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Chapter 1

Introduction

Electronic correlation effects in solid state physics are at the root of an incredibly large

variety of different physical phenomena. From the conceptually fairly well understood

correlation-driven Mott insulators, to the ever-elusive high temperature superconduc-

tivity, the most intriguing and nontrivial effects originate from the electron-electron in-

teractions. Phonon-related effects aside, solid-state physics is predominantly electronic

behaviour. As such, the effort to gain a proper understanding of the electronic many-

body system in a solid has been a driving force of the solid state community for many

decades.

As of today, our understanding of solid state physics is one of the major factors gov-

erning technological progress. On a large scale, material design guided by theoretical

modeling allows fine-tuning of desired properties, creating custom metal alloys [1] and

novel glasses [2]. On a smaller scale, understanding and clever use of microscopic ma-

terial properties enable the further miniaturization of computing devices, with logical

elements being built from a setup of a few atoms only [3].

While a large part of our knowledge concerning specific material physics comes from

the experiment great progress in the field has been achieved through density functional

theory [4, 5]. Pioneered in the middle of the last century, DFT provides a qualitatively

accurate understanding of a vast number of different materials. While initially limited

to simpler systems, the immense growth of computational power over the last decades

allows the treatment of unit cells with thousands of atoms, effectively pushing the limit

of structural complexity.

Another boundary not so easily overcome however is the the complexity in the nature

of electronic correlations. The electronic behaviour in materials accessible via the DFT

mean-field approach is, for the most part, reasonably itinerant and thus the effective

correlation strength is not particularly high. To gain access to the more intricate be-

haviour of strongly correlated systems, explicit many-body methods which go beyound

5



6 Chapter 1 Introduction

DFT are required. This is an area intense academic effort has been put into, and much

of the work presented here relies heavily on the methods and tools developed in recent

years.

The motivation for this work comes from the interest in understanding the interplay

between electronic correlations and magnetism in low-symmetry environment, with a

particular focus on surface systems. Here, adatom structures on surfaces provide an ex-

cellent opportunity to study these intricate physics, with the additional benefit of being

easily accessible with various experimental surface probe techniques. Low dimensional-

ity strengthens correlation effects in these adatom structures, while certain geometries,

in particular triangular lattice structures or setups with competing nearest neighbour

and next-nearest neighbour interactions, invite frustration effects. It is from this com-

plicated, intertwined interactions that the most interesting effects emerge.

The work presented here is subdivided into a rather brief theoretical introduction and

three major chapters each dealing with a particular material system or model setup.

Apart from gaining insight into their respective physics, which is worthwhile in itself,

each contributes a certain aspect to the overarching goal of assessing the role of the

individual interactions emerging in low-symmetry (surface) environments.

The first chapter deals with Sn adatom submonolayers on Si(111) and Ge(111) sub-

strates. These systems, being similar in their constituents but different in their physical

properties, allow us to learn more about the influence of the hybridization with the sub-

strate, but also magnetic frustration effects and nontrivial orders emerging from them.

The second chapter deals with two model systems, each representing a general low-

dimensional setup scenario, namely two-dimensional layered systems and coupled adatom

impurities on a surface. The main focus lies on the Dzyaloshinskii-Moriya interaction,

a noncollinear interaction between neighbouring spins originating from the spin-orbit

coupling in low symmetry environment. Theoretically present in most low-symmetry

setups, it is only recently that this topic has gained increased attention in the context

of electronic correlations. We will learn that its influence can be far from negligible and

responsible for novel and quite nontrivial noncollinear magnetic behaviour.

Lastly, the third chapter deals with magnetic adatoms on InSb(110) surface. In this re-

alistic material system strong magnetic anisotropies due to spin-orbit coupling emerge.

All these examples represent different instances of intricate behaviour emerging from

a combination of different physical interactions, all within a common background of a

surface (or, in case of the models, two-dimensional) geometry. As the our focus wanders

towards systems of ever higher complexity, understanding of these and, in turn, their

combinations, will become of major importance. It is the hope of the author to have

made a contribution here.



Chapter 2

Theoretical concepts and tools

The main goal of this work is the theoretical investigation of the behaviour of magnetic

adatom structures in low-dimensional systems in presence of strong electronic correla-

tions. As such, a multitude of different important theoretical tools and concepts make

an appearance over the course of the discussion. While references to original papers

and/or review articles are provided in the text, it is the intention of this introductory

chapter to give an overview of the most crucial techniques employed over the course of

this work. As the focus of the work lies on realistic structure calculations rather than

on the theoretical tools themselves the introduction will be kept on the brief side.

The chapter is structured as follows. The initial part deals with density functional theory

(DFT), its basics, features and shortcomings, and establishes its role in our investiga-

tion of realistic materials. The second part introduces the interface concept needed for a

follow-up explicit many body description of a realistic material system. Finally, the last

part of this chapter deals with the two explicit many-body techniques utilized in this

work, namely the dynamical mean-field theory (DMFT) and the rotationally-invariant

slave boson formalism (RISB), in some more detail.

2.1 Density functional theory (DFT)

A realistic material system is governed by intricate interaction between the nuclei form-

ing the lattice of the respective solid and the electrons included therein. Theoretically,

7



8 Chapter 2 Theoretical concepts and tools

the Hamiltonian

Ĥ = − ~
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2me
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i
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(2.1)

with electrons denoted by lower case subscripts and nuclei (with charges ZI and masses

MI) denoted by upper case ones, describes this complex behaviour, including, most

importantly, the electron-electron Coulomb interaction. From a practical point of view

however, Eq. (2.1) is unyielding to any direct approach for all but the simplest of

systems. Even if one acknowledges the fact that due to the comparatively huge mass

of the nuclei their response times are much longer than those of the electrons and thus

their kinetic energy can be safely neglected if one is not directly interested in effects

involving lattice movement, i.e. phonons, we are still left with a system of interacting

electrons moving in an external potential provided by the stationary nuclei (which is the

Born-Oppenheimer approximation). The problem, even reduced to

Ĥ = T̂e + V̂ext + V̂int + Enuclei (2.2)

in which the positions of the nuclei enter as parameters and their Coulomb interaction

gives a mere offset Enuclei, is one of interacting particles, and thus its hypothetical

solutions are many-body wavefunctions Ψi(r1, r2, · · · , rNe). These generally depend on

the 3Ne variables, with Ne being the total number of electrons in the system, which

makes the entire problem much too large (Ne ∼ 1023 for macroscopic systems) and

complicated to handle without introducing any kind of further simplification, which

brings us to the topic of DFT.

Density functional theory, in its formulation due to Hohenberg and Kohn (1964) [4],

is an exact theory of many-body systems. Its main statements can be summarized as

follows:

• For any system of interacting particles in an external potential Vext(r), all prop-

erties of this system (including the complete many-body wavefunctions for both

ground and excited states) are completely determined by the ground state density

n0(r).

• There exists an universal functional E[n(r)] the global minimum of which, for any

given Vext(r), gives the exact ground state energy of the system. The corresponding

density n(r) is then the exact ground state density n0(r) of the system at hand.
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Thus, theoretically, the Hamiltonian is completely determined by the ground state den-

sity n0(r), which is a function of 3 variables only.

Though the Hohenberg-Kohn theorems by themselves do not provide a way to actually

determine the density for a given system or the elusive functional E[n], they become

important in conjunction with the Kohn-Sham ansatz [5] (1965). As the ground state

density determines all properties, the authors suggest adopting an auxiliary system of

non-interacting particles with the same ground state density (which is assumed to exist).

The auxiliary Hamiltonian is chosen to be of the form

Ĥaux = −1

2
∇2 + V σ

eff (r), (2.3)

with a local (generally spin dependent) potential V σ
eff (r), and all calculations may be

now performed on the auxiliary independent-particle system.

As such, the density of the auxiliary system can be written in terms of single-particle

wavefunctions as

n(r) =
∑

σ

Nσ
∑

i=1

fσi |ψσ
i (r)|2. (2.4)

With the single-particle kinetic energy given by

Ts = −1

2

∑

σ

Nσ
∑

i=1

〈ψσ
i |∇2|ψσ

i 〉 (2.5)

and the Hartree energy in terms of particle density

EHartree[n] =
1

2

∫

drdr′
n(r)n(r′)
|r− r′| (2.6)

the Hohenberg-Kohn functional for the ground state energy can be written as

EKS = Ts[n] +

∫

dr Vext(r)n(r) + EHartree[n] + Exc[n] + Enuclei (2.7)

where all many-body exchange-correlation effects are grouped up into the (for now un-

known) functional Exc[n].

In this expression, all quantities save for the kinetic energy TS of the auxiliary system

are now written in terms of the density n(r). Varying EKS with respect to the wavefunc-

tions while enforcing orthonormalization 〈ψσ
i |ψσ′

j 〉 = δi,jδσ,σ′ via Lagrange multipliers εi

finally leads to the Kohn-Sham Schrödinger-like equations

(Hσ
KS − εσi )ψ

σ
i (r) = 0 (2.8)

with

Hσ
KS = −1

2
∇2 + V σ

KS(r) (2.9)
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and

V σ
KS(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

= Vext(r) + VHartree(r) + Vxc(r) (2.10)

The equations (2.8) have the form of single particle Schrödinger equations with a po-

tential dependent on the resulting density, and can be solved self-consistently. The thus

determined ground state density n0(r) is then, by construction, the same as the ground

state density of the system of interacting particles in an external potential Vext(r), with

the same ground state energy E0.

This is the gist of the density functional theory approach. All calculations are performed

on the auxiliary system: with the transition from many-body to single particle wave-

functions the task becomes numerically feasible. In return, only the ground state energy

and density are guaranteed to be correct in exact Kohn-Sham theory, the eigenvalues

and eigenfunctions themselves (and thus all quantities derived from them explicitly) are

not.

2.1.1 Exchange-correlation potentials

In addition to the issues of the Kohn-Sham approach itself mentioned in the previ-

ous section there remains the fact that the exchange correlation potential Exc[n] is not

known exactly. As the single-particle kinetic energy and the long-range Hartree terms

are treated explicitly, Exc[n] can be expected to be reasonably local in terms of the

density. Thus, practical calculations are performed using educated approximations to

Exc[n]. Surprisingly, even relatively simple approaches lead to satisfying results here.

Two most widely utilized approximations for Exc[n] are the local (spin) density ap-

proximation (L(S)DA) and the generalized gradient approximation (GGA). In the LDA

approach, the exchange-correlation energy of the system is assumed to be the same as

in a homogeneous electron gas with the same density.

ELSDA
xc [n↑, n↓] =

∫

dr n(r)ǫhomxc (n↑(r), n↓(r))

=

∫

dr n(r)[ǫhomx (n↑(r), n↓(r)) + ǫhomc (n↑(r), n↓(r))] (2.11)

where the exchange energy ǫhomx (n(r)) has an analytical expression

ǫσx = −3

4

(
6

π
nσ
) 1

3

(2.12)



Chapter 2 Theoretical concepts and tools 11

and an accurate parametrization of the correlation energy of the homogeneous electron

gas is available thanks to Monte-Carlo calculations by Ceperley and Alder [6]. The GGA

approach additionally involves the dependence of the local exchange-correlation energy

density ǫxc on the gradient of the electron density n0(r):

EGGA
xc [n↑, n↓] =

∫

dr n(r)ǫhomx (n)Fxc(n
↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|) (2.13)

where several different approximations for Fxc exist in literature. It provides an im-

provement upon LDA in systems with strong spatial variations in n0. As such is the

case in surface geometries, we will utilize the GGA functional with the parametrization

due to Perdew, Burke and Enzerhof [7] (PBE) throughout this work.

Over the years density functional theory, in the above-mentioned approximations, has

been found to provide a quantitatively correct description of a vast number of differ-

ent solid state material systems. Essential problems, however, arise in cases of strong

electron localization where the single-particle DFT description no longer suffices. In

presence of strong interactions between individual electrons explicit many-body tech-

niques are needed for an adequate treatment of the system. This becomes especially

important in the case of materials with partially filled well-localized d- (and f-) shells,

such as transition metal oxides (with the poster strongly correlated systems NiO or

V2O3).

2.2 Interface: Wannier functions

As such, correct theoretical description of these systems requires explicit treatment of

strong electronic correlations. It will however become evident in the later part of this

chapter that direct many-body approaches are numerically costly and, in their current

form and with the available computational resources, limited to only a few correlated

orbitals. Thus, an ab-initio description of a strongly correlated material is performed

with a DFT calculation as a starting point [8]. From that, a correlated subspace involv-

ing only a few well-localized orbitals may be isolated and cast onto an effective model

which is then subjected to the many-body treatment.

Within this work, this interface between the DFT and the many-body formalisms is per-

formed via maximally-localized Wannier functions [9, 10]. As such a short description

of the approach, mainly following the original publications, is presented here, with the

practical results featuring prominently in chapter 3.
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A Wannier function (WF) wn(r−R) of the (isolated) n-th band is related to the corre-

sponding Bloch functions ψnk(r) via

wn(r−R) =
V

(2π)3

∫

dk e−ikRψnk(r) (2.14)

with the integral running over the first Brillouin zone and the Bloch function defined

as ψnk(r) = unk(r)e
ikR as usual. It provides a means for an adequate description of

the electronic problem in terms of more or less well localized orbitals in real space. As

there is a freedom of choice for the phase of the Bloch orbitals which does not change

the physics of the system,

unk → eiφn(k)unk (2.15)

there exists a corresponding variety in the resulting Wannier functions.

It can be straightforwardly checked that the transformation Eq. (2.15) does not change

(save for a lattice vector R) the center of mass of the respective Wannier function

〈w|r|w〉n =

(
V

(2π)3

)2 ∫

dr

∫

dkdk′ ψ∗
nk(r)rψnk′(r) (2.16)

however, it changes the spread

Ω =
∑

n

[
〈r2〉n − 〈r〉2n

]
,with (2.17)

〈r〉n = 〈w|r|w〉n = i
V

(2π)3

∫

dk〈unk|∇kunk〉, (2.18)

〈r2〉n =
V

(2π)3

∫

dk||∇kunk〉|2 (2.19)

A maximally localized Wannier function can be thus selected among all the possible

ones by minimizing the functional (2.17) with respect to the transformation (2.15).

In the case of a composite set of bands the procedure is analogous. In this case Eq.

(2.15) formally corresponds to

unk →
∑

m

U (k)
mnumk (2.20)

where U (k) is a unitary transformation periodic in k which acts on the band indices.

Eq. (2.17) then has to be minimized with respect to the mixing matrices U
(k)
mn.

This technique allows to build an adequate representation of a subset of the original

bandstructure in terms of well-defined localized orbitals, foregoing the k-space descrip-

tion well suited for itinerant systems in favor of a real-space picture which lends itself to

the treatment of localized phenomena. Additionally, the Wannier function construction

may be used to disentangle a desired subset of bandstructure from the rest of the states
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even in case of overlap, a more sophisticated procedure described in [10]. As such, this

approach is especially well suited to tackle the strongly correlated systems mentioned in

the previous section.

It must however be kept in mind that the correlated subspace subjected to the Wannier

construction to enter the effective model must be carefully chosen as to actually cap-

ture the relevant physics of the material at hand and to offer a picture consistent with

chemical bonding and symmetry considerations. A more thorough discussion of this is

presented in chapter 3.

The brief explanations presented here mostly follow the original publications cited herein,

the extremely comprehensive overview of electronic structure methods by Martin [11]

and the lecture notes of the LDA+DMFT school in Jülich 2011 [12].

2.3 Many-body techniques

As described in the previous section, the explicit treatment of many-body effects happens

within the confines of an effective model with a comparatively low number of orbitals.

Consider an effective Hubbard-like Hamiltonian on a lattice

H = Hkin +Hloc

= −
∑

ijσ

tijc
†
iσcjσ +

1

2

∑

αβγδ

Uαβγδc
†
αc

†
βcδcγ (2.21)

The kinetic term features the hopping amplitudes tij between orbitals situated on sites

i,j (taken as combined site/orbital indices here), and the model itself can be related to

a realistic material by their connection to the corresponding single-particle dispersion

ε(k) via

tij =
1

Nk

∑

k

ε(k)eik(Ri−Rj) (2.22)

In the case of the Wannier orbital construction described above the tij also correspond

to hoppings between the individual localized orbitals.

The second term is the most general representation of the on-site electron-electron inter-

action U , with the combined spin/orbital indices (α, β, γ, δ), where the diagonal terms

would correspond to the common density-density interaction form Un↑n↓. The Hub-

bard U is active on the individual local orbitals, the actual effective interaction thus

depending on the form and extent of the orbital in question, and hence on one’s choice

of effective model. As such, the details of the local orbital (Wannier) construction enter

this part of the Hamiltonian as well and have to be kept in mind for proper evaluation

of the results.

The kinetic part of the Hamiltonian can be chosen to be purely nonlocal and can be
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easily diagonalized by itself by treating it in k-space. The local part of the Hamiltonian,

on the other hand, can by itself be conveniently treated in onsite Fock basis

|n〉 = (c†1)
n1 · · · (c†M )nM |vac〉 (2.23)

where nα = 0, 1 and α = 1 · · ·M runs over spin and orbital degrees of freedom. The

eigenstates of the local Hamiltonian

Hloc|Γ〉 = EΓ|Γ〉 (2.24)

are then readily expressed as atomic multiplets (compare Table 4.1 in chapter 4).

The treatment of the full problem however, taking both the itinerant nature of the lattice

and the local particle-particle interactions into account, is a core question of many-body

physics and a formidable task not easily tackled. Here we will briefly deal with two

possible many-body approaches utilized over the course of this work, with emphasis on

the rotationally-invariant slave-boson technique which is used heavily in chapter 3 and

exclusively in chapter 4.

2.3.1 Rotationally-invariant slave-boson (RISB)

The rotationally invariant slave-boson formalism approaches the many-body problem

by introducing a mechanism by which the local Fock states may be connected to the

quasiparticle (QP) degrees of freedom living on the lattice. This is achieved by first

artificially enlarging the original Hilbert space. Assume an arbitrary state |A〉 of the

local Hilbert space, here taken to be an eigenstate of the total particle number operator

n and having the total particle number NA, which can be written in terms of Fock states

as

|A〉 =
∑

n

〈n|A〉|n〉. (2.25)

Next, one introduces auxiliary fermionic operators f
(†)
α , which correspond to quasiparti-

cle degrees of freedom, and bosonic creation/annihilation operators φ
(†)
An, each associated

with a pair (A,n) of atomic multiplet |A〉 and QP Fock state

|n〉f = (f †1)
n1 · · · (f †M )nM |vac〉. (2.26)

These bosonic operators are theoretically well defined for each possible pair of states

(A,n). Within our implementation, however, this pairing is restricted to states with the

same total particle number NA. Thus, for each original state |A〉 we arrive at a new
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state living in the enlarged Hilbert space, defined as

|A〉 = 1√
DA

∑

n

φ†An|vac〉 ⊗ |n〉f (2.27)

where DA =
(

M
NA

)
is introduced for normalization and which thus consists of both

fermionic QP and bosonic content. The states of the enlarged Hilbert space and opera-

tors defined thereon are denoted by an underline from here onwards.

Naturally, the enlarged Hilbert space contains a large amount of unphysical states. As

such, a set of (M2 + 1) constraints is applied:

∑

An

φ†AnφAn = 1 (2.28)

which ensures that we only take single-boson states into account, and

∑

A

∑

nn′

φ†An′φAn〈n|f †αfα′ |n′〉 = f †αfα′ ,∀α (2.29)

which makes the QP and bosonic contents match. These constraints are enough to filter

out the unphysical states (for a proof see [13]), leaving us with a set of representatives

(2.27) of the original physical states, now living in the enlarged Hilbert space.

Within this ’space of representatives’ creation and annihilation operators are defined

whose actions on the representative states

d†α|B〉 =
∑

A

〈A|d†α|B〉|A〉 (2.30)

mimic the corresponding original behaviour in the physical Hilbert space, namely

d†α|B〉 =
∑

A

〈A|d†α|B〉|A〉 (2.31)

These are shown in [13] to be of the the form

d†α =
∑

AB

∑

nm

∑

γβ

CAn
Bm(α, γ)φ†AnφBmMγβf

†
β (2.32)

and

dα =
∑

AB

∑

nm

∑

γβ

CAn
Bm(α, γ)φ†BmφAnMβγfβ (2.33)

with

CAn
Bm(α, β) = 〈A|d†α|B〉〈n|f †β|m〉, (2.34)

Mγ,β = 〈γ|
[
1

2
(∆̂(p)∆̂(h) + ∆̂(h)∆̂(p))−

1

2

]

|β〉 (2.35)
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and the quasiparticle and quasihole density matrices

∆̂
(p)
αβ =

∑

Anm

φ†Anφ
†
Am〈m|f †αfβ|n〉, ∆̂

(h)
αβ =

∑

Anm

φ†Anφ
†
Am〈m|fβf †α|n〉 (2.36)

With the relations (2.32, 2.33), the physical and QP operators are thus shown to be

effectively related by a nondiagonal renormalization matrix

dα = R̂[φ]αβfβ (2.37)

With that, faithful representations of the original kinetic and local parts of the Hamilton

operator on the representatives of the enlarged Hilbert space may be constructed. H loc

can be shown to emerge as a purely bosonic operator

H loc =
∑

AB

〈A|Hloc|B〉
∑

n

φ†AnφBn, (2.38)

while Hkin yields

Hkin =
∑

k

∑

αα′ββ′

R̂†
αα′εα′β′(k)Rβ′βf

†
kαfkβ. (2.39)

From this a mean-field theory may be constructed by condensing the bosonic operators

into c-numbers 〈φAn〉 = ϕAn, thus omitting all fluctuations. The system is then described

by the free-energy functional

Ω[{ϕAn},Λ, λ0] = − 1

β

∑

k

tr ln[1 + e−β(R†(ϕ)ε(k)R(ϕ)+Λ)]− λ0

+
∑

ABnn′

ϕ∗
An′{δnn′δABλ0 + δnn′〈A|Hloc|B〉

− δAB

∑

αβ

Λαβ〈n|f †αfβ|n′〉}ϕBn, (2.40)

the extremum of which must be found with respect to the condensed bosons ϕAn and

the Lagrange multipliers λ0 (enforcing the constraint (2.28)) and Λαβ (enforcing theM2

constraints (2.29)).

Using the values thus obtained for the bosons and Lagrange multipliers, accessible output

quantities are, among others, the expectation values of all and any operators written

in second-quantization formalism (evaluated via (2.32), (2.33)), the physical electrons’

Greens function

G−1
d (k, ω) = ω(RR†)−1 − [R†]−1ΛR−1 − ε(k) (2.41)

the linear part of the self-energy

Σd(ω) = ω(1− [RR†)]−1) + [R†]−1ΛR−1 − ε0 (2.42)
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and the quasiparticle weights

Z = RR†. (2.43)

Phenomenologically, the theory provides a renormalization R[φ] of the original lattice

dispersion ε(k) via the onsite electron-electron interaction. The contribution of the

individual local multiplet states can be assessed via ρΓ =
∑

Γ′ |φΓΓ′ |2, which corresponds

to the occupation probability of these states in the correlated regime. Save for the

multiplet weights, only the quasiparticle content of the system is accessible directly

within the RISB approach, incoherent atomic-like excitations (Hubbard bands) are not

included. For this same reason, the RISB technique in its current form may only treat

metallic systems.

2.3.1.1 Additional constraints

In addition to the constraints (2.28, 2.29) that are essential to the RISB approach, addi-

tional constraints may be imposed in the same manner, enforced by additional Lagrange

multipliers to enter the free-energy functional (2.40). These may be used to stabilize

competing solutions, improve convergence or investigate the behaviour of the system

under (physically motivated) restrictions to the values of certain observables. In chapter

4, for example, such an additional constraint is used to fix the occupation of the disper-

sive band of the impurity model, according to its role as a ’bath’ orbital at half-filling

in that context.

A general operator comprised of a creator and an annihilator in the space of represen-

tatives has the form

d†αdβ =
∑

AB

〈A|d†αdβ |B〉
∑

n

φ†AnφBn. (2.44)

Accordingly, the particle number operator of the orbital α may be written as nα =

d†αdα. Assume that due to some physically motivated circumstances we are interested in

solutions with a definite occupation Nα. The appropriate constraint enters Eq. (2.40)

in addition to the others

Ω[{ϕAn},Λ, λ0, λn] = · · ·+ λn

(
∑

AB

〈A|d†αdα|B〉
∑

n

φ†AnφBn −Nα

)

+ · · · , (2.45)

and additional terms emerge in the derivatives with respect to the Lagrange multipliers

and slave-bosons which are required for the extremalization of (2.40):

∂Ω

∂λn
=
∑

AB

〈A|d†αdβ|B〉
∑

n

φ†AnφBn −Nα (2.46)
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Figure 2.1: Hubbard bilayer model at total filling ntotal = 2.5, with one of the orbitals
restricted to half filling via a constraint in the free-energy functional Eq. (2.40). The
model undergoes a Mott transition in that layer at approximately U ∼ 3.1 (compare

with results in chapter 4).

∂Ω

∂φCm

= λn
∑

A

〈A|d†αdα|C〉φ†Am (2.47)

∂Ω

∂φ†Cm

= λn
∑

B

〈C|d†αdα|B〉φBm (2.48)

A (somewhat artificial) example of the particle number restriction at work is shown in

Fig. 2.1. The subject of the calculation is the Hubbard bilayer model from the first

part of chapter 4 (see there for detail), here shown with an interlayer hopping t⊥ = 0.1

and at total filling n = 2.5, i.e. normally this setup should not be susceptible to a Mott

transition. As an additional constraint now enforces a filling of exactly one electron per

site on one of the layers, such a transition does indeed take place there with the corre-

sponding quasiparticle weight rapidly decreasing with increasing U , while the other layer

remains perfectly conducting. Of course an introduction of such an external constraint

requires a comprehensive physical justification, like for example the interpretation of

one of the orbitals as actually belonging to a larger bath with a constant filling (as it

is done during the treatment of the two-impurity Anderson model in the latter part of

chapter 4), or maybe being part of the surface layer of some substrate in case of the

bilayer setup. Careless introduction of ill-justified constraints here will naturally yield

unphysical results.

2.3.2 Dynamical mean-field theory (DMFT)

While the RISB formalism deals with renormalized quasiparticle degrees of freedom, the

DMFT approach attempts to solve the problem of interacting particles on a lattice by
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singling out an individual lattice site (or a small cluster), then treating it as embedded

into a frequency-dependent bath representing the influence of the surrounding lattice.

Eventually, original lattice quantities may be obtained by making the (self-consistent)

connection back to the original lattice model. The frequency dependence of the bath

allows to include local quantum fluctuations, elevating DMFT beyond a plain mean-field

approach (thus dynamical). Spatial fluctuations, however, are not included.

The connection between the original lattice problem and the impurity model is estab-

lished via the requirement that the local Green’s function of the lattice

Gσ
ii(τ − τ ′) = −〈Tciσ(τ)c

†
iσ(τ

′)〉 (2.49)

has to be equal to the impurity Green’s function Gimp

Gσ
imp(τ − τ ′) = −〈Tcσ(τ)c†σ(τ ′)〉Seff

. (2.50)

The corresponding Anderson impurity model has the form

HAIM =
∑

iσ

εia
†
iσaiσ

︸ ︷︷ ︸

bath

+ (ε0 − µ)
∑

σ

c†imp,σcimp,σ + Un↑n↓

︸ ︷︷ ︸

impurity

+
∑

iσ

Vi(a
†
iσcimp,σ + c†imp,σaiσ)

︸ ︷︷ ︸

coupling

(2.51)

Both the form of the bath and the couplings (i.e. the values of εi and Vi) enter the

actual calculations through the hybridization function, which can be written as

∆(iωn) =
∑

α

|Vα|2
iωn − εα

(2.52)

which is then inserted into the ’Weiss function’

G0 =
1

iωn + µ− ε0 −∆(iωn)
. (2.53)
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With this, the effective action for the impurity may be constructed via

Seff = −
∫ β

0
dτ

∫ β

0
dτ ′

∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ

′)

+ U

∫ β

0
dτ n↑n↓, (2.54)

where the Weiss function G0 formally plays the role of a bare Green’s function now

(when in comparison to a standard expression for the action), but effectively includes

the dynamical mean-field influence of the environment. The thus constructed effective

action incorporates all the dynamics of the local site. It may be used to construct

the interacting Green’s function of the impurity Eq. (2.50). To connect the impurity

quantities with the lattice, the local self energy is extracted from the impurity Green’s

function and the Weiss function

Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn). (2.55)

Stemming from the treatment of the impurity model, Σimp(iωn) carries the full frequency

dependence but is obviously k-independent. In contrast to this, the full Green’s function

of the lattice

G(k, iωn) =
1

iωn + µ− ε0 − ε(k) − Σ(k, iωn)
(2.56)

would generally include nonlocal self-energy terms. These are neglected in DMFT, i.e.

just the local self-energy calculated from the impurty model is introduced into the lattice

(on every lattice site), thus creating the above-mentioned connection.

The actual calculations are performed iteratively. Starting from an initial guess of Σ(iωn)

(which may be as simple as a constant), a local Green’s function of the lattice model

is constructed by summation of Eq.(2.56) over k. With Σ and Gloc, the Weiss function

may be obtained by using Eq.(2.55). With that, the local effective action (2.54) may

be now used to solve the impurity problem, thus obtaining a new Gimp and Σ(iωn) and

restarting the cycle until self-consistency is achieved.

The approximation of local self-energy has been shown by Metzner and Vollhardt [14]

to become exact in the limit of infinite coordination number/infinite dimensions. Apart

from this approximation, the DMFT equations are exact.

In practice, the numerically intensive part of the calculation is the solution of Eq. (2.50)

to obtain the impurity Green’s function and the impurity self-energy. To this end, a

number of highly involved numerical techniques with the sole purpose of evaluating the

likes of Eq. (2.50) exist, commonly designated impurity solvers. Over the course of

this work, the Hirsch-Fye [15] impurity solver was used in all calculations. It should be

emphasized that the solvers themselves commonly introduce additional approximations

which have to be kept in mind (the HF solver used here introduces an additional time
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discretization of the integral (2.50)), with the notable exception of the continuous-time

quantum Monte-Carlo approach [16, 17, 18, 19] which is numerically exact (i.e. can be

driven to any desired accuracy) and is a recently emergent state-of-the-art technique.

Main output quantities are the interacting Green’s function G and the corresponding

(local) self-energy Σ, with their values known on a discrete set of Matsubara frequencies

iω. Theoretically, one would be most interested in acquiring the one-particle spectral

function ρ(ω) which is related to the above-mentioned Green’s function as

ρ(ω) = − 1

π
Im G(ω + i0+) (2.57)

In practice however, the discrete set of values and the statistical error of the data (in

case of a QMC solver) makes this transformation an ill-posed mathematical problem. An

approximation to ρ(ω) may be obtained using the maximum entropy method [20, 21].

The DMFT formalism is used to some extent in the last part of chapter 3. Most of the

brief introduction given here is based on the review [22], the AIP conference proceedings

[23] and the lecture notes of the LDA+DMFT school in Jülich 2011 [12].

This concludes the brief theory review. As each of the topics presented here is an

expansive field of research in itself, this section can only hope to present the most

general concepts and convey the main advantages and shortcomings of the individual

techniques. More in-depth discussions of the individual subjects can be found in the

provided citations.





Chapter 3

Sn adatoms on Si(111) and

Ge(111): α-phase surfaces

3.1 Introduction

Density functional theory [4, 5] is an extremely successful technique which can provide

ab-initio insight into the electronic structure of the vast majority of solid state sys-

tems. It is rather astounding that a mean-field approach which introduces electronic

exchange and correlation effects by using a parametrization [6] of the interacting homo-

geneous electron gas yields, in many cases, results in quantitative agreement with the

experiment. It tells us that, for most materials, it is essentially appropriate to view the

valence electrons as rather itinerant particles, each one moving in a background poten-

tial generated by the entirety of the others.

Thus, if one is interested in explicit effects of electronic correlations one has to specifi-

cally look for materials which exhibit strong electron localization. Such circumstances

are normally given in systems with partially filled d- and f-orbitals where they may give

rise to a plethora of most intriguing physical phenomena, both by themselves (NiO)

and especially in combination with additional effects like reduced dimensionality (as, for

example, cuprates) or low symmetry environments (see chapter 4).

Adsorbate systems on semiconductor substrates provide an interesting opportunity for

the study of correlated physics in (quasi-) twodimensional systems. Normally, a semi-

conductor surface without termination would undergo reconstruction to minimize energy

from the dangling bonds, which by itself can produce quite complicated structures (the

Si(111) surface mentioned below, for example, forms a huge surface unit cell with 49

atoms [24]). A (sub)monolayer of adsorbate will prevent such reconstruction and its hy-

bridization with the surface may, depending on both substrate and adsorbate, stabilize

23
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Figure 3.1: (a) STM image of Sn/Si(111)
√
3 ×

√
3R30◦ surface at 5 K, (b) average

tunneling spectra of the same surface, at different temperatures, (c) single conductance
spectra measured at 5 K. Picture taken from Ref. [27].

narrow-band quasi-twodimensional surface states. These surface systems also bring with

them the additional benefit of being readily accessible with experimental surface probe

techniques, such as STM or electron diffraction methods.

We will now turn to a specific subset of such surface systems, the so called α-phase sur-

faces [25]. The general setup consists of a 1/3-monolayer of adsorbate atoms, arranged

in a
√
3×

√
3R30◦ triangular array on top of a (111) semiconductor surface. Considering

the lattice constants of the substrate, the distance between the adsorbate atoms turns

out to be fairly large (≈ 7Å). This configuration thus produces a rather narrow, half-

filled surface band which may be, depending on the choice of the system constituents,

susceptible to various correlation-driven phenomena. The K/Si(111) setup, for exam-

ple, is believed to exhibit a Mott-insulating phase at low temperatures [26], whereas in

Pb/Ge(111) a transition into a charge-density-wave takes place [25].

Throughout this chapter, we will focus on two special representatives of the α-surface

family which are of particular interest because they exhibit vastly different behaviour

despite being structurally and electronically very similar, namely the Sn/Si(111) and

Sn/Ge(111) systems. Our aim is to investigate the role of electronic correlations within

these two systems, to assess the influence of the different substrates and to determine

what part these factors play in the emergence of the various observed phenomena, which

will be briefly described in the following.

Both systems have already been subject to considerable attention in the past, both
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experimentally and theoretically. The question of a possible appearance of a Mott in-

sulating state in Sn/Si(111) has been investigated experimentally by Modesti et al [27].

The system was found to exhibit a metal-insulator transition below 60K, (see Fig. 3.1)

a result also corroborated by theory [28]. Additionally, low temperature photoemis-

sion experiments [27, 29] suggested an emergent 3× 3 periodicity due to observed band

foldings and two prominent Sn-4d core level photoemission components. However, an in-

vestigation of this matter performed by Morikawa et al [30] using low temperature STM

and reflection high-energy electron diffraction (RHEED) revealed no deviation from the

original
√
3×

√
3R30◦ structure save from local 3× 3-like modulations originating from

structural defects. This, in turn, raised the question of magnetic ordering within the

insulating regime, i.e. whether the above-mentioned discrepancies might stem from an

antiferromagnetic (AFM) Mott-insulating low-temperature state with a magnetic unit

cell which is different from the structural one.

Concerning the theoretical results, already standard density functional theory [31, 32]

for Sn/Si(111) produces a narrow-band, half-filled surface state with a width of ∼ 0.3

eV. Interestingly enough, the band is found to originate primarily from the hybridization

of the Sn(5pz) states with the Si surface, leading to an effective problem of Coulomb

correlations in a 5p system, which in itself is an intriguing deviation from the more com-

mon d- and f-orbital based correlated setups. Flores et al [31] have derived a minimal

Hubbard model for the surface band only from constrained LDA calculations, suggesting

an effective value of U ∼ 1.15 eV for the system. Their model, however, has not been

numerically treated explicitly. Correlation effects at the level of LDA+U have first been

included into the description by Profeta and Tosatti [28]. Although the authors obtain

a Mott-insulating state already at U∼ 2 eV, they deem the rather large value of 4 eV

more realistic since it leads to the expected gap of around 0.3 eV. This choice of U also

gives rise to local moments of ∼ 1µB per adatom. The issue of magnetism will reappear

during our own treatment of the system later in this chapter.

The Sn/Ge(111) system proves to be equally intriguing. While the overall structural

setup seems to be similar to that of Sn/Si(111) at room temperature, the
√
3×

√
3R30◦

phase vanishes below 200K in favor of a 3× 3 configuration [33].The unit cell now con-

tains 3 non-equivalent Sn adatoms which no longer reside in a single plane. Instead, a

vertical distortion of about 0.3 Å in the position of the adatoms produces two differ-

ent possible ground states for the system. The so-called 1U-2D configuration, with two

adatoms moving closer to the surface and one moving further away from it, is energeti-

cally slightly favorable (6 meV/adatom) when compared to the competing 2U-1D setup

[34]. It has been argued [33] that above 200K the system rapidly fluctuates between

these two possible states, giving rise to the observed ’effective’
√
3 ×

√
3R30◦ periodic-

ity. In this case, it would be entirely different from the ’true’ periodicity exhibited by

Sn/Si(111).
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The question of whether or not a Mott-insulating regime for Sn/Ge(111) exists at low

temperature has still not been conclusively answered. Cortes et al [35] reported the find-

ing of such an insulating regime using STM and low-energy electron diffraction (LEED).

This, however, has not been confirmed in experiments done by other groups [36, 37].

Similarly to the Sn/Si(111) case, the surface bands of Sn/Ge(111) are readily reproduced

in DFT. A lot of theoretical work has been done concerning the low-temperature 3× 3

reconstruction [33, 34, 38, 39], an effort which allowed to establish the 1U-2D configura-

tion as the more stable one, as most experimental surface-probe techniques are unable

to differentiate between the two possible states. The importance of correlation effects,

however, has once again only been investigated at the LDA+U level [28], with overall

results similar to those for Sn/Si(111).

3.2 Details of theoretical approach and methods.

As we aim to investigate the importance of strong electronic correlations within the sys-

tems at hand, our tool of choice is a combination of standard density-functional theory

with explicit many-body techniques. The role of DFT is to provide the ab-initio com-

ponents to our approach, the relaxed crystal geometries and band structure data that

can then be used as a foothold for the more in-depth investigation of correlated physics.

There are two main avenues to achieve this. First is the combination of standard DFT

with the dynamical mean-field theory (LDA+DMFT) (see introduction and [40, 41], for

the review of DMFT itself see Ref. [22]). This allows us to include explicit many-body

effects into the calculation rather than to rely on the single-particle mean-field descrip-

tion provided by DFT. DMFT includes all onsite quantum fluctuations, and is therefore

able to describe both quasiparticle and atomic excitations of the system. The DMFT

implementation utilized over the course of this work uses a Hirsch-Fye quantum Monte-

Carlo impurity solver [15].

The second approach is a combination of DFT with the mean-field slave-boson approach

[42, 43, 44] in saddle-point approximation (RISB) [13, 45] (also see introduction). In

this, in a way simpler, method, the main emphasis lies on the quasiparticle content of

the system (with infinite QP lifetimes). The atomic multiplets are included statically

[46, 13, 47]. While the LDA+DMFT approach offers a higher quality of approximation

, LDA+RISB is significantly faster (for systems of this size) and provides a means for

extended scans of system behaviour with varying parameters.

The main drawback in the use of the various many-body techniques for investigation

of realistic materials is that they scale heavily with the size of the problem. All the
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above-mentioned combinations with DFT first require construction of an effective prob-

lem with a strongly reduced number of orbitals to be feasible. Such an effective model

is the final goal of the DFT calculations presented in the following.

To satisfy the requirements of this task, ultimately three different implementations of

the DFT approach have been utilized over the course of this work. The first one, and

the main source of DFT data presented below, is the highly accurate mixed-basis pseu-

dopotential code (MBPP) [48, 49]. It utilizes norm-conserving pseudopotentials [50]

and a highly efficient basis set consisting of both plane waves and atomic-like localized

orbitals. This code was used for structure relaxation, band structure calculations and,

most importantly, for generating the maximally localized Wannier orbital sets employed

in the in-depth many-body calculations. The other two codes are implementations of

the projector-augmented-wave method (PAW) [51], namely the CP-PAW and the VASP

[52] code. These were mostly used for the investigation of non-collinear magnetism, the

results of which are presented on the last part of this chapter, as well as for double-

checking the more sensitive DFT results.

The interfacing of DFT with both many-body techniques has been performed using the

maximally-localized Wannier function (MLWF) procedure which also has already been

briefly described (see theory part). As mentioned in the introduction, this requires a

careful choice of the correlated subspace from which to construct the effective model,

as well as a proper understanding of the orbital structure of the material at hand. We

want to describe the problem in terms of a small number of localized electronic or-

bitals. Naturally, these will, in general, no longer resemble atomic-like orbitals but will

rather provide a more ’chemical’ point of view, accommodating the effects of the atom

in question bonding with its environment. While different choices for the model are

theoretically possible, it is still important to choose a perspective which allows for an

interpretation rooted in physical and chemical reality of the system. More on this will

be explained in the following section.

3.3 Results of DFT calculations.

3.3.1 Setup and geometry

The unit cells used to model the two α-surface systems within DFT are shown in Fig.

3.2. The (111) substrate surface can be best considered as consisting of bilayers stacked

on top of each other, as can be clearly seen in the right part of Fig. 3.2, while the

geometry of a single bilayer (and surface adatoms) is shown on the left. The surface

bilayer theoretically provides for three distinct adsorption sites, namely directly above
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the uppermost layer adatoms (top), above the second layer atoms (T4) and above the

empty sites (H3)(corresponding to a position directly above the fourth layer substrate

atom which is not shown). It has been shown by various studies that the Sn adsorbate

prefers the T4 adsorption site, the 1/3 monolayer coverage leading to this surface con-

figuration.

Since the DFT implementation requires a periodic geometry, we use a supercell approach,

substituting the original system surface for a slab consisting of 3 substrate bilayers, with

the z direction in real space being perpendicular to the surface. The cell is chosen to

be large enough so that the different slabs are well separated by vacuum regions. As

the bottom layer of the slab is, technically, another unreconstructed (111) surface, its

dangling-bond derived states have to be removed by passivating with hydrogen.

The slab is initially set up with the lattice constant corresponding to the bulk lattice

constant of the respective substrate material (5.43 Å for Si, 5.66 Å for Ge). To correctly

capture the influence of the surface geometry we then performed structural relaxation

with fixed bulk-like positions of the lowest atomic layer, while allowing atomic position

shifts throughout the rest of the structure. This results in relaxed Sn-Sn nearest neigh-

bour distances of 6.65 Å and 6.93 Å for the Sn/Si(111) and Sn/Ge(111), respectively.

The unit cell designated with a red border on the left side of Fig. 3.2 is the minimal

realistic unit cell that can be constructed in such a way. It incorporates 1 surface Sn

adatom, 18 substrate atoms and 3 H atoms used for saturation and corresponds to the
√
3×

√
3R30◦ periodicity. The unit cell marked with a green border contains three times

as many atoms and is used during the later stages of this work to account for possible

inequivalent Sn adatoms.

Throughout this work, k-point meshes with a minimum of 6x6x1 k-points has been used.

This corresponds to six irreducible k-points in the Brillouin zone, which has been thor-

oughly checked to be sufficient for Sn/Si(111). In case of Sn/Ge(111), and for magnetic

calculations on both systems, the k-point density had to be considerably increased up

to a 25x25x1 setup. In the context of the mixed-basis approach we utilized localized

functions for Si (3s, 3p), Ge(3d, 4s, 4p) and Sn (4d, 5s, 5p) orbitals together with a plane

wave contribution with an energy cutoff of 16 Ryd. We use the GGA-PBE exchange-

correlation functional for all calculations.

3.3.2 Single-site unit cells.

We first turn to the calculations performed on the single adatom unit cells for both

systems. The density of states data is shown in Fig. 3.3-3.5. Fig. 3.3 shows the local

density of states (LDOS) of the Sn adatom as compared to the total density of states of
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Figure 3.2: Left: Top view onto a α-phase surface. Surface adatoms are shown in
grey, first- and second-layer substrate atoms as large and small blue orbs, respectively.
Both the

√
3×

√
3R30◦ unit cell (red) and the 3× 3 unit cell (green) are shown. Right:

Side view on the slab geometries used in the calculations. The bottom of the slab is
passivated by pseudohydrogen to remove the dangling-bond states. The adatoms on

the Ge slab show the 1U-2D distortion.

the whole unit cell. The structure around the Fermi level belongs to the surface state

originating from the Sn submonolayer, the significant hybridization with the substrate

evident from the size of the respective contributions. The width of the surface band is

about 0.4 eV, and its overall shape is clearly reminiscent of the simple triangular lattice

DOS, dictated by the geometry of the adatom layer. Two subpeaks are clearly visible in

both pictures, one extremely close to the Fermi level (more so for the Sn/Si(111) system)

and one at the upper edge of the surface state. We can expect the narrow peak near

the Fermi level to be of major importance to the magnetic properties of the system, as

in accordance to the Stoner criterion, and so the aforementioned need for very careful

convergence with respect to the number of k-points becomes evident, as already tiny

imprecisions in this energy region might have a major influence. Another peculiarity of

the Sn/Si(111) system is that the density of states exhibits a clear gap at around -0.3

eV, the surface state-originated DOS feature being disconnected from the lower energy

states. This is not so for the Sn/Ge(111), which is a factor to keep in mind for the

discussion of structural distortions later in this chapter.

Fig. 3.4 again shows the same density of states, now resolved into contributions from

the different atoms within the unit cell. The numbers correspond to the labeling in

Fig. 3.8, with factors accounting for multiplicity. The single largest contribution to the

surface state stems, as expected, from the Sn adatom, followed by the atoms labeled as

(5), (1) and (3), respectively. While atom(s) (1) are next neighbours of the Sn adatom

in the first substrate layer and atom (3) is the single next neighbour in the second, the

large contribution of (5) is not trivial. Overall, in terms of a localized orbital picture,

the Sn-centered surface state extends as far as the next nearest neighbour in the lateral



30 Chapter 3 Sn adatoms on Si(111) and Ge(111): α-phase surfaces

0

5

10

15
Sn/Si

Sn/Ge

Sn LDOS
Total DOS

-3 -2 -1 0 1 2 3
E - E

F
  (eV)

0

5

10

15D
O

S
 (

1/
eV

)

Figure 3.3: Total DOS plot and local Sn DOS for the Sn/Si(111) and Sn/Ge(111)
systems.

plane and reaches down to the second bilayer into the surface. Contributions from unit

cell atoms outside of this reach are negligible.

At last, Fig. 3.5 shows the angular-momentum resolved local Sn DOS for both sys-

tems. As can be clearly seen, nearly all of the Sn-related contribution to the states at

the Fermi level stems from the the Sn-5pz local orbital, with a small addition of s-like

orbital character. Additionally, there are 5pz- related unoccupied states at approx. 1.5

eV above the Fermi level for both systems. The other relevant contributions stem from

the 5px/5py orbitals. These produce occupied states at ∼ -1 eV as well as unoccupied

ones in the region of 1 to 2 eV with respect to the Fermi level, whereby both curves in

Fig. 3.5 lie on top of each other by symmetry. There is no contribution from these two

states at the Fermi level. As already mentioned, this p-orbital setup is quite unusual

and not present in most strongly correlated systems.

The band structure plots for both systems are displayed in Figs. 3.6 and 3.7. In both

plots, the top panel shows fatband plots for the Sn-5p orbitals, with contributions of

the respective angular momenta to the overall band structure indicated by the width of

the underlying colored fatbands. The surface band structure of the system is shown in

black, with the half-filled surface state clearly visible at the Fermi level. While in the

case of Sn/Si(111) the band is well separated from the rest of the band structure, this is,

as could already be seen from the density of states, not strictly the case for Sn/Ge(111)

where the band is connected to the states below around the Γ point. In both systems,

the dominance of the Sn-5pz orbital (shown in red) at the Fermi level is evident. The

aforementioned contributions of the p-orbitals at both higher and lower energies (with

blue denoting px/py) can be seen to form fairly well-defined effective bands, which is im-

portant for the construction of the effective models that will be discussed momentarily.
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Figure 3.4: Local DOS contributions from the different atoms within the unit cell.
The dominant contributions around the Fermi level stem from the Sn adatom and

substrate atoms (5), (1) and (3). The numbers refer to Fig. 3.8
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Figure 3.5: Angular-momentum resolved contributions to the local Sn DOS. The 5pz-
orbital dominates in the narrow band region around the Fermi level, the 5px and 5py
orbitals mainly contribute at energies around −1 eV and 1.5 eV. The two latter curves

lay on top of each other.

Additionally, the light brown lines in the background of the top panel show the 3D bulk

bandstructures of Si and Ge substrates, respectively. These, by construction, cover all of

the bulk Brilloun zone and, as such, can be used to identify regions in k-space which are

not accessible in the original solid. It can be clearly seen that the half-filled band in both

Sn/Si(111) and Sn/Ge(111) lies within such a region. Thus, this state is energetically

separated from the bulk-like states of the substrate which clearly marks it as a product

of the surface geometry.

At this point, however, it should be kept in mind that bulk Ge band structure, and

particularly the band gap, is a problematic topic in DFT [53, 54]. As can be seen in Fig.

3.7 the Ge 3D band gap becomes extremely small at the Γ-point, a shortcoming of the
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approach. As such, additional care has to be exhibited with the interpretation of the

system behaviour in this region. However, as long as the surface states are well repro-

duced, this should not become a hindrance with regard to the construction of effective

model Hamiltonians.

3.3.2.1 Wannier construction and effective Hamiltonian: single site

Now that some understanding of the systems at hand has been established on the DFT

level we would like to assess the effects strong electronic correlations have on the results

when taken into account explicitly. As already mentioned in the introduction, an inves-

tigation of the full realistic problem is unfeasible with the current many-body methods.

Depending on the setup of the system, this may also not at all be required. Since we

expect explicit many-body effects to be strong only in regions with high electron local-

ization, it is well justifiable to reserve the many-body treatment to these regions only,

while letting the DFT approach deal with the rest of the band structure. Thus, we

require an effective Hamiltonian for the description of the correlated subspace.

This we construct by the means of maximally localized Wannier functions (MLWF), a

method described in the introduction. The effective Wannier bands for both Sn/Si(111)

and Sn/Ge(111) are shown in the middle and bottom panels of Figs. 3.6 and 3.7, re-

spectively. The middle panel shows a straightforward approach, with the correlated

subspace of the system chosen to be represented by the half-filled surface band only,

which corresponds to an effective model with one orbital per site. This is a minimal

model, of course, it is however well supported by the physical understanding of the sys-

tems we have gained so far, with nearly all of the states at the Fermi level being tied to

the reasonably well localized Sn 5pz orbital.

The localized Wannier function corresponding to the one-band effective construction

for the Sn/Si(111) system is shown in Fig. 3.8, with the Sn/Ge(111) function having

nearly the same overall appearance. It can be clearly seen that although the dominant

contribution to the surface band has been determined to stem from the Sn-5pz orbital

the Wannier function does not have a close resemblance to it. This is the direct conse-

quence of the surface state being not atomic-like in nature, but rather a product of the

hybridization with the surface. The three-fold lateral symmetry of the substrate lattice

is clearly expressed, with the lobes of the Wannier function reaching towards the direct

next in-plane neighbours and the vertical component extending as far down into the

substrate as the second bilayer. This results in a spread of 14.2 Å2. The overall form is

clearly consistent with our estimates of the overall extension of the surface state during

the investigation of the LDOS contributions in the previous section.
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As already mentioned, a single orbital description of the surface state represents a min-

imal model. Both the angular-momentum resolved local DOS and the band structure

plots suggest that, while the 5pz orbital is clearly dominant, a natural extended choice of

the correlated subspace would also take the Sn-s, px and py into account. The Wannier

bands of such an extended 4-band effective model for both systems are shown in the

bottom panel of Figs. 3.6 and 3.7. When compared to their respective top panels, it

becomes clear that this choice of the Wannier construction setup introduces three addi-

tional bands, two below and one above the Fermi energy, which effectively interpolate

between the additional band structure contributions shown in the fatband projection.

The now four resulting Wannier orbitals are shown in Fig. 3.9. This construction still

clearly has the overall three-fold symmetry induced by the substrate structure. Each of

the former in-plane lobes, however, is now represented by a separate orbital, with the

fourth now more obviously adopting the vertically extended pz-like appearance. The

three lobes each have a spread of 13.6 Å2, with a value of 20.8 Å2 for the remaining

fourth localized function. The overall appearance of the three separate in-plane orbitals

is reminiscent of the chemical sp2 hybridized orbital picture.

This sp2+pz orbital setup, although appealing from the more intuitive chemical point

of view, also has its own disadvantages when compared to the simple one-band model.

The filling in this local orbital set amounts to five electrons in four bands, which is one

more than the half filled sp-valence of the carbon group. On one hand, this seems not

imminently justifiable, as the constituents of the system (Si, Ge, Sn) do not differ much

in their electronegativity. On the other hand however, the orbitals in Fig. 3.9 are not

particularly strongly localized on the adatom, showing a non negligible reach into the

surface and thus being reasonably able to accommodate additional charge stemming

from hybridization with the substrate. Overall, the 4-band model seems very reasonable

when handled with care and we have extracted the corresponding hoppings to be used in

a future study. As it is a significantly more heavy model, the first single site many-body

results in the latter part of this chapter all stem from the one-orbital Wannier Hamilto-

nian.

Another setup worth considering would be the simpler three-band effective model only

consisting of the p-like orbitals. This model has also been investigated and discarded due

to its deficiencies. It not only shows an even more unbalanced filling of five electrons in

three effective bands, which collides even with the more lenient attempts to interpret the

orbitals in semi-local terms, but in addition does not provide the geometry consistent

with the facts of the chemical bonding picture.

The hopping integrals for both the 1-band and the 4-band model are listed in Tables 3.1

and 3.2, respectively. In the one-band model, the nearest neighbour hopping amounts

to |t1−band| ∼ 45 meV for the Si substrate. In comparison, the hopping amplitude in the

Sn/Ge(111) system is somewhat smaller for the nearest neighbours, with a tendency to
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larger values for the more distant hoppings.

Figure 3.10 provides a schematic aid for the better understanding of Table 3.2, with the

three lobes of the 4-orbital setup marked as numbers 1-3 , the pz-like orbital given the

number 4 and the lattice vectors labeled accordingly (compare with the actual supercell

in Fig. 3.2). The numbers correspond to the column/row order in the hopping matrices

of Table 3.2. The onsite energies of the four-band model, shown in the (000) entry, dis-

play a crystal-field splitting between the three sp2- and the pz-like orbital, which is on

the order of 1.6 eV for the Sn/Si system, with a lower value of ∼ 0.9 eV for Sn/Ge. This

underlines the stronger adatom-surface hybridization of the Sn/Ge(111) surface already

observed during the discussion of the respective bandstructure plots (though the already

mentioned difficulties of DFT concerning Ge should still be kept in mind).

This concludes the discussion of single-site DFT results.

3.3.3 Three site unit cells

With the discussion of the one-site DFT calculations and the corresponding Wannier

models now complete, we go on to treat the 3-site cluster setup. As already mentioned,

the triangular cluster configuration is expected to be important for the physics of both

systems. The already mentioned 2D-1U structural reconstruction of the adatom mono-

layer in Sn/Ge(111) cannot be taken into account in a one-site calculation, and also

the treatment of magnetic order demands a larger supercell to be able to describe more

complicated setups than the most basic ferromagnetic alignment. Thus we turn to the

enlarged 3 × 3 supercell construction already briefly shown in Fig. 3.2, marked with a

green outline. This cell incorporates a total of 66 atoms, of which 54 are Si (or Ge)

substrate atoms, 3 Sn adatoms arranged in a triangular fashion and 9 H atoms for slab

termination. For the Sn/Ge(111) system, there is a difference of ∆ = 0.32 Å between

the up-down Sn positions [38] which is introduced into the fully structurally relaxed

PBE-GGA planar 3 × 3 supercell. For comparison, a planar Sn/Ge(111) and a planar

Sn/Si(111) setup have also been constructed.

TheWannier function construction utilized for these larger supercells consists of only one

(pz) orbital per adatom. As such, it corresponds to the previously discussed one-band

Wannier model, now extended to a three-adatom triangular cluster, and again results

in local orbitals similar to the one shown in Fig. 3.8. The bandstructure of the three

supercell setups is shown in Fig. 3.11, with the Wannier bands marked in light blue.

Again, the Sn/Si(111) surface states (top panel), now represented by the three half-filled

bands at the Fermi level, are well separated from the rest of the bandstructure and per-

fectly reproduced by the Wannier construction, while the planar Sn/Ge(111) (middle
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Figure 3.6: Band structure plots for the Sn/Si(111)
√
3 ×

√
3R30◦ system. Top:

Fatband plot of the Sn-px/py (blue) and Sn-pz (red) orbital contributions to the band
structure. The 3D bulk Si bandstructure is shown as brown lines in the background for
comparison. Middle: Wannier construction for the 1-band model. Bottom: Same for

the 4-band model.

direction 100 110 200 210

Sn/Si(111) 44.6 meV -18.4 meV 6.7 meV -0.8 meV

Sn/Ge(111) 43.2 meV -23.7 meV 7.3 meV -1.8 meV

Table 3.1: Hopping integrals up to the fourth-nearest neighbours for the 1-band pz
model.

panel) effective Wannier bands again display a shift towards lower lying states at the

Γ point, which is due to the stronger band hybridization already mentioned during the

discussion of the single site unit cell.

While the three-adatom bandstructure of the flat unit cell can be related to that of the

single site unit cell via downfolding, the 2D-1U reconstruction in Sn/Ge(111) (shown

in the bottom panel) introduces a splitting of the low energy bands, particularly vis-

ible in the occupied part of the states. This effect is mirrored by a change in local

orbital occupation, shifting from one electron/Wannier orbital to a filling of 1.378 in

the (U) orbital and 0.819/0.802 in the two (D) orbitals, respectively. Note that the dis-

tortion also makes the two (D) orbitals slightly non-equivalent, an effect which will be

more thoroughly elaborated on during the discussion of many-body effects in section 3.4.
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Figure 3.7: Same as Fig. 3.6, now for the Sn/Ge(111) system.

Figure 3.8: Wannier orbital of the 1-band model for the Sn/Si(111) system. The
numbers refer to the DOS plot shown in Fig. 3.4
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Sn/Si hoppings [meV] Sn/Ge hoppings [meV]

Direction sp2(1) sp2(2) sp2(3) pz(4) sp2(1) sp2(2) sp2(3) pz(4)

-643.8 452.0 452.0 -318.6 -433.1 546.4 546.4 -358.3

000 452.0 -643.8 452.0 -318.6 546.4 -433.1 546.4 -358.3

452.0 452.0 -634.8 -318.6 546.4 546.4 -433.1 -358.3

-318.6 -318.6 -318.6 990.3 -358.3 -358.3 -358.3 463.2

-42.6 -29.9 29.4 -26.7 -61.5 -37.8 3.6 -20.6

100 -29.9 -42.6 29.4 -26.7 -37.8 -61.5 3.6 -20.6

74.2 74.2 50.8 -33.1 33.8 33.8 2.9 70.9

85.0 85.0 -49.1 16.7 54.9 54.9 1.6 29.2

-0.7 -5.9 -8.4 1.5 -15.2 -19.0 -22.8 1.3

110 12.1 -9.5 -5.9 11.3 2.9 -22.8 -19.0 14.3

3.8 12.1 -0.7 -24.5 -10.9 2.9 -15.2 -4.6

-24.5 11.3 1.5 -9.4 -4.6 14.3 1.3 -10.3

-1.2 -1.4 4.2 -1.2 3.6 -4.2 2.8 3.6

200 -1.4 -1.2 4.2 -1.2 -4.2 3.6 2.8 3.6

-1.6 -1.6 8.0 1.9 -2.5 -2.5 0.6 7.3

5.3 5.3 -2.8 -1.1 12.6 12.6 6.4 -10.5

0.7 0.3 0.9 -3.3 -4.3 -0.8 -2.5 0.8

210 2.2 0.9 1.3 -0.5 -1.9 0.2 -2.7 -1.1

-0.4 -2.9 0.0 -2.6 -2.4 -3.7 -0.9 -0.7

0.0 -3.4 1.4 3.3 1.8 -3.0 1.5 2.9

Table 3.2: Hopping integrals up to the fourth-nearest neighbours for the 4-band
(sp2+pz) model. The entries of each given 4×4 matrix are associated with the three
sp2 orbitals and the pz-like orbital, respectively, and correspond to the numbering

shown in Fig. 3.10.
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Figure 3.9: Left: Wannier orbitals of the 4-band model. The sp2-like orbitals are
denoted (a)-(c) and point towards the three in-plane next-neighbour substrate atoms
of the Sn site. (d) depicts the pz-like orbital. Right: The three sp2-like orbitals and
their orientation relative to the

√
3×

√
3R30◦ unit cell geometry, view along the z axis.
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Figure 3.10: Schematic diagram of the orbital setup and hopping directions for better
understanding of Tab. 3.2. The sketched orbitals 1-3 denote the respective sp2-like
Wannier functions shown in Fig. 3.9 (compare right side), with number 4 belonging
to the remaining pz-like function. The numbering corresponds to the row/column

numbering of Tab.3.2.

3.3.4 Magnetic order.

The question of magnetic order in the adatom layer, the importance of which has al-

ready been mentioned in the introduction, goes hand in hand with the geometric and

bandstructure setup of the two systems. From the discussion of the localized orbital

construction, it is made evident that in particular the well isolated single orbital con-

struction of the Sn/Si(111) system places it very close to a true model setup of the

quasi-2D triangular lattice with a single orbital per site. As such, we expect the physics

of the system to exhibit traits normally discussed in the context of 2D triangular lattice

quantum magnetism. It is known that the Hubbard model at half filling tends towards

antiferromagnetic ordering in the large U limit, which however can not be readily re-

alised in a triangular setup as collinear antiferromagnetic ordering produces a frustrated

configuration. It is thus strongly suggested that the same model on a triangular lattice
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Figure 3.11: PBE-GGA bandstructure of the 3 × 3 supercells with the Wannier
bands shown in cyan. Top: Sn/Si(111) Middle: planar Sn/Ge(111). Bottom: 2D-1U

reconstructed unit cell of Sn/Ge(111).

exhibits a 120◦ noncollinear spin ordering [55]. If our system at hand exhibits AFM

nearest neighbour exchange the 120◦ spin configuration would make a good candidate

for an ordered phase, maybe even in the metallic regime.

In our investigation of magnetic behaviour, we mainly focus on the Sn/Si(111) system,

as involved low-temperature magnetic ordering is heavily discussed within this context

(see introduction and [56, 28]). It should be kept in mind that from the overall system

setup, we would expect any magnetic ordering (if at all present) to be very delicate.

The constituents of the system (Sn, Si and Ge) do not exhibit tendencies towards high

magnetic susceptibility by themselves, and also the orbital setup of sp-bonding with

large principal quantum numbers, with filled d states, does not readily contribute to

formation of large local magnetic moments. Even then, long range magnetic order re-

quires a solid exchange path, which in this case has to be provided via the substrate as

the Sn-Sn nearest neighbour distance is rather large (≈ 6.7Å). On the other hand, the

low-dimensional 2D nature of the system may contribute to the emergence of magnetic

behaviour, and also the high DOS at the Fermi level of the system (as already mentioned

in section 3.3.2) hints at the possibility of flat-band ferromagnetism [57, 58].

The results of our PBE-GGA investigation of magnetic ordering on the Sn/Si(111) 3×3

unit cell are shown in Table 3.3. All energies are given with respect to the paramagnetic

solution. The ferromagnetic collinear setup (FM), resembling the one described in the

work by Profeta and Tosatti [28] can be stabilized for Sn/Si(111), it however turns out
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to be the least favorable of the configurations considered. This state is extremely del-

icate, and its treatment requires very strict convergence checks, especially with regard

to the k-point mesh. The energy landscape around the local minimum corresponding to

the FM configuration is rather flat, such that already small disturbances will cause the

DFT self-consistency cycle to proceed towards the nonmagnetic (NM) solution, how-

ever slowly. Insufficient k-point-wise convergence may cause this state to be reproduced

with significantly different (larger) local moments, which, however, is an artifact which

seems to originate in the difficult treatment of the prominent sharp DOS feature already

shown and discussed in Figs. 3.3-3.5 and does not influence the fact that this state is

still energetically unfavorable. The FM state yields a local magnetic moment of 0.031

µB per adatom, with a total cell magnetic moment of 0.80 µB (with three adatoms in

the unit cell), clearly showing that the moments are far from being well localized on the

adatom sites. Instead, the total cell moment betrays a large contribution of additional

spin polarisation from the remaining substrate sites.

As already mentioned at the beginning of this section, a collinear antiferromagnetic so-

lution on an undistorted triangular lattice is made impossible by frustration. In lieu of

this option, we consider two other possible setups, a ferrimagnetic collinear configura-

tion (i.e. two spins up / one down or vice versa on the triangular adatom cluster) and

the 120◦ in-plane noncollinear one. Both configurations are found to be preferable to

the nonmagnetic state, with an energy gain of 1.6 meV for the ferrimagnetic collinear

and a gain of 3.6 meV for the 120◦ noncollinear setup. The ferrimagnetic configuration

yields a local Sn magnetic moment of 0.055 µB per adatom with a net cell magnetic

moment of 0.44 µB . The 120◦ setup produces slightly larger local moments of 0.058 µB

per adatom, and the total cell magnetic moment sums up to zero due to the geometry

of the configuration.

Overall, these findings stress that a local magnetic moment picture is not appropriate

for the Sn/Si(111) system. Much of the overall magnetic moment contribution stems

Magnetic ordering E [meV] M [µB] MSn [µB]

Ferromagnetic 1.5 0.80 0.031

Collinear ferrimagnetic -1.6 0.44 0.055

120◦ noncollinear -3.6 0.00 0.058

Table 3.3: Comparison of the different magnetic configurations within the 3× 3 unit
cell of the Sn/Si(111) system. The cell consists of 54 Si, 3 Sn and 9 H atoms. The
energies are given with respect to the paramagnetic PBE-GGA solution. MSn denotes
the magnitude of the magnetic moment localized on the Sn adatom, M denotes the

total moment within the unit cell.
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from the spin polarized substrate interstitial regions, at least on the weakly correlated

DFT level. Even though the individual local moments are exceedingly small, all three

bandstucture codes (MBPP, CP-PAW and VASP) confirmed their nonzero values in the

DFT ground state. The state is furthermore stable versus small geometric distortions,

in particular the Sn-substrate distance does not significantly influence the qualitative

result. The overall calculation result indicates the existence of an antiferromagnetic

noncollinear 120◦ ground state with small, not strictly localized magnetic moments in

the Sn/Si(111) system.

We performed similar PBE-GGA calculations for a planar Sn/Ge(111) 3 × 3 unit cell,

with the goal to assess the influence of the substrate and to directly compare the mag-

netic behaviour of the two systems. We were, however, unable to stabilize any of the

aforementioned magnetically ordered configurations, thus finding the nonmagnetic so-

lution to be the ground state of planar Sn/Ge(111). It appears reasonable to assume

this a consequence of the stronger hybridization of the Sn-originated orbitals with the

substrate, as discussed in the context of Fig. 3.4 and the bandstructure plots Fig. 3.7

and Fig. 3.11, which should generally weaken the magnetic tendencies on the Ge sub-

strate when compared to silicon. We did not investigate the magnetic behaviour of the

Sn/Ge(111) 2D-1U distorted cluster, which is left for possible further studies.

This concludes the investigation of magnetic behaviour on the DFT level. We will briefly

return to this topic in the many-body section of this chapter, as the RISB formalism

gives us access to the spin-spin correlation functions of the three-adatom triangular clus-

ter and allows to investigate their dependence on the local Coulomb U.

3.4 Electronic correlations: Explicit many-body results

Now that a set of effective Wannier Hamiltonians has been constructed from the DFT

results obtained during the previous section and all necessary discussions on the DFT

level have been concluded, we may proceed to improve upon our previous calculations

by introducing explicit many-body effects. In the following, we will elaborate on the

realistic one-band single site and triangular cluster models previously constructed for

both the Sn/Si(111) and the Sn/Ge(111) systems and the influence of explicit electronic

correlations.

All calculations shown within this section were performed in the paramagnetic regime,

i.e. we do not treat the long-range ordered states discussed in the previous section. As

the results of section 3.3.4 show magnetic order to be a delicate affair with a rather

small energy scale, explicit analysis of such states within a many-body approach is left
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for possible future studies. We will however still be able to make certain conclusions on

magnetic behaviour, which will be elaborated upon in section 3.4.2.

3.4.1 LDA+DMFT

With the Wannier Hamiltonians available, the main obstacle to the successful application

of many-body techniques, namely the high number of orbitals involved into the physics

of the system, has been effectively removed at the cost of substituting the full problem

for an effective low-energy description of the material. However, with the separated sur-

face bands discussed in the previous section and their accurate representation in terms of

the MLWFs, we can expect the effective model to well reproduce the low-energy physics.

In the following, we will treat the effective Hamiltonian within the DMFT framework,

using a Hirsch-Fye QMC impurity solver.

Before we go on to directly discuss the DMFT results, a short analysis of the physics

involved seems in order. As the width of the partially filled band(s) in question,W ∼ 0.4

eV is rather small, already small values of U (comparable with band width) may intro-

duce strong correlation effects into the system, which is also quite fortunate since one

generally would not expect particularly large values of the Hubbard U for a Sn5s/5p-

based orbital setup. Above a certain critical U value, we expect the system to undergo a

metal-to-insulator transition. It is this transition region and its dependence on geometry

and substrate choice which has our attention.

With this said, it should be kept in mind that in general, the explicit value of the Hub-

bard U will still depend on the choice of the local basis. In a small onsite basis, the

effective Wannier orbitals will generally turn out to be less localized than in a large

multi-orbital basis. In addition to that, the strength of screening effects will differ de-

pending on the material in question, i.e. screening in metals is far more effective than

on a semiconductor surface, in particular for the direction perpendicular to the surface

plane. Since all these aspects will influence the effective U value of the system, a proper

evaluation of the Coulomb interaction strength always requires the context of the effec-

tive model within which the calculations have been performed.

We begin our discussion with the paramagnetic single-site DMFT(QMC) calculations for

the realistic one band models introduced and constructed in section 3.3.2. The spectral

functions obtained for different values of Hubbard U are shown in Fig. 3.12. These were

obtained from the output DMFT Greens functions by means of the maximum entropy

method. As such, they display a certain measure of effective smearing of the individual

features, a signature of the approach. Due to the relatively simple nature of the one-

band modeling, the general behaviour follows the usual expectations: with an increasing
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U, the low energy quasiparticle peak becomes more pronounced and narrow, with lit-

tle variation in spectral weight directly at the Fermi level (a feature of the half-filled

one band model). At the same time, a distinguished lower and upper Hubbard band

(corresponding to incoherent atomic-like excitations) emerges at higher U, with spectral

weight being increasingly shifted away from the Fermi level.

The calculations shown in Fig. 3.12 were performed at β = 200 eV−1, which corresponds

to T ∼ 58 K (β = 1/kBT ). The Sn/Si(111) system, shown in the top panel, reaches

a Mott-insulating state at Uc ∼ 0.6 eV, with a slightly higher Uc for Sn/Ge(111). (In

fact, the transition is of weak first-order character in both calculations, and thus this

energy region is actually governed by two critical interaction values Uc1 and Uc2. The

corresponding hysteresis loop, however, is tiny and hard to resolve. Due to this, and the

relative simplicity of our model, we did not map out the two branches explicitly.) Within

the insulating Mott state at U ∼ 0.7 eV, the energy gap between the upper and the lower

Hubbard band is on the order of ∼ 0.2 eV, with the Hubbard bands themselves situated

at approximately 0.3 eV above and below the Fermi level. This result compares nicely

with the findings in [27, 59], where a region of increased spectral weight transfer was

identified by photoemission experiments at roughly 0.2 to 0.45 eV below Fermi. Thus

we conclude that within the single site one-orbital model already a small Hubbard U,

only slightly larger than the band width, drives both systems into the insulating Mott

state.

While a single site model allows for a first glimpse of the many-body physics, the pla-

nar Sn/Ge(111) geometry it corresponds to has already been discussed to not represent

the true ground state of the system. To take into account the structural distortion, we

now move on to treat the one-orbital triangular cluster models within (cluster) DMFT

[60, 61, 62]. This numerically more demanding calculation also offers the additional ben-

efit of taking into account the inter-site self-energy effects within the basic Sn three-site

cluster. As we have constructed triangular cluster models for both distorted Sn/Ge(111)

and Sn/Si(111), we are now able to assess the influence of the different substrates/ge-

ometries by direct comparison.

The spectral functions for the triangular cluster models are shown in Fig. 3.13. The

calculations were performed at β = 70 eV−1, which corresponds to T ≈ 166K, the rea-

son for the somewhat higher temperature in comparison to the one-orbital calculations

being the significantly increased computational demands of the cluster setup. The spec-

tral function of the Sn/Si(111) cluster is shown in the top panel. The critical Uc ∼ 0.55

eV is now slightly lower than for the one-band model, with a somewhat reduced energy

gap, a result which was checked to not stem from the increased computation tempera-

ture. Also, a stronger asymmetry between the upper and lower Hubbard band can be

observed, with a stronger reduction in spectral weight below EF .

The results for the 3× 3 2D-1U distorted Sn/Ge(111) cluster are shown in the bottom
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panel, with the numbers corresponding to local site occupations. It is important to re-

mark that the two downwards-shifted Sn adatoms are in fact not equivalent due to the

different orientation of the local orbitals with respect to the upwards-shifted Sn. (Each

orbital has a ’lobe’ pointing towards one of its neighbours within the local triangular

cluster, not both.)

The (d)-adatoms initially each have a lower occupation compared to (u)-Sn, (0.819/0.802

electrons per (d)-site vs. 1.378 for (u) at U = 0 eV) with a small difference introduced

by the aforementioned inequivalence. While noticeable in the local occupation numbers,

the differences in the spectral functions of the (d)-adatoms are very small, which is why

an average over the two is shown in Fig. 3.13. The difference between the (u) and (d)

spectral functions, on the other hand, is clearly visible, with the obviously higher initial

spectral weight below the Fermi level for the upwards-shifted adatom. With an increas-

ing onsite U value, the filling imbalance is evened out among the sites as the system

strives to minimize energy costs due to double occupation, eventually again undergoing

a Mott transition at a slightly lower value of Uc ∼ 0.55 eV, at which point the individual

occupations approach the expected 1 electron per site. Again, a stronger reduction of

the spectral weight can be observed in the unoccupied part below the Fermi level, which

is now even more pronounced than on the Sn/Si(111) cluster.

While the spectral functions offer a lot of information, this section also highlights the dif-

ficulty to achieve a good resolution of the qualitative differences in the values of critical

U. So, after having discussed the DMFT results we will now move on to a complemen-

tary RISB analysis of the systems at hand.

3.4.2 LDA+RISB

As opposed to the DMFT calculations, the RISB approach allows for a time-efficient

fine-scale scans of system behaviour due to the relative ease of the numerics. In addition

to that, some of the observables, like the quasiparticle weight Z or the intersite spin

correlations are not as readily available within other computational schemes. It should

however be kept in mind that the RISB saddle-point approximation neglects quantum

fluctuations, in particular when directly comparing with DMFT results.

Fig. 3.15 shows the RISB quasiparticle weights Z for both the single-site and the cluster

setups. The one-band calculations are shown in the top panel. The quasi- particle weight

decreases steadily with increasing U, showing a first-order transition from paramagnetic

metal to paramagnetic insulator for both Sn/Si(111)- and Sn/Ge(111)-
√
3 ×

√
3R30◦,

with respective critical U values of Uc ∼ 0.75 eV for the Si and Uc ∼ 0.78 eV for the Ge

substrate system. The somewhat higher value for Sn/Ge(111) follows the trend already
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displayed by the DMFT calculations, while the overall higher critical U values can be

attributed to the aforementioned neglect of quantum fluctuations by the RISB formal-

ism.

The cluster calculations are shown in the bottom panel. A clear overall reduction in the

critical U values needed to drive the systems into the insulating state is obvious (again

retracing the DMFT results), which is due to the nearest-neighbour self-energies now

being explicitly included in the calculations. Furthermore, the first-order character of

the transitions is strengthened in the cluster modeling.

The Sn/Si(111) can now be clearly seen to possess a significantly lower UC than the

Ge substrate setups. The difference between (artificial) flat Sn/Ge(111) and the real-

istic 2D-1U distorted configuration is more subtle, but the result is nevertheless both

well-checked and very reasonable from the physical point of view. The local Coulomb

interaction has to force additional charge transfer to compensate for the initial asym-

metrical charge distribution in the 2D-1U system before the onset of the Mott insulating

state can follow, thus leading to an increased critical U value for this system. While the

difference in UC may seem small in absolute terms, one should keep in mind that the

values are enhanced by the context of the exceedingly small overall bandwidth of ∼ 0.3

eV.

The evolution of the individual site occupations for the 2D-1U Sn/Ge system is shown

in Fig. 3.14, with the inset showing the geometry of the triangular setup. As already

briefly discussed in the DMFT section, the (u) site, shown in green, initially has a

higher occupation of around 1.4 electrons per site, which then can be seen to steadily

drop towards n = 1 as the value of U increases (changing the slope of the decrease at

U = 0.25eV ), with a sharp jump at the MIT transition value. At the same time the

initially slightly different occupations of both downwards-shifted adatoms increase from

their initial values of n ≈ 0.8, mirroring the behaviour of the (u)-site. This is also in

line with the previously discussed DMFT results.

3.4.2.1 LDA+RISB: Magnetism

Finally, the RISB formalism enables us to shed some additional light on the matter of

magnetic behaviour, a topic already discussed in the DFT section of this chapter. Fig.

3.16 displays the development of the spin-spin correlation functions 〈SiSj〉 between the

Sn sites of the triangular clusters (remember that we stay in the paramagnetic regime).

It can be clearly seen that the spin-spin correlations remain negative in all cases, thus

displaying overall AFM character, a behaviour readily explained by the superexchange
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mechanism introduced via the onsite U. We thus expect the magnetic traits of the re-

spective systems to become more pronounced with increasing interaction strength.

The top panel of Fig. 3.16 shows the spin-spin correlation functions for the flat cluster

setups. The calculations reveal the AFM tendencies of Sn/Si(111) to be stronger than

in Sn/Ge(111), thus lending support to our PBE-GGA investigation of magnetic order

presented in section 3.3.4. This trend becomes more pronounced with increasing U, even

though the Sn/Ge system reaches a somewhat higher absolute value right below its MI

transition point. As all three sites are equivalent by symmetry in these setups, only one

plot per system is shown.

The results for the 2D-1U distorted Sn/Ge(111) are shown in the bottom panel. As

all three adatoms are different in this setup, three distinct values for 〈SiSj〉 are read-

ily expected (for the numbering of the individual sites, please again refer to the inset of

Fig. 3.14). Surprisingly however, these correlation functions scale rather differently with

increasing U, a feature that can be traced back to the different values of the hopping

amplitude t between the three distinct orbitals. The upwards-shifted Sn(3) site possesses

a laterally slightly more extended Wannier orbital, and as such the orbital lobe pointing

towards Sn(2) achieves a wider range, increasing the hopping amplitude between these

two sites. On the other hand there is no orbital lobe pointing from Sn(3) to Sn(1) (but

rather the other way around), which results in a comparatively lower hopping.

The spin-spin correlation functions between the individual sites behave accordingly to

these observations. The Sn(2)-Sn(3) spin correlations have the overall largest negative

value, displaying a further decrease with increasing U and clearly diverging AFM-like

behaviour in the close proximity of the Mott transition. At the same time, the Sn(1)-

Sn(3) spin-spin correlations show opposite tendencies, revealing a behaviour which could

hint at eventual FM coupling (with the values still remaining negative in the U < Uc

region, though). The remaining Sn(1)-Sn(2) pair displays featureless, slowly decreasing

behaviour up to the Mott transition, with values in between the other two functions.

While one should remember that we are still in the paramagnetic regime here, these

results provide important hints at the magnetic tendencies within the system regardless

of whether or not these correlations may be prominent enough to stabilize long range

order. In particular, intriguing physics may arise in combination with the assumed

ability of the Sn/Ge(111) to fluctuate between the 2D-1U and 1D-2U states at higher

temperatures (see introduction).

Finally, we would like to make a further connection to the magnetic behaviour of the

Sn/Si(111) system, as already discussed in the DFT part. Fig. 3.17 shows the behaviour

of the effective onsite spin quantum number S and the average angle α between the ef-

fective spins on the triangular cluster. With the local values of S2
i and the correlation

functions 〈SiSj〉 available from the RISB formalism, the value of S can be deduced from

|Si| =
√

S2
i =

√

S(S + 1) and the average angle α results from 〈SiSj〉 = 〈|Si||Sj | cosα〉.
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As expected, for small U the itinerancy of the electrons leads to a spin quantum number

S well below the value of 1/2, which would correspond to maximum localization. With

increasing U, the value of S increases accordingly, however falling short of fully saturating

at the onset of the insulating regime. This is understandable considering the significant

first-order character of the transition. Furthermore, the low initial localization is well in

line with our DFT results.

The average α, shown in the lower panel, demands a more involved discussion. As we

are in the paramagnetic state here, the local moments have no preferred spatial direc-

tion by themselves, i.e. 〈Si〉 = 0 holds on every individual site. Already at U = 0

however, the average angle α between any two spins amounts to a value slightly larger

than 90◦, corresponding to a weak preference towards antiferromagnetic alignment and

in line with the previous results. This tendency can be seen to increase with U until it

finally reaches a value of α ≈ 100◦ right below the Mott transition.

This is relevant in the context of the possible limiting cases for the α value. A triv-

ial collinear FM order would result in α = 0, a case which can be clearly dismissed

here. Real in-plane triangular lattice antiferromagnetism provides a limiting value of

α = 120◦, which is however the same as in the hypothetical case of a frustrated collinear

antiferrimagnetic local configuration, with two FM-coupled spins both coupling antifer-

romagnetically to the remaining one. As much as these two cases are fundamentally

different, the value of α does not provide enough information to clearly distinguish be-

tween them.

Still, we are able to corroborate our PBE-GGA result of overall antiferromagnetic ten-

dencies for Sn/Si(111), further strengthened by increasing U. Onset of a true long range

magnetic order already in the metallic regime is strongly suggested by the DFT results,

even though model studies (e.g [55]) generally predict its appearance in the insulating

state close to the Heisenberg limit. As such, a direct many-body investigation of the

ordered magnetic phase should be a future goal.

3.5 Conclusions and outlook

With this, we conclude our study of the Sn/Si(111) and Sn/Ge(111) α-surface systems,

with the results presented here published in [63]. We have constructed both single site

and triangular cluster effective low-energy models for the two systems and analyzed the

influence of electronic correlations on the quasi-2D surface state. The Mott transition

is found to take place at already moderate U values of 0.5 − 0.6 eV for both systems,

a result consistent with the low surface band width. Nevertheless, the locality in these

systems is not particularly strong. Our many-body studies further reveal an intriguing
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Figure 3.12: Single site DMFT(QMC) spectral functions for the two one-band models
for different values of onsite U. Top:Sn/Si(111). Bottom:Sn/Ge(111). Calculations were

performed at β = 200 eV−1, corresponding to T∼ 58K
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occupations for the individual sites, with two different numbers given for the (d) sites
as they are slightly different by symmetry. This difference is not readily noticeable
in the spectral functions, and as such only the averaged spectral function for the two
downwards-shifted sites is shown for the sake of clarity. Calculations were performed

at β = 70 eV−1 (T∼ 166K).
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Figure 3.14: Orbital occupation of the three inequivalent Sn sites of the 2D-1U
distorted Sn/Ge(111) 3×3 supercell, from a RISB cellular cluster calculation. The inset
shows a top view of the 3 × 3 unit cell with the corresponding adatom designations.

The triangular cluster utilized for the model is marked in red.
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Figure 3.15: RISB quasiparticle weight Z for the single-site (top) and triangular
cluster models (bottom). The dashed vertical lines marking the individual critical U

values are guides for the eye.

interplay of the electronic correlations with the 2D-1U geometrical distortion present

in the Sn/Ge(111) system. Another central point, confirmed by both PBE-GGA and

many-body studies, is the tendency towards antiferromagnetic correlations present in

both systems, a result anticipated previously in model(-like) treatments [64, 31]. While

our DFT results hint at the existence of true noncollinear antiferromagnetic long-range

order in Sn/Si(111), distorted Sn/Ge(111) exhibits nontrivial spin correlation functions

strongly coupled to the details of the surface reconstruction. The latter results in par-

ticular call for a more thorough investigation of the ordered phases with the help of

many-body techniques, also taking the influence of the substrate into account. Further

possible research avenues include the question whether solely local Coulomb interactions

are truly sufficient to actually capture the physics of these systems, a thought fueled
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by the rather moderate locality of both the orbitals and the magnetic moments. Also,

Sn/Ge(111) poses the question of interplay between the electronic correlations and the

geometrical reconstruction, seeing as both are tied via the local occupation numbers of

the inequivalent adatom sites and also connected to the individual Sn-Sn spin correlation

functions. Ultimately, it would be interesting to investigate this system while allowing

for the effects of electronic correlation to couple back to the geometry of the surface,

e.g. via a charge self-consistent implementation of LDA+DMFT [8].

Lastly, after the conclusion of this work, some further light has been shed on the nature

of the magnetic ordering in Sn/Si(111)-
√
3×

√
3R30◦ by the study of Li et al [65]. Their

dual-fermion approach to this system, which is able to take nonlocal correlations into
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account, reveals the spin susceptibilities of the system to have important contributions

at both K and M points of the Brillouin zone, corresponding to an intriguing combina-

tion of both 120◦-AFM and row-wise AFM order tendencies, which is consistent with our

own results presented here. Also, the authors advise future researchers on this system to

include the next-nearest-neighbour hopping into their models. As such, the exact nature

of the surface state magnetism in this system still asks for further investigations.





Chapter 4

Implications of strongly reduced

symmetry: Dzyaloshinskii-Moriya

interaction in strongly correlated

itinerant systems.

4.1 Introduction

Understanding the magnetic behaviour of adatoms in surface/layered low-dimensional

setups ties in with the general interest in the effects low symmetry environments have

on magnetic systems. There exists a multitude of different materials where the reduced

dimensionality is believed to be of central importance to the intrinsic physics. The

anisotropy of the magnetic exchange induced by such geometry in bulk systems has

been recently studied, among others, in multiferroic materials [66, 67] such as for exam-

ple bismuth ferrite BiFeO3 where the canting of the ferromagnetic sublattices results in

a weak net ferromagnetic moment and is deemed important for the coupling between the

magnetic and electronic degrees of freedom. Another case of low-dimensional environ-

ment occurs naturally on surfaces, with a recent prominent example being manganese

on a tungsten (110) substrate [68], where Bode et al. could demonstrate the spin-spiral

behaviour of the surface to be a direct consequence of the reduced symmetry, and the

work of Zhu et al. [69] concerning surface effects on topological insulators. However,

interplay between spin degrees of freedom and peculiarities of the crystal environment,

as are at work in all these cases, obviously require a mechanism with which local spin

moments may couple to the lattice geometry.

The ready candidate is the spin-orbit coupling, and work central for the understanding

53
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interaction in strongly correlated itinerant systems.

of its function in such systems has been done over fifty years ago by Dzyaloshinskii [70]

and Moriya [71], who derived an effective spin-spin interaction term from the spin-orbit

coupling in low-symmetry environments, the so-called Dzyaloshinskii-Moriya (DM) in-

teraction. This is a central concept for the work presented in this chapter, and as such

we will discuss it briefly, mainly following the original publications.

The original work of Dzyaloshinskii, published in 1957, deals with the phenomenon of

extremely weak ferromagnetic response measured in certain antiferromagnetic crystals

(e.g. α-Fe2O3, MnCO3 and CoCO3). The corresponding magnetic moments contribut-

ing to the ferromagnetism were estimated to be on the order of 1 percent (or even less)

of the nominal local moment value, which was taken as an indication of some new mech-

anism being responsible for these effects, as standard ferromagnetism would be expected

to produce far larger local ferromagnetic contributions. In his effort to shed some light

on these new physics, Dzyaloshinskii went on to discuss and compare two particular

materials, namely the α-Fe2O3, where the aforementioned behaviour has been measured

in 1952 [72] and the structurally isomorphous Cr2O3, where this effect is absent.

The unit cells and magnetic setup of both systems is shown in Fig. 4.1. Both exhibit the

same rhombohedral geometry of the crystal structure while being different with regards

to magnetic symmetry. Dzyaloshinskiis approach now was to consider whether or not a

given symmetry is general enough to allow for a net magnetic moment within the cell,

for example by allowing the individual moments to rotate towards each other, resulting

in a small ferromagnetic contribution. This turns out to be impossible in Cr2O3 without

violating the symmetry, but possible in α-Fe2O3 where the free energy written in terms

of local spin variables then includes expressions of the form

D · (S1 × S2)

with S1,2 denoting spins on neighbouring lattice sites and the vector quantity D dictated

by the system symmetry.

As such, low enough magnetic symmetry allows such configurations. It was in the work

by Moriya [71] three years later that the anisotropic spin interaction thus suggested

by Dzyaloshinskii has been shown to actually stem from the combined effects of spin-

orbit coupling and Andersons superexchange [73]. Moriya went on to derive rules for

the emergence of this interaction in realistic geometries, explicitly demonstrating how a

low-symmetry environment is required for a nonzero value of D.

Thus, anisotropic magnetic exchange emerges naturally in many of the more complex

material setups, and as such has already been subject to intense study in the past, for

example on triangular lattices [74] or in dimer chains [75]. However, theoretical stud-

ies have up to now nearly exclusively dealt with pure spin models, while neglecting to

consider effects of itinerancy or to take into account explicit many body-effects. Only
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recently has there been a rising interest in combining the Hubbard model with spin-orbit

terms.

Recent developments suggest that interactions of the Dzyaloshinskii-Moriya type play

a major role in many strongly correlated materials, with a particular interest in doped

cuprate systems [76, 77, 78]. The innate two-dimensional nature of these materials, in

conjunction with the tilting and rotations of the CuO6 octahedra which occurs depending

on the doping level, creates a low symmetry environment in which the DM interaction is

believed to make a non-negligible contribution to the rich magnetic behaviour observed

in these systems. Other intriguing materials include layered manganite systems [79, 80],

where noncollinear magnetic behaviour emerges at certain doping levels, but also some

mono-oxides (e.g. CoO) [81]. Naturally, strongly correlated surface systems also fall

into this category (due to the innate low symmetry), such as the quasi-two-dimensional

organic κ-(BEDT-TTF)2X materials [82], which, depending on the anion X, may exhibit

anisotropic magnetism close to the metal-insulator transition.

As such, within the scope of this work we are interested in a minimal modeling of

the DM interaction in the strongly correlated metallic regime. As standard direct and

indirect exchange mechanisms favor collinear spin alignment, we expect the competi-

tion between these and the tendency towards perpendicular spin orientations brought

about by Dzyaloshinskii-Moriya to give rise to interesting physics and nontrivial spin

arrangements. According to the examples given above, our primary focus will lie on

two distinct model setups, allowing for a somewhat canonical approach to the different

material types.

The first (and main) part of this chapter deals with the properties of the Hubbard bi-

layer model in presence of Dzyaloshinskii-Moriya interaction. The setup consists of two

coupled single-band Hubbard planes [83, 84, 85, 86, 13, 87, 88, 55], with the DM coupling

acting between them, and we will mostly concentrate on the study of the competition

between the collinear antiferromagnetic state and the canted configurations of DM-kind

in the high U metallic regime. This particular model has been chosen to serve as an

archetype for quasi-2D layered systems, akin to the aforementioned cuprates, and it is

our intent to uncover the basic phenomenology of physics emerging in such geometries.

The latter part of this chapter is devoted to the investigation of the so-called two-

impurity Anderson model (TIAM) [89, 90, 91, 92, 93, 94, 95]. This model consists of

two local magnetic impurities coupled to the same bath and serves as a generalisation of

the magnetic-adatoms-on-surface type of system. As an additional feature, this model

also includes both the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction

between the impurities (mediated via the common bath), which has been shown to con-

tribute strongly to the magnetic behaviour of certain adatom configurations [96], and the

single-impurity Kondo physics. As such, we expect interplay between direct exchange,

RKKY, DM and the Kondo mechanism within this model (albeit no long range order,



56
Chapter 4 Implications of strongly reduced symmetry: Dzyaloshinskii-Moriya

interaction in strongly correlated itinerant systems.

Figure 4.1: Picture taken from original work of Dzyaloshinskii [70]. (a) - Unit cell
of α − Fe2O3 and Cr2O3. Large circles: oxygen ions. Small circles: Ferric ions. (b) -

Anriferromagnetic spin ordering in α− Fe2O3. (c) - Same for Cr2O3.

due to finite size).

Of course, the aforementioned models are too generic to accurately capture the physics

of the specific materials in every detail. Rather, we intend to discuss the general phe-

nomenology emerging though the addition of the Dzyaloshinskii-Moriya interaction to a

strongly correlated, itinerant system. As will become clear over the course of this chap-

ter, the effects are highly non-trivial and serve as a strong motivation for more detailed,

specifically material-tailored studies in the future.

4.2 Hamiltonians and theoretical treatment.

The geometry of the Hubbard bilayer model is shown in Fig. 4.2. The two two-

dimensional infinite square lattice planes, with one orbital per site, each have a simple

identical intra-layer dispersion governed by a nearest-neighbour hopping t and an on-

site Coulomb repulsion U associated with each individual site. The planes are coupled

to each other via a perpendicular inter-layer hopping t⊥ and the Dzyaloshinskii-Moriya

interaction, specified via the vector integral ~D. The corresponding model Hamiltonian

reads

HBL = −t
∑

ασ

〈i,j〉

(c†αiσcαjσ +H.c.) + t⊥
∑

iσ

(c†1iσc2iσ +H.c.)

+ U
∑

αi

nαi↑nαi↓ +
∑

i

D · (S1i × S2i) (4.1)
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D

x

z y

Figure 4.2: Hubbard bilayer model with interlayer DM interaction. The two-site
cluster which acts as the periodic unit is marked in cyan, with perpendicular hopping
t⊥ symbolized by a blue line. The Dzyaloshinskii-Moriya vector ~D is denoted with a

red arrow and is generally chosen to point in the y direction.

where c
(†)
αiσ creates (or annihilates) an electron of spin σ =↑, ↓ in layer α = 1, 2 at the

lattice site i, and the individual components of the spin operator S
(ν)
αi , with ν = x, y, z,

are defined via S
(ν)
αi =1/2 c†αiσ τ

(ν)
σσ′ cαiσ′ .

In general, most geometries which are able to produce the DM interaction in the first

place result in D being perpendicular to the bond between the involved lattice sites.

Within our general model, the value and direction of D is a matter of choice, but

would become a material-specific parameter in a more accurate setup, conveying infor-

mation about e.g. positioning of additional atoms not directly involved in the 2D layer

structure. In the context of cuprates that could, for example, include oxygen atoms

contributing to the interlayer coupling, or basically any additional constituent occupy-

ing a low-symmetry position in the unit cell (seeing as broken inversion symmetry is

required for D 6= 0 at all). As such we choose D to point in the y direction, D = D~ey.

Both layers exhibit a simple two-dimensional square lattice dispersion relation with the

bandwidth W = 8t.

The two-impurity Anderson model (TIAM) will be discussed in the second part of this

chapter. We write this model as

HTIAM =
∑

kσ

εkc
†
kσckσ + εd

∑

iσ

niσ

+V
∑

kiσ

(c†
kσdiσ +H.c.) + t12

∑

σ

(d†1σd2σ +H.c.)

+U
∑

i

ni↑ni↓ +D · (S1 × S2) (4.2)

The impurity electron operators are denoted d
(†)
iσ (i = 1, 2) with the impurity level energy
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εd and the inter-impurity hopping t12. The common bath enters explicitly via its dis-

persion εk and the corresponding creation/annihilation operators c
(†)
iσ , and the coupling

between impurities and bath is denoted by V . The Coulomb interaction U is introduced

on the impurities only, with niσ = d†iσdiσ . The dispersion of the bath is chosen to be

that of a simple cubic lattice with bandwidthW = 12t, and the D vector is again chosen

to point in the y direction. Although both impurities are coupled to a common bath in

this model, we still assume V to not depend on k, formally corresponding to vanishing

distance between the impurities. As such, only the local part of the RKKY interaction

is included in our model. The treatment of nonlocal RKKY (as well as a correlated

common bath, for that matter) is a possible future research avenue.

All calculations within this chapter were performed using the rotationally invariant slave-

boson approach (RISB), which was already introduced in the theory part, and, to a lesser

extent, during the discussion of the α-surfaces in chapter 3. The main point which makes

this formalism most suitable for this task is the ability to account for full orbital and spin

rotational invariance, a necessity when dealing with local noncollinear configurations in

a many-body framework. Furthermore, it gives us access to the low-energy behaviour in-

cluding the linear part of the self-energy, quasiparticle weights, atomic multiplet weights

on the cluster, and all local operator expectation values. Note, however, that in return

Hubbard bands can not be taken into account within this approach and the full spectral

function is not available.

The Hubbard bilayer model is treated by using a two-site cluster which connects the

two nearest-neighbour (NN) lattice sites between the layers. As such, it can account for

spin-spin correlations involving the two cluster sites and the cluster self-energy Σ12(ω)

(the linear part), including the off-diagonal terms. The direct exchange term, propor-

tional to t2/U , is properly included beyond single site in our models, while the DM

term D(S1 × S2) is treated explicitly within the local cluster. Theoretically, it should

be possible to reproduce the DM anisotropic exchange from a general spin-orbit term

treated within RISB (along the lines of [97]) in a future effort.

Within the two-impurity Anderson model (TIAM), the bath enters explicitly via its

band dispersion, resulting in an effective three-orbital setup. Thus, the bath degrees of

freedom are not integrated out, but are handled explicitly instead. All of the calcula-

tions presented here deal with an uncorrelated bath scenario, Ubath = 0. However, it

will become evident during the discussion of the results that weak correlation effects are

still introduced into the bath due to the coupling to the correlated impurities.

Additionally, a few important details have to be kept in mind. Although all calculations

are formally performed at T = 0, a minor temperature scale is introduced into the cal-

culations through the use of a small Gaussian smearing for the k-point integration. For

this reason, all energetics are discussed in terms of the free energy F . In the case of the

TIAM, introducing electronic correlations in the impurity orbitals only expectedly leads
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to a charge transfer from the local orbitals into the bath, which is not desired here. As

we are solely interested in the half-filled case of the two-impurity Anderson model within

this work (to remain somewhat close to the canonical setup), we fix the occupation of

the bath in all calculations, either by setting ǫd = −U/2, or by introducing an additional

Lagrange multiplier. Both approaches were checked to lead to the same results.

4.3 Hubbard bilayer model

The Hubbard bilayer is a canonical model which has, bar the influence of the DM in-

teraction, already been studied in a multitude of works [83, 84, 85, 86, 13, 87, 88, 55].

While most studies focus on the influence of the ratio t/t⊥ on the electronic phase dia-

gram, our goal will be to investigate the interplay of the electronic correlations with the

Dzyloshinskii-Moriya interaction. We will restrict our discussion to cases where t/t⊥ < 1

, i.e. the coupling between the sites within a plane is stronger than the inter-plane hop-

ping. Each layer has standard square-lattice dispersion with a bandwidth W = 8t and

we will handle all energies throughout this section in units of the half bandwidth 4t.

As our unit of repetition is the two site cluster with each site belonging to one of the two

layers (Fig. 4.2) it should be made clear that only long-range ordered states originating

from such a unit cell are accessible within our study. Our setup is not able to account

for long-wavelength behaviour, e.g. spin spirals, which is something that might be ad-

dressed in a future study. Here, we will rather focus on the interplay of the fundamental

short-range processess eventually driving the long-range ordered state in the strongly

correlated metallic regime.

4.3.1 Half-filled Hubbard bilayer

At half filling, the system contains one electron per layer site and is therefore susceptible

to a Mott transition. Within this section, we will concentrate on the influence of the DM

interaction on its onset and the behaviour in presence of strong correlations. To account

for the inter-layer hopping t⊥ we will deal with two cases, one with weakly coupled layers

(t⊥ = 0.025) and one corresponding to somewhat stronger coupling (t⊥ = 0.1).

Figure 4.3 summarizes the general behaviour of the Hubbard bilayer with increasing

Hubbard U. Generally, we are able to stabilize two distinct metallic phases, the para-

magnetic phase in the lower U region (PM) and the antiferromagnetic (AFM) phase

closer to the Mott transition. Note that in concurrence with the previous discussion

of the eventual emerging long-range order within our modeling the antiferromagnetism
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Figure 4.3: Free energy, quasiparticle weight and multiplet weight behaviour with
increasing U for the half-filled Hubbard bilayer, shown for two different values of t⊥
and D, respectively. The top panel shows the free energy differences with respect to the
PM phase. The states shown in color in the bottom panel belong to the two-particle

sector, with others shown in black in the background.

here is of A-type character, i.e. it corresponds to two ferromagnetic layers coupled

antiferromagnetically to each other. Some additional discussion of eventual intra-layer

antiferromagnetic behaviour will be given at the end of this chapter.

The results for D = 0, i.e. the standard Hubbard bilayer without Dzyaloshinskii-Moriya

interaction, are shown on the left. The top panel holds the free energy differences with

respect to the paramagnetic phase. It can be clearly seen that the AFM phase wins

over the paramagnetic phase in the high-U region, with the onset of antiferromagnetic

order hastened by a lower t⊥, and hence a lower bonding-antibonding splitting. This

is in line with previous results obtained with dynamical mean-field theory employing

quantum Monte Carlo solvers for the impurity problem [86, 88]. Furthermore, there

is a somewhat smaller difference in the critical values Uc needed to enter the insulat-

ing regime. The middle panel on the left-hand side holds the quasiparticle weights

Z=(1 − ∂Σ/∂ω)−1|ω=0 for the t⊥ = 0.1 case. The onset of the AFM state does not

significantly influence the values here, with the AFM QP weights being only marginally

larger right before the Mott insulator onset.

The respective panels on the right side hold the corresponding data in presence of the

DM interaction with D = 0.03. The energetics plot in the top panel reveals no signifi-

cant change in the U values responsible for the onset of the AFM phase, although the

energy gain in the AFM state is larger and the difference between the two critical Uc for

the two different values of t⊥ vanishes with D. The quasiparticle weights also do not

exhibit strong changes with the introduced Dzyaloshinskii-Moriya interaction.

Our access to the local multiplet behaviour allows us to gain some insight into the
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State Nr. S Sz State composition Energy

1 1 -1 |0 ↓, 0 ↓〉 0

2 1 0 |0 ↓, ↑ 0〉+ | ↑ 0, 0 ↓〉 0

3 1 1 | ↑ 0, ↑ 0〉 0

4 0 0 |00, ↑↓〉 − | ↑↓, 00〉 U

5 0 0 | ↑↓, 00〉 + U+
√
U2+16V 2

4V |0 ↓, ↑ 0〉 − 1
2

[

U −
√
U2 + 16V 2

]

− U+
√
U2+16V 2

4V | ↑ 0, 0 ↓〉+ |00, ↑↓〉
6 0 0 | ↑↓, 00〉 + U−

√
U2+16V 2

4V |0 ↓, ↑ 0〉 − 1
2

[

U +
√
U2 + 16V 2

]

− U−
√
U2+16V 2

4V | ↑ 0, 0 ↓〉+ |00, ↑↓〉

Table 4.1: Two-particle eigenstates of the local dimer with corresponding S and Sz

quantum numbers and energies. The state 5 is the ground state of the system. The
states are not normalized, for clarity of appearance.

changes introduced by the anisotropic exchange by considering the respective weights of

the various multiplets Γp in the particle sector p, where we here focus on the two-particle

states as the most important for the half-filled system. The two-particle eigenstates of

the local dimer are shown in Tab. 4.1, also compare Ref. [95]. In absence of DM in-

teraction they can be classified according to the SU(2) symmetry and form triplet and

singlet states in the two-particle sector. The weight (occupation probability) ρΓp
of these

multiplets in the strongly correlated itinerant system is accessible via ρΓp
=
∑

Γ′
p
|φΓpΓ

′
p
|2.

Here φΓpΓ
′
p
denotes the slave-boson amplitude connecting Γp and Γ′

p in the associated

local multiplet basis, obtained from a rotation of the original {φAn}.
The multiplet weights are shown in the bottom panel of Fig. 4.3, with the, evidently

most important, two-particle states highlighted in color. On the left hand side, in ab-

sence of the DM interaction, the individual multiplets are denoted according to their

spin operator eigenvalues. The highest overall weight belongs, unsurprisingly, to the

S = 0, Sz = 0 singlet and shows a sharp increase with increasing U, followed by the

triplet states. The degeneracy of the triplet is lifted at the onset of the AFM regime,

lending more weight to the Sz = 0 state. The contributions from the other particle sec-

tors, shown in the background, are significantly lower in value to begin with and display

a steady decrease towards the onset of the Mott transition.

For D 6= 0, the bilayer Hamiltonian Eq. (4.1) no longer commutes with {S2, Sz}, and
thus the corresponding states can no longer be classified according to these respective

quantum numbers. This can be understood from the DM interaction favoring perpen-

dicular alignment, thus disrupting the collinear setup and the notion of a defined spin

quantization axis. The respective multiplet weights are shown in the right hand bottom
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multiplet weight (see Fig. 4.3) as functions of D, calculated for U = 3. For D 6= 0
this multiplet is no longer an eigenstate of the S2 or the Sz operator. The inset shows
the evolution of the multiplet weight itself, with the data of Fig. 4.3 corresponding to

D = 0.03.

panel. The overall picture still formally looks very familiar, with the clearly dominating

highest multiplet and three somewhat lower entries. Note however that in presence of

the DM interaction the three former triplet states are nondegenerate from the begin-

ning, with (ΓDM
2,4 ) sporting a weight slightly different from the other two. This difference

is enhanced at the onset of the AFM regime, where the doubly degenerate ΓDM
2,2 /ΓDM

2,3

state acquires a higher overall weight. This is manifestly different from the D = 0 case

where the doubly degenerate state holds the lowest value.

As it is clear that the S = 0, Sz = 0 multiplet plays a dominant role in the local picture it

is worth investigating its nature in some more detail. The new eigenstates of the system

under influence of the Dzyaloshinskii-Moriya interaction, |Γ(DM)
p,ν 〉, are still given by a

general expansion into Fock states |np〉 through |Γ(DM)
p,ν 〉=∑n c

(p)
νn |np〉. The development

of the six individual coefficients c
(2)
1n for the highest-weight state of the two particle sector

with increasing D is shown in Fig. 4.4. At D = 0, the state is a S = 0, Sz = 0 singlet,

where the c11,c12 coefficients (corresponding to antiferromagnetic | ↑ 0, 0 ↓〉,|0 ↓, ↑ 0〉
Fock states) carry nearly all of the state, with a negligibly small contribution of c15,c16,

while both c13 and c14 are exactly zero. As soon as a finite Dzyaloshinskii-Moriya inter-

action is turned on all coefficients c
(2)
1n become finite, with an ever increasing admixture

of the ferromagnetic | ↑ 0, ↑ 0〉, |0 ↓, 0 ↓〉 Fock states into the eigenstate.

Now that we have a general grip on the energetics and the local multiplet setup within

the bilayer system we will go on to discuss the magnetic properties of the AFM state

and its evolution in presence of a nonzero D. It is, after all, in the magnetically ordered

states where we would expect anisotropic exchange contributions to have the most pro-

found impact. Figure 4.5 shows the behaviour of the local spin moments within the

AFM state with increasing U . The results for D = 0 are shown in the left panel. The
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Figure 4.5: Spin expectation values in the AFM state. Finite DM coupling introduces
a nonzero Sx component (the direction is due to our choice of the D vector). Vertical
dot lines mark the Mott transitions, vertical dot-dashed lines mark the onset of AFM

order.

onset of the AFM phase introduces a nonzero value of the 〈Sz〉 spin component which

then continues to grow with increasing U . The AFM order stabilizes at higher U values

for larger t⊥, which is then compensated by a steeper increase in local moment value.

The right panel shows results for D = 0.03. Immediately at the onset of the AFM phase,

a finite 〈Sx〉 component appears, corresponding to a local spin configuration with both

local moments slightly canted towards the x direction, thus introducing weak ferromag-

netism into the previously purely antiferromagnetic system. The additional 〈Sx〉 spin

component continues to grow with increasing U, tilting both spins further towards each

other as correlation strength increases. For t⊥ = 0.1 〈Sx〉 amounts to approximately

half of the value of 〈Sz〉 at the onset of the Mott transition. This effect is even more

pronounced in the case of t⊥ = 0.025 where the value of 〈Sx〉 equals that of 〈Sz〉 at

U = Uc, corresponding to a canting angle of γ ∼ 90◦.

The DM interaction does not only modify the antiferromagnetic ordered state but has

an influence on the magnetic behaviour of the paramagnetic state as well. Figure 4.6

shows the spin-spin correlation functions between the two layers, both within the AFM

and the PM states (the paramagnetic state can still be stabilized within the AFM re-

gion for comparison purposes, although it is no longer the ground state of the system).

Results for D = 0 are again shown in the left panel. For the paramagnetic state, the

spin-spin correlation functions are naturally isotropic, corresponding to the full rota-

tional invariance of the problem. The correlation function values stay in the negative

throughout the whole range of U , demonstrating the overall tendency of the model to-

wards antiferromagnetism and gaining in strength as the system approaches the Mott

transition. At the onset of the AFM phase, the correlations along the magnetization

direction become significantly enhanced in comparison to their PM state value, while the
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other two spatial components suffer a reduction in strength. The overall phenomenol-

ogy is similar for both t⊥ = 0.1 and t⊥ = 0.025, with earlier onset but lower correlation

strength for the weakly coupled bilayer and vice versa, which agrees with our results

regarding long range magnetic order discussed above.

A finite DM interaction naturally introduces a strong spin-spin correlation anisotropy.

Results for D = 0.03 are shown in the right panel of Fig. 4.6. The full rotational

symmetry of the PM state is replaced by rotational symmetry in the xz-plane only in

presence of a nonzero D = Dey. With this the 〈S1,yS2,y〉 becomes enhanced, resulting in

a stronger antiferromagnetic response along this direction. This effect, although weak,

sets in already well before the AFM parameter range is reached, and becomes strongly

enhanced in the AFM regime, even when the system is considered in the paramagnetic

state. As the AFM state itself introduces a net magnetisation in the z direction (with a

DM-originated canting towards x), all the individual spin-spin correlation function com-

ponents become different in value, with a particularly strong antiferromagnetic response

along the z axis and a significantly weakened antiferromagnetism along y. A lower value

of t⊥, as shown in the bottom panel, once again seems to strengthen the noncollinear

tendencies, to the point where the 〈S1,xS2,x〉 correlation function becomes particularly

disconnected from the other components, even adopting a significant ferromagnetic re-

sponse at higher U values.

So far, it has become evident that the anisotropic effects of the Dzyaloshinskii-Moriya

interaction become significantly enhanced when strong electronic correlations are present

within the system. To complete our investigation of the half-filled Hubbard bilayer we

would like to more accurately assess how exactly the different phenomena discussed so

far evolve from the collinear case. To this end, we will consider a strongly correlated

Hubbard bilayer in the antiferromagnetic state, only slightly below the Mott transition,

into which Dzyaloshinskii-Moriya interactions are gradually introduced. The results of

this calculation are shown in Fig. 4.7.

The top panel displays the dependence of the quasiparticle weight Z on the value of

D, calculated for two fixed correlation strengths U . As can be clearly seen, introducing

the DM interaction into the system reduces the quasiparticle weight, to the point where

the system can be forced to undergo a Dzyaloshinskii-Moriya driven metal-to-insulator

transition at sufficiently high values. Note that this effect can be understood from the

form of the DM operator in second quantization, in which it consists of a total of four

creation/annihilation operators (two for each spin operator involved) and thus can be

considered to represent a special form of particle-particle correlator. As such, it enhances

the correlations within the system.

The lower panel contains information about the spin moments and spin-spin correlation

functions as a function of D. As expected, DM interaction again forces the individual
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spin moments to tilt towards each other, with the value of the ferromagnetic contribu-

tion Sx depending strongly on D. The evolution of the angle between the spins is shown

explicitly in the inset for clarity, where the value γ ∼ 100◦ is adopted close to the Mott

transition, which is close to the DM ideal of 90◦. Furthermore, spin-spin correlation

functions along the y direction are shown to increase in strength with increasing D,

while the antiferromagnetic response along the x axis is weakened. This is consistent

with our earlier findings.
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Figure 4.8: Effects of hole doping in the Hubbard bilayer model with t⊥ = 0.1 and
U = 3, with and without DM interaction. The insets in the top panel show the whole
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red. The top panel itself shows the difference with respect to the PM free energy. The
right middle inset shows the evolution of the angle γ between the spins. Abbreviations:

Canted anti- ferromagnetic phase (C-AFM), spin-flop phase (SF).

4.3.2 Hole-doped Hubbard bilayer

Now that we have gained some insight into the behaviour of the half-filled Hubbard

bilayer with DM interaction we would like to assess the influence of hole-doping our

model away from half filling, also to make a connection with the doped cuprate systems

briefly discussed in the introduction. To this end, we start from the half-filled bilayer

setup with U = 3 and t⊥ = 0.1. As can be seen from Fig. 4.3, this set of parameters

puts the system into the strongly correlated regime, just below the Mott transition and

with a quasiparticle weight of only Z ∼ 0.2.

The results of hole doping the system in the range 1.6 < n < 2.0 are summarized in

Fig. 4.8. We will first briefly discuss the D = 0 case, shown on the left. The top panel

again displays the free energy difference with respect to the PM state, with the inset

showing the whole free energy curve. Antiferromagnetic long range order can be seen

to exist down to n = 1.74, with the corresponding local spin moments shown in the

second panel. The order parameter of the AFM phase, 〈Sz〉, decreases steadily when

moving away from n = 2. At the same time, antiferromagnetic spin-spin correlations

become weaker and the quasiparticle weight increases significantly, readily displaying

the half filled case as both the most strongly correlated and exhibiting the strongest

antiferromagnetic tendencies.

As much as such a result can be expected from the doped bilayer model on general

grounds, the situation becomes much more intriguing with the introduction of the

Dzyaloshinskii-Moriya interaction. The former antiferromagnetic phase is now canted
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Figure 4.9: Interaction dependence of the hole doped Hubbard bilayer model at
n = 1.7. Insets show free energy curves (top panel) and the spin-spin angle γ.

in the x direction (and hence designated C-AFM from here on) at half-filling, as can be

expected from our previous discussion. The spin angle amounts to only slightly more

than 90◦ showing the strong influence of the DM interaction in this regime. As the

local moments become reduced away from half-filling the canting also lessens, until at

n = 1.76 the system suddenly undergoes a first order transition towards a novel metal-

lic spin-flop (SF) phase. This transition is characterized by a discontinuous jump into

a local configuration with the 〈Sx〉 expectation value being actually larger than 〈Sz〉.
This corresponds to an angle γ between the local spins being lower than 90◦, which can

be seen in the inset of the second right panel along with the sharp discontinuous jump

at the transition point. The SF phase thus effectively exhibits dominant ferromagnetic

behaviour with a weak antiferromagnetic canting, which is highly nontrivial. Note that

neither the spin-spin correlation functions nor the quasiparticle weight show any kind

of strong signature, and that the energy gain with respect to the paramagnetic phase is

comparatively small. The SF phase vanishes below n ∼ 1.62 where the usual PM phase

sets in.

In addition to the doping scan, a U scan of the doped Hubbard bilayer at n = 1.7 and

t⊥ = 0.1 is shown in Fig. 4.9. The left hand side again displays the model behaviour

sans the DM interaction. At n = 1.7 the onset of antiferromagnetic order is delayed

until U > 3.58, which is significantly higher than the critical interaction strength needed

for the metal-insulator transition at half filling (see Fig. 4.3), while the usual PM phase

is stable at lower U values.

In presence of the Dzyaloshinskii-Moriya interaction (D = 0.03) the aforementioned SF

phase is again stabilized for 1.9 < U < 3.85 with the jump in the spin-spin angle γ

shown in the right middle inset. In addition to that the transition is accompanied by a
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Figure 4.10: Illustration of the four different local spin configurations found to exist
within the Hubbard bilayer model in the parameter space discussed within this work.
(a) PM configuration without ordered local moments. (b) AFM configuration, corre-
sponding to spin angle γ = 180◦. (c) C-AFM configuration, 90◦ < γ < 180◦. (d) SF

configuration, γ < 90◦

small discontinuity in the 〈S1,zS2,z〉 correlation function, an effect not readily visible in

the previous figure. Note that the presence of the spin-flop phase shifts the onset of the

(C-)AFM phase towards somewhat higher U values. In contrast, there is no DM-related

shift in the onset of the C-AFM phase with respect to doping, as can be seen from the

previous discussion.

As such, our discussion of the doped Hubbard bilayer model reveals the existence of a

novel spin-flop phase at the boundary between the usual AFM and PM phases, stabilized

by a finite Dzyaloshinskii-Moriya interaction. As such, the model is found to exhibit

four different local spin configurations over the discussed parameter range, summarized

in Fig. 4.10. Note that the SF phase extends into the previously paramagnetic region

of the phase diagram, and thus effectively increases the parameter range in which the

system is susceptible to long range magnetic order.

4.4 Two-impurity Anderson model.

The two-impurity Anderson model (TIAM) [89, 90, 91, 92, 93, 94, 95] is one of the

canonical models in the field of strong electronic correlations. The coupling of the im-

purities to the common bath allows the model to encompass both the single-impurity

Kondo mechanism and the RKKY indirect impurity-impurity exchange and gives us the

possibility to study the interplay of these interactions. Note that in some works [84, 95]

the two impurities of this model are connected to different baths, which results in the

overall setup being similar in nature to the previously discussed bilayer geometry. This

is not what we intend here. With the model Hamiltonian outlined in Eq. 4.2 we aim
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Figure 4.11: Spin correlation functions for the two-impurity Anderson model with
t12 = 0. Top panel: 〈S2〉 expectation values for D = 0. Curves for D 6= 0 do not visibly
differ. Bottom: Impurity-impurity and impurity-bath spin correlation functions, shown
for D = 0 (black, circles) and D = 0.05 (color, squares). The dashed line in the top
half of the bottom panel shows the 〈SimpSbath〉 correlation function mirrored at the

zero line, for the sake of comparison.

to fully incorporate the competition of the two aforementioned exchange mechanisms,

additionally including the direct impurity-impurity exchange resulting from the explicit

hopping t12 and, finally, the inter-impurity Dzyaloshinskii-Moriya interaction.

As can be seen from the Hamiltonian, the bath is treated explicitly within our model.

We use a standard three-dimensional simple cubic dispersion with bandwidth W = 12t

(setting t = 0.5 in our calculations). For the direction of D again the y axis is chosen.

The impurity-bath hopping is set to V = −0.5 for all calculations. The model is treated

at half filling throughout the whole section.

Note that the model represents a system of finite size. As such, no long range magnetic

order can be expected on general grounds and thus all discussions hereafter will deal

exclusively with the paramagnetic state. However, due to the mean-field nature of the

RISB formalism solutions with net local moments may still be stabilizeable and thus

these parameter regions must be handled with greater care.

To start our discussion with a comparatively simple setup, we begin by investigating

the case where t12 is set to zero, i.e. there is no direct hopping between the individ-

ual impurities and all exchange mechanisms have to be mediated by the bath. Figure

4.11 shows the behaviour of the different spin-spin correlation functions, with and with-

out Dzyaloshinskii-Moriya interaction active between the impurity sites. The top panel

shows the evolution of the 〈S2〉 = S(S+1) expectation value with increasing interaction

strength U . The fast increase in the 〈S2
imp〉 signifies the quick formation of a local mag-

netic moment, driven by the onsite electronic correlations. At high interaction strength,

〈S2
imp〉 saturates to ∼ 0.75, which corresponds to the full S = 1/2 limit. At the same
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time the bath does not face local correlations by construction and thus 〈S2
bath〉 remains

mostly unperturbed.

This behaviour is largely mirrored by the individual quasiparticle weights Z, shown in

the inset of the middle panel. The QP weight on the impurities drops sharply with the

onset of a finite U , decreasing to almost zero at higher interaction strength. Addition-

ally, Zbath can also be seen to suffer a small decrease which is due to weak correlation

effects being introduced by coupling to the strongly correlated impurities.

The spin-spin correlation functions themselves are shown in the middle panel. The cor-

relation between a single impurity and the bath, 〈SimpSbath〉 remains AFM in character

throughout the whole U range, exhibiting a maximum at UK ∼ 1.6, a behaviour which

can be readily explained by singlet-forming tendencies of the Kondo screening. On the

other hand, the impurity-impurity spin correlations S1S2 are purely of FM kind and can

be attributed to the local limit of the RKKY exchange between the impurities, mediated

by the bath. The FM correlation strength rises quickly with the increase in U , exceeding

the effect of the Kondo screening close to UK (the dashed line in Fig. 4.11, representing

the impurity-bath spin correlation function mirrored at the zero line, is shown for com-

parison). The system is then dominated by the FM RKKY interaction in the higher U

region [90, 94, 95].

General understanding of this behaviour can be gained by considering a Schrieffer-Wolff

[98] mapping for the Kondo coupling, which yields JK = 8V 2/U for the exchange inte-

gral. If we treat the RKKY interaction as a second order process, i.e. JRKKY ∼ J2
K ,

both exchange interactions become equivalent in strength for U = 2 (remember that we

use V = −0.5 here), in line with the result obtained from our calculations. Accordingly,

a higher impurity-bath hopping V causes the crossover region to shift to higher U values,

since JRKKY profits more strongly therefrom. Note that at the chosen parameter values

(W = 6) and in the considered interaction strength range our model is still far from the

Kondo-Hamiltonian limit (U ≫ W ) [92].

Introducing the inter-impurity Dzyaloshinskii-Moriya interaction with D = 0.05 changes

little at small interaction strengths U . In fact, the 〈S2〉 expectation values, as shown

in the top panel, remain nearly unperturbed over the entire scan region, as do the

quasiparticle weights. For U & 3 however, the individual spin-spin correlation func-

tions become significantly modified, with a particularly strong effect on the 〈S1,yS2,y〉
inter-dimer component parallel to the direction of the Dzyaloshinskii-Moriya vector D.

As can be clearly seen, the reduction in ferromagnetic spin correlation strength due to

local FM RKKY is extreme along the y direction, taking the correlation function down

to approximately zero by U = 5. A similar, albeit much weaker reduction is visible in

the other two inter-impurity spin correlation function components. At the same time,

the antiferromagnetic impurity-bath correlations also become somewhat reduced, again

with a stronger effect along the y direction.
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Figure 4.12: Spin-spin correlation functions for the two-impurity Anderson model
with direct hopping t12 = 0.2, without (top) and with (bottom) DM interaction.

As such, a highly intriguing spin-spin interaction setup arises in presence of the Dzyaloshinskii-

Moriya interaction in the large impurity U region, where the two local magnetic moments

couple ferromagnetically along the x and z directions, yet exhibit a strong tendency

towards antiferromagnetic coupling along the y axis. Note that we are still in the para-

magnetic regime here.

Unfortunately, for U > 5 and a nonzero DM interaction present in the model our mean-

field based RISB approach encounters the very difficulty briefly described at the begin-

ning of this section, namely that the paramagnetic solution is no longer stabilizeable

and net local moments start to appear on the impurity sites. As such, we cannot further

investigate the U > 5 region in this manner. A further study using a beyond-mean-field

approach, as for example the numerical renormalization group [94], should prove highly

interesting.

We complete our investigation of the two-impurity Anderson model by introducing an

additional nonzero direct impurity-impurity hopping t12. Figure 4.12 shows the spin-

spin correlation functions and quasiparticle weights for t12 = 0.2, with and without DM

interaction. The D = 0 results are shown in the top panel. In presence of inter-impurity

hopping the resulting direct exchange integral Jdir = 4t12/U introduces additional an-

tiferromagnetic correlations into the system. At U = 0, both 〈SimpSbath〉 and 〈S1S2〉
exhibit AFM coupling. With increasing U the correlation functions develop in a similar

fashion as for the t12 = 0 case, albeit with an overall reduction in magnitude at lower

U values. The inter-impurity spin-spin correlation functions make the transition to FM

coupling around U ∼ 0.6.

The presence of direct exchange thus weakens both the impurity Kondo screening (due

to stronger inter-impurity coupling) and the local FM RKKY interaction (as direct ex-

change favors AFM configurations). However, FM RKKY still dominates the system

behaviour at sufficiently high U values, at least in the parameter region investigated
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within this work. Note that the crossover into the RKKY-dominated regime still occurs

at approximately the same point, despite the presence of direct exchange.

Finally, we introduce a finite Dzyaloshinskii-Moriya interaction with D = 0.05. At this

point, four different exchange mechanisms (DM, RKKY, Kondo screening, direct ex-

change) compete within the model. The results are shown in the bottom panel of Fig.

4.12. Again, there is little modification of the correlation functions for low interaction

strength. Already at around U ∼ 0.6 however the y component of the inter-impurity spin

correlation function splits off, exhibiting strong antiferromagnetic tendencies at higher

U values. This is mimicked by the 〈S1,x/zS2,x/z〉 components, albeit to a lesser degree.

Overall, the system behaviour in the strongly correlated region is severely changed by

the presence of DM interaction. The previously established dominance of FM RKKY

exchange is lost and the high U regime is instead ruled by antiferromagnetic spin corre-

lations.

This so far concludes our discussion of the two-impurity Anderson model and the influ-

ence of the DM interaction therein.

4.5 Conclusions and outlook

We have conducted a thorough investigation on the effects of the Dzyaloshinskii-Moriya

interaction in a strongly correlated metallic system. To this end, we investigated two

canonical models, each aimed at capturing general characteristics of a class of materials

where the DM interaction is thought to make an important contribution to the physical

nature of the system. The Hubbard bilayer model is chosen to represent a bulk, layered

environment, akin to the two-dimensional layered structure encountered e.g. in cuprate

materials. The two-impurity Anderson model lends itself to a surface structure setup,

where individual adatoms are additionally coupled to each other via indirect exchange

through the substrate. Due to the particularly strongly reduced symmetry at the surface

strong DM interactions may emerge which are believed to play an important role in the

formation of complicated magnetic structures in adatom layers [68].

The Dzyaloshinskii-Moriya interaction is found to introduce strong modifications of sys-

tem behaviour in both setups, in particular in the strongly correlated regime. The Hub-

bard bilayer system exhibits strong spin canting effects and modification of spin-spin

correlation function behaviour. The noncollinearity in the local magnetic configura-

tions introduced by the DM interaction becomes significantly enhanced by the strong

electronic correlations. Additionally, the presence of Dzyaloshinskii-Moriya interaction

hastens the onset of the Mott-insulating phase in thusly susceptible materials and effec-

tively increases electronic correlation strength.
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The hole-doped Hubbard bilayer with Dzyaloshinskii-Moriya interaction exhibits an in-

triguing spin-flop phase emerging at the boundary between the AFM and the PM phase

away from half-filling. This novel phase is characterized by a strong spin canting, lead-

ing to local spin configurations with the angle between the individual spins being less

than 90◦ and thus effectively producing a predominantly ferromagnetic spin ordering

in an environment otherwise dominated by antiferromagnetic exchange. The SF phase

extends into previously paramagnetic regions of the phase diagram, thus enabling long

range order in parameter regions previously unsusceptible to it.

We expect these findings to be important for a variety of different materials. Strong

out-of-axis spin components close to the Mott insulating regime can be expected to

produce peculiar response patterns in applied magnetic field, which may be relevant for

the behaviour of certain quasi-two-dimensional organic compounds [82]. On the other

hand, hole-doped cuprate systems exhibit nonzero DM interactions brought about by

minute structural distortions [76, 77, 78]. Some of these systems show intriguing mag-

netic spin-glass phases between the AFM phase and the superconducting region, which

may be connected with the spin-flop behaviour brought about by the DM interaction in

our model system [99].

Introducing the DM interaction into the two-impurity Anderson model heavily modifies

the spin-spin correlations in the high U regime. The Dzyaloshinskii-Moriya interaction

promotes singlet formation between the model impurities, working against the triplet-

forming tendencies of FM RKKY in the local limit. This intriguing interplay may have

profound influence on the behaviour of virtually any magnetic surface structure.

Incidentally, the discussion of the TIAM indicates the importance of eventually consid-

ering a beyond-mean-field approach which could improve upon the results discussed in

this chapter. A proper treatment of the RKKY exchange beyond the local limit would

also require the complete k-dependence of the impurity-bath coupling to be introduced

into the model.

The models discussed in this work only strive to capture general aspects of the discussed

realistic systems. Treatment of specific materials would generally require a more detailed

approach, which is a possible avenue for future research. Also, more complicated realis-

tic geometries may produce Dzyaloshinskii-Moriya configurations rather more involved

than the relatively simple setup of the DM vector on each site pointing in the same

direction. These, and also more involved magnetic orderings, i.e. spin spirals, would

require larger local cluster setups and could consecutively lead to even more intriguing

phenomenology.

In either case, the Dzyaloshinskii-Moriya interaction is found to emerge as an impor-

tant player in the strongly correlated metallic regime. The DM-induced noncollinear

behaviour becomes heavily enhanced in the high U regime, thus having the potential to

make a significant impact in systems where it has been believed to be negligible before.
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The findings discussed in this chapter have been published in [100].



Chapter 5

Adatoms on indium antimonide

(110) surface

5.1 Motivation

The main motivation for the work presented in this chapter was the close collaboration

between our group and A. A. Khajetoorians, J. Wiebe, B. Chilian and R. Wiesendanger,

the results of which were ultimately published in [101]. The goal of our collaboration

was to provide a method by which STM measurements of the magnetization of a single

adatom on a semiconductor surface could be performed. To this end, a detailed under-

standing of the adatom system in question, namely Fe on InSb(110), had to be gained

beforehand by means of DFT calculations, in particular with regard to geometry, density

of states (related to the STM via the Tersoff-Hamann model [102]) and the behaviour

of the local magnetic moment. To further understand the role of the magnetic impurity

similar calculations were performed for Co and Ni adatoms on the same surface.

Magnetic impurities on semiconductor surfaces play a major role in the context of spin-

tronic devices [103, 104, 105]. As such, these systems have already been subject to

considerable attention in the past. Reconstruction behaviour of the clean surfaces has

been studied extensively by Duke [106], while the role of point defects and vacancies in

InP(110), InAs(110) and InSb(110) has been investigated by Höglund et al. [107] and

Qian et al. [108]. Direct comparison between theory and STM results for the InAs(110)

system has been done by Klijn [109], investigating the surface states and drawing con-

nections to the measured STM topography via the Tersoff-Hamann model.

The same surface is found to exhibit a high spin polarization at the interface when

covered with a monolayer of Fe, which at the same time nearly completely prevents

any surface reconstruction [110]. The two-dimensional electron systems emerging at the

75
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surface of such setups were studied by Masutomi [111] and Tsuji [112, 113] for InAs and

InSb systems with a monolayer of Ag deposited on top. Concerning individual adatom

structures, investigations of Fe adatoms and chains on InAs(110) were done by Matsui

et al. [114], while substitutional Mn atoms in GaAs(110) were studied by Strandberg

[115].

The research done in the past years underlines the necessity of a combined approach

by theory and experiment alike to allow the individual techniques to compensate for

each others’ shortcomings and provide a comprehensive and thorough description of the

system at hand.

As such, this chapter is organized as follows. In the first section, the methodology of our

approach is briefly summarized and the surface relaxations, adatom positions and sur-

face potentials are discussed. In the second part, bonding behaviour within the surface

and the local adatom orbitals are treated. Finally, the last part of this chapter focuses

on the vacuum density of states above the surface in the case of Fe/InSb(110). Save

for the last part, all three (Fe,Co,Ni) /InSb(110) systems are treated on equal footing

throughout this chapter.

5.2 Setup and geometry

For our initial investigation of magnetic adatoms on the InSb(110) surface we again rely

on density functional theory, with the central goal to gain a proper understanding of sys-

tem properties relevant in conjunction with the STM experimental approach. As such,

the VASP [52] code was used exclusively for calculations featured in this chapter, with

eventual additional many-body treatment relegated to further studies until a thorough

understanding of the system behaviour on DFT level is achieved. Perspectives for such

treatment and some relevant system properties will be discussed over the course of this

work.

To appropriately model the InSb(110) surface we again resort to the slab geometry simi-

lar to the one already discussed in chapter 3. The utilized supercell is shown in Fig. 5.2,

with the view onto the (110) surface from above (which would be, so to say, the ’STM

perspective’) shown on the left and the view parallel to the surface along the [110] di-

rection displayed on the right. The slab consists of five indium antimonide layers, with

the bottom of the structure passivated by pseudohydrogen [116] to saturate dangling

bonds. We use the GGA-PBE [7] exchange-correlation potential, with the Sb(5s,5p)

and the In(4d,5s,5p) electrons treated as valence for the substrate. For all three in-

dividual adatoms (Fe, Co, Ni), the (3d,4s) potentials are used. These, and also the

appropriate pseudohydrogen PAW potentials [117] for dealing with III-V semiconductor

substrates are provided by the VASP potential library. All calculations were performed
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Figure 5.1: STM topograph image of a single Fe adatom on the InSb(110) surface.
The light blue rows correspond to the Sb first layer atoms, with the Fe adatom high-

lighted in yellow. Image taken from Ref. [101].

on a 7x7x1 two-dimensional k-point mesh.

Fig. 5.2 visualizes the geometry of the surface, where a thorough relaxation procedure

was performed for all atoms besides the lowest In/Sb layer. As already well known from

both experiment [118, 119, 120, 121] and theory [122, 123, 124] the InSb(110) surface

relaxes by moving the Sb atoms of the uppermost layer outwards while drawing the In

atoms further inwards, while the lower-lying layers remain essentially bulk-like. When

placed on the thus relaxed surface, all three adatom species come to rest inside the

’trench’ formed by the (110) surface, with the two nearest neighbours along the [001]

direction being In atoms. The other seemingly likely adatom position, with Sb nearest

neighbours along [001], can in principle be stabilized through careful relaxation, which

indicates a local potential minimum there. Overall however, the first configuration is

energetically more favorable for every adatom species, and especially so in the case of

Fe where the energy difference amounts to ∼ 2 eV (while ∆E ∼ 0.3 eV for both Co and

Ni). This is in agreement with experimental findings by Khajetoorians et al. Though the

lateral resolution of the STM topographic images is not fine enough to clearly determine

the geometry, all individual Fe adatoms produce the same topography, strongly indi-

cating that only one local configuration is actually assumed. The corresponding STM

image of a single Fe adatom is shown in Fig 5.1.

The addition of the adatom onto the (110) surface introduces slight displacements

of the neighbouring substrate atoms from their original positions, with a particularly
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Figure 5.2: Geometry of the InSb(110) supercell- Left: Top view. Right: View along
the [110] direction. Sb atoms are shown in blue, In atoms in red, and pseudohydrogen

in cyan. The adatom on top of the slab is displayed in light green.

Dist.[Å]: y1 x2 y2 y3 z1 z2 z3 d1 d3

Fe 3.044 2.043 1.251 2.931 0.504 1.254 0.544 0.447 0.577

Co 2.631 2.01 0.925 3.942 0.3 1.423 0.476 0.409 0.06

Ni 2.669 2.067 0.992 4.03 0.414 1.373 0.434 0.407 0.094

Table 5.1: Certain characteristic distances of the different adatom setups on the
InSb(110) surface. The nomenclature refers to Fig. 5.3.

prominent influence on the In nearest neighbours along [001]. The exact position of the

adatom itself also varies depending on the adatom species. The corresponding values are

shown in Table 5.1, with the numbering corresponding to the schematic representation

of the surface layer displayed in Fig. 5.3. In direct comparison to the other two adatom

species, the Fe adatom exhibits a much stronger influence on the In neighbour from the

opposing In-Sb row, denoted as (3) in Fig. 5.3, with an equilibrium position much closer

to it than the other two adatom species (compare the y1 and y3 values from Fig. 5.3).

At the same time, the corresponding In surface atom is displaced further towards the

Fe, while virtually no such influence is seen in case of the other two adatom species (see

column d3). This is due to an additional bond forming between the In-(3) and the iron

adatom, as will be discussed in the next section. This bond is not present in the other

configurations.

To further corroborate these results and gain a somewhat more clear picture of the local

potentials in which the respective adatoms are situated the energy cost of artificially

displacing the adatom by 0.3 Å along each inequivalent in-plane direction are shown in

Tab. 5.2. The values are similar for all three adatom species, with the Co adatom seem-

ingly situated in the steepest local potential minimum overall. The potential of the Fe
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Figure 5.3: Schematic representation of the position of the (Fe,Co,Ni)-adatom and
the displacements induced by its presence in the first layer of the InSb(110) substrate.
Only the most prominent position changes are denoted, with the individual values listed

in Tab. 5.1. Other neighbouring atoms are influenced to a lesser degree.

adatom system along the y direction is particularly flat, which is reasonable considering

its position towards the middle of the surface ’trench’ and the bonding towards both +

y and -y directions. Note that the displacement used here accounts for only about 10

percent of the nearest neighbour distance. If one wanted to use the data from Tab. 5.2

to estimate for example, vibrational energies, a harmonic approximation should still be

valid.

5.3 Adatom orbitals and bonding behaviour.

As the different adatoms bring their respective number of valence electrons with them

the local electronic configuration and the bonding of the adatom to the surface vary

rather significantly. Regarding the local orbital occupation, it can be uniformly said

that the adatom s-electrons become strongly delocalized due to the hybridization with
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Dir. : +/− x −y +y

Fe + 0.26 eV + 0.22 eV + 0.16 eV

Co + 0.33 eV + 0.31 eV + 0.34 eV

Ni + 0.21 eV + 0.26 eV + 0.24 eV

Table 5.2: Energy cost of displacing the individual adatoms along nonequivalent in-
plane directions by 0.3 Å. The directions correspond to those in Fig. 5.2 ( ’+ y’ points

along the y direction marked therein, i.e. down).

the surface. On the other hand, the d-orbital accepts additional charge from the surface,

the overall transfer amounting to roughly 4sx → 4sx−2 and 3dx → 3dx+2. This is true

for all three different adatom species and results in a net adatom magnetic moment for

both Fe and Co, while the Ni system sports a full d-shell and thus is paramagnetic.

The density of states for all three system is shown in Figures 5.4 - 5.8. Fig. 5.4 displays

the total density of states in comparison to the adatom d-shell density of states for the

Fe adatom system. First of all, the above-mentioned local Fe moment is clearly visible

in the two spin channels. For the spin-up component, local d orbitals lie nearly entirely

below the Fermi level while the spin down orbitals are only partially occupied. The

local magnetic moment of the Fe adatom, carried by the d-orbitals, amounts to approx-

imately 2.3µB . This moment is partially compensated by small induced moments of

opposite sign emerging on neighbouring substrate atoms, with the resulting total unit

cell moment of 2.0µB , an effect which we will discuss in some more detail later.

From the bottom panel, the majority spin channel DOS around the Fermi level is mostly

contributed by the d orbitals, with the difference in magnitude mostly originating from

the orbital lobes reaching out of the nonoverlapping spheres within which the orbital

contributions are calculated. The spin-up channel however, exhibits a set of unoccupied

states just above the Fermi level which do not seem to stem from the local Fe-d states,

nor can they be explicitly attributed to the local states of any of the neighbouring atoms.

These states play an important role with regard to the STM measurements and will be

discussed at the end of this chapter.

Figure 5.5 shows the angular momentum resolved DOS for the Fe d-states for the spin-

down channel in terms of cubic harmonics. Since the d-states of the other spin channel

are fully occupied we may thus check which of the five d orbitals carry the local moment.

Evidently, the dyz, dx2−y2 and dxz states are, for the most part occupied, leaving the dxy

and the dz2 states responsible for the magnetic behaviour. This may be further checked

by plotting the onsite density matrix for the d-states, shown in Tab. 5.3. The spin down

states can be seen to sport an overall somewhat smaller occupation compared to their

spin up counterparts, with the majority of the moment carried by the two previously
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Fe (↑): dxy dyz dz2 dxz dx2−y2

d1 0.8994 0.0000 0.0000 -0.0135 0.0000

d2 0.0000 0.8317 -0.0196 0.0000 0.0000

d3 0.0000 -0.0196 0.8975 0.0000 0.0106

d4 -0.0135 0.0000 0.0000 0.8373 0.0000

d5 0.0000 0.0000 0.0106 0.0000 0.8435

Fe (↓): dxy dyz dz2 dxz dx2−y2

d1 0.1277 0.0000 0.0000 -0.0207 0.0000

d2 0.0000 0.5704 0.0915 0.0000 -0.0358

d3 0.0000 0.0915 0.0980 0.0000 -0.0332

d4 -0.0207 0.0000 0.0000 0.6637 0.0000

d5 0.0000 -0.0358 -0.0332 0.0000 0.5617

Table 5.3: Onsite density matrix of the Fe d states for the Fe/InSb(110) system, in
terms of cubic harmonics. The dxy and dz2 states carry the local moment.

mentioned orbitals. Additionally, the onsite density matrix is in fact reasonably close to

diagonal, meaning that the actual local system orbitals still well resemble the original

cubic harmonics. This will be further visualized in the next section.

Similarly, the orbital resolved density of states and the local density matrix of the

Co/InSb(110) system are shown in Figs. 5.6, 5.7 and Tab. 5.4, respectively. Again, the

density of states plot shows the d orbitals of one spin channel (down) to be completely

occupied, while some of the d-orbital related spin up states lie above the Fermi level.

These are shown in Fig. 5.7 to nearly exclusively stem from the dxy orbital, a result

again underlined by the orbital density matrix values. The matrix is again found to be

close to diagonal, however with somewhat larger off-diagonal elements when compared

to the Fe case, especially between the dxy and the dxz orbitals.

Finally, the respective results for the Ni adatom system are shown in Fig. 5.8 and Tab.

5.5. For this adatom setup all Ni d orbitals lie below the Fermi level, again with a fairly

diagonal orbital density matrix of the d states. This configuration results in no local

magnetic moment at all; the system is paramagnetic.

The orbitals carrying the local moments for the two magnetic systems are of impor-

tance for the lateral distribution of the spin density. The dxy orbital lies in the surface

plane, thus contributing to a spread along the surface, while the dz2 orbital reaches

further outwards. We would thus expect the spin polarization along the z-direction to

be more prominent in the Fe adatom system, which can be found visualized in the next
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Figure 5.4: Total density of states (blue) and d-orbital density of states (red) for the
Fe/InSb(110) system, shown for both spin channels.
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Figure 5.5: Angular momentum resolved density of states for the Fe-d orbitals, spin-
down channel.
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Figure 5.6: Total density of states (blue) and d-orbital density of states (red) for the
Co/InSb(110) system. Compare Fig. 5.4.
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Co (↑): dxy dyz dz2 dxz dx2−y2

d1 0.3387 0.0000 0.0000 -0.0879 0.0000

d2 0.0000 0.7146 -0.0082 0.0000 -0.0025

d3 0.0000 -0.0082 0.7633 0.0000 0.0049

d4 -0.0879 0.0000 0.0000 0.7110 0.0000

d5 0.0000 -0.0025 0.0049 0.0000 0.7545

Co (↓): dxy dyz dz2 dxz dx2−y2

d1 0.9099 0.0000 0.0000 -0.0071 0.0000

d2 0.0000 0.8266 -0.0014 0.0000 0.0025

d3 0.0000 -0.0014 0.8530 0.0000 -0.0037

d4 -0.0071 0.0000 0.0000 0.7973 0.0000

d5 0.0000 0.0025 -0.0037 0.0000 0.8176

Table 5.4: Onsite density matrix of the Co d states for the Co/InSb(110) system, in
terms of cubic harmonics. The local moment originates from the dxy orbital.

Ni : dxy dyz dz2 dxz dx2−y2

d1 0.9016 0.0000 0.0000 -0.0181 0.0000

d2 0.0000 0.8519 0.0012 0.0000 0.0106

d3 0.0000 0.0012 0.8778 0.0000 -0.0030

d4 -0.0181 0.0000 0.0000 0.8242 0.0000

d5 0.0000 0.0106 -0.0030 0.0000 0.8170

Table 5.5: Onsite density matrix of the Co d states for the Ni/InSb(110) system, in
terms of cubic harmonics. The system is paramagnetic.

section.

Finally, to make a connection with the local geometry discussions in the first part

of this chapter and also to adopt a viewpoint with a closer relation to the STM experi-

ments, we would like to gain an understanding of the charge distributions governing the

behaviour of the surface. To this end, the bonding charge density, i.e. the total charge

density minus the atomic charge density (summed over the spin channels), is shown in

Figs. 5.9, 5.10 and 5.11 for all three adatom systems. Regions of positive charge den-

sity (red) indicate the formation of bonds between neighbouring atoms, while regions of

negative density (blue) indicate charge loss, compared to the atomic distribution.
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Figure 5.7: Same as Fig. 5.5, now for the Co/InSb(110) system, spin-up channel.
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Figure 5.8: Top panel: Comparison between the total and the Ni-d density of states
for the Ni/InSb(110) system. Bottom panel: Angular resolved plot of the Ni-d states.

The system is paramagnetic.

The cut through the unit cell is made parallel to the (110) surface, approximately at

the height of the uppermost In layer, i.e. slightly above the adatom position. The bond-

ing charge density of the Fe/InSb(110) system is shown in Fig. 5.9. First of all, the

bonds between the individual atoms of the surface feature as regions of increased charge

density, situated between neighbouring atoms of both first and second layer (compare

Fig. 5.2), while the adatom structure is featured in the middle. From the investigation

of the local density of states, we already know that the dxy and dz2 orbitals of the Fe

adatom are not fully occupied. This fact is now effectively visualized by the local bond-

ing charge distribution. Compared to the spherical distribution of the individual atom,

both above-mentioned orbitals are less occupied, and thus are indicated by regions of

negative density. The lobes of the in-plane dxy orbital, pointing along the diagonals, are

clearly visible in the plot. Additionally, since the plane of the density plot lies above the
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Figure 5.9: Bonding (total) charge density of the Fe/InSb(110) surface, in units of
e/Å−3. The cut is made at the height of the uppermost In layer, i.e. slightly above the
adatom. The four lobes of the in-plane Fe dxy orbital are clearly visible in blue. The
blue dot in the middle corresponds to a cross section of the upwards-pointing lobe of

the dz2 orbital.
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Figure 5.10: Same as Fig. 5.9, now for the Co/InSb(110) system. The dxy orbital is
still visible (somewhat canted along the y direction), though the dz2 orbital no longer
appears in blue due to additional filling. The cut is made at the same height as in Fig.

5.9, although the adatom lies lower than in the Fe case.
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Figure 5.11: Same as Fig. 5.10, here for the Ni adatom system. The individual d
orbitals are no longer well distinguishable.

adatom, the cross section of the dz2 upwards-pointing lobe is also featured as a small

region of negative charge density right in the middle of the adatom feature. Fig. 5.9

thus provides a rather nice visualization of the results from the local DOS discussion

above.

Another feature of the Fe adatom system is the additional bond between the Fe atom

and the In atom situated directly above it along the [001] direction. This bond, as will

be seen below, is not present in the other adatom configurations and provides an expla-

nation for the rather strong displacements of both the Fe and the In atoms along this

direction, as already discussed at the beginning of this chapter.

Similar bonding charge density plots for the Co and Ni adatom systems are shown in

Figs. 5.10 and 5.11, respectively. In the case of the Co adatom, the overall picture

exhibits a few distinct differences. Since the dz2 orbital sports a higher occupation in

this setup its cross section is no longer visible as a region of negative density in the

cut. Further, the dxy orbital appears slightly canted towards the +y direction, which

is readily visible from the slightly different intensities of the lobes and stems from the

minute off-diagonal elements in the onsite density matrix. The additional adatom-In

bond discussed above for the Fe adatom is no longer present here. Note that due to the

different bonding character the adatom is situated somewhat lower inside the surface for

this setup (compare Tab. 5.1).

Ni adatom system bonding charge density also does not exhibit the additional adatom-In

bond. Further, due to the rather uniform occupation of the d-shell individual orbitals
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Direction : [110] [001] [110]

Fe preferred + 1.8 meV + 0.4 meV

Co preferred + 0.5 meV + 0.2 meV

Table 5.6: Magnetic anisotropies of the Fe and Co adatom systems on InSb(110).
The energy differences are given relative to the energy of the preferred orientation of

the magnetic moment along the [110] direction.

can no longer be distinguished here.

5.4 Magnetic anisotropies
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Figure 5.12: Spin density distribu-
tion in the Fe/InSb(110) system sur-
face, in units of e/Å−3. The image
plane lies at the level of the outmost In
layer, approximately 0.5 Å above the
adatom. The dxy orbital carrying the

local moment is readily visible.
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Figure 5.13: Same as left, now the
image plane lies ∼ 1 Å above the
adatom, directly above the outmost Sb
layer. The dxy orbital is now mostly
below the image plane. The feature in
the middle is a cut through the lobe of

the dz2 orbital.

Having already briefly touched the topic of magnetism in the previous sections, a some-

what more in depth discussion of the adatom magnetic behaviour seems in order. The

lateral spin density distribution of the two magnetic systems is shown in Figs. 5.12 -

5.15, respectively, in units of e/Å−3. From the previous discussion, we know that the

local magnetic moment of the Fe adatom is mostly carried by the in-plane dxy and the

vertical dz2 orbitals. The image plane of Fig. 5.12 lies about 0.5 Å above the adatom,
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Figure 5.14: Same as Fig. 5.12,
now for the Co adatom system. Note
that significantly less compensating
spin density is present when compared

to the Fe adatom system.
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Figure 5.15: Co adatom system, ap-
proximately 1 Å above the adatom.
Since the dz2 carries no moment the
spin density does not reach as far into

the vacuum region.

close enough to provide a cut through the in-plane orbital. Fig. 5.13 shows the same

setup ∼ 1 Å above the Fe atom: the characteristic lobes of the dxy orbital are no longer

visible and the dz2 lobe is featured prominently instead, having a quite significant reach

perpendicular to the surface.

It can be readily seen that most of the local moment is indeed concentrated on the

orbitals in question. At the same time however, a substantial opposite spin density is

induced in the surrounding volume, mostly in the regions between the adatom and the

neighbouring In atoms along the [001] direction. This spin density partially compen-

sates the local Fe moment: while the Fe d-orbitals carry a total magnetic moment of

∼ 2.3µB the total moment of the cell amounts to 2µB only, meaning that ∼ 0.3µB worth

of opposite spin density is distributed in close proximity around the adatom.

Figures 5.14 and 5.15 show the Co adatom system in the same manner. While the cut

0.5 Å above the adatom appears similar to the Fe setup the spin density does not spread

far into the vacuum region: already at the vertical distance of 1 Å no strong features

appear. Additionally, significantly less spin the opposing sign is induced in this setup in

comparison to the Fe adatom system. The local moment of the Co d orbitals amounts

to ∼0.92 µB with a total unit cell moment of 1 µB, i.e. the net additional contributions

from the surrounding atoms enhance the local moment instead of weakening it as in the

case of Fe.

Finally, we performed calculations with included spin-orbit coupling to determine the

anisotropies of the two magnetic systems. The results are summarized in Tab. 5.6,
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where the energy differences are given with respect to the preferred magnetic configu-

ration. For both systems the magnetization preferably points along the [110] direction,

i.e in the surface plane, along the ’trench’ direction. The direction perpendicular to

the ’trenches’ is energetically most unfavorable for both systems. These findings are of

major importance in conjunction with the work published in [101].

5.5 Vacuum density of states

Finally, to further relate to the STM experiments for such surface systems, we would

like to investigate the behaviour of the density of states in the vacuum region above the

adatom. In this section, we concentrate on the Fe/InSb(110) system as the one more

relevant to the research topics featured in [101].

From the theory of the scanning tunneling microscope, as brought forward by Tersoff

and Hamann [102], it follows that the tunneling current I between the tip and the surface

is proportional to the density of states at the position ~r0 of the STM tip apex taken at

the Fermi energy EF (plus/minus eventual bias voltage offset).

I ∼
∑

ν

|ψν(~r0)|2δ(Eν − EF ) (5.1)

While more sophisticated models for tunneling through a surface adatom exist [125],

even the relatively simple Tersoff-Hamann model warrants a closer look at the vacuum

states behaviour.

The density of states in the vacuum region above the Fe adatom at various distances

from the surface is shown in Fig. 5.16. To account for the tip apex we integrate the

density of states around the Fermi level in a (cubic) volume with a side length of ∼ 3

Å, which is intended as an approximation to the volume of the tungsten tip atom (with

the atomic radius rW ∼ 1.45 Å). The density of states is calculated in the energy region

from −0.15 eV to +0.3 eV, to account for typical bias voltage values. The calculations

were performed at four different distances (given relative to the top Sb layer position) up

to 6 Å above the surface, which would more or less correspond to the typical surface-tip

distance during a topography measurement.

Quite expectedly, the density of states decreases quickly with distance, dropping to

1/10 of the initial value just 2 Å above the surface. More interestingly, the relative

contribution of the different spin channels changes rather significantly over the distance

range. Directly above the surface the spin-down channel dominates the density of states

at the Fermi level. The dominance however is lost already 2 Å above the surface, with

the spin-up channel providing higher contributions at larger distances, with an even
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Figure 5.16: Vacuum density of states at various distances above the surface for the
Fe adatom system, for both spin channels. The distance is given with respect to the

vertical position of the outmost Sb layer.

more pronounced effect at energies above the Fermi level.

At last, and as an additional point as to why the inclusion of the vacuum density of

states in a thorough discussion of a surface system is important, we briefly return to

the total density of states treated at the beginning of this chapter. The corresponding

plot is shown in Fig. 5.17. Through an analysis of the local DOS contributions from

the different surface adatoms, the origin of the feature directly above the Fermi level, in

particular in the spin-up channel, could not be clarified. Comparison of the previously

calculated vacuum states with the total density eludicate the nature of these unoccupied

states: they are situated in the vacuum region directly above the adatom and thus can

never be accounted for by simply investigating the local atomic density of states in the

surface atoms.

With this, we conclude our discussion.

5.6 Conclusions and outlook

Within this chapter, we have treated the (Fe/Co/Ni) adatom on InSb(110) systems by

the means of density functional theory. This work was primarily motivated by the close

collaboration with A. A. Khajetoorians, J. Wiebe, B. Chilian and R. Wiesendanger in

a common effort to further the understanding of the physics governing the behaviour of

the Fe on InSb(110) system and develop a method for measuring the magnetization of

individual adatoms on semiconductor surfaces. That part of this work was published

in [101]. The additional data presented here, not featured in the above-mentioned pub-

lication, was accumulated during the efforts to understand the Fe/InSb(110) system.

Additionally, the (Co,Ni) adatom systems were treated as an extension of the project to
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Figure 5.17: Comparison between the vacuum density of states shown in Fig. 5.16
and the total density of states.Through this the origin of the peak situated directly
above the Fermi level becomes clear (see discussion at the beginning of thus section).

further analyze the role of magnetic impurities on the InSb surface.

The Fe and Co adatom systems were found to exhibit local magnetic moments situated

on the adatom d-shells, with the respective values of 2.3 µB and 0.92 µB . The Fe system

moment is carried by the dxy and dz2 orbitals, of which the latter has a significant reach

perpendicular to the surface. For the Co system, on the other hand, the local moment

originates from the dxy orbital only, and as such the spin polarization is more localized

within the surface plane. Both systems exhibit induced magnetization of the neighbour-

ing surface atoms. In the case of the Fe adatom, it serves to partially compensate the

local Fe moment, leading to an overall unit cell moment of 2 µB. In the case of Co,

the surrounding moments enhance the original and the total cell moment adds up to

∼ 1µB . Including the spin-orbit coupling in our calculations, we find that the preferred

magnetization orientation for both magnetic systems is along the [110] direction, a fact

of major importance for the development of the STM methodology discussed in [101].

The Ni/InSb(110) system is found to be nonmagnetic.

Further concentrating on the Fe adatom system as the one of the most importance at the

time of completion of this work, we find that unoccupied states directly above the Fermi

level may be attributed to the vacuum region situated directly above the Fe adatom.

These states have a significant reach perpendicular to the surface and thus contribute

much to the tunneling channels defining the STM functionality. Peculiarly enough, the

vacuum density of states at the Fermi level switches its character from being majority-

spin-channel dominated directly above the surface to being of primarily minority-spin

character 6 Å above, where the STM tip is expected to reside during the measurement.

Careful analysis of the vacuum DOS behaviour should prove important in conjunction

with the more sophisticated STM models [125].

The system behaviour has been shown to be governed by the well localized d-orbitals
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which carry both the magnetic and contribute to the bonding properties of the setup. As

such, an explicit many-body treatment of these surface systems would be an interesting

next step. The influence of the spin-orbit coupling on the magnetisation direction, in

conjunction with the low symmetry surface environment and the findings presented in

chapter 4, should provide for an intricate interplay between electronic correlation effects

and magnetic degrees of freedom, worthy of further investigation in the future.



Chapter 6

Summary and conclusions

Within this work, we have investigated several different realistic material and model

setups, with the overarching goal to improve our understanding of the interplay between

low dimensionality, spin-orbit coupling, electronic correlations and magnetism in realis-

tic surface systems.

The Sn/Si(111) and Sn/Ge(111) systems have been known to differ in their properties

despite the similarity of their constituents. From initial DFT calculations, we have

constructed single-site and triangular-cluster models for both systems and investigated

the influence of the substrate and local geometrical 2D-1U distortions, present in the

Sn/Ge(111) system. Both systems were found to undergo a Mott transition at U values

of 0.5 - 0.6 eV, with slightly higher UC for the distorted Sn/Ge(111), which was verified

by both DMFT and RISB calculations. The Sn/Si(111) system was found to exhibit

a peculiar noncollinear 120◦-like magnetic order by DFT calculations, a result corrobo-

rated by RISB. In Sn/Ge(111) no such order is present, albeit a nontrivial behaviour of

nearest-neighbour spin-spin correlation functions is found close to the Mott transition.

In the second part of this work, the Hubbard bilayer model and the two-impurity An-

derson model with added Dzyaloshinskii-Moriya interactions were investigated in the

strongly correlated metallic regime using the RISB technique. For the Hubbard bilayer

at half-filling the DM interaction is found to significantly increase in strength in pres-

ence of electronic correlations. In the hole-doped strongly correlated regime, a novel

noncollinear spin-flop phase is found which is brought about by the presence of the DM

interaction and through which long-range magnetic order is enabled in previously para-

magnetic regions of the phase diagram.

Lastly, we have investigated the behaviour of magnetic impurities on the InSb(110) sur-

face. The different magnetic adatom species (Fe, Co, Ni) are found to exhibit overall

similar bonding properties, adsorbing in a ’trench’ of the (110) surface. The Ni adatom
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system is found to be paramagnetic. The other two adatom systems exhibit local mag-

netic moments of 2.3 µB and 0.92 µB , respectively. The spin density has a substantial

reach perpendicular to the surface for the Fe/InSb(110) system while being contained

to the surface in the case of the Co adatom. Analysis of the vacuum density of states

above the adatom shows that the dominating spin character changes with increasing

distance from the surface. This should prove important for more sophisticated STM

models which explicitly include the adatom states.

The results on the Sn/Si(111) and Sn/Ge(111) surface systems were published in [63],

the results on DM interaction in strongly correlated systems in [100]. Data presented in

chapter 5 has been used for the preparation of and has been partially published in [101].
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6.1 Deutsche Zusammenfassung

In dieser Arbeit wurden mehrere verschiedene realistische Materialsysteme und Modelle

in Hinblick darauf untersucht, unser Verständnis des Zwischenspiels zwischen niedriger

Dimension, Spin-Orbit-Kopplung, elektronischen Korrelationen und Magnetismus in re-

alistischen Oberflächensystemen zu verbessern.

Die beiden Systeme Sn/Si(111) und Sn/Ge(111) sind schon seit geraumer Zeit dafür

bekannt, sich trotz der Ähnlichkeit ihrer Konstituenten in ihren physikalischen Eigen-

schaften zu unterscheiden. Wir haben, ausgehend von DFT-Rechnungen, Einzel-Gitterplatz

und Dreieckscluster-Modelle für beide Systeme konstruiert und konnten den Einfluss

des Substrats sowie der im Sn/Ge(111) auftretenden 2D-1U Versetzung untersuchen.

Beide Systeme erfahren einen Mott-Übergang bei Korrelationsstärken U von etwa 0.5

- 0.6 eV, wobei der kritische Wert UC für die versetzte Sn/Ge(111)-Struktur etwas

höher liegt. Dies wurde sowohl mit Hilfe von DMFT als auch mit Hilfe von RISB

verifiziert. DFT-Rechnungen ergeben für das Sn/Si(111) System eine nicht-kollineare

120◦ magnetische Ordnung als Grundzustand, was von RISB bestätigt wurde. In dem

Sn/Ge(111)-System existiert diese Ordnung nicht, dafür findet man in der Nähe des

Mott-Übergangs ein nichttriviales Verhalten der Spin-Spin Korrelationsfunktionen zwis-

chen den benachbarten Gitterplätzen.

Im zweiten Abschnitt dieser Arbeit wurden sowohl das Hubbard-Bilayer Modell als auch

das Two-Impurity Anderson Modell mit zusätzlicher Dzyaloshinskii-Moriya Wechsel-

wirkung mit Hilfe von RISB im stark korrelierten metallischen Bereich untersucht. Für

das Hubbard-Modell bei halber Füllung findet man eine signifikante Verstärkung der

DM-Wechselwirkung durch elektronische Korrelationen. Im Doping-Bereich unterhalb

von halber Füllung entsteht durch die DM-Wechselwirkung und starke Korrelationen

eine neue nicht-kollineare Phase (Spin-Flop-Phase). Dadurch wird eine langreichweitige

magnetische Ordnung in Bereichen des Phasendiagramms möglich die zuvor paramag-

netisch waren.

Schließlich wurde im letzen Abschintt der Arbeit das Verhalten magnetischer Adatome

auf der InSb(110)-Oberfläche untersucht. Die verschiedenen Atome (Fe, Co, Ni) haben

ein ähnliches Bindungsverhalten und werden in einem der auf der (110)-Oberfläche

auftretenden ’Gräben’ adsorbiert. Das Ni-Adatom auf dieser Oberfläche erweist sich

als paramagnetisch. Die anderen beiden Systeme zeigen lokale magnetische Momente

von 2.3µB (Fe) und 0.92µB (Ni). Das Fe/InSb(110) besitzt eine beträchtliche räumliche

Ausdehnung der Spindichte senkrecht zu der Oberfläche, während das magnetische Mo-

ment im Falle des Co-Adatoms auf die Oberfläche beschränkt bleibt. Die Analyse der

Vakuum-Zustandsdichte oberhalb des Adatoms zeigt, dass sich der dominante Spinan-

teil mit der wachsenden Entfernung zur Oberfläche ändert. Dieses Verhalten sollte eine
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wichtige Rolle im Rahmen komplexerer STM-Modelle spielen, bei denen die Adatom-

Zustände explizit berücksichtigt werden.

Die Ergebnisse der Untersuchung der Sn/Si(111) und Sn/Ge(111) Oberflächensysteme

wurden in [63] veröffentlicht, die Ergebnisse aus dem Kapitel über die DM-Wechselwirkung

in [100]. Die in Kapitel 5 gezeigten Resultate wurden im Rahmen der Vorbereitungen

für [101] produziert und anschliessend zum Teil darin veröffentlicht.
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