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Chapter 1
Introduction

Mirror symmetry is an ample and far reaching phenomenon originating

from string theory which continues to have a deep impact on manyareas of

mathematics to this day. It originated from the observation that string theory

suitably compactified on two different Calabi-Yau threefolds may neverthe-

less induce the same superconformal field theory. Since the appearance of

the seminal paper by Candelas, de la Ossa, Green and Parkes [CaOsGrPa],

which allowed to deduce previously unknown enumerative aspects for quin-

tic threefolds, mathematicians got attracted by mirror symmetryas a math-

ematical discipline on its own.

1.1. Classical toric mirror symmetry and natural generalizations

Much has been done since then, but Batyrev’s work on hypersurfaces in

toric varieties [Ba] is not only largely considered the firstpurely mathe-

matical manifestation of the phenomenon, but also one of the mostpopular

and recognized approaches, supposedly because of its combinatorial nature

and the fact that it is so handy to compute with. Around the same time

1



1.1. Classical toric mirror symmetry and natural generalizations 2

Berglund and Hübsch [BeHu] presented another explicit mirror construc-

tion which remained almost unnoticed by mathematicians for many years.

Although the spaces in which they consider Calabi-Yau hypersurfaces are

toric varieties as well, most of them have more complicated singularities

than those in the work of Batyrev. Recently there have been more and

more papers devoted to the construction of Berglund and Hübsch, see for

instance [Bori], [ChRu1], [ChRu2] or [Kra]. However, thereis a certain

controversy in the current literature about what the relation between the two

constructions is. Some authors that a ‘vast range of cases’ isnot covered by

Batyrev’s construction [ChRu1, p.2], while others note that there might be

a generalized setup in which they can both be understood [Bori]. This sug-

gests that mirror symmetry for hypersurfaces in toric varieties is not fully

understood yet and it is one of the aims of this thesis to clarify the relation

between known approaches.

On the other hand, mirror symmetry has been suggested both by mathemati-

cians and physicists to extend to a correspondence between Fano varieties

and Landau-Ginzburg models, see for instance [ChOh], [FOOO1], [Gi],

[HoVa]. Purely mathematically a Landau-Ginzburg model is a non-compact

Kähler manifold with a holomorphic function called the superpotential. The

majority of literature deals with toric varieties, where an explicit construc-

tion of the mirror was known for a long time. The work of Auroux, Katzarkov

and Orlov on mirror symmetry for del Pezzo surfaces [AuKaOr], where a

mirror is constructed by an ad hoc construction, presents a rare exception to

this. However, the program proposed by Gross and Siebert in [GrSi1],[GrSi3]

presents a framework for mirror symmetry that vastly exceeds therealm of

toric geometry, but has not yet been adapted to incorporate a Fano/Landau-

Ginzburg correspondence. Another goal of this thesis is to introduce a gen-

eralized approach to Landau-Ginzburg mirror symmetry within this pro-

gram.



3 Introduction

1.2. Main results of thesis

1.2.1. Calabi-Yau varieties inQ-Gorenstein spaces and mirror sym-

metry. Given a lattice polytopeΞ, a well known theorem of Batyrev asserts

that aΞ-regular anti-canonical hypersurfaceX in the toric varietyPΣ asso-

ciated to the normal fanΣ of Ξ is Calabi-Yau if and only ifΞ is a reflexive

polytope. In that casePΣ is a Gorenstein Fano variety.Ξ-regularity means

thatX intersects every toric stratum smoothly in codimension one and its

Newton polytope equalsΞ. However,X can be Calabi-Yau even if it inter-

sects strata non-smoothly or has a smaller Newton polytope.

Almost reflexive polytopes and singular Calabi-Yau varieties. We

will carefully analyze the case whenPΣ is only Q-Gorenstein and study

various properties of such toric varieties. It turns out that the right notion to

consider is that of analmost reflexive polytope. An almost reflexive polytope

Θ is defined by the property that the integral points of its polar polytopeΘ∗,

aQ-lattice polytope in general, span a reflexive polytope. Using this notion,

we prove the following generalization of Batyrev’s theoremabove.

THEOREM 1.1 (Theorem 2.25).LetΘ be a lattice polytope and denote its

fan of cones over faces byΣΘ. Moreover, letX ⊂ PΣΘ
be a general anti-

canonical hypersurface in theQ-Gorenstein toric varietyPΣΘ
associated

to ΣΘ. ThenX is a Calabi-Yau variety if and only ifΘ is almost reflexive,

that is if and only if the integral points of the anti-canonical polytope ofPΣ

span a reflexive polytope.

Let us explain the relationship between this theorem and theabove men-

tioned result by Batryrev. IfΘ is almost reflexive, it follows that it is canon-

ically embedded into a reflexive polytopeΘ, called the associated reflexive

polytope. The fan of cones over faces ofΘ is denotedΣΘ. Choosing a

maximal projective triangulation ofΘ yields a fanΣ̃ that is a common re-

finement of bothΣΘ andΣΘ. Thus we get the following diagram of toric

morphisms.
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By Batryrev’s result aΘ
∗
-regular anti-canonical hypersurfaceY ⊂ PΣ

Θ

is Calabi-Yau and it is known thatψ is crepant, soψ∗(Y ) is Calabi-Yau as

well. By our theorem the imageφ(ψ∗(Y )) is Calabi-Yau as well. On the

other hand, we will see thatφ is crepant on anti-canonical hypersurfaces,

so forX as in the theoremψ(φ∗(X)) is also a Calabi-Yau variety. Thus

Theorem 1.1 does not give genuinely new Calabi-Yau varieties, but instead

shows precisely to which extend we can torically blow downP
Σ̃

such that

a general anti-canonical hypersurface remains Calabi-Yau.

Theorem 1.1 turns out to have some impact on toric mirror symmetry and

we will give two major applications of it.

Berglund-Hübsch mirror symmetry in the Batyrev setup. Firstly,

we show how to incorporate the approach of Berglund-Hübsch into the

framework of Batyrev mirror symmetry. A considerable step towards this

has also been achieved by [Bori], whose work is independent of ours.

A polynomial of Berglund-Hübsch typeW is a quasi-smooth anti-canonical

hypersurface in ann-dimensional weighted projective spaceP(w) having

preciselyn + 1 monomials. Denoting the zero set ofW in P(w) by X,

the results of [BeHu] show thatX is a Calabi-Yau variety.P(w) is aQ-

Gorenstein toric variety with fanΣw in some latticeNQ. By Theorem 1.1

we thus know thatX can only be Calabi-Yau if the spanΘ of ray genera-

tors ofΣw is an almost reflexive polytope. As before, denote the reflexive

polytope associated toΘ byΘ and the fan of cones over faces of a maximal

triangulation ofΘ by Σ̃.

Next, choose a groupG of automorphisms ofW acting diagonally on the

coordinates ofP(w). A central result of Berglund and Hübsch says that the

spaceX/G is a singular Calabi-Yau and admits a full crepant resolution
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XW := X̃/G for n = 4. While it is well known that dividing by cer-

tain group actions corresponds to passing to sup-lattices in toric geometry,

see [Ba], this knowledge was never applied to the Berglund-Hübsch setting.

We show that the choice ofG corresponds to a sup-latticeN of N , so that

X/G is given by viewingΣw as a fan inN . We can now use the toric

morphismφ : P
Σ̃

→ PΣΘ
= P(w)/G from above to pull backX/G to

P
Σ̃

which turns out to be the Calabi-Yau manifoldXW .

FromW andG one can explicitly construct a dual polynomialW ∗ and a

dual groupG
∗
. W ∗ defines a Calabi-YauX∗ in another weighted projec-

tive spaceP(w∗) with fan Σw∗ , whose span of ray generators will be an

almost reflexive polytopeΞ by the same arguments as above. The Calabi-

Yau manifoldXW∗ := X̃∗/G
∗

will then analogously be the pull-back of

X∗/G
∗

via a morphismφ∗ : P
Σ̃∗ → PΣΞ

for some fanΣ̃∗. The main

theorem of [BeHu] asserts thatXW andXW∗ are mirror Calabi-Yau. By

observing that the associated reflexive polytopeΞ ⊃ Ξ is the polar polytope

of Θ ⊃ Θ we obtain the following theorem.

THEOREM 1.2 (Theorem 3.19).A Berglund-Hübsch mirror pairXW and

XW∗ is an explicit choice ofspecialhypersurfaces inP
Σ̃

andP
Σ̃∗ , that

is in toric varieties associated to maximal projective triangulations of four-

dimensional reflexive polytopesΘ andΞ := Θ
∗
. Moreover, there are poly-

nomial deformationsY ofXW andY ∗ ofXW∗ that form a mirror pair in

the sense of Batyrev [Ba].

As an immediate corollary of this theorem, which is not clear from the orig-

inal construction, we see that the mirror of a Berglund-Hübsch Calabi-Yau

X̃/G does, up to polynomial deformations, not depend on the choice of

W . Another implication is that whenW is of Fermat type, then by The-

orem 1.2 the Berglund-Hübsch mirror isprecisely the sameas the Batyrev

mirror, that is for Gorenstein FanoP(w) and their quotientsP(w)/G the

two constructions coincide.

Mirrors for generalized Borcea-Voisin threefolds. As a second ap-

plication of Theorem 1.1 we present a general scheme for finding mirrors of
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the following class of Calabi-Yau threefolds. LetE be an elliptic curve with

automorphismι of orderp and letX be aK3 surface with automorphism

σ of orderp, acting as−1 on a generator ofH2,0(X), for p = 2, 3, 4, 6.

Then there is a Calabi-Yau resolution

Y −→ X × E/(σ × ι),

which is called ageneralized Borcea-Voisin threefold. Forp = 2 this con-

struction was discovered independently by Borcea [Borc] and Voisin [Vo].

Both autors showed that, except for eleven special cases, the mirror of a

Borcea-Voisin threefold is again such a threefold.

While for p = 4, 6 it is an active field of research pursued by M. Arte-

bani, S. Boissiére and A. Sarti, to find all possible pairs(X,σ) as above,

for p = 3 this classification is known by the results of [ArSa]. The work

of Dillies [Di] shows that not a single generalized Borcea-Voisin threefold

for p = 3 can be mirror to another such threefold. Moreover, Garbagnati

and van Geemen [GavGe] and Rohde [Roh] show that forp = 3 there are

examples without mirror.

So this case substantially differs from the construction for p = 2, and to

our knowledge so far no one has proposed a mirror constructionfor these

generalized Borcea-Voisin threefolds. We show that often it is possible to

find a singular model for a pair(X,σ) as a hypersurface in aQ-Gorenstein

weighted projective space of dimension three. Whenever this holds,Y can

also be realized as hypersurface in a toric variety. To make this statement

more precise denote bySσ := {x ∈ H2(X,Z)|σ∗(x) = x} the fixed lat-

tice in theK3-lattice, whereσ∗ is the induced action on cohomology. We

have to define the following two discrete invariants to stateour theorem.

The first is defined bym := (22− rank(Sσ))/2. For the second invariant

note that from the dual lattice(Sσ)∗ := HomZ(S
σ ,Z) we can construct

the so called discriminant group(Sσ)∗/Sσ , which is known to be of the

form (Sσ)∗/Sσ = (Z/2Z)a for somea. Using this notation, we have the

following theorem.

THEOREM1.3 (Theorem 3.30).LetX be aK3-surface with non-symplectic

automorphismσ of orderp = 3 and discrete invariants(m,a) as in Table 1
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in section 3.3.2, then the generalized Borcea-Voisin threefold Y associated

toX is given by a hypersurface in a toric variety. A mirror forY can there-

fore be obtained by applying the mirror symmetry construction of Batyrev.

1.2.2. A geometric framework for Landau-Ginzburg models. Next

we present a way to naturally incorporate the Fano/Landau-Ginzburg cor-

respondence into the mirror symmetry program proposed by Grossand

Siebert [GrSi1],[GrSi3]. With some minor changes the programcan be ap-

plied to toric degenerations of varieties with effective anti-canonical bundle.

Doing so gives a non-compact variety as mirror right away and the key point

is to construct the superpotential. We will sketch this construction briefly.

Broken lines and superpotentials up to orderk. Let (π̌ : X̌ →

T, Ď) be a toric degeneration of Calabi-Yau pairs over the spectrum T of

a discrete valuationk-algebra, such that the generic fibre(X̌η , Ďη) con-

sists of a complete variety̌Xη and a reduced effective anti-canonical divisor

Ďη ⊂ X̌η . Furthermore assume that the toric degeneration is polarized

and denote by(B̌, P̌, ϕ̌) the polarized intersection complex as described

in [GrSi1]. In this situation we can apply the discrete Legendre transfor-

mation, which is at the heart of the mirror symmetry constructionby Gross

and Siebert. Denote the discrete Legendre dual data by(B,P, ϕ). As

B̌ is compact with boundary in this situation, the dual baseB will be

non-compact. Choosing gluing data for(B,P, ϕ), by methods described

in [GrSi3] one can construct a schemeX0 from this set of tropical data.

ThesuperpotentialW0 ofX0 to order zerois then defined as follows. Let

σ ∈ P be an unbounded maximal cell. Then for each edgeω ⊂ σ it can be

shown that there is a unique monomialzmω , subject to certain conditions,

that points in the unbounded direction ofω. Then the sum

W 0(σ) :=
∑

zmω

over all such monomials defines a function on the componentXσ ⊂ X0

and glues to a regular functionW 0 ∈ O(X0). We have the following result

for W 0:
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THEOREM 1.4 (Proposition 4.9).W 0 is proper if and only if the induced

morphismĎ → T is a toric degeneration of Calabi-Yau varieties. In this

case∂B̌ is a smooth affine manifold and all unbounded one-dimensional

strata ofB are parallel.

To define the superpotential to higher orders, recall that under certain max-

imal degeneracy assumptions one can canonically construct a dual toric de-

generationπ : X → Spec k[[t]] from (B,P, ϕ), which exhibitsX0 as

central fibre, by an explicit algorithm found in [GrSi3]. More precisely we

obtain a sequence of compatible structures(Sk)k≥0 andk-th order defor-

mationsXk → Spec k[t]/(tk+1) with limit π. For a given structureSk a

broken linemorally speaking is a proper continuous map

β : (−∞, 0] → B

with endpointp = β(0) that allows to trace a monomialzm that comes

in from infinity. Each timeβ changes chambers ofSk it possibly changes

direction and picks up a coefficient in a specific way that respects the struc-

ture.β is allowed to have finitely many such “break points”. The direction

β hits the pointp from is denoted bymβ , the respective coefficient byaβ .

Now for generalp in a chamberu thesuperpotentialW k up to orderk can

locally be defined by the following sum over all broken lines ending inp

W k :=
∑

aβz
mβ .

This is well-defined, as we can show that this definition is independent of

the choice ofp and compatible with changing strata and chambers ofSk.

Hence we get a global regular functionW k ∈ OXk
and thus a superpoten-

tial W := limkWk ∈ O(X̌) for X̌. The pair

(X → Spec k[[t]],W )

is what we call the Landau-Ginzburg model of the toric degeneration (π̌ :

X̌ → T, Ď). To compute such Landau-Ginzburg models in practice can

be very hard to achieve. However, ifB has parallel unbounded one-cells

and a finite scattering diagram locally on bounded cells, we can prove a key
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lemma suggested by Gross, that greatly reduces the number of broken lines

one has to consider.

Reflexive polytopes and proper superpotentials.We present two

applications of our construction of Landau-Ginzburg modelsthat are di-

rectly related to reflexive polytopes.

First, letΘ ⊂ NR be a full-dimensional reflexive polytope such that the

toric varietyPΣΘ
associated to the fanΣΘ of cones over proper faces of

Θ is a smooth toric variety. Recall that the so called Hori-Vafasuperpoten-

tial [HoVa] of PΣΘ
with its anti-canonical polarization is

W (x1, . . . , xn) =
∑

ρ∈ΣΘ(1)

xnρ ,

wherexi are coordinates on the torus(C∗)n, nρ denotes the generator of

the rayρ andxnρ is the usual multi-index notation. Then to any suchΘ

we can construct a polarized tropical affine manifold(B,P, ϕ) such that

all unbounded one-dimensional cells ofB are parallel . By running the

reconstruction algorithm from [GrSi3] for(B,P, ϕ) we therefore get a

toric degenerationX → Spec k[[t]], which has a proper superpotentialW

by Theorem 1.4. Moreover, we have the following result

THEOREM 1.5 (Theorem 5.4).Let (X → Spec k[[t]],W ) be the Landau-

Ginzburg model associated to a base(B,P, ϕ) obtained from ann-dimen

sional reflexive polytopeΘ. Then there is an open subset

U ∼= Spec k[[t]][x1, . . . , xn] ⊂ X

such that

W |U =
( ∑

ρ∈ΣΘ(1)

xnρ

)
· t.

ThusW |U is the Hori-Vafa mirror of the anti-canonically polarized toric

varietyPΣΘ
timest.

In a second application we make a first step towards understanding the

project pursued by Coates, Corti, Galkin, Golyshev and Kasprzyk in [CoCo]

within the LG-model framework presented here. In this projectthe authors
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give an algorithm that produces a Laurent polynomialW from certain three-

dimensional reflexive polytopesΘ that we callfully decomposable. In most

cases such aW corresponds to a Fano manifoldX. However, this procedure

does not have an underpinning geometric construction, but works purely al-

gebraically. We sketch a geometric procedure in terms of the Gross-Siebert

program that conjecturally recovers their results and verify this in an explicit

example.

Toric degenerations of del Pezzo surfaces.Next, we study toric de-

generations for del Pezzo surfaces. Denote bydPk the del Pezzo surface

obtained from blowing upP2 in k general points. We call(X̌ → T, Ď) a

distinguishedtoric degeneration of del Pezzo surfaces if it is simple, irre-

ducible,Ď is relatively ample overT and the generic fibrěDη is an anti-

canonical divisor in the Gorenstein surfaceX̌η . Then we have the following

uniqueness result.

THEOREM1.6 (Theorem 5.19).If (π : X̌ → T, Ď) is a distinguished toric

degeneration of del Pezzo surfaces with non-singular generic fibre, then the

associated intersection complex(B̌, P̌) is unique up to isomorphism.

Moreover, we explicitly study the unique bases(B̌, P̌). Note that by def-

inition the generic fibrěXη is isomorphic toP1 × P1 or dPk for k ≤ 3,

so this is a statement about toric degenerations of toric del Pezzo surfaces.

To show that our approach is not limited by toric geometry we compute ex-

amples of Landau-Ginzburg models for toric degenerations whose generic

fibre is isomorphic todPk for k ≥ 4, where interesting phenomena can be

observed. In particular we find tropical manifolds that correspond to the ad

hoc construction for mirrors ofdPk found in [AuKaOr].

Landau-Ginzburg models for semi-Fano toric and Hirzebruch sur-

faces. Let Θ ⊂ NR be a two-dimensional reflexive polytope and choose a

maximal projective triangulationT of it. This induces a maximal refine-

ment Σ̃Θ → ΣΘ. Moreover, any suchT comes with a strictly convex

functionhT that is piecewise linear on cones of̃ΣΘ. Furthermore,P
Σ̃Θ

is

a semi-Fano toric surface. For any suchΘ with a choice of triangulationT
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we construct a tropical manifold(B̃T , P̃T , ϕ̃T ) such thatB̃T has paral-

lel unbounded one-cells. The Landau-Ginzburg superpotential we get from

this is therefore proper and locally has the following structure

W =
∑

ν∈Θ∩N

aν · thT (ν)xν ,

where the coefficientsaν can be described explicitly. Moreover, for the

same choice ofT as in [Ch] we get the same superpotentials as in this

paper.

As a last application of our framework we compute tropical affine bases

for toric degenerations of Hirzebruch surfacesFm. In the case ofF2 and

F3 we explicitly compute the full superpotential, which coincides with the

computations in [Au].

1.3. Outline of thesis

The first two chapters start with comparatively classical material within the

realm of toric geometry, whereas chapters 4 and 5 rely heavilyon more

sophisticated techniques and deeper results. This is intended and displays

in a time-lapse the fast development mirror symmetry as a mathematical

discipline has undergone in the last two decades.

On the one hand, Chapter 2 is intended to introduce necessarynotation from

toric geometry and state mostly classical results we need throughout the

text. Section 2.1 states some general properties of singularities and explains

what we mean by a Calabi-Yau variety. Section 2.2 collects various results

about affine and projective toric varieties and contains themain results of the

chapter, while Section 2.3 properly introduces basic properties of weighted

projective spaces and shows how the results of the chapter apply to this

special class of toric varieties. On the other hand, Chapter2 aims at the

proof of Theorem 2.25. The experienced reader, who wants to get to the

proof of this main theorem fast, is advised to jump right to the central notion

of almost reflexive polytopes given in Definition 2.11, followthe running

example starting with Example 2.13 and work through Lemma 2.21 and

Lemma 2.19 needed for Theorem 2.25.
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In the following Chapter 3, we will start with a very short review of Batyrev’s

mirror construction followed by an extended introduction tothe setup of

Berglund-Hübsch and related work in Section 3.1. After that, Section 3.2

will be concerned with explaining how the approach of Berglund-Hübsch

can be fit into a toric setup with the work of Batyrev, resulting in Theo-

rem 3.19. In Section 3.3 we first review the Borcea-Voisin construction,

then show how to generalize it and present Theorem 3.30, which demon-

strates how to mirror partners for the generalized version inmany cases.

Chapter 4 is devoted to the introduction of the technical data needed to

properly handle Landau-Ginzburg mirror symmetry within the construction

of Gross and Siebert. To this end we quickly review the main ingredients of

this approach in Section 4.1, trying to keep the technicalities at a minimum.

Having done so, we present the rather new tool of broken linesto deal with

Landau-Ginzburg models within the Gross-Siebert program inSection 4.2,

which also contains a very explicit example of a toric degeneration ofP2

and its mirror.

The last chapter uses the previously developed machinery to derive theo-

rems about Landau-Ginzburg models. In Section 5.1 we show how to ob-

tain proper superpotentials from reflexive polytopes, thereby improving the

situation known from toric geometry. We then devote Sections5.2 and 5.3

to explicitly describe the situation in two dimensions, thatis we deal with

del Pezzo surfaces, semi-Fano toric and Hirzebruch surfacesin depth.

Throughout the thesis we will try to be as self contained as possible. How-

ever, as a premise, we expect the reader to have a solid workingknowledge

in toric geometry to the extend of [Od] and classical algebraic geometry as

presented in [Ha1]. Moreover, for Chapters4 and5, it will be helpful to be

familiar with the basic notions of the mirror symmetry program byGross

and Siebert [GrSi1],[GrSi3].



Chapter 2
Calabi-Yau in non-Gorenstein toric

varieties

Let k be an algebraically closed field of characteristic0. For most of the

applications presented here it will be enough to assumek = C. Whenever

we talk of varieties we mean integral quasi-projectivek-schemes.

2.1. Calabi-Yau varieties and singularities

To properly discuss the construction of Calabi-Yau hypersurfaces inQ-

Gorenstein projective toric varieties we first have to recall some results from

singularity theory.

2.1.1. Singularities. Recall that a varietyX has adualizing sheafin

the sense of [Ha2]ωX if and only ifX is Cohen-Macaulay. This sheaf is

always reflexive of rank one. In case thatX is normal, we will need an

explicit description ofωX , which requires some notation and results.

For a Weil divisorD on a normal varietyX denote the associated sheaf

by OX(D). Moreover, note that a coherent sheaf on a normal varietyX

is reflexive of rank one if and only if it is isomorphic toOX(D) for some

13
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Weil divisor D. Define the cotangent sheafΩ1
X locally via the sheaf of

differentials of the structure sheaf relative to the groundfield, that is

Ω1
X(U) := ΩOX (U)/k,

for U ⊂ X open affine. It is classically known that a variety is smooth if

and only ifΩ1
X is locally free. Forp ≥ 1 we define the sheaf of differ-

entialp-forms by taking the exterior product, that isΩpX := ΛpΩ1
X . The

restriction ofΩpX to the regular locusXreg of X is locally free and it is

known that(ΩpX)∨∨ ∼= j∗Ω
p
Xreg

. The following result shows an equiva-

lence of properties of coherent sheavesF onX, which will be useful in the

definition following it, where it can be applied toF = ΩpX .

PROPOSITION2.1. LetF be a coherent sheaf on a normal varietyX, j :

U → X an open embedding with codim(X \ U) ≥ 2. Then the following

statements hold:

(1) F∨ is reflexive and henceF∨∨ is reflexive.

(2) If F is reflexive, thenF ∼= j∗(F|U ).

(3) If F|U is locally free, thenF∨∨ ∼= j∗(F|U ).

PROOF. Statements (1) and (2) are the content of Corollary 1.2 and

Proposition 1.6 of [Ha3], while (3) is a direct corollary of both, whose proof

is carried out explicitly in [CoLiSc, Proposition 8.0.1]. �

DEFINITION 2.2. LetX be ad-dimensional normal variety with regular

locusj : Xreg → X. For eachp ≥ 1 define thesheaf of Zariskip-forms

to be

Ω̂pX := (ΩpX)∨∨ ∼= j∗Ω
p
Xreg

.

This sheaf is reflexive of rank
(d
p

)
andωX := Ω̂dX is a dualizing sheaf. �

REMARK 2.3. LetY be a(d+1)-dimensional normal variety and consider

the followingd-dimensional subvariety. LetX := {s′ = 0} ⊂ Y defined

by the zero set of a sections′ ∈ H0(X,−ωY ) \ {0} and assume that

X is normal. Then we can use the adjunction formula on the regularpart

of X to obtainΩdXreg ∼= OXreg . If we denote the inclusionXreg →

X by jX , then we haveωX ∼= (jX)∗OXreg . As OX is reflexive, by

Proposition 2.1(3) ⇒ (2) we getOX ∼= ωX . Note, however that it is
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sufficient to assume thatX is regular in codimension one, as then we can

still define the dualizing sheafωX by (jX)∗OXreg and the implication

OX ∼= ωX still holds. �

Next, for any sections ∈ H0(Y, ωX) \ {0} we can define the canoni-

cal divisor class by[divX(s)] and we choose a representativeKX which

we call the canonical divisor. Now,X is calledQ-Gorenstein, if rKX is

Cartier for somer ∈ N, r ≥ 1, andGorensteinif we can setr = 1. For the

minimal r with this property we will say thatX is aQ-Gorenstein variety

of indexr. In fact,ωX is a (Q-)bundle if and only ifX is (Q)-Gorenstein.

The reader interested in properties of singularities beyond the following two

basic definitions is referred to [Re2].

DEFINITION 2.4. X has canonical singularitiesif and only if it is Q-

Gorenstein of indexr and for every resolutionf : X̃ → X we have

rK
X̃

= f∗(rKX) +
∑

i∈I

aiEi with ai ≥ 0,

where{Ei}i∈I denotes the family of exceptional prime divisors. Ifai > 0

for all i ∈ I we say thatX hasterminal singularities. Moreover, we call the

Q-divisor1/r
∑
i∈I aiEi thediscrepancyof f and say thatf is crepantif

the discrepancy is0. �

DEFINITION 2.5. A varietyX is called

(1) factorial if every Weil divisorD onX is Cartier,

(2) Q-factorial if every Weil divisorD has an integer multiple that

is Cartier and

(3) quasi-smoothif X has only finite quotient singularities. �

2.1.2. The Calabi-Yau condition. In this section we will define what

we mean by Calabi-Yau variety. Among many other equivalent definitions a

Calabi-Yau manifoldmay be defined as a compact complex projective man-

ifold with trivial canonical bundle and vanishing first Betti number. How-

ever, as we would like to allow for singular spaces as well, wewill have to

relax this definition.
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DEFINITION 2.6. A Calabi-Yau varietyX, or simply Calabi-Yau, is a

d-dimensional compact normal projective variety subject to thefollowing

three conditions.

(1) X has at most canonical singularities.

(2) The dualizing sheaf̂ΩdX ofX is trivial, that isOX ∼= Ω̂dX . This

implies thatX has Gorenstein singularities.

(3) Hi(X,OX) = {0} for all i = 1, . . . , d− 1.

In caseX has onlyQ-factorial terminal singularities, we will say thatX is

aminimalCalabi-Yau variety. �

In the next sections we will study toric varieties whose dualizing sheaf is

only aQ-bundle, but which admit anti-canonical hypersurfacesX that have

dualizing line bundles.

2.2. Hypersurfaces in non-Gorenstein toric varieties

We start with a minimum of notation of toric geometry used throughout the

thesis. LetN be a free abelian group of rankn and letM = Hom(N,Z) be

its dual lattice. For any fieldk denote byNk := N⊗Zk andMk :=M⊗Zk

the naturalk-linear extensions of these lattices. The induced non-degenerate

pairing ofQ-vector spaces is denoted by

〈·, ·〉 : NQ ×MQ → Q.

By aconeσ in NQ we will mean a rational convex polyhedral cone inNQ.

From any such coneσ ⊂ NQ we can construct itsdual coneσ∗
M ⊂ MQ.

If the ambient dual latticesN andM are clear from the context, we will

usually drop the index and writeσ∗ := σ∗
M . Define theaffine toric variety

associated toσ ⊂ NQ

Uσ := Speck
[
σ∗ ∩M

]
.

An r-dimensional coneσ spans anr-dimensional subvectorspaceN(σ)Q

of NQ and so defines a sublatticeN(σ) ⊂ N with dual latticeM(σ). We

denote the affine toric variety ofσ ⊂ N(σ)Q by

Uσ,N(σ) = Speck
[
σ∗
M(σ) ∩M(σ)

]
.



17 Calabi-Yau in non-Gorenstein toric varieties

As we haveUσ = Uσ,N(σ) × (k∗)n−r this description will especially

become useful when studying singularities. The fansΣ we are working

with will always be complete. We denote byΣ(i) the set ofi-dimensional

cones inΣ for all i = 0, . . . , n, which we will mainly use to refer torays

Σ(1) andmaximal conesΣ(n). Unless stated otherwise, we will further

assume that the toric variety associated toΣ is projective and denote it by

PΣ. Given a polytopeΞ ⊂ MQ we denote the characters corresponding to

elementsm ∈ Ξ∩M by zm. Form ∈ l ·Ξ we introduce formal elements

tlzm and define a multiplication by

tlzm · tl
′

zm
′

:= tl+l
′

zm+m′

.

Thek-algebra generated by this operation is denotedSΞ and the associated

toric variety is calledPΞ := Proj(SΞ). For a faceτ ⊂ Ξ we define the

cone overτ by

στ = {µ · (m−m′)|m ∈ Ξ,m′ ∈ τ, µ ∈ Q≥0}.

The fan of cones over proper facesστ in MQ is denoted byΣΞ, whereas

the normal fan is denoted byΣ∗
Ξ. The toric varieties associated to these

fans will be denoted byPΣΞ
andPΣ∗

Ξ
, respectively. From [Ba, Proposition

2.1.5] we know thatPΞ
∼= PΣ∗

Ξ
.

2.2.1. Affine toric varieties and their singularities. All properties

of singularities of general toric varieties we will need canbe read off locally

from cones. For an elementm ∈ MQ we define the supporting hyperplane

in NQ at integral distance one associated to it by

Hm := {ν ∈ NQ|〈ν,m〉 = −1}.

Using this definition, we can now state the following lemma.

LEMMA 2.7. [Re1, Proposition 4.3, Remark 1.9].Let σ ⊂ NQ be anr-

dimensional cone with ray generatorsni ∈ N , for i = 1, . . . , s. Then the

following holds:

(1) Uσ,N(σ) is Q-Gorenstein if and only if there is anmσ ∈ MQ

such that all of theni are contained in the hyperplaneHmσ

andUσ is Gorenstein if and only ifmσ ∈M .

(2) Uσ,N(σ) is Q-factorial if and only ifσ is simplicial.
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�

For maximal conesσ we haveN(σ) = N and can therefore drop the

index in this case. From this lemma it follows that a toric variety PΣ is Q-

Gorenstein if and only if the elementmσ as above is well-defined for all its

conesσ ⊂ Σ. It will prove useful to collect this information for maximal

cones.

DEFINITION 2.8. LetPΣ be ann-dimensionalQ-Gorenstein toric variety.

For each maximal coneσ denote bymσ ∈ MQ the unique element from

Lemma 2.7. We will call

m := mΣ := {mσ}σ∈Σ(n)

theQ-Gorenstein support vectorsof PΣ. �

Note that support vectors of aQ-Gorenstein toric variety with fanΣ define

a piecewise linearheight functionhm : NQ → Q on Σ that is given by

〈_,mσ〉 on eachσ ∈ Σ(n). Using this definition one can detect when

singularities of affine toric varieties are terminal or canonical.

LEMMA 2.9. [Re1, Remark 1.11 (ii), (ii’)].Letσ ⊂ NQ be a full-dimensio

nal cone with ray generatorsn1, . . . , ns, and letUσ beQ-Gorenstein with

support vectormσ . Then

(1) Uσ has at most terminal singularities if and only if

σ ∩N ∩ {ν ∈ NQ|〈ν,mσ〉 ≥ −1} = {0, n1, . . . , ns}

(2) and at most canonical singularities if and only if

N ∩ σ ∩ {ν ∈ NQ|〈ν,mσ〉 > −1} = {0}.
�

This lemma poses strong restrictions on the fanΣ if we wantPΣ to have

canonical singularities. However, it also implies that Gorenstein toric sin-

gularities are canonical, see [Ba, Corollary 2.2.5].

2.2.2. Polytopes and resolutions.Fixing dual latticesN andM ,

whenever we talk about lattice polytopes inNQ or MQ, we refer to poly-

topes whose vertices lie inN , respectivelyM . With minor exceptions, for
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example in proofs, polytopes inNQ will be denoted byΘ, whereas poly-

topes inMQ are denoted byΞ throughout the text. We will generally as-

sume that polytopes contain the origin of their respective lattice. Recall that

thepolar polytopeto a polytopeΞ ⊂MQ is defined by

Ξ∗ := {ν ∈ N |〈ν,m〉 ≥ −1, ∀m ∈ Ξ}.

To any toric varietyPΣ associated to a fanΣ with a choice of toric divisor,

one can naturally define the following polytope.

DEFINITION 2.10. LetΣ ⊂ NQ be a fan. For each rayρ ∈ Σ(1) denote

by Dρ the corresponding torus-invariant divisor onPΣ and bynρ ∈ N

its generator. LetD =
∑
ρ∈Σ(1) aρDρ be a toric divisor, then we can

associate to it the convex polyhedron

ΞD := {ν ∈ NR|〈ν, nρ〉 ≥ −aρ, ∀ρ ∈ Σ(1)},

called theNewton polyhedron. �

As we aim at constructing Calabi-Yau hypersurfaces, we willmainly use

this notation in the special case of the anti-canonical divisor

D = −KP(Σ) =
∑

ρ∈Σ(1)

Dρ

. Recall that for every toric divisorD, its space of sections is given by

(2.1) H0(PΣ, D) =
⊕

m∈ΞD∩M

Czm.

Moreover, recall that a lattice polytopeΞ is calledreflexiveif and only if

its polar polytope is a lattice polytope as well. An importantalternative

definition is thatΞ has a unique interior lattice point and all supporting hy-

perplanes of facets have integral distance one from this point. By definition

the polarΞ∗ of a reflexive polytopeΞ is reflexive as well and we will refer

to (Ξ,Ξ∗) as areflexive pairin this situation.

The following definition slightly relaxes the definition of reflexive polytopes

and will play a crucial role in almost all results in this and the next chapter.

DEFINITION 2.11. A lattice polytopeΘ ⊂ NQ containing0 as an inner

point is calledalmost reflexiveif Θ
∗
:= conv(Θ∗ ∩M) is reflexive, that

is if the integral points of its polar span a reflexive polytope. The polar
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polytope ofΘ
∗
, which we denote byΘ, thus containsΘ. This situation is

summarized in the following diagram

Θ

��✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

Θ

OO

// Θ∗oo

Θ
∗
.

XX✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

OO

In this situation we callΘ the reflexive polytope associated toΘ. �

REMARK 2.12. 1) In a recent preprint [Ma] Mavlyutov defines a polytope

Ξ ⊂MQ to be quasi-reflexive if the following holds

conv((conv(Ξ ∩M))∗ ∩N) = Ξ∗.

Thus, there is no direct connection to reflexive polytopes asfor almost re-

flexive polytopes defined above. The author of [Ma] describesa generaliza-

tion of nef-partitions for this class of polytopes combinatorially. We refer

the reader to [BaBo1], [BaBo2] for an introduction to nef-partitions.

2) An almost reflexive polytopeΘ ⊂ NQ has no interior lattice point

apart from the origin, as it is contained in the reflexive polytopeΘ. Note,

however, that Definition 2.11 is not equivalent to saying that Θ is a lattice

polytope that has exactly one interior point, see for instance the following

example. �

EXAMPLE 2.13. We will come back to the following two polytopes several

times in this chapter.

1) Let Θ1 be the polytope spanned by(−1, 0, 0), (0,−1, 0), (0, 0,−1)

and(5, 6, 8), which has the origin0 as unique interior point. The vertices

of Θ∗
1 are(1, 1, 1), (1, 1,−3/2), (1,−7/3, 1) and(−3, 1, 1). However,

it is easily checked that the polytopeΘ
∗
1 = conv(Θ∗

1 ∩M) has no interior

points, as the origin0 lies at the boundary. ThusΘ1 is not almost reflexive.

2) An example of a non-reflexive but almost reflexive polytope isthe convex

hull Θ2 of the vertices(−1, 0, 0), (0,−1, 0), (0, 0,−1) and(1, 2, 3). Its

polarΘ∗
2 has vertices(1, 1, 1), (−6, 1, 1), (1,−5/2, 1) and(1, 1,−4/3).
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Θ
∗
1 ⊂ Θ∗

1

(1, 1,−3/2)

0

(−3, 1, 1)
(1, 1, 1)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(1,−7/3, 1)

FIGURE 2.1. The polar polytopeΘ∗
1 of Θ1. The

span of integral pointsΘ
∗
1 has0 as a boundary point.

One can verify that the vertices ofΘ
∗
2 := conv(Θ∗

2 ∩ M) this time are

given by

(1, 1, 1), (−6, 1, 1), (1, 1,−1), (0, 1,−1),

(1,−1, 0), (1,−2, 1), (0,−2, 1)

and that the origin0 is an interior point of it. Thus,Θ
∗
2 is a reflexive

polytope whose polarΘ2 has vertices(−1, 0, 0), (0,−1, 0), (0, 0,−1),

(1, 2, 3), (0, 1, 1) and (0, 1, 2), so Θ2 is contained inΘ
∗
2 . Moreover,

the fanΣΘ2
defines a refinement ofΣΘ2

and a little computation shows

that PΣ
Θ2

is smooth, as all maximal cones are. The induced morphism

PΣ
Θ2

→ PΣΘ2
therefore resolves all singularities of theQ-Gorenstein

toric varietyPΣΘ2
. �

In this section we have so far focussed on general propertiesof polytopes

and arbitrary toric varieties. We will now turn to properties ofQ-Gorenstein

toric varieties, for which one can naturally define the following two poly-

topes.

DEFINITION 2.14. LetPΣ be ann-dimensionalQ-GorensteinQ-Fano pro-

jective toric variety with fanΣ in NQ andQ-Gorenstein support vectors
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(1, 1,−4/3)

Θ
∗
2 ⊂ Θ∗

2

0(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(−6, 1, 1) (1, 1, 1)

(1,−5/2, 1)

FIGURE 2.2. Θ∗
2 and the reflexive polytopeΘ

∗
2 con-

tained in it.

mΣ. Define

ΞΣ :=ΞmΣ :=
⋂

σ∈Σ(n)

(mσ + σ∗)

= {m ∈MQ|〈nρ,m〉 ≥ −1 ∀ρ ∈ Σ(1)} ⊂MQ

ΘΣ :=ΘmΣ := {ν ∈ NQ|〈ν,mσ〉 ≥ −1 ∀σ ∈ Σ(n)} ⊂ NQ
�

REMARK 2.15. Note that by definitionΞΣ = Ξ−KPΣ
andΘΣ is the span

of ray generators ofΣ. The latter of which of course also makes sense if

PΣ is notQ-Gorenstein, but can not be defined usingQ-Gorenstein sup-

port vectors in this case. Moreover, by definition ofQ-Gorenstein support

vectors, we see thatΞΣ = Θ∗
Σ.

EXAMPLE 2.16. We continue with Example 2.13. Denote the fans of cones

over faces ofΘ1 andΘ2 by ΣΘ1
andΣΘ2

, respectively. Then we imme-

diately get thatΘΣΘi
= Θi andΞΣΘi

= Θ∗
i for i = 1, 2. �

Various global properties ofPΣ can be computed from these two polyhe-

dra and their interrelation. Recall that a normal varietyX is calledFano

if −KX is ample andQ-Fano if an integral multiple of−KX is ample.

Furthermore, we callX semi-Fano, if −KX is nef. IfX = PΣ is aQ-

Gorenstein projective toric variety withQ-Gorenstein support vectorsmΣ,

thenX is (semi-)Fano if and only if the associated height functionhmΣ

is (strictly) convex on the fanΣ. The next proposition collects the most

important results for later applications.
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PROPOSITION2.17. LetPΣ be ann-dimensionalQ-Gorenstein projective

toric variety. Then

(1) PΣ isQ-Fano if and only if the vertices ofΞΣ are in one-to-one

correspondence with maximal cones ofΣ. In this casePΣ is

Fano if and only ifΞΣ is a lattice polytope.

(2) PΣ is Q-Fano if and only ifPΣ = PΞΣ
.

(3) PΣ hasQ-factorial terminal singularities if and only if for every

coneσ in Σ the polytope

Θσ := σ ∩ {ν ∈ NQ|〈ν,mσ〉 ≤ 1}

is an elementary simplex.

PROOF. This is essentially the content of [Ba, Proposition 2.2.23],

but we include a short proof since in the reference there is none. PΣ is Q-

Fano if and only if the height functionhΣ constructed frommΣ is strictly

convex. This property in turn simply means that the individualmσ , for

maximal conesσ ∈ Σ(n), are precisely the vertices of the polytopeΞΣ =
⋂
σ∈Σ(n)(mσ + σ∗). From Lemma 2.7(2) we know thatmσ ∈ N for

all σ ∈ Σ(n) is equivalent toPΣ being Gorenstein and therefore Fano in

this situation, which proves(1). For the second statement note that by the

propertyΞΣ = {m ∈ MQ|〈nρ,m〉 ≥ −1∀ρ ∈ Σ(1)} we see that the

raysρ ∈ Σ(1) are normal to the facets ofΞΣ if and only if PΣ is Q-

Fano. Thus the normal fan onΞΣ yields the fan we started with in this case.

Property(3) follows immediately from the local situation in Lemma 2.9.

�

It is essential to know when a birational morphism between toric varieties is

crepant, which we will now study forQ-Gorenstein varieties. The following

crucial Lemma, first proved by Gelfand, Kapranov and Zelevinski, gives

maximal triangulations forarbitrary integral polyhedraΘ, whether they

give rise to a GorensteinPΘ or not.

LEMMA 2.18. [GeKaZe, Proposition 3].Let Θ ⊂ NQ be a lattice poly-

tope. Then there exists a maximal projective triangulationTΘ of Ξ, where

projective means that we can choose a strictly convex heightfunctionhΘ :

NQ → Z that is linear on each simplexτ ∈ TΘ.
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�

In the latter, whenever we speak of amaximal projective triangulationof a

lattice polytopeΘ, we will mean the choice of a pair(TΘ, hΘ) as above.

Any triangulation(TΘ, hΘ) also defines aninducedtriangulation on the

boundary∂Θ and the fanΣ̃Θ of cones over faces of this triangulation de-

fines a toric morphismP
Σ̃Θ

→ PΣΘ
. By [Ba, Theorem 2.2.24] one knows

that if PΣ is a Gorenstein Fano toric variety, then this morphism is a pro-

jective and crepant partial resolution of singularities. These resolutions are

maximal in the sense that any further toric resolution would bediscrepant

and we will call these morphismsMPCP resolutionsin what follows.

The next lemma shows that the toric varietyPΣΘ
associated to an almost

reflexive polytopeΘ is alwaysQ-Fano and furthermore closely related to

PΣ
Θ

, whereΘ is the associated reflexive polytope ofΘ. We will heavily

make use of this lemma and the notation introduced there in this and the

next chapter.

LEMMA 2.19. LetΘ ⊂ NQ be ann-dimensional almost reflexive polytope

with associated reflexive polytopeΘ. Then the following holds:

(1) PΣΘ
is aQ-Fano toric variety.

(2) There is a common refinementΣ̃ of ΣΘ andΣΘ, inducing toric

morphisms

P
Σ̃

φ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ ψ

!!❈
❈❈

❈❈
❈❈

❈

PΣΘ
PΣ

Θ
,

whereΣ̃ is the fan of cones over faces of a maximal projective

triangulation ofΘ.

PROOF. The first part of the lemma follows from Proposition 2.17

(1), asPΣΘ
is defined by the fan of cones over faces ofΘ and the fact

thatΘ is the polar polytope of the anti-canonical polytope ofPΣΘ
, that is

Θ∗ = ΞΣΘ
.

For the second part, choose a maximal projective triangulation (TΘ, hΘ)

of Θ, so that(TΘ, hΘ) refines the triangulation the faces thatΘ shares
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with Θ induce. This defines an induced triangulation of the boundary of

Θ. The fanΣ̃ of cones over faces of this induced triangulation defines a

morphismψ : P
Σ̃

→ PΣ
Θ

. However, we have to discuss whỹΣ is a

refinement ofΣΘ. Apriori, if we torically blow down all rays iñΣ(1) not

containedΣΘ(1) in some given order, we might arrive at a fan structure

that is different fromΣΘ.

Note that by restricting toΘ ⊂ Θ, we also get a subdivision ofΘ and

thus also on∂Θ. Note that this subdivision is not a triangulation in the

strict sense, as vertices of it will not always correspond tolattice points.

However, this is just used to construct the following fan. Denote the fan of

cones over faces of the subdivision of∂Θ by Σ̃Θ. Then by construction

Σ̃Θ → ΣΘ is a map of fans. Moreover, note that the closure ofΘ \ Θ

is a union ofn-dimensional polytopes meeting along lower-dimensional

strata, for otherwise at least one integral boundary point of Θ would be an

interior point of the reflexive polytopeΘ. These polytopes are spanned by

exactly one facetτ of Θ and vertices ofΘ not contained inΘ. Denote these

accordingly byΘτ for each facetτ ⊂ Θ. Note that the integral points of

Θτ \ τ lie all in the interior of the cone overτ . Moreover, any suchτ can

not have interior integral points, as thenΘ would not be reflexive. Now, as

TΘ is induced fromTΘ, they agree on∂τ for all facetsτ ⊂ Θ. The fanΣ̃

therefore respects the fan structure of̃ΣΘ, that isΣ̃ → Σ̃Θ is a map of fans.

The compositioñΣ → Σ̃Θ → ΣΘ therefore defines the toric morphism

φ : P
Σ̃

→ PΣΘ
, which finishes the proof. �

2.2.3. Discrepancies.Next, we study how toric resolutions of toric

varieties affect the canonical bundle of the variety and hypersurfaces therein.

Before we prove a technical lemma used in our central result Theorem 2.25,

let us recall a classical lemma and draw some immediate conclusions from

it. For notational clarity we state this lemma only in the localsituation,

although it applies to complete toric varieties as well.

Let σ be a full-dimensional cone in a latticeN of rank n such that the

associated affine toric varietyUσ is Q-Gorenstein with support vectormσ .

Let ν ∈ σ be primitive and denote byΣν thestar subdivisionof σ by the

ray generated byν. Thus, consideringσ as fan consisting of one cone, we

get a refinement of fansΣν → σ, which induces a partial toric resolution of

singularitiesπ : PΣν → Uσ . If we denote the toric divisor associated to the
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ray generated byν byDν , then we have the following result characterizing

the discrepancy ofπ.

LEMMA 2.20. [Re2, Section 4].There is the following equality ofQ-

Cartier divisor classes inPΣν

π∗(KUσ ) = KPΣν
+ (〈ν,mσ〉+ 1) ·Dν .

�

As an immediate corollary we see that a proper birational morphismφ :

PΣ′ → PΣ of Q-Gorenstein toric varieties iscrepantif and only if for all

maximal conesσ ∈ Σ(n) all raysτ ′ ∈ Σ′ mapping toσ are generated by

primitive elements from

N ∩Hmσ = N ∩ {ν ∈ NQ|〈ν,mσ〉 = 1}.

Thus, if we work with reflexive polytopesΘ we know that resolutions from

subdivisions ofΘ are crepant, since every integral point apart from zero is

on the boundary ofΘ. Elementsν ∈ Θ ∩ N with ν /∈ N ∩ Hmσ in

turn always definediscrepantmorphisms. The following technical lemma,

however, ensures us that the anti-canonical polytope remains unaffected if

we use interior points ofΘ to define resolutions.

LEMMA 2.21. LetPΣ be aQ-Gorenstein toric variety of dimensionn and

let 0 6= ν ∈ ΘΣ be a primitive, integralinterior point ofΘΣ. The fanΣν
obtained from refiningΣ by star subdivision with a new ray generated byν

therefore induces a morphismπ : PΣν → PΣ and we have

Ξ−KPΣ
= Ξ−π∗(KPΣ

),

that is the anti-canonical polytopes before and after the resolution are the

same. In particular, the integral points corresponding to anti-canonical

sections are the same.

PROOF. If PΣ isQ-Gorenstein, then so isPΣν . Assume thatν is con-

tained in the interior of a maximal coneσ. If ν lies in a lower-dimensional

stratum the argument remains basically unchanged. Letn1, . . . , nl be the

ray generators ofσ. Then theQ-Gorenstein support vectormσ associated

to σ is defined by the equations〈ni,mσ〉 = −1 for all i = 1, . . . , l. By

the star subdivisionσ is decomposed intol subcones

σi := conv{ν, n1, . . . n̂i, . . . , nl}
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with Q-Gorenstein support vectorsmσi . As the anti-canonical polytope of

PΣ is defined by

Ξ−KPΣ
=

⋂

σ∈Σ(n)

(mσ + σ∗)

= {m ∈MQ|〈nρ,m〉 ≥ −1, ∀ρ ∈ Σ(1)}

it suffices to show thatmσ+σ∗ =
⋂l
i=1(mσi +σ

∗
i ). However, as clearly

ν ∈ {ν′ ∈ NQ|〈ν
′,mσi 〉 ≥ −1}

for all i, from the assumption thatν is an interior point ofΘΣ, the inclusion

mσ+σ∗ ⊆
⋂l
i=1(mσi +σ

∗
i ) follows. Moreover, note thatσ∗ =

⋂
i σ

∗
i .

To see that we do not get strictly more, we have to show that the vertex of

the cone
⋂l
i=1(mσi + σ∗

i ) ismσ . But 〈nj ,mσi 〉 is −1 for all i 6= j, so

mσi = mσ +mi wheremi ∈MQ is parallel to the(n− 1)-cell

{m ∈MQ|〈nj ,m〉 = −1, ∀j 6= i}.

Thus, from this description it follows thatmσ is indeed the vertex of

l⋂

i=1

(mσi + σ∗
i ),

which finishes the proof. �

EXAMPLE 2.22. Consider the two-dimensional polytopeΘ ⊂ NQ
∼= Z2

spanned by(−1, 0), (0,−1) and(1, 3). The fanΣΘ therefore defines a

Q-Gorenstein toric varietyPΣΘ
with support vectors(1, 1), (−4, 1) and

(1,−2/3). The anti-canonical polytope of it, that isΞΣΘ
, is spanned by

these three vectors. As the corresponding height functionhmΣΘ
is strictly

convex, but not integral, we see thatPΣΘ
is Q-Fano. Indeed,PΣΘ

is just

the weighted projective spaceP(1, 1, 3).

Θ has precisely one non-zero interior integral point, namelyν := (0, 1).

Star subdividingΣΘ byν yields a fanΣν with four smooth maximal cones,

that isPΣν is smooth and in fact the non-Fano Hirzebruch surfaceF3. The

support vectors of these four maximal cones are(1, 1), (−4, 1), (1,−1)

and(2,−1). The intersection of the duals of these four cones translated by
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(2,−1)(1,−1)

(1, 1)(−4, 1)
(0, 1)

(1, 3)

(−1, 0)

(0,−1)

0

(1,−2/3)

FIGURE 2.3. The polytopeΘ with polarΞΣν = ΞΣΘ
.

their respective support vectors is the anti-canonical polytope ofPΣν , that

is

ΞΣν =
⋂

σ∈Σν(2)

(mσ + σ∗).

As seen from Figure 2.3 or directly checked by hand we see thatΞΣν =

ΞΣΘ
, as expected from Lemma 2.21. �

2.2.4. Anti-canonical sections and Calabi-Yau varieties.Before

stating and proving the main result of this chapter, we will shortly recall

another key definition and a central result of [Ba], which ourresult will

generalize.

DEFINITION 2.23. LetPΣ∗
Ξ

be the projective toric variety associated to

the normal fanΣ∗
Ξ of a polytopeΞ ⊂ MQ. Denote byL(Ξ) the space of

Laurent polynomials with Newton polytopeΞ and defineF(Ξ) to be the

subspace ofL(Ξ) consisting of sectionsf such that the vanishing set of

f on each stratum ofPΣ∗
Ξ

is either smooth of codimension one or empty.

F(Ξ) is called thespace ofΞ-regular hypersurfaces. �

In caseΞ is a lattice polytope, that is if it has vertices inM , it is known that

F(Ξ) is a Zariski dense open subset ofL(Ξ), see [Ba, Proposition 3.1.3].

We will generalize the following theorem to theQ-Gorenstein setting.

THEOREM 2.24. [Ba, Theorem 4.1.9].LetΞ ⊂ MQ be ann-dimensional

lattice polytope and letF(Ξ) denote the family ofΞ-regular hypersurfaces

X = VPΣ∗
Ξ
(f) in PΣ∗

Ξ
. Then the following are equivalent:

(1) F(Ξ) consists of Calabi-Yau varieties.



29 Calabi-Yau in non-Gorenstein toric varieties

(2) The ample invertible sheafOPΞ
is anti-canonical, that isPΞ is

Gorenstein Fano.

(3) Ξ is a reflexive polytope. �

This theorem is already quite general, but we can consider a more gen-

eral case. Given a polytopeΞ ⊂ MQ with normal fanΣ, a general anti-

canonical section may yield a Calabi-Yau variety without beingΞ-regular.

That is, if an anti-canonical section issingularalong a toric stratum, it may

still yield canonical singularities. Another limitation ofthe definition ofΞ-

regularity is that there may be sections with good regularityproperties that

have a Newton polytope which is strictly smaller thanΞ. In the following

theorem, whenever we speak of a hypersurfaceX = V (f) for a Laurent

polynomialf on a toric variety, we mean the set of all points in which the

sectionf vanishes on the toric variety.

THEOREM2.25. LetPΣ be aQ-Gorenstein projective toric variety associ-

ated to the fanΣ in NQ. Then the following are equivalent:

(1) Any general anti-canonical hypersurfaceX is a Calabi-Yau va-

riety.

(2) ΘΣ is an almost reflexive polytope.

PROOF. Recall thatΘ := ΘΣ is almost reflexive if and only if the

integral points of the anti-canonical polytopeΘ∗ = Ξ−KPΣ
span a reflex-

ive polytope, that is ifΞ := conv(Θ∗ ∩M) is reflexive. The associated

reflexive polytopeΘ of Θ is just the polar polytope ofΞ.

(2) ⇒ (1) : Assume thatΘ is almost reflexive and letX be a general anti-

canonical hypersurface inPΣ. From Lemma 2.19(2) we know that there

are morphisms

P
Σ̃

φ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ ψ

!!❈
❈❈

❈❈
❈❈

❈

PΣ PΣ
Θ
,

whereP
Σ̃

is the toric variety associated to the fan of cones over facesof an

MPCP subdivision ofΘ. As the Newton polytope ofP
Σ̃

is justΞ, we know

that there is an anti-canonical hypersurfaceX̃ of P
Σ̃

such thatφ(X̃) =
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X. As X is assumed to be general, we know thatX̃ is Ξ-regular, so by

Theorem 2.24X̃ is a Calabi-Yau variety.

As X is general, we know that it is a subvariety ofPΣ that is regular in

codimension one. If it weren’t regular in codimension one, it would have

to contain a toric codimension two stratum of the ambient space. Hence the

pull-backX̃ of P
Σ̃

would also contain this stratum, which contradicts the

assumption of̃X being general. So by Remark 2.3 we can apply the adjunc-

tion formula to the regular partXreg ofX to obtainωXreg
∼= OXreg and

can push forward via the inclusionjX : Xreg → X to getωX ∼= OX . In

the special case thatPΣ is a weighted projective space this part of the proof

follows from [Do, Theorem 3.3.4]. Furthermore, by applying the Leray

spectral sequence we get

Hi(X,OX) = 0 ∀i = 1, . . . n− 1,

as we know that these cohomology groups forX̃ vanish. Thus it remains

to show thatX has canonical singularities. However, we know thatX̃ as

Calabi-Yau variety has canonical singularities, so by definition every res-

olution of singularitiesf : Y → X̃ has the property thatf∗(K
X̃
) =

KY +
∑
i∈I aiEi with ai ≥ 0, whereEi denote the exceptional divisors

with index setI. But since we just checked that

φ|
X̃

: X̃ → X

is a crepant morphism, the compositionf ◦ φ|
X̃

: Y → X is a resolution

that also has non-negative coefficientsai. HenceX is a Calabi-Yau variety.

(1) ⇒ (2) : Now, letΘ be a polytope that is not almost reflexive. Then

we know thatΞ is not a reflexive polytope. We first exclude the case that

0 ∈ ∂Ξ and then consider the case that it is an interior point ofΞ.

Assume that0 is a boundary point ofΞ. Choose a maximal faceσ of Ξ

which contains0. It follows thatσ is nota face ofΞ−KPΣ
, as this polytope

does have the origin as an interior point. Then the inward pointing normal

vectornσ associated toσ defines a refinementΣ′ of the fanΣ and by

construction we getconv(Ξ−KP
Σ′

∩M) = Ξ. Denote the pullback ofX

by the morphismPΣ′ → PΣ by X′. The normal vectornσ corresponds

to a ray ofΣ′ and therefore to a toric divisorDσ of PΣ′ . Recall that we

can expressPΣ′ and the hypersurfaceX′ in Cox coordinates, see [Co].
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Denote the Cox coordinate corresponding toDσ by xσ . As the integral

distance ofσ from the origin inM is zero, we see that every monomialzm

corresponding to an integral pointm ∈ Ξ ∩M is of the formxσ · zm
′

for somem′ ∈ M . ThusX′ = Dσ ∪ X′′ is reducible and therefore not

Calabi-Yau. HenceX cannot be a Calabi-Yau variety.

Next, assume that0 is an interior point ofΞ. Then the normal fanΣ∗
Ξ

to Ξ

has a refinement̃Σ′ that is also a refinement ofΣ. From this we get induced

morphisms

φ′ : P
Σ̃′ → PΣ andψ′ : P

Σ̃′ → PΣ∗
Ξ
.

Recall that lattice polytopes which have precisely one interior point and are

polar to each other form a reflexive pair. AsΞ is a lattice polytope contained

in Ξ−KPΣ
and the polar polytope ofΞ−KPΣ

is Θ, we see thatΘ ⊂ Ξ
∗
.

SinceΞ
∗∗

= Ξ andΞ is not reflexive,Ξ
∗
⊂ NQ must have integral interior

points apart from0. The map of fans̃Σ → Σ∗
Ξ introduces rays with ray

generators corresponding to boundary andinterior points ofΘ. However,

by Lemma 2.21 we know thatψ′ does not affect the anti-canonical polytope

of PΣ
Ξ

, that is we have

Ξ−KP
Σ̃

= Ξ−(ψ′)∗(KPΣ
Ξ
).(2.2)

By Theorem 2.24 we know thatΞ-regular hypersurfacesX in PΣ
Ξ

arenot

Calabi-Yau. From equation (2.2) we see that there is an anti-canonical sec-

tion X̃′ such thatψ′(X̃′) = X. Asψ′ is a partial resolution of singularities

with Newton polytopeΞ we see thatX̃′ is not Calabi-Yau. Thusφ′(X̃′)

can not be a Calabi-Yau variety. We know that the Newton polytopes ofPΣ

andPΣ
Ξ

have the same integral points. Thus we are done, sinceX′ was an

arbitraryΞ-regular hypersurface. �

If a lattice polytopeΘ ⊂ NQ has an interior lattice point other than0, then

we know thatPΣΘ
has non-canonical singularities by Lemma 2.9. From

the proof of Theorem 2.25 we see that in this case a general anti-canonical

hypersurfaceX of PΣΘ
must inherit the non-canonical singularities of its

ambient space. Moreover, we see that for any toric resolutionof P
Σ̃

→ PΣ

such thatP
Σ̃

has canonical singularities, the strict transform ofX under

this morphism will be reducible.
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2.3. Quotients of weighted projective spaces

Weighted projective spaces and their quotients form an important class of

toric varieties, when it comes to mirror symmetry. We will start with giv-

ing the most important definitions and results in the context ofthese spaces

and then apply the results of the last section to describe Calabi-Yau hyper-

surfaces in weighted projective spaces. For the rest of thischapter we will

work overk = C, as we will do in chapter3.

DEFINITION 2.26. Letw = (w0, . . . , wn) be an(n + 1)-tuple of pos-

itive integers calledweightsand define a grading on the ringS(w) :=

S(w0, . . . , wn) = C[x0, . . . , xn] by deg(xi) = wi for all i = 0, . . . , n.

We define the weighted projective spaceP(w) with weightsw as

P(w) := P(w0, . . . , wn) := Proj(S(w0, . . . , wn)).

Alternatively one can defineP(w) as the quotient of the followingC∗-

action

λ · (a0, . . . , an) := (λw0a0, . . . , λ
wnan),

that isP(w) = (Cn+1 \ {0})/C∗ for coordinates(a0, . . . , an) onCn+1

andλ ∈ C∗. To see from this description thatP(w) is a normal projective

toric variety, note that the aboveC∗-action restricts to(C∗)n+1 to give

then-dimensional torusT := (C∗)n+1/C∗. This torus naturally acts on

P(w) via

((t0, . . . , tn), (a0, . . . , an)) 7→ (tw0
0 a0, . . . , t

wn
n an)

and embeds it as a dense open subset ofP(w). The fan ofP(w) is now

easily described as follows. Denote by(e0, . . . , en) the standard basis of

Zn+1 and by(ew0 , . . . , e
w
n ) its image in the lattice

Nw := Zn+1/Z(w0, . . . , wn) ∼= Zn.

By construction there is the single relation
∑n
i=0 wie

w
i = 0. The ray

generatorsnρi span a simplexΘw ⊂ NR whose fanΣw of cones over

faces is the fan of the weighted projective space with weights w, that is

P(w) = PΣw . �

From the above description one immediately sees that the polytopesΘ1

andΘ2 from Example 2.13 correspond to the weighted projective spaces

P(1, 5, 6, 8) andP(1, 1, 2, 3).
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REMARK 2.27. For any set of weightsw = (w0, . . . , wn) the spaceP(w)

is aQ-Gorenstein,Q-Fano toric variety with fanΣw ⊂ NQ. Moreover,

it is well known thatP(w) is Gorenstein Fano if and only if there is an

anti-canonical section withwj |
∑n
i=0 wi for all j = 0, . . . , n. Indeed, in

(1) of Proposition 2.17 we have seen thatP(w) being Gorenstein Fano is

equivalent toΞ−KP(w)
∼= ΞΣw being a lattice polytope with vertices cor-

responding to maximal faces ofΘΣw = Θw, which is a lattice polytope

in NQ. AsΘ∗
Σw

∼= ΞΣw it follows that both of these polytopes are reflex-

ive. Moreover, the vertices of the lattice simplexΞ−KP(w)
correspond to

monomials of the formxλi
i . Since this defines an anti-canonical section,

we see thatλi · wi =
∑
i wi. �

DEFINITION 2.28. Ifgcd(w0, . . . , ŵi, . . . , wn) = 1 for all i = 0, . . . , n,

then a weighted projective spaceP(w) is calledwell-formed. �

For two different sets of weights, sayw andw′, we want to be able to

decide whenP(w) andP(w′) are isomorphic. The next lemma gives a

partial answer to this question and shows that everyP(w) is isomorphic to

a well-formed weighted projective space.

LEMMA 2.29. [Ia, Lemma 5.5, Lemma 5.7, Corollary 5.9].Letλ ∈ N and

w = (w0, . . . , wn) be weights. Then

(1) P(w) ∼= P(λ · w).

(2) If gcd(w0, . . . , wn) = 1 and gcd(w1, . . . , wn) = λ, then

P(w0, . . . , wn) is isomorphic toP(w0, w1/λ, . . . , wn/λ).

(3) P(w) is isomorphic toP(w′) = P(w′
0, . . . , w

′
n), wherew′ is

a set of weights withgcd(w′
0, . . . , ŵ

′
i, . . . , w

′
n) = 1 for all

i = 0, . . . , n. �

REMARK 2.30. SpacesP(w) that are not well-formed give rise to stacks,

which we will not comment on here. However, the third part of thelemma

justifies to neglect these phenomena without loss of generality. �

2.3.1. Hypersurfaces.In this section we will study hypersurfacesX

in P(w) and their singularities and then specialize to the case where X

has degreed :=
∑
i wi, thus potentially giving Calabi-Yau varieties. We

compare the results from the last section with the propertiesofX and study
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an explicit example of hypersurfaces in a spaceP(w), which shows the

implications of Theorem 2.25.

DEFINITION 2.31. LetP(w) be ann-dimensional weighted projective space

with weightsw = (w0, . . . , wn) andX ⊂ P(w) a hypersurface.

(1) X is calledquasi-smooth, if its affine coneCX ⊂ Cn+1 is

smooth outside the origin.

(2) X is calledwell-formedif P(w) is well-formed andX contains

no singular strata of codimension2. In terms of weights this

simply means

gcd(w0, . . . , ŵi, . . . wn) = 1 and

gcd(w0, . . . , ŵi, . . . , ŵj , . . . wn)|
n∑

k=0

wk

for all i, j = 0, . . . , n. �

If a hypersurfaceX = VP(w)(W ) ⊂ P(w) is quasi-smooth, it has only

finite quotient singularities due to theC∗-action. So in particular it has

canonical singularities. Being quasi-smooth is a strong assumption, but it is

often sufficient to require less, as the following theorem due to Dolgachev

indicates.

LEMMA 2.32. [Do, Theorem 3.3.4].Let X be a well-formed degreed

hypersurface inP(w). Then the adjunction formula forX holds, that is

ωX ∼= OX(d−
∑

i

wi). �

We now state a criterion to check when a given hypersurface isquasi-

smooth that entirely depends on the weights of the ambient space.

LEMMA 2.33. [Ia, Theorem 8.1].A general degreed hypersurfaceX =

VP(w)(W ) ⊂ P(w) is quasi-smooth if and only if one of the following

cases holds.

(1) X is a linear cone, that isW = xi for somei = 0, . . . , n.

(2) For all index sets∅ 6= I = {i0, . . . , ik} ⊆ {0, . . . , n} there

either exists a monomial inW of the form

xmI = xm0
i0

· . . . · x
mk
ik
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of degreed or for eachl = 0, . . . , k there is a degreed mono-

mial

x
ml
I · xel = x

m0,l

i0
· . . . · x

mk,l

ik
· xel ,

where theel are distinct elements.
�

In the next chapter we will mainly be concerned with threefolds realized as

hypersurfaces in four-dimensional toric varieties, so let us state the follow-

ing corollary to the above lemma.

COROLLARY 2.34. [Ia, Corollary 8.6]A general degreed :=
∑
i wi hy-

persurface

X = VP(w)(f) ⊂ P(w) = P(w0, w1, w2, w3, w4)

is a quasi-smooth Calabi-Yau variety if and only if for alli 6= j = 0, . . . , 4

one of the following is true:

(1) there is a degreed monomialxmi · xei .

(2) There either exists a monomialxmi
i x

mj

j or monomials of the

form x
mi,0

i x
mj,0

j xe0 and x
mi,1

i x
mj,1

j xe1 of degreed with

e0 6= e1.

(3) There is a degreed monomial which neither containsxi nor

xj . �

We will now discuss an example of anti-canonical hypersurfaces in aQ-

Gorenstein weighted projective space from the point of viewof Theorem 2.25.

EXAMPLE 2.35. LetP(1, 1, 1, 2) = Proj(C[x0, x1, x2, x3]) and take as

fan the complete fanΣ ⊂ NQ
∼= Q3 generated by

(−1, 0, 0), (0,−1, 0), (0, 0,−1) and(1, 1, 2).

By Remark 2.27 we know thatP(1, 1, 1, 2) is non-Gorenstein, asw3 ∤
∑3
i=0 wi. Another way to see this is from the cone

σ = conv((−1, 0, 0), (0,−1, 0), (1, 1, 2)),

which hasQ-Gorenstein support vectormσ = (1, 1,−3/2). The other

three maximal cones are smooth. Moreover, let

W ∈ H0(P(1, 1, 1, 2),−KP(1,1,1,2))
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be anarbitrary anti-canonical section. ThenVC4 (W ) passes through the

point (0, 0, 0, 1), which accounts for the fact that there is no monomial of

the formx5/23 , and this point corresponds to a singular point inP(1, 1, 1, 2).

So even if we takeW to be quasi-smooth,X := VP(1,1,1,2)(W ) will still

be singular.

Now, the span of ray generatorsΘ := ΘΣ, is an almost reflexive polytope

and one can easily check that the associated reflexive polytopeΘ is spanned

by the vertices ofΘ and the point(0, 0, 1). Thus, we know that there is a

canonical resolution ofP(1, 1, 1, 2) by introducing a new ray in direction

(0, 0, 1) and star subdividingσ in threesmoothcones. The corresponding

map of fans̃Σ → Σ therefore induces a resolutionφ : P
Σ̃

→ P(1, 1, 1, 2),

andφ∗(X) will be smooth wheneverX is quasi-smooth. So there is in fact

no need to impose further regularity conditions such asΞ-regularity, where

Ξ := conv(Ξ−KP(1,1,1,2)
∩M). Moreover, the Newton polytope ofW

can be very small compared toΞ, W only has to fulfill the combinatorial

requirements of 2.33. �

REMARK 2.36. While forn = 3 a general degreed =
∑
i wi hypersur-

face

X = VP(w)(W ) ⊂ P(w) = P(w0, w1, w2, w3)

is aK3 surface if and only if it is quasi-smooth, see [CoGo, Theorem 1.13],

in higher dimensions it is rare that hypersurfaces are quasi-smooth. For

instance there are184062 different weightsw = (w0, . . . , w4) that yield

Calabi-Yau hypersurfaces, but only7555 among them are quasi-smooth,

see [Kre]. However, note that whenever it is possible to find one quasi-

smooth hypersurfaceX ⊂ P(w), then a general hypersurface of the same

degree will be quasi-smooth as well. �

The next proposition connects the above results to what we have observed

in the last sections.

PROPOSITION2.37. LetX ⊂ P(w) be a general anti-canonical section of

P(w), that isX = VP(w)(W ) for some quasi-homogeneous polynomial

W of degreed =
∑
i wi. Choose a fanΣ ⊂ NR for P(w). Then the

following are equivalent:

(1) X is Calabi-Yau.
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(2) ΘΣ is almost reflexive.

(3) X is a well-formed hypersurface with canonical singularities.

PROOF. The equivalence of(1) and(2) was shown in Theorem 2.25.

It suffices to show that the defining conditions for well-formedness forX,

that is

gcd(w0, . . . , ŵi, . . . wn) = 1 andgcd(w0, . . . , ŵi, . . . , ŵj , . . . wn)|d,

for all i, j = 0, . . . , n, are fulfilled andX has canonical singularities if

and only ifΞ = conv(Ξ−KP(w)
∩ M) is a reflexive polytope. IfX is

well-formed, by Theorem 2.32, we can apply the adjunction formula. As

X has canonical singularities it is Calabi-Yau and thereforeΘΣ is almost

reflexive.

Conversely, ifX has non-canonical singularities it is in particular not Calabi-

Yau. So assume thatX has canonical singularities but is not well-formed.

Since we always assume the ambient spaceP(w) to be well-defined, with-

out loss of generality let

gcd(ŵ0, ŵ1, w2, . . . , wn) ∤ d,

that is there is no degreed monomial of the formxλ2
2 . . . xλn

n , neither do

degreedmonomialsxλI with I ( {2, . . . , n} exist. That in turn means that

the toric stratum{x0 = x1 = 0} is contained inX. If Ξ were reflexive,

its normal fanΣ∗
Ξ

would define an MPCP resolutionPΣ∗
Ξ

→ P(w). But

then the toric stratum corresponding to the pull-back of{x0 = x1 = 0}

would be contained in the pull-back ofX. However, this is a contradiction

to the fact that a general anti-canonical section inPΣ∗
Ξ

is Ξ-regular. Hence

Ξ cannot be reflexive and soX is not a Calabi-Yau variety. �

2.3.2. Toric quotients of weighted projective spaces.We have seen

that each weighted projective spaceP(w) comes with a fanΣw and a sim-

plexΘw ⊂ NR that is reflexive if and only ifP(w) = PΣw is Fano. If we

start with a simplexΘ ⊂ NQ with vertices inN , then the associated toric

variety constructed from the fanΣΘ of cones over faces will in general be

a finite quotient of a weighted projective space. This quotient is induced by

a map of fans. As we will need these quotients in the next chapter, we will

make this construction more precise.
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LetΣ be a complete fan inNQ with exactlyn+ 1 ray generators

nρ0 , . . . , nρn ,

so thatΘΣ is a simplex. Then clearly there is a unique relation
∑n
i=0 winρi

for an(n + 1)-tuplew := (w0, . . . , wn) of positive integers. Denote by

Σw the fan of the weighted projective spaceP(w) with these given weights

w in the lattice

Nw := Zn+1/Z · (w0, . . . , wn).

The ray generatorsewi of the fan are the images of the standard basis vectors

ei of Zn+1. The mapZn+1 → N defined byei 7→ nρi therefore induces

a map of lattices

ψ : Nw → N

which gives a finite map of fansΣw → Σ. HenceP(w) → PΣ is a finite

quotient of toric varieties. The last result we will need forlater applications

is the following.

LEMMA 2.38. [Ba, Theorem 5.3.1].LetP(w) → PΣ be a finite toric quo-

tient induced by a mapψ : Nw → N of lattices. LetW ∈ H0(PΣ,−KPΣ
)

be an anti-canonical section andX := VPΣ (W ). Then there is a section

Ww ∈ H0(P(w),−KP(w)) such that forXw := VP(w)(Ww) we have

X ∼= Xw/
(
N/ψ(Nw)

)
.

�

To summarize, we have seen that the fan of cones over faces of a full-

dimensional simplexΘ ⊂ NQ
∼= Qn defines a quotientP(w)/G, where

G is the quotient of a lattice by a sublattice. Moreover,G-invariant hy-

persurfaces ofP(w) give hypersurfaces in the quotient. The set of almost

reflexive simplices thus consists of all sub-simplices of reflexive polytopes

that give rise to a well-formed weighted projective space andquotients of

such. The classification of reflexive polytopes in dimension three and four

found at [Kre] therefore allows to produce a complete list of almost reflexive

polytopes in these dimensions.



Chapter 3
Applications to CY-CY mirror symmetry

Now that we know necessary and sufficient conditions for a general anti-

canonical hypersurface in aQ-Gorenstein toric variety to be Calabi-Yau,

we move on to questions of mirror symmetry related to such Calabi-Yau

varieties. After shortly reviewing the construction of Berglund and Hübsch,

we will show that it is intimately related to Batyrev’s work. We close with a

discussion of mirror symmetry for generalized Borcea-Voisin threefolds by

finding singular models inQ-Gorenstein toric varieties for them.

For the whole chapter we will fix the following notation.

P(w) = P(w0, . . . , wn)

is a weighted projective space with fanΣw ⊂ NR as defined in Defini-

tion 2.26 and denote byΘw the span of ray generators ofΣ. Moreover, we

will write d :=
∑n
i=0 wi for the anti-canonical degree and throughout the

whole chapter we will work overk = C.

3.1. Results onQ-Gorenstein mirror symmetry

Given a four-dimensional reflexive polytopeΞ ⊂MQ recall that the mirror

symmetry construction introduced by Batyrev in [Ba] starts with aΞ-regular

39
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anti-canonical hypersurfaceX in the toric varietyPΞ associated to the nor-

mal fanΣ∗
Ξ. An MPCP subdivision ofΞ then yields an MPCP resolution

Y → X and by [Ba, Theorem 4.4.2, Theorem 4.4.3] we get

h1,1(Y ) = l(Ξ∗)− 5−
∑

σ∗

l∗(σ∗) +
∑

τ∗

l∗(τ∗)l∗(τ̌∗)

h1,2(Y ) = l(Ξ)− 5−
∑

σ

l∗(σ) +
∑

τ

l∗(τ)l∗(τ̌).

Herel(_) stands for integral points andl∗(_) for interior integral points of

the respective polytope. Moreover,σ andσ∗ refer to codimension one,τ

andτ∗ codimension two faces ofΞ, respectivelyΞ∗ andτ̌ denotes the face

of the polar polytope dual toτ .

This result implies that, if we choose aΞ∗-regular anti-canonical hyper-

surfaceX∗ in PΞ∗ and an MPCP subdivision forΞ∗ with induced MPCP

resolutionY ∗ → X∗, thenY andY ∗ form a topological mirror pair, that

is

h1,1(Y ) = h1,2(Y ∗), h1,1(Y ∗) = h1,2(Y ).(3.1)

In this situation we will say thatY andY ∗ form aBatyrev mirror pair.

Having stated this result aboutgeneralhypersurfaces in Gorenstein toric va-

rieties, we will now turn to a construction due to Berglund and Hübsch that

coversspecialhypersurfaces in possiblyQ-Gorenstein weighted projective

spaces. While this approach was not particularly present in the mathemati-

cal literature for a long time, recently more and more papers aredevoted to

this topic, see for instance [Bori], [ChRu1], [ChRu2] or [Kra].

3.1.1. The Berglund-Hübsch construction.

DEFINITION 3.1. Letw = (w0, . . . , wn) be weights of the weighted pro-

jective spaceP(w). Define thecharges ofP(w) to be qi := wi/d for

all i = 0, . . . , n. By the chargeof P(w) we refer to the(n + 1)-tuple

q = (q0, . . . , qn). �

DEFINITION 3.2. Letw = (w0, . . . , wn) be weights. Then a polynomial

W : Cn+1 → C of the form

W =W (x0, . . . , xn) =
n∑

i=0

ai

n∏

j=1

x
λij

j
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is called apolynomial of Berglund-Hübsch type, or aBH-type polynomial

if it is quasi-homogeneous of degreed with respect to the chargesqi and

smooth outside the origin, that is if
∑
j λijqj = 1 andVP(w)(W ) ⊂ P(w)

is a quasi-smooth hypersurface. We furthermore assume, without loss of

generality, thatai = 1 for all i = 0, . . . , n and callΛW := (λij)i,j the

matrix associated toW . �

Berglund and Hübsch in [BeHu] call quasi-smoothnessnondegeneracyand

the polynomialW nondegenerateif VP(w)(W ) ⊂ P(w) is quasi-smooth.

For convenience, we will make use of this terminology in the rest of this

chapter.

In [KrSk] Kreuzer and Skarke give a complete classification ofall poly-

nomials of Berglund-Hübsch type by combinatorially describing necessary

and sufficient conditions on the monomials ofW . Their result can be sum-

marized as follows.

LEMMA 3.3. A quasi-homogeneous polynomialW : Cn+1 → C of degree

d havingn+ 1 terms defines a quasi-smooth hypersurfaceX = VP(w) ⊂

P(w) if and only if it can be decomposed as direct sum of polynomials of

the following types:

W = x
mi
i

W = x
mi0
i0

xi1 + x
mi1
i1

xi2 + . . .+ x
mi

n′−1

in′−1
xin′ + x

mi
n′

in′

W = x
mi0
i0

xi1 + x
mi1
i1

xi2 + . . .+ x
mi

n′−1
in′−1

xin′ + x
mi

n′

in′
xi0

The first type is referred to as Fermat type, the second by Chain type and

the last by Loop type.

PROOF. This was first proved in [KrSk, Theorem 1], but is written

down slightly differently. The result as we stated it can be found in [ChRu1,

Remark 3]. �

If W is a BH-type polynomial it follows thatΛW is an invertible matrix,

as the columns ofΛW , corresponding to monomials ofW , are linearly in-

dependent by Lemma 3.3. LetΛ−1
W = (λij)i,j denote the inverse ofΛW .

It is easy to see thatqj =
∑n
i=0 λ

ij , that is the charges are determined by

ΛW .
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CONSTRUCTION 3.4. LetW =
∑n
i=0

∏n
i=0 x

λij

i be a nondegenerate

quasi-homogeneous polynomial. Define itsdual polynomialW ∗, a polyno-

mial in (n+ 1) variablesyi, to be

W ∗ :=W ∗(y0, . . . , yn) =
n∑

i=0

n∏

i=0

y
λji

i ,

that is,W ∗ is the polynomial associated to the transposeΛTW of the matrix

associated toW . Furthermore, we can define thedual chargesto be

q∗j =
n∑

i=0

λji.

Since(ΛTW )−1 = (Λ−1
W )T ,W ∗ is a quasi-homogeneous polynomial with

respect to these charges. Letd∗ denote the smallest integer such thatw∗
i :=

d∗ · q∗i ∈ N for all i = 0, . . . , n. ThenVP(w∗)(W
∗) is a well-defined

hypersurface of degreed∗ in P(w∗) = Proj(C[y0, . . . , yn]) with dual

weightsw∗ = (w∗
0 , . . . , w

∗
n). �

An immediate corollary of the explicit description of nondegenerate quasi-

homogeneous polynomials in Lemma 3.3 is thatW is nondegenerate if and

only if W ∗ is nondegenerate, asW can be decomposed into the three types

if and only ifW ∗ does.

EXAMPLE 3.5. For the weighted projective space

P(1, 1, 2, 3) = Proj(C[x0, x1, x2, x3]),

that is with weightsw = (1, 1, 2, 3), degreed = 7 and chargeq =

(1/7, 1/7, 2/7, 3/7) we choose the following nondegenerate polynomial

W =W (x0, x1, x2, x3) = x70 + x51x2 + x22x3 + x23x1.

The first term is of Fermat type, the other three form a loop. Furthermore,

the associated matrixΛW and its inverseΛ−1
W are given as follows

ΛW =




7 0 0 0

0 5 0 1

0 1 2 0

0 0 1 2



, Λ−1

W =




1
7

0 0 0

0 4
21

1
21

− 2
21

0 − 2
21

10
21

1
21

0 1
21

− 5
21

10
21



.
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Thus we recover the chargesq from the sum of column entries ofΛ−1
W .

Moreover, the sum of row entries gives dual charges

q∗ = (1/7, 1/7, 3/7, 2/7),

that isd∗ = 7 andw∗ = (1, 1, 3, 2). It is easy to see that the dual polyno-

mial

W ∗ =W ∗(y0, y1, y2, y3) = y70 + y51y3 + y1y
2
2 + y2y

2
3

is quasi-smooth and in fact quasi-homogeneous with respect tow∗. We will

come back to this example after having proved Theorem 3.19. �

Next, we will define an automorphism group ofW that will be of major

importance for the discussion of mirror symmetry.

DEFINITION 3.6. LetW : Cn+1 → C be nondegenerate. Define the finite

abelian group ofdiagonal automorphisms preservingW to be

Aut(W ) := {g : Cn+1 → Cn+1|g(xi) = gi · xi, g(W ) =W}.

where by abuse of notation we also writeg for the induced action on the

polynomialW . We will usually writeg = (g0, . . . , gn) for an element of

Aut(W ). �

REMARK 3.7. 1) The subgroupSLAut(W ) := SLn+1(C) ∩ Aut(W )

is characterized by the property
∏n
i=0 gi = 1, for g ∈ Aut(W ).

2) There is a distinguished elementJ (W ) ∈ Aut(W ), calledexponential

grading operatorin [Kra], defined by

J (W )(xj) = e2πiqjxj .

It is immediate thatJ (W ) is an element ofSLAut(W ) in our setup. �

It will be convenient to name the rows and columns of the inverseof ΛW ,

as they can be identified as elements of the automorphism group of W ∗,

respectivelyW .

DEFINITION 3.8. LetW be a BH-type polynomial with associated matrix

ΛW = (λij)i,j and inverseΛ−1
W . Denote bycj thej-th column and byrj

thej-th row ofΛ−1
W . for all j = 0, . . . , n. �
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By definitioncj andrj are(n + 1)-tuples of complex numbers for allj =

0, . . . , n and by slightly abusing notation we can define the actions

cj(xk) := e2πi(cj)k · xj , rj(yk) := e2πi(rj)k · yj .

As observed before, the columnscj ofΛ−1
W have the property

∑n
k=0 (cj)k =

qj . From this and the fact thatW is quasi-homogeneous with respect to the

chargesqi, we see thatci ∈ Aut(W ). Analogously it can be seen that

ri ∈ Aut(W ∗).

To state the mirror symmetry theorem of Berglund and Hübsch, we have to

define the groupG∗ dual toG.

DEFINITION 3.9. LetG ⊆ Aut(W ) be an arbitrary subgroup. Define the

dual groupG∗ as follows:

G∗ :=

{∏n
i=0 r

bi
i | (b0, . . . , bn)Λ

−1
W (a0, . . . , an)T ∈ Z,

∀(a0, . . . , an):
∏n
i=0 c

ai
i ∈ G.

}

�

The fact thatG∗∗ = G might not be entirely clear from this description,

although it is elementary. We will not give a proof right away,however, as

this will become apparent in the proof of Lemma 3.16. Let us summarize

the construction by introducing the following notation.

DEFINITION 3.10. LetW =
∑n
i=0

∏n
i=0 x

λij

i be of BH-type and choose

a subgroupG ⊆ Aut(W ) such thatJ (W ) ∈ G. Then we call(W,G) a

Berglund-Hübsch pairand the pair (W ∗, G∗) as described above itsdual

pair. �

The requirementJ (W ) ∈ G is natural and no restriction for the setup we

are working with, as we will see in Lemma 3.18.

REMARK 3.11. Let(W,G) and(W ∗, G∗) be dual Berglund-Hübsch pairs.

Note thatG andG∗ really act onC5, but not directly on weighted projective

spaces. To this end define

G := G/
〈
J (W )

〉
, G

∗
:= G∗/

〈
J (W ∗)

〉
.

From the definition ofJ (W ) andJ (W ∗) it follows thatG defines an

action onP(w) andG
∗

an action onP(w∗). Moreover, define

X := VP(w)(W ) ⊂ P(w) andX∗ := VP(w∗)(W
∗) ⊂ P(w∗).
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As Aut(W ) preservesW andW is quasi-smooth, we can consider the

quotientX/G, which is a possibly singular Calabi-Yau inP(w)/G and

analogously so isX∗/G
∗
⊂ P(w∗)/G

∗
. �

We now come to the central result of Berglund-Hübsch [BeHu] which is a

statement about Calabi-Yau threefolds, that is forn = 4.

THEOREM 3.12. [BeHu, Section 2].Let (W,G) and (W ∗, G∗) be dual

Berglund-Hübsch pairs forn = 4. Then there exist crepant Calabi-Yau

resolutionsXW := X̃/G andXW∗ := X̃∗/G
∗

that form a topological

mirror pair, that is such that

h1,1(XW ) = h1,2(XW∗ )

h1,2(XW ) = h1,1(XW∗ ). �

For a choice of dual Berglund-Hübsch pairs forn = 4 we will refer to

the Calabi-Yau three-manifoldsXW andXW∗ from Theorem 3.12 as the

corresponding mirror pair.

The resolutionsXW andXW∗ Berglund and Hübsch use for their theo-

rem rely on a result of Roan, see [Roa1, Roa2], we will presentnext. The

statement itself is based on a toroidal Calabi-Yau resolution X̃ → X, first

constructed by Greene, Roan and Yau [GrRoYa]. The proposition we will

state is interesting on its own, as it not only gives an explicit resolution for

X/G, but also tell us about the Hodge structure of the resolution. As we

will see, the Hodge numbers of̃X/G will only depend on the weights of

the ambient spaceP(w) and the action ofG on it, not on the actual equation

W .

PROPOSITION3.13. [Roa2, Theorem 1].LetG be a group linearly acting

on C5 with standard basis(ei)i=0,...4 and letX = VP(w)(W ) be aG-

invariant hypersurface. Moreover, forg ∈ G define

βg :=
1

|G|

∑

h∈G

∏

i:g(ei)=h(ei)=ei

(1−
1

qi
) ξg := #{i|g(ei) = ei}.

Then there is a toroidal resolutioñX/G whose Hodge numbers are given

by

b3(X̃/G) = −
∑

ξg≥3

βg b2(X̃/G) = −1 +
1

2

∑

ξg<3

βg ,
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so in particular they do not depend onW .
�

The proposition of Roan works with toroidal resolutions. However, the fol-

lowing result shows that most of the time we can in fact work withglobal

toric resolutions.

COROLLARY 3.14. Let(W,G) be a Berglund-Hübsch pair such thatW is

general. If X = VP(w)(W ), then the above resolutioñX/G is induced by

an MPCP subdivision of the reflexive polytopeΘw associated toΘw.

PROOF. By Theorem 2.25 we know that a generalX is Calabi-Yau

if and only if the fan ofP(w) is the fan of cones over faces of an al-

most reflexive polytopeΘw ⊂ NQ. Recall that this means thatΞ :=

conv(Ξ−KP(w)
∩ M) is a reflexive polytope andΘw := Ξ

∗
⊂ NQ is

a reflexive polytope containingΘw. Choosing an MPCP subdivision for

Θw therefore induces a maximal refinement̃Σw of the fanΣw. Thus by

constructionP
Σ̃w

is an MPCP-resolved Gorenstein toric variety. The map

of fansΣ̃w → Σw furthermore induces a resolutionψ : X̃ → X. AsX

is quasi-smooth by assumption andψ resolves toric singularities, we know

thatX̃ is smooth, since the singular locus ofP
Σ̃

is of codimension4 by [Ba,

Corollary 4.2.3] andX is general. �

Theorem 3.12 is a mirror symmetry statement forn = 4 Berglund-Hübsch

pairs. The only thing that keeps it from holding in higher dimensions is

that there might only be apartial resolution ofX/G. The construction it-

self, however, remains unchanged in any dimension. In [ChRu1]Chiodo

and Ruan prove a higher-dimensional analogue of the result ofBerglund-

Hübsch that uses Chen-Ruan orbifold cohomology. We will not give a def-

inition of this cohomology theory here, as it is not important for the rest of

the text. A short introduction can be found in §3.2 of [ChRu1]. All we need

to know here is that for an orbifold[X] Chen-Ruan orbifold cohomology

groupsHp,q
CR([X];C) with coefficients inC agree with usual cohomology

groupsHp,q(X̃,C) if a crepant resolutioñX → [X] exists.

THEOREM 3.15. [ChRu1, Theorem 14].Let (W,G) and (W ∗, G∗) be

dual Berglund-Hübsch pairs for somen ∈ N and letX := VP(w)(W ),

X∗ := VP(w∗)(W
∗) as before. Then the orbifolds[X/G] and [X∗/G

∗
]

are topological mirrors with respect to Chen-Ruan orbifoldcohomology,
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that is

Hp,q
CR([X/G];C) ∼= Hn−2−p,q

CR ([X∗/G
∗
];C). �

3.2. Geometrization ofQ-Gorenstein mirror symmetry

We will now show that Berglund-Hübsch mirror symmetry is directly re-

lated to Batyrev mirror symmetry forn = 4. Fix a Berglund-Hübsch pair

(W,G). LetN andM be finitely generated free abelian groups with gen-

erators(ni)i=0,...,n and(mi)i=0,...,n. With help of the invertible matrix

ΛW = (λij)i,j ∈ GLn+1(Q) we declare an integral, nondegenerate, but

not necessarily unimodularpairing

〈·, ·〉Λ : N ×M → Z

by setting〈ni,mj〉Λ := λij . Denote the lattices dual toN andM with

respect to the given pairing byN∗ andM∗. Given this data we can deduce

the following lemma.

LEMMA 3.16. For a given Berglund-Hübsch polynomialW the choice of a

groupG ⊂ Aut(W ) is equivalent to a choice of latticesM∗ ⊇ NG ⊇ N

andN∗ ⊇MG ⊇M such thatNG andMG are dual lattices.

PROOF. As a general element ofM∗ is of the form
∑n
j=0 ajnj with

aj ∈ Q and analogously forN∗ we see thatM∗/N ∼= Aut(W ) as the

following two maps are inverse to each other:
[∑n

j=0 ajnj

]
7→ (e2πiaj )j

g = (gj)j 7→
[∑n

j=0
1

2πi
log(gj)nj

]
.

Here the square brackets denote cosets moduloN . In exactly the same way

it can be shown thatN∗/M ∼= Aut(W ). Moreover, via this automorphism

we see that each columnci of Λ−1
W is in fact an element ofM∗/N , so it

can be represented by an elementc̃i ∈ M∗. Analogously, eachri can

be represented bỹri ∈ N∗. In fact, if we choose bases(mG,i)i=0,...n

of MG and (nG,i)i=0,...n of NG, then(c̃i)i=0,...,n and (r̃i)i=0,...,n,

respectively, are dual bases. To conclude, note that the pairing 〈·, ·〉 in-

duced onNG×MG is in fact what we want since by construction we have

〈ci, rj〉 = λij , that is the pairing is defined by the inverse matrixΛ−1
W . �
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REMARK 3.17. Note that as they stand the lattices in the last lemma have

rank n + 1 and do not give rise ton-dimensional weighted projective

space or quotients of such. Instead we will have to work modulothe group

〈J (W )〉 generated by the element

J (W ) = (e2πiq0 , . . . , e2πiqn ).

If we take for instanceG = 〈J (W )〉, then

NG/G ∼= Zn+1/Z(w0, . . . , wn)

is by construction nothing but the latticeNw we fixed for the weighted pro-

jective spaceP(w). By Lemma 3.16 it can be concluded that larger groups

〈J (W )〉 ⊂ G′ define quotients ofP(w), as long asG′ ⊂ SLAut(W ).

�

LEMMA 3.18. LetW =
∑n
i=0

∏n
i=0 x

λij

i be of BH-type and choose a

subgroupG ⊆ Aut(W ). Then

〈J (W )〉 ⊆ G ⊆ SLAut(W ) ⇔ 〈J (W ∗)〉 ⊆ G∗ ⊆ SLAut(W ∗).

PROOF. We only prove that〈J (W )〉 ⊆ G is equivalent toG∗ ⊆

SLAut(W ∗) as the other half of the statement is just dual to this. As

J (W ) ∈ G just means(q0, . . . , qn) =
∑
j qjnj ∈ NG andG∗ ⊆

SLAut(W ∗) translates to
∏
i g

∗
j = 1 for all g∗ ∈ G∗, we see that

∏

j

g∗j = 1 ⇐⇒
1

2πi
log(

∏

i

g∗j ) ∈ Z

⇐⇒
∑

j

1

2πi
log(g∗j ) ∈ Z

⇐⇒
〈∑

j

qjnj ,
∑

j

1

2πi
log(g∗j )mj

〉
∈ Z

⇐⇒
∑

j

qjnj ∈ NG

and the claim follows. �

Note that Lemma 3.16 and Lemma 3.18 were proved by Borisov in [Bori,

Proposition 2.3.1, Corollary 2.3.5], which was available online after we

gave the proofs presented here.
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3.2.1. Berglund-Hübsch pairs and almost reflexive polytopes. We

now come to the first main theorem of this chapter. It roughly says that

Berglund-Hübsch mirror symmetry is induced by Batyrev mirror symmetry

in the sense that there is a mirror pair of Calabi-Yau threefolds as in (3.1)

such that the Berglund-Hübsch mirror is obtained bypolynomial deforma-

tion of this pair.

THEOREM 3.19. Let (W,G) and (W ∗, G∗) be dual Berglund-Hübsch

pairs for n = 4 with corresponding mirror pairXW andXW∗ . Then

there is a reflexive pair(Θ,Ξ) of four-dimensional polytopes and refine-

mentsΣ̃Θ → ΣΘ, Σ̃Ξ → ΣΞ induced by MPCP subdivisions ofΘ andΞ

such that

(1) XW andXW∗ are anti-canonical hypersurfaces inP
Σ̃

Θ
and

P
Σ̃

Ξ
, respectively.

(2) There are polynomial deformationsY ofXW andY ∗ ofXW∗

such thatY andY ∗ form a Batyrev mirror pair.

(3) Given(Θ,Ξ) the choice of dual BH pairs(W,G) and(W ∗, G∗)

is equivalent to a choice of almost reflexive simplicesΘ ⊂ Θ

andΞ ⊂ Ξ.

PROOF. Let (W,G), (W ∗, G∗) be a Berglund-Hübsch pair forn =

4. By Lemma 3.16 there are dual latticesNG andMG and we may further

define

M :=MG/
〈
J (W ∗)

〉
, N := NG/

〈
J (W )

〉

which clearly are dual as well. As observed earlier in Remark 3.11, divid-

ing by 〈J (W )〉 means descending fromC5 to P(w) and analogously for

〈J (W ∗)〉, where one descends fromC5 to P(w∗). As before, let us con-

sider the hypersurfacesX := VP(w)(W ) andX∗ := VP(w∗)(W
∗), which

are by definition invariant under the action ofG andG
∗
, respectively. So

by Theorem 2.25

X/G ⊂ P(w)/G and X∗/G
∗
⊂ P(w∗)/G

∗

are Calabi-Yau as well. Note that by constructionP(w)/G is just the toric

variety associated to the fanΣw considered in the sup-latticeNQ instead

of in Nw,Q andP(w∗)/G∗ is the toric variety associated to the fanΣw∗
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considered as a fan inMQ. Moreover, asX/G andX∗/G∗ are Calabi-Yau

the lattice polytopes

Θ := ΘΣw ⊂ NQ and Ξ := ΘΣw∗ ⊂MQ

have to be almost reflexive. Thus we haveΘ ⊂ Θ andΞ ⊂ Ξ for the

associated reflexive polytopesΘ andΞ. By construction it is clear that

Ξ ⊂ Θ∗ andΘ ⊂ Ξ∗, from which we can conclude thatΞ ⊂ Θ
∗

and

Θ ⊂ Ξ
∗
. Thus, as the same argument holds true with the roles ofΞ and

Θ reversed, it follows thatΞ
∗
= Θ, which means that(Θ,Ξ) is areflexive

pair. Choosing MPCP subdivisions forΘ, respectivelyΞ yields resolutions

for the varieties associated to the normal fan of these polytopes and hence

resolutions

XW = X̃/G and XW∗ = X̃∗/G∗.

From here it is clear that the Calabi-YauXW andXW∗ are special anti-

canonical hypersurfaces in MPCP-resolved toric varietiesassociated to re-

flexive polytopes, thus(1) follows. For(2) note that this in particular im-

plies that there areΞ-regular, respectivelyΘ-regular hypersurfacesY and

Y ∗ in P̃Θ andP̃Ξ which are polynomial deformations ofXW andXW∗ ,

having the same Hodge-numbers by Proposition 3.13. The third part of the

theorem is clear from the construction we have just presented. �

COROLLARY 3.20. If P(w) = P(w0, w1, w2, w3, w4) is a smooth Fano

four-manifold with fanΣw in Nw,Q and we take the Fermat polynomial

W =
∑
i x
d/wi
i , then the Batyrev mirror ofX = VP(w) agrees with the

Berglund-Hübsch mirror.

PROOF. If P(w) is smooth, it follows thatΘ := ΘΣ is a reflexive

simplex with polarΞ := Ξ−KP(w)
. Moreover, the vertices ofΞ simply

correspond to the monomialsxd/wi
i , soX is not only quasi-smooth, but

alsoΞ-regular. In fact, reflexive simplices have the property thatthe vertices

of their polar satisfy the same single relation as that of the simplex itself.

ThusΘ andΞ are essentially the same polytopes, but are defined in dual

lattices. Therefore the toric varietyPΣ
Ξ

is thus just a quotientP(w)/H

of the spaceP(w) for some groupH and the Batyrev mirrorX̌ is just a

Θ-regular hypersurface inP(w)/H. So without loss of generality we can

assume thaťX = X/H. On the other hand, from Berglund and Hübsch’s

construction, we haveW ∗ = W andG = 〈J (W )〉. As we furthermore
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know thatH = G
∗
, since both are isomorphic toM/M by the proof of

Theorem 3.19, this finishes the proof. �

COROLLARY 3.21. Let P(w) be a four-dimensional weighted projective

space and choose two different BH-type polynomialsW andW ′, that is we

have〈J (W )〉 = 〈J (W ′)〉. Then the following holds:

(1) the respective threefoldsX andX′ in P(w) and their resolu-

tions will be polynomial deformations of each other.

(2) If we choose the same automorphism groupG ⊂ Aut(W ) ∩

Aut(W ′) simultaneously forW andW ′, thenX̃/G andX̃′/G

are deformations of each other.

PROOF. Both statements follow immediately from Theorem 3.19, but

are not clear within the Berglund-Hübsch framework. �

REMARK 3.22. Let us stress the importance of Theorem 3.19 by some

more observations. We have seen that the choice of a BH pair(W,G) is

the choice of an almost reflexive simplexΘ, asPΣΘ
∼= P(w)/G, plus

the choice of an almost reflexive simplexΞ, the span of the points in the

Newton polytope ofPΣΘ
corresponding to the monomials inW . On a

combinatorial level the dual pair(W ∗, G∗) is obtained fromexchanging

the roles ofΘ and Ξ in this situation. By this we mean that the space

P(w)/G
∗

is isomorphic toPΣΞ
and the polytopeΘ we started with can

be interpreted as the convex hull of points in the Newton polytope ofPΣΞ

corresponding to the monomials inW ∗. Moreover, if we for a moment

forget all data introduced before and start with an almost reflexive simplex

Θ, we can freely chooseany almost reflexive simplexΞ in Θ∗ and will

always end up with dual Berglund-Hübsch pairs. Furthermore,from the

proof of Theorem 3.19 and Lemma 2.38 we can deduce thatG ∼= N/N

andG
∗ ∼=M/M . �

EXAMPLE 3.23. With the new insights we have gained, we will now have

a closer look at Example 3.5. Although it only deals with three-dimensional

polytopes, we can still see all the features of the construction. Recall that

in this example we considered theQ-Gorenstein weighted projective spaces

P(w) = P(1, 1, 2, 3) = Proj(C[x0, x1, x2, x3]) and

P(w∗) = P(1, 1, 3, 2) = Proj(C[y0, y1, y2, y3])
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with BH-type polynomials

W =W (x0, x1, x2, x3) = x70 + x51x2 + x22x3 + x23x1,

W ∗ =W ∗(y0, y1, y2, y3) = y70 + y51y3 + y1y
2
2 + y2y

2
3 ,

but we did not choose a groupG. As we have seen this choice boils down to

the choice of dual lattices with an almost reflexive polytopesin each lattice.

Let N = Z3 with dual latticeM and consider the polytopeΘ ⊂ NQ

spanned byv0 := (1, 2, 3), v1 := (−1, 0, 0), v2 := (0,−1, 0) and

v3 := (0, 0,−1). These four vectors have a single relation, namelyv0 +

v1 +2 · v2 +3 · v3 = 0. As furthermore〈v0, v1, v2, v3〉Z = Z3 we know

that the toric varietyPΣΘ
associated to the fan of cones over faces ofΘ is

theQ-GorensteinQ-Fano weighted projective spaceP(w). In other words,

by this choice of lattice and fan we have chosenG to be trivial and we can

already conclude thatG
∗

is non-trivial. Equivalently one sees thatN ∼= Z4

andG = Z · (1, 1, 2, 3), so the fanΣΘ is the fanΣw from Definition 2.26.

Now, the fact that we can choose a BH-type polynomialW tells us thatΘ

is almost reflexive, for otherwiseX := VP(w)(W ) would not be a Calabi-

Yau by Theorem 2.25. Let us study the Newton polytope ofP(w) in or-

der to identify the points that correspond to the monomials inW . Note

that we have already considered the exact same situation in the running

example in Chapter2. The Newton polytopeΞ−KP(w)
is depicted in Fig-

ure 2.2. We have seen that the integral points of the Newton polytope span

a lattice polytope with vertices(1, 1, 1), (−6, 1, 1), (1, 1,−1), (0, 1,−1),

(1,−1, 0), (1,−2, 1) and(0,−2, 1). We can identify these seven points

with the monomialsx71, x70, x1x23, x0x23, x22x3, x1x22 andx0x22 in this

order. Thus we see that the monomialsx70, x51x2, x32x3 andx1x23 that

W consists of correspond to the simplexΞ spanned byv∗0 := (−6, 1, 1),

v∗1 := (1, 0, 1), v∗2 := (1,−1, 0) and v∗3 := (1,−1, 1). These four

vectors again have exctly one relation, namely

v∗0 + v∗1 + 3 · v∗2 + 2 · v∗3 = 0.

However, the span〈v∗0 , v
∗
1 , v

∗
2 , v

∗
2〉Z does not give all ofZ3, but only a

three-dimensional sublatticeM
′

of M of some index. By Lemma 2.38 we

therefore know that the fan of cones over faces ofΞ := conv(v∗0 , v
∗
1 , v

∗
2 , v

∗
3)
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is P(w∗)/(M/M
′
) and we define

X∗ := VP(w∗)(W
∗)/(M/M

′
).

We will not explicitly computeG
∗

here, as it is rather large and the precise

structure is not needed to proceed. Note however thatG
∗

is indeed just the

quotientM/M
′
.

Moreover, it can be checked by hand thatΞ is an almost reflexive polytope.

The integral points of the polarΞ∗ span a reflexive polytope with vertices

(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 2, 3), (0, 1, 1) and(0, 1, 2) and we

know from Example 2.13 that this is the reflexive polytopeΘ associated to

the almost reflexive polytopeΘ we started with. Furthermore, the vectors

(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 2, 3) that spanΘ can be identified

with the monomials inW ∗. Thus, we see thatX/G andX∗/G
∗

are spe-

cial hypersurfaces in quotients of weighted projective spaces associated to

almost reflexive polytopesΘ ⊂ N andΞ ⊂ M . The associated reflex-

ive polytopesΘ andΞ define toric resolutions as discussed and polynomial

deformations of the pulled back hypersurfaces form a Batyrevmirror. �

3.3. Mirrors for Borcea-Voisin manifolds

As an application of Theorem 2.25 and the realization of the Berglund-

Hübsch approach in the context of Batyrev mirror symmetry we will now

construct mirror partners for so calledgeneralized Borcea-Voisin threefolds.

To do so, we will first give a short survey of the classical construction and

its generalization with an overview of the literature on this topic.

3.3.1. Borcea-Voisin threefolds revisited.Let us start with a brief

discussion of Borcea-Voisin Calabi-Yau threefolds and their properties. Let

X be a K3 surface and letσ be a non-symplectic involution, that is a holo-

morphic involution such that the induced action on cohomologyσ∗ acts on

a generatorω of H2,0(X) asσ∗(ω) = −ω. This determines the fixed

lattice

Sσ := {x ∈ H2(X,Z)|σ∗(x) = x} ⊂ H2(X,Z) = H3 ⊕ (−E8)
2

of the K3-lattice with intersection form denoted by〈_, _〉. Here H denotes

the hyperbolic plane and E8 the root lattice corresponding to the system

E8. Moreover, denote byr = rank(Sσ) the rank of the fixed lattice. By
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11

δ = 1

δ = 0

FIGURE 3.1. The complete list of triples of discrete

data determining all deformation classes ofK3 sur-

faces with non-symplectic involution.

abuse of notation we denote the dual pairing on the dual lattice (Sσ)∗ :=

HomZ(S
σ ,Z) by 〈_, _〉 as well. It is known that the thediscriminant group

(Sσ)∗/Sσ of such a pair(X,σ) is 2-elementary, that is(Sσ)∗/Sσ =

(Z/2Z)a for somea, see [Ni]. Furthermore, define the numberδ to be0 if

for anyx ∈ (Sσ)∗ we have〈x, x〉 ∈ Z and1 otherwise. With this notation

we can state the following classical theorem, whose proof large parts of [Ni]

are devoted to.

THEOREM 3.24. [Ni]. The pair(X,σ) depends up to deformation only

on the triple of integers(r, a, δ). Moreover, for given(r, a, δ) there is a

connected(20 − r)-parameter family of K3 surfaces with non-symplectic

involution(X,σ) of that type. �

Denote byXσ ⊂ X the set of fixed points of the involution. Then we know

thatXσ 6= ∅, except for(r, a, δ) = (10, 10, 0), where the involution has

no fixed points andX/σ is an Enriques surface and(r, a, δ) = (10, 8, 0),

whereXσ is the union of two elliptic curves. Moreover,Xσ has the fol-

lowing structure:

Xσ = Cg ∪R1 ∪ . . . ∪Rk.

HereCg is a curve of genusg = (22 − r − a)/2 and theRi are rational

curves withk = (r − a)/2. See [Borc, §3] for more on this.
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REMARK 3.25. In Figure 3.1 we depicted all possible triples(r, a, δ) of

Nikulin’s classification. Observe that if we leave out the points on the

shaded(r + a = 22)-line and the point(14, 6, 0), then the set of points

becomes symmetric with respect to the dotted(r = 10)-axis. Moreover,

one can easily check that(r, a, δ) and(20− r, a, δ) exchange the numbers

k + 1 andg. �

Now letE be an elliptic curve with involutionι and let(X(r, a, δ), σ) be

aK3 with discrete data(r, a, δ) and non-symplectic involutionσ. Then

there is a crepant resolution of singularities

Y := Y (r, a, δ) 7→ (E ×X(r, a, δ))/ι× σ

which is a Calabi-Yau threefold calledBorcea-Voisin threefold, as they were

first studied independently by Borcea [Borc] and Voisin [Vo]. The Hodge

numbers of these threefolds are

h1,1(Y ) = 5 + 3r − 2a = 1 + r + 4(k + 1)

h2,1(Y ) = 65− 3r − 2a = 1 + (20− r) + 4g.

as shown in [Borc, Section 4]. From this description we see thatY (r, a, δ)

andY (20 − r, a, δ) form a topological mirror pair ifr + a 6= 22 and

(r, a, δ) 6= (14, 6, 0). In [Borc] Borcea remarks that some of theK3 sur-

facesX and explicit involutionsσ can be realized as singular hypersurfaces

in weighted projective spaces. Figure 3.1 displays all triples (r, a, δ) for

which this is possible in red, see [Borc, Section 3] for details. Whenever this

is true, there is also a singular model forY (r, a, δ) in a four-dimensional

weighted projective space. We will generalize this construction in the next

section and will therefore not further comment on it here.

REMARK 3.26. Although there is an almost perfect symmetry for ‘red’

triples (r, a, δ) and(20 − r, a, δ) in Figure 3.1 as well, Borcea correctly

remarks that forY (r, a, δ) ⊂ P(w) there is no threefoldY (20−r, a, δ) ⊂

P(w) related toY (r, a, δ) by Batyrev’s mirror construction unless they are

both Fermat type hypersurfaces. This observation is clear inlight of Corol-

lary 3.20. �

3.3.2. The generalized Borcea-Voisin construction and mirror sym-

metry. The construction just presented has the following natural general-

ization. LetX be aK3 surface, this time equipped with anon-symplectic
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automorphismσ of orderp, that is an automorphism of orderp acting as

multiplication byξp on a generatorω of H2,0(X,Z), whereξp denotes a

primitive p-th root of unity. Moreover, letE be an elliptic curve with auto-

morphismι of orderp . Then from [Di, Section 5] we know that there is a

Calabi-Yau resolution

Y → (X × E)/σ × ι

we will refer to asgeneralized Borcea-Voisin threefold. Of course automor-

phisms of elliptic curves only exist forp = 2, 3, 4, 6, which restricts this

construction quite heavily. On theK3 side, non-symplectic automorphisms

of prime orderp are completely classified in [ArSaTa]. For non-primep this

is an active field of research pursued by Artebani, Boissiéreand Sarti. Thus,

the only case we can fully treat here isp = 3, to which the paper [ArSa]

is devoted. Once the casesp = 4, 6 are fully classified, the methods pre-

sented here can be used to find mirrors for Borcea-Voision threefolds in

these cases, too.

As before, the most important part is to know the discrete invariants of the

K3 surface and theK3 lattice. Recall that thePicard latticeSX of X is

given by

SX := {x ∈ H2(X,Z)|〈x, ω〉 = 0}

and thetranscendental latticeTX := S⊥
X by the orthogonal complement

with respect to the intersection pairing. The fixed lattice of σ is again de-

noted bySσ . LetTσ := (Sσ)⊥, then by [ArSaTa, Theorem 2.1] we have

Sσ ⊂ SX and TX ⊂ Tσ . Using the fact that the transcendental lattice

has even rank by [ArSa, Lemma 1.3], forp = 3 it is often handier to work

with m defined by rank(Tσ) =: 2m instead ofr = 22 − 2m. With this

notation we can state the following analogon of the structure theorem for

p = 2.

THEOREM 3.27. Let X be aK3 surface with non-symplectic automor-

phismσ of orderp = 3 and discriminant group of ranka. Then(X,σ) is

up to deformation determined by(m,a). Furthermore, its fixed locusXσ

has the following form:

Xσ = Cg ∪R1 ∪ . . . ∪Rk ∪ {p1, . . . , pn}

whereRi is a smooth rational curve,pi is an isolated point andCg a

curve of genusg. Moreover, the values ofn, k andg are explicitly given by
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(20, 32)

(41, 17)(55, 9)(73, 1) (25, 25)

(62, 2) (46, 10) (30, 18)

(18, 6)

(29, 5)

(40, 4) (24, 12)

(49, 3) (35, 11) (19, 19)

(14, 26)

(9, 33)

(47, 23) (15, 39)(79, 7)

(84, 0) (68, 8) (52, 16) (36, 24)

m

FIGURE 3.2. The complete list of pairs(m,a) pa-

rameterizing deformation classes ofK3 surfaces

with non-symplectic automorphism of order 3 and

discrete invariants(m,a).

n = 10 −m, k = 6 − (m + a)/2, g = (m − a)/2. The full list of

pairs (m, a) is depicted in Figure 3.2.

PROOF. See Theorem 0.1, Theorem 1.1 and Theorem 9.1 in [ArSaTa].

�

LEMMA 3.28. LetX be a K3 surface with order3 non-symplectic auto-

morphismσ and letSσ have discrete invariants(m, a). Furthermore letE

be the elliptic curve with order3 automorphismι. Then the Hodge numbers

of the generalized Borcea-Voisin threefoldY → (X ×E)/σ× ι are given

by

h1,1(Y ) = 7 + 4r − 3a = 3 + 6k + 5n,

h1,2(Y ) = 43− 2r − 3a = 27 + 6k − 7n.

PROOF. See [Di, Section 7.1.1] for a computation using Chen-Ruan

orbifold cohomology. There is a minor mistake in the reference,where it

is stated thath1,2(Y ) = 38 − 2r − 3a, which sometimes gives negative
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values. We recomputed this number using the techniques of Jimmy Dillies,

who confirmed the error. �

REMARK 3.29. 1) Figure 3.2 shows all possible pairs(m,a) along with

the respective Hodge numbers(h1,1(Y (m,a)), h1,2(Y (m,a))) of the re-

spective generalized Borcea-Voisin threefold. Note that there is again a

symmetry about the(m = 5)-axis for most of theK3 surfaces with dis-

crete invariants as depicted. However, unlike for involutions, among the

Calabi-Yau threefoldsY (m,a) we get from the generalized Borcea-Voisin

construction, except for the two cases whereh1,1 = h1,2, namely the pairs

(19, 19) and(25, 25), there is not a single pair(h1,1, h1,2) that mirrors

another pair from the list, see Figure 3.2.

2) As far as we know Cynk and Hulek in [CyHu] were the first to consider

this generalized Borcea-Voisin construction. Moreover, Rohde in [Roh]

shows that the complex moduli spaces of the seven examples with Hodge-

numbers(18 + 11 · l, 6 − l) in Figure 3.2 do not have a point of maximal

unipotent monodromy. In [GavGe] the example(73, 1) is studied in detail.

Note that we donot get mirrors for any of these examples in the following

theorem. �

THEOREM3.30. LetX := X(m,a) be aK3 surface with non-symplectic

automorphismσ of order p = 3 and discrete data(m,a) as in Table 1.

Then there is a topological mirror for the generalized Borcea-Voisin three-

fold Y := Y (m,a) associated toX, given by a hypersurface in a toric

variety.

PROOF. Let P(w) := P(w0, w1, w2, w3) be well-formed with co-

ordinatesx0, . . . , x3 such that
∑
i wi = 3 · w0. By this last assump-

tion we know that there is an anti-canonical section of the form x30 =

f(x1, x2, x3). Then the zero setX ⊂ P(w) of this section is aK3 sur-

face and as non-symplectic automorphismσ we choose the one acting as

σ(x0) := ξ3x0 onx0 and trivially onx1, x2 andx3. Yonemura [Yo, Table

2.2 & Table 4.6] gives a complete list of all95 spacesP(w0, w1, w2, w3)

which have anti-canonicalK3 sections together with an explicit choice of

such a section. In a slightly different context Reid [Re2, Section 4.5] was

the first to discover this list. We now simply extract every polynomial of
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the formx30 = f(x1, x2, x3) from the list. In order to find the pair(m,a)

from this it is enough to determine the valuesk andg.

To determineg note that the possibly singular curve

C := {f(x1, x2, x3) = 0} ⊂ P(w1, w2, w3)

is the fixed locus of the automorphismσ. By [Yo, Theorem 3.1] there exists

a minimal resolutionπ ofX, which also resolves the singularities ofC. As

by [Yo] X has onlyAl-singularities andπ is in fact a blow-up we get

π∗C = Cg ∪R1 ∪ . . . Rk,

whereRk are rational curves andCg is the unique smooth curve from The-

orem 3.27 whose genusg, by [Ia, Theorem 12.2], is given by

g =
1

2

( d2

w1w2w3
− d

∑

i>j

gcd(wi, wj)

wiwj
+

2∑

i=1

gcd(wi, d)

wi
− 1
)
.

Hered :=
∑4
i=1 wi andgcd(_, _) denotes the greatest common divisor of

two integers.

The numberk of rational components can be determined by computing

which Al singularity ofX, as shown in the list [Yo, Table 4.6], lies on

C, as each such singularity contributesl rational curves in the resolution.

Thus from the relationsk = 6 − (m + a)/2, andg = (m − a)/2 we

get the pair(m,a). In Table 1 we list, along with the respective number

in Yonemura’s list and the polynomial given there and all possible pairs

(m,a). Note that in the table we keep the notation of Yonemura [Yo, Ta-

ble 2.2], that is the polynomials have coordinate functionsx, y, z, w. The

coordinatex0 from above corresponds to the underlined coordinate in each

column of the table.

In order to proceed, note that there are precisely three Gorenstein weighted

projective surfaces, namelyP(1, 1, 1), P(1, 1, 2) andP(2, 1, 3). Denote

the i-th canonical coordinate in each of these cases byyi. Among these

surfaces there are precisely two Fermat-type equations thatyield smooth

elliptic curvesE with order three automorphismι, namely

{
y30 = y31 + y32

}
⊂ P(1, 1, 1) and

{
y30 = y21 + y62

}
⊂ P(2, 1, 3).
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In each case we can now construct a rational map, similar to those found

in [Borc, Section 5]. However, it suffices to study the first case here. The

rational map

P(w0, w1, w2, w3)× P(1, 1, 1)

→ P(w0, w0, w1, w2, w3) =: P(w0, w)
(
(x0 : x1 : x2 : x3),(y0 : y1 : y2)

)

7→

(
y1 ·

x0

y0
: y2 ·

x0

y0
: x1 : x2 : x3

)

restricts to a map onX ×E that maps generically3 : 1 to the hypersurface

Y ′ given by

(3.2) z30 + z31 = f(z2, z3, z4),

wherez0, . . . , z4 denote the coordinates onP(w0, w). From Equation (3.2)

it follows thatY ′ is a possibly singular Calabi-Yau hypersurface inP(w0, w)

and thus a singular model for the Borcea-Voisin Calabi-YauY (m,a). Note

that Equation (3.2) is of Berglund-Hübsch type if and only iff is. If f is

of BH-type, we can of course just apply the Berglund-Hübsch construction.

Otherwise note that we can deformf without changingr and g, which

means that we can always assume thatx30 + f(x1, x2, x3) is Ξ−KP(w)
-

regular, whereΞ−KP(w)
is the anti-canonical polytope. Therefore we im-

mediately get that Equation (3.2) gives aΞ−KP(w0,w)
-regular hypersur-

face, which means that we can apply Batyrev’s mirror symmetry construc-

tion. �

EXAMPLE 3.31. To illustrate the proof of the theorem, we will compute one

explicit example, namely the first in Table 1. Consider the zerosetX of the

Fermat type equationx30 = x41+x
4
2+x

6
3 of degreed = 12 in the weighted

projective spaceP(4, 3, 3, 2) with chargeq = (3, 4, 4, 6). We know that

the smooth curveCg of degreed = 12 defined by
{
x41 + x42 + x63 = 0

}

in P(3, 3, 2) has genus

g =
1

2

( 122

3 · 3 · 2
− 12

( 3

3 · 3
+

1

6
+

1

6

)
+

3

3
+

3

3
+

2

2
− 1
)
= 1.

Furthermore, checking Table 4.6 in [Yo] shows thatX has threeA1 and four

A2 singularities. However, the fix locus of the automorphismσ : X → X
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defined byσ(x0) = ξ3 · x0 is just the singular curveC in defined by{
x41 + x42 + x63 = 0

}
in P(4, 3, 3, 2) and it can be checked that this curve

has anA2-singularity at(1, 0, 0, 0). Blowing-up via the minimal resolution

π in [Yo] therefore yieldsπ∗(C) = Cg ∪R1 ∪R2. Thusk = 2 and from

the formulask = 6− (m+ a)/2, andg = (m− a)/2 we getm = 5 and

a = 3. Moreover, letE be the Fermat hypersurface
{
y30 + y31 + y32 = 0

}

in P(1, 1, 1). Then the image ofX×E via the rational mapP(4, 3, 3, 2)×

P(1, 1, 1) → P(4, 4, 3, 3, 2) from Theorem 3.30 defines a singular model

Y ′ of the generalized Borcea-Voisin threefold as the zero set of

(3.3) z30 + z31 = z42 + z43 + z64 ,

where thezi denote the canonical coordinates onP(4, 4, 3, 3, 2). Note that

P(4, 4, 3, 3, 2) is in fact a Gorenstein toric variety. Moreover, since (3.3)

is of Fermat type, by Corollary 3.20 the Berglund-Hübsch and the Batyrev

construction give the same mirror. �
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TABLE 1. Data set forK3 surfaces with non-

symplectic automorphism of order3 which are hy-

persurfaces in someP(w).

No. in Yonemura Charges Polynomial m a

2 ( 1
3
, 1
4
, 1
4
, 1
6
) x3 + y4 + z4 + w6 5 3

3 ( 1
3
, 1
3
, 1
6
, 1
6
) x3 + y3 + z6 + w6 1 2

4 ( 1
3
, 1
3
, 1
4
, 1
12

) x3 + y3 + z4 + w12 9 3

10 ( 1
2
, 1
3
, 1
12

, 1
12

) x2 + y3 + z12 + w12 10 0

11 ( 1
2
, 1
3
, 1
10

, 1
15

) x2 + y3 + z10 + w15 5 1

12 ( 1
2
, 1
3
, 1
9
, 1
18

) x2 + y3 + z9 + w18 10 2

13 ( 1
2
, 1
3
, 1
8
, 1
24

) x2 + y3 + z8 + w24 6 0

14 ( 1
2
, 1
3
, 1
7
, 1
42

) x2 + y3 + z7 + w42 6 0

15 ( 1
3
, 4
15

, 1
5
, 1
5
) x3 + y3z + y3w + z5 − w5 6 4

16 ( 1
3
, 7
24

, 1
4
, 1
8
) x3 + y3w + z4 + w8 4 2

20 ( 3
8
, 1
3
, 1
4
, 1
24

) x2z + x2w6 + y3 + z4 + w24 5 1

22 ( 2
5
, 1
3
, 1
5
, 1
15

) x2z + x2w3 + y3 + z5 − w15 5 1

24 ( 5
12

, 1
3
, 1
6
, 1
12

) x2z + x2w2 + y3 + z6 + w12 9 3

25 ( 4
9
, 1
3
, 1
9
, 1
9
) x2z + x2w + y3 + z9 − w9 10 2

28 ( 10
21

, 1
3
, 1
7
, 1
21

) x2w + y3 + z7 + w21 9 3

46 ( 1
2
, 1
3
, 1
11

, 5
66

) x2 + y3 + z11 + zw12 4 2

48 ( 1
2
, 1
3
, 5
48

, 1
16

) x2 + y3 + z6w + w16 5 1

49 ( 1
2
, 1
2
, 5
42

, 1
21

) x2 + y3 + z8w + w21 8 4

51 ( 1
2
, 1
3
, 5
36

, 1
36

) x2 + y3 + z7w + w36 9 3

54 ( 1
3
, 2
7
, 5
21

, 1
7
) x3 + y3w + yz3 + z3w2 − w7 5 3

59 ( 8
21

, 1
3
, 5
21

, 1
21

) x2z + x2w5y3 + z4w − w21 8 4

65 ( 14
33

, 1
3
, 5
33

, 1
11

) x2z + y3 + z6w + w11 7 5



Chapter 4
Toric degenerations and

Landau-Ginzburg models

Mirrors of Fano varieties are suggested to be so calledLandau-Ginzburg

modelsor just LG-models. For us such models are non-compact alge-

braic varieties with a holomorphic function, referred to assuperpotential.

See [ChOh], [FOOO1], [Gi], [HoVa] for some approaches and results on

this topic. One of the most classical result found in the literature is the so

calledHori-Vafa mirror, see [HoVa], of a toric variety. LetX := PΣ be an

n-dimensional smooth projective toric variety associated to acomplete fan

Σ in NR
∼= Rn and choose an ample toric divisorD :=

∑
ρ∈Σ(1) aρDρ.

Then the so calledHori-Vafa mirror [HoVa] to (X,D) is then-dimensional

torus(C∗)n together with the superpotential

(4.1) W : (C∗)n → C, W (x1, . . . , xn) =
∑

ρ∈Σ(1)

eaρxnρ ,

wherexi are coordinates on the torus,nρ denotes the ray generator ofρ and

we adopt the usual multi-index notation for the monomialxnρ . The choice

of D in this case is equivalent to the choice of a Kähler parameter for X,

which influences the complex parameters of the Landau-Ginzburg model as

stated. One often works with the anti-canonical polarizationD = −KX =∑
ρ∈Σ(1)Dρ, in which case the superpotentialW is up to the multiple by

63
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a scalar the sum of all monomials corresponding to toric prime divisors.

The goal of this chapter is to set up all foundations to describe Landau-

Ginzburg models within the Gross-Siebert program as laid outin [GrSi1]

and [GrSi3]. After a quick reminder on the basic notions of this program ,

we will construct LG-models via deformations of a non-compact union of

toric varieties and define the superpotential by extension from the central

fiber using the technique of broken lines, introduced by Gross in [Gr2].

4.1. Short introduction to the Gross-Siebert program

The Gross-Siebert program developed in [GrSi1], [GrSi2] and [GrSi3] is

a very general algebro-geometric approach to mirror symmetry consistent

with the SYZ philosophy [StYaZa]. One of its central notion is that of a

toric degeneration of Calabi-Yau pairs, see Definition 4.2 below. The cen-

tral fiber of such a degeneration has a tropical model from which one can

compute a mirror dual model by discrete methods. The mirror toric de-

generation is obtained from this model by an explicit algorithm using log

geometry. The program for instance reproduces the work of Batyrev and

Borisov [BaBo1, BaBo2] for Calabi-Yau complete intersections in toric va-

rieties, see [Gr1], and is expected to hold for a much larger class of Calabi-

Yau varieties.

4.1.1. Toric degenerations and tropical affine manifolds.We will

remind the reader of some of the central notions on the complex geometric

side of the Gross-Siebert program and then shortly recall how to obtain

affine geometric data from it. We roughly follow [GrSi3, §1], where more

fundamentals can be found. The reader without previous knowledge of the

program is referred to [GrSi4] for an introduction.

DEFINITION 4.1. ([GrSi3, Definition 1.6]) Atotally degenerate CY-pairis

a reduced varietyX with a reduced divisorD ⊂ X subject to the following

conditions. Letν : X̃ → X be the normalization andC ⊆ X̃ its conductor

locus. Then we have:

(1) X̃ is a disjoint union of toric varieties whose fans have convex

support, i.e.algebraically convextoric varieties.

(2) C is reduced and[C] + ν∗[D] is the sum of all toric prime

divisors.
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(3) ν|C : C → ν(C) is unramified and generically two-to-one.

(4) The following diagram is cartesian and co-cartesian

C //

ν

��

X̃

ν

��
ν(C) // X. �

So morally speakingX is obtained from a set of toric varieties by pairwise

identifying some of its toric prime divisors, whileD is the union of all

remaining such divisors. For the next definition recall the definition of a log

smooth morphismπ : (X, X;D) → (T, 0) as defined in [GrSi3, Definition

1.7].

DEFINITION 4.2. ([GrSi3, Definition 1.8]) LetT be the spectrum of a dis-

crete valuationk-algebra with closed point0 ∈ T . A toric degeneration

of CY-pairs overT is a flat morphismπ : X → T with a reduced divisor

D ⊆ X, such that the following properties hold:

(1) X is normal.

(2) The central fibreX := π−1(0) together withD = D ∩ X is a

totally degenerate CY-pair.

(3) Away from a closed subsetZ of relative codimension two, not

containing any toric stratum ofX, the mapπ : (X, X;D) →

(T, 0) is log smooth. �

Next, fix a latticeM ∼= Zn and denote itsintegral affine transformations

by

Aff (M) =M ⋊GL(M),

which naturally acts on polyhedra inMR. Moreover, letΞ ⊂ MR be an

m-dimensional lattice polytope. The lattice ofintegral vector fieldsalong

Ξ is denoted byΛΞ
∼= Zm. Recall that the category LPoly, see [GrSi3, p.

9], has lattice polyhedra as objects and the identity morphism and integral

affine isomorphisms onto faces as morphisms.

DEFINITION 4.3. For a categoryP with at most one morphismτ → σ for

all τ, σ ∈ P we call a functor

F : P → LPoly
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such that for allΞ ∈ F (P) and each faceΞ′ ⊂ Ξ we haveΞ′ ∈ F (P)

an integral polyhedral complex. �

To an integral polyhedral complexF we can associate a topological space

B as follows:

B =
∐

σ∈P

F (σ)/ ∼ .

Herep ∈ F (σ) andp′ ∈ F (σ′) are considered equivalent if there are

τ ∈ P, q ∈ F (τ) and morphismse : τ → σ, e′ : τ → σ′ such that

p = F (e)(q) andp′ = F (e′)(q). We will slightly abuse notation and

identify elements ofP with their images underF and call themcells of

P. Furthermore we will say thatP is an integral polyhedral complex, that

is is apolyhedral decompositionof B and refer to thek-dimensional cells

of P asP [k].

For the next definition recall that afan structureSτ : Uτ → Rk along a

cell τ ∈ P is essentially a continuous map that maps the interior ofτ to the

origin and the open starUτ of τ to a finite fanΣτ , see [GrSi3, Definition

1.1]. Two structuresSτ , S′
τ are said to beequivalentif they differ by an

integral affine transformation ofRk. If τ ⊂ σ, then we get a fan structure

alongσ induced fromSτ from the composition

Uσ // Uτ
Sτ // Rk // Rk/span(Sτ (int(σ))).

DEFINITION 4.4. ([GrSi3, Definition 1.2]) Letn ∈ N>0. Ann-dimensional

integral tropical manifold(B,P) consists of a countable polyhedral com-

plexP with associated topological spaceB and a fan structureSν : Uν →

Rn for all ν ∈ P [0] with the following properties.

(1) For eachν ∈ P [0] the support|Σν | is convex and has a non-

empty interior.

(2) If ν, ν′ ∈ P [0] are vertices of a cellτ ∈ P, then the fan

structures alongτ induced fromSν andSν′ are equivalent. �

Hence the manifoldB as above is ann-dimensional manifold with bound-

ary. Moreover, the interior of each cell and the fan structures at each vertex

give integral affine charts forB, meaning that there is a subset∆ ⊂ B

of codimension at least two which is a locally finite union of closed sub-

manifolds ofB called thediscriminant locussuch thatB0 := B \ ∆ is a
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manifold with integral affine transition functions. There are in general dif-

ferent possible choices of∆ and we will in each application explicitly state

what∆ is. However, we will always assume that none of the vertices ofB

are contained in∆ and for each maximal cellσ of P it holds∆∩σ ⊂ ∂σ.

Various important properties of(B,P), such aspositivity([GrSi1, Defini-

tion 1.54]), can be read off from the monodromy imposed onB by ∆, but

we will not go into details here.

Let (B,P) be an integral tropical manifold with discriminant locus∆.

Recall the definition ofintegral affine functionsand integral PL-functions

on open setsU ⊂ B. These naturally define sheavesAff(B,Z) and

PLP(B,Z) onB, see [GrSi1, Definition 1.43] and can be used to polarize

(B,P) as follows.

DEFINITION 4.5. ([GrSi1, Definition 1.47], [GrSi3, Remark 1.14]) A sec-

tionϕ of

PLP(B,Z)/Aff(B,Z)

is called apolarization if it defines a strictly convex linear function on the

fanΣτ for each cellτ ∈ P. Given a polarizationϕ, the triple(B,P, ϕ)

is called apolarized integral tropical manifold. �

Given a toric degeneration of CY-pairs(π : X → T,D) recall that there

are basically two possibilities to construct an integral tropical manifold from

it. The first is obtained fromthe fan picture, which is explicitly described

in [GrSi3, Example 1.10] in our context and based on [GrSi1, §4.1]. It will

be denoted by(B,P) throughout the text. In factP is thedual intersec-

tion complexof X. For the second construction, based onthe cone picture

presented in [GrSi3, Example 1.12] and [GrSi1, §4.2], we needto polarize

the central fiberX = π−1(O) by an ample line bundleL. This yields an

integral tropical manifold(B̌, P̌), whereP̌ is theintersection complexof

(X,L) and the polarizationL yields a polarizatioňϕ of (B,P).

We will explicitly discuss an example of a toric degenerationof P2 in cone

and fan picture in Section 4.2.2 below.

4.1.2. The discrete Legendre transform and scattering diagrams.

Next, we will very briefly discuss how toric degenerations and polarized

integral tropical manifolds with singularities are used to describe mirror
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symmetry in the Gross-Siebert program. As any attempt to discussdetails

would result in a text much longer than appropriate for this introduction, we

will focus on the main notions and concepts and refer the interested reader

to [GrSi3] for details of the construction.

Let (B,P, ϕ) be a polarized integral tropical manifold. Then by [GrSi1,

§1.4] there is a transformation called thediscrete Legendre transformwhich

we denote by(B̌, P̌, ϕ̌). This transformation is one of the key construc-

tions of the Gross-Siebert program. Assume(B̌, P̌, ϕ̌) is the polarized in-

tersection complex associated to apolarized toric degeneration of varieties

with effective anti-canonical bundleas in [GrSi1]. A central result of the

program is that(B̌, P̌, ϕ̌) is the dual intersection complex of a toric degen-

eration, if (B̌, P̌) is positive[GrSi3, Definition 1.54] andsimple[GrSi3,

Definition 1.60]. An important aspect of this result is that itis constructive:

It gives a canonical deformation of the central fibreX̌0 := X̌(B̌, P̌, ϕ̌)

constructed from(B̌, P̌, ϕ̌) in form of an algorithm [GrSi3, Section 3.].

More explicitly, the theorem givesk-th order deformations

X̌k → Spec k[t]/(tk+1)

from structuresSk [GrSi3, Definition 2.22], which consist of codimen-

sion one polyhedral subsets of̌B calledslabs[GrSi3, Definition 2.17] and

walls [GrSi3, Definition 2.20]. The central tool to constructSk+1 from

Sk is that ofscattering diagrams[GrSi3, Section 3.2]. AssumeSk is a

structure that is consistent to orderk [GrSi3, Definition 2.28] and letj be a

joint [GrSi3, Definition 2.27] ofSk. Let

D = (ri, fc)

be the associatedscattering diagram, for some vertexv ∈ σj andω ∈ P

with σj ⊂ ω, as explained in [GrSi3, Construction 3.4]. Recall that fora

joint j we denote the minimal cell ofP containing it byσj and for any ver-

tex v ∈ σj denote thenormal space of the jointj by Qv
j,R := Λv,R/Λj,R.

For an exponentm [GrSi3, Definition 2.2] propagating in directionm ∈

Λv \ Λj we wish to define the scattering of the monomialzm, which we

think of traveling along the ray−R≥0m into the origin ofQv
j,R. In a scat-

tering diagram monomials move along so calledtrajectories, which we will

define next. Compare this to the definition of rays in [GrSi3, Definition 3.3].
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DEFINITION 4.6. A trajectory in Qv
j,R is a triple(t,mt, at), wheremt is

a monomial on a maximal cellσ ∋ v with ±mt ∈ σ andm ∈ Px for any

x ∈ j \ ∆, t = ±R≥0m, andat ∈ k. The trajectory is calledincoming

if t = R≥0m, andoutgoingif if t = −R≥0m. By abuse of notation we

often suppressmt andat when referring to trajectories. �

The following proposition incorporating trajectories represents the neces-

sary generalization of the central existence and uniqueness result for scat-

tering diagrams shown in Proposition 3.9 of [GrSi3].

PROPOSITION4.7. [CaPuSi, Proposition 3.2].LetD be the scattering di-

agram defined bySk for j ∈ Joints(Sk), g : ω → σj andv ∈ ω. Let

(R≥0m0,m0, 1) be an incoming trajectory andσ ⊃ j a maximal cell with

m0 ∈ σ. Form ∈ Qv
j,R \ {0} denote by

θm : Rkg,σ′ → Rkg,σ

the ring isomorphism defined byD for a path connecting−m to −m0,

whereσ′ is a maximal cell with−m ∈ σ′.

Then there is a set of outgoing trajectoriesT such that

(4.2) zm0 =
∑

t∈T

θmt

(atz
mt )

holds inRkg,σ . Moreover,T is unique ifat 6= 0 for all t ∈ T and if

mt 6= mt′ whenevert 6= t′. �

4.1.3. Adjustments to the program for LG-models. In [GrSi3]

boundedness ofB was assumed at the following places: the consistency in

codimension zero [GrSi3, Section 3.4], in the homological argument [GrSi3,

Section 3.5] and in the normalization procedure [GrSi3, Section 3.6]. This

was related to the question of what the right conditions on mononmials com-

ing in from unbounded directions should be. With a better understanding

of unbounded cells via the Landau-Ginzburg setup it has become clear that

in fact there should be no such monomials. They may lead to obstructions

and are rather treated by the superpotential. The inductiveprocess itself

does not produce such monomials. Adding the condition of no monomi-

als incoming from unbounded directions in the definition of structures then
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makes the algorithm of [GrSi3] work also for unboundedB. Details will

appear in a revision of [CaPuSi].

4.2. Proper superpotentials and broken lines

4.2.1. The superpotential to order zero.This section is based on

joint work with Bernd Siebert, who gave the proofs for Propositions 4.8

and 4.9 below.

From this section on we work with the following convention. Let (π̌ :

X̌ → T, Ď) be a toric degeneration of Calabi-Yau pairs over the spectrum

T of a discrete valuationk-algebra, such that the generic fibre(X̌η , Ďη)

consists of a complete variety̌Xη and a reduced effective anti-canonical

divisor Ďη ⊂ X̌η . Assume that(π̌ : X̌ → T, Ď) is polarized and denote

by (B̌, P̌, ϕ̌) the polarized intersection complex. Then our starting pointto

compute Landau-Ginzburg models is the discrete Legendre dual(B,P, ϕ)

of (B̌, P̌, ϕ̌). So, morally speaking, we take a toric degeneration on the

“Fano side” with cone picture(B̌, P̌, ϕ̌) and fan picture(B,P, ϕ) and

construct the Landau-Ginzburg model from the latter.

Let (B,P, ϕ) as just described and letσ ∈ P be an unbounded maximal

cell. For each unbounded edgeω ⊂ σ there is a unique monomialzmω ∈

R0
idσ ,σ

with ordσ(mω) = 0 and−mω a primitive generator ofΛω ⊂ Λσ

pointing in the unbounded direction ofω. Denote byR(σ) the set of such

monomialsmω . Note that inR(σ) parallel unbounded edgesω, ω′ only

contribute one exponentmω = mω′ . Now at any point of∂σ the tangent

vector−mω points intoσ. Hence

W 0(σ) :=
∑

m∈R(σ)

zm

extends to a regular function on the componentXσ ⊂ X0 corresponding

to σ. For boundedσ defineW 0(σ) = 0. Since the restrictions of the

W 0(σ) to lower dimensional toric strata agree they define a functionW 0 ∈

O(X0). This is what we call thesuperpotential to order zero. A motivation

for this definition in terms of counts of holomorphic disks willcan be found

in [CaPuSi, Section 5].
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PROPOSITION4.8. [CaPuSi, Proposition 2.1].A necessary and sufficient

condition forW 0 to be proper is the following:

(4.3) ∀σ and unboundedω, ω
′
⊂ σ it holdsΛω = Λω′ , as subspaces ofΛσ .

�

Thus if one is to study LG-models via our degeneration approach, then to

obtain the full picture one has to impose Condition 4.3 in Proposition 4.8.

On the mirror side Condition 4.3 also has a natural interpretation. To state it,

recall the notion of toric degenerations of Calabi-Yau pairs(π̌ : X̌ → T, Ď)

from Definition 4.2.

PROPOSITION4.9. [CaPuSi, Proposition 2.2].W 0 is proper if and only if

Ď → T is a toric degeneration of Calabi-Yau varieties. �

This result motivates the following natural definition.

DEFINITION 4.10. A toric degeneration of Calabi-Yau pairs(π̌ : X̌ →

T, Ď) with Ď → T a toric degeneration of Calabi-Yau varieties is called

irreducible. �

4.2.2. A first example: P2. The standard method to construct the

LG-mirror for P2 is to start from the momentum polytope

Ξ = conv{(−1,−1), (2,−1), (−1, 2)}

of P2 with its anti-canonical polarization. The rays of the corresponding

normal fanΣ∗
Ξ associated to this polytope are generated by

(1, 0), (0, 1), (−1,−1)

. Calling the monomials corresponding to the first two pointsx and y,

respectively, we obtain the usual non-proper Landau-Ginzburg model on

the big torus(Gm(k))2 by the functionx+ y + 1
xy

.

To obtain a proper superpotential instead, we need to achieve the dual of

4.3, that is, make the boundary of the momentum polytope flat in affine

coordinates. To do this one has to trade the corners with singular points

in the interior. The most simple choice is a decompositionP̌ of B̌ = Ξ

into three triangles with three singular points with simple monodromy, that

is, conjugate to
(
1 0
1 1

)
, as depicted in Figure 4.1 in the upper left picture.

A minimal choice of thePL-function ϕ̌ with integral slopes takes values
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(2,−1)

(−1, 2)

(−1,−1)

(0, 0)

σ2

σ0

σ1

v3 = (1, 0)

v2 = (−1,−1)

v1 = (0, 1)

σ3

v3 = (4, 1)

v1 = (5, 2)v2 = (3, 3)

v2 = (0, 0)

FIGURE 4.1. An intersection complex(B̌, P̌) for

P2 with straight boundary and its Legendre dual

(B,ϕ) for the minimal polarization, with a chart

on the complement of the shaded region and a chart

showing the three parallel unbounded edges.

0 at the origin and1 on ∂B. For this choice ofϕ̌ the Legendre dual of

(B̌, P̌, ϕ̌) is shown in Figure 4.1 in the upper right picture. Note that the

unbounded edges are indeed parallel, so each unbounded edgecomes with

copies of the other two unbounded edges parallel at integraldistance1, as

illustrated in the picture on the bottom in Figure 4.1.
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ρ1,3

(1, 2)

II

I

(1 + x)

(1 + y)

x

yσ1

σ3

σ2

τ

z

(−1,−1)

ρ2,3
(2, 1)

FIGURE 4.2. The lower left chart for(B,P, ϕ) as

in Figure 4.1 showing all the identifications needed

to compute the fiber product.

Next, consider the chart atv2 of the tropical affine manifold(B,P), as

shown in Figure 4.2. The computation we carry out here can be done in the

same manner for the other two charts atv1 andv3, despite the fact that the

situation there is slightly less symmetric. We refer the reader to in [GrSi4,

Section 2.3] for a first example of the kind of computation we carry out

here. We use the notation as indicated in Figure 4.2. Thus we have three

coordinatesx, y, z pointing in directions(−1,−1), (1, 2), (2, 1) as well as

three maximal cellsσ1, σ2 andσ3. Crossing the slabρ1,2 between the first

two we pick up a(1+x)-factor due to monodromy. We refer to this as chart

II and analogously we define chart I by crossing the slabρ2,3 betweenσ3
andσ2. More precisely, if we denote byxi, yi andzi the local coordinates

onσi we obtain the following computations for charts I and II:

x3 7→ x1 x3 7→ (1 + y)3x2

y3 7→ (1 + x)3y1 y3 7→ y2

z3 7→ (1 + x)−1z1 z3 7→ (1 + y)−1z2

The fiber product we are interested in is

Rkσ1 ×(
Rk

ρ1,3,σ3

)

1+x

Rkσ3 ×(
Rk

ρ2,3,σ3

)

1+y

Rkσ2 ,

which we obtain by gluing along the morphisms in the following diagram.
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Rkσ1

��

Rkσ3

��

// Rkσ3oo

��

Rkσ2

��
Rkρ1,3,σ1

// Rkρ1,3,σ3oo

&&◆◆
◆◆

◆◆
Rkρ2,3,σ3

xx♣♣♣
♣♣
♣

// Rkρ2,3,σ2oo

Rkτ,ρ1,3,ρ2,3

Glueing coordinate functions as indicated by the charts I and II above gives

rise to the following coordinates on the fiber product:

X = (x1, x3, (1 + y2)
3x2)

Y = ((1 + x1)
3y1, y3, y2)

Z = ((1 + y1)z1, (1 + x3)(1 + y3)z3, (1 + x2)z2).

It can be checked that we obtain exactly one relation for them,namely

XY Z3 = (1 +X)3 · (1 + Y )3 · t3.

Now let us describe the central fibreX0 by means of glueing toric strata and

compute the superpotentialW 0
P2

. The polyhedral decomposition has one

bounded maximal cellσ3 and three unbounded maximal cellsσ0, σ1, σ2.

The bounded cellσ3 is the momentum polytope of a toric quotient ofP2,

as the three ray generators(−1,−1),(2,−1) and(−1, 2) of its normal fan

sum up to zero and span a sublattice of index six inZ2. Denote this quo-

tient byXσ3 . Each unbounded cell is affine isomorphic to[0, 1] × R≥0,

the momentum polytope ofP1 × A1 =: Xσi , i = 0, 1, 2. These glue

together by torically identifying pairs ofP1’s andA1’s as prescribed by the

polyhedral decomposition to yield the central fibreX0. ClearlyW 0
P2

van-

ishes identically on the compact componentXσ3 . Each of the unbounded

components has two parallel unbounded edges, leading to the pull-back to

P1 × A1 of the toric coordinate function ofA1, sayzi for the i-th copy.

ThusW 0
P2

|Xσi
= zi for i = 0, 1, 2. These functions are readily checked

to be compatible with the toric gluings. So we see thatW 0
P2

is in fact a

compactification of the non-proper Hori-Vafa mirrorx+ y + 1
xy

.
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REMARK 4.11. An interesting feature of the degeneration point of view

is that the mirror construction respects the finer data related to the degen-

eration such as the monodromy representation of the affine structure. In

particular, this poses a question of uniqueness of the Landau-Ginzburg mir-

ror. For the anti-canonical polarization such as the chosenone in the case

of P2, the tropical data(B̌, P̌) is essentially unique, see Theorem 5.19 for

a precise statement. For larger polarizations, thus enlarging B̌, there are

certainly many more possibilities. For example, as an affine manifold with

singularities one can perturb the location of the singular points transversely

to the invariant directions over the rational numbers and choose an adapted

integral polyhedral decomposition after appropriate rescaling. It is not clear

to us if all (B̌, P̌) leading toP2 can be obtained by this procedure. �

4.2.3. Broken lines.The easiest way to define the superpotential in

full generality is by the method of broken lines. Broken lineshaven been

introduced by Mark Gross fordimB = 2 in his work on mirror symmetry

for P2 [Gr2]. We assume we are given a locally finite scattering diagram

Sk for a polarized integral tropical manifold(B,P, ϕ) that is consistent to

orderk. The notion of broken lines is based on the transport of monomials

by changing chambers ofSk. Recall from [GrSi3], Definition 2.22, that a

chamber is the closure of a connected component ofB \ |Sk|. This section

is based on joint work with Bernd Siebert.

DEFINITION 4.12. Letu, u′ be neighbouring chambers ofSk, that is,

dim(u ∩ u′) = n − 1. Let azm be a monomial defined at all points of

u∩u′ and assume without loss of generality thatm points fromu′ to u. Let

τ := σu ∩ σu′ and

θ : Rkidτ ,σu
→ Rkidτ ,σu′

be the gluing isomorphism changing chambers. Then if

(4.4) θ(azm) =
∑

i

aiz
mi

we call any summandaizmi with ordσ
u′ (mi) ≤ k a result of transport

of azm from u to u′. �
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Note that since the change of chamber isomorphisms commute with chang-

ing strata, the monomialsaizmi in Definition 4.12 are defined at all points

of u ∩ u′.

DEFINITION 4.13. ([Gr2, Definition 4.9].) Abroken linefor Sk is a proper

continuous map

β : (−∞, 0] → B

with image disjoint from any joints ofSk, along with a sequence

−∞ = t0 < t1 < . . . < tr−1 ≤ tr = 0

for somer ≥ 0 with β(ti) ∈ |Sk|, and for i = 1, . . . , r monomials

aiz
mi defined at all points ofβ([ti−1, ti]) (for i = 1, β((−∞, t1])),

subject to the following conditions.

(1) β|(ti−1,ti)
is a non-constant affine map with image disjoint

from |Sk|, hence contained in the interior of a unique chamber

ui of Sk, andβ′(t) = −mi for all t ∈ (ti−1, ti). Moreover,

if tr = tr−1 thenur 6= ur−1.

(2) a1 = 1 and there exists a (necessarily unbounded)ω ∈ P [1]

with m1 ∈ Λω primitive andordω(m1) = 0.

(3) For eachi = 1, . . . , r−1 the monomialai+1z
mi+1 is a result

of transport ofaizmi from ui to ui+1 (Definition 4.12).

The typeof β is the tuple of allui andmi. By abuse of notation we sup-

press the datati, ai,mi when talking about broken lines, but introduce the

notation

aβ := ar, mβ := mr.

Forp ∈ B the set of broken linesβ with β(0) = p is denotedB(p). �

For a broken lineβ the endpointβ(0) will in applications often be referred

to as theroot vertexandmβ is called theroot tangent vector.

REMARK 4.14. 1) If all unbounded edges are parallel 4.3 then the condi-

tionm1 ∈ Λω in (2) follows from (1).

2) A broken lineβ is determined uniquely by specifying its endpointβ(0)

and its type. In fact, the coefficientsai are determine inductively from

a1 = 1 by Equation (4.4). �
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According to Remark 4.14,(2) the mapβ 7→ β(0) identifies the space of

broken lines of a fixed type with a subset ofur . This subset is the interior

of a polyhedron:

PROPOSITION4.15. [CaPuSi, Proposition 4.4].For each type(ui,mi) of

broken lines there is an integral, closed, convex polyhedronΞ, of dimension

n if non-empty, and an affine immersion

Φ : Ξ −→ ur,

so thatΦ
(
Int Ξ

)
is the set of endpointsβ(0) of broken linesβ of the given

type.
�

REMARK 4.16. A pointp ∈ Φ(∂Ξ) still has a meaning as an endpoint of a

piecewise affine mapβ : (−∞, 0] → B together with datati andaizmi ,

defining adegenerate broken line. For this not to be a broken lineim(β)

has to intersect a joint. By convexity of the chambers this comprises the

case that there existst ∈ (−∞, 0] \ {t0, . . . , tr} with β(t) ∈ |Sk|, or

even thatβ maps a whole interval to|Sk|. Note also the possibility that

ti−1 = ti for somei ∈ {2, . . . , r − 1}, but thenβ(ti−1) = β(ti) is

contained in a joint. All other conditions in the definition of broken lines

are closed.

The set of endpointsβ(0) of degenerate broken lines of a given type is the

(n− 1)-dimensional polyhedral subsetΦ(∂Ξ) ⊂ u. The set of degenerate

broken linesnot transverseto each joint ofSk is polyhedral of smaller

dimension. �

Any finite structureSk involves only finitely many slabs and walls, and

each polynomial coming with each slab or wall carries only finitely many

monomials. Hence broken lines for|Sk| exist only for finitely many types.

The following definition is therefore meaningful.

DEFINITION 4.17. A pointp ∈ B is calledgeneralfor the given structure

Sk if it is not contained inΦ(∂Ξ), for anyΦ as in Proposition 4.15. �

4.2.4. The superpotential to orderk. This section based on joint

work with Bernd Siebert. Lemmata 4.19 and 4.20 are his achievements and

can be found in [CaPuSi, Section 4]. Recall from [GrSi3, §2.6] that the
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structureSk defines ak-th order deformation ofX0 by gluing the sheaf

of rings defined byRkg,σu , with g : ω → τ andu a chamber ofSk with

ω ∩ u 6= ∅, τ ⊂ σu.

DEFINITION 4.18. Letp ∈ u be general. Thesuperpotential up to orderk

is defined locally as an element ofRkg,σu by

(4.5) W k
g,u(p) :=

∑

β∈B(p)

aβz
mβ . �

The existence of a canonical extensionW k of W 0 toXk follows once we

prove the following two lemmata.

LEMMA 4.19. [CaPuSi, Lemma 4.7].Let u be a chamber ofSk andg :

ω → τ with ω ∩ u 6= ∅, τ ⊂ σu. ThenW k
g,u(p) is independent of the

choice ofp ∈ u. �

By Lemma 4.19 we are entitled to defineW k
g,u :=W k

g,u(p) for any general

choice ofp ∈ Int u. For the next lemma recall the basic gluing morphisms

and the notions of changing chambers and strata from [GrSi3, Construction

2.24].

LEMMA 4.20. [CaPuSi, Lemma 4.9].TheW k
g,u are compatible with chang-

ing strata and changing chambers. �

In view of these lemmata we can therefore study the superpotential W k ∈

OXk
globally onXk. Moreover, taking the direct limitX = limk→∞Xk

we also get a limit for the superpotential up to orderk, namelyW :=

limk→∞W k ∈ O(X).We will refer to the pair(π : X → Spec k[[t]],W )

asLandau-Ginzburg modeland toW as thefull superpotential. Large parts

of Chapter5 are devoted to computing this superpotential for various toric

degenerations.



Chapter 5
Applications to Landau-Ginzburg mirror

symmetry

By using the technique of broken lines on affine tropical manifolds, we es-

tablished a very general framework for Landau-Ginzburg mirror symmetry.

This chapter is devoted to the task of constructing tropicalmanifolds within

this framework and computing superpotentials in various contexts explic-

itly.

5.1. Reflexive polytopes and proper LG-models

The objective of this section is to show how to construct proper superpoten-

tials for tropical affine bases constructed from a class of reflexive polytopes.

In Proposition 4.9 we have seen that properness of the superpotentialW 0

associated to a toric degeneration of Calabi-Yau pairs(π̌ : X̌ → T, Ď ⊂ X̌)

is equivalent tǒD → T being a toric degeneration of Calabi-Yau varieties.

Recall that in this case the generic fibre ofĎ → T is irreducible. The inter-

section complex̌B of suchirreducible toric degenerations is characterized

by the property that its boundary∂B̌ is a smooth affine manifold. Equiva-

lently, by Proposition 4.8, all unbounded one-dimensional strata of the dual

intersection complexB have to be parallel.

79
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Starting from tropical data(B,P, ϕ) in this situation, the key tool to com-

pute superpotentials in finitely many steps is the following lemma, sug-

gested by Mark Gross. It greatly reduces the number of broken lines to

be considered in situations fulfilling 4.3 and with a finite structure on the

bounded cells.

LEMMA 5.1. Let S be a structure for a non-compact, polarized tropical

manifold(B,P, ϕ) that is consistent to all orders. We assume that there is

a subdivisionP′ of P with vertices disjoint from∆ and with the following

properties.

(1) Eachσ ∈ P′ is affine isomorphic toρ×R≥0 for some bounded

faceρ ⊂ σ.

(2) B \ Int(|P′|) is compact and locally convex at the vertices,

which makes sense in an affine chart.

(3) If m is an exponent of a monomial of a wall (or slab) intersecting

someσ ∈ P′, σ = ρ+R≥0mσ , then−m ∈ Λρ+R>0 ·mσ

(or −m ∈ Λρ + R≥0 ·mσ for slabs).

Then the first break pointt1 of a broken lineβ with im(β) 6⊂ |P′| can

only happen after leavingInt |P′|, that is,

t1 ≥ inf
{
t ∈ (−∞, 0]

∣∣β(t) 6∈ |P′|
}
.

PROOF. Assumeβ(t1) ∈ σ \ ρ for someσ = ρ + R≥0mσ ∈

P′. Thenβ|(−∞,t1] is an affine map with derivative−mσ , andβ(t1)

lies on a wall. By the assumption on exponents of walls onσ, the result of

nontrivial scattering at timet1 only leads to exponentsm2 with −m2 ∈

Λρ+R≥0mσ , the outward pointing half-space. In particular, the next break

point can not lie onρ. Going by induction one sees that any further break

point inσ preserves the condition thatβ′ does not point inward. Moreover,

by the convexity assumption, this condition is also preserved when moving

to a neighbouring cell inP′. Thusim(β) ⊂ |P′|. �

5.1.1. Proper superpotentials for toric Fano manifolds.Let Θ ⊂

NR be a full-dimensional reflexive polytope with unique interior lattice

point v0. If the fanΣ := ΣΘ of cones over faces ofΘ defines a smooth
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toric varietyPΣ, we know that all integral boundary points ofΘ are ver-

tices. A necessary and sufficient condition forPΣ to be smooth in this case

is that all cones ofΣ are elementary.

We have the following construction of tropical data(B,P, ϕ) fromΘ, that

fulfills the conditions of Lemma 5.1 and therefore allows a veryexplicit de-

scription of the superpotential, as we will show right afterthe construction.

CONSTRUCTION5.2. LetΘ ⊂ NR
∼= Rn be ann-dimensional reflexive

polytope such thatPΣΘ
is a toric Fano manifold. Denote by̌B := Ξ the

polar polytope ofΘ and byv̌0 ∈ B̌ the unique interior integral point. De-

fine the polyhedral decompositioňP of B̌ with maximal cells the convex

hulls of the facets ofΞ and ofv̌0. The affine chart aťv0 is the one defined

by the affine structure ofΞ. For the other charts note that for any vertexv̌

of Ξ, the integral tangent vectors of all adjacent facets andv̌ generate the

latticeM . This follows from reflexivity ofΞ, as all facets have integral

distance one from the origiňv0, so if the above span would not beM , Ξ

would have to have interior lattice points other thanv̌0. Denote the set of

integral tangent vectors of all facets adjacent tov̌ by {v̌1, . . . v̌l}. Then the

images of thěvi for i = 1, . . . , l under the projectionψv : M → M/〈v̌〉

generateM/〈v̌〉. So we can define the affine structure atv̌ by the unique

chart induced byψv , that is compatible with the affine structure of the ad-

jacent maximal cells and making∂B̌ totally geodesic. By what we just

said, the transition functions between charts are indeed integral affine, that

is in Aff(M). Moreover,(B̌, P̌) has a natural polarization of minimal

degree by defininǧϕ(v̌0) = 0 andϕ̌(v̌) = 1 for any other vertex̌v, which

is well-defined by reflexivity ofΞ. We have not yet specified the discrim-

inant locus, as this is easier discribed for the discrete Legendre transform

(B,P, ϕ).

By construction(B,P, ϕ) has a unique bounded cellσ0, isomorphic to

Θ. Moreover, for eachm-dimensional proper faceτ of Θ, there is an un-

bounded cell ofP of dimensionm+1 that we denote bỹτ . Up to addition

of a global affine function the dual polarizing functioňϕ is the unique piece-

wise affine function changing slope by one along the unbounded facets.

Note that in the present casěϕ is single-valued. The discriminant locus∆

ofB, which fixes∆̌ onB̌, is chosen as follows. Letσ be a facet ofΘ. Then

the discriminant locus onσ is defined by the first barycentric subdivision of
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σ. Furthermore on each unbounded(n − 1)-cell τ̃ of P, corresponding

to a codimension two face ofΘ, declare the discriminant locus also by the

first barycentric subdivision. To see why this choice of(B,P) and∆ is

indeedsimple, note that by assumption onΘ all facetsσ of Θ and hence

all unbounded facets̃τ areelementarysimplices. In [Gr1] Gross considers

toric degenerations associated to reflexive polytopes in a similar fashion. In

fact, if we restrict our(B,P) to the bounded part, that is to the cells cor-

responding to faces ofΘ, this is exactly the situation considered in [Gr1,

Definition 2.10], in particular with the same discriminant locus. Denote this

restriction to the bounded part by(BΘ,PΘ). In [Gr1, Theorem 3.16] it

is shown that(BΘ,PΘ) is simple. The MPCP resolution chosen in this

theorem istrivial here, asPΣΘ
is smooth by assumption. Moreover, by

applying the argument presented in the proof of [Gr1, Theorem3.16] to the

unbounded part of(B,P), we get simplicity for the whole affine manifold

with singularities(B,P). �

PROPOSITION5.3. LetΘ ⊂ NR be a reflexive polytope, such thatPΣΘ
is

smooth. Denote by(B,P, ϕ) the affine base constructed fromΘ by means

of Construction 5.2 with unique maximal bounded cellσ0 ⊂ B. Then there

is neighbourhoodU of the interior vertexv0 ∈ σ0 such that for anyp ∈ U

there is a canonical bijection between broken lines with endpointp and rays

ofΣ.

PROOF. For each vertexv of Θ denote byUv the connected compo-

nent ofΘ \ ∆ and define then-dimensional set̃Uv := Uv + R · (−v).

The common intersection of̃Uv for all verticesv of Θ is non-empty, as it

contains the originv0. So we can choose ann-dimensional open subsetU

of this intersection. By construction for any pointp ∈ U the translation by

p of each rayρ ∈ Σ(1) can be considered as the image of a unique broken

line βρ ending inp. Running the reconstruction algorithm from [GrSi3] we

get a structureS consistent to all orders and there is in fact no scattering

within the interior ofσ0. Thus we can apply Lemma 5.1 in this situation,

asB has parallel unbounded one-cells and by construction and the bounded

cell σ0 is convex. Moreover, observe that if a broken line has root vertex

p, root tangent directionν ∈ ∂Θ ∩ N and scatters non-trivially at∂σ0, it

would have to scatter at least one more time. However, this is not possible

by Lemma 5.1, so we are done. �
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This proposition implies the following interesting corollary, which says

that the Landau-Ginzburg superpotentialW we get from applying Con-

struction 5.2 toΘ agrees on an open part with the Hori-Vafa mirror of

(PΣΘ
,−KPΣΘ

).

THEOREM5.4. Let(X → Spec k[[t]],W ) be the Landau-Ginzburg model

associated to the base(B,P, ϕ) obtained from a full-dimensional reflex-

ive polytopeΘ ⊂ NR
∼= Rn by Construction 5.2. Moreover, denote

by ΣΘ the fan of cones over faces ofΘ. Then there is an open subset

U ∼= Spec k[[t]][x1, . . . , xn] ⊂ X such that

W |U =
( ∑

ρ∈ΣΘ(1)

xnρ

)
· t,

wherexnρ denotes the usual multi-index notation. SoW |U is the usual

Hori-Vafa monomial sum of the anti-canonically polarized toric variety

PΣΘ
timest. �

REMARK 5.5. 1) Note that for a polarized toric degeneration(π̌ : X̌ →

T, Ď) with intersection complex(B̌, P̌, ϕ̌) Legendre dual to(B,P, ϕ)

as in Corollary 5.4 one would expect the generic fibreX̌η to be isomorphic

toPΣΘ
, asW is a partial compactification of the Hori-Vafa mirror ofPΣΘ

.

We do not know how to prove this statement in general, but we will check

it for dimB = 2 in Section 5.2.

2) The fact that we recover the Hori-Vafa mirror for the anti-canonical po-

larization comes from our specific choice ofϕ. For other polarizationsϕ′

the terms in the superpotential receive different powers oft, just as in the

Hori-Vafa proposal. �

EXAMPLE 5.6. Starting fromP3 with its anti-canonical polarization, we

obtain a model with irreducible affine base by “trading corners and edges

for singularities of the affine structure”, as described in the above Construc-

tion 5.2. More precisely, subdivide the anti-canonical polytopeB̌ := Ξ :=

Ξ−K
P3

by introducing six two-faces spanned by the origin and two dis-

tinct corners ofΞ. Then choose the discriminant locus∆̌ to be defined by

the first barycentric subdivision of these six affine triangles, as shown in

Figure 5.1. By settinǧϕ(v̌) = 1 for every vertex̌v of Ξ we arrive at the

tropical affine manifold(B̌, P̌, ϕ̌) as depicted.
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∆

(−1,−1,−1)

(−1, 2,−1)

(−1,−1, 2)

(2,−1,−1)

(−1,−1,−1)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Θ

(B̌, P̌, ϕ̌)(B, P, ϕ)

Ξ

FIGURE 5.1. The affine base of an irreducible toric

degeneration ofP3 and its Legendre dual.

It can be checked that the discrete Legendre transform

(B,P, ϕ)

of (B̌, P̌, ϕ̌) is the one obtained from Construction 5.2, which is drawn in

Figure 5.1 on the left.(B,P, ϕ) has four parallel unbounded rays and a

discriminant locus∆ with six unbounded rays. If these rays were bounded,

∆ would be homeomorphic tǒ∆. Denote the bounded three-cell ofP by

σ0. Every bounded two-face is subdivided into three chambers by∆ and at

every vertexv of B three such chambers meet.

Now choose a general rootp ∈ U ⊂ σ0, whereU is the open subset from

the proof of Proposition 5.3. Asp is general, it is an element of the interior

of a chamberu. With the convention that the monomials corresponding to

the vectors(1, 0, 0), (0, 1, 0) and(0, 0, 1) are denoted byx, y andz, we

claim that

W 1
P3

(p) =
(
x+ y + z +

1

xyz

)
· t.

We will check this result by hand, thereby confirming Corollary 5.4 for this

example. To this end we only consider broken linesβ that pass through one

of the three chambers adjacent to(0, 0, 1), that is, broken lines that come

from infinity in direction(0, 0,−1). The other cases work analogously. De-

note the root tangent vector ofβ bym. Then eitherm = (0, 0, 1) andβ is a
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straight line or it is broken at the boundary ofσ0 such that the result of scat-

tering ofm is (0, 0, 1). By symmetry we may assume thatβ hits the cham-

beru′ on the face spanned by(0, 0, 1), (0, 1, 0) and(−1,−1,−1). The

monodromy invariant plane foru′ is spanned by the vectors(0,−1, 1) and

(1, 1, 2). Thereforem has to be either(0, 1, 0) or (−1,−1,−1). Thus, the

set of root tangent vectors of broken lines ending inp is contained in the set

of vertices ofB̌. Moreover, it is easy to see that indeed every vertex occurs

exactly once, by following a ray starting atp in directionm and breaking at

a wall in∂σ0 if necessary. �

5.1.2. Superpotentials for Fano varieties from admissibledecom-

positions. In the last section we have seen how to construct proper super-

potentials for smooth Fano toric varieties associated to a reflexive polytope

Θ ⊂ NQ. If Θ is three-dimensional andfully decomposable, a property

we will define next, there is a procedure that associates a Laurent poly-

nomialW to Θ that is the Landau-Ginzburg model of a not necessarily

toric Fano variety in most cases. This method to find Fano varieties and

their Landau-Ginzburg potentials is pursued by Tom Coates,Alessio Corti,

Sergey Galkin, Vasily Golyshev and Al Kasprzyk in an ongoingproject and

all the relevant data can be found online, see [CoCo]. Their method is based

on the combinatorics ofΘ, but has no underpinning algebro-geometric con-

struction. The goal of this section is to make a first step towards under-

standing the approach of [CoCo] within the Gross-Siebert programm. All

definitions made in this section are inspired by and can be recovered from

the data in [CoCo].

DEFINITION 5.7. LetΘ ⊂ NR be a three-dimensional reflexive polytope

andτ ⊂ Θ a facet. Then

(1) τ is calledadmissibleif it has no interior lattice points.

(2) τ is calledirreducible if there is no non-trivial Minkowski de-

composition ofτ .

(3) Θ is calledfully decomposableif every facet of it has at least

one Minkowski-decomposition into admissible and irreducible

polytopes. �
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LEMMA 5.8. Letτ be an admissible and irreducible two-dimensional poly-

tope. Thenτ is a triangle with at most one side containing more than two

integral points.

PROOF. Let τ be admissible andτ be the triangle spanned by(0, 0),

(a, 0) and(0, b) for natural numbersa, b ∈ N. Without loss of generality

we can assume that there is a vertexv0 of τ with adjacent edgesρ1 and

ρ2 in direction(1, 0) and(p, q), p andq coprime, such thatρ1 has at least

one interior integral point. Consider the matrixψ :=
(

1 p
0 q

)
and assume

thata andb are the largest integers such that the image ofτ underψ is still

contained inτ . If a > 2 andb ≥ 2 or vice versa, the image of the interior

point (1, 1) of τ will also be an interior point ofτ . Sinceτ is admissible,

that is not possible. In case thata = b = 2 andψ(τ) ⊂ τ , we see that

ψ ((1, 1)) is an interior point ifτ has at least four vertices, asτ is convex.

So fora = b = 2 τ has to be a triangle, in which caseψ(τ) = τ . So in

this caseτ can be Minkowski decomposed into two irreducible admissible

triangles spanned by(0, 0), (1, 0) and(p, q). Note that even ifa = b = 1

andτ has at least five vertices, we see thatψ ((1, 1)) is always an interior

integral point ofτ .

Next, assumea ≥ 2 andb = 1. If τ is a triangle, it is automatically ad-

missible and irreducible in this case. Ifτ is a quadrangle it follows that

the side not adjacent toρ1 is in fact parallel toρ1, as otherwiseψ ((1, 1))

would again be an interior point. In this caseτ can be Minkowski decom-

posed into the segmenta′ · (1, 0) and an admissible and irreducible triangle

spanned by(0, 0), (a′′, 0) and(p, q) such thata = a′+a′′, which finishes

the proof. �

Given a three-dimensional fully decomposable polytopeΘ, we can thus

choosea Minkowski-decompositionMΘ of its facets, that is for every facet

τ there is a Minkowski-sum

MΘ(τ) =
s⊕

i=1

τi.

where eachτi is irreducible and admissible. We will refer to such decom-

positions asfull Minkowski-decompositionsin what follows.
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DEFINITION 5.9. Letτ be an admissible and irreducible two-dimensional

polytope. For each integral pointν ∈ τ we define aweight functionlτ (ν)

as follows. Ifτ is thek-th integral point on a one-dimensional stratum of

lengthn of τ , then

lτ (ν) =
(n
k

)
.

This clearly does not depend on the endpoint ofτ we choose to determine

the position ofν. �

Using the weights of Minkowski-pieces we can now associate amultiplicity

to eachν ∈ (Θ \ {0}) ∩ N which will play the role of coefficients of the

monomialzν in the superpotential we will define below in Definition 5.12.

DEFINITION 5.10. LetΘ ⊂ NQ be a fully decomposable three-dimensional

polytope and choose a full Minkowski-decompositionMΘ. Define the

multiplicity ofMΘ

mult : (Θ \ {0}) ∩N → N

as follows. Choose a facetτ such thatν ∈ τ and consider its full decom-

positionMΘ(τ) =
⊕s
i=1 τi, then

multMΘ
(ν) :=

∑

ν=ν1+...+νs

s∑

i=1

lτi (νi),

whereνi ∈ τi ∩N . �

REMARK 5.11. The definition of the multiplicity involves the choice of a

facet that containsν and we have to check that this is well-defined. The mul-

tiplicity of a lattice point is just the weighted sum of all possible Minkowski-

representations of the point. Hence, ifν is a vertex ofΘ, thenmult(ν) =

1. Moreover, integral points on one-dimensional faces get binomial coef-

ficients as in Definition 5.9 as multiplicities, even if they are Minkowski

decomposed. The multiplicity of interior integral points of facets depends

on the Minkowski-decomposition. Therefore we see that the definition does

not depend on the facetτ we choose. �

DEFINITION 5.12. LetΘ be a fully decomposable three-dimensional poly-

tope with choice of full decompositionMΘ. Define theLandau-Ginzburg

potential associated toMΘ by

W (MΘ) =
∑

ν∈(Θ\{0})∩N

multMΘ
(ν)zν
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FIGURE 5.2. The two Minkowski-decompositions

of the facetσ of Θ

and setx := z(1,0,0), y := z(0,1,0) andz := z(0,0,1) to expressW (MΘ)

as Laurent polynomial inx, y andz. �

EXAMPLE 5.13. LetΘ be the polytope spanned by

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−2, 0,−1), (−3,−1,−1), (−1,−1, 1).

Θ has a facetσ, which is the pentagon spanned by all vertices but the first.

Clearlyσ has an additional integral boundary point at(−2,−1, 0) and an

integral interior point at(−1, 0, 0). All other facets ofΘ are irreducible

and admissible triangles which connect the boundary ofσ with the vertex

(1, 0, 0). It is clear that there are exactly two full decompositions ofΘ, that

is two Minkowski-decompositions ofσ. Both decompositions are depicted

in Figure 5.2. Thus we obtain two different Laurent polynomials, namely

W (M1
Θ) = x+ y + z + x−2z−1 + x−3y−1z−1 + x−1y−1z

+ 2 · x−2y−1 + 2 · x−1

W (M2
Θ) = x+ y + z + x−2z−1 + x−3y−1z−1 + x−1y−1z

+ 2 · x−2y−1 + 3 · x−1.

�

The crucial point in defining these potentialsW := W (MΘ) is the fol-

lowing. To eachW we can associate theJacobian ring

Jac(W ) := C[x, y, z]/
(
∂xW,∂yW,∂zW

)

and we will always consider this ring as aC-vector space. Then there is the

following construction due to Coates, Corti et al.
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FIGURE 5.3. Different Minkowski-decompositions

induce different decompositions of∆ on the penta-

gonσ.

CONSTRUCTION5.14. LetΘ be a fully decomposable three-dimensional

reflexive polytope,MΘ a full decomposition andW (MΘ) its associated

Landau-Ginzburg potential. Then in many cases there is a Fanomanifold

X, polarized by−KX , such that

(5.1) Jac
(
W (MΘ)

)
∼= QH∗(X,C),

whereQH∗(X,C) denotes small quantum cohomology. �

REMARK 5.15. 1) The precise procedure can be found in [CoCo], where

the authors compute the Jacobian ringJac(W (MΘ)) for all possible pairs

(Θ,MΘ). AsQH∗(X,C) for a Fano varietyX determinesX up to iso-

morphism and the list of all possibleQH∗(X,C) in dimension three is

known, it suffices to compare to this list to getX, see for instance [IsPr].

More often than not this yields a FanoX. However, there are examples for

which the authors can not identify a Fano, see for instance polytope number

14 in [CoCo].

2) This construction justifies the name Landau-Ginzburg potential, since

(5.1) is in fact a mirror symmetry theorem forX, if it exists. Note, however,

that the construction is not of a geometric nature, we only know X from

comparing the Jacobian ring to quantum cohomology. �

Next, we will verify in an example that Construction 5.14 may infact be

geometrically described within the LG-framework in the Gross-Siebert we

introduced in the last chapter.
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EXAMPLE 5.16. We will continue with Example 5.13 and concentrate on

the pentagonσ, on which the discriminant locus∆ is described by five seg-

ments meeting at the barycentre ofσ, as shown in the middle of Figure 5.3.

The two Minkowski-decompositionsM1
Θ andM2

Θ from Example 5.13

correspond to different decompositions of∆, as shown on the left and right

picture of Figure 5.3. The left decomposition correspondingtoM1
Θ already

consists of two simple pieces, while in the right decomposition correspond-

ing toM2
Θ we have to further subdivide the part of the discriminant locus

on the lower copy of the pentagon. The result of this procedure can be seen

in Figure 5.4. The bounded part of the discriminant locus∆M2
Θ

can, with

a little bit effort, be seen to be homeomorphic to a cube.

Note the remarkable similarity of that situation and the following exam-

ple. LetΣ ⊂ R3 be the complete fan generated by the rays in direction

±(1, 0, 0),±(0, 1, 0) and±(0, 0, 1). Clearly we havePΣ
∼= P1×P1×P1

and we can apply Construction 5.2 to the reflexive polytopeΘ spanned by

these ray generators. It is easily checked that the affine base (B,P, ϕ)

obtained from this has a discriminant locus∆ which is homeomorphic to

∆̌M2
Θ

. In fact, from Theorem 5.14, that is from the full list in [CoCo], we

get that the potential

W (M2
Θ) = x+ y + z + x−2z−1 + x−3y−1z−1 + x−1y−1z

+ 2 · x−2y−1 + 2 · x−1.

corresponds to the Fano varietyX = P1×P1×P1. In fact, Galkin in [Ga]

shows that there is an explicit birational transformation ofW (M2
Θ) to the

standard superpotential ofP1 × P1 × P1.

Although details for this statement are not completely workedout, note

that in the fan picture the generic fiber of a toric degeneration does not

seem to depend on the polyhedral decomposition of the affine manifold,

but purely on theaffine structure with singularities, as communicated to

us by Bernd Siebert [Si]. Thus, although(B,∆) is seemingly quite dif-

ferent from(BM2
Θ
,∆M2

Θ
), both toric degenerations might have the same

generic fiber. We will, however, not go into the computation tocheck that

this is the case. �
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FIGURE 5.4

We conjecture that this method of “pulling apart” the discriminant locus as

dictated by the given Minkowski decomposition presented in the last exam-

ple, which always works locally, can be extended to a global construction

for every fully admissibleΘ.

CONJECTURE5.17. LetΘ be a fully decomposable three-dimensional re-

flexive polytope with full decompositionMΘ. Then there is a toric degener-

ation with dual intersection complex(BMΘ
,PMΘ

) such that the generic

fibre is the Fano varietyX corresponding to the potentialW (MΘ) ob-

tained from Construction 5.14, if there is such anX. �

5.2. Del Pezzo surfaces

In this section we will compare superpotentials for different toric degen-

erations of del Pezzo surfaces using broken lines. Recall that apart from

P1 × P1 all other del Pezzo surfacesdPk can be obtained by blowing up

P2 in 0 ≤ k ≤ 8 points. Note thatdPk for k ≥ 5 is not unique up to

isomorphism but has a2(k − 4)-dimensional moduli space. For the anti-

canonical bundle to be ample the blown-up points need to be in sufficiently

general position. This means that no three points are collinear, no six points
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lie on a conic and no eight points lie on an irreducible cubic which has a

double point at one of the points. However, rather than ampleness of−KX
the existence of certain toric degenerations is central to our approach. For

example, our point of view naturally includes the casek = 9.

5.2.1. Smooth toric del Pezzo surfaces.Up to lattice isomorphism

there are exactly five toric del Pezzo surfacesPΣ whose fansΣ are depicted

in Figure 5.5, namelyP2 blown up torically in at most three points andP1×

P1. To construct proper superpotentials for these surfaces weconsider the

following class of toric degenerations. Recall the notionsof irreducibility

(Definition 4.10) and simplicity ([GrSi1], §1.5) of toric degenerations.

DEFINITION 5.18. Adistinguished toric degeneration of del Pezzo surfaces

is an irreducible, simple toric degeneration(X̌ → T, Ď) with Ď relatively

ample overT and with generic fibrěDη ⊂ X̌η an anti-canonical divisor in

a Gorenstein surface. �

FIGURE 5.5. Fans of the five toric del Pezzo surfaces

If the general fiber of a toric degeneration as in the definition is smooth

then it is adPk for somek, together with a smooth anti-canonical divisor.

The point of this definition is both the irreducibility of theanti-canonical

divisor and the fact that this divisor extends to a polarization on the cen-

tral fiber. We can specialize Construction 5.2 to del Pezzo surfaces. We

start from the polytopes spanned by the ray generators of thefive fans de-

picted in Figure 5.5. The result of the construction is depicted in Figure 5.6,

which shows a chart in the complement of the dotted segments. Note that

the discrete Legendre transform(B,P, ϕ), also depicted in Figure 5.6, in-

deed has parallel outgoing rays. Conversely, in dimension2 we have the

following uniqueness result.

THEOREM 5.19. If (π : X̌ → T, Ď) is a distinguished toric degeneration

of del Pezzo surfaces with non-singular generic fibre, then the associated

intersection complex(B̌, P̌) is isomorphic to one listed in Figure 5.6.
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monodromy cut

focus-focus point

integral point ofB

FIGURE 5.6. The intersection complexes(B̌, P̌) of

the five distinguished toric degenerations of toric del

Pezzo surfaces and their Legendre duals(B,P).

PROOF. Let (π : X̌ → T, Ď) be the given toric degeneration, then

by definition the generic fibrěXη is isomorphic toP1×P1 or to a del Pezzo

surfacedPk for some0 ≤ k ≤ 3.

First we determine the number of integral points ofB̌. LetL be the polar-

izing line bundle oňX. By assumption we have

(5.2)

h0(X̌η ,L|X̌η
) = h0(dPk,−KdPk

) =




10− k, X̌η ≃ dPk

9, X̌η ≃ P1 × P1.

Let t ∈ OT,0 be a uniformizing parameter,̌Xn := Spec
(
k[t]/(tn+1)

)
×T

X then-th order neighbourhood of̌X0 := π−1(0) in X̌ and writeLn :=

L|X̌n
. Then for anyn there is an exact sequence of sheaves onX̌0 given

by

0 −→ OX̌0
−→ Ln+1 −→ Ln −→ 0.

By the analogue of [GrSi2, Theorem 4.2] for Calabi-Yau pairs, we know

h1(X̌0,OX̌0
) = h1(X̌η ,OX̌η

) = 0.
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Thus the long exact sequence on cohomology induces a surjection

H0(X̌0,Ln+1) ։ H0(X̌0,Ln)

for eachn. By the theorem on formal functions and cohomology and base

change ([Ha1, Theorem 11.1 and Theorem 12.11] we therefore conclude

thatπ∗L is locally free, with fibre over0 isomorphic toH0(X̌0,L0). In

view of (5.2) we thus conclude

h0(X̌0,L0) =




10− k, X̌η ≃ dPk

9, X̌η ≃ P1 × P1.

Now we know that on a toric variety the dimension of the space ofsections

of a polarizing line bundle equals the number of integral points of its mo-

mentum polytope. SincěX0 is a union of toric varieties each integral point

x ∈ B̌ provides a monomial section ofL0 on any irreducible component

X̌σ ⊂ X̌0 with σ ∈ P containingx. These provide a basis of sections of

H0(X̌0,L0).

HenceB̌ has10 − k integral points ifX̌η ≃ dPk and9 integral points if

X̌η ≃ P1 × P1. An analogous argument shows that the number of integral

points of∂B̌ equals

h0(Ď0,L0) = h0(Ďη ,Lη),

which by Riemann-Roch equalsK2
dPk

= 9− k orK2
P1×P1

= 8. In either

case we thus have a unique integral interior pointv0 ∈ B̌. In particular,

B̌ has the topology of a disk, and each singular point of the affine structure

lies on an edge connectingv0 to an integral point of∂B̌.

Pushing the singular pointsp1, . . . , pl into ∂B̌, thereby trading them for

corners, we arrive at anl-gon with a unique interior integral point, hence

a reflexive polygon. Moreover, since the generic fibre ofX̌ → Ď is non-

singular, at each vertex integral generators of the tangentspaces of the adja-

cent edges form a lattice basis. Thus by the classification ofreflexive lattice

polygons, up to adding some edges connectingv0 to ∂B̌ the only configu-

rations possible are the ones shown in Figure 5.6. �

REMARK 5.20. 1) From the proof we see that the five possible types can

be distinguished bydimH0(X̌η ,Lη), except forP1 ×P1 anddP1. Alter-

natively, by Proposition 5.23, one could useH1(X̌η ,Ω1
X̌η

).
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2) For each(B̌, P̌) there is a discrete set of choices ofϕ̌, which determines

the local toric models of̌X → Ď. This reflects the fact that the base of (log

smooth) deformations of the central fibrěX†
0 as a space over the standard

log pointk† is higher dimensional. In fact, letr be the number of vertices

on∂B̌. Then taking a representative ofϕ̌ that vanishes on one maximal cell,

ϕ̌ is defined by the value atr − 2 vertices on∂B̌. Convexity then defines

a submonoidQ ⊂ Nr−2 with the property thatHom(Q,N) is isomorphic

to the space of (not necessarily strictly) convex, piecewise affine functions

on (B̌, P̌) modulo global affine functions. To avoid technicalities, we will

from now on assume thatHom(Q,N) is in fact isomorphic to the space

of strictly convex, piecewise affine functions. Running the construction of

[GrSi3] with parameters then produces a log smooth deformationwith the

given central fibre(X̌, Ď) over the completion at the origin ofSpec k[Q].

For the minimal polyhedral decompositions of Figure 5.6 withr = l we

haverkQ = l− 2, which by Remark 5.24 2) below agrees with the dimen-

sion of the spaceH1(X̌0,ΘX̌†
0/k

† ) of infinitesimal log smooth deforma-

tions ofX†
0/k

†. One can show that in this case the constructed deformation

is in fact semi-universal. �

As an immediate corollary of Proposition 5.3 for distinguished toric del

Pezzo degenerations, we get the following result.

COROLLARY 5.21. Let (X → Spec k[[t]],W ) be the Landau-Ginzburg

model mirror to a distinguished toric del Pezzo degeneration. Then there is

an open subset

U ∼= Spec k[[t]][x, y] ⊂ X

such thatW |U equals the usual Hori-Vafa monomial sum timest. �

EXAMPLE 5.22. Let us study the distinguished toric degeneration ofdP3

with the minimal polarizatioňϕ explicitly. The two pictures in Figure 5.7

show all broken lines for different choices of root vertexp in the bounded

cellσ0 of P. This illustrates the invariance under the change of root vertex

within a chamber of the structure proved in Lemma 4.19. The root tan-

gent vectors in each case are(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1) and

(0,−1). For the choice of root vertexp as indicated in the left picture of
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FIGURE 5.7. Broken lines in the mirror of the dis-

tinguished base of andP3 indicating the invariance

under change of root vertex.

Figure 5.7 this gives the superpotential

W 1
dP3

(σ0) =
(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t,

which for t 6= 0 has six critical points. Applying Lemma 5.1 shows that

this is the superpotential to all orders, that isWdP3
(σ0) =W 1

dP3
(σ0). For

each choice ofp within the shaded open hexagonU shown in the picture,

none of the six broken lines has a break point. �

An analogous picture arises for the other four distinguished del Pezzo de-

generations. Morally speaking the last example shows that intoric situa-

tions ray generators of the fan are sufficient to compute the superpotential,

but really they should be seen as special cases of broken lines.

5.2.2. Non-toric del Pezzo surfaces.In this section we consider del

Pezzo surfacesdPk for k ≥ 4, referred to as higher del Pezzo surfaces. Let

us first determine the topology ofB and the number of singular points of

the affine structure.

PROPOSITION5.23. Let (B,P) be the dual intersection complex of an

irreducible, simple toric degeneration(π : X̌ → T, Ď) of two-dimensional

log Calabi-Yau pairs. In particular, the generic fibrěXη is a proper surface

with Ď a smooth anti-canonical divisor. ThenB is homeomorphic toR2,

and the affine structure hasl = dimH1(X̌η ,Ω1
X̌η

) + 2 singular points.
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PROOF. Since the relative logarithmic dualizing sheaf

ωX̌/Ď(− log Ď)

is trivial, the generalization of [GrSi1], Theorem 2.39, tothe case of log

Calabi-Yau pairs shows thatB is orientable. By the classification of sur-

faces with effective anti-canonical divisor we knowHi(X̌η ,OX̌η
) = 0,

i = 1, 2. As in the proof of Theorem 5.19 this impliesH1(X̌0,OX̌0
) = 0.

Thus by the log Calabi-Yau analogue of [GrSi1], Proposition2.37,

H1(B, k) = H1(X̌0,OX̌0
) = 0.

In particular,B̌ has the topology ofR2.

Denote byΛ⊥ ⊂ Λ∗ the sheaf ofZ-cotangent vectors vanishing on un-

bounded rays. As for the number of singular points the generalization of

[GrSi2], Theorem 3.21 and Theorem 4.2, shows thatdimH1(X̌η ,Ω1
X̌η

) is

related to an affine Hodge group:

dimH1(X̌η ,Ω
1
X̌η

) = dimH1(B, i∗Λ
⊥ ⊗Z R).

To computeH1(B, i∗Λ⊥ ⊗Z R) we choose the followinǧCech cover of

B. SinceB is homeomorphic toR2 there is an open diskU0 ⊂ B with all

singular points contained in∂U0. Order the singular pointsp1, . . . , pl ∈ B

by following the circle∂U0. Then there exist open setsU1, . . . , Ul ⊂ B

with the following properties. (1)Ui ∩ {p1, . . . , pl} = {pi}, (2) B \

U0 ⊂
⋃l
i=1 Ui, (3)Ui ∩U0,Ui ∩Ui+1 andUl ∩U1 are contractible and

disjoint from {p1, . . . , pl}, (4) For pairwise disjointi, j, k ≥ 1 we have

Ui ∩ Uj ∩ Uk = ∅. ThenU :=
{
U0, U1, . . . , Ul

}
is a Leray covering

of B for i∗Λ∗
R
:= i∗Λ∗ ⊗Z R (cf. [GrSi1], Lemma 5.5). The terms in the

Čech complex are

C0(U, i∗Λ
⊥
R ) = R2 ×

l∏

i=1

R1

C1(U, i∗Λ
⊥
R ) =

l∏

i=1

R2 ×
l∏

i=1

R2

C2(U, i∗Λ
⊥
R ) =

l∏

i=1

R2.
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FIGURE 5.8. Straight boundary models for higher

del Pezzo surfaces obtained by changing affine data

for dP3 and their Legendre duals.

It is easy to see that thěCech differentialC0(U, i∗Λ⊥
R
) → C1(U, i∗Λ⊥

R
)

is injective whileC1(U, i∗ΛVR ) → C2(U, i∗Λ⊥
R
) is surjective. Hence

dimH1(B, i∗Λ
⊥
R ) = 4l − 2l − (l + 2) = l− 2

determines the numberl of focus-focus points as claimed. �

REMARK 5.24. 1) From the analysis in Proposition 5.19 and Proposi-

tion 5.23 it is clear that for del Pezzo surfaces of degree at least four the

anti-canonical polarization is too small to extend over a toric degeneration.

The associated tropical manifold would simply not have enoughintegral

points to admit the required number of singular points.

2) Essentially the same argument also computes the dimension of the space

of infinitesimal deformations of the pair(X̌η , Ďη):

h1(X̌η ,ΘX̌η
(log Ďη)) = h1(X̌0,ΘX̌†

0/k
† ) = h1(B, i∗ΛR) = l− 2.

�

It is rather easy to write down toric degenerations of non-toric del Pezzo

surfaces, since they all can be represented as hypersurfaces or complete

intersections in weighted projective spaces, as for exampledone fordP5

in [GrSi4, Example 4.2]. In this exampledP5 is realized as complete inter-

section of two quadrics inP4.

The most natural toric degenerations in this setup have as central fibre the

toric boundary divisor of the ambient space. But because thisconstruction
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gives reducibleDη such toric degenerations are never distinguished. To

obtain proper superpotentials we therefore need a different approach.

CONSTRUCTION5.25. Start from the intersection complex(B̌, P̌) of the

distinguisheddP3. The six focus-focus points in the interior of the bounded

two cell make the boundaryρ straight, There is no space to introduce more

singular points because all interior edges already containa singular point.

To get around this, polarize by−2 · KdP3
and adaptP in the obvious

way shown in Figure 5.8. This scales the affine manifoldB by two, but

keeps the singular points fixed. The new boundary now has12 integral

points and the unionγ of edges neither intersecting the central vertex nor

∂B is a geodesic. We can then introduce new singular points as visualized

in Figure 5.8. Moreover, leťϕ be unchanged on the interior cells and change

slope by one when passing to a maximal cell intersecting∂B. Plugging in

up to five singular points, one can show that toric degenerations obtained

from the tropical data are in fact degenerations ofdPk, 4 ≤ k ≤ 9 by

Proposition 5.23. Byσ0 we will still refer to the same bounded cell ofP. In

Figure 5.8 when two shaded regions, corresponding to the monodromy cuts

of the respective focus-focus singularities, overlap, we shade them darker

to indicate the non-trivial transformation there. �

Unlike in the anti-canonically polarized case, the models constructed in this

way are not unique, so we can not expect to get a classificationstatement as

Theorem 5.19. The geodesicγ is divided into six segments byP, and the

choice on which of these segments we place the singular pointsresults in

different models. Although there are other ways to define distinguished

models for higher del Pezzo surfaces, for example by choosing another

polarization or polyhedral decomposition, in this way we canextend the

unique toric models most naturally, since all broken lines we studied before

arise in these models without any change.

REMARK 5.26. Note that introducing six new points, for instance as in

the rightmost picture in Figure 5.8, corresponds to a blow up of P2 in nine

points, which is not Fano anymore, but from our point of view still has a

Landau-Ginzburg mirror. From a different point of view this has already

been noted in [AuKaOr], where the authors construct a compactification of

the Hori-Vafa mirror as a symplectic Lefschetz fibrations as follows. Start



5.2. Del Pezzo surfaces 100

FIGURE 5.9. An alternative base for higher del

Pezzo surfaces and their mirror.

with the standard potentialx+ y + 1
xy

for P2 and compactify by a divisor

at infinity consisting of nine rational curves. Then by a deformation argu-

ment it is possible to pushk of those rational curves to the finite part and

decompactify to obtain a potential fordPk, includingk = 9.

We can reproduce this result from our point of view by adapting the base of

the distinguished toric degeneration forP2 instead ofdP3, as in Construc-

tion 5.25. Polarizing by−4 ·KP2 scales the base(B̌, P̌) by a factor four

and we can adapt the polyhedral decomposition as in Construction 5.25.

Moving rational curves from infinity to the finite part is corresponds to in-

troducing new focus-focus points. In the present case one mayput at most

three focus-focus points on each unbounded ray of(B,P) until the respec-

tive Legendre dual corner of(B̌, P̌) becomes straight. Figure 5.9 shows

nine such points, corresponding to the casek = 9 above. Any additional

singular point would result in a concave boundary. This can be seen as an

affine-geometrical explanation for why the compactification constructed by

the authors in [AuKaOr] has exactly nine irreducible components. Note that

it is possible to introduce more singular points when passingto larger po-

larizations. This leads to other toric degenerations, but it is not clear to us

what the generic fibres of these degenerations would be in this case. �
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We now turn to the task of determining the superpotential for toric degen-

erations of the non-toric del Pezzo surfacesdP4 anddP5. The point is that

in these examples we can place the additional focus-focus singularities we

introduce in Construction 5.25 in such a way, that the scattering diagram

is finite in σ0. This implies that we can use Lemma 5.1 to compute the

superpotential to all orders. For toric degenerations ofdPk with k > 6

the scattering diagram locally inσ0 seems to be infinite for any choice of

position of focus-focus singularities and it is very hard tocompute the su-

perpotential even up to small orders. As we will see in Example 5.30, for

dP6 there are toric degenerations with finite and others with infinite scatter-

ing diagrams inσ0, depending on the choice of focus-focus points.

EXAMPLE 5.27. Figure 5.10 shows the dual intersection complex(B,P)

of a toric degeneration ofdP4 from Construction 5.25. The additional

focus-focus point on the unbounded ray in direction(−1,−1) changes the

structureS , as it introduces a wallτ in σ0 and allows broken lines to scat-

ter with the wall in direction(1, 1) in the bounded cellσ0, which yields new

root tangent directions. A non-straight broken line coming from infinity in

direction(±1, 0) will produce root tangent vector(−1± 1,−1), whereas

one with direction(0,±1) will take direction(−1,−1± 1). By construc-

tion, every broken line reaching the interior cellσ0 will havet-order at least

2. Moreover, note that the structure we arrived at by inserting the wallτ in

σ0 locally in σ0 is consistent to all orders. Thus, we can apply Lemma 5.1

to compute the superpotential to all orders. To this end, notethat a bro-

ken line can have at most one break point once it reaches the interior of

σ0, namely by non-trivially scattering withτ , in which case thet-order in-

creases by one. We get two generically new root tangent directions, namely

(−1,−2) and(−2,−1), as well as possibly more contributions from di-

rections(0,−1) and(−1, 0). The left picture in Figure 5.10 shows several

broken lines with root tangent vector(−1,−2) that are related to each other

by moving the root vertex to different chambers.

The other two pictures in Figure 5.10 show the images in(B,P) of all

new broken lines for different choices of root vertex, apartfrom the six

toric ones we have already encountered in Example 5.22. Denote the root

vertex of the picture in the middle byp1 and the one in the rightmost picture

by p2. Moreover, call the chamberpi lies inui, for i = 1, 2. Depending on
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FIGURE 5.10. Mirror base todP4 showing new bro-

ken lines contributing toW 2
dP4

, indicating the wall

crossing pheomenon and the invariance under change

of endpoint within a chamber.

this choice, the superpotentialWdP4 locally is given by

WdP4(p1) =W 3
dP4(p1) =

(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t2

+
( 1
x
+

1

x2y

)
· t3 or

WdP4(p2) =W 3
dP4(p2) =

(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t2

+
( 1
y
+

1

xy2

)
· t3,

where as beforex andy correspond to(1, 0) and(0, 1). These superpo-

tentials are not only related by simply interchangingx andy, for symmetry

reasons, but also by wall crossing along the wallτ separating the chambers

u1 andu2. �

EXAMPLE 5.28. Attaching another singular point on the unbounded ray

in direction(0,−1) as shown in the four pictures in Figure 5.11 we arrive

at a degeneration ofdP5. For the structure to be consistent to all orders

locally in the bounded cellσ0 it is necessary to introduce three walls as

follows. Two of them are the extensions of the slabs with tangent direc-

tions (1, 1) and(0, 1) caused by the additional two focus-focus points we

introduced. The third is the result of scattering of the other two, that is the

wall with tangent direction(1, 2), indicated in red in the lower left picture

of Figure 5.11. Because(1, 1) and(0, 1) form a lattice basis the scattering

procedure at the origin does not produce any additional walls. Thus we can

apply Lemma 5.1 to reduce the number of broken lines to be considered.



103 Applications to Landau-Ginzburg mirror symmetry

FIGURE 5.11. Mirror bases todP5 showing all new

broken lines.

We first compute superpotentials up to order three for four choices of root

vertices in different chambers, as indicated in Figure 5.11.Starting in the

upper left picture, going in counter-clockwise direction,denote the choices

of root vertex in thei-th picture bypi and the corresponding chamber these

roots lie in byui, for i = 1, 2, 3, 4. Then Figure 5.11 explicitly shows all

non-toric broken lines with rootpi up to t-order three in blue and we get

the following superpotentials:
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W 3
dP5(p1) = (x+ y + xy +

1

x
+

1

y
+

1

xy
) · t2

+ (
1

x
+

1

xy
+

1

x2y
+

1

xy2
) · t3,

W 3
dP5(p2) = (x+ y + xy +

1

x
+

1

y
+

1

xy
) · t2

+ (
1

y
+

1

xy
+ 2 ·

1

xy2
) · t3,

W 3
dP5(p3) = (x+ y + xy +

1

x
+

1

y
+

1

xy
) · t2

+ (
1

y
+ x+

x

y
+

1

xy2
) · t3,

W 3
dP5(p4) = (x+ y + xy +

1

x
+

1

y
+

1

xy
) · t2

+ (
1

x
+ x+

1

x2y
+
x

y
) · t3,

Of course, these superpotentials can be obtained from each other by wall

crossing. Going tot-order four, there will be more broken lines. In the

lower right picture of Figure 5.11 we indicated the new broken line in red

which contributes as1
y
· t4 to the superpotential. Note that this monomial is

invariant under crossing the wall in direction(0, 1). In fact, we do not get

any more broken lines for highert-orders by Lemma 5.1 and thus we get

the full potential

WdP5(p3) =W 4
dP5(p3) = (x+ y + xy +

1

x
+

1

y
+

1

xy
) · t2

+ (
1

y
+ x+

x

y
+

1

xy2
) · t3 +

1

y
· t4.

�

EXAMPLE 5.29. We study another model of the mirror todP5, which dif-

fers from the last one only in the position of the second focus-focus point.

Instead of placing it on the ray with generator(0,−1) we move it to the

ray generated by(1, 1), as shown in Figure 5.12 on the right. With choice

p of root vertex as indicated in the picture, this more particular choice of
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FIGURE 5.12. An alternative mirror base fordP5

focus-focus points yields the superpotential

WdP5
(p) =W 3

dP5
(p) =

(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t2

+
( 1
y
+ x+ x2y +

1

xy2

)
· t3.

It is an interesting question to understand in detail the effect of particular

choices of singular points and the corresponding degenerations. �

EXAMPLE 5.30. As a last example, we study broken lines in the mirror

of a distinguished model ofdP6. For the choice of focus-focus points and

root vertexp1 as depicted on the left in Figure 5.13, we this time obtain the

following superpotential up to order five:

W 5
dP6

(p1) =
(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t2

+
(
2 ·

1

xy2
+

1

xy
+ 2 ·

1

y

)
· t3 +

1

y
· t4 +

1

y
· t5.

Again, this potential comes from a special choice of positions of singu-

lar points and root vertex. However, for this choice we can not apply

Lemma 5.1, as the three walls meeting at the origin scatter infinitely often.

It is already very complicated to determine all broken lines upto t-order

six.
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In contrast, the picture on the right of Figure 5.13 shows themirror base of

adP6-degeneration with a different placement of focus-focus singularities.

Introducing walls by extending the slabs in direction(1, 1), (−1, 0) and

(0,−1) makes the scattering diagram locally in the bounded cellσ0 finite,

so we can again apply Lemma 5.1 to obtain the following superpotential for

the choice of root vertexp2 as in the picture

WdP6
(p2) =W 3

dP6
(p2) =

(
x+ y + xy +

1

x
+

1

y
+

1

xy

)
· t2

+
( y
x
+

1

x
+

1

xy2
+ 2 ·

1

y
+
x

y

)
· t3. �

These examples illustrate that if we leave the realm of toric geometry, Landau-

Ginzburg potentials for del Pezzo surfaces can, at least locally, still be de-

scribed by Laurent polynomials, as in the toric setting. After completion

of the work on this chapter, the preprint [GrHaKe] was available online. It

covers much what we what we have done and goes beyond that in some

regards.

5.3. Semi-Fano and Hirzebruch surfaces

Recall that in Construction 5.2 we dealt with polytopesΘ that gave rise to

smoothFano toric varietiesPΣΘ
. Restricting to dimension two, we will

now see that we can also treat the case ofsemi-Fanoand evennon-Fano

toric surfaces.

5.3.1. MPCP subdivisions and smooth semi-Fano surfaces.Recall

that by Lemma 2.9 and Proposition 2.17 a projective toric variety with fan

Σ is Fano with at most canonical singularities if and only if thespan of ray

generatorsΘΣ is reflexive. There are16 reflexive polytopesΘ in dimension

two, among which the fanΣΘ of cones over faces gives rise to a smooth

variety in precisely the five cases we have been studying in section 5.2.1.

The remaining eleven polytopes are characterized by the property thatΘ has

at least one integral boundary point that is not a vertex. So in these eleven

casesPΣΘ
will be Q-GorensteinQ-Fano. If we applied Construction 5.2

to aΘ with integral boundary points, the discriminant locus∆ would not

be simple, as the facets ofΘ are not elementary simplices anymore. To
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FIGURE 5.13. Two mirror bases todP6.

resolve this issue, let(T , hT ) be a maximal triangulation ofΘ, which we

can choose by Lemma 2.18, and denote byΣ̃ the fan of cones over faces

contained in the boundary ofΘ, that is

Σ̃ = {στ |τ ∈ T , τ ⊂ ∂Θ},

whereστ denotes the cone overτ . ThenP
Σ̃

is a smooth toric surface.

Moreover, it is clear thatP
Σ̃

is semi-Fanosince the anticanonical divisor

−KP
Σ̃

defines a not convex support function onΣ that is not strictly con-

vex.
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With this notation we can now adapt Construction 5.2 apply tothis semi-

Fano setting.

CONSTRUCTION5.31. LetΘ ⊂ NR be a two-dimensional reflexive poly-

tope and choose an MPCP-subdivision(T , hT ) ofΘ, which induces a max-

imal triangulation of∂Θ and defines the fañΣ. We construct a tropical

manifold(B̃T , P̃T ) as follows.

Start from the tropical manifold(B,P) obtained from Construction 5.2.

Then the bounded cells of̃PT are defined to be the polytopes in the tri-

angulationT with induced charts, which refinesP. Moreover, for each

ray ρ ∈ Σ̃(1) \ ΣΘ(1) with ray generatornρ add an unbounded one-cell

in direction ofρ starting atnρ. Next we describe the discriminant locus

∆̃T . Put a focus-focus singularity on the barycentre of each one-cell cor-

responding to a polytope inτ ∈ T with τ ⊂ ∂Θ. This choice makes

the unbounded one-cells of̃PT parallel, as is elementary to check in each

case. To definẽϕ we use the height functionhT . For eachν ∈ ∂Θ ∩ N

defineϕ̃T (ν) := hT (ν), ϕ̃T (0) = 0 and letϕ̃T change slope by one on

the unbounded part. AshT is strictly convex, so is̃ϕT . �

REMARK 5.32. An analogous construction should work in higher dimen-

sions, there are however certain technical issues we can notresolve in this

case, such as proving simplicity of the discriminant locus. �

EXAMPLE 5.33. LetΘ be the reflexive polytope spanned by(−1, 1), (1, 1)

and(0,−1). Note thatΘ has(0, 1) as boundary point. Now, choose the

MPCP subdivisionT of Θ that assigns value2 to (−1, 1) and1 to all other

lattice points of the boundary ofΘ. On the two-dimensional toric variety

P
Σ̃

associated to the complete fanΣ̃with ray generators(−1, 1), (0, 1), (1, 1)

and(0,−1), corresponding to toric divisorsD1, D2, D3 andD4, the MPCP

subdivisionT corresponds to the ample divisorD := 2 ·D1+D2+D3+

D4. Note that−KP
Σ̃

is not an ample divisor. Applying Construction 5.31

in this situation yields(B̃T , P̃T , ϕ̃T ) as depicted in Figure 5.14. The

polytopes inP̃T are simplicial and the singular locus̃∆T consists of four

isolated focus-focus singularities. It is in fact easy to check thatP
Σ̃

∼= F2,

the only semi-Fano Hirzebruch surface. �
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Θ

[2] [1]
[1]

[1]

Σ̃(B̃, P̃, ϕ̃)

FIGURE 5.14. An irreducible tropical manifold for

a semi-Fano surface degeneration

Having studied a first example, in Figure 5.15 we summarize the tropical

affine manifolds

(B̃i, P̃i, ϕ̃i)

obtained from applying Construction 5.31 to the eleven reflexive polytopes

Θi for i = 1, . . . , 11, with a particular choice of MPCP subdivisionTi as

indicated. In the picturesΘi is the union of all bounded cells of̃Pi for

all i = 1, . . . , 11. Note that we suppress the indexTi for this particular

choice. The corresponding fans will be denoted byΣ̃i and the associated

toric varieties accordingly byP
Σ̃i

. The values[aν ] in square brackets in

Figure 5.15, defining thePL-functionϕ̃i, have the following interpretation.

Each integral boundary pointν ∈ ∂Θi corresponds to a ray generator of a

rayρν ∈ Σ̃i(1) and hence to a toric divisorDν . The value[aν ] associated

to ν is chosen such that

(5.3) Di :=
∑

ρν Σ̃i(1)

[aν ] ·Dν

is an ample toric divisor onP
Σ̃i

, as this is equivalent to saying thatϕ̃ is

strictly convex. Another equivalent formulation is that thepolytopeΞDi

associated toDi, see Definition 2.10, is a convex polyhedron whose facets

are in one-to-one correspondence with integral points of∂Θi.

We will now proceed by computing superpotentials for the eleven bases. For

the following lemma define a weight functionlτ , similar to Definition 5.9,

as follows. Assumeτ is a line segment withn integral points andν is the

k-th of these counting from one endpoint ofτ , we setlτ (ν) =
(n
k

)
.

LEMMA 5.34. Let (B̃T
i , P̃

T
i , ϕ̃

T
i ) be the polarized tropical manifold as-

sociated to the polytopeΘi and choice of MPCP subdivision(Ti, hTi
) from
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FIGURE 5.15. Dual intersection complexes

(B̃, P̃, ϕ̃) for all eleven smooth semi-Fano toric

surfaces .

Construction 5.31. Choose a root vertexp in a small open neighbourhood

U of the origin and letβ be a broken line with rootp and root tangent vector

mβ = ν, whereν ∈ ∂Θ ∩N . Thenβ crosses the wallτ corresponding to
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x−1
v1 vn

0

ν

mβ

p

x

FIGURE 5.16

the facet ofΘ on whichν lies and we have

aβ = lτ (ν).

PROOF. Denote the integral points ofτ by v1, . . . vn and assume

that ν = vk for somek = 1, . . . , n. Moreover, denote the monodromy

invariant direction of then− 1 focus-focus points onτ by x and its inverse

by x−1. By our convention on slab functions we have that

fτ,v1 = (1 + x) · (1 + te1x) · . . . · (1 + ten−1x)

and accordingly

fτ,vn = (1 + x−1) · (1 + te1x−1) · . . . · (1 + ten−1x−1).

The precise value of theei depends on the MPCP height functionhT we

choose, as this influences̃ϕT . We visualized this situation in Figure 5.16.

Note that we can apply Lemma 5.1, as scattering on the bounded cells of

P̃T
i will always be finite andB̃T

i has parallel one-dimensional strata for

all i = 1, . . . , 11. Thus, ifp is close to the origin0, thenβ passes through

τ without break point. If it had a break point, its first break point would nec-

essarily have to be outside of the bounded part ofP̃T
i , which contradicts

Lemma 5.1. This means thataβ is the constant term of

(1+x)·(1+te1x)·. . .·(1+tek−1x)·(1+tekx−1)·. . .·(1+ten−1x−1),

which is the coefficient of thexk-term infτ,v1 . This in turn is nothing but(n
k

)
, that isaβ = lτ (vk) = lτ (ν). �

Thus, if we choose the root vertexp to be in a small neighbourhood of0,

then we get broken lines without break point in the directionof all rays

of Σ̃i for all i = 1, . . . , 11. Moreover, by Lemma 5.34 we know the

valuesaβ for each such broken lineβ. We therefore obtain the following



5.3. Semi-Fano and Hirzebruch surfaces 112

analogue of Theorem 5.21. Note that we get the full potential, as we can

apply Lemma 5.1 once again.

COROLLARY 5.35. LetΘ be a two-dimensional reflexive polytope, choose

an MPCP subdivision(T , hT ) and denote the tropical manifold obtained

from Construction 5.31 by(B̃, P̃, ϕ̃). Then there is an open subsetU ∼=

Spec k[[t]][x1, x2] such that the full superpotentialW for (B̃, P̃, ϕ̃) is

given by

W |U =
∑

ν∈Θ∩N

aν · thT (ν)xν ,

whereaν = lτ (ν) for a choice of a one-dimensional faceτ ⊂ Θ contain-

ing ν. �

REMARK 5.36. 1) Note that ifΘ is such thatPΣΘ
is smooth, then it follows

thataν = 1 for all integral boundary points ofΘ. Moreover, in this case we

can choosehT (ν) = 1 for all ν. So in this case the Corollary 5.35 recovers

Theorem 5.21 for del Pezzo surfaces.

2) In [ChLa], based on work in [Ch], Chan and Lau compute superpotentials

for each of the eleven semi-Fano toric surfaces, without explicitly stress-

ing the importance of the choice of MPCP subdivision, respectively height

function. Our approach in fact computes compactfications of the super-

potentials obtained in [ChLa] for the same choice ofDi as in (5.3). The

polytopes in [ChLa, Figure 7] then correspond, up to latticeautomorphism,

toΞDi
. �

5.3.2. Hirzebruch surfaces.As a last application we will study proper

superpotentials for Hirzebruch surfacesFm. We fix the fanΣ in N ∼= Z2

of Fm to be the fan generated by the four primitive vectorsρ0 = (0, 1),

ρ1 = (−1, 0), ρ2 = (0,−1) andρ3 = (1,m). SinceFm is only Fano

in the casesF0 = P1 × P1 andF1 = dP1, for m ≥ 2 the normal fan

of the anti-canonical polytope will not be the fan of a Hirzeburch surface.

Denote byDρi the torus-invariant divisor associated toρi. Instead of the

anti-canonical divisor, which is not ample form ≥ 2, we consider a smooth

divisorDm in the ample class

Dρ0 +Dρ1 +Dρ2 +m ·Dρ3 .
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(m − 1, 0)0

[1]

[1] [1]

[1] Fm

(−1, 1)(0, 1)

(−1,−1) (2m,−1)

F2

[2]

[1]

[1]

[1]

F3
[3]

[1]

[1]

[1]

FIGURE 5.17. A straight boundary model for the

Hirzebuch surfacesFm with mirrors form = 2, 3.

Define a tropical affine manifold(B̌m, P̌m, ϕ̌m) with straight boundary

as follows. B̌m is obtained from the Newton polytopeΞDm by joining

it with the interval [0,m − 1] as shown in Figure 5.17 on the top, and

then introducing a single focus-focus singularity on each of the four joining

one-cells. The polyhedral decompositioňPm is the one induced by this

construction and it is again elementary to check that this makes∂B̌m totally

geodesic. Clearly, settinǧϕm(v) = 1 for all verticesv of ∂Bm and

ϕ̌m((0, 0)) = ϕ̌m((m− 1, 0)) = 0

defines a strictly convex PL function on(B̌m, P̌m). From this description

it follows that the Legendre dual(Bm,Pm, ϕm) has two bounded cells

σ0 = conv(τ0, τ1, τ2) and σ1 = conv(τ0, τ2, τ3),

four unbounded one-cells in direction of theτi’s, seen from a bounded cell.

These one-cells are indeed parallel in a chart on the complement of the ray

generated by any of theτi. Moreover,∂(σ0∪σ1) has precisely four integral

points, namelyτ0, τ1, τ2 andτ3. Furthermore setϕm(0) = ϕm(τ0) =



5.3. Semi-Fano and Hirzebruch surfaces 114

ϕm(τ1) = ϕm(τ2) = 1, ϕm(τ3) = m and letϕm change slope by one

at the boundary ofσ0 ∪ σ1.

Thus we see that form ≥ 3 the unionσ0∪σ1 is non-convex, which causes

scattering phenomena in the interior of this bounded part. This makes it

more difficult to compute the potential to highert-order in this case and dis-

tinguishes it from other situations we considered so far. Wenow explicitly

compute the full superpotential forF2 andF3.

First, for the base(B2,P2) and the choice of root vertexp ∈ σ0 as de-

picted on the lower left in Figure 5.17 the Landau-Ginzburg superpotential

is given by

W (p) =W 2(p) =
( 1
x
+

1

y
+ y
)
· t+ xym · t2.

This is indeed the full potential, as there is no scattering in bothσ0 andσ1,

so we can apply Lemma 5.1.

As remarked above, form = 3 the bounded part ofB3 is subject to scatter-

ing. To see this, note that at the point(0, 1) two walls in directions(1, 1)

and(−1,−2) with focus-focus points on them meet. Locally this is equiv-

alent to the situation of walls in direction(1, 0) and(0, 1) meeting at the

origin. An explicit computation carried out in [GrSi4] showsthat this scat-

tering diagram can be made consistent to all orders by introducing outgoing

walls in directions(1, 0), (0, 1) and(1, 1), which translates to walls in di-

rections(1, 1), (−1,−2) and(0,−1) in our situation, as indicated by the

dashed lines in the lower right of Figure 5.17. Of course it will be necessary

to insert more wallsoutsideof the bounded part, but this is unessential for

the computation of the superpotential. Hence scattering on the bounded part

σ0 ∪σ1 is finite and we can once more apply Lemma 5.1. For the choice of

root vertexp′ as indicated in the lower right picture of Figure 5.17 we get

the following full superpotential for(B3,P3)

W (p′) =W 3(p′) =
( 1
x
+

1

y
+ y+

y

x

)
· t+

y

x
· t2 +

(
xy3 + y2

)
· t3.

Thus, neglectingt-orders for a moment, we have three new contributions

that differ from the Hori-Vafa potential1
x

+ 1
y
+ y + xy3, namely the

monomialy2 and two times the termy
x

, which come from broken lines

that have a break point at the new walls emanating from(0, 1) in direction

(1, 1), (0,−1) and(−1,−2), respectively. Note that these are precisely
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the terms Auroux found in [Au, Proposition 3.2], when we make the coor-

dinate changex 7→ 1
x

andy 7→ 1
y

. The computation in [Au, Proposition

3.2] is very explicit and rather long when compared with our derivation. Of

course all the hard work is carefully hidden in the Gross-Siebert program,

but still it is remarkably easy to compute Landau-Ginzburg models with this

approach, once everything is set up.
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Zusammenfassung

Die vorliegende Arbeit behandelt algebraisch-geometrische Konstruktio-

nen, um das Spiegelsymmetrie-Phänomen aus der Stringtheorie zu verste-

hen. Vornehmlich geht es darum einen gemeinsamen Rahmen für klassische

wie moderne Ansätze aus der torischen Geometrie zu finden und imerweit-

erten Kontext des Spiegelsymmetrie-Programms nach Gross und Siebert zu

erklären. Die Arbeit deckt dabei sowohl Spiegelsymmetrie fürCalabi-Yau

Mannigfaltigkeiten als auch sogenannte Landau-Ginzburg Modelle ab, die

als Spiegel von Fano-Mannigfaltigkeiten auftreten.

Die Dissertation gliedert sich in zwei Hauptteile. Im ersten Teil werden

mittlerweile als klassisch anzusehende Konstruktionen derSpiegelsymme-

trie für Calabi-Yau Mannigfaltigkeiten mit Methoden der torischen Geome-

trie studiert. Nach einer kurzen Einführung in die hier relevanten Begriffe

torischer Geometrie, werden die für diesen Teil wichtigstenDefinitionen

anhand von Beispielen erläutert. Im Folgenden werden die Zugänge von

Batyrev und Berglund-Hübsch im Detail beleuchtet und miteinander ver-

knüpft. Eine milde Verallgemeinerung des ersten und eine geometrische

Reformulierung des zweiten Ansatzes erlauben es beide in einem gemein-

samen Kontext aufzufassen. Die Spiegelpartner bei Berglund-Hübsch sind

demnach Hyperflächen sehr spezieller Struktur in torischen Varietäten, wäh-

rend die Spiegelpartner in Batyrevs Arbeit allgemeine Hyperflächen in den

selben torischen Varietäten sind. Insbesondere sind die Spigelpartner bei-

der Konstruktionen jeweils polynomiale Deformationen voneinander und

stimmen in Spezialfällen sogar überein. Als Anwendung diesesverallge-

meinerten Standpunkts werden zudem Borcea-Voisin Calabi-Yau Mannig-

faltigkeiten und deren Verallgemeinerung diskutiert. Sindgewisse technis-

che Voraussetzungen erfüllt lassen sich Spiegelpartner für diese Klasse von

Mannigfaltigkeiten explizit mit den vorgestellten Techniken konstruieren.

Der zweite, weitaus technischere Teil der Arbeit behandeltdie Erweiterung

des Gross-Siebert Programms für torische Entartungen von Varietäten mit

effektivem anti-kanonischen Bündel. Zur Konstruktion dessogenannten
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Superpotentials wird das Gross-Siebert Programm in leicht verallgemein-

erter Form herangezogen. Landau-Ginzburg Modelle können dadurch an-

hand des Rekonstruktions-Algorithmus nach Gross-Siebert induktiv definiert

werden. Unter gewissen technischen Bedingungen lässt sichdie Endlichkeit

der Beiträge zum Superpotential beweisen, was eine vollständige Berech-

nung erlaubt. In diesem Kontext werden viele klassische undeinige neue

Beispiele detailliert behandelt. Eine Vielzahl der bislang bekannten Beispiel-

klassen für Landau-Ginzburg Modelle wird durch diese Konstruktion abge-

deckt.

In erster Anwendung wird die auf Hori und Vafa zurückzuführende Kon-

struktion für glatte torische Varietäten, deren Impulspolytope reflexiv sind,

derart verallgemeinert, dass das Superpotential eine eigentliche Abbildung

wird, die Fasern in komplexer Geometrie demnach kompakt sind. Der

zweite Anwendungsbereich liegt im Studium komplexer Flächen und der

expliziten Konstruktion von Spiegelpartnern. Ist die allgemeine Faser der

torischen Entartung eine glatte torische Fläche, lassen sich unter Zusatzbe-

dingungen Eindeutigkeitsaussagen über den zugehörigen Schnittkomplex

der Entartung ableiten. Im Falle allgemeiner Fasern, die nicht isomporph zu

torischen Flächen sind, lassen sich Spiegelpartner weiterhin explizit berech-

nen. Während vergleichbare Resultate in der Literatur auf häufig auf mas-

sivem Rechenaufwand beruhen, steckt die Komplexität der in der Arbeit

abgeckten Methode im Gross-Siebert Programm selbst, die Berechnung der

Superpotentiale ist vergleichsweise handhabbar und anschaulich. So lassen

sich etwa Spiegelpartner für torische semi-Fano- und Hirzebruch-Flächen

ohne weiteres im vorgestellten Rahmen berechnen.
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