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Abstract

Supersymmetry is a theoretically well-motivated extension of the
currently established model of particle physics. It introduces a new
symmetry between bosonic and fermionic fields and predicts a large
number of new particles. If supersymmetry is discovered at the LHC, a
measurement of the new particle masses will be an important contribu-
tion to the determination of the fundamental model parameters.

In this thesis a novel method for mass determination is presented,
which is based on the assumption of R-parity conserving supersymmetry
and makes use of events with identical decay topologies. Combin-
ing a mass scan with an event-by-event kinematic fit a complete
event reconstruction is possible despite two undetected lightest super-
symmetric particles, and a likelihood map for the mass space is obtained.

The method is demonstrated for the mSUGRA benchmark point SPS1a
and is shown to work in principle. A weakness concerning the measure-
ment of the undetected particle at the end of the decay chain is observed,
which is related to the measurement resolution of particles in the detector.
Additional information from the measurement of a kinematic endpoint
is applied to improve the determination of the lightest particle mass. If
backgrounds are small a precise mass measurement is feasible with this
method. A large amount of LHC data is required to isolate sufficient
events with a suitable topology.
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Zusammenfassung

Supersymmetrie ist eine theoretisch gut motivierte Erweiterung des
aktuellen Modells der Teilchenphysik und fiihrt eine neue Symme-
trie zwischen bosonischen und fermionischen Feldern ein, welche zur
Vorhersage vieler neuer Teilchen fiihrt. Im Falle einer Entdeckung
von Supersymmetrie am LHC wird die Massenmessung der neuen
Teilchen einen wichtigen Beitrag zur Bestimmung der grundlegenden
Modellparameter bilden.

In dieser Arbeit wird eine neue Methode zur Bestimmung dieser
Teilchenmassen présentiert, welche auf der Annahme von R-Paritéts
erhaltender Supersymmetrie und der Analyse von Ereignissen mit iden-
tischen Zerfallskaskaden beruht. Ein Scan iiber mdogliche Teilchenmassen
wird mit einem ereignisweisen kinematischen Fit kombiniert, wodurch
eine vollstindige Ereignisrekonstruktion, trotz zweier ungemessener
Teilchen, moglich wird und eine Likelihoodverteilung fiir die Massen
erstellt werden kann.

Die Methode wird am Beispiel des mSUGRA Benchmarkpunktes SPS1a
demonstriert und ihre prinzipielle Funktionstiichtigkeit gezeigt. Eine
Schwéche in der Messung des ungemessenen Teilchens am FEnde der
Kaskade wurde festgestellt, welche mit der Messauflosung von Teilchen
im Detektor in Zusammenhang steht. Zusétzliche Information aus der
Messung eines kinematischen Endpunktes wird genutzt um die Bestim-
mung der leichtesten Masse zu verbessern. Eine prézise Massenmessung
ist moglich, falls der Untergrund klein ist. Es ist eine grofe Menge an
LHC Daten notwendig, um geniigend Ereignisse mit geeigneter Zerfall-
stopologie zu isolieren.
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Chapter 1

Introduction

For decades the Standard Model of particle physics has provided a precise description of
all elementary particles and their interactions, observed in experiments. With the start
of the Large Hadron Collider (LHC), eventually delivering proton-proton collisions at a
center-of-mass energy of 14TeV, this model is challenged again in a new energy regime.
For the first time particle interactions at an energy scale in the TeV region can be studied
in high numbers in a laboratory. Expectations are high that new particles signatures will
be observed in the detectors of the LHC experiments, be it the long searched Higgs-boson,
or more exotic phenomena, suggested by conceptual problems of the Standard Model when
approaching the TeV-scale.

Among the ideas for phenomena beyond the Standard Model, Supersymmetry (SUSY)
plays a prominent role. This additional symmetry relates bosonic and fermionic fields and
predicts a variety of new particles, yielding a rich collider phenomenology. Many SUSY
models have appealing features, like a unification of forces and a suitable candidate particle
to explain the amount of dark matter found in cosmological observations.

The experimental setup at the LHC is well suited to discover supersymmetry, if it exists
and has the desired properties. Clearly, a mere deviation from Standard Model predictions
is not a proof for supersymmetry, but properties of new particles have to be investigated
to conclude on the underlying mathematical description. Among these properties are the
new particle masses, whose determination will be challenging, since the preferred SUSY
models always include undetectable particles in the final state of collisions and a direct
reconstruction of invariant masses is impossible. Nevertheless, different approaches to mass
determination of supersymmetric particles were studied in recent years.

In this thesis a novel method for mass determination is presented, which exploits a promi-
nent feature of R-parity conserving supersymmetry. Heavy new particles are produced in
pairs and decay via several intermediate mass states into the lightest and stable supersym-
metric state, yielding several jets and leptons in the final state. An approach based on the
reconstruction of such decay cascades via a kinematic fit, the combination of many topo-
logically identical events, and a scan of possible mass values is developed and demonstrated
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for a particular SUSY scenario. Experimental conditions at the LHC are simulated in good
approximation by using the detector simulation of the CMS experiment, which provides
a realistic modeling of the detector performance. Masses of SUSY particles in a Monte
Carlo Simulation are determined and statistical uncertainties as well as systematic effects
are studied.

This thesis begins with a short review of the Standard Model and an introductory
overview on the supersymmetric theory. SUSY phenomenology and the discovery potential
at the LHC as well as recent exclusion limits from the CMS experiment are summarized
in the following. In chapter 3 the LHC and the CMS experiment and its performance
in particle reconstruction are described. The next chapter reviews the topic of mass de-
termination in SUSY events and the principal ideas behind the new mass determination
method are explained. Starting with Chapter 5, details on the setup in terms of physics
scenario and technical realization are presented and Chapter 7 then treats the application
of the kinematic-fits-method for mass determination. Finally, results are compared to other

methods and and conclusions are drawn.



Chapter 2

Theory and Phenomenology
of Supersymmetry

This chapter provides the theoretical background for the physics phenomena investigated
in this thesis. A very brief review of the main structures of the Standard Model of particle
physics, and a sketch of its shortcomings are followed by an overview on Supersymmetry,
with some focus on the investigated mSUGRA model and sparticle masses. Expectations
and properties for SUSY at the LHC are covered in combination with existing exclusion
limits. Argumentation for the theoretical part (Sec. 2.1 and 2.2) is mainly based on existing
summaries and educational articles [1-5|, which contain further references to the original

work.

2.1 The Standard Model

The Standard Model of particle physics (SM) [6-14] describes all elementary particles which
have been observed in experiments so far and their strong, weak and electromagnetic in-
teractions. The SM was tested in many precision collider experiments and no significant
deviation from its predictions were found [15,16]. Two ingredients enter the Standard
Model, on the one hand the observed particles, and on the other hand the interactions
amongst them, which are described by means of a renormalizable quantum field theory.
Fermionic Particles, i.e. quarks and leptons, are classified by their behaviour in the gauge
boson mediated interactions.

The mathematical description is based on a non-Abelian gauge group, given by the inner
product SU(3)c x SU(2)r, x U(1)y, and the Poincaré group of space-time transformations
as an outer symmetry. The color gauge group SU(3)c from Quantum Chromodynamics
(QCD) specifies the strong interactions, while electroweak interactions are based on the
unified SU(2);, x U(1)y group. The generators of each group are hermitian matrices which
fulfill the following commutation relations, where 7% (@ = 1,...,8), I (i = 1,...,3) and
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Y are the generators of SU(3)¢, SU(2)r, and U(1)y, respectively.
[T%, T = ifeTe, (1%, 7] = ik TF, [Y,Y] =0. (2.1)

The structure constants of the gauge groups are given by the totally antisymmetric tensors
fabc and €9k,

The particles’ quantum numbers corresponding to these generators are color charge (7%),
weak isospin (I*), and weak hypercharge (Y). The electric charge of a particle is given by
the Gell-Mann-Nishijima relation Q = I3 + Y/2.

Particles are described by relativistic quantum fields and can be divided into three groups,
matter, gauge, and Higgs boson fields.

Matter is build of spin-1/2 fermions which are either color charged quarks (SU(3)¢
triplets) or leptons without strong interactions (SU(3)c¢ singlets). Six flavors of quarks have
been observed carrying an electric charge of either Q = +2/3 (u, ¢, t) or @ = —1/3 (d, s, b).
The electron (e) and its heavier copies muon (u) and tau-lepton (7) are accompanied by
three electrically neutral neutrinos (). Quarks and leptons group into three families of
left- and right-handed chiral fermions.

Ve Vi v,

) ) y €R, MR, TR
€ L H L T L

(2.2)

U c t

) ) ) UR, dR7 CR, SR, tR7 bR
d S b

L L L

Left-handed fermions transform under SU(2), as doublets while right-handed particles are
SU(2)r, singlets, i.e. they do not carry weak isospin. If neutrinos are not massless, right
handed neutrinos (vg) can in principle be included in this scheme.

The number of particles from a generation of quarks or leptons is (approximately) con-
served in the SM, as well as the total baryon and lepton number. This empiric observation
is not related to any of the fundamental symmetries the theory is based on.

Gauge boson fields, corresponding to the generators of the gauge groups, are spin-1
particles, which mediate the interactions among fermions. From the QCD SU(3)¢ group 8
gluons emerge and the electroweak symmetry yields three W bosons from SU(2)z, and the
U(1)y B boson.

All these gauge bosons would be massless, if the symmetries of the SM were exact.
However, while gluons are in fact massless, massive bosons were observed in electroweak
processes.

Since the invariance of the Lagrangian under SU(2) x U(1) transformations breaks if
explicit mass terms for bosons and fermions are introduced, another mechanism is necessary
to add particle masses to the theory. The Higgs mechanism [11-14] is one possibility
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to give masses to gauge bosons and fermions. With this mechanism, masses enter in a
gauge invariant way and renormalizability is preserved. It exploits spontaneous symmetry
breaking, i.e. additional fields are introduced which keep the invariance of the Lagrangian
under gauge transformations but break the invariance of its ground state.

A complex scalar field ® = (¢, ¢°)7 is added to the theory, which transforms as a
SU(2)r doublet with hypercharge Y = 1 and has a scalar potential V(®) = p?®Td +
A(®T®)2. Tt shows that it obtains a non-vanishing vacuum expectation value (VEV)
(0|®]0) = /—wu2/(2)\) for p < 0. By expanding ® around its VEV and inserting in
the Lagrangian one finds that three degrees of freedom are absorbed in the longitudinal
polarizations of the weak gauge bosons, which become massive particles. The remaining
field constitutes a new scalar particle, the higgs boson H, which is yet to be found in nature.

The field ® is chosen such, that the SU(2); x U(1)y symmetry is spontaneously broken
but a U(1)q symmetry related to the charge Q = I*+Y/2 is preserved. The corresponding
massless gauge boson is identified as the photon (A,).

Mass eigenstates of the gauge bosons after electroweak symmetry breaking (EWSB) are
given by linear combinations of the gauge fields WfL and B, and described by a rotation
with the so called weak mixing angle Oy .

(Zu> _ (cos Ow —sin 6?W> (Wg’) (2.3)
A, sinfy  cos by B,

wE = %(Wﬁ FiW7) (2.4)
The mixing angle is determined from the coupling constants corresponding to the SU(2)y,
and U(1)y gauge groups, g and ¢, as cos Oy = g/+/g? + ¢’?). The masses of the W and Z
bosons are proportional to the higgs VEV v, my = vg/2 and my = (v/2)y/g? + ¢’* and
the weak mixing angle can be expressed in terms of these masses as cos 0y = my /my.

In order to achieve fermion masses Yukawa interaction terms are added to the Lagrangian,
which couple fermions to the higgs field. These terms are invariant under electroweak
symmetry but produce masses due to their non-vanishing VEV.

Also fermion mass eigenstates are obtained by rotation of the weak eigenstates. In the
quark sector this is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17,18]
whose entries are determined experimentally. In case of massless neutrinos the lepton mass
and electroweak eigenstates are identical. Nowadays, evidence for non-zero neutrino masses
and neutrino mixing exists and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
describes the neutrino mixing in analogy to the CKM matrix [19].

The Higgs boson is the only SM particle which has not yet been observed in experiments.
Its mass (my = 2 v? = —2u?) is a free parameter of the theory. However, theoretical and
experimental constraints on its mass exist. A positive and finite Higgs self-coupling is
necessary to ensure a Higgs potential that is bounded from below. In combination with a
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cut-off scale of e.g. 102 TeV up to which one assumes the SM to be valid the higgs mass
should e.g. lie in the interval 50 GeV < mpy < 800 GeV [20].

The strongest experimental limits were set by the LEP experiments and exclude a Higgs
mass my > 114 GeV at 95% confidence level [21]. More recently the Tevatron experiments
further excluded the mass region between 158 and 175 GeV at 95% confidence level [22].

2.1.1 Open Questions of the Standard Model

The Standard Model was successfully verified in many experiments and with very high
precision [16]. Despite its tremendous success there are conceptual problems which indicate
that new physics beyond the SM exists. The SM can be seen as an effective theory valid
up to some higher energy scale and might in the future be considered the low energy limit
of an underlying theory.

First of all the SM does not incorporate gravity, which will become important when
approaching the Planck scale Apjanac ~ 10'® GeV. Another question is why the electroweak
scale is so much smaller than the Planck scale with my/Apjanck ~ 10716, Related to this
fact is the fine-tuning or naturalness problem [1]. One expects the higgs mass to be of
the order of the electroweak scale. However, radiative corrections to the higgs mass from
fermions and massive gauge bosons are important, since these loop contributions to the
self-energy are huge. If regularized with anal momentum cut-off Ayy they read

> A

Am?¥ = A%y, ch log™ <ﬂ> , (2.5)

=0 KR
where pp is the renormalization scale and the coefficients ¢, depend on the masses of the
particles in the loop and their couplings to the higgs boson. Note the quadratic divergence
with the cut-off scale, i.e. the scale up to which the SM is valid. If the cut-off scale is very
large, corrections must be adjusted precisely at each order in perturbation theory to yield
a higgs mass around the electroweak scale.

A desired feature of a more fundamental theory is the unification of all forces. That
means the description with a single gauge group (e.g. SU(5) and SO(10) were proposed)
and a single coupling. In the SM the electroweak and strong interaction are not truly
unified and keep their own coupling with different strength.

The evolution of the coupling constants with the energy scale is described by renormal-
ization group equations. For unification the constants need to meet at a high scale, which
is not given with the particle content of the SM. New physics entering at an intermediate
scale might however change the running of the couplings and lead to unification.

A third argument for physics beyond the SM comes from cosmological observations.
Rotation curves of galaxies as well as the cosmic microwave background indicate that a
large amount of dark matter exists [23,24], i.e. non-baryonic, only weakly interacting



2.2. Supersymmetry

matter. Yet unknown particles must be the constituents of this cold dark matter, since the
only SM candidates, neutrinos, are ruled out as a single source because their small masses
and relativistic velocities cannot explain large scale structure formation.

The large number of parameters in the SM is sometimes regarded as unsatisfactory,
especially the existence of unpredicted parameters which are related to the origin of particle
masses, the hierarchical structure of fermion masses and CP violation.

In the next section supersymmetry is introduced, which is a popular theory beyond the
Standard Model, which addresses some of the above issues.

2.2 Supersymmetry

2.2.1 Basic Ideas

Supersymmetry [25,26] was proposed as an extension of the internal gauge- and outer space-
time symmetry of the SM. In the SM the generators of the SM gauge group commute with
those of the Poincaré space-time symmetry and each particle is defined by its quantum
numbers corresponding to the internal symmetries (color, weak isospin, hypercharge) as
well as mass, spin and momentum. There is no way to combine these two symmetries other
than as a direct product for a theory like the SM with chiral fermions.

In order to extend the Poincaré symmetry in a non-trivial way a new ansatz must be cho-
sen: anti-commutation instead of commutation relations are postulated for the generators
(Q) of the new symmetry. These must then be fermionic operators.

In a schematic form these anti-commutation relations of the SUSY Poincaré algebra
read [1]

{Q.Q"y = P+ (2.6)
{Q.Q}={Q",Q"} = 0 (2.7)
[P*,Q]=[P", Q" = 0 (2.8)

where the first line relates the SUSY generator ) with the generator of space-time trans-
lations P,.

In particle physics, SUSY relates bosonic and fermionic fields. The generator Q' as a
fermionic operator changes the spin of a particle

Q|boson) = |fermion) Q|fermion) = |boson). (2.9)

Bosonic and fermionic fields form a (irreducible) supermultiplet. The SUSY transformation
only changes the spin, while all other quantum numbers are not altered. Since the known

'In principle there can be more than one SUSY (with generator Q”). However, the construction of N > 1
theories in particle physics leads to significant problems.
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elementary particles do not fit into this scheme, the assumption of a supersymmetry implies
the existence of new, yet undiscovered particles.

If SUSY was exact, these new particles would be mass degenerate with the known SM
particles as one can see from the on-shell relation of a fermion f and a boson b

P2|b) = P?Q|f) = QP*|f) = Qm®|f) = m?|b). (2.10)

However, no supersymmetric particles were observed yet, so SUSY must be broken at low
energies.

The operator @ relates one bosonic to one fermionic state, leading basically to a du-
plication of the particle content. Because left- and right handed fermions have different
transformation behavior under SU(2)z, a bosonic partner for each helicity state has to ex-
ist. Furthermore a second Higgs doublet needs to be introduced in the theory, as will be
discussed later.

No theoretical constraints exist regarding the scale at which SUSY is broken, but low
SUSY masses are phenomenologically preferred to keep some desirable properties of the
model. As discussed before, the large radiative corrections to the Higgs mass in the Stan-
dard Model depend quadratically on the cut-off scale and need to be fine-tuned in order
to obtain a Higgs mass around the electroweak scale. In SUSY the loop contributions of
fermionic and bosonic partners cancel, due to their opposite sign. Cancellation is exact only
in the case of unbroken SUSY, while logarithmic terms, proportional to the mass difference
m% — mQB remain in the broken case. Hence, the masses of the superpartners should not
be too large (~ O(1TeV)) in order to retain the solution for the fine-tuning problem.

Another consequence of new SUSY particles, entering around the TeV-scale, is that they
affect the running of the coupling constants and make a unification at a high scale (e.g.
GUT scale) possible.Even an incorporation of gravity in the theory is feasible.

An attractive feature of SUSY models with R-parity conservation (c.f. Sec 2.2.3) is the
existence of a stable, electrically neutral and weakly interacting particle, which is a good
dark matter candidate.

2.2.2 Supersymmetry Breaking

In analogy to electroweak symmetry breaking, SUSY can also be broken spontaneously in
order to provide the mass terms for the new SUSY partners. In this case the Lagrangian re-
mains invariant under SUSY transformation, but the ground state acquires a non-vanishing
vacuum expectation value.

Usually an indirect or radiative SUSY breaking is considered, in order to avoid theoretical
problems. Explicit symmetry breaking terms are added at the breaking scale, which still
respect the gauge and Poincaré invariance and are soft in order not to spoil the positive
properties concerning e.g. the hierarchy problem. Possible terms in the Lagrangian are
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mass terms for the gauginos (partners of gauge bosons) and scalars (fermion partners),
as well as trilinear couplings of scalar fields. Chiral (SM) fermions still obtain masses by
electroweak symmetry breaking in order to keep the gauge invariance. The spontaneous
SUSY breaking takes place at a high scale in a hidden sector and is communicated to the
visible particle sector via an interaction. The phenomenology in the visible sector depends
mostly on the way of transmission and less on the breaking mechanism itself.

In super gravity models (SUGRA) the transmission takes place via gravity. Such models
are widely studied and we will introduce a minimal SUGRA model in Sec. 2.2.3, which
makes further assumptions on the universality of the couplings and the soft breaking terms
at the GUT scale, thus reducing the large number of new parameters in more general SUSY
models to just five. The transmitting gravitational strength interaction does not play a role
in collider experiments. Other possibilities to realize SUSY breaking are gauge or anomaly
mediation (GMSB/AMSB models).

2.2.3 The Minimal Supersymmetric Extension of the Standard Model
(MSSM)

The minimal supersymmetric extension of the standard model (MSSM) contains the mini-
mal set of particles, necessary to build a N = 1 SUSY model, which is softly broken at low
energies and has conserved R-parity (see below).

Each bosonic state is grouped with a fermionic state in an irreducible representation,
a supermultiplet. These partners have the same number of degrees of freedom (dof) and
identical quantum numbers, except for the spin, which differs by one half. SUSY partners
of the SM fermions are called sfermions and the left- and right-handed components of the
SM fermions obtain a superpartner each. Gauge bosons have fermionic counterparts which
are labeled gauginos (gluino, wino, bino). In the Higgs sector a second Higgs doublet is
needed to provide masses for up- and down-type quarks, while keeping the gauge invariance
and stay free of anomalies. The field content of the MSSM is summarized in Tab. 2.1.

R-Parity

The interactions among scalars and fermions in the MSSM are described by the superpo-
tential, which is compatible with super- and gauge symmetry. In its most general form the
superpotential contains lepton and baryon number violating terms, which lead to a fast
and unrealistic proton decay. One possibility to cure this problem is the requirement of
R-parity conservation, where R-parity is defined for each particle as

Pp = (—1)*B- 12, (2.11)

Here L is the lepton number, B the baryon number and s the spin of the particle. All
SM particles, including the Higgs boson have positive R-parity Pr = +1, while all SUSY
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Superfield Boson Fermion (SU3)c,SU(2),U(1)y) Name
Q o = (g, d)" | qr = (ug,d)” (3,2,+3)
U Up u}% (3,1,—%) (s)quark
D di di (3.1,+2)
L lp = (V’ 6L)T lp = (V’ 6L)T (152’_1)
_ ~ (s)lepton
E &, ely (1,1,+2)
. Higgs(-ino)
Hg ha = (hg, hg)" | ha = (hg, hy)" (1,2,-1)
G* g g (8,1,0) gluon(-ino)
wi w* wo wE wo (1,3,0) W (-ino)
B B B (1,1,0) B(-ino)

Table 2.1.: Overview of particle fields in the MSSM. The superfields (capital letters) have a bosonic
and a fermionic component, which share the same behavior under gauge transforma-
tions, indicated in column four. SUSY partners carry a tilde. The L,R indices of the
scalar SUSY particle indicate the helicity of the SM partner. Generation and color
indices are omitted for readability. The first generation initials are used. Names of
the (new) particles are given in the last column.

particles have Pr = —1. For conservation all vertices must yield a positive product of the
involved particle parities.

The assumption of R-parity conservation has several consequences. All SUSY particles
can only be produced associated or in pairs, their decay must yield an odd number of SUSY
particles, and the lightest supersymmetric particle (LSP) is stable since it cannot decay into
a lighter one.

In general any SUSY particle can be the LSP but usually regions with a charged LSP
(e.g. a stau) are excluded in phenomenological studies. In a large part of the (nSUGRA)
parameter space the lightest neutralino is the LSP.

At hadron colliders strongly interacting SUSY particles, squarks and gluons, will be
produced in pairs and initiate a chain of decaying SUSY particles, ending with the lightest
and stable one. These possibly long decay chains will leave a signature of missing transverse
energy and many jets and leptons in the detector. The properties of such supersymmetric
events at hadron colliders are discussed further in Sec. 2.3.1.

The MSSM Lagrangian

The Lagrangian of a supersymmetric theory is obtained from the requirement that the
action [ d*zL(z) is invariant under a SUSY transformation. In a broken supersymmetry

10
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it consists of SUSY invariant and (soft) SUSY breaking parts

Lyrssy = Lsusy + Lsoft (2.12)

The Lagrangian will not be discussed in detail here, but we will outline some aspects
concerning particle masses in the following sections.

The SUSY invariant part can be divided into the superpotential, which specifies the
interaction of scalars and fermions, a kinetic term for gauginos and gauge bosons, and
a kinetic term for scalars and fermions. The gauge invariant soft breaking part of the
Lagrangian in case of R-parity conservation is

1 ~ ~ ~ ~
Lost=— 5(MBB+ MWW + Msgg) + h.c. (2.13)
— ~Emz~2(jL — ﬁ*RmQUﬁR — ci}}m%cigg — !ﬁLm%gL — ézm%éR

— mj hhy, —m3 hihg — (bhyha + h.c.)

- (aUQLhuﬂE —apqrhgdy — aEZLhdé}}> + h.c.

where fields are labeled according to Tab. 2.1 and SU(2)y, as well as generation indices are
suppressed. Several mass related parameters are introduced here. The first line consists of
gaugino mass terms, depending on the complex mass parameters My, Ms and Ms. In the

2 are hermitian mass matrices

second line squark and slepton mass terms occur, where m
in family space. Line three includes Higgs boson mass terms with the real (squared) mass
parameters m%d Ju and the complex Higgs coupling b. In the last line trilinear sfermion-
sfermion-higgs interactions can be found. The couplings can also be expressed in terms of

trilinear couplings A and Yukawa couplings Y

ayp,e = Au,d,eYyp.E. (2.14)

Constraints in Minimal Supergravity

The superpotential and the soft breaking terms (Eq. 2.13) introduce a total of 105 new
parameters in the theory. Many of these couplings, masses and complex phases are con-
strained by experimental data on flavor changing neutral currents or CP violation. While
flavor mixing is in general appearing in the soft breaking Lagrangian, it is common to
assume minimal flavor violation, which means that the CKM matrix is the only source of
CP violation. This implies that the SUSY mass matrices and trilinear couplings in the soft
breaking terms are diagonal and no flavor changing neutral currents (FCNC) exist on tree

11
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level.
2 _ 1 2 2 2 A AP T F
my = dlag(mﬁl,m~2,mﬁ3), for F={Q,.,D,L E} (2.15)
Ay =diag(Ay,, Ag,, Apy), for f=Au,d, e} (2.16)

As already mentioned the SUSY breaking in SUGRA scenarios is transmitted to the
visible sector via gravitational interactions. In minimal supergravity models (mnSUGRA)
more constraints are used. Beside a unification of the gauge-couplings at the GUT scale, a
simultaneous unification of the scalar and gaugino masses is assumed in minimal SUGRA
(mSUGRA). This leads to common values for the gaugino masses (M 3), all scalar masses
(Mp) and the trilinear couplings (Ap).

2 _ 2 _ 2 _ 2 _ 2 _ 2
my, =my, = Mg 2.18

2.19

)
)
)
2.20)

(
(
(
ay =AYy, ap=A4Yp, Ev = AYE (

Starting from these boundary conditions for parameters at the GUT scale, all masses
and couplings at lower energies are obtained by means of renormalization group equations.
Two more independent parameters remain in mSUGRA. The Higgsino mass parameter
(1) and the bilinear coupling (b) which can be be substituted by the ratio of the Higgs
vacuum expectation values, tan 8 (see below), and the sign of p at the weak scale. To-
gether with M /5, My and Ag this sums to only five free parameters determining the entire
phenomenology in mSUGRA models.

Particle Masses

The inclusion of particle masses in the MSSM also happens via the Higgs mechanism and
the electroweak symmetry is broken spontaneously. A second higgs doublet has to be
introduced to provide mass terms for up- and down-type quarks which are compatible with
the gauge symmetries. Their neutral components have non-vanishing vacuum expectation
values, vy and v,. Two complex doublet fields mean eight degrees of freedom, three of
which are Goldstone bosons and are absorbed in the W and Z bosons. Five degrees of
freedom remain, resulting in five physical spin-0 higgs bosons.

Two of them are neutral and CP-even (h°, HY), one is neutral but CP-odd (A°) and the

12
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remaining two are the charged bosons H*. Their squared masses are given by

mio = m,%d +mj + 2|u|* = b(tan B + cot 3) (2.21)

1
miO/HO = 5( 20 +m3) F \/(mio + m%)? — 4m?,m?% cos? 23 (2.22)
mye = mio+my (2.23)

with tan 8 = v, /vg. The expressions for the electroweak gauge boson masses change slightly
and contain the new VEVs
g2+ g2

Wh+02),  my=LTT (342, (2.24)

iy 7
W= 9 2

As before, all SM fermions acquire their mass by Yukawa interactions with the Higgs

fields.

For the fermion superpartners in mSUGRA it is assumed that mixing occurs only within
one generation. The mass terms of the Lagrangian can be written

(fL> — Brmriu (2.25)

¢ g 2
ESfermionmass = - (fzza f;(%z)Mf
Ri

i

where the mass matrix

e (M A me B (2.26)
I\ mgBER 3+ R

depends on the SM fermion masses my, and the terms

AL = m%ﬂ — (IJ‘% —ey, sin? Oy )m% cos 23 (2.27)

BER = Ay — ok (2.28)

CFR = m%R‘ +ey, sin? HWmQZ cos 2. (2.29)

In this notation m% ) are the soft-breaking parameters for the scalar partners of left- and
L/Ri

right-handed chiral fermions. 1 % is the third component of the isospin of the corresponding
SM fermion and ey, its electric charge. In the mSUGRA assumptions Eq. 2.15 the trilinear
couplings Ay, were introduced. For up-type squarks and charged leptons applies x = cot 3
while k = tan 8 for down-type squarks. For the sneutrino the matrix is one-dimensional
mi =m% + lm2 cos 23 (2.30)
v, — 9 Z :
One can see that sfermion masses depend on parameters from the Higgs sector (3, mz, u,

Ow ) as well as on soft breaking parameters (m%u/m, Ap).

13
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In order to obtain the mass eigenstates the mass matrix must be diagonalized with a
unitary matrix U o which can be expressed in terms of a mixing angle 6 7,

Uf.: cosé?fi siné?fi . (2.31)
¢ —siné?fi cosﬁfi

One finds the squared eigenvalues

1
mf;h_’% = m?ﬂ + 3 [(AZ.LL + C’ZRR) T \/(AiLL + Cz‘RR)2 + 4m3”i(BiLR)2 ] (2.32)

for the eigenstates fli,zz‘, where the convention is that the index increments with increasing
mass. From diagonalization it comes out that
ng, = 2Bt 2

tan 6z AR (IR (2.33)
Hence the mixing of sfermions is proportional to the corresponding SM fermion mass,
leading to a negligibly small amount of mixing in the first two generations. Therefore it is
justified to keep the indices L and R when talking about 1st and 2nd generation sfermion
masses in the following. Furthermore, the masses of up- and down-type squarks within one
family are related and their difference is constrained. For the third generation squarks a
significant mixing takes place and the mass eigenstates are usually labelled as by, #; for the
lighter and 52, ts for the heavier combination.

Also higgsinos and gauginos can mix after electroweak symmetry breaking. The elec-
trically charged higgsinos and winos (ﬁj,ﬁ;, W) constitute charginos ()ng), while the
neutral higgsinos, wino and bino (A%, A9, W, B) form four neutralinos (¥J_,). In both
cases the indices increase with particle mass.

Assuming real parameters only, one obtains the following expression for the chargino

masses

1 1 .
m?{i = §(M22 + 4 2mi) F 5\/(M22 + p? 4 2mi, )2 — 4(uMy — m¥, sin26)?  (2.34)

1,2

The mass eigenvalues for the neutralinos cannot easily be written down in an analytic
form. Neutralino masses depend on M, Mo, u, and tan 8 and the mass matrix before

14
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diagonalization reads

M1 0 —myzsinfy cos 5 mysin Oy sin 8
Moo — 0 M2 my cosby cosB  —my cos By sin 5
X —mygsin by cos . my cos by cos B 0 — i
mygsinfy sin 5 —myz cos Oy sin 8 — 0
(2.35)

The eigenvalues have to be determined from quartic equations, which in general has to be
done numerically. However, simplified expressions can be derived for particular scenarios.

The mSUGRA assumptions of a gaugino mass unification at the GUT scale is motivated
by the running behavior of the gauge couplings. Gaugino masses run in the same way as

(squared) gauge couplings
My My _Ms
9 9% g

and one finds, that at the weak scale the mass parameters My and Ms have approximately

(2.36)

the relation . )
Mi(myg) = gtan2 Ow Ma(myz) ~ §M2(mz). (2.37)

If effects of EWSB can be considered as small perturbations on the mass matrix, i.e. if
my < |+ M|, |+ M|, then the lightest neutralino has a dominant bino content, the
second lightest is "wino-like” and the heavy neutralinos are mainly higgsinos. Then their

masses are approximately
o =DMy, mg =M, mg = | ] (2.38)

In large regions of the mSUGRA parameter space the lightest neutralino is the LSP.
The last particle in this discussion is the gluino. Its mass is determined by the (complex)
soft-breaking parameter Ms;
mg = | M3s|. (2.39)

2.3 SUSY at the LHC

2.3.1 Event Properties in R-parity Conserving Supersymmetry

Assuming conservation of R-parity all supersymmetric particles must be produced in pairs.
The production at the Large Hadron Collider (LHC, c.f. Sec. 3.1) proceeds dominantly
via gluon-gluon and gluon-quark fusion, due to the high parton-luminosity of the gluon.
Feynman diagrams for some possible processes on tree-level are shown in Fig. 2.1. They
yield squarks and gluinos as final-state and starting point for the supersymmetric decay

15



2. Theory and Phenomenology of Supersymmetry

chain.

q q q
[« N
g
(e

q q

Figure 2.1.: Example Feynman diagrams of tree level processes for gluino (§) and squark (q)
production by strong interactions.

Reactions with QCD strength can be summarized as

99 — 49, Gd;
9 — 94
q — 349, Gq;
q —  Gig;-

If squark and gluino masses are larger than about 1TeV, direct chargino and neutralino
production via quark annihilation into W- or Z-bosons can become the dominant pro-
cesses [1].

As a second consequence of R-parity conservation, the decay of any SUSY particles
yields an even number of superparticles. Due to their short lifetime, a cascade of instantly
decaying particles develops, ending with the lightest and stable one (LSP).

Thus the generic signature of SUSY events is missing transverse energy resulting from
the two LSPs escaping the detector. In addition a large number of jets and/or leptons in
the final state might be found in mSUGRA or isolated photons in GMSB models.

However, in mSUGRA scenarios with a "bino-like” Y, the largest fraction of right-handed
squarks decays directly into the LSP and a quark, leading to a dijet signature for events
with two such squarks.

Due to rather light third generation squarks their production is enhanced and an in-
creased number of b-jets might be observed, originating from stop- and sbottom-decays.

Mixing may lead to a stau which is lighter than smuons and selectrons. Then the branch-
ing fraction for final states with tau leptons in chargino and neutralinos decays can become
large, making tau identification a crucial component in the detection of SUSY events.

16
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An important feature of SUSY are the large mass differences among the involved super-
particles, in most cases allowing for their on-shell production in the decay chain. Therefore
a determination of sparticle masses through a complete kinematic reconstruction of the
event becomes possible. However, such an event reconstruction is challenging since two
invisible LSPs escape the detector.

2.3.2 Searches for Supersymmetry
Current Mass Limits

Many searches for supersymmetric particles have been performed at particle colliders until
today. While no evidence for new particles was found, limits on their masses were set. The
most stringent limits come from the experiments at the LEP and Tevatron colliders [27-29].

In eTe -collisions at LEP all particles had to be produced via electroweak interactions.
While in principle all SUSY particles but gluinos can be produced this way, the available
phase space decreases with increasing mass, such that the production cross-sections are
highest for the light superparticles. In many SUSY scenarios these are sleptons and gaug-
inos, rather than squarks. The most sensitive searches were performed in channels with
leptons in addition to missing energy.

At the Tevatron (pp) collider both, the production via electro-weak and via strong inter-
actions, can have large cross-sections. If gluino and squarks are rather heavy (2 300 GeV)
the process of quark annihilation into a W- or Z-boson dominates the production and
yields mainly charginos and neutralinos. If their masses are smaller, squarks and gluinos
are produced in QCD processes. Consequently, searches were performed in channels with
jets and missing transverse energy as well as in channels with up to three leptons.

A missing deviation from the standard model prediction in any of the search channels
can only be translated into mass limits if assumptions on the SUSY breaking scenario and
its parameters are made. However, summarizing current exclusion limits in a simplifying
manner, one can say that all superpartners, except the gluino and LSP are constrained
to masses larger than ~ 100 GeV. An indirect lower limit on the neutralino LSP mass
of 47 GeV holds at 95% confidence level for the MSSM with gaugino and sfermion mass
unification. For mSUGRA models with low tan 8 the Tevatron searches even restrict gluinos
and squarks at 95% confidence level to masses above 308 GeV and 379 GeV, respectively [30].

Limits from the CDF experiment in the mg-m; p-plane for an mSUGRA scenario with
Ap =0, tan =5 and p < 0 are shown Fig. 2.2

In addition to searches for supersymmetric particles a detection of neutral or charged
higgs bosons could give a hint at SUSY. The higgs’ masses depend on the SUSY parameters
and their absence therefore allows an exclusion of parameter regions. So far no evidence
for a higgs particle was found.

In recent month first SUSY limits based on LHC collision data at /s = 7TeV were
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published by the CMS collaboration and further restrict the parameter space (Fig. 2.2,
bottom).

Prospects for a Discovery at the LHC

The LHC design center-of-mass energy of 14 TeV is more than seven times higher than the
Tevatron energy. It allows for a production of squarks and gluinos in QCD-strength inter-
actions for masses up to 1.5 TeV. As a result the total cross-section for a typical mSUGRA
scenario can reach tens of picobarn, which is an increase by three orders of magnitude with
respect to the Tevatron. In combination with the up to 30 times higher luminosity, the
LHC will very likely lead to a discovery if TeV scale supersymmetry exists. SUSY particles
must be in the accessible mass range to provide the solution to the hierarchy problem.

Both multi-purpose experiments at the LHC, Atlas and CMS (c.f. Sec. 3.2), have evalu-
ated their discovery potential for various channels in Monte Carlo studies [31,32].

Fig. 2.2 illustrates the discovery reach for the CMS detector in the mg-m p-plane of
the mSUGRA model for tan3 = 10, Ag = 0 and p > 0. The inclusive hadronic chan-
nel with many jets and missing transverse energy covers the largest part of the parameter
plane, while the power of channels including multiple leptons is more parameter depen-
dent. However, the control of the standard model backgrounds is especially challenging for
the hadronic searches and thus leptonic signatures might be easier to detect and yield a
higher significance. A discovery of supersymmetry is possible already with low integrated
luminosity of a few hundred pb~! if its parameters are close to the current limits.
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Figure 2.2.: Top: Exclusion limits from CDF in the mg-m; o-plane for Ag = 0, tan3 = 5 and
< 0 [33]. Middle: Discovery reach of the CMS experiment for different channel in
the mg-my jo-plane with Ag = 0, tan 8 = 10 and p > 0 for an integrated luminosity
of L = 10fb~! [31]. Bottom: CMS exclusion limits in the same plane, derived from
2010 LHC data collected in 2010 [34].
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Chapter 3
The CMS Experiment at the LHC

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [35] is a proton-proton and heavy-ion collider, located
at CERN, the European Laboratory for Particle Physics, at the French-Swiss border near
Geneva. It is designed for proton collisions at a center-of-mass energy of 14 TeV with a
luminosity of 103* em™2s~! and heavy ion collisions with 2.8 TeV per nucleon and a lumi-
nosity of 102" cm™2s~!. After a decade of construction it started operations in September
2009, when the two rotating beams were first brought to collisions at the four interaction
points around the ring.

Large particle detectors are build around these interaction points to record the reactions
taking place. The Atlas (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid)
experiments are multi-purpose detectors, especially designed for the search for the higgs
boson and new phenomena. The LHCb detector is dedicated to B-physics, while Alice (A
Large Ton Collider Expriment) aims at the investigation of heavy-ion collisions.

Although designed for a center-of-mass energy of 14 TeV, the 2010 LHC run was per-
formed with only half of its maximum energy for machine protection reasons. After the
collection of data corresponding to a few fb~! of integrated luminosity, presumably by the
end of 2012, the accelerator safety installations will be upgraded in a year-long stop to
allow for design energy operations. Nevertheless the current center-of-mass energy already
exceeds any previous collider and is more than 3.5 times higher than the Tevatron energy.

3.1.1 The LHC Design

The LHC is installed in the tunnel of the former LEP collider, 45 to 170 m below surface. It
consists of eight arcs with dipole bending magnets and eight straight sections, where beam
injection, accelleration, dumping or cleaning and beam collisions within the experiments
take place (Fig. 3.1).

Each beam circulates in a separate ring, since beam particles have the same charge and
cannot share the same dipole fields. The vacuum containers are only linked in the region
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Figure 3.1.: Schematic view of the LHC layout [35].

around the interaction points. Superconducting dipole magnets with a field strength of
8.33 T are necessary to force the 7TeV beams around the tunnel.

The accelerator chain starts with a linear accelerator (Linac), followed by the Proton
Synchrotron Booster (PSB) and the Proton Synchrotron (PS), where proton bunches with
an energy of 25 GeV are formed. They are passed to the Super Proton Synchrotron (SPS)
and accelerated to the LHC injection energy of 450 GeV. After entering the LHC ring the
beam energy is increased by about 0.5 MeV per turn until reaching the collision energy [36].

In maximum luminosity operations the proton beams will have n, = 2808 bunches each,
with Ny = 1.15 x 10! protons per bunch and a spacing of 25ns. At the interaction points
they are squeezed to yield a beam spot with a transverse width of o* = 16.7 ym [36].

The resulting instantaneous luminosity depends further on the revolution frequency frq,
the relativistic gamma factor ,, the normalized transverse beam emmitance ¢, and the
beta function S* at the collision point. Assuming a gaussian beam distribution, it is given
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by
I — N{,anfrev'%’
Are,*

where F' is a geometric luminosity reduction factor, depending on the crossing angle, the

(3.1)

bunch length and the transverse beam size. The LHC peak luminosity is L = 1034 cm™2s71.
The event rate f is related to the luminosity and the cross-section o

f=L-o. (3.2)

About 20 collisions per bunch crossing and an event rate of around one billion events per
second are expected, corresponding to a total cross-section of o,y = 100 mb.

The luminosity decays during a fill as intensity degrdes and emmitance grows due to
collisions, but also due to beam-gas and beam-beam interactions. For a high luminosity run,
with collisions in the Atlas and CMS experiments, the lifetime is approximately 77, = 15h.
With a run of duration Ty, an integrated luminosity of

Lin = Lory, (1= e~ Ton/m) (3.3)

can be collected.

With an estimated turnaround time of 7h for an entire accelerator cycle, including the
filling of the machine, acceleration, collisions, and ramping down the magnets again, the
integrated luminosity is maximized for a run time of 12h. Assuming 200 days of operations
the achievable integrated luminosity per year can reach up to 120fb~1.

3.2 The CMS Detector

The Compact Muon Solenoid (CMS) experiment [37] is one of the four large particle de-
tectors at the LHC. It is placed in an underground cavern at Point 5 of the accelerator
ring.

The CMS experiment consists of subdetectors for tracking and calorimetry placed inside
a 3.8 T solenoid, and a muon system, embedded in the magnet return yoke (Fig. 3.2).
Forward detectors complete its hermetic coverage of the interaction point. For the tracking
device silicon pixel and strip components were chosen. Electromagnetic energy is measured
in lead-tungstate crystals while the hadronic calorimeter uses brass absorber plates and
layers of scintillating fibers. Three kinds of gaseous detectors are used in the muon system.
CMS is 21.5m high, has a diameter of 15m and a total weight of 12500 tons. Its individual
components are described in the following sections.

The challenging experimental environment at the LHC, with high collision rates and
around 20 inelastic collisions per bunch crossing leads to high activity in the detector.
Approximately 1000 charged particles enter the tracker every 25ns. This requires a high
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Figure 3.2.: Schematic view of the CMS detector [37]

detector granularity to reduce the average occupancy and reduce the impact of pile-up, a
good time resolution to distinguish collisions, and a fast readout to minimize dead time.
Triggers must select interesting events out of these 10 mainly low-pr scatterings per second
with a rate of ~ 100 Hz, which can be saved for further analysis. Radiation hardness of
detector materials and electronics, especially close to the interaction point are mandatory
to resist the large particle flux.

Aiming at a test of the standard model at the TeV scale, the discovery of the higgs-
boson and other new phenomena like supersymmetry or extra dimensions, the detector
must provide an excellent performance in particle reconstruction and identification.

Depending on the higgs mass a discovery is possible with signatures like four muons
(H — Z°Z° — pppp), 2 high energy photons (H — vv), or in final states with b-jets
(H — bb). Hence, muon reconstruction and charge identification with high efficiency and
momentum resolution over the entire kinematic range, and in particular for high energetic
muons is an important design goal. Further, the measurement of electromagnetic energy
and diphoton masses must be excellent (~ 1% at 100 GeV) and requires an efficient 7°

suppression.
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3.2. The CMS Detector

Reconstruction of secondary vertices is crucial for the identification of b-jets and also of
tau-leptons which may appear with high abundance in supersymmetric events. A high effi-
ciency and precision in charged particle track reconstruction is essential for these purposes.

Still, the striking signature of supersymmetry is large missing transverse energy, which
must be determined with good resolutions and further motivates the hermetic coverage of
the interaction point. New resonances decaying via the strong interaction may be found
in the dijet mass spectrum such that the dijet mass resolution, reached by a fine lateral

segmentation, becomes important.

3.2.1 Coordinate System and Conventions

The coordinate system used in CMS is a right-handed system, centered at the nominal
collision point, with the y-axis pointing vertically upward, the x-axis pointing radially
inward to the center of the LHC ring, and the z-axis pointing in the beam-direction toward
the Jura mountains.

The azimuthal angle ¢ is measured from the z-axis in the z-y-plane and the polar angle
0 is measured from the z-axis. Pseudorapidity is then defined as n = —ln(tang), the
magnitude of the transverse momentum pr = (ps,py)T becomes |pr| = |p] - sinf, and the
distance of two points in the 7-¢-plane is given by AR = \/(¢1 — ¢2)2 + (m1 — 1m2)2.

3.2.2 Superconducting Solenoid

The superconducting solenoid is 13 m long and with a diameter of 6m it is large enough
not only to accommodate the tracking device, but also the hadronic and electromagnetic
calorimeter, such that the absorbing material in front of them is minimized. A field strength
of 3.8 T in this dimensions can only be reached with a superconducting magnet. The strong
field is necessary for the bending of charge particle trajectories, that allows a momentum
measurement. Further more it saturates a sufficient amount of iron to embed the muon

chambers in its flux return yoke.

3.2.3 Tracking Detectors

The inner most detector component is a silicon pixel detector, surrounded by a silicon strip
tracker. Here the trajectories of charged particle are measured and their origins (vertices)
are determined by analysis of the hits on the modules. The silicon detector combines
a fine segmentation with radiation hardness and relatively low material budget, which is
beneficial to reduce effects from multiple scattering, bremsstrahlung and photon conversion.
Its layout is shown in figure 3.3.

With a length of 5.6 m and a radius of 1.25 m the tracker covers the pseudorapidity region
up to |n| < 2.5. The total active area sums to about 200m?2. A pixel structure was chosen
for the innermost parts since an occupancy of single detector cells in the order of 1% had
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Figure 3.3.: Cross-section through the the silicon tracker [37]. Each line stands for a sensor
module.

to be achieved, while having a hit rate density of e.g. 1MHz/mm? at a radius of four

centimeters.

Pixel Detector

The pixel tracker is divided into a 55 cm long barrel part with three layers of sensor modules,
at radii of 4.4, 7.3, and 10.2cm, and two layers of endcap modules, which are mounted on
turbine-like wheels at |z| = 34.5cm and |z| = 46.5 cm and have a radius of 15cm. A total
of 66 million pixels are distributed over the 1440 modules. Pixel dimensions are 100 pm in
transverse and 150 ym in z-direction.

Its live time due to radiation damage is limited to approximately 2 years for the first
pixel layer and greater than 10 years for the outermost in high luminosity LHC operations.

Strip Tracker

Further layers of active detector material are realized as silicon strip modules. In the central
region 10 layers are arranged in inner (TIB) and outer barrel (TOB) with the strips oriented
along the z-axis. The inner barrel is closed with the three layers of the inner disks (TID)
and the tracker endcaps (TEC) provide additional 9 layers (disks) of sensor modules. Those
in the inner disks and endcaps are placed perpendicular to the beam direction with strips
pointing radially outwards.

Each substructure is partially equipped with back-to-back modules in which the strip
directions of the two sensors are tilted by an angle of 100 mrad in order to allow for a
measurement of the third hit coordinate.
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3.2. The CMS Detector

Since the hit density falls with increasing distance to the interaction point, the pitch and
length of the silicon strips can be increased accordingly to reduce the number of readout
channels while keeping the occupancy low. The pitch increases from 80 um up to 180 um
and the strip length from 10 cm up to 25cm. In order to keep the noise at a low level, the
sensor thickness also increases from 320 ym to 500 pm.

The tracker layout leads to approximately 3 hits in the pixel and 9 hits in the strip
detector for a particle reaching the electromagnetic calorimeter. The amount of traverse
material depends strongly on the pseudorapidity and reaches from 0.4 radiation length
Xo up to 1.8 X, with largest contributions, in decreasing order, from support structures,
cables, cooling and electronics.

Tracker Performance

Transverse momenta of 100 GeV are reconstructed with a resolution of 1-2% in the central
region (|n| < 1.6). The reconstruction efficiency for single muons in this detector region
reaches 99% and decreases in the forward region, where no layers of the inner disks are
traversed. For pions the efficiency is degraded mainly due to multiple scattering to about
85%.

3.2.4 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is build of lead-tungstate crystals (PbWO4) and
surrounds the tracker up to a pseudorapidity of |n| = 3.0. Lead-tungstate crystals were
chosen because they have a short radiation length of Xy = 0.89 cm and small Moliere radius
(2.2cm), such that a compact geometry with fine granularity and good spatial resolution
can be realized. Furthermore they are radiation hard and have a fast light emission.

In the barrel region (|| < 1.479) crystals with surface dimensions of 2.2 x 2.2cm? and a
length of 23 cm, corresponding to 25.8 radiation length, are mounted in a quasi-projective
geometry (Fig. 3.4) with their surface pointing to toward the interaction point. The light
emitted by the crystals is collected with avalanche photo diodes.

In the ECAL endcaps (1.479 < |n| < 3.0) the crystals have a length of 22cm (24.7X)
and are connected to vacuum photo-triodes for readout. The endcap is partially shielded
with a preshower detector, extending from |n| = 1.653 to |n| = 2.6. It consists of two lead
plates of 2Xy and 3.X, respectively, interspersed with silicon strip detectors and allows for
an identification of neutral pions.

For particle energies up to 500 GeV the resolution o is described by

(6= () ()

where a stands for a stochastic factor, b for the noise, depending e.g. on the luminosity,
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Figure 3.4.: One quarter of the ECAL showing the orientation of the crystals [37].

and ¢ for an intrinsic constant contribution. Parameters were determined in an electron
test beam setup of a barrel supermodule to a = 2.8%, b = 0.12 and ¢ = 0.3%.

For higher energies showers leak out of the calorimeter’s back and this parametrization
becomes invalid.

3.2.5 Hadronic Calorimeter

The hadronic calorimeter (HCAL) consists of several detectors (Fig. 3.5). The barrel part
(HB) is placed between the ECAL and the solenoid, which limits the amount of absorber
material that can be used. The endcap (HE) detectors fit inside the remaining space at
both ends of the magnet cylinder. The HCAL is completed by an additional active barrel
layer outside the magnet (HO) and a forward component (HF).

Barrel and endcaps are both built from brass plates as absorber, plastic scintillator as
active medium, wavelength shifting fibers and hybrid photo diodes for light detection.

In the barrel (|n| < 1.3) the absorber plates are about 5cm thick and interleaved with
layers of scintillator with at thickness of 3.7 cm each. The brass absorber material has an
interaction length of 1.49 cm and a hadronic interaction length A = 16.42cm. . At n =0
the material sums up to only 5.82\ plus about 1.1\ from the ECAL, thus requiring the HO
as a tail-catcher for higher energetic hadrons. The amount of traversed absorber material
increases towards the forward region and reaches 10 interaction lengths. HB is segmented
into 2304 towers with a size of An x A¢ = 0.087 x 0.087.

In the endcaps (1.3 < |n| < 3.0) 8 cm thick absorber is used. The granularity is increased
for |n| > 1.6 to Anp x A¢ = 0.17 x 0.17 and towers have a longitudinal segmentation into
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Figure 3.5.: Sketch of one quarter of the CMS detector, showing the position of the hadronic
calorimeter components, namely the barrel (HB), endcaps (HE), outer (HO) and
forward (HF) parts [37].

up to 3 divisions close to the beam line, where particle rates and energy depositions reach
their maximum.

On the outer side of the solenoid cylinder, extending up to || < 1.3 an additional layer
of scintillator serves as active medium behind the absorbing material of the magnet. The
depth of the absorbing material depends on pseudorapidity and is approximately 1.4sin 8
interaction lengths. The HO segmentation is identical to the barrel.

For the most forward HCAL component (HF) robust steel absorber plates were chosen,
instrumented with quartz fibers and photomultipliers for the detection of Cerenkov light.
It is located 11.2m away from the interaction point and covers the pseudorapidity region
of 3.0 < |n| < 5.2, where the radiation dose is extremely high, requiring such robust
technology.

The HCAL performance in view of jet energy resolution is summarized in section 3.3.1.

3.2.6 Forward Detectors

The experimental setup is completed with two very forward detectors. Castor (Centauro
And Strange Object Research), located 14.38 m away from the nominal interaction point,
covers the region of 5.2 < |n| < 6.6. The Zero Degree Calorimeter (ZDC) measures neutral
particles at a distance of 140m (|n| > 8.3). Both are tungsten-quartz Cerenkov calorimeters
for radiation resistance reasons and have 10 and 7 interaction lengths, respectively.
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3.2.7 Muon System

Three different types of gaseous muon detectors are embedded in the flux return yoke of the
CMS magnet, where the magnetic field still provides sufficient bending power to determine
muon momenta (Fig. 3.6).

1200
Z (cm)

Figure 3.6.: Schematic view of one quarter of the CMS detector, showing the position and type
of the muon chambers [36].

Following the geometry of the solenoid, muon chambers are placed parallel to the beam-
axis in the four barrel muon stations and perpendicular in the endcap wheels, covering an
area of about 25000 m?.

Drift tubes (DT) are used in the four barrel stations (|n| < 1.2), where neutron induced
backgrounds are small and low muon rates are expected. Fach of the three inner sta-
tions is equipped with four chambers measuring the r-¢-coordinate and four chambers for
determination of the z-coordinate. Hit resolution is about 100 pum.

In the four endcap stations more radiation resistant cathode strip chambers are installed
because muon rates and background levels are higher and the magnetic field is large and
non-uniform. They cover the pseudorapidity region of 0.9 < |n| < 2.4 and provide a fast
response time and fine segmentation.

The muon systems can be used to trigger on the muon transverse momentum with good
resolution (15% (25%) for the barrel (endcap)). However, the uncertainty on background
rates and in the determination of the correct bunch-crossing motivates the existence of a
complementary set of muon detectors. The resistive plate chambers (RPC) have a lower
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hit resolution, but very fast response and good time resolution and are especially suitable
for triggering and bunch crossing identification. Six layers of RPCs are placed in the barrel
and three layers in the endcap stations, covering || < 1.6.

Reconstruction efficiencies for single muons are typically 95-99%, only dropping in tran-
sition regions between different detectors. Multiple scattering before the muons stations
limits the pr resolution of the standalone muon system to about 9% for transverse momenta
up to 200 GeV.

This can be improved significantly by combining measurements in the muon system with
tracker information, especially beneficial at low pp (cf. Sec. 3.3.4).

3.2.8 Trigger System and Data Acquisition

The LHC bunch crossing frequency of 40 MHz in combination with multiple interaction per
crossing leads to a very large amount of data to be processed by the readout system. Since
it is impossible to store the information of all events, a trigger system has to reduce the rate
by a factor of 105. The first trigger level (L1) is realized with programmable electronics
and has an output rate of 100 kHz. The second level, called high level trigger (HLT), is a
software trigger, i.e. it consists of a computing farm running the selection software. This
gives the opportunity to use complex algorithms and evolve them in time. Data is finally
transferred to the storage systems with rate of about 100 Hz [38].

The L1 trigger does not use the full detector information but only coarsely segmented
data from the calorimeters and the muon system. During the L1 processing the readout
data is stored in pipelines on the front-end electronics. In contrast, the HLT has access to
the full detector information.

The L1 decision is taken in four steps (Fig. 3.7). First trigger primitives are generated
from energy deposits in the calorimeter (trigger towers) and track segments or hit patterns
from all three muon chambers types.

In a second step regional triggers combine pattern information to form and rank trigger
objects like electron, photon or muon candidates. Information on minimum-ionizing parti-
cles and isolation properties is analyzed as well. The highest ranked objects are determined
from the Global Muon and Global Calorimeter Trigger. The latter also calculates quan-
tities like jets, their scalar pr sum or the total (missing) transverse energy in the event.
Finally, the Global Trigger takes a decision whether to accept or reject an event based on
these objects.

The decision also takes into account the readiness of the subdetectors and the data
acquisition system (DAQ). The DAQ system has to read out 1 MB per event, resulting in
a data flow of 100 GeV/s at nominal LHC luminosity, which is passed to the HLT farm.
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Figure 3.7.: Architecture of the L1 trigger [37].

3.2.9 Data Storage and Processing

The large amount of experimental data acquired with the CMS detector must be stored
and made available for analysis. The computing system supports tasks like saving of raw
and derived data, processing of pattern recognition and event filtering, data reduction, and
the final physics analysis. Furthermore, large samples of simulated events are produced for
comparison of data and theoretical descriptions. Data processing also requires the access
to non-event data like detector conditions and calibrations.

Since these services cannot be provided at the required scale by single computing center,
CMS, like the other LHC experiments, supports distributed computing in the Worldwide
LHC Grid (WLCG) [39]. The WLCG is an association of computer centers around the
world, connected via high-speed networks, which provide common interfaces (grid middel-
ware) to their storage and CPU resources. The majority of the recorded data of all LHC
experiments will be stored and analyzed outside CERN.

These sites are organized in a hierarchical Tier structure, and responsibility for the
various computing tasks is distributed over three different levels (Fig. 3.8).
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Figure 3.8.: Hierarchical structure and tasks of the CMS computing centers, also showing the
data flow [37].

Tier-0 CERN hosts the only Tier-0 center, where the incoming data is stored and prompt
reconstruction takes place. Data is then exported to Tier-1 sites.

Tier-1 Seven Tier-1 sites provide large batch CPU facilities and storage space to the
collaboration. A tape archive is mandatory since each Tier-1 has custodial responsibility
for a share of the recorded data. Tier-1 centers have direct network connections to the
Tier-0. Second-pass reconstruction and skimming is carried out, simulated data is stored
and data is passed down to Tier-2 sites for analysis.

Tier-2 The final physics analysis takes place at the Tier-2 centers on skimmed data ob-
tained from the Tier-1. In the order of 100 sites, usually local university computing clusters,
carry out his task. They are also in charge of production of simulated events, which are
cached in the local storage before being transferred to a Tier-1 site. Special activities like
calibration and alignment studies are also run at Tier-2 sites.

In reality a fourth category of Tier-3 centers exists. These are local university computing
clusters with grid enabled storage and CPU resources, used for physics data analysis but
without formal responsibilities in the collaboration.

A flexible and scalable software framework is crucial for efficient data processing. In CMS
this is achieved with a modular system with loosely coupled components and well-defined
interfaces. The software framework provides a central application in which modules for each
particular data manipulation or analysis task can be plugged in. Complexities concerning
e.g.
data model where the event is the central entity. Communication between modules can

reading and writing to files are hidden from the user. The framework imposes a
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only happen through products written to the event. Every CMS application consists of
a sequence of modules and their configuration. Provenance information for each product
in the event is added automatically. All data is stored in ROOT files but with varying
content:

e RAW contains the full recorded detector information, has a size of 1.5 MB/event and
is permanently archived. The RAW data is divided into primary datasets by trigger
information.

e RECO data already passed the reconstruction steps. Pattern recognition like cluster
and track finding, vertex reconstruction, corrections and filtering are finished and re-
constructed physics objects are stored in the event, which is reduced to 0.5 MB /event.
Still it is possible to apply new calibrations or alignment with the available informa-
tion.

e AOD (Analysis Object Data) is a compact (100 kB/event) data format obtained from
RECO by filtering or skimming. It contains only high level physics objects and all
information to refit their kinematics. Due to the small event size large datasets of
AOD data can be stored at many sites

Non event data from construction (e.g. detector geometry), configuration, and run con-
ditions like calibrations, alignment or detector status are kept in databases which can be
accessed by CMS software applications.

In order to facilitate data handling and analyses on remote sites, various CMS specific
grid related services are necessary. Data catalogs (Data Bookkeeping Service, Data Location
Service, Trivial File Catalog) provide the mapping of dataset names to the hosting site and
the actual location of data in the site’s local file system.

A data transfer and management tool is used for the placement of data on the sites
and for bookkeeping. Further workflow management tools are available for user-specific
analysis job creation, submission and monitoring as well as for large scale job submission
for reconstruction or simulation purposes.

The functionality of the CMS computing system was demonstrated in various tests before
LHC startup.

3.3 Physics Objects Reconstruction

In this section the reconstruction algorithms for physics objects which are relevant in this
study are summarized. These are jets, missing transverse energy, electrons and muons.
From the signals of the numerous detector readout channels important information must
be filtered out. Therefore pattern recognition algorithms are applied in the CMS recon-
struction software in order to find detector regions where particles have passed after the
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bunch crossing, to identify the type of the particles and to reconstruct their momenta. In
most cases several subdetectors are involved in the detection of a particle.

3.3.1 Jets and Missing Energy

Hadronizing quarks and gluons form jets of hadrons in the detector, which are stopped in
the calorimeters. The traditional jet reconstruction relies only on calorimeter information,
while more sophisticated approaches, which use additional information from the tracking
detectors or are based on particle-flow reconstruction [40], are a competitive or even superior
alternative.

In the classic approach, cells from the hadronic and electromagnetic calorimeters are
combined into so-called towers. Towers are basically 7-¢-bins, resembling the HCAL gran-
ularity, whose energy content is determined by summing up all included cells above a noise
threshold.

The basic idea. of the particle-flow approach is the reconstruction and identification of all
stable particles in the event [41]. Beside electrons, muons and photons this also includes
charged and neutral hadrons. Exploiting measurements of all CMS subdetectors a list of
individual particles in the event is created, which serves as input to the particle-flow jet
clustering and missing transverse energy determination.

Several clustering algorithms to combine the identified particles or calorimeter towers
into jets are available and used in the CMS reconstruction software, like cone, kT and anti-
kT algorithms. In this work particle-flow jet reconstruction is used, chosing the anti-kt
clustering algorithm [42]| with a parameter R = 0.5.

Jet Energy Corrections

The energy of reconstructed jets needs to be calibrated to the incident particle’s energy
since the detector response is not perfect. In CMS a factorized approach was chosen,
consisting of several levels of jet corrections. Calibration factors are usually derived from
Monte Carlo simulation or collisions data using 2 — 2 processes, like dijet, v+jet and Z+jet
events. In such processes the fact that the two objects have to be balanced in the transverse
plane can be exploited to calibrate the jet. The levels of jet corrections are sketched in the
following. [43]

e An offset correction removes the contribution of electronic noise and pile-up. The
average cell-energy measured in zero-bias events is subtracted from the towers. The
magnitude of this correction grows with increasing luminosity, when the number of
interactions per bunch crossing becomes higher.

e The relative correction in pseudorapidity flattens the energy response which initially
is not uniform. This is usually done using dijet balance events.
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e An absolute correction of the transverse momentum establishes the correct energy
scale. Technically, a comparison of a jet to a balancing object measured in the more
precise ECAL, tracker and muon system is made. Muons from Z-bosons decays or
photons are commonly used.

More optional corrections exist but were not applied to the jets used in this work.

e EMF correction (Electromagnetic fraction): CMS calorimeters are non-compensating,
i.e. their response is different for hadrons and electrons/photons. The measured jet
energy depends on the relative content of electrons and photons in the jet, which are
stopped in the ECAL and it has to be corrected for this effect.

e Flavor corrections: Different fragmentation in gluon and light-quark jets as well as
neutrinos from semileptonic decays of heavy quarks inside jets can be compensated
by flavor specific corrections. However, these depend on the assumed process and

require an event interpretation.

e Underlying Event: A correction for the energy from underlying event, i.e. soft inter-

actions involving spectator partons.

e Parton: The jet can be corrected to match the incident parton energy level.

Performance of Jet Reconstruction

Jet resolutions are strongly dependent on the jet transverse momentum and the pseudora-
pidity region in the detector. Typically they are determined in bins of these two variables
and their evolution from low to high transverse momenta in a certain n-bin is fitted with a
resolution function. For jets including tracking information this formula reads [44]

o o ?
7(2?/;%&)) ") = \/Sgn(N) : <%> + 82 (pp )M+ C2, (3.4)

and contains a noise term (N), a constant term (C) and a stochastic term (S), which is
modified by a fourth parameter (M) in order to account for the fact that the response does
not follow the same form as in case of a pure calorimetric jet measurement.

The relative jet pp resolution for particle-flow anti-kt (R = 0.5) jets, determined from
Monte Carlo simulation as a function of the generated pr is given in Tab. 3.1

Only in case of high pr the particle-Flow jet energy resolution is dominated by the
energy resolution of the hadronic calorimeter. The inclusion of tracking information limits
the degradation of the resolution when going towards lower transverse momenta.
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Pseudorapidity N S M
0.0<|n <0.5 | 3.97 | 0.18 | 0.63
0.5<n <1.0 | 355 |0.24 | 0.53
1.0<|n| <15 | 4.55 |0.23 | 0.59
1.5<|n <20 | 463 |0.24 | 0.49
20<|n <25 | 253 |0.34]0.29
25 <n <3.0 | —=3.34 | 0.73 | 0.08
3.0<|n <5.0 | 295 |0.12 | 0.96

Table 3.1.: Jet pr resolution parameters for anti-kt (R = 0.5) particle-flow jets [45]. The constant
term C of Eq. 3.4 was fixed at zero.

3.3.2 Missing Transverse Energy

Missing transverse energy? is calculated as the pr of the negative fourvector sum of of all
particles found in the particle-flow event reconstruction.

pr = ¢(;pg)2+ () 59

So-called Type I corrections are applied, which propagate the individual jet energy correc-

tion factors to the missing Er.

3.3.3 Electrons

The reconstruction of electron candidates proceeds in several steps [46]. First a pattern
recognition algorithm is applied to search for clusters of active ECAL cells. These clusters
are then merged into superclusters which extend along ¢ to include Bremsstrahlung pho-
tons, radiated during the flight through the tracker material. In order to find compatible
hits in the tracking detectors a trajectory is extrapolated through the magnetic field from
the supercluster position toward the interaction point. Compatible hits are finally fitted to
form the electron track.

Electron Identification

Additional quality criteria have to be applied to filter the obtained electron candidate collec-
tion, since the ECAL energy deposition of jets, photons or single pions, which accidentally
matches to a good track, is frequently reconstructed as an electron (fake electrons). Several

2Strictly speaking the name missing Er is wrong. However, the difference between transverse energy
and transverse momentum is negligible because particles’ masses are small compared to their typical
momenta.
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selections with distinct properties concerning efficiencies and fake rates are available in the
CMS software [47|. They are either cut based using neural network, all using the following
variables.

e The ratio of energy deposited in the hadronic and electromagnetic calorimeter H/FE,
which separates hadrons.

e Matching between the energy of the supercluster and the electron track momentum,
measured at the vertex or at the calorimeter E/p. This quantity should be close to
unity for electrons since their mass is negligible and all energy is deposited in the
ECAL.

e Geometrical matching between the electron track parameters at the vertex extrapo-
lated to the super cluster and the measured supercluster position (Ag¢;, and An;,)

e (Calorimeter shower shape variables, characterizing the the width of the ECAL cluster

(Tinins D29/ D25)-

In addition electrons from photon conversion are rejected by a cut on the impact parameter
and a limit on the number of layers crossed by the track, which do not show hits.
Another requirement can be the isolation of the electron object in one or several detector
components. For isolation further restrictions are applied on the number, energy or trans-
verse momentum of other particles within a (hollow) cone around the candidates fourvector
direction. Isolation can be calculated for the tracker, the electromagnetic, and the hadronic

calorimeter.

Performance of Electron Reconstruction

Electron reconstruction performance depends strongly on the required quality criteria and
is always a trade-off between efficiency and purity. For the electron selection used in this
work (Loose Fixed Threshold [48]) an efficiency of 98% for electrons with pr > 10 GeV
is reached in Z — ee and W — ev events. The efficiency is approximately uniform in
pseudorapidity. The selection purity was found to be 92% for Z — ee and 89% in W — ev
events in a scenario including tracker misalignment. The achieved momentum resolution
for electrons is of the order 2-5%.

3.3.4 Muons

Muon reconstruction [49] starts in the dedicated muon chambers where hits are combined
into track segments, which serve as seed for a first trajectory search. The algorithm looks
for hits in all layers of the muon system, including the RPCs and performs a track fit. The
track extrapolation towards the interaction point must be compatible with the interaction
point within Az = Ay = 15um, Az = 5.3cm, what corresponds to the 1o bunch width

38



3.8. Physics Objects Reconstruction

and length. In so-called global muon objects the reconstructed track from the muon system
is combined with hits in the inner tracker. Hits from different silicon layers in the region
of interest around the extrapolated trajectory are analyzed and compatible ones enter a
global track refit to tracker and muon system hits. Like in the case of electrons isolation
quantities in the tracker and calorimeter are defined and can be used for a further selection.

Performance of Muon Reconstruction

Muon reconstruction in CMS is highly efficient, reaching more than 98% for muons with
pr > 10GeV and degrading slightly to 96% for 1 TeV muons. Furthermore global muons
have a very high purity. Fake muons from punch-through of high pr jets and secondary
muons from heavy flavor decays inside jets can further be reduced by tight quality cuts [50].
The probability for a correct charge assignment is above 75% for TeV-muons and increases
t0 99% for lower pr muons. Exploiting the power of the full tracking system the probability
stays above 98%, even for TeV-muons. A momentum resolution of a few percent is reached,
which depends on the muon momentum. It becomes worse toward the forward direction and
approaches 10% for 1 TeV muons in the pseudorapidity region. 1.2 < |n| < 2.4 (Fig. 3.9).
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Figure 3.9.: Muon pr resolution in two pseudorapidity bins as a function of the transverse-
momentum using the muon system only, the inner tracking only, and both [37].
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3.3.5 Event Simulation

The CMS software framework for event simulation and reconstruction (CMSSW [36]) pro-
vides interfaces for all common Monte Carlo event generators, like Pythia [51], Alpgen [52],
Sherpa [53] and others, which calculate the hard scattering processes. Also the fragmen-
tation and hadronization of gluons and quarks, as well as the decay of unstable particles
is handled by these external codes. Their outcome is fed to the CMS detector simulation
module in the HEPMC [54] format.

The CMSSW modules then simulate the interactions of particles with the detector ma-
terial, the electronics response and readout and, in exactly the same way as for collisions
data, the reconstruction of physics objects as described above.

For the simulation part two different codes exist within CMSSW. The GEANT 4 [55]
based full simulation provides a detailed Monte Carlo simulation of the interactions of
particles with the detector material and the electronics response.

The fast simulation package (FastSim) uses a simplified architecture and parametrized
responses of detector components for the simulation of event signals. It is constantly tuned
to the detailed GEANT based simulation and in future as well to data. The main advantage
of the fast simulation is the reduced CPU consumption, which is about 100-1000 times
lower than for the full simulation [56]. In both approaches pile-up events can be added to
the detector signal. While the simulation of the electronics signal is different, both codes
rely on the same high-level algorithms to reconstruct the physics objects.
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Chapter 4

The Mass Determination Problem

In this chapter methods for mass determination are summarized and a new method based
on kinematic fits is introduced. Furthermore the benchmark point chosen for the mass
determination study and its characteristics are discussed.

4.1 Motivation

Knowing about the good prospects for a discovery of supersymmetric particles at the LHC
(c.f. Sec. 2.3.2) it is worth considering the next steps following a discovery, i.e. the deter-
mination of the underlying theory. It might be difficult to tell, whether the observed new
particles really are of supersymmetric nature. Measuring their properties, like spin, charge
or mass, will be necessary to reveal the correct theoretical description.

Finding the correct SUSY model is not an easy task since the SUSY parameters are often
defined at a high energy scale (e.g. GUT scale), while observations are taking place near
the electro-weak (TeV) scale. The evolution of the parameters and particle properties, like
masses, from the high to the low scale is described by the renormalization-group equations,
but unfortunately there is no unique mapping the other way round, from the observed
quantities to the high energy parameters [57].

A promising approach to SUSY parameter determination are global fits of physical ob-
servables to SUSY models, i.e. statistical tests of the compatibility of measurements with
predictions derived from a certain parameter choice in a SUSY scenario. This method was
successfully demonstrated by e.g. the SFitter [58] and Fittino [59] and Mastercode [60,61]
groups.

For each choice of parameters the SUSY spectrum at the weak scale is calculated using
common RGE implementations. The agreement with standard model observables and
future SUSY measurements is quantified, e.g. using a least squares minimization. This
way conclusions about the parameters and the underlying model can be made.

Typical SUSY related input variables are mass edges, i.e. endpoints in invariant mass
spectra (cf. Sec. 4.2), branching fractions, cross-sections and productions rates for various
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LHC final states. Furthermore, Standard Model measurements like precision observables
from the LEP experiments, beauty or kaon physics or the anomalous magnetic moment of
the muon are used. Important cosmological constraints come from relic density observa-
tions.

In these approaches a measurement of absolute SUSY particle masses could as well
contribute to a successful application.

4.2 Approaches to Mass Determination

The existence of two invisible particles in R-parity conserving supersymmetry makes mass
determination a very challenging task. There is no possibility to reconstruct invariant
masses of the decaying particles directly from the measured final state.

Nevertheless, a variety of methods for mass determination was proposed during the last
years [62,63]. The proposals vary from an approximate SUSY mass scale determination to
sophisticated procedures to reconstruct entire decay cascades with all involved masses and
invisible particles.

The first category of methods uses kinematic variables and their correlation to the SUSY
mass scale. From the observed distribution in collision data the mass scale can be estimated
via a comparison to Monte Carlo simulations. An example for these simple approaches is
the effective mass variable, defined as the mass of the fourvector sum of final state particles
plus the missing (transverse) energy [64,65]

A more direct mass determination is possible with the stransverse mass variable Mr4 [66].
It is inspired by the transverse mass as used in the determination of the W-boson mass. It
provides a possibility to determine the mass of the primary sparticles produced in the hard
interaction. The complication of two escaping LSPs requires a slightly different definition
with respect to the original transverse mass, such that it includes their missing momenta.
Usually the variable is minimized over all possible values of total missing transverse momen-
tum. While the endpoint of the distribution yields an estimate of the mass of the decaying
particle it unfortunately depends on the LSP mass. Several variations on the definition of
the mass variable can be found in the literature.

The dependence on the LSP mass can be overcome by looking at the endpoint of the
stransverse mass as function of a trial LSP mass. A kink can be observed at the exact
value of the two unknown masses [67]. This methods need very high statistics samples and
backgrounds have to be small.

A second and well established method is the measurement of mass edges and kinematic
endpoints [64,68-70]. The distributions of invariant masses of measured final state particles
show a typical structure with edges at the lowest or highest allowed values. The enpoints
are related to absolute or relative mass differences of the decaying on-shell particles. By
combination of several measurements of this kind, the absolute masses can be determined.
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This determination can even be improved by incorporating event-wise information like the
momentum balance [71] in a fit. It was shown, that mass edges can be interpreted in a
wider context of mass related observables. Instructions of how to construct other such
observables, based on general considerations were proposed [72].
The best known example of an edge in an invariant mass distribution is the dilepton edge
in the neutralino decay
)Zg — ZNR(—i-ll) — )2(1)(4-[2)

where [ can be any lepton flavor and I the corresponding slepton.
The invariant mass distribution of the lepton pair (my;) turns out to have a triangular
shape ending at the maximum value, which is related to all three involved masses [70]

2 _ 2 2 _ 2
(m;?ax)Z _ (mfég mlR)imlR mf(?) (41)
mr

Detailed studies exist for the detection of this mass edge with early LHC data [73], which
show that a precise measurement is feasible.

All of these approaches do not require the explicit reconstruction of the LSP momenta.
In contrast, the last group of methods is based on the reconstruction of the entire decay
chains in an event, hence relying on the clean selection of a certain event topology. As the
method presented in this thesis falls into this category, the principles will be discussed in
detail here. These methods are sometimes called polynomial methods.

4.2.1 Decay Chain Reconstruction and Mass Determination

The key issue in event reconstruction is the determination of the LSP momenta. If they
are known, the masses of the decaying particles are given by the invariant masses of the
decay products, which always include an LSP.

A possibility for a momentum determination lies in the utilization of an event hypothesis.
An event hypothesis means an assumption about the decay topology and implies a number
of kinematic constraints, which follow from four-vector conservation at the vertices in the
decay chain.

Let us consider the specific event topology shown in Fig. 4.1. Two particles (A/A’) are
produced in the collision, which then decay via the states (B/B’) and (C/C’) into the
LSPs (D/D’). While the LSP cannot be detected the Standard Model decay products
occurring in the sequence (f;) are measured in the detector if they are charged leptons
or jets. Neutrinos may also occur as decay products but this case will not be considered
here, since this means a further complication due to three more unmeasured momentum
components per neutrino.

The conservation of the four-momentum at the decay vertices (0-5) leads to six so called
invariant mass constraints, by taking the square of the four-vectors. For the first decay
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Figure 4.1.: Example for a decay chain involving several intermediate heavy particles. The f;
denote measured final states, while capital letters stand for SUSY particles. The
particle D (D’) stands for the invisible LSP.

branch this yields the following equations, where p stands for the four-vector of the corre-

sponding particle.

(pp +1p)° = po =M (4.2)
(pD + Dy +pf2)2 = pQB = M%
(pD +Dp +Df, +pf1)2 = p,24 = MEX

In addition the LSP must be on-shell.
pp = Mp, (4.3)

The second decay branch is described by

(por +ps)° = pew = Mg (4.4)
(D +pgs +055)? = P = Mg,
(ppr + g +0ps +01)° = Pa = M3
ph = Mp.

Two further constraints are obtained from the assumption, that the entire event should
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have zero transverse momentum.® The equations read

P}, + P}, +Pf, + b + 0%, T 05, + 05 +pp = 0 (4.5)
Py, + 0%, + 0%, + 0+ 0%, + 0% 08 A0 = 0

Note, that the four-momenta of the invisible particles D and D’ appear in the formulae.
Therefore one can consider this as a system of 10 equations with a number of unknowns.
Considering the case of two identical decay chains the unknowns are

1. 2 x 4 LSP four-momentum components, which are event specific.

2. 4 masses of the particles A, B,C, D, which are the same for each event having the
same topology.

In the following the first category of parameters will be called local unknowns while the
masses will be referred to as global unknowns. Counting 10 equations and a total of 12
unknowns for this cascade it is not possible to solve this system of equations but there are
two ways to overcome this problem.

The first one was chosen by Cheng et al. [74]|. Exploiting the fact that global unknowns
are common to all events, they combine pairs of two events to obtain a problem with
2 x 8 +4 = 20 unknowns and 2 x 10 = 20 constraint equations. As the equations are
nonlinear several complex solutions exist, which must be found numerically. Taking only
solutions with real values the histogram of the obtained mass values for many pairs of
events shows peaks at the positions of the true particle masses.

Another approach makes use of mass hypotheses to find a solution of the unmeasured
LSP momenta. This ansatz is used by Webber [75] and as well in this work. By making
assumptions about the involved SUSY masses the number of unknowns is reduced to 8 per
event, thus being smaller than the number of constraints. Hence, the LSP momenta can be
determined by solving the system of equations. Not all equations have to be used as their
number is larger than the number of unknowns in the specific topology of Fig. 4.1.

A smart way to solve for the LSP momenta was presented in [75] and is discussed here in
some detail since we will make use of this solution in our work. The constraint equations
(4.2 — 4.5) are rewritten as linear functions of the unmeasured four-momenta pp/pps by
expanding the left side of the equation and substituting any squared terms by the mass
values, which of course are hypothetical in case of the SUSY particles. So, using p%, = M3,

3This is true only approximately because initial and final state radiation may cause a significant deviation
at a high energy hadron collider like the LHC. This problem is discussed further detail in Ch. 7
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one obtains

_2'pf1'pD = M]_23_Mf21+2'pf1'pf2+2'pf1'pf3+m3‘1E‘Sl (4‘6)
_2'pf2'pD = Mg*_Ml%+2'pf2'pf3+m§2ES?
—2-pf3-pD = M%—Mgv—}—m?fBESg

Equivalent expressions S5, S¢ and S7, depending on the momentum of D', can be obtained
for the second decay branch.
Furthermore the transverse momentum balance can also be read as a function of the

unmeasured momenta.

pf) + pID/ = pfm‘ss =54 (47)

Ph DD = Dhiss =S8

Together these eight expressions form a linear system of equations for the 8 components
of the D and D’ four-momenta and can thus be solved analytically, e.g. by matrix inversion.
Details of the solution are given in [75].

The solution yields values for the unmeasured momenta which fulfill the above equations
but note that they do not fulfill the original mass constraints (4.2) and (4.4), unless p% =
Ml% holds which is not required in the solution. In contrast, the deviation p% - M12) can be
used as statistic to test how well the mass hypothesis fits to the events under investigation.
By searching the mass space (M4, Mg, Mo, Mp) for the minimal deviation, summed over
all events, the masses can be determined.

4.2.2 The Kinematic-Fits-Method

The ansatz followed in this work is slightly different. Again a mass hypothesis is used
to solve for the local unknowns in the events, but in contrast to the method of Webber
presented above, all available constraints are used at the same time.

A well established technique to exploit such over-constrained topologies are kinematic fits.
In a kinematic fit the measured parameters are varied such, that the constraint equations
are fulfilled and at the same time the sum of the relative quadratic deviations from the
originally measured values (residuals) is minimized, taking into account the size of the
uncertainty for each measurement.

An example is the usage of the W-boson mass constraint in a fit of top-quark events,
where an improvement of the top-mass resolution can be achieved. Even more similar to
the SUSY problem is the situation of semi-leptonic top-pair events, where the unmeasured
momentum components of the neutrino are extracted from the fit. However, this situation
still is less complex than a SUSY event, since there is only one unmeasured particle and its

- and y-momentum can already be deduced from the transverse momentum balance.
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In this work the kinematic fit approach is extended to the SUSY topology described
above. This method was already studied for a hadronic final state and a different fit
implementation in [76]. For each event a kinematic fit can be performed if a mass hypothesis
is specified. The goodness of fit is given by the quadratic sum of the residuals which should
follow a y2-distribution with 2 degrees of freedom (dof) in our case. The number of dof is
obtained by subtracting the number of unknowns (8) from the number of constraints (10).
Now, the event hypothesis can be varied and the y?-value can be taken as a measure for
the degree of compatibility with the true masses.

However, a single event does not have the discriminating power to decide which are the
true masses. It merely defines a hyperplane in the mass space which fits to this specific
event. Only by combining several events a distinction between good and bad mass hy-
potheses becomes possible. The expectation is that for an ensemble of events the average
x2-value is smallest when testing the correct masses in the fit (Fig. 4.2). The details how
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Figure 4.2.: Schematic view of the combination of event-wise mass scan for mass determination.

this combination is realized is described in Ch. 7.

Note that experimental uncertainties are included in the fit by using the full covariance
matrix of the measured parameters. This contrasts with other available mass determination
methods based on event reconstruction, where these experimental uncertainties are not
taken into account.

If the constraints are non-linear, like the mass constraints given above, the fit must use
an iterative procedure (c.f. Sec. 6.1). This contrasts with the analytical approach chosen
by Webber.

Details on implementation and performance of this new method are given in the next
chapters. First the setup in terms of SUSY scenario and decay chain is discussed in the

following sections.
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Chapter 5

Physics Scenario

5.1 SUSY Benchmark Scenario

The mSUGRA benchmark point SPSla is chosen for this study. It belongs to a set of
benchmark points, covering a wide range of possible signatures and event properties, which
were defined to facilitate the comparison of phenomenological studies in the HEP com-
munity [77]. As other studies concerning the determination of SUSY masses in leptonic
channels [74,75] made use of the SPSla benchmark point, it seems an appropriate choice
for the demonstration of the kinematic fit method and allows a direct comparison with the
results of other groups. The SUSY parameters of SPS1a are given in Table 5.1.

The chosen benchmark is a "typical” mSUGRA point with rather low masses and by
now is excluded from collider experiments (cf. Sec. 2.3.2). Nevertheless, using this bench-
mark point permits a direct comparison to previous mass determination studies. With its
intermediate tan 5 it lies in the bulk of the cosmologically preferred region [78,79]. The
Prospino [80] next-to-leading order cross-section is about 42 pb.

Figure 5.1 shows the mass spectrum of the SPSla as obtained from Pythia [51], given
the mSUGRA parameters. The actual masses obtained for the benchmark point depend
slightly on the specific code used for the calculation [81,82].

The masses in the spectrum reach up to 600 GeV and the gluino is the heaviest sparticle.
All squarks have slightly lower masses, around 550 GeV, despite the light stop quark, which
has a mass of only 400 GeV. It is the only squark reaching down into the mass region of
the two heaviest neutralinos and the almost mass degenerate heavy chargino. All sleptons
reside below the squarks in the mass hierarchy.

The spread of the various neutralino and chargino masses, interleaved with the left- and

mo ‘ M1, ‘ Ao ‘ tan g3 ‘ sign p
100GeV | 250GeV | —100GeV | 10 | +

Table 5.1.: mSUGRA parameters of the benchmark point SPS1a.
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right-handed slepton masses opens up a large variety of decay chains with leptons in the
final state. The lightest neutralino is the LSP, which is a common mSUGRA feature.

While in most cases right-handed squarks decay directly into the LSP, the left-handed
types initiate decay chains involving charginos and/or neutralinos. Suitable decay chains
for mass determination are discussed in the following section.
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Figure 5.1.: Spectrum of sparticle masses at the SPSla benchmark point [77].

5.1.1 Suitable (Leptonic) Decay Chains

The new mass determination method is based on an event topology which is over-constrained,
i.e. in which more constraints than unmeasured momentum components are available. This
defines which kind of events can be used: Having 2 x 4 = 8 LSP momentum components
at least 9 constraints must be available. Assuming transverse momentum balance, giving 2
constraints, at least 7 mass constraints and hence 5 intermediate mass states are required.

Beside the minimum length of the decay chain other considerations play an important
role in the choice of a suitable decay cascade. The signature, i.e. the Standard Model
final states of the decay, can either be chosen as fully hadronic and consist only of jets
or be partially leptonic if slepton and gaugino decays involving electrons and muons are
preferred. Decays into tau-leptons fall into a special category, as taus decay further and
the signature depends on the actual decay mode.

The decision for a fully hadronic or leptonic decay mode should take into account a
number of advantages and disadvantages:
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Branching ratio: the branching ratio is generally larger for hadronic decays.

Object resolution: electrons and muons can be reconstructed in the detector with
higher precision than jets, for which a larger uncertainty on the energy scale and a
worse resolution of the transverse energy have to be taken into account. This may
reflect in the final precision of the mass determination.

Combinatorics: in the event reconstruction all final state particles must be assigned
to a position on the decay branches. Having only one type of particles (jets) yields
a large number of possible permutations which grows factorially with the number of
particles. Including leptons in the signature the combinatorial factor is much smaller.

Backgrounds from other SUSY processes: signatures are not unique to a certain
topology, because many different SUSY decay channels are possible. The more leptons
in the final state the less channels are contributing.

Backgrounds from Standard Model processes: Cross sections for standard model pro-
cesses can be orders of magnitude larger. Especially for QCD-like, fully hadronic
signatures the background can be overwhelming. For more exclusive channels with
several leptons backgrounds are smaller and might even become negligible.

These considerations lead to a cascade, that ideally contains as many leptons as possible.

Analyzing the branching ratios at the SPS1la point one finds the following situation:

About 40% of the gluinos decay into a Gg (§ = @,¢,d, 5), which almost exclusively
decay into the LSP (>98%). First or second generation ¢y, and the lighter b; are each
found in 20% of the gluino decays. The remaining fraction of 20% goes in almost
equal shares into 52 or £; but not into Zs.

The decay of ¢r, proceeds dominantly in two channels: roughly 60% go into ﬁc and
30% into X9. In case of by the chargino fraction is reduced and the decay into t;
contributes significantly (14%).

96% of )ﬁ“ decay into a stau and a tau-neutrino, the others yield an LSP and a
W-boson.

All of X9 decay into a lepton and [r, with a 7-fraction of about 85%.

Right-handed sleptons have the exclusive decay into LSP and the corresponding lep-

ton.

Hence, when looking for a cascade with sufficient length it is clear that the starting point

must be a left-handed squark (first or second generation) or a by, optionally coming from

a gluino decay. As 20% of all events have a gluino and left-handed squark as primary
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sparticles and only 8% such a squark pair, this option is worth a consideration and will
give an additional jet in the final state.

For squark decays the chargino channel has the largest branching ratio. However, the
chargino decays either via 7 + v, yielding an additional unmeasured particle, or via a
W-boson, which has a dominantly hadronic decay and increases the number of jets in the
final state. A leptonic W-boson decay yields a neutrino, which again means an additional
unmeasured particle and makes it almost impossible to achieve an over-determined event

topology.

Having the second lightest neutralino as next particle limits the number of jets to 1 per
branch (plus the gluino jet). The disadvantage is the large abundance of stau-leptons in the
X9-decay, which decay to tau leptons, whose reconstruction and identification is especially
difficult. Limiting the signature to electrons and muons, which are simpler to reconstruct in
the detector, the complete decay chain will look as shown in Fig. 5.2. The total branching
ratio for the cascade starting with a gy, is 1.7 x 1072 at the SPSla. The same cascade was

Figure 5.2.: Feynman graph for event topology with 4 leptons at the SPS1a parameter point.

also used in other mass determination studies [74,75].

While the largest fraction of events with such a topology contains a ¢y, as starting point,
any of the other, lighter squarks (except ) can initiate the same cascade. Therefore we
include all possible squark types in our signal definition and consider them individually in
the analysis, if necessary. Masses of the particles appearing in the signal cascade are listed

in Tab. 5.2.

All branching ratios depend on the particular SUSY parameters and therefore other
points in the parameter space may yield more or less favorable leptonic decay chains.
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Particle H g ‘JL/gL ‘ fLL/éL‘ qr ‘ b ‘ by ‘ X5 ‘ Ir ‘f(?
Mass [GeV] || 606 | 568 | 562 | 546 | 546 | 517 | 180 | 143 | 97

Table 5.2.: Pole masses of signal cascade particles in the SPSla simulated events sample (cf.
Sec. 5.2).

Backgrounds

The majority of background events have the same topology but contain a stau slepton
instead of smuon or selectron. The stau channel has a four times higher branching ratio
and ~ 35% of the taus decay leptonically [16]. Other sources of four lepton events are
decays of Z- and W-bosons in the chain, but their fraction is small.

Concerning the Standard Model backgrounds, there are few processes with a signature
of four isolated leptons which form to pairs of opposite sign and same flavor. A further
requirement of hard jets and on missing transverse energy in the event will make their
contribution negligible [83,84].

Combinatorics

The number of possible permutations of jets and leptons in this topology is rather small.
We first consider the case of squark pair production, i.e. two jets and two lepton pairs
in the final state. Not taking into account the exchange of the two LSPs, which are not

measured anyway, the following permutations remain:
e Exchange of jets between branches — factor of 2
e Exchanging lepton positions on the same branch — 2 possibilities for each branch
e If the lepton pairs have identical flavor — 2 possibilities to combine them.

Note that if the LSPs are ignored the exchange of lepton pairs between branches is the
same as exchanging the jets. This yields a total of 2 x 2 x 2 = 8 permutations for different
flavor lepton pairs or 8 x 2 = 16 otherwise.

The number of permutations grows if the event selection allows more jets in the final
state. Only two of the jets have to be placed in the cascade and hence for N jets the factor
of 2 for the permutation is replaced with a factor N - (N — 1).

5.2 Simulated Events Sample

For the generation of a SPSla Monte Carlo event sample the SUSY-HIT program pack-
age was used [85], which includes codes for the calculation of the SUSY mass spectrum
(SusPECT) and the decays of the supersymmetric and higgs particles (SDECAY, HDECAY).
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From the mSUGRA and Standard Model parameters (cf. Tab. 5.1 and Tab. 5.3) all weak-
scale quantities are calculated.

ash(Mz) | Gp(Gev=2] | as(Mz) | Mz [GeV] | my [GeV] | my [GeV] | m, [GeV]
127.934 | 116639 x 105 | 01172 | 91187 | 425 | 1725 | 17771

Table 5.3.: Values of Standard Model input parameters for Monte Carlo event generation.

In the CMS simulation framework the outcome was passed to Pythia for the actual event
generation and the simulation of sparticle decays and the fragmentation and hadronization
processes.

The obtained leading-order cross-section for a center-of-mass energy of 14 TeV is 36 pb.
An event sample of 5 million events was produced and processed with the CMS fast detector
simulation (cf. Sec. 3.3.5), corresponding to an integrated luminosity of L = 140fb~1.

5.2.1 Detector Simulation Objects

Since the CMS reconstruction software provides many options in the definition of jet,
electron and muon objects, the relevant technical information is summarized in Tab. 5.4.

Jets: Anti-kt (R = 0.5) particle-flow jets are chosen and L2 and L3 energy scale correc-
tions (cf. Sec. 3.3.1) are applied.

Missing Transverse Energy: The particle-flow missing Ep calculated from all recon-
structed particles is used and is corrected for the jet energy scale (L2, L3 correction).

Electrons: Starting from the standard electron collection rather loose identification cri-
teria (cf. Tab. 5.4, Sec. 3.3.3, [47]) must be fulfilled. An isolation value is calculated from
energy deposits in the ECAL, HCAL and Tracker in a cone around the electron. The iso-
lation value I is then given by the total energy deposits for the three detector components,
divided by the electron pr. The requested isolation is

I iSOECAL + iSOHCAL + iSOTRK “o01 (51)

electron

br

The lepton isolation performance is discussed below.

Muons: The general muon collection is used and no further quality requirements are
applied. The isolation it calculated from the energy deposits Ep in ECAL and HCAL
and the tracker pr in a cone of R = 0.3 around the muons. The three components are
combined to an isolation value relative to the muon pr in the same way as for electrons
and an isolation I < 0.2 is required.
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5.2. Simulated Events Sample

Jet Collection ak5PFJetsL2L3

Missing Er met JESCorAK5PF Jet

Electron Collection gsfElectrons

Electron ID eidRobustLoose

Isolation Value Maps eleIsoFromDepsEcalFromHitsByCrystal
eleIsoFromDepsTk

eleIsoFromDepsHcalFromTowers
Muon Collection muons
Muon Isolation Function isolationR03()

Table 5.4.: Technical names of physics objects collections, identification and isolation procedures
as used in the analysis. The CMS software release is CMSSW_3_8_7.

Particle Matching

In several occasions an association of reconstructed to generated particles is useful. Whether
generated or reconstructed particles serve as starting collection for the comparison depends
on the use case. In the determination of measurement resolutions a matching of generated
objects to reconstructed ones is performed, whereas it is done the other way round when
trying to identify the generator particles corresponding to a reconstructed signal cascade.

The procedure is equivalent in either case: for any particle the corresponding recon-
structed or generated object closest in AR is matched, if AR < AR, as well as 0.5 <
piee/pi" < 2. is fulfilled. The maximum distance is chosen as ARy, = 0.1 (0.3) for
leptons (jets). A particle is only matched to a single particle from the other collection. In

case of ambiguities the object closest in AR is chosen.

Lepton Isolation

The distribution of the isolation variable defined in Eq. 5.1 for electrons and muons in the
SPS1la sample is shown in Fig. 5.3. Reconstructed electrons and muons with a matching
generator particle peak at zero in a steeply falling distribution, while unmatched leptons
tend to higher values of the isolation variable. For a matching the generated lepton must
lie within AR = 0.1 of the reconstructed particle.

The fake rate, defined as the fraction of unmatched leptons

#notmatched

5.2
#matched + #not matched (52)
and the efficiency
#matched (5.3)
#generated
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Figure 5.3.: Distribution of isolation variable Eq. 5.1 for electrons (left) and muons(right). Shown
are the distributions for reconstructed leptons with a matching generator particle
(green) and those without (blue) for SPS1a.

characterize the isolation cut. The efficiency includes the matching efficiency and only
generated electrons and muons with pr > 10GeV and |n| < 2.5 are counted to respect the
limited detector acceptance in lepton reconstruction.

Choosing the working point is a trade-off between high efficiency and low fake rate. In
our case the suppression of background cascades seems to be most important, thus requiring
a low fake rate. Hence, I < 0.1 is chosen for electrons, translating into an efficiency of 56%
and a 5% fake rate (cf.Fig. 5.4) and for muons I < 0.2 is required, yielding 77% efficiency
and a fake rate of 3%.

Resolutions

Resolutions for the transverse momentum and angular reconstruction of the different kinds
of particles need to be known for the kinematic fit, where the entire covariance matrix for
all measured parameters, i.e. four-momentum components, is needed (cf. Sec. 6.1).

Jet resolutions strongly depend on the transverse momentum and further vary with
pseudorapidity. Therefore the jet response is typically determined in bins of these two

variables. The jet transverse momentum resolution parametrization is

o o ?
7(2?/;%&)) 7" = \/Sgn(N) : <%> + 82 (pp )M+ C2, (5.4)

as already introduced in Eq. 3.4 (Sec. 3.3.1). The parameters determined for the transverse
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Figure 5.4.: Selection efficiency (Eq. 5.3) versus fake rate (Eq. 5.2) for different cuts on the iso-
lation variable for electrons (red) and muons (green) for SPS1a. The working points
are marked with circles.

momentum of the chosen particle-flow anti-kt (R = 0.5) jets are given in Tab. 3.1 [40].

However, we also need resolutions for the pseudorapidity and azimuthal angle measure-
ment. They are determined on the SPSla sample again using a binning in py and 7, by
matching reconstructed jets to generator jets, which are clustered from generated particles
after the particle shower simulation.

The position resolution is characterized by the distribution of the differences n"¢¢ — nJe"
and ¢"¢ — ¢9°" of reconstructed jets compared to a matched generator jet. For each pp-
n-bin a Gaussian is fitted to the observed distribution. The width of the Gaussian in a
pseudorapidity region changes with pr and is fitted with the resolution function Eq. 5.4.
Fig. 5.5 shows the fitted resolution functions for three different pseudorapidity bins, up
to |n| = 3.0 which marks the end of the HCAL endcap and the begin of the forward
calorimeters (cf. Sec. 3.2.5). Parameters determined in the fits are summarized in Tab. 5.5
and used to calculate the uncertainties for the covariance matrix in the kinematic fit.

Electron and muon resolutions are also determined in bins of pr and n. Using the SPS1a
sample all generator electrons and muons from a Xy or ég/jir decay are compared to
a matching reconstructed electron or muon. The cores of the observed distributions of
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5. Physics Scenario

Variable n 10)

In|-Range N S M N S M
0.0—1.0 || 1.2x107" | —0.39 | —0.46 || 6.0 x 10717 | —0.40 | —0.44
1.0—-20 || 1.6 x1077 | —0.43 | —0.44 || 1.8 x 1078 | —0.41 | —0.39
20-3.0 || 3.0x107% | —0.49 | —0.45 || 3.0 x 10710 | —0.39 | —0.36

Table 5.5.: Fitted jet angular resolution parameters (cf. Fig. 5.5)

PEC/DIT, e — n9e" and @TC — $9 are again fitted with a Gaussian and the gaussian

width is plotted versus the transverse momentum. (Figs. 5.6-5.8).
The fitted functional form for the electron pp is the one expected for a calorimeter based

o(pr°/py") = \/(%)2 + <\/%>2 + e, (5.5)

and similar to the jet case consists of a noise term (a), a stochastic term (b) and a constant

measurement

term (c). Also the electron and muon 7 and ¢ resolution show the same behavior.

For the muon pr the deviation from the true momentum increases with pr, which is an
effect of the detector hit resolution in the inner tracker. The published muon resolution
plot Fig. 3.9 shows that at high momenta the combination of tracker and muon system
information attenuates the increase, but not sufficient high py muons are available in the
SPSla sample to observe this effect. Therefore, data is only fitted with a second order
polynomial py+ p1 - pr + po -p2T and the observed resolution is consistent with the published
plot in this pr-region.

The resulting parameters for the electron (muon) resolution are given in Tab. 5.6 (5.7)
and in most cases the uncertainties on the fitted parameters are large, due to their large
correlations. Overall, we find that the angular resolution for both, electrons and muons, is
of the order of 104 and the transverse momentum is measured to a few percent precision,
which is much better than for jets. Hence, any uncertainties on the fitted parameters are
of little importance, since the fit will mainly adapt the jet momenta.
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Parameter H In|-Range ‘ 0.0 < |n| <0.8 ‘ 0.8<n <15 ‘ 1.5 <|n| < 2.5

a 0.0565 0.0909 2.5 x 1078
T b 0.0765 0.1256 0.104

c 0.0045 5.4 x 10713 0.0105

a 4.6 x 10710 1.2 x 10710 2 x 101
n b 0.00132 0.00123 0.00158

c 0.000323 0.000255 0.000135

a 9x 1014 8.2 x 10710 1.7 x 10711
0 b 0.0019 0.00257 0.00475

c 0.000104 0.000206 1.2 x 10713

Table 5.6.: Fitted electron resolution parameters (cf. Fig. 5.6).

Parameter || [n]-Range | 0.0 < |n| < 0.8 | 0.8 < |n| < 1.5 | 1.5 < |n| < 2.5

Po 0.00872 0.01425 0.01718
pr 1 3.5x107° 5. % 107° 2.x107°
P2 1.1x 1077 7.4 %1078 6.5 x 1077
a 2. x 10710 0.00391 0.00307
n b 0.00103 1.x 107 0.00092
c 0.000283 0.000222 0.00013
a 0.00271 0.0039 0.00564
® b 0.000454 0.000512 0.000439
c 5.4 x 107° 6.9 x 107 9.6 x 107°

Table 5.7.: Fitted muon resolution parameters (cf. Fig. 5.7).
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Figure 5.5.: Standard deviation of angular reconstruction residuals for jets in different pseudora-
pidity bins. Left column: 7-resolution versus the generated jet pr. Right column:
¢-resolution. The resolution function Eq. 5.4 with parameters N, S and M is fitted
to data, while C is fixed at zero.
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Figure 5.6.: Electron transverse momentum resolution (left column) and pseudorapidity resolu-
tion (right column) versus pr for different pseudorapidity regions.
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(right column) versus pr for different pseudorapidity regions.
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Figure 5.8.: Electron (left column) and muon (right column) azimuthal angle resolution versus

pr for different pseudorapidity regions.
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5.2.2 Event Selection

Preselection

A preselection was applied in order to reduce the storage space of the simulated events
sample. It is motivated by the final event selection for the leptonic cascade and applies the
following cuts on reconstructed objects (cf. Sec. 5.2.1).

o Jets: N > 2 with pr > 20GeV and || < 5.

e Leptons (electrons+muons): N > 3 with pr > 5GeV, |n| < 2.5, counting only
electrons which fall either in the identification class eidRobustLoose (cf. Sec. 3.3.3)
or fulfill some basic isolation requirements.

Without the requirement on electron identification more than 75% of the events have at
least two leptons and pass the preselection. The number of remaining events including the
identification cuts is 2,470,405, i.e. 49% of the initial sample.

Spectra of the transverse momenta for the four leptons and two jets with highest pr
(leading objects) in an event, as well as the missing Ep distribution after preselection are
shown in Figs. 5.9 and 5.10 for signal and background events.

Final Selection

Starting from the preselected sample, several cuts are applied (Tab. 5.8) to select the signal
cascade (Fig. 5.2).

The most distinctive feature of this cascade are the two lepton pairs, each consisting
of opposite charge and same flavor leptons (OSSF). Events containing exactly four such
isolated leptons are chosen, considering only electrons and muons. Not allowing additional
leptons in the event reduces the background and keeps combinatorics small. A minimal
transverse momentum of 10 GeV is required to ensure a sufficient reconstruction quality.
In the CMS detector leptons are only identified in the pseudorapidity region |n| < 2.5, i.e.
the region covered by the silicon tracker and muon chambers (cf. Figs. 3.3, 3.6).

The second feature are two jets, which are expected to have high energy due to the
large mass difference between squark and neutralino. Additional jets may also come from
a gluino decay or hadronic activity like initial and final state radiation. Two jets with a
transverse momentum of at least 30 GeV are found in all of the selected leptonic events.

The pr spectra of the jets with highest and second highest pp (Fig. 5.11) show, that on
average signal events have higher transverse jet momenta than other SUSY processes with
e.g. squark decays into heavier charginos or neutralinos. In order to suppress background,
a requirement of pr > 150GeV is chosen. In addition we restrict the jet to lie within
In| < 3.0, where the angular resolution could be determined well (cf. Sec. 5.2.1).

Since more jets may emerge from initial and final state radiation, only the minimal
number of jets is specified, with the drawback of increased combinatorics. Some missing
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Event Selection Cuts
Preselected | 2 OSSF lepton pairs (e/p) > 2 Jets missing Ep
Sample pr > 10GeV pr > 150GeV | > 50GeV
In| <2.5 In| < 3.0
qriL 579 162 120 117
J—qL 455 97 71 65
by 720 183 136 126
ba, R 214 44 31 26
Total Signal 1968 486 358 334
Eff. Signal 1 0.25 0.18 0.17
Background 2470405 923 391 367
S/B 0.0008 0.53 0.92 0.91

Table 5.8.: Cumulative effect of event selection cuts on detector simulation sample corresponding
to an integrated luminosity of L;,; = 140fb~!. The signal efficiency includes all three
signal categories (see below). Backgrounds include all other SUSY processes.

transverse energy is expected from the escaping LSPs and helps to reduce Standard Model
backgrounds, but does not contribute to the suppression of SUSY background.
Figures 5.12 and 5.13 show kinematic distributions of all objects after the final selection.
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Figure 5.9.: Transverse momentum spectra of the two leading jet (left), next-to-leading jet (right),
and missing Fr in signal and background events at SPS1a after preselection.
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Figure 5.10.: Transverse momentum spectra of the four leading leptons in signal and background
events at SPS1a after preselection.
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Figure 5.11.: Transverse momenta of leading and second leading jet in signal (green) and back-
ground events (blue) in events with 4 isolated OSSF lepton pairs.
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background events at SPS1a after full selection.
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Figure 5.13.: Transverse momentum spectra of the four leading leptons in signal and background
events at SPS1a after full selection.
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The event selection cuts are similar to those applied in the mass determination study
by McElrath et al. [74] but not identical. These authors require a lower jet pp > 100 GeV
and an additional cut on jet pseudorapidity, motivated by the fact that jets from heavy
particle decays are found dominantly in the central detector region. However, we find that
a restriction to |n| < 2.5 does not significantly change the selection result. Furthermore
a b-jet veto is included in their study. In principle the obtained event samples should be
comparable in terms of selected phase space.

Starting from the preselected sample, 334 signal events are selected (Tab. 5.8), which
can be divided into four groups, using Monte Carlo truth information.

1. qrq4r: Squark pair production (1st and 2nd generation) and the decay via the desired
SUSY particles.

2. g — qr: Gluino or gluino-pair production and their decay into left-handed squarks
of the first and second generation plus the subsequent signal decay.

3. by:Events containing at least one by, either directly produced or coming from a gluino
decay.

4. by, r: Appearance of at least one of the almost mass degenerate by or right-handed
squarks in the signal cascade.

Masses of the b-squarks and right-handed squarks differ from those of the first two gen-
erations of left-handed squarks (cf. Sec. 5.1) but nevertheless are included in the signal,
since the final state is identical. More precisely, the jet flavor is different in case of b and
in principle b-tagging could be exploited to distinguish the B—decay from other squarks.

Considering all three signal categories a selection efficiency of 17% is found. The SUSY
background is strongly suppressed by a factor of 3 x 10~ but still contributes 367 events,
yielding a signal to background ratio of S/B = 0.91 for the selected sample. All possible
SUSY decays were included in the initial event sample.

Including backgrounds a total of 701 out of the 2470405 events is selected, where the
size of the event sample was already reduced in a preselection with 49% efficiency, giving a
total fraction of selected events of 701/5,000,000 = 1.4 x 1074,

Background events are categorized in Tab. 5.9 according to their particle content. Each
event is listed in the first category in which one of its branches matches, going from the
first to the last row of the table. The (electroweak) production of neutralinos, charginos
and sleptons contributes with 14%. In these events additional jets must be picked from
initial state radiation. The pair production of #3 hardly contributes ( ~ 4%) but the much
lighter #; appears in one quarter of the events. It is light enough to be either produced
directly or come from a gluino or sbottom decay. In the subsequent decay chain leptons
then arise from a top-quark or chargino decay.
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Category Selected | Fraction
direct x or [ production 53 0.14
direct t3-pair production 16 0.04
¢, from production or § or b decay 90 0.25
G/q decay via, 23/4/@2 111 0.30
direct § — X? decay 3 0.01
signal topology but decay via 7 94 0.26
Total 367 1.0

Table 5.9.: Mutual exclusive categories of background events. Events are classified in the order
listed here, if one of the two decay branches falls into this category.

A large fraction of the background (30%) contains leptonic decays of other neutralinos or
charginos than the desired x3. The last important background category is very signal-like
and differs only in the slepton flavor, where a 7 is found. These events makes up about one
quarter of the background.

In a way most background events are signal-like because 65% percent contain one branch
with the correct § — Y9 — lr — ) decay (I = é,1) and even 87% at least one branch
with the correct lower part X9 — g — X9.

5.3 Toy Detector Simulation

A second event sample is used in the analysis, in order to test and demonstrate the perfor-
mance of the mass determination method in a simplified scenario with reduced experimental
uncertainties and imperfections. It is based on the same generated events but does not make
use of the CMS detector simulation. Instead a pseudo detector simulation is applied to all
partons and leptons from the Pythia final-state of the hard interaction, including initial-
and final-state radiation but not the parton shower or hadronization.

In this Toy Monte Carlo (Toy MC) all quarks, gluons and leptons are smeared in pp, 7,
and ¢ around their true value according to a gaussian distribution, where the width of the
gaussian is given by the resolutions which were determined for the detector simulation in
the previous section (cf. Tabs. 3.1, 5.5-5.7).

Tau leptons are treated according to their decay mode. For hadronic decays the tau
fourvector is treated like a quark while in leptonic decays the resulting electron or muon is
smeared.

This approach is of course a strong simplification of the real situation, where one has
to deal with effects of hadronization, overlap in jet clustering, reconstruction inefficiencies,
fake leptons and jets, additional jets from multiple interactions and underlying event. These
difficulties are included in the study using the CMS detector simulation but ignored in this
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Signal | Background
Det. Sim. Selected Sample 334 367
> 2 Jets, pr > 150GeV, |n| < 3.5
2 OSSF e/p Pairs , pr > 10, |n| < 2.5
> 2 Jets, pr > 100GeV, |n| < 3.5
2 OSSF e/p Pairs , pp > 10, |n| < 2.5

252 171

312 238

Table 5.10.: Event selection in Toy MC. The initial sample consists only of events selected in the
detector simulation sample.

Toy Monte Carlo.

Using the Toy Monte Carlo facilitates e.g. the validation and testing of the kinematic fit
implementation and setup in a well-defined scenario where all measurement uncertainties
are perfectly known. Furthermore, studying the combinatorial problem is simplified without
the complication of matching measured final states to the generated ones. It will help to
disentangle detector and measurement effects from those inherent in the mass determination
method.

Toy Monte Carlo Event Selection

A Toy MC event selection with identical cuts as in the detector simulation case does not
yield the same sample. Much more events fulfill the selection criteria (1050 instead of 749
in case of no missing Fp cut), mainly due to the perfect reconstruction efficiency for leptons
and the idealized jet treatment.

However, for a later comparison of results the two samples should be comparable in the
sense, that the event content is similar and the same kinematic phase space is covered.
This is approximated by performing the Toy MC selection only on those events, which
were selected in the detector simulation sample.

Requiring two OSSF lepton pairs and two jets with pr > 150 GeV on Toy MC level, only
75% of signal and 47% of background events are selected. The main reason why events fail
the selection is the cut on the jet transverse momentum.

The distribution of the second leading jet pr in discarded signal events (Fig. 5.14)
shows that many of these events have a second jet with transverse momentum close to
the cut value. By lowering it to 100 GeV, 93% of signal events fulfill the requirements (cf.
Tab. 5.10).

For background the discrepancy remains much larger since many events are also failing
the lepton requirement and do not contain the correct number of leptons. Therefore the
selected Toy MC sample has a better S/B-ratio of 1.31 and is of limited use in studies
including background.
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Figure 5.14.: Toy Monte Carlo transverse momenta of second leading jet in signal (green) and
background events (blue) which were not selected with a pr > 150 GeV cut.
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Chapter 6

Kinematic Fit Implementation and Setup

6.1 Kinematic Fitting

The new approach for mass determination consists of an event-by-event kinematic fit in
which hypotheses for the involved masses are tested. Kinematic fit means a least-square
minimization of the residuals of all measured parameters in an event (pr, n and ¢ of jets
and leptons), which are subject to several kinematic constraints. In our case the constraints
are invariant masses of combinations of final-state particles as well as an overall transverse
momentum balance in the event. A solution to such a problem can be found using the
method of Lagrangian multipliers.

6.1.1 Method of Lagrangian Multipliers

The squared sum of residuals for the n measured parameters () with covariance matrix V'
S(7) = Ay V Ay (6.1)

has to be minimized, while fulfilling the kinematic constraints. FEach of the [ constraints
is a function of the measured as well as the m unmeasured parameters (@) and can be

formulated as an equation

Lo
fro=fe(y,a)=0, k=1,...,1

which holds for the true values of the involved parameters.

Finding the minimum of a function (S) while at the same time fulfilling constraint equa-
tions can in general be achieved by the method of Lagrangian multipliers. Each constraint
is multiplied by an additional parameter A (Lagrange Multiplier) and added to the sum of
squares

L(7,a@,X) = SG) + 2> \ufu(7.@).

75



6. Kinematic Fit Implementation and Setup

The extremum of this new function L gives the desired solution for ¢ and @. The factor of
two is a convention.

The extremum can by found by differentiation of L with respect to all parameters,
including the Lagrangian multipliers. This yields a system of equations which has to be
solved. If the constraints are linear functions of the parameters an exact solution can be
found e.g. by matrix inversion. However, as the mass constraint we want to apply are non-
linear a linearization must be used and the problem be solved iteratively. This procedure
in described in the literature [86] and summarized in Appendix A.

If the problem is over-constrained, values for the previously unknown parameters @ can
be found by solving these equations. Over-constrained means that more constraints than
unknowns are available. This is obvious, considering that each constraint depending on an
unknown parameter leads to an equation involving this parameter, by differentiation with
respect to the Lagrangian multiplier.

An over-constrained system has a number of degrees of freedom which is given by the

difference between the number of constraints and unmeasured parameters
ndf =1 —m.

In the case of a SUSY cascade, as described in the previous section, the number of param-
eters is high. From the 6 jets and leptons we count 18 measured momentum components
while the two LSPs contribute 8 unmeasured parameters. It was discussed that a total of
ten constraints can be applied, eight of them constraining invariant masses and two of them
the transverse momentum balance. Thus the system has 10 — 8 = 2 degrees of freedom.
The obtained values for S at the extremum of L should therefore follow a y2-distribution
with two degrees of freedom.

Unfortunately, the constraints are highly non-linear and include, depending on the para-
metrization, squares, sine, cosine, and/or their hyperbolic versions (cf. Sec. 6.1.2 below).
Therefore it is of great importance for the convergence of the algorithm to have initial
values for the unmeasured parameter which are close to the true extremum. Otherwise
the error caused by the linearization might become too large and prevent convergence or
lead to a secondary extremum. The issue of a choice of initial values in our specific case is
discussed in Sec. 6.2.

Convergence Criteria

Criteria need to be defined, when the iterative search for the extremum of the function
L can be stopped. Ideally this should happen when all constraints are fulfilled and the
minimal sum of the residual is reached, i.e. the algorithm has converged in the (global)
minimum. In reality such a criterion is not easy to define. Two quantities are used to judge
on the level of convergence. The absolute sum of all constraints has to fall below an upper
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6.1. Kinematic Fitting

bound l
S Il <er (6.2)
k=1

and the change of S with respect to the previous iteration should be small
AS < eg (6.3)

Default threshold values were chosen as eg = 107% and ep = 0.1GeV x [, the latter
depending on the number of constraints.

Requiring Zic:l | fx| to decrease in each iteration is a suitable handle to enforce conver-
gence. If in an iteration the sum of constraints increases, then the step size is reduced by
a factor of two until the requirement is fulfilled again or a maximum number of ten step
size reductions is reached. In most events the convergence criteria are reached within a few

(<10) iterations, where the requirement on AS is the limiting factor.

A program package for kinematic fits established in the CMS collaboration [87] was
adapted and used to perform the fit. The code follows the procedure outlined above. A
few details on the implementation are summarized in the following.

6.1.2 Momentum Parametrization

A common parametrization of particle four-momenta at collider experiments uses the trans-
verse energy Ep (or transverse momentum pp if masses are negligible w.r.t typical energies),
the pseudorapidity 1 and the azimuthal angle ¢, since these are closely related to the de-
tector geometry. For a massless particle the fourvector becomes

Er - coshn
E Ep - cos¢
p=| _|= . . (6.4)
P Er -sing
Er -sinhn

For all measured particles, jets and leptons, in the fit this parametrization is chosen. The
unmeasured LSPs are parametrized using the momentum components and a mass, which

VTR

may be hypothetical.
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6.1.3 Implementation of constraints

An invariant mass constraints for measured particles with four-momenta p* and unmeasured
particles with four-momenta, ¢*, restricted to a mass M with width I'j; reads

2

f= Zpurij —a-M=0. (6.6)
i j

Here a Gaussian mass width is accounted for with the additional fit parameter «. It has an
initial value of o =1 and its variance is set to o2 = I'3,/M?, such that a variation of «
in the fit by 1o corresponds to a variation of the mass constraint of (1+0)-M = M £T,.

Also the momentum balance is not exactly fulfilled in a typical event. The actual pp sum,
including the soft and forward particles outside the cascade, fluctuates around zero. In the
constraint calculation this fluctuation is accounted for with an additional term 3. This
new parameter has an initial value of 3 = 0 and a variance corresponding to the width
of the fluctuation distribution ag = Api Iy The implementation for a momentum balance
constraints, including out of cascade momentum ¢ from initial and final state radiation,

reads

fz/y:Zpi/y‘i‘ZQi/y—Cx/y—ﬂ:O. (67)
i J

The choices for the particle and pp-balance widths are discussed later (Sec. 6.3.2).

With the above particle parametrizations the (squared) invariant mass of i = 1,...,n
measured particles p’ and one unmeasured object ¢ can be written as

2

n 2 n
M? = (Z E% coshni + \/q% —i—qf, + ¢2 +m2> — (Z E%cos gbi —l—qx) (6.8)
i=1 =1
— (Z Efsin ¢’ + qy> — (Z E%sinhn® + qz>
i=1 i=1

The components of the total transverse momentum in the fit are less complex and for

2

two unmeasured particles ¢/ read

n 2
Dy = ZpZT cos ¢ + Z ¢ — ¢y (6.9)
i=1 j=1
py = prsing’ +Y gl —c,. (6.10)
i=1 j=1

Clearly these equations are non-linear in the parameters E7, 1, ¢, hence their deviations
do not yield a linear system of equations and make a linearization and iterative solution
necessary (see App. A for details).
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Alternative Fit Approach

An alternative approach for a kinematic fit is the formulation of the constraints as additional
x2-terms. The minimization of the extended x? can then be realized with an arbitrary
minimization algorithm such as simulated annealing or genetic algorithm.

The option of a genetic algorithm was studied in the context of mass determination in
a hadronic decay chain [76]. A major strength lies in the simultaneous treatment of huge
combinatorics in the minimization. Since combinatorics is not as a huge concern in the
leptonic decay, we stick to the well established method of Lagrangian multipliers.

6.2 Choice of Initial Values for Unmeasured Parameters

The choice of initial values for the unmeasured parameters is a key issue for the performance
of the kinematic fit in a high-dimensional and non-linear problem like the SUSY events at
hand. If the initial LSP momenta are set to values far away from their truth, the error
introduced by the linearization might become too large and the fit algorithm possibly does
not find the global extremum or gets stuck in a local one. It is very likely that several local
minima exist, regarding the fact that the y2-contour lies in a 18-dimensional parameter
space.

6.2.1 Options for Choice of Initial Values

Beside a completely random choice of initial values, different well-motivated possibilities
exist and are discussed in the following. Two of them are analytic solutions for an ap-
proximated problem and the third one exploits the knowledge about two-body decays to

generate random values in a clever way.

Analytic Solutions

Reconsidering the constraint equations Eq. 4.2-4.5 for the decay cascade and assuming that
the SUSY mass values are known, possibilities exist to analytically calculate the momentum
components of the LSPs from a subset of these constraints.

The ansatz of Webber [75] using a subset of six mass and two momentum balance con-
straints was already described in Sec. 4.2.1. The analytic solution for the LSP momentum
components is an approximation for the true LSP momenta. Their exact values would only
be obtained in the case of correct mass hypotheses, a perfect transverse momentum balance
and vanishing measurement errors.

In order to construct the linear system of equation (Eq. 4.6 — 4.7) the relation p% = M3,
was used to substitute the quadratic terms. Note that this constraint is not respected in
the solution and therefore all invariant masses (Mf‘, M]_%, Mg, Ml%) constructed from the
calculated LSP momenta do not agree with the input masses, unless p% = M]% really holds.
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Starting from such a set of LSP momentum components, the kinematic fit will still have to
adjust the parameters to perfectly fulfill the mass constraints.

A second possibility was proposed by Schleper [88]. The basic idea is again the construc-
tion of a set of equations which are linear in the unknown four-momentum. In contrast to
Webber’s calculation all four mass constraints are enforced and the constraint on transverse

momentum balance is not included.

From the set of mass constraint equations 4.2 for one decay branch, the linear system is
obtained in the known way, by substituting the invariant masses p? = MZ-Q. This time the
chain is taken in the opposite direction and the squark (p4) is the fourvector to be solved

for.
mpﬁ:;mfwfmﬁR (6.11)
PA-DPf, = DA -pf2+%(M,29—M%+MJ?2)ES (6.12)
pa-pp = (pp +pf2)-pf3+%(M%—Mz2)+Mf3) =T (6.13)

The expressions R, S, T depend only on measured particles and the SUSY masses, but
not on any of the SUSY particle momenta. Adding a fourth trivial equation for the energy
component of the squark p% = p% one can write in matrix notation

1 0 0 0 ) )
0 1 2 3 1
Py Pn Pr P | |(Pa|_ | B (6.14)
0 1 2 3 2 ’ '
Py, P, Py, P, P S
0 1 2 3 3
Dys Ppy Py Ppy Da T

where the upper index denotes the fourvector component. The matrix can be interpreted

(7
M= (6.15)
C D

with the blocks A =1, B = (0,0,0), C = (p%,p%,p%)T and D = —(13?1,13{]2,]5?;)? From
the inversion formula for a partitioned matrix one obtains an expression for the three-

as a partitioned matrix

momentum components of the squark
Pa = pam + i (6.16)
with the vectors m = —D~1C and @ = D~Y(R, S, T)T.

Still the fourth equation p% = M3 = (p%)? — p% has to be fulfilled, yielding two possible
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solutions for the energy component.

min M3 — ii? N (mit)?
T\ T—m T a—mee

(6.17)

From the solution for the squark four-momentum (Eq. 6.16, 6.17) a corresponding LSP
momentum can then be calculated. Two solutions per decay branch lead to a total of four
combinations of initial parameters per event.

However, in practice it turned out that in many cases no real solution exists, due to a
negative expression under the square root. In the SPSla toy Monte Carlo signal sample
only 57% of the events could be completely solved, while in 38% only one branch gave a
solution and no solution was found in the rest of the events. The physical reason for this
fragility was not studied and needs further investigation. Nevertheless, all events with a
full solution were included in the comparison with the other methods.

Random Choice in Slepton Rest-Frame

A third possible choice of the starting values focuses on the two-body-decay of the next to
last SUSY particle in the decay chain. In the rest-frame of the decaying particle C' (C")
the decay products, i.e. the LSP D (D’) and the particle f3 (fg) which is assumed to be
massless, have opposite momentum with a fixed magnitude, given by the masses of the

involved particles
2 2
7l = =MD
D/ fs 2. Mo

Two more coordinates are necessary for a full description of their momenta:

e The azimuthal angle ¢*, defined in the plane perpendicular to the flight direction of
particle C in the laboratory frame.

e The angle 0" between p}, and the flight direction of particle C in the laboratory frame.

If the decaying particle has spin 0 or is unpolarized uniform distributions for cos 8* and ¢*
are expected. A set of initial values following these distributions can be randomly chosen
and then be transformed to the laboratory frame. The necessary Lorentz-transformation
cannot be determined unambiguously but exploiting the knowledge about the measured
decay product f3 (fs) an educated guess is possible, e.g. by chosing the one with the smallest
boost. Knowing the transformation from the rest-frame of particle C to the laboratory-
frame the momentum of D in this reference frame can be calculated. Details on how to
obtain the transformation and how to calculate the LSP momentum are given in App. B.
A set of 3 cos0* and 8 ¢* values is randomly chosen for each event. This choice is labelled

as rest-frame method.
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Random Momenta

Another random choice is included in the test, which does not make use of any kinematic
event information. Momentum components p,, p, and p. are randomly generated in the
interval 0 < p < 300GeV. For each LSP fifty different momenta are tried. These values
may serve as an object of comparison to rate the performance of the more sophisticated
methods.

6.2.2 Comparison

The quality of the obtained initial values is compared for all four approaches. The methods
are labeled analytic I for the solution by Webber, analytic II for the calculation using
the four mass constraints, random stands for random LSP momentum components, and
rest-frame denotes the method using random values for the decay angles in the slepton
rest-frame.

First the agreement of the initial LSP momenta with the true values is compared for
the Toy MC in signal events, including all three categories. For each event an initial
momentum is generated for both LSPs and the deviation to the corresponding generated
particle is determined (Fig. 6.1).

The upper-left figure shows the relative difference (pié —pirue) /pltue where distributions
have been normalized to one for comparison. Both analytic methods show a narrow peak
at zero, meaning that the transverse momentum is already very well matching the true
value. For the rest-frame method the peak is broader and tends towards smaller values,
and in case of random values the peak is even lower and has a large tail towards high Apyp.

Looking at the distance in AR (upper-right) again the analytic methods perform best and
the majority of initial LSPs is actually placed inside a region of AR = 0.5, i.e. a typical
jet radius. The peak is exactly at zero for analytic II and close to it for the analytic
method. The rest-frame methods reconstructs the position not as precisely but still shows
the correct tendency to small distances. In contrast, the distribution of purely random
values even rises with increasing AR.

The distance can be split into the differences in the n and ¢ coordinates (lower row). As
expected from the AR distribution, the peaks in the analytic approaches are sharper than
for the rest-frame variant. This random approach still is a fair approximation, whereas the
random method hardly delivers a correct n value and completely fails to give the correct
¢ position. This is not surprising since this is a purely random choice and no knowledge
about the decay topology is exploited.

The initial momenta quality can be controlled further by studying the agreement of the
initial setup with the applied mass and momentum balance constraints. The random choice
is no longer considered, since obviously the other options perform significantly better. Using
the correct assignment of particles in the cascade the invariant masses and ppr-balance can
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Figure 6.1.: Difference between calculated and true LSP momenta in (pi** — pue) /plue. AR, n
and ¢ for the four different methods.

be calculated from the measured final state and the initial LSP vectors (Fig. 6.2).

The analytic II method requires that all mass constraints are fulfilled, hence only the
momentum constraint (lower-right plot) shows a deviation from zero. For the analytic I
version the momentum constraint is always fulfilled, whereas the mass constraints are not
exactly met. In the calculation the substitution p% = M]% is made which is not respected
for the solution fourvector p’gi. As a consequence the expressions for the SUSY masses
derived from Eq. 4.6, e.g.

Mg = Mp+2-pyg, -pp+mi, # (0B +py,)° (6.18)

do not agree with the invariant mass of the fourvector sum of final states. Here, the
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Figure 6.2.: Difference between calculated and true invariant masses and pr-balance for three
different choices of initial LSP momenta.

calculated fourvector p%” and its invariant mass Mg” is used in the calculation of the
constraints.
In case of the rest-frame method, the LSP and slepton mass constraint are fulfilled by

construction. Overall all these initial values seem a fair starting point for the kinematic fit.

Performance with Detector Simulation

It was shown that the determination of suitable initial values with the analytic I method
works well in case of the Toy MC. This still needs to be confirmed for the detector simu-
lation sample, where the measurement uncertainties may be larger in some cases and the
transverse momentum balance is determined with a larger uncertainty. We observe that
these effects hardly degrade the agreement of initial and true LSP momenta in Apz as well
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6.2. Choice of Initial Values for Unmeasured Parameters

as in AR (Fig. 6.3). The tails of the distributions are a little larger but still the obtained
solution is a good approximation.
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Figure 6.3.: Difference between calculated and true LSP momenta in pr and AR for the analytic
I method in Toy Monte Carlo and detector simulation sample.

6.2.3 Conclusions

Four methods to generate initial values for the unknown LSP momenta were tested. The
analytic methods achieve the best agreement of calculated and true momenta. The analytic
II method seems to perform best but this approach has the drawback that a solution was
found for only 57% of the events. It needs further study and understanding to overcome
this limitation.

From two methods with a random component the rest-frame method is clearly superior,
since it exploits some kinematic information of the event. The purely random choice is the
worst possibility.

The outcome of the rest-frame method fulfills the LSP and slepton mass constraint, while
in case of the analytic I values only the pp-balance is perfectly met and the masses have to
be adjusted in the fit. Overall, the significantly better agreement of the LSP momenta and
the fact, that it is an analytic solution, leads to the decision to use the analytic I method in
the further analysis. After all, a surprisingly good agreement is already achieved before the
kinematic fit, always having in mind that the true particle masses entered the calculation
here.
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6. Kinematic Fit Implementation and Setup

6.3 Error Treatment

6.3.1 Particle Momentum Resolutions

The full covariance matrix V for the momentum components of measured jets and leptons
enters the sum of least squares (Eq. 6.1). Since the reconstruction uncertainties of any two
objects in the event are basically uncorrelated the covariance matrix is diagonal.

For the Toy Monte Carlo sample the uncertainties are exactly known and really follow
a Gaussian. The values used in the momentum smearing also enter the covariance matrix
directly. In case of the detector simulation sample the resolutions determined in Sec. 5.2.1
are assumed (cf. Tabs. 3.1, 5.5, 5.6, 5.7).

6.3.2 Mass Widths

Constraining a SUSY particle mass to exactly the same value in all events and decay
branches is not a realistic assumption, since e.g. the squark decay width can be as large
as a few GeV. For the weakly decaying neutralinos and sleptons the widths are typically
smaller by an order of magnitude.

The way of incorporating this into the fit via an additional parameter (cf. Eq. 6.6)
requires the specification of the decay width. Hence three assumptions on the squark, neu-
tralino and slepton mass width have to be made. In case of the squark mass the situation
gets complicated by the mass gap between the first two and the third generation squarks. If
they are indistinguishable (because no b-tagging is applied) the effective observed mass dis-
tribution is much wider. However we have no prior knowledge about the mass gap between
the generations and hence assume a small width, compatible with a single generation. In
particular the widths are taken directly from the mass spectrum calculator (Tab.6.1).

Also the assumption of a perfect momentum balance in the transverse plane is quite
optimistic. In reality an initial imbalance will exist in the parton-parton interaction and
the final state can partially escape undetected or suffer from mismeasurements. This results
in missing transverse energy in addition to the momentum carried away by the LSPs. This
additional component, accounted for with the parameter 8 in the constraint (Eq. 6.7), is
determined differently in Toy Monte Carlo and detector simulation sample.

In the first case the terms of Eq. 6.7 are calculated using the generated momenta of all
involved particles. Especially the calculation of the true contribution from out-of-cascade
activity is possible in this scenario. The resulting distribution for p, and p, is centered
around zero and can be fitted with a gaussian, whose width is taken as uncertainty of 3.

In the detector simulation sample a treatment of the out-of-cascade activity is more com-
plicated. The best estimate of the momentum balance comes from the measurement of the
missing transverse energy in the particle flow event reconstruction. In the fit the compo-

nent of soft activity c,,, is therefore calculated by subtracting the selected leptons and

z/y
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6.3. Error Treatment

jets from the (negative) MET-fourvector. In addition, each jet with a minimum transverse
momentum of 30 GeV is considered as additional particle in the ppr-balance constraint and

its momentum is also allowed to vary in the fit.

Constraint

Width [GeV]

Mgy,
my

pa:/y

9.5
0.02
0.27

4.0

Table 6.1.: Widths of constraints as used in the kinematic fit.
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Chapter 7
Results

In this chapter the mass determination method is applied on the described SPS1a mSUGRA
scenario. First the fit setup is validated using the knowledge about the generator level
particle masses and momenta. Then the masses are determined from a scan over possible
values.

7.1 Validation of the Fit Algorithm

The kinematic fit is tested on all categories of signal events, choosing the correct assignment
of jets and leptons to their positions in the cascade. First the invariant masses are fitted
to the true fourvector mass values of the SUSY particles. When background events are
included the mean mass values are used instead and the decay width is accounted for by
using gaussian mass constraints (cf. Sec. 6.1). This way the performance of the kinematic
fit algorithm is first studied independently from background effects and combinatorics.

In the Toy Monte Carlo the measurement uncertainties of the particles used for the
gaussian smearing are exactly known. Consequently a covariance matrix with the true
variances can be used in the fit. Therefore this scenario provides a first valuable test of the
fit implementation and setup.

If the sum of residuals for the measured jet and lepton parameters follows the expected x?2-
distribution, the corresponding fit probability distribution is uniformly distributed between
zero and one. This is almost the case in our setup (Fig. 7.1), although a peak at small
values is observed. Imperfections causing this peak enter e.g. in the reconstruction of the
pr-balance of a Toy MC event, when some soft particles fail the acceptance cuts. The fit
algorithm converges for 88% of the events.

A further consistency check is made by looking at the size of the parameter corrections
determined in the fit (pull distributions). The pull can be defined in two ways: By the
comparison to the true Monte Carlo values

it
.%{1 _ xzitruth sz

O,

7

pi =
Oz,

7
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7. Results

or by comparison of measured and fitted values, which can also be done on experimental
data ,
x{lt —x" Az

OAz; OAz;

pi =

In this case the correct uncertainty must be used, obtained from the variances of measured

and fitted parameters [86]
OAz; = |02, — Uiﬁt.

Using the latter definition we observe the distributions Fig. 7.1 (top-right & lower row)
for the jet and lepton transverse momenta. As expected, they follow a gaussian with mean
zero and o =~ 1. The standard deviation is slightly smaller than 1 because only events with
Prob(x?) > 0.05 are considered, in order to exclude the peak at zero fit probability. Out
of all converged events, 14% fall below this threshold. Pulls for the angular parameters n
and ¢ also show this behaviour and are provided in App. C.

Another benchmark is the reconstruction of the unmeasured LSP momenta. Their initial
values already approximate their true momenta well (cf. Sec. 6.2) and are further optimized
in the fit. A comparison shows that the deviation from the true values is indeed further
reduced after the fit (Fig. 7.2). The significant improvement illustrates the power of the
applied kinematic constraints.

90



7.1. Validation of the Fit Algorithm
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Figure 7.1.: Fit probability distribution for signal events using the true masses in Toy Monte
Carlo and pull distributions (App = pe*s — p#t) with fitted gaussian for jet and
lepton pr in events with Prob(x?) > 0.05. The correct lepton and jet positions in
the cascade are used.
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7.1. Validation of the Fit Algorithm

The Combinatorial Problem

Positions in the cascade have to be assigned to six out of all selected particles, which yields
at least 8 possible permutations in case of four leptons and only two jets (cf. Sec. 5.1.1).
Each of these combinations has to be tested in the fit and each time the initial LSP momenta
have to be calculated beforehand. A plausible criterion to select the best combination is
the x? value, also denoted as S before (cf. Eq. 6.1). The fit with the smallest value (and
therefore the largest fit probability) is chosen and the assignment of the final state particles
is controlled and summarized in four categories (Tab. 7.1).

Category Percentage of events
Wrong jet ™%
Wrong lepton pairing 1%
Lepton pair assigned to wrong squark 2%
Leptons exchanged on same branch 38%
Correct assignment 52%

Table 7.1.: Particle assignment after kinematic fit with true masses in Toy Monte Carlo. The
combination with smallest x? is chosen.

An additional jet from initial or final state radiation or a gluino decay is sometimes
preferred over the correct ones (7% of events). In very few cases a wrong lepton pairing is
found (1%) or a lepton pair is assigned to the wrong jet (2%). The small numbers show that
the two decay branches are kinematically different and the fit is capable of distinguishing
between them with high efficiency.

However, the determination of the lepton position on a branch is more difficult. Only
52% of the events show the correct assignment but 38% have positions switched in one or
both lepton pairs. Looking closer at this category of events with the correct lepton pair-jet
association, we find that the fraction of correct assigments is 0.57, while the other three
possibilities, i.e. the lepton positions switched on the first branch, on the second branch or
on both branches, are found in only 16%, 17% and 9% of the events, respectively. Hence,
the fit has quite some power to distinguish between the correct and wrong lepton positions,
although a better performance could have been expected from a precise lepton momentum
measurement.

The cause of this difficulty lies in the lepton kinematics. The leptons come from two
decays with a similar mass difference of AM(X9,1r) = 37GeV and AM (I, X)) = 46 GeV
and the entire system is boosted due to the decay of the heavy squark. Therefore the
observed pp spectra for the two leptons are almost identical and also their directions are
similar in many events, due to the Lorentz boost. Since the LSP momenta are not mea-
sured, a wrong lepton combination may yield the correct masses, despite the good lepton
momentum resolution.
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7. Results

As an effect of choosing the combination with smallest y2-value the distribution of the fit
probability gets shifted towards larger values, because a wrong combination is only accepted
if its probability is larger than the one of the correct assignment. This can be seen from
Fig. 7.3 (green histogram) when comparing to Fig. 7.1 (upper-left plot).

\j Signal (no Bl)

10?

Entries

......

Background

!
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NGNS

0 01 02 0.3 0.4 05 06 0.7 0.8 0.9 1
Prob(x?)

Figure 7.3.: Fit probability distribution in Toy MC for signal, divided into events containing a by
and all others, and the SUSY background. The particle permutation with smallest
x? is chosen in each event.

In a fit including SUSY background events (Fig. 7.3) a mass hypothesis has to be used,
for which the central values of the true mass distributions are chosen here. The majority
of background events is found at very low probabilities, while the remaining ones show a
flat distribution. The existence of some well fitting background events is not unexpected,
since many of them contain decay chains which are very signal-like (cf. Sec. 5.2.2).

Events containing a light sbottom (l~)1) are plotted separately because its mass lies about
45 GeV below the value assumed in the fit. We observe that a large fraction of b-events are
located at very low fit probability but surprisingly the distribution of the remaining ones is
almost flat and even shows a small shift towards larger values. It seems that the LSP and
measured momenta can be adjusted to be compatible with the higher squark mass, despite
the other kinematic constraints.
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7.1. Validation of the Fit Algorithm

Detector Simulation Sample

For the detector simulation sample the same distributions are considered to check the fit
performance. Only signal events with a complete and unambiguous matching (cf. Sec. 5.2.1)
of reconstructed particles to the cascade partons and leptons are included.

In the probability distribution (Fig. 7.4) the peak at zero is increased w.r.t to the Toy
MC. Otherwise the distribution is still reasonably flat.

Reasons for this effect are that particle resolutions entering the covariance matrix are only
approximated in case of the detector simulation sample and particles may also fall into non-
gaussian tails of momentum resolutions. Furthermore the momentum balance is affected by
the finite resolution of the missing E7 measurement. Modifying the Toy MC such, that the
measured missing FE7 is emulated by smearing the LSP pr with the appropriate resolution,
results in an increased peak at small values in the Toy MC fit probability distribution.

The transverse momenta pull distributions are again in good agreement with the expec-
tation, showing that overall the uncertainty assumptions are adequate.

Still the LSP momenta are well adjusted in the fit (Fig. 7.5) and no difference to the Toy
Monte Carlo fit performance is visible.

Including combinatorics in the fit, again a shift towards larger probabilities is observed
(Fig. 7.6). However, the signal peak at lowest probabilities remains large for both signal
categories. Similarly, the majority of background events accumulates at low probabilities
and a cut at an intermediate value (e.g. Prob(x?) > 0.3) would yield an almost background
free sample.

Investigating the association of final state particles to the position in the cascade (Tab. 7.2),
we find a slight degradation of the performance w.r.t to the Toy MC, which is attributed
to the mentioned resolution effects.

Category Percentage of events
Wrong jet 7%
Wrong lepton pairing 2%
Lepton pair assigned to wrong squark 5%
Leptons exchanged on same branch 40%
Correct assignment 46%

Table 7.2.: Particle assignment after kinematic fit with true masses in detector simulation sample.
The combination with smallest x? is chosen.

The fraction of wrong jet selections remains the same but finding the correct lepton pairs
and associating them to the correct branch fails more frequently. Also an exchange of
leptons on the same branch happens more often, although the correct lepton combination
is still found more than twice as often (53%) as any other lepton permutation (max. 19%),
which is much better than in a random assignment.

In summary, the kinematic fit works very well in the chosen setup for both event samples
and powerfully reconstructs the event kinematics when provided the correct SUSY masses.
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Figure 7.4.: Fit probability distribution for signal events using the true masses in detector simu-
lation sample and pull distributions (App = pfe*s — p?t) with fitted gaussian for jet
and lepton pr in events with Prob(x?) > 0.05. The correct lepton and jet positions
in the cascade are used.
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Figure 7.5.: Relative difference in pr and distance in AR of LSP four-momenta to the true values
before and after the kinematic fit in detector simulation sample. The correct position
of jets and leptons in the cascade and the true masses are used. Only events with
Prob(x?) > 0.05 are shown.
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Figure 7.6.: Fit probability distribution in detector simulation sample for signal, divided into
events containing a by and all others, and the SUSY background. The particle per-
mutation with smallest y? is chosen in each event.
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7.2 Combining Events

An important aspect of the mass determination method is the combination of kinematic
information from many events. Each event is fitted individually to a set of mass hypotheses
and at first sight two options for a combination exist.

The fits could be combined event-wise, meaning that the best fitting mass hypothesis
for each single event is determined and the distribution of their best hypotheses is used to
draw conclusions on the true masses. However, this approach will not be successful because
a single event has not sufficient constraints to determine the unmeasured LSP momenta
and all of the four masses. Hence, for each event a mass scan will only reveal hyperplanes
of perfectly fitting masses instead of a single best mass point.

The second option is an hypothesis-wise combination in which the fit results of all events
for a single mass hypothesis are combined and the distribution of such a combined result
for all different mass hypotheses is analyzed. In order to best exploit the available infor-
mation, each event should be considered at each tested mass hypothesis, no matter if its
compatibility is high or low, since in principle we assume that each event contains the same
decay chain. The question is how to construct a meaningful quantity, which effectively
combines the information, and ideally has well-defined statistical properties.

The key figure, characterizing each fit result, i.e. the compatibility with the assumed
mass hypothesis, is the squared sum of residuals (x? or S as defined in Eq. 6.1), which in
case of the true masses should follow the y? probability density function (p.d.f.). The x?
probability is obtained by integration.

An option to construct a likelihood from the fit results is to use the underlying p.d.f. of
S, i.e. the xy2-function. For k degrees of freedom it is given as

_ 1 Ckj2-1 )2
fX(xak) - Qk/QF(/{?/Q) z e .

The total likelihood for N events with fit results S; can then be written using this p.d.f.

N
L=T] fu(Si, k).
i=1

It is common to take the negative logarithm of the likelihood

N
—InL = — Zln(fx(sz, k)),
=1
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which in our case of 2 degrees of freedom becomes
N 1 | X
—InL = _Z.len(§6_5i/2) =3 -izlSi—i—const. (7.1)

Since for an interpretation of the likelihood we are interested only in differences A(—21n L)
and not in absolute values the constant term can be neglected. Actually the difference then

becomes
N

A(-2InL) =A(D_S) (7.2)
i=1
and is identical to the difference of the sum of S values. Hence, maximizing the likelihood
Eq. 7.1 is equivalent to a minimization of the sum of .S values.

Note that this correspondence only exists for the special case of k = 2 with a purely

k/2—1

exponential dependence of f,, otherwise additional non-constant terms Inx enter.

This definition of the likelihood needs to be slightly modified to account for two effects.
It is not unlikely that for some events no solution is found in the kinematic fit and the
algorithm does not converge. However, the number of events entering the likelihood must
be constant for all hypotheses to preserve the statistical meaning. Therefore a regularization
value Syeg is used for all events without a proper fit solution.

The second issue is the numerical stability in case of poor agreement with the hypothesis.
If S is large, its exact value has little meaning, since the topology just does not fit to the
hypothesis and depends more on the numerical minimization process. In order to avoid
large fluctuations the regularization value S,eg is used as an upper bound for accepted fit
probabilities. Neglecting the constant term in Eq. 7.1 the likelihood is finally calculated as

N
2InL=— min (S, S;) (7.3)
=1

In the following a value of S;eg = 2.41 corresponding to Prob(Sreg) = 0.3 is chosen, which in
addition excludes most of the background events, when fitting the true masses (cf. Fig. 7.6).

Interpreting the obtained distribution of A(—21In L) as a likelihood for the simultaneous
determination of the four mass parameters the confidence intervals for m = 4 in Tab. 7.3
apply. In reality such an interpretation is difficult because the shape of the likelihood
contour is influenced by several factors. While the effect of the regularization cut-off may
be small in the vicinity of the extremum, the shift towards larger fit probabilities when
including combinatorics is not negligible and leads to an enhancement of the extremum (cf.
Sec. 7.4.3). Also the step size of the mass scan (cf. Sec. 7.4.1) can lead to deformations.
Therefore the observed A(—21n L) intervals may not correspond to the real uncertainties,
which would have to be evaluated e.g. by repetition of the experiment on different event
samples.
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7. Results

Coverage probability (%) ‘ m=1 ‘ m =2 ‘ m =3 ‘ m =4

68.27 (o) 1.0 2.3 | 353 | 4.72
95.45 (20) 40 | 618 | 8.02 | 9.72
99.73 (30) 9.0 | 11.83 | 14.16 | 16.25

Table 7.3.: 2AIn L corresponding to the given coverage probability for joint estimation of m pa-
rameters.

7.3 Visualization

Having introduced and validated the kinematic fit and outlined how to exploit the joint
information of many events, a scan over possible mass values is the last missing piece. In
this scan hypothetical values for the masses of the squarks, neutralinos and sleptons are
defined on a four-dimensional mass grid and each hypothesis is tested in the fit.

Clearly a visualization of the likelihood in four dimensions is not possible and it needs to
be projected into fewer dimensions, i.e. two or even one mass variable, for visual analysis.
Such a projection has to be made in a way that the confidence region determined for the
remaining variable also is compatible with the same coverage probability for the other,
undisplayed masses.

One possible approach is the following: for each point in the reduced (n — 1)-dimensional
grid, the value of the projected dimension which maximizes the likelihood is selected. This
can be repeated until the desired dimensionality is reached.

The effect of this approach can be illustrated in two dimensions. Starting from two
random variables ©; and @y, each following a Gaussian distribution with mean zero and
o = 1, a histogram of the correlated variables ©; and ©; = O, — 0.5 - ©; is created.
The log-likelihood is determined from the histogram bin-contents N as 2 - In(/N). This is
analog to a scan of the likelihood contour with the kinematic fit. The difference to the
maximum likelihood value is shown in the 2D-histogram Fig. 7.7, left. The contour of
the 1o confidence region for the joint estimation of two parameters is indicated with the
dash-dotted line, corresponding to 2AIn L = 2.3.

In the projection on the ©j-axis the largest likelihood for all ©; coordinates is taken
for each bin and the bin center set as coordinate for the graph xz-axis. The selected bins
are indicated with the black markerline. The projection is basically a cut through the two
dimensional plane.

The resulting one-dimensional curve (Fig. 7.7, right) has a parabolic shape and is fitted
to determine the position of the maximum and its width. The points where the function
has dropped to fihee — 2.3 are marked. Obviously the 1o interval is the same as determined
from the 2-dimensional distribution. Choosing the parameter region with f,.. — 1 a width
of A@; = +1.15 is found, which agrees well with the standard deviation of the original
gaussian distribution (o = 1.13).
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Figure 7.7.: Left: Log-likelihood distribution for correlated variables with Gaussian distribution.
The dash-dotted line shows the 1o-contour. The markerline indicates the bins with
larges likelihood for a fixed ©;. Right: Likelihood values along the marked line. A
parabola fit yields the given O; intervals values for 2A In L-differences of 1 and 2.3.

Due to fluctuations in the bin-contents the x-section is not a straight line. However, it
approximates a line through the points where the error ellipse becomes tangent to a vertical.
Fig. 7.8 [16] illustrates this for an ideal error ellipse. The values of ©; which maximize the
likelihood for a given value of ©; are indicated with the dotted line and the intersection of
this line with the error contour yields the correct uncertainty o;. An advantages of this
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Figure 7.8.: Left: Ideal 2D error ellipse [16]. The dotted line show the values of ©; which maximize
the likelihood for a given value of ©;.

procedure are that the 2AL-values for the confidence intervals are preserved and respect
the correlations.
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7.4 Mass Determination

7.4.1 Mass Scan on Signal Events

Finally, mass hypotheses are tested in order to determine the masses of the involved par-
ticles. First, only signal events containing the cascade Fig. 5.2, with two ¢z, (§ = @,d, ¢, §)
as initial particles are considered, scanning on a four-dimensional mass grid as defined in
Tab. 7.4 and taking into account all combinatorial possibilities. Identical particles on both
branches are assumed to have the same mass. The mass widths assumed in the gaussian
constraints are not varied.

Particle | Muyin. [GeV] | Mpax. [GeV] | AM [GeV]
qr 470 650 10
X 100 400 10
Ir 60 210 10
%) 0 120 10

Table 7.4.: Grid of mass hypotheses for scan.

The resulting likelihood distribution, after application of the described projection tech-
nique, shows a good correspondence of its extremum with the true central value of the
cascade particle masses (Fig. 7.9). The average x?/ndf per event of about 0.75 at the ex-
tremum is reasonable and decreases to 0.6 if only counting events with a complete match-
ing of jets and leptons to generated particles. In such events the blurring effects of e.g.
hadronization and jet reconstruction are rather small and a better average x? is not sur-
prising. A regularization cut-off corresponding to Prob(x?) = 0.3 is chosen, which excludes
most background events when fitting the true masses (cf. Fig. 7.6). Correlations among
the masses are observed, which are quite strong for the lower part of the decay chain (%9,
Ir, X).

In the squark mass diagrams (first three plots of Fig. 7.9) a decrease is visible towards
the upper-left corner, along a line of constant mass difference to the second mass variable.
It has its origin in the correlations among the three lower particle masses, as will become
clear later. The extremum for the squark mass is rather insensitive to correlation effects in
the rest of the decay chain, due to the fact that all three measured particles on the branch
enter the squark-mass constraint.

A particularly strong correlation is found between the X3 and [r masses, where the best
hypotheses lie on a diagonal line which corresponds to the true mass difference of about
37 GeV within the binning resolution. A stretched but clear absolute extremum is observed,
covering the true mass values with its upper end. Due to the strong correlation the two
plots of XY / Ig versus the squark mass (upper row Fig. 7.9) have a similar likelihood
contour.
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7.4. Mass Determination

A good reconstruction of the mass difference is not surprising, since the invariant masses
of neutralino and slepton differ only by the contribution of the second lepton, which is
measured very precisely. Even with a slightly wrong LSP fourvector, i.e. in the vicinity
of the true Yy / Ir masses, the difference of the invariant masses will not change much.
Deviations from the true difference are more likely to be accepted by the fit if they tend
towards larger values (good hypotheses lie below the line of the true mass difference), which
can be understood looking at the interplay with the LSP mass variable.

All three distributions involving the LSP mass show the same feature. Beside a well
positioned total extremum a band of good hypotheses is visible, reaching from the true
LSP mass down towards zero. This band becomes more prominent when including the
other categories of signal events (cf. Sec 7.4.3). TIts ridge in the slepton-LSP mass plane
(lower right plot Fig. 7.9) is slightly bent, i.e. it is not found along the line of a constant
mass difference. While starting at the true M; — M)Z? = 46 GeV for the correct LSP mass,
it tends towards larger values when approaching mgo = 0.

The reason why mgo SO far below the true value can provide a good y?-sum is that it
is only indirectly constrained in the fit, i.e. only through its contribution to the invariant
masses further up the chain. The ¥} mass appears in combination with its three momentum
in the energy component of the fourvector sum and hence any LSP mass may be compatible
if only the momentum components can be adapted accordingly. If the LSP momentum has
a large absolute value, the influence of the mass term is small. This means that the
restrictions on p, and p, in the momentum balance constraints are of great importance,
which in turn is related to the precision of all momentum measurements. This aspect is
further discussed below.

Having in mind the rather weak restrictions on the )2(1) mass, the shape of the band of
good likelihood values can be further understood recalling a well known phenomenon, the
dilepton mass edge of the decay X3 — lp+1* = O+ 1% + 17, which builds the lower part
of our signal decay chain. The maximum lepton pair invariant mass is given by Eq. 4.1 (cf.
Sec. 4.2) and can be rewritten as a product of linear mass differences and sums

(m2, — m2 )(m?2 —m?2,)

X2 Ir lr Xi

2
m=
lr

(mijecy?

(7.4)

(mig + miR)(mf(g — m[R)(m[R + mi?)(miR — m)z(l))
2
Ir

The triangular shape of the my distribution means that a large fraction of events actually
have a dilepton invariant mass close to the maximum value (cf. Fig. 7.10). Therefore it is
difficult or even impossible for the fit to adjust the lepton momenta such, that these events
become compatible with a lower mj;'®*. This leads to the strong drop at the upper edge

of the likelihood distributions, since for a fixed slepton mass a decrease of mgg would lead
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to a lower m/%®  which for the events close to the dilepton edge results in a large fit x2.

The same argument holds for the ¥ whose mass cannot be increased without violating this
kinematic requirement.

Taking into account that the m_o — mj . mass difference is precisely found with its true

X2
value in the scan, the shape of the My, VS. Mgo likelihood contour can be further understood
from Eq. 7.4. If mp, is tested at a lower value and the best hypotheses therefore also lie

T value is to increase the mass

at an equally lower myq, the only way to preserve the my'®
difference between slepton and LSP, which means to favor hypotheses below the diagonal
line of the true mass difference. The smallest value the slepton mass can reach under these
assumptions is obtained by inserting m. 0= 0, the true m;;'** value, and the true mass
difference mgo —myp, = =37GeV in Eq. 7. 4 yielding a value of mmm ~ 68 GeV.

However, the observed ridge does not reach this smallest poss1b1e mass difference but
broadens towards larger slepton masses (i.e. larger differences) which is related to the
measurement uncertainties in the event.

Considering the described relations between the scan result and the dilepton mass edge
it seems a natural extension to the kinematic fit method to incorporate a mass edge mea-
surement. This could help to improve the mass resolution and especially to fix the overall
mass scale by compensating the weak LSP mass constraints. This ansatz is further pursued

in Sec. 7.5.

Combinatorics

In the validation of the fit implementation it was shown, that combinatorics shift the
x2-probability distribution towards larger values. Therefore a better likelihood value is
expected on average in case combinatorics are included. Actually, the best total x2-value for
drqr, signal events increases from 0.75 to 1.0 if only the correct assignment is considered (cf.
Fig. 7.9 and Fig. 7.11). While the extremum keeps its position and the correlations remain,
the likelihood contour is flattened and small ¥9-masses become even more compatible. The
picture does not change when using only events in which all cascade jets and leptons can
be matched to generated particles.

Integrated Luminosity

The shape of the likelihood distribution depends on the amount of analyzed data. Fitting
only 50% of available signal events (Grqr) the ridge in my -Mmyo is less pronounced and
compatibility of small LSP masses cannot be excluded (left plot Fig. 7.12).

A cumulative effect is expected when fitting more events. Only by addition of many
events the common mass regions with good fits become visible, since a single event has
not sufficient constraints to determine the missing LSP momenta and the masses of the
SUSY particles at the same time. Also an event may contribute strongly to the observed
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7.4. Mass Determination

maximum with a very good fit probability close to the true masses and by the inclusion of
more such strong events the extremum becomes clearer.

For a duplication of integrated luminosity it is observed that the band at small Y} masses
further narrows (right plot Fig. 7.12) but does not vanish. The intrinsic weakness concerning
the LSP mass is not cured by an increased integrated luminosity.
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Figure 7.9.: All possible 2-dimensional projections of the mass scan for ¢z, signal events in the
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detector simulation sample with full combinatorics. Each bin corresponds to a tested
mass hypothesis and the bin content is calculated according to Eq. 7.3 with a cut-off
at Prob(x?) = 0.3. White areas lie below the minimal displayed z-axis value or were
not scanned due to the mass hierarchy. True values of SUSY masses are indicated by
black dashed lines.
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Figure 7.10.: Generated lepton pair invariant mass distribution in signal events with typical tri-
angular shape.
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Figure 7.11.: Projections of the mass scan for §z§r signal events in detector simulation sample
without combinatorics. True values of SUSY masses are indicated by black dashed
lines.
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Figure 7.12.: Projections of the mass scan for ¢zq; signal events in detector simulation sample
with full combinatorics for different luminosities. Left: 70fb~!. Right: 280fb~1.
True values of SUSY masses are indicated by gray dashed lines.
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7.4.2 Toy MC Study of Measurement Resolutions

The impact of the measurement resolutions of leptons, jets and missing Er is evaluated by
means of varying resolution assumptions. For technical reasons this is done using the Toy
MC, keeping in mind the known differences to the detailed simulation (cf. Sec. 5.3).

Electrons and muons are measured very precisely whereas jets are the physics objects
subject to the largest reconstruction uncertainties, especially if carrying little transverse
momentum (cf. Sec. 5.2.1). Given also the high jet multiplicity at a hadron collider their
resolutions are the crucial factor for any precision measurement involving different types of
particles. Therefore a variation of the jet pr resolutions will have the strongest impact on
the scan result.

Two options exist to calculate a missing Er in the Toy MC. Either by summing over all
measured (i.e. smeared generator) particles, including those in the forward regions and at
very low pr, or in a more detector reality inspired way by taking the true generator missing
Er, i.e. the transverse momenta of all unmeasured particles (neutrinos, neutralinos), and
smearing it with the experimental missing Fp resolution.

The first approach shows a very narrow missing Ep resolution, significantly better than
the one obtained in the smearing method (Fig. 7.13). Hence, the influence of the missing
E7r measurement precision can be evaluated comparing scans with either of the methods
applied in the Toy MC.

24
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Figure 7.13.: Ratio of generated and measured missing transverse energy in Toy MC signal events.

Left: sum of all visible particles. Right: smearing of invisible momenta with the
experimental missing Fr resolution.

Using the idealized Toy MC instead of the detector simulation the extremum in a scan of
Gr.qr, events becomes narrower and more pronounced in mgo due to the mentioned differ-
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ences (Fig. 7.14, top). Comparing scan results for the actual jet resolution and for a setup
with a 50% increase (Fig. 7.14, middle) shows that the power of the LSP mass constraint
is strongly dependent on the jet measurement precision, while the other masses are less
affected, although their distributions broaden slightly.

The same is observed for a degraded missing Er resolution, which again negatively
influences the shape in the LSP mass variable (Fig. 7.14, bottom).

In both cases of a worse jet resolution and a worse missing Er resolution the tail towards
small slepton masses is enhanced and the distribution broadens very slightly. The effect
blurs the maximum originally found close to the true masses so strongly, that only an upper
limit can be set on the ¥J mass. We conclude that measurement resolutions are a crucial
factor in the mass determination and a minimal precision has to be given for a successful

application.

7.4.3 Further Signal and Background Contributions

In the discussion of the event selection several categories of signal events were introduced
(cf. Sec. 5.2.2) and their behaviour in the mass scan is studied.

The two reasons for the classification are that either a squark of the signal cascade is
not directly produced in the hard interaction but comes from a gluino decay, or that the
squark is not one of the (almost) mass degenerate @y, ¢, CZL or Sj,.

Beside the shape of the likelihood contour, which allows a comparison among mass hy-

potheses, information on the overall compatibility is also provided by the average x?/ndf per
fitted event (Tab. 7.5). This quantity facilitates the comparison among the event categories,

Category ‘ Newts | 20 x%/ndf /Neyts
qrqr 117 0.75
g—qr 65 0.80
by (incl. § decays) 126 0.84
b, Gr (incl. § decays) | 26 0.84
All Signal Processes 334 0.85
Background 367 1.07

Table 7.5.: Average x? at optimum of mass scan for including only events of the current category.

each of them containing a different number of events and therefore yielding a different best
likelihood value by construction. The values hardly differ among signal categories but a
slight increase is observed when including § decays. Peculiarities of individual event classes
are discussed in the following.
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7.4. Mass Determination

Gluino Decays

Including events in which one or both ¢y are produced in gluino decays yields a simi-
lar result as before. However in our sample the tail towards small LSP masses becomes
more prominent. The average jet multiplicity is higher than in ¢rq; events because the
gluino decay yields an additional jet. This implicates an increased uncertainty on the total

transverse momentum balance and hence a worse LSP mass constraint as discussed before.

Right-handed Squarks and Heavier Sbottom

The event sample contains some events with squarks of the nearly mass degenerate ¢gr or
by squarks (M = 546 GeV). Since only 7 events with squark pair production and 19 with
a gluino decay are counted their likelihood distribution shows a very broad extremum that
is not sharp enough to reveal new features.

Due to the small number of events and the small mass difference Mg, — M, Jhy = 15 GeV
no second extremum is observed in a combined ¢z, and §r /be sample, which in general shows
the same properties as discussed for the pure gy, case. The best average x? value also does
not change significantly when including these slightly lighter squarks.

Light Sbottom

As expected, the likelihood distribution for a sample containing only events with the lightest
squark (51, M = 517GeV) is similar to the ¢z, case with the difference, that the extremum
is located at the correct lower squark mass (Fig. 7.15).

Due to the large number of b; events (126), making up one third of signal events, and the
large mass gap of almost 50 GeV with respect to the left-handed squarks, the two extrema
are visible also in the inclusive signal sample (cf. Fig. 7.16).

Overall Signal Contribution

Adding the distributions of all types of squarks two separate maxima, for heavier and lighter
types can be identified in the 2-dimensional projection (Fig. 7.16, top). However, due to
the correlations, the extremum coming from by is shifted towards smaller neutralino and
slepton masses in this inclusive signal sample.

Small LSP masses fit very well in these combined distributions and it may not be possible
to set a lower limit on its mass. However, from the above observations the true LSP mass is
expected to be located close to the edge at higher values where the likelihood falls steeply.

Interestingly, the same feature was observed in another mass determination study [83]
in which the same cascade is considered, starting from the ¥5. The authors construct a
system of equations with an equal number of constraints and unknown LSP momenta, using
hypotheses for the three involved masses. Mass points for which analytic solutions can be
found lie in a three dimensional region, which for the LSP mass reaches from the true mass

value down to zero.
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Figure 7.14.: Projections of the Toy MC mass scan on §rqr signal events into 1-dimension for
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each of the four masses. Top: Standard Toy MC setup. Middle: jet pr resolution
worsened by a factor of 1.5. Bottom: Simulation of missing Er by taking the true
value and smearing it with experimental resolution.
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Mass Hypothesis [GeV]

Projections of the mass scan for all signal events in detector simulation sample
with full combinatorics. Top: 2-dimensional mass planes. True values of SUSY
masses are indicated by black dashed lines. All three squark types (Gr, Gr/ba, b1)
contribute. Bottom: 1-dimensional likelihood projection for all four masses (g, X9,
L.



7.4. Mass Determination

SUSY Background Effects

All processes at SPS1a which are not contained in the signal categories Tab. 7.5 constitute
the SUSY background (cf. Tab. 5.9). The best fitting mass values for the combination
of all background events lie close to a zero LSP mass and at higher squark masses, well
above the true value (Fig. 7.17, left). Small values for the LSP are preferred since this
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Figure 7.17.: Projections of the mass scan for background events in detector simulation sample.
True values of signal cascade masses are indicated by black dashed lines.

leaves more freedom in the adjustment of its momentum components in the fit, where of
course the assumed event topology does not match the actual decay chain. High squark
masses appear to be an effect of arbitrary jets being combined with a lepton pair and LSP,
often coming from a leptonic part of the decay chain which is identical to signal events (cf.
Sec. 5.2.2).

In the Mgy and mp, plane two bands are visible (Fig. 7.17, right). The upper one stretches
along the true mass difference and comes from events having the correct lower part of the
decay chain (Y3 — [ — %)) on one or even both of their decay branches. A broad second
extremum is found at a larger neutralino-slepton mass difference. Events not containing
branches with the correct lower part of the decay chain contribute, especially those with a
7 instead of smuon or selectron.

The overlay of both distributions leads to the observed structure. The average x? at the
best mass hypothesis is larger than for signal events (cf. Tab. 7.5). Increasing the num-
ber of events (integrated luminosity) does not significantly change the observed likelihood
distribution.
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Full Event Sample

In the full event sample the background dominates and strongly distorts the likelihood
distribution (Fig. 7.18). Several maxima emerge due to contributions from left-handed
squarks, light sbottoms and the background, which prefers larger squark masses. Overall,
the best squark mass hypotheses still lie close to the true ¢ mass but Y3 and IR masses
show a second extremum at relatively low values. The LSP mass cannot be constrained
from below and a zero mass appears to be compatible.

A determination of all masses with the present signal to background ratio of ~ 0.91 is not
feasible, although the heavier particles in the chain are still reasonably met. A reduction
of the background contribution is necessary for a precise measurement and beside a further
event selection, one option is the inclusion of a dilepton mass edge measurement.
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Figure 7.18.: Projections of the mass scan for signal and background events in detector simulation
sample with full combinatorics. True values of signal cascade masses are indicated

by black dashed lines.
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7.5 Inclusion of the Dilepton Mass Edge

One of the best studied approaches to mass determination is the method of kinematic
endpoints (cf. Sec. 4.2). The measurement of the dilepton mass edge was studied in
detail elsewhere and for low mass mSUGRA scenarios it becomes visible with rather little
integrated luminosity at the LHC. Certainly a measurement of the endpoint will be available
early if it exists.

As pointed out above, the kinematic edge has a large impact on the shape of the likelihood
contour. However, also hypotheses which are not compatible with the exact kinematic
endpoint are fitted with good likelihood mainly due to the discussed resolution effects.

The inclusion of a measured endpoint for the dilepton invariant mass will increase the
power of the fit by reducing the dimensionality of the mass space and excluding certain
mass combinations. Having the relation Eq. 7.4 between the three masses of X3, Ir and Y,

the measurement of m;'** allows the substitution of one of the mass variables, e.g. mgg,
which is then given by the expression
2
2 2 (my**)
mig =m; (1—}— m —m?y) | (7.5)
lr X9

In a scan of all categories of signal events, where for each combination of slepton and
LSP mass only the mgo value fulfilling Eq. 7.5 is considered, the distribution in the slepton-
LSP plane is reduced to a narrow, curved band (Fig. 7.19, top). The result is expected
because still the hypotheses close to the true )Z%—lN r mass difference yield the best fits, but
by enforcing the mass edge relation only hypotheses on the observed band are compatible
to these preferred )Zg / Ik values.

The determination of the LSP mass is improved because the masses competing with the
true value were all lying slightly below this band (cf. lower right plot Fig 7.9). The squark
mass extremum becomes narrower, is stretched due to the by contribution and stronger
correlated to the slepton mass. The best hypothesis has an average x2?/ndf per event of
0.91, which is slightly larger than in the scans without a mass edge measurement because
now certain mass combinations are excluded.

Projecting the likelihood into one dimension a clear peak is visible for each of the four
masses (Fig. 7.19). In order to estimate the precision of the measurement the likelihood
contour is interpreted in terms of confidence intervals for a joint estimation of the four
masses (cf. Tab. 7.3).

The distance between the scan points is rather large compared to the width of the
maxima for the three lighter particles. Therefore, a parabola is determined such, that it
fits the point of best likelihood and the two neighboring points, since in principle the log-
likelihood should have a parabolic shape in the vicinity of the extremum. The 1o interval,
corresponding to a decrease of the parabola by 4.72 with respect to the peak, is determined
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and taken as an estimate of the statistic uncertainty of the mass determination.

The squark mass peak is strongly asymmetric and a parabola does not resemble its shape.
Therefore, the 1o interval is approximated by taking the point at which the connecting line
between the scan points reaches the desired distance of A(2In L) = 4.72 to the maximum.
Incidentally this happens very close to actual scan points. Results are summarized in
Tab. 7.6.

As mentioned before, various effects may cause the true statistical uncertainty to devi-
ate from the value obtained in this procedure and the result should be treated carefully.
Nevertheless this estimate gives a hint at the precision which is reachable with this mass
determination method.

Scan Result [GeV] | MC value [GeV]
M; 560750 562/568
9 175 £5 180
M; 140 £5 143
0 90 + 5 97

Table 7.6.: Result of the mass determination method including the mass edge measurement for
all signal events with full combinatorics. Uncertainties are estimated from the lo
likelihood intervals.

An inclusion of SUSY background events alters the distribution and leads to a separate
second extremum around the light sbottom mass (Fig. 7.20, top). Due to the ridge structure
of the likelihood contour in the lN—)Z(l] mass plane this second extremum is found at a slepton
mass of only 115 GeV and consequently a too low LSP mass (60 GeV).

In the 1-dimensional projections of the likelihood distribution the double peak structure is
even better visible (Fig. 7.20, bottom). Interpreting the observation in terms of confidence
intervals as before, disconnected 1o regions are obtained for the two maxima in Y9, [ and
%Y, whereas the two maxima in the squark mass are less separated.

While in principle the visibility of a second squark mass peak nicely demonstrates the
precision of the method, it might be difficult to tell from real data which of the extrema is
the correct one for any of the other three masses.

In summary, we find that by the inclusion of the mass edge information the intrinsic
weakness of the kinematic fits method concerning the restriction of the LSP mass is cured,
and a determination of all four involved masses is possible, if backgrounds are not too large.
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Figure 7.19.: Projections of the mass scan for all signal events in detector simulation sample with
full combinatorics and a perfectly fulfilled mass edge (Eq. 7.5). Top: 2-dimensional
projections. True values of SUSY masses are indicated by gray dashed lines. Middle
and bottom: 1-dimensional projections and adjusted parabola. True masses are
indicated by vertical colored lines. The 1o uncertainty interval is indicated by gray
vertical and horizontal lines.
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Figure 7.20.: Projections of the mass scan for signal and background events in detector simulation
sample with full combinatorics and a perfectly fulfilled mass edge (Eq. 7.5). Top: 2-
dimensional projections. True values of SUSY masses are indicated by black dashed
lines. Middle and bottom: 1-dimensional projections for all four masses. True
masses are indicated by vertical colored lines. The likelihood corresponding to a 1o
uncertainty interval is indicated for both maxima by gray horizontal lines.

121



7. Results

7.6 Comparison to Other Studies

In several publications dealing with SUSY mass determination the SPS1la was chosen as
reference point, which allows a comparison of our results with the published studies. We
focus here on two polynomial methods which have some aspects in common with the Kine-
matic Fits Method and were already introduced in Sec. 4.2.1: the ansatz by Webber [75],
which also consists of a test of mass hypotheses and which was exploited for the calculation
of the initial LSP momenta for our fit (cf. Sec. 6.2), and the numeric solution of the system
of equations for pairs of events by Cheng et al. [74]. Both use exactly the same signal
cascade.

Mass Hypothesis Method

In the publication by Webber only signal events are considered, including left-handed
squarks from gluino decays but none from the third generation. Furthermore the lep-
tons pairs are required to have different flavor, which minimizes combinatorics. The event
treatment is an even more rudimental version of our Toy Monte Carlo and consists of a
gaussian smearing of the final-state particle fourvectors and the true LSP momenta to
obtain a missing Fr value. Different resolutions were studied by the authors and results
applying a dp/p = 5% smearing to all particles and the missing Ep are shown in Fig. 7.21
and quoted in Tab. 7.7. They were obtained from a sample corresponding to an integrated
luminosity of Ly, = 300fb~".

Mass Hypothesis Method [75] Kinematic Fits Method
Determined Mass [GeV] | MC value [GeV] || Scan Result [GeV] | MC value [GeV]
q 539+ 9 540 582 + 8 562/568
% 178 £ 3 177 188 £5 180
! 144 +2 143 148 £ 5 143
b%! 96 +4 96 98 +5 97

Table 7.7.: Left columns: Result of the mass determination method [75] for a measurement res-
olution of dp/p = 10%. Given are the mean and RMS from a set of 100 subsamples,
each consisting of 25 events. Right columns: Result of mass scan on Toy MC sample.

In order to have a comparable setup for our method the Toy Monte Carlo scan on an
event sample corresponding L;,; = 280fb~! is chosen and only §;, events, including gluino
decays, are considered. The resulting 1-dimensional likelihood projections (Fig. 7.21) show
sharp peaks close to the true masses, although all masses except the LSP are slightly
overestimated. The numerical result (Tab. 7.7) is obtained as before by adjusting a parabola
through the maximum and its two neighboring points.

From our observations in Sec. 7.4.3 it can be suspected that the compared method also
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7.6. Comparison to Other Studies

profits from the use of a Toy MC with its stronger constraints on the LSP mass due to a
well measured momentum balance (missing E7) and fewer jets.

Therefore, a degradation in the LSP mass determination might occur in Webber’s method
when studying full detector simulation samples because more viable solutions with small
LSP masses may be found. Actually, the plot of best mass values (Fig. 7.21) shows already
some event samples with a best LSP mass close to zero and this effect might become
stronger in a more realistic scenario.

Comparing results (Tab. 7.7) we find that the precision of the methods is of the same
order of magnitude in case of an idealized Toy MC scenario. For a final evaluation the cited
method would have to be tested with full detector simulation and including backgrounds.

Event Pair Method

The second result in our comparison is based on an ATLAS detector simulation for an SPS1a
sample corresponding to L;,; = 300fb~! [74]. The event selections are similar, despite the
fact that a lower jet transverse momentum cut (pr > 100 GeV) is applied and b-tagging
is used to exclude events containing b-jets. With a b-tagging efficiency around 50% for
high pr jets, the authors claim to reach a signal to background ratio of 2. The published
mass determination result shows a good agreement with the generator level masses and
very small statistical uncertainties (Tab. 7.8).

Event Pair Method [74] Kinematic Fits Method
Determined Mass [GeV]| | MC value [GeV]| || Scan Result [GeV]| | MC value [GeV]
q 561.5 £4.1 564.8/570.8 567 £ 11 562/568
% 179.0 £3.0 180.3 174 £6 180
] 138.8 £2.8 142.5 139£7 143
%! 94.1 +£2.8 97.4 89+ 7 97

Table 7.8.: Results of the mass determination method [74] and a mass scan in a comparable setup
(cf. Fig. 7.22).

In order to provide a basis for comparison our selection has to be adapted to exclude
b-jets. A simple emulation of b-tagging is used in which events are kept only if a random
number from a uniform distribution in the interval (0, 1] lies below the probability not to
identify a b-jet. This non-identification probability is calculated assuming a constant b-tag
efficiency of 50% and counting b-partons on generator level with a transverse momentum
of more than 20 GeV, i.e. Toy MC b-jets.

As expected the contribution of sbottom signal processes is reduced by about a factor of
4 (two b-jets per event) and also the background is further suppressed, yielding a signal to
background ratio of about 1.1 (cf. Tab. 7.9).
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7. Results

Original Selection | After b-tag emulation

qrarL 217 209
g —qr 132 132
by 216 50

by, Gr 54 26

Total Signal 619 417
Background 754 405
S/B 0.82 1.03

Table 7.9.: Event selection result for detector simulation (280 fb~!) sample with b-tagging emu-
lation. An b-tagging of efficiency of 50% was assumed.

Despite a very similar event selection, a S/B = 2 is by far not reached because the
number of signal events is only 60% of the quoted value, while the background is about
15% larger. Most probably this is an effect of yet unidentified differences in e.g. lepton
reconstruction, identification and isolation efficiencies. Therefore a further assimilation step
is made and the background in our sample is artificially reduced by randomly discarding
50% of background events, yielding the desired S/B ratio.

Since the result Tab. 7.8 has very small statistical uncertainties, we only compare the
Kinematic Fits Method with inclusion of the dileptonic mass edge measurement, in order
to maximize its precision.

The numerical result of this scan (Fig. 7.22) closely resembles the true mass values. The
estimated statistical uncertainties (Tab. 7.8) are at least twice as large as in the compared
study.

We conclude that in case of an almost sbottom free sample with S/B = 2 our method
performs very well, if use is made of the mass edge measurement. However, a finer mass scan
and a precise estimate of the statistical uncertainties are necessary to find out whether the
final precision can reach the excellent performance of the reference method. Furthermore
systematic effects are to be considered for both methods.
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Figure 7.21.: Top: Distribution of best mass values for samples of 25 events [75]. Bottom: pro-
jection of likelihood for all scanned masses in Toy MC. Dashed lines indicate the
1o uncertainty obtained from the parabola through the maximum and neighboring
points. In both plots only signal events with left-handed squarks of the first and
second generation are shown.
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Figure 7.22.: Projection of scan result on detector simulation sample for signal and background,
using dilepton mass edge, b-tag emulation and an artificial background suppression.
Dashed lines indicate the 1o uncertainty obtained from the parabola through the
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7.7. Conclusions

7.7 Conclusions

The constrained kinematic fit of the signal cascade containing two unmeasured neutralinos
works well if the SUSY masses are known and yields reasonable fit probability and pull
distributions. Event reconstruction and resolution effects in detector simulation slightly
degrade the performance with respect to the Toy MC. In most events the fit correctly finds
the jet and lepton pair on the same branch but the association of leptons to their position
on the branch is less successful due to their similar kinematics.

Combining the fit result of all events allows the definition of a likelihood variable for each
tested set of masses and an exploration of the compatible masses via a scan. The obtained
4-dimensional likelihood can be projected into fewer dimensions for analysis.

In principle the mass determination method works and the scan yields the best likelihood
values around the true particle masses if considering identical decay chains. The likelihood
shape in dependence of the lower three masses in the decay chain is understood from lepton
kinematics.

Constraining the mass of the lightest SUSY particle is challenging, since it is rather
weakly restricted by the kinematics and the crucial pr balance constraint is weakened by
jet and missing F'r measurement resolutions. Improved measurements of the LSP mass are
observed if jet or missing FEp resolution are assumed to improve.

Events containing light sbottom squarks yield a second extremum at an accordingly
lower squark mass. In combination of all signal events this leads to smaller neutralino and
slepton mass due to the shape of the added distributions. Therefore a sample containing
only squarks of the same type is desirable for a precise measurement.

SUSY backgrounds at SPSla dominate if considering the full event sample and have to
be reduced further for a successful measurement.

Exploiting knowledge on the maximum invariant lepton mass from an endpoint measure-
ment complements the method and reduces the dimensionality of the scan. It strengthens
the determination of the LSP mass, improves the precision of the result, and reduces the
influence of backgrounds.

In comparison to competing methods, the performance looks comparable at first sight
but a proper evaluation of uncertainties is necessary to draw final conclusion.
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Chapter 8

Summary

Mass determination of SUSY particles is an important step after a possible discovery of
supersymmetry at the LHC and may contribute in a fit of observations to SUSY model
predictions.

The main challenge in mass determination in R-parity conserving SUSY is the existence
of two unmeasured particles in each event, which makes a full kinematic reconstruction
difficult. The diversity of possible decay chains leads to large SUSY backgrounds and
requires a powerful event selection if a single event topology has to be isolated for the
measurement.

Several methods were proposed and studied in recent years. In this thesis a further
method for determination of SUSY masses was introduced, which combines a scan over
possible mass values with a rating by an event-by-event constrained kinematic fit on a set
of topologically identical events.

In the kinematic fit a sufficient number of constraints have to be imposed to compensate
for the six unknown LSP momentum components. This requires cascades to contain at
least three intermediate states on each decay branch. If the particle masses are known the
full event kinematics can be reconstructed in the over-constrained fit.

Studying the low mass mSUGRA reference point SPSla a decay chain containing four
leptons but only two jets is chosen as signal process, because it has small combinatorics, a
clear signature and basically no Standard Model backgrounds.

An implementation of the methods of Lagrangian multipliers is used for the kinematic fit.
Since the covariance matrix for all measured particles is needed, jet and lepton transverse
momentum as well as angular resolutions are determined.

Several options for a generation of initial values of the LSP momenta were compared.
In the chosen approach they are calculated from measured objects by solving a system of
equations derived from the kinematic constraints. This way the starting point for the fit
was shown to be already close to the true solution if the correct masses are assumed and the
fit reliably finds a minimum despite the complex x? landscape from linearized constraints
and many fit parameters.
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8. Summary

A successful application of the constrained kinematic fit on a SUSY event topology
containing two unmeasured particles at SPS1a was shown and a good performance observed
for the case that masses of intermediate particles are known. Unmeasured momenta were
reliably reconstructed with good precision and the assignment of jets and leptons to their
position in the cascade is correctly found for a large fraction of events, although similar
kinematics make a distinction of leptons on the same branch difficult.

A scan on a grid of hypothetical mass values and the combination of fit results in a
likelihood distribution allows the determination of particle masses in events with identical
decay topology. The mass of the last and escaping particle in the cascade is least constrained
in the fit and hypotheses below its true mass may be found with good likelihood. Jet and
missing E7 measurement resolution play a crucial role in the determination of this lightest
mass, since it is mainly constrained by the pr balance in the event and the smaller the
measurement uncertainties the more precise the mass determination. The shape of the
likelihood for the lower three masses and their correlations is determined by the lepton
kinematics and is consistent with the well-known dilepton mass edge. The mass of lighter
third generation squarks could be resolved in the tested setup.

Standard Model contributions are negligible but SUSY backgrounds at the SPSla are
large, especially cascades including a 7 or stop squarks, since the branching ratios are rather
unfortunate for a four lepton (i.e. electron/muon) topology.

The inclusion of a dilepton mass edge measurement strengthens the constraints on the
LSP mass and increases the power of the method. A precise measurement of all masses in
the decay chain seems possible if backgrounds can be kept small. The actual precision is
yet to be evaluated with a finer scanning and an estimation of statistical and systematic

uncertainties.

The method performs well in comparison to other mass determination methods using Toy
Monte Carlo and even in the detector simulation case, if including the dilepton endpoint
information and assuming a reduced background.

In summary, the kinematic fits method was shown to work in principle but reveals some
interesting and not necessarily expected features. One distinguishing characteristic with
respect to other methods is the inclusion of experimental uncertainties (jet/lepton resolu-
tions) in the mass determination. Unfortunately the impact of these resolutions is large
and their size turned out to be a crucial factor in the measurement. The underlying reason
was identified to be the constraint on the LSP mass, which had to be improved by the
inclusion of the dilepton mass edge measurement. Another drawback is the susceptibility
to background from other SUSY cascades.
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8.1. Outlook

8.1 Outlook

Several possibilities exist to improve and extend the kinematic fit method. A first possi-
ble improvement for the studied scenario is the further reduction of SUSY backgrounds,
e.g. by using tau-tagging in order to eliminate 7 decays and b-tagging to reduce ¢ and b
contributions.

On the other hand the X9 decay via a 7 could also be included in the signal, despite the
difficulties in tau reconstruction.

Variables like the angle between decay products in the rest-frame of the decaying particle
could be used to improve the treatment of combinatorics by weighting combinations with
their likelihood to yield the observed angle [76].

A large data set and smaller step size in the mass scan is necessary to evaluate the masses
with full precision. However, the number of mass hypothesis grows quickly with a fixed
grid in four dimensions. A more clever way to cover the relevant sections of the mass space
and keep CPU consumption reasonable would be desirable.

From a more general point of view it may be interesting to extend the fit to a variety of
decay topologies and test each event not only for its masses but also for its compatibility
with each of the different decay chains.
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Appendix A

Linearization and Iterative Solution in the
Kinematic Fit

The algorithm for an iterative solution of the fit problem Sec. 6.1 is described [86] [87].
Using the same conventions as in Sec. 6.1 the n measured parameters are labelled i and
have a covariance matrix V. The vector of residuals of the measured parameters w.r.t.
their optimized values i are Ay = i — . The squared sum of residuals can be expressed

as
S(7) = AFTVIAG.

The m unmeasured parameters are denoted by @ and each of the [ constraints fj is a
function of the measured as well as the unmeasured parameters and can be written as an
equality equation

fi = L@@ =o.

Introducing the Lagrange Multipliers A the extremum of

l
LFaX) = S@) +2- > \efu(7, @)

k=1

has to be determined. In the case of linear constraints the differentiation of L leads to
linear equation for the optimal values of measured (7’) and unmeasured parameters (@’).
Otherwise a linerization of the constraints is necessary and the extremum can only be
determined iteratively. In addition to the start values of the parameters (7/d) and their
current optimized values (3 /@) also their values after the previous iteration (y*/a*) appear

in the approximation

@) ~ (@ Zaf’“ = a0+ 30 Pe(pa,— aapy 0. (a)

j=1 """

where Ay* = ¢* — ¢ and Ad* = @* — d denote the residuals after the previous iteration.
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A. Linearization and Iterative Solution in the Kinematic Fit

This equation can be rewritten in vector notation,
[+ B(Ay; — Ag;) + A(Ad; — Adj) ~ 0 (A.2)

introducing the matrices of first derivatives for measured and unmeasured parameters (B,
A), with components

(B)ki = gf; ’“ (A.3)
(A)y = % (A4)

Separating the terms which depend only on the values of the last iteration the constraint

becomes
BAj+AAG—&=0 with &=BAJ +AAG — f* (A.5)

and the expression to be minimized reads
L=A7"V A7+ 2XT (BAG + AAG — ©). (A.6)

After this linearization the differentiation w.r.t. ¢, @ and X can carried out, yielding n+m+I

equations:
VIA7+BTX = 0 (A7)
ATX 0 (A.8)
BAj+AAG = @ (A9

These conditions can be expresed in matrix notation

vt 0o BT\ [Ay 0
0 0 AT|laa|=1]o0 (A.10)
B A 0 X ¢

Since the matrix consists of several blocks of entries a procedure for the inversion of such
partitioned matrices can be applied. The inverse matrix is written with the same partitions

-1
vl o BT C11 Cgl Cgl
0 0 AT = 021 022 Cg; . (A]_l)
B A 0 Cs1 Oz Csg

Using the abbreviations Vg = (BVBT)~! and V4 = (ATVRA) the submatrices of the
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inverse are given as

Cii = V-VB'VEBV + VBT'V;AV 'ATVBV (A.12)
Cy = —V,'ATVEBV (A.13)
Cyp = V! (A.14)
O3 = VBV - VAV 'ATVBV (A.15)
O3 = VpAV ! (A.16)
C33 = —Vp+ VAV ATV (A.17)
and the corrections to the fit parameters turn out to be

Ay = Chée (A.18)

Ad = CLe (A.19)

AX = Csc. (A.20)

The variance of the fitted parameters is obtained from error propagation and one finds

¥ Cni ChH 0
Villda|]|=]Cy Cxw 0 . (A.21)
X 0 0 —Cs

The squared sum of residuals A can be calculate from
S =-X'(¢— AAG) (A.22)

and for a correct model follows a x? distribution with m — n degrees of freedom. For
convergence two criteria are required to be fulfilled. On the one hand the change of the
sum of residuals w.r.t. the previous iteration should be small

S(n—1)—S(n)

A2
ndf <Es (4.23)

and on the other hand the absolute sum of the constraints should be small.

l
F =Y |felf+ A7.d+ Ad)| < ep (A.24)
k=1

Furthermore a reduction of F' is required in each iteration, otherwise the size of the calcu-
lated steps Agy/Ad is reduced by a factor of two until F' decreases.
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Appendix B
Calculations for a Two-Body-Decay

Some calculations for the transformation of a two-body-decay A — B+ C between different
reference frames are summarized. The basic idea is to relate the quantities in A’s rest frame
with the particle momenta in the laboratory frame. This is done in two steps. First the
magnitude of the boost of A is determined and applied along an arbitrary axis. Then
the resulting frame is rotated, such that the calculated B-momentum is identical to the
measured one.

Formulae for the conversion of fourvectors between the different inertial frames are given
for the case, that

e particle B is massless (or its mass is negligible w.r.t A,C masses and typical momenta)
e the masses of A and C are known
e the B momentum was measured in the laboratory system.

The inertial frames used in the following are:

1. Frame * ("Star"): Rest-frame of particle A

2. Frame’ ("Prime"): Frame * boosted along z-Axis, such that the momentum of B has
the same magnitude as in the laboratory frame.

?

3. Lab-frame: Rotated w.r.t frame ’, such that the B-momentum coincides with the

measured one.

Fourvectors in A’s rest-frame

The Metric used here is always (4, —, —, —). Particle A is then given by:
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B. Calculations for a Two-Body-Decay

The momentum of the decay products can be described by the magnitude of their momen-

tum and two angles.

e 0*: angle w.r.t p4’, i.e. its direction after the boost, where the z-axis is chosen here.

e ¢*: angle in the plane perpendicular to ps’

Due to 4-momentum conservation the decay products must be back-to-back and particle B

is massless.

Particle B
P
. || cos ¢* sin §*
bp = . .
|D;| sin ¢* sin 6*

D | cos 0*

\ ME + [Pl

Z%
_pB

Particle C

The magnitude [p;| follows from energy conservation as

M3 — Mg

o

While in principle the two angles can take any value in cos0* € [—1,1], ¢* € (—m, 7| the
magnitude of the measured B momentum may restrict the range of possible cos 8* values.
See below for a qualitative statement.

Fourvectors in Boosted Frame ’

The first transformation is a boost along the z-axis. Here we need to assume a value for
cos 0* so that we know the z- and transverse-component of the B momentum and can adjust
the boost such, that the new B-momentum has the same magnitude as in the lab frame.

Momentum of B and restriction of cos 0*

The requirement is that [pp’| = |pp|, the momentum in the lab-frame. Because the trans-
verse components p7 and pgg remain unchanged in the boost, this relation gives two solu-
tions for the z-component:
- 2
sz,1/2 = =£\/[pBl* — |P:£;I|
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A requirement is, that p%’ should be a real number which defines the range of compatible

cos 0* values.

p5'[* = 5? - sin® 0% < [
& sinf* < @ and sin0* > —|];—B|
P 123

For the case |pp|/|pj| > 1 this is always fulfilled and there are no limitations on 6*. For
the other case |pp|/|pj;| < 1 however we find

arcsin @ < 0" < —arcsin @
75| 75|
or . .
7 — arcsin ‘Z—B‘ < 0* < 7+ arcsin ‘_*—B‘
75| 75|
And with cos (arcsin z) = V1 — 22 we get
7|2
1— ’ZBIQ <cosf" <1
P
or
7|2
—1<cosf*" < —,/1— ’135’2
Pl

giving us the requirement

17B|?

|cos0*| > 4|1 — )
Pl

Determination of the Boost

The direction of the boost is chosen along the z-Axis. The magnitude has to be determined
from the magnitude of the B momentum in the lab-frame. Only the component parallel to
the boost direction (i.e. p%) and the energy will change:

Ep vES —18pE
Pp = p;’%: = pi{ :

) Py

g’ 5 —1BER
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B. Calculations for a Two-Body-Decay

1
_52'

in 8 and yields two solutions

with v =

Either of the two equations from the 1st and 4th component is quadratic

Ep vy £ Ep - p3
Ep® +p3'?

Bij2 =

Here the invariance of the transverse component was exploited to rewrite the invariant mass
expression as

%2 12
M = Mg
x 2 T2 zx2 12 T2 212
Ep”—pp —p~ = Ep~ —pp —DpB
2 2 2 2
Ex*+p%"” = EB"+p%

and this expression was used to simplify the result. Note, that the two solutions for p3’
lead to only two different solutions for 5.

From a physics point of view one could just choose the smaller |3| value, because smaller
boosts are more likely to appear in heavy particle production.

It can be shown that the absolute smaller value is always given by

Eg - vB| — Ep - Ip3|

B: EE2+pZB/2

- sgn (cos 6%),

and that then p%’ has the same sign as cos 6* and therefore also as p%'.

Momenta of A,C

Knowing the boost and its direction one can just apply it to the two particles A,C to obtain
their fourvector in the "prime" frame.

E' YEY —8p%
A P
b= py/ - py*
A A

Pi’ Vi — YBE}

Ep YEE — vBpE
P& e

I J— J—

bc = y! | Yk
bo bo

pe’ wE —VBEE
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The fourvectors of B and C can again be expressed via parameters like p’’, cos @’ and ¢’
in this new frame. Obviously the cos 6’ values is given by

R s S 3
B[ - |pA'| 1PB'] - 1P 1P|

cosf =

Rotation to the Lab-System

The last step is to rotate the boosted system ’ to the lab frame, such that the 3-momentum
vector of B has its components equal to the measured ones.

There is not a unique solution to this problem because an arbitrary rotation of a coordi-
nate system has 4 parameters.

e 3 for the direction of the rotation axis
e 1 for the rotation angle.

So in our case, where we have 3 equations from the momentum components, one degree of
freedom remains. In the way the rotation will be done, this degree of freedom just corre-
sponds to a free choice of our ¢’ parameter, as will be shown below. We anyway have to
choose or dice this variable in our usecase, so this is no further problem.

The procedure is the following. On the one hand we start from the ’ system:
1. Rotate the system ’ around the z-axis, such that pg’ lies in the x-z plane

2. Rotate the system around the new y-axis, such that pg’ lies along the new (positive)

Z-axis

The matrices of these rotations will be labelled R; and Rs, respectively. Note that the first
rotation does not change g4’ and the second one rotates it into the x-z-plane, which will
be shown explicitly below.

On the other hand we do the same, starting from the lab-system:
1. Rotate the system around the z-axis, such that pp lies in the x-z plane

2. Rotate the system around the new y-axis, such that pp lies along the new (positive)

Z-axis

The matrices of these rotations will be labelled S; and S5, repectively.
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B. Calculations for a Two-Body-Decay

Rotation Matrices

Here matrices describing the above rotations are given. I use a different (generic) notation
for the momentum now. First we rotate the the "prime" system, writing the momentum

components of B as @ = (v, v, v3)”. The rotation around the z-axis can be written as:

cosa; sina; 0 1 v]

— — .
U =Ry-U=|—sina; cosa;y O] -]va| =10
0 0 1 U3 vh

From the second component we get the equation
—sinaq -v1 +cosag -vo =0

and the solution for the angle

V2
a1 = arctan —
U1

The next rotation around the y-axis looks similar

cosag 0 sinao U1 0

1/ —
U =Ry U = 0 1 0 vl =1|0
—sina; 0 cosag 0 vy

and from the third component we get the rotation angle as

/
U1
g = arctan ——
U3

Then these two rotations can be combined by multiplying the matrices Ro; = Rs-R;. Insert-

ing the solutions for a /o and using the relations sin (arctan x) = \/117 and cos (arctan x) =

1

the combined matrix becomes

V142

2, .2
v1U3 v2U3 _AV/vitY

v/vi+v3  vy/vito3 v

Ro1 = _ v2 V1
21 \/v2+v2 \/v2+v2 0
1TV 17TY2
v v2 v3
v v v

with v = |#] = /v? +v5 +v3. (In this parametrization v} + v must be non-zero, which
means | cos 6% # 1)

Starting from the lab-frame with a vector @ = (wy, w2, w3)T one gets an equivalent result

142



for the two-rotation-matrix So;. We are interested in the rotation from ¢ to w, that means
we need the inverse rotation of this second step

wW1wWs _ w2 w1
wy/wite  uitwi v

-1 _ ST _ waw3 w1 w2
N R R
_ Vwitw 0 w3

w w

The Additional Degree of Freedom

After these two operations both B-vectors lie along the z-axis in their own coordinate-
system. So actually we know how to transform B from the "prime” to the lab frame, i.e.
with the combined rotations

W= 855 - Roy - ¥

Next we take a look at the behaviour of the A (and C) momenta. Therefore we choose
a parametrization:

sin 6’ cos ¢’ vl
8 = |pB| - sinf'sing’ | = | v2
cos 6’ v3
and apply the rotation Ro; to A
cos @ cos ¢’ cosf'sing’ —sinf’ 0
Ry -pa = —sin ¢’ cos ¢/’ 0 -1 0
sin® cos ¢’ sinf'sing’ cosf’ Py’
—sinf’
= 0 |-pi
cos 6’

The vector of A now lies in the x-z plane and so does the momentum of C, due to

momentum conservation. (One can also calculate it using the above formulae).

z /!

—sing’ - p%
bc =PA —PB = 0

z /!

cos 0" - pi’ — |pB|

Note that all three momentum vectors are independent of any former choice of the azimuthal

angle ¢* or ¢, which is an effect resulting from the choice of the A momentum as first
rotation axis.
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B. Calculations for a Two-Body-Decay

Now an angle ¢”, describing a rotation around the z-axis (which is now identical to the
B-momentum direction) can be used to parametrize the additional degree of freedom. From
a physics point of view it is important that it follows the same (flat) distribution as ¢* in
the rest-frame of A.

Such a rotation does not affect the angle between B and A or B and C and therefore the
invariant masses are unchanged. However, it changes A’s (and C’s) orientation in space and
leads to different transverse/longitudinal components of their fourvectors in the lab-frame.
This additional rotation is included via a matrix P

cos@” sing” 0
P=1]—-sin¢” cos¢” 0
0 0 1

and the entire rotation to the lab-system for any momentum Z’ becomes:

=581 P Ry -2
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Appendix C
Additional Pull Distributions
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C. Additional Pull Distributions
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Figure C.1.: Pull distributions with fitted gaussian for jet and lepton n and ¢ in Toy Monte Carlo
events with Prob(x?) > 0.05. The correct lepton and jet postitions are used.
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Figure C.2.: Pull distributions with fitted gaussian for jet and lepton 1 and ¢ in detector sim-
ulation sample with Prob(x?) > 0.05. The correct lepton and jet postitions are

used.
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