Charakterisierung des pathogenen Phänotyps von *Entamoeba histolytica* (SCHAUDINN, 1903)

Dissertation

Zur Erlangung der Würde des Doktors der Naturwissenschaften des Fachbereichs Biologie, der Fakultät für Mathematik, Informatik und Naturwissenschaften, der Universität Hamburg

vorgelegt von

Jenny Matthiesen

aus Hamburg

Hamburg 2012

Genehmigt vom Fachbereich Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg auf Antrag von Prof. Dr. I. BRUCHHAUS Weiterer Gutachter der Dissertation: Prof. Dr E. TANNICH Tag der Disputation: 20. April 2012

Hamburg, den 12. April 2012

(

Professor Dr. J. Fromm Vorsitzender des Promotionsausschusses Biologie

Inhaltsverzeichnis

Ι	Abkürzungsverzeichnis	IV
II	Zusammenfassung	VIII
1	Einleitung	1
	1.1 Entamoeba histolytica	1
	1.2 Biologie, Morphologie und genetische Organisation von E. histolytica	4
	1.3 Kulturisolate von <i>E. histolytica</i>	4
	1.4 Pathogenitätsfaktoren von <i>E. histolytica</i>	5
	1.5 Cysteinpeptidasen von <i>E. histolytica</i>	6
	16 Vergleichende Genom-Analysen	9
	17 Vergleichende Proteom-Analysen	11
	18 Zielsetzung	12
2	Material und Methoden	14
2	2.1 Geräte und Software	11
	2.1 Verbrauchsmaterialien	11
	2.2 Verbrudensmaternahen	15
	2.5 Enzyme und Enzyminhibitoren	15
	2.4 Enzyme und Enzymmmonoren	10
	2.6 A ssay Systems (Kits)	10
	2.0 Assay-Systemic (Kits)	17
	2.7 Infinitume agenzien und Seren	1 /
	2.8 Fullel ulla Losuligeli	10
	2.9 Kultulmedien und Medienzusalze	
	2.10 Organismen	22
	2.10.1 Enlamoeda nisiolylica	22
	2.10.2 Meriones unguiculatus	23
	$2.10.3 Mus \ musculus \dots$	23
	2.10.4 <i>Escherichia coli</i> – Stamme	24
	2.11 Plasmide	24
	2.12 Oligonukleotide	25
	2.13 Zellkultur von E. histolytica	25
	2.13.1 Kultivierung von <i>E. histolytica</i>	25
	2.13.2 Klonierung von <i>E. histolytica</i>	26
	2.13.3 Zellernte von <i>E. histolytica</i>	26
	2.13.4 Transfektion von <i>E. histolytica</i>	26
	2.14 Bakterienzellkultur	27
	2.14.1 Herstellung kompetenter Zellen	27
	2.14.2 Transformation kompetenter Bakterien	27
	2.15 Isolierung von Nukleinsäuren	28
	2.15.1 Isolierung genomischer DNA aus <i>E. histolytica</i>	28
	2.15.2 Plasmid-Mini-Präparation aus <i>E. coli</i>	28
	2.15.3 Plasmid-Maxi-Präparation aus <i>E. coli</i>	28
	2.16 Isolierung, Reinigung und Fällung von RNA aus <i>E. histolytica</i>	29
	2.16.1 RNA-Isolierung mit TRIzol (Invitrogen)	29
	2.16.2 RNA-Reinigung und DNA-Verdau mit dem RNeasy [®] -Mini-Kit (Qiagen)	29
	2.16.3 Fällung der RNA	29
	2.17 DNA-Analysen	30
	2.17.1 Konzentrationsbestimmung und Reinheitskontrolle	30
	e e e e e e e e e e e e e e e e e e e	

I

	2.17.2	Agarose-Gelelektrophorese	30
	2.17.3	DNA- Präparation und Extraktion aus Agarosegelen	30
	2.17.4	DNA-Sequenzanalysen	30
	2.17.5	SNP (single nucleotide polymorphism)-Analysen	31
	2.17.	.5.1 Probendesign	31
	2.17	.5.2 PCR-Optimierung	32
	2.18 Kl	onierung von DNA-Fragmenten	33
	2.18.1	Polymerase-Kettenreaktion (PCR)	33
	2.18.2	Restriktionsanalyse von DNA	34
	2.18.3	Ligation von DNA-Fragmenten	34
	2.19 RN	JA-Analysen	35
	2.19.1	Erststrangsynthese (cDNA-Synthese)	35
	2.19.2	Quantitative <i>Real-Time</i> PCR	36
	2.20 Pro	bteinanalysen	37
	2.20.1	Rekombinante Expression	37
	2.20.2	Reinigung der Histidinpeptid markierten rekombinant exprimierten Proteine	20
	mittels	Affinitatschromatographie	38
	2.20.3	Herstellung von Proteinextrakten aus <i>E. histolytica</i>	38
	2.20.4	SDS Dates any low idealability on Proteiniosungen	<u>39</u>
	2.20.5	Substrat SDS DACE sum Nachweig von Dantidagen	39 40
	2.20.0	Substrat-SDS-PAGE zum Nachweis von Pepildasen	40
	2.20.7	CP Assay zur Bestimmung der proteolytischen Cysteinpentidese Aktivität	41 12
	2.20.0 2.21 Ho	rstallung polyklonaler Antikörper	42
	2.21 IIC 2.22 Im	munfluoreszenzanalyse	43
	2.22 IIII	Immunfluoreszenzfärbung von <i>E. histolytica</i> -Trophozoiten	43
3	Ergebnis	sse	45
5	3.1 Klor	nierung der <i>E_histolytica</i> -Zelllinien HM-1 [.] IMSS A und HM-1 [.] IMSS B	45
	311	Analyse der Pathogenität der generierten Klone der Zelllinien A und B	45
	3.1.2	Subklonierung der Klone B8 und B9	47
	3.2 Ver	gleichende <i>single nucleotide polymorphism</i> (SNP) - Analysen zwischen E.	
	histolytica	\tilde{a} Klon A1 und Klon B2	48
	3.2.1	Validierung der identifizierten SNPs und Überprüfung der Korrelation zwische	en
	SNPs u	ind Pathogenität	49
	3.3 Ana	lyse der Korrelation zwischen Cysteinpeptidasen und Pathogenität bei E.	
	histolytica	<i>i</i>	54
	3.3.1	Transfektion von E. histolytica Klon A1 Trophozoiten mit ausgewählten	
	Cysteir	npeptidase-Überexpressionsvektoren	55
	3.3.2	Überexpression ausgewählter Cysteinpeptidasen in Trophozoiten von Klon A1	56
	3.3.3	Überprüfen der Cysteinpeptidaseaktivität der Klon Al	
	Überex	pressionstransfektanten	57
	3.3.4	Einfluss von Cysteinpeptidasen auf die Amöbenleberabszess (ALA)-Bildung in	n
	Mausm	odell	59
	3.3.5	Bestimmung der Cysteinpeptidase-Aktivität der A- und B-Klone	60
	3.4 Aus	wertung und Validierung des Membranobertlächenproteoms von <i>E. histolytica</i>	63
	3.4.1	Validierung der Membranproteom-Daten auf Transkriptom-Ebene via <i>real-time</i>	е
	PCR		~
	3.4.2	Herstellung von Uberexpressionskonstrukten mit cMyc als Markierungssystem	66
	3.4.3	Detektion der cMyc-Fusionsproteine mittels Westernblot-Analysen	68

	3.4.4 Lokalisier	ung ausgewählter potentieller Membranoberflächenproteine mitt	el c-
	Myc-Markierung	in der IFA	71
	3.4.5 Gewinnun	g polyklonaler Antikörper gegen ausgewählte Membranproteine	83
	3.4.6 Lokalisatio	onsstudien potentieller Membranoberflächenproteine in E. histol	ytica-
	Trophozoiten mitt	els Immunfluoreszenz	86
4	Diskussion		95
	4.1 Vergleichende	Analysen der Zelllinien A und B	95
	4.2 Klonierung der	Zelllinien A und B	96
	4.3 Vergleichende	SNP-Analysen bei E. histolytica	96
	4.4 Analyse der Ko	orrelation zwischen CPs und Pathogenität	97
	4.4.1 Überexpre	ssion von ausgewählten Cysteinpeptidasegenen in Klon A1	98
	4.4.2 Einfluss ei	nzelner Cysteinpeptidasen auf die ALA-Bildung bei Mus muscu	<i>lus</i> 100
	4.5 Auswertung un	nd Validierung des Membranoberflächenproteoms von E. histoly	tica
	102		
	4.5.1 Lokalisatio	on ausgewählter putativer Membranoberflächenproteine als cMy	'C-
	Fusionsproteine		104
	4.5.2 Lokalisatio	on ausgewählter potentieller Membranoberflächenproteine mit H	lilfe
	polyklonaler Antil	körper	106
5	5 Literaturverzeichni	S	108
6	6 Anhang		118
	Danksagung		160
	Eidesstattliche Vers	sicherung	161

I. Abkürzungsverzeichnis

Ampere
Adenin
Aqua destillata
Abbildung
Auffüllen bis
avrRpt2-induziertes gen
Antikörper
Amöbenleberabszess
Ampicillin
Alkalische Phosphatase
Ammoniumpersulfat
Antisense
American Type Culture Collection
Adenosintriphosphat
Bicinchoninic Acid
5-Bromo-4-chloro-3-indolylphosphat
Bidestilliert
Basic Local Alignment Search Tool
Bernhard-Nocht-Institut
Basenpaare
Rinderserumalbumin
Beziehungsweise
Cytosin
Cystein
komplementäre DNA
Cysteinpeptidase
Carbocyanin 2
Dalton
Dimethylsulfoxid
Desoxyribonukleinsäure
Desoxyribonuklease
Desoxyribonukleosid-5-triphosphat

dsDNA	doppelsträngige DNA
DTT	Dithiothreitol
E. coli	Escherichia coli
E. dispar	Entamoeba dispar
E. histolytica	Entamoeba histolytica
E-64	L-trans-Epoxysuccinyl-1-leucylamido-4-
	(guanidino)-buta
ECL	Enhanced Chemoluminescence Detection
EDTA	Ethylendiamintetraessigsäure
Eh/eh	Entamoeba histolytica
ELISA	Enzyme Linked Immunosorbent Assay
et al.	et alteri (und andere)
EtOH	Ethanol
F	Farad
FCS	fötales Kälberserum
g	Erdbeschleunigung
G	Guanin
g	Gramm
G418	G418-Sulfat (Geniticin)
gDNA	Genomische DNA
GTP	Guanosintriphosphat
GuHCl	Guanidiniumhydrochlorid
h	Stunde
HPLC	High Pressure Liquid Chromatography
HRP	Horse Raddish Peroxidase
IFA	Immunfluoreszenz-Analyse
IFA-D	Immunfluoreszenz-Analyse Dekonvolution
IgG	Immunglobulin G
IPTG	Isopropyl-b-D-thiogalaktosid
Kb	Kilobase
L	Liter
LB	Luria-Bertani
М	Molar
М	Milli

mA	Milliampere
Max	Maximal
Mbp	Megabasenpaare
min	Minute
n	Nano
NaAcetat	Natrium-Acetat
NADPH	Nikotinamid-adenin-dinukleotidphosphat
NCBI	National Center for Biotechnology Information
Neo	Neomycinphosphotransferase
Nm	Nanometer
NTA	Nitrilotriessigsäure
OD	optische Dichte
PAGE	Polyacrylamidgelelektrophorese
PBS	Phosphat Buffered Saline
PCR	Polymerase-Kettenreaktion
PFA	Paraformaldehyd
r	Rekombinant
RNA	Ribonukleinsäure
RNase	Ribonuklease
rpm	Umdrehungen pro Minute
RT	Raumtemperatur
S	Sekunden
S	Sense
SDS	Sodiumdodecylsulfat
SNP	single nucleotide polymorphism
Т	Thymin
Tab.	Tabelle
Taq	Thermus aquaticus
TBE	Trisboratessigpuffer
TBS	Tris Buffered Saline
TE	Tris-EDTA
TEMED	N,N,N',N'-Tetramethylendiamin
T _M	Schmelzpunkt
Tris	Tris-Hydroxymethyl-Aminoethan

Tween20	Polyoxyethylen-(20)-sorbitanmonolaurat
U	Unit (Enzymeinheit)
UV	Ultraviolett
V	Volt
v/v	Volumen pro Volumen
Vol.	Volumen
w/v	Gewicht pro Volumen
WHO	World Health Organisation
x-Gal	Galaktopyranosid
α	Anti
Δ	Delta
μ	mikro

Einbuchstabencode	Aminosäure
А	Alanin
С	Cystein
D	Asparaginsäure
Е	Glutaminsäure
F	Phenylalanin
G	Glycin
Н	Histidin
Ι	Isoleucin
К	Lysin
L	Leucin
М	Methionin
Ν	Asparagin
Р	Prolin
Q	Glutamin
R	Arginin
S	Serin
Т	Threonin
V	Valin
W	Tryptophan
Y	Tyrosin

II. Zusammenfassung

Das Protozoon *Entamoeba histolytica* ist der Erreger der Amöbiasis. Die Amöben können entweder den Darm besiedeln ohne den Wirt zu schädigen oder ein invasives Verhalten zeigen und damit die Amöbiasis auslösen. Im letzteren Fall führt dies zu Krankheitssymptomen wie Amöbenkolitis und der Bildung von Amöbenleberabszessen. Bisher konnten nur wenige Moleküle mit der Invasion der Amöben assoziiert werden. Vor allem wurden ein Adhärenzlektin, porenbildende Peptide (*Amoebapores*) sowie einige Cysteinpeptidasen mit der Pathogenität von *E. histolytica* in Verbindung gebracht. In dieser Arbeit wurde daher das Ziel verfolgt, bereits bekannte Pathogenitätsfaktoren näher zu charakterisieren und neue zu identifizieren.

In vorangegangenen Untersuchungen wurde durch genotypische und phänotypische Charakterisierung der HM-1:IMSS Zelllinien A und B gezeigt, dass beide Zelllinien denselben genetischen Ursprung haben, sich aber in ihrem Phänotyp konstant unterscheiden. Während Zelllinie A sich apathogen im Tiermodell verhält, ist Zellline B pathogen und verursacht große Amöbenleberabzesse (ALAs). In dieser Arbeit konnte durch die Klonierung beider Zelllinien und anschließender Pathogenitätsstudien mit allen generierten Klonen (A1-A12 und B1-B12) festgestellt werden, dass es sich bei den Zelllinien A und B um Mischkulturen aus Trophozoiten mit unterschiedlicher Virulenz handelt. Alle weiteren Untersuchungen wurden mit dem apathogenen Klon A1, dem pathogenen Klon B2 oder aber allen Klonen durchgeführt.

Erstmalig wurden genomweite, vergleichende *single nucleotide polymorphism* (SNP)-Analysen zwischen Klon A1 und Klon B2 durchgeführt. 201 SNPs konnten identifiziert werden von denen 14 als potentiell relevant für die Pathogenität eingestuft wurden. Zur Validierung und der Überprüfung einer möglichen Korrelation zwischen SNPs und Pathogenität wurden alle Klone (A1-A12, B1-B12) auf diese SNPs hin getestet. Es konnte, im Rahmen dieser Studie, keine derartige Korrelation aufgezeigt werden.

Die Cysteinpeptidasen von *E. histolytica* waren bereits Gegenstand diverser Studien, in denen ihnen eine wichtige Rolle beim invasiven und extra-intestinalen Verlauf der Amöbiasis zugeordnet wurde. Der pathogene Klon B2 weist eine 10fach höhere Cysteinpeptidase-Aktivität auf als der apathogene Klon A1. Im Rahmen dieser Arbeit habe ich mich mit der Frage beschäftigt, ob die Gesamtheit der Cysteinpeptidasen oder eine einzelne Cysteinpeptidase die Pathogenität von *E. histolytica* beeinflussen. Durch die Überexpression ausgewählter einzelner Cysteinpeptidasegene im apathogenen Klon A1 konnte der unter Kulturbedingungen VIII schwach bis gar nicht synthetisierten EhCP-B8 eine Beteiligung an der ALA-Bildung im Mausmodell zugeordnet werden. Darüber hinaus wurde gezeigt, dass die Überexpression von Kombinationen ausgewählter Cysteinpeptidasen ebenfalls zur Induktion von Leberabszessen führt. Hingegen konnte beim Vergleich der spezifischen Cysteinpeptidase-Aktivität aller Klone mit den von ihnen verursachten Abszessgrößen keine Korrelation festgestellt werden.

Der letzte Teil dieser Arbeit befasste sich mit der Auswertung und Validierung des in vorangegangenen Studien erstmals beschriebenen Membranoberflächen-Proteoms der Zelllinien A und B. Dort wurden 765 Proteine identifiziert, die im Rahmen dieser Arbeit kategorisiert und mit bioinformatischen Mitteln weitergehend charakterisiert wurden. Etwa 20 % der identifizierten Proteine weisen vorhergesagte Transmembrandomänen und Signalpeptide auf, wodurch sie sehr wahrscheinlich an Membranen lokalisiert sind. Für die Lokalisation einzelner ausgewählter Proteine bei denen keine weiteren Hinweise auf eine Lokalisation in der Zellmembran hindeuten, wurde sowohl ein Protein-Markierungssystem als auch spezifische Antikörper verwandt, um die erwartete Membranlokalisation zu validieren. Über Westernblot- und Immunfluoreszenzanalysen konnte für die 14 untersuchten potentiellen Membranoberflächen-Proteine eine Membranassoziation nachgewiesen werden.

Die in dieser Arbeit durchgeführten Analysen konnten zeigen, dass einfache SNPs keine Erklärung für die Pathogenitätsunterschiede zwischen den A und B-Klonen liefern können. Hingegen hat sich die bislang kaum beachtete Cysteinpeptidase EhCP-B8 als ein äußerst interessanter Kandidat für weiterführende Studien herauskristallisiert.

1 Einleitung

1.1 Entamoeba histolytica

Entamoeba histolytica (SCHAUDINN 1903) ist ein einzelliger, humanpathogener Parasit und der Erreger der Amöbiasis. Weltweit sind ca. 50 Millionen Menschen von einer Amöbiasis betroffen (WHO 1998). Die Zahl der Todesfälle beläuft sich pro Jahr auf etwa 70.000 (Clark *et al.*, 2007). Die meisten Infektionen treten hierbei aufgrund mangelnder Hygiene in tropischen und subtropischen Gebieten auf.

E. histolytica durchläuft einen biphasischen, monoxenen Lebenszyklus (Abb. 1.1), bestehend aus einer säureresistenten, chitinhaltigen Zyste $(10 - 15 \ \mu\text{m})$ und einem, durch Pseudopodien beweglichen, vegetativen Trophozoiten $(10 - 50 \ \mu\text{m})$ (Marshall *et al.*, 1997). Bis auf wenige Affenarten ist der Mensch der einzige natürliche Wirt des Erregers (van Lunzen, 1996). Die infektiöse Form stellt die fäkal-oral verbreitete 4-kernige Zyste dar. Diese passiert das saure Millieu des Magens und exzystiert sich, sobald sie auf den neutralen bis basischen pH-Wert im Dünndarm trifft, zu 4-kernigen metazystischen Trophozoiten. Diese wandern weiter und besiedeln den oberen Dickdarm, wo durch Kern- und Plasmateilungen acht einkernige Trophozoiten entstehen (Marshall *et al.*, 1997), welche dort mehrere Monate bis Jahre unbemerkt verweilen können (Knobloch *et al.*, 1983).

Die Trophozoiten ernähren sich durch die Phagozytose von Bakterien und Nahrungsresten. Ihre Vermehrung erfolgt durch asexuelle Teilung. Im unteren Dickdarm enzystieren die Trophozoiten, gefolgt von zwei Kernteilungen. Die so entstandenen 4-kernigen Zysten werden mit dem Stuhl ausgeschieden und können direkt oder durch kontaminierte Nahrung bzw. Trinkwasser vom nächsten Wirt aufgenommen werden, womit sich der Kreislauf schließt.

Quelle: Verändert nach http://pathmicro.med.sc.edu/parasitology/e-histol-life.gif

Abb. 1.1: Lebenszyklus von *E. histolytica.* Die vierkernige Zyste wird oral über kontaminiertes Trinkwasser oder Nahrung aufgenommen (1). Durch ihre säureresistente, chitinhaltige Außenmembran geschützt gelangt sie über den Magen in den Dünndarm, wo sie sich nach der Exzystierung in einen 4-kernigen Trophozoiten transformiert. Aus diesem entstehen durch Plasma- und Kernteilungen acht einkernige, bewegliche Trophozoiten (2 und 3). Diese besiedeln den oberen Dickdarm. Bei einem nicht-invasivem Verlauf (A) enzystieren sich die Trophozoiten nach asexuellen Teilungen im unteren Dickdarm und werden mit den Faeces ausgeschieden (4). Im Fall einer intestinalen Erkrankung (B) schädigen die Amöben die Darmwand und gelangen in den Blutstrom entsteht eine extra-intestinale Erkrankung (C). Hier können sie in andere Organe transportiert werden, vorzugsweise in die Leber und dort Abszesse verursachen, welche unbehandelt zum Tod des Patienten führen können.

Bei den meisten Menschen ($\geq 90\%$) verläuft die Infektion ohne Symptome (nicht-invasive Amöbiasis) (Blessmann *et al.*, 2003). Bei ca. 4-10% der Infektionen entwickelt sich eine invasive, intestinale Amöbiasis. Bei diesem, als Amöbenruhr bezeichneten, Krankheitsbild dringt der im hohen Maße zur Phagozytose befähigte Trophozoit unter massiver Gewebszerstörung in die Mukosa und die Darmwand ein (Stanley, 2003). Zu den typischen Symptomen

zählen Fieber, Kolitis und blutige Durchfälle. Gelangen die Trophozoiten nach dem Durchdringen der Darmwand über den Blutstrom in weitere Organe wie die Leber, Lunge oder das Gehirn, kann sich eine invasive, extraintestinale Amöbiasis entwickeln, bei der es zur Abszessbildung kommt.

Das am häufigsten befallene Organ mit Abszessbildung ist die Leber, in welche die Trophozoiten mit dem Blutstrom durch die große Pfortader gelangen (Joyce und Ravdin, 1988; Rigothier et al., 2002). Von den leberinvasiven Amöben überleben im Hamstermodell nur wenige die ersten 6-12 Stunden (Rigothier et al., 2002). Die überlebenden Trophozoiten sind an die Leber adaptiert und vermehren sich trotz der im Vergleich zum Darm höheren Temperatur und höherem Sauerstoffanteil. Sie sind überwiegend in der Randzone des Amöbenleberabszesses (ALA) lokalisiert und von neutrophilen Granulozyten umgeben. Durch die von den Trophozoiten lysierten Immunzellen freigesetzten, aggressiven Abwehrstoffe, wie z.B. saure Hydrolasen und Peptidasen, stirbt das umliegende Wirtsgewebe ab. Aufgrund der hohen Regenerationsfähigkeit der Leber können Amöbenleberabszesse bei rechtzeitiger Diagnose und medikamentöser Behandlung vollständig ausheilen. Als Therapie gegen die nicht-invasive Erkrankung wird Paromomycin verabreicht, welches durch Bindung an die Ribosomen die Proteinbiosynthese der Amöben blockiert. Handelt es sich um die invasive Form ist Metronidazol das Mittel der Wahl. Unter anaeroben Bedingungen werden Elektronen des Ferredoxins der Amöbe auf die Nitrogruppe des Metronidazols übertragen und es entstehen hochreaktive Nitroradikale, welche durch DNA-Strangbrüche und die Zerstörung von Proteinen und Lipiden den Parasiten schädigen. Bislang ist nicht geklärt, welche Signale für die kommensale Besiedlung des Dünndarms, die Gewebsinvasion oder die Enzystierung der Trophozoiten entscheidend sind. Sowohl wirts- als auch parasitenspezifische Faktoren, deren Wechselwirkungen allerdings noch nicht vollständig bekannt sind, scheinen dabei eine Rolle zu spielen. Mit der Invasion in das Wirtsgewebe ist es E. histolytica nicht mehr möglich Zysten zu bilden und sich weiter zu verbreiten. Der Lebenszyklus des Parasiten ist mit der Invasion in das Wirtsgewebe beendet. Durch die Nichtvollendung des Zyklus ist es nicht möglich auf Mutationen zu selektionieren, welche zu einer gesteigerten Pathogenität führen.

Eine weitere Spezies der Gattung *Entamoeba* ist *Entamoeba dispar*. Hierbei handelt es sich um einen apathogenen Kommensalen im menschlichen Darm. Für lange Zeit galt die Annahme, dass es sich bei *E. histolytica* und *E. dispar* um denselben Organismus handelt, bei dem *E. dispar* die apathogene Form darstellt, da die beiden morphologisch nicht zu unterscheiden

sind. Bereits 1925 entdeckte Brumpt, dass es sich um zwei unterschiedliche Arten handelt. Doch erst Isoenzymanalysen, der Nachweis von Antigenvariationen und molekularbiologische Untersuchungen konnten zeigen, dass es sich bei *E. dispar* um eine eigenständige Art handelt (Clark and Diamond, 1993; Strachan *et al.*, 1988; Tannich *et al.*, 1989). Dies ist besonders für die Klinik von großer Bedeutung, da der apathogene Kommensale *E. dispar* keiner Behandlung bedarf.

1.2 Biologie, Morphologie und genetische Organisation von E. histolytica

Taxonomisch wird *E. histolytica* in den Stamm Amoebozoa, Klasse Entamoebidea, Ordnung Entamoebida, Familie Entamoebidae, Gattung *Entamoeba* eingeteilt (Adl *et al.*, 2005). Sie ist mikroaerophil und dadurch gut an die Bedingungen im menschlichen Darm angepasst. Die Trophozoiten besitzen eine einfache Zellmembran, welche ihre amöboide Bewegung durch Pseudopodien ermöglicht, die aus der Plasmamembran ausgestülpt werden. Auch an der phagozytotischen Nahrungsaufnahme ist die Cytoplasmamembran beteiligt. Das Endoplasma von *E. histolytica* besteht zu ca. 40 % aus Vakuolen und Vesikeln welche zu den Lysosomen und cytotoxischen Vesikeln höherer eukaryotischer Organismen äquivalent sind (Scholze und Tannich, 1994). Ein Endoplasmatisches Retikulum (ER) konnte in den Zellen beobachtet werden. Für einen Golgi-Apparat, wie er typischerweise bei eukaryotischen Zellen vorliegt, gibt es bislang keinen Nachweis. Es wurden aber Golgi-ähnliche Vesikel beschrieben (Bredeston *et al.*, 2005). Die Trophozoiten verfügen über ein Mitosom welches vom Mitochondrium abgeleitet ist, ein echtes mitochondriales Genom fehlt jedoch (Tovar *et al.*, 1999).

Das Genom von *E. histolytica* umfasst in etwa 20 Mb und weist mit ca. 75 % einen sehr hohen AT-Gehalt auf (Loftus *et al.*, 2005; Lorenzi *et al.*, 2010). Die Analyse des Genoms führte zu 8.201 vorhergesagten Genen welche mit einer durchschnittlichen Länge von 1,26 Kb 49 % des gesamten Genoms ausmachen (Lorenzi *et al.*, 2010; Clark *et al.*, 2007). Nur 25 % aller Gene beinhalten eine Intronsequenz, wovon wiederum 6 % multiple Intron-Bereiche aufweisen (Loftus *et al.*, 2005; Lorenzi *et al.*, 2010). Die genaue Anzahl an Chromosomen und deren Organisation ist ungeklärt.

1.3 Kulturisolate von E. histolytica

Amöben werden aus Stuhlproben infizierter Patienten isoliert und können unter axenischen Bedingungen als Zelllinien in Kultur genommen werden. Zur näheren phänotypischen Bestimmung werden diverse *in vitro* und *in vivo* Studien durchgeführt. Wichtiger Parameter für die Pathogenität ist die Fähigkeit der Trophozoiten, Leberabszesse im Tiermodell zu induzieren. Für die Identifizierung von putativen Pathogenitätsfaktoren eignen sich besonders vergleichende Studien zwischen pathogenen und apathogenen Zelllinien.

In dieser Arbeit werden Vergleiche zwischen zwei Subtypen des Amöben-Kulturisolats HM-1:IMSS durchgeführt, die im Folgenden als Zelllinie A und Zelllinie B bezeichnet werden. Bei HM-1:IMSS handelt es sich um einen pathogenen Stamm von *E. histolytica* der 1964 aus einem Patienten mit Kolitis isoliert wurde. Heutzutage existieren verschiedene in Kultur gehaltene Subtypen. Beide *E. histolytica* Zelllinien wurden zu unterschiedlichen Zeitpunkten von der ATCC als HM-1:IMSS-Isolat (Katalog-Nr. 30459) erhalten. Zelllinie A befindet sich seit 2001 durchgehend in Kultur und wird ohne Wirtspassagen in axenischer, mikroaerophiler Kultur gehalten. Zelllinie B wurde bereits 1991 direkt von der ATCC bezogen und wurde seitdem unter den gleichen Bedingungen wie Zelllinie A kultiviert. Zelllinie A und B haben einen identischen genetischen Hintergrund. Die beiden Zelllinien sind somit syngenisch. Im Tiermodell ist allerdings nur Zelllinie B in der Lage Amöbenleberabszesse (ALAs) zu induzieren und weist somit eine höhere Pathogenität auf als Zelllinie A.

Die beiden Zelllinien wurden bereits näher charakterisiert. Dabei zeigte sich, dass neben der höheren Pathogenität von Zelllinie B, diese Zellen größer sind als die von Zelllinie A und außerdem eine höhere Wachstumsrate und eine höhere Cysteinpeptidaseaktivität aufweisen. Weitere Versuche zeigten, dass Hitze und reaktive Stickstoffspezies geringere Auswirkungen auf Zellinie B ausüben. Keine signifikanten Unterschiede zwischen A und B konnten bei der cytopathischen Aktivität, dem *Rossetting* (Bindung von Erythrozyten an Amöben), dem Stress durch reaktive Sauerstoffspezies und der Erythrophagozytose festgestellt werden. Bei Zelllinie A konnte einzig eine stärkere hämolytische Aktivität als bei Zelllinie B gemessen werden (Biller *et al.*, 2009).

1.4 Pathogenitätsfaktoren von E. histolytica

E. histolytica besitzt, wie der Name impliziert, die Fähigkeit Gewebe mit hoher Effizienz zu lysieren und Zellverbände aufzulösen. Bisher wurden drei Gruppen von Pathogenitätsfaktoren identifiziert, welche an Adhärenz und Lyse beteiligt sind.

Im ersten Schritt muss der parasitäre Organismus einen festen Halt an der Mukosa des Darms herstellen. Dies erfolgt über ein membrangebundenes Galaktose/*N*-Acetyl-D-Galaktosamin spezifisches Lektin welches an Mucin bindet (Petri, 1996; Horstmann *et al.*, 1992). Erst die

Adhäsion mittels des β-D-Galaktose/*N*-Acetylgalaktosamin-spezifischen Adhärenzlektins an eine Zielzelle oder Substrat ermöglicht vermutlich die Wirkung der weiteren Pathogenitätsfaktoren, den *Amöbapores* und Cysteinpeptidasen. Mittels der "*Antisense*"-Technologie, die zu einer deutlichen Reduktion der Abszessbildung im Tiermodell führte, wurde die Bedeutung des Lektins für die Pathogenität demonstriert (Ankri *et al.*, 1999).

Als zweiter Schritt folgt die kontaktabhängige Lyse der Wirtszellen durch porenbildende und antibakteriell wirkende Proteine, die von den Trophozoiten sezerniert werden. Diese werden als *Amoebapores* bezeichnet. Bei *E. histolytica* konnten drei Isoformen dieser Proteine aus im Cytoplasma lokalisierten Granula isoliert werden. Die drei entdeckten *Amoebapores* A, B und C weisen unterschiedliche Primärstrukturen auf. Sie können sowohl prokaryotische, als auch eukaryotische Membranen permeabilisieren und dadurch die Lyse der Zellen auslösen (Leippe *et al.*, 1994). Wird bei Trophozoiten die *Amoebapore*-Synthese durch die transkriptionelle Inaktivierung des entsprechenden Gens verhindert, verlieren diese ihre Virulenz (Bracha *et al.*, 2003). Als dritter wichtiger Virulenzfaktor von *E. histolytica* wurden die Cysteinpeptidasen identifiziert. Diese können die extrazelluläre Matrix der Wirtszellen angreifen und dadurch Gewebe auflösen (Olivos-Garcia *et al.*, 2004; Bruchhaus *et al.*, 2003; Que *et al.*, 2002; Stanley *et al.*, 1995; Scholze und Tannich, 1994; Keene *et al.*, 1986).

1.5 Cysteinpeptidasen von E. histolytica

Das Genom von *E. histolytica* enthält 50 Cysteinpeptidase-Gene (Loftus *et al.*, 2005; Clark *et al.*, 2007; Tillack *et al.*, 2009). Diese teilen sich in den 47 CPs umfassenden Clan CA und den drei CPs enthaltenden Clan CE auf (siehe Abb. 1.2). Mit 37 Cysteinpeptidasen ist der Großteil strukturell mit der C1 Papain-Superfamilie verwandt. Diese Superfamilie wird in drei Familien unterteilt: EhCP-A, EhCP-B und EhCP-C (Clark *et al.*, 2007; Tillack *et al.*, 2006).

Abb. 1.2: Übersicht der Cysteinpeptidasen bei *E. histolytica*. Angegeben sind die Clans und Familien. In Klammern steht die Anzahl der Cysteinpeptidasen.

Es konnte eine direkte Korrelation zwischen der Virulenz verschiedener E. histolytica Isolate und der von ihnen produzierten Menge aktiver Cysteinpeptidasen festgestellt werden (Gadasi und Kessler, 1983; Lushbaugh et al., 1985; Keene et al., 1990). Lokalisiert sind diese in Vesikeln (Scholze und Tannich, 1994), von wo aus Cysteinpeptidasen von den Amöben sezerniert werden (Leippe et al., 1995). Die Cysteinpeptidasen von E. histolytica sind unter anderem in der Lage adhärent wachsende Fibroblasten abzulösen (Keene et al., 1986 + 1990; Ankri et al., 1998) und verschiedene Komponenten der extrazellulären Matrix zu degradieren (Keene et al., 1986; Luaces et al., 1988; Schulte et al., 1989). Der zytotoxische Effekt der Cysteinpeptidasen kann durch die Zugabe spezifischer Inhibitoren aufgehoben werden (Bracha et al., 1984; Luaces et al., 1988; Hellberg et al., 2001). Des Weiteren konnte im Hamstermodell gezeigt werden, dass eine spezifische Inhibition der Cysteinpeptidasen von E. histolytica die Fähigkeit zur Induktion von Amöbenleberabzessen stark vermindert (Stanley et al., 1992). Weiterhin kann die Bildung von Leberabzessen in Hamstern durch Expression einer "Antisense"-RNA nahezu vollständig inhibiert werden (Ankri et al., 1999). Der größte Teil der Studien über die Cysteinpeptidasen von E. histolytica untersuchen Effekte welche von der Gesamtheit der Cysteinpeptidasen ausgelöst werden, nur in den seltensten Fällen konnte etwas einer bestimmten Peptidase zugeordnet werden. Nur der EhCP-A5 konnte bis jetzt ein direkter Einfluss auf die Pathogenität von E. histolytica nachgewiesen werden (Nowak, 2005; Tillack et al., 2006; Ankri et al., 1999a; Zhang et al., 2000). Unter Kulturbedingungen sind die Gene der Cysteinpeptidasen *ehcp-a1*, *ehcp-a2*, *ehcp-a5* und *ehcp-a7* in *E. histolytica* am stärksten exprimiert und diese vier EhCPs sind auch für ca. 90 % der Gesamtpeptidase-Aktivität verantwortlich (Bruchhaus *et al.*, 1996; Bruchhaus *et al.*, 2003; Tillack *et al.*, 2007; Irmer *et al.*, 2009).

Namensgebend ist der Cysteinrest im aktiven Zentrum der Peptidasen, welcher mit einem Histidinrest eine katalytische Dyade bildet, die durch andere Aminosäuren, hauptsächlich einem Asparagin und/oder Glutamin stabilisiert werden kann. Synthetisiert wird der Großteil der Cysteinpeptidasen (CPs) als Prä-Pro-Enzyme. Dies dient dem Transport des Moleküls an den richtigen Ort und dem Schutz der Zelle. Die Prä-Domäne enthält die Information für den Zielort und die Pro-Sequenz hält das Enzym in seiner inaktiven Form und ist wichtige für die richtige Faltung des Proteins (Que et al., 2002).

Bei den Proteinen der Familien EhCP-A und EhCP-B handelt sich um klassische Prä-Pro-Enzyme welche eine Cathepsin L-ähnliche Struktur aufweisen (Abb. 1.3). Bisher wurden in der EhCP-A-Familie drei Moleküle charakterisiert (EhCP-A1, EhCP-A2, EhCP-A5) die alle eine Cathepsin B-ähnliche Substratspezifität besitzen (Jacobs et al., 1998). In den Pro-Domänen beider Familien findet sich das konservierte Sequenzmotiv E-(X)₃-R-(X)₂-I/V-F-(X)₂-N-(X)₃-I-(X)₃-N (ERFNIN-Motiv), dessen Funktion noch unbekannt ist. Die beiden Familien unterscheiden sich in der Länge ihrer Pro-Region und den konservierten Sequenzmotiven in der N-terminalen Region der Cysteinpeptidasen. Während bei EhCP-A das Motiv P-(X)₃-D-W-R-(X)₂-G-K (DWR-Motiv) zu beobachten ist, findet man bei EhCP-B das Motiv P-(X)₅-C-(X)₆-N-(X)₁₋₈-C (PCNC-Motiv). In weiterführenden Sequenzanalysen konnten für zehn der elf Mitglieder der EhCP-B-Familie GPI-Anker oder putative Transmembrandomänen (TMD) vorhergesagt werden (Bruchhaus et al., 2003; Clark et al., 2007; Tillack et al., 2007). Eine stark von EhCP-A und EhCP-B abweichende vorhergesagte Struktur weist die EhCP-C-Familie auf. Statt der klassischen Prä-Pro-Domänen findet man bei ihnen eine hydrophobe Region im N-terminalen Bereich, welche als Signalanker fungieren könnte. Im Cterminalen Bereich verfügen sie über ein HSYSIC-Motiv. In anderen Organismen wurde bisher keine strukturell verwandte CP identifiziert, somit ist noch keine Aussage über ihre Funktion möglich (Clark et al., 2007).

Bei den Familien C2, C19, C48, C54 und C65 handelt es sich um putative Enzyme zu deren Funktion nur über Homologiervergleiche mit Peptidasen anderer Organismen Informationen generiert werden konnten. Ihnen wird eine Beteiligung an verschiedenen Signalwegen, der Apoptose und der Autophagie zugeordnet (Goll *et al.*, 2003; Mariño *et al.*, 2003; Mariño und Lopez-Otin, 2004).

Abb. 1.3: Organisation der C1-Familien EhCP-A, EhCP-B und EhCP-C. Hellblau: ERFNIN-Motiv; dunkelblau: DWR-Motiv; blau: PCNC-Motiv; violett: HSYSIC-Motiv; grünes Oval: Signalankermotiv; grün mit Ankersymbol: GPI-Anker-Sequentmotiv/hydrophobe Domäne; rosa: katalytisches Zentrum; Q (Glutamin), C (Cystein), H (Histidin), N (Asparagin): katalytisch wirksame Aminosäuren

1.6 Vergleichende Genom-Analysen

Vergleichende Genom-Analysen können zur Identifizierung von Kandidatengenen beitragen, welche für die Pathogenität des Parasiten mitverantwortlich sind. Hierbei gibt es diverse Ansätze auf welcher Ebene diese Untersuchungen stattfinden. Bei *E. histolytica* wurden bereits mehrere vergleichende Studien mit unterschiedlichen Zelllinien, meist auf Transkriptomebene, durchgeführt (Davis *et al.*, 2007; Ehrenkaufer *et al.*, 2007; MacFarlane und Singh, 2006). Die am häufigsten verwendete Technik ist der *Microarray*. Mit dieser Technik ist es möglich mit einer kleinen Menge einer Probe mehrere tausend Einzelnachweise durchzuführen. Als Oligonukleotide dienen geeignete Bereiche von bereits bekannten Genen, welche auf einer Matrix fixiert werden. Nach dem Umschreiben der mRNA in cDNA wird diese mit Fluoreszenzfarbstoffen markiert und mit den fixierten Oligonukleotiden inkubiert. Findet eine Hybridisierung von Oligonukleotid und Probe statt werden detektierbare Fluoreszenzsignale frei. Durch die Verwendung unterschiedlicher Fluoreszenzfarbstoffe lassen sich zwei Proben auf einem *Microarray* kohybridisieren, wobei sich differentielle Signale von dem Fusionssignal beider Proben unterscheiden. Für die Erforschung von *E. histolytica* wurden bereits von verschiedenen Arbeitsgruppen Microarray-Experimente durchgeführt. Für Vergleichende Studien wurden meist die pathogene Zelllinie HM-1:IMSS und die apathogene Zelllinie Rahman verwendet (Davis et al., 2007; Ehrenkaufer et al., 2007; MacFarlane und Singh, 2006). Hier wurden unter als am stärksten differentiell exprimierte Gene sehr unterschiedliche identifiziert. Neben vielen anderen sind bei der pathogenen Zelllinie HM-1:IMSS Gene für die EhCP-A4, EhCP-A6, verschiedene AIG 1 Proteine und eine Alkoholdehydrogenase differentiell stärker exprimiert. Im Gegensatz dazu sind z.B. die EhCP-A3, die Cysteinpeptidase 112, ein C2-Domänen-Protein so wie eine Fe-Hydrogenase differentiell höher in der apathogenen Zelllinie Rahman exprimiert. Auch die EhCP-A1 und EhCP-A7 wurden hier stärker transkribiert. Da die Rahman-Zelllinie nicht ideal für die Suche nach potetiellen Pathogenitätsfaktoren, wurden vergleichende Analysen mit den Zelllinien A und B von E. histolytica durchgeführt. Hier umfasste der verwendete Microarray 6242 Gene von denen 87 als differentiell exprimiert gefunden wurden. Die meisten gehören zu der Familie der kleinen GTPasen, welche seitdem als putative Pathogenitätsfaktoren in den Fokus gelangten. Die meisten Mitglieder dieser Familie, welche die AIG1-GTPasen codieren, sind in der pathogenen Zelllinie B hochreguliert, während in der Zelllinie A einige RabGTPasen-Gene als stärker exprimiert gefunden wurden (Biller et al. 2010). Zusätzlich zum Vergleich der zwei Zelllinien wurde in in vitro-Experimenten versucht Gene zu identifizieren, welche mit der Pathogenität korrelieren. Hierzu wurde beispielsweise die Genexpression der Trophozoiten in Anwesendheit von Gal/GalNac-Lektin, eukaryotischen Zellen und Bakterien untersucht, als Simulation der Bedingungen im menschlichen Darm (Gilchrist et al., 2006; MacFarlane und Singh, 2006; Beck et al., 2005). Ein weiterer Ansatz bei vergleichenden Genomanalysen sind die Identifizierung von single nucleotide polymorphisms (SNPs). SNPs können einen Einfluss auf viele unterschiedliche Bereiche ausüben. Durch den Austausch einer Base besteht die Möglichkeit einer stillen Mutation, er kann aber auch zu einem Codon für eine andere Aminosäure oder zu einem Stopcodon führen. Außerdem kann das Splicing beeinflusst oder verhindert werden, wodurch eine veränderte mRNA und eventuell ein neues Protein entstehen kann. Auch Transkriptionsfaktoren können in ihrer Bindung an die DNA verstärkt oder behindert werden, was in einer Zu- oder Abnahme der Expression eines Gens resultieren kann. Zusätzlich ist es möglich, dass ein SNP allein noch keine Auswirkungen hat und erst in Kombination mit anderen SNPs Wirkung zeigt. Alle diese Veränderungen können zu einer höheren oder niedrigeren Pathogenität einer Zelllinie beitragen. Zur Detektion wird das gesamte Genom einer Zelllinie in 50 Bp große Fragmente zerlegt, mehrfach durchsequenziert und anschließend an das bereits vorhandene Referenzgenom (Loftus *et al.*, 2005; Lorenzi *et al.*, 2010) angelegt, geordnet und mögliche SNPs identifiziert. Zur Kategorisierung werden die SNPs danach eingeteilt, ob sie sich in kodierenden oder nicht kodierenden Bereichen befinden und ob sie zu Aminosäureaustauschen führen. Anschließend wird festgestellt ob eine Korrelation mit der Pathogenität des verwendeten Organismus zu beobachten ist. Bis jetzt bei *E. histolytica* durchgeführte SNP-Analysen dienten zur Feststellung der genomischen Diversität im Vergleich mit anderen apathogenen Stämmen wie *E. dispar* (Shah *et al.*, 2005). Es wurden aber noch nie die SNPs selbst auf einen Zusammenhang mit der Pathogenität hin untersucht.

1.7 Vergleichende Proteom-Analysen

In vielen Studien wurden die oben beschriebenen bereits bekannten Pathogenitätsfaktoren von E. histolytica identifiziert, doch ist es unwahrscheinlich, dass der pathogene Phänotyp nur durch ein oder nur sehr wenige Proteine induziert wird (Stanley, 2003; Davis et al., 2006; Petri et al., 2003; Tillack et al. 2006; Bracha et al., 1999). Die Möglichkeit ganze Proteome miteinander zu vergleichen bietet die Chance im großen Ansatz nach weiteren Virulenzfaktoren zu suchen. Mit der zweidimensionalen differentiellen in-Gelelektrophorese (DIGE) separiert man komplexe Proteingemische entsprechend ihrer molekularen Massen und ihres isoelektrischen Punktes. Um einen Vergleich zwischen zwei Proben anstellen zu können werden sie mit unterschiedlichen Farbstoffen markiert und dann gemeinsam in einem Gel getrennt und sichtbar gemacht. Somit kann man sofort erkennen, ob ein Protein exklusiv in einer der Proben vorkommt oder in beiden vertreten ist. Die detektierten differentiellen Proteine können mittels massenspektrometrischer Analysen identifiziert werden. Eine Bestimmung der Molekülmassen kann durch die Matrix Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry (MALDI TOF MS) erreicht werden (Karas und Hillenkamp, 1988). Für Vergleichende Studien wurden die pathogene Zelllinie HM-1: IMSS und die apathogene Zelllinie Rahman bereits verwendet (Davis et al., 2006). Hier konnten sechs Proteine identifiziert werden welche differenziell vorlagen. Ein cytoskelett-assoziiertes LIM-Domänen-Protein, eine Alkoholdehydrogenase und das an der oxidativen Stressantwort beteiligte Peroxiredoxin waren in der pathogenen Zelllinie in größeren Mengen nachzuweisen, während in der apathogenen Zelllinie Rahman die Superoxiddismutase und Grainin 1 und 2 vermehrt auftraten. Im Rahmen der Anwendung dieser Techniken bei der apathogenen Zelllinie A und der pathogenen Zelllinie B konnten 33 differentielle Proteine detektiert werden, von denen 21 in größerer Menge bei Zelllinie A und 10 bei Zelllinie B auftraten. 23 der 33 Proteine können biologischen Funktionen wie Stressantwort, Cytoskelettstruktur, Transport, Signaltransduktion, Zellmetabolismus oder Translation zugeordnet werden. Den restlichen 10 konnte keine Funktion zugeordnet werden (Biller *et al.*, 2009). Diese Moleküle könnten eine wichtige Rolle bei der Pathogenität von *E. histolytica* spielen.

Die DIGE-Technologie eignet sich somit hervorragend um differentielle Proteine im Proteom zu identifizieren. Für die Bestimmung des gesamten Proteoms eines Organismus ist die Technik jedoch nicht sensitiv genug. Probleme gibt es auch bei der Detektion von stark unterrepräsentierten Proteinen in einem komplexen Proteingemisch und membranassoziierten Proteinen (Ong et al., 2001). Hierfür sind so genannte nicht-Gel-basierte Proteom-Analysen geeignet. Diese basieren auf der Trennung von Peptiden, welche durch den Verdau der Proteine mit Trypsin erhalten werden. Fraktioniert werden die erhaltenen Peptide durch die Liquid Chromatography unter Verwendung von Mikrosäulen (Nano-LC) und anschließend massenspektrometrisch analysiert. Die Identifikation von Oberflächenproteinen auf der Plasmamembran von pathogenen Organismen ist von großer Bedeutung für das Verständnis von Wirt-Parasit-Interaktionen, wie der Kontaktvermittlung und den daraus resultierenden intraund extrazellulären Signalen. Analysen bei Trichomonas vaginalis zeigen, dass die Identifikation des Membranoberflächenproteoms in Verbindung mit dem Vergleich von Parasitenstämmen unterschiedlicher Virulenz einen effektiven Ansatz darstellt um neue Pathogenitätsfaktoren zu ermitteln (Miguel et al., 2010). Zusätzlich können Moleküle welche sich an der Oberfläche von E. histolytica befinden als Impfkandidaten in Frage kommen.

1.8 Zielsetzung

Bis heute sind die Faktoren die zu den unterschiedlichen Verläufen einer *E. histolytica*-Infektion führen, weitestgehend ungeklärt. Durch die Möglichkeit mit zwei syngenischen Zelllinien des Isolats HM-1:IMSS von *E. histolytica* arbeiten zu können, welche unter anderem ein unterschiedliches Verhalten bezüglich ihrer Pathogenität aufweisen, sollte sich im Rahmen dieser Arbeit sowohl mit bereits bekannten als auch neuen putativen Pathogenitätsfaktoren beschäftigt werden. Hierzu wurden Untersuchungen sowohl auf Genom- und Transkriptom- als auch auf Proteom-Ebene durchgeführt.

Um sicherzustellen, dass es sich bei den verwendeten Zelllinien A und B nicht um Mischkulturen handelt, in denen eine Varianz in der Pathogenität vorliegt, sollten Klone generiert werden, welche im Tiermodell auf ihre Fähigkeit ALAs zu bilden getestet werden sollten. Im weiteren Verlauf der Arbeit sollte mit Hilfe dieser Klone die Validierung von erhaltenen SNP-Daten durch Hybridisierungsstudien und die Überprüfung einer Korrelation zwischen den gefundenen SNPs und der festgestellten Pathogenität vorgenommen werden.

Ein weiteres Thema stellen die Cysteinpeptidasen dar. Bereits als Pathogenitätsfaktoren bekannt, konnte bisher keine abschließende Klärung erreicht werden. Daher sollten im Rahmen dieser Arbeit Transfektanten eines apathogenen A-Klones generiert werden, die gezielt verschiedene Cysteinpeptidasen überexprimieren. Anhand dieser Transfektanten sollte überprüft werden, ob die Überexpression bestimmter Peptidasen den pathogenen Phänotyp wieder herstellen kann. Zusätzlich sollte unter Verwendung aller generierten Klone die allgemeine Korrelation zwischen spezifischer CP-Aktivität und Virulenz überprüft werden.

Außerdem sollten die in vorausgegangenen Studien erhaltenen putativen Membranoberflächenproteome von Zelllinie A und Zelllinie B kategorisiert und mit Hilfe von bioinfornatischen Datenbanken analysiert werden, um anschließend eine Validierung der Daten vorzunehmen. Diese sollte mittels ausgewählter Proteine sowohl auf Transkriptom-Ebene via *Realtime* PCR als auch Proteom-Ebene durch Lokalisations-Studien passieren.

2 Material und Methoden

2.1 Geräte und Software

In den folgenden Tabellen befindet sich eine Aufstellung der verwendeten Geräte (Tab. 2.1), sowie der verwendeten *Software* (**Tab. 2.2**).

Tab. 2.1: Verwendete Geräte

	-
Geräte	Hersteller
BioPhotometer 6131	Eppendorf
ELISA Reader Dynatech MRX	Dynex Technologies
Fluoreszenzmikroskop DM BR	Leica
Gene Amp [®] PCR System 9700	PE Applied Biosystems
Genepulser Xcell TM	BioRad
Light Typer	Roche
Rotor-Gene 3000	Corbett Life Science
Tank-Electroblotter PerfectBlue TM	PeqLab
Ultraschallbad Soriorex Super	Bandelin
Ultraschallgerät Sonifier 250	Branson

Alle weiteren laborüblichen Geräte werden nicht gesondert aufgeführt.

Tab. 2.2: Verwendete Software

Software	Hersteller
MacVektor 10.0.2	International Biotechnologies
OpenLab 4.0.2/5.0.1	Improvision [®]
Rotor-Gene real time Analysis 6.0	Corbett Life Sciences
LightTyper 1.5	Roche
Revelation TM 1.0	Dynex Technologies
Bioinformatische Datenbanken	
SignalP 3.0 Server	http://www.cbs.dtu.dk/services/SignalP
SecretomeP 2.0 Server	http://www.cbs.dtu.dk/services/SecretomeP
TMHMM Server2.0	http://www.cbs.dtu.dk/services/TMHMM-2.0
NMT – the MYR Predictor	http://mendel.imp.ac.at/myristate/SUPLpredictor

2.2 Verbrauchsmaterialien

In der nachstehenden **Tab. 2.3** folgt eine Auflistung der in dieser Arbeit verwendeten Verbrauchsmaterialen, sowie die jeweilige Bezugsquelle.

Tab. 2.3: Verwendete Verbrauchsmaterialien

Verbrauchsmaterial	Hersteller
96-well-Platten mit rundem/flachem Boden	Sarsted
Einmalimpfösen	Carl Roth
Einmalpipetten 1 mL, 5 mL, 10 mL, 25 mL	Beckton Dickinson
Einmalspritzen 2 mL, 5 mL, 20 mL	B. Braun Aesculap
Gap Elektroporationsküvetten 4 mm	Eurogentec
Kulturflaschen 40mL, 70 mL, 300 mL	Becton Dickenson
Nitrozellulosemembran Optitran BA-S 83	Schleicher&Schuell Bioscience
Petrischalen	Sarstedt
Pipettenspitzen gestopft, nicht gestopft	Greiner Bio-One, Sarstedt
Röntgenfilme	GE Healthcare
Safe-Lock-Tubes 0.5 mL, 1.5 mL, 2 mL	Eppendorf
Säule #S10149	MoBiTec
Skalpelle (Einweg)	B. Braun Aesculap
Sterican Einmalinjektionskanülen	B. Braun Aesculap
Stericup [®]	Millipore Cooperation
Sterilfilter 0.2 µm	Sarstedt
Steritop TM	Millipore Cooperation
STRIP Tubes 0.1 mL, 0.2 mL für Rotor Gene	Corbett Research
UVette	Eppendorf
Whatman-Papier	Biometra

2.3 Chemikalien

Die verwendeten Chemikalien wurden hauptsächlich von den Firmen AppliChem (Darmstadt), Biomol (Hamburg), Bio-Rad (München), Fermentas (St. Leon-Rot), Fluka (Neu-Ulm), GIBCO BRL *Life Technologies* (Karlsruhe), Invitrogen (Karlsruhe), Merck (Darmstadt), Promega (Mannheim), Qiagen (Hilden) und Sigma-Aldrich (Taufkirchen) im Reinheitsgrad "*pro analysis*" bezogen. Ausnahmen wurden ergänzend im Folgenden (**Tab. 2.4**) aufgelistet.

Tab. 2.4: Ausnahmen der oben angegebenen Firme	n
--	---

Chemikalie	Hersteller
Albumin Standart Fraktion V	PIERCE Chemicals
APS	Serva
Diamond Vitamin Tween 80 Solution (40x)	JRH Biosciences
Hefeextrakt und Trypticase	Becton Dickinson
Penicillin	Grünenthal

2.4 Enzyme und Enzyminhibitoren

In Tab. 2.5 sind die in dieser Arbeit verwendeten Enzyme und Enzyminhibitoren aufgeführt.

Tab. 2.5: Verwendete Enzyme und Enzyminhibitoren

Enzyme und Enzyminhibitoren	Hersteller
E-64 (L-trans-Epoxyuccinyl-1-leucylamido-4-	Sigma-Aldrich
(guanidino)-buta)	
Pwo-Polymerase	Roche Applied Science
Restriktionsendonukleasen <i>FastDigest</i> TM	Fermentas
RNase A	Invitrogen
RNase free DNase	Qiagen
RNase Out	Invitrogen
Superscript III TM Reverse Transkriptase	Invitrogen
T4 DNA-Ligase	Fermentas
Taq-Polymerase	Promega

2.5 Marker und Ladepuffer

In Tab. 2.6 sind die in dieser Arbeit verwendeten Marker und Ladepuffer aufgeführt.

 Tab. 2.6:
 Verwendete
 Marker und Ladepuffer

Marker	Hersteller
DNA-Ladepuffer 6x Loading Dye	Fermentas
$GeneRuler^{TM}$ 1 kb DNA Ladder	Fermentas
PageRuler TM Prestained Protein Ladder	Fermentas
PageRuler TM Unstained Protein Ladder	Fermentas

2.6 Assay-Systeme (Kits)

In Tab. 2.7sind die in dieser Arbeit verwendeten Assay-Systeme aufgelistet.

Assay-System	Hersteller
BCA Protein Assay	Pierce Thermo Scientific
Easy-DNA TM Kit	Invitrogen
Fast Plasmid Mini	Eppendorf
NucleoBond [®] Xtra Maxi	Macherey-Nagel
NucleoSpin [®] Extract II	Macherey-Nagel
RealMasterMix SYBR ROX	5 Prime
RNase-Free DNase Set	Qiagen
<i>RNeasy</i> [®] Mini Kit	Qiagen
SuperScriptIII First-Strand Synthesis System	Invitrogen
TOPO TA [®] Cloning Kit	Invitrogen

2.7 Immunreagenzien und Seren

In **Tab. 2.8**sind die im Verlauf dieser Arbeit verwendeten und hergestellten Immunreagenzien und Seren aufgeführt.

1 ab. 2.8: Verwendete Immunreagenzien und Sere	ab. 2.8:	2.8: Verwendete I	Immunreagenzien	und Sere	n
---	----------	-------------------	-----------------	----------	---

Immunreagenzien und Seren	Hersteller
Rinderserum	Sigma-Aldrich
α-His-Peptid IgG primärer Antikörper (maus)	Quiagen
α-c-Myc monoclonal	Sigma-Aldrich
primärer Antikörper (mouse)	
α-mouse-HRP sekundärer Antikörper	DAKO A/S
α-mouse ALEXA Fluor [®] 488 sekundärer An- tikörper	Invitrogen
α-rEhDnaJ (maus) primärer Antikörper	eigene Herstellung
α-rEhGrainin1 (maus) primärer Antikörper	eigene Herstellung
α-rEhguanine_nucbdprot. (maus)	eigene Herstellung
primärer Antikörper	
α-rEhHydA (maus) primärer Antikörper	eigene Herstellung
α-rEhHyp (maus) primärer Antikörper	eigene Herstellung
α-rEhKinase (maus) primärer Antikörper	eigene Herstellung

α-rEhURE3-BP(maus) primärer Antikörper eigene Herstellung				
2.8 Puffer und Lös	ungen			
<u>NaPBS (1x), pH 6.8</u>		<u>PBS (10x), pH 7.4</u>		
Na ₂ HPO ₄	6.7 mM	Na ₂ HPO ₄	570 mM	
NaH ₂ PO ₄	3.3 mM	KH ₂ PO ₄	180 mM	
NaCl	140 mM	NaCl	750 mM	
<u>TBE (10x)</u>		<u>TBS (10x)</u>		
Tris	890 mM	Tris-HCl (pH 8.0)	100 mM	
Borsäure	890 mM	NaCl	1.5 M	
EDTA	25 mM			
<u>TE (10x)</u>		Trenngelpuffer für PAG	<u>iE</u>	
Tris-HCl (pH 8.0)	100 mM	(4x Tris/SDS pH 8.8)		
EDTA (pH 8.0)	5 M	Trisbase	1,5 M	
		SDS	0.4 %	
		Sterilfiltrieren		
Sammelgelpuffer PAGE		Laufpuffer (10x) PAGE	Laufpuffer (10x) PAGE	
(4x Tris/SDS pH 6.8)		Trisbase	250 mM	
Trisbase	500 mM	Glycin	1.9 M	
SDS	0.4 %	SDS	1 %	
Sterilfiltrieren				
Gelpuffer (3x) Tricingele, pH 8.45		Kathodenpuffer (10x) T	Kathodenpuffer (10x) Tricingele,	
Trisbase	3 M	<u>рН 8.25</u>		
SDS	0.3 %	Trisbase	1 M	
		Tricine	1 M	
		SDS (w/v)	1 %	

Anodenpuffe	<u>r (10x) Tricin</u>	<u>gele, pH 8.9</u>			
Trisbase		2 M			
Proteinprobe	npuffer (2x) (1	Laemmli <i>et al.</i> 19'	70), pH 6.8		
Tris Pure		125 mM			
Glycerin	(v / v)	20 %			
SDS	(w / v)	2 %			
Bromphenol	olau (w / v)	0.25 % vor Ge	ebrauch 10 mM DT	T hinzugeben	
Puffer A für	unlösliche Pro	oteine, pH 8.0	Puffer B für	unlösliche Pro	oteine, pH 8.0
TrisHCl		10 mM	TrisHCl		10 mM
Na ₃ PO ₄		100 mM	Na ₃ PO ₄		100 mM
			Urea		8 M
Puffer A + 1	M GuHCl				
Puffer A + 4	M GuHCl				
Puffer C für	unlösliche Pro	teine, pH 6.3			
TrisHCl		10 mM			
Na ₃ PO ₄		100 mM			
Urea		8 M			
Puffer $C + 20$) mM Imidazo	ol			
Puffer $C + 50$	00 mM Imidaz	col (Elutionspuffer	<i>:</i>)		
<u>Coomassie-E</u>	ntfärber		Coomassie-H	Färbelösung	
Methanol	(v / v)	45 %	Methanol	(v / v)	50 %
Eisessig	(v / v)	10 %	Eisessig	(v / v)	10 %
dH ₂ O	(v / v)	45 %	dH ₂ O	(v / v)	40 %

CoomassieBrilliantBlue R250(w/v)0,05 %

Lösung A (ECL-Detektion)		Lösung B (ECL-Detektion)	
TrisHCl (pH6.8) 200 mL	0.1 M	DMSO	10 mL
Luminol	50 mg	Para-Hydroxycoumarinsäur	e 11 mg
Lagerung bei 4 °C		Dunkel lagern bei RT	
Lösung C (ECL-Detektion)		<u>Elektroporationspuffer</u>	
H_2O_2	30 %	(Cytomix inkomplett)	
Lagerung bei 4 °C		KCl	120 mM
		CaCl ₂	0.15 mM
Arbeitslösung ECL-Detekti	<u>on</u>	Kaliumphosphatpuffer(pH 7	7.6) 10 mM
Lösung A	5 mL	HEPES (pH 7.6)	25 mM
Lösung B	500 μL	EDTA (pH 7.6)	2 mM
Lösung C	1,5 µL	MgCl ₂	5 mM
Transferpuffer (1x)(Towtrin	n-Puffer), pH 8.3		
Tris	25 mM		
<u>HEPES</u>		Triton X-100	
HEPES	10 mM	1 % Triton X-100 in 1 x NaPBS	
Elektroporationspuffer (Cyt	<u>comix inkomplett)</u>	<u>TAE (50x)</u>	
KCL	120 mM	NaAcetat x 3H ₂ O	5 mM
CaCl ₂	0,15 mM	Tris Pure	40 mM
Kaliumphosphatpuffer	10 mM	Na ₂ EDTA	2 mM
(pH 7,6)			
HEPES (pH 7,6)	25 mM	CP-Assay-Puffer (pH 7,0	
EDTA (pH 7,6)	2 mM	KH ₂ PO ₄	100 mM
MgCl ₂	5 mM	EDTA	2 mM

2.9 Kulturmedien und Medienzusätze

LB-Medium:

Lennox L Broth Base 20 g

ad 1 L A. dest, autoklavieren

LB-Agar zur Herstellung von Agarplatten:

Lennox L Broth Agar 32 g

ad 1 L A. dest, autoklavieren

TY-I-SS Medium (Diamond et al., 1978):

Trypticase	80 g
Hefeextrakt	40 g
Glucose	40 g
NaCl	8 g
K ₂ HPO ₄	4 g
KH ₂ PO ₄	2.4 g
L-Cystein	4 g
Ascorbinsäure	0.8 g
Fe(III)-Ammoniumcitrat	0.0912 g

Die Bestandteile des TY-I-SS-Mediums wurden in 3480 mL H₂O_{bidest.} gelöst und der pH-Wert mit NaOH auf pH 6.8 eingestellt. Zum Autoklavieren des inkompletten Mediums wurde ein Dampfkochtopf genutzt, in dem es bei einem Druck von 1.4 bar für 30min auf 120 °C erhitzt wurde. Durch die Zugabe von 50 mL inaktiviertem Rinderserum (2 x 30min bei 56 °C), 15 mL *Diamond Vitamin Tween 80 Solution*, 200 U/mL Penicillin und 200 µg/mL Streptomycin wurden vor Gebrauch jeweils 400 mL Medium komplettiert und anschließend steril filtriert. In der folgenden Tabelle (**Tab. 2.9**) sind alle Antibiotika aufgeführt die als Medienzusätze zur Selektion eingesetzt wurden.

Mediumzusatz	Stammlösung in A. dest	Arbeitskonzentration
Ampicillin	100 mg / mL	100 µg/mL LB-Medium
G418-Sulfat	50 mg / mL	10 – 65 µg/mL TY-Medium
Kanamycin	50 mg / mL	50 μg/mL LB-Medium
Streptomycin	200 mg / mL	200 µg/mL TY-Medium
Penicillin	2 x 10 ⁵ U / mL	200 U/mL TY-Medium

Tab. 2.9: Verwendete Antibiotika (als Medienzusätze)

2.10 Organismen

Im Folgenden werden die in dieser Arbeit verwendeten Organismen näher beschrieben.

2.10.1 Entamoeba histolytica

Systematik von Entamoeba histolytica

Domäne: Eukaryota

Stamm: Amoebozoa

Klasse: Entamoebidea

Gattung: Entamoeba

Art: Entamoeba histolytica (SCHAUDINN, 1903)

Tab. 2.10: Entamoeba histolytica-Stämme

Art	Isolat / genetischer Subtypus	Bezug
E. histolytica	HM-1:IMSS-"Zelllinie A"	2001 von ATCC
E .histolytica	HM-1:IMSS-"Zelllinie B"	1991 von ATCC

HM-1:IMSS: Pathogener Stamm, isoliert 1964 aus einem Patienten mit Kolitis. Heutzutage existieren verschiedene, in Kultur gehaltene Subtypen.

HM-1:IMSS Zelllinie A: Isolat, welches im TIGR-Sanger-Genomprojekt sequenziert wurde (Loftus *et al.*, 2005). Im Folgenden wird dieses Isolat immer als Zelllinie A bezeichnet.

HM-1:IMSS Klon A1-A12: Generiert aus Zelllinie A im Rahmen dieser Arbeit

HM-1:IMSS Zelllinie B: Syngenisch zu Zelllinie A. Besitzt eine hohe Pathogenität im Tiermodell (Wüstenrennmaus). Zelllinie B wurde seit ihrer Isolierung durchgängig in axenischer, mikroaerophiler Kultur ohne Wirtspassage gehalten, was ihre Pathogenität nicht beeinflusst hat. Im Folgenden wird dieses Isolat immer als Zelllinie B bezeichnet.

HM-1:IMSS Klon B1-B12: Generiert aus Zelllinie B im Rahmen dieser Arbeit

2.10.2 Meriones unguiculatus

Systematik:

Stamm: Chordata

Klasse: Mammalia

Ordnung: Rodentia

Überfamilie: Muroidea

Familie: Muridae

Unterfamilie: Gerbillinae

Gattung: Meriones

Art: Meriones unguiculatus (Mongolische Rennmaus) (MILNE EDWARDS, 1867)

2.10.3 Mus musculus

Stamm: Chordata

Klasse: Mammalia

Ordnung: Rodentia

Überfamilie: Muroidae

Familie: Muridae

Unterfamilie: Murinae

Gattung: Mus (Mäuse)

Art: Mus Musculus (LINNAEUS, 1758), Hausmaus

2.10.4 Escherichia coli – Stämme

In Tab. 2.11 sind die beiden in dieser Arbeit verwendeten Escherichia coli-Stämme aufgeführt

Stamm	Genotyp	Referenz
BL21(DE3) pAPlacI ^Q	HsdS, gal(λcIts857 ind1	Dr. O. Fayet, Toulouse
	Sam7 nin5 lacUV5-T7 ge- ne1)[pAPlac ^Q]	
OneShotTop10 TM	F-mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 lacX74 deoR rec A1 araD139 Δ (araleu)7697 gal U gal K rpsL (Str ^R) end A1 nupG	Invitrogen, Karlsruhe

2.11 Plasmide

In **Tab. 2.12**sind alle im Verlauf dieser Arbeit verwendeten und hergestellten Plasmide aufgeführt.

Bezeichnung	Größe (kb)	Merkmale	Referenz
pCR [®] 2.1TOPO [®] Vector	3.9	siehe Produktbeschreibung	Invitrogen, Karlsruhe
pJC45	2.4	Amp ^r , colE1 ori,T7-Polymerase unter λp_L -lacOperator, 10His, Faktor Xa, Terminator	(Clos and Brandau 1994)
pJCrEhCopine	2.8	siehe pJC45, Gesamtes Gen XM_644108	diese Arbeit
pJCrEhDnaJ	2.6	siehe pJC45, Teil XM_648397	diese Arbeit
pJCrEhHydA	2.6	siehe pJC45, Teil AF262400	diese Arbeit
pJCrEhTred1	2.6	siehe pJC45, Gesamtes Gen XM_651634	diese Arbeit
pJCrEhHyp	2.6	siehe pJC45, Gesamtes Gen XM_647328	diese Arbeit
pJCrEhguanine_nucbdprot.	2.6	siehe pJC45, Teil XM_651958	diese Arbeit
pJCrEhGrainin1	2.8	siehe pJC45, Gesamtes Gen XM_645280	diese Arbeit
pJCrEhKinase	2.8	siehe pJC45, Gesamtes Gen XM_647942	diese Arbeit
pJCrEhURE3-BP	2.8	siehe pJC45, Gesamtes Gen AF291721	diese Arbeit
pJCrEh40SribS10	2.6	siehe pJC45, Gesamtes Gen XM_648051	diese Arbeit
pJCrEh60SribL3	2.6	siehe pJC45, Teil XM_646950	diese Arbeit

Tab. 2.12: Verwendete und hergestellte Plasmide

pNC	6.0	Neo ^r , 5'/3'-Aktinbereiche und Lektinpromotor aus <i>E. histolyti-</i> <i>ca</i>	(Hamann et al., 1995)
рNCcMyc	6.1	siehe pNC, <i>c-myc</i>	(Matthiesen, Diplom- arbeit 2009)
pNCEhClathrin-ac-cMyc	6.5	siehe pNC, <i>c-myc</i> , XM_651158	diese Arbeit
pNCEhCOP9-sigcom- cMyc	7.4	siehe pNC, <i>c-myc</i> , XM_650063	diese Arbeit
pNCEhTred1-cMyc	6.4	siehe pNC, <i>c-myc</i> , XM_651634	diese Arbeit
pNCEhRho-GTPase-cMyc	6.7	siehe pNC, <i>c-myc</i> , XM_649396	diese Arbeit
pNCEhAlcdehyd-cMyc	7.3	siehe pNC, <i>c-myc</i> , XM_650258	diese Arbeit
pNCmaldehyd-cMyc	7.1	siehe pNC, <i>c-myc</i> , XM_645763	diese Arbeit
pNCEhGrainin1-cMyc	6.7	Siehe pNC, <i>c-myc</i> , XM_645280	diese Arbeit
pNCEhV-type_ATPase- cMyc	6.5	siehe pNC, <i>c-myc</i> , XM_649277	diese Arbeit
pNB-CPA1	7	siehe PBS(+), Neo ^r , <i>ehcp-al</i>	(Tillack <i>et al</i> , 2006)
pNB-CPA2	6.9	siehe PBS(+), Neo ^r , <i>ehcp-a2</i>	(Tillack <i>et al</i> , 2006)
pNB-CPA5	10.7	siehe PBS(+), Neo ^r , <i>ehcp-a5</i>	(Tillack <i>et al</i> , 2006)
pNC-CPA4	6.9	siehe pNC, <i>ehcp-a4</i>	(Tillack, Dissertation 2009)
pNC-CPA6	6.9	siehe pNC, ehcp-a6	diese Arbeit
pNC-CPA7	6.9	siehe pNC, ehcp-a7	diese Arbeit
pNC-CPB8	7.4	siehe pNC, ehcp-b8	diese Arbeit
pNC-CPC13	7.8	siehe pNC, <i>ehcp-c13</i>	diese Arbeit

2.12 Oligonukleotide

Die in dieser Arbeit verwendeten Oligonukleotide wurden von der Firma Eurofins MWG Operon (Ebersberg) synthetisiert. Einzige Ausnahme bilden die Oligonukleotide für die durchgeführten SNP-Analysen welche von biomers bezogen wurden. Die Stockkonzentration der in TE-Puffer gelösten Oligonukleotide betrug 100 μ M, die der Arbeitslösung 10 μ M. Für die semiquantitative *Real-Time* PCR war eine niedrigere Konzentration von 5 μ M erforderlich. Alle in dieser Arbeit verwendeten Oligonukleotide sind im Anhang zu finden.

2.13 Zellkultur von E. histolytica

2.13.1 Kultivierung von E. histolytica

Die Trophozoiten wurden unter mikroaerophilen, axenischen Bedingungen bei 35 °C in Kulturschalen (75 bzw. 250 mL) in komplettem TY-I-SS Medium kultiviert. Alle 2-3 Tage wurden die Zellen in einer bestimmten Menge Medium durch Schütteln abgelöst und, je nach
Wachstum, 4–10 % der Zellsuspension in eine neue Flasche überführt, welche mit frischem Medium aufgefüllt wurde. Der Rest der Zellen wurde verworfen.

2.13.2 Klonierung von E. histolytica

Die Zellen wurden in 5 mL TY aufgenommen und 10 μ L der Zellsuspension in eine Zählkammer gegeben. Nach dem Auszählen von vier Großquadraten wurde folgende Formel angewand:

Zellzahl aller 4 Großquadrate / $4 = \emptyset$ (Durchschnittliche Zellzahl pro Großquadrat)

 $\emptyset \ge 10000 =$ Zellen pro mL

Zellen pro mL / 1000 = Zellen pro μ L

Ein μ L der Zellsuspension wurde anschließend in der entsprechenden μ L-Anzahl gelöst um ein Verhltnis von einer Zelle pro μ L zu erhalten. Davon wurden ca. 40 μ L (somit ca. 40 A-möben) in 30 mL TY-Medium überführt und auf eine 96 well Platte aufgeteilt (ca. 200 μ L pro well). Die Platte wurde für mindestens 2 Stunden aber höchstens 8 Stunden im anaerob-Topf bei 36 °C stehen lassen damit die Amöben am Boden adherieren aber noch nicht anfangen sich zu teilen. Im Anschluss wurde mit dem Mikroskop jedes Well kontrolliert ob eine Einzelzelle vorliegt.

2.13.3 Zellernte von E. histolytica

Die Ernte der Trophozoiten erfolgte, wenn ein einschichtiger Zellrasen vorlag. Sollte eine RNA-Isolation erfolgen, wurden 10^6 Zellen in eine 70 mL Kulturflasche 24 Stunden vor dem Erntezeitpunkt eingesäht. Die Ermittlung der Zellzahl erfolgte mit Hilfe einer Neubauerzählkammer. Durch kräftiges Schütteln wurden die Zellen in TY-I-SS Medium abgelöst und dann bei 4 °C und 400 x g für 5 min sedimentiert und zweimal mit NaPBS gewaschen.

2.13.4 Transfektion von E. histolytica

Das Prinzip der Transfektion durch Elektroporation beruht auf einer temporären Porenbildung der Zellmembran der Trophozoiten durch ein kurzzeitig einwirkendes elektrisches Feld. Diese Permeabilität ermöglicht den Eintritt der Vektor-DNA in die Zelle.

Für 4 Transfektionen wurden ca. 1 x 10^7 Zellen (250 mL Kulturflasche) wie in Abschnitt 2.13.3. beschrieben geerntet und anschließend das Sediment einmal mit inkomplettem Cytomix gewaschen. Unmittelbar vorher wurde der Cytomix durch Zugabe von 2.5 mg/mL ATP und 3 mg/mL reduziertem Glutathion komplettiert. Das Zellsediment wurde in 3.4 mL komplettem Cytomix resuspendiert. Pro Ansatz wurden in einer Elektroporationsküvette 800 µL

der Amöbensuspension zu 100 μ g Plasmid-DNA gegeben, durch auf- und abpipettieren vermischt und bei 1200 V und 25 μ F zweimal hintereinander im Abstand von 2 s elektroporiert. Je nach ionischer Stärke und daraus resultierendem Widerstand, betrug die Zeitkonstante 0.4–0.6 ms. Direkt im Anschluss an die Transfektion wurden die Zellen zügig in 70 mL Kulturflaschen mit vorgewärmtem TY-I-SS Medium überführt.

Zur Erholung wurden die Amöben 48 h bei 35 °C ohne Selektionsdruck kultiviert, wodurch sich eine Mischkultur entwickelte. Anschließend wurde die Selektion mit 10 μ g/mL des Neomycin-Analogons G418, passend zur plasmidspezifischen Antibiotikaresistenz, gestartet und im Laufe der weiteren Kultivierung wurde der Selektionsdruck von 10 μ g/mL bis max. 50 μ g/mL erhöht.

2.14 Bakterienzellkultur

Die Anzucht von *Escherichia coli* in LB-Medium erfolgte bei 37 °C unter aeroben Bedingungen in Kulturröhrchen oder Erlenmeyerkolben auf einem Rundschüttler (150–200 rpm). Für die Isolierung von Klonen wurden Vereinzelungsaustriche auf LB-Agarplatten hergestellt. Für die Stammhaltung von *E. coli*-Bakterien wurden die Zellen bis zum Erreichen der exponentiellen Wachstumsphase in LB-Medium bei 37 °C aerob angezogen, dann mit 1 Vol. 10 % sterilem Glycerin versetzt und bei -70 °C gelagert.

2.14.1 Herstellung kompetenter Zellen

Um Bakterien zu befähigen, fremde DNA-Moleküle mit großer Effizienz aufzunehmen, werden die Zellen durch die Inkubation mit CaCl₂ kompetent gemacht. Für die Herstellung so genannter kompetenter Zellen wurden *E. coli* pAPlacI^Q–Bakterien in 40 mL LB-Medium inklusive 40 μ L Kanamycin (50 mg/mL) bei 37 °C bis zu einer OD₆₀₀ von 0.4 inkubiert. Alle folgenden Schritte wurden auf Eis mit gekühlten Lösungen und Rotoren durchgeführt. Die Kultur wurde in Eiswasser abgekühlt, für 15 min bei 350 x *g* zentrifugiert und das Sediment in 20 mL CaCl₂ (50 mM) resuspendiert. Nach einer 40-minütigen Inkubation erfolgte eine weitere Zentrifugation für 15 min bei 350 x *g*. Das Zellsediment wurde nun in 5 mL CaCl₂ (50 mM) resuspendiert und bei 4 °C gelagert. Die Bakterien sind für ca. 1 Woche kompetent. Die kompetenten Zellen wurden für Transformationen mit pJC45 (siehe Abschnitt 2.14.2.) mit direkt anschließender rekombinanter Expression (siehe Abschnitt 2.20.1.) genutzt.

2.14.2 Transformation kompetenter Bakterien

Bei der Transformation von kompetenten Zellen mit den entsprechenden Vektoren inklusive spezifischem DNA-Fragment wurde weitestgehend nach der Methode von Cohen *et al.*

(1972) vorgegangen. Im Falle der Top10-Zellen wurden 25 μ L Zellen mit 3 μ L Ligationsansatz für 10 min auf Eis inkubiert, worauf ein Hitzeschock von 30 s bei 42 °C folgte, an den sich eine weitere Inkubation von 10 min auf Eis anschloss. Nach der Zugabe von 250 μ L LB-Medium wurden die Zellen bei 37 °C in einem Thermomixer inkubiert, nach 1 h auf LB-Agar-Platten mit entsprechendem Selektionsmarker ausplattiert und über Nacht bei 37 °C kultiviert.

Bei der Transformation mit dem TOPO-Vektor war die Möglichkeit einer Blau-Weiß-Selektion gegeben. Hierzu wurden dem Ansatz vor dem Ausplattieren 40 μL 2 %ige 5-Brom-4-Chlor-3-indolyl-β-D-galaktopyranosid (X-Gal)-Lösung zugegeben.

Kompetente pAPlacI^Q -Zellen wurden in leicht abgewandelter Form transformiert. Zu 200 μ L Bakteriensuspension wurde 1 μ L einer Plasmid-Mini-Präparation pipettiert und für 20 min auf Eis inkubiert. Der Hitzeschock erfolgte ebenfalls bei 42 °C allerdings für 90 s. Es folgte eine Inkubation auf Eis für 30 min mit anschließender Zugabe von 300 μ L LB-Medium und einer weiteren Inkubation für 1 h bei 37 °C in einem Thermomixer. Im Anschluss wurde der gesamte Ansatz in 30 mL LB-Medium inklusive 30 μ L Ampicillin (100 mg/mL) gegeben und über Nacht bei 37 °C im Schüttelinkubator inkubiert. Am nächsten Tag wurde dann mit einer rekombinanten Expression (siehe Abschnitt 2.20.1.) fortgefahren.

2.15 Isolierung von Nukleinsäuren

2.15.1 Isolierung genomischer DNA aus E. histolytica

Die genomische DNA aus *E. histolytica* wurde mit Hilfe des Invitrogen *Easy*DNA Kit nach Angaben des Herstellers isoliert. Die daraus gewonnene DNA wurde in TE-Puffer aufgenommen und bei -20 °C gelagert. Die DNA wurde für PCR (siehe Abschnitt 2.18.1.) und SNP-Analysen (siehe Abschnitt 2.17.5) verwendet.

2.15.2 Plasmid-Mini-Präparation aus E. coli

Die Isolierung von Plasmid-DNA, welche u.a. für DNA-Sequenzierungen und Transformationen verwendet wurde, erfolgte mit Hilfe des *Fast Plasmid Mini Kit* von Eppendorf. Das Protokoll ist den Herstellerangaben zu entnehmen.

2.15.3 Plasmid-Maxi-Präparation aus E. coli

Für die Transfektion von *E. histolytica* (siehe Abschnitt 2.13.4) wurden größere Mengen reiner Plasmid-DNA benötigt. Für diesen Zweck wurde das *NucleoBond*[®]Xtra Maxi Kit von Macherey-Nagel nach Herstellerangaben verwendet. Die gewonnene DNA wurde in 0.5–1 mL H₂O_{bidest.} resuspendiert und bei –20 °C gelagert.

2.16 Isolierung, Reinigung und Fällung von RNA aus *E. histolytica*2.16.1 RNA-Isolierung mit TRIzol (Invitrogen)

TRIzol ist eine monophasische Lösung aus Phenol und Guanidin-Isothiocyanat, welche die Integrität der zu isolierenden RNA erhält, während Zellen und Zellbestandteile lysiert werden. Nach der Ernte (siehe 2.13.3.) wurde das aus Trophozoiten bestehende Sediment in 1 mL TRIzol durch vorsichtiges Auf- und Abpipettieren resuspendiert und für 5 min bei RT inkubiert. Nach der Zugabe von 200 μ L Chloroform, welches durch Invertieren hinzugemischt wurde und einer weiteren Inkubationszeit von 2–3 min bei RT, folgte ein Zentrifugationsschritt für 15 min bei 4 °C und 11500 x *g*. Anschließend waren deutlich 3 Phasen zu erkennen, bei denen sich in der obersten, wässrigen Phase die RNA befand. Diese Phase (ca. 600 μ L) wurde abgenommen und die RNA durch die Zugabe von 500 μ L Isopropanol gefällt. Nach einem Waschschritt mit 70 % EtOH und dem Trocknen des Sediments bei 56 °C wurde die RNA in 100 μ L H₂O_{bidest} durch stetiges Auf- und Abpipettieren aufgenommen.

Die isolierte RNA wurde zur Erststrangsynthese für *Real-time* PCR Versuche benötigt. Hierzu erfolgte eine zusätzliche Reinigung mit einer *RNeasy-Kit* Säule und anschließende DNase-Behandlung.

2.16.2 RNA-Reinigung und DNA-Verdau mit dem RNeasy[®]-Mini-Kit (Qiagen)

Zur zusätzlichen Reinigung der isolierten RNA wurde das $RNeasy^{\text{@}}$ -Mini-Kit in Anlehnung an die Herstellerangaben verwendet. Die in 100 µL H₂O_{bidest} gelöste RNA wurde mit 350 µL RLT-Puffer und 250 µL 100 % EtOH gemischt, auf die Säule gegeben und mit 350 µL RW-1 Puffer gewaschen. Es folgte ein DNA Verdau auf der Säule mit dem *RNase-Free DNase Set* nach Herstellerangaben. Die RNA wurde in 25 µL HPLC-H₂O eluiert und entweder direkt im Anschluss zur Erststrangsynthese eingesetzt oder mit Natriumacetat gefällt und bei -70 °C gelagert.

2.16.3 Fällung der RNA

Zur Lagerung und Entsalzung der RNA-Lösungen wurde eine Fällung mit 1/10 Vol. 3 M Natriumacetat und 2.5 Vol. Isopropanol durchgeführt. Um die RNA wieder zu lösen wurde der Ansatz für 10 min bei 4 °C und 15000 x *g* zentrifugiert, einmal mit 70 % EtOH gewaschen, die RNA bei 56 °C getrocknet und wieder in HPLC-H₂O resuspendiert.

2.17 DNA-Analysen

2.17.1 Konzentrationsbestimmung und Reinheitskontrolle

Die Konzentrationsbestimmung von gelösten DNA- und RNA-Proben erfolgte durch eine photometrische Messung bei einer Wellenlänge von 260 nm. Für eine optische Dichte von 1 wurde für doppelsträngige DNA eine Konzentration von 50 μ g/mL, für RNA eine Konzentration von 40 μ g/mL angenommen. Die Reinheit wurde anhand des Verhältnisses von OD_{260nm} zu OD_{280nm} überprüft. Eine reine DNA-Lösung besitzt einen OD_{260nm}/OD_{280nm}-Quotienten von 1.8, eine reine RNA-Lösung von 2.0 (Sambrook *et al.*, 1989).

2.17.2 Agarose-Gelelektrophorese

Nukleinsäuren können, aufgrund ihrer negativen Ladung im elektrischen Feld, für analytische oder präparative Zwecke, ihrer Größe nach getrennt werden. Hierbei ist die Wandergeschwindigkeit der DNA umgekehrt proportional zum Logarithmus der Fragmentlänge. Zur Beladung des Gels wurden die Proben mit dem entsprechenden Volumen Ladepuffer versetzt und anschließend bei konstanten 120 V getrennt. Ausgehend von der Größe des Zielfragments wurden Agarosekonzentrationen von 1–3 % (w/v), in 1 x TBE-Puffer, eingesetzt. Durch die Zugabe von 0.1 μ g/mL Ethidiumbromid, einem in doppelsträngige DNA interkalierenden Farbstoff, konnten die getrennten DNA-Fragmente unter UV-Licht (254 nm) sichtbar gemacht werden. Um hierbei Fragmentgrößen abschätzen zu können, wurden DNA-Längenstandards eingesetzt.

2.17.3 DNA- Präparation und Extraktion aus Agarosegelen

Zur Isolierung und Reinigung von gewünschten DNA-Fragmenten wurden die entsprechenden Banden aus dem Agarosegel mit Hilfe eines Skalpells unter schwachem UV-Licht ausgeschnitten. Die Elution aus der Agarose erfolgte mit dem *NucleoSpin[®] Extract II Kit* der Firma Macherey-Nagel nach Herstellerangaben.

2.17.4 DNA-Sequenzanalysen

Die Kontrolle der Korrektheit der Sequenzen der amplifizierten DNA-Fragmente erfolgte durch eine DNA-Sequenzierungsreaktion (Sanger *et al.*, 1977).

Als Sequenzier-*Primer* im TOPO Vektor dienten die Oligonukleotide M13F und M13R. Die Analyse der Sequenzen der Fragmente im pJC45-Vektor erfolgte mit Hilfe des *Primers* pJC45 forward und die der Fragmente in pNC wurden mit Hilfe des *Primers* 1239-S-Neo analysiert. Die Sequenzierungsreaktion und Sequenzanalyse wurde von der Firma Eurofins

MWG Operon durchgeführt. Die Überprüfung der Integrität der analysierten DNA-Fragmente erfolgte anschließend mit Hilfe der *Software* MacVector[®]

2.17.5 SNP (single nucleotide polymorphism)-Analysen

2.17.5.1 Probendesign

Für die mit dem LightTyper (Roche) durchgeführten SNP-Analysen wurden sequenzspezifische Oligonukleotide designed, welche mit unterschiedlichen Fluoreszenzfarbstoffen (6fam und BMN5) markiert wurden. 6fam diente hierbei als Donor und BMN5 als Akzeptor. Der Donorfarbstoff wird durch den LightTyper angeregt und aktiviert daraufhin den Akzeptor, welcher ein Fluoreszenzsignal einer anderen Wellenlänge als der Donor emittiert. Diese Energieübertragung, genannt Fluoreszenz Resonanz Energie Transfer (FRET), ist abhängig vom Abstand zwischen Donor und Akzeptor. Die markierten Oligonukleotide werden zusammen mit den Oligonukleotiden designed, welche zur Amplifikation der, den SNP enthaltenden, Zielsequenz benötigt werden. Es muss darauf geachtet werden, dass die Oligonukleotide untereinander nicht kreuzhybridisieren, dass sie innerhalb des zu untersuchenden Organismus zielsequenzspezifisch sind und einer der markierten Oligonukleotide muss über dem zu untersuchenden SNP liegen. Letzterer wird als Sensor bezeichnet und muss eine mindestens 3 °C geringere Schmelztemperatur (Tm) aufweisen als der zweite markierte Oligonukleotid, genannt der Anker. Die Fluoreszenzmarkierungen müssen so platziert sein, dass sie, wenn beide Oligonukleotide an die Zielsequenz hybridisiert sind, nebeneinander liegen. Zusätzlich muss am freien 3'Ende eine Phosphorylierung eingebaut werden, um eine Verlängerung während der PCR zu verhindern,

Die SNP-Detektion basiert auf Schmelzkurvenprofil-Analysen. Bei Temperaturen unter dem Tm von Anker und Sensor binden beide an die Zielsequenz, der Donor aktiviert den Akzeptor und der Fluoreszenz Resonanz Energie Transfer (FRET) findet statt. Durch die Erhöhung der Temperatur lösen sich die Oligonukleotide, jeder bei seiner spezifischen Tm, FRET wird gestoppt und das Fluoreszenzsignal fällt ab. Die Temperatur bei welcher sich der Sensor ablöst hängt von der Sequenz ab an die er hybridisiert ist. Falls ein SNP auftritt, in der Region wo der Sensor bindet, wird der Komplex destabilisiert und der Sensor löst sich bereits bei einer niedrigeren Temperatur als im Falle eines *perfect match*. So erhält man unterschiedliche Schmelzkurven, je nachdem ob ein SNP detektiert wurde oder nicht.

2.17.5.2 PCR-Optimierung

Bevor alle in dieser Arbeit generierten Klone der Zelllinien A und B getestet werden konnten wurde eine PCR-Optimierung vorgenommen um unterschiedliche MgCl₂ Konzentrationen zu testen. Hierbei wurde eine asymetrische PCR durchgeführt in der 5x häufiger der DNA-Strang amplifiziert wurde an welchen Anker und Sensor binden.

Die Ansätze wurden in eine 384-*well* Platte pipettiert, kurz runterzentrifugiert und im Anschluss mit 10 μ L Öl überschichtet bevor sie in den Thermocycler

Folgender 10 µL-Reaktionsansatz wurde verwendet:

BD-Puffer (10x)	1 µL	
Solution S	1 µL	
dNTP's (10mM each)	200 μΜ	
MgCl ₂ (25 mM)	1mM / 2mM	1 / 3mM
Oligonukleotid 1 (10 pmol/µ	ιL) 0.2 μL	
Oligonukleotid 2 (10 pmol/µ	ιL) 1 μL	
Sensor (4 pmol/µL)	0.2 μL	
Anker (4 pmol/µL)	0.2 μL	
<i>Taq</i> -Polymerase (5 U/µL)	0.2 μL	
DNA (5ng/µL)	2 µL	
HPLC-H ₂ O	ad. 10 µL	
Thermocycler-Programm:		
Initiale Denaturierung	94 °C	3 min
45 Zyklen:		
Denaturierung	94 °C	20 s
Annealing	55 °C	30 s
Elongation	72 °C	30 s
Finale Elongation	72 °C	5 min

Vor der Analyse imit dem LightTyper wurden die Proben noch mal 2 min bei 95 °C denaturiert.

Die in der LightTyper-Analyse erhaltenen Schmelzkurven wurden mittels *LightTyper-Software* (Roche) ausgewertet. Nach dem ermitteln der idealen PCR-Bedingungen wurden alle Klone unter Verwendung der entsprechenden MgCl₂-Konzentration getestet.

2.18 Klonierung von DNA-Fragmenten

2.18.1 Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion wurde zur spezifischen Amplifizierung von gewünschten DNA-Fragmenten *in vitro* (Higuchi *et al.*, 1988) genutzt. Als Matrize diente isolierte genomische DNA (siehe Abschnitt 2.15.1.) aus *E. histolytica*, an die zwei gegenläufige Oligonukleotide gebunden haben, von denen aus der gewählte DNA-Bereich enzymatisch amplifiziert wurde. Eine solche Vermehrung verläuft exponentiell, da jeder neu gebildete Strang jeweils wieder als Matrize dienen kann. Die PCR besteht aus drei grundlegenden, zyklisch ablaufenden Schritten: Denaturierung der doppelsträngigen DNA, Hybridisierung der Oligonukleotide mit der Matrize (*Annealing*) und der anschließenden DNA-Synthese (Elongation).

Folgender 50 μ L-Reaktionsansatz wurde verwendet:

Taq-Puffer (5x) (Promega)	10 µL
dNTP's (10mM)	5 µL
MgCl ₂ (25 mM)	5 µL
Oligonukleotid 1 (10 µM)	1 µL
Oligonukleotid 2 (10 µM)	1 µL
<i>Taq</i> -Polymerase (5 U/µL)	0.9 µL
<i>Pfu</i> -Polymerase (2.5 U/µL)	0.1 µL
DNA	1 µL
HPLC-H ₂ O	ad. 50 µL

S

Thermocycler-Programm:

Initiale Denaturierung	95 °C	2 min
29 Zyklen:		
Denaturierung	95 °C	30 s
Annealing	40–55 °C	30 s
Elongation	68 °C	30 s – 1 min 30
Finale Elongation	68 °C	10 min

Die gewählte *Annealing*-Temperatur ist abhängig von Länge, Spezifität und GC-Gehalt der Oligonukleotide und schwankt demnach. Die Zeitspanne der Elongation ergibt sich aus der Länge des zu synthetisierenden Fragments. Man berechnet bei der *Taq*-Polymerase im Schnitt 1 min Elongation pro 1 kb Fragment.

Für die Klonierung in den TOPO-Vektor muss das PCR-Produkt Adenosinüberhänge aufweisen. Dies wurde durch die finale Elongation sichergestellt.

2.18.2 Restriktionsanalyse von DNA

Die Restriktionsanalyse diente der Identifizierung klonierter DNA-Fragmente und der spezifischen Präparation zur Klonierung von DNA-Molekülen. Die Restriktionsendonukleasen wurden nach Herstellerangaben eingesetzt. Für analytische Zwecke wurden in einem 20 μ L-Ansatz ca. 2 μ g DNA, bei präparativen 50 μ L Ansätzen 20–40 μ g DNA mit 1–2 U Enzym/ μ g DNA enzymatisch gespalten. Die Inkubation erfolgte bei *FastDigest* Enzymen von Fermentas für 15–30 min, bei Restriktionsenzymen von NEB für 90 min bei 37 °C.

2.18.3 Ligation von DNA-Fragmenten

Die Ligation von PCR-Produkten mit Adenosinüberhängen in den Vektor pCR[®]2.1 TOPO erfolgte mit dem TOPO TA-*Cloning*[®] *Kit* nach Herstellerangaben.

Spezifisch enzymatisch gespaltene DNA-Fragmente sowie Vektoren wurden nach der Präparation und Extraktion aus Agarosegelen (siehe Abschnitt 2.17.3.) mit Hilfe der T4-Ligase von Fermentas ligiert. Das Verhältnis von Vektor-DNA zu DNA-Fragment betrug 1:3 in einem Gesamtansatz von 15 μ L:

Vektor und Fragment (Verhältnis 1:3)	max. 10 µL
Ligationspuffer T4-Ligase (10x)	1.5 μL
T4-Ligase (5 U/µL)	1 µL
ATP (25mM)	2.5 μL

Falls nötig H_2O ad.15 μL .

Der Ansatz wurde entweder über Nacht bei 14 °C oder über 2 Tage bei 4 °C inkubiert, vor der Transformation der *OneshotTop10*-Zellen (siehe Abschnitt 2.14.2.).

2.19 RNA-Analysen

2.19.1 Erststrangsynthese (cDNA-Synthese)

Die Konzentration der eingesetzten isolierten Gesamt-RNA wurde mittels OD-Messung bestimmt. Die cDNA-Synthese fand unter Verwendung des *SuperScriptIII-First-Strand-Synthesis System-Kit* (Invitrogen) statt. Um aus der Gesamt–RNA selektiv die mRNA in cDNA umzuschreiben, wurde der Oligo(dT)-Primer (Invitrogen) verwendet, der spezifisch mit dem 3'-Poly-A-Schwanz eukaryotischer mRNA hybridisiert.

Verwendeter Reaktionsansatz (20 µL):

RNA	1 µg
Synthesepuffer (5x)	4 µL
DTT (0.1 mM)	2 µL
dNTPs (10 mM)	2 µL
Oligo (dT7-I)-Primer	1 µL
SuperScript III	1 µL
RNase out	0.5 μL
MgCl ₂ (25 mM)	0.4 µL
H_2O	ad 20 µL

Der Ansatz wurde bei 42 °C für 1 h inkubiert und bei -20 °C gelagert. Die gewonnene cDNA wurde für quantitative *Real-Time*-PCR-Analysen verwendet (siehe Abschnitt 2.19.2.).

2.19.2 Quantitative Real-Time PCR

Die Methode der *Real-Time* PCR dient der quantitativen Analyse der Genexpression. In dieser Diplomarbeit wurde mit dem Konzept der relativen Quantifizierung gearbeitet. Hier wird die Stärke der Expression eines Zielgens (gene of interest (GOI)) in Relation zu einem Referenzgen (normalizer gene), welches keiner Regulation unterliegt (housekeeping gene) und somit konstitutiv exprimiert wird, gemessen. Dieses Normalisierungsgen dient als interner Standard, wodurch Variationen in der cDNA-Ausgangsmenge ausgeglichen werden können. In der vorliegenden Arbeit wurde das jeweilige Zielgen mittels β-Actin normalisiert. Ermöglicht wird die Detektion der Zunahme des Amplifikats während der PCR durch die Fluoreszenz eines mit doppelsträngiger DNA interkalierenden Reporterfarbstoffes wie Ethidiumbromid oder SYBR® Green I. Das in dieser Arbeit verwendete SYBR® Green I ist ein Cyanin-Farbstoff welcher im Komplex mit DNA bei Anregung durch einen Laser ein Signal bei 522 nm emittiert. Die Fluoreszenz steigt proportional mit der Menge der amplifizierten Produkte. Durch die Messung an jedem Zyklusende erfolgt eine Verfolgung des PCR-Verlaufs in Echtzeit. Die geringe Spezifität des SYBR[®] Green I Reporterfarbstoffes, welche zu falsch positiven Signalen durch Primer-Dimere oder unspezifische Produkte führen kann, wurde durch das im Assaysystem enthaltene, die Spezifität verbessernde ROX-Reagenz kompensiert. Zusätzlich wurde nach Ende der PCR-Reaktion eine Schmelzkurvenanalyse durchgeführt, durch welche alle unspezifischen Produkte identifiziert und aus der Analyse ausgelassen werden konnten.

Die Quantifizierung der Zielgen-Expression erfolgt über die Bestimmung des Zykluses, bei dem der Schwellenwert überschritten wird (*threshold cycle*). Das ist der Zyklus, in dem das Fluoreszenzsignal erstmals die Hintergrundfluoreszenz signifikant überschreitet. Er definiert den Zeitpunkt ab dem die Amplifikation exponentiell erfolgt. Je mehr cDNA des zu untersuchenden Zielgens beim Start der Reaktion vorhanden ist, umso weniger Zyklen werden bis zum erreichen des Zyklus der Schwellenüberschreitung benötigt.

Bei Anwendung der $2^{-\Delta\Delta C}$ _T-Methode wird zunächst die Differenz (Δ) der C_T-Werte von Zielgen zu Normalisierungsgen ermittelt:

 $\Delta C_T = C_{TZielgen} - C_{TNormalisierungsgen}$

Im Anschluss wird der erhaltene ΔC_T -Wert ins Verhältnis zu einer als Kalibrator dienenden Kontrollprobe gesetzt:

$$\Delta\Delta C_{\rm T} = \Delta C_{\rm TZielgen} - \Delta C_{\rm TKalibrator}$$

Die relative Expression eines Zielgens im Verhältnis zu einem Kalibrator ergibt sich als der Formel:

relative Expression = $2^{-\Delta\Delta C}_{T}$

Für den Reaktionsansatz wurde das *RealMasterMix SYBR Rox Kit* von 5 Prime nach Herstellerangaben verwendet.

20 µL Reaktionsansatz:

<i>Real Master Mix</i> (2,5x)/SYBR <i>Green</i> + ROX (20x)	9 μL
Oligonukleotid 1 (5 pmol/µL)	$2~\mu L$
Oligonukleotid 2 (5 pmol/µL)	$2~\mu L$
HPLC-H ₂ O	6 µL
cDNA	1 μL

In die Negativkontrolle wurde statt cDNA 1 µL HPLC-H₂O gegeben.

Cyclerprogramm:		
Initiale Denaturierung	95 °C	60 s
35 Zyklen:		
Denaturierung	95 °C	15 s
Annealing	58 °C	20 s
Elongation und Detektion	68 °C	20 s

Die Schmelzpunktanalyse wurde im Anschluss durchgeführt. Der Temperaturanstieg von 55 °C auf 95 °C erfolgte in 1 °C–Schritten, wobei der erste 60 s, alle folgenden 8 s dauerte.

2.20 Proteinanalysen

2.20.1 Rekombinante Expression

Für die rekombinante Expression von Teilen bestimmter Gene aus *E. histolytica* wurden die Plasmide pJCrEhCopine, pJCrEhDnaJ, pJCrEhHydA, pJCrEhTred1, pJCrEhHyp, pJCrEhguanine_nucbdprot., pJCrEhGrainin1, pJCrEhKinase, pJCrEhURE3-BP, pJCrEh40SribS10, pJCrEh60SribL3 in kompetente pAPlacI^Q-Zellen transformiert. Die Übernacht-Kultur des Transformationsansatzes wurde am nächsten Tag in 500 mL LB-Medium inklusive 500 μL Ampicillin (100 mg/mL) und 500 μL Kanamycin (50 mg/mL) gegeben und in einem Schüttel-

inkubator unter aeroben Bedingungen bei 37 °C bis zu einer OD_{600} von 0,6–1 angezogen. Durch die Zugabe von IPTG (Endkonzentration 1 mM) wurde die Genexpression induziert. Die Zellernte erfolgte 4-5 h nach der Induktion durch Zentrifugation für 15 min bei 4 °C und 4000 x g. Die Zell-Sedimente wurden bis zum Aufschluss bei -20 °C gelagert. Die rekombinanten Proteine wurden zur Herstellung von polyklonalen Antikörpern verwendet (siehe Abschnitt 2.21.).

2.20.2 Reinigung der Histidinpeptid markierten rekombinant exprimierten Proteine mittels Affinitätschromatographie

Durch das im pJC45-Vektor mitkodierte His-Peptid ist es möglich über Affinitätschromatographie die rekombinanten Proteine herauszufiltern. Für den Aufschluss der Zellen wurde das Sediment zunächst in Puffer A ohne GuHCl gelöst und 7 x 20 s auf Eis mit Ultraschall behandelt. Es folgte eine Zentrifugation von 30 min bei 4 °C und 10000 x g. Im Überstand I befand sich nach diesem Vorgang die lösliche Proteinfraktion. Um auch die unlöslichen Proteine zu erhalten wurde das Sediment erst in Puffer A + 1 M GuHCl gelöst, 10 min im Ultraschallbad inkubiert und 15 min bei 4 °C und 10000 x g zentrifugiert, der Überstand (II) erneut abgenommen und das ganze mit Puffer A + 4 M GuHCl wiederholt (Überstand III).

Die drei Überstande mit den Proteinen mit unterschiedlichem Lösungsverhalten wurden durch eine Western-Blot-Analyse (siehe Abschnitt 2.20.7.) daraufhin überprüft, in welchem das gewünschte rekombinante Protein zu finden ist. Dies war über einen anti-His-Peptid Antikörper möglich, der gegen das Histidin-Peptid gerichtet ist.

Der entsprechende Überstand wurde über eine Ni-NTA-Säule gereinigt. Hierzu wurde der gesamte Überstand mit 4 mL Ni-NTA (Quiagen, Hilden) welches zuvor mit 5 Vol Puffer A + 4 M GuHCl äquilibriert wurde gemischt und für 20 min unter Schwenken bei RT inkubiert. Im Anschluss wurde das Gemisch auf die Säule gegeben und der Durchlauf mit geringer Flussrate gestartet. Die Säule durfte hierbei in keinem Fall trocken laufen. Es folgten vier Waschschritte mit 25 mL Puffer A + 4 M GuHCl, 50 mL Puffer B, 30mL Puffer C und 50 mL Puffer C + 20 mM Imidazol. Eluiert wurde mit 20 mL Puffer C + 500 mM Imidazol in 1 mL Fraktionen. Die Lagerung der Eluate erfolgte bei -20 °C.

2.20.3 Herstellung von Proteinextrakten aus E. histolytica

Der Zellaufschluss zur Herstellung von Amöbenextrakten erfolgte durch die "freeze and thaw"-Methode. Hierbei wurden die Trophozoiten geerntet, sedimentiert und in kaltem NaPBS gewaschenen. Im Falle von Extrakten für Westernblot-Analysen und Proteinkonzent-

ration-Bestimmungen wurden die Amöben mit 30 µM E64 versetzt, um die Proteine vor den eigenen Peptidasen von *E. histolytica* zu schützen. Bei Extrakten die in CP-Assay eingesetzt werden sollten um die CP-Aktivität zu bestimmen wurde der Inhibitor weggelassen. Anschließend wurden die Zellen durch fünfmaliges Einfrieren und Auftauen in flüssigem Stickstoff lysiert. Durch Zentrifugation (1h/ 40000 rpm/ 4 °C) wurden die Zellbruchstücke und unlösliche Fraktion sedimentiert, die lösliche Fraktion befand sich im Überstand. Das verbleibende Zellsediment wurde 2fach mit kaltem NaPBS gewaschen und anschließend in NaPBS+1%TritonX100 resuspendiert. Durch Zentrifugation wurden die verbleibenden Zellfragmente sedimentiert, die NaPBS unlösliche Membranfraktion befand sich im Überstand.

Die Lagerung der mit E64 behandelten Extrakte erfolgte bei -20 °C, die der nicht mit E64 behandelten Extrakte bei -70 °C.

2.20.4 Konzentrationsbestimmung von Proteinlösungen

Zur Bestimmung von Proteinkonzentrationen wurde der BCA-Test der Firma Pierce nach Angaben des Herstellers durchgeführt.

2.20.5 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) und Coomassie-Färbung

Zur Trennung von Proteingemischen, sowie der damit verbundenen Molekulargewichtsbestimmung, wurde eine diskontinuierliche SDS-PAGE nach Laemmli (1970) durchgeführt. Neben SDS-Polyacrylamidgelen wurden für kleine Proteine (< 25 kDa) Tricin-Gele verwendet, um eine bessere Auftrennung im niedermolekularen Bereich zu erhalten. Es wurde grundsätzlich zuerst das Trenngel gegossen, welches im Falle der SDS-Gele bis zur vollständigen Polymerisation mit Isopropanol überschichtet wurde um eine ebene Oberfläche zu schaffen. Dies war bei Tricingelen nicht notwendig, hier konnte direkt das Sammelgel auf das Trenngel gegeben werden. Die Zusammensetzung der einzelnen SDS-PAGE-Lösungen ist der folgenden Tabelle (**Tab. 2.13**) zu entnehmen.

	Tricin-Gele		SDS-	Gele		
Lösungen	Trenngel %	Sammelgel %	Tren	ngel %	San	nmelgel %
	16	4	12	10	6	4
Glycerin (mL)	1.5	-	-	-	-	-
3 x Gelpuffer (mL)	2.25	1.125	-	-	-	-
Acrylamid/Bisacrylamidlösung Mischung 49:1 (mL)	3.25	-	-	-	-	-

Tab. 2.13: Zusammensetzung der SDS-PAGE-Lösungen

Acrylamid/Bisacrylamidlösung	-	0.65	-	-	-	-
Mischung 32:1 (mL)						
Acrylamid/Bisacrylamidlösung	-	-	4.5	3.25	2.25	0.65
Mischung 37.5 :1 (mL)						
Trenngelpuffer pH8.8 (mL)	-	-	2.82	2.82	2.82	-
Sammelgelpuffer pH 6.8 (mL)	-	-	-	-	-	1.25
$H_2O(mL)$	1	6.45	3.9	4.65	7.8	3.05
APS (25 % w/v) (µL)	25.6	24	75	75	75	25
TEMED (µL)	7.5	7.5	15	15	15	5

Die Proben wurden mit Proteinprobenpuffer versetzt und für 3-5 min bei 95 °C denaturiert. Die Trennung erfolgte bei 25-30 mA /Gel. Im Anschluss wurden die Gele entweder zur Detektion aller Proteine über Nacht in Coomassie-Färbelösung geschwenkt und am nächsten Tag mit Entfärbelösung soweit entfärbt bis deutliche Proteinbanden zu erkennen waren, oder zum Transfer der Proteine auf Nitrozellulosemembranen zur anschließenden Immunodetektion einzelner Proteine verwendet.

2.20.6 Substrat-SDS-PAGE zum Nachweis von Peptidasen

Zum Nachweis enzymatischer Aktivität SDS-stabiler Peptidasen wird ein geeignetes Substrat wie Gelatine in eimen SDS-Polyacrylamidgel kopolymerisiert. Die Gelatine muss vor Zugabe auf 65 °C erwärmt werden und die Lösungen bei Raumtemperatur gelagert.

% Trenngel	7.5%	10%	12%
AA-BisAA (30%/0,8%) (mL)	5.64	7.5	9
TrisHCl/SDS pH8,8 (mL)	5.64	5.64	5.64
Gelatinelsg 10% (µL)	225	225	225
$H_2O(mL)$	11	9.1	7.6
APS 25% (µL)	75	75	75
TEMED (µL)	15	15	15

Tab. 2.14: Zusammensetzung der Substrat-SDS-PAGE-Trenngellösungen

Für das Sammelgel siehe Abschnitt 2.20.5.

Der Gellauf findet bei 4°C im Kühlraum am besten mit vorgekühltem Elektrophoresepuffer statt. Nach dem Lauf wird das Gel für 1h in 2% Triton X-100 bei RT gewaschen und an-

schließend für 2,5h in Inkubationspuffer bei 37°C inkubiert. Die Färbung mit Coomassie geschieht über Nacht.

Inkubationspuffer: 3,3 ml 3M NaAcetat

1 ml 10 % Triton

2 ml 1M DTT

 $mit \ H_2O \quad ad \ 100 \ ml$

2.20.7 Western-Blot und Immunodetektion

Der Western-Blot bezeichnet den Transfer von Proteinen aus einem Gel auf eine Nitrozellulosemembran. Für das verwendete Elektroblotting im Tank-Blot Verfahren wurden zwei Fasermatten, vier Whatmanpapiere, eine auf Gelgröße zugeschnittene Nitrozellulosemembran und das Gel für wenige Minuten in Transferpuffer äquilibriert. Der Zusammenbau der Blotkassette erfolgte von der Kathodenseite zur Anodenseite folgendermaßen: Fasermatte, 2 Whatmanpapiere, Gel, Membran, 2 Whatmanpapiere, Fasermatte. Hierbei wurde darauf geachtet Luftblasen, vor allem zwischen Gel und Membran, zu vermeiden. Die Kassette wurde in die mit Transferpuffer gefüllte Kammer überführt. Der Transfer erfolgte für 1 h bei 400 mA unter Rühren.

Zur Proteindetektion wurden spezifische Antikörper verwendet. Um unspezifische Bindungen zu verhindern wurde direkt im Anschluss die Membran für 30 min mit einer Blockierlösung (5 % Milchpulver in TBS/0,05 % Tween 20) inkubiert und so alle freien Bindungsstellen gesättigt. Darauf folgte die Inkubation mit dem spezifischen, primären Antikörper in entsprechender Verdünnung in Blockierlösung. Es wurde 12 h, schwenkend bei 4 °C inkubiert. Anschließend wurde die Membran zunächst dreimal für 10 min in TBS/0,05 % Tween 20 gewaschen und ein weiteres mal für 30 min blockiert bevor die Inkubation mit dem HRPkonjugierten Sekundärantikörper für 2 h bei RT gestartet wurde. Die in dieser Arbeit zur Immunodetektion verwendeten Antikörper einschließlich der Verdünnungen in denen sie eingesetzt wurden sind in **Tab. 2.15** zu finden.

Antikörper	Verdünnung in Blockierlösung
α -His-Peptid IgG (maus) primärer Ak	1:5000
α-cMyc-Peptid (<i>rabbit</i>) primärer Ak	1:2500
α-rEhDnaJ (maus) primärer Antikörper	1:500

α-rEhGrainin1 (maus) primärer Antikörper	1:500
α-rEhguanine_nucbdprot. (maus)	1:500
primärer Antikörper	
α-rEhHydA (maus) primärer Antikörper	1:500
α-rEhHyp (maus) primärer Antikörper	1:500
α-rEhKinase (maus) primärer Antikörper	1:500
α-rEhURE3-BP(maus) primärer Antikörper	1:500
α-rEhDnaJ (maus) primärer Antikörper	1:500
α-rEhGrainin1 (maus) primärer Antikörper	1:500
α-rEhguanine_nucbdprot. (maus)	1:500
primärer Antikörper	
α-rEhHydA (maus) primärer Antikörper	1:500
α-rEhHyp (maus) primärer Antikörper	1:500
anti-mouse-HRP sekundärer Ak	1:10000

Vor der Entwicklung erfolgten drei weitere Waschschritte. Nach Zugabe der ECL-Arbeitslösung folgte die Entwicklung mittels Röntgenfilm für 2 s bis 1 h.

2.20.8 CP-Assay zur Bestimmung der proteolytischen Cysteinpeptidase-Aktivität

Die proteolytische Aktivität der Cysteinpeptidasen von *E. histolytica* wurde gegenüber dem synthetischen Peptid Benzyloxycarbonyl-L-arginyl-L-arginin-p-nitroanilid (Z-Arg-Arg-pNA) untersucht (Leippe et al., 1995). Bis zu 2 μ L eines NaPBS-löslichen Amöbenproteinextrakts wurden mit 198 μ L CP-Puffer, dem 1 mM DTT zugegeben wurde versetzt. Durch Zugabe von 2 μ L 10 mM Z-Arg-Arg-pNA in MeOH wurde die Reaktion gestartet und die, durch das Abspalten des p-Nitroanilins verursachte Absorption bei 405 nm, alle 5 min über 30 min hinweg photometrisch gemessen. 1 Unit (U) enzymatischer Aktivität ist definiert als die Menge Probe, welche die Reduktion von 1 μ mol/min p-Nitroanilins katalysiert. Die Volumenaktivität des Enzyms (mU/mL) wurde nach folgender Formel berechnet:

Volumenaktivität = ($\Delta E \times V_{\text{Messlösung}} \times 1000$) / (t x $\varepsilon_{\mu mol} \times d \times V_{\text{Probe}}$)

$$1U = 1 \mu mol Substratumsatz/min$$

 ΔE = zeitabhängige Differenz der Absorptionswerte

t = Zeit (min)

 $\epsilon_{\mu mol} = 8.8 \text{ cm}^2/\mu mol (Extinktionskoeffizient für Substanz-Stoffkonstante)$

d = Durchmesser der Küvette (cm)

V_{Probe} = Eingesetztes Probenvolumen (mL)

2.21 Herstellung polyklonaler Antikörper

Zur Herstellung von spezifischen polyklonalen Antikörpern gegen ausgewählte rekombinante Proteine von *E. histolytica* wurden jeweils 4 weibliche Balb/c Mäuse pro Protein verwendet. Für die 1. Immunisierung wurde den Tieren 50 µg Protein gemischt mit komplettem Freundschen Adjuvans (Sigma) *intra peritoneal* injiziert. Das komplette Freundsche Adjuvans ist eine Wasser-in-Öl-Emulsion die abgetötetes *Mycobacterium tuberculosis* zur Verstärkung der Immunantwort enthält. Nach jeweils 2 Wochen erfolgte die zweite und dritte Immunisierung. Hierfür wurden wieder jeweils 50 µg Protein, diesmal gemischt mit inkomplettem Freundschen Adjuvans *intra peritoneal* den Mäusen verabreicht. Nach insgesamt sechs Wochen wurde bei den Tieren eine Herzpunktion durchgeführt und ihnen so ihr Blut entnommen. Diese Versuchsteile wurden unter Aufsicht von PD Dr. med. vet. H. Lotter durchgeführt.

Das erhaltene Blut wurde bei 4 °C gelagert bis es vollständig geronnen war um im Anschluss für 5 min bei 4 °C und 400 x g zentifugiert zu werden. Das Serum wurde in Form des Überstandes vorsichtig abgenommen. Es folgte ein weiterer Zentrifugationsschritt bei 2300 x g nach dem eventuell vorhandene Reste des erhaltenen Serums abgenommen wurden. Die so erhaltenen polyklonalen Antikörper wurden zum spezifischen Nachweis und zur Lokalisation in Western-Blot-Analysen, und bei der Immunfluoreszenzfärbung von Trophozoiten verwendet.

2.22 Immunfluoreszenzanalyse

Der Immunfluoreszenz-Assay ermöglicht es, Proteine einer Zelle anzufärben und zu lokalisieren. Hierzu nutzt man fluoreszenzmarkierte Antikörper oder spezifische Farbstoffe.

2.22.1 Immunfluoreszenzfärbung von E. histolytica-Trophozoiten

Nach der Ernte der Trophozoiten und einem Waschschritt mit NaPBS wurde das Trophozoiten-Sediment zur Fixierung der Zellen vorsichtig in 1 mL frisch angesetztem 3 % PFA-NaPBS resuspendiert und 30 min bei RT inkubiert. Angesetzt wurde die Arbeitslösung aus 40 % PFA (70 °C) und NaPBS (RT).

Nach der Fixierung der Zellen und einer kurzen Zentrifugation (2.5 min/RT/200 x g) wurde der Überstand verworfen und die Probe geteilt. Ein Teil der Zellen wurde mit Saponin behandelt, der andere nicht, um unterschiedliche Teile der Zelle für die Antikörper zugänglich zu machen. Saponin erhöht stark die Permeabilität der Zellmembran, wodurch Antikörper Zu-

gang zum Intrazellularraum erhalten. Die Inkubation erfolgte für 5 min in 500 μ L frisch angesetzter NaPBSS-Lösung (0.05 % Saponin in NaPBS) während die andere Hälfte der Zellen in 500 μ L NaPBS bei RT inkubiert wurde. Beide Proben wurden anschließend zentrifugiert (2.5 min/RT/200 x g) und der Überstand verworfen.

Zur Blockierung freier Aldehydgruppen erfolgte eine Aufnahme des Zellsediments in 500 μ L 50 mM Ammoniumchloridlösung mit erneuter Inkubation von 15 min. Nach einer weiteren Zentrifugation (2.5 min/RT/200 x g), dem Verwerfen des Überstandes und einem Waschschritt erfolgte die Blockierung unspezifischer Antikörper-Bindungsstellen. Diese geschah durch die Aufnahme der Amöbensedimente in 500 μ L 2 % FCS-Lösung (erneut gelöst in NaPBS) und Inkubation für 10 min im Thermomixer bei RT. Daraufhin folgte eine weitere Zentrifugation (2.5 min/RT/200 x g), der Überstand wurde verworfen und ein Waschritt durchgeführt, bevor der primäre Antikörper zu den Proben gegeben wurde.

Als primäre Antikörper wurden die selbst generierten Antikörper in einer Verdünnung von 1:100 eingesetzt. Die mit Proteinmarkierungs-Konstrukten transfizierten Amöben wurden mit *anti-c-Myc (rabbit)* in einer Verdünnung von 1:200 inkubiert. Verdünnt wurden die Antikörper mit NaPBS. Die Inkubation erfolgte für 1 h bei RT im Thermomixer mit anschließender Zentrifugation (2.5 min/RT/200 x g) und 3 Waschschritten bevor der sekundäre fluoreszenzmarkierte Antikörper 1:400 verdünnt und Hoechst in einer Verdünnung von 1:400 hinzugegeben wurden. Es folgte eine letzte Inkubation von 1h bei RT im Thermomixer, Zentrifugation und wiederum 3 Waschschritte. Für die Detektion wurden die Zellsedimente in 200 μ L NaPBS aufgenommen und bei 4 °C in Dunkelheit aufbewahrt. Als fluoreszenzmarkierter Antikörper wurden *anti-mouse* ALEXA Fluor[®] 488 (grün).

3 Ergebnisse

3.1 Klonierung der *E. histolytica*-Zelllinien HM-1:IMSS A und HM-1:IMSS B

Beide *E. histolytica* Zelllinien wurden zu unterschiedlichen Zeitpunkten von der ATCC als HM-1:IMSS-Isolat (Katalog-Nr. 30459) erhalten. Die apathogene Zelllinie A wurde in der *E. histolytica*-Genomanalyse verwendet (Loftus *et al.*, 2005) und befand sich seit 2001 durchgehend in Kultur unter axenischen Bedingungen. Die pathogene Zelllinie B wurde bereits 1991 direkt von der ATCC bezogen und wurde seitdem unter den gleichen Bedingungen wie Zelllinie A kultiviert. Schon immer unterschieden sich die beiden Zelllinien in ihrer Zellgröße und Wachstumsrate. Beim Einsetzen beider Zelllinien für Versuche zur Induktion von Amöbenleberabszessen (ALAs) bei mongolischen Wüstenrennmäusen *Meriones unguiculatus* stellte sich heraus, dass Zelllinie B signifikant große Abszesse verursachte (Biller *et al.*, 2009). Beide Zelllinien standen schon länger unter dem Verdacht, dass es sich bei ihnen um Mischkulturen von Trophozoiten handelt, welche sich in ihrer Pathogenität unterschieden. Um eine Mischkultur auszuschließen wurde im Rahmen dieser Arbeit eine Klonierung der beiden Zelllinien vorgenommen. Hierzu wurden wie in Abschnitt 2.13.2 beschrieben Einzelzellen ausgesät und pro Zelllinie konnten zwölf Klone generiert werden.

3.1.1 Analyse der Pathogenität der generierten Klone der Zelllinien A und B

Zur Überprüfung, ob es sich bei der apathogenen Zelllinie A und der pathogenen Zelllinie B um Mischkulturen handelt, wurden je 1×10^6 Trophozoiten der 24 Klone A1-A12 und B1-B12 in die Lebern von mongolischen Wüstenrennmäusen (*Meriones unguiculatus*) injiziert, nach sieben Tagen die entstandenen Abszesse ausgemessen und zur Auswertung der Rohdaten in den folgenden Abszess-*Score* eingeteilt: 0 bedeutet kein Abszess, bei 1 wurde eine Abszessgröße < 1 mm beobachtet, bei 2 eine Abszessgröße von 1-5 mm und bei 3 wies der Abszess eine Größe von > 5 mm auf. Pro Klon wurden vier Versuchstiere verwendet. Alle in dieser Arbeit beschriebenen Tierexperimente wurden freundlicherweise von PD Dr. med. vet. Hannelore Lotter (BNI) durchgeführt. In Abb. 3.1 werden die erhaltenen Werte graphisch dargestellt. Sowohl bei Zelllinie A als auch bei Zelllinie B handelt es sich um eine Mischkultur. Dies geht aus den Variationen der Pathogenität unter den einzelnen Klonen hervor. Besonders bei den Klonen B1-B12 wurde dies deutlich. Mit den Klonen B1, B6 und B8 wurden apathogene Phänotypen in der eigentlich pathogenen Zelllinie B gefunden.

Abb. 3.1: Graphische Darstellung der Amöbenleberabszessbildung in *Meriones unguiculatus* durch Trophozoiten der *E. histolytica* HM-1:IMSS Zelllinien A und B und der aus ihnen generierten Klone A1-A12 und B1-B12. Zur Auswertung der Rohdaten wurde der folgende Abszess-*Score* verwendet: 0 = kein Abszess, 1 = Abszess < 1mm, 2 = Abszess 1-5 mm, 3 = Abszess > 5 mm. Ermittelt wurden die Abszessgrößen 7 Tage nach Injektion in die Leber von *Meriones unguiculatus*.

Um zu testen, ob sich die Klone auf Transkriptomebene verhalten wie die Zelllinien A und B, wurden stichprobenartig 16 Gene ausgesucht, deren Expression sich in vorangegangenen Studien als differentiell zwischen Zelllinie A und Zelllinie B erwiesen hat. Die entsprechenden Oligonukleotide für eine *Real-time* PCR Analyse lagen bereits vor (siehe Tab. 6.4 im Anhang). Von den 16 Genen wurden 8 als differentiell höher in Zelllinie A und 8 differentiell höher in Zelllinie B exprimiert (Biller, 2009). Als Proben wurden die mRNAs in Form von cDNA von Klon A1, Klon B2, Klon B8 und Klon B9 untersucht (beschrieben in Abschnitt 2.19.1). Als Referenzgen diente *β-aktin* und Klon A1 wurde als Kalibrator verwendet. Die *Real-time* PCR-Analyse wurde wie in Abschnitt 2.19.2 beschrieben durchgeführt. Die Grenzwerte für eine differentielle Genexpression wurden auf $\ge 2,5$ und $\le 0,5$ festgelegt. Die Experimente wurden mit zwei biologischen Proben durchgeführt. Bei allen 16 untersuchten Genen konnten die erwarteten differentiellen Transkriptmengen nachgewiesen werden. Somit verhält sich der Klon A1 auf Transkriptom-Ebene für die getesteten Gene wie Zelllinie A und die Klone B2, B8 und B9 wie Zelllinie B (siehe Tab. 3.1).

Tab. 3.1: *Real-time* PCR-Analyse der Klone A1, B2, B8 und B9 mit stichprobenartig ausgewählten Genen, welche bei Zelllinie A und Zelllinie B als differentiell exprimiert gefunden wurden. Die Grenzwerte für eine differentielle Genexpression wurden auf $\ge 2,5$ und $\le 0,5$ festgelegt. Klon A1 wurde als Kalibrator verwendet (= 1). Die Werte für Zelllinie A und B stammen von Dr Laura Biller (Dissertation, 2009).

Genname	Accession-Nr.	Kalibrator	Real time-PCR-Daten			
		Zelllinie A/	Zelllinie	Klon	Klon	Klon
		Klon A1	В	B2	B8	B9
IP:PFAM:XYPPX, Annexin	XM 648445	1	0	0	0	0
NHL wiederholendes Protein	XM 644469	1	0,3	0,4	0,4	0,2
IP:PFAM, Tetraspanin	XM_643681	1	0,1	0,2	0,2	0,1
Hypothetisches Protein	XM 647137	1	7,1	6,7	9,8	8,8
Hypothetisches Protein	XM 648869	1	3,8	5	7,5	3,9
AIG1-Familie Protein	XM_648725	1	100	4,9	26,5	8,9
AIG1-Familie Protein	XM 645223	1	4,8	3	3,3	1,3
AIG1-Familie Protein	XM 643009	1	100	18,5	27,5	19
Metallopeptidase 8-2	XM_647540	1	0	0	0	0
Fe-Hydrogenase	XM 647747	1	3,2	4,2	6,8	3,3
Rab-Familie GTPase	XM 646110	1	0	0	0	0
Rab-Familie GTPase	XM 684456	1	0	0	0	0
C2-Domänen-Protein	XM_650207	1	0	0	0	0
Rab-Familie GTPase	XM 651358	1	0	0	0	0
Erythrozyten-Bindungsprotein	XM 645291	1	50	22,8	19,3	15,5
Virales A-Typ-Einschlussprotein	XM 649962	1	1000	72,5	70	56,6

In allen weiteren Versuchen für die sonst Zelllinie A und Zelllinie B verwendet worden wären wurden im weiteren Verlauf dieser Arbeit der apathogene Klon A1 und der pathogene Klon B2 verwendet.

3.1.2 Subklonierung der Klone B8 und B9

Um abzusichern, dass es sich bei den Pathogenitäten der Klone um stabile Phänotypen handelt, wurden von dem apathogenen Klon B8 und dem hochpathogenen Klon B9 je fünf Subklone generiert und ihre Pathogenität ebenfalls im Tiermodell getestet. Es wurden je 1×10^6 Trophozoiten der 10 Klone B8_1-B8_5 und B9_1-B9_5 in die Lebern von mongolischen Wüstenrennmäusen (*Meriones unguiculatus*) injiziert und nach sieben Tagen die entstandenen Abszesse ausgemessen und zur Auswertung der Rohdaten in den folgenden Abszess-*Score* eingeteilt: 0 bedeutet kein Abszess, bei 1 wurde eine Abszessgröße < 1 mm beobachtet, bei 2 eine Abszessgröße von 1-5 mm und bei 3 wies der Abszess eine Größe von > 5 mm auf. In Abb. 3.2 sind die erhaltenen Werte graphisch dargestellt. Es konnte bewiesen werden, dass es sich in beiden Fällen um stabile Phänotypen handelt.

Abb. 3.2: Graphische Darstellung der Amöbenleberabszessbildung in *Meriones unguiculatus* durch Trophozoiten der *E. histolytica* HM-1:IMSS Klone B8 und B9 und der aus ihnen generierten Subklone B8_1-B8_5 und B9_1-B9_5. Zur Auswertung der Rohdaten wurde der folgende Abszess-*Score* verwendet: 0 = kein Abszess, 1 = Abszess < 1 mm, 2 = Abszess 1-5 mm, 3 = Abszess > 5 mm. Ermittelt wurden die Abszessgrößen 7 Tage nach Injektion in die Leber von *Meriones unguiculatus*.

3.2 Vergleichende *single nucleotide polymorphism* (SNP) -Analysen zwischen *E. histolytica* Klon A1 und Klon B2

Zelllinie A wurde im Jahr 2005 für die E. histolytica-Genomanalyse (Loftus et al., 2005) eingesetzt, wodurch das gesamte Genom zugänglich wurde. Durch die Möglichkeit zwei syngenische Zelllinien untersuchen zu können, welche sich in ihrer Pathogenität unterscheiden, wurde es möglich vergleichende Einzelbasenpolymorphismen (SNP)-Analysen durchzuführen um festzustellen ob zwischen SNPs und Pathogenität eine Korrelation besteht. Um die auftretenden SNPs bei Klon A1 und Klon B2 zu identifizieren und miteinander zu vergleichen wurde zunächst wie in Abschnitt 2.15.1 beschrieben die DNA der beiden Klone isoliert und via Agarosegelelektrophorese ihre Reinheit und Integrität sichergestellt (hier nicht gezeigt). Die folgende Sequenzierung und bioinformatische Analyse wurde freundlicherweise von Prof. Neil Hall und Dr. Gareth Weedall (University of Liverpool) durchgeführt. Hierfür wurde die DNA der beiden Klone in 50 Bp große Fragmente zerteilt und 50fach sequenziert. Die so erhaltenen 50 Bp langen Sequenzen wurden dann an das Genom von Zelllinie A, welches als Referenz verwendet wurde, angelegt, in die richtige Reihenfolge gebracht und die auftretenden SNPs identifiziert. Es wurden 201 SNPs zwischen Klon A1 und Klon B2 gefunden (siehe Tab. 6.7 im Anhang). Davon 127 in kodierenden Bereichen und 74 in Introns oder -200 Bp upstream vom kodierenden Bereich.

3.2.1 Validierung der identifizierten SNPs und Überprüfung der Korrelation zwischen SNPs und Pathogenität

Für die Validierung der erhaltenen SNP-Daten und die anschließende Überprüfung einer Korrelation zwischen SNPs und Pathogenität mit Hilfe der Klone A1-A12 und B1-B12 wurden zunächst 14 SNPs ausgewählt, welche als relevant eingestuft wurden (siehe Tab. 3.2). Mit einbezogen wurden SNPs, welche entweder für beide Klone homozygot vorliegen, das heißt das z.B. Klon A1 ausschließlich ein Guanin an einer Stelle aufweist an der bei Klon B2 ausschließlich ein Adenin gefunden wurde, oder SNPs die für einen der Klone homozygot und den anderen heterozygot gefunden wurden. Außerdem muss er im kodierenden Bereich zu einem Aminosäureaustausch führen. Von den 14 ausgewählten SNPs liegen 10 in kodierenden und 4 in nicht-kodierenden Bereich.

Tab. 3.2: Als relevant eingestufte, bei Klon A1 und B2 gefundene SNPs. Angabe auf welchem Contig und an welcher Position im Genom von *E. histolytica* HM-1:IMSS Zelllinie A (verwendet Genomanalyse 2005) sich der SNP befindet. Zusätzlich wird bei jedem SNP angegeben in welcher Häufigkeit er bei Klon A1 und Klon B2 sequenziert wurde. AA = Aminosäure

Contig	Position	Klon A1	Klon B2	AA-Tausch	Accession-Nr.	Genname	
Kodierende Bereiche							
DS571155	29905	C ₁₀₄	T ₄₇	AA418C-Y	XM_649480.1	Hypothetisches Protein	
DS571157	139143	A ₁₃₈	A ₂₀ T ₄₂	AA19M-L	XM_646600	EF-Hand-Calcium-bindende Domäne enthaltendes Prote- in	
DS571189	71347	C ₇₄ , A ₆₅	C ₇₅	AA377S-I	XM_644808	Hypothetisches Protein	
DS571248	48932	T ₅₅	$\begin{array}{c} T_1\\ C_{45} \end{array}$	АА209К-Е	XM_647593	Putative Signalerkennende Teilchenrezeptoruntereinheit alpha	
DS571281	4143	C ₁₁₀ T ₉₃	C ₁₈₉	AA254R-K	XM_649141	Hypothetisches Protein	
DS571322	15288	C ₅₄ T ₅₂	C ₈₀	AA940S-P	XM_646946	Putative Proteinkinase	
DS571413	9997	A ₈ C ₁₀	A ₁₄	AA61Q-H	XM_647062	HEAT wiederholendes Pro- tein	
DS571700	1539	C ₃₃ T ₁	C ₄₇ T ₆₉	AA323 G-R	XM_001914342	BspA-Familie Protein	
DS571180	3263	C ₆ A ₁₄	C ₂₀	AA152T-N	XM_644810	Hypothetisches Protein	
DS571730	4056	G ₁₄	G ₉ A ₁₀	AA143E-K	XM_001914354	BspA-Familie Protein	

Nicht-kodierende Bereiche						
DS571292	23160	A ₅₃	G ₄₈			
DS571496	4410	A ₇	A ₁₁			
		G ₅				
DS571496	4411	A ₆	A ₁₁			
		G ₅				
DS571243	37782	A ₇ Gao	A ₂₅ G1			
		020	UI			

Im Rahmen dieser Arbeit wurden die Primer, Sonden und Anker für alle 14 Sets designed und im Anschluss wie in Abschnitt 2.17.5.2 beschrieben eine PCR-Optimierung durchgeführt. Mit den erhaltenen optimierten Bedingungen wurden die eigentlichen SNP-Analysen aller 24 Klone durchgeführt. Wie in Abb. 3.3 zu sehen konnte bei den SNPs aus den kodierenden Bereichen nur bei 7 von 10 Ausgewählten das zuvor erhaltene Ergebnis bestätigt werden. Hier stimmen die erhaltenen Schmelzkurven mit den Erwartungen überein. Bei drei der Untersuchten SNPs ist dies nicht der Fall. In zwei Fällen, bei Contig DS571413, Position 9997 und Contig DS 571180 Position 3263, wurde erwartet, dass Klon A1 heterozygot ist. Stattdessen ist er homozygot für das gleiche Nukleotid wie Klon B2. Bei Contig DS571730, Position 4056 wurde erwartet, das A1 homozygot für das Nukleotid G ist und Klon B2 homozygot für A und G. Stattdessen sind beide heterozygot.

Abb. 3.3: Darstellung der Schmelzkurvenanalyse zur Verifizierung und zum Nachweis der bei Klon A1 und B2 im kodierenden Bereich gefundenen relevanten SNP's. Als Matrize wurde die DNA von Klon A1-A12 und B1-B12 verwendet. In der Beschriftung links neben den Schmelzkurven findet sich die Information auf welchem Contig und an welcher Position im Genom von *E. histolytica* HM-1:IMSS Zelllinie A (verwendet Genomanalyse 2005) sich der SNP befindet. Außerdem befindet sich dort die Angabe welcher SNP gefunden und in welcher Häufigkeit er bei Klon A1 und Klon B2 sequenziert wurde. In der linken Spalte der Schmelzkurven werden die Kurven der DNA von Klon A1-A12 gezeigt, in der mittleren Spalte die von Klon B1-B12 und in der rechten Spalte die Überlagerung der Schmelzkurven aller getesteten Klone.

In Abb. 3.4 sind die Schmelzkurvenanalysen der SNPs aus den nicht-kodierenden Bereichen zu sehen. Nur bei 2 von 4 Ausgewählten konnte das zuvor erhaltene Ergebnis bestätigt werden. Hier stimmen die erhaltenen Schmelzkurven mit den Erwartungen überein. Bei zwei der untersuchten SNPs ist dies nicht der Fall. In beiden Fällen bei Contig DS571496, Position 4410 und Contig DS 571496 Position 4411 wurde erwartet, dass Klon A1 heterozygot ist. Stattdessen ist er homozygot für das gleiche Nukleotid wie Klon B2.

Abb. 3.4: Darstellung der Schmelzkurvenanalyse zur Verifizierung und zum Nachweis der bei Klon A1 und B2 im nicht-kodierenden Bereich gefundenen signifikanten SNP's. Als Matrize wurde die DNA von Klon A1-A12 und B1-B12 verwendet. In der Beschriftung links von den Schmelzkurven findet sich die Information auf welchem Contig und an welcher Position im Genom von *E. histolytica* HM-1:IMSS Zelllinie A (verwendet Genomanalyse 2005) sich der SNP befindet. Außerdem befindet sich dort die Angabe welcher SNP gefunden und in welcher Häufigkeit er bei Klon A1 und Klon B2 sequenziert wurde. In der linken Spalte der Schmelzkurven werden die Schmelzkurven der DNA von Klon A1-A12 gezeigt, in der mittleren Spalte die von Klon B1-B12 und in der rechten Spalte die Überlagerung aller getesteten Klone.

In den Abb. 3.3 und Abb. 3.4 ist deutlich zu sehen, das sich alle Klone einer Zelllinie immer gleich verhalten. Das heißt, es wurde kein SNP untersucht, bei dem ein Klon der Zelllinie A einen SNP aufweist wie er sonst nur bei Klonen der Zelllinie B gefunden wird und umgekehrt. Somit konnte keine Korrelation zwischen den gefundenen SNPs und den Pathogenitäten der Klone festgestellt werden.

3.3 Analyse der Korrelation zwischen Cysteinpeptidasen und Pathogenität bei *E. histolytica*

Das Cysteinpeptidasen (EhCPs) bei der Pathogenität von E. histolytica eine Rolle spielen wurde bereits in mehreren Studien sowohl in vitro als auch in vivo nachgewiesen. Bewiesen wurde eine direkte Korrelation zwischen der Menge aktiver Cysteinpeptidasen und der Virulenz eines Isolats (Gadasi and Kessler 1983; Lushbaugh et al., 1985; Keene et al., 1990). Unter Kulturbedingungen sind die Gene der Cysteinpeptidasen ehcp-al, ehcp-a2, ehcp-a5 und ehcp-a7 in E. histolytica am stärksten exprimiert und diese vier CPs sind auch für ca. 90 % der Gesamtpeptidaseaktivität verantwortlich (Bruchhaus et al., 1996; Bruchhaus et al., 2003; Tillack et al., 2007; Irmer et al., 2009). Die Auswahl der untersuchten Cysteinpeptidasen beruhte auf den Ergebnissen dieser Arbeit voraus gegangener oder parallel durchgeführter Studien. Die EhCP-A1, EhCPA2, EhCPA5 und EhCPA7 wurden verwendet, da sie wie oben beschrieben 90 % der Gesamtaktivität unter Kulturbedingungen ausmachen. Für die EhCP-A5 konnte bereits eine Beteiligung an der Pathogenität der Trophozoiten im Tiermodell gezeigt werden (Tillack et al., 2006). Außerdem wurden bei der Analyse der Expression der Cysteinpeptidasegene der Zelllinie B in ALAs bei der Wüstenrennmaus eine erhöhte Expression der Gene ehcp-a3, ehcp-a4, ehcp-a10, ehcp-b9 und ehcp-c13 (Diplomarbeit Marien, 2009) gefunden. Für den Klon B2 konnte durch Real-time PCR-Analysen gezeigt werden, dass während der ALA-Bildung bei Mus musculus die Expression von ehcp-a3, ehcp-a4, ehcp-a5, ehcp-a6, ehcp-a7 und ehcp-a10 hochreguliert wird (Diplomarbeit Ann-Katrein Bär, 2011). Leider konnten die CPs EhCP-A3, EhCP-A10 und EhCP-B9 in dieser Arbeit nicht mehr mit untersucht werden. Die EhCP-B8 wurde in den Versuch mit eingeschlossen, da sie bei Messungen der Antikörperreaktion von Patienten auf CPs eine starke Reaktivität in Seren von asymptomatischen E. histolytica Trägern zeigt (Dissertation Tillack, 2009). Im Rahmen dieser Arbeit sollte analysiert werden, ob nur die Menge aktiver Cysteinpeptidasen entscheidend für die Virulenz ist oder ob auch eine einzelne CP die Pathogenität verstärken kann. Außerdem wurde überprüft, ob tatsächlich eine direkte Korrelation zwischen CP-Aktivität und Amöbenleberabszess (ALA)-Größe besteht.

3.3.1 Transfektion von *E. histolytica* Klon A1 Trophozoiten mit ausgewählten Cysteinpeptidase-Überexpressionsvektoren

Um zu überprüfen, ob die erhöhte Menge einer einzelnen Cysteinpeptidase zu einer stärkeren Pathogenität führt, wurden die Überexpressionskonstrukte pNC-CPA6, pNC-CPA7, pNC-CPB8 und pNC-CPC13 im Rahmen dieser Arbeit hergestellt. Die Konstrukte pNC, pNB-CPA1, pNB-CPA2, pNC-CPA4 und pNB-CPA5 (Tillack *et al.*, 2006; Dissertation Tillack, 2009) lagen bereits vor. Der Überexpressionsvektor besitzt eine Neomycin-Phosphotransferase kodierende Sequenz unter einem Aktin-Promotor, das einklonierte Zielgen steht unter dem eigenen Promotor.

Für die Plasmide pNC-CPA6, pNC-CPA7, pNC-CPB8 und pNC-CPC13 wurde der Expressionsvektor pNC verwendet, der auf dem Plasmid pEhNEO/CAT beruht (Hamann *et al.*, 1995) (siehe Abb. 3.5) Dieses Derivat besitzt ebenfalls eine Neomycin-Phosphotransferase kodierende Sequenz unter einem Aktin-Promotor. Das einklonierte Zielgen steht unter einem Lektinpromotor. Der Vektor pNC diente bei allen Versuchen als Kontrolle. Die Trophozoiten von Klon A1 wurden erfolgreich mit den beschriebenen Vektoren transfiziert und mit 20 µg/mL G418 selektioniert. Ziel dieses Versuches war es zu überprüfen, ob die Überexpression einzelner EhCPs im apathogenen Klon A1 zur Amöbenleberabszessbildung im Mausmodell und somit zu einer Steigerung der Pathogenität führt.

Abb. 3.5: Schematische Darstellung der Überexpressions-Vektoren pNC, pNB-CPA1, pNB-CPA2, pNC-CPA4, pNB-CPA5, pNC-CPA6, pNC-CPA7, pNC-CPB8 und pNC-CPC13 die für stabile episomale Transfektionen von *E. histolytica* HM-1:IMSS Klon A1 eingesetzt wurden. pNC diente als Kontrollvektor. Pfeile verweisen auf die Transkriptionsorientierung.

3.3.2 Überexpression ausgewählter Cysteinpeptidasen in Trophozoiten von Klon A1

Nach der Transfektion der einzelnen Überexpressionsvektoren in Trophozoiten von Klon A1 wurde zunächst wie in Abschnitt 2.13.2 beschrieben eine Klonierung der erhaltenen Transfektanten vorgenommen. Es wurde sichergestellt, dass wirklich nur aus Einzelzellen hochgewachsene Zellkulturen weiterverwendet wurden. Pro Transfektante wurden vier Klone unter Selektionsdruck kultiviert, bis sie einen stabilen *Monolayer* aufwiesen, um dann eine, wie in Abschnitt 2.19.2 beschriebene, *Real-time* PCR-Analyse durchzuführen. Als Referenzgen diente β -aktin und Klon A1 wurde als Kalibrator verwendet. Die Grenzwerte für eine differentielle Genexpression wurden auf \geq 2 festgelegt. Es wurde für jede Transfektante ein Klon gefunden bei dem eine Überexpression des gewünschten Cysteinpeptidasegens vorlag. So konnte in den A1_pNB-CPA1-Transfektanten eine 2-fach gesteigerte Transkription von *ehcp-a1* gegenüber Klon A1 und der Kontrolle A1_pNC nachgewiesen werden. Bei den A1_pNB-CPA2-Transfektanten eine 385-fach gesteigerte Transkription von *ehcp-a4*, bei den A1_pNC-CPA4-Transfektanten eine 385-fach gesteigerte Transkription von *ehcp-a4*, bei den

A1_pNC-CPA6-Transfektanten eine 120-fach gesteigerte Transkription von *ehcp-a6*, bei den A1_pNC-CPA7-Transfektanten eine 7-fach gesteigerte Transkription von *ehcp-a7*, bei den A1_pNC-CPB8-Transfektanten eine 200-fach gesteigerte Transkription von *ehcp-b8* und bei den A1_pNC-CPC13-Transfektanten ein 9-fach gesteigerte Transkription von *ehcp-c13* gegenüber Klon A1 und der Kontrolle A1_pNC nachgewiesen werden. Einen Sonderfall stellen die A1_pNB-CPA5-Transfektanten dar. Hier wurde nicht nur die Transkription des *ehcp-a5*-Gens um das 2,5-fache gesteigert sondern auch die Transkription der anderen CP-Gene war beeinflusst. Getestet wurden die ebenfalls in diesem Versuch verwendeten CPs. Es konnte bei den A1_pNB-CPA5-Transfektanten eine 3-fach gesteigerte Transkription des *ehcp-a1*-Gens beobachtet werden. Bei *ehcp-a2* war sie 5-fach erhöht, bei *ehcp-a4* 4-fach, bei *ehcp-a7* 3,5-fach und bei *ehcp-b8* 3-fach gegenüber Klon A1 und der Kontrolle A1 pNC.

3.3.3 Überprüfen der Cysteinpeptidaseaktivität der Klon A1 Überexpressionstransfektanten

Aus den ausgewählten Transfektanten wurden wie in Abschnitt 2.20.3 beschrieben lösliche Proteinextrakte hergestellt. Diese wurden dazu verwendet um wie in Abschnitt 2.20.8 beschrieben die Cysteinpeptidase-Aktivität der einzelnen Transfektanten zu ermitteln (siehe Tab. 3.3) und mit ihnen Substrat-SDS-Gelelektrophoresen durchzuführen (siehe Abb. 3.6). Wie in Tab. 3.3 dargestellt ist bei der Cysteinpeptidase-Aktivität im Vergleich zu Klon A1 nur bei den Trophozoiten der A1_pNB-CPA2 und A1_pNB-CPA5 ein Anstieg zu beobachten. Im Vergleich zur Kontrolle A1_pNC hingegen, welche eine sehr niedrige Cysteinpeptidase-Aktivität aufweist, zeigen alle bis auf die A1_pNC-CPB8-Transfektante eine erhöhte Aktivität.

Tab. 3.3: Cysteinpeptidase-Aktivität von Klon A1, der Kontrolle A1_pNC und den Transfektanten A1_pNB-CPA1, A1_pNB-CPA2, A1_pNC-CPA4, A1_pNB-CPA5, A1_pNC-CPA6, A1_pNC-CPA7, A1_pNC-CPB8 und A1_pNC-CPC13.

Transfektante	CP-Aktivität
	(mU/mg)
Klon A1 (untransfiziert)	15 ± 5
A1_pNC (Kontrolle)	0.5 ± 0.5
A1_pNB-CPA1	Nicht bestimmt
A1_pNB-CPA2	62 ± 5
A1_pNC-CPA4	9 ± 1
A1_pNB-CPA5	50 ± 15

A1_pNC-CPA6	1 ± 0.6
A1_pNC-CPA7	2.5 ± 1.6
A1_pNC-CPB8	$0.5 \pm 0,02$
A1_pNC-CPC13	Nicht bestimm

Um einen genaueren Einblick zu erlangen, wie die ermittelte Cysteinpeptidase-Aktivität auf die einzelnen Cysteinpeptidasen in den Transfektanten verteilt ist, wurden wie in Abschnitt 2.20.6 beschrieben Substrat-SDS-Gelelektrophoresen durchgeführt. Aufgetrennt wurden Extrakte der Transfektanten A1_pNC (Kontrolle), A1_pNB-CPA2, A1_pNC-CPA4, A1_pNB-CPA5, A1_pNC-CPA6, A1_pNC-CPA7, und A1_pNC-CPB8. Zusätzlich wurden zum Vergleich Extrakte der untransfizierten *E. histolytica* Klone A1 und B2 aufgetragen. Verwendet wurden 12 %ige SDS-Polyacrylamidgele, in denen 0,1 % Gelatine (w/v) kopolymerisiert wurden. Je Spur wurden 4 µg Extrakt aufgetragen. Wie in Abb. 3.6 gut zu erkennen ist spiegelt das kaum bis gar nicht sichtbare Bandenmuster bei den Transfektanten A1_pNC-CPA6 und A1_pNC-CPB8 und bei der Kontrolle A1_pNC die oben ermittelte extrem niedrige Cysteinpeptidase-Aktivität wieder. Bei der A1_pNB-CPA2 Transfektante ist die EhCP-A2 Bande deutlich verstärkt und bei der A1_pNB-CPA5 Transfektante kann für alle Cysteinpeptidasen eine gesteigerte Aktivität nachgewiesen werden. Besonders gut ist die gesteigerte Aktivität der EhCP-A4 bei der A1_pNC-CPA4 Transfektante und der EhCP-A7 bei der A1 pNC-CPA7 Transfektante zu erkennen.

Abb. 3.6: Substratgelelektrophorese der Extrakte von *E. histolytica* Klon A1-Transfektanten A1_pNC (Kontrolle), A1_pNC-CPA2, A1_pNC-CPA4, A1_pNC-CPA5, A1_pNC-CPA6, A1_pNC-CPA7 und A1_pNC-CPB8 und zum Vergleich *E. histolytica* Klon A1 und Klon B2 untransfiziert. Dargestellt sind mit Coomassie gefärbte 12 %ige SDS-Polyacrylamidgele, in denen 0,1 % Gelatine (w/v) kopolymerisiert wurden. Je Spur wurden 4 μg Extrakt aufgetragen.

3.3.4 Einfluss von Cysteinpeptidasen auf die Amöbenleberabszess (ALA)-Bildung im Mausmodell

Um die Rolle der einzelnen in Klon A1 überexprimierten Cysteinpeptidasen bei der Pathogenität des Parasiten zu überprüfen, wurden 1,25 x 10⁵ Amöben in die Mausleber injiziert und die Mäuse nach 7 Tagen wieder geöffnet um die Amöbenleberabszess-Bildung zu untersuchen. Alle im Rahmen dieser Arbeit angefallenen Tierversuche wurden freundlicher Weise von PD Dr. med. vet. Hannelore Lotter (BNI) durchgeführt. Nach dem Ausmessen der gebildeten ALAs wurden die ermittelten Größen in einen Abszess-Score eingeteilt, bei welchem die 0 bedeutet, dass kein Abszess oder nur eine Narbe gefunden wurde, die 1 steht für einen Abszess < 1 mm, die 2 für einen Abszess von 1-5 mm und die 3 für einen Abszess > 5 mm. Die Grenze für einen echten Abszess liegt bei 1. In Abb. 3.7 sieht man die graphische Darstellung der erhaltenen Werte. Hiernach hat ein vermehrtes Vorhandensein der EhCP-A1, EhCP-A2, EhCP-A4, EhCP-A6, EhCP-A7 und EhCP-A13 keinen Einfluss auf die Pathogenität der Trophozoiten. Ein signifikantes Ergebnis wurde bei der EhCP-B8 erhalten. Ist nur sie in einer höheren Konzentration vorhanden weisen die Trophozoiten eine signifikant höhere Pathogenität auf im Vergleich zur Kontrolle. Dies ist auch der Fall, wenn mehrere Cysteinpeptidasen hochreguliert sind, wie man bei den A1 pNB-CPA5 Transfektanten sehen kann. Die Pathogenität beider Transfektanten ist vergleichbar mit der des pathogenen Klons B2.

Abb. 3.7: Graphische Darstellung der Amöbenleberabszessbildung in *Mus musculus* durch in Klon A1 transfizierte Überexpressionskonstrukte. Transfiziert und im Mausmodell getestet wurden A1_pNB-CPA1 (6 Mäuse), A1_pNB-CPA2 (10 Mäuse), A1_pNC-CPA4 (10 Mäuse), A1_pNB-CPA5 (10 Mäuse), A1_pNC-CPA6 (10 Mäuse), A1_pNC-CPA7 (11 Mäuse), A1_pNC-CPB8 (10 Mäuse), A1_pNC-CPC13 (5 Mäuse), und die Kontrolle A1_pNC (15 Mäuse). Zum Vergleich wurden zusätzlich die untransfizierten Klone A1 (15 Mäuse) und B2 (5 Mäuse) auf ihre ALA-Bildung in *Mus musculus untersucht*. Zur Auswertung der Rohdaten wurde der folgende

Abszess-*Score* verwendet: 0 = kein Abszess, Narbe, 1 = Abszess < 1 mm, 2 = Abszess 1-5 mm, 3 = Abszess > 5 mm. Die Transfektanten pNC-CPB8 (p<0,007) und pNC-CPA5A (p<0,002) in Klon A1 weisen einen signifikanten Unterschied in ihrer Amöbenleberabszessgröße zur Kontrolle A1_pNC auf.

3.3.5 Bestimmung der Cysteinpeptidase-Aktivität der A- und B-Klone

Nachdem in Abschnitt 3.1.1 die Pathogenität der Klone A1-A12 und B1-B12 im Tierversuch ermittelt wurde, schien es interessant ihre Cysteinpeptidase-Aktivität zu ermitteln um festzustellen, ob hier tatsächlich eine Korrelation zwischen Aktivität und Pathogenität besteht.

Um die Bandenmuster und Intensitäten der einzelnen Klone beider Zelllinien miteinander zu vergleichen wurden wie in Abschnitt 2.20.6 beschrieben Substrat-SDS-Gelelektrophoresen durchgeführt. Verwendet wurden 12 %ige SDS-Polyacrylamidgele, in denen 0,1 % Gelatine (w/v) kopolymerisiert wurden. Je Spur wurden 4 µg Extrakt aufgetragen. Wie in Abb. 3.8 zu sehen ist, sind die Bandenmuster aller Klone beider Zelllinien fast identisch. Lediglich die Intensitäten unterscheiden sich sowohl unter den Klonen einer Zelllinie als auch zwischen den Zelllinien. Zunächst lässt sich sagen, dass die Intensitäten der Banden bei fast allen B-Klonen stärker sind als bei den A-Klonen. Ausnahmen hiervon sind die Klone A11 und A12, welche Bandenintensitäten wie B-Klone mittlerer Intensität aufweisen und die Klone B4, B5 und B8, bei denen ihre Banden eher wie bei den A-Klonen mittlerer Intensität ausgebildet sind. Besonders schwach ausgeprägte Banden zeigen sich bei den A-Klonen Klon A1 und Klon A6 und besonders stark ausgeprägte Banden zeigt der Klon B9 bei den B-Klonen. Die einzigen Banden, die im Vergleich zu den anderen Banden eine Variation in ihrer Intensität zeigen, sind die der EhCP-A7 und EhCP-A4.

Abb. 3.8: Substratgelelektrophorese der Extrakte von *E. histolytica* Klon A1-A12 (oben) und Klon B1-B2 (unten). Dargestellt sind mit Coomassie gefärbte 12 %ige SDS-Polyacrylamidgele, in denen 0,1 % Gelatine (w/v) kopolymerisiert wurden. Je Spur wurden 4 µg Extrakt aufgetragen.

Zusätzlich wurden, wie in Abschnitt 2.20.8 beschrieben, die Cysteinpeptidase-Aktivitäten der einzelnen Klone bestimmt (siehe Abb. 3.9). Hierfür wurden pro Klon mindestens Werte für vier biologische Proben ermittelt. Es ist zu beobachten, dass alle A-Klone eine spezifische Cysteinpeptidase-Aktivität von unter 50 mU/mg aufweisen, während die Aktivität aller B-Klone, bis auf B4, B5 und B8, darüber liegt.

Abb. 3.9: Graphische Darstellung der spezifischen Cysteinpeptidase-Aktivität der Zelllinie A und der aus ihr generierten Klone A1-A12 und der Zelllinie B und den aus ihr generierten Klonen B1-B12. Die Daten wurden aus Werten von mindestens vier biologischen Proben pro Zelllinie/Klon ermittelt. Die Einheit der Cysteinepeptidase-Aktivität wird in mU/mg angegeben.

Um eine Korrelation zwischen CP-Aktivität (Abb. 3.9) und Pathogenität (Abb. 3.1) herzustellen wurden beide Ergebnisse miteinander verglichen (Abb. 3.10).

Abb. 3.10: Graphische Darstellung des Vergleichs der Amöbenleberabszessbildung in *Meriones unguiculatus* durch Trophozoiten der *E. histolytica* HM-1:IMSS Zelllinien A (lila) und B (pink) und der aus ihnen generierten Klone A1-A12 (lila) und B1-B12 (pink) und der den einzelnen Zelllinien und Klonen zugehörigen spezifischen Cysteinpeptidase-Aktivität (blaue Balken im Hintergrund). Zur Auswertung der Rohdaten der Amöbenleberabszessbildung wurde der folgende Abszess-*Score* verwendet: 0 = kein Abszess, 1 = Abszess < 1 mm, 2 = Abszess 1-5 mm, 3 = Abszess > 5 mm. Ermittelt wurden die Abszessgrößen 7 Tage nach Injektion in die Leber von *Meriones unguiculatus*. Die Cysteinpeptidasedaten wurden aus Werten von mindestens vier biologischen Proben pro Zelllinie/Klon ermittelt. Die Einheit der Cysteinpeptidase-Aktivität wird in mU/mg angegeben.

Hier wird deutlich, dass eine direkte Korrelation nicht möglich ist, da Klon A6 eine relativ geringe CP-Aktivität, dafür aber einen hohen Abszess-*Score* aufweist. Bei Klon A12 ist es genau anders herum. Die Amöben weisen eine relativ hohe CP-Aktivität auf, sind aber a-pathogen (Abszess-Score = 0). Bei Zelllinie B sind die Beispiele, die einer Korrelation wider-sprechen Klon B1, welcher eine sehr hohe Cysteinpeptidase-Aktivität besitzt aber kaum Abszessbildung verursacht, und Klon B4 bei dem es genau anders herum ist. Somit kann die Aussage, dass die Pathogenität mit einer hohen Cysteinpeptidase-Aktivität korreliert, nicht bestätigt werden.

3.4 Auswertung und Validierung des Membranoberflächenproteoms von *E. histolytica*

Um die Membranoberflächenproteome von Zelllinie A und Zelllinie B zu identifizieren und miteinander zu vergleichen wurden in vorangegangenen Studien (Laura Biller, Dissertation 2009 und unveröffentlicht) diese Proteine angereichert und für eine Nano-Liquid Chromatographie (Nano-LC) mit anschließender MS/MS-massenspektrometrischer Analyse vorbereitet. Hierbei wurden die Oberflächenproteine von vitalen Zellen mit Biotin markiert, lysiert und über das Biotin an eine Avidin-Säule gebunden. Die nach der Elution erhaltenen Proteinfraktionen wurden mittels SDS-PAGE elektrophoretisch getrennt, die Spur einer Probe in gleichmäßige 1 mm beite Stücke, parallel zum Verlauf der molekularen Masse geschnitten, und anschließend tryptisch verdaut. Die so erhaltenen Proben wurden in der Nano-LC eingesetzt und später massenspektrometrisch analysiert. Die massenspektrometrisch analysierten Peptide wurden mit Hilfe der NCBI-Datenbank identifiziert und eine Liste aller Proteine angelegt. Untersucht wurden drei biologische Proben je Zelllinie. Da man bei der Verwendung dieser Techniken keine Aussage über die Quantität eines identifizierten Moleküls bei der jeweiligen Zelllinie treffen kann, wurde ein Molekül als differentiell definiert, wenn es bei mindestens zwei biologischen Proben bei einer der Zelllinien gefunden wurde und nie bei der anderen Zelllinie. Es wurden 765 Proteine identifiziert, von denen 140 differentiell bei Zelllinie A und 9 differentiell bei Zelllinie B vorkamen. Im Rahmen dieser Arbeit wurden die 765 Proteine kategorisiert (Stressantwort, Cytoskelett, etc.), ihre Sequenzen ermittelt und durch bioinformatische Datenbanken (SignalP, SUPLpredictor, SecretomeP, TMHMM und predotar) weiter charakterisiert (siehe Abb. 3.11, Abb. 3.12 und Abb. 3.13 und Tab. 6.8 im Anhang). Von den 765 Proteinen verfügen 55 über Transmembrandomänen und teilweise zusätzlich über Signalanker oder Signalpeptide, wodurch sie wahrscheinlich an einer Zellmembran lokalisiert sind. Insgesamt 18 Proteine weisen Signalanker auf. Bei 70 der Proteine treten Signalpeptide auf, welche für den Export verantwortlich sind und die Proteine so zur Zellmembran oder in die Organellen gelangen könnten. 241 Proteine werden als nicht klassisch sezerniert eingestuft, was bedeutet, dass sie ER/Golgi unabhängig aus der Zelle exportiert werden. Für 14 der Proteine wird eine Myristoylierung vorhergesagt, was auch auf eine Interaktion mit der Zellmembran schließen lässt. Es wurden 28 Proteine als in der Plasmamembran lokalisiert vorausgesagt. 4 Proteine weisen auf eine Lokalisation in der Zellkernmembran hin, 7 auf eine Lokalisation in der ER-Membran, 2 auf eine Lokalisation in der Vesikelmembran, 5 auf eine Lokalisation in der Endosommembran und 2 auf eine Lokalisation in der Membran

des Golgi Apparates, welcher bei *E. histolytica* noch nicht dargestellt ist. 32 Proteine wurden als Mitochondrienproteine eingeordnet, was bei *E. histolytica* nur im Mitosom möglich ist, da sie keine Mitochondrien besitzen. 39 Proteine wurden mit dem Cytoplasma assoziiert.

Abb. 3.11: Schematische Darstellung der prozentualen Häufigkeitsverteilung der 765 identifizierten putativen Membranoberflächen-Proteine auf die Kategorien: Vesikuläres Trafficking (5,7 %), Stressantwort (6,5 %), Cytoskelett (7,8%), GTPasen/GTP Bindung (8,9 %), ER/Golgi (0,8 %), Peptidasen (5,2 %), Metabolismus (11,4 %), Kinasen (3 %), Lipid Metabolismus (0,7 %), Membran (3,4 %), DNA/RNA Metabolismus/Translation (9,3 %), Protein-Protein Interaktion (0,7 %), *Signaling* (0,4 %), Ribosomale Proteine (11,7 %) und Proteine unbekannter Funktion (24,5 %). Die Farbzuordnung ist der Legende unter dem Kreisdiagramm zu entnehmen. ER = Endoplasmatisches Retikulum

Abb. 3.12: Schematische Darstellung der Häufigkeitsverteilung der Voraussagen für Signalanker (18), Signalpeptide (70), TMD (55), TMD+SP (19), n.k. sez. (241) und Myr (14) bei den 765 gefundenen putativen Membranoberflächen-Proteinen. Für 422 Proteine wurde keine dieser Modifizierungen vorausgesagt. Die Farbzuordnung ist der Legende neben dem Kreisdiagramm zu entnehmen. TMD = Transmembrandomäne, SP = Signalpeptid, n.k. sez. = nicht klassisch sezerniert, Myr = Myristoylierung.

Abb. 3.13: Schematische Darstellung der Häufigkeitsverteilung der Lokalisationsvoraussagen für die 765 gefundenen Membranoberflächen-Proteine. Nucleus (4), Mitochondrium (32), GA-Membran (2), Plasmamembran (26), Cytopl. Vesikel (2), Cytoplasma (39), ER Membran (7), ER (23), Endosommembran (5). Für 624 wurde keine Lokalisation vorausgesagt. Die Farbzuordnung ist der Legende unter dem Kreisdiagramm zu entnehmen. GA = Golgi-Apparat, ER = Endoplasmatisches Retikulum, Cytopl. = Cytoplasmatisches.

3.4.1 Validierung der Membranproteom-Daten auf Transkriptom-Ebene via *real-time* PCR

Mit Hilfe von *Real-time* PCR-Experimenten sollte im Rahmen dieser Arbeit untersucht werden, ob die Proteine, die in der Zellmembranoberflächen-Analyse zwischen Zelllinie A und Zelllinie B als differentiell identifiziert wurden, sich auch auf der Transkriptom-Ebene als differentiell erweisen. Oligonukleotide für 14 Gene putativ differentieller Proteine in Zelllinie A und aller 9 Gene der putativ differentiellen Proteine in Zelllinie B lagen bereits vor. Als Proben wurde die mRNAs in Form von cDNA von Klon A1 und Klon B2 untersucht (beschrieben in Abschnitt 2.19). Als Referenzgen diente β -*aktin* und Klon A1 wurde als Kalibrator verwendet. Die *Real-time* PCR-Analyse wurde wie in Abschnitt 2.19.2 beschrieben durchgeführt. Die Grenzwerte für eine differentielle Genexpression wurden auf \geq 2,5 und \leq 0,5 0,5 festgelegt. Die Experimente wurden mit 2 biologischen Proben durchgeführt. Bei keinem der 23 untersuchten Gene konnten eine differentielle Transkription nachgewiesen werden, somit konnten die auf Proteom-Ebene erhaltenen Ergebnisse auf Transkriptom-Ebene für diese Gene nicht bestätigt werden.

3.4.2 Herstellung von Überexpressionskonstrukten mit cMyc als Markierungssystem

Um nachzuweisen, dass es sich bei den identifizierten Proteinen tatsächlich um Membranoberflächen- oder zumindest mit der Membran assoziierte Proteine handelt, sollte deren Lokalisation bestimmt werden. Hierfür wurden diverse Überexpressionskonstrukte mit cMyc als Markierungssystem hergestellt. Die zu klonierenden Zielgene wurden aus bei der Analyse des Membranoberflächen-Proteoms (siehe Tab. 6.8) gefundenen Proteinen abgeleitet. Eine Übersicht der erfolgreich untersuchten Proteine/Gene findet sich in Tab. 3.4

Accession-Nr.	Name	kDa	Konstrukt				
		Protein	Name				
Vesikel Trafficking, Vesikel Formation							
XM_651158	Clathrin adaptor complex small chain	18	pNCEhClathrin-ac-cMyc				
XM_650063	COP9 signalosome complex subunit 1	45	pNCEhCOP9-sigcom-cMyc				
Stressantwort							
XM_651634	Thioredoxin1	12	pNCEhTred1-cMyc				
GTPasen, GTP Bindung							
XM_649396	Rho Familie GTPase	28	pNCEhRho-GTPase-cMyc				
Peptidasen							
XM_650258	Proteasom alpha Subunit	26	pNCEh proteasome-alphasub-cMyc				
Metabolismus							
XM_643978	alcoholdehydrogenase	42	pNCEhAlcdehyd-cMyc				
XM_645763	malatdehydrogenase	39	pNCmaldehyd-cMyc				
XM_645280	Grainin1	24	pNCEhGrainin1-cMyc				
Membran							
XM_649277	V-type ATPase	15	pNCEhV-type_ATPase-cMyc				

 Tab. 3.4: Zusammenfassung der für die Lokalisation über das cMyc-Markierungssystem verwendeten putativen

 Membranoberfächen-Proteine.

Der im Folgenden verwendete Überexpressionsvektor basiert auf pNC (siehe Abb. 3.14) (Hamann *et al.*, 1995). Für *c-myc* wurde aufgrund seiner geringen Größe von 51 Bp Oligonukleotide entworfen, welche über die gesamte Länge der entsprechenden Gensequenz inklusive diverser Restriktionsschnittstellen gingen. Nach der Hybridisierung wurde das erhaltene Fragment direkt in den mit *Kpn*I und *BamH*I verdauten pNC-Vektor kloniert.

So hat man sich die resultierenden Fragmente vorzustellen:

	Kpn I	<i>Nhe</i> I	BamH I	с-тус	<i>Xho</i> I	Stop .	<i>Bgl</i> II
5'-GC	GTAC <mark>CG</mark>	CTAGC	GGATCC	Sequenz	.CTCGAC	TAAA	GATCT-3
3'-CC	CATGGC	GATCG	CCTAGG	Sequenz	. GAGCTO	CATTT	CTAGA-5'

Die *Bgl*II-Restriktionsschnittstelle an einem Ende der hybridisierten Oligonukleotide fügt sich in die *BamH*I-Schnittstelle des Vektors pNC und inaktiviert diese dauerhaft. Die Inaktivierung ermöglicht, dass die Zielgene ebenfalls über *Kpn*I und *BamH*I vor das *cmyc* Gen kloniert werden können (Diplomarbeit Matthiesen, 2009).

Der Vorteil solcher Peptide wie c-Myc, die zur Markierung mit dem Zielprotein fusioniert werden, ist die Spezifität und die universelle Einsetzbarkeit. c-Myc basiert auf der Interaktion eines Epitops des c-Myc-Peptids mit dem Immunglobulin 9E10 und besitzt die Sequenz EQKLISEEDL. Das Peptid ist ein Epitop des humanen *c-myc*-Genprodukts.

Abb. 3.14: Schematische Darstellung eines Teilbereichs des pNC-Vektors mit integriertem Protein-Markierungssystem- und Zielgenabschnitt. Der pNC-Vektor wurde für die Überexpression einzelner Gene inklusive dahinter platziertem Protein-Markierungssystem verwendet. Die Gensequenz für das *c-myc*-Markierungssystem und die Zielgensequenzen vor *c-myc* wurden über die Restriktionsschnittstellen *Kpn*I und *BamH*I eingefügt. neo^R = neomycin-phosphotransferasegen.

Von den ausgewählten Proteinen wurden zunächst die Gensequenzen ermittelt, Oligonukleotide entworfen und die Zielsequenzen wie in Abschnitt 2.18.1 beschrieben via PCR amplifiziert. Diese wurden über die Schnittstellen *KpnI* und *BamHI* in den pNCcMyc-Vektor kloniert. Dies gelang bei 12 der 32 ausgewählten Sequenzen. Die Trophozoiten von Klon A1 und Klon B2 wurden erfolgreich mit den Konstrukten pNCEhGrainin1-cMyc, pNCEhTred1cMyc, pNCEhAlcdehyd-cMyc, pNCEhClathrin-ac-cMyc, pNCEhCOP9-sigcom-cMyc, pNCEhRho-GTPase-cMyc, pNCEhproteasome-alphasub-cMyc, pNCEhmaldehyd-cMyc, pNCEhV-type_ATPase-cMyc, pNCEhDnaJ-cMyc, pNCSRP54-cMyc, pNC40SribS19-cMyc und zur späteren Kontrolle zusätzlich mit dem leeren pNC-Vektor wie in Abschnitt 2.13.4 beschrieben transfiziert. Der Selektionsdruck mit G418 wurde bis auf 25 μg/mL erhöht, bevor Amöbenextrakte (siehe Abschnitt 2.20.3.) für Western-Blot-Analysen (siehe Abschnitt 2.20.7) hergestellt und Immunfluoreszenz-Analysen (siehe Abschnitt 2.22) durchgeführt wurden.

3.4.3 Detektion der cMyc-Fusionsproteine mittels Westernblot-Analysen

Um zu überprüfen, ob die generierten Transfektanten die zu untersuchenden Proteine fusioniert an eine c-Myc-Domäne synthetisieren und wo diese Proteine lokalisiert sind, wurden Westernblot-Analysen durchgeführt. Aus den Transfektanten wurden hierfür Extrakte präpariert, welche entweder die löslichen Proteine (LP) oder die NaPBS-unlöslichen Proteine (UP) und somit die Membranfraktion enthielten (hergestellt wie in Abschnitt 2.20.3. beschrieben). Die Amöbenextrakte wurden aus den mit c-Myc-Überexpressionskonstrukten transfizierten Trophozoiten von Klon A1 und Klon B2 hergestellt. Die Proben wurden auf 12 %ige SDS-Gele aufgetragen, elektrophoretisch getrennt und auf Nitrozellulosemembranen transferiert. Als primärer Antikörper wurde α -cMyc (Verdünnung 1:2500) verwendet. Als sekundärer Antikörper diente *anti-mouse*-HRP-Antikörper.

Bei Klon A1 wurden bei 7 aus 12 getesteten Transfektanten positive Signale in der Westernblot-Analyse erhalten (siehe Abb. 3.15). Die spezifische Bande der zu erwartenden Größe ist mit einem Pfeil gekennzeichnet und eine häufig in der Triton-X-100-Fraktion (UP) auftretende unspezifische Bande mit einem Stern. Bei der A1_pNCEhGrainin1-cMyc-Transfektante wurde wie erwartet ein Signal bei 24 kDa beobachtet, wobei die Triton-X-100-Fraktion (UP) nur ein sehr schwaches Signal im Gegensatz zur NaPBS-Fraktion (LP) aufweist. Die A1_pNCEhTred1-cMyc-Transfektante weist eine spezifische Bande wie erwartet bei 12 kDa auf. Ob diese Bande nur in der NaPBS-Fraktion oder auch in der Triton-X-100-Fraktion vorhanden ist, lässt sich nicht sagen, da diese durch die unspezifische Bande verdeckt wird. Die A1_pNCEhAlcdehyd-cMyc-Transfektante zeigt ausschließlich in der Triton-

X-100-Fraktion ein spezifisches Signal bei der erwarteten Größe von 42 kDa. Die A1_pNCEhClathrin-ac-cMyc-Transfektante zeigt in der Triton-X-100-Fraktion ein klares Signal auf der erwarteten Höhe von 18 kDa und noch zusätzlich in beiden Proteinfraktionen Banden bei ca. 180 kDa, was auf die Beteiligung des Proteins in einem Komplex oder Polymer schließen lässt. Bei den Transfektanten pNCEhCOP9-sigcom-cMyc (45 kDa), A1_pNCEhRho-GTPase-cMyc (28 kDa) und A1_pNCEhproteasome-alphasub-cMyc (26 kDa) sind Signale bei den erwarteten Größen in beiden Proteinfraktionen zu beobachten. In den Westernblot-Analysen der restlichen Transfektanten A1_pNCEhmaldehyd-cMyc, A1_pNCEhV-type_ATPase-cMyc, A1_pNCEhDnaJ-cMyc, A1_pNCSRP54-cMyc und A1_pNC40SribS19-cMyc wurden keine cMyc-Fusionsproteine detektiert (hier nicht abgebildet).

Abb. 3.15: Western-Blot-Analyse der Amöbenextrakte aus A1_pNCcMyc-Transfektanten A1_pNCEhGrainin1cMyc, A1_pNCEhTred1-cMyc, A1_pNCEhAlcdehyd-cMyc, A1_pNCEhClathrin-ac-cMyc, A1_pNCEhCOP9sigcom-cMyc, A1_pNCEhRho-GTPase-cMyc und A1_pNCEhproteasome-alphasub-cMyc in Klon A1. Es wurden je 10 μ L der NaPBS-löslichen (LP) bzw. Triton X 100-löslichen (UP) Fraktionen auf 12% jeg SDS-Polyacrylamidgele aufgetragen, elektrophoretisch getrennt, per Nassblot-Technik auf Nitrocellulosemembranen transferiert und anschließend mit monoklonalem α -cMyc als primärem Antikörper (Verdünnung 1:2500) und α *mouse*-HRP-Ak als sekundärem Antikörper (Verdünnung 1:10000) inkubiert. Die erhaltenen Banden liegen größtenteils im Bereich der Erwartungen. Errechnete Molekulargewichte: EhGrainin1-cMyc ca. 24 kDa, EhTred1-cMyc ca. 12 kDa, EhAlcdehyd-cMyc ca. 42 kDa, EhClathrin-ac-cMyc ca. 18 kDa, EhCOP9-sigcomcMyc ca. 45 kDa, EhRho-GTPase-cMyc ca. 28 kDa und Ehproteasome-alphasub-cMyc ca. 26 kDa.

 \star

Kennzeichnet die erwartete Bande

kennzeichnet eine unspezifische Bande die bei Klon A1 auftritt

Bei Klon B2 wurden bei 6 aus 12 getesteten Transfektanten positive Signale in der Westernblot-Analyse erhalten (siehe Abb. 3.16). Im Fall der B2 pNCEhGrainin1-cMyc-Transfektante wurde wie erwartet ein Signal bei 24 kDa beobachtet, wobei die NaPBS-Fraktion (LP) nur ein sehr schwaches Signal im Gegensatz zur Triton-X-100-Fraktion (UP) aufweist. Dies ist genau anders herum als die Signale bei der A1 pNCEhGrainin1-cMyc-Transfektante von Klon A1 (Abb. 3.15). Die B2 pNCEhTred1-cMyc-Transfektante weist eine spezifische Bande wie erwartet bei 12 kDa auf, welche sich auf die NaPBS-Fraktion (LP) beschränkt. Die B2 pNCEhAlcdehyd-cMyc-Transfektante zeigt in beiden Proteinfraktionen ein spezifisches Signal bei der erwarteten Größe von 42 kDa. In der NaPBS-Fraktion, in welcher man bei der A1 pNCEhAlcdehyd-cMyc-Transfektante von Klon A1 gar kein Signal beobachten konnte, sind zusätzlich noch zwei Banden bei 25 kDa und 22 kDa vorhanden, bei denen es sich um Abbauprodukte handeln könnte. Bei der Klon B2 Transfektante B2 pNCEhCOP9-sigcom-cMyc ist in beiden Proteinfraktionen eine Bande bei der erwarteten Größe von 45 kDa zu sehen, was mit dem Ergebnis der A1 pNCEhCOP9-sigcom-cMyc Transfektante von Klon A1 übereinstimmt (siehe Abb. 3.15). Im Fall der B2 pNCEhmaldehyd-cMyc Transfektante sind Signale bei der erwarteten Größe von 39 kDa in beiden Proteinfraktionen zu beobachten. Bei der B2 pNCEhV-type ATPase-cMyc Transfektante wurde ausschließlich in der Triton-X-100-Fraktion (UP) ein Signal bei ca. 30 kDa beobachtet, erwartet wurde es bei 15 kDa. Hierbei kann es sich um ein Dimer oder einen Proteinkomplex handeln. In den Westernblot-Analysen der restlichen Transfektanten B2 pNCEhRho-GTPase-cMyc, B2 pNCEhClathrin-ac-cMyc, B2 pNCEhproteasomealphasub-cMyc, B2 pNCEhDnaJ-cMyc, B2 pNCSRP54-cMyc und B2 pNC40SribS19cMyc in Klon B2 wurden keine spezifischen Signale detektiert (hier nicht abgebildet).

Abb. 3.16: Western-Blot-Analyse der Amöbenextrakte aus B2_pNCcMyc-Transfektanten B2_pNCEhGrainin1cMyc, B2_pNCEhTred1-cMyc, B2_pNCEhAlcdehyd-cMyc, B2_pNCEhCOP9-sigcom-cMyc, B2_pNCEhmaldehyd-cMyc, B2_pNCEhV-type_ATPase-cMyc in Klon B2. Es wurden je 10 μ L der NaPBSlöslichen (LP) bzw. Triton X 100-löslichen (UP) Amöbenextraktfraktionen auf 12% jeg SDS-Polyacrylamidgele aufgetragen, elektrophoretisch getrennt, per Nassblot-Technik auf Nitrocellulosemembranen transferiert und anschließend mit monoklonalem α -cMyc als primärem Antikörper (Verdünnung 1:2500) und α -mouse-HRP-Ak als sekundärem Antikörper (Verdünnung 1:10000) inkubiert. Die erhaltenen Banden liegen größtenteils im Bereich der Erwartungen. Errechnete Molekulargewichte: EhGrainin1-cMyc ca. 24 kDa, EhTred1-cMyc ca. 12 kDa, EhAlcdehyd-cMyc ca. 42 kDa, EhCOP9-sigcom-cMyc ca. 45 kDa , Ehmaldehyd-cMyc ca. 39 kDa und EhV-type_ATPase-cMyc ca. 15 kDa (Dimer)

3.4.4 Lokalisierung ausgewählter potentieller Membranoberflächenproteine mittel c-Myc-Markierung in der IFA

Die Transfektanten, bei denen die entsprechenden cMyc-Fusionsproteine im Westernblot nachgewiesen wurden, wurden mit Hilfe von Immunfluoreszenz-Analysen charakterisiert, um die genaue Lokalisation der einzelnen putativen Membranoberflächen-Proteine in *E. histolytica* Trophozoiten zu ermitteln. Die Fixierung, Permeabilisierung mit Saponin und Antikörperinkubation fanden wie in Abschnitt 2.22. beschrieben statt. Als primärer Antikörper diente α c-Myc und als sekundärer Antikörper ein α -mouse-Antikörper assoziiert mit dem Fluoreszenzfarbstoff ALEXA Fluor[®] 488. Die Zellen wurden in einer 10000fachen Vergrößerung untersucht. Für die Dekonvolutions-Mikroskopie wurden ausgewählte Zellen mit einer 100x Ölimmersionslinse angeschaut und mit Hilfe eines Leica DM RB-Mikroskops in 0.3 µm Schritten optische Schnitte durch die Zelle gelegt. Die dekonvolvierten Schnitte wurden ausgewertet und mit dem *Openlab*-Programm 4.0.2 ausgewertet und bearbeitet. Diese Bilder ermöglichen eine genauere Lokalisierung der Fusionsproteine in der Zelle.

In Abb. 3.17 ist die Lokalisierung des EhGrainin1-cMyc-Fusionproteins bei mit pNCEhGrainin1-cMyc transfizierten Klon A1 und Klon B2 Trophozoiten zu sehen. Im Fall der mit Saponin permeabilisierten Zellen wurden sowohl bei Klon A1 als auch bei Klon B2 Signale erhalten. Bei beiden ist eine cytosolische Färbung zu erkennen. Außerdem sieht man eine klare ringförmige Färbung um einzelne vesikuläre Strukturen und bei den Klon B2 Transfektanten noch zusätzlich um den Zellkern. Im Fall der nicht permeabilisierten Zellen treten nur bei den Klon A1 Transfektanten Signale auf. Diese sind konzentriert an mehreren Stellen der Zellmembran. Die detektierten Stellen zeigen unterschiedliche Größen und Fluoreszenzintensitäten. Das bei Klon A1 Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten wurden, war nach der Westernblot-Analyse (siehe Abb. 3.15) zu erwarten, auch wenn das erhaltene Signal in der NaPBS-Fraktion (LP) nur sehr schwach ausgeprägt war. Somit sind die erkannten Grainin-cMyc-Fusionsproteine bei den Klon A1 Transfektanten sowohl membran-assoziiert als auch cytoplasmatisch zu finden. Im Fall der Klon B2 Transfektanten konnte eine Fluoreszenz nur bei permeabilisierten Zellen beobachtet werden. Dies widerspricht auf den ersten Blick der Westernblot-Analyse (Abb. 3.16) in welcher in der Membranfraktion (UP) ein starkes Signal zu sehen ist. Da aber nicht bekannt ist, wie und in welcher Membran das potentielle Membranoberflächenprotein EhGrainin1 bei Klon B2 verankert ist, ist es möglich, dass der cMyc-Teil des Proteins im Inneren der Zelle lokalisiert ist oder EhGrainin1 an einer Organellmembran assoziiert vorliegt.

pNCEhGrainin1-cMyc

Abb. 3.17: Immunfluoreszenz-Analyse der pNCEhGrainin1-cMyc-Transfektanten (Klon A1 + Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt. Bei den nicht-permeabilisierten (-Saponin) pNCEhGrainin1-cMyc-Transfektanten von Klon B2 konnte kein Signal detektiert werden.

In Abb. 3.18 ist die Lokalisierung des Thioredoxin1-cMyc-Fusionproteins bei mit pNCEhTred1-cMyc transfizierten Klon A1 und Klon B2 Trophozoiten zu sehen. Bei den permeabilisierten Zellen (+Saponin) ist sowohl bei Klon A1 als auch bei Klon B2 Transfektanten eine cytosolische Färbung zu erkennen. Außerdem sieht man eine klare ringförmige Färbung um einzelne vesikuläre Strukturen und den Zellkern. Bei den nicht permeabilisierten Zellen der Klon A1 Transfektanten treten wenige Signale stark konzentriert zu einzelnen Flecken verteilt über die Zellmembran auf. Bei den Klon B2 Transfektanten ist es sogar nur ein Punkt an der Zellmembran, der eine starke Fluoreszenz aufweist. Bei beiden Klonen wurden Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15 und Abb. 3.16) war nur bei den permeabilisierten Zellen ein Signal zu erwarten, da nur in der NaPBS-Fraktion der Extrakte eine spezifische Bande detektiert werden konnte. Nach der Immunfluoreszenzanalyse sind die erkannten Thioredoxin1-cMyc-Fusionsproteine bei den Klon A1 und B2 Transfektanten sowohl membran-assoziiert, als auch cytoplasmatisch zu finden.

pNCEhTred1-cMyc

Abb. 3.18: Immunfluoreszenz-Analyse der pNCEhTred1-cMyc-Transfektanten (Klon A1 + Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.19 ist die Lokalisierung des alcoholdehydrogenase-cMyc-Fusionproteins bei mit pNCEhAlcdehyd-cMyc transfizierten Klon A1 und Klon B2 Trophozoiten zu sehen. Bei den permeabilisierten Zellen konnten die erkannten Alkohol-Dehydrogenase-cMyc-Fusionsproteine bei beiden Klonen ganz klar um die Zellkerne lokalisiert werden. Bei Klon A1 sieht es außerdem so aus, als säßen sie zusätzlich direkt unter der Zellmembran und als würde der Rest der Zelle von diesen starken Signalen überstrahlt. Im Fall von Klon B2 hingegen liegt zusätzlich zur Färbung der Kernmembran eine klare cytosolische Färbung um die Vesikel und Vakuolen herum vor. Die nicht permeabilisierten Zellen (-Saponin) weisen eine eher ungewöhnliche Färbung auf. Hier sind einzelne Teile der Zellen angefärbt, welche aber nicht nur auf eine Membranfärbung hinweisen, sondern auch klar ein Signal an der Kernmembran zeigen. Dies tritt bei beiden Klonen A1 und B2 bei intakten Zellen auf. Bei Klon A1 und B2 wurden Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15 und Abb. 3.16) war dies für die Klon B2 Transfektanten zu erwarten. Die Extrakte der Klon A1 Transfektanten hingegen wiesen nur ein Signal in der Membranfraktion (Triton-X-100 UP) auf. Da aber nicht bekannt ist, mit welcher Membran das putative Membranoberflächenprotein alkoholdehydrogenase bei Klon A1 assoziiert ist, ist es möglich, dass es an einer Organellmembran liegt.

pNCEhAlcdehyd-cMyc

Abb. 3.19: Immunfluoreszenz-Analyse der pNCEhAldehyd-cMyc-Transfektanten (Klon A1 + Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.20 ist die Lokalisierung des *COP9-signalosome-complex-subunit1*-cMyc-Fusionproteins bei mit pNCEhCOP9-Sigcom-cMyc transfizierten Klon A1 und Klon B2 Trophozoiten zu sehen. Die permeabilisierten Zellen (+Saponin) zeigen eine Lokalisation direkt unter der Zellmembran, welche über die gesamte Zelle strahlt und eine klare ringförmige Färbung um den Zellkern. Bei den nicht permeabilisierten Zellen treten Signale konzentriert an einzelnen Bereichen der Zellmembran auf. Bei beiden Klonen wurden Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15 und Abb. 3.16) war dies zu erwarten. Somit sind die detektierten *COP9-signalosome-complex-subunit1*-cMyc-Fusionsproteine bei den Transfektanten sowohl mit der Membran assoziiert, als auch cytosolisch zu finden.

pNCEhCOP9-sigcom-cMyc

Abb. 3.20: Immunfluoreszenz-Analyse der pNCEhCOP9-sigcom-cMyc-Transfektanten (Klon A1 + Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Der monoklonale α -cmyc (1:200) diente als primärer Antikörper, als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.21 ist die Lokalisierung des *Clathrin-adaptor-complex*-cMyc-Fusionproteins bei mit pNCEhClathrin-ac-cMyc transfizierten Klon A1 Trophozoiten zu sehen. Für die Klon B2 Transfektante konnte in diesem Fall bereits bei den Westernblot-Analysen kein Fusionsprote-

in detektiert werden, somit wurde keine Immunfluoreszenzanalyse durchgeführt. Die permeabilisierten Zellen (+Saponin) von Klon A1 zeigen eine Lokalisation im Cytoplasma und um vesikuläre Strukturen herum. Bei den nicht permeabilisierten Zellen treten Signale konzentriert an einzelnen Bereichen der Zellmembran auf. Es wurden somit Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15) war dies zu erwarten, denn obwohl die erwartete 18 kDa Bande nur in der Membranfraktion (UP) detektiert wurde, ist in beiden Fraktionen eine spezifische 180 kDa Bande zu beobachten, welche auf einen Komplex schließen lässt. Somit sind die detektierten Clathrin-adaptor-complex-cMyc-Fusionproteine bei den Transfektanten sowohl mit der Membran assoziiert, als auch cytoplasmatisch zu finden.

pNCEhClathrin-ac-cMyc

Abb. 3.21: Immunfluoreszenz-Analyse der pNCEhClathrin-ac-cMyc-Transfektante (Klon A1). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α-cmyc monoclonal (1:200), als sekundärer α-mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.22 ist die Lokalisierung des *Rho-family-GTPase*-cMyc-Fusionproteins bei mit pNCEhRho-GTPase-cMyc transfizierten Klon A1 Trophozoiten zu sehen. Für die Klon B2 Transfektante konnte in diesem Fall bereits bei den Westernblot-Analysen kein Fusionsprotein detektiert werden, somit wurde keine Immunfluoreszenzanalyse durchgeführt. Die permeabilisierten Zellen (+Saponin) zeigen eine cytoplasmatische Lokalisation der Fusionsproteine. Bei den nicht permeabilisierten Zellen (-Saponin) treten Signale konzentriert an mehreren Bereichen der Zellmembran auf. Es wurden Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15) war dies zu erwarten. Die detektierten *Rho-family-GTPase*-cMyc-Fusionproteine sind bei Klon A1 sowohl mit der Membran assoziiert, als auch cytoplasmatisch zu finden.

pNCEhRho-GTPase-cMyc

Abb. 3.22: Immunfluoreszenz-Analyse der pNCEhRho-GTPase-cMyc-Transfektante (Klon A1). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 μ m dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.23 ist die Lokalisation des *Proteasome-alpha-subunit*-cMyc-Fusionproteins bei mit pNCEhproteasome-alphasub-cMyc transfizierten Klon A1 Trophozoiten zu sehen. Für die Klon B2 Transfektante konnte in diesem Fall bereits bei den Westernblot-Analysen kein Fusionsprotein detektiert werden und somit wurde keine Immunfluoreszenzanalyse durchgeführt. Die permeabilisierten Zellen (+Saponin) zeigen eine Lokalisation der Fusionsproteine um den Zellkern herum und in körnchenartigen Strukturen über die ganze Zelle verteilt. Bei den nicht permeabilisierten Zellen (-Saponin) erstreckt sich die Färbung fast um die ganze Zelle herum, wobei einzelne Teile stärkere Signale aufweisen als der Rest. Es wurden somit Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.15) war dies zu erwarten. Die detektierten *Proteasome-alpha-subunit*-cMyc-Fusionproteine sind bei Klon A1 sowohl mit der der Membran assoziiert, als auch cytoplasmatisch zu finden.

pNCEhproteasome-alphasub-cMyc

Abb. 3.23: Immunfluoreszenz-Analyse der pNCEhproteasome-alphasub-cMyc-Transfektante (Klon A1). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.24 ist die Lokalisierung des *malatedehydrogenase*-cMyc-Fusionproteins bei mit pNCEhmaldehyd-cMyc transfizierten Klon B2 Trophozoiten zu sehen. Für die Klon A1 Transfektante konnte in diesem Fall bereits bei den Westernblot-Analysen kein Fusionsprotein detektiert werden und somit wurde keine Immunfluoreszenzanalyse durchgeführt. Die permeabilisierten Zellen (+Saponin) zeigen eine Lokalisation der Fusionsproteine direkt unter der Zellmembran und um den Zellkern herum. Bei den nicht permeabilisierten Zellen (-Saponin) zeigen sich zwei starke Fluoreszenzcluster, die den Rest der Zelle überstrahlen und eine dünne Linie, welche die restliche Zelle umschließt. Somit wurden Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Nach der Westernblot-Analyse (siehe Abb. 3.16) war dies zu erwarten. Die detektierten *malatedehydrogenase*-cMyc-Fusionproteine sind bei Klon B2 somit sowohl mit der Zellmembran assoziiert, als auch cytoplasmatisch zu finden.

pNCEhmaldehyd-cMyc

Abb. 3.24: Immunfluoreszenz-Analyse der pNCEhmaldehyd-cMyc-Transfektante (Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α-cmyc monoclonal (1:200), als sekundärer α-mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.25 ist die Lokalisierung des *V-type-ATPase*-cMyc-Fusionproteins bei mit pNCEhVtype-ATPase-cMyc transfizierten Klon B2 Trophozoiten zu sehen. Für die Klon A1 Transfektante konnte in diesem Fall bereits bei den Westernblot-Analysen kein Fusionsprotein detektiert werden, somit wurde keine Immunfluoreszenzanalyse durchgeführt. Die permeabilisierten Zellen (+Saponin) zeigen eine Lokalisation der Fusionsproteine um vesikuläre Strukturen herum, welche über die ganze Zelle verteilt sind. Bei den nicht permeabilisierten Zellen (-Saponin) zeigt sich ein starkes Signal auf einen geringen Bereich der Zellmembran beschränkt. Es wurden somit Signale sowohl bei nicht permeabilisierten (-Saponin) als auch bei mit Saponin permeabilisierten Zellen erhalten. Dies widerspricht der Westernblot-Analyse (siehe Abb. 3.16), in welcher ausschließlich ein Signal in der Membranfraktion detektiert wurde. Grund hierfür kann die Beteiligung des *V-type-ATPase*-cMyc-Fusionsproteins an Organellmembranen innerhalb der Zelle sein. Die detektierten *V-type-ATPase*-cMyc-Fusionproteine sind bei Klon B2 in der Immunfluoreszenz-Analyse somit sowohl mit der Zellmembran assoziiert, als auch cytosolisch zu finden.

pNCEhV-type_ATPase-cMyc

Abb. 3.25: Immunfluoreszenz-Analyse der pNCEhV-type_ATPase-cMyc-Transfektante (Klon B2). Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Als Beispiel wurde je eine repräsentative Zelle abgebildet. In der ersten Spalte ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -cmyc monoclonal (1:200), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

3.4.5 Gewinnung polyklonaler Antikörper gegen ausgewählte Membranproteine

Zur weiteren Verifizierung des Membranproteoms sollten im Rahmen dieser Arbeit bei Klon A1 und Klon B2 ausgewählte, bei der Analyse des Membranoberflächen-Proteoms (Laura Biller unveröffentlicht) gefundene Proteine via Westernblot- und Immunfluoreszenzanalysen lokalisiert werden. Die Lokalisation konnte in diesem Teil der Arbeit durch eigens hergestellte polyklonale Antikörper gegen ausgewählte rekombinante putative Membranoberflächen-Proteine dargestellt werden. Für eine Übersicht der ausgewählten Proteine siehe Tab. 3.5

Tab. 3.5: Zusammenfassung der für die Gewinnung von polyklonalen Antikörpern ausgesuchten potentiellen Membranoberfächenproteine. Überblick über bearbeitete Proteine, von der Klonierung in pJC45, über die rekombinante Expression (rek. Protein), Immunisierung und Test der Antikörper (Ak) durch Westernblot-Analyse (WB) bis zur Lokalisation via Immunfluoreszenzanalyse (IFA).

Accession-	Name	kDa	kDa	In	rek.	Ak	Ak			
Nr.		rek. Protein	Protein	pJC45	Protein	WB	IFA			
Stressantwort										
XM_644108	Copine	30	30	 ✓ 	~	-	-			
		rEhCopine								
XM_648397	DnaJ family protein	17	41	~	~	~	~			
		rEhDnaJ								
AF262400	putative iron hydrogenase HydA	18	51	~	~	~	-			
		rEhHydA								
XM_651634	Thioredoxin 1	12	12	~	~	-	-			
		rEhTred1								
Cytoskelett	I	L					1			
XM_647328	hypothetisches protein	15	15	~	~	~	-			
		rEhHyp								
GTPasen, GTP Bindung										
XM_651958	guanine nucleotide-binding protein	17	35	~	~	~	~			
		rEhguani-								
	subunit beta 2-like I	ne_nucbdprot.								
Metabolismus										
XM_645280	Grainin 1	24	24	Ľ	~	~	~			
		rEhGrainin1								
Kinasen					1	1	1			
XM_647942	Kinase	28	28	~	~	~	~			
		rEhKinase								
DNA/RNA Metabolismus, Translation										
AF291721	URE3-BP sequence specific DNA binding protein	26	26	~	~	~	~			
		rEhURE3-BP								

Ribosomale Proteine									
XM_648051	40S ribosomal protein S10	15	15	~	~	-	-		
		rEh40SribS10							
XM_646950	60S ribosomal protein L3	15	46	~	~	-	-		
		rEh60SribL3							

Mit den Gensequenzen der ausgewählten Proteine wurden zunächst BLAST-Analysen durchgeführt um die Teile der Sequenz zu ermitteln, bei denen die wenigsten Übereinstimmungen mit anderen E. histolytica Gensequenzen bestehen, um spätere Kreuzreaktionen der erhaltenen polyklonalen Antikörper so gering wie möglich zu halten. Diese wurden in den pJC45-Vektor kloniert. Dies gelang für vierzehn ausgewählte Sequenzen. Die fertigen Plasmide wurden erfolgreich während der Transformation in die pAPlacI^Q-Zellen geschleust. Es folgte der Zellaufschluss wie in Abschnitt 2.20.3 beschrieben und eine Westernblot-Analyse wie in Abschnitt 2.20.7. Der verwendete Antikörper α -His richtet sich gegen den N-terminalen His-Tag, welcher bei der Synthese der rekombinanten Proteine an das Zielprotein angefügt wird. Elf rekombinante Proteine (siehe Tab. 3.5) konnten erfolgreich in den erhaltenen Proteinextrakten nachgewiesen (hier nicht gezeigt) und über eine Nickelsäule wie in Abschnitt 2.20.2 beschrieben gereinigt werden. Die Elution von rEhGrainin1, rEhHydA, rEhHyp, rEhguanine nucbdprot., rEh40SribS10, rEh60SribL3 und rEhDnaJ erfolgte unter denaturierenden Bedingungen. Die rekombinanten Proteine rEhTred1, rEhKinase, rEhURE3-BP und rEhCopine konnten im natürlich gefalteten Zustand eluiert werden. Die gereinigten Proteine zeigen in der SDS-Gelelektrophorese unter reduzierenden Bedingungen die erwarteten Molekulargewichte, zu denen man noch 3 kDa für das fusionierte His-Tag rechnen muss (siehe Abb. 3.26). Für rEhGrainin1 ergibt das ein erwartetes Molekulargewicht von 27 kDa, für rEhTred1 15kDa, für rEhHydA 21 kDa, für rEhHyp 18 kDa, für rEhguanine nucbdprot. 20 kDa, für rEhKinase 31 kDa, für rEhURE3-BP 29 kDa, für rEh40SribS10 18 kDa, für rEh60SribL3 18 kDa, für rEhDnaJ 20 kDa und für rEhCopine 33 kDa.

Abb. 3.26: Fraktionen der rekombinanten Proteine rEhGrainin1, rEhTred1, rEhHydA, rEhHyp, rEhguanine_nucbdprot., rEhKinase, rEhURE3-BP, rEh40SribS10, rEh60SribL3, rEhDnaJ und rEhCopine nach der Reinigung mittels Affinitätschromatographie. Dargestellt sind Ausschnitte von mit Coomassie gefärbten 16 %igen Tricingelen. Aufgetragen wurden je 10 µL pro Fraktion. Die Elution von rEhGrainin1, rEhHydA, rEhHyp, rEhguanine_nucbdprot., rEh40SribS10, rEh60SribL3 und rEhDnaJ erfolgte mit Puffer C + 500 mM Imidazol. Die Elution von rEhTred1, rEhKinase, rEhURE3-BP und rEhCopine erfolgte mit Elutionspuffer II + 200mM Imidazol.

Mit den erhaltenen rekombinanten Proteinen wurden anschließend wie in Abschnitt 2.21. beschrieben weibliche BALB/c-Mäuse immunisiert. Aus dem Blut der Mäuse wurden die Antiseren gewonnen, welche anschließend in Westernblot-Analysen auf ihre Spezifität geprüft wurden. Hierzu wurden die NaPBS-lösliche Proteinfraktion (LP) und die Triton-X-100lösliche Proteinfraktion (UP) von Amöbenextrakten (hergestellt wie in Abschnitt 2.20.3) eingesetzt. Gegen sieben Proteine konnten erfolgreich spezifische Antiseren generiert werden (siehe Abb. 3.27). Der polyklonale Antikörper α -rEhGrainin1 (Serum 1) zeigt wie erwartet ein spezifisches Signal bei 24 kDa in beiden Proteinfraktionen und α -rEhHydA (Serum 1) wie erwartet bei 51 kDa in beiden Proteinfraktionen. Der polyklonale Antikörper α -rEhHyp (Serum 3) zeigt ebenfalls wie erwartet ein spezifisches Signal in beiden Proteinfraktionen bei 15 kDa. Hier ist das Gel ein wenig schief gelaufen. Der polyklonale Antikörper α -rEhguaninenucbdprot. (Serum 2) zeigt wie erwartet ein Signal bei 35 kDa in beiden Proteinfraktionen, wobei es in der NaPBS-Fraktion (LP) nur sehr schwach ausgeprägt ist. Bei α -rEhKinase (Serum 2) ist in beiden Proteinfraktionen ein spezifisches Signal bei ca. 140 kDa zu sehen, bei dem es sich um ein Pentamer handeln muss, da das erwartete Signal bei 28 KDa liegen sollte. Das Signal des polyklonalen Antikörpers α rEhURE3-BP (Serum 3) liegt wie erwartet bei 26 kDa und erscheint in beiden Proteinfraktionen während es bei α -rEhDnaJ (Serum 2) nur in der Triton-X-100-Fraktion zu finden ist aber ebenfalls auf der erwarteten Höhe bei 41 kDa liegt.

Abb. 3.27: Western-Blot-Analyse zur Ermittlung der Spezifität der generierten Antikörper α -rEhGrainin1 (Serum 1), α -rEhHydA (Serum 1), α -rEhHyp (Serum 3), α rEhguanine-nucbdprot. (Serum 2), α -rEhKinase (Serum 2), α rEhURE3-BP (Serum 3) und α -rEhDnaJ (Serum 2). Es wurden je 50µg der NaPBS-löslichen (LP) bzw. Triton X 100-löslichen (UP) Fraktionen auf Tricingele aufgetragen, elektrophoretisch getrennt, per Nassblot-Technik auf Nitrocellulosemembranen transferiert und anschließend mit dem entsprechenden polyklonalen Antiserum als primärem Antikörper (Verdünnung 1:500) und dem *anti-mouse*-HRP-Ak als sekundärem Antikörper (Verdünnung 1:10000) inkubiert.

3.4.6 Lokalisationsstudien potentieller Membranoberflächenproteine in *E. histolytica*-Trophozoiten mittels Immunfluoreszenz

Um die putativen Membranoberflächenproteine bei *E. histolytica* mit Hilfe der hergestellten polyklonalen Antiköper zu lokalisieren wurden Trophozoiten von Klon A1 und Klon B2 in der Immunfluoreszenz-Mikroskopie untersucht. Der sekundäre Antikörper war mit dem Fluoreszenzfarbstoff Alexa Fluor[®] 488 assoziiert. Die Fixierung, Permeabilisierung mit Saponin und Antikörperinkubation der Trophozoiten wurde wie in Abschnitt 2.22 beschrieben durchgeführt. Die Zellen wurden in einer 10000fachen Vergrößerung untersucht. Für die Dekonvolutions-Mikroskopie wurden ausgewählte Zellen mit einer 100x Ölimmersionslinse angeschaut und mit einem Leica DM RB-Mikroskop in 0.3 µm Schritten optische Schnitte durch die Zelle ausgeführt. Die deconvolvierten Schnitte wurden mit dem *Openlab*-Programm 4.0.2

ausgewertet und bearbeitet. Diese Bilder ermöglichen eine genauere Lokalisierung der potentiellen Membranoberflächenproteine in der Zelle. Bei fünf der sieben eingesetzten Antiseren wurden Signale erhalten.

In Abb. 3.28 ist die Lokalisierung von EhGrainin bei *E. histolytica*-Trophozoiten mit dem polyklonalen Antikörper α-rEhGrainin1 (Serum 1) zu sehen. Da sich Grainin 1 und Grainin 2 in ihrer Sequenz kaum unterscheiden ist es zu erwarten, dass der polyklonale Antikörper gegen beide gerichtet ist. Bei den permeabilisierten Zellen (+Saponin) ist sowohl bei Klon A1 als auch bei Klon B2 eine cytosolische Färbung zu erkennen. Außerdem sieht man eine klare ringförmige Färbung um den Kern und um einzelne vesikuläre Strukturen. Bei den nicht permeabilisierten Zellen sind deutliche Unterschiede zwischen Klon A1 und Klon B2 zu erkennen. Während die Färbung bei Klon A1 konzentriert an wenigen Bereichen der Zellmembran zu beobachten ist, sieht man bei Klon B2 eine Lokalisation an einem Rand der Zelle, welche eine vesikelartige Struktur einzuschließen scheint und über den Rest der Zelle strahlt. Somit wurden Signale sowohl bei nicht permeabilisierten als auch bei mit Saponin permeabilisierten Zellen erhalten, was nach der Westernblot-Analyse (siehe Abb. 3.27) zu erwarten war. Die erkannten Grainin-Proteine sind sowohl membran-assoziiert, als auch cytosolisch zu finden.

α -rEhGrainin1

Abb. 3.28: Lokalisierung der durch α -rEhGrainin1 erkannten Proteine bei *E. histolytica*-Trophozoiten von Klon A1 und Klon B2. Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Für jeden Klon wurde als Beispiel eine repräsentative Zelle abgebildet. In der jeweils ersten Spalte bei Klon A1 und Klon B2 ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -rEhGrainin1 (1:100), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.29 ist die Lokalisierung von *Ehguanine nucleotide-binding proteine subunit beta 2like-* Proteinen (Ehguanine-nucbdprot) bei *E. histolytica-*Trophozoiten mit dem polyklonalen Antikörper α -rEhguanine-nucbdprot (Serum 2) zu sehen. Da sich Ehguanine-nucbdprot-Proteine in ihrer Sequenz stark ähneln, ist es zu erwarten, das der polyklonale Antikörper gegen mehrere gerichtet ist. Bei den permeabilisierten Zellen (+Saponin) von Klon B2 ist eine distinkte ringförmige Färbung um zahlreiche große Organellen in der Zelle zu erkennen. Bei den nicht permeabilisierten Zellen sind bei Klon A1 und Klon B2 leuchtende Punkte zu erkennen, welche bei beiden Klonen ungefähr die gleiche Größe und Verteilung aufweisen, bei Klon A1 aber deutlicher zu erkennen sind. Somit wurden Signale bei Klon B2 sowohl bei nicht permeabilisierten als auch bei mit Saponin permeabilisierten Zellen erhalten, bei Klon A1 ausschließlich bei nicht permeabilisierten Zellen, was nach der Westernblot-Analyse (siehe Abb. 3.27) nicht überrascht, da dort in der löslichen Proteinfraktion kaum ein Signal zu erkennen war. Somit sind die erkannten *guanine nucleotide-binding proteine subunit beta 2like*-Proteine bei Klon B2 sowohl mit der Membran assoziiert als auch cytosolisch zu finden, während sie bei Klon A1 nur Membran-assoziiert vorliegen.

α -rEhguanine-nucbdprot.

Abb. 3.29: Lokalisierung der durch α -rEhguanine-nucbdprot. detektierten Proteine bei *E. histolytica*-Trophozoiten von Klon A1 und Klon B2. Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Für jeden Klon wurde als Beispiel eine repräsentative Zelle abgebildet. In der jeweils ersten Spalte bei Klon A1 und Klon B2 ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -rEhguanine-nucbdprot. (1:100), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt. Bei Klon A1 konnte bei den permeabilisierten (+Saponin) Zellen kein Signal nachgewiesen werden.

In Abb. 3.30 ist die Lokalisierung der ausgewählten EhKinase bei *E. histolytica*-Trophozoiten mit dem polyklonalen Antikörper α -rEhKinase (Serum 2) zu sehen. Bei Klon A1 konnte kein Signal detektiert werden. Bei den permeabilisierten Zellen (+Saponin) von Klon B2 sind zahlreiche ,distinkte, kreisförmige, durchgehend gefärbte, vesikuläre Strukturen zu erkennen, die sich in der Zelle befinden. Bei den nicht permeabilisierten Zellen von Klon B2 sind ringförmige, nicht durchgehend gefärbte Strukturen zu beobachten, welche einen größeren Durchmesser als die kreisförmigen Strukturen bei den permeabilisierten Zellen aufweisen und mit der Außenmembran fusioniert scheinen. Bei Klon B2 ist ein klares Signal bei beiden Methoden zu erkennen, was nach der Westernblot-Analyse (siehe Abb. 3.27) zu erwarten war. Somit ist die erkannte Kinase bei Klon B2 sowohl mit der Membran assoziiert, als auch cytosolisch lokalisiert.

α -rEhKinase

Abb. 3.30: Lokalisierung der durch α -rEhKinase erkannten Proteine bei *E. histolytica*-Trophozoiten von Klon A1 und Klon B2. Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Für jeden Klon wurde als Beispiel eine repräsentative Zelle abgebildet. In der jeweils ersten Spalte bei Klon A1 und Klon B2 ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -rEhKinase (1:100), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt. Bei Klon A1 konnte weder bei den permeabilisierten (+Saponin) noch bei den nicht permeabilisierten Zellen (-Saponin) ein Signal nachgewiesen werden.

In Abb. 3.31 ist die Lokalisierung von *EhURE3-BP sequence specific DNA binding protein* (EhURE3-BP) bei *E. histolytica*-Trophozoiten mit dem polyklonalen Antikörper α-rEhURE3-BP (Serum 3) zu sehen. Da das EhURE3-BP-Protein in seiner Sequenz stark mehreren *EF-hand calcium binding domain containing*-Proteinen ähnelt sind Kreuzreaktionen möglich. Bei den permeabilisierten Zellen (+Saponin) beider Klone ist eine klare ringförmige Färbung um den Kern zu erkennen. Außerdem sieht man die Umrandung anderer vesikulärer Strukturen und der Zelle selbst. Zusätzlich ist eine cytosolische Färbung vorhanden. Bei den nicht permeabilisierten Zellen ist bei beiden die Färbung konzentriert auf wenige fleckartige Bereiche der Zellmembran. Somit wurden bei Klon A1 und Klon B2 sowohl bei nicht permeabilisierten als auch bei mit Saponin permeabilisierten Zellen ein Signal erhalten, was nach der Westernblot-Analyse (siehe Abb. 3.27) zu erwarten war. Die erkannten Proteine sind sowohl membran-assoziiert, als auch cytosolisch zu finden.

α-rEhURE3-BP

Abb. 3.31: Lokalisation der durch α -rEhURE3-BP erkannten Proteine bei *E. histolytica*-Trophozoiten von Klon A1 und Klon B2. Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Für jeden Klon wurde als Beispiel eine repräsentative Zelle abgebildet. In der jeweils ersten Spalte bei Klon A1 und Klon B2 ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α - rEhURE3-BP (1:100), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

In Abb. 3.32 ist die Lokalisierung des *DnaJ family*-Proteins bei *E. histolytica*-Trophozoiten mit dem polyklonalen Antikörper α -rEhDnaJ (Serum 2) zu sehen. Bei den permeabilisierten Zellen (+Saponin) beider Klone ist je eine distinkte, kreisförmige, durchgehend gefärbte, vesikuläre Struktur zu erkennen, welche bei Klon B2 einen doppelt so großen Durchmesser aufweist wie die bei Klon A1. Bei den nicht permeabilisierten Zellen unterscheiden sich die Signale von den beiden Klonen. Bei Klon A1 sind zahlreiche kleine kreisförmige, durchgehend gefärbte Strukturen an der Membranoberfläche zu beobachten während bei Klon B2 eine ringförmige, nicht durchgehend gefärbte Struktur zu erkennen ist, welche einen ähnlichen Durchmesser wie die kreisförmigen Struktur bei den permeabilisierten Zellen von Klon B2 aufweist und mit der Außenmembran fusioniert scheint. Bei beiden Klonen wurde sowohl bei nicht permeabilisierten als auch bei mit Saponin permeabilisierten Zellen ein Signal detektiert. Dies war nach der Westernblot-Analyse (siehe Abb. 3.27) nicht zu erwarten, denn dort konnte nur in der Membranfraktion ein Signal detektiert werden. Somit ist das erkannte *DnaJ family*-Protein bei beiden Klonen sowohl membran-assoziiert, als auch in Vesikeln zu finden.

α -rEhDnaJ

Abb. 3.32: Lokalisierung der durch α -rEhDnaJ erkannten Proteine bei *E. histolytica*-Trophozoiten von Klon A1 und Klon B2. Dargestellt sind die deconvolvierten Immunfluoreszenzaufnahmen von fixierten, teils permeabilisierten (+Saponin) Trophozoiten. Durch die Analyse mit der *Deconvolution*-Technik ist es möglich die Zelle optisch in mehrere 0,3 µm dicke Schnitte aufzuteilen und somit eine klarere Lokalisation zu erhalten. Für jeden Klon wurde als Beispiel eine repräsentative Zelle abgebildet. In der jeweils ersten Spalte bei Klon A1 und Klon B2 ist der FITC-Kanal gezeigt, die zweite Spalte gibt den DAPI-Kanal wieder, Spalte drei zeigt die Überlagerung beider Kanäle und Spalte vier das Durchlichtbild der aufgenommenen Zelle. Als primärer Antikörper diente α -rEhDnaJ (1:100), als sekundärer α -mouse ALEXA Fluor[®] 488 (1:400). Die Zellkerne wurden mit Hoechst (1:400) angefärbt.

4 Diskussion

4.1 Vergleichende Analysen der Zelllinien A und B

Die Infektion mit E. histolytica, dem Erreger der Amöbiasis, kann unterschiedliche Verlaufsformen annehmen. Die Auslöser dieser Unterschiede sind weitestgehend unbekannt. Es gibt zwar Moleküle wie die Cysteinpeptidasen, Lektine und Amoebapores, welche unter starkem Verdacht stehen im Rahmen der Pathogenität mitzuwirken, jedoch wurden sie sowohl bei pathogenen als auch apathogenen Isolaten nachgewiesen (Davis et al., 2007). Somit scheidet ihre Alleinverantwortlichkeit aus. Allerdings bietet sich für die Klärung welche Proteine, Gene oder andere Faktoren den entscheidenden Unterschied ausmachen, weiterhin der Vergleich von Zelllinien an, welche konstant starke Unterschiede in ihrer Pathogenität aufweisen. Verschiedene Studien haben sich bereits mit dieser Fragestellung beschäftigt (Davis et al., 2007; Ehrenkaufer et al., 2007; Davis et al., 2006; MacFarlane und Singh, 2006). Hier wurden hauptsächlich das Isolat HM-1:IMSS und das Isolat Rahman gegenüber gestellt. HM-1:IMSS stammt aus einem Amöbenkolitis-Patienten. Durch mehrfache Leberpassagen gelang es den Experimentatoren phänotypisch agressive Zellen zu generieren, welche in der Lage waren Amöbenleberabszesse (ALAs) im Tiermodell zu erzeugen. Rahman hingegen kommt von einem Patienten mit asymptomatischen Verlauf der Amöbiasis, ist apathogen und nicht dazu fähig ALAs oder Amöbenkolitis im Tiermodell zu induzieren. Der Vergleich dieser beiden Isolate zur Identifizierung von Pathogenitätsauslösern weist mehrere Defizite auf. Die beiden Isolate haben einen unterschiedlichen genetischen Hintergrund. Zusätzlich treten bei Rahman Defekte auf, hierzu gehören unter anderem eine Dysfunktion in der Phagocytose und eine stark verminderte zytopathische Aktivität (Davis et al., 2006). Die Vermutung liegt nahe das diese Effekte für die verminderte Virulenz von Rahman verantwortlich sind und ein Vergleich mit diesem Isolat somit keine Rückschlüsse auf Pathogenitätsfaktoren ermöglicht. Im Rahmen dieser Arbeit wurden daher alle Studien mit der apathogenen Zelllinie A und der pathogenen Zelllinie B durchgeführt welche beide von dem Isolat HM-1:IMSS abstammen. Für diese wurde durch die Überprüfung von tRNA-linked short tandem repeat (STR)-Sequenzen ihrer DNA von sechs verschiedenen chromosomalen Loci ihr identischer genetischer Hintergrund belegt (Biller et al., 2009). Sie grenzen sich so von anderen Isolaten ab, welche bei ähnlichen Vergleichen dieser genomischen Marker Variationen aufweisen (Ali et al., 2005; Biller et al., 2009).

4.2 Klonierung der Zelllinien A und B

Um das Vorliegen einer Mischkultur auszuschließen, wurden im Rahmen dieser Arbeit je zwölf Klone pro Zelllinie generiert. Hierbei war es besonders wichtig durch genaue Kontrollen sicherzustellen, dass wirklich Einzelzellen eingesät wurden, aus denen dann die zu untersuchenden Populationen entstanden. Anschließend wurden alle Klone unter gleichen, axenischen Kulturbedingungen von einem Experimentator gehalten um zu verhindern, dass unterschiedliche äußere Bedingungen einen Einfluss auf das Verhalten der Trophozoiten im Tiermodell haben. Ein wichtiger Indikator für die Pathogenität von Amöben ist die Fähigkeit Leberabszesse zu bilden. In Infektionsexperimenten zur Induktion von ALAs mit Meriones unguiculatus konnte Zelllinie A nur kleine Läsionen hervorrufen, während Zelllinie B große Abszesse verursachte, die bis zu 30 % der gesamten Leber betrafen. (Biller et al., 2009). Dieses Ergebnis wurde ohne vorherige Leberpassage erhalten, welche normalerweise bei anderen Isolaten regelmäßig benötigt wird um einen stabilen, pathogenen Phänotyp zu generieren und aufrecht zu halten. Der pathogene Phänotyp von Zelllinie B ist inzwischen bereits seit acht Jahren ohne jede Tierpassage stabil. Die generierten Klone der beiden Zelllinien weisen eine starke Variabilität in den von ihnen verursachten Abszessgrößen auf. Während die Klone der apathogenen Zelllinie A sich trotz der Varianz untereinander alle im apathogenen Bereich bewegen, sind bei der pathogenen Zelllinie B auch drei apathogene Klone (B1, B6 und B8) zu beobachten. Mit Hilfe von Subklonierungen konnte gezeigt werden, dass die beobachteten Phänotypen stabil sind. Alle weiterführenden Studien in dieser Arbeit wurden mit dem apathogenen Klon A1 und dem pathogenen Klon B2 oder aber mit allen Klonen durchgeführt.

4.3 Vergleichende SNP-Analysen bei E. histolytica

In der vorliegenden Arbeit wurden zum ersten Mal vergleichende genomweite SNP-Analysen zwischen den beiden syngenischen Klonen A1 und B2 durchgeführt, welche eine Korrelation zwischen auftretenden SNPs und der Pathogenität überprüfen sollten. Seit dem 2005 das gesamte Genom von *E. histolytica* zugänglich wurde (Loftus *et al.*, 2005) lag das Hauptaugenmerk auf Transkriptom-Studien in denen die Genexpression unterschiedlicher Isolate oder Zelllinien via *Microarray*-Analysen untersucht wurde (Gilchrist und Petri, 2008; Davis *et al.*, 2007; Biller *et al.*, 2010). SNPs wurden, wenn überhaupt, bisher nur im Zusammenhang mit Evolutionsstudien untersucht, um die Diversitäten zwischen unterschiedlichen Isolaten darzustellen (Shah *et al.*, 2005; Bhattacharya *et al.*, 2005; Gosh *et al.*, 2000). Es wurde gezeigt, dass die Diversität zwischen unterschiedlichen *E. histolytica* Isolaten sehr gering ist (Shah *et al.*, 2005). Somit ist es nicht verwunderlich, dass zwischen den beiden Klonen A1 und B2 eine relativ geringe Anzahl an SNPs gefunden wurde und dass die Anzahl an SNPs, bei denen zumindest einer der Klone homozygot für ein Nukleotid ist, und dort nach der Translation eine neue Aminosäure entsteht noch sehr viel geringer ausfällt. Bei der Validierung der erhaltenen SNPs fällt auf, dass die vier SNPs, welche nicht bestätigt werden konnten nur in sehr geringer Zahl sequenziert wurden. Während die anderen Nukleotide ca. 35 – 140 Mal detektiert wurden, sind diese seltener als 15 Mal sequenziert worden. Da in der Sequenzierung immer ein Klon als heterozygot für einen SNP gefunden wurde, für den der andere homozygot vorlag und bei den in dieser Arbeit durchgeführten Analysen immer nur ein Nukleotid detektiert wurde, somit sowohl die A als auch die B-Klone homozygot für das gleiche Nukleotid vorgefunden wurden, ist ein statistischer Grund für die abweichenden Ergebnisse unwahrscheinlich. Es wäre zwar wahrscheinlich, dass bei 15 Sequenzierungen nur ein Nukleotid identifiziert wird, obwohl zwei vorliegen, aber dann hätte man die Klone bei der Sequenzierung als homozygot für den SNP finden müssen und nicht bei der anschließenden Validierung. Für eine endgültige Klärung könnte eine erneute Sequenzierung der SNP-Regionen der vier abweichenden SNPs sorgen.

Das keine Korrelation zwischen den untersuchten SNPs und der Pathogenität der untersuchten Klone gefunden wurde lässt darauf schließen, dass andere Regulationsmechanismen auf Genom- oder Transkriptomebene ausschlaggebend sind, oder doch die posttranslationale Prozessierung von Proteinen den entscheidenden Unterschied ausmachen.

4.4 Analyse der Korrelation zwischen CPs und Pathogenität

Cysteinpeptidasen gelten inzwischen seit Jahrzehnten als wichtiger Virulenzfaktor bei der Amöbiasis. Bis heute wurde in diversen *in vivo* und *in vitro* Studien nach einer Beantwortung folgender Frage gesucht: Sind die Cysteinpeptidasen wirklich so ausschlaggebend für die Pathogenität von *E. histolytica*? (Gadasi and Kessler, 1983; Lushbaugh *et al.*, 1985; Keene *et al.*, 1990; Luaces and Barrett, 1988; Reed *et al.*, 1989; Schulte and Scholze, 1989; Bruchhaus *et al.*, 1996; Bruchhaus *et al.*, 2003; Tillack *et al.*, 2007; Clark *et al.*, 2007). In den meisten Studien wurde sich hierbei auf die EhCP-A1, EhCP-A2 und EhCP-A5 konzentriert. Diese wurden bereits näher charakterisiert, und es wurde davon ausgegangen, dass sie > 90 % der CP-Gesamtaktivität von *E. histolytica* ausmachen. (Nowak 2005; Hellberg *et al.*, 2001; Tillack *et al.*, 2006) In einer weiterführenden Studie wurde die Aktivität einer vierten CP charakterisiert, der CP-A7, welche zusätzlich einen großen Teil der > 90 % der Gesamtaktivität ausmacht (Irmer *et al.*, 2009). Erst seitdem bekannt ist, dass *E. histolytica* über 50 Cystein-
peptidasegene verfügt, von denen 37 zur C1 Papain-Superfamilie gehören (Loftus et al., 2005; Tillack et al., 2007), liegt das Augenmerk auf der Gesamtheit der CPs. Durch die Überexpression einzelner ausgewählter CPs in Trophozoiten des apathogenen Klon A1 sollte in der vorliegenden Arbeit deren Einfluss auf die ALA-Bildung im Mausmodell (Mus musculus) untersucht werden. Ausgewählt wurden die vier Cysteinpeptidasen ehcp-a1, ehcp-a2, ehcp-a5 und ehcp-a7 welche von Amöben in Kultur am stärksten exprimiert werden (Bruchhaus et al., 2003; Tillack et al., 2007; Irmer et al., 2009). In vorausgegangenen und parallel verlaufenden Studien konnte eine erhöhte Expression verschiedener CPs im ALA detektiert werden. So wurde in Trophozoiten aus den Lebern von Meriones unguiculatus mit Hilfe von Real-Time-PCR-Analysen eine gesteigerte Expression der ehcp-a4 und ehcp-c13 beobachtet und in Trophozoiten aus ALAs bei Mus musculus eine erhöhte Expression von ehcp-a4, ehcp-a5, ehcp-a6 und ehcp-a7 (Diplomarbeit Marien, 2008; Diplomarbeit Bär, 2011). Da die ehcp-a3, ehcp-a10 und ehcp-b9 erst zum Ende dieser Arbeit hin als stärker exprimiert identifiziert wurden, konnten diese im Rahmen dieser Arbeit nicht mehr berücksichtigt werden. Unter Kulturbedingungen sind die Gene der ehcp-a4 und ehcp-c13 nur schwach exprimiert und das Gen der ehcp-a6 moderat (Tillack et al., 2007; Irmer et al., 2009). Noch mit in die hier vorliegenden Studien aufgenommen wurde die EhCP-B8. Es wurde gezeigt, dass asymptomatische E. histolytica Träger einen spezifischen Antikörpertiter gegen die EhCP-B8 aufweisen. Dieses ist erstaunlich, da zumindest unter Kulturbedingungen die ehcp-b8 eine der am schwächsten exprimierten Peptidasegene von E. histolytica ist. Somit könnte es sein, dass der EhCP-B8 eine Rolle bei der Invasion zukommt (Dissertation Tillack, 2008)

4.4.1 Überexpression von ausgewählten Cysteinpeptidasegenen in Klon A1

Zur Analyse einzelner Proteine kann in *E. histolytica* die molekularbiologische Technik der Überexpression des entsprechenden Gens angewendet werden. Hierdurch ist es möglich die Auswirkungen der erhöhten Menge einer spezifischen Cysteinpeptidase beim apathogenen Klon A1 auf die Leberabszessbildung zu überprüfen. Um festzustellen, ob in den entsprechenden Transfektanten eine erhöhte Transkript- und Proteinmenge vorliegt, wurden *Realtime* PCR-Analysen, CP-*Assays* und Substragtgelelektrophoresen durchgeführt. Für jedes Cysteinpeptidasegen konnte eine differentiell erhöhte Transkriptmenge im Vergleich zur Kontrolle A1_pNC nachgewiesen werden. Außerdem konnte für alle Transfektanten, bis auf A1_pNC-CPA6 und A1_pNC-CPB8, eine stärkere CP-Gesamtaktivität im Vergleich zur Kontrolle gemessen werden. In der Substratgelelektrophorese (Abb. 3.6) zeigen die Mitglieder der EhCP-A Familie, welche durchweg ähnliche Molekularmassen besitzen, alle ein unterschiedliches Laufverhalten (Hellberg et al., 2000; Tillack et al., 2006; 2007; Irmer et al., 2009). Wie auch schon bei Tillack et al. 2006 gezeigt, führt die Transfektion mit dem Vektor für die Expression der *ehcp-a2* zu einem verstärkten Signal bei Aktivitätsbande bei 42 kDa. Die Überexpression der ehcp-a5 führt aus bisher noch nicht geklärten Umständen zur Steigerung der Aktivität aller erkennbaren Peptidasen. Anders als bei den dort durchgeführten Northern Blot-Analysen in denen keine erhöhte mRNA-Menge des *ehcp-a2* und *-a1* Gens in den Zelllinie B pNC-CPA5 Transfektanten festgestellt wurde, konnte in dieser Arbeit mittels Real-time PCR eine differentiell erhöhte Transkriptmenge des ehcp-al und -a2 Gens festgestellt werden. Zusätzlich wurden auch erhöhte Expressionen von ehcp-a4, ehcp-a7 und ehcp-b8 gefunden. Außerdem fällt auf, dass die Kontrolle A1 pNC im Vergleich zu den untransfizierten Klonen A1 und B2 eine stark erniedrigte CP-Aktivität aufweist. Die genauen Gründe hierfür sind unbekannt. Eine mögliche Erklärung wäre ein Einfluss der Transfektion oder des Selektionsagens G418 auf die Prozessierung der Cysteinpeptidasen von der Proform zum aktiven maturen Enzym. Zumindest findet keine Hemmung auf Transkriptionsebene statt, da die Expression der cp-Gene bei der Kontrolle A1 pNC mit der des untransfizierten Klons A1 übereinstimmt. Ein weiteres Indiz sind die verstärkten Aktivitäten der EhCP-A1, EhCP-A2, EhCP-A4 und EhCP-A7 bei den A1_CP-A5 Transfektanten. Die EhCP-A5 steht schon länger unter dem Verdacht andere CPs zu prozessieren und somit von der inaktiven in die aktive Form zu überführen (Tillack et al., 2006). Dies lässt den Schluss zu, dass wenn die EhCP-A5 in größeren Mengen vorliegt, sie andere etwaige Hemmfaktoren außer Kraft setzen oder ausgleichen kann und somit alle CPs prozessiert und aktiv werden können.

Bei A1_pNC-CPA4 wurde eine Bande bei ca. 29 kDa sichtbar, welche der Aktivität der EhCP-A4 zugeordnet wurde. Bei A1_pNC-CPA6 und A1_pNC-CPB8 sind keine Banden sichtbar was nach der Messung der CP-Gesamtaktivität zu erwarten war. Da sie auf Zy-mogrammen noch nie beschrieben wurden ist nicht bekannt auf welcher Höhe sie zu erwarten wären. Eine mögliche Erklärung ist eine trotz Überexpression immer noch zu geringe und daher nicht detektierbare Proteinmenge oder eine Hemmung der Translation. Letzteres ist aber eher unwahrscheinlich, da die Vorraussetzungen für alle Transfektanten gleich sind und eine Hemmung der Translation bei den anderen nicht zu beobachten ist.

4.4.2 Einfluss einzelner Cysteinpeptidasen auf die ALA-Bildung bei Mus musculus

Um den Einfluss der erhöhten Menge einzelner Cysteinpeptidasen auf die Pathogenität des nicht virulenten Klons A1 von *E. histolytica* zu überprüfen, wurden die CP-Transfektanten im Mausmodell getestet (siehe Abb. 3.7).

Für die EhCP-A1 und –A2 konnten die Ergebnisse vorheriger Studien im Wüstenrennmaus (*Meriones unguiculatus*)-Modell bestätigt werden, welche besagen, dass sie keine Rolle bei der ALA-Bildung spielen (Hellberg *et al.*, 2001; Tillack *et al.*, 2006). Der ALA ist jedoch nur das Symptom der extra-intestinalen Erkrankung welche von *E. histolytica* ausgelöst werden kann. Die bei der intestinalen Erkrankung ausgelöste Amöbenkolitis kann in einem anderen Tiermodell untersucht werden, bei welchem Mäusen Trophozoiten in den Blinddarm (Caecum) injiziert werden (Houpt *et al.*, 2002) Es konnte gezeigt werden, dass *ehcp-al* bei Trophozoiten isoliert aus dem Blinddarm 2fach stärker exprimiert wird als bei axenisch kultivierten Amöben (Gilchrist *et al.*, 2006). Somit lässt sich nicht ausschließen, dass die EhCP-A1 und eventuell auch die EhCP-A2 eine Rolle bei der intestinalen Amöbiasis spielen.

Auch die Expression der Gene *ehcp-a4* und *ehcp-a6* wird im Kolitis-Tiermodell hochreguliert (Gilchrist *et al.*, 2006). Für beide konnte in dieser Arbeit keine Korrelation mit der ALA-Bildung festgestellt werden. Die EhCP-A4 ist in cytoplasmatischen Vesikeln und der Kernregion lokalisiert und wird sezerniert. Durch ihre Inhibition wird die Parasitenlast und Entzündungsreaktion im Kolitismodell signifikant reduziert. Es wird angenommen, dass sie das Überleben im Wirt bei der Kolonisation und Invasion sichert (He *et al.*, 2010). Somit ist es möglich, dass sie auch in der Leber für das Überleben der Trophozoiten mitverantwortlich ist, was aber keine gleichzeitige Induktion der ALA-Bildung bedeuten muss. Zusätzlich ist sie, wie auch die EhCP-A1, in der Lage IgA, IgG und pro-IL-18 zu degradieren, was der Evasion vom Immunsystem zuträglich ist und Entzündungsreaktionen verstärken kann (He *et al.*, 2010; Melendez-Lopes *et al.*, 2007; Reed *et al.*, 1989).

Ein signifikantes Ergebnis wurde bei A1_pNC-CPB8 erhalten. Es konnte gezeigt werden, dass eine Überexpression der *ehcp-b8* den apathogenen Klon A1 dazu befähigt Amöbenleberabszesse zu bilden und er somit einen pathogenen Phänotyp aufweist. Zur Absicherung der Daten sollten in weiterführenden Studien getestet werden ob durch die Transfektion eventuell noch andere Pathogenitätsfaktoren wie die Amoebapores stärker exprimiert werden. Die EhCP-B8 verfügt über einen GPI-Anker, was eine Lokalisation an der Oberfläche wahrscheinlich macht. Die Tatsache, dass asymptomatische Patienten mit Amöbenbefall Antikörper gegen diese CP aufweisen unterstützt diese Annahme. Dies könnte zur Folge haben das bei Menschen welche Antikörper gegen die EhCP-B8 aufweisen, die zur Invasion befähigten Amöben abgefangen werden und sich dadurch keine Symptomatik wie eine Amöbenkolitis oder ein ALA entwickeln kann. Außerdem deutet es darauf hin, dass die EhCP-B8 von den Amöben bei der Besiedelung oder Invasion des Darms benötigt wird. Um hier genauere Erkenntnisse zu erlangen sind weitere Versuche und eine genaue Charakterisierung der EhCP-B8 erforderlich. Um die Beteiligung der EhCP-B8 bei der Besiedlung oder Invasion des Darms näher zu beleuchten würde sich das oben erwähnte Amöbenkolitismodell anbieten.

Werden, wie im Fall A1_pNB-CPA5, mehrere Cysteinpeptidasen in größeren Mengen synthetisiert, erhält man ebenfalls ein einen pathogenen Phänotyp für den Klon A1. Dies bestätigt Ergebnisse vorangegangener Studien (Tillack *et al.*, 2006) und erhärtet weiterhin den Verdacht, dass die EhCP-A5 einen entscheidenden Faktor bei der Pathogenität von *E. histolytica* darstellt und an der Aktivierung anderer CPs beteiligt ist. Auch die Tatsache, dass durch die Überexpression der EhCP-A5 in AmoebaporeA-defizienten Trophozoiten, welche kleinere Abzesse erzeugen als Wildtypamöben (Zhang *et al.*, 2004) ALAs normaler Größe induziert werden konnten (Dissertation Tillack, 2008) und durch eine *antisense*-Inhibierung von *ehcpa5* die ALA-Bildung unterbunden wurde untermauert diese Vermutung (Ankri *et al.*, 1999a). Da in dieser Arbeit aber auch andere Peptidasegene verstärkt exprimiert wurden, lässt sich keine abschließende Aussage darüber treffen ob die EhCP-A5 allein verantwortlich ist da sie die anderen CPs aktiviert oder ob es sich um ein Zusammenspiel mehrerer Cysteinpeptidasen handelt.

Worüber allerdings eine Aussage getroffen kann ist die Korrelation der reinen Gesamtmenge an aktiven Cysteinpeptidasen mit der Abszessgröße. Wie in Abb. 3.10 gezeigt, kann kein Zusammenhang zwischen der spezifischen CP-Aktivität der Klone und den von ihnen verursachten Abszessen gefunden werden. Besonders deutlich wird dies beim apathogenen Klon B1 welcher die höchste CP-Aktivität aller Klone aufweist und beim hoch pathogenen Klon B5, welcher starke Abszesse induziert bei dem aber nur eine niedrige CP-Aktivität zu beobachten ist. Zusammen genommen mit dem Ergebnis zur Pathogenitätssteigerung allein durch die gesteigerte Expression der *ehcp-b8*, aber auch wohl durch ein Zusammenspiel der EhCP-A5 mit anderen CPs, lässt sich die Aussage treffen dass wahrscheinlich nicht die Gesamtmenge der CPs für die ALA-Bildung entscheidend ist, sondern ein sehr viel komplexeres System aus einzelnen CPs den Unterschied macht. Besonders Interessant wäre es die Transkriptome der Klone und evtl. noch der A1_pNC-CPB8-Transfektante während der Leberabszessbildung zu untersuchen. Hierfür wurde in den letzten Monaten in der Laborgruppe von PD Dr. Hannelore Lotter eine Methode etabliert, mit der es möglich ist Trophozoiten direkt aus der Leber der Mäuse zu isolieren. Mit Hilfe dieser Technik ist es angedacht, das Transkriptom von Amöben die direkt aus der Leber isoliert wurden zu ermitteln.

4.5 Auswertung und Validierung des Membranoberflächenproteoms von *E. histolytica*

Die Identifikation von Oberflächenproteinen auf der Plasmamembran und auch mit der Plasmamembran assoziierten Proteinen ist von großer Bedeutung für das Verständnis von Wirt-Parasit-Interaktionen. Oberflächenproteine von E. histolytica wie das Gal/GalNAcLektin oder die EhCP-A5 werden mit der Adhärenz ans Mucin des Wirts und der Zerstörung von Wirtsgewebe und -zellen in Verbindung gebracht. In vorausgegangenen Studien (Dissertation Biller, 2009) wurde zum ersten Mal das Membranoberflächenproteom von E. histolytica beschrieben. Zur Identifizierung der Membranoberflächenproteine wurde die Technik der Oberflächenbiotinylierung eingesetzt. Dieses beinhaltet die Markierung der Oberflächenproteine mit Biotin, die anschließende Lyse der Zellen und die Bindung der markierten Proteine an eine Avidin-haltige Säule. Bei der Biotinylierung ist es wichtig, dass die Zellen keine Phagozytose mehr betreiben, durch die das Biotin in die Zelle gelangen und an intrazelluläre Proteine in Vesikeln binden könnte. Vor der Elution der Oberflächenproteine werden Waschschritte angewandt um unspezifisch gebundene Proteine zu entfernen. Dies ist ein sehr entscheidender Teil des Experiments. Wendet man zu starke oder aggressive Waschritte an läuft man Gefahr gebundene Oberflächenproteine von der Säule zu lösen, sind sie allerdings zu schwach behält man auch Proteine in der Probe welche an Membranproteine assoziiert vorliegen. Insgesamt wurden 765 Proteine identifiziert von denen 55 klassische Transmembrandomänen und 88 ein Signalpeptid oder Signalanker aufweisen. Circa ein Drittel der gefundenen Proteine wurden durch bioinformatische Datenbanken als nicht klassisch sezerniert eingestuft. Dies bedeutet eine ER/Golgi unabhängige Sekretion. Lösliche sekretorische Proteine enthalten typischerweise N-terminale Signalpeptide welche sie zum ER führen woraufhin sie durch vesikulären Transport über den Golgi zur Zelloberfläche gelangen. Entlassen werden sekretorische Proteine durch die Fusion der Vesikel mir der Plasmamembran. Interleukin-1β und Galektin 1 waren die ersten Proteine bei denen nachgewiesen wurde das sie aus Zellen sezerniert wurden welches kein funktionelles ER/Golgi-System aufweisen (Cooper et al., 1990; Rubartelli et al., 1990). Es wurde gezeigt das nicht-konventionelle Proteinsezernierung Energie- und Temperaturabhängig und durch diverse Faktoren stimulier- und hemmbar ist (Cleves, 1990; Hughes, 1999). Ein Beispiel ER/Golgi-unabhängige Sezernierung sind extrazelluläre Thioredoxine (Sahaf und Rosen, 2000; Rubartelli und Sitia, 1991; Rubartelli et al., 1995). Bei der Identifizierung der Membranoberflächenproteine wurden sieben Thioredoxine gefunden, von denen sechs Signalpeptide aufweisen somit über den klassischen Weg sezerniert werden, und eins für welches der nicht klassische Weg vorausgesagt wurde. Es wurden außerdem Proteine gefunden von welchen bekannt ist, dass sie an der Membran lokalisiert sind. Dazu gehören die Clathrine, welche als integrale Membranproteine von E. histolytica beschrieben sind, welche an der Pinozytose der Zelle beteiligt sind (de Chassey, 2001). Detektiert wurde ebenfalls die EhCP-A5 für die eine Lokalisation an der Zelloberfäche nachgewiesen wurde (Jakobs et al., 1995). Und auch die nachgewiesenen Copine gelten als membranbindende Proteine und werden bei Dictvostelium in der Plasmamembran und intrazellulären Vakuolen lokalisiert (Damer et al., 2005). Zusätzlich wurden relativ viele ribosomale bzw. mit der ER-Membran assoziierte Proteine gefunden. Ribosomen weisen gewöhnlich eine cytoplasmatische Lokalisation auf. Allerdings konnte in mehreren Studien gezeigt werden, dass die ER-Membran während der Phagozytose mit der Zellmembran fusionieren und einen Teil der Phagosomenmembran liefern kann. Nach der Phagocytose findet ein recycling und somit Wiederverwerten von Teilen der Phagosomenmembran in der Plasmamembran statt. Somit ist es möglich, dass ribosomale Proteine, während dieses Vorgangs mit der ER-Membran verbunden bleiben, und dadurch nachgewiesen werden (Okada et al., 2005; Desjardins, 2003; Gagnon et al., 2002). Es wurden aber auch Proteine gefunden denen keine Membranassoziation zugeordnet werden kann. Dazu gehören die EhCP-A1 und -A2 und eine alcoholdehydrogenase. Außerdem wurde in der Kategorie Metabolismus für 36 der 88 dort eingeordneten Proteine eine cytoplasmatische Lokalisation vorausgesagt. Die Funktion der meisten gefundenen Proteine ist unbekannt, und zusätzlich kann nicht immer ohne weiteres von der Funktion und dem Aufbau eines Proteins auf seine Lokalisation geschlossen werden. Es kann zusätzlich nicht ausgeschlossen werden, dass neben der Membranoberfläche auch Organellen biotinyliert wurden, oder durch nicht ausreichendes waschen mit Membranproteinen assoziierte Proteine mit analysiert wurden. Zu überprüfen wäre auch, ob das Biotin über die Plasmamembran in die Zelle gelangen kann und so cytoplasmatische Proteine markiert werden könnten.

Um die Biotinylierung intrazellulärer Organellen auszuschließen und die erhaltenen Daten zu validieren wurden Proteine ausgewählt bei denen keine Oberflächenlokalisation erwartet wurde. Zum Nachweis der Proteine wurden zwei unterschiedliche Ansätze gewählt. Auf der

einen Seite die Überexpression von Genen, welche für cMyc-Fusionsproteine kodieren, die mit Hilfe eines α -cMyc-Antikörpers detektiert und lokalisiert werden sollten. Auf der anderen Seite die Herstellung polyklonaler Antikörper gegen rekombinante Proteine mit welchen im Anschluss die Detektion und Lokalisation in Klon A1 und Klon B2 passieren sollte.

4.5.1 Lokalisation ausgewählter putativer Membranoberflächenproteine als cMyc-Fusionsproteine

Nach der Transfektion der Überexpressionskonstrukte in die Klone A1 und B2 konnten in der Westernblot-Analyse Signale für insgesamt sieben Fusionsproteine detektiert werden. In den Westernblot-Analysen der Klon A1 Transfektanten trat in den meisten Membranfraktionen eine unspezifische Bande auf der Höhe von 15 kDa auf. Bei Klon B2 konnte diese nicht beobachtet werden. Eine Kreuzreaktion des monoklonalen cMyc-Antikörpers mit einem anderen E. histolytica Protein ist unwahrscheinlich da BLAST-Analysen mit der cMyc-Sequenz nur drei Proteine ermittelt haben welche diese Sequenz beinhalten und alle drei waren größer als 15 kDa. Die Tatsache, dass die unspezifische Bande nicht in den Extrakten aller Klon A1 Transfektanten detektiert wurde spricht ebenfalls gegen eine Kreuzreaktion. Untransfizierte Zellen von Klon A1 und Klon B2, sowohl permeabilisiert als auch nicht permeabilisiert, weisen nach der Inkubation mit dem cMyc-Antikörper und anschließender Reaktion mit antimouse ALEXA Fluor 488 keine Fluoreszenz auf. Somit bindet der monoklonale cMyc-Antikörper nicht unspezifisch an oder in der Zelle. Daher konnte die Herkunft der unspezifischen Bande nicht geklärt werden. Das Fusionsprotein Grainin1-cMyc konnte in der Westernblot-Analyse sowohl in Klon A1 als auch in Klon B2 detektiert werden. Wie bereits in einer früheren 2D-Dige-Analyse festgestellt wurde es bei Klon A1 in größeren Mengen in der löslichen Proteinfraktion detektiert und bei Klon B2 in der Membranfraktion (Biller et al., 2009).

Für alle Fusionsproteine konnte sowohl eine intrazelluläre als auch Oberflächenlokalisation nachgewiesen werden und somit die von Frau Dr. Laura Biller (2009) in den vorausgegangenen Studien erhaltenen Ergebnisse für die hier getesteten Proteine bestätigt werden. Im Fall der permeabilisierten Zellen konnte immer eine cytosolische Lokalisation zusammen mit klaren Signalen um Vesikel und den Zellkern beobachtet werden. Dies lässt für alle Fusionsproteine auf eine Assoziation mit Organellmembranen schließen. Da bei allen Fusionsproteinen Signale an der Oberfläche detektiert werden konnten ist es unwahrscheinlich, das sie über durch die Phagozytose aufgenommenes Biotin markiert wurden. Bei den Oberflächenfärbungen traten teilweise ungewöhnliche Phänotypen auf. Im Fall der *alcoholdehydrogenase*-cMyc zieht die Färbung von verschiedenen Stellen oder von einer Stelle aus in die Zelle hinein und man erkennt Färbungen um Vakuolen und den Kern. Es kann ausgeschlossen werden, dass es sich um kaputte Zellen handelt, da in diesem Fall die ganze Zelle angefärbt wäre. Außerdem wurde dieser Phänotyp dafür zu zahlreich beobachtet. Es liegt die Vermutung nah, dass das detektierte Fusionsprotein an der Oberfläche und in Vakuolen lokalisiert ist welche mit der Membran verschmelzen. Auch ist eine Lokalisation in der ER-Membran, welche besonders in der Kernregion in die Außenmembran integriert ist möglich. Auch bei Pseudomonas aeruginosa wurde eine alcoholdehydrogenase als membrangebundenes Enzym nachgewiesen (Tassin et al., 1973). Bei B2 pNCEhmaldehyd-cMyc wirkt es bei den nicht permeabilisierten Zellen sogar so als wäre die ganze Zelle angefärbt. Auch dieser Phänotyp konnte so oft beobachtet werden das nicht intakte Zellen als Grund ausgeschlossen wurden. Auch hier wieder eine Färbung um den Kern zu erkennen, was wieder auf eine Fusion von intrazellulären Membranen mit der Außenmembran hinweist. In der Literatur wird die malatedehydrogenase meist als cytosolisches oder im Mitochondrium lokalisiertes Protein beschrieben. Im Mitochondrium ist es beteiligt an einem Malat/Aspartat-Transport durch die Mitochondrienmembran (Minarik et al., 2002). In Schweinenierenzellen (LLC-PK₁) konnte eine malatedehydrogenase mit der Plasmamembran assoziiert nachgewiesen werden (Hanss et al., 2008). Bei Thioredoxin tritt neben der cytosolischen Färbung eine fleckenartige Färbung an wenigen Stellen der Plasmamembran auf. Bei E. coli-Zellen wurde Thioredoxin durch immunologische Detektion ebenfalls im Cytoplasma und mit der inneren Membran assoziiert gefunden (Bayer et al., 1987). In menschlichen Zellen bindet sezerniertes Thioredoxin an die äußere Zellmembran wo es den Zell-Zell-Kontakt reguliert und an der Redoxregulation des extrazellulären Raumes beteiligt ist (Sahaf et al., 1997; Stathakis et al., 1997). Auch das clathrinadaptor-complex-cMyc Fusionsprotein wurde nur in wenigen kleinen Bereichen an der Oberfläche lokalisiert und intrazellulär, abgesehen von der cytosolischen Färbung, klar um Vesikel herum und den Zellkern. Clathrin findet man hauptsächlich als Mantel um Vesikel. Bei Dictyostelium findet man es auch in über die Zelle verteilten punktartigen Loci. Diese Strukturen sind sehr beweglich und befähigt zu schnellem Transport durch die Zelle (Damer und O'Halloran, 2000). Rho-GTPasen werden als cytosolische Proteine synthetisiert, können aber durch posttranslationale Modifikationen mit der Membran assoziiert sein (Clarke, 1992). Vtype ATPases sind wichtige Enzyme welche mit vielen Membranen und Organellen assoziiert sind z.B. auch bei Saccharomyces cerevisiae, wo eine Verbindung zwischen den Vtype ATPases und der Sezernierung festgestellt wurde (Nelson et al., 1999). All diese Ergebnisse lassen darauf schließen, dass es sich bei den getesteten Proteinen um membranassoziierte Proteine handelt, welche unterschiedliche Funktionen in der Zelle und an der Zellmembran abdecken. Gerade bei Kandidaten die in anderen Zellsystemen einen Zell-Zell Kontakt vermitteln können, wie das Thioredoxin, sollten in weiterführenden Studien als potentielle Pathogenitätsfaktoren mit einbezogen werden.

4.5.2 Lokalisation ausgewählter potentieller Membranoberflächenproteine mit Hilfe polyklonaler Antikörper

Bei allen getesteten Proteinen konnte ein spezifisches Signal in der Membranfraktion beobachtet werden, was eine Membranassoziation bestätigt. Im Fall des α -rEhKinase liegt das erhaltene Signal bei 140 kDa, erwartet wurde es bei 28 kDa. Dies lässt auf die Detektion eines Pentamers, also eines Proteinkomplexes schließen, was unter reduzierenden Bedingungen eigentlich nicht möglich sein sollte. Gründe hierfür können das nicht ausreichende Erhitzen der Probe oder die Verwendung von oxidiertem und somit nicht mehr funktionalem DTT sein. In sehr seltenen Fällen können auch SDS-resistente Komplexe auftreten.

Da über die hier untersuchten Proteine wenig bis gar nichts über ihre Funktion und Lokalisation sowohl bei E. histolytica als auch bei anderen Organismen bekannt ist können in diesem Zusammenhang keine Vergleiche gezogen werden. Bei allen in der Immunfluoreszenz eigesetzten Antikörpern bei denen Signale detektiert wurden lassen die angefärbten Strukturen auf eine Membranassoziation schließen. Es wurden sehr interessante Färbungen beobachtet. Im Fall von α-rEhKinase konnte bei Klon A1 kein Signal detektiert werden während bei Klon B2 in der Zelle Vesikel gefärbt sind die, wie es scheint mit der Membran fusionieren, da bei nicht permeabilisierten Zellen diverse kreisförmige Färbungen an der Oberfläche zu beobachten sind. Dies könnte eine Erklärung sein, warum auch Proteine biotinyliert werden die nicht mit der Außenmembran assoziiert sind sondern in Vesikeln transportiert werden. E. histolytica weist einen so enormen Membranumsatz auf das somit ständig neue Vesikel mit der Membran fusionieren und von der Außenmembran gebildet werden. Ein weiteres Beispiel hierfür sind die durch α-rEhDnaJ erhaltenen Signale. Klon A1 und Klon B2 weisen hier intrazellulär den gleichen Phänotyp auf. Es ist ein angefärbtes Vesikel zu erkennen. An der Oberfläche sind allerdings unterschiedliche Signale zu sehen. Hier sind bei Klon A1 viele kleine Punktlokalisationen zu erkennen während bei Klon B2 wieder eine klare Fusion eines Vesikels mit der Außenmembran zu beobachten ist. Festzuhalten ist das auch in diesem Ansatz eine Membranassoziation der untersuchten Proteine belegt worden ist. Für zukünftige Studien wäre es interessant herauszufinden was genau von diesen Vesikel, welche mit der Plasmamembran fusionieren, sezerniert wird. Ein Vergleich zwischen dem apathogenen Klon A1 106

und dem pathogenen Klon B2 auf Sekretomebene kann zur Aufklärung der Gründe für die unterschiede in der Virulenz beitragen.

5 Literaturverzeichnis

Adl, S.M., Simpson, A. et al. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protests. *J Eukaryot. Microbiol.* **52**(5): 399-451

Ali, I. K., Zaki, M. und Clark, C. G. (2005) Use of PCR amplification of tRNA gene-linked short tandem repeats for genotyping Entamoeba histolytica *J Clin Microbiol.***43**:5842-5847.

Ankri, S., T. Stolarsky, *et al.* (1998). Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis. *Mol Microbiol* **28**(4): 777-785.

Ankri, S., Bracha, R., Padilla-Vaca, F. und Mirelmann, D. (1999a) Applying antisense technology to the study of Entamoeba histolytica pathogenesis: response. *Trends Microbiol.* **7**: 473-474.

Ankri, S., Stolarsky, T., Bracha, R., Padilla-Vaca, F., and Mirelman, D. (1999b). Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. *Infect.Immun.* **67**, 421-422.

Bär, A. (2011) Expressionsprofil der Cysteinpeptidasen von Entamoeba histolytica (SCHAUDINN 1903) während der Lerberabszessbildung im experimentellen Mausmodell.

Bayer, M.E., Bayer, M.H., Lunn, C.A., Pigiet, V. (1987) Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli. *J Bac.* **169**(6): 2659-2666

Bhattacharya, D., Haque, R. und Singh, U. (2005) Coding and noncoding genomic regions of Entamoeba histolytica have significantly different rates of sequence polymorphisms: implications for epidemiological studies. *J Clin. Microbiol.* **43**(9): 4815-4819

Bracha, R. and D. Mirelman (1984). Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole. *J Exp Med* **160**(2): 353-368.

Bracha, R., Nuchamowitz, Y., Leippe, M. und Mirelmann, D. (1999) Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence. *Mol Microbiol.* **34**: 463-472.

Bracha, R., Y. Nuchamowitz, et al. (2003). Transcriptional silencing of an amoebapore gene in Entamoeba histolytica: molecular analysis and effect on pathogenicity. *Eukaryot Cell* **2**(2): 295-305.

Biller (2009) Identifizierung der Pathogenitätsfaktoren von Entamoeba histolytica (SCHAUDINN) mittels vergleichender Transkriptom-Analysen, Proteom-Analysen und Phänotypisierung.

Biller, L., Schmidt, H., Krause, E., Gelhaus, C., Matthiesen, J., Handal, G., Lotter, H., Janssen, O., Tannich, E. und Bruchhaus, I. (2009) Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. *Proteomics* **9**: 4107-4120

Biller, L., Davis, P.H., Tillack, M., Matthiese, J., Lotter, H., Stanley, S.L., Jr., Tannich, E., Bruchhaus, I. (2010) Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. *BMC Genomics.* **11**:63

Blessmann, J., Ali, I.K., Nu, P.A., Dinh, B.T., Viet, T.Q., Van, A.L., et al. (2003) Longitudinal study of intestinal Entamoeba histolytica infections in asymptomatic adult carriers. *J Clin Microbiol.***41**:4745-4750

Bredeston, L.M., Caffaro, C.E., Samuelson, J. und Hirschberg, C.B. (2005) Golgi and endoplasmic reticulum functions take place in different subcellular compartments of Entamoeba histolytica. *J Biol Chem.* **280**:32168-32176.

Bruchhaus, I., Jacobs, T., Denat, M. und Tannich, E. (1996) Pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica: molecular cloning, recombinant expression and inhibition by pyrophosphate analogues. *Biochem. J* **316**: 57-63

Bruchhaus, I., Loftus, B.J., Hall, N. und Tannich, E. (2003) The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. *Eukaryot Cell.* **2**: 501-509.

Beck, D.L., Boettner, D.R., Dargulev, B. Ready, K., Nozaki, T. und Petrie, W.A., Jr. (2005). Identification and geneexpression analyses of a large family of transmembrane kinases related Gal/GalNAc lectin in Entamoeba histolytica. *Eukaryot Cell.* **4**: 722-732.

Clark, C. G., U. C. Alsmark *et al.* (2007). Structure and content of the Entamoeba histolytica genome. *Adv Parasitol* **65**: 51-190.

Clarke, S. (1992) Protein isoprenylation and methylation at carboxylterminal cystein residues. *Annu. Rev. Biochem.* **61**: 355-386

Diamond, L.S. und Clark, C.G. (1993) A redescription of Entamoeba histolytica (SCHAUDINN 1903) separating ist from Entamoeba dispar. Brumpt, 1925 *J Euk. Microbiol*.
40(3): 340-344

Cleves, A.E. (1997) Protein transports: the nonclassical ins and outs. Curr Biol. 7R318-320

Clos, J. and S. Brandau (1994). pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli." *Protein Expr Purif* **5**: 133-137.

Cooper, D.N. und Barondes, S.H. (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. *J Cell Biol* **110**: 1681-1691

Davis, P.H., Zhang, X., Guo, J., Townsend, R.R. und Stanley, S.L., Jr. (2006) Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxyredoxin as an important component of amoebic virulence. *Mol Microbiol.* **61**: 1523-1532.

Davis, P.H., Schulze, J. und Stanley, S.L., Jr. (2007) Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteineproteases, lectin light chains, and calmodulin. *Mol Biochem Parasitol.* **151**: 118-128.

Desjardins, M. (2003) ER-mediated phagocytosis: a new membrane for new functions. *Nat Rev Immunol.* **3**: 280-291.

Damer, C.K., Bayeva, M., Hahn, E.S., Rivera, J. und Socec, C.I. (2005) Copine A, a calciumdependent membrane-binding protein, transiently localizes to the plame membrane and intracellular vacuoles in Dictyostelium. *BMC Cell Biology* **6**: 46

Damer, C.K. und O'Halloran, T.J. (2000) Spatially regulated recruitment of Clathrin to the plasme membrane during capping and cell translocation. *Mol Biol Cell* **11**: 2151-2159

Diamond, L. S., D. R. Harlow, et al. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. *Trans R Soc Trop Med Hyg* **72**: 431-432.

De Chassey, B., Dubois, A., Lefkir, Y., Letournour, F. (2001) Identification of clathrinadaptor medium chains in Dictyostelium discoideum: diferential expression during development. *Gene*. **262**:115-122. **Ehrenkaufer**, G.M., Haque, R., Hackney, J.A., Eichinger, D.J. und Singh, U. (2007) Identification of developmentally regulated genes in Entamoeba histolytica: insights into mechanisms of stage conversion in a Protozoan parasite. *Cell Microbiol.* **9**: 1426-1444.

Gadasi, H. and E. Kessler (1983). Correlation of virulence and collagenolytic activity in Entamoeba histolytica. *Infect Immun* **39**: 528-531.

Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P.H., Steele-Mortimer, O., *et al* (2002) Endoplasmic retikulum-mediated phagocytosis is a mechanism of entry into macro-phages. *Cell*. **110**:119-131.

Gilchrist, C.A., Houpt, E., Trapaidze, N., Fei, Z., Crasta, O., Asgharpour, A., *et al* (2006) Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. *Mol Biochem Parasitol.* **147**: 163-176.

Gilchrist, C.A., Petri, W.A., Jr. (2008) Using differential gene expression to study Entamoeba histolytica pathogenesis. *Transient Parasitol.* **25** (3): 124-131

Ghosh, S., Frisardi, M., Ramirez-Avila, L. et al (2000) Molecular epidemiology of Entamoeba spp.: evidence of a bottleneck (Demographic sweep) and transcontinental spread of diploid parasites. *J Clin Microbiol.* **38**: 3815-3821

Goll, D. E., Thompson, V. F., Li, H., Wei, W., and Cong, J. (2003) The calpain system. *Physiol Rev.* 83: 731-801.

Hamann, L., R. Nickel, *et al.* (1995). Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica. *Proc Natl Acad Sci USA* **92**: 8975-8979.

Houpt, E.R., Glemmbocki, D.J., Obrig, D.G. *et al* (2002) The mouse model of amoebic colitis reveals mouse strain susceptibility to infection and exacerbation of disease by CD4+ T cells. J Immunol. **169**(8): 4496-4503

Hanss, B., Leal-Pinto, E., Teixeira, A., Tran, B. et al (2008) Localisation of the nucleic acid channel regulatory subunit cytosolic malate dehydrogenase. *J Mem. Biol.* **226**: 1-8

He, C., Nora, G.B., Schneider, E.L., Kerr, I.D., Hansell, E.E., Hirata, K., Gonzalez, D. *et al.* (2010) A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amoebiasis and a therapeutic target. *J Biol Chem.* **285** (24): 18516-18527.

Hellberg, A., Leippe, M. und Bruchhaus, I. (2000) Two major 'higher molecular mass proteinases' of Entamoeba histolytica are identified as cysteine proteinases 1 and 2. *Mol Biochem Parasitol.* **105**: 305-309.

Hellberg, A., Nickel, R., Lotter, H., Tannich, E., and Bruchhaus, I. (2001). Overexpression of cysteine proteinase 2 in *Entamoeba histolytica* or *Entamoeba dispar* increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. *Cell Microbiol.* **3**, 13-20.

Horstmann, R.D., Leippe, M. und Tannich, E. (1992) Host tissue destruction by Entamoeba histolytica: molecules mediating adhesion, cytolysis, and proteolysis. *Mem Inst Oswaldo Cruz.* 87 Suppl 5: 57-60.

Hughes, R.C. (1999) secretion of the galectin family of mammalian carbohydrate-binding proteins. *Biochem Biophys Acta*. **1473**: 172-185

Irmer, H., M. Tillack, *et al.* (2009). Entamoeba histolytica cysteine peptidases are involved in rosetting and digestion of erythrocytes but not in phagocytosis. *Mol Microbiol.* **72**: 658-667

Jacobs, T. und Leippe, M. (1995) Purification and molecular cloning of a major antibacterial protein of the protozoan parasite Entamoeba histolytica with lysozyme-like properties. *Eur J Biochem.* **231**: 831-838.

Jacobs, T., I. Bruchhaus, et al. (1998). Isolation and molecular characterization of a surfacebound proteinase of Entamoeba histolytica. *Mol Microbiol* **27**(2): 269-76.

Joyce, M.P. and Ravdin, J.I. (1988) Antigenes of Entamoeba histolytica recognized by immune sera from liver abscess patients. *M J Trop Med Hyg.* **38**: 74-80.

Karas, M. und Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. *Anal Chem.* **60**: 2299-2301.

Keene, W. E., M. E. Hidalgo et al. (1990). Entamoeba histolytica: correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase. *Exp Parasitol* **71**: 199-206.

Keene, W. E., Petitt, M. G., Allen, S., and McKerrow, J. H. (1986). The major neutral proteinase of *Entamoeba histolytica*. *J.Exp.Med.* **163**, 536-549. **Knobloch**, J. and Mannweiler, E. (1983). Development and persistence of antibodies to Entamoeba histolytica in patients with amebic liver abscess. Analysis of 216 cases. *Am.J.Trop.Med.Hyg.* **32**, 727-732.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227: 680-685.

Leippe, M., J. Andra et al. (1994). Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. *Mol Microbiol* **14**: 895-904.

Leippe, M., H. J. Sievertsen, et al. (1995). Spontaneous release of cysteine proteinases but not of pore-forming peptides by viable Entamoeba histolytica. *Parasitology* **111**: 569-574.

Loftus, B., I. Anderson et al. (2005). The genome of the protist parasite Entamoeba histolytica. *Nature* **433**: 865-868.

Lorenzi, H.A., Puiu, D., Miller, J.R., Binkac, L.M., Amedeo, P., Hall, N., Caler, E.V. (2010) New assembla, reanotation and analysis of the Entamoeba histolytica genome reveal new genomic features and proteine content information. *PLuS Negl. Trop. Dis* **4**,e716.

Luaces, A. L. and A. J. Barrett (1988). Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. *Biochem J* **250**: 903-909.

Lushbaugh, W. B., A. F. Hofbauer, et al. (1985). "Entamoeba histolytica: purification of cathepsin B." *Exp Parasitol* **59**: 328-36.

MacFarlane, R.C. und Singh, U. (2006) Identification of differencially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amoebic pathogenesis. *Infect Immun.* **74**: 340-351.

Mai, Z., Ghosh, S., Frisardi, M., Rosenthal, B., Rogers, R., and Samuelson, J. (1999). Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite *Entamoeba histolytica*. *Mol.Cell Biol*. **19**, 2198-2205.

Marien, D (2008) Expression der Peptidasen und weiterer putativer Pathogenitätsfaktoren von Entamoeba histolytica (SCHAUDINN 1903) während der Leberabszessbildung von Meriones unguiculatus

Marino, G., Uria, J.A., Puente, X.S., Quesada, V., Bordallo, J. and Lopez-Otin, C. (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. *J Biol Chem.* **278**: 3671-3678.

Marino, G. and Lopez-Otin, C. (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. *Cell Mol Life Sci.* **61**: 1439-1454.

Marshall, M. M., D. Naumovitz, et al. (1997). Waterborne protozoan pathogens. *Clin Microbiol Rev* **10**: 67-85.

Matthiesen (2009) Charakterisierung putativer EhAIG-Proteine und Aufbau eines Protein-Markierungssystems bei Entamoeba histolytica (SCHAUDINN 1903)

Miguel, N., Lustig, G., Twu, O., Johnson, P.T. et al (2010) Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. *Mol. Cell. Prot.***9.7**: 1554-1567

Minaric, P., Tomakova, N., Kollarovaz, M., und Antalik, M. (2002) Malate dehydrogenases structure and function. *Gen. Physiol. Biophys.* **21**: 257-265

Nelson, N., Perzov, N., Cohen, A., Hagai, K., Padler, V. und Nelson, H. (2000) The cellular biology of proton-motif force generation by V-ATPases. *J Exp. Biol.* **203**: 89-95

Nowak, N. (2005) Einschluss der Cysteinpeptidasen auf die Pathogenität von Entamoeba histolytica (SCHAUDINN; 1903)

Okada, M., Hoston, C.D., Mann, B.J., Petri, W.A., Jr., Kita, K. und Nozaki, T. (2005) Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. *Eukaryot Cell.* **4**: 827-831.

Olivas-Garcia, A., Tello, E., Nequiz-Avendano, M., Gonzalez-Canto, A., Lopez-Vancell, R., Garcia de Leon, M.C., *et al* (2004) Cysteine proteinase activity is required for survival of the parasite in experimental acute amoebic liver abscesses in hamsters. *Parasitology*. **129**: 19-25.

Petri, W., Jr. (1996). Amebiasis and the Entamoeba histolytica Gal/GalNAc lectin: from lab bench to bedside. *J Investig Med* **44**: 24-36.

Que, X., Brinin, L.S., Perkins, P., Herdman, S., Hirata, K., Torian, B.E., *et al* (2002) Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. *Mol Biochem Parasitol.* **119**: 23-32.

Reed, S.L., Keene, W.E., McKerrow, J.H. ang Gigli, I. (1989) Cleavage of C3 by a neutral cysteine proteinase of Entamoeba histolytica. *J. Immunol.* **143**: 189-195

Robatelli, A., Cozzolino, F., Talio, M. und Sitia, R. (1990) A novel secretory pathway for interleukin-1 β , a protein lacking a signal sequence. *EM BO J* **9**: 1503-1510

Robatelli, A. und Sitia, R. (1991) Interleukin 1β and thioredoxin are secreted through a novel pathway of secretion. *Biochem Soc Trans.* **19**: 255-259

Robatelli, A., Bonifazi, N. und Sitia, R. (1995) High rates of thioredoxin secretion correlate with growth arrest in hepatoma cells. *Cancer Res.* **55**: 675-680

Rigothier, M. C., H. Khun, et al. (2002). Fate of Entamoeba histolytica during establishment of amoebic liver abscess analyzed by quantitative radioimaging and histology. *Infect Immun* **70**: 3208-3215.

Sambrook, J. und Gething, M.J. (1989) Proteine structure. Chaperones, paperones. *Nature*.342: 224.225.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual.

Sahaf, B., Soderberg, A., Spyrou, G. *et al* (1997) Thioredoxin expression and localisation in human cell lines: detection of full-length and truncatet species. *Exp. Cell. Res.* 236: 181-192

Scholze, H. and E. Tannich (1994). Cysteine endopeptidases of Entamoeba histolytica. *Methods Enzymol* **244**: 512-523.

Schulte, W. and Scholze, H. (1989). Action of the major protease from *Entamoeba histolytica* on proteins of the extracellular matrix. *J.Protozool.* **36**, 538-543.

Shah, P.H., MacFarlane, R.C., Bhattacharya, D., Matese, J.C., Demeter, J., Stoup, S.E. und Singh, U. (2005) Comparative genomic hybridisations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. *Eukaryot. Cell* **4**(3): 404-515

Sonnhammer, E.L.L., von Heijne, G., Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. *Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology*, 175-182.

Sprang, S.R. (1997). G protein mechanisms: Insights from structural analysis. *Annu Rev bio-chem* **66**: 639-678.

Stanley, S. L., Jr. (2003). Amoebiasis. Lancet 361: 1025-1034.

Stanley, S.L., Jr., Zhang, T., Rubin, D. und Li, E. (1995) Role of the Entamoeba histolytica cysteine proteinase in amoebic liver abscess formation in severe combined immunodeficient mice. *Infect Immun.* **63**: 1587-1590.

Stanley, S. L., Jr., H. Huizenga et al. (1992). Isolation and partial characterization of a surface glycoconjugate of Entamoeba histolytica. *Mol Biochem Parasitol* **50**: 127-138.

Stathakis, P., Fitzgerald, M., Matthias, L.J., Chesterman, C.N. und Hugg, B.J. (1997) Generation of angiostatin by reduction and proteolysis of plasmin. *J Bio Chem.* **272**(33): 20641-20645

Strachan, W. D., Chiodini, P. L., Spice, W. M., Moody, A. H., and Ackers, J. P. (1988). Immunological differentiation of pathogenic and non-pathogenic isolates of Entamoeba histolytica. *Lancet* **1**, 561-563..

Tannich, E., Horstmann, R. D., Knobloch, J., and Arnold, H. H. (1989). Genomic DNA differences between pathogenic and nonpathogenic Entamoeba histolytica. *Proc.Natl.Acad.Sci.USA* **86**: 5118-5122.

Tassin, J._P., Celier, C. et al (1973) Purification and properties of a membrane-bound alcohol dehydrogenase involved in oxidation of long-chain hydrocarbons by Pseudomonas aeroginosa. *BBA* **315**(2): 220-232

Tillack, M., N. Nowak, et al. (2006). Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica. *Mol Biochem Parasitol* **149**: 58-64.

Tillack (2009) Identifizierung, Genexpressionsanalyse und funktionelle Charakterisierung von Peptidasen von Entamoeba histolytica (SCHAUDINN 1903)

Tillack, M., Biller, L., Irmer, H., Freitas, M., Gomes, M.A., Tannich, E., Bruchhaus, I. (2007) The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes. *BMC Genomics*. **8**: 170.

Tovar, J., Fischer, A. und Clark, C.G. (1999) The mitosome, a novel organell related to mitochondria in the amitochondrial parasites Entamoeba histolytica. *Mol Microbiol.* **32**: 1013-1021. Van Lunzen, J., Tannich, E., Burchard, G. D. (1996) Amöbenruhr und Amöbenleberabszess. *Dt Ärzteblatt.* **93**: 3410-3416.

Zhang, Z., Wang, L., Seydel, K.B., Li, E., Ankri, S., Mirelmann, D. und Stanley, S.L., Jr. (2000) Entamoeba histolytica cysteine proteinases with interleukin -1 β converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. *Mol Microbiol*. **37**: 542-548.

·

6 Anhang

Accession- Nr.	Sequenz $(5' \rightarrow 3')$	sense (s)/ anti- sense (as)	Eingefügte Restriktions- schnittstellen
XM_644108	GGCATATGGGTCTTTCTTTAAGTTCTG	S	NdeI
XM_644108	GGGGATCCTTAATTTAAATATCCTAATTTCT	as	BamHI
XM_648397	GGCATATGAGAAGTAATGGAAATGAAGG	S	NdeI
XM_648397	GGGGATCCTTACATCTTATAACCATCATTAG	as	BamHI
AF262400	GGCATATGATTTTTGGAAGGACTGGAGG	S	NdeI
AF262400	GGGGATCCTTAGTTTTGATATCTGGGAG	as	BamHI
XM_651634	GGCATATGGCTGTACTTCATATTAACG	S	NdeI
XM_651634	GGGGATCCTTATGCTGTTTCAACCATTTG	as	<i>BamH</i> I
XM_647328	GGCATATGGGAGAAGAAGCACCAG	S	NdeI
XM_647328	GGGGATCCTTAAAGTGCCTTTCTTCTTG	as	<i>BamH</i> I
XM_651958	GGCATATGTCTGCTGGTCTTGCCTTTG	S	NdeI
XM_651958	GGGGATCCTTATCTAACACATGAAACCCAT	as	<i>BamH</i> I
XM_645280	GGCATATGTCTTTGTTTGCTATTCAAG	S	NdeI
XM_645280	GGGGATCCTTAAGCGTCATCCATCAACA	as	BamHI
XM_647942	GGAAGCTTATGAATTCAATACCAAACCT	S	HindIII
XM_647942	GGGGATCCCTATTGGCATATTTTCG	as	BamHI
AF291721	GGCATATGCAACCACCTGTAGCT	S	NdeI
AF291721	GGGGATCCTTATTCCAAGAGGGAAGT	as	BamHI
XM_648051	GGCATATGAGAATTGCTACCAAAG	S	NdeI
XM_648051	GGGGATCCTTATTCAGCTTTTTTCATTTCTG	as	<i>BamH</i> I
XM_646950	GGCATATGTCACACAGAAAGTTTG	S	NdeI
XM_646950	GGGGATCCTTAAAATTGATTTTTAG- TATTTTTG	as	BamHI

Tab. 6.1: PCR-Oligonukleotide für die Klonierung in den pJC45-Vektor

Tab. 6.2: PCR-Oligonukleotide für die Amplifikation der	Gene der putativen Membranoberflächen-Proteine für
die Klonierung in den pNCcmyc-Vektor	

Accession- Nr	Sequenz (5'→3')	sense (s)/ anti-sense (as)	Eingefügte Restriktions- schnittstellen
XM_651158	GGGGTACCATGATCAAGTTCTTATTGGTTG	S	KpnI
XM_651158	GGGGATCCTCGTTTTTCTAAGTCTG	as	<i>BamH</i> I
XM_650063	GGGGTACCATGATGAATAATTACATACA	S	KpnI
XM_650063	GGGGATCCGAAATCAAACATAGCGTCTG	as	<i>BamH</i> I
XM_651634	GGGGTACCATGGCTGTACTTCATATTAACG	S	KpnI

	XM_651634	GGGGATCCTGCTGTTTCAACCATTTG	as	BamHI
	XM_649396	GGGGTACCATGCTTGCATTTTCTGATATG	S	KpnI
	XM_649396	GGGGATCCTTGTAAAAGGCATTTTG	as	BamHI
	XM_650258	GGGGTACCATGGAAGGAGGAGAAGATG	S	KpnI
	XM_650258	GGGGATCCATTGGCAATATCCAAATA	as	BamHI
	XM_643978	GGGGTACCATGAAAAATTTCACATACT	S	KpnI
	XM_643978	GGGGATCCGTAAATATCATTTAAGATAG	as	BamHI
	XM_645763	GGGGTACCATGAATACTGGTTTAG	S	KpnI
	XM_645763	GGGGATCCTTCGTGAACATTGGAATG	as	BamHI
	XM_645280	GGGGTACCATGTCTTTGTTTGCTATTCAAG	S	KpnI
	XM_645280	GGGGATCCAGCGTCATCCATCAACATCA	as	BamHI
	XM_649277	GGGGTACCATGAGTACCTCTCAAGAA	S	KpnI
	XM_649277	GGGGATCCATCTCTTCCAGTCATTCTCT	as	BamHI
- 16				

Tab. 6.3: PCR-Oligonukleotide für die Klonierung der ehcp-Gene in den pNC-Vektor

Amplifikat	Sequenz (5'→3')	sense (s)/ anti- sense (as)	Eingefügte Restriktions- schnittstellen
ehcp-a6	GGGGTACCATGTTTGGTTTACTCTTTG	S	KpnI
ehcp-a6	GGGGATCCTTATTTCTTTACTTCAGTAACACCAG	as	BamHI
ehcp-a7	GGGGTACCATGATTGTATTGATTTATTTG	S	KpnI
ehcp-a7	GGGGATCCGATTAAACTATTCATTTAAAG	as	BamHI
ehcp-b8	GGGGTACCATGATATTCTTTGTTAT	S	KpnI
ehcp-b8	GGGGATCCTCAAATAAGAAGAACAATCAAAG	as	BamHI
ehcp-c13	GGGGTACCATGGAAACTGGTCTTCTTGG	S	KpnI
ehcp-c13	GGGGATCCTCATTCAGTGAATCTCTTTTG	as	BamHI

Tab. 6.4: Oligonukleotide für die quantitative *Real-Time* PCR

Accession-Nr.	sense (s)/	Sequenz (5'→3')
	anti-sense (as)	
10.m00319	S	TTAACTGAAAGAGGATATGCT
$(\beta - actin)$		
10.m00319	as	TTCACTGCTTGATGCAGCTTTTTG
Test der Klone A1, B2,	, B8 und B9 auf zwisch	nen Zelllinie A und B differentiell exprimierte Gene
XM_648456	S	GGTTATCCACCACAACCAAT
XM_648456	as	CCATAGGACCTGACATTCCTC
XM_644469	S	AATGAACCAACGAGTATTGA

XM_644469	as	TGCTAGATCAGCTGAAGGAA
XM_643681	S	TGCTAGATCAGCTGAAGGAA
XM_643681	as	AATTGCACCAGCAACAATAA
XM_647137	S	CGTGATTATCAAGTGTGCGTTC
XM_647137	as	GCTTCAACATCAATCCAGTCTT
XM_648869	S	TTGTTGTTGCAGCTCAAGATTT
XM_648869	as	TGGGGAAGACCAAACATCAC
XM_648725	S	CCTCAAGCTGTGTTAGAAGAATC
XM_648725	as	TGACCTAGAGTTATCTTGTCCTG
XM_645223	S	TGGTCTTGCTAGTGGTGCTA
XM_645223	as	CAGGTGCTGTGATAAGTGGA
XM_643009	S	TTGTGGACCAAGACCAACTAA
XM_643009	as	CCATGGTCCTTCTGATGATG
XM_647540	S	ATTGCTGTCATTCCTGTGTG
XM_647540	as	TCACGAACTTCTTCTGCTTG
XM_647747	S	GTGCTTATGGACCAGGGTGT
XM_647747	as	CAACCCATCTTCCTTCTGGA
XM_646110	S	CCGTGGTAGTGAATTGTTGTC
XM_646110	as	AACATTAGCACCATTGAGGAA
XM_650207	S	GGACGTTTTTCCAGGTGAAG
XM_650207	as	GACCTGGGAAACCATTCAAA
XM_651358	S	CTCACGAGCACTCAATGGAA
XM_651358	as	TTCCTTCACACCATTGACGA
XM_645291	S	CATTCAACCAGCAATTGAAGT
XM_645291	as	TGATGATTCAAGTTATCCGACT
XM_649962	S	GCAGATCTTAATTGGTGCTTCAA
XM_649962	as	CTACCACCAGCCTCACCAAG
Validierung differenti	elle Oberflächenmem	bran-Proteine auf Transkriptomebene
XM_646100	S	GACAGAGCAGCAGAGGCATA
XM_646100	as	TGGATGTGCTCCTTTTGACA
XM_649407	S	CAACAACCAGGTGCTTACCC
XM_649407	as	TCCTCCTTGTGGTGGATAGC
XM_651659	S	TGTATTGGAGTAGGAGATGG
XM_651659	as	ACAGCAAATGCAATGTCAGG
XM_648268	S	GGCTTCATGAAAGTGAAGAAGG
XM_648268	as	TACCCAAGGAAATTGGCAAC
XM_648660	S	GATGGCAAAATGAAGTTACGG
	1	ļ

XM_648660	as	CCATCCTCAGGGATTTTTCC
XM_649716	S	TTCAAAGGATGGGATCAACG
XM_649716	as	GAACGGTCTACCCAATCAGG
AB054588	S	TTTTGATGCAATAGAACGATGG
AB054588	as	CAAATTCAGTCCCATCTGAGG
XM_649396	S	TGTTCGAGAAAAGGCTGAGG
XM_649396	as	TTACCAACAGCACCATCACC
XM_001914588	S	TTATTCCAGAATTACTGAGACG
XM_001914588	as	TTATCACATCTTTCATCTGG
XM_651390	S	GAAATATTGTTCATTGGGATGC
XM_651390	as	GCACTACATGGTGCTGATCG
XM_648905	S	GGACCAGCTTTAGACCTTACTCC
XM_648905	as	TGTGTGGACTTGTTGTTGAGG
XM_643978	S	TGGGGTGCTCATATGATTGG
XM_643978	as	TTGCGTTCTTTTCTTTGTGG
XM_648678	S	TTCTTTCAAATCCACTTCATGC
XM_648678	as	TCCTCCAGTGGTTAACATTCC
XM_646213	S	GATGATTGCGATTGTGAAGG
XM_646213	as	TTGTTGTGGACATTCTTGTGG
XM_645887	S	GGAATGGCTGAAATAATTGG
XM_645887	as	CTCCAACTGCTCCACAAACC
XM_001913522	S	GCAGATCGTGATTCTTTTGAGG
XM_001913522	as	GGATTAACACGATCAAAATAGC
XM_644377	S	CTTTACATTGGCGTCCTTCC
XM_644377	as	AATGATTGAGGCGATAGTAGG
XM_649351	S	GCTCTTCAATTAGATTCAACTCC
XM_649351	as	AATCCACTGATTCAGATAATCC
XM_651526	S	GGAGCAAATTCAGTGATGTTACC
XM_651526	as	TGGATGTGCTGCATGACC
XM_651122	S	GAAAAAGCAGGATGGGAACA
XM_651122	as	AACCATTTGATGTGCTCGAA
XM_647680	S	CTTCTGCTGCTCAAGATGGA
XM_647680	as	GCCAAATTAGCGTCAGCTTC
XM_649999	S	TCAACTATGGAAACAACAAGG
XM_649999	as	AATGCACGTTCACATTGTCC
XM_649901	S	AAGACACTGGTGTTCTTGTTGC
XM_649901	as	GGTCAAACTGACCCATCACC
XM_644371	S	TTCTTTCTATTGACCTTGAACC

XM_644371	as	TCTTCCACCAAAAACAAGTCG		
Überexpression Cyste	Überexpression Cysteinpeptidasen			
XM_645064	S	TGCATCATCTGTTCAATTCC		
XM_645064	as	CAACACCATATCCAACAGCA		
XM_645550	S	ATCCAAGCACCAGAATCAGT		
XM_645550	as	TTCCTTCAAGAGCTGCAAGT		
XM_651510	S	CAGAAGGACCAGTTGCTGTT		
XM_651510	as	TATCCTACAGCGGCAACAC		
XM_645845	S	CCAGAATCTGTTGATTGGAGA		
XM_645845	as	GCAACCAACAATCTTCCTTC		
XM_652272	S	TTGCTATTGATGCAGGTCAA		
XM_652272	as	GATCCATATCCAACAGCACA		
XM_643904	S	ATTGCAGCACTTGAAGGAAG		
XM_643904	as	AATCCTCCTCCACATCCATT		
XM_645957	S	TATGCAGCATCAACAGCAAAC		
XM_645957	as	CTATCCATCGTTGGGCTGTAA		
XM_651464	S	TGGATAAAGCCGTTCAAGATG		
XM_651464	as	TGCCCAACATGTTCCTCTATT		

Tab. 6.5: Verwendete Oligonukleotide der SNP-Analysen

<i>Accession</i> -Nr /	Bezeichnung	Sequenz (5′→3′)	
DS Nummer			

Sets für SNPs im kodierenden Bereich			
XM_649480	S	ATATCTCCTAAAGATTCACATGC	
XM_649480	as	TAACTCATTTAGAAGTAAAATTCTCGG	
XM_649480	Sensor	TCCAATAGTTTTTAAACAAGGACACAT-6fam	
XM_649480	Anker	BMN5-GCTAATGAACATGAAACAAGTGATGTAGGTAATGT-Spacer3	
XM_646600	S	TCCAATCCAACCAATGGG	
XM_646600	as	TCTTAACATTGGATCTAACATAATTTGAC	
XM_646600	Sensor	BMN5-AATTCATGGATGAATAGTCGTGTTC- Spacer3	
XM_646600	Anker	ATCAGCACTTTGTCTTTGGAATTTAGTTCCATCAT-6fam	
XM_644808	S	CAGATTGAGAGATTGAACATTG	
XM_644808	as	TCCTATGCATTTAACTCATGACC	
XM_644808	Sensor	ATGAACTTGGATGAAGAGAAATACAAA-6fam	
XM_644808	Anker	BMN5-ACTTGTAGTCTTGAAGATTCAAATGATTCCCAACA-Spacer3	
XM_647593	S	GTATCAACTTTCCTTTCCATTTAATAAGG	
XM_647593	as	ACTTATAAATTTGAAGGAATGAAGAAAC	

XM_647593	Sensor	ATTTTCTCTATTTCTTCTGCTTGTTCTA-6fam
XM_647593	Anker	BMN5-TGACTCTGCTTCATCAATAATTCTAGTACCATTAAAT- Spacer3
XM_649141	S	TAATGGTGTATATCCAATATCTCCTG
XM_649141	as	AATTAAGTGGAGCAATGGG
XM_649141	Sensor	TCACTTACTGGATGTGGTCTT- 6fam
XM_649141	Anker	BMN5-GTTCAACTCTAACATATAATTGTGCTGTTTCCTTTTCTT- Spacer3
XM_646946	S	TCATTAGGATGTATTCATAGAGACC
XM_646946	as	TGGAACACCAACAAGCA
XM_646946	Sensor	CTGATTATGTTGCACCAGA-6fam
XM_646946	Anker	BMN5-GTTATTAATGAAAGGTTATATTCTACTGTAAGCGAT-Spacer3
XM_647062	S	GTTTCTCAACAACATTTGGCT
XM_647062	as	CAACTAATAAAGGTAAAATACTTCCAG
XM_647062	Sensor	TTTACAACACATTGCATGTATTTTT-6fam
XM_647062	Anker	BMN5-AAGACAATCAATTTCACACACTAATATGGATGTAT-Spacer3
XM_001914342	S	ATTTTTACACATTTCAAATGCTCC
XM_001914342	as	GTCAAATTGAAGAAATTACTATTCCATC
XM_001914342	Sensor	BMN5-TTTCTTTAATCCCTTCATGTAATGTAATATTT-Spacer3
XM_001914342	Anker	ATTTTTTCTATTTGTCCACAATATTTCATAAATCCTTTTGGT-6fam
XM_644810	S	ATCTATTGAAGGTGAATTTGGTC
XM_644810	as	ТСТТСАТСААСТАТТССТТТТААТААGTCT
XM_644810	Sensor	BMN5-CATTGACTTCGGCAGATAAATTAAAA-Spacer3
XM_644810	Anker	GAGTCTAATGATCCTTCTTTTTCACAAGAACAAGGT-6fam
XM_001914354	S	TTAATTGTTTTGGTCAGTGTGATATTC
XM_001914354	as	TGTTGGAATAGTAATTGATTGTATTGA
XM_001914354	Sensor	CATAAAAACACTTATTTCCTATTTCACTA-6fam
XM_001914354	Anker	BMN5-CACTTGTTGAAATATTAATTGTTGTTAATGATGTACAT- Spacer3
Sets für SNPs im	nicht kodieren	den Bereich
DS571292	S	ATTGAAGTGGTGTATATTCATCATC
DS571292	as	GAGACTTGTTTATCAGGTATTGG
DS571292	Sensor	BMN5-ATTTTCACTCAGACTTTTTGAATAAAGAGAAA-Spacer3
DS571292	Anker	AAGAAATTGACAGCAGTTAATTCAGAAGTTTAATTTT-6fam
DS571496 (1)	S	GGGAAAGTATAGAATGAAATTTCAATTTG
DS571496 (1)	as	GTTATTGTTAATAAAAGTCTACTTATCC
DS571496 (1)	Sensor	TTCATTTCTTTTGTTTATATCCTTTATTTCTTT-6fam
DS571496 (1)	Anker	BMN5-TCTTTTTTCTTTAATCCTTGCTTTAGCTCTCTCCT-Spacer3
DS571496 (2)	S	TATGAATCAAAAGGGAAAGTATAGAATG

DS571496 (2)	as	AGTCTACTTATCCATAATCAATAAACG
DS571496 (2)	Sensor	TTCATTTCTTTTGTTTATACTCTTTATTTCTTT-6fam
DS571496 (2)	Anker	BMN5-TCTTTTTTTTTTTTTAATCCTTGCTTTAGCTCTCTCCT-Spacer3
DS571243	S	TGGATGTGTAAGTATGTTTCTCCTA
DS571243	as	ATAAGTATGACGATTTTCTCAGC
DS571243	Sensor	ACCTTTTAACCCAAATTTTTTTTTACTTTAA-6fam
DS571243	Anker	BMN5-AAGGCACAAGTCAGGTTGAAATAATTCTGGTATAGT- Spacer3

Tab. 6.6: Verwendete Oligonukleotide für die DNA-Sequenzierung

Bezeichnung	Vektor	Sequenz $(5' \rightarrow 3')$
pJC45 forward	pJC45	GGATAACAATTCCCCTCTAG
M13F	ТОРО	GTAAAACGACGGCCAG
M13R	ТОРО	CAGGAAACAGCTATGAC
1239-S-Neo	pNC	GAATTAGTCTCAACTCAACAATGTTTGTTGG

Tab. 0.7. Authstung der gefundenen Sivi S Zwischen Kion Al und Kion D2	Tab. 6.7: Auflistung der	[•] gefundenen SNPs zwischer	Klon A1 und Klon B2
--	--------------------------	---------------------------------------	---------------------

Contig	Position	Klon A1	Klon B2	Accession- Nr.	Genname
Kodierende B	ereiche				
DS571595	7892	G ₆₀	G ₅₈	EHI_001630	tyrosine_kinase,_putative
		T ₁₃			
DS571195	27339	G ₆₂	G ₇₇	EHI_004855	hypothetical_protein,_conserved
		A ₁₃			
DS571178	17490	C ₉₀	C ₇₇	EHI_007640	hypothetical_protein,_conserved
		T ₂₈			
DS571148	20161	A ₁₀₇	A ₅₂	EHI_011850	hypothetical_protein
		C1			
DS571148	35380	C ₄₈	C ₅₅	EHI_011940	dolichyl-diphosphooligosaccharide—
		\mathbf{A}_1			protein_glycosyltransferase_
					subunit_STT3A,_putative
DS571148	87893	A ₄₀	A ₅	EHI_012270	Gal/GalNAc_lectin_heavy_subunit
			C ₅		
DS571351	3458	C ₁₅	C ₂₀	EHI_019070	hypothetical_protein
		A_4			
DS571721	1926	A ₆₀	A ₂₄	EHI_022490	AIG_family_protein
		C ₂₄	C ₁₀		

D\$571721	1981	C110	Car	FHI 022490	AIG family protein
00071721	1701	C110	025	2111_022490	
			A ₉		
DS571721	1986	G ₉₄	G ₂₅	EHI_022490	AIG_family_protein
			T ₆		
DS571153	53823	Circ	Coz	EHI 023010	protein kingse putative
00071100	55025	0152	C9/	25010	protein_kinuse,_putative
			1 ₁₁		
DS571153	53828	G ₁₆₄	G ₁₀₈	EHI_023010	protein_kinase,_putative
			T ₁₂		
DS571153	83973	T ₂₈	T ₂₄	EHI 023160	hypothetical protein
			C18	_	
DS571215	10000	т	С18 Т	EIII 027720	WD venest protein
DS5/1215	48808	1 ₁₆₅	145	ЕП_027730	wD_repeat_protein
			G_{18}		
DS571215	60280	A ₉₈	A ₈₄	EHI_027790	hypothetical_protein
		T ₂₃			
DS571208	42240	Aoi	A ₄₁	EHI 030840	<i>ca-</i>
		51	т.,		sein_kinase_II_regulatory_subunit_family_pr
			1 12		otein
DS571580	6599	T ₈₁	T ₆₉	EHI_032470	hypothetical_protein
		G ₁₁			
DS571391	9017	Gias	Goz	EHI 034560	deorvuridine 5'-
0.0071071	5017	A	•		triphosphate_nucleotidohydrolase_
		A39	A36		domain containing protein
DS571174	62915	Geo	Gas	EHI 035650	rihose-
20071171	02910	0.83	C 38	2111_000000	phosphate pyrophosphokinase, putative
			I 10		
DS571616	97	C ₇₇₃	C ₅₄₇	EHI_041580	hypothetical_protein,_conserved
		T ₂₇			
DS571616	99	T ₇₅₉	T ₅₃₅	EHI_041580	hypothetical_protein,_conserved
		C ₂₉			
D\$571616	181	Geer	Gaur	EHI 041580	hypothetical protein conserved
00071010	101	0505	034/	2111_041500	nypomeneur_protein,_conserveu
		C ₉₃			
DS571616	442	A ₄₄₂	A ₃₁₆	EHI_041580	hypothetical_protein,_conserved
		G ₈₉			
DS571616	126	T ₉₂₃	T ₅₆₂	EHI_041580	hypothetical_protein,_conserved
		C ₂₆			
D\$571292	34585	<u> </u>	Δ	EHI 043020	protein kingse domain containing protein
1272	57505	r 104	1119		
		G ₄₆			
DS571147	83764	T ₄₇	T ₆₃	EHI_045030	trans-2,3-enoyl-CoA_reductase,_putative
		C ₁₇			
DS571743	4073	G ₁₄₇	G ₁₄₆	EHI_046150	hypothetical_protein
DS571616 DS571616 DS571616 DS571616 DS571292 DS571147 DS571743	99 181 442 126 34585 83764 4073	$\begin{array}{c} T_{759} \\ C_{29} \\ G_{505} \\ C_{93} \\ A_{442} \\ G_{89} \\ T_{923} \\ C_{26} \\ A_{104} \\ G_{46} \\ T_{47} \\ C_{17} \\ G_{147} \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline T_{535} & \\ \hline G_{347} & \\ \hline A_{316} & \\ \hline T_{562} & \\ \hline A_{119} & \\ \hline T_{63} & \\ \hline G_{146} & \\ \hline \end{tabular}$	EHI_041580 EHI_041580 EHI_041580 EHI_041580 EHI_041580 EHI_045030 EHI_045030 EHI_046150	hypothetical_protein,_conserved hypothetical_protein,_conserved hypothetical_protein,_conserved hypothetical_protein,_conserved protein_kinase_domain_containing_protein trans-2,3-enoyl-CoA_reductase,_putative hypothetical_protein

		A ₃₄			
DS571743	4083	C ₁₅₂	C ₁₂₈	EHI_046150	hypothetical_protein
		T ₃₁			
DS571613	5983	T ₂₉	T ₂₈	EHI_047520	hypothetical_protein
		G ₁₈			
DS571613	5984	T ₂₉	T ₂₇	EHI_047520	hypothetical_protein
		C ₁₈			
DS571341	28684	G ₇₅	G ₆₈	EHI_047820	leucine_rich_repeat_protein,_BspA_family
		T ₁₈			
DS571152	49574	A ₁₂₅	A ₈₁	EHI_049500	SAC3/GANP_family_protein
			T ₂₀		
DS571245	15806	A ₁₁₃	A ₁₆	EHI_052770	glycosyl hydrolase family 31 protein
			G ₆₃		
DS571225	46910	C ₁₉₄	C ₁₀₇	EHI 054830	Plasma membrane calcium-
			T ₂₂		transporting_ATPase,_putative
DS571322	15288	C ₅₄	C ₈₀	EHI 055710	protein kinase, putative
		T ₅₂		_	
DS571234	35854	A ₈₄	A ₂₄	EHI 059870	hypothetical protein
		0.	T ₃₁	-	
DS571413	9997	A ₈	A ₁₄	EHI 060990	HEAT repeat domain containing protein
		C ₁₀		-	
DS571192	59796	A ₁₁₃	A ₃₄	EHI 065790	Rab family GTPase
		115	T ₁₈		
DS571803	2576	T ₂₇	T102	EHI 066620	leucine rich repeat protein. BspA family
		C ₁₂	- 102		······································
DS571803	2592	A ₀₂	A102	EHI 066620	leucine rich repeat protein BspA family
2.50,1000		T ₁₄	1 103		
DS571150	45029	G42	Gai	EHI 067990	hydrolase carbon-nitrogen family
00071100	15025	043	A 5	LIII_007990	nyurotuse,_euroon nurogen_junniy
DS571164	58280	C145	C100	EHI 069290	protein kinase domain containing protein
00071101	56260	C145	0109	LIII_009290	protein_winuse_uomain_containing_protein
D\$571457	12801	T ₂₄	Т.,	EHI 072510	hypothetical protain
D3371437	12001	1 ₃₄	1 12	EIII_072310	
D\$571557	5961	A	A	EHI 072740	hypothetical protain
D3571557	5901	Δ41 Τ-	A30	EIII_0/2/40	
D\$571557	0501	17 T	т	EUI 072050	AIGL family protoin putating
100/100/	7384	1 43		EHI_0/2830	AIGI_jamuy_protein,_putative
D8571557	0792	т	С <u>9</u> Т	EIII 072050	AICI family must in sustati
D92/122/	9/82	1 34	I 54	EHI_0/2850	AIG1_Jamily_protein,_putative

		C ₁₁			
DS571557	9578	G39	G ₅₃	EHI_072850	AIG1_family_protein,_putative
		A_7			
DS571557	9597	T ₃₈	T ₅₉	EHI_072850	AIG1_family_protein,_putative
		G ₈			
DS571544	4193	T ₃₂	T ₃₈	EHI_073060	hypothetical_protein,_conserved
		A_5			
DS571171	79129	C ₄₀	C ₄₄	EHI_073630	serine-threonine-
		G11			isoleucine_rich_protein,_putative
DS571634	3195	C ₈₆	C ₈₀	EHI_076370	hypothetical_protein
		A ₁₉			
DS571634	3167	T ₈₄	T ₆₈	EHI_076370	hypothetical_protein
		C ₄₃			
DS571258	2097	T ₅₀	T ₃₁	EHI_078540	hypothetical protein
		C ₂₆			
DS571226	1682	A ₉	A_1	EHI_079710	hypothetical protein, pseudogene
		G ₂₉	G ₅₄		
DS571275	6527	C ₁₃₅	C ₆₇	EHI 081250	importin beta-3 family protein
			T ₂₁	_	
DS571211	7483	A ₁₀₉	A ₄₇	EHI_084660	hypothetical_protein,_conserved
			T ₁₈		
DS572050	1288	A ₆₃	A ₄₉	EHI_089670	AIG1_family_protein
		T ₁₄			
DS572050	1258	T ₉₄	T ₅₆	EHI_089670	AIG1_family_protein
		C ₂₂			
DS571155	29905	C ₁₀₄	T ₄₇	EHI_092200	hypothetical_protein
DS571169	73664	A ₁₁₆	A ₅₄	EHI_098440	hypothetical protein, conserved
			T ₁₄		
DS571299	10794	C ₂₅₂	C ₁₈₉	EHI_099700	NAD(FAD)-
		G ₄₁			dependent_dehydrogenase,_putative
DS571434	15636	C ₈₉	C ₄₅	EHI_102600	AIG1 family protein
			G ₁₁		
DS571158	2392	G ₂₀	G ₁₉	EHI 103240	protein kinase domain containing protein
			A ₃		
DS571403	6221	C ₉₅	C ₄₅	EHI 105800	protein kinase domain containing protein
			A ₁₃		
DS571236	51933	C ₂₉	C ₂₇	EHI 106360	hypothetical protein
		T ₁₅			_
1		-			

DS571205	43639	C ₂₁	C ₁₅	EHI 107190	hypothetical protein
			T ₄		
DS571548	5799	Tac		EHI 107540	hypothetical protein conserved
2.5571510	5175	Г ₃₀ С-	1 40	2111_10/010	nypomeneur_protein,_conserveu
DC571549	(221		C	EIII 107540	hum that is a much in a surround
DS5/1548	0231	G ₅₄	G ₁₇	EHI_10/540	nypoinetical_protein,_conserved
			A_4		
DS571333	11038	G ₂₀₈	G ₇₉	EHI_109220	proteoglycan-4_precursor,_putative
			A_6		
DS571378	10648	A ₁₄₃	A ₆₁	EHI_113950	hypothetical_protein,_conserved
			T ₂₈		
DS571700	1539	C ₃₄	C ₄₇	EHI 115500	leucine rich repeat protein, BspA family
			T ₆₉		
DS571183	6474	Cat	Cos	EHI 117820	hypothetical protein conserved
00071100	01/1	Т	085	LIII_11/020	nypomeneur_protem,_conserveu
D0/71102	46020	129		EUL 110070	
DS571183	46020	G ₈₉	G ₅₅	EHI_118070	hypothetical_protein
			A ₂₃		
DS571180	3263	C ₆	C ₂₀	EHI_118400	hypothetical_protein
		A ₁₄			
DS571267	36132	A ₂₄	A ₁₈	EHI_119310	hypotheti-
			C ₃		cal_protein,_conserved_domain_containing
DS571281	4143	C ₁₁₀	C ₁₈₉	EHI 122710	hypothetical protein, conserved
		Tor	105	_	
D\$571433	1804	T	Т.,	EHI 123820	laucing rich ranget protein Rsn4 family
D3571455	1004	1 278	1 ₃₈	EIII_123820	leucine_ricn_repeut_protein,_bspx_jumity
D G J H	1		C ₁₀		
DS571433	1748	A ₂₃₆	A ₂₆	EHI_123820	leucine_rich_repeat_protein,_BspA_family
			C ₁₄		
DS571433	2593	C ₅₈	C ₁₃	EHI_123820	leucine_rich_repeat_protein,_BspA_family
			T_5		
DS571435	11014	C ₂₉₈	C ₁₂₅	EHI_125020	hypothetical_protein
		A ₂₄			
DS571166	6630	C ₇₅	C ₅₆	EHI 126900	hypothetical protein
		T.7	- 50		
D\$571510	6422		G	EUL 122860	DNA polymorage putative
D35/1519	0422	U ₂₇	U ₃₀	ЕП_132800	DNA_polymerase,_pulative
			A5		
DS571730	4056	G_{14}	G_{10}	EHI_134140	leucine_rich_repeat_protein,_BspA_family
			A_9		
DS571203	35136	C ₁₃₅	C ₆₁	EHI_135080	histone_H3,_putative
			T ₁₁		

DS571287	1258	A ₂₈₄	A ₂₄₃	EHI_136940	AIG1_family_protein
		G ₄₈			
DS571287	1259	T274	T227	EHI 136940	AIG1 family protein
		Cac	237		
D\$571241	58/13	C	C	EHI 138180	hypothetical protain
D5571241	5645	C102	C49	158180	
			I 12		
DS571241	21168	A_{18}	A_{11}	EHI_138370	hypothetical_protein,_conserved
		G ₄			
DS571241	23085	C ₂₂₀	C ₁₀₄	EHI_138380	glycogen_phosphorylase,_putative
			T ₁₂		
DS571241	43625	A ₇₈	A ₄₆	EHI_138510	hypothetical_protein
			T ₁₂		
DS571260	28012	A26	A ₁₈	EHI 138970	hypothetical protein
			T ₁₀		
D\$571161	44208	C		EHI 141820	DNA modification on my og Mig P family
DS5/1101	44398	C_{295}	C ₂₄₉	ЕПІ_141850	KNA_moujication_enzymes,_Miab-jamity
			G ₁₉		
DS571161	71911	T ₅₄	T ₄₅	EHI_141950	hypothetical_protein
			C_7		
DS571146	101042	G ₁₀₄	G ₈₉	EHI_148550	protein_tyrosine_kinase_domain-
		T ₃₁			containing_protein
DS571145	19426	C ₁₃₇	C ₁₂₂	EHI_151250	hypothetical_protein,_conserved
			T ₁₁		
DS571476	10489	T ₁₃₃	T ₇₂	EHI 154760	hypothetical protein
		Car	12		
DS572479	200	C ₂ /	т	EHI 157260	AIC1 family protain putative
D3372478	200	1 ₆₁	1 ₄₂	ЕП_137300	AIGI_jumily_protein,_putative
			C ₁₀		
DS572478	317	G ₇₇	G ₅₁	EHI_157360	AIG1_family_protein,_putative
			A ₁₃		
DS571485	8521	G ₁₀₄	G ₆₁	EHI_160720	exosome_complex_exonuclease,_putative
			A ₁₁		
DS571304	30191	C ₈₁	C ₅₁	EHI_161970	leucyl-tRNA_synthetase,_putative
			T ₁₀		
DS571246	2328	T ₈₆	T ₄₂	EHI 163480	90 kDa heat shock protein, putative
	-	00	A.		
D\$571214	2480	G	G	EHI 164100	DNA polymorago putativo
1214	5407	U ₂₆₃	G92	LIII_104190	DivA_polymeruse,_putative
			I 16		
DS571214	3570	C ₂₈₆	C ₁₀₆	EHI_164190	DNA_polymerase,_putative
			T ₁₃		

DS571214	3623	G ₂₄₉	G ₈₂	EHI_164190	DNA_polymerase,_putative
			A ₂₈		
DS571214	7079	A ₃₆₆	A ₁₅₉	EHI_164300	hypothetical_protein
			G ₁₆		
DS571216	23097	C ₁₄₀	C ₁₂₆	EHI_164810	Adapter-related_protein_complex_3_(AP-
		T ₂₅			3)_subunit,_putative
DS571217	43694	C ₁₄₀	C ₆₂	EHI_165280	hypothetical_protein
			A ₁₅		
DS571219	52443	A ₈	A ₁₁	EHI_169320	phosphatidylinositol3-kinaseTor2,_putative
		T ₆			
DS571189	48127	T ₁₂₃	T ₈₉	EHI_174940	nucleolar_GTP-binding_protein_1,_putative
		A ₂₄			
DS571189	71347	C ₇₄	C ₇₅	EHI_175110	hypothetical_protein
		A ₆₅			
DS571581	864	A ₅₅	A ₂₂	EHI_176580	AIG1_family_protein,_putative
		G ₁₂			
DS571581	865	A ₅₅	A ₂₁	EHI_176580	AIG1_family_protein,_putative
		G ₁₂			
DS571154	119600	T ₇₄	T ₄₁	EHI_178970	hypothetical_protein
			A ₁₂		
DS571563	3617	T ₄₉	T ₂₈	EHI_179700	hypothetical_protein
			C_7		
DS571156	45940	A ₇₈	A ₄₁	EHI_182760	hypothetical_protein
			G ₁₇		
DS571156	46022	T ₁₁₅	T ₁₀₁	EHI_182760	hypothetical_protein
		A_{10}			
DS571156	94542	G ₁₅₄	G ₇₄	EHI_183060	pantothenate_kinase_1,_putative
			A_{11}		
DS571156	107030	C ₁₀₅	C ₁₀₈	EHI_183120	centromeric_protein_E,_putative
		G ₂₀			
DS571156	144397	C ₁₅	C ₁₀	EHI_183260	leucine-rich_repeat_containing_protein
			A_4		
DS571364	17116	T ₂₅	T ₂₇	EHI_191510	leucine_rich_repeat_protein,_BspA_family
		C_7			
DS571538	6578	C ₂₃₀	C ₁₁₂	EHI_193640	hypothetical_protein
			T ₁₄		
DS571599	3884	T ₁₀₀	T ₄₄	EHI_195250	AIG1_family_protein
		A ₂₀	A ₁₅		

DS571599	6138	A9	A ₁₅	EHI 195260	AIG1 family protein, putative
		G ₇₄	G ₄₆	_	
DS571157	97475	G ₉₀	G ₅₁	EHI 197300	phospholipid-
			A	—	transporting_ATPase_Neo1,_putative
			1 19		
DS571157	97478	C ₉₀	C ₅₃	EHI_197300	phospholipid-
			T ₁₀		transporting_ATPase_Neo1,_putative
DS571157	139143	A ₁₃₈	A ₂₀	EHI_197510	EF-hand_calcium-
			T ₄₂		omung_uomun_comuning_protein
DS571248	48932	T ₅₅	T ₁	EHI_200840	Sig-
			C ₄₅		nal_recognition_particle_receptor_alpha_sub
					unii,_putative
Nicht-kodiere	ende Bereich	e			
DS571145	2561	C ₆₃	C ₈₆		
		T ₁₂			
DS571253	48719	Cer	C76		
2.50 / 1200		T _e	070		
D\$571253	49558	T.	Т.		
D3571255	49550	12	15		
DS571208	4504	A ₂₁	A ₁₂		
D55/1298	4394	G ₂₄₀	G ₄₀		
D0551250	0.5.5.4.1		A ₃₄		
DS5/1258	25541	C_{2220}	C_{1880}		
			T ₄₃		
DS571191	9327	T ₆₆	T ₃₁		
			A ₅		
DS571261	47357	C ₈₁	C ₆₆		
		T_{10}			
DS571148	133121	C ₂₇	C ₂₁		
			T ₅		
DS571150	42460	A ₉₉	A ₆₃		
			G ₂₉		
DS571200	25870	A ₃₁	A ₃₃		
		T ₁₃			
DS571201	39372	G ₂₁	G ₁₅		
		A_4			
DS571152	89119	C ₅₀	C49		
		A ₁₄			

DS571202	51051	T ₁₃₀	T ₇₅			
			C ₈			
DS571292	23160	A ₅₃	G ₄₈			
DS571496	4410	A ₇	A ₁₁			
		G ₅				
DS571292	38388	A ₁₂₃	A ₉₇			
		G ₁₇				
DS571161	5077	C ₇₇	C59			
			A ₆			
DS571155	90793	G ₂₇₁₉	G ₁₃₅₉			
		G ₁₀₄				
DS571155	140183	C ₂₄	C ₁₆			
		\mathbf{A}_4				
DS571530	2251	T ₄₁₃	T ₂₀₇			
			C ₃₃			
DS571530	2253	A ₄₁₂	A ₂₅₄			
		C ₂₆				
DS571530	2373	C ₉₈₆	C ₆₃₉			
		T ₂₅				
DS571333	29386	G ₄₀₁	G ₂₁₆			
		A ₂₂				
DS571171	69029	A ₁₅	A ₂₀			
			T_4			
DS571157	4445	C ₄₁₃₇	C ₂₈₀₂			
		A_{48}				
DS571949	2226	A_1	A ₁₁			
		C ₃₅	C ₂₄			
DS571366	8474	T ₁₇₄	T ₄₉			
			C ₁₂			
DS571368	22554	T ₇₃	T ₃₉			
			C_4			
DS571369	15138	G ₂₁	G ₂₁			
			T ₆			
DS571496	4411	A ₆	A ₁₁			
		G ₅				
DS571161	11152	A ₆₄	A ₅₉			
		T ₆				

DS571562	8204	T ₉₁	T ₄₂			
			A ₁₅			
DS571395	3958	T ₃₁	T ₂₃			
		C ₆				
DS571401	13630	A ₃₉	A ₉			
		C ₁₉₉	C ₁₃₅			
DS571565	1197	G ₉₉	G ₇₇			
			T ₁₄			
DS571410	20855	C ₂₀₀₄	C ₁₀₈₀			
		T ₃₇				
DS571479	1072	A ₄₆₄	A ₃₀₆			
		G ₂₀				
DS571428	2993	T ₆	T ₁₀			
		G ₅				
DS571590	1671	A ₂₂	A ₃₂			
		G ₁₁				
DS571246	43718	A ₁₁₉₅	A ₇₇			
			C ₂₂₂			
DS572594	45	G ₅₈₂	G ₂₄₂			
		T ₂₄				
DS571467	10800	G ₇₄	G ₃₀			
			A ₁₀			
DS571743	2837	G ₈₀	G ₅₃			
		T ₁₄				
DS571502	3186	A ₁₉₅	A ₁₀₆			
			G ₃₈			
DS571457	15710	C ₇₈	C ₃₆			
			T ₇			
DS571769	1623	G ₉₅	G ₆₅			
			A ₁₂			
DS571479	1082	A ₃₃₄	A ₁₈₇			
			T ₃₀			
DS571192	71412	A ₃₄	A ₇₅			
		C ₁₂				
DS571479	1011	T ₆₂₅	T ₄₁₇			
		A ₃₀				
DS571658	2912	G ₄₀₀₇	G ₂₆₉₈			
		A_{141}				
DS571520	1963	A ₂₄	A ₂₉			
----------	-------	------------------	------------------	--	--	--
		G ₁₅				
DS571202	51048	T ₁₂₅	T ₆₈			
			C ₈			
DS571483	12063	A ₁₅₁	A ₆₉			
			G ₁₈			
DS571298	16253	C ₃₀₁	C ₁₂₂			
			T ₁₄			
DS571479	995	A ₂₉₀	A ₂₂₀			
		T ₃₉				
DS571562	8205	T ₉₁	T ₄₃			
			A ₁₃			
DS571232	39477	G ₃₅	G ₁₆			
			A ₁₈			
DS572101	58	T ₁₈	T ₂₀			
			C_7			
DS572019	1222	G ₅₁	G ₇₀			
		A ₉				
DS571243	37782	A ₇	A ₂₆			
		G ₂₀				
DS572095	469	T ₁₂₄	T ₁₁₄			
		A ₁₅				
DS572594	26	C ₄₆₉	C ₁₀₆			
			T ₃₁			
DS571378	24962	C ₆₇	C ₄₃			
			T_{10}			
DS572073	94	T ₃₆₄	T ₂₄₄			
		C ₈₆				
DS571217	15916	T ₃₂	T ₁₂			
		G ₆				
DS572095	452	G ₁₂₂	G ₁₁₁			
		A ₁₇				
DS571261	47365	C ₁₀₇	C ₈₁			
		T ₁₆				
DS572594	28	G ₄₈₃	G ₁₀₇			
			A ₃₁			
DS572073	58	T ₅₁₂	T ₄₃₂			
		G ₁₀₃	G ₄₀			

DS572485	699	A ₉	A ₂		
		G ₇₁	G ₇₅		
DS571480	14938	G ₈₇	G ₆₀		
		A ₁₃			
DS572073	10	T ₁₈₅	T ₁₂₄		
			C ₂₂		
DS571658	2894	T ₅₉₅₂	T ₃₈₉₈		
		A ₅₃			
DS571658	2877	G ₄₇₂₅	G ₂₉₉₆		
		A ₁₉₉	T ₁₂₆		

Tab. 6.8: Liste der 765 Proteine welche mittels Nano-LC und anschließender MS/MS-Analyse aus Zelloberflächen-Protein-angereicherten Proben in *E. histolytica* Zelllinie A oder Zelllinie B gefunden wurden. Abkürzungen: SP = Signalpeptid (vorhergesagte Position an der das Signalpeptid abgespalten wird), SA = Signalanker, TMD = Transmembrandomäne (vorhergesagte Anzahl), N-K sez: als nicht klassisch sezerniert vorausgesagt, Myr: Myristoylierung. Vorraussagen Lokalisation: Cyto = cytoplasmatisch, Mito = mitochondrial, ER = endoplasmatisches Retikulum, Nucl = Nucleus, GA = Golgi-Apparat. Weitere Voraussagen: LIM = enthält LIM-Domänen. Grau hinterlegt: Kategorien. Lila hinterlegt: differentiell in Zelllinie A gefunden. Pink hinterlegt: differentiell in Zelllinie B gefunden. Schrift hellblau: Im Rahmen dieser Arbeit zur Validierung und Lokalisierung ausgewählt.

Proteinname	Accession-Nr	SP/SA	TMD	N- K	Myr	Weitere Vorraus-			
				sez		Sugen			
Vesikuläres Trafficking, Vesikel Bildung									
adaptor protein (AP) family prote- in	XP_649291	-	-	-	-	-			
adaptor protein (AP) family prote- in	XP_001913524	-	-	-	-	-			
Adapter-related protein complex 3	XP_001913940	-	-	-	-	-			
ap-1 complex subunit mu-2	XP_648705	-	-	~	-	Mito, Clathrin- adaptor			
ap-2 complex subunit mu	XP_001913621	-	-	-	-	Clathrin adaptor			
c2 domain protein	XP_654499	-	-	-	-	-			
c2 domain containing protein	XP_655299	-	-	-	-	-			
c2 domain containing protein	XP_656043	-	-	-	-	-			
c2 domain containing protein	XP_648781	-	-	-	-	-			
clathrin adaptor complex small chain	XP_649458	-	-	-	-	-			
clathrin adaptor complex small chain	XP_657115	-	-	~	-	Mito			
clathrin adaptor complex small chain	XP_656250	-	-	~	-	Mito			
clathrin-adaptor medium chain	XP_654291	-	-	~	-	-			

clathrin heavy chain	AB261052.1	-	-	-	-	-
coatomer alpha subunit	XP_648580	-	-	-	-	Mito, WD40
coatomer beta subunit	XP_654513	-	-	-	-	-
coatomer beta subunit	XP_657557	-	-	-	-	-
coatomer complex subunit	XP_656797	-	-	~	-	WD40
Coatomer gamma subunit	XP_654004	-	-	-	-	-
coatomer protein gamma subunit	XP_648199	-	-	-	-	-
hypothetical protein	XP_651549	-	-	-	-	-
alpha2-COP	XP_656051	-	-	-	-	Mito, WD 40
zeta-COP	XP_654219	-	-	-	-	-
hypothetical protein	XP_656857	15	1	-	-	-
(COPII-coated vesicle membrane protein P24)						
cop9 signalosome complex subu- nit 1	XP_655155	-	-	~	-	-
delta subunit	XP_655217	-	-	-	-	-
gamma subunit isoform 1	XP_650052	-	-	-	-	-
importin beta	XP_651571	-	-	~	-	-
leucine rich repeat / protein phosphatase 2C domain contai- ning protein	XP_650359	-	-	-	-	-
receptor mediated endocytosis protein	XP_653938	-	-	-	-	EF-hand-like Do- mäne
alpha-soluble NSF attachment protein	XP_651192	-	-	~	-	Cytoplasmatische Vesikel Membran
protein transport protein Sec24	XP_647962	-	-	~	-	-
v-SNARE protein VampF	gi 103484664,	-	1	~	-	WD40
SNF7 family protein	XP_656010	-	-	-	-	-
vacuolar sorting protein VPS4	XP_654105	-	-	-	-	Endosom Membran
vacuolar sorting protein 26	XP_653057	-	-	~	-	-
vacuolar sorting protein 26	XP_651148	-	-	-	-	-
vacuolar sorting protein 29	XP_652937	-	-	-	-	-
vacular protein sorting 33A	XP_649746	-	-	-	-	-
vacuolar protein sorting 35	XP_652967	-	-	-		-
vacuolar protein sorting 35	XP_656527	-	-	~	-	-
vacuolar protein sorting- associated protein 45	XP_001913852,	-	-	-	-	-
chorein	XP_656773	-	-	-	-	-
hypothetical protein	XP_649367	-	-	~	-	Mito, Vacuolar- membran

Stressantwort						
chaperonin 1 60 kDa	XP_656268	-	-	-	-	-
chaperonin containing TCP-1 delta subunit	XP_651775	-	-	-	-	-
chaperonin containing TCP-1 epsilon subunit	XP_655740	-	-	-	-	-
chaperonin-containing TCP-1, zeta subunit	XP_656288	-	-	~	-	Mito
copine	XP_656751	-	-	~	~	-
copine	XP_649200	-	-	~	~	Mito
copine	XP_647967	-	-	-	~	-
hypothetical protein	XP_655670	-	-	-	~	-
hypothetical protein	XP_652587	-	-	~	~	-
defender against cell death protein	XP_653360	SA	3	~	-	-
dnaJ family protein	XP_653489	15	-	-	-	ER
dnaJ family protein	XP_657430	-	-	-	-	-
dnaJ family protein	XP_652865	-	-	-	-	-
dnaJ homolog subfamily A mem- ber 1	XP_656707	20	-	-	-	-
Fe-S cluster assembly protein NifU	XP_655888	-	-	-	-	-
heat shock protein, Hsp20 family	XP_656495	-	-	~	-	-
heat shock protein 70	XP_650833	-	-	-	-	-
heat shock protein 70	XP_650458	-	-	-	-	-
70 kDa heat shock protein	XP_654737	16	-	-	-	ER Zielsequenz KDEL
heat shock protein 70 family	XP_653218	14	-	-	-	ER Zielsequenz KDEL
heat shock protein 90	XP_653132	-	-	-	-	
90 kDa heat shock protein	XP_649964	19	-	-	-	ER Zielsequenz KNEL
Hsc70-interacting protein	XP_650801	-	-	-	-	-
TPR repeat protein	XP_655642	-	-	-	-	-
putative iron hydrogenase HydA	AAG31036	-	-	-	-	-
peptidyl-prolyl cis-trans isomera- se	XP_656494	-	-	-	-	-
peptidyl-prolyl cis-trans isomera- se	XP_648283	15	-	-	-	-
protein disulfide isomerase	XP_650651	14	1	-	-	Thioredoxin-ähnlich

peripheral membrane protein peroxiredoxin	XP_647907	-	-	~	-	-
sec 13 protein	XP_649874	-	-	-	-	WD40
Iron-containing superoxide dis- mutase	XP_648827	-	-	~	-	-
t-complex protein 1 subunit alpha	XP_648370	-	-	-	-	-
t-complex protein 1 subunit beta	XP_655030	-	-	-	-	-
t-complex protein 1 beta subunit	XP_652436	-	-	-	-	-
t-complex protein 1 gamma subu- nit	XP_650158	-	-	-	-	-
t-complex protein 1 theta subunit	XP_654184	-	-	~	-	-
tetratricopeptide repeat domain containing protein	XP_656358	-	-	~	-	-
thioredoxin 1	XP_656726	-	-	~	-	-
thioredoxin	XP_651032	15	-	-	-	-
thioredoxin	XP_655385	17	-	-	-	-
thioredoxin	XP_654476	17	-	-	-	-
thioredoxin	XP_655421	14	-	-	-	ER
thioredoxin	XP_650000	14	-	-	-	-
thioredoxin	XP_657045	15	-	-	-	-
phosducin-like protein	XP_655040	-	-	~	-	-
thioredoxin reductase	XP_655748	-	-	-	-	-
type A flavoprotein	XP_656946	-	-	~	-	-
ubiquitin	XP_654066	-	-		-	-
ubiquitin-activating enzyme	XP_649192	-	-		-	-
ubiquitin-conjugating enzyme family protein	XP_648678	-	-		-	-
Cytoskelett					•	
actin	XP_653718	-	-	-	-	-
actin	XP_652727	-	-	-	-	-
actin protein	gi 158914	-	-	~	-	-
actin-binding protein	XP_650926	-	-	-	-	-
actin-binding protein	gi 56471255	-	-	-	-	-
actin-binding protein, cofi- lin/tropomyosin family	XP_656437	-	-	-	-	-
actin-binding protein, cofi- lin/tropomyosin family	XP_656444	-	-	-	-	-
actin binding protein	XP_652419	-	-	~	-	-
actin binding protein	XP_655017	-	-	-	-	-

actin-like protein	XP_657596	-	-	~	-	-
F-actin capping protein alpha subunit	XP_650645	-	-	~	-	-
F-actin capping protein beta su- bunit	XP_652863	-	-	-	-	-
Actin-related protein 3	XP_647871	-	-	~	-	-
hypothetical protein	XP_652420	-	-	-	-	actin verwandtes protein
hypothetical protein	XP_651499	-	-	-	-	alpha-actinin, LIM- type
actinin-like protein	XP_648365	-	-	~	-	-
actinin-like protein	AAF20148	-	-	-	-	-
actobindin	XP_656837	-	-	~	-	-
actobindin	XP_649708	-	-	~	-	-
actophorin	XP_651689	-	-	-	-	-
adenylyl cyclase-associated prote- in	XP_655240	-	-	-	-	-
ARP2/3 complex 20 kDa subunit	XP_648567	-	-	-	-	-
ARP2/3 complex 21 kDa subunit	XP_653342	-	-	-	-	-
ARP2/3 complex 34 kda subunit	XP_650569	-	-	~	-	-
ARP2/3 complex 41 kDa subunit	XP_649043	-	-	-	-	WD40
calmodulin	XP_657577	-	-	-	-	Calcium-binding EF-hand
calmodulin	XP_652365	-	-	-	-	Calcium-binding EF-hand
calmodulin	XP_655757	-	-	-	-	Calcium-binding EF-hand
calmodulin	XP_651708	-	-	-	-	Calcium-binding EF-hand
calmodulin	XP_655621	-	-	~	-	Calcium-binding EF-hand
hypothetical protein	XP_648832	-	-	-	-	
calponin homology domain prote- in	XP_653283	-	-	-	-	EF-hand
coronin	XP_654419	-	-	~	-	WD40
cortexillin	XP_001913607	-	-	-	-	-
cortexillin	XP_654961	-	-	-	-	-
cortexillin II	XP_652421	-	-	-	-	-
diaphanous protein	XP_653752	-	-	~	-	-
diaphanous protein	XP_653884	-	-	~	-	-
diaphanous protein	XP_656030	-	-	~	-	-
diaphanous protein, homolog 2	XP_651696	-	-	~	-	-

fibrillarin	XP_654111	-	-	-	-	-
filamin 2	XP_657265	-	-	-	-	-
filopodin	XP_654303	-	-	-	-	-
filopodin	XP_654777	-	-	-	-	-
hypothetical protein	XP_650448	-	-	-	-	-
gelsolin repeat protein	XP_6546691	-	-	-	-	-
myosin heavy chain	XP_654202	-	-	-	-	-
myosin heavy chain	AAB48065	-	-	-	-	-
myosin heavy chain	XP_657028	-	-	-	-	-
unconventional myosin IB	XP_654280	-	-	-	-	-
pleckstrin homology (PH) domain containing protein	XP_656064	-	-	-	-	-
prefoldin	XP_648692	-	-	~	-	-
prefoldin subunit 2	XP_649483	-	-	~	-	-
prefoldin subunit 3	XP_656814	-	-	-	-	-
profilin	gi 2350952	-	-	~	-	-
beta-tubulin	XP_657170	-	-	-	-	-
villidin	XP_655365	-	-	-	-	-
villidin	XP_655366	-	-	-	-	-
villidin	XP_655822	-	-	-	~	-
villin	XP_654808	-	-	-	-	-
GTPasen, GTP Bindung	L					I
14-3-3 protein 1	XP_652946	-	-	-	-	-
14-3-3 protein 2	XP_653621	-	-	-	-	-
ADP-ribosylation factor	XP_654041	-	-	-	~	-
ADP-ribosylation factor	XP_657135	-	-	-	-	Mito
ADP-ribosylation factor	XP_654690	-	-	-	-	-
aig1 family protein	XP_001914623	-	-	~	-	-
dynamin-1-like protein	XP_649650	-	-	-	-	-
dynamin-like protein	XP_651634	SP	-	-	-	-
G protein alpha subunit	XP_651737	-	-	~	~	-
GTP-binding protein	XP_657513	-	-	~	-	-
GTP binding protein	XP_650519	-	-	-	-	-
GTP-binding protein	XP_649850	-	1	-	-	-
GTP-binding protein ypt2	XP_652309	-	-	~	-	-
GTP-binding protein	XP_648869	17	-	-	-	-
guanine nucleotide-binding prote- in subunit beta 2-like 1	XP_649948	-	-	-	-	WD40

guanine nucleotide-binding prote- in subunit beta 2like1	XP_657050	-	-	-	-	WD40
hypothetical protein	XP_653455,	-	-	-	-	ER Membran
guanine nucleotide regulatory protein	XP_650203	-	-	-	-	-
nucleotide binding protein 2	XP_653192	-	-	~	-	-
PH domain containing protein	XP_001914050	-	-	-	-	-
cell cycle-associated GTPase	XP_657549	-	-	-	-	-
rab family GTPase	XP_651336	-	-	-	-	-
small GTPase RabC1	XP_656355	-	-	-	-	-
ehRab2B	XP_649335	-	-	~	-	-
ehRab2C	XP_656786	19	-	-	-	-
rab family GTPase						
rab family GTPase EhRabC3	XP_652352	-	-	-	-	-
rab family GTPase	XP_656060	-	-	~	-	-
small GTPase Rab7A	XP_649196	-	-	-	-	-
rab family GTPase	XP_656820	-	-	~	-	Mito
rab family GTPase	XP_651202	-	-	~	-	Recycling Endo- sommembran
rab family GTPase	XP_651915	-	-	-	-	Recycling Endo- sommembran
rab family GTPase	XP_653051	-	-	-	-	-
ehRab11A	XP_647948	-	-	-	-	-
small GTPase Rab11B	XP_652776	-	-	~	-	-
small GTPase Rab11C	gi 13537449	-	-	-	-	Recycling Endo- sommembran
rab family GTPase	XP_653656	-	-	-	-	Mito
rab family GTPase	XP_655208,	-	-	-	-	Recycling Endo- sommembran
rab family GTPase	XP_655922	-	-	-	-	-
rab family GTPase	XP_656536	-	-	-	-	-
rab GDP dissociation inhibitor alpha	XP_001913575,	-	-	-	-	-
ran family GTPase	XP_657523	-	-	~	-	-
rap/Ran GTPase activating protein	XP_651327	-	-	-	-	-
rap/Ran GTPase activating protein	XP_657431	-	-	-	-	-
rap/Ran GTPase activating protein	XP_649538	-	-	-	-	-
hypothetical protein	XP_655940	-	-	-	-	-
ras family GTPase	XP_650704	-	-	~	-	-
ras family GTPase	XP_651163	-	-	-	-	-

ras family GTPase	XP_654039	-	-	-	-	-
ras family GTPase	XP_649693	-	-	-	-	-
ras GTPase-activating protein	XP_653058	-	-	-	-	-
ras GTPase activating protein	XP_656154	-	-	-	-	-
ras guanine nucleotide exchange factor	XP_655598	-	-	~	-	Mito, ER Membran
ras guanine nucleotide exchange factor	XP_654415	-	-	~	-	-
rhoGAP domain containing prote- in	XP_653274	-	-	-	-	GA Membran
rho GDP exchange inhibitor	XP_654522	-	-	-	-	-
rho family GTPase	XP_653812	-	-	~	-	Cyto
rho family GTPase	XP_650831	-	-	-	-	-
rho family GTPase	XP_649502,	-	-	~	-	Cyto
rho family GTPase	XP_654488,	-	-	~	-	Cyto
rho family GTPase	XP_653308	-	-	-	-	-
rho family GTPase, RAC GTPase	XP_656301	-	-	~	-	-
rho family GTPase	XP_651800	-	-	-	-	-
rho GTPase activating protein	XP_656475	-	-	-	-	LIM
rho guanine nucleotide exchange factor	XP_657220	-	-	-	-	Mito
rho guanine nucleotide exchange factor	XP_653415	-	-	-	-	-
rho-related protein racC	gi 2500188	-	-	~	-	-
soluble calcium-activated nucleo- tidase 1	XP_649057	-	-	-	-	-
ER/Golgi						
cell division cycle protein 48/ transitional endoplasmic reticu- lum ATPase	XP_657329	-	-	-	-	-
hypothetical protein	XP_00191345	SA	1	-	-	ER Membran
sec6	XP_656804	-	-	-	-	-
sec23 protein	XP_652973	-	-	~	-	-
sec61 alpha subunit	AAU43735	SA	5	-	-	-
signal recognition particle protein SRP54	XP_650715	-	-	-	-	-
Peptidasen		I				

aminopeptidase	XP_656618	-	-	-	-	-
methionine aminopeptidase	XP_651539	-	-	-	-	-
aminoacyl-histidine dipeptidase	XP_655596	-	-	~	-	-
serine carboxypeptidase (S28) family protein	XP_652089,	16	-	-	-	Mito
xaa-Pro dipeptidase	XP_657085	-	-	-	-	-
Zn-dependent peptidase	XP_654849	-	-	~	-	-
peptidase	XP_649891	-	-	-	-	-
CAAX prenyl protease	XP_648770,	17	6	-	-	-
calpain large subunit domain III containing protein	XP_649922	-	-	-	-	-
cell surface protease gp63	XP_655394	18	1	-	-	-
cysteine proteinase (EhCP-A1)	XP_650156	13	-	-	-	-
cysteine proteinase 2	XP_650642	13	-	-	-	-
cysteine proteinase (EhCP-A5)	XP_650937	13	-	-	-	-
cysteine proteinase (EhCP-A7)	XP_001914429	13	-	-	-	-
cysteine protease inhibitor 1	XP_653255	-	-	~	-	-
serine protease inhibitor	XP_650262	-	-	-	-	-
26S protease regulatory subunit	XP_654722	-	-	~	-	ATPase AAA+ type
26S protease regulatory subunit	XP_649078	-	-	~	-	ATPase AAA+ type
26S protease regulatory subunit	XP_653833	-	-	~	-	ATPase AAA+ type
26S protease regulatory subunit 7	XP_001914172	-	-	-	-	ATPase AAA+ type
26S protease regulatory subunit	XP_657099	-	-	-	-	ATPase AAA+ type
proteasome beta subunit	XP_653346	-	-	~	-	-
proteasome alpha subunit	XP_655350	-	-	-	-	-
proteasome alpha subunit	XP_656396	-	-	-	-	-
proteasome alpha subunit	XP_648707	-	-	-	-	-
proteasome alpha subunit	XP_650714	-	-	-	-	-
proteasome alpha subunit	XP_649572	-	-	-	-	-
proteasome alpha subunit	XP_655561	-	-	-	-	Mito
proteasome alpha subunit	XP_653086	-	-	-	-	-
19S cap proteasome S2 subunit	XP_648181	-	-	~	-	-
26s proteasome subunit P45 fami- ly protein	XP_648721	-	-	~	-	ATPase AAA+ type
proteasome regulatory subunit	XP_655395	-	-	~	-	Mito
proteasome regulatory subunit	XP_651402	-	-	-	-	-
proteasome regulatory subunit	XP_649261	-	-	~	-	-
proteasome regulatory subunit	XP_653351	-	-	-	-	-

proteasome regulatory subunit	XP_656698	-	-	-	-	-				
proteasome regulatory subunit	XP_655243	-	-	-	-	-				
proteasome regulatory subunit	XP_655570	-	-	~	-	-				
26S proteasome non-ATPase regulatory subunit 14	XP_650487	-	-	~	-	-				
hypothetical protein	XP_657147	-	-	-	-	-				
Metabolismus										
deoxyribose-phosphate aldolase	XP_651785	-	-	-	-	Cyto				
putative fructose-1,6-bisphosphate aldolase	AAL23716	-	-	-	-	Cyto				
beta-N-acetylhexosaminidase	XP_650273	16	-	-	-	ER				
arginase	XP_656978	-	-	-	-	Cyto				
acetyl-coA carboxylase	XP_651829	-	-	~	-	Cyto				
Orn/Arg/Lys decarboxylase	XP_648734	-	-	~	-	Cyto				
threonine dehydratase catabolic	XP_650405	-	-	-	-	Cyto				
threonine dehydratase	XP_657171	-	-	-	-	Cyto				
alcohol dehydrogenase	XP_001914269	-	-	-	-	Cyto				
alcohol dehydrogenase	XP_649070	-	-	~	-	Cyto				
alcohol dehydrogenase	XP_650419	-	-	~	-	Cyto				
alcohol dehydrogenase 3	Q24857	-	-	-	-	Cyto				
alcohol dehydrogenase	XP_652262	-	-	~	-	Cyto				
alcohol dehydrogenase	XP_652300	-	-	-	-	Cyto				
dihydropyrimidine dehydrogenase	XP_656317	-	-	-	-	Cyto				
NAD(FAD)-dependent dehydro- genase	XP_649611	19	-	-	-	Plasmamembran, ER				
NADP-dependent alcohol de- hydrogenase	XP_653507	-	-	-	-	Cyto ER				
NADP-dependent alcohol de- hydrogenase	XP_652772	-	-	-	-	Cyto				
malate dehydrogenase	XP_650855	-	-	-	-	Cyto				
malate dehydrogenase	XP_649756	-	-	-	-	Cyto				
malate dehydrogenase	XP_655601	-	-	-	-	Cyto				
short chain dehydrogenase family protein	XP_652218	SA	-	-	-	Extr				
EF-hand calcium-binding domain containing protein	XP_651692	-	-	~	-	Cyto-nucl				
EF-hand calcium-binding domain containing protein	XP_001913381	-	-	-	-	Cyto				
aldose 1-epimerase	XP_649046	-	-	-	-	Nucl				
UDP-glucose 4-epimerase	XP_650346	-	-	~	-	Cytoskelett				
hypothetical protein	XP_652516	-	-	-	-	Cyto				

glucosidase	XP_655628	15	-	-	-	ER
glycoprotein FP21 precursor	XP_001913917	-	-	-	-	Cyto
grainin	XP_001914018	-	-	-	-	Cyto
grainin 1	XP_650372	-	-	-	-	Cyto
grainin 2	XP_650357	-	-	~	-	Cyto
NAD(P) transhydrogenase subunit alpha	XP_001913541	-	13	~	-	Plasmamembran
glucosamine-6-phosphate isome- rase	XP_653317	-	-	-	-	Cyto
70 kDa peptidyl-prolyl isomerase	XP_656239,	-	-	-	-	Cyto
triosephosphate isomerase	CAA73817	-	-	~	-	Cyto
6-phosphofructokinase	XP_656482	-	-	~	-	Cyto
phosphofructokinase	XP_653373	-	-	~	-	Cyto
PPi-dependent phosphofructoki- nase	AAC04465	-	-	~	-	Cyto
phosphoglycerate kinase	XP_653686	-	-	-	-	Cyto
pyruvate phosphate dikinase	XP_657332	-	-	-	-	Cyto
aspartateammonia ligase	XP_657492	-	-	~	-	Cyto
long-chain-fatty-acidCoA ligase	XP_651087	-	-	-	-	Nucl, ER Membran
long-chain-fatty-acidCoA ligase	XP_649712	SA	-	-	-	ER
long-chain-fatty-acidCoA ligase	XP_655072	SA	-	-	-	Plasmamembran
phosphopantothenoylcysteine decarboxyla- se/phosphopantothenatecysteine ligase	XP_654544	-	-	~	-	Cyto
aspartate ammonia-lyase	XP_655826	-	-	-	-	-
methionine gamma-lyase	XP_648806	-	-	-	-	-
malic enzyme	XP_648590	-	-	~	-	-
2,3-bisphosphoglycerate- independent phosphoglycerate mutase	XP_654182	-	-	~	-	-
phosphoglucomutase	XP_657021	-	-	~	-	-
phosphoglucomuta- se/phosphomannomutase family protein	XP_648671	-	-	-	-	-
oxysterol binding protein	XP_655624	-	-	~	-	GA Membran
oxysterol binding protein	XP_653552	-	-	-	-	-
protein phosphatase family prote- in	XP_650992	-	-	-	-	-
serine/threonine-protein phospha- tase 2A catalytic subunit alpha isoform (protein phosphatase-2A)	XP_656214	-	-	~	-	-

inorganic pyrophosphatase	XP_649445	-	-	-	-	-
glycerophosphoryl diester phosphodiesterase	XP_649476	SA	1	-	-	-
glycerophosphoryl diester phosphodiesterase	XP_654143	SA	1	-	-	-
glycogen phosphorylase	XP_655120	-	-	-	-	-
glycogen phosphorylase	XP_655667	-	-	-	-	Mito
UDP-glucose pyrophosphorylase	XP_652750	-	-	-	-	-
hydroxylamine reductase	XP_650006	-	-	~	-	-
oxidoreductase	XP_656504	-	-	-	-	Mito
pyruvate:ferredoxin oxidoreducta- se	XP_657019	-	-	-	-	-
steroid 5-alpha reductase	XP_654922	-	4	~	-	-
cysteine synthase A	XP_650965	-	-	-	-	-
dolichol monophosphate mannose synthase	XP_651399	-	4	-	-	-
geranylgeranyl pyrophosphate synthase	XP_653910	-	-	-	-	-
glutamate synthase beta subunit	XP_656997	-	-	-	-	-
acyl-CoA synthetase	XP_656410	-	-	~	-	-
	ND (5(200					
acetyl-CoA synthetase	XP_656290	-	-	-	-	-
acetyl-CoA synthetase acyl-CoA synthetase	XP_656290 XP_653997,	-	-	-	-	- Cytoplasmatisches Vesikel, Mikrosom, ER
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family	XP_656290 XP_653997, XP_654782,	-	-	· ·	-	- Cytoplasmatisches Vesikel, Mikrosom, ER -
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family	XP_656290 XP_653997, XP_654782, XP_649513,	- - -	-	· · · · · · · · · · · · · · · · · · ·	-	- Cytoplasmatisches Vesikel, Mikrosom, ER - -
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase	XP_656290 XP_653997, XP_654782, XP_649513, XP_655091	- - - -	- - - -	- V V V V	- - - -	- Cytoplasmatisches Vesikel, Mikrosom, ER - -
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2	XP_656290 XP_653997, XP_654782, XP_649513, XP_655091 XP_653222	- - - -	- - - - 1	- V V V -	-	- Cytoplasmatisches Vesikel, Mikrosom, ER - - - -
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase	XP_656290 XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_650919,	- - - - -	- - - 1 2	- - -	-	- Cytoplasmatisches Vesikel, Mikrosom, ER - - - - - ER Membran
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase dolichyl- diphosphooligosaccharide-protein glycotransferase	XP_656290 XP_653997, XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_650919, XP_653407	- - - - - 16	- - - 1 2	- - -	-	- Cytoplasmatisches Vesikel, Mikrosom, ER ER Membran ER Membran
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase dolichyl- diphosphooligosaccharide-protein glycotransferase dolychil- diphosphooligosaccharide-protein glycosyltransferase	XP_656290 XP_653997, XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_653407 XP_001913394	- - - - - 16	- - - 1 2 1	- - -	- - - - -	- Cytoplasmatisches Vesikel, Mikrosom, ER ER Membran ER Membran
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase dolichyl- diphosphooligosaccharide-protein glycotransferase dolychil- diphosphooligosaccharide-protein glycosyltransferase glucosamine 6-phosphate N- acetyltransferase	XP_656290 XP_653997, XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_653407 XP_001913394 XP_648703	- - - - - - 16 -	- - - - 1 2 1 1 -	- V V - - -		- Cytoplasmatisches Vesikel, Mikrosom, ER
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase dolichyl- diphosphooligosaccharide-protein glycotransferase dolychil- diphosphooligosaccharide-protein glycosyltransferase glucosamine 6-phosphate N- acetyltransferase glycosyltransferase	XP_656290 XP_653997, XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_653407 XP_001913394 XP_648703 XP_657275,	- - - - - - 16 - - - - - - - - -	- - - - 1 2 1 - 1 - 3	- V V - - - -	- - - - - -	- Cytoplasmatisches Vesikel, Mikrosom, ER ER Membran ER Membran ER Membran ER Membran ER Membran ER Membran
acetyl-CoA synthetase acyl-CoA synthetase acetyltransferase, GNAT family acetyltransferase, GNAT family 4-alpha-glucanotransferase alpha-1,3-mannosyltransferase ALG2 chitobiosyldiphosphodolichol beta-mannosyltransferase dolichyl- diphosphooligosaccharide-protein glycotransferase dolychil- diphosphooligosaccharide-protein glycosyltransferase glucosamine 6-phosphate N- acetyltransferase glycosyltransferase	XP_656290 XP_653997, XP_653997, XP_654782, XP_649513, XP_655091 XP_653222 XP_650919, XP_653407 XP_001913394 XP_648703 XP_653076	- - - - - - 16 - - - SA -	- - - - 1 2 1 1 - 3 -	- V V - - - V - V		- Cytoplasmatisches Vesikel, Mikrosom, ER ER Membran ER Membran ER Membran ER Membran ER Membran

	-					-				
glycylpeptide N- tetradecanoyltransferase	XP_653252	-	-	-	-	-				
53sulfate adenylyltransferase	XP_653570	-	-	-	-	-				
transketolase	XP_001913844	-	-	-	-	-				
Kinasen										
adenylate kinase	XP_649500	-	-	-	-	-				
choline/ethanolamine kinase	XP_656977	-	-	-	-	-				
hypothetical protein	XP_655630	-	-	-	-	-				
enolase	XP_649161	-	-	-	-	-				
FKBP-rapamycin associated pro- tein (FRAP)	XP_650639	-	-	-	-	-				
kinase	XP_653034	-	-	~	-	-				
galactokinase	XP_649045	-	-	-	-	-				
hexokinase	XP_655965	-	-	-	-	-				
mitogen-activated protein kinase	XP_653959	-	-	-	-	-				
nucleoside diphosphate kinase	XP_655004	-	-	-	-	-				
p21-activated kinase	XP_657512	-	-	-	-	-				
phosphatidylinositol 3-kinase	XP_649802	-	-	-	-	-				
phosphoribulokinase/uridine kina- se family protein	XP_651299	-	-	-	-	-				
protein kinase	XP_650711	-	-	-	-	-				
protein kinase	XP_654883	-	-	-	-	-				
protein kinase	XP_654636	-	-	-	-	-				
protein kinase domain containing protein	XP_651793	-	-	-	-	-				
protein kinase domain containing protein	XP_654114	28	2	-	-	-				
protein tyrosine kinase domain- containing protein	XP_654020	13	1	-	-	-				
receptor protein kinase	XP_648987	19	1	-	-	-				
SH2-protein kinase domain con- taining protein	XP_649115	-	-	-	-	-				
thymidine kinase	XP_655924,	-	-	-	-	-				
tyrosine kinase	XP_650137	16	1	-	-	-				
Lipid Metabolismus										
fatty acid elongase	XP_656100	-	2	~	-	-				
fatty acid elongase	XP_654403	-	2	~	-	-				
fatty acid elongase	XP_650157	-	2	~	-	-				
sphingosine-1-phosphate lyase 1	XP_653770	SP	-	~	-	ER Membran				

b-keto acyl reductase	XP_649970	SA	-	-	-	-
Membran	<u> </u>	1	<u> </u>			
non-transporter ABC protein	XP_649280	-	-	-	-	ATPase AAA+ type
galactose-specific adhesin 170kD subunit	XP_655415	16	1	-	-	-
arsenite-translocating ATPase	XP_649286	-	-	~	-	-
plasma membrane calcium- transporting ATPase	XP_650864	-	8	~	~	-
plasma membrane calcium- transporting ATPase	XP_651287,	-	8	-	~	-
v-type ATPase, A subunit	XP_652625	-	-	~	-	-
v-type ATPase, B subunit	XP_656034	-	-	~	-	-
v-type ATPase, D subunit	XP_651598	-	-	-	-	-
v-type ATPase, F subunit	XP_654369,	-	-	~	-	Membran
vacuolar ATP synthase subunit D	XP_651515	-	-	~	-	-
vacuolar ATP synthase subunit E	XP_656703	-	-	~	-	-
bacterial transferase hexapeptide family protein	XP_650707	-	-	-	-	-
D-3-phosphoglycerate dehydro- genase	XP_652140	-	-	-	-	-
diphthamide synthesis protein	XP_653288	-	-	~	-	-
galactose-specific adhesin light subunit	XP_001913429	SP	-	-	-	-
galactose-inhibitable lectin 170 kDa subunit	XP_001913693	16	-	-	-	-
galactose lectin 35kDa (light) subunit	XP_656145	-	-	~	-	-
Gal/GalNAc lectin heavy subunit	XP_650534	15	1	-	-	-
Gal/GalNAc lectin heavy subunit	XP_656181	15	1	-	-	-
hypothetical protein	XP_654447	13	-	-	-	-
Gal/GalNAc lectin light subunit	XP_657460	18	-	-	-	-
Gal/GalNAc lectin subunit Igl2	XP_652394	13	-	-	-	-
immuno-dominant variable surfa- ce antigen	XP_654508	SA	-	-	-	-
multidrug resistance protein	XP_651702	SA	16	~	-	ATPase AAA+ type
P-glycoprotein-1	XP_651764	-	9	~	-	ATPase AAA+ type
P-glyco protein 6	XP_656596	-	11	~	-	ATPase AAA+ type
DNA/RNA metabolismus, Translat	ion			1		
activator 1 40 kDa subunit	XP_651156	-	-	-	-	ATPase AAA+ type

centromere/microtubule binding protein cbf5	XP_649989	-	-	-	-	-
enhancer binding protein-1	XP_651783	-	-	-	-	Nucleotide-binding
enhancer binding protein 2 (EBP2)	XP_650734	-	-	~	-	Nucleotide-binding
enhancer binding protein-2	XP_649106	-	-	~	-	Nucleotide-binding
nucleolar GTP-binding protein 1	XP_653339	-	-	-	-	-
polyadenylate-binding protein	XP_650900	-	-	-	-	-
polyadenylate-binding protein	XP_655191	-	-	-	-	Nucleotide-binding
snoRNA binding protein	XP_648166	-	-	-	-	-
URE3-BP sequence specific DNA binding protein	AAG18423	-	-	~	-	Calcium-binding EF-hand
RNA 3'-terminal phosphate cycla- se	XP_649981	-	-	~	-	Mito
elongation factor 1-alpha 1	XP_648361	-	-	-	-	-
elongation factor 1-alpha 1	XP_651869	-	-	-	-	-
elongation factor 1 beta	BAA22014	-	-	~	-	-
elongation factor 2	XP_001913572	-	-	~	-	-
helicase	XP_655794	-	-	-	-	-
DEAD/DEAH box helicase	XP_657280	-	-	-	-	-
DEAD/DEAH box helicase	XP_654408	-	-	-	-	-
ruvB-like DNA helicase	XP_651853	-	-	-	-	ATPase AAA+ type
ruvB-like DNA helicase	XP_650562	-	-	-	-	ATPase AAA+ type
helix-turn-helix protein	XP_655832	-	-	~	-	-
high mobility group (HMG) box domain containing protein	XP_653089	-	-	-	-	-
histone H2A	XP_652470	-	-	-	-	-
Initiation factor eIF-2B delta subunit	XP_652622	SA	1	-	-	-
translation initiation factor eIF-5A	XP_651531	-	-	-	-	Nucleic acid- binding
translation initiation factor IF-2	XP_652306	-	-	-	-	-
eukaryotic translation initiation factor 2 alpha subunit	XP_652843,	-	-	-	-	Nucleic acid- binding
hypothetical protein	XP_655399,	-	-	-	-	WD40 repeat
Eukaryotic translation initiation factor eIF-5	XP_651802	-	-	-	-	-
eukaryotic translation initiation factor 6	XP_653440,	-	-	-	-	-
ribose 5-phosphate isomerase	XP_651609	-	-	-	-	-
eukaryotic peptide chain release factor subunit 1	XP_655687	-	-	-	-	-

proliferating-cell nucleolar anti- gen p120	XP_654993	-	-	-	-	-
nucleolar complex protein 2 ho- molog	XP_656638	-	-	-	-	-
nucleolar protein Nop56	XP_654230	-	-	-	-	-
nucleolar phosphoprotein Nopp34	XP_650506	-	-	~	-	nucleotide-binding
nucleosome assembly protein	XP_651305	-	-	-	-	nucl
3'(2'),5'-bisphosphate nucleotidase	XP_651950	-	-	-	-	-
purine nucleoside phosphorylase	XP_655550,	-	-	-	-	-
purine nucleoside phosphorylase	XP_655507	-	-	-	-	-
purine nucleoside phosphorylase	XP_655398	-	-	-	-	-
purine nucleoside phosphorylase	XP_652740	-	-	-	-	-
Replication factor C subunit 4	XP_654775	-	-	-	-	ATPase AAA+ type
endoribonuclease L-PSP	XP_651357	17	-	-	-	-
3' exoribonuclease family protein	XP_651847	-	-	-	-	-
ribosome biogenesis protein	XP_649898	-	-	-	-	-
ribosome biogenesis protein Nop10	XP_654909	-	-	~	-	-
DNA-directed RNA polymerase subunit	XP_652347	-	-	-	-	-
	VD (4020)					mual
Subunit RPA1	XP_649386	-	-	-	-	nuci
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein	XP_649386 XP_001913806	-	-	-	-	ATPase AAA+ type
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein	XP_649386 XP_001913806 XP_648084	-	-	-	-	ATPase AAA+ type -
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5	XP_649386 XP_001913806 XP_648084 XP_654947	-	-	- - -	-	ATPase AAA+ type
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552	- - - -	- - - -	- - - -	- - - -	ATPase AAA+ type
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543	- - - -	- - - -	- - - - -	- - - -	ATPase AAA+ type Nucleic acid binding
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase aspartyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894	- - - - -	- - - - -	- - - - - -	- - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546	- - - - - -	- - - - - - -	- - - - - - -	- - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding -
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase glutaminyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546 XP_655785	- - - - - - - -	- - - - - - - - -	- - - - - - - -	- - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase aspartyl-tRNA synthetase glutaminyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546 XP_655785 XP_656678	- - - - - - - -	- - - - - - - - - -	- - - - - - - -	- - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain Anti-codon binding domain
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546 XP_650546 XP_655785 XP_65565	- - - - - - - - -	- - - - - - - - - -	- - - - - - - - - - -	- - - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain Anti-codon binding domain Anti-codon binding domain
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase histidyl-tRNA synthetase histidyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_650546 XP_650546 XP_655785 XP_6556678 XP_6556678 XP_650600	- - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - -	- - - - - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain Anti-codon binding domain Anti-codon binding domain Anti-codon binding domain
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase histidyl-tRNA synthetase histidyl-tRNA synthetase histidyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546 XP_650546 XP_655785 XP_656678 XP_65565 XP_650600 XP_651987	- - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain Anti-codon binding domain Anti-codon binding domain nucleic acid binding
DNA-directed RNA polymerase I subunit RPA1 RNAseL inhibitor-like protein Nonsense-mediated mRNA decay protein rRNA biogenesis protein RRP5 arginyl-tRNA synthetase asparaginyl-tRNA synthetase glutaminyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase glutamyl-tRNA synthetase histidyl-tRNA synthetase hypothetical protein phenylalanyl-tRNA synthetase alpha subunit prolyl-tRNA synthetase	XP_649386 XP_001913806 XP_648084 XP_654947 XP_651552 XP_651543 XP_649894 XP_650546 XP_650546 XP_655785 XP_656678 XP_65565 XP_65565 XP_651987 XP_651857	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - -	ATPase AAA+ type Nucleic acid binding Nucleic acid binding - Anti-codon binding domain Anti-codon binding domain nucleic acid binding - Anti-codon binding domain nucleic acid binding - Anti-codon binding domain

threonyl-tRNA synthetase	XP_653365	-	-	-	-	Anti-codon binding domain		
tyrosyl-tRNA synthetase	XP_650212	-	-	-	-	-		
hypothetical protein	XP_657442	-	-	~	-	-		
S-phase kinase-associated protein 1A	XP_651670	-	-	~	-	-		
structural maintenance of chromo- somes protein	XP_656581	-	-	-	-	-		
hypothetical protein	XP_655216	-	-	-	-	-		
snoRNP protein gar1	XP_654725	-	-	-	-	-		
transcription factor BTF3	XP_654992	-	-	-	-	-		
Protein-protein Interaktion						1		
ubiquitin-like	XP_649463	-	-	~	-	-		
cdc48-like protein	XP_650911	-	-	-	-	AAA ATPases		
ankyrin repeat protein	XP_650635	-	-	-	-	-		
ankyrin repeat protein	XP_652122	-	-	-	-	-		
replication factor C familiy prote- in	XP_651283	-	-	~	-	AAA ATPases		
Signaling								
FKBP-rapamycin associated pro- tein (FRAP)	XP_650639	-	-	-	-	-		
phosphatidylinositol3-kinase Tor2	XP_651206,	-	-	-	-	-		
L-myo-inositol-1-phosphate synthase	XP_654310	-	-	~	-	-		
Ribosomale Proteine						1		
13 kDa ribonucleoprotein- associated protein / ribosomal protein 17ae	XP_654237	-	-	-	-	-		
40S ribosomal protein SA	XP_647879	-	-	-	-	-		
40S ribosomal protein S2	XP_648968	-	-	-	-	-		
40S ribosomal protein S3	XP_649921	-	-	~	-	-		
40S ribosomal protein S3a	XP_652399	-	-	-	-	-		
40S ribosomal protein S3a	XP_648594	-	-	~	-	-		
40S ribosomal protein S5	XP_650402	-	-	~	-	-		
40S ribosomal protein S6	XP_648173	-	-	-	-	-		
40S ribosomal protein S7	XP_001913775	-	-	~	-	Mito		
40S ribosomal protein S7	XP_657156	-	-	~	-	-		
40S ribosomal protein S9	XP_656500	-	-	~	-	RNA-binding		
40S ribosomal protein S10	XP_653143	-	-	~	-	-		
40S ribosomal protein S11	XP_649442	-	-	~	-	Nucleic acid- binding		

40S ribosomal protein S11	XP_655751	-	-	~	-	Nucleic acid- binding
40S ribosomal protein S12	XP_650093	-	-	-	-	-
40S ribosomal protein S13	XP_656099	-	-	~	-	Mito
						RNA-binding
40S ribosomal protein S14	XP_653549	-	-	~	-	-
40S ribosomal protein S15	XP_648450	-	-	~	-	-
40S ribosomal protein S15a	XP_650361	-	-	~	-	-
40S ribosomal protein S16	XP_656860	-	-	~	-	-
40S ribosomal protein S17	XP_651661	-	-	~	~	-
40S ribosomal protein S17	XP_648986	-	-	~	~	-
40S ribosomal protein S18	XP_654098	-	-	-	-	-
40S ribosomal protein S19	XP_649039	-	-	~	-	-
40S ribosomal protein S20	XP_656743	-	-	~	-	-
40S ribosomal protein S20	XP_655378	-	-	~	-	-
40S ribosomal protein S21	XP_651538	-	-	-	-	-
40S ribosomal protein S23	XP_648346	-	-	~	-	Mito
40S ribosomal protein S24	XP_649038	-	-	~	-	Nucleotide-binding
40S ribosomal protein S25	XP_655917	-	-	-	-	-
40S ribosomal protein S26	XP_649710	-	-	~	-	-
40S ribosomal protein S26	XP_653928	-	-	~	-	-
40S ribosomal protein S27	XP_656988	19	-	-	-	-
40S ribosomal protein S28	XP_652698	-	-	-	-	Nucleic acid- binding
ribosomal protein S29	XP_652452	-	-	~	-	-
Ribosomal protein S30	XP_656699	-	-	~	-	-
60S acidic ribosomal protein PO	XP_648494	-	-	~	-	-
60S acidic ribosomal protein P0	XP_649340	-	-	-	-	-
60S acidic ribosomal protein P1	XP_650578	28	-	-	-	-
60S acidic ribosomal protein P1	XP_652637	26	-	-	-	-
60S acidic ribosomal protein P2	XP_656438		-	-	-	-
60S acidic ribosomal protein P2	XP_650140	-	-	-	-	-
60S ribosomal protein L2/L8	XP_652173	-	-	~	-	Mito
60S ribosomal protein L3	XP_652042	-	-	~	-	Mito
60S ribosomal protein L4	XP_001913650	-	-	-	-	-
60S ribosomal protein L5	XP_650508	-	-	-	-	-
60S ribosomal protein L6	XP_654189	-	-	-	-	-
60S ribosomal protein L6	XP_653603	-	-	-	-	-

60S ribosomal protein L6	XP_657157	-	-	-	-	-
60S ribosomal protein L7	XP_653065	-	-	-	-	-
60S ribosomal protein L7	XP_656887	-	-	-	-	-
60S ribosomal protein L7	XP_649035	-	-	~	-	-
60S ribosomal protein L7a	XP_649126	-	-	-	-	-
60S ribosomal protein L9	XP_652462	-	-	-	-	-
60S ribosomal protein L10	XP_652099	-	-	~	-	-
60S ribosomal protein L10a	XP_654001	-	-	~	-	-
60S ribosomal protein L11	XP_651463	-	-	~	-	-
60S ribosomal protein L12	XP_648500	-	-	~	-	-
60S ribosomal protein L13	XP_650787	-	-	-	-	-
60S ribosomal protein L14	XP_649601	-	-	~	-	-
60S ribosomal protein L15	XP_648344	-	-	-	-	Mito
60S ribosomal protein L16-B	XP_649726	-	-	-	-	-
60S ribosomal protein L17	XP_652544	-	-	~	-	-
60S ribosomal protein L17	XP_652305	-	-	~	-	-
60S ribosomal protein L17	XP_652070	-	-	~	-	-
60S ribosomal protein L18	XP_649082	-	-	-	-	-
60S ribosomal protein L18a	XP_648709	-	-	~	-	-
60S ribosomal protein L19	XP_657044	-	-	-	-	-
hypothetical protein	XP_647933	-	-	~	-	60S ribosomal pro-
						tein L22
60S ribosomal protein L23	XP_651297	-	-	~	-	-
ribosomal protein L23A	XP_655485	-	-	~	-	Nucleotide-binding
60S ribosomal protein L24	XP_648504	-	-	~	-	-
60S ribosomal protein L26	XP_649063	-	-	-	-	Mito
60S ribosomal protein L26	XP_656954	-	-	-	-	Mito
60S ribosomal protein L27	XP_649918	-	-	-	-	Mito
60S ribosomal protein L27	XP_654328	-	-	-	-	Mito
60S ribosomal protein L30	XP_653650	-	-	-	-	-
60S ribosomal protein L31	XP_651162	-	-	~	-	-
60S ribosomal protein L31	XP_651726	-	-	~	-	-
60S ribosomal protein L32	XP_657219	-	-	-	-	-
60S ribosomal protein L34	XP_654784	-	-	-	-	Mito
60S ribosomal protein L35	XP_654433	-	-	~	-	-
60S ribosomal protein L35a	XP_651074	-	-	~	-	Mito
60S ribosomal protein L36	XP_649173	-	-	~	-	-
60S ribosomal protein L37a	XP_652970	-	-	~	-	-
	1		i		1	4

60S ribosomal protein L38	XP_651276	-	-	~	-	-					
60S ribosomal protein L40	XP_651040	-	-	~	-	-					
60S ribosomal protein L44	XP_649950	-	-	~	-	-					
60S ribosome subunit Biogenesis protein NIP7	XP_648037	-	-	-	-	-					
synapsin-2	XP_652171	-	-	~	-	-					
Proteine unbekannter Funktion											
20 kDa antigen	AAC37177	-	-	~	-	-					
antigen	CAA55733	-	-	~	-	-					
HEAT repeat domain containing protein	XP_648949	-	-	-	-	-					
HEAT repeat domain containing protein	XP_649444	-	-	~	-	-					
HEAT repeat domain containing protein	XP_654840	-	-	~	-	-					
glutamic acid-rich protein	XP_001913764	-	-	~	-	-					
leucine rich repeat / protein phosphatase 2C domain contai- ning protein	XP_650359	-	-	-	-	-					
lysine and glutamic acid-rich protein 1 (KERP1)	XP_653629	-	-	-	-	-					
MIR domain protein	XP_655109	19	-	-	-	-					
alpha-NAC protein	XP_655031	-	-	-	-	-					
RNA recognition motif domain containing protein	XP_655375	-	-	-	-	Nucleotide-binding					
serine-threonine-isoleucine rich protein	XP_001913596	16	-	-	-	-					
serine-threonine-isoleucine rich protein	XP_649372	-	1	-	-	-					
SH3 domain protein	XP_656019	-	-	-	-	BAR					
BAR/SH3 domain containing protein	XP_650391	-	-	-	-	BAR					
TolA-like protein	XP_651632	-	-	-	-	-					
TolA protein	XP_653253	-	-	~	-	-					
viral A-type inclusion protein repeat	XP_657286	-	-	-	-	-					
WD domain containing protein	XP_650923	-	-	-	-	WD40 repeat					
WD domain containing protein	XP_652423	-	-	-	-	WD40 repeat					
WD domain containing protein	XP_654125	-	-	~	-	WD40 repeat					
WD domain containing protein	XP_657491	-	-	~	-	WD40 repeat					
WD repeat protein 2	XP_001913490	-	-	-	-	WD40 repeat					
WD-repeat protein	XP_654879	-	-	~	-	WD40 repeat					

pop3	vorhanden	-	-	-	-	WD40 repeat
WD repeat protein	XP_653734	-	-	-	-	WD40 repeat
WD repeat protein	XP_651916	-	-	-	-	WD40 repeat
WD repeat protein	XP_654286	-	-	~	-	WD40 repeat
WD repeat protein	XP_656876	-	-	~	-	Mito WD40 repeat
zinc finger protein	XP_650789	-	-	~	-	double stranded RNA binding
hypothetical protein	XP_652016	15	-	-	-	ER
hypothetical protein	XP_648732	-	-	-	-	-
hypothetical protein	XP_650979,	SA	5	-	-	ER
hypothetical protein	XP_656104	-	-	-	-	-
hypothetical protein	XP_649876	-	-	-	-	5 LIM
hypothetical protein	XP_653039	-	-	-	-	-
hypothetical protein	XP_657426	-	-	~	-	-
hypothetical protein	XP_657429	-	-	-	-	-
hypothetical protein	XP_657442	-	-	~	-	-
hypothetical protein	XP_654752	-	-	-	-	AAA+ ATPases
hypothetical protein	XP_656594,	-	-	-	-	-
hypothetical protein	XP_656253	-	-	-	-	-
hypothetical protein	XP_001913451	SA	-	-	-	-
hypothetical protein	XP_656943	-	-	-	-	-
hypothetical protein	XP_655054	-	-	-	-	-
hypothetical protein	XP_656143	-	-	~	-	-
hypothetical protein	XP_001913557	19	1	-	-	ER
hypothetical protein	XP_652818	-	-	-	-	-
hypothetical protein	XP_653602	-	-	~	-	-
hypothetical protein	XP_654691	-	-	~	-	-
hypothetical protein	XP_001913951	-	-	-	-	-
hypothetical protein	XP_001914097	-	-	-	-	-
hypothetical protein	XP_654299	-	-	-	-	-
hypothetical protein	XP_648373	-	-	~	-	-
hypothetical protein	XP_649155	-	-	~	-	LIM
hypothetical protein	XP_649469	SA	6	-	-	-
hypothetical protein	XP_649559	-	9	-	-	-
hypothetical protein	XP_649879	16	1	-	-	ER
hypothetical protein	XP_649888	16	-	-	-	ER

-							
ł	hypothetical protein	XP_650031	-	-	-	-	-
ł	hypothetical protein	XP_650077	-	-	~	-	-
ł	hypothetical protein	XP_650197	-	-	-	-	LIM
ł	hypothetical protein	XP_650806	18	-	-	-	ER
ł	nypothetical protein	XP_650987	-	-	-	-	-
ł	nypothetical protein	XP_652116	-	-	-	-	-
ł	nypothetical protein	XP_652202	17	-	-	-	ER
ł	hypothetical protein	XP_652293	-	-	~	~	-
ł	hypothetical protein	XP_653761,	-	-	-	-	-
ł	hypothetical protein	XP_654420	15	1	-	-	ER
ł	hypothetical protein	XP_654443	-	1	-	-	-
ł	nypothetical protein	XP_654688	-	-	~	-	LIM
ł	nypothetical protein	XP_654693	-	-	~	-	-
ł	nypothetical protein	XP_654714,	-	4	-	-	-
ł	nypothetical protein	XP_655639	-	-	-	-	ATPase-like, ATP- binding domain
ł	nypothetical protein	XP_656510	-	1	-	-	-
ł	nypothetical protein	XP_656900,	16	1	-	-	ER
ł	hypothetical protein	XP_656996	-	-	~	-	-
ł	hypothetical protein	XP_657298	15	-	-	-	ER
ł	nypothetical protein	XP_657518	15	-	-	-	ER
ł	hypothetical protein	XP_657444	-	-	~	-	-
ł	nypothetical protein	XP_650063	-	-	-	-	-
ł	nypothetical protein	XP_652327	-	-	~	-	-
ł	hypothetical protein	XP_648249	-	-	~	-	-
ł	nypothetical protein	XP_656635	-	2	~	-	-
ł	nypothetical protein	AAFB02000124.1	-	-	-	-	-
ł	nypothetical protein	XP_649139	-	-	~	-	-
ł	nypothetical protein	XP_653512	-	-	-	-	-
ł	nypothetical protein	XP_651160	-	-	-	-	-
ł	nypothetical protein	XP_653039	-	-	-	-	-
ł	nypothetical protein	XP_652046	-	-	-	-	-
ł	nypothetical protein	XP_654500	-	-	~	~	-
ł	nypothetical protein	XP_649813	-	-	-	-	DNA polymerase V
ł	hypothetical protein	XP_650998	-	-	-	-	-
ł	nypothetical protein	XP_654045	-	-	~	-	-
ł	hypothetical protein	XP_653350	-	-	-	-	-
ł	nypothetical protein	XP_656616	-	-	-	-	-

hypothetical protein	XP_649359	-	-	-	-	-
hypothetical protein	XP_650383	-	-	-	-	-
hypothetical protein	XP_657167	-	1	-	-	-
hypothetical protein	XP_655607	-	-	-	-	-
hypothetical protein	XP_653141	-	-	-	-	-
hypothetical protein	XP_650629	-	-	-	-	-
hypothetical protein	XP_656594	-	-	-	-	-
hypothetical protein	XP_650409	-	-	-	-	-
hypothetical protein	XP_001913538	-	-	~	-	-
hypothetical protein	XP_001913634	-	-	-	-	-
hypothetical protein	XP_648545	-	-	~	-	-
hypothetical protein	XP_001913701	-	-	-	-	-
hypothetical protein	XP_649859	-	2	~	-	-
hypothetical protein	XP_656525	-	-	~	-	Heat shock protein DnaJ N-terminal
hypothetical protein	XP_001913816	-	-	-	-	-
hypothetical protein	XP_651295	-	-	-	-	-
hypothetical protein	XP_652023	-	-	~	-	-
hypothetical protein	XP_651268	-	-	~	-	-
hypothetical protein	XP_001913915	-	-	~	-	-
hypothetical protein	XP_001913941	-	-	-	-	-
hypothetical protein	XP_650601	20	-	-	-	GPI-omega-site
hypothetical protein	XP_649546	-	-	~	-	-
hypothetical protein	XP_649932	-	-	-	-	-
hypothetical protein	XP_651447	-	-	~	-	-
hypothetical protein	XP_001914372	-	-	-	-	-
hypothetical protein	XP_652254	-	-	~	-	-
hypothetical protein	XP_648689	-	-	-	-	-
hypothetical protein	XP_648723	-	-	-	-	-
hypothetical protein	XP_648934	-	-	-	-	-
hypothetical protein	XP_649159	SA	-	-	-	-
hypothetical protein	XP_649236	14	-	-	-	-
hypothetical protein	XP_649520	-	-	~	-	-
hypothetical protein	XP_649606	-	-	-	-	-
hypothetical protein	XP_650151	SA	-	-	-	-
hypothetical protein	XP_650291	-	-	-	-	-
hypothetical protein	XP_650648	-	-	-	-	-
hypothetical protein	XP_650677	-	-	-	-	-
	1					1

hypothetical protein	XP_650812	-	-	~	-	4 LIM
hypothetical protein	XP_650862	-	-	-	-	-
hypothetical protein	XP_650967	-	1	-	-	-
hypothetical protein	XP_651234	-	-	-	-	-
hypothetical protein	XP_651237	20	-	-	-	-
hypothetical protein	XP_651738	-	-	~	-	-
hypothetical protein	XP_651751	15	-	-	-	-
hypothetical protein	XP_652143	-	-	~	-	-
hypothetical protein	XP_652195	14	-	-	-	-
hypothetical protein	XP_652196	15	-	-	-	PI omega-site
hypothetical protein	XP_652202	17	-	-	-	-
hypothetical protein	XP_652241	-	-	~	-	-
hypothetical protein	XP_652362	-	-	~	-	-
hypothetical protein	XP_652719	-	-	-	-	Mito
hypothetical protein	XP_652816	-	-	-	-	-
hypothetical protein	XP_652847	-	-	-	-	-
hypothetical protein	XP_652904	-	-	-	-	-
hypothetical protein	XP_653006	-	-	~	-	-
hypothetical protein	XP_653036	20	1	-	-	-
hypothetical protein	XP_653430	-	-	~	-	-
hypothetical protein	XP_653482	-	-	~	-	-
hypothetical protein	XP_653548	-	-	-	-	-
hypothetical protein	XP_653843	-	3	-	-	-
hypothetical protein	XP_653931	-	-	-	-	-
hypothetical protein	XP_654122	-	-	-	-	-
hypothetical protein	XP_654163	15	-	-	-	-
hypothetical protein	XP_654164	-	-	-	-	-
hypothetical protein	XP_654200	-	-	-	-	-
hypothetical protein	XP_654267	-	-	-	-	-
hypothetical protein	XP_654422	-	-	-	-	-
hypothetical protein	XP_654479	-	-	-	-	-
hypothetical protein	XP_654576	-	-	-	-	-
hypothetical protein	XP_654744	-	3	-	-	-
hypothetical protein	XP_654765	-	-	-	-	-
hypothetical protein	XP_655528	-	-	-	-	-
hypothetical protein	XP_655559	-	-	-	-	-
hypothetical protein	XP_655605	-	-	-	-	-
hypothetical protein	XP_655651	-	-	-	-	-

hypothetical protein	XP_655973	-	-	-	-	-
hypothetical protein	XP_656027	20	1	-	-	-
hypothetical protein	XP_656115	-	-	-	-	-
hypothetical protein	XP_656126	15	1	-	-	-
hypothetical protein	XP_656332	-	-	-	-	-
hypothetical protein	XP_656416	-	-	-	-	-
hypothetical protein	XP_656607	13	-	-	-	GPI omega-site
hypothetical protein	XP_656657	-	-	-	-	-
hypothetical protein	XP_656666	-	-	-	-	Heat shock protein DnaJ
hypothetical protein	XP_656720	-	-	-	-	
hypothetical protein	XP_656918	-	-	-	-	LIM
hypothetical protein	XP_657012	-	-	-	-	-
hypothetical protein	XP_657038	-	-	~	-	-
hypothetical protein	XP_657108	-	-	-	-	-
hypothetical protein	XP_657537	-	-	-	-	-
hypothetical protein	XP_657550	-	-	-	-	-

Danksagung

An dieser Stelle möchte ich meinen herzlichen Dank an die Menschen richten, die mich auf unterschiedliche Weise bei dieser Arbeit unterstützt haben.

Zunächst möchte ich mich bei der gesamten Arbeitsgruppe "Molekulare Parasitologie" am Bernhard-Nocht-Institut für ihre Hilfe und das angenehme Arbeitsklima während meiner Arbeit bedanken.

Mein ganz besonderer Dank gilt Frau Prof. Dr. Iris Bruchhaus für eine sehr engagierte und fürsorgliche Betreuung. Es ist schön wenn man mit seiner Chefin auch Spaß haben kann.

Ich danke Prof. Dr. Egbert Tannich für die Unterstützung und die Möglichkeit dieses Projekt durchzuführen.

Großer Dank geht an PD Dr. Hannelore Lotter für die Durchführung der zahlreichen Tierversuche.

Jürgen Sievertsen danke ich für die Einführung in das Anker- und Sensordesign und ein stets offenes Ohr für jegliche SNP-Fragen.

Ich danke Claudia Marggraff, Heidrun von Thien, Susann Ofori und Ina Hennings für die große Hilfe in so diversen Bereichen, dass ich sie hier nicht alle nennen kann.

Meinen Labor 5 Mitinsassen danke ich für eine schöne und lustige Zeit und Dr. Anna Bachmann zusätzlich für die bis ins Ausland reichende Unterstützung. Und auch durch Sabine Predehl, Elena Helk und Anna Tilly hat sich die Arbeit teilweise gar nicht wie Arbeit angefühlt.

Spezieller Dank geht an mein Haserl für die Hilfe, das Lachen, das Chaos und die Erfahrungen innerhalb und außerhalb des Labors.

Tiefer Dank geht auch an meine engen Freunde Miriam Dobberstein und Nicolas Böge ohne deren "Kontrolle" und Motivation diese Arbeit nicht in Druck gegangen wäre.

Abschließend möchte ich den für mich wichtigsten Menschen danken, meiner Familie. Meinen großartigen Schwestern Jessica und Nina für das Vertrauen in mich, wo ich schonmanchmal schon keins mehr hatte, für die Liebe und für die Kritik, welche mich immer weiter gebracht hat. Meinen Eltern, die den Grundstein gelegt haben. Ich denke ihr wäret stolz.

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertation selbständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit wurde nicht an anderer Stelle eingereicht.

Hamburg, den 24.02 2012

(Jenny Matthiesen)