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Abstract 
 

In the present study, the influence of climate change on the urban heat island 

(UHI) of Hamburg is investigated. Two different methods to downscale regional 

climate projections with respect to the Hamburg’s UHI are developed. First, a 

statistical model for the UHI of Hamburg is constructed using observations from the 

German Meteorological Service (Deutscher Wetterdienst (DWD)). This statistical 

model explains up to 42% of the UHI variance. By applying it to regional climate 

projections from REMO and CLM, which were driven with the A1B SRES emission 

scenario runs from ECHAM5/MPIOM, future changes in the UHI intensity are 

investigated. The results differ between both RCMs. Except for April and December 

(which show a decrease) REMO results show no significant changes to monthly 

average UHI intensity at the end of the 21st century, while analyses of CLM results 

show significant decreases from November through April and significant increases in 

July and August. The frequency distribution of the summer UHI shows no significant 

changes for REMO and in only one realization of CLM can a significant increase in 

moderate and strong UHI days be found for the end of the 21st century. 

 

The second downscaling method is based on the concept of statistical-

dynamical downscaling (SDD). As a part of the developed SDD method relevant 

weather situations for the UHI are determined. For this purpose an objective weather 

pattern classification (WPC) is constructed by applying a k-means based clustering 

technique to 700 hPa fields (geopotential height, relative humidity, relative vorticity, 

and thickness) from the ERA40 reanalysis dataset. Changes in the weather pattern 

(WP) frequencies in a future climate are obtained by applying different RCM results to 

the WPs. Both REMO and CLM show significant changes the WP-frequencies, 

especially by the end of the 21st century. Since the constructed WPC does not explain 

enough of the UHI variance to identify relevant days, it is combined with the statistical 

UHI model. The resulting relevant days are simulated with the mesoscale numerical 

model METRAS. In a two-step nesting a resolution of 1 km is reached, forced by 

ECMWF (European Center for Medium Range Weather Forecasts) analyses data. The 

UHI patterns obtained for each of the relevant days are then statistically recombined to 

compute the average pattern for days with a strong UHI (statistically modeled UHI ≥ 

3 K). The statistically recombined UHI pattern for the present climate is quite well 

represented when compared with the available observations. The maximum UHI 

intensity of 1.2 K is found in the downtown and harbor area of Hamburg. 

 



 

 II

For the future UHI the SDD method is applied to results from A1B projections 

conducted with REMO and CLM as well as one A2 projection conducted with the 

high-resolution global model CCAM. Again, the results differ between the models. 

The pattern of the strong UHI remains unchanged for REMO while both CLM and 

CCAM show increases of approximately 0.13 K (some 10% of the simulated 

maximum UHI intensity) at the end of the century. The changes in CLM and CCAM 

are associated with a significant increase in strong UHI days. 
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Zusammenfassung 
 

In dieser Arbeit wird der Einfluss des globalen Klimawandels auf die 

Hamburger Wärmeinsel (UHI) untersucht. Hierfür werden zwei Verfahren entwickelt, 

welche Klimaprognosen in Hinblick auf die Hamburger UHI verfeinern. Zuerst wird 

ein statistisches Modell für die Hamburger UHI erstellt, das auf Beobachtungsdaten 

des Deutschen Wetterdienstes (DWD) basiert und bis zu 42% der UHI-Varianz erklärt. 

Um die zukünftige Entwicklung der UHI zu untersuchen, wird das Modell auf 

regionale Klimaprognosen der regionalen Klimamodelle (RCM) REMO und CLM, 

welche beide von den ECHAM5/MPIOM Projektionen des A1B SRES Emissions-

szenario angetrieben wurden, angewendet. Die Ergebnisse für die zukünftige UHI der 

beiden RCM unterscheiden sich. Außer für die Monate April und Dezember, die eine 

Abnahme der UHI zeigen, ändern sich die Monatsmittel der UHI nicht signifikant 

basierend auf REMO Ergebnissen. CLM Ergebnisse zeigen hingegen signifikante 

Abnahmen von November bis April sowie signifikante Zunahmen für Juli und August 

zum Ende des 21. Jahrhunderts. Die Verteilungsfunktion der täglichen UHI im 

Sommer weist keine signifikanten Änderungen in den REMO Ergebnissen auf. CLM 

zeigt eine signifikante Zunahme von Tagen mit moderater und starker UHI Ende des 

21. Jahrhunderts zeigt. 

 

Das zweite Verfeinerungsverfahren basiert auf dem Konzept der statistisch-

dynamischen Verfeinerung (SDD). Der statistische Teil des SDD Verfahrens basiert 

auf der Bestimmung von Wettersituationen, welche für die UHI relevant sind. Hierfür 

wird eine objektive Wetterlagenklassifikation (WPC) erstellt. Die Wetterlagen werden 

mit Hilfe eines k-means-basierten Clusterungsverfahrens ermittelt. Als Eingabefelder 

für die WPC dienen 700 hPa Felder (geopotentielle Höhe, relative Feuchte, relative 

Vorticity und Schichtdicke) des ERA40 Reanalyse Datensatz. Um die zukünftigen 

Änderungen der Wetterlagen zu untersuchen, werden die Wetterlagen in den RCM 

Ergebnissen bestimmt. Die Häufigkeiten einzelner Wetterlagen ändern sich, vor allem 

Ende des 21. Jahrhunderts, sowohl für REMO als auch für CLM. Zur Bestimmung der 

für die UHI relevanten Tage erklärt die erstellte WPC einen zu geringen Teil der UHI 

Varianz. Aus diesem Grund wird die WPC mit dem statistischen UHI Modell 

kombiniert. In zwei Nestungsschritten werden die so erhaltenen relevanten Tage mit 

Hilfe des mesoskaligen numerischen Modells METRAS simuliert. Als Antriebsdaten 

dienen die Analysen des Europäischen Zentrums für mittelfristige Wettervorhersage 

(ECMWF). Für jeden simulierten Tag wird das UHI Muster bestimmt und 

anschließend mittels statistischer Rekombination gemittelt, um das mittlere Muster der 

starken UHI (statistisch modellierte UHI ≥ 3 K) zu berechnen. Verglichen mit 
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verfügbaren Beobachtungsdatensätzen wird das Muster der UHI basierend auf dem 

SDD Verfahren gut wiedergegeben. Die maximale UHI Intensität (ca. 1.2 K) befindet 

sich in der Innenstadt sowie in den Hafengebieten. 

 

Um die zukünftige UHI zu untersuchen, wird das SDD Verfahren auf die A1B 

Projektionen von REMO und CLM sowie auf die A2 Projektionen des hochauf-

gelösten Globalmodells CCAM angewendet. Auch bei dieser Verfeinerungsmethode 

unterscheiden sich die Ergebnisse der verschiedenen Modelle. Das Muster der starken 

UHI bleibt unverändert, während die auf CLM und CCAM basierenden Ergebnisse für 

Ende des 21. Jahrhunderts eine Erhöhung von ca. 0.13 K in einigen Teilen Hamburgs 

zeigen (ca. 10% der simulierten maximalen UHI Intensität). In beiden Modellen ist 

diese Erhöhung verbunden mit einer signifikanten Zunahme von Tagen mit starker 

UHI. 
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1 Introduction 
 

Cities influence both the global climate and the local climate. They are large 

emitters of greenhouse gases, which are largely responsible for recent global climate 

change (IPCC, 2007). Due to their modified surfaces, as well as energy emissions they 

also develop their own unique local climate (e.g. Oke, 1987). Although climate change 

and urban climate have been investigated quite extensively, relatively few studies 

examine the impact of climate change on urban climate. The impact of climate change 

on the urban heat island (UHI) is of particular interest. The UHI refers to the higher 

temperatures within urban areas compared to their rural surroundings (Arnfield, 2003). 

The magnitude of these temperature differences (up to 10 K; Yow, 2007) can be much 

larger than the expected temperature change due to climate change. Based on long-

term observation for Prague (Beranova and Huth, 2005) and for London (Wilby et al., 

2011) slight increases in UHI intensity were found, which were attributed to the 

changed climate. Changes in the maximum UHI intensity due to future climate change 

has been analyzed for London (Wilby, 2003; 2008) and New Jersey (Rosenzweig et 

al., 2005) using the output of global climate models (GCM). For London an increase 

for the UHI is expected, while the investigations for New Jersey indicate an unchanged 

UHI. 

 

These studies focused on a single UHI measure. However, also changes in the 

structure of the UHI due to climate change could occur. Such changes are crucial to 

know planned climate change adaptation measures, as is done within the framework of 

KLIMZUG-NORD for Hamburg. For example, a temperature increase in certain parts 

of a city could be mitigated by planning adaptation measures (e.g. green roofs or 

parks) that reduce temperatures. To investigate the future UHI of a city like Hamburg 

future climate projections from GCMs as well as from regional climate models (RCM) 

are still too coarse to resolve such urban climate effects. The most detailed projections 

for Germany have been conducted with the RCM REMO and a resolution of 10 km 

(Jacob et al., 2008). Numerical studies on the UHI demonstrate that only high 

resolution simulations (at least 1 km) show model results that reproduce the UHI (e.g. 

Bohnenstengel et al., 2011; Wu et al., 2011; Grawe et al., 2012 submitted). Thus, 

regional climate projections have to be further downscaled. However, dynamical 

downscaling of the RCM results using high-resolution mesoscale numerical models is 

still too computationally expensive. Due to the low spatial coverage of high-quality 

observations within cities also statistical downscaling techniques (e.g. Wilby et al., 

2009) are not feasible to downscale the UHI pattern. One downscaling method that 

reduces computational expense and still involves numerical simulations with a high-
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resolution model is the so-called statistical-dynamical downscaling (SDD) (Frey-

Buness et al., 1995). Only relevant weather situations for the variable of interest are 

simulated with a high-resolution numerical model, which reduces the number of 

simulation days by a large factor. Afterwards, these results are statistically recombined 

to yield the climatological field of the variable. Früh et al. (2011a,b) developed a SDD 

method to investigate the urban heat load of Frankfurt am Main. Idealized situations 

that are varying in the initial temperature, relative humidity and wind speed are 

numerically simulated with a numerical model. Using a cuboid method the results of 

these simulations are statistically recombined. However, only two wind directions 

were considered. This might lead to an unrealistic UHI pattern because wind direction 

is important for the advection of the UHI (e.g. Gedzelman et al., 2003). In addition, the 

effect of cloud cover was neglected, which might lead to an overestimation of the 

simulated temperature differences. 

 

The objective of this study is to investigate the influence of climate change on 

the UHI effect by developing and applying a more advanced statistical-dynamical 

downscaling technique to determine the UHI in the present and future climate. A 

weather pattern (WP) based selection of relevant UHI situations is combined with 

high-resolution simulations using the mesocale model METRAS (Schlünzen, 1990; 

Schlünzen et al., 2012a,b). The downscaling method is developed and assessed 

through analyzing the UHI of Hamburg, which was first investigated by Reidat (1971). 

The analysis of temperature observations within Hamburg, which were available for 

the period 1931-1960, revealed that at the downtown station Hamburg-St. Pauli 

temperatures were up to 1 K higher than at the airport station: Hamburg-Fuhlsbüttel. In 

light of current climate change, studies on the urban climate of Hamburg have been 

conducted in recent years. Hoffmann (2009) and Schlünzen et al. (2010) analyzed 

temperature and precipitation data to investigate the influence of Hamburg on both 

variables. Results showed that Hamburg develops an UHI and has an impact on the 

downwind precipitation. Annual averages of temperatures are up to 1 K higher in the 

city compared with the rural surroundings. Monthly average minimum temperatures 

are up to 3 K higher. Since only a few long-term observing stations are available 

within the urban area of Hamburg, Bechtel and Schmidt (2011) used floristic mapping 

data to construct a proxy dataset for temperature. Results show that temperatures are 

higher in downtown Hamburg (as well as in the harbor areas) than in the rural 

surroundings. Furthermore, remote sensing data are used to determine local climate 

zones (Bechtel and Daneke, 2011). These climate zones can be used to determine the 

UHI potential of certain parts of the city (Daneke et al., 2011).  
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A brief overview over existing downscaling techniques is given in Chapter 2. In 

Chapter 3 a statistical model for Hamburg’s UHI is developed and applied to regional 

climate projections from two different RCMs in order to obtain a first guess about the 

future behavior of the UHI. Chapter 4 deals with a WPC specifically constructed for 

Hamburg’s UHI to identify relevant weather situations for the UHI. The WPC is based 

on ERA40 reanalysis data and applied to RCM results to test the capability of RCMs 

to simulate the WPs and to see if changes in the WP frequency might influence the 

future UHI. The developed SDD method, which combines the methods given in 

Chapter 3 and 4 to downscale Hamburg’s UHI, is described and applied in Chapter 5. 

In Chapter 6 the main findings are discussed and an outlook for future studies is given.  

 

Chapter 3 has already been published in the International Journal of Climatology 

(Hoffmann et al., 2011). Chapter 4 has been submitted to the Journal of Applied 

Meteorology and Climatology (Hoffmann and Schlünzen, 2012). It is currently in 

review. Both publications are modified to be consistent with other parts of the thesis 

(e.g. coloring the figures, changing British English into American English). 
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2 Downscaling methods 
 

The concept of downscaling can be described as the attempt to obtain high-

resolution weather or climate information from either sparsely available observations 

or relatively coarse-resolution models (Rummukainen, 2010). Downscaling techniques 

can be subdivided into three main types: statistical (Section 2.1), dynamical 

(Section 2.2), and statistical-dynamical downscaling (Section 2.3). In the following 

they are briefly described. In addition, the requirements for the downscaling method to 

be developed in this study are given (Section 2.4). 

 

2.1 Statistical downscaling 
 

Statistical downscaling methods are based on the assumption that relationships 

exist between large-scale meteorological variables and smaller scale variables (Wilby 

et al., 2009). One of the simplest methods would be to modify GCM temperatures to 

the actual orography through height corrections. However, statistical models such as 

regression-based models are constructed, where observations of the small scale 

variable (predictand) are related to different large scale variables (predictor). Another 

approach is to use weather pattern-based (WP-based) downscaling methods, where the 

relationship between large-scale atmospheric patterns and local variables is exploited. 

For this approach it is assumed that large-scale patterns are well simulated by GCMs. 

For Germany the WP-based model WETTREG (Spekat et al., 2007) has been 

developed and applied to downscale climate projections from ECHAM5. Using 

simpler approach of resampling observed weather situations and prescribing only the 

temperature trend of the GCM, the statistical model STAR (Orlowsky et al., 2008) was 

also used to downscale ECHAM5 simulations for Germany. The third statistical 

downscaling approach is to downscale climate projections with help of a stochastic 

weather generator (e.g. Wilks, 1999). 

 

Statistical downscaling has been applied to the downscaling of precipitation 

(Maraun et al., 2010), wind speed (e.g. Salameh et al., 2009; Curry et al., 2011; van 

der Kamp et al., 2011) and temperature (e.g. Spekat et al., 2007; Huth, 2002; Goyal et 

al., 2011). Furthermore, also derived variables such as the UHI (Wilby, 2003; 2008), 

air quality (Wilby, 2008) or biometeorological measures (Muthers et al., 2010) have 

been downscaled. The advantage of statistical downscaling is the reduced computing 

time. Therefore, it provides results quickly, and it is applicable to a large ensemble of 

climate change projections. However, a constant statistical relationship has to be 
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assumed and high-quality long-term observations are needed (Wilby et al., 2009). The 

latter is a limiting factor, especially in urban climate studies. In addition, if more than 

one variable were statistically downscaled, the physical relationship would not always 

be preserved. 

 

2.2 Dynamical downscaling 
 

The concept of dynamical downscaling was first introduced in numerical 

weather prediction (e.g. Davies, 1976) and was later adapted to climate modeling (e.g. 

Dickinson et al., 1989; Giorgi, 1990). So-called local area models (LAM), which have 

a finer resolution than coarse global circulation (climate) models (GCM), are forced 

with the results from a coarser model. LAMs are able to simulate processes on a 

smaller horizontal scale than GCMs could, whereas GCMs can describe the global 

circulation adequately Several methods exist to transfer information from the coarser 

model to the finer one. In many studies the LAMs are forced at the lateral boundaries 

(e.g. Jacob et al., 2008; Hollweg et al., 2008; Giorgi et al., 2012) using the nudging 

technique introduced by Davies (1976). In addition, spectral nudging techniques are 

applied (e.g. Waldron et al., 1996; von Storch et al., 2000) to ensure that the larger-

scale circulation in a high-resolution sub-domain does not differ substantially from the 

circulation of the coarser model results. Also, global models with a flexible grid are 

applied to weather forecasting (e.g. Coutier and Geleyn, 1988; Côté et al., 1998) and 

regional climate studies (Thatcher and McGregor, 2009). The latter are spectrally 

nudged within a GCM or only forced by the SST output of GCMs coupled with ocean 

models (Katzfey et al., 2009). To achieve high-resolution results, more nesting steps 

are needed (e.g. Jacob et al., 2008). 

 

The great advantage of dynamical downscaling is the physical consistency of the 

downscaling results. Nevertheless, the computational effort to conduct long-term 

transient projections on a horizontal resolution of ~1 km, as it is needed for urban 

climate studies, is still too large. Knote et al. (2011) simulated two 10-year periods on 

a 1.3 km grid using the RCM CLM. However, for most climate applications at least a 

30-year period is needed. Until such high-resolution long-term simulations are 

computationally affordable, the application of alternative methods is needed to 

investigate the future urban climate. 
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2.3 Statistical-dynamical downscaling 
 

To combine the advantages of dynamical (physical consistency between 

meteorological variables) and statistical (reduced computing time) downscaling, a 

hybrid method was introduced the so-called statistical-dynamical downscaling (SDD) 

(Frey-Buness et al., 1995). Here it is assumed that characteristic weather patterns (WP) 

for small scale variables exist and that the climatology of these variables is mainly 

determined by the frequency of their respective WPs. These WPs can then be 

simulated by a high-resolution numerical model. The climatology of the small-scale 

variable is determined by the frequency of WPs. Some studies suggest that the changes 

within WP also have to be considered (Boé et al., 2006; Najac et al., 2011). 

 

By simulating only a small number of situations with a high-resolution model, 

the computational effort is in an acceptable range. Within climate change studies SDD 

methods have been applied to downscale wind (Pinto et al., 2010; Najac et al., 2011), 

temperature (Fuentes and Heimann, 2000; Boé et al., 2006), precipitation (Boé et al., 

2006; Huebener and Kerschgens, 2007a,b), and also ocean forcing (Cassou et al., 

2011). Früh et al. (2011a,b) applied a simplified SDD method to downscale regional 

climate projections for the urban climate of Frankfurt am Main. They investigated the 

changes in urban heat load in Frankfurt am Main using idealized numerical simulations 

in combination with regional climate model results. This study showed that SDD 

methods are in general applicable for urban climate studies. 
 

2.4 Requirements for a downscaling technique that can be used to 
determine UHI in present and future climate 

 

Prior to the development of a SDD technique for the UHI, the specific 

requirements for the present study are stated that should be fulfilled by the method: 

 

 The method should be applicable to results from different climate models and 

climate models of different resolution. The main reason is that climate change 

signals based on an ensemble of single climate models are believed to be more 

reliable than results from a single model. Uncertainties due to climate models 

deficiencies are reduced by using an ensemble of model results (e.g. van der 

Linden and Mitchell, 2009). 

 The method needed should be applicable to observations, because the pattern of 

Hamburg’s UHI is not well known even for the present climate. 
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 The final resolution of the results should be 1 km or less. Most of the recent 

numerical studies on the UHI (e.g. Bohnenstengel et al., 2011; Wu et al., 2011; 

Grawe et al., 2012 submitted) are conducted at this resolution. For higher 

resolutions the assumptions of Reynolds averaged models become more 

uncertain and large-eddy simulations might have to be conducted (Schlünzen et 

al., 2011). 

 The computational effort should be as small as possible. The results from this 

study will be used for climate adaptation planning. Quantifying the impact of 

different adaptation measures on the urban climate might involve conducting 

the downscaling procedure several times with different adaptation measures 

included. 
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3 Statistical model for the urban heat island and its 

application to a climate change scenario 

 

3.1 Preface 

 

This Chapter has been published as: “Statistical model for the urban heat island and its 

application to a climate change scenario, Peter Hoffmann, Oliver Krueger, K. Heinke 

Schlünzen, International Journal of Climatology, doi: 10.1002/joc.2348. Copyright © 

2011 the Royal Meteorological Society, first published by John & Wiley Sons Ltd.” 

For the thesis the text has been modified to be consistent with other parts of the thesis 

(e.g. colored figures, American spelling) and by leaving out the Abstract and moving 

references to the end of the thesis. 

 

3.2 Introduction 

 

The changing climate due to greenhouse gas emissions (IPCC, 2007) leads to a 

need for adaption strategies especially for large cities. In addition, cities exhibit not 

only the impact of global and regional climate change but additionally create their own 

urban climate. They alter the properties of the atmospheric boundary layer including 

turbulence (e.g. Kastner-Klein and Rotach, 2004), temperature (Arnfield, 2003) and 

moisture field (e.g. Mayer et al., 2003; Kuttler et al., 2007; Liu et al., 2009). 

Furthermore, urban areas can impact precipitation patterns (e.g. Shepherd, 2005; 

Schlünzen et al., 2010). The most known phenomenon is the urban heat island (UHI) 

which refers to the higher air temperatures in urban areas compared to the surrounding 

rural areas (Oke, 1987). The main causes of the UHI are the higher heat capacity of 

urban surfaces, the trapping of radiation in street canyons, the reduced vertical 

exchange due to a reduced wind speed, and anthropogenic heat release (Yow, 2007). 

The UHI intensity varies with the morphology and the size of the city (Oke, 1973; 

Sakakibara and Matsui, 2005) and with meteorological conditions (Arnfield, 2003). It 

decreases with higher wind speeds, cloud cover and relative humidity (e.g. Morris et 

al., 2001; Kim and Baik, 2002; 2004; Schlünzen et al., 2010). The UHI does not only 

vary in space but also in time. Both a diurnal and an annual cycle were found for most 

of the cities. The strongest UHI intensity occurs 2 to 3 hours after sunset on a calm and 

cloudless day. In the morning hours even an urban cool island can develop (Oke, 

1987). The annual cycle of the UHI depends on the climate zone the city is located. 
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Cities in moderate climate exhibit a maximum UHI in the warm season and a 

minimum UHI in winter (Arnfield, 2003). 

 

The question we want to answer in this study is, whether a change of the 

meteorological variables due to climate change results in a change of the UHI of 

Hamburg. Schlünzen et al. (2010) have shown that Hamburg, situated in Northern 

Germany in a marine climate has indeed an UHI with monthly averaged urban-rural 

differences in minimum temperatures between 2.5 K and 2.9 K in the summer months. 

Thus before developing mitigation and adaption measures it should be known, if the 

UHI will change in a future climate. One way to determine the future UHI is to 

analyze temperature trends of rural and urban stations. Using this method Beranova 

and Huth (2005) found an increase in Prague’s UHI. They linked this increase to more 

frequent unstable conditions due to higher temperatures near the ground that are 

caused by climate change. Rosenzweig et al. (2005) investigated changes in UHI for 

New Jersey. They analyzed wind speed and cloud cover for different global climate 

models (GCM) to have an estimate for the future UHI. They conclude that the UHI 

may remain unchanged since wind speed seems to decline and cloud cover seems to 

increase in the area of New Jersey. Londons UHI has been examined by Wilby (2003). 

He used a statistical model to identify trends in London’s UHI and GCM data as input 

for the statistical model. He found that the nocturnal UHI intensity and the frequency 

of strong UHI events (> 4 K) would increase significantly in the future. In a more 

recent study Wilby (2008) used data from different GCMs driven with the SRES 

emission scenario A2. Both the UHI intensity and the frequency of strong UHI events 

increase in the 2050’s between May and October. For the other months the changes are 

small. These results are not valid universally, as climate change differs regionally and 

so does the UHI. The development of regional climate models gives the opportunity to 

obtain more differentiated information about regional climate change. However, as 

current RCMs resolutions are still too coarse to simulate urban climate, results 

obtained have to be further downscaled. Dynamical downscaling cannot be applied 

here, as RCMs with a high resolution require large amounts of computing capacity. A 

method that demands less computing time and that has been applied successfully to 

urban climate before (Wilby, 2003; 2008) is statistical downscaling. It uses the 

relationship between certain large-scale variables and the variable of interest. 

 

In this study a regression based statistical model for the UHI of Hamburg is 

constructed using meteorological observations. This model is then used to investigate 

the future UHI by applying it to the results of two realizations of the A1B SRES 

emission scenario (Nakicenovic et al., 2000) performed with the RCMs REMO and 
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CLM. The observational data and the UHI are described in Section 3.3.1. Section 3.3.2 

deals with the ERA40 reanalysis data. A brief description of both RCMs is given in 

Section 3.3.3. The statistical model is described in Section 3.4. Results of the model 

using the RCMs as input are presented in Section 3.5. Concluding remarks are given in 

Section 3.6. 

3.3 Data 

 

To investigate both the present and the future UHI of Hamburg observations 

from the German Meteorological Service (DWD), ERA40 and results from RCMs are 

used. 

 

3.3.1 Observations 

 

One problem that needs to be tackled when investigating the urban climate of 

Hamburg is the absence of a dense long-term station network inside the city. For that 

reason, only data from 1985 to 1999 are analyzed. For this period data from six climate 

stations and one synoptic station operated by the DWD are available. The locations of 

the stations are given in Figure 3.1. Climate stations provide daily values for 

temperature, precipitation and cloud cover. Data from station Hamburg-Fuhlsbüttel 

(FU) at the Hamburg Airport, which is both a synoptic station and a climate station, 

contain hourly values for temperature, pressure, precipitation, wind speed and 

direction, cloud cover, and humidity (specific and relative). The only station located 

downtown is Hamburg-St. Pauli (SP). It is surrounded by medium sized buildings (up 

to 6 stories). The station is located a few hundred meters from the river Elbe. The 

population density of the district is about 10700 inhabitants per square kilometer. SP 

serves in the following as the urban reference station for the calculation of the UHI. 

 

 

The two available rural stations are Grambek (GR) and Ahrensburg-Wulsdorf 

(AH). Station GR is located next to a small village with about 400 inhabitants. Station 

AH is located next to the political border of the state of Hamburg and is surrounded by 

grain fields. Instead of using data from only one rural reference station (GR) as in 

Hoffmann et al. (2009) and Schlünzen et al. (2010) both GR and AH are included in 

the calculation making the results more robust. Hamburg’s UHI is then defined as: 
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(3.1) 

 

Tmin,SP, Tmin,GR and Tmin,AH are the daily minimum temperatures at the station SP, GR 

and AH respectively. Using this formula an average ruT  of 2 K can be found for 

Hamburg which is about 0.3 K smaller than Hoffmann et al. (2009) got with only GR 

as reference station. 
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Figure 3.1: Map of the metropolitan area of Hamburg with positions of the 
measurement sites and political borders of Hamburg. Sites are AH (Ahrensburg-
Wulsdorf), FU (Hamburg-Fuhlsbüttel), GR (Grambek), NE (Hamburg-Neuwieden-
thal), SP (Hamburg-St. Pauli) and WA (Hamburg-Wandsbek). 

 

The annual cycle of ruT  is given in Figure 3.2. As found by Schlünzen et al. 

(2010) a clear maximum in the warm season with average monthly values up to 2.7 K 

is visible. Only the magnitude of the monthly averaged ruT   are slightly lower. This 

can be explained by the higher minimum temperatures at AH compared to GR. As can 

be expected ruT   is also highly variable which is illustrated by the 25th and 75th 

percentile. The values range from a minimum of -4 K to a maximum of 10.5 K. The 

75th percentile shows typical summer UHI values between 3.5 K and 4 K. 

 

The meteorological variables that are needed to derive the statistical model are 

taken from the station FU except cloud cover. For this variable two additional stations 

are available, Hamburg-Neuwiedenthal (NE) and Hamburg-Wandsbek (WA). Cloud 
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cover is averaged over all stations. To get daily values of wind speed the hourly 

measurements at FU are averaged daily. 
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Figure 3.2: Annual cycle of different statistics of UHI for the period 1985-1999. 

 

3.3.2 ERA40 reanalysis 

 

Continuous meteorological observations are not available for several decades 

for the region of Hamburg especially for wind speed. For climate analysis, at least a 30 

year period has to be considered. To overcome the drawback of the temporal constraint 

the ERA40 reanalysis dataset produced at the European Centre for Medium-Range 

Weather Forecasts (ECMWF) (Uppala et al., 2005) is used as well. With the help of 

the data assimilation system and the global forecast model a best possible estimate of 

the past atmospheric state was constructed. The gridded dataset starts in September 

1957 and ends in August 2002. The horizontal resolution of the dataset is 1.125° 

(~125 km). Due to the coarse resolution only data of one grid box closest to Hamburg 

is used (Figure 3.3). As input for the statistical model the variables 10 m wind speed, 

2 m relative humidity and the total cloud cover are used. Relative humidity is derived 

diagnostically with the Magnus-formula (Hupfer and Kuttler, 2006). Cloud cover is 

converted into octas. All variables were available every 6 hours and are therefore daily 

averaged to correspond to the observations by the DWD. 
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Due to the way they are obtained observations and reanalysis data differ. The 

DWD observations are from point measurements while reanalysis data, as described 

above, are the result of an assimilation process involving a numerical model with a 

coarse resolution using information from more than just one observational data source. 

Thus, they are representative on different spatial scales. Comparing the ERA40 data 

with DWD observations in the period from 1985 to 1999 the mean and the standard 

deviation of the corresponding variables differ slightly. The correlation is low only for 

cloud cover (r = 0.74). For wind speed (r = 0.88) and relative humidity (r = 0.92) both 

datasets correlate well. 

 

3.3.3 Regional climate models 

 

The future UHI is analyzed with the help of results from the RCMs REgional 

MOdel (REMO, Jacob and Podzun, 1997; Jacob, 2001; Semmler et al., 2005) and 

Climate Local Model (CLM, Steppeler et al., 2003; Böhm et al., 2006) that are used to 

drive the statistical model. Both models are driven with the coupled global climate 

model ECHAM5/MPIOM (Roeckner et al., 2003, Jungclaus et al., 2006), which was 

developed at the Max-Planck-Institute for Meteorology (MPI-M) in Hamburg. In the 

present study results from the first two SRES A1B emission scenario runs are used. 

The assumption of this scenario is a rapid growth of global population, economy, and 

CO2 emissions with a peak in CO2 emissions in the middle of the century and a decline 

afterwards. It additionally assumes a balanced use of technologies for the energy 

supply. Short description of the RCMs and the used data is given in Section 3.3.3.1 

and 3.3.3.2 respectively. 

 

An evaluation of results of the two RCMs for present climate is not made in 

this study. More specifically the meteorological variables of REMO and CLM are not 

bias corrected. A bias correction is beyond the scope of this study and needs to be done 

elsewhere. Therefore, only the relative changes of the modeled ruT   will be 

considered in the analyses. 

 

3.3.3.1 REMO 

 

REMO is a hydrostatic numerical model based on the Europa-Modell (EM; 

Majewski, 1991) from DWD. It was developed at the Max-Planck-Institute for 
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Meteorology in Hamburg. The physical parameterizations were taken from the GCM 

ECHAM4 (Roeckner et al., 1996). An extended description is given in Jacob (2001) 

and Jacob et al. (2001). REMO solves the prognostic equations for temperature, u and 

v component of the wind, surface pressure, mixing ratio of water vapor and of cloud 

water. The model runs for Germany are produced in two nesting steps (Jacob et al., 

2008). A coarse version of REMO is forced by ECHAM5 output at the lateral 

boundaries. This version covers the European continent in a resolution of 0.44° 

(~50 km). A version with a finer resolution of 0.088° (~10 km) covering Germany and 

parts of Switzerland and Austria is nudged within the results of the first step. The 

horizontal grid used for both runs is a regular grid with a rotated pole.  

 

Since relative humidity is not available as an output variable it is diagnostically 

derived using the Magnus-formula (Hupfer and Kuttler, 2006). Cloud cover is 

converted from area fraction into octas to make them comparable to the observations. 

In addition, the diagnostic 10 m wind speed is used. Climate change signals from 

numerical models are not representative grid-point-wise. Only results averaged over at 

least 9 grid points should be analyzed. The locations of the grid points used for the 

averaging procedure are given in Figure 3.3a. Wind speed and relative humidity are 

averaged over the 9 grid boxes indicated by the grey boxes. In addition to the grey 

boxes the surrounding black grid boxes are used for averaging cloud cover since the 

cloud cover observations are averages over a larger area. 

 

3.3.3.2 CLM 

 

In contrast to REMO, CLM is a non-hydrostatic numerical model. It is the 

climate version of the Lokal-Modell (LM) from the DWD. A short model description 

is given by Böhm et al. (2006). The dynamics and physics of the model are described 

in detail by Steppeler et al. (2003). CLM solves the prognostic equations for 

temperature, horizontal and vertical wind components, pressure perturbations, specific 

humidity and cloud water content. Hollweg et al. (2008) describe the model runs for 

the IPCC scenarios in detail. The model version used for these runs is CLM 2.4.11, 

with a resolution of 0.165° (~18 km) on a rotated grid. The model is directly nudged 

within ECHAM5 and covers Europe.  

 

For the statistical analyses the results from REMO the variables are averaged over 

several grid boxes. Figure 3.3b shows the location of these grid boxes. Because of the 
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lower resolution of CLM the 9 grid boxes cover Hamburg completely. Thus, all 

variables are averaged over the same grid boxes. 
 

a) b) 
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Figure 3.3: (a) Grid boxes from REMO used for the statistical model. Wind speed and 
relative humidity are taken from boxes with thick lines. (b) Grid boxes from CLM used 
for the statistical model. All variables are taken from these grid boxes. The box with 
dashed lines indicates the ERA40 grid box used in this study. 
 

3.4 Statistical model 

 

In this study a regression based statistical model similar to those from Wilby et 

al. (2002) is constructed. The predictand is the UHI intensity ruT   (Eq. 3.2). To find 

appropriate predictors a simple linear regression between UHI and the meteorological 

variables X is computed (Eq. 3.2). The statistical significance of the regression is 

calculated by means of a two-sided t-test. In addition, the explained variance R² is 

calculated to estimate the strength of the relationship. 

 

 bXaT ru    (3.2) 

 

To develop the statistical model five variables were chosen based on early findings and 

physical relevance. Wind speed has been shown to be considerably influence the UHI 

with large wind speeds reducing the UHI (e.g. Schlünzen et al., 2010). Cloud cover 

was found to have a similar impact with higher cloud cover reducing the UHI (e.g. 

Morris et al., 2001; Kim and Baik, 2002; 2004). Relative humidity seems to have also 

an impact on the UHI as it was found by Kim and Baik (2002; 2004). To have another 

measure for humidity water vapor pressure is chosen. The UHI is found to be well 
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developed under anticyclonic conditions (e.g. Tumanov et al., 1999; Morris and 

Simmonds, 2000; Bejaran and Camilloni, 2003). To take this into account air pressure 

is selected as a potential model variable as well (Moreno-Gracia, 1994). Figure 3.4 

shows the scatterplots of ruT   for the different variables, and Table 3.1 the 

corresponding results from the linear regression. All regressions, except for water 

vapor pressure, are significant (α = 0.05). The strongest relationship exists between 

ruT   and cloud cover from the previous day (R² = 24.4%). Clouds absorb and emit 

longwave radiation, which reduces diurnal temperature variation (Oke, 1987). In 

addition, they reduce the incoming shortwave radiation and therefore the amount of 

heat stored in urban materials (Hupfer and Kuttler, 2006; Kawai and Kanda, 2010). 

The letter explains the stronger relationship to the previous day observations than to 

the corresponding day (not shown). The strength of the relationship to wind speed and 

to relative humidity is lower. The explained variance of both is almost identical 

(R² = 17.1%). 

 

The negative correlation between ruT   and wind speed can be explained by 

the increase of the temperature advection with higher wind speeds (e.g. Morris et al., 

2001). Schlünzen et al. (2010) found that the dependency of the Hamburg UHI on 

wind speed is best described by the inverse square root. However, the differences of 

the explained variance between the different functions were small in their study. In 

addition, they used the difference between the daily mean temperatures at FU and GR, 

while we use SP and an average rural temperature. The regression based on the inverse 

square root or on the power function reveals for the relationship between ruT   and 

wind speed smaller R² (not shown). Thus, in the present analysis the linear regression 

seems to fit best. 
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Figure 3.4: Scatter diagrams of UHI and (a) daily mean wind speeds at FU, (b) area 
averaged daily mean cloud cover from previous day, (c) daily mean relative humidity 
at FU, (d) daily mean surface pressure at FU, (e) daily mean water vapor pressure at 
FU. Data for 1985-1999. Lines indicate the linear regression (parameters see 
Table 3.1). 

 

An explanation for the negative correlation between ruT   and relative 

humidity could be the release of latent heat due to condensation. The higher the 

relative humidity the more probable the air reaches saturation. The heat released by 

condensation warms the air. As rural surfaces tend to cool faster at night than urban 

surfaces the condensation process starts earlier in rural areas. The result is a reduced 

a) 

c) d) 

e) 

b) 
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urban-rural temperature difference results. High values of relative humidity can also 

lead to the development of nocturnal fog that reduces the radiative loss directly at the 

ground. Air pressure only explains 7.6% of the ruT  -variance and is thus less relevant 

for UHI development. The same is true for water vapor pressure (R² = 0.2 %). 

 

Table 3.1: Results from the linear regression between UHI (K) and different 
meteorological variables for period 1985 to 1999 using Eq. (3.2). 

Variable a b R² 

wind speed (m/s) -0.41 3.6 17.1 

cloud cover of previous day 

(octa) 
-0.37 4 24.4 

relative humidity (%) -0.058 6.58 17.1 

air pressure (hPa) -0.045 -43.46 7.6 

water vapor pressure (hPa) 0.022 1.81 0.2 

 

The results of the linear regression show that the variables wind speed FF, 

cloud cover CC, and relative humidity RH should be used for the linear model 

(Eq. 3.3).  

 

 dRHcCCbFFaT ru    (3.3) 

 

The residuals of the model computed with the method of ordinary least squares (OLS) 

are significantly ( = 0.05) autocorrelated. Autocorrelated residuals tend to influence 

the parameter estimation, which can be avoided by making use of the generalized least 

squares (GLS) method (Cochrane, 1949). In our case the residuals are modeled 

through an AR(1) process. Furthermore, robust model results are obtained by 

repeatedly (150 times) deriving the model leaving out 500 consecutive observations 

each time (Krueger and von Storch, 2011). The final model parameters are given in 

Table 3.2. The explained variance of the model is R² = 42% which is slightly higher 

than the model by Wilby (2008).  
 

The unexplained variance is modeled by adding an extra term ε to Eq. (3.3) as 

it was also done by Wilby et al. (2002). ε however, is computed by resampling the 

model residuals (1000 times) instead of fitting a theoretical probability distribution 

function to the residuals. This avoids the problem of determining the appropriate 

distribution function. The resampling is done with a pseudo random number generator. 

The final model equation is then:  
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   dRHcCCbFFaT ru  (3.4) 

 

The frequency distributions of the modeled and observed ruT   are given in Figure 3.5. 

Both distributions are similar to the distributions of London’s UHI found by Wilby 

(2003). The observed distribution shown in Figure 3.5 seems to be typical for a city in 

a moderate climate. The similarities of the modeled observation based UHI can be 

partially explained by similar methods and variables used to derive and to apply the 

statistical model. The skewed distribution of ruT   is not captured by the statistical 

model. The modeled distribution is close to a normal distribution and cannot simulate 

the peak at around 0.5 K. It overestimates ruT   values below -0.5 K as well as 

between 2.5 K and 3.5 K. A good agreement can be found for ruT   around 4 K and 

above 6 K.  

 

Table 3.2: Model parameters for Eq. (3.3) and Eq. (3.4) computed with GLS method. 
The mean and the 95% confidence interval are determined from an ensemble of 
derived parameters (for details see text). 

Parameter Mean 2.5 Percentile 97.5 Percentile 

a (K/m²) -0.354 -0.360 -0.346 

b (K/octa) -0.185 -0.193 -0.179 

c (K/%) -0.039 -0.038 -0.041 

d (K) 7.73 7.63 7.84 

 

Figure 3.5 also shows the distribution of the model ruT   with ERA40 data as 

input. It reveals that the shape stays nearly the same as when directly using 

observations but the whole distribution is shifted towards lower ruT  . The prime 

reason for this result is the higher wind speeds in ERA40 data compared to the 

observations at FU. Comparing the monthly means of both modeled and observed 

ruT   reveals that the annual cycle can be simulated quite well (Figure 3.6), primarily 

the summer months. In October ruT   is underestimated by about 0.2 K based on the 

observations in comparison to the observed UHI. Using the ERA40 data in the 

statistical model gives smaller values then the model driven with observations. For 

March to August the range of the statistically modeled UHI is close to the observed 

one. A larger underestimation is found from September to February. Since UHI is most 

relevant for the summer months this is not a severe drawback of our analyses. 
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Figure 3.5: Frequency distribution of observed (black asterisks) and modeled (points 
with error bars) UHI intensity using measurements (black) and ERA40 (grey) data for 
the period 1985-1999. Error bars indicate the 95% confidence intervals due to 
unexplained variance. 
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Figure 3.6: Annual cycle of observed (black asterisks) and modeled (points with error 
bars) UHI intensity using measurements and ERA40 data for the period 1985-1999. 
Error bars indicate the 95% confidence intervals due to unexplained variance. 
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3.5 Urban heat island in the future climate 

 

To determine changes of the statistically modeled UHI for the 30-year periods 

2036-2065 and 2071-2100, UHI results are compared with the results for the control 

period 1971-2000. We assume that the statistical relationship between predictand and 

predictor derived from the observed data in period 1985-1999 holds for the present 

climate control period (1971-2000) and does not change in the future climate. This 

assumption might not be valid because Hamburg will change in size, energy 

consumption, and other characteristics in the future that affect the UHI. However, the 

focus of this study is to analyze the possible change of the UHI due to a change in 

meteorological conditions. 

 

Table 3.3 shows the averaged modeled ruT   for the different periods. The results for 

the control period (1971-2000) show a strong underestimation of ruT   when CLM is 

used as input. The mean ruT   with REMO-input is very close to the results with 

ERA40-input and slightly smaller than the results with observations as input. The 

underestimation of CLM is caused by an overestimation of the relative humidity and 

cloud cover, which was also found in other studies (Hollweg et al., 2008; Jaeger et al., 

2008). Wind speeds that are higher compared to the observed values are the reason for 

the underestimation of the UHI with REMO and ERA40 results (not shown). The wind 

speed overestimation was also found by Walter et al. (2006) for REMO and Barstad et 

al. (2009) for ERA40 for other regions. 

 
Table 3.3: Averaged modeled UHI intensities in Kelvin for different periods. 

 OBS Mod ERA40 CLM 1 CLM 2 REMO 1 REMO 2 

1971-2000 
2.02 

(1985-1999) 
1.87 1.27 1.31 1.92 1.90 

2036-2065 - - 1.24 1.22 1.89 1.90 

2071-2100 - - 1.23 1.22 1.89 1.87 

 

For both RCMs the changes of the mean of ruT  between the three periods are 

less than 0.1 K, which is smaller than the accuracy of the data. The reason for the small 

changes is that the means of all three variables used for the statistical model do not 

differ substantially between the periods. This indicates that the current annual mean 

UHI will not change due to changes in meteorological conditions. 
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Figure 3.7 shows the annual cycle of the modeled ruT   for the control period 

and the scenarios for both RCMs and the two realizations. The annual cycle simulated 

with REMO is weaker and slightly shifted compared to the ERA40 annual cycle 

(Figure 3.7a). The values for October to December are overestimated. However, it 

should be kept in mind that for the 15 years (1985-1999) period the ERA40 driven 

model gave lower values for these months compared to the observations (Figure 3.6). 

The lower values in February, May and the summer months cannot be addressed to the 

deficits of ERA40 but are due to higher wind speeds in REMO. Regarding the 

scenarios only the April changes are significant for both the realizations and both the 

periods. The magnitude of the decrease varies from 0.1 K to 0.2 K between the 

realizations for the period 2036-2065. For the period 2071-2100 both realizations show 

a decrease of about 0.2 K. The other month that shows a clear signal in both 

realizations is December with a significant decrease of 0.1 K for the last period. 

However, this change is again close to the accuracy of the data. All the other months 

show either no significant change or only significant changes in one realization. These 

findings show again, that the meteorological conditions which are important for 

Hamburg’s UHI do not differ much in the scenario simulations of REMO. 

 

The large underestimation of ruT   simulated with CLM is obvious in the 

annual cycle (Figure 3.7b). All the monthly means are underestimated and the 

magnitude of the cycle is smaller. Different from the REMO results, the means change 

significantly for the majority of the months. May is the only month with no significant 

changes. September show an increase in the first realization and a decrease in the 

second one for the end of the century. Hence, no conclusion can be drawn for this 

month. A significant increase can be found for July and August, which ranges from 

0.1 K to 0.4 K and is different for different realizations. In the rest of the year 

(November-April) changes of ruT   are negative. The strongest decrease for the first 

future period with about 0.2 K in both realizations occurs in March. In the second 

period all winter months, March, and April show strong decreases ranging between 

0.2 K and 0.3 K. Together with the increase in July and August the amplitude of the 

annual cycle of ruT   modeled with CLM increases. 
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Figure 3.7: Annual cycle of the modeled UHI intensity using ERA40 data and two 
realizations of (a) REMO and (b) CLM for different time periods. Error bars indicate 
the 95th confidence intervals due to the unexplained variance. The black asterisks mark 
significant ( = 0.05) changes between the corresponding period and the control 
period (1971-2000). 

 

To investigate changes in the frequency of certain modeled UHI events in the 

summer months July to August the results are grouped into four intensity classes. The 

first class represents days with a negative UHI (< 0 K), the second days with a weak 

UHI (0-2 K), the third days with a moderate UHI (2-4 K) and the fourth days with 

a) 

b) 
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strong UHI (> 4 K). Figure 3.8a reveals that only the frequency of negative UHI days 

is well captured using REMO as input. Weak UHI occur too often while moderate and 

strong UHI days are underrepresented. In the future no changes in the distribution can 

be found. 
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Figure 3.8: Relative frequency of different modeled UHI intensities in summer (JJA) 
using ERA40 data and the two realizations of (a) REMO and (b) CLM for different 
time periods. Error bars indicate the 95% confidence intervals due to the unexplained 
variance. The black asterisks mark significant ( = 0.05) changes between the 
corresponding period and the control period (1971-2000). 
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The frequency of the four intensity classes using CLM as input for the model is 

shown in Figure 3.8b. The whole distribution of ruT 
 is shifted towards weaker UHI 

days. This results in an overestimation of negative and weak UHI days and an 

underestimation of moderate UHI days and strong UHI days in both realizations. The 

results of the scenario runs show that the distribution changes significantly (α = 0.05) 

only in the first realization for the end of the century. The significance is tested using a 

two-sided t-Test. The frequency of weak UHI decreases significantly while moderate 

and strong UHI days become significantly more frequent. The tendencies are similar in 

the second realization for the end of the century but in this case not significant. 
 

3.6 Conclusions 

 

This study is the first using the results from the two RCMs REMO and CLM to 

obtain information about future urban climate through statistical downscaling. For that 

purpose a statistical model for the UHI of Hamburg was constructed using operational 

observations from the DWD (1985-1999). It is shown that UHI linearly depends on 

wind speed, previous day’s cloud cover and relative humidity (all coefficients 

negative). The explained variance of the model is comparable with other statistical 

models for the UHI in other cities (e.g. Kim and Baik, 2004; Wilby, 2008). Applying 

this model to REMO and CLM output reveals that for CLM the mean UHI intensity is 

underestimated of about -0.7 K compared to results of ERA40. REMO results 

correspond well with the results of with ERA40 when comparing the period mean. For 

the monthly means however differences exist. The causes for the underestimation are 

primarily the unrealistic high cloud cover and relative humidity simulated by CLM. 

Therefore, regional climate model results should be bias-corrected in future studies to 

analyze changes in absolute values. Keeping this limitation in mind relative changes 

can be considered. For the future urban heat island the statistical model was applied to 

the SRES A1B emission scenario runs from REMO and CLM. The periods of interest 

were 2036-2065 and 2071-2100. The availability of two realizations of the A1B 

scenarios made it possible to check for the robustness of the changes.  

 

The two RCMs show different signals for the future UHI. The results from 

REMO suggest that the average UHI will not change in the future. Regarding the 

annual cycle only two months (April and December) showed a significant decrease for 

both realizations. Additionally, the frequency of different UHI intensities does not 

change in the A1B scenario. According to the analysis of the future UHI using CLM 

the UHI intensity will change significantly. The annual cycle of the UHI will 
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strengthen since July and August exhibit an increase, while the UHI decreases for the 

other months. Averaged over the whole year the UHI decreases slightly. 

 

It should be stated that the method presented in this study does not take the 

atmospheric stability into account. Therefore, the possible effect of more unstable 

conditions in the future climate due to higher temperatures is not included in the 

model. In future studies this shortcoming could be solved using atmospheric profiles 

from sounding data or measuring towers such as the Wettermast in Hamburg. 

However, it is not clear whether the RCMs are able to represent the profiles well 

enough for an analysis. 

 

Due to a lack of a dense observational network the information about the 

spatial properties of the UHI in Hamburg are limited. Other downscaling methods such 

as statistical-dynamical downscaling should be applied to obtain this information. With 

the help of the statistical model presented here, the days can be determined for which 

the UHI is most pronounced. These can be simulated with a mesoscale model that 

includes an urban parameterization such as done by Grawe et al. (2010) for London. 
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4 Weather pattern classification to represent the UHI in 

present and future climate 

 

4.1 Preface 

 

This Chapter has been submitted to Journal of Applied Meteorology as: “Hoffmann P, 

Schlünzen KH. 2012. Weather patterns and their relation to the urban heat island in 

present and future climate.” For the thesis the text has been modified to be consistent 

with other parts of the thesis (e.g. colored figures) and by leaving out the Abstract and 

moving references to the end of the thesis. 

 

4.2 Introduction 

 

Circulation and weather pattern classification (WPC) has been widely used to 

identify relationships between atmospheric circulation and small scale meteorological 

elements such as heavy precipitation (e.g. Kaspar and Müller, 2010; Lupikasza; 2010), 

tornadoes (Bissolli et al., 2007), air quality (e.g. Demuzere and van Lipzig, 2010; 

Demuzere et al., 2010), and urban climate (e.g. Morris and Simmonds 2000; 

Mihalakakou et al. 2002; Kassomenos and Katsoulis, 2006). Also non-meteorological 

relationships such as between atmospheric circulation and human health have been 

investigated (Kyselý et al., 2010). Since a strength of climate models is to simulate 

large-scale atmospheric circulation, WPCs are applied in climate change research 

(Philipp et al., 2007; Demuzere et al., 2009; Jacobeit, 2010; Sheridan and Lee, 2010; 

Spekat et al., 2010). In particular, WPCs are used to statistically (e.g. Kreienkamp et 

al., 2010; 2011; Sauter and Venand, 2011) and to statistically-dynamically (e.g. 

Fuentes and Heimann, 2000; Boé et al., 2006; Pinto et al., 2010) downscale general 

circulation model (GCM) results. 

 

In addition to the wide variety of applications, there is a comparably large set 

of methods used to classify weather patterns (WPs). The most commonly used method 

is cluster analysis, especially the non-hierarchical k-means method (Huth et al., 2008). 

Also the artificial neural network based method of Self-Organized Maps has been 

applied to WPC (e.g. Reusch, 2010). Several intercomparison studies show that 

although no optimal method exists, however, the k-means-based methods usually 

perform well (e.g. Beck and Philipp, 2010; Cahynová and Huth, 2010; Huth, 2010). As 

stated by Huth et al. (2008), the circulation patterns should be regarded as purpose-
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made. Therefore, each target parameter requires the construction of its own optimal 

classification. 

 

In this study, we construct a WPC computed with a k-means-based method for 

the target parameter urban heat island (UHI). Hamburg (Germany) is used as an 

example to develop and apply the method. The UHI refers in the present paper to the 

higher nocturnal temperatures in urban compared to rural areas. It is caused by the 

higher heat capacity of urban surfaces, the trapping of radiation in street canyons, the 

reduced vertical exchange due to a reduced wind speed, and the anthropogenic heat 

release (Yow, 2007). The intensity of the UHI depends on the morphology and size of 

the urban area (Oke, 1973; Sakakibara and Matsui, 2005; Steeneveld et al., 2011) as 

well as on the meteorological situation (Arnfield, 2003). It is inversely related to wind 

speed, cloud cover, and relative humidity (e.g. Morris et al., 2001; Schlünzen et al., 

2010; Hoffmann et al., 2011). There are also several studies investigating the 

dependency of the UHI intensity on the WP (e.g. Morris and Simmonds, 2000; 

Mihalakakou et al., 2002; Berjarán and Camilloni, 2003; Kassomenos and Katsoulis, 

2006; Alonso et al., 2007). They showed that the UHI is well pronounced under 

anticyclonic conditions, which are mostly associated with weak pressure gradients and 

dry cloud-free conditions. Cyclonic WPs were found to suppress UHI development 

and sometimes lead to negative UHI intensities (Kassomenos and Katsoulis, 2006). 

 

The UHI of Hamburg was first described by Reidat (1971). He found that in 

the period from 1931-1960 the temperatures at the downtown station Hamburg-St. 

Pauli (shortened SP) were up to 1 K higher than at the Airport Hamburg-Fuhlsbüttel 

(shortened FU) (Figure 4.1). Schlünzen et al. (2010) analyzed more recent data (1988-

1997) from six stations in and around Hamburg. They received higher differences, 

resulting in 1.5 K higher minimum temperatures at SP compared to FU in the summer 

average. Besides SP and FU only a few other meteorological stations exist within the 

urbanized area of the state of Hamburg, some of which are no longer operational. To 

get detailed spatial information on the UHI, Bechtel and Schmidt (2011) used floristic 

mapping data with a horizontal resolution of 1 km in combination with the so-called 

Ellenberg indicator for temperature and the evaluated measured temperatures of 

Schlünzen et al. (2010). Their much more detailed temperature pattern clearly 

correlates with urbanization density and additionally shows the nighttime warming 

effects of the frequent rivers, lakes and canals in the city. 

 

Hoffmann et al. (2011) constructed a linear model for the UHI of Hamburg and 

applied it to results of the regional climate models (RCM) REMO and CLM. Results 

show that the annual mean UHI intensity will not change in a future climate, but a 
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decrease is found for April. Looking only at CLM results a decrease might also occur 

in some other months, while July and August might have an increased UHI. Only in 

summer months does a slight increase occur. However, since the statistical model 

explains only approximately 40% of the UHI variance, there are clearly additional 

contributing factors not considered in the statistical model. Therefore, WPs and a high-

resolution dynamic simulation of the WPs could add more information. 

 

In this paper the methodology of WPC is employed as a first step to determine 

UHI in a high-resolution using a mesoscale model. This statistical-dynamical 

downscaling approach needs forcing data at the outermost grid; therefore the WPC 

needs to be applicable for analyses data. Furthermore, it needs to be applicable to 

models of different resolution, including GCMs as well as RCMs. The climate models 

results are needed for a reliable estimation of the changes in WP and thus of the future 

UHI. In the following section, the observation and model data are described. 

Section 4.4 deals with the k-means-based clustering methods used for this study. In 

Section 4.5, the WPC, which is optimized for the UHI, is constructed. The resulting 

WPs are analyzed in current and future climate conditions in Section 4.6. Conclusions 

are drawn in Section 4.7. 

 

4.3 Data 

4.3.1 Routine observations 

 

For the calculation of the UHI, routine observations carried out by the German 

Meteorological Service (Deutscher Wetterdienst (DWD)) are used. The locations of 

the measurement sites are given in Figure 4.1. All sites are climate stations which 

measure daily values for temperature (average, minimum, maximum), relative 

humidity, cloud cover, air pressure, precipitation, etc.. The site Hamburg-Fuhlsbüttel 

(FU) located at the Hamburg Airport is also a climate reference station as well as a 

synoptic station. Therefore, hourly values of the wind speed and wind direction are 

available at this site. This station is used to analyze the characteristics of the derived 

WPs. Since the WPs are determined daily (Section 4.5), wind speed is averaged for 

each day. 
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Figure 4.1: Map of the metropolitan area of Hamburg with positions of the 
measurement sites AH (Ahrensburg-Wulsdorf), FU (Hamburg-Fuhlsbüttel), GR 
(Grambek), SP (Hamburg-St. Pauli) and political borders of the State of Hamburg. 

 

According to the study of Hoffmann et al. (2011), the UHI is defined as the 

difference of the daily minimum temperature at the urban site Hamburg-St. Pauli (SP) 

and average values of the daily minimum temperatures at the rural sites Grambek (GR) 

and Ahrensburg (AH): 
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The site SP is located in downtown Hamburg and next to buildings, with up to 6 

stories, and the Elbe River. Using available data from the period 1985–1999, ruT   

shows an annual cycle with a maximum in the warm season of up to 2.7 K (monthly 

averaged) and an annual averaged value of 2.0 K (Hoffmann et al. 2011).  

 

4.3.2 ERA40 re-analysis data 

 

ERA40 re-analysis (Uppala et al., 2005) present a re-construction of the best 

possible estimate of past atmospheric states with the help of a data assimilation system 

and a global forecast model. The gridded dataset starts in September 1957 and ends in 

August 2002. In this study, only the full years from 1958 to 2001 are considered. The 

horizontal resolution of the dataset is 1.125° (~125 km). For the classification of WPs, 

variables at the 700 hPa pressure level are used. This level is chosen firstly to avoid 

problems due to topography in both ERA40 and in the RCMs, as well as to be as close 

to the surface as possible. 700 hPa values have been used in different studies 
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investigating WPs (e.g. Huth, 1996; Christiansen, 2007); Sheridan and Lee (2010) 

stated that this level is reproduced reliably in GCM and reanalysis data.  

 

Since it is unknown a priori which variables and which combination of 

variables should be used for the WPC, combinations of different variables are tested 

for their suitability: geopotential height (GP), 1000 hPa to 700 hPa thickness (TH), 

relative humidity (RH), and relative vorticity (VO). The GP is chosen to get 

information about the strength and the direction of the large-scale flow. As mentioned 

earlier, wind speed is an important factor for the development of an UHI. GP is always 

used for the WPC. As a measure for humidity, also important for UHI development, 

RH is chosen. Additionally, cloud cover is linked to RH. To gain information on the 

vertical movement of air masses which is needed to determine the potential for cloud 

formation, VO is chosen. This is an alternative to the vertical wind, which is not 

chosen since its values are very sensitive to the model employed. Positive VO values 

are mostly associated with upward vertical motion and vice versa. As several studies 

have shown, temperature seems to have only a small influence on the UHI. 

Nevertheless, temperature is an important variable for describing an air mass. As a 

robust measure for the temperature, the thickness (TH) between 1000 hPa and 700 hPa 

is employed. For the clustering, all fields are bilinearly interpolated on a 2.5° x 2.5° 

regular grid. This is done to partially remove small scale features and, therefore, the 

atmospheric noise that can hinder the identification of large-scale patterns using cluster 

analyses. 

 

4.3.3 REMO 

 

REMO is a hydrostatic RCM developed at the Max-Planck-Institute for 

Meteorology. The dynamical core is based on the Europa-Modell (Majewski, 1991) 

from the DWD whereas the physical parameterizations were taken from the GCM 

ECHAM4 (Roeckner et al., 2003). A detailed description of the model can be found in 

Jacob (2001) and Jacob et al. (2001). In REMO the prognostic equations for 

temperature, the horizontal wind components, surface pressure, mixing ratio of water 

and cloud water are solved on a rotated grid. The climate simulations used in this study 

are forced with the ECHAM5-MPIOM (Roeckner et al., 2003, Jungclaus et al., 2006) 

A1B scenario simulations. The REMO simulations are intended to represent the 

regional climate for Germany at a final resolution of about 0.088° (~10 km) using two-

step nesting (Jacob et al. 2008). Since the classification domains (Section 4.5.1) are 

larger than the highest-resolved model domain, the results of the coarser resolved 

domain with a resolution of about 0.44° (~50 km) on a rotated grid are used. An 
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ensemble of three realizations of the A1B scenario simulations is available. This gives 

the opportunity to account, to some extent, for the climate variability (Schoetter et al., 

2012). 

 

GP, TH and RH are directly available in the model output. VO has to be 

calculated from the u- and v-components of the wind by using the definition of the 

vertical component of the vorticity vector: 
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  (4.2) 

 

All variables are bilinearly interpolated to the 2.5° x 2.5° regular grid to match the grid 

used for the WPC. 

 

4.3.4 CLM 

 

CLM is a non-hydrostatic RCM based on the Lokal-Model (LM) from the 

DWD. The model is described by Böhm et al. (2006) and detailed information about 

the dynamics and physics are given by Steppeler et al. (2003). The prognostic 

variables of the model are: temperature, horizontal and vertical wind components, 

pressure perturbations, specific humidity and cloud water content. A detailed 

description of the IPCC simulations used in this study is given by Hollweg et al. 

(2008). As with the REMO simulations, the same ECHAM5 A1B scenario simulations 

are used as a forcing at the lateral boundaries. However, instead of nesting the model 

twice, CLM is directly nested into the ECHAM5 results. The model domain covers 

nearly the same area as the 50 km results from REMO but on a finer horizontal 

resolution of 0.165° (~18 km). Only downscaled simulations of the first two 

realizations of the A1B Scenario simulations are available. Again, the variables GP, 

TH and RH are directly available, and VO is calculated using Eq. (4.2). 

 

4.4 Clustering Methods 

 

The aim of WPC is to find patterns of meteorological fields which are similar 

within each cluster and dissimilar between different clusters (Huth et al. 2008). In the 

framework of COST733, several studies have been conducted which focused on 

comparison of different WPC methods (e.g. Huth 2010; Beck and Philipp 2010; 

Cahynová and Huth 2010). The results show that there is no single best method. 

However, k-means-based methods rank high in these studies. In addition, with the k-
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means method, one can apply the same distance measures to both the clustering and 

the assignment of data from different models to the resulting WPs. 

 

The results of the k-means methods are highly dependent on the choice of the 

initial conditions. Several studies have sought to overcome this disadvantage, such as 

through the extended k-means method (e.g. Enke and Spekat, 1997; Philipp et al., 

2007). Three different methods, k-means, dkmeans and SANDRA, are tested here to 

achieve the best results. The computation of the clustering is done with the 

classification software developed during the COST733 action (Philipp et al., 2010). In 

the following the three clustering methods are briefly described. 

 

4.4.1 k-means 

 

The k-means method is a non-hierarchical cluster algorithm, which groups 

objects into mutually exclusive clusters. The number of clusters k has to be prescribed 

for this method. The similarity measure is the squared Euclidian distance SED between 

two data objects (vectors including fields of one or more variables) x1 and x2: 
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This measure is then used to define the so called within-cluster sum of squares WSS: 
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where x denotes all data objects belonging to the cluster Ci; zi is the ith corresponding 

cluster centroids (CC) and k is the number of clusters. Since several variables are used 

in this study, the data objects of each variable are normalized by subtracting their 

corresponding temporal-spatial mean and dividing it by their standard deviation 

afterwards. 

 

The k-means algorithm tries to determine the minimum of the WSS in an 

iterative process. The first step is the so-called starting partition where k CCs are 

chosen. The SED is computed for each combination of CC and data objects. All data 

objects are then assigned their nearest CC to form the cluster. The data objects 

belonging to each cluster are averaged to yield the new CC. Thereafter, the SED for all 

objects and the new CC are computed and the objects are reassigned to their nearest 

CC. This iterative process of reassignment and calculation of SED stops when no data 
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point needs to be reassigned to another CC. To achieve some independence of the 

staring partition, the k-means algorithm is repeated 1000 times using different starting 

partitions. The quality of a classification result is reflected by the explained cluster 

variance (ECV). The ECV is based on the ratio of the WSS and the total sum of squares 

(TSS): 

 

 ECV  1
WSS

TSS
 (4.5) 

 

The ECV ranges from 0 to the optimal value of 1. Therefore, the result with the highest 

ECV is chosen as the final classification result. 
 

4.4.2 dkmeans 

 

A crucial point using k-means clustering is the starting partition. The so-called 

dkmeans method (Enke and Spekat, 1997, Philipp et al., 2010) uses the most dissimilar 

data objects as a starting partition. These objects are indentified by an iterative 

algorithm. In contrast to the k-means method, the Euclidian distance ED is used as a 

similarity measure: 

 

 
2

21 xx ED  (4.6) 

 

Again, all objects are normalized before the ED is calculated. After the most dissimilar 

CCs are found, all the remaining objects are assigned to their most similar CC to form 

a cluster. As with the k-means method, the new CCs are calculated and all objects are 

reassigned to their most similar CC. The iterative process of reassigning the data 

objects and calculating the new CCs stops if no object needs to be reassigned during an 

iteration step. 

 

4.4.3 SANDRA 

 

The conventional k-means clustering algorithm tends to reach local minima of 

the sum of squares WSS too often. This problem can be avoided by using the simulated 

annealing and diversified randomization method (SANDRA) developed by Philipp et 

al. (2007). Diversified randomization means that the clustering is done several times 

with randomized starting partitioning of the data, and during the clustering the 

ordering of the data objects and the cluster numbers are randomized. Simulated 
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annealing allows data objects to be assigned to a ‘wrong’ cluster during the iteration 

process, meaning that the object is not necessarily assigned to its closest CC. At first, 

this causes the WSS to increase. However, this process can prevent misidentification of 

a local minimum as the global minimum. In practice, each data object can be moved 

into a ‘wrong’ cluster if the acceptance probability P is larger than a random number 

between 0 and 1. P is given by: 
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where EDold is the Euclidian distance between the data object to the old cluster, EDnew 

is the Euclidian distance to the potentially new cluster, and T is a control parameter 

which is reduced after each iteration step by a constant factor CO: 

 
 ii TCOT 1  (4.8) 

 

CO is the so-called cooling rate, which is set to 0.999 in this study. The initial T is 

empirically chosen in a way that 99% of the objects are moved during the first iteration 

step. The clustering process is finished when no reassignment is possible and no 

‘wrong’ reassignment has appeared in an iteration step. As it is done for k-means and 

dkmeans, all data objects are normalized to assure comparability between the different 

variables used for the WPC. 

 

4.5 Optimal method for weather pattern classification based on 

ERA40 data 

 

In addition to the clustering method, the choice of the number of weather 

patterns, the classification domain, and the meteorological variables used for the 

classification are important to achieve the optimal WPC. Both the domain and 

classification variables should be chosen based on the target parameter: in this case the 

UHI. To quantify the quality of the performance of the classification, the explained 

variance of the UHI is calculated. The optimal clustering method and the optimal 

cluster number for the classification can be determined by statistical measures. In the 

following the two domains, the statistical measures and the results of the classification 

are presented. 
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4.5.1 Domain 

 

Several studies show that the size of the domain is important in order to 

achieve optimal results with the WPC (e.g. D’onofrio et al., 2010; Demuzere et al., 

2010; Beck, 2011). In the cited studies small domains gave the best results. To verify 

this finding, two domains of different size are tested for use in the classification 

(Figure 4.2). The larger of the two domains covers Central Europe, including the Alps 

and parts of Scandinavia and Great Britain. The smaller domain covers Germany, the 

Benelux countries, southern Scandinavia and parts of France, Poland and the Czech 

Republic. It has a size of about 1700 km in North-South direction and between 1200 

and 1700 km in East-West direction. Smaller domains than this would likely be too 

small to sufficiently resolve synoptic-scale features such as high pressure systems. The 

decision, which domain yields better results, is based on the target parameter. 
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Figure 4.2: Map of Europe. The red box indicates the small classification domain and 
the blue box the large classification domain. The position of Hamburg is indicated by 
the black dot. 

 

4.5.2 Statistical measures to determine the optimal cluster number 

 

The existence of distinct WPs has been debated (e.g. Philipp et al., 2007; 

Stephenson et al., 2004) and the problem of identifying the optimal number of WPs 
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also remains unresolved (e.g. Philipp et al., 2007; Fereday et al., 2008; Huth et al., 

2008). Several statistical measures currently exist for the estimation of optimal cluster 

numbers. Some are more suitable for WPCs than others. For instance, Philipp et al. 

(2007) apply a method based on the Petit test introduced by Gerstengarbe and Werner 

(1997) that gives no satisfactory results in the present application (not shown). Instead 

four other measures are applied to get an optimal cluster number. 

 

DVIndex introduced by Shen et al. (2005) is based on the assumption that for 

optimally clustered data, the clusters are compact and well separated from each other. 

With increasing cluster number the intra-cluster compactness increases while the inter-

cluster separation decreases. The sum of both should be at a minimum to achieve the 

optimal cluster number. Hence, the DVIndex is defined as: 

 
 )()()( kInterRatiokIntraRatiokDVIndex    (4.9) 

 

As a measure of compactness, the average sum of distances between the CCs and N 

data objects is used (Eq. 4.10). Intra is normalized by its own maximum (Eq. 4.11), 

calculated from the Intra values received for cluster numbers k=2 to a pre-defined 

upper limit k = K (Eq. 4.12). 
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The separateness is expressed as the ratio of the maximum and the minimum SED 

between the CCs, multiplied by the sum of the inverse distances between the CCs 

(Eq. 4.13). 
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To be consistent with the calculation of the compactness, Inter is normalized by its 

maximum (Eq. 4.14), determined by calculating Inter for cluster numbers from k = 2 

to k = K (Eq. 4.15). 
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The factor γ in Eq. (4.9) is a tuning parameter to account for the noise in the data 

(0 < γ < 1) or to give the compactness more relevance (γ > 1). For γ = 1, the 

assumption is made that no noise exists in the data. This is not the case for atmospheric 

data and especially WPs. Therefore, γ should be smaller than 1 when applying it to 

weather pattern classification. After testing the DVIndex across a spectrum of γ values, 

a value of 0.5 was found to produce appropriate results for this implementation. 

 

The second measure used in this study is the Validity index (Eq. 4.16) 

introduced by Ray and Turi (2000). The basic idea is similar to that of the DVIndex. 

However, the Validity Index is defined as the ratio of the intra-cluster difference Intra 

(Eq. 4.11) and the minimum SED between the CCs: 
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For the optimal cluster number the Validity index should be minimal, which 

corresponds to compact and well separated clusters. 

 

In addition to the two measures introduced before, two simple measures are 

applied as well. They are used, if the other ones do not give a well-defined answer for 

the optimal cluster number. Both measures focus on the similarity of the nearest 

clusters, which should be as different as possible. One measure is the minimum SED 

(Eq. 4.17), and the other is the maximum of the spatial correlation between the CCs 

(Eq. 4.18). 
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MinSED should have a local maximum for the optimal cluster number and MaxCorr a 

local minimum. 
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4.5.3 Classification results 

 

To avoid seasonality and still have enough days available to derive clusters, the 

ERA40-data are divided into the four seasons: MAM, JJA, SON and DJF. As a first 

step the classification is done for all possible combinations of methods, domains, 

seasons and classification variables using cluster numbers from k = 6 to k = 15. 

Results of similar studies show that the optimal number lies in this range (e.g. Enke 

and Spekat, 1997; Boé and Terray, 2008; Philipp et al., 2007; Fereday et al., 2008). In 

addition, classifications with small cluster numbers might be considered as circulation 

or weather regimes and not WPs (Huth et al., 2008; Cassou et al., 2011). 

 

Using the classification dkmeans, some clusters only consist of 1 or 2 days. 

One explanation could be outliers in the ERA40-data, which form their own clusters, 

because all other data objects are assigned to the remaining clusters. This is possible 

with the dkmeans method because it finds the most dissimilar data objects, which 

could be the outlier of the dataset in some cases. 

 

Following Philipp et al. (2007), the explained cluster variance ECV (Eq. 4.5) is 

calculated for each of these classifications to decide which clustering method performs 

best. The ECV is averaged over the results of each of the three clustering methods. 

First, only classifications results where dkmeans produces no single member cluster 

are used for the comparison. The ECV does not dramatically differ between the 

methods. However, as expected, the most sophisticated method, SANDRA, performs 

best (ECV = 0.51). The k-means (ECV = 0.49) and dkmeans (ECV = 0.48) perform 

almost equally well, with a slightly higher mean ECV for the k-means method. 

Thereafter, classification tests are restricted to the top two performing methods, 

SANDRA and k-means, for the set of cluster numbers 6-15. Again, SANDRA 

(ECV = 0.51) performs better than the k-means (ECV = 0.49) method. The differences 

seem marginal; however every improvement in the ECV improves the detectability of 

the WPs in data from different models. Hence, SANDRA is selected for use as the 

WPC method. 

 

The optimal domain is determined by calculating the explained variance R² 

(Eq. 4.19) of the UHI for classification results from SANDRA for all combinations of 

domain, seasons and classification variables, using cluster numbers from 6 to 15. 
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ruT   is the time series of the observed UHI intensity (Eq. 4.1) and WPruT )(   

is the time series of the averaged ruT   values for the corresponding WPs. Averaging 

the results over all seasons, classification variables and cluster numbers reveals that the 

smaller domain (R² = 15%) explains slightly more variance than the large domain 

(R² = 14%). Following this result the smaller domain is chosen for the final WPC. 

 

The optimal variables are determined using R² as well. Figure 4.3 shows the R² 

values averaged for the different combinations of classification variables. The 

differences are small. However, just using the geopotential height yields the lowest R² 

and the combination of all 4 variables the highest. Hence, the final WPC uses all 

variables.  
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Figure 4.3: Averaged explained variance R² (Eq. 4.20) of the UHI for the weather 
pattern classification SANDRA with different combinations of variables using the 
small domain (Figure 4.2). Data for 1985-1999. 

 

After choosing the method, the domain, and the classification variables, only 

the number of the cluster k remains to be determined. To compute the statistical 

measures introduced in Section 4.5.2, the classification is done for cluster numbers 

k = 2 to k = 24. For a better comparison all measures except for the MaxCorr are 

normalized by subtracting their minimum and than dividing by their range, so that for 

all measures the upper limit is 1 and the lower limit is 0. The resulting values for the 

different seasons are given in Figure 4.4. It is apparent that the curves for the Validity 

index and the DVIndex are similar, which can be expected, since both are both based 

on a similar idea. Except for SON, the optimal cluster number following Validity index 
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and DVIndex would be 4 and 5. Also MaxCorr and MinSED would support these 

numbers. 
 

0 10 20
0

0.2

0.4

0.6

0.8

1

cluster number

 

 

DVIndex
Validity
Min

SED

Max
Corr

0 10 20
0

0.2

0.4

0.6

0.8

1

cluster number

 

 

DVIndex
Validity
Min

SED

Max
Corr

0 10 20
0

0.2

0.4

0.6

0.8

1

cluster number

 

 

DVIndex
Validity
Min

SED

Max
Corr

0 10 20
0

0.2

0.4

0.6

0.8

1

cluster number

 

 

DVIndex
Validity
Min

SED

Max
Corr

 
Figure 4.4: Normalized statistical measures for the determination of the optimal 
cluster number for (a) DJF, (b) MAM, (c) JJA, and (d) SON. 

 

However, we decided for a cluster number of 6 or larger, since classifications 

with lower cluster numbers indicate more weather regimes than WPs. Applying this 

restriction, 3 of the 4 measures indicate 7 as an optimal number for k for DJF, only 

MaxCorr doesn’t show a clear relative minimum for that number (Figure 4.4a). 

Nevertheless, the value of MaxCorr is still small and stays almost constant between 6 

and 8 clusters. Therefore, 7 can be supported as the optimal cluster number. For MAM 

it is more difficult to find the optimal k since the minimum of the Validity index is not 

as well defined (Figure 4.4b). The DVIndex shows a minimum for k = 7, for which the 

Validity index also shows a weak minimum. In contrast, MaxCorr reaches a local 

maximum for this cluster number. Figure 4.4c shows that for JJA neither the DVIndex 

nor Validity indices show a clear minimum for cluster numbers greater than 5. The 

a) 

c) d) 

b) 
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minimum of both, Validity index (k = 8) and DVIndex (k = 7) is not well defined. The 

Validity index for k = 7 is only slightly larger. Using MinSED and MaxCorr does not help 

in this case, MinSED would support k = 7 and MaxCorr k = 8. In the end, we chose 7 as 

the number of WPs for JJA because MinSED is more important than MaxCorr since the 

SED is used as a similarity measure for SANDRA and not the correlation. Contrary to 

the other seasons, the DVIndex has an absolute minimum for 12 clusters during SON 

(Figure 4.4d). The Validity index as well as MinSED also support this number. Thus, we 

chose 12 for the clustering of this season: The results are summarized in Table 4.1. 
 
Table 4.1: Specifications for the weather pattern classification derived to describe the 
UHI of Hamburg. 

Classification 
method 

Data Domain Variables Number of clusters 

DJF MAM JJA SONSANDRA 
(Philipp et al., 

2007) 

ERA40 re-
analysis 

from 1958-
2001 

0-20° E; 
47.5-60° N 
(2.5° x 2.5° 

grid) 

GP, TH, VO, 
RH, details in 
Section 4.3.2 7 7 7 12 

 

In the following, only the summer season JJA is analyzed since this time of the 

year is the season with the largest ruT   (Schlünzen et al., 2010; Hoffmann et al., 

2011) and most relevant for planning adaptation measures in case the UHI increases. 

The cluster centroids and the frequency of the WPs for JJA are given in Figure 4.5. 

SANDRA, as a k-means based method, produces almost equally sized clusters with 

WP frequencies from 11% to 16%. A short description of the WP characteristics is 

giving in the following: 

 

WP1 – weak West-East gradient with ridge to the West and northerly flow, dry air 

masses South-West of the domain 

WP2 – trough over the North Sea with strong gradients and southwesterly flow, moist 

air masses over the whole domain 

WP3 – anticyclonic conditions with very weak gradients, warm and dry air masses 

advected from Southwest 

WP4 – zonal flow and temperature conditions with strong gradients to the North, 

advection of dry air masses from West 

WP5 – trough over Eastern Scandinavia, advection of cold air masses from Northwest, 

relatively dry air over the domain 

WP6 – weak East-West gradient with ridge to the East, advection of warm air masses 

from Southeast 

WP7 – trough over Scandinavia, advection of cold air masses from Northwest similar 

to WP5, moist air masses over the whole domain 
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Figure 4.5: Cluster centers of each variable (relative humidity RH, vorticity VO, 
1000 hPa-700 hPa thickness TH, Geopotential height of 700 hPa level GP) and the 
frequency for all weather patterns in JJA obtained by ERA40-data for the period 1958-
2001. 
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Based on duration analyses, WP1 is a transition WP, since in 90% of the 

occurrence WP1 last only 1 day. WP3 is the most persistent WP, with 13% of its 

occurrences exceeding 5 days in length, followed by WP7 with 10%. 

 

The meteorological conditions in Hamburg associated with the different WPs 

are shown in Figure 4.6. With exception of ruT  , all variables are taken from the 

DWD station FU (Figure 4.1). The corresponding explained variances are shown for 

the different variables as well. About 18.6% of the ruT   variance can be explained by 

the WPs. This is comparable with the dependency of the UHI on wind speed alone as 

described by Hoffmann et al. (2011). WP3, and to some extent, WP1, WP4 and WP6 

are associated with a strong UHI, while for days with WP5 and WP7 only low 

intensities were derived from the measurements. WP3 reflects the meteorological 

situation described in the literature (e.g. Kassomenos and Katsoulis, 2006) that is 

generally assumed to be most favorable for the development of a strong UHI. WP3 is 

associated with the lowest values for wind speed, cloud cover, relative humidity, and 

precipitation and with the highest temperatures for all WPs. The conditions for WP1 

and WP6 are not as favorable for the UHI as WP3. However, they both have the 

tendency to smaller values of wind speed, cloud cover and relative humidity. In 

contrast, WP5 and WP7 are associated with high values for these 3 variables, which 

inhibit the development of an intense UHI. 
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Figure 4.6: Boxplots and explained variance R² for the a) urban heat island as defined 
in Eq. (4.1), b) daily averaged relative humidity, c) daily precipitation, d) daily 
averaged temperature, e) daily averaged cloud cover and d) wind speed for the WP 
and season JJA. Except for the urban heat island all variables are obtained from 
observations at Hamburg-Fuhlsbüttel. Data for the period 1985-1999. 

a) b) c) 

d) e) f) 
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4.6 Weather patterns and UHI based on regional climate model 

results for present and future climate 

 

To analyze possible changes of the WPs and the UHI in the future, the RCM 

data are assigned to the WPs constructed in Section 4.5 (Table 4.1). As done for the 

classification, the SED (Eq. 4.3) is used as a similarity measure. A day is assigned to a 

WP if the SED is smallest compared to the corresponding ERA40-CC. To compute the 

SED the different variables of the RCM data have to be normalized. There are several 

ways to normalize RCM data. Following one method, the differences from their own 

mean can be normalized using their own standard deviation. However, if the RCM 

standard deviation differs substantially between ERA40 and the RCM, the features of 

the pattern could change which could then lead to false assignments. For instance, a 

weak low pressure system would be assigned to a strong low pressure pattern, if the 

standard deviation of the RCM is in general smaller than standard deviation of ERA40. 

To partly counteract this possibility, the data are normalized by the standard deviation 

of the corresponding ERA40 data (1971-2000) and subtracted by the mean of the 

RCM. 

 

4.6.1 Present Climate 

 

The frequencies of the ERA40 and the assigned RCM WPs are shown in Figure 4.7 for 

the same time period (1971-2000). The uncertainty due to climate variability is 

obtained by bootstrap re-sampling (Efron and Tibshirani, 1993) of the annual values of 

the frequency for JJA (N = 10000). The 95% confidence intervals indicated by the 

error bars in Figure 4.7 show that the climate variability of the WP is large. Therefore, 

the frequencies of RCM WPs and the ERA40 WPs only rarely differ significantly. 

WP1 is significantly underestimated by the first realization of REMO and WP4 by the 

second realization of REMO. Of interest is that for these two WPs the first realization 

of REMO and the other two realizations differ substantially, while the inter-realization 

difference for all other WPs is small. Both WPs are more or less associated with 

anticyclonic flow. However, the location of the ridge is shifted. This slight shift in the 

position of the high pressure systems causes the differences in the frequency. In 

addition, the presented confidence intervals represent only the high frequency climate 

variability and not the low frequency variability, which was observed for several 

circulation types by Philipp et al. (2007). In contrast to REMO, the two realizations of 

CLM do not differ significantly compared to the ERA40 WPs as well as among each 

other. 
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Figure 4.7: Frequency of weather patterns in ERA40 and the different simulations 
from the RCMs for JJA in present climate (1971-2000). The error bars indicate the 
95% confident intervals calculated with bootstrap re-sampling. 

 

4.6.2 Future Climate 

 

For the determination of WPs in the future climate, it is assumed that no new 

WPs will occur in the future. This might not be valid since some studies predict new 

WPs in the future climate (e.g. Kreienkamp et al., 2010, Belleflamme et al., 2011). 

However, in the study of Belleflamme et al. (2011), the new WPs had only higher 

geopotential height compared to the old WPs, but the patterns were similar to the 

existing WPs. Therefore, we conclude that the patterns might not change, only the 

level of the geopotential height, and that this has to be investigated for every individual 

classification. 

 

The change of frequency of the WPs, WP , is calculated for two future time 

periods, namely 2036-2065 and 2071-2100 using: 
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f(WP)c and f(WP)f are the absolute frequencies of the WPs in the current and in the 

future climate, respectively. For this calculation, the three realizations of REMO and 
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the two realizations of CLM are combined. The realizations are each equally probable 

projections of the future climate. Confidence intervals of the changes are again 

determined using bootstrap re-sampling (N = 10000). 

 

The frequency changes WP  for the two periods are shown in Figure 4.8. For 

the mid-century period (2036-2065) only the decrease of WP2, associated with weak 

to moderate values of ruT  , and the increase of WP7, associated with weak values of 

ruT  , are statistically significant in REMO. The pattern of the frequency changes is, 

to some extent, similar for both RCMs. For instance, both RCMs show a non-

significant decrease of WP1, and a non-significant increase of WP3. The changes for 

the end of the century are larger for some WPs, especially for WP4 and WP5. The 

absolute frequency of WP4 significantly increases by 40% (REMO) and 17% (CLM), 

while the absolute frequency of WP6 significantly decreases by 26% (REMO) and 

20% (CLM). To a smaller extent, the ERA40 WPs show similar tendencies conducting 

a linear trend analysis for the period 1958-2001 (not shown). WP3, which is associated 

with high ruT   values, does not show any significant changes in the frequency, which 

could mean that the conditions for strong UHI days will not change based on the WPs. 
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Figure 4.8: Frequency changes of weather patterns WP  (Eq. 4.20) in JJA for 2036-
2065 and 2071-2100 compared to 1971-2000. The three realizations of REMO and the 
two realizations of CLM are per RCM combined. The error bars indicate the 95% 
confident intervals calculated with bootstrap re-sampling. 
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The changes in the future UHI due to the WP frequency changes are quantified 

using a simple regression analyses. For each WP the mean UHI is calculated. The 

mean and the difference of WP-based ruT   values for the different 30-year periods 

and both models are given in Table 4.2. Even though the frequencies of the WPs 

changes, the mean ruT   based on WP changes only slightly for both periods. This 

means the frequency of the WPs changes in such a way that the mean UHI will not 

change in the future. This result confirms the findings of the statistical model derived 

by Hoffmann et al (2011).  

 
Table 4.2: ruT   in present and future climate based on the weather pattern 
classification for JJA. 

1971-2000 2036-2065 2071-2100 
Model 

ruT   ruT   difference ruT   difference 
REMO 2.36 2.37 0.01 2.38 0.02 
CLM 2.41 2.42 0.01 2.40 -0.01 

 

4.7 Conclusions 

 

In this study a WPC was constructed to investigate the future changes in the 

UHI focusing on Hamburg (Germany). The clustering method, domain and variables 

are derived using statistical measures. The clustering method is determined based on 

how well it can group the atmospheric variables used in the classification. This 

approach is especially important when also applied to assign RCM data to WPs. If the 

WPs are not well separated, the detection of the WPs in RCMs becomes difficult. 

 

As in previous studies (e.g. Huth, 2010), the SANDRA method performs better 

than the k-means method and the dkmeans method. However, the differences in ECV 

are not very large and the WP-means look very similar (not shown). The domain and 

classification variables were chosen to best represent this study’s target parameter, the 

UHI of Hamburg.  

 

For k-means-based methods, the number of clusters k has to be set prior to the 

clustering. Statistical measures are calculated to find the optimal k. As in many studies 

the optimal cluster number was found to be in the range of 4-5. However, as pointed 

out by Huth et al. (2008), low numbers of clusters can be regarded more as weather 

regimes than WPs. The analysis focuses on the summer, since this is the relevant 

season for climate change adaptation when UHI is concerned. Using the summer 

WPC, only 18.9% of the UHI variance is explained. This is comparable with the UHI 

variance explained by wind speed alone (Hoffmann et al., 2011). However, it should 
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be kept in mind that this was achieved using only 7 WPs. With a higher number of 

WPs the explained variance would be higher, but the detection of WPs in RCM would 

be more difficult and might lead to less robust results.  

 

The next steps should be an analysis similar to Mihalakakou et al. (2002). It 

could be tested if the combination of the WPC and local variables, used by Hoffmann 

et al. (2011), for the statistical model of Hamburg’s UHI explains more UHI variance 

than just using the statistical model or just using the WPC approach. 

 

The assignment of RCM data to the ERA40 WPs showed that despite the large 

variability of the WPs, there are significant biases in the WP frequencies for the 

current climate. Since these biases are different for the different realizations of the 

RCM projections they could be caused by long-term variability. Long-term variability 

is also a problem when evaluating future changes of the WP’s frequencies. By 

combining the realizations, the robustness of the signals improves, because they 

partially account for long-term variability. In addition, the changes are, to some extent, 

consistent between the periods and also between the models. The consistency between 

the models can be explained partially by the use of the ECHAM5 as the driving model. 

Hence, in future studies an ensemble of GCM-RCM combinations should be analyzed. 

 

The largest changes occur for the zonal WP (WP4) associated with a large 

pressure gradient and advection of dry air masses (17-40% increase at the end of the 

century) and WP6 (20-26% decrease at the end of the century) associated with a ridge 

east of the domain and advection of warm air masses from the south-east. WP3, which 

is associated with strong UHI intensities, shows no significant changes in both periods. 

These findings are, at first glance, contrary to the results from trend analyses of 

observed circulation types, which have found an increase of anticyclonic and a 

decrease of cyclonic conditions over Europe in summer (e.g. Kyselý and Huth, 2006; 

Kostopolou and Jones, 2007; Guentchev and Winkler, 2010). However, most of these 

studies focus on large domains, which cover areas larger than continental Europe. 

Using a smaller domain, centered over Belgium, Demuzere et al. (2009) showed that 

the westerly WP increased in the ECHAM5 A1B scenario simulation. However, they 

did not analyze the summer season because of too large biases in the WP frequencies 

in that season.  

 

To investigate how the mean UHI will change due to changes in the WP 

frequencies, a simple regression analysis was conducted. Results show that the mean 

summer UHI will not change because increases and decreases of WPs with different 

associated UHI intensities will compensate each other. In this study only the changes 
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of UHI of Hamburg (station St. Pauli) due to changes in the WP’s frequency are 

considered. However, within-cluster changes of the WPs could be also responsible for 

a change in the target parameter (e.g. Fuentes and Heinmann, 2000). The within-

cluster changes could be investigated by combining a WP and local variables from 

ERA40 or from the RCMs. Another important point for further studies is to investigate 

the possible occurrence of new WPs in a future climate. There are indications that rare 

weather situations might become more important in the future and new distinct WPs 

may form (Kreienkamp et al., 2010). In the present study no additional WP were 

assumed. 
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5 Statistical-dynamical downscaling for the urban heat 

island 

 

5.1 Introduction 
 

The horizontal resolution of current regional climate projections is in the range 

of 10-25 km. For Germany, the highest horizontal resolution of current climate 

projections is about 10 km (Jacob et al., 2008). To resolve small-scale urban climate 

effects such as the urban heat island (UHI) or the urban impact on precipitation 

(Schlünzen et al., 2010), a finer resolution is needed. For the development of climate 

adaptation strategies for urban areas, characterizing the UHI is important because its 

magnitude (up to 10 K; Yow, 2007) can be much higher than the projected temperature 

changes due to climate change (2-3 K for Northern Germany at the end of the 21st 

century; Daschkeit, 2011). Hence, regional climate projections have to be further 

downscaled. Downscaling techniques can be subclassified into three main types: 

statistical, dynamical and statistical-dynamical downscaling. For statistical 

downscaling a statistical relationship between large-scale variables from a coarser 

model and the small scale variable needs to be established (Wilby and Wigley, 1997). 

Statistical downscaling has been successfully applied to investigate changes in the UHI 

intensity (Wilby, 2003; 2008; Hoffmann et al., 2011; Chapter 3 of this thesis). Using 

this technique, the spatial pattern of the UHI can hardly be obtained, in particular if 

there are only few observational sites available. This is a major drawback when 

planning climate adaptation measures for cities because spatial information is needed 

to plan specific adaptation and mitigation measures. Also the impact of such measures 

on the urban climate can hardly be quantified when using statistical downscaling 

techniques only. To dynamically downscale a current regional climate projection to a 

horizontal grid of about 1 km for a 30-year period, still too much computing time is 

needed. To overcome these disadvantages, statistical-dynamical downscaling (SDD) 

can be applied (Frey-Buness et al., 1995). The SDD method makes use of the ability of 

climate models to simulate the large-scale circulation better than small-scale processes 

and assumes that representative weather patterns (WP) for certain meteorological 

variables exist. High-resolution numerical model simulations are then to be performed 

for each WP. To achieve the climatological average of the meteorological variables of 

interest, the simulation results are statistically recombined using the frequency of the 

WPs. The change of this variable is then determined by the change in the frequency of 

these WPs. 
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SDD methods have been applied to variables such as temperature (Fuentes and 

Heimann, 2000), precipitation (Huebener and Kerschgens, 2007a,b), and wind speed 

(Pinto et al., 2010; Najac et al., 2011). For urban climate, a simple SDD method has 

been successfully applied by Früh et al. (2011a,b). The statistical part of their method 

is not based on WPs but on prescribed combinations of temperature, wind speed and 

relative humidity. These combinations are used as initial conditions to conduct 

idealized simulations with a mesoscale model. The simulation results are statistically 

recombined using the so-called cuboid method to downscale RCM results with respect 

to urban heat load in the Frankfurt am Main area. Due to the simple treatment of the 

flow conditions (only two wind directions) the temperature pattern might be unrealistic 

because the advection of the UHI is not considered correctly. Therefore, another, more 

accurate, method to identify relevant situations for the UHI has to be established. 

 

Apart from the study of Früh et al. (2011a,b), numerical studies of the UHI 

usually focus on the simulation of idealized meteorological conditions (e.g. Atkinson, 

2003) or on the simulation of days with anticyclonic conditions (e.g. Bohnenstengel et 

al., 2011; Flagg, 2010, Grawe et al., 2012 submitted). However, these are events 

seldom for most cities. It is also questionable whether only the maximum UHI is of 

interest, because it might occur at days where the UHI is less important. Hoffmann and 

Schlünzen (2012; Chapter 4 of this thesis) showed that high UHI values also occur for 

WPs other than those considered in previous studies. Hence, simulating only one day 

might not show a realistic UHI pattern. On the contrary, a weak UHI is usually 

unimportant for the development of mitigation measures to reduce heat stress because 

it is advectively driven. The simulation of these situations, therefore, only increases the 

amount of computing time. Thus, weather situations that are resulting in large UHI 

values have to be determined. For Hamburg’s UHI, which was investigated by 

Schlünzen et al. (2010) using observations within the city, Hoffmann and Schlünzen 

(2012; Chapter 4 of this thesis) constructed a weather pattern classification (WPC) and 

obtained 7 WPs for the summer months. However, these WPs only account for a small 

part of the UHI variance. Hence, further information is needed to subdivide the WPs 

according to the strength of the UHI. The Najac et al. (2011) SDD method, which is 

used for the downscaling of wind speed, employes subdivided WPs according to the 

strength of the flow field to achieve accurate wind speed distributions. As comparable 

measure for the downscaling of the UHI the statistical model developed for Hamburg’s 

UHI (Hoffmann et al., 2011; Chapter 3 of this thesis) is used. This statistical model is 

based on near ground observations of relative humidity, cloud cover and wind speed. 

The relevant days can then be determined by combining the WPC and the statistical 

model. These days are simulated with a mesoscale model. In the present study, the 
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non-hydrostatic mesoscale model METRAS (Schlünzen, 1990; Lüpkes and Schlünzen, 

1996) is employed with a highest resolution of 1 km. 

 

The dynamical part of a SDD method can be conducted in two ways. The 

numerical simulations with a high-resolution model could be forced with RCM data 

directly (Fuentes and Heimann, 2000). Following this method, biases in the RCM are 

passed on to the high-resolution model. A bias correction is not possible because a 

three-dimensional observational dataset would have to be used to preserve the physical 

relationships between the atmospheric variables. These need to be fulfilled if the data 

are used to force a higher resolving model. The alternative approach is to detect the 

respective situations in the present climate and simulate these situations by forcing the 

model with observational data. Pinto et al. (2010) and Najac et al. (2011) used 

reanalysis data for this purpose. Due to the coarse resolution of these datasets 

(~115 km), several downscaling steps have to be conducted, thus increasing the 

computational effort. To avoid this, higher resolution (~25 km) analysis data 

(ECMWF, 2009; 2010) from the European Center for Medium-Range Forecast 

(ECMWF) can be used. A disadvantage is that these data are created using different 

model versions and are only available for recent years. However, they are assumed to 

be closer to reality than reanalysis data because they employ all the remote sensing 

data available. 

 

When simulating the UHI with a numerical model the surface characteristics of 

urban areas have to be characterized and their effects parameterized (Schlünzen et al., 

2011). Sophisticated urban canopy layer parameterizations such as the town energy 

budget (TEB; Masson, 2000) or the building energy parameterization (BEP; Martilli et 

al., 2002) need information about the city structure such as street width and directions 

or building heights. These data were not available for this study. Nevertheless, due to 

the availability of high-resolution land-use datasets new surface cover classes are 

developed for METRAS (Flagg et al., 2011). These new classes allow for a more 

detailed treatment of urban surfaces (e.g. separation of buildings and backyards) and 

are used to perform the 1km simulations for this study. 

 

The aim of this chapter is to construct and apply a WPC based SDD method to 

downscale regional climate projections to a final resolution of 1 km using Hamburg’s 

UHI as a test case. In the following the SDD method will be described in detail 

(Section 5.2). The setup of the dynamical simulations will be presented in Section 5.3. 

In Section 5.4 these simulations will be evaluated with observational data. The results 

of the downscaling methods for current and future climate will be presented in 

Section 5.5. Concluding remarks are given in Section 5.6. 
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5.2 Methodology 

 

The statistical-dynamical downscaling method is described in Section 5.2.1. 

Section 5.2.2 deals with the regional climate model data used for the downscaling. 

 

5.2.1 Statistical-dynamical downscaling method 

 

The SDD method applied in this study is schematically presented in Figure 5.1. 

The objective weather pattern classification is described in detail in Chapter 4 of this 

thesis. For each season weather patterns (WP) were determined that represent the 

variability of the UHI of Hamburg. The WPs are constructed by clustering 700 hPa 

fields from the ERA40-reanalysis (Uppala et al., 2005) with the k-means-based 

SANDRA method (Philipp et al., 2007). The UHI variance explained by the WPs is, 

however, not large enough to just simulate the days which are closest to cluster 

centers. This is mainly due to the low number of WPs. Usually, the number of WPs 

used for SDD methods is higher, e.g. 22 as used by Fuentes and Heimann (2000) or 55 

as used by Pinto et al. (2010). However, a larger number of WPs would result in a 

large uncertainty when determining them in results of different RCMs, since the WPs 

are not well enough separated from each other. Therefore, an approach similar to Najac 

et al. (2011) is followed. They simulated several days within one WP, which in there 

case were based on 850 hPa u- and v- wind components. The WPs were subdivided 

according to the strength of the 850 hPa wind field. Instead of taking the strength of a 

certain classification variable, an estimate for the strength of the UHI within each WP 

is used in this study. Since this estimate has to be calculated for both the current and 

the future climate, the observed UHI cannot be used. Instead a statistical model for the 

UHI, similar to that used in Hoffmann et al. (2011; Chapter 3 of this thesis), is 

constructed. Using multiple linear regression (Eq. 5.1), the UHI is described as a linear 

function of wind speed FF, cloud cover CC, and relative humidity RH.  

 
 dRHcCCbFFaT ru    (5.1) 

 

ruT   denotes Hamburg’s UHI, described as the difference of the daily 

minimum temperature measured at the urban German Meteorological Service (DWD) 

station Hamburg-St. Pauli and the average of the minimum temperatures observed at 

the rural DWD stations Grambek (GR) and Ahrensburg (AH). Since most stations used 

in Hoffmann et al. (2011; Chapter 3 of this thesis) did not perform continuous 

measurements during the period of 1971-2010, data for the model variables (FF, CC, 

RH) are taken from the DWD climate reference station Hamburg-Fuhlsbüttel (FU). 
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The statistical model parameters a, b, c, and d are computed for each WP separately. 

Therefore, different statistical relationships among the WPs are allowed. This 

combination of the WPC and statistical model explains about 50% of the UHI variance 

with a root mean square error of about 1.2 K. 
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Figure 5.1: Schematic diagram of the statistical-dynamical downscaling method for 
Hamburg’s UHI. Results are indicated by light green boxes, methods by turquoise 
boxes, and the input data by dark green boxes. 

 

By combining the WPC with the statistically modeled ruT   the relevant days 

for the UHI can be determined. Before doing this the term “relevant day” has to be 



5 Statistical-dynamical downscaling for the urban heat island 
_____________________________________________________________________________________________ 

 56

defined. Since only days with a strong UHI are of interest for planning climate 

adaptation measures, simulation of weak UHI days would only lead to an unnecessary 

increase in computational costs. Therefore, a threshold UHI intensity ThresruT )(   is 

introduced. All days with Thresruru TT )(    are then considered as strong UHI days. 

In this study, ThresruT )(  = 3 K is chosen. This means that the result of the SDD 

method shall lead to an average strong UHI pattern instead of an average UHI pattern. 

The relevant days, which should be simulated for each WP are the day with ruT   

closest to ThresruT )(   and the day with the maximum ruT  . 

 

Using this definition, the relevant days in the period from 1985-1999 were 

determined using the ERA40 reanalysis. However, to downscale from a horizontal 

resolution of ~115 km down to 1 km at least a 4 step nesting is needed (e.g. 48 km, 

12 km, 4 km, and 1 km) when using a refinement factor of 4. The numerical model 

METRAS is not designed for horizontal resolutions larger than ~20 km (Schlünzen et 

al., 2012a). Therefore, an intermediate model would be needed to simulate the outer 

domain (Huebener and Kerschgens, 2007a,b). To avoid this step high resolution 

analysis fields from the ECMWF are used as forcing. The ECMWF data and the 

forcing technique are explained in detail in Section 5.3.3 and Section 5.3.4, 

respectively. The analysis data are available on a resolution of ~25 km starting in 

2006, leaving the period 2006-2010 to determine the relevant days. During that period, 

neither observations of the UHI nor ERA40 based WP data are available. To extend 

the ERA40 based WP time series, the WPs are determined for the ERA-Interim (ERA-

INT) dataset (Dee et al., 2011). ERA-INT is an improved and frequently updated 

atmospheric reanalysis dataset starting in 1989. An investigation of the WP time series 

of both datasets for the overlapping period 1989-2001 showed that they are identical 

for more than 99% of the days. The values for the ruT   values are calculated with the 

statistical model (Eq. 5.1). The selected relevant days and their corresponding 

simulation names are listed in Table 5.1. For WP7 both ThresruT )(   and max)( ruT   are 

equal resulting in only one simulation for this WP. Except for WP1, WP3, and WP6 

the difference between ThresruT )(   and max)( ruT   is lower than the RMSE (1.2 K) of 

the WPC/statistical model combination.  

 

The determined days are then simulated with METRAS using a two step 

nesting (4 km and 1 km). The simulations are conducted for 71 hours in total. They 

start for 7 p.m. local sun time (LST) on the first day and end 6 p.m. LST on the fourth 

day. The night of interest is the night from day 3 to day 4. The long spin-up time is 

chosen so that an UHI can develop, which is only weakly affected by the initial 

conditions. Warming and cooling processes of the soil and the near ground air 
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temperatures can be simulated more independently of the initial conditions. Details 

about the model and the simulations are given in Section 5.3. 

 

To calculate the average UHI, the simulation results obtained with METRAS 

1 km, have to be recombined statistically. As a first step, the UHI has to be determined 

in the numerical results. Following Hoffmann et al. (2011; Chapter 3 of this thesis) and 

Hoffmann and Schlünzen (2012; Chapter 4 of this thesis), the UHI is determined by 

subtracting the averaged temperatures of the rural DWD stations Grambek and 

Ahrensburg from the total temperature field. In the model, the grid points closest to the 

rural stations are used. Instead of using the minimum temperatures, averaged nighttime 

temperatures are used. 
 
Table 5.1: List of relevant days and their corresponding statistically modeled UHI 
values ruT  . The number within the simulation names denotes the WP number, while 
the ending denotes maximum UHI day (M) or the day with an UHI closest to the 
threshold UHI (T). 

Simulation name Date ruT   (K) 

WP1M 17-Jun-2007 4.6 

WP1T 22-Jun-2009 3.0 

WP2M 09-Jul-2007 3.3 

WP2T 19-Aug-2007 3.0 

WP3M 05-Jul-2006 5.7 

WP3T 01-Jul-2009 3.0 

WP4M 01-Aug-2009 4.0 

WP4T 18-Jul-2009 3.0 

WP5M 17-Aug-2008 4.1 

WP5T 18-Jun-2008 3.0 

WP6M 11-Jun-2007 5.2 

WP6T 17-Jul-2009 3.1 

WP7M 06-Jun-2009 3.2 

 

The UHI pattern of each simulation contributes to the averaged strong UHI 

with a specific weight. This weight is based on the frequency of occurrence of the 

corresponding WP. Furthermore, the actual UHI is calculated by using the statistical 

model (Eq. 5.1) for a given day. The numerical model results for maximum UHI 

max)( ruT   and the threshold UHI ThresruT )(   within each WP are linearly interpolated 

to receive the pattern corresponding UHI. This means that the UHI pattern of a given 

day with a given ruT  ≥ 3 K is a linear combination of the two UHI patterns 

UHI( max)( ruT  ) and UHI( ThresruT )(  ), which are obtained for each WP. The weights 

for the kth WP are calculated using the frequency of strong UHI days Nstrong for the 
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corresponding WP (Eq. 5.2). The difference between the maximum UHI max)( ruT   

and the threshold UHI ThresruT )(  , which is denoted as Rstrong (Eq. 5.3) is also 

calculated per WP.  
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The absolute differences between all strong UHIs and the max)( ruT   as well as 

between strong UHI days and ThresruT )(   normalized by Rstrong are summed up for 

each WP. These sums are than divided by Nstrong to yield the averaged nondimensional 

differences Diffmax (Eq. 5.4) and DiffThres (Eq. 5.5). 
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These averaged differences represent the weights of both simulations within each WP. 

The final weights Wmax and WThres are calculated by multiplying Eq. (5.4) and Eq. (5.5) 

with the corresponding relative frequency of Nstrong. 
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Days with ruT  > max)( ruT   are treated as days with a ruT  = max)( ruT  since an 

extrapolation of the pattern is not possible. This case can occur because max)( ruT   is 

only determined in the period 2006-2010 and because larger values of ruT   could 

occur in the future climate projections. Thus, UHI changes from current to future 

climate might be slightly underestimated. 

 

The statistically recombined UHI pattern is computed by multiplying Wmax and 

WThres with the corresponding simulated UHI patterns and summing up the resulting 

patterns. For the current climate (1971-2000), the weights are calculated from the WPs 
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based on the ERA40 data and the statistically modeled UHI values computed with 

DWD observations from Hamburg-Fuhlsbüttel. To determine changes in the UHI 

pattern due to climate change, the weights are calculated for the different RCM results, 

described in Section 5.2.2. The focus of this study is on the changes between the 

current climate (1971-2000) and the future climate (2036-2065 and 2070-2099). Using 

the introduced SDD method, the average strong UHI pattern can change due to 

frequency changes of the WPs as well as due to changes in the distribution of 

statistically modeled strong UHI values within the corresponding WP. 
 

5.2.2 Regional climate model data 

 

As used by Hoffmann et al. (2011; Chapter 3 of this thesis) and Hoffmann and 

Schlünzen (2012; Chapter 4 of this thesis) data from the regional climate simulations 

conducted with CLM (Hollweg et al., 2008) and REMO (Jacob et al., 2008) are used 

as input for the downscaling. Both RCMs are driven with the SRES A1B projections 

from ECHAM5-MPIOM (Roeckner et al., 2003, Jungclaus et al., 2006). The REMO 

simulations are conducted applying a two step nesting. Since the domain with the 

finest grid is smaller than the domain used for the WPC, the WPs are determined from 

the coarser simulations (~50 km). The variables for the statistical model are 

determined from the high-resolution simulations (~10 km). Schoetter et al. (2012) 

evaluated the CLM and REMO results for the metropolitan area of Hamburg and 

showed that both RMCs have considerable biases in variables that are used in the 

statistical model for the present climate. These biases also lead to biases in the 

statistically modeled UHI (Hoffmann et al., 2011; Chapter 3 of this thesis). Therefore, 

the RCM data are biases-corrected following Schoetter et al. (2012), by applying a 

quantile-mapping method similar to Piani et al. (2010). A problem appearing when 

using the bias-correction for the SDD method is that the local variables, and therefore 

the statistically modeled UHI, might not be consistent with the WPs after the bias 

correction. In future studies, this bias-correction should be done for each WP 

separately. Hoffmann and Schlünzen (2012; Chapter 4 of this thesis) also showed that 

there are biases in the frequency of the WPs in the RCM results. A bias correction 

method for the daily atmospheric patterns is, however, not yet available. Only the WP 

frequencies could be bias-corrected as suggested by Demuzere et al. (2009). This is not 

applicable for the SDD method as the calculation of the weights (Eq. 5.6 and Eq. 5.7) 

of the WPs and the statistically modeled UHI depend on each other. 

 

To increase the ensemble size of RCM results, data from regional climate 

simulations performed with the Conformal Cubic Atmospheric Model (CCAM; 

McGregor, 2005; McGregor and Dix, 2008) are also used. CCAM is a hydrostatic 
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global model with a non-uniform grid, which is used as a RCM (horizontal resolution 

~60 km). A list of parameterizations used in CCAM is given in Table 5.2. In contrast 

to CLM and REMO, CCAM is driven by the SRES A2 simulations conducted with the 

GFDLcm2.0 (Delworth et al., 2006). Instead of using lateral atmospheric forcing 

CCAM is driven by the monthly mean sea surface temperatures (SST) and sea ice 

concentrations provided by GFDLcm2.0. To reduce the transfer of GCM-deficiencies 

to the CCAM simulations, the SSTs are preliminary bias-corrected by calculating the 

climatological monthly means for the respective period and computing the bias against 

a SST climatology provided by National Oceanic and Atmospheric Administration 

(NOAA) (Reynolds, 1988) for the same period. The corresponding monthly bias is 

then subtracted from each month of the SST time series used for forcing CCAM 

(Katzfey et al., 2009). In addition to the SST forcing, the specified equivalent CO2, 

ozone, and direct aerosol effects for the A2 scenario are also used to conduct the 

simulations. 

 
Table 5.2: List of parameterization schemes used for the CCAM simulations (Katzfey, 
2011 personal communication). 

Parameterization Reference 

Explicit Cloud Scheme Rotstayn (1997) 

Convection McGregor (2003) 

Land Surface Kowalczyk et al. (1994) 

Boundary Layer 

McGregor (2003) stability dependent scheme 
with non-local vertical mixing based on 

Holtslag and Boville (1993) and enhanced 
mixing of cloudy boundary layer air based on 

Smith (1990) 
Gravity Wave Drag Chouinard et al. (1986) 

Radiation 
Short wave: Lacis and Hansen (1974) 

Long wave: Schwarzkopf and Fels (1991) 

 

5.3 Mesoscale model setup 

 

The relevant days determined in Section 5.2.1 are simulated with the mesoscale 

numerical model METRAS using a two-step nesting The simulations are forced with 

ECMWF analysis fields as well as sea surface temperatures (SST) from NOAA. In the 

following, the model specification (Section 5.3.1) and the model domain 

(Section 5.3.2) are described. A description of the forcing data and forcing method is 

given in Section 5.3.3 and 5.3.4, respectively. 
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5.3.1 METRAS 

 

The mesoscale transport and fluid model METRAS (Schlünzen, 1990; Lüpkes 

and Schlünzen, 1996) is a three-dimensional non-hydrostatic mesoscale numerical 

atmospheric model. It has been previously applied to Germany (Schlünzen, 1992; 

Renner and Münzenberg, 2003; Schlünzen and Katzfey, 2003; Schüler and Schlünzen, 

2006; Schlünzen and Meyer, 2007; Bohnenstengel, 2011, Buschbom et al., 2012), 

Spain (Augustin et al., 2008), China (Wu and Schlünzen, 1992; Sheng et al., 2000), 

coastal areas (Niemeier and Schlünzen, 1993), the Arctic (Dierer and Schlünzen, 2005; 

Hebbinghaus et al., 2007; Lüpkes et al., 2008; Ries et al., 2010), and the urban climate 

of London (Thompson, 2008; Grawe et al., 2012 submitted) with horizontal resolutions 

ranging from 1 km to 18 km. A detailed description of METRAS is given in Schlünzen 

et al. (2012a). The dynamic equations solved in METRAS are based on the anelastic 

and Boussinesque approximated primitive equations, resulting in prognostic equations 

for the three wind-components u, v and w, temperature and specific humidity. 

Microphysical processes are parameterized with the Kessler scheme (Kessler, 1969), 

resulting in prognostic equations for cloud water and rain water. The radiation 

parameterization is dependent on the existence of liquid water in the model domain. In 

cloud free situations the longwave and shortwave radiation balance is computed only 

at the surface. In the atmosphere a constant cooling rate is assumed (2 K/day at 

daytime and 3 K/day at nighttime). With clouds in the model domain, radiation fluxes 

at the surface as well as the atmosphere are determined with a two-stream 

approximation scheme. 

 

For the calculation of sub-grid scale turbulent fluxes in the surface layer (z ≤ 

10 m) the surface layer similarity theory is employed. Accordingly, the vertical 

exchange coefficient for momentum Kvert and for scalar quantities (heat and humidity) 

Kvert,S are calculated with: 

 
 )/(/* LzzuK mvert    (5.8) 

 )/(/*, LzzuK hSvert    (5.9) 

 

Here z is the height above ground, *u  is the friction velocity, κ is the von Karman 

constant (κ = 0.4), and m  and h  are the stability functions which depend on the 

Monin-Obukhov length L. METRAS considers sub-grid scale land-use (surface cover). 

For different fractions of land-use within a grid cell the flux averaging method is 

applied. It is implemented using the blending height concept (Claussen, 1991; 

Hermann, 1994; von Salzen et al., 1996). The different surface cover and land-use 

classes are described in Section 5.3.2. For the water surface classes, the roughness 
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length is a function of wind speed and in particular of the friction velocity (Charnock, 

1955). 

 

The vertical turbulent fluxes above the surface in the stable and neutrally 

stratified boundary layer are parameterized using a mixing length scheme based on 

Herbert and Kramm (1985). In this scheme, z/L is replaced by the local Richardson 

number Ri in the stability functions. The resulting equations are: 

 

 



















02)161(

15.00)51(

2/12

22

RiRi
z

v
l

RiRi
z

v
l

K

n

n

vert  (5.10) 

 








02)161(

15.00
4/1, RiRiK

RiK
K

vert

vert
Svert  (5.11) 

 

The mixing length for the neutral stratification ln is calculated according to Blackadar 

(1962): 
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  (5.12) 

 

Here f denotes the Coriolis parameter. The formulation (5.11) and the limits for Ri are 

chosen to assure the matching of the fluxes at the lowermost model level with the 

fluxes above. In addition, the upper limit of the so called critical Richardson number is 

restricted to 0.15 to account for additional diffusion due to sub-grid scale gravity 

waves. This value was determined in this thesis by conducting sensitivity studies with 

different Ri values ranging from 0.1 to 0.1666 (maximum values to fulfill continuity of 

fluxes). For Ri = 0.15 waves resulting from gravity waves by non-linear wave 

interaction are damped. They occur in the nighttime near the surface in the temperature 

field when surface cooling is intense. Tuning the critical Ri might not seem physical, 

however, the correct value for the critical Richardson number is still an ongoing 

research topic (Zilitinkevich et al., 2007; Grachev et al.; 2012). Another way to 

account for sub-grid scale gravity waves would be to parameterize them (e.g. 

Zilitinkevich, 2002; Nappo et al., 2004). This is not done in the present study, because 

a comprehensive sensitivity study would have to be carried out to test if these 

parameterizations can be used with the turbulence parameterization employed in 

METRAS.  
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For unstable and convective stratification the non-local countergradient scheme 

is used (Lüpkes and Schlünzen, 1996) allowing mixing of momentum, heat and 

moisture counter the local gradient. 

 

To calculate the surface temperatures TS, the force-restore method by Deardorff 

(1978) is applied. The equation for the surface temperature tendency can be written as: 
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The first two terms on the right-hand side correspond to the shortwave and longwave 

radiation budget at the surface and are given here for the cloud free case. The 

shortwave radiation budget depends on the cosine of the zenith angle Z(t), which is 

multiplied by the solar constant I = 1370 W/m² and the parameter . This parameter 

depends on the Albedo a0 and can be estimated for northern Germany by 0.75·(1-a0) 

for a cloud free domains. The longwave radiation budget is calculated using the 

Stefan-Boltzmann law, where   denotes the Stefan-Boltzmann constant (5.67·10-8 

W/m2K4). The parameter ̂  accounts for the emissivity of the surface as well as for the 

incoming longwave radiation and is set to be 0.22 for a cloud free domain. For cloudy 

situations both radiation terms are calculated with the radiation parameterization.  

 

Term three in Eq. (5.13) accounts for the temperature change due to the 

sensible heat flux, which depends on the heat capacity cp, density of the air ρ0 and the 

turbulent heat flux **u , where *  denotes the scaling temperature. 

 

The fourth term corresponds to the temperature change due to the latent heat 

flux, which depends on the enthalpy of vaporization l21 and the turbulent humidity 

flux, where *q  denotes the scaling value for specific humidity. The last term on the 

right hand side reflects the soil energy balance, i.e. heat release or heat storage 

depending on the soil and surface cover characteristics. They specifically depend on 

the depth of the daily temperature wave hθ and thermal conductivity of the soil and 

surface cover type νS. Since each simulation conducted in this study is done for a 3 day 

period the deep soil temperature )( hTs   is kept constant at its initial value.  

 

For the specific humidity at the surface q 1s
1  a simple budget equation is applied 

(Deardorff, 1978): 
 

 1
1

1
1

1
1 )1()( qTqq qSsatqs    (5.14) 
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Here q  is the bulk soil water availability, which depends on the turbulent humidity 

flux, precipitation, and the saturated soil and surface cover moisture availability WK as 

given for each surface cover type.  

 

In the METRAS version applied, no additional urban canopy parameterization 

is implemented as done by Thompson (2008). Therefore, the influence of buildings on 

the radiation (e.g. shading and radiative trapping) as well as on the flow field in higher 

model levels is not considered. Furthermore, the anthropogenic heat release is 

neglected. Hence, only urban effects due to the different surface characteristics such as 

heat storage, water availability, evaporation characteristics, and roughness are 

simulated. A detailed description of the surface characteristics as used in the present 

study is given in Section 5.2.2. 

 

The equations are numerically solved on an Arakawa-C-grid (Mesinger and 

Arakawa, 1976), where the wind components (u, v, and w) are shifted by half a grid 

point compared to the grid points of scalar quantities. For the advection terms in the 

momentum equation are discretized using centered differences and integrated using the 

Adam-Bashforth scheme. To avoid nonlinear instabilities of the model equations a 7 

point filter is applied to the wind components in the horizontal directions. This method 

also results in horizontal diffusion of the wind. Depending on the allowed time-step the 

vertical exchange processes are either solved with the Adam-Bashforth scheme or with 

the Crank-Nicholson scheme. Temperature and humidity equations are solved using 

the upstream scheme for the advection terms. The exchange processes are solved 

forward in time and centered in space in horizontal direction. Depending on the model 

time-step, the Crank-Nicholson-Scheme is also applied. 

 

5.3.2 Model domains and surface cover 

 

The downscaling simulations are conducted by forcing a 4 km simulation 

horizontal resolution with ECMWF data and using these results to force a simulation 

with 1 km horizontal resolution. The boundaries of both domains are shown in 

Figure 5.2. The outer domain has a dimension of 175 x 156 grid cells 

(700 km x 624 km) covering northern Germany, and parts of Denmark, the 

Netherlands, Sweden and Poland. The dimension of the inner domain is 194 x 191 

grids cells (194 km x 191 km) and it covers the metropolitan area of Hamburg 

including parts of the North Sea and Baltic Sea. The vertical grid of both domains is in 

terrain following coordinates, has a similar vertical spacing and consists of 34 levels. 
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The lowest atmospheric grid cell is 10 m above ground at sea level and slightly lower 

above orography due to the terrain following grid. The grid spacing is 20 m up to a 

height of 90 m above ground. Above that level, the grid spacing increases with a 

constant stretching factor of 1.15. The top of both domains is at 12511 m. 

 

To construct surface cover and land-use (lower boundary condition for 

METRAS), land-use data from different sources are used, ranging from ATKIS data to 

a detailed biotope dataset for the state of Hamburg. They are combined into 10 land-

use classes for the 4 km grid including one urban land-use class. The surface 

parameters for these classes are given in Table 5.3. The dominant land-use class per 

grid cell is shown in Figure 5.3. For the 1 km simulation a set of 36 surface cover 

classes is used, hereafter denoted METRAS-36. Flagg et al. (2011) comprehensively 

investigated urban land-use types, such as “Blockrandbebauung”, and determined the 

fraction of buildings and the surrounding surface cover such as grass or brick. These 

fractions are assigned to corresponding land use classes. Buildings are divided into two 

separate building classes, namely high buildings and low buildings. The roughness 

length of these classes is determined using the bluff body approximation. The 

parameters for the different surface cover types are given in Table 5.4. Details on the 

attribution of the parameter values are given in Schlünzen et al. (2012b). 
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Figure 5.2: Map indicating the boundaries of the 4 km domain (red) and 1 km domain 
(blue). 

 

To determine the influence of the new surface cover classes on the downscaling 

results, all simulations are conducted twice, once with a 1 km grid that contains 10 

land-use classes only, herein denoted as METRAS-10 and once with METRAS-36. 

Figure 5.4a shows the fraction of buildings and adjacent surfaces, which include the 



5 Statistical-dynamical downscaling for the urban heat island 
_____________________________________________________________________________________________ 

 66

surface cover classes: high buildings, low buildings, asphalt, brick and steel. Here, the 

sealing gradient of Hamburg is well visible. In addition, it shows that even in 

downtown Hamburg, the sealed fraction is below 100%. Using only 10 land-use 

classes the urbanization gradient is not that well visible (Figure 5.4b) because the 

urban class also includes - besides sealed surfaces - other urban land-uses like play-

grounds or backyard gardens. The urban fraction is much larger for Hamburg as well 

as for other cities than the sealed portion of Figure 5.4a. This might result in a larger 

UHI magnitude. 

 
Table 5.3: Surface characteristics for the METRAS-10 land-use types with Albedo α0, 
thermal diffusivity ks, thermal conductivity νS, soil water availability (initial values) αq, 
saturation value or water content WK, and roughness length z0. 

Land-use type α0 ks [m
2/s] νS [W/mK] αq WK [m] z0 [m] 

water 0.10 1.5E-07 100.00 0.98 100.000 f( *u ) 
mudflats 0.10 7.4E-07 2.20 0.98 0.322 0.0004 

sand 0.20 5.7E-07 1.05 0.10 0.026 0.0012 
mixed land use 0.20 5.2E-07 1.33 0.20 0.138 0.0400 

meadows 0.20 5.2E-07 1.33 0.40 0.015 0.0200 
heath 0.15 2.4E-07 0.30 0.10 0.423 0.0500 

bushes 0.20 5.2E-07 1.33 0.30 0.081 0.1000 
mixed forest 0.15 8.0E-07 2.16 0.30 0.121 0.0050 

coniferous forest 0.10 8.0E-07 2.16 0.30 0.161 1.2000 
urban area 0.15 14.0E-07 2.93 0.05 0.968 0.7000 

 

 

 
Figure 5.3: Map of the dominant land-use class of the 4 km domain. 
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Figure 5.4: (a) Fraction of buildings plus adjacent sealed surfaces as a sum of surface 
cover classes: high buildings, low buildings, asphalt, brick, and steel from METRAS-
36 data. (b) Fraction of the urban class from METRAS-10. 

a) b) 
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Table 5.4: Surface characteristics for the 36 surface cover types with Albedo α0, 
thermal diffusivity ks, thermal conductivity νS, soil water availability (initial values) αq, 
saturation value for water content WK, and roughness length z0. 
Surface cover type α0 ks [m

2/s] νS [W/mK] αq WK [m] z0 [m] 
water 0.10 1.50E-07 100.00 0.98 100.000 f( *u ) 

stationary fresh 
water 

0.10 1.50E-07 100.00 1.00 100.000 f( *u ) 

dynamic fresh 
water 

0.10 1.50E-07 100.00 1.00 100.000 f( *u ) 

salt water 0.10 1.50E-07 100.00 0.98 100.000 f( *u ) 
mudflats 0.10 7.40E-07 2.20 0.98 100.000 0.0002 

bare ground 0.17 3.80E-07 1.18 0.30 0.015 0.0012 
sand 0.20 5.70E-07 1.05 0.10 0.010 0.0003 

gravel 0.12 2.76E-07 0.40 0.10 0.010 0.0050 
sand dune with 

grass 
0.20 5.70E-07 1.05 0.15 0.035 0.0100 

and dune with 
sparse vegetation 

0.20 5.70E-07 1.05 0.15 0.045 0.0500 

asphalt 0.09 2.30E-06 1.35 0.50 0.002 0.0003 
brick/pavers 0.30 2.30E-06 0.90 0.02 100.000 0.0006 

steel 0.30 4.20E-06 30.00 0.50 0.001 0.0003 
wet bushes 0.20 5.20E-07 1.33 0.65 100.000 0.1000 

wet bare ground 0.17 7.40E-07 2.20 0.60 100.000 0.0012 
short dry grass 0.20 5.20E-07 1.33 0.35 0.050 0.0100 
short wet grass 0.20 5.20E-07 1.33 0.55 100.000 0.0100 
long dry grass 0.20 5.20E-07 1.33 0.35 0.070 0.0200 
long wet grass 0.20 5.20E-07 1.33 0.55 100.000 0.0200 

cropland 0.20 5.20E-07 1.33 0.40 0.060 0.0400 
irrigated cropland 0.20 5.20E-07 1.33 0.65 100.000 0.0400 

cropland with 
sandy soil 

0.20 5.20E-07 1.33 0.35 0.040 0.0400 

heath 0.15 5.70E-07 1.05 0.15 0.423 0.0500 
heath on sandy soil 0.15 5.70E-07 1.05 0.15 0.100 0.0500 

dry bushes 0.20 5.20E-07 1.33 0.15 0.060 0.1000 
short bushes 0.20 5.20E-07 1.33 0.35 0.090 0.1000 

deciduous forest 0.17 8.00E-07 2.16 0.60 0.120 1.0000 
coniferous forest 0.10 8.00E-07 2.16 0.50 0.160 1.0000 
wet coniferous 

forest 
0.10 8.00E-07 2.16 0.70 100.000 1.0000 

mixed forest 0.15 8.00E-07 2.16 0.45 0.120 1.0000 
dry mixed forest 0.15 8.00E-07 2.16 0.50 0.050 1.0000 
wet mixed forest 0.15 8.00E-07 2.16 0.50 100.000 1.0000 
forest and bushes 0.20 6.50E-07 1.75 0.20 0.100 0.2500 

low buildings 0.18 14.0E-07 2.61 0.50 0.002 0.6000 
high buildings 0.18 23.0E-07 3.44 0.50 0.002 1.2000 
mixed landuse 0.20 5.20E-07 1.33 0.20 0.100 0.10000 
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5.3.3 Forcing data 

 

To simulate a selected meteorological situation METRAS has to be forced with 

observational data or model results of coarser resolution. Analysis data provided by the 

ECMWF (ECMWF, 2009; 2010) are well useable for the atmospheric part of the 

forcing (Ries et al., 2010). ECMWF-analyses are available every six hours (00 UTC, 

06 UTC, 12 UTC, and 18 UTC). The horizontal resolution varies according to the 

resolution of the actual ECMWF forecast model. From 2006 until January 2010 the 

resolution is T799L91, which corresponds to a horizontal resolution of ~25 km and 91 

vertical levels. The model levels use terrain following pressure coordinates. The 

resolution increased to T1279L91 (~16 km) starting end of January 2010. Hence, 

simulations for 2010 have finer forcing data than the rest of the simulations. Forced 

variables are air temperature, horizontal wind components, and specific humidity. 

Liquid and ice water content are added to the specific humidity. This allows METRAS 

to develop its own clouds, which are then consistent with the model physics. Linear 

interpolation of the forcing data to the METRAS grid is done in two steps. In the first 

step, vertical interpolation to the METRAS height levels is performed, and horizontal 

interpolation to the METRAS grid is performed in the second step. 

 

For the forcing of the water temperatures, the optimum interpolation sea 

surface temperatures (OISST) analysis dataset (Reynolds et al., 2002), provided by 

NOAA, are used. It consists of weekly averaged SST data with a spatial resolution of 

1° (~110 km). The OISST dataset is produced by interpolating ship and buoy 

measurements as well as satellite observations. In analogy to the atmospheric variables 

the SSTs are interpolated horizontally to the corresponding METRAS grid points. To 

account for rivers and lakes, water temperatures are interpolated from ocean 

temperatures through the continent (Bungert, 2008) and height corrected using the 

adiabatic laps-rate of 0.065 K/m over land. Since no reliable soil data are available, the 

deep soil temperatures are set to be equal to the water temperatures.  
 

5.3.4 Forcing method 

 

The same forcing method is applied to both simulations, i.e. the 4 km 

simulations forced with the ECMWF data and the 1 km simulations forced with the 

4 km results. Since METRAS is always initiated with a 1D profile that is 

homogenously distributed over the whole domain and height corrected within a 

diastrophy phase using a dynamical initialization, an averaged profile is determined 

from forcing data. After the initialization phase, in which the orography grows and a 

higher numerical accuracy is used, information from the coarser data is forced onto the 
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finer grid solution using the nudging technique. For this, a so-called forcing term is 

added to the prognostic equations for temperature, humidity, u- and v-velocity a so-

called forcing term is added: 
 

 )( mlmf    (5.15) 

 

with 

 

 t  (5.16) 

 

Here m  is the original value of a variable, l  is the value of the forcing data, f  is 

the resulting value after the forcing, and δ is the weighting factor which depends on the 

time step t and the nudging coefficient . For the first hour after the initialization 

 = 0 is set to 0.001 s-1. This corresponds to a characteristic time of about 17 minutes, 

implying that the resulting values are equal to the forcing value after 17 minutes. The 

homogenous forcing lasts for 1 hour of integration time. Thereafter, the forcing 

decreases within the domain and the nudging coefficient becomes: 
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In this study fa  and fN  are set be 0.4 and 4 respectively. The nudging coefficient 

depends on the grid point distance to the lateral and upper boundaries. The decrease in 

forcing towards the inner of the model domain allows METRAS to develop its own 

solution within the domain, but still accounts for large-scale changes due to the forcing 

at the boundaries. 

 

Since the forcing data are not available for every model time step they are 

linearly interpolated in time. This might cause problems for the forcing with ECMWF-

data due to the 6 hour time step in the analysis fields (Bungert, 2008). For instance, 

rapid changes in the variables due to fronts are not captured. Also the diurnal cycle is 

generally not well captured by the 6 hourly forcing. To achieve better forcing data, the 

1 km simulations are forced with half-hourly model output obtained from the 4 km 

simulations. 
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5.4 Evaluation of dynamical simulations 

 
An advantage of the downscaling method introduced in this thesis is that a direct 

comparison of observations and model results can be carried out. Most of the 

dynamical and statistical-dynamical downscaling techniques do not allow this, because 

they are forced with climate projections and not with observations or reanalysis data. 

In the following, the evaluation methodology as applied to each model result is 

described (Section 5.3.1). In Section 5.3.2, the evaluation results are presented. 

 

5.4.1 Methodology 

 
There are several ways to evaluate model results. A well-established approach 

is the comparison of model estimates with surface observations (Cox et al., 1998; 

Schlünzen and Katzfey, 2003; Ries and Schlünzen, 2009; Haller et al., 2012 in 

preparation). In this study, SYNOP stations operated by the DWD, the Royal 

Netherlands Meteorological Institute (KNMI) and the Institute of Meteorology and 

Water Management (IMGW) are used. SYNOP stations provide hourly values of 

surface variables such as temperature, dew point, sea level pressure, cloud cover, wind 

speed, and wind direction. In the framework of this study, only those stations that i) 

show measurements for at least 95% of the time for the period of 2006-2010 and ii) are 

at least 80 km away from the model domain boundaries are selected for model 

evaluation. The first criterion assures the comparability of the evaluation results 

between the different runs. The second criterion is applied to avoid the influence from 

the lateral forcing on the evaluation. In total, 72 stations match both criteria. The 

station locations and WMO numbers are given in Figure 5.5. For the evaluation of the 

1 km simulations, only 10 stations match both criteria. 
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Figure 5.5: Location and WMO number of the SYNOP stations used for the evaluation 
of the dynamical simulations. Stations used for the evaluation of the 1 km simulations 
are indicated in red. 
 

The model results are horizontally interpolated to the location of the 

corresponding station using by bi-linear interpolation. Only the first model level in 

(10 m above ground) is used because 2 m values cannot be reliably determined for 

different stabilities due to the use of the flux aggregation approach. The focus of the 

evaluation presented in this section is on the variables temperature, relative humidity, 

wind speed, and wind direction. Temperature is chosen because the target parameter 

UHI is a horizontal temperature difference. Relative humidity and wind speed are 

chosen because Hoffmann et al. (2011; Chapter 3 of this thesis) demonstrated that both 

parameters are important for the strength of Hamburg’s UHI. Usually, other 

parameters related to atmospheric moisture content, such as water vapor pressure or 

dew points are evaluated, because the error in the simulated relative humidity is not 

only due to problems in the simulation of the humidity processes. However, their 

distributions seem to be unrelated to the UHI (Hoffmann et al., 2011; Chapter 3 of this 

thesis). Therefore, it is more important to accurately simulate the relative humidity. 

This would be different if the evaluation would be done for observations in urban 

areas, because humidity processes are important for the urban climate. The wind 

direction is important for advection of temperature and therefore the morphology 

influences the UHI. Statistical measures are used to quantitatively evaluate the model 

performance. Following the model evaluation guidelines of COST728 (Schlünzen and 

Sokhi, 2008), the differences in the means of a variable (BIAS; Eq. 5.18), the root 

mean square error (RMSE; Eq. 5.19), the hitrate (HITR; Eq. 5.20), and the correlation 

(CORR; Eq. 5.21) are calculated. 
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Oi and Mi denote the observation and the corresponding model result, O  (Eq. 5.22) 

and M  (Eq. 5.23) denote the standard deviations of the observations and the model 

results, O  and M denote the corresponding means, and N is the sample size. The 

BIAS indicates whether a variable is generally overestimated or underestimated and if 

so, to what extend. The RMSE reflects the mean error per model-observation 

comparison pair. To account for temporal development, such as a diurnal cycle the 

CORR is a frequently used measure. No measurement error is considered in the 

calculation of BIAS, RMSE and CORR. This deficiency is covered by HITR which 

indicates how often the model results lie within a given predefined uncertainty range to 

the observed value. The uncertainty range D includes measurement accuracy and the 

spatial and temporal representativeness of the measurements. The optimal value is 1, 

which indicates that all model results lie within the uncertainty D of the observation 

and the minimum value is 0, which indicates that none of the model results is within 

the uncertainty of the observations. The values for D for temperature, wind speed, and 

wind direction are taken from Cox et al. (1998) (Table 5.5). It should be stated that 

these values are not based on the measurement accuracy or representation error, but on 

the demanded forecast accuracy. However, for temperature and wind speed, they are 

close to the findings of Lengfeld and Ament (2012) and Lengfeld (2012), who, using a 

sensor network, investigated the representativeness of 2 m temperatures and wind 

speed over heterogeneous terrain. For instance, they found that temperature differences 

between stations (computed every minute) can be 3 K or higher on a distance of about 
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2 km in a heterogeneous terrain. For relative humidity, the value of D is set to ±5% 

(Table 5.5). 

 
Table 5.5: Uncertainty range D for different variables. Values for temperature, wind 
speed, and wind direction are taken from Cox et al. (1998). 
Variable Temperature 

(K) 
Relative 

humidity (%) 
Wind speed 

(m/s) 
Wind 

direction 
Allowed 
deviations  

±2 ±5 ±1 for ff < 10m s-1 
±2.5 for ff > 10m s-1 

±30° 

 

The measures for wind direction are calculated differently to the other 

variables. The mean wind direction is computed by calculating the u- and v-component 

of the velocity vector using the wind speed. Thereafter, u and v are component-wise 

averaged. The average wind direction is the direction of the resulting vector. The wind 

direction cannot be measured accurately for low wind speeds. Hence, only wind data 

for measured wind speeds >1 m/s are used for the evaluation. 

 

To visualize the results, the measures calculated for every station are averaged 

over all stations. Since the correlation is not additive (Faller, 1981), the arithmetic 

average does not reflect the true average correlation. Therefore, the Fisher’s z 

transformation, a widely used method (e.g. Krueger and von Storch, 2011; Pennell and 

Reichler, 2011), is applied to average CORR. Following this method, CORR is 

transformed into the normally distributed variable Z:  

 

  )1ln()1ln(
2

1
CORRCORRZ   (5.24) 

 

Thereafter, Z is averaged arithmetically to yield Z , which is then transformed back 

into a correlation: 
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In addition to the strict comparison of observations and model results, a so-

called dummy forecast is computed as a benchmark for the skill of the model result. 

For this the observations of the initial day are used as a forecast for the following days. 

The model should be better than this simple forecast, which just assumes persistency 

of the weather. In some cases this could be challenging for the numerical model, such 

as during anticyclonic conditions with weak large-scale forcing. Then the dependency 

of the model results on the initial conditions and the boundary conditions at the 
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surface, such as the water and soil temperatures or surface cover data, is very large. 

For instance, surface temperature gradients could lead to the model developing a local 

circulation not observed in reality and thus being an artifact of the initially selected soil 

and water temperatures. 

 

5.4.2 Results 

 

The UHI is investigated for the night from model day 3 to day 4. Therefore, the 

evaluation results for day 3 will be presented in the following. In addition, the results 

are divided into the evaluation of the 4 km simulations (Section 5.4.2.1), the 

comparison between 1 km and 4 km simulations (Section 5.4.2.2), and the comparison 

between the 1 km simulations with the different land use classes (Section 5.4.2.3).  

 

5.4.2.1 Evaluation of 4 km simulations 

 

Figure 5.6 shows the BIAS for the different variables per simulation. 

Additionally, the mean BIAS over all simulations and the mean absolute BIAS per 

simulation are indicated. It is apparent that temperatures are underestimated in all 

simulations except for WP4M and WP7M which show a positive BIAS (Figure 5.6a). 

On average, temperatures are underestimated by 0.9 K. The averaged absolute BIAS 

for METRAS (1.2 K) is smaller then for the dummy forecast (1.6 K). The BIAS for the 

relative humidity varies between -8% and +10% (Figure 5.6b). On average, the relative 

humidity is overestimated by about 2%, which is a good result. However, the averaged 

absolute BIAS is 5% and METRAS is only slightly better than the dummy forecast. 

Interestingly, the simulations showing a large negative BIAS in temperature are 

associated with a large positive BIAS in the relative humidity (WP3M, WP3T, WP4T, 

and WP6T). 
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Figure 5.6: BIAS of the (a) temperature, (b) relative humidity, (c) wind speed, and (d) 
wind direction for the different simulations for model day 2. Dashed lines indicate the 
mean (black) and mean absolute BIAS (blue) of the model of all simulations. Dotted 
lines indicate the mean (black) and mean absolute BIAS (blue) of the dummy forecast. 
 

The modeled wind speeds are on average slightly underestimated (-0.4 m/s), 

however, they are underestimated by more than 1 m/s in some simulations 

(Figure 5.6c). Nevertheless, the average wind speed is well simulated. The averaged 

BIAS of the dummy forecast (1.5 m/s) is three times larger than the modeled one 

(0.5 m/s). The wind directions are not as well simulated as the wind speed. The values 

for the BIAS range from +30° to -90° and the average BIAS is -35° (Figure 5.6d). But 

there are also simulations with a BIAS smaller than ±10°. The average absolute BIAS 

for METRAS is slightly smaller than the absolute BIAS of the dummy forecast. 

 

The analysis of the RMSE shows that, on average, METRAS performs better 

than the dummy forecast (Figure 5.7). The averaged RMSE for temperature is 2.2 K, 

which is better than the median of the summarized results from other models 

(Schlünzen et al., 2012c). The RMSE of the relative humidity varies only slightly 

between the different simulations (Figure 5.7b). The mean RMSE is about 12%, which 

is quite large but again smaller than the value for the dummy forecast. An average 

RMSE of 1.6 m/s for wind speed verifies that this variable is well simulated by 

METRAS (Figure 5.7c). Similar to the temperatures, METRAS performs better than 

the median of the analyzed model results shown by Schlünzen et al. (2012c). The 

b) a) 

c) d) 
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RMSE for the wind directions varies substantially between the simulations 

(Figure 5.7d). There are two simulations with a RMSE around 20° and two simulations 

with a RMSE close to 100°. Nevertheless, the averaged RMSE (65°) is again low 

compared to results other results of other models (median = 72°; Schlünzen et al., 

2012c). 
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Figure 5.7: RMSE for (a) temperature, (b) relative humidity, (c) wind speed, and (d) 
wind direction for the different simulations for model day 2. Dashed lines indicate the 
average RMSE of all simulations. Dotted lines indicate the average RMSE of the 
dummy forecast. 
 

Figure 5.8 shows the result for HITR. For temperature, the HITRs range from 

0.4 to 0.8. On average, HITR is about 0.57, which is still an acceptable value. The 

HITR values for relative humidity are lower and do not vary much (Figure 5.8b). The 

averaged HITR for METRAS is 0.32 and therefore slightly lower than for the dummy 

forecast. This can be partially explained by the BIAS, which is in the order of the 

allowed deviation of 5%, and by the large RMSE, which is in the order of twice the 

uncertainty range D (Table 5.5). For wind speed, METRAS performs on average twice 

as well as the dummy forecast (Figure 5.8c). The mean HITR (0.48) is comparable 

with the results from Schlünzen and Katzfey (2003) for simulations focusing on the 

Berlin area. Regarding the wind direction, the averaged HITR (0.42) is lower 

compared to those results. However, the HITR varies from 0.1 (WP4M) to 0.9 

(WP2M). 

b) a) 

c) d) 
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Figure 5.8: As Figure 5.7 but for HITR. 

 

The results for CORR are shown in Figure 5.9. Temperature and relative 

humidity show high values of CORR (Figures 5.9a,b), a result of the dominant 

influence of the diurnal cycle of both variables on the calculation of CORR. Temporal 

changes due to fronts are mostly smaller compared to the diurnal cycle and hence do 

not affect CORR substantially. Nevertheless, with an averaged CORR for temperature 

of about 0.92, METRAS performs better than median of the summarized evaluation 

results from Schlünzen et al. (2012c). The values for wind speed and direction vary 

between the simulations (Figures 5.9c,d). Even slightly negative values occur and the 

averaged values for CORR are 0.37 and 0.25, respectively. This indicates that temporal 

changes in the wind vectors are not well captured.  

 

b) a) 

c) d) 
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Figure 5.9: As Figure 5.7 but for CORR. 

 

In summary, the simulation results for temperature and wind speed are good 

compared to other model results. For some simulations and some measures they are 

even better than the best model results summarized by Schlünzen et al. (2012c). The 

wind direction is difficult to measure accurately because it heavily depends on the 

surroundings of the measurement site. Therefore, the results for the wind direction are 

in an acceptable range. If the forcing data were available at higher temporal resolution 

(now every 6 hours), changes in the flow field due to large-scale phenomena could be 

better captured, which would especially improve CORR for both wind speed and 

direction. The overestimated relative humidity and the underestimated temperatures 

indicate problems with the near surface humidity. One possible reason could be the 

initial soil water availability, which is set to be the same for all simulations and all grid 

points. This is not realistic because in some parts of the modeled domain this value 

depends on the preceding dry days. The positive BIAS in the relative humidity might 

also lead to a reduced UHI, because observations indicate that the UHI and relative 

humidity are inversely correlated (Hoffmann et al., 2011; Chapter 3 of this thesis). 

 

5.4.2.2 Comparison of 1 km and 4 km simulation results 

 

The statistical measures are calculated for 10 stations for both the 

METRAS 4 km and the METRAS 1 km results (Figure 5.5). The largest differences 

b) a) 

c) d) 
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between both resolutions are found in the simulated temperature and in the wind 

direction. The results are only marginally different for relative humidity and wind 

speeds. On average, METRAS 1 km performs slightly better in simulating the wind 

speed. As an example, HITR and BIAS are shown in Figures 5.10e,f. The simulation of 

the wind direction improves in the higher resolution model experiment as well. The 

HITR improves from 0.40 to 0.44 (Figure 5.10g) and the averaged BIAS from -30° to -

10°. However, the mean absolute BIAS is only slightly reduced. For relative humidity 

METRAS 4 km shows almost no difference in performance regarding the average 

HITR (Figure 5.10c). The averaged BIAS is only 1% for METRAS 4 km, while 

METRAS 1 km overestimates the relative humidity by almost 7% (Figure 5.10d). 

Overall, 4 simulations with METRAS 1 km show a BIAS of more than 10%. The 

higher humidity might be a reason for the lower temperatures (Figure 5.10b) and lower 

HITR for temperature (Figure 5.10a) compared to METRAS 4 km. The HITR of 

METRAS 1 km is reduced to the level of the dummy forecast. The high relative 

humidity could also reduce the UHI, as mentioned in Section 5.4.2.1. 

 

In summary, the higher resolution simulations of METRAS improved the 

simulation of the near surface flow field, which can be expected due to the better 

representation of the topography and land-use. The temperature and humidity 

performance worsens for the 1 km grid compared to the 4 km grid. The differences in 

temperature and humidity between the two model setups might not only be due to the 

different resolution, but also to the different surface representation. In addition to the 

number of classes, the classes also differ in their respective parameters. In particular 

the initially available soil water is higher in the new surface cover classes (Table 5.4) 

compared to the old ones (Table 5.3). Therefore, the difference between 1 km 

simulations with the new surface cover and the old land-use classes will be 

investigated in Section 5.4.2.3. 
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Figure 5.10: HITR and BIAS of (a,b) temperature, (c,d) relative humidity, (e,f) wind 
speed, and (g,h) wind direction for METRAS simulations of model day 2. Solid lines 
indicate the mean (black) of HITR and BIAS, and mean absolute BIAS (blue) of 
METRAS 1 km simulations. Dashed lines indicate the mean (black) of HITR and BIAS 
and mean absolute BIAS (blue) of METRAS 4 km simulations. Dotted lines indicate the 
mean (black) and mean absolute BIAS (blue) of the dummy forecast. 

a) b) 

c) d) 

e) f) 

h) g) 
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5.4.2.3 Comparison of 1 km results for old land-use classes and new surface cover 

classes 

 

The results of both METRAS configurations (36 surface cover versus 10 land-

use classes) differ only in temperature and humidity. The differences in wind speed 

and direction are negligible. Therefore, only results for temperature and relative 

humidity are presented in the following. In Figure 5.11, HITR and BIAS for both 

variables are shown. For temperature the averaged HITR increases to 0.58 using 

METRAS-10 instead of METRAS-36 (Figure 5.11a). This value is slightly larger than 

the one from METRAS 4 km (Figure 5.10e), which is also the case regarding the BIAS 

(Figure 5.11b). The averaged BIAS is reduced from -0.7 K to -0.2 K when using only 

10 classes. For relative humidity the results are similar. The HITR improves using 

METRAS-10 instead of METRAS-36 (Figure 5.11d) and the average BIAS is reduced 

to 1% (Figure 5.11d). The BIAS is mainly reduced for simulations with large positive 

BIAS. The differences in temperature and humidity between the two model setups 

might not only be due to the different resolution, but also to the different surface cover 

representation. 
 

In addition to the comparison using statistical measures, conditional quantile 

plots are created (Murphy et al., 1989). This plot shows the median and different 

quantiles (10th, 25th, 75th, and 90th) of the observations depending on the simulated 

value of a variable. It also includes the corresponding histogram of the simulations. 

The diagonal line indicates the perfect simulation. The BIAS (per interval) of the 

simulations can be assessed by the deviation of the median and the diagonal line, while 

the simulation error variability can be assessed by the spread of the quantiles (Ries et 

al., 2009). Figure 5.12 shows the conditional quantile plots of temperature (bin 

width = 1 K) and relative humidity (bin width = 5%) for the two METRAS 

configurations including all simulations for model day 2. It is apparent that the 

simulated diurnal cycle is weaker than the observed one for both model configurations. 

Temperatures above (below) 12-13°C are underestimated (overestimated), respectively 

(Figures 5.12a,b). The underestimation is larger in the METRAS-36 simulations, 

especially for higher temperatures (Figure 5.12a). The corresponding plot for relative 

humidity (Figure 5.12c) shows that in these simulations, the relative humidity is 

overestimated throughout the distribution. This is not the case for the METRAS-10 

simulations (Figure 5.12d). Here, the median line is close to the 1:1 line, except for the 

rare very high and low values. However, it is apparent that error variability is quite 

large in these simulations. 
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Figure 5.11: HITR and BIAS of the (a,b) temperature and (c,d) relative humidity for 
the different simulations for model day 2. Solid lines indicate the mean (black) of HITR 
and BIAS, and mean absolute BIAS (blue) of METRAS-10 simulations. Dashed lines 
indicate the mean (black) of HITR and BIAS and mean absolute BIAS (blue) of 
METRAS-36 simulations. Dotted lines indicate the mean (black) and mean absolute 
BIAS (blue) of the dummy forecast. 
 

These results confirm that the small improvements of the 1 km simulations 

compared to the 4 km simulations (Section 5.4.2.2) are due to the different surface 

treatment. When using the 10 land-use classes for both resolutions, the increased 

resolution does improve the simulation of temperature and relative humidity. It should 

be tested whether a change in the soil water parameters improves the results from the 

simulation utilizing the 36 surface cover classes. The influence of the new surface 

cover classes on the spatial patterns of temperature and other variables cannot be 

sufficiently investigated due to the limited number of observational sites. To account 

for pattern changes, the downscaled UHI is compared to the UHI data from Bechtel 

and Schmidt (2011) and Schlünzen et al. (2010) in Section 5.5.1. 

 

b) a) 

c) d) 
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Figure 5.12: Conditional quantile plots of model result conducted with METRAS-36 
((a) temperature, (c) relative humidity) and with METRAS-10 ((b) temperature, (d) 
relative humidity). 
 

5.5 Urban heat island results of statistical-dynamical downscaling 

 

The SDD method is applied to ERA40 (WPs) combined with DWD observations 

(statistical model) as well as to RCM data from REMO, CLM and CCAM. The 

METRAS results are investigated with regard to the UHI. The results for the present 

climate are given in Section 5.5.1. The resulting UHI patterns are than evaluated with 

observed data (Section 5.5.2). Future changes are investigated in Section 5.5.3.  

 

5.5.1 Urban heat island in the present climate 

 

To statistically recombine the results of the dynamical simulations, the UHI 

needs to be calculated for each simulation separately. Generally, there are two methods 

to determine the UHI from one simulation. The first method is to conduct two 

simulations, one with the actual surface cover and one without the urban surfaces, and 

subtract both simulation results from each other (e.g. Hjemfelt, 1982; Hafner and 

b) a) 

c) d) 
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Kidder, 1999; Zhou and Shepherd, 2009; Grawe et al., 2012 submitted). This method 

would double the computational effort and additional problems arise, such as the 

composition of the non-urban surface cover. Hence, it was not applied in the present 

study. The second method involves subtracting temperatures at rural grid points from 

the whole temperature field (e.g. Flagg, 2010). Since this method does not require 

additional simulations and is straight forward to compute, it is used in context of this 

study. 

 

The 10 m temperature values from single grid points closest to the two DWD 

stations Grambek and Ahrensburg are averaged to obtain a representative rural 

temperature value. To compare the numerically simulated UHI values with the 

statistically modeled UHI (Section 5.2) and to investigate the temporal variability of 

the UHI intensity, the 10 m temperature closet to the DWD station Hamburg-St. Pauli 

is used to represent the urban temperature as in Hoffmann et al. (2011; Chapter 3 of 

this thesis). The time series of the simulated urban-rural temperature differences ruT   

using METRAS-36 is shown in Figure 5.13. It is apparent that the magnitude of 

differences is much smaller than the corresponding statistically modeled values as 

shown in Table 5.1. This inconsistency can be explained partially by the different 

definition used to calculate ruT  . The statistical model is based on differences in the 

minimum temperature (Section 5.2), while temperature differences ruT   from the 

numerical simulations are calculated at a fixed time. Additionally, the statistical model 

explains only 50% of the UHI variance. Therefore, in reality the UHI can be smaller 

than statistically modeled one in some cases. However, this cannot explain that all 

simulations show smaller UHI. Another reason is that the numerically simulated 

temperatures are average temperatures over an area of 1x1 km2. Also the use of 10 m 

temperatures instead of the 2 m temperatures can lead to smaller UHI intensities. 

Schlünzen (2012) showed that the urban-rural temperature differences in model results 

are larger when using the 2 m values instead of 10 m values. Flagg (2010), who 

conducted simulations for Detroit using the Weather Research and Forecast Model 

(WRF), presents similar findings. As shown in Section 5.2, the relative humidity is 

overestimated in most of the simulations. This could also lead to a reduction of the 

UHI because both variables are inversely related. Additionally, the lack of a canopy 

layer parameterization also reduces the urban effect. METRAS simulations conducted 

for London using the BEP (Martilli et al., 2002) showed an increase of about 1 K 

within urban areas compared to simulations without BEP (Grawe et al., 2012 

submitted). In addition, the effect of anthropogenic heat release is disregarded. Grawe 

et al. (2011) showed that for Hamburg, the nocturnal urban temperatures increase by 

up to 1 K when incorporating anthropogenic heat release. These effects might not 

superimpose linearly but including them would increase the UHI intensity. Hence, the 
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UHI would be closer to the statistically modeled UHI values if both parameterizations 

were included. 

 

Nevertheless, the ruT   time series show a typical diurnal cycle of the 

temperature differences (Oke, 1987) on day 3 and day 4. The average of all 

simulations shows positive differences from noon to the early morning (around 

sunrise) with a maximum between 8 p.m. and 12 a.m. LST. Negative values occur 

between 7 a.m. and 12 p.m. LST. After sunrise, rural areas heat up at higher rates than 

the urban areas. This so-called urban cool island (UCI) is mainly due to the high 

thermal conductivity and diffusivity of urban surfaces. The heat is transported faster 

into the ground, which leads to a reduced warming of the air in the morning. The UCI 

effect was found for Hamburg by Schlünzen et al. (2010). They showed that the 

maximum temperatures within the city are slightly lower compared to Grambek, 

especially in summer. Later during the day this effect becomes less important and 

disappears after sunset. 
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Figure 5.13: Simulated time series of the urban-rural temperature difference ruT   
from all 13 simulations (Table 5.1) conducted with METRAS-36. Black solid line 
indicates the unweighted average of all simulations. 

 

Investigation of the individual time series reveals substantial temporal 

variability of the differences. The large positive and negative values at day 4 are 

artifacts due to clouds. Due to their random nature, clouds are also a general problem 

when comparing or combining results from different simulations. Using data from only 

Day 2 Day 3 Day 4 
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one model output time step to compare simulations could result in large spatial 

differences not due to urban effects, but due to the presence of small clouds. Therefore, 

the nocturnal UHI intensity is defined in two ways: average temperature difference 

between 8 p.m. and 12 a.m., and maximum temperature differences between 6 p.m. 

and 6 a.m. the next day. The later is frequently used in observational studies (e.g. 

Morris et al. 2001; Kim and Baik, 2002; 2004). The average UHI is then determined at 

those times, when the average time series in Figure 5.13 shows a maximum. Both 

definitions are also applied to results from METRAS-10 simulations. The resulting 

UHI intensities are presented in Table 5.6. As it is also visible in Figure 5.13, the 

averaged simulated UHI magnitude is much lower than the statistically modeled one. 

On average, the differences between the different METRAS versions are small and not 

significant at the 95%-significance level. Nevertheless, UHI values differ by up to 

0.5 K for some simulations. When investigating the differences between the 

simulations, the UHI values for the maximum UHI day are much lower than the UHI 

for the threshold day for WP2. To a smaller extent, this is also the case for the WP5 

simulations conducted with METRAS-36. As mentioned in Section 5.2; the statistical 

model explains only 50% of the UHI variance and has an RMSE of 1.2 K. Hence, the 

maximum UHI day might have a lower UHI than the threshold day if the difference 

between the statistically modeled UHI intensity is small. This is the case for both WPs. 

However, the effect on the statistically recombined UHI pattern is small because the 

combined weights of WP2 and WP5 are only 6%. 

 

The definition of the UHI that use the maximum nocturnal temperature 

difference is not applicable for the calculation of the simulated UHI patterns. The time 

of the maximum is different for the individual grid points and the individual 

simulations. Hence, for every simulation the temporally averaged (8 p.m.-12 a.m. 

LST) rural temperatures are subtracted from the temperature field to yield the UHI 

pattern. To compute the averaged strong UHI pattern (Section 5.2), the frequency of 

the ERA40 WPs and the observations from Hamburg-Fuhlsbüttel in the period 1971-

2000 are used to calculate the weights for the different simulations according to 

Eq. (5.3) and Eq. (5.4). Thereafter, the individual UHI patterns are multiplied with 

their corresponding weights (Section 5.2). On average, 24.9 strong UHI days 

(statistically modeled UHI ≥ 3 K) occurred in the summer season based on the 

statistically modeled UHI for period 1971-2000. The resulting averaged strong UHI 

pattern determined from METRAS-36 results is presented in Figure 5.14a. The 

maximum UHI intensity, with up to 1.2 K, is found in the harbor and in downtown 

Hamburg. The result is understandable because the large fraction of sealed surfaces in 

this area. The river Elbe also contributed to the UHI pattern due to weak nocturnal 

cooling of the water body. This effect is responsible for the increased nocturnal 
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temperatures in the western part of the city, i.e. where the river is relatively wide. A 

detailed examination of the pattern reveals that structures such as the two airports 

within Hamburg namely Fuhlsbüttel (north of the Alster lake) and Finkenwerder 

(western part of Hamburg), can be indentified. Both areas show higher temperatures 

than their surroundings. In the southeastern part of the city, where the surface cover is 

rural, higher temperatures are simulated as well. This may be due to the low elevation 

in this area, which can affect the temperature. 

 
Table 5.6: Numerically and statistically modeled UHI intensities (Section 5.2) in 
Kelvin for the different simulations. For the numerically modeled values the 
temporally averaged urban-rural temperature difference (8 p.m.-12 a.m. LST) and the 
maximum urban-rural temperature difference between 6 p.m. and 6 a.m. LST (max) 
are given. 

METRAS-36 METRAS-10 Simulation 
name averaged max averaged max 

Statistical 
model 

WP1M 1.22 1.31 1.39 1.47 4.6 

WP1T 0.30 1.03 0.35 0.96 3.0 

WP2M 0.46 0.75 0.53 0.84 3.3 

WP2T 1.18 1.46 1.62 1.89 3.0 

WP3M 1.48 2.96 1.59 1.94 5.7 

WP3T 0.26 0.34 0.63 0.69 3.0 

WP4M 1.57 1.75 1.55 1.86 4.0 

WP4T 0.93 1.23 0.91 1.09 3.0 

WP5M 0.79 1.50 0.89 1.28 4.1 

WP5T 0.84 1.50 0.54 0.89 3.0 

WP6M 1.44 2.50 1.89 2.72 5.2 

WP6T 0.76 0.83 1.18 1.38 3.1 

WP7M 0.51 1.34 0.54 0.83 3.2 

mean 0.90 1.42 1.04 1.43 3.71 

 

To test this hypothesis the temperature fields are height corrected. First, the 

mean temperature gradient between first (~10 m above ground) and ninth (~185 m 

above ground) vertical level over an area of 61x61 km2 is computed for each output 

time. The mid-point of this area is set to Hamburg-St. Pauli. Since METRAS uses a 

terrain following coordinate system, only grid points with an elevation lower than 5 m 

are used. Furthermore, water fraction of the grid point should be less than 40%, which 

avoids overweighting of water surfaces. Due to the distinguished thermal 

characteristics between water and other land surfaces, the temperature gradients are 

different especially after sunset and sunrise. The obtained mean gradients are then used 

to correct the 10 m temperatures according to the elevation. Applying the height 
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correction reduces the magnitude of the UHI (Figure 5.14b). As previously assumed, 

the UHI values in southeastern part of the city are reduced. Only a small area with 

higher UHI values is left. This area corresponds with Geest hillside, which receives 

more shortwave radiation throughout the day than the surrounding area due to the 

slope of the terrain. As a result the nocturnal temperatures increased as well. 

 

a)      b) 

 
c)      d) 

 
Figure 5.14: Statistical recombined UHI pattern using data for the period 1971-2000 
for summer: METRAS-36 simulations (a) without height correction and (b) with height 
correction. METRAS-10 simulations (c) without height correction and (d) with height 
correction. 

 

To investigate the impact of the surface representation, the UHI pattern is 

computed for METRAS-10 simulations as well. Figures 5.14c,d show the 

corresponding patterns without and with height correction. The area of increased 

temperatures is larger compared to the METRAS-36 results. This is mainly due to the 

simpler treatment of urban surfaces. METRAS-10 simulations are conducted with only 

one urban class. In this class, the fraction of surfaces such as backyards or street trees 

located within urban areas is only indirectly considered by choosing the surface 

characteristics. Thus, the fraction of these surfaces does not vary within the city, as it is 

the case for the METRAS-36 simulations. Therefore, also suburban areas develop a 
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considerable UHI. This is evident in the northwestern and northeastern parts of the 

city. Applying the height correction to the results reduces the intensity of the UHI. The 

decrease of the UHI in the southeastern parts is not as strong as in the METRAS-36 

simulations, and the impact of the Geest hillside is hardly visible. 
 

5.5.2 Evaluation of the UHI pattern 
 

Only few meteorological observations are available to evaluate Hamburg’s 

UHI pattern. However, as done by Bechtel and Schmidt (2011) for the temperature 

proxy data, the observed temperature differences between the rural station Grambek 

and five stations in and around Hamburg are correlated with the simulated UHI 

pattern. For the comparison as derived by Schlünzen et al. (2010) the annually 

averaged UHI and the summer-averaged UHI is used. Additionally, the UHI pattern 

constructed by Bechtel and Schmidt (2011), which used floristic mapping data, is 

compared with the numerically simulated UHI patterns. The so-called Ellenberg 

indicator values for temperature (EIT) are used as proxies for the temperature 

distribution within Hamburg. As described by Bechtel and Schmidt (2011) a linear 

regression with the UHI values given by Schlünzen et al. (2010) as predictor and the 

EIT as the predictand is computed to receive Ellenberg based UHI values (UHIE). 

Therefore, both UHI datasets are not fully independent. The UHIE dataset covers the 

area of the city of Hamburg on a 1x1 km2 grid, without water bodies, because plant 

data do not exist for water-covered areas. To compute the CORR, the UHI pattern 

simulated by METRAS is linearly interpolated onto the grid of the UHIE dataset.  

 

Table 5.7 shows the CORR values for the results of METRAS-36 and 

METRAS-10 simulations with and without the height correction described in 

Section 5.5.1. The METRAS-36 UHIs show higher CORRs than the METRAS-10 

UHIs. As mentioned in Section 5.5.1, this is most probably due to the spatial 

distribution of the urban surfaces and the more accurate reflection of urban surfaces. 

All CORRs are significant (at α = 0.1) in the METRAS-36 results. The highest CORR 

with 0.8 is obtained for the comparison between the uncorrected METRAS-36 results 

and the averaged temperature differences in the summer season. The CORR values are 

smaller for the height corrected pattern compared to the corresponding non-corrected 

patterns. When comparing with the UHIE pattern the uncorrected METRAS-36 pattern 

performs best and the METRAS-10 patterns show both weaker CORRs compared to 

their corresponding METRAS-36 patterns. Due to the large number of data points 

available for UHIE, all CORR values are significant (at α = 0.05). 
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Table 5.7: CORR values determined for the comparison of different observational data 
with the numerically simulated mean strong UHI patterns with and without height 
correction produced with METRAS-10 and METRAS-36. Statistically significant 
results are indicated with (*) for α = 0.1 and with (**) for α = 0.05. 

METRAS-36 METRAS-10 
Comparison 

data without height 
correction 

with height 
correction 

without height 
correction 

with height 
correction 

Schlünzen et al. 
(2010) 

0.76* 0.74* 0.65 0.64 

Schlünzen et al. 
(2010) JJA 

0.80* 0.75* 0.68 0.65 

Bechtel and 
Schmidt (2011) 

0.74** 0.72** 0.70** 0.69** 

 

The comparison with observed data can be used to identify the simulation that 

shows the best agreement with the observation. For the comparison with the observed 

UHI (Schlünzen et al., 2010), no significant CORR can be found. Therefore, Table 5.8 

lists only the CORR for the different simulations using uncorrected METRAS-36 

results in comparison with the UHIE dataset. All correlations are lower than the 

statistically recombined UHI pattern. This shows that more than one simulation has to 

be conducted to obtain the UHI pattern of Hamburg. The highest CORR (0.7) can be 

found for WP4M. This corresponds to the CORR calculated for the statistically 

recombined METRAS-10 results. The results again show that the use of the 36 surface 

cover classes improves the pattern of the simulated UHI. In addition, the WP4M 

simulation could be used for sensitivity studies regarding adaption measures, if only 

the UHI pattern is of interest. The lowest value for the CORR is found for WP4 as well 

(0.37). Hence, it cannot be concluded that WP4 generally produces a typical UHI 

pattern. The other CORR values range from 0.47 to 0.63. 
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Table 5.8: CORR values determined for the comparison between the UHIE pattern 
derived by Bechtel and Schmidt (2011) and the UHI patterns for the different 
METRAS-36 simulations without height correction. All values are statistically 
significant (at α = 0.05). 

Simulation name CORR 
WP1M 0.63 

WP1T 0.49 

WP2M 0.51 

WP2T 0.61 

WP3M 0.60 

WP3T 0.51 

WP4M 0.70 

WP4T 0.36 

WP5M 0.47 

WP5T 0.48 

WP6M 0.60 

WP6T 0.61 

WP7M 0.48 

 

5.5.3 Urban heat island in the future climate 

 

Future changes in the statistical-dynamically downscaled UHI pattern 

(Section 5.5.1) are determined calculating the statistical weights (Eq. 5.6 and Eq. 5.7) 

for each RCM (Section 5.5.2) for different periods. For present climate the period 

1971-2000 is chosen. For the future climate the two periods 2036-2065 and 2070-2099 

are used. CCAM results are only available for the periods 1971-2000 and 2070-2099. 

The two realizations of REMO and CLM projections are combined as done in 

Chapter 4. This accounts to some extent for the natural climate variability. Afterwards, 

the difference between the present UHI pattern and the future UHI pattern is 

calculated. Since the METRAS-36 simulations without height correction showed the 

best spatial agreement with measurements, these simulations are used for the 

calculations. Besides changes in the UHI pattern, the number of strong UHI days 

Nstrong (Eq. 5.2) might change as well. Hence, the annual Nstrong is calculated for present 

and future periods (Table 5.9). The statistical significance of these changes is 

determined using bootstrap re-sampling (N = 10000). The applied method assumes that 

the morphology of Hamburg does not change in a future climate. 
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Table 5.9: Annual number of strong UHI days Nstrong ( ruT   ≥ 3 K) in summer (JJA) 
for different RCM results and different periods. The two realizations of REMO and 
CLM are combined. Results are shown for non-corrected and bias corrected 
projections of REMO and CLM. Significant changes are indicated by (**) for 
α = 0.05. 

REMO CLM 

period without 
bias-

correction 

with 
bias-

correction 

without 
bias-

correction 

with 
bias-

correction 

CCAM 

1971-
2000 

16.3 22.2 10.2 24.6 47.7 

2036-
2065 

16.9 22.8 11.4 26.8 - 

2070-
2099 

17.3 26.8 15.4** 32.0** 55.1 

 

For the RCM data without bias correction, the changes in the mean strong UHI 

pattern for the future period 2036-2065 are presented in Figure 5.15. For both REMO 

and CLM the changes are marginal (Figures 5.15a,b). They show slight increases 

within the city. These changes are, however, below 0.05 K. Even though the pattern 

does not change, Nstrong slightly increases for both models (Table 5.9). These changes 

are not significant. Nstrong is underestimated by REMO and CLM for the present 

climate without-bias correction (ERA40 = 24.9 days). This is mostly due to biases in 

the variables used in the statistical model (Schoetter et al., 2012), which reduce the 

statistically modeled UHI. Hence, it is questionable if the statistical model, which is 

determined from observations, can be directly applied to uncorrected RCM results. For 

that reason, the bias-corrected data are used to investigate UHI changes. 

Figures 5.15c,d show changes in the UHI pattern for the bias-corrected RCM data. 

REMO shows nearly no changes at all, while the CLM pattern increases almost 

constantly over large parts of the city as well as over the surrounding rural areas. After 

the bias-correction REMO still underestimates Nstrong by 2.7 days for the present 

climate while the CLM result is very close to the value derived from the combination 

of ERA40 based WPs and observation based statistical model (Table 5.9). For REMO 

the absolute signal remains constant with +0.7 days for mid of the 21st century. The 

signal for CLM increases to +2.2 days. Nevertheless, both change signals are not 

significant.  
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a)      b) 

 
c)      d) 

 
Figure 5.15: Differences in the statistically-dynamically downscaled UHI pattern in 
summer (JJA) between the future period 2036-2065 and the present climate using 
uncorrected (a) REMO and (b) CLM and bias corrected (c) REMO and (d) CLM data . 
 

At the end of the century (2070-2099), the changes for the uncorrected REMO 

and CLM results are smaller than for the earlier period (Figures 5.16a,b). However, the 

number of strong days increases about +1 day for the REMO results and up to +5.2 

days for the CLM results. The latter increase is statistically significant and confirms 

the findings from Hoffmann et al. (2011; Chapter 3 of this thesis), who found an 

increase in the statistically modeled UHI for UHI > 4 K based on CLM results. CCAM 

results result in large changes in the UHI pattern (Figure 5.16e). In the western parts of 

Hamburg the UHI increases up to 0.13 K, which is about 10% of the maximum UHI 

intensity (~1.2 K) determined in Section 5.5.1. The area of the largest increases occurs 

over the river Elbe. This is due to the large influence of the water temperatures on the 

temperature pattern for some situations, which become more relevant in a future 

climate (e.g. WP4M). The increases in the surroundings of Hamburg indicate that the 

changes can partially be attributed to non-urban related features of some simulations, 

for example an east-west temperature gradient over the whole domain. In contrast to 

REMO and CLM, CCAM overestimates Nstrong (Table 5.9), which is due to a large 

negative bias in the relative humidity for the present climate. Bias corrected data are 

not available for CCAM. 



5 Statistical-dynamical downscaling for the urban heat island 
_____________________________________________________________________________________________ 

 95

 
a)      b) 

 
c)    d) 

  
 e) 

 
Figure 5.16: Differences in the statistically-dynamically downscaled UHI pattern in 
summer (JJA) between the future period 2070-2099 and the present climate using 
uncorrected (a) REMO and (b) CLM, bias corrected (c) REMO and (d) CLM data, and 
uncorrected (e) CCAM results. 
 

Using the bias-corrected data, the changes are smaller for REMO (Figure 5.16c). For 

CLM pattern changes are similar to the CCAM pattern (Figure 5.6e). This is mainly 

due to the increased weighting of the WP4M simulation, which is similar for CLM and 

CCAM. Hoffmann and Schlünzen (2012; Chapter 4 of this thesis) showed that the 

frequency of WP4 increases especially at the end of the century for CLM results. 

Additionally, the weight for the WP4T simulation does not increase, which means that 
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the statistically modeled UHI increases within WP4. For the uncorrected CLM results 

this is not the case. The bias correction also changes the signal of Nstrong from +5.2 

days to +7.2 days. The latter value corresponds to the change determined CCAM 

results. The REMO signal increased from +1 day to +4.6 days, which is still not 

statistically significant. 

 

5.6 Conclusions 

 

A statistical-dynamical downscaling method is developed and applied to 

downscale Hamburg’s UHI. It combines a WPC with a statistical UHI model to 

determine relevant weather situations, which are simulated with the mesoscale 

numerical model METRAS forced with ECMWF data. The final horizontal resolution 

of 1 km is achieved with a two-step nesting with an intermediate simulation on a 4 km 

grid. The 1 km simulations are conducted twice with a simple land-use classification 

and with much more detailed surface cover classes that account for the heterogeneity 

of surfaces within the city. The final UHI pattern is computed by a statistical 

recombination of the simulation results. Since this downscaling method involves 

simulations of real weather situations these results can be evaluated with observed data 

directly. 

 

Both the 4 km and the 1 km simulations are evaluated against DWD 

observations. Due to the poor coverage of measurements within the city a direct 

evaluation of the urban effects is not possible. For both resolutions the temperatures 

are underestimated while the relative humidity is overestimated. An influence of such 

biases on the UHI is possible and was derived with a statistical model, but should also 

be investigated in model sensitivity studies. Compared to evaluation studies 

summarized by Schlünzen et al. (2012c) simulations conducted in the present study are 

on average within the range of evaluation studies performed by other models. The 

variation between the evaluation results of the individual simulations are, however, 

high, such that some simulations show better results than the best evaluation results 

summarized by Schlünzen et al. (2012c). In general, the near ground temperatures are 

underestimated, while the relative humidity is overestimated. Furthermore, the finer 

resolution improves the flow field. The biases in temperature and relative humidity 

indicate problems with the surface water budget. The comparison between the 1 km 

simulations using 10 land-use classes and the new 36 surface cover classes shows that 

the biases are larger using the new 36 surface cover classes, likely due to the even 

larger values of initial soil water content in the new classes. This problem can partially 
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be solved by choosing the initial soil water content according to preceding dry days, as 

described in Schlünzen (2012 in preparation). 

 

The investigation of the simulated UHI, which is computed by subtracting the 

averaged temperatures of two rural grid points from each temperature value, shows 

that the intensity is lower than expected from the statistically modeled UHI. This is 

partially due to the different UHI definitions used for the statistical model (minimum 

temperature differences between single stations) and for the SDD (average night time 

temperature differences obtained from a 1x1 km2 grid). Also, the simple representation 

of urban surfaces in the applied METRAS version seems a reasonable explanation for 

the low UHI intensity. Processes in the urban canopy layer and, more importantly, 

anthropogenic heat release are not parameterized. Thompson (2008) implemented BEP 

in METRAS to simulate the urban climate of London, which lead to an increase in the 

UHI of about 1 K (Grawe et al., 2012 submitted). The inclusion of anthropogenic heat 

in METRAS by Grawe et al. (2011) for Hamburg increased the UHI intensity by up to 

1 K for one case study as well. In future studies both parameterizations could be 

included, because information about buildings within Hamburg became recently 

available (Schoetter et al., 2012 submitted).  

 

The analysis of the statistically recombined UHI pattern shows that the 

maximum UHI intensity (~1.2 K) is located in the inner parts of the city, including 

harbor areas. The UHI pattern is largely affected by water surfaces. Hence, water 

temperatures seem to be crucial when simulating the local climate for Hamburg. At the 

moment river temperatures are set using interpolated SST data. In further studies 

measured river temperature data from the Wassergütemessnetz (WGMN) could be 

used (Fock, 2012 in preparation). The SDD method also assumes that the difference 

between water temperatures and air temperatures remains unchanged in the future 

climate. To verify this, a river model should be coupled with transient RCM 

projections. 

 

The evaluation of the statistically recombined mean strong UHI (statistically 

modeled UHI ≥ 3 K) pattern for the present climate shows that it is well represented 

using the SDD technique. In particular the uncorrected METRAS results with 36 

surface cover classes show good correlations with the observational datasets. However, 

the employed observational datasets have some deficiencies. The observed temperature 

differences taken from Schlünzen et al. (2010) are only available for five stations over 

one decade. The UHI pattern based on plant species data is probably only a measure 

for the climatolgically averaged temperature and not for the nocturnal UHI. 

Observations conducted in the HUSCO (Hamburg Urban Soil and Climate 
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Observatory) project (Sandoval et al., 2010) could be used for model validation in 

future studies. At the moment, only a few months of measurements are available. In 

the future, also mobile measurements, conducted on buses of Hamburg’s public 

transport network will be available (Bechtel et al., 2012) and might help to determine 

the spatial distribution of the UHI.  

 

The future UHI is computed by applying the SDD method to regional climate 

projections from different RCMs. Thereby it is assumed that the morphology of the 

city does not change in a future climate. Since this will not be the case, a projection of 

the future surface cover should be considered. Daneke (2012) developed a model for 

land-use changes of Hamburg. With the projected land-use converted to the METRAS 

surface cover classes, the UHI changes can be determined with consideration of 

morphological changes. 

 

The UHI changes are determined for two 30-year periods. For the period 2036-

2065 the changes in the UHI pattern as well as changes in the number of strong UHI 

days do not differ significantly using the REMO and CLM projections. However, both 

models show biases in the statistically modeled UHI due to biases in the model 

variables. These biases are partially eliminated by bias correction described by 

Schoetter et al. (2012). This bias correction is applied for all values within each month. 

However, it is not clear if the model biases are similar for different WPs. If this is not 

the case biases may be corrected for each WP separately.  

 

The change in the UHI pattern is only slightly influenced by the bias correction. 

However, for strong UHI days the signal increased by +1 day for CLM. The changes 

in the signal can be expected since threshold based variables are sensitive to a change 

in the overall statistical distribution. For 2070-2099, CCAM projections for the A2 

scenario were additionally available. For CCAM the pattern of the UHI changes. 

CCAM shows an increase in the western parts of Hamburg by up to 0.13 K. This 

corresponds to some 10% of the simulated maximum UHI intensity (1.2 K). The bias-

corrected CLM results show similar changes, all other changes are small. The results 

also indicate that the pattern of the changes is affected by non-urban effects of 

individual simulations such as large-scale temperature gradients, probably due to the 

small number of simulations (13). The increase in the UHI intensity in CLM and 

CCAM is caused by an increase of UHI values within WP4 (large meridional pressure 

gradient and advection of dry air masses) and an increase in the frequency of WP4. 

The number of strong UHI days in CLM and CCAM increases significantly by up to 

7.2 days per year. The increase of 3.6 days for REMO is not significant. Nevertheless, 

together with the findings of Hoffmann et al. (2011; Chapter 3 of this thesis), who 



5 Statistical-dynamical downscaling for the urban heat island 
_____________________________________________________________________________________________ 

 99

show that the UHI days > 4 K increase significantly (by using a statistical UHI model 

in combination with the first realization of CLM), the results point to an occurrence of 

more strong UHI days in summer in the end of the 21st century. 
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6 Conclusions and Outlook 

 

In this study different downscaling methods are applied to quantify Hamburg’s 

urban heat island (UHI) in present and future climate. The observed UHI is defined 

here as the difference of minimum temperatures between one downtown and two rural 

stations. As mentioned by Stewart (2011), UHI definitions based on minima lack the 

synchrony of the measurements. This might lead to false estimations of the UHI, 

because temperature differences could be due to the different times at which they are 

measured. However, no long-term measurements with a higher temporal resolution 

(e.g. hourly) are available within the city. Therefore, the used definition is the best 

estimate of the UHI. 

 

Based on tests with different meteorological variables a simple linear statistical 

model for the UHI has been constructed using DWD observations of relative humidity, 

cloud cover, and wind speed. The performance of the model is comparable with 

statistical models derived for other cities (e.g. Kim and Baik, 2004; Wilby, 2008). 

Since the model is based on a multiple linear regression, a linear relationship between 

the predictand and predictor is assumed. To account for non-linear effects, artificial 

neural networks could be used to construct a UHI model as done by Mihalakakou et al. 

(2002) for Athen’s UHI. 

 

Future changes in the UHI are analyzed by applying the statistical UHI model 

to regional climate projections of the A1B scenario simulated with the regional climate 

models (RCMs) REMO and CLM. Results for the reference period 1971-2000 reveal 

bias of the RCM data. In particular for CLM results the statistically modeled UHI is 

largely underestimated. An evaluation study by Schoetter et al. (2012) confirmed these 

findings. Cloud cover and relative humidity are overestimated by CLM, which leads to 

lower modeled UHI values. REMO only shows larger biases for relative humidity. 

With bias corrected RCM results derived with a quantile-mapping method described in 

Schoetter et al. (2012), more realistic values for the statistically modeled UHI are 

achieved. Hoffmann et al. (2010) show that the bias correction only slightly affects the 

climate change signal based on the statistical model. Following REMO only two 

months (April and December) show significant changes in the UHI, while the UHI 

remains unchanged for the rest of the year in both mid of the 21st century and end of 

the 21st century. CLM results show decreases except for the summer months July and 

August, where the UHI significantly increases (0.1-0.4 K) for both future periods. 
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The statistical downscaling does not give any information regarding spatial 

changes in the UHI. Therefore, an SDD method has been developed for Hamburg’s 

UHI. The method is based on a combination of a weather pattern classification (WPC), 

a statistical model of the UHI and high-resolution (1 km) numerical simulations 

conducted with the mesoscale numerical model METRAS. Investigations realized 

within COST733 showed that no best WPC method exists (e.g. Huth, 2010; Beck and 

Philipp, 2010; Cahynová and Huth, 2010) and that the WPC should be constructed 

with respect to the target variable (Huth et al., 2008). Hence, a WPC focused on 

Hamburg’s UHI has been constructed. This is done by testing different k-means based 

cluster algorithm, different classification domains and variables using ERA40 

reanalysis data. The problem to determine the optimal cluster number is addressed by 

applying different statistical measures. Nevertheless, in some cases the cluster number 

still has to be set subjectively, e.g. if different measures give different optimal values. 

To avoid seasonality of the resulting WPs the WPC is constructed for each season 

separately. The final WPC is constructed by clustering the 700 hPa ERA40 fields of 

four different variables simultaneously (geopotential height, relative humidity, relative 

vorticity, and thickness). These WPs are than determined in the A1B projections of 

REMO and CLM for summer. The frequency of the anticyclonic WP, which is 

associated with high UHI values, does not change in the future climate whereas the 

frequencies of two other WPs change significantly. The changes in the frequency of 

WPs are similar for both models at the end of the century. This might be due to the 

forcing GCM, which is the same for both RCMs. To verify the similarity in changes of 

the WPs, additional projections from different RCMs and different RCM-GCM 

simulations should be used. Such data are available from the ENSEMBLES project 

(van der Linden and Mitchell, 2009). In the present study the number of WPs is kept 

constant throughout the climate projection. However, new WPs might occur in the 

future (Belleflamme et al., 2011) or rare WPs might become more important 

(Kreienkamp et al., 2010). This could be investigated by clustering the RCM results 

for the present climate and the future climate separately or by clustering the whole 

time series of the climate projections. 

 

The resulting 7 WPs for summer explain about 18.6% of the UHI variance, 

which is too small to identify relevant days for the UHI. Hence, a combination of WPC 

and statistical model is used to determine the relevant days for a strong UHI 

(statistically modeled UHI ≥ 3 K) that are simulated with METRAS. The simulations 

conducted in a two step nesting are forced by ECMWF analysis data. Since the high 

resolution data are only available from 2006 onwards, the relevant days are selected 

for summer in the period 2006-2010. For the SDD method it would be optimal, if the 

days would be selected from the period 1985-1999, since the statistical model as well 
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as the simulations can be directly compared with observations from the downtown 

DWD station St. Pauli and the rural DWD station Grambek. However, to reach the 

resolution of 1 km using the ERA40 reanalysis as forcing additional nesting steps with 

a coarser scale model would have to be carried out, which would lead to considerable 

additional computing effort. 

 

Using analysis data instead of RCM data as forcing allows evaluating how well 

METRAS simulated the individual situations. The evaluation of both 4 km and 1 km 

simulations show that METRAS performs well compared to other evaluations studies 

summarized by Schlünzen et al. (2012c). The positive bias in relative humidity and the 

negative bias in temperature are probably due to the too high initial soil water content 

given for the surface cover classes. The results could be improved by choosing the soil 

water content according to the number of preceding days without precipitation.  

 

The mean strong summer UHI pattern has been computed by statically 

recombining the simulation results. The intensity of the resulting UHI is 

underestimated by 2-3 K compared to the statistically modeled UHI intensities. This is 

due to the different definitions of the numerically modeled UHI (average night time 

temperature differences) and the statistically modeled UHI (minimum temperature 

differences), the resolution of the model results (temperature values represent the 

temperature of a 1x1 km2 grid), and due to the relative simple representation of urban 

surfaces. An urban canopy parameterization and anthropogenic heat are not included in 

the present simulations. Based on findings by Grawe et al. (2011) and Grawe et al. 

(2012 submitted) these differences are probably in the order of 1-2 K. Therefore, the 

implementation of anthropogenic heat and an urban canopy parameterization are more 

important than improving the SDD method. A large comparison study conducted by 

Grimmond et al. (2011) showed, however, that no single best parameterization exists 

and that either the net fluxes are well simulated or just of part of the energy balance 

(e.g. short wave radiation). Hence, it has to be carefully tested if the results with an 

urban parameterization are right for the right physical reasons.  

 

In contrast to the UHI intensity, the UHI pattern is quite well represented using 

the SDD method. Significant correlations are found for the comparison of the UHI 

pattern, determined with the newly developed 36 surface cover classes: they correlate 

well with temperature observations within the city (Schlünzen et al., 2010) and with 

UHI proxies based on floristic mapping (Bechtel and Schmidt, 2011). However, both 

comparison datasets have their limitations. For an optimal evaluation a larger number 

of meteorological measurements within the city are needed. Within the next years such 

dataset will become available for Hamburg. For example, in the HUSCO project 
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within the cluster of excellence CliSAP additional measurements in the urban areas are 

conducted (Sandoval et al., 2010). Furthermore, mobile measurements conducted on 

buses of Hamburg’s public transport network are currently carried out within CliSAP 

(Bechtel et al., 2012). The investigation of the UHI patterns of the single simulations 

reveals that some simulations are also quite good correlated with the observations 

(correlation coefficients of up to 0.7). However, the correlation coefficient for the 

statistically recombined pattern is still larger (0.74). This indicates that more than just 

one simulation should be conducted to obtain a representative UHI pattern. 

 

An important outcome of the current study is that the simulated UHI pattern is 

also impacted by non-urban effects. Large water bodies such as the river Elbe or the 

Alster lake cool only slowly at night and affect their surroundings. Hence, the 

influence of water bodies should be further analyzed. Also the elevation differences 

within the city and the Geest hillside seem to have an effect on the nocturnal 

temperatures. 

 

Results for the future UHI are conducted by applying the SDD method to 

regional climate projections from three RCMs. The climate signals are depending on 

the RCM used. REMO (A1B scenario) results indicate only a slight non-significant 

increase, whereas CLM (A1B scenario) results indicate larger increase for both mean 

UHI pattern and strong UHI days. For the end of the century, the mean strong UHI 

pattern increases up to 0.13 K (some 10% of the simulated maximum UHI intensity) in 

the western parts of Hamburg and the number of strong UHI (≥ 3K) days increases by 

7.2 days. The regional climate projections from CCAM for the A2 scenario, which are 

forced by a different GCM, agree with the results from CLM (A1B scenario) for the 

end of the century. 

 

For all applied downscaling methods it is assumed that the relationship between 

the UHI and the predictors (local variables and WPs) will not change in a future 

climate. This might not be valid, because it would assume that Hamburg itself will not 

change over the considered time span, which is unlikely. Daneke et al. (2011) shows 

that between 1960 and 2005 the urbanized area increased and, therefore, also the 

potential for the UHI. Changes in the city structure could be considered by simulating 

the relevant days with future projection of Hamburg’s surface cover produced by 

Daneke (2012 in preparation). If anthropogenic heat will be included in the simulations 

scenarios for the future energy consumption have to be developed as well. 

 

From the results of both downscaling methods it can be concluded that the UHI 

remains unchanged in the future or even increases for the summer months in the A1B 
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scenario, if Hamburg does not change. These findings are in agreement with studies 

conducted for the UHI of London (Wilby, 2003; 2008, increase) or New Jersey 

(Rosenzweig et al., 2005, unchanged) UHI. In addition, Früh et al. (2011a,b) show that 

Frankfurt am Main itself does not have an influence on the climate change signal for 

summer days (Tmax ≥ 25°C) as well as beergarden days (T at 8 pm ≥ 20 K). For 

Hamburg these results imply that in addition to the temperature increase of about 2-

3 K (Daschkeit, 2011) projected for Northern Germany at the end of the century also 

the UHI effect has to be considered. It will not be reduced in a future climate but be at 

least as intense as today when focusing on the summer season. Thus, the number of 

tropical nights (Tmin ≥ 20°C) could increase due to the presence of the UHI, which 

should be investigated further. On the other hand, the persistence of the UHI in a 

future climate opens opportunities for climate change adaptation. By reducing the UHI 

of Hamburg, climate changes can at least in the currently very warm parts of the city 

of Hamburg be partially mitigated. 

 

The present study only focused on the Hamburg’s UHI. Yet, the conducted 

simulations could be analyzed with respect to the urban impact on the humidity as 

well. The meteorological conditions favorable for the UHI are similar to the conditions 

favorable for the so-called urban moisture excess (UME) (e.g. Kuttler et al., 2007). 

With regard to climate adaptation it is also helpful to analyze biometeorological 

indices such as the perceived temperature (PT; Jendritzky et al., 2000; Staiger et al., 

2011), the physiological equivalent temperature (PET; Höppe, 1999) or the newly 

developed universal thermal climate index (UTCI; Kampmann and Bröde, 2009; 

Blazejcyk et al., 2011; Kampmann et al., 2011). Currently, 250 m simulations with 

METRAS, downscaled from the 1 km simulations conducted in this study, are offline-

coupled with building energy parameterization (BEP) and analyzed with respect to PT 

by Schoetter et al. (2012 submitted). 

 

The downscaling methods for the UHI developed in this study can also be 

applied to other cities, if there are observations available within the urban areas. 

Otherwise, a statistical UHI model cannot be constructed. The meteorological 

variables used for a statistical model might differ for cities in different climates. 

Consequently, the necessary variables need to be identified before constructing a 

statistical model. Also the variables used to classify the WPs may be different, 

especially in the tropics, where the wind patterns are more important than the pressure 

or geopotential height patterns. To conduct numerical simulations for other cities high-

resolution land-use or surface cover data should be available. 
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Using the general concept of the developed SDD method, downscaling 

methods for other variables such as wind or precipitation. Both a new WPC and a new 

measure for the strength of the variables would have to be determined. For wind speed 

local wind observations could be used to subdivide the WPs according to the strength 

of the wind (Najac et al., 2011). For precipitation convective indices such as 

convective available potential energy (CAPE) or moisture measures such as 

precipitable water (PW) could be used. Martens (2012) used the WPC, constructed in 

this study, to simulate the climatological spring for Northern Germany for the period 

1982-2011. He simulated only the situations which are closest to the cluster center of 

each WP. The comparison with DWD observations shows a good agreement for the 

selected days, but little agreement with the climatological frequency distribution. The 

number of simulations was too low to capture the frequency distribution of the climate 

variables. Najac et al. (2011) also showed that the number of simulations is important 

for the results of a SDD method. Hence, if the whole distribution of the target variable 

is of interest the number of situation should be larger than in the present study. 
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List of relevant Symbols 
 
a - parameter of the (multiple) linear regression 

fa  - parameter used to calculate the nudging coefficient 

b - parameter of the (multiple) linear regression 

BIAS - average deviation of model results and measurements 

c - parameter of the multiple linear regression 

CC - cloud cover 

Ci - ith cluster 

CO - cooling rate 

CORR - correlation 

cov - covariance 

cp - heat capacity 

d - parameter of the multiple linear regression 

D - uncertainty range 

Diffmax - average difference between max)( ruT   and ruT   

DiffThres - average difference between ThresruT )(   and ruT   

ECV - explained cluster variance 

ED - Euclidian distance 

EDnew - Euclidian distance to the new cluster 

EDold - Euclidian distance to the old cluster 

f - Coriolis parameter 

f(WP)c - weather pattern frequency in current climate 

f(WP)f - weather pattern frequency in future climate 

FF - wind speed 

GP - geopotential height 
hθ - depth of the daily temperature wave 

HITR - hitrate 

I  - solar constant 

k - cluster number/ weather pattern number 

ks - thermal diffusivity 

K - maximum number of clusters 

Kvert - vertical exchange coefficient for momentum 

Kvert,S - vertical exchange coefficient for scalar quantities  

l21 - enthalpy of vaporization 

ln - mixing length for neutral stratification 

L - Monin-Obukhov length 

M  - model mean 
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MaxCorr - maximum of correlation between the cluster centers 

Mi - ith model result 

MinSED - maximum of the squared Euclidian distance between the cluster 

centers 

N - sample size and number of resampling steps 

fN  - parameter used to calculate the nudging coefficient 

Nstrong - number of strong UHI days (statistically modeled UHI ≥ 3 K) 

O  - observation mean 

Oi - ith observation 

P - acceptance probability  
1
1q  - specific humidity 

q 1s
1  - specific humidity at the surface 
1
1satq  - saturated value of specific humidity 

*q  - scaling value for specific humidity 

R² - explained variance 

RH - relative humidity 

Ri - Richardson number 

RMSE - root mean square error 

SED - squared Euclidian distance 

T - temperature 

TH - relative thickness between 1000 hPa and 700 hPa 
Tmin - daily minimum temperature 

TS - surface temperature 

)( hTs   - deep soil temperature 

TSS - total sum of squares 

u - velocity in east-west direction 

*u  - friction velocity 

v - velocity in north-south direction 

var - variance 

VO - relative Vorticity 
w - vertical wind component 

WK - saturated soil moisture availability 

Wmax - weightings for the maximum urban heat island day 

WSS - within-cluster sum of squares 

WThres - weightings for the threshold urban heat island day 

x - data object 

X - meteorological variable 

z - cluster centroid 
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z - height 

Z - Fisher z transformed correlation 

Z  - average Fisher z transformed correlation 

Z(t) - zenith angle 

z0 - roughness length 

α - significance level 

α0 - Albedo 

q  - bulk soil water availability 

δ - weighting factor 

Δt - model time step 

ruT   - urban-rural temperature differences 

WPruT )(   - average ruT   per WP 

max)( ruT   - maximum ruT   

ThresruT )(   - threshold ruT   

WP  - change of weather pattern frequency 

ε - modeled unexplained variance 

̂  - correction factor for radiative flux at the surfaces 

*  - scaling value for temperature 

κ - von Karman constant 

 - parameter in the shortwave radiation budget 

ν - nudging factor 

0  - initial nudging factor 

νS - thermal conductivity 

  - Stefan-Boltzmann constant 

M  - standard deviation of model results 

O  - standard deviation of observations 

h  - stability function for scalar quantities 

m  - stability function for momentum 

f  - model variable after forcing 

l  - variable of forcing data 

m  - model variable 

ρ0 - density of the air 
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List of Abbreviations 
 
A1B - SRES emission scenario 
A2 - SRES emission scenario 
AH - Ahrensburg-Wulsdorf (DWD station) 
AR(1) - first order autoregressive process 
ATKIS - Official Topographic-Cartographic Information System 
BEP - building energy parameterization 
CAPE - convective available potential energy 
CC - cluster center 
CCAM - Conformal Cubic Atmospheric Model 
CliSAP - Integrated Climate System Analysis and Prediction 
CLM - Climate Local Model 
DWD - Deutscher Wetterdienst (German Meteorological Service) 
ECHAM4 - 4th generation European Centre/Hamburg Model 
ECHAM5 - 5th generation European Centre/Hamburg Model 
ECMWF - European Centre for Medium-Range Weather Forecasts 
EIT - Ellenberg indicator values for temperature 
EM - Europa-Modell 
ERA40 - 40-year ECMWF re-analysis 
ERA-INT - ERA-Interim re-analysis 
FU - Hamburg-Fuhlsbüttel (DWD station) 
GCM - global climate model 
GFDLcm2.0 - Geophysical Fluid Dynamics Laboratory coupled model 2.0 
GLS - generalized least squares 
GR - Grambek (DWD station) 
HadSST - Met Office Hadley Centre's sea ice and sea surface temperature 
dataset 
HH - Hansestadt Hamburg (Hanseatic City of Hamburg) 
HUSCO - Hamburg Urban Soil and Climate Observatory 
IMGW - Institute of Meteorology and Water Management 
KNMI - Royal Netherlands Meteorological Institute 
LAM - local area model 
LM - Lokal-Modell 
LST - local sun time 
METRAS 1km - METRAS with 1 km horizontal resolution 
METRAS 4km - METRAS with 4 km horizontal resolution 
METRAS - Mesocale Transport and Fluid Model 
METRAS-10 - METRAS using 10 land-use classes 
METRAS-36 - METRAS using 36 surface cover classes 
MPI - Max-Planck-Institute for Meteorology 
MPIOM - Max-Planck-Institute Ocean Model 
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NE - Hamburg-Neuwiedenthal (DWD station) 
NOAA - National Oceanic and Atmospheric Administration 
OISST - Optimum Interpolation Sea Surface Temperature Analysis 
OLS - ordinary least squares 
PET - physiological equivalent temperature 
PT - perceived temperature 
PW - precipitable water 
RCM - regional climate model 
REMO - Regional Model 
SANDRA - simulated annealing and diversified randomization 
SDD - statistical-dynamical downscaling 
SP - Hamburg-St. Pauli (DWD station) 
SRES - Special Report on Emissions Scenarios 
SST - sea surface temperature 
STAR - statistical analogue resampling scheme 
SYNOP - meteorological station with hourly measurements 
TEB - town energy budget 
UHI - urban heat island 
UHIE - Ellenberg based urban heat island values 
UME - urban moisture excess 
UTC - universal time coordinated 
UTCI - universal thermal climate index 
WA - Hamburg-Wandsbek (DWD station) 
WETTREG - Wetterlagen-basierte Regionalisierungsmethode 
WGMN - Hamburger Wassergütemessnetz 
WMO - World Meteorological Organization 
WP - weather pattern 
WPC - weather pattern classification 
WRF - Weather Research and Forecast Model 
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