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Vorsitzender des Prüfungsausschusses: Prof. Dr. Günter Huber

Vorsitzender des Promotionsausschusses: Prof. Dr. Peter Hauschildt

Leiterin des Fachbereichs Physik: Prof. Dr. Daniela Pfannkuche

Dekan der MIN-Fakultät: Prof. Dr. Heinrich Graener



Zusammenfassung

Im Rahmen dieser Arbeit wird die klassische und die Quantendynamik von Teilchen in raum-
zeitlich getriebenen Gittern untersucht. Im klassischen Regime zeigen wir, dass ein räumlich
unterschiedliches zeitabhängiges Treiben neue Phänomene hervorruft und im Vergleich zu uni-
form getriebenen Gittern zu einer erhöhten Kontrolle über die Nichtgleichgewichtsdynamik
der Teilchen führt. Durch geeingete Wahl der lokalen zeitabhängingen Treibgesetze können
bestimmte Teile des klassischen Phasenraums auf eine kontrollierte Art und Weise manip-
uliert werden, während gleichzeitig der restliche Teil des Phasenraums davon im Wesentlichen
unbeeinflusst bleibt. Mit Hilfe einer räumlich variierenden Phaseverschiebung des lokalen
Treibens ist es möglich einen gerichteten Transport beziehungsweise lokalisierte chaotische
Dynamik hervorzurufen, das heißt Teilchen können an eine bestimmte Position im Gitter
transporiert und danach dort gefangen werden. Des Weiteren wird die Teilchendynamik in Git-
tern studiert, welche aus Blöcken mit unterschiedlichen zeitabhängige Treibgesetzen zusam-
mengesetzt sind. Im Rahmen dieser Untersuchung finden wird, dass die Teilchen Übergänge in
ihrem dynamischen Zustand zwischen chaotischer und regulärer Bewegung erfahren können,
wenn sie sich von einem Block in einen anderen bewegen. Für ein Ensemble führen diese
Übergangsprozesse zu lang anhaltenden, transienten periodischen Oszillationen der Teilchen-
dichte. Indem man zeitabhänging die lokalen Treibgesetze verändert, können diese Modulatio-
nen in eine sich bewegende Dichtewelle von Teilchen umgewandelt werden. Im quantenmech-
anischen Regime wird die Schrödingergleichung des getriebenen Gitter mit Hilfe von Floquet-
und Blochtheorie gelöst. Es wird gezeigt, dass ein monochromatisches Treiben mit räumlich
variierender Phasenverschiebung ausreichend ist, um Quantentransport hervorzurufen.

Abstract

In this thesis we study the classical and the quantum dynamics of particles in spatiotemporally
driven lattices. In the classical regime we find that a locally varying time-dependent driving
leads to novel phenomena yielding an increased control over the non-equilibrium dynamics
of the propagating particles compared to the case of a uniformly driven lattice. By means
of an appropriate tuning of the local time-dependent forces certain parts of the classical
phase space can be manipulated in a controllable manner whereas the remaining portion is
mainly unaffected. By imposing a spatially varying phase shift to the driving we can evoke
a directed current and create localized chaotic dynamics, i.e. particles can be transported
to a certain position in the lattice and subsequently get trapped there. Moreover, we study
lattices consisting of domains with different time-dependent forces. We find that particles
can experience conversions in their dynamical state from chaotic to regular motion and vice
versa when crossing from one domain to another. For an ensemble these conversion processes
lead to long-time transient periodic oscillations of the particle density. By manipulating
temporally the local driving forces these modulations can be rendered into a propagating
density wave of particles. In the quantum regime the time-dependent Schrödinger-equation
of the driven lattice is solved by means of Floquet- and Bloch theory. It is shown that a
monochromatic driving combined with a spatially modulated phase shift is sufficient to evoke
quantum transport.
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Chapter 1

Introduction

Time-dependent forces are often the origin for the appearance of complex phenomena in
physical systems. For instance, the quantum tunneling of a particle in a spatially symmetric
double-well potential can be either enhanced drastically or almost completely suppressed
by applying a time-periodic force [1–3]. In classical physics an interesting effect which can
be evoked by a time-dependent driving, is “Fermi acceleration”, i.e. the unbounded gain
of kinetic energy of particles [4–6]. In fact, due to their rich phenomenology time-driven
systems represent a major focus in several versatile research fields, such as the physics of
atoms, molecules or mesoscopic systems [7–9].

Among the most prominent mesoscopic setups are the driven lattices, i.e. particles in a one-
dimensional static potential are acted upon additionally by external time-dependent forces of
zero mean. A spectacular phenomenon appearing in these systems is the so called “ratchet
effect” or “directed transport”, that is under certain circumstances one can observe a current
of particles, although there exists no net force. During the last decades the question concern-
ing the prerequisites for the ratchet effect to occur has been unraveled step-by-step. Since the
second law of thermodynamics forbids the extraction of a net motion from equilibrium fluctu-
ations, the system has to be constantly driven out of thermal equilibrium [10]. Due to the fact
that ratchet effect is supposed to be the working principle of molecular motors [11–13] much
effort has been made in the early 90’s to understand how it can be generated by employing
external noise [14–18]. For this class of systems the term “Brownian ratchet” or “Brownian
motor” has been established and it has been shown that the outcome of such a ratchet can
be a current of particles against a dc-bias [19–22]. An example showing this phenomenon is
the flashing ratchet where an asymmetric sawtooth potential is periodically turned on and
off. Its operational principle is schematically depicted in Fig. 1.1. In the beginning, when the
potential is turned on, the Brownian particles are confined to a minimum of the sawtooth.
Once the potential is turned off, the particles are accelerated in the direction of the bias and
at the same time diffusion sets in which leads to a uniform spreading. When the potential
is turned on again the asymmetry of the sawtooth causes more particles to be trapped in
the right well than in the left well. Consequently, the particles will be transported against
the dc-bias, if the switching of the potential is repeated periodically. It is important to note
that this flashing ratchet works only in the presence of friction because the energy the par-
ticles gain when the potential is turned on has to be damped out so that the gathering of
the particles in the minima of the sawtooth is possible. A very interesting connection of
the just described Brownian ratchets can be drawn to game theory. Parrondo et al. showed
that two losing gambling games can be combined to a winning one when the player switches
“periodically” between the games. Mathematically, this is equivalent to a Brownian ratchet
with discrete time [23, 24]. Experimentally, the ratchet effect has been observed in a variety
of systems such as semiconductor heterostructures [25–27], Josephson junction array [28–30],
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Figure 1.1: Operational principle of a flashing ratchet with dc-bias. Figure taken from [20]

spin transport [31] and for atoms loaded into optical lattices in one dimension [32–39] and in
2D [40].

In the absence of noise one speaks of “deterministic ratchets” and the conditions under
which a directed transport of particles is possible depend on whether there is friction in
the system or not. In the dissipative regime the underlying mechanism responsible for the
existence of directed currents and the reversal of the transport has been identified in Refs.
[41–43]. Due to dissipation transporting attractors in phase space emerge and by choosing
the initial conditions appropriately it is possible to populate them selectively. If no friction
is present, the systems are called “Hamiltonian ratchets”. In this case a directed transport
of particles can occur only if certain spatiotemporal symmetries of the driven potential are
broken which have been identified in Ref. [44]. Accordingly, if the potential is invariant
under a generalized parity- and time-reversal transformation, no ratchet effect will occur
because it is then possible to construct for every trajectory a mirror-image with the opposite
sign of the velocity such that an average over a representative set of particles yields zero
transport. Yet, breaking both symmetries does not evoke coercively the ratchet effect because
it is not a sufficient criterion for the existence of transport. Subsequently, the transport
properties of Hamiltonian systems [45–53] have been studied thoroughly. It has been shown
that a necessary condition for the occurrence of directed transport in the classical regime
is the existence of a mixed phase space with chaotic and regular regions [46]. The authors
derived in [45,46,51] sum formula which predicts the transport velocity of a classical ensemble
of particles. Moreover, in Ref. [54] the influence of an additional dc bias on the directed
transport of a Hamiltonian ratchet has been studied. The authors have found the persistence
of transporting invariant sub-manifolds like regular islands. In their vicinity trajectories can
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get sticky, such that they perform ballistic-like motion. Remaining chaotic trajectories are
accelerated by the bias field getting separated very fast from the ballistic type dynamics.

In the quantum regime both dissipative [55–57] and Hamiltonian ratchets [45,46,51,58–62]
have attracted a lot of attention during the last decade whereas the Hamiltonian case is of
special interest due to several reasons. Contrary to the classical case a quantum transport is
possible for Hamiltonian systems with fully chaotic dynamics which has been shown in [63–65].
Moreover, the underlying mechanism of a Hamiltonian quantum ratchet has been exploited
for a very recent theoretical proposal of a “quantum motor” [66]. In general, the control over
transport properties on the nanoscale is accompanied by the growing importance of quantum
effects. At the same time one typically wants to reduce dissipation as much as possible
since it induces heating, i.e. the quantum ratchet should operate in the Hamiltonian regime.
As previously mentioned, the archetypical ratchets which are for instance experimentally
realized in [37] consist of a one-dimensional lattice perturbed by a periodic time-dependent
driving. Due the temporal periodicity of the Hamiltonian the time-dependent Schrödinger
equation can solved by means of Floquet theory [67–69] and the quantum current depends
on the properties of the so-called Floquet modes and the quasi-energy spectrum [46, 51, 60].
It is observed that by breaking the fundamental spatiotemporal symmetries of the potential,
derived in [44], the Floquet modes and the quasi-energy spectrum are desymmetrized which
leads to the occurrence of directed transport [46, 51, 60]. In Ref. [60] the impact of avoided
crossings between different transporting Floquet states has been considered. Tuning the
control parameters of the system leads to an enhancement or suppression of the current flow.
Yet, all previously discussed Hamiltonian ratchets (classical and quantum) have in common
that the driving is globally, i.e. the force which acts on the particles can be written as a
sum or a product of two functions depending only on the spatial coordinate and the time, i.e.
F (x, t) ∝ f(x) + g(t) or F (x, t) ∝ f(x) · g(t). Consequently, it is an intriguing perspective to
consider the consequences of a breaking of the generalized parity and time-reversal symmetry
established in [44] inhomogeneously by applying a spatially varying driving force.

Objective of this work

In this thesis we study the non-equilibrium dynamics of spatiotemporally driven lattices
consisting of laterally oscillating potential barriers whereas we focus on the impact of local
driving forces on the classical and the quantum dynamics. In the classical regime we consider
the question how the phase space of the system gets manipulated by a local driving. On
the one hand we find that by equipping the harmonic driving laws of the barriers with
spatially varying phase shifts a directed current of particle can be evoked although there
is no net force and each barrier is non-transporting itself. On the other hand, one can
get localized chaotic dynamics between neighboring barriers, i.e. particles in these localized
chaotic seas are trapped on specific positions in the lattice which can be controlled by choosing
appropriate local drivings. Moreover, we study so-called “block-structured lattice” which
are composed of domains with different driving laws, transport properties and local phase
spaces. At the interfaces between the domains we find that classical trajectories can experience
crossovers from diffusive to ballistic motion and vice versa. These dynamical conversion
processes induce long-time transient oscillations of the particle density which can be converted
into a propagating density wave by tuning the driving forces. In the quantum regime we have
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implemented a numerical scheme based on Floquet and Bloch theory in order to obtain the
time-evolution operator. We have studied the quantum transport properties and observed
that a harmonic driving for each barrier together with local phase shift is sufficient to evoke
a nonzero current.

In detail, the thesis is structured as follows:

� In the second chapter we introduce the Hamiltonian of a spatiotemporally driven
lattice and show how the phase space flow can be described by an implicit mapping.
We discuss briefly the dynamics of the precursor of the driven lattice which is a single
laterally oscillating potential barrier. Finally, the symmetry properties of the driven
lattice are addressed and we study how the spatiotemporally symmetries [44] which
forbid transport in the classical regime can be broken by modulating spatially the time-
dependent driving force.

� The third chapter is devoted to the phase space analysis. In this part we study
how the local driving leaves its hallmarks in the appearance of the classical phase
space of the system. We show that by appropriately choosing the driving laws of the
potential barrier one can “engineer” the phase space in a controllable manner, i.e.
we can manipulate certain parts of the space wheres the remaining portion remains
mainly unaffected. By means of a kinematic consideration concerning the scattering
dynamics of a single potential barrier we derive a formula predicting the position of
the tori delimiting the main chaotic phase space component and compare the formula’s
prediction to the position of the tori in the Poincaré surfaces of section. In the end we
discuss briefly why chaotic trajectories in the driven lattice obey typically intermittent
dynamics, i.e. the diffusive dynamics is interrupted by episodes of long ballistic motion.

� We discuss in the fourth chapter the transport and the localization properties of
particles in the locally driven lattice. We find that a harmonic driving law applied to
the potential barriers together with local phase shifts is sufficient to create a directed
current of particles although each single barrier is non-transporting. The magnitude
and the direction of the current can be controlled by the parameters of the driving or of
the static lattice. Several mechanisms for transient localization of particles in different
wells of the driven unit cell are presented and we outline how it can be converted into
permanent trapping of particle at certain positions of the lattice.

� In the fifth chapter we discuss the classical dynamics of block-structured driven lattices
which consist of domains equipped with different driving force and thus possessing other
transport properties. We find that at the interfaces between the domains particles
can experience a change in their dynamical character (diffusive / ballistic). For the
non-equilibrium dynamics of an ensemble these conversion processes cause a transient
periodic modulations of the particle density possessing local minima and maxima in a
domain. By an appropriate tuning of the driving forces these density modulations can
be rendered into a time-propagating wave of particles .

� The sixth chapter is devoted to the quantum dynamics of spatiotemporally driven
lattices. We implement a numerical scheme for solving the time-dependent Schrödinger
equation based on Floquet and Bloch theory. Afterwards, we analyze the quasi energy
spectrum and discuss the properties of the quantum transport for different setups.
For lattices where the spatiotemporally symmetries of the potential are broken by the
driving we find that the asymptotic average current acquires a nonzero value. The
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direction and the magnitude of this transport can be tuned by varying the frequency of
the driving.

Finally, we conclude and give a brief outlook.





Chapter 2

Lattice of laterally oscillating barriers

In this chapter we introduce the physical system which we investigate. Firstly, the Hamilto-
nian of the setup is defined and the numerical scheme for propagating the equations of motion
is explained. Secondly, we summarize the dynamical properties of the single driven barrier
and discuss the symmetries of the lattice.

2.1 General definitions and Hamiltonian

The classical dynamics of an ensemble of identical, non-interacting particles in a one-dimensional,
infinitely extended lattice of laterally oscillating square potential barriers of equal height V0

and width l is described by the Hamiltonian

H(x, p, t) =
p2

2m
+ V (x, t), (2.1)

where m is the mass of the particles and

V (x, t) =

∞∑
i=−∞

V0Θ

(
l

2
− |x− x0,i − fi(t)|

)
(2.2)

is the potential. x0,i is the equilibrium position and fi(t) is the so-called driving law of the
i-th barrier. Accordingly, fi(t) is a periodic function which is explicitly allowed to depend
on the site index i and thus each barrier can be in general driven in a different way. For the
equilibrium position of the potentials we choose

x0,i = iD with D > 0, (2.3)

such that the static counterpart of Hamiltonian (2.1) is an equally spaced lattice of identical
barriers, i.e. in their equilibrium position the barriers are centered around {0,±D,±2D, . . .}.
Fig. 2.1 shows an illustrative sketch of the system including the relevant parameters. For the
driving law fi(t) we choose one of the harmonic functions

fi(t) = C cos(ωt+ ϕi), (2.4)

fi(t) = C {cos(ωt+ ϕi) + sin(2(ωt+ ϕi))} , (2.5)

where ϕi ∈ [0, 2π] is a local phase shift that depends on the lattice site index of the i-th
barrier. In the following the amplitude C and the frequency ω are always equal for all sites
i and we change the lattice by choosing different phase shifts {ϕi}. If the barriers have the
same initial phase shift, e.g. ϕi = ϕ0 for all site indices i, the lattice will be equidistant at
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Figure 2.1: Schematic illustration of the lattice of laterally oscillating barriers.

all times. We will refer to this special case as “uniformly oscillating lattice”. To ensure that
neighboring potentials do not touch or overlap for arbitrary phase shifts {ϕi}, the amplitude
of oscillation must not be too large, i.e. max |fi(t)| ≤ D−l

2 .

2.2 Mapping of the phase space flow

In order to study the dynamics of an ensemble of particles in the lattice described by the
Hamiltonian (2.1), we have to solve the equations of motion

ẋ =
∂H

∂p
(2.6)

ṗ = −∂H

∂x
, (2.7)

which for smooth potentials are usually integrated by a Runge-Kutta-method. However, in
our case these “numerical standard-techniques” cannot be applied straightforwardly since
V (x, t) is discontinuous and thus the force F (x, t) = −∂V (x, t)/∂x is delta-shaped [70], i.e.

V (x, t) ∝ Θ(x, t) ⇒ F (x, t) ∝ δ(x, t). (2.8)

Instead, we exploit the fact that the particles move ballistically between consecutive collisions
with the barriers’ edges. Therefore, the Hamiltonian flow in the three-dimensional phase space
can be described by an implicit mapping M from one barrier-particle interaction to the next
one [70,71], i.e. xn+1

pn+1

tn+1

 = M

xn
pn
tn

 , (2.9)
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where xn is the particle’s position, pn its momentum and tn the time straight after the n-th
collision. In the following we describe briefly how the mapping M is iterated:

tn+1 is derived from the condition that the position

xp(tn+1) = xn + vn(tn+1 − tn) (2.10)

of a particle travelling with velocity vn = pn
m equals at this point in time to the position of an

edge of the i-th barrier in whose scattering region the particle is at time tn (see Fig. 2.1), i.e.

xb,i(tn+1) = x0,i ±
l

2
+ fi(tn+1). (2.11)

The +/− sign has to be chosen for the right/left edge of the i-th barrier, respectively. Ac-
cordingly, tn+1 is the solution of the following equation

x0,i ±
l

2
+ fi(tn+1) = xn + vn(tn+1 − tn), (2.12)

where we have to take the smallest tn+1 > tn since this corresponds to the physical reasonable
collision. For the chosen harmonic driving laws (2.4) and (2.5) Eq. (2.12) is not analytically
solvable and therefore numerical methods must be applied to find tn+1. To this end Eq.
(2.12) is rewritten as the root-finding problem g(tn+1) = 0 with

g(tn+1) = x0,i ±
l

2
+ fi(tn+1)− xn − vn(tn+1 − tn). (2.13)

If no solution tn+1 > tn exists, the particle will leave the scattering region of the i-th barrier
and we have to calculate the collision time tn+1 with a neighboring potential. Depending
on the parameters vn, xn etc. Eq. (2.13) can have many solutions. In order to ensure that
we find the smallest solution tn+1 > tn, it is mandatory to provide a so-called “bracketing”
for this sought after root, i.e. by exploiting the properties of the function g(tn+1) we have
to determine a unique interval [t1, t2] which contains only the first solution of Eq. (2.13).
Although at first glance this seems to be a straightforward task for a one-dimensional root-
finding problem, it is nevertheless non-trivial, because it is possible that some of the solutions
of Eq. (2.13) lie very close together. If a bracketing is on hand, the root can be traced by
means of several algorithms. We have chosen the “Van Wijngaarden-Dekker-Brent method”
which is described in Ref. [72]. The details of the bracketing scheme can be found in [71].

Once we have found the collision time tn+1 the next position of the particle xn+1 is calcu-
lated simply by inserting tn+1 in Eq. (2.11), i.e.

xn+1 = x0,i ±
l

2
+ fi(tn+1). (2.14)

To derive the momentum after the next collision pn+1 we must distinguish two different
cases [70]. Let us assume that the particle is outside of the barrier before the collision occurs.
If its relative kinetic energy at tn+1 is smaller than the potential height, that is

Ekin,rel =
m

2
(vn − vb,i(tn+1))

2 < V0 (2.15)
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with vb,i(tn+1) = ẋb,i(tn+1) being the barrier’s velocity, an elastic reflection will occur. In this
case the new velocity vn+1 becomes

vn+1 = 2vb,i(tn+1)− vn. (2.16)

If Ekin,rel exceeds V0, the particle will enter the potential and lose kinetic energy. Simple
algebra yields the following equation for the new velocity

vn+1 = vb,i(tn+1) + sign(vn − vb,i(tn+1))

√
(vn − vb,i(tn+1))

2 − 2V0

m
(2.17)

Conversely, if the particle is inside of the potential before the collision occurs, it will leave
the barrier and vn+1 is then given by

vn+1 = vb,i(tn+1) + sign(vn − vb,i(tn+1))

√
(vn − vb,i(tn+1))

2 +
2V0

m
(2.18)

In both cases the new momentum is simply calculated by pn+1 = mvn+1. Hence, an orbit in
phase space is given by an infinite sequence of points

O = {(x0, p0, t0)t, . . . , (xn, pn, tn)t, . . .}. (2.19)

Before we proceed with the infinite lattice it is helpful to summarize briefly the properties of
the single driven barrier.

2.3 Single driven barrier

Omitting the sum in Eq. (2.1) and choosing x0 = 0 yields obviously the Hamiltonian of a
single barrier which laterally oscillates around the origin. The dynamics of the particles in this
system is described as well by the previously introduced mapping M. We only have to bear
in mind that the particles can leave the scattering region of the barrier and thus the sequence
representing an orbit in phase space O is in general finite. In Ref. [70] the authors have
shown that the laterally oscillating barrier with pure cosine driving f(t) = cos(t) possesses in
certain regions of the parameter space a regular island in phase space associated with trapped
dynamics in its scattering region. It is important to remark that the elliptic island appears
only for curved driving laws, i.e. for a sawtooth-like oscillation where the potential moves
with constant velocity between its turning points this elliptic islands is not present in phase
space [70]. In Fig. 2.2(a) such an elliptic island for a purely harmonic driving f(t) = cos(t)
is shown. In its center a periodic orbit resides. Furthermore, we observe an eye-catching
embedded chain of five sub-island. For an initial condition chosen in one of the five islands
the typical dynamics of the trajectory in real space is shown in Fig. 2.2(b). As we see,
the particle moves synchronously with the oscillation of the potential and is trapped forever.
Outside of the elliptic island the phase space is chaotic, i.e. these scattering particles leave
the region covered by the barrier oscillation typically after a few collisions. Still, there are
also exceptions, i.e. particles which remain for a very long time in the scattering region and
this effect is discussed in the following. In Ref. [70] it has been shown that the laterally driven
barrier is a chaotic scatterer which yields singularities of the dwell time, i.e. the time that the
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(a) Regular island in the phase space of the
single oscillating barrier for l = 0.4, V0 = 0.32
and a pure cosine driving f(t) = cos(t).

(b) Typical trajectory in real space for an orbit
in the island shown in figure 2.2(a)

Figure 2.2: Figures taken from Ref. [70]

particles spend in the interaction region. The authors explain this behavior by the existence
of the elliptic island. Accordingly, scattering particles whose initial conditions overlap with
the stable manifold of unstable periodic orbits in phase space surrounding the elliptic island
are guided on the manifold towards the islands. Once in its vicinity they trace the outermost
torus for a very long time which is called “stickiness” [73, 74]. Finally, the particles leave
the interaction region again on the unstable manifold which yields in conclusion a strong
delay between the entering and the exiting of the scattering region. In the discussion of the
diffusion of the lattice we will see that these scattering properties leave there their hallmark.
As a matter of course all the aforementioned points are still true when the barrier oscillates
biharmonically according to f(t) = C {cos(ωt) + sin(2(ωt))} because this driving law is also
curved and similarly permits the existence of an elliptic island in phase space. Let us now
return to the discussion of the dynamics of particles in the infinite lattice.

2.4 General symmetries of the lattice

One aspect of this thesis are the transport properties of the driven lattice described by the
Hamiltonian (2.1). Let us therefore discuss under which conditions directed transport can
occur. In Ref. [44], the authors have proven that the directed current will vanish, if the
equations of motion are invariant under certain transformations, i.e. if certain symmetries
hold. These transformations change the sign of the velocity and as a result it is possible to
construct for every trajectory a mirror image with the opposite sign for the velocity. In this
case, averaging over a representative set of trajectories yields zero mean velocity, that is a
vanishing directed transport. Such transformations reverse either time or spatial coordinates
together with a constant shift. Thus they take on the appearance

Ta : x → −x+ cx, t → t+ ct, (2.20)

Tb : x → x+ cx, t → −t+ ct. (2.21)
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The equations of motion (2.6)-(2.7) derived for the Hamiltonian (2.1) can be simply rewritten
as

mẍ = −∂V (x, t)

∂x
. (2.22)

For the absence of directed transport due to symmetry reasons it is therefore necessary that
the potential V (x, t) is invariant under one of the transformations (2.4)-(2.21). We remark
that a vanishing current can also occur if the above symmetries do not hold, which is however
a non-generic case and is encountered only for specifically chosen parameter values. In the
case of the uniformly oscillating lattice, i.e. ϕi = ϕ0 for all lattice sites i, the potential reads

V (x, t) =

∞∑
i=−∞

V0Θ

(
l

2
− |x− iD − fi(t)|

)
(2.23)

For the monochromatic harmonic driving law (2.4) (i.e. fi(t) = C cos(ωt + ϕ0)) we see
immediately that V (x, t) possesses the generalized time-reversal symmetry, that is

V (x,−t− 2ϕ0

ω
) =

∞∑
i=−∞

V0Θ

(
l

2
− |x− iD − C cos(−(ωt+ ϕ0))|

)
(2.24)

=

∞∑
i=−∞

V0Θ

(
l

2
− |x− iD − C cos(ωt+ ϕ0)|

)
(2.25)

= V (x, t). (2.26)

According to Eqs. (2.4) and (2.21) the presence of this symmetry is already sufficient to rule
out directed transport. Yet, for the sake of completeness we remark that the potential is also
invariant under the generalized parity transformation, i.e.

V (−x, t+
π

ω
) =

∞∑
i=−∞

V0Θ

(
l

2
− |−x− iD + C cos(ωt+ ϕ0)|

)
(2.27)

=

∞∑
j=−∞

V0Θ

(
l

2
− |x− jD − C cos(ωt+ ϕ0)|

)
(2.28)

= V (x, t), (2.29)

where we have redefined j = −i in the second step. Summing up, two transformations under
which the potential is invariant can be identified

T : x → −x, t → t+
π

ω
,

T ′ : x → x, t → −t− 2ϕ0

ω
.

(2.30)

Consequently, for the monochromatically, uniformly oscillating lattice no directed transport
occurs. The same will be true, if the local phase shifts of the barriers alternate, i.e.

ϕi =

{
ϕ1 if i is even

ϕ2 else.
(2.31)
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with ϕ1 6= ϕ2. In this case the transformation is given by

T : x → x+D, t → −t− ϕ1 + ϕ2

ω
. (2.32)

To verify this claim we write the potential as

V (x, t) =
∑
even

V0Θ

(
l

2
− |x− iD − C cos(ωt+ ϕ1)|

)
+
∑
odd

V0Θ

(
l

2
− |x− iD − C cos(ωt+ ϕ2)|

) (2.33)

and apply the transformation given by Eq. (2.32) which yields

V (x+D,−t− ϕ1 + ϕ2

ω
) =

∑
even

V0Θ

(
l

2
− |x− (i− 1)D − C cos(ωt+ ϕ2)|

)
+
∑
odd

V0Θ

(
l

2
− |x− (i− 1)D − C cos(ωt+ ϕ1)|

)
.

(2.34)

To see the equivalence of Eq. (2.33) and (2.34) we point out that for the sum over the even
numbers in (2.34) the barrier indices are i− 1 which is odd. For the other case, i.e. the sum
over the odd numbers, i− 1 is even. Hence, both equations are equivalent and the potential
is thus invariant under transformation (2.32). Consequently, the monochromatically driven
lattice with alternating phase shifts shows no directed transport, too.

For more complicated phase shifts like sequences with higher periods n, that is ϕi+n = ϕi

and ϕi 6= ϕj for i, j = 1, 2, . . . , n it is generally impossible to find transformations of type (2.4)
and (2.21) under which the potential is invariant. Therefore, a directed transport is possible
to be evoked in such setups. Still, we emphasize again that breaking the symmetries (2.4)
and (2.21) is only a necessary but not a sufficient criterion for the occurrence of a particle
current.

When the lattice is driven according to the biharmonic law (2.5), it is impossible to define
proper ct and cx such that the potential V (x, t) is invariant under one of the transformations
and (2.21) even if we choose constant phase shifts, i.e. ϕi = ϕ0 for all i. Therefore, we expect
that the bichromatically, uniformly oscillating lattice shows a particle current. Let us now
proceed to the discussion of the phase space of Hamiltonian 2.1.





Chapter 3

Phase space analysis

In this chapter we present an analysis of the phase space of the Hamiltonian (2.1) for setups
which are introduced in the following section. General characteristics of the Poincaré surfaces
of section (PSS), like the appearance of regular islands and the chaotic sea, are discussed.
Especially, main emphasis is placed on the comparison of the phase space properties of the
setups which possess one of the symmetries (2.4)-(2.21) and those who do not. Furthermore,
the stability of the phase space structures against perturbation of the phase pattern is studied.

3.1 Setup

In Sec. 2.1 we introduced the two driving laws which are investigated in the following, i.e.
a pure cosine and a biharmonic driving (see Eqs. (2.4) and (2.5)). In order to reduce the
number of varying parameters, we set the frequency of the driving to ω = 1. Additionally,
C is chosen such that the amplitude of the driving is one, i.e. max |fi(t)| = 1. For the
monochromatic law (2.4) this implies C = 1 and C ≈ 0.57 in the case of the biharmonic
driving (2.5). Moreover, the barriers’ width and the equilibrium distance are fixed to l = 0.4
and D = 4.4, respectively. Finally, without loss of generality the mass of the particles is
chosen m = 1. We are therefore left with two parameters: the barrier height V0 and the local
phase shifts {ϕi}. Since one of our interests are the lattice’s transport properties, we choose
setups for which the symmetries (2.4)-(2.21) are broken, because this is necessary to obtain
directed currents. If the barriers are driven according to the monochromatic law (2.4), this
symmetry breaking is implemented by spatially modulating the phase shifts {ϕi}. For the
biharmonic driving (2.5) a constant phase, i.e. ϕi = ϕ0, is sufficient to break both symmetries
(2.4)-(2.21). In the following, four different setups are studied in detail:

(a) constant phase gradient: The potential height is fixed to V0 = 0.16 and the barriers are
equipped with a linearly increasing phase,

fi(t) = cos

(
t+

i

n
2π

)
, (3.1)

where the periods of the site-dependent phases (which we call “phase periods” for reasons of
brevity) are n = 1, 3, 6, 10. For n = 3, the sequence of phase shifts {ϕi} is {. . . , 0, 2π3 , 4π3 , 0, 2π3 , . . .},
whereas for n = 1 a lattice of uniformly oscillating barriers is recovered. One can verify
straightforwardly that the potential is not invariant under one of the transformations (2.4)-
(2.21) for phase periods greater than or equal to three. Hence, a nonzero mean velocity can
be expected for n = 3, 6, 10.

(b) perturbed phase gradient: For the second class of setups we keep V0 = 0.16 and the
above phase gradient with period three setup is perturbed, i.e. the sequence of phase shifts
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becomes {. . . , 0, 2π3 ± α, 4π3 , 0, 2π3 ± α, . . .} such that for α = 0 the equidistant phase gradient
is recovered.

(c) broken phase gradient: A specific phase shift sequence of period three {. . . , 0, π
10 ,

3π
10 , 0,

π
10 ,

3π
10 , . . .}

is chosen and the global potential height V0 is varied.

(d) Biharmonic driving: We choose V0 = 0.16 for all barriers, take a constant phase shift
ϕi = 0 for all barriers i and apply the biharmonic driving (2.5), i.e.

fi(t) = 0.57 {cos(t) + sin(2t)} (3.2)

3.2 Phase space topology

In this section the phase space topology is analyzed. Firstly, the method, how the Poincaré
surfaces of section (PSS) for the above defined setups are obtained, is described briefly.
Afterwards, we discuss the structure of the PSSs and address the question how breaking the
symmetries (2.4)-(2.21) leaves its hallmarks.

3.2.1 Poincaré surfaces of section

In Sec. 2.2 we have seen that the orbit in phase space of an arbitrary trajectory is given by
the infinite sequence of points

O = {(x0, p0, t0)t, . . . , (xn, pn, tn)t, . . .}. (3.3)

It is obviously impossible to plot O on a two-dimensional sheet. Thus, in order to visualize
the dynamics we make so-called Poincaré surface of sections (PSS) of the phase space [5].
Due to the time-periodicity of the Hamiltonian H(x, p, t + T ) = H(x, p, t), (T = 2π), an
area-preserving surface of section is obtained by taking stroboscopic “snapshots” of the (x, p)-
plane at times t = nT with n ∈ N. Additionally, the Hamiltonian possesses the translation
invarianceH(x+L, p, t) = H(x, p, t), where L is the length of the system’s unit cell. Generally,
L is not the distance between the barriers at their equilibrium positions, but for our chosen
setups L is a multiple of D, L = n · D, where n is the phase period. Thereby, the space
coordinate can be restricted to the length L of the Hamiltonian’s unit cell. The desired
Poincaré surface of section is then provided by the set of points:

M = {(x(t+ kT ) mod L, p(t+ kT ))|k ∈ N}. (3.4)

By means of the sequence of phase space pointsO the momentum and the position of a particle
at any time can be derived straightforwardly. p(t+ kT ) is obviously given by (xi, pi, ti)

t ∈ O
with ti ≤ t + kT , i.e. p(t + kT ) = pi. Furthermore, the particle’s position at time t + kT is
calculated straightforwardly via

x(t+ kT ) = xi +
pi
m
(t+ kT − ti). (3.5)

Since the time between successive “snapshots” of the (x, p)-plane is equal, the PSS is done
for a specific phase of the driving. It is therefore not surprising that the appearance of the
surface of section is not universal but depends on exactly this phase. An example of how this
manifests itself in the PSS is given in the next section.
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Figure 3.1: (a) Stroboscopic PSS of the lattice of uniformly oscillating square potentials. For a better illus-
tration we have added in (b) the potential energy to the kinetic energy of the particles, in order to avoid
the discontinuities in the “regular” PSS. Figure (c) shows the PSS where we record time and momentum of
particle once they cross equidistant positions in real space (see Sec. 3.2.1).

For later purposes it is moreover convenient to introduce a further scheme to perform
Poincaré surface of sections of the phase space. For a uniform driving without a phase
gradient the lattice possesses the translation invariance with the equilibrium distance of two
adjacent barriers, i.e. L = D. In this case another PSS can be done by recording the time
and the velocity of a particle every time it crosses equidistantly spaced positions in real space.
Since the Hamiltonian has the property H(x, p, t + T ) = H(x, p, t) we can additionally map
the recorded time to the period of the driving T , i.e. we can just as well record the phase of
the driving when a trajectory crosses certain positions ξ(x+kL). Accordingly, this procedure
yields that the PSS is given by the following set of points:

M = {(ξ(x+ kL), p(x+ kL))|k ∈ N}. (3.6)

Along the lines of the PSS presented before we exploit the mapping of the dynamics (see Eq.
(2.9)) in order to determine the time and the momentum of a particle once it crosses one of
the positions x+kL which make up the PSS. Let us assume that in the course of the dynamics
two consecutive phase space points (xi, pi, ti)

t, (xi+1, pi+1, ti+1)
t ∈ O have the property that

xi < x + kL < xi+1. The momentum of the particle in the PSS is then p(x + kL) = pi and
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the time is given by

t(x+ kL) = ti +
x+ kL− xi

pi/m
, (3.7)

which is converted to the phase of the driving via ξ(x+ kL) = ωt(x+ kL) mod 2π. Similarly
to the stroboscopic PSS the appearance of the “momentum versus phase” PSS depends on
the position in real space where we record t and p of the trajectories. We will use the term
“Poincaré surface of section” (PSS) without additional definite specification because it is
always clear from the context which one is meant.

3.2.2 Monochromatically, uniformly driven lattice

In Fig. 3.1 (a) the stroboscopic PSS of the monochromatically driven lattice with a phase
period one, i.e. a lattice of uniformly oscillating barriers (n = 1, L = D, fi(t) = cos(t)) is
shown. The Poincaré surface of section possesses discontinuities (dashed box in Fig. 3.1 (a)),
which are due to the fact that the particles are either inside or outside the barrier when the
snapshot of the (x, p)-plane is taken. The particles have Epot = 0 outside and Epot = V0 inside.
Since the potential is not smooth, this provides discontinuities in the PSS. For illustrative
reasons it is therefore useful to add the potential energy Epot = V0 to the kinetic energy for
those particles, which are inside the barrier at the moment of the snapshot. This has been
done in Fig. 3.1 (b). The invariant curves are then continuous, yet the barrier can be seen as a
blank squared region in the PSS. To avoid the discontinuities all the subsequent stroboscopic
PSS are presented in this way.

Another eye-catching feature of the PSS is the reflection symmetry with respect to p = 0.
However, this is not universally valid, but occurs only for specific phases of the snapshot of
the (x, p)-plane. As Fig. 3.1 (b) shows, the PSS is done at the moment the barrier arrives at
one of its turning points, i.e. the i-th barrier is centered around x0,i = iD + C at this point
in time. For the first unit cell i = 0, this yields x0,0 = 1 (blank squared region in Fig. 3.1
(b)). If the PSS is made, for instance, when the barrier has its maximum velocity, then this
symmetry is absent. Yet, the dynamics of the lattice of uniformly oscillating barriers can be
completely classified by means of the stroboscopic Poincaré surface of section [5].

For large momenta |p| � 1 the potential is negligible due to its finite height. In this limit,
the integrable dynamics of a free particle is recovered and the phase space is foliated by
invariant curves, which are topologically equivalent to a torus [75]. In the PSS these curves
appear as straight lines, which stretch out over the whole unit cell. This simple part of the
PSS is not displayed in Fig. 3.1 (b) and occurs for |p| ≥ 3. With decreasing momentum,
the integrability is lost, but large regular domains remain. Many orbits still lie on deformed
tori, which occur as curved lines in the PSS (|p| ≈ 2 in Fig. 3.1 (b)). Particles on these
invariant curves travel through the lattice in the direction of their initial momentum. Indeed
the KAM theorem, which predicts the persistence of quasi-periodic motion in Hamiltonian
dynamical systems under a small perturbation, states that tori with sufficiently irrational
winding number survive under a small perturbation [75]. The winding number is defined as
the limit

w = lim
t→∞

x(t)− x(0)

t
, (3.8)

if it exists [76]. x and t are measured in multiples of the spatial period of the unit cell and
time period, respectively. Thus w is proportional to the average velocity of the particle in the
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Figure 3.2: Two trajectories in the monochromatically driven lattice for V0 = 0.16, l = 0.4 and L = 4.4. The
black curve corresponds to a particle which has initially been started in the chaotic sea, i.e. x(0) = −2.2,
p(0) = 0.3. The red curve corresponds to a ballistic trajectory placed initially in one of the two elliptic islands
belonging to winding number w = 1

2
, that is x(0) = −0.54, p(0) = 0.35.

lattice, w ∼ v [51]. Tori with rational winding numbers w = r/s are excluded in the KAM
theorem. According to the Poincaré-Birkhoff theorem they dissolve into an even number of
alternately elliptic and hyperbolic fixed points of period s. The trajectories in the extended
system, which correspond to these periodic orbits in the PSS, travel r spatial unit cells in
s time periods in the direction of their initial velocity. Hence in the PSS they occur as s
distinct points. Around each elliptic periodic orbit there is again a set of invariant curves,
which can be seen in our PSS as elliptic islands. Completely analogous to the trajectory
belonging to the periodic orbit in the center of this structure, the motion of particles, which
are inside these islands proceeds through the lattice only in one direction. Accordingly, the
trajectories intersect the PSS sequentially at different islands of the corresponding chain of
islands. For example in Fig. 3.2 the red curve is the trajectory in real space corresponding to
the central period two orbit in the w = 1

2 elliptic islands at p = 0.35, x = −0.54 and x = 1.54
respectively. The particle traverses the lattice in positive direction and the orbit in the PSS
jumps back and forth between the two islands. In the vicinity of the hyperbolic fixed points
there is an infinite number of homo- and heteroclinic intersections of the stable and unstable
manifolds, which yields horseshoe type dynamics and hence the presence of chaos [5]. For
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Figure 3.3: Magnification of the Poincaré surface of section shown in Fig. 3.1(b) in the region of the upper
boundary of the chaotic sea with the FISC highlighted a red dashed line.

large kinetic energies these chaotic layers are too small to be visible in the PSS shown in
Fig. 3.1 (b). The magnification of the PSS (see Fig. 3.3) for 1.75 < p < 1.95 shows such a
separatrix region around p ≈ 1.93. However, with decreasing momentum the strength of the
perturbation and thereby the size of these layers increases until finally a large chaotic sea in
the PSS for small momenta develops. Trajectories belonging to orbits in this chaotic sea of
the PSS wander diffusively through the lattice. The typical dynamics such a particle obeys
in real space is shown in Fig. 3.2 (black line). The trajectory exhibits intermittent dynamics,
i.e. we observe alternately phases during which the particle crosses the lattice only in one
direction with constant velocity and phases of chaotic motion where the sign of the velocity
is constantly reversed. The question of the origin of this intermittency is addressed at a later
point. We will see that the phases during which the particles move with constant velocity
leave an important hallmark in the diffusion properties of the system. At x ≈ 0.05, p = 0 we
see in Fig. 3.1 (b) the regular island embedded in the chaotic sea corresponding to trapped
motion in the scattering region of a single barrier whose properties have been summarized in
Sec. 2.3 (see also Ref. [70]). Other dominant elliptic islands in the PSS are the ones with
winding number w = r, where the central periodic orbits are trajectories which travel r lattice
sites during one oscillation period of the lattice, e.g. the w = 1 island at x ≈ −1.1, p ≈ 0.7
or w = 2 at x ≈ −0.1, p ≈ 1.4. In Appendix A a method is presented with which we can
determine the position of these elliptic islands in the Poincaré surface of section.

Let us now return to the border regions of the PSS (1.75 < p < 2.0 in Fig. 3.1 (b)), where
the large chaotic sea is bounded by tori, which have not been destroyed by the driving. In this
regime of intermediate kinetic energy the PSS possesses a very rich structure with a hierarchy
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of elliptic islands surrounded by smaller islands. For even larger momenta the chaotic sea is
bounded by an invariant curve, which is called the “first invariant spanning curve” (FISC).
Fig. 3.3 shows a magnification of this region of the PSS for positive momenta with the FISC
highlighted as a red dashed line. For negative momenta there exists of course a FISC, too
(Fig. 3.1 (b)). Independent of the phase of the driving when the PSS is done the FISC in
the positive and negative momentum regime is found at |p| ≈ 1.9. Although the position of
the FISC in the PSS is very hard to determine analytically, it is possible to derive at least a
lower bound to its position in velocity space, as will be shown in Sec. 3.3.

Finally, we want to discuss the PSS for the harmonically, uniformly driven lattice which
is obtained by recording the time and the momentum of particles at equidistantly spaced
positions in real space (see Sec. 3.2.1). In Fig. 3.1 (c) we show the corresponding PSS which
is taken at the centers between the equilibrium positions of adjacent barriers. Consequently,
every time a trajectory crosses the positions x =

(
i+ 1

2

)
L the time t (phase of the driving

law) and the momentum p is recorded. Evidently, the PSS is not mirror symmetric with
respect to p = 0 but possesses a point symmetry to ξ = π, p = 0. The appearance of the PSS,
e.g. the location of the elliptic islands in the PSS, depends on the position x where the PSS is
taken. Qualitatively, the PSSs shown in Figs. 3.1(b) and (c) possess the same structure. We
see a large chaotic sea with embedded elliptic islands and for larger momenta the phase space
structure becomes more and more regular. Furthermore, the FISCs bounding the chaotic sea
are in the same momentum regime both in Fig. 3.1 (b) and (c), too.

However, there are some clear differences. The island at p = 0 corresponding to trapped
dynamics is not visible in Fig. 3.1 (c), because we perform the PSS outside the scattering
region of the barriers. Still, this is not a drawback because we will use the “momentum
versus phase” PSS afterwards only for setups where this island is absent. Generally, the
number of islands embedded in the chaotic sea does not agree in Fig. 3.1 (b) and (c). For
example there is a single island in Fig. 3.1(b) at x ≈ −0.1, p ≈ 1.4 which corresponds to two
islands in Fig. 3.1(c) at ξ ≈ 1.6, p ≈ 1.4 and ξ ≈ 4.7, p ≈ 1.4 which is due to the different
schemes used for performing the two PSSs. Using this special island as an example, we can
understand intuitively the reason for the inequality of the number of islands. Its associated
central periodic orbit belongs to a trajectory in real space which travels in one period of the
driving two times the equilibrium distance of adjacent barriers, i.e. x(t + T ) = x(t) + 2L
and t(x + 2L) = t(x) + T . Due to Eq. (3.4) this corresponds to a period one orbit in the
stroboscopic PSS (Fig. 3.1 (b)). At the same time it is obvious that t(x + L) 6= t(x + 2L)
such that, according to Eq. (3.6), this trajectory yields a period two orbit in Fig. 3.1(c).
For the other lattices we discuss exclusively the stroboscopic PSS because this is sufficient
to demonstrate the impact of breaking the symmetries (2.4) and (2.21) of the Hamiltonian.
The concept of “momentum versus phase” PSS, introduced here, will prove useful at a later
point.

3.2.3 Constant phase gradient

In Fig. 3.4 (a)-(c) the PSS of the monochromatically driven lattice with a linear, equidistant
phase gradient of period 3, 6 and 10 is shown. Clearly, the length of PSS increases with the
phase period n because the length of the Hamiltonian’s unit cell depends linearly on n (see
Sec. 3.2.1). Contrary to the case n = 1, the PSS is obviously not symmetric with respect to
p = 0 and moreover there is no alternative phase of a chosen PSS for which this symmetry
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is restored. As a result not only the PSS but the complete phase space of these phase
periods is asymmetric with respect to p = 0. Later we will see that this desymmetrization
is actually the origin of the occurrence of directed currents in the system. Nevertheless, the
PSS shows in general the same structure, which we have already discussed for the lattice of
monochromatically, uniformly oscillating barriers. For small momenta there is a large chaotic
sea with embedded elliptic islands. Since the potential height V0 and the potential width l
are equal for all phase periods, each barrier possesses analogous to n = 1 at p = 0 a small
island of bounded motion in its scattering region [70] (e.g. x1 ≈ 0.05, x2 ≈ 4.35, x3 ≈ 8.75
for n = 3 in Fig. 3.4 (a)). With increasing kinetic energy more chains of elliptic islands
appear until the chaotic sea is bounded by the FISCs. Although the form of the FISC
depends on the phase at which the PSS is taken, Fig. 3.4 shows that for all periods of
the gradient it is located at approximately in the same momentum range |p| ≈ 1.9 similar
to the case of the uniformly oscillating lattice (see Fig. 3.3 (b)). However, a significant
symmetry the phase space possesses for n = 1 has disappeared, namely the areas of the
elliptic islands in the PSS with winding numbers w = r/s and w = −r/s are in general
not equal anymore. For example, in the case n = 3 the two dominant elliptic islands for
positive momenta in the PSS belong to the periodic orbit with winding number w = 1/2
(p ≈ 1, x1 ≈ −1.65, x2 ≈ 4.95 in Fig. 3.4 (a)). On the contrary, there are three periodic
orbits with w = −1/2. Correspondingly, we find six small elliptic islands in the PSS for
negative momenta (p ≈ −1, x1 ≈ −1.65, x2 ≈ 0.6, x3 ≈ 2.8, x4 ≈ 4.9, x5 ≈ 7.1, x6 ≈ 9.35 in
Fig. 3.4 (a)). Their total area in the PSS is less than the area of the two elliptic islands with
w = 1

2 . Since these areas are preserved under the Hamiltonian flow, this is universally valid
for all phases of the PSS.

3.2.4 Perturbed phase gradient

As the next step, the equidistance of the phase gradient with period 3 is broken up by
imposing an additional phase shift α to the “middle” barrier. For a relatively large range of
α one observes that the PSS remains on a coarse scale unaffected by this perturbation in the
sense that the position and the size of the significant elliptic islands stays approximately the
same. However, close to the FISC important changes occur. To see this, the upper part of
the chaotic sea is magnified in Fig. 3.5 for α = 0 (a) and α = −0.03π

3 (b). We observe that
the former stable FISC in the lattice with the equidistant gradient dissolves when decreasing
α from 0 to −0.03π/3. Thereby, the proportion of the chaotic layer is increased considerably.
However, at the position where the FISC is for α = 0 in Fig. 3.5 (a) a cantorus remains
in the PSS for α = −0.03π/3. A cantorus is a remnant of a destroyed KAM-torus [5].
Depending on the irrationality of the winding number belonging to the dissolved torus, the
cantorus can represent a strong barrier, such that the Hamiltonian flow passes through it
very slowly. As a consequence it takes long until a trajectory, which has been started with
small momentum in the chaotic sea, samples the accessible region of phase space above the
cantorus. Consequently, for a finite time this cantorus acts in a similar way like the FISC,
i.e. as if it would be an impenetrable torus. Yet, in the limit of long simulation time the
Hamiltonian flow is able to pass through. Therefore these cantori are usually called “partial
barriers” and possess a major impact on the transient dynamics and the long-term transport.
Thus, corresponding care must be taken when estimating the transport velocity by simulating
an ensemble of particles with small initial momenta in the chaotic sea.
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Figure 3.4: Stroboscopic PSS of the monochromatically driven lattice with a linear phase gradient of period
n = 3 (a), 6 (b) and 10 (c). The length of the unit cell increases with the period of the gradient.

3.2.5 Broken phase gradient

Let us now consider the impact of a variation of the global potential height V0 on the phase
space properties for a lattice with a specific sequence of phase shifts having the period three
{. . . , 0, π

10 ,
3π
10 , 0,

π
10 , . . .}. In Fig. 3.6 the PSS for four different values of V0 is shown. The

island at p = 0, which is a property of scattering from a single barrier and corresponds
to a localized dynamics, has disappeared, because the parameters (V0, l) are chosen such
that its central periodic orbit has ceased to exist [70]. Still, for not too high values of the
potential height V0 ≤ 13.0 the chaotic sea corresponding to diffusive dynamics in real space is
connected (see Fig. 3.6 (a)). With increasing V0 another class of localized dynamics arises in
the system. As Fig. 3.6 (b) shows, a separated chaotic sea between the first and the second
barrier appears. This part of phase space is confined by impenetrable tori, i.e. the particles
starting in this sea cannot escape from it and are thus trapped between the barriers. In Fig.
3.7 (a) a trajectory in real space of such a trapped orbit in the PSS obeying chaotic dynamics
is shown. Note that the “empty barrier” region in the PSS is not a confinement criterion like
the invariant tori. As the potential height is increased further localized chaotic trajectories
appear between the other barriers, too. Embedded in these chaotic seas are elliptic islands
belonging to regular, trapped dynamics of particles between two adjacent barriers, e.g. at
x = 6.9, p = 3.2 in Fig. 3.6 (c) with a corresponding trajectory in real space shown in Fig. 3.7
(b). Intuitively, the occurrence of these localized chaotic seas is surprising, because one might
expect that with increasing potential height the particles just have to acquire more collisions
until they are finally fast enough to surpass V0. Even more astonishing is the fact that these
regions in phase space do not appear simultaneously between all barriers but successively
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Figure 3.5: Magnification of the Poincaré surface of section in the upper region of the FISC for two different
phase gradients. (a) is the equidistant gradient of period 3 and in (b) the phase of the “middle” barrier has
been shifted by α = −0.03π/3. The red dashed curves are the FISCs.

with increasing V0.

This behavior can be resolved straightforwardly. For small momenta p2/2 � V0 the par-
ticles exhibit exclusively reflective collisions, i.e. they cannot penetrate into the barriers. In
this regime the dynamics of the Hamiltonian (2.1) is equivalent to a variant of the well-known
Fermi-Ulam-Model (FUM) [5] with two oscillating walls. The original FUM describes the dy-
namics of a particle bouncing between two infinitely heavy walls where one wall is static and
the other oscillates. In the case of smooth driving laws the phase space of the FUM is not
globally stochastic, but possesses a FISC at momentum pb, which prevents particles from
gaining arbitrarily high momenta [5]. In our case both walls oscillate which only matters in
that the momentum pb of the FISC gets shifted compared to the original FUM. Consequently,
localized chaos in the driven lattice will occur if the potential height is larger than the kinetic
energy associated with this momentum, V0 ≥ p2b/2.

For momenta less than a certain value ps the phase space of the FUM is indeed completely
chaotic. In the case of the previous setups (Figs. 3.1 and 3.4 with V0 = 0.16) the poten-
tial height V0 has been chosen smaller than the corresponding kinetic energy V0 ≤ p2s/2.
Consequently, all orbits of the large chaotic sea move diffusively through the lattice in these
cases. For intermediate momenta |ps| < |pr| < |pb| the phase space of the FUM possesses
a well known resonance structure [5], whose central periodic orbits correspond to periodic



3.2 Phase space topology 25

Figure 3.6: PSS for a lattice with a specific phase gradient of period three {. . . , 0, π
10
, 3π
10
, 0, π

10
, 3π
10
, . . .} and

four different global potential heights. The values are V0 = 2.0 (a), V0 = 13.0 (b), V0 = 22.0 (c) and V0 = 32.0
(d).

trajectories bouncing between the adjacent barriers and colliding with them only at certain
phases (see Fig. 3.7 (b)). When the global potential height is increased, these orbits and
their surrounding elliptic islands appear in the PSS between two barriers prior to the block-
ing tori, since |pr| < |pb|. Due to the fact that the equations of motion are invariant under
a constant shift in time, the phase space of the variant of FUM with two oscillating walls
depends only on the relative phase between the walls but not on an absolute phase shift.
Naturally, the same holds for the momentum pb of the FISC, which limits the kinetic energy
growth of chaotic particles. Due to the different phase relations ∆ϕ = ϕi+1−ϕi two adjacent
barriers have with respect to each other, these confined chaotic seas do not occur simultane-
ously between different pairs of barriers but one after another with increasing potential height
(see Fig. 3.5 (b)-(d)). For the previous discussed lattices with constant phase gradients of
periods n = 1, 3, 6, 10 neighboring barriers have the same relative phase ∆ϕ = 0, 2π

3 , 2π
6 , 2π

10 .
Consequently, in these setups the confined chaotic seas will occur simultaneously between
all barriers, if the potential height V0 is increased. Performing Poincaré surfaces of section
for different V0 with phase period n = 1, 3 etc. reveals that this is indeed true. Finally, we
remark that even for large potential heights V0 = 32 the lattice with broken phase gradient
possesses a chaotic sea corresponding to diffusive dynamics of particles. In the PSS (Fig. 3.6
(d)) the chaotic layers above and below the blocking tori leading to trapped particles between
neighboring barriers (5 ≤ |p| ≤ 10 in Fig. 3.6 (d)) belong to one chaotic sea. Consequently,
an orbit launched in the upper or in the lower layer jumps up and down in PSS and the
trajectory in real space moves diffusively.
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Figure 3.7: (a) Trajectory started in the localized chaotic sea between the first and the second potential
barrier for the lattice with a specific phase gradient of period three {. . . , 0, π
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height V0 = 13.0 (Fig. 3.6 (b)). (b) Periodic orbit bouncing between the second and the third barrier in the
unit cell. The corresponding initial condition belongs to the elliptic island embedded in the chaotic sea at
x ≈ 6.8, p ≈ 3.3 (Fig. 3.6 (b)).

3.2.6 Biharmonically, uniformly driven lattice

In this section the phase space of the biharmonically, uniformly driven lattice is discussed.
In Fig. 3.8 we show the associated Poincaré surface of section for V0 = 0.16 and l = 0.4. It
possesses a similar topology like the PSSs belonging to the previous setups, i.e. we can identify
the typical various components. For large momenta the PSS is foliated by deformed invariant
curves of the unperturbed system. With decreasing momentum the structure becomes richer
until we reach the large chaotic sea corresponding to diffusive dynamics of trajectories in
real space with embedded ballistic, elliptic islands. As we see, there is no regular structure
belonging to trapped particles in the scattering region of a single barrier, although for the
present choice of the potential height and the barrier length such an elliptic island exists for
the purely cosine oscillation. In the case of the biharmonic driving law this island arises for
shallower potential heights and its volume in phase space is smaller.

Still, we observe also major differences to the previous setups. Evidently, the desymmetriza-
tion of the PSS and thus of the complete phase space is stronger than before. Firstly, we see
that there is for example at x ≈ −1.1, p ≈ 0.7 an elliptic islands in the PSS (see Fig. 3.8)
to which no analogue island for negative momenta is visible. Furthermore, a closer look at
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Figure 3.8: Stroboscopic PSS of the biharmonically, uniformly driven lattice for V0 = 0.16, l = 0.4 and
L = 4.4.

the PSS reveals that the large chaotic sea belonging to diffusive dynamics of trajectories is
bounded asymmetrically, that is the average momentum of the FISC for p < 0 is larger than
for p > 0. Accordingly, we expect for the biharmonic driving law a larger directed current
of particles. In the following section we show how this can be traced back to the different
maximal velocities of the barrier in positive and negative direction, respectively.

3.3 First invariant spanning curve

In this section we show how an approximation for the position of the FISC in velocity space
can be derived from simple kinematic considerations. In Fig. 3.9 (a) we show the collision
points for a particle started on the outermost torus of the w = 1 island. The collisions occur
for certain phases when the barrier moves in the opposite direction such that the relative
kinetic energy is high enough to surpass the potential height. On the contrary, particles on
the FISC are fast enough to be transmitted, even if a collision takes place when the barrier
moves with its extremal velocity uex in the same direction (see Fig. 3.9 (b)), i.e. the minimal
relative kinetic energy must exceed the potential height. Thus we get

m (v − uex)
2

2
≥ V0, (3.9)
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Figure 3.9: (a) Movement of the barrier during one phase of oscillation together with all collision points (red
part) of a particle started on the outermost torus of the elliptic island belonging to the winding number w = 1
(see Fig. (c)). (b) depicts the same information as in Fig. (a) but for a particle started on the FISC (see Fig.
(c)). (c) shows an extract of the PSS corresponding to the uniformly driven lattice together with the orbits
whose collision points with the barriers are plotted in (a), (b).

where v is the velocity of the particle. In case of a harmonic driving law, the extremal velocities
of the barrier are given by uex = ±ωC. Plugging uex in Eq. (3.9) yields an approximation to
the velocity regime where the FISC is located in the PSS. Depending on the sign of v we find

v± = ±ωC ±
√

2

m
V0, (3.10)

where the index ± denotes the position of the FISC in the PSS for positive and negative
velocities, respectively. In case of the harmonic driving law we have |v+| = |v−| independent
of the phase period. For m = 1, ω = 1, C = 1 and V0 = 0.16, we find from Eq. (3.9)
|v±| ≈ 1.57. Fig. 3.1 (b) shows that the FISC of the uniformly oscillating lattice is located
indeed at |p| ≈ 1.9 > m|v±|. The significant discrepancy (around 15 %) is due to the fact
that the approximation accounts only for a simple kinematic consideration of the dynamics
between the particle and a single barrier, neglecting all the dynamical processes happening
in the extended system. Yet, with decreasing barrier width l the agreement becomes better
and in the limit l → 0 the position of the FISC in velocity space predicted by formula (3.9)
is exact.

We can understand this behavior straightforwardly. For a particle with initial velocity v
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which is transmitted through the barrier after two collisions (one with the left and one with
the right barrier’s edge) the change of velocity is given by

∆v = vb(ξ2) +

√√√√(vb(ξ1)− vb(ξ2) +

√
(v − vb(ξ1)2 −

2V0

m

)2

+
2V0

m
− v, (3.11)

where ξ1 and ξ2 are the phases of the collisions. For l → 0 we have obviously vb(ξ1) = vb(ξ2)
and thus ∆v = 0. Accordingly, a particle which is faster than the maximal barrier velocity is
never decelerated independent of the collision phase and continues to traverse the lattice in
one direction. However, with increasing potential width l a particle can be decelerated after it
has been transmitted because the barrier velocity at the first and the second collision are not
equal anymore, i.e. vb(ξ1) 6= vb(ξ2), and thus ∆v 6= 0 in general. Consequently, it can happen
that after the transmission of a particle with initial velocity |v| > |v±| through a barrier it
is too slow to surpass the next one, e.g. if this collision occurs again at a phase when the
relative kinetic energy is minimal. Therefore, a finite barrier width l yields a correction, i.e. a
particle on the FISC must be faster because Eq. (3.9) underestimates its velocity. In fact, we
have observed for all driving laws and phase periods that the chaotic sea in the PSS grows in
the momentum-dimension with increasing l because the FISC gets shifted to higher velocities.
Unfortunately, this correction is hard to quantify. Nevertheless, this naive approach provides
some insights, as we shall argue briefly in the following.

For driving laws with more than one frequency the extremal velocity uex of the barrier
depends on its sign. For example, in the case of the biharmonic driving law f(t) = C(cos(ωt)+
sin(2ωt)) we find uex,+ ≈ 2.06ωC and uex,− = −3ωC, respectively. In this case Eq. (3.9)
yields v+ = 2.06ωC+

√
2V0/m and v− = −3ωC−

√
2V0/m. Consequently, we expect that the

FISC for positive momenta is located closer to p = 0 than for negative momenta independent
of the phase of the PSS. Indeed, the PSS of the biharmonically, uniformly oscillating lattice
shown in Fig. 3.8 reveals such a behavior. In fact, due to this strong asymmetry of the FISC
we observe immediately that the area of the chaotic sea with p < 0 is larger than the area
with p > 0 for all phases of the PSS. For the setups with monochromatic driving and a phase
gradient it is not so simple to decide whether the chaotic sea possesses a positive, negative
or no asymmetry only by looking at the PSS. Instead, in these cases we have to evaluate the
areas explicitly.

3.4 Intermittency

In this section we return to the problem posed in Sec. 3.2.2 concerning the origin of the
intermittent behavior of particles launched in the chaotic sea of the PSS, i.e. diffusive phases
interrupted by ballistic flights. Fig. 3.10 (a) shows a trajectory obeying such characteristic
dynamics in the monochromatically, uniformly oscillating lattice. As we see, the particle
moves diffusively through the system. Yet, for some time intervals it traverses many barriers
only in one direction as if it would be in a ballistic island or in a region of the PSS above the
FISC, i.e. a phase spanning torus. A magnification of the trajectory shown in Fig. 3.10(a)
reveals that the intermittent behavior of the dynamics continues on smaller scales, too.

In order to throw light on the origin of this behavior we show in Fig. 3.10 (b) the complete
PSS of the monochromatically, uniformly oscillating lattice together with the surfaces of
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Figure 3.10: (a) Trajectory obeying chaotic dynamics (initial condition x(0) = −2.2, p(0) = 0.3) in the lattice
of uniformly oscillating barriers V0 = 0.16, l = 0.4. (b) Red and blue points in the stroboscopic PSS are the
phases of the orbit corresponding to the trajectory shown in (a) during which it performs the ballistic flight
in positive and negative direction, respectively.

section during which the particle performs a long flight in positive and negative direction
(red and blue points in Fig. 3.10(b) respectively). In case of the long flight in negative
direction 6.3 ·104 ≤ t ≤ 6.8 ·104 the orbit in the PSS traces the outermost torus of the elliptic
island with winding number w = −2 (blue points in Fig. 3.10 (b)). For the long flight in
positive direction, i.e. 1.16 · 104 ≤ t ≤ 1.39 · 104, the orbit is confined in the PSS to the
region of the chaotic sea close to the FISC (red points in Fig. 3.10 (b)). In the literature
the effect of chaotic trajectories coming arbitrary close to an invariant structure in phase
space and remaining in its vicinity for a certain time is known as “stickiness” [73, 74]. It
is a phenomenon which typically occurs in Hamiltonian systems with mixed phase space.
Stickiness leads to sporadic episodes of almost regular dynamics which leaves its hallmark in
e.g. the decay of correlations [73, 74] or the recurrence time [77]. In our lattice the chaotic
orbits in the PSS which become sticky to elliptic islands lead to ballistic flights with different
velocity depending on the winding number. Furthermore, stickiness can yield phases of motion
during which the particles remain in the scattering region of one barrier. The latter occurs
when an orbit gets sticky to the island at p = 0 corresponding to trapped dynamics in the
scattering region of a single barrier (see Sec. 2.3).

Another origin of ballistic flights in the lattice are the so-called “cantori” in phase space,
which are remnants of dissolved tori with irrational winding number. One can think cantori
as tori with gaps through which the Hamiltonian flow and thus chaotic trajectories can leak.
Depending on the number-theoretic properties of the winding number of the dissolved torus
the flux across a cantorus can become arbitrarily small. Due to their property of forming a
strong resistance to the Hamiltonian flow, cantori are sometimes also called “partial barriers”
in the literature. A chaotic orbit which is confined by a partial barrier to a sub-domain
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of the complete PSS with non-zero average momentum yields also a ballistic flight of the
trajectory in real space. In Appendix B we give an example of such a trajectory and show
for the monochromatically, uniformly driven lattice how the flux across a cantorus can be
determined numerically. In the next chapter we will see that these ballistic flights have a
major impact on the diffusion properties of the lattice.





Chapter 4

Transport and localization of particles

In this chapter the transport and the localization of particles in a laterally oscillating lattice
is studied. As we have seen in Sec. 2.4 the directed transport can be ruled out by means of
symmetry considerations for the case of monochromatic and uniform driving, i.e. when all
barriers oscillate harmonically without phase gradient. Yet, whether in the other setups a
current of particles is observed cannot be judged prior to a more detailed analysis, because
breaking the symmetries (Ref. [44]) is a necessary but not a sufficient condition for the
occurrence of directed transport. In the course of this study the velocity of the directed
current as a function of the phase gradient of the barriers and the diffusion properties in the
lattices are discussed, too.

4.1 Transport and diffusion in phase-modulated lattices

In this section we discuss the transport and the diffusion properties for the setups defined in
Sec. 3.1.

4.1.1 Transport properties for constant phase gradients

Let us start with the transport properties of the lattice with a constant phase gradient
ϕi = i

n2π with n = 1, 3, 6, 10. In order to decide whether directed transport occurs or
not we study the evolution in time of the mean position 〈x(t)〉. Therein 〈· · · 〉 denotes the
average of an ensemble of particles whose initial conditions are always chosen such that the
particles start with small, symmetrically distributed momenta in the chaotic sea of the PSS
close to the origin of the lattice, i.e. in the beginning the ensemble average of the velocity is
zero. In this way we avoid that some particles are initialized already in relevant elliptic islands
belonging to ballistic flights or to trapped dynamics. In Fig. 4.1 (a) the absolute value of
the mean position |〈x(t)〉| as a function of time is shown for phase periods n = 1, 3, 6, 10. For
n = 1 (lattice of monochromatically, uniformly oscillating barriers) the plot reveals that no
directed transport occurs, as we have expected because in this case the relevant symmetries
are not broken (see Sec. 2.4). The ensemble average of the position fluctuates only around
〈x〉 = 0. In order to make this visible the data-points with 〈x(t)〉 < 0 (〈x(t)〉 > 0) for n = 1
have been plotted with asterisks (diamonds). A similar behavior is observed for 〈v(t)〉 (Fig.
4.1 (b)). For n = 1 the mean velocity changes its sign several times correlated with the
corresponding behavior of 〈x(t)〉. On the contrary, for other phase periods (n = 3, 6, 10) we
clearly observe directed transport. After an initial transient t ≈ 103−104, which corresponds
to the time needed for the spreading of the initial ensemble over the whole chaotic sea in
phase space, the mean position grows according to 〈x(t)〉 = vmeant, where vmean is referred to
as the transport velocity of the system. An asymptotic linear fit to the curves 〈x(t)〉 yields
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Figure 4.1: (a) Absolute value of the mean position averaged over an ensemble of 105 particles, which has
been started with small momentum p ≤ 0.1 in the chaotic sea as a function of time for various phase periods
n. For n = 1 (blue line) the datapoints with 〈x(t)〉 < 0 / 〈x(t)〉 > 0 are additionally plotted as asterisks /
diamonds. (b) The corresponding evolution of the mean velocity as a function of time.
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phase period n 1 3 6 10

vmean 0 -0.0476 0.0384 -0.0055

vCS 0 -0.0456 0.0372 0.0201
Table 4.1: Transport velocities for the different phase periods obtained by performing asymptotically a linear
fit to the evolution of the ensemble average of the position 〈x(t)〉 = vmean · t (first row) and by averaging over
the chaotic sea of phase space according to Eqs. (4.1) and (4.2)(second row).

the mean transport velocities presented in the first row of Table 4.1. For n = 3 and n = 6
the values for vmean in Table 4.1 are consistent with the behavior of the ensemble average
of the velocity 〈v(t)〉 for large times (Fig. 4.1 (b)). After the initial transient, 〈v(t)〉 never
changes sign again and fluctuates around vmean. Whether this is also true in the case of the
phase period n = 10 cannot be judged ultimately, since the fluctuations of 〈v(t)〉 are of the
same order of magnitude as vmean. Nevertheless, Fig. 4.1 (a) reveals that after the transient
t ≈ 104 the ensemble average of the position grows linearly with time.

To get an intuition about the scales of the transport let us consider the following instructive
example. In the case of phase period n = 3 we find that the ensemble average of the particle
position 〈x(t)〉 equals after 10000 periods of the driving −680 times the equilibrium distance
between two adjacent barriers, so the transport is rather small. For visualization we plot in
Fig. 4.2 (a) the absolute value of 〈x(t)〉 together with the variance σx(t) =

√
〈x(t)2〉 − 〈x(t)〉2

and show in Figs. 4.2 (b)-(d) several snapshots of the probability density function ρ(x) of
the particles’ position in real space. In the beginning, i.e. t ≤ 104, we observe primarily a
broadening of ρ(x) (see Fig. 4.2 (b) and (c)) since in this regime the dynamics is dominated
by the diffusion. The transport is visible only by a slight negative shift of the maximum
of ρ(x) (see Fig. 4.2 (c)). Subsequently, the directed transport gains importance compared
to the diffusion and at t ≈ 106 the curves |〈x(t)〉| and σx(t) intersect. Indeed, we observe
that the corresponding probability distribution ρ(x) (Fig. 4.2 (d)) shows beside a permanent
broadening also a clear drift of ρ(x) in the negative direction. For even larger times t = 108

the average position exceeds the variance (see Fig. 4.2 (a)). Accordingly, the width of the
associated probability distribution ρ(x) (Fig. 4.2(e)) is much smaller than the position of its
maximum. In order to optimize the transport one has thus to tune the parameters of the
lattice (like the potential height V0) such that the crossing of 〈x(t)〉 and σx(t) occurs as soon
as possible. In this way one would create a most effective ratchet. However, such a study is
beyond the scope of this thesis.

Let us now discuss the question of the origin for the appearance of directed transport. Due
to the choice of the initial conditions, the ensemble is localized in the chaotic sea between the
FISCs for every point in time. Thus, the convergence of the ensemble average of the velocity
〈v(t)〉 to a non-zero value can be explained by means of an asymmetry of the chaotic sea with
respect to p = 0, if it is assumed additionally that the dynamics is ergodic with a uniform
invariant density [51]. Again, it is important to emphasize that this desymmetrization has to
occur in phase space and not only for a certain PSS, which depends on the phase of driving
at the moment of the snapshot. For a Hamiltonian system with mixed phase space the proof
that the dynamics is ergodic in the chaotic subsets is still an open problem [78] and has
been achieved only for very special systems [79]. Nevertheless, if we assume ergodicity of the
dynamics in the chaotic sea, then the phase space average of the velocity vCS over the chaotic
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Figure 4.2: (a) Absolute value of the average particle position (blue curve) together with the variance (red
curve) for an ensemble of 105 particles in the monochromatically driven lattice with phase period n = 3.
Below, a sequence of the particle distribution in real space ρ(x, t) is depicted for (b) t = 102, (c) t = 104, (d)
t = 106 and (e) t = 108.
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sea should coincide with vmean. vCS can be calculated by

vCS =
1

ΩCS

∫
CS

p

m
dxdp dt, (4.1)

where ΩCS is the phase space volume of the chaotic sea. Due to the time and the spatial-
periodicity of the Hamiltonian H(x, p, t + T ) = H(x + L, p, t) = H(x, p, t), it is sufficient to
perform the integration only over one period of the driving and along one unit cell. If we
change in Eq. (4.1) from time t to the phase of the oscillation ξ = ωt mod 2π, the volume
ΩCS can be written as ΩCS = 2π · ACS with ACS being the area of the chaotic sea in the
PSS. Performing the integration over x and p in Eq. (4.1) yields hence the mean velocity of
the chaotic sea in the PSS for a fixed phase ξ which is determined by dividing the PSS into
small rectangles and averaging over the cells that get visited by a single long (tfinal ≥ 109)
chaotic trajectory. This procedure yields a function vPSS(ξ) whose convergence is checked by
enlarging the grid of the PSS. Finally, the mean velocity of the chaotic sea of the complete
phase space is obtained by averaging over the phases of the PSS, i.e.

vCS =
1

2π

2π∫
0

vPSS(ξ)dξ. (4.2)

Of course the present scheme for calculating vCS is equivalent to the procedure presented
in [46, 51]. We remark, that for our system it turns out to be more efficient to evaluate
numerically the integrals (4.1), (4.2) according to the just introduced steps than applying
the sum formula of [51], where all the winding numbers and areas of the significant elliptic
resonances in the PSS have to be determined. For a toy-model with only one elliptic island
which is used in [51] the sum formula needs of course few time and effort. However, for a
more realistic Hamiltonian system with a mixed phase space like the present driven lattice
where we have a hierarchy of islands surrounded by sub-islands calculating all the winding-
numbers and areas is tedious and thus not feasible anymore. Furthermore, even for very long
simulation times (t ≥ 109) a “drift” of a chaotic trajectory beyond an intact KAM-torus by
accumulating numerical errors has never been observed in our system.

In Fig. 4.3 we show for two phase periods the average velocity of the chaotic in the PSS
vPSS(ξ) as a function of the phase ξ when the surface of section is taken. Apparently, for
n = 1 (see Fig. 4.3(a)) the function vPSS(ξ) is zero at ξ = 0, π, 2π when the PSS possesses
mirror-symmetry with respect to p = 0. Furthermore, Fig. 4.3 (a) reveals the point-symmetry
of the function vPSS(ξ) to ξ = π for n = 1, i.e. vPSS(π+ξ) = −vPSS(π−ξ) so that averaging
over one complete phase gives vCS = 0. Contrary, for n = 3 the average velocity in the PSS
vPSS(ξ) fluctuates around a negative value, i.e. in this case formula (4.2) yields vCS < 0. For
the other phase periods (n = 6 and n = 10) the function vPSS(ξ) shows a behavior similar
to the case n = 3, i.e. fluctuation around a non-zero value so that Eq. (4.2) gives vCS 6= 0
for n = 6 and n = 10, too. In the second row of Table 4.1 the corresponding results for vCS
are summarized for the various phase periods. In the case of n = 3 and n = 6 the velocities
obtained by performing asymptotically a linear fit to the mean position and averaging over
the chaotic sea coincide very well. However, for n = 10 Eq. (4.1) predicts that the transport
should be actually in the opposite direction than it is observed by simulating an ensemble of
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Figure 4.3: The average velocity of the chaotic sea in the PSS vPSS(ξ) as a function of the phase ξ of the
driving, when the snapshot of the x/p-plane is done for the phase period (a) n = 1 and (b) n = 3.

particles. This contradiction can be resolved straightforwardly. According to our discussion
of the PSS there are cantori in the chaotic parts of phase space. Depending on the system’s
parameters like phase period or potential height, the flux across them can become arbitrarily
small and therefore these cantori restrict trajectories to certain subparts of phase space even
for long simulation times but not asymptotically. In Sec. 3.4 their impact on the appearance
of ballistic flights has been discussed. Yet, as we have indicated already in the discussion of
the setup with the perturbed phase period three, there is of course the opposite effect, too.
For trajectories starting with small momenta like our initial ensembles, the cantori prevent
the particles even for long times from sampling the (transporting) phase space beyond the
cantori. Indeed the surfaces of section of phase period n = 10 for t < 106 show that the region
of the chaotic sea especially close to the FISC for positive momenta has not been visited by
a single trajectory. Since this part of phase space corresponds to a positively valued drift,
a transient transport in the opposite direction occurs in our case. In order to verify this
explanation, a smaller initial ensemble has been simulated for a longer simulation time. For
this simulation a zero crossing of 〈x(t)〉 is observed at tcr ≈ 1.3 · 107. After the zero crossing
the mean position 〈x(t)〉 grows in the positive x-direction, which is predicted by Eq. (4.2).
Moreover, for t > tcr the region in the PSS close to the FISC for positive momenta gets
sequentially visited by trajectories.

According to the above, the origin for the occurrence of directed transport is simply the
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desymmetrization of the chaotic sea with respect to p = 0, i.e. for the phase periods larger
than three the phase space volume of the chaotic sea with p > 0 and accordingly p < 0 are
not equal anymore. An important manifestation of this asymmetry in the monochromatically
driven lattices with phase periods is that the areas of elliptic islands with w = r/s and
w = −r/s are different in the PSS. Usually, this phase space asymmetry is achieved by
applying a biharmonic driving law to the static system [33, 37, 44, 47, 48, 51], such that the
potential V (x, t) of the Hamiltonian breaks both symmetries derived in [44]. However, from
the discussion of the FISC in Sec. 3.3 we know that a kinematic approach to the single barrier
dynamics explains already the asymmetry of the chaotic sea of the phase space with respect to
p = 0, because the FISC, depending on the direction of the propagation, is located in different
ranges of the velocity. Physically, this corresponds to an inequality of the maximal barrier
velocity in positive and negative direction, which is absent for the harmonic driving law.
Consequently, for the lattice with phase-modulated harmonically driven barriers this simple
consideration, independently of the phase period, is not enough to explain the asymmetry.

4.1.2 Diffusion properties for constant phase gradients

In this section the diffusion properties of the driven lattice are discussed. To this end we
calculate the variance σx(t) for different phase periods n. Fig. 4.4 shows the evolution of
σx(t) in a double-logarithmic plot for n = 1, 3, 6, 10. The variance follows obviously a power-
law, i.e. σx(t) ∝ tγ with similar exponents γ. Performing an asymptotic linear fit to the
curves yields that 0.65 ≤ γ ≤ 0.75 for all n, i.e. the system shows universally super-diffusion
in configuration space. Let us now discuss the origin of this behavior. In Sec. 2.3 it has
been shown that every barrier possesses an elliptic island at p = 0 for V0 = 0.16 and l = 0.4.
Accordingly, the particles in the chaotic sea, which move diffusively through the lattice,
can become sticky to this structure. Therefore they can remain in the scattering region
of one barrier for many periods of the driving. On the contrary, the particles can perform
ballistic flights. These events originate either from phases of motion during which the particles
are confined by partial barriers to regions of phase space with non-zero average velocity or
they are the result of stickiness to elliptic islands corresponding to periodic orbits, which
travel through the lattice in the direction of their initial momentum (Sec. 3.4). Usually,
strong partial barriers are close to the FISCs, where transporting islands are found, too.
Consequently, both effects reinforce each other in this part of phase space, i.e. trajectories
which are confined by a partial barrier and get additionally sticky to elliptic islands contribute
to the longest ballistic flights in the system. These trajectories can be detected numerically
very easily. We look simply for time intervals with a minimum length, where the sign of the
velocity does not change upon interaction between the particle and the barriers, i.e. we search
for ballistic flights. The corresponding probability distribution of the lengths of ballistic flights
obeys a power law p(t) ∼ t−ν , e.g. Fig. 4.5 (a) shows p(t) for the case n = 1. The tail of the
distribution is obviously very noisy which yields severe difficulties in extracting the exponent
of the power-law. Therefore, in order to reduce statistical noise [80], we do not fit directly to
p(t), but calculate first the cumulative probability distribution function P (t), which is defined
by

P (t) =

∫ ∞

t
p(t′) dt′. (4.3)
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Figure 4.4: Double-logarithmic plot showing the evolution of the variance σx(t) for an ensemble of particles
initialized in the chaotic sea of phase space for the phase periods n = 1, 3, 6, 10. Performing an asymptotic
linear fit yields 0.65 ≤ γ ≤ 0.75 for all n.

Fig. 4.5 (b) shows P (t) in a double-logarithmic plot for the various phase periods. Clearly,
there is a power-law behavior of P (t) ∼ t−µ over several decades. The exponent can be
estimated by a linear asymptotic least-square fit, which gives 1.41 ≤ µ ≤ 1.65 for all phase
periods n. Due to Eq. (4.3) the probability distribution p(t) follows thus a power law with
the exponent ν = µ + 1, i.e. 2.41 ≤ ν ≤ 2.65. From continuous-time-random-walk (CTRW)
theory [47,48,81] it is known that such an interplay between ballistic flights and waiting times
yields anomalous diffusion in configuration space. Furthermore, CTRW theory predicts that
between the exponents γ and µ the relation 2γ = 3−µ [82,83] holds. For our numerical data
we have 0.65 ≤ γ ≤ 0.75 and 1.41 ≤ µ ≤ 1.65. Therefore, this condition is quite well fulfilled.

In the previous chapter we have seen that the phase space is mixed for all considered
setups and parameter regimes. In fact, this is the typical KAM-scenario in periodically
driven Hamiltonian systems [5]. Particularly, we have always, embedded in the chaotic sea,
ballistic islands associated to trajectories which traverse the lattice only in one direction.
In Sec. 3.4 we have seen that stickiness to these regular structures is the most important
origin of the ballistic flights interrupting constantly the diffusive dynamics of the particles.
According to the discussion in the previous paragraph this effect leads to super-diffusion in
coordinate space or in other words to a “faster broadening” of the spatial particle distribution.
Consequently, we observe super-diffusion for all other setups as well, that is the variance σx(t)
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Figure 4.5: (a) The probability distribution for the lengths of ballistic flights in a uniformly driven lattice.
i.e. n = 1. (b) The cumulative distribution function P (t) for the different phase periods n is depicted where
fitting a power-law yields for the exponent 1.41 ≤ µ ≤ 1.65.

follows asymptotically a power-law with an exponent 0.5 < γ < 1.

4.1.3 Transport properties for the perturbed / broken phase gradient /
biharmonic driving

Now we turn to the discussion of the transport properties of the lattice, where the equidistant
phase gradient with period three is perturbed, i.e. each barrier is driven harmonically and
equipped with a local phase shift according to the period three sequence {·, 0, 2π3 +α, 4π3 , · · · }.
Fig. 4.6 shows the transport velocity of the system as a function of the phase shift α of
the “middle” barrier. For these setups and all the upcoming ones the transport velocity has
been calculated exclusively by evaluating numerically Eq. (4.2) according to the procedure
presented in Sec. 4.1.1, because this is much more efficient in terms of computational time
than simulating the long term dynamics of a whole ensemble. The star in Fig. 4.6 marks
the setup with α = −0.03π

3 for which we obtain the PSS shown in Fig. 3.5 (b). Using this
example one can again demonstrate very vivid the impact of the tuning of the asymmetric
phase space on the direction of the transport. The PSS of the setup with equidistant phase
period three, i.e. α = 0, shown in Fig. 3.5 (a) corresponds to the system with transport
velocity vCS(α = 0) = −0.0456. By perturbing this equidistance of the gradient the formerly
stable FISC dissolves and thus parts of the phase space volume with larger positive momenta
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With a star we have marked the setup, which we have chosen in Sec. 3.2.4 to produce the PSS shown in Fig.
3.5 (b).

become accessible to chaotic trajectories. At the same time, the remaining phase space,
in particular the part with p < 0, remains basically unaffected, i.e. overall the phase space
volume of the chaotic sea with p > 0 increases significantly. Therefore, the phase space average
of the velocity over the chaotic sea in Eq. (4.1) and thus the direction of the transport changes
its sign. For some values of α the directed transport vanishes, i.e. vCS(α) = 0. Yet, this does
not imply that a symmetry of type (2.4) or (2.21) is present. In fact both symmetries are
broken. Nevertheless, the phase space volumes with p > 0 and p < 0 of the chaotic sea are
accidentally equal for some values of α.

Let us now consider the transport properties of the setup with variable potential height
and fixed phase gradient of period three {. . . , 0, π

10 ,
3π
10 , 0,

π
10 ,

3π
10 , . . .}. As before the transport

velocity is determined by evaluating Eq. (4.1) for the different global potential heights. Since
with increasing potential height trapping between adjacent barriers occurs, it is important
to choose the initial conditions carefully such that the particles are not launched in the
“wrong” part of the PSS. Otherwise the result for vCS would be completely falsified by those
trajectories. In Table 4.2 the transport velocities for the broken phase gradient and different
global potential heights is shown. Similarly to the previous setup, the directed transport can
be tuned by varying a parameter, which is now the potential height.

In the following we discuss briefly the transport properties of the uniformly, biharmonically
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V0 2 13 22 32

vCS 0.0221 0.0404 0.0088 0.1201
Table 4.2: Transport velocities for different global potential heights V0 and broken phase gradient obtained
by averaging over the chaotic sea of the phase space.

driven lattice. For V0 = 0.16 we obtain vCS = −0.251 by evaluating Eq. (4.1). The finding of
a negative transport velocity vCS approves quantitatively the discussion of the corresponding
PSS in Sec. 3.2.6. There it has been elucidated that the PSS of the uniformly, biharmonically
driven lattice is asymmetric with respect to p = 0. Specifically, the area of the chaotic sea with
p < 0 is larger than the area with p > 0 independent of the phase of the PSS. Consequently,
the volume of the chaotic sea in the complete phase space possesses as well a negative weight,
i.e. according to Eq. (4.1) a transport in negative direction can be expected. We have
explained the asymmetry of the PSS by the different velocity regimes of the FISCs which
delimit the chaotic sea at positive and negative momentum. By means of a simple kinematic
consideration this finding has been traced back to the maximal barrier velocity in positive
v+ and negative direction v− respectively. For the biharmonic driving law we have found
|v−| > |v+| and thus a negative asymmetry of the chaotic sea in phase space. Roughly
speaking, we can thus say that the transport points into the direction of the larger barrier
velocity. For the biharmonic driving law v+ and v− can be tuned by e.g. introducing a phase
shift, i.e.

f(t) = cos(ωt) + sin(2(ωt+ ϕ)) (4.4)

Varying ϕ changes v+ and v− and it is indeed observed that the transport direction shows to a
good approximation the previously described behavior, i.e. positive transport for |v+| > |v−|
and vice versa [84].

4.1.4 Comparison of harmonic and biharmonic driving

In this section we compare qualitatively our results on directed transport for the cases of
biharmonic and harmonic driving. An eye-catching feature of the biharmonic driving is
that it leads to a transport velocity which is, compared to the setup with harmonic driving
and constant phase gradient, approximately six to twelve times larger although the barrier
parameters, i.e. potential height V0, potential width l etc, are equal. Consequently, the
biharmonic driving law must lead to a more pronounced phase space asymmetry with respect
to p = 0. In the following we summarize the reasons for this behavior that we have found in
the previous sections. In the discussion of the PSS (see Sec. 3.2.1) we have seen that breaking
the time-reversal and parity symmetries of the Hamiltonian (Eq. (2.4) and (2.21)) by means
of a harmonic driving with local phase shifts manifests in phase space in such a way that
the elliptic islands with winding number w = r/s and w = −r/s do not have the same area
in the PSS. As a result, this yields an asymmetry of the chaotic sea with respect to p = 0.
Furthermore, we have explained that this asymmetry will give rise to directed transport, if
it persists after an average over a complete phase of the driving. In Sec. 3.3 it has been
elucidated that the FISCs delimiting the chaotic sea are located in the same momentum
regimes because the maximal barrier velocity in positive and negative direction are equal,
too. Exactly this fact makes the difference to the biharmonic driving law, where additionally
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to the different area of the elliptic islands with winding number w = r/s and w = −r/s the
FISC for positive momentum is not in the same regime as the FISC for negative momentum.
As a result the phase space asymmetry is stronger and thus the transport velocity larger.

4.2 Localization of particles

This section is devoted to the discussion of the localization of particles. Let us start with a
short summary of the different possibilities for trapping.

4.2.1 Mechanisms of particle localization

In general, there are three possibilities for trapping, which we have introduced in Chap. 3.
In the case of small potential heights, which have been used for instance in the setups with
monochromatic driving and a constant / perturbed phase gradient, this can be done by means
of the elliptic island at p = 0 corresponding to trapping in a single barrier. For larger values
of V0 this regular structure is gone, but islands belonging to trapped trajectories between two
barriers are present in phase space (see the discussion in Sec. 3.2.5). Furthermore, for V0 ≥ 13
there is the possibility of trapping particles in the confined chaotic seas. Finally, we want to
remark that for setups with very specifically chosen potential heights and phase gradients it
is possible to achieve regular, localized dynamics, which extends over the scattering regions
of several barriers. However, this is a case, which requires fine-tuning, because the associated
elliptic islands are very tiny and for the parameter regime chosen in our setups this kind of
dynamics does not occur. In Sec. 3.2.5 it has been elucidated that the confined chaotic seas
occur simultaneously between adjacent barriers with increasing potential height V0 for the
constant phase gradient. Due to the fact that the localization of particles is most sensitive
to V0 and since we want to control the sites at which trapping is established we focus on
the monochromatically driven lattice with broken phase gradient, i.e. the sequence of phase
shifts is {. . . , 0, π

10 ,
3π
10 , . . .}.

4.2.2 Localization properties for a broken phase gradient

In the course of the discussion of the diffusion properties (Sec. 4.1.2) it has been shown that
the diffusive trajectories, which contribute to the directed current in the lattice, still obey
long-time transient phases of motion during which they are localized in the scattering region
of one barrier. For small potential heights these events originate from stickiness to the elliptic
island at p = 0, whose properties are defined exclusively by (V0, l). Since these parameters
are equal for all barriers, i.e. a single barrier property [70], the stickiness of trajectories to
this structure is identical independently of the phase periods: the particles get localized in
the scattering region of the first, second etc. barrier on average for the same time. In the
case of very large potential heights, e.g. V0 = 32 for the broken phase gradient, there are
confined chaotic seas between the barriers. Yet, the particles belonging to the directed flow
cannot enter these regions in phase space, because these parts are separated by impenetrable
tori.

In the following we will show that it is possible for certain parameter values to obtain a
dynamics that exhibits phases of trapped motion in certain wells, i.e. in between certain
definite barriers, of the driven unit cell of the lattice. To this end we look in the case of
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Figure 4.7: Cumulative distribution function P (t) of the dwell time for the three different wells with fixed
potential height V0 = 4 for the lattice with broken phase gradient. In the inset P (t) belonging to the second
well for different values of V0 = 4 . . . 8 is shown.

the lattice with the broken phase gradient for time intervals during which the particles, that
move diffusively through the lattice, are localized between two barriers. Fig. 4.7 shows for
V0 = 4 the cumulative probability distribution of dwell times P (t) for particles between two
consecutive barriers in one spatial unit cell, i.e. i = −1 to i = 0, i = 0 to i = 1 and i = 1
to i = 2, which will be labeled as well one, two and three, respectively. For this value of
the potential height (see Sec. 3.2.5) the elliptic island at p = 0 has disappeared and thus
there is no stickiness to this regular structure anymore. Furthermore, no trapped chaotic
dynamics between barriers is possible. Instead all chaotic trajectories in the large chaotic sea
move diffusively through the lattice. Obviously, P (t) is not equal for the different wells. A
particle, which has been localized in the first well is trapped with less probability (for a time
span t ≥ 103) compared to a particle trapped in the third well. By recalling the discussion of
the PSS for this values of V0 in Sec. 3.2.5 this behavior can be resolved. Accordingly, with
increasing potential height the particles bouncing between two neighboring barriers are able
to probe parts of the phase space of the corresponding FUM, which are located at higher
momentum. However, the phase space of the FUM in general is very sensitive to the phase
relations the walls have with respect to each other. Not only the position in momentum
space of the FISC pb, but also both the momentum ps below which the FUM is completely
chaotic and the momentum of elliptic islands belonging to trajectories shown in Fig. 3.7 (b)
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depend critically on the phase relations between the barriers. Due to the non-equidistant
gradient these phase relations are not equal, i.e. the barriers belonging to different wells
possess different relative phases with respect to each other. Thus, for a fixed potential height
it is possible that in a certain well only the chaotic part of the corresponding FUM’s phase
space is accessible to the particles, whereas in another well already elliptic islands embedded
in the chaotic sea are present. Escape rates from these different parts of phase space are
understandably not equal, because stickiness to regular structure leads to phases of motion
during which particles are trapped for long times between two barriers. By changing the
phase gradient for a fixed potential height, it is possible to “engineer” the phase space of the
lattice in such a way that the events with very long dwell times take place only at specific
positions. Nevertheless, the trapping is only transient so far, i.e. the particles leave eventually
the wells again. If the localization shall be permanent, then the potential height V0 has to
be increased instantaneously at a certain time (“ramping”) [85]. For example, by ramping
the potential in the lattice with broken phase gradient from V0 = 2 to V0 = 13 one switches
instantaneously from the PSS shown in Fig. 3.6 (a) to (b). As a result of the ramp of
V0 the particle are trapped in the localized chaotic seas between adjacent barriers forever.
An interesting perspective is to combine this mechanism of localization with the transport
properties. Accordingly, an ensemble of diffusive particles can be transported to a certain
position in the lattice and afterwards trapped there in a pattern which can be manipulated
by the phase gradient [85]. Of course, trajectories can also stay for a comparatively long
time in a well, which does not contain any elliptic island at all, which is due to the so-called
low velocity peaks [86]. Particles, that are slightly faster than the barrier at a collision, get
decelerated to a very small velocity vε but still leave the scattering region without experiencing
a second collision. Afterwards they travel the spatial distance between the scattering regions
of two barriers, which yields for the dwell time td = D−l−2C

vε
. Yet, the portion of trajectories,

which are “trapped” according to this mechanism, is negligible. For V0 = 4 all wells contain
elliptic islands. In fact, the characteristic asymptotic power-law behavior P (t) ∼ t−µ of the
cumulative probability distributions of dwell times is a hallmark of the associated stickiness
to this regular structure in phase space. Generally, whenever a region in phase space contains
elliptic islands, the occurrence of long algebraic tails in the escape rate is generic [76]. Indeed,
we observe that the exponent of the probability distribution p(t) ∼ t−ν , which is related to
the exponent of the cumulative distribution P (t) through the equation ν = µ + 1, is always
larger than two. Similarly to the setups with small potential height V0 and constant phase
gradient the dynamics shows the characteristic interplay between ballistic flights and waiting
times. Accordingly, we find that there is super-diffusion in coordinate space even for very
large values of V0.

4.2.3 Impact of potential height on localization properties

In this section discuss we discuss how the variation of V0 influences P (t) for a given well. In
the inset of Fig. 4.7 the cumulative probability distribution of the dwell time in the second
well for various values of V0 between 4 and 8 is shown. With increasing V0 this is the first well
with a localized chaotic sea (see Fig. 3.6 (b)). Especially for small and intermediate dwell
times (102 < t < 3 · 103) the function P (t) changes significantly. P (t) decreases less rapidly
for larger values of V0, which is understandable, because with increasing potential height the
particles need to accumulate more collisions in order to become fast enough to surpass the
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potential. Still, by doubling V0 the probability for the particles to be trapped in the well for
dwell times longer than 104 grows up five orders of magnitude. Furthermore, the PSSs of
trajectories with dwell times in this range show that beside the particles, which are sticky to
elliptic islands, a great portion still obeys chaotic dynamics. In order to answer the question
how chaotic particles, which move diffusively through the lattice, can be trapped between two
barriers for such a long time, we have to exploit one more time the FUM. Close to the FISC
of the FUM exist again cantori with small flux across them. Depending on the properties of
these partial barriers the particles obeying chaotic dynamics are prevented for a significant
time from sampling the phase space of the FUM, which is located at high momenta close to
the FISC and associated to the kinetic energy a trajectory has to gain in order to leave the
well. Consequently, once the potential height is chosen such that this cantori are stabilized,
the escape rate from the region between barriers is lowered significantly.





Chapter 5

Block-structured lattices

This chapter is devoted to the study of henceforth called “block-structured driven lattices”
which are reminiscent of superlattices in the physics of semiconductor heterostructures but
with a spatiotemporal embedding. Specifically, the system under investigation consists of a
lattice of domains or blocks, each containing many unit cells which are exposed to different
time-periodic forces. The driving is chosen such that neighboring domains possess oppositely
directed currents (“local” ratchets). At the interfaces between the differently driven domains
trajectories exhibit crossovers from diffusive to ballistic dynamics and vice versa. Our focus
is the analysis of the non-equilibrium dynamics in such bimodally driven devices leading to
these dynamical conversion processes.

5.1 Setup and transport properties of the lattice

Evidently, the Hamiltonian of the block-structured driven lattice is given as before by equation
(2.1). In order to create domains in the lattice with locally different particle currents we have
chosen for the site-dependent driving law fi(t) the following form

fi(t) = (−1)bi/Nc g(t), (5.1)

where bxc is the largest integer k with k ≤ x and g(t) = C {cos (ω t) + sin (2ω t)} is the
biharmonic driving. Thus, the lattice is composed of domains each consisting of N later-
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Figure 5.1: Schematic illustration of the driven lattice. Interfaces between the domains with different driving
laws are at the positions {0,±NL,±2NL}. Arrows indicate the direction of the local currents.
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ally oscillating barriers obeying the same driving law and which are connected at positions
{0,±NL,±2NL . . .} called “interfaces” in the following (Fig. 5.1). Each domain possesses
the length LB = N ·L (N = 104), where L is the equilibrium distance of neighboring barriers
and, as shown in Fig. 5.1, the driving law fi(t) alternates from one domain to the next.
The amplitude C of the driving is fixed such that −1 ≤ g(t) ≤ 1, i.e. C ≈ 0.57 like for the
phase-modulated driven lattices. Without loss of generality we can fix ω = 1 and m = 1.
Furthermore, we assume for the other parameters l = 1, V0 = 2.2 and L = 5.

5.2 Transport properties of the lattice

According to the results of the previous chapter applying the biharmonic driving law g(t)
to the entire lattice leads to directed transport. Fig. 5.2 shows the stroboscopic Poincaré
surface of section (PSS) of the laterally oscillating lattice for g(t) = C {cos (ω t) + sin (2ω t)}
(amplitude C ≈ 0.57, potential height V0 = 2.2, barrier width l = 1 , length of the unit
cell L = 5). Evidently, the PSS reveals the typical mixed structure of the phase space. For
momenta |p| & 4.3 the dynamics is mostly regular, i.e. in this region the phase space is
foliated predominantly by deformed tori of the unperturbed system. A big elliptic island
centered around a period one orbit at x ≈ 0, p ≈ −4.9 is encountered. Furthermore, we
observe a chaotic sea confined by invariant curves to 3.9 . p . 4.3. Trajectories which start
in this chaotic layer traverse the lattice in positive direction whereas particles starting in the
large sea (−4.3 . p . 3.9) obey diffusive dynamics. Trajectories belonging to the embedded
regular islands travel only in the direction of their initial momentum. The white rectangular
area is due to illustrative reasons its origin has been elucidated in Sec. 3.2. Fig. 5.2 reveals
an asymmetry of the chaotic sea with respect to p = 0, that is the area of the chaotic sea
in the PSS with p < 0 is larger than the area with p > 0 which persists if the PSS is done
for another phase of driving. According to the discussion in the previous chapter we expect
therefore a negative transport velocity vT. Performing the integration over the chaotic sea
in phase space (see Eq. (4.1)) yields vT = −0.2649. Consequently, in a domain with the
driving law fi(t) = g(t) the particles in the chaotic sea are hence on average transported in
negative x-direction. Since the driving changes its sign from one domain to the next one, i.e.
fi+N (t) = −fi(t), the direction of the local current alternates, too, and transport is reversed.
There are two types of interfaces that repeat in an alternating manner in the lattice. One
type is characterized by incoming (“convergent”) currents from both neighboring domains
whereas the second one has outgoing (“divergent”) currents pointing towards the neighboring
interfaces (see Fig. 5.1). Naturally, one could therefore expect that interfaces with incoming
currents show particle accumulation whereas those with outgoing currents exhibit particle
depletion. Although each domain shows directed transport and an according local drift of the
particles, the complete lattice consisting of infinitely many domains does not exhibit directed
currents since the equations of motion are invariant under the transformation [44]

T : x → −x+NL, t → t. (5.2)

Yet, an ensemble of particles reaches this zero current limit of the complete driven lattice only
for extremely long time scales by far not reached for the results shown in upcoming sections.
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Figure 5.2: Stroboscopic Poincaré surface of section (PSS) for a lattice with biharmonic driving law g(t) =
C {cos (ω t) + sin (2ω t)} (C ≈ 0.57, V0 = 2.2, l = 1 , L = 5)

5.3 Single particle dynamics

In this section we derive an intuitive understanding of the dynamics in such block-structured
driven lattice by studying trajectories belonging to single particles. To this end figure 5.3
shows four trajectories with small initial velocities corresponding to the chaotic sea of phase
space. Let us first look at the trajectory starting from the the origin of the lattice (blue curve
in Fig. 5.3). Obviously, the dynamics consists of alternating phases of chaotic (diffusive)
and ballistic behavior. Initially, the particle remains localized in a spatial region close to the
interface because the local currents of the adjacent blocks are incoming at this position. After
some time it starts to propagate ballistically opposite to the direction of the local particle
current until it reaches the next interface at x = −0.5 · 105 where a conversion to chaotic
dynamics occurs. In the next domain (−0.5 · 105 ≤ x ≤ −1 · 105) the trajectory diffuses
chaotically with a net drift in direction of the local current. When it arrives at the second
interface a conversion back to ballistic behavior is observed. The dynamical conversion process
repeats at each interface until we have stopped the simulation at t = 106. The trajectory
starting at x = −3 · 105 (black curve in Fig. 5.3) shows in the beginning a similar behavior.
After a short time during which the particle is localized close to the interface a ballistic
flight starts opposite to the direction of the current in the adjacent block until it reaches the
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interface at x = −2.5 · 105 where a conversion to diffusive dynamics occurs. Afterwards, the
particle moves chaotically through the subsequent domain. Once it reaches the next interface
at x = −2 · 105 a dynamical crossover back to ballistic dynamics occurs. However, this time
the particle continues its flight until it reaches the interface at x = 0.5 · 105. Accordingly,
the ballistic flight lasts over five blocks. Afterwards, the trajectory shows again the typical
behavior of alternating phases of ballistic and chaotic dynamics on the scale of one block.
A remarkable feature of the particle starting close to x = 2 · 105 (red curve in Fig. 5.3) is
that its trajectory is reflected at two consecutive interfaces which can be seen in figure 5.3
at t ≈ 7 · 105 − 7.5 · 105. During this period the particle traverses ballistically the same
block three times. Finally, the trajectory corresponding to the initial condition close to
x ≈ −4 ·105 (green curve in Fig. 5.3) reveals that the ballistic flights need not to start always
at an interface. Instead in this case the ballistic flight begins in the middle of a block at
t ≈ 7.9 · 105, x ≈ −2.25 · 105 and stops at t ≈ 7.9 · 105 when the particles reaches the interface
at x = −1.5 ·105. Such ballistic flights which do not start at an interface are due to stickiness
of the particles to the ballistic islands in phase space. Nevertheless, Fig. 5.3 reveals that
most ballistic flights begin and end at the position of an interface.

Besides the fact that particles can change their dynamical character (ballistic / chaotic)
when the corresponding trajectory crosses an interface between differently driven domains we
observe that a block is never (or very rarely) traversed chaotically opposite to the direction
of the local current. We can understand this behavior straightforwardly. According to the
previous section the particles obeying chaotic dynamics in a domain are subjected to the local
directed transport. Consequently, when a diffusive trajectory enters a block opposite to the
direction of the chaotic drift velocity it is most likely transported back to the interface. A
particle in the chaotic sea can traverse the domain only if it enters with a high velocity close
to the FISC of the PSS which is not very probable or when the block contains few barriers.
Since each domain consists of 104 barriers, it is therefore an unlikely event that the particles
traverse diffusively a block opposite to the direction of the local current.

5.3.1 Dynamical conversion processes

Let us now derive an understanding of the origin for the dynamical conversion processes
of trajectories happening at the interfaces. In the following we trace this behavior back to
the overlap of different phase space components at the interfaces of adjacent blocks which
can be understood simplest by visualizing the dynamics by means of the “Poincaré surface
of section of a domain”. In simple terms, the PSSD for a block with driving law g(t) is
just the Poincaré surface of section of a lattice with global driving g(t). Consequently, the
PSSD cannot capture the asymptotic behavior of a trajectory. Still, for the description
of the transient dynamics in the block structured lattice characteristic for times t ≤ 106

and especially for the understanding of the dynamical conversion processes the PSS of a
domain (PSSD) is adequate.1 The stroboscopic PSSD for a block with the driving law g(t) =
C {cos (ω t) + sin (2ω t)} is identical to the PSS of a lattice exposed to g(t) which is shown
in Fig. 5.2. Yet, since the particles are injected from the phase space belonging to the
domain with driving law g(t) to the other phase space associated to −g(t) or vice versa by

1A super PSS containing the detailed dynamics for times up to t � 107 over the entire lattice possesses an
enormously rich structure at any scale and is in practice inaccessible. Furthermore, the structure of this
super PSS determines the asymptotic dynamics for t � 107 which are anyway not the focus of this chapter.
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Figure 5.3: Individual trajectories launched at various positions in the block-structured lattice in different
transporting blocks (C ≈ 0.57, V0 = 2.2, l = 1 , L = 5).
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Figure 5.4: (a) shows the “momentum versus phase” Poincaré surface of section for single domain (PSSD) of
the lattice with g(t) = C {cos (ω t) + sin (2ω t)} (C ≈ 0.57, V0 = 2.2, l = 1 , L = 5). (b) shows the PSSD for
the block with driving −g(t).

crossing an interface, their dynamical state at a certain point in space matters. Accordingly,
the “momentum versus phase” Poincaré surface of section, that is a cut along the ξ-p-plane
through the three-dimensional phase space, is most suitable for the following discussion (for
details see Sec. 3.2). Fig. 5.4 (a) reveals that the “momentum versus phase” PSSD possesses
qualitatively the same structure as the stroboscopic PSSD shown in Fig. 5.2. We observe a
mixed phase phase with a large chaotic sea and embedded elliptic islands. Still, the number
of islands is not equal in Fig. 5.2 and 5.4 (a) respectively, e.g. for 3.7 . p . 4.5 Fig. 5.4
(a) shows a sequence of five elliptic with a surrounding chaotic layer, whereas in Fig. 5.2
there is only one island. (for a corresponding discussion see Sec. 3.2). As we see, the PSSD
shown in Fig. 5.4 (a) is asymmetric with respect to p = 0, e.g. the area of the chaotic sea
in the PSSD with p < 0 and p > 0 is not equal. Domains with driving laws g(t) and −g(t)
possess mirror symmetric PSSDs with respect to p = 0 (compare Fig. 5.4 (a) and (b)). At
the interfaces between the regions with different driving laws the PSSDs of the two domains
are concatenated. By crossing such an interface it is thus possible that a trajectory is injected
from one phase space component to another, e.g. from the chaotic sea into a ballistic island
or vice versa. In the following we explain this behavior in more detail.

For example, let us consider a particle which is started in the block with positive local
directed transport, i.e. it is launched in the phase space corresponding to the PSSD shown
Fig. 5.4 (b). Furthermore, we assume that the particle has been started in one of the elliptic
islands located at ξ ≈ 1.58, p ≈ 1.73 and ξ ≈ 4.73, p ≈ 1.78 which belong to an orbit with
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period two in the PSSD. In an infinite lattice where the driving law−g(t) is applied everywhere
this initial condition would correspond to a trajectory traveling ballistically into the positive
direction forever. Accordingly, in the present case the particle traverses ballistically the block
where it has been started. Once the trajectory arrives at the interface an injection into the
phase space belonging to the domain with driving law g(t) occurs. In order to determine the
particle’s dynamical state in the next block we have to overlap the corresponding PSSDs.
Since the trajectory comes from a block with driving law −g(t) and is injected with positive
momentum into a domain driven according to g(t), the upper half (p > 0) of the PSSDs
associated to the driving law −g(t) and g(t) must be overlapped. In doing so, it is obvious
that the two elliptic islands at ξ ≈ 1.58, p ≈ 1.73 and ξ ≈ 4.73, p ≈ 1.78 in Fig. 5.4 (b)
in which we have started the initial condition are mapped completely onto the chaotic sea
in Fig. 5.4 (a). Consequently, the particle experiences by crossing the interface a crossover
in its dynamical state from ballistic to chaotic motion. In the adjacent block the trajectory
moves thus diffusively until it reaches next time an edge of the domain.

Similarly, it can also happen that a particle obeying chaotic dynamics becomes ballistic
after it crosses an interface. To see this let us consider a trajectory which is started in the
chaotic sea of a block with positive local current (PSSD shown in Fig. 5.4 (b)), i.e. the
particle experiences a drift in positive direction. Moreover, let us assume that the trajectory
is in the high momentum part of the chaotic sea surrounding the chain of elliptic islands at
p ≈ 4 (Fig. 5.4) when it crosses the interface and is injected into the phase space of the
block with driving law g(t) possessing negative transport velocity (PSSD shown in Fig. 5.4
(a)). Analogous to the discussion in the previous paragraph we have to overlap the upper
half (p > 0) of the two PSSDs shown in Figs. 5.4 (a) and (b) in order to determine the
particle’s dynamical state in the next domain. Evidently, the high momentum part p & 3.5
of the chaotic sea of phase space belonging to the domain with driving law −g(t) is mapped
largely onto the region above the FISC in the phase space corresponding to the domain driven
according to g(t) (compare Figs. 5.4 (a) and (b)). In an infinite lattice with global driving
g(t) this phase space part above the FISC belongs to particles which travel ballistically in
the positive direction. Hence, in the present case the trajectory experiences a crossover from
diffusive to ballistic dynamics and traverses ballistically the block with driving g(t) until it
arrives at the next interface.

Proceeding in this vein with the other phase space structures it stands to reason that the
dynamics of particles can also remain ballistic or chaotic by crossing an interface between
differently driven domains in the lattice. For example, if a diffusive trajectory, which is
started in a block with driving law −g(t), possesses the momentum 0 . p . 3.5 when it
enters the domain driven according to g(t) its dynamics will remain chaotic. In this range
of the momentum the chaotic sea of the PSSD belonging to the block with driving −g(t) is
mapped entirely on the chaotic sea of the domain with driving g(t).

Let us now show that the conversion properties of the interfaces with incoming and outgoing
flux are not equal. To this end we start by discussing the interfaces with convergent current
(Fig.5.5 (a)) In this case the question whether a particles experiences a change in its dynamical
character (ballistic / chaotic) or not can be answered in the following way. When a trajectory
crosses the interface from the block with positive local current (block I) to the domain with
negative transport velocity (block II) it is injected from the part with p > 0 of the PSSD
of block I to the corresponding part in the PSSD of block II (Fig. 5.5 (a)). Consequently,
a dynamical conversion process will occur, if the particle’s position in the two PSSDs do



Figure 5.5: In Fig. (a) / (b) it is shown between which phase spaces the injection of the particle takes
place when it crosses an interface with convergent / divergent flux. For example, in the upper part of Fig.
(a) a particle crosses an interface with incoming current from block I to block II. In the PSSD this crossing
corresponds to an injection from the left PSSD to the right one. In the lower part of Fig. (a) where the
trajectory enters block I coming from block II the injection process happens evidently between other PSSDs.
Fig. (b) visualizes the corresponding processes at an interface with outgoing currents.
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Figure 5.6: (a) and (b) show both the so-called “conversion sections” of an interface with incoming (a) and
outgoing (b) current. The different colors symbolize the various possible conversion processes which can
happen when a particle crosses an interface, e.g. white stands for a trajectory which experiences a crossover
from diffusive to ballistic dynamics (for details see Sec. 5.3).

not belong to the same phase space component. For example, a diffusive particle in block I
becomes ballistic in block II when it is injected from the chaotic sea in the PSSD of block I
in a ballistic island or in the region above the FISC in the PSSD of block II (Fig. 5.5 (a)).
Similarly, the other conversion process from ballistic to diffusive motion can be also classified
by means of the PSSDs. For a trajectory crossing the interface from block II to block I the
situation is similar. In this case the particle is injected from the lower part (p < 0) of the
PSSD of block II to the corresponding part of the PSSD of block I (Fig. 5.5 (a)). Let us
now discuss the conversion properties of an interface with outgoing currents (Fig. 5.5 (b)).
A particle going from block I to block II is injected from the positive momentum part of
the PSSD of block I to the corresponding part of the PSSD of block II and vice versa for a
trajectory going from block II to I. By comparing Figs. 5.5(a) and (b) we see that the phase
space injection processes at an interface with outgoing and incoming flux occur not in the
same manner. More precisely, although the involved parts of the PSSDs are equal in both
cases, the injection processes happen in the PSSDs in the reverse order. It is evident that
this fact makes a big difference. For example, a diffusive particle going from block I to II at
an interface with incoming flux can be injected into the region of phase space above the FISC
whereas at an interface with outgoing flux it can only enter ballistic islands.
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5.3.2 Conversion sections

The previous discussion is visualized in Figs. 5.6 (a) and (b) which are obtained by overlapping
appropriately the PSSDs according to the just presented scheme. Specifically, Fig. 5.6 (a)
shows in a color-code the various conversion processes as a function of the phase and the
momentum when a particle crosses an interface with convergent flux from both sides. For
example, the red area stands for regular structure which is mapped onto the chaotic sea, i.e.
for the conversion of ballistic to diffusive motion. Accordingly, if the phase of the driving and
the particle’s momentum fall into a red marked area when the trajectory crosses the interface,
then the particle experiences a crossover from regular to chaotic dynamics. Analogous black,
white and yellow stand for processes with chaotic to chaotic, chaotic to ballistic and ballistic to
ballistic conversion. Fig. 5.6 (b) shows the same information for the interface with divergent
flux. In the following we will call these plots for reasons of brevity “conversion sections”. Both
figures are mirror-symmetric with respect to p = 0 which reflects only the mirror-symmetry
of the PSSDs of the two blocks. Furthermore, the figures reveal one remarkable characteristic
of the conversion properties of the two different interfaces. The area describing the ballistic
to chaotic conversions (red color) in Fig. 5.6 (a) is identical to the area associated with
the opposite (chaotic to ballistic) process in Fig. 5.6 (b) and vice versa. Thus it is a very
likely event that a trajectory which is injected from the chaotic sea into regular structure
experiences a conversion back to chaotic sea once it reaches the next interface which gives
rise to the typical dynamics of alternating phases of diffusive and ballistic motion on the scale
of one block (see Fig. 5.3). Nevertheless, the conversion back to chaos does not occur always
and the reasons for this are discussed in the following.

Fig. 5.7 (a) shows an extract of the blue trajectory in Fig. 5.3 for t ≤ 1.6 · 104. Fig.
5.7 (b) shows the conversion section associated to the interface with incoming currents from
both sides. The green stars in Fig. 5.7 (b) are the phase space coordinates in the PSSD
of the first twenty-two crossings of the trajectory with the interface and the blue star is the
last intersection before the ballistic flight across the block starts. Apparently, all green stars
lie in the black area. Accordingly, the particle maintains its chaotic behavior because it is
always injected into the chaotic sea. Therefore, it is several times transported back to the
interface due to the convergent flux until its position in phase space overlaps with regular
structure of the adjacent block (blue star in the white are in Fig. 5.7 (b)). By looking at the
PSSD of the domain with positive directed transport (Fig. 5.4 (b)) we see that this injection
occurs obviously into the regular part of phase space beyond the FISC, i.e. the particle is
now trapped on a regular curve and traverses the block ballistically (compare blue curve in
Fig. 5.3 for 1.5 · 104 < t < 3 · 104) until it reaches the subsequent interface with divergent
flux (outgoing currents). In Fig. 5.7 (c) we show the corresponding magnification of the
trajectory for the period of time during which the particle remains close to the interface of
the neighboring domains. In Fig. 5.7 (d) the associated conversion section together with the
phase space coordinates of the crossings of the trajectory with the interface is presented. The
blue star is the first intersection and the green stars are the subsequent ones. Obviously, the
blue star lies in a red area, i.e. after being injected from the chaotic sea into regular structure
at the previous interface with convergent flux the particle experiences now a crossover from
ballistic back to diffusive motion. In the trajectory (Fig. 5.7 (c)) this behavior can be seen as
the almost abrupt end of the ballistic flight at the interface. Afterwards the particle crosses
several times the interface and its coordinates in phase space at the intersections fall always
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Figure 5.7: (a) shows a diffusive trajectory which remains close to an interface with incoming current and
experiences multiple crossovers until it becomes ballistic at t ≈ 1.5 · 104. (b) shows the corresponding “conver-
sion section” together with phase space coordinates marked as colored symbols when the trajectory crosses the
interface. (c) shows the extract of the trajectory when it arrives at the next interface with outgoing currents.
(d) shows the “conversion section” and the phase space coordinates.
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into the chaotic sea of the adjacent block. Consequently, the particle’s dynamics remains
diffusively which can be observed in the trajectory for t ≈ 3 · 104 − 5.3 · 104 (Fig. 5.7 (c)).
Especially, the position in phase space of the trajectory at the last crossing with the interface
occurring at t ≈ 5.3 · 104 coincides with the chaotic sea of the adjacent block. Yet, this time
the injection into the block is deeper than before because the particle has a comparatively
high negative velocity as Fig. 5.7 (c) reveals. Afterwards, the particle moves diffusively until
it reaches the subsequent interface where a conversion back to ballistic dynamics occurs (blue
curve, t ≈ 2.3 · 105, x = −1 · 105 in Fig. 5.3). For the present trajectory (blue curve in
Fig. 5.3) this alternating phases of ballistic and diffusive motion on the scale of one block
continues until we have stopped the simulation at t = 106.

Nevertheless, it can also occur that a particle traverses several blocks ballistically without
changing its dynamical state when crossing an interface as the trajectories shown in Fig. 5.3
reveal. To understand such a behavior let us analyze the dynamics of the particle starting
at x ≈ −3 · 105 (black curve in Fig. 5.3) in more detail. To this end we focus on the time
period during which the trajectory traverses ballistically five blocks after it has been injected
at an interface with convergent flux (t ≈ 3.3 · 105, x = −2 · 105 in Fig. 5.3) from the chaotic
sea into the regular structure of the phase space of the adjacent domain. The ballistic flight
ends at an interface with outgoing currents (t ≈ 3.9 · 105, x = 0.5 · 105 in Fig. 5.3) where
a conversion back to the chaotic sea occurs. Fig. 5.8 shows the sequence of the conversion
sections together with the coordinate in phase space (blue stars) of the trajectory when it
crosses the interface at x = −2 · 105 (a), x = −1.5 · 105 (b) etc. Fig. 5.8 (a) reveals that the
ballistic flight is initialized by a conversion process of the particle from the chaotic sea into
the part of the phase space beyond the FISC. In fact, from the corresponding PSSD shown in
Fig. 5.4 (a) we can conclude that the trajectory is injected into the chaotic layer surrounding
the chain of elliptic islands above the FISC. In the course of the following ballistic flight across
the block the orbit in the PSSD fills uniformly this layer until the particle arrives at the next
interface with divergent flux. At this position the trajectory does not experience a conversion
back to the diffusive dynamics as Fig. 5.8 (b) reveals. Instead, by comparing Fig. 5.8 (b) and
Fig. 5.4 (b) we see that its position in phase space coincides with the elliptic island in the
PSSD at ξ ≈ 0.3, p ≈ 4.1 belonging to the chain of five islands embedded in the chaotic layer.
Consequently, the particle maintains its ballistic behavior. According to Fig. 5.8 (c)-(e) the
trajectory remains in this dynamical state for three more crossings. By comparing the Fig.
5.8 (c)-(e) with the appropriate PSSDS we see that the process of alternating injection into
elliptic islands and the chaotic layer above the FISC repeats at each interface until the particle
arrives at x = 0.5 · 105. At this interface with outgoing local currents the ballistic flight ends
because a conversion in the particle’s dynamical state occurs (see Fig. 5.8 (f)). Obviously,
the position in phase space of the trajectory coincides with the chaotic sea corresponding to
diffusive motion in the adjacent block.

Let us finally investigate more closely the dynamics of the particle starting at x ≈ 2·105 (red
curve in Fig. 5.3). Specifically, we discuss in the following the period of time during which it
traverses ballistically the same block three times (7 ·105 < t < 7.5 ·105 in Fig. 5.3). Although
at first glance it seems as if the trajectory is immediately reflected at the position of the
interface, a magnification reveals that the particle first crosses the interface and experiences
a conversion from ballistic to diffusive dynamics. It enters however the adjacent domain only
insignificant and visits the interface again. Evidently, at this second intersection the trajectory
is injected into a phase space structure of the subsequent block leading to ballistic dynamics.
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Figure 5.8: Sequence of the conversion sections together with the coordinate in phase space (blue stars) of
the trajectory started at x ≈ −3 · 105 when it traverses ballistically five blocks and crosses the interface at
x = −2 · 105 (a), x = −1.5 · 105 (b), x = −1.0 · 105 (c), etc.

Thus, the particle traverses the domain opposite to the direction of the previous ballistic
flight until it arrives at the next interface where the just described process recurs. In other
words a ballistic particle has to experience a conversion to diffusive dynamics beforehand in
order to traverse the same block again ballistically because the phase structures for a ballistic
flight in positive and negative direction have no overlap.

In this vein the dynamics of other trajectories can be analyzed, too. In a nutshell we can
say that the dynamics of a particle in a block can be predicted by its coordinate in phase space
when it crosses the corresponding interface. We have discussed moreover that the trajectories
exhibit typically conversion processes between ballistic and diffusive motion. By analyzing
the Poincaré surface of section of the domains (PSSD) these processes have been traced back
to the overlap of the different phase space structures at an interface leading to ballistic or
diffusive dynamics, i.e. when a trajectory is injected from a domain with driving law g(t) into
a domain with −g(t) it can experience a crossover in its dynamical state. With this knowledge
at hand we have explained the characteristic alternating phases during which the particles
traverse either ballistically a block or move chaotically according to local transport. In the
following we will study how this behavior leaves its hallmarks in the dynamical evolution of
the spatial distribution of an ensemble of particles.
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5.4 Particle density modulations

In this section we discuss the dynamics of an ensemble of 106 particles which are initially
uniformly distributed in the lattice occupying 20 domains centered around the origin and
homogeneously fill the chaotic sea at low velocities |v| ≤ 0.1. The spatiotemporal evolution of
the particle density profile (see Fig. 5.9) shows, due to the diffusion of the chaotic trajectories,
a significant spatial broadening. More importantly, we observe the emergence of a periodic,
stripe-like modulation of the density, i.e. for a fixed time the spatial distribution of the
particles has alternating flat maxima and minima corresponding to the length of one domain.
This behavior persists until t ≈ 5 · 106 and gradually disappears thereafter. Let us analyze
this in some more detail.

For t = 104 (Fig. 5.9 (a)) the envelope behavior of ρ(x) is still similar to the initial distri-
bution ρ0(x) but there occur sharp dips at the positions of the interfaces. The magnification
reveals that the dips are significantly more pronounced at the interfaces with outgoing flux
(Fig. 5.9 (b)). At t = 106 (Fig. 5.9 (c)) the envelope of ρ(x) has broadened and the density
modulations are much more pronounced extending over an entire domain of the lattice (Fig.
5.9 (c)). For x > 0 ρ(x) possesses plateau-like maxima in domains with vT > 0 and corre-
sponding minima in domains with vT < 0 and vice versa for x < 0. With the knowledge on
the single particle dynamics which we have acquired in the previous section this behavior is
elucidated in the next paragraph.

Let us start with the discussion of the evolution of ρ(x) for short times t ≤ 104. In the
beginning (t = 104) we observe a sharp depletion of the particle density at the positions of the
interfaces (Fig. 5.9 (a) and (b)) which is explained in the following. Since the initial velocities
of the trajectories are small, the ensemble is localized in the chaotic sea of phase space, i.e.
the particles obey diffusive dynamics. According to the discussion in the previous section it
is possible that a ballistic flight starts at an interface every time a diffusive trajectory crosses
this position. According to the previous section such an event occurs when the particle’s
coordinate in phase space at the point in time when it crosses the interface coincides with e.g.
an elliptic island in the phase space of the adjacent block. In Fig. 5.10 the number ballistic
flights starting at position xstart (n(xstart)) where the particle traverses more than 103 barrier
without reversing the sign of its velocity is shown. Evidently, we find narrow peaks localized
at the interfaces, i.e. many ballistic flights start at the positions of the interfaces between
the differently driven domains. Furthermore, we observe that the number of ballistic flights
starting at an interface with convergent flux (x = 0,±1 · 105,±2 · 105 in Fig. 5.10) is higher
than at an interface with divergent flux (x = ±0.5·105,±1.5·105 in Fig. 5.10). This surprising
behavior is due to the fact that at an interface with incoming currents crossings of diffusive
particles occur more frequently. Apparently, this process of ballistic flight production leads to
a fast local reduction of the spatial particle distribution ρ(x) at the positions of the interfaces
since compared to diffusive trajectories, the ballistic particles travel with a high velocity away
from the interface. However, if the local currents are incoming this effect competes with the
accumulation of particles obeying chaotic dynamics. Therefore, the dip is more pronounced
for interfaces with outgoing local currents.

Let us now develop an understanding of the longer-time transient behavior leading to the
plateau-like density modulations (Fig. 5.10 (c) and (d)). For reasons of brevity interfaces
with incoming / outgoing flux are called interface I / II in the following. The initial ensemble
is localized in the chaotic sea of the phase space of the lattice. In every domain the chaotic
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Figure 5.9: In the upper figure a color plot of the particle density ρ(x, t) is shown. The initial ensemble is
distributed according to ρ(x, t = 0) = 10−6 · Θ(105L − |x|) and ρ(v, t = 0) = 5 · Θ(0.1 − |v|) (V0 = 2.2). For
t & 105 a periodic modulation of the spatial distribution of the particles in the lattice is clearly visible. (a)
and (c) show the spatial distribution of the particles ρ(x) for t = 104 (a) and t = 106 (c). (b) and (d) are
magnifications of (a) and (c) respectively. The arrows in the magnifications indicate the direction of the local
current in the domain.
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Figure 5.10: Distribution of number of ballistic flight starting at the positions xstart in the blockstructured
lattice.

trajectories experience the corresponding drift velocity and accumulate at the interfaces I
with incoming directed currents. Even if a ‘deeper’ reinjection from the interface into an
adjacent domain again occurs (which is a rare event) it will return to this interface at a
somewhat later point in time. Hence, chaotic trajectories are transported several times back
to the interface until a conversion from chaotic to ballistic dynamics occurs. Accordingly,
diffusive particles are localized in a small spatial region around these interfaces I until a
conversion into regular ballistic motion takes place. When such a ballistic particle reaches
the next interface II (outgoing directed currents) the trajectory can either remain ballistic
and traverse the subsequent domain in a comparatively short time or the particle is injected
from the ballistic island back into the chaotic sea. It is however important to keep track of the
fact that the ballistic trajectories cross the interface II and typically enter 102−103 unit cells
into the next domain before they acquire a diffusive character. More precisely, the particles
are injected into the chaotic sea at the interface, yet their velocity is large enough so that the
trajectories traverse several barriers before the diffusive character of the dynamics becomes
evident. In the latter domain the particles experience a drift to the adjacent interface I, since
the local current points away from the interface II. Obviously, this process does not occur
at the interface I with exclusively incoming currents. Note that domains with left pointing
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Figure 5.11: (a) shows the spatial particle distribution ρ(x) at t = 106 together with the spatial distribution
of the mean kinetic energy Ekin(x). (b) is a magnification of (a).

current can be traversed to the right only by ballistic trajectories. As a result an enhanced
number of diffusive trajectories occurs in domains with right pointing current for x > 0 and
vice versa. Since the dwell time of chaotic trajectories in a domain is approximately one
order of magnitude larger than the dwell time of ballistically travelling particles due to their
lower average velocity this results in a periodic modulation of ρ(x). It is crucial to note that
the Hamiltonian itself does not reflect such an asymmetry with respect to the domains with
left and right-pointing currents corresponding to driving laws g(t) and −g(t) respectively.
Indeed, the asymptotic steady state of the time-evolved ensemble (t � 107) possesses a
uniform density.

5.4.1 Distribution of kinetic energy and dwell times

By considering the spatial distribution of the kinetic energy we can substantiate further the
argument that the periodic modulations of ρ(x) are due to the inhomogeneous distribution
of particles obeying diffusive dynamics. For this purpose we show in Fig. 5.11 the spatial
distribution of the kinetic energy Ekin(x) together with ρ(x) for t = 106. Fig. 5.11 (a) reveals
that the particles in the tail of the spatial distribution ρ(x) have higher kinetic energies
compared to the trajectories in the center of ρ(x) which can be explained straightforwardly:
for a fixed time the particles which have travelled the longest distance away from their starting
position must have been for the most time in the portion of phase space with high momentum,
e.g. trajectories experiencing long ballistic flights. Therefore, it is intuitively clear whyEkin(x)
has an envelope which increases with x. Fig. 5.11 (a) shows additionally that Ekin(x) possesses
the same periodic modulations on the scale of one block as the spatial particle distribution
ρ(x), i.e. the kinetic energy of the particles within a domain is approximately constant and
alternates between a local maximum and minimum respectively. In the magnification of Fig.
5.11 (a) shown in Fig. 5.11 (b) we see that the spatial distribution of the kinetic energy
Ekin(x) possesses a local maximum where ρ(x) has a local minimum and vice versa. Since the
kinetic energy of a diffusively travelling particle is on average small compared to a particle
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Figure 5.12: The black curve is the probability distribution of dwell-times of trajectories ρ(∆t) for the block
extending from x = 5 · 105 to x = 5.5 · 105 which is a domain with a local minimum of the particle density
ρ(x). The red curve shows ρ(∆t) for the adjacent block (x = 5.5 · 105 to x = 6 · 105) which possesses a local
maximum of ρ(x).

obeying ballistic dynamics, this finding confirms indeed that in a block where the spatial
particle distribution has a local maximum an increased number of diffusive trajectories is
present.

Finally, let us discuss the behavior of the dwell-time in a domain of trajectories ∆t for
the simulation corresponding to Fig. 5.9, that is we examine how long particles which cross
an interface remain in the block before leaving it again. Fig. 5.12 shows the probability
distribution of dwell-times of particles ρ(∆t) for two different spatial regions. The black
curve belongs to the block extending from x = 5 · 105 to x = 5.5 · 105 where the particle
distribution ρ(x) possesses a local minimum. The red curve corresponds to the domain with
a local maximum of ρ(x) (x = 5.5 · 105 to x = 6 · 105). Both curves are apparently almost
identical for t ≤ 104. Such events of comparatively short dwell-times are for example due to
diffusive trajectories which remain close to an interface and cross it repeatedly (see Fig. 5.7
(a) and (c)). For t ≥ 104 the curves deviate from each other whereas ρ(∆t) belonging to the
block with a local maximum of ρ(x) lies systematically above the curve corresponding to the
domain with a local minimum of the particle density. At 104 ≤ t ≤ 1.6 · 104, t ≈ 2.2 · 104
and t ≈ 3 · 104 are pronounced peaks in ρ(∆t) which can be associated to particles traversing
ballistically the block. In order to verify this statement we have determined the phase ξ and
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Figure 5.13: Scatter plot of the phase space coordinates ξ, v of trajectories belonging to the peaks in the black
curve in Fig. 5.12 when the corresponding particles enter the block by crossing the interface at x = 5 · 105 or
x = 5.5 · 105.

the velocity v of trajectories corresponding to these peaks when they enter the block. In Fig.
5.13 the phase space coordinates ξ, v are shown for particles belonging to the pronounced
peaks of the black curve in Fig. 5.12. Evidently, the points in Fig. 5.13 with positive /
negative velocity are the trajectories which have entered the domain by crossing the interface
at x = 5·105 / x = 5.5·105. By comparing Fig. 5.13 with Fig. 5.4 (a) which depicts the PSSD
for the block with negative transport velocity we observe a strong accumulation of particles in
the parts of the phase space which correspond to trajectories traversing the block ballistically.
For example the points in Fig. 5.13 with positive velocity are mostly scattered in a region
of the PSSD beyond the FISC, whereas the points with negative velocity are predominantly
found in elliptic islands. Consequently, the peaks in the distributions of dwell-times shown
in Fig. 5.12 can be indeed attributed to trajectories traversing ballistically the blocks. For
even longer dwell-times t ≥ 5 · 105 (see Fig. 5.12 both curves possess a broadened maximum
at t ≈ 1.9 · 105 which is due to particles crossing diffusively the domains. In Sec. 5.2 we
have determined the transport velocity of the block as vT = −0.2649. Accordingly, the time
a diffusive particle needs on average to traverse diffusively the block is

∆tD =
LB

vT
=

N · L
vT

, (5.3)
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where L = N · L is the domain’s length. Inserting the parameters’ values, i.e. N = 104,
D = 5 and vT = −0.2649 we find ∆tD ≈ 1.89 · 105 which coincides well with the maxima
of the distributions ρ(∆t). Of course not all diffusive trajectories need exactly this time to
traverse the block because the dynamics is intermittent, i.e. the diffusive motion is interrupted
by ballistic flights. If such a ballistic flight has the same direction as the local current, then
this particle will cross the domain in shorter time than ∆tD and vice versa. In this range
of the dwell-times the red curve is systematically above the black curve which implies again
that there are more diffusive particles in a block with a local maximum of ρ(x). Although we
have chosen two specific blocks to analyze the dwell-times ρ(∆t), the qualitative behavior is
identical for the other domains, i.e. ρ(∆t) for a block with a local maximum of ρ(x) exceeds
systematically ρ(∆t) associated to a domain with a local minimum of ρ(x) in the range of
dwell-times corresponding to diffusive particles. Nevertheless, it is important to note that
the behavior shown in Fig. 5.13 is not stationary but only valid until we have stopped the
simulation at t = 106. In fact, the differences of the dwell-times becomes less subsequently
and in the limit t → ∞ the curves coincide. Evidently, this behavior can be associated to the
asymptotic limit when the periodic modulations of the particle density are smoothed out due
to the symmetry properties of the whole lattice. Since the Hamiltonian is invariant under
the transformation given by equation (5.2) the system shows for t → ∞ a super-diffusive
broadening of the particle distribution similarly to a uniformly, monochromatically driven
lattice. Consequently, in this asymptotic limit the periodic modulations of ρ(x) are gone and
the transient differences in the dwell-times must disappear, too.

5.4.2 Role of the initial ensemble

In order to verify that the density modulations are not an artifact of the initial conditions
we have chosen other ensembles, too. In the upper part of Fig. 5.14 the evolution of the
spatial particle density distribution ρ(x) as a color-plot is shown for an ensemble of particles
which have initially small velocities, i.e. |v0| ≤ 0.1 and start close to the origin of the
lattice |x0| ≤ 0.1. All parameters of the lattice are unchanged as before (V0 = 2.2, L = 5).
Obviously, ρ(x) gets smeared out due to diffusion such that more domains are sequently
populated. In the course of the dynamics the periodic modulation on the scale of one block
of the particle distribution develops, i.e. the density has alternately a local maximum or
minimum. Similarly as before these modulations of the particle density are only a transient
phenomenon but they prevail temporally in the same range 105 ≤ t ≤ 5 · 106. Consequently,
the appearance of this phenomenon is independent from the initial ensemble. Still, on shorter
time-scales the spatial particle distribution ρ(x) obeys a different behavior depending on
the initial ensemble. Fig. 5.14 (a) shows ρ(x) for t = 104 with three pronounced peaks
at x ≈ −3.5 · 104, x ≈ 0 and x ≈ 3.5 · 104. Obviously, ρ(x) is symmetric with respect to
the origin which is due to the fact that we have chosen the initial ensemble symmetrically in
phase space. Since the particles start at an interface with convergent flux, it is a very unlikely
event that a diffusive trajectory traverses one of the adjacent blocks. Instead, the diffusive
particles remain localized close to the origin of the lattice which explains the peak at x = 0,
i.e. these are chaotic trajectories which get transported continuously back to the interface.
Due to the fact that the particle density is very large in the beginning at x ≈ 0, the rate
with which diffusive particles are injected into regions of the phase of the neighboring blocks
corresponding to ballistic dynamics is high, too. Consequently, many particles experience
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Figure 5.14: In the upper figure a color plot of the particle density ρ(x, t) is shown. The initial ensemble is
distributed such that the particles start in the chaotic sea of the phase space |v0| ≤ 0.1 and close to the origin
of the lattice |x0| ≤ 0.1 (V0 = 2.2). For t & 105 the periodic modulation of the spatial distribution of the
particles on the scale of one block is again visible. (a), (b) and (c) show the spatial distribution of the particles
ρ(x) for t = 104 (a), t = 105 and t = 106 (c) respectively. (d) is a magnifications of (c). The arrows in the
magnification indicate the direction of the local current in the domain.
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crossovers from diffusive to ballistic motion during the first few periods of the driving which
is the origin of the peaks at x ≈ ±3.5 · 104. Afterwards, the conversion rate decreases rapidly
with time and therefore the spatial distribution of particles drops, i.e. not only the trajectories
in the peaks of ρ(x) at x ≈ ±3.5 · 104 are predominantly ballistic but also the particles in the
range between them 0 ≤ |x| ≤ 3.5 · 104. Figure (b) shows ρ(x) for t = 105. Obviously, the
distribution has broadened further and the first indications of the periodic modulations of the
spatial particle distribution ρ(x) on the scale of one block are already visible. Still, the local
maxima and minima are not completely defined, i.e. ρ(x) is not yet constant within one block.
For t = ·106 this behavior has completely developed as figure (c) reveals. The spatial particle
distribution ρ(x) possesses alternately local maxima and minima on the scale of one block
which can be seen in the corresponding magnification shown in figure (d). Furthermore, a
comparison of Fig. 5.14 (d) with Fig. 5.9 (d) shows that the extrema are in the same blocks,
i.e. for x > 0 the maxima / minima are in the block with positive / negative transport
velocity and vice versa for x < 0. Accordingly, the appearance of the density modulation is
independent from the choice of the initial conditions. Since we have considered two “extreme”
cases, that is a broad, uniform and a very narrow initial distribution, it is reasonable that
for other ensemble which are distributed in space according to e.g. a Gaussian the periodic
modulation will occur, too.

5.5 Markov Chain Model

In this section we show that the mechanism leading to the periodic density modulations
can be understood qualitatively by a Markov chain which represents an “interface mapping”
comprising the dynamics within a domain. Components of the Markov state X are the
dynamical character of a trajectory denoted by γ = {d,b} (d =̂ diffusive / b =̂ ballistic), the
direction of motion δ = {l, r} (l =̂ left / r =̂ right), the position of the particle x and the
point in time t it reaches the current interface, i.e.

Xn =


γn
δn
xn
tn

 , (5.4)

where n symbolizes the n-th step of the chain. The conditional transition probabilities pij of a
dynamical conversion at an interface, which constitute the transition matrices can be obtained
by calculating the overlap of the different regular and chaotic structures in phase space and
augmenting it by local characteristics of the different interfaces. To this end we simulate the
dynamics of an ensemble which is initialized close to the origin of the lattice. For each particle
the phase ξ and the velocity v is recorded every time when the corresponding trajectory
crosses an interface. In this way we get two sets of datapoints C = {(ξ1, v1), . . . , (ξn, vn)}
and C′ = {(ξ′1, v′1), . . . , (ξ′n, v′n)}, whereas C / C′ contains the trajectories’ intersections for the
interfaces with convergent / divergent flux. In order to calculate for example the probability
for a crossover from diffusive to ballistic dynamics pdb the following steps have to taken. First,
we have to determine the number of datapoints corresponding to the conversion processes from
diffusive to ballistic dynamics Ndb. Additionally, we need the number of datapoints where
the trajectory remains diffusive after crossing the interface (diffusive to diffusive) Ndd. To
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pdb pdd pbd pbb
convergent flux 0.18 0.82 0.16 0.84

divergent flux 0.06 0.94 0.51 0.49
Table 5.1: Conditional conversion probabilities for the interface with convergent and divergent flux.

obtain Ndb and Ndd we exploit the conversion sections. From the discussion in Sec. 5.3.2 it
is known that the white / black area in the conversion sections shown in Fig. 5.6 (a) and
(b) stand for injection processes from diffusive to ballistic / diffusive to diffusive dynamics.
Consequently, the numbers Ndb and Ndd can be determined by counting the datapoints which
fall in the white and black area respectively. Altogether the probability pdb is then given by

pdb =
Ndb

Ndb +Ndd
. (5.5)

Analog, the probability for a diffusive particle to remain in its dynamical state pdd is derived
by

pdd =
Ndd

Ndb +Ndd
. (5.6)

We can proceed similarly for the other conditional conversion probabilities. Since the red /
yellow area in the conversion sections shown in Figs. 5.6 (a) and (b) stands for ballistic to
diffusive / ballistic to ballistic injection processes, the number Nbd and Nbb are obtained by
counting the datapoints which lie in the corresponding regions. Finally, the probabilities are
calculated via

pdb =
Nbd

Nbd +Nbb
, (5.7)

pdb =
Nbb

Nbd +Nbb
(5.8)

Due to the fact that the respective areas in the conversion section shown in Fig. 5.6 (a) and
(b) are not identical, the conditional conversion probabilities are different for the interface
with convergent and divergent flux, too. In Table 5.1 the results of evaluating equations
(5.5)-(5.8) by means of Figs. 5.6 (a) and (b) is shown. Obviously, the probabilities fulfill the
normalization condition

pdb + pdd = 1, (5.9)

pbd + pbb = 1. (5.10)

Furthermore, we want to draw attention to the following facts. At an interface with convergent
flux the probability for a diffusive particle to experience a dynamical conversion to ballistic
dynamics pdb is three times larger compared to an interface with outgoing currents (see Table
5.1). Evidently, this is a reasonable result because according to the discussion in Sec. 5.3.2
the overlap of the chaotic sea with the parts of phase space associated to ballistic motion is
larger when the blocks are concatenated such that the currents are incoming at the interface
(white area in Fig. 5.6 (a) is larger than in (b)). Conversely, we find for the interface with
divergent flux that the conditional probability for a crossover of a trajectory from ballistic
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to diffusive dynamics pbd is approximately three times larger which can be also attributed
to the overlap properties, i.e. at such an interface a larger area of the PSSD associated to
ballistic dynamics is projected onto the chaotic sea.

Let us now describe the procedure how the state Xn is iterated. It is most convenient to
introduce a mapping T from the state Xn to Xn+1, i.e.

Xn+1 = T Xn, (5.11)

where Xn+1 = (γn+1, δn+1, xn+1, tn+1)
t is derived according to the following procedure. After

the crossing of an interface the dynamical state of the trajectory γn+1 is evidently related
through the conditional conversion probabilities to its previous dynamical state γn such that
γn+1 is given by the relations

P (γn+1 = b) =

{
pbb if γn = b

pdb else
(5.12)

P (γn+1 = d) =

{
pdd if γn = d

pbd else
(5.13)

To obtain the direction of propagation δn+1 we remark the following. If a particle crosses an
interface and remains in its dynamical state (γn+1 = γn), the direction of propagation will
obviously stay unaltered, that is δn+1 = δn. However, if the dynamical state of the particle
changes when the trajectory crosses the interface (γn+1 6= γn), the direction of propagation
can be reversed, too. To simplify matters we assume that the direction is just randomized
in this case, i.e. if the dynamical state of the particle changes both directions are equally
probable. In a nutshell this yields the equations

P (δn+1 = δn) = 1 if γn+1 = γn (5.14)

P (δn+1 = l) = P (δn+1 = r) = 0.5 else. (5.15)

In order to obtain the next position of the particle xn+1 and the arrival time tn+1 we must
distinguish whether it is currently at an interface with convergent or divergent flux. The
reasons for this will become clear in the course of the following discussion. Let us assume that
the particle is currently at an interface with incoming currents. In Sec. 5.3 we discussed that
it is a very unlikely event for a trajectory to traverse diffusively a block to the next interface
opposite to the direction of the local current. On the contrary, at an interface with convergent
flux the diffusive particles are localized and get sequentially transported back within a short
period of time until a conversion to ballistic dynamics occurs. In our model the position
of a diffusive particle remains the same as in the step before, i.e. xn+1 = xn if γn+1 = d.
Furthermore, we keep in this case the arrival time unchanged because the diffusive particles
remain so close to the interface that the time which elapses until the next crossing occurs is
negligible, that is tn+1 = tn if γn+1 = d. Otherwise, if the particle is ballistic, it will traverse
one of the adjacent blocks until it arrives at the next interface. Consequently, the position of
the particle changes by the domain’s length LB, that is xn+1 = xn+LB if the particle travels
to the right δn+1 = r or vice versa xn+1 = xn−LB if δn+1 = l (LB = N ·L = 5 · 104). In each
case the arrival time is increased by the period of time a ballistic particle needs to traverse
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a block tb. For simplicity we have chosen tb = 1.2 · 104 which is the mean of the dominant
ballistic peak in Fig. 5.12 (see discussion in Sec. 5.4.1). In a summary the relations are at
an interface with incoming current

xn+1 =


xn if γn+1 = d

xn + LB if γn+1 = band δn+1 = r

xn − LB if γn+1 = band δn+1 = l.

(5.16)

tn+1 =

{
tn if γn+1 = d

tn + tb else.
(5.17)

At an interface with divergent flux the situation is slightly different since a diffusive particle is
not localized. Instead, it traverses one of the adjacent blocks, i.e. xn+1 = xn ±LB. However,
compared to a ballistic trajectory the timescale for a diffusive particle is larger because the
average velocity is less. In our model we incorporate this fact by assigning td = 1.9 · 105, i.e.
the characteristic time a diffusive particle needs to traverse a block (see Sec. 5.4.1), to such
a “diffusive step” which is of course a rough approximation. Altogether, when the particle is
currently at an interface with outgoing currents this yields

xn+1 =

{
xn + LB if δn+1 = r

xn − LB else.
(5.18)

tn+1 =

{
tn + tb if γn+1 = b

tn + td else.
(5.19)

Eqs. (5.12) - (5.19) define the map describing the effective “interface dynamics”. For a given
initial condition X0 this yields a sequence {X0, . . . ,Xn} which contains the information when
the corresponding particle is at an interface. For this reason we can determine obviously
at any point in time in which block the particle currently is. Moreover, for an ensemble of
initial conditions it is thus possible to obtain in each block the number of the particles n(x).
Yet, the details of the spatial distribution within a domain cannot be resolved by the model
because it is defined on a more coarse grained scale. In order to simplify matters we compare
the results of iterating the model with the real dynamics of the ensemble of particles which
has been placed in the chaotic sea close to the interface with incoming currents at the origin
of the lattice. For this case the initial conditions X0 for the model are given by

X0 = (γ0 = d, δ0 = {l/r}, x0 = 0, t0 = 0), (5.20)

where both directions of propagation are equally probable, i.e. P (δ0 = l) = P (δ0 = r) = 0.5.
For t = 106 the number of particles n(x) obtained by iterating the mapping T with 5 · 105
initial conditions is shown in Fig. 5.15. Obviously, the curve is not smooth but has a zigzag
shape because the model does not include the dynamics within a block, e.g. short ballistic
flights due to stickiness to elliptic islands. Still, a comparison with the spatial distribution
ρ(x) shown in Fig. 5.14 (c) reveals that the Markov model reproduces qualitatively the form
of ρ(x). Especially, the position of the local extrema coincide, i.e. n(x) possesses obviously
in the same blocks as ρ(x) its maxima / minima. However, we observe clear differences, too.
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Figure 5.15: Number of particles resolved on the scale of a block n(x) obtained by iterating the mapping for
5 · 105 particles started at the origin x = 0 of the lattice.

Apparently, the local extrema of n(x) are not as pronounced as in ρ(x). Furthermore, ρ(x)
obtained by simulating the real dynamics in the lattice is broader than the results from the
mapping n(x). Additionally, we remark that the mapping cannot reproduce the persistence
of the local extrema, i.e. at some instants the peaks of n(x) get smoothed out. In fact, the
dynamics simulated by the mapping is very sensitive to the relation tb/td, i.e. to the values
we assigned for the time a ballistic / diffusive particle needs to cross a block. Since in the
mapping’s derivation several rough approximations have been done, it is not too surprising
that the agreement is not exact. Nevertheless, the qualitative agreement of n(x) with ρ(x),
that is the fact that the local extrema in the blocks are reproduced by the mapping, confirms
that the dynamical conversion processes of the trajectories at the interfaces are the most
crucial ingredient for the occurrence of the periodic density modulations.

5.6 Formation of density waves

So far the periodic density modulation has been merely a transient phenomenon, i.e. asymp-
totically the local extrema are smoothed out and the spatial particle density ρ(x) converges
to a Gaussian-shaped distribution. In this section we present a setup for which the periodic
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Figure 5.16: Sketch of the finite block system with constant beam of particles J entering the system at x0.
The arrows indicate the direction of the local current.

modulation becomes a steady state. Afterwards, it is shown how this steady state can be
rendered into a propagating density wave.

To this end, we consider an extract of the infinite lattice, that is a finite open system
composed of ten domains with an incoming constant current of particles (see Fig. 5.16 for a
sketch). The driving law fi(t) in each block and the parameters of the barriers are chosen as
before, i.e. the number of barriers in a block N = 104, potential height V0 = 2.2, potential
width l = 1, equilibrium distance L = 5, frequency ω = 1 and amplitude C = 0.57. At
the positions xi = i ·N · L for i = {1, . . . , 9} are the interfaces with alternately incoming or
outgoing currents from the neighboring domains, where the dynamical conversion processes
of the trajectories occur. Since the parameters of the finite system are identical to the infinite
lattice, the Poincaré surface of section of the domains (PSSD) are the same, too. Accordingly,
the PSSD of block in the finite system with driving law fi(t) = g(t) / fi(t) = −g(t) are those
shown in Fig. 5.4 (a) / (b). Similarly, the conversion sections at the interfaces with convergent
/ divergent flux are depicted in Fig. 5.6 (a) / (b). Moreover, the dynamical properties of the
interfaces which have been discussed in the previous sections apply as well for the present
finite system, i.e. at the interfaces with incoming flux the probability is high that a diffusive
particle experiences a crossover to ballistic dynamics. Conversely, a ballistic particle is often
injected into the chaotic sea at the interfaces with divergent currents. We feed the system
with a constant beam of particles entering at x0 (see Fig. 5.16) and the initial momenta are
uniformly distributed with 0.1 ≤ p ≤ 4. Once a corresponding trajectory reaches the position
x0 or x10 it is considered to be lost, i.e. we have absorbing boundary conditions. In the
PSSD of the first block shown in Fig. 5.4 (c) the constant beam of particles is equivalent to
a uniform distribution both in phase ξ and momentum p, i.e. ξ and p are randomly chosen
from the intervals [0, 2π[ and [0.1, 4] respectively. Consequently, most particles of the beam
are injected into the chaotic sea of phase space with some ballistic initial conditions above
the FISC.

Fig. 5.17 shows snapshots of the spatial density distribution of particles ρ(x) at different
instants. At t = 104 (Fig. 5.17 (a)) only the first block has been gradually filled with particles,
i.e. ρ(x) = 0 for x & 0.5 · 105. Furthermore, ρ(x) possesses a sharp peak at x = 0 which
appears for the other snapshots, too (compare Fig. 5.17 (a) to (f)). Evidently, this peak is a
trivial phenomenon due to the constant particle feed at x = 0. With increasing time t = 105

(Fig. 5.17 (b)) the trajectories have travelled deeper into the system whereas the particles
show a accumulation at the interfaces with outgoing currents. Consequently, ρ(x) has peaks
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Figure 5.17: Spatial density distribution of particles ρ(x) for a finite system composed of ten blocks and a
constant beam of particles J entering at x0 = 0. (a)-(f) show successively ρ(x) for t = 104, 105, 3 · 105, 5 ·
105, 106, 107. The black arrows in Fig. (f) indicate the direction of the local currents in the blocks.

at the positions x1 = 0.5 · 105, x3 = 1.5 · 105, x5 = 2.5 · 105. For t = 3 · 105 (Fig. 5.17 (c))
the alternating local extrema on the scale of one block start to emerge. In Fig. 5.17 (d)
(t = 5 · 105) the system has been filled with more particles and their spatial distribution ρ(x)
has developed further to the expected form of piecewise constant local extrema on the scale of
one block. Nevertheless, afar from x0 = 0, where the system is fed by the particle beam, ρ(x)
still changes, e.g. in the sixth block ρ(x) is not yet constant. For t = 106 (see Fig. 5.17 (e))
the characteristic periodic modulations of ρ(x) have developed completely. An equilibrium
has been established between the number of particles which still get injected into the system
at x0 and the number of trajectories leaving at x0 and x10. ρ(x) is in each block constant and
possesses alternately a local maximum or minimum. Afterwards, no more changes of ρ(x)
occur as Fig. 5.17 (e) (t = 106) and Fig. 5.17 (f) (t = 107) reveal. Comparing Fig. 5.17 (f)
with Fig. 5.9 (d) shows that the extrema of ρ(x) emerge for both the finite system and the
infinite lattice in the blocks with the same local currents, i.e. the maxima are in the domains
with positive transport velocity and vice versa for the minima. Contrary to the infinite lattice
where the periodic modulations are smoothed out asymptotically, the form of ρ(x) shown in
Fig. 5.17 (f) is converged due to the constant feeding of the finite system. In Fig. 5.17 (f)
we observe furthermore that ρ(x) has a local minimum / maximum in the next-to-last / last
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Figure 5.18: Spatial density distribution of particles ρ(x) at t = 107 for a finite system composed of twenty
blocks and a constant beam of particles J entering at x0 = 0

block which is a counterintuitive behavior at first glance. Due to the fact that the particles
reaching the end of the system at x10 = 5 · 105 are gone, the spatial distribution of particles
ρ(x) in the last block should be less because it is closer to the absorbing boundary. At least
this is the expectation, if the dynamical composition of the trajectories would be equal over
the system, i.e. no accumulation of particles with e.g. diffusive dynamics in certain blocks.
Accordingly, we can assume that similar to infinite lattice the interfaces and the dynamical
conversion processes are the origin for periodic modulations of ρ(x) in the finite system shown
in Fig. 5.17 (f). A final observation made from Fig. 5.17 (f) is that ρ(x) has a decreasing
envelope. Evidently, this behavior is just due to the fact that the particles enter permanently
the system at x0 = 0 and are absorbed at x10 = 5 · 105.

In the following we discuss the occurrence of the asymptotic state shown in Fig. 5.17 (f)
in more detail. Since the beam is injected in a block whose local current points into the
opposite direction only the particles obeying ballistic dynamics are able to reach the interface
at x1 = 0.5 · 105. The diffusive trajectories are transported back to the opening of the system
and absorbed at x0 = 0. Therefore, the initial momentum p must be large enough1. When
the ballistic trajectories reach the interface at x1 = 0.5 · 105 with divergent flux a decent

1For example, in a simulation, where p is chosen randomly from the interval [0.1, 1], no particle ever reaches
the second domain because in this case the initial conditions overlap solely with the chaotic sea of the first
block’s phase space.
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amount of them experiences a conversion to diffusive dynamics and maintains the direction
of propagation. Consequently, these particles move diffusively according to the direction of
the local transport until they arrive at the interface with convergent flux at x = 105. Now
the diffusive trajectories cannot cross the next block because the local current points into the
opposite direction unless a crossover back to ballistic dynamics occurs. In this case the parti-
cles traverse the domain and the described procedure repeats at the subsequent interfaces, i.e.
typically the particles obey alternately diffusive and ballistic dynamics. Accordingly, we get
an enhanced number of particles obeying diffusive dynamics in blocks whose local transport
points into the same direction as the incoming beam. Due to the larger average dwell-time
(or smaller average velocity) of a diffusive trajectory compared to a particle obeying ballistic
dynamics, the inhomogeneous distribution of diffusive trajectories in the system yields the
local maxima / minima of ρ(x) in domains with positive / negative transport velocity. Simi-
larly to the previously studied infinite lattice the key to understand the periodic modulations
of ρ(x) are the dynamical conversion processes occurring at the interfaces. In Ref. [84] the
aforementioned ideas have been included in a model which predicts ρ(x) in each block.

Of course the occurrence of the local extrema does not depend on the size of the system. Fig.
5.18 shows the spatial distribution of particles ρ(x) at t = 107 for twenty blocks. Obviously,
ρ(x) possesses as before maxima in blocks with positive local transport and minima in blocks
with negative current. Nonetheless, the time when ρ(x) reaches its equilibrium state increases
linearly with the size of system, e.g. for ten blocks the spatial particle distribution ρ(x) has
converged at t ≈ 106 whereas for the system consisting of twenty blocks ρ(x) reaches its
equilibrium state at t ≈ 2 · 106.

Let us now come to the procedure with which the equilibrium state of the spatial particle
distribution ρ(x) can be rendered into a temporally propagating density wave. To this end
we consider again a finite system composed of ten blocks, feed it with a constant beam of
particles entering at x0 = 0 and wait until t = 106 when ρ(x) reaches its equilibrium state.
Afterwards, we start to move the interfaces through the system by switching consecutively
the driving laws of the barriers. Fig. 5.19 shows a sequence of snapshots of the spatial particle
distribution ρ(x) for different points in time. The blue / red lines are the positions of the
interfaces with divergent / convergent flux. At t = 106 (Fig. 5.19 (a)) the equilibrium state of
the spatial particle distribution ρ(x) with alternating local extrema on the scale of one block
has fully developed. Figs. 5.19 (a)-(e) reveal that ρ(x) follows subsequently the movement
of the interfaces while the characteristic form of ρ(x) with periodic modulations on the scale
of one block is preserved. For example, at t = 1.5 · 106 (Fig. 5.19 (e)) the local current in
each block has been reversed, i.e. compared to the snapshot at t = 106 the interfaces and
the maxima / minima have interchanged their positions. Since the spatial distribution of the
particles follows adiabatically the change of the lattice, this movement of the interfaces results
in a propagating density wave in the system. Fig. 5.19 (f) shows ρ(x) for t = 9.25 · 106 which
reveals that the wave does not get smoothed out significantly even for very long propagation
times. Still, it is important to note that the movement of the interfaces through the system
must not be too fast. Otherwise, the spatial particle distribution cannot follow the change of
the lattice and the periodic modulations vanish.
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Figure 5.19: Snapshots of the spatial particle distribution ρ(x) at different times when the interfaces move
through the system.Sketch of the finite block system with constant beam of particles J entering the system at
x0. Figs. 5.19 (a)-(f) show ρ(x) for t = 106, 1.16 · 106, 1.25 · 106, 1.35 · 106, 1.5 · 106 and t = 9.25 · 106. The
blue / red lines are the positions of the interfaces with outgoing / incoming flux.
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5.7 Summary

In this chapter the properties of block-structured infinite lattices as well as finite systems
have been analyzed. By concatenating domains with different local transport properties it
is possible to evoke conversion processes of trajectories from diffusive to ballistic dynamics
and vice versa. We have traced these dynamical conversion processes back to the overlap of
the phase space structures at the positions of the interfaces. Subsequently, it has been shown
that they leave their hallmarks in the evolution of an ensemble of trajectories leading to the
periodic modulations of the spatial particle distribution ρ(x), i.e. local extrema of ρ(x) on the
scale of one block which can be reproduced qualitatively by a simple Markov chain model. As
the next step we have considered a finite system which is fed by a constant beam of particles.
In this system the density modulation, which has been a transient phenomenon for the case
of infinite lattice, becomes a steady state that can be rendered into a propagating wave by
manipulating temporally the driving laws of the barriers.

In a summary these results demonstrate that the local driving of the barriers induces a
rich phenomenology like the the dynamical conversion process of trajectories at interfaces
between differently driven domains. In a system with uniform driving we can have stickiness
of chaotic trajectories to elliptic islands leading to ballistic flights. However, this is not a
controllable effect since the start and the end of such a ballistic flight cannot be predicted.
Contrary, in the block-structured lattice the particles can be injected at an interface from
the chaotic sea into an elliptic island. Subsequently, these trajectories are trapped in the
island until they arrive at the next interface. In Ref. [84] it has been shown meanwhile that
by manipulating appropriately the dynamical conversion properties of the interfaces one can
transform an ensemble of diffusive particles into a mono-energetic beam.



Chapter 6

Quantum Dynamics

In this chapter the dynamics of a quantum particle loaded in a phase-modulated driven lattice
is studied. We present the numerical scheme for obtaining the time-evolution operator and
show how observables like the transport velocity can be obtained. Afterwards, we discuss the
transport of the lattice and its dependence on the local phase shifts or the frequency of the
driving.

6.1 General definitions

Analogous to the classical case we consider non-interacting, identical particles loaded into
a one-dimensional driven lattice. Accordingly, the quantum dynamics is governed by the
time-dependent Schrödinger equation

i~
∂Ψ(x, t)

∂t
= H(x, t)Ψ(x, t), (6.1)

where the Hamiltonian H(x, t) is given by

H(x, t) = − ~2

2m

∂2

∂x2
+ V (x, t), (6.2)

whereas we take ~ = m = 1 in the following. For the potential V (x, t) we have chosen an
infinite lattice of laterally oscillating Gaussian potentials1, i.e.

V (x, t) =
∞∑

i=−∞
V0 exp

(
−
(
x− x0,i − fi(t)

δ

)2
)
, (6.3)

with equal potential height V0 and width δ. x0,i is the equilibrium position and fi(t) the
driving law of the i-th barrier. As in the classical case the static counterpart is a lattice of
equidistant barriers. Fig. 6.1 shows a sketch of the system with all parameters. Although the
Gaussian function has only faint tails, it does not vanish exactly. Therefore, the parameters
of the potential, i.e. its height V0, the equilibrium distance D, the width δ and the amplitude
of the driving laws fi(t), must be chosen appropriately such that the overlap of neighboring
Gaussians is negligible. Just as in the classical case we take for the driving law of the i-th
Gaussian barrier a harmonic function with the same frequency and amplitude but a site-

1The reasons why we consider in the quantum system smooth potentials rather than rectangular barriers as
in the classical case are addressed at a later point in this thesis.
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Figure 6.1: Schematic illustration of the driven lattice

dependent local phase shift ϕi. Accordingly, fi(t) is given by

fi(t) = C cos(ω(t+ t0) + ϕi), (6.4)

where t0 is the initial phase of the driving. In the classical system t0 has been omitted
because a global phase shift is irrelevant for the transport properties of particles initialized
in the chaotic sea which can be understood straightforwardly. Chaotic dynamics leads to
an exponentially fast decay of correlations [5, 87]. Consequently, for the classical lattice the
initial information is erased completely after a few periods of the driving. Thus, the transport
velocity is independent from t0, as long as the initial ensemble is started in the chaotic sea.
On the contrary, the quantum dynamics depends on the initial state so that a dependency
of the magnitude and the direction of the transport on t0 can be expected [60, 88]. In fact,
we will see later that even when no transport is observed in the classical case because the
spatiotemporal symmetries are not broken the quantum system can show a nonzero current
for specific t0.

Before we proceed to the numerical scheme for obtaining the time-evolution operator of
the Schrödinger equation, let us specify briefly the setups whose transport properties will be
studied. In the following the parameters of the potential are fixed to V0 = 1, D = 10, δ = 1/2
and C = 1. In this case the Gaussians decrease rapidly such that the potential between
neighboring barriers becomes negligible, i.e. V (x, t) < 10−16. Accordingly, for this choice
of the parameters V (x, t) can be considered as a sum of localized Gaussian functions which
is an important condition for the later discussion. Analogous to the classical case the local
phase shifts ϕi can be modulated spatially. More precisely, we have chosen the following two
setups:

(a) The local phase shift is zero for all barriers, i.e. ϕi = 0, which corresponds to a lattice of
uniformly, laterally oscillating Gaussian potential barriers. In this case the potential V (x, t)
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is invariant under the parity and the time-reversal transformation, that is

T : x → −x, t → t+
π

ω
, (6.5)

T ′ : x → x, t → −t, (6.6)

which implies the absence of directed transport for symmetry reasons in the classical system.

(b) The local phase shifts ϕi are modulated periodically, i.e. ϕi+nP = ϕi. We have chosen
the constant phase gradient with nP = 3. Accordingly, the sequence of phase shifts ϕi is
{. . . , 0, 2π3 , 4π3 , . . .}. In this case both spatiotemporal symmetries are broken, hence in the
classical system a current is expected to occur.

6.2 Floquet theory

Since the Hamiltonian is periodic in time H(x, t+T ) = H(x, t), (T = 2π
ω ) we can apply “Flo-

quet theory” [67–69]. According to the Floquet theorem there are solutions of the Schrödinger
equation which have the form

Ψλ(x, t) = e−iελt/~Φλ(x, t), (6.7)

where Φλ(x, t) is called “Floquet mode” and has the same period as the Hamiltonian, i.e.

Φλ(x, t+ T ) = Φλ(x, t). (6.8)

ελ is a real number which is referred to as “Floquet energy” or often also “quasienergy”. A
term chosen due to the formal analogy of Eq. (6.7) to the Bloch states with “quasimomen-
tum” κ appearing in solid state physics. Substituting the Floquet solutions (6.7) into the
Schrödinger equation (6.1) yields the following eigenvalue equation for the quasienergies and
the corresponding Floquet modes

HF (x, t)Φλ(x, t) = ελΦλ(x, t), (6.9)

where HF (x, t) is the “Floquet Hamiltonian” given by

HF (x, t) = H(x, t)− i~
∂

∂t
. (6.10)

Straightforward algebra shows that a Floquet solution Ψλ(x, t) has the following shift sym-
metry

Ψλ(x, t) = e−iελt/~Φλ(x, t) (6.11)

= e−i(ελ+n~ω)t/~einωtΦλ(x, t), (6.12)

Evidently, we get a new Floquet eigenstate

Φλn(x, t) = einωtΦλ(x, t) (6.13)
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and its corresponding quasienergy ελn = ελ + n~ω. For n ∈ Z the mode Φλn(x, t) obeys the
same periodicity as Φλ(x, t), i.e. Φλn(x, t + T ) = Φλ(x, t). Still, the physical state Ψλ(x, t)
remains unchanged under this shift transformation which implies that the quasienergies ελ
are defined modulo ~ω. Consequently, we can map ελ to the interval [−~ω/2, ~ω/2], which
is sometimes also called the first Brillouin zone. Another term borrowed from the physics of
periodic solids.

In face of the further discussion it is convenient to define for the Floquet Hamiltonian
HF (x, t) the composite Hilbert space R⊗T consisting of the Hilbert space R of the Hamilto-
nian H(x, t) and the space T of the time-periodic functions (period T = 2π

ω ) [68,89,90]. The
Hilbert space R is spanned by any set of square-integrable functions forming an orthonormal
basis {|α〉} in configuration space whereas the inner product is defined by

〈α|β〉 =
∫ ∞

−∞
dxα∗(x)β(x) = δαβ (6.14)

The temporal part is spanned by the orthonormal set of Fourier vectors {|n〉} satisfying
〈t|n〉 = einωt, n ∈ Z. The inner product in T is given by

〈n|m〉 = 1

T

∫ T

0
dt ei(m−n)ωt = δnm. (6.15)

Accordingly, in the composite Hilbert space R⊗ T the inner product is defined by

〈〈Φλn|Φνm〉〉 = 1

T

∫ T

0
dt

∫ ∞

−∞
dxΦ∗

λn(x, t)Φνm(x, t). (6.16)

The Floquet eigenstates Φλn(x, t) satisfy the orthonormality condition

〈〈Φλn|Φνm〉〉 = δλνδnm (6.17)

and form a complete set in R⊗ T ∑
λn

|Φλn〉〉〈〈Φλn| = 1 (6.18)

It is important to note that the Floquet eigenstates Φλn(x, t) and Φλm(x, t) with n 6= m are
distinct vectors in composite Hilbert space R ⊗ T , i.e. for the expansion of a wavefunction
in R ⊗ T all values of n are needed [67]. Yet, for the expansion of a physical wavefunction
Ψ(x, t) in the Hilbert space R the Floquet modes Φλ(x, t) of the first Brillouin zone n = 0
are sufficient.

6.3 Time-evolution operator

The time evolution operator U(t, t0) which is defined by

Ψ(x, t+ t0) = U(t, t0)Ψ(x, t0), (6.19)

U(t0, t0) = 1 (6.20)
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obeys special properties for periodic Hamiltonians H(t + T ) = H(t). Formally, U(t, t0) can
be written as

U(t, t0) = T exp

(
− i

~

∫ t

t0

dt′H(t′)

)
, (6.21)

where T denotes the time ordering operator. For time-periodic Hamiltonians it can be shown
(Ref. [91]) that the time evolution operator has the following property

U(t+ T, 0) = U(t, 0)U(T, 0), (6.22)

from which immediately follows that

U(nT, 0) = U(T, 0)n. (6.23)

Consequently, the time evolution operator over one period U(T, 0) contains the full informa-
tion needed to propagate stroboscopically a time-periodic quantum system.

Additionally, it is easy to show that the Floquet modes Φλ(x, 0) are eigenstates of U(T, 0)
which becomes immediately obvious from the following considerations [92]. Applying U(T, 0)
to the Floquet solution Ψλ(x, 0) yields

U(T, 0)Ψλ(x, 0) = Ψλ(x, T )

= e−iελT/~Φλ(x, T )

= e−iελT/~Φλ(x, 0)

(6.24)

Moreover, it follows from Eq. (6.7) for t = 0 that we have Ψλ(x, 0) = Φλ(x, 0), i.e.

U(T, 0)Φλ(x, 0) = e−iελT/~Φλ(x, 0) (6.25)

Evidently, Eq. (6.25) is an eigenvalue problem for the Floquet modes Φλ(x, 0) with eigenvalues
e−iελT/~.

6.4 Floquet matrix method

In general, the exact analytical solution of the time-dependent Schrödinger equation with a
Hamiltonian periodic in time is not possible. Therefore, we rely on numerical approaches
in order to compute the Floquet modes and their quasienergies. In this section we address
the so-called “Floquet matrix method” which is based on a representation of the Floquet
Hamiltonian HF in a complete basis of the composite Hilbert space R ⊗ T [67, 68, 92]. We
follow the discussion in [92]. According to the previous discussion it is known that the Floquet
modes Φλ(x, t) and the quasienergies ελ are the solutions of the Eq. (6.9). Since the Floquet
mode Φλ(x, t) is time-periodic, we can expand it in a Fourier series, i.e.

Φλ(x, t) =
∑
m

φ
(m)
λ (x)eimωt, (6.26)

with m ∈ Z. Let us now assume that we have chosen a complete basis for the Hilbert space

R which is denoted in the following by {|β〉}. Each function φ
(m)
λ (x) can be represented in
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terms of the complete set {|β〉}, that is

φ
(m)
λ (x) =

∑
β

φ
(m)
βλ |β〉. (6.27)

Inserting Eqs. (6.26) and (6.27) in the Eq. (6.9) yields∑
βm

(H(x, t) +m~ω)φ(m)
βλ |β〉eimωt =

∑
βm

ελφ
(m)
βλ |β〉eimωt (6.28)

Multiplying this expression from the left with 〈α|e−inωt gives∑
βm

(〈α|H(x, t)ei(m−n)ωt|β〉+m~ω〈α|β〉ei(m−n)ωt)φ
(m)
βλ =

∑
βm

ελφ
(m)
βλ 〈α|β〉ei(m−n)ωt. (6.29)

With the orthonormality conditions (6.14) and (6.15) we get after averaging over one period

T a set of coupled equations for the quasienergies ελ and the expansion coefficients φ
(n)
αλ of

the Floquet modes [92]∑
βm

(〈α|H(n−m)(x)|β〉+m~ωδnmδαβ)φ
(m)
βλ = ελφ

(n)
αλ , (6.30)

where the following definition has been used

H(n−m)(x) =
1

T

∫ T

0
dtH(x, t)ei(m−n)ωt. (6.31)

Since the Hamiltonian H(x, t) is periodic, H(n−m)(x) is the n-m-th expansion coefficient of
the Fourier series of H(x, t), i.e.

H(x, t) =
∞∑

n=−∞
H(n)(x)einωt. (6.32)

If we define the product states |αn〉〉 = |α〉 ⊗ |n〉 in the composite Hilbert space R ⊗ T ,
where {|α〉} is the chosen basis in R and {|n〉} are the Floquet vectors forming the basis in
T (〈t|n〉 = einωt), Eq. (6.30) can be written in form of a matrix eigenvalue equation∑

βm

〈〈αn|HF |βm〉〉φ(m)
βλ = ελφ

(n)
αλ . (6.33)

〈〈αn|HF |βm〉〉 is the time-independent matrix representation of the Floquet Hamiltonian
(“Floquet matrix” [92]) which is given by

〈〈αn|HF |βm〉〉 = H
(n−m)
αβ + n~ωδαβδnm, (6.34)

where H
(n−m)
αβ = 〈α|H(n−m)(x)|β〉 is the matrix representation of the n-m-th Fourier compo-

nent of the Hamiltonian H(n−m)(x) (Eq. (6.31)) in a basis {|α〉} of the Hilbert space R, i.e.
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H
(n−m)
αβ is a (block) matrix in R. In the following we show the typical form of the Floquet

matrix [HF ] = 〈〈αn|HF |βm〉〉

[HF ] =

m = 2 m = 1 m = 0 m = −1 m = −2



. . .

H
(0)
αβ + 2~ω1 H

(1)
αβ H

(2)
αβ H

(3)
αβ H

(4)
αβ n = 2

H
(−1)
αβ H

(0)
αβ + ~ω1 H

(1)
αβ H

(2)
αβ H

(3)
αβ n = 1

H
(−2)
αβ H

(−1)
αβ H

(0)
αβ H

(1)
αβ H

(2)
αβ n = 0

H
(−3)
αβ H

(−2)
αβ H

(−1)
αβ H

(0)
αβ − ~ω1 H

(1)
αβ n = −1

H
(−4)
αβ H

(−3)
αβ H

(−2)
αβ H

(−1)
αβ H

(0)
αβ − 2~ω1 n = −2

. . .

Evidently, [HF ] is a matrix whose elements are again matrices. According to Eq. (6.33) the
quasienergies ελ are the eigenvalues of [HF ], that is solutions of the secular equation [69]

det |[HF ]− ε1| = 0. (6.35)

However, the direct diagonlization of the Floquet matrix [HF ] has the major drawback that
[HF ] is unbounded and must therefore be truncated for numerical calculations. In general,
the number of blocks of the Floquet matrix [HF ], which have to be taken into account in order
to obtain numerically accurate results depends on the question how fast the Fourier series of
the Hamiltonian converges. For example, let us assume that the potential of the Hamiltonian
has the form V (x, t) ∝ cos(ωt). Due to the fact that the Fourier series of the cosine is
simply cos(ωt) = 1

2(e
iωt + e−iωt), the Floquet matrix [HF ] has in this case a tridiagonal

structure because the Fourier components of the Hamiltonian H(n)(x) (Eq. (6.31)) vanish

for |n| > 1, i.e. H
(±2,±3,...)
αβ = 〈α|H(±2,±3,...)(x)|β〉 = 0. Usually, a moderate number of

blocks of the Floquet matrix (e.g. 50 in Ref. [93]) is then sufficient to get converged results.
Evidently, for driving laws with several frequencies, e.g. V (x, t) ∝ cos(ωt) + cos(2ωt) where
the Fourier series of the Hamiltonian possess more nonzero expansion coefficients, the number
of necessary blocks of the Fourier matrix increases, too. Later we will see that in our case
the Fourier expansion of the potential V (x, t) is a relatively slowly converging series so that
a huge number of blocks of the Floquet matrix [HF ] would be needed. Additionally, each
element of [HF ] is again a matrix whose rank depends on the dimension of the basis {|α〉}
of the Hilbert space R. Consequently, the memory needed on a computer for storing the
Floquet matrix [HF ] becomes very large which makes the diagonlization of [HF ] inconvenient
if not impossible. Therefore, in order to determine the Floquet modes and the quasienergies
we have chosen the so-called “propagator method” which makes use of the Floquet matrix
[HF ] but is numerically much easier to handle.

6.5 Propagator method

Contrary to the “Floquet matrix method” which is based on transforming the time-dependent
Floquet problem (6.9) into an infinitely dimensional time-independent eigenvalue equation
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(6.35) the propagator methods exploits the fact that the Floquet modes Φλ(x, 0) are eigen-
vectors of the time-evolution operator over one period U(T, 0) to complex eigenphases e−iελT/~

(Eq. (6.25)). Consequently, representing U(T, 0) in a truncated basis {|α〉} of the Hilbert
space R and diagonalizing the resulting matrix Uαβ(T, 0) yields the Floquet modes Φλ(x, 0)
and their corresponding quasienergies ελ. In the following we explain how Uαβ(T, 0) is cal-
culated. According to [67, 69, 90] the matrix representation of the time evolution operator
U(t, t0) for a time-periodic Hamiltonian in a basis {|α〉} of the Hilbert space R is given by

Uαβ(t, t0) =

∞∑
n=−∞

〈〈αn|e−iHF (t−t0)/~|β0〉〉einωt, (6.36)

where HF is the Floquet Hamiltonian operator (Eq. (6.10)). To determine the one period
time-evolution operator U(T, 0), we divide the period T into small intervals of length ∆t =
T/N such that

U(T, 0) = U(N∆t, (N − 1)∆t) · U((N − 1)∆t, (N − 2)∆t) · . . . · U(∆t, 0). (6.37)

Due to Eq. (6.36) each U(k∆t, (k − 1)∆t) (k ∈ 1, 2, . . . , N) can be written as

Uαβ(k∆t, (k − 1)∆t) =
∞∑

n=−∞
〈〈αn|e−iHF∆t/~|β0〉〉einωk∆t. (6.38)

When N is chosen large enough, the exponential function can be truncated and replaced by
a finite series, i.e.

e−iHF∆t/~ =

kmax∑
k=0

(
− i∆t

~

)k

·
Hk

F

k!
. (6.39)

Inserting Eq. (6.39) in (6.38) leads to

Uαβ(k∆t, (k − 1)∆t) =
∞∑

n=−∞
〈〈αn|

kmax∑
k=0

(
− i∆t

~

)k

·
Hk

F

k!
|β0〉〉einωk∆t

=
∞∑

n=−∞
einωk∆t

kmax∑
k=0

1

k!

(
− i∆t

~

)k

〈〈αn|Hk
F |β0〉〉.

(6.40)

Each 〈〈αn|Hk
F |β0〉〉 is an element in the column m = 0 of the matrix representation of the

Floquet Hamiltonian’s k-th power 〈〈αn|Hk
F |βm〉〉, i.e. 〈〈αn|Hk

F |β0〉〉 is a (block) matrix in
the Hilbert space R. For k = 0 we get

〈〈αn|H0
F |β0〉〉 = 〈〈αn|1|β0〉〉

= δαβδn0,
(6.41)

i.e. the unit matrix in R for n = 0 and the zero matrix elsewise. For k = 1 we have according
to Eq. (6.34)

〈〈αn|HF |β0〉〉 = H
(n)
αβ + n~ωδαβδn0. (6.42)
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Since the Kronecker delta δn0 is zero except for n = 0 the expression can be simplified to

〈〈αn|HF |β0〉〉 = H
(n)
αβ , (6.43)

that is for k = 1 the matrices are given by the Hamiltonian’s n-th Fourier component (Eq.
(6.31)) represented in the basis of the Hilbert space R. For higher powers k ≥ 2 the matrices
〈〈αn|Hk

F |β0〉〉 can be calculated by means of the following scheme [94]. Evidently, the matrix
〈〈αn|Hk

F |βm〉〉 is given by the basis representation of the k-th power of the Floquet Hamil-
tonian HF . It can be obtained by raising the Floquet matrix [HF ] = 〈〈αn|HF |βm〉〉 to the
k-th power, which can be calculated by multiplying [HF ] with the power k− 1 of the Floquet
matrix, i.e.

[Hk
F ] = [HF ] · [Hk−1

F ] (6.44)

In order to simplify the consideration we forget for the time being that each matrix element
of [Hk

F ], [HF ] and [Hk−1
F ] is again a matrix and write in a short form [Hk

F ]nm, [HF ]nm and

[Hk−1
F ]nm. From Eq. (6.40) we know that only the elements in the column m = 0 are needed.

According to the formula for matrix products

cij =
∑
k

aik · bkj (6.45)

these elements can be calculated as

[Hk
F ]n0 =

∞∑
m=−∞

[HF ]nm · [Hk−1
F ]m0, (6.46)

where the sum runs from −∞ to ∞ because we multiply two infinite matrices. Now we take
into account that the [HF ]nm, [Hk−1

F ]nm, [Hk
F ]nm are matrices and go back to the notation

in the composite Hilbert space. For instance, the element [HF ]nm in the n-th row and the
m-th column of the Floquet matrix [HF ] is the (block) matrix 〈〈αn|HF |βm〉〉 in the Hilbert
space R, i.e. [HF ]nm = 〈〈αn|HF |βm〉〉. Correspondingly, the other elements are the matrices
[Hk

F ]n0 = 〈〈αn|Hk
F |β0〉〉 and [Hk−1

F ]m0 = 〈〈αm|Hk−1
F |β0〉〉. Inserting these expressions into

Eq. (6.46) and considering the formula for 〈〈αn|HF |βm〉〉 given by Eq. (6.34) yields the
following recursion formula for 〈〈αn|Hk

F |β0〉〉

〈〈αn|Hk
F |β0〉〉 =

∞∑
m=−∞

(
H

(n−m)
αβ + n~ωδαβδnm

)
· 〈〈αm|Hk−1

F |β0〉〉. (6.47)

Note that this formula is for the block matrices in R. The Kronecker delta δnm in Eq. (6.47)
is zero except for n = m which yields finally [94]

〈〈αn|Hk
F |β0〉〉 =

∞∑
m=−∞

H
(n−m)
αβ · 〈〈αm|Hk−1

F |β0〉〉+ n~ωδαβ · 〈〈αn|Hk−1
F |β0〉〉. (6.48)

Let us discuss a very nice feature of this recursion formula. From Eq. (6.40) we know that for
the computation of the time-evolution operator the storage of the complete matrices of the
sequential powers of the Floquet Hamiltonian 〈〈αn|Hk

F |βm〉〉 is not necessary. Instead, the
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elements in the column m = 0 are sufficient, i.e. 〈〈αn|Hk
F |β0〉〉. Fortunately, the recursion

formula (6.48) reveals that for the calculation of the k-th power elements 〈〈αn|Hk
F |β0〉〉 we

need from the matrices belonging to the power k− 1 only the elements in the column m = 0,
that is 〈〈αn|Hk−1

F |β0〉〉, which reduces significantly the memory requirements on a computer
[94]. Furthermore, the sum over m in Eq. (6.48) can be truncated for the following reason.
In general, the strength of the Fourier components of the Hamiltonian H(n)(x) (Eq. (6.31)),
which is defined by

cn =

∫ ∞

−∞
|H(n)(x)|dx, (6.49)

decreases with increasing n. Accordingly, within numerical precision it can be assumed that
H(n)(x) = 0 holds for |n| > nmax. In this case the sum over m in the recursion formula (6.48)
runs for k = 2 from m = −nmax to nmax because for |m| > nmax we have 〈〈αm|HF |β0〉〉 =
H

(m)
αβ = 〈α|H(m)(x)|β〉 = 0. Additionally, we get from the Eq. (6.48) that the elements of the

squared Floquet Hamiltonian 〈〈αn|H2
F |β0〉〉 are zero if |n| > 2nmax since for larger n the terms

H
(n−m)
αβ in the sum over m vanishes [94]. In general, for an arbitrary power k ≥ 2 the sum

runs from m = −(k− 1)nmax to (k− 1)nmax and we have 〈〈αn|Hk
F |β0〉〉 = 0 if |n| > k ·nmax,

which can be understood straightforwardly. According to the previous section the Floquet
matrix [HF ] is a bandmatrix when the condition H(n)(x) = 0 holds for |n| > nmax. If [HF ] is
raised to a given power, the number of its nonzero secondary diagonals thus doubles, triples,
etc. Consequently, for k ≥ 2 the recursion formula (6.48) can be written as [94]

〈〈αn|Hk
F |β0〉〉 =

(k−1)nmax∑
m=−(k−1)nmax

H
(n−m)
αβ · 〈〈αm|Hk−1

F |β0〉〉+ n~ωδαβ · 〈〈αn|Hk−1
F |β0〉〉 (6.50)

Evidently, the formula for the small step time-evolution operators (6.40) can be simplified to

Uαβ(k∆t, (k − 1)∆t) =

kmax·nmax∑
n=−kmax·nmax

einωk∆t
kmax∑
k=0

1

k!

(
− i∆t

~

)k

〈〈αn|Hk
F |β0〉〉, (6.51)

since for |n| > kmax · nmax the elements 〈〈αn|Hk
F |β0〉〉 in the truncated exponential series

vanish. Finally, the one-period time-evolution operator Uαβ(T, 0) is obtained by multiplying
the sequential Uαβ(k∆t, (k − 1)∆t). Afterwards, the matrix Uαβ(T, 0) is diagonalized which
yields according to Eq. (6.25) the Floquet modes Φλ(x, 0) and their corresponding quasiener-
gies ελ. Consequently, the next question is which basis {|α〉} to choose for the Hilbert space
R. In the following section this problem is discussed.

6.6 Bloch theory

As previously mentioned, the Gaussian barriers are equipped with a periodic phase gradient,
i.e. the local phase shifts obey ϕi+np = ϕi with nP being the period of the phase gradient.
Obviously, this gives rise to a spatial periodicity of the Hamiltonian H(x + L, t), where
L = nP · D is the spatial period with D being the barriers’ equilibrium distance. In the
simultaneous presence of a spatial translation invariance and a temporal periodicity the Bloch
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Figure 6.2: Sketch of the lattice’s unit cell for phase gradient of period one (a), two (b) and three (c).

theorem applies to the Floquet modes, that is

Φλ,κ(x, t) = eiκxϕλ,κ(x, t), (6.52)

with quasimomentum κ ∈ [−π/L, π/L] so that Φλ,κ(x, t) and ελ,κ carry besides λ another
index κ. ϕλ,κ(x, t) is a function which has the same spatial period as the Hamiltonian ϕλ,κ(x+
L, t) = ϕλ,κ(x, t). Due to the spatial periodicity the lattice can be reduced to a unit cell.
In Fig. 6.2 a sequence is shown how the unit cell is defined for phase gradients of different
periods, e.g. for the lattice of uniformly oscillating barriers (nP = 1), the unit cell contains
only one barrier (Fig. 6.2 (a)). Apparently, the number of barriers in a unit cell is equal to
the period of the phase gradient nP . Moreover, the equilibrium positions of the barriers are
always symmetric with respect to x = 0 such that the unit cell extends from −L/2 to L/2.
For the basis of the unit cell we choose the following set of functions {|ακ〉}

|ακ〉 =
1√
L
ei(

2π
L
α+κ)x, (6.53)

where α ∈ Z and κ ∈ [−π/L, π/L] is the quasimomentum. It is easy to see that the set {|ακ〉}
forms an orthonormal basis for the unit cell since

〈ακ|βκ〉 =
1

L

∫ L/2

−L/2
ei

2π
L
(β−α)xdx = δαβ . (6.54)

Additionally, the basis fulfills the Bloch theorem given by Eq. (6.52) because the functions
|ακ〉 can obviously be written as |ακ〉 = eiκx|α〉, where |α〉 are plane-waves having the period
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L, i.e.

|α〉 = 1√
L
ei

2π
L
αx. (6.55)

Thus, if for fixed κ the one-period time-evolution operator Uαβ(T, 0) of the unit cell is repre-
sented in the basis {|ακ〉}, the Floquet modes obtained by diagonalizing Uαβ(T, 0) will obey
the Bloch theorem (6.52) because the basis itself does. In the following the quasimomen-
tum is indicated as a upper index in the time-evolution operator Uκ

αβ(T, 0). Consequently,
the eigenvalue problem (6.25) for the Floquet modes and their corresponding quasienergies
becomes

Uκ
αβ(T, 0)Φλ,κ(x, 0) = e−iελ,κT/~Φλ,κ(x, 0), (6.56)

where the quasimomentum κ is a continuous parameter. Note that Uκ
αβ(T, 0) is the one-period

time-evolution operator of the unit cell for a certain value of κ. Uαβ(T, 0) of the complete
lattice can be imagined as a blockdiagonal matrix whose blocks are the Uκ

αβ(T, 0), i.e. the
time-evolution operators of the unit cell represented in the basis {|ακ〉} for a fixed κ. Before
we proceed to the question how an arbitrary initial wavefunction can be propagated in the
lattice the computation of Uκ

αβ(T, 0) is explained in the following section.

6.7 Unit cell time-evolution operator

In order to calculate the time-evolution operator over one-period Uκ
αβ(T, 0) we have to de-

termine the Fourier components of the Hamiltonian H(x, t) of the unit cell belonging to the
lattice, i.e.

H(n)(x) =
1

T

∫ T

0
dtH(x, t)e−inωt. (6.57)

Inserting in (6.57) the Hamiltonian (Eq. (6.2)) yields

H(n)(x) =

− ~2
2m

∂2

∂x2 + V (n)(x) if n = 0

V (n)(x) else,
(6.58)

where V (n)(x) is the n-th Fourier component of the potential of the unit cell given by

V (n)(x) =
1

T

∫ T

0
dtV (x, t)e−inωt. (6.59)

According to the previous section the potential of the unit cell V (x, t) is given by

V (x, t) =

nP∑
i=1

V0 exp

(
−
(
x− x0,i − fi(t)

δ

)2
)
, (6.60)

where nP is the phase period and fi(t) = C cos(ω(t + t0) + ϕi) is the driving law (Fig. 6.1
and 6.2). In order to ensure that the barriers are always placed symmetrically with respect
to the origin of the unit cell x = 0, the equilibrium position x0,i has to be chosen such that

x0,i = (i− nP )
D

2
, (6.61)



6.7 Unit cell time-evolution operator 93

where D is the equilibrium distance. For example, the unit cell belonging to the lattice of
uniformly oscillating barriers, i.e. nP = 1, ϕi = 0, contains one barrier placed at x0,1 = 0
(Fig. 6.2 (a)). For a lattice with a phase gradient of period three, i.e. nP = 3, ϕi+nP = ϕi, the
equilibrium positions of the barriers forming the unit cell are x0,1 = −D, x0,2 = 0 and x0,3 = D
(Fig. 6.2 (b)). Let us now discuss how to calculate the Fourier series of the potential of the
unit cell V (x, t) for arbitrary phase periods nP , initial phase t0 and phase shifts ϕi. To this
end we start by determining the Fourier components of a single laterally oscillating Gaussian
potential and subsequently it is shown how this result can be generalized. Obviously, the
potential of one Gaussian potential VSB(x, t) with lateral driving f(t) = C cos(ω(t+ t0) +ϕi)
is given by

VSB(x, t) = V0 exp

(
−
(
x− f(t)

δ

)2
)

(6.62)

Its n-th Fourier component is

V
(n)
SB (x) =

1

T

∫ T

0
dtVSB(x, t)e

−inωt

=
V0

T

∫ T

0
dt exp

(
−
(
x− C cos(ω(t+ t0) + ϕi)

δ

)2
)
e−inωt

(6.63)

Let us now assume that t0 = ϕi = 0 and consider ϕi 6= 0, t0 6= 0 afterwards, i.e.

V
(n)
SB (x) =

V0

T

∫ T

0
dt exp

(
−
(
x− C cos(ωt)

δ

)2
)
e−inωt

=
V0

T

∫ T

0
dt exp

(
−
(
x− C cos(ωt)

δ

)2
)
(cos(nωt)− i sin(nωt))

=
V0

T

∫ T

0
dt exp

(
−
(
x− C cos(ωt)

δ

)2
)
cos(nωt)

(6.64)

where we have used in the last line that due to the cosine-driving the exponential is sym-
metric in the variable t whereas sine is antisymmetric, i.e. the integrand is antisymmetric,
too. Evidently, the integral over one period of a antisymmetric periodic function vanishes.
Additionally, one can make the substitution τ = ωt yielding finally

V
(n)
SB (x) =

V0

2π

∫ 2π

0
dτ exp

(
−
(
x− C cos(τ)

δ

)2
)
cos(nτ). (6.65)

Let us now generalize to the case t0 6= 0, ϕi 6= 0, i.e. we determine the n-th Fourier
component of a single, laterally oscillating Gaussian with arbitrary initial phase and local
phase shift. Obviously, the Fourier series of the single laterally oscillating Gaussian potential
VSB(x, t) is given by

VSB(x, t) =

∞∑
n=−∞

V
(n)
SB (x)einωt (6.66)
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By means of the transformation

t → t+ t0 +
ϕi

ω
(6.67)

we get to the case of nonzero t0, ϕi and the Fourier series becomes

VSB(x, t+ t0 +
ϕi

ω
) =

∞∑
n=−∞

V
(n)
SB (x)ein(ω(t+t0)+ϕi) (6.68)

Accordingly, putting t0 to a non-zero value and giving the barrier a phase shift ϕi leads to a
complex phase shift of the Fourier component, i.e.

Ṽ
(n)
SB (x) = V

(n)
SB (x)ein(ωt0+ϕi). (6.69)

By means of this result we can now construct the Fourier components for the unit cell po-
tential. Due the fact that the Gaussian potentials are localized the Fourier series of a sum
of potentials can be constructed by a superposition of the single barrier expressions. For the
n-th Fourier component V (n)(x) of the unit cell potential for a lattice with phase period nP

this yields

V (n)(x) =

nP∑
i=1

V
(n)
SB (x− x0,i)e

in(ωt0+ϕi), (6.70)

where the sum runs over the number of barriers in the unit cell and V
(n)
SB (x− x0,i) is the n-th

single barrier Fourier component given by Eq. (6.65).

Let us now represent V (n)(x) in the basis of the unit cell {|ακ〉}, i.e. V (n)
αβ = 〈ακ|V (n)(x)|βκ〉,

which yields

V
(n)
αβ =

1

L

∫ L/2

−L/2
dxV (n)(x)ei

2π
L
(β−α)x

=
1

L

∫ L/2

−L/2
dx

nP∑
i=1

V
(n)
SB (x− x0,i)e

in(ωt0+ϕi)ei
2π
L
(β−α)x,

(6.71)

where the Fourier component given by Eq. (6.70) has been inserted in the second line. Since
the Gaussian potentials forming the unit cell are localized, i.e. there is no significant overlap,
the sum and integration can be interchanged, that is

V
(n)
αβ =

nP∑
i=1

1

L

∫ L/2

−L/2
dxV

(n)
SB (x− x0,i)e

in(ωt0+ϕi)ei
2π
L
(β−α)x (6.72)

By means of the transformation x̃ = x− x0,i we get

V
(n)
αβ =

nP∑
i=1

1

L

∫ L/2

−L/2
dx̃V

(n)
SB (x̃)ein(ωt0+ϕi)ei

2π
L
(β−α)(x̃+x0,i). (6.73)

The bounds of the integration do not change because the Gaussian potentials are zero outside
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of the unit cell extending from −L/2 to L/2. Finally, we get

V
(n)
αβ =

nP∑
i=1

1

L

∫ L/2

−L/2
dx̃V

(n)
SB (x̃)ei

2π
L
(β−α)x̃ei(n(ωt0+ϕi)+

2π
L
(β−α)x0,i)

=

nP∑
i=1

Ṽ
(n)
αβ ei(n(ωt0+ϕi)+

2π
L
(β−α)x0,i),

(6.74)

where Ṽ
(n)
αβ = 〈ακ|V (n)

SB (x)|βκ〉 is the matrix representation of the n-th Fourier component

corresponding to a single oscillating barrier V
(n)
SB (x) (Eq. (6.65)) in the unit cells’ basis

{|ακ〉}. Obviously, the matrix representation of the n-th Fourier component belonging to the

complete potential of the unit cell V
(n)
αβ can be determined in the following way. First, we

represent the single barrier expression V
(n)
SB (x) given by Eq. (6.65) in the basis of the unit

cell yielding Ṽ
(n)
αβ . Afterwards, V

(n)
αβ is calculated by multiplying Ṽ

(n)
αβ with a sum of complex

phase factors ei(n(ωt0+ϕi)+
2π
L
(β−α)x0,i) originating from the initial phase t0, the local phase

shifts ϕi and the nonzero equilibrium positions x0,i of the barriers constituting the unit cell.

With V
(n)
αβ we can now give the matrix representation of the n-th Fourier component of the

Hamiltonian H(x, t) of the unit cell, i.e. H
(n)
αβ = 〈ακ|H(n)(x)|βκ〉. In the chosen basis {|ακ〉}

the operator of the kinetic energy is a diagonal matrix which yields

H
(n)
αβ =


~2( 2π

L
α+κ)

2

2m δαβ + V
(n)
αβ if n = 0

V
(n)
αβ else,

(6.75)

Now the time-evolution operator of the unit-cell Uκ
αβ(T, 0) for a fixed κ can be calculated

according to method presented in Sec. 6.5.

Let us briefly comment on why we have chosen Gaussian potentials instead of the rect-
angular barriers. According to the discussion in the previous sections it is obvious that the
numerical effort, i.e. computation time and memory requirements, depends crucially on the
convergence of the Fourier series of the potential V (x, t). Faster convergence implies less
memory requirements for storing the matrices on a computer etc. Consequently, it is feasible
to study how V (n)(x) depends on n. To this end we calculate the average of the n-th Fourier

component of a single oscillating Gaussian potential V
(n)
SB (x) in the following way

cn =

∫ ∞

−∞
dx|V (n)

SB (x)| (6.76)

In Fig. 6.3 the first four Fourier coefficients V
(n)
SB (x) of the single laterally oscillating Gaussian

potential are shown for the following parameter choice V0 = 1, , C = 1, δ = 1/2. In
Fig. 6.4 we show cn as a function of n in semilogarithmic plot. As we see, cn decreases
exponentially with n. Since for n 6= 0 the Fourier coefficients of the Hamiltonian and the
potential are identical, it follows that |H(n)(x)| decays exponentially, too. Conversely, for a
laterally oscillating rectangular barrier, one gets only linear decay, i.e. |H(n)(x)| ∼ 1

|n| [95–97],
which can be traced back to the discontinuous form of the rectangular potential. Through the
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for δ = 1/2, C = 1,V0 = 1.

lateral movement this discontinuity becomes “transfered” to the time-domain leading to the
exceedingly slow decrease. When calculating the time-evolution operator this implies that
for a laterally oscillating rectangular barrier the sum over the Fourier components has to be
performed over a broader range than for a laterally oscillating Gaussian barrier. Consequently,
the Gaussian potential makes the numerical algorithm much more efficient in terms of memory
requirements on a computer. Due to the fact that the effects observed for the classical regime
do not depend on the shape of the potential, we have decided due to aforementioned reasons
to consider Gaussian potentials.

6.8 Time-evolution of wavefunctions and observables

Before we proceed to the discussion concerning how an arbitrary initial state can be propa-
gated in time let us briefly comment on the impact of the initial phase t0 of the driving on
the dynamics. From the previous discussion we have learned that t0 enters in the calculation
of the one-period time evolution operator, i.e. Uκ

αβ(T, 0) depends on t0. Accordingly, the
Floquet modes obtained by diagonalizing the matrix Uκ

αβ(T, 0) depend as well on t0, so that
we write in the following Φλ,κ(x, t, t0).

From the discussion on Floquet theory we know that the Floquet modes Φλ,κ(x, t, t0) of the
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Figure 6.4: Average of the Fourier coefficients cn of a harmonically oscillating Gaussian barrier with param-
eters V0 = 1, C = 1, δ = 1/2.

first Brillouin-zone form an orthonormal basis of the Hilbert space R for fixed time t. Due
to the translation invariance H(x+ L, t) = H(x, t) of the Hamiltonian, one can think about
R being sliced into subspaces characterized by the quasimomentum κ ∈ [−π/L, π/L] [88].
Consequently, the evolution of an arbitrary initial state is obtained by writing its wavefunction
Ψ(x, t) for fixed quasimomentum κ and time t as a superposition of the Floquet modes and
average subsequently over κ [51], that is

Ψ(x, t) =
L

2π

∫ π/L

−π/L
dκ
∑
λ

cλ,κ(t0)e
−iελ,κt/~Φλ,κ(x, t, t0), (6.77)

where the expansion coefficients cλ,κ(t0) are given by overlapping the initial wavefunction
Ψ(x, t = 0) with the Floquet modes Φλ,κ(x, t = 0, t0), that is

cλ,κ(t0) =

∫ ∞

−∞
Φ∗
λ,κ(x, 0, t0)Ψ(x, 0)dx. (6.78)

As we see, the coefficient cλ,κ(t0) depend on the initial phase of the driving. For stroboscopic
points in time, which are multiples of the driving period T , Eq. (6.77) can be written due to
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the periodicity of the Floquet modes Φλ,κ(x,mT, t0) = Φλ,κ(x, 0, t0) as

Ψ(x,mT ) =
L

2π

∫ π/L

−π/L
dκ
∑
λ

cλ,κ(t0)e
−imελ,κT/~Φλ,κ(x, 0, t0), (6.79)

where the Φλ,κ(x, 0, t0) and their corresponding ελ,κ are obtained numerically from Eq. (6.56).
By means of expression (6.79) any initial wavefunction can be propagated stroboscopically so
that we can study the long-term quantum dynamics.

In order to study the transport properties of the laterally driven lattice the expectation
value of the position 〈x(t)〉 has to calculated which gives [51]

〈x(t)〉 =
∫ ∞

−∞
dxx|Ψ(x, t)|2

= v(t0)t+ o(t),

(6.80)

where the asymptotic transport velocity v(t0) can be be expressed very efficiently [51, 60] in
the basis of the Φλ,κ(x, 0, t0) via

v(t0) =
L

2π

∫ π/L

−π/L
dκ
∑
λ

|cλ,κ(t0)|2vλ,κ. (6.81)

vλ,κ is the average velocity of a Floquet mode over one period of the driving, i.e.

vλ,κ =
1

T

∫ T

0
dt〈Φλ,κ(x, t, t0)|v̂|Φλ,κ(x, t, t0)〉, (6.82)

with v̂ = p̂/m. In general, the average current depends on the initial phase t0 of the driving
because the overlap coefficients cλ,κ(t0) of the initial wavefunction with the Floquet modes
do. Without averaging the velocity of the Floquet mode over one period we would calculate
the velocity of the wavepacket at stroboscopic points in time, which can be nonzero although
the average vanishes. By means of a generalization of the Hellmann-Feynman theorem to
time-periodic systems vλ,κ can be related to the slope of the quasienergy bands [46, 51, 89]
according to

vλ,κ =
1

~
dελ,κ
dκ

, (6.83)

i.e. the average transport velocity of the Floquet mode Φλ,κ(x, t, t0) is given by the first
derivative of the corresponding quasienergyband ελ,κ with respect to the quasimomentum κ.

6.9 Quasienergy spectrum

According to the previous discussion it is expedient to study the quasienergy bands ελ,κ of
the driven lattices in order to understand whether transport occurs or not. To this end
we solve Eq. (6.56) for discrete values of the quasimomentum κ ∈ [−π/L, π/L]. Let us
first start with the quasienergy spectrum of the lattice of uniformly oscillating Gaussian
barriers, i.e. setup (a) with ϕi = 0. In this case the potential V (x, t) is invariant under
the generalized parity- and time-reversal transformations given by Eq. (6.5) and (6.6). Fig.
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Figure 6.5: Quasienergyspectrum for a lattice of uniformly oscillating Gaussian barriers, i.e. ϕi = 0 for all i,
with V0 = 1, δ = 1/2, C = 1.

6.5 shows the corresponding quasienergy bands. Due to the fact that both transformations
reverse the sign of κ and therefore map the negative branch of the quasienergy band ελ,−κ

onto the positive part ελ,κ, the spectrum is mirror-symmetric with respect to κ = 0, that is
ελ,−κ = ελ,κ [88]. Due to this mirror-symmetry of the quasienergies, the average velocity of
the Floquet modes obeys vλ,−κ = −vλ,κ. Moreover, in the presence of the parity or time-
reversal symmetry of the potential the quasienergy bands have zero slope for κ = 0, i.e.
the average velocity of the corresponding Floquet mode vanishes vλ,κ=0 = 0 [60]. Indeed,
zooming in Fig. 6.5 reveals that at κ = 0 all bands are flat. Consequently, for the lattice
of uniformly oscillating barriers the transport velocity is zero independent from the initial
phase t0 whenever the initial state has no overlap with Floquet modes possessing nonzero
quasimomentum [60]. For example, the initial state Ψ(x, 0) = 1/

√
L, corresponding to a

uniform distribution of particles over the whole lattice, belongs to the subspace with κ = 0.
However, for more realistic initial states, e.g. when the particle are distributed only over
a few unit cells of the lattice, the situation can be drastically different. In this case the
initial wavefunction is not restricted in quasimomentum space to the line κ = 0 but possesses
a certain distribution. Therefore, according to formula (6.81) the asymptotic transport is
composed of the contributions from the various Floquet modes Φλ,κ(x, t) weighted with their
overlap coefficients cλ,κ(t0). Depending on the initial phase t0 of the driving the overlap
coefficients of the initial wavefunction Ψ(x, 0) with the Floquet modes can be asymmetric with
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Figure 6.6: Quasienergyspectrum for a lattice of oscillating Gaussian barriers and a linear increasing periodic
phase shift of period three, i.e. ϕi = {. . . , 0, 2π/3, 4π/3, . . .}, with V0 = 1, δ = 1/2, C = 1.

respect to κ = 0, that is cλ,−κ(t0) 6= cλ,κ(t0), such that transport can become nonzero [88].

Let us now come to the discussion how breaking the spatiotemporal symmetries given by
the generalized parity and time-reversal transformations leaves its hallmark in the appearance
of the quasienergy spectrum. To this end we study the quantum dynamics of the lattice
of laterally oscillating Gaussian potentials with linear phase gradient of period three, i.e.
ϕi = {. . . , 0, 2π/3, 4π/3, . . .}. For this choice of the phase gradient both spatiotemporal
symmetries are broken. Fig. 6.6 shows the corresponding quasienergy spectrum. Comparing
Fig. 6.5 and 6.6 reveals immediately that the quasienergy bands possesses no longer the
previously summarized characteristics. In fact, the spectrum looks for the lattice with the
phase gradient much more “chaotic”. Due to the asymmetry of the quasienergy band it is
plausible to assume that the phase gradient leads in general to the occurrence of a directed
transport even if the initial state is restricted to the subspace κ = 0 [60].

6.10 Husimi representation of Floquet modes

In this section we discuss how a breaking of the spatiotemporal symmetries manifests itself
in the Husimi representation of Floquet modes. The Husimi representation is a method to
visualize on a coarse-grained scale the distribution of a quantum state in the classical phase
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Figure 6.7: Husimi representation of two Floquet modes for zero quasimomentum for the lattice of uniformly
oscillating Gaussian potentials ϕi = 0. The parameters of the potential are δ = 1/2, C = 1 and V0 = 1.

space [98,99]. In general, it is defined by the overlap of a quantum state |Ψ〉 with a coherent
state |Φ(x, p)〉 centered at the phase space point (x, p), i.e.

ρ(x, p) =
1

2π
|〈Φ(x, p)|Ψ〉|2. (6.84)

|Φ(x, p)〉 is the quantum state of a Gaussian wave packet centered at (x, p), that is

〈x̃|Φ(x, p)〉 = (πσ2)−1/4 exp

(
−(x− x̃)2

2σ2
+ ipx̃

)
(6.85)

Fig. 6.7 shows ρ(x, p) of two Floquet modes with zero quasimomentum and small average
energy for the lattice of uniformly oscillating Gaussian potentials. Evidently, the Husimi
representation ρ(x, p) is symmetric with respect to p = 0 which reflects the existence of the
spatiotemporal symmetries of the potential. In fact, the Husimi representations ρ(x, p) of the
other Floquet modes obey as well this mirror-symmetry. Consequently, the Floquet modes
with κ = 0 are non-transporting in the lattice of uniformly oscillating Gaussian barriers. Still,
the absence of a current cannot be deduced from this fact because for the transport properties
of an arbitrary initial state the Floquet modes with nonzero quasimomentum contribute, too.

Fig. 6.8 shows two Floquet modes with zero quasimomentum in the lattice where the
spatiotemporal symmetries of the potential are broken by means of the period three phase
gradient ϕi = {. . . , 0, 2π/3, 4π/3, . . .}. Accordingly, the Floquet modes with κ = 0 get
desymmetrized with respect to p = 0 such that they carry non-zero average velocity, i.e.
vλ,κ=0 6= 0. Contrary to the uniformly driven lattice we would in this case get a current even
if the initial state is restricted to the subspace with zero average momentum, e.g. Ψ(x, 0) =
1/

√
L. Moreover, although the transport properties for other initial states cannot be judged
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Figure 6.8: Husimi representation of two Floquet modes for zero quasimomentum for the lattice with phase
period three ϕi = {. . . , 0, 2π/3, 4π/3, . . .}. The parameters of the potential are δ = 1/2, C = 1 and V0 = 1.

prior to the evaluation of Eq. (6.81), it is reasonable to assume that in these cases the current
acquires a nonzero value, too.

6.11 Transport

In this section the transport properties of the driven lattices with different phase periods are
studied. As initial state we choose a Gaussian wave packet, i.e.

Ψ(x, t = 0) = (πσ2)−1/4 exp

(
− x2

2σ2

)
, (6.86)

where σ is the initial width of the wave function. In the quasimomentum space the wavefunc-
tion is symmetric with respect to κ = 0, that is Ψ(−κ, 0) = Ψ(κ, 0). By increasing the initial
width of the wavefunction in real space σ, the wavefunction becomes narrower in quasimo-
mentum space. Conversely, for a very narrow wave packet in real space its distribution in
quasimomentum space is broad. From the previous discussions we know that the lattice of
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Figure 6.9: Transport velocity as a function of the initial phase for a lattice of uniformly oscillating Gaussian
barriers ϕi = 0 (a) and a lattice with a phase gradient of period three ϕi = {. . . , 0, 2π/3, 4π/3, . . .} (b). The
parameters are δ = 1/2, C = 1 and V0 = 1

uniformly oscillating barriers will not show a current for an initial state which is very broad in
real space because the Floquet modes with zero quasimomentum are non-transporting in this
case. Contrary, a current will be observed in the lattice with the periodic phase gradient since
these Floquet modes are desymmetrized. Yet, for a general Gaussian wavepacket possessing
the width σ in real space we have to evaluate Eq. (6.81) in order to judge whether or not a
current can be observed and in which direction the particles are transported. Figure 6.9 (a)
shows for ω = 1 (frequency of the driving) the transport as a function of the initial phase
t0 for a Gaussian wave packet with variance σ = 6π for the lattice of uniformly oscillating
Gaussian potentials, i.e. no phase gradient ϕi = 0. Although for each t0 the Hamiltonian
of the system possesses the generalized parity and time-reversal symmetry, the current does
not vanish in general except at t0 = 0, π, 2π. As previously mentioned, the appearance of
the current is due to the fact that the overlap coefficients of the initial wavefunction with
the Floquet modes cλ,κ(t0) are not symmetric with respect to κ = 0 (cλ,−κ(t0) 6= cλ,κ(t0)).
Obviously, this behavior is a big difference to the classical system, where independent of the
initial phase the transport is zero, if one of the spatiotemporal symmetries of the potential is
established. Still, v(t0) is point-symmetric with respect to t0 = π, i.e. v(t0 + π) = −v(t0 − π)
so that the average 〈v〉 of the transport velocity over one period of t0 is zero, i.e.

〈v〉 = 1

T

∫ T

0
v(t0)dt0 = 0 (6.87)

Contrary, we get for the same initial state in the lattice with phase gradient of period three
ϕi = {. . . , 0, 2π/3, 4π/3, . . .} a non-vanishing current independent of t0 (Fig. 6.9 (b)). Ac-
cordingly, the average transport acquires as well a nonzero value 〈v〉 = −0.021. It is important
to note that in the quantum case the properties of the transport like the direction or the mag-
nitude depend not only on the properties of the driven lattice but also crucially on the initial
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Figure 6.10: Transport velocity averaged over the initial phase t0 in the lattice with phase period three
ϕi = {. . . , 0, 2π/3, 4π/3, . . .} as a function of the driving frequency. The parameters are σ = 6π, δ = 1/2,
C = 1 and V0 = 1.

state. Consequently, the curves shown in Fig. 6.9 look possibly different for another width
of the Gaussian wave packet σ. The transport can be tuned by e.g. varying the frequency of
the driving while keeping the phase gradient and all other parameters like the initial width
of the wavepacket σ fixed which can be seen from Fig. 6.10. In this plot the average current
〈v〉 is shown as a function of the frequency of the driving. Obviously, by tuning the frequency
from 1 to 1.5 the direction and the magnitude of the average transport can be manipulated.



Chapter 7

Summary

In this thesis we have investigated the classical and the quantum dynamics of non-interacting
particles loaded into spatiotemporally driven lattices. Due to the fact that the spatial and
the temporal dependency of the corresponding time-dependent driving force do not decouple,
i.e. the driving is local, novel interesting phenomena are evoked.

In the first part of the classical study we have seen that the particles which are loaded with
small initial momentum in the driven lattice obey chaotic or regular dynamics, that is the
classical phase space of the system is mixed [100]. By adjusting the parameters of the barriers
and their corresponding driving laws specific parts of the phase space can be manipulated in
a controllable manner while the remaining portion stays mainly unaffected. We have found
that by means of a suitable choice of the local phase shifts for the barriers’ driving laws the
generalized parity and time-reversal symmetries of the Hamiltonian, identified in Ref. [44],
can be broken leading to directed transport. The origin of this transport has been traced
back to a desymmetrization of the chaotic sea in phase space with respect to p = 0 [45,46,51].
Properties of the transport like its direction or the magnitude can be tuned by adjusting
the local phase shifts or parameters of the barriers (e.g. the potential height) whereas the
most simplest way to revert the direction of the transport is by inverting the phase gradient
[100]. Commonly, the phase space asymmetry is achieved by applying globally a biharmonic
driving [33,37,44,47,48,51]. For this driving law a kinematic argument considering the single
barrier dynamics is sufficient to explain the occurrence of a desymmetrization of the extended
system’s phase space, i.e. each barrier is transporting itself and the lattice inherits this
property [100]. In this thesis it has been shown that a simple harmonic driving law together
with a local breaking of certain symmetries of the unit cell implemented by local phase
shifts is sufficient to generate a current of particles although each individual barrier is non-
transporting. Consequently, the occurrence of the directed transport is in this case a collective
phenomenon, i.e. the transport becomes a property of the lattice. Furthermore, we have found
super-diffusion in configuration space for all studied driven lattices which is due to the mixed
phase space structure [47, 51] leading to alternating dynamics between phases of diffusive
motion and ballistic flights originating e.g. from stickiness to elliptic islands [47, 51, 100].
Moreover, we have seen that when each barrier is driven harmonically and equipped with an
appropriately chosen phase shift it is possible to evoke localized chaotic dynamics at certain
locations in the lattice, i.e. the corresponding trajectories are trapped between neighboring
barriers [100]. This interesting effect has been exploited in [85] to demonstrate the selective
trapping of particles in driven lattices which can be useful for e.g. quantum information
processing.

As the next step in the classical study we have considered the impact on the non-equilibrium
particle dynamics of breaking the generalized parity and time-reversal symmetries inhomo-
geneously by applying a spatially different time-periodic force [101]. Specifically, we have
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considered a lattice possessing domains, each consisting of many barriers, and subject to dif-
ferent driving laws whereas neighboring domains feature oppositely directed local currents.
At the interfaces between the differently driven blocks the particles can exhibit conversions
of their dynamical character (ballistic / chaotic). By analyzing thoroughly the dynamics of
single trajectories and the phase space properties of the domains we have identified the origin
of these crossovers. The “local phase spaces” of adjacent blocks are concatenated at an inter-
face which enables the particles to switch between the different phase space components in
the blocks, e.g. by crossing the interface the particle can be injected from the chaotic sea into
an elliptic island which is equivalent to a crossover from diffusive to ballistic dynamics [101].
Meanwhile, these phase space injection processes have been studied in finite systems which
can transform an ensemble of diffusive particles into a pulsed, mono-energetic beam [84]. Fur-
thermore, by overlapping appropriately the “local” phase spaces it has been found that the
interfaces with incoming and outgoing flux are not equivalent with respect to the dynamical
conversion properties occurring at their positions which leaves its hallmarks in the evolution
of an ensemble of particles propagating in such a bimodally driven lattice [101]. It has been
found that the trajectories typically obey alternately phases of ballistic and diffusive motion
at the scale of one domain. For the temporal evolution of the spatial particle distribution ρ(x)
this behavior causes transient periodic modulations of ρ(x) possessing local minima / maxima
in a block which are smoothed out in the asymptotic time limit. By feeding the system with
a constant beam of particles the periodic modulations of the spatial particle distribution ρ(x)
become asymptotically stable. If the interfaces are additionally moved through the lattice by
a suitable time-dependent manipulation of the driving laws, the distribution ρ(x) will follow
approximately adiabatic this movement, i.e. the shape of ρ(x) is preserved. Consequently,
by means of this procedure the particle distribution is rendered into a propagating density
wave.

In the quantum regime of the driven lattice the time-dependent Schrödinger equation has
been solved by combining Floquet- and Bloch theory which are the mathematical frameworks
for a Hamiltonian being periodic in time and space, respectively. We have obtained an
eigenvalue equation for the Floquet modes Φλ,κ(x, t) and their corresponding quasienergies
ελ,κ which contain the complete information in order to propagate an arbitrary initial wave
function and to calculate the asymptotic transport velocity. For the lattice of uniformly
oscillating barriers it has been confirmed that a current can be evoked depending on a global
initial phase shift of the barriers although the Hamiltonian is invariant under the generalized
parity and time-reversal transformation. Evidently, this behavior is a pure quantum effect
because the transport vanishes in the classical system for an ensemble of particles in the
chaotic sea when one of the spatiotemporally symmetries is established [44,51]. Finally, it has
been shown that by changing the frequency of the driving the quantum transport in a phase
modulated lattice with monochromatic driving can be tuned in direction and magnitude.

For further studies in the classical regime it would be expedient to consider the non-
equilibrium dynamics when the oscillation of the barriers gets influenced by the interaction
with the particles. In doing so, one could study whether memory effects play a role for the
transport. In the quantum regime an interesting question is whether the classical dynamical
conversion processes happening in the block-structured lattices leave their hallmarks also in
the quantum dynamics.



Appendix A

Detection of periodic orbits in the Poincaré surface of
section

In this appendix we present two methods for calculating the periodic orbits of the driven
lattice. The first scheme is based on the symmetry properties of the corresponding trajectories
in real space. Thus it is suitable for orbits where the particle undergoes only few collisions.
The second method uses a variational principle and is based on the ideas in [76, 102]. It can
be applied to orbits with many collisions.

A.1 Periodic orbits with few collisions

In the following we show how the position of dominant elliptic islands in the PSS can be
calculated analytically using the example of the monochromatically, uniformly driven lattice
with the parameters defined in Sec. 3.1, i.e. V0 = 0.16, l = 0.4, C = 1, m = 1, D = 4.4 and
ω = 1. In Ref. [70] the authors have shown that due to the point-like interaction between the
barrier and the particles it is possible to determine analytically the position in the Poincaré
surface of section of the elliptic island corresponding to trapped dynamics in the scattering
region of a single barrier by exploiting symmetry properties of the central periodic orbit (Fig.
A.1 (a)). According to Ref. [70] the phase of the first collision is given by the root of the
following function

f(ξ1) =

(
2 cos(ξ1)− l

C

π − 2ξ1

)2

·

(
2 sin(ξ1)(π − 2ξ1)

2 cos(ξ1)− l
C

− 1

)
− V0

V ′ , (A.1)

with V ′ = m
2 ω

2C2. Once ξ1 is known the other collision phases are given by

ξ2 = π − ξ1,

ξ3 = π + ξ1,

ξ4 = 2π − ξ1.

Fig. A.2 shows f(ξ1) (blue line) for the parameters of the monochromatically uniformly
driven lattice. As we see, there are two roots and the physical significant one lies to the right
of the function’s maximum [70]. Applying the Newton-Raphson method to Eq. (A.1) yields
ξ1 ≈ 1.32. Since the velocity of the particle before the collision is zero, its position at t = 0
is calculated straightforwardly by calculating the position of the barrier’s left edge at phase
ξ1 (Fig. A.1 (a)), i.e.

xb,0(ξ1) = − l

2
+ C cos(ξ1) ≈ 0.05. (A.2)
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Figure A.1: Trajectories in real space in the monochromatically, uniformly driven lattice corresponding to the
elliptic islands belonging to trapped dynamics (a) and winding numbers w = 2 (b).

Consequently, the central periodic orbit is at x ≈ 0.05, p = 0 which coincides perfectly with
the PSS (Fig. 3.1 (a)). In the following it is shown that the position of dominant ballistic,
elliptic islands can be calculated similiarly using the example of the island with winding
number w = 2.

As we see, the trajectory is symmetric with respect to π
2 (see Fig. A.1 (c)), i.e. ξ4 = π− ξ1

and ξ3 = π − ξ2. Consequently the particle’s velocity in the first barrier equals the velocity
in the second one, that is v1 = v3. According to Eq. (2.17) the particle’s velocity after the
first v1 and the third collision v3 is

v1 = vb,0(ξ1) +

√
(v0 − vb,0(ξ1))

2 − 2V0

m
, (A.3)

v3 = vb,0(ξ3) +

√
(v2 − vb,0(ξ3))

2 − 2V0

m
, (A.4)

where we have omitted the sign in both cases because the collisions at ξ1 and ξ3 occur when
the barrier moves contrary to the particle. With ξ3 = π − ξ1 and vb,0(ξ) = −ωC sin(ξ) the
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Figure A.2: The root of the function f(ξ1), which lies to the right of the maximum is the phase of the first
collision ξ1 of the central periodic orbit for the elliptic island corresponding to trapped dynamics (Fig. A.1
(a)).

condition v1 = v3 yields the following relation

f1(ξ1, ξ2) = sin(ξ1)− sin(ξ2) +

√
(v2 + sin(ξ2))

2 − V0

V ′

−
√

(v0 + sin(ξ1))
2 − V0

V ′ = 0

(A.5)

The initial velocity v0 is determined as follows. The corresponding time span ∆t1 between
the collision at ξ1 and ξ4 is

∆t1 =
ξ4 − ξ1

ω
=

π − 2ξ1
ω

. (A.6)

The remaining distance is covered by the particle during ∆t2 which is given by

∆t2 =
2L−∆x

v0
, (A.7)

where ∆x is the distance between the first and fourth collision. Thus, ∆x is derived from

∆x = xb,1(ξ4)− xb,0(ξ1)

= x0,1 +
l

2
+ C cos(ξ4)−

(
x0,0 −

l

2
+ C cos(ξ1)

)
= L+ l − 2C cos(ξ1).

(A.8)
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Consequently, the initial velocity v0 is found as before from the condition

∆t1 +∆t2 = T. (A.9)

Plugging ∆t1 and ∆t2 into this equation and solving it for v0 yields

v0 = ωC
L−l
C + 2 cos(ξ1)

π + 2ξ1
. (A.10)

In order to determine the particle’s velocity v2 between the second and third collision we
proceed as follows. ∆t1 is the sum of the time intervals [0, ξ2] and [ξ3, 2π], that is

∆t1 =
2π − ξ3 + ξ2

ω
=

π + 2ξ2
ω

. (A.11)

∆t2 is the time between the second and third collision, i.e.

∆t2 =
∆x

v2
, (A.12)

where ∆x is simply

∆x = xb,1(ξ3)− xb,0(ξ2)

= x0,1 −
l

2
+ C cos(ξ3)−

(
x0,0 +

l

2
+ C cos(ξ2)

)
= L− l − 2C cos(ξ2).

(A.13)

The sum of ∆t1 and ∆t2 is one period of the driving T = 2π/ω which yields finally the
velocity after the second collision

v2 = ωC
L−l
C − 2 cos(ξ2)

π − 2ξ2
. (A.14)

Inserting the expression for v0 (Eq. (A.10)) and for v2 (Eq. (A.14)) in Eq. (A.1) results in

f1(ξ1, ξ2) = sin(ξ1)− sin(ξ2) +

√√√√( L−l
C − 2 cos(ξ2)

π − 2ξ2
+ sin(ξ2)

)2

− V0

V ′

−

√√√√( L−l
C + 2 cos(ξ1)

π + 2ξ1
+ sin(ξ1)

)2

− V0

V ′ = 0

(A.15)

Another equation for ξ1 and ξ2 can be formulated as follows. The spatial distance ∆x =
xb,0(ξ2) − xb,0(ξ1) between the collisions at ξ1 and ξ2 has to covered by the particle during
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Figure A.3: Contourlines of the functions f1(ξ1, ξ2) = 0 and f1(ξ1, ξ2) = 0 giving the phase of the first and
the second collision of the central periodic orbit belonging to the w = 2 elliptic island (Fig. A.1(b)).

the time ∆t = (ξ2 − ξ1)/ω, that is

xb,0(ξ2)− xb,0(ξ1) = v1
ξ2 − ξ1

ω
(A.16)

⇔l + C(cos(ξ2)− cos(ξ1)) =

(
−ωC sin(ξ1) +

√
(v0 + ωC sin(ξ1))

2 − 2V0

m

)
ξ2 − ξ1

ω
, (A.17)

which can written as before in the form

f2(ξ1, ξ2) = cos(ξ1)− cos(ξ2)

+ (ξ2 − ξ1)


√√√√( L−l

C + 2 cos(ξ1)

π + 2ξ1
+ sin(ξ1)

)2

− V0

V ′ − sin(ξ1)

− l

C
= 0

(A.18)

In Fig. A.3 we show the contourlines of the functions f1,2(ξ1, ξ2) = 0 in the ξ1, ξ2-plane.
The intersection of the two curves is the sought-after solution of the equations (A.15), (A.18)
and can be traced straightforwardly which yields ξ1 ≈ 0.48 and ξ2 ≈ 0.69. Plugging ξ1 into
Eq. (A.10) yields v0 ≈ 1.41 and thus we have the momentum of the central periodic orbit
p = mv0 ≈ 1.41. Furthermore, since the particle moves ballistically between the collision, its
position at t = 0 is determined by

x(0) = xb,0(ξ1)− v0∆t = − l

2
+ C cos(ξ1)− v0

ξ1
ω
, (A.19)



112 Appendix A Detection of periodic orbits in the PSS

giving x(0) ≈ 0.01. Accordingly, the central periodic orbit of the w = 2 elliptic island is at
x ≈ 0.01, p ≈ 1.41 which coincides perfectly with the PSS (Fig. 3.1 (a)).

In general, we can proceed similarly for setups with larger phase periods and for every
resonance. A system of equations will therefore result

{fi(ξ1, ξ2, · · · , ξk) = 0, i = 1 . . . k}. (A.20)

We remark that it is difficult to generalize this scheme to periodic orbits with many collisions,
since the approach to set up the system of equations and the roots corresponding to physical
solutions depend on the specific symmetry properties of the phases upon collisions of the
central periodic orbit belonging to the resonance.

A.2 Periodic orbits with many collisions

For periodic orbits with many collisions, which we need in order to determine the flux through
a cantorus (Appendix B), the scheme presented in the previous section is obviously not feasible
anymore. In this case it makes more sense to make use of a variational method [76,102], which
will be presented in the following. Between successive collisions with the barriers’ edges, the
particles move ballistically in a constant potential. Hence the Lagrangian of the system is
simply

L(x, ẋ, t) =

{
mv2

2 particle between barriers
mv2

2 − V0 particle in a barrier.
(A.21)

The action of a periodic orbit in the PSS with winding number w = r/s is given by

Wr/s =

s−1∑
i=0

∫ ti+1

ti

L(x, ẋ, t)dt, (A.22)

where ti = iT is the moment, when the i-th PSS is taken. Due to the point-like interaction
the action Eq. (A.22) can be added piecewise. In general, the action (A.22) can be rewritten
as

Wr/s =

N∑
k=0

Wk(tk, tk+1). (A.23)

N is the total number of collisions occurring between t0 and tN+1 = t0+ sT . In the following
we assume that the particle’s position x(t0) does not coincide with one of the barrier’s edges
when the first PSS is taken. Now we restrict ourselves to periodic orbits with winding number
w = r/s. The integer r specifies how many spatial unit cells of length L a trajectory travels
in the lattice, at which the velocity never changes sign. Each unit cell consists of n barriers,
where n is the phase period. With each barrier the particle collides exactly two times because
a transmission occurs at every collision. Accordingly, the number of collisions N , the phase
period n and r are related through N = 2nr. Inserting the Lagrangian of the system (A.21)
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in equation (A.23) gives

Wk(tk, tk+1) =


m(x(tk+1)−x(tk))

2

2(tk+1−tk)
particle between barriers

m(x(tk+1)−x(tk))
2

2(tk+1−tk)
− V0 (tk+1 − tk) particle in barrier.

(A.24)

x(tk) equals for k = 1, . . . , N with the position of one of the barriers’ edges at a collision, which
depends on the driving law fi(t) at the i-th site. For particles in a barrier the spatial distance
between the successive collisions is x(tk+1) − x(tk) = l + fi(tk+1) − fi(tk) and accordingly
x(tk+1)− x(tk) = D − l + fi+1(tk+1)− fi(tk) between the barriers. Setting m = 1 the action
Wk(tk, tk+1 for k = 1, . . . , N − 1 becomes

Wk(tk, tk+1) =


(D−l+fi+1(tk+1)−fi(tk))

2

2(tk+1−tk)
particle between barriers

(l+fi(tk+1)−fi(tk))
2

2(tk+1−tk)
− V0 · (tk+1 − tk) particle in barrier.

(A.25)

For k = 0 we get with t0 = 0, x(t0) = x0 and m = 1

W0(t0, t1) =
(x(t1)− x(t0))

2

2(t1 − t0)

=

(
− l

2 + f1(t1)− x0
)2

2t1
,

(A.26)

i.e. this part of the action depends on the particle’s starting position x0 and the time of the
first collision t1, that is in the following we write W0(x0, t1). For k = N we find

WN (tN , tN+1) =
(x(tN+1)− x(tN ))2

2(tN+1)− tN )

=

(
x0 +D − l

2 − fN (tN )
)2

2(sT − tN )
,

(A.27)

where we have used that tN+1 = t0 + sT = sT and x(tN+1) = x0 + rL = x0 + rnD,
x(tN ) = (rn − 1)D + l

2 + fN (tN ), i.e. WN (tN , x0). We search for trajectories for which the
action is extremal, i.e. we vary the collision times t1, . . . , tN and the initial position of the
trajectory x0. The action gradient vector is ∇W = (∂W/∂x0, ∂W/∂t1, . . . , ∂W/∂tN )T , where
the partial derivatives of the action with respect to ti for k = 2, . . . , N − 1 are given by

∂W

∂ti
=

∂Wi−1(ti−1, ti)

∂ti
+

∂Wi(ti, ti+1)

∂ti
. (A.28)
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Correspondingly, for the initial position x0 and t1, tN we have

∂W

∂x0
=

∂W0(t0, t1)

∂x0
+

∂WN (tN , tN+1)

∂x0
(A.29)

∂W

∂t1
=

∂W0(t0, t1)

∂t1
+

∂W1(t1, t2)

∂t1
(A.30)

∂W

∂tN
=

∂WN−1(tN−1, tN )

∂tN
+

∂WN (tN , x0)

∂tN
. (A.31)

For finding roots of ∇W a multidimensional Newton scheme has been applied. Therefore, the
derivative matrix (“Hessian”) of the action gradient is needed. It is a cyclic, tridiagonal matrix
of the second derivatives of Wi, whose rank increases with the period s of the orbit [102]. To
get an initial starting point we start from the integrable limit (V0 = 0) and trace the periodic
orbits as the perturbation, i.e. V0, is increased. Finally, the stability of the obtained periodic
orbit can be determined via the eigenvalues of the Hessian. In the case of the unstable orbit
it has only positive eigenvalues, whereas for the stable periodic orbit there is a single negative
eigenvalue [102]. For orbits with not too high periods (s < 300) the results of this scheme
have been compared additionally to other globally convergent methods [103,104] and we have
found agreement.



Appendix B

Flux through cantori and transit times

In this appendix we discuss the transit times of orbits in the PSS. First of all, we give an
example of trajectories in the chaotic sea, which are confined to a subpart of phase space
for a very long time. Then a procedure how to approximate the average escape time from
this region is described briefly. Finally, this method is applied exemplarily in the case of the
uniformly oscillating lattice. In Fig. B.1 a magnification of the PSS of a single trajectory is
shown. It has been launched in the chaotic layer close to the FISC and once it has crossed
the p = 0-axis in the PSS, the simulation has been stopped. Obviously, there are sudden
changes in the density of points in the PSS. This is a hallmark of the so-called cantori, which
are remnants of dissolved tori with irrational winding number. These objects can be regarded
as tori with gaps, so that the Hamiltonian flow is able to pass through [76]. The diamonds
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Figure B.1: Poincaré surface of section of a single chaotic trajectory, which has been started in the upper region
and stopped once it has crossed the p = 0-axis. The diamonds and stars are periodic orbits corresponding to
truncations of the continued fraction expansion of w1 = 2γ+1

γ
and w2 = 29γ−1

11γ
, respectively.
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and stars in Fig. B.1 are periodic orbits, which belong to truncations of the continued
fraction expansions of cantori with the noble winding numbers w1 = 2γ+1

γ = [2, 1∞] and

w2 = 29γ−1
11γ = [2, 1, 1, 2, 1∞], where γ = 1+

√
5

2 is the golden mean. The associated rational
winding numbers for the two periodic orbits are

w• = [2, 19] =
144

55

w? = [2, 1, 1, 2, 15] =
129

50
.

(B.1)

As long as the trajectories are confined in the PSS to the region above the cantorus, their
velocity never changes sign. Moreover, the magnitude of the velocity varies only over a
narrow interval. Thus, they perform ballistic-like motion during this time span. This has
severe impact on the dynamics of an ensemble of particles, i.e. it leads to super diffusion in
configuration space as we have seen in Sec. 4.1.2. In order to obtain the average length of the
ballistic flights, we have to determine the flux Φw through a cantorus with irrational winding
number w. Mather [105] has shown that the sequence of differences in action of periodic
orbits belonging to truncations of the continued fraction expansion of w converges to Φw

Φw = lim
r
s
→w

(
Wr/s −W ∗

r/s

)
, (B.2)

where Wr/s, W
∗
r/s is the action of the “minimizing” and the “minimax” orbit respectively [76],

i.e. periodic orbits with winding number w = r/s, belonging to the minimum (saddle point)
of the action. The minimizing orbit is generically unstable and hyperbolic, whereas the
minimax orbit is either an elliptic or hyperbolic-with-reflection periodic orbit. The method
for determining the periodic orbits with winding number w = r/s and their corresponding
action sis described in Appendix A.2. In the following Φr/s = Wr/s − W ∗

r/s is called the

flux through a chain of periodic orbits with winding number w = r/s. Fig. B.2 shows the
flux Φrj/sj through convergents of w1 and w2 as a function of the level j of the truncated
continued fraction expansions. In the beginning the flux scales according to the power-law
Φrj/sj ∼ Cξ−j with ξ ≈ 4.339 [106] (black curve in Fig. B.2). Still the sequence converges
rapidly with increasing j as Fig. B.2 shows. Asymptotically, we find for the fluxes through
the cantori Φw1 = 3.62 · 10−7 and Φw2 = 1.09 · 10−5. An approximation to the transit time
for particles to get from the region above the cantorus with winding number wi to the phase
space below it is given by

twi =
Awi

Φwi

, (B.3)

where A is the area in the PSS above wi. By dividing the PSS into small squares, we
have estimated these areas to be Aw1 = 0.12 and Aw2 = 0.18, which yields for the total
transit time ttransit = tw1 + tw2 = 3.48 · 105 to get in the PSS from the region above the
cantorus w1 to the region below the cantorus w2. Consequently, on average the particles get
confined 348.000 periods of the driving in this region of the phase space and thus perform
during this time ballistic flights. We note that the above transit time is meant to provide a
rough estimate for the transport through the cantori. The comparison with numerical data
obtained by simulating an ensemble placed in a chaotic region close to the FISC shows that
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Figure B.2: Flux through the chains of periodic orbits, belonging to convergents of w1 and w2, as a function
of the level j. The black curve is Φrj/sj ∼ Cξ−j with ξ ≈ 4.339.

the transit time is in general even longer. Beside the effect of being trapped to the region
above the cantorus, the trajectories accessorily can get sticky to the hierarchy of elliptic
islands surrounded by subislands being above the cantorus. The latter process extends the
ballistic flights significantly.
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[38] A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, Experimental Control of Transport
and Current Reversals in a Deterministic Optical Rocking Ratchet, Physical Review
Letters 106, 168104 (2011).

[39] A. Wickenbrock, P. C. Holz, N. A. A. Wahab, P. Phoonthong, D. Cubero, and F. Ren-
zoni, Vibrational Mechanics in an Optical Lattice: Controlling Transport via Potential
Renormalization, Physical Review Letters 108, 020603 (2012).

[40] V. Lebedev and F. Renzoni, Two-dimensional rocking ratchet for cold atoms, Physical
Review A 80, 023422 (2009).

[41] J. L. Mateos, Chaotic Transport and Current Reversal in Deterministic Ratchets,
Physical Review Letters 84, 258 (2000).

[42] M. Borromeo, G. Costantini, and F. Marchesoni, Deterministic ratchets: Route to
diffusive transport, Physical Review E 65, 041110 (2002).

[43] J. L. Mateos, Current reversals in chaotic ratchets: the battle of the attractors, Physica
A 325, 92 (2003).

[44] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Directed Current due to Broken Time-
Space Symmetry, Physical Review Letters 84, 2358 (2000).

[45] T. Dittrich, R. Ketzmerick, M.-F. Otto, and H. Schanz, Classical and quantum trans-
port in deterministic Hamiltonian ratchets, Annalen der Physik 9, 755 (2000).

[46] H. Schanz, M.-F. Otto, R. Ketzmerick, and T. Dittrich, Classical and Quantum Hamil-
tonian Ratchets, Physical Review Letters 87, 070601 (2001).

[47] S. Denisov and S. Flach, Dynamical mechanisms of dc current generation in driven
Hamiltonian systems, Physical Review E 64, 056236 (2001).

[48] S. Denisov, J. Klafter, M. Urbakh, and S. Flach, DC currents in Hamiltonian systems
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Ich möchte mich zuerst bei Prof. Peter Schmelcher für die Betreuung der Doktorarbeit und
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