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Zusammenfassung

Masseverlust von Sternen ist ein universelles Phänomen, das sowohl die Sternent-
wicklung als auch die chemische Zusammensetzung des interstellaren Mediums
beeinflusst. Das Verständnis der Mechanismen, die diese Winde bei späten Riesen
und Überriesen antreiben, ist jedoch bis heute unzureichend, und es gibt weiterhin
einen Bedarf an empirischen Massenverlustraten. In den meisten bisherigen Studi-
en, die sich mit der Bestimmung der Massenverlustrate des Überriesen im α Sco-
(Antares-) System (M1 Ib + B2.5 V) beschäftigt haben, wurde angenommen, dass
die zirkumstellare Hülle sphärisch symmetrisch expandiert und die Dichtevertei-
lung durch ein einfaches Potenzgesetz beschrieben werden kann. In den vergan-
genen Jahren haben Beobachtungen gezeigt, dass diese Annahme unhaltbar ist.

Ziel dieser Arbeit ist es, ein realistisches Modell des α Sco-Systems zu kon-
struieren, um einen quantitativen Einblick in die Dynamik der zirkumstellaren
Hülle zu gewinnen. In Kombination mit den verfügbaren Beobachtungen wird
dieses Modell zur Bestimmung der Massenverlustrate verwendet.

Beobachtungen mit UVES/VLT bieten die einmalige Gelegenheit, die Lini-
enemission aus der zirkumstellaren Hülle von α Sco, dem Antares-Nebel, mit
räumlicher Auflösung zu untersuchen. Diese Beobachtungen werden mit den Er-
gebnissen einer Kombination aus hydrodynamischen Modellrechnungen und Plas-
masimulationen verglichen, die Informationen sowohl über die Emissionsstruktur
als auch die Dichte- und Geschwindigkeitsverteilung liefern. Zusätzlich werden
aus den Simulationen abgeleitete theoretische Profile von Absorptionslinien im
Spektrum von α Sco B mit Beobachtungen verglichen.

Der Vergleich der Beobachtungen mit den Ergebnissen der Modellrechnungen
zeigt, dass die in den Absorptionslinien im Spektrum von α Sco B beobachtete
Multikomponentenstruktur teilweise aus Dichtestrukturen resultiert, die durch die
heiße H ii-Region hervorgebracht werden, die sich mit dem B-Stern durch den
Wind des Primärsterns bewegt. Darüber hinaus ergibt sich eine nicht-monotone
Geschwindigkeitsverteilung, wodurch die Struktur der Linienprofile ebenfalls be-
einflusst wird. Die resultierende Massenverlustrate ist 2 × 10−6 M� yr−1 und da-
mit doppelt so hoch wie der auf einer sphärisch symmetrisch expandierenden zir-
kumstellaren Hülle basierende Wert. Die beobachtete [Fe ii]-Linienemission kann
nicht reproduziert werden, was vermutlich an der vereinfachten Behandlung des
Strahlungstransports liegt. Allerdings wird die aus den Absorptionslinien abgelei-
tete Massenverlustrate durch die komplementäre Analyse der räumlichen Vertei-
lung der beobachteten Hα-Emission bestätigt.
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Abstract

Stellar mass-loss is a universal phenomenon that affects the evolution of stars
as well as the chemical composition of the interstellar medium. However, the
mechanisms that drive these winds in late giants and supergiants are only poorly
understood, and there is still a need for empirical mass-loss rates. In most of
the previous studies that dealt with the determination of the mass-loss rate of
the supergiant in the α Scorpii (Antares) binary system (M1 Ib + B2.5 V) it was
assumed that the circumstellar envelope expands with spherical symmetry and
its density distribution can be described by a simple power law. In recent years
observations have shown that this assumption is untenable.

The goal of this work is to construct a realistic model of the α Sco system in
order to gain quantitative insight into the dynamics of the circumstellar envelope.
In combination with the available observations, this model is used to determine
the mass-loss rate.

Observations with UVES/VLT provide the unique possibility to study the line
emission from the circumstellar envelope of α Sco, the Antares nebula, with spa-
tial resolution. These observations are compared to the results of a combination
of hydrodynamic and plasma simulations, which give information about the emis-
sion structure as well as the density and velocity distribution. In addition, theo-
retical profiles of absorption lines in the spectrum of α Sco B derived from the
simulations are compared to observations.

The comparison of the observations to the results of the model calculations
shows that the multi-component structure observed in the absorption lines in the
spectrum of α Sco B is partly a result of density structures produced by the hot
H ii region that is moving with the B star through the wind of the primary star.
In addition, the resulting velocity structure is non-monotonic, which also affects
the structure of the line profiles. The resulting mass-loss rate is 2 × 10−6 M� yr−1,
which is twice as high as the value based on a circumstellar envelope that expands
with spherical symmetry. The observed [Fe ii] line emission cannot be repro-
duced, which is probably due to the simplified treatment of the radiative transfer.
However, the mass-loss rate derived from the absorption lines is confirmed by the
complementary analysis of the spatial distribution of the observed Hα emission.
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Chapter 1

Introduction

Knowledge of stellar mass-loss is important in modern astrophysics, in particular
in stellar astrophysics. It determines the evolution of the chemical composition
of the universe and strongly affects the evolution of stars. On the other hand,
the driving mechanisms that are responsible for mass loss are still only partly
understood and research in this field holds out the prospect of new insights into
the structure and dynamics of the outer layers of stars. Calculations of the late
stages of stellar evolution have still to rely on empirical mass-loss rates.

Mass loss enriches the interstellar medium and thus yields the material for
future generations of stars and planets. Stellar winds play a major role in this
context. When stars leave the main sequence and enter later evolutionary stages
they exhibit very high mass-loss rates. The identification of the mechanisms that
drive these stellar winds is an ongoing issue, especially in the case of red giants
and supergiants.

In a number of theoretical studies different mechanisms have been proposed
that are able to drive winds, e. g. Alfvén waves, acoustic waves, shock waves, radi-
ation pressure on dust grains, and pulsations (see the reviews of Lafon & Berruyer
1991; Willson 2000). However, the question which mechanisms drive the wind in
red giants and supergiants remains unanswered, and there is still a need for both
theoretical and observational studies of the mass-loss processes that occur in these
stars.

The study of mass loss from red giants and supergiants is most accurate in
binary systems like those of ζ Aur or VV Cep type (see Sect. 2.4.1). The visual
binary α Scorpii (Antares) provides the additional advantage that the circumstellar
shell can be observed with spatial resolution, which was done by Reimers et al.
(2008) with the UVES spectrograph at the VLT. These observations and the ab-
sorption lines seen in the HST/GHRS spectra of α Sco B (Baade & Reimers 2007)
revealed the presence of asymmetries and density inhomogeneities in the common
envelope of α Sco. Therefore, it was suggested that the mass-loss rate is time de-
pendent and the presence of the H ii region around α Sco B produces deviations
from spherical symmetry.

In this work I present hydrodynamic simulations of the α Sco system calcu-
lated with the AMRCART code of Walder & Folini (2000) (see Sect. 5.1), includ-
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ing a model of the H ii region calculated with the plasma code Cloudy (Ferland
et al. 1998). The goal is to achieve new insights into the dynamics and structure
of the circumstellar envelope of α Sco and into the various processes producing
its complex spectrum. The data resulting from the combination of hydrodynamic
and plasma simulations allow a comparison to observations. The hope was to im-
prove the empirical mass-loss rate of α Sco A using both nebula emission lines
and absorption lines in the line of sight of α Sco B observed with the VLT and the
HST in combination with a dynamical model of the Antares nebula.

After a brief summary of the current state of research concerning stellar mass-
loss in Sect. 2 I present results of previous studies of the α Sco system in Sects. 3
and 4. In Sect. 5 I describe the hydrodynamic and plasma simulations of the
α Sco system and its H ii region. The resulting density and velocity distributions
are presented in Sect. 6, and they are compared to observed spectra in Sects. 7
and 8.
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Chapter 2

Current state of mass-loss research

Mass-loss processes have been investigated in many different types of stars by
means of observations as well as theoretical studies (see e. g. the textbook of
Lamers & Cassinelli 1999). For some types of stars, the mechanism that drives
the wind has been identified. For example, radiative forces exerted by spectral
lines constitute the dominant mechanism that drives the winds of luminous hot
stars such as O and B stars (see Sect. 2.2). In cool giants on the asymptotic giant
branch (AGB) the driving mechanism is related to pulsations and dust formation
(Sect. 2.3).

For most other types of stars, probably combinations of different effects such
as large temperature gradients (coronal winds), sound waves, transfer of angular
momentum due to magnetic fields (magnetic rotator theory), and Alfvén waves
drive the stellar wind. Naturally, the most extensive observational material related
to mass loss is available for the Sun. However, the mechanisms driving the solar
wind are still not well understood.

After a short discussion of the present knowledge of the solar wind in Sect. 2.1
I briefly outline observational methods and theories related to mass loss in differ-
ent kinds of hot stars and cool giants in Sects. 2.2 to 2.4 with emphasis on late-type
supergiants on the RGB.

2.1 The solar wind

Recent reviews about observations and theories concerning the solar wind were
presented by Ofman (2010), who focused on waves as a possible origin of heat-
ing and acceleration in the solar wind, and Marsch (2006), who addressed the
microphysical aspects of energy dissipation in the solar wind.

The solar wind consists of a slow component with a terminal velocity of
∼ 400 km s−1, a fast component at ∼ 800 km s−1, and transient coronal mass ejec-
tions (CMEs). While the fast wind is steady and originates from coronal holes
in the polar region of the Sun, the slow wind is unsteady and typically emerges
in the equatorial region at solar minimum. At solar maximum, the solar wind is
dominated by the slow component and CMEs.
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Parker (1958) proposed a mechanism based on heat conduction that produces
a steady wind. His model constitutes a coronal wind that is driven by gas pressure.
He showed that a hot corona that is maintained at a temperature of T0 ∼ 2× 106 K
produces a wind with a terminal velocity of ∼ 500 km s−1 and a mass-loss rate
of ∼ 5 × 10−13 M� yr−1 (Parker 1960). He used a fixed coronal temperature as a
boundary condition and did not make any specific assumption about the mecha-
nisms that are responsible for the heating of the corona.

Later works led to the conclusion that the mechanism proposed by Parker
(1958) can explain the observed terminal speed of the slow solar wind, but it
cannot yield the observed properties of the fast solar wind. Model calculations
showed that Alfvén waves may constitute an additional source of acceleration of
the coronal plasma to produce the fast solar wind (see e. g. Suzuki & Inutsuka
2005).

The explanation of the observed properties of the solar wind remains a re-
search area with many open questions. The mechanisms driving the solar wind
probably involve magnetohydrodynamic (MHD) as well as kinetic plasma waves
and associated wave-particle interactions (Marsch 2006). The remaining open
questions relate to the role of plasma and MHD waves, small-scale turbulence,
and electrons for the heating and acceleration of the solar wind, as well as to the
velocity distributions of protons and ions in the slow and fast solar wind (Ofman
2010).

2.2 Winds of luminous hot stars
Comparisons of observations and theoretical models showed that the mass loss
of luminous hot stars is driven by spectral-line photons that are absorbed in the
atmosphere of the stars, thereby transferring momentum to the absorbing particles.
This led to the so-called CAK theory, which was developed by Castor et al. (1975)
for O-type stars. Later improvements of the theory showed that the model of a
line-driven wind is also consistent with observations of B and A supergiants (see
e. g. Pauldrach et al. 1986; Curé et al. 2011), but there are discrepancies in the
case of Wolf-Rayet (WR) stars. The contemporary theory of line-driven winds
yields precise predictions of the mass-loss rate as a function of stellar parameters
and also reproduces the observed dependence on metallicity (see also the reviews
of Lamers 1997; Kudritzki & Puls 2000; Puls et al. 2008).

Empirical mass-loss rates and wind velocities for hot stars are based on obser-
vations of P Cyg profiles in the UV, Hα emission, free-free emission in the radio
region, and lines or continua at radio, submillimeter, or IR wavelengths. These ob-
servational data are then combined with detailed simulations of non-LTE model
atmospheres (Kudritzki & Puls 2000).

Observations of WR stars seem to indicate mass-loss rates that are much
higher than the corresponding theoretical values (see e. g. Barlow et al. 1981;
Gräfener & Hamann 2008). However, the recent study of Vink et al. (2011), based
on Monte Carlo radiative transfer models, apparently resolves this contradiction.
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2.3 Winds of cool stars
The mechanisms driving mass loss in cool giants are only partly understood. For
asymptotic-giant-branch (AGB) stars, including Mira and OH/IR stars, there is
a correlation between the pulsation period and the mass-loss rate, and the stellar
wind appears to be caused by the interplay of pulsations, dust formation, and
radiation pressure on dust grains.

The mechanism responsible for mass loss in red-giant-branch (RGB) stars is
unknown. Computer programs that simulate stellar evolution of RGB stars nor-
mally include mass loss in the form of semi-empirical formulas relating the mass-
loss rate to basic stellar parameters (cf. the review of Willson 2009), many of
which are based on the formula proposed by Reimers (1975), which has the form
Ṁ ∝ L/(gR), where Ṁ is the mass-loss rate, L the luminosity, g the surface gravity,
and R the radius of the star.

There have been various theoretical approaches trying to explain the gener-
ation of mass loss in cool giants (see the review of Willson 2000). Acoustical
and Alfvén waves might play an important role in generating the outflow. The
driving mechanism is probably related to pulsations that cause shock waves in the
outer layers of the star. Other effects of pulsations are mechanical heating, and
an enhancement of the density scale-height h, both of which cause or facilitate
the escape of material from the gravitational potential of the star. The density
scale-height is defined as

h =

[
d(ln ρ)

dr

]−1

, (2.1)

where ρ is the density and r the radial distance to the star.
For single cool stars mass-loss rates can be obtained by observing the infrared

(IR) continuum emission caused by the dust that is formed in the outflowing gas.
For the determination of the corresponding velocity, observations of CO lines in
the radio region can provide velocity information (Lamers & Cassinelli 1999).
The most accurate determinations for RGB stars are based on the binary technique
(see Sect. 2.4.1).

2.4 Measuring mass-loss rates of late-type supergi-
ants

Mass-loss rates of late-type supergiants can be determined on the basis of profile
fits of absorption or P Cyg-type lines in their spectra. The authors of most studies
assume that the distributions of the density and the velocity are radially symmetric
in the circumstellar shell, i. e.

Ṁ = 4πr2v(r)ρ(r), (2.2)

where r is the radial distance to the supergiant, and v(r) and ρ(r) the velocity and
mass density, respectively. In analogy to the winds in luminous hot stars, the

12



velocity can be expressed as the β power law

v(r) = v∞

(
1 −

R0

r

)β
, (2.3)

which leads to the expression for the density

ρ(r) = ρ0

(R0

r

)2 (
r

r − R0

)β
(2.4)

with

ρ0 =
Ṁ

4πv∞R2
0

(2.5)

(cf. Baade 1998).
The measured column densities equal the integral of the density over the line

of sight and depend sensitively on the lower bound of integration, i. e. the inner
radius Ri of the circumstellar envelope, which is normally not known. When the
supergiant has a companion as an additional light source illuminating the circum-
stellar envelope, this problem can be solved as shown in the next section.

2.4.1 The binary technique
The mass-loss rates of supergiants that are part of binary systems with companion
stars of main-sequence type can be determined with high accuracy and a mini-
mum of model parameters as outlined in the review of Reimers (1987b) (see also
Reimers 1987a). If the circumstellar envelope is observed in the spectrum of the
secondary star, the problem of determining the inner radius Ri of the circumstellar
envelope does not arise, and the boundary of the observed circumstellar material is
given by the position of the secondary, which can be determined by radial velocity
measurements covering the whole orbit or by direct measurement of the angular
separation.

Deutsch (1956) was the first who took advantage of the binary character of a
stellar system in the study of mass-loss processes. He found absorption features
in the spectrum of the M-type supergiant α Her as well as in the spectrum of its
visual companion, a spectroscopic binary of type G.

When it is based on UV observations, this method is also called the “UV bi-
nary technique” (Baade et al. 1996b) and has been applied successfully to a num-
ber of ζ Aur- and VV Cep-type binaries. It takes advantage of the fact that the
spectrum of a late-type supergiant has its maximum in the near infrared, whereas
the maximum of the spectrum of a hot main-sequence star is situated in the UV.
Thus, the UV spectrum of the secondary is not contaminated by the primary.
ζ Aur-type stars are supergiants of type G or K with main-sequence companions
of type A or B, and the components of VV Cep-type stars are of type M and B,
respectively.

Kudritzki & Reimers (1978) and Hagen et al. (1987) applied the binary tech-
nique to the α Sco system on the basis of optical and UV observations, respectively
(see Sect. 4.1).
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Chapter 3

System parameters of α Sco

α Scorpii (α Sco, Antares) is a visual binary system consisting of an M1 Ib-
type red supergiant and a B2.5 V-type dwarf, and its distance is d = 185+84

−44 pc
according to the Hipparcos catalogue (ESA 1997). Van Leeuwen (2007) finds
d = 170+35

−25 pc in his new reduction of the raw Hipparcos data, but the earlier
value, which is consistent with the distances adopted in most studies of the α Sco
system, is used in this work. Hopmann (1958) determined the inclination of the
orbit and found i ∼ 90◦. However, this value is rather uncertain. The angular
separation is 2.′′73 and the B star is ∼ 224 AU behind the supergiant, which cor-
responds to a position angle δ = 23 ± 5◦ (Reimers et al. 2008). The M star loses
mass and creates an envelope containing the whole system. The B star illuminates
this envelope and creates an H ii region and the so-called Antares nebula.

According to Kudritzki & Reimers (1978) the effective temperature of the B
star is Teff = 18 500 ± 1500 K, and its surface gravity is log g = 3.9 ± 0.2 (in
cgs units). These values result from profile fits of Balmer and He i lines, and the
mass MB of the B star was determined by a comparison of these values with the-
oretical evolutionary tracks, yielding MB = 7.2 ± 0.5 M� and RB = 5.2 ± 1.3 R�.
Applying more recent evolutionary models (Bressan et al. 1993) gives similar
results, i. e. MB = 6.7 ± 0.7 M� and RB = 4.8 ± 1.1 R�. Brott et al. (2011) pre-
sented calculations including rotational effects. Their evolutionary sequence for
7 M� and vrot = 284 km s−1 matches the surface gravity and effective temperature
derived for α Sco B by Kudritzki & Reimers (1978), who observed a projected
rotational velocity of vrot sin i = 250 km s−1 (see Fig. 3.1). Based on these re-
sults and the analysis of Hjellming & Newell (1983) (see Sect. 5.2.2), I adopted
Teff = 18 200 K.

For the mass of α Sco A I adopted the value MA ∼ 18 M� found by Kudritzki
& Reimers (1978). Table 3.1 lists the system parameters used in this work. The
values of d and the position angle δ yield the semi-major axis, for a circular orbit,
D ∼ 549 AU.
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Table 3.1: System parameters of α Sco used in this work.

Parameter Value
Teff,B 18 200 K
log g 3.9 (cgs)
d 185 pc
MB 6.7 M�
MA 18 M�
RB 4.8 R�
δ 23 ± 5◦

Separation from A (in 2006) 2.′′73
sin i 1

3.6

3.8

4.0

4.2

4.4
4.14.24.34.4

lo
g
g

(c
gs

)

log Teff (K)

281

548

284

552

291

540

9 M�
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5 M�

Figure 3.1: Evolutionary tracks calculated by Brott et al. (2011) for different initial
masses. The dashed quadrangle shows the observational constraints on log g and Teff

derived by Kudritzki & Reimers (1978). The labels of the curves give the corresponding
rotational velocity vrot (km s−1) on the zero-age main sequence.
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Chapter 4

Previous studies of mass loss in α Sco

4.1 The rate of mass loss

The mass-loss rate of α Sco has been determined by many authors. In the earlier
works, information about the mass loss was obtained by analyzing observations
of circumstellar absorption lines in the spectrum of the supergiant (see Sanner
1976a,b; Bernat 1977). Later work took advantage of satellite-borne telescopes
that provided access to circumstellar absorption lines in the UV range of the spec-
trum of the companion.

Hagen (1978, 1982) observed a number of late-type (super)giants in the optical
and infrared range to derive the column densities of gas and dust in their circum-
stellar envelopes. For α Sco A, with an assumed inner radius of Ri = 10 RA and
RA = 840 R�, she found that the dust density ρd falls off with the radial distance r
according to ρd(r) ∝ r−2, and deduced a total mass-loss rate of 10−6 M� yr−1.

Kudritzki & Reimers (1978) analyzed photospheric absorption lines and cir-
cumstellar absorption lines (mainly Ti iimult. 1 and 2) in the spectrum of α Sco B,
as well as emission lines of the Antares nebula and constructed a model of the sys-
tem that yielded Ṁ = (7± 3.5)× 10−7 M� yr−1. They adopted a configuration with
the B star at 629 AU in front of the plane defined by the supergiant, and a spher-
ically symmetric density distribution around the supergiant. They concluded that
the H ii region created by the B star inside the circumstellar envelope is unlimited
in the direction of the observer.

Van der Hucht et al. (1980) presented observations of circumstellar lines in
the spectrum of α Sco B in the UV range obtained with the Balloon-borne Ultra-
violet Stellar Spectrometer (BUSS) and deduced Ṁ = (7.1 ± 3.5) × 10−6 M� yr−1.
They also assumed a spherically symmetric density distribution and found that the
position of the B star is 783 ± 261 AU in front of the plane of the M star. The H ii
region in their model is bounded in all directions.

Bernat (1982) observed the absorption spectrum of α Sco B with the In-
ternational Ultraviolet Explorer (IUE) and pointed out that the mass-loss rate
depends on which element is chosen to derive it. He gives a mean value of
Ṁ = 6.4 × 10−6 M� yr−1. Hjellming & Newell (1983) observed the Antares
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Table 4.1: Previous determinations of the mass-loss rate of α Sco A

Author(s) Analyzed spectrum Ṁ
Sanner (1976a,b) Optical absorption lines >∼ 1
Bernat (1977) Optical absorption lines (3200-5000 Å) 22
Kudritzki & Reimers (1978) Ti ii mult. 1 and 2 absorption lines 7 ± 3.5
Van der Hucht et al. (1980) Various UV absorption lines (BUSS) 71 ± 35
Bernat (1982) Various UV absorption lines (IUE) 64
Hjellming & Newell (1983) Radio emission (VLA) 20
Hagen et al. (1987) Unblended P Cyg-type UV-lines (IUE) 10
Haas et al. (1995) IR emission ([O i] 63 µm, [Si ii] 35 µm) 130
Baade & Reimers (2007) UV absorption lines (HST/GHRS) 3; 100
Reimers et al. (2008) Hα emission (VLT/UVES) 10 ± 3

Notes. The mass-loss rate Ṁ is given in units of 10−7 M� yr−1. The UV absorption lines
as well as the Ti ii lines analyzed by Kudritzki & Reimers (1978) refer to observations of
α Sco B, while the other optical and IR lines were observed in the spectrum of α Sco A.
The two mass-loss rates determined by Baade & Reimers (2007) represent the continuous
part and the time-averaged rate due to episodic events, respectively.

emission nebula with the Very Large Array (VLA) and derived the mass-loss
rate of α Sco A based on the spatial extent of the radio emission, which yielded
Ṁ = 2 × 10−6 M� yr−1.

Hagen et al. (1987) showed that blends with interstellar lines must be consid-
ered in mass-loss determinations that are based on circumstellar absorption lines
in the UV spectrum of the B star. They pointed out that the lines that remain af-
ter excluding blended lines have P Cygni (P Cyg) profiles, for which appropriate
radiative transfer calculations have to be performed in the analysis. They found
Ṁ ∼ 10−6 M� yr−1.

Observations of infrared fine-structure emission lines with the Cryogenic Grat-
ing Spectrometer (CGS) aboard the Kuiper Airborne Observatory (KAO) served
as an indicator for the amount of mass in the wind-acceleration region of α Sco A
(Haas et al. 1995). Assuming optically thin emission, the flux in the [O i] 63 µm
line was used to derive a mass-loss rate of 1.3× 10−5 M� yr−1. This value depends
on a theoretical temperature distribution in the wind-acceleration region and the
assumption that O i is the dominant ionization state in this region.

Baade & Reimers (2007) performed multi-component fits of absorption lines
in GHRS/HST spectra of the B star (see next section) and derived a time-averaged
mass-loss rate of up to Ṁ = 10−5 M� yr−1 due to episodic events with a continuous
part of Ṁ = 3 × 10−7 M� yr−1. The most recent mass-loss determination was
carried out by Reimers et al. (2008) and was based on high-resolution spectra
obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very
Large Telescope (VLT). The observed spatial extent of the Hα emission was used
to derive Ṁ = (1.05 ± 0.3) × 10−6 M� yr−1.

Table 4.1 gives an overview of the studies mentioned in this section.
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4.2 Evidence for inhomogeneous outflow
Sanner (1976b) found multiple components in optical absorption lines in the spec-
trum of α Sco A. At a resolution of <∼ 2 km s−1, he observed two components in
the Na i mult. 1 lines (Na D), and three components in the K i mult. 1 line at
7698.965 Å, indicating deviations from a smooth outflow scenario.

Mid-infrared observations at the Keck ii telescope of the dust in the circum-
stellar envelope of α Sco indicate a non-uniform dust distribution that appears to
be related to discrete ejections of mass from α Sco A (Marsh et al. 2001). This is
consistent with interferometric observations that were carried out at the William
Herschel Telescope by Tuthill et al. (1997) and revealed asymmetric structures
(“hotspots”) at the surface of the supergiant.

An analysis of UV absorption lines in the spectrum of α Sco B obtained with
the Goddard High-Resolution Spectrograph (GHRS) at the Hubble Space Tele-
scope (HST) revealed that the wind material from the supergiant is concentrated
in discrete condensations (Baade 1998; Baade & Reimers 2007). Four absorption
systems at distinct velocities were identified.

4.3 Limitations of the current picture of mass loss
in α Sco

Many of the previous studies of mass-loss processes in the α Sco system were
subject to large systematic errors. In the early works that were based on absorp-
tion lines in the spectrum of the supergiant (Sanner 1976a,b; Bernat 1977) and in
the analysis of infrared emission lines by Haas et al. (1995) the most important
uncertainty was that the results depended on the inner radius Ri of the circumstel-
lar envelope, which cannot be measured exactly (see Sect. 2.4). In the studies that
were based on absorption lines in the spectrum of α Sco B (see Table 4.1), the
uncertainty resided in the measurement of the locations of the two stars relative to
the plane of the sky and their radial velocities.

Baade & Reimers (2007) were able to give a reliable measurement of the rela-
tive positions of the two stars based on circumstellar Al iii absorption in the spec-
trum of the B star. They also showed that the abundances of many elements are
not constant throughout the circumstellar envelope, which is probably due to dif-
ferential dust depletion. The presence of multiple components in the observed
absorption line profiles rendered it impossible to determine a unique value of the
mass-loss rate.

Reimers et al. (2008) presented detailed observations of the line emission that
is mostly associated with the H ii region around the B star, which yielded precise
information with spatial resolution about the complex density structure. Their
analysis included a theoretical model of the H ii region that was based on a spher-
ically symmetric density distribution given by Eq. 2.4, which can only be regarded
as a first approximation and probably does not yield a realistic picture of the phys-
ical properties of the emission nebula. Most notably, the complex structure seen
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in the Fe ii emission lines could not be explained with this simplified model of the
circumstellar envelope.

The most recent observations of the α Sco system revealed that its circumstel-
lar envelope is characterized by complex dynamics that lead to large-scale density
inhomogeneities (see previous section). These findings show that the mass loss
in α Sco can only be completely understood if hydrodynamic effects are included
in the analysis of the observed spectrum, and that is the aim of my work. In this
work I focus on the hydrodynamics and neglect possible advection effects in the
treatment of ionization (see Sect. 6.4 for a discussion), which may be the subject
of future research.
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Chapter 5

Simulation of the circumstellar
envelope of α Sco

5.1 Hydrodynamic simulations

For the simulation of the hydrodynamic effects occuring in α Sco I have chosen the
AMRCART code. AMRCART is part of the A-MAZE package (Walder & Folini
2000), which comprises MHD and radiative transfer codes. For my work I used
the pure hydro version of AMRCART that is designed to solve the Euler equations
with source terms in three dimensions. It uses a finite-volume integrator based on
a modified Lax-Friedrichs approach (cf. Barmin et al. 1996), which is outlined
in Sect. 5.1.2, and the adaptive mesh refinement (AMR) algorithm developed by
Berger & Colella (1989) (see Sect. 5.1.3).

The AMRCART code has been extensively tested in the context of binary stars
with colliding winds (see e. g. Walder & Folini 2003). Unfortunately, it cannot be
run in parallel on modern HPC clusters. It is written in FORTRAN 77, but I
rewrote parts of the code to introduce some features provided by more modern
Fortran standards such as modules and allocatable arrays, which improved the
user interface and made it possible to allocate arbitrary amounts of memory to the
large array that is used by AMRCART for storing the variables at all grid points.

5.1.1 Basic equations

The Euler equations govern the dynamics of compressible, nonviscous fluids for
which heat conduction can be neglected (Toro 2009, p. 2). In differential conser-
vative form the Euler equations read

∂U
∂t

+
∂F(U)
∂x

+
∂G(U)
∂y

+
∂H(U)
∂z

= 0, (5.1)
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where

U =


ρ
ρvx

ρvy
ρvz

E

 (5.2)

is the vector of conserved variables, and the flux vectors are given by

F =


ρvx

ρv2
x + p
ρvxvy
ρvxvz

vx(E + p)

 ,G =


ρvy
ρvxvy
ρv2

y + p
ρvyvz

vy(E + p)

 , and H =


ρvz

ρvxvz

ρvyvz

ρv2
z + p

vz(E + p)

 (5.3)

(see e. g. Toro 2009). ρ denotes the mass density, E the total energy density, p the
pressure, and vx, vy, and vz the components of the velocity u in x, y, and z direction,
respectively. It is assumed that the equation of state for an ideal gas

e =
p

(γ − 1)ρ
(5.4)

gives the relation between the pressure and the specific internal energy

e =
E − 1

2ρu
2

ρ
, (5.5)

where γ is the ratio of the specific heat at constant volume cV and the specific heat
at constant pressure cp, i. e. γ = cp/cV . Then the expression for the temperature T
reads

T =
p

Rρ
, (5.6)

where R = kB/m is the specific gas constant, which is inversely proportional to
the mean particle mass m, with the Boltzmann constant kB.

5.1.2 Numerical scheme
The numerical scheme used by AMRCART to integrate the Euler equations
(Eq. 5.1) has been developed by Barmin et al. (1996). Their method is based
on the Lax-Friedrichs scheme originally described by Lax (1954), which is first-
order accurate in space and time. They used a predictor-corrector procedure to
obtain a scheme with a second-order accuracy. The finite-volume scheme used in
AMRCART to solve the Euler equations reads

Un+1
i, j, k = Un

i, j, k +
∆t
∆x

(
Fn+1/2

i−1/2, j, k − Fn+1/2
i+1/2, j, k

)
+

∆t
∆y

(
Gn+1/2

i, j−1/2, k − Gn+1/2
i, j+1/2, k

)
+

∆t
∆z

(
Hn+1/2

i, j, k−1/2 − Hn+1/2
i, j, k+1/2

)
,

(5.7)
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where the indices i, j, and k refer to the positions x = i∆x, y = j∆y, and z = k∆z in
x, y, and z direction, respectively, and n denotes the time t = n∆t. The calculation
of the fluxes F, G, and H is described in the following. They are given at the
boundaries between two grid cells at the intermediate time t = (n + 1/2)∆t.

The calculation of the fluxes by means of a predictor-corrector scheme is the
same for each direction. Therefore, the following outline of the procedure for the
flux F in the x direction is the same for the fluxes G and H in the y and z direction.
The predictor step advances the solution by half a time-step, ∆t/2, using the FTCS
(forward- time, centered-space) scheme, which is unstable when used as a stand-
alone method (cf. Fletcher 1991, Sect. 9.1.1),

Un+1/2
i = Un

i +
∆t

4∆x
(
Fn

i−1 − Fn
i+1

)
, (5.8)

where ∆x is the width of a grid cell, i specifies the position in space x = i∆x, and
n the current time t = n∆t.

The following corrector step is the modified Lax-Friedrichs scheme

Un+1
i = Un

i +
∆t
∆x

(
Fn+1/2

i−1/2 − Fn+1/2
i+1/2

)
(5.9)

(cf. Eq. 5.7), where the fluxes F differ from the original scheme in that the factor
∆x/∆t is replaced by the spectral radius r of the Jacobian matrix ∂F/∂U, i. e.

Fn+1/2
i+1/2 =

1
2

[
F

(
Un+1/2

i+1/2,L

)
+ F

(
Un+1/2

i+1/2,R

)
+ r

(
Un+1/2

i+1/2,L − Un+1/2
i+1/2,R

)]
. (5.10)

The value of the spectral radius is r = |vx| + a with the mean value of the velocity
in x direction vx and the speed of sound a,

|vx| =
1
2

(∣∣∣vn+1/2
x, i+1/2,L

∣∣∣ +
∣∣∣vn+1/2

x, i+1/2,R

∣∣∣) , (5.11)

a =
1
2

(
an+1/2

i+1/2,L + an+1/2
i+1/2,R

)
, (5.12)

where the speed of sound a =
√
γp/ρ is calculated using the values of the density

and the pressure at the given grid points.
For the calculation of the values at the boundaries between two grid cells,

Un+1/2
i+1/2,L on the left side and Un+1/2

i+1/2,R on the right side of the boundary, a linear
distribution of the data is assumed inside each grid cell. The slopes of these linear
functions are determined with the minmod function

minmod (x, y) = sgn(x) max
{
0, min

[
|x| , y sgn(x)

]}
. (5.13)

For this procedure, the conservative variables U are transformed to the primitive
variables V,

V =


ρ
vx

vy
vz

p

 =


1 0 0 0 0
0 ρ−1 0 0 0
0 0 ρ−1 0 0
0 0 0 ρ−1 0
0 1

2 (1 − γ)vx
1
2 (1 − γ)vy 1

2 (1 − γ)vz γ − 1

 U, (5.14)
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cf. Eqs. 5.2, 5.4, and 5.5.
The values at the cell boundaries for each component V of V are computed

according to

Vn+1/2
i+1/2,R = Vn+1/2

i+1 −
1
4

[
(1 − η) minmod

(
∆i+3/2, ω∆i+1/2

)
+ (1 + η) minmod

(
∆i+1/2, ω∆i+3/2

)]
,

(5.15)

Vn+1/2
i+1/2,L = Vn+1/2

i +
1
4

[
(1 − η) minmod

(
∆i−1/2, ω∆i+1/2

)
+ (1 + η) minmod

(
∆i+1/2, ω∆i−1/2

)]
,

(5.16)

where η and ω are dimensionless parameters, and the minmod slopes result from
the differences in V between adjacent grid cells, namely

∆i−1/2 = Vn+1/2
i − Vn+1/2

i−1 ,

∆i+1/2 = Vn+1/2
i+1 − Vn+1/2

i , and

∆i+3/2 = Vn+1/2
i+2 − Vn+1/2

i+1 .

(5.17)

Then a transformation back to conservative variables is performed and the results
are inserted in Eq. 5.10.

Barmin et al. (1996) calculated a set of 1D Riemann problems with different
values for ω and η. They obtained the best results with η = 1/3 and ω = 2, with
the exception of the pressure p, for which ω = 1 was used. These values were
adopted for most of the simulations presented in this work.

5.1.3 The adaptive mesh
The computing time required by AMRCART is mainly determined by the number
of grid cells that have to be advanced in time. One possibility of limiting the
computing time is to use high resolution only in the regions where it is required
and to use a lower resolution in the rest of the domain. This can be achieved by
using adaptive mesh refinement (AMR).

The algorithm used by AMRCART for the adaptive mesh refinement was de-
scribed by Berger & Colella (1989). The idea is to estimate the local truncation
error TE of the density ρ periodically during the simulation and to refine those
parts of the grid that contain cells whose error is larger than a given tolerance
limit.

The method for calculating the truncation error is based on Richardson ex-
trapolation (see also Berger & Oliger 1984). The local truncation error is the
difference between the exact solution ρ, which is unknown, and the approximate
solution ρ resulting from the numerical scheme,

TE = ρn+1
i − ρn+1

i ≡ ρ(r, t + ∆t) − Qρ(r, t), (5.18)

where Q denotes the application of the numerical scheme given in Eq. 5.7 and r
is the position (x, y, z).
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An estimate of TE can be calculated by comparing the truncation errors re-
sulting from two integrations with different increments in space1 (∆x) and time
(∆t). The truncation error resulting from two integration steps (see Eq. 5.7) with
the current values of ∆x and ∆t is given by

ρ(r, t + 2∆t) − Q2ρ(r, t) = 2TE(r, t) + O
[
(∆x)q+2, (∆t)q+2

]
, (5.19)

where

TE(r, t) = O
[
(∆x)q+1, (∆t)q+1

]
(5.20)

is the truncation error resulting from one single integration step (see Eq. 5.18) and
q is the order of accuracy of the numerical scheme. The truncation error resulting
from an integration with increments increased by a factor of two reads

ρ(r, t + 2∆t) − Q2ρ(r, t) = 2q+1TE(r, t) + O
[
(∆x)q+2, (∆t)q+2

]
, (5.21)

where Q2 denotes the application of the numerical scheme with the doubled in-
crement. Thus, an estimate of the truncation error TE(r, t) can be obtained by
subtracting Eq. 5.19 from Eq. 5.21, which yields

TE(r, t) + O
[
(∆x)q+2, (∆t)q+2

]
=

Q2ρ(r, t) − Q2ρ(r, t)
2q+1 − 2

(5.22)

(Berger & Colella 1989).
When TE(r, t) exceeds a given tolerance limit ε, the grid cell is flagged and a

higher resolution will be used in the following integration steps. In a subsequent
step cuboid-shaped subgrids are generated that include all flagged cells. When
the coarse grid has a resolution ∆x and ∆t in space and time, respectively, these
subgrids have a resolution of ∆x/R and ∆t/R defined by a refinement ratio R, an
integer, which can be adjusted as required. The positions and sizes of the subgrids
depend on the number of flagged cells, which is determined by the tolerance limit
ε, and on the minimum percentage f of flagged cells in each subgrid, which is
also predefined by the user. Figure 5.1 shows an example of the distribution of
fine grids in a simulation of the α Sco system. Obviously, the higher resolution is
used only in the vicinity of inhomogeneities in the density structure.

For the simulation presented in Fig. 5.1 two levels of refinement were used,
i. e. one level of refined subgrids in addition to the base level that comprises the
whole computational domain. The refinement ratio was R = 2 in this simulation,
and I used ε = 4 × 10−4 and f = 0.7 for the tolerance limit and the minimum
percentage of flagged cells in the subgrids. As the subgrids are cuboid-shaped,
they must be allowed to contain cells that are not flagged to limit the total number
of subgrids to be generated. If the number of subgrids is too large, the time needed
to generate and integrate the subgrids compensates the saving of time that is due
to the reduced number of fine grid cells (cf. next section).

1In the simulations presented in this work the spatial resolution is equal in all directions, i. e.
∆x = ∆y = ∆z.
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Figure 5.1: Density structure after about one orbit in a simulation using Ṁ = 7.5 ×
10−7 M� yr−1 and v∞ = 15 km s−1. The rectangles indicate the positions of fine grids in
the plane of the orbit.

For the example shown in Fig. 5.1 and the other simulations presented in this
work, the error tolerance εwas not applied to the absolute truncation error TE(r, t)
but to its relative value, i. e.

TE(r, t)
Q2ρ(r, t)

≤ ε, (5.23)

where TE(r, t) is the estimated value of the truncation error as given by Eq. 5.22.

5.1.4 Stability and computing time of the simulations
The stability of a numerical simulation is influenced by the grid spacing in time,
∆t, and space, ∆x. In AMRCART, stability is achieved by choosing an appropri-
ate Courant-Friedrichs-Lewy (CFL) condition. This condition constrains the time
increment via the relation

v∆t
∆x
≤ CFL, (5.24)

where v is the maximum velocity at the current time and CFL the so-called CFL
number. As the velocity changes with time, the time increment may have to be
changed many times during the simulation. For the simulations presented in this
work I used CFL = 0.15. With higher CFL numbers the code tends to become
unstable.

As the total computing time scales with the number of integration steps the
time increment, and thus the CFL number, determines the computing time. It
also scales with the total number of grid cells, which can be reduced using AMR
as described in the previous section. Table 5.1 lists typical CPU and wall-clock
times (tCPU and twc) for simulations of the α Sco system, as presented in this work,
with different numbers of refinement levels. All these simulations were performed
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Table 5.1: Total CPU and wall-clock times required by AMRCART/Cloudy simulations
for different numbers of refinement levels.

∆x
(
10−2

)
Nlevel ε (10−4) tCPU (h:min) twc (h:min)

1.25 3 4 319:17 47:31
0.625 2 4 258:55 41:14
0.3125 1 308:27 43:05

Notes. ∆x is the spatial increment in the coarsest grid, Nlevel the number of levels of
refinement, and ε the error tolerance (see Sect. 5.1.3).

with f = 0.7 and R = 2, and the edge lengths of the computational domain are
ax × ay × az ∼ 12 433 × 12 433 × 3419 AU, with the center of mass at (6216.5,
6216.5, 3108.25) AU. As the system is symmetric with respect to the orbital plane,
the upper half, i. e. the part above the plane of the orbit, is just the mirror image
of the lower half and the center of mass is placed near the upper boundary of
the computational domain to save computing time. The spatial increments in y
and z direction are equal to ∆x, which is chosen such that the resolution on the
finest grids is equal for all simulations. All the simulations correspond to different
values of Ṁ and v∞.

The hydrodynamic part of the simulations takes about 13 % of the total CPU
times presented in Table 5.1, which apply to simulations including 45 Cloudy
models corresponding to 45 directions2 covering the computational domain, which
are executed at intervals of four time steps as counted on the finest grid. However,
it takes up to 90 % of the wall-clock time, because it is serial, whereas the Cloudy
runs are executed on different processors, so that the Cloudy part of the wall-clock
time optimally equals the time topt ∼ 0.02tCPU needed if the number of processors
Nproc = 45. Thus, the wall-clock time twc can roughly be estimated as a function
of Nproc and tCPU,

twc =

(
0.85
Nproc

+ 0.13
)

tCPU, Nproc ≤ NCl, (5.25)

where NCl is the number of Cloudy simulations executed at regular intervals and
tCPU is the total CPU time required by the simulation.

With Nlevel = 2 the wall-clock time can be reduced by ∼ 5 %. With Nlevel = 3,
the time consumed by generating new subgrids compensates the saving of time
by the reduction of the number of grid cells. I adapted AMRCART in a way
that it can execute Cloudy as required and assign the different models to different
processors. On shared-memory clusters, this parallelization is implemented by
use of OpenMP, while on distributed-memory clusters MPI commands are used.
For the simulations presented in Table 5.1, an SGI UV parallel cluster was used,
which is composed of Intel Xeon Beckton (X7560, 2.23 GHz) CPUs, with eight
cores per CPU and a shared memory architecture. The operating system installed

2N = 9, cf. Eqs. A.3 and A.2
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on the cluster was SLES 11, and the programs were compiled using version 12.0
of the Intel compilers.

5.1.5 Initial and boundary conditions
Assuming that the wind has reached its terminal velocity v∞, the initial mass-
density distribution falls off with increasing distance from the primary star ac-
cording to the formula

ρ =
Ṁ

4πr2v∞
, (5.26)

where r is the radial distance to the primary. Thus, the initial flow field consists
of a radially symmetric component with a velocity of v∞ and the velocity of the
primary star uA, which is added at each point to the wind velocity, giving the total
velocity

u =
v∞
r

x − xA

y − yA

z − zA

 + uA, (5.27)

where (xA, yA, zA) are the coordinates of the primary star. The initial temperature
is set to 300 K, which is consistent with the estimate of Kudritzki & Reimers
(1978). With lower values of this temperature the simulations become unstable.

At the outer boundaries of the computational domain “free flow” is assumed,
i. e., density and velocity in boundary grid cells equal the values of the cells at
the edge of the domain. The surface of the secondary star is not included as
a boundary, and the surface cells of the primary star are handled according to
Eqs. 5.26 and 5.27.

5.2 Plasma simulations of the H ii region
In the α Sco system the secondary star ionizes a large fraction of the circumstellar
envelope. This produces a hot ionized region moving with the secondary star
through the material that is ejected by the primary. The thermal front at the edge
of the ionized region is expected to produce hydrodynamic effects resulting from
the interaction with cool neutral wind material.

Ionization, heating, and cooling mechanisms can be simulated using the Cloudy
code (see Sect. 5.2.1). I used version 08.00 of Cloudy to produce a realistic tem-
perature distribution for the binary system. Then I used this temperature distribu-
tion to update the energy terms in the AMRCART code. This procedure is exe-
cuted at regular intervals during the hydro simulation. The basis for the Cloudy
calculations is the current density distribution extracted from AMRCART.

5.2.1 The Cloudy program
The program Cloudy is “a large-scale spectral synthesis code designed to sim-
ulate fully physical conditions within an astronomical plasma and then predict
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the emitted spectrum” (Ferland et al. 1998). It calculates the thermal and ion-
ization balance with a simultaneous treatment of radiative transfer. The con-
sidered ionization processes include photo, Auger, and collisional ionization and
charge transfer. The recombination processes include radiative, low-temperature
dielectronic, high-temperature dielectronic, three-body recombination, and charge
transfer (Ferland et al. 1998).

The prediction of line intensities includes collisional as well as pumping ef-
fects and is based on solving the equations of statistical equilibrium. Cloudy
includes atoms and ions of the lightest 30 elements and mostly treats them as
multi-level atoms. The radiative transfer is calculated using an escape probability
formalism (EPF).

The EPF considerably simplifies the radiative transfer problem. Taking as
an example the calculation of the diffuse radiation for two-level atoms, the EPF
makes the assumption

nuAul + nuBul J̄ − nlBlu J̄ ≡ nuAul

(
1 −

J̄
S

)
= nuAulPesc (5.28)

(see e. g. Rybicki 1984, p. 46), where nl and nu are the number densities of atoms
in the lower and upper state, J̄ is the mean intensity at the frequency of the transi-
tion, and Aul, Bul, and Blu are the Einstein coefficients for spontaneous and induced
emission, and absorption, respectively. S denotes the source function and Pesc the
angle-averaged escape probability, averaged over the line profile φ(ν), i. e.

Pesc =
1

4π

∫
dΩ

∫ ∞

0
dνφ(ν)pν (5.29)

with the escape probability
pν = e−τν , (5.30)

where τν is the monochromatic optical depth, measured from the considered point
to the boundary of the region (Rybicki 1984, pp. 31 f.).

This implies the on-the-spot approximation, which states that all photons cre-
ated at a given point in the region are either absorbed at the same point, “on the
spot”, or escape without further interactions. If these on-the-spot conditions are
satisfied, the EPF described above is exact (Rybicki 1984, p. 46).

5.2.2 The spectrum of the B star
The spectrum of the B star is an important boundary conditions for the simula-
tions. Its shape affects the temperature of the irradiated gas, and the total Lyman-
continuum flux determines the size of the resulting H ii region. Hjellming &
Newell (1983) derived a Lyman-continuum luminosity of LLy = 3.1 × 1043 s−1

for the spectrum of the B star by means of radio observations of the Antares neb-
ula. This result served as a constraint on the model spectrum used in the Cloudy
simulations. I used the TLUSTY grid of theoretical B-star spectra calculated by
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Table 5.2: LLy as a function of Teff for log g = 3.9 and R = 4.8 R�, derived from models
presented by Lanz & Hubeny (2007).

Teff (K) LLy (1043 s−1)
18 000 2.65
18 100 2.86
18 200 3.07
18 300 3.33
18 400 3.59
18 500 3.87
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Figure 5.2: TLUSTY spectrum corresponding to Teff = 18 200 K, log g = 3.9, and the
adopted radius RB = 4.8 R� (Lanz & Hubeny 2007).

Lanz & Hubeny (2007) to interpolate spectra corresponding to different values of
Teff and log g.

The definition of the Lyman continuum luminosity reads

LLy = 4πR2
B

∫ ∞

ν0

Fν

hν
dν, (5.31)

where ν0 ∼ 3.3 PHz denotes the threshold frequency for the ionization of hydro-
gen, Fν is the flux at the surface of the star (erg cm−2 s−1 Hz−1), and h is Planck’s
constant. The model spectrum corresponding to the values derived by Kudritzki &
Reimers (1978) with a radius RB = 4.8 R� (see Sect. 3) yields LLy = 3.9×1043 s−1.
Table 5.2 lists LLy for different values of Teff, a fixed surface gravity log g = 3.9
and a radius RB = 4.8 R�. For the Cloudy simulations I used the model atmo-
sphere corresponding to Teff = 18 200 K, whose spectrum is shown in Fig. 5.2.
The Lyman-continuum luminosity of this spectrum lies closest to the value de-
rived by Hjellming & Newell (1983).
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5.2.3 Calculating the temperature distribution

Cloudy uses a spherical geometry in one dimension (1D). In order to obtain a
three-dimensional (3D) temperature distribution of the α Sco system I calculated
different Cloudy models, each one corresponding to a different direction (θ, φ),
starting from the position of the source of ionizing radiation, i. e. the secondary
star. See Sect. A.1 for details.

Density interpolation and coordinate transformation

The density disribution along the different directions of the 1D Cloudy-models
is taken from intermediate results given by AMRCART. AMRCART uses nor-
malized cartesian coordinates, i. e. all distances are divided by the length a of the
longest edge of the rectangular computational domain, and the origin is located at
one of the lower edges of the domain.

Cloudy reads the density as a function of radial distance r from the secondary
star so that a coordinate transformation has to be performed. When a Cloudy
simulation corresponding to the direction (θ, φ) requests the density at a position
r, first the coordinates (r, θ, φ) are transformed to normalized cartesian coordinates
rCl ≡ (xCl, yCl, zCl) via

rCl =
r
a

sin θ cos φ
sin θ sin φ

cos θ

 . (5.32)

θ denotes the angle measured from the upper pole (positive zCl direction) down-
ward in the range [0, π], while φ gives the angle between the positive xCl direction
and the projection of rCl on the xy plane in the range [0, 2π). The spherical coordi-
nates are defined such that the xCl axis points to the primary star and φ is measured
counterclockwise from the positive xCl direction to the positive yCl direction etc.

Now the cartesian coordinates rAC = (xAC, yAC, zAC) used by AMRCART are
given by

rAC = rB +

cosα − sinα 0
sinα cosα 0

0 0 1

 rCl, (5.33)

where rB is the position of the secondary star in the AMRCART coordinate system
and α is the orbital rotation angle measured in the plane of the orbit starting from
the position (xB, 0.5, 0.5) in the direction of the orbital motion (see Fig. 5.3), i. e.

α = atan2(0.5 − yB, 0.5 − xB), (5.34)

where the function atan2 is defined as described in Sect. A.2. Thus, Eqs. 5.32 and
5.33 provide an interface between Cloudy and the cartesian grid used by AMR-
CART. The requested density information is obtained by linear interpolation using
the grid cells nearest to rAC (see Sect. A.3.1).
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Figure 5.3: Geometry of the binary system in AMRCART in the xy plane parallel to
the orbit. A is the primary supergiant, B the secondary star.

Temperature interpolation and coordinate transformation

As Cloudy uses an adaptive mesh in r, the temperature information resulting from
the Cloudy runs corresponding to different directions (θ, φ) is distributed irregu-
larly in 3D space on a grid in spherical coordinates. When AMRCART requests
the temperature at a grid point rAC given in cartesian coordinates, the backward
transformation

rCl =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (rAC − rB) (5.35)

(cf. Eq. 5.33) is applied. Then the expressions of r, θ and φ as functions of rCl

read

r =

√
x2

Cl + y2
Cl + z2

Cl (5.36)

θ = atan2
(√

x2
Cl + y2

Cl, zCl

)
, and (5.37)

φ =

atan2(yCl, xCl), y > 0
atan2(yCl, xCl) + 2π, y < 0

. (5.38)

Now the corresponding temperature is determined by interpolation involving the
nearest grid points.

At the end of the Cloudy simulations a routine is accessed that transfers the
temperature distribution to a uniform cartesian grid in the AMRCART coordinate
system. The position of every grid point (i, j, k) (cf. Eq. A.6) is transformed to the
Cloudy coordinate system via Eqs. 5.35 to 5.38. For the resulting points (r, θ, φ)
the nearest Cloudy models are determined, i. e. values (θi, φθ,i) that satisfy θ1 ≤

θ ≤ θ2, φθ1,1 ≤ φ ≤ φθ1,2 and φθ2,1 ≤ φ ≤ φθ2,2. This results in up to four φ values
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Figure 5.4: Examination of the position of the grid point P ≡ (r, θ, φ) relative to the H ii
region. S marks the position of the H ii-region boundary in the direction (θ, φ).

and two θ values that correspond to different Cloudy models, and the temperature
at the grid point is calculated by interpolation between these models.

First, a cubic spline interpolation in the r coordinate is performed along each
of the 1D Cloudy-models using the algorithm provided by Press et al. (1992, § 3.3)
as a C program. Then the interpolated value of the temperature at the requested
grid point is obtained by linear interpolation in θ and φ. The thermal front at the
edge of the ionized region around the secondary star represents a large temperature
gradient that can lead to inconsistent results when interpolating linearly in θ or φ
between the hot H ii region and the cool neutral region. Therefore, it is checked
first whether the grid point is inside the H ii region and then either only the points
that also lie inside the H ii region are used for the interpolation or the temperature
is given the value3 Tout = 300 K, respectively.

Figure 5.4 illustrates the procedure of determining whether a point P = (r, θ, φ)
is outside or inside the H ii region in the case that the grid points of four Cloudy
models are involved. The four points defining the quadrangle mark the positions
of the H ii-region boundary in the different directions whose distances to the origin
O, which is the position of the secondary star, are given by ri, where i = 1, . . . , 4.
The ionization fraction of hydrogen, i. e. the ratio of the densities of ionized and
neutral hydrogen, determines the position of this boundary by defining ri as the
radial distance from B at which nH ii/nH i ∼ 0.9. Clearly, P lies inside the H ii
region if r < rS or

rS

r
> 1, (5.39)

where rS marks the position of the boundary in the direction (θ, φ).
The quadrangle defines the approximate position of the boundary of the H ii

3As the mean particle mass depends on the degree of ionization, this temperature actually
corresponds to different energies (see Eqs. 5.4 and 5.6). In the hydro simulations a constant mean
particle mass of m = 0.61 u is used.
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region in 3D space and includes the point S ≡ (rS , θ, φ). In cartesian coordinates
the positions of P, S and the corners are given by r, rS and ri, i = 1, . . . , 4, respec-
tively (see Eqs. A.9 to A.11 in Sect. A.3.2). Because the orientations of rS and r
are identical, rS can be expressed as rS = rS r/r. Moreover, rS is lying in the plane
described by the quadrangle so that

rS =
rS

r
r = r1 + ad1 + bd2, (5.40)

where a and b are unknown constants, d1 = r2− r1, and d2 = r3− r1 or d2 = r4− r1

(cf. Eq. A.12). Rearranging Eq. 5.40 gives the linear system of equations

Au = −r1, (5.41)

where the columns of the (3 × 3) matrix A constitute the vectors appearing in
Eq. 5.40, i. e. A = (d1, d2,−r), and u = (a, b, rS /r)t. The solution of this system
using the standard LU decomposition algorithm with subsequent forward substi-
tution and backsubstitution provided by Press et al. (1992, § 2.3) as a C program
gives the value of rS /r that determines whether the point P lies inside the H ii
region or not (see Eq. 5.39).

See Sect. A.3 for further details about the exchange of data between AMR-
CART and Cloudy.
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Chapter 6

Effects of the H ii region

The temperature distribution obtained with the plasma simulations is fed into the
hydrodynamic simulations in the form of a boundary condition. In order to get an
idea of the basic effects that are to be expected of a hot region inside the cool wind
of the supergiant I first studied a simplified 1D-problem. This so-called Riemann
problem can be solved analytically. In the subsequent sections I present results of
the detailed 3D-simulations.

6.1 Considering a simplified 1D-model

In one dimension, the application of the Euler equations to the initial-value prob-
lem of two constant states at different pressures that are separated by a disconti-
nuity, see Fig. 6.1, constitutes a Riemann problem. Typical values of the phys-
ical quantities characterizing the conditions in the circumstellar envelope in the
vicinity of the boundary between the H ii and the H i region are summarized in
Table 6.1. The quantities of the right state in the Riemann problem, labeled with
subscript R, correspond to the physical conditions inside the H ii region, while the
quantities of the left state, labeled with subscript L, correspond to the neutral wind
(H i region).

Table 6.1: Initial values for the Riemann problem at the boundary of the H ii region.

Left state Right state
Quantity Value Quantity Value
TL 300 K TR 5000 K
ρL 5.18 × 10−14 g cm−3 ρR 5.18 × 10−14 g cm−3

mL 1.67 × 10−24 g mR 8.37 × 10−25 g
pL 1.28 × 10−9 dyn cm−2 pR 4.27 × 10−8 dyn cm−2

Notes. mL and mR are the mean particle-masses in the left and right state, respectively.
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Figure 6.1: Left and right state of the Riemann problem corresponding to the situation
at the boundary of the H ii region of α Sco.

The pressure is related to the temperature via

p =
kB

m
ρT, (6.1)

where kB is Boltzmann’s constant, m is the mean particle-mass, ρ is the mass
density and T the temperature. The value of the mass density is assumed to be
ρ(rB) in both initial states and results from Eq. 5.26 using the radial distance of
the B star

rB =
sin (2.′′73)

cos δ
d (6.2)

(cf. Table 3.1). The values of mL and mR result from the assumption that the left
state contains pure atomic hydrogen, and the right state pure ionized hydrogen,
respectively. By the use of the rest frame of the initial discontinuity, the initial
velocities on either side are 0, assuming a wind velocity that is constant throughout
the computational domain.

The one-dimensional Riemann problem can be solved analytically. I used the
exact Riemann solver provided as a Fortran program in the library NUMERICA
(Toro 1999). Figure 6.2 shows the results at the time t = 10 yrs, which include
a shock wave traveling to the left, i. e. in the direction of the low temperature in
the neutral wind, at a velocity vSL of about three times the sound speed, and a
rarefaction wave moving into the hot region.

Two velocities characterize the rarefaction wave: the velocity vSRH of its head
and vSRT of its tail. The head of the wave is moving at a greater speed as the tail
and marks the beginning of the yet undisturbed region to the right (see Fig. 6.2).
The tail marks the transition between the wave and the material it has already
passed. Table 6.2 lists the velocities characterizing the two waves and the sound
speeds corresponding to the initial left and right states.
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Figure 6.2: Solution at t = 10 yrs of the Riemann problem presented in Fig. 6.1.
The arrows in the plot of the density indicate the velocitiy of the shock wave that is
moving to the left at vSL = −6.99 km s−1 and of the rarefaction wave moving to the right.
The head and tail of the rarefaction wave are moving at velocities of vSRH = 11.34 and
vSRT = 4.94 km s−1, respectively.
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Table 6.2: Wave and sound speeds in the solution of the Riemann problem (see Fig. 6.2).

Quantity Value (km s−1)
aL 2.05
vSL -6.99
aR 11.34
vSRH 11.34
vSRT 4.94

Notes. aL and aR are the sound speeds in the left and right state, respectively (cf. Fig. 6.1),
vSL the velocity of the shock wave, and vSRH and vSRT the velocity of the head and tail of
the rarefaction wave, respectively.

6.2 Resulting density and velocity distributions
As the results of the previous section suggest, the presence of the hot H ii region
inside the circumstellar envelope of α Sco produces severe disturbances in the
distributions of density and velocity, which are smooth in the undisturbed initial
state. Figure 6.3 shows the density distribution resulting from a simulation of the
α Sco system at different time steps. The effects of the heating by the radiation of
the B star are density enhancements that form at the shock front at the boundary
to the cool wind and then move outward with the wind. Inside the H ii region
and behind it, in its wake, the density is reduced with respect to the undisturbed
spherically expanding case. The curved shape results from the orbital motion.

After about one half of an orbit, i. e. at a phase of 0.5, the density distribution
reaches a quasi-stationary state. The low-density region produced by the influ-
ence of the H ii region and its high-density boundaries do not change their shape
anymore but merely move with the B star around the center of mass.

The velocity vectors, which are initially the sum of the terminal wind velocity
v∞ in radial direction and the velocity of the supergiant, change considerably when
the H ii region is included (see Fig. 6.4). They change mainly in their absolute
values, while changes in direction are hardly noticeable. The absolute value of
the velocity in the resulting low-density region is up by about 50 % with respect
to the undisturbed region.

Figure 6.5 shows the pressure distribution corresponding to the final states
presented in Figs. 6.3 and 6.4. The pressure was derived from the total energy E
according to

p = (γ − 1)
(
E −

1
2
ρu2

)
(6.3)

(see Eqs. 5.4 and 5.5), with γ = 5/3, which applies to a monatomic gas.
As an illustration of the whole three-dimensional structure, Fig. 6.6 shows the

density and velocity distribution perpendicular to the plane of the orbit. The left
panel shows a transverse section perpendicular to the y axis, the right panel a
transverse section perpendicular to the x axis. Both transverse sections refer to a
position equal to 3/4 of the edge length, i. e. y ∼ 4672 AU in the left panel and
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Figure 6.3: Density structure at different time steps (binary phases) in a simulation
using Ṁ = 1.05 × 10−6 M� yr−1 and v∞ = 20 km s−1. The asterisk marks the position of
the B star.

Figure 6.4: Velocity and density distributions in the undisturbed initial state (left,
phase = 0) and at a phase of 0.74 (right). The length of the arrows indicates the ab-
solute value of the velocity. Note the increased velocity inside the low-density region.
The data result from the same simulation as those presented in Fig. 6.3.
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Figure 6.5: Pressure distribution at a phase of 0.74. The data result from the same
simulation as those presented in Figs. 6.3 and 6.4.

x ∼ 4672 AU in the right panel. These transverse sections also show the symmetry
with respect to the plane of the orbit, which is located at z ∼ 3108 AU.

In order to include density structures at larger distances in the analysis, I ex-
tended the edge lengths of the computational domain ax in x and ay in y direction
and took advantage of the symmetry of the system by leaving out most of the
region above the plane of the orbit. The resulting domain has edge lengths of
ax = ay ∼ 12 433 and az ∼ 3419 AU, and the z coordinate of the plane of the orbit,
which equals the z position of the center of mass (cms), is zcms ∼ 3108 AU.

The values of the parameters Ṁ and v∞ used for the simulations presented in
this work range from 2 × 10−7 to 5 × 10−6 M� yr−1 and from 10 to 40 km s−1,
respectively. Figure 6.7 shows results from simulations with a mass-loss rate of
Ṁ = 10−6 M� yr−1 and different values for v∞. The density scale inside the ex-
panding envelope is determined by the mass-loss rate and the wind velocity via

ρ(r) =
Ṁ

4πr2v(r)
(6.4)

(see Eq. 2.2). Thus, an increase of the velocity implies a decrease of the density,
which leads to a more extended H ii region with a more extended wake. Therefore,
the simulation based on the terminal wind velocity v∞ = 40 km s−1 exhibits the
most extended, and the simulation with v∞ = 10 km s−1 the least extended density
structure.

Figure 6.8 shows the density and velocity distributions corresponding to sim-
ulations with a mass-loss rate of Ṁ = 2 × 10−7 M� yr−1, respectively, and three
different values of v∞. The density in the simulations corresponding to v∞ = 40
and 20 km s−1 is so low that the H ii region is no longer bounded in the direc-
tions away from the supergiant, and the resulting density structures are less pro-
nounced than those presented in Fig. 6.7. In the simulation corresponding to
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Figure 6.6: Density and velocity distributions perpendicular to the plane of the orbit,
resulting from the same simulation as the data presented in Figs. 6.3 to 6.5. The left panel
is a transverse section perpendicular to the y axis (y = 3/4 of the edge length), the right
panel a transverse section perpendicular to the x axis (x = 3/4 of the edge length). The z
axis is perpendicular to the plane of the orbit.

Figure 6.7: Density and velocity distributions in the plane of the orbit for a mass-loss
rate of Ṁ = 10−6 M� yr−1 and a terminal wind velocity of v∞ = 40 (top left), 20 (top
right), and 10 km s−1 (bottom left).
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Figure 6.8: Density and velocity distributions in the plane of the orbit for a mass-loss
rate of Ṁ = 2 × 10−7 M� yr−1 and a terminal wind velocity of v∞ = 40 (top left), 20 (top
right), and 10 km s−1 (bottom left).

v∞ = 10 km s−1, a closed H ii region is present, which is yet so extended that
the travel time tmax = rmax/v∞ ∼ 2790 yrs corresponding to the maximum exten-
sion rmax ∼ 5800 AU of the H ii region is of the same order of magnitude as the
orbital period. Thus, parts of the material that leave the range of influence of the
ionizing radiation of the B star come again into its range after one orbit. This is
the reason for the higher complexity of the density structure as compared to the
top panels of Fig. 6.8.

Similarly, Fig. 6.9 shows density and velocity distributions resulting from sim-
ulations with a mass-loss rate of Ṁ = 5 × 10−6 M� yr−1.

6.3 Time scales of cooling and heating
The simulations of the α Sco system involve hydrodynamic as well as radia-
tive and microphysical processes, which take place on different time scales. The
plasma simulations performed with the Cloudy program that yield the temperature
of the material in the expanding envelope (see Sect. 5.2) are based on the assump-
tion that the material is at rest and that all processes have become time steady.
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Figure 6.9: Density and velocity distributions in the plane of the orbit for a mass-loss
rate of Ṁ = 5 × 10−6 M� yr−1 and a terminal wind velocity of v∞ = 40 (top left), 20 (top
right), and 10 km s−1 (bottom left).
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Figure 6.10: nH ii/nH and electron temperature in the direction φ = 4.712 from the B
star (cf. Fig. 6.11).

They result in an ionized region with a high temperature that is surrounded by a
cool region, in which all hydrogen has recombined. See Fig. 6.10 as an example
for the temperature and H ii/H fraction as a function of distance to the B star in a
simulation with Ṁ = 10−6 M� yr−1 and v∞ = 20 km s−1.

The temperature TCl(r, θ, φ) resulting from the Cloudy calculations was intro-
duced into the hydro simulation as a boundary condition, which means that the
temperature in the grid cells that come into range of the ionizing radiation of the
B star or leave this range undergo instantaneous temperature changes. This is only
a good approximation if the microphysical and radiative processes take place on
much smaller time scales than the macroscopic dynamics of the α Sco system that
are related to the expansion of the common envelope and the orbital motion, and
it may not be valid near the boundary of the H ii region, where large gradients are
present in the temperature and the ionization fraction (see Fig. 6.10).

The temperature derives from the total energy E according to

Ti, j,k =
γ − 1

R

Ei, j,k

ρi, j,k
−
u2i, j,k

2

 (6.5)
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(cf. Eqs. 5.4 to 5.6), where the subscripts indicate the position of the grid cell in
x, y, and z direction. The boundary condition was implemented in two different
ways. In one approach, the temperature in every grid cell (xi, y j, zk) of the hydro
model is set equal to the value given by the Cloudy data at every time step. In
the other approach, the Cloudy data are only used for increasing the temperature
in grid cells whose temperatures are smaller than the temperatures resulting from
the Cloudy simulation, i. e. where Ti, j,k < TCl. Thus, in both cases, the heating of
the wind material takes place instantaneously in grid cells that come into range
of the ionizing radiation of the B star. The approach that uses the Cloudy results
only for heating implies that the only cooling mechanism is adiabatic expansion
(see below).

In order to decide which of these approaches is a better approximation of
the exact physical processes that take place at the boundary of the H ii region,
the heating and cooling rates must be compared to a characteristic dynamic time
scale of the α Sco system, which can be derived from the velocity scale, i. e.
the terminal wind velocity v∞, and a characteristic length scale, e. g. the separa-
tion D ∼ 549 AU of the two components. As the orbital velocity of the B star
vB ∼ 4.6 km s−1 is much smaller than v∞, the latter is chosen as the characteristic
velocity scale. The resulting time scale, the wind travel time (see Reimers et al.
2008), is twind = D/v∞ ∼ 129 yrs.

6.3.1 Static thermal balance

The cooling and heating rates that result from the ionization balance and radiative
losses depend on the local density and temperature. Table 6.3 lists the parameters
describing the physical conditions at the boundary of the H ii region, i. e. at the
point where the fraction nH ii/nH has fallen below 0.9, in four different directions
from the B star in the orbital plane. The direction φ = 0 represents the line
connecting the two stars, the direction φ = 1.169 is the line of sight to α Sco B,
and φ = 3π/2 ∼ 4.712 is the direction of orbital motion on the far side of the B
star. In these directions from the B star, the H ii region is bounded by a shock front
with an enhanced density, as shown in Fig. 6.11. The other direction, φ = 2.985,
is chosen such that the H ii region extends further outwards and ends inside the
low-density region in the wake of the H ii region.

The values result from a simulation with a mass-loss rate of 10−6 M� yr−1 and
a terminal wind velocity of v∞ = 20 km s−1. Cloudy assumes that the material is in
thermal balance, so that the cooling rate and cooling time scale equal the heating
rate and heating time scale, respectively. The cooling time scale is given by

tcool =
3nkBTe

2C
, (6.6)

where n is the total particle density and C the total cooling rate due to processes
included in the Cloudy simulations, such as radiative cooling and cooling by re-
combination.
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Table 6.3: Physical conditions at the boundary of the H ii region in the plane of the
orbit.

Direction (φ) rbnd (AU) nH (103 cm−3) Te (K) C trec (yrs) tcool (yrs)
0.000 160 44.78 6250 1782.3 2.27 2.07
1.169 (los) 213 26.67 5900 665.87 3.65 3.14
2.985 895 1.17 4030 1.70 62.15 36.47
4.712 244 19.44 5700 357.82 4.85 4.09

Notes. nH is the total number density of hydrogen, rbnd the radial distance of the boundary
to the B star, Te the electron temperature, C the cooling rate in units of 10−18 erg cm−3 s−1,
trec the hydrogen recombination time scale and tcool the cooling time scale. The boundary
of the H ii region is defined here as the point where the H ii/H fraction has fallen below
0.9.

Figure 6.11: Density distribution in the orbital plane with a contour indicating roughly
the boundary of the H ii region in a simulation with Ṁ = 1.05 × 10−6 M� yr−1 and v∞ =

20 km s−1. The arrows indicate the line of sight (los, φ = 1.169) to the B star, and the
directions φ = 2.985 and φ = 4.712, where φ is measured counterclockwise.
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6.3.2 Cooling by adiabatic expansion
Another cooling mechanism results from the expansion of the circumstellar en-
velope, which is adiabatic outside the range of the radiation of the B star and
consequently leads to a loss of internal energy. The cooling rate can be estimated
by use of the relation

T = T0

(
n
n0

)γ−1

, (6.7)

which applies to adiabatic processes of ideal gases with the starting temperature
and (number) density T0 and n0 and the final values T and n after the expansion.
For the ratio of specific heats the value for a monatomic gas, γ = 5/3, is used.

For a comparison with the cooling rates presented in Table 6.3 the loss of
internal energy by adiabatic expansion can be estimated by considering the density
and temperature in the region of the western boundary of the H ii region, which is
located in the direction φ ∼ π at a distance rbnd = 1444 AU to the primary star.
Assuming a distance ∆r = 50 AU to the boundary of the H ii region, the values of
the internal energy e = 3nkBTe/2 are e0 ∼ 3.6 × 10−9 erg cm−3 at r = rbnd − ∆r
(inside the H ii region) and e ∼ 2.9 × 10−9 erg cm−3 at r = rbnd + ∆r (outside the
H ii region), with the densities n0 and n given by Eq. 2.4, T0 = 5000 K as a mean
electron temperature inside the H ii region and T ∼ 4560 K given by Eq. 6.7. Now
the travel time ∆t ∼ 2∆r/v∞ ∼ 23.7 yrs yields the estimation

Cexp =
e0 − e

∆t
∼ 10−18 erg cm−3 s−1 (6.8)

for the cooling rate Cexp caused by adiabatic expansion. This value is much smaller
than the cooling rate due to radiative and microphysical processes in most direc-
tions, but it is of the same order of magnitude in the direction φ = 2.985 (see
Table 6.3). Thus, cooling by adiabatic expansion is only important near the west-
ern boundary of the H ii region.

The results listed in Table 6.3 show that the cooling (heating) time scales in the
directions where the H ii region is bounded by the high-density shock front (φ = 0,
φ = 1.169, and φ = 4.712) are small in comparison to twind so that the assumption
of instantaneous heating and cooling seems reasonable. In the direction φ = 2.985
this assumption is not valid. To get an idea of the effects of cooling and heating
time scales, see Fig. 6.12 for a comparison of the results of two simulations using
the two different approaches described above for heating and cooling. The left
panel of Fig. 6.12 shows the density distribution resulting from a simulation using
instantaneous heating and cooling. The right panel results from a simulation using
instantaneous heating and no microphysical or radiative cooling, i. e. the cooling
is only due to adiabatic expansion.

The main difference between the two results presented in Fig. 6.12 resides in
the extension of the wake of the H ii region in the direction of motion of the B
star. When the cooling is governed by adiabatic expansion, as in the right panel
of Fig. 6.12, the shock wave can expand freely, so that the extension of the wake
of the H ii region is larger than in the results obtained with instantaneous cooling.
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Figure 6.12: Density and velocity distribution for a simulation assuming instantaneous
cooling (left) and a simulation neglecting radiative and microphysical cooling effects
(right).

The difference in the extensions resulting from the two calculations amounts to
∼ 300 AU in the outer parts of the domain in the top right of the plots in Fig. 6.12.

This discrepancy shows that the lacking knowledge of the real dynamic cool-
ing rates introduces a systematic error. Moreover, the fact that Cloudy calculates
the ionization balance only for the time-steady case and does not include effects
of advection also introduces an error in the calculation of the ionization structure
of the common envelope of the α Sco system (see the next section). Most of
the hydrodynamic results presented in this work are based on the assumption of
instantaneous heating without radiative cooling effects.

6.4 Advection effects at the ionization front
The calculation of the temperature and ionization structure of the H ii region
around α Sco B, which was carried out with the Cloudy program (see Sect. 5.2.1),
does not include any dynamic effects. This might introduce a systematic error, as
has already been shown in the previous section in the context of the cooling time
scale at the western boundary of the H ii region.

The recombination time scale of hydrogen is listed in Table 6.3. In the direc-
tions φ = 0, φ = 1.169 and φ = 4.712 it is much smaller than the wind travel time
twind ∼ 129 yrs (see previous section), but at the western boundary (φ = 2.985) it
is of the same order of magnitude. Cloudy comprises a preliminary version of a
subroutine that includes advective source and sink terms in the equilibrium bal-
ance equations of ionization and energy (see Henney et al. 2005), which makes
it possible to include advection effects for a flow towards the source of ionizing
radiation, i. e. for a flow from the cool part of the circumstellar envelope towards
the B star in the case of α Sco.

Figure 6.13 shows the temperature and hydrogen ionization as a function of
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Figure 6.13: nH ii/nH and electron temperature in the direction φ = 0 from the B star,
towards the supergiant, with and without advective effects.

distance to the B star in the direction φ = 0 for simulations with and without
advective effects caused by a wind with a velocity of 20 km s−1. The calculations
were performed for a plane-parallel geometry and a density distribution as given
by Eq. 2.4 with Ṁ = 10−6 M� yr−1 and v∞ = 20 km s−1. As expected, advective
effects do not play a major role in the direction towards the supergiant but only
induce a change of ∼ 4 AU of the position of the ionization front.

6.5 Spatial resolution of the hydrodynamic simula-
tions

The spatial step size ∆x and the number of levels of refinement (see Sect. 5.1.4) of
the hydro simulations determine the size of the smallest structures the simulation
can resolve. These parameters also determine the number of grid cells for a given
size of the computational domain and thus the computing time. Most of the calcu-
lations presented in this work were carried out with a step size of ∆x ∼ 77.7 AU
and 2 levels of refinement, resulting in a step size of ∆xfine ∼ 38.9 AU on the finest
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Figure 6.14: Density and velocity distributions for simulations with ∆xfine ∼ 38.9 AU
(left) and ∆xfine ∼ 19.4 AU (right).

grids.
Figure 6.14 shows a comparison of the density and velocity distributions re-

sulting from simulations of the α Sco system with different resolutions. The left
panel results from a simulation with ∆xfine ∼ 38.9 AU, with a mass-loss rate of
Ṁ = 5 × 10−7 M� yr−1 and a terminal wind velocity of v∞ = 20 km s−1. The right
panel results from a simulation with the same Ṁ and v∞, but with a step size of
∆xfine ∼ 19.4 AU, i. e. with a spatial resolution that is twice as high. Obviously,
the shape of the density structures and the velocity do not change at large when the
resolution is increased, but the density enhancement at the shock front becomes
narrower and more pronounced.
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Chapter 7

Prediction of absorption-line profiles

The wind from α Sco A produces absorption features in the spectrum of α Sco B
(see e. g. Baade & Reimers 2007). If the aperture of the telescope is so large that
it also covers a large part of the circumstellar envelope, P Cygni-type profiles are
observed.

For the time-independent case the formal solution of the radiative transfer
equation along a ray reads

Ix = IBe−τx +

∫ τmax

0
S x(τx)e−τx dτx (7.1)

(e. g. Rybicki 1984, p. 27), where S x is the source function, x = (ν−ν0)/∆νD gives
the relative frequency divided by the Doppler width

∆νD =
ν0

c

√
v2

th + ξ2 (7.2)

that results from constant thermal (vth) and microturbulent (ξ) motions, and IB is
the specific intensity of the B-star spectrum at that frequency for rays starting at
the surface of the B star. τx is the optical depth integrated over the path length s
along the line of sight,

τx =

∫
χx ds, (7.3)

where the opacity χx relates to the line-profile function Φx according to

χx =
πe2

mec
nl flu

(
1 −

glnu

gunl

)
Φx (7.4)

(cf. Mihalas 1978, p. 80). nl, nu, gl, and gu are the number density of ions in the
lower and upper state l and u, respectively, and the statistical weights of these
states, while flu is the oscillator strength of the transition. In my analysis I used
resonance lines, for which nu � nl, so that Eq. 7.4 reduces to

χx =
πe2

mec
nl fluΦx. (7.5)
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The dominant mechanism determining the line-profile function is the change of
radial velocity vr of the material along the line of sight, which gives the Doppler
profile

Φx =
1
√
π

e−(x−V)2
, (7.6)

where

V =
vr√
v2

th + ξ2
. (7.7)

The P Cyg-type line-profiles resulting from absorption of radiation in the line
of sight to α Sco B and scattering of photons in an extended region around it have
been calculated by Hagen et al. (1987). Based on observations with the Inter-
national Ultraviolet Explorer (IUE) and the assumption of a radially symmetric
velocity field and density distribution around the supergiant they obtained line
profiles corresponding to a mass-loss rate of ∼ 10−6 M� yr−1. It was however
noticed that different ions yielded different mass-loss rates.

In my study I neglected the contribution of the emission component that is
due to the line scattering, because the most recent spectroscopic observations of
α Sco B performed with HST/GHRS (Baade & Reimers 2007) show only a very
small emission component due to the small aperture. I concentrated on these
HST data because they provide a higher spectral resolution and a better signal-to-
noise (S/N) ratio than previous data. For example, IUE provides a resolution of
∼ 20 km s−1 (Garhart et al. 1997) while the HST/GHRS spectra have a resolution
of ∼ 3.5 km s−1. In terms of the S/N ratio, the 2.4 m mirror of HST of course
outranks the 45 cm mirror of IUE.

A pure absorption line is described by

Ix = IB exp
(
−

∫
χx ds

)
. (7.8)

7.1 Including hydrodynamics

For the calculation of absorption lines in α Sco I used a computer program called
ZETAUR designed by Hempe (1982) to perform the integration described by
Eq. 7.8. The program provides an automatic adjustment of the optical-depth in-
crement at each integration step and a general treatment of the coordinate transfor-
mations that are necessary for the prediction of the flux measured by an observer
from an arbitrary direction with respect to the orbit of the binary star. ZETAUR
starts from the coordinates (Z′′, P′′, Q′′), where Z′′ points towards the observer,
and P′′ and Q′′ are impact parameters with Q′′ = 0 at the position of the primary
star. These coordinates are transformed to an ‘orbital’ coordinate system (Z, P,
Q), where Z and P lie in the plane of the orbit and P is pointing to the primary.
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The transformation matrix is

T =



cos (ω + f ) sin i
sin (ω + f ) sin Ω

− cos (ω + f ) cos Ω cos i
sin (ω + f ) cos Ω

+ cos (ω + f ) sin Ω cos i

− sin (ω + f ) sin i
cos (ω + f ) sin Ω

+ sin (ω + f ) cos Ω cos i
cos (ω + f ) cos Ω

− sin (ω + f ) sin Ω cos i

− cos i − cos Ω sin i sin Ω sin i


(7.9)

(see Hempe 1982), where ω is the longitude of periastron as measured from the
ascending node of the orbit, f the true anomaly, i. e. the angle between the pe-
riastron and the position of the star measured in the direction of motion, i is the
inclination of the orbit, and Ω = [tan (ω + f ) cos i]−1 is the angle between the Q′′

axis and the ascending node. The transformation readsZ
P
Q

 = T

Z′′

P′′

Q′′

 . (7.10)

This corresponds to three successive rotations, namely

1. a clockwise rotation by Ω + π/2 about the Z′′ axis,

2. a clockwise rotation by π/2 + i about the resulting P′′ axis, and

3. a counterclockwise rotation by ω+ f +π about the resulting Q′′ axis, so that
the P axis points to the primary.

The density and velocity information is given by the hydrodynamic results
produced by AMRCART. For the transfer of information between the two pro-
grams I modified the transformation described above to obtain a transformation
TAMR from the coordinate system (Z′′, P′′, Q′′) used in ZETAUR for arbitrary or-
bits to the AMRCART system. In the AMRCART coordinate system (x, y, z) the y
axis points to the periastron of the orbit described in the rest frame of the primary
star and the orbital motion is counterclockwise about the z axis. Therefore, the
angle by which the third rotation in T is performed needs to be changed to ω + π.
The resulting transformation matrix reads

TAMR =



cosω sin i
sinω sin Ω

− cosω cos Ω cos i
sinω cos Ω

+ cosω sin Ω cos i

− sinω sin i
cosω sin Ω

+ sinω cos Ω cos i
cosω cos Ω

− sinω sin Ω cos i

− cos i − cos Ω sin i sin Ω sin i


, (7.11)
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Table 7.1: Transitions seen in absorption in the spectrum of α Sco B.

Ion El (cm−1) Eu (cm−1) Multiplet no. λvac (Å) Instrument
Cu ii 0 73595.813 UV 3 1358.773 GHRS
Ni ii 0 71770.83 1393.324 GHRS
Cr ii 0 48491.053 UV 1 2062.236 GHRS
Zn ii 0 48481.077 UV 1 2062.660 GHRS
Fe ii 977.053 39109.307 UV 1 2622.452 GHRS
Ti ii 94.110 30958.582 2 3239.971 UVES
Ti ii 0 29544.451 1 3384.730 UVES
Ca ii 0 25414.414 1 3934.775 UVES
Ca ii 0 25191.518 1 3969.590 UVES

Notes. El and Eu are the energies of the lower and upper levels, respectively. The multiplet
numbers refer to Moore (1952), the energies and vacuum wavelengths are taken from
Morton (2003).

and the complete transformation isx
y
z

 =

xB

yB

zB

 + TAMR

Z′′

P′′

Q′′

 . (7.12)

7.2 Absorption lines in the spectrum of α Sco B
Baade & Reimers (2007) presented observations of circumstellar absorption lines
in the spectrum of α Sco B obtained with HST/GHRS. In addition, circumstel-
lar absorption has been observed with the UVES spectrograph at the VLT1. In
this section, these observations will be compared to theoretical line profiles de-
rived from the simulations presented in this work. The lines that are used for the
comparison are listed in Table 7.1. Line profiles corresponding to the hydrody-
namic simulations with the extreme values of Ṁ and v∞ presented in Sect. 6.2 (cf.
Figs. 6.7 to 6.9) are not presented here as they cannot reproduce the observed pro-
files. A set of three simulations in a smaller range of mass-loss rates is used instead
(5×10−7, 10−6, 2×10−6 M� yr−1), and the wind velocity is fixed at v∞ = 20 km s−1.

7.2.1 Simulation of line profiles
The α Sco system is seen approximately edge-on (i = 90◦, see Sect. 3) and is
assumed to have a circular orbit (e ∼ 0). Therefore, the results from the hydro-
dynamic simulations at any time step can be used as input to ZETAUR. The ZE-
TAUR program takes the parameters ω (see Sect. 7.1), the Julian date (JD) of the
periastron passage T0, the JD of the observation Tobs, and the time difference ∆Tecl

1Program ID 076.D-0690(A)
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between the periastron passage and the total eclipse as input. The spectra I used
in this analysis were presented by Baade & Reimers (2007) and were recorded on
September 17, 1995 at about 5 am (UTC), i. e. at Tobs ∼ JD 2 449 977.7.

The remaining parameters have to be adjusted so that the configuration of
α Sco in the AMRCART data is read out by ZETAUR in a way that corresponds
to the configuration that was seen at the time of observation, i. e. with the B star
at a position angle of δ = 23◦ behind the supergiant. Based on the position of the
B star (xB, yB, zB) given in the AMRCART coordinate system, the parameters are
calculated as described in Sect. A.4.

Baade & Reimers (2007) found up to four absorption components in various
lines of different ions and created a model based on concentric shells at different
distances to the supergiant to explain these distinct components. They suggested
episodic events of high mass-loss rates, each one followed by a period of low mass
loss, which would indeed result in distinct components in the observed absorption
lines. Now, the results of the hydrodynamic simulations presented in Sect. 6.2
show that the influence of the hot H ii region around the B star constitutes a natural
cause of density structures inside the common envelope, which may explain at
least in part the observed absorption components.

As an example, Fig. 7.1 shows the simulated profile of the Zn ii UV mult. 1
2062.660 Å absorption line, based on a simulation with Ṁ = 10−6 M� yr−1 and
v∞ = 20 km s−1, along with a plot of the same line for the case of an undisturbed,
spherically expanding wind with the same parameters. Obviously, the absorption
component at ∼ −20 km s−1 is present in both lines, but the absorption profile
that is based on the hydrodynamic simulation exhibits a more complex structure,
which finds expression in three additional minima, namely at ∼ −29, −7, and
3 km s−1. The radial velocities are measured relative to the center of mass of
the system. Thermal broadening is included by applying a constant temperature
of 5000 K, which is approximately the mean temperature inside the H ii region.
Microturbulence is not included in the calculation of the line profiles, so that all
additional effects that influence the line profile are of hydrodynamic origin.

The distinct components seen in the absorption line presented in Fig. 7.1 are
related to features of the density and velocity distribution along the line of sight
to the B star. Figure 7.2 shows the number density of Zn+ and the radial velocity
as a function of distance to the B star along the line of sight. The absorption
line profile resulting from these data is shown in Fig. 7.1. One important result
is that the velocity is no longer a monotonic function of distance to the B star
when hydrodynamic effects are included, but there is a broad minimum around
∼ 4000 AU.

Figure 7.3 shows the dependence of the Zn ii UV mult. 1 2062.660 Å and Cr ii
UV mult. 1 2062.236 Å lines on the mass-loss rate. While the position of the
component at ∼ −20 km s−1 remains nearly unchanged, the position of the other
strong component, which is associated to the increased density at the boundary of
the H ii region, shifts to lower velocities as the mass-loss rate decreases and the
H ii region becomes more extended. There is also a component at ∼ −29 km s−1,
which is very weak in the Zn ii line. The profiles of the Cr ii line show that this
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Figure 7.1: Calculations of the Zn ii UV mult. 1 2062.660 Å absorption line based
on a hydrodynamic simulation including ionization with Ṁ = 10−6 M� yr−1 and v∞ =

20 km s−1, and on an undisturbed, spherically expanding wind.

component is considerably stronger at lower mass-loss rates. This is because the
wake of the H ii region is more extended when the overall density is lower, so
that the minimum of the radial velocity, shown in Fig. 7.2 for Ṁ = 10−6 M� yr−1,
becomes broader and a higher number of particles along the line of sight move
with velocities larger than the terminal wind velocity v∞. That is, the larger extent
of the volume containing gas at high velocities, which produces the absorption
component at −29 km s−1, overcompensates the effect of the decreased density.

In the Cr ii line there is practically no absorption at positive velocities, because
most chromium is doubly ionized throughout the H ii region. In contrast, Zn++ is
only present close to the B star, which is partly due to the different ionization po-
tentials of Zn+ (144 893 cm−1) and Cr+ (132 966 cm−1). The relative abundances
of H+, Cr+, and Zn+ are shown in Fig. 7.4 as a function of distance to the B star
along the line of sight.

The absorption component at the terminal wind velocity v∞ ∼ −20 km s−1 in
the profile based on an undisturbed, spherically symmetric wind, shown in Fig. 7.1
for the Zn ii line, is also present in the absorption profiles including dynamic ef-
fects (see Figs. 7.1 and 7.3), and its position appears to be independent of the
mass-loss rate. In the absorption profiles including dynamics the position of this
component only slightly differs from v∞, which is due to the orbital motion of the
supergiant (its orbital velocity2 is vM ∼ 1.7 km s−1) and the details of the velocity
distribution along the line of sight (cf. Fig. 7.2). Note that for a given mass-loss
rate the strong absorption components in the Zn ii line are located at the same
positions in the Cr ii line.

2The simulations were carried out with an orbital period P ∼ 2562 yrs, and stellar masses
MA = 18 M� and MB = 6.6 M�, which yields a semi-major axis of D ∼ 544 AU.
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Figure 7.2: Radial velocity and Zn ii number density along the line of sight to the B
star, based on a hydrodynamic simulation and on an undisturbed, spherically expanding
wind. These data correspond to the absorption line profiles shown in Fig. 7.1 (Ṁ =

10−6 M� yr−1, v∞ = 20 km s−1).
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Figure 7.4: Ionization fractions of different ions as a function of distance to the B star
along the line of sight. The data are derived from a simulation using Ṁ = 10−6 M� yr−1

and v∞ = 20 km s−1.

7.2.2 Calibration of the wavelength scale using UVES spectra

The positions of the observed absorption components in the GHRS spectra are
slightly different in every line (Baade & Reimers 2007), which is due to the
relatively large error of the wavelength calibration. The data were recorded us-
ing the Large Science Aperture of GHRS, which results in a maximum error
of ∼ 4.5 km s−1 (Heap et al. 1995). The wavelength calibration of the spectra
observed with VLT/UVES is much more accurate. It amounts to >∼ 120 m s−1

(D’Odorico et al. 2000). The panel at the bottom left of Fig. 7.5 shows the Ca ii
mult. 1 (H and K) lines. There are three components in both lines, at −21.0, −13.6,
and −5.9 km s−1, respectively.

Now, supposing that the component at −21 km s−1 in the Ca ii lines is asso-
ciated to the terminal wind velocity as suggested by the synthetic line profiles
presented in the previous section, the positions of the GHRS lines can be cal-
ibrated by applying shifts that place the most blue-shifted strong component at
−21 km s−1, which is acceptable as long as the shifts are smaller than the maxi-
mum error of the GHRS wavelength calibration (4.5 km s−1). Table 7.2 lists the
shifts corresponding to the five GHRS lines presented in Fig. 7.5. The Cr ii line is
saturated, so that the positions of the strong absorption components are rather un-
certain. Therefore, the shift determined for the Zn ii line is used, which lies very
close to the Cr ii line. For the Fe ii line the central component is used to define the
shift, because the observed component near −21 km s−1 is weak and not clearly
pronounced.

Observed absorption lines of Ti ii also show a strong absorption component at
∼ −21 km s−1, which may serve as an additional justification for identifying the
position of this component with the terminal wind velocity. The two panels at the
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Table 7.2: Velocity shifts applied to the GHRS spectra (see Fig. 7.5).

Transition Shift (km s−1)
Cu ii UV mult. 3 1358.773 Å −3.2
Ni ii 1393.324 Å −4.2
Zn ii UV mult. 1 2062.660 Å −3.0
Cr ii UV mult. 1 2062.236 Å −3.0
Fe ii UV mult. 1 2622.452 Å −1.6

bottom right of Figure 7.5 show absorption line profiles of the Ti ii multiplets 1
and 2.

7.2.3 Comparison to observed profiles
Figure 7.5 shows a selection of absorption lines observed with GHRS and UVES
in the spectrum of α Sco B. The shapes of the line profiles produced by different
ions or different energy levels of the same ion (Ti ii) show a large variety. The
observed absorption features depend on the excitation of fine-structure levels of
the ions and the ionization of the corresponding element along the line of sight.
Most of the lines exhibit three strong absorption components at the approximate
positions −21, −14, and −6 km s−1, respectively. Some of the lines produced by
the 0 cm−1 levels have an additional component at −29 km s−1 (Ti ii 3384.730 Å,
Cr ii 2062.236, Zn ii 2062.660 Å, and Ni ii 1393.324 Å), which can be explained
by the broad minimum of the radial velocity in the wake of the H ii region far from
the B star (see Figs. 7.3 and 7.2).

For the comparison presented in the following, a systemic velocity of vsys =

−1.3 km s−1 is added to the wavelength scale of the simulated profiles, which
results from a comparison of the projected orbital velocities resulting from the
adopted orbital configuration (δ = 23◦, e = 0) with the observed radial velocities.
The measured radial velocity of the supergiant is vr,M ∼ −3 km s−1 (Evans 1967),
and the radial velocity of the B star is vr,B ∼ 3 km s−1 (Kudritzki & Reimers
1978), which is consistent with the adopted orbital velocities of vM = 1.7 and
vB = 4.2 km s−1 if the systemic velocity is ∼ −1.3 km s−1.

Cr ii, Cu ii, Ni ii, and Zn ii

Figure 7.6 shows a comparison of the observed Cr ii, Cu ii, Ni ii, and Zn ii lines
presented in Fig. 7.5 to theoretical profiles corresponding to a mass-loss rate of
Ṁ = 2 × 10−6 M� yr−1 and a wind velocity of v∞ = 20 km s−1. The simulated line
profiles are convolved with a gaussian profile function with a FWHM of 3.5 km s−1

to account for the limited resolution of the HST/GHRS spectra.
Obviously, there are a number of differences between the simulated and the

observed line profiles. First of all, there are only two strong components in the
simulated profiles, whereas there are three in the observed profiles. Secondly, the
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Figure 7.5: Absorption profiles observed in the spectrum of α Sco B with HST/GHRS
(Cu ii, Fe ii, Ni ii, Zn ii, and Cr ii lines) and VLT/UVES (Ti ii and Ca ii lines). The velocity
scale of the GHRS lines is calibrated by applying the shifts listed in Table 7.2.
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Figure 7.6: Comparison of theoretical line profiles (solid curves) corresponding to a
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observed component at −6 km s−1 is much stronger than predicted by the model
calculations in the Zn ii and Cu ii lines. However, with the wavelength calibration
described in the previous section the positions of the two strong components in
the simulated profiles approximately match the positions of the outer two of the
observed strong components. It turns out that, within the error of the wavelength
calibration, the observed GHRS profiles are consistent with the assumption that
the position of the most blue-shifted of the strong absorption components is at
−21 km s−1, as suggested by the absorption lines measured with UVES and by
the theoretical lines, all of which include a strong absorption component at the
position corresponding to the terminal wind velocity.

The weaker absorption component at ∼ −29 km s−1, which is clearly visible in
the Cr ii and the Zn ii line, is very weak in the corresponding theoretical profiles.
This may be due to the limited spatial resolution of the hydrodynamic simula-
tions, which tends to smear out the narrow density enhancements produced by
the shock front at the boundary of the H ii region (cf. Sect. 6.5). The simulations
predict a stronger absorption component at this position for lower mass-loss rates,
especially in the Cr ii line (see Fig. 7.3). This may be an indication of a time-
dependent mass-loss rate, which could produce distinct absorption components
corresponding to different mass-loss rates (see Sect. 9.2).

The equivalent widths of the observed profiles and the simulated profiles shown
in Fig. 7.6 agree well. Moreover, the component at ∼ −21 km s−1 of the simulated
profiles gives a good fit of the observed components. The absorption in the com-
ponents at −6 km s−1 is stronger in the observed lines, which may be due to inter-
stellar absorption as all the lines result from transitions starting from the lowest
energy levels of the ions. The theoretical absorption lines resulting from simula-
tions using a mass-loss rate of Ṁ = 10−6 M� yr−1, as given by Reimers et al. (2008)
based on a simplified model of the circumstellar shell neglecting dynamic effects,
are much weaker than the observed ones. That shows the significant impact of the
hydrodynamic effects, which will have to be considered in future studies of mass
loss.

Differences between the observed and simulated profiles are to be expected,
because the simulations do not account for a possible time dependence of the
mass-loss rate. Indications of multiple shell ejection have been observed in IR
images in both α Sco and α Ori (e. g. Danchi et al. 1994, see also Sect. 4.2). The
additional third component in the observed lines seen in Fig. 7.6 at ∼ −14 km s−1

could well be the result of such a discrete ejection. An additional complication
of a comparison of observations with theory is the observed differential depletion
(Baade & Reimers 2007). These effects may be the reason for a more complicated
structure of the absorption profiles.

Fe ii

The observed absorption profile of the Fe ii UV mult. 1 2622.452 Å line presented
in Fig. 7.5 results from the fine structure level in the ground term at 977.053 cm−1,
which corresponds to a total angular momentum quantum number J = 1/2. The
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Figure 7.7: Relative population of the highest level of the a6D term of Fe ii,
977.053 cm−1, as a function of distance to the B star for two different lower limits Tmin of
the electron temperature. n1/2 is the density of ions in the corresponding state, and ntot the
total density of Fe+. These data correspond to the simulation with Ṁ = 2 × 10−6 M� yr−1

and v∞ = 20 km s−1.

population n1/2 of this level cannot be reproduced by applying a constant scale
factor to the total Fe+ density, as would be expected if the levels were populated
according to their statistical weights.

The Cloudy code, which was used to calculate the ionization and temperature
structure inside the circumstellar shell, comprises a detailed model atom devel-
oped by Verner et al. (1999) incorporating the lowest 371 levels of the Fe+ ion.
When this model atom is used for the calculation of the excitation and ionization
of iron along the line of sight to the B star, it also yields the population of the level
at 977.053 cm−1, which is the highest level in the ground term. Figure 7.7 shows
the result for a mass-loss rate of 2 × 10−6 M� yr−1. It turns out that the relative
population of the level is very low inside the cool neutral wind. The population
of the Fe ii energy levels depends on the electron temperature, which determines
the rate of collisions. The temperature inside the H ii region is ∼ 5000 K, but the
temperature in the H i region is not exactly known. Figure 7.7 shows the popula-
tion of the 977.053 cm−1 level relative to the total Fe+ abundance for two different
lower limits Tmin of the electron temperature, i. e. the temperature was not allowed
to fall below the lower limit in these simulations.

Obviously, the relative population of the 977.053 cm−1 level steeply decreases
after a peak at the boundary of the H ii region. Figure 7.8 shows the absorption line
profiles corresponding to the two cases displayed in Fig. 7.7 along with the ob-
served absorption profile, which is shifted by −1.6 km s−1 according to Table 7.2
(cf. the previous section). The slope of the right flank of the strong absorption
components in the theoretical profiles does not exactly match the observed one,
because there is a considerable amount of reemission, which is not included in the
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Figure 7.8: Observed and theoretical absorption profiles of the Fe ii UV mult. 1
2622.452 Å line for Ṁ = 2 × 10−6 M� yr−1 and v∞ = 20 km s−1. For the theoretical
profiles, two different lower limits of the electron temperature were used in the corre-
sponding plasma simulations (cf. Fig. 7.7).

calculation of the theoretical line profiles. The decrease of the absorption towards
lower velocities qualitatively matches the observation, although the slope is much
too steep in the theoretical profiles. The absence of the middle absorption compo-
nent in the theoretical profiles is not surprising since it is absent in all theoretical
profiles (cf. Sect. 7.2.1).

The assumption that the neutral part of the wind has a temperature of 4000 K
is probably not realistic, and even in this case the predicted absorption is too weak
in the outer parts of the envelope. A value of T <∼ 1000 K in the H i region is
more realistic. Apparently the calculation of the level population with Cloudy
does not give correct results, maybe because of an underestimation of the rates
of collisional or radiative processes that populate the level that is responsible for
the absorption, or because of advection effects, which are not included in the
simulations (see Sect. 6.4). In the plasma simulations, the gas is assumed to be
at rest with respect to the B star, which may introduce another uncertainty in the
calculation of the populations of fine-structure levels, as the velocity field may
have considerable effects on the continuum pumping rates. However, the strength
of the absorption component at ∼ −5 km s−1 approximately matches the strength
of the observed component, so that the mass-loss rate of 2 × 10−6 M� yr−1, which
is consistent with the observed profiles of the lines of other ions (cf. Fig. 7.6), can
be confirmed.

The results presented in this section suggest that the weakness of the absorp-
tion components of this Fe ii line at −14 and −21 km s−1 is due to the relatively
high energy difference between the lowest level and the fine-structure level corre-
sponding to the transition. Apparently the mechanisms that excite Fe ii to higher
fine-structure levels are not efficient in the outer parts of the circumstellar enve-
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temperature in a simulation using Ṁ = 2 × 10−6 M� yr−1 and v∞ = 20 km s−1.

lope, i. e. at low densities, far from the B star and its H ii region.

Ca ii and Ti ii

The number densities of Ca+ and Ti+ along the line of sight cannot be reproduced
in the framework of the present model. In the case of Ti+, the plasma simulations
yield a density that is much too high and density gradients that are too steep to
reproduce the observed absorption profiles. The ionization of Ti+ is complicated
because its ionization potential (13.576 eV) is close to the Lyman edge. Simula-
tions show that the ionization of Ti+ sensitively depends on the local temperature
in the circumstellar shell (Fig. 7.9). The absence of the absorption components at
−6 and −14 km s−1 in the observed line profiles of Ti ii shown in Fig. 7.5 suggests
that most titanium is at least doubly ionized up to a large distance to the B star,
i. e. even far outside the H ii region. However, the absence of these components
may also be due to dust depletion.

In the case of Ca+, the predicted number density is much too low. In the
whole circumstellar envelope Ca++ appears to be the dominant stage of ionization
of calcium, and Ca+ shows a very complex dependence on the varying conditions
along the line of sight (see Fig. 7.10). Thus, the Ca ii lines are inappropriate
for mass-loss diagnostics. However, the observed profiles of Ca ii H and K can
be roughly reproduced by assuming that the distribution of the Ca ii/Ca fraction
behaves as the fraction H i/H of neutral hydrogen and by applying a scale factor
of 2 × 10−3. Figure 7.11 shows the result for Ca ii H.

The simplified treatment of the corresponding model atoms may be the reason
for the discrepancy between theory and observation in the case of Ca ii and Ti ii.
The Cloudy code treats Ca+ as a five-level atom, which includes the fine-structure
levels of only the lowest three terms (4s, 3d, and 4p) with the corresponding transi-
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tions (multiplets 1, 2, and 1F). Ti+ is treated in the framework of the scandium-like
isoelectronic sequence as a five-level atom without resolving any fine-structure
components, including only the terms a4F, z4Go, z4Fo, and the terms 4Fo and 4Do

of the configuration 3d(2D)4s4p(3Po). Thus, for Ti+, populations of individual
fine-structure levels are not calculated. Moreover, only transitions to the ground
term of Ti ii are included in the simulation. The depletion of titanium due to dust
formation is probably the most significant effect producing deviations from the
observed data (cf. Baade & Reimers 2007).
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Chapter 8

Optical line emission from the
Antares nebula

The Antares emission nebula, which is associated to the H ii region around α Sco B,
is seen in the optical in Hα and various other emission lines, last described in de-
tail by Reimers et al. (2008). The simulations presented above will be compared
to observations of the Hα emission in Sect. 8.1. The most prominent emission
lines result from forbidden transitions in Fe ii, which will be used to compare ob-
servations to the simulations in Sect. 8.2. The observations were performed with
UVES at the VLT using a long slit perpendicular to the line connecting the two
stars, and yielded a scan of the emission nebula with a step size of ∼ 0.′′5, starting
0.′′9 west of the supergiant (see Fig. 8.1). The dimensions of the slit are 0.′′4 × 10′′

in the blue and 0.′′4× 12′′ in the red arm (for details about the design of UVES see
Dekker et al. 2000).

8.1 Hα emission
The plasma simulations described in Sect. 5.2 show that the strongest Hα emission
in the Antares nebula emerges near the B star, where most hydrogen is ionized.
This is shown for a cut parallel to the plane of the orbit in Fig. 8.2. Outside the
H ii region the emission is much weaker and follows the total density (Fig. 8.3).
I performed simulations with the program Cloudy (see Sect. 5.2.1) to predict the
Hα emission. Figure 8.4 shows the corresponding transitions. Cloudy combines
the transitions that belong to the same pair of terms and treats Hα as a result of
three transitions. See Table 8.1 for details.

8.1.1 Dependence of Hα production on spectral features of the
B star

In an H ii region, Hα is naturally produced by recombination of electrons and
protons. Another important mechanism is pumping by Lyman line photons from
the source of radiation, so that the presence of Lyman absorption or emission lines
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Figure 8.1: Slit positions used for the observations of the Antares nebula. The rectan-
gles indicate the position and size of the slit in the blue arm relative to the α Sco system
as it is seen in the sky. This is Fig. 1 in Reimers et al. (2008).

Figure 8.2: Hα emission resulting from a simulation with Ṁ = 2 × 10−6 M� yr−1 and
v∞ = 20 km s−1. The emission coefficient is calculated up to a distance of ∼ 5694 AU
from the B star, which is located at (x ∼ 5818, y ∼ 6226) AU. The horizontal structure
that ranges from the center of the image to the boundary is an artifact produced by the
interpolation routine (cf. Sect. 5.2.3). The corresponding density distribution is shown in
Fig. 8.3
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Figure 8.3: Density and velocity distribution resulting from a simulation with Ṁ =

2 × 10−6 M� yr−1 and v∞ = 20 km s−1. The dotted arrow indicates the line of sight to the
B star, whose position is marked by the asterisk.

n = 2

n = 3

l = 0 l = 1 l = 2

Figure 8.4: Transitions involved in the production of Hα emission. The differences in
height of the fine structure levels corresponding to the same principal quantum number n
are proportional to their energy differences (NIST Atomic Spectra Database, Ralchenko
et al. 2011). l is the azimuthal quantum number.
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Table 8.1: Transitions producing Hα emission.

Transition λ (Å) Aul (105 s−1) gl gu A′ul(105 s−1) g′l g′u
2p 2Po

1/2 – 3s 2S1/2 6562.752 21.046 2 2
2

}
63.101 6 2

2p 2Po
3/2 – 3s 2S1/2 6562.909 42.097 4

2s 2S1/2 – 3p 2Po
3/2 6562.725 224.48 2 4

2

}
224.352 2 6

2s 2S1/2 – 3p 2Po
1/2 6562.772 224.49 2

2p 2Po
1/2 – 3d 2D3/2 6562.710 538.77 2 4

6
4

 646.109 6 102p 2Po
1/2 – 3d 2D5/2 6562.852 646.51 4

2p 2Po
3/2 – 3d 2D3/2 6562.867 107.75 4

Notes. The values in the first five columns were taken from the NIST Atomic Spectra
Database (Ralchenko et al. 2011). λ is the wavelength in air, Aul the Einstein coefficient
for spontaneous emission, and gl and gu the statistical weights of the lower and upper
level, respectively. The parameters in the last three columns, which are marked with a
prime, give the values used by Cloudy to calculate Hα emission. They represent the 3s –
2p, 3p – 2s, and 3d – 2p transitions, respectively.

in the spectrum of the source of radiation affects the production of Hα photons.
The B-star atmospheres presented in the TLUSTY grid (Lanz & Hubeny 2007)
show strong absorption in the Lyman lines. As the Antares H ii region is optically
thin in Hα, the observed emission is solely determined by the population of the
upper levels (cf. Fig. 8.4) and the transition rates, which are represented by the
corresponding Einstein coefficients for spontaneous emission (see Table 8.1).

Figure 8.5 shows a B star spectrum for log g = 3.9, Teff = 18 200 K, and
RB = 4.8 R� in the range of the Lyman lines. The dependence of the Hα emission
on the intensity of the Lyman lines is illustrated in Fig. 8.6, which shows the rate
of Hα emission per unit volume, 4π j, as a function of radial distance to the B star
in the direction towards the supergiant, for three different scale factors applied to
the incident Lyman-line fluxes. j is the total frequency-integrated Hα emission
coefficient for isotropic emission, i. e.

j =

2∑
lu=0

hν3lu→2ll

4π

∫ ∞

0
n3lu A′3lu→2llφ3lu→2ll(ν) dν, (8.1)

where h is Planck’s constant, ν3lu→2ll the frequency of the transition, lu is the az-
imuthal quantum number of the upper level, n3lu the number density of hydrogen
atoms in the upper state (n = 3, l = lu), A′3lu→2ll

the Einstein coefficient for sponta-
neous emission from level (n = 3, l = lu) to level (n = 2, l = ll), and φ3lu→2ll(ν) the
profile function of the Hα transition. The values of A′3lu→2ll

are given in Table 8.1,
and the levels involved in the calculation are illustrated in Fig. 8.4.

The spectral features at wavelengths redward of the Lyman lines have only
minor effects on the Hα emission. As a proof, I substituted the spectrum of the
B star in the range ν < 2.303 PHz with the spectrum of a blackbody at T =

18 200 K (see Fig. 8.7) and calculated the Hα emission again. Figure 8.8 shows
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Figure 8.5: Lyman lines in the synthetic B-star spectrum used for the Cloudy simula-
tions.
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Figure 8.7: Substitution of the B-star spectrum with a blackbody spectrum for ν <

2.303 PHz as a test for the sensitivity of Hα emission on spectral features redward of the
Lyman lines.

the result together with the emission corresponding to the Cloudy simulation with
the original B star spectrum for comparison. The effect of the spectral features
in this frequency range on the resulting temperature distribution and ionization
structure is negligible.

The sensitivity of the Hα emission produced in the H ii region to changes of
the input flux in the range of the Lyman lines requires a high-resolution input
spectrum in the Cloudy simulations. For the calculations presented in this chapter
I used a resolution of ∆ν/ν = 5 × 10−4 (cf. Fig. 8.5).

8.1.2 Estimating the extent of the Hα emission
The spatial extent of the H ii region is determined by the mass-loss rate of the su-
pergiant and the Lyman-continuum flux of the B star, and can be measured by ob-
serving the spatial extent of the Hα emission from the Antares nebula (cf. Reimers
et al. 2008). Figure 8.9 shows the Hα intensity distribution at 3.′′4 from the super-
giant, measured on the projected line connecting the two stars (see Fig. 8.1). The
shape and extent of the observed and theoretical Hα intensity distributions agree,
but the center of the theoretical distribution is shifted to higher velocities with re-
spect to the observed distribution. This is probably due to the uncertainties in the
geometry of the system and can be explained by an overestimation of the position
angle of the line connecting the two stars relative to the plane of the sky (sin i = 1
is only a rough estimate, and due to the long period it will be difficult to improve
on this).

The intensity in Fig. 8.9 is given as a function of velocity. For a comparison of
the spatial extent of the observed and theoretical emission, it is easier to compare
the frequency-integrated emission as a function of position along the slit. The
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Figure 8.8: Hα emission resulting from simulations with the combined blackbody/B-
star spectrum (Fig. 8.7) and the original B-star spectrum (Fig. 5.2).

integration of the theoretical data reads, assuming pure emission,

I =

∫ smax

smin

j(s)ds, (8.2)

where j is the emission coefficient defined in Eq. 8.1, and the range of the coor-
dinate s, measured along the line of sight, is the same as in Eq. 8.3 (Sect. 8.2).
The results are shown for different slit positions in Fig. 8.10 for a simulation with
Ṁ = 2 × 10−6 M� yr−1 and v∞ = 20 km s−1, along with the corresponding obser-
vational data. In this simulation, the slit skims only the outermost part of the H ii
region at the slit positions 1.′′9 and 5.′′4. Therefore, the theoretical data at these slit
positions should be interpreted with care, because outside the H ii region the Hα

production is dominated by line pumping effects, which may not be well repro-
duced with the simplified approach used by Cloudy for the radiative transfer (see
Sect. 5.2.1). The central minimum in the observations corresponding to 2.′′4 is
probably due to an artifact related to the data reduction. At the other slit positions,
the simulated and observed distributions agree well in shape and extent.

Figures 8.11 and 8.12 present the same data for simulations with Ṁ = 10−6

M� yr−1, and Ṁ = 5 × 10−7 M� yr−1, respectively, both using a terminal wind ve-
locity of v∞ = 20 km s−1. These simulations obviously yield Hα distributions that
are considerably broader than the observed ones. Besides, at positions far from
the supergiant, i. e. at ≥ 4.′′9 for the simulation with Ṁ = 10−6 M� yr−1 and at
≥ 3.′′4 for Ṁ = 5 × 10−7 M� yr−1, the theoretical Hα distributions do not reach
zero at the ends of the slit. This is due to the larger extension of the H ii region
in these simulations, which is a result of the lower mass-loss rates. Figure 8.13
shows the distribution of the Hα emission coefficient j resulting from the simu-
lation corresponding to Ṁ = 10−6 M� yr−1. The length of the slit used for the
observations is 12′′, which is equivalent to ∼ 2220 AU at the distance of α Sco,
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Figure 8.9: Hα emission at 3.′′4 from the supergiant. The top panel shows the observed
flux in arbitrary units, the bottom panel the intensity derived from a simulation with Ṁ =

2 × 10−6 M� yr−1 and v∞ = 20 km s−1. The ordinate indicates the position along the slit.
The theoretical intensity distribution is calculated as described in Sect. 8.2. As can be
seen, cf. also Fig. 8.10, the theorical distribution is slightly too narrow, which means that
the adopted mass-loss rate is here slightly too large. For the apparent velocity shift, see
text p. 73.
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Figure 8.10: Frequency-integrated Hα flux as a function of position along the slit for
a simulation with Ṁ = 2 × 10−6 M� yr−1 and v∞ = 20 km s−1 (solid lines), and the
corresponding observations (dashed lines).
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and which only just covers the whole region of high emission located in the center
of Fig. 8.13, which is associated to the H ii region. In the case of a mass-loss rate
of Ṁ = 5 × 10−7 M� yr−1, this region is even more extended.

At 2.′′4 and 2.′′9, the Hα profiles corresponding to a mass-loss rate of 10−6

M� yr−1(Fig. 8.11) look more similar to the observed data than the profiles cor-
responding to 2 × 10−6 M� yr−1 (Fig. 8.10), while the observed data at the other
slit positions further away from the supergiant are better reproduced by the model
with the higher mass-loss rate. This may be due to the mass-loss rate being time-
dependent.

8.2 [Fe ii] emission

The most prominent emission lines seen in the Antares nebula are the forbid-
den iron lines that result from transitions corresponding to the multiplets a6D –
a6S (4287.40 Å, 4359.34 Å, 4413.78 Å), a6D – b4F (4416.27 Å), and a4F – b4F
(4814.55 Å). The spatial and spectral distribution of the line at 4814.55 Å (multi-
plet F20) was presented in detail by Reimers et al. (2008).

The data obtained with the Cloudy calculations (see Sect. 5.2) can be used to
compare the results of the simulations to the observed data. Cloudy gives informa-
tion about the emission coefficient j (Eq. 8.4) as a function of position. Together
with the velocity distribution from the hydrodynamic simulations, these data can
be used to calculate theoretical intensity distributions of emission lines. For the
treatment of Fe ii, Cloudy provides a large model atom developed by Verner et al.
(1999). It includes the 371 lowest levels of the Fe+ ion, i. e., up to 93 487.65 cm−1.

Figure 8.14 shows the spatial distribution of the emission coefficient resulting
from the Cloudy calculations for a mass-loss rate of Ṁ = 2×10−6M� yr−1. Outside
the H ii region, towards low densities and temperatures, Cloudy appears to have
problems with the Fe ii model atom. The emission coefficient does not change
with density anymore when a certain arbitrary distance is reached. Therefore,
Tmin = 200 K was used as a lower limit for the temperature (cf. the analysis of
the Fe ii absorption line in Sect. 7.2.3). A comparison of Fig. 8.14 to Fig. 8.3
shows that the [Fe ii] emission is roughly correlated with the density, which is to
be expected if collisions are the dominant excitation mechanism. In the region
around (x = 1600 AU, y = 450 AU), i. e. in the proximity of the B star, the
emission is high despite the relatively lower density. In this region, pumping
effects and recombination are apparently more important for the excitation of the
line.

Assuming pure emission, the emergent intensity is given by the integral

Iv(v) =

∫ smax

smin

j(s)Φ[vr(s) − v]ds, (8.3)

where s ranges from ∼ −3730 AU to ∼ +3730 AU along the line of sight, and the
zero point lies in the plane defined by the line connecting the two stars and the
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Figure 8.11: Frequency-integrated Hα flux as a function of position along the slit for a
simulation with Ṁ = 10−6 M� yr−1 and v∞ = 20 km s−1. The solid lines are derived from
the simulations, the dashed lines show the corresponding observations.
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Figure 8.12: Frequency-integrated Hα flux as a function of position along the slit for a
simulation with Ṁ = 5 × 10−7 M� yr−1 and v∞ = 20 km s−1. The solid lines are derived
from the simulations, the dashed lines show the corresponding observations.
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Figure 8.13: Distribution of Hα emission resulting from a simulation with Ṁ =

10−6 M� yr−1 and v∞ = 20 km s−1. This is a cut through the H ii region, approximately
parallel to the line connecting the two stars in the region where the H ii region is most
extended. The ordinate corresponds to the direction perpendicular to the plane of the
orbit.

Figure 8.14: Distribution of the emission coefficient corresponding to the [Fe ii] UV
mult. 20F 4814.55 Å line resulting from a simulation with Ṁ = 2 × 10−6 M� yr−1 and
v∞ = 20 km s−1. This is a cut parallel to the plane of the orbit with the B star at (x ∼
1600, y ∼ 450)
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direction perpendicular to the orbit, so that the H ii region is fully included. j is
the emission coefficient for isotropic emission,

j =
hνlunuAlu

4π

∫ ∞

0
φ(ν)dν, (8.4)

resulting from the frequency νlu of the transition, the number density nu of ions
in the upper state, the transition probability Alu, and the profile function φ(ν). h
is Planck’s constant, vr(s) the radial velocity at s, and Φ a gaussian profile that
introduces thermal broadening,

Φ(v) =
1

∆vD
√
π

exp
[
−

v2

(∆vD)2

]
, (8.5)

where the Doppler width ∆vD (see Eq. 7.2) is defined by pure thermal broadening
with a temperature of 5000 K. Microturbulent broadening is not included, so that
the hydrodynamic effects can be clearly identified. Iv is the intensity per unit radial
velocity, and the intensity per unit frequency reads Iν = λ0Iv, where λ0 is the rest
wavelength of the transition.

For a comparison with the observations as presented in Fig. 8.9 for Hα, the
spectral resolution of UVES and the seeing have to be considered. An analy-
sis of the lines of the wavelength calibration lamp yields an average FWHM of
3.5 km s−1 in the vicinity of 4814.55 Å, in the range from 4789 to 4832 Å. I
adopted this value for the spectral resolution of the UVES spectra. The seeing dur-
ing the observations was ∼ 0.′′6. Therefore, the theoretical intensity distributions
are convolved with a gaussian profile of FWHM = 3.5 km s−1 along the frequency
coordinate and with another gaussian corresponding to the seeing in the direction
of the spatial coordinate along the slit. A systemic velocity of −1.3 km s−1 is
added to the theoretical velocity scale (cf. Sect. 7.2.3).

As an example, Fig. 8.15 shows the distribution of the [Fe ii] mult. 20F
4814.55 Å intensity at 3.′′4 both for the observed and the simulated data. Ob-
viously, the simulations do not yield a realistic picture of the [Fe ii] emission for
that slit position. The simulations suggest a circular structure around a central
maximum at ∼ 5 km s−1, while the maximum flux in the observed data is con-
centrated in a more compact structure, which is approximately circular but open
to the bottom, between ∼ 0 and ∼ 8 km s−1 as measured at the center of the slit.
The overall extent of the observed emission approximately agrees with the theo-
retical distribution and is consistent with the extent of the Hα emission in both the
velocity and the spatial coordinate.

At 2.′′4, between the two stars, the theoretical data look more similar to the
observations, as shown in Fig. 8.16. Here, the theoretical data suggest a compact
structure between −3.5 and 16 km s−1 with maximum emission at the edges. This
is consistent with the observed flux distribution, which includes a horizontal struc-
ture near the center of the slit that is probably an artifact caused by the reduction
procedure. The theoretical flux distribution is apparently red-shifted with respect
to the observed distribution, which is also seen in the Hα distribution shown in
Fig. 8.9.

81



-30 -20 -10 0 10 20

Radial velocity (km s−1)

-4

-2

0

2

4

Po
si

tio
n

(′′
)

0.0

2.0

4.0

6.0

I
(1

0−
13

er
g

cm
−

2
s−

1
sr
−

1
H

z−
1 )

-4

-2

0

2

4

Po
si

tio
n

(′′
)

0.0

0.4

0.8

1.2

1.6

M
ea

su
re

d
Fl

ux

Figure 8.15: [Fe ii] mult. 20F 4814.55 Å emission at 3.′′4 from the supergiant. The top
panel shows the observed flux in arbitrary units, the bottom panel the intensity derived
from a simulation with Ṁ = 2×10−6 M� yr−1 and v∞ = 20 km s−1. The ordinate indicates
the position along the slit.
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Figure 8.16: [Fe ii] mult. 20F 4814.55 Å emission at 2.′′4 from the supergiant. The top
panel shows the observed flux in arbitrary units, the bottom panel the intensity derived
from a simulation with Ṁ = 2×10−6 M� yr−1 and v∞ = 20 km s−1. The ordinate indicates
the position along the slit.
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Figure 8.17: [Fe ii] mult. 20F 4814.55 Å emission at 4.′′4 from the supergiant. The top
panel shows the observed flux in arbitrary units, the bottom panel the intensity derived
from a simulation with Ṁ = 2×10−6 M� yr−1 and v∞ = 20 km s−1. The ordinate indicates
the position along the slit.

Figure 8.17 shows observed and theoretical flux distributions for the slit posi-
tion at 4.′′4. The ring-like structure in the simulated distribution, which is caused
by the high-density boundaries of the H ii region and is much more pronounced
at positive velocities, is not seen in the observations, but both data sets exhibit a
central maximum. A comparison to the data presented in Fig. 8.15 leads to the
supposition that the central maximum in the theoretical flux distribution at 3.′′4 is
associated to the maximum in the observed data near 0 km s−1.

The discrepancies between the observed and theoretical [Fe ii] emission could
be due to an inadequate treatment of the Fe+ ion in the Cloudy code. Possible
mechanisms that excite forbidden [Fe ii] lines are collisions, continuum pump-
ing, and recombination. The theoretical correlation between [Fe ii] emission and
density that is suggested by Fig. 8.14 is apparently not correct under the phys-
ical conditions in the Antares nebula. The emission may also be influenced by
advection effects, which may be significant especially at the western boundary of
the H ii region (see Sect. 6.4), towards the open side of the wake. An alternative
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Figure 8.18: [Fe ii] mult. 20F 4814.55 Å emission at 5.′′4 from the supergiant. The top
panel shows the observed flux in arbitrary units, the bottom panel the intensity derived
from a simulation with Ṁ = 2×10−6 M� yr−1 and v∞ = 20 km s−1. The ordinate indicates
the position along the slit. Obviously, there is more emission from the upper (northern)
half in the observed flux distribution.

explanation would be that due to dust depletion in the high density boundaries of
the structure, a large fraction of Fe is not available for Fe ii emission. This effect
seems to increase with distance to the B star.

A common feature of the observed forbidden and allowed Fe+ emission is an
asymmetry with respect to the center of the slit, which is clearly visible e. g. at
5.′′4 from the supergiant (Fig. 8.18). Apparently, there is more emission from the
northern than from the southern half (see also Fig. 8.15). This is another indication
of density structures that are not included in the model, which is symmetric with
respect to the plane of the orbit. A deviation of the inclination from 90◦ would
also cause such an asymmetry. However, the Hα flux distributions do not show
any significant asymmetries.
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Chapter 9

Discussion & Conclusions

9.1 The mass-loss rate

The hydrodynamic simulations presented in Sect. 6.2 show that the hot H ii re-
gion that is moving with the B star through the circumstellar envelope of α Sco
produces strong deviations from spherical symmetry in the density and velocity
distributions. The theoretical absorption line profiles derived from these sim-
ulations (Sect. 7.2.1) exhibit a pronounced multi-component structure compa-
rable to the observed line profiles presented in Fig. 7.5. The best match be-
tween theoretical and observed line profiles is achieved with a mass-loss rate of
Ṁ = 2 × 10−6 M� yr−1 and a wind velocity of v∞ = 20 km s−1 (Sect. 7.2.3). This
value of the mass-loss rate is twice as high as the rate derived by Reimers et al.
(2008), which was based on a spherically symmetric model of the circumstellar
shell. This discrepancy is due to the decreased density in the wake of the H ii
region (see e. g. Fig. 8.3).

The range of values of Ṁ and v∞ that is covered by the simulations is rather
small, owing to the limitations imposed by the large amount of computing time
that the hydro code requires. As the AMRCART code is not adapted to modern
parallel computing clusters, the hydrodynamic simulations were carried out on
a single CPU core, while only the photoionization/radiative-transfer calculations
were executed in parallel. A finer grid in Ṁ and v∞ would improve the accuracy
of the resulting mass-loss rate, and it might be instructive to calculate models with
different semi-major axes and position angles to account for the uncertainties in
the orbital parameters (see next section). However, the theoretical data presented
in this work and the available observations agree fairly well, and the remaining
systematic errors are probably larger than the error that is due to the coarseness of
the grid of models.

An important systematic error is introduced by the observed differential dust
depletion (Baade & Reimers 2007). This effect depends on the considered el-
ement and on the local conditions in the circumstellar shell. It results in the
observed absorption profiles being weaker than predicted for a given mass-loss
rate. In contrast, interstellar absorption can make the absorption components near
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0 km s−1 stronger than predicted by the model, which is probably responsible for
the discrepancies in the Zn ii 2062.660 Å and Cu ii 1358.773 Å lines (Fig. 7.6).
According to Snow et al. (1987) and Cardelli (1984), dust depletion is of minor
importance for zinc, which means that the mass-loss rate can best be determined
by use of the Zn ii absorption lines.

In the present approach, the radiative transfer is treated in a simplified man-
ner with the escape probability formalism (see Sect. 5.2.1). This is probably the
major source of error in the calculation of the [Fe ii] line emission, and the exact
solution of the scattering problem would probably resolve some of the apparent
discrepancies between the theoretical predictions and the observations. Moreover,
some of the circumstellar absorption lines in the spectrum of α Sco B, e. g. Cr ii
2062.236 Å, have P Cyg-type profiles, which cannot be reproduced with a pure
absorption model. For a calculation of the reemission that is superposed in these
lines on the absorption profile, exact radiative transfer simulations have to be in-
cluded in the model.

A number of empirical mass-loss rates of ζ Aur systems were determined on
the basis of spherically symmetric density and velocity distributions according to
Eqs. 2.3 and 2.4 (see e. g. Che et al. 1983; Baade et al. 1996a). Some of these
systems, e. g. ζ Aur and 31 Cyg, also contain H ii regions, which may lead to even
more severe dynamic effects than in α Sco due to the much smaller orbital periods.
The current values of the mass-loss rates of these stars may have to be revised on
the basis of more realistic models including dynamic processes as presented in
this work for α Sco.

9.2 Asymmetries and time-dependent effects
The observations indicate an asymmetric, non-stationary character of the circum-
stellar shell of α Sco. The observed absorption lines exhibit an additional compo-
nent at −14 km s−1, which cannot be reproduced with the assumption of a constant
mass-loss rate. Moreover, the integrated Hα flux (Figs. 8.10 to 8.12) also appears
to indicate slightly different mass-loss rates at different distances to the B star
(Sect. 8.1.2). The observations of [Fe ii] emission reveal that the density distri-
bution is not symmetric with respect to the plane of the orbit, which cannot be
reproduced in the framework of the present model.

The uncertainties in the geometry of the α Sco system may partly account for
the asymmetry of the observed [Fe ii] emission and the shift of the theoretical
emission in Hα and [Fe ii] 4814.55 Å. The orbital parameters, such as the incli-
nation, eccentricity, and the orbital velocities, are not well known because of the
large orbital period (∼ 2560 yrs). Especially the radial velocity of the supergiant
is hard to measure, because the observed velocity results from a superposition of
pulsations and orbital motion (Smith et al. 1989).

The plasma calculations used for determining the temperature and ionization
structure of the circumstellar envelope are based on the assumption that the time
scales of cooling and heating are small compared to the dynamic time-scale. This
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is not exact at the western boundary of the H ii region (see Sect. 6.3), where
also advection effects may have a significant impact on the ionization balance, as
pointed out in Sect. 6.4. A model including time-dependent plasma-effects may
considerably improve the understanding of the observed absorption and emission
features and could be the subject of future studies.

9.3 Conclusions and Outlook
The results of the combination of observations with hydrodynamic and plasma
simulations presented in this work show that the circumstellar envelope of the
α Sco system is strongly influenced by dynamic effects. A calculation of absorp-
tion line profiles based on the simulated density and velocity distributions and
ionization structure, and a comparison to HST/GHRS and VLT/UVES spectra re-
veal that the mass-loss rate was underestimated by a factor of two in earlier studies
that were based on an undisturbed, spherically symmetric circumstellar shell. The
resulting mass-loss rate of Ṁ = 2 × 10−6 M� yr−1 is confirmed by an analysis of
the Hα emission from the Antares nebula, which is based on spatially resolved
emission distributions observed with VLT/UVES.

The theoretical absorption line profiles exhibit a multi-component structure
as a natural result of the influence of the hot H ii region that is moving with the
B star through the wind of the primary. Three of the four observed components
can be explained accordingly. However, the origin of the additional component
at −14 km s−1 seen in most absorption lines (Fig. 7.5) remains uncertain and is
probably an indication of time-dependent mass-loss.

The structure of the [Fe ii] line emission of the Antares nebula as observed
with VLT/UVES cannot be reproduced correctly. A more sophisticated model
including exact radiative transfer calculations and time-dependent simulations of
the ionization balance allowing for advection effects would help to understand
the remaining discrepancies between theory and observations. In this context, it
would be desirable to parallelize the hydro code, which will make it possible to
calculate a more extensive grid of models. Future projects may deal with these
improvements of the model calculations.
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Appendix A

Computational details

A.1 The temperature grid
For the calculation of the 3D temperature distribution, The 1D models calculated
with Cloudy are distributed homogeneously in 3D space, i. e. with a constant in-
crement in θ. The angle θ is measured from the upper pole, i. e. from the positive
z direction in the AMRCART coordinate system, downwards, and the angle φ is
measured counterclockwise from the direction towards the supergiant. The incre-
ment in φ in the plane of the orbit, i. e. at θ = π/2, equals the increment in θ,
which is determined by a given number N according to ∆θ = π/(N − 1). Only
odd numbers are used for N so that there are always two models describing the
temperature distribution on the line connecting the two stars, one away from the
primary star, one towards it. In directions nearer to the poles, ∆φ is increased
according to ∆φ = π/(N sin θ − 1), where the expression N sin θ is rounded to the
nearest integer that is ≥ 2. For θ = 0 and θ = π one direction (φ = 0) is calculated.

Thus, the total number of Cloudy simulations computed to cover the whole
domain for a given N is

NCl = 2 +

N−2∑
i=1

2(Ni − 1), (A.1)

where Ni is the number of directions calculated for a given θi = i∆θ,

Ni =

N sin θi, sin θi ≥ 2/N
2, else

. (A.2)

As the Cloudy simulations are independent of each other, they can be safely ex-
ecuted on different CPUs. The minimum wall-clock time is reached when the
number of processors available for the simulation equals NCl (cf. Eq. 5.25). The
simulations presented in this work are symmetric with respect to the orbital plane
so that it is sufficient to cover only the lower half of the domain, i. e.

Nsym
Cl = 1 +

N−2∑
i=(N−1)/2

2(Ni − 1). (A.3)
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A.2 Definition of atan2

The ordinary arctan function only gives results in the range (−π/2,π/2). The
calculation of some of the angles defined in Sect. 5.2.3 requires a function that
gives values in the range (-π, π]. For such purposes a function with two arguments
is defined as follows.

atan2(y, x) =



arctan y

x , x > 0
arctan y

x + π, x < 0, y ≥ 0
arctan y

x − π, x < 0, y < 0
π

2 , x = 0, y > 0
−π

2 , x = 0, y < 0
0 x = 0, y = 0

(A.4)

A.3 Data exchange between AMRCART and Cloudy

A.3.1 Passing density information from AMRCART to Cloudy
As AMRCART uses an adaptive mesh the spatial resolution of the density infor-
mation is not the same for all parts of the grid. The A-MAZE package provides a
code that can generate a grid of the density or other variables with a uniform res-
olution. I integrated this code as a subroutine into AMRCART so that the density
information can be passed to Cloudy on a regular grid.

As the orbit of the α Sco system is assumed to be circular the edge lengths in
xAC and yAC direction are always equal (ax = ay = a), while the edge length in zAC

direction can be smaller (az ≤ a). As the resolution is equal in all directions, the
ratio of the number of grid points along an edge of the computational domain in
xAC (yAC) direction Nρ and the number of points in z direction Nρ,z is

Nρ

Nρ,z
=

a
az
. (A.5)

The density information is passed to Cloudy in the form of a one-dimensional
array with N2

ρNρ,z elements. When the density routine of a Cloudy simulation
representing the (θ, φ) direction as seen from the secondary star (cf. Sect. 5.2.3)
requests the density at a radial distance r, first the corresponding coordinates rAC

in the AMRCART system are calculated via Eqs. 5.32 and 5.33. These coordinates
are transformed to the integer values i

j
k

 = Nρ

xAC

yAC

zAC

 , (A.6)

where the integers on the left-hand side are obtained by rounding up the values
on the right-hand side. If the elements of the density array are numbered starting
from 1 these coordinates correspond to the element number i+( j−1)Nρ+(k−1)N2

ρ .
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i i + 1

j

j + 1

Figure A.1: Linear interpolation on the cartesian grid in the xy plane. The filled circle
marks the position (xAC, yAC).

In order to improve the smoothness of the density data passed to Cloudy, a lin-
ear interpolation involving the adjacent grid cells is performed (cf. Press et al.
2007, pp. 132f.). Figure A.1 shows a typical situation projected onto a two-
dimensional (2D) plane. The interpolated density resulting from these four grid
cells is given by

ρint,k = (1 − ∆x)(1 − ∆y)ρi, j,k + ∆x(1 − ∆y)ρi+1, j,k +

∆x∆yρi, j+1,k + (1 − ∆x)∆yρi+1, j+1,k, (A.7)

where ∆x = xACNρ−(i−0.5), ∆y = yACNρ−( j−0.5), and ρi, j,k is the (i+( j−1)Nρ+

(k − 1)N2
ρ)th element of the 1D density-array. This calculation is performed once

again with the four adjacent grid cells on the nearest z level (k − 1 or k + 1), and
the final value of the interpolated density is obtained by the simple interpolation

ρint = ρint,k±1 + ∆z(ρint,k − ρint,k±1) (A.8)

with ∆z = zACNρ,xy − (k − 0.5).

A.3.2 Coordinates used in the temperature interpolation

The positions of the corners of the rectangle shown in Fig. 5.4 in cartesian coor-
dinates read

r1 = r1

sin θ1 cos φθ1,1

sin θ1 sin φθ1,1

cos θ1

 , r2 = r2

sin θ1 cos φθ1,2

sin θ1 sin φθ1,2

cos θ1

 , (A.9)

r3 = r3

sin θ2 cos φθ2,1

sin θ2 sin φθ2,1

cos θ2

 , and r4 = r4

sin θ2 cos φθ2,2

sin θ2 sin φθ2,2

cos θ2

 , (A.10)

and the positions of the points P and S are given by

r = r

sin θ cos φ
sin θ sin φ

cos θ

 , and rS = rS

sin θ cos φ
sin θ sin φ

cos θ

 , respectively. (A.11)
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Figure A.2: The angle β is measured relative to one of the borders of the corresponding
quadrant in the AMRCART domain.

The vector d2 that is used for the determination of rS /r is chosen according to the
rule

d2 =

r3 − r1,
∣∣∣φ − φθ2,1

∣∣∣ ≤ ∣∣∣φ − φθ2,2

∣∣∣
r4 − r1, else

. (A.12)

A.4 Calculation of ZETAUR input-parameters

With the given coordinates (xB, yB, zB) of the secondary star in the AMRCART
coordinate system the input parameters for ZETAUR for the calculation of line
profiles in the spectrum of α Sco B (see Sect. 7.2.1) are calculated for the cor-
responding quadrant in the AMRCART domain (see Fig. A.2) according to the
following equations.

• Quadrant I (x > 0.5, y ≥ 0.5):

β = arctan
y − 0.5
x − 0.5

(A.13)

ω =
π

2
+ δ − β (A.14)

f =
π

2
+ β (A.15)

γ = π − δ + β (A.16)

92



• Quadrant II (x ≤ 0.5, y > 0.5):

β = arctan
0.5 − x
y − 0.5

(A.17)

ω =

δ − β, β ≤ δ

2π − β + δ, else
(A.18)

f = π + β (A.19)

γ =
3
2
π − δ + β (A.20)

• Quadrant III (x < 0.5, y ≤ 0.5):

β = arctan
0.5 − y
0.5 − x

(A.21)

ω =
3
2
π + δ − β (A.22)

f =
3
2
π + β (A.23)

γ =

2π − δ + β, β < δ

β + δ, else
(A.24)

• Quadrant IV (x ≥ 0.5, y < 0.5):

β = arctan
x − 0.5
0.5 − y

(A.25)

ω = π + δ − β (A.26)
f = β (A.27)

γ =
π

2
− δ + β (A.28)

The true anomaly f relates to the time of periastron passage via

T0 = Tobs −
f

2π
P, (A.29)

where Tobs is the JD of the observation and P the orbital period. γ is the angle
between the periastron passage and the total eclipse, i. e.

∆Tecl =
γ

2π
P. (A.30)

Fig. A.3 shows an example with the B star in quadrant II. For a circular orbit ω
has no physical meaning and is only used as an angular offset for the data input
from the hydrodynamic results.
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Figure A.3: ZETAUR input parameters for the line profile analysis of the observations
described in Sect. 7.2.
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