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Introduction

We consider non-connected algebraic groups ~G over an algebraically closed
�eld k, whose unit component G is semisimple. The aim of this work is
to understand the conjugacy classes of the adjoint G action on an exterior
component of ~G. Non-connected semisimple groups appear naturally as
centralizers of non-simply connected, connected, semisimple groups.

For a connected algebraic group G, the description of its conjugacy
classes is well known, see [35, 38]. We give a brief description of it:
The action of G on itself by conjugacy will be called the adjoint action and
denoted by Ad:

G�G ! G

(g; h) 7! Ad(g)(h) = g h g�1:

We will call the corresponding quotient G==Ad(G) := Speck[G]Ad(G) the
adjoint quotient and denote the quotient map by � : G ! G==Ad(G). The
quotient admits the following properties:

� For a maximal torus T of G and the Weyl group W := NG(T )=T , we
also have a quotient T=W. (Here w 2 W acts on T by conjugacy with
a representative nw 2 NG(T ).) Now the inclusion T ,! G induces an
isomorphism on the quotients:

T=W ��! G==Ad(G):

� Each �bre of � consists of only �nitely many conjugacy classes, where
the closed class is exactly the semisimple one. Furthermore, we have
the explicit description of the reduced �bre ��1(�(t))red for t 2 T as
an associated bundle:

��1(�(t))red �= G�CG(t) V (t);

where V (t) denotes the unipotent variety of CG(t).

� If G is simply connected, even more is true:
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INTRODUCTION 4

{ The adjoint quotient G==Ad(G) is an aÆne space A r , where r is
the rank of G and � is given by:

� = (X�1 ; :::; X�r ):

Here the X�i are the characters of the fundamental representa-
tions of G.

{ � admits a cross section:

C : T=W ! G;

i.e. a morphism, such that ImC is closed in G and such that
�jImC is an isomorphism. This cross section meets every �bre in
exactly one element, a regular one. (An element of G is called
regular, if its centralizer has minimal possible dimension, which
is r.)

{ The �bres of � are reduced and normal, and � itself is 
at.

The main ideas of Steinberg's to obtain these results are:

� Use of representation theory: Exploitation of the fact, that the charac-
ters of the irreducible representations fX�; �dominant weightg form
a basis of k[G]Ad(G) and their restrictions to T one of k[T ]W .

� The explicit construction of C: Let � = f�1; :::; �rg be the set of
simple roots, X�i : k ! G the corresponding root groups and n�i 2
NG(T ) representatives of the simple re
exions s�i 2 W. Then C :
A r ! G is given by:

C(c1; :::; cr) = X�1(c1)n�1 :::X�r (cr)n�r :

This description of the conjugacy action of G was used by Slodowy in [27]
(following Brieskorn [4]) to construct a connection between the theory of
simple algebraic groups and that of simple singularities, which goes as fol-
lows:
Take a transversal slice S in G to a unipotent subregular element u (i.e. one
whose centralizer is of second minimal possible dimension). If we consider
the intersection S \ V , where V is the unipotent variety of G, then S \ V
has a simple singularity of the same type as G in u. Furthermore, the re-
striction � = �jS : S ! T=W provides the semiuniversal deformation of this
singularity.

We want to derive similar results in the case of the adjoint action of the
unit component G of a non-connected semisimple algebraic group ~G on one
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of its exterior components. In this work, we assume ~G to be a semidirect
product:

~G = Go �;

where � is a subgroup of the group of diagram automorphisms of the Dynkin
diagram �(G) of G (lifted into Aut(G)). We require the characteristic of k
not to divide the order of � and to be 6= 2.
Take a nontrivial element � 2 � and consider the the adjoint G action on
G� := G� f�g:

G�G� ! G�

(g; h�) 7! g h� g�1:

Observe that, using the identi�cation of G� with G by right multiplication
with ��1, we end up with a \� -twisted" G action on itself:

G�G� ! G

(g; h�) 7! g h �(g�1):

The main questions at the origin of this work can now be formulated as
follows:

� How does the corresponding adjoint quotient G�==G look like?

� What is the structure of the �bres of the corresponding quotient map
� : G� ! G�==G?

� Does this quotient admit a kind of cross section similar to the one of
Steinberg's in the connected case (under certain additional assump-
tions on the fundamental group of G)?

Before we summarize the results obtained in this work, let us illustrate this
twisted action by an example:
Consider G = SLn(k) as a matrix group, then we have for the exterior
automorphism � (the one that reverses the Dynkin diagram):

�(X) = tX�1; X 2 SLn(k):

Thus, the orbits of the \� -twisted" conjugation are isomorphism classes of
bilinear forms of discriminant one on kn, where isomorphism is de�ned in
terms of base changes in SLn(k). Then, SLn(k)�==SLn(k) is the correspond-
ing quotient. This situation was already investigated by Spaltenstein in [29]
in a slightly more general situation:

G�M ! M

(X; M) 7! XM tX;
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whereM is eitherMn(k) or GLn(k) and G either GLn(k) or SLn(k). (Note
that � can apparently be lifted to GLn(k).) He obtained the following
results:

Mn(k)�==GLn(k) �= fptg
Mn(k)�==SLn(k) �= k[

n
2
]+1

GLn(k)�==GLn(k) �= k[
n
2
]

GLn(k)�==SLn(k) �= k[
n
2
] � k�;

where [r] denotes the biggest integer N with N � r. The approach used by
Spaltenstein was direct calculation.

A more thorough conceptual understanding of this situation will be pre-
sented in this work.
If we take a generic exterior automorphism � 2 � of G, then we argue,
that we can �nd an integer m and a decomposition of � into elements of
�i 2 �, i.e. � = �1:::�m, and a decomposition of G into normal subgroups
G = G1:::Gm, with (Gi; Gj) = feg for i 6= j, such that each �i acts nontriv-
ially only on Gi, where it acts as an exterior automorphism of one of the
following two kinds:
(i) �i acts as a permutation of isomorphic simple normal subgroups of Gi,
or
(ii) Gi is simple, and �i is a nontrivial diagram automorphism of its Dynkin
diagram.

Therefore, we only need to to restrict to the two cases above. Since our
results show, that the �rst possibility reduces more or less to Steinberg's
classical theory, we shall emphasize the second case.

Now let us give a brief summary of the results obtained:
A major step in understanding the conjugacy classes of an exterior compo-
nent is to develop a notion that generalizes that of a maximal torus in the
connected case. This is accomplished by the concept of Cartan subgroup,
see Section 2.1, a subgroup of ~G, which is generated by a semisimple ele-
ment and which has �nite index in its normalizer in ~G. We will see that,
for given � , such a Cartan subgroup is given by C := T �0 o �0, where T �0
is the unit component of the �xed point torus of the � action on the maxi-
mal torus T and where �0 < � is the subgroup generated by � . The groupfW := NG(C)=T

�
0 is called the outer Weyl group and is, in this case, a �-

nite abelian extension of the �xed point Weyl group W� , see Section 2.3.
With this notion we are able to derive the following results in analogy to
the connected case:

� The elements w of the outer Weyl group fW act on T �0 � by conjuga-
tion with a representative nw 2 NG(C). The corresponding quotient

is denoted by T �0 �=
fW . Then the inclusion T �0 � ,! G� induces an
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isomorphism on the quotient spaces, see Section 2.5:

T �0 �=fW ��! G�==G:

This isomorphism is obtained by use of the representation theory of
~G, see Section 2.4.

� The reduced �bres of the quotient map � : G� ! G�==G have the
following structure of associated bundles:

��1(�(t�))red �= G�CG(t�) V (t�);
where V (t�) denotes the unipotent variety of CG(t�). In particular,
they consist of only �nitely many conjugacy classes, where the closed
class is exactly the semisimple one, see Chapter 3.

� If the character lattice �(T ) of a maximal torus T of G satis�es the
condition �(T )� = �(R(G))� , where �(R(G)) denotes the character
lattice of the root system of G and where the upper right � denotes
the sublattices of � �xed points, we even can say more:

{ The adjoint quotient G�==Ad(G) is an aÆne space A s , where s is
the rank of G� and � is explicitly given by:

� = (X
�01
1 jG� ; :::; X�0s

1 jG� ):

The X
�0i
1 are the characters of irreducible ~G representations cor-

responding to the fundamental weights �0i 2 �(R(G))� . (The
subscript is needed, because these representations are no longer
unique for given �0i.) This is proven in Sections 2.4 and 2.5.

{ � admits a cross section, see Chapter 5:

C : T �0 =
fW ! G�:

C is given explicitly by the following formula:

C(c1; :::; cs) = X�1(c1)n�1 :::X�s(cs)n�s :::�;

where the �i 2 � are a collection of simple roots of R(G), exactly
one representative �i chosen for each � orbit on �. The X�i :
k ! G are once more the root groups and the n�i 2 NG(T )
representatives of the simple re
exion to s�i 2 W.
This cross section has the following properties:
(i) Its image ImC is closed in G� ,
(ii) �jImC is an isomorphism and
(iii) ImC meets each �bre in exactly one element, a regular one.
(Here an element x 2 G� is regular, if CG(x) has minimal possible
dimension, which is s.)
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{ The �bres of � are reduced and normal and � itself is 
at, see
Chapter 5.

� For simple G we can derive a connection to the theory of simple sin-
gularities under reasonable further restrictions on the characteristic of
k, see Chapter 6:
Choose t� 2 T �0 � , such that CG(t�) has an irreducible root system of
rank s. We take Slodowy's transversal slice S to a subregular unipo-
tent element u 2 CG(t�), see [27]. Then St� \ V (t�)t� has a simple
singularity in ut� which is of the same type as CG(t�). Furthermore,
the map � := �jSt� : St� ! G�==G is the semiuniversal deformation
of this singularity.

This work is organized as follows:
In Chapter 1, we summarize the facts about root systems R needed in this
work, in particular about the folding of R by means of a diagram auto-
morphism � . Furthermore, we discuss the circumstances under which these
exterior automorphisms lift to a semisimple group G having R as its roots
system. We also give an account on the characteristics of k, such that the
orbit maps of G on G� are separable.
The major part of this work is contained in Chapters 2,3 and 5.
In Chapter 2, we �rst present the de�nition of Cartan subgroups , the ana-
logue of maximal tori for non-connected algebraic groups, and of outer Weyl
groups, the groups of \connected components" of the normalizer in G of
these Cartan subgroups. Afterwards, properties of Cartan subgroups and
the structure of outer Weyl groups are discussed. Then we develop the rep-
resentation theory of ~G, which, for cyclic �, is essentially determined by that
of its unit component G. With these preparations, we can prove the �rst
main result, the isomorphism G�==G �= T �0 �=

fW . This chapter closes with
the investigation of the structure of these quotient spaces in dependence on
the structure of the fundamental group of G.
We determine the structure of the �bres in Chapter 3. Furthermore, we
classify the types of the centralizers of semisimple elements of the exterior
component G� . In characteristic zero, their Dynkin diagrams will be proper
subdiagrams of the � -twisted aÆne diagram corresponding to �(G).
Chapter 4 contains a description of the set of irregular elements of the ex-
terior component G� . Here, we also verify that the semisimple irregular
elements form a dense subset in the set of all irregular elements.
The proof that the cross section de�ned above ful�lls all the indicated prop-
erties, under the condition �(T )� = �(R(G))� , is carried out in Chapter
5. Furthermore, this cross section allows us to derive the reducedness and
normality of the schematic �bres in these cases.
In Chapter 6, we establish a link to the theory of simple singularities. We
also provide an account on the theories of singularities and the Slice Theo-
rem, which play a crucial role in our construction.
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We conclude this work with Chapter 7 by a summary and an outlook.
The appendix provides examples for elements x 2 G� , which are not G-
conjugate into G�0� , in the case where G is simple.



Chapter 1

Preliminaries

In this chapter we shall compile the basic facts used in the sequel. We
�rst start with basic facts about root systems and exterior automorphisms.
Furthermore, we investigate the circumstances under which the orbit maps
considered in this work are separable.

1.1 Root Systems

Let us start with basic facts about root systems which may be found e.g. in
[3, 14].
In this section, V denotes a real vector space.

De�nition 1.1 A �nite subset R � V is called a root system, i�
(i) R spans V ,
(ii) for every � 2 R, there exists �� 2 V �, such that ��(�) is an integer for
all �; � 2 R,
(iii) the group generated by all the re
exions r� 2 GL(V ), de�ned by r�(�) :=
� � ��(�)�, stabilizes R.
If in addition the following property holds, the root system is called reduced,
otherwise not reduced:
(iv) for every � 2 R the only multiples in R are ��.
In any case, the group generated by all the r�; � 2 R, is called the Weyl
group and will be denoted by W. The elements of R will be called roots.

It should be noted, that one can introduce a W-invariant scalar product
(:; :) on V , such that, under the corresponding identi�cation of V and V �,
we have �� = 2�

(�;�) .
Furthermore we need the de�nition of a basis of a root system:

De�nition 1.2 A subset � � R is called a basis of R, i�
(i) � is a basis of V , and
(ii) every root � 2 R can be written as a sum � =

P
�2� n�� with all the

n� either non-negative or non-positive.

10
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By the height of a root �, ht�, we denote the sum of the coeÆcients of
� with respect to a given basis. A theorem in the theory of root systems
states that bases of root systems exist and all possible bases are conjugate
under the Weyl group. A classi�cation of reduced root systems is given by
so called Dynkin diagrams, denoted by �, the vertices corresponding to the
elements in �, each pair �; � of them connected by ��(�) ��(�) lines with an
arrow pointing to the shorter root.
A reduced root system is called irreducible if its Dynkin diagram is con-
nected. The list of irreducible reduced root systems is given in the following
table:

An (n � 1) : e ee e ep p p

Bn (n � 2) : e ee e eHH��p p p

Cn (n � 3) : e ee e e��HHp p p

Dn (n � 3) : e ee e

e

e

```̀
    p p p

E6 : e ee e e

e

E7 : e ee e e e

e

E8 : e ee e e e e

e

F4 : ee e eHH��

G2 : e eHH��

Another notion in the theory of root systems is the notion of the dual root
system �R of a given root system R which is given by the set �R := f��; � 2
Rg � V �. The root lattice Z(R) will be the Z-span of R in V . Furthermore,
we introduce the weight lattice �(R) as the lattice Z( �R)� � V . Its elements
will be called weights.

1.2 Diagram Automorphisms and Folded Root Sys-

tems

In this section, we will describe the automorphisms of reduced root systems
and introduce the notion of folded root systems. An element � 2 GL(V ) is
called an automorphism of R, i� (�(�))�(�(�)) = ��(�) for all �; � 2 R. An
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automorphism of R is called an automorphism of the Dynkin diagram �, if
it stabilizes a given basis � of R. The sets of automorphisms of R and �
will be denoted by Aut(R) and Aut(�) respectively. A well known fact in
the theory of root systems is that we have the following semidirect product:

Aut(R) = Aut(�)nW (1.1)

The group Aut(�) is trivial for irreducible root systems except in the cases
An;Dn and E6. A pictorial description of the group Aut(�) in these cases
will be given in the following table:

A2n+1 :

e e e

e

eee

PP
PP

����
6
?

6
?

6
?

p p p

p p p

Aut(�) �= Z=2Z,

A2n :

e e e

eee

6
?

6
? /

o
p p p

p p p

Aut(�) �= Z=2Z,

Dn (n > 4) : e e e

e

e

��
��

PPPP
6
?

p p p Aut(�) �= Z=2Z,

D4 : e e

e

e

=

-

}
-

/

o
Aut(�) �= S3,

E6 : e e

e e

e e

��
��

PPPP
6
?

6
?

Aut(�) �= Z=2Z.

With these notions, we can now de�ne the folded root system corresponding
to an automorphism � 2 Aut(�):
Let V � be the �xed point vector space of V under � , i.e. V � := fv 2
V; �(v) = vg. Then, de�ne a projection map p : V ! V � by:

v 7! p(v) :=
1

ord �

ord �X
i=0

� i(v) (1.2)

Set �R1 := p(R) and W� := fw 2 W; �w = w�g. Then we get the following
result:

Theorem 1.1 �R1 is a root system in V � with Weyl group W� .
For irreducible R, the type of �R1 is given by the following table:
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R A2n�1 A2n Dn+1; �
2 = 1 E6 D4; �

3 = 1
�R1 Cn BCn Bn F4 G2

Proof: Cf. [7], Proposition 13.2.2., p. 220, or [36], examples to Theorem 32,
p. 175f. ~.
Remark: If R is reducible, such that it is the union of n copies of an
irreducible root system ~R, and � a permutation of its irreducible parts, then
the type of �R1 is that of a union of k copies of ~R, where k is the number
of cycles of � .

We call �R1 := p(R) the folded root system of R with respect to � . Sim-
ilarly, we de�ne ��(R)1 = p(�(R)) and call it the folded weight lattice. A
natural question to ask is, what the relation between ��(R)1 = p(�(R)) and
the weight lattice �(�R1) is.

(Since �R1 := p(R) is not reduced, if R is of type A2n, we modify the
question posed above in this case: We compare the weight lattice of the Bn
root subsystem consisting of all short and intermediate roots of �R1 := p(R)
with the folded weight lattice ��(R)1). The answer is given in the following
lemma:

Lemma 1.1 (i) If R is of type A2n�1;Dn and E6, we have: ��(R)1 =
�(�R1).
(ii) If R is of type A2n we have: ��(R)1 is a sublattice of the weight lattice
�(Bn) of index 2. In this case, ��(R)1 is the weight lattice of SO2n+1(k).

Proof: In order to compare the two lattices, we �rst have to compute the
basis of the root system dual to �R1, respectively of the Bn subsystem of
�R1 = BCn in case R = A2n.
Let � = f�1; :::; �ng be a basis of R and �� = f��1; :::; ��ng and f�1; :::; �ng
the corresponding bases of �R and �(R) respectively. Then we get by [7],
Proposition 13.2.2, p. 220: p(�) = fp(�1); :::; p(�n)g and fp(�1); :::; p(�n)g
are a basis of �R1 (the Bn subsystem in the A2n case) and ��(R)1 respec-
tively. Now we have to calculate the corresponding basis (p(�))�. Apparently,
(p(�i))�is a �-fold multiple of

Pord �
j=1 � j(��i), for a suitable � 2 R. Three cases

have to be distinguished:
Recall that we require (p(�i))�(p(�i)) = 2.
(i) �(�i) = �i. Then we have (p(�i))�= ��i.
(ii) �(�i) 6= �i and ��i(�i) = 0: Then we have

(p(�i))�(p(�i)) = �

ord �X
j=1

� j(��i)

 
1

ord �

ord �X
l=1

� l(�i)

!
= 2

�

ord �
ord �; (1.3)
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forcing � = 1. Thus we get (p(�i))�=
Pord �

j=1 � j( ��i).
(iii) �(�i) 6= �i and ��i(�i) 6= 0 (which only appears in the A2n-case): Simi-
larly to (ii) we calculate

(p(�i))�(p(�i)) = �(��i + �(��i))

�
1

2
(�i + �(�i))

�
=
�

2
(2 + 2� 1� 1); (1.4)

forcing � = 2. Therefore we have (p(�i))�= 2(��i + �(��i)).
As a next step, we evaluate the generators p(�i) of

��(R)1 on the elements
of (p(�))�. A simple calculation gives p(�i)((p(�j))�) = 0, i� �i and �j are
not in the same � orbit. Otherwise this value is 1 in the cases (i) and (ii)
above and 2 in case (iii). Since in the A2n-case the situation described in
(iii) shows up for only one element in p(�), the lemma holds. ~.
Remark: If R is the union of n copies of an irreducible root system ~R
and if � is a permutation of the irreducible parts, then again one can show
�(�R1) = ��(R)1. The proof is analogous to case (ii), but we have to take
care of nontrivial powers of � which stabilize certain roots �. If we denote
by � the cyclic subgroup of Aut(R), which is generated by � , then we have
(p(�i))�=

1
j��i j

Pord �
j=1 � j(�i).

The relation between root length of elements in �R1 and the behaviour
of the inverse image under the projection p, de�ned in Equation 1.2, will be
dealt with in the following lemma, which will be used later:

Lemma 1.2 (i) For R of type A2n�1; Dn or E6 the following holds:
If �(�) = �, then p(�) is a long root of �R1, and R � \R is of type A1.
If �(�) 6= �, then p(�) is a short root of �R1, and (

Pord �
i=0 R �

i (�))\R is of
type (A1)

ord � .
(ii) For R of type A2n, we have:
If �(�) = �, then p(�) is a long root of BCn and (R �) \R is of type A1.
If �(�) 6= � and ��(�(�)) = 0, then p(�) is a root of intermediate length of
BCn and (

Pord �
i=0 R �

i(�)) \R is of type (A1)
2.

If �(�) 6= � and ��(�(�)) 6= 0, then p(�) is a short root of BCn and
(
Pord �

i=0 R �
i (�)) \R is of type A2.

Proof: The proof is given in [36], Corollary to Theorem 32, p. 177 and [39],
Lemma 2.4, p. 9. ~.
Remark: Let us again consider the case of R being the union n copies of
an irreducible root system ~R and � being a permutation of the irreducible
parts. Denote by � the subgroup of Aut(R), which is generated by � . Then
we get analogously that

Pord �
i=0 R �

i(�) \R is of type (A1)
k, where k is the

number of roots in the �-orbit of �.
For the representation theory of our non-connected groups, we need to

introduce another root system, called R0, which again is a root system in
V � : The construction recipe is the following:
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(i) In the cases A2n�1; Dn and E6: For � = �(�) set �0 = �,
for � 6= �(�), ��(�(�)) = 0 set �0 =

Pord �
i=1 � i(�).

(ii) In the A2n-case: For � 6= �(�), ��(�(�)) = 0 set �0 = (�+ �(�)),
for � 6= �(�), ��(�(�)) 6= 0 set �0 = 2(�+ �(�)).
For � = �(�), set �0 = 2�. (Note that � = �(�) implies the existence of a
root � with � = � + �(�) in this case. Then �0 = �0.)
(iii) If R is reducible, the union of n copies of an irreducible root system
~R and � a permutation of the irreducible parts, and if we denote by � the
subgroup of Aut(R) generated by � , then de�ne R0 in the following way:
Let R0 := f�0; � 2 Rg, where �0 = 1

j��j

Pord �
i=1 � i(�).

With respect to the construction of the root system �R1, the root sys-
tem R0 emerges from the root system �R1 by keeping the long roots and
multiplying the short roots of �R1 with the order of � in the A2n�1; Dn and
E6-cases, and doubling the intermediate and long roots while quadrupling
the short roots of �R1 in the A2n-case. (Recall that the set of short and in-
termediate roots in the BCn-case exhibit the structure of a Bn root system.)
This yields:

Lemma 1.3 (i) In the cases A2n�1;Dn and E6, the root system R0is the
dual of the root system �R1.
(ii) In the case A2n, the root system R0 is the dual of the reduced irreducible
root system of type Bn which appears as the subsystem of roots of interme-
diate and short length in �R1.

Proof: This is immediate by construction of �R1 and R0. ~.
Remark: If R is the union of n copies of an irreducible root system ~R and
� a permutation of the irreducible parts, then R0 is of the same type as �R1.

We summarize this result in the following table:

R A2n�1 A2n Dn+1; �
2 = 1 E6 D4; �

3 = 1
�R1 Cn BCn Bn F4 G2

R0 Bn Cn Cn F4 G2

The introduction of the root system R0 is justi�ed by the following lemma:

Lemma 1.4 (i) The weight lattice �(R0) is equal to the lattice �(R)� of �
�xed points in �(R).
(ii) If R is not of type A2n, we have Z(R0) = Z(R)�, and, if R is of type
A2n, we have that Z(R0) is a sublattice of Z(R)� of index two.

Proof: (i) Let � = f�1; :::; �ng be a basis of R stabilized by � and �� =
f��1; :::; ��ng the corresponding basis of �R. Then �0 := f�01; :::; �0ng is a basis
of R0. Now we have to �nd basis of �R0. Clearly, ��0i has to be a �-fold

multiple of
Pord �

i=1 � i(��i), for a suitable � 2 R. For a while, we assume R to
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be irreducible. Then, three cases have to be distinguished:
(a) �(�i) = �i: Then ��0i = ��i.
(b) �(�i) 6= �i and ��i(�(�i)) = 0: Then

��0i(�
0
i) = �

ord �X
j=1

� j(��i)

 
ord �X
l=1

� l(�i)

!
= 2� ord �; (1.5)

which forces � = 1
ord � . Thus we have

��0i =
1

ord �

Pord �
j=1 � j(��i).

(c) �(�i) 6= �i and ��i(�(�i)) 6= 0: This appears only in the A2n-case, where
ord � = 2. Similarly to step two we have:

��0i(�
0
i) = �(��i + �(��i))(2(�i + �(�i))) = 2�(2 + 2� 1� 1); (1.6)

forcing � = 1
2 . Thus giving

��0i =
1
2(��i + �(��i)).

Now, we consider the weight lattice �(R), and let the fundamental weights
corresponding to � be denoted by f�1; :::; �ng. Then, generators of the
invariant lattice �(R)� are given by the collection f�̂1; :::; �̂ng, where �̂i is
de�ned by �̂i = �i, if �(�i) = �i, and �̂i =

Pord �
i=1 � i(�i) otherwise. A simple

calculation, using �i(��j) = Æij , yields �̂i( ��
0
j) = 1, i� �0j is in the � -orbit of

�0i. Otherwise it is zero.
Now, let R be the union of n copies of an irreducible root system ~R and � a
permutation of its irreducible factors. Again, we denote by � the subgroup
of Aut(R) generated by � . Then, a similar calculation to the one carried out
in (b) yields: ��0i =

1
ord �

Pord �
j=1 � j(��i) and similarly �̂i =

1
j��i j

Pord �
j=1 � j(�i),

again a sum over the �-orbit of �i.
(ii) Follows easily from the de�nition of R0 and the fact that the simple roots
� form a basis of R. ~.
Remark: (i) By construction it is clear that our identi�cation of �(R0) and
�(R)� is W� -equivariant.
(ii) This isomorphism also respects the structure of the cone of dominant
weights, i.e. if we intersect the cone of dominant weights of �(R) with
�(R)� , we get exactly the cone of dominant elements of �(R0).

In Chapter 2 we still need a slightly sharper version of the lemma above:

Corollary 1.1 Assume R to be irreducible. Let � be a � -stable sublattice
of �(R) containing the root lattice Z(R), then we have:
(i) If R is of type A2n, E6 or D4 with �3 = 1, then �� = �(R0)
(ii) If R is of one of the other types, namely, A2n�1 or Dn with �2 = 1, then
�� is either Z(R0) or �(R0).

Proof: The chain of inclusions Z(R)� � � �(R) clearly yields a chain of its
�xed point lattices Z(R)� � �� � �(R)� .
If R is of type E6 or of type D4 with �

3 = 1, we have that R0 is of type F4
or G2, respectively. This implies Z(R)� = Z(R0) = �(R0) = �(R)� by use
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of the above lemma, forcing �� = �(R0).
IfR is of type A2n, we have that R

0 is of type Cn and therefore �(R
0)=Z(R0) �=

Z=2Z. Now, we have a chain of inclusions Z(R0) � Z(R)� � �� � �(R)� =
�(R0). Here, Z(R)�=Z(R0) �= Z=2Z by the lemma above, forcing Z(R)� =
�� = �(R)� .
(ii) In the other cases, we have R of type A2n�1 or Dn with �2 = 1. Hence
R0 is of type Bn or Cn�1, respectively. Here, �(R0)=Z(R0) �= Z=2Z, and
hence �(R)�=Z(R)� �= Z=2Z, forcing �� to be either Z(R0) or �(R0). ~.

1.3 Exterior Automorphisms of Algebraic Groups

In the sequel, let G denote a semisimple linear algebraic group over an al-
gebraically closed �eld k of characteristic char(k) 6= 2. Additionally, we
require that char(k) does not divide the order of � , a given diagram auto-
morphism of the Dynkin diagram of G. We want to show, for G simple, that,
except for certain cases of type D2n, our diagram automorphism � from the
previous section lifts to an automorphism of the group G, and we shall pro-
vide an explicit formula for its action on the root groups X� : k ! G;� 2 R.
Here, we assume knowledge of the theory of Chevalley groups, found e.g. in
[36], and on linear algebraic groups, found e.g. in [13, 2, 33]

Theorem 1.2 Let G; �; k be as above, and let T be a maximal torus of G
and �(T ) its character lattice. Assume that that �(T ) is stabilized by � .
(This is automatic for G simple, if G is not of type D2n.)
Then, � can be lifted to an exterior automorphism � of G such that:
(i) �(X�(t)) = X�(�)(t);8t 2 k; � 2 R, in case G is not of type A2n

respectively
(ii) �(X�(t)) = X�(�)((�1)ht �+1t);8t 2 k � 2 R, in case G is of type A2n.

Proof: In our cases the existence of � as an automorphism of a linear alge-
braic group G is clear by [36], Corollary to Theorem 29, p. 156f.
We only have to show that we can de�ne our root groups in such a way
that � acts in the described manner. By the construction of the Chevalley
groups, look at [36], Chapters 1,2,3, this amounts to �nding a Chevalley
basis x�; � 2 R of the corresponding simple complex Lie algebra g, such
that � acts on g by:
(i) �(x�) = x�(�);8t 2 R, in the case G is not of type A2n, or

(ii) �(x�) = (�1)ht �+1x�(�);8t 2 R, in case G is of type A2n.
To prove this, we �rst introduce a speci�c order relation on the set of simple
roots �, which is invariant under � in the non A2n-case and anti-invariant
in the A2n-case. This is done in the proof of Lemma 2.6 and Remark 2.7
of [39], p. 10. Now, we choose the x�; � 2 �, in an unspeci�c way, and we
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de�ne x�; � 2 R+ ��, by multicommutators

x� := [x�1 ; [:::[x�k�1 ; x�k ]:::]; (1.7)

respecting the order, i.e. �i � �j , for i < j, if possible, and such that �k
is the unique maximal element with respect to this order, if this maximal
element appears nontrivially in the linear combination of � as a sum of
simple roots. It is shown in the proof of Lemma 2.6 and in Remark 2.7
of [39], that this basis has the properties (i) and (ii) above. If we choose
~x�; � 2 R to be a Chevalley basis of g with ~x� = x�, for � 2 �, then, since
g is simply-laced and henceforth the structure constants are �1 or 0, we
have that ~x� corresponds, up to sign, to the above multicommutators. So
by adjusting the signs, which does not change the corresponding Chevalley
algebra, we can achieve the above formulae. ~.
Remark: (i) Let the Dynkin diagram of G be not connected, i.e. let G
be semisimple but not simple and � a permutation of di�erent, isomorphic,
irreducible parts of the root system R(G). Then we can lift � to G, if and
only if the character lattice �(T ) of a maximal torus T of G is � -stable.
(ii) With this choice of � , the order of � , considered as an automorphism of
G, is exactly the order of the corresponding diagram automorphism.

We are now interested in the �xed point group G� of G under the auto-
morphism � , respectively its unit component G�0 .

Proposition 1.1 For G simple, the type of the group G�0 is given in the
following table:

Type G A2n�1 A2n Dn+1; �
2 = 1 E6 D4; �

3 = 1

Type G�0 Cn Bn Bn F4 G2

Additionally, G�/G�0 is �nite abelian and, if G is simply connected, G� is
connected.

Proof: Cf. [7], Section 13.3, p. 221�, together with a remark in Section
14.4, at the bottom of p. 264. The additional assertions are proven in [37],
Theorem 8.2, p. 52, and Corollary 9.4, p. 60. ~.
Remarks: (i) If R(G) is a union of n copies of an irreducible root system
~R and � a permutation of the irreducible parts thereof, then the type of G�0
is the one of a k-fold union of ~R, where k is the number of cycles of � .
(ii)We see: The root system of G�0 is given by

�R1, ifG is not of type A2n and
by the Bn-subsystem, given by the roots of short and intermediate length
of �A1

2n = BCn, in the A2n-case.
(iii) By Lemma 1.3, the root system R0 is exactly the dual of the root system
R(G�0), the root system of the �xed point group.
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(iv) In Chapter 3 we shall give a separate proof of the proposition above,
when we calculate the root systems of centralizers of semisimple elements.

We are now in a position to de�ne the group ~G, the one we are dealing
with in this work:
Let G be a semisimple linear algebraic group, � < Aut(�) a subgroup of the
group of diagram automorphism corresponding to G, such that all elements
of � can be lifted to G. Then we set ~G := G o �. For G simple of type
ADE, the elements of � act on G in the manner given by the theorem
above. Furthermore, we restrict the characteristic of k in such a way that
char(k) 6= 2 and that it does not divide the order of any element of �.
~G is clearly an aÆne algebraic group, because G and Aut(�) are, and the
elements of Aut(�) act on G as morphisms. In addition, the unit-component
of ~G is just G. For any element z 2 ~G, let CG(z) denote the centralizer of z
in G given by CG(z) := fg 2 G; g z g�1 = zg.
Remarks: (i) For z = � we have CG(z) = G� .
(ii) Our construction of ~G involves a speci�c choice of a Borel subgroup
B and a maximal torus T < B, because we use a speci�c basis of a root
system of G. Since all pairs T < B are conjugate under G, and, therefore,
the corresponding diagram automorphisms are also conjugate under G, the
resulting group ~G does not depend on the choices.

1.4 Separability of the Orbit Map

This section will only be used in char(k) > 0. Let � be a diagram auto-
morphism. Here, conditions on the characteristic are given, such that the
conjugacy action of G, the unit component of ~G, on a given other compo-
nent G� is separable. Our reasoning will be similar to [34], Chapter I, x5,
p. E-16�, where the connected case is treated.
We start with a lemma:

Lemma 1.5 Let G and ~G be as above and assume, furthermore, that ~G <
GLn(k), such that the following conditions hold:
(i) gln = g�m

(ii) m is stable under ~G < GLn(k).
Then every conjugacy class of GLn(k) meets ~G in �nitely many G-conjugacy
classes.

Proof: Take a GLn(k)-conjugacy class Ĉ. Note that, since G is connected,
every G-conjugacy class in ~G is irreducible.
Let Z � ~G \ Ĉ be an irreducible component. Since there exist only �nitely
many irreducible components of ~G\ Ĉ, we are done, if we can show, that Z
consists of only one G-conjugacy class.
By irreducibility, Z has to be G-stable, so let C � Z be a G-conjugacy class
of ~G. Choose g 2 C.
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Next, we de�ne a map

f : GLn(k) ! Ĉg�1

x 7! x g x�1 g�1: (1.8)

We clearly have f(e) = e. Now, we show the following statement:
Claim:

(df)e : gln ! TeĈg
�1 is surjective. (1.9)

Proof of Claim: Since we have dimTeĈg
�1 = dimGLn(k)�dimCGLn(k)(g),

we must prove dimker((df)e) = dimCGLn(k)(g). But ker((df)e) is an asso-
ciative (matrix)-algebra and has the explicit form:

ker((df)e) = fX 2 gln; g X g�1 = Xg: (1.10)

Furthermore, CGLn(k)(g) is just the group of units of this algebra ker((df)e).
This group of units is an open subset of ker((df)e) (the complement of the
kernel of the determinant) and therefore ker((df)e) and CGLn(k)(g) have the
same dimension. }.
Now we have

TeZg
�1 � TeĈg�1 \ g = (1�Ad(g))(gln) \ g

= (1�Ad(g))(g)
= (df)e(g)

� TeCg
�1 � TeZg�1; (1.11)

where the identi�cations in the �rst and third line follow from the de�nition
of f and the identi�cation in the second follows from assumption (ii). Now
we conclude that C has to be an open subset of Z. Since this holds for every
conjugacy class C � Z, we conclude C = Z by the irreducibility of Z. ~.

As a consequence, we get two corollaries:

Corollary 1.2 Under the same assumptions as in the preceding lemma, we
have for g 2 ~G:

cg(g) = LieCG(g): (1.12)

Proof: From the proof of Lemma 1.5 we have dim (1 � Ad(g))(g) = dimC,
where C is the G conjugacy class of g in ~G. Since dim cg(g) = dim (ker(1�
Ad(g))jg), we easily calculate, using the dimension formula and the above
identi�cation:

cg(g) = dim g� dim (1�Ad(g))(g)
= dimG� dimC

= dimCG(g): (1.13)

Since we already know LieCG(g) � cg(g), the assertion follows. ~.
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Corollary 1.3 Under the same assumptions as in the preceding lemma, we
have that for every � 2 � and for every x 2 G� the orbit map

G ! G:x � G�
g 7! g x g�1 (1.14)

is separable.

Proof: This is just a reformulation of Corollary 1.2. ~.
Let us denote the universal cover of G by Ĝ and the covering map by �.

Furthermore, denote the kernel of � by CG < C(Ĝ).
In addition, we need the notions of good and very good characteristic as
found in [27], Section 3.13, p. 37f:

De�nition 1.3 A prime p is called good for a root system R, i� there does
not exist a Z-closed root subsystem ~R of R, such that Z(R)=Z( ~R) has torsion
of order p.
A prime is called very good for R, if p is good for R and if p does not divide
n+ 1, in the case that R contains a component of type An.

We collect the bad primes for irreducible R in the following table:

Type G An Bn Cn Dn E8 E7 E6 F4 G2

p bad none 2 2 2 2,3,5 2,3 2,3 2,3 2,3

In particular, we see, that a very good p does not divide j�(R)=Z(R)j.
Now, consider the non-connected group ~G o �. Since every diagram

automorphism lifts to the universal cover Ĝ of its unit component, there is a
non-connected algebraic group Ĝo�. By the construction of the Chevalley
groups as given in [36], Chapters 1,2,3, CG has to be � invariant and the
covering map � : Ĝ! G to be � equivariant. Therefore, we have a covering
map

�̂ : Ĝo � ! Go �

g� 7! �(g)�: (1.15)

Now, we have the following statement:

Lemma 1.6 Take x 2 G� and x̂ 2 Ĝ� with �̂(x̂) = x and let char(k) be
either zero or a very good prime for R(G), then we have, for the respective
orbit maps:

G! G:x is separable , Ĝ! Ĝ:x̂ is separable (1.16)
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Proof: By the � -equivariance of � we see that �̂ is Ĝ equivariant where ĝ 2 Ĝ
acts on Ĝ� by conjugation and on G� by conjugating with �(ĝ).
Since char(k) does not divide jCGj, by assumption, we conclude that �̂ is
separable. Therefore, the Lie algebras g and ĝ are isomorphic. Now the
adjoint actions of x and x̂ on g coincide and therefore we get:

cg(x̂) = cg(x): (1.17)

Furthermore it follows from �(CĜ(x̂)) = CG(x)0, see [37], Lemma 9.2, p.
60, that we have

dimCĜ(x̂) = dimCG(x): (1.18)

Therefore global and in�nitesimal centralizer dimensions coincide for x ex-
actly if they do for x̂. ~.

With these preparations, we can explicitly describe the cases, where the
orbit maps are separable:

Theorem 1.3 Let G be a simple group of type A; D; E, with nontrivial
group of diagram automorphisms and let � be a nontrivial diagram automor-
phism, which is de�ned for G. Then the orbit maps G! G:x are separable
for all x 2 G� , if char(k) is either zero or very good and does not divide the
order of � .

Proof: Fixing R and � , we only need to verify the statement of the theorem
for G of one isomorphism class with R(G) = R, such that � exists for G,
by Lemma 1.6. (Recall that all isomorphism classes of algebraic groups G
with R(G) = R only di�er by their fundamental groups.) This will be done
case-by-case:
1. G is of type Dn, n � 4, �2 = 1: In this case, we choose G = SO(2n).
Then we have:

~G = GoZ=2Z= O(2n); (1.19)

where we can choose � =
�

E2n�2

0 1
1 0

�
. Now we consider the trace form

on gl2n:

tr : gl2n � gl2n ! k

(X; Y ) 7! tr(X Y ): (1.20)

Then tr is ~G invariant and we have, as is well known:

g = fX 2 gl2n; X = �tXg: (1.21)

Now a direct summand of g in gl2n is given by:

m = fX 2 gl2n; X = tXg: (1.22)

(The direct sum property is given by the decomposition X = 1
2(X + tX) +

1
2(X� tX), which holds because of char(k) 6= 2.) A simple calculation yields
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that m is the orthogonal complement of g with respect to the trace form.
Therefore m has to be ~G stable. The statement in this case now follows from
Corollary 1.3.
2. G of the other cases: Here our condition on the characteristic can be
rephrased as follows:
char(k) does not divide 2 cox(R(G)),
where cox(R(G)) is the Coxeter number, the order of the Coxeter element.
This follows from explicit consideration of the Coxeter numbers, which are
given, e.g. in [3], Planches, p. 250�.
Here, we consider the group G of adjoint type. By [36], Chapters 1,2, we
have that g = L 
Z k, where L is the Chevalley algebra of adjoint type of
type R(G). Denote the Killing forms of g and L by � and �0 respectively.
By [34], Chapter I, 4.8, p. E-14, we have:

det �0 = (�1)jR(G)+j(2 cox(R(G)))dimGj�(R)=Z(R)j�1 (1.23)

with respect to the corresponding Chevalley basis. Now, our assumption
guarantees, that � is non-degenerate. Let us consider G < GL(g). Then
g = ad(g) � gl(g). Recall that � is just the restriction of the trace form
on gl(g) to g. Then we choose m to be the orthogonal complement of g

with respect to the trace form. This guarantees m to be ~G stable. Since
restriction of the trace form on gl(g) to g is non-degenerate, we conclude
g \m = 0. Hence we have:

gl(g) = g�m: (1.24)

The statement now follows from Corollary 1.3. ~.
This result motivates the following de�nition:

De�nition 1.4 The characteristic p = char(k) is called excellent for a pair
(G; �) consisting of a semisimple algebraic group G and an exterior auto-
morphism � 2 Aut(�(G)), if p is very good for G and if p does not divide
the order of � .



Chapter 2

Invariant Theory

In this chapter, we want to describe the invariant theory of the adjoint
G-action on an exterior component of ~G and to give a description of the
corresponding categorical quotient, the so called adjoint quotient. First, we
need the notion of a Cartan subgroup, generalizing the concept of a maximal
torus to non-connected linear algebraic groups, followed by the development
of the representation theory of ~G. Afterwards, we also investigate the quo-
tient of an exterior component of such a Cartan subgroup modulo the action
of its normalizer in G and show the isomorphism of this quotient with the
former one.
From now on we assume, for the rest of this work, that the algebraically
closed �eld k is not an algebraic extension of a �nite �eld.

2.1 Cartan Subgroups

We denote a not necessarily connected algebraic group by ~G and by G its
unit component. Furthermore, we assume knowledge of the theory of linear
algebraic groups as presented in e.g. [13, 2, 33]

De�nition 2.1 An algebraic subgroup C < ~G is called a Cartan subgroup
if all the following properties hold:
(i) C is diagonalizable,
(ii) C has �nite index in its normalizer (in ~G),
(iii) C contains an element z generating C as an algebraic group.
The �nite group W(C) := NG(C)=C0 is called the outer Weyl group of
( ~G; C) and denoted by W(C).

As a �rst consequence of the de�nition we get:

Lemma 2.1 Let C be as in the de�nition above. Then C is abelian.

24
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Proof: Follows directly from the commutator formula (H;H) = (H;H),
found in [2], p. 57 and (iii) of the de�nition. ~.
Remarks: (a) Clearly we can replace (i) and (iii) in the de�nition by
(i)' C contains a semisimple element z generating C as an algebraic group.
(b) The existence of Cartan subgroups is not clear, but will be proven for
G reductive in the sequel.
(c) The above de�nition is motivated by a similar notion of Cartan subgroups
in the theory of non-connected compact groups, cf. [5], Section IV.4.

First we show some properties of Cartan subgroups respectively diago-
nalizable groups:

Lemma 2.2 Let D be a diagonalizable group. Then D contains a generating
element z i� D = (k�)n � Z=lZ, for suitable integers l; n.

Proof: \ ( " : By [2], Proposition 8.8, p. 115�, we can �nd an element
t = (t1; :::; tn) 2 (k�)n generating (k�)n. Taking u = ( l

p
t1; :::;

l
p
tn) we have

that z = (u; 1) is a generating element of D. (Here the condition on k not
to be an algebraic extension of a �nite �eld enters.)
\) " : D, being diagonalizable, is isomorphic to (k�)n�Z=l1Z� :::�Z=lpZ
for appropriately chosen integers n; p; l1; :::; lp. Let pr2 denote the projec-
tion to the product of the �nite factors. Now let z be the generating ele-
ment of D. Then pr2(z) is a generator of Z=l1Z� :::�Z=lpZ which implies
Z=l1Z� :::� Z=lpZ to be isomorphic to Z=lZ for a certain choice of l. ~.

We now prove an existence result for Cartan subgroups in the reductive
case:

Proposition 2.1 Let ~G as above with G reductive. Then every semisimple
element of ~G is contained in a Cartan subgroup C.

Proof: We prove the proposition �rst in the case of semisimple G.
Let g 2 ~G be a semisimple element, CG(g)0 be the unit component of its
centralizer in G and S < CG(g)0 a maximal torus thereof. Denote by H the
algebraic subgroup of ~G generated by S and g. As in the proof of Lemma
2.1, we see that H is abelian. Since, in addition, every element of H is
diagonalizable in a faithful representation of ~G also H is diagonalizable.
Next observe that S = H0, because clearly we have S < H0 < CG(g)0 and
H0 is a torus. Now the �nite group H=S is generated by gS yielding the
existence of a generating element of H. Thus we are left to show that H
has �nite index in its normalizer in ~G.
We have:

[N ~G(H) : H] = [N ~G(H) : C ~G(H)][C ~G(H) : H]

� [N ~G(H) : C ~G(H)][C ~G(H) : H0] (2.1)
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By [38] Corollary 2(b), p. 43f, the �rst factor on the right hand side is �nite.
Thus we are left with showing the �niteness of the second one:
Combining the two equations

S < C ~G(H)0 < C ~G(g)0 (2.2)

S < C ~G(H)0 < C ~G(S)0 (2.3)

gives S < C ~G(H)0 < CC ~G(g)0
(S)0. Now it follows from [37], Theorem 7.5, p.

51, Theorem 8.2, p. 52, and Corollary 9.4, p.60, that C ~G(g)0 is a reductive
group and therefore S = CC ~G(g)0

(S)0 by [13], Corollary A, p. 159. Therefore
S = C ~G(H)0, which yields our result.
Now letG be reductive and let C(G) be the (in general, positive dimensional)
connected centre of G, and let g 2 ~G be again a semisimple element. Denote
the conjugation with g by cg. We are done, if we can show that the connected
�xed point group G

cg
0 = CG(g)0 is reductive, because then we can repeat

the proof as in the semisimple case above. Clearly, we have that cg is an
automorphism of G and therefore it has to stabilize C(G). Hence cg descends
to an automorphism of the semisimple quotient group �G = G=C(G) which
we will denote again by cg. Now using [37], Statement 4.5, p. 37, our exact
sequence

1 �! C(G) �! G �! �G �! 1 (2.4)

gives rise to an exact sequence

1! C(G)cg ! Gcg ! �Gcg ! ((1� cg)(G) \ C(G))=((1 � cg)(C(G))) ! 1:
(2.5)

By [37] Corollary 9.4, p. 60, ( �Gcg )0 is reductive. Since, in our case, C(G) is a
torus, the group ((1�cg)(G)\C(G))=((1�cg)(C(G))) is diagonalizable and
hence abelian. Therefore (( �Gcg )0; ( �G

cg )0) � (Gcg)0=(C(G)
cg\(Gcg)0), where

the �rst group is the semisimple part of ( �Gcg )0. Hence (Gcg )0=(C(G)
cg \

(Gcg )0) has to be reductive and since (C(G)cg \ (Gcg )0) is diagonalizable,
(Gcg )0 also has to be reductive. ~.
Remark: This proof provides us with a construction recipe for a Cartan
subgroup containing a given semisimple element. This will be exploited
several times in the sequel.

Now, we prove a technical lemma, we will need quite often:

Lemma 2.3 Let C be a Cartan subgroup of ~G and g 2 C an element, such
that gC0 generates C=C0. Then C0 is a maximal torus in CG(g)0.

Proof: Observe that g and C0 generate C as an algebraic group. Assume
that the statement of the lemma is false. Then, every maximal torus of
CG(g)0 containing C0 will centralize C. So, we get a contradiction to the
fact, that C has �nite index in its normalizer. ~.
Proposition 2.2 Let ~G, G as above. If C is a Cartan subgroup in ~G, then
C0 is regular torus in G.
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Proof: Clearly C0 is a torus in G. Therefore CG(C0) is reductive group.
(CG(C0) is connected, because it is a centralizer of a torus in a connected
algebraic group G, see [13], Theorem 22.3, p. 140.) Hence we can get a
decomposition CG(C0) = ZĜ with �nite intersection, where Z is the centre
of CG(C0) and Ĝ = (CG(C0); CG(C0)) is semisimple. Clearly C0 � Z. We
have to show that Ĝ is trivial. Let g be a generating element of C, then C0

is a maximal torus in CG(g)0 by Lemma 2.3. Since conjugation with g leaves
C0 invariant, it also stabilizes CG(C0) and therefore Ĝ. Since, furthermore,
C0 is a maximal torus of CG(g)0, which is a reductive group by [37], loc cit,
respectively the argument in the proof of Proposition 2.1 for G reductive,
we have C0 = CG(g)0 \ CG(C0) = CCG(g)(C0). Therefore the conjugation
map of g

cg : ~G! ~G; h 7! cg(h) = ghg�1 (2.6)

has only �nitely many �xed points on Ĝ. Now applying [37], 10.12, p. 71,
we conclude that Ĝ is solvable. Being also semisimple it has to be trivial.~.

As a last general result on Cartan subgroups the following assertion
holds:

Lemma 2.4 Let ~G be as above with G semisimple and simply connected.
Then C \G = C0, for every Cartan subgroup C.

Proof: Let g be a generating element of C, then, by Lemma 2.3, C0 is a
maximal torus of CG(g). In this case, CG(g) is connected by [37], Proposition
8.2. Furthermore, C \G � CG(g) and hence C \G � CCG(g)(C0) = C0. ~.

We now turn to the special situation of Section 1.3. From now on we
consider ~G = G o �, where G is a semisimple algebraic group and � is a
subgroup of the group of diagram automorphisms of the Dynkin diagram
of G. We also restrict the characteristic of k as given in the beginning of
Section 1.3. Furthermore, let � 2 � be a �xed diagram automorphism, from
now on, and denote by G� the connected component of ~G containing � . Our
next aim is now to prove the following proposition:

Proposition 2.3 Let h; z 2 G� be semisimple elements and C a Cartan
subgroup, containing z, such that zC0 is a generator of C=C0, then h is
G-conjugate into C0z.

Before proving this result we need some preparations:
Let z 2 G� be a semisimple element as above and T < B a pair of a
maximal torus and a Borel subgroup of G and let C be a Cartan subgroup
as in the claim of the proposition. Assume T and B to be stabilized by z,
such that C0 = T z0 , where T

z denotes the z-�xed points of T and T z0 its
unit component. (The existence of T < B can be proven as follows: By
Proposition 2.2, we can take T = CG(C0). Let B0 be a Borel subgroup of
CG(z)0 containing C0. then by [37], Corollary 7.4, p. 50, we can �nd a Borel
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subgroup B > B0 of G stabilized by z. Since CB(C0) is a maximal torus of
G, we get T = CB(C0) � B.)
First, we prove a lemma:

Lemma 2.5 we keep the notations as above. Then, every element of Tz is
T -conjugate to T z0 z.

Proof: Denote by cz : ~G ! ~G, cz(g) = z g z�1 the conjugacy action with z
on ~G. Then cz is a semisimple automorphism of ~G. By the proof of Proposi-
tion 2.1, the group generated by z and T z0 is a Cartan subgroup of ~G, whose
unit component is T z0 .
We have to show, that:

8h 2 T 9h0 2 T=T z0 : h0 h z h0�1 2 T z0 z; (2.7)

which is equivalent to the following equation:

8h 2 T=T z0 9h0 2 T=T z0 : h0cz(h
0�1) = h�1; (2.8)

where cz operates on T=T
z
0 in the obvious manner.

Since T z0 is the unit component of a Cartan subgroup containing z and by
property (ii) of the de�nition of Cartan subgroup, cz can have only �nitely
many �xed points on T=T z0 . Now we can apply [37], Theorem 10.1, p. 67,
to our situation, yielding the surjectivity of the map T=T z0 ! T=T z0 given
by h0 7! h0cz(h

0�1), thus proving our lemma. ~.
As a consequence of the previous lemma we get:

Corollary 2.1 Every element of Tz is semisimple.

Now we can prove the stated result:
Proof of Proposition 2.3: Let C0 < T < B be a maximal torus and a Borel
subgroup stabilized by z as above, and T 0 and B0 be a maximal torus and a
Borel subgroup stabilized by h. After conjugating h with an element of G,
we can assume, that T = T 0 and B = B0. Since, furthermore, C0 = T z0 we
only have to show, by Lemma 2.5, that h is G-conjugate into Tz.
Now, hz�1 is an element in G stabilizing T and B. The �rst means hz�1 2
NG(T ) thus exhibiting an automorphism of the corresponding root system
R(G;T ). The latter means hz�1 stabilizes a basis thereof, whence hz�1 2 T ,
proving the proposition. ~.
Remark: This result suggests, that every element in G� is G-conjugate
into the shifted �xed point group G�0� . This result however is false and
counterexamples for each choice of simple G and � will be given in the
appendix.

From this result we can now derive some consequences:
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Proposition 2.4 The map
� : fCartan subgroups of ~Gg ! fcyclic subgroups of �g given by
�(C) = C=(C \G) = (C=C0)=((C \G)=C0) induces
(i) a bijection of ~G-conjugacy classes of the former set and �-conjugacy
classes of the latter set, as well as
(ii) a bijection of G-conjugacy classes of the former set and elements of the
latter set.

Proof: 1. Surjectivity: Any cyclic subgroup of � is generated by some ele-
ment � 2 � acting semisimply on G. Therefore it is contained in a Cartan
subgroup C of ~G by Proposition 2.1, such that �C0 generates C=C0. Hence
we have the surjectivity.
2. Claim: If C is a Cartan subgroup, 
 2 � a generator of �(C) = C=(C\G),
then there exists a generating element z 2 C, with zG = 
 2 ~G=G = �.
Proof of claim: By Lemma 2.2, we have C = C0 �Z=lZ for a certain l 2 Z.
Now we have C=(C \G) = Z=mZ, where clearly mjl. Let 
 be a generator
of Z=mZ. To prove the claim we end up with showing that given a surjec-
tive group homomorphism Z=lZ! Z=mZ the inverse image of a generator
downstairs contains a generator upstairs, which can be found e.g. in [5],
Section IV.4, Exercise 3. 3.
3. Injectivity: Let C;C 0 be two Cartan subgroups of ~G, whose images �(C)
and �(C 0) are conjugate (i) respectively equal (ii) and let z be a generator of
C. Then we can �nd g 2 ~G, such that g z g�1G is a generator of �(C 0), with
g = e in case (ii). By the claim above, we can �nd a generator z0 of C 0, such
that g z g�1 2 z0G. Since z; z0 are semisimple, we can �nd, by Proposition
2.3, an element g0 2 G such that g0 g z g

�1g�10 2 C 00z0. Therefore, C has to
be conjugate to a subgroup of C 0 and vice versa by interchanging the roles of
C and C 0 in the previous reasoning. In particular C0 and C

0
0 are conjugate

to subgroups of one another yielding C0 = C 00 by dimension reasons and
irreducibility. Similarly, the number of connected components of C and C 0

must also coincide yielding the stated results. ~.

Corollary 2.2 For ~G = Go� as above, we have: If C is a Cartan subgroup
of ~G, then C \G = C0.

Proof: Let � 2 � and C(�) be a Cartan subgroup containing � , such that
C(�)=C(�)0 is generated by �C(�)0. Take, e.g. as in the proof of Propo-
sition 2.1, for C the group generated by � and a maximal torus of G�0 .
Clearly, we have C(�) \ G = C(�)0. Let now C be an arbitrary Cartan
subgroup of ~G. Then C is conjugate to a group of type C(�) as above, by
Proposition 2.4. Hence C and C(�) share the same number of connected
components and, again by Proposition 2.4, their quotient groups C=(C \G)
and C(�)=(C(�)\G) have the same group order, which equals same number
as the number of connected components, because it does for C(�). ~.
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Remark: This is a similar result as Lemma 2.4. Here, the group has to
be a semidirect product of a semisimple algebraic group and a subgroup
of the diagram automorphisms of its Dynkin diagram. In Lemma 2.4, the
unit component had to be simply connected, but ~G did not have to be a
semidirect product.

Proposition 2.5 Let C be a Cartan subgroup of ~G, and denote by C� the
set of elements of C which are mapped to a generator of C=(C \G) = C=C0

under the quotient map. Then we have:
(i) Two elements of C� are conjugate under ~G i� they are under N ~G(C),
and:
(ii) Two elements of C�, lying in the same connected component of C are
conjugate under G i� they are under NG(C).

Proof: Let x; y = g x g�1 2 C� as in the claim of the proposition, with g 2 ~G
for case (i) and g 2 G for case (ii). Then we have x 2 C \ g�1C g and even
x 2 (g�1C g)�, because C=C0 and g�1C g=g�1C0 g are conjugate in �, by
Proposition 2.4. Therefore, we get the following disjoint union of algebraic
varieties:

C = C0 t ::: t xl�1C0 (2.9)

g�1C g = g�1C0 g t ::: t xl�1g�1C0 g; (2.10)

where l is the number of connected components of C. Now C0 and g
�1C0 g

are maximal tori in CG(x)0 by Lemma 2.3. Therefore we can �nd an element
h 2 CG(x)0 < G, such that h g�1C0 gh

�1 = C0, which implies:

h g�1C g h�1 = h g�1C0 g h
�1 t ::: t hxl�1g�1C0 g h

�1

= C: (2.11)

Hence we must have hg�1 2 N ~G(C) in case (i) respectively hg�1 2 NG(C)
in case (ii). Clearly we have y = g x g�1 = g h�1xh g�1. ~.

If all cyclic subgroups of � have prime order, we get the following con-
sequence:

Corollary 2.3 Let ~G be as above and C a Cartan subgroup of ~G such that
C=C0 is isomorphic to Z=pZ where p is a prime number. (This holds, in
particular, if G is simple of type ADE and ~G a nontrivial semidirect product
of G with a subgroup of the diagram automorphisms of G.)
Then two elements of C not lying in G are conjugate under ~G, (resp. G,
if they also lie in the same connected component of ~G), i� they are under
N ~G(C) (resp. NG(C)).
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Remark: If C is connected, which implies that it is a maximal torus of
G, then (ii) gives us the well-known statement, that two elements of C are
conjugate under G i� they are under the Weyl group.

2.2 A Density Result

In this section we prove the density of the set of semisimple elements of G�
in all of G� . Afterwards we derive some consequences thereof.

Proposition 2.6 Let � 2 �, ~G as above, then the set of semisimple ele-
ments in G� denoted by (G�)s:s: is a dense subset of G� .

Proof: Let C be a Cartan subgroup of ~G, such that �C0 is a generator
of C=C0 (i.e. C0 is a maximal torus in G

�
0 by Lemma 2.3), then because of

Proposition 2.3 it suÆces to show, that
S
g2G gC0�g

�1 = (G�)s:s: contains
an open (hence dense) subset of G� . This will be shown as follows:
We consider the conjugation map �:

� : G=C0 � C0 ! G�

(gC0; h) 7! g h� g�1: (2.12)

The dimensions of the image and preimage spaces are clearly equal. (They
equal the dimension of G.) Since � is a morphism of algebraic varieties, its
image Im� contains an open subset of its closure Im�, [11], Exercise 3.19,
p. 94, [38], 1.13, Proposition 1, p. 14.
Apparently, we have dim (Im�) � dimG. If we can �nd a point in Im�,
whose preimage is �nite, we can apply the dimension formula for mor-
phisms of algebraic varieties, stating that for a morphism f : X ! Y of
algebraic varieties and a connected component V of a �bre of f we have
dimV � dimX � dimY , found e.g. in [11], Exercise 3.22, p. 95, [38], 1.13,
Lemma 2, p. 21. This will give us dim (Im�) � dimG, and we are done.
So we have to �nd t� 2 C0� such that �

�1(t�) �= fg 2 G=C0; g
�1t� g 2 C0�g

is �nite.
Take t� a generating element of C, then the assumption g�1t� g 2 C0� � C
implies g 2 NG(C) and hence gC0 lies in the �nite group W(C). ~.
Remark: In the cases where the conjugation map G�G� ! G� (g; h) 7!
g h g�1 is separable, one gets a second proof of the proposition by showing
that the di�erential of the map �, as de�ned in the proof above, is surjective
at some point.
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2.3 The Structure of the Outer Weyl Group

Here we want to give a description of the outer Weyl group W(C) =
NG(C)=C0. By Proposition 2.4, it suÆces to take as a Cartan subgroup
C one containing � , such that �C0 generates C=C0. Then we shall denote

W(C) by fW. We can even achieve the following situation: � stabilizes a
maximal torus T of G and a certain Borel B > T , such that C0 = T �0 , the
�xed point torus of T . Therefore � acts on the root system R(G;T ) with
basis �(B) as the diagram automorphism.
Now we can state the �rst result:

Lemma 2.6 With the notation above we have a split exact sequence

1 �! (T=T �0 )
� �! fW '�!W� �! 1; (2.13)

where the map ' is given by ' : nT �0 7! nT , for an element n 2 NG(C).

Proof: 1. Exactness: Clearly, we have (T=T �0 )
� � fW , because t centralizes

T �0 and t�t�1��1 2 T �0 , for any representative t with tT �0 2 (T=T �0 )� .
To prove exactness, we have to show the surjectivity and to determine the
structure of the kernel of '.
1.a. Ker ': apparently we have Ker' = fnT �0 2 fW ; nT �0 = nT = Tg
yielding n 2 T , for n 2 NG(C); nT

�
0 2 Ker '. For this choice of n, we must

also have n�n�1 2 �T �0 , which directly gives nT �0 = �nT �0 �
�1, proving our

claim about Ker'.
1.b. Im': Let nT �0 2 fW, then �n��1 2 nT �0 � nT . Since T is stabilized by
� we have nT 2 W� .
If, on the other hand w = nT 2 W� , we have to �nd an element t 2 T , such
that nt 2 NG(C). Let z = h� , with h 2 T �0 , be a generating element for
C. By the assumption on n, there exists t0 2 T , such that ��1n� = nt0. It
follows that z�1n z = n t0 t, with t = ��1n�1h�1nh� 2 T . Clearly, the �nite
groups (T=T �0 )

� and (T=T �0 )
z coincide, therefore by [37], Theorem 10.1, p.

67, applied to conjugation with z�1 on (T=T �0 ), we can �nd ~t 2 T , such that
~t z�1~t�1z T �0 = n t0t n�1T �0 . A simple calculation, using the fact that z is a
generator for C, shows ~tn 2 NG(C), whence the surjectivity.
2. Sequence is split: By Theorem 1.1 and Proposition 1.1, we can describe
W� as the Weyl-group of the �xed point group G�0 , and T �0 is a maximal

torus thereof by Lemma 2.3. Hence we get an embedding � :W� ,! fW . By
the construction of W� we clearly get ' Æ � = id. ~.

Next, we want to understand the structure of the factor (T=T �0 )
� of W

more thoroughly. Therefore we need some information about the tori T , T �0
and their respective character lattices.
Let S be any torus, i.e. a connected diagonalizable aÆne algebraic group,
then denote by �(S) the character lattice, i.e. the set of all algebraic group
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homomorphisms S ! k�. The following discussion uses basic facts about
diagonalizable groups, found in e.g. [38], Section 2.6, [13], Chapter 16, or
[2], Chapter 8.
Let T now be a maximal torus ofG, �(T ) the corresponding character lattice,
T �0 the unit component of the � �xed point torus in G. Then, corresponding
to the embedding i : T �0 ,! T , we have a projection i� : �(T )! �(T �0 ) which
is just given by taking the mean over each � -orbit of each element � 2 �(T ).
Thus, by extending the notation of Chapter 1, we have �(T �0 ) =

��(T )1.
But there is also another lattice involved, the �xed point lattice �(T )� of the
� -action on �(T ). Corresponding to this lattice and the inclusion �(T )� �
�(T ), we have a torus denoted by T 0 and a quotient map p : T ! T 0, such
that p� : �(T )� ! �(T ) is just the inclusion. (Note that, for G simply
connected, we have �(T ) = �(R(G;T )), the weight lattice, and we are
in the situation described in Chapter 1.) We now identify T �0 � with T �0 ,

(by multiplying with ��1). This identi�cation becomes fW-equivariant, if

we let fW act on T �0 by the following rule: w � t := nw t� n
�1
w ��1, for all

t 2 T �0 and w 2 fW with nwT
�
0 = w. Since we can realize the W� -part offW = (T=T �0 )

� oW� in G� , as in the proof of Lemma 2.6, W� acts on T �0 in
the usual way, but (T=T �0 )

� acts on T �0 by multiplication with t � t�1��1.
We now give another description of T 0:

Lemma 2.7 Let � : T ! T be the group homomorphism t 7! �(t) =
t � t�1��1, then T 0 �= T=Im�. The map � is W� -equivariant.

Proof: Denote the projection map T ! T=Im� by �. Let � be a character
on the torus T=Im�, then ��(�) is a character on T being trivial on Im�.
Therefore, we have ��(�)(�(t)) = 1, for all t 2 T , which is equivalent to
��(�)(� t ��1) = ��(�)(t), for all t 2 T , which gives us ��(�) 2 �(T )� .
On the other hand, let � 2 �(T )� . We de�ne a character �̂ on T=Im�
by �̂(t Im�) := �(t), which is well de�ned, because of the � -invariance of
�. We have ��(�̂) = �. Therefore, the character lattices of T=Im� and
T 0 coincide (as sublattices of �(T )) and hence the tori must be isomorphic.
The W� -equivariance is trivial. ~.

For the next result, we need some further notation:
Let us consider the homomorphism � : (T=T �0 )

� ! T �0 given by tT �0 7!
�(tT �0 ) = t � t�1��1. The image of � will be denoted by H. This is a �nite
subgroup of T �0 . Note that � need not be injective, its kernel is just given
by T �=T �0 .
Now we can prove a �rst result:
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Lemma 2.8 Consider  = p Æ i:

T
p // T 0

T �0

i

OO

 

>>~~~~~~~~~~~~~~~~

Then  : T �0 ! T 0 is the quotient map of T �0 by the above de�ned action of
(T=T �0 )

� . It is W� -equivariant.

Proof: 1.  factors over the quotient map: Let tT �0 2 (T=T �0 )
� . Then,

by the de�nition of the action of (T=T �0 )
� on T �0 given above, tT �0 acts

on T �0 by left multiplication, independently of the representative t chosen,
with t � t�1��1 2 T �0 \ Im�, where � is the map de�ned in the previous
lemma. By the same lemma, we get p(tT �0 � s) = p(s), for all s 2 T �0 and
tT �0 2 (T=T �0 )� .
This shows that  factors over the quotient map T �0 ! T �0 =(T=T

�
0 )

� . There-
fore we have to show ker  = H and the surjectivity of  .
2. Surjectivity of  : This is a consequence of Lemma 2.5 and the previous
lemma:
Let t 2 T be a representative of an element in T 0, then we can �nd (by
Lemma 2.5) an element s 2 T , such that t s � s�1��1 = t �(s) is an element
of T �0 and also a representative of the same element of T 0 by the previous
lemma.
3. ker  = H: Let t 2 Ker  = T �0 \ Im�, i.e. we have t = s � s�1��1 for
an element s 2 T . We conclude s 2 (T=T �0 )� .
4. W� -equivariance: Since H = ker  = T �0 \ Im�, this follows from the
W� -equivariance of �, cf. Lemma 2.7. ~.
Remark: In general, the sequence

1 �! T �0 �! T �! Im� �! 1; (2.14)

with � as in Lemma 2.7, fails to be exact. It is exact i� T � = T �0 . However,
in that case the sequence cannot be split, since T �0 \ Im� = (T=T �0 )

� will
turn out to be nontrivial.

Next, we want to understand the structure of the group (T=T �0 )
� which,

clearly, is a �nite abelian group.
For simply connected and simple G we can directly calculate (T=T �0 )

� :

Lemma 2.9 If G is simply connected and simple, and if � is a diagram
automorphism of G as above, then we have:

If �2 = 1, then (T=T �0 )
� �= (T=T � )� �= (Z=2Z)dimT�dimT

�
0 ;(2.15)

if �3 = 1, then (T=T �0 )
� �= (T=T � )� �= Z=3Z: (2.16)
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Proof: First, observe that G simply connected implies that G� is connected
by [37], Theorem 8.2, p. 52. Therefore, T � = T �0 , because the latter is a
maximal torus of G� .
By the exactness of the sequence of the preceding remark, we have T=T � �=
Im�. This identi�cation is even � -equivariant. Therefore we can calculate
on Im�.
Case 1: �2 = 1: In this case we calculate �(�(t)) = � t � t�1��1��1 = �(t�1).
Hence � acts on T=T � by inversion and we get (T=T � )� = ft 2 Im�; t =
t�1g. Identifying the torus T=T � with a product of as many multiplicative
groups k� as it has dimension, we get the stated result.
Case 2: �3 = 1: In this case G is Spin8(k) and G� is of type G2. Hence
we have dim (T=T � ) = 2. The automorphism � is therefore a nontrivial
automorphism of a two dimensional torus of order three, giving rise to a
nontrivial automorphism of the corresponding character lattice �(T=T � ) �=
Z2. The isomorphism group of this lattice is GL2(Z) and since � is of order
three and det(g) = �1 , for all g 2 GL2(Z), we must have � 2 SL2(Z).
Now the image �(�) of � under the two-to-one cover � : SL2(Z)! PSL2(Z)
is again of order three. By the theory of the modular group , see e.g. [25],
th�eor�eme VII. 1.1, �(�) is conjugate in PSL2(Z) to an element of the form�

0 �1
1 1

�
or

�
�1 �1
1 0

�
. Hence � is conjugate in SL2(Z) to an element of

the form �

�
0 �1
1 1

�
or �

�
�1 �1
1 0

�
, of which only

�
0 1
�1 �1

�
or

�
�1 �1
1 0

�

have order three. By replacing � by ��1 we can assume � =
�

�1 �1
1 0

�
.

Let now (t1; t2) be appropriate coordinates of T=T
� �= (k�)2. Then � acts

by �(t1; t2) = (t�11 t�12 ; t1).
A calculation now yields (T=T � )� = f(1; 1); (�; �); (�2 ; �2)g �= Z=3Z, for a
primitive third root of unity �. ~.
Remark: (i) In case, that G is semisimple and simply connected and that
� is a permutation of isomorphic simple normal subgroups of G, we obtain
the following result: Let � be of order n. Then � acts as an isomorphism of
order n on T=T � and we can conclude that (T=T � )� � (Z=nZ)dimT�dimT �0 .
(ii) The result of the above theorem is also obtainable by direct case-by-case
calculation as in [39], Lemma 4.10, p. 33, where the compact case is treated.

Next, we approach the general case:
Let H be the image of the map � : (T=T �0 )

� ! T �0 , as de�ned in the para-
graph preceding Lemma 2.8. By Lemma 2.8 H is exactly the kernel of  .
Now we have:

Corollary 2.4 If G is simple of type ADE, then the following statements
hold:
(i) We have identi�cations:

H �= �(H) �= �(T �0 )=�(T
0)jT �0 (2.17)
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(ii) If G is simply connected, then H �= (T=T � )� .

Proof: Part (ii) follows from the equality T �0 = T � , which holds for simply
connected G by the proof of Lemma 2.9.
(i) For the second identi�cation consider the exact sequence of diagonalizable
groups

1 �! H �! T �0 �! T 0 �! 1; (2.18)

giving rise to an exact sequence of abelian groups, proving the second iden-
ti�cation:

0 � �(H) � �(T �0 ) � �(T 0) � 0: (2.19)

Now we want to prove the �rst identi�cation. Since H is a �nite abelian
group and by the theory of �nite groups as developed e.g. in [9, 26], we need
to show that the group order of H is not divided by the characteristic of k.
(Note that we imposed char(k) 6= 2 respectively char(k) 6= 2; 3, if �3 = 1, in
Section 1.3.) In fact, we will show that the order of H is a power of ord � :
Let p : V ! V � be the projection of the real vector space V , in which our
root and weight lattices are embedded, to its � -invariant part as de�ned
in Equation 1.2. Then we have �(T �0 ) = p(�(T )) � ��(R)1 and �(T 0) �
�(R0). Furthermore, let T̂ be a maximal torus of the simply connected
group of the same type as G, thus �(T̂ �0 ) = ��(R)1. Let T̂ 0 be a torus
corresponding to �(R0) and Ĥ de�ned similarly to H with T replaced by
T̂ . Then the commutative diagram of abelian groups with exact rows and
injective columns

0 �(Ĥ)oo �(T̂ �0 )
oo �(T̂ 0)oo 0oo

0 �(H)oo �(T �0 )
oo

OO

�(T 0)oo

OO

0oo

gives rise to commutative diagram of diagonalizable algebraic groups with
exact rows and surjective columns

1 // Ĥ // T̂ �0
//

p

��

T̂ 0 //

p0

��

1

1 // H // T �0 // T 0 // 1:

(The surjectivity follows from the fact that images of algebraic groups under
algebraic homomorphisms are closed, cf. e.g. [38], Section 1.13, Proposition
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2, p. 20.) We have p(Ĥ) � H, and by use of the Snake Lemma, we get an
exact sequence

1 �! ker pjĤ �! ker p �! ker p0 �! H=p(Ĥ) �! 1: (2.20)

We now distinguish two cases: If � is of order three, e.g. R is of type D4,
we have by Corollary 1.1 that T̂ 0 = T 0 giving H = p(Ĥ). By Lemma 2.9
and (ii) we have Ĥ �= Z=3Z and we are done.
If � is of order two we get, by Corollary 1.1, that ker p0 is either Z=2Z or
trivial and hence so is H=p(Ĥ). Furthermore, by Lemma 2.9, Ĥ is a direct
product of copies of Z=2Z. Therefore the group order of H also has to be a
power of two. ~.
Remark: (i) If G is not simple but semisimple and � a diagram automor-
phism exchanging isomorphic simple normal subgroups of G, a similar result
holds: The analogue of (ii) is still valid by the same reasoning. To achieve (i),
we can similarly carry out the diagram argument using the Snake Lemma,
if we impose further restriction on the characteristic of the base �eld k: In
addition to the condition that char(k) does not divide the order of � we
also need, that char(k) does not divide the order of the fundamental group
�(R0)=Z(R0).
(ii) In the case of char(k) = 0, we do not need Lemma 2.9 for the proof
of the above corollary, because the isomorphism H �= �(H) always holds
(note that we are dealing with �nite abelian groups). Therefore, we get in
this case, another proof of Lemma 2.9 by use of the above corollary and
direct computation of ��(R)1=�(R)� by use of the set of generators of these
lattices as exhibited in Section 1.2.

2.4 Representation Theory of ~G

Our next aim is to understand the representation theory of ~G presupposing
that of G. The relevant results may be found e.g. in [13], Chapter XI, or
[38], Sections 3.3 and 3.4.
We start with a de�nition and a lemma about class functions, which will be
useful later.

De�nition 2.2 Let be ~G as above. A regular function f 2 k[G� ] on the
component G� of ~G de�ned by � 2 � will be called a class function, if it
is invariant under conjugation by elements in the unit component G, i.e.
f(g h g�1) = f(h), for all h 2 G� , g 2 G. The ring of all class functions
will be denoted by k[G� ]G.

Remark: This notion is a bit abusive, because class functions are usually
functions on the whole group, invariant under conjugation of the whole
group.
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Now we can state a �rst lemma:

Lemma 2.10 Let f 2 k[G� ]G be a class function, g 2 G� , then f(g) =
f(gs), where gs denotes the semisimple part of g.

Proof: First a remark: If g 2 G� , then so is gs. Note that gG = � 2 � = ~G=G
and � consists only of semisimple elements. The unipotent part gu of g must
therefore lie in G, and hence the statement of the lemma makes sense.
Let g = gsgu be the Jordan-decomposition of g. Since f is a class function
we can assume, without loss of generality, that gs 2 T �0 � by Proposition
2.3. Clearly gu 2 CG(gs) holds. By [37], Corollary 9.4, p. 60, the group
CG(gs)=CG(gs)0 is abelian and consists of semisimple elements. We even get
gu 2 CG(gs)0, a reductive group by [37], Corollary 9.4, p. 60. Then we can
�nd a maximal torus �T and a Borel subgroup �B > �T of CG(gs)0, such that
gu 2 �B. Denote the corresponding basis of the root system R(CG(gs)0; �T )
by ��. Since �� is a set of Z-linear independent elements of the character lat-
tice �( �T ) we can �nd a one-parameter subgroup � : k� ! �T , i.e. an element
� 2 �( �T )�, such that ��(�) > 0, for all �� 2 ��. Then we have ��(�) > 0, for
all �� 2 R(CG(gs)0; �T )+, the set of positive roots in R(CG(gs)0; �T ).
Now it is a well known fact, that the unipotent radical �U = �Bu of our
Borel subgroup is isomorphic to an aÆne space having the cardinality l of
R(CG(gs)0; �T )

+ as its dimension, see for instance [13], Proposition 28.2, p.
170. This isomorphism is given by X��1(c1)�:::�X��l(cl) 7! (c1; :::; cl), where
X��i : k ! CG(gs)0 is the one-parameter additive root group corresponding
to ��i, on which t 2 �T acts by tX��i(ci) t

�1 = X��i(��i(t)ci).
Now, the conjugacy action of a one-parameter subgroup � : k� ! �T on �U
corresponds to an action (c1; :::; cl) 7! �(s):(c1; :::; cl) = (s��1(�)c1; :::; s

��l(�)cl)
under the above identi�cation with aÆne l-space. For our special choice
of one-parameter group � as above, the identity of CG(gs)0, which corre-
sponds to the zero point of aÆne l-space under the identi�cation above,
is in the closure of every Im� orbit in �U . Hence, for gu 2 �U , we get
gs 2 �(s) g �(s�1)s2k�. Since f is a regular (hence continuous) class func-
tion, we get our result. ~.

For describing the representation theory of ~G we restrict to the situation,
where � < Aut(�) is a cyclic group and � is a generator thereof. Similarly
to Mackey theory in the theory of �nite group, outlined e.g. in [9, 26],
we can extend irreducible representations from G to ~G. Here, we denote by
V (�) the irreducible highest weight modules of G corresponding to a highest
weight � 2 �(T ).
We have the following result:

Proposition 2.7 Let G be simple:
(i) Let � 2 �(T ) be a dominant character of G.
(a) If �(�) = �, then there exist (ord �)-many inequivalent irreducible ~G-
representations on V (�), denoted by ~��1 ; :::; ~�

�
ord � .



CHAPTER 2. INVARIANT THEORY 39

(b) If �(�) 6= �, then there exists up to equivalence one irreducible represen-
tation ~�� of ~G on

Lord �
i=1 V (� i(�)).

(ii) If char(k) = 0, every irreducible representation of ~G is equivalent to one
of type either (a) or (b) in (i).

Proof: This proposition is folklore in the representation theory of liner alge-
braic groups. Since we have not found a reference for this, we give a detailed
proof:
(i) Let V (�) an irreducible G-module and denote the corresponding repre-
sentation by ��. We can de�ne another representation ��� of G on V (�) by
twisting with � :

��� (g) := ��(� g ��1); 8g 2 G: (2.21)

By Schur's Lemma and �G��1 = G, we see that ��� is again an irreducible
representation of G. Next, we investigate the action of ��� on the weight
spaces V (�)� of V (�). We get that ��� (t)jV (�)� acts like (��1(�))(t) idV (�)�
on the corresponding weight space. In particular, we see that ��1(�) is
the highest weight of the representation ��� . (Here, we also need, that �
stabilizes the Borel subgroup B > T , corresponding to our choice of simple
roots.) Therefore, we get an intertwiner S 2 GLG(�

�
� ; �

��1(�)), i.e. S 2
Aut(V (�); V (��1(�)), unique up to a scalar c 2 k�, such that

S ��� (g) = ��
�1(�)(g)S; 8g 2 G (2.22)

holds. Now, we have to distinguish two cases:
(a) ��1(�) = �: In this case we clearly have S 2 Aut(V (�)) and S operates
on the (one-dimensional) weight space of the highest weight by a scalar
c 2 k�. Let c be an ord � -th root of unity, then we de�ne a map ~��c : ~G !
Aut(V (�)) in the following way:

~��c (g) = ��(g); if g 2 G, (2.23)

~��c (�) = S�1: (2.24)

By use of the Equation 2.22, one easily calculates that ~��c is a ~G-representation.
For di�erent c; c0 these representations are non-isomorphic, because every
isomorphism between ~��c and ~��c0 has to be a multiple of the identity, (by
Schur's Lemma and ~��c jG = ~��c0 jG = ��).
(b) ��1(�) 6= �: Let us denote the order of � by p, and observe that in
our case p = 2; 3, is a prime number. By Equation 2.22 we can �nd inter-

twiners Si 2 GLG(�
�1�i(�)
� ; ��

�i(�)), for all i 2 1; ::; p � 1. Inductively one
proves now that Si:::S1 2 GLG(��� i ; ��

�i(�)), in particular S := Sp�1:::S1 2
GLG(�

�
�p�1 ; �

�1�p(�)). Let us furthermore set V :=
Lp

i=1 V (�
i(�)).
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Now we de�ne a map ~�� : ~G! Aut(V ) by:

~��(g) =

0BBBB@
��(g)

:
:
:

��
1�p(�)(g)

1CCCCA ; if g 2 G, (2.25)

~��(�) =

0BBBB@
0 S�11

: :
: :

0 S�1p�1
S : : : 0

1CCCCA (2.26)

One calculates easily, using Equation 2.22, that ~�� is a representation of ~G.
(In particular, one has to check ord ~��(�) = p.)
Next, we show the irreducibility of ~��, which will be done by use of Schur's
Lemma. Therefore, observe that each ��

�i(�), i 2 f1; :::; pg is an irreducible
representation of G. Hence each element x 2 End ~G(

Lp
i=1 �

� i(�)) has neces-
sarily to be of the shape

x =

0BBBB@
a1E

:
:
:
apE

1CCCCA ; (2.27)

where a1; :::; ap 2 k. Conjugating with ~��(�) gives:0BBBB@
0 S�11

: :
: :

0 S�1p�1
S : : : 0

1CCCCA
0BBBB@

a1E
:
:
:
apE

1CCCCA
0BBBB@

0 : : : S�1

S1 0
: :

: :
Sp�1 0

1CCCCA

=

0BBBB@
a2E

:
:
:
a1E

1CCCCA
yielding a1 = a2 = :::: = ap and hence End ~G(~�

�) �= k.
Since each Si is unique only up to a constant of k

�, we still have to show that
di�erent choices of the Si, i 2 f1; :::; p�1g lead to equivalent representations
~��. Let ~��1 and ~��2 be two representations as constructed in Equations 2.25
and 2.26. Of course, these representations coincide on G. Now we can �nd
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c1; :::; cp�1 2 k�, such that

~��1(�) =

0BBBB@
0 S�11

: :
: :

0 S�1p�1
S : : : 0

1CCCCA and (2.28)

~��2(�) =

0BBBB@
0 c�11 S�11

: :
: :

0 c�1p�1S
�1
p�1

c1:::cp�1S : : : 0

1CCCCA : (2.29)

Setting now ai := �i�1j=1cj , i 2 f1; :::; pg and U := diag(a1 E; :::; ap E), we get

U 2 GL ~G(~�
�
1 ; ~�

�
2 ), proving (b).

(ii) If � is an irreducible �nite-dimensional ~G-representation on V then, since
G is reductive, V decomposes into a direct sum of highest weight modules
V (�i) for G. (Note that in characteristic zero all reductive groups are lin-
early reductive.) Now, besides ��i also the � j-twisted representation, by (i)
equivalent to ��

�j(�i), has to appear for all j 2 f1; :::; pg. Going through the
proof of (i), � has to be isomorphic to a representation of (i)(a) or (b). Note
that for ~��(a)(�) being of order p we require �(�) to be of the form either of
Equation 2.24 or 2.26. ~.
Remarks: (i) If G is semisimple and � a permutation of isomorphic simple
normal subgroups of G, a similar result holds in this case, too: For � of
prime order, the proof is exactly the same as above. If � is not of prime or-
der then, apart from the cases discussed in this proof, a third, intermediate
case may occur: A dominant weight � is not �xed by � but has a nontrivial
stabilizer ��.
In this case, a similar discussion as above leads to j��j many non-equivalent
representations of ~G on V =

L
V (�), where � runs over weights in the

�-orbit of �. In this case, the representation matrix for any element of ~G�
has only trivial diagonal entries. We refrain from giving details.
(ii) In characteristic zero this result says, in particular, that every irreducible
~G-representation is induced by an irreducible representation of G. If we con-
sider the more general situation of ~G and G being arbitrary aÆne algebraic
groups with G < ~G, the analogous result does not hold in general. An ac-
count on this is e.g. given in [8]. The statement holds, if we have e.g. that G
is a parabolic subgroup of ~G for connected ~G. For �nite groups G and ~G the
question, which irreducible ~G-module is induced by an irreducibleG-module
is answered by Mackey theory, which is developed e.g. in [9], Chapter VII.
The main reason, that in our situation the result holds is, that the quotient
~G=G is cyclic, so in particular �nite.
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Our next task will be to calculate the characters ~X�
(a) of the representa-

tions ~��(a) of
~G keeping the notation of the previous proposition.

Before we do this we need further preparations:
As in Chapter 1, denote the root system of G by R. Let T 0 be as de�ned
in the paragraph preceding lemma 2.7, i.e. �(T )� = �(T 0). So we see that
every multiplicative character on T , which is invariant under � , can be inter-
preted as a character on T 0. Furthermore, denote by G0 a group having the
root system R0 of Section 1.2, whose maximal torus is T 0. The requirement
that T 0 is a maximal torus of G0 �xes the fundamental group of G0. Then,
the following lemma holds:

Lemma 2.11 Let G, � , T and �(T ) be as above. Then �(T )� is the charac-
ter lattice �(T 0) for a group G0, a group having the root system R0 of Section
1.2, whose maximal torus is T 0.
If G is simple we have:
G0 is simply connected in the cases of A2n, E6 and in case D4 with �3 = 1
and either adjoint or simply connected in the other cases (A2n�1 and Dn

with �2 = 1).

Proof: This is just a rephrasing of Corollary 1.1 in terms of algebraic groups.
~.

Now, let us denote by X� the character of a G-representation with high-
est weight � and by X 0� that of G0.
With these preparations we can now state our result:

Proposition 2.8 If ~X�
(a) is the character of the irreducible

~G-representation

~��(a), the following holds:

(i) If �(�) = �, then we have:

~X�
(a)jG = X� (2.30)

~X�
(a)jG��1 � a�1X 0�; (2.31)

where the denoted equivalence � is given by considering the characters as
elements in the group rings Z[�(T )� ] = Z[�(T 0)].
(ii) If �(�) 6= �, then we have:

~X�
(a)jG =

1

j��j
ord �X
i=1

X� i(�) (2.32)

~X�
(a)jG��1 = 0: (2.33)

Proof: By the de�nition of the representations ~��(a) in the two cases, (look

at Equations 2.23 and 2.25 in the proof of Proposition 2.7, respectively),
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we clearly get the statement for ~��(a)jG. Since in the second case, ~��(g), for

g 2 G��1, is a block-diagonal matrix with zeros on the diagonal, again,
by the de�nition in Equation 2.26, we get ~X�(g) = 0, for g 2 G��1. The
same conclusion holds for semisimple non-simple G and � an exterior au-
tomorphism of G exchanging isomorphic simple normal subgroups of G by
Remark (i) following Proposition 2.7.
Thus we are left to show the second part of (i):
By the de�nition of a, the scalar by which ~��a(�) acts on the highest weight
vector, we can assume without loss of generality that a = 1. By de�nition
of the character, i.e. being a trace function, we have that ~��a(g) is invariant
under conjugation in ~G, for all g 2 ~G. So, in particular, ~��a jG� 2 k[G� ]G is
a class function on G� . Therefore, using Lemma 2.10 and Proposition 2.3,
it is completely determined by its values on T �0 � .
Consider now the weight-space-decomposition of the G-module V (�):

V (�) =
M

�2�(T )

V (�)�: (2.34)

By the de�nition of the representer ~��1(�) in Equation 2.24 and the discussion
at the beginning of the proof of Proposition 2.7, we have that � interchanges
the weight spaces V (�)� and ~��1(�)(V (�)�) = V (�)�(�). On the other hand,
elements t 2 T �0 act on V (�)� by �(t) idV (�)� .
Therefore, we get the following formula:

~X�(t�) = tr ~��1(t�) =
X

�2�(T )�

�(t) tr ~��1(�)jV (�)� ; (2.35)

for all t� 2 T �0 � . (We can restrict to invariant weights because the cor-
responding representation matrix of t� restricted to

Lord �
i=1 V (�)� i(�), a � -

stable subspace of V (�), for a weight � 6= �(�) is zero on the diagonal.)
Hence we only need to calculate the traces of ~��1(�)jV (�)� for all � 2 �(T )� .
This has already been carried out in [15], Chapter 9, Theorem 9, p. 30:

tr ~��1(t�)jV (�)� = dimV 0(�)�; (2.36)

where, now, �; � 2 �(T )� are considered as weights of the group G0 and
V 0(�) is the irreducible G0-module with highest weight �.
Therefore we get

~X�
1 jT �0 � =

X
�2�(T )�

(dimV 0(�)�)�: (2.37)

Since characters of semisimple connected algebraic groups G0 are uniquely
determined by their values on a maximal torus T 0, we get the stated result of

our proposition. Since � and ��1 have identical properties, e.g. T �0 = T
(��1)
0
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and � acts on the highest weight space with the scalar 1 exactly when ��1

does, we get the same result for restricting to G��1. ~.
Remark: In the case of Kac-Moody algebras, traces of exterior automor-
phisms in representations have been determined in [10].

2.5 The Adjoint Quotient of G�

In this section we will show the isomorphism of the two quotients G�==G

and T �0 �=
fW.

We keep the notation of the previous section. In particular, we require � to
be cyclic and � to be a generator of �. Using geometric invariant theory as
e.g. developed in [22, 23, 32, 19], we de�ne the categorical quotient V==G
of the G-action on an aÆne variety V by setting V==G := Speck[V ]G, the
spectrum of the ring of G-invariant functions on V . Note that the existence
of such a quotient is guaranteed, in the case of general reductive groups G,
by [22], Theorem 1.1, p. 27.

In our situation, k[T �0 � ]
fW denotes the fW-invariant functions on T �0 � . SincefW is a �nite group, we even get that T �0 �==

fW is a geometric quotient, i.e.

T �0 �==
fW parameterizes exactly the fW-orbits in T �0 � , the set of which we will

denote by T �0 �=
fW , in the sequel.

Let G0 be as de�ned in the paragraph preceding Proposition 2.8.
Now we can state our �rst major result:

Theorem 2.1 (i) The inclusion map i : T �0 � ! G� gives rise to a commu-
tative diagram

T �0 �
i //

�1

��

G�

�2

��
T �0 �=

fW ~i // G�==G

and an isomorphism ~i.
(ii) Furthermore, G�==G �= G�== ~G.

Proof: (i) By the de�nition of the categorical quotient given above, the
statement of the theorem amounts to showing that the restriction map i�:

i� : k[G� ]! k[T �0 � ]

f 7! f jT �0 � (2.38)
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induces an isomorphism on the invariant subrings k[G� ]G, k[T �0 � ]
fW . We

proceed as follows:

1. i�(k[G� ]G) � k[T �0 � ]
fW : Since the action of fW on T �0 � is given by con-

jugation with a representative in NG(C), we clearly have f jT �0 � 2 k[T �0 � ]
fW ,

for all f 2 k[G� ]G.
2. Injectivity: Let f 2 k[G� ]G, such that f jT �0 � = 0. Then, since f is a class
function, we have

f jS
g2G g T

�
0 � g

�1 = 0: (2.39)

But f is a regular function and
S
g2G g T

�
0 � g

�1 is a dense subset of G� by
Propositions 2.3 and 2.6. This yields f = 0.
3. Surjectivity: The idea of proof is the following: Take the collection of all
of the characters ~X�

1 jG� , for dominant � 2 �(T )� , as given in the previous
section on the representation theory. Show that this collection will be a

basis of k[T �0 � ]
fW , if we restrict its elements to T �0 � .

Using the fW-equivariant isomorphism between T �0 and T �0 � as described
in the paragraph preceding Lemma 2.7 and by Lemma 2.8 as well as the
already proven injectivity of our restriction map f 7! f jT �0 � for f 2 k[G� ]G,
we get the following sequence of rings:

k[G� ]G ,! k[T �0 � ]
fW ��! k[T 0]W

�
; (2.40)

where the last isomorphism is given by

k[T �0 � ]
fW �=

�
k[T �0 � ]

(T=T �0 )
�
�W� �= k[T �0 �=(T=T

�
0 )

� ]W
� �= k[T 0]W

�
; (2.41)

using Lemma 2.6 for the �rst isomorphism and Lemma 2.8 for the last.
Now denote the composition of the two maps in Equation 2.40 by �.
Let ~X�

1 jG� , for � 2 �(T )� , be the restriction of the character of the corre-
sponding ~G-representation to G� . By Proposition 2.8, we have �( ~X�

1 jG� ) =
X 0�jT 0 , a character of G0 as in Lemma 2.11, restricted to the maximal torus
T 0 of G0. By the second remark after Lemma 1.4, we see that every restric-
tion to T 0 of a character X 0� of a G0-representation can be obtained as the
image under � of a certain ~X�

1 jG� for suitable �.
Hence we have:

�(f ~X�
1 jG� ; � 2 �(T )� dominant g) = fX 0�

1 jT 0 ; � 2 �(T 0) dominant g:
(2.42)

By [35], Lemma 6.3, p. 294, respectively [38], Section 3.4, Theorem 2, p.
87, respectively [3], Chapter VI, x3, the set on the right hand side is a basis
for k[T 0]W

�
, proving the surjectivity.

(ii) In the proof of (i), we have shown that the set of characters f ~X�
1 jG� ; � 2

�(T )� dominant g is a basis of k[G� ]G. Since all these elements, being

characters, are invariant under conjugation with ~G we get k[G� ]G � k[G� ] ~G.
The inverse inclusion is clear. ~.
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For proving the surjectivity and statement (ii) above in the case of G
simply connected and char(k) = 0, we can indicate a second proof avoiding
the use of representation theory:
Second proof of step 3 and of (ii) above:
Surjectivity: As already indicated, assume char(k) = 0 and G simply con-
nected. Similarly to the proof of Proposition 2.6, we consider the following
map (note that here T � = T �0 ):

� : G=T � � T � � ! G�

(gT � ; h�) 7! g h� g�1: (2.43)

We can de�ne a fW-action on G=T � � T �� by

w:(gT � ; h�) := (g n�1w T � ; nw h� n
�1
w ); (2.44)

where nw is a representative of w in NG(< T � ; � >). (Recall that < T � ; � >
is a Cartan subgroup in the sense of Section 2.1). Apparently, this action

is well de�ned and � is fW-invariant. By Proposition 2.6 � is dominant.
Hence � induces a map of the �elds of rational functions of these varieties:

�� : k(G�) �! k(G=T � � T ��): (2.45)

Since the transcendence degrees of these �elds coincide, k(G=T � � T ��) is
a �nite �eld extension of k(G�) which, in this case, is clearly separable.
Denote the corresponding degree by n.
In this situation, there exists an open subset U � G=T � � T �� such that
for all u 2 U the preimage ��1(�(u)) contains exactly n elements, a well
known fact in algebraic geometry, found e.g. in [19], AI 3.5, p. 251. Observe
that � is G-equivariant, if we let G act on G=T � � T �� by left translation
on the left factor and on G� by conjugation. Hence we have:

g:��1(�(u)) = ��1(�(g:u)): (2.46)

Therefore, we can choose U to be G-stable without loss of generality. This
means U = G=T � � V where V is an open subset of T �� .

Next, we want to show that n actually is the order of fW:
To obtain this, we take h� 2 V and consider CG(h�). We clearly have
T � < CG(h�) and, furthermore:

CG(h�)=T
� � fh�g � ��1(�(eT � ; h�)) = ��1(h�): (2.47)

Since the latter is �nite and since CG(h�) is connected, cf. [37], Theorem 8.2,
p. 52, we conclude CG(h�) = T � . Let (g T � ; h0�) 2 ��1(h�), i.e. g h0� g�1 =
h� . Then, by Proposition 2.5, we can �nd g0 2 NG(< T � ; � >), such that

g0 h� g0�1 = h0� , giving gg0 2 CG(h�) = T � . Hence gT � = g0�1T � 2 fW,
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proving that the cardinality of ��1(h�) is the order of fW.
� induces a map

�0 : fWn(G=T � � T ��)! G�: (2.48)

By the fW-invariance of �, we can choose the set V above, w.l.o.g., to befW-stable. Then, fWn(G=T � � V ) � fWn(G=T � � T ��) is an open set, on

which the �bre of �0 consists of just one point. Therefore, fWn(G=T � �T � �)
and G� are birationally equivalent, yielding:

k(G�) �= k(fWn(G=T � � T ��)) = k(G=T � � T ��)fW : (2.49)

Observe, furthermore, that the G-action on G=T � �T �� commutes with thefW-action so that this G-action descends to fWn(G=T � �T ��) and such that
�0 becomes G-equivariant.
Set:

pr : G=T � � T �� ! T ��; (2.50)

the second projection, which clearly is fW-equivariant. Take f 2 k[T �� ]fW .

Then we have pr�(f) 2 k[G=T � � T �� ]fW�G and, therefore, ���1(pr�(f)) 2
k(G�)G.
To complete the proof of the surjectivity, we have to show that F :=
���1(pr�(f)) already is a regular function onG� and that ���1(pr�(f))jT � � =
f .
For the latter, observe: F (h�) = (pr�(f)((eT � �; h�)) = f(h�), for all
h� 2 T �� .
In our situation, G simply connected and char(k) = 0, the algebra k[G] �=
k[G� ] is a unique factorization domain. This follows from the fact that
PicG is trivial by [17], Proposition 4.6, p. 74, which amounts to the unique
factorization property of k[G] by [11], Chapter I, Proposition 1.12A, p. 7.
Therefore we can choose H1;H2 2 k[G� ] having no common divisor, such
that F = H1

H2
. Since F is G invariant we must have g:H1

g:H2
= F = H1

H2
providing

us with a group homomorphism

c : G! k[G� ]�; (2.51)

such that g:Hi = c(g)Hi. By use of [18], Proposition 1.2, p. 78, every
element c of k[G� ]� �= k[G]� with c(e) = 1 is a multiplicative character of
G, giving k[G� ]� = k�. Because of G = (G;G) it follows, that G has no
nontrivial characters. Hence we get Hi 2 k[G� ]G.
Now, we have for arbitrary x 2 G� :

H1(x) = H1(xs) = H1(x̂s) = F (x̂s)H2(x̂s) = F (x̂s)H2(x); (2.52)

where xs denotes the semisimple part of x and x̂s is an element of T ��
conjugate to xs. The �rst and last equality follow from Lemma 2.10. Now
we see that H2(x) = 0 implies H1(x) = 0, giving that each nontrivial divisor
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of H2 divides H1, forcing H2 to be a unit in k[G� ] yielding F = H1 (up to
a unit), and thus completing our proof.
(ii) Here we do not require any restrictions on the fundamental group of G
and the characteristic of k:
The group � operates by conjugation on T �� and on G� , and the inclusion
map i is �-equivariant. So are the quotient maps T �� ! T ��=fW and
G� ! G�==G. From the �-equivariance of i we get the equivariance of the
isomorphism between these quotient spaces. But � acts trivially on T �� and
therefore also on its quotient T ��=fW. ~.

We get some consequences of the theorem:

Corollary 2.5 The set f ~X�
1 jG� ; � 2 �(T )� dominant g of all restrictions

to G� of characters of ~G-representations ~��1 form a linear basis of the ring
of class functions k[G� ]G.

Let us denote the fundamental dominant weights of �(R(G)) by f�1; :::; �rg
and the fundamental dominant weights of �(R(G))� = �(R(G)0) by f�01; :::; �0sg.
Then we have:

Corollary 2.6 (i) If the group G0 appearing in the paragraph preceding
Proposition 2.8 is simply connected, i.e. �(T )� = �(R0), then we have:
G�==G �= A rkG

0
. (This happens, in particular, for G simply connected).

Furthermore, the ~X
�0j
1 jG� , j 2 f1; :::; sg freely generate k[G� ]G as k algebra.

(ii) In particular the quotient G�==G is isomorphic to an aÆne space of di-
mension dimT �0 = dimT 0 = rk G0 in the following cases:
(a) If G is of type A2n, E6 or D4 with � of order three.
(b) If G is simply connected of type A2n�1 or Dn with � of order two.

Proof: (i) By the previous theorem and its proof we clearly have G�==G �=
T 0=W� . The statement now follows from statements in [35], Lemma 6.3, p.
294, respectively [38], Section 3.4, Theorem 2, p. 87 for G0 simply connected

and the equality �( ~X
�0j
1 jG� ) = X 0�0j jT 0 , j 2 f1; :::; sg (� as in the proof of the

theorem above).
(ii) This is immediate by Lemma 2.11. ~.

It may also happen, in the case where G is not simply connected of type
A2n�1 or Dn with � of order two, that the categorical quotient is an aÆne
space. This happens whenever �(T )� = �(R0). To �gure out these cases, we
need a thorough investigation of the action of � on the fundamental group
of G, which will be our next purpose. Here, we shall restrict to the case that
G is simple:
Let Ĝ be the universal cover of G and denote by CG the kernel of the quotient
map p : Ĝ ! G, as in Section 1.4. Since the automorphism � also exists
for Ĝ, since the left multiplication with elements of CG commutes with the
adjoint action of Ĝ on Ĝ� , and since the resulting action of Ĝ on G� is just
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the adjoint action of G on G� , we have the following commutative diagram:

Ĝ�
p̂ //

�̂

��

G�

�

��
A s �= Ĝ�==Ĝ

~p // G�==G;

(2.53)

where p̂ : Ĝ� ! G� is the map induced by p on the exterior component,
given by g� 7! p(g)� and ~p is induced by p̂ on the quotient. Here we have
set: s := rk G0. Furthermore, we assume that char(k) does not divide the
order of the centre of Ĝ. Then we have the following identi�cation:

C(Ĝ) �= �(C(Ĝ)) �= �(R(Ĝ))=Z(R(Ĝ)); (2.54)

where �(C(Ĝ)) denotes the dual of C(Ĝ). The explicit description of the
quotient on the right side of the equation above can be found in [3], Planches,
p. 250�. We have:

Type Ĝ An D2n D2n+1 E6

C(Ĝ) Z=(n+ 1)Z Z=2Z� Z=2Z Z=4Z Z=3Z

With these preparations, we get the following explicit description of the
quotient G�==G :

Proposition 2.9 Under the additional assumption that char(k) does not
divide the order of C(Ĝ), we have:
(i) If G is any group of type An, E6, or if G is Spin2n(k) or SO2n(k) with
�2 = 1, or if G is Spin8(k) or PSO8(k) with �3 = 1, then G�==G is an
aÆne space of dimension rkG� .
(ii) If G is of type PSO4n(k) and �

2 = 1, then we have:

G�==G �= Zn � A n�1 ; (2.55)

where Zn = A n=(Z=2Z)and the quotient is formed with respect to the diago-
nal action of (Z=2Z)�= f�idAn g on A n .
(iii) If G is of type PSO4n+2(k) and �

2 = 1, then we have:

G�==G �= Zn � A n ; (2.56)

with Zn as in (ii).
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Proof: Let us denote the fundamental dominant weights of �(R(Ĝ)) by
f�1; :::; �rg and the fundamental dominant weights of �(R(Ĝ))� = �(R(Ĝ)0)
by f�01; :::; �0sg. From Corollary 2.6, we have the following explicit description
of �:

�(g�) = ( ~X
�01
1 (g�); :::; ~X

�0s
1 (g�)): (2.57)

By Schur's Lemma, we know that every element of C(Ĝ) has to act on V (�)
for every dominant � 2 �(R(Ĝ)) by a multiple of the identity. It is a well
known fact in the theory of linear algebraic groups, that C(Ĝ) � T̂ , where
T̂ is any maximal torus of Ĝ, e.g. see [13], Corollary 26.2B, p. 160. Hence
for any c 2 C(Ĝ) and weight � of V (�), i.e. V (�)� 6= f0g, we have

�(c) = �(c): (2.58)

But, since R is irreducible we have Z(f�� �; � weight of V (�)g) = Z(R),
yielding �(c) = ��(c), where �� is the class of � in �(C(Ĝ)). Therefore, we
get the following action of C(Ĝ) on Ĝ�==Ĝ �= A s :

c:(a1; :::; as) = ( ��01(c)a1; :::;
��0s(c)as); (2.59)

for all c 2 C(Ĝ) and (a1; :::; as) 2 A s . By use of the Diagram 2.53 we see
that the quotient G�==G is just the quotient of A s by CG.
Therefore, we only need to calculate the ��0j(c) for all j 2 f1; :::; sg and
c 2 C(Ĝ). Since we have V (�+�) � V (�)
V (�) as a subrepresentation for
dominant �, �, we only need to calculate ��i(c), i 2 f1; :::; rg and use the fact
the �0j , j 2 f1; :::; sg are just sums over the � -orbits of the �i, i 2 f1; :::; rg.
By Corollary 2.6, we only need to investigate the cases Dn, �

2 = 1 and
A2n+1:
In both cases, we label the f�1; ::; �rg according to [3], Planches, p. 250�.
1. G of type A2n+1: By suitably labeling the f�01; ::; �0sg (note that we have
r = 2n+ 1 and s = n+ 1) we can achieve:

�0i = �i + �2n+2�i; i 6= n+ 1; (2.60)

�0n+1 = �n+1: (2.61)

Calculating �(C(Ĝ)), using the description of the �i, i 2 f1; ::; rg in terms
of the simple roots, as found in [3], Planches, p. 250, we see that ��1 is a
generator of �(C(Ĝ)) and that ��i = i ��1. Let � be the generator of C(Ĝ)
given by �xing ��1(�) to be a given (2n + 2)-nd primitive root of unity, we
calculate:

��0i(�) = 1; i 6= n+ 1; (2.62)
��0n+1(�) = �1: (2.63)

Therefore we get:
(i) ~p : Ĝ�==Ĝ ! G�==G is an isomorphism, if CG is generated by an even



CHAPTER 2. INVARIANT THEORY 51

power of � and
(ii) ~p : Ĝ�==Ĝ ! G�==G is a quotient map by Z=2Z, if CG is generated by
an odd power of �. In the latter case Z=2Z acts by multiplication in the
(n + 1)-st variable with �1. Since A 1=(Z=2Z) �= A 1 (the identi�cation is
given by [z] 7! z2, [z] denoting an element of A 1=(Z=2Z)), we get the stated
result.
2. G of type D2n+1, �

2 = 1: By suitably labeling the f�01; ::; �0sg (note that
we have r = 2n+ 1 and s = 2n) we can achieve:

�0i = �i; i � 2n� 1; (2.64)

�02n = �2n + �2n+1: (2.65)

We calculate �(C(Ĝ)) using the description of the �i, i 2 f1; ::; rg in terms
of the simple roots, as found in [3], Planches, p. 256. We see that ��2n is
a generator of �(C(Ĝ)), that ��i = 2��2n, for i < 2n, odd, that ��i = 0, for
i < 2n, even, and that ��2n+1 = 3��2n. Take a generator � of C(Ĝ) such that
��2n(�) is a given 4-th primitive root of unity. Then we have:

��0i(�) = 1; i; even; (2.66)

��0i(�) = �1; i; odd: (2.67)

Therefore we get:
(i) ~p : Ĝ�==Ĝ ! G�==G is an isomorphism, if CG is generated by �2, which
corresponds to the case G = SO4n+2(k) and
(ii) ~p : Ĝ�==Ĝ ! G�==G is a quotient map by Z=2Z, if CG is generated by
�, which corresponds to the case G = PSO4n+2(k). In the latter case Z=2Z
acts by simultaneous multiplication with �1 in the coordinates having an
odd label, which gives us the stated result.
3. G of type D2n, �

2 = 1: By suitably labeling the f�01; ::; �0sg (note that we
have r = 2n and s = 2n� 1) we can achieve:

�0i = �i; i � 2n� 2; (2.68)

�02n�1 = �2n + �2n�1: (2.69)

Using the description of the �i, i 2 f1; ::; rg in terms of the simple roots, as
found in [3], Planches, p. 256, we see that we can choose ��2n and ��2n�1 as
generators of �(C(Ĝ)). Furthermore we have ��i = ��2n+��2n�1, for i < 2n�1,
odd, and ��i = 0, for i < 2n, even. We choose generators �; � of C(Ĝ)
according to the rule ��2n(�) = ��2n�1(�) = �1 and ��2n�1(�) = ��2n(�) = 1.
Then we see that the induced action of � on C(Ĝ) just interchanges � and
�. Hence, the only � -stable subgroup of C(Ĝ) is fe; ��g except for the
trivial one and C(Ĝ) itself. The group G = Ĝ=fe; ��g is SO4n(k). Now, we
calculate:

��0i(�) = ��0i(�) = 1; i; even; (2.70)

��0i(�) = ��0i(�) = �1; i; odd: (2.71)
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Therefore we get:
(i) ~p : Ĝ�==Ĝ ! G�==G is an isomorphism, if CG is generated by ��, which
corresponds to the case G = SO4n(k) and
(ii) ~p : Ĝ�==Ĝ ! G�==G is a quotient map by Z=2Z, if CG is C(Ĝ), which
corresponds to the case G = PSO4n(k). In the latter case Z=2Z acts by
simultaneous multiplication with �1 in the coordinates having an odd label,
which gives us the stated result. ~.

To conclude this chapter we want to illustrate our results by an example:
Example: We consider the case G = SO2n(k) and � the exterior automor-
phism of SO2n(k), such that ~G = O2n(k).
As symmetric bilinear I form we choose the matrix I =

�
0 En
En 0

�
. A

particular maximal torus T with suitable parameterization can be given as
follows:

T =

8>>>>>>>>>><>>>>>>>>>>:

0BBBBBBBBBB@

t1
:
:
tn

t�11
:
:
t�1n

1CCCCCCCCCCA
; ti 2 k�; i 2 f1; :::; ng

9>>>>>>>>>>=>>>>>>>>>>;
:

(2.72)
Furthermore, we denote by T̂ the maximal torus of Spin2n(k), which is
the inverse image of T under the two-to-one cover Spin2n(k) ! SO2n(k).
Let T̂ be parameterized by (t̂1; :::; t̂n), chosen in such a way that the one-
parameter subgroup t̂ 7! (1; ::; 1; t̂; 1; :::; 1), having nontrivial entries only in
the i-th position, corresponds to ��i, the dual root of the simple root �i (for
all i 2 f1; :::; ng). Then, the covering map T̂ ! T is given by the following
equations:

t1 = t̂1; (2.73)

ti = t̂�1i�1 t̂i; 2 � i � n� 2; (2.74)

tn�1 = t̂�1n�2 t̂n�1 t̂n (2.75)

tn = t̂�1n�1 t̂n: (2.76)

We see that the kernel of this covering map is

f(t̂1; :::; t̂n) 2 T̂ ; t̂i = 1; i 2 f1; :::; n � 2g; t̂n�1 = t̂n = �1g �= Z=2Z (2.77)

The action of the exterior automorphism on T̂ is given by interchanging the
last two coordinates:

(t̂1; :::; t̂n�2; t̂n�1 t̂n) 7! (t̂1; :::; t̂n�2; t̂n t̂n�1): (2.78)
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This induces the following � action on T :

(t1; :::; tn�1 tn) 7! (t1; :::; tn�1 t
�1
n ): (2.79)

We see that, in the SO2n(k) case, the action of � can be implemented by
conjugation with the following permutation matrix, which clearly is a matrix
in O2n(k)nSO2n(k):

� =

8>><>>:
0BB@

En�1 0

0 1

0 En�1
1 0

1CCA ; ti 2 k�; i 2 f1; :::; ng

9>>=>>; : (2.80)

Hence, we have ~G = SO2n(k) o Z=2Z�= O2n(k). Now it is an easy task to
compute the � �xed point tori:

T̂ � = T̂ �0 = f(t̂1; :::; t̂n) 2 T̂ ; t̂n�1 = t̂ng (2.81)

T � = f(t1; :::; tn) 2 T; tn = �1g (2.82)

T �0 = f(t1; :::; tn) 2 T; tn = 1g: (2.83)

Here we see that T � is not connected and that T̂ � is mapped to T �0 by the
covering map T̂ ! T .
Furthermore, a simple calculation yields (T=T �0 )

� = T �=T �0
�= Z=2Z. This

shows that the kernel of the map (T=T �0 )
� ! H, as de�ned in the paragraph

just preceding Corollary 2.4, is nontrivial. Using Theorem 2.1, we get:

G�==G �= T �0 �=
fW = T �0 �=W� : (2.84)

Now we could set up coordinates and directly calculate, that this quotient
is an aÆne space to reproduce the result of Proposition 2.9. but we have a
more convenient argument:
Let us denote the the tori T̂ �0 =(T̂ =T̂

�
0 )
� and T �0 = T �0 =(T=T

�
0 )
� by T̂ 0 respec-

tively T 0, following the notation of Section 2.3. Then, as in the proof of
Corollary 2.4, we have a commutative diagram with exact rows:

1 // Z=2Z // T̂ �0
//

p

��

T̂ 0 //

p0

��

1

1 // 1 // T �0 // T 0 // 1:

Furthermore, we have that the covering T̂ �0 ! T �0 is two-to-one. Then, using
the Snake Lemma we have an exact sequence:

1 �! Z=2Z�! Z=2Z�! ker p0 �! 1: (2.85)
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This forces ker p0 = 1. So we have:

G�==G �= T �0 �=W� = T 0=W� = T̂ 0=W� : (2.86)

But by Corollary 2.6 we know that the right hand side is an aÆne space.
(It would even have been easier to see directly �(T )� = �(R0) which again
gives the desired result using Corollary 2.6.)



Chapter 3

The Structure of the Fibres

In this chapter we want to describe the structure of the �bres of our quotient
map � : G� ! T �0 =

fW. We will show that they are isomorphic to associ-
ated �bre bundles over a homogeneous spaces of G modulo a centralizer of
semisimple element with a �bre isomorphic to the unipotent variety of that
centralizer. In the second part of this chapter, we investigate the centraliz-
ers of semisimple elements and, in the case of char(k) = 0, we will give a
complete classi�cation of them.

3.1 Description of the Fibres

Before entering the detailed description of the structure of the �bres, we
need some preparations:
First, note that for each closed subgroup H < G of an algebraic group G
the quotient G=H together with the corresponding map � : G ! G=H is a
principal �bre bundle with �bre H, locally trivial in the etale topology, cf.
[24], Section 2.5, Proposition 3, p. 1-12.

De�nition 3.1 Let G be an algebraic group, H < G a closed subgroup and
F be an aÆne reduced G variety. Then we call the quotient (G � F )=H =
Spec k[G � F ]H with respect to the action h:(g; f) 7! (gh�1; hf), for all
h 2 H, g 2 G, f 2 F , the associated �bre bundle over G=H with �bre F ,
and we denote it by G�H F .
Elements of G�H F will be denoted by g � f .
Remark: (i) Note that the quotient actually is a geometric quotient, since
the H cosets in G are already closed.
(ii) By [24] the above bundles are locally trivial in the etale topology.

For standard results in the theory of associated bundles we refer to [24]
and [27], Section 3.7.

55
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Now we resume the notation of the previous chapter, i.e. G is semisimple
and � an exterior automorphism of the Dynkin diagram of G. Let � : G� !
T �0 �=

fW be the quotient map.

Theorem 3.1 Let t� be an element in T �0 � and V (t�) the unipotent variety

of CG(t�). Then the reduced �bre ��1(�(t�))red of its image �(t�) in T
�
0 =
fW

is G-isomorphic to G�CG(t�) V (t�).
Proof: First, note that for x 2 ��1(�(t�)) the element xs is conjugate to t� :
Let x 2 ��1(�(t�)), then xs 2 ��1(�(t�)) by Lemma 2.10. By Proposition
2.3 and invariance of ��1(�(t�)) under conjugation with elements of G we
may assume, that xs 2 T �0 � . Using Theorem 2.1, we see that xs and t� are

conjugate under fW .
Now we identify the conjugacy classO(t�) of t� withG=CG(t�) by gCG(t�) 7!
g t� g�1. (Cf. [2], Proposition 9.1, p. 128.) We construct a G-equivariant
map

 : ��1(�(t�))red ! G=CG(t�) �= O(t�)
x 7! xs: (3.1)

Since there exists a polynomial P 2 k[t], such that xs = P (x) for all x 2
Mn(k), which only depends on the eigenvalues of x and its multiplicities, see
[14], Proposition 4.2, p. 17, we have, using a faithful representation of ~G,
that  is a morphism. (The coeÆcients of P are constant on ��1(�(t�)).)
Now, Lemma 4 in [27], Section 3.7, p. 26, provides us with a G-isomorphism

� : G�CG(t�)  �1(t�) ! ��1(�(t�))

(g � u) 7! g u g�1: (3.2)

We have  �1(t�) = fg 2 G�; gs = t�; gu 2 V (t�)g = t�V (t�). So, identify-
ing V (t�) with t�V (t�) just by right translation with t� , which is apparently
CG(t�) equivariant, we get the stated result. ~.
Remark: In Chapter 5, we will see that the schematic �bres of � are already
reduced in the situation, where the group G0, appearing in the paragraph
preceding Proposition 2.8, is simply connected.

Next we want to draw some conclusions of the theorem above.
First observe that CG(t�)0 is reductive for t� 2 T �0 � and that the quotient
group CG(t�)=CG(t�)0 is �nite and consists only of semisimple elements by
[37], Corollary 9.4, p. 60. Therefore, the unipotent variety V (t�) of CG(t�)
is already contained in CG(t�)0. Furthermore, by the proof of the theo-
rem above, we see that two elements x; y in ��1(�(t�)) sharing the same
semisimple component are conjugate under G exactly when their unipo-
tent parts xu; yu are under CG(xs), a group, which itself is G-conjugate to
CG(t�). Hence the orbit structure of ��1(�(t�)) is already determined by
the description of the CG(t�)-conjugacy classes in V (t�). Their properties
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are given e.g. in [27], Section 3.10, Theorem, p. 31 or [38], Section 3.8,
Theorem 1, p. 116.
We summarize them in a corollary:

Corollary 3.1 Let G, � be as above and ��1(�(t�)) a �bre of the quotient

map � : G� ! T �0 �=
fW. Then we have:

(i) The �bres ��1(�(t�)) of � consist of �nitely many conjugacy classes.
(ii) The �bres ��1(�(t�)) are irreducible varieties of codimension equal to
dimT �0 .
(iii) Each �bre ��1(�(t�)) contains exactly one conjugacy class consisting of
semisimple elements, the so called semisimple orbit, which is the only closed
orbit in ��1(�(t�)) and which is contained in the closure of every other orbit
of ��1(�(t�)).
(iv) Each �bre ��1(�(t�)) contains one open dense orbit corresponding to
the regular unipotent class in V (t�) having a complement of codimension
two in ��1(�(t�)).

Proof: (i) and the irreducibility of (ii) is clear by the reasoning and the
references preceding the statement of the corollary. The uniqueness of the
semisimple class of (iii) was already proved in the proof of the theorem
above.
Because of (i) and the irreducibility of (ii) we must have a unique open
dense orbit in ��1(�(t�)). Denote the orbit of an element x 2 G� by
O(x). Then we have dimO(x) = dimG=CG(x) (which is also true in
char(k) = p > 0, even though the two varieties need not be isomorphic)
and CG(x) = CCG(t�)(xu) where we may assume xs = t� .
Now, CCG(t�)(xu) is minimal in dimension if xu is regular unipotent. This,
combined with the fact that the complement of the regular unipotent class
in CG(t�) has codimension two in V (t�), yields (iv).
Next observe that T �0 is a maximal torus in CG(t�) by Lemma 2.3. Hence
the reductive rank rk CG(t�) of CG(t�) equals the dimension of T �0 , giving
dimCG(t�u) = dimT �0 for u regular unipotent in CG(t�), and thereby prov-
ing (ii).
We are left to prove that every orbit contains the semisimple one in its clo-
sure, which would prove (iii) because, due to the �niteness statement (i),
there has to exist a closed orbit in ��1(�(t�)).
Take x 2 ��1(�(t�)), w.o.l.g. xs = t� . Then we can �nd a Borel subgroup
B(t�) of CG(t�)0 containing xu and a maximal torus S < B(t�). Proceeding
as in the proof of Lemma 2.10, we can �nd a one-parameter multiplicative
subgroup � : k� ! S, with e 2 f�(t)u�(t)�1; t 2 k�g, proving (iii). ~.

Another conclusion is the following:

Corollary 3.2 In the case, where G�==G �= A dim T � , an aÆne space, the
quotient map � : G� ! G�==G is 
at.
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Proof: Since G� and G�==G are smooth, all their local rings are regular and
therefore Cohen-Macaulay by [11], Chapter II, Theorem 8.21A, p. 184. By
Corollary 3.1, all �bres of � have the same dimension. The statement follows
now from [11], Chapter III, Exercise 10.9, p. 276. ~.

Analogously to the classical situation, we now introduce the notion of
regular elements:

De�nition 3.2 Let x be an element of G� , then we call x regular, i�
dimCG(x) = rk G� (which, by the corollary above, is the possible minimal
dimension!)

Remark: Since, by de�nition, the Cartan subgroup C :=< T �0 ; � > of ~G,
has a generating element (see Section 2.1) and because of CG(< T �0 ; � >) =
T � , we see that regular semisimple elements exist, the generating elements
are.

To get a more thorough knowledge of the structure of the �bres we need
to investigate the types of the centralizers of semisimple elements of G� ,
which will be done in the following section.
Before closing this section we give a description of the singularity structure
of the reduced �bres:

Lemma 3.1 Let G, � , � : G� ! T �0 �=
fW be as above. Then we have the

following description of the singularities of the reduced �bre ��1(�(t�))red:�
��1(�(t�))red

�
sing
�= G�CG(t�) (V (t�)sing) : (3.3)

If furthermore char(k) = 0 or char(k) > rkG� + 1, the nonsingular points
of ��1(�(t�))red are exactly the regular ones.

Proof: The second statement follows from the �rst one under the given
restriction of the characteristic, by use of [27], Section 3.10, (vi) of the The-
orem, p. 31, applied to the �bre over the unit element of the semisimple
part of CG(t�).
To prove the �rst part of the statement, �rst recall that the bundleG�CG(t�)
V (t�), as a bundle over G=CG(t�), is locally trivial in the etale topology.
Hence for every x 2 G=CG(t�) we �nd an open subset U � CG(t�) contain-
ing x and an etale morphism p : ~U ! U , such that

p�(G�CG(t�) V (t�)) �= ~U � V (t�): (3.4)

Since p is etale and G=CG(t�) is smooth, we have that ~U is also smooth.
(Note that `p etale' means that the completions of the local rings of points in
~U and its image point under p in U are isomorphic, cf. e.g. [11], Chapter III,
Exercise 10.4, p. 275; it follows from the Cohen Structure Theorem, found
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in [11], Chapter I, Theorem 5.4A, p. 34, that also their Zariski tangent
spaces are isomorphic.) Hence we have:�

~U � V (t�)
�
sing

= ~U � (V (t�)sing) : (3.5)

If we denote the bundle projection G �CG(t�) V (t�) ! G=CG(t�) by �,
we obtain, by the behaviour of etale morphisms under base change, cf. [11],
Chapter III, Proposition 10.1, p. 268, that the induced map p0 : p�(G�CG(t�)
V (t�)) ! ��1(U) is also etale (note that here p�(G �CG(t�) V (t�) �= ~U �U
��1(U)). Now we use again the isomorphism of Zariski tangent spaces under
etale morphisms to get the result. ~.
Remark: In Chapter 5 we will obtain a sharper version of the second
statement which is less restrictive on the characteristic.

3.2 Centralizers of Semisimple Elements

In this section we give a description of the root systems of centralizers of
semisimple elements of the exterior component G� in terms of certain sub-
systems of the folded root system �R1 of R = R(G;T ). In characteristic
zero, we can give a complete classi�cation of these as proper subsystems of
the twisted aÆne root system corresponding to R and � .
We keep the notations of Chapter 1 about the folded root system �R1 and
the root system R0. First, we de�ne a map d from the folded root system
�R1 to R0 by the following rules:
(i) If R is irreducible and not of type A2n we set

d(��) = �� for �� long in �R1 (3.6)

d(��) = (ord �) �� for �� short in �R1: (3.7)

(ii) If R is of type A2n we de�ne

d(��) = 2 �� for �� long or intermediate in �R1 (3.8)

d(��) = 4 �� for �� short in �R1: (3.9)

(iii) If R is reducible and � a permutation of irreducible parts of the same
type, then we let � be the subgroup of Aut(R) generated by � and we de�ne:

d(��) =
(ord �)

j��j ��; (3.10)

where � 2 R is an element of p�1(��). Here p is the projection map p : R!
�R1 de�ned in Equation 1.2.
Remarks: (i) The composition d Æ p is the map � 7! �0 of Section 1.2,
where p : R! �R1 is the projection de�ned in Equation 1.2.
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(ii) By the description of �R1 and R0 in Section 1.2, we see that, in case
(i), d is just the map dualizing the folded root system. In case (ii) the
restriction of d to the root subsystem of type Bn in �R1 = BCn, consisting
of roots of intermediate and short length, dualizes this root subsystem of
�R1. (Recall that this root subsystem is the root system of the group CG(�)0
by Proposition 1.1.)
(iii) Note, that in both cases the restriction of d to a reduced root subsystem
of �R1 is injective, even though d in case (ii) is not. This follows from the
fact that for each short root �� of �R1 we have d(��) = d(2 ��).
Furthermore, the restriction of d dualizes each root subsystem of �R1 in case
(i). In case (ii), d dualizes each connected component of a root subsystem
of �R1 containing a short root and acts as an isomorphism (multiplication
by two) on each component of a root subsystem of �R1 containing no short
root.

With these preparations we can state a �rst result:

Proposition 3.1 Let G be simple and let t� be a semisimple element of
G� , w.l.o.g. t� 2 T �0 � , and CG(t�)0 its connected centralizer in G. Then we
have:
(i) CG(t�)0 is reductive and T

�
0 is a maximal torus of CG(t�)0. Furthermore,

its root system R(CG(t�)0) is a reduced root subsystem of the folded root
system �R1.
(ii) d(R(CG(t�)0)) is Z-closed in R0.

Proof: The reductiveness claim of (i) was already proved in [37], Corollary
9.4, p. 60. T �0 is a maximal torus of CG(t�)0 by Lemma 2.3.
The proof of the second part of (i) will be a reworking of parts of the proof
of Theorem 8.2 in [37], which is essentially the background for Corollary 9.4
in [37].
Let B be a Borel subgroup of G and T < B a maximal torus, such that T
and B are stabilized by � . Furthermore denote the unipotent radical of B
by U . We want to compute the �xed point group CU (t�). To do this we
need some preparations.
Let X�i , i 2 f1; :::; ng, be the root groups as de�ned in the paragraph pre-
ceding Theorem 1.2.
We begin with a lemma on the commutator of root groups, proven e.g. in
[2], x14.5, p. 184�:

Lemma 3.2 With the notation above we have:

(X�(t);X�(s)) =
Y



X
(P
(t; s)); (3.11)

where 
 runs over all elements of R \ (Z>0(�; �)) and where P
(t; s) =
C
t

a sb is a monomial for 
 = a� + b � and for a suitable element C
 2 k
independent of s; t.
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Next, recall that n := dimU = jR+j and that, by [13], Proposition 28.1, p.
170, there exists an isomorphism

� : A n
��! U

(c1; :::; cn) 7!
nY
i=1

X�i(ci): (3.12)

Here we have f�1; :::; �ng = R+, whose order is �xed. For us, it is appro-
priate to choose a speci�c order:
For di�erent �0; �0 2 R0+ = d(p(R+)) we want that, between the root groups
of di�erent representatives �; �̂ 2 p�1(d�1(�0)) in the above product, there
appears no root group corresponding to a representative of p�1(d�1(�0)).
Among the root groups of the representatives of p�1(d�1(�0)) of �0 2 R0+ =
d(p(R+)) we choose an order according to the following rule:
Choose a representative � 2 R+ of p�1(d�1(�0)) for �0 2 R0+. By Lemma
1.2, we have to distinguish three cases:
(i) We have � = �(�) and R is not of type A2n. Then p

�1(d�1(�0)) = f�g
and � = �0. In this case we need no further ordering. We set

S�0 = X�: (3.13)

Furthermore, denote by R+
0 the set of the representatives � chosen in this

manner.
(ii) We have � 6= �(�) and ��(�(�)) = 0. Then p�1(d�1(�0)) = f� i(�); i 2
f1; :::; ord �gg and �0 =Pord �

i=1 � i(�). Then we set

S�0 =
ord �Y
i=1

X� i(�): (3.14)

By the lemma above and Lemma 1.2, the di�erent factors in the product
commute.
Furthermore, denote by R+

1 the set of the representatives � chosen in this
way.
(iii) In the remaining case, choose � 2 p�1(d�1(�0)) such that � 6= �(�) and
��(�(�) 6= 0.Then p�1(d�1(�0)) = f�; �(�); �+ �(�)g and �0 = 2(�+ �(�)).
Then we put:

S�0 = X�X�(�)X�+�(�): (3.15)

In this case, the rightmost factor commutes with each of the other two. By
[36], Lemma 15, p. 22, we have C�+�(�) 2 k� in the commutator lemma
above.
Furthermore, denote by R+

2 the set of the representatives � chosen in this
manner.
We impose no special order on the di�erent S�0 .
In addition, the set R+

0 [ R+
1 [ R+

2 contains exactly one representative in
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p�1(d�1(�0)), for every �0 2 R0+.
Clearly, t� leaves the images of each of the parameterizations S�0 : A

jp�1 (d�1(�0))j !
U invariant. Hence we have:

CU (t�) =
Y

�02R0+

(ImS�0)
t� ; (3.16)

(ImS�0)
t� denoting the �xed point set of the t� action on ImS�0 � U . This

will be calculated now: Again we have to distinguish three cases as above:
(i): S�0(c) is a �xed point, i� �(t) = 1 or c = 0.
(ii): In this case we calculate, using Theorem 1.2 and the commutativity of
the root groups:

t� S�0(c1; :::; cord � ) (t�)
�1 = S�0(�(t) cord � ; :::; �(t) cord ��1); (3.17)

if R is not of type A2n and

t� S�0(c1; c2) (t�)
�1 = S�0((�1)ht �+1�(t) c2; (�1)ht �+1�(t) c1); (3.18)

if R is of type A2n.
Here, we get a nontrivial �xed point i� �(t) is an ord � -th root of unity. In
this case, we even get a one parameter family of �xed points

(ImS�0)
t� = fS�0(c; :::; �ord ��1(t)c); c 2 kg; (3.19)

if R is not of type A2n, and

(ImS�0)
t� = fS�0(c; (�1)ht �+1�(t)c); c 2 kg; (3.20)

if R is of type A2n.
(iii): In this case, we use again Theorem 1.2 and the above lemma on the
commutator of root groups to get:

t� S�0(c1; c2; c3) (t�)
�1 = (3.21)

S�0((�1)ht �+1�(t)c2; (�1)ht �+1�(t)c1; C�+�(�) �2(t) c1 c2 � �2(t) c3):

In this case, we get a nontrivial �xed point (again even a one-parameter
family) in either of the two subcases:
(a) �2(t) = 1. Then the �xed point set is as follows:

(ImS�0)
t� =

�
S�0(c; (�1)ht �+1�(t) c;

C�+�(�)

2
(�1)ht �+1�(t) c2); c 2 k

�
:

(3.22)
But we may also have:
(b) �2(t) = �1. Then we get:

(ImS�0)
t� = fS�0(0; 0; c); c 2 kg: (3.23)



CHAPTER 3. THE STRUCTURE OF THE FIBRES 63

We summarize the above calculations:
(i) If R is not of type A2n, we have:

CU (t�) =

8>>><>>>:
Y
�2R+0
�(t)=1

X�(c�)
Y
�2R+1

�ord � (t)=1

ord �Y
i=1

X� i(�)(�
i(t) c�); c� 2 k

9>>>=>>>; :

(3.24)
(ii) If R is of type A2n we have:

CU (t�) =
n Y

�2R+

�=�(�)
�(t)=�1

X�(c�)
Y
�2R

+
1

�2(t)=1

X�(c�)X�(�)((�1)ht �+1�(t) c�)�

Y
�2R+

2
�2(t)=1

h
X�(c�)X�(�)((�1)ht �+1�(t) c�)�

X�+�(�)

�C�+�(�)
2

(�1)ht �+1�(t) c2�
�i
; c� 2 k

o
:

In either case, CU (t�) is connected. By steps (1),(2),(4) and (7) of the proof
of Theorem 8.2 of [37] (mind Lemma 9.2 in [37] if G is not simply connected),
the knowledge of CU (t�) allows us to determine the root system R(CG(t�)).
To summarize the calculations above:
We have obtained the positive roots of R(CG(t�)) as a subset of �R1 + =
p(R+). (Note that in the above description we can replace � 2 Sj2f0; 1; 2gR

+
j

by p(�) 2 �R1 +, because T �0 is a maximal torus of CG(t�).)
Therefore we get (by using the description of the root lengths as given in
Lemma 1.2):
If R is not of type A2n, we have:

R(CG(t�)) = f�� 2 �R1; ��(t) = 1; if �� is long or ��ord � (t) = 1 if �� is shortg:
(3.25)

If R is of type A2n, we have:

R(CG(t�)) = f�� 2 �R1; ��(t) = �1;
if �� is long, or ��2(t) = 1 if �� is intermediate or shortg:

This proves (i).
To prove (ii) we apply just the map d to the root system R(CG(t�)). Using
the de�nition of d, we get in both cases:

d(R(CG(t�))) = f�0 2 R0 �0(t) = 1g; (3.26)

which is clearly Z-closed in R0. ~.
Remarks: (i) If G is semisimple and � a permutation of isomorphic normal
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simple subgroups of G, then the proposition remains valid, though we need
some re�nements in the proof:
We can proceed similarly as in the case where G is not of type A2n. For
� 2 R(G) we have to substitute all sums and products over ord � by the
cardinality of the � orbit of �, where � is the subgroup of Aut(R) generated
by � . All elements of the form � j(�) have to be replaced by the elements
of the �-orbit of �. Again, by the Remark following Lemma 1.2, the root
groups X� and X� for di�erent �; � with �0 = �0 commute. So we can use
the same reasoning as in the case of the proof above where G is not of type
A2n.
Finally, we reach the following description of R(CG(t�):

R(CG(t�)) = f�� 2 �R1 ��k(��)(t) = 1g; (3.27)

where k(��) := ord �
j��j

is just the the cardinality of the �-orbit of � with

p(�) = ��, where p is de�ned as in Equation 1.2. Again we get

d(R(CG(t�))) = f�0 2 R0 �0(t) = 1g: (3.28)

(ii) One can easily verify that the parameterizations of the sets (ImS�0)
t� ,

as given in the proof above, are additive group homomorphisms in the pa-
rameter c, if these sets contain at least two elements. Therefore, these sets
are the (images of the) root groups of CG(t�) and hence the corresponding
parameterizations are the root groups.
(iii) Since by [2], Section 9.1, Proposition, p. 128, we have that Lie(CG(t�)) =
cg(t�), t� being semisimple, where cg(t�) denotes the kernel of the adjoint
action of t� on g = LieG, we would have been able to derive the same result
using the Lie algebra and its Cartan decomposition. This should have been
a bit simpler, for example we would not have to care about commutators,
but in the next chapter we will make direct use of the description of the root
groups of CG(t�) given here.

The next statement reduces our situation to that of automorphisms of
G of �nite order:

Theorem 3.2 (i) Let t� be in T �0 � as above, then there exists an automor-
phism � of G of �nite order, such that R(CG(t�)) is Q-closed in R(CG(�)).
(ii) If G is simple and char(k) = 0, the Dynkin diagram of R(CG(t�)) is a
proper subdiagram of the Dynkin diagram of the twisted aÆne root system
R(ord �), where R is the root system of G.
The Dynkin diagrams of the twisted aÆne root systems R(ord �) are given in
the following table:
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A
(2)
2 : e e��HH

A
(2)
2n (n � 2) : e ee e e e��HH��HH p p p

A
(2)
2n�1 (n � 3) :

e

e

ee e e e

    
```̀ ��HHp p p

D
(2)
n+1 (n � 2) : e ee e e eHH����HH p p p

E
(2)
6 : eee e e��HH

D
(3)
4 : ee e ��HH

Proof: (i) We consider the diagonalizable group H := < (t�)l; l 2 Z>. By
Lemma 2.2 we have H �= S � Z=lZ, for a suitable l 2 Z and a torus S.
Now we can �nd an element � of ~G which is a generator of the Z=lZ part of
H. Since t�S is a generator of Z=lZ �= H=S we can assume, w.o.l.g., that
� 2 G� , yielding that ord � is the smallest natural number n, such that
�n 2 G.
Now we have the the following chain of equations:

CG(t�) = CG(H) = CG(S) \ CG(�) = CCG(�)(S): (3.29)

Since � is semisimple CG(�)0 is reductive by Proposition 3.1 and CG(t�)0 =
CCG(�)(S)0 is a Levi subgroup thereof (for Levi subgroups cf. e.g. [13],
Section 30).
To prove (i) we are left to prove the following statement:
Claim: Let G be reductive with root system R, S < G a torus and CG(S)
its centralizer (which is reductive by [13], Corollary 26.2A, p. 159). Then
the root system R(CG(S)) is Q-closed in R.
Proof of claim: Taking a maximal torus T of G containing S we have

R(CG(S)) = f� 2 R;�(s) = 1; 8 s 2 Sg: (3.30)

Take � 2 R \ Q (R(CG(S))). Then we can �nd n 2 N, such that n� 2
Z(R(CG(S))), forcing (�(s))n = 1, for all s 2 S. Hence �(s) is an n-th root
of unity.
Since �jS is a regular function on S and since it takes only discrete values,
it must be constant by the connectedness of S. Hence �(s) = �(1) = 1, for
all s 2 S. }.
(ii) By [3], Chapter VI, x1, no. 1.7, Proposition 24, p. 165, every basis of a
Q-closed root subsystem R̂ of a root system R can be completed to a basis
of R, i.e. the Dynkin diagram �(R̂) is a subdiagram of �(R) by removing
certain points and all edges meeting these points.
The statement now follows from the classi�cation of Dynkin diagrams of
the centralizers of automorphisms of �nite order for algebraic groups (resp.
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their Lie algebras) in characteristic zero given in [16], Theorem 8.6 and
Proposition 8.6, p. 136�. ~.
Remark: We can understand the second part of the theorem, except for
the A2n-case, as follows:
First, note that the set of irregular semisimple elements in T �0 � is described
by the root system R0. Under the map T �0 � ! T 0, de�ned in Lemma 2.8, this
set corresponds to the set of irregular elements of T 0, considered as maximal
torus of the connected group G0, de�ned in Section 2.4. Now, it is a well
known fact that, in characteristic zero, the Dynkin diagram of a centralizer
CG0(t

0)0 for t0 2 T 0 is a proper subdiagram of the aÆne non-twisted root
system R0(1) of R0. (The proof is just analogously to our proof of part (ii) of
the Theorem.) To obtain the root systems of our centralizers of elements in
T �0 � , we have to dualize, see the remark following the de�nition of the map
d at the beginning of this section. Looking at the tables of aÆne Dynkin
diagrams, found e.g. in [16], Tables A� 1-3, p.54f, we realize that R(ord �) is
exactly the dual of R0(1).

By the de�nition of regular elements in the previous section and this
result, we get the following description of regular elements in T �0 � :

Corollary 3.3 (i) An element t� 2 T �0 � is regular, i� �0(t) 6= 1, for all
�0 2 R0. (Here we consider the elements of R0 as elements of Z(�R1) via
the map d.)
(ii) An element t� 2 T� is regular, i� �0(t) 6= 1, for all �0 2 R0. (Here we
consider the elements of R0 as elements of Z(R).)

Proof: (i) is clear by the results above.
(ii) follows from (i) by Lemma 2.5 in the following way:
For a singular t� 2 T� we can �nd, by Lemma 2.5, t̂ 2 T and t0� 2 T �0 � ,
such that t� = t̂ t0� t̂�1 and such that there exists �0 2 R0 with �0(t0) = 1,
by (i). Then we have

�0(t) = �0(t̂ t0� t̂�1 ��1) = �0(t̂)�0(� t̂�1 ��1)�0(t0) = �0(t0)�0(t̂) (��1(�0))(t̂�1)
(3.31)

The statement now follows from the � invariance of �0, cf. Section 1.2. ~.



Chapter 4

Irregular Elements in the

Exterior Component

In this chapter, we want to give a description of the set of irregular ele-
ments in G� . An element will turn out to be irregular, i� it is conjugate
to an element y 2 B� , such that there exists a simple root �0 of R0 with
�0(ys) = 1 and yu in the unipotent radical U�0 of a parabolic subgroup P�0 .
(P�0 will be de�ned in this chapter.) Furthermore, we will show that the set
of semisimple irregular elements is dense in the set of all irregular elements.

First we have to prove some rather technical lemmas. We keep the notation
from the previous chapters.
Let B < G be a Borel subgroup of G and T < B be a maximal torus, such
that B and T are stabilized by � . Furthermore, denote by U the unipotent
radical of B.

Lemma 4.1 With the notation above, we have:
(i)
S
g2G gB�g

�1 = G� .

(ii) For x 2 B� we can �nd u 2 U , such that uxs u
�1 is an element in T� .

(iii) For x = t�u 2 B� with t� 2 T� , u 2 U we have that the semisimple
part of x is U -conjugate to t� .

Proof: (i) Since T �0 � � B� we have by the density result, Lemma 2.6, thatS
g2G gB�g

�1 is a dense subset of G� . To prove (i) we merely need to prove
that the latter is closed in G� :
Let B act on G�B� by b:(g; b̂�) := (g b�1; b b̂� b�1). Then we de�ne a map
� from the corresponding associated bundle G �B B� , cf. Section 3.1 and
the references quoted there, to G� as follows:

� : G�B B� ! G� (4.1)

g � b� 7! g b� g�1: (4.2)

67
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By use of [27], Section 3.7, Lemma 1, p. 25, we get a commutative diagram:

G�B B� � //

�

$$JJJJJJJJJJJJJJJJJJJJ G�

G=B �G�

p

;;wwwwwwwwwwwwwwwwwww
:

Here the closed embedding � is de�ned by �(g � b�) = (gB; g b� g�1) and p is
the projection on the second factor.
Since G=B is a complete variety, cf. e.g. [13], Theorem 21.3, p. 134, the
image �(G�B B�) = p(�(G�B B�)) � G� is closed.
(ii) We consider the closed non-connected subgroup ~B := Bo < � l; l 2 Z>
of ~G and regard x 2 B� as an element thereof. Considering the projection
map

p : ~B ! ~B=B �=< � l; l 2 Z>
x 7! xB; (4.3)

we see that xs 2 B� and xu 2 U < B. Therefore, by [37], Theorem 7.5, p.
51, we can �nd a maximal torus T̂ of B stabilized by xs.
Now there exists an element u 2 U , such that u T̂ u�1 = T , cf. [13], Theorem
19.3, p. 123. (Note, using the notation there, that B1 = U for reductive
G.) So w.o.l.g. we can assume T̂ = T . Then xs operates on the root system
R(G;T ), and stabilizes the basis corresponding to B. Hence xs operates like
a diagram automorphism on the corresponding Dynkin diagram �. Observe
that the element xs �

�1 2 G also has these properties forcing xs �
�1 2 T

and therefore proving (ii).
(iii) This is just a reformulation of (ii) using the fact that by [13], Theorem
19.3, p. 123, we have B �= T n U . ~.
Remarks: (i) The line of proof of (ii) is similar to that of Proposition 2.3.
(ii) Note that by use of Lemma 2.5 we can even achieve that xs is conjugate
in T �0 � in (ii), if we allow conjugation with elements in B rather than U .

As a summary of the lemma above and by Corollary 3.3, we have:

Corollary 4.1 Let B and T be as above. If x 2 G� is irregular, then x is
conjugate to t� u, where t� 2 T �0 � and u 2 U , such that t� and u commute
and such that there exists at least one element �0 2 R0 with �0(t) = 1.

Next we prove a lemma on Borel subgroups of CG(t�)0:

Lemma 4.2 Let B be a Borel subgroup stabilized by � and t� 2 T �0 � .
Then B \CG(t�)0 is a Borel subgroup of CG(t�)0.
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Proof: Clearly, B \ CG(t�)0 is solvable. Next we calculate B \ CG(t�)0
directly. By [13], Theorem 19.3, p. 123, B �= T nU for each maximal torus
T of B. We choose T as above, i.e. � -stable. By the proof of Proposition
3.1 respectively the remark (i) following it, if G is semisimple and nonsimple
and � a permutation of its isomorphic normal, simple subgroups, we already
know that CU (t�) � CG(t�)0 by its connectedness and we already saw that
its dimension is 1

2 jR(CG(t�)0)j. Furthermore we know that T �0 is a maximal
torus of CG(t�)0, by Lemma 2.3. Therefore, we conclude B \ CG(t�)0 =
T �0 CU (t�). This is a connected solvable subgroup of CG(t�)0 having maximal
possible dimension. Hence it must be a Borel subgroup. ~.

Our next step is to construct certain parabolic subgroups of G corre-
sponding to elements of a basis of R0. Let � be the basis of R. Then,
�0 := d(p(�)) = f�01; :::; �0sg is a basis of R0, where d is the map de�ned at
the beginning of Section 3.2. (Note, the composition dÆp is the map � 7! �0

of Section 1.2.)
For each �0i 2 �0 we associate a parabolic subgroup P�0i as follows:
Consider the set 	i := p�1(d�1(�0i)) � R and de�ne a subgroup Wi of the
Weyl group W by Wi =< 1; s�; � 2 	i >. Then we de�ne P�0i by:

P�0i := BWiB: (4.4)

Furthermore set U�0i := Ru P�0i , the unipotent radical of P�0i . To see that
these groups are well de�ned as parabolic subgroups we have to show that
Wi is already generated by the simple re
exions of W which lie in Wi, cf.
the theory of parabolic subgroups as developed in [13], Section 30:
To achieve this, we give a description of the sets 	i using results of Section
1.2, especially Lemma 1.2. We have to distinguish three cases (here � de-
notes the subgroup of Aut(R(G)) generated by � :
(i) �0i = �i for an element �i 2 �. Then �i = �(�i). It follows that
	i = f�ig and Wi = f1; s�ig �= Z=2Z.
(ii) �0i =

1
j��i j

Pord �
j=1 � i(�i) for a suitable element �i 2 �. Then �i 6= �(�i)

and ��i(�(�i)) = 0 implying 	i = f� j(�i); j 2 f1; :::; ord �gj��i j
g and Wi =

< 1; s� j(�i); j 2 f1; ::; ord �j��i j
g >�= (Z=2Z)

ord�
j��i j .

(iii) �0i = 2(�i + �(�i)) for an element �i 2 �. Then �i 6= �(�i) and
��i(�(�i)) 6= 0 implying 	i = f�i; �(�i); �i + �(�i)g and Wi =
< 1; s�i ; s�(�i) >

�= S3. (Note that in this case w�i+�(�i) = s�i s�(�i) s�i .)
We now get the description of the unipotent radicals of the P�0i as follows:

Lemma 4.3 (i) We have

U�0i
�=

Y
� 2 R+

� =2 	i

ImX� ; (4.5)
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where X� is the root group corresponding to the root � 2 R.
(ii) B normalizes U�0i .
(iii) P�0i and U�0i are stabilized by � .

Proof: (i) follows from [13], Section 30.2, p. 184f, and (ii) is clear by B < P�0i .
(iii) follows from the fact that � stabilizes B, T and Wi and that U�0i is the
unipotent radical of P�0i . ~.

Denote the kernel of �0i 2 �0 in T , respectively T �0 by T�0i , respectively
T �0 �0i

, and set furthermore

B�0i := T�0i U�i
�= T�0i n U�i (4.6)

�B�0i := T �0 �0i
U�i
�= T �0 �0i

n U�i : (4.7)

We will show that the sets B�0i� , respectively
�B�0i� , which can be considered

as exterior components of algebraic groups

~B�0i := B�0io < � j ; j 2 Z> respectively (4.8)

~�B�0i
:= �B�0io < � j ; j 2 Z>; (4.9)

will describe the set of irregular elements of G� . The next two lemmas give
a characterization of irregular elements in G� :

Lemma 4.4 The elements of B�0i� , respectively
�B�0i� , are irregular in G� .

Proof: Let x 2 B�0i� ( �B�0i�) � B� , then we have xs 2 B�0i� ( �B�0i) and
xu 2 U�0i . By Lemma 4.1.(ii) and the proof of Corollary 3.3.(ii), we can
assume w.l.o.g. that

xs = t� 2 T �0 �0i
� and (4.10)

xu = u 2 U�0i : (4.11)

(Note that by Lemma 4.3.(ii) U�0i is stabilized by B). Apparently, u 2
CU�0

i

(t�).

By the description of the structure of the �bres of � : G� ! T �0 �=
fW given

in Theorem 3.1 and by the de�nition of regularity of elements in Section 3.1,
we only need to show that u is an irregular element of CG(t�)0.
By the description of R(CG(t�)) in the proof of Proposition 3.1 there exists
a (unique by the remarks preceding Proposition 3.1) root ��i 2 R(CG(t�)),
such that d(��i) = �0i. Furthermore by Remark (ii) following Proposition 3.1
and its proof we have a description of (ImS�0i)

t� as an image of a root group
of CG(t�)).
By construction we have

(ImS�0i) \ U�0i = feg: (4.12)
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Let us set s := dimT �0 . Observe that t� U�0i is a subset of
�B�0i� of dimension

dimU�0i . Then t� U�0i is stabilized by U�0i , T
�
0 and (ImS�0i)

t� . Stability

under U�0i follows from the fact that t� u0(t�)�1 2 U�0i , for all u0 2 U�0i .

Observe that stability under T �0 and (ImS�0i)
t� is clear.

Consider the (solvable) algebraic group generated by T �0 and (ImS�0i)
t� .

Since dim (ImS�0i)
t� = 1, this group has dimension s+ 1. Now set:

G�0i :=< T �0 ; (ImS�0i)
t� > nU�0i : (4.13)

This is an algebraic subgroup of ~G of dimension s + 1 + dimU�0i . Let us
consider the morphism

� : G�G�0
i (t� U�0i) ! G�

g � t� u0 7! g t� u0 g�1: (4.14)

The image of � are exactly the G-conjugacy classes in G� , which meet t� U�0i
Now, dimG �G�0

i (t� U�0i) = dimG � s � 1. By Corollary 3.1 the regular
classes in G� have dimension dimG � s which implies that the image of �
only contains irregular elements. ~.

Lemma 4.5 If x 2 G� is irregular, then x is conjugate into one of the sets
B�0i� , respectively

�B�0i� , for a suitable simple root, �0i 2 R0.
Proof: Let x be as in the statement of the lemma. By use of Lemma 4.1,
and Lemma 2.5, we can assume w.l.o.g. that:

xs = t� 2 T �0 � and (4.15)

xu = u 2 U: (4.16)

Since x is irregular, we can �nd, by Corollary 4.1, �0 = d(��) 2 R0, such
that �0(t) = 1, where �� 2 R(CG(t�)) � �R1. We have to show that, by
conjugation, we can achieve �0 simple and u 2 U�0 .
1. Claim: We can assume that �� ful�lls both of the following properties:
(i) �� is simple in R(CG(t�)) but not necessarily in �R1, i.e. d(��)(t) = 1.
(ii) The d(��)-part, i.e. the (ImSd(��))

t� -part of u 2 U with respect to the
identi�cation � of U with the product of the root groups in Equation 3.12,
is trivial.
Proof of Claim: The existence of �� with these properties follows from the
characterization of irregular elements in [35], Lemma 3.2 and Theorem 3.3,
p. 286f. (Note that we use here the description of the root groups of CG(t�)
as given in Remark (ii) following Proposition 3.1.) }.
From this it follows that the entire ImSd(��)-part of u has to be trivial with
respect to our coordinates on U (i.e. those corresponding to �).
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2. Claim 2: By conjugation with representatives, in NG(< T �0 ; � >), of
elements of W� , we can achieve �� or 1

2 �� to be simple in �R1. (The last
possibility appears only in the A2n-case.)
Claim 2 clearly implies d(��) to be simple in R0, whence the lemma.
Proof of Claim 2: This will be done by induction on ht ��.
If ht �� = 1 or ht �� = 2 and �� = 2 ��j , for a simple ��j 2 �R1, we are done.
Hence we assume now that ht �� � 2 and that �� is not the double of a simple
root in �R1. To carry out the induction, our strategy will be as follows:
Find a simple root ��j of �R1 with ���j(��) > 0, which is not a root of
R(CG(t�)). Conjugate x with a representative nd(��j) 2 NG(< T �0 ; � >)
of the simple re
exion wd(��j) 2 W� . Then, wd(��j )(��) is a simple root of

R(CG(nd(��j ) t� n
�1
d(��j )

)) with smaller height than �� in �R1.

This will now be carried out in detail:
So, we assume now that ht �� � 2 and that �� is not the double of a simple
root in �R1. Then we can �nd a simple root ��j 2 �R1, such that ���j(��) > 0.
(Otherwise, we would obtain a contradiction to the fact that the strict convex
cone of simple roots and the convex cone of the negatives of the fundamental
weights only intersect at zero.) By [3] x1, no 1.3, corollaire du th�eor�eme 1,
p. 149, we have �� � ��j is an element in �R1 +. By the simplicity of �� in
R(CG(t�)), we easily conclude that ��j (respectively 2 ��j in the A2n-case)
cannot be a root in R(CG(t�)). (Otherwise, by the same reasoning as above
we would end up with ��� ��j (resp. ��� 2 ��j) 2 R(CG(t�)).)
It therefore follows that, by our identi�cation of U with the direct product
of root groups via � in Equation 3.12 and by the de�nition of the S�0 in
the proof of Proposition 3.1, the Sd(��j)-part of u is trivial. Let us denote by
wd(��j ) the corresponding re
exion in the Weyl group W� (which need not
be a re
exion in W!). By the description of the �xed point Weyl group W�

in [7], Chapter 13, and our de�nition of the Wj in the discussion preceding
Lemma 4.3, we see that wd(��j ) is the element of greatest length in Wj and
the set 	j � R+ is exactly the set of positive roots of R made negative by
wd(��j ) (considered as an element of W.)
Therefore, we see:

u 2 U \ w�1d(��j ) U wd(��j) � Ud(��j ): (4.17)

Next we choose a representative nd(��j) 2 NG(< T �0 ; � >) of wd(��j ). Then
we have:

t0� := nd(��j ) t� n
�1
d(��j )

2 T �0 d(wd(��j )(��))
� (4.18)

u0 := nd(��j) un
�1
d(��j )

2 Ud(��j) � U; (4.19)

Observe that, in �R1, we have ht (wd(��j )(��)) < ht ��. Furthermore:

CG(t
0�) = nd(��j) CG(t�)n

�1
d(��j )

: (4.20)
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From this and the fact that the CG(t�) \ U � Ud(��j ) (recall that neither
��j nor 2 ��j are roots in R(CG(t�))), with Ud(��j ) being wd(��j )-invariant, we
conclude that

U \ CG(t0�) = U \ nd(��j)CG(t�)n�1d(��j)
= nd(��j) (n

�1
d(��j )

U nd(��j) \ CG(t�))n�1d(��j )
= nd(��j) (U \ CG(t�))n�1d(��j ) = nd(��j) U n

�1
d(��j)

\ CG(t0�)

yielding
B \ CG(t0�) = nd(��j )B n�1d(��j) \ CG(t

0�): (4.21)

Therefore, wd(��j )(��) must be a simple root of CG(t
0�) with respect to the

Borel subgroup B \CG(t0�). From this it follows that the Sd(wd(��j )(��))
-part

of u0, with respect to the identi�cation � of U as a product of its root groups
is trivial. (Here we use, that the ImX�-part of an element of U , for a simple
root �, is independent of the choice of an isomorphism between U and the
product of its root groups. This follows directly from Lemma 3.2.)
Now, we can apply the induction assumption to get that either �� or 1

2 �� are
simple roots in �R1 from which the simplicity of d(��) in R0 follows. ~.

As a summary of this we have:

Theorem 4.1 (i) The set of irregular elements (G�)irr of G� has the fol-
lowing shape:

(G�)irr =
[

g 2 G
�0 2 �0

g B�0� g
�1

=
[

g 2 G
�0 2 �0

g �B�0� g
�1: (4.22)

(ii) The set of semisimple elements of (G�)irr is dense in (G�)irr.

Proof: (i) is just the combination of Lemmas 4.4 and 4.5.
(ii): We start with de�ning a set J�0 , respectively �J�0 , for �

0 2 �, as follows:

J�0 := T�0 n
[

�0 2 R0+
�0 6= �0

T�0 (4.23)

�J�0 := T �0 �0 n
[

�0 2 R0+
�0 6= �0

T �0 �0 : (4.24)
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Apparently, these are open and dense subsets of T�0 respectively T
�
0 �0 .

Hence, J�0 U�0� , respectively �J�0 U�0� , are open and dense in B�0� , respec-
tively �B�0� . By use of (i) we conclude that[

g 2 G
�0 2 �0

g J�0 U�0� g
�1; respectively

[
g 2 G
�0 2 �0

g �J�0 U�0� g
�1; (4.25)

are dense in (G�)irr. To complete the proof, we only need to show that
every element x of J�0 U�0� , respectively �J�0 U�0� , is semisimple:
We have x = t� u with t 2 T�0 , respectively t 2 T �0 �0 and u 2 U�0 By
conjugation of t� with an element of T we can assume w.l.o.g. t 2 T �0 �0 .
Here, we use Lemma 2.5 together with the � invariance of �0 and the T -
stability of U�0 , cf. Lemma 4.3.
Applying Lemma 4.1 (iii) we have w.l.o.g. t� = xs and u = xu. (Here we
use that U stabilizes U�0 , cf. Lemma 4.3.)
By construction we clearly see that R(CG(t�)) is of type A1. (A suitable
choice of d�1(�0) and its negative being the only roots.) Therefore, we see
that CG(t�) \ U � ImS�0 , which amounts to

u 2 CG(t�) \ U�0 � ImS�0 \ U�0 = feg; (4.26)

thus proving our assertion. ~.



Chapter 5

The Steinberg Cross Section

In this chapter, we will construct a so called Steinberg Cross Section, a
section with respect to the quotient map � : G� ! G�==G, in the case
where the group G0, appearing in the paragraph preceding Proposition 2.8, is
simply connected. Furthermore, a di�erentiable characterization of regular
elements and further properties of the �bres will be given.

We keep the notation of the previous chapters. Furthermore, let r be the
rank of G, s the rank of G� which is the same as the rank of G0, and let
� = f�1; :::; �rg be a � -stable basis of R(G) which is de�ned with respect
to a � -stable maximal torus T of G contained in a � -stable Borel subgroup
B of G. Throughout this chapter, we assume G0 to be simply connected,
unless stated otherwise, i.e. Z(R)� = �(R)� . Furthermore, let f�1; :::; �rg
be the fundamental dominant weights of �(R) corresponding to � and let
f�01; :::; �0sg be the corresponding generators of �(R)� , i.e. the �0i are the
sums over the � -orbit of the �j, cf. the proof of Lemma 1.4. Furthermore,
denote the quotient map G� ! G�==G by �.
We now de�ne the notion of Steinberg cross section:

De�nition 5.1 A Steinberg cross section of the exterior component G� of
~G is a morphism C : A s ! G� , such that the following properties hold:
(i) ImC is closed in G� .
(ii) �jImC : ImC ! G�==G is an isomorphism.
(iii) ImC meets each �bre only in its regular orbit.

Next we want to construct a map C : A s ! G� , which has the property of
a Steinberg cross section, according to the following recipe:
Take one representative �i for each � orbit of �. By relabeling the elements
of � and the generators of �(R)� we can assume that �1; :::; �s are our
chosen representatives and that �0i(��j) = Æi j for i; j 2 f1; :::; sg.
Let X�i ; i 2 f1; :::; sg be the corresponding root groups of G and n�i 2
NG(T ) be a representative of the re
exion s�i inW corresponding to �i; i 2

75
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f1; :::; sg.
Now we de�ne

C : A s ! G�

(c1; :::; cs) 7!
sY
i=1

X�i(ci)n�i� (5.1)

Remarks: (i) C depends on the choices we made, i.e. the order of the
product in the de�nition of C and the choices of the representatives of the
considered simple re
exions in W.
(ii) Note that C(0; :::; 0) = n�1 :::n�s� is a representative in N ~G(T ) of a
twisted Coxeter element, investigated in [31], Section 7. It has similar prop-
erties as the Coxeter element, e.g. it has no eigenvector of eigenvalue one
on the vector space generated by the roots and is unique up to conjugation
in the Weyl group.

Our aim is to prove that C has the properties listed in the above de�ni-
tion of a Steinberg cross section:

Lemma 5.1 Keeping the notation above, ImC is closed in G� and isomor-
phic to A s .

Proof: From the de�nition of root groups as given e.g. in [38], Section 3.2,
it easily follows that for every � 2 R and w 2 W, with nw 2 NG(T ) being
a representative of w, we have

nw ImX� n
�1
w = ImXw(�): (5.2)

Using this property inductively, we easily get

ImC =

 
sY
i=1

ImX�i

!
n�1 :::n�s�; (5.3)

where �i = (s�1 :::s�i�1)(�i). Observe that f�1; :::; �sg is just the set of
positive roots made negative by w := s�s :::s�1 or ��1s�s :::s�1 , the inverse
of our twisted Coxeter element. (Note that � stabilizes the set R+.)
Denoting by B� the the opposite Borel subgroup with respect to B and by
U� its unipotent radical (B� is the Borel subgroup corresponding to the
basis ��), we have by [13], Proposition 28.1, p. 170, the following equality

sY
i=1

ImX�i = U \wU�w�1: (5.4)

The right hand side is closed in U and isomorphic to A s . ~.
Our next aim is to evaluate the quotient map on ImC. To carry out

this, we need some preparations. Recall that, in our situation, the quotient



CHAPTER 5. THE STEINBERG CROSS SECTION 77

map � : G� ! T �0 �=
fW is given by the s-tuple of characters characters ~X

�0i
1

corresponding to the fundamental dominant weights of �(R0), restricted to
G� , see Corollary 2.6:

�(g�) = ( ~X
�01
1 (g�); :::; ~X

�0s
1 (g�)); 8g 2 G: (5.5)

Furthermore, let

V (�0i) =
M

�2�(T )

V (�0i)� (5.6)

be the decomposition of the ~G-module V (�0i) in its weight spaces V (�0i)�.
Denote the canonical injection V (�0i)� ,! V (�0i) by �� and the canonical
projection V (�0i)� V (�0i)� by ��. Then we clearly have:

~X
�0i
1 (g�) =

X
�2�(T )

trV (�0i)� (�� ~�
�0i
1 (g�) ��): (5.7)

From now on we assume g� 2 ImC. For our calculations we need a well
known result on the action of the root groups with respect to the weight
spaces, which may be found e.g. in [38], Section 3.3, Proposition 2, p. 80:

Lemma 5.2 Let G be a reductive group, V a �nite dimensional G-module
and V� a weight space thereof. Then we have, for every v 2 V�:
(i) X�(c):v =

P1
i=0 c

i vi,
where vi 2 V�+i � is independent of c and v0 = v.
Furthermore, the following holds:
(ii) n�:v 2 Vs�(�) = V����(�)�,
(iii) �:v 2 V�(�).
We will prove now a sequel of lemmas to get property (ii) of the Steinberg
cross section.

Lemma 5.3 For g� 2 ImC we have:

trV (�0i)� (�� ~�
�0i
1 (g�) ��) = 0; (5.8)

if �(�) 6= �.

Proof: By inductive application of Lemma 5.2, we get for every v 2 V (�0i)�:

g�:v 2
M

k1;:::;ks2Z

V (�0i)�(�)+
Ps

j kj �j
: (5.9)

If we can prove the following assertion, we see that the corresponding trace
of g� in formula 5.8 vanishes:
Claim: If �(�) 6= � we have � =2 �(�) + Z(�1; :::; �s).
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Proof of Claim: Assume the contrary , i.e. �(�) 6= � and � 2 �(�) +
Z(�1; :::; �s). Then we can �nd pj 2 Z; j 2 f1; :::; sg such that

0 6= �� �(�) =
sX
j=1

pj �j : (5.10)

Furthermore, we easily see:

ord �X
i=1

� i(�� �(�)) = 0: (5.11)

Combining these two equations, we get:

0 =
ord �X
i=1

sX
j=1

pj �
i(�j): (5.12)

By introducing p0i 2 Z; i 2 f1; :::; rg, by following the rule p0i = j��i j pi and
p0i = p0j , if �i lies in the �-orbit of �j , we can rewrite the above equation in
the following way (recall that � is the subgroup of Aut(R) generated by �):

0 =

rX
j=1

p0j �j: (5.13)

This implies p0j = 0, for all j 2 f1; :::; rg which amounts to pj = 0, for all
j 2 f1; :::; sg, a contradiction to the de�nition of the pj, j 2 f1; :::; sg. ~.

As a direct consequence we get:

Corollary 5.1 For g� 2 ImC we have:

~X
�0i
1 (g�) =

X
�2�(R0)

trV (�0i)� (�� ~�
�0i
1 (g�) ��): (5.14)

Next, we want to introduce an order relation
:� on the set of fundamental

dominant weights f�01; :::; �0sg of �(R0) by the following rule:

�0i
:� �0j, i� there exists a dominant weight �0 2 �(R0), such that �0 � �0i (in

�(R0)!), i.e. �0i � �0 is a sum of positive roots and such that we have:

�0 =

sX
k=1

mk �
0
k; (5.15)

with mj > 0.
Remark: Note, that by representation theory, found e.g. in [38], Sections
3.3 and 3.4, for all weight spaces V (�0j)�, we have � � �0j .

First, we have to show that
:� actually is a partial order:
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Lemma 5.4 The set f�01; :::; �0sg with the relation
:� is a partially ordered

set.

Proof: We only need to show the transitivity and the antisymmetry of the
order:
1. Transitivity: Let �0i

:� �0j and �
0
j

:� �0k, i.e. we have �
0; �0 2 �(R0), such

that:

�0i � �0 =
sX
l=1

nl �
0
l (5.16)

�0j � �0 =

sX
l=1

n0l �
0
l; (5.17)

with nl; n
0
l 2 Z�0, for all l 2 f1; :::; sg and

�0 =

sX
l=1

ml �
0
l (5.18)

�0 =
sX
l=1

m0
l �
0
l (5.19)

with ml; m
0
l 2 Z�0, for all l 2 f1; :::; sg, and mj; m

0
k > 0. We set:

� := �0i �
sX
l=1

(nl +mj n
0
l)�

0
l = �0 �mj

sX
l=1

n0l �
0
l: (5.20)

A calculation yields

� =

sX
l=1

m00
l �

0
l (5.21)

with m00
j = mjm

0
j and m

00
l = ml +mjm

0
l for l 6= j, yielding m00

k > 0.

2. Antisymmetry: We prove this by contradiction. Assume �0i
:� �0j and

�0j
:� �0i, with i 6= j. Since we already have the transitivity, we can consider

the following situation:
There exist two sets of positive integers ml, l 2 f1; :::; sg and nk, l 2
f1; :::; sg, each s-tuple being nontrivial, such that

�0i �
sX
l=1

nl �
0
l =

sX
l=1

mk �
0
k (5.22)

with mi > 0. This amounts to (
Ps

l=1mk �
0
k) � �0i being a nontrivial el-

ement in the intersection of the the strict convex cone of negative linear
combinations of positive roots and the strict convex cone of positive linear
combinations of fundamental weights. But, by the table in [14], x13.2, p. 69,
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each fundamental weight is a positive Q-linear combination of the positive
roots, which shows that the two cones intersect only in the origin, giving a
contradiction. ~.

Now we go back to the calculation of �(g�) for g� 2 ImC. To simplify
the notation, we introduce Y�i : A ! G by

Y�i(c) := X�i(c)n�i : (5.23)

Furthermore, we identify g� 2 ~G with its representer ~�
�0i
1 (g�) in the repre-

sentation ~�
�0i
1 . With this, we obtain a lemma:

Lemma 5.5 For all � 2 �(R0) we have:

trV (�0i)�

 
��

sY
i=1

Y�1(ci) � ��

!
= trV (�0i)�

 
sY
i=1

(�� Y�1(ci) ��)�� � ��

!
:

(5.24)

Proof: The introduction of a pair �� �� directly in front of the the � is
justi�ed by Lemma 5.3.
Now take v 2 V (�0i)�. By inductive use of Lemma 5.2 we �nd:

sY
i=1

Y�1(ci) �:v =

1X
k1;:::;ks=�1

vk1;;:::;ks(c1; :::; cs); (5.25)

where each vk1;;:::;ks(c1; :::; cs) 2 V (�0i)�+Ps
i=1 ki �i

depends polynomially on
the c1; :::; cs. Therefore we have

��

sY
i=1

Y�1(ci) �:v = v0;:::;0(c1; :::; cs)

=

sY
i=1

(�� Y�1(ci) ��)�� � ��:v: (5.26)

The last equality follows by an easy induction on s using the fact that the
�i, i 2 f1; :::; sg are linearly independent. ~.

With these preparations, we can compute the trace of an element C(c1; :::; cs) 2
G� on a weight space V (�0i)�:

Lemma 5.6 Let � 2 �(R0) be a weight, assume V (�0i)� 6= 0.
Then, for � =

Ps
j=1mj �j, we have:

trV (�0i)� (�� C(c1; :::; cs) ��) =

�
a�c

m1
1 :::cms

s ; if � is dominant,
0; otherwise;

(5.27)

for some a� 2 k.
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Proof: To calculate the trace, we only need, because of Lemma 5.5, to
determine the polynomial in cj which appears in the expression �� Y�j (cj):v
for v 2 V (�0i)�. By use of Lemma 5.2 and the fact that mj = ��j(�), we get:

�� Y�j (cj):v = ��

1X
k=0

ckj vk; (5.28)

where vk 2 V (�0i)�+(k�mj )�j . Hence, we have

�� Y�j (cj):v = c
mj

j vmj ; (5.29)

if mj � 0.
Otherwise, we have

�� Y�j (cj):v = 0: (5.30)

Proceeding by induction on s, we get:

��C(c1; :::; cs):v =

sY
j=1

c
mj

j w; (5.31)

with w 2 V (�)�, if � is dominant. Otherwise, we have:

�� C(c1; :::; cs):v = 0 (5.32)

In the �rst case, w depends only linearly on v by Lemma 5.2. Thus, w =
Av, for a linear endomorphism A of V (�0i)�. With a� := trA we get our
statement. ~.

We now verify property (ii) of the de�nition of Steinberg cross section
for our map C:

Proposition 5.1 The quotient map � : G� ! T �0 �=
fW �= A s induces an

isomorphism of algebraic varieties

�jImC : ImC
��! T �0 �=fW: (5.33)

Proof: To prove the proposition we shall prove the following claim:
Claim: Let �0i a fundamental dominant weight of �(R

0). Then:

~X
�0i
1 (C(c1; :::; cs)) = a�0i ci + Pi(c1; :::; cs); (5.34)

where a�0i 6= 0 and where each Pi is a polynomial in those cj with �
0
j

:� �0i
and �0j 6= �0i.

Claim ) proposition: If we label the �0i, i 2 f1; :::; sg, such that �0j
:� �0i

implies j � i. Then we see that � Æ C is clearly invertible by the shape of



CHAPTER 5. THE STEINBERG CROSS SECTION 82

Equation 5.34 }.
Proof of Claim: By Lemma 5.6, we need to show the statement about
the variables appearing nontrivially in the polynomials Pi and the prop-
erty a�0i 6= 0:
We have, using Lemma 5.6:

~X
�0i
1 (C(c1; :::; cs)) =

X
� 2 �(R0)
� dominant

trV (�0i)� (�� C(c1; :::; cs) ��): (5.35)

By the remark about representation theory, following the de�nition of the
partial order

:�, and by Lemma 5.6, we clearly see that Pi is a polynomial
in those cj with �0j

:� �0i. Similarly to the proof of the antisymmetry in
Lemma 5.4, we can see that for every dominant � =

Ps
j=1mj �

0
j 2 �(R0)

with � � �0i and � 6= �0i we must have mi = 0.
To show the nontriviality of a�0i , we proceed as follows:
Take an element v 2 V (�0i)�0inf0g. Since dimV (�0i)�0i = 1, cf. e.g. [13],
Proposition 31.2, p. 189, this is a basis of V (�0i)�0i . By the construction

of our representations of ~G in Section 2.4 we have �:v = v. Using Lemma
5.2 and the fact, that all weights � of �(R0) having nontrivial weight spaces
V (�0i)� in V (�0i) have to ful�ll � � �0i, we get:

Y�j (cj)jV (�0i)�0
i

= idV (�0i)�0
i

; (5.36)

for j 6= i and cj 2 k.
Therefore, it remains to show:

Y�i(ci)v = a ci v + terms having zero V (�0i)�0i-part, for a 6= 0. (5.37)

To obtain this, consider the subgroup G�i :=< ImX�i ; ImX��i > of G of
type A1. Now, V (�0i)�0i � V (�0i)�0i��i is an irreducible G�i-module. (Note,
that the weights �0i�k �i only have trivial weight spaces in V (�0i) for k � 2.
Otherwise, s�i(�

0
i�k �i) = �0i+(k�1)�i would have a nontrivial weight space

in V (�0i) for k � 2, which is absurd.) Then, G�i even has to be isomorphic
to SL2(k) and V (�

0
i)�0i�V (�0i)�0i��i to its natural representation. Using this

isomorphism, we can choose v =
�

1
0

�
.Then, X�i(ci) =

�
1 ci
0 1

�
. Since all

di�erent choices for n�i di�er only by an element in T , and since all elements
of T act on the weight spaces by multiplication with a non-zero constant, we
can assume w.l.o.g. n�i to be in G�i and to have the form n�i =

�
0 1
�1 0

�
,

under the above isomorphism. We easily calculate:�
1 ci
0 1

��
0 1
�1 0

��
1
0

�
=

� �ci
�1

�
: (5.38)

The result now follows, with a = �1. ~.
We now prove our main result:
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Theorem 5.1 The map C is a Steinberg cross section of the exterior com-
ponent G� .

Proof: Properties (i) and (ii) have already been proven in Lemma 5.1 and
Proposition 5.1. (iii) will be a consequence of Theorem 5.2. ~.

Using the properties of C proven so far, we can give a characterization
of regular elements by means of the derivative of the quotient map � in the
case where G0 as appearing in the paragraph preceding Proposition 2.8 is
simply connected:

Theorem 5.2 Let g� be in G� . Then the three following properties are
equivalent:
(i) g� is regular
(ii) The derivative of (d�)g� is surjective
(iii) g� is G-conjugate to an element of ImC.

Proof: (iii) ) (ii): This follows directly from Proposition 5.1 and

T�(g�)(T
�
0 �=

fW) = Im (d�jImC)g� � Im (d�)g� : (5.39)

(ii)) (i): We will show that for irregular g� 2 G� the di�erentials (d ~X�0i
1 jG� )g� ,

i 2 f1; :::; sg considered as elements of T �g� (G�) are linearly dependent.
This will be carried out in several steps:
1. W.l.o.g. we can assume that g� is irregular and semisimple.
Proof: Since the set of semisimple irregular elements in g� is dense in (G�)irr,
cf. Theorem 4.1, we only need to show, that the set of elements in G� , for

which the di�erentials (d ~X
�0i
1 jG� )g� , i 2 f1; :::; sg are linearly dependent, is

closed. (This holds on every smooth algebraic variety and a given set of
global one-forms by a similar reasoning. Anyhow, we will give a proof in
our situation, where the tangent bundle is trivial.)
Since G� is isomorphic to G, as an algebraic variety and, since the cotangent
bundle of G is trivial, so is that of G� . Let E�j , j 2 f1; :::; ng with n = dimG
be a basis of the vector space of left invariant one forms on G� , which is
isomorphic to g�, the dual of LieG. It is a well known fact, that the (E�j )g� ,
j 2 f1; :::; ng form a basis of T �g� (G�).
Hence, we can �nd polynomial functions Ci j 2 k[G� ], i 2 f1; :::; sg, j 2
f1; :::; ng, such that

d ~X
�0i
1 jG� =

nX
j=1

Ci j E
�
j : (5.40)

Now the set where all the d ~X
�0i
1 jG� , i 2 f1; :::; sg are linearly dependent is

exactly the set where all the s� s minors of the matrix (Ci j)i2s; j2n vanish.
This set is clearly closed. }.
By Proposition 2.3 and the fact that, conjugating with an element of G, is
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an automorphism of G� , we can even assume that g� 2 T� , where T is a
maximal torus stabilized by � . We shall denote g� by t� .

For the next step, we introduce some notation: Let B < G be a Borel
subgroup of G, stabilized by � and containing T and let U be its unipotent
radical and U� the radical of the opposite Borel subgroup B�. Set t :=
Tt� (T�) � Tt� (G�). Recall that k[G� ]

G denotes the ring of class functions
on G� . Then we have:
2. For every F 2 k[G� ]G the following statement holds:

(dF )t� = 0, (dF jT� )t� = (dF )t� jt = 0: (5.41)

Proof: In this proof we use properties of the Bruhat decomposition, see e.g.
[13], Section 28:
Let U� T U � � G� be the big Bruhat cell, which is open in G� . Then we
have an isomorphism, cf. [13] Proposition 28.5, p. 174:

	 : A jRj � (k�)r ! U� T U �

((u�)�2R+ ; (v�)�2R+ ; t1; :::; tr) 7!
Y
��0

X�(u��)

rY
i=1

�i(ti)�
Y
��0

X�(v�):

Here the X�, � 2 R, are the root groups and the �i, i 2 f1; :::; rg are one-
parameter multiplicative groups spanning T . (The �i, i 2 f1; :::; rg have to
be chosen in such a manner that they form a basis of �(T )�, the dual of the
character lattice of T .)
By means of this isomorphism, we can write every element Y 2 Tt� (G�) =
Tt� (U

� T U�) in a unique way as a sum Y = Y1 + Y2, such that we get:

(d	�1)t� (Y1) =
X
�2R+

c�� (@v�)	�1(t�) + d� (@u�)	�1(t�) 2 T	�1(t�)A jRj

(d	�1)t� (Y2) =

rX
i=1

bi (@ti)	�1(t�) 2 T	�1(t�)(k�)r:

with bi; c��; d� 2 k, i 2 f1; :::; rg, � 2 R+.
We have to show that the following equation holds for every Y 2 Tt� (G�):

(dF )t� (Y ) = (dF )t� (Y2): (5.42)

Now, we transfer the adjoint T �0 -action on U� T U � to A jRj � (k�)r via 	.
Then this action looks as follows:

t0:((u�)�2R+ ; (v�)�2R+ ; t1; :::; tr) = ((�(t0)�1 u�)�2R+ ; (�(t0) v�)�2R+ ; t1; :::; tr);
(5.43)

with t0 2 T �0 .
Next we consider 	�(F ), which can be uniquely separated in a sum 	�(F ) =
P1+P2 of two polynomials P1 and P2, the �rst being a polynomial containing
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only powers of t�1i , i 2 f1; :::; rg, while each monomial appearing in the
second contains at least a factor in the u� or v�, � 2 R+. Now we let T �0
act on 	�(F ). Since 	�(F ) and P1 are T �0 -invariant, P2 is also. Since T �0
is a regular subtorus of T , by Proposition 2.2, no root � 2 R is identically
trivial on T �0 . Therefore, every monomial of P2 must contain at least two
factors from the set fu� or v�, � 2 R+g which implies

(d(	�1)�P2)t� (Y ) = 0; (5.44)

(because of 	�1(t�) 2 0� (k�)r � A jRj � (k�)r). Therefore, from

(dF )t� (Y ) = (d(	�1)�P1)t� (Y ) = (d(	�1)�P1)t� (Y2) = (dF )t� (Y2); (5.45)

we get our statement. }.
We can apply this to our characters ~X

�0i
1 jG� 2 k[G� ]G, i 2 f1; :::; sg to see

that the (d ~X
�0i
1 jG� )t� , i 2 f1; :::; sg are linearly dependent for t� 2 T� , i�

their restrictions to T� , i.e. the (d ~X
�0i
1 jT� )t� , i 2 f1; :::; sg are.

By Lemma 2.7 and Lemma 2.8, we have that T�==T = T�=T = T 0, a
maximal torus of G0. Let us denote the quotient map T� ! T 0 by p and by
T�0 the kernel of �

0 2 R0 on T . We de�ne T 0�0 similarly. By the method of
the proof of Lemma 2.7 we have p�1(T 0�0) = T�0� .
3. Now the following assertion holds:

p((T�)irr) = T 0irr and p�1(T 0irr) = (T�)irr; (5.46)

(T�)irr and T
0
irr denoting the set of irregular elements in T� respectively T 0.

Proof: This follows directly from Corollary 3.3 and the characterization of
irregular elements in T 0 as given e.g. in [38], Section 3.5, Proposition 3, p.
96. }.

For the next step, recall that k[T� ]T = k[T 0]. In order to cause no
confusion, we denote an element F 2 k[T� ]T by F̂ , if we consider it as
regular function on T 0. With this notation we clearly have p�(F̂ ) = F .
4. For every F 2 k[T� ]T we have:

(dF )t� = 0 , (dF̂ )p(t�) = 0: (5.47)

Proof: By Lemma 2.7 and [2], Chapter II, Proposition 6.5 p. 97, the quotient
map p is a �bre bundle. Therefore, (dp)t� is surjective for every t� 2 T� .
The statement now follows from the chain rule

(dF )t� = (dF̂ )p(t�) Æ (dp)t� : (5.48)

}.
We want to apply step 4 to F = ~X

�0i
1 jT� , i 2 f1; :::; sg. Recall, that for

F = ~X
�0i
1 jT� we have F̂ = X 0�0i jT 0 , cf. Proposition 2.8, X 0�0i being the
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character of the irreducible representation of G0 with highest weight �0i.

Hence, the (d ~X
�0i
1 jG� )t� , i 2 f1; :::; sg are linearly dependent for t� 2 T� , i�

the (dX 0�0i jT 0)p(t�), i 2 f1; :::; sg are for p(t�) 2 T 0.
5. The (dX 0�0i jT 0)t0 , i 2 f1; :::; sg are linearly dependent for t0 2 T 0, if t0 is
irregular.
Proof: This is proven in [38], Section 3.8, Lemma p. 125, together with
the identity of Weyl mentioned on [38], p. 127. (For a proof of the Weyl
identity, cf. e.g. [14], Lemmas 24.1A and 24.1B, p. 136.) }.
Combining steps 3 and 5 yields (ii) ) (i).

(i) ) (iii): Let g� 2 G� be regular. Then, we can �nd h� 2 ImC with
�(h�) = �(g�), by Proposition 5.1. Since we already know that h� is regular,
the statement follows from Corollary 3.1. ~.

Now we can prove the reducedness of the �bres as promised in the remark
following Theorem 3.1.

Proposition 5.2 The quotient map � : G� ! G�==G is 
at and its �bres
are reduced and normal.

Proof: The 
atness property of � was already proven in Corollary 3.2.
1. Reducedness: To show the reducedness of the schematic �bres, it suÆces
to show that they are regular in codimension zero and Cohen-Macaulay, by
[21], Section 17.I, p. 125:
Take y 2 G�==G. Then we have, for the corresponding schematic �bre:

��1(y) = V ( ~X
�01
1 jG� � y1; :::; ~X�0s

1 jG� � ys): (5.49)

Hence, ��1(y) is a complete intersection. By [11], Chapter II, Proposition
8.23, p. 186, it follows that ��1(y) is Cohen-Macaulay. If we choose x 2
��1(y) to be regular we have, by Theorem 5.2, that the d( ~X

�0j
1 jG� )x, j 2

f1; :::; sg are linearly independent. Hence O��1(y); x, the local ring of the
schematic �bre, is a regular local ring. By Corollary 3.1, we know that
the irregular elements in ��1(y) have codimension two, which implies that
��1(y) is regular in codimension zero. So we see that the schematic �bre is
already reduced.
2. Normality: Since the set of regular elements of ��1(y) is open dense in
��1(y) with a complement of codimension two, see Corollary 3.1, and since
these elements are nonsingular in ��1(y) (note that they are all conjugate
to one another), we see that ��1(y) is regular in codimension one. By [11],
Chapter II, Proposition 8.23, p. 186, the normality of ��1(y) follows. ~.

As a consequence of Theorem 5.2, we get the following description of the
singular locus of the reduced �bres of the quotient map � : G� 7! G�==G.
Here G0 does not need to be simply connected. This is a sharper version of
Lemma 3.1:
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Corollary 5.2 If char(k) does not divide the order of the fundamental
group of G, then for every t� 2 T �0 � , the nonsingular points of ��1(�(t�))red
are exactly the regular ones.

Proof: By Theorem 5.2, the statement is true in case, that G is simply
connected. If G is not simply connected, let us denote its universal cover
by Ĝ. As in Section 2.5, we denote the the kernel of the quotient map
p : Ĝ! G by CG. Recall that we have the following commutative diagram:

Ĝ�
p̂ //

�̂

��

G�

�

��
A s �= Ĝ�==Ĝ

~p // G�==G;

(5.50)

where p̂ : Ĝ� ! G� is the map induced by p on the exterior component,
given by g� 7! p(g)� and ~p is induced by p̂ on the quotient. Apparently p̂
maps the �bres of �̂ onto those of �.
By our assumption on the characteristic of k, p̂ is separable and hence etale
because of the smoothness and dimension equality of G and Ĝ, see [11],
Chapter III, Proposition 10.4, p. 270. Therefore, the restriction of p̂ to each
�bre of �̂ is etal. Hence, p̂ maps the (non-)singular points of each �bre of �̂
exactly to the (non-)singular points of the corresponding �bre of �.
Furthermore, we have, by [37], statement 4.5, p. 37, that dimCĜ(ĝ�) =
dimCG(p(ĝ)�). (Note that CG = ker p is �nite). Now the result follows.~.



Chapter 6

Subregular Singularities

In this chapter, we shall establish a connection to singularity theory. To ac-
complish this, we start with a construction of a simultaneous resolution of all
�bres of the quotient map � : G� ! T �0 �=

fW , the so called \Grothendieck's
simultaneous resolution". Then we construct semiuniversal deformations
of subregular singularities in the �bres over those points in the quotient
T �0 �=

fW , of which the centralizer of a semisimple element in the correspond-
ing �bre is simple of maximal possible rank. All the results of this chapter
will be valid in the case where G is simple and � acts without �xed points on
the fundamental group of G and where G0, as de�ned in Section 2.4, is sim-
ply connected. Furthermore, we need some restrictions on the characteristic
of k.

6.1 Resolution of Individual Fibres

As a �rst preparatory result, we construct the resolution of a single �bre.
First we state a result by Springer, found in [30], Theorem 1.4, or [27], The-
orem 4.1, p. 43:

Proposition 6.1 Let G be a reductive group, such that char(k) does not
divide the order of the fundamental group of G, B a Borel subgroup with
unipotent radical U , and let V be the unipotent variety of G. Then the
morphism

p : G�B U ! V

g � u 7! g u g�1 (6.1)

is a G-equivariant resolution of singularities of V .

Proof: See [27], p. 43. ~.
Furthermore, we prove the following result about base change of G-

equivariant resolutions:

88
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Proposition 6.2 Let G be an algebraic group, H < G a closed subgroup
and � : ~X ! X an H equivariant resolution of singularities.
Then:

G�H � : G�H ~X ! G�H X (6.2)

is, again, a resolution of singularities.

Proof: We have to show that G �H � is proper and that it induces an
isomorphism ��1(Xreg)! Xreg. Note that G�H ~X is clearly smooth (it is
an associated bundle with smooth �bre):
1. Properness: We have to show that f := G �H � is universally closed.
To do this, consider a morphism � : Y ! G �H X and the corresponding
Cartesian square:

Y 0 //

f̂

��

G�H ~X

f

��
Y

� // G�H X

; (6.3)

where Y 0 := Y �G�HX (G �H ~X) is the �bre product. Our aim is to show

that f̂ is closed. We consider the following commutative cube:

Z 0 //

~f

��

~�0

����
��

��
��

��
��

��
��

G� ~X

id��

��

~�

����
��

��
��

��
��

��
�

Y 0 //

f̂

��

G�H ~X

f

��

Z //

�0

����
��

��
��

��
��

��
��

G�X

�

����
��

��
��

��
��

��
��

Y �
// G�H X

; (6.4)

where Z 0 := Y 0 �G�H ~X (G � ~X) and Z := Y �G�HX (G � X), yielding

Cartesian top and bottom faces. Here ~f is given by ~f(y; g � ~x; (g0; ~x0)) =
(y; (g0; �(~x0)), and � and ~� denote quotient maps by the H-action. (Note
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that ~f is well de�ned, i.e. Im ~f � Z, because of �(y) = f(g � ~x) =
f(~�(g0; ~x0)) = f(g0 � ~x0) = g0 � �(~x0) = �(g0; �(~x0)).)
Next we de�ne an H-action on Z 0 and Z in the following way:

h:(y; g � ~x; (g0; ~x0)) := (y; g � ~x; (g0 h�1; h ~x0)) (6.5)

h:(y; (g0; x)) := (y; (g0 h�1; h x)); (6.6)

with h 2 H, (y; g � ~x; (g0; ~x0)) 2 Z 0 and (y; (g0; x)) 2 Z. Then ~f becomes
H-equivariant.
Now we de�ne ~Z := Z �G�X (G � ~X), which becomes an H-variety with
respect to the following action of H:

h:(y; (g; x); (g0; ~x0)) = (y; (g h�1; h x); (g0 h�1; h ~x0)); (6.7)

for all h 2 H and (y; (g; x); (g0; ~x0)) 2 ~Z. Setting

� : ~Z ! Z 0

�(y; (g; x); (g0; ~x0)) = (y; g0 � ~x0; (g0; ~x0)); (6.8)

for all (y; (g; x); (g0; ~x0)) 2 ~Z, and

	 : Z 0 ! ~Z

	(y; g � ~x; (g0; ~x0)) = (y; (g0; �(~x0)); (g0; ~x0)); (6.9)

for all (y; g � ~x; (g0; ~x0)) 2 Z 0, we see that ~Z and Z 0 are isomorphic as H-
varieties. This implies that the back side of the cube is also Cartesian. (We
believe this to be true for all commutative cubes with Cartesian top, bottom
and front side. We gave this proof, because we have not found a reference.)
We are now interested in the categorical quotients Z==H and Z 0==H. Recall
that we can consider

Z 0 � Y 0 � (G� ~X) (6.10)

Z � Y � (G�X) (6.11)

as closed H-stable subsets, yielding that Z==H and Z 0==H are closed subsets
of (Y � (G�X))==H and (Y 0� (G� ~X))==H respectively. Since H operates
on the varieties of the right hand sides of Equations 6.10 and 6.11 only by
acting on the second factor and, since the corresponding quotient of the
respective second factor is geometrical, by [27], Section 3.7, p. 25, see also
[22], remark, p. 8, it follows that also (Y �(G�X))==H and (Y 0�(G� ~X))==H
are geometrical quotients. They have the following explicit form:

(Y � (G�X))=H = Y � (G�H X) (6.12)

(Y 0 � (G� ~X))=H = Y 0 � (G�H ~X); (6.13)
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yielding:

Z=H = Y �G�HX (G�H X) �= Y (6.14)

Z 0=H = Y 0 �G�H ~X (G�H ~X) �= Y 0: (6.15)

(Observe that the isomorphism is just given by the embedding of the �rst
factor as the graph of �, respectively the map induced by � into the product.)
Therefore, we have identi�ed ~�0 and �0 as quotient morphisms under the H-
actions.
By our hypothesis, � is a proper morphism. Since properness is stable under
base change by [11], Chapter II, Corollary 4.8, p. 102, we have that id�� is
also proper. (We apply this property to the base change pr2 : G �X ! X
and use the isomorphism (G � X) �X ~X �= G � ~X .) Applying the base
change property again and exploiting the fact, that the back side of the
cube is Cartesian, we get that ~f is proper. Now choose a closed subset
A � Y 0. We have

f̂(A) = �0( ~f(~�0�1(A))): (6.16)

Now ~�0�1(A) � Z 0 is closed and H-stable. By the H-equivariance and
properness of ~f we get that ~f(~�0�1(A)) � Z is closed and H-stable. Then
the closedness of f̂(A) follows from the fact, that �0 is a quotient map.
2. Isomorphism outside the singularity: Analogously to the proof of Lemma
3.1, we have:

(G�H X)sing = G�H (Xsing): (6.17)

Now the restriction �j ~Xn��1(Xsing)
of � to ~Xn��1(Xsing) is an isomorphism:

�j ~Xn��1(Xsing)
: ~Xn��1(Xsing)

��! XnXsing: (6.18)

From this, we apparently get an isomorphism:

(G�H �)jG�H ~XnG�H(��1(Xsing))
= G�H

�
�j ~Xn(��1(Xsing))

�
; (6.19)

whose inverse is just given by G�H (�j ~Xn(��1(Xsing))
)�1. ~.

Now let G be a semisimple aÆne algebraic group and � an exterior
automorphism of the Dynkin diagram of G. We �x t� 2 T �0 � . Let us denote
by V (t�) the unipotent variety of CG(t�), by B(t�) a Borel subgroup of
CG(t�) and by U(t�) its unipotent radical. Now, we assume that � acts
without �xed points on the fundamental group ofG. By use of [37], Corollary
9.7, p. 61, this guarantees CG(t�) to be connected for t� 2 T �0 � .
Combining the two propositions above, we get, together with Theorem 3.1
and Corollary 5.2:

Corollary 6.1 Let

pt� : CG(t�)0 �B(t�) U(t�)! V (t�) (6.20)
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be the map induced by the conjugation map and assume that char(k) does not
divide the order of the fundamental group of G and of CG(t�). Furthermore,
assume that � acts without �xed points on the fundamental group of G.
Then

G�CG(t�) pt� : G�B(t�) U(t�)! G�CG(t�) V (t�) (6.21)

is a resolution of the reduced �bre ��1(�(t�))red of the quotient � : G� !
G�==G.

6.2 Grothendieck's Simultaneous Resolution

In this section, we want to construct a simultaneous resolution of the quo-
tient map � : G� ! G�==G. Therefore, we choose a Borel subgroup B of
G and a maximal torus T thereof, which are both stabilized by � . Here,
we assume that � acts without �xed points on the fundamental group of
G. By the remark in the paragraph preceding Corollary 6.1, this guarantees
CG(t�) to be connected for t� 2 T �0 � .
First, recall the de�nition of a simultaneous resolution, cf. [27], p. 45:

De�nition 6.1 A simultaneous resolution of a morphism � : X ! Y of
reduced varieties consists of a commutative diagram of morphisms of reduced
varieties

Z
� //

�

��

X

�

��
T

	 // Y;

(6.22)

such that the following properties hold:
(i) � is smooth,
(ii) 	 is �nite and surjective,
(iii) � is proper,
(iv) for all t 2 T , the morphism

�t : �
�1(t)! (��1(	(t)))red (6.23)

is a resolution of singularities.

Before constructing the simultaneous resolution in our situation we need
some preparations:
Let B act on B� and T on T� by conjugation. Then we have:

Lemma 6.1 The embedding T� ,! B� induces an isomorphism T�==T �=
B�==B.
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Proof: We have to show, that the restriction map of the invariant rings

	 : k[B� ]B ! k[T� ]T

f 7! f jT� (6.24)

is an isomorphism of rings:
1. Injectivity: The injectivity of 	 follows from the following claim:
Claim: We have: [

b2B

b T �0 � b
�1 � B� (6.25)

is a dense subset.
Proof of claim: To prove this, we use Proposition 2.6.
Recall that, in its proof, we de�ned a map �:

� : G=C0 � C0 ! G�

(gC0; h) 7! g h� g�1: (6.26)

Now we denote by � its restriction to B=T �0 � T �0 � :

� : B=T �0 � T �0 � ! G�

(b T �0 ; t�) 7! b t� b�1: (6.27)

Clearly, Im� � B� . Now, take �(e T �0 ; t�) 2 B� , where t� is a topologically
cyclic element of the Cartan subgroup < T �0 ; � >. By the proof of Proposi-
tion 2.6, we know, that ��1(�(e T �0 ; t�)) is �nite. Then, �

�1(�(e T �0 ; t�))
also has to be �nite. The claim now follows from the dimension formula.}.
The injectivity of 	 can now be proven as follows: Take f 2 k[B� ]B with
f jT� = 0. This implies:

f jS
b2B b T

�
0 � b

�1 = 0: (6.28)

By the claim, f vanishes on a dense subset hence f = 0.
2. Surjectivity: Recall that B �= T n U , cf. [13], Theorem 19.3, p. 123.
Therefore, we have B� �= T� � U , as algebraic varieties, because U is � -
stable. Denote the projection on the �rst factor by �. Choose f 2 k[T� ]T .
We will show that ��(f) 2 k[B� ]B and that ��(f)jT� = f . This yields the
surjectivity of 	:
The second property, i.e. ��(f)jT� = f , is apparent by construction.
Therefore, we have to show the B-invariance of ��(f), for f 2 k[T� ]T :
Let b = t u 2 B and x = t0� u0 2 B� , with t; t0 2 T and u; u0 2 U . We have
to show that ��(f)(x) = ��(f)(b x b�1). Now, a simple calculation yields,
that b x b�1 = t t0 � t�1 ��1 � û, for a suitable û 2 U . Then we conclude:

��(f)(b x b�1) = f(�(b x b�1)) = f(�(t t0 � t�1 ��1 � û)) =

f(t t0 � t�1) = f(t0 �) = f(�(x)) = ��(f)(x): (6.29)
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This proves the B-invariance of ��(f). ~.
Remark: The condition on the action of � was not used to derive this
lemma.

As a consequence we have:

Corollary 6.2 With the notation of Section 2.3, the following holds:

B�==B �= T�=T �= T �0 =(T=T
�
0 )
� �= T 0: (6.30)

Proof: The �rst part follows from Lemma 6.1, and the other isomorphisms
are given in Lemmas 2.7 and 2.8. ~.

Next, recall that for t� 2 T �0 � the group B(t�) := B\CG(t�)0 is a Borel
subgroup of CG(t�)0, by Lemma 4.2, and that U(t�) = U \ CG(t�)0 is its
unipotent radical. Furthermore, denote the quotient map B� ! B�==B by
�. The following two lemmas summarize the properties of �:

Lemma 6.2 � is smooth and � = p Æ �, where p is the quotient map p :
T� ! T 0, as in Lemma 2.8, and � : B� ! T� is the projection of the �rst
factor as de�ned in the proof of the surjectivity of Lemma 6.1. (Note that
here we identify T with T� via right multiplication with � .)

Proof: 1. � = p Æ �: First, observe that for f 2 k[B� ]B and x 2 B� we have
f(x) = f(xs) analogously to Lemma 2.10. Therefore, we have �(x) = �(xs),
for x 2 B� .
Now take x = b� = t� u 2 B� with t 2 T and u 2 U . By use of Lemma 4.1,
xs is conjugate to t� , such that �(x) = p(t�), where we have used Lemma
6.1. Now, the statement is immediate.
2. Smoothness of �: Since p corresponds, under the identi�cation of T� with
T , to the quotient map of T modulo a subtorus, see Lemma 2.7, we have that
p is smooth. Furthermore, � is smooth because it is a projection map. The
assertion now follows from the stability of smoothness under composition,
see [11], Chapter III Proposition 10.1, p. 268. ~.
Remark: For this lemma we also do not need that � acts on the fundamental
group of G without �xed points.

Lemma 6.3 In the situation described above, we have a B-equivariant iso-
morphism:

��1(�(t�)) �= B �B(t�) U(t�): (6.31)

Proof: First we show that the above identi�cation holds for the reduced �bre
��1(�(t�))red:
We already know, by the proof of the previous lemma, that for f 2 k[B� ]B
and x 2 B� we have f(x) = f(xs).
For x 2 ��1(�(t�)) we can, by Lemma 4.1 and Lemma 2.5, assume that
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xs 2 T �0 � , up to conjugacy in B. We have xs 2 ��1(�(t�)) and, therefore,
xs and t� have to be conjugate under (T=T �0 )

� , by Proposition 2.5. (Note
that no representative of an element of W� is contained in B.) Using our
assumption on the action of � on the fundamental group of G, we have that
CG(t�) is connected and, therefore, that CB(t�) = B(t�), which follows from
[37], Corollary 9.7, p. 61. By [2], Proposition 9.1, p. 128, we can identify
the B-orbit of t� with B=B(t�). Using this identi�cation, we de�ne a map:

	̂ : ��1(�(t�)) ! B=B(t�) (6.32)

x 7! xs: (6.33)

If we consider the characteristic polynomial in a given, faithful represen-
tation of ~G, we see that its coeÆcients have to be constant for all x 2
��1(�(t�)). (Recall that the semisimple part of a matrix X can be given
as a polynomial in X only involving the coeÆcients of the characteristic
polynomial, cf. [14], Proposition 4.2, p. 17.) We get that 	̂ is an algebraic
morphism. 	̂ is clearly B-equivariant. Furthermore, we have:

	̂�1(eB(t�)) = fx 2 ��1(�(t�)); xs = t�g = U(t�): (6.34)

The statement now follows from [27], Section 3.7, Lemma 4, p. 26. Therefore
we have:

��1(�(t�))red �= B �B(t�) U(t�): (6.35)

Next, we want to show that ��1(�(t�) is reduced:
Since � is smooth, it is 
at and its schematic �bres are regular by [11],
Chapter III, Theorem 10.2, p. 269. The regularity of the �bres of � implies
that they are also Cohen-Macaulay, see [11], Chapter II, Theorem 8.21A, p.
184. Now, the reducedness of the �bres of � follows from [21], Section 17.I,
p. 125. ~.

To construct the simultaneous resolution of � : G� ! G�==G, we consider
the space G�B B� which, clearly, is a smooth variety. We de�ne a map:

� : G�B B� ! G� (6.36)

g � b� 7! g b� b�1 (6.37)

By Lemma 4.1 and its proof, this map is surjective and proper.
We can construct a second map � : G�BB� ! B�==B �= T 0 in the following
way:
If we consider B�==B as a B-variety with trivial B-action, we can de�ne the
following map:

G�B � : G�B B� �! G�B (B�==B)
��! G=B �B�==B

g � b� 7! g � [b� ] 7! (gB; [b� ]);
(6.38)



CHAPTER 6. SUBREGULAR SINGULARITIES 96

where [b� ] denotes a class in B�==B. (Note that the second isomorphism
follows from [27], Section 3.7, Lemma 1, p. 25 with the trivial G-action on
B�==B.) Then we set

� := pr2 ÆG�B � : G�B B� ! B�==B �= T 0: (6.39)

We have the following property:

Lemma 6.4 � is a smooth morphism.

Proof: Since pr2 is smooth as projection map and by [11], Chapter III,
Proposition 10.1, p. 268, we only need to show, that G �B � is smooth.
Furthermore, since B� and G=B � T 0 are smooth varieties, we only need
to show, that (d(G �B �))x is surjective for every x 2 G �B B� , by [11],
Chapter III, Proposition 10.4, p. 270. Recall that, by [27], Section 3.7,
the associated bundle � : G �B B� ! G=B is locally trivial in the etale
topology. So for every y 2 G=B we can �nd an open set U � G=B and an
etale morphism � : U 0 ! U , such that the following identity holds:

��(G�B B�) �= U 0 �B�: (6.40)

For x 2 G�B B� we put y = �(x).
Now we have a commutative diagram

U 0 �B� �0 //

id��

��

��1(U)

(G�B�)j��1(U)

��
U 0 � T 0 ��id // U � T 0;

(6.41)

where �0 is induced from � by base change and is, therefore, again etale ,
see [11], Chapter III, Proposition 10.1, p. 268. For x0 2 �0�1(x) we get an
induced diagram:

Tx0(U
0 �B�) (d�0)x0 //

(d(id��))x0

��

Tx(G�B B�)

(d(G�B�))x

��
T(id��)(x0)(U

0 � T 0) (d(��id)(id��)(x0)) // TG�B�(x)(G=B � T 0);

(6.42)

where the horizontal arrows are isomorphisms, because the corresponding
morphisms are etale. The assertion now follows from the surjectivity of
(d(id � �))x0 , which follows from the smoothness of �. ~.

As a last preparation for our simultaneous resolution, we need the follow-
ing lemma for quotients by regular �nite group actions on varieties, which
is standard in geometric invariant theory:
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Lemma 6.5 Let X be an aÆne variety, W a �nite group, which acts reg-
ularly on X. Then the quotient map �X ! X=W is a �nite morphism.

Proof: Let �� : k[X]W ,! k[X] be the inclusion map. We will show, that
k[X] is a �nite k[X]W -module. Since both rings are coordinate rings of aÆne
varieties, we clearly have that k[X] is a �nitely generated k[X]W -algebra.
Therefore, we only need to show that every element of k[X] is integral over
k[X]W . If f 2 k[X], we choose

P (T ) =
Y
w2W

(T � w(f)) 2 �k[X]W
�
[T ]: (6.43)

P is a monic and P (f) = 0. ~.
With these preparations we can construct the simultaneous resolution:

Theorem 6.1 Let G be as above, i.e. � acts without �xed points on the
fundamental group of G. Furthermore, assume that char(k) > rkG+ 1.
Then the following diagram gives a simultaneous resolution of � : G� !
G�==G:

G�B B� � //

�

��

G�

�

��
T 0

	 // T 0=W� ;

(6.44)

where � and � are de�ned in the Equations 6.37 and 6.39, and where 	 is
the quotient map of T 0 by W� .

Proof: Recall that, by the paragraph preceding Corollary 6.1, the assump-
tion on the fundamental group of G implies that all centralizers CG(t�) of
semisimple elements t� 2 T �0 � are connected.
The �niteness of 	 was shown in Lemma 6.5. We have proven the smooth-
ness of � in Lemma 6.4. The proof of Lemma 4.1 yields the properness of
�. We therefore still have to show that � gives, �brewise, a resolution of
the reduced �bres and that the diagram is commutative. In this proof, we
will denote the class of t� 2 T� in T 0 by [t� ].
1. Commutativity of the diagram: Take x = g � t�u 2 G �B B� . Then we
have:

�(�(x)) = �(g t�u g�1) = �(t�u) = �(t�); (6.45)

where we have used Lemma 2.10 and that (t�u)s is U conjugate to t� by
Lemma 4.1 in the last step. On the other hand, we calculate:

	(�(x)) = 	(pr2(gB; [t� ])) = 	([t� ]) = �(t�); (6.46)
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where the �rst equality follows from our de�nition of � and the description
of � in Lemma 6.2 and the last equality follows from Lemma 2.8 and Lemma
2.7.
2. �j��1([t� ]) : ��1([t� ]) ! ��1(	([t� ]))red is a resolution of singularities:

W.l.o.g. we can assume that t� 2 T �0 � . Note, that our assumption on the
characteristic implies char(k) > rk CG(t�)0 + 1. Hence char(k) does not
divide the fundamental group of CG(t�)0, for all t� 2 T �0 � .
Furthermore, we have:

��1([t� ]) = (G�B �)�1(G=B � f[t� ]g)
= G�B (��1([t� ])
�= G�B (B �B(t�) U(t�))
�= G�B(t�) U(t�)
�= G�CG(t�) (CG(t�)�B(t�) U(t�)); (6.47)

where all isomorphies areG-equivariant and where the third line follows from
Lemma 6.3 while the forth and �fth follow from [27], Section 3.7, Lemma 2,
p. 26. There, an explicit formula for the isomorphism G �H (H �K F ) !
G�K V for a chain of closed subgroups K < H < G of an algebraic group
and a K-variety V is presented. It is given by g � h � v 7! gh � v and its
inverse by g � v 7! g � 1 � v. Using this and our isomorphism in Lemma 6.3,
we see that, under the identi�cations above, �j��1([t� ]) takes the following
form:

g � (c � u) 7! g t� c u c�1 g�1; (6.48)

for every g � (c � u) 2 G�CG(t�) (CG(t�)�B(t�) U(t�)).
Recall that by Theorem 3.1, we get a G-equivariant isomorphism

��1(	([t� ]))red �= G�CG(t�) U(t�): (6.49)

Applying this isomorphism, we calculate that, under the above identi�ca-
tions of the �bres of � and those of �, our map �j��1([t� ]) induces a mapb�:

b� : G�CG(t�)
�
CG(t�)�B(t�) U(t�)

�
! G�CG(t�) V (t�)

g � (c � u) 7! g � (c u c�1); (6.50)

which is exactly the resolution map from Lemma 6.1. ~.
As a consequence we get:

Corollary 6.3 If g� 2 G� is regular and semisimple, we have:

j��1(g�)j = jW� j (6.51)
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Proof: Under our assumption, we can �nd an element t� 2 T �0 � which is
G-conjugate to g� , by Proposition 2.3. Denote its image under � in T 0=W�

by t� . By Theorem 6.1, we have, for every t0 2 	�1(t� ), that

�j��1(t0) : ��1(t0)! (��1(t�))red (6.52)

is a resolution of singularities. Because of the regularity of t� , we conclude
CG(t�) �= T �0 , a torus, see Section 3.1. Hence, (��1(t�))red is smooth, by
Lemma 3.1, and �j��1(t0) is an isomorphism.
Therefore we have:

j��1(g�)j = j	�1(t�)j: (6.53)

By our description of regular semisimple elements in Corollary 3.3, we see
that �0([t� ]) 6= 1 for all roots �0 2 R0, where [t� ] denotes the class of t� in
T 0. Therefore, we get j	�1(t�)j = jW� j. ~.

6.3 Transversal Slices and Deformations

In this subsection, we will construct a transversal slice to a subregular
element of G� , i.e an element x, whose centralizer CG(x) has dimension
dimT �0 +2, the second minimal possibility, by Corollary 3.1. We shall inves-
tigate the singularities in this slice. This will only be carried out for G simple
and speci�c �bres. We will also establish a link to the deformation theory
of this singularity and provide a simultaneous resolution of the deformation.
To achieve this, we need further restrictions on the characteristic.

First, we recall the de�nition of transversal slices to orbits, which is given
e.g. in [27], Section 5.1, p. 60:

De�nition 6.2 Let G be an algebraic group and X be a G-variety. A
transversal slice S to the G-orbit of a point x 2 X at x is a locally closed
subvariety of X, such that the following properties hold:
(i) x 2 S,
(ii) the morphism G� S ! X given by (g; s) 7! g s is smooth,
(iii) the dimension of S is the smallest possible, such that (i) and (ii) hold.

Without proof, we quote from [27], Section 5.1, Lemma 1, p. 60 or [20],
Lemma III.1, p. 96, the following lemma on the existence of transversal
slices:

Lemma 6.6 Keeping the notation as above, we have: If x is a smooth point
of an aÆne variety X, then a transversal slice S to the G orbit of a point
x 2 X exists. Moreover, we can choose S to be stable under a linearly
reductive or a �nite subgroup of the stabilizer Gx.

If G is reductive and the orbit G :x is closed and if, in char(k) > 0, the
orbit map G! G :x is separable, then there exists a much stronger version
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of the lemma, Luna's Slice Theorem, a proof of which can be found in [28],
x4, Satz, p. 97, or [20], xIII.1, Th�eor�eme du Slice, p. 97. The condition on
the characteristic is discussed in [1], Section 7:

Theorem 6.2 Let G be a reductive group, X an aÆne G-variety and � :
X ! X==G the categorical quotient. Take a point x 2 X, such that G:x � X
is closed and such that the orbit map G! G: x is separable and such that we
can decompose TxX = TxG:x � U into subspaces, where U is stable under
the induced action of the stabilizer Gx on TxX. Then there exists a locally
closed subvariety S � X, such that the following properties hold:
(i) x 2 S.
(ii) S is H := Gx-stable.
(iii) The map G � S ! X given by (g; s) 7! g s induces an etale, G-
equivariant morphism

	 : G�H S ! X; (6.54)

which has an aÆne image.
(iv) The morphism induced by 	 on the quotients

	==G : S==H �= (G�H S)==G! X==G (6.55)

is an etale morphism.
(v) The following diagram is Cartesian:

G�H S
	 //

��

X

��
S==H

	==G // X==G;

(6.56)

where the vertical arrows are the quotient maps.

Remark: The splitting of the tangent space TxX is immediate in charac-
teristic zero because, in this case, Gx is linearly reductive. It is reductive in
any case.

After this digression on transversal slices, we return to our previous
situation, e.g. G semisimple and � an exterior automorphism. From now on
we assume, unless explicitly stated otherwise, that the group G0, as de�ned
in Section 2.4, is simply connected. Recall that, by Proposition 5.2, the
quotient morphism � : G� ! G�==G is 
at and that its �bres are normal.
Take x 2 G� and let S be a transversal slice to the G orbit of x, which exists
by Lemma 6.6. Set

� = �jS : S ! T �0 �=fW: (6.57)

Then, we have the following result:
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Lemma 6.7 Assume that char(k) does not divide the order of the funda-
mental group of G. Then the morphism � is 
at, its �bres are normal and
y 2 S is nonsingular in ��1(�(y)), i� it is a regular element of G� .

Proof: This proof is analogous to the proof of the Lemma in [27], Section
5.2, p. 64f. ~.

From now on, we assume, additionally, that � has no �xed points on
the fundamental group of G, because we want to apply the results of the
previous section.
We consider the simultaneous resolution of � : G� ! T 0=W� as given in
Theorem 6.1:

G�B B� � //

�

��

G�

�

��
T 0

	 // T 0=W� :

(6.58)

Now we set S0 := ��1(S) := (G�BB�)�G�S and �0 := �jS0 and �0 := �jS0 .
Then we have the following assertion:

Lemma 6.8 Assume char(k) > rkG+ 1. Then the following diagram is a
simultaneous resolution of � : S ! T 0=W� :

S0
�0 //

�0

��

S

�

��
T 0

	 // T 0=W� :

(6.59)

Proof: This proof is in analogy to the proof of the Corollary in Section 5.3
of [27], p. 65f. ~.

Our next aim is to establish a link to deformation theory. Therefore we
restrict from now on to the case where G is simple, unless stated otherwise.
Furthermore, we assume that � acts without �xed points on the fundamental
group of G. This implies that all centralizers of semisimple elements are
connected by the remark preceding Corollary 6.1. In addition, assume that
the group G0, as de�ned in Section 2.4, is simply connected. This guarantees
the quotient space G�==G to be an aÆne space, by Corollary 2.6
We have the following statement:
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Proposition 6.3 Keep all the assumptions made above and assume addi-
tionally that char(k) is excellent for G, � .
Then we have:
For t� 2 T �0 � , we �nd an open subset V 2 CG(t�) which is a transversal
slice to t� in G� with respect to the G-action. Furthermore, it ful�lls the
properties of Theorem 6.2, i.e.:
(i) x 2 V t� .
(ii) V t� is CG(t�)-stable.
(iii) The map G�V t� ! G� given by (g; v t�) 7! g v t� g�1 induces an etale
G-equivariant morphism

	 : G�CG(t�) V t� ! G�; (6.60)

which has an aÆne image.
(iv) The morphism induced by 	

	==G : V t�==CG(t�) �= (G�CG(t�) V t�)==G! G�==G (6.61)

is an etale morphism.
(v) The following diagram is Cartesian:

G�CG(t�) V t� 	 //

��

G�

��
V t�==H

	==G // G�==G;

(6.62)

where the vertical arrows are the quotient maps.

Proof: Note that, under our assumptions, the orbit of t� is closed, by Corol-
lary 3.1 and that the orbit maps of G on G� are separable, by Theorem 1.3.
1. In order to apply Theorem 6.2, we have to show that there exists a

CG(t�)-stable splitting of the tangent space:

Tt�G� �= Tt�G:t� � Lie (CG(t�)): (6.63)

To prove this, we consider the maps:

� : G �! G� �! G
g 7! g t� g�1 7! g t� g�1 (t�)�1:

(6.64)

Then we easily calculate (d�(X))e = X �Ad(t�)(X) which implies:

Im (d�)e = (Ad(t�)� id)(g): (6.65)
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Since Ad(t�)� id 2 gl(g) is diagonalizable, we have the following decompo-
sition into eigenspaces g� to the eigenvalues � 2 k:

g = ��2kg�: (6.66)

Note that we have g0 = Lie (CG(t�)), [2], Proposition 9.1, p. 128. So we get

Ker (d�)e = g0 (6.67)

Im (d�)e = ��2k�g�: (6.68)

Since the action of CG(t�) commutes with the action of t� on g, these
eigenspaces of Ad(t�) have to be CG(t�)-stable. Since Tt� (G:t�) is isomor-
phic to Im (d�)e under the right translation rt��1 : G� ! G, we get the
desired decomposition of Tt�G� .
Now, we can apply Theorem 6.2 to get the existence of a transversal slice S
with all the properties listed in the proposition.
To prove our proposition, we still have to show:
2. S can be chosen as an open subset of CG(t�): This is guaranteed by the
reduction of the proof of Theorem 6.2 as given in [28], x4, Satz p. 97, to the
fundamental lemma, see [28], x4, Fundamentallemma, p. 98, if we can show
the following:
(i) The map

 : G�CG(t�) CG(t�)t� ! G�

g � x 7! g x g�1 (6.69)

is etale in e � t� .
(ii) The orbits G � ft�g � G�CG(t�) CG(t�)t� and G:t� � G� are closed in
their respective ambient spaces.
(iii) The map

 jG�ft�g : G � ft�g ! G� (6.70)

is injective.
(i) follows by [11], Chapter III, Proposition 10.4, p. 270, from the fact that,
by the calculations in 1., the tangent map (d )e�t� is surjective and G� and
G�CG(t�) CG(t�)t� are smooth and of equal dimension.
(ii) and (iii) are immediate by our assumptions, respectively the de�nition
of associated �bre bundles. ~.

From the fundamental lemma, [28], x4, Fundamentallemma, p. 98, we
get two important consequences:

Corollary 6.4 Under the assumptions of the Proposition 6.3, we have that
V t� consists of complete �bres of the adjoint quotient

�t� : CG(t�)t� ! CG(t�)t�==CG(t�): (6.71)
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In particular, we can consider V t�==CG(t�) as a subset of CG(t�)t�==CG(t�):

V t�==CG(t�) � CG(t�)t�==CG(t�) (6.72)

and the nilpotent variety V (t�) of CG(t�) is a subset of V .

By the classical results [35], Theorem 6.1 and Corollary 96.4, p. 294f, we
know

CG(t�)t�==CG(t�) �= T �0 �=cW ; (6.73)

where cW < fW is the Weyl group of CG(t�).

Corollary 6.5 With these notions and the assumptions of the Proposition
6.3, we consider the (rami�ed) covering map:

	 : T �0 �=
cW ! T �0 �=

fWct0� 7! t0� ; (6.74)

where ct0� denotes the class of t0� in T �0 �=
cW and t0� denotes the class of t0�

in T �0 �=
fW. Then 	 is etale in bt� .

We can give a second, direct proof of this corollary:
Proof: Note that the rami�cation set R	 of 	 can easily be described as:

R	 = fct0� 2 T �0 �=cW; 9w 2 fWncW ; [w:t0� = ct0�g: (6.75)

Assume that 	 is rami�ed in bt� 2 T �0 =cW , then we would �ndw 2 fWncW with
w:t� = t� , which is absurd, since CG(t�) is connected by our assumption.
~.

Now we choose an open set V � CG(t�) as in Proposition 6.3 and de�ne
an embedding

� : V ,! G�CG(t�) V t�
u 7! e � u t�; (6.76)

as the �bre over eCG(t�) 2 G=CG(t�).
Furthermore, we de�ne a map � : G�CG(t�) V t� ! V==CG(t�) in the follow-
ing way:
First recall that we have the isomorphism:

G�CG(t�) (V t�==CG(t�)) ! G=CG(t�)� V t�==CG(t�)
g � [vt� ]0 7! (gCG(t�); [vt� ]

0); (6.77)

where [vt� ]0 denotes the class of ut� in V t�==CG(t�). (Note that CG(t�)
acts trivially on V t�==CG(t�).) Using this identi�cation we set � := pr2 Æ
G �CG(t�) �t� jV , where �t� : CG(t�) ! CG(t�)t�==CG(t�) is the adjoint
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quotient of CG(t�).
Then, we apparently have the following commutative diagram:

V
� //

�t� jV

&&LLLLLLLLLLLLLLLLLLLLLLLL G�CG(t�) (V t�==CG(t�))

�

��
V t�==CG(t�):

(6.78)

Now, we take x 2 V and S � V , a transversal slice to the CG(t�)-orbit
of x at x, which exists by Lemma 6.6. (To be precise, we take a transversal
slice in CG(t�) and intersect it with V .)
Then, we have the following commutative diagram:

S
�0 //

�t� jS

$$JJJJJJJJJJJJJJJJJJJJJ V
� // G�CG(t�) V t�

 j
G�CG(t�)V t� //

�

��

G�

�

��
V t�==CG(t�)

	jV t�==CG(t�) // G�==G;

(6.79)

where �0 : S ! V is the embedding, where  was de�ned in the proof of
Proposition 6.3, � and � in the last two paragraphs and 	 in Corollary 6.5.
Now, we get the following result:

Lemma 6.9 Keeping the assumptions of Proposition 6.3 we have: St� is a
transversal slice to the G-orbit of xt� at the point xt� in G� .

Proof: We clearly have xt� 2 St� .
Next, we show the smoothness of the map:

� : G� St� ! G�

(g; st�) 7! g st� g�1: (6.80)

Using the trivial action of CG(t�) on St� , observe that we have the following
identi�cation, by [27], Section 3.7, Lemma 2, p. 26:

G� St� ! G�CG(t�) (CG(t�)� St�); (6.81)

given by (g; st�) ! g � (e; st�), for all (g; st�) 2 G � St� . Its inverse is
given by g � (c; st�) 7! (gc; st�).
Now, let � be the orbit map:

� : CG(t�)� St� ! V t�

(g; st�) 7! g st� g�1; (6.82)
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which is smooth by assumption. Analogously to the proof of Lemma 6.4,
where we have proven the smoothness of G �B � as a morphism between
smooth varieties under the assumption of � to be smooth, we get the smooth-
ness of G�CG(t�) �:

G�CG(t�) � : G�CG(t�) (CG(t�)� St�)! G�CG(t�) V t�: (6.83)

But, by Proposition 6.3, we know that we have an etale map:

	 : G�CG(t�) V t� ! G�

g � ut� 7! g ut� g�1: (6.84)

Observing that � = 	 Æ G �CG(t�) �, and using the identi�cation between
G�St� and G�CG(t�) (CG(t�)�St�), as above, the smoothness of � follows
from [11], Proposition 10.1, p. 268.
A simple calculation on dimensions gives

dimG� = dimSt� + codimG� St�; (6.85)

from which the minimality property of St� is immediate ~.
From now on, we consider elements t� 2 T �0 � , such that

(i) CG(t�) has maximal semisimple rank, i.e. the Dynkin diagram �(CG(t�))
of R(CG(t�)) has s = dimT �0 points,
and such that
(ii) this Dynkin diagram �(CG(t�)) is connected.
Furthermore, we require char(k) = 0 or char(k) > 4 cox(G) � 2, where
cox(G) is the Coxeter number of R(G), the order of the Coxeter element,
which we summarize in the following table, see [3], Planches, p. 250�:

Type G An Bn Cn Dn E6 E7 E8 F4 G2

cox(G) n+ 1 2n 2n 2n� 2 12 18 30 12 6

So, in particular, we have char(k) > 4 cox(CG(t�))� 2 > rk (CG(t�)) + 1.
If char(k) = 0, there exist the following possibilities for the type of CG(t�),
see Theorem 3.2:

�(G) A2n A2n�1 Dn+1; �
2 = 1 E6 D4; �

3 = 1

�(CG(t�)) Bn; Cn Cn; Dn Bn C4; F4 A2; G2

Keeping the same restriction on the characteristic, we de�ne a simple sin-
gularity of type �, where X denotes a singular variety and the indicated
groups are �nite subgroups of SL2(k), see [27], Sections 6.1,6.2, p. 75�:
1. � homogeneous:
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X Type (�) Finite group

A 2=Zn+1 An Zn+1, cyclic group
A 2=D n�2 Dn D n�2 , binary dihedral group
A 2=T E6 T, binary tetrahedral group
A 2=O E7 O , binary octahedral group
A 2=I E8 I, binary icosahedral group

2. � inhomogeneous:
First, we de�ne the associated homogeneous Dynkin diagram �h by the fol-
lowing table:

� Bn Cn F4 G2

�h A2n�1 Dn+1 E6 D4

The space X for � will be the same as in the case for �h but, additionally,
we have a group � �= Aut(�h) < Aut(X) which acts freely on XnXsing. We
have the following list, keeping the designations of the groups as above:

X Type (�) �

A 2=Z2n Bn D n=Z2n �= Z=2Z
A 2=D n�1 Cn D 2(n�1)=D n�1 �= Z=2Z
A 2=T F4 O=T �= Z=2Z
A 2=D 2 G2 O=D 2 �= S3

The singular spaces X with the naturally induced symmetry � will be de-
noted by (X; �).

To establish the bridge from our situation inside the group to these kind
of singularities, we need some further notions:
We begin with a de�nition which holds in the more general context of Chap-
ter 3, i.e. G semisimple and � an exterior automorphism of G:

De�nition 6.3 An element x 2 G� is called subregular, i� dimCG(x) =
dimT �0 � + 2.

Remark: By Corollary 3.1, this is the second smallest possibility for the
dimension of dimCG(x), for x 2 G� .

We have the following description on the number of subregular G con-
jugacy classes in each �bre of � : G� ! G�==G:

Lemma 6.10 If � acts with no �xed points on the fundamental group of
G, we have exactly as many subregular G-conjugacy classes in each �bre
��1(�(t�)) of � : G� ! G�==G, for t� 2 T �0 � , as �(CG(t�)) has connected
components.
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Proof: This follows directly from the description of the �bre structure in
Theorem 3.1, which states that the subregular classes in ��1(�(t�)) corre-
spond to subregular unipotent classes in CG(t�)0 = CG(t�), together with
Lemma 2 in [27], Section 5.4, p. 67f. (Note that CG(t�)0 = CG(t�) holds
by [37], Corollary 9.7, p. 62.) ~.

Now, we return to our previous situation: Fix a semisimple element
t� 2 G� , such that our requirements for the root system R(CG(t�)) are
ful�lled, as well as the restriction on the characteristic, e.g. char(k) = 0
or char(k) > 4 cox(G) � 2. Furthermore, assume the conditions on � to
have no �xed points on the fundamental group of G and on G0 to be simply
connected.
Then let u 2 CG(t�) be a (up to conjugacy unique) subregular unipotent
element and let S be a transversal slice to the CG(t�) orbit of v at v in V
as in Proposition 6.3. We have the following lemma:

Lemma 6.11 Under our assumptions the following holds:
St� \ ��1(�(t�)) �= S \ V (t�) has an isolated singularity of type �(CG(t�))
in u. Here, V (t�) is the unipotent variety of CG(t�).

Proof: This follows from [27], Section 8.4 Theorem, p. 129 for an analogous
situation in Lie(CG(t�)) together with the Comparison Theorem 3.15 in
[27], p. 41. Note, that this Comparison Theorem also holds in char(k) >
4 cox(G) � 2 because of our more general version of the Slice Theorem 6.2.
~.

To get a connection with the deformation theory of the singularity St� \
��1(�(t�)) �= S \ V (t�) we have to choose S in a special way:
We consider the centralizer CCG(t�)(u) for our subregular unipotent element
in u 2 V (t�). By [27], Section 7.5, p. 114�, we have:

CCG(t�)(u)=CCG(t�)(u)0
�= Aut(�(CG(t�))h): (6.86)

We choose S to be invariant under a section of the projection to the �nite
group CCG(t�)(u) ! CCG(t�)(u)=CCG(t�)(u)0, where we also used Lemma 1
in [27], Section 7.6, p. 118.
Now we are ready to establish the connection to the deformation theory of
these singularities. For an account on deformation theory of singularities
with or without symmetry, we refer to [27], Section 2.
We have our main result of this chapter:

Theorem 6.3 Under the assumptions above, we have:
The map � := �jSt� : St� ! G�==G induces a formal semiuniversal defor-
mation of a simple singularity of type �(CG(t�)).
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Proof: We consider the following commutative diagram:

St�
� //

�t� jSt�

��

�

##HHHHHHHHHHHHHHHHHHH G�

�

��

T �0 �=
cW 	 // T �0 �=

fW;

(6.87)

where � is the inclusion and where, as in Corollary 6.5, cW is the Weyl group
of CG(t�) and 	 the corresponding (rami�ed) covering map. From Lemma
6.7 we have that � is 
at.
Now, we consider the corresponding completions in ut� , bt� respectively t� ,
which we denote by a hat. The diagram then takes the form:

\(St�; ut�)
�̂ //

\�t� jSt�

��

b�

%%KKKKKKKKKKKKKKKKKKKKK
\(G�; ut�)

�̂

��
\

(T �0 �=
cW ; bt�) b	 // \

(T �0 �=
fW ; t�):

(6.88)

Since 	 is etale in bt� , by Corollary 6.5, b	 is an isomorphism, see [11],
Chapter III, Exercise 10.4, p. 275.
By [27], Section 2.8, Corollary, p. 16, we have the following equivalence:

�jSt� is semiuniversal deformation, �t� jSt� is semiuniversal deformation:
(6.89)

Now, the statement follows from [27], Section 8.7, Corollary, p. 137. ~.
Keeping the same notations as for the theorem above we get a simulta-

neous resolution of the semiuniversal deformation, using the statement and
notations of Lemma 6.8:

Theorem 6.4 Let � : St� ! T �0 �=
fW be our semiuniversal deformation

of the �bre ��1(�(t�)) = St� \ ��1(�(t�)), which is a singularity of type
�(CG(t�)). Then the following diagram provides a simultaneous resolution

of the semiuniversal deformation � : St� ! T �0 �=
fW:

S0
�0 //

�0

��

St�

�

��

T 0
	 // T �0 �=

fW :

(6.90)



Chapter 7

Conclusion

We consider a non-connected linear algebraic group ~G = G o �, where G
is a semisimple linear algebraic group and where � is a �nite subgroup of
the group of diagram automorphisms of the Dynkin diagram �(G) of G.
For every � 2 �, we regard the corresponding component G� of ~G and
investigate the adjoint action of G on G� . In particular, we are interested
in the adjoint quotient G�==G.
Now, consider a slightly di�erent situation: Let T be a � stable maximal
torus of G and T �0 the unit component of the group of its �xed points under

� . De�ne fW := NG(< T �0 ; � >)=T �0 , the normalizer in G of the group
generated by T �0 and � modulo T �0 , which is a �nite group by our results.

We have shown that fW has the following structure:

fW �= (T=T �0 )
� oW� ;

where W� is the �xed point Weyl group.
Using representation theory of ~G in the case where � is cyclic, we deduced
the following results:

� We have an isomorphism G�==G �= T �0 �=
fW .

� In certain cases, in particular for simply connected G, this quotient is
an aÆne space.

Furthermore, we investigated the structure of the �bres of the quotient map
� : G� ! G�==G. They have the following structure:

� Each �bre of � contains at least one element of T �0 � (by the results
above). Then, we have the following description of the reduced �bre
as an associated bundle:

��1(�(t�))red �= G�CG(t�) V (t�):

Here V (t�) is the unipotent variety of the reductive group CG(t�).

110



CHAPTER 7. CONCLUSION 111

� Each �bre consists of �nitely many conjugacy classes, in particular,
there is one dense class (called the regular class) and one closed class
(the one corresponding to the semisimple elements of this �bre). The
whole structure of the �bre is gouverned by the structure of the unipo-
tent variety of CG(t�).

� In characteristic zero, the Dynkin diagram of the centralizer of a
semisimple element is a proper subdiagram of the twisted aÆne Dynkin
diagram R(ord �).

� For simply connected G, the quotient map is 
at and its �bres are
reduced and normal.

We call an element in G� regular, if its centralizer (in G) is of minimal
possible dimension. Then the dense orbit of each �bre consists of regular
elements.

In the case of simply connected G, we constructed a Steinberg cross
section, a morphism � : T �0 �=

fW ! G� , meeting each �bre exactly once in
its regular class. This cross section allowed us to show, that the di�erential
(d�)x, of the quotient map � : G� ! G�==G in a point x, is surjective if and
only if x is a regular element.

Finally, we established a connection between the theory of simple singu-
larities and simple algebraic groups by �nding a singularity of type �(CG(t�))
in a transversal slice to the orbit of a subregular element of the �bre over
�(t�) inside the corresponding �bre, in the case where the Dynkin diagram
�(CG(t�)) is connected. This discussion follows the strategy given by Peter
Slodowy in [27]

In recent work, Stefan Helmke and Peter Slodowy managed to establish
a similar connection between centrally extended holomorphic loop groups
LG o C � , for a simply connected simple group G, and elliptic singulari-
ties, [12]. A holomorphic loop group is the group of all holomorphic maps
� : C � ! G. (In the semidirect product above q 2 C � acts on a loop � 2 LG
by (q:�)(z) = �(q z).)
The crucial step in their construction was the interpretation of conjugacy
classes in the loop group as isomorphism classes of holomorphic G-bundles
over a certain elliptic curve E:
There exists a one-to-one correspondence between LG-conjugacy classes in
LG� fqg for �xed value of q with jqj < 1 and isomorphism classes of prin-
cipal G-bundles over E = C �=Z, where Z acts on C � by multiplication with
powers of q. (This identi�cation goes back to Looijenga, for details see [12].)
This interpretation gave them a thorough knowledge of the adjoint action
of the loop group.
Furthermore, Br�uchert has constructed a Steinberg cross section in the case
of Kac Moody groups, [6].
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If we consider now a non-connected loop group, i.e. a loop group LG where
G is not simply connected, we expect similar results for its exterior com-
ponents. The conjugacy classes in these exterior components should be
interpreted as isomorphism classes of principal G-bundles over an elliptic
curve E which are not topologically trivial. Using this, we think that we
can understand the structure of exterior conjugacy classes for non-connected
loop groups.



Appendix A

A No-Go Result

In this appendix, we want to show, that it is not possible to �nd for every
element in G� a G-conjugate in G�0� . The proof of this will be given by a
case-by-case analysis. We restrict ourselves to the case, where G is simple.

Proposition A.1 Let G be a simple aÆne algebraic group of type ADE
and � a nontrivial diagram automorphism of G. Then we can �nd an element
of G� , which is not G-conjugate into G�0� .

Remark: By Proposition 2.3, the element in the statement of the proposi-
tion cannot be a semisimple one.
Proof: The proof will be given by contradiction.
So, let us assume that every element x 2 G� is G-conjugate to an element
y 2 G�0� . Because of Proposition 2.3 and the fact that every semisim-
ple element of G�0 is G�0-conjugate into a maximal torus thereof, we can
assume w.l.o.g. that the semisimple parts xs and ys of x and y, respec-
tively, are contained in T �0 � and that y = g x g�1, yielding g xu g

�1 2 G�0 .
By use of Proposition 2.5, we can �nd an element h 2 CG(xs), such that
g h 2 NG(< T �0 ; � >). (Note that < T �0 ; � > is a Cartan subgroup by the
remark following Proposition 2.1.) We will show below, case-by-case, that
we can �nd x 2 G� ful�lling the following properties:
(i) x is regular, i.e. xu is regular in CG(xs)0, by Corollary 3.1.
(ii) no regular unipotent element of CG(xs)0 is contained in CG(xs)0 \G�0 .
This means that xs is \less regular" in G� than in G�0� .
Then, xu =2 G�0 and hxu h

�1 =2 G�0 , for all h 2 CG(xs). Hence, we can
assume w.l.o.g. g = n 2 NG(< T �0 ; � >).
Now, set:

p : NG(< T �0 ; � >)! fW �=W� n (T=T �0 )
� ; (A.1)

the quotient map by T �0 , see Lemma 2.6. Then, we can �nd a decomposition
(unique up to a factor in T �0 ) for every n 2 NG(< T �0 ; � >):

n = n0 n00; (A.2)
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with n00 2 p�1((T=T �0 )
� ) and n0 2 p�1(W� ). Since we have, again by

Lemma 2.6, that p�1(W� ) � G�0 , we conclude that nxn
�1 2 G�0� implies

n00 xn00�1 2 G�0� . Therefore, we can consider, w.o.l.g., n 2 p�1((T=T �0 )� ).
This will also be done by a case-by-case analysis. Recall that, by Section
2.3, (T=T �0 )

� , acts on T �0 � by left translations, therefore by multiplication
with elements in T �0 . Denote the corresponding subgroup of T �0 by H, as in
Section 2.3.
Next we will carry out the indicated case-by-case arguments:
In this case-by-case analysis, we will make use of the explicit description of
centralizers of elements in T �0 � , as given in the proof of Proposition 3.1, as
well as the description of irregular elements, as given in Theorem 4.1 and
Corollary 3.3. Furthermore, we will use the notation introduced in Chapters
2-4, and we will �x a Borel subgroup B.
We have to distinguish three cases:
1. The groups of type A2n�1, E6 and Dn with �2 = 1,
2. the case A2n,
3. the case D4, �

3 = 1.

Case 1: A2n�1, E6 and Dn with �2 = 1: In this case, note, that �R1 has a
Q-closed root subsystem of type B2 and that its long roots are short roots
in R0. Let �� and ~�� the simple roots of this B2-root subsystem (They can be
chosen to be also simple in �R1). Assume �� to be short and ~�� to be long.
Then, �� := ��+ ~�� is also a short root. By the construction of �R1 and R0 in
Section 1.2, we have:

�� � �� = ~�� 2 Z(R0): (A.3)

Set �0 = d(��) and �0 = d( ��).
Then, we choose x in the following way:

��1xs 2 T �0 �0; �0n
[


0 2 R0+

0 6= �0; �0

T �0 �0 ; (A.4)

where we impose ~��(��1xs) = �1 and ��(��1xs) = 1, whence ��(��1xs) = �1.
(Observe, that this implies (2��+ ~��)(��1xs) = �1, where 2�� + ~�� is long.)
Now, we see that CG(xs)0 is generated by S��0(c; c), for all c 2 k, S��0(c; �c),
for all c 2 k, and T �0 , and hence is of type A1 �A1.
Now we choose xu = S�0(1; 1)S�0(1; �1), yielding xu regular unipotent in
CG(xs)0 and x regular in G� .
By Proposition 3.1 CG�

0
(xs)0 = (CG(xs)0\G�0)0 can be described as follows:

CG�
0
(xs)0 =< T �0 ; fS�0(c; c); c 2 kg; fS��0(c; c); c 2 kg >; (A.5)

a group of type A1. Hence, CG(xs)0 \ G�0 contains no regular unipotent
element of CG(xs)0.
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If we conjugate x = xsxu with a representative t 2 T of an element in
(T=T �0 )

� we get:

t xu t
�1 = S�0(�(t); �(t)��(t

0))S�0(�(t); ��(t) ��(t0)); (A.6)

where �; � are roots in R, that are mapped to ��; �� 2 �R1 by the projection
p in Equation 1.2 and where t0 := t�1 �(t) 2 H. Recall that we have �(H) =
�(T �0 )=�(T

0), by Corollary 2.4, and Z(R0) � �(T 0), by Lemma 1.4. Therefore
we conclude, using Equation A.3:

��jH = ��jH : (A.7)

To achieve t xu t
�1 2 G�0 we need to �nd t0 2 H with ��(t0) = 1 and ��(t0) = �1

by Equation A.6, which is absurd. }.

Case 2: A2n: Here we choose an element x, such that we have:

��1xs 2 T �0 �0n
[

�0 2 R0+
�0 6= �0

T �0 �0 ; (A.8)

where �0 is a long root in R0. We impose ��(��1xs) = �1, where �� is the
unique long root in �R1 with d(��) = �0.
Note, that CG(xs)0 is generated by S�0(0; 0; c), for all c 2 k, S��0(0; 0; c),
for all c 2 k, and T �0 , and hence is of type A1.
We take xu = S�0(0; 0; 1), yielding xu regular unipotent in CG(xs)0 and x
regular in G� .
Furthermore, by the proof of proposition 3.1, xs is regular in G

�
0 . Hence,

(CG(xs)0 \G�0) contains no regular unipotent element of CG(xs).
If we conjugate x = xsxu with a representative t 2 T of an element in
(T=T �0 )

� we get:

t x t�1 = t xs t
�1 t xu t

�1 2 T �0 S�0(0; 0; k�)�: (A.9)

Again t xu t
�1 = S�0(0; 0; �(t)) =2 G�0 , where � is the root in R, which is

mapped to �� 2 1R� by the projection p in Equation 1.2. Hence we get
t x t�1 =2 G�0� . }.

Case 3: D4, �
3 = 1: Here we construct x in the following way:

First we choose �, a primitive third root of unity. Let f��1; ��2g be a basis of
�R1 = G2, such that ��1 is short and ��2 is long. Then, from the results of
Section 1.2, we have:

��2 2 Z(R0): (A.10)
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Now, let us denote �� := ��1+��2, and ~�� := 2��1+��2 and impose the following
conditions on ��1xs:

��1(�
�1xs) = � (A.11)

��2(�
�1xs) = �2: (A.12)

As a consequence, we get:

��(��1xs) = 1 (A.13)

~��(��1xs) = (3��1 + 2��2)(�
�1xs) = � (A.14)

(3��1 + ��2)(�
�1xs) = �2: (A.15)

Since ��1, �� and ~�� are the only positive short roots in �R1, we get, that
CG(xs)0 is generated by S�d(��1)(c; � c; �

2 c), for all c 2 k, S�d(��)(c; c; c), for
all c 2 k, S�d(~��)(c; � c; �2 c), for all c 2 k, and T � , and hence is of type A2.

Now, we choose xu = Sd(��1)(1; �; �
2)Sd(��)(1; 1; 1)Sd(~��)(1; �; �

2), yielding xu
regular in CG(xs)0 and x regular in G� .
By Proposition 3.1 CG�

0
(xs)0 = (CG(xs)0 \ G�0)0 has the following descrip-

tion:

CG�
0
(xs)0 =< T �0 ; fSd(��)(c; c; c); c 2 kg; fS�d(��)(c; c; c); c 2 kg >;

(A.16)
a group of type A1. We see that CG(xs)0\G�0 contains no regular unipotent
element of CG(xs)0.
If we conjugate x = xsxu with a representative t 2 T of an element in
(T=T �0 )

� we get:

t xu t
�1 = Sd(��1)(�1(t); � �1(t) ��1(t

0); �2�1(t)��1(t
00))�

Sd(��)(�(t); �(t) (��)(t
0); �(t) (��)(t00))�

Sd(~��)(~�(t); � ~�(t) (~��)(t
0); �2 ~�(t) (~��)(t00)); (A.17)

where �1; �; ~� are a roots in R which are mapped to ��1; ��; ~�� 2 �R1 by the
projection p in Equation 1.2, where t0 := t�1 ��1(t) 2 H and where t00 :=
t�1 ��2(t) = �(��1(t�1) t) = t0�1. Again we have �(H) = �(T �0 )=�(T

0), by
Corollary 2.4, and Z(R0) � �(T 0), by Lemma 1.4. Therefore, we conclude,
using Equation A.10:

��jH = ��1jH (A.18)

~��jH = 2��1jH : (A.19)

To achieve t xu t
�1 2 G�0 , we need to �nd t0 2 H with ��1(t

0) = �2, ��(t0) = 1
and ~��(t0) = �2, by Equation A.17, which is absurd. ~.
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Abstract

We consider a non-connected algebraic group ~G with semisimple unit com-
ponent G having the form ~G = G o �, where � is a nontrivial subgroup of
the automorphisms of the Dynkin diagram �(G) of G. Now G acts on an
exterior component G� , � 6= e of ~G by conjugation. In this work, we inves-
tigate the conjugacy classes of this action and the corresponding categorical
quotient G�==G. If T is a maximal torus of G stabilized by � and if T �0 is
the unit component of the group of its �xed points, then we will show the
isomorphism G�==G �= T �0 �=

fW , where fW is a �nite extension of the �xed
point Weyl group W� .
Furthermore this quotient turns out to be an aÆne space, if G is simply
connected. In this case the quotient map is 
at and its �bres are normal.
An investigation of the �bres of the quotient map yields a description as
an associated bundle: ��1(�(t�))red �= G�CG(t�) V (t�), where V (t�) is the
unipotent variety of CG(t�). If G is simply connected, we can also construct

a Steinberg cross section, a map C : T �0 �=
fW ! G� , being a section to the

quotient map. Our results resemble the results of Steinberg [35] or [38],
which deal with the case � = e.
Finally, a link to deformation theory of simple singularities is established,
analogously to the results of Slodowy [27].



Zusammenfassung

Wir betrachten eine nichtzusammenh�angende, algebraische Gruppe ~G mit
halbeinfacher Einskomponente G, die ein semidirektes Produkt ~G = Go �
ist, wobei � eine nichttriviale Untergruppe der Diagrammautomorphismen
des Dynkindiagramms �(G) von G ist. Dann operiert G auf einer �au�eren
Komponente G� , � 6= e von ~G durch Konjugation. In dieser Arbeit wollen
wir die Konjugationsklassen dieser Operation und den zugeh�origen kate-
gorischen Quotienten G�==G untersuchen. Ist T ein � -stabiler, maximaler
Torus von G und T �0 die Einskomponente der entsprechenden Fixpunkt-

gruppe, dann werden wir zeigen, da� es eine Isomorphie G�==G �= T �0 �=
fW

gibt, wobei fW eine endliche Erweiterung der Fixpunkt-Weylgruppe W� ist.
Dieser Quotient ist desweiteren ein aÆner Raum, falls G einfach zusam-
menh�angend ist. In diesem Fall ist die Quotientenabbildung 
ach und ihre
Fasern sind normal. Wie wir sehen werden, haben die Fasern die Struktur
assoziierter Faserb�undel: ��1(�(t�))red �= G�CG(t�) V (t�), wobei V (t�) die
unipotente Variet�at von CG(t�) ist. Im einfachzusammenh�angenden Fall
k�onnen wir sogar einen Steinberg-Querschnitt konstruieren, d.h. einen Mor-
phismus C : T �0 �=

fW ! G� , der ein Schnitt bez�uglich der Quotientenabbil-
dung ist. Unsere Ergebnisse sind analog zu denen von Steinberg, siehe [35]
oder [38], wo der Fall � = e behandelt wird.
Schlie�lich stellen wir noch eine Verbindung zur Theorie der einfachen Sin-
gularit�aten her, analog zu den Ergebnissen von Slodowy [27].
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