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Chapter

Introduction

Mirror symmetry is an ample and far reaching phenomenon origigat
from string theory which continues to have a deep impact on ragegs of
mathematics to this day. It originated from the observatianstring theory
suitably compactified on two different Calabi-Yau threefofday neverthe-
less induce the same superconformal field theory. Since theaagpce of
the seminal paper by Candelas, de la Ossa, Green and ParkesG@za],
which allowed to deduce previously unknown enumerative@sger quin-
tic threefolds, mathematicians got attracted by mirror symneetrg math-
ematical discipline on its own.

1.1. Classical toric mirror symmetry and natural generalizations

Much has been done since then, but Batyrev's work on hypfcss in
toric varieties [Ba] is not only largely considered the fipstrely mathe-
matical manifestation of the phenomenon, but also one of the popstlar
and recognized approaches, supposedly because of its atoridghnature
and the fact that it is so handy to compute with. Around the same t

1



1.1. Classical toric mirror symmetry and natural generaliresti 2

Berglund and Hibsch [BeHu] presented another explicit micamstruc-
tion which remained almost unnoticed by mathematicians for maaysy
Although the spaces in which they consider Calabi-Yau hgyéaces are
toric varieties as well, most of them have more complicatedusargies
than those in the work of Batyrev. Recently there have beere raad
more papers devoted to the construction of Berglund and Hhjlsse for
instance [Bori], [ChRul], [ChRu2] or [Kra]. However, theiea certain
controversy in the current literature about what the retatietween the two
constructions is. Some authors that a ‘vast range of casest isovered by
Batyrev’s construction [ChRul, p.2], while others notet tifvere might be
a generalized setup in which they can both be understood] [Hdvis sug-
gests that mirror symmetry for hypersurfaces in toric vargeigenot fully
understood yet and it is one of the aims of this thesis to giahié relation
between known approaches.

On the other hand, mirror symmetry has been suggested both bgmaiih
cians and physicists to extend to a correspondence betvwaenvarieties
and Landau-Ginzburg models, see for instance [ChOh], [FOO[T],
[HoVa). Purely mathematically a Landau-Ginzburg model is acompact
Kéhler manifold with a holomorphic function called the supegmtial. The
majority of literature deals with toric varieties, where asplécit construc-
tion of the mirror was known for a long time. The work of AurouwxatZarkov
and Orlov on mirror symmetry for del Pezzo surfaces [AuKaOr]ereha
mirror is constructed by an ad hoc construction, presenteasaeption to
this. However, the program proposed by Gross and Siebesribil],[GrSi3]
presents a framework for mirror symmetry that vastly exceedseilen of
toric geometry, but has not yet been adapted to incorporaséme/Eandau-
Ginzburg correspondence. Another goal of this thesis isttoduce a gen-
eralized approach to Landau-Ginzburg mirror symmetry withis pro-
gram.



3 Introduction

1.2. Main results of thesis

1.2.1. Calabi-Yau varieties inQ-Gorenstein spaces and mirror sym-
metry. Given a lattice polytop&, a well known theorem of Batyrev asserts
that a=-regular anti-canonical hypersurfagein the toric varietyPs; asso-
ciated to the normal falt of = is Calabi-Yau if and only i is a reflexive
polytope. In that casBsy; is a Gorenstein Fano variet¥-regularity means
that X intersects every toric stratum smoothly in codimension ortkin
Newton polytope equalS. However,X can be Calabi-Yau even if it inter-
sects strata non-smoothly or has a smaller Newton polytope.

Almost reflexive polytopes and singular Calabi-Yau varietes. We
will carefully analyze the case whéby: is only Q-Gorenstein and study
various properties of such toric varieties. It turns out tha right notion to
consider is that of aalmost reflexive polytopé\n almost reflexive polytope
© is defined by the property that the integral points of its pplaytope©*,
aQ-lattice polytope in general, span a reflexive polytope ngshis notion,
we prove the following generalization of Batyrev's theorabove.

THEOREM 1.1 (Theorem 2.25).Let © be a lattice polytope and denote its
fan of cones over faces By . Moreover, letX C Ps be a general anti-
canonical hypersurface in th@-Gorenstein toric varietf’s,, associated
to Xe. ThenX is a Calabi-Yau variety if and only ¥ is almost reflexive,
thatis if and only if the integral points of the anti-canoalipolytope of Py,
span a reflexive polytope.

Let us explain the relationship between this theorem andabioye men-
tioned result by Batryrev. I® is almost reflexive, it follows that it is canon-
ically embedded into a reflexive polytog® called the associated reflexive
polytope. The fan of cones over faces®fis denoted>g. Choosing a
maximal projective triangulation & yields a fanX that is a common re-
finement of bothg andXg. Thus we get the following diagram of toric
morphisms.
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P=

/ X
Psq Py

By Batryrev's result 8" -regular anti-canonical hypersurfate C ng

is Calabi-Yau and it is known that is crepant, sa)* (Y") is Calabi-Yau as
well. By our theorem the imag¢(*(Y")) is Calabi-Yau as well. On the
other hand, we will see that is crepant on anti-canonical hypersurfaces,
so for X as in the theorenp(¢* (X)) is also a Calabi-Yau variety. Thus
Theorem 1.1 does not give genuinely new Calabi-Yau vasghet instead
shows precisely to which extend we can torically blow ddnsuch that

a general anti-canonical hypersurface remains Calabi-Yau.

Theorem 1.1 turns out to have some impact on toric mirror symmeily a
we will give two major applications of it.

Berglund-Hubsch mirror symmetry in the Batyrev setup. Firstly,
we show how to incorporate the approach of Berglund-Hibsbth the
framework of Batyrev mirror symmetry. A considerable step taisehis
has also been achieved by [Bori], whose work is independemirs.
A polynomial of Berglund-Hubsch typé’ is a quasi-smooth anti-canonical
hypersurface in am-dimensional weighted projective spaéw) having
preciselyn + 1 monomials. Denoting the zero set Bf in P(w) by X,
the results of [BeHu] show thaX is a Calabi-Yau varietyP(w) is aQ-
Gorenstein toric variety with fab,, in some latticeNg. By Theorem 1.1
we thus know thafX' can only be Calabi-Yau if the spah of ray genera-
tors of X2y, is an almost reflexive polytope. As before, denote the reftexiv
polytope associated by © and the fan of cones over faces of a maximal
triangulation of© by .
Next, choose a grou@’ of automorphisms ofV acting diagonally on the
coordinates oP(w). A central result of Berglund and Hiibsch says that the
spaceX/G is a singular Calabi-Yau and admits a full crepant resolution
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Xw := X/G forn = 4. While it is well known that dividing by cer-
tain group actions corresponds to passing to sup-latticésric geometry,
see [Ba], this knowledge was never applied to the Berglutitisdh setting.
We show that the choice @ corresponds to a sup-lattidé of N, so that
X/G is given by viewingZ,, as a fan inN. We can now use the toric
morphism¢ : Py — Py = P(w)/G from above to pull backs/G to

PP5, which turns out to be the Calabi-Yau manifald, .

FromW andG one can explicitly construct a dual polynomid* and a
dual groupG". W* defines a Calabi-YaX * in another weighted projec-
tive spaceP(w*) with fan X,,«, whose span of ray generators will be an
almost reflexive polytopw the same arguments as above. The Calabi-
Yau manifold Xy« := X*/G" will then analogously be the pull-back of
X*/G" via a morphismp* : Pg.
theorem of [BeHu] asserts thafy, and Xy« are mirror Calabi-Yau. By

— Py for some fan>*. The main

observing that the associated reflexive polytepe Z is the polar polytope
of © D © we obtain the following theorem.

THEOREM 1.2 (Theorem 3.19).A Berglund-Hubsch mirror paiXyy and
Xw+ is an explicit choice ofspecialhypersurfaces i’ and P, that
is in toric varieties associated to maximal projective trgalations of four-
dimensional reflexive polytop€and= := ©". Moreover, there are poly-
nomial deformationy” of Xy andY ™ of Xy« that form a mirror pair in
the sense of Batyrev [Ba].

As an immediate corollary of this theorem, which is not cleanftbe orig-

inal construction, we see that the mirror of a Berglund-HuabSalabi-Yau
)/(75 does, up to polynomial deformations, not depend on the chdice o
W. Another implication is that whefV is of Fermat type, then by The-
orem 1.2 the Berglund-Hubsch mirrorpsecisely the samas the Batyrev
mirror, that is for Gorenstein Fari®(w) and their quotient®(w)/G the

two constructions coincide.

Mirrors for generalized Borcea-Voisin threefolds. As a second ap-
plication of Theorem 1.1 we present a general scheme for findirrors of
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the following class of Calabi-Yau threefolds. LEtbe an elliptic curve with
automorphism of orderp and letX be aK3 surface with automorphism
o of orderp, acting as—1 on a generator off2:%(X), for p = 2, 3,4, 6.
Then there is a Calabi-Yau resolution

Y — X X E/(0 X4),

which is called ageneralized Borcea-Voisin threefolBorp = 2 this con-
struction was discovered independently by Borcea [Bord] wisin [Vo].
Both autors showed that, except for eleven special casesntiior of a
Borcea-\oisin threefold is again such a threefold.

While forp = 4,6 it is an active field of research pursued by M. Arte-
bani, S. Boissiére and A. Sarti, to find all possible p&ik§ o) as above,
for p = 3 this classification is known by the results of [ArSa]. The kor
of Dillies [Di] shows that not a single generalized Borceaisih threefold
for p = 3 can be mirror to another such threefold. Moreover, Garbagnat
and van Geemen [GavGe] and Rohde [Roh] show thap fer 3 there are
examples without mirror.

So this case substantially differs from the constructiangfo= 2, and to
our knowledge so far no one has proposed a mirror construfdiothese
generalized Borcea-\oisin threefolds. We show that oftés possible to
find a singular model for a pa{tX, o) as a hypersurface in@-Gorenstein
weighted projective space of dimension three. Whenever tigshY” can
also be realized as hypersurface in a toric variety. To makestatement
more precise denote I8 := {z € H2(X,Z)|o*(x) = z} the fixed lat-
tice in the K’ 3-lattice, wheres™ is the induced action on cohomology. We
have to define the following two discrete invariants to staie theorem.
The first is defined byn := (22 — rank(S7))/2. For the second invariant
note that from the dual latticeS?)* := Homy(S7,Z) we can construct
the so called discriminant groui“)*/S?, which is known to be of the
form (S9)*/S° = (Z/2Z)* for somea. Using this notation, we have the

following theorem.

THEOREM1.3 (Theorem 3.30)Let X be aK 3-surface with non-symplectic
automorphisne of orderp = 3 and discrete invariantém, a) as in Table 1



7 Introduction

in section 3.3.2, then the generalized Borcea-Voisin fotdé” associated
to X is given by a hypersurface in a toric variety. A mirror fBrcan there-
fore be obtained by applying the mirror symmetry constarctif Batyrev.

1.2.2. Ageometric framework for Landau-Ginzburg models. Next
we present a way to naturally incorporate the Fano/LandaabBrg cor-
respondence into the mirror symmetry program proposed by Grods
Siebert [GrSi1],[GrSi3]. With some minor changes the progcam be ap-
plied to toric degenerations of varieties with effectivéi-aanonical bundle.
Doing so gives a non-compact variety as mirror right away aadéy point
is to construct the superpotential. We will sketch this ¢artdion briefly.

Broken lines and superpotentials up to orderk. Let (7 : £ —
T,9) be a toric degeneration of Calabi-Yau pairs over the speciuof
a discrete valuatiok-algebra, such that the generic fici®,,®,) con-
sists of a complete varie@n and a reduced effective anti-canonical divisor
9D, C X,. Furthermore assume that the toric degeneration is polarized
and denote by B, 2, ¢) the polarized intersection complex as described
in [GrSil]. In this situation we can apply the discrete Ledyentransfor-
mation, which is at the heart of the mirror symmetry construdtipiGross
and Siebert. Denote the discrete Legendre dual dateRhy?, ). As
B is compact with boundary in this situation, the dual b&ewill be
non-compact. Choosing gluing data a8, 7, ¢), by methods described
in [GrSi3] one can construct a schem® from this set of tropical data.
ThesuperpotentialVy of X to order zerais then defined as follows. Let
o € & be an unbounded maximal cell. Then for each edge o it can be
shown that there is a unique monomidt« , subject to certain conditions,
that points in the unbounded directionwf Then the sum

WO (o) := Z zMe

over all such monomials defines a function on the compofentC X
and glues to a regular functiah™® € O(X,). We have the following result
for WO:
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THEOREM 1.4 (Proposition 4.9).W9 is proper if and only if the induced
morphism® — T is a toric degeneration of Calabi-Yau varieties. In this
casedB is a smooth affine manifold and all unbounded one-dimensiona
strata of B are parallel.

To define the superpotential to higher orders, recall theleupertain max-
imal degeneracy assumptions one can canonically construetl aafic de-

generationr : X — Speck[[t]] from (B, &, ¢), which exhibitsXq as

central fibre, by an explicit algorithm found in [GrSi3]. Moprecisely we
obtain a sequence of compatible structute$, ), >0 andk-th order defor-
mationsX}, — Speck]t]/(t*+1) with limit 7. For a given structurey, a

broken linemorally speaking is a proper continuous map

B:(—00,0] » B

with endpointp = 3(0) that allows to trace a monomial™ that comes
in from infinity. Each time8 changes chambers of}, it possibly changes
direction and picks up a coefficient in a specific way that eetpthe struc-
ture. g is allowed to have finitely many such “break points”. The dii@t
B hits the pointp from is denoted byn g, the respective coefficient hys.
Now for generap in a chambew the superpotentialV’* up to orderk can
locally be defined by the following sum over all broken lineslig inp

wk .= Z agz™b.

This is well-defined, as we can show that this definition isspehdent of
the choice ofp and compatible with changing strata and chambers’pf
Hence we get a global regular functitvi* ¢ Ox,, and thus a superpoten-
tial W := limg, Wy, € O(%) for X. The pair

(X — SpecKk|[t]], W)

is what we call the Landau-Ginzburg model of the toric degetnen (7 :

X — T,9). To compute such Landau-Ginzburg models in practice can
be very hard to achieve. However, if has parallel unbounded one-cells
and a finite scattering diagram locally on bounded cells, averove a key
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lemma suggested by Gross, that greatly reduces the numberkeiines
one has to consider.

Reflexive polytopes and proper superpotentialsWe present two
applications of our construction of Landau-Ginzburg modkkt are di-
rectly related to reflexive polytopes.

First, let© C Ng be a full-dimensional reflexive polytope such that the
toric varietyPs, associated to the falig of cones over proper faces of
© is a smooth toric variety. Recall that the so called Hori-\&iperpoten-
tial [HoVa] of Py with its anti-canonical polarization is

W(z1,...,xn) = Z A

pPEXE(1)
wherez; are coordinates on the tor¢€*)™, n,, denotes the generator of
the rayp andz™r is the usual multi-index notation. Then to any sugh
we can construct a polarized tropical affine manifoll, 22, ¢) such that
all unbounded one-dimensional cells Bf are parallel . By running the
reconstruction algorithm from [GrSi3] fofB, £, ¢) we therefore get a
toric degeneratio¥ — Speck([[¢]], which has a proper superpotentil
by Theorem 1.4. Moreover, we have the following result

THEOREM 1.5 (Theorem 5.4).Let (X — Speck|[t]], W) be the Landau-
Ginzburg model associated to a bgd®, &, ) obtained from am-dimen
sional reflexive polytop®. Then there is an open subset

U = Speck|[t]][z1,...,zn] C X

such that

Wy = < Z xnﬂ) - t.
PEX(1)
Thus W |y is the Hori-Vafa mirror of the anti-canonically polarizedito
varietyPs, timest.

In a second application we make a first step towards undeiatarie
project pursued by Coates, Corti, Galkin, Golyshev and Kagan [CoCo]
within the LG-model framework presented here. In this profeetauthors
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give an algorithm that produces a Laurent polynorfiiafrom certain three-
dimensional reflexive polytopé3 that we callfully decomposabldn most
cases such®’ corresponds to a Fano manifokd However, this procedure
does not have an underpinning geometric construction, brksyourely al-
gebraically. We sketch a geometric procedure in terms of tis$8iebert
program that conjecturally recovers their results andyéhris in an explicit
example.

Toric degenerations of del Pezzo surfaced\Next, we study toric de-
generations for del Pezzo surfaces. DenotelBy the del Pezzo surface
obtained from blowing ugP? in k general points. We ca(lX — 7,9) a
distinguishedoric degeneration of del Pezzo surfaces if it is simple;irre
ducible,® is relatively ample ovefl” and the generic fibr®,, is an anti-
canonical divisor in the Gorenstein surfaég. Then we have the following
uniqueness result.

THEOREM1.6 (Theorem 5.19)Jf (7 : £ — T, D) is a distinguished toric
degeneration of del Pezzo surfaces with non-singular dgefiiere, then the
associated intersection complé®, &) is unique up to isomorphism.

Moreover, we explicitly study the unique baggs, ). Note that by def-
inition the generic fibret,, is isomorphic tdP! x P! or dPy, for k < 3,

so this is a statement about toric degenerations of toric eetdsurfaces.
To show that our approach is not limited by toric geometry we aaepx-
amples of Landau-Ginzburg models for toric degenerationsselyeneric
fibre is isomorphic tal Py, for k > 4, where interesting phenomena can be
observed. In particular we find tropical manifolds that cepend to the ad
hoc construction for mirrors af P, found in [AuKaOr].

Landau-Ginzburg models for semi-Fano toric and Hirzebruch su-
faces. Let ©® C Np be a two-dimensional reflexive polytope and choose a
maximal projective triangulatiofi of it. This induces a maximal refine-
mentfé — Y. Moreover, any sucly” comes with a strictly convex
functionh that is piecewise linear on conesENé. FurthermoreP—E\é is
a semi-Fano toric surface. For any su@ltwith a choice of triangulatioff”
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we construct a tropical manifolgB7 , 27, T) such thatB” has paral-
lel unbounded one-cells. The Landau-Ginzburg superpatem¢ get from
this is therefore proper and locally has the following stioe

W = Z ay - thT g,

vEONN

where the coefficienta,, can be described explicitly. Moreover, for the
same choice off” as in [Ch] we get the same superpotentials as in this
paper.
As a last application of our framework we compute tropical affrases
for toric degenerations of Hirzebruch surfadgg. In the case offs and
F3 we explicitly compute the full superpotential, which couhes with the
computations in [Au].

1.3. Outline of thesis

The first two chapters start with comparatively classical ntevithin the
realm of toric geometry, whereas chapters 4 and 5 rely heavilynore
sophisticated techniques and deeper results. This isdateand displays

in a time-lapse the fast development mirror symmetry as a mathehatic
discipline has undergone in the last two decades.

On the one hand, Chapter 2 is intended to introduce necesstatjon from
toric geometry and state mostly classical results we needighut the
text. Section 2.1 states some general properties of sintesaand explains
what we mean by a Calabi-Yau variety. Section 2.2 collect®uamresults
about affine and projective toric varieties and containgrthn results of the
chapter, while Section 2.3 properly introduces basic ptigreof weighted
projective spaces and shows how the results of the chapply &pthis
special class of toric varieties. On the other hand, Chaptms at the
proof of Theorem 2.25. The experienced reader, who wantgtdogthe
proof of this main theorem fast, is advised to jump right to thetal notion
of almost reflexive polytopes given in Definition 2.11, folldhe running
example starting with Example 2.13 and work through Lemma 2.211 an
Lemma 2.19 needed for Theorem 2.25.
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In the following Chapter 3, we will start with a very short rew of Batyrev’s
mirror construction followed by an extended introductionthe setup of
Berglund-Hubsch and related work in Section 3.1. After tisstction 3.2
will be concerned with explaining how the approach of BemghiHiibsch
can be fit into a toric setup with the work of Batyrev, resugtin Theo-
rem 3.19. In Section 3.3 we first review the Borcea-\Voisinstarction,
then show how to generalize it and present Theorem 3.30,mdeenon-
strates how to mirror partners for the generalized versianany cases.

Chapter 4 is devoted to the introduction of the technicah deeded to
properly handle Landau-Ginzburg mirror symmetry within thastouction
of Gross and Siebert. To this end we quickly review the maingdignts of
this approach in Section 4.1, trying to keep the techniealét a minimum.
Having done so, we present the rather new tool of broken tmegal with
Landau-Ginzburg models within the Gross-Siebert prograBeiction 4.2,
which also contains a very explicit example of a toric degefien of P2
and its mirror.

The last chapter uses the previously developed machinergrieedtheo-
rems about Landau-Ginzburg models. In Section 5.1 we show bab-t
tain proper superpotentials from reflexive polytopes,aghgrimproving the
situation known from toric geometry. We then devote Sect®Asand 5.3
to explicitly describe the situation in two dimensions, tizatve deal with
del Pezzo surfaces, semi-Fano toric and Hirzebruch surfackpth.

Throughout the thesis we will try to be as self contained aside. How-
ever, as a premise, we expect the reader to have a solid wddkowdedge
in toric geometry to the extend of [Od] and classical algebggiometry as
presented in [Hal]. Moreover, for Chapterand5, it will be helpful to be
familiar with the basic notions of the mirror symmetry program@npss
and Siebert [GrSi1],[GrSi3].



Chapter

Calabi-Yau in non-Gorenstein toric
varieties

Let k be an algebraically closed field of characteri§ticFor most of the
applications presented here it will be enough to asskmeC. Whenever
we talk of varieties we mean integral quasi-projectivechemes.

2.1. Calabi-Yau varieties and singularities

To properly discuss the construction of Calabi-Yau hypdases inQ-
Gorenstein projective toric varieties we first have to resaine results from
singularity theory.

2.1.1. Singularities. Recall that a varietyX has adualizing sheain
the sense of [Ha2) x if and only if X is Cohen-Macaulay. This sheaf is
always reflexive of rank one. In case th¥tis normal, we will need an
explicit description ofv x, which requires some notation and results.

For a Weil divisorD on a normal varietyX denote the associated sheaf
by Ox (D). Moreover, note that a coherent sheaf on a normal vanéty
is reflexive of rank one if and only if it is isomorphic 0x (D) for some

13
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Weil divisor D. Define the cotangent she@fﬁ( locally via the sheaf of
differentials of the structure sheaf relative to the grofieldl, that is

Q% (U) = Qo () /1>

for U C X open affine. It is classically known that a variety is smooth if
and only ifﬂﬁ( is locally free. Forp > 1 we define the sheaf of differ-
ential p-forms by taking the exterior product, thatig, := APQL.. The
restriction onﬁc to the regular locusX;.4 of X is locally free and it is
known that(Q% )VV =~ j*Q§<7-eg' The following result shows an equiva-
lence of properties of coherent sheayesn X, which will be useful in the
definition following it, where it can be applied 5 = QF; .

PrROPOSITION2.1. LetF be a coherent sheaf on a normal variey, j :
U — X an open embedding with coditi \ U) > 2. Then the following
statements hold:

(1) FV is reflexive and henc&"V is reflexive.
(2) If Fisreflexive, therF = 5. (Flu).
(3) If Fly is locally free, thenFVY = 4, (Fly).

PrROOF Statements (1) and (2) are the content of Corollary 1.2 and
Proposition 1.6 of [Ha3], while (3) is a direct corollary afth, whose proof
is carried out explicitly in [CoLiSc, Proposition 8.0.1]. O

DEFINITION 2.2. LetX be ad-dimensional normal variety with regular
locusj : Xreqg — X. For eactp > 1 define thesheaf of Zariskp-forms
to be

0P = (OB )VV = j*Qg(Ng.

This sheaf is reflexive of ran((l;) andwyx := le( is a dualizing sheaf. O]

REMARK 2.3. LetY be a(d+ 1)-dimensional normal variety and consider
the following d-dimensional subvariety. Let := {s’ = 0} C Y defined
by the zero set of a sectiosf € H°(X,—wy) \ {0} and assume that
X is normal. Then we can use the adjunction formula on the regaler
of X to obtainQ9 Xy eq & 0x,.,- If we denote the inclusioXycq —

X by jx, then we haveoxy = (jx)*ox,.eg- As Ox is reflexive, by
Proposition 2.1(3) = (2) we getOx = wx. Note, however that it is
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sufficient to assume that is regular in codimension ones then we can
still define the dualizing sheafx by (jx)«Ox,., and the implication
Ox =~ wx still holds. 0

Next, for any sections € H°(Y,wx) \ {0} we can define the canoni-
cal divisor class bydivx (s)] and we choose a representatifey which
we call the canonical divisor. NowX is calledQ-Gorensteinif »r K x is
Cartier for some € N, r > 1, andGorensteirif we can setr = 1. For the
minimal » with this property we will say thaX is aQ-Gorenstein variety
of indexr. In fact,wx is a (Q-)bundle if and only ifX is (Q)-Gorenstein.
The reader interested in properties of singularities beyba following two
basic definitions is referred to [Re2].

DEFINITION 2.4. X hascanonical singularitiesf and only if it is Q-
Gorenstein of index and for every resolutiotf : X — X we have

TK)? =f*(T‘Kx)+ZaiEi with a; > 0,
icl
where{ E; } ;< ; denotes the family of exceptional prime divisorsa}f> 0
forall i € I we say thatX hasterminal singularities Moreover, we call the
Q-divisor1/7 Y7, ; a; E; thediscrepancyof f and say thaf is crepantif
the discrepancy ie. O

DEFINITION 2.5. A varietyX is called

(1) factorial if every Weil divisor D on X is Cartier,

(2) Q-factorial if every Weil divisor D has an integer multiple that
is Cartier and

(3) quasi-smootlif X has only finite quotient singularities. O

2.1.2. The Calabi-Yau condition. In this section we will define what
we mean by Calabi-Yau variety. Among many other equivalent tieiirs a
Calabi-Yau manifoldnay be defined as a compact complex projective man-
ifold with trivial canonical bundle and vanishing first Betumber. How-
ever, as we would like to allow for singular spaces as wellywitehave to
relax this definition.
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DEFINITION 2.6. A Calabi-Yau varietyX, or simply Calabi-Yay is a
d-dimensional compact normal projective variety subject tofttlewing
three conditions.

(1) X has at most canonical singularities.

(2) The dualizing shea®d, of X is trivial, thatisOx = 4. This
implies thatX has Gorenstein singularities.

(3) HY(X,0x)={0}foralli=1,...,d— 1.

In caseX has onlyQ-factorial terminal singularities, we will say thaf is
aminimal Calabi-Yau variety. |

In the next sections we will study toric varieties whose thilagj sheaf is
only aQ-bundle, but which admit anti-canonical hypersurfagethat have
dualizing line bundles.

2.2. Hypersurfaces in non-Gorenstein toric varieties

We start with a minimum of notation of toric geometry used thioug the
thesis. Let\V be a free abelian group of ramkand letM/ = Hom(N, Z) be
its dual lattice. For any field denote byVy, := N®zk andMy := M ®zk

the naturak-linear extensions of these lattices. The induced non+uzgée
pairing of Q-vector spaces is denoted by

<-7~>:NQ><MQ—>Q.

By acones in Ng we will mean a rational convex polyhedral coneNi,.
From any such cone C Ng we can construct itdual cones;, C My.

If the ambient dual latticev and M are clear from the context, we will
usually drop the index and writg* := o7,. Define theaffine toric variety
associated toe C Ng

Us := Spek[c* N M].

An r-dimensional cone spans amr-dimensional subvectorspadé(o)g
of Ng and so defines a sublattiéé(c) C N with dual latticeM (o). We
denote the affine toric variety of C N (o)q by

Uo',N(a) = Spedk[a‘;‘\/[((ﬂ N M(O‘)]

16
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As we havelU, = U, n(s) % (k*)"77 this description will especially
become useful when studying singularities. The fa&hsve are working
with will always be complete. We denote BY(7) the set ofi-dimensional
cones inX for all ¢ = 0,...,n, which we will mainly use to refer toays
3(1) andmaximal conesi(n). Unless stated otherwise, we will further
assume that the toric variety associated:tes projective and denote it by
Py;. Given a polytope&e C Mg we denote the characters corresponding to
elementsn € =N M by 2™. Form € [ - E we introduce formal elements
t'z™ and define a multiplication by

’ ’ ’ ’
the™ gl g™ = gl gt

Thek-algebra generated by this operation is dendtedand the associated
toric variety is calledPz := Proj(S=). For a facer C = we define the
cone overr by

or ={n-(m—m')lm € E;m’' € 7, € Qx0}-

Thefan of cones over proper faces- in My is denoted by:=, whereas
the normal fanis denoted by~%X. The toric varieties associated to these
fans will be denoted bPs, andPy;: , respectively. From [Ba, Proposition
2.1.5] we know thaPz = Py . -

2.2.1. Affine toric varieties and their singularities. All properties
of singularities of general toric varieties we will need ¢eread off locally
from cones. For an element € Mg we define the supporting hyperplane
in Ng at integral distance one associated to it by

Hpy = {v € Ng|(v,m) = —1}.
Using this definition, we can now state the following lemma.

LEMMA 2.7. [Rel, Proposition 4.3, Remark 1.9]etoc C Ng be anr-
dimensional cone with ray generatotg € N, fori = 1,...,s. Then the
following holds:

(1) Uy n(o) is Q-Gorenstein if and only if there is am, € Mg
such that all of then; are contained in the hyperplang,,.,
andU, is Gorenstein if and only ifn, € M.

(2) Us,n(o) is Q-factorial if and only ifo is simplicial.
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O

For maximal cones we haveN (o) = N and can therefore drop the
index in this case. From this lemma it follows that a toric vigriéy, is Q-
Gorenstein if and only if the element, as above is well-defined for all its
conesoc C X. It will prove useful to collect this information for maximal
cones.

DEFINITION 2.8. LetPs; be ann-dimensionalQ-Gorenstein toric variety.
For each maximal cone denote bym, € Mg the unigue element from
Lemma 2.7. We will call

m :=my = {Ms}oexn(n)

theQ-Gorenstein support vectors Py. O

Note that support vectors of@-Gorenstein toric variety with fak define

a piecewise lineaheight functionhm, : Ng — Q on X that is given by
(_,mg) on eacho € X(n). Using this definition one can detect when
singularities of affine toric varieties are terminal or caicah

LEMMA 2.9. [Rel, Remark 1.11 (i), (ii")]Leto C Ng be a full-dimensio
nal cone with ray generators, . . ., ns, and letU, be Q-Gorenstein with
support vectorn,. Then

(1) U, has at most terminal singularities if and only if
ocNNN{ve Ng|(v,ms) > -1} ={0,n1,...,ns}

(2) and at most canonical singularities if and only if

Nnon{ve Ngl(v,ms) > -1} = {0}. =
This lemma poses strong restrictions on the Yaif we wantPyx, to have
canonical singularities. However, it also implies that Gwstein toric sin-
gularities are canonical, see [Ba, Corollary 2.2.5].

2.2.2. Polytopes and resolutionsFixing dual latticesN and M,
whenever we talk about lattice polytopesy or Mg, we refer to poly-
topes whose vertices lie ilV, respectivelyM. With minor exceptions, for
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example in proofs, polytopes iNg will be denoted byo, whereas poly-
topes inMg are denoted b{ throughout the text. We will generally as-
sume that polytopes contain the origin of their respectitteeta Recall that
thepolar polytopeto a polytopeE C My is defined by

= :={v e N|{vy,m) > -1,Vm € =}

To any toric varietyPs; associated to a fan with a choice of toric divisor,
one can naturally define the following polytope.

DEFINITION 2.10. Let¥ C Ng be afan. For each rgy € (1) denote
by D, the corresponding torus-invariant divisor B, and byn, € N
its generator. LeD = 3 .y apD, be a toric divisor, then we can
associate to it the convex polyhedron

Ep = {v € Ng|(v,np) > —a,,Vp € X(1)},

called theNewton polyhedron O

As we aim at constructing Calabi-Yau hypersurfaces, we nvdinly use
this notation in the special case of the anti-canonicabkdivi

D=—Kpmy= > Dy
pEX(1)

. Recall that for every toric divisab, its space of sections is given by

(2.1) HO(Pg, D)= &5 Cz™

meEpNM
Moreover, recall that a lattice polytojie is calledreflexiveif and only if
its polar polytope is a lattice polytope as well. An importaiternative
definition is that= has a unique interior lattice point and all supporting hy-
perplanes of facets have integral distance one from thigtpBy definition
the polar=* of a reflexive polytopé& is reflexive as well and we will refer
to (E, 2*) as areflexive pairin this situation.

The following definition slightly relaxes the definition afftexive polytopes
and will play a crucial role in almost all results in this ane thext chapter.

DEFINITION 2.11. A lattice polytope® C Ng containing0 as an inner
point is calledalmost reflexivéf ©" := conv(©* N M) is reflexive, that
is if the integral points of its polar span a reflexive polygopThe polar
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polytope of©™, which we denote b, thus contain®. This situation is
summarized in the following diagram

|

oF

!

¢

o

In this situation we cal® the reflexive polytope associateddo O

REMARK 2.12. 1) In arecent preprint [Ma] Mavlyutov defines a polyop
Z C Mg to be quasi-reflexive if the following holds

conv((conv(ENM))*NN) =E*.

Thus, there is no direct connection to reflexive polytopeforalmost re-
flexive polytopes defined above. The author of [Ma] descrébgsneraliza-
tion of nef-partitions for this class of polytopes combinéty. We refer
the reader to [BaBo1], [BaBo2] for an introduction to nef{fiens.

2) An almost reflexive polytop® C Ng has no interior lattice point
apart from the origin, as it is contained in the reflexive pope©. Note,
however, that Definition 2.11 is not equivalent to saying thas a lattice
polytope that has exactly one interior point, see for instaiie following
example. O

EXAMPLE 2.13. We will come back to the following two polytopes several
times in this chapter.

1) Let®; be the polytope spanned ljy-1,0,0), (0, —1,0), (0,0, —1)
and(5, 6, 8), which has the origif) as unique interior point. The vertices
of ©F are(1,1,1), (1,1,-3/2), (1,-7/3,1) and(—3,1,1). However,

it is easily checked that the polytogs, = conv(©7 N M) has no interior
points, as the origio lies at the boundary. Thu8; is not almost reflexive.

2) An example of a non-reflexive but almost reflexive polytoghésconvex
hull ©2 of the verticeq—1, 0, 0), (0, —1,0), (0,0, —1) and(1, 2, 3). Its
polar©j has verticeg1,1,1), (—6,1,1), (1,—-5/2,1) and(1,1,—4/3).
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ey a1

(0,0,1) ) N
N Ta\(1, 47/3,1)

(0,1,0) 0 |
(1,0,00 ® C ©F ™

N
N

\

\\\\:
¥ (1,1, -3/2)

FIGURE 2.1. The polar polytop®] of ©1. The
span of integral point@f has0 as a boundary point.

One can verify that the vertices &, := conv(©% N M) this time are
given by

(1,1,1),(-6,1,1),(1,1,-1),(0,1,—-1),
(1,-1,0),(1,-2,1),(0,-2,1)

and that the origirD is an interior point of it. Thus@é is a reflexive
polytope whose pola®» has verticeg—1, 0, 0), (0, —1,0), (0,0, —1),
(1,2,3), (0,1,1) and (0,1,2), so O3 is contained inG©,. Moreover,

the fanE§2 defines a refinement afg, and a little computation shows
that Pzéz is smooth, as all maximal cones are. The induced morphism
Pzéz — Pgez therefore resolves all singularities of tfgGorenstein
toric varietyJP’g(_)2 . O

In this section we have so far focussed on general propertipslytopes
and arbitrary toric varieties. We will now turn to propestief Q-Gorenstein
toric varieties, for which one can naturally define the fafiog two poly-
topes.

DEFINITION 2.14. LetPs; be ann-dimensional)-GorensteirQ-Fano pro-
jective toric variety with fan> in Ng and Q-Gorenstein support vectors
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(—6,1,1) (1,1,1)

Sa(l, #%6/2,1)
(0,0,1) B

(0,1, 0) e; ce; A\

(1,0,0) ~»
(1,1, —4/3)

FIGURE 2.2. ©3 and the reflexive polytop@S con-
tained in it.

my. Define

Ey i =Emy = m (me + ™)
cEeX(n)

= {m € Mg|(np,m) > —1Vp e 3(1)} C My
O :=Omy = {v € Ng|(v,ms) > —1Vo € 3(n)} C Ny g

REMARK 2.15. Note that by definitioEy, = E,K]PE and©sy; is the span

of ray generators oE. The latter of which of course also makes sense if
Py, is not Q-Gorenstein, but can not be defined usiigGorenstein sup-
port vectors in this case. Moreover, by definition@{Gorenstein support
vectors, we see thay, = 3.

ExAamPLE 2.16. We continue with Example 2.13. Denote the fans of cones
over faces 0B and©3 by Xg, andXe,, respectively. Then we imme-
diately getthaBs, = ©; and=Eg, = O fori =1,2. O

Various global properties dfy; can be computed from these two polyhe-
dra and their interrelation. Recall that a normal varigfyis calledFano

if —Kx is ample andQ-Fanoif an integral multiple of— K x is ample.
Furthermore, we calX semi-Fangif —Kx is nef. If X = Py is aQ-
Gorenstein projective toric variety with-Gorenstein support vectonss;,
then X is (semi-)Fano if and only if the associated height functiem,

is (strictly) convex on the fai. The next proposition collects the most
important results for later applications.
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PROPOSITION2.17. LetPys; be ann-dimensionalQ-Gorenstein projective
toric variety. Then

(1) Py isQ-Fanoif and only if the vertices dEy; are in one-to-one
correspondence with maximal cones Bf In this casePy; is
Fano if and only if 2y, is a lattice polytope.

(2) Py isQ-Fanoifand only if Py = P=g,.

(3) Py hasQ-factorial terminal singularities if and only if for every
coneo in X the polytope

Oy =0 N{v e Ng|(v,ms) <1}

is an elementary simplex.

PrROOF This is essentially the content of [Ba, Proposition 2.1.23
but we include a short proof since in the reference there e nBy; is Q-
Fano if and only if the height functiohy, constructed frommy; is strictly
convex. This property in turn simply means that the individua), for
maximal cones € X(n), are precisely the vertices of the polytdge =
Noes(n) (Mo + o*). From Lemma 2.12) we know thatm, € N for
all o € X(n) is equivalent tdPs; being Gorenstein and therefore Fano in
this situation, which provegl). For the second statement note that by the
property=y, = {m € Mgl|(ny, m) > —1Vp € X(1)} we see that the
raysp € X(1) are normal to the facets &y if and only if Py, is Q-
Fano. Thus the normal fan &y yields the fan we started with in this case.
Property(3) follows immediately from the local situation in Lemma 2.9.

O

Itis essential to know when a birational morphism betweeic t@rieties is
crepant, which we will now study f@@-Gorenstein varieties. The following
crucial Lemma, first proved by Gelfand, Kapranov and Zelevijngives
maximal triangulations foarbitrary integral polyhedra®, whether they
give rise to a Gorensteifg or not.

LEMMA 2.18. [GeKaZe, Proposition 3Let©® C Ng be a lattice poly-
tope. Then there exists a maximal projective triangulafienof =, where
projective means that we can choose a strictly convex héigistionhg :
Ng — Zthat s linear on each simplex € To.
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O

In the latter, whenever we speak ofreaximal projective triangulationf a
lattice polytope®, we will mean the choice of a paiffo, ho) as above.
Any triangulation(7e, he) also defines amducedtriangulation on the
boundary9© and the farEA(:) of cones over faces of this triangulation de-
fines a toric morphisrm’zme — Pgg. By [Ba, Theorem 2.2.24] one knows
that if Py is a Gorenstein Fano toric variety, then this morphism is a pro
jective and crepant partial resolution of singularitiebe$e resolutions are
maximal in the sense that any further toric resolution wouldliserepant
and we will call these morphismdPCP resolutionsn what follows.

The next lemma shows that the toric vari@ty, associated to an almost
reflexive polytoped is alwaysQ-Fano and furthermore closely related to
IPE@, where© is the associated reflexive polytope®f We will heavily
make use of this lemma and the notation introduced there in tiuste
next chapter.

LEMMA 2.19. Let© C Ng be ann-dimensional almost reflexive polytope
with associated reflexive polyto@e Then the following holds:

(1) Py, isaQ-Fano toric variety.
(2) There is acommon refinementof g andXg;, inducing toric

morphisms
/ X

Psg Peg

whereZ is the fan of cones over faces of a maximal projective
triangulation of©.

PrROOF The first part of the lemma follows from Proposition 2.17
(1), asPx, is defined by the fan of cones over faces@fand the fact
that© is the polar polytope of the anti-canonical polytopePef , that is
0% =Ex,.
For the second part, choose a maximal projective trianguld{;, hg)
of ©, so that(Tg;, hg) refines the triangulation the faces tHatshares
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with © induce. This defines an induced triangulation of the boundér

©. The fanX of cones over faces of this induced triangulation defines a
morphismy : Pg — IPES. However, we have to discuss Wlii/ is a
refinement o2g. Apriori, if we torically blow down all rays in=(1) not
containedXg (1) in some given order, we might arrive at a fan structure
that is different from>g.

Note that by restricting t® C ©, we also get a subdivision @& and
thus also or9©. Note that this subdivision is not a triangulation in the
strict sense, as vertices of it will not always correspondattice points.
However, this is just used to construct the following fannbee the fan of
cones over faces of the subdivision@® by i?_) Then by construction
f@ — Yg is a map of fans. Moreover, note that the closureéSof, ©

is a union ofn-dimensional polytopes meeting along lower-dimensional
strata, for otherwise at least one integral boundary pdit evould be an
interior point of the reflexive polytop®. These polytopes are spanned by
exactly one facet of © and vertices 0® not contained i®. Denote these
accordingly by©., for each facetr C ©. Note that the integral points of
©, \ 7 lie all in the interior of the cone over. Moreover, any such can
not have interior integral points, as the€nwould not be reflexive. Now, as
To is induced fronfTg;, they agree odr for all facetsr C ©. The fanz
therefore respects the fan structurﬁg, thatis® — fé is amap of fans.
The compositiorf) — f{.; — Yo therefore defines the toric morphism
¢ : P — Py, which finishes the proof. O

2.2.3. DiscrepanciesNext, we study how toric resolutions of toric
varieties affect the canonical bundle of the variety andehgprfaces therein.
Before we prove a technical lemma used in our central resulbrEne 2.25,
let us recall a classical lemma and draw some immediate conctusimm
it. For notational clarity we state this lemma only in the losauation,
although it applies to complete toric varieties as well.

Let o be a full-dimensional cone in a lattic¥ of rank n such that the
associated affine toric variety,, is Q-Gorenstein with support vector,, .

Let v € o be primitive and denote by,  the star subdivisiorof o by the
ray generated by. Thus, considering as fan consisting of one cone, we
get arefinement of fans, — o, which induces a partial toric resolution of
singularitiesr : Py, — U, . If we denote the toric divisor associated to the
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ray generated by by D, , then we have the following result characterizing
the discrepancy of.

LEMMA 2.20. [Re2, Section 4].There is the following equality d®-

Cartier divisor classes iPy;,,

O
©(Ku,) = Kpyy,| + ((r,ma) +1) - Dy

As an immediate corollary we see that a proper birational merpki :
Py, — Py of Q-Gorenstein toric varieties irepantif and only if for all
maximal conesr € X(n) all rayst’/ € ¥’ mapping too are generated by
primitive elements from

NN Hpm, = Nn{v e Ngl(v,ms) =1}.

Thus, if we work with reflexive polytope® we know that resolutions from
subdivisions of© are crepant, since every integral point apart from zero is
on the boundary 0®. Elementsy € © N N with v ¢ N N Hy,, in
turn always defin@liscrepantmorphisms. The following technical lemma,
however, ensures us that the anti-canonical polytope remaiaffected if
we use interior points o® to define resolutions.

LEMMA 2.21. LetPs be aQ-Gorenstein toric variety of dimensionand
let0 # v € Ox be a primitive, integralnterior point of ©y,. The fan¥,
obtained from refinin@: by star subdivision with a new ray generatediby
therefore induces a morphism: Py;, — Py, and we have

E-Kpy, = E*Tr*(KPz)’
that is the anti-canonical polytopes before and after treobhetion are the

same. In particular, the integral points corresponding tatiecanonical
sections are the same.

PROOF. If Py; is Q-Gorenstein, then so By, . Assume that is con-
tained in the interior of a maximal core If v lies in a lower-dimensional
stratum the argument remains basically unchangednket. ., n; be the
ray generators of. Then theQ-Gorenstein support vecten, associated
to o is defined by the equations;, m,) = —1foralli = 1,...,l. By
the star subdivision is decomposed intbsubcones

o; :=conv{v,ni,...m;,...,n}
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with Q-Gorenstein support vectors,; . As the anti-canonical polytope of
Py, is defined by

Sy = () (meto)
oeX(n)

= {m € Mgl(ny,m) > —1,Vp € (1)}
it suffices to show thatn, +o0* = ﬂﬁ;l (mo, +07). However, as clearly
ve{v € Ng|{v,mg;) > —1}

for all 7, from the assumption thatis an interior point oPy;, the inclusion
mo +0* CN._;(mo, +07) follows. Moreover, note that* = (1, o

To see that we do not get strictly more, we have to show thatehew of
the congN}_, (Mo, + o) isme. But(n;, me,) is —1foralli # j, so
= my + m; Wherem; € Mg is parallel to the(n — 1)-cell

Mo,

{m € Mg|(n;, m) = —1,Vj # i}.

Thus, from this description it follows that, is indeed the vertex of

l
m (mo'i + 03)7

i=1

which finishes the proof. O

EXAMPLE 2.22. Consider the two-dimensional polytopeC Ng =2 Z2
spanned by —1,0), (0,—1) and(1, 3). The fanXg therefore defines a
Q-Gorenstein toric varietPs,, with support vectorg1,1), (—4, 1) and
(1,-2/3). The anti-canonical polytope of it, that By , is spanned by
these three vectors. As the corresponding height funa}gg@ is strictly
convex, but not integral, we see thag is Q-Fano. IndeedPs, is just
the weighted projective spaé¥1, 1, 3).

© has precisely one non-zero interior integral point, namely= (0, 1).
Star subdividingZg by v yields a fan>,, with four smooth maximal cones,
that isPyx;, is smooth and in fact the non-Fano Hirzebruch surfageThe
support vectors of these four maximal cones @rgl), (—4,1), (1,—1)
and(2, —1). The intersection of the duals of these four cones trartslaye
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(1,3)

(—4,1) (1,1)

(0, —1)

FIGURE 2.3. The polytop® with polarEs, = Ex .

their respective support vectors is the anti-canonicajtppk ofPy, , that
is
Hy, = ﬂ (mo +07%).
oED,(2)
As seen from Figure 2.3 or directly checked by hand we see3hgt =
Exg, as expected from Lemma 2.21. O

2.2.4. Anti-canonical sections and Calabi-Yau varietiesBefore
stating and proving the main result of this chapter, we wibrtlly recall
another key definition and a central result of [Ba], which cesult will
generalize.

DEFINITION 2.23. LetPy: be the projective toric variety associated to
the normal farzt of a poI)_/topeE C Mg. Denote byL(Z) the space of
Laurent polynomials with Newton polytopie and defineF (Z) to be the
subspace ofZ(E) consisting of sectiong such that the vanishing set of
f on each stratum dPy;» is either smooth of codimension one or empty.
F(E) is called thespaceuofE-regular hypersurfaces O

In case= is a lattice polytope, that is if it has verticesid, it is known that
F(2) is a Zariski dense open subset®f=), see [Ba, Proposition 3.1.3].
We will generalize the following theorem to tlii2 Gorenstein setting.

THEOREM2.24. [Ba, Theorem 4.1.9L.et= C Mg be ann-dimensional
lattice polytope and lef (=) denote the family oE-regular hypersurfaces
X = Ve, (f) inPg= . Then the following are equivalent:

(1) F(E) consists of Calabi-Yau varieties.
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(2) The ample invertible shed@p_ is anti-canonical, that iz is
Gorenstein Fano.
(3) Zis areflexive polytope. o

This theorem is already quite general, but we can consider ra igen-
eral case. Given a polytopg C Mg with normal fan, a general anti-
canonical section may yield a Calabi-Yau variety withounlget-regular.
That is, if an anti-canonical sectionsigularalong a toric stratum, it may
still yield canonical singularities. Another limitation tife definition of=-
regularity is that there may be sections with good regulgmigperties that
have a Newton polytope which is strictly smaller thanIn the following
theorem, whenever we speak of a hypersurface= V (f) for a Laurent
polynomial f on a toric variety, we mean the set of all points in which the
sectionf vanishes on the toric variety.

THEOREM2.25. LetPy be aQ-Gorenstein projective toric variety associ-
ated to the fark in Ng. Then the following are equivalent:

(1) Any general anti-canonical hypersurfaééis a Calabi-Yau va-
riety.
(2) ©yx is an almost reflexive polytope.

PROOF Recall that® := Oy is almost reflexive if and only if the
integral points of the anti-canonical polytofg = =_ Kpy, SPANa reflex-
ive polytope, that is i£ := conv(©* N M) is reflexive. The associated
reflexive polytoped of © is just the polar polytope dE.

(2) = (1) : Assume tha® is almost reflexive and leX’ be a general anti-
canonical hypersurface iBs. From Lemma 2.192) we know that there

are morphisms
% X

PZ P2§7

whereP is the toric variety associated to the fan of cones over fatas
MPCP subdivision 0B. As the Newton polytope dis is justZ, we know
that there is an anti-canonical hypersurfageof Ps such thatg (X ) =
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X. As X is assumed to be general, we know thatis Z-regular, so by
Theorem 2.24X is a Calabi-Yau variety.

As X is general, we know that it is a subvariety Bf; that is regular in
codimension one. If it weren't regular in codimension one, évd have

to contain a toric codimension two stratum of the ambient spdeace the
pull-back X of P& would also contain this stratum, which contradicts the
assumption ofX being general. So by Remark 2.3 we can apply the adjunc-
tion formula to the regular paX.c4 of X to obtainwx,.., = Ox,.., and

can push forward via the inclusign; : Xrey — X togetwx = Ox. In

the special case th&k; is a weighted projective space this part of the proof
follows from [Do, Theorem 3.3.4]. Furthermore, by applyite tLeray
spectral sequence we get

HY(X,0x)=0 Vi=1,...n—1,

as we know that these cohomology groupsﬁ)wanish. Thus it remains
to show thatX has canonical singularities. However, we know thags
Calabi-Yau variety has canonical singularities, so by dkafim every res-
olution of singularitiesf : ¥ — X has the property that* (K ¢) =
Ky + Eie] a; E; with a; > 0, whereE; denote the exceptional divisors
with index set/. But since we just checked that

blg: X =X

is a crepant morphism, the compositigr ¢| ¢ : Y — X is a resolution
that also has non-negative coefficieats HenceX is a Calabi-Yau variety.

(1) = (2) : Now, let © be a polytope that is not almost reflexive. Then
we know that= is not a reflexive polytope. We first exclude the case that
0 € OE and then consider the case that it is an interior poirg.of

Assume thao is a boundary point oE. Choose a maximal face of =
which containg). It follows thato is nota face oi'E_Kﬂ,,E , as this polytope
does have the origin as an interior point. Then the inwardtpa normal
vector n, associated ter defines a refinemerit’ of the fanX and by
construction we gatonv(E,KPZ/ N M) = =. Denote the pullback ok
by the morphisnPs;; — Py by X’. The normal vecton, corresponds
to a ray of%’ and therefore to a toric divisdD, of Px;,. Recall that we
can expres®y,, and the hypersurfac&” in Cox coordinates, see [Co].
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Denote the Cox coordinate correspondingl¥g by z,. As the integral
distance ot from the origin inM is zero, we see that every monomi&t
corresponding to an integral point € = N M is of the formz, - 2
for somem’ € M. ThusX’ = D, U X" is reducible and therefore not
Calabi-Yau. HenceX cannot be a Calabi-Yau variety.

Next, assume thdt is an interior point of£. Then the normal fakX to =
has a refinemer®’ that is also a refinement &. From this we getinduced
morphisms

¢/ : Pf}’ — Py andw’ : Pf}’ — PZ}’%'

Recall that lattice polytopes which have precisely oneriatgoint and are
polar to each other form a reflexive pair. Bss a lattice polytope contained
in E_KJPZ and the polar polytope (EE_KW,E is ©, we see tha® C .
Since="" = Zand=is notreflexiveE" C Ng must have integral interior
points apart from). The map of fang — % introduces rays with ray
generators corresponding to boundary amdrior points of©. However,
by Lemma 2.21 we know that’ does not affect the anti-canonical polytop
of ng, that is we have

D

22) E-Keg = B (Kpy_)-

By Theorem 2.24 we know th&-regular hypersurfaceX in Py,_ arenot
Calabi-Yau. From equation (2.2) we see that there is ancamibnical sec-
tion X’ such thaty’ (X’) = X. As¢' is a partial resolution of singularities
with Newton polytopeS we see thafX” is not Calabi-Yau. Thug’(X’)
can not be a Calabi-Yau variety. We know that the Newton jpplgs ofPs;
andPs_ have the same integral points. Thus we are done, sifiosas an
arbitrar—yi-regular hypersurface. O

If a lattice polytope® C Ng has an interior lattice point other thanthen
we know thatPs, has non-canonical singularities by Lemma 2.9. From
the proof of Theorem 2.25 we see that in this case a geneiatamnical
hypersurfaceX of Ps, must inherit the non-canonical singularities of its
ambient space. Moreover, we see that for any toric resolafid®y: — Px
such thatPs has canonical singularities, the strict transformfunder
this morphism will be reducible.
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2.3. Quotients of weighted projective spaces

Weighted projective spaces and their quotients form an itapbclass of
toric varieties, when it comes to mirror symmetry. We will staithgiv-
ing the most important definitions and results in the contexhe$e spaces
and then apply the results of the last section to describabGahau hyper-
surfaces in weighted projective spaces. For the rest ottiapter we will
work overk = C, as we will do in chaptes.

DEFINITION 2.26. Letw = (wo,...,w,) be an(n + 1)-tuple of pos-
itive integers calledveightsand define a grading on the ring(w) :=
S(wo,...,wn) = Clzo,...,zs] bydeg(z;) = w; forall: =0,...,n.

We define the weighted projective spaev) with weightsw as

P(w) := P(wo, ..., wn) := Proj(S(wo, ..., wn)).

Alternatively one can defin®(w) as the quotient of the following*-
action

A (ag, ... an) = (A%ag,...,A\""an),
thatisP(w) = (C**1\ {0})/C* for coordinategao, - . ., ar) ONC?T1
and\ € C*. To see from this description th&B(w) is a normal projective
toric variety, note that the abov@*-action restricts ta/C*)"+! to give
the n-dimensional torug” := (C*)"*1/C*. This torus naturally acts on
P(w) via

((t0, -+ tn), (@0, ..., an)) = (t5%a0, ..., tw™an)

and embeds it as a dense open subsét(af). The fan ofP(w) is now
easily described as follows. Denote b, . . ., en) the standard basis of
zZ™ttand by(e?, ..., e¥) itsimage in the lattice

Ny = Z" Y Z(wo, . .. ,wn) = Z™.

2

By construction there is the single relation;_, w;e’ = 0. The ray
generators,, span a simpleX®,, C Ngr whose fanX,, of cones over
faces is the fan of the weighted projective space with wsightthat is
P(w) =Pyx,, . O

From the above description one immediately sees that thequagD
and©, from Example 2.13 correspond to the weighted projective epac
P(1,5,6,8) andP(1,1,2,3).
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REMARK 2.27. For any set of weighis = (wp, . . ., wn ) the spac@(w)

is aQ-GorensteinQ-Fano toric variety with far,, C Ng. Moreover,

it is well known thatP(w) is Gorenstein Fano if and only if there is an
anti-canonical section with;| - w; forall j = 0,...,n. Indeed, in
(1) of Proposition 2.17 we have seen tf#{tv) being Gorenstein Fano is
equivalent tcE,wa) =~ =y, being a lattice polytope with vertices cor-
responding to maximal faces @iy, = ©.,, which is a lattice polytope
in Ng. As @g =~ =y, itfollows that both of these polytopes are reflex-
ive. Moreover, the vertices of the lattice simp[EchWw) correspond to
monomials of the formc?i. Since this defines an anti-canonical section,

we see thad; - w; = >, w;. ]
DEFINITION 2.28. Ifged(wo, ..., w5, ..., wy,) = 1foralli =0,...,n,
then a weighted projective spa@éw) is calledwell-formed O

For two different sets of weights, say andw’, we want to be able to
decide wherP(w) andP(w’) are isomorphic. The next lemma gives a
partial answer to this question and shows that elnry) is isomorphic to

a well-formed weighted projective space.

LEMMA 2.29. [la, Lemma5.5, Lemma 5.7, Corollary 5.8t \ € N and
w = (wo, . ..,wn) be weights. Then

1) P(w) 2P\ - w).
(2) If ged(wo,...,wn) = 1 and ged(wi,...,wn) = A, then
P(wo, . . ., wy ) is isomorphic tdP(wg, w1 /A, . .., wp /N).

(3) P(w) is isomorphic toP(w’) = P(wo, ..., w}), wherew'’ is
a set of weights witlyed(wy, ..., w ,wh) = 1 forall
1 =0,...,n. O

REMARK 2.30. Space®(w) that are not well-formed give rise to stacks,
which we will not comment on here. However, the third part ofldrama
justifies to neglect these phenomena without loss of gemerali O

2.3.1. Hypersurfaces.In this section we will study hypersurfacés
in P(w) and their singularities and then specialize to the case eviXer
has degred := ), w;, thus potentially giving Calabi-Yau varieties. We
compare the results from the last section with the propeofiés and study
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an explicit example of hypersurfaces in a sp@e), which shows the
implications of Theorem 2.25.

DEFINITION 2.31. LetP(w) be ann-dimensional weighted projective space
with weightsw = (wo, . . ., wy) andX C P(w) a hypersurface.

(1) X is calledquasi-smoothif its affine coneCx C C"*!is
smooth outside the origin.

(2) X is calledwell-formedif P(w) is well-formed andX contains
no singular strata of codimensianh In terms of weights this
simply means

ged(wo, ..., Wy, ... wp) =1 and
n
gcd(wo,...,@\i,...,@,...wn)|Zwk
k=0
foralli,j =0,...,n. O

If a hypersurfaceX = Vp(,,) (W) C P(w) is quasi-smooth, it has only
finite quotient singularities due to thé*-action. So in particular it has
canonical singularities. Being quasi-smooth is a strongrapsion, but it is

often sufficient to require less, as the following theorera tiuDolgachev
indicates.

LEMMA 2.32. [Do, Theorem 3.3.4]Let X be a well-formed degred
hypersurface ifP(w). Then the adjunction formula foX holds, that is

WXEOX(d_Zwi)- O

We now state a criterion to check when a given hypersurfacpsi-
smooth that entirely depends on the weights of the ambienespac

LEMMA 2.33. [la, Theorem 8.1]A general degred hypersurfaceX =
Vb(w)(W) C P(w) is quasi-smooth if and only if one of the following
cases holds.

(1) X isalinear cone, thati$V = z; forsome: = 0,...,n.
(2) Forallindex sety) # I = {ig,...,ir} C {0,...,n} there
either exists a monomial i/ of the form

miy
0, ,-m,k

m _ . m
Ty _‘rio i
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of degreed or for eachl = 0, ..., k there is a degre@ mono-
mial

my _ . mo. M1

Tr " Tey =Tyt Ty Tegs

O
where theg; are distinct elements.

In the next chapter we will mainly be concerned with threedakehlized as
hypersurfaces in four-dimensional toric varieties, so festate the follow-
ing corollary to the above lemma.

COROLLARY 2.34. [la, Corollary 8.6 A general degreé := >, w; hy-
persurface

X = V]p(w)(f) C P(w) = P(wo, w1, w2, ws, ws)
is a quasi-smooth Calabi-Yau variety if and only if foral: j = 0,...,4

one of the following is true:

(1) there is a degred monomialz]® - x.,

i

(2) There either exists a monomia[’”:c;"j or monomials of the

formz, 2", andz, "'z’ 9 lz., of degreed with
7 J 0 7 J 1
ey # e1.
(3) There is a degreel monomial which neither contains; nor
Tj. O

We will now discuss an example of anti-canonical hypersedao aQ-
Gorenstein weighted projective space from the point of oélheorem 2.25.

ExAMPLE 2.35. LetP(1,1,1,2) = Proj(Clzo, z1, z2, z3]) and take as
fan the complete falt C Ny = Q3 generated by

(_17 07 0)7 (07 _170)7 (07 07 _1) and(]"? 17 2)

By Remark 2.27 we know thak(1,1,1,2) is non-Gorenstein, ass t
>3, w;. Another way to see this is from the cone

o = conv((—1,0,0),(0,-1,0),(1,1,2)),

which hasQ-Gorenstein support vecton, = (1,1, —3/2). The other
three maximal cones are smooth. Moreover, let

W e H°(P(1,1,1,2), —Kp(1,1,1,2))
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be anarbitrary anti-canonical section. Thev.4 (W) passes through the
point (0, 0, 0, 1), which accounts for the fact that there is no monomial of
the formxg/Q, and this point corresponds to a singular poiri{a, 1, 1, 2).

So even if we takéV’ to be quasi-smooth¥ := Vp(y 1 1,2) (W) will still

be singular.

Now, the span of ray generatdds:= Oy, is an almost reflexive polytope
and one can easily check that the associated reflexive pal¢ds spanned
by the vertices o® and the poin(0, 0, 1). Thus, we know that there is a
canonical resolution oP(1,1, 1, 2) by introducing a new ray in direction
(0,0,1) and star subdividing in threesmoothcones. The corresponding
map of fans. — 3 therefore induces a resolutign: P — P(1,1,1,2),
and¢™ (X) will be smooth whenevek is quasi-smooth. So there is in fact
no need to impose further regularity conditions sucEasgularity, where
E = conv(E,KH,(lyLl’z) N M). Moreover, the Newton polytope 6§
can be very small compared ¥y W only has to fulfill the combinatorial
requirements of 2.33. O

REMARK 2.36. While forn = 3 a general degreé¢ = 3, w; hypersur-
face

X = Vp(u) (W) C P(w) = P(wo, w1, wa, w3)

is aK 3 surface if and only if it is quasi-smooth, see [CoGo, Theorel3]l

in higher dimensions it is rare that hypersurfaces are cgrasieth. For
instance there are84062 different weightsw = (wo, . .., w4) that yield
Calabi-Yau hypersurfaces, but onf$$55 among them are quasi-smooth,
see [Kre]. However, note that whenever it is possible to find quasi-
smooth hypersurfac& C P(w), then a general hypersurface of the same
degree will be quasi-smooth as well. O

The next proposition connects the above results to what we blserved
in the last sections.

PROPOSITION2.37. LetX C P(w) be a general anti-canonical section of
P(w), that is X = Vp(,,) (W) for some quasi-homogeneous polynomial
W of degreed = >, w;. Choose a fark C Ng for P(w). Then the
following are equivalent:

(1) X is Calabi-Yau.
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(2) Oy is almost reflexive.
(3) X is a well-formed hypersurface with canonical singulastie

PrROOF The equivalence dfl) and(2) was shown in Theorem 2.25.
It suffices to show that the defining conditions for well-fodness forX,
that is

ged(wo, . .., Wy, ... wn) = 1 andged(wo, . .., W;, ..., W5, ... wn)|d,

forall i, = 0,...,n, are fulfilled andX has canonical singularities if
and only ifZ = conv(E,KWw) N M) is a reflexive polytope. IX is
well-formed, by Theorem 2.32, we can apply the adjunctiomida. As
X has canonical singularities it is Calabi-Yau and therefése is almost
reflexive.

Conversely, ifX has non-canonical singularities it is in particular nota®e
Yau. So assume that has canonical singularities but is not well-formed.
Since we always assume the ambient sfi&ae) to be well-defined, with-
out loss of generality let

ged(wo, Wi, ws, ..., wn) {d,

that is there is no degreemonomial of the formyc;‘2 .. :(:3{” neither do
degreed monomial&:} with I C {2,...,n} exist. Thatin turn means that
the toric stratum{zp = =1 = 0} is contained inX. If = were reflexive,
its normal fantX would define an MPCP resolutidhy» — P(w). But
then the toric st?atum corresponding to the puII-bacI{zzqﬁ =z = 0}
would be contained in the pull-back &f. However, this is a contradiction
to the fact that a general anti-canonical sectio®4 is Z-regular. Hence
= cannot be reflexive and s¥ is not a Calabi-Yau \:/ariety. O

2.3.2. Toric quotients of weighted projective spacesWe have seen
that each weighted projective spabv) comes with a fart,, and a sim-
plex©,, C Ng thatis reflexive if and only i?(w) = Py, is Fano. If we
start with a simplex® C Ng with vertices inN, then the associated toric
variety constructed from the fafig of cones over faces will in general be
a finite quotient of a weighted projective space. This quieinduced by
a map of fans. As we will need these quotients in the next chapeewill
make this construction more precise.
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Let ¥ be a complete fan itNg with exactlyn + 1 ray generators

nPUV'"vnan

so thai©s; is a simplex. Then clearly there is a unique relafioll_, w;n,,
for an(n + 1)-tuplew := (wo, ..., wn) of positive integers. Denote by
3. the fan of the weighted projective spa@@w) with these given weights
w in the lattice

Ny :=Z" Y7 (wo,. .., wn).
The ray generators” of the fan are the images of the standard basis vectors
e; of Z"T1. The mapZ™*! — N defined bye; — n,, therefore induces
a map of lattices

Y: Ny — N

which gives a finite map of fans,, — . HenceP(w) — Py is a finite
quotient of toric varieties. The last result we will need fter applications
is the following.

LEMMA 2.38. [Ba, Theorem 5.3.1LetP(w) — Px be afinite toric quo-
tientinduced by amayp : N, — N of lattices. LeWW € H?(Px, —Kp,,)
be an anti-canonical section anl := Vp,, (W). Then there is a section
Wy € HO(P(w), —Kp(y)) such that forXy,, := Vp(,) (Ww) We have

X 2 X/ (N/$(Nu)). .

To summarize, we have seen that the fan of cones over faces df a fu
dimensional simple® C Ng = Q" defines a quotierP(w)/G, where

G is the quotient of a lattice by a sublattice. Moreov&Finvariant hy-
persurfaces oP(w) give hypersurfaces in the quotient. The set of almost
reflexive simplices thus consists of all sub-simplices of réfe polytopes
that give rise to a well-formed weighted projective space quetients of
such. The classification of reflexive polytopes in dimenshoeé and four
found at [Kre] therefore allows to produce a complete listiofest reflexive
polytopes in these dimensions.
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Chapter

Applications to CY-CY mirror symmetry

Now that we know necessary and sufficient conditions for seg@ranti-
canonical hypersurface in @-Gorenstein toric variety to be Calabi-Yau,
we move on to questions of mirror symmetry related to such Cafabi-
varieties. After shortly reviewing the construction of Blemd and Hubsch,
we will show that it is intimately related to Batyrev’'s work.e/&lose with a
discussion of mirror symmetry for generalized Borcea-Voikie¢folds by
finding singular models if@-Gorenstein toric varieties for them.

For the whole chapter we will fix the following notation.

P(w) = P(wo, ..., wn)

is a weighted projective space with faly, C Ny as defined in Defini-
tion 2.26 and denote by, the span of ray generators Bf Moreover, we
will write d := -7 w; for the anti-canonical degree and throughout the
whole chapter we will work ovek = C.

3.1. Results onQ-Gorenstein mirror symmetry

Given a four-dimensional reflexive polytofeC Mg recall that the mirror
symmetry construction introduced by Batyrev in [Ba] startwai=-regular

39



3.1. Results of-Gorenstein mirror symmetry 40

anti-canonical hypersurfack in the toric varietyP= associated to the nor-
mal fanX%. An MPCP subdivision oE then yields an MPCP resolution
Y — X and by [Ba, Theorem 4.4.2, Theorem 4.4.3] we get

RULY) =UES) =5 =D 1% (o) + D1 (7)I* (77)
RR2(Y) =1U(E) =5 =D 1" (o) + D 1" ()" (7).

Herel(_) stands for integral points aritl(_) for interior integral points of
the respective polytope. Moreover,ando* refer to codimension one;,
andr* codimension two faces &, respectively=* and+ denotes the face
of the polar polytope dual te.

This result implies that, if we chooseZ*-regular anti-canonical hyper-
surfaceX™* in P=+« and an MPCP subdivision f&* with induced MPCP
resolutiony* — X*, thenY andY* form atopological mirror pair, that
is

6.1 RULY) = RV2(Y), RUH(YT) = hVA(Y).

In this situation we will say thaY” andY™* form aBatyrev mirror pait

Having stated this result abogeéneralhypersurfaces in Gorenstein toric va-
rieties, we will now turn to a construction due to Berglund &fiibsch that
coversspecialhypersurfaces in possibiy-Gorenstein weighted projective
spaces. While this approach was not particularly presememtathemati-
cal literature for a long time, recently more and more papersleveted to
this topic, see for instance [Bori], [ChRul], [ChRu2] or E{r

3.1.1. The Berglund-Hiibsch construction.

DEFINITION 3.1. Letw = (wo, - .., wy) be weights of the weighted pro-
jective spaceP(w). Define thecharges ofP(w) to beg; := w;/d for
alli = 0,...,n. By thechargeof P(w) we refer to the(n + 1)-tuple
q=(q0s---,4qn). o

DEFINITION 3.2. Letw = (wo,...,w,) be weights. Then a polynomial
W : C**+1 — C of the form

n

W = W(xo,...,Zn) :Zai Hx;”

n
i=0 j=1
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is called apolynomial of Berglund-Hubsch typer a BH-type polynomial
if it is quasi-homogeneous of degrdewith respect to the charges and
smooth outside the origin, thatisit; A;j¢; = 1andVe(,) (W) C P(w)
is a quasi-smooth hypersurface. We furthermore assume, withssi of
generality, that; = 1foralli = 0,...,n and callAyw := (\;;)s,; the
matrix associated t®V. O

Berglund and Hiibsch in [BeHu] call quasi-smoothnessdegeneracgnd

the polynomiall¥’ nondegeneraté V(. (W) C P(w) is quasi-smooth.
For convenience, we will make use of this terminology in the aéghis

chapter.

In [KrSk] Kreuzer and Skarke give a complete classificatioralbfpoly-
nomials of Berglund-Hubsch type by combinatorially desergbnecessary
and sufficient conditions on the monomialsléf. Their result can be sum-
marized as follows.

LEMMA 3.3. A quasi-homogeneous polynomii&ll : C**1 — C of degree
d havingn + 1 terms defines a quasi-smooth hypersurfate= Vp(,,) C
P(w) if and only if it can be decomposed as direct sum of polynanaél
the following types:

m;
W = T, v
N . mg; m;
m; m; Il 1 iy
— 0. 1. n . n
W = Ty Tig Ty Tip +...t T, Tig + z; ,
m; m; mi g m; .,
W = 0. 1 . n'—=1 .. n! ..
= xig Tiq + xil Tijg +...+ $in,71 xln’ + xin’ Tig

The first type is referred to as Fermat type, the second byrClypie and
the last by Loop type.

PrROOF. This was first proved in [KrSk, Theorem 1], but is written
down slightly differently. The result as we stated it candwerfd in [ChRu1l,
Remark 3]. O

If W is a BH-type polynomial it follows thaf\y is an invertible matrix,
as the columns af\yy,, corresponding to monomials &, are linearly in-
dependent by Lemma 3.3. LAt,! = (A¥/); ; denote the inverse ofyy.
Itis easy to see tha; = >°7_, A%, that is the charges are determined by
Aw.
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CONSTRUCTION3.4. LetW = >0 (T[T, =; i/ be a nondegenerate
quasi-homogeneous polynomial. Definedtsal polynomialiv *, a polyno-
mial in (n 4+ 1) variablesy;, to be

n
W™ = W*(yov'“:yn Z
=01

u::]:

that is,IW* is the polynomial associated to the transpﬁ%}g of the matrix
associated tdV. Furthermore, we can define tHeal chargego be

n

G =3

i=0
Since(AL) "t = (A;VI)T, W* is a quasi-homogeneous polynomial with
respect to these charges. kétdenote the smallest integer such thgft :=
d*-gf € Nforalli =0,...,n. ThenVp(,«)(W*) is a well-defined
hypersurface of degre¢” in P(w*) = Proj(Clyo, ..., yn]) with dual
weightsw* = (wg, ..., w}). O

An immediate corollary of the explicit description of nondegeate quasi-
homogeneous polynomials in Lemma 3.3 is tHats nondegenerate if and
only if W* is nondegenerate, & can be decomposed into the three types
if and only if W* does.

ExampLE 3.5. For the weighted projective space
P(1,1,2,3) = Proj(Clzo, z1, x2, z3]),

that is with weightsw = (1,1,2,3), degreed = 7 and chargey =
(1/7,1/7,2/7,3/7) we choose the following nondegenerate polynomial

7 5 2 2
W = W(xo,z1,x2,23) = &) + zix2 + x523 + x521.

The first term is of Fermat type, the other three form a looptHaurmore,
the associated matrixy;, and its inversaA;V1 are given as follows

70 0 0 i 0 0 0

4 1 2

Aw=|0 % 01| Al = 0 noa @
01 2 0 o -2 2

00 1 2 0 & - 30

[N
-
[N
-
[V
-



43 Applications to CY-CY mirror symmetry

Thus we recover the chargesfrom the sum of column entries o’t;vl.
Moreover, the sum of row entries gives dual charges
q" = (1/7,1/7,3/7,2/7),
thatisd* = 7 andw* = (1,1, 3,2). Itis easy to see that the dual polyno-
mial
W* = W*(yo,y1,v2,¥3) = ¥ + y1ys + y193 + y293

is quasi-smooth and in fact quasi-homogeneous with respact.toVe will
come back to this example after having proved Theorem 3.19. O

Next, we will define an automorphism group @f that will be of major
importance for the discussion of mirror symmetry.

DEFINITION 3.6. LetW : C**+! — C be nondegenerate. Define the finite
abelian group ofliagonal automorphisms preserviiy to be

Aut(W) :={g: C"1 = C" lg(z;) = g - zi, g(W) = W}

where by abuse of notation we also wrijdor the induced action on the
polynomialW. We will usually writeg = (go, . . . , gn) for an element of
Aut(W). O

REMARK 3.7. 1) The subgrouf LAut(W) := SLyp4+1(C) N Aut(W)
is characterized by the propeffy;"_, g; = 1, forg € Aut(W).

2) There is a distinguished elemefit\WW) € Aut(W), calledexponential
grading operatorin [Kra], defined by

T(W)(zj) = ™% z;.
It is immediate that7 (W) is an element o LAwt(W) in our setup. O

It will be convenient to name the rows and columns of the invefsky,
as they can be identified as elements of the automorphism gfoluip*o
respectively\.

DEFINITION 3.8. LetW be a BH-type polynomial with associated matrix
Aw = (Xij)q,; and inversa/\;vl. Denote bye; the j-th column and by-;
thej-th row of Ay} forall j = 0, ..., n. O
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By definitionc; and-; are(n + 1)-tuples of complex numbers for gll=
0,...,n and by slightly abusing notation we can define the actions

C](;L‘k) = eQwi(Cj)k - X, rj (yk) — eZwi(r])k Sy

As observed before, the columasof A;[,l have the property~;_ (¢j)r =
q;. From this and the fact that” is quasi-homogeneous with respect to the
chargesy;, we see that; € Aut(W). Analogously it can be seen that
ry € Aut(W*).

To state the mirror symmetry theorem of Berglund and Hibsch,ave to
define the groug+* dual toG.

DEFINITION 3.9. LetG C Aut(W) be an arbitrary subgroup. Define the
dual groupG* as follows:

n b; -
oo JTh=omi' | (B0 o)Ay (a0, - an) T € Z,
Y(ao, ... an): [y €G. g

The fact thatG** = G might not be entirely clear from this description,
although it is elementary. We will not give a proof right awhagwever, as
this will become apparent in the proof of Lemma 3.16. Let us suneeari
the construction by introducing the following notation.

DEFINITION 3.10. LetW = S TT7, z,*/ be of BH-type and choose
a subgroupG C Aut(W) such that7 (W) € G. Then we cal(W,G) a
Berglund-Hubsch paiand the pair (V *, G*) as described above ithial
pair. |

The requirement/ (W) € G is natural and no restriction for the setup we

are working with, as we will see in Lemma 3.18.

REMARK 3.11. Let(W, G) and(W*, G*) be dual Berglund-Hubsch pairs.
Note thaitG andG™* really act onC?, but not directly on weighted projective
spaces. To this end define

G=G/HITW)), G =G /(TW")).

From the definition of7 (W) and 7 (W*) it follows that G defines an
action onP(w) andG " an action orP(w*). Moreover, define

X = Vo) (W) C P(w) andX™ := Vp(ye) (W*) C P(w™).
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As Aut(W) preservesV and W is quasi-smooth, we can consider the
quotient X /G, which is a possibly singular Calabi-Yau ®(w)/G and
analogously so i(* /G~ C P(w*)/G". O

We now come to the central result of Berglund-Hiibsch [BeHuiciviis a
statement about Calabi-Yau threefolds, that isrfee 4.

THEOREM 3.12. [BeHu, Section 2]Let (W, G) and (W*, G*) be dual
Berglund-Hiibsch pa|rs fon = 4. Then there exist crepant Calabi-Yau
resolutionsXyy = X/G and Xy« = X*/G that form a topological
mirror pair, that is such that

AU (Xw) = h5? (Xw)

A2 (Xw) = WD (Xw= ).
For a choice of dual Berglund-Hubsch pairs for= 4 we will refer to
the Calabi-Yau three-manifolds¥yy, and Xy« from Theorem 3.12 as the
corresponding mirror pair

O

The resolutionsXy, and Xy« Berglund and Hibsch use for their theo-
rem rely on a result of Roan, see [Roal, Roa2], we will presert. The
statement itself is based on a toroidal Calabi-Yau resoiukio— X, first
constructed by Greene, Roan and Yau [GrRoYa]. The propositie will
state is interesting on its own, as it not only gives an expi@solution for
X/G, but also tell us about the Hodge structure of the resoluties we
will see, the Hodge numbers d% will only depend on the weights of
the ambient spadg(w) and the action of¥ on it, not on the actual equation
wW.

PrROPOSITION3.13. [Roa2, Theorem 1lLetG be a group linearly acting
on C® with standard basige;)i—o,...4 and letX = Vp,) (W) be aG-
invariant hypersurface. Moreover, fgre G define

1
Z IT (1—=—) & :=#{ilg(ei) = e}
hEG'L g(e;)=h(e;)=¢; i

Then there is a toroidal resolutio’’ /G whose Hodge numbers are given
by

v(X/C) = - > B P(X/Q) =1+ 2597

£g2>3 EJ<3
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O
S0 in particular they do not depend &#i.
The proposition of Roan works with toroidal resolutions vit¢wer, the fol-
lowing result shows that most of the time we can in fact work witbbal
toric resolutions.

COROLLARY 3.14. Let (W, G) be a Berglund-Hubsch pair such théf is

general If X' = Vp(,,) (W), then the above resolutioR /G is induced by
an MPCP subdivision of the reflexive polytape, associated t@® ..

PrROOF By Theorem 2.25 we know that a genefdlis Calabi-Yau
if and only if the fan of P(w) is the fan of cones over faces of an al-
most reflexive polytope,, C Ng. Recall that this means th& :=
—Kp(uy N M) is a reflexive polytope an@., := =" C Ngis
a reflexive polytope containin®,,. Choosing an MPCP subdivision for
©,, therefore induces a maximal refinemény, of the fan%,,. Thus by
constructior{P’—ZZ is an MPCP-resolved Gorenstein toric variety. The map

conv(E

of fansXy, — %, furthermore induces a resolutiah : X = X.As X
is quasi-smooth by assumption apdesolves toric singularities, we know
thatX is smooth, since the singular locusiyf, is of codimensiont by [Ba,
Corollary 4.2.3] andX is general. ]

Theorem 3.12 is a mirror symmetry statementiior= 4 Berglund-Hubsch
pairs. The only thing that keeps it from holding in higher dirsiens is
that there might only be partial resolution ofX/G. The construction it-
self, however, remains unchanged in any dimension. In [ChRl$do
and Ruan prove a higher-dimensional analogue of the restenjflund-
Hibsch that uses Chen-Ruan orbifold cohomology. We will nat g def-
inition of this cohomology theory here, as it is not importamtthe rest of
the text. A short introduction can be found i8.8 of [ChRul]. All we need
to know here is that for an orbifoldX] Chen-Ruan orbifold cohomology
groupsHZ; % ([X]; C) with coefficients inC agree with usual cohomology
groupsH? (X, C) if a crepant resolutioX — [X] exists.

THEOREM 3.15. [ChRul, Theorem 14]Let (W, G) and (W*,G*) be
dual Berglund-Hubsch pairs for some € N and letX := Vp(,,) (W),
X* 1= Vp(yu+) (W) as before. Then the orbifolds(/G] and [X*/G"]
are topological mirrors with respect to Chen-Ruan orbifadhomology,
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thatis
HZL([X/C);C) = HE P P9([X* /G C). O

3.2. Geometrization ofQ-Gorenstein mirror symmetry

We will now show that Berglund-Hiibsch mirror symmetry is dikece-
lated to Batyrev mirror symmetry fot = 4. Fix a Berglund-Hubsch pair
(W, G). Let N and M be finitely generated free abelian groups with gen-
erators(n;)i=o,...,n and(m;);=o,...,n. With help of the invertible matrix
Aw = (Xij)i,; € GLn11(Q) we declare an integral, nondegenerate, but
not necessarily unimodulgrairing

(A NXM—Z

by setting(n;, m;j)a := X\i;. Denote the lattices dual &y and M with
respect to the given pairing by * and M *. Given this data we can deduce
the following lemma.

LEMMA 3.16. For a given Berglund-Hubsch polynomidl the choice of a
groupG C Aut(W) is equivalent to a choice of latticeg* O Ng 2 N
andN* D Mg D M such thatNg and Mg are dual lattices.

PROOF.  As ageneral element 8ff * is of the form3_""_ a;n; with
aj € Q and analogously folV* we see thaf\/* /N = Aut(W) as the
following two maps are inverse to each other:

[Z;‘L:o zz]-nj] > (e2795),
9= (9305~ [0 5 log(g;)n; ]

Here the square brackets denote cosets maiulm exactly the same way

it can be shown thaW* /M = Aut(W'). Moreover, via this automorphism
we see that each column of A‘jvl is in fact an element oM * /N, so it
can be represented by an elemépte M*. Analogously, eachr; can

be represented by; € N*. In fact, if we choose bas€sng ;)i=o,...n

of Mg and (ng,:)i=o,...n Of Ng, then(¢;)i=o,....n and(7;)i=o,... n,
respectively, are dual bases. To conclude, note that thengd, ) in-
duced onNg x Mg is in fact what we want since by construction we have
(ci,7j) = A, thatis the pairing is defined by the inverse matriy’. O
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REMARK 3.17. Note that as they stand the lattices in the last lemma have
rank n + 1 and do not give rise ta-dimensional weighted projective
space or quotients of such. Instead we will have to work mothégyroup
(J(W)) generated by the element

T(W) = (2710, e2mian),
If we take for instanc&r = (7 (W)), then
Ng/G = 7" Z(wo, . .. ,wn)

is by construction nothing but the latti¢é,, we fixed for the weighted pro-
jective spacé(w). By Lemma 3.16 it can be concluded that larger groups
(J(W)) C G’ define quotients oP(w), as long as?’ C SLAut(W).

O

LEMMA 3.18. LetW = 37 (TT, xj‘” be of BH-type and choose a
subgroupG C Aut(W). Then

(J(W)) C G C SLAut(W) & (J(W*)) C G* C SLAut(W™).

PROOF We only prove that{7(W)) C G is equivalent toG* C
SLAut(W*) as the other half of the statement is just dual to this. As
J(W) € G just means(qo,...,qn) = >_;qjn; € Ng andG* C
SLAut(W*) translates td [, g7 = 1forall g* € G*, we see that

1
* *
ng =1 < —,log(]___[gj) EZL
], 271 f
1 *
— ZTmlog(gj) €z
J
1 *
<~ <Z¢Ij"j,z Tlog(gj)mj> €Z
J 5
=5 qunj € Ng
J
and the claim follows. |

Note that Lemma 3.16 and Lemma 3.18 were proved by Borisov in [Bori
Proposition 2.3.1, Corollary 2.3.5], which was availabldime after we
gave the proofs presented here.
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3.2.1. Berglund-Hubsch pairs and almost reflexive polytopeswe
now come to the first main theorem of this chapter. It roughlysdiat
Berglund-Hubsch mirror symmetry is induced by Batyrev mirrangyetry
in the sense that there is a mirror pair of Calabi-Yau threksfels in (3.1)
such that the Berglund-Hiibsch mirror is obtainedployynomial deforma-
tion of this pair.

THEOREM 3.19. Let (W, G) and (W*,G*) be dual Berglund-Hubsch
pairs forn = 4 with corresponding mirror pairXy, and Xy «. Then
there is a reflexive paif©, Z) of four-dimensional polytopes and refine-
mentsZN(f) - Ig, % — Y= induced by MPCP subdivisions &fand=
such that

(1) Xw and Xy~ are anti-canonical hypersurfaces ]Ii“g% and
IPX’)V? , respectively.

(2) There are polynomial deformations of Xy andY™* of Xy«
such thaty” andY* form a Batyrev mirror pair.

(3) Given(©, E) the choice of dual BH pairé, G) and(W*, G*)
is equivalent to a choice of almost reflexive simpli€esC ©
and= C E.

PrROOFR Let(W,G), (W*,G*) be a Berglund-Hubsch pair for =
4. By Lemma 3.16 there are dual latticA%; and M and we may further
define

M= Mg /(T(W"), N :=Ng/(T(W))

which clearly are dual as well. As observed earlier in Remati 3divid-
ing by (7 (W)) means descending fro® to P(w) and analogously for
(J(W*)), where one descends frafi? to P(w*). As before, let us con-
sider the hypersurfaces := Vp(,,) (W) andX ™ := Vp(,, =) (W*), which
are by definition invariant under the action Gfand G, respectively. So
by Theorem 2.25

X/G C P(w)/G and X*/G* C P(w*)/G"

are Calabi-Yau as well. Note that by constructi®w) /G is just the toric
variety associated to the fan,, considered in the sup-lattio?Q instead
of in N, o andP(w*)/G* is the toric variety associated to the fah,«



3.2. Geometrization df)-Gorenstein mirror symmetry 50

considered as a fan i/ g. Moreover, asX/G andX * /G* are Calabi-Yau
the lattice polytopes

0= ezw C NQ and = := sz* C MQ

have to be almost reflexive. Thus we ha®eC © andZ C E for the
associated reflexive polytop&3 andZ. By construction it is clear that
= c ©* and® c =*, from which we can conclude th®& ¢ ©" and
© C E". Thus, as the same argument holds true with the roles affd
© reversed, it follows thaE " = ©, which means thaf®, Z) is areflexive
pair. Choosing MPCP subdivisions f&¥, respectivehE yields resolutions
for the varieties associated to the normal fan of these ppbg@nd hence
resolutions - o
Xw = X/G and Xy = X*/G*.

From here it is clear that the Calabi-Yady,, and Xy« are special anti-
canonical hypersurfaces in MPCP-resolved toric varietisociated to re-
flexive polytopes, thugl) follows. For(2) note that this in particular im-
plies that there ar&-regular, respectivel{-regular hypersurfaces and
Y*in ]I% and]}% which are polynomial deformations dfyy, and Xyy =,
having the same Hodge-numbers by Proposition 3.13. The thitdopthe
theorem is clear from the construction we have just presente O

COROLLARY 3.20. If P(w) = P(wo, w1, w2, ws,ws) is a smooth Fano
four-manifold with fant,, in N,, o and we take the Fermat polynomial
w=3, mf/“”i, then the Batyrev mirror ok = Vp(,,) agrees with the
Berglund-Hibsch mirror.

PROOF. If P(w) is smooth, it follows tha® := Oy is a reflexive
simplex with polarZ := E_Kp(u- Moreover, the vertices & simply
correspond to the monomia&§d/wi, so X is not only quasi-smooth, but
alsoZ=-regular. Infact, reflexive simplices have the property thatvertices
of their polar satisfy the same single relation as that of thpkex itself.
Thus© andZ are essentially the same polytopes, but are defined in dual
lattices. Therefore the toric variefs,_ is thus just a quotien?(w)/H
of the spaceP(w) for some groupH and the Batyrev mirroiX is just a
©-regular hypersurface iB(w)/H. So without loss of generality we can
assume thak = X/H. On the other hand, from Berglund and Hiibsch’s
construction, we havél* = W andG = (J(W)). As we furthermore
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know thatH = G, since both are isomorphic &f /M by the proof of
Theorem 3.19, this finishes the proof. O

COROLLARY 3.21. Let P(w) be a four-dimensional weighted projective
space and choose two different BH-type polynoniigland W', that is we
have(J (W)) = (J(W')). Then the following holds:

(1) the respective threefold¥ and X’ in P(w) and their resolu-
tions will be polynomial deformations of each other.

(2) If we choose the same automorphism gr@dpC Aut(W) N
Aut(W') simultaneously fol¥ andW’, then)% and%
are deformations of each other.

PrROOF Both statements follow immediately from Theorem 3.19, but
are not clear within the Berglund-Huibsch framework. O

REMARK 3.22. Let us stress the importance of Theorem 3.19 by some
more observations. We have seen that the choice of a BH(P&iZ) is
the choice of an almost reflexive simpl€ asPsx, = P(w)/G, plus
the choice of an almost reflexive simpl&x the span of the points in the
Newton polytope ofPs, corresponding to the monomials Iv. On a
combinatorial level the dual pa{i¥*, G*) is obtained fromexchanging
the roles of© and = in this situation. By this we mean that the space
P(w)/G" is isomorphic toPs_ and the polytope we started with can
be interpreted as the convex hull of points in the Newton fopy of Py
corresponding to the monomials I*. Moreover, if we for a moment
forget all data introduced before and start with an almosexefé simplex

O, we can freely choosany almost reflexive simpleX in ©* and will
always end up with dual Berglund-Hubsch pairs. Furthermfsoen the
proof of Theorem 3.19 and Lemma 2.38 we can deduceGhat N/N
andG" ~ M/M. O

ExampLE 3.23. With the new insights we have gained, we will now have
a closer look at Example 3.5. Although it only deals with thdémensional
polytopes, we can still see all the features of the constmctRecall that

in this example we considered tlieGorenstein weighted projective spaces
P(w) = P(1,1,2,3) = Proj(Clzo, 1, z2, z3]) and

P(w*) =P(1,1,3,2) = Proj(Clyo, y1, y2,ys])
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with BH-type polynomials

7 5 2 2
W = W(zo,x1,x2,23) = &) + xjz2 + z523 + 2521,

W* = W*(yo, y1,y2,43) = ¥§ + y7ys + y193 + y213,

but we did not choose a grodp. As we have seen this choice boils down to
the choice of dual lattices with an almost reflexive polytoipesach lattice.

Let N = Z3 with dual lattice M and consider the polytop® C Ng
spanned by := (1,2,3), v1 := (—1,0,0), v2 := (0,—1,0) and
vz = (0,0, —1). These four vectors have a single relation, namgly-
v1 +2-v2 +3-v3 = 0. As furthermore(vy, v1, v2, v3)z = Z3 we know
that the toric variety’s;, associated to the fan of cones over face®ad
the Q-Gorensteir)-Fano weighted projective spaB¢w). In other words,
by this choice of lattice and fan we have cho€gmo be trivial and we can
already conclude tha® " is non-trivial. Equivalently one sees that= 74
andG =Z-(1,1,2,3), so the fartg is the fanx,, from Definition 2.26.

Now, the fact that we can choose a BH-type polynoriakells us that®
is almost reflexive, for otherwis& := Vp(,,y (W) would not be a Calabi-
Yau by Theorem 2.25. Let us study the Newton polytop@@b) in or-
der to identify the points that correspond to the monomial$lin Note
that we have already considered the exact same situatioreinutining
example in Chapte2. The Newton pontopE_KP(w) is depicted in Fig-
ure 2.2. We have seen that the integral points of the Newtbriqpe span
a lattice polytope with verticedl, 1,1), (-6, 1,1), (1,1, -1), (0,1, —1),
(1,-1,0), (1,-2,1) and(0, —2,1). We can identify these seven points
with the monomialse, zf, z123, zoz2, z3zs, 123 andzoz? in this
order. Thus we see that the monomiaf$ z5z2, z3z3 andz1z2 that
W consists of correspond to the simp&spanned byj := (—6,1,1),
vi = (1,0,1), v5 := (1,—-1,0) andv} := (1,—-1,1). These four
vectors again have exctly one relation, namely

vy +of +3-v3+2-v3 =0.
However, the spartvj, v],v3,v3)z does not give all ofZ3, but only a

three-dimensional sublattidel’ of M of some index. By Lemma 2.38 we
therefore know that the fan of cones over faces e conv (v, vi, v, v3)



53 Applications to CY-CY mirror symmetry

isP(w*)/(M /M) and we define
X* = Vigyey (W) /(M/M).

We will not explicitly compute™ here, as it is rather large and the precise
structure is not needed to proceed. Note however@hais indeed just the
quotientd /M.

Moreover, it can be checked by hand tEais an almost reflexive polytope.
The integral points of the pol&* span a reflexive polytope with vertices
(-1,0,0), (0,-1,0), (0,0,-1), (1,2,3), (0,1,1) and(0, 1, 2) and we
know from Example 2.13 that this is the reflexive polyt@eassociated to
the almost reflexive polytop® we started with. Furthermore, the vectors
(-1,0,0), (0,—1,0), (0,0,-1), (1,2, 3) that span® can be identified
with the monomials ifV*. Thus, we see thaX/G and X* /G " are spe-
cial hypersurfaces in quotients of weighted projectivecegaassociated to
almost reflexive polytope® C N and=Z C M. The associated reflex-
ive polytopesd and= define toric resolutions as discussed and polynomial
deformations of the pulled back hypersurfaces form a Batynexor. [

3.3. Mirrors for Borcea-Voisin manifolds

As an application of Theorem 2.25 and the realization of tleegBind-
Hibsch approach in the context of Batyrev mirror symmetry weé naw
construct mirror partners for so callgéneralized Borcea-Voisin threefolds
To do so, we will first give a short survey of the classical ¢argion and
its generalization with an overview of the literature orsttapic.

3.3.1. Borcea-Voisin threefolds revisited Let us start with a brief
discussion of Borcea-\oisin Calabi-Yau threefolds andr theperties. Let
X be a K3 surface and let be a non-symplectic involution, that is a holo-
morphic involution such that the induced action on cohomoletwcts on
a generatow of H%9(X) aso*(w) = —w. This determines the fixed
lattice

5% :={x € H*(X,Z)|o" (z) = 2} C H*(X,Z) = H3 @ (—Es)?

of the K3-lattice with intersection form denoted by, _). Here H denotes
the hyperbolic plane andsEthe root lattice corresponding to the system
Es. Moreover, denote by = rank(S?) therank of the fixed lattice By



3.3. Mirrors for Borcea-Voisin manifolds 54
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FIGURE 3.1. The complete list of triples of discrete
data determining all deformation classesto8 sur-
faces with non-symplectic involution.

abuse of notation we denote the dual pairing on the duatéstfi )* :=
Homy(S7,Z) by (_, _) aswell. Itis known that the thaiscriminant group
(89)* /S of such a pain(X, o) is 2-elementary, that i§57)*/S° =
(Z/27)" for somea, see [Ni]. Furthermore, define the numbeto be0 if
foranyz € (S7)* we have(z, ) € Z and1 otherwise. With this notation
we can state the following classical theorem, whose progélgarts of [Ni]
are devoted to.

THEOREM 3.24. [Ni]. The pair (X, o) depends up to deformation only
on the triple of integergr, a, §). Moreover, for giver(r, a, §) there is a
connected20 — r)-parameter family of K3 surfaces with non-symplectic
involution (X, o) of that type. O

Denote byX ? C X the set of fixed points of the involution. Then we know
that X # 0, except for(r,a,d) = (10, 10, 0), where the involution has
no fixed points and\/c is an Enriques surface arnd, a, §) = (10, 8, 0),
where X is the union of two elliptic curves. Moreovek @ has the fol-
lowing structure:

X7 =CygUR1U...URy.

Here(y is a curve of genug = (22 — r — a)/2 and theR; are rational
curves withk = (r — a)/2. See [Borc, §3] for more on this.



55 Applications to CY-CY mirror symmetry

REMARK 3.25. In Figure 3.1 we depicted all possible triplesa, §) of
Nikulin’s classification. Observe that if we leave out theing® on the
shadedr + a = 22)-line and the poin(14, 6, 0), then the set of points
becomes symmetric with respect to the dotted= 10)-axis. Moreover,
one can easily check thét, a, §) and(20 — r, a, §) exchange the numbers
k + 1 andg. ]

Now let E be an elliptic curve with involution and let(X (r, a, d), o) be
a K3 with discrete datdr, a, §) and non-symplectic involutioa. Then
there is a crepant resolution of singularities

Y :=Y(r,a,6) = (E x X(r,a,6))/t X o

which is a Calabi-Yau threefold call®brcea-Voisin threefoldas they were
first studied independently by Borcea [Borc] and Voisin [Vdhe Hodge
numbers of these threefolds are

RYY(Y)=54+3r—2a=1+r+4(k+1)
R2L(Y) =65 — 3r —2a =1+ (20 — 7) + 4g.

as shown in [Borc, Section 4]. From this description we seeXH(r, a, §)

andY (20 — r,a,d) form a topological mirror pair ifr + a # 22 and
(r,a,d8) # (14,6,0). In [Borc] Borcea remarks that some of thé3 sur-
facesX and explicit involutionsr can be realized as singular hypersurfaces
in weighted projective spaces. Figure 3.1 displays alldsir, a, ) for
which this is possible in red, see [Borc, Section 3] for dstalVhenever this

is true, there is also a singular model f6(r, a, §) in a four-dimensional
weighted projective space. We will generalize this cortdtom in the next
section and will therefore not further comment on it here.

REMARK 3.26. Although there is an almost perfect symmetry for ‘red’
triples (r, a, §) and (20 — r, a, d) in Figure 3.1 as well, Borcea correctly
remarks that fot’(r, a, §) C P(w) there is no threefold (20 —r, a, §) C
P(w) related toY (r, a, §) by Batyrev’s mirror construction unless they are
both Fermat type hypersurfaces. This observation is cleaghihof Corol-
lary 3.20. O

3.3.2. The generalized Borcea-Voisin construction and mior sym-
metry. The construction just presented has the following natuealegal-
ization. LetX be aK3 surface, this time equipped withreon-symplectic
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automorphismr of order p, that is an automorphism of ordgracting as
multiplication by¢, on a generataw of H2:2(X,Z), where¢,, denotes a
primitive p-th root of unity. Moreover, leE be an elliptic curve with auto-
morphisme of orderp . Then from [Di, Section 5] we know that there is a
Calabi-Yau resolution

Y 5 (X X E)/oxt

we will refer to aggeneralized Borcea-Voisin threefol@f course automor-
phisms of elliptic curves only exist fgs = 2, 3, 4, 6, which restricts this
construction guite heavily. On th€ 3 side, non-symplectic automorphisms
of prime ordem are completely classified in [ArSaTa]. For non-priphis

is an active field of research pursued by Artebani, BoissiateSarti. Thus,
the only case we can fully treat heregis= 3, to which the paper [ArSa]
is devoted. Once the casps= 4, 6 are fully classified, the methods pre-
sented here can be used to find mirrors for Borcea-Voisiorefbias in
these cases, too.

As before, the most important part is to know the discrete iawés of the
K3 surface and thé(3 lattice. Recall that th@icard lattice Sx of X is
given by

Sx :={x € H*(X,Z)|(z,w) = 0}
and thetranscendental latticdx := Sﬁ; by the orthogonal complement
with respect to the intersection pairing. The fixed latti€erds again de-
noted byS?. LetT? := (S?)+, then by [ArSaTa, Theorem 2.1] we have
S? C Sx and Tx C T7. Using the fact that the transcendental lattice
has even rank by [ArSa, Lemma 1.3], for= 3 it is often handier to work
with m defined by rankl’®) =: 2m instead ofr = 22 — 2m. With this
notation we can state the following analogon of the strigctheorem for
p=2.

THEOREM 3.27. Let X be a K3 surface with non-symplectic automor-
phismo of orderp = 3 and discriminant group of rank. Then(X, o) is
up to deformation determined iy, a). Furthermore, its fixed locuXx' @
has the following form:

X7 = CgURlU---URkU{p17---7Pn}

where R; is a smooth rational curvep; is an isolated point and’y a
curve of genug. Moreover, the values of, & and g are explicitly given by
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o

L ®(18,6)

— ®(29,5)

L ® (40,4) o (24,12)

® (49,3) ¢ (35,11)g (19, 19)

— ®(62,2) ® (46,10)® (30, 18)® (14, 26)

— ®(73,1) @(55,9) @ (41,17)@(25,25)@(9, 33)

(— @(84,0) @(68,8) @ (52,16)® (36,24)@(20, 32)

(79,(7) (47,123) (15,39
1 2 3 4 5 6 7 8 9 10 m

O P N W AN O O N
I

FIGURE 3.2. The complete list of pairén, a) pa-
rameterizing deformation classes &3 surfaces
with non-symplectic automorphism of order 3 and
discrete invariant$m, a).

n=10—-m, k=6-—(m+a)/2, g¢g=(m—a)/2. The fulllist of
pairs (m, a) is depicted in Figure 3.2.

PROOF See Theorem 0.1, Theorem 1.1 and Theorem 9.1 in [ArSaTa].
O

LEMMA 3.28. Let X be a K3 surface with orde3 non-symplectic auto-
morphismp and letS? have discrete invariant&n, a). Furthermore letff
be the elliptic curve with orde3 automorphism. Then the Hodge numbers
of the generalized Borcea-Voisin threefdld— (X x E)/o x ¢ are given
by

hYY(Y) =74 4r — 3a = 3 + 6k + 5n,
hY2(Y) =43 — 2r — 3a = 27 4 6k — Tn.

PROOF See [Di, Section 7.1.1] for a computation using Chen-Ruan
orbifold cohomology. There is a minor mistake in the referendegre it
is stated thah'-2(Y") = 38 — 2r — 3a, which sometimes gives negative
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values. We recomputed this number using the techniques of JiniltigsD
who confirmed the error. O

REMARK 3.29. 1) Figure 3.2 shows all possible pajra, a) along with
the respective Hodge numbedish ! (Y (m, a)), h12(Y (m, a))) of the re-
spective generalized Borcea-Voisin threefold. Note thatd is again a
symmetry about thém = 5)-axis for most of the/(3 surfaces with dis-
crete invariants as depicted. However, unlike for invaing, among the
Calabi-Yau threefold¥” (m, a) we get from the generalized Borcea-Voisin
construction, except for the two cases whetel = h1:2, namely the pairs
(19,19) and (25, 25), there is not a single pagh!:!, h':2) that mirrors
another pair from the list, see Figure 3.2.

2) As far as we know Cynk and Hulek in [CyHu] were the first to sider
this generalized Borcea-Voisin construction. Moreovesh&e in [Roh]
shows that the complex moduli spaces of the seven examples witheH
numbers(18 + 11 - 1,6 — 1) in Figure 3.2 do not have a point of maximal
unipotent monodromy. In [GavGe] the exampi@, 1) is studied in detail.
Note that we daot get mirrors for any of these examples in the following
theorem. O

THEOREM3.30. Let X := X (m, a) be aK3 surface with non-symplectic
automorphisnv of orderp = 3 and discrete datdm, a) as in Table 1.
Then there is a topological mirror for the generalized Barééisin three-
fold Y := Y (m, a) associated taX, given by a hypersurface in a toric
variety.

PROOF LetP(w) := P(wo, w1, w2, ws) be well-formed with co-
ordinateszy, . .., x3 such that) ., w; = 3 - wo. By this last assump-
tion we know that there is an anti-canonical section of thenfo:g =
f(z1,x2,x3). Then the zero seX C P(w) of this section is &3 sur-
face and as non-symplectic automorphismve choose the one acting as
o(xzo) := &3wo ONzo and trivially onzy, 2 andzs. Yonemura [Yo, Table
2.2 & Table 4.6] gives a complete list of @lb space®(wo, w1, w2, w3)
which have anti-canonicdk'3 sections together with an explicit choice of
such a section. In a slightly different context Reid [Re2;t®a 4.5] was
the first to discover this list. We now simply extract everyypamial of
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the formz = f(z1, z2, z3) from the list. In order to find the paim, a)
from this it is enough to determine the valueandg.

To determingy note that the possibly singular curve
C = {f(z1,72,23) = 0} C P(w1, w2, ws)

is the fixed locus of the automorphism By [Yo, Theorem 3.1] there exists
a minimal resolutiorr of X, which also resolves the singularities@f As
by [Yo] X has onlyA;-singularities andr is in fact a blow-up we get

W*CZCQUR1U...R}€,

whereR), are rational curves and, is the unique smooth curve from The-
orem 3.27 whose genys by [la, Theorem 12.2], is given by

1 d? cd(w;, w; 2 ged w;, d
9:7( _dzg (w; J)+Zg (wi )_1)_
2 \wiwaws = WiW; = w;

Hered := Z;‘:l w; andged(_, _) denotes the greatest common divisor of
two integers.

The numberk of rational components can be determined by computing
which A; singularity of X, as shown in the list [Yo, Table 4.6], lies on
C, as each such singularity contribufemtional curves in the resolution.

Thus from the relationé = 6 — (m + a)/2, andg = (m — a)/2 we
get the pair(m, a). In Table 1 we list, along with the respective number
in Yonemura’s list and the polynomial given there and all passpairs
(m, a). Note that in the table we keep the notation of Yonemura [Ye, Ta
ble 2.2], that is the polynomials have coordinate functiong, z, w. The
coordinater, from above corresponds to the underlined coordinate in each
column of the table.

In order to proceed, note that there are precisely threerGteim weighted
projective surfaces, namel(1,1, 1), P(1,1,2) andP(2,1,3). Denote
the i-th canonical coordinate in each of these caseg;byAmong these
surfaces there are precisely two Fermat-type equationsyiblat smooth
elliptic curvesE with order three automorphismnamely

{vd=vi+u3} CP(,1,1) and {y§ =7 +y5} CP(2,1,3).
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In each case we can now construct a rational map, similar te tfoasd
in [Borc, Section 5]. However, it suffices to study the firssedere. The
rational map

P(wo, w1, w2,ws) x P(1,1,1)

— P(wo, wo, w1, w2, ws) =: P(wo, w)

((ivo cw1 i xe 3),(Yo 1 y1 :y2)>

o o
=y — Y2 — 12112223
Yo Yo

restricts to a map oX x E that maps generically : 1 to the hypersurface
Y’ given by

(3.2) 25+ 2 = f(z2, 23, 24),

wherezo, . . ., z4 denote the coordinates &fwg, w). From Equation (3.2)
it follows thatY” is a possibly singular Calabi-Yau hypersurfac®{mo, w)
and thus a singular model for the Borcea-Voisin Calabi-Ydun, a). Note
that Equation (3.2) is of Berglund-Hibsch type if and onlyifs. If f is
of BH-type, we can of course just apply the Berglund-Hubsafstruction.
Otherwise note that we can deforfnwithout changingr and g, which
means that we can always assume ttﬁat—k f(z1,z2,23) IS E_wa)-
regular, wherE,KW,(w) is the anti-canonical polytope. Therefore we im-
mediately get that Equation (3.2) givefaKH»(woym-regular hypersur-
face, which means that we can apply Batyrev's mirror symmetrgtroo-
tion. O

ExampLE 3.31. Toillustrate the proof of the theorem, we will compute on
explicit example, namely the first in Table 1. Consider the zetd of the
Fermat type equation = z} +z4 + 2§ of degreel = 12 in the weighted
projective spac®(4, 3, 3, 2) with chargeq = (3,4,4,6). We know that
the smooth curve’, of degreed = 12 defined by{z} + =3 + 2§ = 0}
inP(3,3,2) has genus
1, 122 3,1 1y ,3 3 2

s=3(GEs2GE e tsrs )
Furthermore, checking Table 4.6 in [Yo] shows tkahas threed; and four
Ajg singularities. However, the fix locus of the automorphismX — X
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defined byo(zog) = &3 - zo is just the singular curve” in defined by
{z} 4+ = + 2§ = 0} inP(4, 3,3,2) and it can be checked that this curve
has anAs-singularity at(1, 0, 0, 0). Blowing-up via the minimal resolution
« in [Yo] therefore yieldst* (C') = Cy U Ry U Ra. Thusk = 2 and from
the formulask = 6 — (m + a)/2, andg = (m — a)/2 we getm = 5 and

a = 3. Moreover, letE be the Fermat hypersurfade + y3 + y5 = 0}
inP(1,1,1). Then the image oK x F via the rational mag(4, 3, 3, 2) x
P(1,1,1) — P(4,4,3, 3,2) from Theorem 3.30 defines a singular model
Y’ of the generalized Borcea-Voisin threefold as the zerofset o

(3.3) z+ 28 =25 + 25 + 28,

where thez; denote the canonical coordinatesi, 4, 3, 3, 2). Note that
P(4,4,3,3,2) is in fact a Gorenstein toric variety. Moreover, since (3.3)
is of Fermat type, by Corollary 3.20 the Berglund-Hubsch dedRatyrev
construction give the same mirror. O
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TaBLE 1. Data set for K3 surfaces with non-
symplectic automorphism of ord@rwhich are hy-
persurfaces in sonig(w).

No. in Yonemura [

Charges Polynomial “ m a ]
2 EEEREY 23 +y% 4 2% + Wb 5| 3
3 Gogogog) 23+ 43+ 25+ b e
4 (G 5 7 12) 25 4+ 45 4 2% 4 w2 9 |3
10 (%, L 1z) 22 4+ y3 4+ 212 wl? 10 | o
11 &, ) w? + yS + 210 4 w15 5 |1
12 (%, ,ﬁ) 22 +y3 4+ 20 fwl 10 | 2
13 (%,3 ,2—14) m2+E3+z +wz4 6 0
14 (3,2, %, 45) 22 £ yS 427 4 wi? 6 | 0
15 (%,%,%,%) 23+ ySz + ySw + 20 — wo 6 | 4
16 (3, 4 %, 2) 23+ yPw 2T fw 4 |2
20 (7,%,%,2—14) x2z+.7:2wG+33+z4+wz4 5 1
22 (5, 51%) m22+12w3+g3+25—w15 5 1
24 (5.2 2. 15) | w22+ 2%w? 4+ 35 + 20 4 wl? 9 |3
25 (g‘é,é,é) 22z 4 22w + Yo 4 29 — w) 10 | 2
28 NS 22w + y> + 27 + w2l 9 |3
46 (%ﬁ%) 22 +y3 4+ 21 4 2w 4 |2
48 (3, % 25 15) 22 +y3 4+ 20w + wi0 5 [ 1
49 (f—,%,%,%) 22 4+ y3 4+ 28w + w2l 8 | 4
51 (3.5 36 3g) 2% + 4% + 2 w + wo0 9 | 3
54 (%, % S %) 23 + ySw + yzS + zow2 — w’ 5 | 3
59 (%%;)T,z—ll) w2z+w2w5£ + 2Tw — w2 8 4
65 (%,%,73,1—11) 22z + yo + 20w + wll 7 |'s




Chapter

Toric degenerations and
Landau-Ginzburg models

Mirrors of Fano varieties are suggested to be so cdladau-Ginzburg
modelsor just LG-models For us such models are non-compact alge-
braic varieties with a holomorphic function, referred tosaperpotential
See [ChOh], [FOOOQ1], [Gi], [HoVa] for some approaches andilteson
this topic. One of the most classical result found in the ditere is the so
calledHori-Vafa mirror, see [HoVa], of a toric variety. LeX := Py, be an
n-dimensional smooth projective toric variety associated ¢coraplete fan

¥ in Ng = R™ and choose an ample toric divisbr := 3 (1) apDp.
Then the so calleHiori-Vafa mirror [HoVa] to (X, D) is then-dimensional
torus(C*)™ together with the superpotential

@1 W:(CH"=C, W(z,...,zn) = » ez,
peES(1)

wherez; are coordinates on the torus, denotes the ray generator@and
we adopt the usual multi-index notation for the monomi&b . The choice
of D in this case is equivalent to the choice of a Kahler parameteXf,
which influences the complex parameters of the Landau-Gigabodel as
stated. One often works with the anti-canonical polaraal) = —Kx =
Zpez(l) D, in which case the superpotentldf is up to the multiple by

63
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a scalar the sum of all monomials corresponding to toric primisalis.
The goal of this chapter is to set up all foundations to desctiandau-
Ginzburg models within the Gross-Siebert program as laidro{GrSil)
and [GrSi3]. After a quick reminder on the basic notions o$ giogram ,
we will construct LG-models via deformations of a non-compagon of
toric varieties and define the superpotential by extensiom fthe central
fiber using the technique of broken lines, introduced by &m$Gr2].

4.1. Short introduction to the Gross-Siebert program

The Gross-Siebert program developed in [GrSil], [GrSid] §BrSi3] is

a very general algebro-geometric approach to mirror symmeingistent
with the SYZ philosophy [StYaZa]. One of its central notienthat of a
toric degeneration of Calabi-Yau pairsee Definition 4.2 below. The cen-
tral fiber of such a degeneration has a tropical model from hite can
compute a mirror dual model by discrete methods. The mirror tagic d
generation is obtained from this model by an explicit aldgonitusing log
geometry. The program for instance reproduces the work ofrBatand
Borisov [BaBo1, BaBo2] for Calabi-Yau complete intersectidn toric va-
rieties, see [Grl], and is expected to hold for a much largesschf Calabi-
Yau varieties.

4.1.1. Toric degenerations and tropical affine manifolds We will
remind the reader of some of the central notions on the complexeggic
side of the Gross-Siebert program and then shortly recaill troobtain
affine geometric data from it. We roughly follow [GrSi3, §1]hare more
fundamentals can be found. The reader without previous letwd of the
program is referred to [GrSi4] for an introduction.

DEeFINITION 4.1. ([GrSi3, Definition 1.6]) Aotally degenerate CY-pais
a reduced varietyX’ with a reduced divisoD C X subject to the following
conditions. Let : X — X be the normalization and - X its conductor
locus. Then we have:

1) Xisa disjoint union of toric varieties whose fans have convex
support, i.ealgebraically convexoric varieties.

(2) C is reduced andC| + v*[D] is the sum of all toric prime
divisors.
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) v|c : C — v(C) is unramified and generically two-to-one.
(4) The following diagram is cartesian and co-cartesian

C—> X

v(C) —— X. -

So morally speakind( is obtained from a set of toric varieties by pairwise
identifying some of its toric prime divisors, whil® is the union of all
remaining such divisors. For the next definition recall thiénitéon of alog
smooth morphism : (X, X; D) — (T',0) as defined in [GrSi3, Definition
1.7].

DEFINITION 4.2. ([GrSi3, Definition 1.8]) Lef” be the spectrum of a dis-
crete valuatiork-algebra with closed poirt € T'. A toric degeneration

of CY-pairs overl' is a flat morphismr : X — T with a reduced divisor
D C X, such that the following properties hold:

(1) Xisnormal.

(2) The central fibreX := 7—1(0) together withD = ® N X is a
totally degenerate CY-pair.

(3) Away from a closed subsét of relative codimension two, not
containing any toric stratum oX, the mapr : (X, X;D) —
(T, 0) is log smooth. O

Next, fix a latticeM = Z™ and denote itintegral affine transformations
by

Aff (M) = M x GL(M),
which naturally acts on polyhedra iifg. Moreover, let= C My be an
m-dimensional lattice polytope. The lattice iotegral vector fieldalong
= is denoted by\= = Z™. Recall that the category LPqlgee [GrSi3, p.
9], has lattice polyhedra as objects and the identity momplaad integral
affine isomorphisms onto faces as morphisms.

DEFINITION 4.3. For a category” with at most one morphism — o for
all 7,0 € &2 we call a functor

F: % — LPoly
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such that for alE € F(2?) and each fac&’ C = we haveZ’ € F(Z)
anintegral polyhedral complex

To an integral polyhedral compleX we can associate a topological space
B as follows:

B= ][] F(o)/ ~.

cEP

Herep € F(o) andp’ € F(o’) are considered equivalent if there are
T € P, q € F(r) and morphisme : 7 — o, ¢’ : 7 — o’ such that
p = F(e)(gq) andp’ = F(e’)(¢). We will slightly abuse notation and
identify elements of?” with their images undef" and call thencells of
Z. Furthermore we will say tha# is an integral polyhedral complex, that
is is apolyhedral decompositioaf B and refer to the:-dimensional cells
of 2 asz ¥l

For the next definition recall thatfan structureS, : U, — RF along a
cellT € & is essentially a continuous map that maps the interiartofthe
origin and the open stdy, of 7 to a finite fanX, see [GrSi3, Definition
1.1]. Two structuresS,, S- are said to bequivalentif they differ by an
integral affine transformation @&”. If 7 C o, then we get a fan structure
alongo induced fromS from the composition

Sr .
Us U- R RF /spar(S-(int(c))).

DEFINITION 4.4. ([GrSi3, Definition 1.2]) Lek € N+ . Ann-dimensional
integral tropical manifold(B, &) consists of a countable polyhedral com-
plex & with associated topological spageand a fan structurd, : U, —
R™ for all v € 210 with the following properties.

(1) For eachv € 2! the supports, | is convex and has a non-
empty interior.

2 v,/ e 2 are vertices of a cer € 22, then the fan
structures along induced fromS,, and.S,, are equivalent. O

Hence the manifold3 as above is an-dimensional manifold with bound-
ary. Moreover, the interior of each cell and the fan struediat each vertex
give integral affine charts foB, meaning that there is a subsat C B
of codimension at least two which is a locally finite union ods#d sub-
manifolds of B called thediscriminant locussuch thatBy := B\ Aisa
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manifold with integral affine transition functions. Therean general dif-
ferent possible choices df and we will in each application explicitly state
whatA is. However, we will always assume that none of the verticeB of
are contained if\ and for each maximal celt of &2 itholdsANo C Oo.
Various important properties ¢f3, &7), such agositivity ((GrSil, Defini-
tion 1.54]), can be read off from the monodromy imposedihy A, but
we will not go into details here.

Let (B, Z2) be an integral tropical manifold with discriminant locus
Recall the definition ofntegral affine functionsndintegral PL-functions

on open setd/ C B. These naturally define sheavesf f(B,Z) and
PL % (B,Z)onB, see [GrSil, Definition 1.43] and can be used to polarize
(B, £) as follows.

DEFINITION 4.5. ([GrSil, Definition 1.47], [GrSi3, Remark 1.14]) A sec-
tion ¢ of

is called apolarizationif it defines a strictly convex linear function on the
fan 3, for each cell- € 2. Given a polarizatiorp, the triple(B, £, )
is called gpolarized integral tropical manifold O

Given a toric degeneration of CY-paifs : X — T, D) recall that there
are basically two possibilities to construct an integraptcal manifold from
it. The first is obtained fronthe fan picture which is explicitly described
in [GrSi3, Example 1.10] in our context and based on [GrSi1]1 B4t will
be denoted by B, &) throughout the text. In fac#” is thedual intersec-
tion complexof X. For the second construction, basedto& cone picture
presented in [GrSi3, Example 1.12] and [GrSil, §4.2], we riegublarize
the central fibetX = =—1(O) by an ample line bundI€. This yields an
integral tropical manifold B, ), where2 is theintersection complesf
(X, £) and the polarizatior yields a polarizationp of (B, &).

We will explicitly discuss an example of a toric degeneratibi®? in cone
and fan picture in Section 4.2.2 below.

4.1.2. The discrete Legendre transform and scattering diagms.
Next, we will very briefly discuss how toric degenerationsl golarized
integral tropical manifolds with singularities are used &sctibe mirror
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symmetry in the Gross-Siebert program. As any attempt to distetssls
would result in a text much longer than appropriate for thigoituction, we
will focus on the main notions and concepts and refer theeasted reader
to [GrSi3] for details of the construction.

Let (B, £, ¢) be a polarized integral tropical manifold. Then by [GrSi1,
§1.4] there is a transformation called iscrete Legendre transformhich
we denote by B, &, ¢). This transformation is one of the key construc-
tions of the Gross-Siebert program. Assufi® &, ¢) is the polarized in-
tersection complex associated tpalarized toric degeneration of varieties
with effective anti-canonical bundkes in [GrSil]. A central result of the
program is that B, &, ) is the dual intersection complex of a toric degen-
eration, if (B, &) is positive[GrSi3, Definition 1.54] andsimple[GrSi3,
Definition 1.60]. An important aspect of this result is thasitonstructive

It gives a canonical deformation of the central fibtg := X (B, 2, ¢)
constructed from(B, £, ¢) in form of an algorithm [GrSi3, Section 3.].
More explicitly, the theorem gives-th order deformations

X}, — Speck[t]/(t511)

from structures.;. [GrSi3, Definition 2.22], which consist of codimen-
sion one polyhedral subsets Bf calledslabs[GrSi3, Definition 2.17] and
walls [GrSi3, Definition 2.20]. The central tool to construet,; from
Y1 is that of scattering diagram¢$GrSi3, Section 3.2]. Assumg’ is a
structure that is consistent to ordefGrSi3, Definition 2.28] and letbe a
joint [GrSi3, Definition 2.27] of},. Let

D= (tiaft)

be the associatestattering diagramfor some vertex € oj andw € &
with o; C w, as explained in [GrSi3, Construction 3.4]. Recall thatdor
joint j we denote the minimal cell o containing it byo; and for any ver-
texv € oj denote thenormal space of the jointby Q;{R = Ay r/Aj R
For an exponenin [GrSi3, Definition 2.2] propagating in directiom €
Ay \ Aj we wish to define the scattering of the monomi&t, which we
think of traveling along the ray-R>m into the origin OfQ;),R' In a scat-
tering diagram monomials move along so caliegectories which we will
define next. Compare this to the definition of rays in [GrSi3fjiigon 3.3].
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DEFINITION 4.6. Atrajectoryin QY is a triple(t, m¢, at), wheremy is
a monomial on a maximal ce#t 5 v with +m € 7 andm € P, for any
z €j\ A, t==xR>om, anda; € k. The trajectory is calleéhcoming
if t = R>qm, andoutgoingif if t = —R>ym. By abuse of notation we
often suppressw: anda¢ when referring to trajectories. O

The following proposition incorporating trajectories repents the neces-
sary generalization of the central existence and uniqseresult for scat-
tering diagrams shown in Proposition 3.9 of [GrSi3].

PROPOSITION4.7. [CaPusSi, Proposition 3.2l.et® be the scattering di-
agram defined by}, for j € Joints(.7%), g : w — o5 andv € w. Let
(R>om0, mo, 1) be an incoming trajectory and O j a maximal cell with
mp € 7. Form € Q7 \ {0} denote by
. pk k

Gﬁ : Rg,(r’ — Rg’[/r
the ring isomorphism defined 1% for a path connecting-m to —my,
whereo’ is a maximal cell with-7 € o”.

Then there is a set of outgoing trajectori€such that

4.2) 20 = Z Gﬁ‘ (agz™t)

tex
holds in R’;yg. Moreover,¥ is unique ifa¢ # 0 for all t € ¥ and if
m¢ # myg Whenevet # t. O

4.1.3. Adjustments to the program for LG-models. In [GrSi3]
boundedness aB was assumed at the following places: the consistency in
codimension zero [GrSi3, Section 3.4], in the homologicaliargnt [GrSi3,
Section 3.5] and in the normalization procedure [GrSi3, i8r@.6]. This
was related to the question of what the right conditions onanarials com-
ing in from unbounded directions should be. With a bettereusiinding
of unbounded cells via the Landau-Ginzburg setup it hasrbheadear that
in fact there should be no such monomials. They may lead to albisng
and are rather treated by the superpotential. The induptiveess itself
does not produce such monomials. Adding the condition of no méno
als incoming from unbounded directions in the definition afictures then
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makes the algorithm of [GrSi3] work also for unboundBd Details will
appear in a revision of [CaPusSi].

4.2. Proper superpotentials and broken lines

4.2.1. The superpotential to order zero.This section is based on
joint work with Bernd Siebert, who gave the proofs for Praposs 4.8
and 4.9 below.

From this section on we work with the following conventionetl(# :

X — T,9) be a toric degeneration of Calabi-Yau pairs over the spectru
T of a discrete valuatioft-algebra, such that the generic fi(®,, D)
consists of a complete variel?:en and a reduced effective anti-canonical
divisor®,, C X,. Assume tha{x : X — T,9) is polarized and denote
by (B, 2, ) the polarized intersection complex. Then our starting point
compute Landau-Ginzburg models is the discrete Legendre( #ya¥?, ¢)

of (B, 2, ). So, morally speaking, we take a toric degeneration on the
“Fano side” with cone pictur¢ 3, &, ) and fan picturg B, 2, ) and
construct the Landau-Ginzburg model from the latter.

Let (B, Z, ¢) as just described and letc %2 be an unbounded maximal
cell. For each unbounded edgeC o there is a unique monomial™« €
Riodma with ord, (m,) = 0 and—my, a primitive generator ah,, C A,
pointing in the unbounded direction af Denote byZ (o) the set of such
monomialsm,,. Note that inZ (o) parallel unbounded edges w’ only
contribute one exponenmt,, = m,,,. Now at any point oDo the tangent
vector—my, points intoo. Hence

WO (o) := Z 2™

meZ(o)

extends to a regular function on the compon&nit C X corresponding
to o. For boundedr defineW?®(s) = 0. Since the restrictions of the
WO (o) to lower dimensional toric strata agree they define a fundtish<
O(Xo). This is what we call theuperpotential to order zerdA motivation
for this definition in terms of counts of holomorphic disks veidin be found
in [CaPusSi, Section 5].
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PrROPOSITION4.8. [CaPusSi, Proposition 2.1A necessary and sufficient
condition fori¥° to be proper is the following:

(4.3) Vo and unbounded), w’ C oitholdsA,, = A, as subspaces o, .

Thus if one is to study LG-models via our degeneration apgroten to
obtain the full picture one has to impose Condition 4.3 in Bsijon 4.8.
On the mirror side Condition 4.3 also has a natural interpicetaTo state it,
recall the notion of toric degenerations of Calabi-Yaupgir: £ — 7, 9)
from Definition 4.2.

PROPOSITION4.9. [CaPusSi, Proposition 2.2}/ is proper if and only if
9 — T is a toric degeneration of Calabi-Yau varieties. |

This result motivates the following natural definition.

DEFINITION 4.10. A toric degeneration of Calabi-Yau pais : ¥ —
T,9) with ©® — T a toric degeneration of Calabi-Yau varieties is called
irreducible O

4.2.2. A first example: P2. The standard method to construct the
LG-mirror for IP? is to start from the momentum polytope

= = conv{(-1,-1),(2,-1),(-1,2)}

of P? with its anti-canonical polarization. The rays of the cepending
normal fan¥% associated to this polytope are generated by

(1,0),(0,1),(-1,-1)

Calling the monomials corresponding to the first two pointand y,
respectively, we obtain the usual non-proper Landau-Girzimodel on
the big torug(Gn (k))? by the functionz +y + .

To obtain a proper superpotential instead, we need to aelbey dual of
4.3, that is, make the boundary of the momentum polytope flatfineaf
coordinates. To do this one has to trade the corners withuingoints

in the interior. The most simple choice is a decompositiBrof B = =
into three triangles with three singular points with simplenmdromy, that
is, conjugate to } ff) as depicted in Figure 4.1 in the upper left picture.
A minimal choice of theP L-function ¢ with integral slopes takes values
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(=1,2)

(=1, -1 (2,-1)

=68 S —ma

vz = (4,1)

FIGURE 4.1. An intersection complekB, &) for

P2 with straight boundary and its Legendre dual
(B, ) for the minimal polarization, with a chart
on the complement of the shaded region and a chart
showing the three parallel unbounded edges.

0 at the origin andl on 0B. For this choice ofp the Legendre dual of
(B, 2, ) is shown in Figure 4.1 in the upper right picture. Note that th
unbounded edges are indeed parallel, so each unbounded@ugs with
copies of the other two unbounded edges parallel at inteligtdncel, as
illustrated in the picture on the bottom in Figure 4.1.
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r1,3
4,2

1+ x)
| 93

71 -7 (2,1) :

(=1,-1)

FIGURE 4.2. The lower left chart fo(B, 2, ¢) as
in Figure 4.1 showing all the identifications needed
to compute the fiber product.

Next, consider the chart ab of the tropical affine manifold B, &7), as
shown in Figure 4.2. The computation we carry out here can he gothe
same manner for the other two charteatandvs, despite the fact that the
situation there is slightly less symmetric. We refer the reaolén [GrSi4,
Section 2.3] for a first example of the kind of computation werycaut
here. We use the notation as indicated in Figure 4.2. Thusawe three
coordinates, y, z pointing in direction§—1, —1), (1, 2), (2,1) aswell as
three maximal cellg';, o2 andos. Crossing the slap; 2 between the first
two we pick up &1+ z)-factor due to monodromy. We refer to this as chart
Il and analogously we define chart | by crossing the glaly betweenss
ando2. More precisely, if we denote by;, y; andz; the local coordinates
ono; we obtain the following computations for charts | and Il

z3 z3 = (1+y)’a2
ys = (142’ ys e
z3 = (14+x) 21 z3 = (14+y) e

The fiber product we are interested in is

Rfil ><( Rﬁg X(Rk R§2,

k
R p2,3=03)1+y

p1,3=03)1+3c

which we obtain by gluing along the morphisms in the followinagidam.
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k k k k
Ry, R3., RS, Ry,
k o k k o k
RP1,3,01 Rm,s,ffs R92,3,03 Rp2,3702
k
RTaﬂl ,3:02,3

Glueing coordinate functions as indicated by the chartglllbabove gives
rise to the following coordinates on the fiber product:

X = (z1,23 (1+y2)%22)
Y = ((L+z1)%1,v3,92)
Z = ((Q+wy1)z1, (1 +23)(1+y3)zs, (1 + z2)22).

It can be checked that we obtain exactly one relation for theamely
XYZ3=(1+X)3-(1+Y)3 13

Now let us describe the central fibk&) by means of glueing toric strata and
compute the superpotentiWE??. The polyhedral decomposition has one
bounded maximal celrs and three unbounded maximal cells, o1, o2.
The bounded cels is the momentum polytope of a toric quotient®f,

as the three ray generatdrs1, —1),(2, —1) and(—1, 2) of its normal fan
sum up to zero and span a sublattice of index si%#n Denote this quo-
tient by X, Each unbounded cell is affine isomorphic[@g1] x R,
the momentum polytope @' x A' =: X,,,i = 0,1,2. These glue
together by torically identifying pairs d!’s andA!’s as prescribed by the
polyhedral decomposition to yield the central fibXg. CIearIyVV]P?2 van-
ishes identically on the compact compongft,. Each of the unbounded
components has two parallel unbounded edges, leading taithbgzk to
P! x Al of the toric coordinate function ok!, sayz; for thei-th copy.
ThusWHQQ |X(,i = z; fori = 0, 1, 2. These functions are readily checked
to be compatible with the toric gluings. So we see tﬁé& is in fact a
compactification of the non-proper Hori-Vafa mirrer+ y + i
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REMARK 4.11. An interesting feature of the degeneration point efwi
is that the mirror construction respects the finer data relai¢he degen-
eration such as the monodromy representation of the affinetsteu In
particular, this poses a question of uniqueness of the Lia@lazburg mir-
ror. For the anti-canonical polarization such as the chasenin the case
of P2, the tropical datd B, 2) is essentially unique, see Theorem 5.19 for
a precise statement. For larger polarizations, thus enigugi, there are
certainly many more possibilities. For example, as an affine folaniith
singularities one can perturb the location of the singutants transversely
to the invariant directions over the rational numbers andsb@n adapted
integral polyhedral decomposition after appropriate risgalt is not clear
to us if all (B, &) leading toP? can be obtained by this procedure. [

4.2.3. Broken lines. The easiest way to define the superpotential in
full generality is by the method of broken lines. Broken liesven been
introduced by Mark Gross fatim B = 2 in his work on mirror symmetry
for P2 [Gr2]. We assume we are given a locally finite scattering @iagr
7. for a polarized integral tropical manifoldB, 2, ¢) that is consistent to
orderk. The notion of broken lines is based on the transport of morismia
by changing chambers of},. Recall from [GrSi3], Definition 2.22, that a
chamber is the closure of a connected componeft 9f.#|. This section
is based on joint work with Bernd Siebert.

DEFINITION 4.12. Letu,u’ be neighbouring chambers of;, that is,
dim(uNw') = n — 1. Letaz™ be a monomial defined at all points of
uNw’ and assume without loss of generality tirapoints fromu’ tou. Let
T := oy Noy, and

9:RE — RE

idr,oy idr,o

be the gluing isomorphism changing chambers. Then if
(4.4) 0(az™) = Z a;z™Mi
i

we call any summand,; 2" with ordgs , (m;) < k aresult of transport
of az™ fromutou’. O
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Note that since the change of chamber isomorphisms commute veittgeh
ing strata, the monomials; 2™ in Definition 4.12 are defined at all points
ofunu’.

DEFINITION 4.13. ([Gr2, Definition 4.9].) Aroken linefor .}, is a proper
continuous map

B:(—00,0] = B
with image disjoint from any joints of, along with a sequence
—o=tg<t1 <...<tr—1<t, =0

for somer > 0 with 8(t;) € ||, and fori = 1,...,r monomials
a;z™i defined at all points of3([t;—1,t;]) (for i = 1, B((—o0,t1])),
subject to the following conditions.

(1) Blet,_,,¢) is a non-constant affine map with image disjoint
from |.7% |, hence contained in the interior of a unique chamber
u; of S, andp’(t) = —m; forallt € (t;—1,t;). Moreover,
if t,, = t,._1 thenu, FUp_q.

(2) a1 = 1 and there exists a (necessarily unboundedy 2!
with m; € A, primitive andord,, (m1) = 0.

(3) Foreach =1,...,r —1the monomiak;;z™i+! is aresult
of transport ofa; 2™ from u; to u; 4, (Definition 4.12).

Thetypeof 3 is the tuple of allu; andm,;. By abuse of notation we sup-

press the datg;, a;, m; when talking about broken lines, but introduce the
notation

ag = ar, Mg:i=Mpy.

Forp € B the set of broken lineg with 3(0) = p is denotedB(p). O

For a broken lings the endpoing3(0) will in applications often be referred
to as theroot vertexandm g is called theroot tangent vector

REMARK 4.14. 1) If all unbounded edges are parallel 4.3 then theieond
tionmy € Ay, in (2) follows from (1).

2) A broken lineg is determined uniquely by specifying its endpafi{D)
and its type. In fact, the coefficients; are determine inductively from
a1 = 1 by Equation (4.4). O
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According to Remark 4.14,(2) the mab+— 3(0) identifies the space of
broken lines of a fixed type with a subsetigf. This subset is the interior
of a polyhedron:

PROPOSITION4.15. [CaPusSi, Proposition 4.4for each typgu;, m;) of
broken lines there is an integral, closed, convex polyhedpof dimension
n if non-empty, and an affine immersion

D= — up,

so that® ( Int =) is the set of endpoint8(0) of broken lines3 of the given

type.
O

REMARK 4.16. A pointp € ®(9E) still has a meaning as an endpoint of a
piecewise affine map : (—oo, 0] — B together with data; anda;z"",
defining adegenerate broken lineFor this not to be a broken linen(3)
has to intersect a joint. By convexity of the chambers this aisep the
case that there existse (—oo,0] \ {to,...,t} with 3(t) € ||, or
even that3 maps a whole interval t0%|. Note also the possibility that
ti—1 = t; for somei € {2,...,r — 1}, but theng(t,—1) = B(t;) is
contained in a joint. All other conditions in the definitioh lwroken lines
are closed.

The set of endpoint8(0) of degenerate broken lines of a given type is the
(n — 1)-dimensional polyhedral subs@(0=) C u. The set of degenerate
broken linesnot transverseo each joint of.#}, is polyhedral of smaller
dimension. O

Any finite structure.}, involves only finitely many slabs and walls, and
each polynomial coming with each slab or wall carries only digitnany
monomials. Hence broken lines fa# | exist only for finitely many types.
The following definition is therefore meaningful.

DEFINITION 4.17. A pointp € B is calledgeneralfor the given structure
- ifitis not contained in®(0Z), for any® as in Proposition 4.15. O

4.2.4. The superpotential to orderk. This section based on joint
work with Bernd Siebert. Lemmata 4.19 and 4.20 are his achievenaed
can be found in [CaPusSi, Section 4]. Recall from [GrSi3, §2at the
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structure.”;, defines ak-th order deformation ofXo by gluing the sheaf
of rings defined b)ng,au, with g : w — 7 andu a chamber of7}, with
wNu#0,7C oy.

DEFINITION 4.18. Letp € u be general. Theuperpotential up to ordek
is defined locally as an eIementhgﬁau by

(4.5) Wru)i= > agz"e. O
BEB(p)
The existence of a canonical extensidff of W0 to X, follows once we

prove the following two lemmata.

LEMMA 4.19. [CaPusSi, Lemma 4.7].etu be a chamber of/, andg :
w — TWithwNu # 0, 7 C ou. ThenWk (p) is independent of the
choice ofp € u. O
By Lemma 4.19 we are entitled to defifié’ ,, := Wk, (p) for any general
choice ofp € Int u. For the next lemma recall the basic gluing morphisms
and the notions of changing chambers and strata from [GrRiBst@uction
2.24).

LEMMA 4.20. [CaPuSi, Lemma 4.9‘[heW!§u are compatible with chang-
ing strata and changing chambers. O

In view of these lemmata we can therefore study the supergatéft: ¢
Ox,, globally onX3. Moreover, taking the direct limit = limy_, o X3
we also get a limit for the superpotential up to ordernamelyW :=
limg oo WF € O(X). We will refer to the pai(m : X — Speck[[¢]], W)
asLandau-Ginzburg modelnd toW as thefull superpotential Large parts
of Chapter5 are devoted to computing this superpotential for various tor
degenerations.



Chapter

Applications to Landau-Ginzburg mirror
symmetry

By using the technique of broken lines on affine tropical nald#, we es-
tablished a very general framework for Landau-Ginzburg msyonmetry.
This chapter is devoted to the task of constructing tropizahifolds within
this framework and computing superpotentials in various exstexplic-
itly.

5.1. Reflexive polytopes and proper LG-models

The objective of this section is to show how to construct prquperpoten-
tials for tropical affine bases constructed from a classftéxive polytopes.

In Proposition 4.9 we have seen that properness of the soieeitjal 1770
associated to a toric degeneration of Calabi-Yau f@irsX — 7,9 C %)

is equivalent t&® — T being a toric degeneration of Calabi-Yau varieties.
Recall that in this case the generic fibref— T is irreducible. The inter-
section complex3 of suchirreducible toric degenerations is characterized
by the property that its boundaf3 is a smooth affine manifold. Equiva-
lently, by Proposition 4.8, all unbounded one-dimensiotrata of the dual
intersection complexB have to be parallel.

79
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Starting from tropical datéB, &, ) in this situation, the key tool to com-
pute superpotentials in finitely many steps is the followiegina, sug-
gested by Mark Gross. It greatly reduces the number of brokes to
be considered in situations fulfilling 4.3 and with a finiteusture on the
bounded cells.

LEMMA 5.1. Let.¥ be a structure for a non-compact, polarized tropical
manifold(B, &, ¢) that is consistent to all orders. We assume that there is
a subdivision#?’ of £ with vertices disjoint fron2A and with the following
properties.

(1) Eacho € &’ is affine isomorphic tp x R>( for some bounded
facep C o.

(2) B\ Int(|2’]) is compact and locally convex at the vertices,
which makes sense in an affine chart.

(3) If mis an exponent of amonomial of a wall (or slab) intersecting
somer € &', 0 = p+R>omo, then—m € Ay + R0 o
(or —m € Ap + R - M, for slabs).

Then the first break point; of a broken line3 with im(3) ¢ |2?’| can
only happen after leavintnt | 7’|, that is,

t1 > inf {t € (—00,0]| B(t) € | 2’|}

PROOF. Assumef(t1) € o \ p for someos = p + Rx>ogm, €
', ThenB|(_oo,¢,] is an affine map with derivative-m,, and5(t1)
lies on a wall. By the assumption on exponents of wallgrothe result of
nontrivial scattering at time; only leads to exponentsiz with —m2 €
Ap+R>oMms, the outward pointing half-space. In particular, the negtlx
point can not lie orp. Going by induction one sees that any further break
point in o preserves the condition that does not point inward. Moreover,
by the convexity assumption, this condition is also preswien moving
to a neighbouring cell i?’. Thusim(3) C |2’|. O

5.1.1. Proper superpotentials for toric Fano manifolds.Let © C
Ng be a full-dimensional reflexive polytope with unique interlattice
pointvg. If the fanX := X g of cones over faces @ defines a smooth
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toric varietyPy;, we know that all integral boundary points éf are ver-
tices. A necessary and sufficient condition faf to be smooth in this case
is that all cones oE are elementary.

We have the following construction of tropical d&t&, &2, ) from ©, that
fulfills the conditions of Lemma 5.1 and therefore allows a wexplicit de-
scription of the superpotential, as we will show right aftex construction.

CONSTRUCTIONS.2. Let® C Nr = R"™ be ann-dimensional reflexive
polytope such thaPs is a toric Fano manifold. Denote B = = the
polar polytope 0 and byyy € B the unique interior integral point. De-
fine the polyhedral decompositio of B with maximal cells the convex
hulls of the facets oE and ofvg. The affine chart abg is the one defined
by the affine structure cE. For the other charts note that for any vertex
of Z, the integral tangent vectors of all adjacent facets ag@nerate the
lattice M. This follows from reflexivity of=, as all facets have integral
distance one from the origity, so if the above span would not bBd, =
would have to have interior lattice points other than Denote the set of
integral tangent vectors of all facets adjacent twy {01, ... 9; }. Then the
images of they; for i = 1, ..., under the projection), : M — M /{v)
generateM /(v). So we can define the affine structurepaty the unique
chart induced by, that is compatible with the affine structure of the ad-
jacent maximal cells and makingB totally geodesic. By what we just
said, the transition functions between charts are indetegyial affine, that
isin Aff(M). Moreover,(B, 2) has a natural polarization of minimal
degree by definings(d9) = 0 and(v) = 1 for any other vertex, which

is well-defined by reflexivity of£. We have not yet specified the discrim-
inant locus, as this is easier discribed for the discreteehdge transform
(B, 2, ¢).

By construction(B, &, ¢) has a unique bounded ceth, isomorphic to
©. Moreover, for eachn-dimensional proper face of ©, there is an un-
bounded cell of” of dimensionm + 1 that we denote by. Up to addition
of a global affine function the dual polarizing functigris the unique piece-
wise affine function changing slope by one along the unbodirideets.
Note that in the present cageis single-valued. The discriminant locus
of B, which fixesA on B, is chosen as follows. Let be a facet oB. Then
the discriminant locus oa is defined by the first barycentric subdivision of
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o. Furthermore on each unbounded — 1)-cell 7 of 22, corresponding
to a codimension two face @, declare the discriminant locus also by the
first barycentric subdivision. To see why this choice(8f, &) and A is
indeedsimple note that by assumption da all facetso of © and hence
all unbounded facets areelementarysimplices. In [Grl] Gross considers
toric degenerations associated to reflexive polytopes imies fashion. In
fact, if we restrict ou( B, &) to the bounded part, that is to the cells cor-
responding to faces @, this is exactly the situation considered in [Gr1,
Definition 2.10], in particular with the same discriminantdsc Denote this
restriction to the bounded part fyBg, Zo). In [Grl, Theorem 3.16] it
is shown thatBg, Pe) is simple. The MPCP resolution chosen in this
theorem istrivial here, asPs is smooth by assumption. Moreover, by
applying the argument presented in the proof of [Grl, The®et6] to the
unbounded part of B, 42), we get simplicity for the whole affine manifold
with singularities( B, &). O

PROPOSITIONS.3. Let® C Ng be a reflexive polytope, such thiag is
smooth. Denote byB, 7, ¢) the affine base constructed fragnby means
of Construction 5.2 with unique maximal bounded egllC B. Then there
is neighbourhood/ of the interior vertexyg € o such that forany € U
there is a canonical bijection between broken lines withparik p and rays
of .

PROOF. For each vertex of © denote byU, the connected compo-
nent of© \ A and define thex-dimensional set’, := U, + R - (—v).
The common intersection df,, for all verticesv of © is non-empty, as it
contains the origing. So we can choose andimensional open subsét
of this intersection. By construction for any pojte U the translation by
p of each rayp € X(1) can be considered as the image of a unique broken
line 8, ending inp. Running the reconstruction algorithm from [GrSi3] we
get a structure” consistent to all orders and there is in fact no scattering
within the interior ofog. Thus we can apply Lemma 5.1 in this situation,
asB has parallel unbounded one-cells and by construction anddhnded
cell og is convex. Moreover, observe that if a broken line has rodexe
p, root tangent directiow € 9© N N and scatters non-trivially aoy, it
would have to scatter at least one more time. However, thistipossible
by Lemma 5.1, so we are done. O
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This proposition implies the following interesting coraila which says
that the Landau-Ginzburg superpotenti& we get from applying Con-
struction 5.2 to© agrees on an open part with the Hori-Vafa mirror of

(P —Kpyy )

THEOREM5.4. Let(X — Speck([t]], W) be the Landau-Ginzburg model
associated to the bag&B, 2, ¢) obtained from a full-dimensional reflex-
ive polytope® C Ny = R™ by Construction 5.2. Moreover, denote
by Xg the fan of cones over faces 6. Then there is an open subset
U = Speck([t]][z1,-..,2zn] C X suchthat

Wy = ( Z :pnﬂ) -,

pEXe (1)

wherez™r denotes the usual multi-index notation. B6|y; is the usual
Hori-Vafa monomial sum of the anti-canonically polarizexti¢ variety
Py, timest. ]

REMARK 5.5. 1) Note that for a polarized toric degeneratign: ¥ —
T, %) with intersection complexB, &, ¢) Legendre dual t4 B, 2, ¢)
as in Corollary 5.4 one would expect the generic fiﬁ’r,eto be isomorphic
toPx, , asW is a partial compactification of the Hori-Vafa mirror Bt .
We do not know how to prove this statement in general, but wechéck
it for dim B = 2 in Section 5.2.

2) The fact that we recover the Hori-Vafa mirror for the argionical po-
larization comes from our specific choice@f For other polarizationg’
the terms in the superpotential receive different powers pfst as in the
Hori-Vafa proposal. O

EXAMPLE 5.6. Starting fromP3 with its anti-canonical polarization, we
obtain a model with irreducible affine base by “trading cosn@nd edges
for singularities of the affine structure”, as describechimabove Construc-
tion 5.2. More precisely, subdivide the anti-canonicaypmpe B := = :=
E,K]PB by introducing six two-faces spanned by the origin and tws di
tinct corners of=. Then choose the discriminant locidsto be defined by
the first barycentric subdivision of these six affine tri@sglas shown in
Figure 5.1. By settings(v) = 1 for every vertexo of = we arrive at the
tropical affine manifold B, 2, ¢) as depicted.
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-1 (2, -1, 1)

(B, 2, ¢)

FIGURE 5.1. The affine base of an irreducible toric
degeneration dP® and its Legendre dual.

It can be checked that the discrete Legendre transform
(B, Z,¢)

of (B, Z, ) is the one obtained from Construction 5.2, which is drawn in
Figure 5.1 on the left(B, &2, ¢) has four parallel unbounded rays and a
discriminant locusA with six unbounded rays. If these rays were bounded,
A would be homeomorphic td. Denote the bounded three-cell 6 by

o¢. Every bounded two-face is subdivided into three chamber& layd at
every vertexv of B three such chambers meet.

Now choose a general ropte U C og, whereU is the open subset from
the proof of Proposition 5.3. Asis general, it is an element of the interior
of a chamben. With the convention that the monomials corresponding to
the vectory1, 0, 0), (0,1,0) and(0, 0, 1) are denoted by, y andz, we
claim that

1
1 _ .
W) = (v +y+2+ xyz) t.

We will check this result by hand, thereby confirming Coroll&r4 for this
example. To this end we only consider broken ligebat pass through one
of the three chambers adjacent(fp 0, 1), that is, broken lines that come
from infinity in direction(0, 0, —1). The other cases work analogously. De-
note the root tangent vector by m. Then eithern = (0,0,1) andBisa
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straight line or it is broken at the boundaryaf such that the result of scat-
tering ofm is (0, 0, 1). By symmetry we may assume thahits the cham-
beru’ on the face spanned k¥, 0,1), (0,1,0) and(—1,—1,—1). The
monodromy invariant plane far' is spanned by the vecto(s, —1, 1) and
(1,1, 2). Thereforen has to be eithef0, 1,0) or (—1, —1, —1). Thus, the

set of root tangent vectors of broken lines ending ia contained in the set

of vertices ofB. Moreover, it is easy to see that indeed every vertex occurs
exactly once, by following a ray starting ain directionm and breaking at
awallindog if necessary. O

5.1.2. Superpotentials for Fano varieties from admissiblelecom-
positions. In the last section we have seen how to construct proper super
potentials for smooth Fano toric varieties associated tdlexiee polytope
© C Ng. If © is three-dimensional anitilly decomposablea property
we will define next, there is a procedure that associates aehayoly-
nomial W to © that is the Landau-Ginzburg model of a not necessarily
toric Fano variety in most cases. This method to find Fano vesiend
their Landau-Ginzburg potentials is pursued by Tom Codkessio Corti,
Sergey Galkin, Vasily Golyshev and Al Kasprzyk in an onggangject and
all the relevant data can be found online, see [CoCo]. Thethatkis based
on the combinatorics &P, but has no underpinning algebro-geometric con-
struction. The goal of this section is to make a first step tdwamder-
standing the approach of [CoCo] within the Gross-Siebesgmm. All
definitions made in this section are inspired by and can bevezed from
the data in [CoCo].

DEFINITION 5.7. Let® C Ny be a three-dimensional reflexive polytope
andr C © afacet. Then

(1) 7 is calledadmissibléf it has no interior lattice points.

(2) T is calledirreducibleif there is no non-trivial Minkowski de-
composition ofr.

(3) © is calledfully decomposablé every facet of it has at least
one Minkowski-decomposition into admissible and irreduzibl
polytopes. O
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LEMMA 5.8. Let7 be an admissible and irreducible two-dimensional poly-
tope. Therr is a triangle with at most one side containing more than two
integral points.

PROOF. Let T be admissible an@ be the triangle spanned g, 0),
(a,0) and(0, b) for natural numbers, b € N. Without loss of generality
we can assume that there is a vertgxof =~ with adjacent edgep; and
p2 indirection(1, 0) and(p, ¢), p andg coprime, such that; has at least
one interior integral point. Consider the matiix:= ((1) f]’) and assume
thata andb are the largest integers such that the image ofdersy is still
contained inr. If a > 2 andb > 2 or vice versa, the image of the interior
point (1, 1) of 7 will also be an interior point of-. Sincer is admissible,
that is not possible. In case that= b = 2 andy(7) C 7, we see that
¥ ((1,1)) is an interior point ifr has at least four vertices, ads convex.
So fora = b = 2 7 has to be a triangle, in which cagd7™) = 7. Soin
this caser can be Minkowski decomposed into two irreducible admissible
triangles spanned b0, 0), (1,0) and(p, ¢). Note thateven it = b =1
andr has at least five vertices, we see tifat(1, 1)) is always an interior
integral point ofr.

Next, assumes > 2 andb = 1. If 7 is a triangle, it is automatically ad-
missible and irreducible in this case. 4fis a quadrangle it follows that
the side not adjacent ey is in fact parallel top1, as otherwise) ((1, 1))
would again be an interior point. In this casean be Minkowski decom-
posed into the segmeat - (1,0) and an admissible and irreducible triangle
spanned byo0, 0), (a’’, 0) and(p, q) such thats = a’ +a’’, which finishes
the proof. O

Given a three-dimensional fully decomposable polytéphewe can thus
choosea Minkowski-decompositiotM g of its facets, that is for every facet
7 there is a Minkowski-sum

Meo(T) = @ Ti.
i=1

where eachr; is irreducible and admissible. We will refer to such decom-
positions agull Minkowski-decompositioria what follows.
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DEFINITION 5.9. Letr be an admissible and irreducible two-dimensional
polytope. For each integral pointe 7 we define aveight function - (v)
as follows. Ifr is thek-th integral point on a one-dimensional stratum of

lengthn of , then
n
I+ (v) = (k)

This clearly does not depend on the endpoint afe choose to determine
the position ofv. ]

Using the weights of Minkowski-pieces we can now associatelliplicity
to eachv € (© \ {0}) N N which will play the role of coefficients of the
monomialz” in the superpotential we will define below in Definition 5.12.

DEFINITION5.10. Let© C Ng be afully decomposable three-dimensional
polytope and choose a full Minkowski-decompositidng. Define the
multiplicity of Mg

mult : (©\ {0})"N — N

as follows. Choose a facetsuch that € 7 and consider its full decom-
position Mg (1) = @;_; 7:, then

mult pmg (v) = Z Zln(l’i)v

v=vi+...+vs i=1

wherev; € 7; N N. 0

REMARK 5.11. The definition of the multiplicity involves the choicéa
facet that contains and we have to check that this is well-defined. The mul-
tiplicity of a lattice point is just the weighted sum of allgmble Minkowski-
representations of the point. Henceyifs a vertex of©, thenmult(v) =

1. Moreover, integral points on one-dimensional faces gedrhial coef-
ficients as in Definition 5.9 as multiplicities, even if theyeavlinkowski
decomposed. The multiplicity of interior integral points atéts depends
on the Minkowski-decomposition. Therefore we see that thiaitien does
not depend on the facetwe choose. ]

DEFINITION 5.12. Let© be a fully decomposable three-dimensional poly-
tope with choice of full decompositioM g . Define theLandau-Ginzburg
potential associated td1¢g by

W(Me) = > mult pmg (v)2”
ve(@\{oHnN
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FIGURE 5.2. The two Minkowski-decompositions
of the facetr of ©

and set; := 2(1,0:0) 4 := 2(0:1,0) gndz := 2(0:0:1) to expres$V’ (Meg)
as Laurent polynomial i, y andz. O

EXAMPLE 5.13. Let®© be the polytope spanned by
(17 0’ 0)» (0» 17 0)7 (07 0’ 1)’ (_27 07 _1)7 (_37 _17 _1)’ (_17 _17 1)

O has a facetr, which is the pentagon spanned by all vertices but the first.
Clearly o has an additional integral boundary point(at2, —1,0) and an
integral interior point a(—1,0,0). All other facets of© are irreducible
and admissible triangles which connect the boundary wfith the vertex
(1,0,0). ltis clear that there are exactly two full decomposition®othat

is two Minkowski-decompositions af. Both decompositions are depicted
in Figure 5.2. Thus we obtain two different Laurent polyndsiiaamely

WMg)=z+y+tzta 227t a3y et oty 1l
+2-:p_2y_1 +2.271
WME)=ax+y+z4+a 227 a3y a7t paly Lz
+2- x72y71 +3.07 L
O

The crucial point in defining these potentidls := W (M) is the fol-
lowing. To eachiW we can associate ttiacobian ring

Jac(W) := Clz, y, 2]/ (8. W, 0y W, 8. W)

and we will always consider this ring aCavector space. Then there is the
following construction due to Coates, Corti et al.
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5 :
.—\ ‘ii't
FIGURE 5.3. Different Minkowski-decompositions

induce different decompositions & on the penta-
gono.

CONSTRUCTIONS.14. Let© be a fully decomposable three-dimensional
reflexive polytope,Mg a full decomposition andiV’ (Myg) its associated
Landau-Ginzburg potential. Then in many cases there is a Femifold
X, polarized by— K x, such that

(5.1) Jac(W(Me)) 2 QH*(X,C),

whereQ H* (X, C) denotes small quantum cohomology. |

REMARK 5.15. 1) The precise procedure can be found in [CoCo], where
the authors compute the Jacobian rifg:(W (Mg)) for all possible pairs

(6, Mg). AsQH*(X,C) for a Fano varietyX determinesX up to iso-
morphism and the list of all possibl@ H* (X, C) in dimension three is
known, it suffices to compare to this list to g&t, see for instance [IsPr].
More often than not this yields a Fad6. However, there are examples for
which the authors can not identify a Fano, see for instanygqEe number

14 in [CoCao].

2) This construction justifies the name Landau-Ginzburg matk since
(5.1) is in fact a mirror symmetry theorem fa, if it exists. Note, however,
that the construction is not of a geometric nature, we onlynko from
comparing the Jacobian ring to quantum cohomology. O

Next, we will verify in an example that Construction 5.14 mayfact be
geometrically described within the LG-framework in the GrSssbert we
introduced in the last chapter.
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ExAampPLE 5.16. We will continue with Example 5.13 and concentrate on
the pentagomr, on which the discriminant locus is described by five seg-
ments meeting at the barycentresgfas shown in the middle of Figure 5.3.
The two Minkowski—decomposition.‘A/l}_) and M?_) from Example 5.13
correspond to different decompositions&f as shown on the left and right
picture of Figure 5.3. The left decomposition corresponding/lé already
consists of two simple pieces, while in the right decompasitiorrespond-
ing to M% we have to further subdivide the part of the discriminant focu
on the lower copy of the pentagon. The result of this prooedan be seen
in Figure 5.4. The bounded part of the discriminant Iomj@% can, with

a little bit effort, be seen to be homeomorphic to a cube.

Note the remarkable similarity of that situation and the folltg exam-
ple. Let>X C R3 be the complete fan generated by the rays in direction
+(1,0,0), £(0, 1,0) and+(0, 0, 1). Clearly we havéPy, = P! x P! x P!

and we can apply Construction 5.2 to the reflexive polytépgpanned by
these ray generators. It is easily checked that the affine @asZ, )
obtained from this has a discriminant locswhich is homeomorphic to
AM?_). In fact, from Theorem 5.14, that is from the full list in [ColZ we

get that the potential

WME)=z4+y+zt+a 227t a3y a7t oty 1tz
+2. :E_Qy_l +2.27 %

corresponds to the Fano varie¥y = P! x P! x PL. In fact, Galkin in [Ga]
shows that there is an explicit birational transformatiomé(/\/lf_)) to the
standard superpotential Bt x P! x P,

Although details for this statement are not completely worketl note
that in the fan picture the generic fiber of a toric degenermatoes not
seem to depend on the polyhedral decomposition of the affingfaidin
but purely on theaffine structure with singularitiesas communicated to
us by Bernd Siebert [Si]. Thus, althougiB, A) is seemingly quite dif-
ferent from(BM%, AM%), both toric degenerations might have the same
generic fiber. We will, however, not go into the computatiorcheck that
this is the case. O
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FIGURES.4

We conjecture that this method of “pulling apart” the discrianit locus as
dictated by the given Minkowski decomposition presentethénlast exam-
ple, which always works locally, can be extended to a globaktruction
for every fully admissibleo.

CONJECTURES.17. Let® be a fully decomposable three-dimensional re-
flexive polytope with full decompositiont . Then there is a toric degener-
ation with dual intersection compléB v, , A ) SUch that the generic
fibre is the Fano varietyX corresponding to the potentidV’ (Mg) ob-
tained from Construction 5.14, if there is such &n O

5.2. Del Pezzo surfaces

In this section we will compare superpotentials for différeric degen-
erations of del Pezzo surfaces using broken lines. Redcallapart from
P! x P! all other del Pezzo surfacelP,, can be obtained by blowing up
P2in0 < k < 8 points. Note thatiP, for k > 5 is not unique up to
isomorphism but has a(k — 4)-dimensional moduli space. For the anti-
canonical bundle to be ample the blown-up points need to befiiciently
general position. This means that no three points are callime six points
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lie on a conic and no eight points lie on an irreducible cubfgol has a
double point at one of the points. However, rather than aneglenf— K x
the existence of certain toric degenerations is centraltcapproach. For
example, our point of view naturally includes the case 9.

5.2.1. Smooth toric del Pezzo surfacedJp to lattice isomorphism
there are exactly five toric del Pezzo surfaBgswhose fans: are depicted
in Figure 5.5, namel? blown up torically in at most three points aid x
PL. To construct proper superpotentials for these surfacesonsider the
following class of toric degenerations. Recall the notioh&reducibility
(Definition 4.10) and simplicity ([GrSil], §1.5) of toric degerations.

DEFINITION 5.18. Adistinguished toric degeneration of del Pezzo surfaces
is an irreducible, simple toric degeneratit — 7', D) with D relatively
ample overI’ and with generic fior&,, C X,, an anti-canonical divisor in

a Gorenstein surface. O

A <

FIGURE 5.5. Fans of the five toric del Pezzo surfaces

If the general fiber of a toric degeneration as in the definif®smooth
then it is ad P, for somek, together with a smooth anti-canonical divisor.
The point of this definition is both the irreducibility of thenti-canonical
divisor and the fact that this divisor extends to a polarrabn the cen-
tral fiber. We can specialize Construction 5.2 to del Pezztases. We
start from the polytopes spanned by the ray generators diviaéans de-
picted in Figure 5.5. The result of the construction is deggldn Figure 5.6,
which shows a chart in the complement of the dotted segments tNat
the discrete Legendre transfo(B, &, ¢), also depicted in Figure 5.6, in-
deed has parallel outgoing rays. Conversely, in dimengiare have the
following uniqueness result.

THEOREM5.19. If (7 : £ — T, ) is a distinguished toric degeneration
of del Pezzo surfaces with non-singular generic fibre, tienassociated
intersection complekB, ?) is isomorphic to one listed in Figure 5.6.
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o

x focus-focus point

. integral point of B

monodromy cut

FIGURES.6. The intersection complexéB, &) of
the five distinguished toric degenerations of toric del
Pezzo surfaces and their Legendre d#ls 2?).

PROOF. Let (7 : X — T,9) be the given toric degeneration, then
by definition the generic fibrén is isomorphic tdP! x P! or to a del Pezzo
surfaced Py, for some0 < k < 3.

First we determine the number of integral pointsifLet £ be the polar-
izing line bundle or. By assumption we have

(5.2)

10—k, X, ~dPy

E .
9, X, =Pl x Pl

Xﬂ) = h,O(de’ 7Kde) = {

Lett € O, be auniformizing parametek ,, := Spec (k[t]/(t"*1)) x 1
X then-th order neighbourhood oXg := 7—1(0) in ¥ and write£,, :=
£|Xn' Then for anyn there is an exact sequence of sheaves(grgiven
by

0—O0x, — Lny1 —> Ln —0.

By the analogue of [GrSi2, Theorem 4.2] for Calabi-Yau pairs know

h'(Xo,0%,) = hl(in,oin) =0.
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Thus the long exact sequence on cohomology induces a sarjecti
HY(Xo, Lnt1) - H°(Xo, Ln)

for eachn. By the theorem on formal functions and cohomology and base
change ([Hal, Theorem 11.1 and Theorem 12.11] we thereforelude
that 7. £ is locally free, with fibre oved isomorphic toH?(Xo, Lo). In
view of (5.2) we thus conclude

KO (Xo. o) = 10 — k, 3:&, ~ dP;
9, X, ~ P! x PL.

Now we know that on a toric variety the dimension of the spacgections

of a polarizing line bundle equals the number of integral {of its mo-

mentum polytope. Sinc& is a union of toric varieties each integral point

x € B provides a monomial section @fy on any irreducible component

X, C Xo with o € 2 containingz. These provide a basis of sections of

HO(Xo, Lo).

HenceB has10 — k integral points if§€7, ~ dP;, and9 integral points if

%, ~ P! x P'. An analogous argument shows that the number of integral

points of@B equals

1O(Do, £o) = h®(Dy, L),

which by Riemann-Roch equalégpk =9—korKz ., =8 Ineither
case we thus have a unique integral interior peinte B. In particular,
B has the topology of a disk, and each singular point of theefftructure
lies on an edge connecting to an integral point 0B B.

Pushing the singular poinisi, . . ., p; into &B, thereby trading them for
corners, we arrive at akgon with a unique interior integral point, hence
a reflexive polygon. Moreover, since the generic fibrekof> 9 is non-
singular, at each vertex integral generators of the targpattes of the adja-
cent edges form a lattice basis. Thus by the classificatioeflexive lattice
polygons, up to adding some edges connectingo 8B the only configu-
rations possible are the ones shown in Figure 5.6. O

REMARK 5.20. 1) From the proof we see that the five possible types can
be distinguished bylim H° (%, £,,), except forP* x P! anddP; . Alter-
natively, by Proposition 5.23, one could u&é (%X,,, Q; ).

n
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2) For each{ B, 2) there is a discrete set of choicesfwhich determines
the local toric models of — 9. This reflects the fact that the base of (log
smooth) deformations of the central fibe as a space over the standard
log pointk’ is higher dimensional. In fact, letbe the number of vertices
ondB. Then taking a representative@that vanishes on one maximal cell,
& is defined by the value at— 2 vertices ondB. Convexity then defines
a submonoid) C N"~2 with the property thatlom(Q, N) is isomorphic
to the space of (not necessarily strictly) convex, piecewai§ine functions
on (B, 22) modulo global affine functions. To avoid technicalities, wi# w
from now on assume thdlom(Q, N) is in fact isomorphic to the space
of strictly convex, piecewise affine functions. Running the constonctif
[GrSi3] with parameters then produces a log smooth deformatitimthe
given central fibrg X, D) over the completion at the origin pec k[Q].
For the minimal polyhedral decompositions of Figure 5.6 wite= | we
haverk @ = [ — 2, which by Remark 5.24 2) below agrees with the dimen-
sion of the spacéf! (Xo, GXg /ud) of infinitesimal log smooth deforma-

tions ofXg /kT. One can show that in this case the constructed deformation
is in fact semi-universal. O

As an immediate corollary of Proposition 5.3 for distinguidtteric del
Pezzo degenerations, we get the following result.

COROLLARY 5.21. Let (X — Speck[[t]], W) be the Landau-Ginzburg
model mirror to a distinguished toric del Pezzo degeneratibhen there is
an open subset

U = Speck|[t]][z,y] C X

such thatiV |y equals the usual Hori-Vafa monomial sum times O

EXAMPLE 5.22. Let us study the distinguished toric degeneratio/f
with the minimal polarizationp explicitly. The two pictures in Figure 5.7
show all broken lines for different choices of root verjein the bounded
cell og of 2. This illustrates the invariance under the change of rodexe
within a chamber of the structure proved in Lemma 4.19. The ramot t
gent vectors in each case 4k 0), (1,1),(0,1), (-1,0), (-1,—1) and
(0, —1). For the choice of root vertex as indicated in the left picture of



5.2. Del Pezzo surfaces 96

FIGURE 5.7. Broken lines in the mirror of the dis-
tinguished base of adPs indicating the invariance
under change of root vertex.

Figure 5.7 this gives the superpotential

1 1 1

Wipy(00) = (e +y+ay+—+—+—) -,

€z Yy Ty
which for¢ # 0 has six critical points. Applying Lemma 5.1 shows that
this is the superpotential to all orders, thaktiig p, (c0) = Wg}Pg (00). For
each choice op within the shaded open hexagbhshown in the picture,
none of the six broken lines has a break point. O

An analogous picture arises for the other four distinguidstiel Pezzo de-
generations. Morally speaking the last example shows thairia situa-

tions ray generators of the fan are sufficient to compute therpotential,

but really they should be seen as special cases of broken line

5.2.2. Non-toric del Pezzo surfacesin this section we consider del
Pezzo surfacedPy, for k > 4, referred to as higher del Pezzo surfaces. Let
us first determine the topology @ and the number of singular points of
the affine structure.

PROPOSITIONS.23. Let (B, ?) be the dual intersection complex of an
irreducible, simple toric degeneratigpr : £ — T, 9) of two-dimensional
log Calabi-Yau pairs. In particular, the generic fibﬁe7 is a proper surface
with © a smooth anti-canonical divisor. Thes is homeomorphic t@R2,
and the affine structure hds= dim H'(%,,, Q;n) + 2 singular points.
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PROOF  Since the relative logarithmic dualizing sheaf
wi /5 (—log®)

is trivial, the generalization of [GrSil], Theorem 2.39,tle case of log
Calabi-Yau pairs shows thd is orientable. By the classification of sur-
faces with effective anti-canonical divisor we knd## (X,,, (955”) =0,

i = 1,2. Asin the proof of Theorem 5.19 this implié&! (X, Ox,) =0.
Thus by the log Calabi-Yau analogue of [GrSil], Proposidsi/,

H'(B,k) = H'(X0,0%,) = 0.

In particular,B has the topology aR2.

Denote byA+ C A* the sheaf ofZ-cotangent vectors vanishing on un-
bounded rays. As for the number of singular points the geizatain of
[GrSi2], Theorem 3.21 and Theorem 4.2, shows thiat /' (%, Qén) is
related to an affine Hodge group:

dim HY(%,, an) =dim H'(B, i At @z R).

To computeH! (B, i A+ ®z R) we choose the followingech cover of
B. SinceB is homeomorphic t@®R? there is an open diskly C B with all
singular points contained iUy. Order the singular poings;, ...,p; € B
by following the circledUy. Then there exist open sdi5,...,U; C B
with the following properties. (1J; N {p1,...,m} = {p:i}, ) B\
Up C Uf;:l Ui, B)U; NUy, U; NU; 41 andU; N U, are contractible and
disjoint from {p1, ..., }, (4) For pairwise disjoini, j, & > 1 we have
U;NU; NU, = 0. Thenst := {Uo,Uy,...,U;} is a Leray covering
of Bfori,Aj := i.A* ®z R (cf. [GrSil], Lemma 5.5). The terms in the
Cech complex are
l
CO(Y,inAg) =R* x [ R!

i=1

l l
C'(tiAg) = [[R* x [ R?
i=1 i=1

l
C?(4,iAg) = [ R

=1
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FIGURE 5.8. Straight boundary models for higher
del Pezzo surfaces obtained by changing affine data
for dPs and their Legendre duals.

Itis easy to see that th@ech differentialC® (81, i, Ag) — C (4, i Ag)
is injective whileC* (4, i, A} ) — C?(4, 4. A ) is surjective. Hence

dim HY (B, i Ag) =4l — 2l — (1 +2) =1—2

determines the numbeéof focus-focus points as claimed. O

REMARK 5.24. 1) From the analysis in Proposition 5.19 and Proposi-
tion 5.23 it is clear that for del Pezzo surfaces of degreeasdt!four the
anti-canonical polarization is too small to extend over &tdegeneration.
The associated tropical manifold would simply not have enouagggral
points to admit the required number of singular points.

2) Essentially the same argument also computes the dimensiba space

of infinitesimal deformations of the pa(&,,, D)
O

Rl (%, Ox, (log®,)) = h!(Xo, @xg/m) =hY(B,isAg) =1—2.

It is rather easy to write down toric degenerations of natctdel Pezzo
surfaces, since they all can be represented as hyperssidacemplete
intersections in weighted projective spaces, as for exahpie fordPs

in [GrSi4, Example 4.2]. In this exampl&Ps is realized as complete inter-
section of two quadrics 4.

The most natural toric degenerations in this setup have dsatéibre the
toric boundary divisor of the ambient space. But becausectimstruction
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gives reducibleD,, such toric degenerations are never distinguished. To
obtain proper superpotentials we therefore need a diffeqgproach.

CONSTRUCTION5.25. Start from the intersection complei, £?) of the
distinguished{ Ps. The six focus-focus points in the interior of the bounded
two cell make the boundany straight, There is no space to introduce more
singular points because all interior edges already cortaimgular point.

To get around this, polarize by2 - Kqp, and adapt? in the obvious
way shown in Figure 5.8. This scales the affine manifBldy two, but
keeps the singular points fixed. The new boundary now Izamtegral
points and the unior of edges neither intersecting the central vertex nor
0B is a geodesic. We can then introduce new singular pointssasiNzed

in Figure 5.8. Moreover, leb be unchanged on the interior cells and change
slope by one when passing to a maximal cell interseclifig Plugging in

up to five singular points, one can show that toric deger@ratobtained
from the tropical data are in fact degenerationsi®f,, 4 < k < 9 by
Proposition 5.23. By we will still refer to the same bounded cell &. In
Figure 5.8 when two shaded regions, corresponding to the dromy cuts

of the respective focus-focus singularities, overlap, hade them darker
to indicate the non-trivial transformation there. O

Unlike in the anti-canonically polarized case, the modetsstruicted in this
way are not unique, So we can not expect to get a classificstidement as
Theorem 5.19. The geodesjds divided into six segments by?, and the

choice on which of these segments we place the singular p@iststs in

different models. Although there are other ways to defineirdjsished

models for higher del Pezzo surfaces, for example by choosiothar

polarization or polyhedral decomposition, in this way we eatend the
unigue toric models most naturally, since all broken lines tudisd before
arise in these models without any change.

REMARK 5.26. Note that introducing six new points, for instanceras i
the rightmost picture in Figure 5.8, corresponds to a blowfup?ain nine
points, which is not Fano anymore, but from our point of vieill bas a
Landau-Ginzburg mirror. From a different point of view thiashalready
been noted in [AuKaOr], where the authors construct a corfization of
the Hori-Vafa mirror as a symplectic Lefschetz fibrations dv¥es. Start



5.2. Del Pezzo surfaces 100

FIGURE 5.9. An alternative base for higher del
Pezzo surfaces and their mirror.

with the standard potential + y + Tlu for P2 and compactify by a divisor
at infinity consisting of nine rational curves. Then by a defation argu-
ment it is possible to push of those rational curves to the finite part and
decompactify to obtain a potential faP, includingk = 9.

We can reproduce this result from our point of view by adaptire base of
the distinguished toric degeneration #®t instead ofdPs, as in Construc-
tion 5.25. Polarizing by-4 - Kp2 scales the bas@3, &) by a factor four
and we can adapt the polyhedral decomposition as in Conistnust25.
Moving rational curves from infinity to the finite part is cesponds to in-
troducing new focus-focus points. In the present case onepuiagt most
three focus-focus points on each unbounded rgyxf4?) until the respec-
tive Legendre dual corner ¢f3, &) becomes straight. Figure 5.9 shows
nine such points, corresponding to the case- 9 above. Any additional
singular point would result in a concave boundary. This casden as an
affine-geometrical explanation for why the compactificationstructed by
the authors in [AuKaOr] has exactly nine irreducible compudaeNote that
it is possible to introduce more singular points when pasgingrger po-
larizations. This leads to other toric degenerations, fistnot clear to us
what the generic fibres of these degenerations would besrcttlse. O
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We now turn to the task of determining the superpotentialdactdegen-
erations of the non-toric del Pezzo surfadé% anddPs. The point is that
in these examples we can place the additional focus-focgsilsirities we
introduce in Construction 5.25 in such a way, that the sdagediagram
is finite in og. This implies that we can use Lemma 5.1 to compute the
superpotential to all orders. For toric degenerationg Bf with & > 6
the scattering diagram locally iy seems to be infinite for any choice of
position of focus-focus singularities and it is very harcctampute the su-
perpotential even up to small orders. As we will see in Exam86,5or
dPg there are toric degenerations with finite and others withitgfiscatter-
ing diagrams inro, depending on the choice of focus-focus points.

ExAMPLE 5.27. Figure 5.10 shows the dual intersection compex.%?)

of a toric degeneration of P, from Construction 5.25. The additional
focus-focus point on the unbounded ray in directieril, —1) changes the
structure?, as it introduces a wait in oo and allows broken lines to scat-
ter with the wall in directior(1, 1) in the bounded celiy, which yields new
root tangent directions. A non-straight broken line comirayrf infinity in
direction(+1, 0) will produce root tangent vectdr—1 + 1, —1), whereas
one with direction(0, +-1) will take direction(—1, —1 4 1). By construc-
tion, every broken line reaching the interior cefl will have t-order at least
2. Moreover, note that the structure we arrived at by insgrtire wall in

oo locally in o is consistent to all orders. Thus, we can apply Lemma 5.1
to compute the superpotential to all orders. To this end, tiwea bro-
ken line can have at most one break point once it reaches thgoinbf
oo, hamely by non-trivially scattering with, in which case the-order in-
creases by one. We get two generically new root tangenttiire; namely
(-1,—-2) and(—2, —1), as well as possibly more contributions from di-
rections(0, —1) and(—1, 0). The left picture in Figure 5.10 shows several
broken lines with root tangent vectpr 1, —2) that are related to each other
by moving the root vertex to different chambers.

The other two pictures in Figure 5.10 show the image$m) &) of all
new broken lines for different choices of root vertex, agesm the six
toric ones we have already encountered in Example 5.22. Behetroot
vertex of the picture in the middle lpy; and the one in the rightmost picture
by p2. Moreover, call the chambey; lies inu;, for: = 1, 2. Depending on
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FIGURES.10. Mirror base t@ P, showing new bro-

ken lines contributing td/I/(fP4, indicating the wall
crossing pheomenon and the invariance under change
of endpoint within a chamber.

this choice, the superpotentidf; p4 locally is given by
1

1 1
Wapa(p1) = Wipy(p1) = (x +tytaoy+—+-—+ *) 12
€ ) zry

11y 4
"F(*"I‘T)t or
r  z?y

Wapa(p2) = Wipa(p2) = (2 +y + a2y + é + i + m—ly) 2
1 1
+ (; + E) 3,
where as before: andy correspond tq1,0) and (0, 1). These superpo-
tentials are not only related by simply interchangingndy, for symmetry
reasons, but also by wall crossing along the wadkparating the chambers
uqp andus. O

ExampLE 5.28. Attaching another singular point on the unbounded ray
in direction (0, —1) as shown in the four pictures in Figure 5.11 we arrive
at a degeneration atPs. For the structure to be consistent to all orders
locally in the bounded celbg it is necessary to introduce three walls as
follows. Two of them are the extensions of the slabs with ¢emglirec-
tions (1, 1) and(0, 1) caused by the additional two focus-focus points we
introduced. The third is the result of scattering of the oth, that is the
wall with tangent directior{1, 2), indicated in red in the lower left picture
of Figure 5.11. Becausd, 1) and(0, 1) form a lattice basis the scattering
procedure at the origin does not produce any additionakwalus we can
apply Lemma 5.1 to reduce the number of broken lines to be caeside
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FIGURES5.11. Mirror bases tdPs showing all new
broken lines.

We first compute superpotentials up to order three for fourcetsoof root
vertices in different chambers, as indicated in Figure 53thrting in the
upper left picture, going in counter-clockwise directidenote the choices
of root vertex in the-th picture byp; and the corresponding chamber these
roots lie in byu;, fori = 1,2,3,4. Then Figure 5.11 explicitly shows all
non-toric broken lines with rogt; up tot-order three in blue and we get
the following superpotentials:
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1 1 1
Wips(p1) = @+y+ay+ -+~ + —) -
T Yy Yy
1 1 1 1
(= =)
r xy ry xy?
1

zy

. 1 1
W;?p5<pz)=(w+y+zy+;+§+ ) - t?

1 1 1
=+ —=+2-—)
Yy xy Ty
3 1 1 1 9
WdPS(pB):(x—f—y—‘,—a;y_'_,_i_f_,’_i).t
1 x 1
-+t —+—)
Yy Yy xy
3 1 1 1 5
Wips(pa) = (z+y+ay+—+ -+ —)-t

1 1 T 3
+(*+$+T+*)-t,

Of course, these superpotentials can be obtained from gheh loy wall
crossing. Going ta-order four, there will be more broken lines. In the
lower right picture of Figure 5.11 we indicated the new brokee in red
which contributes a% -t* to the superpotential. Note that this monomial is
invariant under crossing the wall in directi@f, 1). In fact, we do not get
any more broken lines for higherorders by Lemma 5.1 and thus we get
the full potential

1 1 1
Waps(ps) = Wips(ps) = (@ +y+ay+ — + — + —) - t?
z Yy ry

1 x| 1 1
totat+ =4 —5) 4= th
y y oy y
O

ExampPLE 5.29. We study another model of the mirrord®s, which dif-
fers from the last one only in the position of the second fefogsis point.
Instead of placing it on the ray with genera{@;, —1) we move it to the
ray generated byl, 1), as shown in Figure 5.12 on the right. With choice
p of root vertex as indicated in the picture, this more particaghoice of
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FIGURE 5.12. An alternative mirror base fdiP;

focus-focus points yields the superpotential

1 1 1
Waps () = Wip,(0) = (e +y+ay+ - + =+ — ) 12
: T Yy xy

1 2 L 3
+(*+x+x y+f2)~t .
Y Ty

It is an interesting question to understand in detail theatfof particular
choices of singular points and the corresponding degeopsat O

ExampLE 5.30. As a last example, we study broken lines in the mirror
of a distinguished model atPs. For the choice of focus-focus points and
root vertexp; as depicted on the left in Figure 5.13, we this time obtain the
following superpotential up to order five:

. 11 1\ o,
Wip, (1) =(o+y+oy+—+=+—)-t
x y  xy
1 1 1 1 1
+(2~—2+—+2-7) R )
Ty zy Y Y Y
Again, this potential comes from a special choice of positiof singu-
lar points and root vertex. However, for this choice we cah aygply
Lemma 5.1, as the three walls meeting at the origin scatter teffroften.
It is already very complicated to determine all broken linesap-order
SiX.
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In contrast, the picture on the right of Figure 5.13 showsntireor base of
adPg-degeneration with a different placement of focus-focugui@rities.
Introducing walls by extending the slabs in directign 1), (—1,0) and
(0, —1) makes the scattering diagram locally in the boundedaefinite,

S0 we can again apply Lemma 5.1 to obtain the following superiat for
the choice of root vertexs as in the picture

1 1 1
deﬁ(pz)zwfpﬁ(pz): <z+y+xy+;+§+—) 12

1 1 1
+(Z4c+ 54245 O

These examples illustrate that if we leave the realm of taangetry, Landau-
Ginzburg potentials for del Pezzo surfaces can, at leaatljpstill be de-
scribed by Laurent polynomials, as in the toric setting. Aftempletion

of the work on this chapter, the preprint [GrHaKe] was av@ézonline. It
covers much what we what we have done and goes beyond that in some
regards.

5.3. Semi-Fano and Hirzebruch surfaces

Recall that in Construction 5.2 we dealt with polytogeshat gave rise to
smoothFano toric varietie®s . Restricting to dimension two, we will
now see that we can also treat the casserhi-Fanoand evemon-Fano

toric surfaces.

5.3.1. MPCP subdivisions and smooth semi-Fano surfaceRecall
that by Lemma 2.9 and Proposition 2.17 a projective toric Waméath fan
3% is Fano with at most canonical singularities if and only if dpan of ray
generator®s; is reflexive. There aré6 reflexive polytope® in dimension
two, among which the faklg of cones over faces gives rise to a smooth
variety in precisely the five cases we have been studyingdticse5.2.1.
The remaining eleven polytopes are characterized by thespsoihat® has
at least one integral boundary point that is not a vertex.nSbease eleven
casesPy, will be Q-GorensteirQ-Fano. If we applied Construction 5.2
to a© with integral boundary points, the discriminant locsswould not
be simple, as the facets & are not elementary simplices anymore. To
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FIGURE 5.13. Two mirror bases t@Ps.

resolve this issue, Idt7", h) be a maximal triangulation d®, which we
can choose by Lemma 2.18, and denotbe;he fan of cones over faces
contained in the boundary &, that is

S ={o,|r €T, C 90},

whereo denotes the cone over. Then Ps is a smooth toric surface.
Moreover, it is clear tha]t”i is semi-Fanosince the anticanonical divisor

_Kﬂ’i defines a not convex support function Brthat is not strictly con-
Vex.
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With this notation we can now adapt Construction 5.2 applthte semi-
Fano setting.

CONSTRUCTIONS.31. Let© C Ny be a two-dimensional reflexive poly-
tope and choose an MPCP-subdivis{@n, h-) of ©, which induces a max-
imal triangulation of0© and defines the fak. We construct a tropical
manifold (BT, 27 ) as follows.

Start from the tropical manifold B, &7) obtained from Construction 5.2.
Then the bounded cells a#?”7 are defined to be the polytopes in the tri-
angulation7 with induced charts, which refine®’. Moreover, for each
rayp € $(1) \ Ze(1) with ray generator.,, add an unbounded one-cell
in direction of p starting atn,. Next we describe the discriminant locus
AT . Put a focus-focus singularity on the barycentre of eachaatiecor-
responding to a polytope in € 7 with 7 C 9©. This choice makes
the unbounded one-cells 6P 7 parallel, as is elementary to check in each
case. To defin& we use the height functiohs. For eachv € 66 N N
define@” (v) := hr(v), 37 (0) = 0 and letz” change slope by one on
the unbounded part. Ay is strictly convex, so i$57 . O

REMARK 5.32. An analogous construction should work in higher dimen-
sions, there are however certain technical issues we caresalive in this
case, such as proving simplicity of the discriminant locus. O

EXAMPLE 5.33. Let© be the reflexive polytope spanned(yl, 1), (1, 1)
and (0, —1). Note that® has(0, 1) as boundary point. Now, choose the
MPCP subdivisiorv” of © that assigns valu2to (—1, 1) and1 to all other
lattice points of the boundary @. On the two-dimensional toric variety
PP, associated to the complete fanwith ray generatoré—1, 1), (0, 1), (1, 1)
and(0, —1), corresponding to toric diviso®1, D2, D3 andD4, the MPCP
subdivision7 corresponds to the ample divisbr:= 2- D1 4+ D2 + D3 +
Dy. Note that—K]pi is notan ample divisor. Applying Construction 5.31
in this situation yields(B7, 27,37 as depicted in Figure 5.14. The
polytopes in?7 are simplicial and the singular locds” consists of four
isolated focus-focus singularities. It is in fact easy tedhthatPy = Fs,
the only semi-Fano Hirzebruch surface. O
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1
[2 [

[1

FIGURE 5.14. An irreducible tropical manifold for
a semi-Fano surface degeneration

Having studied a first example, in Figure 5.15 we summarize thgdal
affine manifolds
(Bi, 2, %)

obtained from applying Construction 5.31 to the eleven xaféepolytopes
0, for: = 1,..., 11, with a particular choice of MPCP subdivisiqn as
indicated. In the picture®; is the union of all bounded cells &FZ for
alli = 1,...,11. Note that we suppress the ind@x for this particular
choice. The corresponding fans will be denotedfhyand the associated
toric varieties accordingly b?ii. The valuega, ] in square brackets in
Figure 5.15, defining th& L-functiong;, have the following interpretation.

Each integral boundary point € 009, corresponds to a ray generator of a
ray p, € ¥;(1) and hence to a toric divisdd, . The valuefa, ] associated
to v is chosen such that

(5.3) Di:= > [a]-Dy

pu (1)
is an ample toric divisor oﬁ?ii, as this is equivalent to saying thatis
strictly convex. Another equivalent formulation is that thelytope=p,
associated td;, see Definition 2.10, is a convex polyhedron whose facets
are in one-to-one correspondence with integral point3@®f.

We will now proceed by computing superpotentials for theefdvases. For
the following lemma define a weight functidn, similar to Definition 5.9,
as follows. Assume is a line segment with integral points and is the
k-th of these counting from one endpointafwe seti, (v) = (}).

LEMMA 5.34. Let(B], 27, 37) be the polarized tropical manifold as-
sociated to the polytop®; and choice of MPCP subdivisiqfi;, h7; ) from
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(B, 2,%) for all eleven smooth semi-Fano toric

surfaces .
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Construction 5.31. Choose a root vertein a small open neighbourhood
U of the origin and le3 be a broken line with rogt and root tangent vector
mg = v, wherev € 96 N N. Theng crosses the walt corresponding to
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FIGURES.16

the facet of© on whichv lies and we have
ag =l (v).

PrRoOOF Denote the integral points af by vy, ...v, and assume
thaty = v, for somek = 1,...,n. Moreover, denote the monodromy
invariant direction of thex — 1 focus-focus points om by = and its inverse
by z—1. By our convention on slab functions we have that

froom =0 +2z) - (1+tz)-...- (1+t7"1x)
and accordingly
from = Q427 A4tz (Lt

The precise value of the; depends on the MPCP height functibr- we
choose, as this influencgs’ . We visualized this situation in Figure 5.16.
Note that we can apply Lemma 5.1, as scattering on the boundiscbte
@7 will always be finite andEiT has parallel one-dimensional strata for
alli =1,...,11. Thus, ifp is close to the origif), theng passes through
T without break point. If it had a break point, its first breakmiavould nec-
essarily have to be outside of the bounded panﬁﬁ, which contradicts
Lemma 5.1. This means thag is the constant term of

(A4z)- (L+t1z) - (Lt —1z) - (1Htk ) (14 ten—tz™ L),
which is the coefficient of the*-term in f- ,,, . This in turn is nothing but
(7). thatisag = I-(vg) = I (v). O

Thus, if we choose the root vertexto be in a small neighbourhood 6f
then we get broken lines without break point in the directidrall rays
of 3; forall 4 = 1,...,11. Moreover, by Lemma 5.34 we know the
valuesag for each such broken ling. We therefore obtain the following
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analogue of Theorem 5.21. Note that we get the full potgrdéimwe can
apply Lemma 5.1 once again.

COROLLARY 5.35. Let© be a two-dimensional reflexive polytope, choose
an MPCP subdivisiof 7, A1) and denote the tropical manifold obtained
from Construction 5.31 byB, 2, @). Then there is an open subdét=
Speck[[t]][z1, z2] such that the full superpotential’ for (B, ﬁg’ﬁ) is
given by

Wiy = Z ay ~thT<")x",

veEONN

wherea, = I (v) for a choice of a one-dimensional faceC © contain-
ingv. O

REMARK 5.36. 1) Note that i© is such thaPs,, is smooth, then it follows
thata,, = 1 for all integral boundary points @&. Moreover, in this case we
can choosé.7(v) = 1 forall v. Soin this case the Corollary 5.35 recovers
Theorem 5.21 for del Pezzo surfaces.

2) In[ChLa], based on work in [Ch], Chan and Lau compute suptergials
for each of the eleven semi-Fano toric surfaces, withoutieXyl stress-
ing the importance of the choice of MPCP subdivision, respelgtheight
function. Our approach in fact computes compactfications efsihper-
potentials obtained in [ChLa] for the same choicel®f as in (5.3). The
polytopes in [ChLa, Figure 7] then correspond, up to latiaeomorphism,
to=p,. O

5.3.2. Hirzebruch surfaces.As a last application we will study proper
superpotentials for Hirzebruch surfades,. We fix the fanX in N = 72
of F,, to be the fan generated by the four primitive vectags= (0, 1),
p1 = (—=1,0), p2 = (0,—1) andpz = (1, m). SinceF,, is only Fano
in the case§y = P! x P! andF; = dPi, for m > 2 the normal fan
of the anti-canonical polytope will not be the fan of a Hiraeth surface.
Denote byD,,, the torus-invariant divisor associatedgp Instead of the
anti-canonical divisor, which is not ample for > 2, we consider a smooth
divisor D,,, in the ample class

Dpo + Dpy + Dpy +m - Dpy.
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(—=1,1)(0,1)
[1] 4

FIGURE 5.17. A straight boundary model for the
Hirzebuch surfaceg,,, with mirrors form = 2, 3.

Define a tropical affine manifoldB,,, P, @m) with straight boundary
as follows. B,, is obtained from the Newton polytogep,, by joining

it with the interval [0, m — 1] as shown in Figure 5.17 on the top, and
then introducing a single focus-focus singularity on eadhe four joining
one-cells. The polyhedral decompositieh,, is the one induced by this
construction and it is again elementary to check that this 5@k, totally
geodesic. Clearly, setting,, (v) = 1 for all verticesv of 9B, and

Em((0,0)) = G ((m —1,0)) = 0

defines a strictly convex PL function @, %y, ). From this description
it follows that the Legendre du@B,,, Zm,, ©m ) has two bounded cells

oo = conv(7o,T1,72) and o1 = conv(7g, T2,73),

four unbounded one-cells in direction of thgs, seen from a bounded cell.
These one-cells are indeed parallel in a chart on the compleshére ray
generated by any of thg. Moreoverd(ooUo1) has precisely four integral
points, namelyrg, 71, 72 andrz. Furthermore sep,, (0) = pm(m0) =
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em(11) = em(m2) = 1, pm(73) = m and lety,, change slope by one
at the boundary ofg U o7 .

Thus we see that for, > 3 the unionog U o is non-convex, which causes
scattering phenomena in the interior of this bounded partis fakes it
more difficult to compute the potential to highteorder in this case and dis-
tinguishes it from other situations we considered so far.ndig explicitly
compute the full superpotential fé%, andFs.

First, for the basg B2, 9%2) and the choice of root vertex € o as de-
picted on the lower left in Figure 5.17 the Landau-Ginzburgespotential
is given by

1 1
W)= W) = (4 +u) ey

This is indeed the full potential, as there is no scattenngdthoy ando,
so we can apply Lemma 5.1.

As remarked above, fon = 3 the bounded part aBs is subject to scatter-
ing. To see this, note that at the poiit 1) two walls in directiong1, 1)
and(—1, —2) with focus-focus points on them meet. Locally this is equiv-
alent to the situation of walls in directiofl, 0) and (0, 1) meeting at the
origin. An explicit computation carried out in [GrSi4] showst this scat-
tering diagram can be made consistent to all orders by intiadwutgoing
walls in directions(1, 0), (0, 1) and(1, 1), which translates to walls in di-
rections(1,1), (—1, —2) and(0, —1) in our situation, as indicated by the
dashed lines in the lower right of Figure 5.17. Of course itbé necessary
to insert more wall®utsideof the bounded part, but this is unessential for
the computation of the superpotential. Hence scattering@baunded part
oo Uo7 is finite and we can once more apply Lemma 5.1. For the choice of
root vertexp’ as indicated in the lower right picture of Figure 5.17 we get
the following full superpotential fo¢Bs, #3)

11 y y
W) =W3(@p') = <;+§+y+;) -t+;-t2+(zy3+y2> 3.

Thus, neglecting-orders for a moment, we have three new contributions
that differ from the Hori-Vafa potentiak + % + y + xy3, namely the
monomialy? and two times the tern%, which come from broken lines
that have a break point at the new walls emanating fdn) in direction
(1,1), (0,—1) and(—1, —2), respectively. Note that these are precisely
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the terms Auroux found in [Au, Proposition 3.2], when we male ¢bor-
dinate change: — % andy — % The computation in [Au, Proposition
3.2] is very explicit and rather long when compared with oun@gion. Of
course all the hard work is carefully hidden in the Grosd&ieprogram,
but still it is remarkably easy to compute Landau-Ginzburg nedéh this
approach, once everything is set up.
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Zusammenfassung

Die vorliegende Arbeit behandelt algebraisch-geometeisi€hnstruktio-
nen, um das Spiegelsymmetrie-Phanomen aus der Stringtheoverste-
hen. Vornehmlich geht es darum einen gemeinsamen Rahmen fsisklze
wie moderne Ansétze aus der torischen Geometrie zu finden uadhigit-
erten Kontext des Spiegelsymmetrie-Programms nach Gross ebdrSzu
erklaren. Die Arbeit deckt dabei sowohl SpiegelsymmetrieJétabi-Yau
Mannigfaltigkeiten als auch sogenannte Landau-Ginzbuogléfle ab, die
als Spiegel von Fano-Mannigfaltigkeiten auftreten.

Die Dissertation gliedert sich in zwei Hauptteile. Im ersfEeil werden
mittlerweile als klassisch anzusehende KonstruktionerSgégelsymme-
trie fir Calabi-Yau Mannigfaltigkeiten mit Methoden derismhen Geome-
trie studiert. Nach einer kurzen Einfiihrung in die hier valgen Begriffe
torischer Geometrie, werden die fur diesen Teil wichtigdbeiinitionen

anhand von Beispielen erlautert. Im Folgenden werden digidge von
Batyrev und Berglund-Hibsch im Detail beleuchtet und méeder ver-
knupft. Eine milde Verallgemeinerung des ersten und eine geistiee

Reformulierung des zweiten Ansatzes erlauben es beide @megemein-
samen Kontext aufzufassen. Die Spiegelpartner bei Bergflirtasch sind
demnach Hyperflachen sehr spezieller Struktur in torisclagietaten, wah-
rend die Spiegelpartner in Batyrevs Arbeit allgemeine Hifaenen in den
selben torischen Varietaten sind. Insbesondere sind dgelpartner bei-
der Konstruktionen jeweils polynomiale Deformationen voaeider und
stimmen in Spezialfallen sogar iberein. Als Anwendung dieseslige-

meinerten Standpunkts werden zudem Borcea-Voisin CalabifNannig-

faltigkeiten und deren Verallgemeinerung diskutiert. Spesvisse technis-
che Voraussetzungen erfillt lassen sich Spiegelpartnelidde Klasse von
Mannigfaltigkeiten explizit mit den vorgestellten Techaikkonstruieren.

Der zweite, weitaus technischere Teil der Arbeit behardielErweiterung
des Gross-Siebert Programms fir torische Entartungen vaatdtn mit
effektivem anti-kanonischen Biindel. Zur Konstruktion degenannten
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Superpotentials wird das Gross-Siebert Programm in leietdllgemein-
erter Form herangezogen. Landau-Ginzburg Modelle kdnaenrdh an-
hand des Rekonstruktions-Algorithmus nach Gross-Siengukitiv definiert
werden. Unter gewissen technischen Bedingungen lassligi@&ndlichkeit
der Beitrdge zum Superpotential beweisen, was eine votigjé Berech-
nung erlaubt. In diesem Kontext werden viele klassischeeainigje neue
Beispiele detailliert behandelt. Eine Vielzahl der bigjéekannten Beispiel-
klassen fir Landau-Ginzburg Modelle wird durch diese Karidion abge-
deckt.

In erster Anwendung wird die auf Hori und Vafa zurtickzufiitde Kon-
struktion fur glatte torische Varietéaten, deren Impulspabe reflexiv sind,
derart verallgemeinert, dass das Superpotential einetéa@nAbbildung
wird, die Fasern in komplexer Geometrie demnach kompakt sindr De
zweite Anwendungsbereich liegt im Studium komplexer Flached der
expliziten Konstruktion von Spiegelpartnern. Ist die affieine Faser der
torischen Entartung eine glatte torische Flache, lass#nuwsiter Zusatzbe-
dingungen Eindeutigkeitsaussagen Uber den zugehdrigenitkomplex
der Entartung ableiten. Im Falle allgemeiner Fasern, dietisomporph zu
torischen Flachen sind, lassen sich Spiegelpartner a@itexplizit berech-
nen. Wahrend vergleichbare Resultate in der Literatur aufi(p@uf mas-
sivem Rechenaufwand beruhen, steckt die Komplexitat deeinAdbeit
abgeckten Methode im Gross-Siebert Programm selbst, dexBeung der
Superpotentiale ist vergleichsweise handhabbar und ankch. So lassen
sich etwa Spiegelpartner fir torische semi-Fano- und HitegbFlachen
ohne weiteres im vorgestellten Rahmen berechnen.
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