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1 Introduction and Overview

Signals and measurements are basic tools for studying interactions of complex phenomena,
and a basic example is a polyphonic audio signal f =

∑
` f` composed of various sounds f`

originated from different simultaneuous events. In realistic scenarios, using f to extract
the components f` can be a challenging task, and a plain usage of modern tools in
harmonic analysis as wavelet methods or frame theory can be insufficient. In this project,
we consider the problem of studying f using geometrical and topological properties of
a set Xf = {xi}i defined by collecting local information of f as in the context of time-
frequency analysis. As depicted in Fig. 1.1 our work is constructed on top of the recent
developments in dimensionality reduction and manifold learning, together with new tools
from persistent homology. In the last few years, a major activity of these areas has been
motivated by modern problems in data analysis. Our long term goal is to use these new
developments in applied geometry and topology in combination with modern tools in
harmonic analysis.

Background Topics

Following the Fig. 1.1, we now shortly discuss an overview of the main topics presented
in our work, together with their interactions. We begin with background topics including
time-frequency analysis, dimensionality reduction and manifold learning, as well as basic
modern engineering strategies for signal detection. Additionally, we describe the role of
persistent homology as a recent development in computational topology. Using these
building blocks, we discuss our contributions in the following section, where we present
a particular interaction of time-frequency analysis with modern application tools from
geometry and topology.

Over the last decades new tools in pure and applied mathematics have emerged for the
analysis of complex geometrical and topological structures. In particular, in application
and engineering fields, there has been an important emergence of new strategies for the
analysis of datasets X = {xi}mi=1 ⊂ Rn. On the one hand, new algorithms have been
proposed for manifold learning and dimensionality reduction by combining concepts of
differential geometry with spectral decompositions. On the other hand, from a topological
perspective, a dataset X can now be analyzed with novel tools from persistent homology
which has emerged as an important subfield of computational topology.

In a different setting, the groundbreaking developments of noncommutative geometry
are currently investigating new type of geometric objects that correspond to noncommu-
tative C∗-algebras. These ideas are extensions of original concepts in noncommutative
topology, which is on itself a field based on the celebrated Gelfand-Naimark theory. We
argue that this modern view of geometry can be a useful source of ideas for application
oriented problems in signal processing and data analysis.

Our objective in this project is to study a particular type of interactions of these topics
in the setting of time-frequency analysis. Our motivation is based on the construction of
datasets X = {xi}mi=1 arising from a time-frequency representation of a signal f . In par-
ticular, the question arises on how to construct new invariants inspired from geometrical
and topological properties for designing more accurate methods for signal analysis.
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Figure 1.1: Main topics and their interactions

In dimensionality reduction and manifold learning, the objective is to study
a point cloud data (or dataset), defined as a finite family of vectors X = {xi}mi=1 ⊂ Rn

in a n-dimensional Euclidean space. The basic assumption is that X is sampled from
M, a (low dimensional) space, considered as a submanifold of Rn or, more generally,
we can see M as the geometrical realization of a topological space (simplicial complex,
CW-complex, etc) in Rn. We have therefore, X ⊂M ⊂ Rn with p := dim(M) < n. An
additional key concept is the consideration of a simplified model of M, denoted by Ω,
embedded in a low dimensional space Rd (with d < n), together with a homeomorphism
(or ideally an isometry) A : Ω →M ⊂ Rn, Ω ⊂ Rd. The space Ω is then a homeomor-
phic version ofM that could be used for efficient analysis purposes in a low-dimensional
environment. For instance, in the case of M being the well-know Swiss roll dataset, the
space Ω is a rectangle. However, in practice we can only try to approximate Ω with a
dimensionality reduction map P : M → Ω′ ⊂ Rd, where Ω′ is a homeomorphic copy of
Ω. Standard methods for dimensionality reduction are Principal Component Analysis
(PCA) or Multidimensional Scaling (MDS), but modern nonlinear strategies are impor-
tant research topics (e.g. Isomap, Local Tangent Space Alignment (LTSA), Laplacian
Eigenmaps, etc [4, 9, 58, 81, 87]). We also remark that recent related developments in
learning and sampling theory have been achieved as in the work of Niyogi, Smale and
Weinberger [75], which provides some conditions under which a dataset X = {xi}mi=1 can
be used to recover the topology of M.

Persistent Homology is an a recent development in computational topology,
and it provides an important strategy for computing topological features of a dataset
X = {xi}mi=1. In the context of topological analysis, homology theories are basic tools,
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and these can be described as functors from an adequate category of spaces (e.g. topo-
logical spaces, CW complexes, smooth manifolds, etc) to a given category of algebraic
structures (e.g. abelian groups). Among these theories, one of the simplest is simpli-
cial homology, where the concept of abstract simplicial complex is the basic object to
study. A major problem when considering this strategy for the analysis of a dataset
X = {xi}mi=1 ⊂ Rn, is the fact that there is no simplicial complex structure at hand. Per-
sistent homology [14,27,95] delivers a useful strategy for this problem by efficiently con-
structing a multiscale topological overview of a point cloud data. The fundamental idea is
to construct a family of simplicial complexes by considering the spaces Xε = ∪mi=1B(xi, ε),
where a ball B(xi, ε) of radius ε > 0 is centered around each point of the dataset X.
Various well-known structures (e.g. Vietoris Rips complexes) are available for studying
homological information of Xε. There are two crucial remarks for implementing these
ideas in an efficient computational framework. First, even though we consider a contin-
uous parameter ε > 0, it can be verified that for a given finite dataset X, there are only
a finite number of non-homeomorphic simplicial complexes K1 ⊂ K2 ⊂ · · · ⊂ Kr charac-
terizing the set {Xε, ε > 0}. Another fundamental property is an efficient computational
procedure (based on variants of the Smith normal form of boundary matrices [27]) for fast
calculations of homological information of the family K1 ⊂ K2 ⊂ · · · ⊂ Kr (see [14] for
details). These ideas are the result of the work of different research communities in the
last two decades (see [14,27]), illustrating an important development combining concepts
from pure mathematics with concrete applications problems.

In Time-frequency analysis a signal f is analyzed by considering its local bahaviour
using a partitioning in segments xb = fgb, for g a window function, and gb(t) = g(t− b).
In more abstract settings, we can describe this procedure using a locally compact group
G acting in a Hilbert space H. We assume this action to be an irreducible, square
integrable group representation, π : G → U(H), defined as a homomorphism between
G and U(H), the unitary operators in H. With this representation, the voice transform
is constructed as Vψ : H → L2(G), with Vψf(x) = 〈f, π(x)(ψ)〉 for f ∈ H, x ∈ G, and
ψ a particular (so called admissible) element of H . Gabor and wavelet transforms are
typical examples where ψ corresponds to a Gaussian window function and a wavelet
respectively [32–34]. Wavelet analysis, Gabor transforms, frame theory, and a large
number of related concepts have been investigated over the last decades, illustrating
the importance of the time-frequency philosophy. However, despite the success of these
developments, modern engineering problems are demanding more accurate and flexible
tools for dealing with the ever increasing complexity of dynamical systems, signals, and
datasets arising in many applications.

The basic objective in our program is to study geometrical and topological properties
of Xf = {xb}b, in order to analyze the function f . Notice that in the particular case
of Gabor analysis, the voice transform is defined as Vgf(b, w) =

∫
R f(t)g(t− b)e−2πitwdt,

and due to the orthogonality property of the Fourier transform, the geometrical and
topological characteristics of Xf = {xb}b, are the same as the ones of XVgf = {Vgf(b, .)}b
(i.e. Xf and XVgf are isometric). But it is important to notice that XVgf undergoes highly
nontrivial geometrical and topological changes when applying time-frequency operations
to the function f (e.g. convolution filters). The interplay between the geometric and
topological properties of XVgf and the time-frequency characteristics of f is a main topic
in our research.

6



Signal detection and separation are major areas of signal processing, and recent
strategies have appeared in the engineering literature combining dimensionality reduction
and time-frequency analysis. For instance, a basic method for extracting the components
f` from a polyphonic single-channel signal f =

∑
` f` is the so called independent subspace

analysis (ISA). Here, the strategy is to apply a dimensionality reduction map to the time-
frequency data of f and, subsequently, use independent component analysis (ICA) for
recovering features of the vectors f`. These engineering algorithms are concerned with the
usability and quality of the separation process, and the mathematical understanding of the
resulting tools is not a major concern. A noticeable feature of these engineering strategies
is to combine mathematical concepts in original ways for resolving practical problems. We
remark that this interaction between engineering solutions and mathematical concepts is a
mutually beneficial process, as the resulting algorithms reveal new challenging phenomena
from a conceptual (purely mathematical) point of view. One objective in this project is to
use these engineering ideas as a motivation to explore new ways of extending tools from
time-frequency analysis. The results obtained with the basic strategy in ISA, constructed
on top of dimensionality reduction methods, is a motivation towards more geometrically
based separation methods. In our notation, ISA can be described as the manipulation of
XVgf using dimensionality reduction maps and ICA in order to extract the components
f`. In our project, we take further steps from a conceptual point of view by studying the
interaction of geometrical properties of XVgf with the different components f`.

Contributions

The concept of a functional cloud of a signal f (or a cloud of f for short) considers
the segmentation of f in small fragments or chunks xi assembled in a set Xf = {xi}
whose geometrical and topological properties can be used for studying f . As explained in
the previous remarks, the construction of Xf is motivated from time-frequency analysis
where we fragment a signal f in pieces xb = fgb, using a window function g, and gb(t) =
g(t− b). A more general construction defines XVgf using the graph of the voice transform
Vψ : H → L2(G), Vψf(x) = 〈f, π(x)(ψ)〉. Remember that for the particular case of Gabor
analysis we consider XVgf = {Vgf(b, .)}b for Vgf(b, w) =

∫
R f(t)g(t − b)e−2πitwdt and for

concrete engineering applications we obtain a finite point cloud data XVgf = {xi}ki=1. A
basic goal of the concept of functional cloud is to describe mechanisms for decomposing
the signal f =

∑
` f` using geometrical and topological properties of Xf .

Our results present three types of contributions whose objectives are to manipulate,
decompose, and analyze Xf in order to understand f . First, we introduce the concept
of a modulated space which is closely related to the idea of a functional cloud, but it
explicitly uses a homeomorphism between a space of parameters Ω, and a space of signals
M. Here, the basic result is an empirical observation relating the effectiveness of a
dimensionality reduction map applied to a space M with the spectral properties of the
elements of M. Secondly, we present a procedure for manipulating a point cloud data
using geometric algebra, as defined in the setting of Clifford algebras. A simple application
of this procedure is to help identify or classify signals using a high dimensional Möbius
transformation by geometrically compressing regions in the space of signals. Finally, we
present an analysis framework based on noncommutative C∗-algebras for studying the
interaction of the components f` for f =

∑
` f` using the properties of XVgf .
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The concept of a modulated space M is closely related to the idea of a functional
cloud, but in a modulated space we construct a familyM of signals by explicitly consid-
ering a homeomorphism A : Ω→M between a set of parameters Ω and a space of signals
M⊂ H, where H is an Euclidean space. We think of Ω as a topological space (a simpli-
cial complex or CW-complex), and we assume that it has a low dimension in comparison
with the dimension of the Euclidean space H. For constructing A, we use {φk}dk=1 ⊂ H
as a set of dictionary vectors, and {sk : Ω → CH(H)}dk=1 a family of continuous maps
from Ω to the space CH(H) of continuous functions from H to H. We require the home-
omorphism A (we call it a modulation map) to be of the form A(α) =

∑d
k=1 sk(α)φk, for

α ∈ Ω. A functional cloud is an important particular case of this situation, but in a mod-
ulated space M the emphasis is placed on the low dimensional parametrization space Ω
for encoding a signal, while the concept of a functional cloud stresses the segmentation of
a signal f in a set Xf of small chunks useful in the analysis of f . The crucial motivation
for the concept of a modulated space is to underline a decomposition of a signal using a
low-dimensional structure Ω instead of a traditional frame or basis decomposition. The
usefulness of the concept of a modulated space is that it integrates basic features of di-
mensionality reduction with standard function decomposition and spectral analysis. The
fundamental contribution is an empirical observation specifying how distortions in the
geometry and curvature of M, and of the dimensionality reduction space Ω′ = P (M),
are related to the spectral decomposition of the elements of M. We are not providing
in this work a rigorous explanation of these empirical observations, instead, we focus our
work in developing new conceptual tools that might eventually help for understanding
these numerical phenomena.

The usage of geometrical algebra for manipulating functional clouds is another
component of our work. Geometrical algebra is a research area constructed on top of
Clifford algebras for describing geometric manipulations used in some subfields of physics
and computer science. In our setting, we are given a point cloud data X = ∪X` ⊂ Rn

composed of clusters X`, and our objective is to geometrically manipulate X in such a
way that a particular cluster X` can be contracted to a smaller region in Rn. These
geometrical manipulations are implemented with Möbius transformations which provide
invertible nonlinear maps with useful geometrical properties. Here, a basic problem is
to generalize Möbius transformations, as defined in the field of complex numbers C,
to higher dimensional environments. This task can be achieved using Clifford algebras,
which provide a convenient way to generalize properties of the complex numbers to higher
dimensional spaces. A basic application of these ideas is to support signal classification
procedures, where the problem is to decide whether a given point belongs to a cluster X`

of a point cloud data Xf = ∪`X` ⊂ Rn. The concept is to design a Möbis transformation,
with an attractive fixed point u ∈ Rn, that can be used to geometrically compress or
attract a cluster Xf` to a smaller region centered in u ∈ Rn. When the cluster X` has
complex geometrical properties, our procedure can be used to transform X` to a smaller
object and simpler classification algorithms can be considered.

The vast contributions of noncommutative geometry have provided over the last
decades powerful concepts for studying difficult geometrical and topological spaces X
using algebraic structures based on C∗-algebras. These ideas are an extension of the
foundational Gelfand-Naimark theorems, and they have delivered useful tools in many
areas of mathematics. A fundamental component in this framework is the concept of
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noncommutative quotients, which is based on noncommutative C∗-algebras for studying
“bad” quotients spaces, defined as structures X = Y/ ∼, for an equivalence relation ∼ in
Y , and where X looses important properties of the space Y (manifold structure, Hausdorff
property, etc). In the general framework of noncommutative geometry, this example using
an equivalence relation ∼ is extended by considering groupoid theory, which is a far
reaching and powerful generalization which includes the notions of equivalence relations,
groups, group actions, etc. In our work, we use basic ideas of this framework in order to
analyze functional clouds Xf related to a signal f .

The strategy is to consider a functional cloud Xf = {xi}ki=1 (that we also denote by
Mf = {xi}i for non necessarily discrete cases) as a quotient space in the setting of time-
frequency analysis. We define the quotient space MG

Vψf
= FVψf/G for FVψf the graph of

Vψf |suppVψf , a time-frequency transform of f (wavelet, Gabor, etc), and G a groupoid.
When considering a functional cloud MG

Vψf
as a quotient space, we can study its structure

in the framework of noncommutative topology. A main result of our work is to illustrate
how noncommutative C∗-algebras, and the concept of Morita equivalence, can be applied
as a new type of analysis layer in signal processing. The basic idea can be summarized
as (Theorem 5.1.6):

for a signal f =
∑k

i=1fi we have C0(MG
Vψf

)
m∼Aolt,r G,

with A =
{

[hij] ∈Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩FVψfj)
}

a noncommutative C∗-algebra.
In this situation, we consider the signal f ∈ H, as an element of a Hilbert space H,
and its time-frequency representation is described abstractly as a voice transform Vψf .
The functional cloud MG

Vψf
= FVψf/G for FVψf = graph(Vψf |suppVψf ), is constructed

with a groupoid G acting on FVψf , and we are interested in the analysis of the C∗-
algebra C0(MG

Vψf
), the space of continuous functions vanishing at infinity on MG

Vψf
. As it

turns out, C0(MG
Vψf

) is Morita equivalent (denoted by
m∼) to A olt,r G. The C∗-algebra

A olt,r G is a crossed product encoding the groupoid C∗-dynamical system represented
by the action of the groupoid G on C0(FVψf ). A great advantage of the noncommutative
C∗-algebra A olt,r G, is that it expose and reveals information on the time-frequency

dynamics of the mixing process f =
∑k

i=1 fi, contrary to the C∗-algebra C0(MG
Vψf

) which
completely ignores this information. Here, the crucial noncommutativity structure of
A olt,r G reveals also how to understand the time-frequency interferences between the
different signal components fi, i = 1, . . . , k. Our results are based on new developments
in operator algebras and groupoid theory. In particular, we use a recent generalization
by J.H. Brown [10,11] of the work of P. Green [42] and M. Rieffel [80], together with the
Renault’s equivalence theorem as explained by P.S. Muhly, J. Renault, and D. Williams
in [73, 74]. Also, a description of noncommutative C∗-algebras on open coverings of a
manifold, as explained by A. Connes in [21,22], plays a basic role in our setting.

Another aspect of our work is motivated by the need to implement and apply, in com-
putationally feasible algorithms, the concepts we have just developed for signal analysis
via C∗-algebras. Here, our proposal (Section 5.1.4) is to use the framework of persistent
homology, designed to analyze topological properties of finite datasets X = {xi}ki=1. For
this task, we use AF-algebras as an important family of C∗-algebras, particularly useful
for studying finite structures, as required in applications of signal processing and data
analysis. The core idea of our proposal is to construct an AF-algebra for each simplicial
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complex present in a filtration arising in the persistent homology algorithm. Here, we fol-
low the large body of work prepared, in the setting of noncommutative geometry, on the
analysis of AF-algebras, poset structures and Bratteli diagrams, as explained by G. Landi
and his collaborators [3, 29, 30, 56]. The basic question is to investigate the feasibility
of combining these tools with the framework of persistent homology for the analysis of
geometrical and topological features of finite datasets.

To explain more precisely our strategy, we recall that, given a point cloud data X =
{xi}mi=1, and its corresponding sequence of Vietoris Rips complexes K0 ⊂ K1 ⊂ · · · ⊂ Kr,
the success of persistent homology lies in the efficient computation of stable and unstable
holes of X. This information is encoded in a persistent diagram, denoted by dgmn(X),
that represents, for each n-homology level, the lifespan of each (stable and unstable)
n-dimensional hole of X. The first conceptual step in this algorithm is to consider a
persistent complex {(Ci

∗, ∂
i
∗)}ri=0 where each (Ci

∗, ∂
i
∗) is a chain complex constructed for

each simplicial complex Ki. The information of stable and unstable holes of X is encoded
in the persistent homology classes, defined as Imf ijn , for an homomorphism f ijn : Hn(Ki)→
Hn(Ki+j) induced by the inclusion Ki ⊂ Ki+j. In these constructions, we consider several
functors that can be described, in the setting of singular homology, as homology functors
Hn : Top→ Ab from the category of topological spaces Top to the category of abelian
groups Ab. A crucial property of these functors is to remove information of a topological
space X ∈ Ob(Top) by constructing an object in Ab, an homology group, for capturing
special topological properties. This crucial procedure is an important characteristic of
homology theory, but other type of functorial mechanisms are also available for encoding
topological features of X. For instance, the framework of noncommutative geometry
provides functors based on the construction of C∗-algebras that can be used for computing
geometrical and topological properties of X.

These considerations leads us to ask about persistent analysis mechanisms using tools
from noncommutative geometry. The functorial properties of constructions based on C∗-
algebras could be of interest as a additional strategy in the persistent homology toolbox.
Recall that, when considering compact topological spaces, the functor C that takes a
compact space X to the C∗-algebra of continuous complex-valued functions on X is a
contravariant functor that allows to define an equivalence between the category of locally
compact Hausdorff spaces and the category of (commutative) C∗-algebras [89]. This
provides a powerful machinery translating topological features into algebraic information
without loss of information. In order to consider these ideas in the case of finite structures,
as required in applications and engineering problems, we need a method for studying
simplicial complexes with C∗-algebra constructions. One possible strategy is to use the
large body of work, prepared in the setting of noncommutative geometry, for studying the
interaction of AF-algebras with poset structures [3,29,30]. Our proposal is to investigate
the feasibility of combining these tools with the framework of persistent homology for
the analysis of geometrical and topological features of finite datasets. We remark that
posets are truly noncommutative spaces [56] and, therefore, the framework we propose
is an attempt to produce a preliminary step for using noncommutative geometry in data
and signal analysis. We finally remark that new results have being recently achieved in
the setting of AF-algebras and spectral triples, which is a fundamental tool for accessing
geometrical data using C∗-algebras (see [21] for the concept of spectral triples, and [17]
for its interaction with AF-algebras).
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The results of this work have been announced in a series of publications and preprints
released during the three year period of this project. The introductory material on
persistent homology in Chapter 3 has been presented in [40]. The results discussed in
Chapter 4 have been announced in the following references: the material of the Sections
4.2 and 4.3 are described in [43], and the Section 4.4 refers to [45] and [46]. The application
of groupoid C∗-algebras we consider in the Chapter 5 has been presented in the preprint
[44]. Finally, the Chapter 6 contains material discussed in the references [47] and [48].
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2 Dimensionality Reduction and Time-Frequency Analysis

During the last decade, many concepts in nonlinear dimensionality reduction (NDR) have
received significant attention due to the increasing complexity of many modern problems
in data and signal analysis. For designing some of these tools, special emphasis is placed
on geometrical aspects, where concepts from differential geometry and algebraic topol-
ogy play an important role [12, 14, 61, 62, 94, 96]. The geometry-based approach of NDR
can be viewed as a complementary strategy to statistical oriented methods from machine
learning and data mining [58]. In this Chapter, we shortly describe the basic setting of
dimensionality reduction and manifold learning, and we quickly recall elementary con-
ceptual in time-frequency analysis. We conclude by explaining a setting and motivations,
where it is of interest to combine these modern tools of signal and data analysis.

2.1 Manifold Learning and Dimensionality Reduction

In dimensionality reduction [58], we study a point cloud data defined as a finite family of
vectors

X = {xi}mi=1 ⊂ Rn

embedded in an n-dimensional Euclidean space. The fundamental assumption is that X
lies inM, a (low dimensional) space (manifold or topological space i.e. CW-complex, sim-
plicial complex) embedded in Rn. We have therefore, X ⊂M ⊂ Rn with p := dim(M) <
n. An additional key concept is the consideration of an ideal model representingM, and
denoted by Ω, embedded in a low dimensional space Rd (with d < n), together with a
homeomorphism (diffeomorphism)

A : Ω→M⊂ Rn, Ω ⊂ Rd.

The space Ω represents an ideal representation of M that could be used for analysis
procedures in a low-dimensional environment. For instance, in the case of M being the
well-know Swiss roll dataset, the space Ω is a rectangle. However, in practice, we can
only try to approximate Ω with a dimensionality reduction map

P :M→ Ω′ ⊂ Rd,M⊂ Rn,

where Ω′ is an homeomorphic copy of Ω.

A Schematic Explanation

In Figure 2.2, we present a schematic view of the main task in dimensionality reduction,
where the input data is the point cloud data X = {xi}mi=1 ⊂M ⊂ Rn, with the hypothesis
thatM is a manifold or topological space (CW, simplicial complex) such that dim(M) =

p < n. Additionally, we have Rd ⊃ Ω
A−→ M ⊂ Rn an homeomorphism with d < n.

The fundamental objective is to construct Y = {yi}mi=1 ⊂ Ω′ ⊂ Rd, d < n using a
dimensionality reduction map P seing as an homeomorphism (diffeomorphism) Rn ⊃
M P−→ Ω′ ⊂ Rd.
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Input: Point Cloud Data X = {xi}mi=1 ⊂M ⊂ Rn

Hypothesis:

M manifold, topological space (CW, simplicial complex)

dim(M) = p < n

Rd ⊃ Ω
A−→M ⊂ Rn homeomorphism, d < n.

Objectives:

Construct Y = {yi}mi=1 ⊂ Ω′ ⊂ Rd, d < n

Rn ⊃M P−→ Ω′ ⊂ Rd homeomorphism (diffeomorphism)

Figure 2.1: Basic tasks and hypothesis in dimensionality reduction

Rd ⊃ Ω M⊂ Rn

Rd ⊃ Ω′

A

P

Figure 2.2: Schematic view of the dimensionality reduction task

Manifold Reconstruction from Discrete Data

A crucial requirement in manifold learning is to ensure conditions under which the finite
sampling X = {xi}mi=1 is dense enough for recovering geometrical and topological prop-
erties ofM. In the case of topological conditions, new properties have been investigated
over the last years [75]. A main concept is the condition number 1/τ of the manifold
which encodes local and global curvature properties ofM. The condition number can be
related to the medial axis of M, which is defined as the closure of the set

G = {x ∈ Rn : ∃ p, q ∈M, p 6= q, with d(x,M) = ‖x− p‖Rn = ‖x− q‖Rn}.

By using the medial axis of the manifold, we have

τ = inf
p∈M

d(p,G).

We also recall that a deformation retract between topological spaces U and X, X ⊂ U , is
a family of continuous maps rt : X → X, t ∈ [0, 1] with r0 = 1X , r1(X) = U , and rt|U = 1
for all t. [49]. Using these concepts, the following result [75] relates the sampling of the
manifold with its homological reconstruction.

Proposition 2.1.1 (Niyogi, Smale, Weinberger, 2008). LetM be a compact Riemannian
submanifold of Rn and X = {xi}mi=1 ⊂ Rn a finite ε/2-dense collection in M, i.e., for
each p ∈ M, there is an x ∈ X satisfying ‖p − x‖Rn < ε/2. Then for any ε <

√
3/5τ ,

we have that U =
⋃
x∈X Bε(x) deformation retracts to M, and therefore the homology of

U equals the homology of M.
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This proposition describes requirements for the discretization of a manifold when
reconstructing the homology as a basic topological invariant. But in order to recover
geometrical information, we need to consider differential geometric data. Sampling and
discretization aspects in differential geometry are emergent and very active research top-
ics. Basic concepts in this field are the angle defect [7,16] and the usage of the Laplacian
operator when computing the mean and Gaussian curvatures [5, 8, 50, 71]. A series of
additional important developments for manifold sampling have also been developed over
the last years [82,83]. Other important topics are generalizations of the curvature concept
in Alexandrov spaces or cell-complexes, as discussed in [38,76].

2.2 Time-Frequency Analysis

A main drawback of classical harmonic analysis is the difficulty to analyze the time
evolution of frequency components in a signal. In the first half of the 20th century, D.
Gabor and his collaborators proposed a fundamental strategy for this problem, in what is
known today as the Gabor transform. The basic idea consists of partitioning the signal in
consecutive segments, and consider a Gauss function as a transformation window. In the
second step of this procedure, these segments are analyzed with the Fourier transform,
and a time evolution of the frequency components can be obtained. This procedure can
be generalized using other types of windows functions, and the resulting mechanism is
the well known Short term Fourier Transform (STFT). The scheme is a fundamental
example of time-frequency analysis, and provides both analysis and synthesis stages, as
a basic philosophy of harmonic analysis.

The STFT is a basic tool for many problems where simultaneous time-frequency infor-
mation is required. However, this method has several limitations, as the time-frequency
tiling design has a fixed resolution, providing an inconvenient scheme for some applica-
tions.

Wavelet theory offers an alternative strategy by considering a special type of window,
the so called wavelet functions that are localized both in the time and the frequency
domains. This property allows a more flexibly construction that builds a tiling of time-
frequency plane consisting of high resolution for high frequencies and low resolution for
low frequencies [19, 51].

Definition 2.2.1 (Wavelet Transform analysis). The wavelet transform in L2(R) is de-
fined as a map W : L2(R)→ L2(R× R∗) with

Wψf(b, a) := 〈f, ψb,a〉 =

∫
R
f(t)ψb,a(t) |a|−1/2 dt, ψb,a(t) := ψ

(
t− b
a

)
,

where we require ψ ∈ L2(R) to be an “admissible” function, that is:

Cψ :=

∫
R

|ψ̂(ω)|2

|ω|
dω <∞.

As in the case of the short term Fourier transform, the crucial component that relates
the analysis procedure with the synthesis mechanism is an isometry property.
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Theorem 2.2.1 (Isometry of the Wavelet transform). If ψ is a basic wavelet, we have:

Cψ〈f2, f2〉 = 〈Wψf1,Wψf2〉

=

∫
R∗

∫
R
(Wψf1)(b, a)(Wψf2)(b, a)

da

a2
db. ∀f1, f2 ∈ L2(R).

We can also derive a reconstruction formula for the wavelet transform, with an alter-
native construction for a translation mechanism between a function f and its transform
Wψf :

Corollary 2.2.2 (Reconstruction with wavelet transforms Synthesis). With the hypoth-
esis of the Theorem 2.2.1, we have for any t ∈ R where f is continuous:

f(t) =
1

Cψ

∫
R∗

∫
R
Wψf(b, a)ψb,a(t)

da

a2
db.

Remark 2.2.1 (Admissibility condition). We notice that the admissibility condition is
clearly necessary in the reconstruction formula, and this requirement provides also an
intuitive explanation for the term “wavelet” (“small wave”). We remark that Cψ < ∞
implies ψ̂(0) = 0, which in turn implies the following property, intuitively related to the
idea of a “small wave” localized over time:∫

R
ψ(t) dt = 0.

A conceptual view

The basic mechanism behind many time-frequency transformations such as wavelet or
STFT is based on the action of a locally compact group G in a Hilbert space of functions
H. This action is an irreducible and unitary group representation π : G → U(H) that
fulfills square integrable conditions (here π is a group homomorphism, and U(H) is the
space of unitary operators in the Hilbert space H). With this representation, the voice
transform is constructed by setting

Vψ : H → L2(G), with Vψ(f)(x) := 〈f, π(x)(ψ)〉.

These transforms represent an interplay between H and L2(G), that allows to analyze
the function f , by porting its information to a setting defined by G. One can say that
the transformation Vψ “unfolds” data present in f , using G as an analysis environment.
In the case of the STFT transform, the Weyl-Heisenberg group represents the time-
frequency setting to which information from f is translated. In wavelet analysis, the
affine group is responsible for providing a time-scale representation of the function. In
these situations, a fundamental objective is to understand the components of f , using G
and Vψ as observation tools.

A crucial property of the voice transform is the orthogonality relation. In this situ-
ation, for a square integrable representation π, a unique self-adjoint positive operator C
on H, such that for f1, f2 ∈ H and ψ1, ψ2 ∈ domC, we have:∫

G
〈f1, π(x)ψ1〉 〈π(x)ψ2, f2〉dµ(x) = 〈f1, f2〉 〈Cψ1, Cψ2〉.
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These relationships imply that the transform Vψ is an isometry from H into L2(G). An-
other way to express this idea is that the energy of f is conserved by Vψ. It will then be
possible, by restricting to the range of the transform, to build inversion formulas. The
second crucial concept of the voice transform is the characterization of its range. Here,
we notice that Vψ(H) ⊆ L2(G) is a reproducing kernel Hilbert space, meaning that a
reproducing formula is valid:

Vψ(f) = Vψ(f) ∗ Vψ(ψ), ∀f ∈ H.

This reproducing formula can be rephrased by saying that a function F ∈ L2(G) belongs
to Vψ(H), if and only if F = F ∗ Vψ(ψ).

2.3 Dimensionality Reduction and Signal Transforms

Our main interest is to understand a particular type of interaction between dimension-
ality reduction tools and signal transformations. Recall that a basic characteristic of
short term Fourier analysis is the high dimensionality of the Euclidean space where the
time-frequency data is embedded. In this context, for many applications, a combina-
tion with dimensionality reduction methods could be useful for improving the quality of
the data analysis. Our motivation examples in time-frequency analysis can be naturally
related to the dimensionality reduction framework by considering Xf to be a subset of
M, a (low dimensional) space, embedded in the high dimensional Euclidean space Rn.
We have therefore, Xf ⊂ M ⊂ Rn with p := dim(M) < n. We recall that there is
a well-known framework for studying properties of sets Xf in the context of nonlinear
time series and dynamical systems (see e.g. [53]). But in our situation, we are addition-
ally considering a close interaction with signal processing transforms T , together with
dimensionality reduction techniques P (Principal component analysis, Isomap, LTSA,
etc). The construction of time-frequency data can be described as the application of
a map T : M ⊃ Xf → T (Xf ) ⊂ MT , where MT := T (M), and T (xi) is the signal
transformation of xi (Fourier transform, wavelet, etc). The following diagram shows the
basic situation:

Rd ⊃ Ω M⊃ Xf ⊂ Rn

Rd ⊃ Ω′ MT ⊃ T (Xf ) ⊂ Rn

A

T

P

2.4 Motivations and Objectives

A basic motivation in our environment are time-frequency representations where a signal
f is analyzed by considering a partition in chunks xb = fgb, using gb(t) = g(t − b) for a
window function g, This is typical scenario in the short term Fourier transform (STFT),
where a signal f ∈ L2(R) is analyzed using

Vgf(b, ω) = 〈f, gb,ω〉 =

∫
f(t)gb,ω(t) dt where gb,ω(t) = g(t− b)e2πiωt.
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In the last decades, this fundamental procedure has been generalized to a large frame-
work including wavelet theory and modern discrete methods of frame decompositions.
However, despite the voluminous research activity in this area, many signals in modern
applications fields remain difficult to analyze. Just to mention one example, an accurate
separation or characterization of polyphonic acoustic signals in speech or music analysis
still remains a very challenging task. Part of the problem lies in the fact that it is still
difficult to cleanly characterize (e.g. with a few amount of wavelet coefficients) many
realistic signals with modern frame decomposition methods. In our setting, we consider
each signal (or family of signals) as an entity that can be analyzed with a combination
of standard time-frequency transforms with geometrical and topological invariants.

The procedure we follow is to consider the dataset of chunks Xf , constructed with
the time-frequency segmentation, as a main object of study. For instance, in the case of
finite signals we have a finite set of the form

Xf = {xi}mi=1 for xi = (f(tk(i−1)+j))
n−1
j=0 ∈ Rn

for k ∈ N being a fixed hop-size. Here, the regular sampling grid {t`}km−k+n−1
`=0 ⊂ [0, 1] is

constructed with considering the Nyquist-Shannon theorem for f . Notice that Xf may
be embedded in a very high-dimensional ambient space Rn, even though the dimension
of Xf itself may be small. For instance, in audio analysis, for 44kHz signals, n = 1024 is
commonly used, and therefore, in the case of signals whose time-frequency representations
are not sparse, the usage of dimensionality reduction methods could be of interest. With
this particular scheme, the STFT of f can be interpreted as a transformation of the set
Xf by taking the (windowed) Fourier transform of each xi.

A second family of examples (similar in spirit to time-frequency analysis) arises in
image processing. One strategy would be to consider a dataset Xf = {xi}mi=1 constructed
from a grayscale image f : [0, 1]2 → [0, 1], along with a finite covering of small squares
(each containing n pixels) {Oi ⊂ [0, 1]2}mi=1, centered at pixels positions {ki}mi=1 ⊂ [0, 1]2.
As in the previous situation, when considering band-limited images, the domain [0, 1]2

can be sampled uniformly and the dataset can then be defined as

Xf = {f(Oi) ∈ Rn}mi=1,

where n is the size of the squares Oi, and m denotes the number of pixels ki. As be-
fore, our aim is to analyze the geometry of the image data Xf to gain useful informa-
tion about the properties of the image f . For instance, we consider a grayscale image
f : [0, 1]2 → [0, 1] using a covering with small squares, or patches, {Oi ⊂ [0, 1]2}mi=1,
each containing n pixels. In this toy example we assume that the corresponding point
cloud data Xf = {f(Oi) ∈ Rn}mi=1 lies in some manifold M ⊂ Rn. If an image f is
composed of an homogeneous texture, the dataset Xf is a cluster whose elements have
similar geometrical characteristics. In a simplified scenario, the idea would be to use a
representative patch φ ∈ Rn in order to generate all elements of Xf . The main task is
to find a family of transformations (the modulation maps) s(α) : Rn → Rn, parametrized
by a low dimensional space Ω, such that for any patch y ∈ Xf , there is some α ∈ Ω
with y = s(α)φ. We remark that several methods in image processing have recently been
proposed with a loosely related philosophy (see e.g. the patch-based texture analysis as
part of classical texture synthesis methods [55]).
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3 Basics on Persistent Homology

In this Chapter, we present a short introduction to the basic ideas of persistent homology,
which is an important algorithmic and theoretical tool developed over the last decade
as a topic of computational topology. First, we present basic concepts on persistent
homology as an important new development in computational topology for extracting
qualitative information from a point cloud dataX = {xi}. As we discuss in Chapter 2, our
interest lies mostly on datasets arising from time frequency analysis and signal processing
problems. With the concepts of functional clouds, piles, and modulation maps we can
formalize a framework for this signal processing setting (see Chapter 5). As we will
further explain in the next chapters, a strategy we want to analyze for studying these
geometrical objects is the setting of C∗-algebras, and noncommutative topology. In order
to implement these ideas in a computational framework we need to adapt the tools of
persistent homology using the framework of C∗-algebras. We use, in Chapter 5, the
theory of posets and AF-algebras for the implementation, in the context of persistent
homology, a framework for point cloud data analysis with C∗-algebras.

3.1 Simplicial and persistent homology

We first recall elementary concepts on simplicial homology as a basic homology theory
used for constructing algebraic data from topological spaces (see [40] for similar material).

Remark 3.1.1 (Simplicial complexes). A basic component in this context is a (finite)
abstract simplicial complex which is a nonempty family of subsets K of a vertex set
V = {vi}mi=1 such that V ⊆ K (here we simplify the notation and we identify the vertex v
with the set {v}) and if α ∈ K, β ⊆ α, then β ∈ K. The elements of K are denominated
faces, and their dimension is defined as their cardinality minus one. Faces of dimension
zero and one are called vertices and edges, respectively. A simplicial map between sim-
plicial complexes is a function respecting their structural content by mapping faces in
one structure to faces in the other. These concepts represent combinatorial structures
capturing the topological properties of many geometrical constructions. Given an ab-
stract simplicial complex K, an explicit topological space is defined by considering the
associated geometric realization or polyhedron, denoted by |K|. These are constructed by
thinking of faces as higher dimensional versions of triangles or tetrahedrons in a large di-
mensional Euclidean spaces and gluing them according to the combinatorial information
in K.

Remark 3.1.2 (Homology groups). A basic analysis tool of a simplicial complex K,
is the construction of algebraic structures for computing topological invariants, which
are properties of |K| that do not change under homeomorphisms and even continuous
deformations. From an algorithmic point of view, we compute topological invariants of K
by translating its combinatorial structure in the language of linear algebra. For this task,
a basic scenario is to consider the following three steps. First, we construct the groups of
k-chains Ck, defined as the formal linear combinations of k-dimensional faces of K with
coefficients in a commutative ring R (with e.g. R = Z, or R = Zp). We then consider
linear maps between the group of k-chains by constructing the boundary operators ∂k,
defined as the linear transformation which maps a face σ = [p0, · · · pn] ∈ Cn into Cn−1 by
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∂nσ =
∑n

k=0(−1)k[p0, · · · , pk−1, pk+1, · · · pn]. As a third step, we construct the homology
groups defined as the quotient Hk := ker(∂k)/im(∂k+1). Finally, the concept of number of
k-dimensional holes are defined using the rank of the homology groups, βk = rank(Hk)
(Betti numbers). For instance, in a sphere we have zero 1-dimensional holes, and one
2-dimensional hole. In the case of a torus, there are two 1-dimensional holes, and one
2-dimensional hole.

3.2 Basics on Persistent Homology

In many application problems a main objective is to analyze experimental datasets
X = {xi}mi=1 ⊂ Rn and understand their content by computing qualitative informa-
tion. Topological invariants are important characteristics of geometrical objects, and
their properties would be fundamental tools for understanding experimental datasets.
The major problem when computing topological invariants of datasets are their finite
characteristics and the corresponding inherent instability when computing homological
information. Indeed, minor variations (e.g. noise and error in measurements) on how topo-
logical structures are constructed from X, could produce major changes on the resulting
homological information. Persistent homology [14,27,28] is an important computational
and theoretical strategy developed over the last decade for computing topological invari-
ants of finite structures. We now describe its motivations, main principles, and theoretical
background.

Motivations

A major problem when using tools from simplicial homology for studying a dataset X =
{xi}mi=1 ⊂ Rn is the fact that we do not have a simplicial complex structure at hand. If we
assume that X is sampled from a manifold (e.g. X ⊂ M, with M being a submanifold
of Rn), a main objective would be to compute homological information of M using only
the dataset X. We remark that more generalized settings, where M is not necessarily a
manifold, are fundamental cases for many applications and experimental scenarios. But
we can discuss, for illustration purposes, the simplified situation ofM being a manifold.
We also notice that the crucial problem of finding density conditions for X to be a
meaningful sampling set of a manifold M has been recently addressed in [75], and we
discuss these issues later in this report.

Attempting to construct a simplicial complex structure from X can be a very difficult
problem. A simple strategy would be to consider the homology of the spaces

Xε = ∪mi=1B(xi, ε)

where a ball B(xi, ε) of radius ε is centered around each point of X. A naive approach
would be to try to find an optimal εo such that the homology of Xεo corresponds to the
homology of M. But this approach is highly unstable, as different homological values
might be obtained when considering small perturbations of εo.

The proposal in persistent homology is to consider topological information for all
ε > 0 simultaneously, and not just a single value εo. The key concept is that a general
homological overview for all values ε > 0 is a useful tool when studying the topology of
finite datasets. From a computational point of view, estimating homological data for all
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continuous values ε > 0 might sound unreasonable, but there are two crucial remarks
for implementing these ideas in an efficient computational framework. On the one hand,
despite the fact that we are considering a continuous parameter ε > 0, it can be verified
that for a given dataset X, there is actually only a finite number of non-homeomorphic
simplicial complexes

K1 ⊂ K2 ⊂ · · · ⊂ Kr

(which is the concept of a filtration to be explicitly defined later on) that can be con-
structed from {Xε, ε > 0}. On the other hand, another crucial property is that the
persistent homology framework includes efficient computational procedures for calculat-
ing homological information of the whole family K1 ⊂ K2 ⊂ · · · ⊂ Kr, [96].

We also remark that, given a parameter ε with corresponding set Xε, there are various
topological structures useful for studying homological information of X. In particular,
an efficient computational construction is given by the Vietoris-Rips complexes Rε(X),
defined with X as the vertex set, and setting the vertices σ = {x0, . . . , xk} to span a k-
simplex ofRε(X) if d(xi, xj) ≤ ε for all xi, xj ∈ σ. For a given εk the Vietoris-Rips complex
Rεk(X) provides an element of the filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, with Kk = Rεk(X). In
conclusion, there is only a finite set of positive values {εi}ri=1, that describe homological
characteristics of X, each of which generate a Vietoris Rips complex {Ki}mi=1 representing
the topological features of the family {Xε, ε > 0}. Therefore, the topological analysis of a
point cloud data X boils down to the analysis of a filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, which
is the main object of study in persistent homology. We now describe the main conceptual
ingredients in this framework.

3.2.1 Conceptual setting

The input in the persistent homology framework is a filtration of a simplicial complex
K, defined as a nested sequence of subcomplexes ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K.
Given a simplicial complex K, we recall that the boundary operators ∂k connect the chain
groups Ck, and define a chain complex, denoted by C∗, and depicted with the diagram:

. . . Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 → . . . .

Recall that given a chain complex C∗ one defines the k-cycle groups and the k-boundary
groups as Zk = ker ∂k, and Bk = im∂k+1, respectively. As we have nested subgroups
Bk ⊆ Zk ⊆ Ck, the k-homology group Hk = Zk/Bk is well defined.

There are several basic definitions required for the setting of persistent homology. A
persistent complex is defined as a family of chain complexes {Ci

∗}i≥0 over a commutative
ring R, together with maps

f i : Ci
∗ → Ci+1

∗ related as C0
∗

f0−→ C1
∗

f1−→ C2
∗

f2−→ . . . ,
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or more explicitly, described with the following diagram

...
...

...

C0
2 C1

2 C2
2 . . .

C0
1 C1

1 C2
1 . . .

C0
0 C1

0 C2
0 . . .

0 0 0 . . .

f0

f0

f0

f0

f1

f1

f1

f1

f2

f2

f2

f2

∂3 ∂3 ∂3

∂2 ∂2 ∂2

∂1 ∂1 ∂1

∂0 ∂0 ∂0

We remark that, due to the applications we have in mind, we will assume that chain
complexes are trivial in negative dimensions. Given a filtration of a simplicial complex
K, a basic example of a persistent complex is given by considering the functions f i as
the inclusion maps between each simplicial complex in the nested sequence ∅ = K0 ⊂
K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. Another fundamental concept is a persistent module, defined
as a family of R-modules M i and homomorphisms φi : M i → M i+1. We say that the
persistent module is of finite type if each M i is finitely generated, and the maps φi are
isomorphisms for i ≥ k and some integer k. The basic example of a persistent module
is given by the homology of the simplicial complexes of a filtration. We now define the
p-persistent homology group of Ki as the group

H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k),

where Zi
k and Bi

k stand respectively for the k-cycles and k-boundaries groups in Ci.
This group can also be described in terms of the inclusions Ki ⊂ Ki+p, their induced
homomorphisms f i,pk : H i

k → H i+p
k , and the corresponding relation

im(f i,pk ) ∼= H i,p
k .

These persistent homology groups contain homology classes that are stable in the interval
i to i+ p: they are born before the “time” index i and are still alive at i+ p. Persistent
homology classes alive for large values of p, are stable topological features of X, while
classes alive only for small values of p are unstable or noise-like topological components.
We will see, in the following paragraphs, alternative views for explaining generalized
versions of persistent objects as functors between special categories.

The output of the persistent homology algorithm are representations of the evolution,
with respect to the parameter ε > 0, of the topological features of X. These represen-
tations are depicted with persistent diagrams indicating, for each homology level k, the
amount and stability of the different k-dimensional holes of the point cloud X. We now
present a more precise explanation of the concepts related to persistent diagrams and
some of its properties.

The main task we now describe is the analysis of persistent homology groups by
capturing their properties in a single algebraic entity represented by a finitely generated
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module. Recall that a main objective of persistent homology is to construct a summary of
the evolution (with respect to ε) of the topological features of X using the sets {Xε, ε > 0}.
This property is analyzed when constructing, with the homology groups of the complexes
Ki, a module over the polynomial ring R = F[t] with a field F. The general setting for this
procedure is to consider a persistent module M = {M i, φi}i≥0 and construct the graded
module α(M) =

⊕
i≥0M

i over the graded polynomial ring F[t], defined with the action of
t given by the shift t·(m0,m1, . . . ) = (0, φ0(m0), φ1(m1), . . . ). The crucial property of this
construction is that α is a functor that defines an equivalence of categories between the
category of persistent modules of finite type over F, and the category of finitely generated
non-negatively graded modules over F[t]. In the case of a filtration of complexes K0 to Kr,
this characterization of persistent modules provides the finitely generated F[t] module:

α(M) = Hp(K0)⊕Hp(K1)⊕ · · · ⊕Hp(Kr).

These modules are now used in a crucial step that defines and characterizes the output
of persistent homology. The main tool is the well-know structure theorem characterizing
finitely generated modules over principle ideal domains (this is why we need F to be a
field). This property considers a finitely generated non-negatively graded module M, and
ensures that there are integers {i1, . . . , im}, {j1, . . . , jn}, {l1, . . . , ln}, and an isomorphism:

M ∼=
m⊕
s=1

F[t](is)⊕
n⊕
r=1

(F[t]/(tlr))(jr).

This decomposition is unique up to permutation of factors, and the notation F[t](is)
denotes an is shift upward in grading. The relation with persistent homology is given by
the fact that when a persistent homology class τ is born at Ki and dies at Kj it generates
a torsion module of the form F[t]τ/tj−i(τ). When a class τ is born at Ki but does not
die, it generates a free module of the form F[t]τ .

We can now explain the concept of persistent diagrams using an additional charac-
terization of F[t]-modules. We first define a P -interval as an ordered pair (i, j) where
0 ≤ i < j for i, j ∈ Z ∪ {∞}. We now construct the function Q mapping a P -
interval as Q(i, j) = (F[t]/tj−i)(i), Q(i,∞) = F[t](i), and for a set of P -intervals S =
{(i1, j1), . . . , (in, jn)}, we have the F[t]-module

Q(S) =
n⊕
`=1

Q(i`, j`).

This map Q turns out to be a bijection between the sets of finite families of P -intervals
and the set of finitely generated graded modules over F[t].

Now, we can recap all these results by noticing that the concept of persistent dia-
grams can be described as the corresponding set of P -intervals associated to the finitely
generated graded module over F[t], constructed with the functor α from a given filtration
∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. There are several graphical representations
for persistent diagrams, and two well known examples are the so called barcodes, and
triangular regions of index-persistent planes.

Remark 3.2.1 (Stability of persistent diagrams). A crucial property in persistent ho-
mology is the concept of stability of persistent diagrams. We recall that for a topological
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space X, and a map h : X → R, we say that h is tame if the homology properties of
{Xε, ε > 0}, for Xε = h−1(] − ∞, ε[), can be completely described with a finite family
of sets Xa0 ⊂ Xa1 ,⊂ · · · ⊂ Xar , where the positive values {ai}ri=0 are homology critical
points. If we denote the persistent diagram for X and h : X → R, as dgmn(h), we have
a summary of the stable and unstable holes generated by the filtration

Xa0 ⊂ Xa1 ,⊂ · · · ⊂ Xar

(see [27]). With these concepts, the stability of persistent diagrams is a property indicating
that small changes in the persistent diagram dgmn(h) can be controlled with small changes
in the tame function h : X → R (see [20] for details on the stability properties of persistent
diagrams).

An important theoretical and engineering problem to investigate is the sensibility
of the persistent homology features of Xf when applying signal transformations to f .
This is in relation to the question of finding useful signal invariants using the persistent
diagram of Xf . For instance, in the case of audio analysis, a crucial task is to understand
the effects in the persistent diagram of Xf when applying audio transformations to f
as, for instance, delay filters or convolution transforms (e.g room simulations). This task
requires both theoretical analysis and numerical experiments. For a conceptual analysis, a
possible strategy is to consider these recent theorems explaining the stability of persistent
diagrams.

3.2.2 Generalizations with functorial properties

In order to design useful generalizations of persistent homology, it is important to under-
stand its setting in a deeper conceptual level. A recent formulation, providing the core
features of persistent homology, has been presented in [14], and describes this concept as
a functor between well chosen categories. Indeed, a crucial aspect of persistent homology
is the association from an index set to a sequence of homology groups constructed from
a filtration ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. An important generalization of
this construction considers a general partially ordered set P as an index set which we
associate to a family of objects in a given category C. Notice that we can consider the
partially ordered set P as a category P, whose objects are P , and a morphism from x to
y is defined whenever x ≤ y. With this setting, a P -persistent object in C is defined as
a functor Φ : P→ C, described also as a family of objects {cx}x∈P in C, and morphisms
φxy : cx → cy, when x ≤ y.

These concepts are of fundamental importance for extending the main ideas of persis-
tent homology in more general situations. Notice that in standard persistent homology
we use the partial ordered sets P = N or P = R, but important extensions have been
recently developed in the context of multidimensional persistence. Here, we consider
multidimensional situations where the partial ordered sets are, for instance, P = Nk or
P = Rk, k > 1. These developments are motivated by multiple practical considerations,
such as the analysis of point cloud using both density estimations and the Vietoris Rips
Complex construction.
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A Schematic explanation

In the following two diagrams, we present a particularly simple way to see the strategy of
persistent homology. The algorithmic input is a point cloud data X, or more generally,
the distance relations between its elements. Note that no topological structures are
given, therefore, the basic task is to construct simplicial complexes in order to estimate
topological information. By considering Vietoris-Rips complex structures, we can study
the set Xε = ∪mi=1B(xi, ε). As we previously explained, it is difficult to try to find
and define a optimum ε that is meaningful for the dataset X at hand (see Fig. 3.1).
The strategy of persistent homology is to consider a multiscale process that takes into
account all possible values ε using efficient algorithmic strategies. The resulting output
of the persistent homology algorithm is an overview of the “stable” and “unstable” holes
related to the dataset X (see Fig. 3.2).

Figure 3.1: Illustrating the difficulty of finding a meaningful ε for a point cloud data X
as an input for the persistent homology algorithm

Figure 3.2: Schematic explanation of the persistent homology diagram, and the lifetime
of the stable and unstable holes
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4 Numerical Curvature Analysis of Modulated Spaces

In this Chapter, we propose the concepts of modulation maps and modulated spaces
for the construction of particular datasets relevant in signal processing and nonlinear di-
mensionality reduction (NDR). We consider numerical methods for analyzing geometrical
properties of the modulated manifolds, with a particular focus on their scalar and mean
curvature. In our numerical examples, we apply the resulting geometry-based analysis
to simple test cases, where we present geometrical and topological effects of relevance in
manifold learning.

4.1 Introduction

We briefly recall the basic problem of NDR and manifold learning, suppose we are given
a dataset X = {xi}mi=1 ⊂ Rn lying in a high-dimensional Euclidean space, where X is
assumed to be sampled from a submanifold M of Rn, i.e., X ⊂ M ⊂ Rn. Moreover,
we assume that the dimension of M is much smaller than the dimension of the ambient
space, i.e., dim(M) � n. The primary objective of manifold learning is to construct a
low-dimensional representation of X which can be used to efficiently visualize and analyze
its geometrical properties.

For many examples of datasets X = {xi}mi=1 ⊂ Rn, each element xi ∈ X can be
considered as a signal that may be analyzed through a transformation map T , defined via
convolution transforms, Fourier analysis, or wavelet functions. Therefore, from a manifold
learning perspective, a relevant question is the analysis of the geometrical changes that
X goes through when deformed with T resulting in the set T (X) = {T (xi)}mi=1 and, in
particular, to study the composition P ◦ T of a NDR map P with a signal transform T .

To analyze these problems, we construct a particular class of datasets X sampled from
manifolds M generated by modulation maps. The idea of modulation maps is inspired
by concepts in frequency modulation techniques from signal transmission in engineer-
ing domains. Here, our main interest is to consider these signal processing concepts
from a geometrical perspective. To gain further insight into their geometrical proper-
ties, we use numerical approximations to construct basic geometric data such as metric
and curvature tensors. With these modulated manifolds we can design examples of low-
dimensional datasets embedded in high dimensional spaces, which are relevant both in
signal processing and dimensionality reduction. A main characteristic of these construc-
tions is that they provide examples (in the same spirit as the Swiss role dataset) of test
cases where classical linear projections, such as principal component analysis (PCA) are
outperformed by more recent nonlinear methods, such as isomap , Riemannian normal
coordinates (RNC), etc [58,62,94].

The contributions of this chapter can be summarized as follows. We introduce modula-
tion maps and modulated manifolds as a relevant concept in dimensionality reduction. We
provide conditions that justify the terminology used for these objects (as diffeomorphism
and manifolds). We consider numerical procedures for computing geometrical quantities,
such as metric tensors, Gaussian and mean curvatures. In our numerical examples, we
illustrate relevant phenomena of modulated manifolds in the context of dimensionality
reduction.

The outline of this chapter is as follows. In Section 4.2, the concept of modulated man-
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ifolds is explained, where a concrete example is presented under the setting of frequency
modulation. In Section 4.2.2 we present a discussion on measuring geometric deformations
of modulated manifolds using metric and curvature tensors, and the Laplace-Beltrami
operator for computing the mean curvature. In Section 4.3, numerical examples are pro-
vided, where the geometric distortion of selected manifolds (sphere and torus surfaces) is
illustrated by combining modulation maps and dimensionality reduction methods. In the
numerical examples, we also compare standard PCA techniques with modern (nonlinear)
dimensionality reduction strategies. We also present in Section 4.3.3 various geometrical
and topological effects that are relevant from both a dimensionality reduction and signal
processing viewpoint.

4.2 Modulation Maps and Curvature Distortion

This section is devoted to a particular construction of manifoldsM and diffeomorphisms
A based on modulation maps. Modulation techniques are well-known engineering and
telecommunication procedures used to transmit information by varying the frequency of
a carrier signal φ. A main property of these techniques is the simultaneous transmission
of different information by using different frequency bands that can be conveniently sep-
arated with special convolution filters. Motivated by these ideas, we want to analyze,
from a geometrical point of view, a frequency modulation map A : Ω → M, where M
represents the carrier signals modulated by Ω, which is the information content to be
transmitted. Rather than analyzing a specific engineering modulation method, our goal
is to use and generalize these concepts in order to construct manifolds and datasets with
relevant properties in dimensionality reduction and signal analysis. In our particular
situation, the domain Ω is a manifold and so its structural content, transmitted via A,
needs to be extracted from M.

4.2.1 Modulation Maps and Modulated Spaces

We now define the concept of modulation maps and modulated manifolds. Additionally,
we provide basic examples together with some properties where these ideas can formally
be described. We start with an intuitive explanation and a short motivation using an
image processing example. Our current focus on smooth manifolds is an important con-
ceptual step before one may address more general situations (e.g. simplicial complexes,
CW-complexes, Alexandrov spaces, etc) that are crucial for many engineering applica-
tions.

In the following, we assume M to be a submanifold of a high dimensional Euclidean
space H, M ⊂ H, and Ω to be a parameter space considered as a submanifold of a low
dimensional Euclidean space. The intuition behind the concept of a modulated manifold
M is to generate the elements ofM by a family of signal transforms {s(α) : H → H}α∈Ω

and a vector φ ∈ H such that for each y ∈ M, we have y = s(α)φ for some α ∈ Ω. This
concept extends the classical notion of modulation by considering maps s(α) : H → H
in order to transform (or modulate) a function φ for generating the elements of M. A
straightforward generalization is to consider a family of vectors {φk}dk=1 ⊂ H together
with a corresponding family of signal transforms {sk(α) : H → H}dk=1, α∈Ω, such that for
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any y ∈M there is one unique α ∈ Ω satisfying

y =
d∑

k=1

sk(α)φk.

To further explain our motivation, let us return to the analysis of a grayscale image
f : [0, 1]2 → [0, 1] using a covering of small squares, or patches, {Oi ⊂ [0, 1]2}mi=1, each
containing n pixels. In this toy example we assume that the corresponding point cloud
data Xf = {f(Oi) ∈ Rn}mi=1 lies in some manifoldM⊂ Rn. If an image f is composed of
an homogeneous texture, the dataset Xf is a cluster whose elements have similar geomet-
rical characteristics. In a simplified scenario, the idea would be to use a representative
patch φ ∈ Rn in order to generate all elements of Xf . The main task is to find a family
of transformations (the modulation maps) s(α) : Rn → Rn, parametrized by a low di-
mensional space Ω, such that for any patch y ∈ Xf , there is some α ∈ Ω with y = s(α)φ.
We remark that several methods in image processing have recently been proposed with
a loosely related philosophy (see e.g. the patch-based texture analysis as part of classical
texture synthesis methods [55]).

Definition 4.2.1 (Modulation maps and modulated spaces). Let {φk}dk=1 ⊂ H be a set of
vectors in an Euclidean space H, and {sk : Ω→ CH(H)}dk=1 a family of continuous maps
from a space (e.g. manifold, topological space) Ω to CH(H) (the continuous functions
from H into H). We say that a space M⊂ H is a {φk}dk=1-modulated space if

M =

{
d∑

k=1

sk(α)φk, α ∈ Ω

}
.

In this case, the map A : Ω → M, α 7→
∑d

k=1 sk(α)φk, is called modulation map. We
frequently will consider the situations where Ω and M are manifolds.

This concept can also be described using the language of vector bundles. Recall that
a vector bundle (E,Ω, π, F ) is defined for a manifold E as a surjective map π : E → Ω,
with a vector space F as a fiber, and a manifold base Ω such that π−1(α) is isomorphic to
F for each α ∈ Ω. Locally, E is homeomorphic to Ω×F , where E may have a non-trivial
global structure. Two typical examples for a vector bundle are the tangent bundle of
a manifold and the Möbius band E, whose base Ω is a circle and whose fiber F is a
line. Sections of a vector bundle π : E → Ω are smooth maps s : Ω → E such that
π(s(α)) = α, and their prototypical examples are vector fields on Ω. In our Definition
4.2.1 we currently use a trivial vector bundle π : E → Ω for E = Ω × CH(H), a fiber
CH(H), and smooth sections {sk : Ω→ E}dk=1.

Example 4.2.1 (Frequency and scale modulation). A basic example of a modulation
map for a manifold Ω ⊂ Rd is a map A : Ω ⊂ Rd → Rn of the form

Aα(ti) =
d∑

k=1

φk(αkti), α = (α1, . . . , αd) ∈ Ω, {ti}ni=1 ⊂ [0, 1],

for a finite set of smooth band-limited functions {φk ∈ C∞([0, 1]) ∩ Bfs , }dk=1, with

Bfs = {f ∈ L2([0, 1]), supp(f̂) ⊆ [−fs, fs]}, and a given fixed sampling rate fs. We use a
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uniformly spaced finite sampling set {ti}ni=1 ⊂ [0, 1] (as justified by the Nyquist-Shannon
sampling theorem), by considering band-limited functions {φk}dk=1. Note that we use
the same notation for the band-limited functions φk and the vector of sampling values
{φk(ti)}ni=1, as justified by the Whittaker-Shannon interpolation formula. More precisely,
as the support of our functions φk is located in [0, 1], and due to their band-limited
property, the interpolation formula allows us to reconstruct each φk with the finite sam-
pling set (φk(ti))

n
i=1 ∈ Rn, which unambiguously identifies the function φk : [0, 1] → R

with a vector φk ∈ Rn. Note that the maps sk(α) of Definition 4.2.1 are in this ex-
ample given by sk(α)φk(ti) = φk(αkti). In other words, we use the (continuous) map
sk(α) : C∞([0, 1]) → C∞([0, 1]), f(t) 7→ f(αkt), as the scaling by factor αk, the k-th
coordinate of vector α ∈ Ω ⊂ Rd. We now consider additional properties to ensure a
meaningful definition of frequency modulation, as required in Proposition 4.2.1.

The first property is the band separation for Ω, defined as Bk ∩Bj = ∅, for all k 6= j,
with Bk = {αk ∈ R, α = (α1, . . . , αk−1, αk, αk+1, . . . , αd) ∈ Ω}. The intuition behind
this assumption is that the coordinates of the manifold Ω are ranged in different and non
overlapping regions. This is actually a standard condition in telecommunication engi-
neering, where different non-overlapping frequency bands are used for the transmission
of different signals. This property will help ensure the injectivity of A, as required in
Proposition 4.2.1.

The second property is a sufficiently dense sampling set for {φk : [0, 1] → R}dk=1

and Ω ⊂ Rd, defined as a set {ti}ni=1 ⊂ [0, 1] that is dense enough for reconstructing
each function in {φk}dk=1 using the Whittaker-Shannon interpolation formula. Note that
these conditions restrict the range of values for Ω, but more general situations could be
considered when using different domains for the functions φk.

Now the following proposition justifies the motivation of Definition 4.2.1 and the
terminology used in the above example.

Proposition 4.2.1 (Manifold structure ofM and diffeomorphism property of A). Sup-
pose that Ω is a submanifold of Rd with separated bands. Moreover, let {ti}ni=1 ⊂ [0, 1]
be a sufficiently dense sampling compact set for Ω and a family of smooth band-limited
functions φk with essential support in [0, 1], {φk : [0, 1] → R}dk=1. If for any element
α = (α1, . . . , αd) ∈ Ω the d× d matrix JA(α) with entries

JA(α)ks =
n∑
i=1

t2iφ
′
k(αkti)φ

′
s(αsti), 1 ≤ k, s ≤ d, (4.1)

is invertible, then M =
{(∑d

k=1 φk(αkti)
)n
i=1
, α = (α1, . . . , αd) ∈ Ω

}
is a submanifold of

Rn, and the map A : Ω→M, Aα(ti) =
∑d

k=1 φk(αkti), is a diffeomorphism.

Proof. This follows as a straightforward application of the rank theorem for manifolds.
The first step is to verify that the mapA : Ω→ Rn, Aα(ti) =

∑d
k=1 φk(αkti) is an injective

immersion. Since Ω is compact we can then conclude that A is also a smooth embedding
(see [60, Proposition 7.4]). With this property, A : Ω→ Rn is a homeomorphism onto its
image M = A(Ω).

The injectivity of A can be ensured with the band separation property of Ω. In order
to verify that A is an immersion, we compute the rank of A at α ∈ Ω, defined as the rank
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of the linear map A∗ : TαΩ→ TA(α)Rn (the differential of A with the tangent spaces TαΩ
and TA(α)Rn at α andA(α), respectively) For this task, we consider a smooth chart (U, χ),

with α ∈ U ⊂ Ω and χ : U ⊂ Ω→ Ũ ⊂ Rp a smooth map, where p = dim(Ω). Now, the
derivative A∗ (or pushforward) of A at α ∈ Ω can be described in local coordinates as
the Jacobian matrix of Â = ψ ◦ A ◦ χ−1 : χ(U) = Ũ ⊂ Rp → ψ(Rn) = Rn, at χ(α) for
ψ = IdRn : Rn → Rn, the identity using (Rn, IdRn) as a single chart of the smooth manifold
Rn. The Jacobian matrix of Â is the n× p matrix JÂ = Jψ JA Jχ−1 , i.e., a product of the
n× n matrix Jψ, the n× d matrix JA, and the d× p matrix Jχ−1 . As Jψ is the identity

matrix, we have rank(JÂ) = rank(JA Jχ−1), and since χ−1 : Ũ ⊂ Rp → U ⊂ Ω ⊂ Rd is a
diffeomorphism, we have rank(Jχ−1) = p. Now, if we assume that rank(JA) = d, with the
Sylvester rank inequality we have rank(JA)+rank(Jχ−1)−d ≤ rank(JA Jχ−1). Therefore,
due to our assumption rank(JA) = d, we obtain rank(JÂ) = p, so that A : Ω → Rn is
an immersion, since rank(A) = rank(A∗) = dim(Ω). Our assumption rank(JA) = d is
equivalent to det(JTA(α) JA(α)) 6= 0, for each α ∈ Ω and d × d matrices JTA(α) JA(α).
Therefore, for JA(α) = JTA(α) JA(α), we obtain the representation (4.1).

Using the previous argument we can guarantee that M = A(Ω) is a submanifold of
Rn, if JA(α) is invertible for each α ∈ Ω. Therefore, the map A : Ω→M is a surjective
smooth constant-rank map. Finally, we now use an important consequence of the rank
theorem for manifolds (see [60, Theorem 7.15]) to conclude that A is a diffeomorphism
between the manifolds Ω and M, and therefore dim(M) = dim(Ω) = p.

Example 4.2.2 (An explicit case of a frequency modulation map). We now continue the
analysis for Example 4.2.1, using Proposition 4.2.1, to construct a frequency modulation
map. A prototypical case is given by trigonometric functions, φ(t) = sin(t), where the
corresponding modulation map A : Ω → Rn, with Ω a submanifold of Rd, is called
frequency modulation map. A concrete construction is given by Aγ : Ω→ Rn with

Aγα(ti) =
d∑

k=1

sin((α0
k + γαk)ti), {ti}ni=1 ⊂ [0, 1], (4.2)

for a fixed bandwidth parameter γ > 0, center frequencies α0 = (α0
1, . . . , α

0
d) ∈ Rd, and

separated bands Bk, i.e., Bk ∩Bj = ∅ for all k 6= j, where

Bk = {α0
k + γαk ∈ R, α = (α1, . . . , αk−1, αk, αk+1, . . . , αd) ∈ Ω}.

This construction can be viewed as the application of an affine transform to the manifold
Ω ⊂ Rd, with shift α0 and bandwidth γ, so that the coordinates of the vectors in the
resulting set α0 + γΩ = {α0 + γα, α ∈ Ω} will not share common values. In this case, the
frequency content introduced by each coordinate α ∈ Ω will not overlap.

Now we need to verify that Aγ in (4.2) is a diffeomorphism for specific parameters γ
and α0, and the following lemma provides a particular situation.
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Lemma 4.2.1 (Diffeomorphism property of frequency modulated maps). Suppose that
Ω is a submanifold of Rd with Ω ⊂ [−1, 1]d, and let α0 ∈ Rd be a vector, such that
Ωα0 = α0 + Ω = {α0 + γα, α ∈ Ω} has separated bands. If the d × d matrix J(α0) is
invertible for {ti = i/n}ni=1 ⊂ [0, 1], and

J(α0)ks =
n∑
i=1

t2i cos(α0
kti) cos(α0

sti), 1 ≤ k, s ≤ d,

then there exist a bandwidth parameter γ > 0, such that the matrix J(β)ks is regular for
all β ∈ Ωγ

α0 = α0 + γΩ.

Proof. This follows from a straightforward application of the Gershgorin circle theorem,
where we compare the locations of the eigenvalues of J(β) with those of the eigenvalues
of J(α0). Using the mean value theorem for cos(βkti), with βk = α0

k + γαk, we have
cos((α0

k + γαk)ti) = cos(α0
kti) + γαkti cos(η) for α0

kti < η < α0
kti + γαkti. This implies

J(β)ks =
n∑
i=1

t2i cos((α0
k + γαk)ti) cos((α0

s + γαs)ti)

=
n∑
i=1

t2i cos(α0
kti) cos(α0

sti) + γτks

n∑
i=1

t2i

= J(α0)ks + γτks
(n+ 1)(2n+ 1)

6n
,

with ti = i/n and τks ∈ R satisfying |τks| ≤ 1. Using the triangle inequality, we obtain

J(β)kk −
∑
k 6=s

|J(β)ks| ≥ J(α0)kk −
∑
k 6=s

|J(α0)ks| −
d−1∑
i=1

γ
(n+ 1)(2n+ 1)

6n
.

Therefore, due to the Gershgorin circle theorem, the regularity of the matrices J(β),

for β ∈ Ωγ
α0 , can be guaranteed, if J(α0)kk −

∑
k 6=s |J(α0)ks| >

∑d−1
i=1 γ

(n+1)(2n+1)
6n

. In
particular, this property can be fulfilled for any γ ≥ 0 satisfying

γ < γmax =
6n min

1≤i≤d

(
J(α0)ii −

∑
j 6=i |J(α0)ij|

)
(d− 1)(n+ 1)(2n+ 1)

. (4.3)

Assuming the hypothesis of the above lemma in combination with Proposition 4.2.1,
we can conclude that M =

{(∑d
k=1 sin((α0 + γα)ti)

)n
i=1
∈ Rn, α ∈ Ω

}
is a submanifold

of Rn, and the map Aγ : Ω→M, Aγα(ti) =
∑d

k=1 sin((α0
k + γαk)ti), is the corresponding

diffeomorphism. We remark that it is also straightforward to justify this lemma by
using the continuity of the determinant of J(α0). But the bound on γ in (4.3) allows
us to provide a concrete range for the bandwidth parameter γ, where we can ensure the
desired diffeomorphism and manifold properties for A and M. As a concrete example,
consider a sampling rate n = 256Hz, and center frequencies α0 = (40Hz, 60Hz, 80Hz).
In this case, the matrix J(α0) is regular for any bandwidth parameter γ < γmax with
γmax ≈ 0.2454Hz. We remark that our numerical simulations suggest that the range for
γ, allowing diffeomorphism and manifold properties for A and M, is much larger than
in the estimate (4.3). A more detailed analysis on these properties, however, is beyond
the aim of the present chapter.
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4.2.2 Geometric Deformation with Curvature Measurements

Now we analyze the geometrical deformation between Ω, M and Ω′, as incurred by the
modulation map A : Ω →M and the dimensionality reduction transform P :M→ Ω′.
In order to analyze the geometrical deformation we consider basic curvature concepts,
including Gaussian and mean curvature. On the one hand, we first present a very general
procedure for computing the scalar curvature using the Riemannian metric as main input.
On the other hand, we describe a discrete scheme for computing the mean curvature by
using the Laplace-Beltrami operator.

We first recall basic ingredients for computing the scalar curvature of a p-dimensional
manifoldM, and refer to [59,92] for further details. The fundamental tool for describing
the geometry of M is a metric tensor field g :M→ Rp×p, defined for local coordinates
(x1, . . . , xp) as

gij(x) = 〈∂i, ∂j〉 for x ∈M and 1 ≤ i, j ≤ p.

Here, the partial derivatives ∂i represent the tangent vectors at each x ∈ M, and the
notation gij(x) is occasionally used for g(x). With this fundamental building block,
all other required structures for defining the scalar curvature are defined, including the
Christoffel symbols and curvature tensors. The Christoffel symbols can be described as

Γkij =
1

2

p∑
`=1

(
∂gj`
∂xi

+
∂gi`
∂xj
− ∂gij
∂x`

)
g`k. (4.4)

Here, the expression gij denotes the inverse matrix of gij. An explicit formula for the
curvature tensor is given in terms of the Christoffel symbols (the 1,3 curvature tensor) as

R`
ijk =

p∑
h=1

(ΓhjkΓ
`
ih − ΓhikΓ

`
jh) +

∂Γ`jk
∂xi
− ∂Γ`ik

∂xj
. (4.5)

We use the tensor contractions

Rijk` =

p∑
h=1

Rh
ijkg`h and Rij =

p∑
k,`=1

gk`Rkij` =

p∑
k=1

Rk
kij (4.6)

for intermediate computations. The scalar curvature is computed together with Gaussian
curvature, which for the case of two dimensional manifolds differs by a factor 2, as

S =

p∑
i,j=1

gijRij. (4.7)

In our particular situation, we are considering manifolds embedded in linear spaces
(i.e., Ω ⊂ Rd and M ⊂ Rn). Our strategy for introducing the concept of curvature
distortion is to compare the geometries of Ω and M generated by their corresponding
first fundamental forms, which are particular metrics induced by their ambient space.

The usage of these concepts in discrete settings as meshes for manifolds is a highly
nontrivial task, and there are relatively simple situations where convergence properties
cannot be guaranteed. A typical example is the Schwarz lantern which is a simple mesh
discretization of a cylinder with very poor approximation properties [50]. With this
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warning in mind, we consider a straightforward discretization scheme for computing the
Gaussian curvature in (4.7), cf. Algorithm 4.2.1. But on the other hand, we also consider
a rigorous discretization procedure, with good convergence properties, for computing the
mean curvature as described in the following paragraph.

Another strategy to analyze the curvature distortion is to compute the mean curvature
using the Laplacian-Beltrami operator ∆Mf = div(∇Mf), where f are the coordinates
of the embedded manifold M⊂ Rn. The Laplace-Beltrami operator is also defined with
the metric tensor gij, its inverse matrix gij, and its determinant |gij|:

∆Mf(x) =
1√
|gij(x)|

p∑
k,`=1

∂k

(√
|gij(x)|gij(x)∂`f(x)

)
for x ∈M.

Designing accurate and robust methods for discretizing the operator ∆ is a very active
research topic. A recent method [5] for doing so provides an efficient strategy by using

LhKf(w) =
1

4πh2

∑
t∈K

Area(t)

#(t)

∑
p∈V (t)

e−
||p−w||2

4h (f(p)− f(w)). (4.8)

Here, K is a mesh in R3, the set of vertices is denoted by V , and f : V → R. For a face
t ∈ K, the number of vertices in t is denoted by #(t), and V (t) is the set of vertices of t.
The parameter h is a positive quantity representing the size of the mesh at each point.
As we consider two dimensional manifolds, the mesh Kε,η can be described with two
variables ε, η for controlling the parameter h. We finally remark that the discretization
scheme in (4.8) convergences w.r.t. ‖ · ‖∞ (see [5] for details), i.e.,

lim
ε,η→0

sup
Kε,η

‖Lh(ε,η)
Kε,η

f −∆Mf‖∞ = 0.

4.2.3 Metric Tensor for Frequency Modulated Manifolds

We now compute a metric tensor in M in order to analyze the geometrical deformation
of Ω as incurred by the application of a modulation map A : Ω ⊂ Rd → M ⊂ Rn.
The resulting metric tensor can then be used for computing the curvature tensor and the
corresponding scalar curvature, which will be used as a measure for the geometric defor-
mation. Our strategy is to consider a parametrization of Ω and to compute the metric
tensor generated from the ambient space Rn. In particular, we use the first fundamental
form with respect to the given parametrization. The resulting formula (4.9) follows by
direct computation, as explained in the following proposition, where we compute the first
fundamental form of a modulated manifold M.

Proposition 4.2.2. Let M be a manifold constructed from a diffeomorphic modulation
map A : Ω ⊂ Rd →M⊂ Rn,

Aα(ti) =
d∑

k=1

φk(αkti) where α = (α1, . . . , αd) ∈ Ω and {ti}ni=1 ⊂ [0, 1],
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and {αj(θ1, . . . , θp)}dj=1 be a parametrization of Ω with p = dim(M) = dim(Ω). Then,
the first fundamental form of M constructed from this parametrization is given by

gsr =
n∑
`=1

t2`

d∑
r,q=1

(
dφr
dt

(αrt`)
dφq
dt

(αqt`)
∂αr
∂θs

∂αq
∂θr

)
. (4.9)

Proof. This follows as a direct computation of the Jacobian of the composition A ◦ α.
The Jacobian with respect to parametrization αj(θ1, . . . , θd) of Ω is given by

JA =

(
∂A`
∂θi

)
`,i

where
∂A`
∂θi

=
∂

∂θi

(
d∑
j=1

φj(αjt`)

)
=

d∑
j=1

dφj
dt

(αjt`)t`
∂αj
∂θi

.

The first fundamental form (metric tensor) of M is given by

(
JTAJA

)
s,r

=
n∑
`=1

(
d∑
j=1

∂φj
∂t

(αjt`)t`
∂αj
∂θs

)(
d∑
j=1

∂φj
∂t

(αjt`)t`
∂αj
∂θr

)

=
n∑
`=1

d∑
r,q=1

(
dφr
dt

(αrt`)t`
∂αr
∂θs

dφq
dt

(αqt`)t`
∂αq
∂θr

)

=
n∑
`=1

t2`

d∑
r,q=1

(
dφp
dt

(αrt`)
dφq
dt

(αqt`)
∂αr
∂θs

∂αq
∂θr

)

As gsr is given by
(
JTAJA

)
s,r

, we obtain the resulting equation (4.9).

The expression in equation (4.9) will play an important role in our following discussion.
However, due to its complexity (even for rather simple examples as a sphere or a torus),
we prefer to work with a numerical framework for illustrating its properties through the
relevant curvature tensors. Moreover, the numerical approach taken provides a flexible
scheme that can handle arbitrary two-dimensional frequency modulated manifolds M
that are defined by a finite scattered dataset X = {xi}mi=1 ⊂M.

4.2.4 Numerical Computation of Curvature Tensors

Now we combine the representation (4.9) with the curvature tensors in (4.6) and (4.7)
for describing how Ω is geometrically deformed under the mapping A : Ω → M. In
the following computations, we focus on the particular case of two-dimensional manifolds
embedded in a three-dimensional space, i.e., d = 3, dim(Ω) = 2, with Ω ⊂ R3. In our
computation of the metric tensor in (4.9), the main inputs are the functions {φj}3

j=1

and the parametrization {αj(θ1, θ2)}3
j=1 of Ω, which is used to construct the Jacobian

components ∂αp
∂θs

and ∂αq
∂θr

. The following algorithm describes the basic steps for computing
the scalar curvature S and the metric tensors gij of the modulated manifold M.
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Algorithm 4.2.1. (Curvature and metric tensors of manifolds.)

Input:
(a) Parametrization α = (αj(θ1, θ2))3

j=1 of Ω;
(b) Functions {φj}3

j=1 generating the map A.

(1) Compute the Jacobian matrices Jα;

(2) Compute the metric tensor gij via equation (4.9);

(3) Compute the Christoffel symbols Γkij via equation (4.4);

(4) Compute the tensors Rijk`, Rij via equations (4.6);

(5) Compute the scalar curvature S via equation (4.7).

Output: Scalar curvature S of M.

4.3 Computational Experiments

We now apply Algorithm 4.2.1 and the discretization in (4.8) to compute the Gaussian
and mean curvature of frequency modulated manifolds for two different toy examples. The
corresponding Matlab code is available at www.math.uni-hamburg.de/home/guillemard/.
In these test cases we use the sphere Ω = S2 and the torus Ω = T2 to illustrate how the
curvature is modified under modulation maps and dimensionality reduction projections.

4.3.1 Frequency Modulation for a Sphere

In this first numerical example, we use the unit sphere for the parameter space i.e.,
Ω = S2 ⊂ R3, and the modulation map A : S2 ⊂ R3 → M ⊂ R256 is defined as
Aα(ti) =

∑3
k=1 sin((α0

k + γαk)ti), where

α1(u, v) = cos(v) cos(u),

α2(u, v) = cos(v) sin(u),

α3(u, v) = sin(v).

Here, we use a finite and regular distribution of values u ∈ [0, 2π], v ∈ [0, π], and
{ti}256

i=1 ⊂ [0, 1]. We apply shifting and scaling to the manifold S2, so that the frequency
positions are given by the coordinates (α1

0, α
2
0, α

3
0) and the scaling factor γ. We use these

parameters to obtain a separation of the frequency bands as described in Subsection 4.2.1.
The scaling factor γ gives the spreading of each frequency band (bandwidth). A main
observation of the following experiments is that the geometrical deformation depends pri-
marily on the parameter γ. A graphical display of the manifolds S2 and M is presented
in Figure 4.1, where the sphere S2 is compared with a three dimensional PCA projection
ofM (denoted as P (M)). The PCA projection P (M) ofM⊂ Rn, n = 256, produces a
significant geometrical deformation. One objective of the following analysis is to measure
this distortion. It can be observed experimentally that an increase in the scale factor γ
corresponds to a more pronounced cubic shape deformation, as shown in Figure 4.1 (b).
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(a) (b) (c)

Figure 4.1: PCA projections of a modulated sphere M = Aγ(Ω) ⊂ Rn, for Ω = S2 ⊂
[−1, 1]3, with sample frequency n = 256, center frequencies α0 = (40Hz, 60Hz, 80Hz), and
bandwidth parameter γ = 0.4Hz (a) The sphere S2 ⊂ R3 with the mean curvature ofM
as color code; (b) PCA projection PPCA(M) ⊂ R3 with its mean curvature in the color
code; (c) PCA projection PPCA(M) ⊂ R3 with its Gaussian curvature in the color code.

(a) (b) (c)

Figure 4.2: Curvatures of the modulated sphereM = A(Ω) and its projection PPCA(M)
(see Figure 4.1). (a) The mean curvature of M ⊂ R256; (b) the mean curvature of
P (M) ⊂ R3; (c) the Gaussian curvature of P (M) ⊂ R3.

The objective of these examples is to illustrate the geometrical deformation when
applying the frequency modulation map A to Ω. We notice a cubic type deformation as
soon as the bandwith parameter increases with several isolated points where the curvature
reaches high values.

In order to measure this geometric deformation, we compute the scalar and mean
curvature of M ⊂ R256 and that of its three-dimensional PCA projection P (M). Fig-
ure 4.2 (a) shows the mean curvature of the manifold M and the Gaussian curvature
of its projection P (M) is displayed in Figure 4.2 (c). Note that the mean curvature
of M shows some small variations over its surface, indicating only a small deformation
of the spherical geometry via the frequency modulation map A. In contrast, the PCA
projection of M shows significant curvature variations, as presented in Figure 4.1 (c).
Note that there are two sets of four maximal scalar curvature values, corresponding to
the corners of the cubic shaped surface shown in Figure 4.1 (c).
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4.3.2 Frequency Modulation for a Torus

In this second numerical example, we use the torus surface Ω = T2 ⊂ R3 in combination
with the modulation map Aα(ti) =

∑3
k=1 sin((α0

k + γαk)ti), and the parametrization

α1(u, v) = (R + r cos(v)) cos(u),

α2(u, v) = (R + r cos(v)) sin(u),

α3(u, v) = r sin(v).

We use a regular distribution of values u ∈ [0, 2π], v ∈ [0, 2π], and {ti}256
i=1 ⊂ [0, 1]. As

in the previous example, the parameter γ plays a key role in the cubic deformation,
cf. Figure 4.3 (c).

(a) (b) (c)

Figure 4.3: PCA projections of a modulated torus M = Aγ(Ω) ⊂ Rn, for Ω = T2 ⊂
[−1, 1]3, with sample frequency n = 256, center frequencies α0 = (40Hz, 60Hz, 80Hz),
and bandwidth parameter γ = 0.3Hz (a) The torus T2 ⊂ R3 with the mean curvature
of M as color code; (b) PCA projection PPCA(M) ⊂ R3 with its mean curvature in the
color code; (c) PCA projection PPCA(M) ⊂ R3 with its Gaussian curvature in the color
code.

(a) (b) (c)

Figure 4.4: Curvatures of the modulated torus M = A(Ω) and its projection PPCA(M)
(see Figure 4.3). (a) The mean curvature of M ⊂ R256; (b) the mean curvature of
PPCA(M) ⊂ R3; (c) the Gaussian curvature of PPCA(M) ⊂ R3.

The mean curvature of M ⊂ R256 is shown in Figure 4.4 (a). We observe a typical
pattern for the torus geometry: a constant value for the mean curvature along the smaller
circle of the torus (depicted with the middle vertical line in Figure 4.4 (a)), two circles
with constant curvature on the top and bottom of the torus (depicted with two vertical
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lines equidistant to the middle of Figure 4.4 (a)), and another circle with constant mean
curvature along the larger circle of the torus (depicted with the leftmost and rightmost
vertical lines of the Figure 4.4 (a)).

The Gaussian curvature of the PCA projection P (M), shown in Figure 4.4 (c), illus-
trates a similar structure, but with a additional geometrical deformations which includes
two sets of four points with maximal scalar curvature, representing the corners of the
cubic shaped projection P (M) shown in Figure 4.3 (c).

We finally remark that, for these toy examples, the task of estimating the frequencies
of each x ∈M (and therefore computing Ω) is not a difficult problem. A straightforward
method for doing so is to use the Fourier transform of the signals x ∈M, as for instance
performed in classical partial tracking techniques. But our focus here is to conceptually
understand the geometrical effects of dimensionality reduction methods in datasetsM =
A(Ω). From a signal processing point of view, the problem of estimating Ω becomes much
more challenging when considering more complex functions φk for the modulation map
A. In such situations, the presented geometrical framework will be useful for estimating
Ω in more complex test case scenarios.

4.3.3 Dimensionality Reduction and Topological Effects from Curvature

In our numerical experiments, we observe that an increase of the bandwidth parameter
γ amplifies the geometrical distortion of the modulated manifolds M ⊂ Rn. In fact,
when increasing the bandwidth parameter γ, standard (linear) projection methods, such
as PCA, fail to recover the geometry of the manifold. In contrast, recent nonlinear
dimensionality reduction methods, such as isomap, achieve to recover (up to a certain
bandwidth γ) the geometry of Ω. For the purpose of further illustration, Figure 4.5 (b)
shows how the linear PCA projection destroys the geometrical content of the modulated
torus M, whereas the nonlinear isomap projection achieves to recover the topological
and geometrical features of the torus T2 reasonably well. This effect is similar as when
comparing the isomap and PCA methods for the classical Swiss Roll dataset example.
But with our concept we can generate much more challenging datasets from modulated
manifolds to evaluate the performance of NDR techniques.

To further investigate the geometrical distortion of modulated manifolds incurred
by dimensionality reduction maps, we illustrate how the bandwidth parameter γ affects
the topological reconstruction of Ω. To this end, we analyze the evolution of the mean
curvature of the manifoldM = Aγ(Ω) for a range of bandwidth parameters γ (see Figure
4.6). In this case, we compute for values γ ∈ [0, 4] the maximum mean curvature of M.
We let Ω = T2 ⊂ [−1, 1]3, and therefore, if the projection P (M) correctly reconstructs
the topology of M, we expect the Betti numbers of P (M) to be b0 = 1 and b1 = 2.

Figure 4.6 (a) shows an increase of the maximum mean curvature as the bandwidth
parameter is amplified. For small values of γ, a standard (linear) dimensionality reduction
method, such as PCA, achieves to reproduce the topology of Ω. This can be verified by
the persistent homology of P (M), as depicted in the barcode graph of Figure 4.6 (b),
where for γ = 0.2Hz, the first two Betti numbers agree with that of a torus structure
(b0 = 1, b1 = 2). But for higher values γ, the geometry of M = Aγ(Ω) is more difficult
to reconstruct. In fact, the topological structure of the dimensionality reduced datasets
P (M) are in this case incorrect. This can be seen in Figure 4.6 (c), where the persistent
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(a) (b)

Figure 4.5: Dimensionality reduction of a frequency modulated manifold M = A(Ω) ⊂
Rn, for a torus Ω = T2 ⊂ [−1, 1]3 using a sampling frequency n = 256, with center
frequencies α0 = (40Hz, 60Hz, 80Hz), and bandwidth parameter γ = 4Hz. (a) PIsomap(M)
isomap projection of M; (b) PPCA(M) PCA projection of M.

homology barcode of PPCA(M) with γ = 4Hz, yields incorrect Betti numbers b0 = 3 and
b1 = 0. An example of one data set PPCA(M) is shown in Figure 4.5 (b), where γ = 4Hz.

(a) (b) (c)

Figure 4.6: (a) Maximum mean curvature of M = A(Ω) vs bandwidth parameter γ in
the interval [0, 4], for Ω = T2 ⊂ [−1, 1]3, and center frequencies α0 = (40Hz, 60Hz, 80Hz).
(b) Betti numbers of PPCA(M) and bandwidth parameter γ = 0.2Hz (b0 = 1, b1 = 2),
(c) Betti numbers of PPCA(M) and bandwidth parameter γ = 4Hz (b0 = 3, b1 = 0).

4.4 Filtering Effects

We present here additional numerical experiments illustrating the effect of the curvature
distortion when applying filtering procedures. Our main objective is to estimate the
curvature distortion in the geometry of the manifold M when applying a linear trans-
formation T : M → MT , where T represents, for instance, a wavelet or a convolution
filter. We first need to evaluate relevant effects on the geometrical deformation of M
under various transformations T .
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4.4.1 Sectional Curvature Distortions

In order to estimate the distortion caused by the linear map T :M→MT , we compare
the Gaussian curvatures between M and MT , denoted respectively KM, and KMT

,

DT
K(p) = KM(p)−KMT

(T (p)) for p ∈M.

If T is invertible, then the Gaussian curvature KMT
inMT can be computed as a function

of the metric g in M by using a pullback of the curvature tensor R in M with respect
to the inverse map T−1 : MT → M, or, equivalently, by using a pushforward of the
curvature tensor R in M with respect to T : M → MT . An alternative strategy is to
consider the composition of T with a particular system of local coordinates (x1, . . . , xn)
of M, along with the metric tensor

gij(p) = gij(x1, . . . , xm) =

〈
∂

∂xi
,
∂

∂xj

〉
.

When considering the linear transformation T representing the convolution filter, an
important case is when T is represented by a Toeplitz matrix, with filter coefficients
H = (h1, . . . , hm), i.e.,

T =



h1 0 . . . 0
h2 h1 . . . 0
...

... . . .
...

hm hm−1 . . . h1

0 hm . . . h2
...

... . . .
...

0 0 . . . hm


.

Note that the curvature distortion caused by the map T will be controlled by the singular
values of T , which due to the Toeplitz matrix structure, are obtained from the Fourier
coefficients of H.

Now, our primary objective is to investigate the influence of the filter coefficients in
H on the curvature distortion DT

K . Moreover, we study filters being required to obtain a
given curvature distortion. The latter is particularly useful for the adaptive construction
of a low dimensional representation of U .

4.4.2 Curvature Distortions for Curves

As for the special case of a curve r : I = [t0, t1]→ Rm, with arc-length parameterization
s(a, t) =

∫ t
a
‖r′(x)‖ dx, recall that the curvature of r is k(s) = ‖r′′(s)‖. For an arbitrary

parameterizations of r, its curvature is given by

K2 =
‖r̈‖2‖ṙ‖2− < r̈, ṙ >2

(‖ṙ‖2)3
.

In the remainder of this section, we briefly discuss the curvature distortion under linear
maps (e.g. convolution transform) and under smooth maps. To compute the curvature
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distortion of a curve r : I = [t0, t1]→ Rm under a linear map T , we consider the curvature
of rT = {Tr(t), t ∈ I}, computed as follows.

K2
T ≡ K2

T (t) =
‖T r̈‖2‖T ṙ‖2− < T r̈, T ṙ >2

(‖T ṙ‖2)3
. (4.10)

As for the general case of smooth maps F : Rm → Rr, the curvature distortion can
be approximated by using the Jacobian matrix JF and its singular value decomposition,

JF (p) =


∂f1
∂x1

(p) . . . ∂f1
∂xm

(p)
...

. . .
...

∂fr
∂x1

(p) . . . ∂fr
∂xm

(p)


= UF (p)DF (p)V T

F (p) for p ∈M.

The curvature distortion of a curve r : [t0, t1]→ Rm under F can in this case be analyzed
through the expression

K2
F ≡ K2

F (p) =
‖JF r̈‖2‖JF ṙ‖2− < JF r̈, JF ṙ >

2

(‖JF ṙ‖2)3
,

where, unlike in the linear case (4.10), the Jacobian matrices JF depend on p ∈M.

4.4.3 Numerical Examples

This section presents three different numerical examples to illustrate basic properties of
the proposed analysis of high-dimensional signal data. Further details shall be discussed
during the conference.

Low-dimensional parameterization of scale modulated signals

In this example, we illustrate the geometrical effect of a convolution transform for a set
of functions lying on a curve embedded in a high dimensional space. More precisely, we
analyze a scale modulated family of functions U ⊂ R64, parameterized by three values in
Ω ⊂ R3,

U =

{
fα(t) =

3∑
i=1

e−αi(t)(· −bi)
2

: α(t) ∈ Ω

}
.

The parameter set for the scale modulation is given by the curve

Ω =
{
α(t) = (α1(t), α2(t), α3(t))T ∈ R3, : t ∈ [t0, t1]

}
.

Figure 4.7 (left) shows the parameter domain Ω, a star shaped curve in R3. A PCA
projection in R3, applied to the set U ⊂ R64, is also displayed in Figure 4.7 (middle).
The projection illustrates the curvature distortion caused by the nonlinear map A : Ω ⊂
R3 → U ⊂ R64, A(α(t)) = fα(t).

Finally, Figure 4.7 (right), shows the resulting data transformation T (U) using a
Daubechies wavelet w.r.t. a specific band of the multiresolution analysis, resulting in
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Figure 4.7: Parameter set Ω ⊂ R3, data U ⊂ R64, and wavelet correction T (U) ⊂ R64

a filtering process for each element in U . The resulting T (U), presents a curvature
correction that recovers the original geometry of Ω up to some degree.

As seen in this example, the resulting curvature effects are related to the singular
values and singular vectors of the convolution map T . We remark that the singular
values of T can be viewed as scaling factors (stretching or shrinking) along corresponding
axis in the (local) embedding of U . Notice also that the spectrum of T depends on the
particular filter design.

Low dimensional parameterization of wave equation solutions

In this second example, we regard the one-dimensional wave equation

∂u

∂t
= c2∂u

∂x
, 0 < x < 1, t ≥ 0, (4.11)

with initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ 1. (4.12)

We make use of the previous example to construct a set of initial values (i.e. func-
tions) parameterized by a star shaped curve U0 = U . Our objective is to investigate the
distortion caused by the evolution Ut of the solutions on given initial values U0. Recall
that the evolution of the wave equation is constituted by the set of solutions

Ut = {uα ≡ uα(t, x) : uα satisfying (4.11) with

initial condition f ≡ fα in (4.12) for α ∈ Ω}.

Now, the solution of the wave equation can numerically be computed by using finite
differences, yielding the iteration

u(j+1) = Au(j) + b(j),

where for µ = γ∆t/(∆x)2, the iteration matrix is given by

A =


1− 2µ µ
µ 1− 2µ µ

µ 1− 2µ µ
. . . . . . . . .

0 µ 1− 2µ

 .

41



Recall that in the convergence analysis of the iteration, which can be rewritten as,

u(j+2) = Au(j+1) + b(j+1)

= A(Au(j) + b(j)) + b(j+1)

= A(2)u(j) + Ab(j) + b(j+1),

the spectrum of the matrices Ak play a key role. Notice that due to the decomposition
Ak = UDkUT , the geometrical distortion in the evolution of Ut depends on the evolution
of the eigenvalues of A.

Figure 4.8: One solution of the wave equation u(t, x) and one measurement u(tk, x), tk =
20

Figure 4.9: Curvature distortion of the initial manifold under the evolution of the wave
equation. The outer curve represents the initial conditions U0 while the inner curve
reflects the corresponding solutions Ut for some time t

Topological Distortion and Filtering

In this example, we illustrate a relevant phenomenon concerning the topological distortion
that occurs when using a convolution transform. In this test cases, we take a 1-torus
Ω1 ⊂ R3 and one 2-torus Ω2 ⊂ R3 as parameter space, respectively. As in the previous
examples, we generate a corresponding set of scale modulation functions U1 and U2 (see

42



Figure 4.10), using Ω1 and Ω2 as parameter domains. This gives, for j = 1, 2, two different
data sets

Uj =

{
fαj(t) =

3∑
i=1

e−α
j
i (t)(· −b

j
i )

2

: αj(t) ∈ Ωj

}
.

Figure 4.10: PCA projections of U1, U2 ⊂ R64 onto R3, generated by Ω1,Ω2 ⊂ R3, two
tori of genus 1 and 2

Now we combine the set U1 and U2 by

U =
{
ft = fα1(t) + fα2(t) : α1(t) ∈ Ω1, α

2(t) ∈ Ω2

}
.

The resulting projection of the data U is shown in Figure 4.11.
For the purpose of illustration, we recover the sets U1 and U2 from U . Figure 4.12

shows the reconstruction of the two surfaces U1 and U2. Note that the broad geometri-
cal and topological features of U1 and U2 are recovered. The reconstruction involves a
selection of suitable bands from the corresponding wavelet multiresolution decomposition.

Figure 4.11: PCA projection of U ⊂ R64 onto R3

4.5 Conclusion and Future Steps

We have introduced the concept of frequency modulation maps and modulated manifolds
as relevant objects in manifold learning and dimensionality reduction. We have developed
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Figure 4.12: Reconstruction of U1 (left), U2 (right) from U

a numerical scheme, Algorithm 4.2.1, for computing the scalar curvature of a modulated
manifold, along with its metric tensor. We applied the algorithm to two different test
cases of frequency modulated manifolds. In one test case, we considered the sphere S2,
and the other example relies on the torus T2. The numerical examples are illustrating
the geometrical distortion incurred by the dimensionality reduction when relying on PCA
projections. Moreover, we have shown that the standard linear PCA projection is outper-
formed by the nonlinear isomap projection, which achieves to recover the geometry of the
modulated surface. But the concept of modulated manifold can also be used to construct
more challenging datasets for nonlinear dimensionality reduction methods. The results of
this chapter provide only a first insight into the nature of frequency modulation maps and
modulated manifolds. Weaker structural assumptions on Ω and M (Alexandrov spaces,
cell-complexes, etc) are possible useful extensions to cover a larger variety of engineering
applications. To this end, the work on persistent homology, discrete Morse theory, or
Alexandrov spaces [37, 38,76] gives a suitable background.
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5 Groupoid C∗-Algebras and Time-Frequency Analysis

We now study some topological aspects in time-frequency analysis in the context of
dimensionality reduction using C∗-algebras and noncommutative topology. Our main
objective is to propose and analyze new conceptual and algorithmic strategies for com-
puting topological features of datasets arising in time-frequency analysis. The main result
of our work is to illustrate how noncommutative C∗-algebras and the concept of Morita
equivalence can be applied as a new type of analysis layer in signal processing. From a
conceptual point of view, we use groupoid C∗-algebras constructed with time-frequency
data in order to study a given signal. From a computational point of view, we con-
sider persistent homology as an algorithmic tool for estimating topological properties in
time-frequency analysis. The usage of C∗-algebras in our environment, together with
the problem of designing computational algorithms, naturally leads to our proposal of
using AF-algebras in the persistent homology setting. Finally, some computational toy
examples are presented, illustrating some elementary aspects of our framework.

In this chapter, we present our main machinery for studying signals using tools from
noncommutative C∗-algebras as explained in the Introduction 1. The core idea is to ex-
ploit the powerful concepts of groupoid theory and Morita equivalence in order to analyze
geometrical/topological spaces constructed from signals in a time-frequency setting. The
outline of this chapter is as follows. In Section 5.1.1 we present the basic concepts of
our framework, together with several examples motivating our definitions. We present
an overview of basic concepts in groupoid theory in Section 5.1.2. In Section 5.1.3 we
present our basic results illustrating the usage of C∗-algebra structures in signal analysis.
In Section 5.1.4 we present our proposal of integrating basic ideas of persistent homology
together with AF-algebras technology. Finally, in Section 5.2, we discuss a toy example
illustrating a (very) limited set of features of our theoretical developments.

5.1 Functional Clouds and C∗-Algebras

Our objective is to design tools for signal processing using properties of spaces constructed
from a signal, in the same spirit as the construction of time-frequency data. As we will
also shortly explain, a similar construction occurs also in the setting of nonlinear time
series and the Taken’s theorem. We present in this section basic definitions, where a core
idea is to study the segmentation of a signal f , as classically performed in wavelet or
short term Fourier transforms. Two basic concepts are the notions of a functional cloud
Mf of a signal f , and its related pile Ff . The information encoded in these structures
contains the interplay between local and global properties of f , and our plan is to use
geometrical and topological tools for their analysis. The notion of a modulation map as
introduced in Definition 4.2.1 provides the interaction with the dimensionality reduction
and manifold learning framework. Some basic properties of a functional cloud and a pile
are discussed in Section 5.1.3, where we study their topology by applying elementary
notions of C∗-algebras and their K-theory. For instance, in Proposition 5.1.3 we consider
the case of a signal decomposition f =

∑
fi, and a simplified scenario illustrating the

topological interaction between the spaces Mf , {Mfi}i, and Ff .
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5.1.1 Motivating and Defining Functional Clouds

Time-frequency transforms are fundamental tools in modern developments of harmonic
analysis. An important task in this field is to construct adequate strategies for decom-
posing a function in order to study their time-frequency behavior. The basic procedure
is to split a signal f in consecutive segments (sometimes denominated patches or chunks)
that can be used to perform a global analysis of the function f . We now introduce an
abstraction of these ideas by denoting (for lack of better names), a functional cloud and
a pile as our basic objects of study. Given a real function in a locally compact group,
we construct a functional cloud as a quotient space of a pile with an adequate equivalence
relation. We will also generalize the equivalence relation to a more powerful concept of
groupoid in order to use the rich theory readily available in this field, as well as preparing
the terrain for new potential application problems.

Definition 5.1.1 (Functional cloud and pile of a function). Given a locally compact
group B, and a continuous function F : B → C, we define the functional cloud for F and
a measurable compact set A with 0 ∈ A ⊂ B, as the set MF ,A ⊂ L1(A) with

MF ,A :=
⋃
x∈B

{
Fx : A→ C

}
,

for Fx(y) := F(x+ y), ∀ y ∈ A. The related pile is defined as the corresponding disjoint
union:

FF ,A :=
⊔
x∈B

{
Fx : A→ C

}
.

We will abuse the notation, and we use also FF ,A for the disjoint union of the graphs of
the functions Fx:

FF ,A :=
⊔
x∈B

Fx ⊂ B × A× C, Fx := graph(Fx) = {(y,Fx(y)), y ∈ A} ⊂ A× C.

Remark 5.1.1 (Notational comments). Note that in the set MF ,A, no repeated elements
are taken into account. Namely, only one representative Fx is used for different elements
x1 6= x2 where Fx1(y) = Fx2(y), ∀ y ∈ A. In contrast, in the disjoint union FF ,A we
keep track of repeated elements Fx for different values x ∈ B. It is clear that we can
establish a link between these concepts using an adequate equivalence relation R and a
quotient space MF ,A = FF ,A/R. As we will see later on, our main object of study is
an important generalization of this construction using MG

F ,A = FF ,A/G for a groupoid G
acting on FF ,A. To avoid clutter the notation, we denote MF ,A by MF and FF ,A by FF
when no confusion arises. We also remark that we use both notations XF and MF to
denote a functional cloud of F , but XF is mostly preferred for the case of finite signals.

Remark 5.1.2 (Motivations). The idea of functional cloud captures a basic time-frequency
strategy by segmenting a function f ∈ L2(R) in chunks fx, constructed with the trans-
lations Ax = {x + y, y ∈ A} of a set A that can be defined as the support of a given
window function. For instance, the standard wavelet procedure for computing the prod-
uct 〈f, ψa,b〉, with a wavelet ψ, can be considered as a local analysis of f in a region
defined by ψa,b. Remember that the region of influence of ψa,b is defined by the scale a
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and the translation factor b. In the concept of a functional cloud of f , the set A can be
related to the support of ψ, but it also plays a generalization role for the scale factor a.
The objective is to consider Mf as a set which encodes the local behavior of f (using the
set A as a measuring tool) and whose geometrical properties are of interest.

Notice that in this particular concept, we do not take into account different resolution
scales, as a single set A is used for constructing Mf . Currently, our main focus is to
study a single scale level, and we leave for future work the analysis of geometrical and
topological interactions between clouds Mf,A with different scales A.

The conceptual motivation of a functional cloud is also in close relation to the concepts
of a phase space and attractors in dynamical systems, as seen in the setting of the Taken’s
theorem (Example 5.1.5). Here, we use the term functional cloud in order to stress the
relation to the concept of a point cloud data as used in dimensionality reduction. In the
standard philosophy of time series analysis, as seen in dynamical systems, the interactions
with classical Fourier analysis are usually not that taken into consideration. Here, we
want to consider situations where a combination of these techniques could be of interest.
We now present a family of examples where the concept of a cloud plays a significant
role.

Example 5.1.1 (Cloud of a discrete 1d signal). A typical example of a finite functional
cloud is the point cloud dataset constructed by drawing samples from a signal f . More
precisely, we consider, for a bandlimited signal f ∈ L2(R), the set of signal patches
Xf = {xi}mi=1 ⊂ Rn, xi = (f(tk(i−1)+j))

n−1
j=0 ∈ Rn. The construction of this cloud Xf

involves the set of integers A = {0, . . . , n − 1}, and the identification C(A,R) = Rn,
and we can see A as a subset indexing the values `. Here, the regular sampling grid
{t`}km−k+n−1

`=0 is constructed when considering the Nyquist-Shannon theorem for f .

Example 5.1.2 (Cloud of an Image). A straightforward generalization of the previous
example applies for the case of an image f : [0, 1]2 → [0, 1]. Here, the cloud Mf depends
on a set of pixels represented by a representative patch A. In this particular example, the
usefulness of a topological analysis of Mf lies, for instance, in the study of its connectivity
(e.g. clustering aspects) for estimating qualitative as well as quantitative differences
between different regions in the image f .

Example 5.1.3 (Cloud of a sinusoid). Let f : T→ R with f(x) = sin(x), x ∈ T = R/2πZ
and let A = {x mod (2π),−ε < x < ε}. If 0 < ε < π the functional cloud Mf is
homeomorphic to a circle. This can be seen by considering the map φ : Mf → T,
φ(fx) = x. Notice that fx(z) − fx+δ(z) = δ cos(ξ), for ξ ∈]z + x, z + x + δ[, and we
can ensure that φ is continuous, with the uniform norm in the space C(A,R) using the
estimation ‖fx − fx+δ‖∞ ≤ |δ|. When considering the inverse function φ−1(x) = fx, we
can use the computation fx+δ(z)− fx(z) = f(z + x+ δ)− f(z + x) for x− ε < z < x+ ε,
and as f is continuous, we have limδ→0 fx+δ(z) = fx(z), and as fx is continuous we have
φ−1 continuous. Finally, notice that φ is bijective only for the cases 0 < ε < 2π.

Example 5.1.4 (Cloud of a modulated path). Consider an embedded manifold Ω ⊂
[−1, 1]d, and a path (i.e. a continuous map) φ : [0, 1] → Ω. We construct f : [0, 1] → R
as

f(x) =
d∑
i=1

sin
(∫ x

0

(αic + γφi(t)) dt
)
,
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such that the entries of the vector αc = (αic)
d
i=1 ∈ Rd are center frequencies where a

number of d frequency bands are located, and the value γ plays the role of a bandwidth
parameter. The notation φi(x) refers to the i-th coordinate of φ(x). A basic question in
this example is, given an open set A, what are the conditions for the path φ such that the
functional cloud Mf ⊂ C(A,R) “approximates” an homeomorphic copy of Ω. Here, the
meaning of approximation can be considered, for instance, in the context of persistent
homology. If the functional cloud of f is a path in C(A,R) the question would be, given
an adequate finite sampling of Mf , whether its persistent homology corresponds to the
persistent homology of a finite sampling of Ω.

Another point of view for comparing the homology of Ω with a finite sampling of Mf

can be expressed with conditions for approximating the homology of submanifolds with
high confidence from random samples (see the work of Niyogi, Smale and Weinberger [75]).
For this setting, the question would be to ask if a given finite sampling of Mf fulfills the
conditions in [75] for reconstructing the homology of an homeomorphic copy of Ω in
C(A,R).

Example 5.1.5 (Time series and dynamical systems). In dynamical systems and time
series analysis, a similar segmentation procedure for a signal is implemented as in the
functional cloud concept. In the framework of the celebrated Taken’s theorem [84], we
consider a dynamical system φ ∈ Diff(M), defined as a diffeomorphism φ of a manifold
M , a smooth function h : M → R, and a delay coordinate map F (h, φ) : M → Rn,
constructed by drawing consecutive samples from a time series:

F (h, φ)(x) := (h(x), h(φ(x)), h(φ2(x)), . . . , h(φn−1(x))), x ∈M.

The main result is that under suitable conditions, the map F (h, φ) is an embedding. Given
a signal f(k) = h(φk(x)), k ∈ Z, the Taken’s theorem provides a conceptual framework
that justifies the estimation of geometrical and topological properties of M using the
signal f . The key notion in this construction turns out to be a functional cloud Mf,A for
A an n-dimensional set.

Example 5.1.6 (Voice transform, wavelets and short term Fourier analysis). In time-
frequency analysis and voice transforms, a crucial component is the way a locally compact
group G acts in a Hilbert space of functions H. This action is an irreducible and unitary
group representation, π : G → U(H), (for U(H) unitary operators in H) that fulfills
square integrable conditions. With this representation the voice transform is constructed
as [18, Formula 17.3, p387]:

Vψ : H → C(G) with Vψf(x) = 〈f, π(x)(ψ)〉, f, ψ ∈ H, x ∈ G.

The short term Fourier transform (STFT) and wavelet transforms are typical examples
where ψ corresponds to a window function for the former and to a wavelet for the latter.
These transforms represent an interplay between H and C(G), that allows to analyze the
function f , by porting its information to a setting defined by G. Another way to rephrase
this procedure is that the transformation Vψ “unfolds” data present in f , using G as an
analysis environment. In the case of the STFT transform, the Weyl-Heisenberg group
represents the time-frequency background to which information from f is translated. In
the case of the wavelet transform, the affine group provides a time-scale representation of
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a function. In these situations, a fundamental objective is to understand the components
of f , using G and Vψ as observation tools. Discretization aspects of these transforms have
been designed in the setting of coorbit theory and frames of a Hilbert space H [32–34].
Recall that a frame of H is a collection of vectors F = {fi}i∈I ⊂ H, such that there exist
two constants 0 < A ≤ B, with A‖f‖2 ≤

∑
i∈I |〈f, fi〉|2 ≤ B‖f‖2, for any f ∈ H.

In the particular case of Gabor analysis, the voice transform is defined as

Vgf(b, w) =

∫
R
f(t)g(t− b)e−2πitwdt,

f ∈ L2(R) and we can define two basic functional clouds in this setting. The cloud
Xf = {xb}b is defined with chunks xb = fgb by splitting the function f , and using
gb(t) = g(t− b) for a window function g. We can also define a cloud of the corresponding
spectral view using

XVgf = {Vgf(b, .)}b.

Due to the orthogonality property of the Fourier transform, the geometrical and topo-
logical properties of Xf = {xb}b, are the same as the ones of the set XVgf = {Vgf(b, .)}b
(i.e. Xf and XVgf are isometric spaces). But it is crucial to notice that highly nontrivial
geometrical and topological changes can occur in XVgf when applying time-frequency
operations to the function f (e.g. filters and convolution operations). The interplay be-
tween the geometry of XVgf and the time-frequency properties of f is a main topic in our
research (a toy-example of this interaction will be discussed in Section 5.2, and can also
be found in [45] and its corresponding simulation).

Studying Mf with Ff

In order to study the functional cloud Mf , the pile Ff is used for estimating its geometrical
and topological properties. The motivation for this strategy is based on standard pro-
cedures of noncommutative geometry. A prototypical situation is to study the geometry
of a quotient space X = Y/ ∼ using a C∗-algebra constructed with the equivalence rela-
tion ∼. The relation between a pile and a function cloud can be interpreted as quotient
space using an equivalence relation (and more generally a groupoid). These conceptual
interactions will be the main topic we will investigate.

The basic idea of a pile Ff is to study each segment fx of the function f , by keeping
track their relationship with respect to the parameter x ∈ B. This is in contrast with
the construction of a functional cloud Mf , where we study the interactions between the
vectors fx, irrespectively of their positions x. Basic standard procedures in time-frequency
analysis are related to this concept. For instance, when studying the time-frequency
representation of a signal f , an important objective is to keep track to the time evolution
of different frequency components of f . For example, the topic of partial tracking is a
classical signal processing task which keeps track of harmonic information in a signal.
Speech analysis is a typical example, where vocal information is represented in the time-
frequency plane by varying harmonical components. The time-frequency data in this
context is obtained by considering the Fourier transform of each segment fx in the pile.
We now describe an important particular scenario that justifies the terminology pile.
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Proposition 5.1.1 (Pile as a foliated manifold). Let Ff be a pile for a continuous func-
tion f : B → R, where B is a finite dimensional Hilbert space, and A an open set with
0 ∈ A ⊂ B. The set Ff is a manifold of dimension 2 dim(B), and it has a foliation
structure of dimension dim(B).

Proof. This easily follows by considering the graph of the function φ : B × A → R,
φ(x, y) = fx(y). As f is continuous and fx(y) = f(x + y), φ is a continuous function.
The graph of φ can be identified with {(x, y, fx(y), (x, y) ∈ B × A}, and therefore it is
also identified with the pile Ff . The map φ exhibits a chart from the open set B × A
to Ff , which actually relates these two sets homeomorphically, and we obtain a manifold
structure for Ff . As B ×A is an open subset of B ×B, the dimension of Ff is therefore
equal to 2 dim(A). The foliation structure of Ff is a straightforward consequence of its
construction, where the leaves are given by Fx, x ∈ B, and their dimension is dim(B).

Example 5.1.7 (Pile for the sinusoidal example). In our previous Example 5.1.3 of the
function f(x) = sin(x), x ∈ T = R/Z with A = {x mod (2π),−ε < x < ε}, the pile Ff
can be identified with a surface (dim(Ff ) = 2 ) described by the graph of the function
φ : T×] − ε, ε[→ R, φ(x, y) = sin(x + y), and for the corresponding leaves we have
dim(Fx) = 1.

Remark 5.1.3 (Relating Ff and Mf ). There is an obvious relation between a pile Ff
and a functional cloud Mf . If we define an equivalence relation in Ff , as R = {(u, v) ∈
Ff×Ff , d(p(u), p(v)) = 0}, for the projection map p : Ff →Mf , p((x, y, fx(y)) = fx, and
d is the metric induced by the uniform norm in C(A,R), we have an identification (as
sets) between Ff/R and Mf . This remark has important implications when using the pile
Ff for studying the geometry and topology of Mf . Indeed, the relations between a space
X and a quotient space X/R for an equivalence relation R (or more generally a groupoid
G) is an important source of examples in the noncommutative geometry world. In this
field, there is a very important machinery for studying quotients X/R using C∗-algebras
defined on the spaces X and R. This framework provides important tools for studying
pathological quotients, sometimes called “bad quotients” (e.g. X/R non Hausdorff while
X being Hausdorff). A prototypical example is the noncommutative torus, defined as
the quotient of the 2-torus T2 = R2/Z2 with the Kronecker foliation constructed from
the differential equation dy = θdx [21]. But it is very important to remark that the tools
from noncommutative geometry are also useful for studying objects in the commutative
world.

Remark 5.1.4 (Relation to Modulated Spaces). Before using the noncommutative strat-
egy for studing functional clouds and piles, as described in the previous Remark 5.1.3, we
notice an important connection with modulated spaces which makes more explicit the in-
teraction of these problems with modern tools from manifold learning and dimensionality
reduction. Recall that in Definition 4.2.1, we introduced the concept of a modulated space
using {φk}dk=1 ⊂ H a set of vectors in an Euclidean space H, and {sk : Ω→ CH(H)}dk=1 a
family of continuous maps from a space Ω to CH(H). We recall that we say thatM⊂ H
is a {φk}dk=1-modulated space if M =

{∑d
k=1 sk(α)φk, α ∈ Ω

}
. In this case, the map

A : Ω →M, α 7→
∑d

k=1 sk(α)φk, is denoted modulation map. The idea of a modulation
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map, summarizes the well-known concept of modulation in signal processing, using a ge-
ometrical and topological language. The fundamental objective of a modulation map is
to construct spaces M using generating functions {φk} and a parametrization space Ω.
This concept is a related, but different component in the machinery of a functional cloud
and piles. An explicit example of this concept is given by a frequency modulation map,
which considers φ(t) = sin(t) and a modulation using the coordinates of points in a space
Ω [43, 45, 46]. We now review our previous example of the cloud of a sinusoid that also
fits in this setting.

Example 5.1.8 (Cloud of a sinusoid as a modulated space). We use again our previous
example for the cloud of a sinusoid to show a modulated space with f(x) = sin(x), x ∈
T = R/2πZ and B =] − ε, ε[ mod (T). Here, the map φ is a modulation map when
0 < ε < 2π, and for this case, the functional cloud Mf is homeomorphic to a circle.
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5.1.2 Basics on Groupoids Crossed Products and C∗-Dynamical Systems

In noncommutative geometry, the fundamental interplay between locally compact Haus-
dorff topological spaces and (commutative) C∗-algebras as explained in the Gelfand-
Naimark theory [36, 89] has been extended to an important framework using noncom-
mutative C∗-algebras [21,41,56]. The multiple conceptual and application developments
over the last decades is a evident indication of its breath and increasing importance
in mathematics. A basic example of a noncommutative space, is the noncommutative
torus [21,22], which can be defined as a crossed product C∗-algebra Aθ = C1(S1) oRθ Z,
for a rotation Rθ(x) = (x+ θ) mod1, x ∈ T. In this construction, the algebra C1(S1) can
be replaced with other algebras depending on the type of analysis and resolution required:
for geometrical, topological and measure theoretical properties, the spaces that can be
used are C∞(S1) ⊂ C1(S1) ⊂ L1(S1), respectively. The noncommutative torus is just
one particular example in the world of noncommutative geometry, and it belongs to the
general theory of spaces of leaves of foliations. But an even more general setting can be
described with the powerful theory of groupoids. The important application of groupoids
in noncommutative geometry is given by the concept of noncommutative quotients, and a
particular example is the analysis of quotient spaces X = Y/ ∼ of an equivalence relation
∼ in Y . We remark that there is an important family of C∗-algebras (the AF-algebras)
particularly useful for studying finite structures, as required in applications of signal pro-
cessing and data analysis. We now introduce some basic tools from groupoid theory we
need for our setting.

Groupoids C∗-algebras

A groupoid G can be defined as a small category where each morphism has an inverse
[21, 24]. More explicitly, we say that a groupoid over a set X is a set G together with
two maps r, s : G → X, called the range and source maps, and a composition law (or
product) ◦ : G(2) → G denoted γ ◦ η = γη, where

G(2) = {(γ, η) ∈ G×G, r(γ) = s(η)},

and r(γη) = r(γ), s(γη) = s(η), γ(ηξ) = (γη)ξ. We additionally have an embedding
e : X → G and an inversion map i : G → G with e(r(γ)) = γ = γe(s(γ)), and i(γ)γ =
e(s(γ)), γi(γ) = e(r(γ)). We have an hierarchy of sets defined as G(0) = e(X) ' X (the
unit space), G(1) = G, and G(2) as previously defined. For u ∈ G(0) we define Gu = s−1(u)
and Gu = r−1(u).

An alternative way to introduce a groupoid is to start with a subset G(2) of G×G as
the set of composable pairs, an inverse operation G → G, γ 7→ γ−1 for each γ ∈ G, and
define the maps r and s with r(γ) = γγ−1, s(γ) = γ−1γ. From the axioms, the maps r, s
have a common image G(0) as the unit space, meaning that γs(γ) = r(γ)γ = γ, for each
γ ∈ G [13, Section 2.1].

The isotropy group for a unit u ∈ X is defined as

Gu
u = {γ ∈ G, s(γ) = r(γ) = u} = s−1(u) ∩ r−1(u),

and in general, we define Gu
v = r−1(u) ∩ s−1(v). The isotropy group bundle is defined as

G′ = {γ ∈ G, s(γ) = r(γ)}. When the groupoid is seen as a category, the set of objects
is Ob(G) = G(0), and the morphisms are identified with G itself [54, Definition 2.1].
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A homomorphism of groupoids G and Γ is a map φ : G→ Γ, such that (γ, η) ∈ G(2),
then (φ(γ), φ(η)) ∈ Γ(2), and φ(xy) = φ(x)φ(y). We have, in particular, φ(γ−1) =
(φ(γ))−1, and φ(G(0)) ⊂ Γ(0) [13, p73].

We will consider groupoids where both G(0) and G(1) have topologies such that the
maps (γ, η) 7→ γη from G(2) → G, and γ 7→ γ−1 from G to G are continuous [39, Definition
1.8]. In the following, we denote by G a second countable locally compact Hausdorff
groupoid.

Important examples of groupoids are equivalence relations, groups, and group actions.
For instance, with an equivalence relation R ⊂ X×X, we define a groupoidG = G(1) = R,
G(0) = X, r(x, y) = x, s(x, y) = y. For a group Γ, we can define the groupoid G = Γ,
G(0) = {e} (the unit of Γ), and the groupoid composition is the group product. For a
group Γ acting on a set X, we can define G = X×Γ, G(0) = X, r(x, g) := x, s(x, g) := xg,
for all (x, g) ∈ X × Γ, and the product is defined as (x, g)(xg, h) = (x, gh). Another
important example of groupoid is a group bundle defined as a disjoint union of groups
{Γi}i∈U indexed by a set U . The composition between two elements is defined by the
corresponding group composition if the elements are in the same group. A groupoid is a
group bundle if s(x) = r(x) for all x ∈ G, and for this case, the groupoid G equals its
isotropy group bundle G′ (see [13, 2.3 p76]).

Definition 5.1.2 (Haar Systems for Groupoids [13, Section 2.4]). The concept of a Haar
system generalizes, to groupoids, the notion of a Haar measure for locally compact groups.
A Haar system is family {λu}u∈G(0) of Radon Measures on G with supp(λu) = Gu, and
u 7→

∫
f(γ)dλu(γ) is a continuous function from G(0) to C for all f ∈ Cc(G) (the space

of complex-valued continuous functions with compact support). Additionally, we require∫
f(η)dλr(γ)(η) =

∫
f(γη)dλs(γ)(η),

for all f ∈ Cc(G), and all γ ∈ G.

Remark 5.1.5 (Hilbert bundles and direct integrals). In groupoid theory and groupoid
representations, the concept of Hilbert bundles has the same fundamental role as the
concept of Hilbert space in group representations [13, Section 2.6]. A Hilbert bundle is
constructed with a family of Hilbert spaces H = {H(x)}x∈X indexed by X, which can be
more precisely denoted as a disjoint family X ∗H := {(x, χ), χ ∈ H(x)} (see [72, Chapter
3]). In general, for X1, X2, two spaces with maps τi : Xi → T, i = 1, 2, one defines [10]

X1 ∗X2 := {(x, y) ∈ X1 ×X2 : τ1(x) = τ2(y)}.

If X is an analytic Borel space, then X ∗H is denominated a analytic Borel Hilbert bundle
with the natural projection π : X ∗ H → X, and the corresponding set of Borel sections
is denoted as B(X ∗ H) [10, Definition 3.61 p109].

The concept of a direct integral of the spaces {H(x)}x∈X is defined for an analytic Borel
Hilbert bundle X ∗H, and µ a measure in X, as (see [10, Definition 3.80 p118], [13, p83])

L2(X ∗ H, µ) = {f ∈ B(X ∗ H),

∫
X

||f(x)||2H(x)dµ(x) <∞}.

The space L2(X ∗ H, µ), denoted also as
∫ ⊕
X
H(x)dµ(x), is a Hilbert space with the

product 〈f, g〉 =
∫
〈f(x), g(x)〉H(x)dµ(x). When X is a discrete space

∫ ⊕
X
H(x)dµ(x) is
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just
⊕

x∈X H(x), and in general case, if the H(x)’s are the fibers of the vector bundle H,

the direct integral
∫ ⊕
X
H(x)dµ(x) is the space of sections that are square integrable with

respect to µ [36, p223].
Given a Borel bundle X∗H are constructed with a Borel field of operators defined with

a family of bounded linear maps T (x) : H(x) → H(x), which can be used to define the
operator

∫ ⊕
X
T (x)dµ(x), also denoted as T ∈ B(L2(X ∗H, µ)), and denominated the direct

integral of T (x) (see [10, Definition 3.88 p120, Proposition 3.91]). Recall that in harmonic
analysis, the direct integral is a basic concept in the decomposition of representations of
groups. For instance, in the case of locally compact Abelian groups, a unitary represen-
tation is equivalent to a direct integral of irreducible representations, and in more general
situations, as locally compact groups, a similar mechanism (the Plancherel theorem) is
implemented for the regular representation [36, Theorem 7.36, Section 7.5].

Remark 5.1.6 (Isomorphism groupoid for a Borel Hilbert bundle and groupoid represen-
tations). Given a Borel Hilbert bundle, its fibred structure gives rise to an isomorphism
groupoid that will be used to define unitary groupoid representations. The isomorphism
groupoid for an analytic Hilbert bundle X ∗ H is Iso(X ∗ H) = {(x, V, y), V : H(y) →
H(x) unitary}, with composable pairs Iso(X ∗ H)(2) = {((x, V, y), (w,U, z)) ∈ Iso(X ∗
H)× Iso(X ∗H), y = w}, and the composition is defined as (x, V, y)(y, U, z) = (x, V U, z),
(x, V, y)−1 = (y, V ∗, z) [10, Definition 3.67 p111], [13, p83].

Definition 5.1.3 (Groupoid representation). A groupoid representation of a locally com-
pact Hausdorff groupoid G is a triple (µ,G(0) ∗ H, L) with µ a quasi invariant measure
in G(0), G(0) ∗H is an analytic Borel Hilbert bundle, and L : G→ Iso(G(0) ∗ H) a Borel
groupoid homomorphism with L(γ) = (r(γ), Lγ, s(γ)), for a unitary Lγ : H(y) → H(x)
[10, Definition 3.76 p117], [13, p83].

Definition 5.1.4 (Groupoid C∗-algebra). Given a Haar system {λu}u∈G(0) of a locally
compact Hausdorff groupoid G, we define, for f, g ∈ Cc(G), the convolution as

(f ∗ g)(γ) =

∫
f(γη)g(η−1) dλs(γ)(η) =

∫
f(η)g(η−1γ) dλr(γ)(η)

and the involution by f ∗(x) = f(x−1). With these operations, Cc(G) is a topological
∗-algebra (see [13, Section 3.1] and [78]). In order to define a C∗-algebra with Cc(G), we
can select several norms giving rise to the full and reduced C∗-algebras for the groupoid
G. The basic step for constructing these norms, is to consider a representation of Cc(G),
defined as a ∗-homomorphism from Cc(G) into B(H), the bounded operators for some
Hilbert space H. Every groupoid representation (µ,G(0) ∗ H, L) can be related to a
representation of Cc(G) with H =

∫ ⊕
G(0) H(x)dµ(x), for H = {H(x)}x∈G(0) [13, p87].

The analogue in groupoid theory of the regular representation of a group is a repre-
sentation of Cc(G) given by an operator Indµ in L2(G) with Indµ(f)ξ(x) = (f ∗ ξ)(x).
The reduced norm is constructed as ‖f‖red = ‖Indµ(f)‖, making Cc(G) into a C∗-algebra
(see [13, p87] for details).

Groupoids actions and orbit spaces

The concept of a groupoid action G on X generalizes the concept of a group action by
considering partially defined maps on pairs (γ, x) ∈ G×X. This is a natural consequence
of the partially defined multiplication in a groupoid [39, Section 1.2].
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Definition 5.1.5 (Groupoid action). A (left) action of a groupoid G in a set X is a
surjection rX : X → G(0), together with a map

G ∗X = {(γ, x) ∈ G×X, s(γ) = rX(x)} → X, (γ, x) 7→ γx,

with the following three properties (see [72, Chapter 2] and [39, Definition 1.55]):

1- r(γx) = r(γ) for (γ, x) ∈ G ∗X.

2- If (γ1, x) ∈ G ∗X and (γ2, γ1) ∈ G(2), then (γ2γ1, x), (γ2, γ1x) ∈ G ∗X and

γ2(γ1x) = (γ2γ1)x.

3- rX(x)x = x for all x ∈ X.

With these conditions, we say that X is a (left) G-space. We can define in a similar way
right actions and right G-spaces by denoting with sX the map from X to G(0), and using
X ∗G = {(x, γ) ∈ X ×G : sX(x) = r(γ)} instead of G ∗X.

The action of a groupoid in a set defines an equivalence relation that can be used to
construct the orbit space, which represents a main object to study.

Definition 5.1.6 (Orbit space for groupoid actions). Given a left G-space X, we define
the orbit equivalence relation on X defined by G with x ∼ y if and only if there exist
a γ ∈ G, with γ · x = y, and the corresponding quotient space is the orbit space, and
denoted by X/G with elements G ·x or [x]. The same notation is used for right G-spaces,
but in situations where X is both a left G-space and right H-space, the orbit space with
respect to the G-action is denoted G\X and the orbit space with respect to the H-action
is denoted by X/H [39, Definition 1.67].

In the particular case where X = G(0), the equivalence relation can be defined as u ∼ v
iff Gu

v 6= ∅. The orbits [u] for u ∈ G(0) are the corresponding equivalence classes and the
orbit space is denoted by G(0)/G. The graph of the equivalence relation can be described
as R = {(r(γ), s(γ)), γ ∈ G}. We say that the subset A ⊂ G(0) is saturated if it contains
the orbits of its elements, and we say that the groupoid G is transitive or connected if
it has a single orbit. Alternatively, we say that G is transitive or connected if there is a
morphism between any pair of elements in G(0) [54, Example 2.2.2, p50] [68, p20] For each
orbit [u] of a groupoid G, the set G|[u] is a transitive groupoid denominated transitive
component of G. An important property is that each groupoid is a disjoint union of its
transitive components (see [13, p73] for details). In a similar topic we also mention that,
seen as a category, each groupoid is equivalent (but not isomorphic) to a category of
disjoint union of groups (see [25, Appendix A] for a very short but nice survey on this
topic).

We can now state some basic results we need on the characterization of a C∗-algebra
of a transitive groupoid:

Theorem 5.1.1 (Muhly-Renault-Williams: Transitive Groupoids and their C∗-algebras
[13,73]). Let G be a transitive, locally compact, second countable and Hausdorff groupoid,
then the (full) C∗-algebra of G is isomorphic to C∗(H) ⊗ K(L2(µ)), where H is the
isotropy group Gu

u at any unit u ∈ G(0), and µ a measure on G(0), C∗(H) denotes the
group C∗-algebra of H, and K(L2(µ)) denotes the compact operators on L2(µ).
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Definition 5.1.7 (Free and proper groupoid actions). The action of a groupoid G in a
set X is free if the map Φ : G∗X → X×X, (γ, x) 7→ (γx, x), is injective [10, Conventions
1.1]. This can also be rephrased by saying that γx = x implies γ is a unit (γ ∈ G(0)) [39,
Definition 1.83]. The action is proper if the map Φ is proper (meaning that the inverse
images of compact sets are compact). A main property for proper actions is that the orbit
space X/G is locally compact and Hausdorff if G acts property on the locally compact
space Hausdorff space X [39, Proposition 1.85].

Groupoid dynamical systems and groupoid crossed products

A natural consequence of the fibred properties of a groupoid is the usage of fibred C∗-
algebras when generalizing the concept of dynamical systems to the groupoid language.

Remark 5.1.7 (C0(X)-algebras and C∗-bundles). A C0(X)-algebra is a C∗-algebra with
a nondegenerate homomorphism ΦA from C0(X) (the space of continuous functions van-
ishing at infinity on X) into Z(M(A)), where M(A) denotes the multiplier algebra of A,
and Z(A) denotes the center of A. Here, ΦA is nondegenerate when ΦA(C0(X)) · A =
span{ΦA(f)a, f ∈ C0(X), a ∈ A} is dense in A (see [93] for details).

Remember that the multiplier algebra M(A) of A is the maximal C∗-algebra contain-
ing A as an essential ideal (see [6, Chapter 4]). For instance, if A is unital, M(A) = A.
If A = C0(X), the continuous functions with compact support in a locally compact
Hausdorff space, then M(A) = Cb(X), the continuous functions bounded on X. If A
is the space of compact operators on a separable Hilbert space H, M(A) = B(H), the
C∗-algebra of all bounded operators on H. Recall also that the center of an algebra A
is the commutative algebra Z(A) = {x ∈ A, xa = ax ∀a ∈ A}. This concept plays a
crucial role as, for instance, in the theory of Von Neumann algebras (algebras of bounded
operators on a Hilbert space). Von Neumann algebras with a trivial center are called
factors, and these are basic building blocks for general Von Neumann algebras via direct
integral decompositions.

An upper semicontinuous C∗-bundle over X, a locally compact Hausdorff space, is
a topological space A with a continuous open surjection pA = p : A → X such that
the fiber A(x) = p−1(x) is a C∗-algebra with the following conditions. First, the map
a 7→ ‖a‖ is upper-continuous from A to R+ (i.e. for all ε > 0, the set {a ∈ A , ‖a‖ < ε}
is open). The operations sum, multiplication, scalar multiplication, and involution in the
algebra A are continuous. Finally, if {ai} is a net in A with p(ai) → x, and ‖ai‖ → 0,
then ai → 0x, with 0x the zero element of A(x).

Two fundamental properties of C0(X)-algebras are the fact that there is a one to one
correspondence between C0(X)-algebras and upper-semicontinuous bundles C∗-bundles
[10, Definition 3.12 p91], and that the primitive ideal space of a C0(X)-algebra is fibred
over X [10, p93].

The interaction between C0(X)-algebras and upper-semicontinuous bundles C∗-bundles
is given by the fact that the C∗-algebra A = Γ0(X,A ) of continuous sections of A vanish-
ing at infinity, is a C0(X)-algebra, as we now explicitly rephrase in the following example.

Example 5.1.9 (C0(X)-algebras). A basic example of a C0(X)-algebra is given by A =
C0(X,D), where D is any C∗-algebra, X is a locally compact Hausdorff space, and
ΦA(f)(a)(x) = f(x)a(x), for f ∈ C0(X), a ∈ A. For this example, each fiber A(x) is
identified with D. [39, Example 3.16, p91]
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As previously mentioned, a fundamental example of a C0(X)-algebra is A = Γ0(X,A ),
for a A upper-semicontinuous C∗-bundle, with ΦA(φ)f(x) = φ · f(x) = φ(x)f(x), for
φ ∈ C0(X), and f ∈ A. [39, Example 3.18, p91]

Definition 5.1.8 ((A , G, α) Groupoid dynamical system). Let G be a groupoid with
Haar system {µu}u∈G(0) , and A is an upper-semicontinuous C∗-bundle over G(0). An ac-
tion α of G on A = Γ0(X,A ) is a family of ∗-isomorphisms {αγ}γ∈G with αγ : A(s(γ))→
A(r(γ)), for all γ ∈ G, αγη = αγαη for all (γ, η) ∈ G(2), and the map G ∗ A → A ,
(γ, a) 7→ αγ(a) is continuous. With these conditions, the triple (A , G, α) is a groupoid
dynamical system (see [10, Definition 2.2]).

Example 5.1.10 ((CX , G, lt) Groupoid dynamical system). A basic example of a groupoid
dynamical system is (CX , G, lt), where G is a groupoid acting on a second countable
locally compact Hausdorff space X, and the upper semi-continuous C∗-bundle CX =
G(0) ∗ {C0(r−1

X (u))}u∈G(0) is associated with the C0(G(0))-algebra C0(X). The action of G
on X induces an action of G on CX by left translation [11, Example 3.30, Proposition
3.31, p25],

ltγ(f) : C0(r−1
X (s(γ)))→ C0(r−1

X (r(γ))), x 7→ f(γ−1 · x).

Remark 5.1.8 (Reduced crossed product of a groupoid dynamical system). With a
groupoid dynamical system (A , G, α), we can construct a convolution algebra that can
be completed to the reduced crossed product, which is one possible generalization of the
concept of a crossed product. An important tool for this task is the pullback bundle r∗A
of a bundle A over X, with bundle map pA : A → X. The pullback bundle is defined
as

r∗A := {(γ, a), r(γ) = pA (a)},

for r : G→ X. The corresponding bundle map for r∗A is q : r∗A → G, with q(γ, a) = γ
[39, Definition 3.33 p97].

The first step for constructing the groupoid crossed product is a property [10, Propo-
sition 2.4] ensuring that, given a groupoid G with Haar system {λu}u∈G(0) , the set of
continuous compactly supported sections of r∗A , denoted by Γc(G, r

∗A ), is a ∗-algebra
with respect to the operations

(f ∗ g)(γ) :=

∫
G

f(η)αη(g(η−1γ))dλr(λ)(η), f ∗(γ) := αγ(f(γ(−1))∗).

The second step we consider here is to complete Γc(G, r
∗A ) with the reduced norm

‖f‖r = sup{‖Indπ(f)‖, π is aC0(G(0)) linear representation ofA} (see [10, p4] for details).
We define the completion of Γc(G, r

∗A ) with the norm ‖‖r as the reduced crossed product
of the dynamical system (A , G, α), and we denoted it with A oα,r G. Notice that
this procedure is the important strategy of using representations of an algebra in order
to construct a meaningful norm that leads to a C∗-algebra construction denominated
enveloping C∗-algebra (see [41, Definition 12.2, p523]).

Remark 5.1.9 (Morita equivalence). Representation theory plays a crucial role in the
interplay between topological spaces and algebraic structures. The Gelfand-Naimark
theorem identifies a locally compact Hausdorff space X with a commutative C∗-algebra
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A = C0(X) (continuous functions vanishing at infinity) by considering an homeomor-
phism between X and the set of characters Â identified with the set of unitary equivalence
classes of irreducible ∗-representations [56, 89]. The set Â is also known as the structure
space and, for commutative C∗-algebras, it coincides with the primitive spectrum Prim(A),
defined as the space of kernels of irreducible ∗-representations of A [56, Section 2.3]. The
set of characters of a Banach algebra A is also known as the Gelfand spectrum, also
denoted by sp(A) (see [41, Definition 1.3, p5]).

This conceptual interaction between representation theory, commutative C∗-algebras
and topological spaces has its origins in the Morita theory, as described in the context
of representation theory of rings [2, Chapter 6] [77]. Recall that modules are intimately
related to representations of rings, and this fact motivates the concept of Morita equiva-
lence relation between two rings R and S, defined as an equivalence of categories between

RM and SM , (the categories of modules over R and S, respectively).
These ideas can be extended to the context of C∗-algebras, but for this task, we

require more subtle procedures, and a crucial role is played by the landmark ideas of
M. Rieffel who introduced the concept of strong Morita equivalence. Given two C∗-
algebras, A and B, the basic concept behind a Morita equivalence is the notion of a
A−B equivalence bimodule M (also known as imprimitivity bimodule), defined as a A−B
bimodule such that M is a full left Hilbert A-module and full right Hilbert B-module, and
we have an associativity formula A〈x, y〉z = x〈y, z〉B, for x, y, z ∈ M (see [54, Definition
2.4.3], [77, Chapter 3]). A right Hilbert B-module for a C∗-algebra B is a right B-
module M with a B-valued inner product 〈·, ·〉 : M × M → B, with corresponding
generalizations of the standard notion of inner product (see [54, Definition 2.4.1]). With
these notions, we say that two C∗-algebras A and B, are (strongly) Morita equivalent
(A

m∼B) if there exist an equivalence A−B bimodule (see also [41, Definition 4.9, p162]).
We follow the explanations of [77, Remark 3.15], and we will usually omit the word
strongly for this Morita equivalence concept. Many important properties are conserved
under this equivalence relation. In particular, a crucial fact is that the structure space Â
is homeomorphic to the structure space B̂ when A and B are (strong) Morita equivalent
(see [41, p167]).

Remark 5.1.10 (Open covers of manifolds). A basic example in noncommutative geom-
etry is given by the open covers of manifolds (see [21, Chap 2, Example 2α] and [54, Ex-
ample 2.5.3, p81]). Here, a Morita equivalence relation is established between the (non-
commutative) C∗-algebra C∗(R) and the (commutative) C∗-algebra C0(M), for a locally
compact manifoldM, where the equivalence relation R is defined in the set V =

⊔
Ui for

a finite covering
⋃
Ui = M, with z

R∼ z′ iff p(z) = p(z′), using the canonical projection
p : V →M. This example will be fundamental in our framework, as this Morita equiv-
alence will be used to exploit the configuration introduced by an open cover in order to
analyze the particular type of manifolds (the piles Ff ) we are interested in.

Proper groupoid dynamical systems

A fundamental result used in noncommutative geometry is a property proposed by Green
[42], which constructs a Morita equivalence relation between the C∗-algebra C0(H\X)
on the quotient space H\X of a group H acting on X, and the corresponding crossed
product C0(X) olt H.
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Theorem 5.1.2 (Green 1977 [42, Corollary 15], [11, Theorem 4.1, p61]). If H is a locally
compact Hausdorff group acting freely and properly on a locally compact Hausdorff space
X, then C0(X) olt H is Morita equivalent to C0(H\X).

An important generalization of this property has been prepared by Rieffel [80] who
considers the action of a group G in a (noncommutative) C∗-algebra. We describe now a
generalization of this machinery in the setting of groupoid actions as prepared by Brown
in [10].

Definition 5.1.9 (Proper dynamical system [10, Definition 3.1]). Let (A , G, α) be a
groupoid dynamical system and A = Γ0(G(0),A ) its associated C0(G(0))-algebra. We say
that (A , G, α) a proper dynamical system if there exist a dense ∗-subalgebra A0 ⊂ A with
the following two conditions.

1- we construct functions E〈a, b〉 that will generate a dense subspace E of A oα,r G
(see Theorem 5.1.3). For this step, we require that, for each a, b ∈ A0, the function

E〈a, b〉 : γ → a(r(γ))αγ(b(s(γ))∗), γ ∈ G, is integrable (see also [11, Section 4.1.1,
p62]). Notice that with this requirement we use the sections a, b (in Γ0(G(0),A )) to
construct sections E〈a, b〉 defined in the groupoid G and considered in Γc(G, r

∗A ).

2- We set a requirement for constructing the fixed point algebra Aα (see Theorem
5.1.3) by defining

M(A0)α = {d ∈M(A), A0d ⊂ A0, αγ(d(s(γ))) = d(r(γ))}.

We define now 〈a, b〉D ∈ M(A0)α such that for all c ∈ A0, (c · 〈a, b〉D)(u) =∫
G
c(r(γ))αγ(a

∗b(s(γ)))dλu(γ).

We can now state the main result in [10, Theorem 3.9], generalizing to the groupoid
language the property of Rieffel [80, Section 2] which generalizes to (non necessarily
commutative) C∗-algebras the result of Green [42, Corollary 15].

Theorem 5.1.3 (Morita equivalence in proper dynamical systems [10, Theorem 3.9]). Let
(A , G, α) be a proper dynamical system with respect to A0, and let D0 = span{〈a, b〉D, a, b ∈
A0} is a dense subalgebra of Aα = D0, the fixed point algebra which is the completion of
D0 in M(A). Let also E0 = span{E〈a, b〉, a, b ∈ A0} be a dense subalgebra of E = E0, the
completion of E0 in A oα,r G.

With these conditions, A0 is a E0 − D0 pre-imprimitivity bimodule, which can be
completed to a E − Aα imprimitivity bimodule. As a consequence, the generalized fixed
point algebra Aα is Morita equivalent to a subalgebra E of the reduced crossed product
A oα,r G.

Saturated groupoid dynamical systems

We now present a basic tool we need, as developed by J.H. Brown [10,11], generalizing to
the setting of groupoid theory, the results of Rieffel [80]. The core concept is the notion
of saturated groupoid dynamical systems (Definition 5.1.10), whose requirements can be
ensured when considering principal and proper groupoids (Definition 5.1.11). The main
Theorem 5.1.4 considers the case of a general groupoid dynamical system (A , G, α), but
our main current interest is the particular case where A = C0(G(0)), as described in the
Theorem 5.1.5.
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Definition 5.1.10 (Saturated Groupoid Dynamical System [10, Definition 5.1]). A dy-
namical system (A , G, α), is saturated if E0A0D0

completes to a A oα,r G−Aα imprim-
itivity bimodule.

Definition 5.1.11 (Principal groupoid and proper groupoid). Given a groupoid G with
its unit space G(0) = X, if the natural action of G in X, γs(γ) = r(γ), is free (see
Definition 5.1.7), we say that G is principal, and we say that G is proper if this action is
proper (see Definition 5.1.7 and [10, Conventions 1.1]).

Theorem 5.1.4 (Principal and proper groupoids, saturated actions, and Morita Equiva-
lence [10, Theorem 5.2]). Let (A , G, α) be a groupoid dynamical system and A = Γ0(G(0),A )
the associated C0(G(0))-algebra. Then, if G is principal and proper, the action of G on
A is saturated with respect to the dense subalgebra Cc(G

(0)) ·A. Therefore, Aα is Morita
equivalent to A oα,r G.

Theorem 5.1.5 (Case A = C0(G(0)) [10, Theorem 5.9]). If the groupoid G is principal
and proper, then, the dynamical system (C0(G(0)), G, lt) is saturated with respect to the
dense subalgebra Cc(G

(0)). As a consequence, we have the following Morita equivalence:

C0(G\G(0))
m∼ C∗r (G) for C∗r (G) := C0(G(0)) olt,r G.

Renault’s equivalence for groupoid crossed products

A fundamental additional property we need in our framework is the concept of Morita
equivalent dynamical systems which is helpful to ensure when two groupoid crossed prod-
ucts are Morita equivalent. Two dynamical systems (A , G, α), (B, G, β) are Morita
equivalent if there is a A −B imprimitivity bimodule H over G(0) and a G action on
H with adequate compatibility conditions (see [74, Definition 9.1, p54]).

Remark 5.1.11 (Renault’s equivalence of groupoid crossed products). An important
consequence of the Renault’s equivalence for groupoid crossed products (see [74, Theorem
5.5, p27], [79]) is the fact that a Morita equivalence between dynamical systems (A , G, α),
and (B, G, β) implies that the corresponding crossed products are Morita equivalent:

A oα,r G
m∼ B oβ,r G.
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5.1.3 Functional Clouds and Some Basic Properties

The concept of a functional cloud Mf can be described as the set of possible local states
of a signal f : B → R, where the local properties are measured with respect to a set
A ⊂ B as a basic analysis unit. We now want to study the topology of Mf in order to
analyze the different types of local components present in f . An important scenario is
to consider the case where f is a combination of different signals f =

∑
fi. Here, the

objective is to use tools from C∗-algebras and their K-theory in order to study how the
topology of Mf is assembled from the pieces {Mfi}i. A very simplified scenario for this
situation is presented in Proposition 5.1.3. The strategy we use for the analysis of the
spaces Mf and Ff is to study the C∗-algebras of spaces MG

f = Ff/G, using groupoids G

with G(0) = Ff . We use the Theorem 5.1.1 to describe simple geometrical relationships
between Ff and Mf .

Notice that the space MG
f = Ff/G considers a generalization of the equivalence rela-

tion used to define Mf . A main advantage of this strategy is that we can directly apply
the large body of work already available in groupoid theory and operator algebras. Addi-
tionally, this method prepares the terrain for addressing more complex problems crucial
in concrete applications of signal processing.

The groupoid C∗-algebra of G contains information related to Mf , and the space
MG

f = Ff/G is in relation to Prim(C∗(G)), the primitive spectrum of the algebra A,
used as a basic tool in the Gelfand-Naimark theory [36, 56]. The following property
includes these ideas, and it is inspired by the basic strategy presented in [54, Example
2.2.2].

Proposition 5.1.2. Let Mf be a functional cloud, Ff the related pile, and G a groupoid

with G(0) = Ff . If G is as a finite disjoint union G =
⊔k
i=1Gi, for Gi transitive groupoids,

and MG
f := Ff/G is locally compact and Hausdorff, then by denoting with Hi the isotropy

group at any unit u ∈ G(0)
i , we have for the K-theory of MG

f :

K0(MG
f ) ' K0(C0(Ff ) olt,r G) with K0(C∗(G)) '

k⊕
i=1

K0(C∗(Hi)).

Proof. This is a direct application of the characterization of the C∗-algebra of a transitive
groupoid in Theorem 5.1.1. For each transitive groupoid Gi we have the isomorphism
C∗(Gi) ' C∗(Hi) ⊗ K(L2(µi)), for a measure µi on Hi, and C∗(Gi), C

∗(Hi), the C∗-
algebras of Gi and Hi, respectively. Therefore, given G =

⊔k
i=1Gi, we have

C∗(G) '
k⊕
i=1

C∗(Gi)) '
k⊕
i=1

C∗(Hi)⊗K(L2(µi)).

The K-theory can now be computed using the stability of the functor K0, that is
K0(C∗(Hi) ⊗ K(L2(µi))) ' K0(C∗(Hi)) (see [6, Corollary 6.2.11 p118]). With the re-
lation between the topological and algebraic K-theory we can conclude that K0(MG

f ) '
K0(C0(MG

f )) (see [41, Corollary 3.21, p101] and the corresponding generalization to lo-
cally compact spaces in [41, p103]). Now, as

C0(MG
f )

m∼C∗r (G) for C∗r (G) := C0(Ff ) olt,r G
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(due to the Theorem 5.1.5), and using the result from Exel [41, Theorem 4.30, p165], [31,
Theorem 5.3] (ensuring that Morita equivalent C∗-algebras have isomorphic K-theory
groups) we have

K0(MG
f ) ' K0(C0(MG

f )) ' K0(C0(Ff ) olt,r G).

Remark 5.1.12 (The discrete setting for groupoid algebras). The Proposition 5.1.2 is
partially inspired by the description of a groupoid algebra in a discrete setting (see [54,
Example 2.2.2]). By denoting with CG the ∗-algebra with multiplication and ∗ operation
as declared in Definition 5.1.4 (and ignoring for now its C∗ properties), we can describe
its structure using a canonical decomposition G =

⊔
iGi for Gi transitive groupoids as:

CG '
⊕
i

CHi ⊗Mni(C),

where Hi is the isotropy group of a unit in G
(0)
i (whose isomorphism class is independent

of the chosen unit), and Mni(C) is the noncommutative algebra of ni × ni matrices with
complex entries. Each transitive groupoids Gi is assumed to be finite, and its cardinality
is denoted by ni.

Remark 5.1.13 (Relations to Persistent Homology). In the previous constructions,
we considered the groupoid as a generalized equivalence relation, but with these con-
structions in groupoid theory we can include more complex situations as required by
applications. An important additional aspect to consider is the generalization of the
groupoid construction used in the previous Remark 5.1.12. If we consider the groupoid
Gε = {(u, v) ∈ Ff × Ff , d(p(u), p(v)) < ε}, we can study the family {MGε

f,A}ε>0 as a
filtration in the context of persistent homology (see Section 3). As we will see in the
following Section, the framework of persistent homology can also be adapted to handle
C∗-algebra structures.

Function decompositions, clouds and their K-theory

We now present a basic property where we study how the topology of the functional
cloud of f =

∑n
i=1 fi interacts with the topology of the functional clouds of fi. The long

term objective is to design signal analysis and separation algorithms using topological or
geometrical invariants of the functional clouds of fi.

The next Proposition 5.1.3 represents just a first glance on how to study the topolog-
ical interactions between Mf and {Mfi}i. Here, the mechanism is based on the simplified
assumption that a group G is acting in Ff , and the study of the quotient Ff/G represents
an approximation for Mf . There are two different, but interrelated aspects occurring.
On the one hand, we have the group G acting on Ff , and on the other hand we have the
decomposition of Ff with an open cover originated from the consideration of the function
decomposition f =

∑
fi.

Remark 5.1.14 (noncommutative algebra Mk(A)). In the following we use the standard
notation Mk(A) for the noncommutative algebra of k × k matrices with entries in an
algebra A. Recall also that Mk(A) = Mk(C)⊗ A.
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We start with very simple propositions to get some familiarity with the concepts and
their properties.

Proposition 5.1.3. Let f : B → R be a continuous function, Mf a functional cloud and

Ff its related pile. Let f =
∑k

i=1 fi with supp(fi) ⊂ Ui, for {Ui}ki=1 an open cover of a
locally compact group B, and define

Vi :=
⊔
x∈Ui

Fx, Fx = {(y, fx(y)), y ∈ A},

for fx : A → R with fx(y) = f(x + y), x ∈ B, y ∈ A, for A a measurable compact set
with 0 ∈ A ⊂ B. If a locally compact group G is acting on Ff then for the K-theory of
MG

f := Ff/G we have:

K0(MG
f ) ' K0(A⊗ C∗(G)), A :=

{
[hij] ∈Mk(C0(Ff )), hij ∈ C0(Vi ∩ Vj)

}
.

Proof. The proof is a simple application of two basic facts concerning the C∗-algebra
of a quotient space given by a group action and the mechanism for studying quotients
of open covers of a manifold (see Remark 5.1.10). First, recall that a group action
α : G × Ff → Ff induces an action in the algebra C0(Ff ), and the resulting dynamical
system can be encoded in a cross product denoted as C0(Ff )oαG, and, seen as a vector
space, it can be written as

C0(Ff ) oα G = C0(Ff )⊗ C∗(G).

The corresponding product defined for this algebra is given by (a⊗g)(b⊗h) = ag(b)⊗gh
(see [54, Example 2.2.7]). As a consequence of Theorem 5.1.2 (see also [54, Theorem
2.5.1, p78]), we have C0(MG

f )
m∼C0(Ff )oαG. On the other hand, the open cover property

(see Remark 5.1.10) ensures that the C∗-algebra C0(Ff ) is Morita equivalent to A when
considering the open cover {Vi}ki=1 of Ff . By combining these two properties, together
with the result from Exel in [41, Theorem 4.30, p165], [31, Theorem 5.3] ensuring that
Morita equivalent C∗-algebras have isomorphic K-theory groups, we have

K0(MG
f ) ' K0(C0(MG

f,A)) ' K0(C0(Ff )⊗ C∗(G)) ' K0(A⊗ C∗(G)).

The simplified scenario of this proposition is just a first step where more general
situations should consider not just a group G acting on Ff but a groupoid (see the
Remark 5.1.13) for capturing more accurately the interactions between the components
fi. This is particularly important in applications, as illustrated in Example 5.1.4, where
Mf is actually just an intermediate structure, and the principal goal is to understand the
geometry and topology of the underlying parameter set Ω (see the Example 5.1.4).

Example 5.1.11 (Image Segmentation). A typical application which illustrates the ob-
jectives in Proposition 5.1.3 is to consider an grayscale image f : [0, 1]2 → [0, 1], where
different areas Ui ⊂ [0, 1]2 correspond to different regions in the image. The main task is
to understand how the topology of Mf is assembled from the different regions f(Ui) and
the corresponding clouds Mfi , for fi a function equal to f in Ui, and zero otherwise. This
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requires not only to study the regions themselves, but also their contours or edges repre-
sented by f(Ui ∩Uj), i 6= j. The combination and interaction between these topologies is
encoded in the algebra A together with the partition of Ff with the group G (in a more
general setting, crucial for applications, a groupoid structure G defined in Ff should be
considered, as explained in the previous paragraph). We remark that the consideration of
patches of images is currently an important research direction in image processing, with
significant results in denoising, classification (see e.g. [69]).

Voice transforms and groupoids crossed products

We now consider a more general situation using the abstract machinery of time-frequency
analysis represented by the theory of voice transforms. A crucial advantage of this setting
is the fact that multiple time-frequency transforms (e.g. wavelets, Gabor analysis, etc)
are represented in a single abstract environment. Additionally, we consider signals as
vectors in an abstract Hilbert space, allowing a clean, general, and powerful environment
for expressing our problems and the solutions strategies.

Given a mixture of signals f =
∑k

i=1 fi ∈ H, for a Hilbert space H, the following
property is an initial step in understanding the interaction between the functional clouds
MG

Vψf
and the components fi of the signal f . One possible analogy for this scenario is to

consider each signal fi as a measurement originated from a particular physical event i,
and f is the mixture of signals encoding the interactions of all k events.

Theorem 5.1.6. Let f =
∑k

i=1 fi ∈ H, for a Hilbert space H and Vψ : H → C(G), a
voice transform for a locally compact group G. Let G be a principal and proper groupoid
with unit space G(0) = FVψf := graph(Vψf |suppVψf ), and consider an open cover {Ui}ki=1

of G. If supp(Vψfi) ⊂ Ui, for i = 1, . . . , k, then the following Morita equivalence holds
for MG

Vψf
:= FVψf/G,

C0(MG
Vψf

)
m∼Aolt,r G, A :=

{
[hij] ∈Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩ FVψfj)

}
.

Proof. This follows directly from a combination of properties on Morita equivalence for
groupoid C∗-algebras as discussed in the previous sections. First, notice that for a proper
and principal groupoid G with G0 = FVψf we have a Morita equivalence

C0(FVψf/G)
m∼C∗r (G) for C∗r (G) := C0(FVψf ) olt,r G,

using the Theorem 5.1.5. We have also a Morita equivalence C0(FVψf )
m∼A for an open

cover of the manifold FVψf , as explained in Remark 5.1.10. Notice that for any f ∈
H, FVψf is indeed a manifold as defined for a voice transform (see Example 5.1.6 and
Proposition 5.1.1). These two relations can be combined with the Renault’s equivalence
property, as discussed in Remark 5.1.11, in the following computation:

C0(MG
Vψf

) = C0(FVψf/G)
m∼C0(FVψf ) olt,r G (Morita equivalence: Theorem 5.1.5 )
m∼Aolt G, (Renault’s equivalence: Remark 5.1.11 )

using C0(FVψf )
m∼A (Open cover property: Remark 5.1.10).
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Remark 5.1.15 (Interpreting the Theorem 5.1.6). There are several ways in which the
Theorem 5.1.6 can be interpreted. Broadly speaking, one can see this property as an
initial step for understanding how one can analyze and encode, with the noncommutative
C∗-algebra Aolt,rG, the interaction of different phenomena, measured with the signals fi,
and occurring at different time-frequency regions FVψfi . In special cases, the signals fi can
be seen as measurements from different dynamical systems whose phase spaces contain
the sets MVψfi , as explained in the setting of the Taken’s theorem (see the Example 5.1.5).

With the rule f =
∑k

i=1 fi, the spaces MVψfi are combined in a single structure MVψf

whose construction depends on two main properties encoded in the C∗-algebra A olt,r

G. As we will now explain, these properties are clearly visible in the noncommutative
C∗-algebra A olt,r G, but they are completely ignored in the commutative C∗-algebra
C0(MG

Vψf
). This feature illustrates the usefulness of the Morita equivalence property as

a new analysis layer (constructed on top of the time-frequency machinery) for studying
hidden features of a signal.

In order to explain the previous remark, we consider the particular case of Gabor
analysis Vgf(b, w) =

∫
R f(t)g(t− b)e−2πitwdt, f ∈ L2(R), and the cloud Mf = {xb}b with

chunks xb = fgb using gb(t) = g(t − b) for a window function g. We consider also the
cloud MVgf = {Vgf(b, .)}b (isometric to Mf ) in the corresponding Fourier view (see the
Example 5.1.6).

Now, the two main properties encoded in the C∗-algebra Aolt,r G, can be described
as the time-domain pattern for the function f represented with an adequate groupoid
G, and the time-frequency relations between the signals fi encoded with the C∗-algebra
A. A time-domain pattern encoded in a groupoid G takes into account the way different
vectors xb = fgb are repeated at different time positions b ∈ R. Recall that the cloud
Mf is the quotient Mf = Ff/R, for an adequate equivalence relation R = {(u, v) ∈
Ff × Ff , d(p(u), p(v)) = 0} and the projection map p : Ff → Mf , p((x, y, fx(y)) = fx.
(see Remark 5.1.3). We use the important generalization MG

Vψf
= FVψf/G for a groupoid

G with G(0) = FVψf , and the groupoid G can be used to encode the similarities and
repetitions between the vectors xb as the time parameter b changes, in order to construct
a meaningful quotient space MG

Vψf
. The second important property encoded in the C∗-

algebra A olt,r G is the relationship between the time-frequency regions corresponding
to each signal fi, captured by the algebra A =

{
[hij] ∈ Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩

FVψfj)
}

. The influence of each signal fi in the whole system is encoded in a C∗-algebra
C0(FVψfi) stored in a diagonal entry of A. The time-frequency interference between
different phenomena measured with fi and fj is encoded in a C∗-algebra C0(FVψfi∩FVψfj)
located in the off-diagonal entries of the noncommutative C∗-algebra A.

Remember that the time-frequency analysis machinery “unfolds” the information of
a function f in order to understand its internal properties. In this context, in contrast
to the usage of C0(MG

Vψf
), the consideration of the (larger) Morita equivalent C∗-algebra

A olt,r G, can be used as a further analysis level for understanding the features of the
function f and its internal structure.

Remark 5.1.16 (Towards an application example of the Theorem 5.1.6). In the Example
5.1.4, we have defined a cloud of a modulated path Mf constructed with an embedded
manifold Ω ⊂ [−1, 1]d, a continuous path φ : [0, 1] → Ω, and the construction of a
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real function f(x) =
∑d

i=1 sin
( ∫ x

0
(αic + γφi(t)) dt

)
, for a fixed center frequency vector

αc = (αic)
d
i=1 ∈ Rd, bandwidth parameter γ, and the i-th coordinate of φ(x) denoted

as φi(x). Given the function f , the main problem is to use a functional cloud Mf,A in
order to estimate geometrical and topological features of Ω. Notice that in this example,
Mf = Mf,A is just a curve in C(A,R), when using A as a closed interval in [0, 1], due to
the fact that Mf,A =

⋃
x∈[0,1]

{
Fx : A → R

}
is parametrized by x ∈ [0, 1], and [0, 1] set

as a torus group (see the Definition 5.1.1). It is therefore not immediate how to obtain
topological information of Ω using Mf,A. However, under adequate conditions, we can
construct a groupoid G with G(0) = FVψf = graph(Vψf |suppVψf ), such that the quotient
space MG

Vψf
= FVψf/G can be used to compute topological features of Ω.

More precisely, one strategy is to consider a topological approximation scheme as
explained in [56, Section 3.1, p23], where a covering U = {Ui} of Ω is used to construct
an equivalence relation R, defined as

x
R∼ y if and only if x ∈ Ui ⇔ y ∈ Ui, ∀ Ui ∈ U .

As explained in [56, Section 3.2, p27], topological features of the space Ω can computed
with the approximation PU(Ω) = Ω/R, and in the limit, using finer coverings, the whole
space Ω can be approximated [56, Section 3.3, p30]. Now, broadly speaking, by design-
ing a groupoid G (with G(0) = FVψf = graph(Vψf |suppVψf )) mirroring the properties of
a covering U = {Ui} of Ω, we can construct an approximation space MG

Vψf
with sim-

ilar topological features as PU(Ω) = Ω/R. With this scenario, we can now conjecture
the feasibility of using MG

Vψf
= FVψf/G for estimating topological features of Ω together

with an adequate groupoid G with G(0) = FVψf , and adequate conditions on the density
of Image(φ) ⊂ Ω. We also notice that a main motivation for studying the topological
features of the cloud MG

Vψf
is to understand the parameter space Ω seen in the dimen-

sionality reduction context. The Theorem 5.1.6 delivers a strategy for this task using
the C∗-algebra Aolt C(G) in order to study the properties of MG

Vψf
with respect to the

components fi and Ωi.
Now, given a family of manifolds {Ωi}ki=1, Ωi ⊂ [−1, 1]d, and paths φi : [0, 1]→ Ω with

corresponding functions fi (defined as in the previous paragraph), the sum f =
∑k

i=1 fi
leads to the study of a space Mf (resp. Ff ) resulting from a particular type of combination
of the spaces Mfi (resp. Ffi). The analysis of Mf can be performed with the Theorem
5.1.6, which provides an explicit understanding of the assembling process of the spaces
FVψfi into a single structure MG

Vψf
, and whose topological properties can be studied with

Aolt,rG. We will see very preliminary initial steps for such an setting in the toy example
presented in section 5.2.
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Schematic diagram for the Theorem 5.1.6

Figure 5.1: Schematic illustration of Theorem 5.1.6

The diagram of Figure 5.1 illustrates a schematic view of the results in Theorem 5.1.6.
Given a signal f =

∑3
i=1 fi with three components whose time-frequency regions are

illustrated in the green (f1), red (f2), and blue (f3) areas, we can see the crossed product
A olt,r G, from an algebraic point of view, as a tensor product A ⊗ C(G). Similarities
in the waveform of the function f are encoded in the groupoid algebra C(G) (yellow,
violet), and the time-frequency interference is encoded in the algebra A. The resulting
algebra A olt,r G integrates this information in a single algebraic entity that represents
the interaction of the signal components f1, f2 and f3.
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5.1.4 AF-Algebras in the Persistent Homology Framework

We need to study now the problem of implementing, in a practical and computationally
feasible environment, the concepts we have developed for signal analysis with groupoid
crossed products. For this task, we need to apply basic ideas of C∗-algebras for the
analysis of finite structures. As we will see, we consider for this problem, the theory of
AF-algebras, which has a rich and well developed theoretical framework. Another basic
component in our strategy is persistent homology (as introduced in Section 3), which
will be another crucial theoretical and algorithmic tool, with a readily available efficient
computational setting.

The objective now is to use some basic ideas on C∗-algebras discussed in Section 5.1
in combination with the framework of persistent homology. The main task is to use the
basic input of persistent homology, a filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, and construct
an associated sequence of C∗-algebras. Given a simplicial complex, there are several
strategies for constructing an associated C∗-algebra. We follow the method, presented
in [56,85], which consists of building a poset structure, together with its associated Bratelli
diagram and AF-algebra. We remark that other alternatives are available, for instance,
the concept of noncommutative simplicial complex has been introduced in [23].

There are two basic steps for implementing this program. First, we remark that there
is a close interaction between the concept of simplicial complex and a poset [91]. Given a
poset P , a simplicial complex K(P ) (the order complex), is constructed by considering the
set of vertices as the elements of P , and its faces as the totally ordered subsets (chains) of
P . Inversely, given a simplicial complex K, we can build a poset P (K) (the face poset) by
considering the nonempty faces ordered by inclusion (see [91] for additional details). The
second step is to construct a Bratelli diagram from a poset, as discussed in [56], which
represents an AF-algebra containing all information from a topological space encoded in
an algebraic structure.

The framework of AF-algebras and posets describes in a finite setting basic ideas in
noncommutative geometry [56]. Recall that A is an approximately finite (AF) dimen-
sional algebra if there exist an increasing sequence

A0 A1 . . . An . . .
I0 I1 In−1 In

of finite dimensional C∗-subalgebras of A, with Ik injective ∗-morphisms and A =
⋃
nAn.

Any finite dimensional C∗-algebras is of the form ⊕iMni , where Mni is the full ni × ni
matrix algebra. The complete structure of an AF-algebra includes the matrix algebras
Ak and the injective morphisms Ik, and can be encoded in a representation denominated
Bratelli diagram (see [56]). We can now describe the interaction between simplicial
complexes, posets, and their Bratelli diagrams in the framework of persistent homology.
The following diagram is a summary of the three basic components:

Simplicial Complexes: K0 K1 . . . Kn

Face Posets: P (K0) P (K1) . . . P (Kn)

AF-Algebras: A0 A1 . . . An
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Each horizontal arrow is an injective inclusion, and the vertical arrows represent the two
main constructions: first we build posets from simplicial complexes, and then AF-algebras
are computed from posets (using Bratelli diagrams as a main tool). Each AF-algebra Ak,
has its own decomposition with finite dimensional matrix algebras Aki , and injective ∗-
morphisms Iki :

Ak0 Ak1 . . . Akn . . .
Ik0 Ik1 Ikn−1 Ikn

Further Remarks

Our main property, described in Theorem 5.1.6, explains basic conceptual interactions
between a functional cloud MG

Vψf
= FVψf/G for an element f in a Hilbert space H,

and its components fi. In this property, we use a groupoid G with G(0) = FVψf :=
graph(Vψf |suppVψf ), and Vψf the voice transform of f . These results are a first step in
our strategy for using noncommutative C∗-algebras in time-frequency analysis. Among
the many questions to analyze, an important issue is the consideration of other alge-
bras, besides C0(FVψfi), for capturing different type of features. Recall that the spaces
C∞(FVψfi) ⊂ C0(FVψfi) ⊂ L1(FVψfi) can be used to encode geometrical, topological, and
measure theoretical properties, respectively. The general framework prepared in the The-
orem 5.1.4 could be a way to address these possibilities. We remark that new results have
been recently achieved in the setting of AF-algebras and spectral triples, which is a fun-
damental tool for accessing geometrical data using C∗-algebras (see [21] for the concept
of spectral triples, and [17] for its interaction with AF-algebras).

We also notice that related developments have been recently achieved in the integra-
tion of time-frequency analysis and noncommutative geometry as explained in [65–67].
These novel research directions are complementary to the ones we follow, but the same
tools from noncommutative geometry and noncommutative topology are considered. We
notice also that modern developments in pattern classification are investigating new type
of invariants based on algebraic criteria (see e.g. [70]). Our framework is designed to con-
sider these research directions, and the basic tool is to exploit the flexibility of C∗-algebras
for representing interactions between geometrical/topological and algebraic structures.

We finally remark that the fundamental domain of time-frequency transforms in har-
monic analysis, and the new developments in persistent homology and dimensionality
reduction, have shown powerful perspectives in their own domains. However, an ade-
quate integration of these tools is necessary in order to resolve modern application and
theoretical problems in signal processing and data analysis. We argue that concepts based
on noncommutative C∗-algebras can play a role in this interaction.
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5.2 Computational Toy Examples

We present now an illustrative example of a filtering procedure and its interaction with
topological measurements of a dataset Xf [45]. This toy example only shows a limited
view of our conceptual developments, but the goal is to provide an initial sketch illustrat-
ing basic features of our setting. We consider the function f = (1− α)g + αh, α ∈ [0, 1]
to be a sum of two functions g and h, where the datasets Xg and Xh are sampled from
spaces homeomorphic to a sphere S2 and a torus T2, respectively. We construct g and h
with the design described in Example 5.1.4, where Ω is a sphere and a torus, respectively.

f = (1− α)g + αh

α = 0.00
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 5.2: f = g, and Xf ⊂M with M homeomorphic to S2

We construct Xg and Xh, as described in our examples on modulation maps in Section
2.3. For instance, in Fig. 5.2, each element x of the point cloud data Xf is a signal whose
main frequency content is located in three frequency bands depicted in the second plot
in the Fig. 5.2. We additionally design each element x ∈ Xg and y ∈ Xh such that their
frequency content do not overlap. For example, in Fig. 5.3, the second diagram shows
the six different frequency bands for the signal x+ y: the first three bands corresponding
to a typical element x ∈ Xg, and the other bands correspond to elements y ∈ Xh.

f = (1− α)g + αh

α = 0.50
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 5.3: f = (g + h)/2, and Xf as an intermediate structure

For these examples, the variations of the parameter α correspond to a filtering process,
where we selectively remove (or add) the component g (or h) from the signal f . The
topological effects can be seen by studying the persistent homology diagrams of Xf .
For each Figure 5.2, 5.3, and 5.4, we have diagrams representing the first and second
homology level. With this information we have an estimation for the number of one and
two dimensional holes in Xf .
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f = (1− α)g + αh

α = 1.00
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 5.4: f = h, and Xf ⊂M with M homeomorphic to T2

In Fig. 5.2, the persistent diagram for Xf shows a clear stable two dimensional hole,
and only noise like one dimensional holes. As previously mentioned, this corresponds to a
spherical structure for Xf . For the Fig. 5.4, we have two, closely related, one dimensional
holes, and additionally two 2-dimensional holes, which (approximately) corresponds to a
torus structure. The persistent homology diagrams for the intermediate structureX(g+h)/2

is depicted in Fig. 5.3, where several two dimensional holes are present.

Example 5.2.1 (Champignon Example). With similar ideas as in the previous sphere-
torus toy example, we consider now a champignon image with two major components:
the champignon (signal g) and its surroundings (signal h). We use a simple color based
segmentation algorithm to split the image in these two parts, and we study the signal
fα = (1 − α)g + αh for α ∈ [0, 1], using the same mechanism as in the previous setting.
We compute the persistent homology of the different point cloud data constructed from
patches of the images fα for each α ∈ [0, 1]. We show the images fα and the corresponding
persistent diagrams for α = 0, α = 0.5, and α = 1 in Figure 5.5.

Figure 5.5: Champignon image, point cloud data of patches, and the persistent diagrams
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6 Some Geometric Tools for Signal Analysis

The challenging task of extracting or detecting components from a signal has multiple
applications for the study of biomedical signals, audio analysis or image processing. In
the first part of this chapter, we propose a strategy for signal analysis combining standard
signal processing tools with geometric algebra and dimensionality reduction. Our con-
cept relies on geometrical transformations, defined in the context of Clifford algebras, for
modifying the geometric characteristics of a point cloud data. The objective is to design
geometric transformations for time-frequency data and improve the quality of classifi-
cation, detection, and filtering procedures. This new framework is an addition to the
manifold learning and dimensionality reduction toolbox, combining ideas from Clifford
algebras, dimensionality reduction, and filtering procedures in signal analysis. Some com-
putational experiments 1 are presented indicating the potential and shortcomings of this
framework. The second part of this Chapter presents an overview of a basic engineering
strategy for signal separation using time-frequency data, dimensionalty reduction, and
independent component analysis (ICA). This technique, known as independent subspace
analysis ISA, has been originally proposed in [15], and discussed in recent developments
(e.g. [86]).

6.1 Geometric Transformations of Time-Frequency Data

In the field of signal separation, a fundamental strategy is the usage of Fourier trans-
forms or wavelet analysis for filtering particular components of a signal. These concepts
provide a powerful framework used in multiple theoretical and application fields. But the
ever increasing complexity of signal data requires more sophisticated analysis tools. An
important source of ideas for addressing these modern challenges is the new set of tools
from dimensionality reduction and manifold learning based on geometrical and topologi-
cal concepts. Inspired by these developments, we propose a framework based on Clifford
geometry for signal analysis, as an addition to the manifold learning and dimensionality
reduction toolbox.

We recall that, in our setting, we consider a bandlimited signal f ∈ L2(R) and a
segmentation of its domain in such a way that small consecutive signal patches are ana-
lyzed, as routinely performed in STFT or wavelet analysis. For instance, the set of signal
patches can be defined as a dataset

Xf = {xfi }mi=1, xfi = (f(tk(i−1)+j))
n−1
j=0 ∈ Rn,

for k ∈ N a fixed hop-size. Here, the regular sampling grid {t`}km−k+n−1
`=0 ⊂ [0, 1] is

constructed when considering the Nyquist-Shannon theorem for f . Now, a standard signal
separation problem is to remove from f a component xσ that appears at different time
positions t, with varying frequency characteristics. Note that many relevant application
problems dealing with a mixture of signals can be considered in this setting. For instance,
in noise reduction we have a perturbation of a signal f by nonstationary noise σ. A
typical non-blind solution scenario is to select a patch xσ of sufficient noise characteristics
such that an adequate removal can be performed (for instance using spectral subtraction

1Available at www.math.uni-hamburg.de/home/guillemard/
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methods). A more complex situation are cocktail party effect problems, where f = g + h
is a mixture of two signals g and h, and the objective is to separate g and h from f
(classically addressed with independent component analysis in multichannel signals). For
the sake of simplicity, we restrict ourselves to the situation where some knowledge of Xg

and Xh is given (e.g. in form of representative patches xg ∈ Xg, xh ∈ Xh). Moreover, for
a signal transformation T (identity, Fourier, power spectrum, wavelet, etc), and T (X) :=
{T (xi)}mi=1, we consider the case where T (Xg) or T (Xh) are localized in small regions
of Rn and the size of T (Xg) ∩ T (Xh) is negligible. A concrete acoustical example is a
one-channel signal f composed of two different percussion instruments (g and h). It is
reasonable to obtain sample patches xg ∈ Xg and xh ∈ Xh, but due to their complex
frequency characteristics, an accurate separation of f , specially when g and h are played
simultaneously, is a challenging problem. In the particular case of noise reduction, power
spectral subtraction is a fundamental strategy which removes the noise signal g from
f = g+h by subtracting the frequency content ‖f̂k‖−‖ĥk‖ at each frequency bin k [63].
A basic hypothesis is that the noise and clear signal vectors are orthogonal to each other.
But this assumption is usually wrong, and a generalized approach takes into account
a more accurate geometrical relation between the noise and signal vectors [64]. In our
framework we use this generalized scenario but considering point cloud data structures
instead of single frequency bins.

Pĥk
(f̂k)

Pĝk (f̂k)

f̂k

ĥnk

ĝnk

Diagram 1: Power Spectral Subtraction (Pg(f): projection of f in the direction of g)

General Algorithm Framework

In this section, we describe the basic ingredients of our framework. We assume we are
given the dataset Xf = {xfi }mi=1 ⊂ Rn sampled from a bandlimited signal f = g + h.
We consider a signal transformation T (power spectrum, wavelet transforms, etc). Our
main objective is to use the point cloud data T (Xf ) in order to extract the signal g from
f . A fundamental component is a dimensionality reduction map R which reduces the
dimension of T (Xf ), and provides an initial simplification of its geometry. The resulting
set, R(T (Xf )) = Ωf , is further manipulated with a Möbius map f that rotates and
shrinks a particular cluster (Xh or Xg). With these geometrical manipulations a filtering
procedure T is now implemented, extracting the signal of interest.

The crucial preprocessing step of this algorithm, is the learning phase which constructs
the Möbius map f by considering the low dimensional representation R(T (Xg)∪ T (Xh)).
The objective of f is to map the elements of Ωg close to an element eg of an orthogonal
basis, while the elements of Ωh are transformed to another region. The second component
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delivered by the learning phase is the filtering procedure T, which depends on eg and the
geometrical modifications of f.

Xg T (Xg)

T (Xg) ∪ T (Xh) Ωg∪h (f,T)

Xh T (Xh)

T

T

R

Diagram 2: Learning phase

With the resulting set f(Ωg+h), we can extract the contents of g+ h with the filter T.
The final step is the reconstruction of the high-dimensional data with the inverse R−1 in
order to recover T (Xg), and so g.

Xg+h T (Xg+h) Ωg+h

f(Ωg+h)

Xg T (Xg) Ωg

T R
f

T
R−1T−1

Diagram 3: Separation phase

As it can be seen from this description, any gain in understanding the geometry of
Xf is useful for improving the quality of the algorithm. This is particularly important
since Xf may be embedded in a very high-dimensional space Rn, although the dimension
of Xf itself may be small (in audio analysis, for 44kHz signals, n = 1024 is commonly
used). In such situations, customized dimensionality reduction methods are of vital
interest. For instance, if Xf ⊂ M, with M being a manifold (or a topological space),
a suitable dimensionality reduction map R : M ⊂ Rn → MR ⊂ Rd outputs by MR a
low-dimensional diffeomorphic (or homeomorphic) version of M, where d < n. If the
map R−1 is computationally not too expensive, then the Möbius transforms and filtering
procedures in the low dimensional space R(Xf ) will improve the algorithmic performance.

The remainder of this chapter is structured as follows. First, we present a short
description of radial basis functions as a tool for transforming data from low to high
dimensions. In Section 6.1.1, we describe basic ideas of Clifford algebras as a setting for
defining Möbius transforms in high dimensions. In Section 6.1.2, we discuss the potential
relevance of cluster analysis with persistent homology. Finally, in Section 6.1.3, we present
several computational experiments illustrating the separation and classification of signals.

Radial Basis Function Interpolation

An important ingredient in our framework are radial basis functions (RBF) and their
interpolation methods for high-dimensional data. As previously described in our frame-
work (Section 6.1), our usage of dimensionality reduction requires to map data between
high and low dimensional spaces. Some dimensionality reduction methods have intrinsic
interpolation strategies, but in general, the reconstruction of high-dimensional data from
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the low-dimensional representation is a non trivial problem. In order to consider a flexi-
ble framework that embraces different reduction methods, we consider the multi-purpose
features of RBFs as already suggested, for instance, in [9].

The inputs of the RBF interpolation methods are the datasets X = {xi}mi=1 ⊂ Rn

and Y = {yi}mi=1 ⊂ Rd. The RBF interpolant requires a family of centers {cj}Nj=1 (simply
chosen randomly from the datasets in our experiments), and can be written as:

yk = w0 +
N∑
j=1

wjφ(‖xk − cj‖), k = 1, . . . ,m,

or in matrix form, this can be described as:

Y = WΦT ,

with the m× (N + 1) matrix Φ = (1m,Φ1, . . . ,ΦN), (Φj)k = φ(‖xk− cj‖), the d× (N + 1)
coefficient matrix W = (w0, . . . , wN), and the d×m matrix Y = (y1, . . . , ym). A solution
can be constructed with the pseudo-inverse Φ†: W T = Φ†Y T . In our computational
experiment we use the Gaussian RBF φ(r) = exp(−r2/α), for some fixed α > 0.

6.1.1 The Clifford Algebra Toolbox

Another ingredient in our framework is a mechanism for manipulating the geometry of
a point cloud data. For this purpose a basic building block is given by the conceptual
interplay between Clifford algebras, exterior algebras, and geometric algebra. These
tools can be particularly important in the design of signal separation and classification
algorithms. In fact they provide efficient algebraic methods for manipulating geometrical
data, and they lead to flexible nonlinear functions in high dimensional spaces. Here, we
focus on the construction of a fundamental nonlinear map, the Möbius transformation in
Rn.

A Clifford algebra is a generalization of the complex numbers defining a product in
the vector space V = Rn with similar properties as the complex multiplication. More
precisely, let qn be the standard Euclidean inner product in Rn. Then, the Clifford algebra
Cln = Cl(Rn, qn) is an associative algebra generated by the elements of Rn subject (only)
to the relation v2 = −qn(v, v)1, v ∈ Rn. More general bilinear forms qn are of relevance
in many fields (e.g. differential geometry or noncommutative geometry [57]), but here we
restrict ourselves to the case of the standard inner product. An explicit construction is
given by considering Cln to be the associative algebra over the reals generated by elements
e1, . . . , en subject to the relations e2

i = −1, eiej = −ejei, i 6= j (anti-commutativity).
Every element a ∈ Cln, can be represented as

a =
∑
J

aJeJ , eJ := ej1 . . . ejk ,

where each aJ is real, and the sum ranges over all multi-indices J = {ji}ki=1 ⊆ {1, . . . , n}
with 0 < j1 < · · · < jk ≤ n. Sometimes we will abuse the notation e∅ = e0 = 1 for the
unit of the algebra Cln, but it is important not to confuse the unit of Cln, e0 = 1, with
the unit of the field R. With this construction it is clear that dim(Cln) = 2n. We follow
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the (non standard) selection of Vahlen and Ahlfors [1], by identifying the vectors of Rn

with the elements spanned by e0, . . . , en−1. There are three important involutions in Cln
similar to the complex conjugation. The main involution defined as a→ a′ which replaces
each eJ by −eJ , the reversion a → a∗, which reverses the order of each multi-index in
eJ , and their combination, the Clifford conjugation, a → ā := a′∗ = a∗′. An important
subgroup of the Clifford algebra is Γn, the Clifford group, which is the set of invertible
elements in Cln that can be represented as products of non-zero vectors in Rn.

With our particular identification of vectors Rn in Cln, the Clifford product xy between
two vectors x, y ∈ Rn, x =

∑n−1
i=0 xiei, y =

∑n−1
i=0 yiei, can be written as

xy =
(
x0y0 −

n−1∑
i=1

xiyi

)
e0 +

n−1∑
i=1

(x0yi + xiy0)ei

+
n−1∑

i=1 i<j

(xiyj − xjyi)eij.

Remark 6.1.1. (Geometric Algebra) An algebraic structure closely related to the Clifford
algebra is the exterior algebra (or Grassmann algebra), Λ(V ), generated by the elements
e1, . . . , en with the wedge product (or exterior product) defined by the relations ei∧ ei = 0
and ei ∧ ej = −ej ∧ ei, i 6= j. Basic building blocks are the exterior products of k-
vectors {vi}ki=1, also referred as k-blades v1 ∧ · · · ∧ vk, and linear combinations of blades,
called multi-vectors. A useful property of the exterior product is the efficient algebraic
representation of basic geometrical entities. More precisely, if we have a k-dimensional
homogeneous subspace W spanned by k vectors {wi}ki=1, the k-blade w = w1 ∧ · · · ∧ wk
can be used to represent W as

x ∈ W ⇐⇒ x ∧ w = 0.

For instance, if x is an element of the line spanned by v ∈ V , we have x = λv iff
x∧v = 0. If x lies in a plane spanned by v and u, then x = λv+γu iff x∧v∧u = 0. But this
framework is not only restricted to homogeneous subspaces: further generalizations can be
considered with the same algebraic efficiency for more elaborate geometrical objects [26].
Particularly important tools in this field are efficient algorithms (the join and meet

operations) for constructing the intersection and union of subspaces.

Möbius Transforms in Rn

Möbius transformations, and the general concept of conformal maps, have appeared in a
wide range of theoretical and practical applications, ranging from airfoil design in aerody-
namics to modern problems in brain surface conformal mapping. In this chapter, we are
interested in their flexible geometrical properties for designing invertible nonlinear maps
with computationally efficient algebraic characteristics. Recall that a Möbius transfor-
mation is a function f : Ĉ→ Ĉ, with Ĉ = C ∪ {∞}, of the form

f(z) :=
az + b

cz + d
,

where ( a bc d ) ∈ Mat(2,C), with ad − bc 6= 0. During the last century, Möbius transforms
were generalized by Vahlen, Maass, and Ahlfors to arbitrary vector spaces using Clifford
algebras and Clifford groups [1]:
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Definition 6.1.1. For the vector space V = Rn, a Möbius transform f : R̂n → R̂n,
with R̂n := Rn ∪ {∞}, is defined as f(v) = (av + b)/(cv + d), where the Clifford matrix
Hf := ( a bc d ) ∈ Mat(2,Cln) is required to satisfy the following three conditions.

1) a, b, c, d ∈ Γn ∪ {0},

2) ab∗, cd∗ ∈ Rn,

3) ∆(f) := ad∗ − bc∗ ∈ R∗.

Remark 6.1.2. (The Vahlen-Maass Theorem) The Vahlen-Maass Theorem states that
the set of Clifford matrices, denoted by SL2(Γn), forms a group under the matrix multi-
plication. Moreover, the product HfHg corresponds to composition of Möbius transforms
f ◦ g. The Vahlen-Maass Theorem also relates the concept of Möbius maps as composi-
tion of similarities and inversions over the unit sphere with the Clifford matrices. The
expression ∆(f) is sometimes denominated pseudo determinant.

An Explicit Construction

In this section, we provide a simple and explicit construction of a Möbius transform in Rn,
satisfying the three conditions in Definition 6.1.1. This yields an algorithm for designing
Möbius transformations matching our specific needs, as for instance, the construction of
hyperbolic transformations from two given fixed points.

Remark 6.1.3. (Constructing Möbius transforms in Ĉ) For designing a Möbius trans-
form in Ĉ such that f(x) = u, f(y) = v, f(z) = w we can use the following standard con-
struction which consist of first mapping the points x, y, z to 0, 1 and ∞ using f1(x) = 0,
f1(y) = 1, and f1(z) =∞, with

f1(t) :=
(t− x)(y − z)

(t− z)(y − x)
, Hf1 :=

(
y − z x(z − y)
y − x z(x− y)

)
.

If we consider also a second map f2 with f2(u) = 0, f2(v) = 1, f2(w) = ∞, we can now
construct f := f−1

2 ◦ f1 with f(x) = u, f(y) = v, f(z) = w, using Hf := H−1
f2
Hf1 .

The general idea of this construction can be extended to Rn, but some constraints
need to be considered. The following is a particular strategy that can be used in our
framework.

Lemma 6.1.1. Given a vector x ∈ Rn, n > 1, we can construct a Möbius transform f
such that f(x) = 0, f(y) = 1 and f(z) =∞, for y, z ∈ Rn provided that the following three
conditions are fulfilled:

1) zi = kxi, i = 1, . . . , n− 1, for k ∈ R∗,

2) y = αx+ βz, for α, β ∈ R, α + β = 1,

3) 3(x0 − z0)2 =
∑n−1

i=1 (xi − zi)2.
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Proof: Using the ideas of Remark 6.1.3, we analyze the three conditions in Definition
6.1.1. Recall that with our particular identification of Rn in Cln we have x =

∑n−1
i=0 xiei,

y =
∑n−1

i=0 yiei, and z =
∑n−1

i=0 ziei. For an arbitrary triple x, y, z, the coefficients

a = y − z, b= x(z − y),

c = y − x, d= z(x− y),

fulfill the first requirement in Definition 6.1.1. As for the second condition in Definition
6.1.1, we have

ab∗ = (y − z)(z − y)∗x∗= −(y − z)2x,

cd∗ = (y − x)(x− y)∗z∗= −(y − x)2z,

and the pseudo determinant is given by

∆(f) = ad∗ − bc∗ = (y − z)(x− y)(z − x).

Now, (y − z)2x ∈ Rn and (y − x)2z ∈ Rn, if

(y − z)2 ∧ x = 0,

(y − x)2 ∧ z = 0,

where x is the non-real part of x i.e. x =
∑n−1

i=1 xiei. These two conditions can be fulfilled
if we require (as described in Remark 6.1.1) the vector y − z to be an element of the line
spanned by x, and the vector y − x to be an element spanned by z. Therefore we have
z = kx, k ∈ R. If we select a vector y = αx+ βz, α + β = 1, we have

ad∗ − bc∗ = (y − z)(x− y)(z − x) = αβ(z − x)3.

Now, for a vector v =
∑n−1

i=0 viei ∈ Rn we have

v3 =
(
v2

0 −
∑n−1

i=1 v
2
i

)
e0 +

n−1∑
i=1

(
3v2

0 −
∑n−1

i=1 v
2
i

)
viei.

Therefore v3 ∈ R if and only if 3v2
0 =

∑n−1
i=1 v

2
i , which implies that (z − x)3 ∈ R if and

only if 3(x0−z0)2 =
∑n−1

i=1 (xi−zi)2. We finally notice that by combining these conditions
we also need z = kx, for k ∈ R∗.

Note that we can relax our above conditions on y−z (resp. y−x). But the statement
on Lemma 6.1.1 is sufficient for our next objective. In particular, we can now construct
a variety of useful linear or nonlinear maps in Rn as hyperbolic Möbius transforms based
on the next proposition.

Proposition 6.1.1. For a pair u, v ∈ Rn, n > 1, and two vectors wi = αiu + βiv,
i = 1, 2, with αi + βi = 1, αi, βi ∈ R, there exists a Möbius transform f : R̂n → R̂n

satisfying f(u) = u, f(v) = v, and f(w1) = w2.

Proof: This follows as a straightforward consequence of Lemma 6.1.1 and the Vahlen-
Maass Theorem which relates the group structure of SL2(Γn) with the composition of
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Möbius transforms in Rn (see Remark 6.1.2). More precisely, following the lines of Remark
6.1.3, we first consider the translation t, with t((u + v)/2) = 0, followed by a rotation r,
such that the third condition of Lemma 6.1.1 is fullfilled. Now we can use Lemma 6.1.1 for
constructing two Möbius maps f1, f2 with f1(r(t(u))) = 0, f1(r(t(w1))) = 1, f1(r(t(v))) =∞,
and f2(r(t(u))) = 0, f2(r(t(w2))) = 1, f2(r(t(v))) = ∞. Using now the Vahlen-Maass
Theorem the composition f := t−1r−1f−1

2 f1rt is a Möbius transform and its Clifford matrix
is given by Hf = H−1

t H−1
r H−1

f2
Hf1HrHt.

Figure 6.1: Hyperbolic Möbius transform with two fixed points (one attractive and one
repulsive).

By Proposition 6.1.1, we can now construct hyperbolic Möbius transforms by cali-
brating its vector field (see Fig. 6.1) with the vectors w1 and w2. These kind of maps
have useful properties for shrinking or separating clusters. In general, with Lemma 6.1.1
we can also design other maps, as rotations in Rn, with alternative constructions to more
classical strategies as the well known Procrustes problem.

6.1.2 Persistent Homology and Clusters

Cluster analysis is a fundamental component in the analysis of point cloud data (PCD).
Recent developments in applied topology have provided robust computational and con-
ceptual mechanisms for topological analysis of PCD [14]. For instance, the persistent ho-
mology algorithm provides qualitative information as the numbers of components, holes or
voids of a PCD. This information is codified in the concept of Betti numbers, an algebraic
topological construct characterizing a topological space by the number of unconnected
components, two and three dimensional holes, (voids, circular holes), etc. Another im-
portant task we require is a hierarchical cluster analysis (dendrogram) of a PCD, together
with a detection of its center components. Recent developments from applied topology
have made first progress with addressing these issues, both from a conceptual and compu-
tational point of view. [14]. A basic concept relating a given point cloud data X = {xi}mi=1

with its topological structure is the notion of an ε-covering, denoted Xε, and defined as
the union of balls Bε(x) of radius ε > 0 centered around each x ∈ X,

Xε =
⋃
x∈X Bε(x).
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The output of the persistent homology algorithm is a barcode of intervals represent-
ing a summary of the topological information, in the form of Betti numbers, for each Xε,
where ε ∈ [0, εmax]. As a straightforward application, we present in Fig. 6.2 the persistent
barcodes for the PCD generated with the spectrogram of a corrupted speech signal. The
correct interpretation and usage of persistent homology for analyzing frequency repre-
sentation of signals is still work in progress, but the robust conceptual machinery of this
framework is a strong motivation for a better understanding of its properties.

Figure 6.2: Betti barcodes of a PCD spectrogram of the corrupted speech signal in the
experiment of Fig. 6.5b.

6.1.3 Computational Experiments

In this section we present numerical examples concerning the dimensionality reduction
problem using synthetic signals, based on modulation maps, and the separation and
classification of speech signals.

Frequency Modulated Manifolds

The analysis based on the Clifford algebra machinery is applied to a low dimensional
representation P (Xf ) of a dataset Xf for a signal f , and a dimensionality reduction
map P . This example quickly reintroduces the problems of combining the dimensionality
reduction map P with signal manipulations (e.g. modulation maps). We first show a basic
phenomenon occurring when using dimensionality reduction methods in time domain
signals and their frequency representations. We first rephrase the concept of frequency
modulated manifold (see the Example 4.2.2) based on the standard notion of modulation
techniques, but here placed in a more geometrical setting. Modulation techniques are well-
known engineering procedures used to transmit data by varying the frequency content
of a carrier signal. We analyze, from a dimensionality reduction viewpoint, a frequency
modulation map A : Ω → M ⊂ Rn,Ω ⊂ Rd, where M contains the carrier signals
modulated by Ω. We define Aα(ti) =

∑d
k=1 sin((α0

k + γαk)ti), α = (α1, α2, α3) ∈ Ω,
{ti}ni=1 ⊂ [0, 1]. The bandwidth parameter γ controls each frequency band centered
at α0

k. The dataset to analyze (the modulated manifold) is M = {Aα}α∈Ω, and for a
Torus example Ω = T2, d = 3, we notice the difficulty of recovering Ω with PCA, both

80



in time and frequency domains (Figs. 6.3b, 6.4a). Isomap improves the reconstruction
but still with a significant distortion (Fig. 6.4b). These examples were generated with
α0

1 = 1000Hz, α0
2 = 1200Hz, α0

3 = 1400Hz, and a bandwidth of 180Hz.

(a) (b)

Figure 6.3: (a) The torus Ω = T2 ⊂ R3; (b) The PCA 3D projection ofM = {Aα}α∈Ω.

(a) (b)

Figure 6.4: (a) The PCA 3D projection of the frequency content ofM. (b) The Isomap
3D projection of the frequency content of M.

Separation of Speech Signals

In this second set of examples, we now separate speech signals distorted with transient
phenomena represented by regular clicks. Recall that we use a non-blind strategy, and a
preliminary learning phase is required for storing low-dimensional clusters for the speech
and click components. In the learning phase, we reduce the dimensionality of the spec-
trogram data (from R128 to R8), and we design a hyperbolic Möbius transform in R8,
together with a rotational map that moves and shrinks the click cluster close to an ele-
ment of the standard basis. In this case filtering procedures and projection maps can be
applied. The main transformations involved are invertible, and we can then reconstruct
signal data with RBF interpolation (Figs. 6.5,6.6). Despite the acoustical artifacts still
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present in the current prototype, these preliminary results indicates the feasibility of this
method, especially since no particular calibration has been included.

In Figure 6.5(a) we see the spectrogram of the mixture speech signals and clicks, where
the frequency content of the corrupting clicks are clearly visible in a regular pattern in the
lower frequency area. In Figure 6.5(b) we see a two dimensional projection of the point
cloud data whose elements are constructed from the FFT vectors in the spectrogram (i.e.
each column in the spectrogram corresponds to a element in the point cloud data). In
Figure 6.5(b) we see the two clusters (speech in red and clicks in blue) in the learning
phase. In Figure 6.6 we see the resulting spectrograms of the separated signals, where in
Figure 6.6(a) we have the spectrogram of the signal with prominent speech component,
and in Figure 6.6(b) we have the spectrogram with prominent click component.

(a) (b)

Figure 6.5: (a) The spectrogram of the speech signal corrupted by regular clicks (b)
The point cloud data of the speech and click signal in the learning phase.

(a) (b)

Figure 6.6: (a) Extracting the speech signal (b) Extracting the clicks signal

Classification of Speech Components

Another example for application of this framework is the classification or identification
of consonants in a speech signal. The analysis procedures are similar as in the previous
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(a) (b)

Figure 6.7: (a) Spectrogram of speech signal (b) PCA projection with consonants (red)
vs vocals (blue).

example, but here, no reconstruction step is required. In Figure 6.7, we have the spectro-
gram of the speech signal, and the corresponing point cloud data (similarly, as explained
in the setting of the Figure 6.5). The 3D projection of the point cloud data presented
in Figure 6.7(a) is implemented with PCA, but the alternatives using Isomap and our
Isomap with Möbius projection is shown in Figure 6.8(a) and Figure 6.8(b) respectively.

(a) (b)

Figure 6.8: (a) Isomap projection and consonants (red) vs vocal (blue) components (b)
Isomap-Möbius projection.

With PCA, an identification of the consonant cluster can be achieved, but Isomap
slightly improves the separation of vocal and consonant clusters, which can then be
further improved with a Möbius map, designed with an attractive fixed point located in
the center of the consonant cluster (Figs. 6.7, 6.8).
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6.2 Dimensionality Reduction and ISA for Signal Detection

We now explain a basic engineering strategy ( [15]) for the separation of a signal f =
∑

i fi,
based on a combination of dimensionality reduction tools with time-frequency represen-
tations. In this context, recent developments for (single-channel) signal separation have
been proposed using time-frequency data and a combination of independet component
analysis (ICA) and principal component analysis (PCA). Given a mixture of signals
f =

∑
i fi, the task is to estimate the components fi given some characteristics on their

time-frequency or statistical properties. An important strategy, known as independent
subspace analysis (ISA), is to reduce the embedding dimension of the time-frequency rep-
resentation of f , prior to the application of independent component analysis (ICA). In
these methods, a standard strategy for dimensionality reduction is principal component
analysis (PCA), but nonlinear methods have also being proposed for this task [35]. In
this Section, we compare different dimensionality reduction methods for single channel
signal separation in the context of ISA. Our focus is on signals with transitory compo-
nents, and the objective is to detect the locations in time where each individual signal fi
is activated.

6.2.1 Preliminaries

Signal separation is a crucial task in many application fields, and its modern develop-
ment depends on experimental breakthroughs supported by a correct understanding of
the underlying mathematical framework. In the last decade, several approaches have been
proposed for the problem of blind source separation of single channel signals. A funda-
mental strategy proposed in [15, 35] combines independent component analysis (ICA)
methods with time-frequency transforms. These ideas have been extended by consider-
ing other types of matrix decompositions in addition to the statistically oriented strategy
of ICA. In particular, methods using non-negative matrix factorization techniques have
gained significant attention in recent years.

A crucial step in many of these strategies is to reduce the dimension of the Euclidean
space where the time frequency representation is embedded. New methods for dimen-
sionality reduction of point cloud data X = {xi}mi=1 ⊂ Rn have actively been developed
using geometrical and topological concepts [58]. Novel algorithms based on concepts
from differential geometry are Whitney embedding based methods, isomap, local tangent
space alignment (LTSA), Laplacian eigenmaps, Riemannian normal coordinates (RNC),
to mention but a few.

The objective of this Section is to evaluate the usage of new dimensionality reduction
tools in signal detection and separation algorithms. Recent developments on this topic
were presented in [35], but further investigations on the signal processing and mathe-
matical framework of these algorithms are essentially required. This Section discusses
various important aspects concerning the application of dimensionality reduction meth-
ods in the context of ISA. In particular, we focus on the signal detection problem in a
complex mixture of transitory acoustic sounds. A better mathematical understanding
of these procedures, and additional empirical insights, are fundamental for improving
current strategies and designing new methods for signal separation.

The outline of this Section is as follows. We first present briefly some basic ideas
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on ICA and its relation to dimensionality reduction strategies. In Section 6.2.2, we
briefly review current techniques proposed in the literature for independent subspace
analysis. Finally, in Section 6.2.3, we present computational experiments illustrating the
signal detection capabilities of the ISA and dimensionality reduction framework using
two different methods, the linear PCA method and nonlinear Laplacian eigenmaps.

Independent Component Analysis (ICA)

The ICA algorithm is a separation algorithm based on statistical principles for unmixing a
linear combination of signals. The ICA procedure is not, in a strict sens, a dimensionality
reduction method, but it is frequently used in combination with classical dimensionality
reduction methods such as PCA. The input of the ICA algorithm is the point cloud data
X = {xi}mi=1 ⊂ Rn written in matrix form as X = (x1 . . . xm) ∈ Rn×m. The objective is
to find a matrix of source signals S = (s1 . . . sm) ∈ Rn×m, assuming a linear dependence
between X and S. By denoting the mixing matrix as W ∈ Rn×n, this can be expressed
as:

X = WS, X, S ∈ Rn×m,W ∈ Rn×n.

In this equation, the mixing matrix W and the source signals S are unknown variables,
and ICA estimates these matrices using some assumptions on the statistical independence
of the signals {si}ni=1. The general strategy uses the following measure for a set of random
variables Y = {yi}ni=1:

I(Y ) = D(PY ,
∏
i

PYi), D(p, q) =

∫
R
p(x)log

(
p(x)

q(x)

)
dx.

The measure I allows us to compute the degree of statistical independence by comparing
the joint distribution PY , and the marginal distributions PYi . The comparison function
D, used in the measure I, is the Kullback-Leibler distance, also known as relative entropy.
This allows us to formulate the ICA algorithm as an optimization problem, where the
solution space is the general linear group, defined as the set of n× n invertible matrices,
GL(n,R) = {A ∈ Rn×n, det(A) 6= 0}, with p(A) := I(A−1X):

W = argmin
A∈GL(n,R)

p(A).

6.2.2 ISA and Time-Frequency data

With the previous background on dimensionality reduction and unmixing methods based
on ICA, we now describe ISA as an important strategy for single-channel signal separa-
tion. We recast the concepts with following along the lines of [15, 35,88,90].

The original meaning of the term independent subspace analysis (ISA) is related to
a generalization of independent component analysis by considering a multidimensional
version of ICA. In very general terms, the main idea is to group the source vectors {si} in
subfamilies or linear subspaces, where the elements within each subgroup are statistically
dependent, but elements of different groups are statistically independent (see e.g. [52]).
Due to the work of Casey and Westner [15], the term ISA has frequently been used to
denote methods using ICA to decompose power spectrograms of single channel signals
for sound separation (see [90]).
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The concept of ISA for single channel signal separation consist of decomposing a
signal f =

∑
fi, by applying ICA to a dimensionality reduced representation of the power

spectrogram. More precisely, given the function f , we compute the power spectrogram by
considering T (xi) as the magnitude of the discrete Fourier transform FT of each element of
the point cloud data Xf = {xi}mi=1. Namely, T (xi)k = ‖FT(xi)k‖, for k = 1, . . . ,m. The
following step is to use the power spectrogram T (Xf ) for constructing its low-dimensional
representation P (T (Xf )) using a linear or nonlinear method P (e.g. PCA, Laplacian
eigenmaps, LTSA, etc). We then apply ICA to the dataset P (T (Xf )) for unmixing the
resulting signals, to obtain estimations of the components fi. We briefly explain these
steps as follows (cf. [15, 88,90]).

1- Construct a dimensionality reduced power spectrogram using principal component
analysis, (i.e. P = PCA),

Xf T (Xf ) P (T (Xf ))
T P

2- Unmix the resulting matrix P (T (Xf )) using ICA,

P (T (Xf )) {f̃i}ICA

3- Group different components {f̃i} to estimate the signals fi in f =
∑

i fi.

In order to reconstruct the spectrogram for each fi, we apply the inverse short term
Fourier transform with the phase information of the original mixture signal f (see [15,
88, 90] for details). We consider using different dimensionality reduction methods P ,
with focussing on Laplacian eigenmaps and isomap. We finally remark that in recent
developments new types of unmixing methods have been used in step 2 for replacing the
statistically oriented ICA strategy. In particular, non-negative matrix factorizations have
gained increasing attention (see [90]).

6.2.3 Computational Experiments

To compare the signal detection quality for different dimensionality reduction methods,
we construct a mixture of acoustic transient signals. We consider f = f1 + f2, where f1

is a sequence of castanets and f2 a cymbal signal, as depicted in Figure 6.9.
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(a) (b)

Figure 6.9: (a) Cymbal signal f1; (b) castanets signal f2.

The combination f = f1 + f2 of the cymbal and castanets is depicted in Figure 6.10.
The power spectrogram in this figure represents the point cloud data T (Xf ), where each
column represents the FT of a segment xi of the signal f . Due to the complex frequency
characteristics of f , identifying and extracting the castanets signals is a very challenging
task.

(a) (b)

Figure 6.10: Signal f = f1 + f2 and its power spectrogram T (Xf ).

In Figures 6.11-6.13, we present detection results for identifying the positions of the
castanets and cymbal signals. To this end, we use the dimensionality reduction methods
P = PCA, P = LE (Laplacian eigenmaps), and P = isomap. In the case of the two
nonlinear methods (P = LE, P = isomap), a suitable nearest neighbor parameter k
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can be selected 2. We have manually identified some values for k that we display in
Figures 6.12,6.13.

Figure 6.11: PCA. (a) cymbal (b) castanets (c) castanets (ICA).

Figure 6.12: LE. (a) cymbal (b) castanets (c) castanets (ICA).

2Code available at www.math.uni-hamburg.de/home/guillemard/
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Figure 6.13: Isomap. (a) cymbal (b) castanets (c) castanets (ICA).

In Figures 6.11-6.13, (a) shows a component fi that matches the cymbal signal, and
the two plots (b) and (c) correspond to the components related to the castanet signal.
Moreover, plots (a) and (b) are obtained from the detection algorithm without the ICA
procedure, whereas in plot (c), the ICA procedure is activated. Note that the unmixing
ICA algorithm slightly improves the quality of the castanets detection by decreasing
some background signal in the case of PCA and Laplacian eigenmaps. In conclusion,
these dimensional reduction strategies are able to detect the relevant signals for this
particular example up to some degree, but further steps are required to improve the
detection quality and the analysis of resynthesis algorithms.

89



Bibliography
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Zusammenfassung

In dieser Arbeit werden Dateien aus der Signalanalyse unter geometrischen Aspekten
bezüglich Dimensionsreduktion und “Manifold Learning” studiert. Signale und Messun-
gen sind grundlegende Instrumente für die Untersuchung von Interaktionen komplexer
Phänomene. Ein Beispiel ist ein polyphones Audiosignal f =

∑
` f` bestehend aus ver-

schiedenen sich überlegenden Sounds f`. Die Extraktion des Komponenten f` aus f kann
unter realistische Bedingungen sehr kompliziert sein, und moderne Methoden aus der har-
monischen Analysis wie etwa Wavelet oder Frame-Theorie sind oft nicht ausreichend. In
diesen Projekt bearbeiten wir dieses Problem mithilfe einer bestimmter Kombination von
Zeit-Frequenz-Analyse und modernen Entwicklungen in Geometrie und Computational
Topology.
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