

γ ′α
Ms

~M×
(
~M× ~Heff

)

− γ ′a j

Ms
~M×

(
~M×~p

)
+ γ
′
αa j ~M×~p.

(2.28)

The spin-transfer torque in a spin valve originates from the interaction of the spin-polarized
current with the local magnetic moments at the interface between the ferromagnet FM2 and
the spacer. The ferromagnetic layer FM1, called the fixed layer, is designed to be unaffected
by the spin-transfer torque. In reality, this is achieved by exchange-coupling of FM1 to ad-
ditional layers, e.g. anti-ferromagnets. FM1 then serves as a source for the spin-polarized
current. All electrons passing through this layer become polarized equal to its magnetization
direction ~p.

Spin-transfer torque in continuously variable magnetization

This type of spin-transfer torque describes magnetization dynamics within a ferromagnet
with continuously variable magnetization137 as shown in Fig. 2.6. The magnetization is ex-
cited by a spin-polarized current. The additional torque, called spin-transfer torque for such
a system arises from the interaction of the spin-polarized current with the local magnetic
moments within the ferromagnet. The itinerant electrons align their spin with the spins of
the local electrons that constitute the magnetization. This torque on the moving electrons
must be compensated by an opposite torque on the local magnetization to conserve the total
momentum. The basic micromagnetic model was extended by the spin-transfer torque by
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Bazaliy et al.19 As proposed by Zhang and Li20 it is given by

∂ ~M
dt

=− γ ~M× ~Heff +
α

Ms
~M× d ~M

dt

− b j

M2
s

~M×
(
~M× (~j ·~∇)~M

)

−ξ
b j

Ms
~M× (~j ·~∇)~M

(2.29)

with the gyromagnetic ratio γ , the Gilbert damping parameter α , the saturation magneti-
zation Ms, and the effective field ~Heff, as introduced in Sec. 2.2.3. The coupling constant
between the current and the magnetization is b j = (PµB)/(eMs(1+ξ 2)), where P denotes the
spin polarization of the current density ~j, µB the Bohr magneton, and ξ = τex/τsf the de-
gree of non-adiabaticity, which is the ratio between the exchange relaxation time τex and the
spin-flip relaxation time τsf. The explicit form of Eq. (2.29) is given by

d ~M
dt

=− γ
′ ~M× ~Heff−

αγ ′

Ms
~M×

(
~M× ~Heff

)

−
b′j
M2

s
(1+αξ )~M×

(
~M× (~j ·~∇)~M

)

−
b′j
Ms

(ξ −α)~M× (~j ·~∇)~M

(2.30)

with the abbreviations γ ′ = γ/(1+α2) and b′j = b j/(1+α2) as introduced by Krüger et al.138

Figure 2.6: Magnetic wire as an example for a system with continuously variable magne-
tization. In the magnetic wire the magnetization changes continuously from the left to the
right.

Magnetization dependent current distribution and AMR effect

In a ferromagnetic thin film element, the spin transfer torque is the effect of a current flow
on the magnetization. But the magnetization also affects the current through the anisotropic
magneto-resistance (AMR). The AMR effect leads to local resistance changes and to a local
reduction of the current density. This causes a locally reduced spin-transfer torque acting on
the magnetization dynamics. In turn, the magnetization influences the local resistivity. As
a result, the mutual influence of current and magnetization causes non-linear effects in the
linear regime of electron transport. The electronic transport can be treated classically and
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calculated quasi-statically from a local version of Ohm’s law

~j(~r) = σ(~r)~E(~r), (2.31)

while local charge neutrality is considered, ∇~r~j(~r) = 0

∇~j(~r) = ∇ [σ(~r)∇Φ(~r)] = 0. (2.32)

The influence of the magnetization on the current flow is incorporated in Eq. (2.32) via a
magnetization-dependent conductivity tensor σ(~r) =σ(~M(~r)). The shape of the conductivity
tensor accounts for the AMR, such that the resistivity locally obeys the relation

ρ = ρ⊥+∆ρ cos2(](~j, ~M)), (2.33)

which reflects the dependence of the resistance on the angle between local current and mag-
netization. The AMR ratio in thin-film elements

ρAMR =
ρ||−ρ⊥
ρ||+ρ⊥

≡ ∆ρ

ρ||+ρ⊥
(2.34)

characterizes the strength of the AMR effect. The material parameters ρ|| (ρ⊥) are the re-
sistances for the sample being saturated due to an external magnetic field parallel (perpen-
dicular) to the current flow. Thus, the anisotropic magneto-resistivity ∆ρ is the change in
resistance between a parallel and a perpendicular magnetization with respect to the applied
current.
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2.3 Micromagnetic simulator landscape

There exist a variety of micromagnetic simulators that can be split in groups by the underly-
ing discretization method and by the user license.117–122, 139–143 In the following an overview
of existing micromagnetic simulators is given focussing on the tools Magpar, OOMMF, and
Nmag. This section gives an overview of existing standard problems. A standard problem is
a system test identified by the micromagnetic community and collected on the µMag web-
page.40

2.3.1 Existing micromagnetic simulators

There exist open source and commercial as well as finite-difference-method (FDM) and
finite-element-method (FEM) based simulators. Concerning the discretization, FDM-based
simulators like the Object Oriented Micromagnetic Framework (OOMMF)121 are in general
faster and need less memory than FEM-based tools103 like Magpar,142 or Nmag.143 But
FDM-based simulators are used for samples, where the shape can be described by a regular
grid of cuboid. As observed by several groups, surface roughness has a large effect on
the dynamics,144, 145 which means the modeling of real experimental setups normally
necessitates the use of FEM-based simulators. Hence, the choice of a simulator depends on
the accuracy and runtime-performance requirements of the concrete problem.

Besides the discretization method and the user licence, many other requirements in-
fluence the choice of a simulator. Table 2.1 gives an overview of existing open-source and
public-code tools focussing on the properties: necessary user licence, scripting support,
used discretization method, support for parallel execution, used programming language,
interfaced libraries. This table reveals that the use of numerical libraries and the support for
parallel execution of simulations in the micromagnetic community is capable of improve-
ment. Further scripting is only supported by half of the tools. To depict the current state of
micromagnetic simulators in the following the well-established tools Magpar, OOMMF, and
Nmag are reviewed in detail.
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name license scripting method parallel programming libraries
language

AlaMag119 GPL - FD - C++ -
JaMM120 PDC - FD - Java/XML -
OOMMF121 open yes FD SMP C++, TCL/TK VODE

source
RKMAG122 open no FD no FORTRAN Intel MKL

source
MagFEM3D141 GPL Unknown FE - FORTRAN -
Magpar142 GPL TAO, FE MPI C++ TAO,

Python PVODE,
Sundials

PETSc
Nmag143 GPL yes FE MPI Python PVODE,

OCAML Sundials,
PETSc,
HLib

Table 2.1: List of existing license free micromagnetic simulators. For each simulator the type
of license, the scripting language support, the used discretization method, the support for
parallel computing, the basic programming language, and the used numerical libraries are
listed.
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Magpar

Magpar is a finite-element micromagnetics package which combines several unique fea-
tures:142, 146, 147

• Applicability to a variety of static and dynamic micromagnetic problems including
uniaxial anisotropy, exchange and magnetostatic interactions, and external fields.

• Flexibility of the finite-element method concerning the geometry and accuracy by us-
ing unstructured graded meshes.

• Availability due to its design based on free, open source software packages.

• Portability to different hardware platforms, which range from personal computers to
massively parallel supercomputers.

• Scalability due to its highly optimized design and efficient libraries

• Versatility by including static energy minimization and dynamic time integration
methods.

Magpar uses the well-established numerical finite element libraries PETSc148 and TAO149 as
well as parallel ordinary equation solvers.150, 151 To specify the simulation problem several
files have to be prepared.146 In the file allopt.txt as shown in Code listing 2.1 all simula-
tion parameters are specified. Each parameter is specified by a separate command option
-optionname optionvalue. User specific scripts written in TAO149 or Python can be speci-
fied for well defined options like for instance the exact calculation of the external magneti-
zation. In addition the files project.krn, project.inp, and project.0001.inp including the material
properties, the finite element mesh, and the initial magnetization distribution need to be
prepared. 2.2 By contract all files have to be placed in the same directory. There also exists a
graphical user interface that helps to prepare these files. A simulation finally can be started
calling the command magpar.exe. As an example the necessary configuration files to run
the Larmor-precession test specified (for details see Sec. 2.3.2) using Magpar are listed in the
following in Code listing 2.1, 2.2, and 2.3.
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1 -simName sphere
2 -meshtype 1
3 -size 10e-9
4 -init_mag 4
5 -mode 0
6 -demag 0
7 -hextini 1000
8 -ts_max_time 0.03

Code listing 2.1: allopt.txt

1

2 686 3237 3 0 0
3 1 1.0 0.0 0.0
4 2 0.0 1.0 0.0
5 ...
6 ...
7 685 1.0 0.0 0.0
8 686 1.0 0.0 0.0

Code listing 2.2: shere.inp

1

2 0.0 0.0 0.0 0.0 1.0 1e-11 0.0 uni
3 #
4 # theta phi K1 K2 Js A alpha psi # parameter
5 # (rad) (rad) (J/m^3) (J/m^3) (T) (J/m) (1) (rad) # units

Code listing 2.3: shere.krn
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OOMMF

OOMMF (Object Oriented Micromagnetic Framework) was first released on January 15,
1998. This toolkit is written in TCL/TK152, 153 and C++.154 In addition to the Oxs tool that
performs the simulation, OOMMF offers control and visualization tools that communicate
via TCP/IP. The Oxs tool is mainly written in C++. The other tools as well as the GUI are
written in TCL/TK. To perform a simulation it is necessary to write a configuration file in-
terfacing the C++ based OOMMF core using TCL/TK. OOMMF offers three distinct levels to
modify the code:121

• “At the top level, individual programs interact via well-defined protocols across network sock-
ets”.

• “The second level of modification is at the TCL/TK script level. Some modules allow TCL/TK
scripts to be imported and executed at run time, and the top level scripts are relatively easy to
modify or replace”.

• “At the lowest level, the C++ source is provided and can be modified”. There are third party
modules offering interfaces to VODE91 and VTK.155, 156 But OOMMF originally inter-
faces to no numerical or scientific library.

The OOMMF user’s guide121 explains the reasons for this architecture as:

“The goal of the OOMMF project is to develop a portable, extensible public domain mi-
cromagnetic program and associated tools. This code will . . . have a well documented,
flexible programmer’s interface so that people developing new code can swap their own
code in and out as desired.
. . .
In order to allow a programmer not familiar with the code as a whole to add modifications
and new functionality, we feel that an object oriented approach is critical, and have settled
on C++ as a good compromise with respect to availability, functionality, and portability.
In order to allow the code to run on a wide variety of systems, we are writing the interface
and glue code in TCL/TK.”

To specify the simulation problem a .mif file has to be prepared.121 In this file all parameters
are specified by creating the corresponding C++-Objects using TCL/TK. If necessary addi-
tional files can be addressed in the .mif file to include the material properties, and the initial
magnetization distribution. To run a simulation, the Oxsii-tool is started either in bash mode
or in a graphical user interface. By loading the .mif file the simulation is started. Code listing
2.4 shows the .mif file to run the Larmor-precession test explained in Sec. 2.3.2.
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1 # MIF 2.1
2 set pi [expr 4*atan(1.0)]
3 set mu0 [expr 4*\$pi*1e-7]
4

5 Specify Oxs_BoxAtlas:atlas {
6 xrange {0 3e-9}
7 yrange {0 3e-9}
8 zrange {0 3e-9}
9 }

10

11 Specify Oxs_RectangularMesh:mesh {
12 cellsize {3e-9 3e-9 3e-9}
13 atlas :atlas
14 }
15

16 Specify Oxs_UZeeman:field [subst {
17 multiplier [expr {1e6}]
18 Hrange {
19 {1 1 0 1 1 0 0}
20 }
21 }]
22

23 Specify Oxs_EulerEvolve {
24 alpha 0.0
25 do_precess 1
26 start_dm 0.01
27 }
28

29 Specify Oxs_TimeDriver [subst{
30 basename larmor
31 evolver Oxs_EulerEvolve
32 stopping_time 300e-12
33 mesh :mesh
34 stage_count 1
35 stage_iteration_limit 0
36 total_iteration_limit 0
37 Ms { Oxs_UniformScalarField { value [expr[1e6/mu0] } }
38 m0 { Oxs_UniformVectorField {
39 norm 1
40 vector {1 1 1}
41 }}
42 }]

Code listing 2.4: OOMMF-.mif file that defines the Larmor-precession test simulation. As
the Larmor-precession test is a boundary independent simulation, instead of a sphere one
rectangular cells is used.
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Nmag

Nmag is a micromagnetic software written in Python and OCAML. It uses the well established
libraries PETSc148 and Sundials150 to implement the micromagnetic model based on the finite
element method. Averaged-field results are stored in the .ndt157 file format following the .odt
file format esteblished by OOMMF.121 Spatially resolved data are stored in the HDF5 file for-
mat,158 so that the results can be plotted using VTK155 and three-dimensional visualization
tools like MayaVi.159 Further Nmag offers automated parallelization of user specific Nmag
scripts.160 The goal of the Nmag project is to develop a tool:143

“that handles specifications of micromagnetic systems at a sufficiently abstract level to
enable users with little programming experience to automatically translate a description
of a large class of dynamical multi-field equations plus a description of the system’s geom-
etry into a working simulation. Conceptually, this is a step toward a higher-level abstract
notation for classical multi-field multi-physics simulations.”

Concerning the architecture of Nmag, the main advantages of this approach are:160

“first, we do not gradually evolve another ad-hoc (and potentially badly implemented)
special purpose programming language. Second, by drawing upon the capabilities of a
well supported existing framework for flexibility, we get a lot of additional power for
free: the user can employ readily available and well supported Python libraries for tasks
such as data post-processing and analysis, e.g. generating images for web pages etc. In
addition to this, some users may benefit from the capability to use Nmag interactively
from a command prompt, which can be very helpful during the development phase of an
involved simulation script.”

To specify the simulation problem a Python script is prepared.157 In this script the simulation
problem is specified by creating the corresponding Python objects and starting simulation
runs explicitly in the script. If necessary additional files also in Nmag can be addressed in
the Python script to include the material properties, the finite element mesh, and the initial
magnetization distribution; see Code listing 2.5 for an example. A simulation run is started
by calling nmag myproblem.py.
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1 import nmag
2

3 from nmag import SI, every, at, si
4

5 sim = nmag.Simulation(do_demag = False)
6

7 Py = nmag.MagMaterial(name="Py",
8 Ms=1.0*si.Tesla/si.mu0,
9 exchange_coupling=SI(13.0e-12, "J/m"),

10 llg_damping = SI(0.0))
11

12 sim.load_mesh("sphere1.nmesh.h5",
13 [("sphere", Py)],
14 unit_length=SI(1e-9,"m"))
15

16 sim.set_m([1,1,1])
17

18 Hs = nmag.vector_set(direction=[0.,0.,1.],
19 norm_list=[1.0],
20 units=1e6*SI('A/m'))
21

22 ps = SI(1e-12, "s") # ps corresponds to one picosecond
23

24 sim.hysteresis(Hs,
25 save=[('averages', every('time', 0.1*ps))],
26 do=[('exit', at('time', 300*ps))])

Code listing 2.5: Example Script for the Larmor-precession test in Nmag.
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Comparison

In addition to the differences listed in Tab. 2.1 the review of Magpar, OOMMF, and Nmag
revealed further important differences in the support for scripting and the parallel execution
of a simulation.

• Magpar supports MPI but does not offer scripting at all.

• OOMMF in contrast has just been parallelized for multicore systems and offers script-
ing for the creation of a configuration file. In the configuration file objects can be spec-
ified that are called during the defined simulation process of OOMMF. In this way
OOMMF provides a more flexible configuration file as Magpar. A simulation run can
be specified using the full functionality of TCL/TK. In contrast to Magpar and Nmag,
OOMMF offers a graphical user interface to run a simulation.

• Nmag finally offers the parallel execution of complex simulation scripts using MPI. The
user can define complex simulation runs like parameter sweeps and hysteresis loops
on the basis of a well defined API. In contrast to Magpar and OOMMF, Nmag allows
to implement pre- and post-processing steps for a simulation run like the preparation
of the initial magnetization, the analyzis of the simulation results, or the automated
execution of following simulation runs directly in the simulation script.

In summary Nmag offers a clear and flexible framework for the simulation of FEM-based
micromagnetic simulations. The same flexibility cannot be found for FDM-based micromag-
netic simulations. Allthough OOMMF is a well-established micromagnetic simulator, it lacks
in the use of numerical standard libraries and the support for scripting.

2.3.2 Existing system tests

An important aspect for the choice of a simulator is its validity. As described above, a vari-
ety of micromagnetic simulation tools exist, which use different underlying algorithms. To
ensure the correctness and to allow the comparison of these simulators, the Micromagnetic
Modeling Activity Group (µMag) has collected system tests or so-called standard problems
with a significant behavior.40 Up to now there exist four standard problems, which have
been published by µMag. These problems include the anisotropy, the demagnetization, the
exchange, and the Zeeman field. In addition to these problems the Larmor-precession prob-
lem is a system test suitable to check the time integration method. From these five system
tests standard problem No. 1 as the first standard problem was not appropriate for the com-
parison of different simulators.40 Standard problem No. 240, 161 deals with static micromag-
netic simulations and standard problem No. 3 covers anisotropy effects, which are both not
the subject of this work. Hence in the following, this work focuses on the Larmor-precession
test146, 157 and standard problem No. 4.40
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Larmor-precession test

This system test can be performed with only one cell as it includes no spatially dependent
field. The only contribution to the effective magnetic field is the Zeeman field. As the
damping is set to zero this simulation describes an undamped rotation of the magnetization
around the Zeeman field. This setup can be used to check the correctness of the LLG
implementation and in part the numerical time integration as for the resulting so-called
Larmor-precession an analytical solution exists.

The test starts from a magnetization of ~M = (1,1,1)/
√

3Ms, where Ms = 1 T = 1/µ0

A/m. Further simulation parameters are α = 0 and γ = 2.210173 ·105. A simulation is
performed for 300 ps by applying an Zeeman field of ~H = (0,0,1 ·106)A/m. From the results
the precession frequency is estimated by a sinusoidal fit. The estimated precession period is
compared to the expected Larmor precession period of T = 1/ fLarmor = 28.428477 ps.146, 157

Standard problem No. 4

Standard problem No. 4 describes a system, that was highly investigated by the mi-
cromagnetic community at the time it was published. It focuses on dynamic aspects
of micromagnetic simulations.162, 163 The investigated sample is given by an Permalloy
thin film of thickness t = 3 nm, length L= 500 nm, and width d = 125 nm as shown in Fig. 2.7.

The system test starts form an initial state that is an equilibrium s-state as shown in
Fig. 2.8. Here the magnetization is assumed to be homogeneous in z-direction, meaning,
that the z-direction is discretized by one cell. From the initial magnetization an instanta-
neously applied uniform and constant Zeeman field is applied on the sample causing a
switching of the magnetization direction from positiv to negativ x-direction.162, 163

The spatially averaged magnetization 〈~M〉 and the magnetization at the time, when
the x-component of 〈~M〉 first crosses zero, are derived on the basis of simulations. For this

Figure 2.7: Ferromagnetic thin film investigated in standard problem No. 4.
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simulation the exchange, the demagnetization, and the Zeeman field are included in the
effective field. Additional simulation parameters are an exchange constant of A = 1.3×10−11

J/m, a saturation magnetization of Ms = 8.0× 105 A/m, a damping constant of α = 0.01,
and the gyromagnetic ratio of γ ′ = 221 km/As. This initial s-state for the system test can be

Figure 2.8: Initial s-state of the thin film of standard problem No. 4.

obtained by performing a separate simulation, where the sample is magnetized uniformly
in (1,1,1) direction and relaxes in absence of any Zeeman field to equilibrium resulting in
the desired s-state.

The problem exists in two versions where the Zeeman field varies. In version 1 the
Zeeman field is given by ~HZeeman = (µ0Hx =−24.6 mT, µ0Hy = 4.3 mT, µ0Hz = 0.0 mT ) and in
version 2 by ~HZeeman = (µ0Hx =−35.5 mT, µ0Hy =−6.3 mT, µ0Hz = 0.0 mT).

A review of standard problem No. 4 reveals, that the simulation problem describes a
dynamic behaviour that is sensitive to wrong simulation parameters and thus allows the
verification of a simulator. A closer look also reveals following weak points:

• The published results for the problem on µMag40 substantiate, that the problem is
highly sensitive to the chosen spatial discretization.

• It is not clear, if the chosen properties for the comparison are sensitive and unambigu-
ous measures for the magnetization dynamics.

• In the case of a wrong simulation of the problem, the erroranous result is too complex
to for tracing back the error cause.
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Micromagnetic simulator prototypes
for (M3S)

The use of a computational-science IDE (CSIDE) to develop scientific software is a promising
new approach in the scientific-computing community. Whether if this approach really holds
its promises or not depends on the concrete problem, which for this work is the simulation
of micromagnetic problems.

This chapter deals with the conceptual approach of the micromagnetic modeling and
simulation kit (M3S). It begins with a detailed overview of the first prototype called
M3S-MATLAB developed using the CSIDE MATLAB. It explains important functional and
technical requirements identified for a micromagnetic simulator based on M3S-MATLAB.
The chapter further introduces possibilities to comply the software quality criteria portabil-
ity, maintainability, usability, and runtime performance of such a simulator.

In order to study the runtime performance, in a first step, an algorithmic-complexity
analysis is performed for a simulation run. Possible performance optimizations are identi-
fied on the basis of this analysis. In a second step these optimizations are evaluated with
respect to their performance gain and are compared to their impact on the architecture
ofM3S-MATLAB.

Although the development of M3S-MATLAB resulted in a promising micromagnetic
simulator that is easier to extend as OOMMF, the use of MATLAB revealed several concep-
tual limitations. Consequently, the alternative prototypes M3S-Java written in Java using
the Java Scripting API (JSA)31 and Nmag-FD written in Python using the SciTools package
collection have been developed. The aim of the development of these two prototypes was to
evaluate if the identified limitations are only MATLAB specific or hold in general forCSIDEs.
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3.1 Conceptual considerations for M3S

In this section important functional and technical requirements are identified for a mi-
cromagnetic simulator and possibilities are introduced to meet these requirements using
MATLAB. A schematic overview of the architecture of the resulting tool M3S-MATLAB
is shown in Fig. 3.1 depicting the relationship between the main components solver,
configuration objects, and analysis kit. The following article entitled “Simulating
Magnetic Storage Elements: Implementation of the Micromagnetic Model into MATLAB -
Case Study for Standardizing Simulation Environments” was presented at the 2007 Summer
Computer Simulation Conference SCSC’07 (that took place between 15 and 18 July 2007 in
San Diego, USA) and is reprinted in Sec. 3.1.1. This article identifies the requirements for the
solver and describes its implementation using MATLAB. Therefore, first a desired architec-
ture for the solver is introduced and in the second step its realization using MATLAB-Script
and MATLAB-Simulink are compared. To forestall naming confusions, it is pointed out that
the terms SimState and calculateModel in the article correspond to the terms configuration and
calculatedMdt in this work.

Configuration

Objects

User Script

Analysis Kit

M³S

run simulation

configure problem

analyse results

Solver

Figure 3.1: The schematic overview of the architecture of M3S-MATLAB.

45



Micromagnetic simulator prototypes for (M3S)

46



3.1. Conceptual considerations for M3S

3.1.1 Publication SCSC’07

Simulating Magnetic Storage Elements: Implementation of the
Micromagnetic Model into MATLAB - Case Study for Standardizing

Simulation Environments

M. - A. B. W. Bolte, M. Najafi, G. Meier, and D. P. F. Möller

Proceedings of the Summer Computer Simulation Conference (SCSC’07), G. A.
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Abstract:  
Mass data storage devices are the backbone of today’s 
world-wide connected society, and the development of mag-
netic storage devices has spurred technological advances in 
a number of fields. Therefore, continuing research on mag-
netic storage devices and the development of new non-vola-
tile storage concepts with ever higher storage capacity are in 
great demand. Here we present an implementation of a 
micromagnetic model that describes the dynamics of mag-
netic structures on the nano- and micrometer scale into 
MATLAB for a future inclusion into a multiphysics frame-
work. We explain the fundamentals of the micromagnetic 
model and the architecture of the implemented code along 
with its performance. We found that our code is two- to 
three-times faster in a correct computation of one of the 
standard problems of micromagnetism than other software. 
 
1. INTRODUCTION 
Moore’s law describing the exponential increase of comput-
ing power over time has held true for the last decades. Both 
semiconductor technology and magnetic storage media, the 
two fundamental pillars of today’s hardware architecture 
technology, are approaching fundamental limits, though for 
different reasons. Due to the downscaling of semiconductor 
devices the typical length scales are only a few atoms and 
quantum mechanical phenomena can no longer be neglec-
ted[1], while the miniaturization of the magnetic bits is 
impeded by the so-called superparamagnetic limit, in which 
the bits become thermally instable and lose their storing 
capability. 
Several novel concepts for magnetic storage devices have 
been proposed that could potentially also allow for funda-

mentally different hardware architectures, among them the 
magnetic random access memory (MRAM), the racetrack 
memory[2], or domain wall logic devices[3]. With the dis-
covery of the spin-torque transfer effect[4,5] a new field of 
research has erupted as the spin-transfer torque would allow 
for a local manipulation of the magnetization through 
electric currents. Storage devices using the spin-transfer 
torque effect can also be conveniently included in existing 
electronic circuits. This further promotes its application. 
Also it has been shown that magnetic storage devices can be 
included into standard CMOS fabrication processes to 
conform to the standard fabrication technique of semicon-
ductor devices. All this makes spin-torque-driven magne-
tization dynamics a fascinating field of research with very 
promising applications in sight. 
As for any new device, the physical processes must be 
understood on many levels. Starting from the atomic level to 
calculate the effects of different materials over the meso-
scopic model of micromagnetism[6-8] to Maxwell’s macro-
scopic equations, heat and electrical conductance as well as 
the magnetodynamics need to be fitted into one model. 
Some macroscopic equations have already been imple-
mented into powerful simulation frameworks such as 
COMSOL[9], but a description of the magnetic behavior of 
ferromagnetic material is still missing.  
We here show an implementation of a micromagnetic simu-
lation tool in MATLAB[10] that would allow for an inclu-
sion into the already existing multiphysics simulation envi-
ronment of COMSOL. The simple mathematical notation of 
MATLAB makes the implementation much more straight-
forward than C++, Fortran, or Java. The core of the code 
with the implementation of the model is surrounded by a 
simulation framework with extensive test functions. Yet the 
total code is but a small fraction of a comparable C-code, 
because MATLAB allows to make use of many built-in 
functions. Existing codes such as OOMMF[11], LLG®[12],  
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MicroMagus®[13], and others are stand-alone packages that 
efficiently solve the LLG, but so far, the simulation model 
has been limited to micromagnetic interactions, i.e., the 
interaction of the magnetization with itself via exchange or 
demagnetization fields. The inclusion of electric currents or 
temperature so far has only been done according to simple 
approximations. For a realistic simulation of all physical 
properties, i.e., magnetization, current, and temperature, a 
multiphysics approach is needed.  
In this work we describe the development of a micromagne-
tic simulation toolbox in MATLAB that could potentially be 
included into a multiphysics environment. First we review 
the micromagnetic model with its elementary equations and 
relations, followed by a description of the discretization of 
the model in space and time to allow for numerical compu-
tation. In Section three we explain the concrete implementa-
tion of the model into MATLAB code, validate it and 
evaluate its performance in comparison to an existing 
micromagnetic simulation tool. Finally, we give a summary 
and outlook of what we feel possible in the near future.  
 
1. THE MICROMAGNETIC MODEL 
The micromagnetic model describes the magnetic behavior 
of ferromagnetic systems on the nano- and micrometer 
scale. It can correctly model the static structure of ferromag-
nets, the formation of magnetic domains and their inter-
faces, called domain walls, but also the dynamics up to the 
THz-regime, the magnetic hysteresis, the switching of small 
magnetic grains, etc. In 1932, Landau and Lifshitz[6] laid 
the foundation to this theory, with major contributions 
coming later from Gilbert, Néel, Bloch, Brown, and many 
others[7,8,14,15]. Several excellent reviews and books 
describe this theory in great detail[16-18]. 
 
1.1. Equation of motion 
The fundamental equation in the micromagnetic model is 
the equation of motion of the magnetization, Landau-Lif-
shitz-Gilbert-equation (LLG). The magnetization itself does 
not move, but its constituents, the spins of the localized 
electrons, can point in any direction in space. The magneti-
zation M  precesses around the local magnetic field effH  
and is damped towards its equilibrium direction which is 
parallel to the effective field as described by the two terms 
on the right-hand side of Eqn. (1). 
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SM  is the saturation magnetization, the maximum magne-
tization a volume of a certain material can attain, i.e., when 
all micromagnetic moments are aligned parallel. 

In turn the magnetization determines the effective field by a 
superposition of mainly two types of magnetic fields. These 
field types are caused by different interaction mechanisms 
that shall be explained in the following paragraphs: the ex-
change interaction and the demagnetization interaction, also 
called self-magnetization. Additionally, an external magne-
tic field can be applied which would then be added to the 
effective field. 
 
1.2. Magnetic fields and energies 
All magnetic interactions, including the exchange interac-
tion which is of quantum-mechanical nature, can be written 
as a magnetic field interacting with local magnetic mo-
ments, even though the origins of the fields differ. The pre-
dominant interactions are revisited in the following section. 
The relation between a magnetic field due to an interaction 
and its energy is generally given by 

dVE MH
rr
⋅−= ∫ 0µ . (2)

This relation applies to all magnetic interactions, but in the 
simplest way the field can be seen as caused by an external 
magnetic field, also called Zeeman field, e.g., from a mag-
netic coil or from the write head of a magnetic hard drive. 
The field is potentially spatially inhomogeneous and can 
alter rapidly over time.  
 Sometimes it is easier to calculate the interaction energy. 
The corresponding field is then the total differential of the 
interaction energy density by the local magnetization 

M
H

δµ
δ

0

E
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1.2.1. Exchange energy 

The exchange interaction is of quantum-mechanical nature. 
Electrons have mass, energy, and angular momentum, like 
macroscopic objects, but they also hold a fourth quantity, 
the spin. The spins of the electrons of neighboring atoms 
interact in such a way that for ferromagnets the spins want 
to align parallel, thus increasing the overall magnetic mo-
ments of a material. In this way ferromagnets hold a magne-
tization even without an external field. The increase in ener-
gy due to the electron spin in a ferromagnet can be 
described by the equation 
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where 1S
r

 and 2S
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 are the spins and J is a material-depen-
dent parameter, the exchange integral. Approximating the 
cosine of the scalar product up to second order and using 
M  instead of the spin, one arrives at  
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where A is the exchange constant which is proportional to J. 
Using Eqn. (3) and some vector analysis, we find that the 
interaction between the electron spins of neighboring atoms 
can be mimicked by a magnetic field of the strength 

M
M
AH

S
exch

r
2

2
0

2
∇=

µ
. (1)

Since the exchange interaction is the origin of ferromagne-
tism, this field is extremely strong, a thousand times stron-
ger than the strongest external fields applicable in a lab, but 
it is also very short-ranged. 
 

1.1.1. Demagnetization energy 
Another magnetic interaction competes with the exchange 
interaction: Every electron can be seen as a little magnetic 
dipole. Each dipole "feels" the magnetic field originating 
from its neighbors 

.
2
1 dVHME

V
Sdemag ∫ ⋅−=
rr

 (2)

  
 
1.2. Finite-difference discretization of the model  
These analytical expressions fully describe the micromagne-
tic model. The model must be spatially and temporally dis-
cretized to be numerically solvable. Care must be taken that 
the implementation of the discretization has the same beha-
viour as the analytical model and doesn’t introduce artefacts 
into the simulation. We here describe how the model was 
spatially discretized via the finite difference method and the 
introduction of a topology. We limit our description to the 
LLG-equation as well the two dominant energy terms, the 
exchange and the demagnetization energy. We will then 
briefly touch upon disjoint simulations states and numerical 
integration methods to achieve the temporal discretization.  
The magnetization is a function of both space and time. In 
the finite-difference method (FDM), the simulated volume 

ZYXV ⋅⋅=  is divided into ZYX nnn ,,  blocks called 
simulation cells of equal size zyx ∆⋅∆⋅∆  (in Cartesian 
coordinates). As each dimension of the simulated volume is 
to be divided into an integer number of cells, only rectangu-
lar structures can be effectively and correctly simulated. For 
curved geometries, errors on the edges occur as the approxi-
mated solution can greatly differ from the correct one. For 
an alternative approach, cells of different shape and size, 
e.g., tetrahedrons, could be used to approximate the surface 
more correctly, as is done in the finite-element-method 
(FEM)[19]. However, for the micromagnetic model, the 
FDM is computationally less expensive as its regular grids 
allow the use of fast convolution algorithms for the compu-
tation of the demagnetization field, as will be shown below. 
We shall also limit ourselves to the Cartesian coordinate 
system. 

After discretizing the simulation volume into cells, the ma-
terial-dependent micromagnetic properties, i.e., saturation 
magnetization, exchange coefficient, and anisotropy con-
stant, must be defined for every cell. The magnetization, the 
solution of the LLG-equation, is then determined as the pro-
duct of a space and time dependent vector of norm 1 with a 
(spatially dependent) material parameter MS. The LLG-
equation can be solved for every cell individually so that 
solving the micromagnetic problem becomes finding the 
solution for ZYX nnnn ⋅⋅=  ordinary differential equa-
tions written as 
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The coupling between the individual cells only comes into 
play by the magnetic interactions that are summarized by 
the effective field. The discretization of the effective field is 
the great challenge when implementing the micromagnetic 
model. 

)),(,,()),(,,(

)),(),,(,,(),(

)),(),,(,,(

iiii

iiii

iii

tttt

tttt

ttt

jjAalljD

nnjjEjZ

alljeff

rMrHrMrH

rMrMrHrH

rMrMrH

++

+=

,
(4)

where all are the indices of all cells, and nn the indices of 
the nearest neighbors to the j-th cell. To compute the 
exchange field one must find an efficient discretization of 
computing the partial differential in Eqn. (3). One uses a 
Taylor-polynomial to determine the change in magneti-
zation between two cells. As the exchange interaction is of a 
very short-ranged nature it is generally sufficient to limit the 
computation to nearest neighbors. For the j-th cell ones gets 
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where A is the exchange constant. There are several ways of 
selecting the nearest neighbors. For three-dimensional pro-
blems, one could either select either the six cells with com-
mon surfaces or the 26 cells with shared corners. In either 
way, the computational complexity is O(N)[20].  
To discretize the demagnetization field one must first solve 
the demagnetization tensor N for every cell. The double 
sum, which would lead to an O(N²) complexity, can then be 
converted into an convolution integral. Newell and Dunlop 
[21] first delivered a solution for the demagnetization tensor 
of rectangular bodies, where before it had been determined 
for ellipsoidal bodies only.  
By applying Gaussian’s integral law, Newell reduced the 
demagnetization tensor elements to the surface integrals of a 
simulation cell. 
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The diagonal elements, Nii , describe the interaction of the 
magnetization at opposite surfaces of a cell, and the non-
diagonal elements Nij describe the interaction between the 
corresponding other surfaces. Applying some mathematics, 
Newell et al. derived a closed formula for the tensor ele-
ments (see Ref. 21 for details). For an implementation of the 
algorithm, one must also treat the cells on the surface of the 
simulated volume, i.e., where 0,, =ZYX nnn  or max,in .  
The convolution integral can then be substituted by a dis-
crete convolution sum 

∑ ⋅−=
k

ii tt ),()(ˆ)ˆ,,( kkjjD rMrrNNrH . (2)
The demagnetization field HD needs to be computed for all j 
cells at every time step, making it by far the costliest part of 
the computation. To reduce the computing time, one can 
make use of the regular grid of the FDM and Fourier trans-
form the tensor N̂  and the magnetization vectors. The com-
putation then consists of nine multiplications (for each 
tensor element) and two Fourier transformations. Since the 
geometry of the simulated volume does not change in the 
course of the simulation, the demagnetization tensor ele-
ments need only be computed once, at the initialization 
phase and is stored as its Fourier transform. At every simu-
lation step, M is Fourier transformed and the field is com-
puted and then inversely transformed back into real space. 
By using the symmetry of the problem in Fourier space, one 
can even reduce the number of necessary operations to one-
eighths[11].  
 
1.1. Time discretization 
To simulate the dynamics of the magnetic system from time 
t0 to tend, the time has to be discretized to a series of points 
[ti]. The model is thereby changed as follows: 
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For the stepwise solution for the magnetization Eqn. (13) 
must be integrated numerically. The next values for the 
magnetization in each cell ( )ij t,rM  are computed by 

multiplying the time derivative dtdM  with a discrete 
time step hi and adding the result to the function values 

( )1, −ij trM , as depicted in Fig. (1). From the new values 

( )ij t,rM  the effective field components are then calcu-
lated and the integration is repeated until tend is reached. 

 
 
For an efficient numerical integration it is feasible to use 
multi-step or Runge-Kutta methods.  The multi-step method 
evaluates the function, in this case dtdM , at several time 
steps in the past (Adams-Bashforth methods), sometimes 
implicitly including the next time step for a predictor-cor-
rector algorithm (Adams-Moulton methods) to increase the 
accuracy of the integration[22, 23]. For a given accuracy the 
time step can then be substantially enlarged so that the com-
putation of the integration becomes much faster. Alterna-
tively a time interval [ti, ti+1] can be further divided by addi-
tional midpoints at which the function is evaluated (Runge-
Kutta method). 

 
 
This leads to much larger time steps and faster simulation. 
Even though in both methods the integration requires mul-
tiple function evaluations, of which, as already mentioned, 
the computation of the demagnetization field is the most 
time consuming, the multi-step or Runge-Kutta integration 
schemes are often several orders of magnitude faster than 

Figure 2: Numerical integration using midpoints following 
the Runge-Kutta method. 

Figure 1: Numerical computation of the integral of the 
Landau-Lifshitz-equation. 
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single step methods[24]. Today, efficient integration 
methods with adaptive time steps are available in standard 
literature[23]. 
 
1. IMPLEMENTATION INTO MATLAB 
To implement the micromagnetic model with MATLAB, an 
abstract architecture for the tool was created, which serves 
for comparison of individual implementation variants with 
the aim to make the software easy to test and to expand. For 
this the architecture should be modular. Attention needs to 
be given to the dependencies between the modules: They 
should be tree-like and contain no cycles. The abstract 
architecture consists of two components, the "solver" repre-
senting the execution of a simulation run and the "driver" 
representing the automated execution of simulation runs. 
The driver is an optional component and serves only for the 
comfortable handling. 
 

 
 

1.1. Solver 
A simulation run from t0 to tend is executed by the solver. 
The solver is used to hide the implementation from the outer 
interfaces. It controls the timing and the initialization, and 
tests the input parameters for correctness. It can also make 
corrections for incorrect input parameters and thus simpli-

fies the definition of a simulation problem. The solver uses 
the physical components, i.e., the topology, the differrent 
magnetic fields, the effective field, and the LLG, to accom-
plish the simulation. The topology represents the area, in 
which the problem is defined. Each field implementation 
depends on the topology; therefore, the selected field imple-
mentation must fit to the selected topology. The LLG and 
the effective field represent the micromagnetic model. A 
normalization is needed to adjust |M| due to integration 
errors. As the user can adapt the effective field and its com-
ponents according to the desired problem definition without 
having to change the solver, the interface remains general 
enough for future extensions.  
In a simulation run the topology must be initialized first. 
Then the fields are initialized based on the topology. The 
start of the numeric integration to tend follows. In every step, 
the computation of the effective field, of the LLG, and of 
the normalization uses the topology and the field selection 
and M to compute dM/dt. The current state of the simu-
lation can be stored at each time interval. Thus there is the 
possibility to continue the simulation run in the case of an 
abort. The "SimState" structure is used as that central state 
container.   
 
1.2. Solver with MATLAB 
MATLAB offers functions for the computation of numeric 
integrations[10]. The use of these functions simplifies the 
implementation of the solver substantially. In this imple-
mentation the solver has the task to initialize the simulation 
environment and to configure the output based on  the user 
inputs and to start the simulation. The integrator of MAT-
LAB then takes over the numeric integration from t0 to tend. 
For this the integrator needs a function, which computes 
dM/dt. In the following it is called "calculateModel". The 
integrator stops when tend is reached. For alternative stop-
ping criteria a corresponding function can be integrated. 
This is also the task of the solvers. Figure 4 shows the archi-
tecture adapted to the possibilities of MATLAB. 
 
1.3. Solver with Simulink  
Simulink has become a very extensive product of Math-
works[10]. Therefore we tried Simulink as another imple-
mentation of our micromagnetic simulation tool using the 
specific advantages it offers. The model in Simulink is 
arranged on a graphical user interface. It theoretically needs 
no line source code to realize a model. In this application, 
however, the functionality of Simulink is not sufficient to 
make it possible to realize the model, because, e.g., Simu-
link cannot compute a cross product between two matrices 
or deal with objects. Therefore the needed functionality was 
in part written as embedded MATLAB functions in 
Simulink blocks. The sequence of the simulation and the 
time integration was done by the integrator of Simulink. 
Overall, the advantages of Simulink do not outweigh its dis- 

Figure 3: Abstract architecture of the simulation core
(solver). 
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advantages, i.e., worse performance and the loss of object-
oriented programming, so that we decided against this 
implementation. Figure 5 shows the architecture adapted to 
the possibilities of Simulink. 
 
1.4. Driver 
The Solver alone is not sufficient for the needs of the user. 
Often a user would like to be able to simulate sequences of 
runs with varying parameters, e.g., hysteresis curves. A hys-
teresis curve describes the change of the magnetization as a 
function of a sequence of magnetic fields, which run from - 
Hmax to Hmax and back. A hysteresis plot, i.e., M(H), yields 
the specific magnetic properties can be deduced, such as the 
coercive field or the saturation magnetization. The final 
state of the predecessor simulation run is used as starting 
condition for the next simulation run. Hysteresis loops are 
only one example. Generally the user needs a mechanism 
with which he can run a sequence of simulations with de- 

 
 
 
fined change (e.g. variation of a parameter) or assumption of 
previous simulation results (e.g. investigation of repeated 
shifting processes after the other). This function range is the 
task of the drivers. Figure 6 shows the basic architecture of 
such a driver. 
 
1.5. Correctness 
Best architecture is of no use if the simulation supplies 
wrong results. To test the correctness of individual parts of 
the simulation, i.e., the field computation or solving the 
LLG, a test framework was written that asserted the correct-
ness of these parts by comparing the results for test values to 
analytical solutions[11] and checking the data interfaces. 
For the individual parts the accuracy we achieved with 
respect to analytical values reached the numerical accuracy. 
To validate the complete simulation code, correct reference 
values were needed, i.e., micromagnetic reference problems 
for which the solutions are known. The µMag group[25] has 
collected such standard problems. In the following the stan- 

Figure 5: Architecture of the Solver for the implementation 
with Simulink. As shown by the arrows 5-7, Simulink calls 
embedded MATLAB functions to simulate the model. Figure 4: Architecture of the Solver for the implementation 

with MATLAB. 
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dard problem 4 and corresponding results were used to vali-
date the simulation. 
Standard problem 4 deals with the magnetization dynamics 
of a small ferromagnetic platelet due to an external field. It 
is an ideal test for the current version of this simulation tool. 
The test consists of two simulations with different external 
fields in opposite direction of the magnetization causing it to 
switch. Figure 7 show the comparison between the reference 
values from µMag contributors and the results of simula-
tions with the present code. As can be seen the maximum 
deviation between the reference value and our simulation 
code is less than 6%. The results of the µMag group differ 
amongst each other by the same values so that one can 
safely say that within the accuracy of the model our results 
are correct.  
 
1.6. Performance 
The performance of our code was compared to one of the 
most popular open-source micromagnetic simulation codes, 
OOMMF[11]. The performance test consists of simulating 
standard problem 4 on the same computer and comparing 
computing times. It shows that our micromagnetic code in 
MATLAB is almost twice as fast as OOMMF (see Table 1), 
which uses the Euler integration procedure. The Simulink 
variant is around a factor 2 slower than the pure Matlab im- 

 
 
plementation, because of indirect calls. When comparing the 
number of lines of code it results that our program has only 
4065 lines source code including tests, without tests only 
2570 lines source code. At the same time this tool is more 
easily understood because of the mathematically motivated 
script language of MATLAB than pure C++ code. OOMMF 
for example doesn’t contain tests and has more than 30000 
lines of code. Thus the range of the software was reduced by 
the Factor 10 and the quality of the code was improved at 
the same time. 
 

 
2. SUMMARY AND OUTLOOK 
We have shown the successful implementation of a 
micromagnetic simulation tool in MATLAB that is working 
correctly and efficiently. Its architecture and the MATLAB 
scripting language allows for a convenient expansion of the 
code to include other effects of physics and a possible 
connection to multi-physics platforms. A further optimiza-
tion of the code through more efficient algorithms and 
parallelization of the code as well as an adaptation of the 
spin-torque effect are planned for the future. 

Figure 7: Comparative presentation of the y-component of 
the magnetization for standard problem 4 (field 1) as simu-
lated with the present code (blue) and reference values 
(green). See Ref. 25. 

Figure 6: Architecture of the Driver 

 Cells Simulated 
time 

Needed 
time 

OOMMF 10000 0-1ns 13873s 
MATLAB 10000 0-1ns 6176 s 

 
Table 1: Performance test results for standard problem  4.  
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3.1.2 Supplementary

As described in Sec. 2.1.3, one important aspect of the development of M3S was to use auto-
mated testing to ensure the correctness of its functionality. Since MATLAB does not offer an
automated test framework, a simple framework has been developed for M3S-MATLAB. This
framework will be introduced in the following and possibilities to measure the test coverage
in MATLAB are presented. In Sec. 3.1.1 the correctness of the solver has been verified by the
simulation of standard problem No. 4. In addition this sub-section presents results for the
Larmor-precession test.

Test driver

%testTempBaseDir - base directory to store intermediate results.
%testType - {``short'', ``long'', ``all''}.
function runAllTests(testTempBaseDir,testType)

% test - a function handle to the testfunction to run.
% testTempDir - the directory to store intermediate results.
function runTest(test, testTempDir)

Code listing 3.1: API of the runTest and runAllTests function.

The test driver as introduced in Sec. 2.1.3 is a component that performs all automated
tests and generates the test report. In the test framework for M3S-MATLAB, the test driver
interface is given by the runTest and runAllTests function as shown in Code listing 3.1.
These functions can be called to run either a single test function or all test functions within
the current directory and all its subdirectories. To run all tests using runAllTests the
parameter testTempBaseDir and testType need to be specified. runAllTests identifies a
test function by its function name.

Here a distinction between test functions with a short and a long runtime has been
included. By contract shorttest functions are tests that run quickly while longtest functions
are either performance tests or whole simulation runs, which requires a longer runtime.
The parameter testType allows to specify the desired test type to be run by runAllTests.
For testType the value short, long, and all can be chosen, which correspond to the shorttest
functionname prefix, longtest functionname prefix, and both functionname prefixes. The
distinction between tests with a short and a long runtime is necessary. In micromagnetic
simulation tests with a long runtime cannot be avoided and hence running all tests exceeds
a critical runtime. Without this destinction developers run the tests only over night or
over the weekend, as they do not want to wait too long for the completion of the test run.
This strategy involves the risk that the longer the span is between two tests runs, the more
untested changes might have been made to the code. Then it becomes difficult to attribute
a fault to a specific change. The distinction in the test driver offers the developer to run
all short-runtime tests with a high frequency and the long-runtime tests over night or
weekend. Because the short-runtime tests are the majority of tests, this reduces the risk of
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untested code crucially. The second aspect managed by the test driver is to provide destinct
temporary directories, where the test function can save intermediate files. This is necessary,
as simulation results can exceed the main memory space. The parameter testTempBaseDir
specifies the overall directory for all test functions, from which the test driver generates
destinct temporary directories for each test function. Additional the test report is stored in
the log file tests.log in the base directory. It allows a later evaluation of the test run.

Finally the runTest function allows to run a specific test. This function is important
as it can be used to rerun single test when analyzing the tests.log file. The results of the
single test run are printed to the command window.

Test interface

To implement an automated test, it is necessary to implement a function that performs the
test. In the test framework for M3S a test function has to comply the test interface shown in
Code listing 3.2 to be runnable by the test driver.

function testMYNAME(testTempDir,testReferenceDir,runClearResults)

function simtestMYNAME(testTempDir,testReferenceDir,runClearResults)

Code listing 3.2: API a test method has to fulfill.

The parameters testTempDir is a destinct directory provided by the test driver and is re-
served for the intermediate files that are stored by a test. The parameters testReferenceDir
is a directory provided by the test driver and is reserved for reference files that store to ex-
pected results for the test.

Test coverage

Combining automated unit-testing with test coverage measurements is essential as it allows
to select more significant test cases and thus to increase the quality of the automated tests.

Test coverage of main solver functions.
Function Coverage (%)
calculateModel 100
LLG_DGL 89
calculateHeff 100
demagField 81
exchangeField 100
zeemanField 100

Table 3.1: Test coverage of main solver functions in M3S-MATLAB.
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In MATLAB the measurement of the test coverage is limited as only the measurement
of the C0 metric is supported. The C0 metric can be extracted from the MATLAB profiler
which is mainly a runtime measurement tool. Table 3.1 shows the C0-test coverage of the
solver component of M3S-MATLAB for which a nearly 97 % overall coverage has been
reached. Table 3.1 also shows that the LLG_DGL and the demagField function are not
sufficiently tested, as they are only covered by 89 % and 81 %.

Larmor-precession test

The Larmor-precession test is a system test that allows to validate the LLG implementation
and the ordinary differential equation (ODE) solver. As explained in Sec. 2.3.2 this test is
given by a micromagnetic simulation, where only a constant Zeeman field isincluded in
the effective field. Since the damping constant α is set to zero, the magnetization starts to
precess undampedly around the constant Zeeman field. The feature of this problem is, that
the undamped-precession period, also called Larmor-precession period, can be estimated
analytically and hence allows to estimate the error of the simulation run. To validate the
LLG implementation and to compare different ODE solvers, the Larmor-precession test has
been performed with varying error tolerances. As shown in Tab. 3.2, this evaluation reveals
three relations between the choice of the ODE solver and the chosen error tolerances:

1. The error relates nonlinearly to the chosen error tolerances.

2. The necessary error tolerances to achieve one and the same error can vary depend-
ing on the chosen ODE solver and its adaptive time step algorithm by two orders of
magnitude.

3. The number of necessary evaluations of d ~M/dt to achieve the same error can vary
depending on the chosen ODE solver and its adaptive time step algorithm by one
order of magnitude.

Solver rel. tol. (%) abs. tol. (A/m) precession
period (ps)

error (%) evaluations
of d ~M/dt (#)

ode45 1 ·10−2 1 ·10−2 28.425687 9.8 ·10−3 540
1 ·10−5 1 ·10−5 28.428473 1.4 ·10−5 1608
1 ·10−6 1 ·10−6 28.428477 < 10−6 2832

ode23 1 ·10−2 1 ·10−2 28.379947 1.7 1293
ode23 1 ·10−5 1 ·10−5 28.428477 < 10−6 12699
Cash/Karp 1 ·10−2 1 ·10−2 28.428477 < 10−6 3984

Table 3.2: Results of the Larmor-precession test for three different adaptive-timestep
ordinary-differential-equation solvers. For each solver the precession period is estimated for
varying error tolerances and compared with the analytically determined precession period
of 28.428477 ps. In addition the number of evaluations of d ~M/dt is listed.
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The Larmor-precession test does not include the exchange and demagnetization field. That
is too simple for a quantitative prediction of adequate error tolerances. Nevertheless the
Larmor-precession test is a good means to check the correctness of the LLG implementation
in combination with the used ODE solver.

The results shown in Tab. 3.2 further illustratethe difficulty for an user to choose the
ODE solver and the error tolerances,such that the fastest simulation run with the accuracy
desired by the user is achieved. This decision is even more difficult in general, since for
most systems no analyical reference value is available. Assuming that an user investigates
only one category of systems, one approach can be to estimate the error tolerances by a
similar simulation scheme for an exemplary system. The estimation of the error for this
approach differs from the method used in Tab. 3.2 in that way, that instead of the missing
analytical reference value an extrapolated value is referred. Using this approach allows to
perform the expensive simulation scheme only once per category of systems.

3.1.3 Configuration objects

In M3S-MATLAB the simulation run is performed by the Solver as schematically shown
in Sec. 3.1.1. The Solver is started by calling the runSim function from a user script. In
this user script the simulation problem has to be specified and the simulation run has
to be started calling the runSim function with the problem specification as argument.
The runSim function internally creates and initializes the simulation state and starts the
main simulation loop. Obviously the Solver and the problem specification API are the
simulator components the user mainly gets in touch with. Thus the concrete realization
of the corresponding API has large effects on the usability and acceptance of the tool and
hence necessitates to use the most robust language elements for its implementation.

In the following three realization approaches are discussed:

1. passing all parameters as arguments in key-value pairs,

2. passing a struct containing the values in its named variables,

3. passing a configuration object that contains the problem definition.

The key-value pair approach is shown exemplary in Code listing 3.3. Here the parameters
are passed as arguments, where each odd indexed argument is a string giving the key and
each even indexed argument is its corresponding value. This approach is the most common
pattern to realize parameter passing in MATLAB. It is used, when the number of parameters
in general is small. But it has the drawback, that the validity of the parameters is checked
within the runSim function so that the distance between the error message provided by the
runSim function and its causing error can be hundreds of lines away from each other. This
makes it difficult to trace back to the error cause from the error message.
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runSim( 'key1', value1,...
'key2', value2,...
'key3', value3,...
'key4', value4,...
'key5', value5,...);

Code listing 3.3: Example for parameter passing using the key-value pairs approach.

For large numbers of parameters the parameter-struct approach as shown in Code listing 3.4
is more favorable in MATLAB. Here a struct, also called record in other programming
languages, is a simple data structure. It is a data container consisting of variables stored
under an unique identifier by which it can be accessed. In the struct approach, the parameter
passing is realized by combining all parameters to a struct that is passed to the runSim

function. In contrast to the key-value pairs approach, the struct approach allows debugging
through the user script and to check the consistency of each parameter contained in the
struct before passing it to the runSim function. Such a usage of the API can in principle be
supported by defining a isConsistent function that can be called during the debugging
to check, if the problem definition is in a valid state. Concerning that MATLAB is a
dynamically typed language164 and that the problem definition has a large complexity, the
implementation of such an isConsistent function is a difficult task as a large number of
possible sources of errors needs to be checked.

parameterStruct.key1 = value1;
parameterStruct.key2 = value2;
parameterStruct.key3 = value3;
parameterStruct.key4 = value4;
parameterStruct.key5 = value5;

runSim(parameterStruct);

Code listing 3.4: Example for parameter passing using the parameter struct approach.

In the configuration-object approach an object is used instead of a struct to hold the problem
specification. As an object is a language element that encapsulates variables and functions
to units, an object-oriented approach allows to control changes of the problem specification
and thus to reject invalid changes. Further post-processing steps can be performed like
changing dependent properties. The object-oriented approach in contrast to the struct
approach allows to split the consistency check in the set method and the isConsistent

method. As the set offers to reject type errors like wrong matrix shapes or the specification
of strings instead of numbers, it reduces the complexity of the isConsistent method
drastically compared to the isConsistent function used for the struct approach. Thus,
the object oriented approach allows to provide clearer error messages and offers a better
traceability of errors. Code listing 3.5 shows the parameter passing realized for using a
configuration object. At first a configuration object is created calling the constructor. At
second the values are set by calling the set method of the configuration object. The set
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method generates error messages when the value is invalid for the simulation problem. For
instance setting a magnetization with a wrong shape compared to the specified topology
would lead to an error message. In the third step the configuration object is passed to the
runSim function that internally calls the isConsistent function to check the consistency
before starting the simulation.

When using configuration objects, one has to take care that MATLAB applies call-by-
value to object-oriented programming. This means, the internal state of an object, which
is passed as an argument to a procedure like the set method, is immutable. Changes
applied to the object state by a procedure are only accessible, when the procedure returns
the changed object.

conf = configuration();
conf = set(conf, 'key1', value1);
conf = set(conf, 'key2', value2);
conf = set(conf, 'key3', value3);
conf = set(conf, 'key4', value4);
conf = set(conf, 'key5', value5);

runSim(conf);

Code listing 3.5: Example for parameter passing using the configuration object approach.

An additional benefit of the configuration object is that it allows to design a modular
program. With adding the init function to the configuration-object API, the configuration
objects encapsulate the component-specific property specification, validation, initialization,
andcalculation during the simulation run in methods. The increased modularitysimplifies
the testability of the simulator drastically, as each component canbe tested independently
from the other solver components and thus a simple testenvironment can be set up.

In the following an example script illustrates the structure of a simulation script and
the basic elements to define a micromagnetic simulation problem in M3S-MATLAB.

Simulation example

Code listing 3.6 shows the M3S-MATLAB script to simulate and analyze the Larmor-
precession test. The main script named larmorPrecessionTest configures the simulation
problem (lines 2-32). It starts the simulation by calling runSim (line 34), and analyzes the
results through calling the help function analyzeResults (line 35) listed below the main
function.
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1 function larmorPrecessionTest()
2 basedir = 'MY_FOLDER';
3 topo = topology(1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9);
4

5 Ms = 7.9577e5; %in A/m
6 M0 = Ms * ones(topo.anzahl,3)/sqrt(3);
7

8 fields = fieldMap();
9 fieldParam = struct('Hext',[0 0 1e6]); %in A/m

10 fields = set(fields,'zeemanField',@zeemanField, fieldParam);
11

12 boundaries = boundaryMap(topo);
13 boundaries = set(boundaries,'magneticToNonMagnetic',topo.XtoM);
14

15 saveConf = saveConfiguration();
16 saveConf = set(saveConf,'filePrefix','larmor');
17 saveConf = set(saveConf,'directory',basedir);
18 saveConf = set(saveConf,'save_M',true);
19 saveConf = set(saveConf,'save_In_Delta_t',1e-12);
20

21 % creating the configuration object and setting all parameters
22 conf = configuration();
23 conf = set(conf,'topology',topo);
24 conf = set(conf,'alpha',0);
25 conf = set(conf,'gamma',2.210173e5);
26 conf = set(conf,'Ms',Ms);
27 conf = set(conf,'M0',M0);
28 conf = set(conf,'tStart',0);
29 conf = set(conf,'tEnd', 300e-12);
30 conf = set(conf,'maxStep',1e-12);
31 conf = set(conf,'fields',fields);
32 conf = set(conf,'saveConf',saveConf);
33

34 runSim(conf,true,true);
35 analyzeResults(basedir);
36 end
37

38 % fit function to derive the precession frequency from the simulation
39 % results
40 function analyzeResults(directory)
41 data = loadState(directory,'topo,time,M');
42 Mx = data.M(:,1);
43 s = fitoptions('Method','NonlinearLeastSquares','Algorithm',...
44 'Gauss-Newton','TolFun',1e-8,...
45 'StartPoint',[0,30,0,0]);
46 set(s,'Maxiter',1000000);
47 f = fittype('A*sin(2*pi*x/B + C) + D');
48 [curve, ~] = fit(data.time*1e12,Mx,f,s);
49 fprintf('%2.8f\n',curve.B);
50 end

Code listing 3.6: M3S-MATLAB script to run the Larmor-precession test.
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In the example code listing the configuration objects configuration, topology,
boundaryMap, fieldMap, and saveConfiguration have been used. The configura-
tion object has been partitioned in sub-objects as a splitting of the problem definition
reduces the complexity of each configuration object and simplifies checking their valid-
ity. Code listing 3.6 is structured as follows: First the configuration objects fieldMap,
boundaryMap, saveConfiguration, and configuration are instantiated by calling the
corresponding constructor. Further the problem definition is specified using the set and
put methods of each object. The simulation is finally started through calling the runSim

function passing the main problem definitionobject that is the configuration object as an
argument to runSim.

The runSim function internally calls the methods isConsistent and init of the
configuration object, that itself hierarchically calls the isConsistent and init method
of the depending configuration objects. In this way an encapsulated dependency check and
initialization is realized. Since MATLAB does not include the interface concept as language
element all interfaces are only modeled by contract. By contract means that the framework
expects that the used functions comply to a specific API. This expectation cannot be checked
by the compiler. Thus, if the function does not comply to the API an error at runtime is
caused. In the following the principle motivation and the differences in the set and put

methods of each configuration object is discussed.

configuration object

conf = configuration();
conf = set(conf,propertyName,propertyValue);

Code listing 3.7: API of the constructor and the set method of the configuration object.

The configuration object includes all properties for a simulation run. The properties that
can be set are: other configuration objects like the field object, the topology struct, and the
solver-specific properties like the initial magnetization or the abort criteria.

topology struct

The topology struct holds the mesh information. It has been realized instead of an object
as a struct since the number of parameters is small and there are no optional parameters
provided. Error messages can be provided directly when calling the topology function that
creates the topology struct. As shown in Code listing 3.8 the topology struct is initial-
ized by calling the initialization function topology, where the parameters sX,sY,sZ and
dX,dY,dZ are passed as arguments. Here the parameters sX,sY,sZ specify the sample size
and the parameters dX,dY,dZ the grid point distance. The resulting struct includes for in-
stance the variables cellsX, cellsY, and cellsZ that hold the number of grid points in each
spatial direction.
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sX = 200e-9; sY = 100e-9; sZ = 10e-9; % in [m]
dX = 2e-9; dY = 2e-9; dZ = 10e-9; % in [m]

topo = topology(sX,sY,sZ,dX,dY,dZ);
topo.cellsX
topo.cellsY
topo.cellsZ

Code listing 3.8: The initialization function for the topology struct and exemplary access
to the struct fields cellsX, cellsY, and cellsZ. As arguments the initialization function
expects the size of the problem and the cell size to be specified.

boundaryMap object

boundaries = boundaryMap();
boundaries = put(boundaries,boundaryKey,inside_indices);

Code listing 3.9: API of the constructor and the put method of the boundaryMap object.
As arguments the put method expect the boundaryMap object itself, a unique key for the
boundary, and a Boolean matrix identifying the cells inside the area.

To solve differential equations, it is important to know the sample boundaries. Examples
for such boundaries in the micromagnetic simulation are the boundary between ferromag-
netic and nonmagnetic materials, between different ferromagnetic materials, or between
conducting and non-conducting areas. In M3S-MATLAB the specification of the boundaries
is handled by the boundaryMap object. This object is a map of possible boundaries included
in the simulation run. As their arguments the put method expects the boundary map
object itself, a unique key for the boundary, and a Boolean matrix identifying the cells
inside the area. As in the micromagnetic simulation each component uses a subset of the
boundaries, the data map structure has been chosen to simplify the access to a specific
boundary. At the moment only the key magneticToNonMagnetic is supported, but the
other boundaries described previously are planned to be included in later versions, as
they are useful when multiphysical simulations with different overlapping materials or
conductivity/non-conductivity areas need to be performed.

To specify a boundary the inside_indices argument has to be specified as a Boolean
matrix. As indicated in Fig. 3.2 each position of the matrix corresponds to a grid point.
In this matrix for each position inside the area the value 1 is assigned in the matrix. To
allow a similar flexibility as OOMMF that offers a conversion of image data to a boundary
definition, the function boundariesFromData has been added to the framework. This
function converts a color matrix to a Boolean index matrix as it is necessary to specify a
certain simulation boundary.
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Figure 3.2: Example for a boundary definition. The gray cells are the cells inside the area
and correspond to 1 in the Boolean matrix inside_indices.

fieldMap object

fields = fieldMap();
fields = put(fields,fieldname,field_constructor,field_parameters);

Code listing 3.10: API of the constructor and the putmethod of the fieldMap object. The put
method expects as its arguments a unique key as identifier for the field, the field constructor
as function handle, and the field specific parameter struct.

Various field terms can in principle be added to the effective field. For instance two Zeeman
fields, one constant in x-direction, and one cosine-modulated in y-direction could be added
to describe fields from two different sources. As another example it is important being able
to compare different field implementations and thus to alternate between them. To offer a
general way to specify the field terms included in the effective field calculation the fieldMap
object has been added as configuration object. A field can be added to the fieldMap object
by calling the put method as listed in Code listing 3.10. As arguments the fieldMap object
itself, a unique key as identifier for the field, the field constructor as a function handle, and
the field specific parameter struct have to be specified. The fieldMap object calls during
its init method the field constructor of each field by passing the field specific parameter
struct as argument corresponding to the field API shown in Code listing 3.11. Here the
field constructor expects as its arguments the topology struct, the boundaryMap object, the
saturation magnetization, and the field specific parameters as a struct.

field_obj = field_constructor(topo,boundaryMap,Ms,field_parameters);
H = field(field_obj,M);
E = energy(field_obj,H,M);

Code listing 3.11: A field object must be provided in order to be included in the fieldMap

object.
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saveConfiguration object

saveConf = saveConfiguration();
saveConf = set(saveConf,propertyName,propertyValue);

Code listing 3.12: Constructor and set method of the saveConfiguration object.

The saveConfiguration object covers all properties that are related to storing or print-
ing the state. For instance the properties filePrefix, directory, save_M, startNumber,
and save_In_Delta_t can be set. The dynamic state is stored in the time steps spec-
ified by save_In_Delta_t by storing each step in the corresponding file given by:
<directory>\<filePrefix>_<Property>_<stepNumber>.mat resulting for instance in
C:\temp\myproblem_M_000002.mat. Here the stepNumber is an ongoing number starting
by startNumber; Property is a placeholder for M,H,time.

Performance issues

A discussion with a MATLAB developer on the MATLAB World Tour 2007 in Hannover,
Germany, and a later performance test showed, that the object-oriented programming API
offered by MATLAB 2007 is about two times slower as a corresponding non-object-oriented
program. Thus the object-oriented design of the configuration objects needs to be evaluated
criticality due to its runtime performance.

In retrospective, the configuration objects are used for the specification of the simula-
tion problem and as data containers for the static simulation state within the simulation run.
Since the specification of the simulation problem and the initialization of the simulation
run are no runtime-critical steps within the simulation run, a loss of about a factor of 2 is
acceptable. For the main loop of the simulation run in contrast the object-oriented approach
is too slow.

As a solution a recursive conversion of the configuration objects to simple structs has
been implemented using MATLAB framework functions. This allows to perform the
conversion within the solver and to hide this step from the user. To provide the same
flexibility as before, therefore the function toStruct has been added to the configuration
object API. The runSim function calls this function after the init function.

For the field objects a simple conversion to a struct was not applicable, as the meth-
ods and so the interfaces used by the effective field calculation would also be removed.
Further runtime performance measurements of the MATLAB API revealed, that the use of
so-called function handles combined with structs allows to construct an alternative API for
a field with a similar flexibility as provided by API shown in Code listing 3.11. A function
handle is a MATLAB value that points on a funtion definition and thus allows to call a
function indirectly.41
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The new API as shown in Code listing 3.13 returns an object instead of a struct. This
struct by contract has to include function handles named field and energy.

field_struct = field_init_function(topo,boundaries,Ms,field_parameters);
H = field_struct.field(M);
E = field_struct.energy(H,M);

Code listing 3.13: New API for a field implementation that can be included in the fieldMap
object. The field_init_function returns a struct that holds the field variables and in
addition the function handles field and energy to calculate the field and to calculate the
energy, respectively.

3.1.4 Analysis kit

In addition to the solver and the configuration objects, M3S-MATLAB includes an analysis
kit. The analysis kit provides a simple but powerful framework for the analysis of time-
resolved micromagnetic simulation results. In the following the key functions of the analysis
kit are introduced and their use is illustrated exemplary. The key functions are loadState,
analyzeState, and plot2DVectorField.

loadState function

Time-resolved micromagnetic simulation results can easily exceed 40 GB and more storage
space. Loading this as a whole in the main memory is not possible. As a solution the
loadState function has been added to the analysis kit.

function result = loadState(directory,loadOptions,step_number)

Code listing 3.14: API of the loadState function. This function expects as its arguments the
directory of the simulation results and a string with comma-separated identifiers. Optionally
the time step number can be specified to load the dynamic simulation state only at the
corresponding time step.

This function offers a simple API shown in Code listing 3.14 to load simulation results
stored by M3S-MATLAB. The key feature is that the API provides arguments to load only
the necessary simulation properties at certain time steps and thus allows to reduce the
main memory usage. To call the loadState function the simulation result directory, load
options, and optionally a time step number need to be specified. As load options a string of
comma-separated identifiers has to be specified corresponding to the different simulation
properties, i.e. conf for the configuration, M for the magnetization, or H for the effective field.

By default loadState loads all selected dynamic state properties at all stored time
steps. Specifying the optional argument step_number allows to load the dynamic state
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properties only at the selected time step number and thus to load the results piecewise.
With both parameters the loadState functions have the desired flexibility necessary to
avoid running out of main memory.

analyzeState function

function result = analyzeState(directory, analyzeFunction, ...
analyzeOptions,loadOptions, ...
[startIndex, endIndex])

Code listing 3.15: API of the analyzeState-function. As its arguments the directory of the
simulation data, the analysis function as a function handle, its specific arguments as a struct,
and options for the internal loadState call have to be specified. Additionally the optional
parameters startIndex and the endIndex can be specified.

It turned out, that the loadState function is often used to implement analysis functions,
that load the dynamic state of the simulation time step by time step and derive single
properties like the average magnetization or the total energy from the spatially resolved
simulation data. To simplify the development of such analysis functions the analyzeState-
function has been added to the analysis kit as shown in Code listing 3.15. The analyzeState
function iterates over the dynamic state of each stored time step and calls the specified
analyzeFunction to derive the desired properties.

As its argument this function expects the following arguments:

• directory - the directory where the simulation results are stored.

• analyzeFunction - the analysis function as a function handle.

• analyzeOptions - a struct of additional options that is passed through to the analysis
function by every state.

• loadOptions - the output options for internal loadState calls.

• startIndex and endIndex - optional arguments to select a subset of the stored time
steps to perform the analysis.

Similar to the fieldMap object, the analyzeState function expects the analysis function by
contract to fulfill the API shown in Code listing 3.16.

function res = my_analysis_function(data,analyzeOptions)
res.dataA = deriveAfromData(data);
res.dataB = deriveBfromData(data);

end

Code listing 3.16: API that an analysis function has to fulfill. As arguments the spatially
resolved data of a time step and analysis function specific parameters are passed.
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The analyzeState-function calls internally the specified analysis function and passes the
simulation data of one time step and the analyzeOptions as specified before to it. As a
result the analyzeFunction returns a struct that includes a variable in the result struct
for each derived property. These result structs are then combined by the analyzeState-
function to a struct that includes an array with its value for each time step for each derived
property.

In the following the function analyzeSp4 is exemplary implemented as an example
for the use of the analyzeState function. This function derives the spatially averaged
magnetization 〈~M〉 for each time step and finally plots the data calling the user specific
function plotSp4.

1 function res = analyzeSp4(directory)
2 res = analyzeState(directory,@spatialMean,[],'M');
3 plotSp4(res.time,res.mean(:,1),res.mean(:,2),res.mean(:,3));
4 end
5

6 function res = spatialMean(loadedData,options)
7 res.mean = squeeze(mean(loadedData.M,2));
8 end

Code listing 3.17: Analysis function used for plotting the results of standard problem No. 4.

As shown in Code listing 3.17 the example function uses analyzeState to derive the spa-
tially averaged magnetization. Therefore the analysis function spatialMean is defined im-
plementing the API shown in Code listing 3.16. The spatialMean function stores the spa-
tially averaged magnetization for one step in the result struct under the name mean. The
field mean can also be found in the struct returned by the analyzeState call holding the
mean values for all time steps. The struct also includes the field time holding the time step
data. This example illustrates, how conveniently user-specific analysis functions can be im-
plemented using the analyzeState function.

plot2DVectorfield function

Although a large plot functionality is included in MATLAB, it was necessary to develop a
plot function for vector fields. This was necessary as all vector plots offered by MATLAB
by default plot the end of an arrow aligned with the grid points as depicted in Fig. 3.3. But
physicists imagine the magnetization vector to be aligned like a compass with its center at
the grid point.

function plot2DVectorField(vec_field,topo,fieldname,plotOptions)

Code listing 3.18: API of the plot2DVectorField function. As its arguments the vector field
data, the topology, the field name, and optional plot parameters need to be specified.
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Figure 3.3: Different plots of a vector field. The arrows are aligned in (a) with the end and in
(b) with the center at the grid points.

The function plot2DVectorField plots two-dimensional vector fields, but can also handle
three-dimensional vector fields by offering a slicing option. This option allows to plot a
specific z-slice of the three-dimensional data. As arguments plot2DVectorField expects
the vector-field data, the topology, the field name, and optional parameters to configure
the plot to the users needs. One important option is the ground option. This option offers
to select predefined analysis functions that can be applied to the data to derive the ground
color of the plot. Figure 3.4 shows plots of a vortex state with two different ground settings.
The vortex state is a magnetization pattern where the in-plane magnetization curls around
the center of the vortex. At the center of the vortex the magnetization turns out of plane.
This part of the vortex is called vortex core.

In Fig. 3.4 the x-component and the divergence between x- and y- component of the
magnetization have been chosen as ground settings. These analysis functions for instance
have been included as predefined analysis functions, as they represent important views
on the magnetization that correspond to images from experimental measurements. For
the magnetization for instance the x-component is measured by x-ray microscopy and the
divergence is measured by magnetic force microscopy (MFM).165 Experimental example
images of vortices are shown in Fig. 3.5.
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Figure 3.4: Two-dimensional plots of the magnetization of a vortex using the M3S-MATLAB
function plot2DVectorfield. The arrows show the x- and y- component of the magnetiza-
tion. The ground color show (a) the x- component of the magnetization and (b) divergence
between the x- and y- component of the magnetization.

(a) (b)

Figure 3.5: Two-dimensional images of a sample with a vortex as magnetization pattern. (a)
shows an x-ray micrograph as depicted by Bolte et al.166 and (b) shows a magnetic force
micograph as depicted by Garcia et al.167 In (b) the distance between the points A and B is 2
µm
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3.1.5 Results and resumé of M3S-MATLAB

The implementation of the prototype M3S-MATLAB revealed that the use of a CSIDE
significantly simplifies the implementation of a micromagnetic simulator. M3S-MATLAB
implements the core functionality of OOMMF and could be realized with a total source lines
of code (SLOC) reduction to a tenth compared to OOMMF. The extensive documentation
and the support of all necessary numerical operations allow for opportunistic programming.

Further a flexible API for the specifiation and starting of the simulation has been im-
plemented, to support complex simulation structures like parameter sweeps or hysteresis
loops. Finally, support for the analysis of the simulation results has been realized by the
analysis kit, including help functions for the derivation of properties from spatially resolved
simulation data and the application-specific plot functions based on the plot framework of
MATLAB.

Despite these benefits the development of M3S-MATLAB revealed two restrictions of
MATLAB that reduce the maintainability of the simulator:

• MATLAB offers a poor support of encapsulation techniques that are essential for the
development of large programs: advanced name space concepts with the possibility
to control the visibility of components are not supported. Further object-oriented pro-
gramming which would offer a better encapsulation as the use of a MATLAB function
leads to performance losses as shown in Sec. 3.1.3.

• For test driven design only the C0 metric can be estimated using the profiler of
MATLAB. The profiler is made for performance measurements and not for the mea-
surement of the C0 metric, meaning that while an overview of the runtime is provided,
this is missing for the C0 results. Thus the profiler is only useful when calling one test
by the runTest-function.

Concerning the runtime performance a first comparison to OOMMF revealed that M3S-
MATLAB results in a reasonable runtime performance. A detailed investigation of the run-
time performance of OOMMF and M3S-MATLAB as well as the analysis of optimization and
parallelization possibilities is decribed in the following section.
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3.2 Runtime performance optimization

The optimization of the runtime performance of a scientific program is a difficult task. It
requires a deep understanding of the numerical algorithms, the numerical libraries, and
the hardware architecture, to be able to identify the fastest implementation of the physical
models. In many scientific programs most of the runtime is spend in only 10 % of the
program. Hence it is important to identify these parts first to avoid the waste of time in non
critical components.

Since OOMMF121 is a highly optimized micromagnetic simulator, in a first step its
runtime has been compared with M3S-MATLAB to identify if there are optimization pos-
sibilities covered by OOMMF that can be included in M3S-MATLAB. The first comparison
as presented in the Article 3.1.1 showed, that the M3S-MATLAB is about 2.25 times faster
than OOMMF using the Euler solver. A more detailed analysis of the comparison revealed,
that the increased runtime performance of M3S-MATLAB compared to OOMMF is due
to the difference in the number of evaluations of d ~M/dt needed by the Runge-Kutta 4-5
implementation offered by MATLAB and the Euler evolver used in OOMMF.
Consequently M3S-MATLAB can be runtime optimized by the runtime of one evaluation
of d ~M/dt. Further replacing the Runge-Kutta 4-5 algorithm for solving the oridnary
differential equation (ODE) by more complex algorithms could reduce the number of
needed evaluations. As indicated in Sec. 3.1.2, investigations due to the used ODE would
have exceeded the scope of this work and have been addressed in Ref.104 The present
work is restricted to investigations concerning the runtime performance of the calculation
of d ~M/dt and does not cover ODE dependent optimizations. In the following different
possibilities to optimize the runtime performance of one evaluation of d ~M/dt are considered.

The following article entitled “A Case Study for the Parallelization of a Complex MATLAB
Program with Respect to Maintainability” was presented at the 2008 Huntsville Simulation
Conference (HSC’08) (that took place between 22 and 23 October 2008 in Huntsville, USA).
This article evaluates different sequential optimizations and parallelization possibilities of
the demagnetization field calculation due to the runtime performance. Important aspects
of this evaluation were to check if the optimizations used by OOMMF can be realized for
M3S-MATLAB and which drawbacks these implementations have on the usability and
maintainability of the simulator.

73



Micromagnetic simulator prototypes for (M3S)

74



3.2. Runtime performance optimization

3.2.1 Publication HSC’08

A Case Study for the Parallelization of a Complex MATLAB Program with
Respect to Maintainability

M. Najafi, G. Selke, B. Krüger, B. Güde,
B. Krause-Kyora, M. Bolte, G. Meier, and D. P. F. Möller

Proceedings of the Huntsville Simulation Conference (HSC’08), J. Gauthier, Ed. San
Diego, CA, USA: The Society for Modeling and Simulation, 2008, pp. 309–315

Reprint permission authorized by courtesy of
The Society for Modeling and Simulation International (SCS)
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Abstract
Nowadays simulations are an indispensable part of scien-

tific and technological research. In these fields simulation

packages have already reached a high level of complexity.

A way to control their complexity is to use intuitive high

level programming languages as offered by development en-

vironments like MATLAB [1], Maple [2], or Mathematica

[3]. Since the complexity of the simulations will certainly

continue to grow to an even higher complexity, the demands

in computing performance can only be fulfilled by paral-

lelizing the sequential algorithms. The development of tech-

niques to parallelize sequential algorithms is of general inter-

est, since the future of computing could be the parallel pro-

cessing paradigm [4, 5]. Here we list necessary considera-

tions when parallelizing a complex modular MATLAB pro-

gram using the example of the micromagnetic modeling and

simulation kit M3S [6]. M3S implements the micromagnetic

model by dividing the complex algorithm into modules on

different algorithmic levels. In this article we investigate dif-

ferent parallelization approaches for the corresponding algo-

rithmic levels and their impact on the maintainability and us-

ability of the simulator.

1. INTRODUCTION

Computer simulation has become a important method for sci-

entific and technological research. Its success is based on

the increase of computing performance in the last decades

and the development of higher programming languages. Both

achievements make the computer simulation a powerful tool

for the investigation of complex systems. To translate abstract

models of complex systems into controllable computer sim-

ulators, it is important to choose adequate computer repre-

sentations, e.g. programming languages, frameworks or envi-

ronments. For the development of simulators for continuous

systems, environments like MATLAB[1], Maple[2], or Math-

ematica [3] have become competitors to programming lan-

guages like C++ or Fortran. These environments offer intu-

itive high level programming languages, extensive optimized

functionality and the integration of modules implemented in

C++ or Fortran. The resulting simulators have a better balance

between the maintainability and usability [7] than optimized

low-level programs. As shown by Bolte et al. [8], the develop-

ment of the micromagnetic modeling and simulation kit M3S

[6] in MATLAB increased the extensibility, in comparison to

other sequential simulators like OOMMF [9] while retaining

the performance.

Several examples of recently developed computer architec-

tures indicate that the future of computing could be the par-

allel processing paradigm [4, 5]. Thus the parallelization of

sequential simulators is of large interest to fulfill the grow-

ing demand to the computing performance. It is a challenge

to parallelize MATLAB-code as the language offers no di-

rect functionality for the parallelization of algorithms on

shared memory machines (SMP). The parallelization of the

MATLAB-code has an large impact on the maintainability,

because it has to be exported to C++ or Fortran and integrated

into the simulator again using the offered interface of MAT-

LAB. In this article we list necessary considerations when

parallelizing a complex modular MATLAB program using

the example of the simulation toolkit M3S [6]. M3S imple-

ments the micromagnetic model by dividing it into modules

on different algorithmic levels.

The outline of this article is as follows: Section 2 introduces

M3S and the micromagnetic model. Section 3 presents a per-

formance analysis of the sequential code of M3S on different

algorithmic levels. Section 4 shows possible parallelizations

on SMPs for different levels and means of realization as well

as the impact on the maintainability and usability of the simu-

lator. We found that the parallelization of the module that cal-

culates the demagnetization field shows an optimal balance

between the increase of performance and the maintainability

of the simulator. Finally, section 5 presents performance mea-

surements of the resulting parallelization of M3S.



2. THE MICROMAGNETIC MODELING
AND SIMULATION KIT M3S

M3S is a framework for the simulation of micromagnetic

problems. It uses explicit time integration algorithms [10] and

a finite-difference-method (FDM) based spatial discretization

to solve the micromagnetic model numerically[8]. To reduce

the overall complexity M3S was developed in MATLAB [1].

It is written in the included high level programming language

MATLAB-Script [1] using its extensive functionality.

2.1. Micromagnetic Model
In this section the micromagnetic model is introduced [11].

It is the appropriate model to describe ferromagnets on the

nano- and micrometer scale. The micromagnetic model de-

scribes the magnetization dynamics by a non-linear partial

differential equation, the so-called Landau-Lifshitz-Gilbert

equation (LLG) and includes the interaction of the magne-

tization with the so-called effective magnetic field, which is

a superposition of different magnetic field terms [12]. The

interaction between the magnetization and the effective field

leads to a complex dynamic behavior. Except for some an-

alytically feasible systems, the magnetization dynamics can

only be solved numerically. To calculate the magnetization

dynamics of a ferromagnetic structure numerically, the con-

tinuous LLG and the effective fields must be discretized.

2.1.1. Equation of Motion

The LLG equation describes the spatially resolved magneti-

zation dynamics influenced by the effective magnetic field.

The FDM-based explicit LLG is given by

d ~Mi, j

dt
=− γ ~Mi, j × ~Heff,i, j( ~rall , ~Mi,all)

− γα

Ms

~Mi, j × [ ~Mi, j × ~Heff,i, j( ~rall , ~Mi,all)]

(1)

Here Ms is the saturation magnetization, γ is the absolute

value of the gyromagnetic ratio, α is the Gilbert damping con-

stant, ~Mi, j = ~M(ti,~r j) is the magnetization at at the i-th time

step ti and the position of the j-th cell ~r j, ~Heff,i, j( ~rall , ~Mi,all) =
~Heff(ti,~r j, ~rall , ~Mi,all) is the effective field at time step ti the

position ~r j. It is a function of position~rall and the magneti-

zation ~Mi,all of each cell at the time ti, where all indicates all

cells.

2.1.2. Effective Field

The micromagnetic model describes all magnetic interactions

with the local magnetic moments as magnetic fields. The su-

perposition of all magnetic fields at a point~r give the effective

field for~r. The basic model includes and the anisotropy field,

the exchange field, the magnetostatic field, and the Zeeman

field as shown in Eq. (2). To simplify our analysis, we fo-

cus on the last three magnetic fields and do not discuss the

anisotropy field since they suffice to simulate the widely in-

vestigated ferromagnetic material Permalloy. Here,

~Heff,i, j( ~rall , ~Mi,all) =~HZeeman,i, j

+~Hexch,i, j( ~Mi, j, ~Mi,nn)

+~Haniso,i, j( ~Mi, j)

+~Hdemag,i, j( ~rall , ~Mi,all),

(2)

where ~HX,i, j = ~HX(ti,~r j) is the corresponding magnetic

field at the i-th time step ti and position of the j-th cell ~r j.

all indicates all cells, and nn indicates the nearest neighbors

to the j-th cell.

The demagnetization field, also called the stray field outside

the ferromagnet, describes the magnetostatic interactions of

the local magnetic moments over long distances within the

body. This magnetic field is given by a spatial convolution of

the magnetization with the so-called demagnetization tensor

as given by

~Hdemag,i, j( ~rall , ~Mi,all) = ∑
j∈all

N̂(~r j −~rk,τ j,τk) · ~Mi,k. (3)

Here N̂(~r j −~rk,τ j,τk) is the demagnetization tensor for two

cuboid ferromagnets in the distance ~R = ~r j −~rk, τ j is the vol-

ume of the j-th cuboid, and τk is the volume of the k-th cuboid.

The demagnetization tensor is given by

N̂ jk(~R,τ j,τk) =
1

4πτ j

∫

τ j

∫

τk

∇′
j∇

′
k(

1

|~R|
)dτ jdτk. (4)

Newell et al. [13] showed how to solve this equation for

two interacting cuboid ferromagnets in a distance ~R. The ex-

change field describes the quantum mechanic interactions be-

tween the spins of neighboring atoms. The discretized ex-

change field is given by

~Hexch,i, j(~rnn, ~Mi, j, ~M j,nn) =
2A

Ms
2µ0

∑
k∈nn

~Mk − ~M j

|~rk −~r j|2
, (5)

where µ0 is the permeability of vacuum and A is the material

dependent exchange constant.

The Zeeman field is the magnetic field from an external mag-

net and can be spatially homogeneous or inhomogeneous and

is either static or dynamic.

2.2. Overview of M3S
The core of M3S consists of the configuration object, the

solver and the integrator as shown in Fig. 1. To start a sim-

ulation, a configuration object (blue and orange rectangles at



Figure 1. The architecture of M3S showing the interaction

of the basic components within a simulation run.

the top of Fig. 1) is created with the specific problem defini-

tion. Then the solver is called and the configuration is passed

to it. The solver initializes all needed components, e.g., any

included fields or the load-and-store functionality. Next the

solver starts the time integration loop by calling the integra-

tor. The integrator then uses the submodule ’calculateModel’

for the calculation of the time derivative of the magnetization

for a time ti, which is needed to compute the magnetization

at time ti+1. This module itself is split up into submodules for

the calculation of the effective field, the LLG, and the nor-

malization of the magnetization to the absolute value of Ms.

Figure 1 shows the main components of M3S and the flow

chart of a simulation run.

3. PERFORMANCE ANALYSIS OF THE
SEQUENTIAL IMPLEMENTATION

Next we analyze the runtime performance of the solver. Aim

of this analysis is to investigate the runtime distribution of

a simulation experiment over the different modules of M3S

and to identify significant module. For the investigation of the

runtime distribution, the asymptotic time complexity [14] is

determined. The time complexity serves to select interesting

modules for the runtime measurement.

3.1. Analysis of the Solver
The runtime of the solver during a simulation experiment is

split up into the initialization phase and the computation of

the time integration loop as shown in Fig. 2. Each simulation

step within the loop uses the submodule for the calculation of

the LLG, the effective field and the numerical time integra-

tion. The effective field in turn uses the concrete modules of

the included magnetic fields. The runtime analysis focuses onsimulation steps Zeeman �eldanisotrophy �eldex
hange �eldDemag �eld e�e
tive magneti
 �eldinitiali-zation LLG eq.integrator/solve i/o
Figure 2. Scheme of the runtime of a simulation run. The

simulation run consists of the initialization and a number of

simulation steps. In each simulation step, results from the pre-

vious simulation step are stored and the LLG is solved. The

solution of the LLG requires to calculate the effective field,

which is the sum of different magnetic fields. The level of an

abstraction is represented by the hue of an object in the figure.

The more pale it is the higher its level of abstraction is.

the calculation of a simulation step, because the initialization

is called once at the beginning of the simulation and thus in-

fluences the overall runtime only slightly. We shall describe

the time complexity of all modules starting with the effective

field and moving outward to the solver.

Component time complexity

Zeeman field O (1) - static field

O (N) - dynamic field

demagnetisation field O (N · logN)
exchange field O (N)
anisotropie field O (N)
effective field O (N · logN)

Table 1. Time complexity of the submodules of the effective

field for a system discretized by N cells.

The effective field calculates the superposition of all included

magnetic fields as given by eq. (2). The implementation con-

tains no computationally expensive algorithm in itself, hence

its time complexity is composed of the complexities of all

included magnetic fields. As shown in table 1, the time com-

plexity of the effective field amounts to O (N · logN) and is

governed by the demagnetization field.

Component time complexity

effective field O (N · logN)
LLG O (N)
normalization O (N)
calculateModel O (N · logN)

Table 2. Time complexity of the submodules of the ’calcu-

lateModel’ module for a system discretized by N cells.



As next we investigate the submodules of the ’calculate-

Model’ module. This module also has no computationally ex-

pensive runtime, so that its time complexity results from the

calculation of the effective field, the LLG and the normaliza-

tion of the magnetization as listed in table 2 and amounts to

O (N · logN).

Component time complexity

calculateModel O (N · logN)
time integrator O (N)
I/O O (N)
solver O (N · logN)

Table 3. Time complexity of the submodules of the solver

for a system discretized by N cells.

Finally we investigate the submodules of the solver. The

solver uses the ’calculateModel’ module, the time integrator,

and the I/O module as submodules. As Table 3 shows, the

time complexity of a simulation step amounts to O (N · logN)
and is determined by the ’calculateModel’-module. In con-

clusion of this part of the performance analysis of the sequen-

tial implementation, it is clear that the runtime of a complete

simulation run is dominated by the calculation of the demag-

netization field. To verify this, we performed runtime mea-

surements for various problem sizes. For simplicity, we only

measured the runtime distribution of the exchange field, the

demagnetization field and the remaining solver modules.
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3.2. Analysis of the Demagnetization Field
We performed three different simulations runs for each sys-

tem size. The first simulation run includes only a static Zee-

man field with a complexity of O (1). This determines the run-

time of the solver alone since the complexity of computing

the Zeeman field can be neglected. The second simulation in-

cludes a Zeeman field and the exchange field. The third sim-

ulation includes all three magnetic fields. The difference in

runtime between these three simulation runs then determines

the runtime of the solver, the exchange field, and the demag-

netization field. Figure 3 shows the runtime measurements,

which confirm the results of the asymptotic time complexity

analysis. Intuitively, the demagnetization field as given by Eq.

3 can be computed using a loop-based convolution which has

a time complexity of O (N2). The use of the FDM allows to

use the fast Fourier transform (FFTs) for the implementation

of the convolution which reduces the time complexity of the

convolution to O (N · logN). M3S implements the FFT-based

convolution, using its optimized 3D-FFT or 3D-IFFT imple-

mentation. The optimized 3D-FFT is a customization of the

3D-FFT of MATLAB, that considers the properties of the de-

magnetization tensor and the magnetization, i. e. real values

that have a high symmetry in Fourier space which allows to

reduce the number of convolutions to 7/12.

The time complexity of the demagnetization field is split up

into the component-wise FFT of the magnetization, the cell-

wise multiplication of the Fourier-transformed demagnetiza-

tion tensor and Fourier-transformed magnetization, and the

component-wise inverse FFT of the Fourier-transformed de-

magnetization field as listed in table 3.2.. The analysis of the

time complexity shows that the runtime of the demagnetiza-

tion field is equally spend on the calculation of the optimized

3D-FFTs and of the optimized 3D-IFFTs.

Component time complexity

optimized 3D-FFTs O (N · logN)

N̂FFT · ~MFFT O (N)
optimized 3D-IFFTs O (N · logN)
demagnetization field O(N · logN)

Table 4. Time complexity of the submodules of the demag-

netization field for a system discretized by N cells.

We also performed runtime measurements of the submodules

of the demagnetization for relevant problem sizes. Unlike the

solver, the optimized 3D-FFT/3D-IFFT is not in the asymp-

totic range for these problem sizes. Figure 4 shows that the

multiplication consumes 15-25% of the runtime. The differ-

ence between the optimized 3D-FFTs and the optimized 3D-

IFFTs occurs, because some optimizations of the 3D-FFT can

only be implemented with MATLAB efficiently for the opti-

mized 3D-FFTs, not for the inverse FFT.

4. PARALLELIZATION
In the last sections we showed, which analysis is necessary,

to identify the partition of the complex system into mod-
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ules within a modular MATLAB program. In this section we

search for possible parallelizations for the modules of M3S

on SMPs, in particular for the different solutions that exist

for the demagnetization field. We discuss the expected in-

crease in performance for each solution by taking the results

of the performance analysis into account. Besides that, we

also depict the impact of the solutions on the maintainability

of the simulator. The maintainability is decreased by the ex-

ternalization of a modules, because domain specific aspects

are formulated in C++. We determine the speedup, efficiency,

and scalability of each solution and discuss the affect on the

runtime of a simulation experiment.

4.1. Possible Parallelization of the Optimized
3D-FFT/3D-IFFT

The optimized 3D-FFT and the optimized 3D-IFFT consume

between 75 and 80 percent of the runtime for the calculation

of the demagnetization field as shown in Figure 4. Thus these

functions are a good starting point for the search of optimal

parallelization approaches. Generally a 3D-FFT can be com-

puted by successive 1D-FFTs along each dimension as shows

in Figure 5. During the computation of the 1D-FFTs along a

dimension all 1D-FFTs are independent from each other and

can be parallelized with an negligible overhead, as shown in

Fig. 6. We expect a speedup of the 3D-FFT proportional to the

number of processors [15]. The speedup of the parallelized

3D-FFT leads to a maximum speedup of the demagnetization

field of 5, because the multiplication of the demagnetization

tensor with the magnetization takes about 20 percent of the

runtime.

y y y
(0, 0, 0)(0, 0, 0) x (0, 0, 0) xx

z z z
Figure 5. Schema of the representation of a 3D-FFT through

1D-FFTs along each dimension. For each dimension the ar-

rows show the direction of the 1D-FFTs.

Hence the efficiency of this solution decreases from a number

of processors rapidly and can only be increased by the paral-

lelization of other modules [15]. Furthermore this approach

shows a good scalability [16] for the 3D-FFT, since for a 3D-

FFT many 1D-FFTs have to be computed. The impact of the

parallelized 3D-FFT on the maintainability is small, because

it encapsulates only few physical constraints.

p0 p1 p2

Figure 6. Distribution of the 1D-FFT onto the processors p0,

p1, p2.

4.2. Possible Parallelization of the Matrix
Multiplication

For each discretization cell, the Fourier-transformed mag-

netization must be multiplied with the Fourier-transformed

demagnetization tensor. This operation can also be paral-

lelized easily, because the multiplications for two cells are in-

dependent from each other. We expect a speedup of the multi-

plication proportional to the number of processors. Since the

multiplication takes 15 to 25 % of the runtime, the speedup

of the parallelized multiplication leads only to a maximum

speedup of the demagnetization field of 20 percent. This so-

lution is only useful in combination with the parallelized 3D-

FFT. The impact on the maintainability is small, because the

parallelized operation just replaces the existing operation of

MATLAB.

4.3. Possible Parallelization of the Solver
To parallelize M3S on the level of the solver is not useful,

because no great performance gain is expected. The paral-

lelization on this level of abstraction has an great impact on



the maintainability, and leads to a externalized implementa-

tion of most parts of the simulator.

5. RESULTS

Section 4. described possible parallelization on different ab-

straction levels. To get an optimal solution for a multicore

system with 4 to 8 cores, we decided to take the parallelized

3D-FFT. This solution shows the optimal balance between the

increase of performance and the maintainability of the simu-

lator for such a multicore system. Therefore we externalized

the 3D-FFT form MATLAB and used the FFTW library [17]

to calculate the 1D-FFTs. In this Section we finally present

the performance measurements of the resulting paralleliza-

tion of M3S. As shown in Fig. 7 the parallelized 3D-FFT leads
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Figure 7. Comparison of the runtime of different 3D-FFT

implementation for different number of cells. a.) shows the

optimized 3D-FFT and the parallelized 3D-FFT (denoted as

tfft) using up to 4 processors. b.) shows the optimized 3D-

IFFT and the parallelized 3D-IFFT (denoted as itfft) using up

to 4 processors.

to the predicted efficiency of the parallelized M3S. The mea-

surements also illustrate the maximum speedup of this solu-

tion of 5. The difference between both 3D-FFT implemen-

tation performed on one processor is based on optimizations

within the optimized 3D-FFT that are not transferred to the

parallelized 3D-FFT yet.

6. SUMMARY AND OUTLOOK
In this article we discussed different approaches for the par-

allelization of the complex MATLAB program M3S. We

showed , that such a complex modular program can be paral-

lelized on different abstraction levels. For this aim it is neces-

sary to consider software complexity besides time complex-

ity for the choice of a parallelization. In the future we will

investigate how MATLAB compilers like Star-P change this

decision process.
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3.2. Runtime performance optimization

Demagnetization field optimizations

The calculation of the demagnetization field via the demagnetization tensor (see Sec. 2.2.3)
as given by Eq. (2.26) can be sped up using the fast Fourier transformation (FFT). Figure 2.4
shows the necessary steps to calculate the demagnetization field using the FFT. Donahue et
al.168 identify four main performance optimizations for the demagnetization field calcula-
tion:

1. The optimization arises for the calculation of the three dimensional FFT and inverse
FFT (IFFT). The magnetization as decribed in Sec. 2.2.3 is expanded by zeros (so called
zero-padding) to match the size of the expanded demagnetization tensor. Hence for
the three-dimensional-FFT calculation one-dimensional-FFT calculations along strips
being fully zero are performed. Further for the three-dimensional inverse FFT (IFFT)
one-dimensional IFFT calculations can be skipped along strips that have no contribu-
tion to the physically valid region. This optimization leads as discussed by Donahue et
al.168 to an increase in runtime performance of 41 % to > 50 % depending on the exact
number of cells in each dimension.

2. The one-dimensional FFT along the first dimension can be performed as real FFT. The
real FFT results in a data array169 that is symmetric along the second dimension. Thus
only half of the one-dimensional-FFT calculations along the second dimension need to
be calculated. The other half of the data array can be transformed by a symmetric copy.
This results in a further reduction of the runtime.

3. A special 1D-FFT implementation that takes the symmetries into account and thus
reduces the necessary main memory usage, results in a reduction of load and store
commands.

4. Donahue et al. showed in 2009 how cache optimizations arise when the instructions in
the distinct steps 1, 2, 3 in Fig. 2.4 are reordered.168 The reordering further reduces the
necessary load and store access on the main memory by a factor of 3 and 6, respectively.

The previous article covers the first two optimizations as they can be found in the official
OOMMF version 1.2a3. The third optimization was not covered as this necessitates to
implement an own one-dimensional FFT and thus to loose the advantages of novel FFT
packages. These advantages will be discussed in the following sub-section. The forth
optimization has not been covered as it was published in the end of 2009 by Donahue et al..

Consequently it is possible to include sequential optimizations and parallelization
possibilities in the M3S-MATLAB efficiently by implementing the convolution in C and to
include it into MATLAB. This solution has the drawback, that a compiler and a correspond-
ing configuration file for MATLAB is necessary. As the 64-bit MATLAB version offers no
default C-compiler for different operating systems the flexibility of the prototype gets lost
by this solution in the long run.
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3.2.2 Using the best zero-padding

The investigation related to the calculation of the demagnetization field shows, that the
calculation depends significantly on the runtime performance of the three-dimensional-FFT
that itself depends on the one-dimensional-FFT algorithm, as discussed in the previous
sub-sections. The use of novel FFT libraries78, 170, 171 reveals a different possibility for
runtime optimizations that will be discussed in the following.

The FFT algorithm is a divide-and-conquer algorithm123 with an asymptotic complex-
ity of O(Nlog(N). This means, that the algorithm needs Annlog(n) +C(n) operations to
calculate the one-dimensional FFT of an array of length n. An is a constant factor depending
on n and the concrete implementation, while C(n) is a function that is small for large n and
thus can be ignored for the following investigations. The simplest FFT algorithm is the
so-called radix-2 algorithm: each step of the divide-and-conquer algorithm halves the data
array. A restriction in the radix-2 algorithm is that the data array has to have a length, which
is a power of two in order to apply this algorithm.

This problem can be solved in two ways:

1. Extend the array properly so that its length complies to the restriction.

2. Use a FFT algorithm that can handle the given array length.

As reviewed by Duhamel et al.169 there exist a variety of FFT algorithms that have no
restriction like the simple radix-2 algorithm. These algorithms often differ in the prefactor
An as well as in the accuracy. Novel FFT libraries like FFTW50, 78, 172 or SPIRAL170 include
implementations of different FFT algorithms and adaptive selection techniques to choose
the concrete algorithm applied to the data array.

An analysis of the demagnetization-field implementation in OOMMF revealed, that it
similarly to M3S-MATLAB does not cover periodic boundary conditions. This allows to ex-
pand the data array properly by adding zeros to it. This technique is also called zero-padding.
As shown in Fig. 2.4 for the calculation of the demagnetization field, zero-padding has
already been used in the basic algorithm discussed in Sec. 2.2.3 to resize the magnetization
to the same number of grid points as the extended demagnetization tensor resulting in
the number of elements (Px,Py,Pz) = (2px − 1,2py − 1,2pz − 1). Here pi is the number of
grid points in the i - direction with i ∈ x,y,z. OOMMF now zero-padds the zero-padded
magnetization and the extended demagnetization tensor further to the number of grid
points (zp(px),zp(py),zp(pz)), where zp(a) = np2(a), where np2(a) is the next number larger
2a− 1 that is a power of two. This means for instance, a sample discretized by (200,200,10)
grid points corresponds to an extended tensor of dimensions (399,300,19). In OOMMF the
zero-padded demagnetization tensor has then the dimensions (512,512,32).
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The choice of zp(a) = np2(a) as zero-padding in OOMMF is due to the radix-2 based FFT
implementation used by OOMMF as indicated in Sec. 3.2. For zero-padding in principle
however each number zp(a) = 2a−1+ z with z≥ 0 is valid.
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Figure 3.6: (a) Runtime performance measurements for calculation of the demagnetization-
field for all possible zero-padding choices zp(n) for systems (n,n,1) as the number of grid
points. For each number n the optimal zero-padding choice is marked blue and the choices
with maximally 10 % slower runtime as the optimal zero-padding choice are mearked red.
The green line marks the results from the runtime measurement for n = 316. (b) shows the
corresponding runtime performance measurement, where zp(316) is varied from 633 to 1024.
The measured runtime is depicted relatively to the fastest measured runtime.
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For novel FFT implementations as the FFTW library75, 76, 78, 173 or SPIRAL170 much bet-
ter zero-padding strategies than zp(a) = np2(a) exist. As shown in Fig. 3.6 the zero-padding
strategy p1(a) = 2a offers on the average a better performance as np2(a). This is due to
the fact that novel FFT libraries are on average faster for even numbers. But also the p1(a)
zero-padding strategy is up to two times slower as the optimal zero-padding ozp(a). Novel
FFT libraries support many FFT algorithms. Hence the optimal zero-padding ozp(a) of both
magnetization and demagnetization tensor cannot be anticipated. Thus it is necessary to de-
rive adaptive measurement techniques to find a nearly optimal choice for the zero-padding.
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Figure 3.7: Measurement of the runtime performance for the calculation of the demagneti-
zation field for the different zero-padding strategies np2(n), p1(n), and the optimal choice
ozp(n) for systems with a number of grid points of (n,n,1). For each number n the zero-
padding selected by the strategies and the resulting runtime of the demagnetization field
calculation relative to the runtime of ozp(n) are depicted. For this comparison n has been
varied from 128 to 512.

For the following investigations the optimized implementation of thedemagnetization field
that is fully written in MATLAB has beenused. However, the findings are in principle
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adaptable to the C++module presented in Sec. 3.2.1. Fig. 3.6 shows the optimal measured
zero-padding ozp(n) for samples described by (n,n,1) grid points, where n was varied from
128 to 512. A comparison with the zero-padding strategies np2(n) and p1(n) as shown in
Fig. 3.7 revealed that the best choice of zp(n) can lead to a performance increase of a factor
of four compared to the use of np2(n) and to a factor of two compared to the use of p1(n).

Figure 3.8: For systems with number of grid points (n,n,1) the efficiency of the zero-padding
strategy azp(n) in relation to the optimal measured strategy ozp(n) is depicted.

Based on these findings, the adaptive zero-padding strategy azp(n) to select the number for
zp(n) has been developed. This strategy selects the zero-padding by the following algorithm
that is partitioned in three steps:

1. For each spatial dimension runtime measurements of the one-dimensional-FFT for all
numbers in the range of p1(n) to np2(n) are performed.

2. Runtime measurements of 10 demagnetization field calculations are performed for
each combination (zp(nx),zp(ny),zp(nz)) of the three best zero-padding choices for each
dimension nx,ny,nz found in the previous step.

3. The fastest combination is chosen as the desired zero-padding.

Figure 3.8 shows that the zero-padding chosen by azp(n) results in a runtime on average
2.5 % and on rare occasions up to 23 % slower than the optimal measured zero-padding
ozp(n).

3.2.3 Landau-Lifshitz-Gilbert equation (LLG)

After having optimized and parallelized the calculation of the demagnetization field, the
runtime of its calculation is reduced in maximum by a factor of four. Thus the rel-
ative runtime of the LLG becomes also important. In the worst case, the calculation
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of the LLG takes about 28 % of the runtime of a calculateModel call. Further stud-
ies using the Profiler show that 89 % of the runtime of the LLG is spend in the cross

function provided by MATLAB (listed in Tab. 3.3). Since this cross function is devel-
oped for the MATLAB framework, it includes checks of the inputs matrix transforma-
tions for a flexible matrix cross product that can handle multidimensional matrices.

LLG using cross

Function Call LLG_DGL Runtime
(ms)

LLG_DGL() 103.6
MxH=cross(M,H); 44.0
MxMxH =cross(M,MxH); 45.4

LLG using myCross

Function Call LLG_DGL Runtime(ms)
LLG_DGL() 44.9
MxH=myCross(M,H); 14.4
MxMxH =myCross(M,MxH); 15.4

Table 3.3: Runtime of one LLG_DGL function call for a 256x256x4 cells system using the pro-
vided MATLAB function cross and the optimized function myCorss.

This flexibility is not necessary for the implementation of the LLG as the matrices passed
to the cross function have always the shape of 3×n, where n is the number of grid points.
Implementing a new function myCross excluding the checks allows to reduce the runtime of
the LLG function by a factor of 2.31 as shown in Tab. 3.3.

3.2.4 Result of the runtime performance optimization

The use of MATLAB as CSIDE to develop the M3S prototypes offered a reasonable
runtime performance compared to OOMMF. The remaining performance gap between
M3S-MATLAB and OOMMF could be associated to sequential optimizations that are not
expressible by the built-in MATLAB functions.82, 84 The remainingcoptimizations can
be realized by externalizing the runtime criticalccalculation to C/C++ or FORTRAN and
interfacing them as optional implementations. In this way the portability is increased, as a
runnable software is always available. The externalization has to be performed with respect
to all software quality criteria. Taking only the runtime performance into account would on
long terms result in a reimplementation of the simulator.

On the other hand it turned out, that the use of novel libraries like the FFTW library
offers new optimizations that cannot be expressed in the built-in FFT implementation used
in OOMMF. The question is now, if the restrictions revealed in Sec. 3.1 and 3.2 are general
for a CSIDE or only MATLAB-specific. This question is evaluated in the following section
by comparing M3S-MATLAB with two other CSIDE based prototypes.
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3.3 Evaluation of different CSIDEs

In the following Python/SciTools and Java/JSA as CSIDE are evaluated focussing on the sup-
port for software engineering concepts and on the resulting performance. The development
of M3S-MATLAB showed that the critical aspects mainly occur in the solver. Thus for the
new prototypes M3S-Java and Nmag-FD only the solver including the exchange field, the
demagnetization field, and the Zeeman field has been reimplemented.

3.3.1 Support for software engineering concepts

Support of high level programming language concepts

The basic idea to structure programs in MATLAB is to implement MATLAB-functions.41

These functions can internally be modularized in private functions accessible only within
a function file. A module concept is not provided. Instead the MATLAB-PATH is used to
organize imports. It can be set by the user within the IDE or pragmatically by a setup
function. If a statement is called, MATLAB searches the MATLAB-PATH for a variable or
function that corresponds to the signature following a defined strategy. For small programs
this is a simplification, as the user can put all files in one directory and does not need to
care about imports. For large programs this strategy results in an unintuitive overloading of
functions resulting in bugs that are difficult to find. As described in Sec. 3.1.3, MATLAB in
principle supports object-oriented programming (OOP), but the language support is poor
and results in a performance loss that restricts the reasonable use of OOP in MATLAB.

For Python equally to MATLAB a source path needs to be set. This path is specified
by the system variable PYTHONPATH. Using Pydev as development environment takes on
the management of the source path definition. As introduced in detail by Langtangen34

Python supports a powerful module concept, OOP, and functional programming. Using
these concepts has no effect on the runtime performance of the program. For Python it
is important to use the provided progamming-language elements carefully. For instance
module names can be renamed in the import statement to shorten statements. Using this
progamming-language element includes the risk, that other developers reading the code
overlook this renaming and misinterprete the new name.

For Java similar to MATLAB and Python, the source- and classpath need to be speci-
fied. Here the IDE Eclipse takes on the management of these two path definitions. Java
is an OOP progamming language and thus supports namespaces and OOP. Functional
programming is not supported but can be simulated. Investigations revealed, that as for
other numerical calculations, OOP results in a reduced runtime performance due to OOP
overhead. This means, realizing a multiplication of two arrays of complex numbers by
representing each number in the array by objects results in a poor runtime performance.
Implementing instead a complex array that calculates theoperation for the whole array non
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object-oriented results in a similarruntime performance as the fully non object oriented
approach. Thus OOP has tobe used either for non runtime-critical components or for the
realization ofwhole array operations.174

Test coverage

As described in Sec. 3.1.2 the test coverage measurement support of MATLAB is limited to
the C0 test coverage metric. A measurement of the C1 metric for M3S-MATLAB hence would
necessiate the development of additional tools. In contrast to MATLAB, Python and Java
offer to measure the C0 and C1 test coverage.

For Python the tool py.test offers the needed functionality. This tool is both test driver
and test coverage tool in one. py.test can be called for a directory to run all tests with a
certain wildcard like sim* or by specifying the exact path of the test function to be run. For
each performed test, a report is printed on the standard output. Part of the results are a
measurement of the C0 and C1 metric.

For Java the tool EMMA has been used to measure the C0 and C1 test coverage for all
existing unit tests. EMMA included in Eclipse offers a comfortable illustrated overview of
the test coverage results for all tests as exemplary shown in Fig. 3.9 for M3S-Java. With
this support a user can conveniently identify components that are not properly tested.
Furthermore as exemplary shown in Fig. 3.10 for each measured class the C1 coverage of the
lines of the code are marked by three colors. Lines of code that are not covered are marked
by the color red, partially covered lines of code by yellow, and fully covered lines of code by
green.

Software quality measurement

The measurement of the static software quality has become an important method for
checking the quality of a software as it allows to identify quickly so called bad smells. Bad
smells are programming structures that are known as fault-prone. Typically the code is
checked by a lint79 adaptation and by the use of measurement of standard metrics as listed
in Balzert et al.100

lint was the first tool for checking the correct use of coding standards in C. MATLAB,
Python, and Java all offer such tools. In MATLAB it is called mlint41 and is integrated in the
development environment by default. For Python and Java several open source tools exist
for this purpose. In the following the tool pylint175 for Python and the tool lint4j176 for Javaare
used.

Furthermore Python and Java offer several tools for the measurement of the static quality
metrics. In this project the open source packages Metrics177 and PyMetrics178 for Java and
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Figure 3.9: Tabular display of the test coverage results offered by the tool EMMA. The results
are listed ordered by packages. A quick overview can be gained by looking at the first
column, where the results are summarized by a color bar. More detailed information is
given by the columns Coverage, Covered Instuctions, and Total Instructions, corresponding to
the C0 test coverage. For the C1 test coverage EMMA offers to display additional columns.

Figure 3.10: Eclipse Java editor showing a class file including the results of a test coverage
run with the tool EMMA. Each line of code is highlighted according to the coverage mea-
surement in red, yellow, and green. The color red marks not covered lines of code, yellow
partially covered lines of code, and green fully covered lines of code.

Python have been used. The tool PyMetrics is a commandline-based tool that offers the
calculation of standard metrics as listed by Balzert et al.100 The drawback of PyMetrics is
its usability. It can only be called for a single Python module, and the report is similarly
to py.test printed to the standard output. Metrics offers also the measurement of standard
metrics as they can be found in the book of Balzert et al.100 for Java. Incontrast to the tool
PyMetrics, Metrics offers an Eclipseextension that illustrates the results as shown in Fig.3.11.
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Figure 3.11: Results of Metrics for the prototype M3S-Java. The results are shown in a tabular
display. For each metric the total, the mean, and the maximum value are listed if possible.
The method with the worst result is listed in the column “Method”. If a metric result exceeds
the safe range of a metric100 it is highlighted red.

Here one can see that all metrics except for the numberof parameters are corresponding to
Balzert et. al. in the safe range. Only thenumber of parameters is out of the safe range and
thus marked red, since the class Topology expects nine parameters in the constructor. This
problem could be solved for instance by replacing the directly passed arguments by a struct
like data structures that holds the arguments. The static quality measurement shows, that
all three prototypes result in a reduction of the total lines of code (TLOC) by a factor of 5-10
compared to OOMMF. This reduction can be attributed to the extensive use of libraries.

Support for numerical libraries

MATLAB offers the access to many established numerical C/C++ and FORTRAN libraries.
For the development of M3S-MATLAB all necessary numerical algorithms, which were the
FFT, ODE solvers, general marix operations, linear algebra solver, and sparce matricies were
supported. As a commercial tool these libraries are not directly visible for the user. Only
an API is provided that allows the access. The choice for a library hence is in the control of
MATLAB. For instance a SMP based parallel three-dimensional-FFT implementation was
not provided since MATLAB 2010, as for MATLAB this had a minor priority. As exemplary
shown in Sec. 3.2.1 as solution other numerical libraries can be interfaced using so-called
mex-fuctions. A mex-function is a special MATLAB functions with a defined API for the
development of interfaces to C/C++ and FORTRAN.

For Python as described previously NumPy and SciPy offer the needed numerical li-
braries. In principle NumPy and SciPy follow the same concept as MATLAB; a clear API is
provided for many established numerical C/C++ and FORTRAN libraries. The difference to
MATLAB is here twofold. First, the public user license open allows the user to inspect the
source code to understand the used algorithms. For scientists this is very important a open
source code allows to proof the accuracy of the algorithms and thus increases the confidence
in the used libraries.

Java is a young language and its user commuity for combutational sciences is small
compared to C/C++ and FORTRAN. A common opinion about Java is, that its runtime
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performance for numerical operations is about three times slower compared to C/C++ and
FORTRAN. This opinion is based on the first concepts applied in the early JREs as explained
before. Actual benchmarks proof that the runtime performance of Java has caught up
with C/C++ or FORTRAN. For instance the Scimark 2.0 benchmark179 shows that Java has
nearly the same performance for numerical tasks as C. The remaining difference can be
attributed to the existence of fast numerical libraries. Here the JTransforms library180 offers
runtime performance only two times slower than FFTW and is parallelized. Hence for the
most important algorithm, the FFT, a fast numerical library exists. For the general matrix
operations libraries like Colt181 or apache.math can be used. Colt offers a selected number of
operations highly optimized. apache.math in contrast is less optimized, but offers a extensive
selection of numerical operations. In the prototype M3S-Java these libraries have not been
used, as the marix handling between Colt and JTransforms differs. Using Colt would have
neccessiate the transformation of different matricies during the simulation. Since the focus
of this evaluation was to see, if for Java/JSA as CSIDE the same restrictions as for MATLAB
occur, solving this compatibility problems have been excluded from the evaluation and
instead for only JTransforms as library have been used. Nevertheless all necessary libraries
could be found for Java. An overview for the remaining libraries for instance for sparce
matrices or linear algebra solvers is given by the Java Numerics Group.56

The comparison of the support for numerical libraries reveals, that Python offers the
best support for numerical libraries. MATLAB as commerical software is more restrictive
due to the user licence and for Java as new programming language for computational
sciences less fast numerical libraries exist.

Call by value/reference

Another large difference between MATLAB and Python is the use of call by value or call by
reference. MATLAB uses the so called copy-on-write strategy. Copy on write means, that a
variable passed as an argument to a function is copied, when it is changed within the func-
tion. Further accessing a matrix by selecting a subset of indices always results in copying
the sub-matrix. Code listing 3.19 shows a typical index operation. The MATLAB Profiler
reveals that the indexingoperation in line 4 needs twice as long as the multiplication in line 5.

1 function selectionTest()
2 a = rand(3000,3000);
3 for i = 1:100
4 b = a(1:500,1:500);
5 c = 2 * b;
6 end
7 end

Code listing 3.19: Example code used for the runtime measurement of an index operation
compared to a multiplication in MATLAB.
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In contrast to this behavior, NumPy and SciPy are offering a more flexibly designed API
allowing to reference parts of a matrix. Here the user can choose whether a reference or
a copy of the subset of the matrix is desired. A profiling of the Python version of Code
listing 3.19 shows that the indexing operation needs 100 times less than the multiplication.
This flexibility allows to implement all sequential optimizations of the demagnetization
field. Only the first optimization resulted in no performance gains, since NumPy provides a
real one-dimensional FFT, which internally is mapped to a complex one-dimensional FFT.

In Java all instructions on non-primitive data types are performed through a call by
reference. Call by value has to be implemented explicitly. This means, whether call by
value or call by reference is used depends on the chosen library and the scripting engine.
The chosen libraries and scripting engine for M3S-Java all use call by reference, hence all
identified sequential optimizations can be realized in Java.

Portability

M3S-MATLAB is portable, as long as only functionality is used that is included in MATLAB
or is written in MATLAB-Script. The portability comes from compiled versions of MATLAB
for many operating systems provided by MathWorks.182 As described in Sec. 3.2.1 the
portability changes, when C or FORTRAN programs are interfaced due to performance
optimizations. Doing so, the C or FORTRAN programs need to be compiled on the user’s
operation system which necessitates to bind a compiler to MATLAB. However, M3S-
MATLAB is more flexible than OOMMF, as it offers the non-optimized implementations
based on MATLAB-Script and the optimized implementation interfacing C. M3S-MATLAB
uses the flexibility of MATLAB to estimate if the optimized version can be compiled. If
not M3S-MATLAB uses the lessoptimized implementation. In this way it is ensured that a
running version is always available.

For Nmag-FD the same concepts as for M3S-MATLAB can be applied. All libraries
used for Nmag-FD can be found in the main Python repository32 and can be installed using
the package installation tool easy_install183 provided for Python. Thus the installation of
SciTools and IPython are especially simple because precompiled versions of the NumPy and
SciPy package are offered by the community for many operation systems.

Since the Java Runtime Engine (JRE) is supported by the most operating systems M3S-
Java also runs on the most operation systems and hence is in this comparison the most
flexible solution as long as only Java-based numerical libraries are used. The simulator can
be compiled including the Java Scripting API allowing an extension of the simulator without
the necessity to deploy the simulator. If the library support of Java does not fulfill the users
demands, C/C++ or FORTRAN libraries can be interfaced using the Java Native Interface
(JNI).184 But the portability benefits of Java disappears when interfacing with JNI, because
the portability of the prototype then depends on the used C/C++ or FORTRAN libraries.
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3.3.2 Runtime performance

An intensively discussed problem is the final runtime performance of scientific software.
This topic is addressed by a runtime performance analysis and a comparison between all
three prototypes.

Sequential optimization

Many factors have an effect on the runtime performance. In addition to the dif-
ferent algorithmic optimizations the compiler has a large effect on the runtime.
Therefore it is necessary to build a basis for the comparison. First a runtime
comparison between the official OOMMF version (1.3.2a14) further referenced as
OOMMF 2002, the latest unoffical OOMMF version (1.4a3 build 20091218) further ref-
erenced as OOMMF 2009, M3S-MATLAB, Nmag-FD, and M3S-Java is performed*.

Figure 3.12: Comparison of the runtime of the official OOMMF version (OOMMF 2002), the
latest unofficial OOMMF version (OOMMF 2009), M3S-MATLAB, Nmag-FD, and M3S-Java.
For the comparison the runtime of a simulation loop is measured for a fixed number of eval-
uations using a micromagnetic problem including the demagnetization field, the exchange
field, and the Zeeman field. For the calculation of the demagnetization field the simple al-
gorithm provided by OOMMF in the class Oxs_Simple_Demag is used. For each tool the
runtime of the simulation with a fixed number of evaluations is depicted relative to the run-
time of OOMMF 2002. The measurements have been performed for systems of size (n,n,1),
where n ∈ 128,256,512.

*The comparison has been performed on an Intel Core 2 6700 - 2.67 GHz and 3GB RAM. Due to installation
problems with OOMMF 2002 on Linux, the runtime comparison has been performed on the operation system
Windows XP 64-bit SP3.
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For the comparison the runtime of the simulation loop is measured for a micromagnetic
problem including the demagnetization field, the exchange field, and the Zeeman field. In
this way the runtime overhead produced by the ODE is included in the measurement, too.
The demagnetization field is calculated by the algorithm implemented in OOMMF in the
class Oxs_Simple_Demag (further called the simple demagnetization field algorithm). This
algorithm uses the FFT with the np2(n) zero-padding strategy. Figure 3.12 depicts the relative
runtime of all tools in relation to the results of OOMMF 2002. The results reveal that:

• OOMMF 2009 is about 15 % slower than OOMMF 2002. This can be attributed to the
overhead for the parallelization of the calculations included in OOMMF 2009.

• M3S-MATLAB is about 8 % faster than OOMMF 2002. Considering that the one-
dimensional-FFT implementation in MATLAB is faster than the OOMMF 2002 imple-
mentation, the difference can be explained by the larger runtime of the remaining com-
ponents, i.e. the LLG, the exchange field, and the ODE solver.

• In this comparison Nmag-FD is the slowest implementation; it is about 51 % slower
as OOMMF 2002. The runtime difference can be attributed to the used FFT libraries.
In the used version SciPy does not interface to FFTW. FFTW is only supported since
version 0.7.0 and is not provided in the precompiled version for the system Windows
XP. A runtime measurement on the operation system Ubuntu(version 10.04) including
FFTW3 showed a 30 % increase in runtime performance.

• M3S-Java is about 7 % faster than OOMMF 2002, and thus nearly as fast as M3S-
MATLAB. Allthough M3S-Java uses the slowest FFT library in contrast to M3S-
MATLAB, it offers nearly the same runtime performance. Hence the computation of
the components excluding the demagnetization field is faster in M3S-MATLAB.

All three CSIDE choices to implement a micromagnetic simulator resulted in a runtime
comparable to the basic algorithms used in OOMMF 2002. Only Nmag-FD is slower
when using the precompiled version of NumPy for Windows XP. From all three prototypes
M3S-MATLAB offers the best performance.

The question arises, which of the optimizations identified in Sec. 3.2 can be expressed
in the CSIDEs and in which runtime compared to OOMMF 2002 these optimizations result
in. Therefore a second runtime measurement has been performed replacing the simple
demagnetization field by the optimized version provided by each tool. The performance
comparison depicted in Fig. 3.13 shows the relative runtime of all tools in relation to
the results of OOMMF 2002. The figure also depicts the speed-up between a simulation
including the simple and the optimized demagnetization field algorithm for each tool.
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(a)

(b)

Figure 3.13: Runtime comparison of the official OOMMF version (OOMMF 2002), the latest
unofficial OOMMF version (OOMMF 2009), M3S-MATLAB, Nmag-FD, and M3S-Java. For
the comparison the runtime of the simulation loop is measured for a micromagnetic prob-
lem including the demagnetization field, the exchange field, and the Zeeman field. For the
calculaton of the demagnetization field the best available algorithm provided by each tool is
used. (a) depicts the runtime of the simulation for a fixed number of evaluations relatively
to OOMMF 2002 for each tool. The measurements have been performed for systems of size
(n,n,1), where n ∈ 128,129,192,256,257,384,512. The sizes have been chosen to demonstrate
the effect of the zero-padding strategy. (b) depicts the speed-up estimated by comparing the
simulations inculding the simple and including the optimal calculation of the demagnetiza-
tion field for each tool.
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Both results reveal the following conclusions:

• In OOMMF 2002 the optimal implementation for the calculation of the demagnetiza-
tion field results in a speed-up of about four compared to the simple demagnetization
field calculation.

• OOMMF 2009 needs only 62 % of the runtime of OOMMF 2002. This can be attributed
to the additional cache optimizations included in the optimal demagnetization field
calculation as mentioned in Sec. 3.2. Since the simple demagnetization field calculation
in OOMMF 2009 was slower than the calculation in OOMMF 2002 the gained speed-up
for OOMMF 2009 results in an average factor of 7.2.

• For M3S-MATLAB non of the optimizations could be efficiently implemented due to its
call-by-value semantics. Only the adaptive zero-padding strategy results in a resonable
performance gain. The optimized algorithm in M3S-MATLAB results on the average in
a 271 % slower runtime as OOMMF 2002 and a negligible speed-up.

• For Nmag-FD optimizations one and two for the demagnetization field calculation
could be implemented. Allthough the optimized algorithm in Nmag-FD results in av-
erage in a 255 % slower runtime as OOMMF 2002 but in a speed-up of 1.7.

• In this comparison M3S-Java is the fastest M3S prototype and in average only 11 %
slower than OOMMF 2002. The speed-up is smaller for M3S-Java as for OOMMF 2002
and results in an average factor of 2.7.

Consequently all three CSIDE choices to implement a micromagnetic simulator resulted in a
runtime competivie to the basic algorithms used in OOMMF 2002. Only Nmag-FD is slower
using the precompiled version of NumPy for Windows XP. M3S-Java offers the best runtime
performance of the three M3S prototypes as it allows to implement all demagnetization field
optimizations.

Parallelization

The parallelization of sequential software is as described in Sec. 2.1.1. On the long term
parallelization is the only possibility to reduce the runtime of simulations significantly.
Hence the support for parallelization techniques like the message passing interface (MPI)
or the symmetric multiprocessing (SMP) are important for the choice of a CSIDE. In the
following the focus is on SMP since due to the three-dimensonal FFT included in the
calculation of the demagnetization field MPI has a too large communication cost.

MATLAB offers as an extension the Parallel Computing Toolbox. This toolbox paral-
lelizes the code by starting a pool of MATLAB runtime environments as so called workers.
Each worker runs in a distinct thread and can be called by the main runtime environment
to perform tasks. The parallel execution of a loop is realized by splitting the loop into
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independent sections and distributing these sections to the workers. Considering that each
worker reserves about 200 MB main memory, the management of the pool takes a large
amount of run-time; A performance gain of this solution is only given for long running
tasks that need significantly more execution time than the distribution effort. Here several
alternative open source and commercial solutions have been published185, 186 and reviewed
by Sharma.85

While for Python different well-suited packages for the distributed calculation exist
like pyMPI,187 the parallelization using SMP is as difficult as for MATLAB. This is based
on the global interpreter lock (GIL) that restricts the Python interpreter to execute only
one command simultaneously. The current version Python, 2.6.3, includes the package
multiprocessing by default. This package offers a similar solution as the Parallel Distributing
Toolbox, with a less reserved main memory (about 10 MB per worker) in comparison to the
case of MATLAB. Similar to MATLAB also for Python different open-source and commercial
alternatives exist like the IPython project and Star-P.186

Java supports necessary software development techniques that are well-suited for
the development of parallel applications on desktop computers. Here a concurrency
package is provided in the newest version of Java by default offering standard solu-
tions for the execution of parallel and concurrent programs. This allowed to imple-
ment the SMP based parallelization for the calculation of the demagnetization field
in M3S-Java conveniently resulting in a reasonable speed-up as shown in Fig. 3.14.

Figure 3.14: Parallelization speed-up of the simulations of a micromagnetic problem of size
(256,256,4) grid points. The simulations have been performed with OOMMF 2009 and M3S-
Java on an Opteron with 16 cores and 128 GB RAM. The x-axis shows the number of cores
enabled for the simulation run, while the y-axis shows the gained speed-up of the simula-
tion.
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Nevertheless, the default concurrency package of Java is restricted for the parallelization
of numerical calculations as described by Taboada et al.188 They further identify better
solutions for Java.

3.3.3 Results of te evaluation of different CSIDEs

The evaluation of two other common CSIDEs revealed that the choice of Python/SciTools
and Java/JSA are more promising than using MATLAB. A final decision for Nmag-FD
or M3S-Java could not be made with the prototypes at hand. M3S-Java offers the better
runtime performance, the better portability, and the better support for software quality
measurements. Since Java is new in the numerical computing community, the support
for numerical libraries is less extensive as for MATLAB or Python. Nmag-FD in contrast
offers the support for C/C++ and FORTRAN libraries and hence the better support for
numerical libraries. Moreover, it offers with NumPy and SciPy a powerful scripting support
for these numerical libraries that allowed to develop the whole software in a script language.

This evaluation revealed that the restrictions identified for MATLAB are mainly MATLAB
specific. While other CSIDEs support all concepts that are necessary to develop large
programs, the restrictions due to the runtime depend on the flexibility of the supported
libraries and their integration into the scripting language.

Nevertheless this evaluation shows that the common approach to use CSIDEs to pro-
totype scientific software and to reimplement the prototypes later in C/C++ or FORTAN
is not necessary. Instead if no proper library exists, only the runtime critical components
need to be exported. In any case the simulator still remains portable as the unoptimized
version of the components are always avaliable. Concerning make or buy, a scientist can start
to develop a prototype using a CSIDE that bit by bit is extended to a complete simulator.
In this approach the developer uses first the provided libraries to develop the algorithm.
If the resulting component is not efficient enough, the developer can spend time in the
optimization of the algorithm and use the library-based implementation as reference for
tests.

The parallelization of the sequential algorithms could only be evaluated supersticially
in this work. Here further analysis are necessary to substanciate the evaluation due to the
parallelization possibilities.

100



3.3. Evaluation of different CSIDEs

101



Chapter 4

Current dependency

The last chapter presented the micromagnetic simulator M3S-MATLAB and evaluated two
alternative CSIDEs for the implementation of M3S. In the first step a reverse engineering
of the numerical model implemented in OOMMF has been performed. The resulting
simulator offers a much better balance between the maintainability and usability compared
to OOMMF, while the runtime is about two times slower.

This chapter uses these features to extend M3S-MATLAB by the physical phenomena
that occurs when a current flows through a ferromagnetic system. As motivated in Sec. 1
this topic has become essential in the focus of the research community as it promises novel
storage concepts. Here the problem arises that the optimization of the properties of the
nanostructured ferromagnets accompanies the understanding of the physical phenomena.
Since the micromagnetic simulation has become an important method in the fundamental
research of ferromagnetic nanostructures, it is important to extend a simulator by the known
phenomena and to support their extension by new discoveries.

The following aspects concerning the current dependency have been addressed by
this work and will be discussed further:

At first the prototype M3S-MATLAB has been extended by the spin-transfer torque
in continuously variable magnetization patterns and in spin valves (as introduced in
Sec. 2.2.4). A detailed discussion of the development of both modules is given in the
article entitled “The micromagnetic modeling and simulation kit M3S for the simulation
of the dynamic response of ferromagnets to electric currents”, which was presented at
the 2008 Grand Challenges in Modeling and Simulation Conference GCMS’08 (that took
place between 16 and 19 June 2008 in Edinburgh, UK) reprinted in Sec. 4.1. This article
emphasizes the simplicity that is offered by the M3S-MATLAB and its modular architecture.
It also presents the results for two system tests to verify the modules; these tests are based
on results of Krüger et al.189 as well as Berkov and Gorn.43
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The extension of M3S-MATLAB by a module for the spin-transfer torque in continu-
ously variable magnetization patterns revealed the question, in which range the simulation
of current-driven vortices or domain wall dynamics it is valid to approximate the current
paths as homogeneous. To investigate this aspect a MATLAB module for the static cal-
culation of the current paths and the AMR-effect have been interfaced to M3S-MATLAB
in cooperation with Stellan Bohlens. This cooperation resulted in a micromagnetic simu-
lator that allows to investigate the mutual interplay. This aspect is discussed in detail in
manuscript 1 in Ch. 6. The manuscript discusses the accuracy of the implementation for the
simulation of current-driven vortexdynamics.

Studying existing tools118, 121, 157 revealed, that many existing simulators have not been
extended by the spin-transfer torque in continuously variable magnetization patterns.
Considering the increase in importance of this phenomena in the last years, these sim-
ulators will likely be extended in the near future, too. A review of the system test for
the spin-transfer torque in continuously variable magnetization pattern that was used in
publication 4.1 showed that the test is suitable for the validation but not for the falsification
of the module. A proposal for a new standard problem that allows for the falsification of
the module has been developed. Details of the proposed problem have been discussed
in the article “Proposal for a Standard Problem for Micromagnetic Simulations Including
Spin-Transfer Torque”, which has been published in the Journal of Applied Physics in 2009
and that is reprinted in Sec. 4.2. The article describes how the proposed problem is defined
by applying selection criteria, which are in accordance to the quality criteria suggested on
the µMag webpage.40 A final comparison of the simulation results of different extended
micromagnetic simulators illustrates the adequat properties of the problem.

During the development of the proposed standard problem, the question arose, which
values were experimentally realistic for the degree of non-adiabaticity. A literature research
revealed that the theoretically predicated as well as the experimentally measured values
differ by one order of magnitude.190–193 This circumstance could be explained by the
small accuracy of existing measurement techniques. As the exact value of the degree of
non-adiabaticity has a large influence on the current-driven dynamic of magnetic vortices
and domain walls, in cooperation with Benjamin Krüger a robust measurement scheme has
been suggested. Details of the proposed measurement scheme are discussed in detail in the
article “Proposal of a Robust Measurement Scheme for the Nonadiabatic Spin Torque Using
the Displacement of Magnetic Vortices”, which has been published in Physical Review
Letters in 2010 and that is reprinted in Sec. 4.3. The article illustrates the results of the
measurement scheme by comparable simulations. As the simulations take into account
typical perturbations like a Oersted field or the AMR effect, they substantiate the unique
accuracy of the proposed measurement scheme.

103



Current dependency

104
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The Micromagnetic Modeling and Simulation Kit M3S For the Simulation
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Proceedings of the 2008 Grand Challenges in Modeling and Simulation Conference
(GCSM’08), H. Vakilzadian, R. Huntsinger, T. Ericson, and R. Crosbie, Eds. San
Diego, CA, USA: The Society for Modeling and Simulation, 2008, pp. 427–434
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Abstract
Micro- and nanostructured ferromagnetic materials are ac-

tively studied as they offer a variety of applications for micro-

electronics, hard disks and main memory devices. The widely

accepted standard model to describe ferromagnetic systems

in this regime is the micromagnetic model [1]. Recently, the

interaction of electric currents with the local magnetization

in a ferromagnet by transfer of spin momentum have be-

come a focus in academic and industrial research. Hence it

has become necessary to extend the micromagnetic model by

current-dependent terms, known as the spin-transfer torque

extensions. This work presents the micromagnetic modeling

and simulation kit M3S, which implements the basic micro-

magnetic model as well as the spin-transfer torque extensions

for multilayer systems based on Slonczewski [2, 3] and the

spin-transfer torque extension for continuously varying mag-

netization based on Zhang and Li [4]. The architecture of the

M3S is discussed and the validity of the implementation is

proven by several test problems.

1. INTRODUCTION

The micromagnetic model [1] describes the magnetiza-

tion dynamics by a time-dependent non-linear partial differ-

ential equation, the so-called Landau-Lifshitz-Gilbert equa-

tion (LLG) and includes the spatial interaction by different

magnetic field terms [5]. In the beginning the micromagnetic

model was used for analytical calculations of the widths of

magnetic domain walls or the switching field in very small

ferromagnetic particles. In recent years, through the rise of

powerful computers, micromagnetic modeling and simula-

tion have evolved into an important method for investiga-

tions in this field of research, because they enable the pre-

diction and interpretation of the dynamic behavior of exist-

ing and virtual ferromagnetic systems. They also constitute

a major factor in gaining a deeper understanding of the fun-

damental physical principles. Even more recently, the inter-

action of electric currents with the local magnetization in a

ferromagnet have become a focus in this field of research.

One example is discovery of the giant magnetoresistance ef-

fect [6, 7] for which P. Grünberg and A. Fert were awarded

the Nobel Prize. New physical phenomena were integrated

into the micromagnetic model by adding current-dependent

torque terms, known as the spin-transfer torque terms, into

the LLG equation [2, 4, 8]. Nowadays, two different current-

dependent extensions of the LLG equation exist: The first,

developed by Slonczewski [2], accurately describes currents

traversing through interfaces between ferromagnets and non-

magnets and the ensuing torque on the magnetization. The

second was developed by Berger [8] and has since been ex-

tended by Zhang and Li [4] and Thiaville et al. [9]. It deals

with the spin-transfer torque due to continuous changes in the

magnetization, e.g., due to domain walls or magnetic vortices.

This work will present the micromagnetic modeling and

simulation kit M3S as an advancement of a micromagnetic

simulation tool prototype presented at the Summer Computer

Simulation Conference (SCSC) in San Diego in 2007[10]. It

implements both versions of the spin-transfer torque term.

The outline of this work is as follows: Section 2 describes

the micromagnetic model and both spin-transfer torque ex-

tensions. Section 3 then presents M3S with the spin-transfer

torque module and discuss the benefits of its architecture.

Section 4 validates M3S by comparing the results of well de-

fined structures with analytical and experimental results.

2. THEORETICAL BACKGROUND

In this section the micromagnetic model, which is the ap-

propriate model to describe ferromagnets on the nano- and

micrometer scale, as well as the spin-transfer torque exten-

sions are described in more detail.
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2.1. Micromagnetic Model
The micromagnetic model correctly predicts the static

structure of nano- and micrometer-sized ferromagnets as well

as the dynamics up to the THz-regime. In 1932, Landau and

Lifshitz [5] laid the foundation to this theory, with major con-

tributions coming later from Gilbert, Néel, Bloch, Brown, and

many others [1, 11, 12]. Several excellent reviews and books

describe this theory in great detail [13, 14, 15]. In this model

the ferromagnet’s magnetization wants to align itself to the

magnetic fields that are present in each point of the volume.

In turn the magnetization determines the effective magnetic

field by a superposition of internal and external magnetic

fields. The internal fields are caused by different magnetic in-

teractions such as the quantummechanical exchange between

neighboring spins or the magnetostatic interaction. The inter-

action between magnetization and effective field leads to a

complex dynamic behavior. Except for some analytically fea-

sible systems, the magnetization dynamics can only be solved

numerically.

2.1.1. Equation of Motion

The LLG equation is the fundamental equation in the mi-

cromagnetic model and describes the motion of the magneti-

zation. The magnetization ~M precesses around the local effec-

tive magnetic field ~Heff and is damped towards its equilibrium

direction, which is parallel to the effective field as shown in

Fig. 1. It is described by the two terms on the right-hand side

of Eqn. (1):

d ~M

dt
=−γ~M× ~Heff +

α

Ms

~M× d ~M

dt
, (1)

Here Ms is the saturation magnetization, γ = 2.21 ·105 m/C

is the absolute value of the gyromagnetic ratio, and α > 0 is

the Gilbert damping constant.

2.1.2. Effective Field

The micromagnetic model includes all magnetic interac-

tions as magnetic fields interacting with the local magnetic

moments. The basic model includes the magnetostatic field,

the exchange field, the anisotropy field, and the Zeeman field.

The magnetostatic field describes the magnetic interactions

of the local magnetic moments over long distances within

the body and favors the magnetization to be aligned to the

surface. A magnetization perpendicular to a surface would

lead to surface charges akin to electrical charges in a capacity

and thus greatly increase the system’s energy. The exchange

field describes the interaction between the spins of neighbor-

ing atoms. In ferromagnets, the exchange interaction tends to

align neighbor spins parallel to each other. The interplay be-

tween the exchange and magnetostatic interaction leads to the

Figure 1. Trajectory of the magnetization due to an effec-

tive field. The magnetization performs a damped precession

around the effective field.

formation of magnetic domains in the ferromagnet. A domain

is a region within the ferromagnet in which the magnetization

is fully aligned. The boundaries of two domains in which the

magnetization rotates from the direction in one domain to the

direction in the other domain are called domain walls. The

anisotropy field describes anisotropic effects that arise due to

the structure of the lattice and to the particular symmetries

that are present in certain crystals. It leads the ferromagnet

to magnetize along specific directions, which in literature are

referred to as easy axes. The Zeeman field is the field from an

external magnet. The local summation of all these field types

constitute the local effective field.

2.2. Spin-transfer Torque for Media with Con-
tinuously Varying Magnetization

In addition to the standard micromagnetic model, an exten-

sion for the interaction of itinerant, i.e., moving electrons and

the local magnetization in volumes with continuously chang-

ing magnetization have been introduced[4, 8]. It correctly de-

scribes magnetization dynamics within a ferromagnet with

continuously varying magnetization as shown in Fig. 2, that

is excited by a spin-polarized current. The additional torque,

called spin-transfer torque for such a system arises from the

interaction of the spin-polarized current with the local mag-

netic moments within the ferromagnet. The itinerant electrons

align their spin with the spins of the local electrons that con-

stitute the magnetization. This torque on the moving elec-

trons must be compensated by an opposite torque on the local

magnetization to conserve the total momentum. The extended

LLG with two extra spin-transfer torque terms is[4, 16, 17]
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d ~M

dt
=− γ~M× ~Heff +

α

Ms

~M× d ~M

dt

− b j

M2
s

~M×
(
~M× (~j ·~∇)~M

)

− ξ
b j

Ms

~M× (~j ·~∇)~M,

(2)

with the coupling constant b j = (PµB)/(eMs(1+ ξ2)) be-

tween the current ~j and the magnetization ~M, where µB is the

Bohr magneton, e is the elemetary charge, ξ = τex/τsf is the

degree of non-adiabacity, and P denotes the spin polarization

of the current. Equation (2) can be written in explicit form

d ~M

dt
=− γ′~M× ~Heff−

αγ′

Ms

~M×
(
~M×~Heff

)

−
b′j
M2

s

(1+αξ)~M×
(
~M× (~j ·~∇)~M

)

−
b′j
Ms

(ξ−α)~M× (~j ·~∇)~M,

(3)

with the abbreviations γ′= γ/(1+α2) and b′j = b j/(1+α2)
as shown by Krüger et al.[18].

Figure 2. An example for a system with continuous vary-

ing magnetization that exhibit the spin-transfer torque effect.

In the magnetic wire the magnetization changes continuously

from the left to the right. The current flows along the wire di-

rection and interacts with the spatially variation of the magne-

tization which leads to a motion and distortion of the domain

wall.

2.3. Spin-transfer Torque in a Spin Valve
In magnetic multilayers the magnetization changes

abruptly at the interfaces between the magnetic layers. The

approximation made in the spin-transfer torque model for

continuous media cannot be applied for these geometries.

In the following section, the spin-transfer torque extension

for the description of a spin valve with currents flowing

perpendicular-to-plane (CPP) is introduced. A spin valve is a

multilayer system, consisting of basically two ferromagnetic

layers that are connected by a nonmagnetic metallic spacer as

shown in Fig. 3.

In contrast to continuously varying magnetization, the

spin-transfer torque in such a spin valve originates from the

Figure 3. Simple sketch of a spin valve. The electrons flows

in -z-direction and crosses first the fixed ferromagnetic layer

FM1. FM1 polarizes the current in the direction of his mag-

netization ~p. The spin-polarized current influences the second

ferromagnetic layer FM2 via the spin-transfer torque

interaction of the spin-polarized current with the local mag-

netic moments at the interface between the ferromagnets and

the spacer. The ferromagnetic layer FM1, called the fixed

layer, is designed to be unaffected by the spin-transfer torque.

In reality, this is achieved by exchange-coupling of FM1 to

additional layers, e.g., antiferromagnets. FM1 then serves as

a source for the spin-polarized current. All electrons passing

through this layer becomes polarized equal to its magneti-

zation direction ~p. The dynamics of the other ferromagnetic

layer, called free layer FM2, due to the spin-transfer torque is

given by [2, 3, 17, 19]

d ~M

dt
=−γ~M× ~Heff−

γa j

Ms

~M×
(
~M×~p

)
+

α

Ms

~M× d ~M

dt
. (4)

Here a j = Msβg(θ) is the coupling constant between the

current and the magnetization, with the angle θ between ~M
and ~p, β= h̄ j/(µ0MSde) and g(θ) = ΛP/[2((Λ2+1)+(Λ2−
1)cosθ)]. In these equations h̄ is Planck’s constant, µ0 is the

permeability of the vacuum. Λ = G ·R, the product of con-

ductance and resistance, differs from unity if the layers have

different thicknesses, P is the spin polarization of the current,

and d is the thickness of the free layer, [3, 19, 20]. Employing

the same abbreviations as in 2.3., equation (4) can be written

in its explicit form

d ~M

dt
=− γ′~M× ~Heff−

γ′α
Ms

~M×
(
~M×~Heff

)

− γ′a j

Ms

~M×
(
~M×~p

)
+ γ′αa j

~M×~p.

(5)

3. M3S
M3S is a framework for the simulation of micromagnetic

problems. It is the advanced version of the prototype of
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the micromagnetic simulation tool presented at the Summer

Computer Simulation Conference (SCSC) in San Diego in

2007[10]. From the developer’s point of view, the purpose of

the development of M3S is to create a micromagnetic simu-

lator with a high software quality [21], with a focus on the

key attributes high modularity, easy testability, simple exten-

sibility, and high efficiency. Since high modularity and high

efficiency are in many cases opposing attributes, every devel-

opment process must weigh up the possible solutions with

respect to these attributes. The easy testability and simple

extensibility directly correspond to modularity, because tests

need the possibility to check components with manageable

complexity. The actual way to deal with this decision is to

follow the three steps in the advice of Kent Beck to Make It

Work, Make It Right, Make It Fast[22].

In addition to the benefits mentioned in the previous pub-

lication [10], MATLAB offers a script language [23], pro-

viding a notation similar to the mathematic notation. It also

provides simple interfaces to lower-level programming lan-

guages such as C,C++, or Fortran. For scientific applications

the mathematical notation facilitates the first two steps and

allows physicists with a moderate knowledge of MATLAB

to quickly write code and to create automated tests for the

code. An expert in MATLAB now can implement the third

step, without the need to know the physics. This approach has

proven invaluable in the development of the present frame-

work for which programmers with backgrounds in computer

science and as well as physics could contribute according to

their area of expertise.

3.1. Basic Architecture
The core of M3S consists of the configuration object, the

solver and the integrator. To start a simulation, a configura-

tion object must be filled with the specific problem definition.

The configuration object is at this stage of the simulation re-

sponsible for the validation of the user inputs. Then the solver

is called passing the configuration to it. If the configuration

is consistent, it initializes all needed components, e.g., any

included fields or the load-and-store functionality. Next the

solver starts the time integration loop by calling the time inte-

grator. The time integrator itself uses the function ”calculate-

Model” for the calculation of the time derivative of the mag-

netization d ~M(ti)/dt for a time ti, which is needed to compute

the magnetization at the time ti+1 via the LLG-equation. Fig-

ure 4 shows the main components of M3S as well as the flow

chart of a simulation run.

3.2. Spin-transfer Torque Module
As mentioned above, the action of a spin-polarized current

on a ferromagnet is still under discussion. The spin-transfer

torque for continuously varying magnetization and the spin-

transfer torque for a spin valve are currently the accepted

Figure 4. The architecture of M3S showing the interaction

of the basic components within a simulation run.

physical descriptions for the respective problem domains. A

general description of the spin-transfer torque of continuously

and non continuously changing magnetization is still under

investigation. Due to these circumstances, it is important to

consider the architecture to be flexible for future extensions,

without implementing functionality on stock.

The proposed architecture of the module consists of an in-

terface (as shown in Fig.5), which is integrated into the LLG,

and the two concrete realizations of spin-transfer torque ex-

tensions. To integrate a new spin-transfer torque extension

into this architecture, the concrete realization must be imple-

mented. It is important, that it is conformal to the interface.

The new extension can then be chosen through the configura-

tion.

4. VALIDATION

Testing the correctness of the simulation results is at least

as important as ensuring a good architecture. Therefore, it

is important to test individual parts of the simulation, e.g.

the field computation or solving the LLG, by unit tests [22]

as well as to validate the complete simulation code by in-

tegration tests. For the implementation of integration tests

the initial parameters and the results of complex micromag-

netic reference problems are needed. The µMag group[24]

has collected such problems, known as standard problems.
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Figure 5. For the simulation, one of the spin-transfer torque

extensions can be selected. The selected extension is called

from the LLG through a general interface.

The standard problem #4 was used in the previous work to

show the correct implementation of the basic micromagnetic

model within the prototype [10], which is the basis of M3S. In

order to validate the correctness of M3S the additional spin-

transfer torque modules need to be validated. Since the spin-

transfer torque is a new field of research, there are no standard

problems, and the model itself is still a matter of active re-

search and discussion. So this work uses approved analytical

and computational results as basis of integration tests.

4.1. Spin-transfer Torque for Continuously
Varying Magnetization

To confirm the spin-transfer torque module for spin-

transfer torque in continuously varying magnetization, the

test configuration as shown in Fig. 6 is used. The sample is

a ferromagnetic square with a vortex core in the center. The

magnetization is excited by a spin-polarized alternating cur-

rent.

This structure is well suited for the validation, because it

has already been investigated in detail [25, 26, 27, 28] and

because there exists an analytical description of the magneti-

zation dynamics[25]. The analytical model describes the vor-

tex core dynamics due to a spin-polarized alternating cur-

rent or an alternating magnetic field. The selected test con-

figuration is a ferrromagnetic square with a sample size of

100×100×10 nm3. For the ferromagnetic material param-

eters, the values for permalloy were chosen, i.e., an ex-

change constant A = 13 · 10−12 J/m, a saturation magnetiza-

tion Ms = 8 · 105 A/m, a damping constant α = 0.1, a de-

Figure 6. The initial magnetization pattern, a vortex, for the

test configuration in this section. The color coding represents

the out-of-plane magnetization component.

gree of non-adiabaticity ξ = 0.05, and a gyromagnetic ratio

γ = 2.211 · 105 m/C. The effective field is given by the ex-

change and magnetostatic field. In addition to the effective

field, a spatially homogeneous spin-polarized alternating cur-

rent of jP = cos(ωt) · 2 · 1011 A/m2 with the frequency of

ω = 4.4 GHz is applied in x-direction. The analytical model

predicts that the vortex-core excited by such a current starts

to gyrate around the center of the ferromagnetic square. Fig-

ure 7 shows the results from the simulation with M3S and

the analytical model. As can be seen the resulting trajectory

fits excellently to the trajectory of the analytical calculation.

This shows the validity of this part of the spin-transfer torque

module.

Figure 7. Calculated positions of a vortex that is excited

with an alternating current versus simulation time. The cir-

cles and triangles denote the x- and y-positions of the vortex,

respectively. The lines are fits with the analytical results of

Krüger et al. [25].
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4.2. Spin-transfer Torque in a Spin Valve
The correctness of the spin-transfer torque module for sim-

ulations of the spin-transfer torque in a spin valve is vali-

dated by using a rectangular spin valve consisting of two lay-

ers of cobalt connected by a copper spacer as a test config-

uration. This structure was chosen as it has previously been

investigated by Li et al. [20] with a edge length b = 64nm

and by Berkov et al. [29] for edge lengths between 16 and

120 nm. As integration test for this module, b = 20 nm and

b = 48 nm was chosen, because the simulation results for

these edge lengths lead to a distinct trajectory of the magneti-

zation. The simulation parameters of the free layer are a sat-

uration magnetization Ms = 1.2 ·107/(4 ·π) A/m, a damping

constant α = 0.03, a spin-transfer torque coupling constant

a j = −4 · 105/4 ·π and a gyromagnetic ratio γ = 2.211 · 105

m/C.

The current flows in negative z-direction through the

spin valve. The external field, the easy axis of the crys-

tal anisotropy and the current polarization are aligned in x-

direction as shown in Fig. 8. The effective field is given by

the exchange field with the exchange constant of A= 2 ·10−11

J/m, the magnetostatic field, the uniaxial anisotropy field with

Hk = 5 ·105/(4 ·π) A/m , and the uniform Zeeman field with

Hext = 1.75 ·106/(4 ·π) A/m.

Figure 8. Scheme of the test system, which was used for the

validation of the spin-transfer torque. For the validation this

system was investigated with different edge lengths b.

At the beginning of the simulation the magnetization is

aligned in y-direction. All simulations were computed ac-

cording to the parameters given by Berkov et al. [29] with a

cell size of 2×2×2.5 nm3 in (x,y,z)- direction. Figure 9 shows

the results for b = 20 nm. The time resolved magnetization

component mx as well as the trajectory of the magnetization

match well with the results of Berkov et al. Figure 10 shows

the results for b = 48 nm. The results of this problem dif-

fer in the time resolved magnetization component, but the the

trajectory of the magnetization match well with the results of

Berkov et al. Since in their publication the magnetostatic field

causes the difference between b = 20 nm and b = 48 nm, this

error can be explained by the difference in the computation

of the magnetostatic field by Berkov et al. In comparison to

the results of standard problem #4, this difference has a mag-

nitude of about 2%. We conclude that the spin-transfer torque

modules are also valid for the simulation of spin valve sys-

tems.

Figure 9. The simulation results for b = 20 nm. a.) shows

the results from Berkov et al.[29], b.) shows the results of this

work.

Figure 10. The simulation results for b = 48 nm. a.) shows

the results from Berkov et al. [29], b.) shows the results of

this work.

5. SUMMARY AND OUTLOOK
We have presented the new micromagnetic modelling and

simulation kit M3S with the spin-transfer torque module. The

correctness of the implemented physic was proved by integra-

tion tests based on significant problem definitions. The main

goal of this implementation is to ensure a high software qual-

ity and so to simplify future extensions. Future tasks will be
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the expansion of our tool in view of multi threading and par-

allelization using the Message Passing Interface (MPI). This

is necessary to achieve reasonable computation time for tasks

such as the simulation of whole ferromagnetic wire or an ar-

ray of ferromagnetic nano-particles.
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The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is of
fundamental interest for the applied physics community. To investigate the spin-transfer torque,
powerful simulation tools are mandatory. We propose a micromagnetic standard problem including
the spin-transfer torque that can be used for the validation and falsification of micromagnetic
simulation tools. The work is based on the micromagnetic model extended by the spin-transfer
torque in continuously varying magnetizations as proposed by Zhang and Li. The standard problem
geometry is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a
Landau pattern with a vortex in the center of the structure. A spin-polarized dc current density of
1012 A /m2 flows laterally through the cuboid and moves the vortex core to a new steady-state
position. We show that the new vortex-core position is a sensitive measure for the correctness of
micromagnetic simulators that include the spin-transfer torque. The suitability of the proposed
problem as a standard problem is tested by numerical results from four different finite-difference and
finite-element-based simulation tools. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3126702�

I. INTRODUCTION

Ferromagnets can be found in most devices that require
nonvolatile storage of information. Ferromagnets have been
successfully used in hard disks for more than 50 years.1 Re-
cently the field of research has been extended to the devel-
opment of nanometer-sized ferromagnetic nonvolatile stor-
age devices that offer a high storage density accompanied by
a high data rate.2 The magnetic random access memory
�MRAM� has been developed as the first nanostructured fer-
romagnetic memory module.3 An MRAM cell consists of a
multilayer system with two ferromagnetic layers separated
by a nonmagnetic layer. Information is stored in the orienta-
tion of the magnetization in the two ferromagnetic layers.
Depending on the properties of the nonmagnetic layer, the
information can be read with the help of the tunnel magne-
toresistance effect4 or the giant magnetoresistance effect.5

For this, a current is applied to the multilayer. The resistance
depends on the relative alignment of the magnetizations of
the ferromagnetic layers. To write information in such a
memory cell, a current is applied across two perpendicular
wires. At the intersection of the two wires, the resulting Oer-
sted field is strong enough to switch the magnetic orientation
of the first magnetic layer, the so-called free layer. The mag-
netic orientation of the second ferromagnetic layer, the so-

called pinned layer, should not change during this process.3,6

The application of an Oersted field corresponds to the write
process in a hard disk. As explained by Chappert et al.,7

there are different restrictions using an Oersted field that
limit the storage density of the MRAM. To increase the stor-
age density, it is therefore necessary to find an alternative
way to switch the magnetization.

Slonczewski8,9 and Berger10 predicted in 1996 that a
spin-polarized current flowing through a ferromagnetic con-
ductor can apply a relevant torque to its magnetization, ow-
ing to the exchange coupling between the spins of the itin-
erant electrons and those of the localized electrons. Since its
discovery the so-called spin-transfer torque �STT� has been
considered as a key to increase the storage density and lead
to a new generation of storage devices, such as the STT
random access memory �STTRAM� �Ref. 11� and the race-
track memory.12 The STTRAM is an MRAM that uses the
spin-transfer torque instead of the Oersted field for the
switching process. The racetrack memory stores bits along a
single ferromagnetic wire. To write and read information, a
current is applied along the wire that moves the bits to a
writing or reading unit.

Two theoretical descriptions of the spin-transfer torque
exist: The first description has been developed by
Slonczewski8,9 and describes a current traversing an interface
between a ferromagnet and a nonmagnetic metal and its con-
comitant torque on the magnetization. It can successfully de-

a�Electronic mail: mnajafi@physnet.uni-hamburg.de.
b�Electronic mail: bkrueger@physnet.uni-hamburg.de.
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scribe a STTRAM. The second description has been devel-
oped by Berger10 and was later refined by Zhang and Li13 as
well as by Thiaville et al.14 It deals with the spin-transfer
torque in the case of a continuously varying magnetization.
In this case the spin-transfer torque acts on inhomogeneous
magnetization patterns, such as domain walls or magnetic
vortices. Thus, also the magnetic processes in a racetrack
memory12 and gyrating magnetic vortices driven by spin-
transfer torque15,16 can be described.

Other memory devices such as the dynamic random ac-
cess memory17 or the static random access memory18 have
shown that it is necessary to develop analytical descriptions
and powerful simulation tools like SPICE �Ref. 19� to opti-
mize their properties.2 The theoretical descriptions of the
spin-transfer torque8–10,13,14 are the basis for devices that ex-
ploit the interaction between spin-polarized currents and
magnetization. There exists a variety of simulation tools,
such as the micromagnetic modeling and simulation kit
M3S,20

NMAG,21 the object-oriented micromagnetic frame-
work OOMMF,22

LLG,23 and micromagus,24 that implement
the micromagnetic model25 and include the spin-transfer
torque model. To compare different simulation tools the mi-
cromagnetic modeling activity group ��Mag� �Ref. 26� pub-
lishes standard problems for micromagnetism. These micro-
magnetic problems allow the results of a simulation tool to
be verified. So far, there is no standard problem that includes
the spin-transfer torque. Here we propose a problem that
allows the validation of micromagnetic simulation tools that
implement the spin-transfer torque of Berger10 with the ex-
tension by Zhang and Li.13 We further present numerical
solutions to the proposed problem and analytical solutions of
the problem given by Krüger et al.27

II. PROBLEM SELECTION

In this section, selection criteria for the standard problem
are defined and possible adaptations of each criterion are
given. The focus of our standard problem is the spin-transfer
torque extension. Thus we chose criteria that ensure the
traceability of errors in the implementation of this extension.
A prerequisite is that the simulation tool derives correct re-
sults for the numerical time integration, the demagnetization
field, the exchange field, and the Zeeman field.

A. Selection criteria

To select a standard problem that is appropriate to trace
errors in the spin-transfer torque extension, we first define
four general selection criteria. According to the strategy of
�Mag,26 these criteria are:

�1� The problem has to be specified in such a way that dif-
ferent simulation tools are able to reproduce the initial
magnetization configuration independent of their imple-
mentation.

�2� The problem has to ensure that the reaction of the mag-
netization depends significantly on the current and leads
to an unambiguous time evolution of the magnetization.

�3� The problem has to be solvable in reasonable computa-

tion time. This is important to run the standard problem
repeatedly, which is necessary to fix program errors.

�4� The problem has to offer an unambiguous and charac-
teristic measure for the magnetization dynamics and thus
enable verification or falsification of a simulation tool.
This measure has to be computable conveniently and
independently of the implementation of the tool.

B. Theoretical background

We use the micromagnetic model including the spin-
transfer torque of Berger10 with the extension by Zhang and
Li.13 The equation of motion of the magnetization is given by

�M�

dt
= − �M� � H� eff +

�

Ms
M� �

dM�

dt

−
bj

Ms
2 M� � �M� � �j� · �� �M� �

− �
bj

Ms
M� � �j� · �� �M� , �1�

with the gyromagnetic ratio �, the Gilbert damping param-
eter �, and the saturation magnetization Ms. The effective
magnetic field H� eff includes the external as well as the inter-
nal fields. The coupling constant between the current and the
magnetization is bj = �P�B� / �eMs�1+�2��, where P denotes
the spin polarization of the current density j�, �B the Bohr
magneton, and �=�ex /�sf the degree of nonadiabacity, which
is the ratio between the exchange relaxation time �ex and the
spin-flip relaxation time �sf. Equation �1� can be written in
the explicit form

dM�

dt
= − ��M� � H� eff −

���

Ms
M� � �M� � H� eff�

−
bj�

Ms
2 �1 + ���M� � �M� � �j� · �� �M� �

−
bj�

Ms
�� − ��M� � �j� · �� �M� , �2�

with the abbreviations ��=� / �1+�2� and bj�=bj / �1+�2� as
written by Krüger et al.28

C. Adaptation of the criteria

On the basis of the physical model, we define the stan-
dard problem that complies with the criteria defined above.
Criterion �1� is fulfilled by splitting the problem into two
subproblems that are computed separately. Each subproblem
is the computation of a separate simulation run. The first
simulation is performed based on Eq. �2� in the absence of
current j�. It starts from a magnetization pattern that has to be
given by an equation. The resulting equilibrium magnetiza-
tion is used as the initial magnetization for the second simu-
lation with an applied current.

Criterion �2� can be fulfilled by the selection of an inho-
mogeneous magnetization pattern, e.g., a domain wall or a
vortex, and the selection of a spatially and temporally homo-
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geneous current. We decided to take a permalloy cuboid with
a vortex pointing upwards for the initial equilibrium state of
the second subproblem. The choice of a vortex and a spa-
tially and temporally homogeneous current leads to an un-
ambiguously distinguishable adiabatic and nonadiabatic re-
action of the magnetization.27,29,30 The equation of motion
leads to a new steady state that provides a simple validation
measure independent of the prior time evolution. In contrast,
the choice of a resonant excitation of the vortex with alter-
nating current is not suitable, because a small error in the
simulated resonance frequency would drastically change the
phase and amplitude of the result, which would complicate
the falsification. A dc current reduces the complexity of the
problem and enables to check the correctness of the results
by the final steady state of the vortex core as a characteristic
measure.

Criterion �3� can be met by a small number of discreti-
zation points and a magnetization pattern that exhibits sig-
nificant changes within few time-integration steps. The num-
ber of discretization points is given by the size of the cuboid
and the average distance between the discretization points.
We use a small cuboid that still can relax to a vortex state.
The discretization of the permalloy cuboid must be chosen
such that the vortex core is resolved. The necessary reso-
lution is achieved if the distance between the discretization
points is significantly below the exchange length
lex=�2A / ��0Ms

2�, where A is the constant of the exchange
interaction. To decrease the number of time-integration steps,
we choose a large Gilbert damping parameter �, so that the
magnetization rapidly reaches equilibrium.

Criterion �4� can be fulfilled by the calculation of the
spatially averaged magnetization, which is proportional to
the vortex-core position as shown in Appendix A. Thus the
motion of the vortex core is an unambiguous and character-
istic measure of the magnetization dynamics.27

III. PROBLEM DEFINITION

The problem is defined with the standard material pa-
rameters of permalloy,31 with the exception of the Gilbert
damping parameter �. These parameters are given by an ex-
change constant A=13�10−12 J /m, a saturation magnetiza-
tion Ms=8�105 A /m, which corresponds to an exchange
length lex=5.7 nm, and a gyromagnetic ratio
�=2.211�105 m /C. According to criterion �3� we select a
cuboid geometry with a sample size of 100�100�10 nm3

in the x-, y-, and z-directions, respectively. This allows the
problem to be simulated with a spatial and temporal discreti-
zations, which can be computed in a few hours on a standard
personal computer.32 In contrast with a circular film element,
the cuboid geometry simplifies the comparison of simulation
tools using finite-difference �FDM� and finite-element meth-
ods �FEM�, because there are no irregular edges that are a
possible source of errors in the FDM.

A. Computation of the starting condition without
spin-transfer torque

In accordance with criterion �1�, the first subproblem of
the standard problem starts with an initial magnetization pat-

tern as illustrated in Fig. 1�a�. The initial vortex state relaxes
into equilibrium as illustrated in Fig. 1�b�. The initial mag-
netization pattern is chosen as

M� = Ms ·
f�

�f��
, f� = �− �y − y0�

x − x0

R
� , �3�

where r�= �x ,y ,z� is the position of the cell and
x0=y0=50 nm are the coordinates of the center of the
cuboid. R is related to the radius of the vortex and is set to
R=10 nm as this value leads to a short relaxation time. A
Gilbert damping constant of �=1 is chosen to obtain a fast
relaxation and thus save computation time, but the relaxed
equilibrium state is independent of �. The effective field is
given by the exchange and the demagnetization field. The
simulation stops when the magnetization has reached an
equilibrium state. The stopping criterion is
maxr��V�1 /Ms ·dM� /dt��0.01 rad /ns, where V is the volume
of the cuboid. As shown in Fig. 1�b�, the equilibrium state is
a vortex as required by criterion �2�. The vortex core points
in the z-direction �positive polarization� and the in-plane
magnetization curls counterclockwise �positive chirality�.

B. Computation including spin-transfer torque

The second subproblem, which includes the spin-transfer
torque, starts with the equilibrium state of the first subprob-
lem. The effective field is the same as in the first subproblem.
As required in criterion �2� and illustrated in Fig. 2�a�, a
spatially homogeneous spin-polarized dc current of
1012 A /m2 is instantaneously applied in the x-direction
�j�= �j ,0 ,0��, i.e., the electrons flow from right to left. The
damping constant �=0.1 of this subproblem is chosen to
obtain a reasonable fast relaxation on the one hand and
enough oscillations to assist the comparison of results from
different simulation packages on the other hand. The value
also allows the detection of errors of the spin-transfer torque
term that depend on the damping parameter �. The degree of
nonadiabaticity �=0.05 is chosen to get a significant contri-
bution of the nonadiabatic spin-transfer torque term to the
final vortex-core position and to achieve a nonzero contribu-
tion of the fourth term in Eq. �2�. The simulation stops when
the stopping criterion maxr��V�1 /Ms ·dM� /dt��0.01 rad /ns
has been reached. To compare different simulation packages,
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FIG. 1. �Color online� �a� Initial state of the magnetization for the first
subproblem as given by Eq. �3�. The magnetization is averaged along the
z-direction. The color scale shows the z-component of the magnetization. �b�
Relaxed vortex state as initial state for the second part of the computation
including the spin-transfer torque. Simulations are computed with M3S.
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one has to calculate the spatially averaged magnetization
over time. The resulting trajectory of the simulation shows a
damped rotation of the vortex core around a new steady-state
position of �x=x−x0=−1.2 nm and �y=y−y0=−14.7 nm,
as illustrated in Fig. 2. The vortex-core position �x, �y is
related to the center of the cuboid. It is determined by aver-
aging the magnetization along the z-direction and interpolat-
ing the out-of-plane magnetization in the x- and y-directions
with a polynomial of second order. The position of the vortex
core is then given by the maximum of this polynomial.

C. Falsification properties

Suitable falsification properties as demanded in criterion
�4� are important for the development of a simulation tool.
The influence of errors in the spin-transfer torque extension
or an improper, i.e., too coarse, spatial discretization has
been investigated for the proposed standard problem and is
outlined in the following.

1. Sensitivity to errors in the spin-transfer torque
extension

First we analyze the influence of errors in the spin-
transfer torque extension. To show the sensitivity of the
problem to those errors, we investigate changes in the spin-
transfer torque given by a constant factor. This is emulated
by a variation in the degree of nonadiabaticity � and the
current density j. The analytical model explained in Appen-
dix B predicts that a change in � will linearly affect the
y-component of the spatially averaged magnetization 	My
,
whereas a change in j will affect the x- and y-components of
the spatially averaged magnetization 	Mx
 and 	My
 equally.
Figure 3 shows three sets of parameters for � and j that
illustrate the clearly distinguishable reactions of the magne-
tization to a change in the adiabatic, the nonadiabatic, and
the entire spin-transfer torque. As a first set we chose an
increased spin-transfer torque realized by an increased cur-
rent density. It leads to a proportionally increased x- and
y-component 	Mx
 and 	My
 of the spatially averaged mag-
netization during its time evolution. The second set is an

increased nonadiabatic spin-transfer torque created by an in-
creased degree of nonadiabaticity �. This configuration leads
to a proportionally increased y-component 	My
 of the aver-
aged magnetization during the time evolution of the magne-
tization. The third set describes a decreased influence of the
adiabatic spin-transfer torque term obtained by simulta-
neously decreasing j and increasing �. This configuration
induces a proportionally decreased x-component 	Mx
 of the
spatially averaged magnetization during the time evolution
of the magnetization. The results illustrate that a variation in
� and j results in a clear change of the magnetization which,
according to Appendix B, should be linear with the change in
� and j. As illustrated in Fig. 3, a variation in the adiabatic
spin-transfer torque by a constant factor linearly affects the
x-component of the spatially averaged magnetization 	Mx
,
whereas a variation in the nonadiabatic spin-transfer torque
by a constant factor linearly affects the y-component of the
spatially averaged magnetization 	My
. This enables one to
distinguish between errors in the adiabatic and the nonadia-
batic term. These linear changes are also in agreement with
Eq. �B1�.

2. Improper spatial discretization

To investigate the influence of the spatial discretization,
we vary the number of discretization points of the FDM and
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FIG. 2. �Color online� �a� Two-dimensional representation of the position of
the vortex core as a function of time. The dot indicates the vortex-core
position at the time t=0.73 ns. �b� Snapshot of the magnetization of the
permalloy cuboid at t=0.73 ns when the vortex-core position crosses the
line �x=0 for the first time. The magnetization is excited by a homogeneous
spin-polarized current density of 1012 A /m2 in the x-direction, i.e., the elec-
trons flow from right to left. The magnetization is averaged along the
z-direction. The color scale is the same as in Fig. 1. Simulations are com-
puted with M3S.
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FIG. 3. �Color online� �a� Spatially averaged magnetization 	Mx
 and �b�
	My
 for different values of � and j. The crosses show the time evolution of
the spatially averaged magnetization for the reference parameters �=0.05
and j=1012 A /m2. The triangles show the result for the first set of param-
eters, when the spin-transfer torque parameter j is increased by 5%. The
squares show the result of the second set, when the nonadiabatic spin-
transfer torque parameter � is increased by 5%. The circles show the results
of the third set, when the adiabatic spin-transfer torque is changed by a
simultaneous decrease in the current density and increase in � by 5% each.
The maximum difference of the spatially averaged magnetization amounts
to 14.40 kA/m �5.11%� and 8.40 kA/m �5.34%� �percentage values are re-
lated to the maximum values of �	Mx
�=281.61 kA /m and �	My
�
=157.43 kA /m� for 	Mx
 and 	My
, respectively. Simulations are computed
with M3S.
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FEM meshes. A FDM mesh is a grid that consists of equally
sized cuboids �so-called discretization cells�. FEM meshes,
in contrast, cannot be described that simply, because here the
size of each finite element can vary. To investigate the influ-
ence of the spatial discretization, we simulated the problem
for five different cell sizes using the FDM-based tool M3S.
The cell sizes used were b�b�b, for b=1, 2, 2.5, 5, and 10
nm. Figure 4�a� shows the time evolution of the y-component
of the spatially averaged magnetization for the different cell
sizes. Results for cell sizes b=1, 2, 2.5, and 5 nm show a
slight decrease in the spatially averaged magnetization with
increasing cell size. For a cell size of b=10 nm, no vortex is
formed, i.e., criterion �3� is not fulfilled. Figure 4�b� shows
the y-component of the spatially averaged magnetization at
time t=0.32 ns versus cell size b fitted by a quadratic func-
tion. The extrapolation to b=0 suggests that it is sufficient to
take a FDM mesh with a cell size of 2�2�2 nm3.

We also simulated the problem for four FEM meshes
using the FEM-based tool NMAG. Readers interested in FEM
meshing can find a detailed description of the meshes used in
the FEM simulations in Appendix C. In the following, we
use the maximum rod length and the number of tetrahedra as
characteristic measures for the fineness of a mesh. The simu-
lations with NMAG are performed with maximum rod lengths
of 1.77, 2.36, 4.40, and 6.40 nm, corresponding to 355488,
150282, 25560, and 8874 tetrahedra, respectively. Figure
5�a� shows the time evolution of the y-component of the
spatially averaged magnetization for the different meshes.
The results reveal a slight decrease in the precession fre-
quency with increased rod length. Figure 5�b� shows the du-
ration of the first gyration cycle for the rod length extrapo-
lated to 0 nm by a quadratic function. The extrapolation

suggests that it suffices to take a FEM mesh with a rod
length of 2.36 nm. In accordance with the simulations of
standard problem numbers 1–4 �Ref. 26�, these results illus-
trate that to obtain reliable numerical results the distance
between two discretization points should be significantly be-
low the exchange length lex.

IV. COMPARISON OF EXISTING TOOLS

We compare the simulation results of OOMMF extended
by Krüger et al.,28 of OOMMF extended by Vanhaverbeke et
al.,33,34 of M3S �Ref. 20� and of NMAG.21 The results of both
OOMMF-extensions and of M3S have been computed using a
cell size of 2�2�2 nm3, whereas the results of NMAG are
computed using a mesh of type �1� as described in Appendix
C with a maximum rod length of 1.77 nm. The correspond-
ing regular mesh has 68211 mesh nodes, of which 17566 are
surface nodes. The time evolution of the magnetization is
performed by explicit or implicit numerical integration algo-
rithms. Both tools, the spin-transfer torque extended OOMMF

version of Krüger et al.28 and M3S,20 use an implementation
of a fifth-order Cash–Karp Runge–Kutta algorithm35 with an
absolute error tolerance of 10−3 A /m and a relative error
tolerance of 10−4. The spin-transfer torque extended OOMMF

version of Vanhaverbeke et al.33,34 uses a fifth-order
Dormand–Prince Runge–Kutta algorithm36 with the same er-
ror tolerances. NMAG uses the sundials libraries37 with an
absolute error tolerance of 8�10−2 A /m and a relative error
tolerance of 10−7. Figure 6 shows the time evolution of the
magnetization for all tools, whereas in Table I the spatially
averaged magnetization components for the relaxed state are
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FIG. 4. �Color online� �a� Spatially averaged magnetization component 	My

for different cell sizes b3 computed with M3S. �b� The y-component of the
spatially averaged magnetization component 	My
 at time t1=0.32 ns vs b.
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FIG. 5. �Color online� Results for different FEM meshes computed with
NMAG �Ref. 21�. As maximum rod lengths 1.77, 2.36, 4.40, and 6.40 nm are
chosen, which corresponds to 355 488, 150 282, 25 560, and 8874 tetrahe-
dra, respectively. �a� Spatially averaged magnetization 	My
. �b� Duration of
the first gyration cycle vs rod length.
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listed. For comparison we also plot the analytically calcu-
lated values according to Krüger et al.,27 which is explained
in more detail in Appendix B. The maximum difference of
the spatially averaged magnetization between the simulation
tools amounts to 5.41 kA/m �1.9%� �Ref. 38� �3.0%� �Ref.
38� for 	Mx
 and 	My
, respectively. In comparison with the
analytical model, these differences are 16.14 kA/m �5.7%�
�Ref. 38� and 11.27 kA/m �7.2%� �Ref. 38� for 	Mx
 and
	My
, respectively.

We believe that the differences between the results in
Fig. 6 are due to the implementation of the demagnetization
field. A comparison of the simulation results of OOMMF and
M3S for standard problem number 4 �Ref. 26� shows that
they only differ in the calculation of the demagnetization
field.39 The spatially averaged magnetization of both OOMMF

extensions are virtually identical but differ more significantly
from M3S. Both M3S and the OOMMF extensions use a de-
magnetization field implementation based on Newel et al.40

Unlike M3S, OOMMF in addition uses an interpolation
method to speed up the calculation of the demagnetization
tensor. The FEM-based spatial discretization computes the
demagnetization field with the hybrid finite element/
boundary element method described by Fredkin and
Köhler.41 The difference between the numerical and the ana-
lytical results are a direct consequence of the approximations
of the underlying analytical model, as explained in Appendix
B. These results verify the suitability of the proposed stan-
dard problem, as the problem discriminates errors larger than
about 3% �Ref. 38� and, in contrast with standard problem
number 4, no point of discontinuity is identified.

V. EXPERIMENTAL FEASIBILITY

Although not required for the proof of the micromag-
netic simulations, it is nevertheless important to choose a
problem that can be proved by experiments. Permalloy
cuboids that exhibit the simulated magnetization configura-
tion shown in Figs. 1 and 2 including wires contacting their
left and right edges can be fabricated by electron-beam li-
thography and liftoff processing.15 Experimentally it is a
challenge to apply current densities in the 1012 A /m2 regime
permanently because of the concomittant large Joule heating.
However, recently this problem has been solved by the
preparation of permalloy nanostructures on diamond
substrates.42 The diamond serves as a highly efficient heat
sink and it has been demonstrated that current densities in
excess of 1012 A /m2 can be applied continuously to samples
like the one required for the proposed standard problem. The
detection of the vortex core at the shifted position could, for
example, be performed by scanning electron microscopy
with polarization analysis �SEMPA�.43,44 As SEMPA detects
the final steady-state position of the vortex core, the value of
the damping constant �=0.1 used in the simulation is not
relevant. The degree of nonadiabaticity �=0.05 is a realistic
experimental value.45 As so far no experimental results of the
proposed sample geometry are available, we validate the re-
sults of the micromagnetic simulations with the analytical
model explained in detail in Appendix B. This model can
serve as a reference because it has been already verified by
experimental results on similar device geometries.15

VI. CONCLUSION

In this work we present a standard problem for micro-
magnetic simulation packages extended by the spin-transfer
torque. For this standard problem, we defined the criteria
necessary to ensure that the problem is suitable for the vali-
dation and falsification of micromagnetic simulation tools.
These criteria have been applied to the underlying extended
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FIG. 6. �Color online� Solution of the proposed standard problem for a
100�100�10 nm3 permalloy cuboid calculated with four different simu-
lation tools and the analytical model. A spatially and temporally homoge-
neous current density of 1012 A /m2 is applied instantaneously in the
x-direction. �a� The x-component of spatially averaged magnetization 	Mx

and �b� 	My
. �c� Close-up of the x-component 	Mx
 for the time interval
5 ns� t�7 ns.

TABLE I. Spatially averaged magnetizations 	Mx
 and 	My
 for the simula-
tion tools and the analytical model at t=14 ns when the vortex reached the
new equilibrium position. All values in the table are rounded to two decimal
places.

Tools
	Mx


�1�105 A /m�
	My


�1�104 A /m�

OOMMF+STT—Krüger 	1.71 1.51
OOMMF+STT—Vanhaverbeke 	1.71 1.50
M3S—Najafi 	1.71 1.50
NMAG—Fangohr 	1.72 1.52
Analytical model—Krüger 	1.78 1.12
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micromagnetic model. We demonstrated that the standard
problem has the required properties. To prove the good vali-
dation and falsification properties, we investigated the influ-
ence of typical errors, such as erroneous variations in the
spin-transfer torque extension by a constant factor or an im-
proper spatial discretization. The final comparison of the re-
sults for different tools substantiates these properties and
shows that the problem discriminates errors larger than 5.41
kA/m �1.9%� �Ref. 38� and 4.80 kA/m �3.0%� �Ref. 38� for
	Mx
 and 	My
, respectively.

ACKNOWLEDGMENTS

Financial support by the Deutsche Forschungsgemein-
schaft via the Graduiertenkolleg 1286 “Functional metal-
semiconductor hybrid systems” and via the SFB 668 “Mag-
netism from single atoms to nanostructures,” by the EPSRC
�Grant Nos EP/E040063/1 and EP/E039944/1�, and by the
ESF EUROCORES collaborative research project SpinCur-
rent under the Fundamentals of Nanoelectronics program is
gratefully acknowledged.

APPENDIX A: RELATION BETWEEN SPATIALLY
AVERAGED MAGNETIZATION AND VORTEX-CORE
POSITION

To show the correspondence of the vortex-core position
and the spatially averaged magnetization, we use the model
introduced by Krüger et al.,27 where the vortex is described
by four triangles t1 to t4 shown in Fig. 7. The magnetization

in each triangle is assumed to be homogeneous. If the vortex
core is in the center of the cuboid, all four triangles have the
same volume.

As t1 and t3 as well as t2 and t4 have an antiparallel
magnetization, the spatially averaged magnetization is zero.
A deflection of the vortex core from the center of the cuboid
changes the size of the triangles as illustrated in Fig. 7�b�.
The dependence of the spatially averaged magnetization on
the volume differences and the deflection of the vortex core
is given by

�	Mx

	My

	Mz


� =�cMsk
V1 − V3

Vcuboid

cMsk
V2 − V4

Vcuboid

p const
� =� cMsk

ld�y

l2d

cMsk
ld�− �x�

l2d

p const
�

=� cMsk
�y

l

− cMsk
�x

l

p const
� . �A1�

Here Vi is the volume of triangle ti, l is the edge length of the
cuboid, d is its thickness, c is the chirality of the magnetiza-
tion pattern, p is the polarization of the vortex,
�x= �h4−h2� /2 is the deflection of the vortex core in the
x-direction, �y= �h1−h3� /2 is the deflection in the
y-direction, and hi is the height of triangle ti. The dimension-
less fit parameter k is needed to convert the vortex-core po-
sition into the spatially averaged magnetization and takes
into account that the domain walls between the triangles in
Fig. 7 have a finite size and are not abrupt as treated in Eq.
�A1�. The value of k changes with the system size and is
1.4517 for the proposed geometry. Because of the cuboid
geometry, the x-component of the spatially averaged magne-
tization 	Mx
 is proportional to the deflection �y of the vor-
tex core in the y-direction and the y-component of the spa-
tially averaged magnetization 	My
 is proportional to the
deflection �x in the x-direction.

APPENDIX B: ANALYTICAL MODEL

The vortex-core position can be calculated by the ana-
lytical model described in Ref. 27. This model is in accor-
dance with experimental results on the spin-transfer torque.15

For a square, the model predicts that the final deflection of
the vortex core in the x-direction depends only on the nona-
diabatic spin-transfer torque term and that the final deflection
in the y-direction depends only on the adiabatic spin-transfer
torque term,

��xend

�yend
� = −�

bjj
�

���2 + 
2�
bjj�

�2 + 
2
� . �B1�

Here � is the free frequency of the gyration of the vortex
core, 
 is the damping constant of the vortex, � is the Gilbert

(a)

(b)

FIG. 7. �Color online� Model for the vortex motion as introduced by Krüger
et al. �Ref. 27�. The magnetization pattern is described by four triangles t1 to
t4. The vortex core is at the center of the four triangles. �a� Magnetization
pattern with the vortex core at the center of the sample. �b� Magnetization
configuration with a vortex core displaced from the center by �x and �y.
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damping constant, and ��xend, �yend� is the final position of
the vortex core related to the center of the cuboid. The time
evolution of the core’s position,

��x�t�
�y�t�

� = �Aie�−
+i��t − Bie�−
−i��t + �xend

Ae�−
+i��t + Be�−
−i��t + �yend
� , �B2�

depends on the coefficients A= �−�yend+ i�xend� /2 and
B= �−�yend− i�xend� /2. Owing to approximations within the
analytical model concerning the detailed magnetization pat-
tern a perfect agreement with the micromagnetic simulations
cannot be expected.

APPENDIX C: USED FINITE-ELEMENT MESHES

We used two different types of finite-element meshes in
the calculations with NMAG �Ref. 21�:

�1� Meshes created by decomposing the cuboidal body into
cubes,

�2� Meshes generated with the advancing front method us-
ing NETGEN.46

For method �1�, each cube is subdivided into six tetrahedra
consistently with the neighboring cubes. The cubes are then
skewed to obtain nearly equilateral triangles on the surface
of the mesh. We keep only those tetrahedra that lie within the
ferromagnetic region and adjust those that intersect the
meshing region surface �the points outside the meshing re-
gion are projected back onto its surface�. The advantages of
using this “regular mesh” are that all edge lengths are exactly
known and that the mesh generation is very fast for the
cuboidal geometry. For the unstructured tetrahedral mesh �2�,
we use the mesh generator NETGEN,46 which is based on the
advancing front method. The results of NMAG in Sec. IV
have been computed using a mesh of type �1� with a maxi-
mum edge length of 1.77 nm that has 68211 mesh nodes, of
which 17566 are surface nodes. This has been compared with
an unstructured mesh generated with NETGEN with 25887
points and rod lengths varying from 1 to 3.8 nm, with an
average rod length of 1.95 nm. The simulation results are
virtually independent of the mesh types used.
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A spin-polarized current traversing a ferromagnet with continuously varying magnetization exerts a

torque on the magnetization. The nonadiabatic contribution to this spin-transfer torque is currently under

strong debate, as its value differs by orders of magnitude in theoretical predictions and in measurements.

Here, a measurement scheme is presented that allows us to determine the strength of the nonadiabatic spin

torque accurately and directly. Analytical and numerical calculations show that the scheme is robust

against the uncertainties of the exact current direction and Oersted fields.

DOI: 10.1103/PhysRevLett.104.077201 PACS numbers: 75.60.Ch, 72.25.Ba, 75.70.Kw

A spin-polarized current flowing through a ferromag-
netic sample interacts with the magnetization and exerts a
torque on the local magnetic moments. This effect allows
for direct and local manipulation of the magnetization in
multidomain nanostructures and is a promising writing
mechanism for new nonvolatile memory devices with
high storage density. For conduction electron spins that
follow the local magnetization adiabatically it has been
shown that the interaction via spin transfer can be de-
scribed by adding a current-dependent term to the
Landau-Lifshitz-Gilbert equation [1]. This equation has
been extended by an additional term that takes the non-
adiabatic influence of the itinerant spins into account [2].
The strength of the nonadiabatic spin torque is quantified
by the phenomenological parameter �. Theoretically, sev-
eral mechanisms have been proposed as the origin of the
nonadiabatic spin torque, leading to different orders of
magnitude for � [2–6]. Thus a precise measurement of
the nonadiabatic spin torque is necessary to give insight
into its microscopic origin. The determination of � is
further important for a reliable prediction of the current-
driven domain-wall velocity [2] which is important for
applications. Currently measured values of � for
Permalloy differ by 1 order of magnitude [7–10]; thus
the value of � is under strong debate. In these experiments,
the observed motion of a domain wall was compared with
micromagnetic simulations to determine �. However, this
analysis is highly susceptible to surface roughness and
Oersted fields.

Because of its high symmetry and spatial confinement,
a vortex in a micro- or nanostructured magnetic thin-
film element is a promising system for the investiga-
tion of the spin-torque effect [11–13]. Vortices are formed
when the in-plane magnetization curls around a center
region. In this few-nanometer-large center region, called
the vortex core, the magnetization turns out of plane to
minimize the exchange energy. There are four dif-
ferent ground states of a vortex. These states are labeled

by the direction of the out-of-plane magnetization,
called polarization p, and the sense of rotation of the in-
plane magnetization, called chirality c. Polarizations of
p ¼ 1 and p ¼ �1 denote a core that points parallel or
antiparallel to the z axis, respectively. A chirality of c ¼ 1
denotes a counterclockwise curling of the in-plane mag-
netization while c ¼ �1 denotes a clockwise curling.
It is known that vortices are displaced from their equilib-
rium position when excited by spin-polarized electric cur-
rents [12–20]. The spatial confinement of the vortex core
within the film element yields an especially accessible
system for measurements with scanning probe techniques,
such as soft x-ray microscopy, x-ray photoemission elec-
tron microscopy, or scanning electron microscopy with
polarization analysis. An analytical solution of the ex-
tended Landau-Lifshitz-Gilbert equation shows that for a
current-driven vortex the forces due to the adiabatic and the
nonadiabatic spin torque are perpendicular to each other
[15].
In this Letter we present a scheme which allows us to

measure the contributions due to the adiabatic spin torque,
the nonadiabatic spin torque, and the Oersted field sepa-
rately. It is based upon analytical calculations [15] and
overcomes the two main difficulties that occur in an ex-
periment. The first problem arises from an additional vor-
tex displacement due to the Oersted field accompanying
the current flow [12]. This displacement is comparable in
size to the displacement due to the nonadiabatic spin
torque and both displacements point in the same direction
[15]. Thus, the unknown contribution of the Oersted field
has to be separated from the measured signal. The second
problem is the exact determination of the displacement
angle. Since the displacement due to the adiabatic spin
torque is about 1 order of magnitude larger than the dis-
placement due to the nonadiabatic spin torque, a small
uncertainty in the direction of the current through the
sample would cause large errors in the determination of
�. To test the applicability of our analytical findings, they
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are applied to vortex displacements obtained from three-
dimensional micromagnetic simulations.

For the analytical calculations we start from a modified
version of the Thiele equation [21,22]

~FþG0 ~ez � ð ~vc þ bj ~jÞ þD�� ~vc þD0�bj ~j ¼ 0 (1)

that takes deformation of the vortex into account [23]. Here
vc is the velocity of the vortex core, � is the Gilbert

damping, ~F the force on the vortex, G0 ¼ �pjG0j the z
component of the gyrovector, and D0 the diagonal element
of the dissipation tensor. The coupling constant bj ¼
P�B=ðeMsÞ between the current and the magnetization
depends on the saturation magnetization Ms and the spin
polarization P of the current. The assumption of a magne-
tization pattern which rigidly gyrates holds true only for
the small vortex core. Because of the spatial confinement,
the remaining part of the vortex has to deform while the
core is moving. D� with jD�j< jD0j is a phenomenologi-
cal parameter that takes into account a reduced dissipation
due to this deformation [23].

We will investigate a square thin-film element with a
current flowing in x direction as shown in Fig. 1(a). This
current is lateral homogeneous. The Oersted field accom-
panying the current consists of an in-plane component and
an out-of-plane component. The out-of-plane component
can be neglected as it does not change the equilibrium
position of the vortex core. The in-plane field is negative
at the top surface and positive at the bottom surface. It was
verified by micromagnetic simulations that for a realistic
strength this inhomogeneous Oersted field is not capable of
significantly distorting the vortex. For a homogeneous
current the average Oersted field vanishes and there will
be no contribution of the Oersted field to the core displace-
ment. However, such a contribution has been identified in
experiment [12] and it is attributed to vertical inhomoge-
neities of the current density leading to an unbalanced in-
plane Oersted field after taking the average over the thick-
ness [23]. Here, we will approximate this unbalanced
Oersted field by a homogenous fieldH in y direction while
its precise shape and strength turned out to be of minor
importance for the vortex dynamics. However, the force
due to the Oersted field depends on the chirality. For small
displacements of the vortex core from its equilibrium
position, the demagnetization energy can be expanded up

to second order in the core displacement ~R ¼ ðX; YÞ. The
force on the vortex is then given by [15]

~F ¼ � �0MsHldcþm!2
rX

m!2
rY

� �
; (2)

with the lateral extension l, and thickness d of the system.
The factorm!2

r parameterizes the confining potential [15].
For an excitation with a direct current [24], the core

performs a damped gyration around a new equilibrium
position [15,23]. By inserting Eq. (2) in Eq. (1) and setting
~vc ¼ 0 we obtain the new equilibrium position

~R
p
c ðjÞ ¼ � jG0j

m!2
r

~Hcþ j D0

G0
j�~j

~jp

 !
(3)

with ~H ¼ �Hl=ð2�Þ, the gyromagnetic ratio �, and ~j ¼
bjj.

From Eq. (3) it is obvious that an Oersted field has the
same influence on the vortex as the nonadiabatic spin
torque. Thus the presence of an Oersted field can disturb
the measurement of �. In experiments the coordinate sys-
tem is given by the sample axis. A small uncertainty of the
direction of the current flow, e.g., due to a rotation or
imperfections of the sample, yields a mixing of the dis-
placement components, resulting from the adiabatic spin
torque and the smaller nonadiabatic spin torque, relative to
the sample axis. This mixing causes a large error in the
measurement of the displacement originating from the
nonadiabatic spin torque.

(a)

(b)

(c)

(d)

2 Rnonad

2 Rad

2 ROe

FIG. 1 (color online). (a) Sketch of the sample, including
current contacts, for the proposed experiment for the determi-
nation of �. (b)–(d) Scheme for the determination of the three
different contributions to the vortex displacement according to
Eq. (4). By measuring the distance between the positions of two
different vortices it is possible to separate the displacements (b)
due to the nonadiabatic spin torque, (c) the adiabatic spin torque,
and (d) the Oersted field. Points and crosses denote cores with
positive and negative polarization, respectively. The in-plane
magnetization is denoted by the solid arrows. The dashed arrows
denote the current direction. For the sake of illustration the
displacements are exaggerated.
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An excitation with a direct current causes a displace-
ment of the vortex core to a new steady-state position. A
benefit is that a direct current allows for a measurement
with a non-time-resolving technique.

From Eq. (3) we find that the sign of the displacement
induced by the Oersted field depends on the chirality of the
vortex, while the displacement due to the adiabatic spin
torque is determined by the polarization [20]. The non-
adiabatic spin torque causes a displacement that is inde-
pendent of the vortex properties p and c. Vortices with
different p and c values can be achieved by demagnetizing
the sample. Comparing the displacement of three vortices
with different polarizations and chiralities it is therefore
possible to separate the contributions of all three forces to
the displacement of the vortex. From Eq. (3) we find

2Rnonad ¼ 2

��������
G0�~j

m!2
r

D0

G0

��������¼ j ~Rp
c ðjÞ � ~R�p

�c ð�jÞj (4a)

2Rad ¼ 2

��������
G0

~j

m!2
r

��������¼ j ~Rp
c ðjÞ � ~R�p

c ðjÞj (4b)

2ROe ¼ 2

��������
G0

~H

m!2
r

��������¼ j ~R�p
c ðjÞ � ~R�p

�c ðjÞj: (4c)

These equations are schematically illustrated in Fig. 1.
From Eqs. (4a) and (4b) it is possible to determine � as

� ¼ 2Rnonad

2Rad

��������
G0

D0

��������¼
j ~Rp

c ðjÞ � ~R�p
�c ð�jÞj

j ~Rp
c ðjÞ � ~R�p

c ðjÞj
��������
G0

D0

��������: (5)

Since this equation is independent of the strength of the
Oersted field, the angle of the sample, and the parameter
D�, it yields the sought measurement scheme. With this
scheme a direct determination of � is accessible. Only one
micromagnetic simulation for the determination of
jD0=G0j is necessary since jD0=G0j is independent of �
and j.

Micromagnetic simulations of the experimental setup
allow us to determine the positions of the vortex core
with a precise knowledge of the micromagnetic parameters
of the system. The simulations therefore allow us to test the
analytical results in Eqs. (3) and (5). For the simulations
the material parameters of Permalloy, i.e., a saturation
magnetization of Ms ¼ 8� 105 A=m and an exchange
constant of A ¼ 1:3� 10�11 J=m, are used. Since we are
interested only in the steady final position of the vortex, we
used a Gilbert damping of � ¼ 0:5 to ensure a fast damp-
ing of the transient states to reduce computation time. As a
sample system we considered a square thin-film element of
length l ¼ 500 nm and thickness d ¼ 10 nm with a cell
size of 2 nm in the lateral directions and 10 nm perpen-
dicular to the film. This system allows for a reasonable
computation time. For the approximation of an infinitely
large film we can estimate the in-plane Oersted field from

Ampère’s law ~r� ~H ¼ ~j which yields HðzÞ ¼
ðd� 2zÞj=2 with the aid of Stokes’ theorem. Simulations
with 1.25 nm cell size in z direction applying only the
above in-plane field with j up to 2� 1013 A=m2 showed

that it is a reasonable approximation that the magnetization
is independent of the z coordinate. For the simulations, we
used our extended version of the object oriented micro-
magnetic framework [25,26].
Figure 2 shows the displacement of the vortex core in

simulations without the Oersted field. As predicted by
Eq. (3) the displacement in the direction of the current
flow is proportional to � and the displacement perpendicu-
lar to the current flow is independent of �. From these
simulations the value jD0=G0j ¼ 2:26 can be determined.
In experimental samples we are faced with an unbal-

anced Oersted field and possibly some uncertainty of the
direction of the current flow. To mimic the unbalanced
Oersted field in the simulations we applied an in-plane
field perpendicular to the current. The strength of the field
is proportional to the current density. We assume that a
spin-polarized current density of 1� 109 A=m2 generates
an unbalanced in-plane field of 1 A=m. For this field the
ratio between the deflections due to the field and due to
the current are in the regime found by experiments [12].
The uncertainty of the direction of the current flow was
taken into account by rotating the sample by 5 degrees.
Figure 3(a) shows the positions of the vortex core for
both simulations. It becomes visible that the unbalanced
Oersted field and the rotation of the sample strongly shift
the core positions, complicating the determination of �.
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FIG. 2 (color online). Numerically calculated displacement of
the vortex core due to a direct spin-polarized current of density
jP in the absence of an Oersted field. (a) The displacement
parallel to the current is proportional to �. (b) The displacement
perpendicular to the current is independent of �. The lines are fits
with the linear model in Eq. (3). For large current densities small
nonlinear effects can be seen.
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To test the analytical model we compared the nonadia-
batic spin-torque parameter �in that was inserted into the
simulations with the value �out that was calculated from
Eq. (5) using the core positions. Here it is worth noting that
the value of the Oersted field and the angle of the sample
are not needed for the calculation of �out. The results are
shown in Fig. 3(b). It can be seen that all the perturbations
that are inserted in the simulations can be effectively
excluded by the analytical calculations.

In experimental samples we are also faced with the
anisotropic magnetoresistance (AMR) effect that leads to
inhomogeneous current paths, i.e., a higher current density
in the vortex core. Simulations including these inhomoge-
neous current paths yield a small shift to lower values of
�out. This shift is up to 2% for an AMR ratio of 10%.

In the remaining part we will discuss the experimental
accuracy in the determination of � that can be achieved
with the presented scheme. In experiments direct currents
of densities up to 1:5� 1012 A=m2 have been realized in
Permalloy on a diamond substrate [27]. Assuming a spin
polarization of 0.5 we get a spin-polarized current density
of 0:75� 1012 A=m2, i.e., the maximum shown in Fig. 2.
This yields values of up to ~j ¼ 55 m=s.

The displacements of the vortex in the numerically
investigated samples are small compared to the experimen-
tal resolutions available. A larger displacement of the
vortex can be achieved by increasing the lateral size of
the structure. For example, simulations of a square thin-
film element of length l ¼ 5000 nm and thickness d ¼
10 nm yielded values of jD0=G0j ¼ 3:8 and
jG0j=ðm!2

rÞ ¼ 1� 10�8 s. With these values Eq. (4b)

yields 2Rad ¼ 1100 nm. We assume that the core position
can be measured with a resolution of �ð2RnonadÞ ¼ 20 nm.
Equation (5) then yields that �� ¼ 0:005 can be realized.
This resolution ranges from 5% to 50% depending on the
value of � [7–10]. The resolution can be further increased
by using thin-film elements with still larger lateral sizes.
In conclusion we present a robust and direct measure-

ment scheme for the nonadiabatic spin torque using the
displacement of magnetic vortices. The scheme allows us
to distinguish between the displacements of the vortex core
due to the nonadiabatic spin torque, the adiabatic spin
torque, and the Oersted field, independently of the exact
direction of the current flow. We also showed that an
inhomogeneous current due to the AMR effect can be
neglected. The scheme thus allows a precise measurement
of the nonadiabatic spin-torque parameter �.
Financial support by the Deutsche Forschungs-

gemeinschaft via SFB 668 ‘‘Magnetismus vom
Einzelatom zur Nanostruktur’’ and via Graduiertenkolleg
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FIG. 3 (color online). (a) Position of the vortex core displaced
by a spin-polarized direct current of density jP ¼ 3� 1011 A=m
with � ¼ 0:1. The overlapping open symbols denote the posi-
tions for a current in exact x direction without Oersted field. The
closed symbols denote the positions with an applied Oersted
field and a rotation of the sample by 5 degrees around its
midpoint (plus). For the latter case the direction of the current
is denoted by the arrow. (b) Results for �out derived from the
positions of the vortex with applied Oersted field, exemplarily
shown in (a), using Eq. (5) for different current densities. �in is
the value of the nonadiabaticity parameter that was used for the
simulations.
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Chapter 5

Conclusion and Outlook

This work deals with the development of the finite-difference-method based micromagnetic
simulator M3S, that allows to investigate ferromagnetic systems effected by a current flow.

The first aspect that was in the focus for the development of M3S was to see, if the
use of a computational science integrated development environment (CSIDE) to develop a
complex simulator really reduces the software complexity and thus increases its usability
while maintaining a reasonable runtime performance. A reconstruction based on OOMMF
led to the M3S prototype M3S-MATLAB that has been implemented using MATLAB-Script
and test driven design (TDD). Using a well defined scripting language reduced the lines
of code significantly and thus reduced the complexity of the simulator. Further several
refactoring steps were necessary during the reconstruction and the later extension of the
simulator, which would have been much more complicated to perform without the use of
TDD. Hence, allthough not common for the development of scientific software, the use of
TDD significanly simplified the reconstuction and the later extension of the simulator.

The development of M3S-MATLAB revealed several restrictions of MATLAB as a CSIDE.
Hence, the two additional prototypes Nmag-FD using Python/SciTools and M3S-Java using
Java/JSA have been developed. Comparing all three prototypes with the well-established
micromagnetic simulator OOMMF revealed that using CSIDEs results in a more flexible
solution. While MATLAB as a common CSIDE offered the best runtime performance for the
simple algorithms, most of the runtime optimizations were not efficiently expressible. In
contrast to MATLAB, Python/SciTools and Java/JSA offered the efficient implementation of
the optimizations and due to their well designed languages and the range of tool support,
these prototypes helped to achieve a better software quality. The use of novel libraries like
the FFTW provided more flexibility as the simple FFT algorithm used in OOMMF. The
new flexibility could be used to design an adaptive zero-padding strategy as new runtime
optimization for the FFT based calculation of the demagnetization field. This new optimiza-
tion results for the investigated range in a runtime performance increase of two at maximum.
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The second aspect was the development of a micromagnetic simulator including cur-
rent flow effects. For this investigation the micromagnetic prototype M3S-MATLAB has
been used. M3S-MATLAB has been extended by theoretical descriptions of the correspond-
ing physical phenomena, namely the spin-transfer torque and the magnetization-dependent
current paths. Due to the use of scripting languages, opportunistic programming, and test
driven design, the extensions could conveniently be included.

The validation of the extended tool has been addressed by proposing a new standard
problem for the spin-transfer torque. The good properties of the proposed standard prob-
lem is shown by comparing the simulation results of different micromagnetic simulators
with an experimentally validated analytical model. The extended simulator finally has also
been used to design an experimental setup as a proposal for a robust measurement scheme
for the degree of non-adiabaticity. This measurement scheme is robust against uncertainties
of the exact current direction and Oersted fields.

In Conclusion the use of a CSIDE to develop scientific software is a competive ap-
proach to pure C/C++ or FORTRAN solutions. Its efficiency depends significantly on the
provided libraries and their support in the respective scripting language. For the devel-
opment of a micromagnetic simulator this dependency was fulfilled and the development
resulted in two simulator prototypes competitive to the performance of OOMMF, including
the physical phenomena related to a current flow through a ferromagnetic system.

Outlook

Finite-difference-method (FDM) based micromagnetic simulators use the staircase method
to represent the sample boundaries.194 This method has a drawback in terms of the occu-
rance of the so-called alias effect leading to nonphysical artifacts for non-rectangle sample
geometries. Several works have addressed this problem and proposed corrections of the
basic algorithms.194, 195 For a specific geometry however it is an open question how accurate
a FDM-based simulation is compared to finite-element-method (FEM) based simulations.
Including Nmag-FD into Nmag as an FDM extension provides the unique opportunity
to design a tool that combines both discretization methods and allows to change the
discretization method conveniently. This also allows the user to compare both methods and
simplifies the reuse of the analysis functionality when switching between FDM and FEM.

Concerning the runtime performance different sequential optimizations can beincluded:

• Besides the fast-Fourier-transformation (FFT) implementation offered by NumPy, other
Python interfaces for FFTW like PyFFTW could be included.

• Interfacing to novel ordinary differential equation (ODE) solvers, like CVODE196 or
LSODA197 could further result in a reduction of the needed evaluations.
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Conclusion and Outlook

For the parallelization different approaches could be considered. The three-dimensional
fast-convolution can in principle be parallelized efficently on symmetric multiprocessing
architectures.198 Thus advanced hardware architectures like graphical processing units
(GPU)s199 or field-progammable gate arrays (FPGA)s including digital-signal-processing
(DSP) units are promising options.

A more conceptual approach is the use of the fast multipole method (FMM) for the
calculation of the demagnetization field. In this method the demagnetization field is
directly calculated in real space by an interpolation. The FMM has an asymptotic runtime
complexity of O(N),200 which is comparable to the convolution-based calculation. The large
benefit of FMM arises for the parallelization of the algorithm. The FFT needs the access
to all other array elements within the data array to transform the data from real space to
the Fourier space. Since the FMM is calculated in the real space its communication costs
are sigificantly smaller as for the FFT. The calculation in real space in addition allows to
combine the parallelization of the demagnetization field with the other field calculations
and thus reduce the communication costs further.
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The influence of inhomogeneous current paths on the gyroscopic motion of current-driven mag-
netic vortices in small thin-film elements is investigated by numerical simulations. It is found that
the deflection of the gyrating vortex scales quadratically with the ratio of the anisotropic magnetore-
sistance. The enhancement of the gyration amplitude scales with the fundamental ratio between the
dissipation tensor and the gyrovector and is determined by the lateral sample size and the sample
thickness. The counteraction of the magnetization to the current manifests itself in a geometry-
dependent renormalization of the spin transfer-torque coupling parameter.

PACS numbers: 75.60.Ch, 72.25.Ba

I. INTRODUCTION

Today’s interest in spin-transfer torque phenomena can
be traced back to its technological importance with the
perspective of being the future magnetic technology. At
the same time spin-transfer torque poses a theoretically
appealing problem as it involves the interaction of non-
equilibrium conduction electrons with the ferromagnetic
order parameter, i.e., the magnetization. An understand-
ing of the mutual interplay of both, current and mag-
netization, allows for a controlled manipulation of mag-
netization reversal and thus paves the path for current-
controlled magnetic storage devices. Considering the mu-
tual influence of electrical current and magnetization on
equal footing provides the basis to a variety of fascinating
non-linear spin-dependent phenomena. While the torque
of a spin-polarized current influences the local magneti-
zation1,2, vice versa the magnetization influences the cur-
rent flow via the anisotropic magnetoresistance (AMR).3

The microscopic origin of the AMR is spin-orbit cou-
pling.4 Due to an asymmetric density of states the con-
duction electrons possess a larger scattering cross sec-
tion for collinear alignment of conduction-electron spin
and magnetization and consequently a smaller scatter-
ing cross section for transverse alignment. Classically
spin-orbit coupling results in local resistance variations.5

A transfer of spin-angular momentum from itinerant s-
like conduction electrons to localized d electrons (spin-
transfer torque) emerges in non-collinear magnetization
patterns. It is accompanied by local resistance changes
due to the AMR effect. An increase of the resistivity
leads to a local reduction of the current density. This
causes a locally reduced spin-transfer torque acting on
the magnetization dynamics. In turn, the magnetization
influences the local resistivity. As a result, the mutual
influence of current and magnetization causes non-linear
effects in the linear regime of electron transport.

Due to the non-collinearity, but high symmetry of its
magnetization pattern and its quasiparticle-(soliton)-like
behavior, the magnetic vortex in a micro- or nanostruc-
tured thin-film element is a prime example to study the

interplay of electrical current and magnetization. Vor-
tices are flux-closured states where the in-plane magneti-
zation curls around a few nanometer large center region6

to minimize the overall energy. Large angles between
neighboring magnetic moments lead to a drastic increase
of the exchange energy.7 To overcome this situation the
magnetization is forced out-of-plane forming the vortex
core in the center of the thin-film element. In ferromag-
netic square thin-film elements the vortex constitutes the
energetic groundstate being fourfold degenerate due to
the boolean vortex properties chirality and core polar-
ization. Chirality and core polarization are topological
quantities that characterize a vortex. A chirality of +1
(−1) denotes a counterclockwise (clockwise) curling of
the magnetization around the vortex core while a polar-
ization of +1 (−1) labels the out-of plane direction of
the magnetization in the vortex core, up (down) respec-
tively. Recent experiments showed that spin-polarized
electric currents cause the vortex to precess.8–11 Hitherto,
analytical expressions as well as micromagnetic simula-
tions confirming the elliptical gyration of vortex cores,
take a homogeneous current flow into account neglect-
ing the effect of inhomogeneous current paths occurring
in real samples due to the AMR. The process of vortex-
core switching is of fundamental interest and still an open
question. Moreover it is of general interest, as vortex-core
switching is the key ingredient in recent memory device
proposals.12,13 Thus for both, a detailed understanding of
current-driven vortex dynamics and the purpose of tech-
nical utilization, it is crucial to consider realistic current
paths.

In this article we investigate the current-driven gyro-
scopic motion of a magnetic vortex in square thin-film el-
ements in the presence of an inhomogeneous current flow
exemplarily depicted in Fig. 1. In the case of a homoge-
neous current the vortex gyration is topological in nature
as the gyrotropic force that acts on the vortex and is re-
sponsible for its gyration solely depends on the vortex’
polarization but is independent of the size of the vortex
core.14 We conclude that in the case of a vortex the non-
linear effect of the counteraction of the magnetization
on the current leads to an enhancement of the gyration
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FIG. 1: (Color online) Inhomogeneous current distribution of
a magnetic vortex in a 200× 200× 20 nm3 permalloy square.
The arrows sketch the in-plane magnetization while the color
(dark to bright) scales with the current density. The current
flowing from left to right tends to flow through the vortex core.
The gray areas indicate the non-magnetic ohmic contacts.

amplitude while it does not affect the quasiparticle like
behavior of the vortex at all, e.g., no shape deformations
are visible. As a consequence, the consideration of real-
istic current distributions leads to a geometry-dependent
correction of the vortex’ motion.

This article is organized as follows: In section II we
explain how to consider inhomogeneous current paths
due to non-collinear magnetization textures in the time-
evolution of the magnetization. Section III investigates
the gyroscopic motion of magnetic vortices and com-
pares the homogeneous with the inhomogeneous case.
Section IV yields a theoretical explanation of the simu-
lated findings. Section V summarizes our findings of the
amplitude enhancement in an analytical expression for
the renormalized spin-transfer torque coupling parame-
ter. Section VI attends to the highly non-linear regime
of vortex-core switching. This article ends in Section VII
with a conclusion.

II. NUMERICAL SIMULATIONS

In a continuous ferromagnet the influence of a spin-
polarized current on the time-evolution of the magne-

tization ~M(~r, t) is considered by the extended Landau-
Lifshitz-Gilbert equation15

d ~M(~r, t)

dt
= − γ ~M(~r, t) × ~Heff(~r, t) +

α

Ms

~M(~r, t) × d ~M(~r, t)

dt

− bj
M2

s

~M(~r, t) ×
(
~M(~r, t) × (~j(~r, t) · ~∇~r) ~M(~r, t)

)

− ξ
bj
Ms

~M(~r, t) × (~j(~r, t) · ~∇~r) ~M(~r, t),

(1)

where bj = PjµB/[eMs(1 + ξ2)] is the coupling constant
between current and magnetization, P is the absolute
value of the spin polarization and MS is the satura-
tion magnetization. The terms containing the Gilbert-

damping α and the degree of non-adiabaticity ξ are dis-
sipative in the sense that they break the time-reversal
symmetry of the LLG equation, i.e., they are odd under

time-reversal transformation t → −t, ~Heff → − ~Heff,~j →
−~j, ~M → − ~M .16

The electronic transport is treated classically and cal-
culated quasi-statically from a local version of Ohm’s law

~j(~r) = σ(~r) ~E(~r), (2)

while local charge neutrality is considered, ~∇~r
~j(~r) = 0.

The influence of the magnetization on the current flow is
incorporated in a magnetization-dependent conductivity

tensor σ(~r) = σ( ~M(~r)). The shape of the conductivity
tensor accounts for the AMR, such that the resistivity
locally obeys the relation

ρ = ρ⊥ +∆ρ cos2(∠(~j, ~M)), (3)

which reflects the cos2-resistance dependence on the an-
gle between local current and magnetization. The AMR
ratio in thin-film elements

ρAMR =
ρ|| − ρ⊥
ρ|| + ρ⊥

≡ ∆ρ

ρ|| + ρ⊥
(4)

characterizes the strength of the AMR effect. The mate-
rial parameters ρ|| (ρ⊥) are the resistances for the sam-
ple being saturated due to an external magnetic field
parallel (perpendicular) to the current flow. Thus, the
anisotropic magnetoresistivity ∆ρ is the change in resis-
tance between a parallel and a perpendicular directed
magnetization with respect to the applied current.

It follows from Eq. (3) that for non-collinear magne-
tization textures the magnetization influences the cur-
rent via the anisotropic magnetoresistance by a spatially
varying conductance. Figure 1 depicts the solution of
the current density for a current passing a magnetic vor-
tex structure in a permalloy square. The arrows sketch
the in-plane magnetization of the vortex curling coun-
terclockwise around the vortex core in the center. The
sample dimensions are 200 × 200 nm2 with a thickness
of 20 nm. Dirichlet boundary conditions are imposed on
the current biased probes (gray bars on the left and right
hand side in Fig. 1) to fix the potential of the probes.
Von Neumann boundary conditions ensure that no cur-
rent leaves the sample through the upper or lower sam-
ple boundaries. Thus the current flows from left to right.
The current favors the vortex core resulting in a higher
local current density (bright color). In areas where the
current is aligned perpendicular to the magnetization the
conductivity is higher than in areas where the current is
aligned parallel to the magnetization.

In the numerical simulations the mutual influence of
current and magnetization is taken into account by grad-
ually plugging the numerical result for the magnetization
from Eq. (1) into the conductivity tensor of Eq. (2), cal-
culating the current from Eq. (2) for the desired time-
step ∆t of Eq. (1), and iterating this procedure. The
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FIG. 2: (Color online) Self-consistency loop for the numer-
ical computation of current-induced magnetization dynam-
ics. The physical quantities in the boxes are solutions of the
equations as denoted by the arrows. The anisotropic magne-
toresistance is considered within a magnetization-dependent
conductivity tensor σ( ~M(~r)). The current paths ~j(~r) are ob-
tained from Ohm’s law and are incorporated via the spin-
transfer torque (STT) in the Landau-Lifshitz-Gilbert (LLG)
equation.

self-consistent calculation scheme for the counteraction
of the magnetization on the current is illustrated in
Fig. 2. The approach is justified because the band struc-
ture responsible for the electronic transport relaxes or-
ders of magnitude faster (τbs ≈ 10−14 s) than the typi-
cal time scale of magnetization dynamics that is set by
the Larmor frequency ω = γMs and is on the order of
τ ~M ≈ 10−11 − 10−12 s. There exist a separation of time
scales in the fast electronic dynamics of the conduction
electrons and the comparatively slow collective dynamics
of the localized d electrons that constitute the magnetiza-
tion.17 From the viewpoint of the time-evolution of the
magnetization the current flow is always in its steady
state and can be computed quasi-statically by means of
Eq. (2). The spin-transfer torque on the contrary is lo-
cally modulated by the inhomogeneous current density
~j(~r) and acts on spatial inhomogeneities of the magne-
tization texture (cf. Eq. (1)). The local conductivity

σ( ~M(~r)) and thus the inhomogeneous current is deter-
mined by the magnetization itself and therefore varies
on the time scale of magnetization dynamics. Thus, to
capture the effect of the AMR on the vortex motion it is
sufficient to compute the current paths on the time scale
of vortex dynamics. Figure 3 depicts the mean x com-
ponent of the magnetization of a gyrating vortex in its
steady state. The sample dimensions are 200 × 200 nm2

with a thickness of 20 nm and an AMR ratio ρAMR = 0.5.
As long as the time interval for a new current path cal-
culation is below ∆t = 10−11 s the result for the gyra-
tion amplitude is not affected and the physical results
are independent of the unphysical time-interval for the
current path calculation. This observation is in agree-
ment with the Larmor frequency that takes for permalloy
(Py=Ni80Fe20) a value of ωPy = 1.77 · 1011s−1. Further-
more it is consistent with the adiabatic approximation
that spin and charge currents are governed by the in-
stantaneous magnetization that is implicitly assumed in
the spin-transfer torque terms of Eq. (1).

In the case of harmonic excitations the vortex performs
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FIG. 3: (Color online) Mean x component of the magnetiza-
tion of a magnetic vortex in a 200 × 200 × 20 nm3 permal-
loy square versus time. The different lines are the average x
component of the magnetization belonging to the indicated
timestep for the calculation of the current paths.

elliptical rotations.18 At resonance the amplitude of the
vortex core displacement in x and y direction is the same
and the orbit is a circle. The ratio between the semi-axes
is given by the ratio between the frequency of the excita-
tion and the resonance frequency.18 The sense of rotation
of the vortex is controlled by its polarization, i.e., p = +1
(p = −1) causes a counterclockwise (clockwise) gyration
of the vortex core around its equilibrium position. The
analytic equation of motion for an applied homogeneous
current in x direction reads for the quasiparticle coordi-
nates of the vortex core18

(
Ẋ

Ẏ

)
=

(
−Γ −pω
pω −Γ

)(
X
Y

)

+

(
−bjj − Γ2

ω2+Γ2
ξ−α
α bjj

pωΓ
ω2+Γ2

ξ−α
α bjj

)
.

(5)

The free angular frequency ω = −pG0mω2
r/(G

2
0 +D2

0α
2)

and the damping constant Γ = −D0αm ω2
r/(G

2
0+D2

0α
2),

as well as the constants G0 of the gyrovector and D0 of
the dissipation tensor are defined in Ref. [18]. Figure 4
depicts the analytical steady-state trajectory of a vortex
according to Eq. (5). The snapshots are the spatially
resolved magnetization patterns and their corresponding
current densities in the sample plane for four exemplary
positions.

III. NUMERICAL RESULTS FOR COUPLED
CURRENT AND MAGNETIZATION DYNAMICS

To investigate the influence of inhomogeneous current
distributions on the magnetic vortex by means of the
coupled Eq. (1) and (2), we conduct micromagnetic sim-
ulations. We perform simulations for magnetic thin-film
elements with different lengths l and thicknesses t for
various current densities and AMR values. In the fol-
lowing, the parameters of polarization and chirality are
not varied. It follows from symmetry considerations that
they do not influence the current flow in perfect square
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(a)

(b)

FIG. 4: (Color online) Steady-state trajectory of a current-
driven magnetic vortex in a 200 × 200 × 20 nm3 permalloy
square. (a) The line represents the analytical trajectory. The
dots mark the positions of the vortex core that corresponds
to the particular inset. (b) The insets depict the numerical
results of the self-consistently calculated mutual current and
magnetization dynamics. The upper row shows the spatially
resolved magnetization where the arrows indicate the in-plane
magnetization. The lower row displays the current density
with the same scale as in Fig. 1.

elements. We use the material parameters of permalloy,
i.e., an exchange constant of A = 13 · 10−12 J/m and a
saturation magnetization of Ms = 8 · 105 A/m. For the
Gilbert damping we assume a value of α = 0.01, which is
affirmed by recent experiments.19–21 The degree of non-
adiabaticity ξ is set to be equal to α.22,23

The simulation cells are chosen to be one cell of thick-
ness t in z direction and 2 nm in x and y direction,
which is well below the exchange length of permalloy.
The position of the vortex is characterized by the maxi-
mum amplitude of the out-of-plane magnetization. It is
determined by an interpolation with the Lagrange poly-
nomial of second order of the respective simulation cell
with maximum out-of-plane magnetization and its next
neighbors.

To deduce the influence of inhomogeneous cur-
rent paths on the vortex motion, alternating currents
P~j(~r, t) = P~j(~r) cosΩt flowing spatially inhomoge-
neously in x direction are investigated. Even in simu-
lations with idealized values of the AMR ratio ρAMR as
high as 50% no deformation of the vortex structure is
visible and no deviation from the quasiparticle behavior
occurs. This suggests that the rigid particle model in
Eq. (5) is sufficient to describe the vortex dynamics in
the presence of inhomogeneous currents with a concomi-
tant renormalization of the coupling parameters due to
the counteraction of the magnetization by means of the
AMR. To investigate the dependence of the gyration am-

0 0.1 0.2 0.3 0.4 0.5
1

1.02

1.04

1.06

1.08

1.1

ρ
AMR

=∆ρ/(ρ
||
+ρ⊥ )

no
rm

al
iz

ed
 g

yr
at

io
n 

am
pl

itu
de

0 0.1 0.2 0.3 0.4 0.5
1

1.02

1.04

1.06

1.08

1.1

no
rm

al
iz

ed
 to

ta
l s

am
pl

e 
re

si
st

an
ce

 R

FIG. 5: (Color online) Enhancement of the gyration ampli-
tude of a vortex due to the anisotropic magnetoresistance ra-
tio (dashed red line) for a current density of 2.5 ·1010 A/m2 in
a 200× 200× 20 nm3 permalloy square. Increase of the total
sample resistance versus the AMR (solid blue line). The sym-
bols denote the numerical results while the lines are quadratic
fits.
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FIG. 6: (Color online) Enhancement of the gyration ampli-
tude of a vortex due to the anisotropic magnetoresistivity
(dashed red line) for a current density of 2.5 · 1010 A/m2 in
a 200× 200× 20 nm3 permalloy square. Increase of the total
sample resistance versus the normalized anisotropic magne-
toresistivity (solid blue line). The symbols denote the numer-
ical results while the lines are linear fits.

plitude on the AMR ratio, we excite the magnetization
in a 200 × 200 × 20 nm3 permalloy square for different
current densities j at the vortex resonance frequency of
4.4 GHz in the vortex’ gyrotropic mode. At about 100 ns
the vortex gyration has reached its steady state and the
amplitudes for different AMR ratios and current densities
are compared. A variation of the AMR ratio is achieved
by varying the parallel resistivity ρ|| while fixing at the
same time the perpendicular resistivity ρ⊥.

The gyration amplitude depicted in Fig. 5 exhibits a
quadratic amplitude enhancement with the AMR ratio
and an offset of one (dashed red line). Similarly the total
sample resistance R (solid blue line) increases quadrat-
ically. The mutual coupling of inhomogeneous current
flow and magnetization dynamics leads to a non-linear
response of the vortex motion and in terms of electron
transport causes the vortex to act as a non-linear medium
for the electric current. In the case of no AMR and a ho-
mogeneous current flow the gyration amplitude of the
vortex scales with the current density.

However, instead of focusing on the AMR ratio, we de-
cided to investigate the behavior of the gyration ampli-
tude with the anisotropic resistivity ∆ρ. Figure 6 depicts
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FIG. 7: (Color online) Enhancement of the gyration ampli-
tude of the vortex in the steady state for a 200 × 200 × 20
nm3 permalloy square. (a) Radius enhancement versus cur-
rent density for a homogeneous current flow. (b) The ampli-
tude scaling a of Eq. (6) in dependence of the current density.

a linear increase of the gyration amplitude (dashed red
line) as well as a concomitant linear increase of the total
sample resistance R (solid blue line) with ∆ρ

rAMR =

(
a
∆ρ

ρ⊥
+ 1

)
rhom, (6)

where the free parameter a is the amplitude scaling and
rhom is the steady-state radius in the presence of a homo-
geneous current flow. Due to the inhomogeneous current
flow an enhanced force acts on the vortex that causes a
stronger deflection and an enhanced gyration amplitude
compared to a homogeneous current.
Next, we investigate the enhancement of the gyration

amplitude with respect to the applied current density.
Figure 7 (a) depicts the steady-state radii for a homo-
geneous current flow in a 200 × 200 × 20 nm3 permalloy
square. There exist three regimes of translational vortex
motion. These regimes depend on the applied current
density and thus on the deflection of the vortex core from
its equilibrium position. The vortex can be regarded as a
quasiparticle that moves in a restoring potential.18 The
restoring potential is caused by the demagnetization en-
ergy and the exchange energy due to the finite sample
size and enhances with larger deflections of the vortex
core from its equilibrium position. The linear regime
with current densities of about 2.5 · 109 − 2 · 1010A/m2

yields a linear increase of the steady-state amplitude with
the applied current density. In the non-linear regime
2 · 1010 − 2 · 1011A/m2 the amplitude increases in a sub-
linear manner. Finally there exists the highly non-linear
regime of vortex-core switching, which starts at approx-
imately 2 · 1011A/m2 with no steady-state radius due to
multiple vortex-core switching. Every regime is charac-
terized by a different dependence of the vortex motion on
the applied current density. In the linear regime of the
vortex gyration, the vortex moves in a parabolic poten-
tial and the enhancement of the steady-state amplitude
scales linearly with the applied current density (indicated
by the line in Fig. 7 (a)). At higher current densities the
enhancement flattens due to steeper non-linearities in the
restoring potential.

Figure 7 (b) depicts the amplitude scaling a due to the
AMR as determined by Eq. (6) with the applied current
density in reference to a homogeneous current flow. A
variation of the applied current density leaves the linear
dependence of the anisotropic magnetoresistivity unaf-
fected but alters its slope, the amplitude scaling a, as
illustrated in Fig. 7 (b). In the linear regime of vortex
motion we find an almost constant amplitude scaling in-
dependent of the applied current density. The harmonic
potential does not affect the amplitude scaling and it
attains a constant value. At about 2 · 1010A/m2 the vor-
tex enters the non-linear regime of the vortex gyration
and the amplitude scaling a decreases with increasing
applied current density until the regime of vortex-core
switching is reached (cf. Fig. 7 (b)). The decrease of
the scaling is thus a direct consequence of the steeper
confining potential: Due to a non-linear restoring force
the amplitude scaling decreases along with the flattening
of the amplitude enhancement in the non-linear regime
of vortex motion. Besides the non-linear restoring force
there is a second reason responsible for the decrease of
the amplitude scaling. Micromagnetic simulations con-
firm a deformation of the vortex core in the non-linear
regime of vortex motion due to the gyrotropic field10,24.
More precisely the vortex core shrinks with increasing
applied current density. A smaller vortex core in the
presence of an inhomogeneous current flow results in a
lower increase of the gyrotropic force on the vortex and
thus in a lower scaling (cf. section IV for a detailed dis-
cussion). Note that the current dependence of a(j) in
the non-linear regime of the vortex gyration expresses
directly the non-linear coupling of the current due to the
counteraction of the AMR. These findings have an im-
portance for experiments25 and memory applications13,
since vortex-core switching depends critically on the ra-
dius of the vortex gyration.26

As with the current density, the geometry of the thin-
film element affects the scaling of the gyration amplitude.
To deduce the geometry dependence of a, we perform
simulations on squares with various length l and thick-
nesses t. The value of the scaling a is the sole fit param-
eter and is thus a function of the applied current density
and the sample geometry a = a(j, l, t). Figure 8 (a) de-
picts a logarithmic geometry dependence of the scaling
a for a current density of 2.5 · 109 A/m2 and for sample
lengths of l = 200, 300, 400 nm and thicknesses of t =
10, 20, 30 nm. Varying in turn the current density, the
amplitude scaling always exhibits the functional behavior
(cf. Fig. 8)

a(j, l, t) = κ(j, t) log(
ζ(j, t)

3
√
L2

l
3
√
t
), (7)

where κ(j, t) and ζ(j, t) are fit parameters and L =√
2A/µ0M2

s is the exchange length. The exchange length
relates the exchange constant A to the saturation mag-
netization Ms and sets the relevant length scale in mi-
cromagnetism. While the parameter ζ is almost constant
the run of κ with the current density is depicted in Fig. 9.
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FIG. 8: (Color online) Geometry dependence of the amplitude
scaling (a) in the linear regime of vortex motion for a current
density of 2.5 · 109 A/m2 and (b) in the non-linear regime for
a current density of 7.5 · 1010 A/m2. In the non-linear regime
the geometry dependence of the amplitude scaling holds for
different sample thicknesses t individually.

linear non−linear vc
 s

w
itc

hi
ng

j (A/m2)

κ

 

 

10
10

10
11

0

0.01

0.02

0.03

0.04

0.05

0.06

all t
t = 10 nm
t = 20 nm
t = 30 nm

FIG. 9: (Color online) Dependence of the fit parameter κ
defined in Eq. (7) on the applied current density for the linear
and non-linear regime of vortex motion.

Analogously to the situation illustrated in Fig. 7 (b) we
find two different reaction regimes. The linear regime
of vortex motion yields a constant parameter κ that is
independent of the applied current density and the sam-
ple geometry. In the non-linear regime of vortex motion
κ(j, t) is decreasing with the applied current density and
according to Fig. 8 (b) depends moreover on the sample
thickness t (cf. section IV for a detailed discussion).

In conclusion the transition in the vortex motion from
the linear to the non-linear regime marks the transition
from a linear transport regime with no explicit current
dependence of a(l, t) to a non-linear transport regime
with a(j, l, t) depending now explicitly on the current
density. The logarithm of the ratio l/ 3

√
t is proportional

to the ratio of the constants belonging to the dissipa-
tion tensor and the gyrovector D0/G0 ∝ log(l/ 3

√
t) (cf.

Ref. [26]). The ratio of dissipation tensor and gyrovector
is in turn proportional to the ratio of damping Γ and the
free frequency ω: D0/G0 ∝ Γ/ω.18 Thus the geometric
dependence in Eq. (7) is linked to characteristic quanti-
ties of the current-driven vortex.

IV. THEORETICAL EXPLANATION

In this section we give a theoretical explanation why in-
homogeneous current paths affect the gyration amplitude
of the current-driven vortex. As confirmed by micromag-
netic simulations, the vortex keeps its static structure
and no deviation from the particle-like behavior occurs
when excited with a spin-polarized current. Therefore,
the static motion still can be described by the Thiele
equation14 with the expansion by Nakatani et al.27 to
include the action of a spin-polarized current

~F + ~G × (~v + bj~j) +D(α~v + ξbj~j) = 0. (8)

Here, ~F is the restoring force due to the demagnetization
and exchange fields that stems from the effective field, D

is the diagonal dissipation tensor and ~G is the gyrovec-
tor. Besides the gyrotropic force the gyrovector consti-
tutes the driving force due to the current of Eq. (8), while
the dissipation tensor resembles the loss of energy occur-
ring in magnetic systems, which is referred to damping
of the electron system. Note the two distinct origins of
dissipation, the first term in the expression of the dissi-
pation tensor of Eq. (8) is the usual Gilbert damping of
the localized d electrons, while the second term describes
spin relaxation of the itinerant s electrons parametrized
by the degree of non-adiabaticity ξ.15 The magnetization
is a vector field of uniform length that can be expressed
in dependence of two coordinates: for the vortex the po-
lar angle θ changes in radial direction and the azimuthal
angle φ characterizes the curling in-plane magnetization.
Equation (8) represents an already integrated version of
the Thiele equation that assumes no spatial dependence
either of the velocity ~v nor of the current ~j. Consider-
ing realistic current paths this assumption clearly does
not hold and we have to consider the full integral Thiele
equation18

−µ0

∫
dV

[
(~∇θ)

∂

∂θ
+ (~∇φ)

∂

∂φ

]
(Heff · ~M)

−Msµ0

γ

∫
dV sin(θ)(~∇θ × ~∇φ) × (~v + bj~j(~r))

−Msµ0

γ

∫
dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ)(α~v + ξbj~j(~r))

= 0. (9)

However, the simulations presented in section III indi-
cate that a description of vortex motion in terms of col-
lective coordinates by an integrated version of the Thiele
equation still offers a good description for the case of
inhomogeneous current paths. The employment of the
integrated version of the Thiele equation is possible with
a proper renormalization of one of the coupling parame-
ters in Eq. (8). In a first approximation of homogeneous
current paths, the vortex motion is independent of the
size of the vortex core and thus considered to be of topo-
logical nature.14 A spatial dependence of the current in
the integrands of Eq. (9) requires corrections compared
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with the homogeneous case. As addressed in Ref. [28]
the velocity in Eq. (8) must be modified to match with
detailed micromagnetic simulations. For the case of a
vortex confined in a thin-film element the rigid particle
approximation is only approximatively fulfilled as the ve-
locity within the vortex core is different compared to the
velocity in the domains. There is no general rule how to
treat modifications of the quasiparticle picture. In order
to modify Eq. (8) as little as possible and to maintain
a quasi-linear structure of the Thiele equation with re-
spect to the current density, we decide to attribute the
renormalization to the spin-transfer torque coupling pa-
rameter bj whose derivation has been performed for a ho-
mogeneous current flow.15 This approach is motivated by
the following considerations. The gyrotropic force that
arises due to the adiabatic current term (cf. Eq. (9))
reads for the case of a magnetic vortex18

~G × b̃j~j = −Msµ0

γ

∫
dV sin(θ)(~∇θ × ~∇φ) × bj~j(~r)

= −2πMsµ0p

γ
t~ez × b̃j~j

= b̃jG0~ez ×~j. (10)

Except for the small area of the vortex core, θ is almost

constant and thus ~∇θ in the integrand of Eq. (10) van-
ishes. This restricts the integration to the region of the
vortex core. Though defined as an integral over the whole
sample the gyrovector is primarily located at the vortex
core. Due to the spatial integration the renormalized
spin-transfer torque coupling can be expected to depend
on the set of all possible parameters b̃j = b̃j(j, ρ||, ρ⊥, l, t).
If we rearrange the modified version of Eq. (8) as follows

G2
0~v ≈ (G2

0 +D2
0α

2)~v

= ~G × ~F − D0α~F − (G2
0 +D2

0αξ)b̃j~j

+b̃jD0
~G ×~j(ξ − α)

≈ ~G × ~F − D0α~F − G2
0b̃j~j, (11)

we deduce that the driving part proportional to the cur-
rent b̃j~j is primarily given by the square of the gyrovec-
tor, where, as usually, we have assumed α, ξ ≪ 1. The
influence of the cross product term in Eq. (11) can be dis-
regarded, since we employed α ≈ ξ in the simulations.22

Note that in contrast to the gyrovector the dissipation
tensor

D = −Msµ0

γ

∫
dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ), (12)

attains its contributions mainly in the domains due to the
change in the second term by the in-plane angle φ, while
the contribution from the vortex core is small. It is little
affected by the current flow as it contributes to the driv-
ing force via the non-adiabatic spin-transfer torque and
is thus suppressed by factors of αξ, α2 and D0/G0(ξ−α)
(cf. Eqns. (11)).

To summarize, in the case of current excitations the
driving force acts on the vortex core, while the energy

dissipation mainly takes place in the domains of the Lan-
dau pattern as expressed by the second term on the right
hand side of Eq. (11). These circumstances can also be
directly understood from the LLG Eq. (1). The spin-
transfer torque is proportional to the spatial derivative
of the magnetization, hence the spin transfer-torque con-
tribution is located in the center region while its influence
is negligible in the almost uniform domains. In discs the
rotational symmetry does not allow internal domain walls
and the vortex exhibits similar behavior.29 Thus, the con-
tribution to the spin-transfer torque of the four Néel walls
is small. This reveals a striking difference between inho-
mogeneous current and magnetic field excitations. While
inhomogeneous magnetic fields cause deformations of the
vortex structure, the electrical current mainly affects the
vortex core and the vortex structure is kept stable, even
in the case of a strong inhomogeneous current flow. This
contrasts with alternating, homogeneous field and cur-
rent excitations that result for the vortex in similar mag-
netization dynamics.

Taking now the AMR effect into account the current
tends to flow through the vortex core resulting in a locally
higher current density compared with the homogeneous
case. The occurrence of the locally higher current density
in the vortex core coincides with the location of the gy-
rovector that constitutes according to Eq. (11) the driv-
ing force. An enhanced gyrotropic force acts on the vor-
tex and a bigger amplitude results for the vortex gyration
compared with a homogeneous current flow. The stabil-
ity of the vortex during the motion must be addressed to
the high symmetry of the vortex pattern, such that in-
ternal stresses compensate each other and the magnetic
configuration as a whole is not affected.

As mentioned in the context of Eq. (10), in the case
of inhomogeneous current paths the geometry of the
thin-film element influences the coupling parameter b̃j
and thus the amplitude scaling a. The numerical sim-
ulations in Fig. 8 exhibit for the amplitude scaling a
a logarithmic geometry dependence proportional to the
ratio of dissipation tensor and gyrovector: D0/G0 ∝
(log l − const. · log t). Owing to the integration over the
sample in the expression for the gyrovector (cf. Eq. (10)),
the lateral size of the sample gains its importance for the
vortex motion due to the inhomogeneity of the current
flow. In the preceding section we have determined the
exact geometry dependence from micromagnetic simu-
lations. In samples with a larger sample length l the
driving force is bigger resulting in an enhanced gyration
amplitude (b̃j ∝ log l). At the same time the amplitude
scaling a increases with decreasing sample thickness t
(b̃j ∝ log 1/t). The connection of the increase in the gy-
ration amplitude with decreasing sample thickness t is
exemplarily depicted in Fig. 10 for a fixed sample length
of l = 300 nm and a current density of j = 2.5·1010A/m2.
For smaller t a higher gyrotropic force acts on the vortex
caused by the AMR effect.

As discussed, it is the vortex core that controls the dy-
namic behavior of the vortex state in the case of excita-
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FIG. 10: (Color online) Comparison of the enhancement slope
for a sample size of l = 300 nm and three different thicknesses
t = 10, 20, 30 nm for a current density of j = 2.5 · 1010A/m2.

tion due to a spin-polarized electric current. With the
particular role the vortex core takes in current-driven
vortex dynamics, the origin of the decrease of the fac-
tor κ(j, t) in the non-linear regime of vortex motion as
depicted in Fig. 9 becomes comprehensible. The vor-
tex core shrinks with increasing applied current density
due to the non-linear restoring potential experienced by
the vortex caused by larger displacements from the equi-
librium position. To obtain the same amplitude scaling
in the presence of the non-linear potential as compared
to the linear case, the local current density within the
core would have to become even more inhomogeneous
than in the linear regime of vortex motion. As a conse-
quence, the gyrotropic force on the vortex and thus κ(j, t)
decreases. In addition, the vortex reaches with smaller
sample thickness t the non-linear regime for lower current
densities or deflections from its equilibrium position. For
small aspect ratios t/l ≪ 1 the frequency of the vortex
is approximately proportional to the aspect ratio itself
ω ∝ t/l.30 In turn, the vortex displacement is inversely
proportional to the aspect ratio r ∝ l/t. This means
that the non-linearities set in earlier with lower sample
thickness t due to a larger displacement of the vortex. A
change in the sample thickness t affects the shape of the
non-linear potential. The consequence is the occurring
thickness dependence of κ(j, t) in the non-linear regime,
while the sample length l plays a minor role.

The observations of section III are a constant ampli-
tude scaling κ in the linear regime of small deflections of
the vortex core independent of the applied current den-
sity. In the non-linear regime κ(j, t) decreases with higher
current densities as a direct consequence of the non-linear
potential felt by the vortex.

V. RENORMALIZATION OF THE
SPIN-TRANSFER TORQUE COUPLING

PARAMETER

The counteraction of the magnetization by means of
the AMR results for the current-driven vortex in a
geometry-dependent renormalization of the spin-transfer
torque coupling parameter that can be interpreted as a
correction to the entirely topological motion of vortices

in the presence of a homogeneous current flow. As dis-
cussed in the preceding sections, considering the influ-
ence of inhomogeneous current paths on the gyrotropic
motion of a magnetic vortex modifies the spin-transfer
torque coupling parameter bj . With respect to a descrip-
tion of vortex motion in terms of collective coordinates,
b̃jj acts as a renormalized velocity due to the current in
the equations of motion (5) according to

b̃j(j, ρ||, ρ⊥, l, t) =

(
a(j, l, t)

∆ρ

ρ⊥
+ 1

)
bj , (13)

a(j, l, t) = κ(j, t) log(
ζ(j, t)

3
√
L2

l
3
√
t
). (14)

The renormalization involves a dependence on the ge-
ometry, the electric current and on the parameters that
characterize the AMR effect: b̃j(j, ρ||, ρ⊥, l, t). Note that

the explicit current dependence of b̃j in the non-linear
regime of vortex motion expresses the non-linear coupling
of current and magnetization.

For small deflections in the linear regime of vortex mo-
tion the correction due to the AMR effect is small and
the quasiparticle approximation remains applicable. The
equations of motion keep their shape and maintain their
validity as effective equations of motion comprising the
counteraction of the magnetic vortex on the electric cur-
rent via the AMR effect. For higher deflections, in par-
ticular in the regime of vortex-core switching (cf. next
section), the counteraction of the AMR leads to non-
linear effects that have to be identified by detailed self-
consistent micromagnetic simulations.

VI. INFLUENCE OF THE ANISOTROPIC
MAGNETORESISTANCE ON THE HIGHLY
NON-LINEAR REGIME OF VORTEX-CORE

SWITCHING

If the vortex gyration exceeds a critical velocity (≈ 320
m/s for Py), the highly non-linear regime of vortex-core
switching is entered.10,24 The vortex-core switching is ac-
companied by a halo formation – a region with opposite
oriented out-of-plane magnetization is formed close to
the vortex – and subsequent vortex-antivortex nucleation
and annihilation.24 Due to the non-trivial topology of the
combined vortex-antivortex state it is crucial to consider
realistic current paths. The gyrotropic field responsible
for the vortex-core distortion and the subsequent core-
reversal at higher gyration amplitudes forms a dip with
out-of-plane magnetization in the inside of the vortex’ or-
bit.24 An exemplary current density is depicted in Fig. 11
that reveals the complexity of the current paths in the
regime of vortex-core switching as a direct consequence of
the complex distorted magnetization texture. Thus far,
we have considered the steady-state radius of the vortex.
Let us now turn the attention to the time-domain. A
question of experimental and applicational relevance is
the time between excitation of the vortex and its switch-
ing. Figure 12 depicts the time required until the vortex
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FIG. 11: (Color online) Current density of a magnetic vortex
in a 200×200×20 nm3 permalloy square at the critical velocity
320 m/s for vortex-core switching.
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FIG. 12: (Color online) Time until a critical velocity of 320
m/s is reached for a vortex in a 200×200×20 nm3 permalloy
square in dependence of the AMR ratio.

reached its critical velocity for switching with respect to
the AMR ratio. The particular point in time in Fig. 12
corresponds to the critical velocity (320 m/s relates to a
radius of 72.8 nm at a frequency of 4.4 GHz) that was
found to be the universal criterion for vortex-core switch-
ing.24 A higher AMR ratio linearly reduces the time until
vortex-core switching sets in.

VII. CONCLUSION

In conclusion the counteraction of the magnetiza-
tion on the current-driven magnetic vortex results in a

geometry-dependent renormalization of the spin-transfer
torque coupling parameter by means of the anisotropic
magnetoresistivity. This can be interpreted as a correc-
tion to the topological motion of vortices in the pres-
ence of a homogeneous current flow. The renormalized
coupling parameter depends on the ratio of the dissipa-
tion tensor and gyrovector that constitute intrinsic vor-
tex’ properties that are determined by the geometry of
the thin-film element, namely its size and its thickness.
In the non-linear regime of vortex motion the change in
the shape of the vortex core introduces explicitly a non-
linear dependence of the renormalized spin-transfer cou-
pling parameter on the current density. The results are
obtained by micromagnetic simulations taken the spin-
transfer torque as well as the inhomogeneity of the cur-
rent flow into account. Incorporating the counteraction
of the magnetization onto the current flow provides a
non-linear coupling of mutual current and magnetiza-
tion dynamics. For experimental and technical implica-
tions we identified the AMR as a candidate to reduce the
time until the critical velocity for vortex-core switching
is reached.
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L. Bocklage, S. Bohlens, T. Tyliszczak, A. Vansteenkiste,
B. Van Waeyenberge, et al., Phys. Rev. Lett. 100, 176601
(2008).

26 K. Y. Guslienko, Appl. Phys. Lett. 89, 022510 (2006).
27 A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Euro-

phys. Lett. 69, 990 (2005).
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MODIFIED THIELE EQUATION

For an analytical investigation the motion of the vortex
is commonly described employing the Thiele equation.[1–8]
This equation is exact for the steady state motion of a non-
deformable magnetization pattern. However, this assumption
holds true only for the small vortex core. Due to the spacial
restriction the magnetization pattern outside the core hasto
deform while the core is moving, as illustrated in Fig. 1. This
yields a small modification of the Thiele equation that is es-
pecially important for current-driven vortex motion in view of
the nonadiabatic spin torque.

Here we present a modified Thiele equation that takes a de-
formation of the outer part of the vortex into account.

With the magnetization~M and the magnetic field~H a gen-
eral version of the Thiele equation reads [1]

0 = − µ0

∫
dV

[
(~∇θ)

∂

∂θ
+ (~∇φ)

∂

∂φ

]
( ~H · ~M)

− Msµ0

γ

∫
dV sin(θ)(~∇θ × ~∇φ) × (~v + bj~j)

− Msµ0

γ

∫
dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ)(α~v + ξbj~j),

(1)

with the saturation magnetizationMs, the gyromagnetic ratio
γ, the current density~j, the Gilbert dampingα, the nonadi-
abaticity parameterξ, and the coupling constantbj between
current and magnetization.θ andφ are the out-of-plane and
in-plane angle of the magnetization, respectively. The veloc-
ity ~v = ~v(r) of the magnetization pattern may depend on the
position. Assuming a rigid magnetization pattern the velocity
is independent of the position. Then Eq. (1) can be written in
its well known form [9]

~F + ~G × (~vc + bj~j) +D(α~vc + ξbj~j) = 0, (2)

with the velocity~vc of the vortex core. Here

~F = −µ0

∫
dV

[
(~∇θ)

∂

∂θ
+ (~∇φ)

∂

∂φ

]
( ~H · ~M) (3)

denotes the force on the magnetization pattern.

~G = −Msµ0

γ

∫
dV sin(θ)(~∇θ × ~∇φ) = G0~ez (4)

is the gyrovector and

D = −Msµ0

γ

∫
dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ) (5)

l

v

FIG. 1: Scheme of the magnetization (dashed arrows) in a square
magnetic thin-film element with a vortex. The solid arrows denotes
the velocityv of the vortex core and of different points within the
domain wall.

 1

 1.5

 2

 2.5

 3

 0  200  400  600  800 1000 1200
 1

 1.5

 2

 2.5

 3

|D
Γ/

G
0|

|D
0/

G
0|

l (nm)

FIG. 2: Values of the strengthDΓ of the dissipation (open symbols)
and the strengthD0 of the nonadiabatic spin torque (closed symbols).
The data for films of 10 nm, 20 nm, and 30 nm is denoted by squares,
circles, and triangles, respectively.

is the diagonal dissipation tensor withDxx = Dyy = D0 and
Dzz = 0. The termDα~vc in Eq. (2) describes the dissipation
of energy due to the changing magnetization.

The integrand in the gyrovector is nonzero only in the small
vortex core where the out-of-plane angleθ varies while the
integrand in the dissipation tensor is also nonzero outsidethe
core. Close to the boundaries of the sample the magnetization
pattern moves slower compared to the center as it can be seen
in Fig. 1. Thus the velocity in the third term of Eq. (1) depends
on space. Aiming at a similar form as in Eq. (2) we replace the
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FIG. 3: Calculated position of a vortex core excited with a spin-
polarized direct current of densityjP = 6 · 1011 A/m2 in a 1000 nm
x 1000 nm square thin-film element. Shown is thex position (a)
and they position (b) versus time. A film thickness of 30 nm and
ξ = α = 0.1 was used. The solid (red) line is the vortex core
position extracted from simulations. The dashed (blue) line is a fit
with the theory based on the original Thiele equation.

spatially dependent velocity~v in the third term of Eq. (1) by an
effective value~ve which is independent of the position. This
effective velocity occurs only in the third term as the second
term is located at the vortex core. For a homogeneous current
flow bj~j is constant over the sample. Thus we do not replace
the current by an effective value. The equation then reads

~F + ~G × (~vc + bj~j) +D0α~ve +D0ξbj~j = 0. (6)

The effective velocity~ve depends on the core position~R =
(X,Y ) and the core velocity~vc. For small deflections of the
vortex core, i.e., small deformations of the vortex,~ve can be
expanded in~R and~vc. For~vc = 0 the magnetization is static
and~ve = 0. Thus the first nonvanishing term in the expansion
is proportional to~vc. Here and hereafter we write

~ve =
DΓ

D0
~vc. (7)

Since the effective velocity~ve is always smaller than the ve-
locity ~vc of the vortex coreDΓ/D0 < 1. Inserting Eq. (7) in
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FIG. 4: Calculated position of a vortex core. The solid (red)line is
the same as shown in Fig. 3. The dashed (blue) line is a fit with the
theory based on the modified Thiele equation.

Eq. (6) yields a modified Thiele equation

~F + ~G × (~vc + bj~j) +DΓα~vc +D0ξbj~j = 0. (8)

Employing the same conversions as used for the original
Thiele equation [5] we find an expression for the velocity of
the vortex core

(G2
0 +D2

Γα
2)~vc = ~G × ~F − DΓα~F − (G2

0 +DΓD0αξ)bj~j

+ bjξD0
~G ×~j − bjαDΓ

~G ×~j.

(9)

We investigate a square thin-film element with a current inx
and a magnetic field iny direction. With the stray-field energy
for small deflections [5]

Es =
1

2
mω2

r(X
2 + Y 2) (10)

and the total Zeeman energy [5]

Ez = µ0MsHldcX (11)

we get a force of

~F = −
(
µ0MsHldc+mω2

rX
mω2

rY

)
. (12)
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Herel andd are the lateral extension and the thickness of the
square, respectively.c is the chirality of the vortex. As for the
original Thiele equation, in the absence of current and field
the excited vortex performs an exponentially damped spiral
rotation around its equilibrium position. The free frequency

ω = − pG0mω2
r

G2
0 +D2

Γα
2

(13)

and the damping constant

Γ = − DΓαmω2
r

G2
0 +D2

Γα
2

(14)

are slightly changed compared to their values derived from
the homogeneous Thiele equation. Herep denotes the polar-
ization of the vortex. In the following we express

DΓ =
ΓpG0

ωα
(15)

by the frequency and the damping constant. The velocity of
the vortex then reads

(
Ẋ

Ẏ

)
=

(
−Γ −pω
pω −Γ

)(
X
Y

)
+




pωΓ
ω2+Γ2

µ0MsHldc
G0

− ω2

ω2+Γ2 bjj − Γω
ω2+Γ2

∣∣∣D0

G0

∣∣∣ ξbjj
− ω2

ω2+Γ2
µ0MsHldc

G0
− pωΓ

ω2+Γ2 bjj +
pω2

ω2+Γ2

∣∣∣D0

G0

∣∣∣ ξbjj


 . (16)

This equation can be solved for harmonic excitations of the form ~H(t) = H0e
iΩt~ey and~j(t) = j0e

iΩt~ex. The solution for the
vortex motion is then given by [5]

(
X
Y

)
= A

(
i
p

)
e−Γt+iωt+B

(
−i
p

)
e−Γt−iωt− eiΩt

ω2 + (iΩ + Γ)2


 j̃ H̃cp+

∣∣∣D0

G0

∣∣∣ pξj̃
−H̃cp −

∣∣∣D0

G0

∣∣∣ pξj̃ j̃



(

ω2

ω2+Γ2 iΩ

ωp+ ωΓ
ω2+Γ2 iΩp

)
,

(17)

with H̃ = γH0l/(2π) andj̃ = bjj0. The first two terms with
prefactors A and B are exponentially damped and depend on
the starting configuration.

The values ofDΓ andD0 can be determined by micro-
magnetic simulations. For these simulations we used our ex-
tended version of the Object Oriented Micromagnetic Frame-
work (OOMMF) that includes the adiabatic and nonadiabatic
spin torque.[10–12] The position of the vortex core was de-
fined as the point with the maximum out-of-plane magneti-
zation. To determine this maximum, the simulation cell with
maximum out-of-plane magnetization and its next neighbors
are interpolated with a polynomial of second order. For the
simulations the material parameters of Permalloy, i.e., a satu-
ration magnetization ofMs = 8 · 105 A/m and an exchange
constant ofA = 1.3 · 10−11 J/m were used.

For the determination ofDΓ the vortex was excited by a
magnetic field pulse. The subsequent oscillation was then fit-
ted with the first two terms in Eq. (17).DΓ can then be deter-
mined from Eq. (15). Finally the value ofD0 was determined
by fitting an excitation with a direct current. The results are
shown in Fig. 2 for different edge lengthsl and different thick-
nesses of the sample. It can be clearly seen that|DΓ| is smaller
than|D0|.

Figures 3 and 4 show an example for the fit of a numerically
calculated vortex-core trajectory using both theories. The the-
ory based on the modified Thiele equation shows better accor-
dance than the theory based on the original Thiele equation.It

can be seen that the Thiele equation has to be modified for a
sufficient description of the dynamics of current-driven mag-
netic vortices in the presence of a nonadiabatic spin torque.
This modification takes the deformation of the outer part of
the vortex into account.

UNBALANCED OERSTED FIELD

In real samples we have to consider several mechanisms
that lead to an inhomogeneous current flow and concomitantly
to an unbalanced Oersted field. Here we will discuss four ex-
amples.

A first mechanism leading to an inhomogeneous current
flow is that to ensure a sufficient electric contact the sam-
ple and the contacts have to overlap each other. If the spe-
cific resistivity of the sample is large compared to the con-
tacts the current tends to flow in the sample from its top
surface.[13, 14] Thus the way through the high-ohmic sam-
ple is shortest for a current flowing along the top surface. This
leads to an inhomogeneous current flow with a higher current
density in the upper part of the sample.

For high current densities Joule heating has to be taken into
account. Theoretical considerations [15] as well as experi-
mental results [16, 17] show that a major part of the heat is
dissipated through the substrate. Consequently there is a tem-
perature gradient in the sample where the top surface is hotter
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than the bottom surface. Thus the specific resistivity devi-
ates. This results in an inhomogeneous current flow depend-
ing on the temperature coefficient of the specific resistivity of
the sample material.

Furthermore, finite-size effects are important. For thin-film
elements with a thickness that is comparable with the mean
free path of the conduction electrons, scattering at the sur-
faces becomes important. In the Fuchs-Sondheimer theory
the surfaces of the film are described by a parameterps that
denotes the probability that an electron is reflected specularly
at the surface.[18] This theory was expanded by Mayadas and
Shatzkes for polycrystalline films.[19] For a value ofps = 1
the current is the same as for a bulk material. Forps < 1 the
current becomes smaller at the surfaces. If the valueps is the
same for both surfaces the suppression is symmetric and thus
do not lead to an unbalanced Oersted field. For experimen-
tal samples the bottom surface is a border between two solids
while the upper surface is normally a boundary to a gas or
vacuum. This gives rise to the assumption that the probability
of specularly reflection is different for both surfaces leading
to an asymmetric current flow and therefore to an unbalanced
Oersted field.

Finally the current flow can also be influenced by an inho-
mogeneous growth of the sample material and a concomitant
inhomogeneity in the resistance.

In experiments a gyration driven by an unbalanced Oersted
field has been observed for vortices that are excited with an
alternating current.[13] The experimental results can be ex-
plained by a homogeneous field iny direction that is propor-
tional to the current flowing inx direction.
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[13] M. Bolte, G. Meier, B. Krüger, A. Drews, R. Eiselt, L. Bock-
lage, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van
Waeyenberge, K. W. Chou, A. Puzic, and H. Stoll, Phys. Rev.
Lett. 100, 176601 (2008).
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mierung mit dem Message-Passing Interface. Oldenbourg Wissenschaftsverlag, 2007.

[63] V. Kindratenko, G. K. Thiruvathukal, and S. Gottlieb, “High-Performance Computing
Applications on Novel Architectures,” "Computing in Science and Engineering", vol. 10,
p. 13, 2008.

[64] “Top 500 List,” November 2010. [Online]. Available: seehttp://www.top500.org/

[65] W. D. Gropp, “Software for Petascale Computing Systems,” "Computing in Science and
Engineering", vol. 11, no. 5, p. 17, 2009.

[66] E. J. Chikofsky and J. H. Cross II, “Reverse Engineering and Design Recovery: A Tax-
onomy,” "IEEE Software", vol. 7, p. 13, 1990.

[67] T. Mens and T. Tourwe, “A Survey of Software Refactoring,” "IEEE Transaction on Soft-
ware Engineering", vol. 30, p. 126, 2004.

[68] “Maple,” January 2011. [Online]. Available: http://www.maplesoft.com/products/
maple/

[69] “Mathematica,” January 2011. [Online]. Available: http://www.wolfram.com/
mathematica/

161

http://www.netlib.org/
http://math.nist.gov/javanumerics/
http://math.nist.gov/javanumerics/
http://www.scientificweb.com/
http://www.scientificweb.com/
http://www.nvidia.com/object/cuda$_$home$_$new.html
http://www.nvidia.com/object/cuda$_$home$_$new.html
see http://www.top500.org/
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/


Bibliography

[70] “O-Matrix,” January 2011. [Online]. Available: http://www.omatrix.com/

[71] “GNU Octave,” November 2010. [Online]. Available: http://www.gnu.org/software/
octave/

[72] “Scilab - The Free Platform for Numerical Computation,” November 2010. [Online].
Available: http://www.scilab.org/

[73] C. Moler, “The Growth of MATLAB and The MathWorks over Two Decades,” The
MathWorks News & Notes, 2006.

[74] M. C. Lehn, “FLENS - A Flexible Library for Efficient Numerical Solutions,” Ph.D.
dissertation, Institut für Numerische Mathematik, Universität Ulm, 2008.

[75] M. Frigo and S. G. Johnson, “The Fastest Fourier Transform in the West,” Mas-
sachusetts Institute of Technology, Tech. Rep. MIT-LCS-TR-728, September 1997.

[76] ——, “FFTW: An Adaptive Software Architecture for the FFT,” in Proceedings of the
1998 IEEE Intnational Conference on Acoustics Speech and Signal Processing, vol. 3. IEEE,
1998, p. 1381.

[77] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-Oblivious Algo-
rithms,” Foundations of Computer Science, Annual IEEE Symposium on, vol. 0, p. 285,
1999.

[78] M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” "Proceed-
ings of the IEEE", vol. 93, no. 2, p. 216, 2005, special Issue on “Program Generation,
Optimization, and Platform Adaptation”.

[79] I. F. Darwin, Checking C Programs with lint. O’Reilly & Associates, Inc., 1986.

[80] G. Lombardi, “MUnit: A Unit Testing Framework in Matlab,” January 2011.
[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/
11306-munit-a-unit-testing-framework-in-matlab,~(09.01.2011)

[81] S. Papadimitriou, K. Terzidis, S. Mavroudi, and S. Likothanassis, “Scientific Scripting
for the Java Platform with jLab,” "Computing in Science and Engineering", vol. 11, p. 50,
2009.

[82] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge, “Optimizing Matlab Through
Just-In-Time Specialization,” in Compiler Construction, ser. ICCS 2004, vol. 3039/2004.
Springer, 2010, p. 46.

[83] J. Kepner, Parallel MATLAB for Multicore and Multinode Computers. "Society of Indus-
trial and Applied Mathematics (SIAM)", 2009.

[84] B. Norris, A. Hartono, E. Jessup, and J. Siek, “Generating Empirically Optimized Com-
posed Matrix Kernels from MATLAB Prototypes,” in Proceedings of the 9th International
Conference on Computational Science, ser. ICCS ’09. Springer, 2009, p. 248.

162

http://www.omatrix.com/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.scilab.org/
http://www.mathworks.com/matlabcentral/fileexchange/11306-munit-a-unit-testing-framework-in-matlab,~(09.01.2011)
http://www.mathworks.com/matlabcentral/fileexchange/11306-munit-a-unit-testing-framework-in-matlab,~(09.01.2011)


Bibliography

[85] G. Sharma and J. Martin, “MATLAB ®: A Language for Parallel Computing,” Interna-
tional Journal of Parallel Progamming, vol. 37, p. 3, 2009.

[86] A. Logg, H. P. Langtangen, and X. Cai, Simula Research Laboratory. Springer, 2009, ch.
Past and Future Perspectives on Scientific Software, p. 321.

[87] “Eclipse IDE,” January 2009. [Online]. Available: http://www.eclipse.org/

[88] “Pydev IDE,” November 2010. [Online]. Available: http://www.pydev.org/

[89] T. Oliphant, Guide to NumPy. Trelgol Publishing, 2006.

[90] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open-Source Scientific Tools for
Python,” January 2009. [Online]. Available: http://www.scipy.org/

[91] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE
Solver,” SIAM Journal of Scientific and Statistical Computing, vol. 10, no. 5, p. 1038, 1989.

[92] S. Purcell, “PyUnit,” November 2010. [Online]. Available: http://pyunit.sourceforge.
net/

[93] “py.test,” November 2010. [Online]. Available: seehttp://pytest.org,~(09.01.2011)

[94] K. Beck, Test Driven Development: By Example. Addison-Wesley, 2003.

[95] D. Koening, A. Glover, P. King, G. Laforge, and J. Skeet, Groovy in Action. Manning
Publications, 2007.

[96] D. Flanagan, JavaScript: The Definitive Guide. O’Reilly & Associates, Inc., 2006.

[97] “EMMA - A Free Java Code Coverage Tool,” November 2010. [Online]. Available:
http://emma.sourceforge.net/

[98] D. P. F. Möller, Mathematical and Computational Modeling and Simulation. Springer, 2004.

[99] P. J. Roache, Verification and Validation in Computational Science and Engineering. Her-
mosa Publishers, 1998.

[100] H. Balzert, Lehrbuch der Softwaretechnik: Software-Management, Software-
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Simulation Environments” was presented at the 2007 Summer Computer Simulation
Conference SCSC’07 (that took place between 15 and 18 July 2007 in San Diego, USA) and is
reprinted in Sec. 3.1.1.

The chapter “Implementation into MATLAB” depicts the main results. This chapter
is written by myself and the depicted results are derived mainly by myself. Further I
contributed to the summary and outlook in discussions.

All other chapters are written by myself with contibutions of my coauthors in discus-
sions.

Publication HSC’08

The conference proceedings article entitled “A Case Study for the Parallelization of a
Complex MATLAB Program with Respect to Maintainability” was presented at the 2008
Huntsville Simulation Conference (HSC’08) (that took place between 22 and 23 October
2008 in Huntsville, USA).

The chapters “The Micromagnetic Modeling and Simulation Kit M3S” and “Perfor-
mance Analysis of the Sequential Omplementation” showing a performance analysis of
M3S are derived by myself.

The chapers “Parallelization” and “Results” are written by myself on basis of the re-
sults derived by Gunnar Selke.

All other chapters are written by myself with contibutions of my coauthors in discus-
sions.

ii



Contributions to the publications

Publication GCMS’08

The conference proceedings article entitled “The Micromagnetic Modeling and Simulation
Kit M3S for the Simulation of the Dynamic Response of Ferromagnets to Electric Currents”
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2009.
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jamin Krüger, Stellan Bohlens, and Guido Meier contributed equally to this chapter in
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problem definition. Further Matteo Franchin suggested the formula 3.

The chapter “Experimental Feasibility” was derived by myself, Benjamin Krüger, and
Guido Meier contributing equally.

The appendices were derived by myself, Benjamin Krüger, and Hans Fangohr:

• “A” was written by myself.

• “B” was written by myself on basis of a formula provided by Benjamin Krüger

• “C” was written by Matteo Franchin

All other chapters are written by myself with contibutions of my coauthors in discussions.
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The article “Proposal of a Robust Measurement Scheme for the Nonadiabatic Spin Torque
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experimental perturbations and hence allow the measurement of the degree of non-
adiabaticity with a unique accuracy.

This article is mainly written by Benjamin Krüger. My contributions to this article are
as follows:

Benjamin Krüger and I together developed the idea of a proposal for a measurement
scheme for the degree of non-adiabaticity. I further contributed conceptually to the figures
2 and 3 and the relating simulation experiments.
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The extensions of M3S-MATLAB by the static calculation of the current paths and the AMR-
effect have been performed in cooperation with Stellan Bohlens. This manuscript is written
by Stellan Bohlens. Stellan Bohlens and I contributed equally to the results depicted in the
chapter entitled “Numerical Simulations” as this chapter discusses details of these M3S-
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Supporting material for publication PRL’ 10

This article has been published as supporting material for the article reprinted in Sec. 4.3. It
is mainly written by Benjamin Krüger and has been added for reasons of completeness to
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