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Abstract

The state of a neural assembly in the human brain preceding an incoming stimu-
lus is assumed to modulate the processing of subsequently presented stimuli. The
nature of this state can differ with respect to the frequency of ongoing oscillatory
activity. Oscillatory activity of specific frequency range such as alpha (8-12 Hz)
and gamma (30-45 Hz) band oscillations is hypothesized to play a functional role in
visual object processing. However, the precise role of prestimulus alpha or gamma
band oscillations for visual object processing is not completely understood. There-
fore, a selective modulation of this prestimulus activity could clarify the functional
role of these oscillations. We hypothesized that an increase in gamma band activity
as compared to an increase in alpha band activity over the visual cortex by BCI
manipulation would enhance subsequent visual object processing.

In contrast to previous studies in which oscillations of prestimulus activity were
correlated with visual performance, we attempted to put the volunteers directly
in control of the oscillatory brain activity. To this end, we designed and imple-
mented a non-invasive brain computer interface (BCI) method to train volunteers
to selectively increase their alpha or gamma band activity in the occipital cortex.
During training, oscillatory brain activity was estimated online and fed back to the
volunteers to enable a deliberate modulation of alpha or gamma band oscillations.
The visual stimuli were presented during specific brain states in an individually
adapted manner. During the testing phase which followed the training phase, alpha
or gamma band activity was classified online and at predefined levels of activity,
visual objects embedded in noise were presented in order to assess the influence of
frequency modulation on subsequent visual object processing.

In the process of developing a BCI method based on gamma band oscillations, several
important aspects had to be considered, including presence of artifacts, experimental
design and topographical precision of BCI training. We therefore perfected our
BCI method with online artifact control for artifact suppression, a special visual
display design to avoid distraction yet motivate volunteers, and a source-based BCI
method to limit training to a distinct neural area in the visual cortex. In a series of
experiments, we first evaluated the accuracy of the BCI method and then explored
the specific effect of gamma band training on visual object perception. Finally, we
compared the specific effect of gamma band training to the well defined alpha band.

Our results demonstrated that volunteers learned to selectively modulate alpha or
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gamma band oscillations in the visual cortex with a high level of specificity regarding
frequency range and localization. During phases of increased gamma band activity,
visual object processing was improved. The functional specificity of gamma band
oscillations was demonstrated by a direct comparison to alpha band oscillations.

Hence, the BCI method allows a selective manipulation of gamma band activity in
the visual cortex and supports a prominent role of prestimulus gamma band activity
for visual object processing.



Zusammenfassung

Der Zustand eines Nervenzell-Verbandes, welcher einem eintreffenden Reiz vorangeht,
kann die Verarbeitung nachfolgend dargebotener Reize beeinflussen. Der Zustand
solch eines Zellverbandes kann bezüglich der Frequenz der zugrundeliegenden oszilla-
torischen neuronalen Aktivität voneinander abweichen. Die Hypothese besteht, dass
die oszillatorische Aktivität bestimmter Frequenzbereiche, wie z.B. Alpha- (8-12 Hz)
und Gamma- (30-45 Hz) Band Oszillationen, eine funktionale Rolle bei der Verar-
beitung visueller Objekte besitzen. Allerdings ist die genaue Rolle der prä-Stimulus
Alpha- oder Gamma- Band Oszillationen bei der visuellen Objektverarbeitung nicht
vollständig geklärt. Aus diesem Grund könnte eine selektive Modulation dieser
prä-Stimulus Aktivität dazu beitragen, die funktionale Rolle dieser Oszillationen zu
klären. Dabei nahmen wir an, dass eine Erhöhung der Gamma-Band Aktivität im
visuellen Kortex mit Hilfe der Brain-Computer-Interface (BCI)-Methode zu einer
anschließenden Verbesserung der visuellen Objektverarbeitung führt.

In Abgrenzung zu früheren Studien, in denen die Korrelation zwischen der prä-
Stimulus Oszillationen und der visuellen Leistung bestimmt wurde, versuchten wir,
den Versuchsteilnehmern die direkte Kontrolle ihrer oszillatorischen Hirnaktivität zu
ermöglichen. Zu diesem Zweck entwickelten wir eine nicht-invasive BCI-Methode.
Durch diese lernt der Versuchsteilnehmer, die eigene Alpha- oder Gamma- Band Ak-
tivität im visuellen Kortex selektiv zu erhöhen. Während des Trainings wurde die
oszillatorische Hirnaktivität geschätzt und für den Versuchsteilnehmer auf dem Bild-
schirm visualisiert, um eine bewusste Modulation der Alpha- oder Gamma- Band
Oszillationen zu ermöglichen. Danach wurden visuelle Reize während bestimmter
Zustände des Gehirns präsentiert. Während der Testphase, die im Anschluss an die
Trainingsphase erfolgte, wurde die Alpha- oder Gamma- Band Aktivität

”
online“

klassifiziert. Visuelle Reize wurden während vordefinierten Stufen der Aktivität
präsentiert, um den Einfluss dieser Frequenzmodulation auf die nachfolgende vi-
suelle Objektverarbeitung zu untersuchen.

Während der Entwicklung einer BCI-Methode auf der Basis von Gamma-Band Oszil-
lationen, mussten einige wichtige Aspekte berücksichtigt werden. Dazu gehören das
Auftreten von Artefakten, das experimentelle Design und die topographische Präzi-
sion des BCI-Trainings. Aus diesem Grund wurde die BCI-Methode mit einer

”
on-

line“ Artefakt-Kontrolle zur Artefakt-Unterdrückung ausgestattet. Weiterhin wurde
ein spezielles Display-Design entworfen, um den Versuchsteilnehmer nicht abzu-
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lenken und um ihn zugleich zu motivieren. Um das Training auf eine spezielle neu-
ronale Region zu beschränken, wurde eine quellen-basierte BCI-Methode eingeführt.
In einer Reihe von Experimenten analysierten wir zunächst die Genauigkeit der BCI-
Methode und untersuchten daraufhin die spezifische Wirkung des Gamma-Band-
Trainings auf die visuelle Objektverarbeitung. Schließlich verglichen wir die spezi-
fische Wirkung des Gamma-Band-Trainings auf die visuelle Objektverarbeitung mit
dem eindeutig definierteren Alpha-Band.

Im Hinblick auf den Frequenzbereich und die Lokalisation lernten die Versuchsteil-
nehmer mit einem hohen Grad an Genauigkeit eine selektive Modulation der Alpha-
und Gamma- Band Oszillationen im visuellen Kortex. In Phasen erhöhter Gamma-
Band Aktivität wurde die visuelle Objektverarbeitung verbessert. Die funktionale
Spezifität der Gamma-Band Oszillationen wurde durch einen direkten Vergleich zu
den Alpha-Band Oszillationen nachgewiesen

Die BCI-Methode ermöglicht eine selektive Modulation der Gamma-Band Oszilla-
tionen im visuellen Kortex und belegt die funktionale Relevanz der Gamma-Band
Aktivität für die visuelle Objektverarbeitung.
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Chapter 1

Introduction

The human brain has the remarkable ability to perceive an object in a visual scene

within a fraction of a second. This object perception process right after object

presentation (stimulus presentation) has been shown to increase the intrinsic fluctu-

ations of neural activity in a specific brain region in the visual cortex. Interestingly,

it is argued that the state of neural activity directly preceding an incoming stimulus

could also have a prominent impact on the processing of that stimulus.

A relevant amount of the variability in human task performance can be attributed

to intrinsic fluctuations of neural activity prior to actual processing. The electrical

brain activity in this neural state can be characterized by the frequency of ongoing

oscillations, including delta (1-4 Hz), theta (4-7 Hz) alpha (8-12 Hz), beta (13-

30) and gamma band (30-100 Hz) frequencies. Prestimulus oscillations in different

frequency ranges have been shown to influence visual performance (Supèr et al., 2003;

Dijk et al., 2008; Linkenkaer-Hansen et al., 2004; Hanslmayr et al., 2007; Monto et

al., 2008). Studies have indicated that a high amount of low frequency oscillations,

i.e. the alpha band, impair perception while high gamma band frequencies have

been observed to enhance visual perception (Wyart & Tallon-Baudry, 2009). These

results suggest that neuronal oscillations with different frequencies within specific

brain areas in the visual cortex have a strong influence on visual object processing.

However, the observation of prestimulus oscillatory activity in correlation to visual

object processing is not sufficient evidence to claim a causal relevance.

To establish a more causal relation between ongoing oscillatory activity and visual

object processing, several methods have been used to directly modulate electrical

brain activity and examine the consequences. These methods included an exogenous
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activation of interneuron’s using optogenetic techniques (Cardin et al., 2009; Sohal

et al., 2009), direct electrical stimulation (Romei et al., 2010; Marshall et al., 2006)

or attention (Tiitinen et al., 1993; Gruber et al., 1999; Fries et al., 2001; Tallon-

Baudry et al., 2005) to experimentally determine the relationship of electrical brain

activity and behavior (including visual performance) more directly. However, the

specificity of most of these methods is limited with respect to the time-, frequency-

or space- domain, i.e. most studies have not assessed whether the methods affected

only a distinct frequency of oscillations at a limited brain region directly preceding

the stimulus processing.

In this thesis, we propose a new non-invasive method to examine the relevance

of ongoing brain activity for visual object processing by (i) training volunteers to

deliberately modulate oscillatory brain activity in a specific frequency range and

brain area (ii) a real-time classification of the actual oscillatory brain state and (iii)

and an adaptive presentation of visual stimuli within predefined brain states.

In order to train volunteers to enhance natural fluctuations of neural activity, we

designed and implemented a customized brain computer interface (BCI). With elec-

troencephalography (EEG) based BCI, brain signals are recorded along the scalp,

while relevant components are extracted and fed back to the volunteer in the form

of visual information using an online feedback loop. In addition to the feedback

training of ongoing brain activity, we extended our BCI method with online arti-

fact detection and online features extraction with an adaptive presentation of visual

stimuli.

Using this method we focused on the role of alpha and gamma band oscillations

in the visual cortex for the subsequent processing of visual stimuli. Since previous

studies indicate a different role of gamma and alpha band frequencies for perceptual

and memory related information processing (Wyart & Tallon-Baudry, 2009; Romei

et al., 2010), we used this method to examine common and dissociable effects of

ongoing alpha and gamma band oscillations.

In section (1.1.1), we will first give an introduction to the relevant neuroscientific

background related to this thesis. This includes a brief introduction to the visual

cortex and neuronal oscillations. In section (1.1.2), the historical background of the

BCI method is introduced followed by the state of the art in BCI research. Research

questions for the present thesis are outlined based on the state of the art of research.
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1.1 State of Art

1.1.1 Neuroscientific Background

This section provides a brief overview of the basic neuroscientific concepts concerning

visual object processing in the human brain based on (Kandel et al., 1991; Squire,

2003). First we will introduce the brain areas of interest followed by the frequency

range of oscillations which we aim to modulate with our BCI method.

1.1.1.1 The Visual Cortex

The human brain is a complex organ responsible for interpreting and managing vast

amounts of continuously incoming signals. With a relatively small mass of about

1.4 kg, the brain contains approximately 100 billion neurons (Kandel et al., 1991).

As the human brain receives signals from many sources, these neurons process the

incoming signals in a highly organized fashion and within a short amount of time.

Anatomically, the human brain is divided into two cerebral hemispheres. The cere-

bral cortex is divided into four anatomically distinct parts: the frontal, parietal,

temporal and occipital lobes (see Figure 1.1a) (Kandel et al., 1991). Each lobe in-

cludes specific functional areas. The occipital lobe, for example, is known as the

primary visual processing centre of the human brain (Kandel et al., 1991). The

temporal lobe has specific areas dedicated to auditory (Penfield & Perot, 1963), vi-

sual (Kreiman et al., 2000) and memory (Squire & Zola-Morgan, 1991) functions.

The parietal lobe contains the primary somatic sensory cortex which is involved in

sensation (touch, pressure) and the frontal lobe has areas that carry out functions

related to the control of movement (Kandel et al., 1991).

Since the focus of this thesis is based on the principal processes within the visual

domain, we will focus on the major visual brain areas.

The visual cortex encompasses the primary visual cortex (V1) and extra-striate

visual cortical areas such as V2, V3, V4 and V5 (see Figure 1.1b). The primary

visual cortex is located in the occipital lobe. Visual information is processed in

multiple cortical areas that are fed by at least two neural pathways. These parallel

pathways convey information from the retina via V1 to parietal and temporal cortical

areas. In 1983, Leslie Ungerleider and Mortimer Mishkin suggested that these extra-

striate visual areas are organized into two pathways: a dorsal pathway from V1 to
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Figure 1.1: (a) Gross anatomical subdivision of the human brain. (Adapted from Palmer
1999) (b) Topography of the visual areas V1-V5 in the primary visual cortex. (Adapted
from Engel, Singer, 1997)

the posterior parietal cortex, concerned with localizing ’where’ objects are, and a

ventral pathway extending from V1 to the inferior temporal cortex, concerned with

identifying ’what’ the objects are (see figure 1.1b). However, this oversimplification

has been criticized and findings have shown that basic object information related

to shape, size and viewpoint may be similarly represented in the ventral and dorsal

visual pathways (Konen & Kastner, 2008).

Neurons in each of the visual ares V1 to V5 are, at least to some degree, selective for

a characteristic subset of stimuli features. Some areas, for example, are devoted to

the analysis of local orientation of stimuli (form) or to motion; others are specialized

for different wavelengths (color) and others are involved in processing texture and

global shape (Kandel et al., 1991). Consequently, a single visual stimulus activates

neurons in several visual areas.

Thus, the question arises of where this spread of activity can be integrated to yield

instantly recognizable representations of visual objects. In 1995, the process of

integration leading from local feature analysis to object detection in the human

visual cortex was explored in a functional magnetic resonance imaging study (Malach

et al., 1995). The study reported evidence for activation related to objects in the

lateral occipital lobe close to the motion-sensitive area MT/V5, in a region known

as the lateral occipital cortex (LOC) (Malach et al., 1995). In this study, volunteers

viewed images of objects and a wide range of texture patterns. Results clearly

showed enhanced activity in the LOC during the presentation of objects, while the
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Figure 1.2: (a) Visibility levels of visual stimuli with five levels of scrambling. (b) Increased
activity in the LOC with higher object visibility. (Adapted from Rose, 2005, with permission
from Oxford University Press)

presentation of the textures revealed no such effects. Based on these results, a study

by Rose et al. (2005) was able to show that this perceptual process can be modulated

by top-down processes (Rose et al., 2005). In this experiment, the volunteers saw

objects with different levels of visibility (see Figure 1.2a). Results clearly revealed

increased activity in the LOC for increasing object visibility (see Figure 1.2b).

In summary, the LOC is known to be involved in the critical perceptual process of

object perception (Malach et al., 1995; Kourtzi & Kanwisher, 2001; Grill-Spector

et al., 1998) and this process can be modulated by top-down processes (Rose et al.,

2005). Hence, the LOC is a well-studied brain area involved in visual object process-

ing and is therefore selected as the brain region of interest for our BCI modulation.

1.1.1.2 Neuronal Oscillations involved in Visual Object Processing

Oscillations in the alpha and gamma band range are thought to play an active role

in visual processing. These neuronal oscillations can be recorded from electrodes

placed inside (invasive) and outside (non-invasive) the brain. Non-invasive methods

allow a harmless acquisition of data without surgical interventions, whereas invasive

methods require the implantation of intracranial electrodes. EEG is a common non-

invasive method for monitoring brain activity recorded from electrodes placed on the
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scalp. The voltage fluctuations registered by the EEG are summed activities of large

populations of cortical neurons. Further non-invasive methods include magneten-

cephalography (MEG), positron emission tomography (PET), functional magnetic

resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). However, com-

pared to all other methods, EEG equipment is inexpensive, is well studied, provides

high temporal but low spatial resolution and is therefore an efficient acquisition

method for real-time BCI.

Neuronal oscillations occur at different frequency ranges in different brain areas

and are associated with different functions. Historically, several types of continuous

rhythmic sinusoidal EEG activity are defined (Kandel et al., 1991) (see Figure 1.3

for an overview):

• Slow cortical potentials (SCPs) are slow voltage changes (0.1 - 2 Hz) related

to the overall preparatory excitation level of the cortex (Birbaumer et al.,

1990). Negative SCPs are associated with increased cortical activity, while

positive SCPs are associated with reduced cortical activity (Rockstroh, 1989;

Birbaumer, 1997).

• Delta frequencies (up to 4 Hz) occur in deep sleep and in some abnormal

processes.

• Theta frequencies (4 to 8 Hz) are associated with the early stages of sleep

and the process of dreaming and play a functional role in memory processing

(Guderian et al., 2009a).

• Alpha and mu waves (8-12 Hz) are characteristic for a relaxed, alert state of

consciousness. Primary sensory-motor cortical areas (see Figure 1.1) often dis-

play alpha and mu activity, when they are not engaged in processing sensory

input or producing motor output (Gastaut, 1952; Kozelka & Pedley, 1990).

The activity is called mu rhythm when measured over somatosensory or mo-

tor cortex and visual alpha rhythm when measured over the visual cortex.

Mu activity corresponds to motor preparation and imagination of movements

(Pfurtscheller et al., 2006; Wolpaw & McFarland, 2004).

• Beta is the frequency range between 12-30 Hz. Beta frequencies are measured

when listening and thinking during analytical problem solving, judgment and

decision making (Kandel et al., 1991). Central beta activity (13-25 Hz) is

recorded over the motor cortex. During actual movement and in particular

during mental imagery of movement a decrease of mu and central beta activity
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Figure 1.3: EEG oscillations in specific frequency bands.

is measured (Pfurtscheller & Silva, 1999; Neuper et al., 2005).

• Gamma band frequencies are separated into low gamma (30-45 Hz) and high

gamma (45 to 100Hz). Gamma rhythms are associated with higher mental

activity including perception, problem solving, fear and consciousness (Kandel

et al., 1991). Oscillations in the gamma band play a functional role in visual

processing (Tallon-Baudry et al., 2005).

Oscillations in the alpha band have been extensively examined in previous studies.

Results have shown that alpha band oscillations have effects on different performance

measures such as semantic working memory (Vernon, 2005) and mental rotation

ability (Hanslmayr, Klimesch, et al., 2005; Vernon, 2005; Gruzelier et al., 2006;

Zoefel et al., 2010). Several studies have used transcranial magnetic stimulation

(TMS) to stimulate oscillations in the alpha band. These studies have found that

parietal stimulation of the alpha frequency band enhances performance in visual

mental rotation of three-dimensional cubes.

In contrast, several studies have shown that prestimulus alpha activity is differen-

tially related to perception and memory performance. While high prestimulus alpha

activity enhances memory performance (Jensen et al., 2002), studies have demon-
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Figure 1.4: (a) Experimental task using two discs with different grey levels. Participants
were instructed to press a button if a grey level difference between the two discs was detected.
(b) Frequency distribution showing higher prestimulus alpha band activity (around 10 Hz
(dashed box)) for undetected stimuli (misses) compared to detected stimuli (hits). (Adapted
from van Dijk, 2008, with permission from the Journal of Neuroscience) (c) Experimental
task with four possible letters as stimuli (p,q,b,d). Participants were instructed to detect the
correct letter. (d) Time frequency plot showing increased prestimulus alpha band activity
(around 10 Hz dashed box) for undetected letters (misses) and decreased prestimulus alpha
activity for detected letters (hits). (Adapted from Hanslmayr, 2007, with permission from
Elsevier)

strated an opposite effect on perception, as high prestimulus alpha activity impairs

perception (Ergenoglu et al., 2004; Hanslmayr, Klimesch, et al., 2005; Dijk et al.,

2008). In the study by van Dijk, i.e., volunteers were instructed to detect a difference

in the grey levels between two discs (see Figure 1.4a). Results of the experiment

showed that visual discrimination ability was decreased with increase in prestimulus

alpha power changes. Participants detected the different grey values (hits) more

often during decreased prestimulus alpha band (around 10 Hz) activity (see Figure

1.4b). In a further study by Hanslmayr (2007), volunteers were instructed to detect

a target consisting of one of four letters (p, q, b, d), which was presented for 57

ms (see Figure 1.4c). The volunteer was then instructed to press one of four key
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Figure 1.5: (a) Experimental design. (b) Region of interest in the LOC. (c) Time-frequency
anlaysis of pre- and poststimulus activity. Results showing increased gamma band activity
around 60 Hz in the prestimulus period (dashed box). (Adapted from Wyart, 2009, with
permission from the Journal of Neuroscience)

buttons for the letter seen. Again, results revealed an increase of prestimulus alpha

band activity for stimuli that were not detected (miss) compared to a decrease of

prestimulus alpha activity for detected stimuli (hits) (see Figure 1.4d). In a recent

study, occipital and parietal TMS at alpha frequency has been found to impair tar-

get detection in the visual field contralateral to the stimulated hemisphere (Romei et

al., 2010). Hence, oscillations in the alpha band are discussed to play an inhibitory

role on visual object perception (Dijk et al., 2008; Hanslmayr et al., 2007; Ergenoglu

et al., 2004). Nevertheless, several studies also indicate an active functional rele-

vance of alpha band oscillations for visual object processing (Babiloni et al., 2006;

Klimesch et al., 2003; Hanslmayr, Sauseng, et al., 2005).

A further frequency band that is hypothesized to be of functional relevance to visual

object perception is the gamma band. In particular, fluctuations in the gamma band

before stimulus onset are assumed to influence the conscious detection of upcoming

stimuli. A high level of gamma band activity in the visual cortex has been shown
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to enhance visual processing (Wyart & Tallon-Baudry, 2009). In this experiment

volunteers were cued to attend either to their left or right lower visual field (see

Figure 1.5a). A low-contrast grating was then presented either at the cued or uncued

location. Participants were instructed to first select the orientation of the grating

and were then told to address whether a grating was presented during the trial.

Results of the experiment revealed an increase of prestimulus gamma band activity

in the visual cortex for detected as compared to undetected stimuli (see Figure 1.5b).

In addition, the results were not due to attentional effects as attended stimuli as

compared to unattended stimuli revealed no prestimulus gamma band effects.

Therefore, fluctuations in the gamma band before stimulus presentation appear to be

important for the establishment of neural activity patterns that encode new input.

This is in agreement with observations linking gamma band activity in general with

perception (Tallon-Baudry & Bertrand, 1999), learning (Miltner et al., 1999) and

memory (Sirota et al., 2008).

In summary, results of previous and present studies suggest that prestimulus al-

pha band activity has an inhibitory function on perception. However, in apparent

conflict with these studies alpha band oscillations have also been suggested to en-

hance perception. Prestimulus gamma band activity is assumed to have an enhanced

function on perception. Thus, in order to disentangle the functional relations of the

different oscillations, a direct manipulation of ongoing alpha or gamma band oscil-

lations using BCI would be of high interest. In the following section, we introduce

the BCI method.

1.1.2 Brain Computer Interface

1.1.2.1 History of BCI - From Human Computer Interaction to BCI

Human computer interaction (HCI) describes an interdisciplinary field focusing on

the interaction between humans and computer applications (Ebrahimi et al., 2003).

The research field combines different disciplines including computer science, psychol-

ogy, software engineering and ergonomic design. The interaction between humans

and computer applications is based on input and output devices, which connect the

human and the machine. Today’s most common devices for interacting with com-

puter applications include the mouse, keyboard, CRT or LCD screens. Apart from

the traditional devices, several attempts have been made to exploit human senses
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(e.g. vision, hearing, smelling, taste and touch) as a tool for HCI. These senses

are detected or measured by different devices such as cameras (vision), microphones

(hearing), olfactory (smell) or haptic sensors (touch). Extensive research has been

done on HCI based on natural human actions such as e.g. vision based facial expres-

sion analysis (Fasel & Luettin, 2003; Yang et al., 2002), motion analysis (Hu et al.,

2004; Sibert & Jacob, 2000), audio-visual automatic speech recognition (Potamianos

et al., 2004) or haptic based analysis (Benali-Khoudja et al., 2004).

An emerging field of scientific interest seeks to take advantage of the development

of unimodal techniques (in speech, audio processing, etc.) and combine them for

human computer interaction (Jaimes & Sebe, 2007). During multimodal human-

human communication, several modalities such as speech, gesture and voice are

combined, which highly ease the understanding of communication. In multimodal

HCI, the input modalities are usually a combination of human senses and computer

input devices, which allow a variety of HCI interfaces. The most commonly combined

modalities are speech with vision based technologies, such as speech-lip movement

analysis systems (Chibelushi et al., 2002; Zhang et al., 2002; Potamianos et al.,

2003). Other possibilities are combining head tilt and gesture with audio feedback

to control a mobile device (Brewster et al., 2003) or using eye tracking with video,

head tracking and hand motion (Yu & Ballard, 2004).

People with disabilities can also benefit from multimodal HCI research. Several

research groups have worked on smart wheel chairs with voice recognition to ex-

ecute commands (Simpson & Levine, 1997; Katevas et al., 1997) or facial gesture

interpretation for wheel chair navigation (Duchowski, 2002). Others have developed

multimodal systems with audio-haptic tools enabling visually impaired people to

explore digital images using hearing and feeling modalities (Roth & Pun, 2003) or

to explore tactile maps with verbal assistance (Habel et al., 2010).

The field of Brain Computer Interface (BCI) focuses on human brain and com-

puter system interactions. A BCI method captures neurophysiological signals of

the human brain and transforms these to simple input commands for communica-

tion and control of i.e. external devices. A direct interaction between the human

brain and computer systems is of high interest in various research areas including

HCI (Ebrahimi et al., 2003). In particular, BCI methods for patients with severe

disabilities such as amyotrophic lateral sclerosis (ALS), brainstem stroke patients

or muscular dystrophies, which disrupt the communication channel between neural

pathways and muscles, receive high attention. Patients suffering from the for men-
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tioned disorders usually lose the ability to move their legs, arms or body. A far more

severely affected group of patients may additionally lose eye and respiration control,

referred to as being in a complete paralyzed locked-in state (Borasio et al., 1998).

Thus, these patients would benefit from advanced technologies that do not depend

on healthy motor output pathways in order to communicate with their environment

or to control external devices (Wolpaw et al., 2002).

A BCI method can provide a powerful tool for HCI systems, as it can be used and

combined with other input modalities. The combination of BCI with other input

modalities has been defined as Hybrid BCI by Pfurtscheller (2010) and is a new area

of research.

1.1.2.2 Types of BCI

BCI approaches can be categorized into two different areas of application. The first

area is focused on training volunteers to deliberately modulate brain activity. This

approach is termed active BCI or neurofeedback (Zander & Kothe, 2011). Volunteers

are continuously informed about a specific brain signal of interest presented as visual

or auditory feedback information. Before training, volunteers are instructed either

to increase or decrease the activity of interest. Through continuous neurofeedback

training volunteers can learn to modulate and control brain electrical activity.

The second area is mainly based on the detection and recognition of relevant brain

signals, which are evoked by external stimulation. Participants in experiments are

i.e. exposed to visual stimuli that generate a desired signal (such as an evoked

potential), which is detected by the BCI method (Kelly et al., 2005; Middendorf et

al., 2000; Donchin et al., 2000). This BCI approach is defined as a reactive BCI and

is based on advanced decoding algorithms in order to classify and interpret specific

brain states (Zander & Kothe, 2011).

1.1.2.3 BCI Research

Several different neurophysiological signals with different specific features have been

used in BCI research. In the following, we will outline existing studies in the research

area of reactive BCI, active BCI and studies in which both forms are combined.
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1.1.2.4 Research in Reactive BCI

Visual evoked potentials (VEPs) are small amplitude changes recorded in the brain

signal evoked by sensory stimulation of a volunteer’s visual field. Several studies

have used VEPs to control the BCI method including the works of Vidal, Sutter

and Middendorf (Vidal, 1973; Sutter, 1992; Middendorf et al., 2000). Vidal used

VEP recorded over the visual cortex to determine the direction of eye gaze in order

to move a cursor to the desired direction. Sutter used a brain response interface

in which volunteers faced a video screen displaying letters. The BCI method used

VEPs to detect the letters that the volunteer was gazing at.

The P300 is a positive deflection in the EEG, which is evoked by auditory, visual

or somatosensory stimuli about 300 ms after the stimulus is received. The P300 is

typically evoked when volunteers attend to rare target stimuli presented within a

stream of frequent standard stimuli. BCIs based on P300 evoked potentials uncover

the volunteers choices by distinguishing between parietal cortex responses to the

preferred versus non-preferred stimuli (Donchin et al., 2000; Piccione et al., 2006;

Sellers & Donchin, 2006).

1.1.2.5 Research in Active BCI

In 1968 Kamiya reported the first neurofeedback training of EEG alpha waves. In a

typical neurofeedback study, the volunteer sits in a room in front of a monitor and

is instructed to deliberately modulate a specific frequency range represented i.e. as

a bar on the screen. A successful modulation of the trained frequency range would

result in an upward movement of the bar and a rather unsuccessful self-regulation

in a downward movement of the bar.

The self-regulation in a neurofeedback approach has been shown to be of consider-

able value for clinical applications (Vernon et al., 2003). Neurofeedback has been

applied for the treatment of attention deficit hyperactivity disorder (ADHD) (Lubar

& Shouse, 1976; Fox et al., 2005), epilepsy (M. B. Sterman & Egner, 2006), anx-

iety disorders (Hammond, 2005), post traumatic stress disorder (Peniston et al.,

1993), sleep disorder (M. Sterman, 1977) and schizophrenia (Gruzelier et al., 2006).

ADHD is the most common psychiatric disorder in children and adolescents (preva-

lence: ranging from 2 to 29 percent; (Barkley, 2006)) characterized by inattention,

impulsiveness and hyperactivity (American Psychiatric Association, 1994). Children
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with ADHD typically show specific electrophysiological patterns such as increased

theta and decreased alpha and beta band activity (Monastra et al., 2005, 2005).

Therefore, in training protocols in neurofeedback therapy of children with ADHD

the children are trained to decrease activity in the theta band and to increase ac-

tivity in the beta band (Gevensleben et al., 2009). The treatment of ADHD with

neurofeedback has found increased acceptance (Drechsler, 2011). A recent study ex-

amined the effect of neurofeedback treatment for children with ADHD with a large

sample of participants and showed that 51% of the children showed a reduction of

ADHD symptoms due to neurofeedback training (Gevensleben et al., 2009).

Nearly 50 million people currently suffer from epilepsy, according to the World

Health Organization. The treatment of epilepsy with neurofeedback is based on in-

creasing 12-15 Hz activity at the motor cortex (sensorimotor rhythm SMR) (M. B.

Sterman & Egner, 2006; Lubar & Shouse, 1976). In a review paper summariz-

ing epilepsy research, Sterman (2000) found that 82% of 174 patients had shown

significantly improved seizure control, due to SMR neurofeedback training.

Neurofeedback in combination with a source-based low-resolution electromagnetic

tomography (LORETA) method has been used to train brain oscillations in a selec-

tive brain region in the human brain. Initially, LORETA based neurofeedback was

used in a study, in which volunteers were trained to enhance low beta (16-20 Hz) and

to suppress low alpha (8-10 Hz) in the anterior cingulate cortex (ACC) (Congedo et

al., 2004). Based on this study, a further study explored the effect of training in the

ACC on anterior regions (Cannon et al., 2007).

1.1.2.6 Research in combined Active and Reactive BCI

Several studies have used a neurofeedback approach to train volunteers to regulate

SCPs, mu and beta frequencies in order to control a BCI method (Pham et al., 2005;

Nijboer et al., 2008). Recent studies have shown that people can learn to modulate

mu and beta frequencies evoked by motor imagery of simple movements (hand or

foot) to control output devices (Blankertz et al., 2010; Cincotti et al., 2008). The

Wadsworth BCI group trained people with or without motor disabilities to learn to

control mu or beta rhythm amplitude to move a cursor in one, two or even three

dimensions (McFarland et al., 2010) on a computer screen.

Other studies have demonstrated that volunteers can learn to modulate SCPs in

order to control a BCI (Kubler et al., 1999; Birbaumer et al., 2000). In addition,
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SCPs have been exploited as a source of control to train patients with severe mo-

tor disabilities, such as ALS, to control a spelling device in order to communicate

(Birbaumer et al., 1999, 2000).

1.1.3 Summary and Motivation

Gamma band oscillations in the LOC play a functional role in visual object pro-

cessing. While prestimulus gamma band oscillations are hypothesized to improve

perception, alpha band oscillations have been shown to impair perception. However,

several studies also assume an active role of alpha band oscillation for visual object

processing. Therefore, an experimental manipulation of alpha and gamma band

oscillations could clarify the functional role of these fluctuations for visual object

processing. We hypothesize that only increased prestimulus gamma band activity

enhances the perceptual processing of subsequent visual stimuli, while increased

prestimulus alpha band activity should not affect or even impair visual object pro-

cessing.

The BCI is introduced as a method that can be used to train volunteers to modulate

oscillations in various frequency bands. BCI applications can be divided into active

and reactive BCI. Active neurofeedback systems can be used to train volunteers to

modulate oscillations in different frequency ranges and reactive BCI can be used to

trigger specific commands as specific frequencies are classified.

In this thesis, we developed a new non-invasive BCI method to modulate ongoing

brain activity in the alpha and gamma band range in order to investigate their

influence on visual performance. To this effect, we designed and implemented a

combined active and reactive BCI method, with an integration of neurofeedback in

BCI. The active BCI includes a neurofeedback method to train volunteers to delib-

erately modulate brain activity in different frequency bands and topographic areas.

The reactive BCI includes signal preprocessing and feature extraction with an adap-

tive presentation of visual stimuli (i.e. stimuli in Figure 1.2a) within specified brain

states. Thus, with this combined BCI method we aimed to manipulate brain activity

in the alpha and gamma band in real-time in order to test for visual performance

consequences during frequency manipulation.

In the next section, we outline the research questions, which we aimed to answer

with our custom-designed BCI.
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1.2 Research Questions

The main neuroscientific research question and hypothesis in this thesis is:

• Increased gamma band activity in the visual cortex improves visual

object processing

If our first hypothesis is true we aim to test for the following hypothesis:

• Improvement of visual object processing is specific to gamma band

oscillations

Since volunteers were trained to modulate brain activity in the alpha and in partic-

ular the gamma band range, several important aspects had to be considered during

the development of the BCI method. Hence, the BCI method had to account for

the following aspects:

• Artifacts: Oscillations in the gamma band are extremely susceptible to arti-

facts, such as eye or muscle movement, which occur in a common frequency

range. In particular, microsaccadic eye movements can affect gamma band

activity (Yuval-Greenberg et al., 2008). Thus, one has to make sure that the

modulated gamma band activity is not affected or influenced by artifacts and

represents pure neural activity.

• Design: Another consideration conserns the visual display of the neural feed-

back signal. The display should include all relevant information in a compact

form to avoid distraction, allow a rapid extraction of the information and at

the same time motivate volunteers to learn to increase gamma band activity.

• Trainability: The volunteers should be able to deliberately modulate oscilla-

tions in the gamma band throughout the neurofeedback training (Zoefel et al.,

2010). A spectral effect should be found in the trained gamma band range.

In a series of experiments, the custom developed BCI method was applied to reveal

the functional role of alpha and gamma band oscillations in the visual cortex. Within

Experiments I to IV, the BCI method included

• neurofeedback training of a specified frequency range

• online estimation of the predefined oscillatory activity

• immediate presentation of stimuli triggered by the results of ongoing estimation
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• customized experimental design

• offline detection of artifacts

• offline evaluation of trainability and accuracy of BCI training

In Experiment V, the BCI method was enhanced with

• online detection of artifacts

• incorporation of a source-based BCI method with LORETA. This combination

allows the modulation of oscillatory activity in a selective brain region in the

human brain leading to a more precise training. This source-based approach

increases the accuracy of BCI training, as will be shown.

In the following, we will briefly introduce the experiments and the scientific questions

they addressed.

1.2.1 Experiment I

The first experiment was designed to train volunteers in order to increase oscillations

in the gamma band range (30 to 45 Hz) in the visual cortex.

Experiment I was designed to answer the following research questions:

• Can we apply a BCI method to modulate oscillations in the gamma band?

• Can volunteers learn to deliberately modulate oscillations in a predefined fre-

quency range and in a selected area?

1.2.2 Experiment II

In Experiment II, the induced increase of gamma band activity was used to examine

the impact on visual object processing as volunteers had to perceive an object pre-

sented in a noisy environment (i.e. stimuli in Figure 1.2a). The object perception

task was performed during ongoing gamma band BCI training as images were shown

either during phases of successfully increased gamma band activity or during phases

of lower gamma band activity. If ongoing gamma band activity over the visual cor-

tex is causal for an enhanced processing of visual stimuli, we expected that a high

level of prestimulus gamma band activity should improve the perception of objects
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in a noisy environment.

Experiment II was designed to answer the following research questions:

• Does the manipulation of gamma band activity lead to an improvement of

visual performance?

• Do volunteers perceive and recall more images during high gamma band power

as compared to low gamma band power?

1.2.3 Experiment III

In a third experiment, two different frequency ranges were trained. Using a differ-

ent feedback display, the volunteers were now instructed to increase gamma band

(30-45 Hz) as well as alpha band (8-12 Hz) oscillations. The aim was to examine a

possible transfer from volunteers that had already learned a deliberate influence on

the gamma band power to a more complex and new task. Trained volunteers from

the previous experiments took part in this experiment that was designed to imitate

a simple computer game in which a ball should be moved along a track.

Experiment III was designed to answer the following research questions:

• Can volunteers learn to switch between modulating different frequencies?

• Does the new display design have a positive motivation effect on the volunteers?

1.2.4 Experiment IV

Experiment IV was designed to test for the specificity of the feedback effect with

a control group that was situated in an identical setting but without any influence

on the displayed signal, thus without real feedback. The results from Experiment II

showed an influence of the induced gamma band increase on visual processing during

feedback. In Experiment IV, we tested for possible longer lasting improvements of

visual skills induced by the feedback training as both groups conducted behavioral

experiments before and after training.
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Experiment IV was designed to answer the following research questions:

• Is the effect of gamma band increase specific to the BCI training or are equal

effects found in a control group without BCI training?

• Is there an improvement of visual skills even after BCI training was stopped?

1.2.5 Experiment V

In this experiment, a source-based BCI method was applied to train volunteers to

deliberately switch between modulating alpha (8-12Hz) and gamma band oscilla-

tions (40Hz) in a selective brain region in the visual cortex. As in Experiment II,

noisy images were presented during BCI sessions of the alpha and the gamma band.

Experiment V was designed to answer the following research questions:

• Does an online feedback of eye and muscle artifacts improve BCI training?

• Can we use source information to train alpha and gamma band frequencies in

a defined region?

• Which areas are affected topographically by alpha and gamma band training

and are they restricted to the selected trained area?

• Do volunteers detect more images shown during gamma band or alpha band

BCI training?

In summary, with our custom-developed BCI method, we aimed to manipulate os-

cillations in the alpha and gamma band frequencies in order to explore the effect of

this frequency modulation on visual object processing.
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Chapter 2

The Developed Brain Computer

Interface

In this chapter we introduce the BCI method, which was designed and implemented

in order to train volunteers to modulate alpha or gamma band activity in the visual

cortex. First the experimental setup of the BCI is introduced, including a descrip-

tion of the utilized hardware (section 2.1) followed by a detailed description of the

BCI setup (section 2.2). In section 2.3, we will outline how data was processed in

Experiments I to V together with a detailed description of the signal processing and

feature extraction methods. For the realization of our BCI method, several novel

signal processing modules were developed and implemented in C#, which are intro-

duced in the following. In the last section (2.4) of this chapter, we will outline the

importance of timing for a real-time BCI.

2.1 Hardware

2.1.1 Electrodes

Electroencephalography, as introduced in the last chapter, is applied to measure

electrical activity from the scalp. The brain activity is measured with electrodes

attached on an elastic brain cap placed on the volunteers head. These electrodes are

usually made of gold and silver and are covered with a chloride layer. A centered

circular in the electrodes allows the conductor of the experiment to fill in electrolyte
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Figure 2.1: (a) Positions of electrodes and nomenclature of the corresponding EEG channels
according to the international 10-20 system of electrode positions. (b) ActiCAP brain cap.

gel in order to attain an incessantly conducting connection between the volunteers

head and the electrode plate.

Within the last years active electrodes have been introduced (ActiCAP, BrainProd-

ucts). ActiCAP combines active electrodes based on Ag/AgCL sensors with in-

tegrated noise subtraction circuits. The electrodes are attached on the brain cap

according to a international standard 10-20 system montage (see Figure 2.1a). The

standard montage handles up to 32 electrode positions and can be extended with ad-

ditional electrodes by placing them in between the standard system. The brain caps

can handle up to 128 electrodes and depending on requirements of an experiment

referring to spatial resolution less electrodes can be used. The electrode positions

and naming are referred to anatomical structures such as occipital (O), parietal (P),

frontal (F), temporal (T) or the central (C) sulcus and numbering denote sagittal

(anterior-posterior) lines.

EEG activity is derived bipolar, i.e. either the activation is measured between two

electrodes or all electrodes are referred to a common reference electrode. Bipolar

electrode arrangements function to suppress signals common to both electrodes in

order to reveal the electric potential difference. The reference electrode is mostly

placed on the nose or measured bipolar at the left and right mastoids. Further elec-

trooculographic (EOG) electrodes are attached vertically (VEOG) and horizontally

(HEOG) from below the left eye (supraorbital VEOGS and infraorbital VEOGI)
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and from the outer canthi of the eyes (left HEOGL, right HEOGR), for detecting

eye movements. In addition, electromyography (EMG) can be used as a technique

for evaluating electrical activity generated by muscle activity. EMG is typically de-

rived bipolar with two electrodes attached along the muscle. In our experiments two

electrodes N1 and N2 were attached along the trapezius muscle in order to derive

neck muscle activity.

2.1.2 Amplifier and PCs

As the electrodes are attached to the brain cap, the electrode wires are then con-

nected to the corresponding amplifiers (BrainVision BrainAmp from Brain Products

GmbH, Munich, Germany). The amplifier can be used to record EEG, EOG, EMG

signals as well as evoked potentials with a sampling rate of 5 kHz per channel with

a frequency up to 1 kHz. At this point the analogous voltage change of the channels

is A/D converted and the acquired EEG data is transmitted to the recorder PC (see

Figure 2.2). The recorder PC is a common Intel Pentium D machine with 3.4 GHz

and 3 GB of RAM running Microsoft Windows XP. The feedback PC is a common

Intel Pentium D machine with 3 GHz and 1 GB of RAM running Microsoft Windows

XP.

2.2 BCI Setup

In a typical BCI setup the volunteer sits in a separate room and looks at a display

monitor with a viewing distance of 1m as illustrated in Figure 2.2. A brain cap

with mounted electrodes is then placed on the volunteers head and connected to

the BrainProducts BrainVision amplifier. The electrical brain activity is measured

and the analogous voltage change of all channels is transferred to the amplifier. The

amplifiers perform an A/D conversion and the acquired EEG data at a sampling

rate of 5 kHz is transmitted to the recorder PC. The BrainVision recorder software

stores the data in raw format in a database. In addition, the recorder software acts

as a Remote Data Access (RDA) server, which allows EEG data to be passed via

TCP/IP to other computers in a network. In this process the recorder PC acts as the

server and a second computer, the feedback PC, runs the corresponding client with

the BrainVision RecView (Recording Viewer) software. The feedback PC (with

the running RecView software) receives the data via TCP/IP and allows for the
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Figure 2.2: Abstract overview of the experimental setup. The volunteer is situated in a
soundproof room facing the feedback monitor and wears the brain cap with the mounted
electrodes, which is connected to the amplifier. The recorded EEG signals are first trans-
ferred to the recorder PC, where the data is stored for later offline analyses. The recorder
PC acts as the server and transmits the data to the client feedback PC over the network.

incorporation of additional novel modules for data preprocessing, data classification

and visual data presentation. As the incoming data is analyzed and classified the

volunteer is visually informed about a successful manipulation of the desired signal

of interest on the feedback monitor. A clone view is established for the experiment

conductor in order to monitor the volunteer’s performance.

2.3 Data Processing

2.3.1 Data Acquisition

A BCI method consists of three main components, namely data acquisition, data

preprocessing with feature extraction and the visual feedback for the volunteer as

illustrated in Figure 2.2. For the real-time processing of EEG data, an access to

the continuously incoming data has to be established first. The recorder software
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Figure 2.3: Timeline diagram of the TCP/IP protocol between the Recorder and the
RecView software.

provides the specification of a TCP/IP protocol under which data is transferred to

the RecView software as visualized in Figure 2.3. After a TCP/IP connection is

established the RecView client is set up to receive data. If data is available, then

the Recorder transmits one block of data at a time. A block of data contains a

data matrix of dimensions channels-by-samples. The number of channels depends

on the number of utilized electrodes for measuring EEG activity and the number of

samples in a block depends on the subsampling rate set in the Recorder software. In

Experiments I and II, i.e., we measured EEG with 28 electrodes with a subsampling

rate of 250 Hz. With these settings the Recorder transmits a data matrix of 28

channels -by- 5 samples (1000ms
250 × 5) every 20 ms. Once the RecView software

receives a block of data, the data matrix can be processed using signal preprocessing

and feature extraction algorithms.

In this thesis, the RecView software was mainly used for data acquisition. The

modular structure of RecView allowed for extending the software by incorporating

additional algorithms. For the realization of our BCI method based on gamma

band oscillations several novel algorithms were necessary. These algorithms can

be integrated in the RecView software with the implementation of a collection of
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Table 2.1: RecView interfaces.

Interfaces Description

IDataIn This interface is mandatory. It receives the data, setup information
and status information from the previous module.

IDataOut This interface is optional. If the results of the module are to be passed
to RecView so that they can be viewed or distributed to further mod-
ules, this interface has to be implemented. It establishes the connec-
tion between the module and another IDataIn interface supplied by
RecView.

IFilterParameters This interface is optional. This interface allows to enter parameters, It
displays a user dialog box on request.

ISimpleView This interface is optional and can be used for the visualization of data.

RecView interfaces within a class (see Table 2.1 for an overview). These classes were

developed using Microsoft Visual Express 2008 in the C# programming language.

In RecView a module is defined to consist of a single class or several classes.

In the following sections we will introduce our custom-written modules (highlighted

in red in Figures 2.4 and 2.8) and the interfaces which were implemented. Fur-

thermore, we will outline how the data was preprocessed in order to conduct our

experiments. The data processing steps in Experiments I to IV are similar and

therefore summarized in section 2.3.2. In Experiment V, however, the processing

of data differed to all other experiments (see Figure 2.8) and is therefore explained

in detail after the description of signal processing in Experiments I to IV given in

section 2.3.3.

2.3.2 Data Processing in Experiments I to IV

2.3.2.1 Fast Frequency Transformation

In Experiments I to IV we aimed to train volunteers to deliberately increase oscil-

lations in the gamma frequency range (30-45 Hz). In order to analyze the incoming

data for their gamma frequency content, the data had to be converted from the time

domain into the frequency domain. The method applied is known as the Fourier

Transform. The Fourier transform is based on decomposing signals into sinusoids.

Jean Baptiste Joseph de Fourier (1768-1830) claimed that any continuous periodic

signal could be represented as a sum of properly chosen sinusoidal waves. The dis-

crete Fourier Transform (DFT) is the numeric form of Fourier Transform for signals
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Figure 2.4: Experiment I to IV: Overview of signal processing modules. The modules in
red represent novel custom-written modules, while blue colored modules represent software’s
modules.

defined at discrete time points and assumed to repeat in a periodic fashion. The

discrete Fourier Transform is defined as:

F (u) =

N−1∑
x=0

f(x)e−j
2πx
N
u, u = 0, 1, . . . , N − 1 (2.1)

where f(x), x = 0, 1, . . . , N−1 is a discrete time signal in a finite interval represented

by N samples.

The equations for calculating the real and imaginary part of the frequency domain

are given by

<{F (u)} =
N−1∑
x=0

f(x) cos
2πux

N
and (2.2)

={F (u)} = −
N−1∑
x=0

f(x) sin
2πux

N
, (2.3)

respectively.



28 Chapter 2. The Developed Brain Computer Interface

The Fast Fourier Transform (FFT) is a rapid and more efficient version of the DFT.

In most cases and especially in real-time applications the computational impletation

of the DFT is accomplished using the FFT algorithm (Cooley & Tukey, 1965).

As the FFT module is present in the RecView software, the incoming data are

first transmitted to the software’s FFT module for the evaluation of the frequency

spectra for Experiments I to IV (see Figure 2.4). As the algorithm is present in the

RecView library, we will not enter into further algorithmic details. In short, Cooley

and Tukey discovered that when the DFT of length N is a non-prime number, a

divide-and-conquer method would allow for faster computation of the DFT. The

FFT algorithm requires the number of samples in the signal to be a power of 2.

The algorithm computes a DFT significantly faster with a maximum of O(NlogN)

operations where, by definition, the DFT would require O(N2) operations.

As the EEG data was subsampled with 250 Hz in the recorder software and the FFT

algorithm requires a sampling number of a power of two for faster processing (such

as 256 samples), the FFT module of RecView uses a process called zero-padding.

The zero-padding simply fills the remaining spaces with zero-valued samples at the

tail of the sequence. In our case it would zero-pad the 250 sample signal with 6

zeroes. The sharp boundary is softened by the windowing function of the FFT. The

zero-padding with the windowing does not add new information, but rather increases

spectral resolution (Park, 2010). The resulting spectra of the zero-padded version

is an interpolated version of the original with 3 more frequency bins (250
2 = 125

bins, 256
2 = 128 bins). Every second the FFT module returns a vector with as many

complex valued Fourier coefficients as there are values in the input signal. Thus,

applying an FFT on 2 selected channels the resulting vector consists of a real and

imaginary component for each channel in each frequency resulting in a vector length

of 512 (128 frequency bins × 2 channels × 2 real and imaginary components = 512).

As demonstrated in Figure 2.5, the data is saved in the vector in a multiplexed

order, which has to be considered for further processing of data. The time-diagram

in Figure 2.5 visualizes when the FFT module is called by the RecView software.

Since 5 data samples are transmitted per data block, the FFT module caches 50

data blocks (50 × 5 = 250) and then computes the FFT algorithm. The resulting

data vector is then transmitted back to RecView and can be processed by further

modules.
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Figure 2.5: Resulting data vector after the FFT is applied. Example is drawn for 2 channels,
as each channel consists of a real and imaginary component for each frequency.

2.3.2.2 Feature Extraction Module

The resulting data vector of the FFT module contains frequency information of

frequencies from 1 to 128 Hz. In the first experiment we aimed to extract frequencies

in the gamma band range from 30 to 45 Hz and to feed the gamma band content back

to the volunteer. Therefore, a novel module FeatureExtraction was implemented

to extract the relevant frequencies.

In Experiments I to IV, the proportion of gamma band activity in the total spectrum

of the EEG in the channels PO7 (= channel1) and PO8 (= channel2) was extracted

(in Experiment III, alpha band activity was extracted in addition to the gamma

band activity). Channels PO7 and PO8 were selected as feedback electrodes, as

these are spatially closest to the lateral occipital lobe which we aimed to modulate
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(see section 1.1.1.1). Therefore, the relevant real and imaginary components of the

gamma band from 30 to 45 Hz were selected from the resulting FFT vector. The

real and imaginary pairs of a channel are converted to the amplitude by:

‖F (u)‖ =

√
<{F (u)}2 + ={F (u)}2 (2.4)

where < the real and = is the imaginary component. The power is calculated

as the square of the amplitude ‖F (u)‖2. Thus, for the extraction of frequencies

fi = 30, 3, . . . , 45 Hz the power value in channels cj = PO7, PO8 for the relevant

frequencies was calculated and added up:

sumPower =

15∑
i=1

2∑
j=1

‖F (u)‖2fi,cj (2.5)

In all experiments, change in alpha or gamma band activity was calculated as the

percentage change in band power during a certain interval compared to a refer-

ence measure. The reference measure was calculated during a passive period. A

passive period was usually set for 10 seconds. In each second the sumPower for

alpha or gamma band activity was calculated and a mean sumPower baseline value

(meanPowerPassive) was derived at the end of the passive period. During feed-

back periods (10s), every second the percent change of power activity to the passive

baseline (powerContent) was calculated.

Throughout the experiments the arrangement of passive and feedback periods chang-

ed (for an overview see Figure 2.7). Within the first two experiments a passive

period (length 10s) was measured before each feedback period. A session consisted

of 11 passive-feedback paired periods. In the third experiment a session consisted

of two passive periods at the beginning followed by a single feedback period with

variable length depending on the volunteer’s performance. The fourth and fifth

experiment started off with two passive periods followed by eight feedback periods.

In all experiments except for Experiment III, a success display was presented after

each feedback period. The success period was added to inform volunteers about

their overall performance in modulating band power after each feedback period and

in addition served as a short break. The success display in Experiment III was

however, presented within the feedback period, not serving as a break, rather than

to motivate volunteers to improve performance.
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Figure 2.6: UML diagram of Experiment I to IV.

Interface

Our FeatureExtraction module implements a filter attribute in order to be iden-

tified as a module in RecView (see Figure 2.6). The FilterAttribute defines 7

elements. The first element defines the 128-bit globally unique identifier (GUID)

of the module. The second and third element consist of the display name and a

short description of the module. The following four elements define the input and

output data types. In our module, we expect the input data from the FFT module

in the frequency domain DataTypes.FrequencyDomainComplex and output data in

the frequency domain DataTypes.FrequencyDomain. The last two parameters are

reserved and set to 0.

Furthermore, the interfaces IDataIn and IDataOut were implemented in the Feat-

ureExtraction class in order to access the data and to forward data to subsequent

modules, respectively (see Table 2.1). The IDataIn.Start() method, i.e., can be

applied for a modulation of channel names or channel information. The most relevant

method was the IDataIn interface method IDataIn.AddData() which received the

incoming data, i.e., the FFT vector. Within this method we implemented equations

2.4 and 2.5 in order to determine the powerContent.
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The PortAccess class allows to send event markers via parallel port to the recording

EEG PC. Hence, during important events, such as the presentation of an image an

event marker can be sent and marked in the EEG recordings in order to ease later

offline analyses.

In the following section, we will describe how the powerContent was visually fed

back to the volunteer.

2.3.2.3 Viewer Module

Figure 2.7: Overview of passive and feedback period arrangement in a session of each exper-
iment. The numbering of each feedback period represents the number of feedback periods
in each session of the experiments.

For each experiment, we designed and implemented individual Viewer modules for

the visual feedback of power activity (see Figure 2.7 for an overview). In Experiment

I, i.e., the powerContent was visualized by a value at fixation during the feedback

period. However, in Experiment III the powerContent was visualized by a ball

in a labyrinth, which moved when increased power activity was measured. The

visual feedback changed along the experiments as we aimed to include all relevant

information in a compact form to avoid distraction and at the same time motivate

volunteers to learn to increase alpha or gamma band activity. A detailed description
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of the experimental procedure and volunteer’s task for all experiments is outlined in

the next chapter.

Interface

In the Viewer module we implemented the interfaces IDataIn and ISimpleView.

The interface ISimpleView allows to visually present the incoming data. The

method Draw() draws the visual feedback display and the method onClick() de-

tects mouse key buttons. This was necessary during tasks in which volunteers were

told to press a mouse button if an object was detected in an image. When and how

these images were presented is outlined in the next chapter.

In summary, the change of alpha or gamma band activity is calculated in the

FeatureExtraction module and visually presented by the Viewer module.

2.3.3 Data Processing in Experiment V

In Experiment V, a source-based BCI method is realized to train volunteers to delib-

erately switch between modulating alpha and gamma band oscillations in a selective

brain region in the visual cortex. During BCI training we aimed to detect and in-

form volunteers about occurring online artifacts. In order to realize a source-based

BCI method with artifact detection new custom-written modules had to be imple-

mented and added to the RecView software. In Figure 2.8 an overview of the signal

processing modules in Experiment V is presented. The FrequencyFilter and the

LORETA module are present modules in the RecView software (colored blue) while

the Preprocessing, ArtifactDetection, FrequencyExtraction and Viewer mod-

ules were specifically developed for this experiment (colored red). In the following,

each module is introduced in the order in which the signal is actually processed and

explained in detail.

2.3.3.1 Preprocessing Module

The Preprocessing module was implemented in order to preprocess selective chan-

nels for the ArtifactDetection module. This included the bipolar calculation of

EOG channels for blink detection, the Neck channel for muscle artifact detection

and the removal of amplitude drifts in EOG channels.
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Figure 2.8: Experiment V: Overview of signal processing modules.

Bipolar Calculation

The module included the bipolar calculation of the new channels vertical EOG

(VEOG), horizontal EOG (HEOG) and Neck channels (see section 2.1.1) which

are derived as follows:

VEOG =VEOGS - VEOGI (2.6)

HEOG = HEOGR - VEOGL (2.7)

Neck = N1 - N2 (2.8)

DC-Drift Removal

Before the data is processed to the ArtifactDetection module, we had to consider

slow amplitude drifts in the recording of the EEG, known as Direct Current drifts
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Figure 2.9: (a) Signal without DC drift. (b) Same signal with a DC drift starting at time
1000.

(DC-drifts) (see Figure 2.9b for an example). The DC value is defined as the average

value of the EEG signal around which the signal oscillates. A DC-drift is the change

of the DC value over time. These drifts are influenced by electrode polarization as

well as from thermal and electrochemical changes in the skin and in the electrolytes.

Since the artifact detection algorithm in the following module is based on amplitude

threshold levels in the VEOG, HEOG and Neck signals, the removal of DC-drifts is

highly important. This issue is illustrated in Figure 2.9b. The red circled areas show

typical blink artifacts. If a signal threshold of 50 µV is defined for blink detection

the first blink in both signals would be correctly detected. However, due to the DC-

drift the algorithm would incorrectly classify every following value in Figure 2.9b

above 50 µV as a blink.

DC drifts are very slow oscillations in a low frequency range, usually smaller than 0.5

Hz. In order to remove DC drifts we implemented and designed a digital high-pass

filter that allows frequencies higher than 0.5 Hz to pass and blocks lower frequencies.
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Design of a High-Pass Filter

This section provides a brief overview of the theory behind the design of a high-pass

filter and is based on (Milivojevic, 2009; Parks & Burrus, 1987; Rabiner & Gold,

1975; Mirta & Kaiser, 1993; Smith et al., 1997).

In an ideal high-pass filter with a cut-off frequency of ωc= 0.5 Hz, the passband

frequencies ω ≥ ωc would remain unchanged, while the stopband frequencies ω < ωc

would be completely attenuated. The amplitude response (or magnitude frequency

response) is defined as a function giving the gain of a filter at every frequency. The

amplitude response of an ideal high-pass filter is visualized in Figure 2.10a. The

ideal high-pass filter would have a sharp roll-off gain = 0 at the cut-off frequency

and a flat amplitude response in the passband and the stopband. However, such

ideal filters are impossible to realize in practice without having signals of infinite

extent in time. Therefore, in practice a real-time high-pass filter has to be realized

as an approximation of the the ideal high-pass filter.

The four major approximation methods encompass the Butterworth, Chebyshev,

inverse Chebyshev, and Elliptic approximations. In comparison to all other methods,

Butterworth filters are characterized by a maximally flat magnitude (no ripples) in

the passband and stopband (see Figure 2.10a). The filter design usually begins with

the definition of a normalized low-pass filter (cut-off frequency ω = 1), which is

then modified into a high-pass filter. The Butterworth approximation’s magnitude

response (gain) for a low-pass filter is defined as:

|H(jω)|2 =
1√

1 + ω2N
(2.9)

where N represents the filter order. As N →∞ we get the ideal low-pass response.

Due to the magnitude flatness the Butterworth filter achieves a wide transition

region from stopband to passband (slow roll-off), which can be improved by choosing

a higher filter order (see Figure 2.10b). The higher the filter order, the steeper the

filter gain falls. As maximally flat pass- and stopbands are important and less

restrictions on roll-off characteristics are allowed, we apply the Butterworth filter.

Once the Butterworth filter is designed for the continuous-time case (analog filter),

it is then converted into a digital filter. The advantage of using digital signals

is due to the efficient and cost effective transmission of information. In order to

design a digital high-pass filter the type of filter is selected first. Digital filters can
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Figure 2.10: (a) The magnitude response of an ideal high-pass filter and the 2nd, 4th and 6th
order Butterworth approximation for a cut-off frequency of 0.5 Hz. An interesting property
of the Butterworth filter is given in the case of ω = ωc, then the amplitude response is equal
to -3dB, regardless of the filter order. (b) The magnitude response of the Butterworth,
Chebyshev, inverse Chebyshev, and Elliptic approximations in comparison for a 4th (we
selected the 4th order for visualization as the ripples can be nicely seen) order filter with a
cut-off frequency of 0.5Hz.
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be subcategorized into finite impulse response (FIR) and infinite impulse response

(IIR) filters (Smith et al., 1997). An impulse is defined as a signal x with

x =

{
1, t = 0

0, else

}
(2.10)

If the impulse is set as the input to a FIR filter, the resulting output impulse response

of the filter has compact support, i.e., is non-zero for a finite period of time. However,

for an IIR filter, the impulse response is non-zero over an infinite length of time.

This is due to the definition of the IIR filter also known as a recursive digital filter,

in which the output is the weighted sum of the current past samples of input. The

IIR filter is defined as:

y(n) =
M∑
k=0

x(n− k)bk −
N∑
k=1

y(n− k)ak, (2.11)

with M as the feedforward filter order with the current and past input samples, the

feedforward coefficients bk, the feedback filter order N with the past output samples,

the feedback coefficients ak, the input signal x(n) and the output signal y(n). In

contrast to the definition of the IIR filter, the FIR filter does not include previous

output values. The decision which filter to use is based on the characteristics of the

filters. IIR filters are usually applied when the frequency response is of importance

rather than the linear phase information. Compared to FIR filters, IIR filters require

less memory and calculation to execute similar filtering operations (Smith et al.,

1997). Hence, we implemented an IIR digital filter.

The bk and ak coefficients in equation 2.11 are determined based on the selected

analog filter type and calculated within the design process of the IIR Butterworth

filter which is described in the following and based on (Milivojevic, 2009; Parks &

Burrus, 1987). In a first step a reference analog prototype filter, usually a low-pass

filter, is designed. The resulting reference analog prototype transfer function Ha(s)

is then transformed to the appropriate type of analog filter, i.e., high-pass, band-

pass or band-stop with predetermined passband and cut-off frequencies, resulting

in H(s). In the last step the analog filter is then transformed into a digital filter

using a bilinear transformation (transformation of the continuous-time system to

a discrete-time system), resulting in H(z) which includes the coefficients bk and

ak (Milivojevic, 2009). Based on the order of transformation the IIR filter design
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process can be split into several steps as outlined in the following and described in

(Milivojevic, 2009)

1. Setting of filter specifications:

• Type of filter: High-pass filter

• Sampling frequency fs = 250 Hz

• Filter order N = 2. A second order filter response rolls off at -12 dB per octave

(-6dB per order).

• Passband cutoff frequency fc = 0.5 Hz.

• Selected analog filter type: Butterworth filter

2. Transformation of analog filter system from the time domain into the frequency

domain: by using the transfer function Ha(s) with s = jω representing the complex

frequency (from Laplace transform). Substituting s = jω in equation 2.9 we get:

Ha(s)Ha(−s) =
1

1 +
(
s
j

)2N
(2.12)

3. Determination of poles and zeros of the transfer function: For an easier expla-

nation, the transfer function can be written in the form H(s) = N(s)
D(s) . The systems

zeros are the s-values that cause the numerator N(s) to become zero. The systems

poles are the s-values for which the denominator becomes zero D(s) = 0.

The Butterworth reference filter has no zeros, (N(s) = 1). The denominator 1 + sk
j

is equal to zero in the case of ( sj )
2N = −1. With ejπ(2k−1) = −1 and j = ejπ/2 we

obtain:

s2N = ejπ(2k−1+N) (2.13)

Solving the equation for sk we obtain the poles of Ha(s)Ha(−s) which can be pre-

sented in the complex unit circle at:

sk = e
jπ
2N

(2k+N−1), k = 0, 1, . . . , 2N (2.14)

Since we restrict Ha(s) to correspond to a stable, causal filter, its poles must all be
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in the left half plane of the unity circle, i.e.

sk = e
jπ
2N

(2k+n−1) (2.15)

sk = cos
π

2N
(2k +N − 1) + j sin

π

2N
(2k +N − 1), k = 1, 2, 3, . . . , 2N (2.16)

The reference analog prototype filter transfer function is, regardless of its type (But-

terworth, Chebyshev,..) given by (Milivojevic, 2009):

Ha(s) = H0

M∏
k=1

(s− zk)

N∏
k=1

(s− sk)
(2.17)

where H0 is a constant, zk the zeros of the transfer function, sk the poles of the

transfer function, M the number of zeros of the transfer function and N number

of poles. The transfer function of the Butterworth reference analog prototype filter

has no zeros and is therefore defined as:

Ha(s) =
1

N−1∏
k=0

(s− sk)
(2.18)

4. Transformation of the Butterworth reference analog filter into a high-pass analog

filter with the specified cut-off frequency ωc. By performing the following transfor-

mation

s→ ωc
s

(2.19)

the Butterworth reference analog filter 2.18 is transformed into a high-pass analog

filter with:

H(s) =
1

N∏
k=1

(−sk)

sN

N∏
k=1

(
s− ωc

sk

) (2.20)

and the analog prototype filter cut-off frequency ωc is determined as:
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ωc = tan

(
π
fc
fs

)
(2.21)

5. Bilinear transformation of the analog filter to a digital filter:

s =
1− z−1

1 + z−1
(2.22)

Substituting the complex variable s in 2.20 we obtain:

H(z) = H0(−1)N−M

M∏
k=1

(1− zk)

N∏
k=1

(1− sk)

(
1 + z−1

)N−M M∏
k=1

(
1− 1+zk

1−zk z
−1
)

N∏
k=1

(
1− 1+pk

1−pk z
−1
) (2.23)

With a more condensed form of the previous expression with the coefficients ak and

bk we obtain:

H(z) =

M∑
k=0

bkz
−k

1 +
N∑
k=1

akz−k
(2.24)

The coefficients were precalculated and fed to equation 2.11 for the benefit of sav-

ing computational cost. For the outlined steps in the calculation of a 2nd order

Butterworth IIR filter with a cut-off frequency of 0.5 Hz, see Appendix.

Interface

In the Preprocessing module we implemented the interfaces IDataIn, in order to

get the data samples for preprocessing and IDataOut, in order to pass the prepro-

cessed data to the next module. We derived three new channels VEOG, HEOG and

Neck which are passed to RecView for further processing. An overview of the UML

diagram of Experiment V is given in Figure 2.11.

In summary, in our custom-written Preprocessing module we prepared the relevant

electrodes VEOG, HEOG an Neck in order to apply artifact detection algorithms on

these channels in the following module. Therefore, we derived the bipolar measured

VEOG, HEOG and Neck channnels. In addition we implemented an IIR Butterworth

filter in order to remove DC-drifts in electrodes VEOG, HEOG and Neck.
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2.3.3.2 Artifact Detection Module

During BCI training it is important to address non-cerebral sources of artifacts. Un-

desired artifacts can establish significant changes in the EEG and, thus, can change

or manipulate brain signals (Ebrahimi et al., 2003; Fatourechi et al., 2007). Two

groups of artifacts characterize a serious problem for neurofeedback applications:

electrical activity generated by muscle contraction in jaw, neck or shoulders (EMG

artifacts) and activity generated by eye blinks, eye movements (EOG artifacts) or mi-

crosaccades. In the custom-written Artifact Detection module we implemented

three artifact detection algorithms that constantly monitored EOG, microsaccadic

and EMG activity during the neurofeedback sessions. An overview of all detected

artifact types is given in Table 2.2.

EOG

For the detection of eye blinks, the bipolar derived channel VEOG from the Pre-

processing module was used. Thresholds for blink detection and eye movement

detection were established in a pilot study with twenty volunteers. The average

value of detected blinks over all volunteers was 140 µV with a standard deviation

of 104 µV. Thus, the threshold was set at 50 µV to assure the detection of smaller

blinks. Furthermore, blink artifacts are large amplitude distortions followed by neg-

ative voltage deflections. The negative deflections usually appear within a range of

300 ms around the positive peak. This a priori knowledge was used to improve the

detection of blinks and extensive vertical eye movements. Thus, if the VEOG signal

exceeds the threshold value and the difference between the maximum and minimum

values exceeds 60 µV, a blink is detected.

For the detection of eye movement, the bipolar derived HEOG channel was utilized.

While eye blinks produce spikes, vertical, horizontal and circular eye movements

produce rather square shaped EOG (Krishnaveni et al., 2006). Therefore, we spec-

ified that if a value exceeds the threshold value (average amplitude = 64 µV, sd =

34 µV, threshold = 20 µV), all data within the following 40 ms has to be greater

than the threshold value.

Microsaccades

A general concern has aroused towards the neural origin of gamma band activity in

non-invasive recordings. A recent study has proposed that scalp recorded gamma-
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band oscillations in parietal electrodes in EEG-data are influenced by microsaccades

instead of neuronal processes (Yuval-Greenberg et al., 2008). In order to assure

the neural origin of the measured gamma band increase and to estimate the influ-

ence of saccadic activity, we applied a recently proposed saccadic spike potential

(SP) detection method (Keren et al., 2009), which allows an accurate detection of

microsaccades directly in EEG traces without acquiring fast eye-tracking. Ocular

artifacts such as the SP are most prominent in the peri-orbital electrodes when refer-

enced to occipital or parietal electrodes (Boylan & Doig, 1989). Thus, for the offline

detection of SPs, a further ’radial’ electrooculogram channel (REOG) was derived

as recommended (Keren et al., 2009). The REOG channel is defined as the average

of all EOG channels referenced to the electrode Pz (see Figure 2.1 for Pz location):

REOG =
V EOGS + V EOGI +HEOGL+HEOGR

4
− Pz (2.25)

As suggested by Keren et al. (2009), the REOG channel was filtered with a Butter-

worth IIR filter of an order of 6, with a pass-band of 30-100 Hz for the detection of

microsaccades.

The detection threshold was set to 2 standard deviations above the mean of the

filtered signal. As the filtered signal was computed online we applied an online con-

tinuous standard deviation to avoid memory access (Welford, 1962; Knuth, 1998).

Here, the standard deviation is refreshed with incoming online data from the pas-

sive and feedback periods. The success display period was not encountered for the

calculation of the standard deviation as the period served as a break. After a short

initialization phase within the passive period the standard deviation converges to a

stable value. We exploited the saccade detection algorithm to determine the amount

and mean amplitude of detected SPs in both passive and feedback periods to test

for saccadic changes between the periods and across training. The REOG trace

yields reasonable accuracy for saccades above 0.2◦, which should be sufficient to

detect saccadic activity in visual paradigms (Keren et al., 2009). During the success

display volunteers were informed about their average SPs per second and SP ampli-

tude in the two passive periods and in the passed feedback period. Thus, volunteers

were informed if they exceeded the average SP amount or amplitude in the passed

feedback period.
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Table 2.2: Overview of detected artifact types for the custom-written Artifact Detection

module.

Artifacts Type Detection Channels

Eye Artifacts Eye blinks signal threshold VEOG

horizontal eye
movement

signal threshold HEOG

vertical eye
movement

signal threshold VEOG

Microsaccades signal threshold REOG

Gamma band specific
artifacts

neural source
of gamma ac-
tivity

Variable threshold =
gamma band activity
in ROI channels

VEOG
HEOG

Muscle artifacts Neck muscle
activity

Threshold = mean
70-80 Hz activ-
ity during passive
baseline

Neck

Jaw clenching Threshold = mean
70-80 Hz activ-
ity during passive
baseline

T7 T8

EMG

Most common sources of EMG are muscles, when closing, opening or clenching the

jaw. These muscle contractions generate high gamma frequencies, which are mea-

surable close to the temporal locations (T7, T8). Moreover, muscle contraction in

the neck can generate high frequencies as well. To control for possible EMG con-

tamination, channels T7, T8, and the bipolar derived Neck channel were subjected

to sixth order Butterworth filtering in the band-pass 70-80 Hz. During the passive

periods the average activity in the channels T7,T8 and the neck was calculated and

set as a baseline for the following feedback periods.

All EMG, EOG and microsaccade algorithms were tested online and offline with

identical results.

Interface

In the ArtifactDetection module we implemented the interfaces IDataIn and

IDataOut. The attributes blinkCounter, eyeMovCounter and saccadeCounter re-

turned a value of 1 if eye blinks, eye movements or saccadic eye movements were

detected, respectively, and a value of 0 if no artifacts were detected. The band-pass
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Figure 2.11: UML diagram of Experiment V.
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Figure 2.12: Frequency range settings in the FrequencyFilter module. (a) Magnitude re-
sponse for the gamma band frequency range with orders 2, 4, 6, 8, and 10. (b) Magnitude
response for the alpha band frequency range.

filtered channels T7, T8 and Neck were passed to RecView and were processed in

the FeatureExtraction module (see Figure 2.11).

In summary, the Artifact Detection module was implemented in order to detect

muscle and eye artifacts during online BCI training.

2.3.3.3 Frequency Filter Module

After preprocessing of the incoming data and artifact detection the Frequency

Filter module of the RecView software is utilized. As we aim to selectively modu-

late oscillations in the alpha and gamma band range, we use the Frequency Filter

module to extract the amount of alpha or gamma band activity in the recorded

EEG. The Frequency Filter module implements an IIR Butterworth filter and

allows for the selection of a specific frequency range of interest and the filter order

(see section 2.3.3.1 for details on the Butterworth IIR filter). Hence, for the gamma

band sessions the filter was set around 40 Hz (48 dB per octave, order 8) with a

notch filter of 50 Hz (to remove 50 Hz power line interference). A filter order of 8

was selected in order to sufficiently limit the band-pass region within the gamma

band frequency range (30-45 Hz) and to suppress other frequencies. Figure 2.12a

illustrates the magnitude response for order levels of 2, 4, 6, 8 and 10 for the gamma

band range. Higher orders would improve the frequency limitation, however the

difference between the magnitude response of order 8 and order 10 is very small.

Therefore, we selected a filter order of 8 in order to additionally save computational
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cost, as higher filter orders are more cost intensive with O(N) operations. For the

alpha sessions the filter was set around 10 Hz (48 dB per octave, order 8) before

transmitting the data to the LORETA module (see Figure 2.12).

2.3.3.4 LORETA module

Using electrical brain activity acquired from electrodes placed on the scalp, the

low-resolution electromagnetic tomography (LORETA) method estimates the dis-

tribution of electrical neural activity in three-dimensional space (Pascual-Marqui et

al., 1994). The LORETA localization method has been evaluated independently in

several laboratories (Yao & He, 2001; Phillips et al., 2002a, 2002b; Fuchs et al.,

1999) and has been extensively used in electrophysiological research (Pizzagalli et

al., 2002; Mulert et al., 2002).

In Experiment V, we aimed to combine LORETA with the BCI technique in order

to train gamma band and alpha band oscillations in the lateral occipital cortex

(LOC). As explained in the previous chapter (see section 1.1.1.1), gamma band

oscillations are important for visual object processing and the LOC is a functionally

well defined neural area for this process (Malach et al., 1995; Rose & Buchel, 2005).

It has been demonstrated that by combining LORETA with the BCI technique more

spatially specific information can be derived (Congedo et al., 2004). Hence, instead

of training the amount of alpha or gamma band activity in the electrodes PO7/PO8

as in Experiment I to IV, we aimed to train volunteers to directly modulate alpha or

gamma band activity directly localized in the LOC, for a more precise training. The

selected regions of interest (ROIs) were selected in the left LOC ([x,y,z] = [34, -73,

-8]) and right LOC ([x,y,z] = [-34, -73, -8]) with a sphere of 12mm, encompassing a

total of 7.2 cm3 in each ROI (Figure 2.13). The choice of the ROI was determined

by previous EEG studies (Rose & Buchel, 2005).

In the following subsections the mathematical background of the LORETA method

(Pascual-Marqui et al., 1994) is outlined.

Inverse Problem

The LORETA method (Pascual-Marqui et al., 1994) is a mathematical approach

dealing with the EEG inverse problem. The inverse problem is stated as: given

N electrode scalp measurements (Microvolts) at time t estimate the source current

density (Microamperes) within a three-dimensional solution space generating them.

Since the number of electrodes N is typically much smaller than the number of M
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Figure 2.13: Selected ROIs in the right and left LOC for BCI training.

sources (N � M) the measurements do not contain enough information about the

generators. Hence, there is an infinite number of different sources that can explain

the measured electrical potential on the scalp (Pascual-Marqui et al., 1994). The

inverse solution is therefore non-unique (Koles et al., 2001).

Forward Solution

If on the other way around however, the source within a 3D solution is known, the

electrical potentials on the scalp can be determined with a unique solution, which

is defined as the forward solution (Pascual-Marqui et al., 1994):

Φ = KJ + c1 (2.26)

where Φ is a vector with scalp potential differences measured by N electrodes with

respect to a reference electrode; J is a 3M -vector comprising the current densities at

M sources. Here the factor 3 takes into account that current density is estimated in

three components (dipole moments) x, y, and z, defining a three-dimensional space;

M is the number of predefined points (voxels) in the brain volume, equally spaced

and forming a cubic grid. 1 is a vector of ones. Constant c is a scalar reflecting the

physical fact that potentials are determined up to an arbitrary additive constant

(this is related to the choice of the reference electrode). K is the N × 3M lead field

matrix (Burger & Van Milaan, 1948). and contains information about the geometry

and conductivity of the head model (Weinstein et al., 2000).

Head Model and the Lead Field Matrix

The lead field matrix defines the contribution of each active source (voxel) at discrete

locations to potential measurements on the scalp. Hence, the matrix entry value Kij
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at the voxel location j with the electrode i contains the estimated contribution of

voxel j for the observed potential value at electrode i (see Figure 2.14).

Figure 2.14: A schematic representation of the lead filed matrix with a source (red circle) in
a voxel inside the brain. The thickness of the blue lines illustrate the contribution of voxel
j on, i.e., five electrodes placed on the scalp (black ovals). Thicker lines illustrate a higher
contribution than narrowed lines.

In order to solve the above equation, a realistic head model has to be applied in

order to calculate the distribution of electric potentials for given source locations.

The head model in the LORETA method uses a three-shell spherical head model

representing the scalp, the skull and the brain, respectively. Using sphere shaped

head models is computationally efficient. However, it lacks of modelling a realistic

head shape. Therefore, the LORETA method incorporates the realistic geometry

of the head and the brain with the registration of the three-shell head model to

the Talaraich human brain atlas, available as a digital MR Image from the Brain

Imaging Centre, Montreal Neurological Institute (Pascual-Marqui et al., 1994). The

solution space was limited to cortical gray matter and hippocampus, as defined

by the digitized Probability Atlas (Brain Imaging Centre, Montreal Neurological

Institute). Given the neuroanatomical constraints, this yields a total of 2394 voxels

at 7mm spatial resolution (distance between electrodes on the spatial surface).

Average Reference

In order to obtain source localization independent of the reference electrode, the

potential measurements and the lead field are transformed:

Φ→ HNΦ, (2.27)
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K→ HNK, (2.28)

where

HN = IN −
1

N
1N1T

N, (2.29)

is called the average reference operator (Pascual-Marqui, 1999, 2002, 2007).

The scalp potential differences Φ are known, and the average lead field matrix cor-

responding to a three-shell head model is used (Ary et al., 1981). We seek to solve

equation 2.26 for the unknown current density J . The inverse problem is stated as

Ĵ = TΦ (2.30)

where T (termed as resolution matrix) is a 3MxN generalized inverse of the lead

field matrix K. Ĵ denotes the estimated current densities. As described above the

inverse problem is known to have infinite solutions that may satisfy equation 2.26.

Inverse Solution

In order to find a unique solution to the inverse problem, so-called regularization

methods are applied in order to find the ’optimal’ solution. The regularization meth-

ods include physiological or structural assumptions which add specific constraints,

in order to approximate a solution to the inverse problem. The LORETA method

uses regularization methods including the minimum norm solution (Hämäläinen &

Ilmoniemi, 1994), the weighted minimum norm solution and maximal smoothness

(Pascual-Marqui et al., 1994), which are explained as follows.

The Minimum Norm (MN) - The MN solution is based on the pseudo-inverse of

the Moore-Penrose algorithm (Penrose, 1955; Barnett, 1990; Pascual-Marqui et al.,

1994). This method solves the inverse problem by determining the solutions that

minimize the Euclidean norm (the squared deviation of the data from a given model

is minimized using a least-squares method). Hence, the MN approach selects the

sources with the minimum overall current density within the brain (Koles, 1998)

which best fit the actual data. The minimum norm solution to equation 2.26 is

given by (Pascual-Marqui et al., 1994):

Ĵ = TΦ with: T = KT {KKT }+ (2.31)

where
(
KKT )+ is the Moore-Penrose pseudo-inverse.
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Weighted Minimum Norm (WMN) - Studies have shown that the MN solution favors

superficial sources, which describes the fact that weak sources close to the electrodes

have equal strength in activity as sources in deep locations (Pascual-Marqui et al.,

1994). To compensate for the undesired bias, weighted minimum norm source lo-

calization has been suggested. To this effect, the columns of the lead field matrix

are normalized to compensate for the lower representation of deeper sources (Jeffs

et al., 1987).

Ĵ = TΦ with: T = (W)−1 KT {KW−1KT }+ (2.32)

Equation 2.31 is extended with the weighting matrix W (see Pascual-Marqui (1994)

for more technical details). The minimum norm solution in 2.31 corresponds to

equation 2.32 for W = I.

LORETA - Both the MN and WMN approach are based on mathematical oper-

ations, rather than physiological assumptions. The LORETA method is defined

as a Laplacian-weighted minimum norm solution that is based on the physiolog-

ical idea of neuronal synchronization (Gray et al., 1989). The measurement of

EEG is only possible due to the fact that neighboring pyramidal neurons fire in

synchrony (Hämäläinen et al., 1993). Using this physiological assumption in math-

ematical terms, the LORETA method forces spatial smoothness (Pascual-Marqui

et al., 1999). Hence, the current density at one voxel is compared with that of its

closest neighbors and set equal to the average current density of the neighbors. As

a consequence of smoothing, the solution produces a blurred-localized image of a

point source. Hence, the LORETA method localizes sources with a high temporal

resolution and a low spatial resolution. Formally, the LORETA method corresponds

to (Pascual-Marqui et al., 1994):

Ĵ = TΦ with: T =
(
WBTBW

)−1
KT {K

(
WBTBW

)−1
KT }+ (2.33)

Equation 2.33 is extended with the discrete Laplacian operator B (see Pascual-

Marqui (1994) for more technical details).

sLORETA - In 2002, Pascual-Marqui introduced an improvement of the LORETA

method, called Standardized Low-Resolution Electromagnetic Tomography (sLOR

ETA). Unlike LORETA, sLORETA is not based on Laplacian spatial smoothness to

solve the inverse problem and does not compute current density but rather statistical

scores (Pascual-Marqui, 2002). The method is based on the standardization of

the minimum norm inverse solution (see Pascual-Marqui (2002) for more technical
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details). Independent studies have shown that the sLORETA method has higher

localization accuracy than LORETA or MN solution.

In the current study the LORETA method was used for the online calculation of

the current source density in the LOC. Up to date, the online implementation of

sLORETA neurofeedback has not been realized. However, we were able to calculate

a few offline analyses with a free academic software that implements the sLORETA

method.

Output of the LORETA Module

In the LORETA module of the RecView software the region of interest is selected in the

LOC. Once the region of interest is set the resolution matrix T is calculated as given

in 2.33. During BCI training the incoming data samples Φ are then calculated with

the matrix T. The LORETA module estimates the average current density amplitude

in the defined ROIs and presents the two ROIs as EEG signals over the time domain.

Thus, a virtual channel is calculated for each defined ROI, in our case a virtual

channel for the left LOC (LLOC) and right LOC (RLOC). The two new derived

LORETA channels and all previous channels are then transmitted to the Viewer

module.

In summary, the LORETA module estimates the average current density amplitude of

alpha or gamma band frequency in the left and right LOC. The estimated values are

then transmitted to the next module as data samples in the time domain in channels

LLOC and RLOC.

2.3.3.5 Feature Extraction Module

In the custom-written FeatureExtraction module our objection was to feedback

both the estimated activity in the LOC and the detected artifacts from the Arti-

factDetection module. However, before we describe how this information was

visually fed back (see following ’Viewer Module’ section) we will first explain how

the visual information was extracted.

As described previously, the FeatureExtraction module receives a data matrix of 5

samples x (58 channels (more channels in Experiment V) + LLOC channel + RLOC

channel) from the LORETA module (see section 2.3.1). First, we summed up the values

of the incoming data samples up to 250 data samples, which we will refer to as a

segment in the following. The data was summed up, in order to feedback volunteers
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performance with a time delay of a second. Hence, the volunteer’s monitor was

refreshed every second.

For each of the selected channels c (LLOC, RLOC, HEOG, VEOG, Neck, T7 and

T8) the power value (not related to equation 2.5 in section 2.3.2.2) was calculated

as the square of each incoming data sample x and summed up to N = 250 data

samples:

yc =
N∑
i=1

x2
i (2.34)

Then, a mean power value was derived for yloreta = yLLOC+yRLOC
2 , yeog = yV EOG+yHEOG

2 ,

and yt7t8 = yT7+yT8
2 . As the mean power values yloreta, yeog, yt7t8 and the power

value yneck in each segment are derived they are processed as visualized in Figure

2.15.

As in Experiment I to IV, the change in alpha or gamma band activity was calculated

as the percentage change in band power during a certain interval compared to a

reference measure. The reference measure was calculated during the passive period.

Passive Period -

During the passive period, the mean gamma (during gamma sessions) or alpha (dur-

ing alpha sessions) power in the yloreta and yeog is computed and used as a reference

measure for the following feedback periods. The yneck and yt7t8 average power ac-

tivity in the frequency range of (70-80) Hz is calculated as well in the passive period

and set as measure reference for the following feedback period. However, anytime a

blink or eye movement occurs during the passive period (as acquired from the Arti-

fact Detection module), the corresponding segment (1 second) is removed to assure

an artifact free baseline measurement. In addition, the session was stopped if more

than 20% of the passive period contained artifacts.

Feedback Period -

During the feedback period the percent change ∆c = 100×yc
yc

− 100 of the actual

yloreta, yeog, yneck, yt7t8 activity to the respective baseline is calculated (∆loreta,

∆eog, ∆neck, ∆t7t8). The percent change in the LORETA channel ∆loreta is visu-

alized as a number on the feedback display (see Figure 2.7 Experiment V) for the

volunteer if the following conditions are fulfilled:

1. The artifact module does not report any eye blinks or eye movement within

the current segment.
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Figure 2.15: Visualization of data processing in Experiment V.
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2. ∆loreta > 0

3. ∆loreta > ∆eog - Only for gamma sessions, as gamma band activity in the EOG

channels can effect gamma band activity in the LORETA channels.

4. ∆loreta > ∆neck

5. ∆loreta > ∆t7t8

If not all of the upper conditions are fulfilled, then the value 0 is presented as

feedback.

Interface

In the FeatureExtraction module we implemented the interfaces IDataIn and

IDataOut. The attributes deltaLoreta, deltaT7T8, deltaEog and deltaNeck rep-

resent the variables ∆loreta, ∆t7t8, ∆eog and ∆neck, respectively. (see Figure 2.11)

2.3.3.6 Viewer Module

Figure 2.16: Overview of passive and feedback period arrangement in a session of Experiment
V.

In Experiment V, ∆loreta was visualized by a value at fixation during the feedback

period. In addition, two bars were added above and below the feedback value (see

Figure 2.16). The bar above the feedback value represents EOG artifacts and the

bar below the value represent the EMG artifacts. If no artifacts are detected within

the current segment, both bars are green as visualized in the example in Figure 2.16.

Hence, if all conditions are true as explained above, then ∆loreta is visualized on the

volunteers monitor. However, if EOG artifacts occur, the upper bar turns red and

the value 0 is presented. Also, if EMG artifacts occur then the below bar turns
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Figure 2.17: Timeline diagram for a real-time BCI (Adapted form (Wilson et al., 2010)).

red and the value 0 is presented. A more detailed description of the experimental

procedure is outlined in the next chapter.

Interface

The Viewer module implemented the interfaces IDataIn and ISimpleView for the

visual display of the experiment (see Figure 2.11).

2.4 Timing

Timing plays an important role for the development of a BCI method. A BCI

method should process neural signals, extract specific features and provide visual

feedback in real-time. However, the term real-time used in BCI studies is rather

vague, as a minimal delay between signal processing and visual display is inevitable.

A BCI method is defined as a near-real-time process, if a block of data is processed

before the next data block is ready (Wilson et al., 2010). This is visualized in Figure

2.17. As soon as RecView has buffered data block 1 (gray timeline) with the channels

-by- 5 data samples (see section 2.3.1) the data is saved to the computer’s memory

(red timeline) and the signal processing and feature extraction for data samples
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Table 2.3: Timing: Block jitter.

Modules Block jitter (ms)

None 12.77

LORETA 14.57

Preprocessing 13.4

Preprocessing and Artifact Detection 12.96

Preprocessing, Artifact Detection, Frequency Filter 14.04

Preprocessing, Artifact Detection, Frequency Filter, LORETA 13.52

Preprocessing, Artifact Detection, Frequency Filter, LORETA, Viewer 12.7

in block 1 begins, as indicated by the blue area. When the feature of interest is

extracted it is visualized on the volunteers monitor within the green timeline. After

the visual display is presented, RecView immediately starts to wait for the next data

block (block 3), while the data samples for block 2 are buffered (gray timeline).

Hence, in all experiments we assured that data processing was completed during

the blue timeline before the next data block was ready. This was tested with two

methods:

First, the RecView software provides a block indicator, which constantly informs

whether the data blocks sent to RecView by the recorder PC have been completely

processed or whether blocks have been lost during transfer. Data may get lost

during transfer if RecView is unable to receive the data in time due to high loads

or unfinished data processing.

Secondly, we measured the block duration by sending a trigger (time marker) to

the Recorder via parallel port cable at the end of each block duration (see Figure

2.17). As the time markers were saved by the Recorder software, we were able to

calculate the distance between the markers. In an ideal case, the block duration

should last as long as the length of a data block (here, i.e., exactly 20ms). However,

the time period between data blocks can be different than the actual block length

due to inconsistencies in operating system timing, defined as ’timing jitter’ (Wilson

et al., 2010). The block jitter is calculated as the standard deviation across all block

durations measured during a specific time period.
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As several new custom-written modules were implemented in Experiment V we

calculated the block jitter, in order to assure that signal processing was completed

within the blue timeline. In all experiments the visual display of the volunteers

was refreshed every second. Therefore, after each feedback block duration = 50

block durations (50 blocks ≈ 1000 ms) a trigger is sent to the recorder PC. First,

we calculated the feedback block jitter without any modules, hence without any

calculations regarding signal processing or feature extraction. Results showed a jitter

value of 12.77ms with a mean feedback block duration of 1000ms, which we set as

a reference measure (see Table 2.3). Successively, we added each of the modules in

Experiment V and calculated the feedback block jitter for each additional module.

Our results revealed similar jitter results for the added modules as compared to the

reference jitter result or just the LORETA module demonstrating that our algorithms

process data within the blue timeline and can therefore assure that no data blocks

were lost. An overview of block jitter for selected modules is given in 2.3.



Chapter 3

Experimental Studies

In this chapter, the results of the 5 experiments will be presented. We conducted

the experiments in order to answer the scientific questions as introduced in Chapter

1 section 1.2 and in order to test the custom-developed BCI method tailored to

gamma band manipulation (for an overview see Figure 3.1). Experiment I, II and

V have been published (Salari et al., 2012).

3.1 Experiment I: BCI Training of the Gamma Band

Activity

In Experiment I, the volunteers were trained to intentionally increase the gamma

band activity (30-45 Hz) over the occipital electrodes PO7 and PO8.

3.1.1 Volunteers and Procedure

Volunteers

Twenty healthy, right-handed volunteers with normal or corrected to normal vision

participated in the BCI experiment (mean age 32 years, range 20-40, 10 females).

All volunteers had no prior BCI experience. The experiment was approved by the

ethics committee and volunteers gave written informed consent prior to the experi-

ment.



60 Chapter 3. Experimental Studies

T
a
b

le
3
.1

:
O

v
erv

iew
o
f

E
x
p

erim
en

ts.

E
x
p

erim
en

t
T

ra
in

ed
F

re-
q
u
en

cy
B

a
n
d

M
ea

su
red

C
h
a
n
n
els

A
rtifa

ct
D

etectio
n

O
b

ject
D

etectio
n

E
x
p

erim
en

t
C

h
a
ra

cteristics

E
x
p

erim
en

t
I

G
a
m

m
a

2
8

O
ffl

in
e

−
G

a
m

m
a

b
a
n
d

B
C

I
tra

in
in

g

E
x
p

erim
en

t
II

G
a
m

m
a

2
8

O
ffl

in
e

D
u
rin

g
B

C
I

O
b

ject
d
etectio

n
d
u
rin

g
B

C
I.

E
x
p

erim
en

t
III

A
lp

h
a

G
a
m

m
a

2
O

ffl
in

e
−

N
ew

G
a
m

e
lay

o
u
t.

B
C

I
w

ith
tw

o
freq

u
en

-
cies.

E
x
p

erim
en

t
IV

G
a
m

m
a

2
O

ffl
in

e
B

efo
re

a
n
d

a
fter

B
C

I
In

teg
ra

tio
n

o
f

n
ew

g
a
m

e
lay

o
u
t

o
f

E
x
p

III.
C

o
n
tro

l
g
ro

u
p

to
test

sp
ecifi

city
o
f

feed
-

b
a
ck

.
P

resen
ta

tio
n

o
f

im
a
g
es

b
efo

re
a
n
d

a
fter

B
C

I
tra

in
in

g
.

E
x
p

erim
en

t
V

A
lp

h
a

G
a
m

m
a

5
8

O
n
lin

e
D

u
rin

g
B

C
I

S
o
u
rce

b
a
sed

B
C

I
(L

O
R

E
T

A
).

O
n
lin

e
d
e-

tectio
n

o
f

a
rtifa

cts.
T

ra
in

in
g

o
f

tw
o

fre-
q
u
en

cy
b
a
n
d
s.

O
b

ject
d
etectio

n
d
u
rin

g
a
l-

p
h
a

a
n
d

g
a
m

m
a

b
a
n
d

m
o
d
u
la

tio
n
.



3.1. Experiment I: BCI Training of the Gamma Band Activity 61

Data Collection

EEG was measured from 28 channels at standard locations (PO7, PO8, F3, F4, C3,

C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Fp1, Fp2, CP1, CP2, FC5,

FC6, CP5, CP6, CPz) and the signals from channels PO7 and PO8 were used for

the calculation of the feedback signal. The EEG of the other channels was used for

later offline analyses. All 28 channels were referenced to linked mastoids. EOG and

EMG channels were derived as described in section 2.1.1.

BCI Task Procedure

In Experiment I, a task period consisted of a passive period (10s) followed by a

feedback period (10s) (see Figure 3.1). During both periods the volunteers screen

displayed two bars (4x1.5 cm) situated 1.15◦ bilateral to a central fixation cross. The

left bar represented a frequency range of 30 to 38 Hz and the right bar represented

a frequency range of 39 to 45 Hz. The division within these two sub-bands was

implemented to test for possible differences in the accessibility of the two sub-bands

(no differences were found during subsequent analyses). A Fast Fourier Transform

(FFT) was performed every second in channels PO7/ PO8 and the summed gamma

power sumPower (see section 2.3.2.2 equation 2.5) for the frequency ranges 30-38

Hz, 39-45 Hz and 30-45 Hz was computed online.

Passive Period - During the passive period, volunteers fixated on the central cross

and were inactive, while the bars randomly moved upwards and downwards. This

period was used to assess an actual baseline value of gamma band power (mean-

PowerPassive, see section 2.3.2.2).

Feedback Period - In the feedback period, the percentage change to the passive

baseline was computed (powerContent (see section 2.3.2.2)) and fed back to the

volunteer by the bars moving either above baseline for higher gamma band activity

or below baseline for lower gamma band activity. In order to avoid eye movements

due to the moving bars, the mean percentage change value of gamma band activity

for both frequency ranges (the full gamma range 30-45 Hz) was displayed at the

fixation point with a latency of 1s. In the following the gamma power change at

fixation is termed ’gamma value’.

Volunteers were instructed to fixate the centre in both periods.

Success Display - The success of the feedback effort was presented after the feedback

period as a bar graph indicating success (green) or failure (red) to increase the mean

gamma band activity in the feedback period. The width of the bar represented the
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Figure 3.1: The BCI design in Experiment I. During the passive period (10 seconds) volun-
teers fixated the central cross and were inactive, while the bars randomly moved upwards
and downwards. This period was used to assess an actual baseline value of gamma band
power. In the feedback period (second 11-20) the volunteers tried to control the bars in order
to increase the presented value at fixation. The line under the cross represents the mean
gamma value in the passive period. Thus, volunteers tried to keep or move the bars above
baseline, which is represented by feedback values above zero. The success of the feedback
effort was presented after the feedback period as a bar graph indicating success (green) or
failure (red) to increase the mean gamma power in the feedback period.

mean gamma value. Additionally, the success display served as a short break for

the volunteers between each task period (duration 6 seconds). Four sessions with 11

task periods each were presented with short breaks between the sessions resulting

in a duration of about an hour for the whole experiment. Each volunteer performed

the feedback training once a week over a period of 3 weeks.

Data Analysis

For the calculation of the statistics we applied Student’s t-test and analysis of vari-

ance (ANOVA). A detailed description of each of the applied statistical methods is

outlined in the Appendix.

To evaluate the success of the gamma band training in each volunteer, the last

training day was analyzed. In order to be included in further analysis, the volunteer

had to increase the gamma value in the majority of feedback segments (more than

60% of segments (one segment = one second of feedback period) above the level of
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the passive period). Furthermore, an increase across training was assumed to reflect

successful training.

For the EEG offline analysis, data from all channels were segmented for each 10s

passive and feedback period. To avoid effects evoked by the stimulus onset, the

beginning of the period was set 1000 ms after the actual start. Each passive and

feedback period was then divided into equally sized segments of one second. EEGs

were corrected for blinks and eye-movement artifacts by subtracting both EOG

channels weighted by their transmission coefficient (Gratton et al., 1983). For each

feedback segment and the appropriate passive segment a FFT (Hanning window)

was calculated.

To assess the influence of BCI gamma band training on the frequency spectrum,

the change of power in each frequency from 0 to 124 Hz (divided in bins of 4 Hz)

for the feedback periods compared to the passive baseline within the last training

session at the channels PO7/PO8 was calculated. The significance of power change

for each frequency bin to passive baseline was calculated by a t-test and corrected for

multiple comparisons (Bonferroni, Figure 3.2c). The Bonferroni correction is used

in this case, as several dependent tests are calculated (31 t-tests for every frequency

bin). The significance level (alpha) for an individual test is calculated by dividing

the error rate (= 0.05) by the number of frequency bins. Thus, with 31 frequency

bins, the alpha level for an individual test would be 0.05/31 = 0.0016. Hence, only

individual tests with p<0.0016 are considered significant.

We exploited the saccade detection method algorithm offline (as described in Chap-

ter 2, section 2.3.3.2) to derive the REOG channel (see equation 2.25) with a pass-

band of 30-100 Hz. The detection threshold was set at 2 standard deviations of the

mean filtered signal. We determined the amount and mean amplitude of detected

SPs in both passive and feedback periods to test for saccadic changes between the

periods and across training. Thus, we examined both parameters in all relevant

analyses and estimated the saccadic effect on the feedback induced gamma band

activity.

To assure that an increase of absolute gamma power in the feedback period was not

due to the influence of eye movements or neck muscle activity, the gamma band

change in electrodes EOG and muscle was calculated and the maximum change was

subtracted from the mean gamma power change in electrodes PO7/PO8 before any

statistical test. Thus, a possible transfer of gamma band activity from EOG or
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muscle was eliminated.

3.1.2 Results

BCI Training of Gamma Band Oscillations

After three training sessions, 12 trained volunteers showed a clear increase in their

ability to intentionally increase activity in the gamma band (more than 60% of

feedback segments above baseline). The amount of feedback periods with a mean

gamma power higher than in the passive period increased with practice (ANOVA,

factor days, F(2,22)=3.74, p<0.05). The offline analysis confirmed that volunteers

were able to produce a reliably higher level of gamma band activity in the last train-

ing session as compared to the passive period (t(11)= 3.09, p<0.005). In addition,

the absolute power of gamma band activity clearly increased during the feedback

periods of the last training session as compared to the first training session (t(11)=2,

p<0.05). The training success was further reflected in a reliable increase in the dif-

ference to the passive period (ANOVA, factor days, F(2,22)=12.22, p<0.001, see

Figure 3.2a).

The results of the training sessions clearly demonstrate that volunteers learned to

intentionally increase neural activity in the gamma band over the visual cortex.

The recording of the additional EEG channels over the whole scalp allowed the cal-

culation of the topographic specificity of the feedback effect. This analysis revealed

that the increase in gamma band activity was limited to occipital electrodes and

was not accompanied by a general increase of gamma band activity over the whole

scalp (Figure 3.2b). This topographic specificity was accompanied by a frequency

distribution that shows that the gamma band training mainly influenced higher fre-

quencies, most prominent in the trained frequency range 30-40Hz (p<0.001). This

effect extends to other high frequencies (p<0.05), but no differences were observed

in lower frequencies (Figure 3.2c) (see Data Analysis section).

To assess the influence of saccadic activity on the increase of gamma band activity in

the feedback period we applied a saccadic spike potential (SP) detection method to

determine saccadic activity (including microsaccades) in both feedback and passive

periods (see section 2.3.3.2). Within the EEG trace of this channel, the amount and

mean amplitude of saccades was estimated in the baseline and feedback period to test

for changes between the periods and across learning. Within the last training session

no changes were found between both periods regarding the SP amount (t(11)=0.6,
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Figure 3.2: Topography and spectral specificity of gamma band feedback training. (a)
Training success: Representation of the average change of gamma band activity (30-45Hz)
in electrodes PO7/PO8 during the training period compared to the passive period across
training days. (b) Topographic representation of the average change of the gamma band
activity (30-45Hz) during the feedback period compared to the passive period within the
last training session. The maximum change is localized at the electrodes over the occipital
lobes that were used to calculate the feedback signal. (c) The percent change of power across
frequencies from 0 to 124 Hz for the feedback periods compared to the passive periods within
the last training session at the channels PO7/PO8. The different colors of the bars represent
the significance of change to the passive baseline (gray bars: p-value >0.1, red bars: p-value
< 0.001 (Bonferroni corrected), blue bars: p-value < 0.05). The frequency distribution
shows that the training effects were most prominent in the frequency range from 30-40 Hz
(p<0.001) and extended to higher frequencies but no effects were found for lower frequencies.
(Salari et al., 2012)
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n.s.) or SP mean amplitude (t(11)=1.18, n.s.). Furthermore, no changes were found

across training during the feedback period (ANOVA, factor days, SP amount: F(2,

22)=0.31, n.s., SP amplitude: F(2, 22)=0.21, n.s.), demonstrating that the increased

gamma band activity is not attributable too an increase of microsaccades but is due

to neural activity.

3.1.3 Conclusion

Within the first experiment we aimed to examine whether a BCI method can be

used to selectively modulate oscillations in the gamma frequency band. Results of

BCI training clearly demonstrated that volunteers were able to intentionally increase

neural activity in the gamma band over the visual cortex across training sessions.

Although individual strategies differed, most volunteers reported using a visual im-

agery strategy (visualizing a concrete figure, object or number at fixation). As a

next step, we examined whether increased gamma band activity has an influence on

visual object processing.

3.2 Experiment II: Adaptive Stimulation during Differ-

ent States of Induced Ongoing Gamma Band Activ-

ity

In Experiment II, the BCI induced variance of gamma band activity in the visual

cortex was used to examine the effect of prestimulus gamma band activity on a

task in which volunteers had to perceive visual objects embedded in noise. While

the amount of gamma band activity was estimated online, images were presented in

states of high or low levels of ongoing gamma band oscillations. The quality of object

processing during increased gamma band activity was further assessed behaviorally

by a surprise recognition task after the object detection task.

3.2.1 Volunteers and Procedure

Volunteers

Ten successfully trained volunteers from Experiment I participated in the object

detection task of Experiment II (mean age 32 years, range 20-40, 4 females).



3.2. Experiment II: Adaptive Stimulation during Different States of Induced
Ongoing Gamma Band Activity 67

Figure 3.3: Object detection during BCI: within periods of high or low ongoing gamma band
activity instead of a feedback signal sometimes a noisy version of an image was presented
and the volunteer had to perceive the object in the image.

Data Collection

All technical details regarding data collection were the same as in Experiment I.

BCI Task Procedure

The experimental layout of the object detection task was identical to the BCI train-

ing task procedure. The only difference was that noisy images of 33% visibility were

sometimes shown during the feedback period instead of the feedback value (see Fig-

ure 3.3). The appearance of an image was dependent on the volunteer’s performance

in the ability to control the gamma band. In each volunteer, individual low and high

gamma band activity levels were estimated. The individual ability of control over

the gamma band for each person was assessed by sorting the feedback values of the

last training session (percent change to passive period) and calculating the maxi-

mum of the lower third and the minimum of the upper third as indicators for low

or high gamma levels. The value during the feedback period fluctuated depending

on the volunteer’s actual success in increasing the presented gamma value, which

resulted either in high (successful) and low (less successful) gamma band activity.

Thus, the value was compared online against the determined high and low gamma

levels. When the value was higher than the upper gamma level or lower than the

lower gamma level a noisy image (size: 10x7.5 cm, 33% visibility) was shown for 2
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seconds instead of the feedback display. Thus, the volunteer was not informed about

the actual success in this segment, which was important to avoid a strategic bias

on the image processing. The volunteer was instructed to detect objects within the

noisy version of the image by judging them as ‘living’ or ‘non-living’ by a button

press. Participants were advised not to press a button if the object in the image

was not detected. With the button press, we were able to confirm that the object in

the image was perceived by the volunteer and that object detection was successful.

(object detected = button pressed = object in image perceived)

Image Selection

For the object detection task, 120 different images (size 336 x 252 pixels; 24-bit

color depth) were selected from a database of natural scenes and a database of

objects. Visibility of images was modulated by scrambling them according to a

method described previously (Rose & Buchel, 2005). In short, each image was

transformed into the amplitude and phase component by a Fourier transform for each

RGB color channel and a fraction (here 33%) of the image phase was manipulated

before transforming the amplitude and phase components back into image space.

Four sessions with 11 task periods each, were presented to assure the presentation

of a maximum of 30 images for high gamma and 30 for low gamma. Overall, 60

images were shown during the object detection task and 60 additional images were

used for the recognition memory task afterwards.

Recognition Memory Task

After the object detection task, a surprise recognition task was presented, which

entailed the presentation of the 60 previously seen images with 60 new images. The

images were randomized and presented in a pseudo randomized order while the

volunteers had to judge images as ’previously seen’ or ’new’.

Data Analysis

In Experiment II, the time-frequency analysis was calculated (using the open source

Fieldtrip toolbox) for the trained channels PO7/PO8 based on a starting period of

1200 ms before and 1000 ms after image presentation for images shown during high

and low gamma states.

3.2.2 Results

High Gamma Band Activity Improves Subsequent Visual Object Detec-

tion
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In Experiment II we directly tested for the consequences of deliberately increased

gamma band activity on subsequent visual object processing. We exploited the

variability in evoking gamma band activity to test for an influence of prestimulus

gamma band activity on visual object processing. In each volunteer, individual high

and low gamma levels were estimated while volunteers tried to increase the gamma

band activity during BCI training. As volunteers achieved higher gamma values

than the high gamma level (high gamma state) or lower gamma values than the

low gamma level (low gamma state), noisy images were presented and volunteers

were instructed to press a button if they were able to detect the object in the im-

age. In accord with our assumptions, the increased gamma band activity resulted

in a significant enhancement of visual object processing. During high gamma band

activity states, more images were detected than during low gamma states (Images

detected during low gamma band state: 77.7% ± 5.6 (s.e.m) versus high: 85.23% ±
3.8 (standard error mean (s.e.m)); t(9)=2.79, p =0.02) (Figure 3.4b). The analysis

of the response times of detected images during high or low gamma states revealed

no differences.

The success of object processing was further examined in a subsequent surprise

recognition task 10 minutes after the experiment. The recognition task included

the presentation of all 60 previously seen and 60 new images, regardless of whether

they were detected in the object detection task. However, for the analysis of the

recognition task we encountered images that were detected in the object detection

task and were correctly judged as ’previously seen’. The results revealed significantly

higher recognition rates for images that were detected during high gamma states than

during low gamma states (percent correct low: 59.7 ± 4.23 (s.e.m) versus correct

high: 66.7 ± 3.94 (s.e.m); t(9)=2.69, p=0.024) (Figure 3.4c). For comparison the

false positive rate (FPR) was assessed by calculating the percentage of ’new’ images

that were rated as ’previously seen’. The FPR of 17% compared to 60% correctly

remembered in the low gamma state and 67% in the high gamma state indicates

reliable formation of memory for both states.

The offline EEG analysis confirmed that the gamma band activity was reliably dif-

ferent between the high and low gamma states (high gamma against low gamma,

t(9)=4.69, p<0.001). Thus, during the time period of 1 second before image pre-

sentation, reliably more gamma band activity was evoked in the high gamma state

compared to the low gamma state. A time-frequency analysis revealed that the

increase of gamma band activity during the high gamma state was limited to the
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Figure 3.4: Time-frequency analysis of pre- and poststimulus periods. (a) Time-frequency
analysis of the total power difference between high gamma band and low gamma band states
for channels PO7/PO8 before and after stimulus onset (grand mean over all volunteers).
Significantly more gamma band activity in the exact trained frequency range (30-45Hz)
can be observed in the high gamma band state in the prestimulus period which resulted
in significantly more gamma band activity also after stimulus onset. (b) Significantly more
images were perceived during high gamma states as during low gamma states. (c) The
surprise memory task afterwards revealed significantly higher recognition rates for images
detected during high gamma than low gamma states. (Salari et al., 2012)
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Figure 3.5: (a) Time frequency analysis of the difference between states of detected im-
ages (hits) compared to states of undetected images (misses) in electrodes PO7/PO8. The
prestimulus region marked by a rectangle reveals a significant difference between both states
(t(9)=2.51, p=0.03) in the gamma band. No significant changes were found in the beta band
(20-30 Hz). (b) Topographic representation of the prestimulus gamma band differences of
detected images compared to undetected images. The maximum difference is localized in
the occipital region. (Salari et al., 2012)

trained frequency range from 30-45 Hz and was not accompanied by increases in

other higher or lower frequencies (Figure 3.4a). Furthermore, this intentionally in-

duced gamma band increase during the high gamma band state resulted in a higher

level of gamma band activity during the first 500ms of subsequent image presenta-

tion (t(9)=2.09, p<0.05). A further time-frequency analysis of the state of detected

images (hits) minus undetected images (misses) showed a reliable power difference

within the trained gamma band range 34-40 Hz in a prestimulus period of -400 ms

to stimulus presentation (t(9)=2.51, p=0.03, Figure 3.5a). Thus, the prestimulus

difference is restricted to the trained frequency range and the different performance

cannot be explained by additional prestimulus oscillatory activity of other frequen-

cies. In addition, we performed a topography analysis of all electrodes for the

prestimulus state of detected images compared to prestimulus states of undetected

images. The analysis demonstrates that the difference between hit and miss states

for the gamma band is topographically specific with a maximum difference in the

occipital region (Figure 3.5b). Thus, the prestimulus difference is restricted to the

trained frequency range and brain region.

Importantly, results of the SP detection method revealed no changes between the

amount of and amplitude of detected SPs in the high and low states one second

before and after image presentation (n.s.). Thus, results of the BCI training as
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well as the object detection task demonstrated no influence of microsaccades for

the deliberately evoked gamma band activity. Interestingly, the comparison of the

number and amplitude of saccades in the phases before and after stimulus presenta-

tion revealed a significant increase in the amount of SPs (F(1, 9)=9.39, p<0.05) and

SP amplitude (F(1, 9)=21.92, p<0.001) during stimulus presentation, as has been

reported previously (Yuval-Greenberg et al., 2008).

3.2.3 Conclusion

With the object detection task of the second experiment, we directly tested the hy-

pothesis that a high level of gamma band activity induced by the BCI manipulation

can improve subsequent visual object processing and memory compared to trials

with a low level of gamma band activity. In accord with our assumptions, results

clearly confirmed that the increase of the gamma band activity over the visual cor-

tex by BCI manipulation enhanced the processing and subsequent detection of the

objects.

In the next experiment a new feedback display is designed in order to motivate

volunteers to modulate two different frequency bands.

3.3 Experiment III: Modulation of the Alpha and Gam-

ma Band in a Game Layout

In Experiment III, volunteers were trained to modulate two different frequency

bands, the alpha band (8-12 Hz) and the gamma band (30-45 Hz). Volunteers

of Experiment I that had already learned to deliberately modulate the gamma band

participated in this experiment. A new feedback display was used that was designed

to motivate volunteers to switch between the modulation of the two frequencies to

move a ball along a track.

3.3.1 Volunteers and Procedure

Volunteers

Six of the twelve previously trained volunteers participated in the third experiment.
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Data Collection

The resulting topography in Experiment I Figure (3.2b) showed that the increase of

the gamma band was limited to the visual cortex. Thus for Experiment III, EEG

was measured from 2 channels at locations PO7, PO8 (BrainVision amplifier and

software) and not from the whole brain. The mastoid reference, EOG recordings

and measurement of the neck muscle activity as well as all technical adjustments

were kept identical to Experiment I.

BCI Task Procedure

The third experiment started with 4 sessions of warm-up training followed by 6

sessions of feedback training. Each warm-up session consisted of two passive periods

(10s) followed by one feedback period. During the passive periods, the volunteers’

screen displayed the game layout without any movement of the ball. Volunteers were

advised to fixate the centre of the screen and to do nothing in particular. Within

the passive period, the mean power for both alpha (8-12 Hz) and gamma frequency

ranges (30-45 Hz) in the lateral occipital channels PO7 and PO8 was computed

and used as a reference measure for the feedback period. During every second of

the feedback period, the percentage change to the passive mean gamma or alpha

power was computed. For change values below zero the ball did not move and a

backwards movement of the ball was not possible. Thus, the ball was either moved

to the right due to high gamma values or to the left due to high alpha values. A

feedback session was completed with the ball moved into the target. After 4 sessions

of warm-up training a mean gamma and alpha power baseline was determined from

the measured passive periods. These baselines were set permanently for the following

6 sessions of feedback training.

Data Analysis

For the EEG offline analysis, data from both electrodes were segmented for both

gamma (right movement) and alpha (left movement) periods. EEGs were corrected

for blinks and eye movement artifacts by subtracting both EOG channels weighted

by their transmission coefficient (Gratton et al., 1983). Both alpha and gamma

segments were decomposed by a fast frequency analysis (Hanning Window).

3.3.2 Results

During offline analyses, the mean gamma power (30-45 Hz) and the mean alpha

power (8-12 Hz) in both alpha and gamma segments for each volunteer per session
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Figure 3.6: Experiment III: (a) Volunteers had to move the ball through a track of a game
layout. A movement to the right was achieved by gamma frequencies above baseline and a
movement to the left by high alpha frequencies. (b) Statistical tests revealed a higher increase
of alpha power in the alpha phase than in the gamma phase (p<0.05) and a higher increase
of gamma power in the gamma phase than in the alpha phase (p<0.05). (c) Volunteers
played six rounds and showed a significant increase of speed after each round (p<0.001) and
this improvement was related to a fast adaptation of the gamma band manipulation to the
new layout indicating the transfer of the learned control over the gamma band by previous
feedback training.

was computed. Statistical tests demonstrated higher gamma power in the gamma

periods compared to the alpha periods averaged over all 6 sessions (t(5)=2.1, p<

0.05) with a percentage difference of 24%. Analogous computations showed signifi-

cantly higher alpha power in alpha periods compared to gamma periods (t(5)=2.03,

p< 0.05) with a percentage difference of 40% (see Figure 3.6b).

The goal of the volunteers was to move the ball as fast as possible. Therefore, a move-

ment to the right was achieved by an increase of gamma band power and a movement

to the left with an increase of alpha band power compared to the specific baseline

(see Figure 3.6a). During just six rounds of training, the control over the speed of
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the ball significantly increased. The amount of time for one ’game’ decreased with

training (repeated measures ANOVA, factor: 6 sessions: F(5,25)=15.15, p<0.001)

(see Figure 3.6c). This effect was accompanied by a significant decrease in the num-

ber of ball steps needed to finish the track, especially during the movement of the

ball to the right by higher gamma power (repeated measures ANOVA, factor: 6

sessions: F(5,25)=4.72, p<0.005). The number of steps for a movement to the left

by higher alpha power showed no significant decrease (repeated measures ANOVA,

factor: 6 sessions: F(5,25)=1.16, p=0.36).

3.3.3 Conclusion

Results of the third experiment demonstrated that volunteers were able to modu-

late both alpha and gamma band power. However, the results clearly showed faster

adaption to modulating the gamma band than to alpha band due to previous feed-

back training of the gamma band, thus underlying the specificity of gamma band

training. Furthermore, volunteers were clearly motivated by the new visual display

design, as they were determined to move the ball as fast as possible into the goal.

In the next experiment, we examined the specificity of gamma band training using

the custom-designed BCI with an additional control group. Since the new visual

display design was motivating for the volunteers, we integrated the game layout into

the new experiment.

3.4 Experiment IV: Control Group Experiment

In Experiment IV, we examined whether the gamma band activity increase was a

specific result of BCI training. The experiment included a new feedback group and

a control group that underwent identical training but without feedback. In addition,

both groups conducted behavioral tests before and after training in order to examine

visual performance effects even after BCI training.

3.4.1 Volunteers and Procedure

Volunteers

In Experiment IV, twenty eight new volunteers were recruited (mean age 29 years,
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range 25-35, 10 females). 16 randomly selected volunteers participated in the feed-

back experiment and the other 12 were assigned to the control group.

Data Collection

For Experiment IV, EEG was measured from 2 channels at locations PO7, PO8 and

used for the calculation of the feedback signal. EOG and neck muscle measurements

as well as all technical details were kept identical to Experiment I.

BCI Task Procedure

In Experiment IV, the experimental sequence was slightly different from Experiments

I, II and III. Each session started with two passive periods (10s each) followed by

eight feedback periods. A mean passive baseline was calculated from the first two

passive periods and used for the following eight feedback periods in a session. The

gamma band was not divided into two sub-bands, as no differences were found

between the two bands. Therefore, the 2 bars were removed from the experimental

layout of the fourth experiment. As in Experiment I, a baseline gamma value was

calculated and in the subsequent feedback period the volunteers tried to increase

the presented gamma band value (mean over 30-45Hz at PO7/ PO8) above this

baseline. The percentage change to the passive baseline was computed online every

second during the feedback period and the gamma value was presented at the centre

of the monitor (see Figure 3.7).

After the feedback period, the success (sum of percent change) was displayed as the

distance the ball had moved on the track. Thus, the reward for a large amount of

gamma band increase was a longer distance that the ball had moved towards the

goal.

The first training day started with two behavioral tests, the spatial attention task

(11 min) and the object detection task (5 min) in a pseudorandom order. After the

tests, volunteers performed 12 sessions of feedback training resulting in a duration of

about two hours for the whole experiment. On the second day, volunteers performed

12 sessions of feedback training without any behavioral tests. On the third day,

volunteers started with 6 sessions of feedback training followed by the behavioral

tests at the end.

Control Group

The control group had the exact same experimental procedure as the feedback group

with 3 days of training, the same number of sessions, same behavioral tests, and most

important of all, the same visual input as the feedback group. However, during the
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Figure 3.7: Experiment IV: Except for the actual task, the experimental design was identical
for both groups. The task was to either increase the value at fixation (feedback group) or
to detect a distinct number at fixation (control group). For the feedback group, the gamma
band power change was visualized at fixation. The success of the intentionally increased
gamma values was presented after the feedback period (game display). For the control
group, random values within the range from the experimental group was displayed.

feedback periods the control group did not have a BCI control, since random values

(value range adapted from feedback group) were presented at fixation instead of the

actual gamma activity value as for the feedback group. In order to assure volunteer’s

attention to the presented values during the feedback period, they were advised to

respond to a specific number. As in the feedback experiment, the success display

was shown after each feedback period with comparable ball moves as in the feedback

group.

Behavioral Experiments

Prior to and after the training, the performance of the two groups was assessed to

test for specific improvements due to feedback training. This time, the tasks were

performed offline, i.e. without any actual feedback.

Object Decision Task

During a simple image detection task, volunteers were instructed to detect objects

in 50 images and to categorize them as ’living’ or ’non-living’. Volunteers fixated a

cross at the centre of the screen for 3000 ms followed by an image presented for a

duration of 700 ms (size: 12 x 9 cm). 25 different images (size 336 x 252 pixels; 24 bit
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color depth) were selected from a database of natural scenes with animals and plants

and 25 out of a database with object images. Visibility of images was modulated by

a scrambling method as described in Experiment II. All images were presented with

33% visibility and volunteers had 2000 ms to detect the images and to judge them

as ’living’ or ’non-living’ by pressing a button. Volunteers were advised not to press

the button if the image was not identified.

Spatial Attention Task

Volunteers fixated a 0.7◦ cross at the centre of the screen. Each trial began with an

arrow (left (<), right (>), neutral (<>)) that occurred 100-2000 ms after the cross

indicating where to attend. Depending on the given direction of the arrow, a 1◦

target square appeared peripheral 5◦ to the left or the right of the fixation arrow for

100 ms. The target was presented between 450 ms-2500 ms following the arrow. In

80% of the valid trials the (left or right) arrow correctly indicated the location of the

target and in 20% of the invalid trials the arrow incorrectly indicated the location

of the target. During the neutral cue the target appeared with a 50% probability

on the left or right side. Volunteers were instructed to keep their eyes fixated to

the centre and to respond to the target as quickly as possible by pressing the left

or right button. 120 Trials with 30 right cues, 30 left cues and 60 neutral cues were

presented with a short break between the sessions resulting in a duration of about

11 minutes.

Data Analysis

Data analysis was similar to Experiment I.

3.4.2 Results

In Experiment IV, the feedback group was trained to deliberately increase the

gamma band activity as in Experiment I and the control group was exposed to an

identical training setting with the exception that the feedback signal was not related

to their actual gamma band activity. Overall, 12 of the 16 trained volunteers from

the feedback group showed a clear increase in their ability to intentionally increase

activity in the gamma band. As in the previous experiment, the gamma band ac-

tivity of the feedback group increased across training days (F(2,22)=3.79, p<0.05)

and was reliably higher compared to the passive period on the last training day

(t(11)=7.67, p<0.001) (Figure 3.8a). The significant interaction between group and

training session (F(2,44)=3.34, p<0.05) demonstrated that without the feedback
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signal, no significant increase was achieved across training sessions (non-feedback

training n.s.).

Figure 3.8: (a) Frequency spectra from the last training day for both groups (mean from
channels PO7/PO8). Only for the feedback group (red) a reliable increase compared to
the passive period was observed and this increase was limited to the trained gamma band
(blue= control group). (b) The difference of the gamma band power to the passive period
increased as a function of training for the feedback group (red) but not for the control group
(blue). (c) Only the feedback group showed enhanced performance for the visual object
identification task after training; more objects could be detected after successful gamma
band training.

As Experiment II showed an effect on image processing during the ongoing feedback

manipulation, the first task in this experiment investigated object detection within

noisy images before and after feedback training (living vs. non-living object decision

task). The second task was a simple spatial attention task (Posner et al., 1980) to

test for more generalized effects on attentional functions (see section 3.4.1).
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Interestingly, the behavioral tests revealed a very specific improvement related to the

feedback training. After the training, only the feedback group detected more objects

correctly (t(11)=3.08, p=0.01) and faster (t(11)=2.82, p=0.02) than prior to the

training (Figure 3.8c), which was further expressed by a reliable training by group

interaction effect (F(1,22)=6.73, p<0.05). In the spatial attention task statistical

tests for both groups revealed faster response times for valid trials compared to

neutral trials and slower response times for invalid trials (F(2,44)=39.41, p<0.001).

Further statistical tests showed no differences between the two groups or training

and therefore no specific effect of gamma training on the feedback group (n.s).

Thus, no specific improvement was observed for the spatial attention task indicating

that feedback training specifically supports visual object perception skills located in

occipital areas used to generate the feedback signal.

3.4.3 Conclusion

In Experiment IV, it was important to demonstrate, that the increase in gamma

band activity and visual performance was directly related to the feedback training

and not to the repeated exposure to the experimental environment or an unspecific

training of attention. We therefore conducted Experiment IV, which was designed to

test for the specificity of the feedback effect using a control group that was exposed

to an identical training setting but without feedback. In addition, this experiment

was designed to investigate improvement in visual object performance skills that

persisted and can be observed after the feedback training. Results in the feedback

group replicated the results in Experiment I with an increased gamma band activity

across training, while results in the control group revealed no changes in the gamma

band. Thus, the control group design clearly showed that the increase in gamma

band activity can be attributed to the feedback training and not to time-on-task or

other non-specific effects.

In a next experiment, we extended our BCI method to a more effective and precise

BCI training. To examine the functional difference of alpha and gamma band power

and their influence on visual object processing, we aimed to present noisy images

during ongoing alpha and gamma band modulation as in Experiment II.
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3.5 Experiment V: Source-Based BCI Method with a

Modulation of Two Frequencies

In Experiment V, we used a source-based BCI method to train volunteers to de-

liberately switch between modulating alpha (8-12Hz) and gamma band oscillations

(around 40Hz) in a selective brain region in the visual cortex. In the process of de-

veloping a BCI method for gamma band oscillations, we assured that neural activity

was not confounded by artifacts. Hence, various artifacts (including microsaccades)

were detected online (see section 2.3.3.2 in Chapter 2). Furthermore, we examined

the precision of training alpha and gamma band oscillations with a source-based BCI

method in the visual cortex and examined the topographical distribution. As in Ex-

periment II, we presented noisy images during modulation of alpha and gamma band

oscillations for the purpose of disentangling the functional relations of the different

frequencies and their influence on visual object processing.

3.5.1 Volunteers and Procedure

Volunteers

12 healthy, right-handed volunteers with normal or corrected to normal vision partic-

ipated in the experiment (mean age 25). All volunteers had no prior BCI experience.

Data Collection

The volunteer sat in a separate room and watched a liquid crystal display monitor

with a viewing distance of 1 m. EEG was measured from 58 active electrodes at

standard locations (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7,

P8, Fz, Cz, Pz, Oz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, F1, F2, C1, C2,

P1, P2, AF3, AF4, FC3, FC4, CP3, CP4, PO3, PO4, F5, F6, P5, P6, AF7, AF8,

FT7, FT8, TP7, TP8, PO7, PO8, Fpz, AFz, CPz, POz) with a sampling rate of

250 Hz and all channels were referenced to Cz. In addition, for the detection of eye

movements, we recorded vertical and horizontal EOG as described in section 2.1.1.

Neck muscle activity was derived bipolar about 20 cm below the occipital electrodes

over the trapezius muscle and electrode resistance was kept below 10 kOhm.

During the BCI experiment, EOG, EMG and microsaccadic artifacts were detected

as described in section 2.3.3.2. An overview of detected artifact types is given in

Table 2.2.
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Figure 3.9: Experiment V: The BCI design. BCI training: During the passive period (total
20 seconds) volunteers fixated the central cross. This period was used to set an actual
baseline value of alpha or gamma current density power in the ROIs. In the feedback period
(second 21-30) volunteers were asked to increase the current density power in the ROIs (value
at fixation) and at the same time avoid EOG (bar above value) and EMG (bar below value)
artifacts by keeping the bars green. As an artifact occurred (at least one of the bars red)
the presented value was set to zero. The success of the intentionally increased artifact free
gamma or alpha values was presented after the feedback period (success display). (Salari et
al., 2012)

BCI Task Procedure

Volunteers were trained for an hour once a week over a period of 3 weeks. Each

training day consisted of 8 sessions of gamma band training and 8 sessions of alpha

band training, which were presented in an alternating sequence. A session started

with two passive periods (10s each) followed by eight feedback periods (10s each).

The design of the experiment was arranged with a simple cross during the passive

periods and a feedback value, representing ∆loreta (see section 2.3.3.6) along with

two bars (representing artifacts). The bars were placed central and close to the

feedback value, in order to keep the volunteer focused to the feedback value and to

avoid eye movement (see Figure 3.9).

Passive Period - During the passive period the volunteers fixated the central cross.

During this period, the mean gamma (during gamma sessions) or alpha (during al-

pha sessions) current density power (see section 2.3.3.5) in the defined ROIs was

computed and used as a reference measure for the following feedback periods. Any-

time a blink or eye movement occurred during the passive period, the corresponding
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segment (1 second) was removed to assure an artifact free baseline measurement.

If more than 20 % of the passive period contained artifacts, then the session was

stopped and a new session was started.

Feedback Period - Before each session, volunteers were verbally informed about an

upcoming gamma or alpha session. During the feedback periods, volunteers were

instructed to increase the presented value, which expressed the percentage change

to the passive baseline. The feedback value on the screen was refreshed with a time

resolution of one second. We avoided a faster refresh of the feedback value and

color of the bars, in order to avoid rapid display changes that could effect neural

activity. In addition two bars monitored EOG (upper bar) and EMG artifacts

(lower bar) occurring within the past second of feedback training. Thus, volunteers

were informed about a successful increase of activity in the defined frequency range

without an influence of artifacts if the presented value increased and the two bars

turned green. Respectively, the bars turned red if EOG or EMG artifacts occurred

and the percent value was set to zero (see Figure 3.9 and data processing diagram

2.15).

Success Display - In order to keep the volunteers motivated, a “success display” was

presented for 9 seconds after each feedback period. The success display informed

the volunteers about their performance during the feedback period. The position of

the ball in the game layout changed as a consequence of the intentionally increased

values during the previous feedback period in the absence of artifacts. Thus, only

values that were successfully increased during artifact free segments were used for

ball movement. High values resulted in large distance movements of the ball, whereas

low values resulted in shorter distance movements after a less successful feedback

period. Hence, the success display was integrated into the design to keep the vol-

unteers engaged and motivated, as larger ball movements were accomplished after a

successful feedback period. The volunteers were asked to reach the goal as quickly as

possible. Additionally, the success display served as a short break for the volunteers

between each trial. Volunteers had eight feedback periods to reach the target. If the

volunteer did not reach the goal within 8 feedback periods, a new session was started.

Adaptive stimulation during different states of induced ongoing alpha

and gamma band activity

After 3 days of training, the volunteers participated in an object detection task after

BCI training. As in Experiment II, noisy images of 33% visibility were shown during
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the feedback periods of both alpha and gamma band sessions. The selection of the

images was identical to Experiment II. However, here we computed individual alpha

and gamma band activity levels in each volunteer rather than high and low levels

as in Experiment II. The individual alpha and gamma band levels were assessed

by calculating the median positive feedback value for the alpha sessions and for

the gamma sessions. If the determined value exceeded 20 then a maximum level

value of 20 was set. 30 images were shown during the gamma band sessions and

30 images during the alpha band sessions. Thus, during a gamma band session,

i.e., the artifact free (both bars green) feedback value was compared online against

the determined gamma level. When the value was higher than the gamma level, a

noisy image was shown for 2 seconds instead of the feedback display. Thus, images

were only shown during artifact free segments. Volunteers pressed a button if they

were able to detect an object within the noisy image and to correctly judge them as

’living’ or ’non-living’.

Data Analysis

For the EEG offline analysis, data from all channels was first divided into passive

and feedback periods. The first 1000 ms of both periods were removed in order to

avoid effects evoked by the stimulus onset. Each passive and feedback period was

then divided into equal size segments of one second. The data was preprocessed and

controlled for artifacts as described for the online processing of data (see section

2.3.3.2, Chapter 2).

To evaluate the outcome of alpha and gamma band training with artifact control in

the predefined ROIs, we applied a LORETA transformation on the alpha and gamma

filtered channels. Artifact free segments (EOG and EMG bars green) were extracted

and the median percent change of gamma/alpha activity in the ROIs compared to

baseline was derived. Artifacts were also controlled for during the offline analysis

in case they had not been detected. These segments were also controlled offline

for artifacts that were possibly not detected. We conducted a repeated measures

ANOVA with factors session and frequency band to compare the gamma and alpha

band activity change during the alpha and gamma feedback periods.

To calculate the topographical distribution of BCI training, the electric potential

differences (time domain EEG) in each electrode between the feedback and pas-

sive periods was calculated for both gamma and alpha periods for the last training

day. To estimate the three-dimensional distribution of electrical activity (current

density) of gamma and alpha BCI training, we applied sLORETA (The KEY In-
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Figure 3.10: Percent change of gamma and alpha band activity in the gamma and alpha
sessions within the last training day. Statistical tests revealed a higher increase of alpha
power in the alpha sessions than in the gamma sessions (t(11)=7.14, p<0.001)(**p<0.01)
and a higher increase of gamma power in the gamma sessions than in the alpha sessions
(t(11)=2.75, p=0.018) (*p<0.05)). (Salari et al., 2012)

stitute for Brain-Mind Research, Zurich; Pascual-Marqui, 2002) to the subtracted

electric potential differences. The standardized LORETA method was applied for

the source estimation, since LORETA achieves low localization error (see section

2.3.3.4), whereas sLORETA is more exact and achieves less localization error. More

detailed information on sLORETA can be found in (Pascual-Marqui, 2002; Fuchs et

al., 2002; Jurcak et al., 2007).

The time-frequency analysis was calculated for the channels PO7/PO8, as 1.) they

are closest to the trained ROI and 2.) a time-frequency analysis cannot be applied

to the LORETA channels as they are filtered in the alpha or gamma band range.

The analysis was calculated based on a starting period of 1200 ms before and 1000

ms after image presentation for visual stimuli shown during alpha and gamma band

states.

3.5.2 Results

Analysis of Gamma and Alpha Activity in the ROIs

After three training sessions as in Experiment I, offline analyses of the last training

day showed that volunteers were able to selectively increase alpha and gamma band
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Figure 3.11: Topographic and spatial distribution of gamma band increase. (Left) On the
sensor level: Topographic representation of the average change in gamma band activity (30-
45 Hz) during the feedback period compared to the passive period within the last training
session. The maximum change is localized at the occipital lobes close to the trained ROIs.
(Right) Source estimation: sLORETA analysis of the subtracted electrode potential differ-
ence of the gamma feedback sessions compared to the passive baseline. The yellow area
represents the maximum estimated change in gamma band activity compared to baseline.
(Back view) (Salari et al., 2012)

power in the defined ROI in the LOC. Analyses of the power change of gamma

band activity to the passive baseline revealed a significant increase of gamma ac-

tivity within the gamma sessions, but not during the alpha sessions. Accordingly,

alpha power change increased significantly during the alpha sessions, but not during

the gamma band sessions (interaction of session (alpha/gamma) X frequency band

(alpha/gamma), F(1,11)= 33.75, p <0.001) (Figure 3.10). Volunteers were able to

selectively increase gamma band oscillations in the gamma sessions as compared to

the alpha band activity (t(11)=3.4, p<0.01). No significant changes were found in

the alpha band compared to baseline during gamma band sessions (t(11) =1.41,

n.s.). This selective increase was also reliable in the alpha band sessions as the

alpha band was increased while the gamma band remained unaffected (t(11)=4.33,

p<0.01). The results show that volunteers learned to selectively influence each fre-

quency band without affecting the other.

Topographical Analysis of BCI Training

Results of the topographical and spatial distribution of the feedback effect revealed

that the increase in alpha activity during the alpha sessions and gamma activity

during the gamma sessions was maximal at the occipital lobe (see Figure 3.11).

While increased gamma band activity in the gamma sessions was limited to the

occipital lobe, results of the alpha sessions revealed a more widespread activation,

as the alpha band increased in both the occipital and parietal lobes (see Figure
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Figure 3.12: Topographic and spatial distribution of alpha band increase. (Left) On the
sensor level: Topographic representation of the average change of the alpha band activity
(8-12Hz) during the feedback period compared to the passive period within the last training
session. The maximum change is localized at the occipital and parietal lobes. (Right)
Source estimation: sLORETA analysis of the subtracted electric potential difference of the
alpha feedback sessions compared to the passive baseline. The yellow area represents the
maximum estimated change of the alpha band activity to baseline. (Back view) (Salari et
al., 2012)

3.12).

Analysis of Efficiency of Artifact Control

To assess the effect of artifact control during BCI training, we determined the amount

of artifact contaminated alpha/gamma segments (at least one of the artifact bars red)

within the first and last training days. At the individual level, four volunteers were

successful in avoiding artifacts on the first training day; success was defined as 35%

or less of the feedback segments affected by artifacts. All other volunteers showed

poor performance in artifact control on the first day. However, for these volunteers

in particular, our results revealed a significant decrease of artifact contaminated

segments across training (reduction of 17 % from first to last training day, F(1,7) =

6.02, p<0.05). Thus, our results demonstrate the efficiency of artifact control during

BCI training as volunteers learned to control artifacts across training.

Analysis of the Influence of Increased Prestimulus Alpha or Gamma Band

Activity on Object Perception

As in Experiment II, we tested for the consequences of selectively increased gamma

and alpha band activity on subsequent visual object processing. All volunteers from

the fifth experiment participated in the object detection task. Our results clearly

showed that volunteers were able to detect more objects during the gamma band
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sessions than during the alpha band sessions. During prestimulus increased gamma

band activity more objects were detected than during prestimulus increased alpha

band activity (detected objects during gamma sessions: 81% ± 2.9 (s.e.m.) versus

alpha band sessions: 74% ± 3.6(s.e.m); t(11) = 3.03, p=0.01) (Figure 3.13c). As

in Experiment II, we applied the recognition task after BCI testing with 30 images

shown during alpha session, 30 during gamma sessions and 60 additional new images.

Analyses were identical to Experiment II. However, no significant differences were

found between images detected during alpha and gamma band sessions.

The offline EEG analysis confirmed that the prestimulus gamma and alpha band

activity differed for alpha and gamma band sessions. The percent change of alpha

and gamma activity to baseline was analyzed in both alpha and gamma band sessions

in the trained LOC. Statistical tests revealed increased alpha power during the alpha

sessions but not during the gamma sessions and increased gamma power during

the gamma sessions but not during the alpha band related sessions (interaction

of session (alpha/gamma) X frequency band (alpha/gamma) F(1,11) = 45.53, p<

0.001). During gamma band sessions, gamma band was significantly increased as

compared to baseline (t(11)= 3.1, p=0.01), while alpha band activity remained

unchanged (t(11) = 1.01, n.s.). A reverse effect was found during the alpha sessions

as alpha band activity was significantly increased (t(11)=4.26, p<0.01) and gamma

band activity remained unaffected (t(11) = 0.46, n.s.) as compared to baseline.

Thus, the modulation of both frequency bands remained highly selective as during

the training part of the experiment.

To further evaluate the effects of induced oscillations within different frequency

bands, a time-frequency analysis was performed at the sensor level (as in Experiment

I for the electrodes PO7/ PO8). A comparison of the oscillatory states directly

preceding task stimulus presentation demonstrates the selective induction of the

different frequencies and the effects on the stimulus processing (Figure 3.13a,b).

The induction of gamma band oscillations was clearly limited to the high frequency

range and did not affect lower frequencies and the alpha band oscillations were also

restricted to the trained frequency range. In order to test whether visual object

processing was specific to an increase of gamma band activity in the LOC, we tested

whether the results hold true for the parietal region as a maximal alpha effect was

shown in that region (see Figure 3.12). Therefore, we calculated the change of

alpha and gamma band activity during the prestimulus gamma band sessions in the

parietal region [x,y,z] = [15, -63, 65]. This region is depicted from the results of
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Figure 3.13: (a) Time-frequency analysis of the total power difference between the gamma
state compared to the alpha state for electrodes PO7/PO8 before and after stimulus onset
(grand mean over all participants). A clear difference is found in the trained frequency
range around 40 Hz. (b) Time-frequency analysis of the total power difference between the
alpha state and the gamma state for electrodes PO7/PO8 before and after stimulus onset
(grand mean over all participants). A clear difference is found in the trained frequency range
around 8-12 Hz. (c) Significantly more images were detected during gamma band sessions
than during alpha band sessions. (* p<0.05) (Salari et al., 2012)
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source estimation, representing the maximum estimated change of the alpha band

activity in the alpha sessions (see Figure 3.12). Results confirmed that during the

prestimulus gamma band sessions no significant changes were found in the alpha or

gamma band in the parietal region, which could explain the improvement in visual

object processing.

3.5.3 Conclusion

Our results demonstrate that volunteers learned to selectively switch between modu-

lating alpha or gamma band oscillations and benefited from online artifact informa-

tion, as they learned to control artifacts across training. Topographical and spatial

analyses show that gamma band increase was restricted to the visual cortex, while

alpha band increase revealed a more widespread activation. Thus, a source-based

BCI method may facilitate manipulation of a specified frequency range in a prede-

fined brain region, yet with different topographical accuracy. Results of the object

detection task during BCI revealed higher detection accuracy for images shown dur-

ing gamma band sessions than during alpha band sessions. Thus, we were able to

replicate results of Experiment II, as more images were detected during increased

gamma band activity.



Chapter 4

General Discussion and Future

Work

In the present dissertation, we examined the functional relevance of prestimulus

gamma band oscillations in the LOC for subsequent visual object processing. To

this effect, we designed and developed a non-invasive EEG-based BCI method. Our

combined active and reactive BCI method allows for (i) a selective modulation of

ongoing oscillatory activity by volunteers in an experimental setup and (ii) a direct

examination of this modulation on visual object processing by adaptive stimulus

presentation.

After the development of the BCI method, we conducted several experiments. In

the first experiment, volunteers learned to increase gamma band oscillations in the

visual cortex with a high degree of specificity regarding time, space and frequency.

In a second experiment, as volunteers learned to deliberately modulate oscillations

in the gamma band frequencies, we focused on the role of these oscillations for

subsequent processing of visual stimuli. Results showed that increased gamma band

activity improved visual object processing and also memory. In a third experiment,

volunteers successfully learned to modulate two frequency ranges, the alpha and the

gamma band in a new visual ’game’ track display. In order to test for the specific

modulation of gamma band oscillations due to BCI training, we conducted a fourth

experiment. In this experiment, a feedback group was trained to modulate gamma

band oscillations in the visual cortex, while a second control group was exposed to an

identical training but without feedback. Both groups conducted visual performance

tasks before and after training to test for specific gamma frequency training effects
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after training. Only the feedback group but not the control group showed a specific

gamma band increase and an improvement in visual object processing.

The unique role of gamma band oscillations for visual object processing is supported

by the results from Experiment V. In a new group of volunteers we could replicate

the relation of gamma band states to an improvement of visual object processing in a

direct comparison to alpha band states. Our results demonstrate that an intentional

modulation of distinct oscillatory brain states can improve subsequent visual object

processing related to the underlying neural area and therefore suggests a direct link

between prestimulus gamma band activity and visual object processing.

Throughout the experiments, we continued to improve the BCI method towards a

source-based method for a precise cortical localization of training effects with an

online detection of artifacts. In Experiments I to IV, volunteers were trained to

increase gamma or alpha band oscillations in electrodes (PO7/PO8) which were

approximately located over the LOC. With the source-based BCI method in Exper-

iment V, we showed that volunteers learned to selectively increase gamma or alpha

band oscillations directly in the LOC. To our knowledge, we are the first to modu-

late frequency oscillations in the LOC with a source-based BCI method. Moreover,

we are the first to introduce an online estimation of specific brain states and the

immediate presentation of stimuli during online BCI testing. Hence, the selective

modulation and online estimation of ongoing oscillatory activity in the LOC under-

lines the value of the BCI method for the examination of a more direct association

between oscillatory brain states and visual object processing.

Our main results are summarized here and discussed in detail in the next section:

Neuroscientific results:

• Prestimulus gamma band activity improves subsequent visual object process-

ing and memory.

• Improvement of visual object processing is specific to gamma band oscillations.

BCI method results:

• Selective frequency modulation and adaptive stimuli presentation with the BCI

method.

• Modulation of brain oscillations in a specified ROI is feasible with the source-

based BCI method.
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• Online detection of artifacts assists volunteers in learning to suppress artifacts.

4.1 Discussion of Neuroscientific Results

Prestimulus gamma band activity improves subsequent visual object pro-

cessing and memory

Oscillations in the gamma band in the visual cortex have been linked to stimulus

properties (Engel et al., 2001; Gray et al., 1989; Siegel & König, 2003) and visual

awareness (Wyart & Tallon-Baudry, 2009; Rodriguez et al., 1999; Melloni et al.,

2007). However, the influence of these spontaneous oscillations on visual object

processing remains controversial. Therefore, in the second experiment after gamma

band training, we examined the effect of different levels of gamma band activity

on visual object processing. Within these different states of ongoing gamma band

activity, noisy images were presented as visual stimuli. In accordance with our as-

sumptions, results confirmed that the increase of the induced gamma band activity

over the LOC enhanced visual object processing. Results of the frequency distri-

bution in Experiment I (Figure 3.2c), as well as results of the prestimulus activity

before object detection in Experiment II (Figure 3.4a), clearly demonstrated a se-

lective enhanced effect in the trained gamma band and no other frequency showed a

reliable effect of the BCI training. The relevance of the prestimulus gamma band ac-

tivity is further supported by the comparison of detected against undetected images,

regardless of the actual state. The only reliable difference before the onset of the

stimulus is found in the gamma band (Figure 3.5a). Thus, all observed visual per-

formance effects were only related to the gamma band activity. These observations

were supported by the results from Experiment V, as more images were detected

during increased gamma band activity than during increased alpha band activity.

Specific brain states denoted by rhythmic electrophysiological activity - oscillations -

have been under debate for decades. Regarding gamma band oscillations, a recently

proposed theory predicts that they are generated by fast-spiking interneurons which

then rhythmically inhibit interneuron networks (Stanfords & Jefferys, 1996; Traub

et al., 1997; Whittington et al., 1995, 2000; Deans et al., 2001). The theory describes

networks of fast-spiking cells connected via gap-junctions (electrical synapses) that

allow for synchronous inhibitory post-synaptic potentials (IPSPs) to local excitatory

neurons. The excitatory neurons are thereby entrained to the rhythmic inhibitory

activity. In accord with previous studies, the activation of the inhibitory interneu-
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ron networks generate a short time window for effective (sensory induced) excitation

(Cardin et al., 2009; Sohal et al., 2009; Lisman, 2005). This means that during spe-

cific phases of the oscillatory cycle, processing is enhanced rather than inhibited. We

tested this hypothesis by training volunteers to generate gamma band oscillations in

the LOC and then presented visual stimuli. Visual object processing was improved.

The theory explains the important functional role of gamma band oscillations in the

establishment of a neural state within a circumscribed network that facilitates the

processing of new visual stimuli within that specific network.

Our results showed that the established gamma state did not only improve the

processing of new visual stimuli but also improved memory recall of these visual

stimuli. The interaction of gamma band oscillations with slow theta oscillations has

been suggested to be involved in memory functions (Lisman, 2005). Lisman and

colleagues (1995) have argued that these oscillations are a clocking system for a

neural code that organize and allow multiple items to be stored in memory. Indeed,

results of the recognition task in the second experiment showed a significant influ-

ence of gamma band oscillations on memory as results showed higher recognition

rates for images that were previously detected during high gamma band states than

during low gamma band states. A surprise recognition task was also performed in

Experiment V, after volunteers had detected images during increased gamma or in-

creased alpha band states. However, results of the recognition task after training

did not show significant changes between recognition rates for images shown during

gamma band states as compared to alpha band states. We assume that the com-

parable memory effect is related to different functional roles of alpha and gamma

band activity.

Our results reveal convincing evidence that prestimulus gamma band oscillations

improve perception. This is reflected in the amount of detected objects but also

in a difference of memory performance between the two gamma band states. We

suggest that the improvement in memory formation under the high gamma band

state is also related to an enhanced perceptional processing that facilitates memory

encoding. The results of the fifth experiment showed that alpha band activity did not

improve perception and resulted in an equal memory formation for detected objects

(the absolute amount of remembered objects is lower for alpha band states due to

less detected objects during the object detection task). It could be assumed that

the equal memory performance is related to the proposed functional role of alpha

band oscillations and memory formation (Klimesch et al., 2003). This assumption



4.1. Discussion of Neuroscientific Results 95

is supported by the results demonstrating that increased prestimulus alpha band

oscillations remain increased in the poststimulus period and we suggest that memory

encoding proceeds during the entire increased alpha state.

The equal memory performance in the fifth experiment thus could be related to

an improved perceptual processing during elevated gamma band activity and to

improved memorization of the objects during alpha band activity. Besides this

more speculative interpretation, our experiments clearly demonstrate a functional

relevance of prestimulus gamma band activity in the LOC for perceptual processing

of visual objects.

Studies in animals and humans have shown a top-down attentional influence on

gamma band activity resulting in visual performance differences (Steinmetz et al.,

2000; Engel et al., 2001; Fries et al., 2001; Bichot et al., 2005). However, results of

Experiment IV demonstrate, that mainly an attentional focus towards the visual dis-

play cannot account for the specific increase of gamma band activity in the feedback

group, since in both feedback and non-feedback experimental groups, a common

attentional focus towards the visual display was established. Hence, although both

feedback and non-feedback groups attended equally to the visual display, a signif-

icant gamma band increase was only measured in the feedback group. In a study

by Tallon-Baudry (2005), they examined the effect of attention on gamma band

oscillations showing that attention modulates gamma band oscillations in a broad

frequency range from 30 up to 140 Hz. However, the modulation of gamma band

frequencies with our custom BCI method showed a narrow increase of prestimu-

lus gamma band activity in the exact trained frequency range from 30 to 45 Hz.

Results in Experiment V furthermore support the specific modulation of particular

frequency ranges by our BCI method. Both alpha and gamma band frequencies were

selectively modulated resulting in a narrowed prestimulus activity increase in the re-

spective trained frequency range. Hence, our results reveal convincing evidence that

the learned influence on gamma band activity cannot be related to an attentional

mechanism.

Frequency specificity of gamma band oscillations for improved visual ob-

ject processing

In contrast to the gamma band, prestimulus alpha activity is thought to have an

inhibitory role on perception (Dijk et al., 2008; Hanslmayr et al., 2007; Ergenoglu et

al., 2004). In a recent study, occipital and parietal transcranial magnetic stimulation
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(TMS) at alpha frequency was found to impair target detection in the visual field

contralateral to the stimulated hemisphere (Romei et al., 2010). Nevertheless, other

studies also indicate a functional relevance of alpha band oscillations for visual object

processing (Klimesch et al., 2003; Babiloni et al., 2006; Hanslmayr, Sauseng, et al.,

2005). Therefore, in Experiment V, noisy images were presented during real-time

classification of increased alpha or gamma band activity in an alternating fashion.

Although the absolute change was larger for the alpha band (see Figure 3.10) the

behavioral and neural indicators clearly showed an enhanced visual object process-

ing during gamma band states (see Figure 3.13a,c). Thus, in agreement with our

assumptions, volunteers detected more images during states of increased prestimu-

lus gamma band activity as compared to states of increased prestimulus alpha band

activity.

Recent studies combining EEG and fMRI measurements support a relevant func-

tional role of ongoing gamma band oscillations for visual object processing. A posi-

tive correlation between gamma band oscillations and the fMRI response has been

found in the visual cortex (Scheeringa et al., 2011). In contrast, alpha band oscilla-

tions have been shown to decrease the fMRI response in occipital areas (Scheeringa

et al., 2011; Becker et al., 2011; Moosmann et al., 2003; De Munck et al., 2007).

Thus, an increase in gamma band oscillations can lead to an increase of activity in

the LOC and this increased fMRI response in the LOC has been shown to improve

object detection (Rose et al., 2005). This assumption is supported by our results

showing that an increase of ongoing gamma band oscillations in the LOC leads to

improved visual object processing as compared to ongoing alpha band oscillations.

It could be argued that BCI training of the lower frequencies could also result in

similar improvements in visual object processing. A recent study has shown a corre-

lation between the phase of infraslow (0.01–1Hz) fluctuations during ongoing brain

activity with the detection of sensory stimuli and amplitudes of 1 – 40 Hz (Monto

et al., 2008). Thus, the study suggests a possible correlation between the increased

gamma band activity and the phase of infraslow fluctuations in the prestimulus

period, which our technical settings did not allow us to measure.

The BCI method provided us with a way to disentangle the role of gamma and

alpha bands in visual object processing and to demonstrate the dominant role of the

gamma band state.
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4.2 Discussion of the BCI Method

Selective frequency modulation and adaptive stimuli presentation with

the BCI method

The results of the experiments show that gamma band oscillations can be induced

by our BCI method. In all experiments, the effect of BCI training was limited to

the trained frequency range, demonstrating the potential of the BCI method for a

frequency specific modulation of ongoing oscillatory activity. Several methods in-

cluding TMS (Romei et al., 2010; Marshall et al., 2006; Kanai et al., 2008) and

attention (Gruber et al., 1999; Fries et al., 2001; Tallon-Baudry et al., 2005) have

been implicated as methods to manipulate oscillations in different frequency bands.

However, in most of these studies, the spectral effects do not only correspond to

the predefined frequencies, but also affect other frequencies. To date, only a single

simultaneously recorded TMS EEG study has ensured a frequency specific phase

modulation in the alpha band range before stimulus onset (Dugué et al., 2011).

Apart from these methods, several studies have applied a feedback approach to

train participants to increase activity in different frequency ranges and tested vi-

sual performance effects (Klimesch et al., 2003; Hanslmayr, Klimesch, et al., 2005;

Keizer et al., 2010). In all of these studies, performance tests were applied offline

after neurofeedback training without an assessment of the actual oscillatory state

preceding the actual visual performance test. Therefore, in our BCI method, visual

performance tests were carried out online during the estimation of alpha or gamma

band oscillations. We ensured the presentation of visual stimuli during modulation

in the exact trained frequency range and topographic area.

Modulation of brain oscillations in a specified ROI is feasible with the

source-based BCI method

Results of sourced-based BCI training with the LORETA method clearly demon-

strated that volunteers learned to intentionally increase neural activity in the alpha

and gamma band in the LOC. Analyses of the ROIs during the alpha and gamma

periods revealed a clear increase of gamma activity during the gamma sessions and

a clear increase of alpha activity during the alpha sessions. Thus, volunteers learned

to selectively increase activity in both alpha and gamma frequency bands in the

predefined ROIs, demonstrating that ongoing alpha and gamma band oscillations

can be modulated by a source-based BCI method and, in particular, in a specific

brain region.



98 Chapter 4. General Discussion and Future Work

Results of the distribution of the estimated three-dimensional electrical activity of

the gamma band increase showed a selective enhanced effect in the LOC as indi-

cated by the topography in Experiment I. Results of the topographical location and

spatial distribution of the alpha band increase demonstrated a rather widespread

enhanced effect in the trained lateral occipital and in the occipito-parietal region,

with a maximum effect in the superior parietal lobe. Previous studies used source-

based methods to generate a feedback signal to enhance low beta and to suppress

low alpha in the anterior cingulate cortex (ACC) (Congedo et al., 2004). Based on

this study, a further study explored the effect of training in the ACC on anterior

regions (Cannon et al., 2007). The present results show that alpha band modulation

within the LOC as selected region of interest does not ensure a maximal effect in the

defined region. Therefore, post-hoc analyses are essential to evaluate other possible

sources that may have affected the results. We show that alpha frequency band can-

not be modulated with the same high spatial precision as the gamma band activity.

Our results are in agreement with previous literature implicating the origin of pos-

terior alpha oscillations from occipito-parietal areas, where it is modulated by visual

input (Berger, 1929; Adrian & Matthews, 1934; Hari et al., 1997). In order to test

whether visual object processing was specific to an increase of gamma band activity

in the LOC, we tested whether the results hold true for parietal regions. Results

demonstrated that no significant changes were found in the alpha band range in the

parietal regions during prestimulus gamma sessions. Therefore, alpha activation in

parietal regions cannot explain the improvement of visual object processing.

Online detection of artifacts assists volunteers in learning to suppress

artifacts

Artifacts caused by EOG, microsaccades or EMG activity can lead to undesired

changes in EEG brain signals. As we train volunteers to modulate oscillations in

the gamma band, it is particularly important to account for with EMG artifacts,

since EMG activity has a wide frequency range, being maximal at frequencies higher

than 30 Hz (Anderer et al., 1999; McFarland et al., 1997) and thereby in a similar

range as the gamma band activity. A recent discussion raised concerns regarding

the neural origin of gamma band activity (Yuval-Greenberg et al., 2008), which

provided evidence that increased gamma band activity can be an artifact induced

by microsaccades. However, our results provide convincing evidence that the in-

creased gamma band activity is neural rather than ocular in origin. Results of BCI

training in Experiment I revealed no systematic changes between the amount and
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amplitude of microsaccades in the feedback period compared to the passive period

or across training. In addition, results of the object detection task in Experiment

II also showed that saccadic activity did not affect high and low gamma states.

Since there are no saccadic changes between the relevant periods, the increased

gamma band activity in the feedback periods cannot be attributed to a microsac-

cade influence, but rather stems from neural activity. Importantly, the sensitivity of

the applied SP detection method (see section 2.3.3.2) was confirmed as our results

demonstrated saccadic changes during stimulus presentation, as reported previously

(Yuval-Greenberg et al., 2008). In contrast to Experiments I to IV, in Experiment V,

EOG, EMG and microsaccadic artifacts were detected online as volunteers trained

to increase gamma or alpha band activity. Our results revealed a suppression of ar-

tifacts over the entire training period. Thus, our results clearly demonstrate that an

additional visual feedback of artifacts (as in Experiment V) during BCI experiments

is essential and in fact assists the volunteer in learning to gain better control of the

actual physiological signals.

4.3 Future Work

The following section highlights interesting aspects for future work involving neu-

roscientific experiments with the BCI method and also further development of the

BCI method.

4.3.1 Future Ideas for Neuroscientific Experiments with the BCI

method

Up to this point, we have examined improvements in visual object processing due

to increased prestimulus gamma band activity around 40 Hz. Interestingly, time-

frequency analyses of the poststimulus period in both Experiments II (Figure 3.4a)

and V (Figure 3.13a) reveal a clear gamma band increase in the range of 60 to 70 Hz

right after stimulus presentation. These observations raise the question of whether

feedback training of higher gamma band frequencies would have a greater impact

on visual object processing as compared to gamma frequencies around 40Hz. Thus,

in future work the advanced BCI method will be applied to train oscillations in the

range of 60 to 70 Hz and to test for improved visual object processing.

The reported neuroscientific results in this dissertation could be specific for percep-
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tual processing, as studies have shown that functions like memory processing may

be supported by oscillatory states of frequencies within the theta band (Addante et

al., 2011; Guderian et al., 2009b; Lisman, 2005). This assumption can be tested us-

ing the developed BCI method, as the resulting high specificity regarding frequency

range and location of alpha and gamma training underpins the value of the BCI

method for the examination of a more direct relationship between oscillatory brain

states and behavior.

A further interesting experiment could consider a longer period of BCI training. In

the conducted experiments, volunteers were trained for 3 days. Thus, with additional

training days one could test for a reliable increase of gamma band activity across

the training days and eventually find higher accuracy rates for image detection.

4.3.2 Future Ideas for Methodical Extensions of the BCI method

In the future it would be interesting to design and to develop a sLORETA (Pascual-

Marqui, 2002) module, as it is more precise than LORETA (see section 2.3.3.4). In

order to continue with a source-based BCI method, a custom-written module for

sLORETA would allow us to use different interfaces apart from RecView. Further-

more, RecView is not open-source and working with existing modules and therefore

black boxes hinders the incorporation of new modules and the extension of existing

modules.

The visual display design of the BCI experiments plays a functional role in motivat-

ing volunteers to participate in the experiments. Thus, the exploration of different

display designs and their effect on training would be highly interesting.

Furthermore, we would like to design and develop a new visual feedback display with

a 3D overview of the volunteers head. Such a map would visualize the localization of

the maximum increase of specific frequencies, which would possibly assist volunteers

in learning how to modulate variable frequencies in different topographical areas.



Appendix

Parts of the dissertation have been published in PLoS ONE, 7(5) (Salari et al., 2012).

Digital Filter Design

The following outlines the calculation of the coefficients for a 2nd order IIR Butter-

worth high-pass filter with a cut-off frequency 0.5 Hz as introduced by (Milivojevic,

2009).

1. In a preliminary step, the filter specifications are set:

• Type of filter: High-pass filter

• Sampling frequency fs = 250 Hz

• Filter order N = 2.

• Passband cutoff frequency fc = 0.5 Hz.

• Selected analog filter type: Butterworth filter

2. In a next step, transformation of analog filter system from the time domain into

the frequency domain is achieved by using the transfer function Ha(s) with s = jω

representing the complex frequency (from Laplace transform). Substituting s = jω

in equation 2.9 we get:

Ha(s)Ha(−s) =
1

1 +
(
s
j

)2N
(4.1)

3. The Butterworth reference prototype filter transfer function has no zeros, only

poles. As N = 2, with
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sk = cos
π

2N
(2k +N − 1) + j sin

π

2N
(2k +N − 1), k = 1, 2, 3, . . . , 2N (4.2)

the value of the poles are:

s1 = cos
π

4
(2 + 3) + j sin

π

4
(2 + 3) = −0.7071− j0.7071 (4.3)

s2 = cos
π

4
(4 + 3) + j sin

π

4
(4 + 3) = 0.7071− j0.7071 (4.4)

s3 = cos
π

4
(6 + 3) + j sin

π

4
(6 + 3) = 0.7071 + j0.7071 (4.5)

s4 = cos
π

4
(8 + 3) + j sin

π

4
(8 + 3) = −0.7071 + j0.7071 (4.6)

Since the poles must all be in the left half plane (negative real part) for a stable

filter, the poles s1 and s4 are selected. In the following they are referred to as s1

and s2.

The reference analog prototype transfer function results in:

Ha(s) =
1

(s+ 0.7071 + j0.7071) (s+ 0.7071− j0.7071)
(4.7)

4. As a next step, the Butterworth reference analog filter is transformed into a

high-pass analog filter with the specified cut-off frequency ωc. By performing the

following transformation

H(s) =
1

N∏
k=1

(−sk)

sN

N∏
k=1

(
s− ωc

sk

) (4.8)

with

ωc = tan

(
π
fc
fs

)
(4.9)

ωc is calculated first:

ωc = tan

(
π

0.5

250

)
= 0.006 (4.10)
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H(s) =
1

(−s1) (−s2)

s2(
s− 0.006

s1

)(
s− 0.006

s2

) (4.11)

H(s) =
1

(0.7071 + j0.7071) (0.7071− j0.7071)

s2(
s− 0.006

−0.7071−j0.7071

)(
s− 0.006

−0.7071+j0.7071

)
(4.12)

and the analog prototype filter cut-off frequency ωc is determined with:

ωc = tan

(
π
fc
fs

)
(4.13)

5. The analog filter is now transformed to a digital through bilinear transformation:

s =
1− z−1

1 + z−1
(4.14)

With the substitution of the complex variable s in 2.20 we obtain the following:

H(z) = H0(−1)N−M

M∏
k=1

(1− zk)

N∏
k=1

(1− sk)

(
1 + z−1

)N−M M∏
k=1

(
1− 1+zk

1−zk z
−1
)

N∏
k=1

(
1− 1+pk

1−pk z
−1
) (4.15)

With a more condensed form of the previous expression with the ak and bk coeffi-

cients we obtain:

H(z) =

M∑
k=0

bkz
−k

1 +
N∑
k=1

akz−k
(4.16)

H(z) =
1− 2z−1 + z−2

1− 2z−1 + 0.98z−2
(4.17)

Setting the ak and bk coefficient in equation 2.11, we obtain the following second

order high-pass IIR Butterworth filter with a cutoff frequency of fc = 0.5 Hz and a

sampling rate of 250 Hz:
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y(n) = (x(n−0)×1)+(x(n−1)×−2)+(x(n−2)×1)+(y(n−1)×2)+(y(n−2)×−0.98)

(4.18)

Statistical Methods

Student’s t-test

The Student’s t-test assesses whether the means of two samples are statistically

different from each other. Our data is mainly based on dependent samples, which

means that a group of people have been tested twice (repeated measures). The

paired t-test is defined as (Howell, 2009):

t =
x̄1 − x̄2 − µ0

s1−s2√
n

(4.19)

where x̄1 is the sample mean of testing. i.e., at day one and x̄2 is the sample mean

of the same group at day two. s is the sample standard deviation for day one s1 and

day two s2. n is the number of volunteers in a group. The degree of freedom used

is n− 1. The Null-hypothesis states that there is no effective difference between the

two samples and that therefore the mean (µ1) of samples from day 1 is equal to the

mean (µ2) of samples of day 2, H0 = µ1 − µ2 = 0 = µ0. For a significant difference

between the two samples the Null-hypothesis has to be rejected.

With the t value we get a p-value (can be looked up in the t-distribution table) that

indicates how likely we could have gotten these results by chance. A statistically

significant difference between the two samples is given, if the chance of obtaining

the differences is under 5 % (p< 0.05). In this case the null hypothesis is rejected.

Analysis of Variance (ANOVA)

The student’s t-test is mathematically identical to a one-way ANOVA with two

samples of data. The ANOVA can be applied on one or more data samples, i.e. one

group tested throughout 3 days. The test statistic for ANOVA has an F-distribution

under the null hypothesis. The one-way ANOVA F-test statistic, with K−1, N−K
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degrees of freedom under the null hypothesis, is defined as:

F =

∑
i ni

(x̄i−x̄)2

K−1∑
ij

(xij−x̄i)2
N−K

(4.20)

where x̄i denotes the sample mean in group i, ni is the number of samples in a

group. x̄ is the overall mean of the data. xij is sample j in group i out of K groups

and N is the overall sample size.
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