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Abstract

In this thesis land-fast ice is modelled based on the internal dynamics of sea
ice. The region of interest is the Kara Sea, which has a well documented
semi-permanent fast-ice cover. The Kara Sea fast ice is especially interesting
because it forms over relatively deep waters compared to the maximum
thickness of pressure ridges. This means that internal ice stresses must
play an important role, in addition to the well-known grounding of pressure
ridges. The main objective here is therefore to model the internal stresses
of the ice well enough to reproduce the observed fast-ice cover. This has not
been done successfully before. The model and methods developed here are
general and should be applicable to other areas of fast-ice growth.

In order to accurately model land-fast ice an improved version of the well-
known viscous-plastic model is used. To produce a more physically realistic
model material different yield curves are proposed while some numerical
properties of the model are improved. The transition from plasticity to
viscosity and the role of linear viscosity is also reconsidered. In an idealised
stand-alone setup the model is used to investigate some general properties
of polynya formation in the model. Coupling the ice model to an ocean
model, realistic decadal simulations of the ice and ocean in the Kara Sea
are then carried out testing some dynamic and thermodynamic properties
of the model. Having thus confirmed that the model produces realistic
results attempts are made to model land-fast ice. First the winter of 1997—
98 is considered in which various model parametrisations are tested and
evaluated. Utilising the improved model and correct parametrisations the
observed fast-ice cover can be reproduced during the height of the fast-ice
season. After further tuning the fast-ice cover in 1967-74 and 1997-2005
could also be reproduced. The longer runs allow us to give an estimate of
the minimum ice thickness required for fast ice to form over the deeper areas
of the Kara Sea.
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Chapter 1

Introduction

Sea ice is an important part of the climate system and clearly an integral part
of the ocean-atmosphere system at high latitudes. This is mainly because the
ice acts as an insulating layer between the atmosphere and ocean influencing
any exchange between the two. The ocean-atmosphere heat exchange is
severely dampened by the presence of sea ice, as well as the atmosphere-
ocean momentum transfer. The surface albedo of ice is also much larger
than that of water causing the majority of incoming solar radiation to be
reflected back into space. The latent heat stored in the ice also causes a
delay in the seasonal temperature cycle. Finally the formation of ice alters
the sea surface salinity, possibly causing dense or deep water formation and
a redistribution of salinity in the upper ocean through sea ice drift.

One of the many forms sea ice takes is that of land-fast ice. According to
the World Meteorological Organization (1970) land fast ice is “sea ice which
remains fast along the coast, where it is attached to the shore, to an ice wall,
to an ice front, or over shoals, or between grounded icebergs”. Here “fast”
should be taken to mean “not easily moved, firm ... fixed, stable” (Webster
and McKechnie, 1979). Although some ambiguity exists when comparing
different definitions (see e.g. Weaver, 1951, Barry et al., 1979) two main
criteria appear to be used to define fast ice: It should be attached to the
shore and it should be stationary.

Land-fast ice can be found all around the Arctic rim, but it is an espe-
cially prominent feature of the Siberian winter ice cover. While the largest
fast-ice extent is probably to be found in the Laptev Sea, the Kara Sea has
an extensive and well documented fast-ice cover. There land-fast ice may
extend as far as 300 km off shore in certain areas. In particular the Vilkitsky
Strait, separating the Laptev and Kara Seas is closed by fast ice for about
seven months of the year. This is arguably the most difficult road block for
the north-east passage shipping route.

In general fast ice can have considerable effects on navigation. With
increasing interest in shipping and offshore exploration in the Arctic, un-
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derstanding the behaviour of land-fast ice is becoming more important in
an economic context. Aside from that, land-fast ice also has a considerable
effect on the ocean and atmosphere at a regional scale. With ever increas-
ing computing powers these effects may soon be of interest to researchers
running basin-scale or even global models.

Despite this the dynamical modelling of land-fast ice has not garnered
much interest in the sea-ice modelling community. As of yet dynamic sea-ice
models have not been able to reproduce land-fast ice in a realistic setting.
The reason for this appears to be mainly the focus on pan-Arctic and global
models, rather than regional ones for the model design. In particular large
scale models should assume that very little cohesion exists in the ice on the
scale of one grid cell. This is a suitable assumption for resolutions greater
than about 100 km. However, when the grid resolution is increased to, for
example 10 km this assumption may need reconsidering, especially where
land-fast ice is concerned.

This thesis focuses on the Severozemelsky region in the eastern Kara
Sea. The fast ice there extends up to 300 km off shore over waters deeper
than 100 m. Fast ice is known to attach itself to grounded pressure ridges,
but this is impossible over deep waters. Such grounding cannot be expected
to be important at much more than 25 m depth. Some other dynamical
process must therefore be involved and we assume here that this is sea-ice
cohesion.

By adding cohesive strength to the ice in a high resolution regional model
we have the potential to model land-fast ice in a dynamic sea-ice model.
This does not require a radically different approach to sea-ice modelling
and the model proposed here is closely based on the viscous-plastic model
published by Hibler (1979), although some changes still have to be made, as
outlined below. The model developed is intended to both allow for accurate
simulation of the fast-ice cover and the associated polynyas, as well as to
enrich our understanding of the large fast-ice massifs seen both in the Kara
and Laptev Seas.

The mechanism for fast-ice formation appears to mostly depend on local
geography. According to Volkov et al. (2002) there are two basic mechanisms
at work in the Kara Sea. Firstly, grounded pressure ridges stabilise the ice
sheet facilitating fast ice growth in shallow regions. The spatial extent of
this ice is then presumably limited by the thickness of the pressure ridge
and the ocean depth. This explains why the fast ice edge tends to follow
isobaths in shallow areas. Secondly, further fast ice growth may occur as ice
floes drift onshore and attach themselves onto the coast or fast ice. During
periods of offshore winds grounded pressure ridges and, more importantly,
off-shore islands then prevent the ice drift allowing fast ice to form over deep
water. The islands in the Severozemelsky region of the Kara Sea appear to
play a large role in stabilising the fast ice (Divine et al., 2005).



The ice behaviour in between the stabilising ridges and islands is there-
fore of interest here. Goldstein et al. (2004) made a study of the shape of
the fast ice boundary in the Bothnian Bay in the Baltic Sea. An interesting
conclusion of theirs is that the “fast ice boundary is formed of piecewise
curved sections” (Goldstein et al., 2004) or arches. Arching is a well known
phenomenon, both in soil mechanics and structural engineering, as well as
sea-ice modelling (see e.g. Hibler et al., 2006). From there we know that
a well constructed arch can carry great loads almost entirely through the
material’s shear and compressive strength, relying only weakly on its ten-
sile strength. Examples abound, but the best known ones are probably the
stone arches made by Roman builders.

While sea ice cannot be expected to form well constructed arches, the
arching mechanism may help explain how vast extents of fast ice can form
given the apparently relatively low cohesive strength of sea ice. The tensile
strength is frequently quoted at about 1/20*" of the compressive strength
(see e.g. Hibler and Schulson, 2000, Wang, 2007, and references therein).
In this context it is interesting to note that when Tremblay and Hakakian
(2006) tried to estimate the strength of fast ice from satellite images and
reanalysis data they found the tensile strength to be comparable to the
compressive strength. The reason for this discrepancy may be that Tremblay
and Hakakian (2006) did not measure the tensile strength of the ice, but
rather the total strength of the arched structure.

The formation of land-fast ice has so far been poorly represented in large
scale numerical ice models. While ice arching and ice bridges in convergent
channels have been modelled (see e.g. Hibler et al., 2006, Dumont et al.,
2009), these ice formations can only be considered remotely related to the
land-fast ice modelled here. Zyryanov and Korsnes (2003) simulated fast-ice
formation in the Kara Sea under idealised wind stress using a cohesive dis-
crete element model. This model shares some very basic rheological charac-
teristics with the current model; however, their approach is still considerably
different to the current one. Aside from these examples, no dynamic fast-ice
modelling in a realistic setup has yet been successful.

Cohesive strength has been included in sea-ice models on a number
of occasions. In a modification of the classical elliptic yield curve Hibler
and Schulson (2000) include a small amount of cohesion in their modified
Coulombic yield curve. This was done in accordance with laboratory re-
sults and to ensure energy dissipation, but without any reference to fast ice.
Zhang and Rothrock (2005) also include cohesion in some of the yield curves
they tested, but again no reference was made to fast ice. Konig Beatty and
Holland (2010) on the other hand modified the elliptic yield curve to include
cohesive stress expressly to model land-fast ice. They then proceed to show
how their formulation allows them to model fast ice in one dimension using
the viscous-plastic approach of Hibler (1979), but not as effectively when us-
ing the elastic-viscous-plastic approach suggested by Hunke and Dukowicz
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(1997).

Dumont et al. (2009) point out that even though the elliptic yield curve
has no cohesive strength under isotropic divergence it does possess cohesive
strength because of the curve’s uniaxial compressive strength. This is a
key parameter in defining the strength of static arches and is controlled by
the ellipse eccentricity. They then proceed to show that an elastic-viscous-
plastic model with an elliptic yield curve can be used to model ice bridges,
both in an ideal and semi-realistic setting. Their model domain consisted of
a converging channel (for the ideal case) and Nares Strait (for the realistic
case), where the North Water Polynya forms. In both the ideal and realistic
cases, land-fast ice forms where drifting ice floes form an arch in a converging
channel. That situation may be considered remotely related to fast ice
formation in the Kara Sea where the fast ice is presumably held at the shore
by a chain of islands and a series of arches.

Static arching occurs in plastic materials, but not viscous ones. In the
viscous-plastic model a phase transition occurs at small strain rates where
the formerly plastic model material turns linear viscous. Here this transition
should occur at either small enough strain rates so as not to affect the fast ice
or in such a way that the viscosity of the linear viscous ice is high enough so
that it is essentially immobile. Both of these goals are reached by raising the
maximum viscosity allowed in the model. It will be shown that this needs
to be several orders of magnitude larger than the commonly used values
for fast ice to form. Using such a high maximum viscosity value the linear
viscous phase is barely present in the land-fast ice, casting some doubt on
the applicability of the linear viscous approximation. The resulting creep
flow speed is also so small as to be meaningless in the current context. This
topic has received little attention in the literature, but will be shown to be
very important here.

In this thesis it will be shown that fast ice can be modelled using a
viscous-plastic ice model. To achieve this it is necessary to take a closer
look at the yield curve shape and, to this end, new formulations for older
yield curves, as well as one new one, are suggested. These yield curves all
have uniaxial compressive strength and adjustable cohesive strength. This
is necessary to reproduce the static arching expected to play a role in the
fast-ice formation.

In addition to modifying the yield curve the model features an improved
non-linear solver for the ice momentum equation. This is important to
the accurate prediction of ice velocity. Errors in the velocity field may
cause the fast ice to break up or even prevent a sensible definition of what
ice is moving slowly enough to be considered land-fast. The limit for the
viscous assumption also needs to be reviewed so that the ice remains in
a plastic state under smaller strain rates. Finally some improvements are
made to the algorithm describing new-ice formation in order to improve the



representation of flaw polynyas.

This model is then used to model land-fast ice in the Kara Sea; first only
during the winter 1997-98 and then for longer periods. Tests of the 1997-98
winter involve testing all the different yield curves available in the model, as
well as the momentum solver and the role of the viscous limit. The model
results are compared to observed fast-ice extent and flaw polynyas. In these
tests it becomes clear that using high maximum viscosity is crucial for a
realistic fast-ice simulation. The accuracy of the momentum solver plays an
important role, as well as the shape of the yield curve. Some flexibility in the
yield curve is, however, permitted and all yield curves used in the “Hibler
type” model can be tuned to give realistic fast-ice extent, although some
give better results than others. The granular model, which introduces an
extra pressure term solver, does not produce realistic land-fast ice in these
tests.

Having modelled the land-fast ice in the Kara Sea in 1998 the best yield
curves are used in experiments run for the years 1967-74 and 1998-2005.
The initial results of these tests were not promising and it became clear that
the role of pressure ridge grounding was underestimated. By making more
extensive use of the grounding scheme already introduced, realistic fast-ice
extent can be obtained for all modelled years. These results are then used
to give an estimate of the critical thickness for fast-ice formation, i.e. how
thick the ice needs to grow before fast-ice formation is possible.

This thesis is set up in 7 chapters, including an Introduction and Con-
clusion. First the ice model used is described. This is then followed by
an idealised study of polynya formation done using the model. Chapter 4
describes the setup of the coupled ice-ocean model in the Kara Sea as well
as discussing initial dynamical and thermodynamical tests performed using
the coupled model. In chapter 5 the winter of 1997-98 is modelled using
the coupled model and the model is tuned to give the best possible land-
fast ice and drift ice results. The model results are analysed with the aim
of increasing our understanding of both fast-ice modelling and land-fast ice
itself. This is then followed by chapter 6 in which longer simulations are con-
sidered. The ability of the model to simulate fast ice on a longer time-scale
is discussed along with the main factors affecting the model performance.
Finally an estimate of the critical thickness for fast-ice formation is given.
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Chapter 2

Model description

2.1 Introduction

Sea ice is an important component in coupled models since the ice model
can have considerable effects on the ocean and atmosphere. It is clearly im-
portant to model this component properly, but sea-ice modellers are faced
with the difficulty of modelling a complex and poorly understood system
under sometimes severe computational restrains. One way to approach this
problem is to restrain the model subject and here the focus is on polynya
formation and land-fast ice. This helps in deciding what the model require-
ments are; i.e. which aspects of the ice model are important and which are
not.

In the following discussion the ice model implemented here is described
and the design choices made are justified. As such it is meant to give an
overview of the model, going only into details when required by the thesis’ fo-
cus. First of all section 2.2 introduces the fundamental equations of a sea-ice
model, including a brief discussion of some details of the numerical imple-
mentation. The model thermodynamics are then discussed in section 2.3,
describing briefly the three layer Semtner (1976) model used and discussing
the way new ice forms, as well as the problem of lateral melt. Section 2.4
discusses the model rheology, going into considerable details about the dif-
ferent yield curves considered here. The latter half of that section discusses
yield curves that may potentially be used for modelling fast ice.

2.2 The fundamental sea ice equations

The model presented here is a two class (ice and open water) dynamic-
thermodynamic sea-ice model, written to be coupled with the Vector Ocean
Model (Backhaus, 2008). With the exception of the momentum equation
the fundamental equations that follow are the same as in Hibler (1979).
The focus of this study is on fast ice and the associated flaw polynyas.
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Land-fast ice is in general level and multiple thickness classes should there-
fore not be needed to describe it. Using only two ice classes simplifies
the model construction considerably, making it an attractive simplification.
There are known cases of fast ice with a complex morphology (see e.g. Volkov
et al., 2002) and this may cause problems later on. As a first approxima-
tion, however, using two ice classes is considered good enough here. For
modelling the flaw polynyas two classes; of ice and open water should also
be sufficient.

The ice is modelled as a continuum using an Eulerian perspective. It
moves in a horizontal plane, subject to both external and internal forces.
Temporal evolution of the sea ice cover is described using two continuity
equations and the momentum equation. The continuity equation for mass
is

O 4T (5m) = S, (2.1)
where m is the sea ice mass per unit area, Sy, is a thermodynamic source/sink
term and ¥ is velocity.

An equation for the evolution of the ice thickness distribution within each
cell is also needed. The model uses two ice classes; i.e. ice and open water
and so this becomes an equation of conservation of sea ice concentration.

That takes the same basic form;

04,3 (FA) = 54, (2.2)
ot

with S4 being a source/sink term. The average ice thickness over ice-covered
area, h can be derived using m=Ahp;. The source/sink terms S4 and S,, will
be discussed in section 2.3. In addition the condition A<1 is imposed. This
can be interpreted as a ridging condition since m (and thus h) can increase
even if A does not (Hibler, 1979). Together these equations describe the
advection of the ice in a given velocity field.

The momentum equation used is (Connolley et al., 2004)

0= A(F) + 7o) —mfk x —mgVH -V - 0. (2.3)

Here k is a unit vector normal to the surface, T, and 75, are air and water
stresses, f is the Coriolis factor, g is the gravitational acceleration, VH is
the gradient of the sea surface height and o is the sea ice stress tensor. The
last term on the right hand side; V - o, describes forces due to internal stress
while the other terms are all external factors. Hibler (1979) included the
material derivative Dm /Dt on the left hand side, but that has been set to
zero here. This simplification will be discussed further in chapter 3. The
momentum equation is solved using a semi-implicit approach described in
section 2.2.1.

Wind and water stresses are modelled as quadratic drag (McPhee, 1975);

Ta = pacda|17a|f(7a (24)
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T = puClaw|¥ — Tu| (5 — T) (2.5)

where Cy4y and Cy, are drag coefficients, py, and p, are air and water
densities and ¥, and v, are the near surface water and wind velocities.
This assumes that the wind velocity is much larger than the ice velocity;
i.e. that |U—u,|~|U,|. The drag coefficients are assumed to have the val-
ues Cga = 1.2 x 1073 (Hibler, 1979, Tremblay and Hakakian, 2006) and
Cqw = 5.5 x 1073 (Hibler, 1979, Woods Hole Oceanographic Institution,
2010).

The last term in equation (2.3) is the force due to the divergence of
the internal stress tensor o. Stress and strain rate (and thus ice velocity)
are related through the sea-ice rheology, but the correct definition of the
rheology is a central point in sea-ice dynamics research. Sea-ice rheologies
will be discussed in detail in section 2.4.

2.2.1 Time stepping of the momentum equation

In his paper Hibler (1979) described a method for solving the momentum
equation. This method consists of two separate solutions to the linearised
version of the equation. First the viscosities needed to linearise the non-
linear term V - o are calculated. For this the velocities from the previous
time step are used. The Coriolis term must also be calculated using velocities
from the previous time step. Once the viscosities have been calculated the
equation can be linearised and solved using a linear solver.

However, since velocities from the previous time step are used to cal-
culate the viscosities and the Coriolis term this solution is not exact. To
address this Hibler added a single pseudo-time step so that during each
model time-step the momentum equation is solved twice. The first time it
is solved using the velocities from the previous time step to calculate the
semi-implicit terms as described earlier. This is the pseudo-time step. The
final solution is then found by using the velocities from the pseudo-time step
solution to calculate the semi-implicit terms and solving the linear equation
again.

On closer consideration it is not immediately clear how much improve-
ment a single pseudo-time step makes, but Hibler (1979) cites stability rea-
sons for using a pseudo-time step at all. In general using too few pseudo-time
steps means that the ice internal stress depends more on the previous time
step than the current one. Consider, for instance a uniform block of station-
ary ice subject to no forcing. In this case the internal stresses are zero. Now
let a sudden increase in wind forcing compress the ice. Using no pseudo-time
steps the ice will compress considerably during the first time step, since the
internal stresses are based on the previous time step and are therefore zero.
Conversely, if a steady wind has been blowing but then suddenly slows down
internal stresses in the ice will cause it to expand when the wind slows. Such
an “overreaction” to changes in the forcing may cause instabilities. It is also
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possible that they may prevent fast ice formation or cause the fast ice to
break up early.

Lemieux and Tremblay (2009) showed that for a 10 km resolution model
one pseudo-time step is far from being sufficient to reach an acceptably
accurate solution and they suggest using between 200 and 1000 pseudo-time
steps, or outer-loop iterations, using their nomenclature. What is considered
to be an “acceptably accurate solution” will be discussed in more detail
below.

The algorithm used here is based on the one presented by Lemieux and
Tremblay (2009). They use a general minimum residual method to solve the
linearised problem while here a successive over relaxation method is used.
This results in some minor differences in focus. The implementation of the
outer-loop solver used here is as follows:

for k =1 to nor, do
Calculate viscosities based on 7+~
% « solution to the linear system (using an SOR. solver)
if £ > 1 then
T — (0F + 751 /2
end if
e — max(|uf — uF71, ok — vFL)
if € < ep1, then
exit loop
end if
€ESOR < Q€
end for
€soR + max(eor, [uF —u|, |[vF —2°|)

First of all this algorithm assumes an upper limit on the number of
outer loops, nor,. This is necessary since the condition € < epr, may not
be met within a reasonable number of outer loops. Here ¢ = 107* m/s,
which is a somewhat stricter definition of convergence than Lemieux and
Tremblay (2009) suggest. They require that no more than 1% of ice-covered
cells have outer-loop errors larger than eor, = 10~ m/s, while the current
definition demands that every cell meets the convergence condition. Section
4.4 will discuss more closely what value for nor, should be used in the Kara
Sea model, as well as outlining the model’s convergence properties in more
detail.

Viscosities are calculated based on the chosen yield curve and the yield
curves considered here are discussed in section 2.4. When k = 1 velocities
from the previous time step, ©°, are used.

The SOR solver is a basic tool, which will not be discussed in detail here.
An important point, though, is the exit condition for the SOR solver. In
this implementation the SOR solver is considered to have converged when
the maximum change in velocity between consecutive SOR steps is less than
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esor. In traditional SOR implementations egor is a constant, but here it is
always proportional to the outer-loop error, with a constant of proportion-
ality @ = 1/10. For the first SOR solve the outer-loop error is unknown and
so the maximum velocity difference between the two previous time steps is
used. Using a variable exit condition both increases stability of the method
and also vastly decreases the computing time, compared to using a con-
stant egor. Using this approach the first few outer loop iterations may be
considered as preconditioning steps.

The matrix constants of the SOR method are recalculated during each
outer loop and for completeness the equations for these are included here.
Firstly the SOR iterates as

while max(r*,r") > esor do
r% «— e"uig + whu_19 + n%ugr + s“ug_1 + ctugy — b
u—u—wrt/c"
r¥ «— euig + wlu_10 + nugr + sYup_1 + cvgy — b?
ve—v—wr’/c
end while
where w €]1,2[ is the over-relaxation constant, ugy = ;j, U11 = Uit1,j+1
etc. and e is a short hand for ef, etc. The above pseudo-code omits to in-
clude a maximum on the number of SOR iterations, the appropriate masking
which prevents division by zero and the checker board scheme that’s used
in the actual implementation (see e.g. Press et al., 1992). The matrix con-
stants, appropriate for all formulations except the granular model (which
is discussed in section 2.4.3) follow. For the appropriate constants for the
granular model any occurrences of P/2 are simply replaced by P and ( is
set to zero.
For the u-component the constants are:

¢ =7l + (Cro + Coo + Mo + noo) /Az® + (150 + ng’ 1)/ Ay? (2.6)
n" = —nfh/Ay? (2.7)
st = —77(])371/AZ/2 (2.8)
e = —(Cio + mo)/Az® (2.9)
w" = —(Goo + 100)/ Az (2.10)

and

b = uaTy + Uy Ty + (mfv)" + m*g(Hio — Hoo)/ Az — (Pio — Poo)/2Ax
+ [(¢10 — m10) (vi0 — vi—1) — (Coo — M00) (Voo — vo—1)
+160(vio — voo) — g1 (vi—1 — vo—1)]/AzAy. (2.11)
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For the v-component the constants are:

! =7+ (160 + 1210)/ Ax* + (Cor + Coo + 101 + 100) / Ay (2.12)
n” = —(Co1 + m01)/Ay? (2.13)
s” = —(Coo + M00)/ Ay? (2.14)
eV = —nb /Az? (2.15)
w’ = —nP,/Az? (2.16)

and

b = vaty + vy, — (mfu)” +m”g(Hor — Hoo)/ Ay — (Po1 — Poo)/2Ay
+ [(Co1 — m01) (w01 — u—11) = (Coo — 700) (100 — u—10)
+ U(%(U(n - U(]o) - n?lo(u_n — u_lo)]/A$Ay. (2.17)
The model is solved on a C-grid where the velocity points are situated
at i+1/2 and j+1/2. The Coriolis term must therefore be calculated using

mfu in the v point and m fv in the u point, which is written as (mfu)? and
(mfv)* respectively. The surface stress terms are

Tae = PwCaw|T — | (2.18)
T; = paCda’6a| (2.19)

and they should be calculated on the u point when calculating the u-com-
ponents and on the wv-point for the v-component. In addition it greatly
simplifies the equations to first calculate n also on the B-grid, shown here
as nB. This means that 4n§10 = noo + Mo1 + N—-11 + N—10 and 477(])30 = 1Mo +
711 + 7Mo1 + Too-

2.3 Thermodynamics

We have already mentioned how sea ice may effect the ocean and atmo-
sphere, as well as any exchange between the two. Most of these effects
should in essence be modelled within the thermodynamic portion of a sea
ice model, the dynamic part only coming into play when wind or ocean cur-
rents transport the ice and thus changing its thickness distribution. The
relative importance of thermodynamics led early investigators to try mod-
elling sea ice in a global context using only very limited (or no) dynamics
and focusing on thermodynamics (see e.g. Bryan et al. (1975), Washington
et al. (1976), Manabe et al. (1979)). These models were relatively success-
ful at the time but today a thermodynamics-only approach is considered
insufficient.

The first truly successful thermodynamic model of sea ice was compiled
by Maykut and Untersteiner (1971). This is a one dimensional model which
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describes the thermodynamical growth and melt of a snow covered sea-ice
slab due to prescribed external forcing. The model was very successful in
describing the seasonal variations of sea-ice thickness. The Maykut and
Untersteiner (1971) model is of course not perfect and Ebert and Curry
(1993) made some noteworthy improvements to it. Further steps towards
a detailed understanding of sea ice thermodynamics on a small scale have
been made (see e.g. Feltham et al. (2006)), but the focus here is on the
simplified thermodynamic models which have resulted and are applicable to
coupled model experiments.

Such a model was first introduced by Semtner (1976) and it remains a
popular choice among modellers. Semtner (1976) made a number of sim-
plifications to the model proposed by Maykut and Untersteiner (1971)—the
most important of which is a greatly reduced number of vertical layers in the
ice. Maykut and Untersteiner (1971) modelled the heat conduction through
the ice using a grid with a constant vertical spacing of 10 cm while Semt-
ner (1976) used a grid with a variable vertical spacing. He showed that his
model gave good results with only three grid points, one in the snow layer
and two in the ice. Fewer points are needed when modelling thin ice.

For very thin ice Semtner (1976) suggested using a “zero-layer” model
that only predicts the snow thickness, ice thickness and the surface temper-
ature. He also noted that users strained for computational resources could
use the zero-layer model alone when running climate simulations. With a
few adjustments in the parametrisation Semtner (1976) could reach remark-
ably good results using the zero-layer model, given the model’s simplicity.
He did however note that the zero-layer model would not be well suited
for climate studies and reiterated this conclusion in a later paper (Semt-
ner, 1984). Despite these warnings the zero-layer model remained a popular
choice in climate modelling and the model is still widely used today.

More advanced thermodynamic models for use in coupled modelling
studies have of course been developed since the Semtner-model. These
include for example the models by Bitz and Libscomb (1999), Ukita and
Martinson (2001) and Huwald et al. (2005). In their model Bitz and Lib-
scomb (1999) focus on solving the energy imbalance present in the previously
mentioned models due to inappropriate treatment of internal brine-pocket
melting. Ukita and Martinson (2001) and Huwald et al. (2005) focus on ways
to improve the modelling of processes within the ice. Ukita and Martinson
(2001) propose a multilayer model which determines the optimum number
of levels for each time step while Huwald et al. (2005) propose a multilayer
sigma-coordinate model. These latest improvements in modelling of the
thermodynamics of sea ice are likely to result in considerable improvements
in the sea ice component of global climate models.

Most of the problems being addressed by latest thermodynamic models
are of little concern here, where our main goal is to model fast ice and flaw
polynyas. The thin ice forming out of polynyas can be adequately described
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using a Semtner zero layer model, although the transition from frazil ice to
level ice is poorly parametrised in most ice models. This will be addressed in
more detail in chapter 3. The fast ice is fairly thick first year ice which could
probably be modelled using a zero layer model, although a three-layer model
would be preferable. A three layer model, with variable albedo should give
a good simulation of the ice growth and melt, which are of main concern
here. Other concerns, such as imbalance in energy and the lack of proper
salt content formulation are of minor importance and are ignored.

In the three layer Semtner model the ice is modelled using two model
layers and the snow is modelled in one model layer. The temperature in
each layer is governed by the one dimensional heat equation;

orT 9T
(PC)iss 57 = ks g (2.20)

where (pc); = 1.88 x 105 J/m?/K is the heat capacity of ice, (pc)s = 6.90 x
10° J/m? /K the heat capacity of snow, k; = 2.03 W/m/K is the conductivity
of ice and ks = 0.310 W/m/K the conductivity of snow. These values are
adopted from Semtner (1976).

Additionally the three layer model includes an energy reservoir for col-
lecting the penetrating solar radiation. In reality penetrating solar radiation
initiates melting of high salinity patches within the ice, before the surface
starts melting. This has the effect that brine pockets within the ice grow
larger, but they remain trapped in the ice until considerable amount of
melting takes place. These brine pockets may be considered to represent a
storage of energy not yet used to melt the ice.

This behaviour is simulated in the model using a simple energy reser-
voir. The energy in the reservoir is used to prevent the temperature of the
uppermost layer from dropping below the freezing point. Semtner (1976)
prevented the reservoir arbitrarily from accumulating more than 30% of the
heat needed to melt all the ice. According to him the net effect of the reser-
voir is that penetrating solar radiation does not cause immediate surface
melting in summer while internal cooling in the fall is retarded.

The model implementation here follows Semtner (1976) very closely and
for further detail the reader is directed to the original publication. One
notable exception, however, is the treatment of thin ice. If the layer thickness
falls below a critical threshold the numerical method becomes unstable and
the number of layers is reduced by one. This means that the three layer
model can be any combination of zero to two layers of ice and zero or one
layer of snow. The critical threshold depends on the model time step so that
the grid box thickness cannot fall below \/2ksAt/(pc)s ~ 2.3 cm in the snow
and \/2k;At/(pc); = 3.6 cm in the ice, with At = 600 s, an appropriate time
step for 10 km horizontal resolution.

The thinnest ice a two (ice) layer model can simulate is therefore ap-
proximately 5 cm thick. If we were to use an 8-hour time step, like Semtner
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(1976) did the thinnest allowed grid thickness in the ice would be 25 cm
and so we assume the zero layer model can be safely used for all ice thinner
than that. We can therefore use the two layer setup until the ice becomes
approximately 5 cm thick and then switch directly to a zero layer model. In
fact for any time step shorter than 2 hours the two layer setup can be used
for ice thicker than 25 cm. This simplifies the model formulation somewhat.
We'll see later that it also makes sense to demand that the ice is never much
thinner than somewhere between 5 and 10 cm and so, for short time steps,
there is no need for switching to a zero layer model as the ice melts.

The models suggested by Semtner (1976) were stand-alone ice models
with prescribed forcing. In a coupled model some additional considerations
come into play. First of all Semtner (1976) prescribed a constant oceanic
heat flux, but in a coupled model this should be calculated based on the
ocean state. The oceanic heat flux (Qo;) is calculated using the bulk formula

Qoi = oipoco<Tf - To)‘ﬁi - ﬁW’/H, (2-21)

where Cy; is the sensible heat transfer coefficient, p, is the ocean density, ¢,
is its heat capacity, H is the thickness of the surface ocean layer, T} is the
freezing temperature and Ty, is the ocean temperature. Finally |0 — | is the
speed of the water flow relative to the ice speed. The freezing temperature
of sea water Tt is calculated using the relationship

Tt = So(ca + /' So + €cSo) (2.22)
where S, is the ocean surface salinity, ¢, = —0.0575, ¢, = 1.710523 x

1073 psu=1/2, ¢, = —2.154996 x 10~* psu~! (Millero, 1978).

Surface fluxes in Semtner (1976) were prescribed depending on the month
of the year. In the current model the surface fluxes are calculated based on
the 2 m temperature, cloud cover, wind speed and relative humidity given
by the forcing data. The incoming short wave radiation is supplied by
the ocean model thermodynamics routines, but other fluxes are calculated
using the equations of Idso and Jackson (1969) and Liu et al. (1979). The
implementation of these calculations is the same as in Giinzel (2003). Using
these formulations the change in surface temperature (7g) is ATy, where

OF; (1 — as) Fow — ks 7T°_,?S/_2ATS snow covered
ZFj+ATSZ - T T AT
r r T (1 —y)(1 —1Ip)Fyy — kis=gg=  else,

(2.23)
and Fgy is the incoming solar radiation, ag and «; are the snow and ice
albedos, respectively, I is the fraction of penetrating short wave radiation,
F}; denotes the long wave radiation and the sensible and latent heat fluxes
and Tj is the temperature of the snow layer while 77 is the temperature of

the uppermost ice layer.
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Semtner (1976) also prescribes ice and snow albedos that change de-
pending on the month of the year. In the current model a varying albedo is
used, based on the albedo scheme of the NCAR Community Sea Ice Model
(Briegleb et al., 2004), in which the albedo depends on spectral band, snow
thickness and surface temperature. The total surface albedo may range from
0.83 for dry snow to 0.48 for melting and bare ice. For a detailed description
of the scheme the reader is referred to Briegleb et al. (2004).

Finally advection of ice must be taken into account and it is important
to advect heat rather than temperature. This cannot be done for the surface
temperature, so it must be calculated by iterating equation (2.23) a suffi-
cient number of times. The initial condition for this iteration should be the
prescribed 2 m temperature. In the current implementation the iteration
continues as long as the change in surface temperature between successive
iterations is greater then 107* K.

Ice formation in open water is modelled in a relatively simple fashion,
based on the formulation by Hibler (1979). In reality, when the temperature
of the ocean surface falls below the freezing point frazil ice forms. The ice
model simply assumes this ice is immediately transported to the surface
forming a layer of thin ice. No frazil ice is formed in deeper layers of the
ocean model. The amount of ice formed is calculated from the energy needed
to bring the ocean surface from its supercooled state to freezing, i.e.

Qow = pocoH (Tt — T5). (2.24)
The amount of ice formed in the open water is then
Ahow = QOW; (225)
Pidi

where ¢; and p; are the latent heat of fusion and density for sea ice respec-
tively.

These changes in h now need to be related to the continuity equations
(2.1) and (2.2) via the source/sink terms Sy, and S4. Deriving an equation
for Sy, is not difficult since it is a mass conservation formula. Assuming p;
is a constant, which is a reasonable approximation, this term can be written
out simply as

Sm = pilAAR + (1 — A)Ahgyl, (2.26)
where Ah is the change in level ice thickness. Another mass conservation
equation that should be kept in mind is that of salt flux to and from the

ice. In the model no freshwater flux is associated with ice melt, only salt
flux and so the change in ocean salt contents during one time step is simply

Sm
poH — Sm’
where S, is the salinity of the surface ocean layer and S; is the (constant)
ice salinity.

AS = (S, — Si) (2.27)
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It is, however, not possible to derive an equation for S4 in such simple
terms and the equation for it must be empirical. Two common methods
for calculating S4 are due to Hibler (1979) and Mellor and Kantha (1989).
Hibler devised his method using fixed thermodynamic growth rates instead
of calculating Ah and Ahgy, but the resulting equation is the same;

Sa = (1—A)max(Ahow,0)/ho + Amin(Sy,,0)/2m, (2.28)

where hg is the demarcation thickness between thick and thin ice, also known
as the lead closing parameter. To see how this equation works we will now
consider the two obvious cases of freezing and melting.

When freezing Ahoy > 0 and S, > 0 so equation (2.28) becomes simply

Saho = (1 — A)Ahgy. (2.29)

This means that the new ice covers an area S4 so that its thickness is greater
than or equal to hg. Hibler (1979) states that hg should be chosen to be small
compared to mean ice thickness but large enough so that heat flux through
ice with thickness hg is substantially less than through open water. Based on
this and an idealised experiment, he chooses hy = 0.5 m for a pan-Arctic sea
ice simulation. In contrast Bjornsson et al. (2001) used hy = 0.3 m in their
polynya simulation. They argued that hg should be considered a measure of
the thickness of the initial ice forming in the polynya and that the thickness
of pancake ice would be a good measure of that, giving 10 cm < kg < 30 cm.
They noted also that a higher value of hg is needed for a proper simulation of
the seasonal cycle of the central Arctic. It appears therefore that this simple
model is not able to model both the central ice pack and the marginal ice
zone. This is of little concern here since the focus is on the marginal ice
zone and first-year ice, but the choice of hg remains difficult.

When the ice starts melting Ahqow = 0 and .S, < 0 and following Trem-
blay and Mysak (1997) we let incoming heat flux warm the ocean. Hibler
(1979) stipulates that the ocean should stay at freezing while ice is present
and calculates a negative Ahgy, which then contributes to the melting of
the ice through S,,. But, as Tremblay and Mysak (1997) point out, incident
energy warms up the mixed layer, despite the presence of ice so allowing the
ocean to warm up beyond T} is more realistic.

During melt equation (2.28) then becomes

Su = ASp/2m = AAh/2h. (2.30)

The reasoning behind this formulation is as follows: Let us assume that
the ice thickness in the grid box is uniformly distributed between 0 and
2h and all the ice melts at the same rate. Then at time At all ice that
is thinner than Ah will have melted away creating open water. Having
assumed uniform distribution this means that the open water now covers
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an area equal to AhA/2h, giving the sink term Sy in equation (2.30). This
assumption works very well for most situations, but not for land-fast ice. If
one uses equation (2.30) for fast ice one may expect that the fast ice starts
breaking up as soon as melting begins.

Another approach to calculating S4 is due to Mellor and Kantha (1989).
They formulate S as

SAzéu—Aﬁ%lAa (2.31)

pigih
where ® is an empirically determined function. This equation describes both
melting and freezing and the ocean surface temperature is therefore kept at
freezing as long as there is ice in the grid cell. Mellor and Kantha (1989)
differentiate between melting and freezing by giving ® different constant
values;

dp=4  if Qo <0
@:{F if Qow < (2.32)

®p = 0.5 otherwise.

To better understand the difference between the two approaches we first
compare the two during freezing. We can easily recover equation (2.29) from
equation (2.31) by setting ®p = h/hg, which gives hg = h/®p. Equation
(2.31) therefore states that during freezing the newly formed ice will have
a thickness equal to h/®p. This means that when ice forms in a grid cell
that had no ice before this cell will become fully covered with thin ice. This
is reasonable under calm conditions, but wind and wave action will tend to
create streaks of ice leaving large areas of open ocean, despite continuous
ice formation in the area (Bjornsson et al., 2001, and refrences therein).
Under these conditions a constant hg gives better results. Ideally therefore
ho (or ®p) should be a function of at least wind speed and possibly ice
thickness and/or compactness. We are unaware of any studies regarding
such parametrisations, but in chapter 3 an attempt is made to parametrise
ho based on wind speed and ice thickness.

Mellor and Kantha (1989) handle melting somewhat differently to the
approaches by Hibler (1979) and Tremblay and Mysak (1997) in that open
water only forms due to negative QQoy and the ice thickness within the cell is
assumed to be constant. In the original implementation the ocean temper-
ature is kept at freezing while ice exists in the grid cell, the same as in the
Hibler (1979) model. It is, however, easy to modify the Mellor and Kantha
(1989) model so that the ocean temperature rises before all the ice is melted,
similar to what Tremblay and Mysak (1997) do.

To do this we note that if the ocean temperature is always kept at the
freezing point when ice is present then the oceanic heat flux in equation
(2.21) is always zero. All basal melt (Ahy,) that occurs in the model must
therefore be due to the negative Ahgy, in equation (2.26). If we allow the
ocean to heat up above the freezing point basal melt occurs because of the
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resulting oceanic heat flux and we can therefore replace (1 — A)Qow/(piqi)
in equation (2.31) with the total basal melt; AAh;. Equation (2.31) then
becomes Ah
Sy = @MATbAt. (2.33)
Compared to Hibler’s formulation in equation (2.28) this formulation is
much better suited for modelling fast ice. In this formulation no open water
forms unless the ocean temperature rises above the freezing temperature.
Under normal circumstances this does not happen unless there’s an opening
in the ice cover and incoming short wave radiation warms the water in that
opening. It is possible that the ocean be heated from below, e.g. by the
advection of warmer river water. In such a case it is not unreasonable to
demand that S4 remains zero as long as A = 1.

2.4 Rheology

Rheology is the study of the deformation and flow of matter under the
influence of applied stress. Mathematically the study of sea-ice rheology
revolves around finding an appropriate formulation for the stress tensor o
as a function of the applied strain rate €, sea-ice thickness, concentration
and possibly other parameters.

In the following sections we will discuss some viscous-plastic rheologies,
which have been the most widely used methods for modelling sea ice on
the large scale. The most common of these is without doubt the viscous-
plastic rheology of Hibler (1979) which is discussed in section 2.4.2; but
the granular model of Tremblay and Mysak (1997), the modified Coulomb
yield curve of Hibler and Schulson (2000) and the curved diamond yield
curve of Wang (2007) are also discussed. The discussion also includes new
derivatives of these yield curves, specifically designed to allow for tensile
strength necessary for land-fast ice modelling.

The first truly successful sea-ice rheology was the isotropic elastic-plastic
rheology, introduced in the AIDJEX sea ice model (Coon et al., 1974). In
it sea ice was described primarily as plastic material which deforms irre-
versibly once a critical stress state in the ice is reached. While the stress
is sub-critical, however, the ice is modelled as an elastic material which de-
forms under stress, but returns back to its original shape when the stress is
removed. Conceptually then the model describes a material which acts like
a stiff rubber sheet under sub-critical stress but breaks when the stress be-
comes too large. The critical stress threshold is in general a surface in stress
space but assuming isotropy allows it to be expressed as a (yield) curve in
the plane of the principle stresses o1 and o9 or through the stress invariants
oy and oy (which will be discussed in the following section).

A plastic description of sea ice is highly intuitive since the formation of
ice ridges and leads can obviously be described as an irreversible deforma-
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tion which occurs at a critical stress. The sub-critical elastic deformation
was however mostly chosen for mathematical convenience. A purely plastic
model does not allow sub-critical stresses to be calculated so it’s impossible
to decide whether the stress is critical or sub-critical. It is therefore nec-
essary to apply a different model for sub-critical stresses and Coon et al.
(1974) argued for an elastic response.

Hibler (1979) based his ice model on the AIDJEX model, except that he
replaced the elastic response with a viscous one. He also replaced the thick-
ness distribution of the AIDJEX model with a simple two class model as
described earlier. This model became the standard reference for sea-ice mod-
ellers, commonly known as “Hibler-type” models. In replacing the elastic
behaviour with a viscous one Hibler (1979) attempted to avoid complexities
involved in the elastic formulation and also to improve the model perfor-
mance in terms of computing resources. He chose an elliptic yield curve
because it gives a mathematically simple and numerically stable formula-
tion while also giving a reasonable representation of the physical processes
involved. This model is therefore often also referred to as a viscous-plastic
model with an elliptical yield curve.

In this model the ice is still modelled as a plastic for large strain rates,
but at smaller strain rates it becomes linearly viscous. Hibler (1979) argues
that this simulates the behaviour of a large number of jostling plastic floes.
A viscous-plastic model can however not maintain high stress without any
ice motion, like the elastic-plastic formulation can. So while ice subject to
sub-critical stress will remain stationary in the elastic-plastic model it will
flow very slowly, or creep, in the viscous-plastic model.

2.4.1 Yield curves of viscous-plastic rheologies

The viscous-plastic models discussed here are isotropic and thus have a yield
surface that is a curve in the {07, o1} plane, i.e. F (o1, oy, scalars) = 0. For
stresses inside the yield curve viscous deformation occurs, while for stresses
on the yield curve plastic deformation takes place. In addition a flow rule is
needed to determine the direction of the plastic strain rate.

Both plastic and viscous behaviour can be represented using the standard
(reduced) Reiner-Rivlin form of the stress tensor

oij = 2néij + [C — nlérpdi; — Pij /2, (2.34)

using the Einstein summation convention. Here ¢ and 7 are the non-linear
bulk and shear viscosities, P is a pressure term and € is the strain rate tensor

given by
. 1 8u2- 8uj

The viscosities may be functions of the strain rate € and some scalars rep-
resenting the ice state. In the following they always depend on the strain
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Figure 2.1: State of stress at a point in: a) model coordinates, b) principle
stress coordinates and c) stress invariant coordinates (figure from Tremblay
(1999)).

rate and hydrostatic ice pressure alone. The formulation of the viscosities
determines the shape of the yield curve.

Since the stress tensor is symmetric, it can be diagonalized with a pure
rotation of the coordinate axes. A certain rotation aligns the co-ordinate
axes with the so called stress invariant axes. The stress invariants can be
interpreted as the average normal stress at a point (o7) and the maximum
shear stress at that same point (or7). The stress invariants are:

1
o1 = 5(011 + 022) (2.36)

o = \/(011 — 0’22)2 + 40’%2. (2.37)

Another useful frame of reference are the principle stress axes. When aligned
with these the stresses acting on the rotated element are the maximum and
minimum normal stresses acting at a point. The shear stresses acting on
the rotated element vanish identically. The principle stress axes are related
to the stress invariant axis via:

01 =01 — 011 (2.38)
09 = 01 + O71. (2.39)

Figure 2.1 gives a graphical view of these three representations of the stress
tensor.

Similar to the principle and invariant stresses principle and invariant
strain rates can be defined. In the present context only the strain rate
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invariants are important, and they are:
€1 = €11 + €22 (2.40)

e = /(e — ém)? + 423, (2.41)

It is assumed that the invariant and principle axes of stress coincide with the
invariant and principle axes of strain. This means that where the average
normal stress and maximum shear stress occur, the average normal strain
rate and maximum shear strain rate will occur. Also, where maximum
(minimum) axial stress occurs, there the maximum (minimum) axial strain
rate will also occur.

2.4.2 Elliptic yield curve

In his 1979 paper, Hibler suggested a model where the viscosities are for-
mulated such that the resulting yield curve is an ellipse and that for typical
strain rates normal plastic flow applies. The chosen yield curve reproduces
basic sea ice characteristics, i.e. the ice is weak in tension, strong in shear
and strongest in compression. It is at the same time mathematically very
simple. The viscosities are given by

¢=P/2A and n=C_/e% (2.42)

where P is the hydrostatic ice pressure,

A=/} + e} /e (2.43)

and e is the ratio of the ellipse axes. It is clear that for small strain rates
the viscosity tends to infinity so an upper bound must be set for ¢ and 7.
Hibler (1979) chose the limiting values to depend on the pressure term as

Cimax = (2.5 x 10°® s) P, (2.44)
Thmax = Cmax/€2- (245)

In addition minimum values on ¢ and n were imposed to improve numerical
stability. Hibler (1979) chose
Cmin = 4 x 108 kg/s (2.46)
Nmin = Cmin/eQa (247)
arguing that this value is several orders of magnitude below typical strong
ice interaction values, effectively yielding free drift results.

Finally the pressure term itself must depend on the ice thickness and
concentration. The form chosen by Hibler (1979) was

P = Phexp(—C[1 — A]), (2.48)
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Figure 2.2: The first three yield curves discussed in the text plotted in
stress invariant space scaled against P (the principle stress axes are also
shown); the elliptic yield curve (solid line), the yield curve of the granular
model (dotted line) and the modified Coulombic yield curve (dashed line).

where P*, the ice strength and C are constants, h is the ice thickness and
A the concentration. The constants must be chosen empirically, but P* =
30 kN/m? and C' = 20 are common choices (Hibler, 1979, Hibler and Walsh,
1982, Feltham, 2008, Tremblay and Hakakian, 2006). Here C' = 30 and e = 2
are used based on Bjornsson et al. (2001) and Hibler (1979) respectively.

Ip et al. (1991) noted that this formulation for P gives non-zero stress
at zero strain rates, but this can be remedied by setting

P =2A(, (2.49)

and replace P in equation (2.34) with P’. This only has an effect when the
viscosity is capped via equation (2.47). Figure 2.2 shows this yield curve in
the {o1, 011} plane.

By way of further refinement Lemieux and Tremblay (2009) suggest using
a continuously differentiable form of the maximum and minimum conditions
in equations (2.45) and (2.47). They show that this improves the outer-loop
iteration convergence speed (see section 2.2.1) and suggest that it may pre-
vent the appearance of multiple solutions. The form Lemieux and Tremblay
(2009) suggest for ( is

P
2 AC-Hla,X

This form proved problematic when used in conjunction with the modifica-
tions of Konig Beatty and Holland (2010) (see section 2.4.5 and following

¢ = Cmax tanh < ) + Cmin- (2.50)
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sections) and a variation of it is used here, where A is capped in stead of (.
Using this approach

A = Apiy/ tanh __Buin (2.51)
\/EF + €2 /e?
where Apin = P/(2(max). We then calculate ¢ as
P
L 2.52
(=g +¢ (2.52)

This approach is equivalent to the one suggested by Lemieux and Tremblay
(2009) when using the unmodified ellipse, but suites the modified approach
by Kénig Beatty and Holland (2010) better.

Despite being probably the most widely used sea ice model the Hibler-
type model is not without faults. A notable flaw is the fact that the pressure
term can cause the ice to flow, even if there are no external forces acting.
This happens when there are no, or negligible winds and ocean currents
acting on the ice, but there exists however a thickness gradient in the ice
cover. This gets translated into a pressure gradient which causes the ice to
flow. Tremblay (1999) shows that the pressure gradient term is of the same
order of magnitude as the wind stress term for a 1 m thickness gradient over
100 km, compared to a wind speed of 10 m/s. It is also worth mentioning
that although the pressure term parametrisation in equation (2.48) gives
qualitatively reasonable sea ice strength little other justification has been
given for its precise form.

The shape of the yield curve can also be considered only a rough ap-
proximation to the correct yield curve. Many attempts have been made to
improve on this basic shape and the following sections contain descriptions
of a few such attempts. They range from applying well known physical laws
and experience from related fields (the granular model, section 2.4.3), to
using laboratory results (the modified Coulombic yield curve, section 2.4.4),
to using satellite images (the curved diamond, section 2.4.7).

2.4.3 Granular model

A somewhat different approach to the elliptic yield curve was suggested by
Tremblay and Mysak (1997), proposing a model based on a granular material
rheology. For deformation along a sliding line, the following failure criterion
(based on Coulomb’s friction law) must be met:

Ts = —ostan¢ + C, (2.53)

where ¢ is the macroscopic angle of friction, 74 and oy are the shear and
normal stresses acting on the sliding plane and C' is the cohesive strength.
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Tremblay and Mysak (1997) set C' = 0 arguing that at the coarse resolution
their model was to be applied to sea ice has no cohesive strength.

This yield criterion is equivalent to dynamic friction between two dry
surfaces where the frictional force is proportional to the normal force. The
constant of proportionality is the coefficient of friction tan ¢. For stress ratios
—7s/0s < tan ¢ the ice behaves like an elastic solid and for —75/0s = tan ¢ it
flows like a fluid. Equation (2.53) can also be written in terms of the stress
invariants as

o = —orsing + C'. (2.54)

The resulting constitutive law has the same form as the constitutive law
in equation (2.34) with ¢ = 0 and P/2 replaced by P;

Oij = 2NEij — Nékkdij — Py (2.55)

The value of n, which here should be referred to as the coefficient of friction,
is given by

P
p= 250 (2.56)

1l
The ice pressure P = —oy is then found by perturbing the last known

solution to the momentum equation so that the resulting velocity fulfils the
equation:
€1 = € tand, (2.57)

where § is the angle of dilatency. Section 2.4.3 discusses the pressure term
solver in more detail. The pressure is therefore only related to ice thickness
and concentration through the upper limit set on it;

Prax = P*hexp(C[1 — A)), (2.58)

analogously to equation (2.48). Equation (2.57) and the momentum equa-
tion are both solved inside a single outer loop, equation (2.57) being solved
first. Since there is potentially some difference between the result of the
two solutions a larger number of outer loop iterations is needed than when
integrating a Hibler-type model. The resulting yield curve is shown in figure
2.2.

Since ¢ = 0 the granular material rheology has the form of an incom-
pressible Newtonian fluid with non-linear shear viscosity. Compressibility is
however present in the model since the pressure term has a maximum value
of Ppax. For small strain rate values the coefficient of friction, 1, must also
be set to a constant value Mmax resulting in a viscous behaviour of the ice
under those conditions.

It is worth noting here that Tremblay and Hakakian (2006) showed that
using the same ice strength parameter, P* for the granular model and the
ellipse will result in differences in ice strength under isotropic compression.
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For given ice strength under isotropic compression, p*, the ice strength pa-
rameter P* should take the values

2/(1++/1+1/e?) for ellipse
P*=p*¢2/(1 —kr++/(1+1/e2)(1+kr)2) for cohesive ellipse
1/(1 4+ sin¢) for granular model.
(2.59)
Note that the eccentricity plays a role here, as well as the angle of friction,
¢ and the cohesion parameter, kr (see section 2.4.5).

For e = 2, P*/p* ~ 0.94 for the ellipse while for ¢ = 30° (as suggested
by Tremblay and Mysak, 1997) P*/p* = %, so this is worth considering if
the two yield curves are to be compared. Initial tests showed that when
comparing different rheologies p* is the relevant parameter with respect to
ridging in the model, not P*. This scaling is always applied in the model.

We note here also that the modified Coulombic yield curves and the
trimmed ellipse (see section 2.4.4, 2.4.6 and 2.4.8) scale like the ellipse (with
cohesion) and that the curved diamond (see section 2.4.7) requires no scaling.
In the experiments conducted here p* is set to p* = 37.5 kN/m?, based on
Tremblay and Hakakian (2006), unless otherwise stated.

It was mentioned earlier that the construction of ice pressure in Hibler’s
model in equation (2.48) can cause ice movement in absence of any (other)
forcing. This situation is rectified here since the ice pressure is calculated
based on the ice velocities and the angle of dilation. This is probably the
most important difference between the two models. Unfortunately this also
means increased computation time and complexity in the model code since
the ice pressure must be solved iteratively and the pressure and momen-
tum equations must be solved repeatedly until the solution converges. The
increased numerical cost is probably the main reason this model has seen
much less adoption than the Hibler (1979) one.

Pressure term solver

In the granular model the pressure term is calculated using an iterative
solver, not a simple analytical formula as in Hibler (1979). As a result the
model has higher computational requirements and worse outer-loop conver-
gence than the Hibler-type models. Following is a short description of the
pressure term solver. It differs from the one in Tremblay and Mysak (1997)
in that it uses an SOR solver, instead of a Gauss-Seidel method and that
the target solution accuracy is variable, similar to the way the momentum
equation is solved (see section 2.2.1). Additionally, the C-grid Tremblay and
Mysak (1997) use has the velocity points at ¢ —1/2 and j — 1/2, but on the
current grid these points are at i + 1/2 and j + 1/2. Tremblay and Mysak
(1997) also use the free drift solution as a starting point for their iteration
while here we use the solution from the previous time step. This is more
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appropriate for the much shorter time step used here. Finally we assume
zero degree turning angles, appropriate for a coupled model.

To solve the pressure equation the previous solution (from the previous
time step or the previous outer loop iteration) is perturbed until equation
(2.57) is fulfilled. In particular we are looking for a perturbed solution
U, = U+ v and P, = P+ P’ to the momentum equation so that both
{Up, P,} and {7, P} are solutions to that equation. Inserting {o}, P,} into
the momentum equation and assuming the Coriolis terms and frictional
terms (i.e. the terms in V - o not dependent on P) are constant we can
subtract the unperturbed state giving:

puwCawl|T — Ty|7 = VP, (2.60)
assuming that |0 — Uy| = |0, — Uy|. This can then be substituted into
equation (2.57) resulting in

- VP
V| ——=——= | =¢ntand — <, 2.61
(prdW|U_UW|> ( )

where €1 and £p7 are calculated using .
Rewriting equation (2.61) using finite differences the pressure perturba-
tion can be calculated as

) . : 1 [1 1 1 [1 1\ !
Ro=wtentons—a) (5 |+ o] * 57 [t a))
(2.62)
where ( = pwCqw|U — Uy| with the superscript v and v denoting that ¢
is to be calculated in the u and v point, respectively and w €]1,2[ is the
over-relaxation parameter. Using w = 1.5 reduces the number of iterations
needed by about factor 10, compared to the Gauss-Seidel solver. Here we’ve

used the same notation as in section 2.2.1, where by Py, = P}, Py =
P! etc. Note also that the solution must be bounded so that Ppig, <

i.j+1
P+ P’ < Pax, where Py, is calculated using equation (2.58). For cohesive

strength (i.e. o1 > 0) one can set Ppyin < 0, but Tremblay and Mysak (1997)
assume Ppin = 0.

Once the pressure perturbation has been calculated the velocity pertur-
bation is calculated using equation (2.60), i.e.

Pl _P/
' 00 / 00
= =Y 2.63
Uoo AxCi U_10 N ( )
Pl _P/
vg 0 o —0 (2.64)

= Vg = .
0 Az, 0-1 Ax(§

The resulting perturbation quantities are then used to calculate updated

pressure and velocity fields for the next step of the iteration; i.e. 7Ft! =



28 CHAPTER 2. MODEL DESCRIPTION

7% +¢" and P**t! = P*4+ P’. These iterations are continued until the pressure
perturbation term becomes sufficiently small. This target is assumed to be
ep = P*egor, where egor is recalculated after each outer loop iteration (see
section 2.2.1).

2.4.4 Modified Coulomb yield curve

We now discuss a model which can be thought of as a combination of the vis-
cous plastic model of Hibler (1979) and the granular model of Tremblay and
Mysak (1997). This model uses a so-called modified Coulomb yield curve,
first set forward by Hibler and Schulson (2000) when studying anisotropic
approaches to sea ice modelling, but later used in a large scale, isotropic
model by Heil and Hibler (2002). This yield curve is based on brittle frac-
ture paradigm for sea ice failure on large scale. It can be argued that with
this fracture view the behaviour of failure should be similar at small and
large scales (Heil and Hibler, 2002, and references therein). Therefore the
yield curve of Hibler and Schulson (2000) can be used at large scales, even
though it is based on laboratory data.

The curve gives friction-based failure up to a limiting compressive stress
while for higher stresses ridging occurs. This limit is set at pure shear
deformation, in accordance with the results of laboratory experiments. The
yield curve also includes a small amount of tensile stress.

The modified Coulomb yield curve is shown in figure 2.2. Although this
curve is referred to as modified Coulombic it can just as well be thought
of as a modified ellipse which, when considering the actual formulation, is
perhaps a more instructive way of thinking about it.

Consider an elliptic yield curve as described in section 2.4.2. Now de-
mand that for low stress the yield curve be Coulombic, not elliptic. Hibler
and Schulson (2000) achieve this by setting

n = min(¢/e*,m), (2.65)
where Iy 2e
_ o= a6er
m = Ben (2.66)

with ¢ = 1.8 and § = 1.4. In addition they use a smaller axes ratio of
e = v/1.91716. This gives the desired Coulombic shape for low stress seen
in figure 2.2. Additionally, to ensure that there is no stress at zero strain
rates Hibler and Schulson (2000) set

P = 29A(, (2.67)
with v = 0.91 and replace P with P’ in equation (2.34), which then reads

0ij = 20éij + [C — nléwkdij — P'/2. (2.68)
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Since v < 1 this also gives cohesive strength under isotropic divergence.
There are no lower bounds for the values of { and 7, unlike in the
elliptic formulation, and the upper bound used is considerably lower or
Cmax = (10° 8) P, instead of (max = (4 x 108 s)P, used for the ellipse. Being
relatively new this formulation has seen very little adoption, but it does
show promise being numerically efficient like the elliptic formulation, while
retaining the physically reasonable Mohr-Coulomb triangle shape for low
stress. It does, however, use the same ice pressure parametrisation as the
elliptic formulation and is therefore susceptible to problems due to it.

2.4.5 Cohesion

Since the main goal here is to model land-fast ice it is necessary to consider
yield curves that describe ice which has some cohesive strength. In the
following sections we will consider three yield curves, especially created to
test the modelling of land-fast ice. Each one is based to some extent on
previously published work, but the modifications made here are aimed at
improving the model behaviour when simulating cohesive strength in ice.
These yield curves (along with the elliptic yield curve) are used in a realistic
setup in chapters 5 and 6.

Cohesion exists in a model whenever the modelled stress lies at a point
where oy is positive. As figure 2.2 shows this may happen when using
either the elliptic or the modified Coulombic yield curves. In the case of
the elliptic yield curve cohesion only exists as long as o9 is positive definite;
i.e. as long as there is compression along the axis that is orthogonal to the
axis of maximum divergence. At isotropic divergence the elliptic yield curve
has no cohesive strength. The modified Coulombic yield curve on the other
hand also possesses cohesive strength under isotropic divergence.

The elliptic yield curve should therefore be considered a “cohesive yield
curve”, even though it does not allow for cohesion under biaxial divergence.
In fact Dumont et al. (2009) show that the elliptic yield curve can be used
to model ice bridges in a limited fashion, precisely because of its cohesive
properties.

The granular model can also be easily modified to include cohesion.
This is done by allowing P to take on negative values when solving equation
(2.57). This results in positive values for o1 and hence cohesive strength.

The most feasible way of including cohesion under biaxial divergence in
a Hibler-type model is probably the one suggested by Konig Beatty and Hol-
land (2010). They derive a simple formulation which adds cohesive strength,
T, to the ellipse used by Hibler (1979), effectively stretching it so that it
reaches the positive side of the o1 axis. The parameter T is then a measure
of the cohesive strength under isotropic divergence. Such a shape is attained
by simply replacing P in equations (2.42) with P + T and with P — T in
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equation 2.34, which then read
C(=(P+T)/2A and n=(/e?, (2.69)

and

oij = 2néij + [C — n]érrdi; — (P —T)di5/2. (2.70)

In addition, Koénig Beatty and Holland (2010) assume that the cohesive
strength is proportional to the compressive strength and refer to the constant
of proportionality as k7 = T/P. In their idealised setup Konig Beatty and
Holland (2010) assume that k7 = 1, citing Tremblay and Hakakian (2006)
who estimate 0.5 < k7 < 0.8.

2.4.6 A flexible modified Coulombic yield curve

The approach of Kénig Beatty and Holland (2010) is interesting in itself,
but it also allows for a redefinition of the modified Coulombic yield curve in
more flexible terms. The modified Coulombic yield curve may be considered
primarily a modification of the elliptic yield curve, replacing the elliptic
shape with a linear one for o1 > —P/2. To simplify the following we note
that equation 2.42 may be rewritten in terms of the invariant stresses and
strain rates via equations (2.36), (2.37) and (2.70) as

o1 = Cér — (P —T)/2 (2.71)
o1 = NETL- (2.72)

Using this notation it’s easy to derive the Coulombic part of the modified
Coulombic yield curve as the line (cf. equation (2.53))

g1 = —(UI — T) sin qb, (2.73)

where ¢ is again the macroscopic angle of friction. Now, since o1 = népp we
have:

(o1 — T')sin¢

m=— : (2.74)
€11 .
_(PHT)2=Crg (2.75)
ETI

for the Coulombic part of the yield curve.

Hibler and Schulson (2000) demand that the transition between the el-
liptic and Coulombic parts of the yield curve takes place at pure shear
deformation of the ellipse. In accordance with the normal flow rule the plas-
tic strain rate is normal to the yield curve and since the principle axes of
stress and strain rate coincide, pure shear occurs when this normal is paral-
lel to the o1 (and €q7) axis. This happens at the centre of the ellipse, where
or = —(P —T)/2 and oy = (P + T)/(2¢), since e is the ellipse axis ratio.



2.4. RHEOLOGY 31

If we equate this value for oy with oyr from equation (2.73) and plug in the
value for o1 we get

P+T
= 2.76
o= (2.76)
= —(o1—T)sin¢ (2.77)
P+T
_ ‘; sin ¢, (2.78)
which gives
e=1/sin¢. (2.79)
This also ensures that the yield curve is continuous.
The resulting equations for the shear and bulk viscosities are
(=(P+T1T)/2A (2.80)
P+T)/2— (¢
7 = min <¢ sin? ¢, (P + ?/ Gl gin qS) , (2.81)
€1

where
A =/} + &} sin® . (2.82)

Using this flexible modified Coulombic (FMC) yield curve allows for easily
adjusting both the angle of friction and the amount of cohesive strength un-
der isotropic divergence. The yield curve is non-associated for the Coulombic
part, with the plastic potential set by the ellipse.

2.4.7 Curved diamond yield curve

A recent addition to the number of possible yield curves is the curved di-
amond yield curve suggested by Wang (2007). This curve is derived based
on observations of so-called linear kinematic features (LKF) and is of spe-
cial interest here since it includes cohesive strength as a direct result of the
methodology used. Wang (2007) shows that the shape of the yield curve can
be inferred from the observed angles between LKFs. The resulting shape is
a curved diamond (figure 2.3) where

P*+ o1 if —P* < o1 <orx
o = w(T —o1)y/1+ aoy/P* iforx <o <0 (2.83)
T — o1 fo<or<T.

Here orx is the intersection point between the two first contributions and
« and u are constants, derived from the observed angles and the assumed
value for T'. The values for P* and T cannot be derived using this method
nor the form of o1, but Wang (2006) assumes 7' = P*/20, a = 0.75 and

w=1
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Figure 2.3: The last three yield curves discussed in the text plotted in
stress invariant space scaled against P (the principle stress axes are also
shown); the FMC yield curve (solid line), the curved diamond yield curve
(dotted line) and the trimmed ellipse yield curve (dashed line).

In a later paper Wang and Wang (2009) calculate o1 by using the equa-
tions for the elliptic yield curve and assume e = 1 (i.e. a circle). They then
assume 7" = 0 and use a correspondingly reduced version of equations (2.83).
Based on the work of Konig Beatty and Holland (2010) we can, however, use
equation (2.71) to calculate o1, now including cohesive strength. Equations
(2.83) are then used to calculate oy;. The resulting equations for shear and
bulk viscosity are then:

¢=(P+T)/2A (2.84)
n = ou/éu, (2.85)

A=,/e?+ef. (2.86)

When T is changed the derived parameters o and p should also change.
Wang (2007) states that the slope of the yield curve should be related to
the angle between LKFs by

where

0

% = tan 8 = cos 26, (2.87)
where (8 is the slope of the yield curve and 26 is the angle between two
intersecting LKFs. The observed intersection angles 20 are 0°, about 90°,
from 120° to 160° and 180°. The second line of equation (2.83) is the one

containing the constants a and p and they must be adjusted so that at
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o1 = orx the slope of the yield curve is § = —26.6° and at or = 0 the slope
is B = —43.2° (corresponding to 26 = 120° and 26 = 160°).

To derive the factors a and p an appropriate initial value is assumed and
the intersection point orx calculated by equating the first two contributions
in equation (2.83). Then a and u are found by solving the set of equations
that results when we assume that

dou = cos(120°) (2.88)
dot o=k

dont

— = cos(160°). 2.89
|, = cos160) (280

This results in a new value for a and g which results in a new value for orx.
The final values for o and g must therefore be found iteratively.

Wang (2007) suggests using 7' = P*/20, « = 0.75 and p = 1, but more
appropriate values for the interval 7' € [0, P*/20] seem to be a = 0.69
and g = 0.95. These give 20 € [119.6°,120.0°] for o1 = orx and 20 €
[159.0°,161.8°] for o1 = 0, using equation (2.87). Setting p # 1 causes a
discontinuity at o1 = 0, but this can be remedied by setting oy = p1" — o
if 0 < o1 < pT in equation 2.83. That means that the isotropic cohesive
strength is actually pT" and not T, but the desired value for uT can easily
be found iteratively (see appendix B).

2.4.8 Trimmed ellipse

Finally a new yield curve is suggested which will be referred to as a trimmed
ellipse. As the name suggests it is based of the traditional ellipse, but with
a small modification for o7 > 0.

In section 2.4.5 it was shown how biaxial cohesion can be added to the
elliptic yield curve by extending it into the o1 > 0 part of the stress plane.
It is however not clear that once extended into that part of the plane the
shape of the yield curve is correct. To suggest a more appropriate shape the
following considerations are offered.

Let us suppose that we are considering only the way a single piece of ice
yields. Assuming plasticity we can then argue that the ice will break only
once a critical divergent stress is reached. The critical stress along one axis
is furthermore independent of the stress exerted on the other axes, given
that this stress is less than the critical stress. This means that the yield
curve must be a straight line in stress space extending from o7 = g.v/2 to
09 = Oc¢.

Considering now the compression phase, where o1 < 0 we can immedi-
ately extend the yield curve so that it is now a straight line extending from
o = 0.V2 to o1 = 0.v/2. This means that as long as the divergence/-
convergence along the y-axis is less than +o. the yield stress for the x-axis
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remains the same. This is in fact the same shape as we’ve already seen in
the curved diamond yield curve discussed in the previous section.

What happens for o1 < 0 is not immediately clear. The curved diamond
yield curve assumes a different shape for o1 < 0 than for o7 > 0 and this can
be interpreted such that the underlying crystal structure breaks when either
the divergent or the compressive stress reaches +o.. For o1 < 0 the ice then
retains some of its shear strength, not because of an intact crystal structure,
but because of frictional forces (like the ones assumed in the granular model
and the modified Coulombic yield curve). The curved part of the curved
diamond yield curve may be considered an approximation to a Coulombic
yield curve, but the angle of friction is close to 45°, similar to that suggested
for the modified Coulombic yield curve.

For the trimmed ellipse a different approach is suggested and, as the
name suggests, it is based on the classical elliptic yield curve. We simply
add biaxial cohesive strength to the ellipse, as described in section 2.4.5,
so that T = 0.v/2. The axis ratio of the ellipse is then determined so that
the combined curve of ellipse and straight line from oy = T to oy = T is
continuous. This assumes that the crystal structure breaks at 01 = —o, but
that the frictional forces don’t follow a More-Coulomb curve. The resulting
yield curve is shown in figure 2.3.

To determine the ellipse axis ratio we note that the equation for an ellipse
in {01,011} space can be written as

b
o = £-va? — (o1 — x0)?, (2.90)
a

where a and b are the lengths of the major and minor axes and xzq is the
ellipse displacement along the o7 axis. Now e = a/b, a = (P + T)/2 and
xg = —(P —T)/2 and so we find that (constraining oy to be positive)

our = £¢(1 )’ = (200 /P + 1 — k). (2.91)

We now assume that o1;(0) = T and so

Pkr

e

oua(0) = £\/(1 ) = (L= Fp)? = (2.92)

gives e = 1/y/kp or e~? = kp. The resulting equations for the shear and
bulk viscosities are

(= (P+T)/2A (2.93)

= min (Ghr, (CEI2ZEY

€Il
A= \/é? + k. (2.95)

(2.94)

where
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From this it is clear that the trimmed ellipse yield curve explicitly as-
sumes kp > 0. In particular demanding that e = 2 results in kp = 0.25,
which is considerably larger than kr = 0.05 as suggested by Wang (2006).
Finally we note that for comparable cohesive strength under isotropic diver-
gence the trimmed ellipse has much lower shear strength than the curved
diamond.
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Chapter 3

Ideal polynya model

3.1 Introduction

Simple, idealised model setups are often useful when trying to understand
the processes behind a given phenomenon. A good example of this is the
flux-polynya model suggested by Pease (1987) and the model setup by
Bjornsson et al. (2001). In this chapter an idealised polynya model, similar
to the one introduced by Bjornsson et al. (2001) is discussed, but the dis-
cussion is taken further addressing the importance of non-linear advection
terms in the momentum equation, the role of rheology in polynya forma-
tion and the way the thickness of newly formed ice is to be parametrised.
This material has already been published by the author (Olason and Harms,
2010) and is reproduced here, with only minor modifications.

The model used here is the same as described in chapter 2, except that
now the model is coupled to a stationary slab ocean. Cohesion does not play
a role in this problem and therefore only the granular model and elliptic and
modified Coulombic yield curves are considered. In this chapter p* is only
scaled according to equation (2.59) when using the granular model.

Polynyas and leads are an important part of the climate system at high
latitudes. Maykut (1982), for instance, estimates that about 50% of the to-
tal atmosphere-ocean heat exchange over the Arctic Ocean in winter occurs
through polynyas and leads. During summer, these openings admit short-
wave radiation into the ocean, warming it up and thus impacting the heat
and mass balance of the ice and ocean (Maykut and Perovich, 1987, Maykut
and McPhee, 1995). Arctic polynyas also play a large role in halocline and
deep water formation and Winsor and Bjork (2000) estimate a mean ice
production from all Arctic polynyas of 300430 km? yr—!. The resulting salt
flux is about 30% of the estimated flux needed to maintain the halocline.

In terms of general circulation models, polynyas are modelled using dy-
namic-thermodynamic sea-ice models. This has been done successfully by a
number of researchers; e.g. Marsland et al. (2004), Kern et al. (2005) and

37
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Smedsrud et al. (2006). Not all researchers use the same criterion to define
a polynya in dynamic-thermodynamic models. The most straightforward
approach would seem to be to use ice concentration alone, like Kern et al.
(2005). However, Smedsrud et al. (2006) use a combination of ice concen-
tration and thickness and Marsland et al. (2004) use a combination of ice
concentration and freezing rate.

This appears to be due to a fundamental difference in the model results
of Kern et al. (2005) and Marsland et al. (2004) on one hand and that of
Smedsrud et al. (2006) on the other. In the former studies a polynya can be
characterised as an area of low ice concentration surrounded by ice of high
concentration. In the latter case the polynya is an area of thin ice (but high
concentration) surrounded by thick ice.

These differences serve as an incentive to take a closer look at how
polynyas form in dynamic-thermodynamic sea-ice models. Highly idealised
setups are useful when trying to understand the basic processes involved
and so we choose to revisit a study originally made by Bjornsson et al.
(2001). In their study, Bjornsson et al. (2001) compared the granular model
of Tremblay and Mysak (1997) to the polynya flux model of Willmott et al.
(1997) in an idealised basin. In an idealised setup, comparison with mea-
surements is not possible and so the polynya flux model was used to validate
the dynamic-thermodynamic model results.

Here we expand on the work done by Bjornsson et al. (2001) and com-
pare the granular model to the more common viscous-plastic model of Hibler
(1979) and the lesser known modified Coulombic yield curve by Hibler and
Schulson (2000) in a setting similar to that used by Bjornsson et al. (2001).
The granular model results are used to assess the outcome from the other
two yield curves. Secondly, we consider formulations by Hibler (1979) and
Mellor and Kantha (1989) for the thickness of newly formed ice. The for-
mer formulation was used by Kern et al. (2005) and Marsland et al. (2004)
and the latter by Smedsrud et al. (2006). Finally, we use the collection
depth parametrisation of Winsor and Bjork (2000) to parametrise the new-
ice thickness. Thus we address the important points of a polynya simulation;
first the behaviour of the consolidated ice, which is determined by the rhe-
ology, and secondly ice formation inside the polynya, determined by the
new-ice thickness parametrisation.

The layout of this chapter is as follows: in section 3.2 we discuss polynya
formation and how to interpret the results of dynamic-thermodynamic mod-
els in light of what we know about polynyas. That section also includes a
presentation of the control run by which the following experiments are as-
sessed. In section 3.3 the response of the model using different yield curves
is presented. Section 3.4 presents the effects different formulations for the
thickness of newly formed ice have on the model results. Section 3.5 contains
a discussion of the model results followed by the conclusions of this study.
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3.2 Polynyas in a dynamic-thermodynamic
model

We will now discuss wind-driven polynyas and how they are modelled using
dynamic-thermodynamic sea-ice models. The discussion focuses on under-
standing the processes involved in polynya formation and how to relate those
to the results of the dynamic-thermodynamic model. We find that when it
comes to understanding the model behaviour inside the polynya it helps to
keep some of the assumptions of the flux polynya models in mind. Polynya
flux models are simplified physical models which underline the important
processes in polynya formation. They have been proven to be useful in
simulating a variety of situations (see e.g. Morales Maqueda et al., 2004).
In subsection 3.2.1 we briefly describe the control run used to assess other
model results.

Wind-driven coastal polynyas form where the ocean is initially covered
by ice and a wind starts blowing off the coast. This causes the ice to move off-
shore, opening a polynya at the coast (or fast ice edge). Inside the polynya
the ocean is at the freezing point causing frazil ice to form and be herded
downstream by the wind and waves. The frazil ice then consolidates at the
edge of the initial ice. The polynya remains open as long as the off-shore
wind component remains strong enough to maintain it.

The ice in and near a polynya can be divided into three distinct regimes:
The thick initial ice, the consolidated ice and the frazil ice inside the polynya.
The polynya edge is the interface between the polynya and the consolidated
ice. This threefold separation is the basis of flux polynya models. They
calculate the location of the polynya edge based on the drift velocity of the
consolidated (and thick) ice, the ice formation rate inside the polynya and
the thickness of the consolidated ice (H, also referred to as collection depth).

In the first flux polynya model, proposed by Pease (1987), the frazil ice
inside the polynya is immediately transferred to the edge of the consolidated
ice, where it piles up. The model by Ou (1988), and later models, assume
a constant (and finite) velocity for the frazil ice, but this must always be
greater than the velocity of the consolidated ice. In reality the frazil ice drifts
faster than the consolidated ice because frazil ice, near or at the surface,
experiences less water shear stress than the consolidated ice. The water
velocity inside the polynya is also different from that under the consolidated
ice, but this can be difficult to account for in a simplified setup. Finally the
initial ice pack may not drift at the (local) free drift speed, as the wind that
creates the polynya is non-uniform and may be weaker further off shore.
Islands and other coast lines may also slow down the drift of the initial ice
pack.

Polynya flux models focus on the frazil ice representation and the para-
metrisation of the collection depth. The velocity of the thick initial ice must,
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Figure 3.1: Polynya formation in polynya flux models and a dynamic-
thermodynamic sea-ice model. (a) In the Pease (1987) model, frazil ice that
forms inside the polynya is immediately transported towards the thick ice.
There it forms consolidated ice of thickness H. In the Ou (1988) model, the
frazil ice has constant (and finite) drift speed inside the polynya and there-
fore non-zero thickness h. (dashed line). (b) In a dynamic-thermodynamic
sea-ice model newly formed ice is immediately transformed into solid ice of
thickness hg.

however, always be prescribed. Dynamic-thermodynamic models are, on
the other hand, designed to model the movement of this thick ice, but they
generally do not include any frazil ice parametrisations. When ice forms over
open water in dynamic-thermodynamic models solid ice of a predetermined
thickness, ho (see section 2.3), is immediately formed, more akin to pancake
ice than frazil ice.

In a polynya modelled by a dynamic-thermodynamic model the ice in the
polynya interior drifts towards the initial ice pack, forming the consolidated
ice. The consolidated ice consequently has thickness close to hg, which, in
this particular setup, is then effectively the model’s “collection depth”. As-
suming that the ice in the polynya interior drifts faster than the consolidated
ice, like the Ou (1988) model demands, the dynamic-thermodynamic model
should also show the three ice regimes the polynya flux models do (see figure
3.1). In addition Bjornsson et al. (2001) showed that the transition from
freely drifting ice in the polynya interior to consolidated ice can occur over a
few grid cells. This transition region is then analogous to the polynya edge
predicted by flux polynya models.

We also note that since the consolidated ice and the ice in the polynya
interior are modelled using the same drag coefficients their free drift speed
will be the same. Absent any other forcing, or a divergence in the wind
forcing, no sharp polynya edge will form. This is because the polynya that
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opens up fills with ice drifting at the same speed as the consolidated ice,
resulting in linearly increasing ice concentration inside the polynya. Bjorns-
son et al. (2001) noted this behaviour (see their Fig. 4). In their study a
polynya edge forms because the drift of the consolidated ice is slowed down
by one of the side walls of their ideal basin. This approach is also used here.

A final point here is that we assume the polynya being modelled to
be large enough to cover a substantial number of model grid points. In
particular we demand that the model resolve the three ice regimes and the
polynya edge. A single grid cell not completely covered with ice may often
be interpreted to contain a polynya, especially if the grid resolution is low.
In this study, however, we only consider polynyas that are properly resolved
by the model grid.

3.2.1 Control run

The model domain is a bay, 135km long and 75km wide at 2.5km resolu-
tion (see figure 3.2), similar to the setup Bjornsson et al. (2001) used. At
such a high resolution we must assume that on average the ice floes being
modelled are no larger than 250 m in diameter. This is because a scale of
approximately 10 grain widths can generally be modelled without resolving
each individual element using a granular model (Savage, 1998). McNutt and
Overland (2003) state that at the multi-floe scale (approximately 2-10 km)
sea ice behaves like a granular material, so the granular model should be
ideal for a simulation at that scale. We can assume the ice floes in the
polynya interior are no larger than pancake ice, which is not much larger
than 3m in diameter. The ice in the polynya interior, and by extension
the consolidated ice, is therefore well within the maximum allowed floe size.
However, assuming that individual floes are no larger than 250 m in diameter
may not always be valid for the thick initial ice, depending on the geograph-
ical location of the polynya as well as the time of year. This is only a minor
concern for this study since it focuses on the steady state solution where
the thick initial ice does not play a role (as it has drifted out of the model
domain).

A polynya is created by having a 15m/s wind blow uniformly at a 30°
angle to the direction along the bay. The polynya forms at the inner shore
of the bay and the excess ice flows out the open boundary at the mouth
of the bay. The atmospheric temperature is kept constant at T,;=—20°C
and the oceanic temperature is kept at the freezing point for a salinity of
S5=32. The water velocity is always zero. The model is initialised with ice
concentration A=0.9 and thickness h=1m. For the solid boundaries, a no-
slip condition is used, while for the open boundary zero gradient Neumann
boundary conditions are applied to all variables. The Neumann condition
is also used for the ice pressure P, which Bjornsson et al. (2001) set to zero
at the open boundary. This is done because using the Neumann condition



42 CHAPTER 3. IDEAL POLYNYA MODEL

60 Thick ice
50 Consolidated ice

Polynyainterior

20
10 ©
0 20 40 60 80 100 120
x [km]

Figure 3.2: The size of the basin (in km) and wind direction during the
polynya experiments. The figure also shows the three ice regimes one ex-
pects; the polynya interior (where the ice is in free drift), consolidated ice
and thick initial ice.

improves the model behaviour near the open boundary by eliminating the
excessive ice speed observed there by Bjornsson et al. (2001).

For the ice pressure constants C' and P* in equation (2.48) we use the
same values Bjornsson et al. (2001) used; i.e. C=30 and P*=30kN/m?.
Bjornsson et al. (2001) showed that these parameters have little effect on
the model results using the granular model and we have found the same to
be true for the other yield curves. A list of the relevant constants is included
in table 3.1.

To illustrate the temporal evolution of the polynya, figure 3.3 shows
a Hovmoller diagram of the ice concentration field taken along a section
at y=37.5km. The response to the applied wind stress is immediate and
a discernible polynya edge starts to form during the first day of the model
integration. After two days the polynya has a clear structure and can be
considered fully formed. A practically steady state has been reached after
eight days. When the polynya has fully formed a band of large gradient
in the concentration field analogous to the polynya edge always exists. For
further reference figure 3.4 shows the ice concentration in the basin after
eight days of model integration. As figures 3.3 and 3.4 show, the edge in
this simulation is at a concentration of between A=0.6 and A=0.9.

Ice formation rates in the model are closely linked to the fractional ice
concentration. Ice formation rate for open water is F'(A=0)=13.83 cm/day.
In the polynya interior the ice is between 30 cm and 34 cm thick. If we assume
all that ice is 32cm thick we can calculate the ice formation rate in the
polynya interior as a weighted average of F(A=1, h=32cm)=3.31 cm/day
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Figure 3.3: A Hovmoller diagram of the ice concentration field (A) in the
control experiment taken along a section at y=37.5km. The vertical axis (z)
is the along-channel distance and the horizontal axis (¢) is the model time.
The dash-dotted line shows the h=1 m isoline separating the thick initial ice
and consolidated ice.
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Figure 3.4: Sea-ice concentration in the control experiment (A) after eight
days of model integration. The polynya edge is visible as a sharp increase
in concentration.
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Table 3.1: Main physical parameters and constants used in the simulation.

Variable Symbol Value

air drag coefficient Caa 1.2x1073

air temperature Tiir —-20°C

angle of dilatency ) 10°C

basin dimensions LW 135 km, 75km
cloud cover F. 80%

Coriolis factor f 1.33x10%s7!
ellipse axis ratio e 2

horizontal resolution Ax 2.5 km

ice demarcation thickness hy 30 cm

ice density i 930 kg/m?>

ice strength parameters C, p* 30, 30kN/m?
internal angle of friction ¢ 30°

min. viscosity (Hibler) Cmin 4x10%kg/s
relative humidity Hy 80%

water drag coefficient Caw 5.5x1073
wind speed, angle |Tal, ©  15m/s, 30°

and F(A=0); i.e.

F=AF(A=1, h=32cm) + (1 — A)F(A =0). (3.1)

This approximation is correct to within 0.05cm/day for A<0.8, but starts
breaking down as the consolidated ice gets thicker. Defining the polynya as
all points for which A<0.8 (this choice will be discussed further below), the
mean ice formation rate in the polynya is F=11.1cm/day after two days
and F=10.7 cm/day after eight days.

According to Ou (1988), ice velocity in the model should fall into two
categories; that of free drift in the polynya itself and that of the consolidated
ice. In the dynamic-thermodynamic model this velocity change gives the ice
drifting in the polynya interior a barrier of slower consolidated ice to pile
up against. Figure 3.5 shows the velocity field and speed in the control
experiment after eight days. The speed does indeed fall into two categories:
The free drift speed |U¢|=32.6cm/s and the speed of the consolidated ice
|| <25 cm/s, depending on the distance away from the y=75km boundary.
More importantly the cross channel velocity, v, changes from vg=15.7 cm/s
to v. <3 cm/s in the consolidated ice. Bjornsson et al. (2001) showed that it
is the cross channel velocity that is most important for the size and shape
of the polynya. In the polynya interior the ice drifts with the wind but
the consolidated ice slides along the y=75km boundary with a small cross
channel velocity component due to ridging at the boundary.
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Figure 3.5: Ice velocity (¢) and speed (|0]) in the control experiment after
eight days of model integration. The polynya edge is visible as a sharp
decrease in the ice velocity.

This setup exhibits the three fold separation of ice mentioned previously;
free drift ice in the interior of the polynya, consolidated ice at the polynya
edge and thick initial ice beyond that. This can be seen in the ice concen-
tration field since the concentration is low (A<0.6) in the polynya interior
and high (A1) in the consolidated ice. The transition between the two
takes place over approximately 5 grid cells, a region referred to here as the
polynya edge. A similar transition is seen in the velocity field; the ice in the
interior is in free drift while the consolidated ice drifts slower. The transition
between the consolidated ice and the thick initial ice can only be seen in the
ice thickness field. The ice in the polynya interior is almost as thick as the
consolidated ice so the polynya edge is not apparent in the ice thickness field.
In this control run the polynya is most readily defined as an area of low ice
concentration and the polynya edge as the area of a large ice concentration
gradient.

In the rheologies used here equation (2.48) dictates the ice strength under
compression as a function of ice thickness and concentration. When this
term is small the rheology term becomes small and the ice is in free drift.
Since the ice in the polynya interior is in free drift we propose that the
location of the polynya edge, in this particular setup, can be approximated
by A=0.8. This is because P(A=0.8)/P(A=1)~0.01 so the rheology will
play a negligible role at lower concentrations. This choice is valid for the
control run since the A=0.8 contour is within the high gradient region where
the polynya edge is found (see figure 3.4). It is also valid for all the following
experiments done here, except when using a minimum on the bulk viscosity
(¢) and when using the new-ice thickness parametrisation of Mellor and
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Kantha (1989). These two cases will be discussed separately.

3.3 Different yield curves

An important part of the motivation for this study was to compare the
results of Bjornsson et al. (2001), using the granular model, to a similar
setup using different rheologies. The elliptic yield curve of Hibler (1979) is
the most popular yield curve in use today, but it was designed for much
lower resolution. It is therefore important to see how it fares in this high
resolution setup. The modified Coulombic yield curve was, on the other
hand, designed to model ice at high resolution so it will be instructive to
see its performance here as well. In this section the focus is on the model
response in the consolidated ice, since the rheology does not play a role
inside the polynya itself.

In his model Hibler (1979) used a minimum for the bulk viscosity; (min =
4 x 108 kg/s “in order to insure against any non-linear instabilities” noting
that that value is “several orders of magnitude below typical strong ice inter-
action values and effectively yields free drift results” (Hibler, 1979, p. 823).
The lower bound should only be necessary when the material derivative is
included in the momentum equation (2.3) since in that case having no lower
bound will typically result in a noisy solution (Griffies and Hallberg, 2000).
Most modern ice models ignore the material derivative and do not include a
lower bound on ¢. However, as the resolution increases the material deriva-
tive becomes more important. The scaling argument made by Rothrock
(1975) shows that the material derivative may need to be included as the
shortest significant length scale becomes smaller than about 5km.

In this idealised setup the material derivative has very little effect on the
final solution, regardless of which rheology is used. The difference between
the results with and without the material derivative is about 7 mm/s in the
grid cells at the x=0 boundary and about 2mm/s at the y=75km boundary
and at the polynya edge. Everywhere else in the domain the difference is
less than 0.1 mm/s. Compared to the free drift speed of |0;|=32.6 cm/s this
is small. We also observe no noise, even when the material derivative is
included and the lower bound on ( is set to zero.

Without a lower bound on ( the results using the elliptic yield curve
are nearly identical to those using the granular model. There is a sharp
transition from free drift ice to consolidated ice, analogous to the polynya
edge, just like in the granular model. This polynya edge forms at nearly
the same location as it does in the granular model. Using the modified
Coulombic yield curve also gives results very similar to the granular model.
This is to be expected, since the modified Coulombic yield curve is in a
way a combination of the other two yield curves. The difference between
the three model formulations is limited to a small variance in polynya size,
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Figure 3.6: The polynya edge (A=0.8) using the elliptic and modified
Coulombic yield curves and the granular model after eight model days. The
differences between different model formulations are minor.

which as figure 3.6 shows, is due to a shift of the polynya edge by a few grid
boxes. In particular, the commonly used elliptic yield curve is sufficient and
can be used safely in this context.

Using a minimum on ¢ does, however, give considerably different results
from the control run. Setting the minimum to (pin=4x108kg/s, like Hibler
(1979) did, results in a polynya with a very diffuse edge, as figure 3.7 shows.
Speed and velocity also fail to meet the criteria for forming a polynya edge;
i.e. there is no clear separation between the velocity of the ice in the polynya
interior and consolidated ice (see figure 3.7). In addition, the ice in the
polynya interior does not flow at a constant speed and its speed is sometimes
lower than that of the consolidated ice, which is clearly not plausible. The
speed of the ice in the polynya interior when using (min=4x10%kg/s is also
always lower than it is in the control run. A decrease in the ice concentration
is also seen by the y=75km boundary, contrary to what can be seen in the
control run. These effects were noted by Hunke (2001) in a different setup,
but that discussion focused on the effects seen at the solid boundary, which
will not be discussed further here.

The polynya edge becomes so diffuse because when imposing such a high
minimum on (, the viscosity is consistently kept at its minimum value for
A<0.9 throughout the simulation. This is because the viscosity is related to
the ice pressure via

¢ = P/2A and n = (/e (3.2)

and the pressure to ice concentration via equation (2.48). The flow where A
is sufficiently small is therefore linear viscous, but choosing as a minimum
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Figure 3.7: Sea-ice concentration (top) and speed and velocity (bottom)
using Hibler’s original formulation for the elliptic yield curve, after eight
days of model integration. Neither figure shows a discernible polynya edge.
The dash-dotted line shows the isoline for A=0.8 from the control run.
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Cmin=4x10%kg/s does not result in effectively free drift. Lu et al. (1989)
also found that this limit was too high compared to measurements.

As previously stated, we observed no non-linear instabilities using (imin =
0kg/s. Some noise is, however, to be expected in a realistic simulation and so
a non-zero (min may be required if one wants to include the material deriva-
tive. In that case one would need to choose a low, but non-zero value for
Cmin- The resolution of Hibler’s model was 125 km and since viscosity scales
with the distance squared, a choice of (yin=4x 104 kg/s seems in order. This
yields nearly the same results as with (in=0kg/s; the largest difference in
concentration between the two model runs being AA=0.006. The maximum
concentration gradient when using (pnin=0 is max(]VA[)=0.230km™! and
it is max(|VA[)=0.228km™! when using Cmin=4x10%kg/s. When choos-
ing larger values for (nin, the effects of the capping start to show. For
Cimin=4x10° kg/s the maximum gradient is max(|VA[)=0.212km™" and the
difference in concentration between that run and the one with zero (i, is
AA=0.08. For (min=4x10° kg/s the maximum gradient is 0.164 km~! and
the concentration difference is 0.3.

3.4 New-ice thickness

As we have already seen, the ice rheology affects the initial ice pack and the
consolidated ice. The interior of the polynya, on the other hand, is primar-
ily affected by the new-ice thickness parametrisation. This determines the
thickness, and thus the concentration of the ice formed inside the polynya.

The most popular method for parametrising the new-ice thickness is
probably the one suggested by Hibler (1979) (see section 2.3). Put simply
the new-ice thickness is not allowed to drop below a certain minimum, hg.
If the total mass of newly formed ice is not enough to cover the open water
fraction of the grid cell at that thickness then the concentration of newly
formed ice is adjusted accordingly. If more ice is formed then the new ice is
simply thicker than hg.

The choice of hg is not obvious and appears to range from 10 to 50 cm or
even more in some cases. Bjornsson et al. (2001) argued for using hp=30 cm
and that is the value used here so far. Their argument is based on the
assumption that the ice that forms in the polynya immediately forms pan-
cake ice. However, Bjornsson et al. (2001) state that pancake ice thickness is
closer to 10 cm than 30 cm. We therefore include a model run with hg=10 cm.

The main result of using hg=10cm is that with a lower hy the polynya
fills up much faster. The newly formed ice is thinner, therefore has a larger
surface area, which results in faster ice concentration growth in the polynya
itself and causes the polynya edge to form closer to the inner shore of the
bay than before. The polynya edge is also not as sharp in the concentration
field as when using hg=30cm. It is, however, still sharp in the velocity field,
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as can be seen in figure 3.8.

The mean ice formation rate in the polynya is about 1% lower here
than in the control run. The total ice formation is therefore reduced almost
only because the polynya is smaller. Using hg=30cm gives polynya area of
Ap:4.5><103 km? after eight days, but using ho=10cm the polynya area is
Ap=2.4x 103 km? after eight days; an approximately 50% reduction in size.
Finally, the consolidated ice is thinner since its thickness equals hg.

The other approach to determining the thickness of newly formed ice
described in section 2.3 is the one proposed by Mellor and Kantha (1989).
There the thickness of newly formed ice is based on the thickness of the ice
already present in the grid cell. Mellor and Kantha (1989) argued that the
thickness of newly formed ice should be a quarter of the old ice thickness.
This also means that when there is no ice in the grid cell when new ice
forms, the ice spreads uniformly over the entire cell, potentially very thinly.
A polynya in such a model may therefore be hard to recognise by the change
in concentration and researchers using this approach often consider ice below
a certain cut-off thickness to represent the polynya. Smedsrud et al. (2006),
for instance, use Ah=30cm for this cut-off thickness.

Using this approach results in a “polynya” that is hardly recognisable in
the concentration field, as figure 3.9 shows. Even after eight days there is
only a thin sliver of an opening along the x=0km and y=0km boundaries
and the A=0.8 isoline is a grid box or two away from the shore. More
seriously perhaps the velocity field, also shown in figure 3.9, shows no sign
of the discontinuity deemed necessary for proper polynya formation. The
ice slows down gradually moving away from the x=0 boundary, contrary to
our previous assumptions about how a polynya is formed.

Ice thickness near the coast is indeed lower than the initial ice thickness,
but as figure 3.10 shows there is no real polynya edge to be found in the
ice thickness field. In that respect there is no conceptual difference between
using h or Ah. As before the thick initial ice drifts out of the basin, but
in this case the ice that replaces it does not have a uniform thickness. It is
very thin at the coast with linearly increasing thickness towards the thick
initial ice.

We have already mentioned that considerable effort has been put into
parametrising the collection depth in polynya flux models. Given the large
variation between the results already presented in this section we find it
worth considering whether the polynya flux model parametrisations can be
applied in the dynamic-thermodynamic model.

The parametrisation by Winsor and Bjork (2000) lends itself well to
immediate inclusion in the dynamic-thermodynamic model. It is based only
on the wind speed and not the polynya width, frazil ice speed or other
quantities not accessible to the dynamic-thermodynamic model. By using
this parametrisation we aim at improving the modelled consolidated ice
thickness and thus also the size of the polynya.
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Figure 3.8: The ice concentration (A, top) and speed and velocity (¢ and
|U|, bottom) using hop=10 cm after eight model days. The resulting polynya
is smaller and has a higher ice concentration than the control run. The
dash-dotted line shows the isoline for A=0.8 from the control run.
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Figure 3.9: The ice concentration (A, top) and speed and velocity (¢
and |7|, bottom) using the new-ice thickness parametrisation by Mellor and
Kantha (1989) after eight model days. The resulting polynya is very small
with no discernible edge in the velocity field. The dash-dotted line shows
the isoline for A=0.8 from the control run.
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Figure 3.10: A Hovmdller diagram of the ice thickness field (h) using the
new-ice thickness formulation by Mellor and Kantha (1989) taken along a
section at y=37.5km. The vertical axis (z) is the along channel distance
and the horizontal axis (¢) is the model time. The dash-dotted line shows
the isoline for A=0.8 from the control run.
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Figure 3.11: The polynya edge after eight days using a constant hg and
parametrised hgy according to equation (3.3). A=0.8 is used as a marker for
the polynya edge and the edge is plotted for 10, 20 and 30 m/s wind speed.

Winsor and Bjork (2000) assumed the collection depth to be a function
of wind speed as
a + |Ualb
c )

H = (3.3)

where |7, is the surface wind velocity, a=1m, b=0.1s and ¢=15. In particu-
lar, H~7 cm for |#,|=0 and H=30 cm for |U,|=35m/s so this parametrisation
is well within the range of plausible values for hy. Equation (3.3) is then
used to calculate ho=H in each grid point.

Using this parametrisation results in smaller polynyas at low wind speeds,
compared to hg=30cm or larger polynyas at high wind speeds, compared
to hg=10cm. Figure 3.11 shows the polynya using hp=30cm and the para-
metrisation for the wind speeds 10, 20 and 30m/s. At lower winds the
polynya edge starts to become diffuse, which is to be expected. For further
reference figure 3.12 shows the size of the resulting polynya as a function
of wind speed. The mean ice formation rate in the polynya increases from
F=10cm/day for |U,|=10m/s to F=11 cm/day for |t;,|=35m/s and choosing
different values for hgy contributes to about 1% change in the ice formation
rate. At the same time the polynya size grows approximately four times as
the wind strength grows from 10m/s to 35m/s. It is therefore clear that
variations in polynya size control the variations in total ice formation in the

polynya.
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Figure 3.12: The polynya size (A4;) after eight days as a function of wind
speed (|Ua]). The size is calculated as the sum of the size of all model points
where A<0.8.
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3.5 Discussion

Bjornsson et al. (2001) have already shown that the granular model can be
used to model polynyas in an idealised setting by comparing their results to
a polynya flux model. We have shown that this is also the case when using
the modified Coulombic yield curve of Hibler and Schulson (2000) and when
using the elliptic yield curve of Hibler (1979). This is important since the
numerical performance of the granular model is considerably worse than that
of the other two models. We find that the granular model requires almost
twice the computing time the other two rheologies require. The elliptic yield
curve of Hibler (1979) is also already in use in the vast majority of sea-ice
models.

All three yield curves give nearly identical results (with the exception of
using a capped ( as discussed below). Looking at the stress states (figure
3.13) we see that when using the granular model the o7 values for points
in the consolidated ice are all clustered around oj=—P/1.5. This means
that at these points the ice cover yields or is very close to yielding under
compression. When this is the case the behaviour of the ice is controlled
by equation (2.48), which is also one of the main equations governing the
behaviour of the other two yield curves. The difference between the granular
model and the other two is then almost entirely explained by the different
formulation of shear strength between the model formulations. As figure
2.2 shows, the granular model and the ellipse have a lower shear strength
than the modified Coulombic yield curve, which is why using the modified
Coulombic yield curve gives a smaller polynya.

Using the other two yield curves, the stress states are much more evenly
distributed along the oy axis. For the modified Coulombic yield curve the
stress states that lie on the Coulombic slope are all inside the polynya while
the stress states in the consolidated ice are all on the elliptic part of the
yield curve. This happens because in the consolidated ice the divergence
(¢) is always negative, so according to equation (2.36) oy<—P/2. Using the
elliptic and modified Coulombic yield curves therefore yields similar results
for the consolidated ice, where both yield curves have an elliptic shape. In
the polynya interior the ice is in free drift so the shape of the yield curve
has no effect there.

Using a large Cmin, in particular (nin=4x10%kg/s as Hibler (1979) sug-
gests, does, however, give results that are not plausible. Using this original
formulation results in a polynya that is smeared out with no proper edge and
a velocity field that has little relation to polynya formation. This happens
because the capping of  in the model turns the viscous-plastic formulation
into a linear viscous model for ice concentration A<0.9.

Hibler (1979) used the lower bound on ¢ to dampen grid scale noise
which can arise when the grid Reynolds number constraint is not satisfied.
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Figure 3.13: Stress states using the granular model (top, oy scaled ac-
cording to equation (2.59)), the elliptic yield curve (centre) and modified
Coulombic yield curve (bottom) after eight model days plotted in stress
invariant space. The colour scale indicates the ice concentration at each
point (A) and points with high concentration are drawn on top of those
with a lower concentration. Points with high values of A (420.8) are all
located in the region oy<—P/2. Points near the open boundary are excluded
from the figure.
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Considering the limited case of Burger’s equation in one dimension:

dv dv d?v

a Tl T A (34)
A must be bounded by A>%UA$ (Griffies and Hallberg, 2000). In free drift
and ignoring the sea surface tilt term, the momentum equation becomes
Burger’s equation and for the one dimensional case A = (/p;. Using the
free drift speed of |4;]=32.6 cm/s and Az=2.5km the viscosity is bounded
by (>1p;| 0| Az~4x10° kg/s.

The grid Reynolds number constraint is therefore an order of magni-
tude larger than our preferred value for a non-zero (. Since ignoring the
material derivative had much less effects on the simulation than using a
non-zero (min we conclude that ignoring the material derivative is preferable
to including it and a non-zero (piy-

With regards to the ice behaviour inside the polynya we considered three
ways in which to parametrise the thickness of ice forming over open wa-
ter. These are the methods suggested by Hibler (1979), Mellor and Kantha
(1989) and an adaptation of the collection depth parametrisation by Win-
sor and Bjork (2000). Hibler’s method was used when investigating the
dynamic aspects (section 3.3) with an ice demarcation thickness hop=30 cm
after Bjornsson et al. (2001). That value may be too high and so we also
ran the model using hp=10 cm.

Using a lower hg resulted in a smaller polynya but little change in mean
ice formation rates (about 1%). The ice concentration in the polynya in-
terior was higher and as a result the concentration field did not show a
sharp polynya edge. The velocity field, on the other hand, still showed a
clear discontinuity at the polynya edge. The width of the polynya did de-
crease, but that was to be expected and can be understood in relation to
the Lebedev-Pease width of a polynya (Pease, 1987)

HU
L= Wk (3.5)
where L is the polynya width and HU is the flux of consolidated ice. The col-
lection depth, H, is analogous to hg in the dynamic-thermodynamic model.
Lowering hgy from 30cm to 10cm results in approximately 1% reduction
in the ice formation rate (F'). The polynya width is therefore bound do
decrease.

Results obtained using the formulation of Mellor and Kantha (1989)
were, however, very different from those obtained in the control run. Using
Mellor and Kantha’s formulation there are two ice regimes; thick ice and
thin ice, which may be characterised as nilas. This replaces the threefold
separation of thick ice, consolidated ice (of uniform thickness) and frazil/free
drift ice, seen in polynya flux models and the control run. The polynya edge
is considered to be what separates the consolidated ice and frazil/free drift
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ice, but this distinction is lost when using the Mellor and Kantha (1989)
approach. The new-ice thickness formulation by Mellor and Kantha (1989)
is therefore not suitable for modelling polynyas.

On the whole, the approach by Hibler (1979) is also more reasonable
from a physical standpoint. This is because wind and waves, which cannot
be resolved by ocean or atmosphere models, will transform the frazil ice in
the polynya into pancake ice, similar to the ice formation in that scheme.
What is unrealistic about Hibler’s approach is that solid ice forms inside
the polynya, even where in reality the ice is mainly frazil ice. The thin ice
formed using Mellor and Kantha’s approach is more akin to grease ice or
nilas which form in calmer conditions.

Wind speed is therefore an important factor in determining the new-
ice thickness and it is consequently an important part of collection depth
parametrisations for polynya flux models. Winsor and Bjork (2000) para-
metrised the collection depth in the Pease (1987) model based only on wind
speed and we found that parametrisation easily adoptable for inclusion in
the dynamic-thermodynamic model.

Using the Winsor and Bjork (2000) parametrisation gives results in the
range between the results when using a constant hp=10cm and hy=30cm.
We have already expressed a preference for the Hibler (1979) parametri-
sation for the new-ice thickness and using the Winsor and Bjork (2000)
parametrisation enables us to choose a sensible value for hg. As a result
the polynya size should depend on wind strength in a more realistic manner
than when using a constant hg. Using the parametrisation should also give
more realistic ice thickness for the consolidated ice.

On a more general note, such a small value for hg may not be suitable
for models describing the central pack ice as well. In such a situation the
approach of Mellor and Kantha (1989) may give better results since the
thick pack ice appears to require a larger hg.

It is trivial to combine all three approaches to new-ice thickness para-
metrisation discussed here into one:

h Ualb
Hlv\) , (3.6)

ho = max ((I), -
with ®=4, a=1m, b=0.1s and c=15, as before. This approach modifies the
previously constant hg of Hibler (1979) so that for thick ice the approach of
Mellor and Kantha (1989) is used and for thinner ice the parametrisation of
Winsor and Bjork (2000) is used. Using one value for thick ice and one for
thin is appropriate since hg is only analogous to the collection depth in a
polynya or the marginal ice zone. Where the ice is thicker the ice behaviour
should be similar to that described by Mellor and Kantha (1989), given the
empirical origin of their formulation.

In our setup the result of equation (3.6) will always be the same as that
of equation (3.3) since the ice in the polynya is always thin in the sense that
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h<®(a+|U,|b)/c. Further testing of this new parametrisation can therefore
not be done here but should be carried out in a realistic simulation.

In conclusion we note that in this idealised setup the polynya is best
defined as the area where A<0.8. This is really the concentration where the
ice behaviour starts changing from free drift, for A<0.8, to being heavily
influenced by internal stresses, for Aas1. This separation is based on equation
(2.48) and on the choice of C. The A=0.8 isoline is also consistently within
the high gradient region for A in all experiments, except when using too
high a minimum for the bulk viscosity and when using the new-ice thickness
parametrisation from Mellor and Kantha (1989). But both these cases were
found to give implausible results.

3.6 Conclusions

We have used an idealised setup to test three different sea-ice rheologies
and three different formulations for the thickness of newly formed ice during
polynya formation. These tests were done using a dynamic-thermodynamic
sea-ice model in an idealised channel, similar to what Bjornsson et al. (2001)
did.

We were able to reproduce the results of the granular model using both
the modified Coulombic yield curve of Hibler and Schulson (2000) and the
elliptic yield curve of Hibler (1979). This is important, since the numerical
performance of the granular model is substantially worse than that of the
other two models and also since the elliptic yield curve is already in popular
use. We also found that including the material derivative and setting a
minimum on the bulk viscosity is not a viable alternative to ignoring the
material derivative.

The formulation of new-ice thickness suggested by Hibler (1979) turned
out to give much better results than that of Mellor and Kantha (1989).
Using Mellor and Kantha’s formulation failed to give a clear polynya edge,
both in the concentration and velocity field. We conclude therefore that this
approach does not enable us to properly model polynyas. Hibler’s approach,
on the other hand, gave a clear separation of the consolidated ice and the
polynya itself.

Using Hibler’s new-ice thickness parametrisation and any of the rhe-
ologies tested here should give realistic results when modelling polynyas.
Polynyas that are fully resolved by the model grid can then be recognised
as areas of low concentration enclosed by compact ice and/or land. We also
suggest using A<0.8 as a criterion for low concentration.

Hibler (1979) assumed a constant demarcation thickness (hg). We sug-
gest, however, using the collection thickness parametrisation of Winsor and
Bjork (2000) to parametrise hg. This results in a value for hg which is de-
pendent on wind strength and in the range already deemed acceptable for
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ho. As an aside, a combination of this parametrisation with the approach of
Mellor and Kantha (1989) is proposed. This should give a parametrisation
for hg applicable for both the marginal ice zone and the central ice pack.
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Chapter 4

The Kara Sea model

4.1 Introduction

Having introduced the ice model and tested it in an idealised setting we will
now discuss the model setup in the Kara Sea and some basic thermodynamic
and dynamic features it possesses. This chapter is accordingly split into
three parts; first is a description of the model area and the applied forcing,
then comes a discussion of the thermodynamic properties of the model and
last is a discussion of the model dynamics.

In the thermodynamics portion simple dynamics and long run-times are
used to investigate the model behaviour with respect to various thermody-
namic parameters and settings. The main source for comparison here is
satellite data and the observed Kara Sea mean sea-ice concentration. Mod-
elled ice thickness is also considered since the fast-ice strength depends on
its thickness. Unfortunately observations of the ice thickness are scarce so
no direct comparison is possible. The tests performed show that the model
behaviour is robust with respect to reasonable changes in parametrisations
and forcing.

The main object of the dynamics portion is to investigate the effects
an increased number of outer-loop iterations have on the model results. In
particular it is important to know how accurately the velocity field can be
modelled, as this helps when determining if the ice is land fast or not. To
investigate the behaviour of the solver a variable number of outer-loop iter-
ations is performed and the outer-loop error compared. The computational
cost is also considered.

4.2 Model setup

The modelled area covers the Kara Sea, which lies off the Arctic coast of
Siberia, between the Laptev and Barents Seas. In particular the Kara Sea
lies between Novaya Zemlya, Franz Josef Land, Severnaya Zemlya and the
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Siberian coast (see figure 4.1). The modelled area covers all of the Kara
Sea and a very small portion of the Barents Sea, west of the Kara Gate.
The coupled model permits open boundaries to be placed inside the model
domain and such a boundary is placed between Franz Josef Land and the
northern tip of Novaya Zemlya and between the islands of Severnaya Zemlya
and Malyy Taymyr (dashed lines in figure 4.1).

The Kara Sea has a somewhat unique oceanography in that two very
large rivers run into it, the Ob, and the Yenisey. In addition the rivers
Pyasina Nadym, Pur and Taz (the last three all run into Ob Bay) all con-
tribute significantly to the freshwater inflow. This inflow is such that the
ratio of the mean annual freshwater inflow to the sea’s area is 152 cm, the
largest of any sea in the World Ocean (Volkov et al., 2002). The waters of
the Kara Sea are therefore very fresh, but in addition the Novaya Zemlya
prevents much of the Atlantic influences seen in the Barents Sea. The south-
western part of the Kara Sea is still warmer and saltier than the rest, in part
due to the inflow of Atlantic waters through the Kara Gate. The Ob Bay
and Yenisey Gulf are the freshest areas due to the presence of river water.
It then extends north and north-east of the river mouths into the southern
part Severozemelsky region.

In terms of sea ice the Kara Sea is ice covered most of the year and is
normally never completely ice free. According to Volkov et al. (2002) the ice
concentration is at a minimum in late August, early September, on average.
Ice formation normally starts in the far northern part in early September
moving south such that ice formation is more or less only taking place north
of Novaya Zemlya by the middle of October. On average the Kara Sea is
completely ice covered by late November. Land-fast ice is most prominent in
the Severozemelsky region (inside the red rectangle in figure 4.1), but land-
fast ice is also an important part of the ice regime in and around Ob Bay
and Yenisey Gulf. The formation and evolution of land-fast ice is discussed
in detail in chapter 5.

Ice clearance from the Kara Sea begins in the Ob Bay and Yenisey Gulf
in May—June. This coincides with the maximum in river runoff due to the
spring melt. The discharge of the Yenisey and Ob increases approximately
tenfold during May, peaking in early June. From the river estuaries the
clearing spreads and by the middle of August most of the ice south of the
northern tip of Novaya Zemlya has melted. By late August only the northern
most part of the Kara Sea is covered by ice. The remaining ice is normally
multi-year ice which is a part of the central Arctic ice massive.

4.2.1 Setup of the coupled model

The ice model introduced in chapter 2 is coupled to the Vector Ocean Model
(VOM) developed at the Institut fiir Meereskunde (see Backhaus, 2008).
VOM is a full-fledged primitive equation model with a free surface. It has
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Figure 4.1: A map of the Kara Sea, constrained to the model domain. The
red rectangle shows the Severozemelsky region and the dashed line the open
model boundary into the Barents Sea.
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a novel z-grid which permits variable vertical grid spacing. This allows for
better resolution near sharp changes in topography and lower resolution
mid-ocean. The coupled model is run at a 10 km horizontal resolution with
the appropriate VOM parameters for that resolution (see appendix C). In
particular, the surface and bottom grid cells are always 4 m thick with other
cells equally thick or thicker. The minimum number of grid cells per column
is two and the minimum depth is therefore 8 m.

The extent of the model area is shown in figure 4.1, but the lower left
corner of the grid is at 67°3’51”N, 59°24’22”FE and the upper right corner is
at 79°58’4”N, 113°15’53”E. The model topography is based on the 2.5 km
resolution IBCAO (version 1) topography (Jakobsson et al., 2000). The grid
is therefore on a polar-stereographic projection, correct at 75°N, but for the
current model the grid was rotated such that the y-axis is parallel to the
815 meridian east. The grid was rotated using the imrotate command in
the MATLAB program, using a bicubic interpolation. The downscaling to
10 km was also done in MATLAB using the imresize command with a
bicubic interpolation.

Since the minimum model depth is 8 m the VOM gridding routines will
treat all cells shallower than 7 m as land (only integer depth values are
allowed). In an attempt to produce a more realistic grid in and around the
Ob Bay and Yenisey Gulf grid cells shallower than 3 m were set as land
while grid cells deeper than that (and shallower than 7 m) were set to 7 m
depth. This results in a realistic coast line in the relevant shallow areas.

Some minor manual modifications were made to the resulting grid. The
Shokalsky Strait, between the Severnaya Zemlya islands October Revolution
Island and Bolshevik Island was closed since it is also closed in the NAOSIM
model, which is used to force the lateral boundaries (see section 4.2.2). The
extent of the eastern and western open boundaries also had to be adjusted
to match the NAOSIM grid. The strait between Belyy island and Yamal
peninsula was opened. Finally, single land grid cells were inserted where the
Mona, Izvestiy TSIK, Kirova, Voronina and Dlinnyy Islands are located,
since they disappeared when regridding the topography. The importance of
these islands is discussed in chapter 5.

The ice model itself has already been discussed thoroughly in chapter 2 so
only a cursory overview of the model setup will be given here. Unless stated
otherwise the thermodynamic growth and melt of the ice is calculated using
the three-layer model and variable albedo scheme described in section 2.3.
The parametrisation for hg described in equation 3.6 is used. When solving
the momentum equation the solver described in section 2.2.1 is used, using
500 outer-loop iterations, unless otherwise specified. The number of outer
loops is based on the results presented in section 4.4. In some experiments
(most notably in section 4.3) the solver from Hibler (1979) is used instead
of the one from section 2.2.1. The relevant ice-model parameters are listed
in table 4.1.
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Table 4.1: Default values of relevant ice-model parameters using the elliptic
yield curve.

Variable Symbol Value

ice density Di 930 kg/m?
atmospheric density Pa 1.25 kg/m?
atmospheric drag coefficient Cqa 1.2x 1073
water drag coefficient Caw 5.5 x 1073
outer-loop target error €OL 0.1 mm/s
number of outer loops noL 500

ice strength parameters C, p* 30, 37.5 kN /m?
ellipse axis ratio e 2

minimum viscosity Cmin 0 kg/s
maximum viscosity Cmax (104 s)P
new-ice thickness parameter dp 0.5

lateral melt parameter Dy 4

thermal conductivity of ice ki 2.03 W/m/K
thermal conductivity of snow ks 0.310 W/m/K
ocean/ice sensible heat transfer coefficient  Cl; 1073

ice salinity Si 5 psu

snow density i 330 kg/m3

heat capacity of ice
heat capacity of snow

1.88 MJ/K/m3
0.690 MJ/K/m3

volumetric latent heat of fusion for ice ¢ 301 MJ/m3
volumetric latent heat of fusion at ice base gy, 268 MJ/m?3
volumetric latent heat of snow gs 110 MJ/m?3
ice albedo (constant) Qj 0.64
snow albedo (constant) o 0.74
ice albedo (dry, visible) Qiy 0.73
ice albedo (dry, infra-red) Qi 0.33
snow albedo (dry, visible) Qsy 0.96
snow albedo (dry, infra-red) Qi 0.68
short wave penetration ratio Iy 0.17
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Most of the tabulated parameters have been given values commonly used
in the literature and already discussed in chapter 2. The thermodynamic
parameters are from Semtner (1976), with the exception of the albedos for
the variable albedo scheme which are from Briegleb et al. (2004). The con-
stant ice albedo is the same as Semtner (1976) uses, but the corresponding
snow albedo was found through preliminary tuning of the model.

4.2.2 Forcing data

In the current model four main sources of forcing data are used; atmo-
spheric forcing, lateral ocean boundary forcing, tidal forcing and river forc-
ing. The atmospheric forcing is derived from the first NCEP/NCAR reanal-
ysis (Kalnay et al., 1996) providing the model with surface air temperatures
(at 2 m), total cloud cover, atmospheric pressure, precipitation, relative hu-
midity and winds (at 10 m). In some simulations the same information was
extracted from the ERA-interim reanalysis results (Simmons et al., 2007).

Regridding of the atmospheric data is done using a simple near-neighbour
scheme. For each model point the distance d to every data point in the
reanalysis results is calculated. A weighted average is then calculated using
only forcing data from points within a certain radius R from the model
point. For each model point the regridded value is a weighted average of
the forcing data with the weight 1/(1 + cd?/R?). An appropriately smooth
output field is obtained using ¢ = 9 and R = 15 x 10® km/ny,;, where njy is
the number of latitude points in the global NCEP/NCAR grid (nj,, = 73 or
94, depending on variable). All forcing data is linearly interpolated in time
to the model time step at run time.

Oceanic forcing is derived from results from the NAOSIM model (Karcher
et al., 2011). The NAOSIM is a high resolution coupled ice-ocean model of
the Arctic and North-Atlantic oceans, forced with the same NCEP/NCAR
data as used here. The NAOSIM data was used in two ways; as initial con-
ditions and for forcing temperature, salinity and sea surface height on the
lateral boundary.

Interpolation of oceanic temperature and salinity is done in two separate
steps. First the NAOSIM data is interpolated in the horizontal for each
NAOSIM grid level using the same method as described above for the surface
forcing. For the vertical interpolation the profile in each column of the VOM
model is approximated using a cubic spline and the tracer values at each
grid point calculated using it. When the VOM grid reaches deeper than the
NAOSIM grid the NAOSIM profile is simply extended using the value from
the NAOSIM grid cell closest to the bottom.

The NAOSIM has a rigid lid and so a conversion of the NAOSIM stream
function to sea surface height must be made. To do this a geostrophic
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equilibrium is assumed such that

__on _on
fu= g@y andfv—gaac7 (4.1)

where f is the Coriolis factor, u and v mean velocity, g gravity and 7 surface
height. The stream function (¢) is then defined such that

o o
Hu=—-——, Hv=— 4.2
“ oy’ YT B (42)
where H is the ocean depth. Solving these two gives
YV = gHVn,. (4.3)
Integrating gives, for a constant y
xT / /
flx") oY(x
ne.y) —niao.y) = [ O g (4.4

v 9H(2")  Ox'

and a similar formula for constant x. These are solved numerically using

of (xn) ~ f(@nt1) — f(@n-1) (4.5)
Ox Tnt+l — Tn-1
and ) )
[ r@ie = 5@ + o (1.6

Finally n(xo, yo) is set such that the mean sea surface height along all open
boundaries is zero for every time step. The VOM model topography (not
the NAOSIM topography) is used for H in equation (4.4).

Daily river discharge data for the Ob, Pur, Taz, Yenisey and Nadym
rivers was obtained from the Global Runoff Data Centre (GRDC)!. Monthly
data for Pyasina from June to September as well as the annual average was
obtained from the Arctic and Antarctic Research Institute’s (AARI) web-
site?. The temporal extent of the data is listed in table 4.2. For the GRDC
data daily climatological mean values were calculated and used to replace
missing data. The monthly AARI data was interpolated to daily values for
the summer months with the remainder of the total annual discharge equally
distributed over the months for which no data is available. The resulting
data was then treated the same as the GRDC data.

River temperatures were calculated based on the Ty measurement data
provided by Lammers et al. (2007)3. No temperatures were available for the

1Global Runoff Data Centre, 56068 Koblenz, Germany

’http://www.aari.nw.ru/projects/Atlas/Ocean_Summer/digital/runoff/rr_
karat.txt, accessed November 19" 2008

3Data obtained from http://data.eol.ucar.edu/codiac/dss/id=106.233 on Febru-
ary 11" 2011


http://www.aari.nw.ru/projects/Atlas/Ocean_Summer/digital/runoff/rr_karat.txt
http://www.aari.nw.ru/projects/Atlas/Ocean_Summer/digital/runoff/rr_karat.txt
http://data.eol.ucar.edu/codiac/dss/id=106.233
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Table 4.2: The periods for which river runoff data is available from the
GRDC and AARI as well as the fraction of data missing from that period.

River Period Missing
Yenisey (at Igarka) 1955 to 2003 15%
Ob (at Salekhard) 1954 to 2003 2%
Nadym (at Nadym) 1955 to 1991 5%
Taz (at Sidorovsk) 1962 to 1996 15%
Pur (at Samburg) 1939 to 1991 33%

Pyasina (at Ust-Tareya) 1961 to 1986 two years

Pyasina river so the Pyasina river temperatures were set equal to its nearest
neighbour, the Yenisey. The inflow of Ob and Nadym is combined in one
in the model and so are the Pur and Taz. Temperature for the combined
inflow was calculated as the weighted average of the temperature of the two
rivers, weighted with the volume flux.

In general the temperature data is available for every 10 days (three
times per month), but missing values were replaced with the climatological
mean. During the preprocessing phase the data was linearly interpolated to
daily values. All river data is linearly interpolated in time to the model time
step at runtime. The climatological river volume flux and temperatures are
shown in figure 4.2.

Tidal data comes from the HAMTIDE tidal model (Taguchi et al.,
2011)%. Tidal amplitude and phase are interpolated at the open bound-
ary using the same technique as for the surface data. The tidal forcing and
the NAOSIM sea surface forcing are added up at runtime. Tidal variations
in the relevant fast-ice areas are small and little effort was therefore put into
investigating tidal influences in the model.

4.2.3 Spin-up

In order to produce reasonable initial temperature and salinity fields for
further model runs a cyclic spin-up forcing was created. This is a clima-
tological average of all forcing data, based on the period 1994-2005. An
exception to this is the climatological average for the river data, but that is
based on all available observations. For the spin-up run the default setup
outlined in section 4.2.1 was used, with two exceptions. Firstly one pseudo-
time step is used and secondly the maximum and minimum viscosity are set
t0 Cmax = (2.5 x 10% 8)P and (uin = 4 x 108 kg/s respectively, the same as
used by Hibler (1979). These are commonly used values which also give a

“see also http://icdc.zmaw.de/hamtide.html ?&L=1
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Figure 4.2: Climatological data for the river input used in the model: (a)
volume flux and (b) temperature.
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Figure 4.3: Global mean model salinity in the spin-up run. For comparison
the dashed line shows the mean model salinity from the control run from
section 4.3 and the y-axis is labelled accordingly.

short integration time for the model. In particular using a non-zero mini-
mum viscosity allows us to double the time step size from At = 600 s to
At = 1200 s.

Using the NAOSIM temperature and salinity field from October 9*" 1994
for initialisation the model was run for 11 years, using the cyclic forcing.
After this an approximate cyclic steady state was reached. As figure 4.3
shows this new state has mean salinity that is about 2 psu lower than the
NAOSIM mean salinity. This is because the current model employs volume
fluxes for the river inflow while the NAOSIM uses salinity restoration. Since
approximately half the river flux is just above the freezing point the new
ocean temperature is also lower than that of the NAOSIM. The resulting
temperature and salinity fields are used as initial conditions for all further
simulations, unless otherwise specified.

4.3 Thermodynamics

In this section the model thermodynamics are tested using the same simpli-
fied dynamics as for the spin-up run. This reduces the model run-time by
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three quarters but does not resolve the ice dynamics very accurately. The
shorter run-time does, however, allow us to consider a longer model time pe-
riod and confirm that the model behaves reasonably on a longer time-scale.
To test the thermodynamics the model is integrated from October 9" 1994
to December 24" 2005 covering the last years available at the time from
the NAOSIM model. A control run is set up using the NCEP reanalysis for
forcing, but otherwise the setup is the same as the one used for the spin-up
run described in the previous section.

Satellite observations of the sea-ice concentration are the observations
that give the best overall idea of the state of the ice cover in the Arctic. The
model data will be compared to the satellite data derived from the Special
Sensor Microwave/Imager (SSM/I) brightness temperature and polarisation
using the ASI-algorithm (Kaleschke et al., 2001). It provides us with sea-ice
concentration at a resolution of 12.5 km, year round for the whole Kara
Sea. The most useful variable to consider for a quick overview of the model
capabilities is the mean concentration over the entire Kara Sea.

Following is an outline of the different results obtained using the NCEP /-
NCAR reanalysis data and ERA-interim data to force the model. The effects
of different albedo parametrisations and using different number of thermo-
dynamic layers area also outlined. Finally different parametrisations and
parameter choices for lateral melt are tested. This is followed by a compar-
ison of modelled ice thickness and a general discussion of the results.

4.3.1 Comparison with satellite data

Using the Kara Sea mean sea-ice concentration we can quickly compare the
control run to observations. Figure 4.4 shows the mean sea-ice concentra-
tion in the model area computed from the ASI data, the control run and
a run using the ERA-interim reanalysis data instead of the NCEP/NCAR
data. The figure shows generally good agreement between model and ob-
servations in fall and winter. During winter the absolute difference between
observations and model results is nearly always less than 0.1, but the model
consistently overestimates the extent of the ice cover when compared to the
satellite data. Errors present during fall appear to be primarily caused by
erroneous minimum ice extent from the previous summer and are recovered
quickly. While the model appears to overestimate the concentration slightly
it is probable that the actual concentration is in fact underestimated by the
satellite data. This is because the satellite is calibrated for the mean salinity
of the Arctic ocean, but since the Kara Sea is fresher the concentration is
therefore underestimated.

Larger differences are visible during spring and summer than fall and
winter and the two different reanalysis products also give also give consider-
ably different results then. Using the NCEP/NCAR data the model always
underestimates the ice cover in summer. This makes little difference when
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Figure 4.4: The upper panel shows mean sea-ice concentration in the model area modelled using the NCEP/NCAR and
ERA-interim reanalysis data compared to satellite data. The lower panel shows the difference between the satellite data and
model results.
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the observed ice cover is very small at the end of the melt season, but in
other years, when the observed concentration is high the difference is also
greater. The largest absolute difference in mean ice concentration between
satellite and model results using the NCEP/NCAR data is just over 0.3.
This occurs in 1998, 2002, 2003 and 2004. For eight out of the eleven sum-
mers modelled the absolute difference in concentration becomes greater than
0.2 at some point in time during the summer.

In contrast using the ERA-interim gives an overestimation of the ice
extent in summer, mostly to the same absolute magnitude as the NCEP /N-
CAR underestimation is. So even though the behaviour of the model when
using the two different forcing sets differs considerably then the mean error is
similar. In particular the root-mean-square error when using the NCEP /N-
CAR data is 0.10, compared to 0.15 for ERA-interim.

4.3.2 Layer numbers and albedo scheme

In the previous comparison a three-layer Semtner model with variable albedo
was used. We will now compare the three-layer model to a zero-layer model
with constant and variable albedo. The zero-layer model is known to give
less accurate results than the three-layer one (see e.g. Semtner, 1984), but it
is nonetheless widely used in the sea-ice modelling community. In particular
the zero-layer model is known to give poor results for multi-year ice, but since
we primarily have to deal with first year ice here it is worth considering the
zero-layer model.

Again the best variable to consider is the mean total ice cover. Figure 4.5
shows the ice cover and model error when compared to the satellite data for
the zero-layer model with constant and variable albedo and the three-layer
model (the control run). All three model variations give very similar results
in fall and winter, with noteworthy differences only appearing in spring and
summer.

If we first consider the zero-layer model then there is a clear difference
between using a constant albedo and the variable albedo scheme. Using
a constant albedo gives clear overestimation of the ice extent, except for
the summers of 1998 and 2003, for which the absolute difference between
model and observations is always less than 0.1. Using variable albedo, on
the other hand always gives a clear underestimation of the ice extent, with
the exception of 1995. Using a constant albedo gives, overall better results,
with the root-mean-square difference between model results and observations
being 0.09 when using constant albedo and 0.12 using variable albedo.

Using the three-layer model with variable albedo gives better results than
the zero-layer model with variable albedo. The ice extent is still underes-
timated in summer, but somewhat less so than when using the zero-layer
model. The RMS error for the three-layer model using variable albedo is
0.10.
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Figure 4.5: The upper panel shows the mean sea-ice concentration in the model area modelled using different albedo and
layer settings compared to satellite data. The lower panel shows the difference between the satellite data and model results.
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4.3.3 Lateral melt

The Semtner (1976) model addresses melting from the top and bottom of
an ice floe, but in addition to that the ice also melts from the sides, termed
lateral melt. This portion of the ice melt is not easily modelled based on
first principles so simple parametrisations are used. The two approaches
implemented here are either to assign a fraction of the basal melt to the
lateral melt, or to assume a linear thickness distribution and reduce the ice
area accordingly when there is melt at the top or bottom surfaces. The
former was suggested by Mellor and Kantha (1989) and the latter by Hibler
(1979). The variations used here, where the ocean is allowed to warm above
the freezing point in the presence of ice are described in section 2.3.

In terms of mean ice concentration the two approaches by Hibler (1979)
and Mellor and Kantha (1989) give very similar results. The RMS error
when compared to the satellite data is 0.10 when using Mellor and Kantha’s
approach and 0.12 using Hibler’s. Naturally these differences appear during
the melt period.

Another concern is how large a portion of the total melt should be as-
signed to lateral melt when using the approach by Mellor and Kantha (1989).
This amounts to adjusting the parameter ®;;, which Mellor and Kantha
(1989) set at ®p; = 0.5 (the value also used in the control run). The lower
and upper limits for ®,; are 0 and 1, respectively. If ®3; = 0 only basal
melt will occur and if ®p; = 1 only lateral melt occurs. In order to test
the sensitivity of the model towards changes in ®;; two decadal runs, each
with &5y = 0.3 and ®5; = 0.7 were run. These changes proved to have very
limited effects on the mean ice concentration and the RMS error was the
same to within 0.002 for all three values of ®,; tested.

4.3.4 Ice thickness

Ice thickness is of considerable interest in the current context since it is
thought to be the main factor determining fast ice strength (see e.g. Divine
et al., 2004, and references therein). Unfortunately readily available sea-
ice thickness data in the Kara Sea is nearly completely limited to fast ice
thickness and these are scarce. The presence of dynamic interactions in the
model is likely to cause it to produce thinner ice than it would if no dynamics
were involved. Comparing model results (where no fast ice is present) to
measured fast-ice thickness can therefore be misleading.

To get some idea of how thick the modelled ice becomes figure 4.6 shows
the mean ice thickness, calculated for ice covered cells only. The upper panel
shows the mean for the entire model domain and the lower panel shows the
mean for the Severozemelsky region, as defined by the red rectangle in figure
4.1. Averages for the NCEP/NCAR data using the zero-layer model with
and without variable albedo, the three-layer model (the control run) and
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the ERA-interim data are shown.

Comparing the three NCEP/NCAR means shows very little difference
between ice thickness depending on the number of layers while the albedo
scheme plays a more important role. Using a variable albedo the only no-
table difference between the zero-layer and three layer models occurs during
the melting period. Using the three-layer model slows down the melting,
compared to the zero-layer model-——much as one would expect given the
underlying model physics. Aside from that the difference between the ice
thickness modelled using the two model formulations is only a few centime-
tres.

We’ve already seen that using the constant albedos prescribed here re-
sults in a slower melt than when using the variable albedo scheme. This is
also apparent when considering the ice thickness. In particular the summer
minimum mean thickness is always some tens of centimetres greater using
the constant albedos compared to when using the variable albedo scheme.
This can result in a build up of multi-year ice causing the ice in the follow-
ing winter to be thicker than otherwise. This is most striking in the winter
1999-2000, but can also be seen, to some extent during most of the modelled
years.

Adding the ERA-interim results to the comparison shows that chang-
ing the forcing can affect the winter ice thickness as well as the summer
thickness. Before 1999 the modelled ice is thinner in winter and thicker in
summer using ERA-interim. During these years the difference in mean ice
thickness can be as much as 20 cm in winter and 50 cm in summer. Dur-
ing the summer of 1999 there’s exceptionally little melt modelled using the
ERA-interim data. This leads to a build-up of ice and consequently the
modelled mean ice thickness is larger for ERA-interim than NCEP/NCAR
in the following years.

4.3.5 Summary

This quick overview shows that while the model remains consistent during
fall and winter, spring and summer are more problematic. This is not un-
expected since the melting period is notoriously difficult to model properly.
During it the ice and snow albedo change as the melt sets in. After some
time the melt water may gather in ponds on the ice surface, dramatically
lowering the albedo and thus accelerating the melt. The formation and
drainage of these melt-ponds is extremely difficult to model accurately, but
the variable albedo scheme included here is an attempt to give a rough es-
timation of all these effects. Finally lateral melt also plays a role, but the
extent of it is also difficult to estimate.

Given all the unresolved processes involved in the melting of the ice
it should come as no surprise that the differences between using different
forcing data sets and model formulations are largest in spring and summer.
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Overall using the NCEP/NCAR data leads to an underestimation of the
sea-ice extent while using the ERA-interim data leads to an overestimation.
These over- and underestimations are of similar absolute magnitude; using
the NCEP/NCAR and ERA-interim results in an RMS error of 0.10 and
0.15 respectively when compared to the satellite data. This can be used as a
measure of the acceptable variations due to changes in the model parameters.

Parameters that were tested in this section were the surface albedo, the
number of layers, the lateral melt scheme and the ®;; parameter of the
Mellor and Kantha (1989) lateral melt scheme. As expected changing the
surface albedo has considerable effects on the ice. The mean ice concentra-
tion changes considerably in summer depending on the albedo scheme used,
but somewhat surprisingly using a constant albedo gives lower RMS error
than using the variable albedo scheme. Introducing a three-layer model with
variable albedo improves the results compared to the zero-layer model and
pushes the RMS error down to the same level as those achieved using the
zero-layer model and constant albedo.

Changes in the lateral melt parametrisation may affect similar changes
in the RMS error. Replacing the Mellor and Kantha (1989) lateral melt
scheme with the one from Hibler (1979) increases the RMS error from 0.10
to 0.12, a similar magnitude as when changing albedo schemes. Changing
the ®,; parameter in the Mellor and Kantha (1989) scheme has, on the
other hand a much smaller effect; changing the RMS error by no more than
0.002. The model results are therefore robust with respect to changes in the
lateral melt scheme.

Changes to the ice thickness are of interest here since the ice strength
depends on its thickness. Differences in ice thickness between the various
model runs appear to arise primarily because of differences in the modelled
ice extent at the end of the melt season. Using the zero-layer model with
constant albedos or the ERA-interim data there is often considerable amount
of ice still in the Kara Sea as the melt season ends. This results in thicker
ice forming the following winter and the effect is particularly noteworthy in
1999-2000. During that winter the ice in the Severozemelsky region becomes
unusually thin in model runs where the ice all melts during the summer. In
runs where there’s a build-up of multi-year ice the ice thickness is much
closer to the average value.

Figure 4.7 goes into more detail showing the maximum mean ice thick-
ness in the Severozemelsky region and the standard deviation thereof for the
aforementioned constant and variable albedo runs. Even though the number
of samples is statistically very small here we can use the standard deviation
as an indicator of what constitutes thin and thick ice in this context. Note
in particular that using constant albedo the maximum mean thickness only
falls one standard deviation below the mean in 1995 and 2002 while this also
happens in 2000 when using the three layer model. The ice can therefore
be considered unusually thin in these years. This is particularly interesting
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Figure 4.7: The solid lines and circles show the maximum mean ice thick-
ness in the Severozemelsky region while the horizontal solid and dashed-dot
lines show the mean and standard deviation respectively.

here because fast ice is observed throughout the winter in 2000, but only
for one month in 2002. If ice thickness is the primary factor in deciding
whether fast ice forms or not then it is likely that the thicker ice produced
when using a constant albedo is more realistic than that produced using the
three-layer model. The role of ice thickness on fast-ice formation will be
discussed in more detail in chapter 6.

The overall result of these tests is that the model behaviour is robust
compared to the quality of the forcing data. The weak link appears to be the
albedo scheme and using a constant albedo actually gives lower RMS errors
than using variable albedo under the NCEP /NCAR forcing. The significance
of this result is diminished when comparing the results from using the ERA-
interim data since changing the forcing changes both the sign and the nature
of the errors incurred. It would probably be possible to tune the albedo
scheme to give better results under the NCEP/NCAR forcing, but this is
likely to have an adverse effect on the ERA-interim results. No such tuning
was therefore attempted and the model is considered good enough as it is.
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4.4 Dynamics

Sea ice modelled in a viscous-plastic model can never be stationary in the
presence of applied strain, only move very slowly. It is therefore important
to know how accurately the velocity can be modelled so that a sensible
separation between fast ice and slowly moving ice can be decided upon. It
is also the plastic character of sea ice that gives it cohesion and allows it to
remain land fast. It should, therefore, be necessary to iterate the model to
a plastic convergence when modelling fast ice.

In his seminal paper, introducing the viscous-plastic model, Hibler (1979)
used an SOR-solver to solve the linearised momentum equation. As previ-
ously mentioned this results in an erroneous solution since the viscosities
used to calculate the velocities were calculated using velocities from the pre-
vious time-step. To improve the solution a pseudo time step is used where
the momentum equation is re-linearised and solved using the newly calcu-
lated velocities. One pseudo time step can also be referred to as two outer
loops. Two outer loops are, however, insufficient to achieve a convergent
solution and Lemieux and Tremblay (2009) showed that at 10 km resolution
somewhere between 200 and 1000 outer loops may be necessary to achieve
acceptable convergence.

In the following the convergence properties of the Hibler-type and gran-
ular models implemented here are tested. Each model type is tested by
varying the number of outer loops from 50 to 500. Convergence is then es-
timated by considering the outer-loop error and the percentage of grid cells
where the outer-loop error falls within a given target. The computational
cost of increasing the number of outer loops is also taken into consideration.

4.4.1 The Hibler-type model

In order to asses the performance the Hibler-type model a set of ten 15
month long test runs were run. The setup was the same for each run,
except that the number of outer loops was varied from 50 to 500. In other
respects the model setup is the same as described in section 4.2.1. It’s worth
recalling that to try and save some computational time no more outer loops
are taken when the outer loop target error (eor < 0.1 mm/s) is reached.
At this point it is assumed that a plastic convergence is reached. Lemieux
and Tremblay (2009) use a similar criterion to define what they consider
“acceptable convergence”.

During these runs the outer-loop error was calculated, as described in
section 2.2.1, and written to file. Figure 4.8 shows the percentage of time
steps where the outer loop error falls below a given target as a function of
the number of outer loops. The target error of 0.1 mm/s is difficult to reach,
being reached 19% of the time when using 50 outer-loop iterations, but this
ratio becomes 95% at 500 iterations. In comparison the target eor, < 1 mm/s
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Figure 4.8: The percentage of time steps where the outer loop error falls
below a given target as a function of the number of outer loops. The bar
in the left corner shows the percentage of time steps where the difference
between the results of the two pseudo time steps in Hibler’s approach falls
below the same targets.

is reached 87% of the time when using 50 outer-loop iterations, 94% of the
time when using 100 iterations and 97% of the time using 500 iterations.

The convergence of the model clearly improves with increased outer-loop
iterations, but this improvement appears to level off before full convergence
is reached. In particular it seems clear that there is little to gain from going
beyond 500 outer-loop iterations in terms of the targets eor, < 1 mm/s and
eor, < 0.1 mm/s. As a further test one run with 1000 outer loop iterations
was run. In this run the eor, < 0.1 mm/s target was reached in only 25
iterations more than when using 500 outer loops, which is 0.04% of the total
number of iterations. It seems clear therefore that reaching full convergence
at every time step is extremely difficult, using the current model, if at all
possible.

On a more positive note figure 4.8 also shows well the vast improvement
the current scheme is over the approach of Hibler (1979). Using only a single
pseudo time step the change in velocity between the two time steps is never
less than 0.1 mm/s. By the same measure the target eor, < 1 mm/s is
reached in 4% of the time steps taken and the target eor, < 1 cm/s is only
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Figure 4.9: The percentage of iterations where more than 1% of the ice
covered grid cells have outer-loop errors larger than 0.1 mm/s as a function
of the number of outer loops.

reached 15% of the time. In addition to this the maximum velocity difference
between using 500 outer loops and one pseudo-time step was calculated for
one time step of each modelled day. This maximum difference was always
greater than 1 cm.

Lemieux and Tremblay (2009) suggest that if less than 1% of the ice
covered grid cells have errors larger than 0.1 mm/s the model should be
considered to have converged. This target can also not be reached in every
time step using the current model. Figure 4.9 shows that at 50 outer loops
39% of the iterations ended with more than 1% of the ice covered grid cells
with errors larger than 0.1 mm/s. This fraction does, however, drop rapidly
t0 0.09% at 500 outer loops, a total of 57 iterations. Iterating over 1000 outer
loops gives little improvement over 500 outer loops. In this case 0.03% of the
iterations do not converge, compared to 0.09% using 500 outer loops. Using
500 outer loop iterations we therefore seem to come as close to a complete
convergence as reasonably possible with this model.

These good results do come at a steep price, computing time wise. Figure
4.10 shows the time it takes to integrate the model for 15 months on the
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Figure 4.10: The time it takes to simulate 15 model months on the RRZ’s
Linux cluster. The blue portion of bar in the left corner of the graph shows
the time it takes to simulate the 15 months using a single pseudo time step.
The green portion shows the time spent in the ocean model.

Regionales Rechenzentrum’s Linux cluster computer®. It shows that when
using Hibler’s pseudo time stepping integrating the coupled ice-ocean model
for 15 months takes 4.7 hours, while when using 500 outer loops it takes
11.0 hours. This is roughly a doubling of the computing time and as such
perhaps not a large sacrifice given how much the results have improved.
On the other hand, when using Hibler’s pseudo time stepping the ice model
takes up 23.8% of the computing time and so the ice model itself takes about
7 times as much computing time with 500 outer loop iterations, compared to
using a single pseudo time step. Considering that the number of outer loops
increased 200-fold this is perhaps not too bad, but it is clear that reducing
the number of outer loops required is essential if we want to iterate the
momentum equation to convergence in a more demanding setup. Lemieux
et al. (2010) have already indicated a possible way forwards in this regard.

SEach computing node as two Intel Xeon E5462 Quad Core CPUs clocked at 2.80 GHz
with front side bus speed of 1600 MHz and 16 GB of RAM. When the tests were run only
four jobs were assigned to each node since using more than that resulted in a considerable
performance degradation. This way the completion of one job has no effect on the runtime
of the remaining jobs.
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4.4.2 Granular model

So far only the convergence properties of the Hibler-type model using an
elliptic yield curve have been considered. There is no reason to assume that
the results change much when using a different yield curve and some limited
testing indicates this to be true. The granular model, proposed by Tremblay
and Mysak (1997) is a different mater, however, since it uses an additional
solver to calculate the pressure term. Tremblay and Mysak (1997) note that
the introduction of the pressure term solver requires an added number of
outer loops compared to Hibler-type models. It is therefore to be expected
that the granular model requires more outer loops to reach full convergence.

To test this a set of ten 15 months experiments were carried out in the
same manner as before, except now the granular model was used instead of
the Hibler-type model. It turns out that the granular model is much further
away from reaching a convergence than the Hibler-type model. Figure 4.11
shows the percentage of time steps where the outer loop error falls below a
given target, same as figure 4.8 for the Hibler-type model. In this case the
target eor, < 1 mm/s is reached only 22% of the time using 100 outer loops
and this result does not improve significantly with increased number of outer
loops. The target egr, < 0.1 mm/s is reached 8% of the time using 100 outer
loops and 10% of the time using 500. This is a very small improvement,
especially considering that the time required to integrate the coupled model
increases almost linearly from 5.1 hours for 50 outer loop iterations to 29.7
hours for 500 outer loops.

The granular model also fails to reach convergence when we consider the
fraction of cells with outer-loop errors greater than 0.1 mm/s. At 50 outer
loops more than 1% of the grid cells have errors larger than the target error
for 87% of the modelled time steps. Using 500 outer loops this fraction falls
down to 74%, a substantially worse result than when using the Hibler-type
model. It is, therefore, clear that the granular model shows much poorer
plastic convergence than the Hibler-type model.

4.4.3 Summary

The results presented for the Hibler-type model show well the limits of the
model solver. The tests aimed at reaching “acceptable convergence” or
outer-loop error less than egr, = 0.1 mm/s. This proved impossible to reach
at every time step, even using 1000 outer-loop iterations. Using 500 outer
loops gave convergence for 95% of the time steps. Increasing the number
of outer loops to 1000 improved this percentage by only 0.04 percentage
points so it’s safe to conclude that at 500 outer-loop iterations the solver
performance is close to the optimum, using eor, = 0.1 mm/s.

Using 500 outer-loop iterations gives much more accurate results than
using one pseudo-time step. After one pseudo-time step the changes in
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velocity are always greater than 0.1 mm/s, but that limit is reached 95% of
the time using 500 outer loops. The improvement is therefore considerable,
but full convergence is still not reached 5% of the time. If the convergence
criterion is changed to eor, = 0.01 mm/s the required number of outer loops
and time required grows considerably. A test using eor, = 0.01 mm/s and
1000 outer-loop iterations show that full convergence is only reached 47% of
the time in that setup. In addition the model run time is about 34 hours,
approximately threefold the runtime when egr, = 0.1 mm/s and using 500
outer loops. This shows that setting eor, = 0.1 mm/s and using 500 outer
loops gives the best accuracy possible within a reasonable time frame.

The test performed on the granular model showed much worse conver-
gence than that of the Hibler-type model. After 100 outer-loop iterations
full convergence was only reached in 8% of the model time steps and 10%
of the time after 500 outer loops. Since the improvement in convergence
barely grows at all the time it takes to integrate the model increases nearly
linearly. Using 500 outer-loop iterations it took almost 30 hours to integrate
the 15 model months, compared to 11 hours using 500 outer loops and the
Hibler-type model.

In conclusion we note that the experiments performed so far cannot tell
us with any certainty what number of outer loops is necessary to model fast
ice. The approach taken here will be to iterate the model as close to plastic
convergence as is practically feasible and see if this way it is possible to
model fast ice. Once the processes involved are better understood it’s worth
investigating how the model responds to a reduced number of outer loops.
This will be done in section 5.3.1.

4.5 Conclusion

This chapter gave a quick overview of the model setup and the forcing data
used. In addition two sets of experiments were introduced as a preparation
for the following modelling work. Firstly the model response with respect to
changes in thermodynamics was considered and secondly the performance
of the dynamical solver was investigated.

All the thermodynamical tests showed that the model response is robust
with respect to changes in parametrisations. The modelled mean ice con-
centration compared well with observations with the largest errors present
in spring and summer, as expected. Changing the atmospheric forcing from
NCEP/NCAR reanalysis data to ERA-interim data changed the sign of the
errors, but the root-mean-squared error remained similar. Changes to vari-
ous thermodynamical parameters produced changes in model output which
were much smaller than changes observed when switching from one forcing
data set to another. The model therefore produces acceptable results in this
respect.
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The dynamic tests done focused not on comparison with observations,
but rather on determining the solvers capabilities. In particular the rela-
tionship between outer-loop convergence and the number of outer loops was
investigated. Increasing the number of outer loops reduced the solver error,
as expected, but a fully converged solution could not be reached for every
time step. The percentage of time-steps where the model error fell below
the given target increases rapidly for a low number of outer-loop iterations,
but the improvement slows down as the number of outer loops increases.

The dynamical tests determined that when using the Hibler-type model
not much is gained by performing more than about 500 outer loop iterations.
At this point full convergence is reached 95% of the time. Integrating the ice
model with 500 outer-loop iterations takes about 7 times longer than with
one pseudo-time step. The integration time of the coupled model is doubled
when using 500 outer loops compared to one pseudo-time step.

The granular model showed substantially worse convergence properties
with full convergence for only 10% of all time steps at 500 outer-loop itera-
tions. The computational performance of the granular model is also much
worse than that of the Hibler-type model. Using 500 outer-loop iterations
within the granular model the model integration takes about three times as
long as when using the Hibler-type model.
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Chapter 5

Fast ice in 1997-98

5.1 Introduction

Land-fast ice is a prominent feature of the Kara Sea ice regime. Mid-winter
it is present along the entire Kara Sea coast, but the largest fast-ice extent
can be seen between Severnaya Zemlya and the Siberian coast. Volkov et al.
(2002) have compiled a comprehensive overview of fast ice formation in the
Kara Sea. According to it land-fast ice starts forming in October, Decem-
ber and reaches its maximum width and thickness in April, May. By that
time the fast ice boundary tends to follow certain isobaths; between the 10
and 15 m ones in the south-western part of the sea and the 20 and 25 m
ones in the north-eastern Kara Sea. A notable exception is the Severozemel-
sky region (between Severnaya Zemlya and the Taymyr Peninsula) which is
typically covered with fast ice during winter, independent of depth. The
summer fast-ice breakup usually begins in the last 10 days of June in the
south-western Kara Sea while moving east and north the breakup occurs
later. In the extreme north-eastern part the last of the fast ice breaks up in
mid August, on average.

The extent of the fast-ice cover in the Kara Sea is very variable, especially
in the north-eastern part. Divine et al. (2003, 2004) showed that fast ice in
the north-eastern Kara Sea undergoes significant seasonal and inter-annual
variations. Divine et al. (2005) then showed that this variability in the
Severozemelsky region is mostly discrete and that the ice cover in the region
primarily occupies one of the three modes shown in figure 5.1. More than
one mode may be visible each winter, but there is usually one prevalent
mode for the entire winter. These modes can be linked to the prevailing
atmospheric circulation patterns (Divine et al., 2005) as well as following a
chain of islands in the region, indicated in figure 5.1.

Of these modes the so called S-mode is the smallest, and most common.
It extends from Severnaya Zemlya to the Sergey Kirov Islands and from
there to Sterlegova Cape (see figure 5.1). The L; and Ls modes can be
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Figure 5.1: The Severozemelsky region. The lines indicate the typical
extent of fast ice for S, L1, and Le-modes according to Divine et al. (2005),
with the dashed lines showing smaller S and L-mode variants. Islands and
capes important for the fast ice formation are encircled.
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considered extensions of the S-mode and they only form once the S-mode
has been established. When in Li-mode the fast ice extends from the Sergey
Kirov Islands to Izvestiy TSIK Islands and the Arctic Institute Islands and
from there onto the coast midway between Dikson and the Pyasina delta
through the Kamanennyyee Islands. In Lo mode the fast ice extends from
the Arctic Institute Islands to Sverdrup Island and from there to Dikson or
Vil’kitsky Island.

In the following it will be shown that much of the land-fast ice formed
in the Kara Sea can be modelled in a realistic setup using the viscous-
plastic sea-ice model introduced in chapter 2. The common elliptic yield
curve is tested along with the granular model and the cohesive yield curves
from chapter 2. We also consider how variations of the relevant parameters
for these yield curves affect the final solution. For validation the model
results are compared to satellite data showing flaw polynya formation and
ice charts produced by the Arctic and Antarctic Research Institute (AARI).
In the discussion that follows the weak and strong points of the model are
considered. In particular it is discussed why some setups give better results
than others. An attempt is then made to use this knowledge to better
understand how fast ice forms and how best to model it. The effects of
using different atmospheric forcing are also discussed. Finally a grounding
parametrisation is suggested and model results using it are analysed.

5.2 Observational data

5.2.1 Russian ice charts

The Arctic and Antarctic Research Institute (AARI) and the National Snow
and Ice Data Center (NSIDC) have jointly published sea-ice charts produced
by the AARI from 1933 to 2006 (Arctic and Antarctic Research Institute,
2007). The charts were produced for safety of navigation in the polar re-
gions and for other operational and scientific purposes. They show ice con-
centration for multi-year ice, first year ice, new/young ice and land-fast ice.
Historically the charts were compiled from many different sources, but the
latest charts (i.e. after 1996) are mostly derived form satellite observations.
In addition to the satellite observations shipborne observations as well as ob-
servations from polar meteorological stations and air reconnaissance flights
were used to compile the charts.

Chart coverage and frequency varies, but for most of the series charts
were compiled every 10 days during the navigation season, and monthly for
the rest of the year. Most of the time a single chart will cover a given 10
day period, i.e. days 1-10, 11-20 of each month and day 21 until the end
of the month . Sometimes more than one chart is given for each period, in
which case indication is given whether majority of the data in the chart was
collected early or late in the observation period. The more recent charts
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(i.e. after 1996) usually cover more area than the older ones and are more
frequent.

The AARI charts will be our primary source of data for model veri-
fication, being the only available fast ice data set for the region. In this
particular study the focus will be on a single winter only. This should be
chosen from the later part of the data set (i.e. after 1996) since the temporal
resolution and the spatial cover is better for that period. We choose to focus
on the first full winter in this period; i.e. 1997-98.

5.2.2 Satellite polynya data

The satellite derived polynya data used here is the same as that used in
Kern et al. (2005). Open water and thin-ice extent of a polynya is esti-
mated using the Polynya Signature Simulation Method (PSSM) developed
by Markus and Burns (1995) and Hunewinkel et al. (1998). The PSSM is
based on Special Sensor Microwave/Imager (SSM/I) brightness temperature
polarisation ratios at frequencies of 37 and 85 GHz.

This PSSM data is available from the beginning of October through May
and as such covers most of the fast-ice period. The SSM/I data come from
polar orbiting Defense Meteorological Satellite Program (DMSP) satellites.
The data for the Kara Sea for the winter 1997-98 was generally recorded a
few hours after midnight or a few hours before noon.

Although the PSSM data does not show fast ice directly, it is useful in
this context as it shows clearly flaw polynyas that form downwind of the fast
ice. The data therefore affords us a verification of the AARI fast-ice data,
when the meteorological conditions are right. This is also the time when it
is easiest to check the model results for the presence of fast ice. In addition
this data can of course be used to estimate the model’s skill in simulating
the formation of flaw polynyas.

5.2.3 Overview of the winter 1997-98

Since the focus will now be on the winter 1997-98 this section will consider
the atmospheric conditions and observed fast ice in that period. In particular
the monthly mean sea level pressure from the NCEP reanalysis data will
be used to try and get a clear picture of the atmospheric influence. We
will then also consider the AARI ice charts and show how fast ice in the
Severozemelsky region forms in winter and breaks up in summer.
Considering first the atmospheric forcing, figure 5.2 shows the monthly
mean sea level pressure for the period from December 1997 to July 1998. In
December the mean sea level pressure is dominated by a low pressure zone
over the central Kara Sea. Since sea ice in free drift drifts approximately
along isobars it would seem that the atmospheric pressure in December
does not favour fast ice formation in particular, with the ice being herded
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away from the Taymyr Peninsula towards Severnaya Zemlya or out into the
northern part of the Kara Sea. In January the low deepens and moves just
west of Novaya Zemlya resulting in stronger offshore winds of the Taymyr
Peninsula. The mean wind direction is such that one would expect fast
ice formation, at least in the northern part of the Severozemelsky region,
possibly with occasional breakups as the wind blows ice in and out of the
region.

February is a period of calm winds in the Severozemelsky region, while
in March easterly winds start to blow, growing stronger in April. This
period of easterly winds should prevent further fast ice growth and is likely
to produce large flaw polynyas of the fast ice. This also coincides with the
period of mean maximum fast-ice extent. It turns out that flaw polynyas
forming during this period can be seen in the PSSM data discussed earlier.
A particularly large flaw polynya forms in the period of April 12-19.

The May average then shows another calm period, which lasts through
June. In July a broad high sits in the central Kara Sea resulting in weak
onshore winds in the Severozemelsky region. According to Volkov et al.
(2002) the Severozemelsky fast ice may start breaking up in June, the last
of it breaking up in the middle of August. In June and July of 1998 calm
winds blow in the Severozemelsky region and perhaps because of this the
fast ice only starts breaking up in the middle of July, that year.

The temporal evolution of the fast-ice cover can be visualized by study-
ing the AARI observations. In figure 5.3 the left panel shows the observation
period when stable land-fast ice is first observed and the right panel shows
the last observation period in which fast ice is observed in summer. Ac-
cording to the observations fast ice in the Severozemelsky region forms in
two discrete jumps in 1997-98. Initially fast ice forms inland of the Norden-
skiold Archipelago during the November 1-10 observation period, growing
only slightly after the initial formation. The January 1-10 observation then
shows a fully formed S-mode fast ice massive. It is subject to some minor
partial breakups and recoveries, but remains, mostly unaltered, until the
summer breakup.

Summer breakup of the Severozemelsky fast ice massive occurs in the
period from July 11*" to August 11*', after which no fast ice is observed
in the region. Fast ice in the Vilkitsky Strait breaks up first, followed by
the rest of the Severozemelsky fast ice massive offshore off the Nordenskiold
Archipelago. The fast ice inland of the Nordenskiold Archipelago is the last
to break up at the beginning of August, having remained land fast for 9
months.



96 CHAPTER 5. FAST ICE IN 1997-98

Figure 5.2: The monthly mean sea level pressure from December 1997 to
July 1998.
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Figure 5.3: The time of onset and break up of fast ice in the Severozemelsky
region according to the AARI observations: (a) the observation period when
stable fast ice is first observed in winter and (b) the observation period when
fast ice is last observed in summer.

5.3 Experiments

In this section a series of experiments using different yield curves are de-
scribed. These are the elliptic, flexible modified Coulombic (FMC), curved
diamond and trimmed ellipse yield curves, in addition to the granular model.
For each experiment the model is initialised using the model state of the con-
trol run from section 4.3 on October 5% 1997. On that date the modelled
global mean ice concentration is 0.01, close the summer minimum and the
role of ice dynamics should therefore be at minimum. All model runs use 500
outer loop iterations, (nin = 0 and (pax = (1013 s)P, except when stated
otherwise. All runs are also forced using the NCEP/NCAR atmospheric
reanalysis data, unless otherwise specified.

The results using each model formulation are compared to the observed
fast ice extent and breakup times as well as the PSSM polynya data for
verification. In this section the tunable parameters of each curve are tuned
to give the best correspondence with observations. The results are then
discussed in more detail in section 5.4.

5.3.1 Elliptic yield curve

The first yield curve considered is the elliptic yield curve proposed by Hibler
(1979), but with the changes in the momentum solver described in section
2.2.1 and using 500 outer-loop iterations. Additionally the maximum bulk
viscosity allowed is (pax = (103 s)P. This is considerably larger than the
maxima suggested by Hibler (1979) and Hunke and Dukowicz (1997), but
it will be shown below that choosing a high maximum on the bulk viscosity
is necessary in order to be able to model fast ice. When these settings are
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used realistic fast ice appears in the model.

In the control run the yield curve axis ratio is set to e = 2 and no
biaxial cohesion is included. Having described the results from the control
run experiments with variable number of outer loops and variable maximum
viscosity are outlined. This is then followed by the results of experiments
where the focus is on changes in the ellipse eccentricity and the addition of
biaxial cohesion.

Control run

We now consider the well established elliptic yield curve with e = 2, using
500 outer loops and (pax = (102 s)P. Aside from the large number of outer
loops and large (ax this configuration is the same as what is seen for the
vast majority of viscous-plastic models today. It is therefore referred to here
as the control run and all other experiments should be considered as an
attempt to improve the control run results.

In order to visualise the temporal evolution of fast ice in the model
figure 5.4 shows the day on which the land-fast ice becomes stable. The
figure is made by walking through the daily model output and noting the
date if the ice is moving with a velocity greater than the outer-loop target
error egr, = 0.1 mm/s. This way a map is produced showing the last day
on which the ice is mobile. The next day after that is then considered
the day on which land-fast ice becomes stable. It is important to consider
model output well into the winter to ensure that all fast-ice formation is
captured. It is also important to stop the procedure on a day where as
much of the drifting ice is moving as possible. When producing figure 5.4
the period from November 15* through April was considered, ignoring any
ice that stops moving after March 315t

Focusing on the Severozemelsky region we see fast ice formation as early
as the beginning of November in Pyasina Bay and inland of the Nordenskiold
Archipelago. This fits well with the AARI observations, but the extent
of stable fast ice inland of the Nordenskiold Archipelago is too small, not
reaching the largest of the islands.

According to the AARI observations S-mode fast ice forms in the January
15010t observation period. In the model signs of S-mode fast ice forming
can be seen as early as December 18" and by December 20" S-mode fast
ice is clearly established. It remains mostly stable, with occasional partial
breakups until January 24" when it breaks up completely. On February 3¢
the fast ice appears to have reformed, but it still suffers a partial breakup
which is mostly recovered by February 22! and a smaller partial breakup
recovered by March 4%,

After the partial breakups in March the modelled fast ice remains stable
until May 19*", despite a number of storms passing through the region. The
best example of this is the period of strong offshore winds in the Severoze-
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Figure 5.4: Results from the control run: (a) The day land-fast ice becomes
stable in winter and (b) the day of (first) fast ice breakup in summer. The
solid lines mark the fast-ice extent according to the AARI data for the first
observation period in (a) April and (b) May. In the white areas no fast
ice is formed and the black patches in panel (b) mark areas of fast ice that
survives beyond August 215¢.

melsky region from April 9" to 15", During this time a large flaw polynya
opens up which is clearly visible in the PSSM data. This is also clear in the
model output, where the thick ice in the western part of the Severozemel-
sky region breaks apart from the fast ice and new ice forms in the opening.
Figure 5.5 shows the modelled ice thickness and ice cover fraction on April
14" overlaid with the PSSM data.

Comparing the model results with the PSSM data during this period
shows generally good agreement between the two. There is clearly a flaw
polynya forming in the model and its location is mostly within the area
of the observed newly formed ice. An exception is the thick ice modelled
between the Arctic Institute Islands and the Taymyr coast where newly
formed ice is observed by the satellite. For reference one can assume that
PSSM labelled thin ice is not much thicker than about 30 cm, but thicker
ice may be reported as thin ice if the concentration is low (Stefan Kern,
personal communication).

On May 19" and 21%* the modelled S-mode fast ice breaks up completely,
but reforms again about a week later. This is followed by a few breakups
and reformations, but the final breakup comes on June 23'4, after which
fast ice does not appear in the model again during the model run. This
final breakup is approximately one month too early, compared to the AARI
observations.

It is instructive to consider how the fast ice breaks up in two of the early
breakups; from January 20" to 25" and from May 17" to 2274, Figure
5.6 shows the ice speed as well as the wind during the first period. On
January 20" there is a sharp gradient in the ice speed, clearly indicating
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Figure 5.5: Results from the control run: (a) ice thickness (capped at 2 m)
and (b) ice fraction. The lines show PSSM data; the thick lines show the
extent of newly formed ice and the thin line the extent of open water. The
snapshot is taken after the first time step of April 14,

the fast ice edge. This distinction is clear because of the strong offshore wind
blowing almost uniformly in the Severozemelsky region. Some ice movement
of |¥] = 5 mm/s can already be seen inland of the Sergey Kirov Islands as
the fast ice also does not appear to reach those islands completely at this
time.

On the following day the low pressure zone that was located in the west-
ern Kara Sea has moved onshore near Dikson island causing a divergent
wind field in the western part of the fast ice massive. Since the elliptic
yield curve only supports very limited cohesion under biaxial divergence the
fast ice subjected to the divergent wind stress breaks up. The breakup is
probably facilitated by the fact that the fast ice does not reach the Sergey
Kirov Islands at the start of the period. This prevents an arch from form-
ing between the Sergey Kirov Islands and Cape Sterlegova, which would
presumably strengthen the fast ice.

Following this partial breakup another low pressure zone passes through
the Kara Sea on January 23", travelling from south-west to north-east. As
the low passes north of Severnaya Zemlya the fast ice massive collapses under
mostly compressive strain, although shear strain also plays an important
role. The breakup is initiated by high shear stress near the Kirova Island,
breaking the arch which connects it and Voronina Island. Later it also breaks
the arch between the Voronina and Dlinnyy Island. As the low moves north-
east the wind turns onshore and the rest of the fast ice collapses under the
resulting compressive strain.

The effects of shear strain can be seen more clearly in the May breakup,
shown in figure 5.7. In this case the wind stress is always convergent in the
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Severozemelsky region, but it exerts strong shear strain on the ice. This
causes a small partial breakup on the 18" and the rest of the ice to break
up on the 215%. The first breakup is initiated when the fast ice breaks away
from the Sergey Kirov Islands, but as figure 5.4 shows the fast ice there is
never properly established. The fast ice is temporally re-established on the
20" but the arrival of a second low pressure zone in the region breaks the
arch between Voronina and Dlinnyy Islands. Following that the rest of the
fast-ice massive then collapses.

From the results presented in this section it is evident that modelling
fast ice using the elliptic yield curve is, to some extent, possible. So far a
large number of outer loop iterations and a large value for the maximum
viscosity have been used, but the following sections go into more detail
about the effects of changing these settings. Overall, it seems clear that the
modelled ice is weaker than the actual ice, since multiple partial breakups,
not observed in the AARI data, have been catalogued here. These modelled
breakups last long enough so that they should have been picked up by the
observations, were they real.

Number of outer loops

It has already been stated that both the number of outer loops as well as the
maximum viscosity should be high, compared to the customary values. Now
that it’s been shown that fast ice can, to some extent, be modelled using the
elliptic yield curve with a large number of outer loops and large maximum
viscosity values the effects of these two parameters will be studied in more
detail.

Starting with the number of outer loops it is instructive to compare the
results from using 500 outer loops to the result when using one pseudo time
step. It has already been shown in section 4.4 that using one pseudo time
step results in larger outer-loop errors, but we will now consider where these
errors are located and if they affect the fast ice formation.

As a concrete example let us consider a snapshot from April 14", We’ve
seen before that there is a sharp distinction between land-fast ice and drift
ice at that time, but with respect to the location of errors the situation is
quite typical. Figure 5.8 shows the ice velocity using one pseudo time step
and the difference in velocity between using one pseudo time step and using
500 outer-loop iterations. This is the best measure available of the error
incurred when using one pseudo time step, compared to a fully converged
solution. Note that after this particular time step the solver had reached
full convergence in the control simulation; i.e. the outer-loop error was less
than e = 0.1 mm/s.

The first thing to note is that we still see some fast ice in the Sever-
ozemelsky region, although the total area is only a fraction of the area
modelled using 500 outer loop iterations. Using one pseudo time step gives
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Figure 5.8: Speed, velocity in the entire model domain using one pseudo-
time step: (a) speed and velocity using one pseudo-time step and (b) speed
and velocity difference between using one pseudo-time step and 500 outer
loops. The snapshot is taken after the first time step of April 14,
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S-mode fast-ice area of Ag = 35,700 km?, while using 500 outer loops gives
Ag = 82,100 km?. Both fall short of the observed value of Ag = 88,800 km?,
but using 500 outer loops gives a considerable improvement.

The ice velocity is very low in approximately half the S-mode area and
we can verify that it’s below the target error for 500 outer loops by looking
at the model error in the same area (figure 5.8). In the rest of the S-mode
area the ice moves at speeds up to 5 cm/s. Taking a closer look at the model
errors we see there are two areas where there are considerable errors, while
in much of the model domain the error is less than 1 mm/s.

Large errors exist at the fast-ice edge on one hand and inland of a line
connecting the Sergey Kirov Islands, Arctic Institute Islands and Vil’kitsky
Island, out of Yenisey Bay on the other. The former is the result of a
difference in the placement of the fast-ice edge. In the control run the fast
ice edge follows the Voronina and Kirova Islands, but using one pseudo
time step the ice extends a few grid points beyond the islands. The second
error region coincides mostly with the L-mode region. Here the ice speed
when using one pseudo time step is approximately half that when using
500 outer-loop iterations. In this region the ice floes through a relatively
narrow pass between the Arctic Institute Islands and the mainland. This is
an area that was found to be problematic in the control run. Ice would flow
too slowly through it causing it to grow too thick and prevent the observed
new-ice formation to be properly modelled. Using one pseudo time step
this problem is exacerbated with very limited new-ice formation occurring
between the Sergey Kirov Islands and Sterlegova Cape (not shown).

Using one pseudo time step does therefore neither give as good fast-ice
nor drift-ice results as using 500 outer loops. Having thus shown that using
one pseudo time step is not sufficient the question arises of how many outer
loop iterations are required to properly model fast ice. To try and answer
this figure 5.9 shows the fast-ice area at the start of April as a function
of the number of outer loops. The fast-ice area was calculated using the
same method as used for making the fast-ice evolution figures. For this
comparison the model was run with model time step of At = 300 s as well
as At = 600 s (the value used in all other runs).

There is no clear trend to be seen in the figure; rather the model re-
sults seem to fluctuate somewhat randomly between Ag = 67,900 km? and
Ag = 82,800 km 2. Using 50 outer loops and At = 600 s results in fast-ice
area of Ag = 82,800 km?, 700 km? more than when when using 500. For in-
termediary number of loops the fast-ice area fluctuates between 69,300 km?
and 81,400 km?. The smallest value simulated here is Ag = 67,900 km?,
which occurs for nor, = 150 and At = 300 s. For a larger number of outer
loops the model appears to stabilise somewhat, but a jump of 700 km? going
from 450 to 500 outer loops at At = 600 s indicates that even using such a
large number of outer loops the model has not reached a completely stable
state. Using a smaller model time step does improve stability at larger nor,,
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Figure 5.9: Modelled fast-ice area at the start of April as a function of the
number of outer loops using two different model time steps. The bar in the
left corner shows the fast-ice area modelled using one pseudo time step.
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but the random fluctuations remain at low not,.

The results presented here show that while using one pseudo time step is
not a robust method for modelling fast ice, relatively small number of outer
loops appear to be sufficient to produce some fast ice. The model appears
to stabilise as the number of outer loops grows, but even at nor, = 500 some
fluctuations in the fast-ice area remain.

Maximum viscosity

At small strain rates a plastic solution cannot be found and linear viscous
deformation takes place, instead of a plastic one. The limit at which this
occurs is set by the maximum (bulk) viscosity, (max, which Hibler (1979)
set as Cmax = (2.5 x 108 s)P. This value was chosen to be large enough to
be rarely reached and not to significantly affect the computations (Hibler,
1979). This choice seems to have gone largely unchallenged although Hunke
and Dukowicz (1997) chose to use (pax = (2.5 x 10'° s)P in their elastic-
viscous-plastic model. In this section we will examine what value for (yax
is suitable for fast-ice modelling.

To accomplish this a set of experiments was run, with the same setup as
the control run, except now (max was changed from (108 s)P to (10'7 s)P
in steps where (nax was increased by factor 10 for each step. For each
experiment the fast-ice extent in April was calculated using the same method
as used for making the fast-ice evolution figures. The total fast-ice area is
then shown in figure 5.10 as a function of (ynax/P.

Some fast ice can already be seen at (nax = (108 s)P but as (pax grows
the fast-ice extent grows sharply. It plateaus at Ag ~ 30,000 km? for 107 s <
Cmax/P < 10! s, but grows again sharply for larger (nax, plateauing again
at about Ag =~ 82,000 km? at (max & (1013 8)P. At (max = (1016 )P there
is a very slight decline in the modelled fast-ice area. For much larger values
(Cmax = (1020 )P, not shown) the computed ice area starts to oscillate
with the oscillations growing larger and more rapid with larger (jax. For
Cmax > (10%0 8) P the fast-ice area oscillates between Ag ~ 75,000 km? and
Ag ~ 80,000 km? for each tenfold increase in Cpax.

In general it is preferable to keep the maximum viscosity as low as
possible, since this makes the equation of motion easier to solve. The
lowest feasible value for (pax should therefore be chosen. In this case it
is Cmax = (10'3 8)P, giving fast-ice extent close to the observed value of
88,800 km?.

Modified eccentricity

Dumont et al. (2009) showed that an elastic-viscous-plastic model with the
elliptic yield curve can be used to model ice bridges in a limited fashion.
They also showed that the ellipse eccentricity plays an important role in
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Figure 5.11: Results from using the elliptic yield curve with e = 1.4: (a)
The day land-fast ice becomes stable in winter and (b) the day of (first) fast
ice breakup in summer. The solid lines mark the fast-ice extent according
to the AARI data for the first observation period in (a) April and (b) May.
In the white areas no fast ice is formed and the black patches in panel (b)
mark areas of fast ice that survives beyond August 215¢.

such a simulation. Decreasing the axis ratio, e, results in larger uniaxial
compressive strength, increasing the potential for arching. In this section
the case of smaller axis ratios will be considered.

Testing e from e = 1.4 to e = 1.9 at intervals of 0.1 shows a marked
change related to the change in the yield curve shape. At e = 1.4 the ice
strength is greatly increased, compared to e = 2, resulting in an erroneous
L-mode appearing in late January, breaking up in May (see figure 5.11).
Using such a small value for e, however, also prevents the May breakup
of the S-mode fast ice with most of it breaking up in late July, same as
the AARI observations show. On the other hand, the partial breakup in
February still occurs with e = 1.4. Using e = 1.5 does not prevent the May
breakup, but still results in an erroneous L-mode.

Taking a closer look at the e = 1.4 simulation we now consider the ice
thickness and concentration on April 14*", shown in figure 5.12. The mod-
elled flaw polynyas and new-ice formation between the Vil’kitsky and Sergey
Kirov Islands coincides with an Le-mode fast-ice configuration, consistent
with the fast-ice extent figure presented before (figure 5.11). This is, how-
ever, inconsistent with the PSSM data and AARI observations which clearly
shows an S-mode configuration at that time.

A more drastic discrepancy is an unrealistic polynya that opens up in the
model. It stretches due north of the Sergey Kirov Islands towards Ushakova
island, located at the northern edge of the figure. This large feature should
be considered very unrealistic since it is neither observed on this particular
date nor any other date covered by the 1997-98 PSSM data. Also, Kern
(2008) gives an overview of polynya formation in the Kara Sea during the
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Figure 5.12: Results from using the elliptic yield curve with e = 1.4: (a)
ice thickness (capped at 2 m) and (b) ice fraction. The lines show PSSM
data; the thick lines show the extent of newly formed ice and the thin line
the extent of open water. The snapshot is taken after the first time step of
April 14th,

years 1979-2003 where the polynya distribution for 1995-2004 is shown in
particular (his figure 3). A polynya such as the one discussed here never
appears in those figures so it is safe to assume that this feature does not
occur in reality.

Decreasing the ellipse eccentricity therefore clearly affects the modelled
land-fast ice and decreasing it to e = 1.4 prevents the early May breakup.
Unfortunately it also affects the drift ice causing more land-fast ice to form
than observed. Tuning the ellipse eccentricity therefore presents us with the
choice of correctly modelling either the fast-ice extent or the breakup time.

Cohesion under isotropic divergence

The modifications to the elliptic yield curve suggested by Konig Beatty and
Holland (2010) and discussed in section 2.4.5, allow for adding cohesive
strength under isotropic divergence to the elliptic yield curve. This is desir-
able since we can safely presume that real fast ice has cohesive strength under
isotropic divergence. Using this approach increasing the cohesive strength
under isotropic divergence also increases the uniaxial compressive strength.
Konig Beatty and Holland (2010) assumed the ratio between cohesive and
compressive strength to be kr = 1, but initial tests showed that for the
current setup kr should be about an order of magnitude smaller. To test
the model response model runs with kp from kr = 0.01 to kr = 0.10 at
intervals of 0.01 were run.

Using a large enough value for k7 can prevent the May breakup, but not
the January or February breakups. Figure 5.13 shows the formation date of
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Figure 5.13: Results from using the elliptic yield curve with k7 = 0.09: (a)
The day land-fast ice becomes stable in winter and (b) the day of (first) fast
ice breakup in summer. The solid lines mark the fast-ice extent according
to the AARI data for the first observation period in (a) April and (b) May.
In the white areas no fast ice is formed and the black patches in panel (b)
mark areas of fast ice that survives beyond August 215¢.

stable fast ice and the breakup date for a model simulation with k7 = 0.09.
This is the lowest of the values tested that is large enough to prevent the
May breakup. As the figure shows an artificial L-mode appears in the model.
Using k7 = 0.07 is not large enough to prevent the May breakup, but still
large enough to cause an artificial L-mode to appear.

Considering the ice thickness and concentration on April 14" we see that
using kp = 0.09 gives unrealistic results (figure 5.14). A flaw polynya forms
along the L-mode boundary between the Vil’kitsky and Arctic Institute
Islands. North of that, however, a dramatic change occurs with a polynya
opening up stretching practically due north off the fast ice between the
Sergey Kirov Islands and the Izvestiy TSIK Islands. This is similar to the
erroneous polynya modelled with e = 1.4. In order to correctly simulate the
polynyas between Severnaya Zemlya and the Sergey Kirov Islands k7 must
be set no larger than k7 = 0.05. Doing this re-introduces the May breakup.

When adding cohesive strength under isotropic divergence the model
therefore suffers in a similar way as when adjusting e. The early breakup in
May can be prevented by increasing k, but only at the cost of erroneously
producing L-mode fast ice and not simulating drift ice correctly. Simply
adding cohesive strength under isotropic divergence in the manner done
here does therefore not improve upon the results from the control run.

5.3.2 Modified Coulombic yield curve

In order to try and improve the results of the control run the cohesive yield
curves introduced in chapter 2 were tested. First of these is the modified
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Figure 5.14: Results from using the elliptic yield curve with kr = 0.09:
(a) ice thickness (capped at 2 m) and (b) ice fraction. The lines show PSSM
data; the thick lines show the extent of newly formed ice and the thin line
the extent of open water. The snapshot is taken after the first time step of
April 14th,

Coulombic yield curve suggested by Hibler and Schulson (2000) and the
flexible variant thereof introduced in section 2.4.6.

In their implementation Hibler and Schulson (2000) used k7 ~ 0.05 and
¢ =~ 45°. These settings do not give enough cohesion to give a realistic
amount of fast ice (not shown) and so the FMC was used to test a wider
range of parameters. In particular the FMC was tested using ¢ = 30° (as
suggested by Tremblay and Mysak, 1997) and ¢ = 45°. Larger values of kp
than the one used by Hibler and Schulson (2000) were also considered.

We first consider ¢ = 30°. This value gives an axis aspect ratio of 2,
the same as used for the ellipse in the control run. We would therefore
expect similar results, but larger values of k7 should be required for a fast
ice simulation since the Coulombic shape gives smaller uniaxial compressive
strength than the elliptic one.

The tests done using ¢ = 30° result in fast-ice extent, formation and
breakup times similar to those obtained in the control run for 0.15 < kp <
0.21. Larger values of kr give fewer and smaller partial breakups during the
formation phase, but for k7 = 0.21 a small fast-ice protrusion extends from
the Sterlegova Cape towards the Arctic Institute Islands (see figure 5.15).
For k7 = 0.22 the normal S-mode fast ice is restored and in addition no May
breakup occurs, giving realistic breakup times (see figure 5.16). The realistic
breakup time, while still retaining the S-mode is a major improvement from
the control run.

Considering the flaw-polynya formation on April 14*" the general trend
is for small values of k7 (but kp > 0.15 nonetheless) to give more realistic
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Figure 5.15: Results from using the FMC and ¢ = 30°. The figure shows
the day land-fast ice becomes stable in winter using (a) kr = 0.15 and (b)
kr = 0.21. The solid lines mark the fast-ice extent according to the AARI
data for the first observation period in April. In the white areas no fast ice

is formed.
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Figure 5.16: Results from using the FMC and ¢ = 30° and k7 = 0.22: (a)
The day land-fast ice becomes stable in winter and (b) the day of (first) fast
ice breakup in summer. The solid lines mark the fast-ice extent according
to the AARI data for the first observation period in (a) April and (b) May.
In the white areas no fast ice is formed and the black patches in panel (b)
mark areas of fast ice that survives beyond August 215¢.
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polynya and new-ice formation, especially inland of the Arctic Institute Is-
lands. Figure 5.17 shows how ice thickness and concentration change when
kr is increased. For kr = 0.15 these fields are very similar to the ones
from the control run with realistic polynyas and new-ice formation along
the S-mode boundary from Severnaya Zemlya to Sterlegova Cape, but too
thick ice inland of the Arctic Institute Islands. The ice inland of the Arctic
Institute Islands quickly grows thicker with larger k7 and new ice starts, un-
realistically forming offshore off the Arctic Institute and Sverdrup Islands.
The S-mode polynyas can still be considered realistic for k7 = 0.22

For larger kr values than the ones already discussed various erroneous
fast-ice and polynya patterns can be seen. At kpr = 0.23 a polynya forms
erroneously extending due north of the Sergey Kirov Islands in a manner
very similar that already seen for the ellipse with e = 1.4 and kr = 0.09.
The ice also breaks up in May again. Larger values still see the model
jumping between different states in seemingly random manner, including
a formation of the erroneous polynya already described, the formation of
either S- or L-modes and with the ice breaking up either in May or late
July.

Let us now consider ¢ = 45°, as suggested by Hibler and Schulson (2000).
Using a larger value for ¢ gives a smaller axis aspect ratio, with ¢ = 45°
resulting in an axis aspect ratio of v/2. This means that for a given k7 the re-
sulting shear strength and uniaxial compressive strength is larger compared
to when using ¢ = 30°.

Using ¢ = 45° realistic fast-ice extent is modelled for 0.10 < kr < 0.12,
compared to 0.15 < kr < 0.22 for ¢ = 30°. For kr values in this range the
fast ice breaks up in late May in the same manner as before (not shown).
The fast-ice formation is also interrupted by total and partial breakups in
January, February and March, depending on the value chosen for kr (see
figure 5.18).

For k7 > 0.13 an erroneous L-mode appears in the model, but the May
breakup isn’t prevented until k7 = 0.20. For this value of kr the S-mode
breakup occurs on approximately the right time and in the right manner.
The January breakup is also smaller, but still occurs. The downside of
choosing this large kr is the formation of an artificial L-mode (see figure
5.19).

Considering the flaw-polynya formation on April 14" the general trend
is the same as for ¢ = 30°; small values of k7 give more realistic polynya and
new-ice formation, especially inland of the Arctic Institute Islands. Figure
5.20 shows how ice thickness and concentration change when k7 is increased.
For k7 = 0.10 these fields are very similar to the output from the control run
with realistic polynyas and new-ice formation along the S-mode boundary
from Severnaya Zemlya to Sterlegova Cape, but too thick ice inland of the
Arctic Institute Islands. For kp = 0.12 the ice inland of the Arctic Institute
Islands has grown thicker and some thinning of the ice offshore off the Arctic
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Figure 5.17: Results from using the FMC, ¢ = 30°: The left column of
panels shows ice thickness (capped at 2 m) and the right ice fraction. For
the top row of panels kr was set to 0.15, for the centre row kp = 0.17 and
for the bottom row k7 = 0.22. The lines show PSSM data; the thick lines
show the extent of newly formed ice and the thin line the extent of open
water. The snapshot is taken after the first time step of April 14,
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Figure 5.18: Results from using the FMC and ¢ = 45°. The figure shows
the day land-fast ice becomes stable in winter using (a) k7 = 0.10 and (b)
kr = 0.12. The solid lines mark the fast-ice extent according to the AARI
data for the first observation period in April. In the white areas no fast ice
is formed.
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Figure 5.19: Results from using the FMC and ¢ = 45° and k7 = 0.20: (a)
The day land-fast ice becomes stable in winter and (b) the day of (first) fast
ice breakup in summer. The solid lines mark the fast-ice extent according
to the AARI data for the first observation period in (a) April and (b) May.
In the white areas no fast ice is formed and the black patches in panel (b)
mark areas of fast ice that survives beyond August 215¢.
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Institute and Sverdrup Islands can be seen. At kr = 0.20 a polynya opens
up erroneously extending north of the Sergey Kirov Islands, as seen before
for both the ellipse and FMC with ¢ = 30°.

In conclusion to this section we note that the results acquired using the
FMC are very similar to those acquired using the elliptic yield curve. Using
small values for k7 the FMC can be tuned to give results very similar to that
of the control run; with respect to polynya locations as well as fast-ice extent
and breakup times. Increasing kr gives increased cohesive strength which
can be used to prevent the May breakup and using ¢ = 30° and kr = 0.22
prevents the May breakup without producing an erroneous L-mode. This
is a major improvement from the previous experiments. Using ¢ = 45° the
May breakup cannot be prevented without producing an erroneous L-mode
and an erroneous polynya north of the Sergey Kirov Islands.

5.3.3 Curved diamond yield curve

The curved diamond yield curve was suggested by Wang (2007) and is based
on observations of linear kinematic features of closely packed ice. It was
discussed in section 2.4.7. The basic shape of this yield curve, for o7 >
orx is similar to that of a Coulombic yield curve with ¢ ~ 45°. However,
as figure 2.3 shows, the curved diamond has substantially greater uniaxial
compressive strength than the FMC for a given value of k.

Calculating ice extent based on the velocity does not yield as clear cut re-
sults as before. For kr = 0.01 the S-mode fast-ice area is Ag = 28,100 km?,
jumping to Ag = 53,000 km? for kr = 0.02 and increasing almost linearly to
Ag = 67,600 km? for k7 = 0.05 and Ag = 82,200 km? for k7 = 0.06. The
total fast-ice area for kr = 0.06 is, however, considerably larger since using
this kr value results in an erroneous L-mode (see figure 5.21). Increasing
kr to kr = 0.07 (figure 5.22) prevents the May breakup that occurs with
kr = 0.06 and increasing kr even further results in an unrealistic fast-ice
distribution.

With respect to the polynya formation on April 14" using k7 = 0.06
gives polynyas and new-ice formation along the L-mode border, as expected
(figure 5.23). This is not realistic for April 14", but a similar pattern of
polynyas is to be expected when an L-mode occurs. Increasing k7 to 0.07 on
the other hand prevents polynyas from forming between the Sergey Kirov
Islands and Severnaya Zemlya, with a short polynya stretching north of the
Sergey Kirov Islands (figure 5.24). This is similar to the erroneous polynyas
already seen for the ellipse and the FMC.

In conclusion the curved diamond yield curve does not appear to deliver
results of the same over all quality as the elliptic or FMC yield curves. S-
mode fast ice is never formed, only L-mode and when kr is set large enough
to prevent the May breakup a polynya opens up reaching due north of the
Sergey Kirov Islands, which is unrealistic.

4th
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Figure 5.20: Results from using the FMC, ¢ = 45°: The left column of
panels shows ice thickness (capped at 2 m) and the right ice fraction. For
the top row of panels kp was set to 0.10, for the centre row k7 = 0.12 and
for the bottom row k7 = 0.20. The lines show PSSM data; the thick lines
show the extent of newly formed ice and the thin line the extent of open
water. The snapshot is taken after the first time step of April 14,
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Figure 5.21: Results from using the curved diamond yield curve and kp =
0.06: (a) The day land-fast ice becomes stable in winter and (b) the day of
(first) fast ice breakup in summer. The solid lines mark the fast-ice extent
according to the AARI data for the first observation period in (a) April and
(b) May. In the white areas no fast ice is formed and the black patches in

panel (b) mark areas of fast ice that survives beyond August 215t
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Figure 5.22: Results from using the curved diamond yield curve and kr =
0.07: (a) The day land-fast ice becomes stable in winter and (b) the day of
(first) fast ice breakup in summer. The solid lines mark the fast-ice extent
according to the AARI data for the first observation period in (a) April and
(b) May. In the white areas no fast ice is formed and the black patches in

panel (b) mark areas of fast ice that survives beyond August 215¢.
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Figure 5.23: Results from using the curved diamond yield curve and kr =
0.06: (a) ice thickness (capped at 2 m) and (b) ice speed (colour, logarithmic)
and velocity (arrows). The lines show PSSM data; the thick lines show the
extent of newly formed ice and the thin line the extent of open water. The
snapshot is taken after the first time step of April 14,
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Figure 5.24: Results from using the curved diamond yield curve with
kr = 0.07: (a) ice thickness (capped at 2 m) and (b) ice fraction. The lines
show PSSM data; the thick lines show the extent of newly formed ice and
the thin line the extent of open water. The snapshot is taken after the first
time step of April 14",
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Figure 5.25: Results from using the trimmed ellipse. The figure shows
the day land-fast ice becomes stable in winter using (a) k7 = 0.08 and (b)
kr = 0.12. The solid lines mark the fast-ice extent according to the AARI
data for the first observation period in April. In the white areas no fast ice
is formed.

5.3.4 Trimmed elliptic yield curve

The trimmed ellipse, introduced in section 2.4.8 is an attempt to refine
the behaviour of the elliptic yield curve so that it becomes more physically
plausible in the cohesive regime. In this regime it shares some characteristics
with the curved diamond. For o1 > 0 the trimmed elliptic yield curve has
the same shape as the curved diamond, while for smaller values of o7 the
elliptic shape is used, giving much less uniaxial compressive strength for the
same k7, compared to the curved diamond. Using kpr = 0.25 results in an
axis ratio of e = 2.

With respect to fast-ice extent the optimal value for k7 lies in the range
0.08 < kp < 0.12 for the current setup. As before an early breakup occurs in
May for all values in the range and the timing and manner of that breakup is
practically identical to that seen in the control run (not shown). During the
freeze-up phase fast-ice growth is interrupted by partial breakups, and as
before these are reduced in extent and frequency when kp is increased (see
figure 5.25). At kr = 0.13 the fast-ice area drops from S4 ~ 82,000 km?
for 0.08 < k7 < 0.12 to Ag = 70,300 km?. The S-mode is recovered for
kr = 0.14, but at kr = 0.15 an erroneous L-mode forms. Setting kp to
kr = 0.16 prevents the May breakup, but at the expense of simulating an
unrealistically large fast-ice extent (see figure 5.26).

If we now consider the ice thickness and concentration a similar pattern
arises as for the FMC. Lower values of kr give a better representation of
the ice inland of the Arctic Institute Islands with too high values producing
an unrealistic polynya stretching due north of the Sergey Kirov Islands (see
figure 5.27). The erroneous polynya appears to form for all values of kp >
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Figure 5.26: Results from using the trimmed ellipse and k7 = 0.16: (a)
The day land-fast ice becomes stable in winter and (b) the day of (first) fast
ice breakup in summer. The solid lines mark the fast-ice extent according
to the AARI data for the first observation period in (a) April and (b) May.
In the white areas no fast ice is formed and the black patches in panel (b)
mark areas of fast ice that survives beyond August 215¢.

0.13.

Using the trimmed ellipse improves upon previous results in that when
using k7 = 0.08 the ice inland of the Arctic Institute Islands is blown offshore
causing thinner ice to form where the satellite shows it to be. In contrast
no such thinning can be seen using the FMC or in the control run. Overall,
the area covered by thin ice is also greater here than in the control run or
when using the FMC (see table 5.1).

Using k7 = 0.08, the trimmed elliptic yield curve therefore performs very
well in simulating drifting ice while the fast ice simulation gives practically
the same results as the control run. Larger values of kp give worse drift
ice simulation and for k7 = 0.13 an artificial L-mode is modelled. Using
k7 = 0.16 prevents the May breakup, but also results in an unrealistic fast-
ice extent.

5.3.5 Granular model

The granular model was introduced by Tremblay and Mysak (1997) and
discussed in section 2.4.3. It uses a Coulombic yield curve and the pressure
term is calculated based on the divergence and shear of the flow. Here biaxial
cohesive strength has been added to the model by setting C’ = krPpax
in equation (2.53) and allowing for negative pressure (P = —C') in the
pressure solver. This produces some fast ice, but the results are far from
being as good as those of the control run. The ice extent is much less
than that observed and those flaw polynyas that are modelled appear in the
wrong places. Changing the maximum viscosity or k7 does not improve the
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Figure 5.27: Results from using the trimmed ellipse: The left column of
panels shows ice thickness (capped at 2 m) and the right ice fraction. For
the top row of panels k7 was set to 0.08, for the centre row kp = 0.12 and
for the bottom row k7 = 0.16. The lines show PSSM data; the thick lines
show the extent of newly formed ice and the thin line the extent of open
water. The snapshot is taken after the first time step of April 14,
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Table 5.1: The total area of the Severozemelsky flaw polynya new-ice on
April 14*. For the PSSM data this is the area of thin ice and open water
while the AARI data is the observed young/newly-formed ice from early and
late in the April 10" to 19*" observation period. The modelled new ice is
defined to be where hA < 0.5 m. In addition to the control run yield curves
and parameter settings that gave the most plausible polynya locations were
chosen.

Observed
PSSM 28,100 km?
AARI (early) 24,800 km?
AARI (late) 21,000 km?
Modelled
Control run 12,100 km?

FMC (¢ = 30°, kr = 0.15) 14,200 km?
FMC (¢ = 45°, kr = 0.10) 8,700 km?
Trimmed ellipse (k7 = 0.08) 19,600 km?

situation.

The reason why the granular model does not produce fast ice in a reliable
manner is not entirely clear. It is, however, likely that the poor outer-loop
convergence of the model plays a crucial role. We've already seen that a large
number of outer loops is needed to produce fast ice in a reliable manner in
the Hibler-type model. The assumption to draw from that is that a good
plastic convergence is necessary to model fast ice, but this is not present in
the granular model. We should therefore not expect to be able to model fast
ice in a reliable manner using it.

In terms of fast ice modelling the granular model was not very successful.
Given that we’ve already seen much better results from using the Hibler-type
model it is not necessary to discuss the granular model results at length.

5.4 Discussion

The previous section saw different yield curves and parametrisations used
to model land-fast ice in the Kara Sea in a realistic setup. Realistic fast-ice
extent and polynya formation could be modelled using the commonly used
elliptic yield curve, the FMC and the trimmed ellipse. The curved diamond
yield curve did not give as realistic fast-ice extent as the others while the
granular model proved unsuitable for fast-ice modelling. Realistic breakup
times proved difficult to model without sacrificing either the realistic fast-ice
extent, the polynya formation or both.
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Using the commonly used elliptic yield curve with large maximum vis-
cosity and a large number of outer loops produces realistic fast ice extent
and flaw-polynya formation for the winter 1997-98. This was done in the
so-called control run. Large maximum viscosity is needed for a fast-ice sim-
ulation and using a large number of outer loops improves the stability of
the modelled fast ice. This is a noteworthy result since land-fast ice has
not been properly simulated before using a dynamic model and in a realistic
setup.

Although the control run gives good results it also leaves something to
be desired. In particular the ice appears to be too weak; suffering multiple
breakups during the freeze-up and breaking up too early in summer. The
ice inland of the Arctic Institute Islands is also too thick compared to obser-
vations which show new-ice formation to take place there. Additional yield
curves were introduced in an attempt to address these problems, but this
met with limited success.

None of the setups described succeeded in preventing the freeze-up break-
ups, while still maintaining a reasonable fast-ice extent at the same time.
Preventing the early breakup in May proved a more attainable goal, but
preventing that breakup while maintaining the realistic S-mode extent was
only possible using the FMC with ¢ = 30°. New-ice formation inland of the
Arctic Institute Islands could in turn only be modelled using the trimmed
ellipse. In none of the setups tested were all three features correctly mod-
elled; the fast-ice extent, the breakup time and the new-ice formation inland
of the Arctic Institute Islands.

The following discussion will be focused on those yield curves and set-
tings that gave the best results. We will attempt to understand why this
is and to better understand what the best approach to model fast ice may
be. As an extension to this attempts will be made to improve the results
already obtained with these yield curves.

5.4.1 Elliptic yield curve

Starting with the control run we note that it gives quite good results, given
the simple form of the yield curve and lack of cohesive strength under iso-
tropic divergence. The main drawback of the results obtained from the
control run are the frequent breakups modelled but not seen in observa-
tions. Partial breakups may not be unrealistic and according to Volkov
et al. (2002) the Severozemelsky fast ice may be subject to partial breakups
throughout winter. According to the AARI observations, however, only very
small partial breakups occur in the winter 1997-98. The temporal resolution
of the AARI charts is only about 10 days and so it is possible that partial
breakups may occur and the fast ice re-establish itself in between observa-
tions. The modelled partial breakups are, however, usually not recovered
so quickly. Another possibility is that the speed limit used in the fast-ice
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Figure 5.28: Results from the control run: (a) ice fraction and (b) ice
speed (colour, logarithmic) and velocity (arrows). The lines show PSSM
data; the thick lines show the extent of newly formed ice and the thin line
the extent of open water. The snapshot is taken after the first time step of
May 224, Some ice is erroneously labelled as newly formed in the satellite
data due to melt water influences.

detection algorithm is too low causing false breakup reports.

Here the PSSM data can be useful and in particular it shows that on April
22" 3 flaw polynya forms off the fast-ice edge. This demonstrates, without
a doubt, that the modelled breakup of the fast ice on that particular date
is wrong (see figure 5.28). This date is important since most of the model
configurations tested show an early breakup then. Unfortunately not all the
partial breakups modelled can be discounted so easily as erroneous, based
on the PSSM data. This can only be done if a clear flaw polynya forms and
that is not always the case.

Early and partial breakups are therefore a problem, even though the fast
ice is recovered. A possibly related problem, perhaps is the early permanent
breakup of the ice in the control run. This final breakup occurs little over
a month too early. Combined with the fact that the S-mode fast ice is
established about a month too late the modelled fast ice season is only
about five months compared to about seven months in reality. All in all it
would appear that the fast ice is too weak in this simulation.

Given that the fast ice seems too weak it’s worth considering changing
the ice strength parameter, p*. In all of the experiments introduced in
section 5.3 the mean value from Tremblay and Hakakian (2006) was used,
i.e. p* = 37.5 kN/m?, but the largest value they report as plausible is p* =
45 kN/m?. With respect to fast ice this is essentially equivalent to lowering
the wind drag coeflicient, Cg,, since there is very little water drag present.
Using this larger value for p* does not have a very pronounced effect. The
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partial breakups during freeze-up are still present and so is the May breakup.

Setting p* = 30 kN/m?, the lowest value reported as plausible by Trem-
blay and Hakakian (2006), gives ice that is too weak to support realistic
fast-ice formation. Using this setting the modelled fast-ice area is about
half the observed area. This weaker ice does, on the other hand yield to
produce realistic new-ice formation inland of the Arctic Institute Islands.

Increasing p* increases both the ice compressive and shear strength, but
increasing only the shear strength turns out to be a more effective way to
improve the fast-ice stability. We’ve discussed how the eccentricity of the
ellipse can be changed by changing the parameter e. Using a smaller e
increases the shear and uni-axial compressive strength causing the ice to
arch more readily. We saw that e = 1.4 prevented the May breakup, but
unfortunately this also causes an artificial L-mode to form. The L-mode does
not form for e = 1.5, but the May breakup also occurs then. It is therefore
possible that a value 1.4 < e < 1.5 exists such that the May breakup is
prevented and no artificial L-mode forms. Tests varying e by 0.02 in this
interval show that this is not so. Using e = 1.42 prevents the May breakup,
but when e is increased from e = 1.42 to e = 1.44 the fast ice breaks up in
May, but the artificial L-mode still remains.

Uniaxial compressive strength and the related arching therefore clearly
plays an important role, but simply adjusting e did not give both realistic
fast-ice and drift-ice behaviour. Adding cohesive strength under isotropic
divergence can also be used to prevent the May breakup, but the problems
encountered are similar. In fact, adding cohesive strength, the way it is done
here, also adds both shear and uniaxial compressive strength, so it can be
difficult to assess which effects are due to the additional cohesive strength
and which are due to the additional uniaxial compressive strength. A test
where the uniaxial compressive strength is kept constant as kr is varied is
outlined in the next section.

Despite having its deficiencies the control run does produce realistic fast-
ice extent. To our best knowledge, this has not been done before in a realistic
setting using a dynamic sea-ice model. The reason fast ice forms is the fact
that the elliptic yield curve extends into the oo > 0 part of the stress space
giving it cohesive strength. This is of course the case in nearly all dynamic
ice models in use today and what makes the current implementation special
is the very large number of outer loops and the large value for the maximum
viscosity used.

With respect to the maximum viscosity the value used in nearly all the
experiments is (max = (103 s)P. This results in a realistic fast-ice extent
in the control run, with lower values giving less extent and much higher
values resulting in some oscillation in the fast-ice area. In order to try to
appreciate the role of (ax let us consider the viscous representation of the
ice, given simple theoretical arguments.

Suppose that the problem at hand is purely one dimensional; i.e. we
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consider only the fast-ice extent along the x-axis. Recall also that setting a

maximum on ( is equivalent to setting a minimum on A where A;iln = 2C x

and (max = (axP- Now consider the behaviour of A in one dimension.
Assuming a one dimensional problem the strain-rate invariants become

simply €1 = €11 and €51 = 0 and thus equation (2.42) from section 2.4.2
ou

becomes:
A=/1+1/e%|é11| =+/1+1/€? p

When the ice undergoes viscous creep A = Apin. Assuming that the fast
ice is modelled as slowly creeping linear viscous material integrating over
the fast-ice extent, L we get

Amin = /1 + 1/e2ju(L)|/L, (5.2)

assuming no ice motion at the coast; i.e. |u(0)| = 0. Using this equation we
can set Api, so that the maximum ice velocity in viscous creep and at the
fast-ice edge is equal to the target outer-loop error, eor,.

So far we have set eor, = 0.1 mm/s and inserting this for w(L) into
equation (5.2) and assuming L = 100 km we get Ay, = 1072 s71. This is
equivalent to setting (/.. = 5 x 10% s, so for the fast-ice edge to move no
faster than 10~* m/s when all the ice is flowing viscously ¢/, must be set
no larger than this. This is twice the value Hibler (1979) used but almost
two orders of magnitude smaller than that used by Hunke and Dukowicz
(1997). If the Severozemelsky fast ice is all in the viscous state then this
should be a sufficiently large value for (pax.

The optimal modelled value is therefore about five orders of magnitude
larger than that which the theoretical calculations suggest. This can be
interpreted such that under high wind stress the fast ice is not in viscous
flow, but rather very slow plastic deformation. This is supported by figure
5.29, which shows that, on April 14" in most of the Severozemelsky fast ice
the bulk viscosity is less than (pyax-

The physical interpretation of this is that under these circumstances the
ice in the Severozemelsky region is not a single unmoving fast-ice massive,
but rather undergoes some cracking and ridging under the applied strain.
This is not unreasonable and compares well with the description of the fast-
ice behaviour in the area given by Volkov et al. (2002). The maximum
viscosity then needs to be set high enough to capture this behaviour, rather
than trying to simulate the fast ice as an extremely highly viscous fluid.
Another possible interpretation is that the viscous approximation is simply
wrong and that raising (pax simply prevents it from influencing the model
too much.

Varying the number of outer loops also affects the modelled fast-ice ex-
tent, but the response is not as clear-cut as when modifying (nax. Using
just one pseudo time step did give some fast ice, but the fast-ice area mod-
elled in this manner was just under half the observed area. Using more than

. (5.1)
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Figure 5.29: Bulk viscosity over ice pressure in the control run. The
viscosity is capped so that (/P < 10'3 s and therefore where (/P = 10'3 s
the ice behaves like a linearly viscous fluid. The snapshot is taken after the

first time step of April 14",
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50 outer-loop iterations gives reasonable fast-ice area, but with a notable
dip at 250 and 300 outer loops. In general more fluctuations appear in the
modelled fast-ice area for a small number of outer loops than for a large
one. Some instability is, however, still present at 500 outer loops. Using a
smaller model time step a similar pattern can be seen. This gives a strong
indication that the fluctuations should, in general decrease with a larger nor,
and a more accurate solution of the momentum equation.

A possible explanation for this is that the model equations have multiple
solutions. Hunke (2001) has demonstrated that for an idealised case multiple
solutions to the viscous-plastic equations exist. Multiple solutions were also
observed by Lemieux and Tremblay (2009) who found that multiple solutions
may appear if the tanh-form for (pax is not used (see equation (2.50)) and
the constant of proportionality between the outer-loop error and the linear
solver error is too small (a, see section 2.2.1). In our model the tanh-form
is used, which, according to Lemieux and Tremblay (2009) should prevent
multiple solutions from appearing. The parameter « is, however, smaller
than recommended by Lemieux and Tremblay (2009) simply because the
SOR-solver is not as capable as the GMRES-solver they use. This could be
causing multiple solutions to appear here.

Another possible explanation is that the erratic behaviour comes about
because the momentum solver does not reach the converged solution in every
time step. In section 4.4 we saw that even when using 500 outer loops the
solver does not reach the convergent solution in 5% of the modelled time
steps. Each time the solver misses the converged solution in this manner
the model diverges from the path a fully converged model would take. The
number of such bifurcations decreases as noy, is raised, but even at nor, =
500 the model does not reach full convergence in each time step.

Bifurcations like these can occur in essentially all numerical models, but
are usually much too small to be of any importance. In this case, however,
they do appear to cause considerable differences in the predicted fast-ice
area, particularly using a small number of outer loops. Using larger noy, the
modelled fast-ice area appears to be more stable, but fluctuations in it are
not completely eliminated. This could be due to the fact that the model
still does not reach convergence in 5% of the modelled time steps, or about
5500 times during the whole simulation.

Another possibility still is that the target error used is too large. The
target error is the convergence criterion used in that if the difference between
the velocities after two consecutive outer loops is less than the target error
the solver is considered to have converged. Here the target error was egr, =
0.1 mm/s. In section 4.4 this was found to be the smallest target error
possible from a practical stand point, but it is also the limit suggested by
Lemieux and Tremblay (2009). If it is not small enough then the solution
the solver returns is never the converged one and this may cause apparently
spurious bifurcations when changing nor,. This is probably not the case here
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since using large values for noy, clearly reduces fluctuations in modelled fast-
ice area. If the fluctuations were due to too large target error only, increasing
nor, should only give minor improvements. Using a different model time step
should also result in different model behaviour, but this is also not the case.

All the same, this raises the question of how small eor, should be. Since
the current model cannot handle values much smaller than ep;, = 0.1 mm/s
we must content ourselves with an educated guess. The best guess is proba-
bly based on the calculations in section 5.3.1. There a relationship between
Amnin and the creep speed of ice in linear-viscous creep was demonstrated.
Assuming the speed at the edge of a 100 km fast ice block to be of the
order 0.1 mm/s gave Ay, = 1079 s. This is about four orders of magnitude
smaller than what experiments with the model indicated to be applicable
for fast ice simulations.

Let us now assume that (max = (1013 s)P, as indicated by the model
experiments in section 5.3.1. This is then equivalent to assuming Ay, =
5 x 107! s and using equation (5.2) this gives |u(L)| = 4 x 1072 m/s, for
L =100 km. If we wish to accurately predict all ice movements where plas-
tic interactions dominate this is probably the accuracy to aim for. Using a
larger value for (pnax would then require an even smaller target error and
vice versa. It should be noted though that assuming I = 100 km is probably
an overestimation. It has already been shown that under certain circum-
stances the extent of the fast ice that can be modelled as linear viscous is
much smaller. On the other hand using L. = 10 km, which is probably an
underestimation, gives |u(L)| = 4 x 1078 m/s. This is still well outside the
range of possible egr, for the current model.

Another way to look at the question of what value for epr, should be
chosen is to consider the strain rates in relationship to A and Api,. The
viscous-plastic material has two phases; a linear viscous one and a non-linear
plastic one. For large strain rates the material is plastic, but when the
strain rates become so small that A < Ain a phase transition occurs and
it becomes linear viscous. If all the ice were in the linear viscous phase the
Coriolis term would be the only non-linear term in the momentum equation.
Ignoring it, the phase transition at A = A, therefore gives an indication
for how accurately the momentum equation needs to be solved; it can simply
be assumed that the outer-loop iterations must continue until changes in A
between successive iterations becomes smaller than A, or some fraction
thereof. This method has not been tested, but it is likely to be at least as
demanding on the outer-loop solver as choosing as small eor, as suggested
earlier.

Assuming that this relationship between maximum viscosity and target
error hold we can try to understand the fluctuations seen for large maxi-
mum viscosities noted in section 5.3.1. Assuming that a certain minimum
eor, 1s required to accurately model all plastic interactions means that if
the maximum viscosity is raised the target model error must conversely be
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lowered so that all plastic interactions continue to be accurately modelled.
Here only the maximum viscosity was raised while the target error remained
unchanged. This means that there are more and more errors appearing in
the calculations of the plastic interactions as the maximum viscosity gets
higher, increasing the chances that one of them cause a large bifurcation in
the model.

The erratic behaviour for large maximum viscosity can therefore be con-
sidered to support the supposition of a relationship between maximum vis-
cosity and minimum target error. The relative stability of the model at
large nor, on the other hand show that the target error used here is small
enough so the relationship between maximum viscosity and minimum target
error appears to be weak. Finally the theoretical arguments offered indicate
that the target error would have to be much smaller, in contradiction with
the observed stability of the model. This is probably another failure of
the linear-viscous assumption in that the ice cannot be assumed to behave
correctly when in the linear-viscous state. The maximum viscosity should
therefore be be set high enough to prevent the viscous limit from playing a
large role in the simulation. If this is the case the maximum viscosity can-
not be used to estimate €or,, as done previously. The role of the maximum
viscosity and the applicability of the linear-viscous approximation in general
therefore needs more closer consideration, but this will not be done here.

5.4.2 The cohesive yield curves

Having discussed results obtained using the elliptic yield curve we now turn
to the more realistic cohesive yield curves; the modified Coulombic, curved
diamond and trimmed ellipse. Previous results suggest that the uniaxial
compressive strength and/or other forms of cohesive strength should be
larger than in the control run. Using the parameter values suggested by
their authors the modified Coulombic yield curve gives low uniaxial com-
pressive strength and the curved diamond yield curves give higher uniaxial
compressive strength compared to the control run. They should, however,
both give a more realistic description of the ice behaviour for positive oy,
than the ellipse.

Using the original form of the modified Coulombic yield curve gave very
little fast ice extent and it was necessary to switch to the FMC to get a
reasonable extent. With the correct tuning this yield curve can be used to
reproduce and improve upon the results of the control run. Using ¢ = 30°
and large enough values for k7 it is possible to prevent the May breakup,
while maintaining correct fast ice extent. The downside is that the ice
inland of the Arctic Institute Islands becomes unrealistically thick. Correctly
simulating the fast-ice breakup time is still a major improvement on the
control run. This good result is, however, only reached for a narrow kr
interval making it somewhat suspect. Using the FMC and ¢ = 30° realistic
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S-mode fast ice is simulated for 0.15 < k > 0.22, but the May breakup
does not occur for k7 = 0.22. For kp > 0.23 unrealistic ice formations are
observed in the model results.

The fast ice modelled using the curved diamond yield curve turned out
to be much more sensitive to changes in kr than when using the FMC.
Using kr = 0.06 gives realistic fast-ice extent, but kr = 0.05 gives fast-ice
area approximately half the S-mode area while using k7 = 0.07 produces an
erroneous L-mode. In addition the drifting ice is not as well simulated as in
the control run or when using the FMC.

Finally the trimmed ellipse gives the best drift-ice results of the rheolo-
gies tested here. It can be tuned to give the same fast-ice area as the control
run, but at the same time it gives a better representation of the drifting ice.
The area of newly formed ice is larger than in any other setup tested and
new-ice formation is seen inland of the Arctic Institute Islands, contrary to
the other setups. Both should be considered an improvement in the model
performance.

Despite having had considerable success in modelling fast ice so far the
main problem remains of simultaneously simulating realistic polynyas, fast-
ice extent and formation and breakup times. The elliptic, FMC and trimmed
elliptic yield curves can all be tuned to capture two of these three features,
but not all three at the same time. Only the FMC can be tuned to model a
realistic breakup time and S-mode fast ice (instead of L-mode), but this does
not allow for a realistic simulation of the ice inland of the Arctic Institute
Islands. The ice behaviour there is only realistically simulated using the
trimmed ellipse, but this is done at the cost of not correctly simulate the
breakup times. In the following we will first consider what happens in the
pass inland of the Arctic Institute Islands. The focus is then shifted to the
early breakup that occurs in May.

Focusing on what happens in the pass between the Arctic Institute Is-
lands and the Taymyr coast we now consider the modelled stresses for the
FMC using ¢ = 30° and kr = 0.15 and 0.22. These settings are the ones
that gives the best simulation (using the FMC)) of the ice in the pass be-
tween the Arctic Institute Islands and the coast (k7 = 0.15) and the setting
that prevents the May breakup (k7 = 0.22). To demonstrate the role of
cohesive stresses figure 5.30 shows the second principle stress (o2) on April
14" for the FMC using ¢ = 30° and the two values for k7 considered here.
The second principle stress is a good measure of how important cohesion is
in the model since cohesion occurs only for o9 > 0.

First of all figure 5.30 shows that the stress in the fast ice is overwhelm-
ingly cohesive but compressive in the rest of the ice cover. The figure also
shows that using small k7 no cohesion is present in the Arctic Institute
Islands Pass while using the larger value for kr introduces cohesive stress
there. It can be argued that it’s the uniaxial compressive strength that
matters, rather than kp or some other parameter, by considering the first
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Figure 5.30: The second principle stress (o) on April 14" for the FMC
using ¢ = 30° and (a) kr = 0.15 (b) kr = 0.22.

principle strain rate axis.

Since the principle stress and strain rate axes coincide the first principle
strain rate (1) gives the minimum normal strain acting on the ice. A
negative €1 therefore means that there is compressive strain rate orthogonal
to the direction of the largest divergent strain rate. Consider now the case
of a converging channel, as studied by Dumont et al. (2009). If the ice flows
through the convergence zone €; must always be negative where the channel
converges, as long as the external forcing only acts along the channel. This
is also the case even if the external forcing were to cause divergent strain
rates along the flow direction.

On April 14" £, is always negative in the region inland of the Arc-
tic Institute Islands. In other words; the ice is being compressed against
the Arctic Institute and Sverdrup Islands as it drifts south-west along the
Taymyr Peninsula. Now, if the uniaxial compressive strength, oy is large
the ice will not yield as it is blown against the islands and so a blockage
forms. Weaker ice on the other hand yields allowing it to drift to the south-
west as well. It should therefore be kept in mind that tuning of o depends
entirely on the forcing that’s applied to the model. Wind speed as well as
the strength of the ocean currents and the thickness of the ice all influence
the resulting tuned value for oye.
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Using a given forcing it should, however, be possible to select a known
good value for o, and keep it constant in order to simulate the ice flow
in the Arctic Institute Islands Pass properly while adjusting k7 to prevent
the May breakup. Either the elliptic or the FMC yield curve can be used
adjusting and e or ¢ to achieve the right value for oy for a given value of
k7. Both yield curves were tested in this manner, returning the same basic
result that this is not a feasible approach!. Even if oy is kept constant at
a known good value then increasing k7 will not prevent the May breakup
without also producing an erroneous L-mode. The L-mode then forms, not
by arching in the Arctic Institute Islands Pass, but rather because the tensile
strength is enough to extend the fast ice from the arch between Sterlegova
Cape and the Sergey Kirov Islands.

It is therefore clear that a larger value for oy is needed to prevent the
May breakup than that which allows for a realistic ice flow through the Arc-
tic Institute Islands Pass. This is consistent with our earlier results where
setting kr (and thus oy.) large enough to prevent the May breakup invari-
ably caused blockage or fast ice formation in the Arctic Institute Islands
Pass. The conclusion to draw from this is that, all things being equal, re-
alistic breakup times and ice behaviour in the Arctic Institute Islands Pass
cannot be modelled, both at the same time during this particular winter
by tuning the yield curve. Some other model or forcing modifications are
therefore needed the most interesting of which are discussed in relation to
the early breakup covered in the following section.

Using too large kr normally does not only cause an erroneous L-mode
to form but also an unrealistic polynya between Sergey Kirov and Ushakova
Islands. The polynya also forms because oy is too large. On April 14"
the flow of ice between Sergey Kirov and Ushakova Islands is convergent,
which means that when o, is set large enough cohesive forces slow down
the flow, causing the polynya to form. Were the model forcing different so
that the flow were not convergent the polynya would not form, regardless
oue- The same can be said for the formation of the erroneous L-mode. If
we, however, assume that the model forcing is good enough then it is clear
that adjusting the yield curve is not sufficient to explain why the correct
breakup times cannot be modelled without introducing the aforementioned
model artefacts.

A number of model parameters and assumptions may be responsible for
our inability to prevent the May breakup. One of these may be related to
the relationship between the ice pressure, P and the ice concentration, A
and the relationship between P and the ice cohesive strength. In particular
we note that the difference in cohesive strength between fast ice and drift
ice can be expressed such that for A = 1 the cohesive strength should be
large, but for A < 1 it should be small. This is of course the same kind of

I The equations used to calculate ouc are derived in appendix D
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behaviour as described by equation (2.48) for the compressive strength. The
cohesive strength is related to the compressive strength through the yield
curve so changing the dependence of the compressive strength on A changes
the dependence of the cohesive strength on A. This is done by changing the
parameter C' in equation (2.48).

In the simulations introduced in section 5.3 C' = 30 was used, while
Hibler (1979) used C' = 20. Using the latter value means that at A = 0.95
the ice strength has fallen by one e-folding scale compared to the strength at
A=1;ie. P(A=0.95)/P(A=1) =exp(1l). To test the effects of changing
C simulations were run using the FMC, curved diamond and trimmed ellipse
yield curves tuned to give correct breakup times. In addition C' was set to
C € {33,50, 100,200, 1000}, the values for which the ice strength has fallen
by one e-folding scale at A € {0.97,0.98,0.99,0.995,0.999}, compared to
A = 1. The objective is to decrease the shear and uniaxial compressive
strength in the Arctic Institute Islands Pass without affecting the S-mode
fast ice.

The effect of raising C' appears, however, to be opposite of that hoped for.
Raising C' weakens the fast ice without significantly easing the flow through
the Arctic Institute Islands Pass. One way to interpret this is that the ice
strength shouldn’t change when its slightly cracked, but that large leads
will weaken it quickly. This behaviour could be parametrised by changing
equation (2.48) for P so that it reads:

P = P*hmin[l,exp(—C[1 — A — D])]. (5.3)

The parameter D parametrises the separation between “small cracks” and
“large leads”. However, since raising C' did not improve the flow through
the Arctic Institute Islands Pass nothing much seems gained by testing this
formulation. Further changes to the ice pressure formulation should be based
on the physical properties of the ice, but these were not attempted here.

It is also possible that the shear and compressive strength respond dif-
ferently to changes in concentration. This means, in essence that the shape
of the yield curve is a function of the ice concentration. For example the
curved diamond shape may be valid for large A while the trimmed ellipse
becomes valid at lower values. At present it is not clear precisely what the
relationship between concentration and yield curve shape should be and no
attempts were made to establish one.

Another possibility is that the air drag coefficient is different over drift
ice compared to fast ice. This may be because the stability of the atmosphere
is different over fast ice compared to the stability over drift ice. Atmospheric
stability affects the ice-atmosphere drag, although it’s not immediately clear
how large this effect is with respect to fast ice. In the current model atmo-
spheric stability plays no role in determining the drag coefficient, which is
simply constant.
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A difference in drag between fast ice and drift ice can also come about
because of form drag experienced by the drift ice and not fast ice. The effects
of form drag is an active research area (see e.g. Stossel and Claussen, 1993,
Liipkes and Birnbaum, 2005), but form drag has not been incorporated into
the current model. Further research into the effects atmospheric stability
and form drag has on fast ice modelling is needed, but would be outside the
current scope.

As a quick test of the effects of atmospheric drag a series of tests were
run using the trimmed ellipse, k7 = 0.8 and 103Cg, = 0.1,...,1.0. At
Cga = 0.5 x 1073 the summer breakup was correctly timed, but an erroneous
L-mode does form. The modelled polynyas are also much smaller than those
observed. The previous experiments used Cy, = 1.2 x 1073, so the ratio is
42%. This shows that that the strength of the drift ice should be about half
that of the fast ice if we expect to be able to simulate both accurately at
the same time.

According to Guest and Davidson (1991) very smooth first year ice with-
out pressure ridges has Cq, = 1.5 x 1073, first year pack ice has Cg, =
2.0 x 1072 and first year ice in the marginal ice zone averages Cqa = 3.1.
Wave affected first year ice has Cy, = 4.2 x 1073, If we were, based on this
to assume Cy, = 1.5 x 1073 for fast ice then, using the ratio found above Cy,
for the drift ice would be Cq, = 3.6 x 1073. This value is within the given
range for wave affected first year ice, a category that is meant to describe
ice in the marginal ice zone. It is therefore not likely that variations in Cy,
alone can account for our inability to model both fast ice and drift ice at
the same time.

It is also possible that the ocean drag coefficient is wrong. We've seen
that it’s possible to tune virtually all the yield curves to give approximately
right breakup times, but this almost always comes at the cost of producing
erroneous L-mode fast ice and erroneous polynya formations. The conclusion
drawn was that the ice uniaxial compressive strength was too high, but it is
also possible that the oceanic drag is too large, slowing down the drift ice and
giving an erroneous result. Changing the ocean drag coefficient should have
no effect on the fast ice, but a similar effect as having a different atmospheric
drag coefficient over fast ice vs. drift ice.

In the experiments run so far the oceanic drag coefficient has been
Cga = 5.5 x 1073. To test the effects of lowered ocean drag simulations
were run using the FMC, curved diamond and trimmed ellipse yield curves
tuned to give appropriate breakup times and with? Cy, = {1,2,3,5} x 1073,
If the ocean drag coefficient used so far is indeed too high using a lower drag
coefficient should allow realistic thorough flow through the Arctic Institute
Islands Pass without affecting the S-mode fast ice. The tests done do, how-

2Given the measurements of Langleben (1982), Pease et al. (1983), Shirasawa (1986)
and Wamser and Martinson (1993) 1072 is a low value for Cyq,
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ever, not show this. Although the ice is clearly affected by changing Cys,,
lowering it does not ease the flow through the Arctic Institute Islands Pass.

Finally the role of tides has not been investigated here. The tidal forcing
used here provides lower tidal amplitude than that observed and so tidal
effects are likely to be underestimated. Tides may still have an effect, e.g.
by breaking up the ice in the Arctic Institute Islands Pass.

Moving away from the ice model it self we now come back to the pos-
sibility that errors in the atmospheric forcing cause the observed model
shortcomings. The NCAR/NCEP data has very low resolution compared to
the features being modelled. In particular orographic effects from surround-
ing islands and mountains may be important to the fast ice formation, while
being unresolved by the forcing data. In the model snow also simply piles up
until the melt sets in, while in reality snow may be blown off the ice. This
can affect the ice albedo as well as its thickness due to the insulating effects
of snow. Any effects the flaw polynyas may have on the atmosphere area
also not resolved. The higher resolution ERA-interim data set was therefore
tested and will be discussed in more detail below (section 5.4.3).

The low resolution, in particular can be seen to have considerable effects
on the ice and snow thickness at the southern coast of Severnaya Zemlya.
Figure 5.31 shows the ice and snow thickness shortly before the May breakup
where the ice is thinner and the snow thicker near the Severnaya Zemlya
compared to the rest of the S-mode area. In most of the S-mode area the
ice thickness is h 2 2 m, while north of the Voronina Island and south of
Severnaya Zemlya it is h ~ 1.4 m. The figure also shows overlaid the land
mask from the NCEP/NCAR reanalysis and that clearly shows that the
thin ice/thick snow occurs where the land mask protrudes into the ocean. It
therefore seems very likely that the modelled ice is erroneously thin in this
area.

It is easy to simply stop the simulation shortly before the May breakup,
increase (manually) the thickness of the thin ice and the resume the calcula-
tion. If this error were crucial to the May breakup such an intervention into
the model integration could prevent it. Setting the ice thickness to h = 2 m,
similar to the rest of the S-mode ice, does not prevent the breakup using
those yield curves and settings that give reasonable ice behaviour in the Arc-
tic Institute Islands Pass. Previously the ice would in fact start breaking
up where it is erroneously thin, but using this correction it starts break-
ing up near the Sergey Kirov Islands instead. The erroneous ice thickness
does therefore affect the ice, but not to the extent that it explains the May
breakup.

5.4.3 ERA-interim forcing

So far the NCAR/NCEP reanalysis data has been used to force the model.
This data set covers an extensive period of time and is as such suitable to
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Figure 5.31: Results from the control run: (a) ice thickness and (b) show
thickness. The lines show the NCEP/NCAR land mask. The snapshot is
taken after the first time step of May 3.

investigate long term trends and changes. The spatial resolution is, how-
ever, only about 2.5°, which in the Kara Sea equals about 95 x 280 km.
It is therefore worth considering a higher resolution forcing and here the
ERA-interim reanalysis data set is chosen. The ERA-interim reanalysis is
available from 1989 onwards and has a spatial resolution® of about 0.5°,
which in the Kara Sea equals about 19 x 56 km. In addition this allows us
to better judge the effects “reasonable changes” in the forcing terms may
have on the model results. To avoid going into the same amount of detail as
before only the FMC with ¢ = 30° and trimmed ellipse were tested using the
ERA-interim reanalysis. These yield curves arguably gave the best results
using the NCEP/NCAR forcing and it is reasonable to assume that they
should perform well using ERA-interim as well.

The most remarkable result of the ERA-interim runs was that both yield
curves required considerably higher cohesive strength under isotropic diver-
gence in order to produce realistic fast ice, compared to the runs using the
NCEP/NCAR forcing. Using the same criterion as before the FMC gave the
best fast ice results with 0.32 < kp < 0.38, compared to 0.15 < kp < 0.22
using the NCEP/NCAR forcing. Using the trimmed ellipse the best results
were obtained using 0.16 < kp < 0.23, compared to 0.08 < kp < 0.12 using
the NCEP/NCAR forcing.

The reason for this appears to be twofold. Firstly the wind in the Se-
verozemelsky region, during this period is consistently about 30% stronger
in the ERA-interim reanalysis compared to NCEP/NCAR. Comparing the
two for the entire model domain shows the ERA-interim winds to be 20%

3At the time these experiments were conducted access was restricted to the publicly
available downscaled version. This version has been downscaled to 1.5°.
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stronger in that area. No comparison was made on a larger scale. Such
systematic differences in wind forcing affect the fast ice modelling in three
ways; through the cohesive strength parameter k7, the compressive strength
parameter p* and through the wind drag coefficient Cys,.

The wind drag and ice strength parameters have so far been considered
constants. The wind drag coeflicient is at best a very roughly determined
figure and can probably be assumed to be the same for the two reanalysis
data sets. To determine p* when using the ERA-interim reanalysis one
should repeat the analysis of Tremblay and Hakakian (2006) using the ERA-
interim winds instead of the NCEP/NCAR ones. If the two reanalysis give
globally consistent results the resulting value for p* should be the same,
and this has been assumed so far. This is not necessarily correct and it is
possible that the ERA-interim mean wind speed is larger, simply because
of the difference in resolution. Whether the difference in wind stress is local
or global it is clear that using winds from different reanalysis products can
give very different results.

In addition to changes in wind stress the snow fall in the ERA-interim
reanalysis is also considerably greater than that in the NCEP /NCAR results.
The difference in modelled snow thickness on the Severozemelsky fast ice
massive is about 10 cm in middle of April or about 50%. This causes the ice
to grow slower using the ERA-interim data and in the middle of April the
difference in modelled ice thickness is about 30 cm or 15%. The difference in
ice thickness between using the ERA-interim and the NCEP /NCAR forcing
is greatest early in the season, but becomes less as the ice grows thicker.
These differences are consistent south of Voronina Island, but it has already
been shown that the NCEP/NCAR forcing may not be valid between it
and Severnaya Zemlya. Differences in other forcing variables appear to have
negligible effects on the ice thickness.

Using ERA-interim reanalysis therefore gives thinner and consequently
weaker ice. This means that the cohesive strength needs to be increased
even further when using the ERA-interim data in order to get realistic fast-
ice results. Considering this we can immediately see that a 30% increase
in wind stress should be compensated by about 70% increase in the tensile
strength (since the wind speed is squared when calculating the wind stress).
A 15% decrease in ice thickness should be compensated by a 15% increase
in the tensile strength. Combining the two gives a 85% estimated increase
to kr needed for the ERA-interim data compared to NCEP/NCAR when
focusing on getting the April fast-ice formation right. This is close to the
increase in k7 needed in the model. In addition to average changes in wind
strength and ice thickness spatial and temporal differences between ERA-
interim and NCEP/NCAR may also play a role. These can affect the fast ice
simulation in non-trivial ways, which may invalidate this simple estimate.

When using properly tuned cohesive strength the two yield curves give
qualitatively similar results using ERA-interim compared to NCEP/NCAR.



5.4. DISCUSSION 141

In all cases good agreement between model and observations is seen at the
height of the fast ice season, while the breakups during freeze-up and the
early breakup in May as well as the ice in the Arctic Institute Islands Pass
remain a problem. Using the NCEP/NCAR forcing the FMC could be
tuned to give both correct breakup times and fast-ice extent, but this was
not the case with the ERA-interim and the FMC gives, overall worse results
using the ERA-interim than with the NCEP/NCAR forcing. In contrast
the results using the trimmed ellipse remain similar using the ERA-interim
compared to the NCEP/NCAR forcing. Using low kp the fast-ice extent and
the ice in the Arctic Institute Islands Pass can be realistically simulated, but
the early breakup in May remains a problem.

These limited tests with the ERA-interim data show no clear benefits
from using it over the NCEP/NCAR data. The only clear improvement
is that the ice thickness north of Voronina Island is more realistic using
the ERA-interim, but this does not appear to affect the fast-ice simulation.
The tests do, however, show that using a different set of forcing conditions
requires a recalibration of the model. The most important factor there is
the difference in wind stress and we can conclude that some work may be
needed for a more thorough recalibration. A comparison should also be
made between the reanalysis results and available observational data, but
this is outside our scope here.

As an side note it is worth mentioning that the modelled ice thickness
using NCEP/NCAR and the ERA-interim forced model give acceptable re-
sults compared to the measurements provided by Polyakov et al. (2003)*.
They provide maximum fast ice thickness at Sterlegova Cape, which in 1998
is 1.82 m. The modelled maximum in that area is just over 2.0 m using the
NCEP/NCAR data and just under 2.0 m using the ERA-interim forcing.
According to the Polyakov et al. (2003) data the mean maximum fast ice
thickness from 1936 to 2000 is 193 ¢cm and the standard deviation is 27 cm.
Both model results are therefore within the acceptable range, even if they
are too large for the given year. In both cases runs with correct breakup
times were used since the maximum fast-ice thickness occurs after the erro-
neous May breakup. For the NCEP/NCAR forcing this is reached on June
5% but on June 28" when using the ERA-interim forcing.

We can conclude that due to the sensitivity of the land-fast ice to external
forcing it is vital to use good forcing data for a fast-ice model. It would,
in particular be interesting to see if a coupled ice-ocean-atmosphere model
would give substantially better results than the current setup.

‘Data  available from http://people.iarc.uaf.edu/~igor/research/ice/ice_
arctic_seas.tar as of January 5" 2011
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5.4.4 Grounding parametrisation

According to Volkov et al. (2002) there are two basic mechanisms at work
when land-fast ice forms in the Kara Sea. One is the anchoring of fast ice
on islands, which has been our main topic so far and the other is anchoring
on grounded pressure ridges. To fully model the grounding process an ad-
ditional shear term would need to be included in the momentum equation,
describing the interaction between ice and ocean floor. Such a term would
require making assumptions about the coefficient of friction between the ice
and ocean floor and assumptions about the shear strength of the grounded
keel would also have to be made. In addition a good sub-grid scale para-
metrisation for the ridging process, giving the depth of the ridge keel and
the area of contact with the ocean floor would be needed.

We are unaware of a functioning grounding parametrisation built upon
the principles described above. The building blocks for such a scheme could
be an advanced multi-category ice model and the data from ridge grounding
studies (e.g. Mahoney et al., 2007). Building such a scheme is, however,
outside the scope of this study and in stead a very simple scheme is suggested
to test the possible effects grounding may have on the stability of the fast
ice.

In Volkov et al. (2002) it is noted that the fast ice appears to mostly
follow isobaths; the 10-15 m isobath in the south-western Kara Sea and
the 20-25 m isobath in the north-eastern Kara Sea. In our simulation the
ice thickness in the south-western Kara Sea is about 1-1.5 m and about
2-2.5 m in the north-eastern Kara Sea. A very simple grounding scheme
would therefore require all ice that is thicker than one tenth of the ocean
depth to become stationary. Lieser (2004) implemented such a scheme and
reported good results using it in the Laptev Sea.

This scheme can be generalise slightly by allowing the constant of pro-
portionality in the linear approximation to vary such that ice of thickness h
becomes stationary when

hl’ > H, (5.4)

where I' is the constant of proportionality and H is the ocean depth. In
addition ice is allowed to flow into a grid cell where this inequality holds,
but not out of it. This simulates ridging that may occur because of the
presence of grounded ice.

Aside from the physical reasons already mentioned for considering a
grounding scheme the results already obtained indicate that such a scheme
may improve the results. For most of the Severozemelsky region the 25 m
isobath is close to the shore, compared to the model resolution. An exception
to this are the shallows around the Sergey Kirov Islands. There an area
about 18 times the area of the islands themselves lies above the 25 m isobath.
This also happens to be an area where the ice extent in the control run and
trimmed ellipse run with k7 = 0.08 (see figures 5.4 and 5.25) is too small. In
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general too little fast ice appears around the Sergey Kirov Islands when the
cohesive strength is small and the ice inland of the Arctic Institute Islands
is realistically modelled. Using a grounding parametrisation may be a good
way to correct the fast-ice extent around the Sergey Kirov Islands without
increasing the cohesive strength.

The grounding scheme in equation (5.4) was tested with the trimmed
ellipse with k7 = 0.08. Without the grounding scheme it shows too little fast
ice extent around the Sergey Kirov Islands, while giving good results inland
of the Arctic Institute Islands. Using the grounding scheme can increase the
fast-ice extent around the Sergey Kirov Islands, but setting I' = 10 gives
too large fast ice extent. Testing I' in the range 1 < I'" < 10 in steps of one
shows that the grounding scheme has no considerable effect until I' reaches
I' = 5. For lower values the ice is grounded in the Pyasina Bay and around
the Nordenskiold Archipelago, but not near the Sergey Kirov Islands. For
I' =5 and I" = 6 grounding near those islands occurs and consequently the
fast-ice extent becomes more realistic there (see figure 5.32 and 5.33). At
I' = 7 grounding near Sverdrup Island causes the ice inland of it and the
Arctic Institute Islands to grow unrealistically thick and become land-fast
producing an erroneous L-mode. The realistic range for I' in this setup is
therefore 4 < T'" < 7.

Given that the average ice thickness in the Severozemelsky region is be-
tween 2 and 2.5 m this range of I' assumes grounding where the ocean depth
is between 8 and 18 m. This is quite shallow, given that the minimum ocean
depth in the model is 8 m, with minimum level thickness® of 4 m. Using
the grounding scheme gives very good results compared to the PSSM data
(see figure 5.33), but does not alter the breakup times already established
for the trimmed ellipse.

These results show that pressure ridge grounding may play an important
secondary role when modelling land-fast ice in shallow areas. We will also
see that the grounding scheme is very important in the multi-year runs
performed in the next chapter. Further more they also indicate how sensitive
the modelled ice may be to inaccuracies in the model topography. When
using I' = 7 the ice is grounded around Sverdrup Island, with grounded ice
in six grid points south of the island, which is represented by one grid point
in the model. The six grounded grid points are sufficient to severely slow
down the ice flow between the islands and the coast causing thick ice to
build up upstream. Since the grounding scheme uses the ocean model grid
to determine depth the grounding may depend on the vertical resolution of
the ocean model.

Although the grounding scheme used here is very simplistic these results

5The level thickness can vary because of the uneven horizontal spacing implemented
in VOM. However, in shallow areas, where the ocean depth is only a few multiples of the
minimum level thickness all levels have the minimum thickness.
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Figure 5.32: Results from using the trimmed ellipse with kr = 0.08 and
the grounding scheme with (a) I' = 4, (b) I' = 5, etc. The figure shows ice
thickness (capped at 2 m) where grid cells with grounded ice are masked
with black. The snapshots are taken after the first time step of April 14th.
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Figure 5.33: Results from using the trimmed ellipse with k7 = 0.08 and
the grounding scheme with I' = 5: (a) ice thickness (capped at 2 m) and (b)
ice fraction. The lines show PSSM data; the thick lines show the extent of
newly formed ice and the thin line the extent of open water. The snapshot
is taken after the first time step of April 14,

can be used to infer the importance of grounding, both in modelling and re-
ality. Further work is needed to create a more physically plausible grounding
scheme. This would help with both modelling efforts and our understanding
of the behaviour of the fast-ice cover.

5.5 Conclusion

In this chapter it has been shown that much of the land-fast ice formed in the
Kara Sea can be modelled in a realistic setup using a viscous-plastic sea-ice
model. A number of different viscous-plastic yield curves were considered
along with variations in the relevant parameters. Finally a very simple ice
grounding parametrisation was introduced.

The model described in chapter 2 was set up for the Kara Sea using the
same basic parameters as described in chapter 4. This means, in particu-
lar that the NCEP/NCAR reanalysis results were used to force the model
throughout, except in section 5.4.3 where the ERA-interim reanalysis was
used. All the yield curves introduced in chapter 2 were tested along with
the granular model. The granular model did not produce realistic fast ice,
but all the yield curves used with the Hibler-type model could be tuned to
do so. The FMC and trimmed ellipse yield curves were considered to give
the best result, but the traditional ellipse also gave good results.

In addition to testing different yield curves two other model parameters
were tested; the maximum viscosity and the number of outer loops. The
maximum viscosity sets the limit for which the model material stops behav-
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ing as a plastic and becomes linearly viscous. It is also the viscosity of the
linearly viscous material. The number of outer loops is the number of lin-
earisations and linear solves the non-linear solver attempts before aborting
and using the best available solution. If at any point the maximum velocity
difference between two consecutive outer loops (linear solves) is less than a
given target error the solution is considered converged.

The main conclusion to draw from this chapter is that it is possible to
model fast ice using a viscous-plastic model. In order to do this it proved
necessary to use much larger maximum viscosity than commonly used. The
recommended value was found to be (pax = (102 8) P, instead of the tradi-
tional value of (max = (2.5 x 108 s)P. In addition using a large number of
outer loop iterations is also recommended, although varying the number of
outer loops did not give as clear results as changing the maximum viscosity.
The yield curves tested could all be tuned to produce fast ice, although some
gave more realistic results than others.

Varying the maximum viscosity from (pmax = (108 s)P to (10'2 s) P gives
a continuous increase in the fast-ice extent reaching a maximum for (payx =
(10'3 s)P. For higher values the fast-ice area remains quite stable, but
the start of a slow oscillation in the fast-ice area can already be seen at
Cmax = (10'6 s)P. These oscillations should not present a problem here
given how slow they are and that they only start to become apparent at
very large values for (iax.

More erratic changes in the fast-ice area are, however, visible when
changing the number of outer loop iterations from nor, = 50 to nor, = 500.
A large number of outer loop iterations appears to be necessary to give
consistent results, but no rigid limit was suggested. The best way to im-
prove the stability of the modelled fast-ice area appears to be to improve the
convergence properties of the solver. Currently it converges in 95% of the
modelled time steps, but increasing this to 100% would probably eliminate
the observed fluctuations. Decreasing the target error may also improve the
model stability. In both cases a completely new solver is required.

Despite these problems it was found that most of the yield curves tested
could produce realistic fast ice at the height of winter. The most realistic
results were found using the traditional elliptic yield curve, the FMC and the
trimmed ellipse. These yield curves could all be adjusted to produce realistic
fast ice extents and drift-ice behaviour, but only the trimmed ellipse gave
realistic drift-ice behaviour in the Arctic Institute Islands Pass and realistic
fast-ice extent at the same time. They could also all be adjusted to give
realistic fast-ice breakup times, but only the FMC could be adjusted to give
realistic breakup times and fast-ice extent at the same time.

The main difficulties in obtaining a realistic model response were unreal-
istic breakups during formation in winter, too thick ice in the Arctic Institute
Islands Pass and too early breakup of the fast ice in summer. The reason
behind the breakups during formation is at this point not clear, although it
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is possible that the ice forms too slowly in fall. The poor drift-ice behaviour
in the Arctic Institute Islands Pass was resolved when using the trimmed
ellipse, which has the lowest shear strength. Too high shear strength when
using the other yield curves could be the reason why ice tends to build up in
the pass. It is also possible that the wind in the pass is poorly represented
or that higher resolution is necessary to resolve the dynamics in the pass
properly.

Finally the modelled fast ice invariably breaks up in May not July as
observed. This can be prevented, but usually at the cost of large errors in
the drift-ice behaviour. The notable exception to this was using the FMC
with ¢ = 30° and kr = 0.22, but changing kr by 0.01 gave different results,
so this is probably not very robust. A number of possible reasons behind this
early breakup were suggested, including erroneous atmospheric or oceanic
drag, incorrect ice pressure parametrisation and errors in the atmospheric
forcing itself. No conclusive reason for the early breakup was found.

A very simple grounding scheme was also suggested where by the ice
becomes grounded when its thickness reaches a given fraction of the ocean
depth. The inclusion of this scheme did improve the model results in some
cases, but did not allow the proper modelling of all three aspects mentioned
above, at the same time. This shows that grounding plays a secondary role
to the ice cohesive strength, increasing the size and strength of the arch
footers which keep the fast ice in place. Grounding does not appear to be
very important for fast-ice formation in 1997-98, while the following chapter
will show it to be more important in other years.

Tests using the ER A-interim reanalysis results as forcing data showed the
considerable sensitivity these simulations have to the applied forcing. The
cohesive strength of the ice had to be increased by about 100% when using
the different forcing. This is mostly due to an approximately 30% increase
in the mean Severozemelsky wind strength of ERA-interim compared to
NCEP/NCAR. Differences in snowfall and thus ice thickness also played a
role. In order to successfully model fast ice one must therefore carefully tune
the model to the given forcing data.

In this chapter it has been shown that land-fast ice in the Kara Sea can
be modelled using a viscous-plastic model. Some modifications to the model
had to be made; most importantly the viscous limit had to be raised, but
changes to the momentum solver and yield curves were also important. So
far the model has only been tested for the winter 1997-98, but in the follow-
ing chapter longer time periods will be modelled. Despite modelling only
one winter the work done in this chapter has highlighted the capabilities
and weaknesses of the viscous-plastic model. The importance of ice cohe-
sion vs. pressure ridge grounding for fast-ice formation was also underlined
improving our understanding of how fast ice forms.
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Chapter 6

Decadal experiments

6.1 Introduction

Having shown that fast ice can be modelled to a certain extent in one par-
ticular year the model will now be tested over a longer time period. The
periods chosen here are 1967-74 and 1998-2005. During these periods a
large and small average fast-ice extent was observed, respectively. Both
computational and time restraints prevent us from going into the same sort
of detail here as in the previous chapter. Therefore two of the most success-
ful yield curves were chosen for an initial set of experiments. Comparing
the model results to observations only the fast-ice extent, formation and
breakup times will be considered.

The tests performed here show that simply using the best setups from
the previous chapter is insufficient. The reason for this is that the role of
pressure ridge grounding was underestimated in the previous chapter and
in order to get acceptable results the grounding scheme had to be included.
Using the flexible modified Coulombic (FMC) yield curve with the grounding
scheme gives good overall results with reasonable fast-ice extent modelled
every year, save one. These good results show that the model can be used
to model fast ice on a longer time scale. The model results are then used to
infer a critical thickness for fast-ice formation; the thickness the ice needs
to reach before fast ice will form. This is of some interest when considering
fast-ice presence in warmer or cooler climates than the current one.

In the following an overview of the available observations is first given.
These are the sea-ice charts produced by the Arctic and Antarctic Research
Institute (2007). Section 6.3 then outlines the results from the eight different
experiments performed using the model. These cover the two time periods
and yield curves, as already mentioned. This is followed by a discussion
of the results. In it the relatively poor model performance in the initial
experiments is linked to underestimating the importance of ice grounding.
By including the grounding scheme the results are improved dramatically.

149
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A discussion of the critical formation thickness and the role of ice-ocean
interaction as also included.

6.2 Observations

The most useful set of observations is again the ice charts compiled by the
Arctic and Antarctic Research Institute (2007), introduced and used in the
previous chapter. These are available from 1933 to 1992 and 1997 to 2006,
of which the years 1967-74 and 1998-2005 overlap with the temporal range
of the current model.

To offer a quick overview of the fast-ice characteristics during the more
recent period figures 6.1 and 6.2 map the observation period when fast ice
becomes stable and when it breaks up, respectively. The method used to
produce these figures is the same as used for 1998 earlier. As before these
figures offer only a quick overview, since they only capture fast ice that
is land-fast during April. This means in particular that land-fast ice that
breaks up before April 15 is not shown and ice that becomes land fast after
April 1% is also not shown. This is only a minor concern here since the
prevailing trend is for the fast-ice extent to increase in January, February
and March and decrease in June, July and August.

Summarising what can be seen in the figures it is first of all clear that
the year 2002 is special in that fast ice only forms very close to the shore and
no S-mode fast ice can be seen. S-mode fast ice was observed in January,
but is not shown in the figure since it breaks up before April 15¢. This has
been noted before and according to Divine et al. (2005) 2002 is the only
year this happens during the entire span of the AARI observations. The
years 1998 and 2003 only S-mode ice forms, while in 1999-2001 and 2005
Li-mode forms and in 2004 Lo mode forms. In general the S-mode forms
in early January. The L-mode then forms either simultaneously with the
S-mode or in late March. The breakup of the S and L; modes always occurs
in late June or in July, but in 2004 the Lo extension breaks up in late May,
having been land-fast since late March.

The earlier time period considered here, 1967-74 is more problematic
since the temporal resolution of the observations is much worse. During
winter and early spring only monthly observations are available and they
only begin in February. This means that the onset of fast-ice formation is
lost. In late spring and summer the observations are, however, mostly every
10 days so the breakup times should be reliable. For this period only the
breakup is therefore considered (see figure 6.3).

During the period 196774 an L-mode is always present during the height
of winter except in 1968 and 1972 when only an S-mode is present. Only in
1971 and 1974 do the L and S-modes break up at the same time, all other
years the L-mode breaks up first. The L-mode normally breaks up in late
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Figure 6.1: The observation period when stable fast ice is first observed in
winter in the Severozemelsky region, according to the AARI observations.
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Figure 6.2: The observation period when fast ice is last observed in summer
in the Severozemelsky region, according to the AARI observations
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Figure 6.3: The observation period when fast ice is last observed in summer
in the Severozemelsky region, according to the AARI observations
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June, early July while the S-mode breaks up about a month later. In the
eight year period considered here L-mode forms during 6 winters, compared
to 5 winters in the 1998-2005 period.

Finally a minor discrepancy in figure 6.3 should be noted. In the panel
for 1974 the L-mode is shown to break up after the first observation period
in August, but the S-mode breaks up after the last observation period in
July. This would mean that the S-mode breaks up before the L-mode, but
this is in fact almost certainly not the case.

What happens is that during the last observation period of July the
observations show an L-mode, but for the following observation (in the first
period of August) no data is available for the S-mode area. That observation
still shows the L-mode portion of the fast ice massive. In the observation
following it, the one covering August 11" to 20" both the S- and L-modes
have broken up leaving only traces of fast ice along the coast. Strictly
speaking the last observation period where S-mode fast ice was observed is
there fore the period of July 215 to 315, but given the dynamics involved
and the results of Divine et al. (2005) it is safe to assume that the S-mode
does not break up before the L-mode, but rather at the same time.

6.3 Experiments

In order to test the model response over a longer time period two time peri-
ods were chosen using two different yield curves, a total of four experiments.
As mentioned previously the two time periods are 1998-2005 and 196774,
but in both cases the model was spun up for three years, the runs starting
from the climatological average in fall 1994 and 1963 respectively. Dur-
ing the spin-up full ice dynamics and cohesive yield curves are used which
means, in particular that the winters of 1997-98 simulated here should not
necessarily be identical to those simulated in the previous chapter.

The two time periods were chosen to represent two extremes with respect
to fast-ice extent, based on the results of Divine et al. (2003, 2004). The late
1960s and early 1970s were a period of large average fast-ice extent while
the late 1990s and early 2000s were a period of comparatively small extent.
Having tuned the model for the winter of 1997-98 it is also interesting to see
how it fairs during the 1960s and 1970s. In particular, if the ice is thicker
during the earlier period the fast ice should also be more stable and easier
to reproduce in the model.

The two yield curves chosen were the FMC with ¢ = 30° and kr = 0.22
and the trimmed ellipse with k7 = 0.08 and the grounding scheme with
I' = 5. This setup of the FMC gives correct breakup times and fast-ice
extent, but too thick ice in the Arctic Institute Islands Pass. The setup
chosen for the trimmed ellipse does not give correct breakup times, but
instead offers a realistic simulation of the ice in the Arctic Institute Islands
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Pass. The two setups represent two extremes; the FMC giving strong ice
while using the trimmed ellipse results in weak ice compared to other realistic
setups.

In the following sections the results from the different experiments are
introduced. First the results using the FMC for 1998-2005 are described
followed by the results for the same setup, only using the trimmed ellipse and
grounding scheme instead of the FMC. Section 6.3.3 then discusses the time
period of 1967-74. To avoid going in to the same amount of detail as before
only the fast-ice extent and evolution will be compared to observations, not
the polynya formation. These results are then discussed in more detail in
section 6.4. We will, in particular see how the relatively poor results achieved
here can be attributed to underestimating the importance of ice grounding.

6.3.1 Flexible modified Coulombic yield curve

In the previous chapter it was shown that using the FMC yield curve with
¢ = 30° and kp = 0.15 produced both realistic breakup times and fast-ice
extent for 1998 using the initial conditions imposed there. Figures 6.4 and
6.5 show that this is not the case here. Now, in 1998 the early part of the
freeze-up phase is similar to that modelled previously (see figure 5.16), but
in late March an erroneous L-mode becomes stable. This did not happen
before. In addition to this both the L- and S-modes break up in late May
here, but in the earlier experiment the S-mode survived until July. The
only difference in the experimental setup between this simulation of the
winter 1997-98 and the one discussed in the previous chapter is the initial
conditions.

Out of the eight years considered here only in 2001 and 2002 is the
modelled fast-ice extent reasonably close to the observed extent. In 2002
almost no fast ice is observed and the model does capture this, although
the modelled fast-ice extent is somewhat larger than the observed one. In
2001 an L-mode is observed, which is mostly captured by the model. In
addition to this an S-mode is modelled in 2000 and 2004, but an L-mode
was observed in those years. In 1999, 2003 and 2005 the modelled fast ice
occupies neither an S- nor L-mode. In 2001 and 2002 the fast-ice extent
is therefore correct, while in 1998, 2000 and 2004 fast ice is present in the
model, but in the wrong mode. This leaves the years 1999, 2003 and 2005,
during which the modelled fast-ice extent is unrealistic.

With respect to formation and breakup times the freeze-up phase gen-
erally shows the same unrealistic breakups and reformations as observed
before. The breakup generally occurs too early. The only year that shows
correct formation times is 2004, although the modelled ice extent is an S-
mode while the observed one is an L-mode. The S-mode correctly forms
during the last ten days of December, but the L-mode either does not form
or breaks up again before April 15t. The most westerly portion of the S-
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Figure 6.4: The day land-fast ice becomes stable in winter during the
years 1998-2005 using the FMC. The solid line marks the fast-ice extent
according to the AARI data for the first observation period in April. In the
white areas no fast ice is formed.
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Figure 6.5: The day land-fast ice breaks up in summer during the years
1998-2005 using the FMC. The solid line marks the fast-ice extent according
to the AARI data for the first observation period in May. In the white areas
no fast ice is formed and the black patches mark areas of fast ice that survives
beyond August 215t
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mode also suffers a few partial breakups and reformations in January and
then again in March. The breakup in 2004 is also well timed; occurring in the
middle of July, approximately ten days early compared to the observations.

6.3.2 Trimmed ellipse

In chapter 5 the trimmed ellipse was found to give the best results with re-
spect to drifting ice in the Arctic Institute Islands Pass and polynya forma-
tion. The fast-ice extent was also accurately modelled, but the breakup time
was not. Using the grounding scheme further improved the polynya simu-
lation. The trimmed ellipse is of interest here, even though the quality of
the polynya simulation will not be considered specially. This is because the
trimmed ellipse offered stable fast ice at lower uniaxial compressive strength
than the other yield curves. The fast ice is therefore weaker and in particular
weaker than when using the FMC. In the experiments discussed here the
cohesive strength under isotropic divergence was set to k7 = 0.08 and the
grounding parameter to I' = 5, as per the results of the previous chapter.

Unlike the FMC the trimmed ellipse gives nearly identical results for
the winter 1997-98 here compared to the results from section 5.4.4 (see
figures 6.6 and 6.7). The modelled fast-ice extent follows the S-mode outline
correctly, but multiple partial breakups occur during the freeze-up and the
fast ice breaks up too early in summer.

Using the trimmed ellipse an L-mode is never modelled, but an S-mode is
modelled in 1998, 2001 and 2005. In 2001 and 2005 an L-mode is observed, so
1998 is the only year the model captures the right fast-ice mode. In 2002 fast
ice is only modelled inland of the Nordenskiold Archipelago, but observations
show it to block the Vilkitsky strait as well. The remaining years (1999,
2000, 2003 and 2004) the modelled fast ice unrealistically occupies none of
the predefined modes.

During the freeze-up every modelled year shows unrealistically late break-
ups compared to the observations. The breakup time is also incorrectly
simulated for all the years. The breakups in 2001 and 2005 are still better
timed than that in 1998, which occurs two months too early. In 2001 the
modelled ice breaks up about 20 days too early and in 2005 it breaks up
about 10 days early, with a partial breakup 30 days too early. Overall the
results using the trimmed ellipse and the grounding scheme are decidedly
worse in the years 1999-2005 than in 1998, for which the model was tuned.

6.3.3 The winters of 1967-74

The second time period considered here is 1967-74, a period when the mean
winter fast-ice extent has been shown to be larger than otherwise (Divine
et al., 2003, 2004). During this time period the AARI ice charts do not
properly cover the freeze-up phase and so we will focus on the April extent
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Figure 6.6: The day land-fast ice becomes stable in winter during the years
1998-2005 using the trimmed ellipse and grounding scheme. The solid line
marks the fast-ice extent according to the AARI data for the first observation

period in April. In the white areas no fast ice is formed.
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Figure 6.7: The day land-fast ice breaks up in summer during the years
1998-2005 using the trimmed ellipse and grounding scheme. The solid line
marks the fast-ice extent according to the AARI data for the first observation
period in May. In the white areas no fast ice is formed and the black patches
mark areas of fast ice that survives beyond August 215t
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and breakup times here.

Starting with the FMC the model only produces accurate results for
1969 (see figure 6.8). This year an L-mode is observed in April and also
produced in the model. According to the observations the L-mode breaks
up during the July 11" to 20*" observation period with the S-mode breaking
up during the following observation period. In the model both the L- and S-
modes break up during the July 11*" to 20*" observation period leaving only
the fast ice in the Vilkitsky strait to break up in the following observation
period. The modelled fast-ice extent during the July 215¢ to 315 observation
period is therefore too small, but the breakup times are otherwise correct.

In 1970, 1971 and 1973 an S-mode forms in the model but an L-mode is
observed. In 1971 the modelled ice actually forms a sort of a broken L-mode
with an S-mode and a block of fast ice between the Arctic Institute Islands,
Sverdrup Islands and the coast. The fast ice that is observed between the
Arctic Institute and Sergey Kirov Islands is not captured in the model. The
fast ice inland of the Arctic Institute Islands breaks up in early May along
with half the S-mode fast ice. The S-mode presumably reforms and the rest
of it breaks up during the July 11" to 215" observation period, the same
period S-mode (and L-mode) fast ice is last observed in 1971.

The modelled breakup time of the S-mode in 1970 is mostly correct,
although the ice inland of the Nordenskicld Archipelago does survive longer
than observed. In 1973 the fast ice is observed to break up unusually early or
in the last observation period of June. The model does not capture this early
breakup and in it the fast ice breaks up about a month later. The remaining
years (1967, 1968 and 1974) the modelled fast-ice extent is always less than
the S-mode extent.

The trimmed ellipse gives weaker ice than the FMC, even with the
grounding scheme. This means in particular that the L-mode that forms
in 1969 breaks up too early and is smaller than when using the FMC (see
figure 6.9). The breakup of the S-mode portion of the ice is similar to that
modelled with the FMC. The fast-ice extent is also smaller during the other
model years, but in 1971 the S-mode is more stable using the trimmed el-
lipse and the grounding scheme. Using the trimmed ellipse an L-mode is
only modelled in 1969 and an S-mode only in 1971. During all other years
the fast-ice extent is less than that of the S-mode. The trimmed ellipse,
therefore, clearly gives worse results than the FMC for this time period.

6.4 Discussion

Considering the results of these experiments there are two main results that
warrant further discussion. First of all is the overall poor ability of the
model to simulate realistic fast ice for other years than that of 1998, for
which it was tuned. This will be shown to be the result of underestimating
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Figure 6.8: The day land-fast ice breaks up in summer during the years
1967-74 using the FMC. The solid line marks the fast-ice extent according
to the AARI data for the first observation period in May. In the white
areas no fast ice is formed and the black patches mark areas of fast ice that
survives beyond August 215t



6.4. DISCUSSION 163

21/08

01/08

11/07

21/06

01/06

11/05

1973 1974

Figure 6.9: The day land-fast ice breaks up in summer during the years
196774 using the trimmed ellipse and grounding scheme. The solid line
marks the fast-ice extent according to the AARI data for the first observation
period in May. In the white areas no fast ice is formed and the black patches
mark areas of fast ice that survives beyond August 215t
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the role of ice grounding. It is also interesting to see that the fast-ice extent
modelled here for 1998 using the FMC is substantially different from that
modelled in the previous chapter. This raises questions about the effects
the land-fast ice has on the ocean and the land-fast ice’s sensitivity to the
oceanic forcing.

In this section three topics will be discussed; ice strength, critical ice
thickness and ice-ocean interaction. In the section on ice strength we dis-
cuss the fact that the modelled ice appears to be too weak. To solve this
the FMC is used along with the grounding scheme and increased maximum
viscosity. This approach gives much better results than those already in-
troduced. In the following section these improved results are then used to
give an estimate of the minimum ice thickness needed for fast ice to form.
Finally the influences of the cohesive yield curves on ice-ocean interaction
are discussed.

6.4.1 Ice strength

Let us first consider the reason behind the relatively poor results shown
in section 6.3, compared to those of the previous chapter. First of all the
problem is clearly that the ice is too weak. Using the FMC, which gives
stronger ice than the trimmed ellipse, too little fast ice is modelled for 12
out of the 16 years considered here. Only in 1998 is the modelled fast-ice
extent considerably larger than the observed one. In 1969 and 2001 the
modelled fast-ice extent is similar to the observed one while in 1970, 1971,
1973, 2000 and 2004 an L-mode is observed at the height of winter, but the
model simulations result in an S-mode.

When judging the model’s performance in these longer runs three basic
criteria should be considered. Firstly one should consider if the model pro-
duces realistic fast ice at all; i.e. either an S- or an L-mode should form, in
keeping with the general characteristics of the fast-ice cover. In this respect
the FMC succeeds in nine out of sixteen modelled years. The second criteria
is that of inter-annual variability; i.e. whether the right mode is modelled at
the right time. In this respect the model fairs much worse, giving the cor-
rect result for only three years out of sixteen. Finally formation and breakup
times should be considered, but these times proved difficult to model in the
previous chapter. Only in 2004 does the model reproduce the observed for-
mation times'. In addition the breakup times are modelled within some 10
days of the observed date during three model years; 1969, 1970 and 2004.

If the ice is simply too weak then tuning the yield curve or changing it
should have a positive effect. This could give unrealistic results for 1998,
but a set of parameters should be found that would maximise the number of
years that give correct fast-ice extent. Such an exercise is very costly, both

!Formation times cannot be deduced for the earlier period; 196774
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with respect to time and computing resources and so it is not undertaken
here.

It is, however, possible to test a different year from 1998 and to do this
the suite of experiments performed in the previous chapter was re-run for
the winter 1998-99. As before the model was started in fall and initialised
using the model state from the simplified-dynamics control-run described
in section 4.3. Using the elliptic yield curve and e = 1.4, kr = 0.09 or
kr = 0.10 gave correct fast-ice extent and good breakup times. The other
yield curves did not give realistic fast-ice extent for the values tested and no
further effort was made to adjust them, since using more cohesive strength
is known to cause unrealistic drift-ice behaviour. Unfortunately, using the
ellipse with such a small value for e or large for kr is also known to cause
unrealistic drift-ice behaviour.

In order to try and increase the ice strength through other means tests
were performed using the FMC and the parameter settings used in section
6.3.1, together with the grounding scheme and increased maximum viscos-
ity. For 1999 including the grounding scheme (with I' = 5) stabilised the
fast ice so that an L-mode is modelled, but an L mode was also observed
for the height of the fast-ice season. Increasing the maximum viscosity to
Cax = (1017 s)P did not have a marked effect. This value is four orders
of magnitude larger than the optimal value found in section 5.3.1 and nine
orders of magnitude larger than the value used by Hibler (1979). Given the
results of section 5.3.1 it is unlikely that using a larger value will improve
the model performance.

Given these results two additional runs were performed for the period
1998-2005 using the FMC. In one the grounding scheme, with I' = 5 was
used and in the other the maximum viscosity was set to (inax = (1017 s)P, in
addition to using the grounding scheme. Here the non-linear nature of the
model again becomes apparent since the results of the long-term run are not
the same as that of the shorter test performed before. When modelling the
winter 1998-99 only, an L-mode was modelled using either (ax = (10'2 s)P
or (max = (107 s)P. In the long term run, where the model is spun up
using the cohesive yield curve, an L-mode is only modelled in 1999 when the
maximum viscosity is set to (pmax = (1017 s)P. In all other years the differ-
ence between the two runs is minimal. Based on this a run was performed
for 196774 using the grounding scheme and (pay = (1017 s)P. The results
from these runs are shown in figures 6.10-6.13.

The results using the FMC, with the grounding scheme and increased
maximum viscosity are markedly better than those presented earlier. For
the sixteen years considered here either an S- or an L-mode is modelled
for fifteen. This leaves out the year 2002 when no S-mode ice is observed.
That year the modelled ice is smaller than the S-mode, but larger than
the observed extent (see figures 6.10 and 6.11). Overall the basic fast-ice
behaviour is therefore well captured.
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Figure 6.10: The day land-fast ice becomes stable in winter in 1998-2005
using the FMC with increased maximum viscosity and using the grounding
scheme. The solid line marks the fast-ice extent according to the AARI data
for the first observation period in April. In the white areas no fast ice is
formed.
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Figure 6.11: The day land-fast ice breaks up in summer in 1998-2005
using the FMC with increased maximum viscosity and using the grounding
scheme. The solid line marks the fast-ice extent according to the AARI
data for the first observation period in May. In the white areas no fast ice
is formed and the black patches mark areas of fast ice that survives beyond
August 215,
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Figure 6.12: The day land-fast ice becomes stable in winter in 1967-74
using the FMC with increased maximum viscosity and using the grounding
scheme. The solid line marks the fast-ice extent according to the AARI data
for the first observation period in April. In the white areas no fast ice is
formed.
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Figure 6.13: The day land-fast ice breaks up in summer in 1967-74 us-
ing the FMC with increased maximum viscosity and using the grounding
scheme. The solid line marks the fast-ice extent according to the AARI
data for the first observation period in May. In the white areas no fast ice
is formed and the black patches mark areas of fast ice that survives beyond
August 215,
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The inter-annual variability is not captured as well by the model. Out
of the sixteen years the correct mode is modelled for seven, which is still
a marked improvement compared to three years earlier. Finally the right
formation times (to within about 10 days) are modelled in 1999 (S-mode
only), 2003 and 2004, but the correct breakup time is never really captured
in the 1998-2005 period. Despite this the modelled breakup is only in 1998
more than a month off and in that year it is only a partial breakup that
occurs early. In 1967-74 the correct breakup time is captured by the model
in 1968, 1969, 1972 and 1974 a considerably better performance than in the
period 1998-2005. In 1967—-74 the formation time was not observed.

To conclude it is clear that using the grounding scheme and increased
maximum viscosity greatly improves the model results. Here the grounding
scheme is a vital part of the fast-ice formation, but in the previous chapter
its role appeared to be minimal. The grounding of pressure ridges therefore
appears to increase the stability of the fast-ice massive and clearly deserves
a closer look.

These new results open the doors to further investigations into various
topics, but these are mostly outside the current scope, but in the following
section the idea of a critical thickness will be addressed. There an estimate
is given for the minimum ice thickness needed to support fast-ice formation.
Should such a critical thickness exist then knowing it can give an indication
of whether the Severozemelsky fast ice can be expected to be present in a
future warmer climate.

6.4.2 Critical thickness

These improved results can now be used to try and estimate a critical thick-
ness, h. for fast-ice formation in the Severozemelsky area. The idea is that a
certain critical ice thickness must be reached in order for the ice to become
land fast. This thickness is independent of the time period; during colder
years the ice will grow faster and simply become land fast earlier. It is, on
the other hand almost certainly dependent on location.

Using the algorithm developed to track the temporal evolution of the
fast-ice cover in the model it is trivial to track the thickness dependence
as well. The modified program simply registers both the time of formation
or breakup and the ice thickness when this occurs. In this manner a map
can be produced showing the ice thickness in each model point when the ice
becomes land fast and when it breaks up. Figures 6.14 to 6.17 show such
maps for the FMC with the grounding scheme and increased maximum
viscosity. The figures show considerable spatial variability in h. during the
fast-ice formation phase, especially in 1998-2005. The breakup thickness
is less varied. This is a result of the partial breakups and reformations
seen during the formation phase, a feature of the model not seen in the
observations. The modelled breakups tend to be more uniform with all of
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the fast-ice massive collapsing at the same time under the applied wind
stress.

The incorrect model behaviour during the formation phase can be due
to dynamical or thermodynamic problems in the model. If the cause is
predominantly dynamical then the ice thickness is correct, but the formation
time is wrong because the ice is too weak. The algorithm proposed here
would therefore overestimate the critical thickness since the fast ice becomes
stable some time after it has reached the critical thickness. If the cause is
primarily due to thermodynamical problems then the ice thickness is wrong,
but the breakup time is wrong precisely because the ice thickness is wrong.
The proposed algorithm would therefore give the right critical thickness.
For the breakup the same is true; i.e. if the thermodynamics are wrong then
the critical thickness is still right and if the dynamics are wrong then the
critical thickness will be overestimated.

A more useful way of looking at the formation and breakup thickness is to
consider a histogram of the recorded thickness. Figure 6.18 shows four such
histograms; for h. during fast-ice formation and breakup in 1967-74 and
1998-2005. To exclude fast-ice formation in the river estuaries only points
north of Dickson are considered. Due to temporal and spatial variations in
ice thickness and wind strength one would expect a histogram of h. to show
an approximately normal distribution around a given mean h,., which would
then be the critical mean thickness in the Severozemelsky region.

The two histograms for the breakup period show just such a behaviour
with h. = 117 cm for 1967-74 and h. = 116 cm for 1998-2005. The standard
deviation is 37 cm and 36 cm respectively. During the formation phase in
196774 the histogram is approximately normally distributed as well, but
the mean is considerably higher with h, = 143 cm and standard deviation of
33 cm. The histogram distribution for the formation phase in 1998-2005 is
much flatter than the others, more reminiscent of a smoothed step-function
than a normal distribution. This is consistent with the gradual build up of
fast ice seen in these years and the probability distribution function (pdf) is
therefore most likely a combination of two normal distributions; one centred
around h. when fast ice starts forming and the other around h. when the
fast ice is fully formed. The first coincides approximately with h. retrieved
from the breakup periods while the other coincides with h. retrieved from
the formation period in 1967-74.

The difference in k. for the breakup and formation times is most likely a
testimony of the difference in atmospheric conditions during the two periods.
The fast ice is broken up by cyclones and in the Arctic winter cyclones
are more intense than summer ones (see e.g. Sorteberg and Walsh, 2008).
The fast ice can therefore remain thinner in summer without breaking up,
compared to winter.

There is also a telling difference between the pdf for formation in 1967—
74 and 1998-2005. In 1967-74 the distribution is close to normal because
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Figure 6.14: The ice thickness when the fast ice becomes stable in winter
during the 1998-2005 period. The solid line marks the fast-ice extent ac-
cording to the AARI data for the first observation period in April. In the
white areas no fast ice is formed.
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Figure 6.15: The ice thickness when the fast ice breaks up in summer dur-
ing the 1998-2005 period. The solid line marks the fast-ice extent according
to the AARI data for the first observation period in May. In the white areas

no fast ice is formed.
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Figure 6.16: The ice thickness when the fast ice becomes stable in winter
during the 1967-74 period. The solid line marks the fast-ice extent according
to the AARI data for the first observation period in April. In the white areas
no fast ice is formed.
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Figure 6.17: The ice thickness when the fast ice breaks up in summer
during the 1967-74 period. The solid line marks the fast-ice extent according
to the AARI data for the first observation period in May. In the white areas
no fast ice is formed.
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Figure 6.18: Histograms of ice thickness when the fast ice first becomes
stable in winter (F) and when it breaks up in summer (B), during the two
time periods: 1967-74 and 1998-2005. The mean value and standard devi-
ation are also indicated on the graph.
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the fast ice does not suffer large partial breakups before eventually becoming
stable. In 1998-2005, however, large and multiple partial breakups during
the formation phase cause change the pdf. In 1967-74 a considerable amount
of multi-year ice forms in the Severozemelsky region which has the effect that
the ice grows thick rapidly in fall, compared to 1998-2005 where little multi-
year ice forms. The rapid ice growth therefore prevents the multiple partial
breakups otherwise modelled.

This indicates that the ice growth in fall 1998-2005 is not rapid enough.
One mechanism that may speed up the ice formation in fall, but may be
underestimated in the model is surface layer stratification. In the Severoze-
melsky region the ice cover only breaks up in summer, when surface wind
mixing is at a minimum. According to Volkov et al. (2002) this causes a thin
(5-10 m) surface layer of fresh and cold water to form. If freezing begins
again shortly after the ice melts (as is usually the case in the Severozemel-
sky region) this fresh and cool surface layer may accelerate the initial ice
growth. River water may also play a similar role, but it is both warmer and
unlikely to reach the S-mode area (see Volkov et al., 2002). On the face of
it this effect would appear to be only minor since the energy released when
ice forms is much greater than that released when cooling the same amount
of water by a few degrees. It could, however, suffice to cause a full ice cover
to form earlier. This would greatly reduce the short-wave penetration into
the ocean and thus accelerate the ice growth. The overall impact of this
requires a more detailed investigation.

The histograms in figure 6.18 leave us with three possible values for h,;
h. = 117 c¢m, based on the pdf for both breakup periods, h. = 143 cm,
based on the pdf for the ice formation in 196774 and h. = 125 cm, based
on the pdf for all four breakup and formation periods. The first is useful if
we want to have an idea of how much ice must remain in the Severozemelsky
region after the summer melt in order for the ice to remain land-fast all year
round. For comparison in 1967-74 the mean ice thickness in the S-mode
region in summer was about 50 cm in the model (see figure 6.19). It would
therefore require considerably harsher climate than the current one for the
ice to remain land fast all year round.

The critical thickness based on the formation period in 1967-74 is an
indicator of the ice thickness necessary to initiate fast-ice formation. This
is he = 143 c¢m, 25 c¢m thicker than h. based on the breakup periods. It is
relevant for considerations of future warmer climates where the ice may not
always reach the critical thickness. For comparison the S-mode average ice
thickness (see figure 6.19) reaches the critical formation thickness for every
year modelled here.

In 1998-2005 the maximum ice thickness is normally some 40 cm more
than this critical thickness. T'wo notable exceptions are 2002 and 2005 when
the maximum ice thickness is 19 and 25 cm larger than the critical thickness,
respectively. In 2005 an L-mode was observed, but an S-mode modelled. In
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2002 S-mode fast-ice was only observed in January, with stable fast ice only
present along the shore throughout the winter. The modelled fast-ice extent
is larger than the observed one, but still less than the S-mode. The lack of
stable S-mode ice in 2002 therefore appears to be the result of both thin ice
and strong winds. In addition it is possible that the model overestimates
the ice thickness. In 2005 the ice on the other hand does grow thick enough
to form stable fast ice, but it is also likely that the model underestimates
the ice thickness in that year.

One should not directly compare the date the S-mode mean ice thickness
reaches the critical threshold with the onset of stable fast-ice formation each
year. The former is based on a long time average while the latter depends
on the ice thickness as well as the strength and timing of passing cyclones.
All the same, there is still some correlation between the two. In 1967-74
the ice grows thick quicker than in 1998-2005 and reaches h. sooner. The
fast ice also becomes stable sooner in 1967-74 than in 1998-2005 (see figures
6.10 and 6.12). A longer time series would be needed to make a statistical
comparison.

Calculating the critical thickness based only on the formation period in
1967-74 is arguably suspect since the formation period in 1998-2005 gives
a different result. It was argued that since the model behaviour during the
formation period is more realistic in 1967-74 the period 1998-2005 should
be discarded. This, however, leaves us with only eight modelled winters,
which is a small number to base any statistical analysis on. Using all four
formation and breakup periods gives the largest number of estimates for
h. and therefore a more reliable statistic. The resulting pdf is close to the
normal distribution, with a coefficient of determination R? = 0.98. For
comparison the pdfs in figure 6.18 have a determination coefficient in the
range R? € [0.89,0.93], when compared to the normal distribution.

6.4.3 Ice-ocean interaction

Finally, an interesting point to note is the difference between the modelled
fast-ice extent using the FMC now and in the previous chapter. In chapter
5 using the FMC with ¢ = 30° and kr = 0.22 gave S-mode fast ice with
correct breakup times. Here the same settings give wrong extent and wrong
breakup times. The only difference between the two setups are the initial
conditions; the spin-up for chapter 5 was done using simplified dynamics
while here the full dynamics were used for the entire run.

Although the difference in the fast-ice extent in these two runs is note-
worthy then the difference in ice thickness and concentration is not. In early
January the difference in thickness in the Arctic Institute Islands Pass is of
the order of centimetres. These differences are seen where ridges and leads
form; i.e. there is no particular area where large differences occur. In the
decadal run in February arches start forming between Sverdrup Island and
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Dikson and Sverdrup and Sergey Kirov Islands. Such arches do not form
when the model is initialised using simple dynamics. The difference in ice
thickness between the runs is still only a few centimetres, despite the arches
forming. Following the formation of these arches the two models diverge.
Where the arches form the ice becomes land fast, while in the other model
the ice remains mobile.

This apparently drastic response to a minor perturbation in ice thickness
underlines the non-linearity of the model. A perturbation of a few centime-
tres is enough to push the model from an S-mode state to an L-mode one.
This also goes to show how close the settings used for the FMC are to an
L-mode branch. In chapter 5 we saw that increasing k7 by 0.01 pushed the
model into an L-mode state, and this small perturbation seems to have done
the same.

Following this it is worth our while to take a cursory look at the oceanic
response to different ice mechanics. Comparing the control run from sec-
tion 4.3, which uses simplified dynamics to the results from the decadal
experiments presented here gives some interesting results. Comparing, in
particular the surface salinity at the summer ice minimum shows that using
the FMC (with the grounding scheme and increased maximum viscosity) the
ocean surface is saltier (see figure 6.20). At first this would seem counter in-
tuitive. Using the full dynamics and the cohesive yield curves fast ice forms,
decreasing the atmosphere-ocean heat and freshwater exchange. The ocean
surface should therefore be fresher, not saltier.

The fast ice does indeed have this effect which can be verified in a simple
experiment. Using the simple dynamics setup from section 4.3 the AARI
observations were assimilated into the model by simply arresting all ice
movement where fast ice was observed. This rather crude data assimilation
shows that if the only change in the ice were the inclusion of fast ice then
the ocean under that ice would indeed be fresher (see figure 6.21).

Using the full dynamics and cohesive yield curves therefore introduces a
source of salinity for the ocean. This source can only be increased ocean-
atmosphere exchange so one must conclude that the full dynamics cause
larger leads to open, compared to the simplified dynamics. Such behaviour
is to be expected from a cohesive material, but the full influence of this
behaviour will not be studied further here.

6.5 Conclusion

In this chapter the model parametrisations tested for 1998 in the previous
chapter were used in longer runs. Initially two yield curves were tested
during two time periods, with further runs performed based on the results of
the initial experiments. The yield curves tested were the FMC and trimmed
ellipse, tuned such that the former gave relatively strong fast ice and the
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S [psy]

Figure 6.20: Ocean surface salinity using simplified dynamics subtracted
from the salinity using the FMC with the grounding scheme and increased
Cmax- The figure shows the entire model domain after the first time step of
October 5%, 1998.
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S [psu]

Figure 6.21: Ocean surface salinity using simplified dynamics subtracted
from the salinity using the assimilated AARI fast-ice observations. The
figure shows the entire model domain after the first time step of October
5th 1998,
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latter relatively weak. The time periods were 1967-74 and 1998-2005; with
relatively large fast-ice extent being observed in the former and relatively
small extent observed in the latter.

The main result of these initial tests was that the modelled ice was
too weak to produce realistic land-fast ice every year modelled. The FMC
gives stronger ice than the trimmed ellipse resulting in better results in
general, but these were still wanting. Because of this some further tests
were performed using increased ice strength for the winter 1998-99. The best
result was obtained using the FMC as before but with the grounding scheme
and an even larger increase in maximum viscosity than that introduced in
the previous chapter.

When judging the model’s performance in these longer runs three ba-
sic criteria should be considered. Firstly one should consider if the model
produces realistic fast ice at all; i.e. either an S- or an L-mode should form,
in keeping with the general characteristics of the fast-ice cover. In this
respect the FMC, with the grounding scheme and increased maximum vis-
cosity succeeds in fifteen out of sixteen modelled years. The year when the
model fails is 2002, when S-mode fast ice was only observed briefly in Jan-
uary. The model overestimates the fast-ice extent that year, but without
producing S-mode fast ice.

The second criteria is that of inter-annual variability; i.e. whether the
right mode is modelled at the right time. In this respect the model does not
fair as well, giving the correct result for seven years out of sixteen. Finally
formation and breakup times should be considered and here the correct
values were modelled for four years out of eight observed formation periods
and four out of sixteen observed breakup periods.

The basic fast-ice formation process does therefore seem to be captured
quite well by the model, while seasonal and inter-annual variability is not.
In order to capture the formation process properly it was still necessary to
use the grounding scheme and very large values for the maximum viscosity.
The grounding scheme, as it stands is very simplistic and needs consider-
able improvement. The success this simple scheme has here does, however,
indicate that the grounding process is quite robust. This makes it feasible
to work on an improved grounding scheme since it can be expected not to
be very sensitive to parametrisations.

The fact that such large maximum viscosity was required raises doubts
about the applicability of the viscous approximation, in this context. It is
clear that the land-fast ice does not undergo creep flow, at least not at any
meaningful speed. Using (max = (107 s)P, as was done here would result
in the creep flow speed of v = 10713 m/s at the edge of a 100 km fast-ice
massive (see section 5.4.1). This is about 1 pm per year, a speed that has
no real meaning in the present context. It is, in particular an intriguing
question how well an elastic-plastic model (as per e.g. Coon et al., 1974)
would perform, compared to the viscous-plastic one. Implementing such a
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model is, however, well outside our scope here.

The failure to properly capture formation and breakup times (i.e. sea-
sonal variability) as well as inter-annual variability can be, at least in part
due to short comings in the model forcing. With respect to the inter-annual
variability the NCEP/NCAR reanalysis could simply not be capturing the
variability of the system. A further step would be to test different reanalysis
products and compare to the NCEP/NCAR forced results. The reanalysis
should also be compared to observations. Further improvements could pos-
sibly be made by using a coupled ocean-ice-atmosphere model.

Regarding formation times it was suggested that the ice simply did not
grow rapidly enough in fall. Too slow ice growth would lead to a gradual
increase in the overall ice strength and therefore a gradual increase in the
fast-ice area. This would then also affect the ice thickness and strength in
summer, when the fast ice breaks up. It was also suggested that proper
modelling of the stratification due to melt water and possibly river run-off
could increase the ice growth rate in fall. A more thorough investigation is,
however, needed into the importance of this process.

Having established the reliability of the model its results were used to
give estimates of the critical thickness for fast-ice formation in the Severo-
zemelsky region. The critical thickness (h.) is the thickness the ice needs to
reach for fast ice to form and remain stable under normal atmospheric and
oceanic conditions. The three estimates given were based on the thickness
of the ice when fast ice forms in the model, when it breaks up and based on
both the formation and breakup periods.

Interestingly the critical thickness for breakup was smaller than that
for formation; h, = 117 cm for breakup vs. h. = 143 c¢m for formation.
The reason behind this difference is that winter cyclones are more intense
than summer cyclones and the fast ice can therefore become thinner in
summer before breaking up. These estimates include the breakup thickness
for both 1967-74 and 1998-2005, but only the formation thickness for 1967—
74. This was done because the formation thickness in 19982005 appeared to
be spread between the two values of h. already mentioned. It was suggested
that this happens because the ice growth in fall is too slow during the latter
time period.

The formation critical thickness is then the thickness the ice needs to
reach for the fast ice to become stable during winter. It is of particular
interest when considering fast-ice presence in warmer climates. The breakup
critical thickness on the other hand gives the limit below which the ice must
melt before the ice breaks up. That is of interest when considering cooler
climates when the ice may have remained land-fast all year round.

Taking the mean of h. over all modelled formation and breakup periods
gave h, = 125 cm, with a standard deviation of 37 cm and R? = 0.98,
compared to the normal distribution. From a statistical point of view this
should be the most dependable value. It gives the mean critical thickness
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based on all the cyclones that may break up the ice, independent of their
intensity.

In order to give some perspective for the given values for the critical
thickness they were compared to the mean S-mode ice thickness during the
two time periods. The mean ice thickness grew to be greater than the critical
formation thickness for all the modelled years. It was, however, clear that
the ice in 1967—-74 was both thicker and reached the critical thickness sooner.
The modelled ice did reach the critical formation thickness in 2002, but in
that year S-mode fast ice was only observed in January. It is therefore likely
that the very early breakup of fast ice in 2002 was due to both unusually
thin ice and unusually strong winds. The modelled mean ice thickness was
lowest in 2002 of all the modelled years.

Finally an interesting side effect of the cohesive yield curves was discov-
ered. When using the cohesive yield curves the surface salinity in the ocean
model was larger than when using the simplified dynamics. The difference
was only about 0.5 psu at the end of the melt season, but the signal appears
to be robust. The reason for this must be that when using the cohesive
yield curves the leads that form are larger, increasing the ocean-atmosphere
interaction.

The main result of this chapter is that using a cohesive yield curve
(i.e. the FMC) with improved dynamics, high maximum viscosity and the
grounding scheme, fast ice can be modelled on a longer time scale. The
model captures the basic formation mechanisms, but some improvements
are needed to capture the temporal variability observed. Improvements
may be needed in the oceanic and atmospheric forcing to achieve this. As
it stands the model can still give valuable insights into the nature of the
Severozemelsky fast-ice massive, and in particular the conditions needed for
it to form in the first place.
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Chapter 7

Conclusion

This thesis presents a coupled ice-ocean model, capable of producing real-
istic land-fast ice. The model is based on the well known viscous-plastic
formulation first suggested by Hibler (1979), which is the basis for the vast
majority of sea-ice models currently in use. Neither Hibler’s original model,
nor any of its derivatives are, however, able to produce realistic land-fast ice
and therefore some further development of the model was required. This is
the first time land-fast ice has been modelled in a realistic setting using a
dynamic sea-ice model.

The ice model used here was written to be coupled onto the Vector
Ocean Model (see chapter 2). The ice model was designed to be simple
and easy to implement allowing time to be spent on those model features
deemed most important for a fast-ice simulation. Thus the model was ini-
tially very similar to that written by Hibler (1979); it used two ice classes
only (ice and open water), an elliptic yield curve, an SOR solver for the
momentum equation with a single pseudo-time step and zero-layer Semtner
(1976) thermodynamics with constant albedos. Improvements made to this
model were essentially twofold: New yield curves were introduced and an
improved pseudo-time stepping scheme was implemented (referred to as the
outer-loop solver).

The new yield curves were introduced in order for the model to reproduce
the cohesive strength present in sea ice. Land-fast ice has been shown to
be attached to grounded pressure ridges in many cases. In the Kara Sea,
however, the ice remains land fast in regions where the ocean depth is too
great for pressure ridges to be grounded. An additional mechanism is thus
needed to explain why the ice remains land fast and this was assumed to be
ice cohesive strength.

In addition, the solver for the momentum equation needed improvement.
With the traditional approach of on pseudo-time step errors of the order of
1 cm/s were often present in the velocity field. Errors of such a magnitude
could cause the fast ice to break up, even though it should not. The velocity
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field also needs to be accurately predicted since the modelled fast ice should
move very slowly. In section 4.4 it was shown that the new solver reaches
a much more accurate solution. More work is, however, needed to improve
the solver, which is both slow and not as accurate as aimed for.

Other improvements were also made. The zero-layer model was replaced
with a three layer model using variable albedos. This improved the simu-
lation of the Kara Sea ice cover (see section 4.3) yet did not have a large
impact on the modelled ice thickness. The formation of new ice in polynyas
was studied in chapter 3 where improvements were made to the parametri-
sations for newly formed ice. An appropriate scheme for lateral melt had
also to be chosen to prevent the fast ice breaking up at the onset of melt.
Finally a very simple grounding scheme was implemented whereby the ice
is assumed to be stationary if it grows thicker than a certain fraction of the
ocean depth (section 5.4.4).

Chapters 3 and 4 outlined various tests performed on the model before
the actual fast-ice simulations were done. The former outlined an idealised
study on polynya formation. It showed that the formation process is mostly
independent of rheology, but underlines the importance of the new-ice for-
mation parametrisations. Chapter 4 introduced the realistic Kara Sea model
and outlined two sets of tests performed; one dynamic and the other thermo-
dynamic. The dynamic tests were performed to investigate the performance
of the outer-loop solver and establish the accuracy to which the ice velocity
field could be modelled.

The thermodynamic tests were based around a model setup with sim-
plified dynamics (i.e. a single pseudo-time step and elliptic yield curve) and
some changes in the thermodynamic parameters of the model. The modelled
Kara Sea ice cover, using NCEP/NCAR and ERA-interim reanalysis data
as forcing was compared to satellite observations. In addition the influence
of a number of (mostly) thermodynamic parameters was tested. The effects
of changing these parameters were found to be less than those seen when
using different forcing data sets. While NCEP/NCAR data gave marginally
better results than ERA-interim data, the model tended to underestimate
summer ice extent using NCEP/NCAR data while the extent of summer ice
was overestimated using ERA-interim data.

Having introduced the model and done preliminary testing chapters 5
and 6 present the two main fast-ice experiments done here. First, the model
is used to simulate the winter 1997-98, testing all the yield curves imple-
mented in the model as well as the importance of the outer-loop solver, the
limit for transition between viscous and plastic behaviour and the ground-
ing scheme. The model results were compared to observations showing both
fast-ice extent and the locations of flaw polynyas.

The main results of these first tests were that it is indeed possible to
model land-fast ice using a viscous-plastic model. To achieve this it was
crucial to increase the maximum viscosity parameter (y.x. This parameter
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sets the limit between linear viscous and plastic response of the model ma-
terial. Using high maximum viscosity the ice remains plastic under smaller
strain rates and is more viscous in the linear viscous phase.

It was shown that using the traditional value for (;,,x amounted to try-
ing to simulate the Kara Sea fast-ice massive as a single block of linearly
viscous fluid, when moderate wind stress was applied. This did not work
and realistic fast ice only formed once (,ax had been increased by five orders
of magnitude. Using such a high value for (yax the fast ice was in (slow)
plastic deformation under moderate wind stress.

This raises questions about the applicability of the viscous approximation
for small strain rates. Using such a large value for (ax also means that the
speed of the creep flow the ice undergoes is of the order of 107 m/s or about
1 cm a year. This is such negligible speed as to be meaningless in the current
context. Since lowering the contribution from the viscous part of the model
improves the results it could be interesting to replace the viscous behaviour
with elastic, as per e.g. Coon et al. (1974). Presumably an elastic-plastic
model would be a more accurate description of sea ice and it would be
interesting to see if such a model performed better than the viscous-plastic
one.

The yield curve shape was also found to play a role when modelling
fast-ice. The exact shape did not appear to be of great importance as long
as the yield curve gave enough cohesive strength so that fast ice could be
produced. The model behaved in general as one would expect with respect
to cohesive strength; small cohesion gave little or no fast ice, intermediate
values gave realistic fast ice and large values gave too much fast ice and
unrealistic drift-ice behaviour. Realistic fast-ice extent could be produced
using most of the yield curves and within a limited range of ice cohesive
strength.

While the flexible modified Coulombic (FMC) yield curve could be tuned
to produce both realistic fast ice extent and breakup times ice drift in the
narrow Arctic Institute Islands pass was too slow. The trimmed ellipse
produced more realistic flow in the pass yet lead to erroneous timing of
the fast-ice break up. These two yield curves present both the best results
obtained and also two extremes; the FMC could be tuned to give realistic
results under high cohesive strength while the trimmed ellipse permitted less
cohesive strength for realistic results.

In addition to testing different model parametrisations a small set of tests
using the ERA-interim data were performed. These dramatically underlined
the model’s sensitivity to wind stress. In the fast-ice region of the Kara
Sea the mean wind strength in the ERA-interim reanalysis is 30% greater
than that of the NCEP/NCAR reanalysis. The ice also grew to be some
15% thinner when using the ERA-interim reanalysis, compared to using
NCEP/NCAR data. As aresult the ice cohesive strength had to be increased
by about 100% when using the ERA-interim reanalysis, compared to when
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using NCEP/NCAR data.

Finally a grounding scheme for pressure ridges was suggested and tested.
It did not prove to have considerable effects on the fast-ice extent or stability.
Using the trimmed ellipse (which gave the weakest fast ice) the grounding
scheme did improve the model results around the Sergey Kirov Islands, but
the overall impact of the scheme was deemed small. This impact turned out
to be much greater in the other years modelled in the chapter that followed.

After tuning the model for the winter 1997-98 longer time periods were
modelled in chapter 6. For these runs the time intervals 1967-74 and 1998-
2005 were chosen, as these periods represent a maximum and minimum in
the observed fast-ice extent, respectively. Only two yield curves were tested
initially; the FMC and the trimmed ellipse yield curves found to give the
best results in the previous chapter.

Results from the initial tests were not promising; a fact later attributed
to the underestimation of ice grounding. Realistic fast ice, i.e. L or S-mode
was modelled in nine out of sixteen modelled years using the FMC and only
in three years using the trimmed ellipse. The parameters fitting to model
the year 1998 did therefore not give nearly as good results for the long term
run. It was clear, in particular that the modelled fast ice was much too
weak.

Based on these results some tests were performed with increased ice
cohesive strength for the winter 1998-99. These showed that increasing the
cohesive strength could not improve the fast-ice results without resulting
in a highly unrealistic drift-ice simulation. Application of the grounding
scheme greatly improved the stability of the fast-ice sheet so that using
the FMC, parametrised as before, and the grounding scheme together gave
realistic results. Increasing the maximum viscosity by another four orders of
magnitude improved the results still further. The grounding scheme proved
much more important here than in the previous chapter which clearly shows
that pressure ridge grounding is an important secondary process in fast-ice
formation.

Using the FMC with the grounding scheme and increased maximum
viscosity, realistic fast ice was modelled in 15 out of 16 model years. In the
remaining year, 2002, S-mode fast ice is only observed in January. This is
the only year in the observational record where this happens, all other years
show S-mode ice present from January through May. While the model fails
to fully capture this extreme event the modelled fast-ice extent in 2002 is
still less than in any of the other modelled years.

Basic fast-ice formation mechanisms therefore appear to be well cap-
tured while temporal variability is lacking. Even though an S or an L-mode
was always modelled (except in 2002) the right mode was not necessarily
modelled at the right time. The observed mode was modelled during seven
of the sixteen modelled years. Formation and breakup times were also not
captured very well, with the formation modelled correctly in four out of
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eight! observed years and breakup in four out of sixteen.

These shortcomings in temporal variability can be due to errors in the
model itself or to some extent errors in the forcing. It is not unlikely that
the incorrect inter-annual variability is due, at least in part, to errors in
the NCEP/NCAR based forcing, but this has yet to be investigated. With
respect to formation times it was shown that the rapid initial ice growth
in fall in 1967-74 relative to 1998-2005 resulted in more realistic formation
times. It was suggested that the ocean model’s inability to resolve the
near-surface stratification of the ocean could slow down initial ice growth.
The proper modelling of this stratification requires much higher vertical
resolution than is currently feasible. Further investigation into the effects of
near-surface stratification is therefore indicated.

One of the aspects of fast-ice formation the model allows us to investigate
further is the existence of a critical formation thickness. It can be assumed
that fast ice can only form once the sea ice reaches a certain minimum thick-
ness, termed the critical thickness of fast-ice formation. The most sensible
value for critical thickness is both a spatial and temporal average. The
spatial average was taken over the entire fast-ice extent and the temporal
average takes into account the inter-annual variability in cyclone intensity.

The model results strongly indicated that such a critical thickness exists
with the mean critical thickness of h. = 125 cm. It was also shown that the
critical thickness retrieved during fast-ice formation was greater than that
retrieved during break up. This can be explained by the fact that winter
cyclones are on average more intense than summer cyclones. It was also
shown that the fast ice grew notably thicker in 1967-74 than in 1998-2005,
but the 1998-2005 ice always grew thicker than the mean critical thickness.
Should the ice continue to grow thinner fast-ice less winters will become
a regular occurrence. No attempt was made to estimate when this might
occur.

Overall the model effectively reproduces the fast-ice extent in the Kara
Sea. This is a major achievement since fast ice has never before been mod-
elled in a realistic setting based on the model material properties. Key to
this success are increased maximum viscosity, modified yield curve, increased
solver accuracy for the momentum equation and a simple grounding scheme.
It was shown that fast ice can be modelled using a basic cohesive Coulombic
yield curve, but that the viscous approximation is insufficient to describe
fast ice. By using very large maximum viscosity the viscous approximation
is effectively avoided. A better approach could be to replace the viscous
response with an elastic one. The need for a grounding scheme underlines
the importance of pressure ridge grounding as a secondary process in fast-ice
formation.

!The formation time was not observed during the 196774 observation period
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The results obtained here give us insight into the nature of land-fast ice,
its formation and the forces that hold it together. The ability to model fast
ice opens up new avenues of research in areas where fast ice plays a role
in atmospheric, oceanographic, biological or economic context. It would be
particularly interesting to see how the model performs in other locations,
such as the Laptev Sea or the Canadian Arctic Archipelago. Large expanses
of fast ice form in the Laptev Sea and since it forms over shallower waters
grounding may be more important there than in the Kara Sea. In the
Canadian Arctic Archipelago static arching is likely to play a large role in the
ice dynamics and it would be interesting to see how the model proposed here
would behave in those circumstances. Finally Zhang and Rothrock (2005)
have shown that increasing the cohesive strength affects the ice behaviour
on the pan-Arctic scale, an effect that could be investigated further with the
current model.

On a more model-oriented note certain aspects of today’s ice models
have been brought into focus. It was shown that the common viscous-
plastic model could be used to model land-fast ice, something that has not
been done before. From a purely physical stand point one would expect
that changing the yield curve should be enough to create a material that
gives land-fast ice, yet this was shown to be insufficient. To produce fast ice
the outer-loop solver had to be improved and the viscous limit had to be
increased significantly.

Improving the outer-loop solver is a question of improving numerics,
something that still requires considerable work. Deciding on the viscous
limit, however, concerns one of the basic assumptions of the viscous-plastic
model; that sea-ice undergoes creep flow. The results presented here indi-
cate that the creep flow speed is so small as to be meaningless in this con-
text. This offers two possibilities; either to use the current viscous-plastic
approach with arbitrarily high maximum viscosity or replace the viscous re-
sponse with a different one, e.g. elastic. The former would probably require
some improvement in the model numerics, but the resulting model would
be an essentially purely plastic model. The latter was done by Coon et al.
(1974) and then abandoned in favour of the viscous-plastic model. It would
be possible to either revisit the work of Coon et al. (1974) and attempt
improvement or opt for a different approach, e.g. the elastic-brittle model
proposed by Girard et al. (2011).



Appendix A

A note on spelling

The word combinations sea ice, fast ice, land-fast ice and the alike require
different forms of hyphenations depending on their role in a sentence. When
used as a noun “sea ice” and “fast ice” remain unhyphenated, while they
must be hyphenated when used as adjectives. Consider for instance: “Fast
ice remains attached to the shore” vs. “the fast-ice edge follows a chain of
islands”. In the former sentence “fast ice” is a noun and thus not hyphenated
but in the latter it is an adjective and hyphenated.

In the phrase “land-fast ice” the words “land-fast” act as an adjective
describing the ice and are therefore hyphenated. One could, for example use
the phrase “land-fast-ice cover“ instead of simply “fast-ice cover”, requiring
two hyphenations. This is not aesthetically pleasing and is consequently not
done here.
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Appendix B

Solver for the curved
diamond yield curve
equations

In order to find the parameters « and p in equation 2.83 based on a given
value for kr the following Mathematica program was used. It assumes the
equation has been rewritten as

1+ o1/P* if -1 < 01/P* < o1x/P*
o /P* = pu(ky — o1/ P*)\/1+ aoy/P* ifox1 < o1 <0 (B.1)
MkT—O'I if0<OI/P*<ukT.

The algorithm assumes that 20 = 120° for o = ox1 and 20 = 160° for
o1 = 0. Given a value for pkr (the variable kinit in the code) it calculates
a, i, oxr (the variable x in the code) and kp (the variable k in the code).

b = D[up(kp — op)Sqrt[1 + apop], op]

sflu_, a_, k_, o ]:=ArcCos[b/ .{up — pu,ap — a,kp — k,op — o}|/Degree;
a = 0.75;

p=1

Kinit = 0.05;
kerr = 1;
While [kerr > 1077,
k = kinit/p;
err = 1;
While [err > 1077,
ox = Solve[o + 1 == pu(k — 0)Sqrt[1 + aol, o[[1]];
x=0/.0%;
sol = Solve[{sf[m, a, k, 0] == 160., sf[m, a, k, x] == 120.}, {m, a}][[-1]];
aerr = Abs[a — a/.sol];
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merr = Abs[u — m/.sol[;
err = Max|aerr, merr];
a = Re[a/.sol];
= Re[m/.sol]; ;
kerr = Abs[uk — kinit]; ]
fop, o}
ar = Round|a, 0.001];
pr = Round[p, 0.001];
{ar, ur, k}
{stlpr, ar, k, 0], sflur, ar, k, z]}



Appendix C

VOM runtime parameters

When the VOM model is run it reads in the guide_vom file containing the
time step size, grid size and other parameters. For the sake of completeness
this file is included here.
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10

600. 10.e+3 10.e+3 0.1 DI' DX DY DIE (ice model elastic time step) (note: dx,dy either in
meters or in minutes !!!)

2.5e—3 3.2e—6 1.0 RBOT WLAM slip_seabed (seabed friction , wind—stress coefficient)

73.00000 —77.00000 0.5 REFLAT REFLON EQUATOR.DIST (values in degrees)

1 10000 0.5 1.0 AHNULL AHMAX AHKH SLIP (KH=AH x AHKH)

0.50 50.0 RETARD( hrs) MIXLEN Kochergin Parameters

300.e—4 0.1e—7 0.5 VISMAX VISMIN SCHMIDT-NO =—> Kv = SMI.NO x* Av

0.5 1.53 1.e—6 100 PIMP, OMEGA, EPSILON, MAXITR (SOR parameters)

0.5 1l.e-6 1.e—8 0.5 1.0 1 PIMPMOM MOMEPS TS EPS PIMP.TS HASWEIGHT HAS STEPS

1.8d0 32.5d0 0.d0 0.d0 0.0 0.0 TINIT SINIT (initial homogeneous T,S), TREF,SREF (reference-T,S),
relax_t ,relax_s

0.0 0.0 SCAL_INIT (initial value for scalar tracer), SCALREF (reference—value for tracer)

0.0 0.0 0.0 0.0 0.0 WX, WY, QSURF Steric height grads (x,y)

10 6.0 NFORCRMP [days], ROUGHNESSHOURS

1997 09 28 00 0000 START-TIME: YEAR, MONTH, DAY, HOUR, SECONDS

1998 12 26 00 0000 END-TIME: YEAR, MONTH, DAY, HOUR, SECONDS

1440 40320 50 1 DATOUT WARMOUT DUMPOUT  (units: minutes) output, warmstart, Dump, MOD_WRITE.CNT

1.00 ZFAC amplification factor for ASCIl—output of ==> ZETA

ft EXTERNAL_GRID, READ_LAT_LON external grid projection=T: then dx,dy are expected in minutes,
READLAT ON=T: latitude and longitude read from vom_input/grid_{lat ,6lon}.dat — only if EXTERNAL.GRID=F.

tf CORIOLIS, F_PLANE t => coriolis—rotation desired, f—plane desired

ftf NLM_UPS, NLM.SVU, NLM._J7 Momentum—Advection (UPStream, selective upstream SVU, or J7)

ttf TSINPUT, PROGNO, PRESSURE t ==> TSINPUT data available, otherwise use TINIT, SINIT (above)

ftf AHLARGE, AHSCALS, DIFF_DISSIPATION large stencil AH; hor. diffusion for scalars
DIFFERENTTAL_DISSIPATION

f SCALAR.TRACER SCAL.TRACER desired

tt SURFLUX, ICE.MODEL SURFACEFLUXES (via bulk formulae) desired , ICE-MODEL desired
f SW_PENETRATION penetration of SHORT WAVE radiation into water column desired
ffff ADJUSTN, S, W, _E ==> open boundary adjustment desired

tff BINOUT, ASCOUT, DUMP output options (binary, zeta as ascii, ascii—dump)

361

SUALHWVHYVd HWILNNY WOA "D XIANAddV



tff RESTART, WARM, CLIMYEAR
ftt XMINIT, RUN_TIDE, AVG_TIDE

1

write warm—start fields; read warm—start fields
t => output files named in hours AND minutes, 0: only hours
NSTEPS (keep 1 to deal with start—date and end—date)

Info about VOM (Vector Ocean Model) parameters in this file:

1st line: name of VOM data directory (make sure that line covers 80 characters !!!)

DATA

PATHDIR

DT time—increment [s]

DX DY space—increments [m] if (ext.grid=f) or [’] min if (ext.grid=t)
RBOT bottom friction parameter [—]

WLAM drag coefficient of wind stress [—]

G earth acceleration [mxx2/s]

REFLAT reference latitude for LAT/LON grid, and/or for Coriolis (f—plane) [ ]
REFLON reference longitude for LAT/LON grid [ ]

EQUATOR.DIST distance from equator where coriolis rotation is switched off [ ]
AHNULL min horizontal turb. exchange coefficient [mxx2/sx%2]

AHMAX max horizontal turb. exchange coefficient [m**2/sxx%2]

AHCONVECT

AHKH

SLIP boundary condition for lateral turb. exchange at coast [—]

SLIP=1 ==> full-slip
SLIP=0 =—=> semi—slip
SLIP=—1 ==> no-—slip
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RETARD time coefficient [hour]
MIXLEN factor for mixing length in Kochergin scheme [m]
MODE_ADJUST setting for type of convective adjustment scheme [—]

MODE_ADJUST= 1 => careful convective adjustment by ==> ADJUST
MODE_ADJUST= 0 => brutal convective adjustment by ==> ADJUST

MODE_ADJUST=—1 ==> convective adjustment by increased mixing ==> TURBULENCE

VISMAX max eddy viscosity [mxx2/s%%2]

VISMIN min eddy viscosity [mx*x2/s#%%2]

SCHMIDT-NO relation factor for eddy diffusivity Kv = SMINO % Av [—]

PIMP Cranck—Nicholson pointer for implicit scheme of SSE [—]

OMEGA Relaxation parameter for ==> SOR scheme

EPSILON Desired Accuracy (Error) of Iteration of SSE

MAXITR max number of iteration [—]

MODITR

LEFT_-UNFROZEN percentage of [%]

UPDATE PRESSURE [timesteps]

PIMP_MOM Cranck—Nicholson pointer for implicit scheme of momentum [—]

TS_EPS Desired Accuracy (Error) of Iteration of temperature and salinity [—]
PIMP_TS Cranck—Nicholson pointer for implicit scheme of temp. and sal. [—]
HAS WEIGHT (central differences) 0.0 < HASWEIGHT < 1.0 ( upstream acheme) [—]
HAS_STEPS number of steps with reduced time increment [—]

TINIT initial homogeneous temperature [ C]

SINIT initial homogeneous salinity [psu]

TREF reference temperature [ C]

SREF reference salinity [psu]

SCAL_INIT initial homogeneous tracer concentration [%]

00¢
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SCAL_REF reference concentration of tracers [%]

WX, WY east , north components of constant wind [m/s]

QSURF surface energy flux [W/mx*%2]

Steric height grads tilt of sea surface [m/m)]

NFORCRMP ramp forcing for cold start [days]

START-TIME year ,month,day,hour if XMINIT=f; day,hour,seconds if XMINIT=t []
END-TIME year ,month,day,hour if XMINIT=f; day,hour,seconds if XMINIT=t []
DATOUT time increment of ascci and binary output [timesteps]

WARMOUT time increment of warmstart output [timesteps]

DUMPOUT time increment of dump output [timesteps] 'Y large output !!1!!
LTUNE_SOR SOR iteration [timestep]

ZFAC amplification factors for zeta [—]

LOGICALS

EXTERNAL_GRID t ==> external grid projection, then dx,dy are expected in minutes
CORIOLIS t ==> coriolis —rotation desired

F_PLANE t == coriolis—rotation on FPLANE desired

NLM_UPS t ==> Momentum—Advection (UPStream)

NLM_J7 t ==> Momentum—Advection (J7)

SOLVER t ==> hybrid Gauss solver; f ==> chessboard solver
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TS_INPUT
PROGNO
PRESSURE

AHLARGE
AH_SCALS

SCALAR.TRACER
SOR_FREEZE

SURFLUX
ICEZMODEL

SW_PENETRATION
ADJUSTN, _S, ‘W,
BINOUT

ASCOUT

DUMP

RESTART

WARM

CLIMYEAR
XMINIT
RUN_TIDE
AVG_TIDE

NSTEPS

t ==> TS_INPUT data available, f ==> use TINIT, SINIT
t => run T,S in prognostic mode, f =—> diagnostic mode
t => density depends on pressure

t ==> apply the hybrid Laplacian Diffusion operator, which uses the +/—2 stencil
t => apply (optional) horizontal diffusion to scalar fields

t => scalar tracer will be computed
t ==> freezing algorythm will be used

t ==> SURFACEFLUXES (via bulk formulae) desired
t => ICE-MODEL desired

t ==> penetration of SHORT WAVE radiation into water column is desired
_E t => open boundary adjustment desired
t => binary data output desired
t => ascii zeta output desired
t ==> ascii column—wise dump desired
t =—> re—start option desired
t =—> warm—start desired
t ==> 30 days per year; f =—> realistic year
t = output files are named in hours and minutes; f =—> year ,month,day, hour
t => tidal forcing will be prescribed

t ==> velocities are averaged over a tidal period

1 to deal with start—date and end—date

¢0¢
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Appendix D

Equations for uniaxial
compressive strength

The uniaxial compressive strength for a given yield curve (oy) is the value
of o9 for which o1 = 0 for that particular curve. For the flexible modified
Coulombic yield curve oy can be found using some simple trigonometric
identities.

Figure D.1 shows the relevant portion of stress space in which a Coulom-
bic yield curve has been drawn. The angle between the Coulombic slope and
the o7 axis is @ where tana = sin ¢ and¢ is the internal angle of friction.
The angle between the yield curve and the o1 axis is 3 and the angle between
the o1 and oy axes is 45°.

Using the sine rule the distance between the origin and the intersection
between the yield curve and the o1 axis, in stress invariant space is

, sin o
=kr———7-—. D.1
e Tsin(45° —a) (D-1)
Using some trigonometric identities this can be rewritten to
.
o = /20O (D.2)

1—sing’

Now o/, is not the yield curve’s uniaxial compressive strength because that
is measured in principle stress space which is derived from stress invariant
space through rotation and scaling. To recover the actual uniaxial compres-
sive strength we note that

sin45° = ¢ (D.3)
UuC
giving the uniaxial compressive strength as
oo = Uiy O (D.4)

1—sing’
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A
Oy
B
450 a 7
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1 |
70uc kT
o

Figure D.1: The relevant portion of stress invariant space showing a
Coulombic yield curve, the o7 axis and the relevant angles and distances.

When scaling with respect to p* oy needs to be divided by 1 + sin¢ (see
equation (2.59)).

To find oy for the elliptic yield curve it is probably best to solve the
equation o5 = 0 where o = o] — oy, resulting in o = of;. The relationship
between o7 and oyr is a simple ellipse and so this becomes

1
% (1+k)?— (20] +1— k)2 =o1. (D.5)
The solution to this equation is
-1
I
g1 = 1 T 62 (DG)
and so 5

The scaling with respect to p* is accomplished by dividing this result with
(1++/1+1/e2)/2 (see equation (2.59)).

If we include cohesion under isotropic divergence the equations become
more complicated. The elliptic relationship then becomes

1
% (1+k)?— (20] +1— k)2 =07 (D.8)

and the final solution is

1—k+1+k(2+4e2+k)
1+e€?

The scaling with respect to p* is achieved by dividing this result by (1 —

k++/(1+1/e2)(1 + k)2)/2. Replacing e with 1/v/k gives the uniaxial com-

pressive strength for the trimmed ellipse.

. (D.9)

Ouc =
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