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Abstract

The cortico-basal ganglia-thalamocortical system is an integral part of the vertebrate
forebrain that is crucially involved in the generation, adaptation, and selection of coordi-
nated patterns of motor and non-motor behavior. It has been suggested that synchronized
oscillations of neuronal population activities may be fundamentally important for signal
encoding and transmission at the input stage of the basal ganglia, the cortico-striatal
axis. This notion is in need of basic experimental support.
We trained Brown Norway rats (Rattus norvegicus) to run at different speed levels on

a motor driven treadmill. We implanted microelectrodes in sensorimotor cortical and
striatal areas of both hemispheres and recorded local field potentials (LFP) and multi-
unit activities (MUA) during rest and running. We performed power, phase-coupling,
and cross-frequency analyses to determine the spectral characteristics of neuronal signals
and their interactions within and between the two structures. Furthermore, we examined
in detail the modulation of power and phase-coupling patterns by motor demand.
Our data demonstrate prominent peaks of oscillatory power and the synchronization

of cortical and striatal LFPs in low (theta) and high (gamma) frequency ranges during
rest and running. MUA only exhibited very weak signs of low-frequency oscillatory
synchronization whereas LFP-MUA coherences were statistically significant in the theta
range. Most importantly, LFP power and phase-coupling peak frequencies increased
between behavioral states. Moreover, peak frequencies but not peak amplitudes scaled
linearly with motor demand. In addition, we observed a strong, behaviorally modulated
coupling of LFP theta phase and gamma amplitude components as well as a decrease
of cross-frequency LFP power correlations between resting and running states. Phase-
locking–power correlation interaction analyses revealed a dissociation of the time courses
of both coupling measures specifically at low and high running peak frequencies.
The results of the present study underscore that the frequency-specific synchronization

of population oscillations may be fundamental for neuronal interactions along the cortico-
striatal axis. More specifically, coordinated theta and gamma rhythms may support the
functional coupling of both structures at small and large temporal scales according to
current behavioral demands. This suggests that similar activity patterns may underlie
signal encoding and transmission also at other stages of the cortico-basal ganglia loop.

vii



1 Introduction

1.1 Cerebral cortex-basal ganglia circuitry

1.1.1 General anatomical outline

The basal ganglia (BG) are a group of nerve cell nuclei located in the forebrains of lower
and higher vertebrates that are tightly linked to telencephalic, diencephalic, and mesen-
cephalic structures with respect to both their input and output connections (Reiner et
al., 1998; Reiner, 2010a; Stephenson-Jones et al., 2011). In most general terms, the basal
ganglia “connect the cerebral cortex with neural systems that effect behavior” (Gerfen
and Bolam, 2010, page 3). Figure 1.1 displays the central parts constituting this brain
system as well as their major connecting axonal projections.1

The basal ganglia proper are made up of the striatum, the globus pallidus with its
internal (GPi) and external (GPe) parts, the substantia nigra pars reticulata (SNr) and
pars compacta (SNc), and the subthalamic nucleus (STN) (Figure 1.1). Brainstem in-
put and output structures left aside, these nuclei form core elements of partially closed
anatomical loops originating from and terminating in the cortical mantle (Alexander et
al., 1986). In this system, interposed thalamic regions serve as both important process-
ing modules and relay hubs at its final output stage (Haber and Calzavara, 2009). In
the following, whenever we talk about the cortico-basal ganglia network, we refer to the
circuitry involving cortical, basal ganglia, and associated thalamic structures.
As indicated schematically in Figure 1.1, the striatum is the major input site of the

basal ganglia that receives excitatory projections from almost all areas of the cerebral
cortex (Alexander et al., 1986; Parent and Hazrati, 1995). Basal ganglia output from the
internal part of the globus pallidus and the reticular part of the substantia nigra to the
thalamus is inhibitory, while thalamic output to the cortex is again excitatory (Parent
and Hazrati, 1995). In marked contrast to basal ganglia input which derives from all
cortical lobes, its cortical output projections mainly terminate in frontal regions, i.e.,
premotor, prefrontal, and orbitofrontal areas (Alexander et al., 1986; but see Middleton

1 Note that while some of the ensuing descriptions primarily relate to the characteristics of BG anatomy
of primates, most underlying principles and details are very similar to those found in other vertebrate
species, rodents in particular (Reiner et al., 1998; Gerfen and Bolam, 2010).

1



Chapter 1 Introduction 1.1.1

cerebral cortex

SNc thalamus

STN

brainstem/

spinal cord
SC RF HN PPN

GPi/SNr

GPe

striatumD2 D1

Figure 1.1: General anatomical outline of the cortico-basal ganglia network, including
its nuclear constituents (green boxes) as well as the major input- and output structures
(blue boxes) as established in the so-called box-and-arrow model (see main text). The
figure also depicts the distinction between the direct and indirect pathways of the BG
that arise from striatal output neurons preferentially carrying D1 and D2 dopamine
receptors, respectively. Signals from the former project directly to basal ganglia output
structures, while the latter pathway reaches GPi/SNr indirectly via GPe and STN. The
STN also receives direct input from cortical areas via the so-called hyperdirect pathway.
Furthermore, note the two fundamentally different output pathways of the BG reaching
brainstem nuclei on the one hand and thalamic structures on the other. Blue lines ending
in arrowheads and squares denote excitatory and inhibitory connections, respectively.
The red color of the SNc and the circular endings of its projection lines indicate the
neuromodulatory character of dopaminergic neurons. Note that, for reasons of clarity,
further structural and connectional details have been omitted. Abbreviations: D1/D2:
dopamine receptors D1 and D2; GPi/GPe: globus pallidus, internal and external parts;
HN: habenular nucleus; PPN: peduncular pontine nucleus; RF: reticular formation; SC:
superior colliculus; SNc/SNr: substantia nigra, pars compacta and pars reticulata; STN:
subthalamic nucleus. Figure partly inspired by Sharott, 2005 and Alexander et al., 1990.
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Chapter 1 Introduction 1.1.2

and Strick, 1996). In this way they form the aforementioned partially closed cortico-
basal ganglia-thalamocortical loops (see Section 1.1.2). The cortical output areas of
these loops are, amongst other things, involved in the planning and execution of body
movement. Other target regions of the BG include, for example, the superior colliculus
that is involved in the generation of eye movements, and the pedunculopontine nucleus
which plays a role in orienting movements (Gerfen and Bolam, 2010).
Basal ganglia nuclei are anatomically arranged in part serially and partly in parallel,

having either excitatory or inhibitory connections, or both (Alexander and Crutcher,
1990a). On its intermediate stages, the BG circuitry has been subdivided into two
major pathways, based upon the existence of anatomically distinct projections originating
in the striatum (Figure 1.1). The direct path consists of the immediate, inhibitory
connection of striatal and pallidal/nigral regions, while the indirect path reaches the
output nuclei via the external part of the GP (Parent and Hazrati 1995; see also Section
1.2.1 below). The exact interplay of both pathways and the impact they exert on basal
ganglia output structures has yet to be established. Most generally speaking, as their
anatomical makeup suggests, they are assumed to provide a regulatory balance between
excitatory and inhibitory signals reaching BG target regions (Gerfen and Bolam, 2010).
The scheme depicted in Figure 1.1 has gained wide popularity as the so-called Albin-

DeLong or box-and-arrow model of basal ganglia functional anatomy. As such, it has
been very helpful for the interpretation of some of their key properties in the healthy
and the diseased state (Albin et al., 1989; DeLong, 1990; DeLong and Wichmann, 2007).
Although important modifications have been put forward in recent years that aim at the
model’s various explanatory shortcomings and insufficiencies (e.g., Bolam et al., 2000;
Bar-Gad and Bergman, 2001), it has continued to provide a unifying outline of the
principles governing the functional-anatomical organization of the basal ganglia on which
subsequent elaborations could be elegantly build.

1.1.2 Functional anatomy of cortico-basal ganglia loops

As mentioned above (Section 1.1.1), input to the BG derives from virtually all cortical
areas. This provides them with a multitude of different types of inputs. That being said,
the overall picture of the functional-anatomical organization of basal ganglia circuitry
has substantially changed over the last decades.
Overall, according to a peculiar ordering of cortical inputs, the organization of BG cir-

cuitry can be conceived of as roughly tripartite (Parent, 1990; Parent and Hazrati, 1995;
Joel and Weiner, 2000), with different segments preferentially subserving sensory-motor,
associative-cognitive, or limbic-emotional processes (Alexander et al., 1990). Earlier stud-

3



Chapter 1 Introduction 1.1.3

ies proposed a funneling scheme of organization in which the inputs from functionally
different cortical domains would be integrated and merged progressively at each subse-
quent basal ganglia relay point (e.g., Kemp and Powell, 1970). In contrast, more recent
reports emphasize the parallel nature of information processing along functionally distinct
projections that in principle remain segregated throughout the circuit’s entire extent, al-
though substantial interactions are supposed to take place between them (Delong et al.,
1984; Alexander and Crutcher, 1990a; Bergman et al., 1998; Gerfen and Bolam, 2010;
see also Figure 1.3, page 10).
Pioneering studies (e.g., Hoover and Strick, 1993; Middleton and Strick, 1994) have

delineated a number of major anatomical tracts conveying activities from different brain
systems through the basal ganglia that form the structural substrate of its diverse func-
tional roles (for extensive reviews, see Alexander et al., 1986; Parent and Hazrati, 1995;
Wise et al., 1996). In their famous accounts, Alexander and colleagues identified at
least five distinct cortico-basal ganglia-thalamocortical loops (sensorimotor, oculomotor,
dorsolateral-prefrontal, lateral orbitofrontal, and anterior cingulate) constitutive of the
three main segments (Alexander et al., 1986, 1990; Alexander and Crutcher, 1990a).
They also speculated about the existence of sub-loops within the larger ones connecting
even smaller parts of the structures. In any case, a substantial degree of both conver-
gence and divergence of projections has been proposed to characterize major and minor
cortico-basal ganglia loops (Parent and Hazrati, 1993).
The general subdivision of the cortico-basal ganglia-thalamocortical circuitry into dif-

ferent functional domains is now widely accepted in the BG research field. However,
several issues such as the degree of separation between the different loops, interactions
between them, and the exact way of information processing within and between the par-
ticipating structures await further elaboration in future studies (Haber et al., 1994; Joel
and Weiner, 1994; Mink, 1996; Bergman et al., 1998; Bar-Gad et al., 2003).

1.1.3 Functional role of cortico-basal ganglia systems

For a long time, the basal ganglia and the functional brain systems that they are an
integral part of were considered to be concerned primarily with the processing of senso-
rimotor signals and various aspects of motor control (e.g., Kornhuber, 1971; Marsden,
1984b; Mink, 1996; Brown et al., 1997; Turner and Desmurget, 2010). In clinical terms,
the basal ganglia had been shown to be affected in the context of various neurological
conditions characterized by severe motor symptoms, such as Parkinson’s (PD) and Hunt-
ington’s disease, different types of dystonia or tremor (Phillips et al., 1993). Results from
anatomical and physiological studies had indicated substantial connections with motor
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cortical and subcortical areas (Nauta and Mehler, 1966) and their interaction with these
systems during behavior as evidenced by findings from single-cell recording experiments
in awake animals (DeLong, 1972; Delong et al., 1984; Crutcher and DeLong, 1984a,b;
Hikosaka et al., 1989a; West et al., 1990).
However, results from both clinical and experimental studies had also left ample room

for the proposition of a more diverse and complex role of basal ganglia systems func-
tion and for their implication in other, non-motor aspects of behavior and pathological
alterations thereof (Crutcher and DeLong, 1984a,b; Marsden, 1984a; Hikosaka et al.,
1989b,c; Bhatia and Marsden, 1994; Brown and Marsden, 1998; Heimer, 2003). Building
on the assumption of a roughly tripartite anatomical organization as described in the
previous section (1.1.2), at least three major functional domains can be distinguished
as well. This suggests basal ganglia systems to take part in the processing of neuronal
signals related to sensorimotor, associative-cognitive, and limbic-emotional aspects of be-
havior as well as a wide variety of combinations between them (Graybiel, 2005; Haber
and Calzavara, 2009). Accordingly, various authors have discussed the involvement of
basal ganglia circuits and thus the striatum and the cortico-striatal axis (Section 1.2.2)
in, amongst other things, movement generation and adaptation (DeLong, 1971; Crutcher
and DeLong, 1984b; Romo et al., 1992), external (Brown et al., 1997; Syed et al., 2011)
and internal perceptual mechanisms (Buhusi and Meck, 2005), different types of learning
(Packard and Knowlton, 2002; Schultz et al., 2003; Yin and Knowlton, 2006; Antzoulatos
and Miller, 2011), mechanisms of attention and the control of working memory (Levy et
al., 1997; Hikosaka et al., 2000; McNab and Klingberg, 2008) as well as reward processes
(Apicella et al., 1991; Robbins and Everitt, 2002; Schultz, 2006). Taken together, these
data provide evidence that the BG are, to some degree or another, involved in many
different aspects of lower and higher brain functions.
Despite all those findings, the exact contribution of basal ganglia activities to the

central nervous systems operations constitutive of these various sorts of behaviors, as
much as the kinds of computations carried out in BG circuits on the neuronal signals
underlying such network functions, are still far from clear (Mink, 1996; Bar-Gad et al.,
2003). The complexity of their anatomical constitution which differs starkly from, e.g.,
the largely modular organization of neocortical areas (Buzsáki, 2006), as well as the va-
riety of response profiles obtained through recordings of population activities from their
constituent nuclei and associated structures suggests a systems-level integrative and, at
the same time, selective role with regard to the processing of a diversity of signals of
different origin which is crucial to the generation of complex behaviors (Redgrave et al.,
1999; Graybiel, 2005). This rather vague notion gains additional support again from clin-
ical observations of the pattern of symptoms characteristic of disorders of basal ganglia
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origin. First, as noted above, symptoms are seldom confined to one functional domain
and there is no complete loss of one or several specific capacities such as it is often the
case, for example, following stroke. Second, and in relation to that, the way the differ-
ent behavioral subdomains are afflicted often exhibits a kind of complexity that readily
suggests a mixture of systems to be affected by the respective disease (e.g., consider the
motor, sensory, and cognitive deficits encountered in patients suffering from Parkinson’s
disease; Brown and Marsden, 1998; Middleton and Strick, 2000). Investigations into basal
ganglia operational mechanisms in the healthy state are comparably equivocal regarding
the interpretability of their results. Therefore, the overall role of BG systems in brain
function has remained elusive and a matter of intense speculation to date.

1.2 The cortico-striatal axis

1.2.1 Macroscopic and microscopic anatomy of the striatum

The basal ganglia receive the bulk of their input from cortical areas via the striatum, a
big structure that spans a considerable portion of the forebrain in both anterior-posterior
(AP) and medial-lateral (ML) extents. In primates, the striatum is further subdivided
into the caudate nucleus and the putamen by the massive fiber bundles of the internal
capsule traversing the structure that carry projection fibers originating in the cortical
mantle which is substantially enlarged in higher as compared to lower vertebrates (Rakic,
2009). In the rat, the striatum still consists of only one large nucleus (Gerfen and Bolam
2010; a coronal section through the rat striatum at the level of the so-called bregma is
depicted in Figure 2.4, page 32). With respect to its neuronal constituents, the striatum
is composed of projection cells and interneurons (Parent and Hazrati, 1995), the most
important and most extensively studied ones we briefly describe here (Figure 1.2).
There are two major subclasses of projection cells, so-called medium-spiny neurons

(MSN) that give rise to the inhibitory striatal direct and indirect output pathways (Bolam
et al., 2000) described above (Section 1.1.1). They can roughly be distinguished using two
main criteria, namely their preferential nuclear targets (Parent et al., 1984; Gerfen and
Bolam, 2010) and the type of dopamine (DA) receptors they carry (Gerfen et al., 1990).
As indicated in Figure 1.1 (page 2), direct pathway MSNs mainly express D1 receptors,
mediating an excitatory influence of dopamine on MSN function. MSNs giving rise
to the indirect pathway, in contrast, preferentially carry D2 receptors that mediate an
inhibitory modulation of MSN function by the neurotransmitter (Surmeier et al., 2007;
Gerfen and Bolam, 2010). These differences result in a net inhibition and disinhibition of
striatal output targets via direct and indirect pathways, respectively (Smith et al., 1998).
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Figure 1.2: The “canonical microcircuit” of the striatum as described by Bolam and
colleagues (Bolam et al., 2006, page 166). The figure depicts the main neuronal elements
of the structure, the pattern of their local connections as well as their most important
external inputs. Blue, medium-spiny projection neurons; green, giant aspiny interneu-
rons; purple, medium-sized aspiny interneurons; red, cortico-striatal projection neurons;
yellow, dopaminergic neurons from the substantia nigra pars compacta. Note the differ-
ential targeting of structural elements arising from projections connecting the different
cellular classes. Cortical input to giant aspiny interneurons has been omitted. Abbrevia-
tions: ACh, acetylcholine; DA, dopamine; FS, fast-spiking; MSN, medium-spiny neuron.
Figure kindly provided by J. P. Bolam, adapted from Bolam et al. (2006) with permission.

The inhibitory output of MSNs is mediated by gamma-aminobutyric acid (GABA) while
dopamine is the major external modulatory substance of cortico-striatal inputs before
others such as serotonin or histamine (Bolam et al., 2000; Gerfen and Bolam, 2010;
Ellender et al., 2011). Because of the specific output activity profiles of successive nuclei
along the cortico-basal ganglia loop, the effects of direct and indirect pathway activities
are often described as pro-kinetic and anti-kinetic, respectively. This notion has recently
received further strong experimental support (Kravitz et al., 2010).
Interneurons of the striatum can be divided into two main groups, the giant aspiny and

medium-sized aspiny (also called fast-spiking, FS) interneurons that use acetylcholine and
GABA as transmitters, respectively (Tepper and Bolam, 2004). The former, cholinergic
interneurons, seem to be a homogenous group, whereas the latter, GABAergic interneu-
rons, can be further classified according to their differential equipment with neuropep-
tides, amongst other criteria (Kreitzer, 2009). Interneurons exhibit a variety of activity
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profiles both spontaneously and in response to external input (Tepper and Bolam, 2004).
They are part of the dense intrastriatal cellular network exerting their influences on MSNs
through local projections, and their activities are also modulated by dopamine (Figure
1.2; Mallet et al. 2005; Bolam et al. 2006).
In terms of total numbers, projection neurons largely outweigh interneurons, their

respective proportions varying between 95 vs. 5% in rodents to 80 vs. 20% in primates
(Gerfen, 2004). The very important influence of interneuron activities on striatal function
notwithstanding, MSNs can be considered to be the principal integrative cellular elements
of the striatum, unifying its diverse inputs and, at the same time, generating striatal
output and transmitting it to downstream structures (Smith and Bolam, 1990; Houk
and Wise, 1995; Parent and Hazrati, 1995; Gerfen and Bolam, 2010). In terms of their
external inputs, they are the target of axons originating from, amongst other structures,
the cortex, the thalamus, and the dopaminergic neurons of the substantia nigra pars
compacta2 (Gerfen, 2004). Since in this study we investigate signals along the cortico-
striatal axis, this projection is described in more detail in the following section (1.2.2).

1.2.2 Functional anatomy of the cortico-striatal axis

As studies in a variety of vertebrate species have shown, cortical inputs to the striatum
arise from virtually all cortical areas. This includes primary and higher order sensory and
motor areas, prefrontal and limbic regions, with the extent of the projections differing
between functional subsystems and areas (Webster, 1961; Carman et al., 1963; Webster,
1965; Parent and Hazrati, 1995).3 These connections are excitatory, using glutamate
as a neurotransmitter (Bolam et al., 2000). Amongst all cortico-striatal projections,
inputs from somatosensory and motor (also combined under the name sensorimotor in
the following) areas is particularly strongly expressed (Webster, 1961).
Cortical axons from one hemisphere target both ipsi- and contralateral striatal sites

(Carman et al., 1965; Künzle, 1975) with an ipsilateral predominance (McGeorge and
Faull, 1987). They originate from neurons in both supra- and infragranular layers, pri-
marily from pyramidal cells located in neocortical layers 3 and 5 (Jones et al., 1977;
Jones and Wise, 1977; McGeorge and Faull, 1989; Gerfen and Bolam, 2010; Reiner,
2010b). There are cortical, so-called intratelencephalic neurons that, apart from forming
intracortical connections, establish direct axonal contacts with striatal targets. Members
of a second class, so-called pyramidal tract neurons, primarily project to other, for exam-

2 The progressive degeneration of dopaminergic neurons in the SNc underlies the development of Parkin-
son’s disease (Ehringer and Hornykiewicz, 1960; DeLong and Wichmann, 2007)

3 We focus here on the description of striatal inputs as they arise from neocortical areas, leaving pecu-
liarities of projections from allo- and paleocortical areas aside.
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ple brainstem structures and the spinal cord, but provide axon collaterals to the striatum
(Reiner et al., 2003; Gerfen, 2004). These neurons also differ with respect to the patterns
of axonal arborization in the striatum, their primary localizations in distinct cortical
areas, layers and sublayers, their differential targeting of direct and indirect pathway
MSNs, and the kind of cortical information they are assumed to transmit to the stria-
tum. Further, they preferentially innervate different striatal subregions, so-called patch-
and matrix-compartments, respectively (Reiner et al., 2010). For an in-depth review of
the latter topic that we do not discuss in further detail here see, e.g., Gerfen, 1992.
The way cortico-striatal projections are principally organized has been a matter of

intensive research and is still not completely clear. Early accounts suggested a quasi
one-to-one projection from a given cortical area to a most adjacent striatal site (Kemp
and Powell, 1970). In line with this proposition, the different cortical lobes and their
major regions have been found to be indeed connected with distinct parts of the stria-
tum and their projections are both topographically and functionally ordered (Webster,
1961; Flaherty and Graybiel, 1995). On top, the massive striatal projections deriving
from somatosensory and motor cortical areas are somatotopically organized (Carman et
al., 1963; Flaherty and Graybiel, 1991, 1993; Brown and Sharp, 1995; Nambu, 2011).
This means that spatial relations between cortical representations from the same area
are maintained at the level of the striatum. However, there is also a substantial degree
of overlap between projections from functionally and anatomically related cortical re-
gions (Yeterian and Van Hoesen, 1978; Selemon and Goldman-Rakic, 1985; Flaherty and
Graybiel, 1991). A given cortical area targets a longitudinally extended striatal zone by
means of substantial divergence of its projecting fibers (Selemon and Goldman-Rakic,
1985; Brown et al., 1998), and functionally related areas send their axons to nearby
and even heavily interdigitating sites (Selemon and Goldman-Rakic, 1985; Flaherty and
Graybiel, 1993). Also, representations of the same body part deriving from different but
functionally related cortical areas overlap in their striatal targets (Brown, 1992).
Figure 1.3 depicts a schematic outline of some of the principles governing the anatom-

ical organization of cortico-striatal as well as striatal output projections reaching down-
stream targets. As the plot illustrates, inputs arising from different cortical areas and
from different sites within one specific area are neither strictly funneled nor do they re-
main completely segregated at the level of the striatum (Gerfen, 1992). Rather, there
is both convergence and divergence in the way cortico-striatal projections are organized.
That being said, it is important to note that the number of cortical neurons sending axons
downstream is much larger than that of receiving striatal cells. In the rat, this ratio has
been estimated to be about 6:1 (Gerfen, 2004) and even 10:1 (Zheng and Wilson, 2002),
which is one anatomical indication for an eventual integration of information contained
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Figure 1.3: Schematic drawing of the organization of cortico-striatal and striatal output
projections. Neurons are depicted as filled, grey shaded circles; axonal projections are
depicted as blue, straight lines. The plot illustrates both convergence and divergence in
the way cortical projections from specific areas and populations reach striatal neurons or
neuron groups. It also indicates the massive reduction of neuron numbers on striatal and
pallidal/nigral as compared to cortical levels. Striatal projection neurons each receive
input from a large number of cortical pyramidal cells, but the degree of similarity of
inputs to even adjacent neurons is very limited. For all these reasons, cortico-striatal
connections are regionally and topographically specific to some degree but also substan-
tially integrative. These properties reflect the funneling vs. parallel processing schemes
mentioned in Section 1.1.2. Note that the figure does depict neither full projection pat-
terns nor true proportions of cell numbers as they are found in organisms. Abbreviations:
GPi, globus pallidus, pars interna; SNr, substantia nigra, pars reticulata. Figure inspired
by Sharott, 2005 and Bergman et al., 1998.

in cortical signals at the striatal level. Another is the way that the terminal fields of
cortico-striatal projections are formed which include locally restricted but also massively
extended axonal arborizations (Kincaid et al., 1998; Zheng and Wilson, 2002). Further,
the cruciform axodendritic pattern of innervation that is typical of cortico-striatal fibers
targeting striatal projection neurons and preferentially ending at distal segments of their
dendritic trees minimizes the number of contacts made between individual neurons of
either structure while it maximizes the number of contacts made between individual
MSNs and different cortical cells (Gerfen, 2004). As a consequence of these anatomical
properties and the above mentioned disparity in absolute neuron numbers between the
two structures, individual and even neighboring MSNs differ substantially with regard
to their cortical input patterns (Gerfen, 2004). This finding has important implications
for the functional role of the cortico-striatal axis in cortico-basal ganglia networks in
general and for the supposed role of the striatum as an integrator of upstream activities
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in particular (Wickens and Arbuthnott, 2010). These issue are discussed in more detail
in the following section (1.2.3).

1.2.3 Functional role of the cortico-striatal axis

The large body of knowledge that exists on the anatomical organization of the cortico-
striatal axis notwithstanding, its exact functional role has remained elusive. The impor-
tance of a proper functioning of the regions constituting this pathway for the generation
and adaptation of behavioral output patterns is most distinctly illustrated by the severity
and diversity of symptoms manifest in patients suffering from Parkinson’s disease. In this
condition, the loss of dopaminergic input from the substantia nigra pars compacta to the
striatum results in profound alterations of neuronal activities along the whole cortico-
basal ganglia loop. These alterations give rise to a multitude of pathological changes of
various aspects of behavior, including sensory, motor, and cognitive symptoms (Albin
et al., 1989). However, the exact cellular and neuronal network mechanisms underlying
these changes and symptoms are still insufficiently understood. The same holds true for
the exact contribution of neuronal activities within and between basal ganglia structures,
the cortico-striatal axis in particular, to behavioral output patterns in the healthy state.
Following a dictum of Buzsáki that “structure defines function”4, important clues as

to the ultimate role of the cortico-striatal axis in behavioral control can again be gained
from a close examination of its anatomical and physiological properties. Thus, both the
intricate pattern of cortico-striatal projections and the sparse connectivity scheme re-
lating cortico-striatal input with striatal output neurons (Figure 1.3, page 10) as much
as the distinct electrophysiological properties of striatal cells (Nisenbaum and Wilson,
1995; Wilson and Kawaguchi, 1996) appear to be major determinants of the way neu-
ronal signals are processed along this anatomical axis and of its final functional role
(Houk and Wise, 1995; Wickens and Arbuthnott, 2010). In brief, these properties sug-
gest a context-dependent, part integrative, part segregative role of the striatum with
respect to the processing and transmission of cortical signals along the partially closed
major and minor loops that are maintained throughout subsequent stages of the cortico-
basal ganglia circuitry (Parent and Hazrati, 1993; Mink, 1996; Graybiel, 2005; Wickens
and Arbuthnott, 2010; see also Section 1.1). Accordingly, the striatal cellular network in
conjunction with its (cortical) input and basal ganglia output stages has been proposed
to serve as sort of a filter that selectively gates incoming signals according to current

4 This is the headline of Cycle 2 in Buzsáki, 2006 (page 29), where he mainly discusses functional
properties of cortical circuits as they depend on the details of their anatomical makeup and structural
organization. However, Buzsáki points out that this principle holds true for virtually all parts of the
brain and their associated functions.

11



Chapter 1 Introduction 1.2.3

behavioral demands (Redgrave et al., 1999; Murer et al., 2002), extracts salient patterns
(Gurney et al., 2001a,b), supports spatially and temporally balanced selection of “com-
peting motor programs” by means of “focused inhibition” (Mink, 1996, page 381ff. ; see
also Chevalier and Deniau, 1990), or performs dimensionality reduction on its inputs
(Bar-Gad and Bergman, 2001; Bar-Gad et al., 2003). Within the boundaries of anatomi-
cal specificity as determined by the major and minor cortico-basal ganglia loops, different
striatal subregions preferentially subserve the control of different aspects of behavioral
output (Schultz et al., 2003; Haber and Calzavara, 2009). Mechanisms of synaptic plas-
ticity and the influences of various neurotransmitter systems from the brainstem, most
importantly dopaminergic projections, on striatal network activities are not covered here
in detail but are supposed to also play a key role in these functions (Schultz et al., 2000;
Reynolds et al., 2001; Kreitzer and Malenka, 2008; Wickens and Arbuthnott, 2010).
The process of pathway or modality specific, spatially and temporally precise inte-

gration of cortical signals at the level of the striatum is considerably complex. This is
because of both the makeup of the microcircuits that medium-spiny neurons, the main
integrative cellular elements of the striatum, are embedded in (Section 1.2.1) and the
intricate pattern of inputs deriving from distributed cortical sources (Section 1.2.2), not
mentioning additional projections from thalamic and other structures. More specifically,
while on the one hand individual MSNs differ substantially with respect to their input
patterns, on the other hand they require a large number of synchronized excitatory inputs
to reach spiking thresholds (Wilson and Kawaguchi, 1996; Kreitzer and Malenka, 2008).
This essentially demands cortico-striatal projection neurons from the same or similar
modalities or regions involved in neuronal processes related to particular aspects of a
task to exhibit temporal correlation of their activities on a very short timescale (Reiner,
2010b). Furthermore, the disparity between absolute neuron numbers in cortex and stria-
tum with a ratio of up to 10:1 (Section 1.2.2) is continued and even still increased in the
ratio of neuron numbers in striatum to those in its output targets, i.e., the pallidum and
substantia nigra, reaching levels of approximately 29:1 in the rat (Oorschot, 1996). In
the resulting scheme of convergent, system-specific pathway projections described above
(Sections 1.1.2 and 1.2.2) one would expect that for populations of neurons belonging to
functionally related areas or subregions or those with similar response properties to have
a functionally relevant impact on cells of the subsequent downstream processing stage
their activities would have to be rather precisely coordinated in time.
How could such a precise coordination of input and output activities across members of

ensembles of neurons along the cortico-striatal axis be realized on both cellular and net-
work levels? In light of the above we can state that for accurate neuronal communication
along this pathway at least two requirements appear to be essential: First, functionally
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related neurons at the cortical input stage have to be active almost simultaneously. That
is to say, they have to exhibit one or another form of temporal synchrony in order to
exert a functionally relevant impact on their target cells. Second, groups of neurons at
the striatal output stage have to be able to make use of such synchronized inputs in both
receiving and sending terms. More precisely, they not only have to preferentially change
their activities in reaction to synchronized inputs on an isolated single cell level but again
their activities should be modulated in a coordinated and temporally predictable fash-
ion in order for populations of functionally related neurons to form and to collectively
influence cells in downstream structures.
Indeed, temporally predictable neuronal communication as subserved by oscillatory

synchronization of population activities within and between different structures has been
suggested to be fundamental to central nervous system function (Buzsáki, 2006). We
therefore describe some of the most important general aspects of this notion in the
upcoming section (1.3.1). Furthermore, oscillatory synchrony has also been discussed
as a potential way of neuronal signaling on various stages of the cortico-basal ganglia
circuitry (e.g., Boraud et al., 2005). We briefly review some of the principle findings
supporting this proposition in Section 1.3.2 before we name the basic grounds of the
more specific idea that oscillatory synchronization of population activities may also be
fundamental for neuronal interactions along the cortico-striatal axis (Section 1.3.3).

1.3 Synchrony and oscillations of neuronal activities

1.3.1 General considerations

Questions of how the various elementary and higher-order functions of the brain which
are essential for the generation of behavioral output might be implemented on a cellular
and a network level have been long-standing issues in the field of systems neuroscience
research. In this regard, it is important to note that most if not all central nervous
system functions have the activities of not only single cells but populations of neurons
as their functional-anatomical basis.5 Understanding how such assemblies of neurons are
formed, i.e., how the activities of individual neurons within and between different areas
of the brain are organized and coordinated in both space and time is thus fundamental
for elucidating the neuronal mechanisms underlying organized behavior (Singer, 1993).

5 All of the following considerations are limited in scope to investigations into the workings of neuronal
elements proper. We are, however, well aware of the likely important but as yet unresolved role
that glial cellular elements play for integrative central nervous system functions, including neuronal
communication on both single cell and possibly network scales. For a review of this topic, see, e.g.,
Araque et al., 2001 as well as Oorschot, 2010 for information on glia cell types in basal ganglia nuclei.
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A vast number of studies carried out during the past decades have suggested a mul-
titude of ways as to how transient interactions between nearby and distant groups of
neurons may be implemented in the brain. While the exact mechanisms remain a matter
of ongoing debate and investigation, it is becoming increasingly clear that the precise
timing of the activities of not only single cells but distinct groups of neurons involves
one or another form of temporal correlation or synchrony of their inputs and outputs on
various time scales (Abeles, 1982b; Usrey and Reid, 1999; Salinas and Sejnowski, 2001;
Averbeck et al., 2006; Cohen and Kohn, 2011). Despite the fact that the assumption of
one of the following two principles does not necessitate acceptance of the other, synchro-
nization of population activities in the form of frequency-specific oscillations has gained
wide interest as a possible mechanism underlying patterns of effective connectivity be-
tween nearby and distant neurons fundamental to information exchange in the brain
(Salinas and Sejnowski, 2001; Engel et al., 2001; Varela et al., 2001; Wang, 2010).
Evidence for the importance of oscillatory synchronization of neuronal activities in

central nervous system function comes from a wide range of studies involving different
techniques, species, and virtually all brain regions and functional domains. For example,
in sensory areas, they have been linked to the processing of external stimuli (Adrian, 1942;
Eckhorn et al., 1988; Gray and Singer, 1989), input scene segmentation (von der Malsburg
and Schneider, 1986; Engel et al., 1991), sensory feature binding (Engel et al., 1991;
Singer and Gray, 1995; Kreiter and Singer, 1996), and multisensory processing (Kayser
and Logothetis, 2009; Panzeri et al., 2010; Hipp et al., 2011). In sensorimotor cortical
(Murthy and Fetz, 1992; Pfurtscheller et al., 1993; Sanes and Donoghue, 1993; Murthy
and Fetz, 1996a,b; Donoghue et al., 1998; Schoffelen et al., 2005) and various subcortical
areas (Welsh et al., 1995; Brown, 2003) they have been assigned an integrative role with
regard to the temporal coordination of muscle output and somatosensory (feedback) input
(MacKay, 1997; Farmer, 1998). Rhythmic activities in the hippocampus and related
regions have been found to be important for spatial navigation, memory encoding and
retrieval (Skaggs et al., 1996; Buzsáki, 2002; Fell and Axmacher, 2011). Other cognitive
functions such as attention (Fries et al., 2001; Buschman and Miller, 2007; Siegel et al.,
2008; Gregoriou et al., 2009), visuo-motor integration (Roelfsema et al., 1997; Womelsdorf
et al., 2006; Donner et al., 2007), working memory (Pesaran et al., 2002; Siegel et al.,
2009), and decision-making (Pesaran et al., 2008; Donner et al., 2009) also appear to
be subserved by oscillatory activities in various frequency bands. Thalamic structures
and the cortico-thalamocortical loops which they are embedded in exhibit a wide variety
of oscillatory patterns that are closely related to the regulation of the sleep-wake cycle,
mechanisms of arousal, and possibly even sensory-motor integration and various cognitive
functions (Steriade and Llinás, 1988; Steriade et al., 1993a; Jones, 2009).
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On a cellular level, the membrane potential of single neurons exhibits the property to
oscillate under certain activation conditions (Buzsáki, 2006). This is due to their specific
and differential endowment with a multitude of voltage-gated ion channel types and asso-
ciated conductances as well as various other morphological and membrane properties and
the timed patterning of various input signals including modulatory influences of several
neurotransmitters (Wang, 2010). Furthermore, oscillatory membrane potential fluctua-
tions of individual cells tend to synchronize amongst the members of a local group of
neurons, in this way subserving the orchestration of population activities needed to com-
municate with more distant structures (Llinás, 1988). Neurons oscillating in synchrony
with their neighboring peers may participate in several ways in such cellular coalitions,
for example as oscillators proper (also called pacemakers) or resonators (Wang, 2010).
While the former can exhibit oscillatory activities independently, oscillations in the latter
depend on external inputs. In general, the time constants and courses of their activation
crucially influence the functional properties of the host network, including optimal input
frequencies as well as output spike rates and (correlated) patterns (Llinás, 1988).
Insight into how synchronized oscillations in distinct frequency bands arise in neu-

ronal networks as a result of the interplay of individual cellular elements has been gained
from both modeling studies and experimental work (Wang, 2010). Although many open
questions remain, it is now widely accepted that a balanced regime of mutual excitation
and inhibition between the respective cellular elements is required in order for synchro-
nized oscillations to unfold and stabilize on timescales useful for interactions between
neurons (Salinas and Sejnowski, 2000; Hasenstaub et al., 2005; Atallah and Scanziani,
2009; Haider and McCormick, 2009; Wang, 2010). Another important question relates to
the ways in which distinct groups of oscillating neurons then come to synchronize their
activities in order for such interactions to take place between them which underlie the for-
mation of large-scale networks fundamental to the integrative properties of brain function
(Bressler et al., 1993; Engel et al., 2001; Varela et al., 2001). Various models have been
proposed (e.g., Traub et al., 1996; Vicente et al., 2008; Wang, 2010) and experimental
data have been collected in support of one or another notion, but no common consensus
has as yet been reached. Whatever the underlying mechanistic principles, what could
be the functional use of a coordination of neuronal activities in the form of oscillatory
synchronization? At least two major aspects can be distinguished in this regard which
have been the subject of intense research during the last decades.
First, temporal correlation of neuronal activities has been discussed as a mechanism

of information coding in contrast or addition to coding in terms of firing rates (von der
Malsburg and Schneider, 1986; Eckhorn et al., 1988; Gray et al., 1989; Vaadia et al., 1995;
Riehle et al., 1997; Diesmann et al., 1999; Averbeck et al., 2006). Most generally speaking,
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in such a scheme neurons with the same or similar activation profiles would exhibit
synchronization of their firing in response to, e.g., specific aspects of sensory stimuli or
patterns of motor output such as movement of a limb. In extension of this proposition,
neurons oscillating in synchrony would constitute a temporally stable population code of
the respective variable or mediate the association of sensory (Singer and Gray, 1995) or
motor (Graybiel et al., 1994) features into coherent perceptions or actions, respectively.
This notion, known as the binding-by-synchrony hypothesis, has been hotly debated in
recent years and is not of primary concern for the present study (see, e.g., Gerstner et
al., 1997; Lamme and Spekreijse, 1998; Gray, 1999; Shadlen and Movshon, 1999; Singer,
1999; Thiele and Stoner, 2003; Chalk et al., 2010; Ray and Maunsell, 2010, for critical
evaluations and extensive discussions).
Second, synchronization of neuronal activities has been discussed as a mechanism fun-

damentally important for signal routing, i.e., propagation of activities between cells,
groups of neurons, and brain structures and thus, neuronal communication (Engel et al.,
2001; Salinas and Sejnowski, 2001; Varela et al., 2001; Fries, 2005; Kumar et al., 2010).
Synchronization, i.e., temporal correlation of action potential firing has been found to
enhance the impact or drive of an input population on the activity of a receiving neuron
or groups of neurons by influencing their spiking threshold on top and even independently
of changes in input rates (Azouz and Gray, 2000; Salinas and Sejnowski, 2001; Azouz and
Gray, 2003). Moreover, precise timing of pre- and postsynaptic action potentials has been
shown to be important for the modulation of the efficacy of connections between neurons
(Markram et al., 1997). This effect is assumed to be enhanced by frequency-specific
synchronization of inputs (Jutras and Buffalo, 2010; Wang et al., 2010) and depends on
the biophysical capacities of neurons to act as so-called coincidence detectors, an idea
for which there exists both theoretical as well as experimental support (Abeles, 1982a;
Alonso et al., 1996; König et al., 1996; Bruno and Sakmann, 2006). While we do not
further discuss the details of the latter process here, it is important to note that signal
routing in nervous systems in terms of synchronization is supposed to rely on a precise
temporal coordination of the membrane potential fluctuations of the respective sending
and receiving neurons and neuronal populations (Salinas and Sejnowski, 2001). Fur-
thermore, effective information transfer and coordination of neuronal activities probably
depend on mechanisms which allow for the reliable prediction of periods of excitability of
both sending and receiving groups of cells. This requirement can be met by the inherent
predictability of the shape and time course of oscillatory cycles (Buzsáki, 2006).
Thus, taking the idea of an important mechanistic role of correlations in nervous system

function to a larger, i.e., network scale, oscillatory synchronization of neuronal activities
in distinct frequency bands has been proposed to be a particularly effective and also
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Figure 1.4: Oscillatory synchronization as a means of neuronal communication. The
plot shows, first, neuronal activities in two areas A and B which both exhibit rhyth-
mic modulation of their firing patterns. This is indicated by the temporal grouping of
spikes (tick marks) around specific phases (throughs) of the population average voltage
fluctuations (so-called local field potentials) signifying temporal windows of enhanced ex-
citability. Second, activities are synchronized in an oscillatory fashion not only within
but also between the two areas. This is indicated by the temporally consistent rela-
tionship, so-called phase coherence, between local field potential activities of the same
frequency from both areas and the temporal alignment of their spike firing times. In
this way, spiking activities of distant groups of cells can exert a functionally relevant
impact on each other (red and blue arrows), leading to temporally predictable, effective
connections between them. This figure was inspired by a very similar one in Fries, 2005.

energetically cheap way to establish temporally stable and robust functional connections
between neuronal assemblies (Buzsáki and Draguhn, 2004; Akam and Kullmann, 2010).
More precisely, oscillatory activity patterns are assumed to provide temporal windows of
enhanced or reduced excitability subserving coordinated timing of action potential firing
of distributed groups of cells (Fries, 2005). In such a scheme, rhythmic modulation of
input gain and output rate would allow for a precise temporal coordination of signal flow
between neurons, thus enhancing their effective connectivity (Womelsdorf et al., 2007).
Figure 1.4 illustrates two fundamental aspects underlying the assumed functional im-

portance of oscillatory synchronization as a means of regulating interactions among
the members of and between different populations of nerve cells. This includes (i) the
frequency-specific oscillatory synchronization of population activities in distinct groups
of neurons, and (ii) synchronization of the activities of different groups of cells in terms
of temporal coherence of their respective oscillatory patterns. Both aspects are of crucial
importance for the motivation of the present study as is outlined below (Section 1.4).
To summarize, frequency-specific input and output patterns of populations of neurons

as determined by the resonant properties (also termed “electroresponsiveness” by Llinás,
1988, page 1661) of the respective cells appear to play important roles in both neuronal
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signal processing and propagation (Steriade, 2000; Salinas and Sejnowski, 2001). Through
the dynamic interplay of groups of neurons oscillating in synchrony, network rhythms can
on the one hand selectively drive or inhibit activities in downstream structures and on
the other hand serve to control the impact of input signals on the receiving population,
much like a spatio-temporally tuned filtering mechanism (Salinas and Sejnowski, 2001;
Buzsáki and Draguhn, 2004; Fries, 2005). Classically, much of the work on the roles
of oscillations and synchrony in integrative nervous system functions has been carried
out in cortical neurons, structures and networks of regions. In recent years, however,
there has been growing interest in the functions that these mechanisms could subserve
in systems involving subcortical structures, the basal ganglia in particular. We briefly
review some important aspects of the current state of knowledge regarding mechanisms
and behavioral correlates of oscillatory synchronization in cortico-basal ganglia systems
in general (Section 1.3.2) and along the cortico-striatal axis in particular (Section 1.3.3)
before we explicitly name the aims and the motivation of the present study (Section 1.4).

1.3.2 Synchrony and oscillations in cortico-basal ganglia systems

Neuronal activity patterns marked by either oscillations, synchrony, or both have been
found in different basal ganglia structures in a number of species, in multiple frequency
bands, and under a variety of behavioral conditions (Walters and Bergstrom, 2010).
Accordingly, they have been suggested to be of fundamental importance for neuronal
communication in basal ganglia-related networks in analogy to their hypothesized func-
tion in other brain systems and behavioral contexts (Boraud et al., 2005). However,
the exact roles of oscillations, synchrony, and their conjunction in terms of synchronized
oscillations in networks involving basal ganglia structures have remained elusive as much
as the exact conditions and causes of their occurrence (Gatev et al., 2006).
A role for synchronized oscillations in basal ganglia structures in terms of information

coding per se has been caught into question (Bergman et al., 1998) primarily because a
number of studies has shown activities of single neurons to exhibit oscillatory patterns
preferentially in the diseased rather than in the healthy state (see, e.g., Bergman et al.,
1994; Nini et al., 1995; Raz et al., 1996, 2001; Goldberg et al., 2004). In such a scheme,
they are assumed to be disruptive to normal coding patterns relying on a diversification
of response profiles which is crucial for the fine-grained coordination of behavioral out-
put patterns (Leblois et al., 2006; Cruz et al., 2009). Oscillatory synchrony of neuronal
activities has also been proposed to impair signal transmission within and between basal
ganglia structures. This is mainly because entrainment of a large number of otherwise
mostly independently active neurons to exaggerate network oscillations (Magill et al.,
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2001; Mallet et al., 2008) may reduce functional segregation of different cortico-basal
ganglia loops and subloops, thereby disturbing action selection processes (Moran et al.,
2008). Accordingly, excess expression of frequency-specific synchronized oscillations is
assumed by many authors to play an impairing role in various neurological conditions
resulting from damage of basal ganglia structures such as Parkinson’s disease or different
types of dystonia which are marked by, amongst other symptoms, severe motor distur-
bances (Levy et al., 2002; Brown, 2003; Hammond et al., 2007; Sharott et al., 2008).
In contrast to the above, however, synchronized oscillations within and between inter-

connected basal ganglia structures have also been proposed to be important for neuronal
pacemaking not only in the diseased but also in the intact organism (Plenz and Kital,
1999; Bevan et al., 2002; but see Humphries et al., 2006). Also, a substantial number
of studies has demonstrated close temporal relationships between spiking activities of
individual cells and neuronal mass activity fluctuations in terms of local field poten-
tial (LFP) oscillations in various frequency bands and in different basal ganglia nuclei
(Courtemanche et al., 2003; Berke et al., 2004; Magill et al., 2004b, 2006; Dejean et al.,
2007; Berke, 2009; Sharott et al., 2009; van der Meer and Redish, 2009). Accordingly,
synchronous population oscillations have been assigned putative roles in orchestrating
interactions between different elements of the cortico-basal ganglia circuitry. In this
way, they may be fundamental to neuronal communication within this brain system on
both local and more global, i.e., inter-structural network scales (Boraud et al., 2005;
Lalo et al., 2008). In support of this notion, various experimental studies have revealed
the presence of distinct, frequency-specific patterns of oscillatory activities and their syn-
chronization within and between basal ganglia nuclei and associated structures in healthy
organisms (Goto and O’Donnell, 2001a,b; Brown et al., 2002; Berke et al., 2004; Magill
et al., 2004a; Sharott, 2005; Sharott et al., 2005; Magill et al., 2006). Indeed, rhythmic
and synchronized activities in basal ganglia nuclei have been suggested to subserve such
diverse aspects of normal behavior as action selection and organization (Courtemanche
et al., 2003; Berke et al., 2004), learning and memory (DeCoteau et al., 2007a; Tort et
al., 2008), movement execution and adaptation (Masimore et al., 2005; DeCoteau et al.,
2007b), reward processing and decision-making (van der Meer et al., 2010).
The above named findings indicate that rhythmic excitability fluctuations may have

functions in cortico-basal ganglia circuits similar to those assigned to them with regard
to cortical networks proper, like spatially and temporally precise filtering and selec-
tive routing of input and output signals (Section 1.3.1). Of crucial importance to the
present study, it has been suggested that rhythmic activities in functional-anatomical
loops through the basal ganglia in conjunction with temporally precise coordination of
cellular activities in their different nuclei are crucially influenced by global forebrain states
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as determined primarily by the massive cortical input to these structures (Magill et al.,
2000; Gervasoni et al., 2004; Magill et al., 2004a; Sharott et al., 2005, 2009). This notion
is of particular relevance in case of the striatum, which represents the major stage of
cortical input to the basal ganglia (Section 1.2). In addition, the second largest group of
inputs to the striatum derives from thalamic structures which are known to exhibit very
tight anatomical and functional connections (Sherman, 2007), expressed in prominent
patterns of synchronized oscillations (Steriade, 2000), with virtually all cortical areas
(Jones, 2007). These structural and functional features place the striatum in a favorable
position to modulate neuronal information flow as subserved by synchronized oscillatory
patterns and as originating in its input structures through the large-scale networks of
cortico-basal ganglia-thalamocortical loops (Boraud et al., 2005).

1.3.3 Synchrony and oscillations along the cortico-striatal axis

We have pointed above to some of the physiological requirements assumed to under-
lie well-timed coordination of neural population activities along the cortico-striatal axis
(Section 1.2.3). We have stated that neurons at the input stage would have to synchronize
their activities to exert a functionally relevant impact on their target cells. Furthermore,
we have indicated that striatal MSNs should be capable of making use of such synchro-
nized inputs in both receiving and sending terms. Do striatal projection neurons really
exhibit such properties, and how do they depend on brain state and behavior?
At this point, it is important to note that subthreshold membrane potential fluctu-

ations of MSNs have been shown to exhibit robust switches between depolarized and
hyperpolarized states (up- and down-states, respectively) in anesthetized rats (Wilson
and Kawaguchi, 1996), similar to those first described in cortico-thalamic neurons (Ste-
riade et al., 1993b). Under such conditions, membrane state transitions of MSNs display
periodicity with a frequency of about 1 Hz, and they strongly influence the spiking activ-
ity of the respective cells which fire action potentials during the up-state only (Stern et
al., 1997). Similar subthreshold membrane potential fluctuations have been been found
in cortico-striatal projection neurons as well (Stern et al., 1997) which exhibit tight rela-
tionships to slowly fluctuating local field potentials (Mahon et al., 2001; Steriade et al.,
2001). The same holds true for populations of ventral striatal neurons and associated field
potentials as entrained by inputs from hippocampal areas (Goto and O’Donnell, 2001a).
By themselves, subthreshold membrane potential fluctuations of MSNs are strongly de-
pendent on intact, glutamatergic cortical inputs (Plenz and Kitai, 1998; Kasanetz et al.,
2006) and they are sensitive to dopaminergic modulation (Murer et al., 2002). Further,
they are correlated between single medium-spiny neurons while at the same time their
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output firing patterns are not synchronized (Stern et al., 1998). Thus, members of stri-
atal cell assemblies appear to be able to simultaneously exhibit similar global activity
states but fine-grained, individualized firing patters (Stern et al., 1998).
Taken together, the above findings suggest that striatal MSNs may in principle be

capable of closely coordinating their activities in response to synchronized cortical in-
put (Kasanetz et al., 2002). In this way, processing of upstream information in striatal
ensembles along distinct cortico-striatal channels or the large-scale coordination of ac-
tivities between such channels could be achieved in a temporally and spatially precise
manner (Plenz and Aertsen, 1996; Stern et al., 1998; Murer et al., 2002; Kasanetz et al.,
2006, 2008). However, while the above described findings point to possible mechanisms
subserving interactions between cortical and striatal populations, the very own physio-
logical relevance of up- and down-state transitions along that axis can still be caught
into question. Most of the above data have been gathered in anesthetized preparations,
and the situation in non-anesthetized organisms is generally more complex and activity
patterns there are much more diverse, especially in the awake state (Mahon et al., 2006).
In this regard, frequency-specific oscillatory synchronization of neuronal population

activities in connected cortical and basal ganglia regions, among them the striatum, has
been proposed to play an important role in the dynamic formation of cell assemblies
within these structures as well as for their interaction during natural brain states (Murer
et al., 2002; Walters and Bergstrom, 2010). This notion has received some experimental
support by a number of studies demonstrating the presence of oscillatory population
activities in the striatum of awake animals, their modulation by different aspects of
behavior as well as their synchronization across different spatial scales (Courtemanche
et al., 2003; Berke et al., 2004; Masimore et al., 2005; DeCoteau et al., 2007a,b; Dejean
et al., 2007; Tort et al., 2008; Popescu et al., 2009; van der Meer and Redish, 2009).
Furthermore, phase-locking of specific types of striatal neurons to cortical and striatal
population oscillations, analogous to findings during anesthetized states (Sharott et al.,
2009), has been shown to occur under awake and behaving conditions (Berke et al., 2004;
Berke, 2009; van der Meer and Redish, 2009). This indicates that synchronous oscillatory
activities are indeed capable of modulating and possibly coordinating spiking activities
along cortico-basal ganglia loops and at their striatal input stage. However, evidence
for a functionally relevant role of synchronized oscillations for neuronal communication
within the striatum and between the striatum and associated regions is still very sparse.
Also, the range of behavioral states that influence the properties of these activities,
such as preferred frequencies and their modulation by behavioral demands, has remained
insufficiently explored. This holds particularly true for the cortico-striatal axis.
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1.4 Aims and motivation of the study

To summarize the preceding sections, accurately timed activities of ensembles of corti-
cal neurons are needed to excite striatal neurons above threshold whose activities have
themselves to be coordinated in such a way as to exert functionally specific effects on
downstream structures. Synchronous population oscillations have been proposed to be an
important mechanism mediating these functions along the cortico-striatal axis. However,
experimental evidence for this proposition under awake behaving conditions is sparse.
The aim of the present study was thus to investigate the patterns of oscillatory popula-

tion activities present in sensorimotor cortical and striatal regions in the brains of awake
organisms, their synchronization as well as their modulation by gross motor behavioral
demands. In this specific constellation, it was motivated by the facts that

(i) the cortico-striatal axis as the major input stage of the cortico-basal ganglia
circuitry is supposed to generally have important integrative functions in this
brain system, a role possibly subserved by synchronous oscillations,

(ii) sensorimotor cortical areas send massive, topographically ordered projections
to extended parts of functionally related striatal regions, and

(iii) classically, structures along the cortico-basal ganglia loop have been assigned a
primary role in the generation and adaptation of coordinated motor behavior,
and the striatum is one of the main sites of affection in Parkinson’s disease, a
condition marked by severe motor symptoms.

We reasoned that if synchronous population oscillations are indeed functionally relevant
for neuronal signaling along the cortico-striatal axis, then distinctly different behavioral
states should be reflected in marked changes of frequency-specific synchronous oscilla-
tions in a task engaging regions fundamentally important for the execution of normal
movements. Furthermore, we speculated that more fine-grained changes of behavioral
demand would also be accompanied by parallel modulations of synchronized oscillatory
patterns of population activities within and between cortex and striatum.
To explore these issues, we established an animal model of gross motor behavior, i.e.,

treadmill running, and trained animals to behave reliably in the task on different speed
levels. We implanted microelectrodes in sensorimotor cortical and striatal regions of well-
behaving subjects for the acquisition of neuronal population activities. We analyzed the
data with a focus on spectral parameters. We used power and phase-coupling measures
to explore the frequency characteristics and synchronization properties of population
activities along the cortico-striatal axis during resting and running states. We examined
interactions between frequency-specific rhythms and interrelations of coupling measures
as well as the scaling of synchronous oscillations with changing behavioral demand.
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2 Methods

2.1 Treadmill apparatus and behavioral environment

The treadmill apparatus used in this study (TSE Systems GmbH; Bad Homburg, Ger-
many) was similar to many of those that have been successfully employed since decades
for corresponding behavioral paradigms (e.g., Kimeldorf, 1961; Andrews, 1965; Chapin
et al., 1980). We describe here its basic composition and configuration before we turn to
more specific modifications made to it and the behavioral environment as prepared for
recordings in a later section (2.4.2). Note that large parts of this and the following section
(2.2) as well as some minor parts of Section 2.4.2 have been reused and adapted from
another manuscript of the author describing in detail the establishment of a treadmill
running model in Brown Norway rats (von Nicolai, 2011).
The main part of the treadmill (Figure 2.1) consisted of a rubber belt wrapped around

two pulleys whose axes were fixed to an aluminum plate. The belt was stretched tightly
between the two pulleys such that it served as a moving ground above the plate on which
rodents could sit and walk. This main part was 50 ˆ 13 cm in size, surrounded by a
frame of glass fibre reinforced plastic walls of about 16.5 cm height and covered with a
plexiglas top that could be opened and removed for handling of the animals. Another
plastic panel was mounted on top of the belt and in the middle between the two sidewalls
to split the belt’s surface into two lanes for two rats to be run in parallel.
The belt setup was connected to a small, computer-driven motor operated by means of

a control software installed on a PC according to user-definable settings. The inclination
of the treadmill could also be changed both manually and automatically to range between
0 and 20 degrees with respect to ground level. However, this feature was not used in any
of the experiments carried out during the course of this project.
At the back end of the treadmill there was a metal grid attached to the pulley for

animals to sit when they had stopped running and had been carried to the back by the
moving belt. Originally, this grid had been designed for the application of mild electrical
shocks in order to motivate animals to keep running in the task. This shocking device
was not used in the present study for several reasons. First, as the results of extensive
training sessions on many subjects prior to implantations had shown, the animals used
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a b

Figure 2.1: (a) Side view photograph image of the treadmill device used in the project
as originally distributed by the manufacturer. Image courtesy of TSE Systems GmbH.
(b) Rear view photograph image of the treadmill running lanes as seen through the half-
open plexiglass top. The picture shows the wooden walls placed right in front of the
shocking grids. Also note the darker, red area at the front end of the lanes that served
as an additional incentive for the animals to keep running straight.

here could not be motivated to get back to running in response to the shocks but rather
gripped onto the grid and stayed there during and after the shocking intervals. Second,
for electrophysiological recordings it was highly desirable to largely remove any unnatural
kinds of disturbances from the recording environment that could possibly interfere with
the experiments. Third, previous studies have shown that the use of a shocking device
can be substantially stressful for the subjects (Burgess et al., 1991). Lastly, the gap
between the metal grid and the running belt was another source of potential harm for
the animals since they could potentially have become entangled with their feet and tails
there as also others have explicitly noted (Nakao et al., 1982).
For all these reasons, a different strategy was chosen to keep animals running straight

on the track. The treadmill was modified by fixing a wooden wall at the back end of
each lane right in front of the shocking grid (Figure 2.1, panel b). Foamed material was
attached to their lower ends in order to protect the animals’ feet and tails from being
scratched at the edges of the walls. We reasoned that animals would experience their
hitting of the back wall in case of running errors as a sufficiently aversive event that
would motivate them to resume running as quickly as possible. While this turned out
to be the case in only a subset of animals, we feel that this approach of trying to keep
animals stay on the lanes was by far much better suited to the needs and constraints of
the present study and also much less risky and harmful for our subjects.
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Behavioral performance on the treadmill was measured in terms of breaks of infrared
light beams. These were situated within the front ends of two pairs of thin metal rods
attached to the inner walls closely adjacent to the belt’s surface at the back end of both
lanes. Since the running belt moved from front to back, an animal that would not keep
running straight towards the upper end of its lane would be carried to the back and then
interrupt the beam. These running errors (beam breaks) were counted for each subject
individually by the Process Control Unit that connected the treadmill to a PC.
The treadmill control software that was used to operate the machine also generated a

detailed record of the number, time points, and epochs of running errors. In this way,
we were able to monitor the behavior at all stages of a given running protocol. These
protocols could be designed by the user according to specific needs in terms of trial and
epoch lengths, speed levels, and the size of speed changes. The speed range covered by
the device was limited to values between 0.07 and 2.00 m/s, and the maximum resolution
of behavioral measurements was 5 seconds (i.e., a light beam break could only be elicited
once every 5 seconds). This restricted both the accuracy with which the running behavior
of the animals could be evaluated and the amount of behavioral control achieved with
respect to changes of neuronal activities (see Chapters 3 and 4). For an illustration of
the full makeup of trials used for recordings in terms of levels and their basic composition
of 5-second epochs, see Figure 2.6 on page 36.

2.2 Animal care and handling

All procedures performed in this study were in accordance with local ethics and Society
for Neuroscience (SfN) Guidelines for the Care and Use of Laboratory Animals. Male
Brown Norway rats (Rattus norvegicus) were acquired at the age of 8–12 weeks (Charles
River Laboratories; Sulzfeld, Germany). We housed them either individually or in groups
of 2–4 animals in standard cages under a 12 hour light/dark cycle. Water and food were
available ad libitum and weight development was monitored regularly. In agreement with
many previous studies employing treadmill running procedures in rats (see von Nicolai,
2011 for details), animals generally did not experience substantial weight losses during
the period of training and recording. Rats were allowed to adapt to the animal facilities
for a couple of days before we included them in any of the behavioral experiments. To
avoid unnecessary pain, we marked individuals not by perforation of earlobes but using
colored, water-resistant labels on their tails.
Every time before a training or recording session, we brought the animals to the labo-

ratory and allowed them to rest again for 2–3 minutes before we took them out of their
cages. They were then held quietly in the hands of the experimenter and gently stroked
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for a period of 1–2 minutes. We did so to support rapid adaptation of the animals to
both the experimental environment and to the experimenter. In this way, rats quickly
became used to all procedures and were in general very cooperative and calmly behaving
in all experimental settings, usually showing no signs of overt stress or aggression.
The methods and results of extensive behavioral training and pre-operative testing

sessions as well as the process of development of criteria used to select runners from
non-runners for later implantation with recording devices are described in full detail
elsewhere (von Nicolai, 2011). In brief, after we had explored the basic running capacities
of Brown Norway rats in the treadmill task and the approximate performance ranges they
could support, we developed more sophisticated training schedules that allowed for an
evaluation of the running behavior of individual animals as well as their preparation for
the more strenuous task conditions during recordings. These schedules included so-called
adptation and selection phases that served, respectively, to first acquaint animals to the
running procedures and to then help letting stabilize their performances over a certain
amount of time. In this way, we successfully trained a considerable number of rats that
we then selected our subjects for electrophysiological experiments from. However, we
also note here that animals exhibited a large amount of variability in their performances
both across individuals as well as across groups of subjects already during pre-operative
training stages (von Nicolai, 2011). This is one reason for why we obtained (behavioral)
data of very different quality during recordings (Section 3.1).

2.3 Implants and implantations

2.3.1 Target planning

As mentioned above (Section 1.4), we aimed at investigation of neuronal signals from the
sensorimotor part of the cortico-striatal axis. In rats, the corresponding striatal region
is located at dorsolateral aspects of the structure, spanning large parts of its anterior-
posterior extent (McGeorge and Faull, 1987, 1989). Electrophysiological studies have
shown that neuronal responses at these sites can most reliably be evoked by touch as
well as passive and active limb movements (West et al., 1990; Carelli and West, 1991).
Cortical input to the sensorimotor striatum mainly derives from primary and sec-

ondary sensorimotor areas (McGeorge and Faull, 1987, 1989; Brown et al., 1998). For
these reasons, we tried to target cortical areas M1 and S1 (primary motor and primary
somatosensory cortex, respectively) with our electrodes, preferentially focusing on those
zones within the latter containing functional anatomical representations of forelimbs and
hindlimbs (S1FL and S1HL areas, respectively; Hall and Lindholm, 1974). The com-
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bination of M1 and S1 regions covers large portions of the rat brain’s surface, in both
anterior-posterior and medial-lateral directions (Hall and Lindholm, 1974). As their very
names suggest, neuronal signals recorded there exhibit a diversity of activity changes
in response to sensorimotor engagement of subjects, and movement of body parts can
reliably be evoked through electrical stimulation of brain tissue at these sites (Hall and
Lindholm, 1974; Donoghue and Wise, 1982; Gioanni and Lamarche, 1985).
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Figure 2.2: Draft of one hemisphere of a coronal histological slice through the rat brain
at an AP level of `0.12 mm relative to bregma. Electrode drawings exemplify possible
spatial locations of contacts after implantation. Note the huge size of the rat striatum
as well as the large mediolateral extent of M1 and S1 areas. The figure is for illustration
purposes only; note that electrode sizes are not to scale and that we never implanted any
two electrodes fully aligned in either AP or ML planes. Abbreviations (excerpt): CPu,
caudate-putamen complex (striatum); M1, primary motor cortex; S1FL, S1HL: primary
somatosensory cortex, forelimb and hindlimb areas. Drawing taken and adapted from
Paxinos and Watson, 2005, with permission. Original design of this figure by G. Engler.
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All anatomical coordinates used in the study and provided in the remainder of this text
were taken from the rat brain atlas of Paxinos and Watson (2005). Figure 2.2 shows one
hemisphere from a draft of a coronal slice through the rat brain at an anterior-posterior
position of `0.36 mm with reference to bregma (for a definition of bregma, see Section
2.3.3 below). It depicts schematic drawings of four electrodes targeting cortical and
striatal areas. All cortical areas mentioned above (M1, S1 forelimb and hindlimb areas)
and the striatum (caudate-putamen complex, CPu) are readily visible.
We placed three electrodes into both cortical and striatal structures of both hemi-

spheres (i.e., 4 ˆ 3 “ 12 electrodes in total), with an average two-dimensional distance
between them of about 1.0 mm for cortical and 0.5 mm for striatal contacts. Cortical elec-
trodes were aimed at locations situated between `2.8 and ´2.5 mm in anterior-posterior
and 1.9 to 3.0 mm in medial-lateral directions with reference to bregma. Striatal elec-
trodes were aimed at locations situated between `1.6 and 0 mm in anterior-posterior
and 2.7 to 4.0 mm in medial-lateral directions.
Electrodes were individually moveable with watchmaker screwdrivers in the dorsal-

ventral (DV) direction, giving us the possibility to vary their positions along that plane
after implantation. We moved cortical electrodes to a maximum depth of 3 mm with
reference to the brain’s surface, and in case of striatal electrodes, we restricted our
recordings to positions between 4 mm dorsally and 7 mm ventrally in order to keep to
the anatomical boundaries of the two structures.

2.3.2 Implant construction

The implant used for chronic electrophysiological recordings consisted of two main parts.
The first was a so-called microdrive (Harlan 12 Drive; Neuralynx; Tucson, Arizona,
USA), a special holding device which incorporated 12 small drives consisting of plates
for attachment and long screws for independent feed of individual electrodes. A connector
at its upper end served to link the implant with the so-called headstage and a tether cable
connecting it to the recording system (for details of the connector, headstage, cable and
recording system, see Section 2.4.3 below). Panel b of Figure 2.3 shows a picture of an
implant skeleton carrying cap and connector as well as silver wires (see below).
As the second main part we attached a self-designed and specially manufactured cap

(Figure 2.3, panels b–d) to the lower end of the implant. It contained a large number
of tiny holes arranged and drilled according to the scale of a two-dimensional outline
of stereotaxic coordinates of brain structures of interest as provided by templates of
an anatomical atlas of the rat brain (Paxinos and Watson, 2005). This allowed for the
selective targeting of a wide variety of positions along both anterior-posterior and medial-
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Figure 2.3: Implant used for chronic electrophysiological recordings. (a) Photograph
image of the complete original microdrive as distributed by the manufacturer. Image
courtesy of Neuralynx. Compare this makeup to the modified one shown in panel b. (b)
Front view photograph image of an implant skeleton consisting of the microdrive equipped
with a cap for extension of targeting possibilities, and a connector (electrode interface
board, see Section 2.4.3) different from that in panel a for use with the appropriate
headstage. The small drives consisting of plates and screws are also visible. Four silver
wires are attached for connection with ECoG, ground, and reference screws. (c) Bottom
and side view photograph images of the cap used for selective targeting of a large number
of rat brain structures. (d) Illustration of the pattern of holes situated on the cap’s
lower side. The black dot above the center crosslines indicates the relative location of
bregma. Different colors denote different brain structures. Abbreviations: GPe/GPi,
globus pallidus, external and internal parts; VL/CM, ventrolateral and centre-median
thalamus; STN, subthalamic nucleus, SNc: substantia nigra pars compacta. Original
design of the cap by G. Engler, C. K. E. Moll, A. Sharott, C. v. Nicolai.
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lateral planes across large brain regions. In contrast, in the original design (Figure 2.3,
panel a), targeting of electrodes was limited to a small part of particular brain regions.
The parts of the electrodes (diameter: 75 µm; impedance: 0.8–1.2 MΩ; FHC Inc.;

Bowdoin, Maine, USA) located inside the microdrive were led through glass-coated poly-
imide tubes (Polymicro Technologies, L.L.C.; Phoenix, Arizona, USA), which assured
their secure and tight guidance from the bottom of the implant up to the level of the
drives. We used gold pins (EIB Large Pins; Neuralynx) to attach the electrodes to the
connector’s contacts. In addition to the microelectrodes, four silver wires (Science Prod-
ucts GmbH; Hofheim, Germany) were soldered to the connector (Figure 2.3, panel b).
We connected them to four stainless-steel screws (Plastics One Inc.; Roanoke, Virginia,
USA), placed into burr holes in close vicinity of the dura mater. They served as ground
and reference as well as for recording of electrocorticographic (ECoG) signals from above
anterior and posterior regions of the brain.
The specific final makeup of the customary microdrive required its complete disman-

tling and major modifications to its original design. In total, this process of deconstruc-
tion and subsequent assembly of a single implant took about 10 to 14 hours on average.

2.3.3 Surgical procedures

We performed the placement of implants under clean conditions and only in animals that
showed an overall good health status at the time of operation. Care was taken to avoid
any kind of peri-operative stress. We closely monitored the animals’ weight on the day
before and for three to seven days after surgical procedures.
Animals weighing between 320 and 435 gram were anesthetized initially with a com-

bination of Ketamine (Ketamin Gräub, Dr. E. Gräub AG; Bern, Switzerland; 75 mg/kg
bodyweight) and Xylazinhydrochloride (Rompun®, Bayer Vital GmbH; Leverkusen,
Germany; 6 mg/kg bodyweight) applied intraperitonally, followed by ventilation with
Isoflurane (Isofluran-Baxter, Baxter Deutschland GmbH; Unterschleißheim, Germany)
and a mixture of N2O/O2 (70/30%). We applied the local anesthetic Lidocain (Xy-
locain, Astra-Zeneca GmbH; Wedel, Germany) to the operation site on the skull. In
order to prevent infections and drying of the eyes, we also locally applied a combination
of Bethamethason and Gentamicin (Terracortril®, Dr. Gerhard Mann GmbH; Berlin,
Germany) and Dexpanthenol salve (Bepanthen®, Bayer Vital GmbH). Depth of anes-
thesia was constantly monitored throughout the operation using the so-called pinch-test,
in which a motor response to a normally painful stimulus applied with a forceps to
the animal’s paw is regarded as a sign of insufficient anesthetic depth. We kept body
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temperature constant with a heating pad and measured it continuously with a rectal
thermometer (Fine Science Tools GmbH; Heidelberg, Germany).
Rats were placed into a stereotactic frame (David Kopf Instruments; Tujunga, Cali-

fornia, USA) and their heads tightly secured by means of ear bars and a snout holder
combined with a ventilation mask. We shove the skin on top of the head and cleaned it
with an aseptic agent (Braunoderm®, B. Braun Melsungen AG; Melsungen, Germany).
We made a longitudinal cut and removed subcutaneous tissue with a surgical scraper
to neatly expose the skull. Colored marks were made on its surface at the positions of
anchor screws (Fine Science Tools GmbH), ECoG, ground, and reference screws (Plastics
One Inc.; Roanoke, Virginia, USA) using a tissue pen (Securline®, Precision Dynamics
Corporation; San Fernando, California, USA).
We calculated the coordinates for placement of the electrodes with reference to the

so-called bregma, which is defined as the “point of intersection of the sagittal suture with
the curve of best fit along the coronal suture” according to Paxinos and Watson, 2005,
page VII, in AP and ML planes and marked them with the tissue pen as well. Figure 2.4
depicts the lower surface of the implant (Figure 2.3, page 29) projected onto the drawing
of a rat skull, bregma and lambda (see figure legend) landmarks as well as all theoretically
possible target locations of electrodes and the intended positions of all screws.
We drilled small holes into the skull at the screws’ positions and made one large

trepanation around the entire target area of the electrodes above each hemisphere. We
carefully removed the bone and the dura using forcipes and small hooks and then covered
the surface of the brain with sterile silicon oil. Subsequently, the implant was attached to
a stereotactic arm and slowly lowered into its final position on the skull’s surface where
we tightly fixated it by applying dental cement (Paladur®, Heraeus Kulzer GmbH&Co.
KG; Wehrheim, Germany) to the bone around it and to the anchor screws. Note that
cortical and striatal electrodes had been exposed by 2 and 4 mm, respectively, prior to
implantation. This was done in order to directly place electrode tips in their target areas
and to ease their feed after the operation. Finally, we closed the opened skin around the
implantation site by means of tight surgical sutures and tissue glue (Histoacryl®, Braun
Aesculap AG&Co. KG; Tuttlingen, Germany).
As a first postoperative analgetic intervention, we applied a subcutaneous injection of

Metamizol-Sodium (Metapyrin®, Medistar Arzneimittel-Vertrieb GmbH; Holzwickede,
Germany; 100 mg/kg bodyweight), which we later continued orally via the drinking water
when needed (4 mg/ml). Small disturbances in wound healing were treated with Povidon-
Iod (Betaisodona®-Solution, Mundipharma GmbH; Limburg (Lahn), Germany). We
allowed animals to recover from surgical procedures for at least one week before we
started working with them again.
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Figure 2.4: Schematic illustration of the implantation site. The lower surface of the cap
is projected onto an anatomical drawing of a rat skull. This was the final position of the
implant as we fixated it onto the skull’s surface after its placement and insertion of the
electrodes. The large black circle represents the implant cap’s circumference. Red dots
denote possible electrode locations with no explicit reference to different structures here
(Figure 2.3, page 29); green, blue, and velvet dots mark sites of anchor, ECoG, and ground
or reference screws, respectively. Black arrowheads point to the anatomical landmarks
bregma and lambda. Lambda is defined as the “midpoint of the curve of best fit along
the lambdoid suture” (Paxinos and Watson, 2005, page X). The figure of 9 mm next to
the double-arrow denotes the distance between bregma and the so-called interaural line
(not sketched). Abbreviations: B, bregma; L, lambda. The original drawing of the skull,
coordinates of anatomical landmarks, and parts of arrows were taken and adapted from
Paxinos and Watson, 2005, with permission. Original design of this figure by G. Engler.
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2.4 Recording environment and data acquisition

2.4.1 Electrode displacement during rest

The kind of implant used in this study allowed for an alteration of individual electrode
positions on a small spatial scale. We changed the dorsal-ventral positions of the elec-
trodes at the beginning of each session in order to sample activities from larger parts of
the structures than it would have been possible using fixed, non-moveable electrodes.
To this end, animals were placed in a transparent, cylindrical plexiglas bowl that had

an open top and the ground covered with saw dust. We placed the bowl between the legs
of a tripod such that the tether cable carrying the headstage that connected the implant
with the recording system could be led down from above securely and free from tension.
In principle, animals could freely move around and explore the insight of the bowl.
However, they quickly adapted to the procedures involved in electrode displacement and
spent most of the time sitting inside the bowl quietly at rest. We took care to avoid any
additional stress in terms of changing lights or loud noise during handling of the rats.
We moved the electrodes along the dorsoventral axis of the brain by turning the screws

of the small drives, with one full turn corresponding to a distance of approximately 156
µm. We mapped the implanted structures in downward and upward directions at least
once with each functioning electrode during the entire recording period which lasted
between a few weeks up to several months in the different animals. After a change in
position, electrodes were left in place at least 10–15 minutes to allow signals to stabilize.

2.4.2 Recording conditions during treadmill running

Following electrode displacement, we transferred the animals from the plexiglas bowl
onto the treadmill. In order to protect the recording environment from surrounding
noise, we constructed a large box (recording chamber; Figure 2.5) from wooden panels
and aluminum bars and lined it with sound-absorbing foam plates on the inside. We
attached two light bulbs to the chamber’s ceiling that we switched off during recordings
to avoid noise contamination of electrophysiological signals. Animals thus had to perform
in darkness, but we constantly observed them from the outside via a monitor that we
connected to an infrared camera located inside the box right above the running lanes.
Figure 2.5 shows the treadmill apparatus inside the box as we prepared it for recording

sessions. We had to make a few major modifications to it to account for the peculiari-
ties of our experimental setting. First, we removed the treadmill’s plexiglas top during
recordings because with it in place neither would the running lane have accommodated
the implanted animal nor had it been possible to connect the electrode interface board
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Figure 2.5: The treadmill apparatus inside the recording chamber as we modified it for
recording purposes (cf. Figure 2.1, page 24). Note the black frame added to increase the
height of the walls as well as the suspension of the tether cable at the mike boom behind
the infrared camera that we attached to the ceiling to monitor the animals’ behavior.

on the implant with the head stage and the tether cable of the recording system. Second,
in order to then prevent animals from escaping the lanes via the low surrounding walls,
we enhanced the enclosure by adding a black, four-sided, self-made frame of a height of
16.5 cm to it, yielding a total height of the walls measuring 33 cm from the bottom of
the lanes to the top. Third, we attached a special holding device (a so-called mike boom)
that was rotationally moveable in the DV plane to the ceiling right above the middle of
the treadmill. It served to flexibly suspend the cable connecting the implant’s connector
with the recording system. The tether cable itself was led to the outside through a little
hole in the box’s ceiling. Those parts of it situated close to the headstage were addition-
ally shielded by wrapping them inside of heat shrink tubings. With these modifications,
a secure connection between the implant and the recording system could be established
that allowed for relatively stable conditions of data acquisition from the behaving rats.
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2.4.3 Data acquisition, online processing, and storage

Acquisition of neural signals was done with an analog 32-channel system (Cheetah 32;
Neuralynx; Tucson, Arizona, USA) equipped with an electrode reference panel (ERP-
27, Neuralynx) and four differential amplifiers (Lynx-8; Neuralynx). Signals were pre-
amplified using a headstage (HS-16; Neuralynx) directly contacting the connector (elec-
trode interface board, EIB-16; Neuralynx) placed on top of the implant (Figure 2.3, page
29) and sent to the recording system via a light-weight tether cable attached to it.
Raw broadband analog signals from all electrodes and ECoG-screws were amplified and

filtered twice with separate amplifiers to extract both their low (i.e., LFP and ECoG;
sampling rate: 3787 Hz) and high-frequency (i.e., multi-unit activity, MUA; sampling
rate: 30303 Hz) components. We amplified the low-frequency components of the signals
by factors of 100–2000 and used high- and low-pass filter settings of 1 and 475 Hz,
respectively. For the high-frequency components, amplification factors varied between
1000 and 20000, and we used filters settings of 300 (high-pass) and 3000 or 6000 Hz (low-
pass), respectively. Analog-to-digital conversion of the signals was performed by the
Cheetah-system’s A/D-converter. All data were stored on hard disk for offline analysis.

2.5 Behavioral task

Running protocols used for recording sessions were the same as those employed during
the Pre-operative stage of the pilot study carried out for establishment of the behavioral
model (von Nicolai, 2011) which were in turn closely adapted to those used on preceding
training stages. Their design and development over time were subject to several con-
straints. These included performance ranges and behavioral capacities of the animals
under study as well as aspects of data quality and experimental goals. Given a consid-
erable amount of variability between pre- and post-operative performances of individual
rats, we had to adapt performance ranges for each subject according to capacities varying
during and across recording days, weeks, and months.
Figure 2.6 illustrates the general outline and details of the three behavioral protocols

used for recordings. Each recording (also termed trial in the following) lasted 7 minutes
and included 2 resting periods at the beginning (pre) and at the end (post) of 60 seconds
duration each. We only used data from the first resting period (pre) for comparison with
running activities because animals usually did only rest quietly at the front end of the
lanes before but not after running. Since the aim was to compare activities during rest
with those during running at different levels of motor demand, each protocol included 4
speed levels again of 60 seconds duration each. In addition, an Intro-period of 60 seconds
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full trial (1 recording): 7 min

1/2/3 2/3/4 3/4/5 4/5/6rest (pre) Intro rest (post)

relative and absolute speed levels, speeds

.16/.20/.24 m/s .20/.24/.28 m/s .24/.28/.32 m/s .28/.32/.36 m/s

.16 m/s .20 m/s

.16 m/s .20 m/s .24 m/s

.16 m/s  5 second epochs

60 sec60 sec speed change period60 sec

1 2 3 4

prot. 1

prot. 2

prot. 3

Figure 2.6: Schematic outline of the behavioral task protocol used for recordings. Note
the differences between protocols no. 1–3 in terms of details of the Intro-period as well as
level composition. The so-called speed change period encompassed 2 epochs of 5 seconds
length around each speed change event. Abbreviations: prot., protocol.

length between resting and the first running levels served to guide the rats progressively
to higher running speeds. We had introduced this modification for safety reasons because
of particularly unstable initial running patterns in some subjects (Figure 2.6).
Absolute values of speeds ranged between 0.16 and 0.36 m/s, such that the three

different protocols had overlapping speed ranges. We chose one of these protocols on
an instantaneous basis for a given trial during a given session according to the current
behavioral capacities of the respective subject under study. The total number of speed
levels was 6, but note that due to differences in level composition of the three running
protocols, the first relative speed level could be one of absolute levels no. 1, 2, or 3, and
correspondingly different speeds on subsequent levels (Figure 2.6).
The speed of the belt increased abruptly in steps of 0.04 m/s at the moments of

transition between successive levels (speed changes). In Figure 2.6, speed changes are
indicated by red, vertical arrows between relative levels no. 1 and 2, 2 and 3, 3 and 4,
respectively. Each speed level was further subdivided into epochs of 5 seconds length,
resulting in 12 epochs per speed level. To distinguish epochs electronically, the treadmill
control software delivered a TTL-pulse at the transition points of successive epochs.
This determined the maximum sampling frequency of behavioral activity allowed by the
system since a break of the light beam at the back end of the lanes was counted once
every 5 seconds at maximum. It is these epochs that form the smallest units used for
analysis of recorded time series data (see Section 2.6.1 below).
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2.6 Data preprocessing

2.6.1 Signal quality evaluation

We first cut the entire recording traces of each channel’s data (filtered LFPs and multi-
unit spike trains, Section 2.4.3) of each trial into epochs of 5 seconds length according
to the structure of the behavioral task and as delimited by the epoch triggers emitted
by the treadmill device (Section 2.5). We then examined the data for artifacts arising
from various sources such as abrupt movements of the animal’s head or instability of the
recording due to damaged electrodes, moving cables, etc. A given channel had to fulfill
three major criteria in order to be judged as valid in terms of pure recording quality,
besides more specific conditions such as the estimated spatial location of electrodes with
respect to the anatomical boundaries of desired target structures (Section 2.3.1).
First, careful online and offline inspection of raw signal traces was carried out to mark

and exclude channels that obviously carried only noise or other unphysiological activities.
Second, we determined the so-called noise-threshold (Quiroga et al., 2004; for more

details, see Section 2.6.3) of each single channel LFP data epoch and examined wether
any rectified (i.e., absolute) signal value would exceed an amplitude of 3–12 times this
threshold. Spike data was not evaluated explicitly in this way since the maximum thresh-
old used for spike detection (Section 2.6.3) also served as a means to prevent the inclusion
of epochs contaminated by high-amplitude artifacts. An epoch was judged to be valid
at a given threshold when there was no amplitude value exceeding it and to be invalid
otherwise. For sure, such an automated thresholding operation always implies a trade-
off between loosing physiological activity and keeping artifacts. Hence, we computed the
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Figure 2.7: Signal quality evaluation by means of amplitude thresholding. The two plots
show the percentage of epochs of cortical and striatal LFP data remaining after signal
evaluation at 10 different multiples m of the noise threshold. Note the large differences
between the first 3–5 thresholds which then decrease towards higher multiples, and the
steep decline of percentage residuals after running onset between epochs no. 12 and 13.
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percentage of epochs judged as valid at every threshold level separately for each channel
from each structure and then pooled the data from all trials and all subjects. The re-
sult of this procedure is illustrated in Figure 2.7 demonstrating a threshold value of four
times the noise level to be the most appropriate choice for LFP-signals under the above
constraints. The plots also indicate a decrease in LFP-signal stability after running onset
(epoch no. 13), confirming observations made by visual inspection of raw data traces.
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Figure 2.8: Signal stability evaluation by means of variance tests at 10 different α-
levels. (a) Local field potentials. (b) Multi-unit activity. Data from cortical and striatal
electrodes were pooled across trials and subjects. Note, in all plots, the marked separation
of percentage residuals between α-levels of 0.01 and 0.05. In addition, percentages decline
and increase steeply between rest and running epochs in (a) and (b), respectively.

Third, we implemented a data stability test based on a judgement of equal variances of
root mean square (RMS) values of subsegments of data following an approach described
by Moran et al. (2008). In short, each 5-second epoch was cut into 10 parts of 500 ms
length, and each of these parts was further subdivided into 10 pieces of 50 ms length
each. We determined the root mean square (RMS) values of each 50 ms piece across
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data values x in the following manner, yielding 10 different RMS values from each part:

RMS “

c

x21 ` x
2
2 ` ...` x

2
n

n
,

where n denotes the number of data values. We then used Levene’s test to evaluate
the null hypothesis of equal variances across data parts, a hypothesis that would have
to be rejected in the case of high amplitude artifacts exceeding usual amplitude values
(Moran et al., 2008).1 We computed the test for a number of 10 α-level values between
0.001 and 0.5, and again determined the percentage of data epochs remaining at different
thresholds. This revealed an α-level of 0.01 to provide the best trade-off between inclusion
and rejection of data segments for both LFP and multi-unit data as is shown in panels a
and b of Figure 2.8. As in the case of amplitude thresholding (Figure 2.7), the number of
valid epochs declined after running onset. Surprisingly, however, stability of multi-unit
signals increased between rest and running.

2.6.2 Preprocessing of Local Field Potentials (LFP)

2.6.2.1 Resampling and digital filtering

Local field potential data were first imported into the MATLAB® environment and
down-sampled from a sampling rate of 3787 Hz to a rate of 1000 Hz. Next, we performed
two filtering steps on the raw LFPs. Note here that all LFP signal evaluation steps
described in the previous section (2.6.1) were performed on filtered data traces.
First, line noise components (50 Hz DC and higher harmonics of 100, 150, 200, and

250 Hz) were removed using a notch filter (fourth-order Butterworth band-stop filter)
with a sharp cut-off of ˘0.1 Hz around the frequency of interest. Secondly, we applied
two fourth-order Butterworth band-pass filters to the notch-filtered data. The first one
at 2 Hz (high-pass) was used to remove slow signal drifts caused by movement of the
animals. The second one at 256 Hz (low-pass, approximately 1{2 the Nyquist-frequency
of 500 Hz at a sampling rate of 1000 Hz; van Drongelen, 2007) served to reduce the
overlap between low- and high-frequency signal components resulting from hardware
filter settings (Section 2.4.3). Filtering procedures were performed in both forward and
reverse directions on a given data trace to avoid phase distortions of the signal.
Figure 2.9 exemplifies the effects of filtering on the frequency content of LFP-data. In

the left plot of panel a, massive line noise components at 50 Hz and higher harmonics

1 Levene’s test is a modified version of Bartlett’s multiple-sample test for equal variances. It does not
rely on a normal distribution of data values, is less affected by outliers but still robust in case of small
sample sizes (Brown and Forsythe, 1974; Lim and Loh, 1996).
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Figure 2.9: Effects of notch-, high-, and low-pass forward-reverse filtering of 60 seconds
of raw LFP-data recorded in the striatum of a rat during quiet rest. (a) Power spectra of
raw and filtered data, computed using Welch’s method (Section 2.7.3.1) and normalized
through multiplication with the frequency axis to account for the 1{f2 decay of spectral
power (Section 3.3.1). (b) Relative power spectra were computed to quantify the effects
of filtering in more detail, with values around 1 indicating no change and values below
1 demonstrating a reduction in power of the respective components. Red dashed ver-
tical lines in the left plot are at 4 and 128 Hz. These are the lower and upper limits,
respectively, of the frequency range considered for spectral analyses (Section 2.7.3.2).

are readily visible. These components are nicely rejected with band-stop filters, as is
illustrated in the right plot of panel a. To quantify the effects of notch-, high-, and
low-pass filtering in more detail, we computed the relative power of filtered vs. raw data
by dividing the respective spectra. The plots in panel b of Figure 2.9 again demonstrate
the strong suppression of undesired frequency components as well as the sharp cut-off
of notch filters as illustrated for the case of the 50 Hz component. Further, they show
that the band-pass filters introduce considerable slopes below 4 and above 150 Hz in the
spectra. Note, however, that the range of frequencies affected by these procedures lies
well outside the limits of the frequency range considered later for spectral analyses.
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2.6.2.2 Bipolar derivations

A common concern in the analysis of neural voltage measures is a contamination of the
signals recorded on one electrode by spillover of activities from adjacent or distant sources
through volume conduction. It is a serious issue in extracranial recording techniques such
as EEG or MEG (e.g., Nolte et al., 2004), but can also be problematic in recordings of
intracranial mass activities such as the LFP. In the striatum, one of the two brain struc-
tures investigated here, at least some of the LFP-activities recorded there are assumed
to be influenced to some degree by volume conduction effects (Berke, 2005).
Several approaches have been proposed to deal with the issue of volume conduction.

The one used here is based on the creation of bipolar derivations from two signals recorded
monopolarly using a common global reference. It has been applied previously to LFPs
recorded from the basal ganglia of rats (Magill et al., 2006; DeCoteau et al., 2007b) and is
briefly illustrated in Figure 2.10. The basic idea is that through subtraction of one signal

Figure 2.10: Creation of bipolar derivations from field potential recordings. The upper
two rows show distinct single-channel traces of LFP-data (left plots) recorded in the
rat striatum during quiet rest as well as the corresponding normalized power spectra
(right plots) computed using Welch’s method (Section 2.7.3.1). The third row shows the
difference trace obtained by subtracting the data values of channel 2 from corresponding
values of channel 1 and again the resulting power spectrum. Note the considerable
reduction in raw signal amplitude and the corresponding decrease in overall power levels.

41



Chapter 2 Methods 2.6.3

from another, activities picked up from a common global source that have zero phase lag
as it can be expected in the case of volume conduction (Nolte et al., 2004) will cancel.
As is obvious from the plots in Figure 2.10, the amplitude of the raw difference trace is
markedly reduced. This is also reflected in the massive, roughly 10-fold overall reduction
of power in the bipolar spectrum which also exhibits qualitative differences. These two
characteristics suggest the elimination of both common global and more specific local
signal components exhibiting zero-phase lag between the two electrodes by the derivation
process (see Section 4.1.7 for a discussion of consequences).
We created bipolar derivations from monopolar signals recorded on electrodes located

in the same structure and the same hemisphere and referenced against a skull screw
(Section 2.3.2). This yielded three unique bipolar pairs for each structure-hemisphere
combination. Spectral analyses were then carried out on these signals the same way as
for monopolar LFPs (Section 2.7).

2.6.3 Preprocessing of Multi-Unit Activities (MUA)

Action potentials emitted by neurons (spikes) can be extracted from the high-frequency
content of electrophysiological recordings (spike trains) by simple application of low and
high amplitude thresholds. They represent the minimum and maximum values, respec-
tively, that a voltage signal must and is allowed to cross in order to be distinguished as
a spike from ongoing background noise and, at the same time, not to be considered an
artifact (Figure 2.11). The determination of a so-called noise threshold which is used as a
basis for spike detection thresholds is thus a crucial first step in the process of separating
single- or multi-units from background activity.
Quiroga and colleagues (Quiroga et al., 2004, page 1668) estimated the noise threshold

σ of a band-pass filtered signal x from the median of its normalized absolute values |x|:

σ “ median

ˆ

|x|

0.6745

˙

.

The constant of 0.6745 is the absolute value of the standard score2 of the first and third
quartile of the data distribution. It expresses the raw signal values in terms of standard
deviations under the assumption of normally distributed data. The motivation for this
way of estimating the noise threshold is to avoid a possible bias that can be introduced
when a lot of high-amplitude events occur in the data that corrupt threshold estimates
based on the mean of raw signal values. Quiroga et al. (2004) used a number of 4σ as
the minimum threshold in their paper. Visual inspection of data traces and computation

2 http://en.wikipedia.org/wiki/Standard_score
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Figure 2.11: Spike detection through amplitude thresholding. The left side of the figure
shows two 5-second epochs from spike trains recorded in the striatum of a rat during
quiet rest and treadmill running, respectively. The red lines are the lower amplitude
thresholds (4σ) applied, and the little red dots beneath denote time points of threshold
crossing. The plots to the right of the spike trains are the individual (black) and average
(red) waveforms obtained by cutting windows of 128 sample points (corresponding to
approximately 4.2 ms of data) out of the raw signal around each spike.

of amplitude distributions revealed this to be a reasonable value for spike detection also
for our bandpass-filtered multi-unit data.
After amplitude thresholding, the timestamps of detected events were stored and spik-

ing vectors were created as arrays of zeros filled with ones at the times of spike occur-
rences. We created down-sampled versions of the high-frequency sampled (Section 2.4.3)
spike train signals by adapting the spike times to a sampling rate of 1000 Hz in order
to match it to the (re-)sampling rate of the local field potentials. All frequency domain
analyses were carried out in the very same way on both types of signals.

2.7 Data analysis

2.7.1 Behavioral analysis

We analyzed the behavioral data from recording sessions in the same way as in the
behavioral pilot study (von Nicolai, 2011). Error rates were computed as light beam
breaks per minute (bb/min) committed during the 12 ˆ 5-second epochs of each speed
level (Section 2.5) and averaged according to the scope of the respective level- or epoch-
based analysis step. They are depicted most of the time using the full range of possible
values (0–12) to ease comparability of results across animals and running protocols.
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2.7.2 Firing rate analysis

We computed firing rates from multi-unit signals by counting the spikes detected by
means of amplitude thresholding (Section 2.6.3) within every epoch and then dividing it
by the epoch’s duration. We adapted both numbers to the size of each epoch’s analysis
window (3500 points corresponding to 3500 milliseconds of data) as constrained by the
demands of time-frequency analyses (Section 2.7.3.2). For level averages, we computed
the mean across all valid epochs (n “ 12 at maximum, see Section 2.7.4) of each level.

2.7.3 Spectral analyses

2.7.3.1 Fourier transform-based frequency analysis

In general, any time domain signal xptq (or a discrete version xrns of it) can be trans-
formed into its frequency domain counterpart Xpωq (Xrks) by representing it as the sum
of a set of periodic sinusoids of different frequencies (van Drongelen, 2007). Most com-
monly, this kind of decomposition of a signal is achieved by means of a so-called Fourier
analysis using either the complex or the real versions of one out of a family of appropri-
ately named functions depending on the signal type (continuous vs. discrete, periodic vs.
aperiodic, real vs. complex; for a detailed overview, see Smith, 1997, pages 530-31).
In case of time domain functions that are complex, continuous, and aperiodic, the

Fourier Transform Xpωq of signal xptq is given by equation (2.1) where ω denotes fre-
quency running from ´8 to `8, e denotes the exponential function, and j represents
the complex number

?
´1:

Xpωq “
1

2π

`8
ż

´8

xptqe´jωt dt. (2.1)

In case of discretely sampled signals like those resulting from our measurements of neural
activities, the Discrete Fourier Transform Xrks of signal xrns is computed according to

Xrks “
1

N

N´1
ÿ

n“0

xrnse´j2πkn{N , (2.2)

where k denotes frequency components evenly spaced between 0 and N´1, and N is the
length of the time domain signal. Equation (2.2) can be rewritten using Euler’s relation,

ejx “ cospxq ` j sinpxq.

This allows the expression of complex exponentials as the sum of real-valued sinusoids.
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In case of the Discrete Fourier Transform, applying Euler’s relation yields equation (2.3):

Xrks “
1

N

N´1
ÿ

n“0

xrns rcosp2πkn{Nq ´ j sinp2πkn{Nqs . (2.3)

This equation demonstrates the contribution of both cosine and sine wave components
to a given frequency domain value. From the real and imaginary parts of these complex
numbers the magnitudes (i.e., amplitudes) and phases of the different frequency-specific
sinusoids can then be determined (Smith, 1997).
Equations (2.1)–(2.3) all indicate the principle of Fourier analysis which essentially

boils down to the correlation of a time domain signal with a complex sinusoid, i.e., their
multiplication and subsequent integration and summation, respectively, in the continuous
and discrete case. Thus, each time domain value contributes to a given frequency domain
value, and vice versa in the case of inverse Fourier transforms that we do not consider here.
A particularly elegant and computationally inexpensive method to obtain the frequency
domain representation of a time domain signal is by means of algorithms implementing
the so-called Fast Fourier Transform (FFT) which is at the heart of many Fourier-based
analysis techniques used today (van Drongelen, 2007). For instance, the FFT forms an
essential part of power spectrum estimation techniques such as Welch’s method that we
used for some analyses in the present chapter. For a brilliant introduction to and in-depth
discussion of Fourier analysis techniques, see Smith, 1997.

2.7.3.2 Wavelet transform-based time-frequency analysis

Wavelet decomposition of a signal amounts to its analysis in terms of trends and fluc-
tuations, i.e., the computation of weighted averages of and weighted differences between
adjacent values. While the former primarily capture overall, slower variations (trends) of
the signal, the latter primarily capture its localized, faster variations (fluctuations). The
computation of weighted averages and differences, respectively, is achieved through the
application of appropriately chosen scaling signals and wavelets adapted to the charac-
teristics of the respective input signal function to be decomposed (Walker, 2008).
This analytical concept can be extended from the time into the frequency domain and

to the decomposition of an input signal into low- and high-frequency components with
the former capturing its slower trends (or averages) and the latter capturing its faster
fluctuations (or details). In this case, scaling signals and wavelets and their Fourier
transforms are employed to act as low-pass and high- or band-pass filters, respectively,
on the input signal function and its Fourier transform owing to their different spectral
characteristics. A repeated application of appropriately modified scaling signals and
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wavelets on different levels of a so-called multi-resolution analysis allows for an accurate
extraction of the spectral components of an input signal (Walker, 2008).
The Fourier-based approach to frequency analysis as we discussed it in the preceding

section (2.7.3.1) and the method of spectral decomposition by means of wavelet analysis
are both well suited to detect the frequency characteristics of an input signal. However,
when applied in the manner described above, they do not account for the temporal dy-
namics of non-stationary signals such as those recorded from neural activities. Thus, a
time-frequency analysis has to be performed to temporally localize the frequency com-
ponents of such a signal. While different approaches exist for this task, a wavelet-based
analysis in terms of a continuous wavelet transform (CWT) is a particularly elegant
method since it provides the means for a dynamically adapted trade-off between tempo-
ral and spectral accuracy (van Drongelen, 2007; Walker, 2008).
The basic idea of CWTs is that through successive translation of frequency-specific filter

kernels over an input signal, i.e., a repeated correlation of the latter with appropriately
designed wavelet functions, a temporally and spectrally precise extraction of its frequency
components can be achieved. The CWT can thus intuitively be conceived of as a means
to detect specific features in a given signal (Smith, 1997). The filter kernels used for this
task are derived from a real- or complex-valued mother function also called the analyzing
wavelet, W , by means of its modification through the application of frequency-specific
scale parameters s according to equation (2.4):

Wsptq “
1
?
s
W

ˆ

t

s

˙

. (2.4)

Apart from the basic choice of the particular mother wavelet, crucial factors shaping
the time-frequency characteristics of the outcome of a CWT are the settings of its scale,
width, and frequency parameters. The correlations c of the input signal xptq with wavelet
filter kernels Wsptq of scale s at intervals τ are given by equation (2.5):

cps, τq “

`8
ż

´8

xptq
1
?
s
Wsptq

ˆ

t´ τ

s

˙

dt. (2.5)

In the case of complex-valued wavelet functions, note the correspondence between these
kinds of correlations and those in the definitions of the Fourier transforms listed above
(Section 2.7.3.1). This indicates the close relationship that exists between the two ana-
lytical approaches (van Drongelen, 2007; Walker, 2008).
In the present study, we computed the wavelet transforms of LFP and spiking signals

through convolution of every epoch’s data vector (length: 5 seconds, n “ 5000 points)
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with complex, time- and frequency-dependent kernels (Morlet wavelets) w (Figure 2.12):

wpt, fq “ Ae´t
2{2σt2ei2πft, (2.6)

which essentially yields a Gabor expansion3 (Morlet et al., 1982a) of the signal to be
analyzed. This is the CWT approach described by Morlet et al. (1982a,b) for an applica-
tion to seismic wave data in geophysics which has later been proposed for the analysis of
neurophysiological time series data by several authors (e.g., Tallon-Baudry and Bertrand,
1999; Le Van Quyen et al., 2001; Lee, 2002; Li et al., 2007). In equation (2.6), σt is the
standard deviation of the wavelet function in the time domain, e denotes the exponential
function, i denotes the complex number

?
´1, and A is a normalization factor defined as

A “
1

a

σt
?
π
.

The normalization factor ensures conservation of energy of the transformed signal, an
aspect of general and crucial importance in all kinds of wavelet analyses (Walker, 2008).
The wavelet functions w have a Gaussian shape in both the time and frequency domain,
with their standard deviations σf and σt given by

σf “ f{q and σt “
1

2πσf
,

respectively, where f denotes the frequency of interest and q is the width of the wavelet.
These latter parameters determine both the temporal and spectral resolution of the
analysis, as is exemplified in panel b of Figure 2.12.
The first exponential in the wavelet equation (2.6) defines Gaussian-shaped windowing

functions that serve to reduce the amount of spectral leakage (Figure 2.12, panel c) re-
sulting from the analysis of signals of finite length (Smith, 1997). The second exponential
defines the actual complex sinusoids needed for the detection of frequency components of
interest in the signal to be analyzed (see also Section 2.7.3.1). The time points of interest
t for which the frequency-specific wavelet functions are defined are calculated as

´lσt ď t ě lσt

in discrete steps of 1{fs. Here, fs denotes the sampling frequency and l is the absolute
length of the wavelet computed in terms of numbers n of standard deviations σt of a

3 A Gabor expansion or Gabor transform of a signal function is created by computing the Fourier
transforms of a sequence of “time localized subsignals” obtained by multiplying the signal with shifted
windowing functions of a desired type (Walker, 2008, page 194).
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Figure 2.12: Some characteristics of continuous Morlet wavelet transforms. (a) Wavelet
functions of different frequencies stretch an equal number of cycles and thus differ in their
temporal and spectral widths. (b) Increasing the width q of the wavelets increases the
spectral and decreases the temporal resolution (i.e., it decreases σf and increases σt,
respectively; see main text for details). (c) Gaussian shaped windowing functions reduce
the amount of spectral leakage into neighboring frequency bands. The raw sinusoid was
multiplied by the Gaussian resulting in a dampening of its amplitude at the edges. Note
the spectral characteristics of the Gaussian window which is its own Fourier transform
(Smith, 1997). For illustration purposes, standard cosine waves were multiplied here with
the magnitudes of complex Morlet wavelets at the respective frequencies, thus combining
their real and imaginary parts. For a very intuitive illustrative coverage of some properties
of continuous Morlet wavelet transforms, see Figure 1 in Le Van Quyen and Bragin, 2007.
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Gaussian kernel with n “ 3 in all wavelet-based frequency analyses of the present study:

l “ nσt.

The time-frequency transformation TFR of the signal xptq in terms of its convolution
with wavelet functions wpt, fq is given by equation (2.7):

TFRpt, fq “ xptq˙ wpt, fq, (2.7)

where ˙ denotes the convolution operation. To accord with the above definition of fre-
quency analysis by means of continuous wavelet transforms we make use here of the facts
that first, multiplication in the frequency domain is equivalent to (complex) convolution
in the time domain (van Drongelen, 2007), and second that in the present case of even
symmetric analytical Morlet wavelet functions wpt, fq a correlation with the input signal
xptq is exactly equivalent to their convolution (van Drongelen, 2007).
Figure 2.13 depicts the time-resolved and time-averaged power spectra (Section 2.7.3.3)

obtained from a time-frequency transformation of LFP data recorded in the rat striatum.
The plots illustrate some of the described characteristics regarding the trade-off between
temporal and spectral resolution that depends on the choice of parameter settings as well
as the variability of temporal and spectral features of the signal that principally calls for
its detailed analysis in both the time and frequency domain (Section 4.7).
We computed the frequency components of interest of our analyses on logarithmic

scales in terms of octaves and in steps of an even number of powers of 2 voices (i.e.,
1{4 or 1{8 octaves), following propositions made by, e.g., Walker, 2008. We did so to ac-
count for the finding of a linear relationship between the natural logarithms of the mean
frequencies of band-limited oscillatory neural processes in a scheme where neighboring
frequencies exhibit constant ratios (Buzsáki and Draguhn, 2004, page 1926; for the orig-
inal paper, see Penttonen and Buzsáki, 2003). We limited our analyses to an overall
range of frequencies between 4 and 128 Hz (i.e., spanning 5 octaves) and adapted the
range and numbers of frequencies of interest to specific analytical motivations. We used
wavelet widths q “ 6 in all analyses since this number is supposed to provide a very good
trade-off between time and frequency resolution (Li et al., 2007). Convolution of signals
with filter kernels results in a wavelet-width, i.e., in our case frequency-dependent, in-
complete coverage of the first and last signal points by the filter kernel (Smith, 1997). We
therefore only included transformed values located at the middle 3500 out of 5000 data
points (corresponding to 3500 and 5000 ms of data, respectively) in all further analysis
steps. This assured an equal number of valid data values at each time-frequency point.
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Figure 2.13: Characteristics of time-frequency analyses using continuous Morlet wavelet
transforms and the consequences of a change of parameter settings. Panels a and b
both show the time-averaged (left) and time-resolved (right) power spectra of LFP data
recorded in the rat striatum during rest. The plots illustrate the tradeoff between tem-
poral and spectral accuracy that hinges on the choice of wavelet widths q. Further, note
that while the average spectra nicely display the most prominent mean peak frequencies,
they fail to reveal the variability of fine-grained temporal and spectral characteristics.

2.7.3.3 Power analysis

A basic and very informative way to characterize a signal in the frequency domain is to
describe the distribution of the strengths of its sinusoidal components. Spectral power is
a measure of the time-average, band-limited energy of frequency components. As such
it quantifies the frequency-dependent variance of a stationary signal (M. Siegel, personal
communication). The entire power content of a signal in the frequency domain can be
defined as its power spectral density (PSD). It is obtained through integration of values
across the whole power or autospectrum. The power spectrum describes the distribution
of the power of the frequency components of a signal per unit of frequency bandwidth
(Smith, 1997; van Drongelen, 2007; McMahon, 2007).
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In brief, the energy E of a signal xptq is defined as the integral of its magnitude squared:

E “

`8
ż

´8

|xptq|2,

where || denotes the magnitude, or absolute value of the signal. Accordingly, the energy
of a sinusoid of frequency f is the magnitude squared of its Fourier transform Xf :

Ef “ |Xf |
2.

Following the above definition of spectral power, the power P of a signal is equal to its
energy E during time period T :

P “
E

T
.

The power P of a signal x at frequency f can then be obtained by multiplying the
Fourier transform Xpfq with its complex conjugate.4 A corresponding multiplication of
all frequency components and normalization by the number of data points N to ensure
conservation of energy delivers the power spectrum Sxx of signal x:

Sxx “
XX˚

N
,

where ˚ denotes the complex conjugate (van Drongelen, 2007; see Figure 2.14 on page
55 for example Fourier-based power spectra).
In our case of a wavelet transform-based frequency-analysis of time series data (Section

2.7.3.2), the time-varying power of signal xptq is computed as the squared norm (or
magnitude) of the complex time-frequency transformation TFRpt, fq (Siegel et al., 2009):

P pf, tq “ |TFRpt, fq|2 . (2.8)

To examine the time-average distribution of power values across the frequency spectrum
of interest we then computed the mean of the time-varying power estimates of each epoch
by averaging across the time dimension (n “ 3500 points per frequency). In this way,
the dependence of power on time vanishes, yielding an expression P pfq which is only
dependent on frequency and thus equivalent to the power spectrum. Figure 2.13 on page
50 shows examples of time-varying and time-average power estimates of neuronal signals.

4 Multiplication of the complex Fourier transformed values a` jb with their complex conjugates a´ jb
results in an expression a2 ` b2 in rectangular coordinates which is exactly equivalent to the squared
magnitude of time-frequency transformed values in circular coordinates included in equation (2.8).
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2.7.3.4 Coherency analysis

Spectral power quantifies the strength of individual frequency components contained in
individual signals. In contrast, spectral coherency is a complex-valued measure of the
strength of phase-coupling between two signals during time interval T at frequency f .
To be more precise, the complex cross-spectrum Sxy relates the amplitude and phase

characteristics of individual frequency components of different signals xptq and yptq. It
is given by the following relation, where ˚ denotes the complex conjugate:

Sxy “ Sxx
˚Syy.

From that, the squared coherence Cs is obtained by normalizing the squared magnitude
of the cross-spectrum by the product of the autospectra Sxx and Syy of either signal:

Cs “
|xSxyy|

2

xSxxyxSyyy
.

Here, the brackets (xy) denote averaging of individual spectra from several epochs since
coherence estimates based on single epochs always have a value of 1 (van Drongelen, 2007;
see Figure 2.14 below). As such, the squared coherence only quantifies the strength of
phase-coupling without regard to the phase-lag between signals. To differentiate between
amplitude and phase components, the cross-spectrum is first normalized by the square
root of the product of the autospectra which gives the coherency Cy (Nolte et al., 2004):

Cy “
xSxyy

a

xSxxyxSyyy
. (2.9)

The coherence C and phase φ of the coherency are then computed as the complex magni-
tude (i.e., the absolute value) and complex argument (i.e., the angle) of this expression:

C “ |Cy|, which is equivalent to C “
b

prealpCyqq2 ` pimagpCyqq2,

and
φ “ argpCyq, which is equivalent to φ “ arctan

ˆ

imagpCyq

realpCyq

˙

,

where real and imag denote the real and imaginary components (see the polar plot in
panel c of Figure 2.14, page 55), respectively, of the complex coherency vector.
In essence, spectral coherence as the magnitude of the complex-valued coherency mea-

sures the degree of linear predictability of one signal given another based on the frequency
characteristics of either signal (Nolte et al., 2004). It is a dimensionless quantity bound
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between 0 and 1, with the former indicating no and the latter indicating a perfectly
consistent phase relationship. Thus, just as spectral power is a measure of the frequency-
dependent variance of one signal (Section 2.7.3.3), coherence quantifies, in the frequency
domain, the degree of covariance between two signals normalized by their autovariances.5

In addition to the magnitude of coherency, its imaginary part Ci can be computed as

Ci “ imagpCyq.

Imaginary coherence is a useful measure in frequency-domain based coupling-analyses
of electrophysiological signals since a non-vanishing (i.e., non-zero) imaginary part of
coherency is assumed to always reflect true brain interaction. This is in contrast to the
magnitude of coherency which also depends on its real part and is thus more prone to
be dominated by volume-conduction effects exhibiting zero-phase lag between electrodes
(see Section 2.6.2.2 above; for a detailed discussion of this topic, see Nolte et al., 2004).
Imaginary coherence is bound between -1 and 1, thus also indicating the direction of the
phase-coupling between sources whereas coherence proper only indicates its strength.
Panel b of Figure 2.14 (page 55) depicts coherence and imaginary coherence estimates

computed from the raw Fourier transform-based cross-, auto-, and resulting coherency
spectra of striatal LFP signals. Panel a shows the power spectra of the two signals which
both exhibit distinct peaks between 45 and 65 Hz. The coherence spectrum shows a peak
at a similar location whereas imaginary coherence values fluctuate closely around zero.
We computed the time-resolved, complex-valued cross-spectra between all signal pairs

using the same kind of time-frequency transformation of the time series data of each epoch
as explained above (Section 2.7.3.2). Coherence and imaginary coherence estimates of a
given epoch were then obtained by normalizing the time-average (n “ 3500 data points)
cross-spectra by the corresponding time-average autospectra (n “ 2ˆ 3500 data points).

2.7.3.5 Phase analysis

For an even more detailed insight into the frequency-dependent temporal relationships
between signals, phase-locking values (PLV ) and phase angles (ϕ) can be determined.
They quantify the average strength and angle, respectively, of their phase-coupling after
appropriate normalization of the individual cross-spectral vectors to account for differ-
ences in instantaneous power between the two partners.6

5 This is the reason why spectral power and coherence are equivalent to the Fourier transforms of the
time-domain based auto- and cross-correlation functions, respectively (McMahon, 2007).

6 The normalization in the coherency equation (2.9), in contrast, is performed by dividing the average
cross-spectrum by the product of the average power spectra.

53



Chapter 2 Methods 2.7.3

More precisely, the complex values of cross-spectra are related in terms of their carte-
sian and polar coordinates according to

a` jb “Mpcos θ ` j sin θq.

Furthermore, using Euler’s relation (Section 2.7.3.3) this expression can be written as

a` jb “Mejθ.

Here, a and b represent the real and imaginary parts of complex numbers in cartesian
coordinates, and M and θ represent their magnitudes and phases in polar coordinates; e
is the exponential function (for a brilliant exposition of these relations, see Smith, 1997).
Dividing both sides of this equation by M achieves a normalization of the cross-spectral
vectors to a magnitude of 1 (see Figure 2.14).7 This prepares them for averaging across
individual cross-spectra to yield the so-called normalized phase-vector PhV according to

PhV “ xejθy,

where the brackets (xy) denote averaging and j represents the complex number
?
´1.

Phase-locking and phase angle values of a given epoch are then computed as the complex
magnitude and complex argument of the PhV, respectively (Lachaux et al., 1999):

PLV “ |PhV | and ϕ “ argpPhV q.

The left plot of panel c of Figure 2.14 depicts phase-locking and phase angle values
computed from the raw Fourier transform-based cross-spectra of striatal LFP-signals.
Note the similarity between phase-locking and coherence values in panel b. The right plot
of panel c shows all the endpoints of individual phase vectors computed from individual
epochs of the data segment as well as their average magnitude and phase angle. Note
the extremely high phase-locking value and small phase angle at that frequency.
For each epoch, we computed phase-locking values as averages across the individually

normalized, complex values of time-resolved cross-spectra (n “ 3500) obtained from
time-frequency transformed data (Section 2.7.3.2). Phase angles at each frequency (n “
3500 ˆ 41 values) were sorted into histograms of 61 evenly spaced bins of a size of 6˝

(„ 0.1047 rad/s) stretching from ´π to `π rad/s with the middle bin centered on 0˝.

7 This holds true since the real and imaginary parts of the cross-spectral values can be expressed as
a “ Mpcos θq and b “ Mpsin θq, and after division by M their sums are always equal to 1 according
to the Pythagorean trigonometrical identity: cos2 θ ` sin2 θ “ 1 (Sterling, 2005).
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Figure 2.14: Power, coherency, and phase-related spectral estimates as computed from
striatal LFP data recorded on two electrodes in a resting rat. (a) Frequency-normalized
power spectra. (b) Coherence and imaginary coherence spectra. (c) Phase-locking and
phase angle spectra. (d) Magnitudes of individual (red stars) and average (black star and
dashed line) phase vectors at a single frequency of about 53 Hz are depicted in a polar
plot. X- and y-axes in (d) represent real and imaginary components, respectively, of the
complex coherency vectors in rectangular coordinates. We computed all spectra directly
from the raw FFTs (Section 2.7.3.1) of the signal epochs (2 ˆ 10 ˆ 6 seconds) without
additional windowing of the data vectors, which partly explains their peaky appearance.
Note the different units of left and right y-axes in (b) and the left plot in (c) as well as
the fact that all individual phase vectors in the polar plot have magnitudes of 1. Black
dashed horizontal lines in (b) and the left plot of (c) indicate zero imaginary coherence
and zero phase angle values, respectively. Abbreviations: M , θ: magnitude and angle of
the average phase vector. The polar plot in panel c was inspired by van Drongelen, 2007.
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2.7.3.6 Phase-amplitude analysis

We computed the magnitude and phase of the complex phase-amplitude coupling values
calculated between different frequency components of LFP signals. This measure provides
an estimate of the temporal consistency of the relationship between phase and amplitude
components of oscillatory processes (Figure 2.15). As such, it can be used to detect
cross-frequency interactions in signals such as modulations of the amplitude of a high-
by the phase of a low-frequency component (Jensen and Colgin, 2007; Tort et al., 2010).
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Figure 2.15: Illustration of the principle idea of phase-amplitude coupling analyses. The
left plot shows the amplitude of a high-frequency oscillation to waxe and wane in a fixed
relation to particular phases of a low-frequency oscillation. The right plot quantifies this
relation more explicitly displaying the average high-frequency amplitude as a function of
the low-frequency phase, which indicates modulation of the former by the latter.

We followed here an approach used by Canolty et al. (2006) and Siegel et al. (2009)
whereby the time-average magnitude M and phase φ of the coupling of two frequency
components across N time points t are defined as the complex norm (||) and argument
(arg), respectively, of the point-wise correlation of their phases θ and amplitudes A:

M “

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

t“1

Aptqeiθptq

ˇ

ˇ

ˇ

ˇ

ˇ

,

φ “ arg

˜

1

N

N
ÿ

t“1

Aptqeiθptq

¸

.

We computed the coupling between phases and amplitudes of all frequency components of
each data epoch (n “ 3500ˆ41 time-frequency points), yielding matrices of size 41ˆ41.
We normalized the raw time-frequency transformed values by the mean amplitude in each
frequency bin prior to analyses to account for physiological differences in signal strength.

56



Chapter 2 Methods 2.7.3

2.7.3.7 Power correlation analysis

We computed correlation matrices between all pairs (n “ 41ˆ41) of frequencies of time-
resolved power spectra (n “ 3500) of each epoch of LFP data to examine cross-frequency
interactions and same-frequency amplitude coupling patterns between temporal fluctu-
ations of frequency-specific local population activities possibly distinct from those cap-
tured by phase-amplitude and phase-coupling analyses, respectively. This yielded corre-
lation coefficients (i) between power values across both electrodes and frequencies, and
(ii) between power values at the same frequencies across electrodes (cases cross-electrode,
cross-frequency, and cross-electrode, same-frequency, respectively; see Section 3.7 below).
For correlation analyses, we made use of a method devised by Masimore et al. (2004)

for the detection of fundamental frequencies in time-varying power estimates of neuronal
signals. In this scheme, the correlation c of power estimates P at frequencies i and j

across a number of N data (i.e., time) points of a given signal epoch is given by

ci,j “

řN
t“1pxP piqy ´ PtpiqqpxP pjqy ´ Ptpjqq

pN ´ 1qσiσj
, (2.10)

where xP piqy, xP pjqy are the time-average power estimates at frequencies i and j, Ptpiq,
Ptpjq are the power estimates at frequencies i and j at time point t, and σi, σj are the
standard deviations of power estimates at frequencies i and j. This yields values between
´1 and 1 indicating perfectly anti-correlated and correlated power fluctuations, respec-
tively, and values of 0 indicating no correlation between frequency-specific processes. In
order to approximate normal distributions of data values before taking the mean across
epochs for level averages, we applied Fisher’s z-transformation8 and its inverse given by

z “
1

2
log

ˆ

1` r

1´ r

˙

and r “
e2z ´ 1

e2z ` 1
,

respectively, to correlation coefficients r of each epoch where e is the exponential function.
Figure 2.16 illustrates the motivation for the computation and the outcome of power

correlations using example data from a single epoch of striatal LFP data. As panel a
shows, power in different frequency bands waxes and wanes over time and also appears to
covary temporarily between lower and upper spectral regions. This is also obvious in the
band pass-filtered raw data pieces shown in the left plots of panel b which demonstrate the
amplitudes of slow and fast rhythmic activities to increase and decrease in unison. Power
correlation matrices as depicted in the right plots of panel b provide a quantitative handle
on the temporal consistency of the relationships between different frequency components.

8 http://en.wikipedia.org/wiki/Fisher_transformation
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Figure 2.16: Power correlation analysis. (a) High-resolution (interpolated in steps of
1/128 voices) time-frequency spectrum of LFP power on a striatal electrode in a rat
during rest. Power in different frequency bands waxes and wanes over time. Black
dashed vertical lines delimit two time windows used for analyses in panel b. (b) Left
plots: Zoom into two time windows of the raw data epoch underlying the spectrum
in (a) displaying LFP data band-pass filtered between 4–16 (low, blue) and 32–128 Hz
(high, red). Note the oscillatory shape of LFP fluctuations in low and high frequency
bands as well as the different sizes and ratios of amplitudes in upper and lower plots.
Right plots: Color-coded matrices depicting correlations between power values at 41ˆ41
frequencies within the corresponding time windows to the left. For conceptual reasons
and illustration purposes, values up to one octave off the main diagonal were whitened.
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2.7.3.8 Phase-locking–power intercorrelation analysis

We examined the temporal relationships between frequency-specific fluctuations of phase-
locking and power correlation estimates of LFPs by correlating the respective measures
within each epoch. Since both parameters are defined only across multiple samples (Sec-
tions 2.7.3.4 and 2.7.3.7), we performed sliding window analyses on the time-frequency
transformed data (n “ 3500ˆ41 points) of each epoch. We first calculated phase-locking
and power correlation values within windows of 500 ms length and in steps of 50 ms (cor-
responding to 500 and 50 sampling points, respectively). We then computed correlation
coefficients between the respective estimates (n “ 61 values for each) using the formula
in equation (2.10) above (Section 2.7.3.7).

2.7.4 Statistical specifications

As outlined above (Section 2.3), our recording setup included 12 microelectrodes inserted
into both hemispheres of the rat brain, with electrodes located in cortex and striatum
of either side. We recorded data from n “ 10 animals that each contributed a highly
variable number of trials, yielding 622 recordings (i.e., trials) in total (Table 2.1). One
trial of the behavioral task encompassed 1 resting and 4 running levels lasting 1 minute
and thus consisting of 12 epochs of 5 seconds length each (Section 2.5).
After preselection of data as described in Section 2.6.1 we were left with a variable

number of valid epochs from different animals, electrodes, and recordings from different
sessions and thus from partly differing electrode positions. Unfortunately, we were not
able to accurately verify the coordinates of the latter. We hence decided to pool the
parameter averages (behavioral data, firing rates, spectral measures) obtained for indi-
vidual or pairs of electrodes from resting and running levels of each trial first across trials
within individual subjects and then across subjects to yield grand average estimates.
Furthermore, we defined threshold criteria with regards to the minimum number of

epochs needed to contribute to a valid level average of an individual recording (n “ 3) and
the number of trials needed to contribute to across-trial averages of individual electrodes
or electrodes pairs (n “ 3). Recordings and electrodes or electrode pairs not fulfilling
these criteria were excluded from further analysis. We did so in order to account for the
highly variable number of valid epochs and trials each subject contributed to the data
pool and in order to guarantee a minimum level of robustness and comparability between
data averages obtained for different trials, electrodes, and electrode pairs.
We computed across-epoch and across-level averages as the mean of the respective

sample under the assumption of consistent recording conditions during the course of
individual trials. In contrast, averages across trials before the final analysis step were
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Subject ID Recordings

a6 115
a7 1
a8 10
a11 100
a12 39
a14 85
a15 37
a16 15
a17 199
a18 21

n “ 10 n “ 622

Table 2.1: List of animals implanted and used for recordings under treadmill running,
and the number of recordings (i.e., trials) obtained from each individual. The subjects are
referred to by means of a unique ID. Note that the mere number of recordings performed
may not be representative of the amount of valid data remaining from the respective
subject after preselection by means of signal evaluation and data average thresholding.

computed as the median of the respective sample to reduce the possible influence of
outliers. Grand averages across all trials from all subjects were again computed as the
mean and are shown with one standard error in both positive and negative directions,
thereby providing an estimate of the precision of the respective average (Motulsky, 1995).
We expressed the change between rest and running phase-coupling magnitudes (Section

3.6) by taking the mean across median difference z-scores zsc computed for each trial of
each electrode pair:

zsc “
xrun ´ xxresty

σrest
?
N

.

Here, xrun denotes the phase-coupling strength during an average single-trial running
level, xxresty and σrest are the mean and standard deviation, respectively, of the phase-
coupling strength across all resting levels of an individual electrode pair, and N denotes
the number of samples. Z-scores were computed to display both the statistical strength
and the sign of the coupling difference between behavioral conditions.
We relied on nonparametric statistical tests (Wilcoxon rank-sum and sign-rank tests)

to ensure against possible violations of the assumption of normally distributed data.
Bar plots that depict comparisons of different samples of measured values show the final
average as the median with one unit of median absolute deviation.9 The latter provides

9 http://en.wikipedia.org/wiki/Median_absolute_deviation
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an estimate of the median scatter of data values around the median of the sample. The
reason for this is that the ensuing statistical tests are based on ranks of values and hence
rely on the median rather than the mean as a measure of the average of the data scatter.
We computed regression coefficients (Spearman’s ρ) to test for a significant linear scal-

ing of multi-unit firing rates and spectral peak parameters (peak magnitudes and peak
frequencies) with running speed. Throughout the study, we generally assumed a signifi-
cance level of α “ 0.01 for all test statistical procedures. In all computations necessitating
multiple tests and not involving permutation statistics (see below), Bonferroni-correction
was used to adjust α-levels to the number n of tests (Motulsky, 1995), according to

α “
0.01

n
.

We tested the statistical significance of spectral estimates by means of comparisons of
measured values with those obtained from alternative distributions (Figure 2.17). For
raw values of bivariate parameters (coherency, phase, power correlation, phase-amplitude
coupling estimates), alternative distributions were obtained by circularly shifting the
values of the complex time-frequency transformation matrices (3500 time pointsˆ41 fre-
quencies; Section 2.7.3.2) of one of the two partners by step size s, where s could be
any number randomly drawn from the set of integers I “ t1, 2, ..., 3500u. Since all of the
above parameters in essence quantify the consistency of amplitude or phase relationships
between paired signals, destroying the original temporal relationship while preserving
their individual temporal structures should yield magnitudes of coupling estimates that
are, on average, only as large or even smaller than those obtained from the original data.
To save computation time, we calculated one estimate of the parameter of interest from
both real and time-shifted data of each epoch. We then averaged shifted and real values
in exactly the same way to obtain level, trial, and electrode pair averages.
For relative estimates (i.e., ratio and difference spectra) of both univariate (i.e., power)

and bivariate spectral parameters (see above), we compared the original data with those
obtained through averaging of alternative partitions created by randomly permuting the
level memberships of data epochs. This approach was based on the assumption that if
there was no difference between the distributions of spectral values during both major
behavioral states (rest and running), ratio and difference values calculated from rest
and running spectra obtained through averaging of correctly labeled epochs should not
be significantly different from those obtained through averaging of randomized epochs.
To account for different amounts of valid rest and running epochs present in each trial
(n “ 12 and n “ 48, respectively, at maximum), we stratified their respective numbers to
equal half the number of valid epochs of a given level and a given trial. For each level, we
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Figure 2.17: Illustration of the principle idea behind time series shift-based statistics.
The upper two left and right plots display different raw striatal LFP time series from a
resting rat and the corresponding power spectra, respectively. The lower left plot shows
the second time series circularly shifted by a step size s of 2295 points (see main text).
The lower right plot demonstrates the effect of the temporal shift on the phase-coupling
strength. While coherence is high between the two LFP signals which exhibit very similar
frequency content and comparable temporal structure, the consistent phase relationship
is largely destroyed after rotation of the second time series. Note that the power spectrum
of the shifted time series is exactly the same as for the measured values, which is why
we do not depict it here. We statistically compared the resulting grand average real and
shift-based bivariate estimates by means of nonparametric tests in each frequency bin.

calculated n “ 10 alternative partitions from rest and running epochs and then obtained
average alternative distributions by taking their mean. This was done to increase the
reliability of estimates based on highly limited numbers of epochs (n “ 12 at maximum
for each level). Averaging across levels, trials, and electrodes or electrode pairs was then
again performed in exactly the same way for both real and permuted relative spectra.
For modified versions of permutation based statistics in case of some parameters (e.g.,
cross-hemispheric LFP phase-coupling), see the respective results section (Chapter 3).
We tested the statistical significance of the spectral parameters of interest through non-

parametric, paired comparisons (Wilcoxon sign-rank test) of real and shifted or permuted
averages obtained for each electrode or electrode pair individually at each frequency, fre-
quency pair (in case of power correlation and phase-amplitude coupling estimates), or
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frequency-phase bin pair (in case of phase histograms) of interest. These comparisons
are tests of the null hypothesis of no difference between the medians of grand average
distributions of spectral values obtained from real and time-shifted or permuted data,
respectively. We again assumed a general significance level of α “ 0.01 for individual
tests taking shifting and permutation procedures to function as implicit controls of the
false discovery rate and thus to account for the problem of multiple comparisons to be
performed on large numbers of spectral values (n “ 41 for one- and n “ 41 ˆ 41 or
n “ 61ˆ 41 for two-dimensional estimates, respectively). For a general introduction into
permutation statistics, see Ernst, 2004. For applications of related methods in systems
neuroscience research, see Maris and Oostenveld, 2007 and Maris et al., 2007.

2.8 Computational implementation

This document was written and typeset using LATEX with TeXShop (version 2.43). Fig-
ures were modified or created using Adobe® Illustrator® CS5.
We used the MATLAB® programming environment for all steps of data analysis

in this study. A large number of custom-made scripts and functions was written for
that purpose. In addition, we used parts of functions implemented in the Fieldtrip10

(Oostenveld et al., 2011) and Wave_clus11 (Quiroga et al., 2004) toolboxes for frequency
analysis and spike amplitude thresholding steps, respectively. Data were processed either
locally on Apple Macintosh® computers and PCs or were distributed on a Linux-cluster
to save computation time.

10 http://fieldtrip.fcdonders.nl/start
11 http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm
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3 Results

3.1 Behavior

Behavioral data epochs corresponded to those used for signal analysis (Section 2.5).
We assessed treadmill running performance during recordings with a focus on two major
aspects: first, average error rates on the different speed levels, of both individual subjects
and across animals. Second, error rates during individual epochs, particularly those
immediately prior to and following speed changes between levels.
Panel a of Figure 3.1 depicts the mean error rates of individual subjects on each

speed level. The large variability of performances as well as the patterns of level scores
differing between animals are readily visible, with a marked overall decrease in average
performances between earlier (a6) and later (a18) subjects. Note that, as is indicated
also in Table 2.1 (Section 2.7.4, page 59), different animals contributed highly variable
numbers of trials to the data pool. Also, not every animal accomplished each protocol.
Panel b of Figure 3.1 summarizes the performances of individual rats on different

speed levels of different protocols that overlapped in their speed ranges. We observed
the very same performance trends as in the behavioral pilot study (von Nicolai, 2011)
considering an overall decline of error rates with increasing running speed both within
and across protocols. However, this effect was not as distinct as it generally was prior to
implantation (von Nicolai, 2011), particularly during protocol no. 3.
As is shown in panel c of Figure 3.1, the overall trend of performance increase with

running speed is also reflected in the detailed grand averages computed for individual
epochs of the different protocols. Further, these plots demonstrate that performances
fluctuated moderately between subsequent epochs of each protocol. Most remarkably,
error rates were almost always increased during post- as compared to pre-speed change
epochs. However, pairwise comparisons of all pre- and post-speed change epochs at a
very conservative, Bonferroni-corrected α-level of 0.001 (α “ 0.01 corrected for n “ 9

comparisons) showed that none of these differences was statistically significant (paired,
two-sided Wilcoxon sign-rank tests for pre- vs. post-speed change epochs no. 1, 2, and 3 of
protocols no. 1, 2, and 3: p “ 0.218, 0.437, 0.005, n “ 214 trials; p “ 0.405, 0.096, 0.216,
n “ 161 trials; and p “ 0.423, 1.000, 0.071, n “ 247 trials, respectively).
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Figure 3.1: Behavioral performance during recordings. (a) Average error rates of indi-
vidual subjects on different speed levels (mean˘sem). (b) Grand across-subject average
error rates on different speed levels of three protocols (mean˘sd). (c) Grand across-trial
average error rates during all epochs (n “ 12), levels and protocols. Red dotted lines
mark transition points between levels. Abbreviations: p1, p2, p3: protocols no. 1, 2, 3.
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3.2 Firing rates

We computed average firing rates from spike trains recorded in cortex and striatum in
order to quantify the effects of behavioral state on overall levels of multi-unit activities
in both structures. We first calculated firing rates of individual epochs, averaged these
values across epochs of each level and each trial and then across trials of each electrode.
Finally, we pooled the data across electrodes from all subjects to obtain the grand average.
Panel a of Figure 3.2 depicts the mean firing rates of cortical and striatal multi-units

during rest and on all running levels (left plot) as well as the statistical comparison of
median rest vs. average running level activities (right plot). Grand average firing rates
increased markedly between the two behavioral states. These changes were statistically
significant in both structures (two-sided Wilcoxon rank-sum test; p ă 0.005, Bonferroni-
corrected for n “ 2 comparisons; n “ 48 cortical and n “ 48 striatal electrodes).
The left plot of panel a further indicates a steady increase of grand average firing rates

in cortex with increasing running speed. In striatum, firing rates remained relatively
stable across all running levels and even decreased slightly on average from the first to
the last level. We statistically quantified these findings by means of linear regression
analyses on the data from both structures. As the plots in panel b of Figure 3.2 show,
firing rates exhibited a trend for a linear increase with running speed in cortex (r “ 0.215,
p “ 0.024) although this trend was not quite statistically significant. In contrast, striatal
firing rates did not scale linearly with running speed (r “ 0.093, p “ 0.374).

While the above results suggest a modulation of firing rates not only by behavioral
state but also, at least in cortex, by running speed, they have to be interpreted with
some caution. We did indeed observe a marked increase of unit activities between both
behavioral states in virtually every subject investigated and hence, the grand average
results are very robust. However, as the large error bars in the plots of panel b indicate,
the variability of firing rates and their development with running speed were pretty
substantial between subjects. Also, the discrepancy between mean and median rates
shown in left and rights plots, respectively, of panel a further indicates the presence of
some outliers in the data pool. Nevertheless, in 4–5 out of 8 animals that contributed
valid data, we observed an increase of cortical and striatal firing rates with increasing
running speed. Firing rate modulations in striatum were generally less pronounced and
more variable than those in cortex. For a more detailed discussion of overall multi-unit
data quality and the constraints on its interpretability, see Section 4.1.5.
In summary, these results provide evidence for a robust change of spiking activity in

cortex and striatum with overall behavioral state. Further, they also indicate a modula-
tion at least of cortical but less likely of striatal firing rates by motor demand.
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Figure 3.2: Multi-unit firing rates. (a) Left: Firing rates in cortex and striatum during
rest and on all running levels (mean˘sem). Right: Comparison of rest and average
running level activities (median˘mad). Black stars (˚) above differently shaded bars
denote significance. (b) Linear regression analyses on the development of firing rates in
cortex and striatum during running at increasing speeds (mean˘sd).

3.3 Power

We examined the frequency-specific characteristics of local neuronal population activi-
ties during both behavioral states by calculating raw and percentage power spectra from
the signals recorded on each electrode. Power was computed from time-frequency trans-
formed data of every single epoch of both monopolar and bipolar LFPs as well as MUAs.
Spectra were averaged across valid epochs of each level to obtain estimates of the mean
power during rest and all running levels of a given trial. For a basic comparison of resting
with running activities, we computed power spectra at 41 frequencies between 4 and 128
Hz and averaged across running levels ignoring differences in running speed. For ex-
aminations of specific power characteristics, spectra were computed at more frequencies
within smaller ranges and data from different running levels were retained (Section 3.9).
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3.3.1 Power: Local Field Potentials

3.3.1.1 Raw LFP power

LFP power spectra were normalized prior to level-based statistical analyses through mul-
tiplication of power with the square of frequency values to account for the approximately
1{f2 decay of spectral power (Miller et al., 2009; Siegel et al., 2009).1 Note, however, that
the qualitative findings described in this section are not artifacts of the normalization
procedure per se which is performed at this point for illustration purposes only. We
obtained the same qualitative results when computing purely raw spectra.
Grand average raw, normalized power spectra of monopolar LFPs as shown in panel

a of Figure 3.3 display three prominent features. First, power increases considerably
between rest and running, with absolute values being largely comparable between struc-
tures during both behavioral states. Second, all spectra exhibit two localized peaks, one
of them situated in lower and the other one situated in higher frequency ranges. Third,
both low- and high-frequency peaks shift from below to around 8 and 64 Hz, respectively,
between resting and running states.
We explicitly quantified the change in spectral power between behavioral conditions by

computing the relative power taking resting as a baseline for running activities. For each
trial, we divided the power values at each frequency of the level-average running spectrum
by the corresponding values of the resting spectrum. We then performed statistical tests
of the null hypothesis of no difference between resting and running power separately
for the data in each frequency bin by comparing the respective values pooled across all
electrodes against those of alternative distributions obtained through random assignment
of epoch labels (Section 2.7.4). Panel b of Figure 3.3 shows the grand average relative
power spectra of cortical and striatal monopolar LFPs. A strong increase of power is
obvious across almost the entire spectrum in both structures which is largest in terms of
magnitude and variability in lower regions where also distinct peaks below and above 8 Hz
can be observed. The increase of raw power is smaller in intermediate regions reaching its
lowest values around the resting high peak-frequency. After that, power increases again
and reaches a plateau beyond the running high peak-frequency (cf. panel a of Figure
3.3). These changes of spectral power are statistically significant in both structures
and across the whole frequency range investigated (paired, two-sided Wilcoxon sign-rank
tests, p ă 0.01; n “ 24 and n “ 30 cortical and striatal electrodes, respectively).
Panel c of Figure 3.3 depicts the grand average power spectra computed from bipolar

derivations of cortical and striatal LFPs (Section 2.6.2.2). As in the case of monopolar

1 Note that power is still given in units of V 2
{Hz but referred to as ‘normalized power’ where appropriate.
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Figure 3.3: Grand average raw LFP power. (a) Monopolar LFPs: raw, normalized
power. (b) Monopolar LFPs: relative, normalized power. (c) Bipolar LFPs: raw, nor-
malized power. (d) Bipolar LFPs: relative, normalized power. Results are given as
mean˘sem. Black dashed lines in panels b and d indicate no change. Colored bottom
lines denote significance.

LFPs, bipolar spectra all exhibit a bimodal distribution of power between lower and
higher frequency ranges. Second, power mostly increases between resting and running
states and most prominently so at lower frequencies. Third, a small, positive shift of
low peak frequencies can be observed in both cortex and striatum between behavioral
states. However, absolute power values in both structures are smaller in the bipolar
as compared to the monopolar spectra, and power changes between rest and running
are also markedly reduced. In addition, power is more broadly distributed in the high
frequency range. As a result, either no or far less prominent high-frequency peaks are
present in bipolar spectra as compared to monopolar ones, with no obvious shifts of peak
frequencies between resting and running states. Also, in most of the spectra from single
subjects peak frequencies were found to be different from their monopolar counterparts
and they were more diverse in terms of exact location, overall shape, and magnitude of
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shift. We note here, however, that we did indeed also observe high-frequency peaks and
associated shifts in some within-subject average power spectra from both structures.
Panel d of Figure 3.3 depicts the grand average relative power spectra of bipolar LFPs.

Overall, they exhibit similar qualitative characteristics as their monopolar counterparts.
Note, however, the smaller absolute values of bipolar as compared to monopolar relative
LFP power in both structures and the larger variability in mid-frequency regions of
striatal spectra. Still, power changes in both low and high peak-frequency ranges as
defined based on monopolar raw spectra were found to be statistically significant in the
bipolar case as well (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 12 and
n “ 22 cortical and striatal bipolar electrodes, respectively).

3.3.1.2 Percentage LFP power

In view of the marked, spectrum-wide increase of raw power between rest and running
we aimed to determine the relative contributions of power components from different fre-
quency ranges to the total amount of power in the whole spectrum during both behavioral
states. To this end, we divided each individual power value of the frequency-normalized
spectra of each level by the sum of all values of the respective spectrum. This is a common
approach in spectral analysis of neuronal signals and yields a representation of power in
each frequency bin expressed as percentage of total power in the whole spectrum.
Figure 3.4 depicts the grand averages of percentage power of monopolar (panel a) and

bipolar (panel c) cortical and striatal LFPs. Some of the major findings described in the
previous section (3.3.1.1) are present here as well, including a bimodal distribution of
fractions of power between upper and lower parts of the spectra as well as a shift of peak
frequencies between rest and running in both low and high frequency ranges. Remarkably,
percentage power values in the different parts of the spectra are practically equal between
the two structures during rest. Note, however, that the fraction of high-frequency power
during running is larger in striatum as compared to cortex.
Changes of percentage power between behavioral states are again quantified explicitly

in relative power spectra shown in panels b (monopolar LFPs) and d (bipolar LFPs) of
Figure 3.3.1.2. Fractions of monopolar power increase between rest and running almost
exclusively in the lowest frequency range between 4 and 16 Hz while they are diminished
from above that point up to about 64 Hz and largely unaltered from there up to the
end of the spectra, as is also confirmed by the results of corresponding statistical tests
(paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 24 and n “ 30 cortical and
striatal electrodes, respectively). In contrast, percentage bipolar power values change in
a statistically significant fashion only in terms of a decrease between 16 and 32 Hz in
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Figure 3.4: Grand average percentage LFP power. (a) Monopolar LFPs: raw, percent-
age normalized power. (b) Monopolar LFPs: relative, percentage normalized power. (c)
Bipolar LFPs: raw, percentage normalized power. (d) Bipolar LFPs: relative, percentage
normalized power. Results are given as mean˘sem. Black dashed lines in panels b and
d indicate no change. Colored bottom lines denote significance.

both cortex and striatum (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 12

and n “ 22 cortical and striatal bipolar electrodes, respectively).
We obtained valid monopolar LFP data from both structures and both behavioral

states in 7 out of 10 animals initially implanted and valid data from the striatum of
another subject. Grand average results presented here and above (Section 3.3.1.1) were
highly consistent across animals. In the case of raw LFP power, with the exception of
2 cortical and 3 striatal within-subject averages all spectra unambiguously exhibited all
three of the above described characteristics. In the others, low-frequency peaks and their
shifts were variable or hardly present at all. In contrast, high-frequency peaks were much
more robust and could be observed in all cortical and all striatal spectra during rest as
well as in all striatal and all but one cortical spectrum during running, which holds also
true for their shifts. In the case of percentage power spectra, within- or between-trial
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fluctuations of power are more readily leveled out through normalization, rendering some
qualitative findings even more distinct in certain subjects.

3.3.2 Power: Multi-Unit Activities (MUA)

3.3.2.1 Raw MUA power

We computed power spectra of multi-unit activities following the creation of spiking
vectors from thresholded signals (Section 2.6.3) in the same way as described for LFPs.
Panel a of Figure 3.5 shows the grand average raw cortical and striatal MUA power
spectra from both behavioral states. Absolute power values here are much lower than in
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Figure 3.5: Grand average raw MUA power. (a) Raw power. (b) Relative power.
Results are given as mean˘sem. Black dashed lines in panel b indicate no change.
Colored bottom lines denote significance.

the case of LFPs which results from the fact that the underlying signals are composed
solely of zeros and ones, with a massive bias towards the former. As in the case of LFPs,
most MUA power is basically concentrated in lower regions of the spectra not normalized
by frequency, and it first decays with increasing frequency and then flattens out from a
point around 16 Hz. In glaring contrast to the LFP results, however, there are hardly
any characteristic peaks in cortical and striatal power spectra, besides very small bumps
below and around 8 Hz in both structures and in running spectra in particular. Owing
partly to their evanescent character, no clear shift of peak frequencies can be observed
in this range between behavioral states. Note that we obtained the same results when
we multiplied the raw power with the square of the frequency values as we did in case of
LFPs (Sections 3.3.1.1–3.3.1.2), which is why we do not show normalized spectra here.
As the raw spectra in panel a and the relative spectra shown in panel b of Figure 3.5

demonstrate, MUA power increases between rest and running in a statistically significant
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fashion across the whole spectrum in both structures (paired, two-sided Wilcoxon sign-
rank tests, p ă 0.01; n “ 20 and n “ 31 cortical and striatal electrodes, respectively).
Moreover, cortical and striatal spectra exhibit almost identical distributions of relative
power values, although the latter are of a more bump-like shape in low spectral regions. In
general, raw and percentage MUA power results as described in the next section (3.3.2.2)
were more variable within and between individual subjects than their LFP counterparts.
As stated above (Section 3.2) and repeatedly below, this was another reason why we did
not consider any MUA data for more detailed spectral analyses.

3.3.2.2 Percentage MUA power

We computed percentage MUA power spectra in the same way as described above for
LFPs (Section 3.3.1.2). The results depicted in panel a of Figure 3.6 demonstrate that
qualitatively, percentage power values in both states are distributed in a fashion largely
similar to their raw counterparts. However, note that the bumps located below and
around 8 Hz described above are more clearly visible in percentage as compared to raw
MUA power plots (cf. Figure 3.5, page 72), most probably due to normalization effects.
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Figure 3.6: Grand average percentage MUA power. (a) Percentage power. (b) Relative,
percentage power. Results are given as mean˘sem. Black dashed lines in panel b indicate
no change. Colored bottom lines denote significance.

Similar to the case of LFPs (Section 3.3.1.2), percentage MUA power values increase
from 4 up to about 16 Hz only where they fall below resting levels and remain decreased
until the upper ends of the spectra. As panel b of Figure 3.6 demonstrates, percentage
MUA power changes are statistically significant within limited parts of the spectra only,
most consistently so in striatal low and high frequency ranges (paired, two-sided Wilcoxon
sign-rank tests, p ă 0.01; n “ 20 and n “ 31 cortical and striatal electrodes, respectively).
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3.4 Coherency

We examined frequency-specific interactions between local neuronal population activities
in terms of their phase-coupling first by means of coherency estimates calculated between
pairs of electrodes during single epochs of individual trials. Coherency spectra were
obtained separately for both only LFPs and only MUAs as well as for combinations of
the two signal types. One or both of their real-valued derivatives, i.e., ordinary coherence
(coherency magnitude, also simply termed coherence in the following) and imaginary
coherence values, were then computed from the complex coherency estimates depending
on the kind of signal (LFP, MUA) or signal combination (LFP-MUA) under investigation.
We considered three types of structure pairings, i.e., cortico-cortical, cortico-striatal,

and striato-striatal electrode pairs for statistical analyses, yielding estimates of coheren-
cies both within and between the respective structures. As for power estimates, average
coherency spectra of individual levels were obtained by taking the mean across the re-
spective valid epochs. We averaged the data from all running levels again for a grand
comparison of resting and running activities as presented in this section. They were later
considered individually for an examination of running speed-related coherency effects
(Section 3.9). Significance tests of raw coherence values were performed by comparing
measured with time shift-based spectra. Coherence differences were evaluated by com-
paring measured estimates pooled across electrode pairs against alternative distributions
obtained through random assignment of epoch or hemisphere labels (Section 2.7.4).

3.4.1 Coherency: Local Field Potentials (LFP)

3.4.1.1 Ordinary LFP coherence

Panel a of Figure 3.7 depicts grand average ordinary coherence spectra of monopolar
LFPs. Spectral characteristics are very similar among all structure pairings and between
behavioral states. First, coherence values are generally rather high and statistically
significant (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 33, n “ 107, and
n “ 57 cortico-cortical, cortico-striatal, and striato-striatal electrode pairs, respectively).
However, they are considerably larger in absolute terms in lower as compared to higher
frequency ranges. Second, they mostly either increase or remain unchanged between rest
and running. Third, during both behavioral states, all spectra exhibit a roughly bimodal
distribution of coherence values with local minima between two prominent peaks. Fourth,
in all structure pairings these peaks shift from below to around 8 and 64 Hz, respectively,
between rest and running. Thus, ordinary monopolar LFP coherence results qualitatively
match some of the major characteristics of corresponding power estimates.
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Figure 3.7: Grand average ordinary LFP coherence. (a) Monopolar LFPs. (b) Bipolar
LFPs. Results are given as mean˘sem. Colored bottom lines denote significance.

We quantified the change in coherence between behavioral conditions by computing
the difference between resting and average running level spectra of each trial. We then
performed statistical tests of the null hypothesis of no difference between behavioral
states as described above. The spectra shown in panel a of Figure 3.8 show an almost
exclusive increase of coherence between rest and running. Note, in particular, the narrow
peak of significant coherence increase centered above the running low peak-frequency of
8 Hz and the localized decrease of cortico-striatal and striato-striatal coherence around
the point of the resting high peak-frequency. Furthermore, coherence increases strongly
from below the running high peak-frequency of 64 and up until 128 Hz. Another low
coherence difference peak is located slightly above 4 Hz in all structure pairings.
We obtained valid monopolar LFP coherency data from 7 out of 10 subjects implanted,

and from 5, 6, and 6 subjects from cortico-cortical, cortico-striatal, and striato-striatal
structure pairings, respectively. We observed a bimodal distribution of values and a
shift of high peak frequencies in all their ordinary coherence spectra. Those spectra
with distinct low-frequency peaks also exhibited typical shifts between behavioral states.
Coherence differences varied to some degree but showed consistent trends across subjects.
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Figure 3.8: Grand average ordinary LFP coherence difference. (a) Monopolar LFPs. (b)
Bipolar LFPs. Results are given as mean˘sem. Black dashed lines indicate no change.
Colored bottom lines denote significance.

We extended the above examination of bipolar power spectra (Section 3.3.1) to cor-
responding coherency estimates computed between the same bipolar derivations of LFP
signals. A maximum of three bipolar electrodes per structure and hemisphere could be
used to form pairs for analyses. Grand average ordinary coherence spectra of bipolar
LFPs are shown in panel b of Figure 3.7. As for the strengths of bipolar power estimates
(cf. Figure 3.3, page 69), coherence values are only about half their monopolar coun-
terparts (cf. Figure 3.7, panel a). Still, they are statistically significant across almost
the entire spectrum in all structure pairings (paired, two-sided Wilcoxon sign-rank tests,
p ă 0.01; n “ 28, n “ 99, and n “ 53 cortico-cortical, cortico-striatal, and striato-striatal
bipolar electrode pairs, respectively). Remarkably, bipolar coherences of within-structure
cortico-cortical and striato-striatal pairings appear to be even more similar between be-
havioral conditions than monopolar ones. Further, while bipolar coherences are clearly
stronger again in the lower as compared to the higher regions of the spectra, distributions
of values are not as distinctly bimodal as in monopolar cases. In line with this, resting
high-frequency maxima as observed in the latter are only present as faint and broadly
based bumps or elevations arising below to above 64 Hz rather than as sharp and truly
localized peaks centered at that frequency. In contrast, low-frequency coherence maxima
and corresponding peak shifts as observed in monopolar LFPs are preserved in all and
are most distinct in cortico-striatal bipolar electrode pairs.
We quantified bipolar coherence changes between rest and running by means of differ-

ence spectra as shown in panel b of Figure 3.8. Note the statistically significant increase
of coherence between cortico-striatal bipolar electrodes across large parts of the spec-
trum. Further, all spectra exhibit well-localized low difference peaks. These changes are
again significant mainly between cortico-striatal bipolar electrodes.
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3.4.1.2 Imaginary LFP coherence

We extracted the imaginary parts of coherency estimates in order to quantify the strength
of frequency-specific coupling of LFP signals at non-zero phase. The plots in panel a of
Figure 3.9 reveal striking differences between grand average imaginary coherence spectra
of within- vs. between-structure pairings of monopolar LFPs. The former are essentially
flat with values fluctuating closely around zero. In contrast, the latter exhibit both
considerably larger absolute values across almost the entire frequency range and distinct,
well-localized low-frequency peaks that shift between behavioral states. Moreover, these
peaks are situated at the same points on the frequency axis as in ordinary monopolar
coherence spectra (cf. Figure 3.7, page 75). Most strikingly, imaginary coherence values
are positive and statistically significant between cortico-striatal pairings at frequencies
below 32 Hz but increasingly negative and again significant at frequencies above 32 Hz,
indicating different temporal dynamics of the underlying processes (paired, two-sided
Wilcoxon sign-rank tests, p ă 0.01; n “ 33, n “ 107, and n “ 57 cortico-cortical,
cortico-striatal, and striato-striatal electrode pairs, respectively).
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Figure 3.9: Grand average imaginary LFP coherence. (a) Monopolar LFPs. (b) Bipolar
LFPs. Results are given as mean˘sem. Colored bottom lines denote significance.
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As panel a of Figure 3.10 shows, imaginary coherence difference spectra of within-
structure monopolar LFP pairings exhibit non-significant values very close to zero across
almost the entire frequency range. In contrast, the cortico-striatal spectrum exhibits
sharp peaks centered on 8 Hz, a little bump centered on 16 Hz, and a small but nonetheless
significant, broad-band decrease of imaginary coherence between 64 and 128 Hz.
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Figure 3.10: Grand average imaginary LFP coherence difference. (a) Monopolar LFPs.
(b) Bipolar LFPs. Results are given as mean˘sem. Black dashed lines indicate no
change. Colored bottom lines denote significance.

Panel b of Figure 3.9 depicts the grand average imaginary coherence spectra of bipolar
LFP signals. Apart from very few and small non-zero modulations in within-structure
pairings, imaginary coherence values are mostly close to zero and non-significant. As
panel b of Figure 3.10 demonstrates, imaginary coherence between bipolar LFPs hardly
changes in a consistent manner between rest and running. Note, however, the small but
significant increase in coherence between cortico-striatal bipolar electrodes slightly above
64 Hz (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 28, n “ 99, and n “ 53

cortico-cortical, cortico-striatal, and striato-striatal bipolar electrode pairs, respectively).

3.4.2 Coherency: Multi-Unit Activities (MUA)

Figure 3.11 depicts grand average MUA coherence spectra. Values are statistically signif-
icant and largely similar in all structure pairings (paired, two-sided Wilcoxon sign-rank
tests, p ă 0.01; n “ 21, n “ 85, and n “ 60 cortico-cortical, cortico-striatal, and striato-
striatal electrode pairs, respectively). They are highest during both behavioral states in
lower spectral regions with a consistent decay towards higher frequencies. Coherences are
lower than those of monopolar LFPs (cf. Figure 3.7, page 75), and there are no localized
resting and no high-frequency peaks during running. Still, note the small but distinct
and confined bumps of coherence increase centered on 8 Hz in all running spectra.
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Figure 3.11: Grand average MUA coherence. Results are given as mean˘sem. Colored
bottom lines denote significance.

Figure 3.12 depicts the change of ordinary MUA coherences between rest and running.
Coherences rise markedly and in a statistically significant manner in all structure pairings.
Also, note the faint bimodal distribution of changes mainly in within-structure pairings.
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Figure 3.12: Grand average MUA coherence difference. Results are given as mean˘sem.
Colored bottom lines denote significance.

Overall, MUA coherences of individual subjects agreed well with grand average results.
However, we stress that MUA coherences were still generally more variable with regard
to certain features than monopolar LFP coherence results. For instance, while we found
a substantial increase of coherences between behavioral states in all subjects with enough
valid data, low-frequency running peaks could only be observed in a subset of animals.

3.4.3 Spike-Field (LFP-MUA) coherency

As a third measure of intra- and inter-area coupling we computed coherences between
LFPs and MUA (LFP-MUA or spike-field coherence (SFC)) to investigate frequency-
specific relationships between the two signal types. For within-structure pairings, we
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Figure 3.13: Grand average LFP-MUA coherence. (a) Monopolar LFP-MUA coherence.
(b) Bipolar LFP-MUA coherence. Results are given as mean˘sem. Colored bottom lines
denote significance. For interpretation of figure titles, note that in all cases LFPs always
figured as the first partner in a coherence pair.
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excluded combinations of spikes and fields recorded on the same electrode to prevent
artificial coherence effects due to spillover of spiking activities into LFP traces (Bar-Gad
and Bergman, 2001; Siegel et al., 2009). For between-structure pairings, we separately
combined cortical LFPs with striatal MUA and vice versa to account for coherence differ-
ences due to the different physiological origins of the two signal types (Mitzdorf, 1985).
Figure 3.13 shows grand average spike-field coherence results involving monopolar

(panel a) and bipolar (panel b) LFPs. Absolute values are lower as in the case of
LFP-LFP and MUA-MUA coherences (cf. Figures 3.7 and 3.11 on pages 75 and 79,
respectively). Further, spike-field coupling is very similar in terms of strength and dis-
tribution of values in all structure-signal type pairings. With the exception of cortico-
cortical pairings, LFP-MUA coherences are significant across wide parts of both lower
and higher spectral regions. However, spectra do not exhibit distinct high-frequency
peaks. In contrast, small low-frequency bumps can be discerned in some spectra during
rest. During running, all LFP-MUA coherence spectra exhibit small but distinct peaks
centered on 8 Hz. Note that these peaks are significant in pairings of monopolar striatal
LFPs and cortical MUA but not between monopolar cortical LFPs and striatal MUA
(paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 36, n “ 79, n “ 80, and
n “ 118 cortico-cortical, cortico-striatal, striato-cortical, and striato-striatal monopolar
LFP-MUA pairs, respectively). In general, bipolar LFP-MUA coherences are signifi-
cant less often than their monopolar counterparts (paired, two-sided Wilcoxon sign-rank
tests, p ă 0.01; n “ 22, n “ 33, n “ 68, and n “ 98 cortico-cortical, cortico-striatal,
striato-cortical, and striato-striatal bipolar LFP-MUA pairs, respectively).
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Figure 3.14: Grand average LFP-MUA coherence difference. (a) Monopolar LFP-MUA
pairs. (b) Bipolar LFP-MUA pairs. Results are given as mean˘sem. Black dashed lines
indicate no change. Colored bottom lines denote significance.

We quantified the change in spike-field coherences between behavioral conditions by
means of difference spectra as shown in panels a and b of Figure 3.14. Both monopolar
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(panel a) and bipolar (panel b) LFP-MUA difference spectra exhibit prominent peaks of
significant coherence increase around 8 Hz. A second low-frequency peak of coherence
change is centered slightly above 4 Hz in all structure-signal type pairings. Also, spike-
field coherence increases consistently between 16 and 32–64 Hz in monopolar LFP-MUA
pairings, and it decreases significantly from below up to 128 Hz. Changes of bipolar
LFP-MUA coherences are generally less consistent and significant mostly between striato-
cortical and striato-striatal electrode pairs.
LFP-MUA coherence results were rather robust across subjects with respect to some

of the features described. In particular, low-frequency running peaks could be observed
in most animals. Coherence difference results were much more variable between animals.

3.5 Phase

3.5.1 LFP phase-locking

As noted above (Section 2.7.3.4), coherency measures basically quantify the temporal
consistency of the frequency-specific coupling of two signals. However, they do not ex-
plicitly differentiate between phase and amplitude components of these relationships
(Section 2.7.3.5). Given the strong and qualitatively similar characteristics of both LFP
power and coherence spectra, we computed phase-locking values of each epoch to deter-
mine the degree of phase-locking between electrodes after normalization of the complex
cross-spectral vectors to unit length. We computed test statistics the same way as for
coherencies (Section 2.7.3.4) and as described in general above (Section 2.7.4).
Panel a of Figure 3.15 shows grand average phase-locking spectra of monopolar LFPs.

Note the striking similarity between these plots and those of monopolar LFP coherences in
Figure 3.7 (page 75) which nicely illustrates the close analytical relationship between the
respective parameters. However, absolute phase-locking values are smaller than coherence
values throughout almost the entire spectrum in each pairing with this feature sparing
the low-frequency running peaks to a large extent. Nevertheless, phase-locking values
are statistically significant throughout the entire extent of all spectra (paired, two-sided
Wilcoxon sign-rank tests, p ă 0.01; n “ 33, n “ 107, and n “ 57 cortico-cortical,
cortico-striatal, and striato-striatal electrode pairs, respectively).
We divided average ordinary coherence by corresponding phase-locking estimates of

each electrode pair to directly compare the relative strengths of the two phase-coupling
measures. We computed test statistics of the null hypothesis of no difference between
coherence and phase-locking values through comparisons of real estimates with alterna-
tive distributions obtained as averages of n “ 1000 random partitions created from both
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Figure 3.15: Grand average LFP phase-locking and relative coherence–phase-locking
strength. (a) Monopolar LFPs: phase-locking. (b) Monopolar LFPs: coherence–phase-
locking ratio. (c) Bipolar LFPs: phase-locking. (d) Bipolar LFPs: coherence–phase-
locking ratio. Results are given as mean˘sem. Colored bottom lines indicate significance.
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measures. The plots in panel b of Figure 3.15 demonstrate a strong inverse relationship
between frequency and relative strength of coherence in terms of phase-locking values of
monopolar LFPs. Furthermore, low-frequency valleys occupy virtually the same points
on the frequency axis as low-frequency phase-locking and coherence peaks. In contrast,
high-frequency relative peaks are located at a point above the running monopolar phase-
locking and coherence peaks at 64 Hz. Another local peak between 32 and 64 Hz can be
observed in cortico-striatal resting spectra.
Panel c of Figure 3.15 depicts grand average phase-locking spectra of bipolar LFPs.

Note again their qualitative similarity to corresponding coherence spectra (cf. Figure 3.7,
page 75). As panel d of Figure 3.15 shows, ratios between bipolar coherence and phase-
locking values are comparable on average to those of monopolar LFPs and statistically
significant throughout all spectra (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01;
n “ 28, n “ 99, and n “ 53 cortico-cortical, cortico-striatal, and striato-striatal bipolar
electrode pairs, respectively). The spectra also exhibit frequency-specific structure with a
marked dip around 8 Hz where ratios are again close to one in cortico-striatal and striato-
striatal pairings. However, ratios do not show a strong inverse scaling with frequency.
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Figure 3.16: Grand average LFP phase-locking difference. (a) Monopolar LFPs. (b)
Bipolar LFPs. Results are given as mean˘sem. Black dashed lines indicate no change.
Colored bottom lines denote significance.

We quantified changes in phase-locking between rest and running by computing differ-
ence spectra analogous to those of coherency estimates (Section 3.4). As shown in panels
a and b of Figure 3.16, phase-locking differences are very similar to coherence differences
(cf. Figure 3.8, page 76). However, note the larger absolute values and the more distinct
shape of both monopolar and bipolar difference spectra. Bipolar phase-locking values
increase significantly in all structure pairings specifically around 8 Hz. Phase-locking is
also significantly increased in a broad band above 32 Hz between cortico-striatal pairs.
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3.5.2 LFP phase angles

As outlined in Sections 2.7.3.4–2.7.3.5, coherency and phase-locking measures quantify
the magnitude of signal coupling in the frequency domain. However, they do not reveal
the angles, i.e., the temporal lags, between activities recorded on different electrodes. We
aimed to determine the distribution of angles of each epoch to examine the phases of
coupling at each frequency of interest of the cross-spectral measures. To this end, angles
were sorted into histograms centered on 0˝ containing 61 equally spaced phase bins.
Panel a of Figure 3.17 depicts grand average monopolar LFP phase angle histograms.

The plots demonstrate a marked concentration of phases around 0˝ in both low and
high spectral regions during both behavioral states at the respective cross-spectral peak
frequencies as revealed by coherence and phase-locking analyses (cf. Figures 3.7 and
3.15 on pages 75 and 83, respectively). Overall, phase distributions are more tightly
constrained in lower than in higher spectral regions but still significant at almost every
frequency–phase-bin pair (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 33,
n “ 107, and n “ 56 cortico-cortical, cortico-striatal, and striato-striatal electrode pairs,
respectively). Remarkably, while phase distribution maxima are located at exactly zero
virtually everywhere in all histograms of within-structure pairings, there are substantially
more non-zero bins of maxima in histograms of cortico-striatal pairings. Most strikingly,
bins of phase maxima in low and high frequency ranges exhibit opposite signs, indicating
different temporal relationships between the respective signal components.
Panel b of Figure 3.17 shows grand average phase angle histograms of bipolar LFPs.

Phase angle distributions are less structured and non-significant more often than their
monopolar counterparts (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 28,
n “ 99, and n “ 53 cortico-cortical, cortico-striatal, and striato-striatal bipolar electrode
pairs, respectively). Interestingly, bins of significant bipolar LFP phase distribution are
grouped in two bands centered roughly around `π

2 and ´π
2 rad/s (corresponding to 90˝

and ´90˝, respectively). Also, phase distribution maxima are non-zero more often in
bipolar than in monopolar histograms.

3.5.3 Cross-hemispheric LFP phase-coupling

Given the characteristic structure of monopolar LFP coherence and phase-locking spec-
tra, we made use of the signals recorded simultaneously in both hemispheres of our
subjects by comparing the strength of phase-coupling between electrodes located on
the same with those located on different hemispheres. For each trial with at least one
valid ipsilateral and contralateral electrode pair we first computed within- and across-
hemisphere coherence and phase-locking values and then subtracted contralateral from
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Figure 3.17: Grand average LFP phase angles. (a) Monopolar LFPs. (b) Bipolar LFPs.
Black line segments denote non-zero maxima at each frequency. Phase bins are of size 6˝,
corresponding to approximately 0.1047 rad/s in polar coordinates. Test statistics com-
puted using time-shifted estimates quantify the significance of phase concentration within
each bin at each frequency. Bins of non-significant phase concentration are whitened.
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ipsilateral spectra. In addition, we created alternative distributions of the original data
of each trial by computing the mean across n “ 10 partitions obtained through random
assignment of hemisphere labels. We then pooled the original and permuted data across
all trials to compute grand average results and to perform test statistical comparisons of
the null hypothesis of no difference between ipsilateral and contralateral values.
The plots in panel a of Figure 3.18 demonstrate a spectrum-wide difference between

ipsilateral and contralateral coherences in all structure pairings with the former being
larger than the latter. This effect exhibits a strong frequency-dependence. More specifi-
cally, while ipsi- vs. contralateral differences are almost zero around 8 Hz, they increase
markedly between 8 and 32 Hz and remain elevated up until 128 Hz. Difference spectra
also exhibit localized peaks above 32 and 64 Hz which are more pronounced in cortico-
cortical and striato-striatal than in cortico-striatal pairings. Cross-hemispheric difference
spectra from both behavioral states are qualitatively very similar, and difference values
are significant throughout almost their entire extents. However, absolute difference values
are mostly larger in within- as compared to between-structure pairings.
Panel b of Figure 3.18 depicts ipsi- vs. contralateral phase-locking difference spectra

of monopolar LFPs. Note the striking similarity to coherence spectra in panel a. Again,
difference values are significant almost everywhere in lower and higher spectral regions
and during both behavioral states (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01;
n “ 87, n “ 258, and n “ 260 trials with ipsi- and contralateral cortico-cortical, cortico-
striatal, and striato-striatal electrode pairs, respectively).
The similarity of coherence and phase-locking difference spectra indicates that the

hemispheric bias of coherence between structures is indeed due to a larger phase-coupling
proper between ipsilateral as compared to contralateral electrode pairs. We substantiated
this assumption by computing the difference between cross-hemispheric coherence and
phase-locking difference spectra of each trial. We tested the significance of grand average
values through comparison of measured differences with those obtained from the means of
n “ 1000 random partitions created from coherence and phase-locking cross-hemispheric
difference values of each structure pairing and each level.
The results in panel c of Figure 3.18 demonstrate that differences in lower spectral

regions are mainly negative between cortico-cortical and striato-striatal pairings whereas
they are virtually zero between cortico-striatal electrode pairs, indicating a stronger
hemispheric bias for phase-locking values between the former. However, note the non-
significant difference in all structure pairings at the running low peak-frequency of 8 Hz
seen in monopolar LFP coherence and phase-locking spectra. In contrast, cortico-striatal
spectra exhibit two positive difference peaks centered around 32 Hz and between 64 and
128 Hz during both rest and running, indicating a stronger hemispheric bias for coherence
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Figure 3.18: Grand average cross-hemispheric LFP phase-coupling. (a) Coherence. (b)
Phase-locking. (c) Coherence–phase-locking difference. Panels a and b depict differences
between ipsilateral and contralateral values. Panel c displays differences between ipsi-
vs. contralateral coherence and phase-locking estimates. Results are given as mean˘sem.
Black dashed lines indicate no difference. Colored bottom lines denote significance.

values at these frequencies. Cortico-cortical and striato-striatal spectra display both and
only the second one of these peaks, respectively, during rest. Remarkably, all three
structure pairings exhibit two significant, negative difference peaks centered below and
around 64 Hz during rest and running, respectively. This indicates a stronger hemispheric
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bias of phase-locking as compared to coherence values exactly at the high peak frequencies
of both behavioral states (cf. Figures 3.7 and 3.15 on pages 75 and 83, respectively).

3.6 Phase-amplitude coupling

We computed the magnitudes and phases of coupling between phase and amplitude
components of monopolar LFPs to examine the consistency of their relationship possibly
indicating a modulation of high- by low-frequency rhythms (Section 2.7.3.6). We basically
used here the very same structure pairings employed above for phase-coupling estimates.
Note, however, that in the present analysis involving two distinct signal components,
this included a bidirectional, non-symmetrical pairing of cortical and striatal electrodes
as well as a doubling of electrode pairs for both within-structure pairings. For conceptual
reasons, we only display the results of phase-coupling analyses between lower phase and
higher amplitude components separated by at least one octave of spectral distance.
Figure 3.19 depicts grand average phase-amplitude coupling magnitudes of monopolar

LFPs. All matrices display prominent peaks at pairs of lower phase and higher amplitude
frequencies. During rest, couplings are strongest between phase components of around
4 up to below 8 Hz and amplitude components localized above 64 Hz and broadly dis-
tributed between 64 and 128 Hz. During running, phase-amplitude interactions increase
in overall strength and couplings become more distinctly localized in terms of prominent,
broadly based peaks and extended bands centered on phase frequencies of up to 8 Hz and
covering amplitude frequencies from below 64 up to 128 Hz. However, these peaks are
clearly offset from phase frequencies around 4 Hz. Interestingly, pairs of center frequen-
cies of phase-amplitude coupling maxima do not exactly coincide with low and high peak
frequencies of power and phase-coupling (coherence and phase-locking) estimates (cf.
Figures 3.3, 3.7, and 3.15 on pages 69, 75, and 83, respectively). This holds particularly
true for amplitude frequencies during rest and phase frequencies during running.
In addition to these major effects, phase-amplitude coupling values are also significantly

modulated in a localized fashion between phase frequency components of 8–16 Hz and
amplitude frequency components of again 64–128 Hz. Somewhat weaker but still signifi-
cant interactions between phase frequencies of 4–8 and amplitude frequencies of 16–32 Hz
are present in all but cortico-cortical electrode pairs during running, with striato-striatal
pairs displaying similar characteristics during rest. Overall, phase-amplitude couplings
are most significant between striato-striatal followed by striato-cortical electrode pairs,
and the least significant between cortico-cortical pairs (paired, two-sided Wilcoxon sign-
rank tests, p ă 0.01; n “ 66, n “ 107, n “ 107, and n “ 114 cortico-cortical, cortico-
striatal, striato-cortical, and striato-striatal electrode pairs, respectively).
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Figure 3.19: Grand average phase-amplitude coupling magnitudes of monopolar LFPs.
Phase and amplitude frequencies are displayed on x- and y-axes, respectively. Results are
given as the negative common logarithm of test-statistical p´values. Non-significant val-
ues and coupling estimates involving amplitude frequencies ă 8 Hz and phase frequencies
ą 64 Hz were blanked and whitened.

We extracted the angles of the complex phase-amplitude coupling terms computed for
each epoch and averaged the respective values as explained in Section 2.7.3.5. We plot-
ted the resulting grand average data after masking to only display phases at frequency
pairs exhibiting significant coupling strengths (cf. Figure 3.19). The plots in Figure 3.20
show that average phases of significant coupling tend to markedly cluster around values
between `π

2 to `π rad/s, with a bias towards the latter particularly during running. As
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Figure 3.20: Grand average phase-amplitude coupling phases of monopolar LFPs.
Phase and amplitude frequencies are displayed on x- and y-axes, respectively. Results are
given as mean. Phases of frequency pairs exhibiting non-significant coupling strengths
(cf. Figure 3.19) and coupling estimates involving amplitude frequencies ă 8 Hz and
phase frequencies ą 64 Hz were blanked and whitened.

Figure 2.15 on page 56 demonstrates, these phase values at low-phase–high-amplitude
frequency pairs correspond to the trough regions of extracellularly recorded LFPs, pro-
viding a physiological link between low- and high-frequency fluctuations.
We quantified the changes between rest and running phase-amplitude couplings by

means of difference matrices as shown in Figure 3.21. They demonstrate a well-delineated,
massive increase in phase-amplitude coupling between phase frequency components be-
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Figure 3.21: Grand average phase-amplitude coupling magnitude differences of monopo-
lar LFPs. Phase and amplitude frequencies are displayed on x- and y-axes, respectively.
Results are given as grand average within-trial z-scores (Section 2.7.4). Non-significant
values and coupling estimates involving amplitude frequencies ă 8 Hz and phase frequen-
cies ą 64 Hz were blanked and whitened.

low 8 and amplitude frequency components from below 64 up to 128 Hz. This effect is
again strongest in striato-striatal and weakest in cortico-cortical structure pairings. Re-
markably, the significant increase of coupling between phase and amplitude frequencies
of 8–16 and 64–128 Hz is divided into two well-separated, peak-shaped components with
amplitude frequencies centered below and above 64 Hz, respectively. In addition, note the
significant increase between phase and amplitude components of approximately doubled
frequency. Furthermore, coupling decreases significantly between phase and amplitude
frequencies of 4 and 8, 8 and 16 as well as around 32 and 64 Hz, respectively.

3.7 Power correlation

We computed correlations between monopolar LFP power values of different frequencies
as explained in Section 2.7.3.7. We again employed the exact same structure pairings as
for phase-coupling analyses (Sections 3.4 and 3.5). We only considered values at least
one octave off the main diagonal of correlation matrices for statistical analyses of cross-
electrode, cross-frequency estimates to avoid spurious findings resulting from statistical
dependence of power values at neighboring frequencies. We treated cross-channel, same-
frequency estimates separately for both conceptual reasons and illustration purposes.
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Figure 3.22: Grand average cross-electrode, cross-frequency monopolar LFP power cor-
relations. (a) Raw power correlations. (b) Power correlation differences. For interpreta-
tion of figure titles, note that in all cases the first and second structures referred to in a
pair map onto frequency components along x- and y-axes, respectively. Non-significant
correlations and values up to one octave off the main diagonal were blanked and whitened.

Panel a of Figure 3.22 depicts grand average cross-electrode, cross-frequency power
correlations of all structure pairings. Both resting (upper plots) and running (lower
plots) matrices exhibit several prominent features. First, resting power values at many
spots and along extended bands between 4 and 32 Hz are significantly correlated with
values of approximately double their own frequency between 8 and 64 Hz in all structure
pairings. This feature becomes even more pronounced during running. Second, however,
during the latter state significant correlations between lower frequency components are
more broadly dispersed also off double-frequency diagonals. This effect is particularly
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distinct in a spectral region stretching from below 16 and up to below 64 Hz and most
strongly expressed between striato-striatal electrode pairs. Third, during running power
values within a broad region around 32 Hz become significantly correlated with values
above 64 and up to 128 Hz. Fourthly, resting but not running matrices exhibit strong,
distinctly localized peaks and bands of significant values between frequencies centered
slightly below 8 and around to above 64 up to 128 Hz. Significant correlations are most
broadly distributed between cortico-cortical and most narrowly focused between striato-
striatal electrode pairs, respectively. Notably, they are stronger between striatal low- and
cortical high-frequency components than vice versa. Further, highly similar correlation
characteristics are present between frequencies around 4 and between 64 and 128 Hz.
Panel b of Figure 3.22 explicitly quantifies the changes of power correlations between

rest and running. Correlations between frequency components slightly below 8 and from
below 16 to above 32 Hz increase strongly across an extended band. A second band of
strong correlation increase is located at frequency pairs between 8 to and above 16 and
up to almost 64 Hz, with more peak-like modulations present in between-structure as
compared to within-structure pairings. All matrices also display the significant increase
of correlation between frequency components of 32 and those below to around 128 Hz
which is most prominent and widespread in striato-striatal pairings. Most strikingly,
correlations between low- and high-frequency components of 4 and 8 and between 64
and 128 Hz decrease in a statistically significant manner between behavioral states in all
structure pairings (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 33, n “ 107,
n “ 57 cortico-cortical, cortico-striatal and striato-striatal electrode pairs, respectively).
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Figure 3.23: Grand average cross-electrode, same-frequency monopolar LFP power cor-
relations. Results are given as mean˘sem. Colored bottom lines denote significance.

Figure 3.23 depicts grand average cross-channel, same-frequency power correlations as
extracted from the main diagonal of cross-channel, cross-frequency correlation matrices.
Note the striking qualitative similarity between power correlation spectra on the one
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hand and LFP coherence and phase-locking spectra shown in Figures 3.7 (page 75) and
3.15 (page 83), respectively, on the other. Power correlation values are statistically
significant across the entire spectrum in all structure pairings. They are largest between
striato-striatal and similar between cortico-cortical and cortico-striatal electrode pairs
but consistently smaller than their phase-coupling counterparts (Section 3.8).
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Figure 3.24: Grand average cross-electrode, same-frequency monopolar LFP power cor-
relation differences. Results are given as mean˘sem. Black dashed lines indicate no
change. Colored bottom lines denote significance.

Difference spectra shown in Figure 3.24 quantify the changes between resting and
running cross-channel, same-frequency power correlations. Note again their striking sim-
ilarity to corresponding coherence and phase-locking difference plots (cf. Figures 3.8 and
3.16 on pages 76 and 84, respectively). In particular, power correlations change signifi-
cantly in a localized fashion around 4 and 8 as well as below and above 64 Hz.

3.8 Phase-locking–power interrelation

Given the strong qualitative similarity between phase-coupling and cross-electrode, same-
frequency power correlation estimates, we directly related both measures of neuronal
interaction to quantify their overall and more fine-grained mutual temporal dependencies.
We first compared relative strengths by dividing phase-locking by cross-channel, same-

frequency power correlation spectra. We performed test statistical comparisons of the
null hypothesis of no difference between measures the same way as for coherence–phase-
locking ratios (Section 3.5.1). As Figure 3.25 shows, phase-locking is consistently stronger
in all structure pairings. This effect is largest in cortico-cortical and smallest in striato-
striatal pairings. Remarkably, relative spectra exhibit a prominent peak centered on 32
Hz and a rising flank of values up to 128 Hz. Phase-locking–power correlation ratios are
smallest in low spectral regions and around resting and running high peak frequencies.
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Figure 3.25: Grand average phase-locking–power correlation ratios of monopolar LFPs.
Results are given as mean˘sem. Colored bottom lines denote significance.

Figure 3.26 depicts phase-locking–power correlation ratio changes between behavioral
states. The bias of stronger phase-locking values increases significantly around the resting
high phase-coupling peak-frequency below 64 Hz in all structure pairings but decreases
between 64 and up to 128 Hz. Most strikingly, with the exception of a significant change in
striato-striatal pairings, there are no alterations of phase-locking–power correlation ratios
at the running high peak-frequency of 64 Hz. In lower spectral regions, the bias also tends
to decrease but does not change significantly around the low running peak-frequency of
8 Hz (paired, two-sided Wilcoxon sign-rank tests, p ă 0.01; n “ 33, n “ 107, and n “ 57

cortico-cortical, cortico-striatal, and striato-striatal electrode pairs, respectively).
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Figure 3.26: Grand average phase-locking–power correlation ratio differences of
monopolar LFPs. Results are given as mean˘sem. Black dashed lines indicate no change.
Colored bottom lines denote significance.

The above phase-locking–power correlation ratios only quantify the relative, time-
average strength of both interaction measures but do not reveal the detailed temporal
dynamics of their relationship. We therefore determined the interrelation of both coupling
measures on a small time scale by calculating correlations between phase-locking and
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Figure 3.27: Grand average raw phase-locking–power intercorrelations. Results are
given as mean˘sem. Colored bottom lines denote significance.

power correlation values as described in Section 2.7.3.8. We computed test statistics by
comparing measured coefficients with those obtained through correlation of randomized
partitions of phase-locking and power correlation values created for each individual epoch.
Phase-locking–power intercorrelation spectra shown in Figure 3.27 reveal spectrum-

wide significant correlations between both coupling measures. In general, correlations are
stronger in higher than in lower spectral regions. Furthermore, prominent, broadly based
resting peaks are centered on 64 Hz and smaller resting valleys are centered below 8 Hz in
all structure pairings. Remarkably, correlations change substantially between behavioral
conditions, with resting high-frequency peaks vanishing and resting low-frequency valleys
deepening and their bottoms shifting towards center frequencies of 8 Hz. These changes
are explicitly quantified in phase-locking–power intercorrelation difference spectra shown
in Figure 3.28. They reveal significant decreases of correlations centered exactly on 8 Hz
in the low and on 64 Hz in the high frequency range but hardly any significant changes
of intercorrelations in other spectral regions of all structure pairings.
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Figure 3.28: Grand average phase-locking–power intercorrelation differences. Results
are given as mean˘sem. Black dashed lines indicate no change. Colored bottom lines
denote significance.
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3.9 Peak-frequency changes

Monopolar LFP power, coherence, and phase-locking spectra exhibit prominent low and
high frequency peaks indicating true oscillatory processes present in the underlying sig-
nals. These peaks shift markedly in an upward direction between resting and running
states. Further, the spectra also indicate increases of power and phase-coupling strengths
within narrowly delimited bands centered around these low and high peak frequencies.
We thus sought to (i) assess the statistical significance of both power and phase-coupling
increases as well as associated peak-frequency shifts between the two major behavioral
states, and (ii) find out wether these changes would also scale in a linear fashion with cor-
responding linear changes of running speed on the different levels. We chose phase-locking
instead of coherence estimates for peak-frequency analyses of phase-coupling measures in
order to clearly distinguish between changes resulting from amplitude and phase-locking
effects proper, respectively (see Sections 2.7.3.5, 3.4, and 3.5 above).
We computed power and phase-locking values in steps of 32 instead of 8 voices within

low and high frequency bands stretching from 5.66–11.31 and 45.25–90.51 Hz, respec-
tively, and spanning one octave of spectral bandwidth each. We then interpolated the
resulting spectra in 128 logarithmic steps using cubic splines. For peak-frequency analy-
ses we were interested in specific changes within very limited frequency bands. We thus
computed, for each structure and both resting and running states, the first derivative
of the respective grand average power and phase-locking spectra as well as their peak-
frequency. We then determined the points of maximum positive and negative slope of
the spectral peak within the limits defined above. We chose the final frequency bounds
used for peak localizations to be the minimum lower and maximum upper frequencies
calculated across both structures or structure pairings and behavioral states.
To differentiate between changes of average power or phase-locking strengths and

changes of peak frequencies proper we calculated mean power and phase-locking values
within the bounds determined. We localized peak frequencies by computing maximum
power and phase-locking values and extracted the corresponding frequency values. To
asses the significance of peak-frequency changes between rest and average running levels,
we pooled data from all trials with valid data available from both states. To analyze the
relationship between average power or phase-locking values as well as associated peak
frequencies and movement speed of the animals, we performed linear regression analyses
on the data of each level pooled across trials from all subjects with running speed as
the predictor. We restricted regression analyses to those structures or structure pairings
marked by a significant overall positive shift of peak frequencies between rest and running
and to trials and levels marked by a shift in peak-frequency ą 0.
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3.9.1 Power peaks

Figure 3.29 shows statistical comparisons of average power values (panel a) and average
peak frequencies (panel c) of low, frequency-normalized LFP power spectra. Limits used
for peak detection were 6.37 and 9.67 Hz. Power increased and peak frequencies shifted
significantly towards higher values between behavioral states in both structures (paired,
two-sided Wilcoxon sign-rank tests, p ă 0.005 at α-levels of 0.01 Bonferroni-corrected for
n “ 2 comparisons; n “ 24 and n “ 30 cortical and striatal electrodes, respectively).
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Figure 3.29: Low peak-frequency changes of monopolar LFP power. (a) Mean rest
and average running level power. (b) Mean running level power. (c) Rest and average
running level peak frequencies. (d) Running level peak frequencies. Results are given as
median˘mad (a, c) and mean˘sd (b, d). Asterisks (˚) denote significance.

An average of 58 and 56% of cortical and striatal electrodes exhibited positive shifts of
low peak frequencies between rest and running levels. Panels b and d of Figure 3.29 depict
average power and peak-frequency values from all running levels (n “ 10, 13, 20, 23, 17, 11

cortical and n “ 16, 18, 28, 27, 21, 16 striatal electrodes for levels 1–6, respectively).
Power in both structures increased with regression values of r “ 0.22 for cortex and
r “ 0.20 for striatum. However, these changes were not statistically significant. Peak
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Figure 3.30: High peak-frequency changes of monopolar LFP power. (a) Mean rest
and average running level power. (b) Rest and average running level peak frequencies.
(c) Mean running level power. (d) Running level peak frequencies. Results are given as
median˘mad (a, c) and mean˘sd (b, d). Asterisks (˚) denote significance.

frequencies also increased with behavioral demand and scaled significantly (p ă 0.005) in
a linear fashion with running speed in striatum (r “ 0.32) but not in cortex (r “ 0.22).
Panels a and c of Figure 3.30 show rest and average running level power and peak fre-

quencies from high, frequency-normalized LFP power spectra. Limits used for peak de-
tection were 48.82 and 90.51 Hz (note that we clipped frequency axes in Figures 3.29, 3.30,
3.31, and 3.32 at the respective values). Average power and peak-frequency estimates
increased in a statistically significant manner between behavioral states (p ă 0.005).

An average of 67% of both cortical and striatal electrodes exhibited positive shifts of
high peak frequencies between rest and running levels. High peak-frequency power (Fig-
ure 3.30, panel b) varied greatly and did not increase linearly with running speed (r “
0.14 for cortical and r “ 0.10 for striatal electrodes). In contrast, both cortical (r “ 0.33)
and striatal (r “ 0.48) peak frequencies (Figure 3.30, panel d) scaled linearly in a statis-
tically significant manner with behavioral demand (p ă 0.005; n “ 11, 15, 22, 24, 16, 11

cortical and n “ 16, 20, 28, 29, 19, 16 striatal electrodes for levels 1–6, respectively).
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3.9.2 Phase-locking peaks

Figure 3.31 depicts mean phase-locking values (panels a and c) and associated peak
frequencies (panels b and d) of monopolar LFPs during rest and average running levels
in low (a, b) and high (c, d) frequency ranges. Spectral limits used for peak detection
were 5.94 and 11.31 Hz for the low and 46.50 and 90.51 Hz for the high frequency band,
respectively. As the plots show, both phase-locking values and peak frequencies increase
between rest and running. In particular, peak frequencies of all structure pairings shift
markedly from around 7 to values of about 8 Hz in the low and from below 60 to values
around 65 Hz in the high frequency range. Changes of average phase-locking values are
less pronounced and more variable. Still, all phase-locking and peak-frequency changes
were statistically significant (paired, two-sided Wilcoxon sign-rank tests, p ă 0.0033 at
α-levels of 0.01 Bonferroni-corrected for n “ 3 comparisons; n “ 33, n “ 107, and n “ 57

cortico-cortical, cortico-striatal, and striato-striatal electrode pairs, respectively).
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Figure 3.31: Level-average peak-frequency changes of monopolar LFP phase-locking
values. (a) Mean phase-locking: Low frequency range. (b) Peak frequencies: Low fre-
quency range. (c) Mean phase-locking: High frequency range. (b) Peak frequencies: High
frequency range. Results are given as median˘mad. Asterisks (˚) denote significance.
Abbreviations: c-c, cortex-cortex; c-s, cortex-striatum; s-s, striatum-striatum.
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We again analyzed the relationship between changes of phase-locking values and as-
sociated peak frequencies and running speed of the animals. An average number of 78,
84, and 86% of cortico-cortical, cortico-striatal, and striato-striatal electrode pairs exhib-
ited positive shifts of low phase-locking peak frequencies between rest and running levels.
Phase-locking values within the low frequency band (Figure 3.32, panel a) varied substan-
tially and scaled linearly in a statistically significant manner (p ă 0.0033) with running
speed between cortex and striatum only (r “ 0.22, r “ 0.50, and r “ 0.08 for cortico-
cortical, cortico-striatal, and striato-striatal electrode pairs, respectively). Remarkably,
cortico-striatal phase-locking values did not increase but decreased with behavioral de-
mand (n “ 1, 1, 10, 10, 7, 9 cortico-cortical, n “ 10, 10, 45, 45, 33, 32 cortico-striatal, and
n “ 15, 18, 33, 33, 18, 15 striato-striatal pairs for levels 1–6, respectively).

In striking contrast, low phase-locking peak frequencies (Figure 3.32, panel b) increased
markedly and scaled linearly with running speed in all structure pairings (r “ 0.86,
r “ 0.79, and r “ 0.75 for cortico-cortical, cortico-striatal, and striato-striatal electrode
pairs, respectively). All these changes were statistically highly significant (p ă 0.0033).
Note here the extremely small standard deviations on all levels of all structure pairings.
Similar to average low frequency phase-locking values, average high frequency phase-

locking values varied substantially on each running level of each structure pairing (Figure
3.32, panel c). They did not scale at all with running speed in within-structure pair-
ings (r “ 0.01 for cortico-cortical and r “ 0.02 for striato-striatal electrode pairs).
However, average phase-locking values again decreased in a statistically significant lin-
ear fashion between cortex and striatum with increasing behavioral demand (r “ 0.29,
p ă 0.0033; n “ 1, 1, 8, 9, 8, 8 cortico-cortical, n “ 11, 11, 40, 42, 31, 32 cortico-striatal,
and n “ 15, 16, 33, 33, 18, 15 striato-striatal pairs for levels 1–6, respectively).
High phase-locking peak frequencies as shown in panel d of Figure 3.32 were again much

more consistent across electrode pairs. Accordingly, they exhibited a highly significant
linear scaling with running speed in all structure pairings (r “ 0.71, r “ 0.58, and r “
0.67 for cortico-cortical, cortico-striatal, and striato-striatal electrode pairs, respectively;
p ă 0.0033). Note here the larger scatter of average peak-frequency values across running
levels in cortico-cortical as compared to the other structure pairings, but also again the
consistently small standard deviations on all levels of all pairings.
We repeated the above analyses using monopolar LFP coherences to compare peak-

frequency changes in both phase-coupling measures (data not shown). Level-average
changes of mean coherence values and associated peak frequencies were significant in
all structure pairings and in both frequency ranges. Level-resolved mean coherence and
peak-frequency estimates in low and high frequency ranges also exhibited exactly the
same characteristics and similar r´ and p´values as corresponding phase-locking results.
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Figure 3.32: Level-resolved peak-frequency changes of monopolar LFP phase-locking
values. (a) Mean phase-locking: Low frequency range. (b) Peak frequencies: Low fre-
quency range. (c) Mean phase-locking: High frequency range. (b) Peak frequencies:
High frequency range. Results are given as mean˘sd.
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4 Discussion

We had set out to study the spectral characteristics of population activities in structures
along the cortico-striatal axis. Our results revealed prominent low- and high-frequency
oscillatory patterns in cortex and striatum during resting and running states. Oscilla-
tions were synchronized within and between both structures and exhibited characteristic
alterations of peak frequencies in relation to changes in motor demand, indicating their
behavioral relevance. We also found distinct cross-frequency interactions between low-
and high-frequency spectral components as well as intricate relationships between phase-
coupling and power correlation measures that changed markedly with behavioral state.
In the following, we first discuss a couple of methodological issues (Section 4.1) that are

important for the outcome of the present study and make suggestions for improvement of
future experiments. Second, we provide a detailed evaluation of the results and compare
them with those of other studies (Sections 4.2–4.6). Third, we interpret and discuss
our findings with regard to their functional implications on a systems-level (Section 4.7)
before we close the chapter by naming directions of possible future research endeavors
(Section 4.8). Note that for reasons given below (Sections 4.1.5 and 4.1.7), we will mainly
focus on the results of monopolar LFP analyses.

4.1 Methodological considerations

4.1.1 Behavioral model

We trained Brown Norway rats to reliably perform in a substantially demanding motor
task designed to allow for a stable parallel recording of extracellular neuronal signals from
their brains. As the results of a prior behavioral pilot study had shown (von Nicolai,
2011), this proved to be a considerable challenge. First, basic treadmill running capac-
ities of individual Brown Norway rats vary considerably and in a largely unpredictable
manner, which makes it difficult to quickly separate runners from non-runners. Second,
since only about 25% of animals initially trained exhibit good and reliable performance
capacities, this demands testing large samples before selection of the final experimental
subjects. Third, for reasons discussed extensively by von Nicolai (2011), treadmill run-
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ning according to a task design and in a behavioral environment such as ours can be
potentially hazardous to the health of subjects which further limits the freedom to vary
training parameter settings. Fourth, even in case of well-trained animals, our experience
showed that pre- and post-operative behavioral capacities were not always well correlated
and also varied considerably during days, weeks, and months following implantations. For
all these reasons, treadmill training of Brown Norway rats for neuronal recordings under
behaviorally demanding conditions is both time consuming and the outcome not easy
to predict. Thus, we cannot unequivocally recommend the use of this animal model for
studies of brain activities under awake behaving conditions. For an in-depth discussion of
questions regarding optimal treadmill training parameters and general treadmill running
capacities of Brown Norway rats, see von Nicolai, 2011.
Despite these limitations, we obtained a substantial amount of valid data from a decent

number of subjects during both rest and locomotion on 6 different speed levels ranging
from walking to high speed running. Behavioral results showed that subjects were in
principle able to sufficiently perform in the task under recording conditions. They also
exhibited some of the main features known from pre-operative training sessions (von
Nicolai, 2011), such as large inter-subject variability of error rates and a strong trend
towards an improvement of performance with increasing running speed. Challenges in
terms of abrupt speed changes between levels only modestly increased error rates dur-
ing subsequent epochs, indicating that animals were generally well capable of adapting
behaviorally to sudden increases of motor demand. Still, many subjects exhibited con-
siderably worse performance capacities after as compared to before implantations. In
addition, behavioral results show that while a few animals ran very well and consistently
both within as well as across trials and recording sessions, others performed close to the
upper bound of error rates allowed by the setup, leaving only few trials with enough
behaviorally valid epochs for level-based analysis of neuronal signals.
The makeup of implants and the very nature of the recording conditions also often

constrained the amount of data useable for analysis. That is to say, obtaining artifact-
free neuronal signals from awake animals running at high speeds over extended time
periods and not just walking or trotting was by itself experimentally challenging because
whole-body movement and its disruption during error periods are substantial sources of
mechanical instability. This is certainly one reason why similar studies involving truly
comparable task conditions are quasi absent from the literature (for examples of neuro-
physiological experiments employing treadmill running as a behavioral model, see Chapin
and Woodward, 1982a,b; Chang et al., 2003, 2006; Shi et al., 2004, 2006). Variations in
implantation outcome such as electrode state and placement or tissue affection further
enhanced the vulnerability of recordings to external perturbations (see also Section 4.1.5).
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4.1.2 Recording setup

In addition to difficulties associated with the behavioral model used, peculiarities of the
recording environment also constrained the conditions of data acquisition. In particular,
a smooth transfer of implanted animals connected to the recording system via headstage
and tether cable onto the treadmill apparatus inside its box (Section 2.4.2) turned out
to be of crucial importance for both safety of animals and materials as well as for the
stability of some signal types. For example, we unfortunately lost almost all of the single-
unit signals just detected during rest while transferring the rats from the plexiglas bowl
onto the treadmill (Section 2.4.1). While this may also have been due to insufficient
implant and implantation qualities, we consider the design of a recording environment
better adapted to the peculiarities of the treadmill running model to be one necessary
step to improve the outcome of data collection. One possible solution in this regard
would be to combine the treadmill with a directly attached compartment to be used for
electrode displacement during rest, such that animals could easily and even voluntarily
move to the actual task environment. This would overcome the constraints imposed by
the narrowly enclosed running lanes surrounded by high walls which are, on the one
hand, needed to restrict the movement path of subjects but which prevent, on the other
hand, electrode displacement during rest to be performed with animals on the treadmill.

4.1.3 Implantation issues

We used a self-modified microdrive equipped with 12 individually moveable microelec-
trodes to record neuronal signals from cortical and subcortical structures of both hemi-
spheres of the rodent brain. We are not aware of any other study using a directly compa-
rable approach for neuronal data acquisition under awake behaving conditions. However,
the unique makeup of the implant also brought about particular technical challenges.
First, the current design of the cap attached to the bottom of the microdrive (Figure

2.3, page 29) only allowed for an approximate placement of the implant due to its size
and stereotaxic manageability. Thus, targeting of specific, particularly small structures
may be difficult although we do not consider this very problematic in the present case
(see Section 4.1.4 below). More importantly, however, the cap’s size and makeup resulted
in an incomplete closure of the area between the skull’s surface and the implant right
around the large bilateral craniotomies. While we carefully tried to restrict the spread
of dental cement used to fix the implant to the skull and to the anchor screws (Section
2.3.3), we cannot fully exclude occasional affections of neither electrodes nor brain tissue.
A modification of the cap’s design or a different way of its attachment to the skull may
potentially better protect the implantation site and better ensure movability of electrodes.
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Second, guidance of electrodes from the bottom of the implant to the top of the
microdrive by means of polyimide tubes was complicated by the need to considerably
bend them to allow for a targeting of specific holes inside the cap (Figure 2.3, panels
c and d, page 29). We were surprised by the basically smooth movability of electrodes
both before and after implantation. Nevertheless, in some cases electrodes got stuck
somewhere on their way down from the top to the bottom of the implant impeding any
further displacement. A mutual adaptation of the microdrive’s and the cap’s designs or
even a switch from individually moveable to chronically fixed electrodes may be better
apt to take full advantage of the cap’s outline originally intended to allow for massively
parallel, full-loop recordings from the basal ganglia and associated structures.
Third, the overall size of the implant was both potentially annoying for the animals as

well as demanding for the experimenter with regard to their handling in the recording
environment (Section 2.4.2). In general, animals appeared to very well tolerate the
implant and quickly adapted to it. In most cases, wound healing was undisturbed and
no outer affections of the implantation site were visible. However, note that while we
obtained stable recordings from some subjects over the course of up to three months,
others lost their implants after only about four to six weeks (see also Section 4.1.4 below).
Post-mortem examination of bone structures showed that this was most probably the
result of macerations around anchor screws and below areas covered by dental cement.
Use of other materials for screws or smaller implantation sites, themselves necessitating
the use of smaller implants, may be possible solutions to these problems.
Fourth, despite careful construction of implants and their thoughtful placement, we

experienced a non-negligible loss of electrodes due to bending not only outside but also
inside the brain. The use of electrodes larger in diameter than 75 µm may allow for better
endurance when combined with an implant such as ours. For a more general discussion
of methodological issues regarding ensemble and field potential recordings from awake
behaving animals, rats in particular, see, e.g., Buzsáki et al., 1989; Kralik et al., 2001;
Jog et al., 2002; Buzsáki, 2004.

4.1.4 Electrode positions

As mentioned above (Section 4.1.3), exact guidance of electrodes into target structures
was complicated by peculiarities of the implant’s design. Unfortunately, we did not obtain
histological samples sufficient to ascertain recording positions post-mortem by means of
electrolytic tissue lesions. This was due to both failures of perfusions and the fact that
many subjects lost their implants prior to the end of experimental sessions.

107



Chapter 4 Discussion 4.1.5

However, we took great care on pre-operative planning stages, during surgeries, and
during recordings to ensure correct placement of electrodes. First, coordinates were
chosen such as to be comfortably accessible by means of large but circumscribed cran-
iotomies. Second, we always advanced cortical and striatal electrodes by about 2 and
4 mm, respectively, prior to implantation to ease a direct hit of target structures by
implantation alone. Third, we restricted our recordings to DV positions of up to 3 mm
depth in case of cortical and between 4 and 7 mm depth in case of striatal electrodes
(Section 2.3.1). Finally, as is shown in Figure 2.2 (page 2.2), the striatum is a huge struc-
ture covering large parts of the rat’s forebrain. Our cortical electrodes were also aimed
at regions covering extended areas of the brain’s surface in both AP and ML planes. We
are thus very confident that our electrodes were indeed correctly placed.

4.1.5 Data quality

As stated in Section 4.1.1, recording enough data of sufficient quality for signal analysis
under treadmill running conditions was a substantial challenge. Because of behavioral
and implantation issues, we recorded LFPs and MUA from 8 out of 10 rats success-
fully implanted. However, the quality of that data varied considerably both within and
between subjects, necessitating a careful evaluation of signals prior to analysis.
We applied several methods ranging from on- and offline visual inspection of raw traces

to automatic amplitude thresholding and variance tests (Section 2.6.1). We then excluded
channels and epochs of trials failing to fulfill any one of those criteria from further analy-
sis. Importantly, note that data selection took place prior to signal analysis and was thus
not biased by specific later outcomes. Furthermore, we emphasize that to our knowledge
the host of signal evaluation methods used here by far exceeds the average number of
such steps carried out in other studies involving neuronal recordings from awake behaving
animals. We are thus confident that the results reported are not substantially distorted
by recording artifacts in the strict sense of the word (for a discussion of LFP data quality
with regard to volume conduction issues, see Section 4.1.6).
Our trust in overall quality of LFP data notwithstanding, we point out that we interpret

the quality of multi-unit activities in terms of signal strengths with considerable caution.
As exemplified in Figure 2.11 on page 43, inspection of a large number of raw spike trains
showed that signal-to-noise ratios were very low in many cases. This may well explain the
quasi absence of MUA power peaks and the only small peaks in spike-field as compared
to LFP coherence spectra. In addition, the variability of MUA analysis results across
subjects was substantially larger than that of corresponding LFPs.
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Certainly, none of these findings do by themselves unambiguously speak against good
quality of MUA data. Accordingly, we did indeed find spiking signals to exhibit substan-
tial modulations between behavioral states. Again, however, we stress that possibly due
to impedance limitations signal-to-noise ratios of high-frequency components appeared to
be much smaller than those of field recordings, imposing limitations on their validity and
necessitating caution in their interpretation. We will therefore focus on the discussion of
(monopolar) LFP data in upcoming sections, treating MUA results with diffidence.

4.1.6 Volume conduction

Field potential recordings are generally susceptible to artificial contaminations resulting
from electrical activity generated by a single source being picked up by multiple, spa-
tially separate sensors. Power and phase-coupling analyses of monopolar LFPs indicated
strong, frequency-specific activities and highly similar coupling characteristics within and
between structures. How sure can we be that these effects were due to strictly localized
activities and proper phase-locking between them rather than volume conduction effects?
First, despite their similarity, cortical and striatal power as well as ordinary coherence

and phase-locking spectra of within- and between-structure pairings did exhibit quanti-
tative differences, arguing against an exclusive origin from one common source. Second,
imaginary coherence spectra and phase angle histograms of cortico-striatal electrode pairs
were qualitatively and quantitatively clearly distinct from those of cortico-cortical and
striato-striatal pairs. They exhibited distinct structure and indicated frequency-specific,
non-zero phase-coupling between the two regions. These findings are incompatible with
the instantaneous effects of volume conduction. Third, coherence and phase-locking val-
ues displayed substantial, frequency-specific, cross-hemispheric biases which we would not
expect in case of a global, artificial spread of activities. Fourth, despite a low signal-to-
noise ratio (Section 4.1.5), multi-units and LFPs from the same and different structures
were significantly coherent across wide spectral regions. Since MUA are assumed not
to be susceptible to volume conduction, such signs of local interactions argue strongly
against a purely artificial origin of LFPs. Finally, bipolar LFP power and phase-coupling
spectra retained substantial amounts of power and exhibited significant coherence and
phase-locking values in both low and high frequency ranges, respectively. Thus, even
after cancellation of common source signal components by means of bipolar derivations
localized activities underlay to a considerable degree the effects originally observed.
Taken together, we are confident that monopolar LFP effects were not primarily caused

by volume conduction. Nevertheless, we also stress that a reference electrode placed
inside the brain at an electrically largely neutral spot such as white matter regions
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may further enhance signal quality and stability. Directly performing bipolar recordings
instead of offline derivation of signals would be another option, although this may also
negatively affect the outcome of data collection as is discussed in the next section (4.1.7).

4.1.7 Bipolar derivations

We created bipolar derivations from monopolar LFPs to reduce the influence of common
source effects on local activities. Low-frequency running power and phase-coupling peaks
were largely robust to differentiation. Bipolar spike-field coherence spectra also retained
many of their characteristics, although couplings were less often significant.
However, bipolar derivation procedures also substantially altered qualitative and quan-

titative characteristics of power, coherence, and phase estimates, most prominently so in
higher frequency regions. Most strikingly, phase angle measures between bipolar LFPs
revealed a substantial alteration of distributions, with values being much less specifically
concentrated than in the monopolar case (Figure 3.17, page 86). At this point, note that
the plots shown in Figure 3.17 depict distributions thresholded for phase angle concentra-
tions deviating significantly from those obtained from phase-coupling measures between
time-shifted LFPs. Inspection of non-thresholded frequency-phase histograms revealed
that bipolar LFP phase angle concentrations were actually lowest in terms of absolute
values in significant bins and that phase angles were much more broadly distributed and
statistically more close to random distributions in other regions of the histograms. This
was particularly the case for phase angle measures between cortical and striatal elec-
trodes where distributions were largely flat across the spectrum. Related observations
were made when comparing imaginary monopolar and bipolar coherence spectra (Figure
3.9, page 77). There, the characteristic spectral structure of non-zero phase coupling
between cortical and striatal signals is lost following signal derivation.
We do not generally deny the potential usefulness of bipolar derivations in canceling of

artificial common source effects. Still, given the above findings and comparing them with
those of monopolar LFPs, we argue that these procedures may not only have improved
but also partly distorted the quality of our data. This is because first, monopolar LFP
power and phase coupling spectra exhibited distinct structure, including characteristic
cross-hemispheric biases, significant differences between coherence and phase-locking val-
ues and frequency-specific temporal lags between cortical and striatal activities that are
by themselves indicative of a non-artificial origin of the underlying signals (Section 4.1.6).
Second, the near-zero phase coupling particularly between within-structure pairings

does not by itself prove volume contamination of LFPs. In fact, popular theories of
intra- and inter-areal neuronal communication that are based on mechanisms of coherent
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oscillations as major operational principles explicitly allow for near-zero phase coupling
of population activities (Fries, 2005; see also Figure 1.4 on page 17) which has also
been observed in earlier studies of functional interactions between different cortical areas
during behavior (e.g., Frien et al., 1994; Roelfsema et al., 1997).
Third, studies into the spectral characteristics of basal ganglia structure population

activities have not only revealed prominent, frequency-specific oscillations in monopolar
LFP signals of anesthetized as well as awake animals but also distinct relationships
between those oscillations and the firing patterns of single cells (e.g., Berke et al., 2004;
Berke, 2009; Sharott et al., 2009; van der Meer and Redish, 2009). Unfortunately, we are
not able to provide equivalent evidence of such relationships in our data. However, using
recording techniques similar to the ones employed in those studies we have no a priori
reason to suppose that our signals would not have exhibited similar features.
Fourth, with the exception of a few examples (Magill et al., 2006; DeCoteau et al.,

2007b), bipolar derivations of monopolarly recorded LFP signals are hardly ever em-
ployed in the analysis of spectral characteristics of basal ganglia activities. In case of the
striatum, caution is indeed much warranted since its non-laminar constitution promotes
a wide spread of electrical fields for mere structural reasons. Thus, subtraction of signals
recorded at different spots not too far spatially separated can be readily expected to lead
to a cancellation of local signal components having similar amplitude and phase charac-
teristics.1 Indeed, the study by Magill et al. (2006) found power and coherence spectra of
striatal and pallidal LFP signals to only exhibit prominent low-frequency („8 Hz) but no
high-frequency peaks, in partial agreement with our results. In the study by DeCoteau
and colleagues (DeCoteau et al., 2007b), prominent striatal theta activities as seen in
monopolar LFPs survived bipolar derivation procedures with similar consequences as in
our case, namely a reduction in absolute power and coherence strengths.
Finally, reflection of the method used for bipolar derivation indicates that the signal

components mostly affected by it are those having near-identical instantaneous ampli-
tudes and phases but by no means must be completely of common origin. At the same
time, as discussed above, these may also be the ones most important for appropriately
timed communication between neuronal ensembles. Thus, we do interpret the outcomes
of bipolar LFP analyses with considerable caution and do not take them as indisputable
evidence for an artificial origin of monopolar LFP results. This is why we will mainly
discuss the latter in upcoming sections.

1 Similar arguments may also hold for laminar structures such as the cortex. Note also that the physical
reasons for an intracerebral spread of electrical fields are not identical to those affecting extracranial
recordings of neuronal mass activities like EEG or MEG-signals such as disturbances deriving from
bone and skin tissue (Nolte et al., 2004).
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4.1.8 Signal analysis

We pooled data from rest and running epochs to obtain averages of the respective behav-
ioral levels. At this point, how sure can we be that these epochs only contained signals
recorded during proper rest and actual running? With regard to resting conditions, we
note that although some animals sometimes moved around a bit or showed sniffing and
grooming behavior before and even during the 60 seconds before the start of a trial, they
mostly indeed sat quietly at the back end of the running lane. This state was clearly
distinct from that during locomotion, and we expect signal characteristics during occa-
sional minor movement episodes prior to running to have mostly averaged out due to the
much larger number of true resting epochs. In case of running epochs, we think that our
way of separating movement episodes from those of supposed movement errors (i.e., in
the worst case, an animal resting on the moving belt) by means of epochs as delimited
by the treadmill software (Section 2.1) was sufficient to obtain real running data.
This is because first, in the one animal (a6; Table 2.1, page 60) that we obtained the

best (LFP) data from, behavior was close to perfect with the animal running at the
front end of the lanes almost all over the time (Section 3.1). We thus obtained long,
continuous records lasting up to the full number of 48 5-second running epochs undis-
turbed by movement errors. These data exhibit all of the most prominent grand average
characteristics and they are clearly distinct from resting results which, in addition, also
were best in this animal which behaved most calmly in comparison to all its peers.
Second, a simple calculation shows that even a single 5-second epoch judged as be-

haviorally valid because no light beam break occurred is incompatible with a rat resting
instead of running on the belt. That is, given the lowest speed of belt movement of 0.16
m/s (corresponding to 16 cm/s) and a length of the running lane of 50 cm, an entire
epoch of rest on the belt would have directly resulted in an error. To reply to the ob-
jection that animals may have only moved briefly in short bouts when approaching the
back ends and then returned to rest again, we state that we hardly ever observed such
behavioral patterns. We do acknowledge the possibility of an even more restricted sam-
pling of behavioral epochs by means of exclusion of also those actually valid epochs in
immediate vicinity to invalid ones. Note, however, that our approach may have at max-
imum only worked against us and that we would expect even more distinct differences
between resting and running activities when analyzing the data in this way.

4.1.9 LFP origins

For reasons given in Section 4.1.5, we will mainly focus on the discussion of LFP results
as a measure of population activities in the following. Thus, what are the anatomical
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and physiological underpinnings of local field potentials? According to Mitzdorf, “[...]
Field potentials, although easy to record, are difficult to interpret. They are indirect and
ambiguous reflections of the underlying neuronal activities. Action potentials, on the
other hand, are clearly identified as the unique output signals of single units.” (Mitzdorf,
1985, page 38). To put things more straightforward, LFPs are generated by inward and
outward current flows across neuronal membranes resulting in current sinks and sources
as viewed from extracellular space (Mitzdorf, 1985). As such, they can be taken to reflect
the average electrical activity of a large number of cells. The spatio-temporal average
of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) of
a population of cells likely makes up the largest part of the LFP, which is why they
are generally assumed to mostly represent the input to an assembly (Freeman, 1975;
Mitzdorf, 1985; Logothetis et al., 2001; Buzsáki, 2006). However, the effects of spon-
taneous subthreshold membrane potential oscillations and unit activities such as spike
afterhyperpolarizations do also contribute to the LFP (Moran and Bar-Gad, 2010).
There has been an ongoing debate as to the spatial range over which neuronal sources

contribute to the LFP measured at one location. Theoretical considerations and estimates
based on experimental measurements indicate an extent of a few hundred micrometers
up to several millimeters in cortical areas (Mitzdorf, 1985; Engel et al., 1990; Logothetis
et al., 2001; Katzner et al., 2009). A very recent study using careful parallel recordings
of evoked electrical and optical signals in cat visual cortex estimated that more than 95%
of the LFP signal reflecting stimulus orientation preference were generated within „250
µm vicinity of the electrode tip (Katzner et al., 2009). This indicates that LFPs can
indeed be interpreted as the average activity of a truly local population of neurons.
As indicated repeatedly in the text, spatial sampling of LFPs in non-laminated struc-

tures such as the basal ganglia may well be different from that in cortical regions. How-
ever, as we will point out again below, there are good reasons to assume that also in
these cases LFPs can often be taken to mostly reflect localized activities because of their
distinct relationships to multi- and single-unit activities, timing or amplitude differences
between recording sites or differential coupling to input sources or output targets (e.g.,
van der Meer et al., 2010). We are thus confident that our LFP measurements also mostly
represent average electrical signals of local neuronal populations.

4.2 LFP power characteristics

Power spectra of both cortical and striatal monopolar LFPs exhibited strikingly similar
characteristics. They were marked by strong increases in power between rest and running
as well as prominent low- and high-frequency peaks that shifted between behavioral
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states. Striatal low as well as cortical and striatal high power peak frequencies even
scaled significantly in a linear fashion with running speed.
The peaks in cortical and striatal LFP power spectra indicate the presence of true

oscillatory processes of band-limited frequency in the underlying signals (Wang, 2010).
Remarkably, both low- and high-frequency peaks were of comparable extents, spanning
approximately one octave of spectral bandwidth each. Their center frequencies were lo-
cated in the so-called theta (θ, „4–9 Hz) and gamma (γ, „30–100 Hz) frequency bands,
respectively. Neuronal activities in these spectral regions have been shown to be associ-
ated with a variety of behavioral aspects, ranging from learning and memory formation
to spatial navigation and also locomotion in case of the former, and from elementary
sensory processing mechanisms to diverse cognitive functions such as attention in case of
the latter (e.g., Bland and Oddie, 2001; Engel et al., 2001; Buzsáki, 2002; Fries, 2009).
Power characteristics in cortex and striatum were partly similar and partly different

from those reported in previous studies in the same species and comparable overall condi-
tions. In particular, prominent peaks of oscillatory power have been observed in striatal
LFPs in theta and alpha (α, „9–13 Hz) frequency ranges during rest and movement
episodes in rats (Berke et al., 2004; Dejean et al., 2007). In another study, theta power
was differentially modulated at various stages of a spatial navigation task, indicating an
involvement in more complex behaviors (DeCoteau et al., 2007b). In contrast to some
reports (Berke et al., 2004; Dejean et al., 2007), localized low-frequency oscillatory ac-
tivities did not exhibit the shape of high-voltage spindles in our case as verified through
visual inspection of raw and LFP-data band-pass filtered in the theta range.
Previous experiments have not consistently found distinct relationships between the

strength and peak frequencies of striatal oscillatory theta power and movement parame-
ters such as running speed and acceleration (DeCoteau et al., 2007b). In contrast, theta
oscillations in the hippocampus have explicitly been linked to sensorimotor processes in
addition to their well-documented functions in memory formation, learning, and spatial
navigation (Bland and Oddie, 2001; Kahana et al., 2001; Buzsáki, 2002). Accordingly,
LFP recordings from hippocampal areas in rodents have repeatedly been shown to ex-
hibit marked theta power during rest and running episodes. On top, hippocampal theta
power has been reported to scale with running speed in terms of magnitude and some-
times even peak-frequency (Vanderwolf, 1969; McFarland et al., 1975; Teitelbaum et al.,
1975; Bragin et al., 1995; Rivas et al., 1996; Buzsáki et al., 2003; Wyble et al., 2004;
Chen et al., 2011), which is in striking agreement with our results. However, more re-
cent investigations have questioned a direct relationship between theta oscillations and
locomotor behavior, arguing that various sensory and cognitive factors involved in many
of those task may better account for the observed effects (Montgomery et al., 2009).
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It has been argued that a large part of theta activities recorded in both cortical and
subcortical structures may not only be influenced by but also directly originate from
hippocampal sources, thus essentially reflecting volume conduction effects (Sirota et al.,
2008). We cannot unequivocally resolve the true anatomical source of theta activities
we recorded in cortical and striatal structures. However, the same authors (Sirota et
al., 2008) and also others (Kahana et al., 2001) have noted that this does not preclude
local generation of theta oscillations in regions distant from the hippocampus as revealed
for example in intracranial recordings from human subjects (Kahana et al., 1999) or in
rodent somatosensory areas (Sirota et al., 2008). Indeed, we have observed prominent
peaks of theta power not only in monopolar but also bipolar LFPs, in agreement with
other studies (DeCoteau et al., 2007b; Sharott et al., 2009). Furthermore, locking of unit
activities in various structures including motor cortex and striatum to oscillations in the
theta range has repeatedly been shown (Berke et al., 2004; Dejean et al., 2007) and our
spike-field coherence spectra do also exhibit peaks in the same frequency band. We are
therefore confident that the prominent theta oscillations reported here at least partially
reflect truly localized neuronal population activities. Alternatively, they may also be
driven to a substantial degree by brainstem generators that have been argued to be the
major source of oscillatory activities in the theta frequency range as found in cortical
and subcortical structures during sensorimotor behavior (e.g., MacKay, 1997; Bland and
Oddie, 2001; see also Section 4.7 below).
Gamma oscillations also are a prominent feature of striatal LFPs in the rat. Under

anesthesia and during quiet rest, they have been found to peak between 50–55 Hz, as in
the present case (Berke et al., 2004; Berke, 2009; Sharott et al., 2009). In contrast, gamma
power during active behavior has mostly been described to peak at frequencies and to
be modulated by tasks demands different from those of our study. Thus, van der Meer
and Redish (2009) showed ventral striatal gamma power at around 50 Hz to be increased
following reward delivery and before movement initiation, whereas gamma power around
80 Hz ramped up and peaked before reward delivery in a spatial decision task. Similarly,
Berke (2009) found ventral striatal gamma oscillations of similar frequencies also to be
modulated by reward receipt. The latter study also demonstrated a shift of gamma power
peaks from below 60 to around 80 Hz after administration of psychomotor stimulant
drugs. Kalenscher et al. (2010) reported gamma power characteristics in ventral striatal
LFPs in a spatial decision task similar to those of van der Meer and Redish (2009)
and Berke (2009). Their investigation of movement-related effects revealed no distinct
relationship between neither velocity nor acceleration on striatal gamma power.
In contrast, Masimore et al. (2005) found striatal LFP gamma power peaks between

48-58 Hz in awake rats to occur in brief bursts of about 150 ms length around movement
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onset. Furthermore, this so-called γ-50 power increased markedly with increasing move-
ment speed of the animals. Oscillatory gamma power has also been shown to peak above
50 Hz in LFP recordings in another basal ganglia structure, the subthalamic nucleus (see
Figure 1.1, page 2), both in Parkinson’s disease patients and in healthy rats during rest
(Brown et al., 2002). This spectral signature exhibited distinct increases in magnitude
during movement as compared to quiet resting states. Resting gamma peaks at around
60 Hz have also been observed in the entopeduncular nucleus, the rodent equivalent of
the external palladium of primates, in rats (Dejean et al., 2011).
In summary, available evidence suggests that gamma oscillations are a prominent fea-

ture of population activities in the basal ganglia and that they are functionally relevant
as indicated by their task-dependent modulation. While the true origin of gamma oscil-
lations recorded at striatal sites has also been questioned (Berke, 2005), precise locking
of striatal unit activities to LFPs suggests at least a partial local origin and again points
to their relevance for striatal network function (see Section 4.7 for an in-depth discussion
of this topic). Our results underscore and extend these findings in that they demon-
strate a scaling of cortical and striatal gamma power magnitudes and peak frequencies
with motor demand. This indicates that these activities are indeed of direct behavioral
relevance rather than volume conducted from distant sites or merely an epiphenomenal
consequence of population dynamics.
Oscillations in sensorimotor cortical regions have so far been described to be most

prominent in alpha and beta (β, „13–30 Hz) frequency bands. As such, they have
been related to preparatory and organizing aspects of movement, sustained motor ac-
tivities such as contractions or even sensorimotor feedback and attentional mechanisms
rather than movement per se like proper locomotion (Murthy and Fetz, 1992; Sanes and
Donoghue, 1993; Murthy and Fetz, 1996a,b; MacKay, 1997; Salenius and Hari, 2003;
Baker, 2007). Indeed, both theta and alpha rhythms are also a prominent feature in rat
somatosensory and motor cortical regions associated with whisking behavior, indicat-
ing a role in the interplay between motor activity and sensory feedback during natural
movements and orienting behavior (Nicolelis et al., 1995; MacKay, 1997; Buzsáki, 2002).
However, we note that sensorimotor behavior has also been found to be accompanied

by patterns of faster synchronous oscillations in the (low) gamma band (mostly between
30 and 60 Hz) as recorded within or above motor and somatosensory cortical sites (Bouyer
et al., 1981; Pfurtscheller et al., 1993; MacKay, 1997; Donoghue et al., 1998; Brown, 2000;
Mima et al., 2000; Baker, 2007; Omlor et al., 2007). As in the case of beta frequency
activities, low gamma field potential oscillations often exhibit distinct relationships to
electromyographic (EMG) signals recorded from peripheral muscles during periods of sus-
tained and ongoing movement (MacKay, 1997; Brown, 2000; Mima et al., 2000; Baker,
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2007; Omlor et al., 2007). Further, firing of single- and multi-units in sensorimotor corti-
cal areas has been shown to be entrained by and to exhibit oscillatory and synchronized
patterns in clear relation to beta and gamma field potential oscillations (Murthy and
Fetz, 1996a,b; Donoghue et al., 1998; Fetz et al., 2000). Again, close examination of the
behavioral correlates of these activities raised doubts about their direct involvement in
the encoding of sensorimotor variables. Instead, these findings have fueled speculations
about a more global role of synchronous oscillations in gating or routing of information
flow in cortical and subcortical sensorimotor neuronal networks (Brown and Marsden,
1998; Brown, 2000; Fetz et al., 2000), an idea that we will return to below (Section 4.7).
It is interesting that Niell and Stryker very recently have found both theta and gamma

oscillatory LFP power in visual cortex of mice to decrease and increase, respectively,
between rest and locomotion on a spherical treadmill (Niell and Stryker, 2010). Theta
peaks in their recordings were virtually identical to ours, while gamma resting peaks
were centered above 60 Hz. Both low- and high-frequency peaks shifted upwards be-
tween behavioral states. This suggests that locomotion as a state of increased behavioral
activity is characterized by a generally stronger drive of not just sensorimotor but also
other cortical areas exerted by ascending brainstem projections and possibly partly me-
diated by thalamocortical loops (Steriade et al., 1991; Munk et al., 1996; Steriade et al.,
1996, 2001). As we discuss below (Section 4.7), activation of widespread cortical but also
subcortical areas like the striatum may be accompanied by strong increases of low- and
high-frequency activities facilitating both sensory and motor processing alike. This is in
partial contrast to the results of Niell and Stryker (2010) but agrees well with our finding
of a spectrum-wide increase of power between resting and running states which neverthe-
less shows a clear separation between effects in low and high frequency bands, indicating
distinct underlying network mechanisms (Steriade et al., 1996; Siegel and Konig, 2003).

4.3 LFP phase-coupling characteristics

Coherence and phase-locking analyses of cortical and striatal monopolar LFPs revealed
prominent low- and high-frequency coupling patterns within and between structures.
Center frequencies of low- and high-frequency coupling were the same as in power spectra,
thus located in theta and gamma bands, respectively. Phase-coupling increased between
rest and running in a frequency-specific manner, and both low- and high-frequency peaks
shifted markedly between behavioral states. On top, theta and gamma LFP peak frequen-
cies exhibited highly significant linear scaling with increasing motor demand. Results of
imaginary coherence and phase angle analyses indicated a near-zero phase synchroniza-
tion of LFP signals within structures but a temporally delayed coupling of cortex and
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striatum in low and high frequency ranges. Furthermore, LFP phase-coupling patterns
showed a strong, frequency-specific intra- vs. cross-hemispheric bias.
As indicated above (Section 4.2), prominent patterns of localized low- and high-

frequency LFP oscillations have been described in regions along the cortico-striatal axis.
In particular, theta and gamma oscillations have been shown to be highly synchronous
across wide regions of the striatum (Berke et al., 2004; Masimore et al., 2005; DeCoteau et
al., 2007b; Dejean et al., 2007). Also, theta and gamma oscillations are strongly synchro-
nized between cortical ECoG or LFP and striatal LFP signals as determined by visual
inspection or coherency analyses (Dejean et al., 2007; Berke, 2009; Sharott et al., 2009;
Syed et al., 2011). Theta coherence peaks reported in these studies are mostly similar to
ours or slightly lower or higher. In contrast, gamma coherence peaks are only partially
the same. For instance, Berke (2009) reported on gamma LFP coherence peaks centered
slightly above 50 Hz but also around 80 Hz, and differential coherence patterns between
striatal LFPs and ECoGs recorded from different cortical regions. In general, coherence
between striatal LFPs has been found to be rather high in both low and high spectral
regions (Berke et al., 2004; DeCoteau et al., 2007b; Berke, 2009). This has been argued
by some to indicate volume conduction effects (Berke, 2005) but may also well be a sign
of a strong and physiological coordination of population activities in this anatomically
largely homogenous, non-laminated structure.
The reason for the partial discrepancy between our results of coherency and also power

analyses and those of previous studies is unknown. For one thing, they may be due to
differences in animal strains, since we employed Brown Norway rats which are hardly
ever used in neurophysiological experiments. For another thing, differences in primary
electrode targets may also have played a role, since some of the above studies explicitly
recorded from ventral striatum (Berke, 2009; van der Meer and Redish, 2009) whereas
we aimed at recording from dorsolateral striatal regions. Most importantly, however,
results may be different mainly because of fundamental differences between behavioral
paradigms. Ours was designed to the most possible extend as a purely sensorimotor task
whereas other studies involved more cognitive elements such as spatial navigation and
decision-making, reward-related behaviors, and processing of auditory or visual stimuli.
Still, in all of these conditions animals were required to move between resting episodes,
and it is therefore surprising to see our results to differ so much in some regards from
those of other investigations. Even more so, van der Meer and Redish (2009) explicitly
noted that both low and high gamma effects in their study could not straightforwardly
be explained by effects of running speed of the animals. Similarly, Berke et al. (2004)
found strong general increases in theta, beta, and gamma band coherence between stri-
atal electrodes when comparing resting with movement episodes, but no shifts of peak
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frequencies. However, many studies do not explicitly account for possible movement-
related effects on changes in power and coherence. That being said, our experiment was
certainly exceptional in that it required animals to exert rhythmic, continuous running
at moderate to high speeds, which is a clearly different behavioral demand than explo-
ration of and shuffling through a maze. This may well explain the peculiar findings of
this study and also offer an explanation for the scaling of power and phase-coupling peak
frequencies with running speed which we discuss in more detail below (Section 4.7).
We found phase-coupling between cortico-cortical, cortico-striatal, and striato-striatal

electrode pairs to exhibit strikingly similar structure, in analogy to LFP power spectra.
Phase-locking values were smaller in every case compared to corresponding coherence
values although spectra exhibited exactly the same qualitative characteristics. This is a
strong indication for a true physiological coupling of low- and high-frequency rhythms
within and between structures that goes beyond a mere correlation of amplitude fluc-
tuations. The results of imaginary coherence and phase angle analyses further support
the finding of a frequency-specific coupling between cortical and striatal regions. This is
because the corresponding spectra and histograms exhibit non-zero values and distinct
shape including phase-lags between pairs from different but not the same regions as can
be expected when considering the underlying anatomy and associated circuit dynamics.
Most strikingly, imaginary coherence and phase angle analyses indicate a substantial

temporal lead of cortical over striatal structures in the theta range, but a reverse re-
lationship within the gamma range. While this is another strong argument against the
notion of a purely artificial, volume conducted origin of cortical and striatal LFPs, it also
indicates different temporal dynamics between and potentially distinct roles of popula-
tion activities subserving low- and high-frequency oscillations. The strong influence that
cortical regions exert on the striatum is easy to reconcile with the underlying anatomy
given the one-way makeup of cortico-striatal projections. Still, although coherency anal-
ysis measures provide only correlative instead of causal information about the interaction
between brain structures, the partially closed anatomical loops of cortico-basal ganglia
circuitry could also subserve feeding of subcortical rhythms back into the frontal cor-
tex. Indeed, learning-related changes of task-specific striatal unit activities have been
shown to precede similar changes in cortex (Pasupathy and Miller, 2005), and subsets of
striatal units often increase their discharge rates prior to movement onset which is gen-
erally thought to depend on motor cortical activities (e.g., Crutcher and DeLong, 1984b;
Hikosaka et al., 1989a; Alexander and Crutcher, 1990b; Crutcher and Alexander, 1990;
Georgopoulos, 1994). The results of the present study are, however, the first to indicate
comparable temporal dynamics between oscillatory cortico-striatal population activities.
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Our data are among the first to describe the frequency-specific synchronization of pop-
ulation activities recorded directly from within both cortex and striatum in the awake rat
during rest and sensorimotor behavior. The nearly zero-phase coupling between within-
structure electrode pairs is in good agreement with previous studies showing this to be
a typical feature of cortical and striatal LFP recordings (e.g., Frien et al., 1994; Murthy
and Fetz, 1996a,b; Roelfsema et al., 1997; Courtemanche et al., 2003; DeCoteau et al.,
2007b; Wang, 2010). Modeling work has provided important insight into mechanisms
potentially subserving zero-phase coupling between distant cortical sites, whether they
are based solely on cortico-cortical or, alternatively, cortico-thalamocortical interactions
(Traub et al., 1996; Vicente et al., 2008; Gollo et al., 2010; Wang, 2010). Whatever the
underlying mechanism, zero-phase or near-zero phase coupling between different brain
areas is an essential ingredient in currently popular theories regarding the large-scale
organization of neuronal networks underlying organized behavior (Fries, 2005; see also
Fell and Axmacher (2011) for a brief discussion of the peculiarities of zero-phase synchro-
nization). Our results lend further support to these notions in that they indicate similar
coupling dynamics to subserve the interaction of cortical and basal ganglia structures. At
this point, we note that what appears as zero or near-zero phase synchronization may also
reflect interactions temporally delayed by one or more full oscillatory cycles, particularly
with regard to gamma band activities and associated short conduction delays.
To the best of our knowledge, the present study is the first to directly investigate

differences between coupling patterns of cortical and striatal regions across hemispheres.
We found markedly stronger coherence and phase-locking between ipsi- as compared to
contralateral LFP pairs. This effect was the same for within- and between structure
pairings, which in the case of cortico-striatal electrode pairs nicely reflects the stronger
ipsilateral anatomical projection (Section 1.2.2). In addition, these data are another
strong argument against a purely volume conducted origin of LFPs, since in that case
one would not expect comparable cross-hemispheric biases in coupling.
Although significant across almost the entire spectrum in each case, cross-hemispheric

LFP coupling differences exhibited distinct, frequency-specific patterns. Phase-coupling
in the gamma band showed a much greater hemispheric bias than phase-coupling in
the theta range, and non-significant phase-locking and coherence values were exclusively
confined to low spectral regions. This agrees very well with common notions regarding
low- and high-frequency oscillations to preferentially reflect, respectively, global and local
scales of neuronal processing (Donner and Siegel, 2011; but see Section 4.7 below).
Last but not least, we also quantified the discrepancy between cross-hemispheric coher-

ence and phase-locking differences. Cross-hemispheric biases were significantly larger for
phase-locking values or zero at exactly the center frequencies of low- and high-frequency
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peaks in power and phase-coupling spectra. These data further underscore that the syn-
chronization of theta and gamma oscillations within and between structures does indeed
reflect frequency-specific phase-coupling rather than mere amplitude correlations.

4.4 LFP cross-frequency interactions

Only a few studies have as yet investigated the relationship between different frequency
components of population activities in structures along the cortico-basal ganglia loop and
the cortico-striatal axis in particular. Phase-amplitude coupling analyses of monopolar
LFPs indicated substantial modulations of the amplitudes of high-frequency oscillations
by the phase of low-frequency rhythms. The magnitude of cross-frequency interactions
increased markedly between rest and running. Similarly, LFP power correlation analyses
revealed strong co-fluctuations between low and high spectral components. However,
band-limited correlations between theta and gamma rhythms decreased significantly be-
tween behavioral states. Low and high peak frequencies at phase-amplitude coupling and
power correlation maxima deviated from those of power and phase-coupling spectra.

4.4.1 LFP phase-amplitude coupling

Phase-amplitude coupling analyses are increasingly applied to study the interactions
between low- and high-frequency components of neuronal population activities (Jensen
and Colgin, 2007; Le Van Quyen and Bragin, 2007; Tort et al., 2010; Fell and Axmacher,
2011). For example, Canolty et al. (2006) showed the amplitude of gamma oscillations in
recordings from the human neocortex to be strongly modulated by the phase and also the
amplitude of concomitant theta oscillations. Axmacher et al. (2010) investigated phase-
amplitude coupling in the human hippocampus and found working memory associated
processes to be favored by theta phase modulation of beta and gamma amplitudes. Theta-
gamma coupling was also reported to increase during item-context association learning in
the hippocampus of rats (Tort et al., 2009). In contrast, Cohen et al. (2009) demonstrated
a reward-related phase-amplitude modulation between alpha and gamma oscillations in
the human nucleus accumbens, the most anterior part of the ventral striatum.
Of particular relevance for our study, Chen et al. (2011) found the amplitudes of

low and high hippocampal gamma oscillations to increase with running speed. Interest-
ingly, the phase-dependence of the different gamma components was restricted to distinct
theta phases that dissociated with increasing running speed (see also Section 4.7 below).
Overall, theta phase and gamma amplitude frequencies around coupling maxima were
strikingly similar to power and phase-coupling peak frequencies in our study.
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Another recent paper demonstrated theta-gamma cross-frequency coupling patterns
within and between hippocampal and interconnected striatal regions in the rat (Tort
et al., 2008). Striatal and hippocampal LFP gamma power was strongly modulated by
low to high (3–8 Hz) theta phase, and the peak-frequency of that modulation shifted to
higher values across subsequent events of a spatial navigation (t-maze) task. Further-
more, strong patterns of phase-amplitude coupling were found between hippocampal and
striatal low- and high-frequency oscillations, demonstrating the reciprocal cross-frequency
interaction of population activities between the two areas.
The outcomes of the study of Tort et al. (2008) are very important for the interpretation

of our results for two reasons. First, gamma amplitudes peaked at the falling flanks and
troughs of theta phases, as we have found in our data. Second and most importantly, the
data of Tort et al. (2008) demonstrate a similar discrepancy between low and high power
and coherence peak frequencies and the frequency pairs of maximum phase-amplitude
coupling. More specifically, theta–gamma phase-amplitude coupling peak frequencies
during t-maze running were centered around 7 and broadly between 80–120 Hz instead
of around to above 8 and below to around 60 Hz. The authors interpreted this finding as
possibly being due to the diverse sources of input reaching the striatum other than those
from the hippocampus, such as neocortical, thalamic, or pallidal projections. Thus, the
most striking result of phase-amplitude coupling analyses in our study agrees well with
the findings of another recently published investigation.
In summary, the present study is the first to demonstrate the modulation of high-

frequency amplitudes by the phase of low-frequency oscillations in structures along the
neocortical-striatal axis. This indicates that fluctuations of population activities in dif-
ferent frequency bands are not independent but exhibit distinct relationships within and
between those structures. The potential functional relevance of such cross-frequency in-
teractions is further underscored by the finding of a marked increase of the strength and
more distinct shape of the pattern of phase-amplitude coupling between rest and running.
We will return to this issue below (Section 4.7). At this point, it may be argued that some
of the effects described above are mainly due to the increase of oscillatory amplitudes
in both structures between behavioral states and thus be essentially the consequence of
an increase in signal-to-noise ratio. As the results of cross-frequency power correlations
discussed in the next section (4.4.2) demonstrate, this is not likely to be the case.

4.4.2 LFP power correlations

Functional coupling of brain structures can also occur in terms of a correlation of ampli-
tude or power fluctuations of local signals which is different from phase-coupling proper
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as assessed by coherency analysis (Bruns et al., 2000). Furthermore, in addition to phase–
amplitude coupling, interactions between different frequency components may also take
the form of amplitude–amplitude or power–power modulations. We investigated the
correlations of signal amplitudes at the same and across different frequency components.
To give a few examples of similar analyses from the basal ganglia literature, Sharott et

al. (2009) examined power correlations between ECoGs and striatal LFPs in anesthetized
rats. They found strong negative correlations between low (35–55 Hz) and high (60–80
Hz) gamma frequency oscillations but positive correlations between various low frequency
components in delta (δ, „1–4 Hz) and theta ranges. In contrast, Dejean et al. (2011)
investigated LFPs recorded from the globus pallidus in awake rats during quiet rest.
Power spectra exhibited prominent peaks at around 14 and, in particular, close to 60
Hz, which is in very good agreement with our cortical and striatal resting gamma peaks.
Cross-frequency correlation analyses showed low- and high-frequency oscillations to be
strongly anticorrelated. Interestingly, both oscillatory components were also nested in
different phases of slow delta frequency oscillations. In addition, these cross-frequency
interactions were differentially modulated by D1 and D2 dopamine receptor antagonists.
Our results for the first time show an extended spectral band of significant positive

correlation between low- and high-frequency monopolar LFP power components in the
resting rat within and between cortical and striatal structures. Low- and high-frequency
peaks were centered on 8 and broadly stretched between 64 and 128 Hz, which is in
glaring contrast to the corresponding resting power and phase-coupling peaks. Most
strikingly, power correlations between low- and high-frequency components decreased
significantly during running. However, power correlations increased strongly between
various combinations of lower frequency components.
We do treat the latter changes with some caution since the maxima of their distribu-

tions and corresponding center frequencies may largely represent harmonic pairs. How-
ever, we still note the interesting property that power correlations increase most strongly
along those bands which are not marked by prominent peaks of oscillatory power and
phase-coupling during running. On the one hand, these changes may well and mainly
be the consequence of the broad-band and spectrum-wide increase of power between rest
and running non-specifically reflecting global activation of the brain or associated rate
changes. On the other hand, they strongly suggest that it is indeed frequency-specific
dynamics that are crucial for the interplay of localized population activities along the
cortico-striatal axis during active behavior. This is also because correlations between the
same frequency components of local power estimates exhibited very similar qualitative
characteristics but were generally smaller than corresponding phase-coupling estimates.
In light of the highly significant scaling of low- and high-frequency phase-locking peaks
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with motor demand, this indicates that true phase-coupling instead of mere amplitude
correlations possibly driven by a different source support interactions within and be-
tween cortical and striatal circuits. This conclusion is also warranted by the results of
phase-locking–power correlation interaction measures discussed in the next section (4.5).

4.5 LFP coupling interrelations

Same-frequency monopolar LFP power correlation and phase-coupling spectra were qual-
itatively very similar. However, phase-locking was consistently stronger than power
correlation both within and between structures. Interrelation of both interaction mea-
sures revealed frequency-specific dynamics that changed between behavioral states. Most
strikingly, temporally precise intercorrelation of phase-locking and power fluctuations de-
creased in a significant manner exclusively at low and high running peak frequencies.
To our knowledge, this study provides the first investigation of the relationships be-

tween phase-locking and concomitant amplitude correlation strengths of the same under-
lying signals recorded in structures along the cortico-striatal axis. Interestingly, phase-
locking–power correlation ratios were consistently greater than 1 but at the same time
they were smallest in low and high spectral regions exactly at the resting and running
peak frequencies of either measure. This nicely illustrates that indeed, local ensembles of
cells oscillating in synchrony are the functional-anatomical substrate for the coupling of
neuronal populations within and between different brain structures. At the same time,
it strongly suggests that synchronous oscillations of local neuronal assemblies on the one
hand and the coupling of different ensembles on the other may have partly similar but
also partly distinct underlying mechanisms and functional consequences.
Furthermore, increases in phase-amplitude coupling and decreases in power correla-

tions between low- and high-frequency components and behavioral states indicate that
a better temporal coordination of different rhythmic activities between areas may be
accompanied by a concomitant decrease in coupling of their amplitudes possibly reflect-
ing the reduced drive of a common external source. Such a common drive may impose
idling rhythms of comparably low frequency, potentially in the delta (Dejean et al.,
2011) or even suprasecond range (Walters and Bergstrom, 2010), onto widespread brain
regions including cortico-basal ganglia structures during quiet rest that are similar to
those observed during sleep or anesthesia (Steriade, 2000) and that collectively entrain
oscillations of higher frequency. Accordingly, phase-locking–power correlation interrela-
tions were strongest during rest in a broad band within the gamma range while they
were weakest during running at exactly the theta peak-frequency of 8 Hz and strongly
reduced within that gamma frequency band centered on 64 Hz.
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Thus, we speculate that during active behavior requiring temporally accurate flow of
neuronal information cellular activities become better and more specifically coordinated
by phase-locking mechanisms. At the same time, they are less susceptible to global idling
rhythms as reflected in strong cross-frequency amplitude correlation patterns during rest.
Together with the finding that phase-locking values were consistently stronger than cor-
responding same-frequency power correlation values this indicates that phase-locking of
population activities within and between cortex and striatum may be more important for
functional coupling of neuronal assemblies along that axis than amplitude correlations.

4.6 Multi-unit activities

As explained above (Section 4.1.5), we interpret the results of MUA analyses with caution.
Within those boundaries, firing rates robustly increased between behavioral conditions.
Also, MUA power and MUA coherences increased strongly between rest and running
across the entire spectrum in both structures. Interestingly, the faint bumps of running
MUA power around 8 Hz which are better visible in percentage than in raw spectra (cf.
Figures 3.3.2.1 and 3.3.2.2 on pages 72 and 73, respectively) as well as similar MUA
coherence peaks exhibited roughly the same frequencies as average running firing rates.
Partly for reasons of unit data quality, we did not make any further attempts to

differentiate between possible rate vs. true oscillatory effects underlying the generation
of MUA power and coherence peaks. However, note that monopolar LFP-MUA coherence
spectra also display small but localized peaks at exactly 8 Hz during running (cf. Figure
3.13, page 80). Even more strikingly, coherence was significant between cortical spikes
and striatal fields but not cortical fields and striatal spikes. Under the assumption
that LFPs and spikes primarily represent input and output components of population
signals, respectively (Section 4.1.9), this further supports the notion that the coupling
of population oscillations found in this study may indeed reflect the frequency-specific
functional interaction of sensorimotor cortical and subcortical structures during rhythmic
whole-body movement along the strictly unidirectional cortico-striatal anatomical axis.
The latter notion is further supported by LFP-MUA coherence difference results show-

ing that the most prominent change between behavioral states is a sharp, significant peak
of coherence increase centered slightly above 8 Hz. In contrast, the fairly broad-band
changes in higher frequency ranges are more likely to reflect rate changes. The absence
of localized high-frequency LFP-MUA coherence peaks and changes thereof may be due
to either signal quality issues or have physiological reasons. In particular, it may first
simply reflect the fact that the great majority of striatal cells consists of projection neu-
rons which thus dominate the MUA signal. Second and in relation to this, locking of
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projection and interneurons to theta oscillations has indeed been shown to be strong
in the striatum, whereas locking to gamma oscillations is probably largely confined to
interneurons. Third, if the theta rhythm is indeed the overall driving and coordinating
force of striatal output dynamics, this may well explain the preferential entrainment of
unit activities to oscillations of lower frequency (Section 4.7).
In any case, the absence of prominent peaks in power and coherence spectra of spike

signals does not by itself proof the lack of a relationship between synchronized popu-
lation oscillations as measured by LFPs and concomitant unit activities. Much to the
contrary, prominent oscillatory field activities are perfectly compatible with stochastic
spike patterns emitted by individual neurons (Wang, 2010). Indeed, it may be a distin-
guishing feature of striatal macro- and microcircuits and their role as integral parts of
the cortico-striatal axis that they exhibit tight functional connections with their input
areas as established by synchronous population oscillations in different frequency bands
but at the same time are able to produce fine-grained output spike patterns, thus serving
as contextually adaptive, dynamic spatio-temporal filters (Section 4.7).

4.7 Functional implications

There is as yet not unifying theory on the functional role of oscillatory synchronization
of neuronal activities along cortico-basal ganglia loops and the cortico-striatal axis in
particular (Boraud et al., 2005; Walters and Bergstrom, 2010). Also, no comprehensive
models have been developed that are able to account in detail for the respective activity
patterns observed in experimental data. Much to the contrary, there has even been
considerable debate and doubt about the physiological role of oscillations and synchrony
in cortico-basal ganglia structures partly because pairs of single cells in the different
nuclei have only rarely been found to exhibit both properties in the healthy as compared
to the diseased state (e.g., Nini et al., 1995; Raz et al., 1996; Goldberg et al., 2004).
Indeed, there is a growing body of literature on the adverse effects of a pathological

increase of synchronized oscillations, mostly in the beta-frequency band, in human basal
ganglia nuclei during movement disorders such as Parkinson’s disease (Brown, 2003;
Eusebio and Brown, 2007; Hammond et al., 2007). Although many issues remain, it has
been proposed that beta-frequency band oscillations may be particularly associated with
brady- or akinesia, i.e., pronounced slowing to almost complete cessation of spontaneous
movement (Brown, 2007). Recordings in animal models of PD have confirmed that
lesioning of the nigro-striatal dopaminergic projection is accompanied by an increase of
low-frequency oscillations and enhanced synchronization of single cell activities as well
as prominent patterns of beta band oscillations in LFPs recorded in the subthalamic
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nucleus and the globus pallidus of parkinsonian rodents and non-human primates (e.g.,
Bergman et al., 1994; Nini et al., 1995; Raz et al., 1996; Boraud et al., 2002; Goldberg
et al., 2004; Mallet et al., 2008; Cruz et al., 2009; Avila et al., 2010).
As mentioned above (Section 4.2), oscillatory synchronization in the alpha- to beta-

frequency band has also been associated with motor processing in the healthy state.
However, such activities have first and foremost been assigned a role in sustaining resting
or holding motor states rather than movement per se (Murthy and Fetz, 1992; Sanes and
Donoghue, 1993; Salenius and Hari, 2003; Baker, 2007). Accordingly, it has been proposed
that exaggerated low-frequency oscillations in the basal ganglia and associated cortical
regions may be disruptive of their classically presumed roles in movement initiation,
execution, and adaptation (Brown, 2003, 2007).
However, apart from prominent beta-frequency rhythms, (low) gamma oscillations have

been recorded in motor cortical and subcortical structures during active task engagement
(Murthy and Fetz, 1992; Sanes and Donoghue, 1993; Murthy and Fetz, 1996a,b; MacKay,
1997; Brown and Marsden, 1998; Donoghue et al., 1998; Brown, 2000). It has further
been shown that in Parkinson’s disease patients under dopaminergic medication or during
movement episodes, high-frequency oscillatory activities in the gamma range as measured
in the STN become more prominent whereas the power of low-frequency oscillations is
reduced (Brown et al., 2001). Similarly, a study in mice found that acute dopamine
depletion led to an enhancement of delta and beta but a reduction of theta and gamma-
frequency population activities along the cortico-striatal axis (Costa et al., 2006).
Based on such findings, it has been proposed that in sensorimotor areas including

cortico-basal ganglia loops, frequency-specific oscillatory population activities may have
roles similar to those in other brain systems. Most generally speaking, they are thought to
subserve the temporal coupling of distributed cells and to support the gating of activities
between groups of neurons located in the same or in distant areas that contribute to the
processing of behavioral variables (Engel et al., 2001; Salinas and Sejnowski, 2001; Varela
et al., 2001; Fries, 2005; Akam and Kullmann, 2010). Notably, as in the case of sensorimo-
tor cortical areas (Murthy and Fetz, 1992; Sanes and Donoghue, 1993; Murthy and Fetz,
1996a,b; Donoghue et al., 1998), the presumed coupling or gating role of synchronous
oscillations along cortico-basal ganglia loops has been formulated by some authors not
specifically with regard to motor processes, but rather more broadly conceived as a tem-
porally and spatially organized, predictable engagement of distributed neuronal elements
according to a broad range of behavioral demands (e.g., Brown and Marsden, 1998). In
case of the striatum, this idea has received general experimental support by the above
cited studies demonstrating prominent patterns of synchronized oscillations in various
frequency bands in awake behaving animals under a wide variety of task conditions (e.g.,
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Berke et al., 2004; Masimore et al., 2005; DeCoteau et al., 2007a; Dejean et al., 2007;
Berke, 2009; van der Meer and Redish, 2009; Kalenscher et al., 2010). Specifiying the
coupling or gating role of synchronized population oscillations for the cortico-striatal
axis as a whole, in a first approximation one could argue that the accurate timing of the
massive input from mostly cortical structures reaching the striatum would provide the
coordinated, contextually specific (Section 1.1.3), strongly driving pattern of activities
needed to excite striatal neurons across extended regions of the structure above firing
threshold, thus enabling them to further influence their output targets. Is such a scenario
physiologically realistic, and what is the experimental evidence for it?
As we have pointed out in previous sections, the functional relevance of synchro-

nized oscillations for neuronal interactions along the cortico-striatal axis is suggested
by, amongst other things, the findings of a number of groups demonstrating locking of
single neuron firing to striatal and cortical population activities as measured by LFP or
ECoG signals. Notably, entrainment of single striatal cells to field potential activities
has also been shown to be specific with regard to either neuron types or oscillation fre-
quency, or both. For example, Berke et al. (2004) found entrainment of both putative
medium-spiny projection (pMSN) and putative fast-spiking interneurons (pFSI) to high-
voltage spindles (HVS) at theta-frequency. Entrainment of MSNs to striatal HVS was
also observed by Dejean et al. (2007) in rats during quiet rest. Similarly, DeCoteau et
al. (2007a) reported on locking of MSNs to striatal non-HVS theta rhythms, and van der
Meer and Redish (2009) showed FSIs to be coherent with ventral striatal LFPs in the
theta-frequency range. Importantly, Kalenscher et al. (2010) observed entrainment of
both MSNs and FSIs to ventral striatal gamma oscillations during reward-related behav-
ioral epochs, although the percentage of significantly phase-locked MSNs was very low
(„3.3%) in comparison to FSIs („92%). Even more strikingly, van der Meer and Redish
(2009) and Berke (2009) found a differential locking of subtypes of FSIs to either low or
high gamma rhythms, which led them to speculate that the activities of different kinds
of interneurons may subserve striatal gamma oscillations in distinct frequency subbands.
In an exhaustive recent effort, Sharott and coworkers (Sharott et al., 2009) demon-

strated locking of both putative MSNs and three types of striatal interneurons to low
(2–9 Hz) ECoG oscillations in halothane-anesthetized rats. In contrast, entrainment
to high-frequency (23–55 Hz) activities was specific to putative FSIs. When looking
for signs of immediate interactions on the level of single neurons, they found stronger
cross-correlations between pMSNs and pFSIs than between pMSNs and other interneuron
types. Moreover, oscillatory cross-correlations between neurons markedly depended on
cell types, with only pFSIs exhibiting such characteristics in both low and high frequency
ranges. Importantly, these patterns were strongly related to similar oscillatory autocor-
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relations of cortical ECoGs, indicating frequency-specific coupling of input (cortex) and
output (striatum) structures on macroscopic and microscopic levels.
Another recent study which is very important to our discussion (Schulz et al., 2011) in-

vestigated the spectral characteristics of intracellularly recorded subthreshold membrane
potential oscillations as well as the spike output of different types of striatal neurons in
urethane-anesthetized rats during both up- and down-states (Section 1.3.3). Interest-
ingly, high-frequency voltage content was much larger in membrane potentials of FSIs,
whereas power in lower (theta) spectral regions was larger in MSNs. Even more im-
portantly, fast membrane potential fluctuations preceded spike output of FSIs during
up-states, and cortical stimulation was most effective at driving MSN output when de-
livered at frequencies below 20 but not at 100 Hz, in marked contrast to FSIs.
The outcomes of all these studies indicate that frequency-specific oscillatory population

activities and their synchronization within and between structures along the cortico-
striatal axis are functionally relevant. In particular, they demonstrate that although
evidence for oscillatory firing of individual striatal neurons, especially MSNs, and os-
cillatory cross-correlation patterns between pairs of projection neurons is lacking, this
does not preclude the importance of oscillatory synchronization of population activities
as reflected in LFPs on both the single cell and the network level. More specifically, as
the results of studies investigating the up- and down-state dynamics of cortico-striatal
and striatal neurons (Section 1.3.3) suggest, spike output of striatal projection neurons
may well be under the control of frequency-specific membrane potential oscillations but
at the same time retain their fine-grained coding capacities (Stern et al., 1998). Thus, it
is crucial for the discussion of the role of synchronized population oscillations to differ-
entiate between the driving forces of membrane potential dynamics that sculpt the firing
patterns of individual or groups of cells and spike output per se. In this regard, the find-
ings of the study of Schulz et al. (2011) for example strongly suggest that synchronized
population oscillations of both low and high frequency may indeed differentially drive
neuronal activities in the striatum, maybe even in a cell-type specific manner.
Importantly, under physiological conditions, population oscillations in different fre-

quency bands are most probably dependent on a balance of excitatory and inhibitory
neuronal activities (Wang, 2010) as has been repeatedly shown in vivo and in vitro and
as has been predicted by and been reproduced in modeling studies (e.g., Steriade et al.,
1993a; Shu et al., 2003; Traub et al., 2004; Hasenstaub et al., 2005; Buzsáki, 2006; Bartos
et al., 2007; Atallah and Scanziani, 2009; Haider and McCormick, 2009; Kopell et al.,
2010). The highly recurrent architecture of cortical microcircuits composed of excita-
tory and inhibitory neurons readily endows them with the cellular machinery needed for
the generation of rhythmic activities (Haider and McCormick, 2009; Wang, 2010). The
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anatomical makeup of the striatum is markedly different from that of its input structures.
For the following reasons, we think that it may still be in a position to support signal
processing and transmission as subserved by synchronized population oscillations.
Apart from the massive input to MSNs, cortico-striatal projection neurons also directly

target striatal FSIs (Bennett and Bolam, 1994). Interestingly, inputs to FSIs arising
from primary motor and somatosensory cortical areas overlap in their striatal target
zones in the rat (Ramanathan et al., 2002). Also, FSIs are more quickly and easily
activated by cortical inputs than MSNs (Mallet et al., 2005; Bolam et al., 2006). Finally,
they are well capable of accurately and specifically controlling the output of projection
neurons by means of powerful feedforward inhibition (Koos and Tepper, 1999; Tepper and
Bolam, 2004; Mallet et al., 2005; Gittis et al., 2011). Thus, the functional-anatomical
properties of striatal microcircuits (cf. Figure 1.2, page 7) and of the cortico-striatal
axis indeed appear to exhibit the basic prerequisites for sustaining oscillatory neuronal
synchronization. To be more precise, we argue that the roughly concomitant but also
slightly delayed excitation of striatal projection and fast-spiking interneurons by the
cortico-striatal inputs they both receive provide the aforementioned balance of excitatory
and inhibitory cellular dynamics underlying the generation of synchronized population
oscillations in different frequency bands.
Currently available models of cortico-striatal network dynamics are not comparable in

terms of anatomical and physiological details to those of, e.g., hippocampal circuitry re-
garding the generation and maintenance of neuronal population oscillations (Traub et al.,
2004; Bartos et al., 2007; Wang, 2010). However, it is well possible that as in hippocampal
and neocortical networks (Soltesz and Deschênes, 1993; Pike et al., 2000; Cardin et al.,
2009), different neuron types may be involved to a different degree in sustaining low- and
high-frequency oscillatory dynamics in the striatum. In particular, fast-spiking interneu-
rons appear to be of primary importance for sustaining striatal gamma oscillations, a
notion which is substantially supported by the above cited studies showing a preferential
locking of FSIs to high-frequency LFP activities. In contrast, projection neurons may
primarily be driven by inputs of lower frequency. Nevertheless striatal output dynamics
may still crucially rely on the well-timed inhibition of MSNs by FSIs as supported by
high-frequency oscillations. Indeed, the finding of a locking of the latter cell type also to
low and of the former to high-frequency population oscillations indicates that although
they presumably drive different cell types in a differential and even preferential manner,
the interplay of both slow and fast rhythms may be what is crucial for shaping striatal
network activities. As is further discussed below, these suppositions may provide a clue
to the roughly bimodal distribution of cortico-striatal power and phase-coupling values
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we found in our data. They may also help to explain the strikingly similar scaling of
frequency-specific activities in low and high spectral regions with behavioral demand.
Interactions between cortical and striatal groups of neurons in a functionally specific

and temporally accurate manner is possibly even more difficult to achieve than between
cortical assemblies because of the intricate makeup of cortico-striatal projections and the
need for a really substantial, well-timed excitatory input to drive striatal neurons above
firing threshold (Section 1.2.2). Based on the results of the present and of previous
studies, we thus argue here that the rapid grouping of neuronal activities within cortex
and striatum by means of synchronous population oscillations as reflected in low- and
high-frequency power peaks as well as their functional coupling as reflected in promi-
nent phase-locking peaks at the same frequencies may provide the physiological basis
for the coordinated and predictable interaction of both structures (Fries, 2005; Buzsáki,
2006). Having established the general empirical grounds for a possibly important role of
synchronized population oscillations along the cortico-striatal axis, how can the data of
the present study be reconciled with current theories regarding low- and high-frequency
oscillatory activities in the brain and in cortico-basal ganglia systems in particular?
We will limit the scope of the final part of this section to the idea that low (theta) and

high (gamma) frequency-specific oscillations subserve the functional coupling of groups
of neurons on both small and large scales, albeit to different temporal and spatial degrees
(Kopell et al., 2000; von Stein and Sarnthein, 2000; Fries, 2009). In addition, we will also
argue that the present results support the notion of an intimate link between low- and
high-frequency oscillatory activities in cortical and subcortical brain structures (Lisman,
2005; Wang, 2010). For obvious reasons, we will often refer to synchronized oscillatory
activities in the context of sensorimotor behavior. However, the principles exposed below
most probably also pertain to other behavioral aspects and associated brain dynamics.
Theta oscillations have repeatedly been linked to sensorimotor behavior (Vanderwolf,

1971; Bland, 1986; Kahana et al., 2001; Bland and Oddie, 2001; Buzsáki, 2002). The
data of the present study are in excellent agreement with the results of previous in-
vestigations that showed a modulation of hippocampal theta activities with voluntary
movement (Vanderwolf, 1971; Bland and Oddie, 2001). This includes our demonstration
of a significant scaling of theta oscillation amplitudes and peak frequencies with motor
parameters, in the present case the animals’ running speed. As Bland and Oddie (2001)
have pointed out, theta oscillations may be particularly suited to temporally coordinate
neuronal activities across large regions of the brain. They based their argumentation on
the fact that the origin of the theta-rhythmic drive of forebrain regions, including the
hippocampus, can be traced back to ascending, multisynaptic brainstem projections orig-
inating in the pontine reticular formation and the pedunculopontine nucleus that reach
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medial temporal lobe regions via the posterior hypothalamus and the supramammilary
nucleus and via projections from the medial septum which are the external drivers of
theta oscillations in the hippocampus (Bland and Oddie, 2001). Importantly, these as-
cending projections are not limited to areas in the medial temporal lobe, but also provide
links to structures that are closely related to striatal regions, such as the intralaminar
thalamus (Groenewegen and Berendse, 1994). Moreover, there are various other anatom-
ical roots that provide an interface between limbic and sensorimotor brain regions such
as the basal ganglia, like the connections between hippocampus and nucleus accumbens
or striatal projections originating in the entorhinal cortex (Mogenson et al., 1980; Hall-
worth and Bland, 2004), and the former have indeed recently been shown to be coupled
by synchronized activities in vivo (Goto and O’Donnell, 2001b). Thus, Bland and Oddie
(2001) emphasize that the widespread projections of brainstem and limbic areas are well
positioned to sculpt sensorimotor activities in cortical and subcortical regions.
There is currently no established theory on the generation of theta oscillations in brain

regions other than the hippocampus (Wang, 2010). It is thus unclear to what extent
the theta activities we found in sensorimotor cortical and striatal regions are generated
locally or are imposed by external sources, or even volume conducted from distant areas
(Section 4.2). In agreement with the above theories, we propose that they are driven to a
substantial degree by ascending, widespread brainstem projections reaching cortical and
striatal regions via multisynaptic pathways and that they shape local processing as well as
functional coupling of these areas through the resonance properties of neuronal networks
in both structures. This idea is supported by the prominence of theta power peaks in
monopolar and bipolar cortical and striatal LFPs and their strong phase-coupling which
exhibits only very small cross-hemispheric biases. Furthermore, the significant scaling
of theta power and phase-coupling peak frequencies with behavioral demand is in good
agreement with the notion that theta-frequency characteristics are modulated by the
intensity of the sensorimotor engagement of a subject (Bland and Oddie, 2001).
To what degree sensorimotor-related theta rhythms have a direct link to brainstem

central motor pattern generating mechanisms (Marder and Calabrese, 1996) is not known.
However, voluntary movement is a complex behavior based on a continuous interplay
between inputs from sensory modalities, outputs of motor structures, and even cognitive
domains such as those subserving attention and arousal (Bland and Oddie, 2001). In fact,
there is maybe no clear-cut anatomical or functional line distinctly separating sensory or
cognitive from motor processes and associated neurophysiological underpinnings during
complex behaviors involving forebrain areas (Fuster, 2008). Accordingly, various authors
(Vanderwolf, 1971; Bland and Oddie, 2001; Kahana et al., 2001; Buzsáki, 2002) have
underscored the notion that theta rhythms may be fundamental to the spatially and
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temporally accurate integration of sensory and motor signals during behavior, including
cognition. More specifically, theta oscillations have been proposed to subserve processes
of rhythmic sensorimotor sampling or updating during active behavior by supporting
the temporal grouping and coordination of neural activities across extended regions and
between various functional brain systems (Bland and Oddie, 2001; Uchida and Mainen,
2003; Kay, 2005). These theories are partly based on the observation that theta rhythms
are differentially modulated by sensory and motor variables alike, and that they exhibit
scaling with various aspects of behavioral demand, like running speed of the animal
(Vanderwolf, 1971; Bland and Oddie, 2001).
The prominent power as well as phase-coupling signatures found in the present study

in conjunction with multi-unit firing rates in that frequency range underscore the poten-
tial relevance of theta oscillations for functional coupling of structures during rhythmic,
movement-related activation of sensorimotor cortical and striatal areas. It is indeed in-
triguing that under conditions of continuous running at constant speed like in the present
task, strong synchronized oscillations in the theta-frequency range are a prominent fea-
ture of neuronal activities along an anatomical axis that has classically been involved in
the modulation of such behaviors. On the one hand, this may be taken as an indication
of the presumed integrative role of cortico-basal ganglia loops in the generation of orga-
nized behavior to be subserved by theta oscillatory activities. On the other hand, theta
oscillations along the cortico-striatal axis may also support coupling of neuronal activities
on smaller spatial and temporal scales by providing an overall, clock-like background of
periodic excitation and inhibition for the orchestration of fast functional interactions in
discrete epochs as subserved by synchronized gamma oscillations (see below).
A very recent review on the functional role of gamma oscillations in the ventral striatum

primarily focused on their putative role in reward-related processes (van der Meer et al.,
2010). It was mainly based on the findings of a number of rodent studies indicating a
substantial modulation of gamma LFP power and gamma-entrained cortical and striatal
spiking activities at different stages of spatial decision tasks (Berke, 2009; van der Meer
and Redish, 2009; Kalenscher et al., 2010). In their discussion, van der Meer et al.
(2010) point out that gamma-frequency oscillations in the ventral striatum may either
be primarily input-driven or to a substantial degree generated within the striatum itself,
or a mixture of the two. The very same may probably hold true for more dorsal parts of
the striatum which receive equally strong projections from mostly cortical areas and are
structurally very similar to their ventral counterparts.
However, as in the case of theta oscillations, there are as yet no comprehensive models

and theories on the generation and functional importance of gamma oscillations within
the striatum and along the cortico-striatal axis. Until recently, gamma oscillations have
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mostly been associated with local processes such as the temporal grouping of neurons
into coherent ensembles or their functional coupling within circumscribed areas (Singer
and Gray, 1995; Chrobak and Buzsáki, 1998; Csicsvari et al., 1999, 2003). There is now
increasing evidence that they may also subserve the large-scale interaction of activities
between more or less distant areas (Siegel et al., 2008; Colgin et al., 2009; Gregoriou
et al., 2009; Hipp et al., 2011). Although the mechanisms underlying the large-scale
synchronization of local gamma rhythms are also not known, they have been proposed
to be particularly well-suited for mediating fast interactions between neurons located
in different cortical areas (Fries, 2005, 2009). The same may be true for interactions
between cortical and subcortical structures such as the striatum, and we think that the
data of the present study do indeed support this view.
At this point, it is very important to note that gamma oscillations even more than

low-frequency rhythms are transient phenomena that typically only last for a limited
number of cycles (a few tenths to hundredths of milliseconds) at the respective recording
sites and are also variable in frequency (Gray et al., 1992; Murthy and Fetz, 1992; Bragin
et al., 1995; Donoghue et al., 1998; Harris et al., 2003; Masimore et al., 2005; Colgin et
al., 2009; Wang, 2010). When examining the time-resolved power spectra of our LFP
recordings, we also noted a continuous waxing and waning of epochs of gamma oscillations
and variable center frequencies of oscillatory bursts (Figure 2.16, page 58). We did not
further analyze the temporal structure of power and phase-coupling estimates because of
the lack of distinct task events in our behavioral paradigm. For the interpretation of our
results it is however probably crucial that the functional coupling of cortical and striatal
regions may indeed be fundamentally characterized by a rapid switch between interacting
ensembles along this anatomical axis depending on the context-specific2 engagement of
groups of distributed neurons in both areas on short timescales (Figure 1.3, page 10).
At present, we do not know wether, if at all, synchronized oscillations of low (e.g.,

theta) or high (e.g., gamma) frequency play the leading role in the interaction of cor-
tical and striatal areas. With regard to its temporal scale, it has been noted that the
functional coupling of neuronal activities may be supported by synchronous oscillations
in different frequency bands (Fries, 2005; Wang, 2010). Furthermore, is has also been
suggested that interactions between synchronous oscillations of different frequency may
be essential for the spatio-temporal coordination of neuronal activities, their grouping
into meaningful sequences, and their large-scale coupling between distant sites (Fries,
2005; Lisman, 2005; Jensen and Colgin, 2007; Wang, 2010). We indeed found striking

2 We use the term ‘context’ here to refer not only to the behavioral circumstances as a whole but more
specifically to the physiological demands proper that change on a moment-to-moment, i.e., fractions of
a second basis, such as those underlying the recruitment of specific groups of muscles during movement.
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similarities between the patterns of oscillatory synchronization in low and high frequency
bands as well as their modulation with behavioral demand. This thus suggests that theta
and gamma activities are not completely independent processes in the interaction of cor-
tical and striatal structures. Much to the contrary, as the results of phase-amplitude
coupling analyses show, they appear to be well coordinated, and the characteristics of
their relationship also substantially modulated by behavioral demand.
As Lisman (2005) and Lisman and Buzsáki (2008) have explained in more detail, the

coordination of theta and gamma rhythmic synchronization of neuronal activities may
be fundamental to signal encoding and routing within and between different parts of the
brain. This proposition was originally based on theoretical considerations regarding the
coalescence of multiple gamma cycles within one theta cycle, with the latter thought
to provide a temporal reference frame for the ordered sequencing of firing patterns as
grouped by fast gamma oscillations (Lisman and Idiart, 1995; Lisman, 2005). It is indeed
well-documented that both types of population oscillations often co-occur and are cou-
pled under awake behaving conditions in hippocampal, neocortical, and also other areas
(Buzsáki et al., 1983; Bragin et al., 1995; Lisman and Idiart, 1995; Chrobak and Buzsáki,
1998; Buzsáki et al., 2003; Csicsvari et al., 2003; Canolty et al., 2006; Tort et al., 2008).
For obvious reasons, we do not further discuss here the possible role of theta-gamma
coupling and phase-coding in memory processes or spatial navigation. We do, however,
stress the idea that slow theta oscillations may facilitate large-scale neuronal interactions
along the cortico-striatal axis by providing a master-clock like signal subserving the dis-
cretization of brief signal encoding and transmission epochs as supported by fast gamma
rhythms (Buzsáki, 2002; Harris et al., 2003; Lisman, 2005; Lisman and Buzsáki, 2008).
These considerations may indeed help to explain the strikingly parallel temporal evo-

lution of theta and gamma power and phase-coupling characteristics with behavioral
demand. Furthermore, they also indicate how both slow and fast rhythms may play
differential but synergistic roles for neuronal interactions along the cortico-striatal axis.
As we have outlined above, different striatal neuron types appear to be preferentially
locked to slow and fast rhythms, no matter the degree to which they are imposed by
external sources or internally generated. Interestingly, FSIs seem to be better capable
of sustaining both slow and fast oscillations, in contrast to MSNs which may exhibit a
strong preference for the former. Thus, it may be that theta oscillations dominate the
temporal structuring of striatal output and at the same time sustain the ordered integra-
tion of external information provided by (cortical, thalamic, and other) spiking inputs as
coordinated rhythmically by brief bursts of gamma oscillations.
The above proposition is well compatible with the notion of the striatum to serve as a

context-specific, spatio-temporal filter and integrator of input activities (Section 1.2.3). It
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is also compatible with the idea that large-scale coupling of distant brain structures may
be supported by slow and fast synchronized oscillations because interactions on both time
scales may physiologically matter. In light of the idea that theta oscillations may figure
as a global rhythm that fundamentally supports integrative brain functions underlying
sensorimotor behavior, it is indeed striking that in a highly structured sensorimotor
task such as the one in the present study they are so prominent and apparently well-
coordinated with transient gamma oscillations thought to subserve neuronal assembly
formation and interactions on fast timescales (Harris et al., 2003; Fries, 2005; Buzsáki,
2006; Colgin et al., 2009). However, it is important to note that we have no means of
testing, with the present data set, the possibility that theta-gamma interactions may also
reflect a coding scheme in which the actual order and, thereby, the respective phase3 of
subsequent gamma bursts within a given theta cycle by itself has informational value
by signifying the order of gamma-encoded behavioral variables (i.e., the “informational
units” or “items” according to Lisman, 2005). Similarly, a modeling study (Fukai, 1999)
proposed that nesting of theta and gamma oscillations along the cortico-striatal axis may
support sequence generation processes underlying movement by means of a short-term
memory buffer mechanism akin to the one proposed by Lisman and Idiart (1995). All
these ideas remain to be tested in future experiments (Section 4.8).
If the transient, frequency-specific oscillatory synchronization of neuronal activities

does indeed subserve the functional coupling of cells in that it groups and aligns the time
points of their spike firing according to the cycle length of the population oscillation, one
might expect that narrowing the temporal windows of increased mutual excitability by
increasing the oscillation frequency may render information transmission between cells
by means of spike firing more precise (Fries et al., 2007). In turn, such a process might
also be adaptive according to behavioral demands, in that a stronger drive of the system
brings about faster transmission of neuronal signals which entails an increase of coupling
frequencies. The results of the present study provide strong support for these ideas in
that they are, to the very best of our knowledge, the first to demonstrate a systematic,
linear scaling of the peak frequencies but not the magnitudes of synchronous oscillations
and their coupling in theta- and gamma-frequency bands with increasing motor demand.
Thus, our data strongly suggest that what may eventually matter for interactions between
groups of neurons are the frequencies rather than the amplitudes of oscillatory patterns
and the absolute strengths of their synchronization.

3 In contrast to its well-established role regarding hippocampal theta oscillations (O’Keefe and Recce,
1993; Skaggs et al., 1996; Buzsáki, 2002; Lubenov and Siapas, 2009), the issue of phase-dependent
coding in the gamma range is a matter of ongoing debate (Harris et al., 2003; Lisman, 2005; Fries et
al., 2007; Lisman and Buzsáki, 2008; Montemurro et al., 2008; Cardin et al., 2009; Wang, 2010).
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The latter notion is also supported by the results of phase-coupling–power correla-
tion interrelation analyses that show a frequency-specific temporal dissociation of the
fluctuations of both measures. It is indeed striking that the temporal coordination of
neuronal activities along the cortico-striatal axis is improved and retains its specificity
particularly in terms of the phase relationships between signals and different frequency
components (phase-locking and phase-amplitude coupling, respectively) but is reduced
with regard to the amplitude correlations between theta and gamma rhythms. As we
have discussed above, these findings may possibly reflect the reduced influence of globally
imposed idling rhythms of low frequency (ă 4 Hz) that we unfortunately have no means
of reliably testing with the current data set due to the filter settings used for recording
and data analysis (Sections 2.4 and 2.6.2.1, respectively). Alternatively or in addition,
they indicate the intriguing possibility of a more specific drive and phase-coupling of tem-
porally and spatially or numerically more restricted groups of neurons engaged during
running as compared to rest in structures along the cortico-striatal axis (Section 4.8).
To summarize, based on the results of the present study we suggest that the functional

interaction of cortical and striatal ensembles may indeed be supported by the rapid,
transient, and frequency-specific temporal coupling of groups of neurons oscillating in
synchrony at theta and gamma frequencies in both structures. While synchronous theta
oscillations may provide an overall coupling signal coordinating interactions along the
cortico-striatal axis, gamma oscillations may subserve the rapid transmission of neuronal
information encoded on a very short timescale. This is because first, we found striking
similarities of theta and gamma power and phase-coupling characteristics within and
between cortical and striatal areas. Second, coupling of population activities occurred
around zero-phase within and with slight phase-delays between areas, consistent with
anatomical and physiological network properties and in agreement with popular theories
of neuronal communication (Fries, 2005; cf. Figure 1.4, page 17). In addition, cross-
hemispheric biases of phase-coupling measures indicate a more global role of theta but a
more locally restricted role of gamma oscillations in the interaction between cortex and
striatum. Third, fluctuations of theta and gamma oscillations were temporally closely
related, as suggested by prominent phase-amplitude coupling patterns. Fourth, low and
high peak frequencies of power and phase-coupling estimates exhibited a similar linear
scaling with motor demand, indicating a direct behavioral relevance of the frequencies
of synchronized population oscillations and underscoring the importance of a temporal
coordination of slow and fast rhythms. Fifth, we found evidence for a more specific
modulation of frequency as compared to amplitude characteristics in intra- and inter-areal
coupling, further supporting the notion of an explicit frequency-dependence of neuronal
interactions in the brain as supported by synchronous population oscillations.
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4.8 Future directions

Are synchronized oscillations really important for sculpting striatal network function, and
do they support neuronal interactions along the cortico-striatal axis? The results of this
study and their discussion indicate a number of fundamental issues to be investigated
and clarified in future experiments. We only explicitly name here a couple of them,
but this list is by no means to be taken exhaustive. Also, we point out the essential
need to integrate the outcomes of experiments involving the below means into better
models of cortico-basal ganglia function of both microscopic and macroscopic scales to
help coherently and consistently explain empirical findings and stimulate future research
in this field (Humphries et al., 2006; Leblois et al., 2006; Bogacz and Gurney, 2007).
First, as the studies reviewed in Section 1.3.3 have shown, cellular dynamics during

up- and down-states indicate that cortico-striatal and striatal neurons are indeed capa-
ble of following synchronized input patterns. However, intracellular recordings under
more specific stimulation conditions including sinusoidal inputs (Pike et al., 2000; Wang,
2010), have to be performed both in vitro and in vivo to investigate the driving forces
of membrane potential fluctuations and thus the impact of synchronized population os-
cillations on the spike output patterns of these neurons (Azouz and Gray, 2000, 2003).
Ideally, these experiments would be complemented by intracellular recordings in vivo
which, although technically highly challenging, could provide verification of the results
even under awake behaving conditions (Lee et al., 2006, 2009).
Second, population oscillations as measured by LFPs have to be more closely and

specifically linked to spiking patterns of individual as well as particular types and groups
of neurons (Klausberger et al., 2003) during behavior to clarify the cellular and network
substrates of both signal encoding and routing mechanisms along the cortico-striatal
axis. Recordings from clearly identified neuronal subtypes, in particular in light of the
ever-growing number of different kinds of striatal interneurons that are being discovered
(Tepper, 2010), are only one step in that direction. The greater endeavor should also
involve attempts to causally manipulate single neuron and population activities, either
through electrical and pharmacological or, even better, optogenetic manipulations (Boy-
den et al., 2005). This technique may allow to investigate, with high temporal precision
and cellular specificity, the contributions of different neuron types to behaviorally relevant
computations in structures along cortico-basal ganglia loops (Kravitz et al., 2010), their
involvement in oscillatory dynamics on a population level, and the role of synchronized
oscillations in large-scale network interactions between areas (Cardin et al., 2009).
Third, we need to extend even further the spatial and temporal scale and the speci-

ficity of our monitoring of neuronal and behavioral variables to better understand their
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intricate relationships. This demands massively parallel recordings and manipulations
on various temporal and spatial scales, including, in case of cortico-basal ganglia interac-
tions, simultaneous measurements and perturbations of signals along the full loop of this
brain system (Figure 1.1, page 2). This would for example allow to investigate whether
neuronal interactions along the cortico-striatal axis as supported by population oscilla-
tions do shape striatal output patterns in a way which is indeed relevant for downstream
structures. In addition, targeting of brainstem areas to better track the origins of global
rhythms such as theta oscillations may help to embed cortio-striatal interactions into
a wider scope of brain dynamics during natural behaviors. Similarly, important input
structures to the striatum such as the thalamus (Haber and McFarland, 2001) have to
be included in investigations of cortico-basal ganglia network functions, not mentioning
the effects of diverse neurotransmitter systems such as dopaminergic inputs which are
crucial in shaping cortico-striatal activities (Surmeier et al., 2007).
Fourth, the details of cortico-striatal projections, their striatal target zones, and the

synaptic interactions between the different types of input and output neurons have to
be more clearly elucidated in the context of functional interactions between the two
areas (Bolam et al., 2006). This would allow for an improved targeting of corresponding
subregions in both structures and hence a greater specificity of recordings. Further,
it would improve our understanding of striatal network physiology, in particular with
regard to the question of whether or not synchronized population oscillations are indeed
a viable mechanism for cortico-striatal interactions. That would also help to better define
the notion of assemblies of functionally coupled cells (Harris, 2005) on the level of both
cortico-striatal and striatal neurons whose activity and interactions have been proposed
to be coordinated by synchronous oscillations.
To finally make but one still vague, grand experimental suggestion, it would be intrigu-

ing to combine optogenetic manipulations of cortico-striatal projection neuron activities
with parallel recordings from a substantial number of anatomically identified striatal tar-
get cells, including principal and interneurons, under well defined behavioral conditions.
This would allow for a much more specific investigation of the mechanisms underlying the
interactions of input and output structures along the cortico-striatal axis, granting crucial
insights into the role of synchronized population oscillations in signal encoding and rout-
ing at the possibly most important stage of the cortico-basal ganglia loop. Monitoring of
the second most important striatal input as well as its output areas by parallel recordings
from thalamic and pallidal or nigral regions would provide indispensable information on
the generation of cortico-striatal synchronized population oscillations and their impact
on downstream structures. This would substantially facilitate interpretations of their
origin as well as their physiological role in cortico-basal ganglia-thalamocortical systems.
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Zusammenfassung

Das aus kortikalen Arealen, Basalganglien und thalamokortikalen Verbindungen beste-
hende zentralnervöse System ist ein wesentlicher Bestandteil des Vorderhirns von Ver-
tebraten und entscheidend an der Erzeugung, Anpassung und Auswahl koordinierter
Muster motorischen und nicht-motorischen Verhaltens beteiligt. Es wird angenommen,
dass synchrone, oszillatorische neuronale Gruppenaktivitäten von grundsätzlicher Be-
deutung für die Kodierung und Übertragung von Signalen entlang der kortiko-striatalen
Achse, der Eingangsebene der Basalganglien, sein könnten. Diese Auffassung bedarf der
grundsätzlichen experimentellen Untermauerung.
Wanderratten (Rattus norvegicus) wurden darauf trainiert, sich in einem Laufbandver-

such bei unterschiedlichen Geschwindigkeiten zu bewegen. Wir implantierten Mikroelek-
troden in sensomotorische kortikale und striatale Areale beider Hemisphären und leiteten
Feldpotential- sowie Multizellaktivitäten (LFP und MUA) unter Ruhe und Bewegungs-
bedingungen ab. Wir führten Leistungs-, Phasenkopplungs- sowie Zwischenfrequenz-
Interaktionsanalysen durch, um die spektralen Eigenschaften neuronaler Signale sowie
ihre Wechselwirkung innerhalb und zwischen den beiden Strukturen zu charakterisieren.
Die Modulation von Leistungsspektren und Phasenkopplungsmerkmalen wurde in Ab-
hängigkeit von der motorischen Beanspruchung im Detail untersucht.
Die Daten zeigen markante Spitzenwerte oszillatorischer Amplituden und eine Syn-

chronisation kortikaler und striataler LFPs in niedrigen (theta) und hohen (gamma) Fre-
quenzbereichen unter Ruhe und Bewegung. Multizellaktivitiäten zeigten nur schwache
Anzeichen niedrigfrequenter oszillatorischer Synchronisation, wohingegen die Kohärenz
von LFPs und MUA im theta-Frequenzbereich statistisch signifikant war. Die Spitzen-
frequenzen von LFP-Amplituden und -Kohärenzen stiegen zwischen den Verhaltensbedin-
gungen an und zeigten einen linearen Zusammenhang mit der motorischen Beanspruchung.
Zusätzlich beobachteten wir eine verhaltensmodulierte Koppelung von theta-Phasen und
gamma-Amplituden und eine Abnahme der Amplitudenkorrelationen zwischen LFP-
Frequenzkomponenten im Vergleich von Ruhe- und Laufbedingungen. Die Analyse von
Wechselwirkungen zwischen Phasenkopplung und Amplitudenkorrelation ergab eine Ab-
nahme ihrer zeitlichen Kofluktuation spezifisch an den Punkten niedriger und hoher
Spitzenfrequenzwerte unter Bewegung.



Diese Resultate unterstreichen die Wichtigkeit frequenzspezifischer Synchronisation
oszillatorischer Gruppenaktivitätsmuster für neuronale Wechselwirkungen entlang der
kortiko-striatalen Achse. Koordinierte rhythmische Aktivitäten im theta- und gamma-
Frequenzbereich könnten der funktionellen Kopplung beider Strukturen auf kurzen und
langen Zeitskalen entsprechend akuter Verhaltensanforderungen förderlich sein. Ähnliche
Aktivitätsmuster könnten der Signalkodierung und -übertragung auf anderen Ebenen der
Basalganglienschleife zugrunde liegen.
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Erratum

The published version of this dissertation largely corresponds to the one submitted for ex-
amination. Apart from orthographic corrections, the following changes have been made:

(1) The Doctoral Committee’s approval has been added behind the title page.
(2) The year of the citation in the front matter has been removed.
(3) The term ‘coherence’ has been changed to ‘coherency’ in the short title of Figure

2.14 (page iv).
(4) The term ‘intercorrelation’ has been changed to ‘interrelation’ in the short title

of Figure 3.28 (page v).
(5) The terms ‘in particular’ on page 18, line 21, and ‘below’ on page 89, line 18,

have been removed for overall formatting reasons.
(6) The address term ‘Main St.’ has been removed on page 30, line 4.
(7) The term ‘rates of’ has been changed to ‘rates from’ on page 44, line 1.
(8) The figure reference on page 77, line 9, has been corrected.
(9) The term ‘Wilcoxon’ has been added on page 85, line 13.
(10) The number 3.31 has been added to the listing of figures on page 100, line 7.
(11) The term ‘hyperdrive’ has been changed to ‘microdrive’ on page 106, lines 18

and 23, and page 107, line 2.
(12) The word ‘as’ has been added on page 107, line 25.
(13) The temporal order of citations has been corrected on page 114, line 12, and

page 117, line 9.
(14) The term ‘coherency’ has been changed to ‘coherence’ on page 118, lines 10

and 11, respectively.
(15) The Curriculum Vitae has been removed for reasons of data privacy protection.
(16) Units of power results have been corrected and axis labels changed to V 2{Hz

in case of non-normalized and normalized raw power. More precisely, changes
have been made to axis labels in Figures 2.9 (panel a), 2.10, 2.13 (panels a, b),
2.14 (panel a), 2.16 (panel a), 2.17, 3.3 (panels a, c), 3.5 (panel a), 3.29 (panel
a), 3.30 (panel a). Also, the footnote on page 68 has been modified accordingly.

(17) Arbitrary units have been added to the y-axis label in panel b of Figure 3.6.
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