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Zusammenfassung

Proteine sind langkettige Biomoleküle mit charakteristischen Funktionen, die eine
Hauptrolle in allen Lebewesen einnehmen. Diese Funktion ergibt sich aus der Pro-
teinstruktur, die wiederum durch einen komplizierten Mechanismus basierend auf
der Aminosäuresequenz bestimmt wird. Der genaue Vorgang ist nicht vollständig
verstanden, aber die Strukturen zu kennen ist wichtig für die pharmazeutische
Industrie, sowie für die Bio- und Nanotechnologie. Leider ist es langsam und teuer
sie experimentell zu bestimmen. Hohes Interesse besteht auch daran die Sequenz
anzupassen um stabile industrielle Enzyme zu machen oder um Moleküle mit
speziellen Formen herzustellen, z.B. für Biosensoren.

Eine Struktur am Computer anhand der Sequenz vorherzusagen ist ein klassi-
sches Problem der theoretischen Biochemie, welches bisher nicht gelöst wurde. In
dieser Arbeit liegt der Schwerpunkt auf methodologischen Verbesserungen, die
verbreitete chemische Annahmen vermeiden. Eine allgemeine Methode zur Er-
stellung numerischer Modelle wird hier entwickelt und analysiert. Sie basiert auf
einem statistischen Korrelationsmodell von Sequenz und Struktur und benutzt
Ideen aus der selbst-konsistenten Mittelfeld (SCMF) Optimierung. Das Verfah-
ren lässt sich erfolgreich auf die Strukturvorhersage- und Sequenzdesignprobleme
anwenden ohne eine Boltzmann Statistik anzunehmen.

Das statistische Modell basiert auf einer Mischverteilung von bivariaten Gauß-
verteilungen und 20-wege Bernoulliverteilungen. Die Gaußverteilungen modellie-
ren die kontinuierlichen Variablen der Proteinstruktur (Torsionswinkel) und die
Bernoulliverteilungen erfassen die Sequenzpräferenzen. Anstelle ein Protein als
statistische Einheit zu verstehen, werden hier leichter zu verarbeitende Fragmen-
te betrachtet. Mehrere Ansätze sie wieder zusammenzusetzen werden diskutiert.
Aber die Fragmente bilden lokale statistische Einheiten, die nicht notwendiger
Weise miteinander übereinstimmen. Ein passendes Verfahren solche Inkonsisten-
zen zu behandeln, ist die SCMF Optimierung.

Mittelfeld oder SCMF Verfahren betrachten das zu optimierende System in allen
Lösungszuständen gleichzeitig. In bestehenden Ansätzen wurde dazu ein Energie-
potential erstellt, das gemittelte, paarweise Wechselwirkungen zwischen Unter-
systemen abbildet. Die Zustandsgewichte der Untersysteme wurden durch wie-
derholte Anwendung des Boltzmannverhältnisses alternierend in Energien und
Wahrscheinlichkeiten umgerechnet bis ein selbst-konsistenter Zustand des gesam-
ten Systems erreicht wird. Mit dem hier präsentierten Ansatz ist es möglich die
Zustandswahrscheinlichkeiten direkt zu optimieren. Die Boltzmannverteilung ist
keine notwendige Annahme. Daher ist die Methode auch auf Systeme mit unbe-
kanntem Ensemble anwendbar.



Abstract

Proteins are long-chained biomolecules with distinctive functions, that take a
major role in all living systems. The function is defined by the protein structure,
which in turn is determined via a complicated mechanism based on the amino acid
sequence. The exact procedure is not fully understood. However, knowing the
structure is important for the pharmaceutical industry as well as bioengineering
and nanotechnology. Unfortunately, determining it experimentally is slow and
expensive. There is also much interest in being able to adapt the sequence to
make stable industrial enzymes or to form molecules with specialised shapes, e.g.
for biosensors.

Predicting a structure computationally from the sequence is a classic problem
in theoretical biochemistry, that has not been solved yet. In this work the em-
phasis lies in methodological improvements, that avoid common chemical pre-
conceptions. A general method for building numerical models is developed and
analysed here. It is based on a statistical correlation scheme of sequence and
structure using ideas from self-consistent mean field (SCMF) optimisation. The
procedure is successfully applied to the structure prediction and sequence design
problems without using a Boltzmann formalism.

The statistical model is based on a mixture distribution of bivariate Gaussian and
20-way Bernoulli distributions. The Gaussian distributions model the continuous
variables of the structure (dihedral angles) and the Bernoulli distributions capture
the sequence propensities. Instead of treating the protein as a statistical unit,
easier to handle fragments are used. Several approaches to recombine them are
discussed. But the fragments form local statistical units that do not necessarily
agree with each other. A method suited to deal with such inconsistencies is SCMF
optimisation.

Mean field or SCMF methods optimise a system by treating all solution states at
the same time. In existing approaches, an energy potential was introduced that
reflects the pairwise mean interaction between subsystems. The state weights
of the subsystems were converted alternately into energies and probabilities by
applying the Boltzmann relation repeatedly until a self-consistent state for the
whole system is reached. With the approach presented here it is possible to
optimise the state probabilities directly. The Boltzmann distribution is essentially
an unnecessary assumption. Therefore, the method is also applicable to systems
with an unknown ensemble.
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Chapter 1

Introduction

Modelling protein molecules means trying to predict their structure given their
amino acid sequence. The problem has been in the literature since the first pro-
tein structures were solved [KDS+60, PRC+60], but remains a challenging task.
Finding models for protein structures experimentally is a rather costly challenge.
So since the beginnings the computational modelling has been a helpful crucial
tool. Only in recent years has there been much success in this area, although
still there are many open questions and without experimental techniques no reli-
able model can be obtained [OBH+99, BDNBP+09, CKF+09, MFK+]. However,
with the initiatives for structural genomics the number of experimentally solved
models is increasing rapidly. The growing database of solved protein structures
offers new ways to model proteins on a statistical basis. In this work, an innovat-
ive optimisation scheme based on a purely statistical protein model is developed
from ideas of self-consistent mean field optimisation. With a rather simple scor-
ing scheme we give a proof-of-principle and show how to apply our approach to
structure prediction and sequence design.

1.1 Proteins

Proteins are biomolecular polymers [RR07], i.e. they are built as chains or se-
quences of 20 different amino acid types connected via peptide bonds found, for
example, in biological cells. The chain of atoms directly involved in the peptide
bond is called the backbone and the other atoms are called sidechains. Fig-
ure 1.1.1 sketches a small stretch of such a polymer. The typical lengths of
protein sequences are between 50 and 800 amino acids long. In solution, e.g. in
the cell, they fold to a three-dimensional structure. That means, the atoms of
a protein arrange in space in a more or less compact way and this arrangement
stays mostly the same throughout the protein’s lifetime though sometimes flex-

1



Cα
C

O

N

H

Cα

R

ψ
ω φψ

φψ
φψ

φ

amino (N)

terminus

carboxyl (C)

terminus

Figure 1.1.1: The backbone of a protein is connected via peptide bonds. The sidechains are
only symbolised by the purple dots.

ibility has been observed. The determination of this structure is mainly driven
by the polymer’s amino acid composition, i.e. its sequence, and sometimes helper
molecules, such as chaperones and other cofactors [Anf73, MH93, vdBWDE00].

In the biological context each protein is specialised in a distinct biochemical
function, for example in a metabolic process. This function is solely determined
by the proteins structure, i.e. by the positions of all protein atoms in space.
Therefore, the knowledge of the protein structure is crucial in understanding its
function and role in the biochemical processes that drive life.

Many experimental methods are used to solve the structure of a protein. The
most important ones are probably X-ray crystallography, nuclear magnetic res-
onance spectroscopy and electron microscopy. Structures determined via X-ray
crystallography typically have the highest resolution allowing the most detailed
view on the atom positions. Almost all solved structures are deposited in the
Protein Data Bank [PDBa, BWF+00], currently (2011-07-18) consisting of 72000
entries of which 64000 are determined by X-ray crystallography.

If a protein structure is known, one can display it via 3D rendering techniques
on a computer screen. Figure 1.1.2 shows several representations and levels of
abstraction that can be chosen in such programs [PGH+04]. The colouring is
according to secondary structure, that is, local regular structure of the backbone,
e.g. α-helices in red or β-strands in purple.

1.2 Protein Classification

1.2.1 Protein Descriptors

Monomer proteins may be described by three levels, primary structure, secondary
structure and tertiary structure. The primary structure is the sequence of amino
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Figure 1.1.2: Representations and levels of abstraction for a small protein structure (pdb-id:
1CTF). Pictures are made by UCSF Chimera [PGH+04].

acid types, i.e. a text string. By secondary structure the sequence of local con-
secutive structural subunits is denoted, mostly also a character string. Tertiary
structure is the three-dimensional arrangement or the spatial coordinates of the
polymer, typically a table of atom positions. In this thesis, the primary structure
will be called “sequence” and the tertiary structure “structure” or “fold”.

The backbone of a protein can be described solely by the sequence of dihedral
angles at the α-carbons as the amide plane is known to form a rigid unit, figures
1.1.1 and 1.3.1. The sidechains are often only described by their type and are
modelled separately. Figure 1.2.1 shows the histogram of the dihedral angles φ
and ψ in the protein data bank [PDBa].

1.2.2 Classifications

Typically classifications are used to simplify the handling of proteins. Their scope
is either to provide an easy, human-interpretable way for distinguishing between
proteins or to enable computers to perform calculations such as comparisons and
predictions in reasonable time. That means, a classification basically reduces the
complexity of the task and often leads to an approximation. For a review of
structural and functional protein classifications, see [OCE+03].

We have developed and successfully applied a scoring scheme to protein compar-
isons using sequence, structure or both [SMT08b, MST09]. It is based purely on
Bayesian statistics and derived via a maximally parsimonious automatic classi-
fier [CPT02, CS96] from overlapping protein fragments. In this work we use this
classification for the sake of optimisation and prediction of unknown features,
such as structure or sequence.

3
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Figure 1.2.1: Distribution of the dihedral angles φ and ψ in the protein database.

1.2.3 Protein Structure Prediction

Structure prediction means to propose one or more structures that a given se-
quence would adopt in a living cell. There are two broad categories of such
programs:

1. homology based and

2. ab initio.

In homology-based modelling one uses structural information from known tem-
plates. Programs based on this idea perform very well if homologous templates
can be identified. The quality of the outcome is highly dependent on the quality
and identification of a related template. Finding such a template can be a diffi-
cult task, which often gives no satisfying results. If that is the case, the ab initio
modelling programs try to predict the structure from scratch without explicitly
knowing any related structures. This approach is less reliable than homology
modelling for the cases where the structure of a related protein is known, but
they are the only applicable method when no template structure is available.

Given that homology-based and ab initio methods work best on different prob-
lems, some automatic methods attempt to select or combine the approaches. In
the CASP 8 meeting the Robetta and the Zhang servers were among the top can-
didates [BDNBP+09, CKF+09]. These two programs are difficult to put into one
of the described categories. They are fragment based, i.e. the amino acid sequence
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is split into short fragments and these fragments are used as queries on the tem-
plate database. By doing that, the advantage of the homology-based approaches
are also available for sequences where no complete structural template could be
found. However still, if no or only bad template fragments can be found, mod-
elling from scratch becomes necessary. In this work we propose a new approach,
which is based on self-consistent mean-field optimisation (SCMF), but using a
framework of descriptive statistics and simulated annealing (see section 1.3 and
chapter 3).

1.2.4 Protein Sequence Prediction

Sequence prediction, or more often sequence optimisation, is the task of finding
one or more amino acid sequences that fold to a given structure. It can be
viewed as the inverse problem to structure prediction. This NP-hard problem
[PW02] is not only fundamentally interesting but also relevant for understanding
the relation between sequence and structure. It is likely to be of practical use
for improving protein stability, for example thermostability in washing powder,
for specialising reaction conditions in the production of biodiesel or even for
nanotechnology, for example in the case of personalised medicine. Therefore,
this problem is often called protein design. Despite some impressive literature
results, the design steps have often been rather ad hoc and the method is far from
routine [KB00, KAS+09, FF07, SJ09, KAV05, JAC+08, SDB+08, Tor04]. In this
work we propose an innovative general approach, which is based on the same
ideas as structure prediction, i.e. self-consistent mean-field optimisation (SCMF)
on a framework of descriptive statistics and simulated annealing (see section 1.3
and chapter 3).

1.3 Bayesian Classification of Proteins

The classification used in this work has been described earlier [SMT08b]. How-
ever, the main ideas are explained also here.

1.3.1 Protein Descriptors

The focus of this work is on the conformation of the protein backbone. That
means, the modelling of the side-chain conformations is postponed. This is a
typical procedure and simplifies the problem.

The proteins are described in terms of amino acid sequence and dihedral backbone
angles. Here, the variability of bond lengths and bond angles in the backbone

5
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(the amide plane) within and across proteins is assumed very low and is therefore
ignored, see figure 1.3.1. The carbonyl group and the amide group are nearly in
the same plane and this unit (light blue) is very rigid [HBA+07]. For its actual
influence on the full backbone (re)construction see subsection 2.3.1.

For a protein consisting of l amino acids, i.e. of chain length l, 2l − 2 dihedral
angles describe the conformation of the backbone, namely l − 1 φ and l − 1 ψ
angles (see figure 1.1.1). In this work a Bayesian classification is used to model
the statistical properties [SMT08b], see also subsection 1.3.2.

1.3.1.1 Overlapping Fragments

At the heart of the method is a classification of protein fragments. A protein is
then represented as the set of all possible overlapping fragments, given by

{
(si,xi)

si = (ai, . . . , ai+k−1)
T

∧ xi = (φi, ψi, . . . , φi+k−1, ψi+k−1)
T ∀i ∈ [1, l − k + 1]

}
,

where ai ∈ [1, 20] is the amino acid type at residue i. The non-existent dihedral
angles φ1 and ψl are ignored and T denotes the transpose.
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1.3.1.2 Dihedral Angles, Bond Lengths and Angles

The typical distances and angles on the amide plane are shown in figure 1.3.1. As
these values are fixed the backbone conformation is solely described by its dihedral
angles, φ and ψ (see also figure 1.1.1). When dealing with angles, one has to be
aware of the specialities characterising angles, see appendix A. The classification
in use is based on Gaussian (normal) distributions and has no knowledge about
the periodic nature of angles. It is therefore important to choose boundaries
covering one period (no redundancy) with minimal border effects. That means,
the boundaries are shifted to low populated areas. For φ this is [0, 2π) and for
ψ this is

[
−π

2
, 3π

2

)
. Figure 1.3.2 shows a scatterplot of the angles pairs found in

the protein database [PDBa].

1.3.2 Class Models

The class models used for the amino acid labels are multiway Bernoulli distri-
butions pCj(S = si) and for angles a multivariate Gauss distribution pCj(X =
xi). These are chosen mainly for convenience so that the AutoClass-C pack-
age [CPT02, CS96] could be used for the parameter search.

The combination of these models is a classical mixture model:

p((S,X) = (si,xi)) =
n∑

j=1

wj pCj(S = si) pCj(X = xi), (1.3.1)

where wj denotes the weight for the class Cj and n is the number of classes.
The class weights may also be interpreted as prior probabilities of the fragment
F = (S,X) being in class Cj , which is then denoted by p(F ∼ Cj) = wj.
Formula (1.3.1) comprises two parts, the multiway Bernoulli distributions and the
multivariate Gauss distribution. These are explained in the next two paragraphs.

1.3.2.1 Multiway Bernoulli Distribution

The amino acid labels are modelled by several classes of multiway Bernoulli dis-
tributions. In each class model the dependencies between residues are completely
ignored. That means, a sequence fragment si ∈ [1, 20]k is interpreted as an in-
stance of a discrete random vector S of k independent random variables St with
possible outcomes in [1, 20] each. In each dimension each amino acid label is
assigned the conditional probability of observing this label given the class model
Cj, i.e.

pCj(S = si) =
k∏

t=1

pCj(St = sit). (1.3.2)

7
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However, in the weighted sum of all classes, formula (1.3.1), the residues are
effectively correlated.

1.3.2.2 Multivariate Normal Distribution

The structural terms, i.e. the dihedral angles, are modelled by several classes of
multivariate Gaussian or normal distributions. In each class model a fragment of
dihedral angles is interpreted as an instance of a continuous random vector X of
2k correlated random variables. The model allows the full correlation between
the dihedral angles, but, to keep computational costs low and avoid overfitting,
only angle pairs xit =

(
φt
ψt

)
are allowed to correlate. However, as in the case of

the Bernoulli distributions, the mixture model (formula (1.3.1)) captures the full
correlation. Each fragment xi is assigned the conditional probability density of
observing the dihedral angles given the class model Cj, i.e.

pCj(X = xi) =
exp

[
−1

2

(
xi − µj

)
C−1
j

(
xi − µj

)T]

√
(2π)2k| detCj|

≈
k∏

t=1

pCj(X t = xit)

=
k∏

t=1

exp
[
−1

2

(
xit − µjt

)
Cj

−1
t,t

(
xit − µjt

)T]

√
(2π)2| detCjt,t|

,

where µj =
(
µj

T
1
, . . . ,µj

T
t
, . . . ,µj

T
k

)T
with µjt =

(
µjtφ
µjtψ

)
is the vector of means

and Cj =
(
Cjt,t′

)
t,t′∈[1,k]

with Cjt,t′ =

(
cjtφ,t′φ cjtφ,t′ψ
cjtψ,t′φ cjtψ,t′ψ

)
is the 2k × 2k cov-

ariance matrix of class Cj.
In the next chapter the statistical model is analysed extensively and several
formal approaches for reconstructing dihedral angles and amino acids from it
are developed. Chapter 3 introduces the innovative optimisation method. And
in chapters 4 and 5 the methods are applied to structure prediction and sequence
design, respectively. Finally, in chapter 6 conclusions and outlook are given.
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Chapter 2

Protein Reconstruction

In this chapter the predictive potential of the statistical descriptor based on
the Bayesian classification is analysed in order to see how well the full protein
description is approximated. Therefore, the full description is reconstructed from
the statistical classification and checked against the original description.

Before the reconstruction approaches are introduced in section 2.2, it is important
to have a thorough understanding of the probability model. Therefore, the stat-
istical descriptors are introduced formally along with some explanations about
their theoretical properties in the next section.

2.1 Probability Model

As has been explained previously [SMT08b], the classification can be used to
describe a protein by a set of class probability vectors

{
vi i ∈ [1, l − k + 1]

}

constructed from overlapping fragments. First the backbone of the protein is
broken into maximally overlapping fragments by sliding a window of length k.
Each fragment is described by its dihedral angles (or amino acid labels), from
which probability vectors are calculated. The vector elements are then associated
with the Gaussian terms (Bernoulli terms) in different ways, e.g. to build mixture
distributions (subsection 1.3.2) or to estimate continuous and discrete features
(subsections 2.2.1 and 2.2.3). Here, the theoretical properties of the model are
explained for reconstructing continuous features (i.e. dihedral angles), as their
handling is more complicated than the discrete features (amino acid labels) and
many insights apply for both cases.

11



2.1.1 Dihedral Angles

According to [SMT08b, CS96] the elements of the probability vector vi =
(
vij
)
j∈[1,n]

for a structure fragment xi = (φi, ψi, . . . , φi+k−1, ψi+k−1)
T are given by

vij = pxi
(F ∼ Cj) = p

(
F ∼ Cj X ≈ xi

)
=

wj pCj(X ≈ xi)
n∑

j′=1

wj′ pCj′ (X ≈ xi)
(2.1.1)

and can be interpreted as the n-dimensional vector of probabilities of all n classes
Cj given the dihedral angles xi. The prior class weights wj directly come from
the classification and the structural class weights (joint probabilities) are taken
to be

pCj(X ≈ xi) =

∫
· · ·
∫

A

pCj(X = x) dx1 . . . dx2k, (2.1.2)

where A = [xi1−ǫ1, xi1+ǫ1]×· · ·× [xi2k−ǫ2k, xi2k+ǫ2k] is the integration domain

with ǫ ∈ R+2k
being some small vector-valued error.

From first principles one might be tempted to estimate the original angles of
the fragment by the expectation values of the associated mixture distribution
(formula (1.3.1), page 7) [Kre98]. The vector of expectation values using the
probability vector corresponding to the fragment is given by

xest
i =

∫
· · ·
∫

R2k

x

n∑

j=1

vij pCj(X = x) dx1 . . . dx2k

=
n∑

j=1

vij

∫
· · ·
∫

R2k

x pCj(X = x) dx1 . . . dx2k

=
n∑

j=1

vijµj, (2.1.3)

where µj is the vector-valued mean of the multivariate Gaussian modelling the
class Cj .

2.1.1.1 Limitations of Joint Probabilities

The formula for expectation values (2.1.3) has some principal limitations when
used with random vectors. First principles say, the expectation value of a random
vector is defined component-wise [Kre98]. Formula (2.1.3) can be viewed as
an average of the class means, which does not lead to the right answer as the
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Figure 2.1.1: The ellipsoidal contours of two bivariate classes (red and blue). The angle pair
to be estimated is marked by a circle.

probability vectors (formula (2.1.1)) comprise joint probabilities for multivariate
classes. Let us consider the origin of these probabilities in order to understand
why this a problem. For each class the probability densities of the Gaussian
distribution functions define contours in the conformational space (i.e. the space
of dihedral angles) in shape of ellipsoids. In the ideal case, these ellipsoids would
intersect in a single point, which would be the original angles corresponding to the
probability vector. However, a weighted average of two class means would lie only
somewhere on a line connecting the centres of the classes. For two dimensions this
problem is illustrated in figure 2.1.1 and is described formally in the following.

Let Aj = C−1
j be the inverse correlation matrix of class Cj, then the probability

density for two correlated angles θ1 and θ2 is given by

pCj

(
θ1
θ2

)
=

exp
(
−1

2

(
θ1 − µj1, θ2 − µj2

)
Aj

(
θ1−µj1
θ2−µj2

))

√
(2π)2| detCj|

.

This is equivalent to

−2 log

(
pCj

(
θ1
θ2

)√
(2π)2| detCj|

)

=
(
θ1 − µj1, θ2 − µj2

)
Aj

(
θ1 − µj1
θ2 − µj2

)

=
2∑

t=1

2∑

t′=1

ajt,t′
(
θt − µjt

) (
θt′ − µjt′

)
. (2.1.4)
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The expression (2.1.4) is the equation for the ellipsoidal contour, also known as
the Mahalanobis distance [Mah36].

Averaging class means with one single weight per class will not lead to the original
angles in general. With joint probabilities of whole fragments, it is impossible to
find a correct weighting, as illustrated in figure 2.1.1. Instead, the use of marginal
probability densities to average the class means correctly with weights for each
dimension is considered and analysed in the following

2.1.1.2 Marginal Probability Density Vectors

Marginal probability density vectors are defined in close analogy to normal prob-
ability vectors. A third index t ∈ [1, k] reflecting the position in the fragment
is added to the known indices for fragments i ∈ [1, l − k + 1] and for classes
j ∈ [1, n]. For the dihedral angle pair xit = (xitφ , xitψ)T = (φi+t−1, ψi+t−1)

T

at the tth residue of a fragment xi of length k the elements of the marginal
probability density vectors vmarg

i =
(
vmarg
i,1 , . . . ,vmarg

i,t , . . . ,vmarg
i,k

)
are taken to be

vmarg
i,t =




(
vmarg
i,tφ j

)
j∈[1,n](

vmarg
i,tψ j

)
j∈[1,n]




T

=

( (
p
(
F ∼ Cj Xtφ = φi+t−1

))
j∈[1,n](

p
(
F ∼ Cj Xtψ = ψi+t−1

))
j∈[1,n]

)T

=







wj pCj(Xtφ = φi+t−1)
n∑

j′=1

wj′ pCj′ (Xtφ = φi+t−1)




j∈[1,n]


wj pCj(Xtψ = ψi+t−1)
n∑

j′=1

wj′ pCj′ (Xtψ = ψi+t−1)




j∈[1,n]




T

. (2.1.5)

Actually, each vmarg
i is a probability density matrix consisting of 2k columns

and n rows. The marginal probability density functions pCj(Xtφ = φi+t−1)
and pCj(Xtψ = ψi+t−1) are univariate Gaussian distributions with parameters
µjtφ , cj tφ,tφ and µjtψ, cj tψ,tψ, respectively [Pol95].

With these marginal probability vectors the expectation values can be formulated

14



in analogy to equation (2.1.3) for xi
est
tφ

and xi
est
tψ

, respectively, by

xi
est
tφ

=

∫

R

φ
n∑

j=1

vmarg
i,tφ j

pCj(Xtφ = φ) dφ

=
n∑

j=1

vmarg
i,tφ j

∫

R

φ pCj(Xtφ = φ) dφ

=
n∑

j=1

vmarg
i,tφ j

µjtφ (2.1.6φ)

∧ xiesttψ =
n∑

j=1

vmarg
i,tψ j

µjtψ. (2.1.6ψ)

The marginal probabilities used here, allow one to calculate expectation values
in accordance with first principles by averaging class means component-wise.
Still, this will not necessarily lead to the original angle values as the Gaussian
probability densities do not scale linearly in the space between the class means.
They rather lie on some manifold where linear Euclidean distances are not valid.
The observations in paragraph 2.1.1.1 show that the manifold is defined by the
Mahalanobis distance (formula (2.1.4)). However, in order to use a linear average
of class means, the weights must scale linear with the angle value that led to the
class weights. In the next paragraph a linearisation of this manifold is derived
for the class weights.

2.1.1.3 Linearisation of Class weights

In this paragraph, weights for averaging mean values of univariate Gaussian dis-
tributions are derived step by step. Consider the simple case of two mean values
µ1 and µ2. Given two density values p1, p2 from two univariate Gaussians with
parameters µ1, σ

2
1 and µ2, σ

2
2, respectively, and assuming that p1 and p2 were de-

rived from a single value α, then this value can be estimated by averaging over
the class means µ1 6= µ2 using suitable weights w1 and w2, i.e.

αest = w1µ1 + w2µ2

with 1 = w1 + w2.

As α is an angle, without loss of generality it can be assumed that µ1 ≤ α ≤ µ2

holds. Otherwise one µ is substituted with its periodic image, i.e. µ + 2π or
µ − 2π, and exchanged with the other µ. In the following the unknown weights
w1, w2 are analytically derived. As αest is unknown, a formulation only based on
the density values p1 and p2 is given below.
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Proposition:

w1 = 1 +

√
2σ1

µ1 − µ2

√
− log [

√
2πσ1]− log [p1]

∧ w2 = 1−
√

2σ2
µ1 − µ2

√
− log [

√
2πσ2]− log [p2]

Proof: Let α be the original angle. Then the densities p1 and p2 are by the
definition of univariate Gaussian (normal) distribution functions taken to be

p1(α) =
1√

2πσ1
exp

[
−(α− µ1)

2

2σ2
1

]

∧ p2(α) =
1√

2πσ2
exp

[
−(α− µ2)

2

2σ2
2

]
.

Substituting into the proposed equations for the weights gives

w1(α) = 1 +

√
2σ1

µ1 − µ2

√
− log

[√
2πσ1

]
− log [p1(α)]

= 1 +

√
2σ1

µ1 − µ2

√√√√√− log
[√

2πσ1

]
− log




exp
[
− (α−µ1)2

2σ2
1

]

√
2πσ1




= 1 +

√
2σ1

µ1 − µ2

√
− log

[√
2πσ1

]
+

(α− µ1)2

2σ2
1

+ log
[√

2πσ1

]

= 1 +
(α− µ1)

µ1 − µ2

∧ w2(α) = 1−
√

2σ2
µ1 − µ2

√
− log

[√
2πσ2

]
− log [p2(α)]

= 1− (α− µ2)

µ1 − µ2

.

16



0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2

w
ei

gh
t

α

p1 p2 w1 w2

Figure 2.1.2: Two Gaussians with parameters µ1 = −2, σ2
1 = 1 and µ2 = 1, σ2

2 = 2 and their
corresponding linearised weights.

In fact, the weights w1(α), w2(α) scale linear with α. It remains to be shown that
α equals αest:

αest = w1µ1 + w2µ2

=

(
1 +

(α− µ1)

µ1 − µ2

)
µ1 +

(
1− (α− µ2)

µ1 − µ2

)
µ2

=
(µ1 − µ2)µ1 + (α− µ1)µ1 + (µ1 − µ2)µ2 − (α− µ2)µ2

µ1 − µ2

=
µ2
1 − µ2µ1 + αµ1 − µ2

1 + µ1µ2 − µ2
2 − αµ2 + µ2

2

µ1 − µ2

=
αµ1 − αµ2

µ1 − µ2
= α

✷

The weights and the two Gaussians are shown in figure 2.1.2.

This can be generalised to n Gaussians by sorting them according to their means
and calculating the pairwise weights wj,j′ ∀j, j′ ∈ [1, n]. Let w′

j,j′ be an auxiliary

17



variable taken to be

w′
j,j′ =





1 +

√
2σj

µj − µj′

√
− log [

√
2πσj]− log [pj] if µj < µj′ ,

1 +

√
2σj

µj′ − µj

√
− log [

√
2πσj]− log [pj] if µj > µj′ ,

undefined else,

then the pairwise weights are

wj,j′ =





1−
w′
j,j′ − 1

1 + 2π
µj−µj′

if w′
j,j′ + w′

j′,j > 0 ∧ w′
j,j′ + w′

j′,j 6= 1 ∧ µj < µj′ ,

1−
w′
j,j′ − 1

1 + 2π
µj′−µj

if w′
j,j′ + w′

j′,j > 0 ∧ w′
j,j′ + w′

j′,j 6= 1 ∧ µj > µj′ ,

w′
j,j′ else.

With this the wanted angle αest can be calculated by obeying the periodicity.

αest =





arctan
( s̄
c̄

)
if c̄ > 0 ∧ s̄ > 0,

arctan
( s̄
c̄

)
+ 2π if c̄ > 0 ∧ s̄ ≤ 0,

arctan
( s̄
c̄

)
+ π if c̄ < 0,

π

2
if c̄ = 0 ∧ s̄ ≥ 0,

3π

2
if c̄ = 0 ∧ s̄ < 0,

(2.1.7)

where c̄ and s̄ are the mean values of the cosines and sines of the estimated angle
over all class pairs. Formally

c̄ =
1

n

n∑

j=1

n∑

j′=1

wj,j′ cosµj + wj′,j cosµj′

and s̄ =
1

n

n∑

j=1

n∑

j′=1

wj,j′ sinµj + wj′,j sinµj′ .

In order to apply this to estimate the dihedral angles xi
est
tφ

and xi
est
tψ

, unnormalised

marginal probability density vectors nonormvmarg
i must be used. For a structural

fragment xi the unnormalised marginal probability density vectors are taken to

18



be

nonormvmarg
i,t =




(
nonormvmarg

i,tφ j

)
j∈[1,n](

nonormvmarg
i,tψ j

)
j∈[1,n]




T

=




(
wj pCj(Xtφ = xi

est
tφ

)
)
j∈[1,n](

wj pCj(Xtψ = xi
est
tψ

)
)
j∈[1,n]




T

. (2.1.8)

Then the wanted angle αest in formula (2.1.7) is substituted with xi
est
tφ

or xi
est
tψ

and the density value pj is substituted with
nonormvmarg

i,tφ j

wj
or

nonormvmarg
i,tψ j

wj
, respect-

ively. The difference of nonormvmarg
i,t to the previous definition (formula (2.1.5))

is the missing normalisation. Class probabilities that are normalised can not be
used for calculating exact weights, because the normalisation constant is not re-
constructible. The probability vectors (formula (2.1.1)) that are commonly used
in other applications [CS96, SMT08b, MT08, MST09] are based on probabilit-
ies of finding dihedral angles within some small error interval. The linearised
weights that have been derived here require working with the density values dir-
ectly. That means, the probabilities are not correctly defined and the approach
has no sensible stochastic meaning apart from its analytical reasoning.

2.2 Methods

In this section some methods for reconstructing dihedral angles or amino acids
from these probabilistic descriptors are presented and analysed for their potential
to find the original angles or amino acid types. In figure 2.2.1 a test program
flow is shown for reconstructing dihedral angles. It allows one to compare the
constructed angles to the angles of a known structure. The steps are as follows.

1. The protein structure is broken into overlapping fragments of dihedral
angles.

2. The fragments are classified, i.e. probability vectors are calculated.

3. The class weights are associated with Gaussians in order to build mixture
distributions.

4. From the mixture distributions, dihedral angles are calculated and com-
pared to the original values.

5. A three-dimensional model can be constructed from the dihedral angles and
compared to the original structure.
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Figure 2.2.1: Method for testing the reconstruction capability of a classification.

Similarly, the amino acid label reconstruction can be tested.

2.2.1 Dihedral Angles

First some formulae for reconstructing dihedral angles from probability vectors
are introduced. A protein structure of length l is represented by a set of l− k+ 1
probability vectors vi =

(
vij
)
j∈[1,n] each describing an overlapping fragment xi,

where i ∈ [1, l − k + 1]. This raises the problem of combining the overlapping
parts. Since there is no rigorous method, several approaches were implemented
and tested.

Similar to the case of sequence fragments (section 2.2.3 page 26), four principle
combinations of the overlaps are proposed, which all have their advantages and
disadvantages. Three combinations can be justified in terms of probability es-
timates. The fourth approach, could be termed an analytical-technical method.
The four approaches are named after their primary underlying combination ideas.
The three probabilistic approaches are

1. the “geometric mean” (formula (2.2.1)),

2. the “arithmetic mean” (formula(2.2.2)), and

3. the “maximum” approach (formula (2.2.3)),

which are introduced one after another in turn. The technical approach is called
“inverse Gaussian” and is introduced in paragraph 2.2.1.4 on page 23.
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2.2.1.1 Geometric Mean

Let (φest
i , ψest

i )
T

denote a pair of estimated dihedral angles and

xest = (φest
1 , ψest

1 , . . . , φest
i , ψest

i , . . . , φest
l , ψest

l )
T

the estimated dihedral angles of the
whole protein, then the overlapping parts can be combined by treating them as
statistically independent which means multiplying the corresponding probabil-
ities. Normalisation then leads to a geometric mean of the probabilities of an
angle pair appearing at different dimensions of the overlapping fragments. Form-
ally given by

(
φest
i

ψest
i

)
=

∫∫

R2

(
φ

ψ

)
|Ii|

√√√√∏

i′∈Ii

n∑

j=1

vi′j pCj

(
X i−i′+1 =

(
φ

ψ

))
dφ dψ, (2.2.1)

where X t =

(
Xtφ

Xtψ

)
is the bivariate random vector modelling the values of the

dihedral angle pair at the tth residue of a fragment. The index set for a residue
i of all overlapping fragments xi′ is defined as

Ii = [max{1, i− k + 1}, min{l − k + 1, i}]

and the integrals run over the angles φ and ψ.

2.2.1.2 Arithmetic Mean

The second combination approach is based on the idea that the overlapping parts
are actually just different stochastic models accounting for the same variable.
That means the corresponding probabilities should be weighted by the respective
prior model probabilities and added up. However, as the prior model probabilities
are not known, they are assumed to have equal probabilities here. Therefore,
the sum is normalised by the number of overlapping models |Ii| leading to an
arithmetic mean of the overlapping probabilities. The formula is very similar to
the geometric mean approach, but can be simplified to

(
φest
i

ψest
i

)
=

∫∫

R2

(
φ

ψ

)
1

|Ii|
∑

i′∈Ii

n∑

j=1

vi′j pCj

(
X i−i′+1 =

(
φ

ψ

))
dφ dψ

=
1

|Ii|
∑

i′∈Ii

n∑

j=1

vi′jµj i−i′+1
, (2.2.2)

where µjt =

(
µjtφ
µjtψ

)
is the two-dimensional mean vector for the tth residue of

class Cj .
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2.2.1.3 Maximum

The third approach is similar to the second combination approach in that it also
combines the overlapping parts by an arithmetic mean. But instead of calculating
the expectation values for each mixture model, the expectation values (i.e. the
mean vectors) of the individual classes with highest probabilities are averaged.
This is computationally less expensive and formally taken to be

(
φest
i

ψest
i

)
=

1

|Ii|
∑

i′∈Ii
µjmax(i′)i−i′+1

, (2.2.3)

where jmax(i
′) = arg

n
max
j=1

vi′j is the index of the class with the highest weight.

From theory it is known, that linear averaging with joint probabilities will not
necessarily lead to correct estimates. In section 2.1 it has been shown, that
marginal probability densities could lead to better results. With the marginal
probability density vectors an arithmetic mean approach can be formulated in
analogy to equation (2.2.2) for φest

i and ψest
i , respectively, by

φest
i =

∫

R

φ
1

|Ii|
∑

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1φj

pCj(Xi−i′+1φ = φ) dφ

=
1

|Ii|
∑

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1φj

∫

R

φ pCj(Xi−i′+1φ = φ) dφ

=
1

|Ii|
∑

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1φj

µj i−i′+1φ
(2.2.4φ)

∧ ψ̂i =
1

|Ii|
∑

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1ψj

µj i−i′+1ψ
. (2.2.4ψ)

In similar ways the geometric mean and maximum approaches, i.e. formulae
(2.2.1) and (2.2.3), can be reformulated using marginal probability density vectors

by replacing (φest
i , ψest

i )
T

with φest
i or ψest

i and vi′j with vmarg
i′,i−i′+1φj

or vmarg
i′,i−i′+1ψj

and pCj

(
X i−i′+1 = (φ, ψ)T

)
with pCj(Φi−i′+1 = φ) or pCj(Ψi−i′+1 = ψ), respect-

ively. This leads to the geometric mean approach for marginal probability density
vectors

φest
i =

∫

R

φ |Ii|

√√√√∏

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1φj

pCj(Φi−i′+1 = φ) dφ (2.2.5φ)

∧ ψest
i =

∫

R

ψ |Ii|

√√√√∏

i′∈Ii

n∑

j=1

vmarg
i′,i−i′+1ψj

pCj(Ψi−i′+1 = ψ) dψ, (2.2.5ψ)
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and the maximum approach based on marginal probability density values

φest
i =

1

|Ii|
∑

i′∈Ii
µjmax i−i′+1φ

(2.2.6φ)

∧ ψest
i =

1

|Ii|
∑

i′∈Ii
µjmax i−i′+1ψ

. (2.2.6ψ)

These approaches are also tested with linearised weights as suggested in subsec-
tion 2.1.1.3, page 15.

2.2.1.4 Inverse Gaussian

Here the fourth rather technical approach to reconstructing dihedral angles from
probability vectors is introduced and later analysed for its performance. The
inverse Gaussian approach is not justified in probabilistic terms, but rather ana-
lytically derives the original angles from their probability functions.

First the inverse Gaussian approach is developed using joint probabilities. The
basic idea for the inverse Gaussian approach is to construct an inverse formula
by solving the following equation system for the unknown angles xi.

nonormvi1 = w1

exp
[
−1

2
(xi − µ1)C

−1
1 (xi − µ1)

T
]

√
(2π)2k| detC1|

...

∧ nonormvij = wj
exp

[
−1

2

(
xi − µj

)
C−1
j

(
xi − µj

)T]

√
(2π)2k| detCj|

...

∧ nonormvin = wn
exp

[
−1

2
(xi − µn)C−1

n (xi − µn)T
]

√
(2π)2k| detCn|

A univariate inverse Gaussian would lead to two possible angle values, left and
right from the class mean. To decide which angle is the correct one a second
univariate inverse Gaussian (a second class) is needed giving another two pos-
sible angle values. Two values of these four possible values are equal or at least
very similar and can be interpreted as the wanted angle. As illustrated in subsec-
tion 2.1.1.1, page 12, for two dimensions the equation system results in either 0,
1, 2, 3 or 4 solutions (an infinite number of solutions does not occur, as µj 6= µj′
holds for all j′ 6= j). But as the equation system is over-defined (many more
classes than angles to be estimated, i.e. n ≫ 2k), a single solution could be
found this way. In general, multivariate Gaussians are used to model multivari-
ate classes of fragments of length k consisting of 2k dihedral angles. As shown in
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paragraph 2.1.1.1 for two dimensions, one 2k-variate inverse Gaussian would lead
to a 2k-dimensional ellipsoid for a given function value (also called a contour), i.e.
the solutions for a single equation lie on a hyperellipsoid of dimension 2k. The
formulae are very large and are not given here explicitly. The common points of
two such ellipsoids (if they form an equation system) would describe either

• a 2k − 1-dimensional ellipsoid,

• a single point,

• two 2k − 1-dimensional ellipsoids,

• two single points,

• one 2k − 1-dimensional ellipsoid and one point,

• the original ellipsoid or

• no point.

However, the last two cases can be excluded, because the equation system is
assumed to be solvable (at least approximately) since it was constructed from
a single vector xi and the ellipsoids come from different classes. In order to
determine the wanted angle values, a minimum of 2k+ 1 2k-variate Gaussians is
needed. Although, the number of classes n is much higher then their dimension
2k, it is not guaranteed to find a unique solution.

The solution becomes much simpler when the unnormalised marginal probabil-
ity vectors are used for the following equation system (for ψ angles this looks
analogous).

nonormvmarg
i,tφ 1

= w1

exp

[
−

(
φi+t−1−µ1tφ

)2

2c1tφ,tφ

]

√
2πc1tφ,tφ

...

∧ nonormvmarg
i,tφ n

= wn

exp

[
−

(
φi+t−1−µntφ

)2

2cntφ,tφ

]

√
2πcntφ,tφ

⇐⇒ µ1tφ
±

√√√√−2c1tφ,tφ log

[
nonormvmarg

i,tφ 1

w1

√
2πc1tφ,tφ

]
= φi+t−1

...

∧ µntφ ±

√√√√−2cntφ,tφ log

[
nonormvmarg

i,tφ n

wn

√
2πcntφ,tφ

]
= φi+t−1

(2.2.7)
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A single equation results in two possible values and the common value of the
system (if any) should be the desired angle. Theoretically this may to lead to
exactly reconstructed angles.

For results on these formulae for dihedral angle reconstruction see section 2.3.2.

2.2.2 Backbone Reconstruction

Using the bond lengths and the bond angles from the literature [EH91, HBA+07]
or from a known protein structure a full atom representation of the protein back-
bone can be build solely by knowing the dihedral angle sequence. This should
work, because the amide plane is known to be a relatively rigid unit, see fig-
ure 1.3.1, page 6. Here, the same method as in [Mah09] is used to convert a
sequence of dihedral angles to Cartesian coordinates of atoms and bonds. It
basically takes any full atom representation of the desired length with arbitrary
dihedral angles. The difference between these and the new dihedral angles is
calculated and then imposed by several rotational and translational moves.

When calculating Cartesian coordinates from a given sequence of φ- and ψ-angles
the unknown bond lengths and bond angles as well as the torsional ω-angle
have to be guessed, see figures 1.1.1 on page 2 and 1.3.1 on page 6. However,
compared to the variation in φ and ψ and the length of proteins, these values
actually vary only very little and are assumed the be fixed. It is rather interesting
to see how much error is introduced due to this approximation [EH91, HT04,
BSDK09]. To investigate this for our implementation, the dihedral angles of
known protein structures (the PDBSelect50 subset [PDBb]) are extracted and
then the unknowns can be taken either from another, sufficiently long, protein
structure (e.g. 2FHF), the literature (i.e. a polyalanine model constructed by
USCF Chimera [PGH+04]) or from the known structures themselves, respectively.
The comparison of the generated structures to the target structures reveals the
introduced reconstruction error. The procedure is as follows for each structure
in the test set:

1. extract the φ,ψ sequence from the known structure

2. set all φ and ψ angles to zero in a copy of the known structure, so that the
structure becomes completely extended

3. do the same for 2FHF and the polyalanine and shorten the polymers to the
size of the known structure

4. set the φ and ψ angles to the previously extracted values in the copied
structure, 2FHF and the polyalanine

5. compare all three structures to the original unmodified target structure
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2.2.3 Amino Acids

In this section reconstruction approaches for the discrete sequence terms are intro-
duced. In analogy to the structural fragments the protein sequence is broken into
overlapping fragments for which probability vectors are calculated (figure 2.2.1
page 20). From these, the original amino acid labels are reconstructed in order
to get a feeling for the crudeness of the simplification due to the Bayesian clas-
sification. According to [SMT08b, CS96] the elements of the probability vector
vi =

(
vij
)
j∈[1,n] for a sequence fragment si of length k are given by

vij = psi
(F ∼ Cj) = p(F ∼ Cj|S = si) =

wj pCj(S = si)
n∑

j′=1

wj′ pCj′ (S = si)
(2.2.8)

and can be interpreted as the n-dimensional vector of probabilities of all n classes
Cj given the sequence si. The prior class weights wj are directly taken from the

classification and pCj(S = si) =
k∏
t=1

pCj(St = sit) is the product of the 20-way

Bernoulli probabilities. As amino acid labels are nominal features, averages or
expectation values to construct the amino acid labels from the probability vectors
(as done for dihedral angles) are not defined. One way to find a representative
is to search for the class with the highest probability at each residue. This leads
to the construction formula for the estimated amino acid label si

est
t at the tth

residue of the sequence fragment si, given by

si
est
t = arg

20
max
a=1

n∑

j=1

vij pCj(St = a), (2.2.9)

where arg max
a

f(a) = amax : f(amax) ≥ f(a) ∀a and the weighted sum forms the

mixture distribution for amino acids.

However, a protein sequence of length l is represented by a set of l− k + 1 prob-
ability vectors each describing an overlapping fragment si where i ∈ [1, l−k+ 1].
This raises the problem of combining the overlapping parts. There exists no
sensible way to combine amino acid types, but the corresponding probabilities
can be combined. As for the reconstruction of dihedral angles the same three
probabilistic ways and one analytical-technical approach are investigated here
for the same reasons as stated in section 2.2.1. They are given as extensions on
formula (2.2.9) using the notation sest = (sest1 , . . . , sesti , . . . , sestl )T for the estim-
ated protein sequence. The linear weighted average over all classes stays for the
geometric mean and the arithmetic mean approaches. However, the averaging of
the overlapping parts is dropped as the absolute values are enough for finding
the amino acid label with maximal probability.
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2.2.3.1 Geometric Mean

Considering the overlapping parts as independent random variables leads to the
geometric mean or product approach, which is taken be

sesti = arg
20

max
a=1

∏

i′∈Ii

n∑

j=1

vi′j pCj(Si−i′+1 = a), (2.2.10)

where Ii is the index set for a residue si of all overlapping fragments si′ , formally
given by Ii = [max{1, i− k + 1},min{l − k + 1, i}].

2.2.3.2 Arithmetic Mean

The arithmetic mean or sum approach is based on the idea that the overlapping
parts are different models for the same random variable and is formulated by

sesti = arg
20

max
a=1

∑

i′∈Ii

n∑

j=1

vi′j pCj(Si−i′+1 = a). (2.2.11)

2.2.3.3 Maximum

The maximum approach for amino acids looks a little bit different to the max-
imum approach for dihedral angles, but it follows the same idea. Estimate the

unknown label by taking the representative
(

arg
20

max
a=1

)
with the highest prob-

ability over all overlapping fragments

(
max
i′∈Ii

)
and all classes

(
n

max
j=1

)
. Formally

written

sesti = arg
20

max
a=1

max
i′∈Ii

n
max
j=1

vi′j pCj(Si−i′+1 = a). (2.2.12)

2.2.3.4 Inverse Calculation

The fourth rather technical approach to construct the amino acid sequence from
probabilities uses marginal probability vectors, similar as in subsection 2.2.1.4
for dihedral angles. The idea is to find the amino acid that led to the probability
values by inverse calculation. The unnormalised marginal probability vector for
an amino acid sequence fragment si is defined by

nonormvi =
(
nonormvij t

)
j∈[1,n]∧t∈[1,k]

=
(
wj pCj(St = sit)

)
j∈[1,n]∧t∈[1,k]

, (2.2.13)
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where i is the index of the first residue in the fragment, k is the length of the
fragment and n is the number of classes.

Let ji,i
′

max = arg
n

max
j=1

nonormvi′ ji−i′+1

wj
be the class having maximal probability for

fragment i′ at the mutual residue i − i′ + 1 with fragment i. Then i′max =

arg max
i′∈Ii

nonormvi′
j
i,i′
max i−i′+1

wj
is the overlapping fragment with the highest probability

for that class. With this the amino acid label for the residue i can be estimated
using marginal probability vectors by

sesti = arg
20

max
a=1

pC
j
i,i′max
max

(
Si−i′max+1 = a

)
. (2.2.14)

For results on these formulae for sequence reconstruction see section 2.3.3.

2.2.3.5 Substitution Matrix

The comparison of a substitution matrix calculated from a set of generated se-
quences to an established matrix like blosum [HH92] summerises some inter-
esting properties of our method. It shows which substitutions are under- or
overrepresented and the correlation coefficient quantifies how close the sampled
sequences are to being biologically relevant. In order to calculate a substitution
matrix from a pool of generated sequences, the relative frequencies of aligned
amino acids pab and the relative frequencies of seeing this cooccurrence by chance
papb have to be extracted from the sequence pool. According to [HH92] the matrix
entries are then given by

sab =
1

λ
log

(
pab
papb

)
,

where λ is a scaling factor.

2.3 Results

A few classifications have been tested. Depending on the classification the results
are different, but the trends stay the same. Therefore, the evaluation is restricted
to a classification that did reasonably well in other projects, e.g. comparing pro-
teins. It consists of 162 classes for fragments of length five. In this classification
five Gaussian distributions cross the periodic boundary of the ψ angles (class
mean ± deviation) at −π

2
. No class crosses the φ boundary at 0 and no class

spans more than one period.

28



0

5

10

15

20

25

30

35

40

original 2FHF polyALA
0

10

20

30

40

50

60

70

80

φ
-

an
d
ψ

-R
M

S
D

[r
ad
·10

−
5
]

C
α
-R

M
S

D
[Å
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Figure 2.3.1: Reconstruction of all structures of the PDBSelect50 subset [PDBb] using their
φ- and ψ-angles and either their original geometries, the geometry of 2FHF or a poly-Alanine
model, respectively. The boxes indicate the 1st (25%), 2nd (median) and 3rd (75%) quartiles
and the whiskers the minimum and maximum.

2.3.1 Influence of Bond Lengths and Angles

Figure 2.3.1 quantifies the influence of bond lengths and angles on the reconstruc-
ted coordinates of the PDBSelect50 subset using the original dihedral angles φ
and ψ. As expected all modified structures with native geometry have no differ-
ence to the original structures, respectively, besides precision errors. The modified
structures with the geometry of 2FHF have significantly large root mean squared
deviations on the α-carbon positions (Cα-RMSD). The situation with the ideal-
ised geometry (polyalanine) does not look much different as seen in figure 2.3.1.

For a discussion on these issues see section 2.4.1 on page 34.

2.3.2 Dihedral Angle Reconstruction

In order to demonstrate the potential of the formulae introduced in section 2.2.1
the reconstructed dihedral angles are compared to the native values of a few ex-
ample structures. Four approaches are tested altogether. Two approaches are
probabilistic using joint probability vectors, namely the arithmetic mean (for-
mula (2.2.2)) and the maximum approach (formula (2.2.3)). One probabilistic
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(c) arithmetic mean on marginal probabil-
ities with linearised weights,
φ-RMSD: 0.239 (13.7◦),
ψ-RMSD: 0.283 (16.2◦),
Cα-RMSD: 22.188Å
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(d) inverse Gaussian on marginal probabil-
ities with linearised weights,
φ-RMSD: 0.276 (15.8◦),
ψ-RMSD: 0.539 (30.9◦),
Cα-RMSD: 17.880Å

Figure 2.3.2: Four φψ plots of the dihedral angles of the protein 1AKI. Shown in red are the
actual target values and in blue the values estimated by using an arithmetic mean (a), using a
maximum of the overlapping parts (b), using marginal probabilities with an arithmetic mean
of the overlapping parts and with linearised weights (c) and using marginal probabilities with
the technical inverse Gaussian approach (d), respectively.
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Figure 2.3.3: Performance of four reconstruction formulae tested on the PDBSelect50 sub-
set [PDBb]. (2.2.2): arithmetic mean on joint probabilities, (2.2.3): maximum on joint prob-
abilities, (2.2.4): arithmetic mean on marginal probabilities with linearised weights, (2.2.7):
inverse Gaussian on marginal probabilities with linearised weights. The boxes indicate the 1st
(25%), 2nd (median) and 3rd (75%) quartiles and the whiskers the minimum and maximum.

approach, the arithmetic mean, is also tested with marginal probabilities and
linearised weights (formula (2.2.4) combined with formula (2.1.7)). And finally
the fourth rather technical approach uses inverse Gaussians (formula (2.2.7)).
Results for the other approaches are not shown, because either they take very
long to obtain (integration in the geometric mean approaches) or they are not
very different to the results presented here.

From the probability vectors for structure 1AKI the dihedral angles are recon-
structed and compared to the original values. Figure 2.3.2 shows their distribu-
tions in scatter plots for each tested formula. In almost all four plots the generated
angles fall into the three prominent regions, right-handed helical, strand and left-
handed helical. The deviations to the original values seem to be equally high
for the two probabilistic approaches using joint probability vectors. Although
they differ in their Cα-RMSD, the dihedral angle difference between the arith-
metic mean and maximum approach is only very little as seen in plots 2.3.2a and
2.3.2b.

The four approaches are also tested on the whole PDBSelect50 subset [PDBb].
The results are shown in figure 2.3.3. The arithmetic mean approach with mar-
ginal probabilities and linearised class weights yields the lowest dihedral angle
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protein performance of formula [%]
sequence (2.2.10) (2.2.11) (2.2.12) (2.2.14)
1TU7A 38 38 33 76
1FC2C 42 42 40 79
1ENH 33 33 37 74
4ICB 54 55 49 82
1BDD 40 40 35 82
1AKI 36 35 27 72
2GB1 41 43 36 91
1HDDC 33 32 35 72

Table 2.3.1: Reconstruction of a few example sequences. (2.2.10): geometric mean on joint
probabilities, (2.2.11): arithmetic mean on joint probabilities, (2.2.12): maximum on joint
probabilities, (2.2.14): inverse calculation on marginal probabilities.

RMSDs on average. Again the arithmetic mean and the maximum approach
with joint probabilities perform equally well on this dataset. On average these
two approaches also show no significant difference in Cα-RMSD.

In section 2.4.2 the dihedral angle reconstruction results are discussed.

2.3.3 Sequence Reconstruction

In order to demonstrate the potential of the statistical description of the protein
sequence, the three probabilistic approaches from section 2.2.3, geometric mean
(formula (2.2.10)), arithmetic mean (formula (2.2.11)) and maximum (formula
(2.2.12)) with joint probabilities as well as the technical inverse calculation (for-
mula (2.2.14)) with marginal probabilities are tested on a few example sequences
and on the large PDBSelect50 subset [PDBb]. The calculated sequences are com-
pared to the native sequences, see table 2.3.1 and figure 2.3.4. The similarity
for the technical reconstruction approach (formula (2.2.14)) is highest for all se-
quences. The other, probabilistic approaches perform significantly worse, but
give similar results compared to each other.

The average performance of reconstruction of the arithmetic mean approach (for-
mula (2.2.11)) is 41% sequence identity (figure 2.3.4). A matrix calculated from
the observed substitutions is shown in table 2.3.2 (lower triangle). The difference
to the blosum 40 matrix is shown in the upper part of the same table. The
strong negative entries in this difference matrix originate from substitutions that
were not observed for the arithmetic mean approach. The correlation coefficient
is 0.15. The average reconstruction performance for the inverse calculation ap-
proach (formula (2.2.14)) is 93% sequence identity and the correlation coefficient
of its substitution matrix and the blosum 90 matrix is 0.5.
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A R N D C Q E G H I L K M F P S T W Y V
-4 2 1 0 1 0 1 -3 2 -2 2 1 0 1 1 -1 0 2 1 -1 A

-10 -3 0 -5 -5 1 2 -3 -5 2 -3 -7 -6 2 0 0 -6 -7 2 R
A 1 -8 -1 -6 -3 1 1 -3 -6 2 -1 -6 -5 0 -2 -2 -4 -6 2 N
R 0 -1 -8 2 0 -2 2 0 1 1 -1 1 3 1 0 1 4 2 1 D
N 0 -3 0 -23 -4 0 2 -3 -4 2 -5 -4 -6 3 0 0 -1 -3 2 C
D -1 -1 1 1 -9 -2 1 -3 -5 2 -1 -7 -4 1 -2 -1 -7 -7 3 Q
C -1 -8 -8 0 -7 -6 1 0 2 1 -1 1 2 -1 0 1 1 1 2 E
Q 0 -3 -2 -1 -8 -1 -7 2 1 0 1 0 1 -2 0 0 0 1 1 G
E 0 0 0 0 -2 0 1 -20 -5 2 0 -9 -6 0 0 0 4 -10 4 H
G -2 -1 1 0 -1 -1 -2 1 -9 -2 -5 -9 -9 0 -1 -7 -5 -8 -4 I
H 0 -3 -2 0 -7 -3 0 0 -7 -6 2 -3 -2 2 3 1 1 0 -2 L
I -3 -8 -8 -3 -8 -8 -2 -3 -8 -3 -5 -1 0 1 -1 -1 -1 -1 1 K
L 0 0 -1 -2 0 0 -1 -4 0 0 0 -14 -8 0 0 -2 -5 -9 -1 M
K 0 0 -1 -1 -8 0 0 -1 -1 -8 0 1 -17 2 -1 -7 -3 -12 0 F
M -1 -8 -8 -2 -7 -8 -1 -2 -8 -8 0 -2 -7 -10 0 -1 3 1 1 P
F -2 -8 -8 -1 -8 -8 -1 -2 -8 -8 0 -3 -8 -8 -4 -2 3 0 0 S
P -1 -1 -2 -1 -2 -1 -1 -3 -2 -2 -2 0 -2 -2 1 -5 -2 -3 -5 T
S 0 -1 -1 0 -1 -1 0 0 -1 -3 0 -1 -2 -3 -1 1 -19 -5 3 W
T 0 -2 -2 0 -1 -2 0 -2 -2 -8 0 -1 -3 -8 -1 0 1 -17 1 Y
W -1 -8 -8 -1 -7 -8 -1 -2 -1 -8 0 -3 -7 -2 -1 -2 -8 0 -4 V
Y -1 -8 -8 -1 -7 -8 -1 -2 -8 -8 0 -2 -8 -8 -2 -2 -3 -2 -8
V -1 0 -1 -2 0 0 -1 -3 0 0 0 -1 0 0 -2 -1 0 0 0 1

A R N D C Q E G H I L K M F P S T W Y V

Table 2.3.2: Substitution matrix for the arithmetic mean approach, formula (2.2.11), (lower
triangle) and difference matrix (upper triangle) obtained by subtracting the blosum 40 matrix
[HH92] position by position.
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Figure 2.3.4: Sequence reconstruction of the PDBSelect50 subset [PDBb] using four different
reconstruction formulae, respectively. (2.2.10): geometric mean on joint probabilities, (2.2.11):
arithmetic mean on joint probabilities, (2.2.12): maximum on joint probabilities, (2.2.14):
inverse calculation on marginal probabilities. The boxes indicate the 1st (25%), 2nd (median)
and 3rd (75%) quartiles and the whiskers the minimum and maximum.

In section 2.4.3 the sequence reconstruction results are discussed.

2.4 Discussion

2.4.1 Influence of Bond Lengths and Angles

The influence of the bond lengths and angles on the quality of the results is quite
strong. Using literature values for them leads to rather large Cα-RMSDs. There
seems to be a significantly high variation [BSDK09] and one should consider
using amino acid specific bond angles and lengths. This might slightly improve
the results.

Despite the errors introduced by bond angles and lengths, the dihedral backbone
angle ω is known to vary by a few degrees and completely points to opposite
directions for Proline residues (cis-conformation of the peptide bond). In order
to minimise error originating here the ω-angles should be set at least dependent
on the amino acid type.
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2.4.2 Dihedral Angle Reconstruction

Here, a few properties of the dihedral angle reconstruction approaches are dis-
cussed. It is important to note that, besides the approximations caused by using
standard bond geometries, a few wrong dihedral angles may lead to high Cα-
RMSDs. In figure 2.3.2 the dihedral angles RMSDs and the Cα-RMSDs seem
not to correlate with each other. Another principle observation concerning the
Cα-RMSD is that it may get incredibly high, up to 180Å in figure 2.3.3. With
high evidence this is due to bad structures. The WURST library used can only
deal with single-chained proteins without gaps [TPH04]. If these structures were
filtered out, the generated structure model will tend to have lower Cα-RMSDs.

The difference between the performance of the arithmetic mean and the max-
imum approaches on joint probabilities is only very little. This means that each
fragment has a high preference for one single class, as the averaging in the arith-
metic mean approach (formula (2.2.2)) does not change the results significantly.
This finding is consistent with other work [Hof07], where the probability vectors
could be compressed using only very few classes in order to build structural al-
phabets. It also suggests that the classes cover the data quiet well. This does
not mean there are no weird angles in the data, but they rather lie in between
classes and are covered by a mixture of a few moderately populated classes.

Surprisingly, the inverse Gaussian approach does not lead to an exact reconstruc-
tion, although this is expected by construction of the formulae. Checking very
carefully the numbers, it turns out, that if the class means are very close to the
original value, then the angle can be reconstructed quite reliable. However, most
class means are significantly far away from the original angle leading to strong
precision errors, i.e. the values for one angle deviate quite a lot. Averaging over
these numbers necessarily results in badly reconstructed angles. Maybe replacing
the average by a weighted average, e.g. using the class weights, would improve
the reconstruction.

The other approach, the arithmetic mean on marginal probabilities with linear-
ised weights, is also exact by construction but seems to have similar problems.
However, there are additional issues to be considered. The original angles often
lie close to the boundaries. These angles are smaller (or larger) than any class
mean. Taking a weighted average between any two class means would not lead to
the desired angle. Even using periodic images would not help here, as the class
weights were calculated within a single period only. Calculating class weights
of two periods would help here. However, an even better solution would be to
change the classification model to use periodic probability distributions, like the
von-Mises models. This was not done in this work in order to use existing classi-
fications built for other projects [SMT08b, MST09]. Extending this would require
a lot of careful programming, but is strongly recommended for future projects.
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The exact approaches are interesting for reconstruction, but unfortunately are
unsuitable for structure prediction where the probability vectors come from se-
quence. There the assumption that the class weights may be interpreted to reflect
some sort of distance of the wanted angle to the class means does not hold. The
weights should rather be regarded as class probabilities. For example, if two
classes have positive probability, then the angle does not lie only in between
the class means but is likely to be found anywhere around the class means with
respect to their density distributions.

Taking the arithmetic mean (formulae (2.2.2) and (2.2.4)) of the overlapping
parts is theoretically and practically the most reasonable approach. The overlap-
ping fragments are treated effectively as a random variable of different stochastic
models for the dihedral angles. Each expression has equal probability. But this
could be changed easily, see also final discussion chapter 6, page 87. Consider-
ing the use of marginal probability vectors results in lower RMSD values here,
however the loss of correlated features leads to limited applicability for sampling
approaches (section 4.1.2.1, page 52).

2.4.3 Sequence Reconstruction

Using the pairwise sequence identity to the native sequence as a quality meas-
ure for the reconstructed sequences leads to rather conservative numbers. The
numbers are lower than expected from a biological point of view. This measure
underestimates the biochemical similarity of the sequences. Instead of the plain
identity, a similarity score based on substitution matrices like pam or blosum
would better reflect the biological relevance of the generated sequences. However,
choosing the correct matrix is dependent on the evolutionary distance between the
sequences. But, the true (substitutional/mutational) distance between sequences
folding to similar structures was not investigated here. Using the average iden-
tity of the generated sequences as an approximation of the evolutionary distance
would not help, as it would not lead to a measure telling us how realistic the
generated sequences are.

The best way to check the relevance of the generated sequences would be to
synthesise them and determine their structure experimentally, but this is not
feasible. However, on the computer sets of native sequences from the same struc-
ture cluster (fold) could be analysed in order to see if the generated sequences
can be found there. For each fold a sequence profile could be built, which could
serve as an estimate of the true variation. Subsequently, this profile could be
compared to our substitution matrices.

The low correlation between our substitution matrices and the established mat-
rices suggests that there is only very little similarity in the substitution patterns
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and the potential of the classification is limited for some affected amino acids.
Comparing the substitution matrices from our reconstruction formulae to the
blosum 40 or blosum 90 matrices is actually not perfect. The blosum x matri-
ces are generated from a pool of sequence alignments with less than x% sequence
identity. As the sequence identity of our generated sequences spans a range from
0 to 100%, the observed substitutions actually should be compared to either
the blosum 100 matrix or, all sequences with more than x% identity should
be clustered first and then compared to blosum x. Additionally, there is also
the problem of scaling. To avoid that, a rank correlation coefficient could be
calculated. But overall the values would roughly stay the same, since these
numbers are dependent on the scoring, which is intentionally kept very simple.
Our scoring is solely based on structural features, whereas blosum also considers
effects of evolution implicitly. Nevertheless, it would be nice to have a measure
for how close the pool of generated sequences is to the natural pool of sequences
folding to similar structures. This would become also relevant in the light of more
sophisticated scoring functions.

A median of 93% sequence identity for the set of sequences generated by the tech-
nical approach (formula (2.2.14)) can be considered the limit of what is possible
to reconstruct using the classification. It is clear, that a classification is always a
simplification. Here that means, that some amino acid sequences are so similar,
that they form a motif in the classification and, therefore, can no longer be dis-
tinguished or reconstructed. This has also consequences for the construction and
comparison of substitution matrices. Some substitutions are put together already
in the classification and therefore can not be observed in the substitution mat-
rix. Of course, this further lowers the correlation coefficients to the established
matrices.

The technical approach yields the highest reconstruction rate. However, this
has no meaning if the probabilities come from a protein structure. This will
become relevant for sequence prediction (chapter 5). Instead, the probabilistic
approaches have the advantage, that they can also be used sensibly with prob-
ability vectors created from structure. From these the arithmetic mean approach
(formula (2.2.11)) seems to be the best choice for the sequence prediction task.
Its calculation is simple and it can be justified most rigorously in statistical terms.
The overlapping parts are effectively treated as statistical variables that can take
different mixture models as values.
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Chapter 3

Self-consistent mean field
optimisation

In this chapter an innovative optimisation method for finding self-consistent states
introduced for systems that are described by a probabilistic mean-field model
[ST]. It is especially suited, but not limited to our Bayesian classification based on
overlapping protein fragments. Predicting unknown features such as structure or
sequence basically means to optimise the population of their states. The method
described here is applied in the following chapters and allows to efficiently explore
the conformational or compositional space of proteins.

Self-consistent mean field (SCMF) methods [KD96] have traditionally been used
to optimise wave functions [Sto05] and have been applied to a variety of prob-
lems [HKL+98, MBCS01, MM03, Edw65, Dew93, RFRO96, KD98, SSG+00,
DK97, CdMaT00, XJR03]. In all these applications, the system is subdivided
into small subsystems which can interact through a mean field. One assumes the
system to be in all states at the same time and iteratively updates the contribu-
tion of each state to the mean energy field through the Boltzmann relation. This
process consists of alternating steps of calculating the mean energy of a subsys-
tem and its interacting subsystems, updating the probabilities of each state of
the subsystem, recalculating the energy and so on. These steps are iterated over
all subsystems until a self-consistent state of the whole system is found. This
state is reached when the probabilities of the states of the subsystems converge,
i.e. they no longer change.

In order to describe the mean field previous studies invented energy functions,
which are more or less directed by human preconceptions. Especially the selection
and relative weighting of terms is an optimisation task in itself. In contrast, this
study introduces a purely statistical version of SCMF using rather simple scoring
terms. It uses the idea of overlapping subsystems and works with conditional
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probabilities directly without using the Boltzmann relation.

First, the standard procedure is described and some basic notation is introduced.
Then, a description of the purely statistical version follows. Finally, a new cool-
ing scheme is introduced. It adaptively lowers the entropy of the system via a
temperature-like convergence parameter. Applied to our statistical SCMF version
this leads to a method that smoothly narrows down the solution space.

3.1 Standard SCMF

Self-consistent mean field methods aim to find the state of lowest energy. The
standard method assumes a conventionally defined energy function and is there-
fore extended in this work (section 3.2). It is described here for comparison.
The system X is divided into small disjoint subsystems Xi. Each subsystem is
considered to be in all possible states Si = {xi} at once with a certain probability
p(Xi = xi). This probability is adapted via an iterative procedure until the sys-
tem converges to a self-consistent state, i.e. the probabilities no longer change.
The energy function that one seeks to minimise is taken to be

Eeff(X, p) =
∑

i

∑

xi∈Si
p(Xi = xi) EXi

(xi).

Each subsystem Xi in state xi feels the influence of its surrounding subsystems
Xi′ in a mean field, given by the mean interaction energy

EXi
(xi) =

∑

i′ 6=i

∑

xi′∈Si′
p(Xi′ = xi′) EXiXi′ (xi, xi′),

where EXiXi′ (xi, xi′) is the pairwise interaction of Xi being in state xi and Xi′ being
in state xi′ . Ideally, this interaction should be calculated among all subsystems.
However, in practice, either the energy function is not defined for long-range
interactions or the calculation will lead to a combinatorial explosion. Therefore,
the mean interaction energy is typically calculated on some subset {Xi′ | i′ ∈ Oi}
of closely interacting subsystems, leading to

EXi
(xi) =

∑

i′∈Oi
i′ 6=i

∑

xi′∈Si′
p(Xi′ = xi′) EXiXi′ (xi, xi′). (3.1.1)

In each iteration step the mean interaction energy of each subsystem in each
particular state and the mean field of its surrounding subsystems is calculated
and then turned into probabilities using the Boltzmann relation, given by

p(Xi = xi) =
exp (−β EXi

(xi))∑
x′i∈Si

exp (−β EXi
(x′i))

, (3.1.2)
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where β is the inverse, Boltzmann-weighted temperature. In order to distinguish
from a single iteration step, a loop over all subsystems and all states is called a
simulation step.

Ideally, the procedure finds a single self-consistent state of the system after several
simulation steps. In general, the system will find itself in a number of states. In
order to decrease the number of possible states, one can gradually lower the
temperature of the system like in simulated annealing [KGV83], see section 3.3.

3.2 Purely statistical SCMF

Instead of using some physical or knowledge-based energy function a purely stat-
istical score function based on conditional probabilities is applied. This allows
one to quickly sample the state space without the Boltzmann formalism. In order
to achieve this, the standard SCMF protocol is modified. The system is divided
into overlapping subsystems, i.e. parts of a subsystem are also modelled in other
subsystems. As a consequence, this overlap enables the use of conditional probab-
ilities. That means, the effect that a subsystem has on another can be modelled
statistically rather then by some (sometimes arbitrarily simplified) interaction
energy.

Let us assume statistics on subsystems of systems where the states are known
have been collected by treating the subsystems independently and let there be
enough statistical data to sufficiently cover the population. Then, the probability
of a subsystem being in a specific state can be estimated by fitting its relative
frequency to some function p. Let Xi and Xi′ be the two vectors describing the
two subsystems that include sites Xi and Xi′ as the first dimensions, respect-
ively (assuming sorted dimensions), and let Xi′ overlap with Xi. Denote the
overlapping parts with Oi,i′ and Oi′,i and the rest of the subsystems with Ri,i′

and Ri′,i, respectively. Furthermore, assume some observation has been made on
an unknown system, then the subsystems can be further split into known and
unknown variables, denoted by Xk and Xu, respectively (see figure 3.2.1). The
current probability pcur

(
Xu
i = xui Xk

)
of the unknown variables of a single site Xu

i

being in state xui is effected by all subsystems overlapping with the subsystem Xi,
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given by the index set Oi. This effect can be captured by

pcur

(
Xu
i = xui Xk

)
=

∏

i′∈Oi
i′ 6=i

∏

xi′∈Si′

(
pi,i

′
xi,xi′

) 2
T
pold(Xu

i′ = xu
i′ Xk)

∑

x∈Si

∏

i′∈Oi
i′ 6=i

∏

xi′∈Si′

(
pi,i

′
x,xi′

) 2
T
pold(Xu

i′ = xu
i′ Xk)

(3.2.1)

where the interaction term pi,i
′

xi,xi′
reflects the net probability contribution of the

unknown pair xui , x
u
i′ on the average or marginal probability of the known pair

xki , x
k
i′ . In analogy to [Sip90] this is taken to be

pi,i
′

xi,xi′
=

p
(
Xk
i = xki , X

k
i′ = xki′ Xu

i = xui , X
u
i′ = xui′

)

p
(
Xk
i = xki , X

k
i′ = xki′

) ,

with the marginal probability

p
(
Xk
i = xki , X

k
i′ = xki′

)
= p

(
Xk
i = xki Xk

i′ = xki′
)

p
(
Xk
i′ = xki′

)

=
1

|Ii|
∑

i′′∈Ii
p
(
Ok
i′′,i1

= xki O
k
i′′,i′1

= xki′
)

· 1

|Ii′ |
∑

i′′∈Ii′
p
(
Ok
i′′,i′1

= xki′
)

,

and the conditional probability

p
(
Xk
i = xki , X

k
i′ = xki′ Xu

i = xui , X
u
i′ = xui′

)

= p
(
Xk
i = xki Xk

i′ = xki′ , X
u
i = xui , X

u
i′ = xui′

)

· p
(
Xk
i′ = xki′ Xu

i = xui , X
u
i′ = xui′

)

= p
(
Xk
i = xki Xu

i = xui , Xi′ = xi′
)

· p
(
Xk
i′ = xki′ Xu

i = xui , X
u
i′ = xui′

)

=
1

|Ii|
∑

i′′∈Ii
p
(
Ok
i′′,i1

= xki O
u
i′′,i1

= xui , Oi′′,i′1 = xi′
)

· 1

|Ii′ |
∑

i′′∈Ii′
p
(
Ok
i′′,i′1

= xki′ O
u
i′′,i1

= xui , O
u
i′′,i′1

= xui′
)
.

Ii is the index set of the subsystems modelling the site Xi. A derivation from
formulae (3.1.1) and (3.1.2) is trivial if setting

EXiXi′ (xi, xi′) = −β−1 ln pi,i
′

xi,xi′
. (3.2.2)

In order to control the entropy of the system a convergence parameter T is in-
troduced, which allows one to simulate cooling effects, just like temperature in
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simulated annealing [KGV83]. At high T , the probabilities are spread out. As T
goes down, the probabilities become more concentrated in the likelier states and
probabilities of less populated states will tend to zero, so that the system will
end up in the most populated states (see chapter 3.3).

The response of a system is not instantaneous. Changes in one part of the
system take some iterations to reach other parts of the system. This can lead
to oscillations in the probabilities. To avoid this problem, the state probabilities
are updated slowly using a memory factor λ ∈ [0, 1]. This leads to

pnew

(
Xu
i = xui Xk

)
= λ pold

(
Xu
i = xui Xk

)
+ (1−λ) pcur

(
Xu
i = xui Xk

)
. (3.2.3)

Iterative application of formulae (3.2.1) and (3.2.3) will populate the sites at
states that are consistent with the states at the modelling subsystems, just like
in standard SCMF. Interestingly, in contrast to [DK97, Sip90] the method does
not need the Boltzmann relation and does not assume the underlying data to be
sampled from some well-defined statistical ensemble.

3.3 Simulated Annealing

Simulated Annealing is a general optimisation method, introduced in [KGV83].
The name comes from the process of “annealing” or slowly cooling a material so
that particles will have time to find their optimal positions. According to the
techniques for forming single crystals of solid state bodies, simulated annealing
tries to find the state of lowest energy. In order to form a unimorphous solid state
body the solid is melt at a high temperature and then slowly cooled down. In
the first step the crystal bonds are broken and the amorphous material is put to
a state where the particles are dissolved away from their positions, i.e. they can
freely move around. In the next step the mono-crystal is formed by gradually
lowering the temperature thereby avoiding local energy minima (i.e. amorphous
bonding). These ideas are applied to other, simulated systems to find states of
lowest energy by avoiding local minima and overcoming energy barriers.

It is clear for such a task, that the optimal annealing strategy is highly dependent
on the properties and behaviour of the system. However, linear and exponential
cooling schemes have been reported sometimes successful [NA98]. The reason for
a success of the exponential scheme is the assumption that the system first (at
high temperature) finds itself in a broad valley of the energy landscape which
includes the lowest energy state and where it can move around freely. Then,
when the temperature is lowered, local minima play an increasing role and the
temperature is lowered slower so to allow time for finding the global optimum.
However, if the system undergoes phase transitions, it will behave critically for
certain temperatures. In the vicinity of such critical points the relaxation times
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Figure 3.3.1: Exponential and adaptive cooling.

become very long [Mur03]. But at other temperatures the system might behave
nicely and could be cooled faster. Therefore, the optimal strategy would be to
use a cooling scheme, that adapts to the behaviour of the system.

A number of adaptive cooling strategies have been proposed [TH95, AG96, SP10].
It is necessary to have a quantity that reflects the system’s behaviour. Here, an
innovative adaptive cooling procedure is introduced (algorithm 1). It relies on
an entropy-like measure which appropriately captures the diversification of the
system. When the entropy of the system changes dramatically on a temperature
change, the system could not adapt fast enough to the new temperature, probably
because it is undergoing a critical transition. In order to work well, the adaptive
cooling scheme has to detect the transition early enough to slow down the cooling
and to allow extra time for the relaxation of the system. As the instantaneous
entropy S can vary largely due to random spontaneous changes of the system,
a long-time average Slong and a short-time average Sshort is calculated. When
the temperature is lowered, the entropy is expected to go down on average and
Slong > Sshort. For a nicely behaving system the difference ∆S = Slong − Sshort

should be a positive constant. If ∆S varies, then the system is no longer at
equilibrium and the temperature has to be adapted. For an increasing ∆S the
system might enter a critical phase and has to be cooled slower, whereas for a
decreasing ∆S the system responds better to the new temperature and can be
cooled faster.

The entropy-like measure can be calculated easily for the SCMF methods, given
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1: T ← Tstart
2: relax the system
3: calculate S {instantaneous entropy}
4: tmax ← desired number of steps
5: m← S

tmax
{desired slope}

6: βlong ← 0.9, βshort ← 0.5

7: ∆Sthresh ← m
(βlongβshort−βlong−βshort+1)(βlong−βshort)

(βlong−1)
2
(βshort−1)2

8: Slong ← S, Sshort ← S

9: k ←
(
Tfinal
Tstart

) 1
tmax

10: kmin ← 0.8
11: ∆Sold ← 0
12: while T > Tfinal do
13: apply the system to T
14: calculate S {instantaneous entropy}
15: Slong ← βlongSlong + (1− βlong)S
16: Sshort ← βshortSshort + (1− βshort)S
17: ∆S ← Slong − Sshort

18: if ∆S > ∆Sthresh ∧∆S ≥ ∆Sold then {cool slower}
19: k ←

√
k

20: else if ∆S < ∆Sthresh ∧∆S ≤ ∆Sold then {cool faster}
21: if k ≥ 1.0− ε then
22: k ← k − ε
23: else if k > kmin then
24: k ← k2

25: end if
26: end if
27: T ← kT
28: ∆Sold ← ∆S
29: end while

Algorithm 1: Adaptive cooling scheme based on entropy.
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by

S =
1

N

N∑

i=1

∑

xi∈Si
p(Xi = xi) ln p(Xi = xi) (3.3.1)

where N is the number of (disjoint) subsystems. Here, line 2 of algorithm 1 means
to iterate the update formula (3.2.3) over the entire system with a fixed starting
temperature until the probabilities no longer change (i.e. after several simulation
steps), whereas in line 13 only one iteration over the whole system is necessary
(i.e. one simulation step). The cooling scheme assumes a linear decay to be the
ideal entropy curve (see also appendix B, page 99, for a derivation of ∆Sthresh,
line 7). The algorithm also avoids the overshooting of adaption by remembering
the previous difference in entropy averages (2nd condition of lines 18 and 20).
This is not essential, but it allows the algorithm to adapt faster.

Figure 3.3.1 shows two short simulations with exponential and adaptive cooling
applied to protein structure prediction (see chapter 4). At the start the system
is equilibrated at a high temperature. Then the two simulations show different
behaviour. If the system is cooled exponentially, the entropy follows a rather
steep slope. This may result in suboptimal solutions. Whereas, if the cooling
adapts to the system’s behaviour, the entropy can be forced to follow a linear
slope on average. This allows to cool the system faster in uncritical situations
while avoiding steep decays at the same time.

As an outlook, one should rigorously find out which slope would be the ideal slope.
Here, a linear decay of entropy was assumed to perfectly compromise between
fast and careful cooling. This means that linear cooling would be adequate if the
space of simulation steps (i.e. temperature space) and the space of the entropy
form an isomorphism. The adaptive cooling scheme ensures this by mapping the
temperature space to a space that is isomorphous to the entropy. It remains to be
shown how important an ideal slope is and what impact a different entropy slope
has on the quality of the results. Currently with the simple scoring this impact
can not be seen, but would become relevant for more subtle scoring functions.
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Chapter 4

Structure Prediction

One of the aims of this work is to see how much can be predicted with a local,
purely statistical description of proteins. As seen in chapter 2, there are certain
limitations of our statistical classification even with a full structural description.
Keeping those in mind, a rigorous way is shown here for structure prediction
from sequence alone using our probabilistic scoring (section 1.3) and optimisation
scheme (chapter 3).

Typically, protein structure prediction means to have a protein sequence where
the three-dimensional structure is unknown and therefore this structure is to be
predicted from the sequence. For many proteins, homologous structures have
been solved and may serve as templates [EWMR+06]. In recent years fragment-
based approaches were the most successful predictors [BDNBP+09]. Although
definitely an improvement to previous approaches, their success is limited by
finding reliable fragment templates. However, often enough no reliable template
is known and modelling from scratch becomes necessary. In ab initio prediction
methods, the amino acid sequence and a scoring function is the only prior know-
ledge used. These methods try to model the protein structure without explicitly
using templates from known structures. Here, an innovative optimisation method
for narrowing down the conformational space in order to enable rapid sampling
of structures is introduced. Our approach is not intended to be a full blown
structure predictor, but highlights elegant properties of the optimisation scheme
using solely descriptive statistics with minimal preconceptions.

Similar to the more successful literature prediction approaches, our classification
model is based on small protein fragments as well. With this model the question:
“How probable is a structure fragment of dihedral angles given the sequence
fragment of amino acid types?” can be answered. As different sequence frag-
ments prefer different structural conformations, a sequence fragment introduces
a local bias towards the allowed conformational space of the whole protein struc-
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Figure 4.0.1: For angle pairs Φ,Ψ ∈ [−π,+π) the problem of inconsistencies in the conform-
ational space due to overlapping fragments of length 5 is illustrated. Yellow/orange indicate
highly preferred regions and blue/black less preferred regions.

ture. This is condensed in the probability vectors for sequences, formula (2.2.8),
page 26. Each entry in such a vector can be interpreted as a class weight and
each class models a small subspace of all possible conformations by a multivari-
ate normal distribution model. The weighted sum of all class models forms a
mixture distribution and can be used to narrow down the conformational space
to the subspace preferred by the sequence fragment.

When trying to predict a whole protein structure, the amino acid sequence is frag-
mented into overlapping fragments. The overlapping regions are then modelled
in k − 1 mixture distributions for fragments of length k. As discussed in sub-
section 2.2.1, the combination of these mixture models is not straight forward,
especially because the mixture models are generally not consistent with each
other. That means, two probability vectors vi and vi′ with i > i′, that model the
same angle pair (φm, ψm) at residue m ∈ [i, i′+k−1] 6= ∅, share the same number
of classes, but the class weights and the class models at the common residue are
different because (φm, ψm) appears in the corresponding fragments in different
dimensions, namely m − i + 1 and m − i′ + 1. This inconsistency is illustrated
in figure 4.0.1. The five overlapping φψ mixture distributions for aspartate (D)
do not agree with each other. The distributions of fragment LFLVD suggest that
this sequence prefers an extended conformation, whereas the distributions of the
overlapping fragment DQDIK point to a right-handed helix.

Whatever combination scheme is used for calculating a structure from the prob-
ability vectors, it would be best to minimise these inconsistencies before the
combining. This leads to an iterative update scheme that has been inspired by
self-consistent mean field (SCMF) methods [KD96, KD98] and is described in
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i′ i

Figure 4.1.1: For a fragment of length k = 5, the overlapping regions are highlighted in dark
gray. The gray area left of the black fragment i symbolises the index set Ii and the entire gray
area symbolises Oi.

detail in chapter 3. Here, our statistical SCMF version is applied to work out
inconsistencies between states of dihedral backbone angles. The subsystems men-
tioned in chapter 3 are the overlapping fragments of dihedral angles where the
probabilities are described by the probability vectors, formula (2.2.8), page 26,
and the states are the classes.

4.1 Methods

4.1.1 Optimising Class Weights

Here, the purely statistical version of mean field optimisation (section 3.2) is
used to derive a protein structure using solely a probabilistic framework based
on fragments [SMT08b]. The system being optimised is the protein structure
X given its sequence S. That means, in the notation of the previous chapter,
Xk = S and Xu = X . For simplicity, only backbone conformations are considered
here. They are described by dihedral angle pairs and amino acid labels, i.e.
X = (φ1, ψ1, . . . , φl, ψl) ∈ (R×R)l and S = (a1, . . . , al) ∈ [1, 20]l. The protein is
subdivided into small overlapping fragments {F i} of a fixed length k = 5. The
space of possible conformations Si,X i for a fragment F i has been discretised into
n = 162 classes {Cj}. Each class models a small subspace of conformations by k
bivariate Gaussian distributions for X i (dihedral angles) and k 20-way Bernoulli
distributions for Si (amino acid labels). See also section 1.3.

Each fragment F i feels the influence of up to 2(k − 1) overlapping fragments
{F i′ | i′ ∈ Oi}, where Oi = [max{1, i− k + 1}, min{l − k + 1, i+ k − 1}] is the
index set of overlapping fragments, figure 4.1.1. In order to work out the in-
consistencies of overlapping parts of the fragments, the probability is considered
that the current state/class Cj for fragment F i is consistent with the weighted
classes Cj′ of the overlapping fragments F i′ : i′ ∈ Oi. Differing from the method
described in chapter 3, the implementation here deals with states of entire frag-
ments, not just single sites. Each position t ∈ [1, k] within the fragment F i can
be considered. Alternatively, the task may be simplified by just looking at the
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first position (t = 1). Furthermore, angles pairs (φ, ψ) (bivariate case) can be
considered or each angle individually.

We restrict ourselves to t = 1 and the bivariate case. The index set Oi then
reduces to Ii = [max{1, i− k + 1}, i] and the update rule for state probabilities
(formula (3.2.3)) is adapted to be

pnew

(
F i ∼ Cj S) = λ pold

(
F i ∼ Cj S)+ (1− λ) pcur

(
F i ∼ Cj S) , (4.1.1)

where λ ∈ [0, 1] controls the speed of adapting to the new weights. The cur-
rent state probability pcur

(
F i ∼ Cj S) is reflected by the effect that the over-

lapping sites impose on each other. It is based on the class probability of the
given sequence environment pS(F i ∼ Cj) and the weighted average of the level

of agreement of their φψ-distributions oi
′,i
j′,j, formally captured by

pcur

(
F i ∼ Cj S) =

(
pS(F i∼Cj)

|Ii|
∑

i′∈Ii

n∑

j′=1

pold

(
F i′ ∼ Cj′ S) oi′,ij′,j

) 1
T

n∑

j′′=1

(
pS(F i∼Cj′′)

|Ii|
∑

i′∈Ii

n∑

j′=1

pold

(
F i′ ∼ Cj′ S) oi′,ij′,j′′

) 1
T

. (4.1.2)

The conditional weight or probability of F i being in class Cj given the sequence
S is taken to be the initial sequence probability vector (also defined on page 26),
formally

pS(F i ∼ Cj) =
p(F i ∼ Cj) pCj(Si = (ai, . . . , ai+k−1))
n∑

j′=1

p(F i ∼ Cj′) pCj′ (Si = (ai, . . . , ai+k−1))

. (4.1.3)

The prior weight of F i being in class Cj as seen in the training set p(F i ∼ Cj)
comes directly from the Bayesian classification. The conditional probability
pCj(Si = (ai, . . . , ai+k−1)) of Si taking the values of a k-region of the known se-
quence given F i being in class Cj is the product of k multiway Bernoulli probab-

ilities (formula (1.3.2), page 7). The interesting part is the interaction term oi
′,i
j′,j ,

which can be formulated by

oi
′,i
j′,j =

∫∫

R2

pCj

(
Ou
i,i′1

=

(
φ

ψ

))
pCj′

(
Ou
i′,i1

=

(
φ

ψ

))
dφ dψ.

where Ou
i,i′ and Ou

i′,i denote the unknown structural terms of the overlaps of
fragments F i and F i′ , respectively (defined in section 3.2). The conditional

probability density pCj

(
Ou
i,i′1

=
(
φ
ψ

))
of Ou

i,i′1
given F i being in class Cj taking
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the values of the dihedral angle pair
(
φ
ψ

)
is defined by the corresponding bivariate

Gaussian of class Cj. The computationally demanding evaluation of the double
integral is circumvented by considering only class means instead of the complete
distribution range, giving

oi
′,i
j′,j = pCj′

(
Ou
i′,i1
≈
(
µj1φ
µj1ψ

))

=

∫∫

A

pCj′

(
Ou
i′,i1

=

(
φ

ψ

))
dφ dψ, (4.1.4)

where µj is the mean vector of the Gaussian distributions in class Cj and A =
[µj1φ − ǫφ, µj1φ + ǫφ] × [µj1ψ − ǫψ, µj1ψ + ǫψ] is the integration domain with

(ǫφ, ǫψ) > 0 being some small vector-valued error ∈ R2. The convergence para-
meter T in equation (4.1.2) can be interpreted as an analogon to temperature
in simulated annealing and is used to gradually narrow down the system until it
converges to the most probable states. The convergence is quantified by some
entropy-like measure, which reflects the average number of populated classes per
fragment, given by

S =
1

k − l − 1

l−k+1∑

i=1

n∑

j=1

pnew

(
F i ∼ Cj S) ln

(
pnew

(
F i ∼ Cj S)). (4.1.5)

The system is said to be converged, when S no longer changes. After bringing
the system to a self-consistent state at a high value of T , the space of allowed
dihedral angles is further narrowed by applying the cooling scheme introduced
in section 3.3. Here, the temperature-like parameter T is adjusted after each
iteration of formula (4.1.1).

Note that there is a fundamental difference how the states in the general method
and here are defined. Here, state probabilities for entire fragments are manip-
ulated whereas the method in chapter 3 deals with probabilities for single sites
and uses the fragment probabilities only as a scoring function. That means here,
the class weights change during the optimisation process.

4.1.2 Calculating and Sampling Structures

Once the system converged to a consistent state of high probability, dihedral
angles can be calculated for each residue from the optimised probability vectors.
Several approaches are described in chapter 2. As discussed there, only the two
arithmetic mean approaches (formulae (2.2.2) and (2.2.4)) would be able to deal
with probability vectors sensibly. However, the probabilities optimised here are
for whole fragments, so the formula (2.2.4) based on marginal probability density
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values is not applicable. Since, even under perfect conditions, formula (2.2.2)
does not lead to acceptable results as discussed in chapter 2, a different approach
is used here to get values for the dihedral angles. These are then used to build
the protein structure model.

A more natural way than the formulae in chapter 2 is to construct protein struc-
ture models from probabilities by applying a sampling approach. That means
to generate many dihedral angle sequences which lead to many protein structure
models. This would sample the conformational space of the protein and has the
potential to discover some naturally occurring flexibility.

4.1.2.1 Mixture Sampling

One way to generate samples of dihedral angles for a protein from probability
vectors is to generate them in sequential order in the following manner

1. generate angles for residues 1 to k,

2. generate the angle pair at the next residue i = k + 1 with the conditional
probability given the previous angles until all angles are generated.

The first step can be done by first choosing the class Cj via the optimised class
weights pfinal

(
F 1 ∼ Cj S) and then drawing a sample vector from the multivariate

Gaussian associated with class Cj. For this, the ranlib.c library is used [BL]. In
the second step, the class weights are recalculated for the next fragment F i′ ,
i′ ∈ Ii \ {i}, using the sequence S and the already generated angles X 1...i−1 =
(φ1, ψ1, . . . , φi−1, ψi−1). The class Cj is then chosen according to its recalculated
weight given by

precalc

(
F i′ ∼ Cj S,X 1...i−1

)
=

pCj
(
Ou
i′,i−k ≈ (φi′ , ψi′ , . . . , φi−1, ψi−1)

)

· pCj(Si′ = si′) pfinal

(
F i′ ∼ Cj S)

n∑

j′=1

(
pCj′
(
Ou
i′,i−k ≈ (φi′ , ψi′ , . . . , φi−1, ψi−1)

)

· pCj′ (Si′ = si′) pfinal

(
F i′ ∼ Cj′ S)

)

(4.1.6)

Then, the next angle pair (φi, ψi) is generated from the corresponding bivariate
Gaussian. All generated angles are wrapped to fall into one period. Finally, the
resulting angle sequences can be transformed into Cartesian coordinates accord-
ing to subsection 2.2.2, page 25.
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Figure 4.1.2: Steps for sampling structures from a given amino acid sequence.
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(a) 2GB1 crystal structure (b) extended sample struc-
ture with clashes

(c) collapsed sample struc-
ture without clashes

Figure 4.1.3: Comparison of extended (b) and collapsed (c) sample structures against the
crystal structure (a) of 2GB1.

4.1.2.2 Scoring

Given an amino acid sequence a huge number of samples can be generated with
the methods described previously, see also figure 4.1.2. A remaining question is,
how to distinguish good models from bad ones. Ranking or scoring is a task on its
own. A very popular scoring function is the Rosetta score [SKHB97]. In [Mah09]
a scoring, based on the same fragment-based classification that is used here, is
applied to Monte Carlo optimisation. One way accordingly would be to rank the
sample structure

(X S) given its sequence with its fragment probabilities

score
(X S) =

(
l−k+1∏

i=1

n∑

j=1

pS(F i ∼ Cj) pCj(X ≈ xi)
)(l−k+1)−1

. (4.1.7)

Thereby, the fragments are effectively scored independently. Some variations of
formula (4.1.7) were used in [Mah09], but here, the basic form is preferred for
simplicity.

4.1.3 Refining Structures

The generated structures constructed from sampled dihedral angles can contain
steric clashes (i.e. atoms lying on top of each other). Additionally the structures
might not be very compact, because a single wrong dihedral angle can move a
whole domain. See figure 4.1.3, where structures are aligned on the common cent-
ral helix. Two simple refinement schemes with ideas, that have been successful
in [HKK06], are explained in the next two paragraphs.
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4.1.3.1 Clash Removal

Like in [HKK06], a clash is defined by any two α-carbons, separated by at least
two residues, being closer than 4 Å. In order to remove these clashes, the initial
structures are optimised in a greedy way, see algorithm 2. Random stretches of
dihedral angles are iteratively resampled until all clashes are removed.

1: X ← initial structure of length l
2: Nclashes ← number of clashes in X
3: c← 1000
4: repeat
5: i ∈ [1, l] randomly
6: i′ ∈ [i+ 1, i+ 15] randomly
7: generate new dihedral angles for residues i . . . i′ according to the proced-

ure outlined in paragraph 4.1.2.1 by using conditional class weights (for-
mula (4.1.6))

8: calculate new coordinates X tmp

9: N tmp
clashes ← number of clashes in X tmp

10: if N tmp
clashes < Nclashes then {accept new structure}

11: Nclashes ← N tmp
clashes

12: X ← X tmp

13: c← 1000
14: else
15: c← c− 1
16: end if
17: until Nclashes = 0 ∨ c = 0

Algorithm 2: Greedy clash removing.

4.1.3.2 Structure Collapse

In order to generate compact structures a similar scheme as for clash removal is
used. In line 10 of algorithm 2 an additional criterion, the radius of gyration, is
applied. It is based on the coordinates of the α-carbons and given by

Rg =
1

l
√

2

√√√√
l∑

i=1

l∑

i′=i+1

|Cαi − Cαi′ |.

Only if the number of clashes does not increase and the radius of gyration is
decreased, the new structure is accepted for further refinement. The refinement
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is finished if the radius of gyration is below some target radius of gyration, taken
from a known structure or predicted by

Rg = 2.0l0.33.

In [Dew93, SKO97] other values for the constants have been given. However, our
values are found by trial-and-error to work best for our test datasets.

4.1.3.3 Structure Collapse via Contact Prediction

In [Mah09] an extended structural descriptor was introduced. In addition to the
dihedral angles φ and ψ, the number of contacts, c, within a defined sphere
are used to describe and score the sample structures. This number was rigor-
ously included in the established classification scheme [SMT08b]. It improved
the results in [Mah09] in a way that the generated models looked more com-
pact. Therefore, another criterion for collapsing structures was tested as part
of a student project [Han09]. A score very similar to formula (4.1.7) is cal-
culated for each sample. The only difference is the probability of the num-
ber of contacts as an extra factor in the summation of pCj(X ≈ xi), where
xi = (φi, ψi, ci, . . . , φi+k−1, ψi+k−1, ci+k−1). When this score is higher, then the
new structure is accepted for further refinement. The refinement is stopped when
a maximal number of unsuccessful resampling trials is reached.

4.1.4 CASP

The critical assessment of techniques for protein structure prediction (CASP)
is a famous biannual community wide experiment with the goal “to obtain an
in-depth and objective assessment of our current abilities and inabilities in the
area of protein structure prediction” [MFK+]. The participants try to predict
as much as they can on yet unknown, but soon to be released structures. Dur-
ing the curse of one season the sequences of the targets are distributed among
the predictors. Although our approach is not a full blown structure predic-
tion method, two completely automatic web services were registered for fun in
season eight [ST08, SMT08a]. One structure prediction protocol was custom-
ised, as there is only three days time for predictions allowed, and the scoring
formula (4.1.7) was implemented for quality assessment of predictions from all
groups. Both servers received a query from the CASP organisers and directed
the calculation to our workstation-cluster. When the calculations were finished
an email with the results was send to the organisers. Following the steps of the
customised protocol for the structure prediction,

1. the probability vectors for the query sequence were calculated by formula
(2.2.8),
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2. 50000 sample structures were generated directly from the initial probability
vectors and ranked by formula (4.1.7),

3. the 110 top-ranked structures were refined according to subsection 4.1.3
and ranked again,

4. the 5 top-ranked refined models were submitted to the organisers.

For season nine in 2010 the procedure was slightly modified. Due to improved
runtimes and better hardware available, the protocol was extended to narrow
down the dihedral angle space by optimising the class weights before sampling a
higher number of sample structures. The steps were:

1. the probability vectors for the query sequence were calculated by formula
(2.2.8),

2. the class weights were optimised and cooled in approximately 1000 steps
using the adaptive cooling scheme from section 3.3 with the parameters
Tstart = 1, Tfinal = 10−18 and λ = 0.1 for the update formula (4.1.1),

3. 500000 sample structures were generated from the optimised probability
vectors and ranked by formula (4.1.7),

4. the 110 top-ranked structures were refined according to subsection 4.1.3
and ranked again,

5. the 5 top-ranked refined models were submitted to the organisers.

4.2 Results

In order to illustrate the properties of the methods involved in our approach, a test
set of rather arbitrary known protein structures, that has been used previously
[HKK06], is considered. From these examples, the performances of a suitable
reconstruction formula and the sampling approach as well as the evolution of the
probabilities as the system is gradually cooled are shown. Also, some results from
the CASP competitions are presented.

4.2.1 Most Likely Structures

One of the formulae for reconstructing structures in chapter 2 is used here to
construct models for given amino acid sequences. The other formulas are either
not suited, because they assume probability vectors created from angles, or they
did not perform better. The most rigorously justifiable formula is the arithmetic
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Figure 4.2.1: Performance test of the reconstruction formula (2.2.2) for prediction using initial
class weights and optimised class weights of seven known protein structures. Each symbol type
stands for another protein.

mean (2.2.2). It treats the overlapping sites of the fragments as different statist-
ical models, that together form a mixture model for the angles at those sites. The
angles generated this way can be seen as a prediction from the amino acid se-
quence and are essentially representatives of the active classes. Figure 4.2.1 shows
the performance on a few known test structures that have been used previously
[HKK06]. The root mean squared angular distances (RMSDs) of the dihedral
angles φ and ψ in the calculated structures and the native structures fall in the
approximate ranges 0.3− 1.1 (17◦ − 63◦) and 0.9− 1.3 (52◦ − 74◦), respectively.
The RMSDs of the Cartesian coordinates of the Cα-atoms are all above 10Å. No
big differences can be seen in figure 4.2.1 of the structures calculated from the
initial and the optimised class weights. Only slight improvements for Cα-RMSDs
and φ-RMSDs can be observed for this small test set.

4.2.2 Sampling

In table 4.2.1 a few example structures (that have been used previously [HKK06])
are reconstructed from their structure probability vectors using their original
geometry with and without refinement. The positive effect of the refinement
on the number of samples close to the native conformation (column 5) is easily
recognised. In most cases the sample structure with the lowest Cα-RMSD also
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target protein 100000 initial samples
code l α β < 6 Å Cα-RMSD φ-RMSD ψ-RMSD highscore

1FC2C 43 2 0 1164 3.4 Å 0.5 (29◦) 0.6 (34◦) 8.5 Å
1ENH 54 2 0 518 3.1 Å 0.3 (17◦) 0.3 (17◦) 12.0 Å
2GB1 56 1 4 17 5.2 Å 0.4 (23◦) 0.4 (23◦) 14.2 Å
2CRO 65 5 0 37 4.8 Å 0.3 (17◦) 0.4 (23◦) 10.5 Å
1CTF 68 3 3 0 6.1 Å 0.3 (17◦) 0.4 (23◦) 21.4 Å
4ICB 76 4 0 1 5.9 Å 0.4 (23◦) 0.4 (23◦) 11.1 Å

(a) initial samples

target protein 100000 refined samples
code l α β < 6 Å Cα-RMSD φ-RMSD ψ-RMSD highscore

1FC2C 43 2 0 23659 2.8 Å 0.5 (29◦) 0.5 (29◦) 9.7 Å
1ENH 54 2 0 10388 2.0 Å 0.3 (17◦) 0.3 (17◦) 5.9 Å
2GB1 56 1 4 6619 3.4 Å 0.5 (29◦) 0.4 (23◦) 7.3 Å
2CRO 65 5 0 2024 3.6 Å 0.3 (17◦) 0.4 (23◦) 11.4 Å
1CTF 68 3 3 156 4.6 Å 0.3 (17◦) 0.4 (23◦) 11.9 Å
4ICB 76 4 0 218 4.5 Å 0.4 (23◦) 0.4 (23◦) 9.2 Å

(b) clash free, collapsed samples

Table 4.2.1: Effect of the clash removal and collapsing of 100000 sample structures directly
generated from non-optimised structural probability vectors (formulae (2.1.1)). Columns 1-4:
PDB code, length, number of α-helices and number of β-strands of the target protein. Columns
5-9: number of samples with Cα-RMSD below 6Å, lowest Cα-RMSD, lowest φ-RMSD, lowest
ψ-RMSD and Cα-RMSD of the best scoring sample.

becomes closer to the native conformation. Clearly, the longer proteins are harder
to model. Interestingly as can be seen in figure 4.2.1, the lowest ψ-RMSD is
often slightly higher than the lowest φ-RMSD. However, the clash removal and
collapsing seem to have no significant effects on these numbers and therefore are
not listed in table 4.2.3.

In table 4.2.2 the effects of the two collapsing refinement criteria on the radii of
gyration are shown for a few target proteins (numbers taken from [Han09]). For
them, the radii of gyration are closer to the native values after the refinement
using no contact information.

In table 4.2.3 the results of five different sampling runs for the known test cases
are shown. In 4.2.3a the samples are generated from initial probability vectors
of the respective sequences before any optimisation of the class weights. The
numbers of unrefined samples being close to the native conformations are very
low and the best samples are far away from the native structures. Often not even
a single sample can be considered sufficiently close. As expected the situation
improved in all test cases for the refined samples. Here near-native samples
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target protein refined samples
code l α β Rg [Å] φψ Rg [Å] φψc Rg [Å]

1ENH 54 2 0 7.1 7.4 ±0.1 8.4 ±1.1
2GB1 56 1 4 7.2 7.7 ±0.3 8.8 ±1.0
2CRO 65 5 0 7.1 7.9 ±0.2 9.0 ±0.9
1CTF 68 3 3 7.5 8.1 ±0.3 9.2 ±1.1

Table 4.2.2: Effect of two collapsing criteria on the refinement of sample structures generated
from non-optimised structural probability vectors. Columns 1-5: PDB code, length, number
of α-helices, number of β-strands and radius of gyration of the target protein. Columns 6-
7: radius of gyration after refinement using dihedral angles only and radius of gyration after
refinement using dihedral angles with number of contacts simultaneously.

Figure 4.2.2: Two Examples from the evaluation. “best sample” is the sample with the
lowest Cα-RMSD. “highscore” is the sample with the highest score.

are generated for all test cases. A similar trend can be seen in 4.2.3b for the
samples generated from optimised probability vectors. In most cases the numbers
are much better here. However, two cases, proteins 2GB1 and 1CTF, which
comprise β-strands, perform significantly worse than the other cases no matter if
using initial or optimised probability vectors. For proteins 1ENH and 2GB1 three
sample structures are depicted along with the native conformation in figure 4.2.2,
respectively. In contrast to the number of near-native structures and as expected
from the Cα-RMSD values in table 4.2.3, the quality of the best sample is not
necessarily increased for optimised class weights. These findings are consistent
with the trends reported in [HKK06]. Some results are shown in table 4.2.3c,
where the numbers are roughly of the same order of magnitude.
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protein initial samples refined samples
code < 6 Å Cα-RMSD highscore < 6 Å Cα-RMSD highscore

1FC2C 296 4.0Å 14.9Å 8877 3.4Å 9.2Å
1ENH 43 4.8Å 14.6Å 2495 3.4Å 5.4Å
2GB1 0 6.7Å 17.0Å 19 5.3Å 9.4Å
2CRO 0 6.3Å 18.6Å 141 4.9Å 7.4Å
1CTF 0 6.3Å 18.3Å 3 5.3Å 11.2Å
4ICB 0 6.2Å 11.2Å 29 5.0Å 9.7Å

(a) initial and refined samples from initial sequence probability vectors

protein initial samples refined samples
code < 6 Å Cα-RMSD highscore < 6 Å Cα-RMSD highscore

1FC2C 847 4.1Å 5.8Å 19043 3.0Å 8.4Å
1ENH 44 5.1Å 10.2Å 3168 3.8Å 6.1Å
2GB1 0 6.4Å 13.9Å 4 5.9Å 9.4Å
2CRO 1 5.4Å 14.3Å 967 4.2Å 9.8Å
1CTF 0 6.6Å 17.5Å 3 5.6Å 10.2Å
4ICB 2 5.3Å 13.9Å 113 4.8Å 11.5Å

(b) initial and refined samples from optimised sequence probability vectors

target protein 100000 samples
code l α β < 6 Å Cα-RMSD

1FC2C 43 2 0 9593 2.7Å
1ENH 54 2 0 6595 2.5Å
2GB1 56 1 4 37 4.9Å
2CRO 65 5 0 464 3.9Å
1CTF 68 3 3 9 5.4Å
4ICB 76 4 0 89 4.3Å

(c) FB5-HMM approach [HKK06]

Table 4.2.3: 100000 sample structures generated from initial (formula (2.2.8)) and from
optimised sequence probability vectors after simulated adaptive cooling (section 3.3) with and
without refinement compared to the results from a similar approach [HKK06]. For column
description see table 4.2.1.
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4.2.3 Optimising Class Weights

The conditional distributions of the dihedral backbone angles, φ and ψ, given
a sequence of amino acids are analysed. A comparison of the conditional dis-
tributions before and after the optimisation with histograms of the training
data is done. The latter can be interpreted as prior propensities of a certain
amino acid in adapting different values for φ and ψ with its neighbours. Since
Ramachandran [RRS63], three broad regions can be recognised: right-handed
helical, extended and left-handed helical. It is also undoubtedly known that, de-
pending on the side chain, the regions are populated differently. This can be seen
in the left column of figure 4.2.3 for glycine, aspartate and asparagine. These
amino acids are able to populate all three regions and therefore are chosen as
examples. The other columns in figure 4.2.3 show pairs of φψ-distributions in
a few rather arbitrarily chosen sequence environments. They are calculated as a
sum of mixtures of bivariate Gaussians. For each amino acid, the parameters are
taken from the classification either using class weights derived from the sequence
of a certain protein (as in formula (4.1.3)) for the left part or using optimised
class weights (formula (4.1.1)) for the right part.

The residues selected for figure 4.2.3 are known to show prominent preferences for
the φ and ψ angles. Looking at glycine, the histogram of the training data sug-
gests that it can adopt any observed value of φ and ψ, with extended regions less
populated. Taking the local sequence from 4ICB around glycine59 into account
does not change much in the predicted distributions. However, after optimisa-
tion the only predicted region accessible is the left-handed helix, where also the
native angles fall into. In another context (4ICB, pos. 8), glycine goes from a non-
specific distribution towards the right-handed helical region after optimisation.
Again the native angles fall into the same region. Aspartate58 in 4ICB is an-
other amino acid starting in smeared out regions and travelling towards narrower
parts of the φψ-plots at the end of the optimisation. Like glycine, asparagine
adopts to changing contexts. In most cases shown here, the sequence-specific
φψ-distributions are narrowed down after optimisation. An exception to this is
2GB1 aspartate40, which lies in a loop region. This is generally not observed for
amino acids directly succeeded by a proline. Even the initial distributions are
very much distorted and the optimised distributions show only slightly preferred
regions. Another interesting case is 2KIC glycine40. Here the smeared regions
seem to correspond with the flexibility of this loop region in the NMR structure
ensemble.

Figure 4.2.4 illustrates the evolution of the φψ-distributions of the target protein
2GB1 as the system is gradually cooled. At the start, i.e. before any equilibration
or optimisation has taken place, the system is found in a number of preferred
φψ-regions for most residues. Only a few trends can be observed at this stage.
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Figure 4.2.3: Histograms of training data (PDB) and φ, ψ-distributions of certain sequences
at the beginning (start) and at the end (T → 0) of the optimisation. The native values are
indicated by circles. Created with kin2Dcont [WR02] and GNUPlot [WKM+10].
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For example, a helical conformation seems to be preferred in the middle of the
sequence from E19 to A34. Also the glycines (G) at positions 9 and 38 seem to
form right-handed turns. After the optimisation, i.e. when the system has been
cooled down, these trends become much clearer. Other preferences show up as
well. Considering just the average φψ-distributions per residue clearly reveals
a α-helix from A23 to Q32 and glycine-turns at G9 and G38. The rest of the
preferences is not so easily recognised. However, taking into account positions
of the glycine-turns, the start of the helix and the strong preference for a left-
handed turn of aspartate D57, the φψ-distributions allow for four β-strands at
the N- and C-termini and in between.

Although the optimised φψ-distributions point in rather preferable directions, no
significant improvement for the arithmetic mean prediction formula (2.2.2) could
be achieved by optimising class weights for the small test set as observed in sec-
tion 4.2.1. However, if the structures are generated by sampling from probability
vectors, the number of near-conformations in the refined sample sets increases
for most cases. The other numbers in tables 4.2.3a and 4.2.3b roughly stay at
the same order of magnitude.

4.2.4 Scoring

The Cα-RMSD values for the high scoring samples in tables 4.2.1 and 4.2.3 are
all quite high. Therefore, the generated structures can not be considered near-
native. In the case of structure probability vectors (table 4.2.1) the numbers seem
not to improve generally for the refined samples. Whereas in the case of initial
sequence probability vectors (table 4.2.3a) the Cα-RMSD values improve for all
test proteins. And for optimised sequence probability vectors (table 4.2.3b) the
high scoring sample structures also improve in almost all test proteins, but not
as strongly as in 4.2.3a.

In order to check if the score shows a good behaviour, it is compared to another
established score and the Cα-RMSD. A very common score is the Rosetta score
[SKHB97, LBXL08, BDNBP+09], which actually scales like energy, i.e. lower
numbers are better. Figure 4.2.5 shows the Rosetta and the [Mah09]-score (for-
mula (4.1.7)) versus the Cα-RMSD of some generated sample structures from
different optimisation runs of our test proteins. A perfect energy would correlate
well with Cα-RMSD and a perfect score would show anti-correlation. For the
sample structures depicted here, the correlation of Rosetta with Cα-RMSD seems
rather low. Most structures scatter close to zero for Rosetta, even structures
with very high Cα-RMSD. A few outliers can also be observed for structures with
relatively low Cα-RMSD. But no structures scored by Rosetta are found in the
upper right corner of the plot. The [Mah09]-score (formula (4.1.7)) seems not to
show any significant correlation or anti-correlation. The points scatter all over the
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Figure 4.2.4: Cooling effects on the φψ-distributions for target 2GB1 (white: low probability, black: high probability). The length of the
overlapping fragments is five residues. SEQ: amino acid sequence, AVG: average distribution per residue, Frag.: fragment-wise distributions
(diagonals).
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Figure 4.2.5: Scatterplot of some generated sample structures from different runs showing
the distribution of two scores versus the Cα-RMSD. See [SKHB97] and formula (4.1.7).

plot. Structures with very high Cα-RMSD may get a good score and near-native
structures may also get a bad score. However, there is a less populated area in the
very lower left corner of the plot. This suggests at least a little anti-correlation
for small Cα-RMSD values. The points with zero Cα-RMSD correspond to the
native conformations of the proteins in our test set. Rosetta consistently places
them close to zero, which means a high rank. The [Mah09]-score, which is also
used for the CASP protocols, ranks the native conformation sometimes worse
than some generated sample structure.

4.2.5 CASP

In CASP8, the automatic prediction server successfully submitted 550 structure
models for 110 target proteins out of 121 total in the given time frame of 72
hours [MFK+]. The protocol described in section 4.1.4 was optimised to meet
this time constraint with the available hardware. The most time-consuming step
is the refinement, especially the collapsing of the sample structures. In the final
evaluation our server was ranked within the last three out of 72 automatic servers.

Nevertheless, some of the submitted models are interesting enough to have a
closer look (figures 4.2.6 and 4.2.7). The left subfigures show the results of the
global distance test (GDT) [MFK+]. Each line in these plots corresponds to a
model submitted by some prediction group. The more a line lies to the lower
right corner of the plot, the better the corresponding model fits to the native
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Figure 4.2.6: Left: GDT analysis: largest set of Cα atoms that can fit under Cα-RMSD
cutoff. Blue lines: the five models submitted by our server, orange lines: models from other
servers. Right: alignment of predictions for targets T0405-D1 and T0510-D3.

conformation. The right subfigures depict superpositions of models submitted by
our server with the native target structure.

In figure 4.2.6 two difficult targets from CASP8 are shown. None of the prediction
groups were able to submit a model that shows a good fit. Our submitted models
are within the bulk of predictions. The superposition in 4.2.6b shows that the
server recognised the central helix well, but the other two helices of the native
conformation are not modelled. For domain 3 of target 510 the submitted models
of all groups failed the GDT even worse (figure 4.2.6c). The fitting fractions of the
predicted models are less on average. Again our predictions are within the bulk
of the models. As can be seen in the superposition (figure 4.2.6d) the starting
helix and some loops and strands are modelled, but not arranged in the same
way as in the target structure. However, even the experimentally derived target
structure does not contain reliable information about the loop conformations (see
the missing links).

The targets 498 and 499 are also two difficult proteins, but with an interest-
ing story behind them (figure 4.2.7). Their sequence identity is 95%, but their
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(a) GDT plot of target T0498-D1 (b) Superposition of model 1 (white) with
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0

5

10

0 20 40 60 80 100

C
α
-R

M
S
D

c
u
to

ff
[Å
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(c) GDT plot of target T0499-D1 (d) Superposition of model 2 (white) with
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Figure 4.2.7: Left: GDT analysis: largest set of Cα atoms that can fit under Cα-RMSD
cutoff. Blue lines: the five models submitted by our server, orange lines: models from other
servers. Right: alignment of predictions for targets T0498-D1 and T0499-D1. These two targets
are 95% sequence identical.
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structures are completely different. T0498-D1 consists of three helixes, whereas
T0499-D1 comprises one helix and four strands. This is very surprising consid-
ering the high sequence identity. In fact, these proteins are design studies, where
the goal was to find a sequence that could be changed, with as little mutations
as possible, from a helical structure to a structure comprising strands [AHC+09].
For CASP8 both proteins were classified as template-free modelling targets. That
means, no templates are detectable by standard sequence search methods. Nor-
mally, this would be considered an interesting situation for the ab initio prediction
methods. However, during the CASP8 experiment it turned out that some groups
were able to find a template structure for target 499. So this was basically a mis-
classification and therefore the competition here was slightly unfair. For target
499 our method was not able to find a near-native conformation, except maybe
the central helix. The GDT of the other target 498 (figure 4.2.7a) shows only
very few submissions and most of them seem not to model the target structure
exceptionally well. There is a small group of submissions which somehow man-
aged to find the correct conformation. Looking at the superposition in subfigure
4.2.7b, our server seems to recognise the three helices. However, one of them is
misplaced by 90 degrees. Interestingly, according to the CASP organisers none
of the servers were able to distinguish between the two targets and submitted
wrong predictions for at least one of the two. The models shown here, especially
the model for target 498, are good examples of the big effect that slightly wrong
angles can have on the overall Cα-RMSD.

For checking reasons, the six test proteins used previously are modelled also by
the CASP protocols. Thereby, the models for target protein 1FC2C consistently
show a beginning helix at the C-terminus. Wondering if this is real, a BLAST
search was performed on the PDB in order to find other homologous structures
[AGM+90]. The result is the entry 1BDD, which is the same protein but solved in
solution by nuclear magnetic resonance. It turns out that 1BDD comprises three
helices at the same positions that are modelled in our predictions (figure 4.2.8).
Analysing 1FC2C reveals that it is part of a heterodimer having been solved by X-
ray crystallography. Compared to 1BDD, the sequence of 1FC2C is shorter. The
C-terminus of 1FC2C is in contact with a neighbouring unit cell, so maybe the
sequence has been shortened to facilitate crystallisation. Therefore, the missing
third helix either could result from the dimerisation or could be an artifact from
the crystallisation.

The quality assessment server ranked models for 116 targets in CASP8 with
the [Mah09]-score [MFK+]. The best ranking has a Spearman rank correlation
coefficient of 0.532. This is relatively low compared to the other servers having
coefficients up to 0.994.

In CASP round 9, our prediction server successfully submitted 160 models for 32
target proteins using the improved protocol. The server’s performance is ranked
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(a) Superposition of model 2 (white) with
1FC2C (colour).

(b) Superposition of model 2 (white) with
1BDD (colour).

Figure 4.2.8: Superpositions of prediction model 2 for target 1FC2C with 1FC2C and 1BDD.

among the last six out of 79 servers based on model 1 of five only. The evaluation
of the CASP9 results shows the same trends as for CASP8.

4.3 Discussion

The method presented allows a sequence-specific sampling of the dihedral angles,
φ,ψ, of the protein backbone, as can be seen from the different distributions in
figure 4.2.3. Most of the time the preferred regions are narrowed down and this
indicates a success of converging the class probabilities of the system. The local
sequence context shifts the φψ-distributions to regions roughly agreeing with the
native values. A reason, why the exact values are not always found, could be that
the fragments are too short. The influence on the φψ-distributions remains local
and the propagation of this influence during the iterative optimisation along the
sequence is not strong. For example, tertiary contacts stabilise the formation of
sheets. Such interactions are not modelled in our simple classification.

Therefore, the resampling of structures, like the removal of steric clashes and
collapsing, is an important but simple post-processing method. It allows to con-
sistently push the distribution of samples to obey additional constraints without
worsening the dihedral angle distributions as seen in table 4.2.1. In order to
collapse an initial sample structure to a given radius of gyration a rather large
number of refinement steps is necessary. This leads to long runtimes that become
especially critical for tough competitions like CASP, where only a limited compu-
tational time frame is allowed. As also seen in [Han09] the acceptance criterion
could lead to local optima, so that a high rejection rate occurs and only rather
large moves lead to better structures. This greedy strategy should be replaced
eventually by Monte Carlo optimisation as in [Mah09]. Nevertheless, the refine-
ment is an essential step towards near-native sample structures. It also improves
the ranking quality for sample structures predicted from sequence.
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The optimisation successfully narrows down the angular distributions of 2GB1
towards a 1-helix-4-strands fold, which can be recognised by visual inspection.
In contrast, the generated sample structures are not very close to the native
conformation, which in fact consists of one α-helix and four β-strands forming
an anti-parallel β-sheet. The main reasons are probably a few angles pointing not
in perfect directions and no constraint in the refinement brings together β-strands
in order to form β-sheets.

The regular secondary structure (helix and extended strands) is often recognised
by the method. But two problems can be observed here. Already slightly wrong
angles and the use of standard geometry can lead to disturbed structures, see
also chapter 2. The classification can be viewed as a discretisation which might
be too broad for some classes. The smallest variance seen in the Gaussian terms
is 0.4 (23◦). This originates from the process of finding the classification in a
training set of dihedral angles having 0.4 radians uncertainly [SMT08b]. So the
generated models can not be expected to match known structures very well. The
angular RMSDs therefore can not get below that threshold as has been found for
the ideal reconstruction situation in chapter 2. The second problem is that right-
handed helical regions might be preferred. Helices are the most common motif in
the database leading to a high prior weight. Considering this, the Cα-RMSDs are
fairly good, if the native bond lengths and angles are used. A Cα-RMSD below
6Å can be considered good for these test cases [HKK06]. However, the structures
calculated from our test set are often still different from accurate conformations.
That also means that the slight differences in RMSD using initial or optimised
class weights should not be over-interpreted and probably are not significant. It
is debatable if the trends become obvious if more test cases would be included.

Sometimes, the φψ-space is narrowed down too much. For some residues the
remaining classes are too narrow, i.e. the native angles are just on the border of
the final classes, see figure 4.2.3. In these cases generating or sampling the correct
angles becomes hard. For sequence optimisation (chapter 5) better results are
obtained, if the samples are generated from states with higher entropy. For the
hard cases it might be worth to additionally sample structures from intermediate
states.

Considering the locality of the scoring, one might be tempted to compare the
results to the native secondary structure or to other secondary structure predic-
tion programs like GOR [KTJG02]. While this can be done manually, doing it
automatically requires a definition of secondary structure based entirely on the
dihedral angles. The assignments computed by common programs like DSSP or
STRIDE [KS83, FA95] require an intact tertiary structure. Among other terms
their definitions are based on H-bonds and contacts stabilising helices or sheets
and would not work here. Therefore, this comparison would be a task in its own
and mostly interesting from a scientific point of view, as the aim here clearly was
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the optimisation of tertiary structure.

Remembering the numbers from table 4.2.3, the poor performance at the CASP
competitions is not surprising. Both the optimisation and the refinement im-
proved the quality of the generated structures, but are not used at all or at least
not exhaustively here. This leads to the ranking problem, where the protocols
are especially fragile. Only a few samples may be selected for refinement in order
to keep computational costs low. Unfortunately, the scoring is not very reliable
and often samples reaching high scores show rather large Cα-RMSD values. An
improvement, that most other prediction servers have, would be a parallel re-
finement. This would provide a bigger pool of sample structures to choose from
while keeping within the time frame.

Despite the CASP results, considering the numbers of protein-like sample struc-
tures, the generation of tertiary structures is a promising approach. A remaining
question is how to find the near-native conformations inside this sample set. This
is a task for scoring and ranking the models. Using the Rosetta score for rank-
ing the generated sample structures does not work as well as expected. The
ranking does not correlate very much with Cα-RMSD. The samples are probably
too far away from the native conformation in order to be guided decently to a
near-native structure. The higher the Cα-RMSD is, the less reliable becomes
the score. A rather simple scoring based on our classification is certainly not
sophisticated enough. The score reflects the deviation of the structure from a
typical conformation given the classification and the sequence. This is the reason
why sometimes even the native conformation might get a lower rank than some
sample structure. Therefore, the next steps should be to include chemically more
sophisticated terms.

An extension to the current approach, where the discretisation of the φψ-space
is done by the classification, is actually not a trivial task. In order to include new
scoring terms while staying consistent with the old scoring, one would have to
redo the classification with the old and new terms together. In [Mah09] solvation
terms in the form of contact counts could be introduced to the classification rather
straight forward. Special challenges would be the inclusion of locally stabilising
features, such as H-bonds or long-range interactions. Only recently a statistical
description of H-bonds was published [PPMH10]. If and how this description
could be included to our classification remains to be investigated.

The resampling idea is a very nice approach to rigorously impose additional
constraints on the initial sample structures. Another way to include chemically
more sophisticated terms would be possible, if a similar approach to sequence
design (chapter 5), where the scores are not changed during the optimisation,
would be implemented for structure prediction. This would mean to use a grid
on the φψ-space. Each bin would get a probability by which it would get selected
in order to draw φψ-samples uniformly from it. This would have the advantage
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that the scoring function would be easier to extend or replace, for example to
include non-local interaction terms.

4.4 Outlook

4.4.1 Sequence Profiles

In the FB5-HMM approach [HKK06] secondary structure, in terms of helix,
strand and coil, was used as an additional input to sequence and improved the
prediction quality. This would not be very surprising, if only the real secondary
structure would have been used. But it becomes quiet remarkable when predicted
secondary structure also led to better results, because the accuracy of secondary
structure prediction programs is less than 75% [KTJG02]. No direct way to apply
this idea in our approach exists. Most advanced secondary structure prediction
programs are based on multiple sequence alignments. These can be used to con-
struct sequence profiles, which may substitute the single sequence input here.
This technique has been successful for homology-based tertiary structure predic-
tion where it is used to find and include distantly related templates [AMS+97].
A profile is defined by using probabilities reflecting the amino acid propensities
for each residue. Such a profile is then used as search query in template data-
bases. Typically, it is build from multiple sequence alignments of homologous
proteins. The hope is that profiles capture the important features of a protein
family. Therefore, they are more suited to broaden the search space, but at the
same time restrict it to relevant hits only. This idea is also tried here.

From the probability vectors used in this work, profiles could be build easily.
However, so far, these probabilities are calculated from a single protein sequence.
In a preliminary investigation, the program Ψ-BLAST is used to build a profile
from multiple sequences aligned to the given sequence [AMS+97]. The sequences
are taken from a database search result. This is not a trivial task and requires
some parameter tweaking. If the BLAST search parameters are set too conser-
vative, the profile will not differ much from using a single sequence. Whereas, if
the parameters are set too loose, then unrelated sequences might be included in
the profile, leading to a weak query due to averaging effects. Using the automat-
ically optimised parameters from the protein threading server WURST [TPH04]
should be a reliable compromise. These so build profiles, P = (pi,a)i∈[1,l]∧a∈[1,20],
are then turned into probability vectors, given by

vi =




wj pCj
(
S P)

n∑
j′=1

wj′ pCj′
(
S P)




j∈[1,n]

,
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(a) a missing loop (dashed
line) between two helices

(b) a flexible loop in an
NMR-ensemble

(c) two conformations of a
Calcium-binding loop

Figure 4.4.1: Reasons for loop modelling.

where

pCj
(
S P) =

k∏

t=1

20∑

a=1

pi+t−1,a pCj(St = a).

These can be used just like the vectors from a single sequence (formula (2.2.8)).
Preliminary results suggest that the structure prediction does not improve, but
sometimes even worsens. This might originate from weak smeared profiles that
contain information from unrelated sequences. Or it could be that bad predic-
tions get stronger, i.e. classes pointing away from the native conformation get
more pronounced because of the simplicity of the terms used in the classification.
Probably, the results are a mixture of both. In order to further investigate this,
one could build profiles from clusters in the PDB50 or PDB90 subsets [PDBb]
and see how close the predicted structure samples are to the structures in the
clusters, respectively.

4.4.2 Loop Modelling

Sometimes parts of a protein structure are more flexible than others, see fig-
ure 4.4.1. These often correspond to loop regions connecting regular secondary
structure elements. The loops might adopt different binding modes (figure 4.4.1c)
or just do not have a fixed conformation (figure 4.4.1b). This can lead to poor
electron density for X-ray models and missing xyz coordinates for the loop atoms
(figure 4.4.1a). Another reason for missing loops are gaps in the alignment for
building homology models from templates. However, these loops are often in-
volved in protein function. Therefore, the exploration of their conformational
space is of high interest. Here, we show a way to predict possible loop conform-
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Figure 4.4.2: A few open loop conformations in structure 2GB1 with gaps at the C-terminus.

ations while accounting for their flexibility. This leads to an ensemble of both
geometrically and biologically relevant conformations.

The problem of loop modelling is more constrained than the prediction of a whole
protein structure. The loop is much shorter than the entire structure and the
structural environment is already known. At a first glance this seems to lead to
a simpler task. However, the problem actually becomes harder as the loop has
to connect to the rest of the structure without introducing clashes. For example,
a single, slightly wrong angle can cause an open loop.

The approach described here has been implemented to some extent in a student
project [Küh10]. Let us define a loop as an element L of a set L ⊂ X of unknown
structural regions in X given the sequence S. That way, a loop is any stretch of
the protein, that has unknown structure. Then the class weights can be calcu-
lated from the sequence alone or from the sequence plus the known parts of the
structure. In the loop modelling process the known parts are fixed and residues
directly preceeding or succeeding a loop act as anchors. The generation of a loop
conformation follows the resampling procedure outlined in subsection 4.1.2.1.
The loops generated this way from N- to C-terminus are open conformations. In
order to close the gap at the C-terminus, either many generated conformations
are ranked and filtered by the distance and orientation to the C-terminal anchor,
or by iteratively resampling little parts of a single conformation until the gap is
closed sufficiently. The closeness criteria are

1. the distance of the Cα atoms of the C-terminal anchors in the fixed part
and in the loop and

2. the RMSD of the four backbone atoms of the C-terminal anchors capturing
the relative orientation.
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Placing side-chain atoms is omitted, but could be added with a program like
SCWRL [CSD03].

Currently, the program of [Küh10] is able to generate open loop samples based on
sequence alone. However, the use of overlapping fragments allows for conditional
probabilities given the fixed part of the structure. This leads to loop samples
dependent on both sequence and structure. As can be seen in figure 4.4.2, the
loops are not filtered yet. Therefore, the next steps would be to include the known
pre- and succeeding structure in the class weights calculation and to implement
a post processing step. This should filter out loops that introduce steric clashes
or are not sufficiently closed in terms of orientation and distance of the anchors.
Another post processing step would follow the refinement ideas by resampling
the loops until the constraints are fulfilled.
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Chapter 5

Sequence Prediction

Proteins acting as biocatalysts are called enzymes and can perform their task
amazingly fast. They can facilitate biochemical reactions, that would otherwise
not take place or only at a very low rate. The speedup is estimated to be up
to 1017-fold yielding a rate of several million reactions per second [RW95]. In-
dustry is highly concerned, since there are many applications in biotechnology
and medicinal chemistry with potentially high impact. Although harvesting nat-
urally occurring enzymes has been done for decades, most applications require
some modifications of the molecule. For example, proteases have been found that
digest the dirt on clothes in washing machines. The naturally occurring forms are
bound to work at the biological temperature, say 37 ◦C, but sometimes it is neces-
sary to wash the clothes at higher or lower temperatures. So the washing powder
industry tries to modify the proteases to be thermostable. Another example is
the production of biofuel on a large scale. Here very special chemical conditions
have to be matched. A last prominent example is the design of antibodies for the
therapeutic treatment of patients.

Despite some impressive literature results, the design steps have often been rather
ad hoc and the method is far from routine [KB00, KAS+09, FF07, SJ09, KAV05,
JAC+08, SDB+08, Tor04]. This is partly due to the fact that most of what is
known about proteins is at native physiochemical conditions. In order to design
or optimise a protein sequence, the correlation between the sequence and its
structure has to be understood. Here protein design means to exchange side
chains without changing the overall and essential structure, i.e. the backbone of
the protein. Changing all side chains can be regarded as the inverse problem to
structure prediction. For a given structure X a suitable sequence S folding to
that structure has to be found. That means, the new sequence is optimised in
terms of some energy or scoring function. An innovative approach is proposed
here, which is based on self-consistent mean field (SCMF) methods, but using a
framework of descriptive statistics. The approach is very similar to the structure
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Figure 5.1.1: Preparation steps for sequence optimisation.

prediction methods in chapter 4. The same probabilistic classification, that has
been described earlier in [SMT08b], in section 1.3 and in chapter 2, is combined
with a purely statistical version of SCMF optimisation and simulated annealing,
described in chapter 3.

5.1 Methods

Figure 5.1.1 illustrates the preparation steps for the given structure. First, the
protein structure is subdivided into overlapping fragments of length k = 5. For
each fragment and class a weight can be calculated, leading to a total of n(l −
k + 1) class weights with n = 162 the number of classes and l the length of the
protein, see also section 2.1.1. These class weights are then used to build mixture
distributions for the amino acid labels of each fragment using the associated 20-
way Bernoulli probabilities. Each fragment feels the influence of up to 2(k − 1)
overlapping fragments. Therefore, each residue is modelled by up to k mixture
distributions, which may not entirely agree with each other. A way to work out
these inconsistencies is the statistical SCMF method. Following the notation in
section 3.2, the known terms are the dihedral angles of the backbone structure
X = (φ1, ψ1, . . . , φl, ψl)

T and the unknowns are the amino acid labels of the
sequence S = (a1, . . . , al)

T, i.e. Xk = X and Xu = S. A solution to the problem
could be approached analogously to the structure prediction problem (chapter 4),
where the class weights are optimised per fragment. However, this turns out to
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be less flexible than using mutation probabilities for each residue like in other
SCMF algorithms [DK97].

5.1.1 Optimising Residue Probabilities

Working with residue-wise probabilities leads to a description, which is closer to
the general one introduced in chapter 3. Here, the states to be found are the
amino acid labels Si = {ai} ⊆ [1, 20] for each residue i ∈ [1, l] and so the update
formula (3.2.3) can be reformulated to be

pnew

(
Si = ai X

)
= λ pold

(
Si = ai X

)
+ (1− λ) pcur

(
Si = ai X

)
,

where λ ∈ [0, 1] is a memory factor. The current probability of residue Si labelled
by amino acid ai given the structure X is formulated by

pcur

(
Si = ai X

)
=

∏

i′∈Oi
i′ 6=i

∏

ai′∈Si′

(
pi,i

′
ai,ai′

) 2
T
pold(Si′ = ai′ X)

∑

a∈Si

∏

i′∈Oi
i′ 6=i

∏

ai′∈Si′

(
pi,i

′
a,ai′

) 2
T
pold(Si′ = ai′ X)

, (5.1.1)

where the interaction terms are weighted geometric means (inner product with
weights in the exponent) over the pairwise interaction of all residues in the set
of neighbours Oi (outer product). In analogy to [Sip90], the pair interaction
pi,i

′
ai,ai′

of two residues i and i′ is taken to be the net probability of the amino
acid pair (ai, ai′), which yields the probability contribution of the pair (ai, ai′) to
the average or marginal probability of the dihedral angles

(
φi
ψi

)
and

(
φi′
ψi′

)
. The

probabilities are given by the sum over the set Ii of all overlapping fragments.
This leads to
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where n = 162 is the number of classes and the conditional class weights are
given by

p
(
F i′′ ∼ Cj Ou

i′′,i1
= ai, O

u
i′′,i′1

= ai′
)

=
p(F i′′ ∼ Cj) pCj

(
Ou
i′′,i1

= ai

)
pCj

(
Ou
i′′,i′1

= ai′
)

n∑

j′=1

p(F i′′ ∼ Cj′) pCj′

(
Ou
i′′,i1

= ai

)
pCj′

(
Ou
i′′,i′1

= ai′
) .

The probability pCj

(
Ok
i′′,i1
≈
(
φi
ψi

))
of the angle pair

(
φi
ψi

)
at the first residue of the

overlap of fragments F i′′ and F i being in class Cj is defined as in formula (2.1.2)

on page 12 and pCj

(
Ou
i′′,i1

= ai

)
is accordingly defined by the corresponding mul-

tiway Bernoulli distribution of class Cj. The convergence parameter T in formula
(5.1.1) allows to smoothen the probability landscape, analogous to temperature
in simulated annealing, and to force the system to a single answer. As for struc-
ture optimisation, the convergence can be measured by an entropy-like measure,
given by

S =
−1

l

l∑

i=1

∑

a∈Si
pnew

(
Si = a X ) ln

(
pnew

(
Si = a X )). (5.1.2)

It is worth noting, that the structural terms in the equations are not necessarily
only φ- and ψ-angles but may be any (local) features of the structure.

5.1.2 Generating Sequences

Several approaches to (re)construct a sequence from probability vectors or class
weights are introduced and tested in chapter 2. The method here works with
residue-wise probabilities and therefore a sampling approach is more suited for
generating sequences. Sampling sequences is actually very simple. At each residue
Si the amino acid label a is chosen according to its final optimised probability
pfinal

(
Si = a X ).

5.2 Results

In order to illustrate the properties of the method some rather arbitrary proteins
are considered. These are also used for structure prediction in chapter 4. From
our examples, the evolution of the probabilities is shown as the system is gradually
cooled. Then sample sequences are generated and analysed how protein-like their
compositions are.
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Figure 5.2.1: Amino acid distributions at certain positions in an arbitrary chosen structure
before and after cooling.

5.2.1 Optimising Residue Probabilities

We have compared the conditional propensities of the 20 amino acids given a
sequence of dihedral backbone angles, φ and ψ, before and after the optimisation.
In figure 5.2.1 two example residues of protein 2GB1 are shown. At the first site
(pos. 37) the probabilities are smeared out at high temperature and get more
pronounced as the system cools down. In the second example the structural
environment shows a clear preference for certain kinds of amino acid. Here and
in all other test cases, the amino acid propensities are successfully narrowed
down to one or a few remaining. Staying with the example structure 2GB1,
this is quantified by the entropy-like measure (formula (5.1.2)) and can be easily
visualised in the converged mutation matrix, figure 5.2.2. The entries in this
matrix are the amino acid probabilities per residue. The probabilities in the
hot matrix are smeared out, i.e. the system can almost freely move from one
state to another. But finally the system is cooled so much, that only the most
probable states remain accessible. Then, the new sequence almost can be read
off directly from the cooled matrix. Blocks of repetitive composition are clearly
visible. These trends correlate with the secondary structure as shown in figure
5.2.3a.
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Figure 5.2.2: Mutation matrix of 2GB1 before and after cooling. The probabilities are colour
coded in a heat map.

5.2.2 Generating Sequences

Figure 5.2.3 shows a few sample sequences for three target structures generated at
intermediate optimisation steps. That means that each sequence is chosen from
a set of 100000 sample sequences generated at different temperatures T . Each
depicted sequence shows the highest similarity to the native sequence in terms of
pairwise amino acid identities. In order to emphasise the properties of the sample
sequences, the native sequence along with its secondary structure assignment is
given. Comparing the sample sequences to the native sequence reveals only little
similarity. A comparison with the assigned secondary structure gives more insight
here. Particularly noticeable is the repetitive composition of sample sequences
generated at low temperatures along regular helices and strands. Valine is found
for strands and alanine or leucine for helices. Glycine is placed between regular
secondary structure if the turn is left-handed. The native sequences agree here
on a glycine as well. Proline, asparagine and aspartate are also often placed onto
turns, but are sometimes shifted by one or two positions in the native sequence.
However, if the sequences are generated at earlier stages of the simulation, i.e. at
higher values for T , the repetitiveness becomes less obvious and the system gives
a more heterogeneous amino acid composition.

There are some obvious and some rather unusual trends concerning the influence
of the temperature-like convergence factor T on the sequence identity. For the
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(a) 2GB1

(b) 1ENH

(c) 1CTF

Figure 5.2.3: Designed sequences for the structures of 2GB1, 1ENH and 1CTF. The nat-
ive sequence and DSSP’s secondary structure assignment [KS83] is given in bold letters (H:
right-handed helix, E: extended/strand, ⊔: turn/coil). Each sample sequence corresponds to a
simulation stopping at different values for the convergence parameter T .
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targets 1CTF and 1ENH figure 5.2.4 illustrates the dependence of the highest se-
quence similarity found in a set of 100000 sample sequences and the temperature-
like parameter T . At high temperature the sample sequences have only random
similarity of less than 25% in analogy to a hot physical system. When the tem-
perature is decreased the sequences start showing some similarity to the native
composition. There is a peak around T = 1. At lower temperatures the similarity
goes down together with the diversity of the system.

5.3 Discussion

The approach introduced in this chapter allows one to generate sequences for a
given structure. The fold of this structure is modelled in terms of a probabilistic
description of dihedral backbone angles. Therefore the sequences are optimal
in the context of these terms. The SCMF-like optimisation scheme successfully
narrows down the state space. It can be used to control the heterogeneity of the
amino acid composition.

A direct comparison between the generated sequences and the native sequence is
not very sensible as shown in the results. A low similarity is is not necessarily
bad as many sequences may fold to the same structure. In order to maintain its
function the protein fold must be stable against mutation. The native sequence
is just one, that has been shaped under evolutionary pressure. That means for
example, it is not only designed to fold to the given backbone but also to perform a
certain biochemical function. The native sequence can be viewed as a compromise
between these two goals, whereas our sequences are only fitted against the fold
in terms of dihedral angles. Some interesting features that are otherwise not
obvious can be revealed by this comparison. For example, figure 5.2.1 shows that
the native asparagine at position 37 in 2GB1 may mutate to an aspartate. To a
biochemist this might not be a big surprise, however, it indicates that the method
is able to find chemically sensible mutations. This exchange is also geometrically
sensible as the dihedral angle distributions of these two amino acids are very
similar, compare figure 4.2.3.

The method generates sequences that correlate well with secondary structure ele-
ments and common motives like glycine-turns or prolines at the ends of helices are
successfully recognised. The method is able to sample context-specific sequences.
However, a comparison to secondary structure assignments reveals strong correl-
ations of repetitive stretches with regular helices and strands. This is not very
surprising, as the scoring is based entirely on dihedral angles. At regular second-
ary structure the dihedral angles are also repetitive. This is not necessarily bad,
as those sequences may act as reasonable starting points [KAS+09]. Furthermore,
the heterogeneity of the generated sequences is adjustable by sampling at higher
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(a) 1CTF

(b) 1ENH

Figure 5.2.4: Red: highest sequence identities out of 100000 samples versus temperature of
1CTF and 1ENH. Blue: fraction of sequences closer than 20% identity versus temperature.
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temperatures. This trick successfully leads to more protein-like compositions.

At very low temperatures, only those sequences remain that optimally fit the di-
hedral angles. The native sequence is not necessarily optimal for dihedral angles
alone, but was also formed to fulfil a biochemical function and by evolution-
ary pressure. In figure 5.2.4 the curve of the fraction of similar sequences to
the native sequence is very sensitive to the arbitrarily chosen threshold of 20%
identity. For some targets this is a good number, but for others it does not
work. Maybe trying a number of different values would reveal more properties of
the method. Using other similarity measures, like substitution scores based on
blosum matrices that reflect chemical and evolutionary similarity, would allow
more sensible comparisons.

The method is built on top of a rather simple scoring scheme, based only on local
statistics. But this does not mean that the optimisation scheme is restricted to it.
It is possible to extend or replace the scoring with chemically more sophisticated
models. The inclusion of solvent accessibility and tertiary packing is clearly one
of the next tasks.

Another useful extension would be to have a ranking of the generated sequences.
This should reflect the likelihood of a sequence folding to the target structure
and allows to create a candidate list for further experimental testing.

One application that is possible already with the simple scoring would be muta-
tion studies. This problem is much more constrained, as only small changes in a
given sequence environment are considered.

As the sequences generated by our method are optimised for the given structure
without any evolutionary constraints (as are the native sequences), it would be
interesting to compare our sequences to other designed proteins. For example
the two target structures T0498 and T0499 from the CASP8 competition, which
share 95% of their sequence, or the four helix bundle used in [RD88], which has
a rather repetitive sequence, would be exciting candidates.

The method tends to pick only the most probable sequence for the given struc-
ture. This may be too restrictive and can be relaxed to some extent by sampling
at higher temperatures. Another way to broaden the solution space to other
relevant sequences would be the use of profiles. Similar to the sequence pro-
files in homology searches for structure prediction, multiple structure alignments
may be used to generate structure profiles for sequence prediction. The program
HANSWURST creates multiple structure alignments based on the same probab-
ilistic classification scheme used in this work [MT08]. This may act as a starting
point for profiles and can lead to more distantly related sequences.
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Chapter 6

Conclusions and Outlook

A single scoring and optimisation scheme for both structure prediction and se-
quence design is introduced with this work. It avoids arbitrary simplifications and
comes with very little preconceptions. It makes almost no assumptions about the
training set. It is rather common with so called knowledge-based forcefields to
use the Boltzmann formalism. We could show that this essentially not neces-
sary. This is quite advantageous, as the protein database is no defined statistical
mechanics ensemble. The structures have been in all sorts of chemical conditions,
e.g. varying pH, different buffers, temperatures etc.. We have, however, our own
approximations. Modelling angles with Gaussian distributions is not ideal. But
in the case of the dihedral angles φ and ψ, the use of non-periodic distribution
functions is not critical as the angle boundaries can be shifted to sparsely pop-
ulated areas. An extension that uses circular von Mises distributions to model
directional features would nevertheless improve the approximation. Especially
if other directional features shall be included, which do not show strongly un-
derpopulated regions, then the availability of a periodic probability distribution
model becomes extremely useful.

Considering the simplicity of the scoring the generated structures and sequences
show rather interesting features. However, the low fraction of relevant struc-
ture samples and the repetitive sequence composition call for extensions of the
scoring by including chemically more sophisticated terms, like tertiary packing
and solvation. The addition of new terms to the existing scoring requires care-
ful parametrisation. First of all, any new terms should be orthogonal to the
others. Second, if extra terms are not rigorously included in our classification
scheme, then the weighting becomes a major task in its own. However, some
terms, like solvation, are easier to include than others, e.g. H-bonds. This has
been shown in [Mah09]. Part of the difficulty is the consistent modelling of local
and long-range terms, as the first perfectly fits our fragment-based approach but
the latter might involve features that can be calculated only across fragments.
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Another difficulty is to statistically capture the directionality of, for example,
H-bonds. Only recently, a promising approach was published [PPMH10], where
a statistical model of hydrogen bonding patterns is build. The next question is,
how to use the new terms for our two favourite applications, sequence optim-
isation and structure prediction. For finding sequences, it would simply mean
to know more about the given structure. This would give more accurate condi-
tional probabilities and would further narrow the solution space already at the
start of the simulation. For predicting structures via SCMF-like methods, this
mainly would lead to better post-filtering options. However, it also offers to pre-
dict other structural properties than just the conformation, i.e. dihedral angles
or atom coordinates.

The cooling scheme successfully narrows down the solution space for both se-
quence optimisation and structure prediction. As this might be a good situation
for problems where a single solution is desired, like structure prediction, it lim-
its the solution space too much in cases where many alternative solutions are
desired, e.g. to propose sequences as candidates for further design studies. How-
ever, this is not the only reason to look for broader spaces. As our scoring is
built of chemically rather simple terms, we do not expect to find a near-native
solution necessarily within the top ranks. If the solution space is kept broad,
e.g. by sampling at temperatures greater zero, solutions closer to the native can
be obtained. This could be shown for sequence optimisation, where sequences
could be sampled that show more protein-like compositions. The high number
of unrelated structure samples generated at low temperature is not the result of
insufficient sampling or bad optimisation, but rather comes from the very simple
scoring. As is the case for sequence samples, generating structures at higher tem-
peratures, and consequently states of higher entropy, would broaden the solution
space and might increase the fraction of promising candidates.

The sampling approach works much better than our trials to predict a single
answer of maximal probability. The reason is clearly the simplicity of the current
scoring. Therefore, the generated samples are good starting points for further
refinement. This is demonstrated successfully for the structure models with two
rather simple constraints, by removing steric clashes and enforcing compactness.
More sophisticated refinement should be possible, for example, via Monte-Carlo
optimisation using other existing scoring schemes. This would avoid the creation
of chemically sophisticated scores, but from a scientific point of view would gain
only little compared to other existing approaches. Though, what is an innovation
in that context is our (re)sampling approach entirely based on Boltzmann-free
statistics. When using this approach as a move strategy for Metropolis Monte
Carlo, then the proposed structures would be closer to a relevant answer than
with random moves. However, the acceptance criterion has to account for the
bias introduced. Otherwise detailed balance would be violated.
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In principle, the concept of overlapping subsystems for propagating local biases
over the entire system seems a promising idea. Application to the scoring of a
state probability matrix of non-overlapping subsystems offers the most flexibility
for extention of the score function. It would not harm so much to add extra
terms that are derived from modelling schemes different to our classification.
Parametrisation would be an issue, here. However, if the state probabilities of
the overlapping subsystems themselves are updated (as done for structure op-
timisation), then heavy parametrisation problems would arise. Any new scoring
terms would need to be included consistently in our classification, which can be
difficult [Mah09].

One hope of our optimisation procedure was to find consistent, highly probable
states. With very little limitations due to the suboptimal entropy measure the
final states are consistent with each other and also the most probable with respect
to the scoring. However, the sequential propagation of local biases does not lead
to solutions showing real tertiary motifs, like β-sheets, hydrophobic packing or
alternating hydrophobic/hydrophilic sequence patterns. The next step clearly is
the use of chemically more sophisticated scores.

Another question is, how the cooling influences the results. Clearly, the solution
space is narrowed down towards the most probable states. However, these states
can already be seen at high temperatures. The states are just less pronounced.
The system does not show any obvious quick phase transitions that would change
the relative population of states. In that sense it seems unnecessary to cool the
system. However, this is only true with respect to our scoring. Using different
quality measures like RMSD or sequence identity (though they have their own
pitfalls), a peak can be seen at lower temperatures but significantly above zero
still. This suggests that there is an optimal temperature for sampling. For
sequence sampling preliminary results point to a number slightly larger than 1.0.
Finding it also for structure sampling would certainly increase efficiency.

The entropy-like measure used in the simulated annealing of our structure pre-
diction approach reflects the average number of populated classes per fragment.
As this approximation is sufficient in most cases, it sometimes leads to overlap-
ping fragments being in different classes. Of course no two overlapping fragments
can ever be literally in the same class, but at the end of the optimisation the
final class means and shapes should not differ much. In order to account for
that, we would need a different entropy-like measure that reflects not only the
number of classes per fragment but rather the width of the class population per
residue. Numerical integration would be necessary to compute the actual en-
tropy per site. However, a summation of the entropies at each site of each class
(Sjm = 1

2
ln((2πe)2| det Cjm,m|), since bivariate Gaussians are used) would be an

illegal approximation but might be a working. Another possibility could be based
on the Mahalanobis distances between class means. This would not lead directly
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to a measure which scales like entropy and therefore needs more thinking and
maybe an adaption of the annealing algorithm.

So far, the update formula for state probabilities is based on a product of the
probabilities of interacting sites. But other measures are possible for calculat-
ing consistency or the level of agreement between overlapping fragments. For
example, the Kullback-Leibler divergence between the state probability distribu-
tions of overlapping fragments could be used.

A thorough testing of different classifications should be done, in order to check
the effect on the prediction quality. However, in the case of protein comparisons
different choices for classifications were tested and found to be uncritical there.
Preliminary results (not shown) for prediction suggest only slight changes, but
the trends stay the same.

One application that would be possible already with our simple scoring is muta-
tion studies. There the problem is much more constrained as only small changes
in a fixed sequence environment are considered. This would be a similar problem
as the loop modelling task. Class weights of the fixed parts can be calculated
using both sequence and structure features simultaneously.

The secondary structure content and distribution in the generated structures
seems to match the native secondary structure. Although it was not in the focus
of this project, it would be interesting to see how our structure prediction results
simply based on dihedral angles compares to secondary structure prediction pro-
grams like GOR [KTJG02]. To do so it would be necessary to assign secondary
structure solely based on dihedral angles. Secondary structure assignment via
DSSP or STRIDE [KS83, FA95] would not recognise β-strands in our models as
these programs look for tertiary motifs, like H-bond patterns.

Sophistication of the optimisation scheme is always possible. Currently, for ex-
ample, for calculating the level of agreement between overlapping fragments the
overlapping parts are treated equally important. However, weighting these parts
according to their influence values would be possible. These weights can be
taken from the AutoClass-C classification reports and reflect how important each
feature was for the training of the classes. Looking at them reveals that the mid-
portion of fragments is most reliable, which is what is typically expected from a
sliding window approach.

The preliminary results of the loop sampling do not show any principle limitations
for exploring conformations of missing loops. In order to predict entire protein
structures, loop modelling can help to bring initial homology models to full scale
if parts are missing in the template. The overlapping nature of our approach is
especially suitable to find reasonable conformations for parts of a model, for which
the uncertainty is very high. This is the case in fragment-based approaches, if
two neighbouring fragments are derived from different template structures and the
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correct structure of the bridge in between is not known. Then our approach allows
for finding conformations consistent with the rest of the structure by considering
the bias from the existing, reliable parts and resampling the unreliable parts. For
modelling missing loops, the generated models would need to be connected to the
anchors of the known parts. The number of open loop conformations should be
checked. Then open loop models could be closed via inverse kinematics. Another
extension would be to place side chains, which might also require to slightly
remodel parts of the structure.

Clearly for the two main applications, structure prediction and sequence op-
timisation, the most urgent extension is the use of chemically more sophisticated
scoring. The innovative statistical optimisation scheme introduced in this work is
independent of the exact scoring function to a wide extent and can be considered a
general search method. It is especially applicable to a range of optimisation tasks
for systems with hard to define energy functions or even non-physical systems.
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Appendix A

Directional Statistics

The field of directional statistics deals with the statistics of directions and angles.
As the proteins in this work are also described by dihedral angles, a short intro-
duction to the field is given and some thoughts are discussed. Directional features,
such as angles, have special properties compared to ordinary numbers. Most im-
portant of all properties is that angles are periodic. That is, if x ∈ R is a real
number then an angle can be defined as α = x mod 2π + o where o is an offset
or phase shift. Another way to represent an angle α is as a point on the unit
circle, i.e. pα = (cosα, sinα).

A.1 Means and Differences

In order to get an impression of the specialities of angles the calculation of dif-
ferences and means is demonstrated here.

Let x1 = 15, x2 = 5 and x2 = 355 be three numbers. The differences are
|x1−x2| = |15−5| = 10, |x1−x3| = |15−355| = 340 and |x2−x3| = |5−355| = 350.
Now, let α1 = 15◦, α2 = 5◦ and α2 = 355◦ be three angles. Here the differences
are no longer valid. The real differences are 10◦, 20◦ and 10◦, respectively. It can
be shown that the formula for numbers is only valid for angles that are less than
180◦ apart from each other. For the other angles the periodic image, i.e. α+ 360◦

or α − 360◦, of one angle has to be calculated so that one can use the difference
formula for numbers again.

When calculating the mean of the numbers x1 = 15, x2 = 5 and x2 = 355 one
gets x1+x2+x3

3
= 15+5+355

3
= 125. The actual mean for angles α1 = 15◦, α2 = 5◦

and α2 = 355◦, however, is 15◦+5◦+(−5◦)
3

= 5◦. Again, one has to calculate the
periodic image of an angle to be able to treat them just like numbers.
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Figure A.1.1: The difference of the angle α and 0 is shown in red and the corresponding
Euclidean distance on the unit disk is shown in blue.

If the angles are represented as points on the unit circle one can define an Euc-
lidean distance measure by

d(α1, α2) =
∣∣pα1

,pα2

∣∣ =
√

(pα1X − pα2X)2 + (pα1Y − pα2Y)2,

where pαY = sinα and pαX = cosα. Unfortunately, this measure does not scale
linearly with the actual difference of the angles. Figure A.1.1 gives an idea of
the scaling. With this distance measure there are also attempts to perform prin-
cipal component analysis on dihedral angle information obtained from molecular
dynamics simulations [MNS04, ANHS07]. However, this so called dihedral angle
principal component analysis (dPCA) works in the forbidden space off the unit
circle or the surface of a unit sphere, if more than one angle is analysed. A better
way to do PCA on spaces like surfaces of unit spheres is to perform the analysis on
the manifold directly, leading to a special kind of geodesic analysis [LLV04, LV04].

A.2 Circular Distributions

When it comes to modelling angles by statistical distributions the specialities of
directional features become quite important. However, specialised distributions
have become available only recently. We will shortly introduce some ways to
model angles.
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Gaussian

The Gaussian normal distribution is quite efficient in modelling numbers. It needs
only two parameters, the mean and the variance. But it does not account for the
periodicity of angles. Therefore, when modelling angles directly with Gaussians
one has to ensure the periodic boundary conditions. For example, if one wants
to know the probability of an angle the distance to the mean has to be less than
π. And, if this not the case, this can be achieved by translating the angle to
its periodic image closest to the mean. Real problems occur if the variance gets
close to or even over the size of a period.

Another way would be to model the point representation of the angles. Here,
one has to deal with number pairs in the range [−1, 1]2. At the first glance, this
seems to be feasible to model with bivariate Gaussians on the logarithmic values,
i.e.

(
log

(
log

(
2

cosα + 1

))
, log

(
log

(
2

sinα + 1

)))
∈ R2.

However being in the perfect range, [−∞,∞]2, for a Gaussian model, the angle
differences would overweigh close to the four singularities, i.e. at α = 0, π

2
,π, 3π

2
.

The other problem of the use of point representations is, that the points follow a
graph line and are not spread like real Gaussians, see figure A.2.1.

Multivariate Gaussian

If one has to deal with more than one angle, these angles are described by vectors
α of dimension k which can be modelled by the k-variate Gaussian distribution
similar to the univariate case. The density is given by

Nk

(
α µ,C

)
=

exp
[
−1

2
(α− µ)C−1(α− µ)T

]
√

(2π)k| detC|
,

where µ is the mean angle vector and C is the covariance matrix.

Wrapped Gaussian

The wrapped Gaussian is a distribution for angles [Bah06]. It seems to have
the least modifications compared to the original Gaussian normal distribution.
Whereas the original Gaussian is defined on numbers from −∞ to +∞, the
wrapped Gaussian models angles α ∈ [0, 2π). It can be defined by a sum of the
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Figure A.2.1: The sine (blue) and cosine (red) of the angle α and the corresponding logar-
ithmic representation (same colour, dashed).

normal density of all periodic images of α, given by

Nwrap
(
α µ,σ

)
=

+∞∑

t=−∞
N1

(
α + 2πt µ,σ

)
.

This formulation, however, is known to have some drawbacks concerning the
parameter estimation [MHTS07].

Multivariate wrapped Gaussian

The multivariate case looks similar [Bah06]. The density is given by

Nwrap
k

(
α µ,C

)
=

+∞∑

t1=−∞
· · ·

+∞∑

tk=−∞
Nk

(
α+ 2πt1e1 + · · ·+ 2πtkek µ,C

)
,

where ei is the ith Euclidean basis vector (with an entry of 1 at the ith element
and 0 elsewhere).
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Von Mises

The von Mises distribution is the most prominent among the univariate circu-
lar distributions and is a natural analogue to the univariate Gaussian normal
distribution. For angles α its density function is given by

M
(
α κ,µ

)
=

exp[κ cos(α− µ)]

2π I0(κ)
,

where µ is the mean angle, κ ≥ 0 is the concentration parameter and I0(κ) is the
modified Bessel function of the first kind and order 0.

Von Mises-Fisher

The von Mises-Fisher distribution is a generalisation of the von Mises distribution
to the k-dimensional sphere. If k = 1 it reduces to the von Mises distribution. For
(k + 1)-dimensional point vectors of unit length, pα (build by k angle variables),
it is given by

MF
(
pα κ,µ

)
=
κ

k−1
2 exp

[
κµTpα

]

(2π)
k+1
2 I k−1

2
(κ)

,

where µ is the mean angle vector, κ ≥ 0 is the concentration parameter and
I k−1

2
(κ) is the modified Bessel function of the first kind and order k−1

2
. This

distribution does not allow for non identical variance in the different dimensions
nor for covariances.

Fisher-Bingham or Kent

The 5-parameter Fisher-Bingham or Kent distribution is an analogue to the
bivariate normal distribution on the unit sphere with an unconstrained covari-
ance matrix [Ken82]. It uses a point representation of the angle pair α = (α1, α2)
given by

pα =




cosα1

sinα1 cosα2

sinα1 sinα2


 .

The density function is then given by

FB5

(
pα κ,β,Γ

)
=

exp
[
κγT

1pα + β
(
(γT

2pα)2 − (γT
3pα)2

)]

c(κ,β)
,

where κ ≥ 0 is the concentration, β ≥ 0 is the ovalness and the matrix Γ =
(γ1,γ2,γ3) describes the mean direction (γ1), the major axis (γ2) and the minor
axis (γ3). c(κ,β) is a normalising constant [Ken82].
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Multivariate von Mises

A multivariate von Mises distribution was recently proposed [MHTS07]. Its prob-
ability density function for angle vectors α of dimension k is given by

Mk

(
α µ,κ,Λ

)
=

exp
[
κTc(α,µ) + 1

2
s(α,µ)TΛs(α,µ)

]

T(κ,Λ)
,

where c(α,µ) =




cos(α1 − µ1)
...

cos(αk − µk)


, s(α,µ) =




sin(α1 − µ1)
...

sin(αk − µk)


, the matrix

Λ is symmetric with only zeros on the diagonal and T(κ,Λ) is a normalising
constant. All conditional distributions are again multivariate von Mises and
the marginals are symmetric around their means and either uni- or bimodal
[MHTS07, SHD02].

Although the multivariate von Mises distribution seems to be the most elegant
model for the dihedral angles of protein fragments, there is no parameter es-
timation program available, which can deal both with discrete and continuous
descriptors for fragments. Therefore and to reduce unnecessary programming,
in this work multivariate Normal distributions were used with the AutoClass-C
program [CS96, CPT02].
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Appendix B

Analytic Derivation of the
Adaptive Cooling Threshold

In this appendix the threshold used for the cooling criterion in algorithm 1 on
page 45 is derived analytically. The condition for slower cooling is given if the
entropy difference of the short term average and the long term average is below
some threshold ∆Sthresh, formally Slong

t − Sshort
t < ∆Sthresh. The averages are

calculated on the fly by Sshort
t = βshortS

short
t−1 +(1−βshort)St and Slong

t = βlongS
long
t−1 +

(1 − βlong)St. A derivation of ∆Sthresh is shown in terms of the instantaneous
entropy St at time t and the parameters βlong and βshort. The ideal slope of the
entropy is assumed to be a linear decay, that is St = −mt + S0, where S0 is the
initial entropy and 0 < m = S0

tmax
with tmax as the number of desired simulation

steps. The actual number will be close to tmax only if the cooling rate is not
adjusted or if the adjustments average out. In advance, it is hard to say what
the actual number of steps will be. The properties of geometric sums are used
to derive at a closed formula for Sshort

tn or Slong
tn , respectively, for some time point

tn > 0.

Sshort
0 = S0

∧ Sshort
tn = βshortS

short
tn−1 + (1− βshort)Stn

⇐⇒ Sshort
tn = (1− βshort)Stn + [(1− βshort)Stn−1 + [(1− βshort)Stn−2 + . . .

· · ·+ [(1− βshort)S1 + βshortS0] βshort . . . ] βshort] βshort

= βtnshortS0 + βtn−1
short(1− βshort)S1 + · · ·+ βtn−tnshort (1− βshort)Stn

= βtnshortS0 +
tn∑

t=1

βtn−tshort(1− βshort)St
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Assuming St = −mt+ S0, then

Sshort
tn = βtnshortS0 + (1− βshort)

tn∑

t=1

βtn−tshortSt

= βtnshortS0 + (1− βshort)
tn∑

t=1

βtn−tshort(−mt+ S0)

= βtnshortS0 + (1− βshort)
[
−mβtnshort

tn∑

t=0

β−t
shortt+ S0β

tn
short

(
tn∑

t=0

β−t
short − 1

)]

Applying the geometric sum formula leads to

Sshort
tn = βtnshortS0 + (1− βshort)

[
S0β

tn
short

(
tn∑

t=0

β−t
short − 1

)
−mβtnshort

tn∑

t=0

β−t
shortt

]

= βtnshortS0 + (1− βshort)



S0β

tn
short

(
β−tn−1
short −1

β−1
short−1

− 1
)

−mβtnshort
tnβ

−tn−2
short −(tn+1)β−tn−1

short +β−1
short

(β−1
short−1)2




= S0 +m
βtn+1
short − βtnshort − (tn + 1)βshort − tnβ−1

short + 2tn + 1

β−1
short + βshort − 2

Using m = S0

tmax
leads to

Sshort
tn =

[
S0 + S0

βtn+1
short − βtnshort − (tn + 1)βshort − tnβ−1

short + 2tn + 1

tmax

(
β−1
short + βshort − 2

)
]

= S0




tmax(β−1
short+βshort−2)

tmax(β−1
short+βshort−2)

+
βtn+1
short−β

tn
short−(tn+1)βshort−tnβ−1

short+2tn+1

tmax(β−1
short+βshort−2)




= S0




βtn+1
short−β

tn
short+(tmax−tn−1)βshort+(tmax−tn)β−1

short

tmax(β−1
short+βshort−2)

+ −2tmax+2tn+1

tmax(β−1
short+βshort−2)




The optimal difference ∆Sthresh = Slong
t − Sshort

t could now be calculated at each
time t. This an undesired situation as first the assumption that the entropy
follows a linear decay is not realistic, and second this calculation would be too
expensive to be performed at each step of the simulation. Therefore, the optimal
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difference of the two averages should stay constant.

∆S = Slong
tn − Sshort

tn

=



S0 +m

βtn+1
long −βtn

long−(tn+1)βlong−tnβ−1
long+2tn+1

β−1
long+βlong−2

−
(
S0 +m

βtn+1
short−β

tn
short−(tn+1)βshort−tnβ−1

short+2tn+1

β−1
short+βshort−2

)




= m




βtn+1
long −βtn

long−(tn+1)βlong−tnβ−1
long+2tn+1

β−1
long+βlong−2

−βtn+1
short−β

tn
short−(tn+1)βshort−tnβ−1

short+2tn+1

β−1
short+βshort−2




= m




βtn+1
long β−1

short−β
tn
longβ

−1
short−βlongβ

−1
short

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
βtn+1
long βshort−βtn

longβshort

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
−2βtn+1

long +2βtn
long+βlong−β

−1
long

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
−β−1

longβ
tn+1
short+β

−1
longβ

tn
short+β

−1
longβshort

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
−βlongβtn+1

short+βlongβ
tn
short

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
2βtn+1

short−2βtn
short−βshort+β

−1
short

(β−1
long+βlong−2)(β−1

short+βshort−2)




For big enough tn this simplifies to

lim
tn→∞

∆S = m




−βlongβ−1
short

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
βlong−β−1

long

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
β−1
longβshort

(β−1
long+βlong−2)(β−1

short+βshort−2)

+
−βshort+β−1

short

(β−1
long+βlong−2)(β−1

short+βshort−2)




= m
(βlongβshort − βlong − βshort + 1) (βlong − βshort)

(βlong − 1)2 (βshort − 1)2
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