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Abstract

Automatic speech recognition (ASR) is difficult to improve further, if only
acoustic evidence is considered. However, two lines of study have been pro-
posed to improve the performance of ASR by using additional information.
On the one hand, audio-visual speech recognition (AVSR) uses an extra chan-
nel of visual cues for compensating reduced signal quality, e.g., in a noisy
environment, in order to improve speech recognition performance. On the
other hand, articulatory information was introduced to model coarticulation
effects based on insights form the speech production procedure. The goal of
this thesis is to investigate possibilities and benefits of integrating articula-
tory information into AVSR systems.

As one of the research questions, the issue of feasibility is considered first. We
defined four different types of approaches for using articulatory information.
Except for the articulatory raw data approach, the design and implementa-
tion of other three ones are all discussed in this thesis:

1. The articulatory transcription approach uses an HMM/N-best decision
framework, where an N-best decision schema is a method to optimally
combine decisions from different articulatory channels.

2. The articulatory feature approach uses an ANN/HMM framework to
extract abstract articulatory classes as articulatory features to comple-
ment or replace the low-level audio and visual features.

3. The articulatory modeling approach uses dynamic Bayesian networks
(DBN) to build different training and decoding structures for integrat-
ing articulatory information.

Compared to the results of a low-level information-based AVSR, we found
that all the results from the above mentioned systems indicate an improve-
ment in recognition accuracy.

As a second research question, the modeling issue is emphasized in this
thesis. Frame, sub-phone, phone and word are the four levels of phonetic
observation to be considered. The level of articulatory information fusion
and synchronization is analyzed in different approaches respectively. The
articulatory modeling approach was found to be promising for integrating
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loosely synchronized multi-channel information.



Zusammenfassung

Es ist schwer, automatische Spracherkennung (ASR) weiter zu verbessern,
wenn nur das akustische Signal betrachtet wird. In de Literatur werden
jedoch zwei alternative Ansätze verfolgt, um die Leistung der ASR unter
Einbeziehung zusätzlicher Informationen zu verbessern. Zum einen audio-
visuelle Spracherkennung (AVSR), die einen zusätzlichen Kanal visueller
Merkmale nutzt, um reduzierte Signalqualität zu kompensieren, z. B. für
Spracherkennung in Umgebungen mit viel Hintergrundlärm. Zum anderen
wurden artikulatorischen Informationen Modell eingeführt, um Koartikula-
tionseffekte und Erkenntnisse der Sprachproduktion mit in das Spracherken-
nungsverfahren einflies̈en zu lassen. Das Ziel dieser Arbeit ist es, die Möglichkeiten
und Vorteile der Integration von artikulatorischen Informationen in AVSR-
Systeme zu untersuchen.

Als eine der Fragestellungen wird zuerst die Frage der Machbarkeit unter-
sucht. Wir haben vier verschiedene Ansätze für die Verwendung artikula-
torischen Informationen definiert. Mit Ausnahme des Ansatzes zur Nutzung
von artikulatorischen Rohdaten werden im Rahmen dieser Arbeit alle diese
Ansätze diskutiert:

1. Der Ansatz der artikulatorischen Transkription nutzt ein HMM- / N-
Beste-Framework als Entscheidungsgrundlage. Das N-beste Entschei-
dungsschema ist ein Verfahren zur optimalen Kombination von Entschei-
dungen aus verschiedenen artikulatorischen Kanälen.

2. Der Ansatz der artikulatorischen Merkmale nutzt ein ANN- / HMM-
Framework, um abstrakte Klassen als artikulatorische Merkmale zu
extrahieren und die Low-Level-Audio- und visuellen Merkmale durch
diese Klassen zu ergänzen oder zu ersetzen.

3. Die artikulatorische Modellierung verwendet dynamische Bayessche Netze
(DBN) zur Integration mit verschiedenen Strukturen für das Training
und die Dekodierung von artikulatorischen Informationen.

Verglichen mit den Ergebnissen eines einfachen informationsbasierten AVSR
fanden wir, dass alle Ergebnisse aus den oben genannten Systemen auf eine
Verbesserung der Erkennungsgenauigkeit hindeuten.
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Als zweite Forschungsfrage richtet sich diese Arbeit auf die Modellierung. Es
werden Frame-, Sub-Phon, Phon und Wort als die vier Ebenen der phonetis-
chen Modellierung betrachtet. Die Ebene der artikulatorischen Informa-
tionsfusion und der Synchronisation werden für die verschiedenen Ansätze
analysiert. Die artikulatorische Modellierung wurde als besonders vielver-
sprechend für die Integration von lose synchronisierten Multi-Channel-Informationen
identifiziert.
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Chapter 1

Introduction

1.1 Audio Visual Speech Recognition

After almost 40 years of research in Automated Speech Recognition (ASR),

scientists have covered applications ranging from speaker dependent, iso-

lated word recognition, to speaker independent, large vocabulary, continuous

speech recognition (Petajan, 1984; Potamianos et al., 2004; Galatas et al.,

2011). The technology has reached a level of performance which seems diffi-

cult to be improved further, if only acoustic evidence is considered. On the

other hand, most of the currently available systems require proper acoustic

conditions, including a quiet environment, good quality microphones, a suit-

able distance to the microphone, etc. There is a clear necessity to overcome

these limitations by including additional speech-related information into the

recognizer.

Visual speech is a natural candidate here, because it is independent of the

acoustic environment. In general, visual speech refers to any speech related

information observed by the visual system of humans or computers. Gestures

and lip motions are two different representations of visual speech. Both of

them can be used for helping to overcome the limitations of a purely acous-

tic recognizer under different multimodal environments. On the one hand,

gestures, which are normally defined as any bodily motion, especially the

motion of the face or the hand, can be observed directly by the cameras to

interpret a sign language. In the area of human-robot interaction, gestures

can be used with speech together to achieve certain speech recognition and

understanding tasks (Gasteratos et al., 2008). On the other hand, if avail-

1



2 Introduction

able, humans use both acoustic information and a speaker’s lip movement

to recognize speech. Evidence from human speech perception consistently

shows that visual cues from lip motions might considerably contribute to

speech comprehension.

In this study we focus only on the visual information from lip movements as

a modality of the bimodal speech recognition system. Not surprisingly, since

the first attempt by Petajan in 1984 (Petajan, 1984), a range of audio visual

speech recognition (AVSR) systems has been developed, which confirmed the

initial assumption that lip movements information is particularly helpful for

recognizing noisy speech. Their results convincingly show recognition rate

improvements in noisy environments, where the recognition rate of acoustic-

only recognizers drops significantly. Although there are clear differences in

how these systems process audio and visual information and combine them

together, they all share a quite similar system architecture based on a state-

of-the-art approach to word recognition using phones as a subword modeling

unit. In a standard AVSR system, as shown in Figure 1.1, acoustic and vi-

sual features are extracted from the incoming audio and visual speech signals

and passed to the modeling component for training, which estimates audio

and visual subword unit probabilities either separately or in an integrated

manner. These models are subsequently used in the lexical decoding process

to recognize testing utterances.

1.2 Articulatory Feature Based AVSR

All of the audio visual speech recognition systems we introduced in the pre-

vious section are conventional AVSRs based on acoustic and visual informa-

tion. That is, audio and visual speech features in such systems are based

on acoustic information to describe phonetic units. Audio and visual speech

are modeled as two channels of continuous units. Each of these units cor-

responds to a hidden phonetic state or a sequence of states. These units

are called phones and visemes in such AVSR systems. Although some suc-

cess has been made with combining acoustic and visual information in such

systems, (Potamianos et al., 2004) insights from speech production inspired

us to explore articulatory information as an extra source of information for

AVSR systems.
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Figure 1.1: A general framework of audio visual speech recognition system

Articulation information based speech recognition systems have been pro-

posed for several years and there is an increasing amount of work addressing

such methods. Articulatory information can be either detailed numerical de-

scriptions of the movements of articulators during speech production (Papcun

et al., 1992; Thomas, 1994) or articulatory features which characterize essen-

tial aspects of articulation by using an intermediate abstract representation

between signals and phonetic units (Deng and Sun, 1993; Erler and Freeman,

1996; Kirchhoff, 1998; Ghosh and Narayanan, 2011). The former one, articu-

latory raw data, is not considered in this thesis due to its complex recording

equipment and methods. The latter one, together with other two types of

articulatory information, named as articulatory transcription and articula-

tory modeling are applied to speech recognition in this thesis. Articulatory

transcriptions make use of articulatory information as a symbolic represen-

tation of human speech in parallel channels. Articulatory modeling amounts

to building model structures with several channels according to findings from

articulatory phonology (Browman and Goldstein, 1993). A detailed expla-

nation of articulatory information is given in the following chapters.



4 Introduction

As mentioned, a number of ideas have been proposed for using articula-

tory information in conventional acoustic recognition systems. But as far as

we know, only few of them (Gowdy et al., 2004; Saenko et al., 2004), have

addressed the question of representing visual cues as parts of articulatory

information. The fundamental idea of AVSR is to complement acoustic in-

formation with visual cues. Visual cues can be retrieved from various sources

including, in this thesis, the movements of the lips. Because the lips are one

of the important articulators, an AVSR system could also be categorized as

an instance of articulatory information based ASR. In conventional AVSR

systems, however, visual cues are the only information related to articulatory

gestures. The audio channel still exploits traditional acoustic signal process-

ing techniques. In contrast to the previously mentioned articulatory infor-

mation based ASR systems i.e. (Papcun et al., 1992), conventional AVSRs

measure the movements of articulatory gestures only implicitly. Despite this

measurement being implicit, AVSRs have already shown an advantage for im-

proving recognition accuracy especially in noisy environments. In this thesis

we combine the idea of articulatory information and AVSR. For both, the

audio and the visual channel, several types of representations based on ar-

ticulatory information will be used instead of purely signal and image based

parameters.

For using articulatory information in AVSR, there are three potential ad-

vantages that motivated this research. Firstly, based on speech production

theory AVSR naturally uses partial articulatory information. There is an

apparent correlation between some of the articulatory features and the vi-

sual shape of the lips during speaking, namely for labial consonants which

are pronounced with closed lips and the roundedness feature which provides

important cues to distinguish different kinds of vowels. Articulatory infor-

mation might lend itself as an appropriate interface to integrate visual cues

into the recognition procedure. In contrast to the audio-only articulatory

feature based speech recognition system, the articulatory information can

be better modeled using both the audio and visual cues. Secondly, in con-

ventional AVSRs, the fusion of information from the audio and the visual

channel is an important issue. Different sources of information can be inte-

grated at different stages, i.e. during the feature extraction stage for feature

fusion, during training for model fusion and at the decoding stage for decision

fusion. Articulatory information provides us with an intermediate represen-
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tation to study and compare these fusion techniques in audio-visual speech

recognition. Thirdly, articulatory information is well suited to model the

coarticulation phenomenon of speech production. While producing speech,

humans move their articulators asynchronously rather than well aligned to

the phonetic units. This asynchronicity can be better dealt with articulatory

information based AVSR than in AVSR based solely on phonetic information.

Generally speaking, this thesis aims at increasing the robustness of acoustic-

only recognizers by fusing articulatory information from both channels. Ac-

cording to the advantages of using articulatory information, several scien-

tific goals are set in the framework of this thesis to achieve this ambition.

Firstly, articulatory information should be clearly defined in the context of

AVSR systems. Then, articulatory information based AVSR systems should

be designed and implemented based on these different types of articulatory

information. Thirdly, the information fusion and asynchronicity should be

analyzed in these systems in order to find a proper way for applying articu-

latory information within an AVSR system.

1.3 Outline of Thesis

The remainder of this thesis is organized as follows:

In Chapter 2 we describe the basic idea of articulatory information based

speech recognition which includes the motivation, definition and method-

ologies of using articulatory information. Three approaches to work with

articulatory information, which are based on articulatory features, articula-

tory transcriptions and articulatory modelling, are introduced.

In Chapter 3 various feature extraction methods will be explained. Here

”feature” refers to a low level representation used for statistical training and

testing. Feature extraction from both, the audio and the visual channel, is

discussed.

In Chapter 4 three basic audio-visual classification methods are described.

These methods have been used in speech recognition for a long time and

provide the formal foundation of our articulatory information based AVSR

systems.



6 Introduction

Based on different articulatory information approaches introduced in Chap-

ter 2, three AVSR systems are designed and implemented. In the subsequent

Chapters 5 to 7 we describe these systems including their formal background,

design and implementation. We provide experimental results and discuss ad-

vantages and disadvantages of the different approaches.

Chapter 5 presents the articulatory transcription based AVSR system which

applies the HMM/N-best classification framework.

Chapter 6 describes the articulatory feature based AVSR system and its

HMM/ANN architecture.

Chapter 7 introduces the articulatory modeling based AVSR system and

its formal background Dynamic Bayesian networks.

Chapter 8 gives a summary, discussion, and suggestions for future work.



Chapter 2

Articulatory Information based
Speech Recognition

In this chapter, we will first describe the general idea of articulatory infor-

mation, including its theoretical motivation and some famous experimental

investigations which point to the advantages of using articulatory informa-

tion for AVSR systems. Secondly various methodologies for using articula-

tory information in speech recognition are reviewed and categorized. Finally,

the concepts of information fusion and the problem of asynchronicity are in-

troduced. These issues are the main points during the analysis of different

approaches to articulatory information based AVSR in the following chapters.

2.1 Motivation

2.1.1 Speech Production Procedure

As we know from the study of speech production, speech is the result of

a complex interaction of physical and emotional factors. All these factors,

which influence the speech output, compose the human speech production

procedure. As depicted in Figure 2.1, it can be categorized into three differ-

ent steps.

The first step is the emergence of a motivation (a desire or need) to com-

municate, which is happening in the brain. The formulation of ideas and

feelings is translated by the brain into language and motor programs that

operate speech muscles. Nerve impulses then transmit the communication

7



8 Articulatory Information based Speech Recognition

Figure 2.1: Human Vocal System. (PVCrp.com, 2010)

signals to muscles throughout the speech mechanism.

The respiratory system plays an important role in the second step. Muscles

start to compress air in the lungs, then forcing it to flow upward through

the trachea (windpipe) and larynx (voice box). This process supplies the

power source for vocal folds vibration and speech sound generation. The

voice-activated respiratory muscles then relax in order to let the breath en-

ter the lungs for the next part of an utterance. The interaction between air

and vocal folds can lead to vocal folds vibration. This vibration eventually

creates sound waves which are the source of the speech and the voice.

In the third step, the sound wave passes through the upper vocal tract,

including the throat and mouth. Depending on the shape of the throat and

mouth cavities, certain frequencies of the sound wave will be amplified or

suppressed according to the resonance phenomenon. At the same time, the

speech articulators, such as the tongue, jaw and lips, move their positions

and change their shapes to alter the sound wave while it passes through the

mouth. As a result, speech sounds, that is, vowels and consonants, are pro-

duced as speech production results.

Acoustics based ASRs focuses only on the results of speech production.

Knowledge of speech perception instead of speech production is used to ex-

tract acoustic cues and phonetic information. In contrast to acoustic in-
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Figure 2.2: Acoustic waveform and measured articulatory trajectories for
utterance of “Its a /bamib/ sid” From Krakow, 1987

formation, articulatory information refers to the position and movements of

different articulators from the third step of the speech production process.

2.1.2 The Organization of Articulatory Movements

From previous section, we know that speech production can be described

by the motion of various articulatory gestures. Articulatory gestures here

can be defined as the actions necessary to produce language, such as hand

movements for sign language and mouth movements for speech. Figure 2.2

shows the movements of some articulators and their corresponding acoustic

correlate for an utterance.

On the top the acoustic wave form is depicted, below it the vertical move-

ment of three articulators. The velum, also known as soft palate, is located

at the roof of the mouth and it raises and lowers to open up the nasal cavity.

From the curve we can observe that the velum is lowered to open up the

nasal cavity just before a nasal phone /m/ is produced. The lower lip will

also begin to raise slowly before the nasal phone /m/ starts. After /m/ is

finished, the jaw will also be lowered. This result shows that different ar-

ticulatory gestures are “loosely synchronized”, which means that they are

synchronized to some degree but not always follow strict and obvious rules.

The articulatory gestures are also semi-independent. For example the jaw’s

movements always lead to the corresponding movements of the lower lip.
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Wihtin the framework of acoustics based speech recognition, speech is nor-

mally described by a segmental representation which consists of a discrete

sequence of acoustic models, such as phones. But in fact, when we generate

speech, we produce a continuous sequence of articulatory gestures which are

loosely synchronized and semi-independent of each other. This motivates the

use of multi-stream articulatory information in speech recognition.

2.1.3 Reduced variability through Critical Articula-

tors

Pancun et. al. (Papcun et al., 1992) put little pellets on some articulators

of a subject, and irradiate the subjects with X-rays, to obtain the vertical

movements of articulatory trajectories shown in Figure 2.3. Nine different

subplots represent the vertical movements of different articulator trajectories.

The top row represents the tongue dorsum which refers to the back of the

tongue. The second row corresponds to the trajectories of the tongue tip.

And the third row refers to the trajectories of the pellets located at the

lower lip. Each figure shows different trajectories for different realizations

of the sounds. For example, the first column refers to the consonant /p/

and /b/, which share the same place of articulation and can be identified

by the articulator “lower lip” with a very low variation. A similar situation

can be observed in the other two columns. The articulators which are most

crucially involved in a consonant production are called critical articulators.

In the figure we see that the motion of certain critical articulators has a low

variability and is less susceptible to a specific group of consonants in contrast

to other articulators. This property can contribute to the advantages of using

articulatory information in speech recognition systems.

2.1.4 Coarticulation Problem

Another advantage of articulatory information is that it is well suited to

model the coarticulation phenomenon of speech production. Coarticulation

refers to the modification of a speech sound due to the adjacent ones. This

effect happens normally between a consonant and its following vowel. From

the perspective of speech production, coarticulation is caused by a set of

asynchronous and therefore highly overlapping articulatory gestures. Figure
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Figure 2.3: The vertical movements of articulatory trajectories from tongue
dorsum, tongue tip and lower lip for labial, coronal, and velar sounds. From
(Papcun et al., 1992)

2.4 shows a relative timing measurement of five articulatory gestures during

the production of the English word “pan”. The results are retrieved from

X-ray studies and the rectangular boxes represent the timing information

of different articulators’ movements. It is clear to see a lack of synchrony

between the movements of all articulators. In addition, since the movements

of articulatory gestures have (depending on the phonetic context) different

start and end points, some phonetic units with various pronunciations will

be produced according to the coarticulation effect. For example, while the

sound /n/ of English normally has an alveolar place of articulation, in the

word “tenth” it is pronounced with a dental place of articulation because the

following sound, /θ/, is dental.

The coarticulation effect is modeled in conventional speech recognition sys-

tems using context dependent acoustic models, such as biphones or triphones.

This solution requires a large amount of models. Since training data is lim-

ited, some models will not be well trained. The use of articulatory informa-

tion could help to overcome this deficiency because it directly addresses the

coarticulation problem.

2.2 How to Use Articulatory Information

Using articulatory information in speech recognition systems may raise three

major questions: 1) How to extract useful articulatory information? 2) How
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Figure 2.4: Relative timing of articulatory gestures for the production of the
English word pan. (Browman and Goldstein, 1992)

to classify articulatory information in order to train articulatory gesture mod-

els? and 3) How to correctly map these articulatory gestures back to the

phonetic units? In this section, we first describe the background of pattern

classification, which is the basis of designing articulatory information based

approaches. Then, different approaches to use articulatory information will

be briefly presented. The details of implementation and evaluation will be

given in Chapter 5 , Chapter 6 and Chapter 7.

2.2.1 Architectures for Articulatory Information based

ASR

Based on the literature, we propose here a categorization of articulatory in-

formation based ASR. The approaches differ with respect to the stage where

articulatory information is introduced into ASR. Thus, we distinguish four

groups of systems as shown in Figure 2.5. 1) measuring articulatory infor-

mation directly , 2) generating articulatory information from transcriptions,

3) extracting articulatory information by feature extraction and 4) encoding

articulatory information with statistical models. In a typical ASR, signals

(or raw data) are processed to extract feature vectors and to generate feature

transcriptions by the feature extraction and transcription generation compo-

nent respectively. The features and the transcriptions are further used to

build statistical models during training. Articulatory information can be

used in any one of these components to construct articulatory information
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Figure 2.5: Four types of articulatory information based ASR systems. The
components in dark point out where the articulatory information is used.
(a) Articulatory raw data: True geometry of the articulators (b) Articula-
tory transcriptions: Decision making after several parallel phone recognizers
(c) Articulatory features: Abstract representation (d) Articulatory models:
Integrating relations among articulators

based ASRs.

2.2.2 Using Articulatory Raw Data Describing the True
Geometry of the Articulators

Directly observing the movements of articulators is the most accurate way to

obtain articulatory information (Figure 2.5(a)). The position of articulators

is physically measured by the method of cineradiography, where metal pellets

are attached to a subject’s articulators (typically lips, tongue tip, tongue dor-

sum, and jaw), whose movements are then recorded by X-ray. (Papcun et al.,

1992; Thomas, 1994), e.g., used X-ray microbeam data coupled with acoustic

data to map acoustic parameters to articulatory trajectories using a neural

network. Electromagnetic Articulography (EMA) and Electropalatography

(EPG) data are other methods from which the current position of articula-
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tors can be calculated. Such data also has been used in speech recognition

(Frankel and King, 2001). All these systems used early stage articulatory

information. The advantage of using raw data is that it only contains the

characteristics of articulators and is completely insensitive to distortions of

the acoustic signal, such as added environmental noise. The disadvantage

is obviously the complexity and inconvenience of the recording process, that

makes it hard to use articulatory raw data in practical ASR systems. There-

fore, this approach of using articulatory information is not used and discussed

in the thesis.

2.2.3 Using Articulatory Transcriptions in an HMM/N-

Best Decision Framework

The first system we developed using articulatory information is the articu-

latory transcription based AVSR. Similar to phonetic transcription, an ar-

ticulatory transcription is also a symbolic representation of human speech.

The difference between these two types of transcriptions consists in a pho-

netic transcription representing perceptually distinguishable phonetic units

for each speech utterance, but an articulatory one describing different po-

sitions or states of each articulator. The relation between them can be

naturally used to draw a mapping between phonetic and articulatory tran-

scriptions. According to this mapping, we can easily change the phonetic

transcriptions in acoustics based ASR into articulatory ones to build an ar-

ticulatory information based ASR.

An articulatory transcription based ASR as shown in Fig.2.5(b) can be

achieved using several parallel phone recognizers. These classifiers receive

the same input feature vectors, namely descriptions of the acoustic and vi-

sual speech signals. However, the class labels used in the channels are dif-

ferent representing the position or mode of different articulators. During a

separate training of all channels, classifiers are able to recognize the same seg-

ment of acoustic or visual signals into various articulatory representations.

The recognized articulatory descriptions can be then integrated by a decision

fusion component to find the final results. For example, an HMM/N-Best

decision Framework can be used for this approach, where HMMs (Hidden

Markov Models) are applied to model articulatory information in different

channels and the N-Best decision schema is used to combine the results gen-
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erated from HMM decoding. In the articulatory transcription approach, the

reduced number of classes in each classifier has improved the recognition

rate of the individual channels. However, due to the limitation of the deci-

sion fusion schema which is based on forces alignment, coarticulation cannot

be modeled properly. The details of the design and implementation of an

articulatory transcription based AVSR system are presented in Chapter 5.

2.2.4 Using Articulatory Features in an ANN/HMM
Framework

As an alternative to the articulatory transcription, the use of articulatory fea-

tures (AF) for ASR has been proposed (Kirchhoff, 1999; Amer and Berndsen,

2003; Papcun et al., 1992). Articulatory features are usually described as ab-

stract classes, which capture relevant characteristics of the speech signal in

terms of articulatory information. These classes can be used as an inter-

mediate representation, leading to a two-stage classification procedure with

a remarkable degree of robustness under noisy conditions (Kirchhoff, 1999).

Moreover, compared to purely acoustic features (like Mel-Frequency Cepstral

Coefficients, also MFCC), AFs can also be used to represent properties of the

speech production process, such as lip rounding, tongue position, manner of

articulation, etc.

The articulatory features used in Fig.2.5(c) provide an intermediate abstract

representation lying between the acoustic signal preprocessing level and the

subword unit probability estimation level. Most articulatory information

based ASR systems in the literature belong to this type (King et al., 1998;

Kanokphara and Berndsen, 2005; Kirchhoff et al., 2000). The experiments in

Chapter 6 are also based on this idea. This approach applies multi-channels of

ANNs (Artificial Neural Networks) to extract articulatory information, where

each channel describes the status of a particular articulator. The results of

these ANNs are combined to generate articulatory feature vectors, which are

then used to train an HMM based speech recognizer. Several reasons make

the articulatory feature based approach attractive for ASR. Firstly, it can

provide a rather detailed description of coarticulation phenomena, since they

are related to both the acoustic signal and the higher level of linguistic infor-

mation. In particular, it is able to accommodate the kind of asynchronous

transitions between subsequent segments that can be observed with articu-
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latory movements. Secondly, compared to an acoustics based recognizer, the

parallel independent articulatory feature based recognizer makes use of fewer

classes, which therefore are better suited to be used in case of sparse training

data. In contrast to articulatory transcription based ASR, this approach in-

tegrates articulatory information in the feature extraction component rather

than in the transcription generation component. We provide more details of

the articulatory feature based AVSRs in Chapter 6.

2.2.5 Encoding Articulatory Information By Means Of

DBN Models

A DBN (Dynamic Bayesian Network) is a graphical model that represents

sequences of variables. A time-series of symbols (like speech) is a typical

sequence which can be modelled by means of a DBN. HMMs are a special

case of DBNs. DBN assumes that particular dependencies are relevant. The

hidden state is represented by a single discrete random variable. In the more

general case of DBNs, however, the hidden state is represented by a set of

random variables, each of which can be discrete or continuous. It helps us

to model causality in a more natural way in order to build more flexible and

meaningful classifiers for asynchronous movement of articulators.

In contrast to the previous approaches (using articulatory transcriptions and

using articulatory features), encoding articulatory information during train-

ing lends itself to integrate articulatory information asynchronously. Audio

and visual articulatory information are combined on different phonetic levels

(e.g. Word, Phone, Subphone, etc.). In this thesis we use DBNs with differ-

ent topologies to build a set of articulatory information based AVSR systems.

Here we briefly introduce some types of DBN based AVSR structures. These

types differ from each other by their model topology. We use the term “chan-

nel” to denote a DBN structure with different phonetic levels. Firstly, a single

channel DBN-based AVSR structure refers to a DBN structure with only one

phonetic channel. This single channel is designed with four levels, namely

word level, phone level, subphone level and observation level. Using this

structure, audio and visual articulatory information can only be integrated

at the observation level. That is, audio and visual features are combined at
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each state. Secondly, a two channel DBN-based AVSR with audio and visual

channels uses an additional visual channel to model the visual information.

The articulatory information can be combined on different levels. Thirdly, a

three channel DBN-based AVSR with articulatory channels is designed based

on pronunciation rules. Each channel in the structure models the movements

of a particular articulator. The audio articulatory channels model the audio

information and the visual articulatory channels use the visual information.

All the information can be combined at the word level. The details of DBN

and DBN based AVSRs are introduced in the Chapter 7.

2.3 Information Fusion and Synchronicity in

Articulatory Information Based AVSR

In the area of multimodal interaction, modelling the temporal relationships

between the input channels is an essential aspect (Luettin et al., 2001). Espe-

cially in the interaction between the acoustic and the visual modality plenty

of research has been done which addresses the issue of synchrony and asyn-

chrony. The necessity to synchronize parallel streams of information not only

arises for the coupling of the acoustic and the visual modality, but also among

parallel channels within one modality.

This section only introduces the concepts of information fusion and syn-

chronicity for articulatory information based AVSR. The details of the dif-

ferent systems are described in Chapter 5-7 respectively.

2.3.1 Information Fusion for Speech Recognition

Information fusion is an instance of the general classifier combination prob-

lem. In articulation based AVSR information is described on two levels. On

the one hand, the acoustic and the visual modality both provide information

related to speech classes, such as phone and viseme units. The two channels

of observation can either be used to train two independent single modality

classifiers separately, or can be combined to train a bimodal speech classifier.

On the other hand, the theory of speech production naturally separates the

movements of different articulators into multiple parallel articulatory chan-

nels. Since each articulatory channel represents only some part of the speech

characteristics, its observation can not be used to train a full speech classifier
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alone. Multiple channels of articulatory information must be properly fused

in order to provide useful cues for a speech recognition system.

Table 2.1: Information Fusion in Articulatory Information based AVSR.

Fusion Methods Fusion Procedure Used articulatory information

Feature Fusion in feature extraction articulatory feature vectors
Model Fusion during training articulatory feature models
Decision Fusion during decoding articulatory feature transcription

Various information fusion techniques have been proposed in the literature on

AVSR and articulatory information based ASR. These fusion algorithms dif-

fer in their basic designs. However, both audio-visual fusion and articulatory

information fusion techniques can be roughly categorized into three groups

as shown in Table 2.1. Feature fusion combines the multichannel informa-

tion at the level of observation. It happens before training the recognition

model. Feature vectors from different channels can be simply concatenated

into a single observation. In contrast, model fusion happens within the train-

ing procedure itself. Multiple channels of information are combined at the

subphone, phone or word level. In a single classifier, a fused conditional

probability distribution is computed from all channels of observation at run-

time. Finally, decision fusion employs multiple channels of single modality

classifiers to train their independent speech classes. Their results are then

combined into a final decision by means of a linear combination of scores or

a more complex decision taking strategy.

2.3.2 Synchrony and Asynchrony

From the perspective of speech perception, it has been found that an auditory

stimulus needs to be delayed to be perceptually aligned with a visual stim-

ulus (Serences et al., 2009). The temporal offset arises because the acoustic

transfer between the outer and inner ears is a relatively direct process, in

contrast to the visual transfer in the retina which passes several cascading

neurochemical stages (Alais et al., 2005). However, it is difficult to determine

the timing for correlating audio and visual signals exactly. For technical solu-

tions in AVSR, finding better possibilities than HMM to model the temporal

differences between both channels is still a challenging task.
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From the perspective of speech production, speech units are composed of

movements of “loosely” aligned hidden articulators. Here “loosely” means

that the movements of all articulators happen simultaneously, but their start-

ing and ending time is not always the same. That is, although all articulators

have to move in order to generate a word, the temporal variations among

them may lead to different pronunciations for the same word.

According to findings from speech perception and speech production, we are

motivated to investigate the synchronicity issues in articulation information

based AVSRs. Two concepts are introduced here before we start to analyze

the synchronicity issues in the following chapters. On the one hand, syn-

chronizing information from multiple channels means that this information

has the same starting and ending time for a particular speech unit in each

information channel. On the other hand, asynchronous information from

multiple channels means that the information does not have the same start-

ing and ending time for a particular speech unit. A typical asynchronous

case is the fusion of acoustic and visual speech signals. The visual signal for

a phone, for example, happens to always precede the corresponding acoustic

signal. The main question to investigate this issue is about where do we find

synchronicity and asynchronicity. All the possible categories are various pho-

netic abstractions, such as, words, phones, subphones, etc. They represent

the continuous reality of the speech signal.

2.3.3 Temporal Alignment of Articulatory Features

In the thesis we focus on the synchronicity issues of the articulatory informa-

tion. Usually a word can be decomposed into several articulatory values for

each feature. For example, the word “had” can be transcribed as [unvoiced

voiced voiced] in the “Voicing” feature and as [nil flat nil] in the “Rounding”

feature. Without temporal information attached to the values, however it

is still difficult to analyze the relationships among articulatory features. We

applied a forced alignment procedure to automatically labeling the bound-

aries between two adjacent articulatory values.

In speech recognition, search engine is given an exact transcription of spoken
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Figure 2.6: Alignment of AF Transcriptions in XML.

utterance and a sequence of speech data. The ASR system then aligns the

transcribed data with the speech data in order to find the time segments

where the speech data best fit their corresponding spoken words. In our

case, we train parallel classifiers using the acoustic signal and its articulatory

transcription without time information using the forced alignment proce-

dure. For decoding the same training data is used as testing data to force

the classifiers to align the models and the transcriptions. The result of the

forced alignment for an individual classifier is an articulatory transcription

with time information. For example, we can represent this time information

using the XML format as shown in Figure 2.6.

In the “Voicing” feature, the decomposed word “HAD” is annotated with

its starting and ending time [10 6 7] and the length information of all artic-

ulatory values [unvoiced voice voice]. Together with time information from

other features, the degree of synchronization can be measured.

A graphical user interface (GUI) as shown in Figure 2.7 has been developed

in order to observe the asynchronous features. By combining all transcrip-
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Figure 2.7: An example of AF transcription with time information.

tions obtained by forced alignment we present the time information in an

m × n matrix (see Figure 2.7). Columns n correspond to time where each

interval represents a frame. Rows m in the matrix represent the individual

articulatory features. Differently colored segments in a row encode different

values of an articulatory feature. For example, the two different red colors

in the figure represent the “unvoiced” and the “voiced” values of “Voicing”

feature. In the GUI a cell can be selected to indicate the value of an artic-

ulatory feature. Furthermore, by clicking on a cell, all articulatory features

from the current word will be also selected and displayed in different color.

As shown in the Figure 2.7, the word “SHE” is selected. All the articulatory

features within the word “SHE” are displayed with a shadow to indicate the

word boundary. In the later chapters we are going to analyze the details of

synchronization with respect to the results for different architectures.
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Chapter 3

Features of Audio Visual
Speech

3.1 Audio Feature Extraction

The first step of designing an automatic speech recognition system is always

to find a proper way to extract speech features from raw speech signals. The

term of ”(speech) features”, a parametric description, refers to a machine-

internal representation with certain characteristics of the speech signal. The

selection of the best representation of acoustic data is an important task in

the design of any speech recognition system. The audio feature extraction

component transforms speech to a vector of features which are suitable for

further processing. Obviously, a good system recognition performance relies

greatly on an feature extraction procedure. Through more than 50 years

of ASR research, many different speech feature representations have been

suggested and evaluated. In particular, a set of audio processing techniques

based on characteristics of the human auditory system has been designed for

extracting acoustic features. For example, from the psychoacoustics point of

view, which is the study of subjective human perception of sounds, the Mel

scale or the Bark scale simulates the non-linear frequency resolution of the

human hearing system. These filter banks are approximately logarithmic in

frequency at the high-frequency end, but nearly linear at the low-frequency

end. A cepstral transformation is normally used in order to avoid highly

correlated filterbank amplitudes.

The aims of front-end processing are twofold. On the one hand, the pa-

23
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rameters/features should capture the salient aspects of the speech signal.

These features should be perceptually as relevant to the sounds as possible.

In particular, they should comprise the spectral dynamics, i.e. the change

of the spectra over time. On the other hand, the features should be robust

in the sense that the recognition quality should not be affected by distor-

tions that can appear at the input, due to e.g. environmental characteristics

and/or the transmission medium. Also, a general ASR-application should be

able to recognize speech from different persons.

In the following we introduce some acoustic features, which are most widely

used in ASR systems. Both the mel-cepstral and the PLP analysis provide a

feature representation which corresponds to a smoothed short-term spectrum

that has been compressed and equalized similar to human hearing. Before we

explain the differences of these approaches, their common basic techniques

are described in this section.

3.1.1 Common Techniques

Windowing

Windowing refers to a process of multiplying a given signal by a window func-

tion. A window function is a function that is zero-valued outside of some

chosen interval. Given a signal function and a window function, the product

is also zero-valued outside the interval. The ”view” through the window,

onto the values inside the interval represents the transferred signal affected

by a certain window function. For speech processing, a typical length of a

frame is 20-25 ms. Usually the frames are set to overlap so that their centers

lie only 10 ms apart. The window function is chosen in a way that the val-

ues near the edges approach zero. This prevents discontinuities at the edges

which would negatively affect the result of further processing. A popular

function is the Hamming window which is represented by the equation 3.1,

where N is the length of the window.

w(n) = 0.54− 0.46cos(πn/N) (3.1)
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Fast Fourier Transform

The Fast Fourier Transform (FFT) transfers signals from time domain into

frequency domain. It converts the signal information to a magnitude and

phase component of each frequency. This information can be represented

as a 2-dimensional vector or a complex number, or as magnitude and phase.

Equation 3.2 represents the FFT of each time window for discrete time signal

x(n) with length N ,

X(k) =
N−1∑
n=0

w(n)x(n)exp(−j2πkn/N) (3.2)

for k = 0, 1, ..., N − 1, where k corresponds to the frequency f(k) = kfs/N ,

fs is the sampling frequency in Hertz and w(n) is the Hamming window in

equation 3.1.

3.1.2 MFCC Features

Mel-Frequency Cepstral Coefficients (MFCCs) are short-term spectral fea-

tures based on a linear cosine transform of a log power spectrum on a non-

linear mel scale of frequency. MFCCs have been proposed in 1980 by (Davis

and Mermelstein, 1980) and are still widely used until now in the area of

automatic speech recognition, automatic speaker identification and music in-

formation retrieval. Figure 3.1 depicts the procedure of extracting MFCCs.

Firstly, audio signals are preemphasized to improve the overall signal-to-noise

ratio by increasing the magnitude of some (usually higher) frequencies. Pre-

emphasizing prevents some adverse effects, such as attenuation distortion, in

the subsequent phases of MFCC processing. Furthermore, it approximates

the unequal sensitivity of human hearing at different frequencies.

The procedure of dividing audio signals into frames is implemented in the

windowing phase. Then, the windowed signals are subjected to a Fast Fourier

Transform (FFT) for spectral analysis.

The power spectrum is warped according to the Mel scale in order to model

the frequency resolution of the human ear. For that purpose the spectrum

is segmented into a number of critical bands by means of a filter bank. Mel
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Figure 3.1: MFCC feature extraction front-end.

scale was developed on the basis of human auditory perception experiments

(Stevens and Volkmann, 1940) and is approximately linear below 1 kHz and

logarithmic above (Figure 3.2)

.

As shown in figure 3.3, the Mel filter bank is a collection of overlapping tri-

angular filters. The Mel spectrum is computed by multiplying the Power

Spectrum by each of these Mel Weighting filters and integrating the result.

Furthermore, the spectral amplitudes are compressed by a logarithmic func-

tion.

X ′(m) = ln

(
N−1∑
k=0

| X(k) | ·H(k,m)

)
(3.3)

Finally, the cepstrum is computed by means of the Discrete Cosine Transform

(DCT):

c(l) =
M∑

m=1

X ′(m)cos(l
π

M
(m− 1

2
)) (3.4)

for l = 1, 2, . . . ,M , where c(l) is the lth MFCC.

On the one hand, the MFCCs are good at modeling the quasi-logarithmic fre-

quency resolution of the human ear. But on the other hand, the logarithmic
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Figure 3.2: Mel frequency warping and the filterbank. The filters are either
uniformly distributed at the Mel warped spectrum, or non uniformly at the
original spectrum. In the latter case, they should be asymmetric as well.
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Figure 3.3: Mel frequency filterbank.

operation will also amplify even a small background noise level. Therefore,

the MFCCs’ sensitivity to noise negatively affects the performance of the

entire ASR system.

3.1.3 RASTA-PLP Features

RASTA-PLP is an acronym for RelAtive SpecTrAl transform - Perceptual

Linear Prediction, which was originally proposed in (Hermansky, 1990) and

(Hermansky and Morgan, 1994). PLP warps the spectra in order to adapt the

features to different speakers while keeping useful speech information. The

design of PLP is more consistent with human hearing because it considers

the nonequal sensitivity of human hearing at different frequencies. Speech

loudness is assumed to be directly related to the speech quality. As a set

of filtering approaches, RASTA methodology separates nonlinguistic spec-
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tral components (e.g. noise) from the spectral components generated by the

movement of the vocal tract. The fact, that the rates of changes of these

components are different, motivates us use RASTA to retrieve more robust

speech features. The idea is to suppress the spectral components that change

more slowly or quickly in order to focus on the speech information with a

typical range of changes. The detailed methods of PLP and RASTA-PLP

are introduced in this section.

PLP analysis is based on linear prediction (LP) analysis but additionally

includes auditory properties through the computation of a compressed filter

bank spectrum. As shown in Figure 3.4, the procedure of PLP analysis is

similar to the MFCC analysis. In the component for spectral analysis, the

input speech is segmented and weighted by the Hamming window as intro-

duced in Equation 3.1. The same FFT as shown in Equation 3.2 is used here

to transfer information from time domain to frequency domain.

In contrast to a Mel scale, the spectrum is warped along its frequency axis

into the Bark frequency (Zwicker, 1961). The resulting warped power spec-

trum is then convolved with a simulated critical-band masking curve H(ω).

Different to the triangular filters in MFCC, the filters in PLP are trapezoidal

in shape (Hermansky, 1990). This particular shape of the critical-band is a

crude approximation of the asymmetric properties of auditory filters. The

discrete convolution of H(ω) with the power spectrum P (ω) yields samples

of the critical-band power spectrum

S(Ωi) =
2.5∑

Ω=−1.3

P (Ω− Ωi)H(Ω) (3.5)

After critical-band spectral resolution, the pre-emphasis block is used to sim-

ulate an equal-loudness curve for the samples S[Ω(ω)].

P [Ω(ω)] = E(ω)S[Ω(ω)] (3.6)

The function E(ω) is an approximation of the nonequal sensitivity of human

hearing at different frequencies and simulates the sensitivity of hearing at a

level of about 40-dB.

E(ω) = [(ω2+56.8×106)ω4]/[(ω2+6.3×106)2×(ω2+0.38×109)(ω6+9.58×1026)]
(3.7)
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Figure 3.4: Audio feature extraction front-end comparison between MFCC
and PLP. Similar processing steps between two methods are labeled by
dashed lines between blocks.
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According to the power law of hearing (Stevens, 1957), a cubic-root ampli-

tude compression (equation 3.8) is then taken for simulating the nonlinear

relationship between the intensity of sound and its perceived loudness.

I(Ω) = P (Ω)
1
3 (3.8)

In the final operation of PLP analysis, after inverse (discrete) Fourier trans-

form (yielding autocorrelation coefficients), the autoregressive model is calcu-

lated to smooth out details from the auditory spectrum. The autoregressive

coefficients are usually transformed into orthogonal parameters, such as cep-

stral coefficients.

PLP analysis was found to be vulnerable to linear spectral distortions. Previ-

ous research on human speech indicates that human listeners do not seem to

be sensitive to slow changes in frequency. Furthermore, steady background

noise does not impair human speech communication. These facts can be

explained by the relative insensitivity of human hearing to slowly varying

stimuli (Green, 1976). To alleviate this problem, PLP processing is often

combined with a RASTA filtering method.

In order to make speech analysis less sensitive to the slowly changing non-

linguistic spectral components, (Hermansky and Morgan, 1994) proposed to

replace the conventional critical-band short-term spectrum in PLP speech

analysis with a special spectral estimate. In this spectral estimate, each fre-

quency channel is defined by a filter which transforms the signal spectral at

the zero frequency into spectral zero. Since this band-pass filter suppresses

all the constant and slowly changing spectral components in each frequency

channel, this spectral estimate yields the low sensitivity to slow variations in

the short-term spectrum (Hermansky et al., 1991).

The steps of RASTA-PLP are shown as Figure 3.5. Raw speech signals are

firstly analyzed to get the critical-band spectrum as in the conventional PLP.

The logarithm of the critical-band is estimated by its temporal derivative us-

ing a regression line. A static nonlinear transformation is used to convert the

environmental noise into additive components. Similar to the conventional

PLP, RASTA-PLP adds the equal loudness curve and simulates the power

law of hearing. Then this relative log spectrum is computed by the inverse
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Figure 3.5: RASTA-PLP feature extraction block diagram. Dashed line
blocks are RASTA processing steps.

logarithm (exponential function) to get a relative auditory spectrum. Finally,

an all-pole model of this spectrum is computed as in the conventional PLP

technique.

3.2 Visual Feature Extraction

In contrast to the auditory ones, visual features are obtained from speech

related video sequences. The first main difficulty in the area of audio visual

speech recognition is the visual front-end design. To obtain useful visual

features, three different approaches are available: the appearance-based, the

shape-based and the hybrid method. In general, the raw video data of the

speaker are first preprocessed to detect and extract the region of interest

(ROI), namely the mouth region. Then, different algorithms can be employed

for converting the ROI into feature vectors for further processing. Figure 3.6

presents a general block diagram of visual feature extraction. In this section,

we first describe the common techniques in the front end of visual speech

processing. Then, the differences of three visual speech feature extraction

methods are presented.
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Figure 3.6: Visual Speech Extraction Front Ends

3.2.1 Common Techniques

Face Detection

Like other object-class detection methods, face detection aims at finding the

locations and sizes of all face candidates in an image, where a face concept

is already given. Face detection algorithms can be categorized into frontal

human face detection and multi-view face detection. In the second case, the

face objects are rotated along either an horizontal axis, or vertical one, or

both of them. Considering the complexity of various processing techniques,

face detection can be categorized into two groups. Some use traditional im-

age processing techniques, such as color segmentation, edge detection, image

thresholding, template matching, or motion information (Yang et al., 2002).

Other methods use statistical modeling techniques, such as neural networks

(Rowley et al., 1996), Gaussian mixture models (Poggio and Sung, 1995), or

support vector machines (Osuna et al., 1997). In the following, we describe

the frontal face detection algorithm proposed by Viola and Jones (Viola and

Jones, 2001) as a face detector example.

The Viola-Jones detector is a strong, binary classifier built out of several

weak detectors. Each weak detector is a simple binary classifier. During

the learning stage, a cascade of weak detectors is trained to gain the de-

sired accuracy rate using Adaboost (Freund and Schapire, 1997). Here the

term cascade implies that each successive classifier is trained only on those
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Figure 3.7: Cascade Classifiers. A series of classifiers are applied to ev-
ery rectangular patch. A positive result from the first classifier triggers the
evaluation of a second classifier which has been adjusted to achieve better
detection rates and requires additional computation. A positive result from
the second classifier triggers a third classifier, and so on. A negative outcome
at any point leads to the immediate rejection of the example.

examples which pass through the preceding classifiers. Such a cascaded archi-

tecture (as shown in Figure 3.7) makes the viola Jones detector fast enough

to run in real-time. To detect the face or other objects, the original image

is partitioned into several rectangular patches, each of which is submitted to

the cascade. If a certain rectangular patch passes through all of the cascade

stages, then it is classified as “positiv”, which means the patch is the a valid

face candidate. For being detected in real images, a face can have an arbi-

trary size compared to the patch which is always of a fixed size. An image

pyramid is calculated in order to detect faces at multiple scales. A fixed size

patch is moved through each image in the pyramid. Given a pyramid of im-

ages as inputs, like most object detection systems, the Viola-Jones detector

starts the classification process at a base scale and scans the inputs at many

scales.

The basic weak classifiers are based on very simple visual features, also

named as haar-like features. As shown in figure 3.8, the Viola-Jones detector

uses three types of features (two-rectangle feature, three-rectangle feature

and four-rectangle feature). A two-rectangle feature describes the difference

between the sum of the pixels within two adjacent rectangular regions. A

three-rectangle feature computes the sum within two outside rectangles sub-

tracted from the sum in a center rectangle. The value of a four-rectangle

feature is the difference between diagonal pairs of rectangles. The differences

between different features in a particular type are the location and size of

the white and black area.
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Figure 3.8: Example rectangle haar-like features. (a) and (b) are two-
rectangle features, (c) is a three rectangle feature and (d) is a four-rectangle
feature. The sum of the pixels which lie within the white rectangles are
subtracted from the sum of pixels in the black rectangles.

To reduce the effort of computation, the Viola-Jones algorithm uses an “inte-

gral image” as an intermediate representation. An integral image ii(x, y) at

location (x, y) contains the sum of the pixels above and to the left of (x, y),

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (3.9)

As shown in Figure 3.9(a), any rectangular sum can be computed by means

of four reference points from the integral image. For example, in order to

calculate the sum of the pixels within rectangle D, we need values from four

reference points. Assuming that the value of the integral image at location

1 is the sum of the pixels in rectangle A, the value at location 2 is A+B, at

location 3 is A + C, at location 4 is A + B + C +D, then we can compute

the sum within D as,

v4 + v1 − (v2 + v3) (3.10)

where vn represents the value of the integral image at the location n. For

computing the values for the different types of Haar-like features in Fig-

ure 3.8, we need to calculate the difference between the number of pixels in

the black and white rectangles. With the idea of integral image, the two-

rectangle features need six reference points, eight points in the case of the

three-rectangle features, and the four-rectangle features need nine reference

points.

In the Viola-Jones algorithm, the weak classifiers are designed to select the

single rectangle feature which best separates the positive and negative im-

age examples. For each feature, the weak classifier determines the optimal
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Figure 3.9: Integral Image. Red points refer to the reference points of par-
ticular rectangles.

threshold classification function, such that the number of misclassified image

examples is minimal. A weak classifier hj(x) thus consists of a feature fj , a

threshold θj and a parity pj indicating the direction of the inequality sign:

hj(x) =

{
1 ifpjfj(x) < pjθj
0 otherwise

(3.11)

ROI Localization

Since Viola and Jones describe a general object-class detection algorithm, it

is in principle suited for finding any ROI according to the requirements of

the application. In AVSR, the ROI typically is a rectangle containing the

mouth, and possibly including larger parts of the lower face, such as the jaw,

or the entire face. After finding a correct face candidate from an image, a

similar approach can be used to detect the lip region. As an alternative to the

Viola-Jones algorithm, many techniques of varying complexity can be used to

locate these ROIs. For example, (Senior, 1999) used the algorithm of Fisher

discriminant and Distance From Feature Space (DFFS) to locate features in

the face. The features refer to various points on the face which indicate the

location of different ROIs, such as, eyes, nose, eyebrow and mouth.
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Principle Components Analysis

Principal Component Analysis (PCA), also named as discrete Karhunen Lo-

eve transform (KLT), is a mathematical method to transform a number of

possibly correlated variables into a smaller number of uncorrelated variables

called principal components. Each principal component is a linear combina-

tion of the original variables. All the principal components are orthogonal

to each other, so that there is no redundant information. In various visual

feature extraction methods, PCA is always applied to reduce the raw visual

information with an extremely high dimensionality into a feature represen-

tation with a lower dimensionality.

3.2.2 Appearance Based Visual Features

Appearance-based methods make use of all pixel level intensity and color val-

ues within the ROI as useful lipreading information. In order to capture also

dynamic speech information, adjacent frame ROIs are typically considered.

Finally, transformations, like DCT, PCA, etc., can be applied to reduce the

extremely high dimensionality of ROI information.

For example, as shown in Figure 3.10, the final visual feature vectors can

be extracted by means of these processing. For every video frame Vt(m,n) at

time t, pixel values from a M ×N -rectangular ROI are placed in the vector

x
(ROI)
t ← {Vt(m,n) : mt−�M/2� ≤ m < mt+�M/2�, nt−�N/2� ≤ n < nt+�N/2�}

(3.12)

where (mt, nt) refers to the speaker’s mouth center. The vector length is

d(ROI) = MN which is normally too large for the subsequent classification

steps. Therefore the architecture in 3.10 uses three matrices, P(DCT), P(LDA),

and P(MLLT) to obtain a compact visual feature vector with a dimension of

D << d(ROI). Similar to the PCA, the matrix P(DCT) applies a discrete

cosine transform (DCT) for linearly transforming the image data in order to

reduce the dimensionality. The linear discriminant analysis matrix P(LDA)

is then used for ROI classification into the set of speech classes of interest.

Finally, a maximum likelihood linear transformmatrix P(MLLT) is applied

to maximize the observation likelihood in the original feature space.
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Figure 3.10: Appearance based method of visual front ends from (Potamianos
and Neti, 2001)

3.2.3 Shape Based Visual Features

Compared to appearance-based methods, shape-based methods assume that

most visual speech information can be expressed by the shape of the speaker’s

lips, or more generally, by the face contours, which includes also jaw and

cheek shapes. Features extracted with shape based methods can be catego-

rized into two groups: lip geometric features, and lip model features.

Lip geometric features

Lip geometric features represent a number of high level features of the lip

contour, such as the contour height, width, perimeter, as well as the area

contained within the contour. Figure 3.11 shows three types of lip geometric

features. A large number of lipreading systems makes use of this feature type

either alone or in combination with other features (Luettin et al., 1996) and

(Dupont and Luettin, 2000).
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Figure 3.11: Lip geometric features. (a) illustrates the width (w) and height
(h) of an outer lip. The upper part of (b) shows an original outer lip contour,
and the others are reconstructions of an estimated outer lip contour from
different sets of its Fourier coefficients. (c) presents three geometric visual
features, tracked over a spoken utterance 81926. Lip contours are estimated
as in (Potamianos et al., 1998). This figure is reprinted from (Graf et al.,
1997)

Lip model features

In addition to lip geometric features, lip model features have also been widely

used (Basu et al., 1998), (Chiou and Hwang, 1997) and (Cootes et al., 1995).

The idea is an extension of the lip contour tracking process. Lip contour

tracking applications need to obtain the shape of the mouth robustly and

efficiently. The visual features are chosen from the parameters of lip- or face-

contour models. However, the high variability of the mouth shapes during

speech and other expressions, as well as the variability of the lip color and

skin color between people makes the lip contour tracking task difficult and

complex. Hence, a number of algorithms have been proposed to retrieve lip

contour information from a given mouth region image. One of the most com-

mon methods for contour extraction is to use active contours, also known as

snakes (Chiou and Hwang, 1997), which can provide high deformability and

produce a good solution for object contour extraction.

A snake is a curve of the object contour represented by a set of control

points. The algorithm attempts to minimize the energy associated to the

current contour as a sum of an internal and external energy. The internal

energy is formed by the snake configuration. It is assumed to be minimal

when the snake has a relevant shape to the shape of the target object. The

external energy is formed by external forces affecting the snake. It is as-
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sumed to be minimal when the snake is at the object boundary position. By

iteratively updating the control point coordinates, the output of the energy

function gradually converges, and an object contour is then retrieved. This

model is highly popular in computer vision, and led to several developments

in 2D and 3D.

Another example for lip contour tracking is the Active Shape Model (ASM)

(Cootes et al., 1995), which is an iterative fitting algorithm using a statistical

shape model which is also known as point distribution model (PDM). ASM

provides not only a way to obtain lip contours but also a method for con-

verting lips information into feature vectors. It represents a discrete version

of the snake approach taking advantage of the PDM to restrict the shape

range to an explicit domain learned from a training set. PDM is obtained

from the statistics of hand labeled training data. The distribution of sets of

“landmark” points represents significant positions of an arbitrary object. In

most lipreading applications, the PDM describes a reduced space of valid lip

shapes. The landmark points in this space are general representations of a

particular lip shape which can be directly used as visual speech features for

lipreading.

Landmark points in the training images can be either hand labeled or au-

tomatically generated (Hill et al., 1992). These points are used as input for

calculating a point distribution model. Given all training images, each PDM

is represented by the coordinates of its own labeled landmark points. In

Figure 3.12, a training image is labeled with 44 points to describe the inner

and outer lip contour (24 points on the outer and 20 on the inner contour)

(Matthews et al., 2002).

If an ASM is labeled by a number of K contour points, then it can be de-

scribed as a 2K dimensional ”shape” vector.

xS = (x1, y1, x2, y2, ..., xK , yK)
T (3.13)

Given a set of such vectors as obtained from the training data, the mean

shape Xs can be calculated and the optimal orthogonal linear transform

PPCA can be determined by using PCA. Two similar shapes x1 and x2 can
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Figure 3.12: Inner and outer lip contour model (Matthews et al., 2002).

be aligned by minimizing,

E = (x1 −M(s, θ)[x2]− t)TW(x1 −M(s, θ)[x2]− t) (3.14)

where M(s, θ) is the pose transform for scale s and rotation θ. t represents

the translation between two shapes. W is a diagonal weight matrix for each

point with weights that are inversely proportional to the variance of each

point. An iterative algorithm (Cootes et al., 1995) is used to compute the

optimal alignment.

Given a tracked lip contour, the extracted visual features will be y = P(PCA)x.

This allows valid lip shapes to be represented in a compact, statistically de-

rived shape space. Also, the dimensionality of landmark points which are

highly correlated, is reduced.

3.2.4 Hybrid Visual Features

Hybrid methods combine appearance and shape-based approaches. Features

extracted by shape-based and appearance-based methods are typically con-

catenated. For example, (Chen, 2001) used a combination of geometric lip

features and the PCA projection of a subset of pixels contained within the

mouth to describe the visual speech information. (Luettin et al., 1996) and

(Dupont and Luettin, 2000) combine ASM features with the PCA based fea-

tures which are extracted from ROI images containing the lip contour. A
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more elaborate approach is used by (Cootes et al., 2001), who creates the

Active Appearance Model (AAM) which is a single model of face shape and

appearance. An AAM maps a statistical model of object shape and appear-

ance to a new image, which can be used for matching and tracking faces or

for medical image interpretation. In this section, we briefly describe the idea

of AAM.

As shown in Figure 3.13, three applications of PCA are used by (Cootes

et al., 2001). In the appearance eigenspace calculation a PCA matrix PA

is obtained to model appearance changes. An M × N pixel ROI with color

values can be represented as

xA = (r1, g1, b1, r2, g2, b2, ..., rMN , gMN , bMN)
T (3.15)

In the case of shape based calculation, feature vectors like the one in equation

3.13 are used to model shape deformations. The resulting PCA matrix is PS,

and the combination of appearance and shape features is computed as follows,

xA,S = (xAWPA
T ,xSPS

T )T . (3.16)

The final PCA matrix PA,S is calculated in order to compress the data, and

reduce the redundancy of the appearance and shape correlation. The result

of this component yAAM = PA,SxA,S are the AAM feature vectors. By

applying data rotation and data projection as used for the appearance based

methods, the final visual speech features can be obtained.



42 Features of Audio Visual Speech

Figure 3.13: Active appearance based method of visual front ends from
(Cootes et al., 2001)



Chapter 4

Audio-Visual Classification

Before discussing the methods of information fusion, it is necessary to in-

troduce the idea of classification, which is an important issue behind the

most of information fusion techniques. In this chapter we start with a brief

description of the pattern classification background. The Bayesian theorem

and the idea of informative and discriminative classification are described in

the first section. Typical examples for informative and discriminative clas-

sifiers, namely Hidden Markov Models (HMM), Artificial Neural Networks

(ANN) and Dynamic Bayesian Networks (DBN) are presented in detail in

the following sections.

4.1 Pattern Classification Background

Statistical classification is a procedure of grouping items with similar charac-

teristics together based on a given training information which includes input

features and a corresponding transcription. Classification can be considered

as the problem of estimating density functions for training data in a high-

dimensional space and dividing the space into regions or classes.

The Bayesian theorem is the basic solution of most pattern recognition prob-

lems, since it tries to minimize the probability of a classification error. As

an example, according to Bayesian theorem:

P (W | O) =
P (O |W )P (W )

P (O)
(4.1)

the ASR problem can be stated as the problem of finding the sequence of

43
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words W which maximizes P (W | O), where O refers to a sequence of ob-

servations, i.e. feature vectors. P (W | O), P (W ) and P (O | W ) are called

posteriori probability, prior probability and likelihood respectively.

To compute the posterior probability, we can segment all classifiers into two

groups, informative and discriminative classifiers.

Informative classifiers model the class densities directly. Classification is

done by examining the likelihood of each class producing the observed fea-

ture values and assigning to the most likely class to them. Examples include

Fisher Discriminant Analysis, Hidden Markov Models(HMM), and Dynamic

Bayesian Networks(DBN). In ASR, for example, the effort of maximizing

P (W | O) can be converted to a search for the sequence W which maximizes

P (O | W )P (W ). P (W ) is known as the language model (LM) capturing

high-level constraints and linguistic knowledge. P (O | W ) refers to the

acoustic model, which describes the statistics of sequences of parameterized

acoustic observations in the feature space given the corresponding uttered

words (e.g. phone sequences). The most popular stochastic approach for

acoustic modeling is HMM, where states of the hidden part represent phones

(or sub-phonetic units), whereas the observable part accounts for the proba-

bilities of the corresponding acoustic events.

In contrast to informative classification, the discriminative classification ap-

proach makes no attempt to model the underlying class feature densities.

The focus is on modeling the class boundaries or the class membership prob-

abilities directly. Examples include Logistic Regression, Artificial Neural

Networks (ANN), and Support Vector Machines (SVM). With large enough

training data and sufficient network size, ANNs are effective at modeling un-

known distributions, i.e. learning the posterior probability of a class given

an observation, P (W | O).

The phone based AVSR and the articulatory information based AVSR could

be designed by using either of these two groups of classifiers or combined

classifiers. In the following sections, particular emphasis is placed on the

classifiers used in our articulatory information based AVSR.
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4.2 Hidden Markov Models

Hidden Markov Models (HMM) is a popular mathematical method for ob-

taining stochastic models of temporal or spatial observations. They can be

used to model any time series, especially in the area of speech recognition.

4.2.1 From Observable Markov Models to Hidden Markov

Models

In a discrete Markov process, a Markov chain is made of a finite number of

states and selected state transitions among them. Along a regularly spaced

discrete time, the system runs through a sequence of states according to a set

of probabilities associated with the state transitions. To precisely calculate

the probability of the next state, a full probabilistic description needs to

take into account not only the current state but also all the predecessor

states. If we consider a discrete, first order Markov chain as a special case, a

probabilistic description to this model would be as follows,

P [qt = Sj | qt−1 = Si, qt−2 = Sk, . . .] = P [qt = Sj | qt−1 = Si] (4.2)

where qt refers to the actual state at time t. Si, Sj and Sk are possible

state instances within system, which may denote the same state. As an

approximation, equation 4.2 only considers the current and the predecessor

state. Here we name the right-hand side of the equation 4.2 as transition

probability aij, and it has the following properties,

aij = P [qt = Sj | qt−1 = Si]

aij ≥ 0;

and
N∑
j=1

aij = 1.

In the above Markov model, the output of the process is a series of states

to which corresponding observable events exist. Therefore, the above model

could be called an observable Markov model. The state is directly visible to

the observer, and the state transition probabilities are the only variables to
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consider in the system.

Since in the observable Markov models each state must correspond to an

observable event, this model is too restrictive for many real world problems.

(Baum and Petrie, 1966) proposed a hidden Markov model which assumes

that the observation is a probabilistic function of the state. The underly-

ing stochastic process of HMM is not directly observable, but can only be

observed through another stochastic process that produces the sequence of

observations. In other words, HMMs describe a set of observations, assum-

ing they came from some unknown or hidden Markov process whose internal

states are not directly observable. There are, however, visible probabilities

which are influenced by the state. Each state has a probability distribution

over the possible output tokens. Therefore the sequence of tokens generated

by an HMM gives some information about the sequence of states.

L.R.Rabiner has explained well the basic ideas of HMM in (Rabiner, 1989).

A set of variables are formally defined as follows. By computing the values

of these variables, an HMM can be used as a generator for an observation

sequence.

• Model states are denoted as S = {S1, S2, . . . , SN}, where N is the num-

ber of states in the model. Since in HMM the states are hidden, the

choice of N usually depends on the application. Generally the states

are interconnected, that is, each state should be connected with an-

other one. The state at time t is written as qt.

• Observation symbols are denoted as V = {V1, V2, . . . , VM}, where M is

the number of distinct observation symbols per state.

• The transition probability distribution can be written as A = {aij}
where

aij = P [qt+1 = Sj | qt = Si], 1 ≤ i, j ≤ N

.
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• The emission probability distribution in state j is B = {bj(k)}, where
bj(k) = P [vk at t | qt = Sj], 1 ≤ j ≤ N, 1 ≤ k ≤M

.

• The initial state distribution can be written as π = {πi}, where
πi = P [q1 = Si], 1 ≤ i ≤ N

.

The above definitions describe a complete specification of an HMM which

contains two model parameters N andM , and three probability distributions

A, B and π.

4.2.2 Three Problems and Their Solutions

To use HMMs in real-world applications, three basic problems need to be

solved, namely the evaluation problem, the decoding problem and the learn-

ing problem.

Evaluation Problem

Given the observation sequence O = O1O2...OT , and a model λ = (A,B, π),

how do we efficiently compute P (O | λ), the probability of the observation se-

quence, given the model? This problem can also be interpreted as an attempt

to determine how well a given model matches a given observation sequence.

To calculate P (O | λ), we can use simple probabilistic techniques. For ex-

ample, the probability of O (given the model) can be obtained by summing

the joint probabilities over all possible state sequences. But this calcula-

tion requires number of operations in the order of 2TNT . This is very large

even if the length of the sequence T is moderate. Therefore other algorithms

are needed to reduce the computation complexity. The forward-backward

algorithm (Rabiner, 1989) is such an algorithm for computing the probabil-

ity of a particular observation sequence with a considerably lower complexity.

In the forward-backward algorithm, we first define a forward variable αt(i)

as

αt(i) = P (O1O2 . . . Ot, qt = Si | λ) (4.3)
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Here, αt(i) is the probability of a partial observation sequence, O1O2 . . . Ot,

and state Si at time t, given the model λ. It can be computed inductively in

three steps. In the initialization step, the forward probability set to the joint

probability of state Si and the initial observation O1, as α1(i) = πibi(O1). In

the induction step, at time t + 1, state Sj can be reached from N possible

predecessor states, Si, at time t. As shown in 4.4, the forward variable at

time t+1 is computed from two parts, one is the sum of the products between

all forward variables at time t and their transition probabilities to state j,

and another one is the emission probability for state j at time t+ 1. This is

iteratively computed for all states j at time t, where t = 1, 2, . . . , T − 1.

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) (4.4)

Finally in the termination step, as shown in 4.5, the observation sequence

probability P (O | λ) is calculated by the sum of the terminal forward vari-

ables αT (i) for all states i, according to the definition of the forward variable

as given in equation 4.3.

P (O | λ) =
N∑
i=1

αT (i) (4.5)

The calculation of forward variables mainly depends on the number N of pre-

decessor states in the HMM, no matter how long the observation sequence.

Comparing to the direct calculation, this effectively reduces the calculation

efforts from 2TNT to N2T .

Similar to the forward variable, we can define a backward variable βt(i) as

the probability of the partial observation sequence Ot+1Ot+2 . . . OT , given

that the current state is i.

βt(i) = P (Ot+1Ot+2 . . . OT | qt = Si, λ) (4.6)

By assigning an initial probability 1 to all terminal backward variables βT (i) =

1, βt(i) can be recursively computed as follows,

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j). (4.7)
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By combining forward variable and backward variables, we obtain,

αt(i)βt(i) = P (O, qt = Si | λ). (4.8)

This provides us with another way to calculate P (O | λ):

P (O | λ) =
N∑
i=1

P (O, qt = Si | λ) =
N∑
i=1

αt(i)βt(i) (4.9)

Decoding Problem

Given the observation sequence O = O1O2...Ot, and the model λ, how do

we choose a corresponding state sequence Q = q1q2...qt which is able to best

explain the observation sequence? In other words, the task consists in find-

ing the most likely sequence of hidden states that results in the observed

sequence of events.

The solution to this problem depends upon the way “most likely state se-

quence” is defined. A simple approach would be to find the most likely state

qt at time t and to concatenate all such individual states. But this method

only determines the most likely state at every point in time, and does not

necessarily produce a physically meaningful state sequence. Instead, it is

necessary to find a single state sequence which maximizes P (Q | O, λ) or

P (Q,O | λ). The Viterbi algorithm solves this problem and finds the whole

state sequence with the maximum likelihood instead of a combination of

individual states. In order to facilitate the computation we first define an

auxiliary variable,

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt = i, O1, O2 . . . Ot | λ) (4.10)

which refers to the highest probability along a single state sequence and a

partial observation sequence up to time t, while the current state is i. By

induction we have the following recursive relationship,

δt+1(i) = [ max
1≤i≤N

δt(i)aij ]bj(Ot+1) (4.11)
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where the score is initialized to δ1(i) = πibi(O1). Based on the dynamic pro-

gramming algorithm, the procedure for finding the most likely state sequence

starts by calculating λT (i) using the recursion in 4.11, while always keeping a

pointer to the “winning state” of the maximum detection. Finally the state

j∗ is found where

j∗ = argmax
1≤i≤N

[δT (i)]. (4.12)

Starting from j∗, the sequence of states is back-tracked as the pointer in each

state indicates. This gives the required set of states.

Learning Problem

Generally, the learning problem consists in adjusting the HMM model pa-

rameters λ = (A,B, π), so that the given set of observations O (called the

training set) is represented by the model best. That means, to maximize

P (O | λ) for the intended application.

According to different optimization criteria for learning, there are various

solutions for estimating the model parameters. The decision for a suitable

one depends on the application itself. Maximum Likelihood (ML) estimates

λ by finding the values for λ that maximize L(λ), where L(λ) is the likelihood

estimate for the parameter of λ for a fixed observation O = O1, O2, . . . , OT .

It is impossible, however, to analytically determine the model λ, which max-

imizes L(λ). Instead, we can choose the model parameters in a way that

the local likelihood is maximized by using an iterative procedure, like the

Baum-Welch method, which is described below.

The Baum-Welch algorithm is an extension of the previously discussed Forward-

Backward algorithm. In addition to the forward and backward coefficients

defined in a previous section, we need to define two more auxiliary variables

ξt(i, j) and γt(i). These variables can be expressed in terms of the forward

and backward variables.

Firstly, ξt(i, j) is defined for the probability of being in state Si at time t

and state Sj at time t + 1, given the observation sequence and the model
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Figure 4.1: Illustration of the computation of the variables in the Baum-
Welch algorithm. ()

parameters.

ξt(i, j) = P (qt = Si, qt+1 = Sj | O, λ) (4.13)

As shown in Figure 4.1, it is easy to obtain the following formulas by the

definition of forward and backward variables.

ξt(i, j) =
P (qt = Si, qt+1 = Sj, O | λ)

P (O | λ) (4.14)

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(4.15)

The second variable γt(i) is defined as the probability of being in state Si at

time t, given the observation sequence and the model parameters. It can be

expressed in terms of the forward and backward variables as follows,

γt(i) = P (qt = Si | O, λ) =
αt(i)βt(i)

P (O | λ) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(4.16)

Combining equations 4.15 and 4.16, we get the following relationship between

ξt(i, j) and γt(i),

γt(i) =

N∑
j=1

ξt(i, j). (4.17)

According to the above formulas and the concept of “occurrence counting”,

an updating model λ = (A,B, π) can be interpreted as follows.
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πi represents the expected frequency of being in state Si at time t = 1,

πi = γ1(i). (4.18)

αij is the result of dividing the expected number of transitions from state Si

to Sj by the expected number of transitions from state Si,

αij =

∑T−1
t=1 ξt(i, j)∑T−1
t γt(i)

. (4.19)

βj(k) is the expected frequency of being in state j and observing symbol vk
divided by the expected frequency of being in state j,

βj(k) =

∑T
t=1,Ot=vk

γt(j)∑T
t γt(j)

. (4.20)

These re-estimation functions (4.18-4.20) can be calculated directly by max-

imizing the following auxiliary function,

Q(λ, λ) =
∑
Q

P (Q | O, λ) log[P (O,Q | λ)]. (4.21)

4.2.3 HMM in Speech Recognition

Hidden Markov models have been successfully applied in many areas, such

as temporal pattern recognition, part-of-speech tagging, musical score follow-

ing, partial discharges and bio-informatics. In automatic speech recognition,

HMMs are used to draw a mapping between sequences of speech vectors and

the desired underlying symbol sequences. There are two problems which

make this mapping difficult. Firstly, different symbols can be mapped onto

similar or even the same sounds. On the other hand, the same symbol can

be improperly recognized differently because of large variations of speech

waveforms in the real world, caused by speaker variability, environment, etc.

Therefore, the use of HMMs in speech recognition is an N-to-N mapping

instead of a one-to-one mapping between a speech waveform and a static

pattern. Secondly, the boundaries among speech symbols are hard to be de-

termined from the speech waveform alone. The boundaries can be located
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between words, phones, or other speech units according to the types of speech

recognizers.

As an example, we consider a simple isolated word recognizer. For each

word from a vocabulary of size W , we want to design a separate N-state

HMM. After processing the speech signal of a given word into a time se-

quence of feature vectors, the first task is to build individual word models.

The task of an isolated word recognizer is to solve the optimization prob-

lem argmax
i

P (Wi | O), where Wi is the ith vocabulary word. According

to the Bayesian theorem in 4.1, P (O | Wi) is computed by means of the

acoustic model which are trained by using the Baum-Welch algorithm to es-

timate the model parameters for each word model. Once the set of words

has been trained, the recognition of an unknown word is performed using

the Forward-backward procedure to score each word model based upon the

given test observation sequence, and selecting the word whose model score is

highest.

If we are interested in the physical meaning of the model states, we can

use the Viterbi algorithm in an additional step to align the elements of the

training sequence to the states of the model, and then study the properties

of the feature vectors that describe the observations occurring in each state.

In contrast to isolated word recognizers, continuous speech recognizers allow

users to speak almost naturally, while the computer determines the spoken

words. Recognizers with continuous speech capabilities are more difficult

because of the “coarticulation” effect, varying speech rates and implicit ut-

terance boundaries. Such systems use sub-words such as phones as modelling

units. Phone HMMs are connected together to form a sequence using two

more non-emitting entry and exit states for each model as glues. During

training of a continuous speech recognizer, the boundaries dividing the seg-

ments of speech corresponding to each underlying sub-word model will not

be known. That means that the boundary information cannot be obtained

from the transcription alone especially for a large amount of data. However,

there are some solutions to solve the utterance boundary problem. For ex-

ample, embedded training uses the same Baum-Welch procedure as for the

isolated case but rather than training each model individually all models

are trained in parallel. HMM parameters are repeatedly updated until the
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required convergence is achieved. Although the location of symbol bound-

aries in the training data is not required, for such a procedure the symbolic

transcription of each training utterance is still needed.

4.3 Artificial Neural Networks

In the previous section an informative classification model, namely the HMM,

has been described. This section introduces another type of model based on

Artificial Neural Networks (ANNs). ANNs are loosely inspired from prin-

ciples of data processing in the brain and are usually expressed in network

diagrams, where the number of inputs is dictated by the dimensionality of the

input observation vector, and the number of outputs is dictated by the num-

ber of classes. ANNs may be used as nonparametric discriminant functions in

pattern classification, as multiple regression models, or as “universal” func-

tion approximators. According to these properties of ANNs, they are suitable

to be applied in a variety of ASR tasks, either as a stand-alone model or in

combination with other models (Dahl et al., 2012).

There are many types of ANNs for dealing with different problem classes.

The first and most simple type of ANNs is the feedforward neural network.

The information in this network moves only forwards. There are no cycles

or loops in the network. The simplest example of the network is the per-

ceptron. The perceptron is a binary classifier which maps its input to an

output by a linear condition. By simply adding layers to the architecture

of Perceptrons, we can get the most common types of ANN, the Multilayer

Perceptrons (MLP) (Cybenko, 1989). An MLP consists of multiple layers of

nodes in a directed graph, with each layer fully connected to the next one.

Since MLPs are widely used in many ASR systems, including the ones in

this thesis, we will introduce the theory of MLPs and the backpropagation

algorithm for training them later in this section.

Besides the feedforward neural network, there are many other types of ANNs

such as, the self-organizing map (SOM) (Kohonen et al., 2001). It is con-

structed from a set of neurons to map points from an input space to coor-

dinates in an output space. Being unsupervised, the training algorithm is

an instance of the maximum-likelihood estimation for mixtures of Gaussian

components, exactly like in HMMs. Furthermore, in contrast to feedforward



4.3 Artificial Neural Networks 55

networks recurrent neural networks (RNNs) (Jain and Medsker, 1999) are

models with bi-directional data flow. While a feedforward network propa-

gates data in one direction from input to output, RNNs also propagate data

from later processing stages to earlier stages. RNNs can be used to deal with

time sequences. Although various types of ANNs can be employed in ASR

applications, we focus mainly on MLPs and their backpropagation algorithm,

since they provide a good basis for the combination of ANNs and HMMs.

An MLP combines simple Perceptrons into a complex network consisting

of several layers including hidden ones (4.2). Except for the input nodes,

each node is a neuron with an activation function. The activation function,

which defines the output of a node given set of inputs, associated to hid-

den and output units can be linear or non-linear. In contrast to input and

output layers, the hidden layers deal with internal and intermediate repre-

sentations. In a feedforward manner, input data are passed from one layer to

another until the output data is generated. MLP utilizes a supervised learn-

ing technique called backpropagation for training the network. The training

algorithm estimates a set of weights to be assigned to the links between each

pair of units from adjacent layers.

The supervised training starts by initializing the input weights for all neu-

rons to some random numbers between 0 and 1. Based on inputs of the

network, we calculate the output. The resulting output is then compared

with the desired output to get the error. According to this error, we mod-

ify the weights and threshold for all neurons. This process will be repeated

until the error reaches an acceptable value, which means that the network

has been trained successfully. Another case for stopping the process is that

a maximum count of iteration has been reached, which normally stands for

an unsuccessful training.

The challenge is to find a good algorithm for updating the weights and thresh-

olds in each iteration to minimize the error. Given a multi-layer network with

input units SI , hidden units SH , and output units SO, we choose the gradient

descent technique to minimize the cost function,

C =
1

2

∑
n∈SO

(yn − yn)
2. (4.22)
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Figure 4.2: Multilayer Perceptrons.

where yn is the nth target and yn is the result generated from the output

unit given the nth input. This cost function is used to correct the weights

of the nodes. The weight change Δwij of the connection between the jth

hidden unit and the ith output unit is computed as follows:

Δwij = −η ∂C

∂wij
= η(yi − yi)fi

′(ai)yj = ηδiyj (4.23)

which is known as the Delta Rule, where fi
′(ai) denotes the derivative of

the activation function computed over the current input ai to the ith unit.

Furthermore, let us consider a unit j of the hidden layer. The weight change

Δwjk associated to a connection between the kth input unit and the jth

hidden unit,

Δwjk = −η ∂C

∂wjk
= η(

∑
n∈SO

wnjδn)fj
′(aj)xk (4.24)

where δn is defined as in equation 4.23 for each output unit. For a generic

unit j in the hidden layer we can similarly define,

δj = (
∑
n∈SO

wnjδn)fj
′(aj). (4.25)
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In 4.25 we see that the deltas for hidden units δj can not be computed as a

direct function of the difference between the desired target output and the

actual generated output. The way to solve this problem is to firstly compute

the weight changes of the output layer according to the Delta Rule. Then

propagate backward the deltas to the hidden layer. This is also known as

Back Propagation algorithm (Rumelhart et al., 1986).

As a universal approximator, a trained MLP can be thought of as an “expert”

in the category of information it has been given to analyze. The “expert” can

then be used to project the new given inputs to different output categories.

In particular, in the limit of an infinite number of training observations, the

output of a trained MLP will approximate the true a posteriori probability for

a given observation. MLPs are particularly useful if little knowledge about

the form of the problem or nature of the training observations is available.

ANNs have been successfully used for problems as diverse as automatic face

detection (Rowley et al., 1996), and speech recognition with some success.

A major disadvantage of discriminant classifiers is their inter-class depen-

dence. The formation of the decision boundaries requires clear knowledge of

all other classes in the problem domain. Discriminant classifiers have found

their application area in problems where all classes are static and well de-

fined. This limits their application in a domain with complex classes like

phone sequences for speech recognition. In Chapter 6 we try to overcome

this disadvantage by combining informative and discriminant classifiers.

4.4 Dynamic Bayesian Networks

In the previous sections we discussed HMM based speech recognition, where

hidden states represent a sequence of linguistic units and then relate these

linguistic units to speech features. Two fundamental limitations, namely

the interpretation problem and the factorization problem make it difficult

to further improve HMMs for better modeling speech. On the one hand,

in practical ASR systems, the physical meaning of the states is unclear and

predefined differently according to developers’ experiences and systems’ re-

quirements. For instance in a digit recognition task, the number of states

is usually set to the same for all word models corresponding roughly to the

average number of phones within words. Models with 2 to 10 states are
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considered to be appropriate for speech recognition tasks (Rabiner, 1989).

This freely chosen number of states makes it difficult to assign a physical

meaning to the states of an HMM, especially after training. Moreover, con-

ventional HMMs are fundamentally unfactored. When a recognition task

contains a combination of various information sources, HMMs cannot repre-

sent them precisely. This limitation is a disadvantage of HMMs for some spe-

cial speech recognition tasks like audio-visual speech recognition. However,

some efforts have been made to address this issue. (Potamianos et al., 2004)

proposed phone-synchronous (state-asynchronous) multi-stream HMM and

product (composite) HMM for audio visual speech recognition, and (Deng

and Sun, 1993) designed their HMM framework for articulatory information

accordingly. In this section, we describe Dynamic Bayesian networks (DBN),

a generalization of HMM, which provides a compact representation of a joint

probability distribution and can help to overcome the above mentioned lim-

itations.

4.4.1 Bayesian Networks and Dynamic Bayesian Net-
works

Bayesian networks have been proposed as a specific graphical model (Frydenberg,

1990) by (Pearl, 1988) to represent a joint probability distribution of a set

of random variables X = {x1, x2, . . . , xn}. If we assume that any xi in X

is conditional independent to all other lower-indexed variables, according to

the chain rule the joint probability of X can be computed as:

P (x1, . . . , xn) =
∏
i

P (xi | Parents(xi)) (4.26)

where Parents(xi) refers to a subset of variables x1, x2, . . . , xi−1. That is,

the joint probability of all variables is the product of the probabilities of each

variable given its parents’ values.

Figure 4.3 illustrates an example of a Bayesian network. Assume that two

events could cause grass to be wet, either the sprinkler is on or it’s raining.

Also, cloudy weather could either affect the sprinkler’s working status or a

change to rainfall. A probabilistic graphical model consists of a set of nodes

and arcs depicted as a Directed Acyclic Graph (DAG) (Murphy, 2001), where

nodes represent random variables and the (lack of) arcs represent conditional
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Figure 4.3: An example of a Bayesian network (Murphy, 2001). Nodes rep-
resent random variables defined according to the scenario. Arcs represent
conditional dependencies between variables. Tables, also called CPTs, are
the parameters to be learned in the network.
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independence assumptions. In general, an arc between two variables repre-

sents a direct dependency which can be interpreted as a causal relationship.

In addition to the graph structure, the parameters of the model are speci-

fied as conditional probability distribution at each node. In case of discrete

random variables, these parameters are stored in tables named Conditional

Probability Table (CPT). A CPT provides a probability distribution for all

the possible states of the child node, for each combination of possible states

of the parent nodes. As shown in Figure 4.3, arcs represent the causalities

and nodes are referred to events (C = It’s cloudy, G = Grass is wet, S =

Sprinkler is on, and R = It’s raining). All three variables have two possible

values T (for true) and F (for false).

This scenario is then modeled with a Bayesian network. Using the chain rule

of probability and conditional independence assumptions, the joint probabil-

ity of all the nodes in Figure 4.3 is,

P (C, S,R,W ) = P (C)P (S | C)P (R | C, S)P (W | C, S,R)

= P (C)P (S | C)P (R | C)P (W | S,R)
(4.27)

where the third term and the last term are simplified because of conditional

independence relationships. The model can solve conditional probability

questions like ”How likely it was raining or sprinkling, given the grass is

wet?” by calculating P (R = T |W = T ).

Dynamic Bayesian networks are a dynamic version of conventional Bayesian

networks. The term “dynamic” refers to the system that we are modeling

being a dynamic one. At each time slice t, a set of variables X t = xt
1, . . . , x

t
n

is of interest, where a variable xt
i represents the value of the ith parameter at

time t. Except for the initial and final time slice, the topology of other frames

in the network is a repeating structure. All the CPTs are also the same across

the time slices. The joint probability distribution is then represented as,

P (x1, . . . , xn) =
∏
i

P (xt
i | Parents(xt

i)). (4.28)

Assuming that networks obey the first-order Markov rule (Young et al., 2006),

we know that the parents of a variable in time slice t must occur in either

slice t or t − 1. The joint probability distribution for all time frames can
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Figure 4.4: A “rolled” DBN template (a) and an unrolled DBN (b).

then be simply represented using a “rolled” template, where the conditional

distributions within and between slices are repeated. A “rolled” template is

well suited to be explained and understood during the design phase, and an

“unrolled” DBN topology is normally used during the learning and decoding

phase to deal with a suitably sized network for a given observation. As an

example, Figure 4.4 (a) illustrates a rolled template with intra- and inter-

slice arcs. Figure 4.4 (b) is then unrolled to show five time steps.

A DBN is a Bayesian network used for modeling time series data. It is suited

for modeling temporal processes according to following reasons. Firstly, it is

easy to represent arbitrary nonlinear properties by a tabular representation

of conditional probabilities in a DBN. Secondly, each concept in a task can

be explicitly modeled by a variable node in the DBN graph. Finally, the

joint distribution can be factorized freely according to the requirements of

the given recognition task.

4.4.2 Inference and Learning

Inference in Tree Structured Graphs

Inference in a probabilistic graphical model refers to obtaining conditional

probabilities of any subset of variables given any other subset. As the sim-

plest case, we start with an inference algorithm for a tree-structured graph.

Assuming that B = {B1, B2, . . . , Bn} represents all variables in a graph,

the posterior probability of Bi given a certain evidence E can be calculated
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by the Bayesian theorem as,

P (Bi | E) = P (Bi)P (E | Bi)/P (E), (4.29)

where evidence E refers to the instantiation of some variables. As shown in

Figure 4.5, any node of B can separate E in two parts. E− is the set of ob-

served values for the evidence variables in the subtrees rooted in Bi’s children.

E− is the set of observed values for all other evidence variables. Furthermore

since E−,E+ are conditionally independent given B, then Equation 4.29 can

be written as,

P (Bi | E) = P (Bi)P (E−, E+ | Bi)/P (E)

= αP (Bi | E+)P (E− | Bi)
(4.30)

where α is a normalizing constant. Now we define two important quantities

λ and π according to 4.30.

λ(Bi) = P (E− | Bi),

π(Bi) = P (Bi | E+)

so that the posterior probability can be written as P (Bi | E) = απ(Bi)λ(Bi).

During inference, each node in the graph stores the vectors, π, λ, and the

conditional probability matrix p as parameters. Probability propagation is

done through a message passing mechanism (Pearl, 1988) in which each node

sends messages to its parents and children. That is, the λ probabilities are

calculated in a bottom up way through the tree. The π probabilities are

calculated based on λs in a top down manner.

Inference in Junction Trees

In the more general case Bayesian networks are not restricted to a tree struc-

ture. Inference is often done by clustering groups of variables from the orig-

inal graph into “cliques”. A clique C is a set of nodes in a graph such that

all nodes in C are pairwise connected, and the set is maximal with respect

to this property, i.e. not contained within another clique. By using cliques



4.4 Dynamic Bayesian Networks 63

Figure 4.5: A tree structured Bayesian network. Evidence E is divided into
two parts E+ and E− by a random variable Bi.

as nodes and drawing edges between these nodes, we can construct a new

graph with tree structure. This new graph is named a clique tree or junction

tree. The idea of a clique tree is to represent the same joint probability dis-

tribution as the old graph by means of a simple tree structure.

Figure 4.6 depicts a junction tree derived from a non-tree structured graph.

The first step in junction tree construction consists of connecting nodes in

the Bayesian network that have a common child and making all edges in the

graph undirected, resulting in the so-called moral graph. This procedure,

known as moralization, preserves the conditional independencies of the orig-

inal network. In the second step, undirected edges are added between each

parent resulting an undirected graph. The third step is the triangulation. By

triangulation, undirected edges are added to derive a decomposable graph

where junction tree exists and the message passing algorithm can be applied.

Finally, the junction tree can be constructed as shown in Figure 4.6(d). The

message passing algorithm can be applied onto this tree structured graph.

Inference in DBNs

In case of DBN, inference procedures are similar to constructing a “dynamic”

junction tree (Figure 4.7). Firstly, moralization is done within each time slice.

In the second step, we define a DBN partition at the boundary between each

slice pair. This is done by adding the adjacent nodes from the previous
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Figure 4.6: Junction tree construction. (a) Original Bayesian network. (b)
Moral graph. Dashed lines are added during moralization. (c) The trian-
gulated moral graph. The dashed line is added during triangulation. (d) A
junction tree. (Zweig and Russell, 1998)
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Figure 4.7: Dynamic junction tree construction. (a) Moralization within
slices. Dashed arcs are added during moralization. (b) DBN partitions:
triangulation between adjacent slices. Dashed lines are added during trian-
gulation. (c) DBN junction tree.

time slice into the current time slice graph. The DBN partition is then

triangulated and connected with its adjacent DBN partitions. Finally, a

junction tree can be constructed from the triangulated DBN.

Learning

The learning problem in Bayesian networks requires two different techniques,

determining the structure of the model and estimating the parameters (con-

ditional probability distributions) for a given model structure.

Learning the structure is much harder than learning the parameters. For

some complex issues, the network structure and the parameters of the local

distributions must be learned from data. A detailed explanation of structure

learning can be found in (Zweig and Russell, 1998). We will not discuss this
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issue here. In speech recognition, a Bayesian network is specified manually

by the developer and is then used to perform inference. The DBN structures

described in the thesis are all manually defined.

The learning techniques for parameters are analogous to the learning tech-

niques for HMMs. Usually the conditional distributions are unknown and

have to be estimated from data using the maximum likelihood (ML) ap-

proach. If there are hidden variables in a graph, it is impossible to directly

calculate the maximum likelihood (or the posterior probability). Therefore,

the expectation-maximization (EM) algorithm is applied to maximize the

probability of observed data given the hidden variables’ conditional proba-

bilities. It has to be noted, that the EM algorithm is only applicable if the

conditional probabilities can be represented by distributions in the exponen-

tial family (Zweig and Russell, 1998). If the derivative of the data likelihood

with respect to the conditional probabilities can be computed, gradient de-

scent (Zweig and Russell, 1998) is applicable.



Chapter 5

Using Articulatory
Transcriptions in An
HMM/N-Best Decision
Framework

In this chapter we present a pilot experiment which uses articulatory tran-

scriptions in AVSR. Firstly, we describe the design and implementation issues

of this system. Then, we compare the results of this system with a baseline

system which is a phone-based system. Finally, the advantages and disadvan-

tages of this system are discussed. Its characteristics motivate us to design

other systems in subsequent chapters.

5.1 Corpus and Baseline System

5.1.1 Corpus

Collecting corpus data for AVSR is expensive. Therefore, compared to ASR

datasets, only a small number of audio visual data corpora exist. These audio

visual data corpora can be further divided into two groups. For the audio

visual speech recognition tasks, the corpora TULIPS1, AVletters, AVOZES,

CUAVE, GRID, VidTIMIT, DAVID, IBM LVCSR and DUTAVSC are most

frequently used. In speaker detection or identity verification applications,

corpora like VALID, M2VTS, XM2VTS, VidTIMIT and DAVID are usually

applied.

67
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For the design of our audio visual speech recognition experiments, we con-

sider the following criteria for dataset selection. Firstly, the data should be

continuously spoken. Secondly, the corpus should support speaker indepen-

dent recognition, which requires a large number of speakers being involved.

Thirdly, the size of the vocabulary should also be large enough in order to

provide for a variety of spoken sentences. Finally, the corpus should be spo-

ken in English and available to the public. According to these criteria, we

have chosen the GRID corpus (Barker and Cooke, 2007) for this pilot AVSR

study.

The GRID corpus is a continuous audio visual speech corpus for an English

small vocabulary task. It consists of high-quality audio and video record-

ings of 1000 sentences spoken by each of 34 talkers. The sentences in GRID

are speech commands according to a very simple grammar. The total of 51

words within the vocabulary consist of 4 command words, 4 words represent-

ing color, 4 prepositions, 26 letters, 10 digits and 4 adverbs. Sentences are

simple. Each sentence contains six words with syntactically identical struc-

ture “command color preposition letter digit adverb”, i.e. “place green at B 4

now”. The original audio and video data were recorded under clean acoustic

conditions, and the video shows only a frontal view of each subject’s face.

5.1.2 Acoustic Baseline System

The major purpose of this experiment is to find out whether articulatory

information can contribute to an improved ASR. Therefore, a conventional

phone-based classifier is trained as a baseline system. Since the articulatory

transcription based AVSR is designed in an HMM/N-best decision frame-

work, HMMs should also be used for the speech recognition task in the base-

line ASR. The baseline ASR models are left-right HMMs with 3 emitting

states. The monophone HMM models were further extended to context de-

pendent triphone models. The test data is then recognized with the Viterbi

algorithm using a simple language model.

5.2 Articulatory Transcription Approach

The articulatory transcription (AT) is a speech representation situated be-

tween the acoustic signal preprocessing level and the subword unit probability
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estimation level. This representation describes articulation-related informa-

tion which is deemed relevant for the distinction between speech sounds.

In a conventional ASR, training information contains speech signals and the

corresponding word transcriptions. The most common type of phonetic tran-

scription uses a phonetic alphabet (such as the International Phonetic Alpha-

bet) (International Phonetic Association, 1999), which labels words using a

system of phonetic notations. For example, the word “please” can be labeled

as the phonetic transcription [p l ih s]. Similar to the phonetic transcription,

we can label words using a system of articulatory notations. Since artic-

ulatory information represents the movements of different articulators, the

articulatory transcriptions should be defined for various articulatory features.

For each articulatory feature, we assume that each phone in the phonetic

transcription maps to a set of values in the articulatory transcription. The

phonetic transcriptions are based on the phone set ICSI (International Com-

puter Science Institute) and the audio part of articulatory transcriptions is

based on the following Table 5.1. This table lists the articulatory values used

for different articulatory features, where the five audio channels are based on

the design of (Kirchhoff, 1999) and the two visual channels have been de-

fined by ourselves. Using these two tables we can easily convert the phonetic

transcriptions into articulatory ones. For the articulatory feature “Voicing”,

for example, the word “please” can be labeled as [unvoiced voiced voiced

unvoiced] according to the phonetic transcription [p l ih s]. Table A.1 given

in the Appendix shows the mapping used in our approach.

There are several reasons for using articulatory transcriptions to build AVSR.

Firstly, articulatory transcriptions can be relatively easy retrieved in contrast

to the true geometry of articulators which is usually recorded by special

equipments. Together with the Table A.1 and the phonetic transcriptions

in hand, we are able to find the articulatory transcriptions by mapping

phones and the corresponding articulatory values. Secondly, compared to

a phone-based classification system, the individual AT-based classification

system makes use of fewer classes, which therefore are better suited to be

used in case of sparse training data. Thirdly, various channels of AT-based

classification systems should lead to different recognition results. It is neces-

sary to design a fusion component for investigating the synchronicity issues
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Table 5.1: Articulatory transcriptions used in AVSR framework.

Channels Values Num. Classes

Voicing voiced, unvoiced 2
Rounding round, nil, flat 3
Manner vowel, nasal, lateral, 5

approximant, fricative
Place dental, labial, retroflex, 7

velar, high, mid, low
Front-Back front, nil, back 3

Visual opening open, close 2
Visual rounding round, nil, flat 3

between articulatory features.

Motivated by the advantages described above, we propose a two-stage ar-

chitecture (see Figure 5.1), where the articulatory information is extracted

in parallel from both the speech signal and the video frames by means of ar-

ticulatory transcriptions in the first stage. The second stage then combines

these articulatory transcriptions outputs into AT-tuples and maps them to

a corresponding phone stream. A lexical search maps this stream to word

sequences as output.

In the first stage, we use articulatory information to train the multi-channels

of HMMs. In contrast to (Kirchhoff, 1999) we do not attempt to detect

the articulatory features in a pure bottom-up fashion, but train a number

of independent word recognizers, where the words are defined in terms of

articulatory transcriptions instead, as usual, in terms of phones. The speech

signal is described by low level features, i.e. MFCC features in the audio

channels and appearance-based features in the visual channels. In our ex-

periment, seven AT-based HMM classifiers (5 from the audio signal and 2

from the visual channels) have been trained by Baum-Welch reestimation.

The word recognizers are applied in parallel to the audio or visual data and

their outcomes are word sequences which can also be interpreted in terms

of sequences of articulatory values. This approach has the advantage that it

allows us to integrate higher level information from a language model already

during the AT-detection phase.
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Figure 5.1: Articulatory Transcription based two-stage AVSR architecture.

Instead of selecting the single best decoding result, we determine the N-best

hypotheses for all the AT-based classifiers as the outputs of the first stage.

For recognition the Token Passing algorithm (Young et al., 1989) is used.

Token Passing saves the best tokens at each word boundary, which gives

the potential for generating a lattice of hypotheses rather than only a single

best hypothesis. Since the tokens are saved at the word level, the output is

actually a sequence of loosely synchronized hidden words. Synchronization

is a loose one, since the HMM embedded training cannot guarantee a strict

synchronization of the ATs within a word. However, thanks to the short

pause models, which are usually easy to train, word boundaries can be de-

tected during recognition. In accordance with this observation, we are able

to represent the recognized words from various channels as AT sequences,

where the word boundaries of all channels can be aligned at the same time

points.
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5.3 N-best Decision Schema

In the second stage, the output of the AT-based recognizers will be processed

with the goal to combine the various channels into a single sequence of AT

representations for which a meaningful phone representation exists. For this

purpose, we propose an N-best decision scheme which computes the results

of the first stage classifiers into a number of coherent AT tuples, which can

be mapped to the phones contained in a code book.

For applying the N-best decision schema, two assumptions for the corpus

are necessary to be considered. Firstly, all the training and testing sentences

should have the same number of words. That requires that no insertion and

deletion errors occurred during the first stage recognition. A strict grammar

used as language model can help to fulfill this requirement. In the GRID

corpus, the recognized words can be easily separated into all articulatory fea-

tures because of the high accuracy recognition of short pauses between words.

This makes the synchronization possible at the word boundaries. Secondly,

all the words in the corpus should have a similar number of phones. This

makes it possible to combine the articulatory values from different channels

into a single AT tuple. In the GRID corpus, the number of phones in all

words is between 1 to 5, and most words contain 2 to 4 phones, which helps

the N-best decision schema to achieve fairly accurate combination results.

The N-best decision schema is similar to the mixture of experts (ME) ar-

chitecture proposed by (Jacobs et al., 1991). Having available, however, the

N-best output from the first stage, it seems more likely that the optimal re-

sults will be among them and a more reliable mapping between articulatory

representations and phone representations can be established. In our experi-

ments, we have always chosen the five best hypotheses. The N-best decision

schema consists of five procedures, namely 1) Synchronization, 2) AT tuple

generation, 3) Best output selection, 4) Weighting and 5) Lexical Search.

The N-best decision schema is invoked after the decoding stage of the AT-

based classifiers. Assuming that the number of the classifiers is Nc, the

decoded sentence by classifier n can be defined as a sequence of words Wnk,

Sn = {Wnk | n = 1, . . . , N, k = 1, . . . , Nw}. (5.1)
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where Nw denotes the number of words recognized in the sentence. Accord-

ing to the above first assumption, Nw has the same value for all classifiers.

After the process of “loose synchronization”, the problem to decide on the

best sentence is converted into a best word decision scenario.

A word Wnk can be defined as a sequence of articulatory values Ankm,

Wnk = {Ankm | n = 1, . . . , N, k = 1, . . . , Nw, m = 1, . . . , Na}. (5.2)

where Na is the length of a word, which refers to the number of AT seg-

ments within that word. The value of Na could be different for the same

word recognized by various classifiers. Even in the same classifier, there is

no identical Na value among all the hypotheses. In order to combine the

articulatory information from different classifiers, the recognized words are

synchronized by normalizing the word length according to a majority vote

among all the available output candidates of the AT-based classifiers. The

normalization becomes necessary since the output of the first stage might be

incoherent between alternative recognition hypotheses of the same classifier

and across the different articulatory features. It is carried out as a greedy

search based on two above mentioned assumptions. By selecting the optimal

length, we look up the current recognized word from all N classifiers. Since

the five best word candidates are collected in the system, there are in total

5N sequences of articulatory values Ankm as word hypotheses. We choose the

most common word length from all these word hypotheses as the word length

of this recognized word. Those word hypotheses, which are only supported

by a minority of AT-based recognizers, are excluded. Here the selected word

length is denoted as Nā.

Articulatory values can be combined into AT tuples where each component of

the articulatory transcription tuple corresponds to the number of AT-based

recognizers of the first stage. An AT tuple can be mapped to a phone. E.g.

the tuple [unvoiced, fricative, labial, nil, nil] can be mapped to

the phone [f]. We consider the possible mappings in the manually created

AT-to-phone table shown in the Appendix A.2. Since the selected word

length is Nā, a final word will be generated by Nā AT tuples.
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Figure 5.2: The flow chart of N-Best Decision Schema

AT tuples are generated taking into account the scores from the first-stage

classifiers. The first AT tuple, for example, is generated by combining the

topmost candidate decision from all the classifiers. The second one will re-

place the topmost candidate of the most unreliable classifier by its second

best choice, etc. Since we have chosen only the five best candidates of the

AT-based word recognizers and in many cases they agree in the proposed

recognition results, we are able to consider all combination possibilities when

generating AT tuples.

Ideally, the AT tuple derived from the best decision of each classifier is the

most likely one from all candidates. However, since the combined results are

based on inaccurate first stage classifiers, it might not always be possible to

map the parallel feature assignments into phones. Therefore, we need to ex-

clude such combinations from consideration. Figure 5.2 shows the flow chart

of the N-best decision schema. The right part indicates the logic of best

output selection. If the first output from the N-best list cannot be found in
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this table, it is replaced by another one from the list. If none of these tuples

can be mapped into phones, a recognition rejection will be generated. The

generated AT tuples are ranked based on the accumulated confidence score.

A phone stream is then defined as a sequence of phones which are admissible

according to the AT-to-phone table. Eventually, this phone stream will be

mapped into words according to the phone-to-word table. For this purpose, a

pronunciation dictionary including some pronunciation variants is used. For

instance, “five” is transcribed both as [f ai v] and [f ai f].

Weighting is used in the synchronization step. In order to vote for the op-

timal length of a word in the synchronization step, the decision could be

weighted according to the recognition accuracy of the AT-based classifiers.

The example shown in Figure 5.3 illustrates the data flow within the N-best

decision schema. The testing data is the sentence “bin red by t one please”.

According to the first assumption of this approach, the word boundary is

reliably detected by all first level AT-based word recognizers. Therefore, the

synchronization can be achieved word by word. When the word “one” is

processed, the five best decisions of the rounding classifier have a different

length of words. Voting determines the “average” length among all word

candidates from all AT classifiers to three segments and all candidates with

another length are no longer considered. After this synchronization step, we

select the ATs from all classifiers and combine them into AT tuples. Their

number is limited in our example, because all the AT-tuples have the same

value in this example, which can be mapped to the phone [n]. Together with

the two neighboring phones eventually the word “one” is decoded.

5.4 The Phone Level Synchronization

In this section we analyze the information fusion and the temporal issues in

articulatory transcription based AVSR. In the HMM/N-best decision frame-

work, the decoding results of the first stage HMM classification are integrated

in the second stage N-best decision schema. Therefore, the articulation tran-

scription approach fuses the audio visual information and multiple channels

of articulatory information at the decision stage.
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Figure 5.3: Example for the N-best decision schema. AT-classes are coded
as numbers

As input of the N-best decision schema, sequences of recognized words are

the sources for information fusion. According to the phone-to-AT conversion

table, these words can be further decomposed into sequences of articulatory

values. During information fusion, a word is segmented into phones. A com-

bined tuple including various articulatory values is used to decide on the

phone at the current time segment. Obviously the smallest time segments

are not frames but phones. Therefore this approach synchronizes at the level

of phones but leaves the frame levels unsynchronized.

However, according to the two assumptions introduced for the N-best de-

cision schema, the phone level synchronization is not necessary to force the
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Figure 5.4: Alignment of AF Transcriptions.

articulatory values to share the same phone boundaries. For example, within

the five audio channels, the phone /ih/ can be recognized by detecting the tu-

ple of articulatory values [voiced, vowel, high, front, f lat]. The vowel value,

however, can easily start several frames earlier than the value flat, or the

voiced value might continue longer than the value front. How to combine

these values depends on the position of the value in the word. In a word

with a length of Nā for example, there are in total Nā positions. Only the

articulatory values with the same position can be combined into an AT tu-

ple. Neither the starting and ending time of the value are considered in the

N-best decision schema. This method loosely synchronizes the articulatory

information at the phone level, which helps the system to model highly over-

lapping articulatory features.

Figure 5.4 shows the utterance “bin blue at f three please” force aligned in five

channels of articulatory transcriptions. The different channels share similar

word boundaries. Although the similarity of word boundaries is caused by

the fairly accurate articulatory information for the GRID corpus. It might be

useful information which can be used as input to the N-best decision schema

to integrate the articulatory information at the phone level.

5.5 Results and Conclusion

In order to compute articulatory information, we classified the low level fea-

tures into articulatory classes using left-right HMMs with 3 emitting states.

The models are initialized with the flat start method (Young et al., 2006) and

the HMM parameters are trained with maximum likelihood estimation. For

recognition, the token passing algorithm is used without any pruning factor.

We take the five best outputs from each individual channel and apply the
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N-best decision scheme described above to them.

Figure 5.5 shows a comparison of three AT-based recognition systems with

respect to their accuracy. Compared to the results of (Amer and Berndsen,

2003), where the articulatory features are also trained by HMMs, our sys-

tem obtained better results in all individual classifiers. This performance is

comparable to the one reported in (Kirchhoff, 1999), where Kirchhoff uses

only bottom up information. Since the first stage of our system actually con-

sists of AF-based word recognizers, the figure also presents the corresponding

word recognition accuracy in the different channels. It is considerably lower

than AF recognition rate because certain words can hardly be decoded using

only AT classes.

Within such a two-stage architecture, the multi-channel AT-classifiers are

trained and tested with either audio or video data. Their results are com-

bined in a second stage, using the N-best decision schema. Table 5.2 shows

the word recognition accuracy results for different versions of the second

stage. As expected, the word recognition accuracy of the individual first

stage AT-classifiers is considerably lower than that of the baseline triphone-

based recognizer. After applying the N-best decision schema to combine the

AT-decoding results, however, the overall word recognition accuracy rises

even above that of the phone-based approach. When comparing the audio-

only and audio-visual AT-based systems, the latter one gives slightly better

results even under clean acoustic conditions and by further fine tuning the

visual preprocessing algorithms a further improvement can be expected.

Table 5.2: AT-based word recognition accuracy after N-best decision

Systems Results

Audio articulatory transcriptions 93.57
Audio-Visual articulatory transcriptions 93.71

Phone-based 90.34

The experiment carried out here, confirms the potential of using articulatory

information for combining acoustic and visual cues for speech recognition

purposes. However, this approach has two limitations. Firstly, the HMM/N-

best decision approach is corpus dependent. The preconditions for using the
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Figure 5.5: The first stage feature accuracy rates comparison on three AT-
based recognition systems

N-best decision schema prevent this approach to scale up to arbitrary speech

recognition tasks. If the speech corpus is built from a large vocabulary or ac-

cording to a more freely defined grammar, the output of the first stage HMM

classifiers could result in deletion or insertion errors, and it might become

difficult to combine the articulatory information by means of the N-best de-

cision schema. Secondly, the features used in the system are only low level

ones, which still can be affected by noisy environments. If we use noisy data

to test the models, the output of the first stage HMM classifiers will be in-

accurate, which will also affect the integration in the N-best decision schema

negatively.
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Chapter 6

Using Articulatory Features in
An ANN/HMM Framework

In this chapter we present an AVSR system which uses articulatory features

instead of articulatory transcriptions. This approach is designed to solve

the limitations described in the articulatory transcription based AVSR. The

corpus and the baseline system for this experiment are first presented. Then

the formal background of the ANN/HMM framework is introduced. In the

third section we discuss the design and implementation of the articulatory

feature approach. Then the synchronicity issue is analyzed. Finally, we

present the experimental results and the conclusions for this approach.

6.1 Corpus and Baseline System

In the articulatory transcription based approach, two assumptions about the

corpus have been made, which are necessary prerequisites for using the N-

best decision schema. These assumptions, however, prevent the articulatory

transcription approach to scale to large vocabulary tasks. In the articula-

tory feature approach, we try to remove these assumptions and evaluate the

system on a corpus with a larger vocabulary and a more flexible sentence

structure. For this purpose we have chosen the VidTIMIT corpus for train-

ing and testing.

The VidTIMIT corpus (Sanderson, 2009) is a continuous audio visual speech

corpus for an English medium-sized vocabulary task. It contains 10 sentences

spoken by 43 speakers each. The first two sentences for all speakers are the
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same, while the remaining eight ones differ between speakers. The sentences

were chosen from the test section of the TIMIT corpus (Fisher et al., 1986).

The corpus was recorded in 3 sessions, with a mean delay of 7 days between

Session 1 and 2, and 6 days between Session 2 and 3. The recording was done

in an office environment using a broadcast quality digital video camera. The

corresponding audio signal is stored as a mono, 16 bit, 32 kHz WAV file.

In the articulatory transcription approach, the baseline system was an audio

only phone-based speech recognizer. However, in the articulatory feature

approach, the baseline system is trained with both audio and visual data.

The low level audio and visual features and the phonetic transcription are

used as training information to estimate the parameters of the HMMs. To

compare the low level features and the articulatory features under the noisy

conditions, the baseline system has also been tested on signals distorted with

pink noise. Signals with different signal-to-noise ratios (SNR) are used as

testing data to show the performance of different systems.

6.2 The Hybrid ANN/HMM approach

ANNs can be used for solving speech classification problems, such as word or

phone recognition. By mapping temporal representations into spatial ones, or

by using recurrences, ANNs can be applied to simple ASR tasks. However for

the case of continuous speech recognition, ANNs were not successful in deal-

ing with long time-sequences of speech signals, since the number of possible

word sequences is in general infinite. Probabilistic models are better suited

for such a task. To take advantage of the properties of both approaches, a

combination of discriminative (ANNs) and informative (HMMs) classification

is attempted. To combine both classification frameworks many approaches

have already been investigated. For example, Bourlard et al. (Bourlard

et al., 1996) proposed an architecture for continuous ASR in which an MLP

was trained to estimate the posterior probabilities of HMM states. Instead

of MLPs, there are other types of ANNs used as density models, such as

time delay neural networks (TDNNs) (Dugast et al., 1994) and radial basis

function networks (RBFs) (Huang and Lippmann, 1990). In this section, we

mainly focus on the hybrid ANN/HMM architectures proposed by Bourlard

and their variation.
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Figure 6.1: A three states hidden Markov model.

In the case of ASR, given the basic HMM equations, we would like to esti-

mate the probability value P (x | q). Assuming that a sentence is represented

by a particular state sequence, QN
1 = {q1, q2, . . . , qN}, Figure 6.1 shows a

three states HMM where the state q of the model is not observed. The val-

ues P (x | q) refer to the emission probabilities of the observed input speech

signal data x given the hypothesized HMM state q. The other probability

values P (qi | qj) are the state transition probabilities.

In Bourlard’s approach, MLPs are used to estimate the conditional posterior

probabilities P (q | x) of each HMM state qi. By using Bayes’ rule, the poste-

rior probability distributions can be converted to the emission probabilities

P (x | q) required for HMMs as follows,

P (x | q)
P (x)

=
P (q | x)
P (q)

, (6.1)

where P (q) is the prior probability of a phone. We assume that the prior

probabilities of all phones are equal for decoding purposes. P (x) is con-

stant scaling factor for all classes and will not change during the classifica-

tion. Thus, in practical systems, a scaled likelihood estimate is computed by

MLP’s output posterior probability.

The HMM has a temporal structure but the ANN has not. The outputs

of the ANN nodes represent the emission probabilities for all the HMM
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states. Compared to the conventional HMM based ASR architectures, hybrid

ANN/HMM systems have several advantages listed below:

• Correlated Inputs

In HMM based ASR systems Gaussian mixture distributions are used

to build the density function for acoustic models. Usually, features are

assumed to be independent and no correlation between them is mod-

elled, to keep the models as simple as possible. In hybrid ANN/HMM

systems, on the other hand, the correlation between the features can

be learned during the training of the ANN part.

• Context Information

In HMM the first and second time derivatives are computed over a

few adjacent frames to capture at least a limited amount of acousti-

cal context information. Linear Discriminant Analysis (LDA) is used

to maximize the inter-class variances and to minimize the inner-class

variance. In the case of ANN/HMM, adjacent acoustic feature vectors

x1, x2, ..., xn are given as input to the MLP, and the MLP provides a

simple architecture to consider context information when calculating

its output P (q | x1, x2, ..., xn). As an arbitrary function approximator,

MLP allow any nonlinear transformations of the acoustic input.

• Discriminative Training

In HMMs, we are concerned with estimating the joint probability dis-

tribution of the speech input. However, the ultimate goal of speech

recognition is to compute the posterior probability of a sentence given

the acoustic input. As a discriminative training method, MLPs may be

used directly to compute class-conditional posterior probabilities. This

computation is done in our hybrid ANN/HMM system at the frame

level.

• Flexibility

Using an MLP as an acoustic probability estimator provides us with

an opportunity to combine diverse kinds of features. Therefore hybrid

ANN/HMM architectures are well suited to integrate various levels of
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Figure 6.2: Architecture of a ANN/HMM approach for ASR. Low level fea-
ture vectors can also be combined with MLP outputs as indicated by the
dashed line. Either a single MLP classifier or a range of parallel MLPs can
be used depending on the number of articulatory features.

audio visual speech representations, such as, the low level feature vec-

tors and articulatory feature vectors. This will be described in detail

in this chapter.

6.3 Articulatory Feature Approach

In contrast to articulatory transcriptions, which retrieve the articulatory in-

formation from the transcription generation component, the articulatory fea-

ture is retrieved from the feature extraction component, which encodes the

articulatory information. In conventional ASR, the feature extraction compo-

nent usually computes low level features, for example, MFCCs for the audio

channel and appearance-based ones for the visual input. ANNs attempt to

transform input acoustic representations into compact but significant, low-

dimensional representations which can be better modeled by the emission

probabilities of the HMM than standard acoustic parameters. As introduced

in Chapter 4, the ANN we used in our experiment is a multi-layer perceptron

(MLP).

The architecture of an ANN/HMM system is shown in Figure 6.2. After cal-

culating low level feature vectors, e.g. MFCC, MLPs can be used as nonlinear
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feature transformation components. The MLP output, which approximates

the posterior probabilities for the given input features, can be further trans-

formed into articulatory features for better matching the gaussian mixtures

of a continuous HMM. This can be implemented, for example, by taking the

logarithm of the MLP outputs. As an input for the HMM, either the artic-

ulatory feature vectors alone or a combination with low level feature vectors

can be considered.

6.4 AF-based Tandem Approach

Many variations of the ANN/HMM approach have been proposed and showed

comparable performance to conventional HMM based ASRs. Among these

variations, (Hermansky et al., 2000) presents a method named the tandem

approach which is suited for speech recognition tasks. The tandem approach

uses the pre-nonlinear output of a neural network classifier as the input

features for Gaussian mixture models (GMMs) of a conventional speech rec-

ognizer. The main difference to the conventional ANN/HMM approach is

that the outputs of ANN are used as new features for HMM training rather

as scaled emission probability directly.

As shown in Figure 6.3, an MLP is trained to estimate the posterior proba-

bilities of possible subword units. The output of the MLP is used as input

features for a Gaussian mixture based HMM system. Furthermore, in order

to avoid skewed distribution from MLP, the input features for GM models are

wrapped by certain transformations, such as logarithm or PCA (Hermansky

and Morgan, 1994).

In the case of articulatory feature based AVSR, instead of using one single

MLP classifier for posterior probability estimation, we train several parallel

AF-based MLPs. Each individual MLP represents an AF feature channel,

whose values are chosen according to knowledge about speech production.

The number of units on the output layer of each MLP corresponds to the

number of values in each articulatory feature. The definition of articulatory

channels is the same as in Table 5.1. Voicing, manner, place, front-back, and

rounding are five articulatory features for the acoustic channel, where the

number of feature values per channel varies between 3 and 10. Opening and

Rounding are two additional feature channels describing the position of the
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Figure 6.3: Architecture of a tandem approach for ASR. The left side rep-
resents the traditional hybrid ANN/HMM approach proposed by Bourlard.
The right side describes the procedure of the tandem method.
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articulators based on visual information.

Obviously, the number of feature values for each individual AF channel is

much smaller than the number of classes in a usual phone inventory. This

means that it requires less effort to train an MLP network, and better clas-

sification results can be expected. Furthermore, AFs might also help to

achieve a better design for bimodal speech recognition, since using AFs as

an intermediate abstract representation may provide an attractive option for

combining information from the audio and visual channel.

According to the idea of AF-based tandem approach, Figure 6.4 shows a

system framework consisting of two stages. Raw audio and video data are

first processed in the feature extraction stage, where a series of parameterized

feature vectors from both channels is generated. The feature classification

stage transforms the feature vectors into articulatory features. MLPs with

three layers are applied to train a set of articulatory feature models. As a

second-level classifier, HMMs are applied in the second stage, which map the

articulatory features into a sequence of different phonetic units.

Following (Kirchhoff, 1999), we have chosen the logistic function as activa-

tion functions for the nodes in the hidden layer and the softmax function

for the nodes in the output layer. The softmax function ensures that the

output activation values are non-linearly mapped to the range [0,1], which is

necessary to provide the subsequent word recognizer with a valid probability

distribution.

6.5 The Information Combination At Feature

Level

In the AF based approach, the outputs of all MLPs are combined to generate

a single articulatory feature vector as the input feature vector of a standard

HMM-based speech recognizer. All the articulatory information is modeled

only in the MLPs. On the feature level, feature vectors are always processed

based on a specific time interval, such as 10ms as a time frame. Acoustic

and visual low level features are used as input for the networks. For every
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Figure 6.4: AF-based AVSR system.

time interval, a corresponding output vector is generated to represent the

probability of the articulatory values in each channel for the current time

frame. Although there are different channels of MLPs to retrieve various ar-

ticulatory features, the combination of multiple articulatory features is still

processed frame by frame. The synchronization of all information will not

be achieved here. In the successive HMM classification stage, only one clas-

sifier is defined to run the word recognizer. After all the HMM decides on

the feature vector to state mapping, i.e. whether a feature vector belongs to

a phone internal state or rather indicates a phone transition. Since HMMs

cannot model any asynchrony on a higher level, such as subphone, phone or

word, we can only enforce synchronization for these information.

Using a combined articulatory feature vector is a solution to model the

loosely synchronized articulatory gestures. All articulatory dynamics can

be observed at the level of feature observation. Articulatory feature vectors

describe the speech signal frame by frame. Instead of a sequence of pho-

netic units, an utterance can be explained by a composition of a sequence of

frames. Phonetic units, such as subphones or phones alone, can hardly ex-
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Figure 6.5: Alignment of AF Transcriptions.

press the pronunciation variability. However, the articulatory feature vectors

for the frames can provide useful information to distinguish pronunciation

variants for a phone. For example, the place of the velar for the phone /g/

in gift is more closer to the palatal than it is for the phone /g/ in golf . By

using frames of articulatory feature vectors, the difference between changing

from /g/ to /i/ and changing from /g/ to /o/ can be explicitly expressed.

An example of asynchronously aligned articulatory features is shown in Fig-

ure 6.5. The utterance “Bricks are an alternative” from the VidTIMIT corpus

is analyzed using the force alignment graphical user interface. During feature

extraction five channels of MLPs are used to extract the articulatory feature

vectors. The combined feature vector is further concatenated with 39 di-

mensions of MFCCs. The data are then fed into five different articulatory

features. In order to annotate the time information, we use the analyzing

method similar to the one in Chapter 5. That is, instead of a representation

based transcription for classification, five sets of articulatory transcriptions

are used in these HMMs channels to train the word classifiers. Finally these

force alignment results are presented in the figure to show temporal informa-

tion in various channels.

Figure 6.5, shows an obvious asynchrony among the articulatory features at

the word level. Some words, such as silence and bricks, maintain a roughly

synchronized relation at the word boundary, which indicates a relative sta-

ble word recognition in all channels. However, some words, such as an and

alternative don’t share similar word boundaries for all channels. Especially

the boundary of the word “an”, exhibits a clear time difference between the

channel for rounding and the other channels. By checking the raw audio
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data, we hear these two words as a nalternative rather than an alternative.

This pronunciation variability, also known as coarticulation, is hard to be

recognized because the model combination /a+n/ for the word an is badly

trained. Therefore the boundary between an and alternative is placed dif-

ferently by different articulatory classifiers.

6.6 Results and Conclusion

The raw audio signal was converted to a 9-dimensional RASTA-PLP (Hermansky

et al., 1991) feature vector for each 10ms frame. The raw video signal was

converted into appearance-based features as described in Chapter 3. In this

experiment, the gray scaled pixel values are used as visual speech features.

For dimensionality reduction, PCA has been applied and the first 20 com-

ponents have been selected as visual features. Moreover, to raise the visual

frame rate to that of the acoustic signal, visual vectors are interpolated lin-

early so that both signals are synchronously available.

For the MLP layer training stage, the 9-dimensional audio feature vectors

and 20-dimensional visual feature vectors are then expanded to 45 dimen-

sions and 100 dimensions by adding the two previous and the two following

frame vectors in order to introduce some context information. These feature

vectors were used as the input for all MLPs. The number of hidden units for

the different MLPs is shown in Table 6.1.

Table 6.1: Number of hidden units used by each AF MLP.

Feature Channel Hidden Units

voicing 50
manner 100
place 100

front-back 100
acoustic rounding 100
visual rounding 100
visual opening 50

In the second stage of our system, standard left-right mono-phone HMMs

with 3 emitting states have been trained by means of HTK. The models are
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initialized with the flat start method according to the features calculated

from the MLP layer and the HMM parameters are trained with the Baum-

Welch algorithm.

To evaluate the performance of the system, first the preprocessed audio

and visual data must be processed by the already trained MLP classifiers

to calculate the posterior probabilities. The results are then combined and

recognized with the Viterbi algorithm. All MLPs have been trained by means

of MATLAB.

Table 6.2 shows a comparison of three AF-based feature extraction studies

with respect to their frame level accuracy. For the purpose of this experiment

the available data have been separated into a training set consisting of 330

utterances from the first 33 speakers and a test set with 100 utterances from

the remaining speakers.

Table 6.2: Frame level AF-based MLP classification average accuracy.

Feature Channel This Work Work (Kirchhoff, 1999)

voicing 80.3% 89.1%
manner 54.6% 82.0%
place 47.7% 77.2%

front-back 66.8% 82.9%
acoustic rounding 71.5% 83.1%
visual rounding 58.7% -
visual opening 61.2% -

The Manner and Place feature channels have not reached a high accuracy

is because of the large number of classes. To compare our results with the

one of (Kirchhoff, 1999), one needs to take into account the different tasks

(medium vocabulary vs. small vocabulary, namely OGI Numbers95) and the

different corpus size (29 minutes vs. 160 minutes, in total including training

and testing).

Figure 6.6 shows the WERs for different monophone systems on the Vid-

TIMIT 1200-word vocabulary task. For the noise test sets, pink noise from

Noisex database was added to the speech signal at various signal-to-noise
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Figure 6.6: Comparison of the word error rates for different speech recogni-
tion system when pink noise is added.

ratios (SNR). Signals with 30dB SNR are assumed as clean ones. Two sys-

tems have only access to the acoustic channel and do not make use of any

visual features: A phone-based audio-only speech recognizer (ASR) serves as

a baseline, while AFASR is its counterpart based on articulatory features.

The AF-based visual speech recognizer (AFVSR), on the other hand, has

only access to the articulatory features from the visual channel. Its results

therefore are independent of the acoustic noise level. The AFAVSR system,

finally, combines all articulatory features from both channels, acoustic as well

as visual ones.

Compared to the phone-based baseline, the AF-based tandem approach was

able to achieve a significant reduction of the WER under all noise condi-

tions. This is in contrast to the findings of (Kirchhoff, 1999), where the

improvement was noticed only under noise, while in our case the less noisy

conditions have profited most. That difference might be caused by the dif-

ferent amounts of training data available. The visual-only speech recognizer

yields very poor results. It achieved a recognition rate of only 21% which

is fairly low compared to 41% reported in (Kirchhoff, 1999). Nevertheless,

by introducing the visual information, the combined AFAVSR system gained
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a noticeable improvement in accuracy compared to the audio-only recogniz-

ers. This again confirms that the use of visual information can compensate

deficits of the audio channel.

In contrast to the articulatory transcription approach, the articulatory fea-

ture based one has two advantages. Firstly, the articulatory feature approach

is not corpus dependent. There is no need to make special assumptions about

the characteristics of the corpus data as for the articulatory transcription ap-

proach. Therefore, the approach can be scaled up to arbitrary AVSR tasks.

Secondly, by estimating the probabilities of articulatory values, articulatory

features together with low level features are more robust against noise (Figure

6.6). These results are in accordance with the motivation of using articula-

tory information in AVSR.

Although the combined articulatory feature vectors potentially show an im-

provement of AVSR, in practice it is still difficult to retrieve accurate ar-

ticulatory feature vectors for each frame. As shown in the previous sec-

tion, the accuracy of articulatory feature vector extractors is between 50%

and 80%. When one specific articulatory feature in a particular time frame

has been inaccurately processed, the combined articulatory feature vector

cannot properly express the articulatory dynamics in that frame. Further-

more, the articulatory feature vectors are combined and synchronized at the

frame level, which is a rigid synchronization requirement between different

articulatory features. As discussed in Chapter 2, articulatory information is

asynchronously arranged. However, this asynchronicity between articulatory

features is difficult to be modeled using this approach.



Chapter 7

Encoding Articulatory
Information with DBN Models

As described in Section 4.4, HMMs have the problems of interpretation and

factorization, which presents one state at a time. This characteristics pre-

vents us to model the details of articulatory information in AVSR. As an

alternative, DBN is a generalization of HMM, which allows them to use arbi-

trary many state variables, therefore being able to model independent move-

ments of articulators. We use DBN as the formal foundation in this chapter

to design different systems for encoding articulatory information from audio

and visual modalities. Specifically, a single channel AVSR, an audio-visual

channel AVSR and an articulatory channel AVSR are described as three dif-

ferent types of DBN based systems.

7.1 Data Preparation

In contrast to the VidTIMIT corpus, the GRID is based on a smaller vocabu-

lary, but provides more training and testing data. Furthermore, the language

model of the GRID corpus is rather simple. Therefore, the GRID corpus is

used for all experiments in this chapter. 5000 sentences ( 5 speakers ) are

selected as training data and 1000 sentences ( 1 speaker ) are used for testing.

Again, MFCCs with a 10ms sampling period are taken as the acoustic feature

vectors. The visual feature vectors are computed by the appearance based

method with a 40ms sampling period. By upsampling the visual features

to one per 10ms with linear interpolation, acoustic and visual observations

95
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can be combined for each state. The different DBN models have been devel-

oped using GMTK ( the graphical model toolkit, (Bilmes and Zweig, 2002) ).

For AVSR the audio and visual channel were designed to model phone and

viseme features respectively. 35 phones and 13 visemes have been modeled

based on acoustic and visual observations. For the models in the articula-

tory channel, it would be ideal to have seven channels available, including

five audio and two visual articulatory features. Unfortunately it turned out

to be infeasible to train models with a seven channel structure. Therefore,

we designed a three channel feature set for the articulatory channel AVSR.

The details are explained in Section 7.4.

7.2 Single Channel AVSR

The single channel AVSR uses only one phonetic channel. Figure 7.1 shows

the training structure used in the system. In this graph we model three

levels of phonetic units, namely Word, Phone and SubPhone. A word is

constructed out of several phones and each phone should contain three states

of sub-phones. A State variable is defined to directly map the probability

values of SubPhone. The Observation variable in the baseline system is de-

signed for reading one stream of acoustic features, eg. MFCC, PLP, etc. It

would be easy to consider multiple observation variables, eg. acoustic and

visual features, as long as they share one common state variable. In this

case, multiple streams are synchronized at the state level.

The meaning of all variables in Figure 7.1 and their Conditional Probability

Distributions (CPDs) are explained as follows (Ravyse et al., 2006).

• WordCounter, denoted as WC, represents the word position in the

current sentence.

P (WCt = j | WCt−1 = i,WTt−1 = b,Wt−1 = w)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if j = i+ 1 and b = 1 and w 
= EOU
1 if j = i and b = 0 and w 
= EOU
1 if b = 1 and w = EOU
0 Otherwise

We use here the term cardinality of a variable to represent the number
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Figure 7.1: A 3-state monophone model for training without word alignment.

of values of the specific variable. For example, the cardinality of WC

is the maximum possible number of words in an utterance. The value

of WC is increased by one when a word transition happens and the

previous word is not the end of the utterance.

• WordTransition, denoted as WT , represents the end of the current

word and a transition to the next one.

P (WTt = j | PTt = i, Pt = p)

=

{
1 if p 
= EOW and i = 1
0 Otherwise

WT is set to 1 if there is a phone transition and the current phone is

not the end of the word (EOW).
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• Word, denoted as W , refers to the current word, determined by word

counter.

P (Wt = w | WCt = i)

=

{
1 if w = words(i)
0 Otherwise

words(i) returns a word which is the ith word in the current utterance.

• PhoneCounter, denoted as PC, represents the phone position in the

current word.

P (PCt = j |WTt−1 = d, PCt−1 = i, PTt−1 = b)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if j = i+ 1 and b = 1 and d = 0
1 if j = i and b = 0 and d = 0
1 if j = 1 and b = 0 and d = 1
0 Otherwise

The cardinality of PC is the maximum possible number of phones in

a word. The value of PC is increased by one when a phone transition

happens and the previous phone is not the end of the word. If there

was a word transition in the previous frame, the phone counter should

be set to 0, which means the beginning of a new word.

• PhoneTransition, denoted as PT , refers to the end of the current

phone and a transition to the next one.

P (PTt = j | Pt = p, SPCt = b, SPTt = i)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if j = 0 and i = 0
1 if j = 1 and i = 1 and b = laststateof(b)
1 if j = 0 and i = 1 and b 
= laststateof(b)
0 Otherwise

PT is set to 1 if there is a sub-phone transition and the current sub-

phone is the end of the phone. A boolean function laststateof(b) checks

whether b is the last sub-phone state of the current phone.

• Phone is the current phone, denoted as P .

P (Pt = p | PCt = i,Wt = w)

=

{
1 if p = PhoneInWord(i, w)
0 Otherwise
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PhoneInWord(i, w) returns the ith phone in the word w.

• SubPhoneCounter, denoted as SPC, describes the sub-phone position

in the current phone.

P (SPCt = j | PTt−1 = d, SPCt−1 = i, SPTt−1 = b)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if j = i+ 1 and b = 1 and d = 0
1 if j = i and b = 0 and d = 0
1 if i = 1 and b = 0 and d = 1
0 Otherwise

The cardinality of SPC is the maximum possible number of sub-phones

in a phone. The value of SPC is increased by one when a sub-phone

transition happens and the previous sub-phone is not the end of the

phone. If there was a phone transition in the previous frame, the sub-

phone counter should be set to 0, which means the beginning of a new

phone.

• SubPhoneTransition indicates when the model should advance to the

next sub-phone, denoted as SPT . It is initialized with a non-deterministic

conditional probability table.

• SubPhone , denoted as SP , refers to the current sub-phone.

P (SPt = sp | SPCt = i, Pt = p)

=

{
1 if sp = SubPhoneInPhone(i, p)
0 Otherwise

SubPhoneInPhone(i, p) returns the ith sub-phone in the phone p.

• State, denoted as S, is a variable to map the SubPhone variable.

• Observation, denoted as O, is a variable to keep the observation feature

vectors.

• EndOfUtterance, denoted as EOU , is an observed value implying that

the utterance ends at this frame.
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Figure 7.2: A 3-state monophone model for decoding with a bigram language
model.

Figure 7.2 shows the structure of a standard phone based decoder with a

bigram language model. In the case of decoding only the observation se-

quence O1:T is known whereas the underlying state sequence S1:T and their

parents are hidden. The required likelihood is computed by summing over

all possible state sequences, as shown in Equation 7.1.

P (O1:T ) =
∑

W1:T ,WT1:T ,PC1:T ,PT1:T ,P1:TSPC1:T ,SPT1:T ,SP1:T ,S1:T

P (W1:T ,WT1:T , PC1:T , PT1:T , P1:TSPC1:T , SPT1:T , SP1:T , S1:TO1:T )

(7.1)

According to the chain rule and the conditional independence assumptions

of Figure 7.2, equation 7.1 can be simplified (Equation 7.2), where each fac-

tor can be computed using a conditional probability distribution from the

learned model parameters.
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Figure 7.3: Audio visual information integration in DBN. (Bilmes, 2010)

P (W1:T ,WT1:T , PC1:T , PT1:T , P1:TSPC1:T , SPT1:T , SP1:T , S1:TO1:T )

=
∏
t

P (Ot | St)P (St | SPt)

× P (SPTt | SPt)P (SPt | Pt, SPCt)P (SPCt | SPCt−1, SPTt−1, PTt−1)

× P (PTt | SPCt, SPTt, Pt)P (Pt | PCt,Wt)P (PCt | PCt−1, PTt−1,WTt−1)

× P (Wt |Wt−1,WTt−1)P (WTt | Pt, PTt)

(7.2)

Feature combination is the simplest way to implement an AVSR. A con-

ventional 3-state monophone DBN model like the one in Figure 7.2 can be

directly used as audio visual speech recognizer, except that the acoustic and

visual feature vectors have to be combined at the observation level. Using the

structures explained above, two ways of combination are available as shown

in Figure 7.3. Figure 7.3(a) is to simply concatenate the two feature vectors.

Figure 7.3(b) uses a factored model to combine audio and visual information.

The advantage of method (b) is that a mixture coefficient (weight) for the

Gaussian components can be predefined by the user.

Table 7.1 shows a comparison of three single channel DBN based recognition

systems with respect to their accuracy. These systems mainly differ in the

design of the observation level variables. We use “A” and “V” to denote

the audio and visual channels. “L” and “H” represent the low level feature
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Table 7.1: Recognition rates of single channel DBN systems

Input observations Recognition Rates

AL 43.57
AL+VL 56.39

AL+VL+AH+VH 58.64

vectors and higher level articulatory feature vectors respectively. The same

abbreviations are also used in Table 7.2 and 7.4. The first system uses only

the audio low level feature vectors as the input, which realizes an audio only

speech recognition system. The second system concatenates the audio and

the visual low level feature vectors together to implement an audio visual

speech recognition system. The third system further extends the feature

vector by adding the articulatory features for audio and vision thus yielding

an articulatory information based AVSR. The results show that the AVSR

outperforms audio-only ASR with a recognition rate improvement of 12.8%.

The articulatory information based AVSR can further improve the recogni-

tion rates by 2.3% compared to the AVSR using only the low level features.

These results indicate that the combined use of low level and articulatory

features at the observation level can lead to an improvement of AVSR.

7.3 Audio-Visual Channel AVSR

In contrast to the single channel DBN model above, audio and visual features

can also be encoded by means of two channels of a graphical model where

each channel uses the same structure as the single channel model depicted

in Figure 7.2. Figure 7.4 shows the training structure of our audio visual

multi-channel speech recognizer. The audio and the visual channel share the

same word level variables, usually the word counter variable WC, the word

variable W and the word transition WT . This structure ensures that the

audio and visual channels are synchronized at the boundaries of each word.

This constraint is implemented at the variable word transition variable WT ,

which has four parent nodes two from the audio and two from the visual

channel. Only if both phone variables in the two channels reach the last

phone position of a word, and both phones are allowed to transit, the word

transition can be set to the value 1. WT , which is the parent of the phone

counter variables from both channels, will reset both phone counters to 0 if



7.3 Audio-Visual Channel AVSR 103

Figure 7.4: The training structure of the audio visual multi-channel speech
recognition model.
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a word transition happens.

The word transition considers information from both the audio channel and

the visual channel. On the other hand, it affects the values of both the phone

counter PCA in the audio channel, and PCV in the visual channel. The con-

ditional probability distribution of a word transition variable is defined as,

P (WTt = wt | PAt = i, PVt = j, PTAt = m,PTVt = n)

=

{
1 if m = 1, n = 1, i = lastphone, j = lastphone
0 Otherwise

(7.3)

where PA and PV represent the phone variables of the audio and visual

channel respectively. PTA and PTV are their phone transition variables.

lastphone is a boolean function which is always true at the end of a word.

Within a word, all the variables of the audio and visual channels are in-

dependent of each other at different levels, such as phone level, subphone

level and observation level. This independence makes it possible to model

the asynchronicity between audio and visual information at different levels.

On the phone level, for example, a transition of a phone in the audio channel

depends only on the phone instance of the same channel.

Figure 7.5 illustrates another audio-visual speech recognition model named a

coupled HMM (CHMM) (Nefian et al., 2002). The CHMM is a DBN model

that allows some parent variables in each channel to interact, and at the

same time to have their own observations. In CHMM, the audio and visual

channels still have their independent observations. However, an increment

of the phone counter variable from one channel is dependent on the phone

transition variable of the other one. Figure 7.6 shows the decision tree of the

phone counter variable for both, the audio and the visual channel.

In contrast to the model in Figure 7.4, where audio visual information is syn-

chronized at the word level, the audio visual CHMM in Figure 7.5 constrains

the synchronization at the boundaries of each phone. As shown in Figure

7.6, the phone counter in the audio channel PCA is increased by one, only if

there is no word transition (WT = 0) but a phone transition in each channel
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Figure 7.5: A coupled HMM (CHMM) audio visual speech recognition model.
Only the phone level is shown. The variables of the other levels, e.g. word,
subphone and observation levels, are the same as the variables in Figure 7.4
and not drawn here.

(PTA = 1 and PTV = 1). The phone counter variable further affects its

corresponding phone and phone transition variables, which makes the phone

transition in each channel to be changed synchronously.

Table 7.2: Recognition rates of audio-visual channel DBN systems

Structure Input observations Recognition Rates

Asynchronous AL
⋃

VL 68.75
Asynchronous AL+AH

⋃
VL+VH 73.33

Coupled AL
⋃

VL 67.36
Coupled AL+AH

⋃
VL+VH 70.83

Table 7.2 presents the recognition rates of different audio-visual channel DBN

systems. All the experiments are based on the GRID corpus and use the two

channel architecture. The main differences are their training structures and

the input observations. In particular, the first two systems are based on the

asynchronous structure where the information fusion happens at the word

level. We see an improvement while using articulatory features and low level

features together. The same result can be observed by comparing the third

and the fourth system where a coupled structure was used to integrate in-

formation at the phone level. It is interesting to see that the asynchronous
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Figure 7.6: Decision trees for the variables PhoneCounterA and
PhoneCounterV .

structure based systems outperformed the coupled ones. These two struc-

tures differ in the level where information fusion is achieved. Obviously,

the word level synchronization in the asynchronous models provides more

freedom to deal with the asynchronicity than the stronger synchronization

requirements of the coupled ones. This result indicates that coupling on the

phone levels is too rigid and information fusion and synchronization should

be attempted at a higher level.

7.4 Articulatory Channel AVSR

In the previous section, the model structures for an audio visual speech rec-

ognizer have been based on a multi channel DBN. In the articulatory models,

this multi channel DBN structures will be further developed.

As shown in Figure 7.7, the model structure is composed of three channels,

where each channel models a set of articulatory feature values. For the design

of these three meta-features two basic principles have been adopted. Firstly,

the resulting meta-features should be independent of each other. This prin-

ciple avoids the correlation among different feature values. For example, if a
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Figure 7.7: A three channel articulatory speech recognition model. Only the
phone level is shown. The variables on the other levels, e.g. word, subphone
and observation levels, are the same as the variables in Figure 7.4 and not
drawn here.

phone has the value unvoiced in feature voicing, it must have a mapping with

the value nil in feature rounding. That is, the “Voicing” and “Rounding”

features are dependant to each other. Therefore, they are good candidates

for being combined into one feature in order to reduce the number of chan-

nels. Secondly, there must be a combination of audio and visual articulatory

channels in the model. For the experiments we have chosen two audio artic-

ulatory channels and one visual articulatory channel. The next subsection

describes these articulatory feature channels in more detail.

Based on the articulatory feature set defined in Table 5.1, an articulatory

feature set consisting of three meta-features has been defined in Table 7.3.
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Table 7.3: Articulatory Meta-features used in different DBN channels.

Meta-Feature Values Cardinality

MaPl nasal-coronal, nasal-labial, stop-coronal 17
stop-labial, vowel-high, vowel-mid, vowel-low,

approximant-retro, approximant-labial
approximant-high, fricative-coronal

fricative-labial, fricative-high
fricative-dent, lateral, velar, sil

RoFB round, nil-voiced, nil-unvoiced, 6
flat-front, flat-back, sil

ViRo round, nil, flat, sil 4

The meta-feature MaPl is a combination of the manner and place features

from Table 5.1. In the manner feature, only lateral and velar have not been

changed. The other values vowel,nasal, stop, approximant and fricative

have been modified with additional information from the place feature. For

example, the old nasal and stop values have been divided into four values

by combining them with the information of the feature place. If only the

manner feature is considered, the phones /n/ and /m/ have the same value

for nasal. But these two phones can be distinguished by means of two com-

posite values as nasal− coronal and nasal− labial. Similarly, the stop value

from the featuremanner can be also divided into two values as stop−coronal
and stop− labial to distinguish the phones /b/ and /d/, or /t/ and /p/.

The meta-feature RoFB, is a combination of the features rounding, front−
back and voicing. Similar to the values in the meta-feature MaPl, the value

flat is divided into the values flat−front and flat−back by combining the

features rounding and front− back. The value nil is divided into the values

nil−voiced and nil−unvoiced by combining features rounding and voicing.

The detailed mapping between phone to these articulatory meta-features are

shown in Appendix A.2.

The third channel is based on the visual articulatory information. Since

the visualopen feature can be viewed as a subset of the visualrounding fea-

ture (ViRo), the V iRo feature is used as articulatory information which can

be observed by visual cues.
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Table 7.4: Recognition rates of articulatory channel DBN systems

# Channels Input observations Recognition Rates

2 AL+AH(MaPl)
⋃

AL+AH(RoFB) 34.67
2 AL+AH(MaPl)

⋃
VL+VH(ViRo) 31.36

2 AL+AH(RoFB)
⋃

VL+VH(ViRo) 8.33
3 AL+AH(MaPl)

⋃
AL+AH(RoFB)

⋃
VL+VH(ViRo) 39.35

Table 7.4 presents the recognition rates of different articulatory channel based

DBN systems. The third one is the worst among all the systems, because the

“rounding” information from both channels is redundant. Moreover, only

a partial representation of articulatory information is used in this system.

There is no synergy from all articulatory channels. The second system per-

forms better because complementary information is available. The first sys-

tem uses only the acoustic information. Since the acoustic channel “RoFB”

is in general more reliable than the visual channel “ViRo”, the acoustic-only

system outperforms the second acoustic-visual system. The last system uses

all three channels. Obviously, the combination of two acoustic and one visual

articulatory channel in this system provides a more comprehensive model for

articulatory information based AVSR.

Although our experiments show that DBN approaches provide improvements

in modeling articulatory based AVSR, training a DBN is quite expensive

compared with training HMMs, primarily because training the DBN requires

assumptions about the maximum number of phones in a word and the max-

imum number of words in a sentence. We believe our work on DBN based

AVSR is only the first step towards more powerful articulatory information

models, and many issues remain to be resolved.
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Chapter 8

Summary and Discussion

In this chapter we will give a summary of the work in this thesis and compare

the results from our experiments to the initial motivation of using articulatory

information in AVSRs. Finally, we conclude the findings and indicate possible

future works in the area of articulatory information based AVSR.

8.1 Summary and Discussion

This thesis is worked in the CINACS (Cross-modal Interactions in Natu-

ral And Cognitive Systems) international research training group. CINACS

focuses on the topics of cross-modal interactions and integration, such as

mechanisms of multisensory perception and attention, cross-modal learning

and association, multimodal representations for communication. Our thesis

presents the research work in the area of bimodal speech recognition.

“Bimodal” refers to the acoustic and the visual modality, where the au-

dio channel takes human speech as input while in the video channel con-

tinuously extracted lip information was dealt with. A motivation of this

idea comes from the famous McGurk effect (McGurk and MacDonald, 1976),

which demonstrates an interaction between hearing and vision in speech per-

ception. We began the study by analyzing different components of an AVSR

system. Various low level feature extraction methods in both channels were

studied first. Then we reviewed different types of information fusion and clas-

sification methods. It was found that visual cues, namely the movements of

lips, provide a means to directly observe articulatory information. Therefore,

inspired by human speech production, we started to focus on the problem of

111
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using different sources of articulatory information in both channels to build

more accurate speech recognition systems.

According to the different stages at which articulatory information can be

used in ASR, we distinguished the following four approaches: 1) Using artic-

ulatory raw data describing the true geometry of the articulators, 2) Using

articulatory transcriptions in an HMM/N-best decision framework, 3) Using

articulatory features in an ANN/HMM framework and 4) Encoding articu-

latory information by means of DBN models.

The first approach directly observes the movements of articulators. Although

this type of information naturally represents the fundamental processes of ar-

ticulation, they are inconvenient to be recorded and used for AVSR. There-

fore, this information has not been used in our work.

The idea of the second approach was to organize a bundle of parallel phone-

based word recognizers in our system. These classifiers have the same input

data, namely acoustic or visual speech signals, but use various articulatory

transcriptions as targets. The recognized articulatory decisions are further

integrated by a decision fusion component, which realizes an N-best decision

schema. The reduced number of classes in each classifier helps to improve

the recognition accuracy of the individual channels. A comparison with two

other AF-based recognition systems shows that our work is competitive with

respect to the accuracy. Adding two visual channels further improved ASR

performance. Compared to the baseline system word recognition accuracy

raised from 90.34% to 93.57% and 93.71% in the audio-only and audio-visual

AF-based recognition respectively.

The third approach uses the articulatory information generated by a bottom-

up feature extraction component. Articulatory features are extracted from

low level acoustic and visual data using dedicated MLP classifiers. A combi-

nation of articulatory results and low level features is used as new inputs for

a conventional phone-based HMM recognizer. Different monophone systems

have been tested on the VidTIMIT 1200-word vocabulary task in audio-only,

visual-only and audio visual mode. In contrast to the phone-based acoustics-

only speech recognizer, the AF-based approach significantly improved the

recognition rates. Its performance was further improved by adding the two
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articulatory features from the visual channel, although their reliability if used

in isolation is still fairly low.

The last approach used DBN models to integrate articulatory information.

In particular, a single channel AVSR, an audio-visual channel AVSR and an

articulatory channel AVSR have been studied. The single channel AVSR

uses only one phonetic channel by representing the conditional dependencies

between different variables. Articulatory information can only be combined

at the state level. The audio-visual channel AVSR used two channels to rep-

resent audio information and visual information. Both information sources

have been modelled using low level features and articulatory features. Ide-

ally, the articulatory information can be fused at the phone and word level.

The articulatory channel AVSR should be modeled with a complete set of

articulatory channels. However, due to computational restrictions the seven

articulatory channels had to be reduced three. Therefore, the results are

of limited use but show that articulatory information can contribute to an

improvement of AVSR when used together with low-level features.

The results of our experiments with different articulatory information sys-

tems can be further analyzed from another point of view.

If we change the perspective from using articulatory information to that

of applying information fusion, we can identify three methods for integrat-

ing audio and visual information. Early fusion (Potamianos et al., 2004)

can be used for the articulatory information generated by feature extraction.

Audio and visual articulatory features are simply concatenated after feature

extraction. Decision fusion (Potamianos et al., 2004) can be applied in the

system with articulatory information retrieved from transcription. By using

the N-best decision schema, the recognized auditory and visual articulatory

gestures are combined and mapped to their corresponding phones. Fusion

within the model can be achieved by means of DBNs where dependencies

between auditory and visual articulatory gestures are modelled.

Irrespective of where the information fusion takes place, the synchronicity

problem between the parallel channels of articulatory information always

needs to be addressed. In the system which uses articulatory information

as features, we combine the acoustic and visual information at the frame
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level. In the system where the articulatory information was generated from

transcriptions, decision fusion is achieved in a loosely synchronized way. The

articulatory gestures are fused at the phone level. For the system with ar-

ticulatory information in the models, we also used a loosely synchronized

method, but the fusion happens among several frames.

In the thesis, articulatory features are used as an intermediate abstract rep-

resentation between the acoustic signal preprocessing level and the subword

unit probability estimation level. By means of integrating articulatory fea-

tures into various AVSR systems, we have shown that articulatory informa-

tion can be used for improving the performance of audio visual information

fusion.

Furthermore, we analyzed the synchronicity problems at different phonetic

levels (e.g. subphone, phone, word level). The results have shown that it is

better to use loose synchronization of articulatory information at the word

level. Too strong synchronization and asynchronous information may nega-

tively affect the accuracy of the system.

Finaly, we tried to modelling the multi-channel information fusion using the

graphical models. In contrast to conventional HMM based AVSRs, the DBN

approaches provide the possibility to define different variables which might

play important roles in AVSR information fusion. The results of DBN based

systems have also shown that the audio-visual articulatory information helps

to improve the performance in compared to acoustic only information.

Although all approaches to articulatory information based AVSR show pos-

sibilities for improving recognition accuracy, there are still some drawbacks

to be discussed.

The articulatory transcription approach has the limitation of scalability. The

HMM/N-best decision approach is corpus dependent. Two assumptions of

the N-best decision schema prevent this approach to scale up to arbitrary

speech recognition tasks. If the speech corpus is based on a large size vocab-

ulary or a more freely defined grammar, the output of the first stage HMM

classifiers could result in deletion or insertion errors. It becomes difficult to

combine the articulatory information in an N-best decision schema.
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In the articulatory feature approach, it is not easy to robustly retrieve accu-

rate and complete articulatory feature vectors for each frame. The accuracy

of articulatory feature vector extractors lies between 50% and 80%. When

one specific articulatory feature in a particular time frame has been inaccu-

rately processed, the combined articulatory feature vector cannot properly

express the articulatory dynamics in that frame.

The articulatory modeling approach is flexible enough to model loose syn-

chronization at different phonetic levels. However, it is difficult to scale up

due to computational resource limitations. Moreover, the approach is also

sensitive to data sparseness and the details of synchronization between the

channels. This leads to difficulties in comparing recognition results across

different AVSR systems.

8.2 Future Work

A number of issues are still not entirely resolved within the scope of this

thesis and require additional efforts in the future. Firstly, the performance

of articulatory information based audio visual speech recognition is highly

depended on the articulatory feature itself. If it is the case that we cannot

fully discover the articulatory information, the whole idea can be questioned.

That is, at the level of articulatory features, several things need to be im-

proved. In this thesis, the articulatory features and their transcriptions are

all converted from low level acoustic and visual data. The mapping between

acoustic-visual signals and articulatory features is based on MLP classifiers.

Although MLPs have shown a good performance among the system in this

study, there may be other more powerful classifiers which can better retrieve

the articulatory features, e.g. Supported Vector Machine (SVM).

Secondly, in order to realize the articulatory channel AVSR in Section 7.4, we

designed a set of articulatory meta-feature transcriptions to describe three

different articulatory information channels. Using these transcriptions en-

abled us to realize the graphical model based articulatory AVSR systems,

but a better design of the phone to articulatory meta-feature mapping might

further improve the performance of the system. In addition to the principles
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introduced in Section 7.4, two more aspects should be considered in order

to design better articulatory meta-features. One aspect is that the number

of values in a meta-feature should not be too large. Since MLPs are used

for conversion from low level features to articulatory features, a large num-

ber of output values in one classifier could lead to inaccurate articulatory

features. Another aspect is the number of channels in such systems. The

number of channels was limited to three because of extreme computational

requirements. Ideally, a structure with all seven articulatory information

channels should be implemented in order to investigate relationships across

all the channels.

Thirdly, the definition of articulatory information synchronization is a good

perspective to study the relationships between different acoustic and visual

articulatory features. However, concrete asynchronous relationships between

the acoustic and the visual channel have not been modelled yet. Additional

dependencies between acoustic and visual variables might be necessary to

create more flexible and context-dependency pronunciation models.



Appendix A

117



118

Figure A.1: Phone to articulatory transcription conversion table for our ex-
periments.
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Figure A.2: Phone to articulatory feature conversion table for our experi-
ments.
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