
 

 
Diagnostic Verification of Atmospheric Water 

Cycle Predicted by Regional Mesoscale 
Models and Ensemble Systems 

  
 
 
 
 
 
 
 
 

Dissertation  
zur Erlangung des Doktorgrades  

der Naturwissenschaften im Department  
Geowissenschaften  

der Universität Hamburg 
 

vorgelegt von 
 

Suraj Devidasrao Polade 
aus  

Dawargaon, Indien  
 
 
 
 

Hamburg  
2012 

 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Als Dissertation angenommen vom 
Department Geowissenschaften der Universität Hamburg 
auf Grund der Gutachten von 
 
Prof. Dr. Felix Ament  
und 
Prof. Dr. Susanne Crewell  
 
Hamburg, den 25. Januar 2012 
 
Professor Dr. Jürgen Oßenbrügge 
(Leiter des Department Geowissenschaften)  

 

 



 
 

 

i

Acknowledgements 

 I would like to express my profound gratitude towards my supervisors Felix Ament and 

Susanne Crewell for their valuable time and discussions during the course. Their enthusiasm, 

optimism and encouraging remarks throughout the project kept me motivated and made for 

an enjoyable period of research. I am also grateful to Marco Clemens for his discussions. I 

would like to acknowledge Axel Seifert for his comments and discussions during the QUEST 

project, which was very helpful for this study. I would like to thank all QUEST members for 

their lively discussions. Mark Carson is greatly acknowledged for proofreading my disserta-

tion and providing me valuable comments. I also would like to thank my colleagues Kathari-

na Lengfeld, Nicole Feiertag, Sarah Sandoval, and Seshagirirao Kolusu for their friendship 

and help during the course.  I express by special thanks to C. Seethala, who provided constant 

moral support whenever I was in need. I would like to thank my parents and siblings for their 

encouragement. 

 

 

 

 

 

Hamburg, 25.01.2012                Suraj Polade 

 

 
 
 
 
 
 
 
 
 
 
 



ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 

 

Abstract 

 

Precipitation is the final component of a complex process chain of the atmospheric water 

cycle. All model errors in this process chain are consequently accumulated in quantitative 

precipitation forecasts (QPF). To diagnose the shortcomings of QPF, the following four key 

variables of the atmospheric water cycle have been evaluated: integrated water vapour 

content (IWV), low cloud cover (LCC), high cloud cover (HCC), and precipitation rate at the 

surface. This comprehensive verification of all key variables is performed for nine 

deterministic models and four ensemble systems from the forecast demonstration experiment 

of Mesoscale Alpine Program (MAP D-PHASE) using measurements from the General 

Observation Period (GOP) over Southern Germany for summer 2007. Verification of 

individual key variables reveals that most of the models forecast the mean values of IWV 

very well; however, they show large biases in the mean values of LCC, HCC, and 

precipitation. At certain times and locations, all models show large errors in all key variables, 

especially in HCC and precipitation. The models with convection parameterization predict 

diurnal precipitation maxima a few hours earlier than observations, whereas deep-convection-

resolving models forecast the diurnal maxima too late. Early initiation of convection is a 

specific problem of the Tiedtke convection scheme. The forecast performance of high 

resolution models is superior to their corresponding low resolution models for all key 

variables, except for IWV. Multivariate verification fails to quantify the shortcomings in 

QPF, perhaps due to the limited availability of observations. Multimodel multiboundary 

ensemble prediction systems (EPS) show superiority in the prediction of all key variables and 

also has better representation of forecast uncertainty compared to EPS based on a single 

model. EPS which accounts  the small-scale perturbations, due to the uncertainty in boundary 

and initial conditions from limited area models, lead to better forecasts for strong events. 

However, all the EPS evaluated in this study are underdispersive which clearly implies that 

they are not able to account for all possible uncertainties of short-range forecasts. 
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Zusammenfassung 

 

Die genaue Prognose der quantitativen Niederschlagsvorhersage (QPF, engl. quantitative 

precipitation forecast) ist eine der schwierigsten Aufgaben, die noch nicht befriedigend in der 

numerischen Wettervorhersage umgesetzt wurde. Da der Niederschlag das letzte Glied einer 

komplexen Kette von Prozessen des atmosphärischen Wasserkreislaufs darstellt, 

akkumulieren sich alle Modellfehler dieser Prozesskette in der quantitativen 

Niederschlagsvorhersage. Um die Defizite der QPF zu untersuchen, haben wir den 

kompletten atmosphärischen Wasserkreislauf beginnend mit dem integrierten 

Wasserdampfgehalt (IWV, engl. integrated water vapor content) über die Bewölkung bis hin 

zur Niederschlagsmenge an der Oberfläche ausgewertet. Eine umfassende Verifizierung des 

atmosphärischen Wasserkreislaufs wurde für neun deterministische Modelle und vier 

Ensembles des MAP D-PHASE Experiments, welches GOP Beobachtungen über 

Süddeutschland vom Sommer 2007 einbezieht, durchgeführt. Die Überprüfung der 

wichtigsten Größen zeigt, dass der IWV und der Bedeckungsgrad der tiefen Wolken (LCC, 

engl. low cloud cover) sehr gut von den meisten Modellen vorhergesagt werden. Jedoch 

treten große Abweichungen in der hohen Bewölkung (HCC, engl. high cloud cover) und der 

Niederschlagprognose auf, deren hauptsächliche Ursache in den Schwächen des 

Mikrophysikschemas und der ungenauen Behandlung der Konvektion in den Modellen liegt. 

Außerdem zeigen alle Modelle große Fehler zu bestimmten Zeiten und Orten oder 

Gitterzellen,  im Vergleich zu den systematischen Fehlern der wichtigsten Größen. Dies zeigt 

sich besonders in dem HCC und dem Niederschlag.   

Modelle mit Konvektionsparametrisierung sagen das tägliche Niederschlagsmaximum zu 

früh vorher, wobei Modelle, die Konvektion explizit auflösen, das tägliche Maximum zu spät 

vorhersagen. Die verfrühte Vorhersage ist insbesondere ein Problem des Tiedke-

Konvektionsschemas. Die Qualität der Vorhersagen von hochauflösenden Modellen gegen-

über niedrigauflösenden Modellen ist für alle Schlüsselvariablen besser, jedoch nicht für den 

IWV. Die Defizite der QPF können auch nicht durch multivariate Analysen quantifiziert 

werden, möglicherweise aufgrund unzureichender Beobachtungsdaten. Das Multi-Models 

Multi-Boundary Ensemble-Vorhersage-System (engl. ensemble prediction system, EPS) ist 

für die Vorhersage aller Schlüsselvariablen besser geeignet. Desweiteren ist es den EPS-

basierten Einzelmodellen bei der Darstellung der Vorhersageunsicherheit überlegen. EPS 

führt zu besseren Vorhersagen von starke Ereignissen, da es aufgrund von Unsicherheiten in 
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Rand- und Anfangsbedingungen der Regionalmodelle kleinskalige Störungen berücksichtigt. 

Dennoch zeigen alle in dieser Studie untersuchten EPS zu wenig Streuung, was eindeutig 

zeigt, dass sie nicht in der Lage sind alle möglichen Unsicherheiten der kurzfristigen Vorher-

sage zu berücksichtigen. 
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1

Chapter 1 

Introduction and Motivation 

 

Quantitative precipitation forecast (QPF) is one of the most challenging tasks of 

weather prediction, which has not yet been satisfactorily resolved in the numerical weather 

prediction (NWP) models [Ebert et al., 2003; Fritsch and Carbone, 2004]. Furthermore, 

Hense et al. [2006] reported that in the last decades, no significant improvements have been 

made in the skill of precipitation forecasts. However, accurate prediction of precipitation is 

crucial for flood warning, daily weather forecasting, hydrological modeling, agriculture 

purposes, etc. 

The formation of precipitation involves different stages starting from water vapour. At 

first, evaporation transports water vapour from the surface to the atmosphere. The atmospher-

ic instability causes air to rise further up in the atmosphere. At the point of saturation, the air 

condenses and forms clouds. The hydrometeors inside the clouds grow by collision, coales-

cence, freezing and deposition and finally, fall out as precipitation. Since precipitation is the 

final product of the atmospheric water cycle, errors in the representation of any of these 

processes in the models would lead to inaccurate QPF. Precipitation formation processes 

range from large-scale synoptic-lifting on a scale of ~1000 km to formation of cloud droplets 

on micrometer scale. Most of these processes occur on a scale smaller than the model grid-

cell, and thus can not be resolved explicitly by NWP models; such small scale processes are 

called as subgrid-scale processes. These subgrid-scale fluxes of heat, mass and moisture have 

considerable impact on the grid-scale flow and thus their aggregate effects are accounted for 

in the models by means of statistical approximations of grid-scale variables. The method of 

accounting for statistical influence of the unresolved subgrid processes in the model with 

respect to grid scale variables, by approximating the end effects without directly forecasting 

them, is called parameterization. These approximations used in the parameterization of 

precipitation formation processes lead to inaccurate QPF. Predictability of precipitation also 

depends upon the lateral boundary and initial conditions. Uncertainty exists in initial and 

boundary conditions due to the approximated observational basis. Hohenegger et al. [2006] 

have shown that uncertainties in initial and boundary conditions grow very rapidly over the 

whole model domain due to the non-linear dynamics.   

Along with the imperfect parameterization of precipitation formation processes and 

uncertainties in the initial and the boundary conditions, the non-linear interactions among 
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these processes are another limitation for prediction of the timing and intensity of precipita-

tion. Vannitsem [2006] reveals that the initial error due to the imperfect initial conditions 

further deteriorates by the imperfect parameterization. Thus accurate prediction of precipita-

tion is not achievable by deterministic models even if they are able to resolve all processes 

involved in the precipitation formation along with the quite accurate initial conditions, due to 

their non-linear interactions among the precipitation formation processes. However, the 

uncertainties arising due to imperfect initial conditions, and parameterization can be account-

ed for by the ensemble approach. Ensemble forecasting aims to incorporate all possible 

uncertainty sources in a modeling system in terms of perturbations. The ensemble forecast 

consists of multiple model runs initiated with the different perturbations.  

Thus, as outlined above, the error arises in any process of atmospheric water cycle 

due to the imperfect observation and parameterization leads to inaccurate precipitation 

forecast. Hence, the main objective of this study is to validate the complete atmospheric 

water cycle in mesoscale models to quantify the errors in this complex process chain. This 

chapter aims at understanding and discussing the basis of representation of atmospheric water 

cycle processes in current numerical models. A brief overview of different parameterization 

schemes to represent the atmospheric water cycle and their limitations along with their 

influence on the precipitation forecast are given in the first section. Different verification 

strategies used in the literature to diagnose the models’ limitations are discussed in the second 

section. The motivation and aim of this dissertation is provided at the end.   

 

1.1 Review of Representation of Atmospheric Water Cycle in Numerical Models 

As discussed, the fallout of hydrometeors from the clouds as precipitation starts by 

condensation and growth of the hydrometeors. As the formation of hydrometeors occurs on 

the micrometer scale, this process can not be resolved by NWP models. Thus, these micro-

physical processes are parameterized in the NWP models, in order to account the aggregate 

effect of hydrometeor formation. The microphysical schemes emulate the processes by which 

moisture is removed from the air, based on grid scale variables, and accounts for clouds and 

precipitation. Microphysical schemes in numerical models can be categorized into bin and 

bulk schemes. In the bin microphysics scheme, the total distribution of hydrometeors is 

divided into a finite number of bin sizes. While in the bulk scheme, an analytic form of size 

distribution is assumed for a few categories of hydrometeors. Most of the operational 

mesoscale models use bulk microphysics schemes [Kessler, 1969; Kong and Yau, 1997] to 

parameterize the effects of cloud microphysical processes. However bin microphysical 
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schemes are used in research models [Khain et al., 2004], especially in high-resolution cloud-

resolving models. This scheme can further be characterized into one or more moment 

schemes: one moment scheme predicts only the mixing ratio for each species [e.g., Kessler, 

1969; Kong and Yau, 1997], while in two-moment schemes, along with the mixing ratio, the 

total number concentration of at least one species can be predicted [e.g., Ziegler, 1985; 

Reisner et al., 1998; Seifert and Beheng, 2001]. Two-moment schemes provide greater 

flexibility in representing the evolution of particle size distribution and thus improve the 

microphysical processes. The type of hydrometeors and their characteristics considered in the 

microphysical scheme greatly influence the precipitation distribution. Gilmore et al. [2004] 

have shown that the inclusion of fast-falling graupel/hail species resulted in a larger amount 

of accumulated precipitation. The increase of ground precipitation is also observed by 

Reinhardt and Seifert [2006] by setting graupel/hail weighted towards large hail. Stein et al. 

[2000] demonstrated that the importance of sophisticated cloud microphysics increases with 

increasing model resolution, while Serafin and Ferretti [2007] claim that the microphysics 

scheme does not have a significant impact on the precipitation forecast of coarse resolution 

(convection parameterized) models.   

Microphysical schemes require saturation of the air to form the hydrometeors, and 

saturation can be attained by lifting of the air parcel. However, the rising of moist air and the 

saturation can occur by different methods, such as large-scale ascent of moist air, convection 

caused by the near surface heating of the moist air, moist air convergence, and orographic 

lifting. Most of this lifting process can be resolved by mesoscale models, except convective 

lifting. Convective lifting of the moist air occurs on scales which can not be resolved by the 

mesoscale models. Thus, the end effect of subgrid-scale convection is parameterized in these 

models. Convection schemes calculate the collective effects of an ensemble of convective 

clouds in a model column as a function of grid-scale variables. They also redistribute heat, 

and remove and redistribute moisture, producing clouds and precipitation. The end effect of 

the subgrid-scale convection is accounted for by the convection parameterization in three 

stages, first by determining the occurrence and the localization of convection (Trigger 

function), secondly by determining the intensity of convection (closure), and finally by 

determining the vertical distribution of heating, moistening and momentum changes. The 

convection parameterization schemes can be categorized into three classes: schemes based on 

moisture budgets [Kuo, 1965 and 1974], adjustment schemes [Manabe et al., 1965; Betts and 

Miller, 1986] and Mass flux schemes [Arakawa and Schubert, 1974; Bougeault, 1985; 

Tiedtke, 1989; Kain and Fritsch, 1990; Bechtold et al., 2001]. As most of the current 
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mesoscale models use convection parameterizations based on the bulk mass flux approach, 

we intend to discuss the details of only this approach. In bulk mass flux schemes, the model 

atmosphere is forced towards the convectively adjusted state when they are activated by the 

mass exchange between clouds and the environment. Several studies revealed the limitation 

of convection schemes for prediction of precipitation in convection-parameterized models 

(hereafter coarse resolution models). Betts and Jakob [2002] and Guichard et al. [2004] have 

shown that, in coarse resolution models, the maximum convective precipitation occur a 

couple of hours earlier to that in the observations. Ebert et al. [2003] pointed out the frequent 

occurrence of weak precipitation in coarse resolution models. Wulfmeyer et al. [2008] found 

that the wind-ward/lee effect in coarse resolution models is characterized by too much rain 

over the windward slope and over the crest of the mountain, and too little rain over leeward 

side. Models with horizontal resolution smaller than 4 km can partially resolve the convection 

(deep convection) and thus convection can be explicitly calculated, however, resolution 

requirement for explicit calculation of convection is still questionable [Weisman et al., 2008; 

Kain et al., 2008; Schwartz et al., 2009]. Studies by Clark et al. [2007] and Lean et al. [2008] 

have shown deep-convection-resolving models (high resolution models) are better at repre-

senting the precipitation diurnal variability than coarse resolution models. Roberts and Lean 

[2008] also found an improvement in heavy and highly localized precipitation forecasts by 

high resolution models. However, high resolution models also suffer from limitations such as 

explicit convection requiring grid-scale saturation, which leads to spurious delays in the onset 

and subsequent over-prediction of convection [e.g., Kato and Saito, 1995; Kain et al., 2008]. 

Turbulent motion provides moisture to upward rising air. This turbulent motion oc-

curs on subgrid scales and thus can not be resolved by NWP models. The unresolved turbu-

lent vertical fluxes of heat, momentum and moisture within the boundary layer and through-

out the atmosphere are parameterized by turbulence schemes. Turbulence schemes can be 

categorized into local closure [e.g. Troen and Mahrt, 1986; Stull, 1984] and nonlocal closure 

schemes [e.g. Zhang and Anthes, 1982; Pleim and Chang, 1992; Noh et al., 2003]. The local 

closure scheme estimates the turbulent fluxes at each point in model grids from the mean 

atmospheric variables and/or their gradients, while in nonlocal schemes, fluxes are parame-

terized or treated explicitly. Troen and Mahrt [1986] and Stull [1984] have shown that local 

closure assumptions are not valid in convective conditions as turbulent fluxes are dominated 

by large eddies that transport fluid to longer distances. Lynn et al. [2001] and Wisse and de 

Arellano [2004] suggested that the turbulence scheme is very sensitive to the evolution of 

precipitation systems; thus use of higher order turbulent closure may be advantageous. 
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Martin et al. [2000] claim that the prediction of low-level clouds is mainly influenced by the 

turbulence scheme, as they are very sensitive to the vertical temperature and moisture struc-

ture in the boundary layer.  

Surface processes redistributed the moisture between the surface and atmosphere by 

evapotranspiration, evaporation, and transpiration, and; however, they occur on subgrid scale 

and thus need to be parameterized in NWP models. The surface processes in NWP models 

are parameterized by soil models, which can be divided into two-layer or multilayer soil 

models. In a two-layer soil model, the exchange process of heat and moisture between land 

and atmosphere is calculated by various empirical formulas [Arakawa, 1972; Deardorff, 

1978; Jacobsen and Heise, 1982]. However, a study by Chen et al. [1996] shows that, for 

accurate and reliable calculation of surface soil fluxes, detailed knowledge of soil tempera-

ture and soil moisture stratification is required, which can not be achieved by two-layer soil 

models. To overcome this issue, multilayer soil models were developed which calculate soil 

fluxes on the basis of time-dependent solutions for temperature and moisture in the soil 

[Sievers et al., 1983; Noilhan and Planton, 1989; Heise et al., 2006].  

Pal and Eltahir [2003] and Cook et al. [2006] show that soil moisture affects the sub-

sequent precipitation via an enhanced advection of water vapor into a region due to the 

changes in the large-scale synoptic setting. Findell and Eltahir [2003] have also shown that 

soil moisture affects the local precipitation by modification of the boundary layer characteris-

tics.   

 

1.2 Different Verification Strategies 

Forecast verification is an essential component of model development, which plays a 

major role in monitoring the quality and skill of forecasts. More precisely, verification is a 

necessary step to get insights of forecast errors and hence to model diagnosis. Most of the 

earlier verification activities are limited to the evaluation of a single forecast variable and/or 

using only a few forecasting models. Using GPS observations, many studies validated the 

prediction of integrated water vapour (IWV) and its diurnal cycle representation over Europe 

[Guerova et al., 2005; Guerova et al., 2003; Köpken, 2001].  The vertical structure of clouds 

and their diurnal variations are extensively studied by many researchers using ground-based 

observations [Henderson and Pincus, 2009; Comstock and Jakob, 2004]. Similarly, 

Chaboureau and Bechtold [2005] and Chaboureau et al. [2007] validated the model’s cloud 

cover forecast with satellite-based observations. Also the precipitation forecast and its diurnal 

representation are extensively verified by Buzzi et al. [1994], Cherubini et al. [2002], and 
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Schwitalla et al. [2008]. Several researchers developed short-range ensemble forecasting 

systems (SRES) to account for errors in short-range forecasting [Chen et al., 2005; Bowler et 

al., 2008; Marsigli et al., 2008]. Most of the short-range ensemble forecast verification 

research has focused on single-variable forecasts. Du et al. [1997] and Marsigli et al. [2005] 

validated the precipitation forecast predicted by short-range ensemble systems. Along with 

these studies, which are concentrated on verification of single-variable forecasts by single 

models or SRES, there are extensive research activities on verifying single-variable forecasts 

by multiple models and SRES. Hogan et al. [2009] verified the cloud fraction forecast from 

multiple models with CloudNET observations. Barrett et al. [2009] used CloudNet observa-

tions to verify the diurnal variation in cloud tops and base heights, cloud thickness and the 

liquid water path of boundary layer clouds by several global and regional models. Clark et al. 

[2009, 2007] evaluated the precipitation forecast and its diurnal cycle representation in 

convection-resolved and convection-parameterized models. Also, there are several studies 

which evaluated the diurnal cycle of precipitation diagnostically with different convection 

parameterizations, different models resolutions and also with the different models physics 

[Yang and Tung, 2003; Tartaglione et al., 2008; Zhang et al., 2008; Weusthoff  et al., 2010; 

Bauer et al., 2011]. Betts and Jakob [2002] extensively verified the problems in representing 

the diurnal cycle of precipitation in a single model. Similarly Guichard et al. [2004] exten-

sively verified seven single-column and three cloud-resolving models for diurnal cycle 

representation in precipitation. Kunii et al. [2011] evaluated the precipitation, surface temper-

ate and humidity forecasts by six SRES. Many researchers also validate the impact of initial 

and boundary conditions on the mesoscale forecasts [Ivatek-Sahdan and Ivancan-Picek, 

2006; Bei and Zhang, 2007] 

As precipitation is the final component of the atmospheric water cycle, errors intro-

duced by imperfect parameterization, initial condition and models physics are accumulated in 

its forecast. Consequently, recent verification activities are focused on evaluating all the 

components of atmospheric water cycle. The evaluation of the complete atmospheric water 

cycle in numerical models was first introduced by Crewell et al. [2008] using COSMO-EU 

and COSMO-DE models over Germany. A similar approach is used by Böhme at al. [2011] 

to explore long term evaluation of COSMO-DE and COSMO-EU models.    

 

 



 
 

 

7

1.3 Thesis Aims 

 Since precipitation is the end product of a complex process chain of the atmospheric 

water cycle, errors arising due to the representation of any of these processes in models lead 

to inaccurate QPF. As most of the atmospheric water cycle processes occur on a subgrid 

scale, they need to be parameterized in models. Because of limited understanding of these 

processes, several parameterization schemes based on different assumptions are available to 

represent them. However, the superiority of one parameterization scheme over another is 

unknown. Convection and microphysics influence the precipitation forecast directly, while 

turbulence and surface schemes influence precipitation forecast indirectly. Limited accuracy 

of initial and boundary conditions due to observational error also contributes to error in 

precipitation forecasts. Hence, the objective of this thesis is to comprehensively evaluate the 

complete atmospheric water cycle in mesoscale models and ensemble systems for different 

model resolutions, initial and boundary conditions, and parameterizations, and to quantify the 

errors in precipitation forecasts.  

The approach of a comprehensive evaluation of the atmospheric water cycle is applied 

to a suite of nine state-of-the art mesoscale models and four ensemble systems from MAP D-

PHASE (Mesoscale Alpine Programme - Demonstration of Probabilistic Hydrological and 

Atmospheric Simulation of flood Event in the Alpine region) [Rotach et al., 2009] experi-

ment and General Observation Period (GOP) observations [Crewell et al., 2008]. Thus it is 

possible to distinguish between deficiencies of a particular model and overall problems of 

today’s mesoscale models. Furthermore, it is very useful to detect clusters of models which 

reveal the same kinds of errors. Mostly the models of such clusters share the same boundary 

forcing, resolution or model code. This dominant influencing factor pinpoints the source of 

errors. More specifically, the following questions, motivated by the previous sections, are 

answered in this dissertation: 

 

Q1. How accurate can atmospheric water cycle be forecast by today’s mesoscale models? 

Q2. Is the performance of convection-permitting high-resolution models superior? 

Q3. What is the most important factor, e.g., boundary conditions, model formulation or 

resolution, affecting the forecast performance? 

Q4. Are there clusters of models for specific factors such as model code, resolution, and 

driving model? 
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Q5. Are observed similarities between the different key variables well represented by mod-

els? 

Q6. Do the ensemble prediction systems reflect the uncertainty in forecasting the key varia-

bles of atmospheric water cycle? 

Q7. Which is the primary perturbation affecting the EPS performance at short range, the 

initial conditions or the model physics? How reliable is a multi-model EPS? 

 

An overview on deterministic models, ensemble systems, and the observations used to 

evaluate them are given in Chapter 2. Also, the verification strategies adopted are described 

briefly. Chapter 3 addresses the first three questions, by evaluating the complete atmospheric 

water cycle by deterministic models. The error in prediction of amount, spatial distribution 

and timing of each of the atmospheric water cycle variables is assessed. Multivariate verifica-

tion of the atmospheric water cycle forecasted by deterministic models, questions (4) and (5) 

are addressed in Chapter 4. Clustering of the models revealing the same kinds of error and 

comparison of observed relationship among the predicted atmospheric water cycle variables 

are discussed by assessing their linear relationship. The comprehensive evaluation of ensem-

ble systems is done in Chapter 5. The representation of forecast uncertainty and the perturba-

tion important for the short-range ensemble forecast is assessed. Different aspects of the 

ensemble forecast are validated to answer questions (6) and (7). The last chapter gives overall 

conclusions and future scope.     
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Chapter 2 

 Data and Methodology 

 
This chapter describes the observations as well as the deterministic and the ensemble 

models used in this dissertation. Section 2.1 introduces the observational data and their 

accuracy issues. Section 2.2 introduces the models’ forecasts. Evaluation of ensemble fore-

casting and ensemble systems is provided in Section 2.3. Section 2.4 describes the different 

methods for the comparison of models’ grid cells with station observations and also discusses 

their merits and demerits. In the end, Section 2.5 provides the verification methodology used 

for the study.  

 
2.1 Observations 

To evaluate the models’ forecasts we require an accurate observational basis of at-

mospheric state variables. However the observations are often suffering from accuracy issues, 

spatial and temporal coverage, measurement techniques, etc. These factors can play a vital 

role in the verification statistics and sometimes even misleads the results. Thus, before doing 

the actual model verification, it is essential to have a thorough knowledge of various observa-

tional datasets, their measurement techniques and accuracies. A complete summary of all the 

observational data used is provided in the following section.   

The atmospheric water cycle consists of the transition of water vapor to clouds and fi-

nally precipitation. To characterize this process chain, we have selected four key variables: 

the integrated water vapor content (IWV), the low cloud cover (LCC), the high cloud cover 

(HCC) and the surface precipitation rate. This choice is by far not sufficient to characterize 

all involved processes, but it allows an assessment of the model accuracy in each step of the 

atmospheric hydrological cycle. In particular all the key variables can be observed automati-

cally and are easy to derive from model forecasts. To gather a solid observational basis for 

the evaluation of model errors in the quantitative precipitation forecast, the German Priority 

Program on Quantitative Precipitation Forecasting (QPF) has initiated two observational 

approaches: (i) Convective and Orographically-induced Precipitation Study (COPS) as 

described in Wulfmeyer et al. [2008] and (ii) General Observation Period (GOP) as described 

in Crewell et al. [2008]. The GOP (http://gop.meteo.uni-koeln.de) collected enormous in situ 

and remote sensing datasets by use of existing instrument platforms, with special focus on 

water cycle variables. The GOP gathers observations of all the available water cycle variables 

in central Europe, which began in January 2007 and is still in operation. The GOP dataset 
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encompasses data collected by rain gauges, weather radars, micro rain radars, polarimetric 

radars, disdrometers, ceilometers, GPS water vapor observations, lightning networks, satel-

lites, radiosondes, and special meteorological observation sites (e.g., CloudNET stations).  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Central Europe topographical map indicating the D-PHASE domain (yellow 

rectangle), the verification domain “Southern Germany” (thick black contour), the GPS 

network (white circles), and the ceilometer network (red stars). 

 
2.1.1 GPS Network to Observe IWV 

The atmospheric integrated water vapour content (IWV) can be derived from ground-

based observations of the Global Positioning System (GPS). The studies by Tregoning et al. 

[1998] and Doerflinger et al. [1998] showed that GPS-measured IWV has similar accuracy as 

other instruments such as radiosondes and the water vapour radiometers. Continuous opera-

tions of GPS instruments in all weather conditions along with the fairly dense network make 

them very useful for verification of model IWV. The IWV measurement by GPS is based on 

the propagation delay of microwave signals (1.2 and 1.5 GHz, L-Band) transmitted by the 

GPS satellite to the receiver. The delays can be estimated using high precision GPS satellite 

orbits and receiver positions. This delay in the microwave signal occurs due to the different 

atmospheric constituent called a total zenith delay (ZTD), which can be expressed as a zenith 

hydrostatic delay (ZHD, about 90% of total zenith delay) and zenith wet delay (ZWD). The 

hydrostatic delay is caused by the dry atmospheric components which only depend on the 

total pressure and the temperature. Davis et al. [1985] shown that the ZHD is accurately 

estimated from the surface pressure and air temperature. The remaining wet delay, ZWD, is 

induced by the interaction of the GPS signal with the permanent dipole moment of water 

vapor molecules. The ZWD is taken as difference between the observed total delay and the 
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hydrostatic delay [Dick et al., 2001], and is closely related to the integrated water vapor. Note 

that IWV retrievals require very accurate delay observations and data analysis schemes 

because a difference of 1 kg/m2 in IWV corresponds only to change in ZWD of ~6 mm. 

These demands can only be achieved by networks of GPS receivers. Studies by Van Baelen et 

al. [2005] and Niell et al. [2001] demonstrated that GPS derives IWV over land with an 

accuracy of 1-2 kg/m². The German Research Centre for Geosciences (GFZ) provides near 

real-time IWV observations from GPS during GOP with a temporal resolution of 15 minutes 

and delay accuracy of 1-2 mm is equal to accuracy of ~0.3 kg/m² in IWV [Crewell et al., 

2008]. The German GPS network consisting of approximately 200 stations and our study 

domain (Southern Germany) comprises 63 GPS stations (see Figure. 2.1). 

 
2.1.2 Ceilometer Network to Observe LCC 

A ceilometer is a simple lidar (Light Detection And Ranging)-based instrument which 

measures the cloud-base height. Lidar transmits a laser pulse in the specific direction, and 

receives the backscatter light from air molecules, aerosols and cloud droplets with a receiver 

telescope. The delay in return signal indicates the altitude and intensity of the light represents 

the concentration. Due to the low power operation and relatively long wavelength (λ~910nm, 

λ~1030nm), ceilometers can operate continuously in any weather condition with low opera-

tion cost. The ceilometer system detects clouds by transmitting pulses of infrared light 

vertically into the atmosphere. The receiver telescope detects backscattered light from water 

droplets or aerosols. The strength of the backscattered signal depends on the amount of 

scattering particles in a volume and their respective scattering efficiency. The time interval 

between transmission and reception of the signal determines the height range of the scattering 

volume. The cloud-base height is derived as an average height between the maximum 

backscatter and the largest vertical gradient in backscatter signals. The maximum gradient of 

backscatter signal is also used along with the maximum backscatter because the vertical 

changes in aerosol/hydrometeor concentration dominate the received signals at long (λ~1 μm) 

wavelength [Martucci et al., 2010]. The ceilometers are able to detect multiple cloud layers 

simultaneously, providing cloud thickness where the layers do not totally attenuate the laser 

beam. The cloud-base height derived from ceilometers might be biased towards lower values 

due to the altitude limitation. Altitude limitation is mostly caused by long pulse length and 

sensitivity of ceilometer detection, which then depends upon the ceilometer type. The accura-

cy of ceilometer cloud-base height is better than 30 m. The studies by Van Meijgaard and 

Crewell [2005] inferred that, as backscatter gradients of ice clouds are weaker, ceilometers 
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often do not detect them. Hence ceilometers are well suited to study the low-level water 

clouds. The German Meteorological Service (DWD) provides ceilometer observations of 

more than 100 stations during GOP with a temporal resolution of 10 minute and cloud-base 

accuracy of 30 m [Crewell et al., 2008]. Our study domain (Southern Germany) comprises 33 

ceilometer stations (see Figure 2.1). 

 
2.1.3 MSG based Retrieval of HCC 

The Meteosat Second Generation (MSG) is a geostationary satellite developed by the 

European Space Agency (ESA) and operated by the European Organization for the Exploita-

tion of Meteorological Satellites (EUMETSAT). The MSG covers the views of Europe, 

Africa, and much of the Atlantic Ocean every 15 minutes and provides an excellent database 

to study the diurnal variation of cloud systems. The Spinning Enhanced Visible and InfraRed 

Imager (SEVIRI) on MSG has 12 spectral channels with 4 VIS/NIR channels (0.4 - 1.6 µm) 

and 8 IR channels (3.9 - 13.4 µm). Our analysis is based on cloud products derived at the 

Institute for Space Sciences at the Free University of Berlin, Germany (FUB). The cloud 

product in FUB is derived from algorithms based on artificial neural networks which use 

Assumed Clear Sky Brightness Temperature (ACSBTE) of the 10.8 μm channel as the main 

input parameter [Reuter, 2005]. The ACSBTE algorithm uses assumptions of smoothness in 

the diurnal cycles of surface temperature, their possibility to change with time, and that 

clouds generally appear colder than the underlying surface in the 10.8 μm channel. Reuter 

[2005] shows that ACSBTE values in the 10.8 μm channel can be derived at an accuracy of ± 

3.3 K. The viewing and solar geometry information and measurements of the SEVIRI chan-

nels at 13.4, 12.0, 10.8, 8.7, 3.9, 1.6, 0.8, and 0.6 μm are used as additional input parameters 

for the artificial neural network. Manual classification of cloudy and clear sky pixels were 

used to train data for the neural network. The output of the network represents the cloud 

probability at pixel level which can be interpreted as a mathematical probability that a 

satellite pixel is cloudy. 

The cloud-top pressure from the SEVIRI is derived using the CO2 slicing method. 

Due to the constant mixing ratio of CO2 in the atmosphere the weighting function of   13.4 

μm channel shows significant sensitivity in all pressure levels. The CO2 slicing method uses 

the difference between the 13.4 μm CO2 absorption channel and 12 μm infrared channels to 

derive the cloud-top pressure [Brusch, 2006]. Reuter et al. [2009] shows that the FUB 

retrievals agree better in daytime with the synoptic stations compared to nighttime, because 

the additional information from SEVIRI solar channels is not available in nighttime. Howev-
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er, Reuter [2005] shows that nighttime retrievals improve considerably by using ACSBTE. 

The hourly cloud product from FUB is utilized in this study because the model forecasts are 

available at hourly basis. The FUB cloud product is derived on a normalized geostationary 

projection with horizontal resolution of approximately 5 km [Reuter, 2005]. The accuracy of 

CTP is approximately 52 hPa for high clouds [Crewell et al., 2008].  

 

2.1.4 Gauge and Radar based Precipitation Estimate 

The DWD operates a dense and fairly homogeneous observational network of more 

than 3000 rain gauges and 16 precipitation radars over Germany. This dense German rain 

gauge network has fairly homogeneous coverage over the entire country with an average 

distance of 10 km between neighboring stations [Paulat, 2007]. The rain gauges provide the 

very accurate point measurement of daily accumulated precipitation observation. However 

the rain gauge measurements can suffer from systematic error. The main source of error is 

wind induced under catch (i.e., the strong wind could blow some amount of precipitation 

away from the rain gauge, and can introduce a low bias) which is prominent in winter, and 

evaporation losses which are prominent in summer [Richter, 1995; Yang et al., 1999]. De-

spite these biases, rain gauge measurements can be regarded as those with the best absolute 

accuracy of operationally available instruments.  

The radar (radio detection and ranging) measures precipitation over a large area with 

very high spatial and temporal resolution. The German Meteorological Service provides the 

PC product, which is an hourly composite of the 16 precipitation radar with horizontal 

resolution of 4 km over the entire country. These hourly PC products are computed from the 

15-minute radar composite. Radar does not provide the direct measurement of precipitation 

like rain gauges; instead, radar derives the precipitation rate from the backscattering of radar 

waves by hydrometeors in the atmosphere. Thus both the instrumental and meteorological 

factors affect the accuracy of the radar-estimated precipitation rate. The beam shielding by 

horizon and obstacles [Pellarin et al., 2002], enhancement of the signal by melting snow 

[Fabry and Zawadzki, 1995], vertical profile of reflectivity [Bellon et al., 2005], overshooting 

in shallow precipitation [Koistinen et al., 2004], signal attenuation in heavy rain [Delrieu et 

al., 1991], and enhancement of the signal by the presence of hail [Austin, 1987] are some of 

the known limitations of radar measurements.  

Since the rain gauge network is not dense enough to build up the gridded data compa-

rable to the numerical models, Paulat et al. [2008] used a disaggregation technique to suita-

bly combine information from the daily measuring rain gauge stations and radar measure-
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ments. The disaggregation method is designed to exploit temporal information from radar 

while maintaining maximum consistency with the daily measurements from the rain gauge 

networks. Initially daily gauge sums are gridded on a cartesian grid by a statistical interpola-

tion scheme adopted from Frei and Schär [1998]. This interpolation technique is based on an 

angular distance-weighting scheme. This scheme calculates the two components of weight 

within the search radius, and the search radius is chosen in such a way that at least three 

stations contribute to the averaging. At first, all stations are weighted by distance from the 

grid point, with the empirically derived decorrelation length scale controlling the rate at 

which the weight decreases with distance from the grid point. Second the distance-weight 

component is determined by the directional (angular) isolation for each of the stations. Using 

a second weighting particularly helps to improve the performance of the analysis along the 

boundaries between high and low resolution networks as clusters of observations to one side 

of the grid point are appropriately down-weighted.  

To consider the effect of the poor rain gauge network in the mountainous terrain, Pau-

lat et al. [2008] used the detrended kriging approach of Widmann and Bretherton [2000]. The 

high resolution precipitation climatology of the DWD over Germany for the years 1961-1990 

[Müller-Westermeier, 1995] is used for kriging. The climatology provides the explicit height 

gradients on 1 km horizontal resolution. Thus, in the detrended kriging approach, the daily 

fractional rain gauge totals from the interpolation are multiplied by the gridded collocated 

climatological anomalies. Frei et al. [2003] shows that the detrended kriging approach 

increases area mean precipitation values in the Alpine region of Southern Germany by 

typically 5-15% and does not have a major effect elsewhere. 

Paulat et al. [2008] aggregated both the gridded daily rain gauge data and radar com-

posites on grids identical to the COSMO-7 model operated by MeteoSwiss with a horizontal 

resolution of 7 km. This gridded product of daily precipitation is then temporally disaggre-

gated by fractioning the daily total rain gauge values according to contribution considered 

from hourly radar estimate at every individual grid box. The basis of this technique is to 

combine fairly dense and highly accurate rain gauges with the high spatial and temporal 

resolution radar observations. This technique uses radar observations only to enhance tem-

poral resolution of rain gauge measurements and does not use the spatial information provid-

ed by radar observations, as this technique aims to retain the high accuracy of rain gauge 

measurements, to keep the consistency with daily analyses from rain gauges alone and to 

avoid effects from radar biases [Paulat et al., 2008]. 
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2.2 Model Description 

Knowledge of the model configuration, such as grid spacing, initial condition, along 

with the physical parameterization is crucial for interpretation of verification results. The 

section below introduces the basic models’ configurations, and provides a brief description of 

the different physical parameterization schemes used, as well as the data assimilation meth-

ods. 

The model output used for the verification in our study is gained by the MAP D-

PHASE experiment (Mesoscale Alpine Program - Demonstration of Probabilistic Hydrologi-

cal and Atmospheric Simulation of flood Events) in the Alpine region [Rotach et al., 2009]. 

The Mesoscale Alpine Programme (MAP) was first a research and development project of 

the World Weather Research Programme (WWRP) which was initiated to understand the 

atmospheric processes influencing weather in mountainous terrain [Bougeault et al., 2001; 

Volkert, 2005]. D-PHASE was a forecast demonstration experiment of MAP. The main 

objective was to demonstrate the benefits in forecasting heavy precipitation and related flood 

events, as gained from the improved understanding, refined atmospheric and hydrological 

modeling, and advanced technological abilities acquired through research work during the 

MAP. D-PHASE was operated as a real time end-to-end heavy precipitation and flood 

warning system from June to November 2007 to demonstrate the state-of-the-art forecasting 

of precipitation related to high impact weather. Throughout the forecasting chain, warnings 

were issued and re-evaluated as the potential flooding event approached, allowing forecasters 

and end users to be alerted and make decisions in due time [Rotach et al., 2009]. More than 

25 mesoscale models and 6 ensemble systems provided both real-time precipitation forecasts 

and stored a comprehensive set of forecast fields in a central data archive for latter evalua-

tion. The target region of D-PHASE covered the entire Alpine region and adjacent areas (see 

yellow box in Figure 2.1).  

All model providers contributed to D-PHASE on a voluntary basis without any fund-

ing. Consequently the quality and completeness of the model data in the D-PHASE data 

archive varies considerably; for example, not all model forecasts covered the whole D-

PHASE domain or reported all required variables. To ensure a fair model comparison in our 

evaluation, we considered only those models which fulfill the following three criteria: (i) all 

four key variables (IWV, LCC, HCC and precipitation rate) are reported. (ii) the model 

domains cover at least 95% of the Southern Germany verification domain. (iii) data are 

available for at least 95% of the time from June to August 2007. Table 2.1 lists the 9 models 

which satisfy our selection criteria.  



16                                                                                                             Data and Methodology 

 

Table 2.1 lists the basic configuration of selected models such as horizontal resolu-

tion, forecast range, initiation frequency, driving model and the operational institute. As 

shown in Table 2.1 this ensemble of 9 models provides clusters of models sharing certain 

features: e.g. models based on the same model physics, models sharing the same boundary 

conditions, convection-resolving and convection-parameterized models and models with 

different data assimilation methods. The models can be sorted into three groups with respect 

to the model code COSMO, French, and MM5. The COSMO models are developed by the 

Consortium for Small-Scale Modelling (COSMO) and are designed for the operational NWP 

and climate simulations. COSMO-DE and COSMO-EU are operated by DWD, whereas 

COSMO-2 and COSMO-7 by MeteoSwiss and COSMO-IT and COSMO-ME by CNMCA 

(National Meteorological Center) Italy. The French group of models AROME (Application of 

Research to Operational at Mesoscale) and ALADFR are operated by Mètèo-France, while 

MM5 model is operated by FZK IMK-IFU (Institute for Meteorology and Climate Research, 

Atmospheric Environmental Research Division, Karlsruhe Institute of Technology) in 

Germany.  

 

Table 2.1: Summary of evaluated models (high resolution models are highlighted).  

Model 
Grid 

Spacing 
[km] 

Forecast 
Range 

[h] 

Runs
/day 

Nested in 
Driving Global 

Model 
Provided by 

COSMO-DE 2.8 21 8 COSMO-EU GME (DWD) DWD 
COSMO-EU 7 78 4 GME GME (DWD) DWD 
COSMO-2 2.2 24 6 COSMO-7 IFS (ECMWF) Meteo-Swiss 
COSMO-7 7 72 2 IFS IFS (ECMWF) Meteo-Swiss 
COSMO-IT 2.8 30 1 COSMO-ME IFS (ECMWF) CNMCA 
COSMO-ME 7 72 1 IFS IFS (ECMWF) CNMCA 
AROME 2.5 30 1 ALADFR ARPEGE  Meteo-France 
ALADFR 9.5 30 1 ARPEGE ARPEGE  Meteo-France 
MM5 15 72 2 MM5_60 GFS (NOAA) FZK IMK-IFU 

 

Out of 9 models, 4 models (COSMO-DE, COSMO-2, COSMO-IT, and AROME) are 

high resolution models with horizontal grid spacing less than 3 km (see Table 2.1). These 

high resolution models partially resolve convection, thus only shallow convection needs to be 

parameterized and deep convection is explicitly calculated. The remaining 5 models (COS-

MO-EU, COSMO-7, COSMO-ME, ALADFR, and MM5) are coarse resolution models 

which parameterize both shallow and deep convection (see Table 2.2). Hereafter, the high 

resolution models are termed as HIGHRES models and coarse resolution models are termed 

as LOWRES models. COSMO-DE and COSMO-2 have a very high frequency of reinitializa-
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tion, i.e., 6-8 runs/day, however the forecast range is only 18 h for COSMO-DE and 24 h for 

COSMO-2. In contrast the corresponding LOWRES models COSMO-EU and COSMO-7 

have reinitialization frequencies of 4 and 2 runs/day respectively, and forecast ranges of 78 

and 72 h respectively. COSMO-IT and COSMO-ME runs once a day with forecast ranges of 

30 and 72 h respectively. The two French models were run once a day with a forecast range 

of 30 h, where MM5 runs twice a day with a forecast range of 72 h. The COSMO-EU model 

is driven by GME global models, COSMO-7 and COSMO-ME are forced by the ECMWF 

(European Centre for Medium-Range Weather Forecasts) models. The boundary conditions 

for ALADFR are provided by ARPEGE global model and for MM5 by NOAA GFS (Global 

Forecast System) model. Note that all HIGHRES models are nested in their corresponding 

LOWRES models.  

Table 2.2 summarizes the physical parameterizations such as convection, microphys-

ics, turbulence, and land surface parameterization schemes used in the selected models. All 

COSMO models uses Tiedtke [1989] (T89) convection parameterization scheme, while 

AROME and ALADFR have Bechtold et al. [2001] (B01), and MM5 has Grell et al. [1994] 

(G94) convection parameterization scheme. Note that MM5 is the only LOWRES model 

which doesn’t use a shallow convection parameterization. All three convection schemes are 

based on the bulk mass-flux approach. However, these convection schemes differ in the 

trigger function that forces the onset of the convection, the closure assumption and the cloud 

model. The major differences between the parameterization schemes are marked here. T89 

convection parameterization was originally developed for the global model while B01 and 

G94 are developed for the mesoscale models. All these schemes use different closure as-

sumption. T89 convection scheme uses a moisture convergence closure, while B01 uses 

convective available potential energy (CAPE) and G94 uses a quasi-equilibrium closure. 

Quasi-equilibrium closure assumes that, statistically, the generation of convective instability 

by the resolvable scale processes is in quasi-equilibrium with the removal of convective 

instability by convection. These three convection parameterization schemes also differ by 

their triggering mechanism for convection initiation. In the T89 scheme, convection is 

triggered if the parcel’s temperature exceeds the environment temperature by a fixed tem-

perature threshold of 0.5 K. In B01 scheme the onset of convection depends on the large-

scale vertical velocity. While in the G94 scheme, convection is initiated when the net column 

destabilization rate increases. All of these convection schemes distinguish penetrative and 

shallow convection. The T89 scheme also considers mid-level convection which starts above 

the planetary boundary layer. Mid-level convection is not considered by other two convection 
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schemes.  The T89 and B01 schemes consider the entrainment and detrainment that occurs at 

the lateral boundaries of cloud, while in the G94 scheme the mixing between cloud and 

environment occurs only at the cloud base and cloud top. 

 

Table 2.2: Summary of different convective, microphysics, turbulence, and land surface 

schemes, as well as assimilation methods considered in evaluated models (high resolu-

tion models are highlighted).  

Model Convection  Microphysics Turbulence Land 
Surface 

Assimilation 
method 

COSMO-DE T89 shallow D07M 
(r, s, g, cd, ic)* 

D07T H06 Nudging 

COSMO-EU T89  
deep + shallow 

D07M 
(r, s, cd, ic)* 

D07T H06 ” 

COSMO-2 T89  
Shallow 

D07M 
(r, s, g, cd, ic) * 

D07T H06 ” 

COSMO-7 T89  
deep + shallow 

D07M 
(r, s, cd, ic) * 

D07T H06 ” 

COSMO-IT T89  
Shallow 

D07M 
(r, s, g, cd, ic) * 

D07T H06 ” 

COSMO-ME T89  
deep + shallow 

D07M 
(r, s, cd, ic) * 

D07T H06 3D-Var 

AROME B01  
Shallow 

PJ98 
(r, s, g, cd, ic) * 

C00 NP89 ” 

ALADFR B01  
deep + shallow  

PJ98 
(r, s, cd, ic) * 

C00 NP89 ” 

MM5 G94 
Deep 

R98 
(r, s, g, cd, ic) * 

HP96 CD01 

 

none 

 
*Representing the applied hydrometeor classes: r for rain, s for snow, g for graupel, cd for cloud 

droplets, ic for ice crystals. B01=Bechtold et al. [2001]; C00=Cuxart et al. [2000]; CD01=Chen and 

Dudhia [2001]; D07M=Doms et al. [2007]; D07T=Doms et al. [2007]; G94=Grell et al. [1994]; 

H06=Heise at al. [2006]; HP96=Hong and Pan [1996]; NP89=Noilhan and Planton [1989]; 

PJ98=Pinty and Jabouille [1998]; R98=Reisner et al. [1998]; T89=Tiedke [1989]  

 

All COMSO models use Doms et al. [2007] (D07M) microphysics scheme, while 

AROME and ALADFR models has Pinty and Jabouille [1998] (PJ98) microphysical scheme, 

and MM5 model use Reisner et al. [1998] (R98) microphysical scheme. All three of these 

microphysics schemes are mixed-phase bulk schemes similar to Lin et al. [1983]. All 

schemes predict five hydrometeor species, two non-precipitating (cloud water and cloud ice) 

and three precipitating (rain, snow, and graupel) species. For all schemes hydrometeor 

species are described by a prognostic mixing ratio which is determined through various 
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microphysical processes (e.g., condensation, evaporation, sublimation, fall-out, break-up, 

collision). However, D07M and PJ98 scheme are one-moment schemes, they predicts only 

the mixing ratio of all five hydrometeors species. R98 is a two-moment scheme, which 

explicitly predicts the number concentration of cloud ice, snow, and graupel, along with 

mixing ratio of five hydrometer species. In the D07M scheme, size distribution properties of 

hydrometeors, such as the intercept, the slope, and the number concentrations are depend 

upon precipitation amount for raindrops, while fixed intercept parameter is set for graupel. 

For snow size distribution a temperature and mixing ratio dependent intercept parameter is 

assumed in the D07M scheme. In the PJ98 scheme, the size distribution properties of hydro-

meteors depend upon the precipitation amount of individual hydrometeors. In the R98 

scheme, the properties of size distribution are set constant except for snow; the intercept 

parameter of snow is allowed to vary with the snow mixing ratio. All HIGHRES models 

consider all five hydrometeors species, while all LOWRES models consider only four 

hydrometeors species, except MM5 model. MM5 is the only LOWRES model considering 

the graupel hydrometeor species.  

In COSMO models turbulence is parameterized by Doms et al. [2007] (D07T) turbu-

lence scheme, while AROME and ALADFR use Cuxart et al. [2000] (C00) turbulence 

scheme and MM5 has Hong and Pan [1996] (HP96) turbulence scheme. D07T and C00 are 

local turbulence schemes, while HP96 is a non-local turbulence scheme. In D07T and C00, 

representation of the turbulence in the planetary boundary layer is based on a prognostic 

Turbulence Kinetic Energy (TKE) equation combined with a diagnostic mixing length. In 

both of these schemes turbulence fluxes are calculated implicitly in time by the exchange 

coefficients for momentum, potential temperature, and humidity using tri-diagonal matrix. 

However, D07T and C00 schemes differ by the order of closure used, which refers to the 

highest turbulent moment predicted. D07T scheme have 2.5 order closure, while C00 have 

1.5 order closure. HP96 turbulence scheme is a first-order, non-local closure scheme. It 

predicts tendencies of mixing ratio, potential temperature, horizontal wind, cloud water, and 

cloud ice in four different regimes depending on the bulk Richardson number.  

In COSMO models the surface layer is parameterized by Heise et al. [2006] (H06) 

scheme, while AROME and ALADFR use Noilhan and Planton [1989] (NP89) surface 

scheme and MM5 has Chen and Dudhia [2001] (CD01) surface layer scheme. H06 uses a 10-

layer soil model with prognostic soil moisture for top 7 layers. NP89 has three soil layers 

with prognostic soil moisture, while CD01 have four soil layers with prognostic soil mois-

ture.  
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All COSMO models use a nudging data assimilation method, except COSMO-ME 

model which uses 3D-Var data assimilation method. Both French models AROME and 

ALADFR use 3D-Var data assimilation method. MM5 is the only model used in this study 

which didn’t use any data assimilation. For further details of the models, the reader is asked 

to refer to Arpagaus et al. [2009]. 

 
2.3 Ensemble Forecasting  

Ensemble forecasting is a relatively new forecasting method. Detailed descriptions of en-

semble forecasting and different methods available for generating ensemble forecasts are 

provided in this section. Finally, the ensemble systems we utilized in our evaluation are 

described.   

 
2.3.1 Introduction to Ensemble Forecasting 

Numerical weather prediction has three basic components: observation of the atmos-

pheric state, assimilation of observed data into initial conditions, and model integration. The 

uncertainties are introduced at each of these steps during a forecast process: for example, 

instrumental errors in the observations, errors introduced during data assimilation due to 

mathematical assumptions, and imperfect parameterizations in models. Due to its highly 

nonlinear nature, numerical weather prediction is chaotic in nature. Smaller differences in 

initial states could lead to very different realizations in future states in such a chaotic system 

[Lorenz, 1963]. To account for this chaotic nature, the forecast uncertainty is also necessary 

to predict. Ensemble forecasting is a dynamical and flow-dependent approach to quantifying 

such forecast uncertainty.  

Ensemble forecasting aims to incorporate all possible uncertainty sources in a model-

ing system accurately and completely in terms of perturbations, and integrates the model in 

time to produce an ensemble of forecasts. The ensemble forecast consists of the multiple 

model runs initiated with the different perturbations. Generation of ensemble prediction 

systems (EPS) can be grouped into three categories: 1-D, 2-D and 3-D EPS [Du, 2007]. The 

ensemble systems which consider uncertainty only due to the initial conditions are called 1-D 

EPS [Li et al., 2008]. The 2-D EPS consider the uncertainty due to the models physics and 

dynamics along with the initial conditions [Du and Tracton, 2001]. Multi-model, multi-

physics, multi-dynamics, multi-ensemble systems are examples of the 2-D EPS. In 3-D EPS, 

past memory or history is also considered in addition to uncertainty due to the initial condi-

tions, model physics and dynamics. The direct time-lagged approach is usually used to 
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consider the past memory [Lu et al., 2007]. There are multiple approaches to produce the 

perturbations for generation of the ensemble system. The random perturbation approach uses 

the Monte Carlo method to generate the perturbations, where a normal distribution is used to 

represent typical uncertainty in the analysis [Mullen and Baumhefner, 1994].  The Time-

Lagged approach considers model runs which are initiated at different times [Mittermaier, 

2007]. This approach is considered to lead to a larger ensemble spread compared to random 

perturbations, as it reflects the error of the day [Du, 2007]. The Breeding approach uses 

multiple concurrent forecasts rather than a time-lagged forecast and a current analysis to 

calculate raw perturbations [Toth and Kalnay, 1997]. The Singular Vector approach uses the 

linear version of a nonlinear model as well as an adjoint of the time lag method to generate 

the perturbations [Li et al., 2008]. The coupled data-assimilation / perturbation-generation 

approach uses multiple analyses available to initiate an ensemble of forecasts [Grimit and 

Mass, 2002]. 

 

2.3.2 Description of Ensemble Systems   

For the verification we have selected 3 limited area ensemble systems, COSMO-

LEPS (CLEPS), COSMO-SREPS (CSREPS), and LAMEPSAT, from the MAP D-PHASE 

experiment with the same criteria used for deterministic models selection (Section 2.2). 

However, LAMEPSAT does not report the IWV (see Table 2.3). We have also generated a 

poor man ensemble system (PEPS) from 9 different deterministic (see Table 2.3) MAP D-

PHASE models. As deterministic models are used to generate ensemble forecast which 

operated by different operational or research centres, no additional cost is required to gener-

ate ensemble forecasts, and hence is called as poor-man ensemble system.  

 CLEPS is a limited-area ensemble prediction system based on a non-hydrostatic 

COSMO model implemented by ARPA-SIM (Regional Hydro-Meteorological Service of 

Emilia-Romagna, Italy) in the framework of the COSMO consortium [Marsigli et al. 2005]. 

CLEPS uses a downscaling of the ECMWF 51-member global ensemble system. This high 

resolution EPS is developed to improve early and medium-range (3-5 days) predictability of 

extreme and localized mesoscale weather events. The size of the ensemble is limited to 16 

members to decrease the computational expenses of running high resolution EPS with large 

ensemble size. The 51 members of ECMWF EPS are divided into 16 clusters, and one 

member of each cluster provides the initial and boundary conditions for the COSMO models 

once a day. The small-scale error due to model uncertainty is sampled by the use of different 
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convective parameterization schemes (Tiedtke or Kain-Fritsch). The EPS runs once a day 

with horizontal resolution of 10 km and forecast range of 132 hours. 

 CSREPS is a short-range (up to 3 days) high resolution ensemble prediction system 

based on COSMO model provided by ARPA-SIM [Marsigli, 2009]. The system consists of 

16 integrations of the non-hydrostatic limited-area model COSMO. CLEPS mainly considers 

large-scale uncertainty through perturbations of initial and boundary conditions from 

ECMWF EPS; thus, it is useful especially in the early medium-range forecasts (day 3-5). 

Unlike CLEPS, CSREPS considers the large-scale uncertainty through different driving 

models, as well as small-scale uncertainty through limited-area models to account for all 

possible uncertainty in the high resolution short-range forecast. Initial and boundary condi-

tion perturbations are provided by some members of the Multi-Analysis Multi-Boundary 

SREPS system of INM (Spanish Met Service): the 10-km COSMO runs of COSMO-SREPS 

are driven by four low resolution (25 km) COSMO runs provided by INM, nested on four 

different global models (Integrated Forecast System (IFS), Global Unified Model (UM), 

Global Forecast System (GFS), and Global Model (GME)) which use independent analyses. 

Each of the four 25-km COSMO runs provides initial and boundary conditions to four 10-km 

COSMO runs, which are differentiated by applying different model perturbations. Four 

parameters of the parameterization are randomly changed within their range of variability 

such as the Tiedtke and Kain-Fritsch convection schemes and the maximal turbulent length 

scale (tur_len) and length scale of thermal surface patterns (pat_len).  The CSREPS ensemble 

system runs once in a day with a horizontal resolution of 10 km and forecast range of 72 h.  

 LAMEPSAT is the ALADIN-Austria Ensemble system operated by ZAMG (Austri-

an Meteorological Service) based on the ALADIN model [Wang et al., 2006]. Only perturba-

tions in initial and boundary conditions are applied which are representative of large-scale 

errors (see Table 2.3). The initial-condition perturbations are generated by down-scaling the 

ECMWF singular vector perturbation, while lateral boundary perturbations are generated by 

coupling with the ECMWF ensemble system.  This 16 member ensemble system runs twice a 

day with a horizontal resolution of 18 km and forecast range of 48 h.  

PEPS is a poor man ensemble system generated from the 9 MAP D-PHASE deter-

ministic models (see Table 2.3). The ensemble forecast is generated by up-scaling all 9 

deterministic models on to a common horizontal grid of 21 km. The forecast uncertainty due 

to the large-scale error and also due to the small-scale error are accounted, as models with the 

four different initial conditions and three different model physics are included. The forecast 
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range of PEPS is only 21 h as we want to consider all 9 models’ forecasts and COSMO-DE is 

limited to this range.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24                                                                                                             Data and Methodology 

 

2.4 Comparison of Models grid-cell with Station Observations   

Comparing point observations with the model grid cell is challenging, as they have an 

inherent mismatch between the spatial scales. Most ground-based instruments provide point 

measurements. Models, on the other hand, predict the area-mean value of the variable within 

the grid cell. There are a number of studies which address this issue; here we discuss some of 

these approaches, their strengths and weaknesses.  

The simplest approach is to directly compare the observation with the model grid cell. 

Direct comparison can lead to serious errors as observations are representative of the point 

whereas the model data represents the grid-mean value. However, this approach doesn’t add 

any artifacts to the observations. Another approach is to average temporally the observations, 

assuming that advection over time provides the same statistics as would be gathered from 

observing instantaneous spatial variability [e.g., Barnett et al., 1998]. In this approach the 

averaging time is calculated based on the wind speed at specific times which will vary with 

model resolution. However, most of these studies average over fixed time intervals, even 

though the resulting statistics can depend significantly on which interval is chosen [Hogan 

and Illingworth, 2000]. Jakob [2004] argued that matching of grid cell size and time-

averaging intervals is misleading, as it depends on the meteorological conditions (e.g., wind 

speed, presence of convection and frontal system).   

Jakob [2004] proposed a probabilistic approach for comparison of station cloud ob-

servations with the model grid cell values. This approach assumes that clouds are randomly 

distributed throughout the domain. With the above assumption, a cloud cover forecast can be 

considered as the probability at a specific station and time. This approach is conceptually 

appealing because they bridge the disparities of scales without reducing the information 

content of the observations or relying on time averaging. However, it requires different 

verification metrics which are appropriate for probabilistic rather than deterministic forecasts. 

This increases the complexity of the interpretation of the results.  

Ghelli and Lalaurette [2000] proposed the up-scaling approach in which the observa-

tions are up-scaled to the models grid cell. However, the number of observational stations in 

each grid cell varies considerably, and the intercomparison of models with different resolu-

tions is difficult. A similar approach was proposed by Marsigli et al. [2008], called the 

distribution method (DIST), which is based on the verification distribution parameter within 

boxes of selected size. In this technique the verification domain is subdivided into a number 

of boxes, each of them containing a certain number of observed and forecasted values. The 

verification is performed using a categorical approach, by comparing for each box each 
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parameter of the forecast distribution such as mean, median, percentiles or maximum of the 

observed distribution. This approach is very simple and quite intuitive in terms of the inter-

pretation of the verification results. Also local weaknesses of the model are not identified 

because of averaging over large areas. We adopted the direct comparison approach as it does 

not add any artifacts in the verification result. The next section shows how a simple direct 

comparison approach can be used with little modification for different variables.  

 
2.5 Verifications Methodology    

Although the GOP comprises the whole of central Europe, certain observations such 

as cloud-base height from ceilometers and gridded rain gauge data sets are limited to Germa-

ny. In this study, all verifications are restricted to the overlapping region where both observa-

tions and models forecast for all key variables are available (Southern Germany- Figure 2.1). 

The largest amount of data is available in summer 2007 for both models and observations, as 

the intense observing period COPS [Wulfmeyer et al., 2008] of the priority program took 

place. Thus our study is focused exclusively for the summer period June to August 2007. The 

different comparison strategies are presented for station observation to model grid cell as 

explained in the previous section. We have adopted the nearest model grid-cell strategies for 

IWV and LCC, and up-scaling for gridded HCC and gridded precipitation. In the following 

section we will briefly explain the verification methodology adopted for all these key varia-

bles.   

IWV: To compare the model grid cell with the station observation we use the grid cell 

search strategy by Kaufmann [2008] which considers not just single grid cells horizontally 

closest to the station but also the neighboring cells in a square of 5x5 grid cells. Among this 

sample we selected the grid cell with the smallest effective distance, which is defined by the 

sum of the horizontal distance plus the vertical distance enhanced by a factor of 500. Even 

after this optimized search strategy, there will be a height difference between GPS station and 

the model topography at the assigned grid cell. The horizontal displacement between obser-

vation sites and model grid points has a minor effect on the evaluation since GPS IWV is 

determined from a number of delays to different satellites in different directions within 15 

minutes. However, previous study by Guerova et al. [2003] reported that height differences 

of a few meters between model grid cell and GPS station can introduce systematic errors. 

Thus, to compare the model grid cell with the station observation, a correction factor due to 

the height difference needs to be applied. The height difference can be minimized by a 

careful selection of the model grid cell which is assigned to a certain measuring station. 
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When this remaining height difference is larger than 100 m, we have neglected those stations 

from the evaluation. Otherwise we assumed that the modeled water vapor content at the 

lowest model level is a good proxy for that in the lower height range. Then the modeled IWV 

value can be corrected by adding  

 ∆IWV = 
h

dzq mvm
0

2,2  (2.1) 

 

where the height difference ∆h is between the model grid cell and corresponding station, qv,2m 

is the specific humidity and  2m is the air density at 2m level [Guerova et al., 2003]. Since 

model output in the D-PHASE data archive is stored only in hourly intervals, we considered 

only every fourth GPS observation in time, i.e. the observational interval centered on a clock 

hour. 

LCC: Cloud-base heights have not been reported by the D-PHASE models, and in 

addition cloud base height is a poorly define variable (in case of partial cloudiness). There-

fore we have converted the ceilometer base height into binary information, which represents 

whether there is a low cloud present or not. Only low level cloud cover is derived from the 

ceilometer cloud base height as mid and high level clouds are often not detected by ceilome-

ter (Section 2.1.2). Low clouds are defined in the D-PHASE data archive as clouds below 

1200 m. This binary low-cloud cover with values of either zero or one is used as an observa-

tional reference. In order to ensure a fair comparison, the model-predicted low-cloud cover is 

also transformed into binary form using the unbiased threshold of 0.5. All model grid cells 

with a low-cloud cover larger than 50% LCC are considered as overcast and the remaining 

grid cells as clear sky. The choice of the threshold has no large impact, as the frequency 

histogram (Figure 2.2) of almost all model predicted low cloud covers is strongly U-shaped. 

For comparison of observed cloud cover from ceilometer to model, the nearest model grid 

cell to the ceilometer station has been selected. Since model output in the D-PHASE data 

archive is stored only in hourly intervals, we only considered every sixth ceilometer observa-

tion in time, i.e. the observational interval centered on a clock hour. The use of a threshold 

instead of comparing all possible cloud amounts significantly decreases the uncertainties due 

to the comparison of model grid cell with the station observation. 
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Figure 2.2: The frequency histograms of LCC for different models for 0000 UTC run for 

summer 2007 as a probability.  
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Figure 2.3: Same as Figure 2.2, but for HCC.  
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 HCC: We can derive binary cloud cover from the MSG datasets. However, only high 

cloud cover is derived from MSG observations, due to limitation of satellite observations to 

detect mid- and low-level clouds. If the cloud occurrence probability is larger than 50% and 

the cloud-top pressure is smaller than 400 hPa, the MSG grid cell is considered as overcast 

with high clouds. To compare this observed HCC with the model, model HCC is also con-

verted into binary HCC again with a similar threshold of 50%. It is remarkable that the 

frequency histogram of model high-cloud cover (Figure 2.3) is skewed towards clear sky 

situations, for most of the models except the French models.  

The French models show a U shaped frequency histogram, while MM5 is the only 

model which does not show any cloud above 80%. The MM5 grid cells were never fully 

overcast which may be due to the coarser model resolution. Thus the choice of the thresholds 

has some impact on the verification results. However, testing various thresholds (not shown) 

has only an influence on the magnitude of deviations between model and observation, but 

relative results like, e.g., the ranking among the models, is not affected. To have a fair 

comparison, both the model and observed HCC are up-scaled to a common grid of 21 km.   

 Rain: As the gridded precipitation rate is available from the observations and the 

models’ forecasts, the precipitation rate from them are up-scaled to a common grid of 21 km 

to allow a fair comparison. 

 

2.6 Concept of Most-recent and 0000 UTC run Forecast 

Two concepts are used to validate the models’ forecasts for all key variables: most re-

cent run and 0000 UTC run. We have adopted the most-recent-run concept introduced by 

Ament et al. [2011], as we wish to consider all available information for the model evaluation 

as well as to test the benefits of larger reinitialization frequency for short-range forecasts. 

Most of the models have more than one valid consecutive run available for a specific time 

(see Table 2.1), so we have chosen the most recent consecutive available forecast - this 

means, we have updated the forecast every time as new consecutive forecast is available. In 

this way, we have evaluated the 3-hour forecast for COSMO-DE, as the next run is available 

after 3 hours. For COSMO-IT, we have evaluated the 24-hour forecast, as it has only one run 

per day. However, fair comparisons among the models are not possible with the recent-run 

concept, thus the 0000 UTC-run concept is used. In the 0000 UTC-run concept, the models’ 

forecasts are updated only at the next available 0000 UTC forecast; thus all models have 

same forecast length. To validate the models performance with increasing forecast length, 
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first a specific number of forecast hours are excluded from the time series, which is called the 

cutoff period. 
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Chapter 3 

Evaluation of Integrated Water Vapor, Cloud Cover and Precipitation Pre-

dicted by Mesoscale Models 

      
This chapter is dedicated to evaluate the performance of MAP D-PHASE mesoscale 

models with respect to the prediction of integrated water vapor, cloud cover and precipitation.  In 

detail, the following questions will be addressed: How accurate can these key variables be 

forecasted by today’s mesoscale models? Are there clusters of models revealing the same kinds 

of error? In particular, is the forecasting performance of convection-permitting, high resolution 

models superior? What is the most important factor, e.g. boundary conditions, model formulation 

or resolution, affecting the forecast performance? To answer these questions, the models’ fore-

casts of all key variables (IWV, LCC, HCC, and precipitation) are statistically evaluated for 

amount, timing (temporal distribution), and regional distribution aspects. Section 3.1 explores 

the spatially and temporally averaged model biases and forecast skill. Section 3.2 illustrates the 

models’ ability in representation of temporal distribution of all key variables by means of domain 

average diurnal cycle. The models’ ability to represent the regional distribution is evaluated in 

Section 3.3 and the impact of the forecast range on the model’s skill is assessed in Section 3.4.  

 
3.1 Spatial and Temporal Averaged Verification 

The overall model performance is assessed by verifying domain- and time-averaged key 

variables for systematic error and error at a specific time and station or grid cell (random error).  

This analysis will quantify the models’ ability in correctly predicting the average amount of key 

variables. The verification scores depend respectively on the type of variables, for continuous 

key variables such as IWV and precipitation rate the systematic errors is assessed by bias (BIAS) 

while random error by standard deviation (STD). The systematic and random error in categorical 

quantities such as LCC and HCC are assessed by frequency bias (FBIAS) and equitable threat 

score (ETS: Appendix A) respectively. The verification of all key variables is performed only for 

0000 UTC model runs to have a fair model comparison (see Section 2.6). The significance of the 

result is assessed by bootstrap resampling method using 95% and 5% quantile of 1000 bootstrap 

sample (see Appendix B).    
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Figure 3.1 depicts the errors of all models concerning the four key variables where sys-

tematic errors are represented by green bars. The yellow bars indicate the forecast accuracy on an 

hourly basis at a certain station (for IWV and LCC) or grid cell (for HCC and precipitation). The 

BIAS in IWV is less than 1.5 kg/m2 for most of the models. All the models, except French 

models AROME and ALADFR, have a tendency to be too dry, and MM5 is the wettest model. 

Large IWV biases in MM5 and French models are likely due to deficits in their driving models 

ARPEGE and GFS respectively. Bouteloup et al. [2009] reported significant overestimation of 

summer precipitation by ARPEGE model over Europe.  

 

Figure 3.1: Verification scores averaged over the whole Southern Germany domain and the 

whole time period summer 2007. (a) BIAS (green) and standard deviation (yellow) in IWV 

(kg/m2), (b) frequency bias (green) and equitable threat score (yellow) in LCC of hourly sta-

tion time series, (c) same as (b) but for HCC and (d) bias (green) and standard deviation 

(yellow) in precipitation (mm/h) of hourly gridded time series. (The HIGHRES models are 

highlighted by bold letters; Error bars represent the 95% and the 5% quantiles of the distri-

bution determined by a bootstrapping). 
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The errors at a particular time and station are significantly larger than systematic error, 

which is reflected by STD on the order of 3 kg/m2. There is no great difference between 

HIGHRES convection-permitting models and LOWRES models. However, these HIGHRES 

models tend to be slightly wetter than their LOWRES counterparts and the STD is slightly 

smaller. All models show small interquantile distances for systematic and random error, which 

implies small uncertainty in results.  

The systematic error in low cloud cover (LCC) is described by FBIAS which is the ratio 

of forecasted and observed frequency. An unbiased forecast has FBIAS of 1, underestimated 

forecasts results in FBIAS values between 0 and 1, and overestimations are reflected by values 

between 1 and ∞. To display corresponding under and overestimation with the same size of a 

bar, we express the FBIAS in decibels (dB) which is the logarithm of FBIAS multiplied by 10. 

The FBIAS is mostly determined by the model formulation, MM5 overestimates the LCC 

frequency by a factor of 3 (~4dB), whereas French models AROME and ALADFR slightly 

underestimate LCC. The COSMO models tend to overestimate the amount of low clouds. 

However, these errors are smaller than 2dB. The underestimation of LCC by AROME and 

ALADFR models is likely due to their large dry bias in IWV. Eventhough AROME and 

ALADFR have significant differences in IWV, the smaller LCC difference between them is 

mostly due to the different assumption used by AROME and ALADFR models to calculate the 

cloud cover. Large overestimation of LCC is shown by MM5 model which is mostly due to the 

strong overestimation in IWV.  

The ETS (Appendix A) evaluates the accuracy of a correct forecast at a certain time and 

station and is 1 for a perfect forecast. The ETS of all models is much smaller than this optimal 

value and never exceeds 0.2. HIGHRES models have a tendency to outperform their correspond-

ing LOWRES models. This is true for all COSMO models but not for the pair AROME and 

ALADFR. Similar to IWV, both systematic and random errors in LCC are extremely significant 

with small interquantile distance.  

In contrast to LCC, the FBIAS of the high cloud clover (HCC) is a severe problem for 

almost all models. FBIAS of HCC is factor of two larger than that of LCC for all the models with 

overestimation in COSMO and French models and underestimation in MM5. Similarly, ETS for 

HCC is just half of that for LCC. It is important to be cautious of these findings, as satellite 
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retrievals of high cloudiness tend to miss optically thin clouds. We will reopen this issue when 

discussing the diurnal cycle. Larger interquantile distance suggests less significant results.  

As shown in Figure 3.1, precipitation is overestimated by all models. Despite this similar-

ity, it is impossible to detect any further cluster of models behaving in the same way. The BIAS 

seems to depend strongly on the model resolution, since pairs of high and coarse resolution 

deviate significantly. Most models exhibit a similar random error expressed by STD. Note that 

the STD is one order of magnitude larger than BIAS. Most likely the random error in precipita-

tion forecast is dominated by deficiencies in the time spectra of precipitation events, which is a 

common problem for every model. The significance of results is suggested by a smaller inter-

quantile distance.   

 
3.2 Verification of Mean Diurnal Variability  

To quantify the models’ ability to represent temporal distributions, mean diurnal cycles in 

all key variables are verified. The mean diurnal cycle in all key variables are calculated by 

averaging all stations (IWV, LCC) or grid cells (HCC, precipitation) within the verification 

domain for the whole summer. The verification statistics are calculated over the continuous time 

series of all stations or grid cells within a verification domain for the whole time period.   

  
3.2.1 Integrated Water Vapor 

The observed IWV shows a mean diurnal variability of about 1 kg/m2 with diurnal mini-

mum in the early morning hours (0800-0900 UTC) and diurnal maximum in the late evening 

hours (1800-2000 UTC, see Figure 3.2a). For the most recent model runs (Figure 3.2a), a pro-

nounced decrease of IWV at 1200 UTC is observed for all models which are restarted at 1200 

UTC. This pronounced decrease is due to the dry bias introduced by the assimilation of daytime 

radiosounding [Vömel et al., 2007]. Daytime radiosounding reports lower relative humidity 

values due to solar heating of the measurement sensor.   

The observed mean diurnal variability is very well reproduced by all models; however, 

they exhibit a large offset to observations. The models’ offsets to observations show a clear 

dependency on model formulation. All COSMO models show a smaller offset to observations, 

whereas MM5 and French model pairs show a large offset. The time lags between forecasted key 

variables and observations are verified only for 0000 UTC model runs in order to have a fair 

comparison among models. Time lag is measured by means of the time difference between times 
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of maxima in forecasted key variables to times of maxima in observations. Most of the models 

show a negative time lag of 1-3 hour (Table 3.1), except COSMO-EU and COSMO-ME which 

do not have any time lag with observations. This clearly emphasizes early prediction of IWV 

maximum by most of the models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Diurnal cycle (summer 2007) in IWV averaged over all stations within the Southern 

Germany domain. (a) Most recent model run, (b) 0000 UTC run, (c) BIAS of 0000 UTC run, 

and corresponding (d) standard deviations of 0000 UTC run. The solid lines denote the 

HIGHRES models, the corresponding dashed lines represent their LOWRES counterparts 

and the filled circles indicate start of new model runs. 

 

As shown in Figure 3.2c, the models do not show any diurnal variability in the IWV bias, 

but all models exhibit a nearly constant offset up to ~2 kg/m2. AROME and ALADFR exhibit a 

strong dry bias, whereas all COSMO and MM5 models have a wet bias. ALADFR is the driest 

model with bias of ~2 kg/m2 and MM5 is the wettest model with a bias of 1.2 kg/m2. Similar 

ranking among the models is seen for spatial and temporal average IWV verification (Section 
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3.1). The random error in IWV also does not show any diurnal variability but it shows a steady 

increase with time of 2.4 to 2.7 kg/m2 at 0000 UTC to 2.7 to 3.5 kg/m2 at 2300 UTC. In essence, 

models loose skill in predicting IWV at a specific time and a specific station with increasing 

forecast time. The slope of the increase in IWV STD is quite similar for all models. Overall no 

models show superiority in prediction of IWV evolution.  

 
Table 3.1: Phase shift in diurnal cycle of IWV, low cloud cover, high cloud cover, and precipita-

tion derived from 0000 UTC runs with respect to observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Low Cloud Cover 

Mean diurnal cycle in observed LCC shows a maximum in early morning (0800-1000 

UTC) and a minimum in late evening (1800-2000 UTC), with synoptic diurnal variability of 

about 25% (Figure 3.3a). For the most recent model runs, similar to IWV, a pronounced decrease 

in LCC is observed at 1200 UTC for all models which restarted at 1200 UTC (see Figure 3.3a). 

This clearly indicates a propagation of error chain from IWV to LCC. The observed diurnal 

variability in LCC is very well reproduced by all COSMO models. The French model pair 

AROME and ALADFR shows a very weak LCC diurnal variability of about 5%, while MM5 has 

no diurnal variability (see Figure 3.3b). The clear impact of model formulation is seen for 

prediction of diurnal variability in LCC. The strong overestimation of LCC for all diurnal hours 

is seen for the MM5 model. AROME and ALADFR models show large LCC underestimation at 

Model 

Phase shift [h] in diurnal cycle 
 

IWV 
Low Cloud  

Cover 

High Cloud 
Cover 

 
Precipitation 

COSMO-DE -3 4 7 2 
COSMO-EU 0 4 1 -8 
COSMO-2 -1 2 3 2 
COSMO-7 -2 4 1 -8 
COSMO-IT -1 2 3 2 
COSMO-ME 0 2 0 -7 
AROME -1 4 2 -2 
ALADFR -2 -3 2 -6 
MM5 -2 3 -- -2 
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0000 to 1800 UTC and quite accurate variability thereafter. All COSMO models slightly overes-

timate the observed LCC diurnal variability for most of the diurnal hours. However, most of 

them underestimate observed maxima in LCC, except the COSMO-7 model which shows the 

same maxima as in observations. Most of the models predict diurnal maxima in LCC 2 to 4 hours 

(Table 3.1) later than observations unlike IWV, except the ALADFR model. LCC diurnal 

maxima in ALADFR is seen 3 hours prior to that of observations, which is similar for IWV. 

 

 

Figure 3.3: Diurnal cycle (summer 2007) in LCC averaged over all stations within the Southern 

Germany domain. (a) Most recent model run, (b) 0000 UTC run, (c) Frequency bias of 0000 

UTC run on logarithmic scale, and corresponding (d) equitable thread score of 0000 UTC 

run. The solid lines denote the HIGHRES models, the corresponding dashed lines represent 

their LOWRES counterparts and the filled circles indicate start of new model runs 

 
The frequency bias in LCC also shows stronger diurnal variability for all models with 

minimum frequency error during 0800-1000 UTC and maximum frequency error during 1500-

1800 UTC (see Figure 3.3c). We can clearly mark the similarity in systematic error of models 
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with same formulation.  The diurnal variability in FBIAS is due to the time lag between the 

observed and forecasted LCC. Initially, all COSMO models overestimated the LCC for the first 

few forecast hours, followed by a slight underestimation at 0800-1000 UTC, and, thereafter a 

common overestimation. The MM5 model consistently overestimates observed frequency, while 

AROME and ALADFR underestimated until 1500-1600 UTC and a slight overestimation 

thereafter. The random error in LCC (ETS) do not show any diurnal variability with very small 

ETS (0.1-0.25) for most of the models, except for MM5 model which shows a large decrease in 

ETS after 0600 UTC (see Figure 3.3d).  The large decrease in ETS by the MM5 model is linked 

with the large overestimation of LCC after 0600 UTC; this overestimation introduces a large 

number of false alarms and thus a very small ETS (see Appendix A). HIGHRES models do not 

shows superiority over LOWRES models in the prediction of LCC evolution. 

 

3.2.3 High Cloud Cover 

Weak diurnal variability is seen in MSG-observed HCC with synoptic variability of about 

8% (see Figure 3.4a). For most-recent runs, a pronounced decrease in HCC is seen at 1200 UTC 

for all models which restarted at 1200 UTC, except for the MM5 model. This clearly emphasizes 

error chain propagation from IWV to HCC, which is similar for LCC. The MM5 model does not 

show a pronounced decrease at 1200 UTC which is mostly due to its forecasts of very low 

frequency of HCC. Similar to observations, all models also show weak mean diurnal variability 

in HCC (see Figure 3.4a). No clear dependency on model formulation on representation of 

diurnal variability in HCC is seen. However, all COSMO and French models show large overes-

timation in HCC for all diurnal hours, while the MM5 model shows perfect forecasts at 0 and 3 

hours and underestimation thereafter. The large overestimation of COSMO and French models 

compared to observations is likely due to optically thin clouds (such as cirrus), which are not 

detectable by satellite observation [Wyser and Jones, 2005]. Using MODIS data, Dessler and 

Yang [2003] found that 30% of cloud with optical thickness less than 0.05 are undetected by 

MODIS instrument. Most of the models overestimate the observed frequency by a factor of 4 

(6dB) with very weak diurnal variability (see Figure 3.4c). The diurnal variability in FBIAS is 

due to the time lag between the observed and forecasted HCC variability. The MM5 model has 

no frequency bias at the first forecast hour; however, the frequency bias increases with forecast 

time. This exhibits a clear link with large underestimation of HCC frequency by the MM5 model 
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after 0900 UTC. All models show a very small value of ETS in HCC with weak diurnal variabil-

ity. The MM5 model shows a continuous decrease in forecast skill with forecast time. A clear 

trend in ETS is not seen with increasing forecast time for all models. No models show superiori-

ty in the prediction of HCC variability.   

 

 

Figure 3.4: Diurnal cycle (summer 2007) in HCC averaged over all models grid and MSG grid 

cells within the Southern Germany domain. (a) Most recent model run, (b) 0000 UTC run, 

(c) Frequency bias of 0000 UTC run on logarithmic scale, and corresponding (d) equitable 

thread score of 0000 UTC run. The solid lines denote the HIGHRES models, the corre-

sponding dashed lines represent their LOWRES counterparts and the filled circles indicate 

start of new model runs. 

 

3.2.4 Precipitation  

Mean diurnal variability in observed precipitation has minima in early morning (0800-1000 

UTC) and maxima in late evening (1800-2000 UTC), with a synoptic diurnal variability of about 

~0.1mm/h (Figure 3.5a). Similar to other key variables, the precipitation rate also shows a 
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pronounced decrease at 1200 UTC for a model which restarted at 1200 UTC (see Figure 3.5a). 

The error introduced in IWV due to assimilation of erroneous radiosounding observations 

propagates to LCC, HCC and also in precipitation. This clearly emphasizes a propagation of 

error chain in atmospheric water cycle variables. The COSMO-DE model shows an interesting 

zig-zag structure in the precipitation diurnal cycle (see Figure 3.5a) which is mostly caused since 

it uses latent heat nudging to adjust the precipitation forecast with radar observations. In latent 

heat nudging the vertical profile of modeled latent heat release on a specific model grid cell is 

scaled according to the difference between the modeled and radar measured precipitation rate 

based on an assumed relationship between precipitation formation and latent heat release. 

Precipitation rate is overestimated by all models irrespective of model formulation or resolution. 

All models have stronger precipitation maxima compared to observations, whereas AROME has 

a largest precipitation maximum which is twice as large as observed. This overestimation in 

AROME is mostly caused by an overestimated numerical diffusion which induces a too strong 

outflow under convective cells [Bauer et al., 2011]. The dominant impact of spin-up effect on 

the precipitation rate is seen in all models with large deviation of the precipitation rate from 

observations for the first few forecast hours. Such a dominant impact is not observed for other 

key variables. All COSMO LOWRES models predicted a diurnal maximum ~8 hours prior to 

that of observation, ALADFR predicted 6 hours prior, and MM5 predicted 2 hours prior (see 

Table 3.1). Thus, all the LOWRES models predicted diurnal maximum prior to that of observa-

tion, whereas all COSMO HIGHRES models predicted the diurnal maximum 2 hours later to that 

of observation except for AROME which predicted it 2 hours prior to the observations. 

HIGHRES models shows superiority in prediction of precipitation diurnal variability compared 

to their LOWRES counterpart. However, precipitation diurnal variability in HIGHRES models is 

not perfect. Guichard et al. [2004] argued that convection occur too early in convection parame-

terized models due to crude triggering criteria and quick onsets of convective precipitation. They 

also indicated that the first cloud appearance to precipitation at the ground is delayed by a few 

hours in cloud resolving models, whereas this delay is missing in convection parameterized 

models. All COSMO LOWRES models have precipitation maxima 2 to 3 hours after the LCC 

maxima, whereas maximum precipitation in HIGHRES COSMO models occurred 10 to 11 hours 

after the LCC. In contrast to the Guichard et al. [2004] findings, we found a larger difference of 

8 hours between maximum in LCC and precipitation for the convection-parameterized MM5 
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model and only 5 hours difference for the deep-convection-resolved AROME model. Thus the 

time delay between occurrence of clouds to precipitation at the ground varies with the convection 

parameterization scheme as well as with model physics. We suggest that a too early onset of 

convection is a specific problem with the TK98 convection scheme. Better prediction of timing 

of precipitation maxima by the MM5 model compared to other LOWRES models is mostly due 

to the accurate triggering mechanism of the G94 convection scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Diurnal cycle (summer 2007) in precipitation averaged over all models and observa-

tion grid cells within the Southern Germany domain. (a) Most recent model run, (b) 0000 

UTC run, (c) bias of 0000 UTC run, and  corresponding (d) standard deviations of 0000 UTC 

run. The solid lines denote the HIGHRES models, the corresponding dashed lines represent 

their LOWRES counterparts and the filled circles indicate start of new model runs. 

 

Correspondingly, the systematic error also shows a clear diurnal variability and indicates 

the influence of a shift in diurnal maximum for respective models. Moreover, all COSMO 

HIGHRES models over-forecasted the precipitation rate in the morning and under-forecasted it 
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after 1000 UTC, except the last few forecast hours.  The AROME model over-forecasted the 

precipitation rate for all forecast hours except the first few and last forecast hours. All LOWRES 

models over-forecasted it during 0600-1600 UTC and under-forecasted it prior and in later 

forecast hours. Irrespective to the models formulation and resolution, all models show random 

errors one order of magnitude larger than their systematic error. A consistent increase in random 

error with forecast time is observed in all models; the slope increase is also quite similar for most 

of the models, except the AROME model which has large slope. 

 
3.3 Spatial Distributions in Model Simulations    

In order to quantify the model ability in the representation of spatial distribution of the 

four key variables, we have analyzed the temporally averaged spatial biases and random errors in 

these variables. The spatial map shows Southern Germany domain (see Figure 3.6) and underly-

ing topography is denoted by contour lines.  

 
3.3.1 Integrated Water Vapor 

The average models’ biases of hourly IWV compared to the observations are shown in 

Figure 3.6 along with the mean observed IWV. Observed IWV shows obvious dependency on 

the underlying topography with smaller IWV values for stations located on higher elevation. In 

general, high mean IWV values of ~25 kg/m2 are observed for those stations located inside 

valleys or plain regions, and for some specific stations the values even exceeded 26 kg/m2, 

whereas stations with higher elevations show IWV values smaller than 23 kg/m2. The smallest 

IWV value of 8 kg/m2 is observed over the southernmost station in the Northern Alpine foreland 

(Zugspitze [47.42N:10.98E:2964m]). The French models AROME and ALADFR have a strong 

dry BIAS over most of the stations with the exception of a few stations in the Northern Alpine 

foreland which show positive BIAS. The overall large positive BIAS is seen for the MM5 model 

over most of the stations, except a few stations which exhibit smaller negative BIAS. All COS-

MO models have small positive BIAS over most of the stations, except a few stations which 

have smaller negative BIAS. The LOWRES COSMO models with parameterized convection 

have very small biases. The regions of larger and smaller IWV values are well captured by them. 

The spatial BIAS structure looks similar for both COSMO-7 and COSMO-ME, in contrast to 

COSMO-EU. The major difference between them is their driving model: COSMO-7 and COS-

MO-ME are driven by ECMWF whereas COSMO-EU is driven by GME model. So, the differ-
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ence in spatial BIAS structure between these models can be due to their driving models. The 

deep-convection-permitting COSMO models have large wet biases compared to their corre-

sponding LOWRES counterpart. However, the spatial distribution of their BIAS is quite similar 

to that of their LOWRES counterparts. Irrespective of model formulation or resolution, all the 

models have a larger bias for the stations located on higher elevations. Also station (Zugspitze) 

with the smallest observed IWV value is not captured by any model, which implies even higher 

resolution models do not resolve all topographic structures. Most models exhibit similar random 

error for IWV, except the MM5 model which has a stronger random error compared to other 

models (Figure not shown). All models show stronger random error over stations situated on 

higher elevation regions, which clearly emphasize the models’ limitations in prediction of IWV 

over complex topography regions. These results also suggest even higher resolution models do 

not resolve all topographic structures. 

 
3.3.2 Low Cloud Cover 

The average models’ FBIAS of hourly LCC compared to the observations is shown in 

Figure 3.7 along with the mean observed LCC. Observed LCC is less than 50% over most of the 

stations except for one single station (Deuselbach [49.76N:7.05E:480m]) in the Northwest where 

observed LCC is 75% (see Figure 3.7a). This large amount of observed LCC over the Deusel-

bach station may be due instrument error. The western part of the domain has a higher amount of 

LCC compared to the eastern parts. The stations in the southern part over the Northern Alpine 

foreland have low LCC values. The MM5 model has a large overestimation all over the domain, 

while French models AROME and ALADFR have a large underestimation over most of the 

stations, except a few stations which show a small overestimation. All COSMO models have 

small overestimation over most of the stations, except a few stations which show a small under-

estimation. The COSMO models with parameterized convection have larger FBIAS of 0.5-4 dB 

over most of the stations. Overall, all models have larger FBIAS over higher elevation regions. 

All convection-permitting COSMO models have comparably smaller FBIAS corresponding to 

their LOWRES counterpart. However, COSMO-DE has a smaller FBIAS compared to COSMO-

2 and COSMO-IT models, which may be due their different driving models.  
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Figure 3.6: Spatial distribution of (a) hourly observed IWV and (b) to (j) IWV bias for different 

models at 0000 UTC run in kg/m2 averaged for summer 2007. The underlying topography is 

represented by dashed black contour lines. 
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Figure 3.7: Spatial distribution of (a) hourly observed LCC and (b) to (j) LCC frequency bias for 

different models at 0000 UTC run in %, averaged for summer 2007. The underlying topog-

raphy is represented by dashed black contour lines. 

b) a) 

c) d) 

e) f) 

g) h) 

i) j) 

[10*log(FBias)] 
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The AROME and ALADFR models have a strong low FBIAS of 0 to 2dB for most of the 

stations. Moreover AROME has a small bias compared to its LOWRES counterpart ALADFR. 

The MM5 model shows very large FBIAS of 2 to 6 dB over most of the stations. The stations 

with higher elevation are clearly marked with stronger frequency biases by all the models. 

Overall superiority of HIGHRES models is seen in the prediction of LCC regional distributions 

compared to their LOWRES counterpart with comparably smaller frequency biases. Error chain 

propagation is clearly seen from IWV to LCC, since most of the stations with IWV dry bias (wet 

bias) underestimate (overestimate) the LCC. However, this over or underestimation also depend 

upon model resolution. HIGHRES models have a very small FBIAS in LCC over stations with 

small IWV BIAS, while LOWRES models exhibit overestimation of LCC over these stations. 

Most models exhibit similar random error, except the MM5 model which has a very small ETS 

over the entire domain (Figure not shown). All models show small ETS values over stations 

situated on higher elevation regions, which clearly emphasize the models’ limitations in predic-

tion of LCC over complex topography regions.  

 
3.3.3 High Cloud Cover 

Observed HCC is less than 16% over the entire domain, and a clear influence of under-

ling topography on the HCC amount is seen with stronger values over higher elevation regions 

(see Figure 3.8a). The maximum HCC value is observed over the Black forest and northeastern 

parts of the domain. Large HCC values over these regions are mainly due to the frequent occur-

rence of convection during summer. The north western parts show the smallest HCC values 

which are approximately 10%. MM5 model has a large HCC underestimation over the entire 

domain, while COSMO models show overall a large overestimation and AROME and ALADFR 

have a small overestimation. Large overestimations by most of the models are likely due to 

satellite observations miss optically thin clouds. The regional distribution of FBIAS does not 

show any clear dependency on the model resolution. The COSMO-EU model has a larger FBIAS 

compared to COSMO-7 and COSMO-ME; this may be due to their different driving models. 

COSMO-7 and COSMO-ME models are driven by an ECMWF model whereas COSMO-EU is 

driven by the GME model.  
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Figure 3.8: Spatial distribution of (a) hourly observed HCC and (b) to (j) HCC frequency bias 

for different models at 0000 UTC run in %, averaged for summer 2007 (FBIAS color scale 

for MM5 model is ranging from 0 to -6 dB). The underlying topography is represented by 

dashed black contour lines. 
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However, COSMO-7 and COSMO-ME also show clear regional differences with larger 

overestimation by the COSMO-ME model. Regional discrepancies between these two models 

may be due to their different data assimilation methods. COSMO-ME used 3d-Var data assimila-

tion whereas a nudging data assimilation method was used in the COSMO-7 model. The COS-

MO-DE model has the smallest FBIAS compared to all models. COSMO-2 and COSMO-IT 

models have a large FBIAS over the entire domain compared to the COSMO-DE model, which 

is mostly due to their different driving models. The AROME model has a larger FBIAS com-

pared to its LOWRES counterpart ALADFR model. The MM5 model shows a large underesti-

mation over the entire domain with the largest underestimation of -6dB over the Black forest 

region. The smallest FBIAS is seen in the ALADFR model compared to all other LOWRES 

models, where the COSMO-DE model has the smallest FBIAS compared to all other HIGHRES 

models. The Black forest region is marked by smaller biases for all models producing an overes-

timation of HCC. This clearly implies that models are not very good at accounting for the 

topographical influence on the development of HCC, as no models are able to capture the 

observed regional difference in HCC.   

Most models exhibit similar random error in HCC, except COSMO-DE, COSMO-EU 

and MM5 models which show smaller ETS over the entire domain (Figure not shown). However, 

all models have small ETS values over higher elevation regions, which clearly emphasize the 

models’ limitation in the prediction of HCC over complex topography regions. Small values of 

ETS in COSMO-DE and COSMO-EU compared to other COSMO models indicate that initial 

conditions dominantly influence the model skill for HCC forecast.  

 
3.3.4 Precipitation 

Observed precipitation shows an obvious dependency on the underlying topography, with 

the maximum precipitation over the higher elevation regions (see Figure 3.9 a). The highest 

hourly precipitation value of 0.35 mm/h is observed in the southern part of the study domain 

(Northern Alpine foreland), and a second maximum of 0.25 mm/h is observed in the Black forest 

region. Mainly, the northern part of the domain shows the least amount of precipitation, except 

for a few higher elevation regions. The LOWRES models overestimated the precipitation amount 

over large parts of the domain compared to their corresponding HIGHRES counterparts, except 

for the AROME and ALADFR models pair. The AROME and ALADFR models strongly 
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overestimate the precipitation over the entire domain, but the overestimation of the AROME 

model is larger compared to the ALADFR model. The LOWRES models particularly have 

stronger overestimation of more than 0.1 mm/h over the higher elevation region such as the 

Black Forest, Northern Alpine foreland, and the smaller mountains on the northern side. The 

correct distribution of precipitation in mountainous terrain is especially challenging for the 

models with convection parameterization. Overall, HIGHRES models have smaller differences 

compared to observation except for AROME. However, smaller precipitation BIAS is seen for 

the LOWRES COSMO-EU model compared to the HIGHRES COSMO-DE models in spatial 

and temporal average analysis (Figure 3.1); this is mainly because of the cancellation of large 

positive and negative spatial biases. The stronger BIAS over the Northern Alpine foreland and 

the Black forest region in all models is probably caused by the poor representation of topography 

in the models. Irrespective of their resolution or the driving model or the way convection is 

handled, all the models underestimate the precipitation over the northeastern region. Underesti-

mations are smaller for the ALADFR and AROME models, as they have, overall, stronger 

overestimation. The COSMO-ME model has smaller regional biases compared to the other two 

LOWRES COSMO models. These regional discrepancies are mainly due to the fact that COS-

MO-ME has 3D-Var data assimilation whereas the other two COSMO models use nudging data 

assimilation. The smaller discrepancies between COSMO-7 and COSMO-EU may be due to 

their different driving models, indicating the influence of the driving model on the regional 

precipitation distributions. Convection-permitting HIGHRES COSMO models also have smaller 

differences among them in representing the regional precipitation distribution. COSMO-2 and 

COSMO-IT models show stronger underestimation in precipitation over the northmost part of 

the study domain, whereas such underestimation is not seen for the COSMO-DE model. This 

may be due to their different driving models along with COSMO-DE using latent heat nudging 

for correction of the precipitation forecast with respect to radar observation.  

All COSMO models with parameterized convection have stronger overestimation of pre-

cipitation amount on the windward side of all mountains, and stronger dry bias on the leeward 

side. This effect can be seen as stronger biases over the Black forest, the Northern Alpine fore-

land and also over the small mountainous regions.  This unrealistic representation of the spatial 

pattern of precipitation is referred as the “windward/lee effect” [Wulfmeyer et al., 2008].  
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Figure 3.9: Spatial distribution of (a) hourly observed precipitation and (b) to (j) precipitation 

bias for different models at 0000 UTC run in mm/h averaged for Summer 2007. The under-

lying topography is represented by dashed black contour lines. 
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As per Schwitalla et al. [2008], the possible reasons for this effect are (i) inaccurate 

simulation of the flow at coarse resolution, and/or (ii) the convection parameterizations cannot 

account for cell motion and hydrometeor advection. In reality this effect leads to a substantial 

separation between the location where convection is triggered and the area where the rain 

reaches the ground. However, ALADFR and MM5 convection-parameterized models do not 

have this windward/lee effect. Thus, this effect seems to be affecting the models with the T89 

convection parameterization scheme only; the ALADFR and MM5 models didn’t show this 

effect as they use the B01 and G94 convection parameterization schemes respectively. Most 

models exhibit similar regional distribution of precipitation random error, except the AROME 

model which has large random error (Figure not shown). However, all models show stronger 

precipitation random error over higher elevation regions, which indicate the models’ limitation in 

prediction of precipitation over complex topography regions.    

 
3.4 Verification of Models Skill with Forecast Length  

The growth of forecast error with increasing forecast times is evaluated to identify the 

dependency of error growth on initial conditions, model formulation, and resolution. The error 

growth is calculated as the daily trend in random error. The trend per day in all key variables is 

calculated only for 0000 UTC model runs. The analysis is done for various cutoff times starting 

with a cutoff of zero and up to 21 hours with interval of 3 hours. The cutoff of 3 hours implies 

that the first 3 hours of model forecasts are neglected from analysis (Chapter 2; Section 2.5.1). 

Table 3.2 summarizes the mean daily random error and corresponding trend per day for all four 

key variables. All HIGHRES models have a smaller trend per day in random error (TDRE) of 

IWV corresponding to their LOWRES counterpart.  

For all HIGHRES models, TDRE in IWV is smaller than 0.53 kg/m2/day, while for 

LOWRES models TDRE ranges from 0.62-0.77 kg/m2/day. The MM5 model has the largest 

TDRE of 0.77 kg/m2/day while COSMO-2 has the smallest TDRE of 0.32 kg/m2/day. ALL 

models show TDRE smaller than 0.05 ETS in LCC, where the MM5 model has the largest 

TDRE of 0.05 ETS and COSMO-ME has the smallest TDRE of 0.01 ETS. Interestingly, the 

AROME and ALADFR models have positive TDRE, i.e. an increase of forecast skill with cutoff 

hour (As perfect model has ETS =1). TDRE in HCC ranges between 0.02 - 0.07 ETS for all 

models. Similar to LCC, TDRE in HCC also do not show any dependence on model formulation 
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or resolution.  The TDRE in precipitation for HIGHRES models is nearly twice as large as their 

LOWRES counterpart, except for the French models. ALADFR has a larger TDRE than its 

LOWRES counterpart AROME. Unlike other COSMO models, COSMO-IT and COSMO-ME 

have very small TDRE, although they had similar daily mean STD. This is mostly due to the fact 

that they have 3D-Var data assimilation; however, a positive impact of data assimilation is not 

seen for IWV and cloud cover. AROME and ALADFR also used 3D-Var data assimilation; 

however, a positive impact on forecast skill is not observed for all key variables, which implies 

that data assimilation is not the dominant factor compared to model physics. MM5 is the only 

model which shows an increase of model skill with forecast time, with negative TDRE. This 

might be due to the dry-starting of the MM5 model, which thus needs some time to produce 

precipitation, and also may be due to a large spin-up effect. The MM5 model has large TDRE in 

IWV, LCC which might be due to the large IWV wet bias and corresponding large overestima-

tion of LCC. Small trend per day in all key variables compared to the mean daily random error 

for all models suggest that there is no excessive drying or moistening occurred in the models 

themselves through the parameterized precipitation or evaporation fluxes. 

 

Table 3.2: Summary of random errors depicted by Figure 3.1 in terms of daily mean and tem-

poral trend. The random error is expressed by the standard deviation σ for continuous varia-

bles IWV and precipitation and by the equitable thread score ETS for the categorical quanti-

ties LCC and HCC (high resolution models are highlighted).  

Model 

IWV LCC HCC Precipitation 

  
[kg/m2] 

 


dt

d
 

[kg/m2/
day] 

ETS  
ETS

dt

d
 

/day 

ETS  
 

ETS
dt

d
 

/day 

  
[mm/h] 

 


dt

d
 

[mm/h/
day] 

COSMO-DE 2.70 0.53 0.22 -0.03 0.11 -0.07 0.71 0.27 

COSMO-EU 2.93 0.72 0.19 -0.02 0.11 -0.03 0.73 0.08 

COSMO-2 2.57 0.32 0.22 -0.03 0.14 -0.05 0.78 0.26 

COSMO-7 2.92 0.62 0.18 -0.03 0.15 -0.02 0.87 0.08 

COSMO-IT 2.83 0.49 0.23 -0.03 0.15 -0.04 0.74 0.04 

COSMO-ME 2.86 0.64 0.20 -0.01 0.14 -0.04 0.80 0.01 

AROME 2.80 0.46 0.18 0.02 0.15 -0.07 0.99 0.11 

ALADFR 2.74 0.62 0.21 0.04 0.15 -0.05 0.71 0.12 

MM5_15 3.07 0.77 0.08 -0.05 0.09 -0.06 0.81 -0.03 
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Chapter 4 

Multivariate Multi-model Verification  

 
The skill in prediction of individual key variables (IWV, LCC, HCC, and Precipitation) is 

assessed in Chapter 3. This classical verification approach is best suited to assess model perfor-

mance in forecasting individual key variables. However, this approach is not very well suited to 

identify the reason for model shortcomings. Analyses of similarities among systematic errors of 

different key variables give some hints for model shortcomings (Chapter 3). Therefore, the 

prospect of analyzing the similarities is elaborated in this chapter by quantifying the similarities 

among different models. In detail, the following questions are addressed in this chapter:- Are 

there clusters of models revealing the same kinds of error? Are observed similarities between the 

different key variables well represented by models? The similarities among different models and 

observations for individual key variables are discussed in Section 4.1. Section 4.2 presents the 

similarities between systematic errors of different key variables. The similarities of these varia-

bles between models and observations are explored in Section 4.3. Section 4.4 assesses the 

similarities between model key variables and observations for different time lags.  

 
4.1 Similarities among Variables  

The clusters of models for specific factor such as model formulation, resolution, and driv-

ing model may help in identifying factors responsible for model shortcomings. The similarities 

are quantified by means of linear statistical relationships. Most of the key variables evaluated in 

this study are non-Gaussian distributed. Thus linear relationships among them are assessed by 

Spearman’s rank correlation which is a nonparametric measure of linear and non-linear mono-

tonic association. Spearman’s rank correlation is not sensitive to non-Gaussian distributed data 

like product-moment correlation. Spearman’s rank correlation is simply the product-moment 

correlation coefficient of the ranks of the data [Wilks, 1995]. As the rank of data is used instead 

of the data itself, rank correlation is less sensitive to large outlier values compared to product-

moment correlation. The rank correlations are calculated over each station for IWV and LCC and 

over each grid cell for HCC and precipitation over the whole study domain for 0000 UTC 

models run only. The significance of rank correlation is assessed by bootstrap resampling 

methods using 95% and 5% quantiles of 1000 bootstrap samples (see Appendix B).    
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Figure 4.1 shows average rank correlations for IWV among all models and the observa-

tions for hourly values and daily average values, respectively. Models are clustered according to 

their formulation in rank correlation of hourly IWV values. Two clusters of COSMO and French 

models are seen. Models nested in each other are also clustered together with comparably higher 

rank correlation. Models show stronger rank correlations between each other compared to the 

observations, which emphasize that models are more similar to each other than to the observa-

tions. Rank correlation between models and observations are larger than 0.9, which clearly 

implies that all models predict the IWV very well. For daily average IWV values, a clear incre-

ment in rank correlation is seen among the models and also with respect to the observations. The 

rank correlation increases from ~0.9 for hourly values to ~0.95 for daily average values in 

observation with the exception of COSMO-DE and MM5 models: they show small increase with 

rank correlation of 0.93. The small improvement in rank correlation for COSMO-DE may be due 

to smaller forecast length (21 hours) while, for MM5, it may be due to poor IWV forecast. The 

increment in rank correlation for daily average values may be due to the fact that large-scale 

features are easy to forecast compared to the small-scale features. The clustering of the models 

according to the model formulation can be seen clearly, including the subcluster of the models 

nested in each other for daily average values. COSMO-DE no longer clusters with other COS-

MO models in daily average analysis, which may be due to the smaller forecast length. Both the 

HIGHRES and LOWRES models shows higher rank correlation among themselves compared to 

each other. HIGHRES models are not superior to corresponding LOWRES models in predicting 

the temporal IWV evolution, since both types of models have similar magnitude of rank correla-

tion with observations.  
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Figure 4.1: Rank correlation of IWV over all stations within the study domain for summer 2007 

(a) hourly value (b) daily forecast average.  

 

a) 

b) 
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For IWV, model formulation is the dominant factor causing models to cluster together. 

Figure 4.2 depicts the rank correlation for LCC among models along with the observations for 

hourly values and daily average values. No clustering of models with model physics, resolution, 

driving model, or the models nested in each other is seen. The rank correlation among the models 

as well as with respect to observations is smaller than that for IWV. The smaller rank correlation 

of 0.52 to 0.61 between the models and the observations for hourly LCC values denotes model 

limitations in the prediction of low cloud cover. For daily average LCC values, a clear increment 

in rank correlation is seen for all models and also with respect to the observations. The increment 

in rank correlation for daily average values is mainly due to averaging out diurnal discrepancies, 

though it may also due to the large-scale cloud structures, which  are easy to forecast compared 

to the individual clouds. The rank correlation increases from 0.52-0.61 for hourly values to 0.59-

0.66 for daily values with respect to observations. The clustering of models according to their 

model formulation is seen. However, no clear clustering among the models nested in each other 

is seen except for the COSMO-IT and COSMO-ME pair and French models pair. The HIGHRES 

models show better rank correlation with observations compared to the corresponding LOWRES 

models. Similar to the IWV, models with the same resolution show higher rank correlation 

among themselves. Models are clustered together according to model formulation in LCC, 

similar to IWV. However, unlike in IWV, HIGHRES models show a slightly stronger rank 

correlation with the observations. Model formulation is the dominant factor for models to cluster 

together in LCC.  

 The rank correlation for HCC in all the models and observations for hourly values and 

daily average values are shown in Figure 4.3. Clustering of models according to their model 

formulation is seen except for COSMO-DE and COSMO-EU models. COSMO-DE and COS-

MO-EU models differ from other COSMO models by their driving model. COSMO-DE and 

COSMO-EU models are driven by the GME global models, while other COSMO models are 

driven by the IFS (ECMWF) model. Thus driving models show a dominant impact on the 

prediction of HCC. Clusters of models nested in each other are seen for most of the models pairs, 

except for the COSMO-DE and COSMO-EU models.  
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Figure 4.2: Rank correlation of LCC over all stations within the study domain for summer 2007 

(a) hourly value (b) daily forecast average.  

a) 

b) 
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Figure 4.3: Rank correlation of HCC over all grid cells within the study domain for summer 

2007 (a) hourly value (b) daily forecast average.  

a) 

b) 
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The rank correlation among the models is not significantly higher than with observations, 

unlike what is seen for IWV and LCC, which implies models are not as similar to each other 

compared to the observations. No clear improvement of HIGHRES models over their corre-

sponding LOWRES models is seen. For daily average HCC, rank correlation among the models 

increases significantly; however, rank correlations decrease between models and observations. 

This decrease of rank correlation for daily forecasts is not observed for IWV and LCC. Decrease 

of rank correlation between models and observations may be due to the very poor forecasts of 

HCC. However, this is contradictory to the fact that large-scale cloud structure is easy to forecast 

compared to individual clouds. The MM5 model shows the largest rank correlation for hourly 

values compared to other models, but has the smallest rank correlation for the daily average 

values.  This may be due to the best representation of diurnal variability of observed HCC by the 

MM5 model compared to the other models. The COSMO models driven by the IFS (ECMWF) 

model have a higher rank correlation with the observations compared to other COSMO models 

as well as the rest of the models. The HIGHRES models do not show any clear improvement 

over the LOWRES models. For HCC the clear impact of driving models on clustering is seen 

along with model formulation.     

Rank correlation among models and observations for precipitation is depicted in Figure 

4.4 for hourly values and daily average values. The clustering of models according to their model 

formulation and resolution is seen, while no clustering is seen among models nested in each 

other. As summer precipitation is dominated by convective rain, clustering of the models accord-

ing to model resolution is more dominant, as convection is treated differently in HIGHRES and 

LOWRES models. The deep convection is explicitly represented in HIGHRES models, while it 

is parameterized in LOWRES models. The HIGHRES models show comparably larger rank 

correlation with observations compared to their corresponding LOWRES counterpart for hourly 

precipitation. The rank correlation among models is not larger than that with observation except 

for the COSMO models, which implies that only COSMO models are similar to each other. 

Clear improvement of rank correlation for daily average values is seen, but improvement of 

HIGHRES models over the LOWRES models is no longer seen.  
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Figure 4.4: Rank correlation of precipitation over all grid cells within the study domain for 

summer 2007 (a) hourly value (b) daily forecast average.  

a) 

b) 
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This implies that HIGHRES models better represent the observed diurnal variability 

compared to corresponding LOWRES models; however, no improvement is conclusive in the 

total amount of precipitation. For precipitation, model resolution is a dominant factor for the 

models to cluster together.  

 
4.2 Similarities between Errors of Different Key Variables  

Precipitation is the final component of a process chain; thus, error in one key variable 

should be propagated to other variables. In this section we explore whether it is possible to detect 

any error chain by assessing error correlation between different variables. Assessment of similar-

ities between the biases of different key variables showed a propagation of error from IWV to 

LCC; however, further propagation of error to other variables is not seen (see Section 3.5, 

Chapter 3). Assessments of error correlation between different key variables are difficult due to 

their different observational locations. To overcome this issue the study domain is divided into 

six subdomains. The choice of subdomain is made in a way so that at least three observation 

stations for each key variable are inside every subdomain (see Figure 4.5). Error in continuous 

variables (IWV and precipitation) is represented by bias, while for categorical variables (LCC 

and HCC) error is represented by frequency bias. The significant difference between rank 

correlations of different models or observations are tested by a rank sum test and also by a 

bootstrap resampling method with 1000 bootstrap samples (see Appendix B).   

The rank correlations between subdomain-averaged biases of all key variables for sum-

mer 2007 are depicted in Figure 4.6. Rank correlation between IWV and LCC biases is very 

small for most of the models except for the French models. Most of the models don’t even have 

significant rank correlation except for the French models. No clusters of models according to 

model physics, resolution, or driving model are seen. The MM5 model shows the lowest rank 

correlation with value close to zero. IWV and HCC biases also have small rank correlation 

values; however, rank correlations are significant for all models. The MM5 model shows the 

largest rank correlation of 0.35, while all other models have correlations smaller than 0.25. 

Similar to rank correlation between IWV and LCC biases, no clustering of models is found for 

rank correlation between IWV and HCC biases. Rank correlations between IWV and precipita-

tion biases are less than 0.25 for most of the models, except for the COSMO-IT and the MM5 

model. COSMO-IT and MM5 show a rank correlation of 0.3 and 0.35, respectively. Clusters of 
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models according to model formulation, resolution, or driving model are not seen. Very small 

rank correlations are also seen between LCC and precipitation biases which are significant for 

most of the models, except for COSMO-2 and MM5. Note that the MM5 model even shows a 

negative rank correlation. No clusters of models according to model formulation, resolution, or 

driving model are seen. Rank correlations between HCC and precipitation biases range from 

~0.15 to ~0.25. No clear clusters among models are seen; however, all HIGHRES models show 

larger rank correlation compared to corresponding LOWRES models. Error chain propagation 

was not possible to detect in this analysis, which can be due the inclusion of additional observa-

tional error.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.5: The D-PHASE domain and the six subdomain, along with number of GPS, Ceilome-

ter station and MSG and precipitation grid cell in each subdomains.  

 
  
 

GPS   19 
Ceilo  7 
MSG  46 
Preci  46 

GPS   8 
Ceilo  7 
MSG  42 
Preci  42 

GPS   5 
Ceilo  5 
MSG  39 
Preci  39 

GPS   6 
Ceilo  3 
MSG  34 
Preci  34 

GPS   11 
Ceilo  5 
MSG  49 
Preci  49 

GPS   14 
Ceilo  6 
MSG  51 
Preci  51 
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Figure 4.6: The rank correlation for the systematic error of sub-domain averaged (a) IWV and 

LCC, (b) IWV and HCC, (c) IWV and precipitation, (d) LCC and precipitation, and (e) HCC 

and precipitation for summer 2007, Error bars denote the inter-quantile distance between 

95% and 5% quantile from bootstrapping distribution, HIGHRES models denoted by green 

bars and LOWRES models by red bars.  

a) b) 

c) d) 

e) 



64                                                                                          Multivariate Multimodel Verification 

 

4.3 Similarities between Different Key Variables   

Propagation of errors in key variables absolute values was not found in the error correla-

tion analysis. Thus, another approach of assessing the strength of relationships between different 

key variables in observations and models is proposed. This approach might be a new verification 

technique to diagnose model shortcomings. The strength of relationships is assessed by mean of 

rank correlation. Most of the earlier research activities were focused on relations between water 

vapour and precipitation. Many researchers extensively studied the relationship between column-

integrated water vapour and precipitation over the tropics using observations [Back et al., 2010; 

Holloway and Neelin, 2010; Sherwood et al., 2004] and also using cloud-resolving models 

[Tompkins, 2001; Grabowski, 2003]. Studies by Zhang and Wang [2006] and Bechtold et al. 

[2008] shown that the strength of this relationship is not well represented in global models. Very 

few such studies are available over midlatitudes. Van Baelen et al. [2011] investigated the water 

vapour distribution and its relationship with the evolution of precipitation systems over the 

COPS region using GPS 2D and 3D tomography and ground based weather radar. They found a 

predominant role of water vapour as a precursor to a local convective initiation. However, this 

study is limited to a few numbers of cases and the main goal of this study was to better under-

stand the role of water vapour for convection initiation. 

The rank correlations among the subdomain averaged key variables for summer 2007 in 

the models and observations are depicted in Figure 4.7. The significance of result is tested by the 

mean of the rank sum test and also by the bootstrap resampling method (see Appendix B). Weak 

linear relationships between observed IWV and LCC are found with a rank correlation of ~0.2. 

Observed IWV has a stronger linear relationship with HCC compared to LCC, with a rank 

correlation of 0.4. A rank correlation of 0.35 is seen between IWV and precipitation, which is 

comparably smaller than the correlation between IWV and HCC. A rank correlation of 0.43 is 

seen between LCC and precipitation, and implies a stronger linear association. The strongest 

linear relationship observed between HCC and precipitation with rank correlation of 0.54. The 

weak linear association between IWV and LCC might be due to the fact that formation of low 

clouds is initiated with the condensation of water vapour. Thus, an increase of low clouds is 

associated with a decrease of IWV, which is also seen in diurnal variability (Section 3.2 Chapter 

3). Formation of precipitation subsequently increases the high clouds (anvil formation) and 

atmospheric water vapour. As the increase of HCC and IWV occurs nearly at the same time as 
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precipitation formation, a stronger relationship is found between them. However, a comparably 

weak relationship is seen between IWV and precipitation, which may be due to the time delay 

between precipitation formation and the increase of IWV. A stronger relationship is seen be-

tween LCC and precipitation as the formation of low clouds incites subsequent precipitation, but 

with certain time delay. A very strong linear relationship is seen between HCC and precipitation, 

as the formation of precipitation incites subsequent high clouds.  

The observed strength of the relationship between IWV and LCC (see Figure 4.7a) is un-

derestimated by most of the models with significantly smaller rank correlation of 0.15-0.18, 

except by French models. Significant overestimation of relationship strength is shown by the 

AROME and ALADFR models with rank correlations of 0.20 and 0.30, respectively, and implies 

that model clouds appear for less water vapour.  The MM5 model shows a similar strength of 

linear relationship as in the observations with rank correlation of 0.18, which implies the best 

representation of the relationship between low clouds and water vapour. HIGHRES models do 

not better represent the observed strength of the linear relationship compared to LOWRES 

models. Most of the models quite well represent the observed relationship between IWV and 

HCC (see Figure 4.7b) with slight under and overestimation. Most of the HIGHRES models 

slightly underestimate the strength of the observed relationship with rank correlation of ~0.35 

while LOWRES models overestimate with rank correlation of 0.42-0.48, except for the French 

model pair. MM5 and AROME models show a comparably stronger overestimation of the 

observed relationship. The observed strength of the relationship between IWV and precipitation 

(see Figure 4.7c) is also quite well represented by most of the models with slight under- and 

overestimation. Most of the LOWRES models overestimate the observed strength of the relation-

ship (rank correlation 0.35-0.48), except the COSMO-7 model. The slight underestimation of the 

relationship strength is seen in the COSMO-7 model (rank correlation 0.31), while the MM5 

model shows the largest overestimation with a rank correlation of 0.48.  All HIGHRES models 

underestimate the observed strength of the relationship with rank correlation of ~0.28-0.30.  

The strength of linear relationship between LCC and precipitation (see Figure 4.7d) is 

overestimated by all models with rank correlation of 0.55-0.68. This clearly emphasizes a 

stronger dependency of model precipitation on LCC. Most of the HIGHRES models show less 

overestimation compared to the corresponding LOWRES models, except the French model pair, 

where AROME has a larger overestimation compared to the corresponding LOWRES model 
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ALADFR. All models significantly underestimate the observed strength of the relationship in 

HCC and precipitation (see Figure 4.7e) with rank correlation of ~0.35-0.45. All HIGHRES 

models show larger underestimation compared to their corresponding LOWRES models, except 

for the French model pair.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: The rank correlation for the models and the observation of subdomain averaged (a) 

IWV and LCC, (b) IWV and HCC, (c) IWV and precipitation, (d) LCC and precipitation, 

and (e) HCC and precipitation for summer 2007. (Error bars denote the inter-quantile dis-

tance between 95% and 5% quantile from bootstrapping distribution; observation is denoted 

by black bar, HIGHRES models denoted by green bars and LOWRES models by red bars).  

a) b) 

c) d) 

e) 
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4.4 Similarities between Different Key Variables for Different Lag-times 

Most of the atmospheric water cycle processes occur with some time delay between 

them. Thus, the maximum relationship strength between key variables can be achieved at a 

specific time lag. The approach of assessing relationships between different key variables in 

models and observations is extended for different lag times. This will help to highlight the 

observed time difference between the atmospheric water cycle processes and how it is represent-

ed in models.  

The time-lag relationship among the different key variables is assessed for the ± 48 hour 

lag time. Table 4.1 shows the summary of the largest rank correlation achieved and correspond-

ing lag time along with the rank correlation at the 0-lag hour. Observed IWV has the largest rank 

correlation of 0.30 with the LCC at -9 hour lag which is significantly larger than correlation at 0-

lag hours. In other words, IWV has the largest linear relationship with the LCC nine hours 

earlier. The largest relationship between IWV and HCC is found at a one-hour lag time, which is 

in fact not significantly different from correlation at 0-lag hours. The largest rank correlation of 

0.37 between observed IWV and precipitation is observed at -2 hours lag time, which is signifi-

cantly larger than the rank correlation at 0-lag hours. Observed LCC shows the largest rank 

correlation of 0.45 with the precipitation which occurs 6 hours later, which is significantly larger 

than correlation at 0-lag hours. HCC shows the largest rank correlation with precipitation one 

hour earlier, which is not significantly larger than the rank correlation at 0-lag hours.  

The lag of the largest correlation in IWV and LCC is quite well represented by most of 

the models with difference of 1-2 hours, except by the French model pair. AROME and 

ALADFR show the largest rank correlation at -5 and -3 lag hours respectively. A very small lag 

delay between IWV and LCC in French models suggests the misrepresentation of IWV and LCC 

relationship. As seen for 0-hour lag analysis, the relationship strength between IWV and LCC is 

underestimated by most of the models except by the French models. All models show the largest 

rank correlation between IWV and HCC at 0 to 2 hour lag; however, it is not significantly 

different than the rank correlation at 0-lag hours. Thus IWV and HCC have the largest relation-

ship at 0-lag hours, which is very well reproduced by all models. No difference between 

HIGHRES and LOWRES models is seen to represent the lag relationship between IWV and 

HCC. The ranking of models for relationship strength between IWV and HCC is same as in 0-

hour lag analysis (Section 4.4). Most of the models very well reproduced the observed delay of -
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2 hour between IWV and precipitation, except ALADFR which shows delay of -1 hour. The 

ranking of models for relationship strength between IWV and precipitation is same as in 0-hour 

lag analysis. All HIGHRES COSMO and MM5 models show a largest rank correlation between 

LCC and precipitation at 2 hour lag, whereas COSMO LOWRES and French model show a 

largest rank correlation at the 0 lag. In fact the observed delay of 6 hours between LCC and 

precipitation is not reproduced by any of the models. This suggests a problem in the representa-

tion of the relationship between LCC and precipitation in all models. Models show the same 

ranking as in 0 -hour lag analysis for the relationship strength between LCC and precipitation. 

The lag of the largest rank correlation between HCC and precipitation is not represented by most 

of the models, except COSMO-ME and the French models. This result emphasizes the problem 

of representing the HCC-precipitation relationship in models. Models show the same ranking as 

in 0-hour lag analysis for relationship strength between HCC and precipitation.  

Another attempt is made to asses the dependency of the relationship strength between dif-

ferent key variables on topographical characteristics. The relationships between different key 

variables over different subdomains are evaluated (Figure not shown). The clear impact of the 

number of observational stations in individual subdomains on rank correlation is seen instead of 

domain topographical characteristics. Subdomains with more stations show a stronger relation-

ship between different key variables compared to subdomains with less stations. These results 

suggest the gridded observations of IWV and LCC will be very useful to assess linear relation-

ships between different key variables, which will ultimately help to reveal model shortcomings 

in corresponding atmospheric processes.  
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Chapter 5 

Evaluation of Integrated Water Vapor, Cloud Cover and Precipitation 

Predicted by Ensemble Systems  

 
This chapter is dedicated to evaluate the performance of ensemble prediction system 

with respect to the prediction of integrated water vapor, cloud cover and precipitation.  More 

precisely, this chapter addresses the following questions: Do the ensemble prediction systems 

reflect the uncertainty in forecasting the key variables? Is their performance similar? How 

reliable is a multi-model EPS? What is the primary perturbation affecting the EPS perfor-

mance, the initial conditions or the model physics? Further, the quality of ensemble forecast-

ing systems is verified for complete probability density functions as well as for five thresh-

olds for reliability, resolution, sharpness and skill attributes of ensemble forecasts. This 

chapter is organized as follows. Section 5.1 illustrates the performance of the individual 

ensemble members as well as the ensemble means for prediction of IWV and precipitation. 

Representation of forecast uncertainty in the prediction of IWV and precipitation by the 

ensemble forecasting systems is evaluated in Section 5.2. The performance of probability 

forecasts for all key variables from all ensemble systems is described in Section 5.3 for all the 

probability density functions as well as for different thresholds.   

 

5.1 Performance of Individual Ensemble Members and Ensemble Mean Forecast  

Since we intend to evaluate the complete probability density function of each key var-

iable, the categorical variables such as LCC and HCC are limited to certain verification 

methods. The verification of LCC and HCC is done only for categorical verification of a 50% 

threshold. The ensemble prediction systems provide the forecast for each three-hour period, 

so the observational data for IWV, LCC and HCC closest to every third clock hour are 

considered. However, the precipitation observations are accumulated every three hours as in 

the EPS. All key variables of the atmospheric water cycle predicted by CLEPS, CSREPS, 

PEPS and LAMEPSAT (see Section 2.3) ensemble prediction systems are verified over the 

whole study domain for summer 2007. However, the LAMEPSAT ensemble prediction 

system does not provide the forecast for IWV (Chapter 2), thus only the three remaining 

ensemble systems are verified for IWV. Verification statistics are calculated over the contin-

uous time series of all stations or grid cells within a verification domain for the whole time 

period.   
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All ensemble members are considered to have very small long-term statistical differ-

ences, as the ensemble method assumes an equally likely occurrence for individual members. 

The equally likely test for ensemble members is very useful to find problems in the perturba-

tion method, as a large perturbation leads to very large differences in long-term statistics. 

This section examines the performance of each individual ensemble member and also the 

superiority of the ensemble mean over the individual ensemble members, which also helps to 

diagnose equally likely occurrences within individual ensemble members.  

Previous studies by Du et al. [1997] and Ebert [2001] showed the superiority of the 

ensemble mean for precipitation forecast over individual ensemble members. The ensemble 

mean is more skillful due to the cancellation of discrepancies among the members, and only 

common features remain during the process of ensemble averaging. Many researchers have 

proposed distinct methods to produce more accurate deterministic ensemble forecasts. A few 

studies such as Van den Dool and Rukhovets [1994] and Krishnamurti et al. [1999, 2000] 

used a weighted-averaging method to derive deterministic forecasts. In this method, the 

ensemble forecasts are optimally weighted according to their skill. Xie and Arkin [1996] and 

Huffman et al. [1997] used the inverse of the expected error variance to produce a determinis-

tic forecast. Ebert [2001] recommended a probability matching approach which is based on 

setting the probability distribution function (PDF) of the less accurate data equal to that of the 

more accurate data, which she claimed produces the most skillful deterministic forecasts from 

the EPS compared to other methods.  In this study our aim is to verify the relative perfor-

mance of the different ensemble systems instead of improving the deterministic forecasts 

from the ensembles. So we chose the relatively simpler arithmetic mean to derive the deter-

ministic forecast from the EPS. The reader should be aware that, for a single-model based 

ensemble system, ensemble averaging can remove random errors but not a systematic bias. 

However, for a multi-model and/or multi-physics ensemble, bias could also be reduced. We 

are intercomparing single-model ensemble systems (CLEPS, CSREPS, and LAMEPSAT) 

with the multimodel EPS (PEPS, Chapter 2 Section2.3.2), and hence the standard deviation 

(STD) is considered as a skill score for comparison instead of the root-mean-square, as the 

latter one is a blend of random and systematic error. To better understand the performance of 

ensemble prediction systems, the BIAS of individual ensemble members also given along 

with the STD. Figure 5.1 depicts the BIAS and STD in IWV for individual members of 

different ensemble systems and the corresponding ensemble mean. All three ensemble 

systems show significant decrease of random error in IWV for the ensemble mean compared 

to individual members. 
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Figure 5.1: Bias (green bars) and standard deviation (orange bars) in IWV over the Southern 

Germany study domain for summer 2007 for individual members of (a) CLEPS, (b) 

CSREPS, and (c) PEPS. 

 

Moreover, PEPS stands superior to other ensemble prediction systems with smaller 

random error in the ensemble mean. The random error in CLEPS ensemble members roughly 

varies between 3.4 to 4.2 kg/m2 with small discrepancies in different members, and is re-

duced to 3 kg/m2 for the ensemble mean. The random error of individual ensemble members 

of CSREPS varies from 3.4 kg/m2 to 3.8 kg/m2, and is reduced to 3.1 kg/m2 for the ensemble 

mean. As shown in Figure 5.1b, it is worth noting that each set of four ensemble members are 

similar compared to other members for both biases and STD, which indicates the clear impact 

of initial conditions from the four global models providing lateral forcing data. The random 

error for almost all individual members of PEPS is smaller compared to members of CLEPS 

and CSREPS.  The random error for the ensemble mean in PEPS is also reduced to 2.4 kg/m2 

and is significantly smaller than that for other ensemble members. Overall, CLEPS exhibits 

small IWV wet biases except for first two ensemble members, while CSREPS has a small dry 

bias for all ensemble members. Most of the ensemble members of PEPS exhibit an IWV wet 

bias, while two ensemble members have a large dry bias. CLEPS and CSREPS are COSMO-
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model based EPS which have different initial condition perturbations. Dry bias in CSREPS is 

mostly due to the initial condition perturbation from four global models, whereas wet IWV 

biases in CLEPS are due to the perturbation from ECMWF global EPS. IWV biases in 

CSREPS clearly show a dominant impact of initial conditions from four global models as for 

random error. The skill of individual ensemble members is not much different from each 

other than for all EPS including PEPS, even if it is generated from different deterministic 

models of the MAP D-PHASE experiment. This result emphasizes that all EPS satisfy the 

equally likely conditions for prediction of IWV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Bias (green bars) and standard deviation (orange bars) in precipitation over the 

Southern Germany study domain for summer 2007 (a) CLEPS, (b) CSREPS, (c) 

LAMEPSAT, and (d) PEPS.  

 

The BIAS and STD in precipitation for individual ensemble members and their re-

spective ensemble means of different ensemble systems are depicted in Figure 5.2. In general 

there is a clear improvement in forecast skill for all ensemble systems, with a significant 

decrease in STD for the ensemble means. The individual ensemble members from the 

LAMEPSAT ensemble system shows the highest forecast skill in precipitation compared to 
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other ensemble systems, which is likely due to the slightly larger negative BIAS in 

LAMEPSAT (Figure 5.2c). The random error for the individual CLEPS ensemble members 

ranges from 2.2 to 2.4 mm/3h with slight differences among the members, but for the ensem-

ble mean it is further reduced to 1.5 mm/3h. Similarly, for CSREPS the random error varies 

from 1.7 to 1.9 mm/3h individually, and is reduced to 1.4 mm/3h for their mean. 

LAMEPSAT showed a STD of 1.55 to 1.65 mm/3h for the individual members. Again for the 

ensemble mean an improvement, with a smaller STD of 1.3 mm/3h, is observed. The random 

error in PEPS is between 1.55 and 2.2 mm/3h for individual members, and reduces to 1.25 

mm/3h for the mean. CLEPS exhibits a large positive bias for all ensemble members while 

CSREPS and LAMEPSAT have large negative biases, and PEPS has smaller positive biases.  

On average, the performance of the individual members of respective ensemble sys-

tems is quite similar except for PEPS, of which the members show large differences among 

them. This large difference in PEPS’s ensemble members is mainly due to the different 

treatment of convection in the models: some have parameterized convection while the others 

calculate the convection explicitly. This result clearly implies that, except for PEPS, all other 

EPS satisfy equally likely conditions for prediction of precipitation. 

 

5.2 Representation of Forecast Uncertainty – An Assessment  

For a perfect ensemble system, in the sense that it accurately accounts for all sources 

of forecast uncertainty, the observation should be indistinguishable from the forecast of 

ensemble members [Anderson, 1996; Hamill, 2001]. The spread of a perfect ensemble 

forecasting system provides information about the forecast uncertainty. The large ensemble 

spread is associated with large forecast uncertainty, and small spread is associated with small 

forecast uncertainty. The representation of forecast uncertainty by CLEPS, CSREPS, 

LAMEPSAT, and PEPS is analyzed in this section by the spread / skill relationship as well as 

by rank histogram. The ensemble spread is calculated as a standard deviation of individual 

ensemble forecasts from their mean [Zhu, 2005; Appendix A.6] while, ensemble error 

(RMSE) is the distance measured from the ensemble mean to the observation. Grimit and 

Mass [2007] suggest that, for perfect EPS, error and ensemble spreads should be positively 

correlated on average, as ensemble error will be equal to spread. Thus, to support the spread 

skill relationship, we also verified their correlation.  

All EPS show a large increase in ensemble error with lead time for IWV forecasts 

(Figure 5.3a). PEPS shows the least error and CSREPS shows the largest error compared to 

the rest. For the initial lead time, all the EPS exhibit larger errors compared to the spread, 
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suggesting all possible forecast uncertainties are not represented by them (underdispersive). 

PEPS well represents the forecast uncertainty with smaller underdispersion (spread close to 

the error), whereas CSREPS is most underdispersive. CLEPS represents a reasonable forecast 

uncertainty after 36-hour lead time. For most of the ensemble systems, the difference be-

tween the ensemble spread and the error increases with lead time, indicating the EPS are 

becoming more and more underdispersive with lead time. However for CLEPS, the differ-

ence between spread and error decreases up to 36 hours lead time and thereafter becomes 

slightly overdispersive with quite good agreement between spread and error. This shows 

CLEPS has good skill for medium-range forecasts. Additionally, the correlation between the 

ensemble spread and the error is calculated over each station for the study period to support 

this result. CLEPS and CSREPS have the lowest correlation of below 0.1 (Table 5.1): for 

CSREPS, the correlation is small and negative; however, for PEPS a correlation of 0.55 is 

observed between the ensemble spread and the error. In sum, the correlation for all ensemble 

systems decreased with lead time. This emphasizes multimodel multi-analysis EPS (PEPS) 

can account most of the forecast uncertainty compared to single-model EPS for IWV fore-

casts.   

      

 

 

 

 

 

 

 

 

Figure 5.3: Spread and error (RMSE) as function of lead time in (a) IWV [kg/m2] and (b) 

precipitation [mm/3h] over the Southern Germany study domain for summer 2007. (solid 

line denotes the spread and dotted line denotes the error) 

 

The evolution of the spread / skill relationship with lead time for precipitation is de-

picted in Figure 5.3b. The error (RMSE) in precipitation for CSREPS, PEPS and 

LAMEPSAT is slightly increasing with lead time. For CLEPS the error in precipitation 

decreases with lead time up to 30 hours lead time and increasing thereafter. The initial 

decrease of precipitation error in CLEPS is mostly due to the larger scale ensemble perturba-
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tion at initial time leading to very different forecasts, while the impact of initial condition 

perturbations decreases with increasing forecast lead time.  At the initial time, all ensemble 

forecasting systems are underdispersive with ensemble spread smaller than RMSE. CLEPS 

represents the forecast uncertainty best compared to all other EPS, LAMEPSAT has the worst 

representation of forecast uncertainty, and, both PEPS and CSREPS stay intermediate. Note 

that for LAMEPSAT and CSREPS, the error increases significantly at and after the 30 and 48 

hour lead times, respectively, which is mostly due to smaller sample size from larger cutoff. 

CLEPS has the largest correlation of 0.75 (Table 5.1) between ensemble spread and error for 

precipitation forecast, while the least correlation of 0.32 is seen for LAMEPSAT. CSREPS 

and PEPS have correlations of 0.45 and 0.55 respectively between ensemble spread and error. 

However, for all ensemble systems, the correlation is decreasing significantly with lead time. 

Stensrud et al. [1999] also found for mesoscale convective precipitation that the ensemble 

spread error distribution is usually highly scattered with linear correlation coefficients less 

than 0.6. Hamill and Colucci [1998] argued that for some cases there is no apparent correla-

tion between ensemble spread and error. However the bias correction can significantly 

increase the correlation between ensemble spread and error [Stensrud and Yussouf, 2003]. 

The bias correction is beyond the scope of this study and hence not considered.  

 

Table 5.1: The correlation between the ensemble spread and the error in IWV and precipita-

tion for 0 and 24 hour lead time calculated over the Southern Germany study domain for 

summer 2007.  

 

The average spread / skill relationship may be misleading, as spatially and temporally 

this relationship may vary considerably. To avoid the spatial and temporal discrepancies, the 

Ensemble 

Systems  

                  Correlation between error and spread 

            IWV        Precipitation 

0 hour lead time 24 hour lead time 0 hour lead time 24 hour lead time 

CLEPS         0.07           0.02          0.75          0.52 

CSREPS       -0.08          -0.22          0.45 0.28 

LAMEPSAT - -          0.32          0.12 

PEPS        0.55           0.28          0.55          0.35 
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rank histogram (Appendix A.7) is calculated, which is a useful measure of reliability [Hou et 

al., 2001; Candille and Talagrand, 2005] of an EPS.  

Both CLEPS and CSREPS exhibit U-shaped rank histograms for 0-hour lead time 

which indicates they are underdispersive for IWV forecasts; however, CSREPS has larger 

values in the last bin indicating large negative bias (Figure 5.4). Also note that the rank 

histogram for the CSREPS has larger values in every fourth bin, indicating the clear impact 

of initial conditions from the four global models providing lateral forcing data which also 

seen for spread / skill relationship. The PEPS exhibits a comparably flatter histogram with 

slightly larger values in the last bin, indicating a best representation of ensemble spread 

compared to all other EPS. The negatively skewed histogram for all EPS emphasizes dry bias 

in IWV forecasts, but the bias magnitude is quite different with different EPS. PEPS have the 

smallest negative bias whereas CSREPS exhibits the largest negative bias. For 24-hour lead 

time, i.e. 1 day, forecasts for all EPS underestimate the IWV with negatively skewed rank 

histograms (see Figure 5.4). This means most of the EPS are underdispersive up to one day of 

forecast; the spread in the EPS’s is not indicative of all possible forecast uncertainty. Similar 

to zero-hour lead time, PEPS best represents the forecast spread for one-day forecasts com-

pared to all other EPS.  

The CLEPS, CSREPS and LAMEPSAT exhibits U-shaped rank histogram for pre-

cipitation forecast at 0-hour lead time (Figure 5.5), but all of them have larger values in the 

first bin of the rank histogram, suggesting an overestimation in precipitation. PEPS has a 

positively skewed rank histogram with slight positive precipitation bias like all other EPS. 

For 1-day forecasts, most of the EPS exhibit flatter rank histograms compared to zero-hour 

lead time, except for PEPS which has a more positively skewed rank histogram. McCollor 

and Stull [2009] suggested that flattening of rank histogram with lead time (better representa-

tion of spread) is associated with worse skill.   

Candille and Talagrand [2005] proposed a measure of the flatness of rank histogram 

δ which is the ratio of the number of values in each bin of the rank histogram to a rank 

histogram of perfectly reliable EPS (Appendix A.7). A value of δ that is significantly larger 

than 1 is a proof of unreliability. A value of δ close to 1 is indicative of better representation 

of ensemble spread.  
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Figure 5.4: Rank histogram in IWV for 0 hour lead time (left panel) and 24 hour lead time 

(right panel) for (a, b) CLEPS, (c, d) CSREPS, (e, f) PEPS over the Southern Germany 

study domain for summer 2007.  

 

 

 

a) b) 

c) d) 

e) f) 
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Figure 5.5: Rank histogram in precipitation for 0 hour lead time (left panel) and 24 hour lead 

time (right panel) for (a, b) CLEPS, (c, d) CSREPS, (e, f) LAMEPSAT, (g, h) PEPS over 

the Southern Germany study domain for summer 2007.  

a) b) 

c) d) 

e) 
f) 

g) h) 
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Figure 5.6: Rank histogram scores (δ) as function of lead time for (a) IWV, (b) Precipitation 

over the Southern Germany study domain for summer 2007.  

 

For IWV all EPS systems have δ value 2 orders larger than 1 for zero-hour lead time 

(see Figure 5.6a). PEPS has the smallest value of δ compared to the other EPS, while 

CSREPS has the largest values. The values of δ decreases with lead time for most of the EPS 

in IWV forecasts, while for CLEPS a slight increase in δ is noticed after 30 hours lead time. 

Even though δ values decrease with lead time, no EPS reaches the excepted δ values of 1 for 

a flat histogram. All EPS show smaller δ values for precipitation forecasts compared to IWV 

forecasts for all lead times. Most of the EPS have a large decrease of δ values with lead time 

except for PEPS, which shows a small increase up to 6-hour lead time and a decrease thereaf-

ter. Compared to other EPS, PEPS most adequately represents the ensemble spread with δ 

very close to 1. However CLEPS and CSREPS also exhibit δ values very close to 1 after 24- 

and 36-hour lead time, respectively. This better representation of ensemble spread by CLEPS 

and CSREPS is mainly from the degradation of ensemble skill with lead time. LAMEPSAT 

exhibits the smallest value of δ at 42-hour lead time, but δ values are still 2 orders larger than 

expected δ. This result clearly emphasizes the multimodel multi-analysis EPS is best suited 

for short-range forecasts. CLEPS is second best in representation of the ensemble spread, 

while CSREPS is third best, and LAMEPSAT has the worst representation of ensemble 

spread. CSREPS does not show any improvement over CLEPS even though it accounts for 

small-scale uncertainty, which is mostly due to multimodel boundaries leading to very 

different forecasts compared to downscaling of well constructed EPS. The worst representa-

tion of forecast uncertainty in LAMEPSAT is mainly due to its coarse resolution along with 

its account of only large-scale perturbations. Note, that the improvement in representation of 
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ensemble spread with increasing lead time by all EPS is due to the decrease of forecast skill 

with forecast period as shown in previous section (Figure 5.3). 

 

5.3 Assessment of Probabilistic Forecast Skill 

Single verification measures are not sufficient to determine the performance of proba-

bilistic forecasts of the ensemble prediction systems [Murphy and Winkler, 1987; Murphy, 

1991b] because of the multidimensionality of the forecast. In order to fully diagnose the 

probability forecast, Murphy [1993] has shown that along with ensemble skill, reliability, 

resolution, and sharpness attributes have to be verified, which emphasizes the different 

aspects of forecast performance. Reliability indicates the extent to which a PDF estimate 

proves close, a posteriori, to the distribution of observations, when this PDF estimate is 

predicted. A prediction system which just predicts climatological frequency is a perfectly 

reliable system. Resolution indicates the extent to which different forecast categories do in 

fact reflect different frequencies of occurrence of the observed event. The deterministic 

forecast has perfect resolution if it provides 0 or 1 probability value for a particular event 

considered. Sharpness measures how much a forecast differs from the climatological mean 

probability of the event. It only measures the variability of forecast and not the skill with 

respect to observational truth. The performance of the ensemble prediction systems with 

respect to these verification attributes for a complete probability density function (CPDF) and 

for five thresholds for all key variables is explored in this section. The CPDF measures the 

overall performance of the EPS for all possible events, while different thresholds are indica-

tive of the EPS performance for specific events. The quantile thresholds are chosen to define 

the forecast events instead of actual values of the forecast, as forecast skill can be overstated 

or understated when the samples are drawn from inhomogeneous datasets (e.g., different 

season, regions with different probability of occurrence of event).  Hamill and Juras [2006] 

suggested the use of stratified samples, by season and for single stations or homogeneous 

regions or alternatively, quantiles to define the forecast events instead of actual values of the 

weather variable. The five thresholds are chosen on the basis of observational quantiles; 10%, 

25%, 50%, 75%, and 90%, which are indicative of the very small, small, moderate, strong, 

and very strong events. The events are defined at each station for IWV and on each grid cell 

for precipitation with ensemble forecast exceeding the respective quantile thresholds. LCC 

and HCC are categorical variables defined as values exceeding 50% threshold (Chapter 2 

Section 2.5), thus it is considered as a representative of the 50% quantile threshold. Ensemble 
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forecasts are converted to probabilistic forecasts by determining what percentage of the 

ensemble members meets the specific event criterion.  

 

5.3.1 EPS Forecast Skill for Specific Events 

The EPS skills in the prediction of all key variables for five events are assessed by the 

Brier skill score and its resolution and reliability component. The Brier score is defined as the 

mean-square error of the probabilistic forecast, and it is one of the most widely used EPS 

evaluation scores [Brier, 1950; Appendix A.8]. The Brier skill score is calculated as the Brier 

score against a reference forecast. The reference forecast for the Brier skill score is the 

climatological forecast in which the probability of the event is derived from the average of all 

observations in the sample. The Brier skill score (BSS) can be decomposed into relative 

reliability and relative resolution, which measure the reliability and resolution attributes of 

EPS, respectively. BSS is a positive-oriented score, with BSS of 1 for perfect forecast, while 

perfect forecasts would have the relative reliability equal to 0 and relative resolution equal to 

1. 

The ensemble prediction systems evaluated in this study have different ensemble siz-

es, CLEPS, CSREPS and LAMEPSAT have 16 ensemble members, while PEPS consist of 

only 9 members. Thus to have a fair comparison, the Richardson [2001] transformation of the 

Brier score and its component from M ensemble members to the Brier score for ∞ ensemble 

members is used (Appendix A.8). 

The temporal evolution of the Brier skill score and its two components, relative relia-

bility and relative resolution in IWV, for all five quantile thresholds are depicted in Figure 

5.7. Most of the EPS have a constant decrease of BSS with forecast lead time, which clearly 

indicates the degradation of forecast skill with forecast length. PEPS has the best BSS for all 

five thresholds compared to all other EPS. CLEPS and CSREPS have almost similar skill for 

most of thresholds except for the 10% and 25% quantile thresholds. All EPS show the best 

skill for the 75% quantile threshold and the worst skill for the 10% quantile. PEPS has the 

largest BSS of 0.62 for the 75% quantile and the least BSS of 0.2 for the 10% quantile. 

CSREPS exhibits negative BSS for the 10% quantile whereas CLEPS has a very small 

positive skill for zero-hour lead time, and negative BSS thereafter. For most of the thresholds, 

CLEPS has better skill than CSREPS except for the 90% quantile threshold, where CSREPS 

has a slightly better skill up to 18 hours lead time. Decrease of CSREPS skill after 18 hours 

lead time may be because of smaller sample size for larger cutoff hours. Better skill of 

CSREPS for the 90% quantile compared to CLEPS highlights the improvement of EPS skill 
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for stronger events by the inclusion of small scale perturbations. The worst skill for the 10% 

quantile threshold is due to the poor reliability and also poor resolution for all EPS (Figure 

5.7a). However, for all other events, all EPS exhibit adequate resolution and reliability.  

To better understand poor representation of EPS reliability for the 10% quantile 

threshold (very small event), reliability diagrams for 10% and 70% quantile thresholds are 

assessed.  A reliability diagram is a diagram between the observed relative frequency and the 

forecast probability for the particular thresholds corresponding to the forecast event [Wilks, 

1995; Toth et al., 2003]. For the ideal probabilistic forecast, observation points lie on the 

diagonal of the reliability diagram, indicating the event is always forecasted at the same 

frequency as observed (see Appendix A.10). Also, the sharpness diagram is plotted along 

with the reliability diagram which characterizes the relative frequency of occurrence of the 

forecast probability category. The sharper EPS will have a forecast probability frequently 

near 0 or 1, which indicates the forecasts deviate significantly from the climatological mean. 

Reliability curves of IWV for the 10% quantile lie above the diagonal for most of the 

forecast probabilities, except for the largest forecast probabilities, where all EPS are very 

close to the diagonal (Figure 5.8a). Hence all EPS underestimate the occurrence of very small 

IWV events when they predict rather smaller probabilities. Large underestimation for small 

forecast probabilities is seen for all EPS whereas large probabilities are comparably well 

forecasted by all EPS. The shallow slope of reliability curves for all EPS indicates the condi-

tional bias in IWV and reflects the fact that all EPS are overconfident. All EPS have a very 

high degree of sharpness, indicating forecasts are not clustered near the climatological mean. 

This implies no EPS is able to predict the very small forecast probabilities. All EPS exhibit 

very good reliability for the 75% quantile threshold for IWV forecasts with slight underesti-

mation (Figure 5.8b). The reliability curve for the 75% quantile threshold also shows an 

overall correct slope indicating no EPS is overconfident. All EPS show a high degree of 

sharpness for the 75% quantile threshold; however, small probabilities are overestimated 

compared to large probabilities. This clearly implies that all EPS underestimate the smaller 

events while overestimating the larger events.  

To better understand the poor EPS resolution for the 10% quantile threshold, EPS res-

olution is further investigated by using a Relative Operating Characteristic (ROC) curve and 

skill score for area under the ROC curve (ROCSS). The ROC is a graph of the hit rate (HR) 

against false alarm rate (FAR) for specific decision thresholds (Appendix A.11).  
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Figure 5.7: Brier skill score (solid lines), relative reliability (line plus symbols), and relative 

resolution (dashed lines) in IWV as function of lead time over the Southern Germany 

study domain for summer 2007. (a) 10% quantile, (b) 25% quantile, (c) 50% quantile, (d) 

75% quantile, and (e) 90% quantile thresholds.  

 

All EPS exhibits large FAR for the 10% quantile threshold, but they have also large 

HR (Figure 5.9a). PEPS has a higher HR compared to all other EPS and thus also the largest 

ROCSS of 0.92. CLEPS and CSREPS have almost similar HR and also similar ROCSS of 

0.75 and 0.73 respectively. Note that ROCSS for all EPS is higher than the generally accept-

a) 

c) d) 

e) 

b) 
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ed lower limit of useful resolution, 0.7. For the 75% quantile threshold, PEPS has a similar 

discrimination as in the 10% quantile with very small FAR. CLEPS and CSREPS also have 

very small FAR for the 75% quantile with ROCSS of 0.86 and 0.81 respectively (Figure 

5.9b). As ROCSS for the 10% and 75% quantile thresholds are almost similar to each other, 

the difference in BSS for them is mainly dominated by relative reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: IWV reliability diagram for CLEPS, CSREPS, and PEPS over the Southern 

Germany study domain for summer 2007 (a) 10% quantile (b) 75% quantile thresholds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: IWV ROC curve for CLEPS, CSREPS, and PEPS over the Southern Germany 

study domain for summer 2007 (a) 10% quantile (b) 75% quantile thresholds.  

a) b) 

a) b) 
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Figure 5.10: Brier skill score and its component (relative resolution and relative reliability) 

depending on lead time over the Southern Germany study domain for summer 2007. (a) 

for LCC, (b) for HCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: LCC (a) Reliability diagram (b) ROC curves for CLEPS, CSREPS, and PEPS 

over the Southern Germany study domain for summer 2007.  

 

 

a) b) 

a) b) 
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Most of the EPS exhibit negative BSS for LCC forecasts, except for PEPS which has 

a smaller positive BSS (Figure 5.10a). All EPS have similar very low relative resolution. 

PEPS has the best reliability and CLEPS is second best, whereas CSREPS has the worst 

reliability. The negative BSS for CLEPS, CSREPS, and LAMEPSAT in LCC is mainly due 

to the large overestimation of forecast probability by them (Figure 5.11a), especially for large 

forecast probabilities. PEPS has the best representation of forecast probability with a slight 

overestimation compared to all other EPS. ROC curves show all EPS have small HR and 

FAR (Figure 5.11b). LAMEPSAT exhibits small HR values which never exceed 0.6, howev-

er it also has a very small FAR. Note that ROCSS never exceeds the acceptable limit of 0.7 

for all EPS. However PEPS has the best ROCSS which is closer to the acceptable limit, while 

LAMEPSAT has the worst ROCSS. For HCC, no EPS has a BSS larger than zero; all EPS 

also exhibit poor relative resolution and reliability. The reliability curves are flatter for all 

EPS with strong overestimation for all forecast probabilities (Figure not shown). ROC curves 

in HCC for all EPS are quite similar to LCC, however, they have smaller ROCSS than for 

LCC.  

A constant decrease of BSS for precipitation forecasts is seen for most of the EPS, 

which implies degradation of forecast skill with forecast length, except for CLEPS and 

LAMEPSAT (Figure 5.12).  A large increase of BSS after 30 hours lead time is observed for 

LAMEPSAT, which is mostly due to the smaller sample size from the large cutoff hours. The 

slight increase of skill after 24 hours lead time for CLEPS is mainly due to large scale 

perturbations leading to more skillful forecasts for medium range. PEPS has a larger BSS 

compared to other EPS for most of the thresholds, except for very small events, where 

CLEPS has larger BSS. CLEPS has a negative BSS for 90% quantile threshold whereas 

LAMEPSAT has negative BSS for almost all thresholds. Similar to IWV for precipitation, 

CLEPS and CSREPS have similar skill for most of the thresholds except for the very strong 

events, which clearly implies the benefit of small scale perturbations for prediction of strong-

er events. Most of the EPS have similar skill for very small, small, and moderate events, and 

large degradation of skill for strong and very strong events. Surprisingly, LAMEPSAT has 

better skill for strong and very strong events compared to other events. The weaker skill of 

LAMEPSAT for all thresholds is mainly due to its poor relative reliability and resolution, 

whereas all other EPS have quite good reliability for most of the thresholds, though all of 

them have poor resolution. 
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Figure 5.12: Brier skill score (solid lines), relative reliability (dashed lines), and relative 

resolution (line plus symbols) in precipitation depending on lead time over the Southern 

Germany study domain for summer 2007. (a) 10% quantile, (b) 25% quantile, (c) 50% 

quantile, (d) 75% quantile, and (e) 90% quantile thresholds.  

 

The reliability curve in precipitation for the 10% quantile lies very close to diagonal 

for CLEPS and CSREPS, whereas PEPS has slight underestimation for all forecast probabili-

a) 

d) c) 

e) 

b) 
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ties (Figure 5.13a). LAMEPSAT has large overestimation for most of the forecast probabili-

ties except for very small forecast probabilities. The flatter reliability diagram for 

LAMEPSAT emphasizes the conditional bias, whereas for all other EPS the slope of reliabil-

ity curves is near 45o. All EPS have a very high degree of sharpness, indicating forecasts are 

not clustered near the climatological mean; however, they have very large relative frequency 

for small forecast probabilities and very small relative frequency for large forecast probabili-

ties, except for LAMEPSAT. This implies, except for LAMEPSAT, that all EPS are overes-

timating small forecast probabilities and underestimating large forecast probabilities. For the 

75% quantile threshold, most of the EPS exhibit large overestimation for all forecast proba-

bilities, except for PEPS which has a slight underestimation at smaller probabilities and a 

slight overestimation at larger probabilities. Except for PEPS, all EPS have flat reliability 

curves, implying that all of them are overconfident.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Precipitation reliability diagram for CLEPS, CSREPS, and PEPS over the 

Southern Germany study domain for summer 2007 (a) 10% quantile (b) 75% quantile 

thresholds.  

 

The ROC curve for the 10% quantile threshold of precipitation exhibits large HR and 

very small FAR for most of the EPS, except for the LAMEPSAT, which has a medium HR 

and FAR (Figure 5.14a). Most of the EPS have small ROCSS which is smaller than the 

acceptable limit of useful resolution (0.7), except for PEPS which has ROCSS of 0.73. All 

EPS have larger HR and smaller FAR for the 75% quantile threshold (Figure 5.14b). Note 

that ROCSS for all EPS is smaller than the acceptable limit, though CLEPS and PEPS have 

ROCSS very close to 0.7. Better skill of LAMEPSAT for strong and very strong events 

a) b) 



91                                                                                  Evaluation of Ensemble Prediction Systems 

 

compared to other events is mainly because it has a very small FAR compared to other 

events.  

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Precipitation ROC curve for CLEPS, CSREPS, and PEPS over the Southern 

Germany study domain for summer 2007 (a) 10% quantile (b) 75% quantile thresholds.  

 

5.3.2 Global Skill of EPS’   

The global skill of all EPS’ is evaluated by continuous ranked probability scores 

(CRPS, Appendix A.9). CRPS measures the distance between the predicted and the observed 

cumulative density functions (CDFs) of scalar variables. The CRPS is a negatively oriented 

score, reaching its minimum value of zero for a perfect deterministic system. A higher value 

of the CRPS indicates a lower skill of the EPS. The global resolution and reliability attributes 

of EPS are evaluated by CRPS Potential (CRPSpot) and CRPS Reliability (Reli) component of 

CRPS, respectively. Like CRPS, its two components are also negatively oriented; that is, the 

smaller those scores are, the better the EPS. As CRPS considers complete probability density 

functions, thus it is not calculated for LCC and HCC. 

CLEPS shows the best performance for IWV with the smallest CRPS value of 1.8 

kg/m2, while PEPS shows the worst performance with CRPS of 5.8 kg/m2, and CSREPS has 

an intermediate performance (Figure 5.15a). A constant increase of CRPS is seen for CLEPS 

and CSREPS with increasing forecast time, which is representative of the decrease of the 

forecast performance with the lead time. For the PEPS, the CRPS shows a slight decrease 

with lead time. The CRPSpot value indicates PEPS has the highest resolution compared to 

CLEPS and CSREPS, with a magnitude of 1.2 kg/m2, while CLEPS and CSREPS have 

similar resolutions with a CRPSpot value ~1.5 kg/m2. CLEPS and CSREPS exhibit very good 

reliability with Reli values smaller than 1.2 kg/m2, whereas PEPS has the worst reliability 

b) a) 
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with a very large Reli value of 4.5 kg/m2. Worst global skill of PEPS for IWV forecast is 

mostly contributed from the lack of reliability.  

PEPS has the best global skill for precipitation forecasts with a very small CRPS val-

ue of 0.3 mm/3h, whereas LAMEPSAT shows the worst skill with a CRPS value of 0.45 

mm/3h (Figure 5.15b). The PEPS and LAMEPSAT show a decrease of EPS skill with 

forecast time. CLEPS and CSREPS show an increase of forecast performance up to one day 

of forecast and decrease thereafter, which implies both the EPS have better global skill for 

medium-range forecasts, even though CLEPS is developed for short-range forecasts. 

CSREPS has a slightly larger skill than CLEPS, emphasizing the benefit of inclusion of 

small-scale perturbations. All EPS have similar resolution, except for LAMEPSAT. A sharp 

decrease of forecast resolution is seen for LAMEPSAT after 24 hours leads time, which is 

mostly due to the smaller sample size. Most of the EPS have very good forecast reliability 

with values very close to zero, except for LAMEPSAT, which has poor reliability. Thus the 

worst global skill of LAMEPSAT for precipitation is mainly dominated by poor reliability 

along with poor resolution. This mostly comes from the coarse model resolution along with 

considering only large-scale perturbations.          

 

 

 

 

 

 

 

 

 

 

Figure 5.15: CRPS score and its component as function of lead time over the Southern 

Germany study domain for summer 2007 (a) IWV (b) precipitation.  

 

5.4 Summary  

Most EPS satisfy the equally likely conditions for both IWV and precipitation, except 

for the PEPS in precipitation. The deviation of PEPS from the equally likely conditions is 

mostly due the inclusion of models with convection parameterization as well as the convec-

tion-permitting models. 

b) a) 
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Both spread skill analysis and rank histogram show that PEPS best represents the 

forecast uncertainty for IWV with slight underdispersion. For precipitation, spread skill 

analysis shows CLEPS has a better representation of forecast uncertainty than PEPS, whereas 

the rank histogram shows PEPS has the best spread. As spread skill analysis is based on the 

average skill over all stations/grid cells and period, it may be misleading. Thus we consider 

PEPS to best represent the spread for precipitation. CLEPS better represents the forecast 

uncertainty compared to CSREPS for both IWV and precipitation, whereas LAMEPSAT has 

the worst representation of forecast uncertainty, which may be due to the coarse horizontal 

resolution of model, and that it considers only large-scale uncertainty due to initial condi-

tions. All EPS have significant underdispersion in both IWV and precipitation except the 

PEPS which has very small underdispersion.  

Verification of EPS performance for different events shows PEPS has the best fore-

cast skill compared to other EPS in all key variables for most of the thresholds, whereas 

LAMEPSAT shows the worst skill. This clearly implies that the benefits of multimodel 

multiboundary perturbations are more beneficial for short-range prediction, while the worst 

skill of LAMEPSAT is mainly due to its coarse resolution and only accounting large scale 

perturbations into account. All EPS show poor skill for very small events (10% quantile) in 

IWV, for all other events they show similar skill; this is due to the large underestimation of 

small forecast probabilities, and all EPS are overconfident. For LCC and HCC forecasts, all 

EPS have poor skill mainly because all produce large overestimates of forecast probabilities. 

For precipitation, all EPS’ show a degradation of forecast skill with an increase of threshold, 

where LAMEPSAT has negative skill for all thresholds. Degradation of skill with increasing 

thresholds for precipitation forecasts by most of the EPS is mainly because of degradation of 

reliability and resolution with large overestimation of forecast probabilities. For IWV and 

precipitation forecasts, CLEPS shows better skill for very small, small and moderate events 

compared to CSREPS, whereas CSREPS shows better skill for very strong events.  This 

clearly implies small-scale perturbations lead to an accurate forecast for stronger events for 

the short range.  

CLEPS shows good global skill and reliability in IWV which is similar to CSREPS. 

PEPS shows very low global skill which is mostly dominated by the very low reliability, as 

PEPS shows a good global resolution. For precipitation PEPS shows good global skill, 

reliability, and resolution whereas LAMEPSAT shows the worst. CSREPS has slightly larger 

global skill compared to CLEPS which is contributed by the better resolution. 
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Marsigli et al. [2005] shows that CLEPS is not suitable for short-range forecasts be-

cause the main perturbations are designed to grow in the medium range and the sources of 

small-scale error are not well described. CSREPS accounted small-scale perturbations 

through the initial and boundary conditions from the mesoscale models as well as model 

physics perturbation (Chapter 2). However, our analysis indicates that for precipitation 

CSREPS is not beneficial over CLEPS for thresholds smaller than the 50% quantile. Never-

theless CSREPS have larger skill for the 75% and 90% quantiles, suggesting an improvement 

for stronger events. Also for precipitation forecast CSREPS has a better global skill over 

CLEPS. For IWV, CLEPS shows better global skill as well as better skill for different 

thresholds compared to the CSREPS. The PEPS was more successful than all single model 

EPS as it samples uncertainties in both the initial conditions and model formulation.   
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Chapter 6 

Conclusions and Outlook 

 

6.1 Summary and Conclusions  

Precipitation is the end product of a complex process chain of the atmospheric water 

cycle; thus errors in any component of the chain lead to inaccurate quantitative precipitation 

forecasts (QPF). Most of the atmospheric water cycle processes are parameterized in models, 

as they occur on scales smaller than models’ grid cells. Due to the limited understanding and 

complexity in representing these atmospheric water cycle processes, a number of parameteri-

zation schemes are available with different assumptions. Limited accuracy of initial condi-

tions, due to sparse observational networks along with observational errors, also contributes 

to errors in precipitation forecasts. Thus, the complete atmospheric water cycle forecast by 

deterministic models and ensemble systems is evaluated in this dissertation to diagnose the 

shortcomings in quantitative precipitation forecasts. Four key variables of the atmospheric 

water cycle are evaluated: integrated water vapour (IWV), low cloud cover (LCC), high 

cloud cover (HCC) and precipitation, which are representative of water in all three phases. 

This comprehensive verification of the atmospheric water cycle is performed for nine deter-

ministic models and four ensemble systems from the forecast demonstration experiment 

Mesoscale Alpine Programme (MAP D-PHASE) using measurements from the General 

Observation Period (GOP) over Southern Germany for summer 2007. Verification of multi-

ple models and ensemble systems revealed specific models' weaknesses along with the causes 

of shortcomings in QPF. We addressed these issues in detail in Chapters 3 through 5, and the 

key findings are summarized in following sections.  

 

How accurate can atmospheric water cycle variables be forecast by today’s mesoscale 

models? 

Verification of deterministic models is performed for three different aspects of model 

forecasts such as amount, timing (temporal distribution), and regional distribution of all key 

variables. Observed mean IWV  is accurately forecasted by all COSMO models, while the 

MM5 model shows ~5%  overestimation and French models AROME and ALADFR show 

~6% underestimation. Large IWV biases in MM5 and French models are likely due to 

deficits in their driving models, ARPEGE and GFS, respectively. Observed shape of the 

mean IWV diurnal cycle is very well reproduced by all models except for the above men-
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tioned offsets. However all model forecasts observed diurnal maxima a few hours (~0-3 

hours) earlier than observations.  

All COSMO models overestimate mean LCC frequency by ~45%, while the French 

models AROME and ALADFR underestimate it by ~23% and the MM5 model overestimate 

it by more than 100%.  The over- and underestimation of LCC in MM5 and French models is 

likely due to their respective large over- and underestimation of IWV.  Although most of the 

models forecast LCC maxima ~2 – 4  hours later than observations, the shape of the mean 

LCC diurnal cycle is very well reproduced by all except the MM5 model. Most of the models 

overestimate the mean HCC frequency by more than 100% compared to MSG observations. 

This is likely due to underestimation in HCC frequency of MSG observations, as satellites 

often miss optically thin high-level clouds. Very weak diurnal variability is observed in HCC; 

all models forecast similar weak diurnal variability.  

All models overestimate the mean precipitation rate by ~8–27%. Moreover, no model 

is able to capture the observed mean diurnal variability. LOWRES models predict the maxi-

mum of the diurnal precipitation cycle ~2 – 8 hours earlier whereas HIGHRES models 

predict diurnal precipitation maximum ~2 hours later. The sole exception is the AROME 

model which shows large precipitation maxima 2 hours earlier than observations. The very 

large diurnal precipitation maximum in the AROME model is mostly due to overestimation 

in numerical diffusion, which induces too strong outflows under convective cells [Bauer et 

al., 2011]. The COSMO models with parameterized convection show windward/lee effects in 

regional distribution. As per Schwitalla et al. [2008], the possible reasons for this effect are 

(i) inaccurate simulation of the flow at coarse resolution, and/or (ii) the convection parame-

terizations cannot account for cell motion and hydrometeor advection. In reality this effect 

leads to a substantial separation between the location where convection is triggered and the 

area where the rain reaches the ground. However, the windward/lee effect is not seen for 

other models with parameterized convection.  

Pronounced decreases in all key variables are observed at 1200 UTC for models 

which are restarted at 1200 UTC. This is clearly due to the assimilation of daytime radio-

soundings. Daytime radiosoundings report too dry IWV values due to solar heating of meas-

urement sensors.  Thus assimilation of these radiosounding observations into models intro-

duces a pronounced IWV dry bias on the order of ~6%. Clear error propagation in the process 

chain from IWV to precipitation is seen in terms of a pronounced decrease at 1200 UTC for 

all key variables.  
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The observed regional distribution of key variables is not very well represented by 

any models. All models exhibit large biases in all key variables over higher elevation regions. 

Also all models show larger random error over regions of complex topography, which clearly 

emphasizes the models' limitation in the prediction of these key variables over complex 

topography. These results also suggest that even high resolution models do not resolve all 

topographic structures. For all key variables, random errors are significantly larger than the 

systematic error, specifically for HCC and precipitation. 

 
Is the performance of convection-permitting high resolution models superior? 

Most of the HIGHRES models overestimate IWV compared to their LOWRES coun-

terparts. LOWRES models show large error growth of ~24% per day compared to their 

HIGHRES counterparts which have error growth of ~19% per day. However HIGHRES and 

LOWRES models do not show any difference in forecast skill and also for representation of 

the mean IWV diurnal cycle.  

The mean LCC frequency and its regional distribution are better represented by all 

HIGHRES models compared to their LOWRES counterparts. In addition, for LCC forecasts, 

all HIGHRES models have smaller random error compared to their corresponding LOWRES 

models. However, no clear difference between HIGHRES and LOWRES models is seen for 

representation of diurnal variability in LCC. Also, for HCC forecasts, we do not see any clear 

difference between HIGHRES and LOWRES models for amount, timing, and regional 

distribution. Dependency of model resolution is not seen on error growth with forecast times 

for the prediction of LCC and HCC. Domain mean and regional distribution of precipitation 

are better represented by most of the HIGHRES models compared to their LOWRES coun-

terparts, except by the AROME model. HIGHRES models better represent mean diurnal 

precipitation cycle compared to their LOWRES counterparts with a difference of only 2 

hours to the observed precipitation maximum. LOWRES models predict precipitation maxi-

ma 2 – 8 hours earlier than observations. Compared to observations, COSMO LOWRES 

models predict diurnal precipitation maxima ~6-8 hours earlier, while the MM5 model 

predicts 2 hours earlier, which is mostly due to their different convection initiation criteria. 

COSMO models use Tiedke convection scheme (T89), in which convection is initiated when 

a parcel’s temperature exceeds the environment temperature by a fixed temperature threshold 

of 0.5 K; whereas the MM5 model uses Grell’s convection scheme (G94), in which the 

convection initiation criteria are based on the net column destabilization rate. It is most likely 

that the net column destabilization rate-based convection initiation criteria in the G94 scheme 
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better predict the time of convection initiation. However, Chaboureau et al. [2004] argued 

that representation of succession of regimes, from dry to moist, non-precipitating to precipi-

tating, convection also plays a significant role in convection initiation. For precipitation 

forecasts, most of the HIGHRES models show large error growth of ~35% per day corre-

sponding to their LOWRES models which have error growth of ~10% per day.  

 

What is the most important factor, e.g. boundary conditions, model formulation or 

resolution, affecting the forecast performance? Are there clusters of models for specific 

factors such as model code, resolution, and driving model? 

For prediction of IWV, LCC and HCC, model formulation is the most dominant fac-

tor. Models with the same formulation show similar systematic errors and also diurnal 

variability. For precipitation forecasts, model resolution is the most dominant factor, because 

summer precipitation is governed by convective rain which is treated differently in 

HIGHRES and LOWRES models. Initial conditions are the second most dominant factor 

affecting the forecast performance. Models with initial conditions from different global 

models show clear discrepancies in forecasting regional distributions of HCC and precipita-

tion.     

The positive impact of 3D-Var data assimilation over nudging is seen for precipitation 

forecasts by the COSMO-IT model, which is not seen for the other three key variables. 

Moreover, the positive impact of the 3D-Var data assimilation for AROME and ALADFR 

models is seen for none of the key variables, which again clearly emphasizes model formula-

tion is a dominant factor affecting forecast performance. 

For IWV forecast, models are clustered according to their code, and also models nest-

ed in each other are clustered together. However, for LCC forecasts, models are clustered 

according to their code, but the clustering of models nested in each other is not seen. For 

HCC forecasts, models cluster according to their formulation, and also cluster according to 

their initial conditions. For precipitation forecasts, models are clustered according to their 

resolution as HIGHRES and LOWRES models treat convection differently. Model formula-

tion is a second dominant factor for models to cluster together for precipitation forecasts. 

 

Are observed similarities between the different key variables well represented by 

models? 

The similarities between the different key variables are assessed by means of linear 

relationships by comparing the observed relationship with that from models. A weak linear 
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relationship is observed between IWV and LCC with a rank correlation of 0.19. All COSMO 

models underestimate this relationship with a rank correlation of ~0.15, while French models 

overestimate this relationship with a rank correlation of 0.25. The MM5 model better repre-

sents the observed strength of the relationship between IWV and LCC, with a rank correla-

tion of 0.18. Moderate linear relationship strength is observed between IWV and HCC with a 

rank correlation of 0.4, which is quite well represented by all models, but HIGHRES models 

slightly underestimate (rank correlation ~0.36) and LOWRES models slightly overestimate 

(rank correlation ~0.45). Moderate relationship strength is observed between IWV and 

precipitation with a rank correlation of 0.33, which is very well reproduced by all models, 

with slight underestimation in HIGHRES models (rank correlation ~0.29) and slight overes-

timation in LOWRES models (~0.35) except by MM5, which has a rank correlation of 0.48. 

Stronger relationship strength is observed between LCC and precipitation with a rank correla-

tion of 0.43. All models strongly overestimate this relationship with a rank correlation of 

0.55-0.68. This clearly indicates that the relationship between low cloud cover and precipita-

tion is misrepresented in models. However, most of the HIGHRES models slightly overesti-

mate the relationship strength between LCC and precipitation compared to their correspond-

ing LOWRES models, except AROME. A strong linear relationship is observed between 

HCC and precipitation with a rank correlation of 0.54, which is clearly underestimated by all 

models with a rank correlation of 0.35-0.45. However, HIGHRES models have stronger 

underestimation compared to their corresponding LOWRES counterparts.  

The atmospheric water cycle processes occurs with a certain time delay. Thus, key 

variables can have larger linear relationships at a specific time lag. Observed time lags of 

largest relationship between different key variables are compared with that from models to 

determine how well models reproduce this time lag. A time lag of -9 hours is observed 

between IWV and LCC, as the formation of LCC leads precipitation only after certain time 

lags, which then leads to increases in IWV. This time lag between IWV and LCC is quite 

well represented by most of the models except the French models, which show very small 

time lag of ~5 hours. Very small time lag between IWV and LCC in the French models is due 

to the misrepresentation of relationships between these two key variables. Observed IWV 

does not show any time lag with HCC, as formation of precipitation leads to high clouds and 

also increases IWV simultaneously. This observed time lag between IWV and HCC is very 

well represented by all models. Observed time lag of -2 hour between IWV and precipitation 

is also very well represented by all models. However, an observed time lag of 6 hours be-

tween LCC and precipitation is not represented by any of the models. COSMO HIGHRES 
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and MM5 models show a time lag of only 2 hours, while COSMO LOWRES and French 

models shows a time lag of 0 hours.   

 

Do the ensemble prediction systems reflect the uncertainty in forecasting the key varia-

bles of the atmospheric water cycle? 

Uncertainties in IWV and precipitation forecasts are very well represented by PEPS, 

with slight underdispersion. CLEPS represents forecast uncertainty in IWV and precipitation 

considerably better than CSREPS. LAMEPSAT has comparably poor representation of 

forecast uncertainty for IWV and precipitation. The best representation of forecast uncertain-

ty by PEPS is likely due to the fact that it accounts for uncertainty by the initial conditions 

and the model physics. Poor representation of forecast uncertainty by LAMEPSAT is mostly 

due to its coarse horizontal resolution, and it accounts only the large-scale uncertainty by 

initial conditions. CLEPS shows better ensemble spread compared to CSREPS, even though 

CSREPS accounts for small-scale uncertainty due to initial and boundary conditions from the 

limited-area model.  

 

Which is the primary perturbation affecting the EPS performance at short range, the 

initial conditions or the model physics? How reliable is a multi-model EPS?  

PEPS shows the best forecast skill compared to other EPS in all key variables for 

most of the events, whereas LAMEPSAT shows the worst skill. The better performance of 

PEPS is mostly due to sample uncertainties in both the initial conditions and the model 

formulation. The poor skill of LAMEPSAT is likely due to its coarse resolution and that it 

accounts for only large-scale uncertainty by initial conditions.   

All EPS show very poor skill for LCC and HCC forecasts, as a result of large overes-

timates of forecast probabilities. For precipitation, most of the EPS show a degradation of 

forecast skill with an increase of threshold, which is mainly due to degradation of reliability 

and resolution. CSREPS shows better skill over CLEPS for prediction of stronger events in 

IWV and precipitation. This implies that small-scale perturbations due to the uncertainty in 

initial and boundary conditions from limited-area models likely lead to an accurate forecast 

for stronger events.  

CLEPS shows better global skill in IWV, and is similar to CSREPS. PEPS has a very 

low global skill for IWV forecasts perhaps due to its very low reliability. For precipitation 

forecasts, PEPS has the best global skill, whereas LAMEPSAT shows the worst skill. 
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CSREPS has slightly better global skill in precipitation forecasts compared to CLEPS as a 

result of better resolution. 

 

6.2 Scope of Future Research 

Verification of the complete atmospheric water cycle from IWV and cloud cover to 

precipitation at the ground reveals several model weaknesses. Nevertheless, this study is 

restricted specifically due to limited availability of model forecasts. A comprehensive 

evaluation of the complete atmospheric water cycle can be further elaborated by considering 

the following aspects. Precipitation intensity is strongly controlled by cloud microphysics; 

thus, the detailed validation of cloud microphysics will be advantageous to pinpoint the 

shortcomings in QPF. Quantifying errors in representing specific atmospheric water cycle 

processes can be done by changing their respective physical parameterization. However, such 

studies are limited due to their high computation cost [Gallus and Pfeifer, 2008, five 

microphysics scheme in WRF model]. The verification over different weather classifications 

and over certain regions might be helpful to identify specific model deficiencies. However, 

such studies require large forecast samples, as the smaller sample size can easily mislead 

verification results. Long-term evaluation also might be more useful to point out the model 

shortcomings, as it might average out stochastic errors arising due to the initial and boundary 

conditions. Verification of EPS reveals that PEPS is the most skillful for short-range 

prediction. Ensemble members of PEPS can be extended by adding more deterministic 

models from operational centers. It is interesting to compare the skill of PEPS developed 

from convection-parameterized models against convection-resolving models. 
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Appendix A 

Verification Scores 

 

The different verification scores used for the verification of the deterministic models and 

ensemble systems are described here. To verify the deterministic models, bias and standard 

deviation are used for the continuous variables while frequency bias and equitable threat score 

are used for the categorical variables. The representation of forecast uncertainty by ensemble 

systems is verified by means of the spread / skill relationship as well as by rank histogram. As 

suggested by Murphy [1991a], a complete diagnosis of the probabilistic forecast is done by 

means of the Brier score, continuous rank probability score (CRPS), reliability diagram, Relative 

Operating Characteristic (ROC) curve, and forecast value. Overviews of all these verification 

methods are provided in the following sections.  

 
A.1 BIAS  

The systematic error in the prediction of a continuous variable is measured by BIAS, 

which is calculated as follows:    
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where Xim is the model forecast and Xio is the observations and N is the total number of observa-

tions and model forecasts pair. BIAS ranges from -∞ to ∞ with a BIAS of 0 for prefect forecasts.  

 

A.2 Standard Deviation  

The random error in the prediction of continuous variables is measured by standard devi-

ation. Standard deviation is calculated as the square root of the difference between squares of the 

root mean square error (RMSE) and BIAS, which is given by the following equation, 
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Standard deviation ranges from 0 to ∞. Perfect forecast has standard deviation of 0.   
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A.3 Contingency Table 

The contingency table is formulated for a specific event in models and observations by 

defining four possible outcomes, which are summarized in Table 5.1. When an event occurs and 

the models do predict the occurrence of the event, it is called a Hit (H). Events which don’t occur 

but models do predict are called False Alarms (F). When events occur and weren’t predicted by 

models, it is called a Miss (M). Events which didn’t occur and also weren’t predicted by models 

are called forecast Correct Negatives (CN). Many verification scores can be derived from the 

contingency table.  

 

Table 5.1: Contingency Table definition.  

 
Observation 

(Event Occur) 

 
Observation 

(Event didn’t Occur) 
 

Model (Event Occur) H (Hit) 
 

F (False Alarm) 
 

Model (Event didn’t Occur) M (Miss) 

 

CN (Correct Negative) 

 
 

A.4 Frequency Bias  

Frequency bias (FBIAS) measures the systematic error in the prediction of categorical 

variables, which is a ratio of forecasted and observed frequency, and is given by following 

equation  

  

 
 MH

FH
FBIAS
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                                                     (A3) 

 

FBIAS ranges from 0 to ∞ with FBIAS of 1 for perfect forecast. An FBIAS value smaller than 1 

denotes the underestimation of observed relative frequency by the forecast, whereas an FBIAS 

larger than 1 denotes the overestimation of relative frequency by the model forecast.  
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A.5 Equitable Threat Score 

The equitable threat score (ETS, [Schaefer, 1990]) measures the accuracy of a correct 

forecast at a certain time and station for categorical variables, which is given by following 

equation  
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  ,                                    (A4) 

 

where HRAN is number of hits by chance. ETS ranges from -1/3 to 1, where ETS value of smaller 

than zero indicate no skill where ETS of 1 is representative of perfect forecast.  

 

A.6 Spread and RMSE for Ensemble  

The ensemble spread is calculated by measuring the deviation of ensemble forecasts from 

their mean [Zhu, 2005], which is defined as below:  
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where 

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)(   is ensemble mean and fn’s are their ensemble members, where M is the 

number of ensemble members. 

 

The ensemble root mean square error (RMSE) is the distance measured from the ensem-

ble mean to the observation, which is given by the following equation  
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where 

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)( is the ensemble mean and O’s are observations and N is available 

forecast observation pairs. 
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A.7 Rank Histogram  

Rank histogram [Anderson, 1996; Talagrand et al., 1997; Hamill, 2001] is a useful 

measure of reliability [Hou et al., 2001; Candille and Talagrand, 2005] of an EPS. The rank 

histogram is calculated by sorting all m ensemble forecasts plus verifying observations. Then the 

rank of the observations is determined with respective to the ensemble forecasts, and finally a 

rank histogram is calculated as the sum of all individual ranks within the verification period and 

stations or grid cell. In a perfect ensemble system, distribution of every single forecast is similar 

to the distribution of the observations. In other words, statistically, the observations and every 

individual ensemble members are indistinguishable. This leads to a flat-rank histogram (Figure 

A1a). EPS with insufficient spread forces the observations to be outliers, which are accumulated 

in the first or last bin of the histogram leading to a U-shaped histogram (Figure A1b). Over 

dispersive ensemble systems with too-large spreads compared to the observations exhibit a bell 

shaped histogram (Figure A1c). The EPS with positive biases exhibit positively skewed (Figure 

A1d) and with negative bias exhibits negatively skewed histograms (Figure A1e) as it ranks 

observational truth to the first or last rank respectively.  

Candille and Talagrand [2005] proposed to measure the deviation of the rank histogram 

from flatness for an EPS with M members and N available forecast observation pairs with the 

following procedure: The number of values in each bin of the rank histogram is given by Si. For 

a reliable ensemble system with a flat histogram, Si is equal to N / (M +1). Then 
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measures the deviation of the histogram from the flatness. For perfect reliable ensemble systems, 

the base value is defined as  
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is the overall flatness of the rank histogram. A value of δ that is significantly larger than 1 

indicates the system does not reflect equal likelihood of ensemble members.  
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Figure A.1: Hypothetical ranked histograms for a 10 member EPS system. a) For perfect EPS, 

b) for EPS with insufficient spread, c) for over dispersive ensemble systems d) for EPS with 

positive bias, and e) for EPS with negative bias. 

 

A.8 Brier Score and Brier Skill Score  

The Brier score is defined as the mean square error of the probabilistic forecast, and it is 

one of the most widely used EPS evaluation scores [Brier, 1950]. The Brier score is designed to 

quantify the performance of a probabilistic forecast of a dichotomous event. It is given by the 

following equation: 

                                                  
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where N is the number of forecasts, Pk is the forecast probability (fraction of ensemble members 

that exceed threshold), and Ok is the verifying observation (equal to 1 if the observation exceeds 
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the threshold, 0 if it does not). The Brier score is a negatively oriented score; with 0 score 

indicating a perfect forecast and increasing Brier score up to a value of 1 for deteriorating 

performance.  

Comparing Brier scores of ensemble systems with different ensemble sizes may be mis-

leading. Thus Richardson [2001] suggested the transformation of the Brier score for the M 

ensemble members to the Brier score for ∞ ensemble members using the assumption that ensem-

bles are samples from perfectly reliable underlying distributions. The transformation of Brier 

score BSM of a M ensemble member system to the Brier score of ∞ ensemble members can be 

written as:  
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The transformation suggested by Richardson [2001] can also be used for scores other 

than Brier score.  

Murphy [1973] has derived Brier score decomposition into reliability, resolution, and un-

certainty.  This Brier score decomposition can be written as:  
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The first term of the decomposition is the reliability, that is, the square difference be-

tween the probability and the observed frequency of the event, averaged over the J different 

probability forecast values. Reliability is the correspondence between a given probability and the 

observed frequency of an event in those cases when the event is forecasted with the given 

probability. The second term is the resolution, that is, the weighted average of the squared 

differences between subsample relative frequencies, and the overall sample climatological 

relative frequency. The resolution term indicates the extent that the different forecast categories 

do in fact reflect different frequencies of the occurrence of the observed event. The last term of 

the decomposition is the uncertainty, that is, the variance of the observations. The uncertainty 

term denotes the intrinsic difficulty in forecasting the event but depends on the observations 

only, not on the forecasting system.  
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The Brier score can be converted to a positively oriented skill score, as 

 

                                                           
refBS  

BS
1  BSS                                                 (A11) 

 

The skill of a reference system (BSref) is often taken to be a simple climatological fore-

cast in which the probability of the event always is equal to O  for all the forecasts. The Brier 

score for such climatological forecasts is  OOBSref  1 , then the Brier skill score can be 

expressed as  

 

                                                                          (A12)             

                

                                     yreliabilit relativeresolution relative  BSS   

As BSS is positively oriented score, the perfect forecast will have the BSS value of 1. A 

perfect forecast would have a relative resolution equal to 1 and a relative reliability equal to 0. 

After Richardson [2001] adjustment for the ensemble size, the BSS can be written as:  
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A.9 Continuous ranked probability score    

The continuous ranked probability score (CRPS) defined in Stanski et al. [1989] 

measures the global skill of the ensemble forecast. CRPS measures the distance between the 

predicted and the observed cumulative density functions (CDFs) of scalar variables. The CRPS is 

given by the following equation  
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where FP and FO are the predicted and observed CDFs respectively over all possible realizations 

(over all stations or grid cell for whole period). The CRPS has the dimension of the predicted 
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variable. The CRPS is negatively oriented, reaching its minimum value of zero for a perfect 

deterministic system. Larger values of the CRPS indicate lower skill of the EPS. It is the general-

ization of the Brier score [Brier, 1950] over all the possible thresholds of the variable under 

consideration.  

Similar to the Brier score, the CRPS scores also can be decomposed into reliability, reso-

lution and uncertainty component [Hersbach, 2000]. The CRPS score decomposition is written 

as follows 

 

                                    CRPS = Reli – CRPSpot  ,                                           (A15) 

where,  

                                    CRPSpot = Resol + Unc     ,                                           (A16) 

 

                         



N

0i

2
iii )po(gReli    ,                                          (A17) 

 

)o1(ogCRPS i

N

oi
iipot 



  ,                                       (A18) 

 

where N is the ensemble size, gi is the average width of the bin I (Euclidean distance between 

consecutive ensemble members), oi can be seen as the average frequency that the observation is 

less than the middle of the bin i, and pi is the fraction i/N.  The Reli component measures the 

reliability of the EPS, whereas CRPSpot measures the difference between the resolution of the 

EPS and the uncertainty associated with the variable considered. The uncertainty term does not 

depend on the prediction system, thus CRPSpot corresponds only to the resolution of EPS. Like 

the CRPS, its two components are also negatively oriented [Hersbach, 2000], that is, the smaller 

those scores are, the better the EPS. The Reli is equal to 0 for perfectly reliable systems, while 

distance from 0 is indicative of the lack of reliability. Reli measures the average reliability of the 

ensemble forecasts; it tests whether the fraction of observations that fall below the kth of n ranked 

ensemble members is equal to k/n on average. For perfect deterministic systems, the CRPSpot 

reaches its minimum, while positive values indicate the lack of resolution. It is sensitive to the 

average ensemble spread and the frequency and magnitude of the outliers. For the best potential 
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CRPS, the forecasting system needs a narrow ensemble spread on average without too many and 

extreme ensemble outliers [Hersbach, 2000]. 

 
A.10 Reliability Diagram  

The reliability of forecasts is often represented by the reliability diagram (Figure A.2) 

which is a diagram between the observed relative frequency and the forecasted probability for 

the particular thresholds corresponding to the forecast event [Wilks, 1995; Toth et al., 2003]. The 

reliability diagram is used to test the ability of the system to correctly forecast probabilities of a 

certain event. A reliability diagram is created by binning the continuous forecast probability 

values into discrete, contiguous bins of probability, then plotting the forecast probability at the 

center of each bin against the corresponding observed relative frequency. For the ideal forecast, 

the probabilistic forecast observation points lie on the diagonal of the reliability diagram, indicat-

ing the event is always forecasted at the same frequency as observed. The Brier score reliability 

component is a weighted-squared distance between the reliability curve and the diagonal line.  

The reliability curve above the diagonal indicates the under forecast, while below the di-

agonal indicates the over forecast. The reliability curve centered on the diagonal with smaller 

deviations represents very good reliability, as small deviations are mostly due to the small 

sample size. The sharpness diagram is usually plotted with the reliability which characterizes the 

relative frequency of occurrence of the forecast probabilities category. The sharper EPS will 

have forecast probability frequently near 0 or 1, which indicates the forecasts deviate significant-

ly from the climatological mean, a positive attribute of an ensemble forecast system. Sharpness 

measures the variability of the forecasts alone, and in a perfectly reliable forecast system sharp-

ness is identical to resolution. 
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Figure A.2: Hypothetical reliability diagrams, (a) for climatological EPS forecast, (b) for EPS 

forecast with minimal resolution, (c) for a EPS forecast with underestimation, (d) represents 

a EPS forecast with good resolution but poor reliability, (e) for rare event, and  (f) for small 

EPS sample size. The inset shows sharpness diagrams.   
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A.11: ROC diagram and ROC area 

The Relative Operating Characteristic (ROC) curve measures the discrimination of the 

EPS, which reflects the ability to distinguish between the occurrence and non-occurrence of 

forecast events. It is the converse of resolution, in other words discrimination measures the 

sensitivity of the probability that an event was forecasted, conditioned on whether or not the 

event was observed. The ROC curve is a verification measure based on signal detection theory 

which Mason [1982] first introduced in meteorology. The ROC is a graph of the hit rate (HR) 

against the false alarm rate (FAR) for specific decision thresholds. The hit rate and false alarm 

rate is derived from the contingency table by the following equations:  
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The ROC measure is based on the stratification by observations and, therefore, is independent of 

reliability, and instead provides a direct measure of resolution. The perfect discrimination is 

represented by an ROC curve (Figure A.3a) that rises from (0,0) along the y axis to (0,1), and 

then horizontally to the upper-right corner (1,1). The diagonal line from (0,0) to (1,1) represents 

zero skill, indicating no discrimination among events by forecasts. The real world forecast lies in 

between these two extremes (Figure A.3b). Forecasts with better discrimination exhibit ROC 

curves approaching the upper-left corner of the ROC diagram more closely, whereas forecasts 

with very little ability to discriminate the event exhibit ROC curves very close to the HR = FAR 

diagonal (Figure A.3c).  

The area under the ROC curve is widely used as a verification measure of the forecast 

resolution. The ROC area can be calculated by the trapezoidal rule or binormal method [Mason, 

1982; Swets, 1986]. The trapezoidal rule is the correct method to calculate the ROC area for 

small sample sizes; however, this can lead an underestimation for large sample sizes [Wilson, 

2000]. We have used the binormal method to calculate the ROC area, as we have a large enough 

sample size.  Since ROC curves for perfect forecasts pass through the upper-left corner, the area 

under a perfect ROC curve includes the entire unit square, so Aperf = 1. Similarly, ROC curves 
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for random forecasts lie along the 45o diagonal of the unit square, yielding an area Arand = 0.5. 

The area A under a ROC curve of interest can be expressed in standard skill score as 

 

                                       ROCSS = 2 ROC Area -1                                                      (A21) 

 

An ROCSS of 0 indicates the no-skill forecast, whereas 1 represents perfect discriminating 

forecasts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3: Hypothetical ROC diagrams, a) for perfect case, b) realistic case c) for EPS forecast 

having same skill as climatological mean, d) for EPS forecast worse than climatological 

mean. 
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A.12 Forecast value  

The usefulness of the ensemble forecast for different decision-making processes can be 

evaluated based on the simple cost-loss model proposed by Richardson [2000].  This model uses 

a contingency table to calculate the forecast value based on the hit and false alarm rate similar to 

a ROC curve. The hits and false alarms both incur a cost of taking preventative action (C). 

Misses are associated with a loss due to the lack of prevention (L). Correct rejections incur no 

expenses either way. Thus the economic values (V) of the forecasts are defined in terms of 

expenses, E, in an equivalent manner as skill scores for meteorological forecasts [Richardson, 

2003].  

 

                                                 
perfectclimate

forecastclimate

EE

EE
V




                                               (A22) 

The decision using the climate frequency of the event can be done in two ways: 1.) always take 

protective action, thus incurring a constant cost C but never experiencing a loss L, or 2.) never 

take protective action, which involves no cost but will result in total losses equivalent to OL, 

where O is the climatological probability of the event occurring. This means the expense for the 

climatological frequency Eclimate is min(C, OL). For the perfect forecast, the decision maker will 

take action when the event occurs; therefore, it would only incur costs at the climatological base 

rate. The mean expense would then be Eperfect = OC.  

The sample mean expense of the forecast is calculated by multiplying the relative frequencies of 

each of the four possible outcomes of the contingency table for a specific threshold by the 

corresponding expense, resulting in 
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where n = H + F + M + CN is the total number of forecast observation pairs. Thus, the economic 

value Equation can be written as 
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where r = C/L is the specific user’s costloss ratio. Using hit rate (HR), false alarm rate (FAR) 

and climatological base rate O = (H + M)/n, the equation for economic value V can be rewritten 

as  
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 .                               (A25) 

 

The only optimal ensemble forecast value is considered which gives the maximum possible 

values for the each cost-loss ratio. The maximum value occurs at that value of C/L equal to the 

climatological base rate O.  
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Appendix B 

Significance Test 

 

The methods used to infer the significance of the result gained from the limited sam-

ple are explained in this appendix. Forecast verification is often based on the investigation of 

different properties of the joint probability distribution of forecasts and observations. In this 

study we have compared the skills of the different model forecasts with each other. Because 

of the finite number of forecast / observation pairs, statistical significance of the result should 

be given. A number of hypothesis tests and confidence intervals are available; however, they 

are based on different assumptions. Hypothesis testing for significance can be categorized 

into parametric and nonparametric tests. Parametric tests assume a particular theoretical 

distribution representing the data, while, for nonparametric tests, such an assumption is not 

required. Parametric tests are particularly used when the analysis are based on particular 

distribution parameters. However, parametric tests (such as t test) are based on several 

conditions, such as the data being tested are independent samples, and the data are normally 

distributed and have equal variances. As a nonparametric test does not consider the theoreti-

cal distribution of the data, the condition of the normality of data is relaxed for the nonpara-

metric test; however, the other two conditions are still required. Nonparametric tests also can 

be categorized in classical nonparametric and resampling tests. The classical nonparametric 

tests consider the distribution of the data to be unimportant and thus can be used for data with 

any distribution. In resampling tests, the distribution of the data can be inferred from the data 

by repeated computer manipulations. The different approaches used in forecast verification 

studies to test the significance of the results are discussed by Jolliffe [2007]. Mason [2008] 

gives a detailed overview of the interpretation of verification statistics with their significance.  

As most of the atmospheric water cycle variables considered for the verification are non-

Gaussian, the significance of the result is tested with the non parametric test. The following 

section will introduce the classical and resampling nonparametric tests used in this study.  

 

B.1 Wilcoxon-Mann-Whitney rank-sum test 

The Wilcoxon-Mann-Whitney rank-sum test was devised independently in the 1940s 

by Wilcoxon, and by Mann and Whitney [Mann and Whitney, 1947]. The independence of 

two samples is tested based on their rank. As the ranking of the data is considered, outlier 

data points will not have any impact on the result. To test whether both the samples are drawn 
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from the same distribution, the mean and median of their ranked data distribution is tested. 

The null hypothesis is that the two data samples drawn from the same distribution, and the 

alternative hypothesis is that the two sample distributions differ. If the null hypothesis of 

identical population distributions is true, then n1 ranks from the population are just a random 

sample from the N integers   1,.,.,.,., N. Thus, under the null hypothesis, the distribution of the 

sum of the ranks ‘T’ depends only on the sample sizes, n1, and n2, and does not depend on 

the shape of the population distributions. Under the null hypothesis, the sampling distribution 

of T has mean and variance given by 
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Intuitively, if T is smaller than the 0.05 significance level, then μT provides evidence that the 

null hypothesis is false and in fact the population distributions are not equal. The rejection 

region for the rank sum test specifies the size of the difference between T and μT for the null 

hypothesis to be rejected.  

 
B.2 Bootstrap method 

The bootstrap method infers the statistical significance of the data from the data them-

selves, which was invented by Efron [1979]. Bootstrap treats the finite sample similar to the 

unknown distribution from which it is drawn. The bootstrap sample is created by choosing N 

random samples from the original data set, with replacements. So within a bootstrap sample, 

an original value may appear more or less often in the data set or even not all. This artificially 

represents the fact that the data set itself is only a finite sample from the true distribution. The 

number of samples has a significant impact on the result: if sample number is very small, all 

samples can be fully enumerated. Thus, a bootstrap sample of 1000 or more is required to test 

the significance of the results. Time series with non-negligible autocorrelation can be dealt 

with by autoregressive schemes, and the corresponding parameters are bootstrapped with the 

disadvantage that first an appropriate model has to be chosen. This can be omitted by consid-

ering the autocorrelation of a time series in a nonparametric bootstrap procedure. Instead of 

creating the bootstrap samples by resampling every value, one chooses whole blocks of 

appropriate length out of the time series and puts them together to gain a bootstrap sample 
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time series. As the block width depends on the autocorrelation, it should be large enough that 

the blocks are nearly independent but not too large in order to keep the bootstrap mechanism 

efficient. Block width of 24 hours are considered by testing the autocorrelation for all key 

variables; all variables show very small autocorrelation at 24 hours. Significance of the result 

is tested by the median-to-interquantile ratio (M2I), which is calculated by dividing the 

median value of the distribution by half the interquantile distance of the 95% quantile minus 

the 5% quantile.  M2I is a measure of the median difference of the scores for the two models 

as compared to the width of the difference distribution specified by the resampling. The 

higher value of M2I is representative of the significant differences in the scores. 
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