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Introduction

We consider non-connected algebraic groups G' over an algebraically closed
field k£, whose unit component G is semisimple. The aim of this work is
to understand the conjugacy classes of the adjoint G action on an exterior
component of G. Non-connected semisimple groups appear naturally as
centralizers of non-simply connected, connected, semisimple groups.

For a connected algebraic group G, the description of its conjugacy
classes is well known, see [35, 38]. We give a brief description of it:
The action of G on itself by conjugacy will be called the adjoint action and
denoted by Ad:

GxG —G
(9:h) = Ad(g)(h) =ghg™".
We will call the corresponding quotient G JAd(G) := Speck[G]*E) the

adjoint quotient and denote the quotient map by 7 : G — G JAd(G). The
quotient admits the following properties:

e For a maximal torus 7" of G and the Weyl group W := N (T)/T, we
also have a quotient T'/W. (Here w € W acts on T by conjugacy with
a representative n, € Ng(7T).) Now the inclusion 7" — G induces an
isomorphism on the quotients:

T/W =5 GJAd(G).

e Each fibre of 7 consists of only finitely many conjugacy classes, where
the closed class is exactly the semisimple one. Furthermore, we have
the explicit description of the reduced fibre 771 (7(t))yeq for t € T as
an associated bundle:

71—_1(71—(t))red =G XCG(t) V(t),
where V' (t) denotes the unipotent variety of Cg(t).

e If (G is simply connected, even more is true:
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— The adjoint quotient G JAd(G) is an affine space A", where r is
the rank of G and  is given by:

= (XM, X\).

Here the X* are the characters of the fundamental representa-
tions of G.

— 7 admits a cross section:
C:T/W— G,

i.e. a morphism, such that I'm C is closed in G and such that
7|1m ¢ 1s an isomorphism. This cross section meets every fibre in
exactly one element, a regular one. (An element of G is called
regular, if its centralizer has minimal possible dimension, which
is r.)

— The fibres of 7 are reduced and normal, and 7 itself is flat.
The main ideas of Steinberg’s to obtain these results are:

e Use of representation theory: Exploitation of the fact, that the charac-
ters of the irreducible representations {X?*, A dominant weight} form
a basis of k[G]*4%) and their restrictions to 7" one of k[T]".

e The explicit construction of C: Let II = {ay,...,a,} be the set of
simple roots, X,, : K — G the corresponding root groups and n,; €
N¢g(T) representatives of the simple reflexions s, € W. Then C :
A" — G is given by:

Clcty oy cr) = Xo, (€1)ngy - X, (¢r)ng, -

This description of the conjugacy action of G was used by Slodowy in [27]
(following Brieskorn [4]) to construct a connection between the theory of
simple algebraic groups and that of simple singularities, which goes as fol-
lows:

Take a transversal slice S in G to a unipotent subregular element v (i.e. one
whose centralizer is of second minimal possible dimension). If we consider
the intersection S NV, where V is the unipotent variety of G, then SNV
has a simple singularity of the same type as G in u. Furthermore, the re-
striction 0 = w|g : S — T/ provides the semiuniversal deformation of this
singularity.

We want to derive similar results in the case of the adjoint action of the
unit component G of a non-connected semisimple algebraic group G on one
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of its exterior components. In this work, we assume G to be a semidirect
product:
G=GxT,

where I is a subgroup of the group of diagram automorphisms of the Dynkin
diagram A(G) of G (lifted into Aut(G)). We require the characteristic of k
not to divide the order of I' and to be # 2.

Take a nontrivial element 7 € I' and consider the the adjoint G action on
Gr:=G x {1}

GxGr — GT
(g, h) — ghrg b

Observe that, using the identification of G with G by right multiplication
with 77!, we end up with a “r-twisted” G action on itself:

GxGr — G
(g, h7) = ght(g™").

The main questions at the origin of this work can now be formulated as
follows:

e How does the corresponding adjoint quotient G7//G look like?

e What is the structure of the fibres of the corresponding quotient map
m:Gr — GT)/G?

e Does this quotient admit a kind of cross section similar to the one of
Steinberg’s in the connected case (under certain additional assump-
tions on the fundamental group of G)?

Before we summarize the results obtained in this work, let us illustrate this
twisted action by an example:

Consider G = SL,(k) as a matrix group, then we have for the exterior
automorphism 7 (the one that reverses the Dynkin diagram):

7(X)='X"1, X € SL,(k).

Thus, the orbits of the “r-twisted” conjugation are isomorphism classes of
bilinear forms of discriminant one on k™, where isomorphism is defined in
terms of base changes in SL, (k). Then, SL, (k)7 //SLy(k) is the correspond-
ing quotient. This situation was already investigated by Spaltenstein in [29]
in a slightly more general situation:

GxM — M
(X, M) — XM'X,
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where M is either M), (k) or GL, (k) and G either GL,,(k) or SL, (k). (Note
that 7 can apparently be lifted to GL,(k).) He obtained the following
results:

My (k)T |GLy(k) = {pt}
My (k)7 SLy (k) 2= k51T
GL, (k)T |GL,(k) = k3]
GL, (k)T SLy(k) = k= x k¥,

where [r] denotes the biggest integer N with N < r. The approach used by
Spaltenstein was direct calculation.

A more thorough conceptual understanding of this situation will be pre-
sented in this work.

If we take a generic exterior automorphism 7 € T' of GG, then we argue,
that we can find an integer m and a decomposition of 7 into elements of
7, € Iy i.e. T = 7q...Tjp, and a decomposition of G into normal subgroups
G = G1...Gy,, with (G;, G;) = {e} for i # j, such that each 7; acts nontriv-
ially only on G;, where it acts as an exterior automorphism of one of the
following two kinds:

(i) 7; acts as a permutation of isomorphic simple normal subgroups of Gj,
or

(ii) G; is simple, and 7; is a nontrivial diagram automorphism of its Dynkin
diagram.

Therefore, we only need to to restrict to the two cases above. Since our
results show, that the first possibility reduces more or less to Steinberg’s
classical theory, we shall emphasize the second case.

Now let us give a brief summary of the results obtained:

A major step in understanding the conjugacy classes of an exterior compo-
nent is to develop a notion that generalizes that of a maximal torus in the
connected case. This is accomplished by the concept of Cartan subgroup,
see Section 2.1, a subgroup of G, which is generated by a semisimple ele-
ment and which has finite index in its normalizer in G. We will see that,
for given 7, such a Cartan subgroup is given by C := TJ x ', where T
is the unit component of the fixed point torus of the 7 action on the maxi-
mal torus 7' and where I' < T' is the subgroup generated by 7. The group
W := Ng(C)/Ty is called the outer Weyl group and is, in this case, a fi-
nite abelian extension of the fixed point Weyl group W7, see Section 2.3.
With this notion we are able to derive the following results in analogy to
the connected case:

e The elements w of the outer Weyl group W act on Ty T by conjuga-
tion with a representative n,, € Ng(C). The corresponding quotient
is denoted by Tj7/W. Then the inclusion Tj7 < G7 induces an
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isomorphism on the quotient spaces, see Section 2.5:
T /W =5 Gr)G.

This isomorphism is obtained by use of the representation theory of
G, see Section 2.4.

e The reduced fibres of the quotient map 7© : Gr — G7//G have the
following structure of associated bundles:

7 M (w(t7))rea 2 G XUV (t7),

where V' (¢7) denotes the unipotent variety of C(¢7). In particular,
they consist of only finitely many conjugacy classes, where the closed
class is exactly the semisimple one, see Chapter 3.

e If the character lattice x(7') of a maximal torus 7' of G satisfies the
condition x (7)™ = A(R(G))", where A(R(G)) denotes the character
lattice of the root system of G and where the upper right 7 denotes
the sublattices of 7 fixed points, we even can say more:

— The adjoint quotient G7/Ad(G) is an affine space A®, where s is
the rank of G and = is explicitly given by:

N bV
™= (Xl 1|GTa ...,Xls |G7')-

The X 1)‘ i are the characters of irreducible G representations cor-
responding to the fundamental weights X\, € A(R(G))". (The
subscript is needed, because these representations are no longer
unique for given X;.) This is proven in Sections 2.4 and 2.5.

— m admits a cross section, see Chapter 5:
C: Ty /W = Gr.
C is given explicitly by the following formula:
Clety ey cs) = Xaoy (€1)nay .- Xa, (Cs)nq, ... T,

where the «; € II are a collection of simple roots of R(G), exactly
one representative «; chosen for each 7 orbit on II. The X, :
k — G are once more the root groups and the n,, € Ng(T)
representatives of the simple reflexion to s,, € W.

This cross section has the following properties:

(i) Its image I'm C' is closed in GT,

(ii) 7|rm ¢ is an isomorphism and

(iii) Im C meets each fibre in exactly one element, a regular one.
(Here an element € GT is regular, if C¢(x) has minimal possible
dimension, which is s.)
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— The fibres of 7 are reduced and normal and = itself is flat, see
Chapter 5.

e For simple G we can derive a connection to the theory of simple sin-

gularities under reasonable further restrictions on the characteristic of
k, see Chapter 6:
Choose t7 € T 1, such that C¢/(¢7) has an irreducible root system of
rank s. We take Slodowy’s transversal slice S to a subregular unipo-
tent element u € Cg(t7), see [27]. Then Str NV (¢7)tr has a simple
singularity in ut7 which is of the same type as C(t7). Furthermore,
the map o := 7|g4r : St7 — G7//G is the semiuniversal deformation
of this singularity.

This work is organized as follows:

In Chapter 1, we summarize the facts about root systems R needed in this
work, in particular about the folding of R by means of a diagram auto-
morphism 7. Furthermore, we discuss the circumstances under which these
exterior automorphisms lift to a semisimple group G having R as its roots
system. We also give an account on the characteristics of k, such that the
orbit maps of G on G'T are separable.

The major part of this work is contained in Chapters 2,3 and 5.

In Chapter 2, we first present the definition of Cartan subgroups , the ana-
logue of maximal tori for non-connected algebraic groups, and of outer Weyl
groups, the groups of “connected components” of the normalizer in G of
these Cartan subgroups. Afterwards, properties of Cartan subgroups and
the structure of outer Weyl groups are discussed. Then we develop the rep-
resentation theory of G, which, for cyclic T', is essentially determined by that
of its unit component G. With these preparations, we can prove the first
main result, the isomorphism G7 /G = Tj7/WW. This chapter closes with
the investigation of the structure of these quotient spaces in dependence on
the structure of the fundamental group of G.

We determine the structure of the fibres in Chapter 3. Furthermore, we
classify the types of the centralizers of semisimple elements of the exterior
component G7. In characteristic zero, their Dynkin diagrams will be proper
subdiagrams of the T-twisted affine diagram corresponding to A(G).
Chapter 4 contains a description of the set of irregular elements of the ex-
terior component G'7. Here, we also verify that the semisimple irregular
elements form a dense subset in the set of all irregular elements.

The proof that the cross section defined above fulfills all the indicated prop-
erties, under the condition x(7')" = A(R(G))7, is carried out in Chapter
5. Furthermore, this cross section allows us to derive the reducedness and
normality of the schematic fibres in these cases.

In Chapter 6, we establish a link to the theory of simple singularities. We
also provide an account on the theories of singularities and the Slice Theo-
rem, which play a crucial role in our construction.
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We conclude this work with Chapter 7 by a summary and an outlook.
The appendix provides examples for elements x € G7, which are not G-
conjugate into G, in the case where G is simple.



Chapter 1

Preliminaries

In this chapter we shall compile the basic facts used in the sequel. We
first start with basic facts about root systems and exterior automorphisms.
Furthermore, we investigate the circumstances under which the orbit maps
considered in this work are separable.

1.1 Root Systems

Let us start with basic facts about root systems which may be found e.g. in
(3, 14].
In this section, V' denotes a real vector space.

Definition 1.1 A finite subset R C V is called a root system, iff

(i) R spans V,

(ii) for every a € R, there exists & € V*, such that &(B) is an integer for
all a, B € R,

(i) the group generated by all the reflexions ro € GL(V'), defined by ro(B) :=
B — &(B)a, stabilizes R.

If in addition the following property holds, the root system is called reduced,
otherwise not reduced:

(iv) for every a € R the only multiples in R are ta.

In any case, the group generated by all the ro,a € R, is called the Weyl
group and will be denoted by W. The elements of R will be called roots.

It should be noted, that one can introduce a W-invariant scalar product
(.,.) on V, such that, under the corresponding identification of V' and V*,
we have & = 29

Furthermore we need the definition of a basis of a oot system:

Definition 1.2 A subset Il C R is called a basis of R, iff

(1) IL is a basis of V, and

(i1) every root o € R can be written as a sum o = Y g yngfB with all the
ng either non-negative or non-positive.

10
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By the height of a root «, hta, we denote the sum of the coefficients of
« with respect to a given basis. A theorem in the theory of root systems
states that bases of root systems exist and all possible bases are conjugate
under the Weyl group. A classification of reduced root systems is given by
so called Dynkin diagrams, denoted by A, the vertices corresponding to the
elements in I1, each pair «, B of them connected by &(8)3(a) lines with an
arrow pointing to the shorter root.

A reduced root system is called irreducible if its Dynkin diagram is con-
nected. The list of irreducible reduced root systems is given in the following

table:

S

)
%

N
o)
C
O

o Qo W >
SRS
EE)
\YARR\Y,
NN,

o)
Es o o O o o

o)
E;: o o O o o o)

o)
Es : o o O o o o o)

Fy: O—Qa > 0—O0
Go : ——>o0

Another notion in the theory of root systems is the notion of the dual root
system R of a given root system R which is given by the set R := {&,« €
R} C V*. The root lattice Z(R) will be the Z-span of R in V. Furthermore,

we introduce the weight lattice A(R) as the lattice Z(R)* C V. Its elements
will be called weights.

1.2 Diagram Automorphisms and Folded Root Sys-
tems

In this section, we will describe the automorphisms of reduced root systems
and introduce the notion of folded root systems. An element o € GL(V) is
called an automorphism of R, iff (o(a))(c(5)) = &(pB) for all @, € R. An
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automorphism of R is called an automorphism of the Dynkin diagram A, if
it stabilizes a given basis II of R. The sets of automorphisms of R and A
will be denoted by Aut(R) and Aut(A) respectively. A well known fact in
the theory of root systems is that we have the following semidirect product:

Aut(R) = Aut(A) x W (1.1)

The group Aut(A) is trivial for irreducible root systems except in the cases
Ay, D,, and Eg. A pictorial description of the group Aut(A) in these cases
will be given in the following table:

A2n+1 H (I) I I >O Aut(A) = Z/2Z,
O

Aoy : (f o | ) Aut(A) = 7,/27,

D, (n>4): o Aut(A) = Z /27,

)

Aut(A) = S,

0

Eg : Aut(A) = Z/27.

:

With these notions, we can now define the folded root system corresponding
to an automorphism 7 € Aut(A):

Let V7 be the fixed point vector space of V under 7, i.e. V7 := {v €
V,7(v) = v}. Then, define a projection map p: V — V7 by:

v p(v) = 07‘117’ Z 7' (v) (1.2)
=0

Set "TR!' := p(R) and W7 := {w € W, 7w = wt}. Then we get the following
result:

Theorem 1.1 "R! is a root system in V7 with Weyl group WT.
For irreducible R, the type of TR is given by the following table:
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"RU| C, |BC.|  B. | F| G2 |

Proof: Cf. [7], Proposition 13.2.2., p. 220, or [36], examples to Theorem 32,
p. 175f. .
Remark: If R is reducible, such that it is the union of n copies of an
irreducible root system R, and 7 a permutation of its irreducible parts, then
the type of "R! is that of a union of k copies of R, where k is the number
of cycles of 7.

We call "R! := p(R) the folded root system of R with respect to 7. Sim-
ilarly, we define "TA(R)! = p(A(R)) and call it the folded weight lattice. A
natural question to ask is, what the relation between "A(R)! = p(A(R)) and
the weight lattice A(TR!) is.

(Since "R! := p(R) is not reduced, if R is of type A,, we modify the
question posed above in this case: We compare the weight lattice of the B,
root subsystem consisting of all short and intermediate roots of "R! := p(R)
with the folded weight lattice TA(R)'). The answer is given in the following
lemma:

Lemma 1.1 (i) If R is of type Asn_1, D, and Eg, we have: TA(R)! =
A(TRY).

(ii) If R is of type As, we have: TA(R)! is a sublattice of the weight lattice
A(By,) of index 2. In this case, TA(R)! is the weight lattice of SOgp11(k).

Proof: In order to compare the two lattices, we first have to compute the
basis of the root system dual to "R!, respectively of the B, subsystem of
TR' = BC,, in case R = A,,,.

Let TT = {ay,...,a,} be a basis of R and T = {d,...,d&,} and {\,...,\,}
the corresponding bases of R and A(R) respectively. Then we get by [7],
Proposition 13.2.2, p. 220: p(II) = {p(a1),...,p(an)} and {p(A1),....,p(An)}
are a basis of "TR! (the B, subsystem in the A, case) and "A(R)! respec-
tively. Now we have to calculate the corresponding basis (p(II)). Apparently,
(p(c;)) is a k-fold multiple of Z;r:df 77 (&), for a suitable x € R. Three cases
have to be distinguished:

Recall that we require (p(a;))(p(a;)) = 2.

(i) 7(ej) = @;. Then we have (p(a;)) = d&;.

(ii) 7(ay) # «; and &;(o;) = 0: Then we have

ordt, (1.3)

ordT
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forcing k = 1. Thus we get (p(a;)) = Z;r:df 77 (d;).
(iii) 7(cv) # o; and &;(;) # 0 (which only appears in the Ay,-case): Simi-
larly to (ii) we calculate

(p(i))(p(a)) = k(& + 7(&;)) (l(ai + T(%‘))) = g@ +2-1-1), (1.4)

2

forcing k = 2. Therefore we have (p(a;)) = 2(&; + 7(d&;))-
As a next step, we evaluate the generators p(\;) of TA(R)! on the elements
of (p(II)). A simple calculation gives p(\;)((p(a;))) = 0, iff @; and «; are
not in the same 7 orbit. Otherwise this value is 1 in the cases (i) and (ii)
above and 2 in case (iii). Since in the Ag,-case the situation described in
(iii) shows up for only one element in p(II), the lemma holds. Q.
Remark: If R is the union of n copies of an irreducible root system R
and if 7 is a permutation of the irreducible parts, then again one can show
A("R') = TA(R)!. The proof is analogous to case (ii), but we have to take
care of nontrivial powers of 7 which stabilize certain roots a. If we denote
by I' the cyclic subgroup of Aut(R), which is generated by 7, then we have
(p(e)) = iy 5777 79 (cx)-

The relation between root length of elements in "R!' and the behaviour
of the inverse image under the projection p, defined in Equation 1.2, will be
dealt with in the following lemma, which will be used later:

Lemma 1.2 (i) For R of type Asp_1, Dy, or Eg the following holds:

If T(a) = a, then p(«a) is a long root of TR', and Ra N R is of type A;.

If 7(@) # «, then p(a) is a short root of "R, and (0" R7(a)) N R is of
type (Al)ordr_

(11) For R of type Asy, we have:

If (@) = a, then p(a) is a long root of BC,, and (Ra) N R is of type A;.
If T(a) # a and &(7(a)) = 0, then p(«) is a root of intermediate length of
BCy, and (Y74 R (o)) N R is of type (A;)2.

If (@) # a and &(r(a)) # 0, then p(a) is a short root of BC, and
(9T R 7 () N R is of type As.

Proof: The proof is given in [36], Corollary to Theorem 32, p. 177 and [39],
Lemma 2.4, p. 9. Q.
Remark: Let us again consider the case of R being the union n copies of
an irreducible root system R and 7 being a permutation of the irreducible
parts. Denote by I' the subgroup of Aut(R), which is generated by 7. Then
we get analogously that 74" R7% () N R is of type (A1)¥, where k is the
number of roots in the [-orbit of a.

For the representation theory of our non-connected groups, we need to
introduce another root system, called R’, which again is a root system in
V7: The construction recipe is the following:
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(i) In the cases Agy,_1, D, and Eg For a = 7(a) set o/ = a,

Q
for a # 7(a), @(t(a)) =0 set o/ = 3747 ri(a )

(ii) In the Ag,-case: For a # ( ), &(7(a)) =0s = (a+ 7(a)),

for a # 7(a), a(7( )) # 0 set o/ =2(a+ 7(a)).

For a = 7(a), set o' = 2a. (Note that @ = 7(«) implies the existence of a
root B with &« = 8 4 7(8) in this case. Then o/ = f'.)

(iii) If R is reducible, the union of n copies of an irreducible root system
R and 7 a permutation of the irreducible parts, and if we denote by I' the
subgroup of Aut(R) generated by 7' then define R’ in the following way:
Let R :={d/, a € R}, where o = ‘F ‘ ZOMT ().

With respect to the construction of the root system 7R!, the root sys-
tem R’ emerges from the root system "R! by keeping the long roots and
multiplying the short roots of TR' with the order of 7 in the Ay, _1, D,, and
FEs-cases, and doubling the intermediate and long roots while quadrupling
the short roots of "R! in the As,-case. (Recall that the set of short and in-
termediate roots in the BC),-case exhibit the structure of a B, root system.)
This yields:

Lemma 1.3 (i) In the cases Asy,_1,D,, and Eg, the root system R'is the
dual of the root system "R'.

(i1) In the case Asy,, the root system R’ is the dual of the reduced irreducible
root system of type B,, which appears as the subsystem of roots of interme-
diate and short length in "R".

Proof: This is immediate by construction of TR' and R'. Q.

Remark: If R is the union of n copies of an irreducible root system R and

7 a permutation of the irreducible parts, then R’ is of the same type as "R'.
We summarize this result in the following table:

R | Agp1 | Aoy | Dpgr, 7™ =1 Eg | Dy,7m3 =1
TR! Ch BC, B, Fy G2
R, Bn Cn Cn F4 G2

The introduction of the root system R’ is justified by the following lemma:

Lemma 1.4 (i) The weight lattice A(R') is equal to the lattice A(R)™ of T
fized points in A(R).

(11) If R is not of type As,, we have Z(R') = Z(R)7, and, if R is of type
Aoy, we have that Z(R') is a sublattice of Z(R)™ of index two.

Proof: (i) Let T = {a1,...,an} be a basis of R stabilized by 7 and 1T =
{@j, ..., @} the corresponding basis of R. Then IT' := {al, ,ab,} is a basis
of R'. Now we have to find basis of R’. Clearly, o) has to be a k-fold

multiple of 327747 77(&,), for a suitable x € R. For a while, we assume R to
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be irreducible. Then, three cases have to be distinguished:
(a) 7(a;) = a;: Then o) = &;.
(b) 7(a;) # «; and &;(7(a;)) = 0: Then

ordT ordT
oz;(a;) =K Z 77 () (Z TZ(OZZ')> =2kordT, (1.5)

j=1 =1

which forces £ = —L—. Thus we have o = =L Z;T:d{ 77 ().
(c) T(evi) # o and &;(7(;)) # 0: This appears only in the Ag,-case, where
ordt = 2. Similarly to step two we have:

aj(a) = K& + 7(4))(2(q + 7(s))) = 26(2+2 - 1 = 1), (1.6)

forcing k = 5. Thus giving a = L& + 7(w)).

Now, we c0n51der the welght lattlce A(R), and let the fundamental weights
corresponding to II be denoted by {A1,...,A,}. Then, generators of the
invariant lattice A(R)™ are given by the collectlon {A1, s An}, where ) is
defined by A; = A;, if 7(\;) = Aj, and \; = Zf“{T 74 (N\) 0therw1se. A simple
calculation, using A;(¢j) = d;5, yields Aiox ) =1, iff o is in the T-orbit of
o). Otherwise it is zero.

Now, let R be the union of n copies of an irreducible root system Rand 7 a
permutation of its irreducible factors. Again, we denote by I' the subgroup
of Aut(R) generated by 7. Then, a similar calculation to the one carried out
n (b) yields: o} = -1 erdf 77(¢) and similarly \; = i |Zord7 I (N),

~ ordT

again a sum over the I'-orbit of A;.
(ii) Follows easily from the definition of R" and the fact that the simple roots
IT form a basis of R. Q.
Remark: (i) By construction it is clear that our identification of A(R') and
A(R)" is W™-equivariant.
(ii) This isomorphism also respects the structure of the cone of dominant
weights, i.e. if we intersect the cone of dominant weights of A(R) with
A(R)T, we get exactly the cone of dominant elements of A(R').

In Chapter 2 we still need a slightly sharper version of the lemma above:

Corollary 1.1 Assume R to be irreducible. Let x be a T-stable sublattice
of A(R) containing the root lattice Z(R), then we have:

(i) If R is of type Aoy, Eg or Dy with 73 =1, then x™ = A(R')

(ii) If R is of one of the other types, namely, Ag, 1 or D, with 72 = 1, then
X" is either Z(R') or A(R').

Proof: The chain of inclusions Z(R) C x C A(R) clearly yields a chain of its
fixed point lattices Z(R)™ C x™ C A(R)".

If R is of type Eg or of type Dy with 73 = 1, we have that R’ is of type F}
or Go, respectively. This implies Z(R)™ = Z(R') = A(R') = A(R)™ by use
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of the above lemma, forcing x™ = A(R’).

If Ris of type Agy,, we have that R’ is of type C), and therefore A(R')/Z(R’) =
Z./27.. Now, we have a chain of inclusions Z(R') C Z(R)™ C x" C A(R)" =
A(R'). Here, Z(R)"/Z(R') = Z /27 by the lemma above, forcing Z(R)" =
x" = A(R)".

(ii) In the other cases, we have R of type As,_1 or D, with 72 = 1. Hence
R’ is of type B,, or C,_1, respectively. Here, A(R')/Z(R') = Z/2Z, and
hence A(R)"/Z(R)™ = 7. /27, forcing x” to be either Z(R') or A(R'). Q.

1.3 Exterior Automorphisms of Algebraic Groups

In the sequel, let G denote a semisimple linear algebraic group over an al-
gebraically closed field k of characteristic char(k) # 2. Additionally, we
require that char(k) does not divide the order of 7, a given diagram auto-
morphism of the Dynkin diagram of G. We want to show, for GG simple, that,
except for certain cases of type Doy, our diagram automorphism 7 from the
previous section lifts to an automorphism of the group G, and we shall pro-
vide an explicit formula for its action on the root groups X, : k = G, € R.
Here, we assume knowledge of the theory of Chevalley groups, found e.g. in
[36], and on linear algebraic groups, found e.g. in [13, 2, 33]

Theorem 1.2 Let G, 7,k be as above, and let T' be a maximal torus of G
and x(T) its character lattice. Assume that that x(T) is stabilized by T.
(This is automatic for G simple, if G is not of type Day,.)

Then, T can be lifted to an exterior automorphism T of G such that:

(i) T(Xa(t)) = Xr@)(t),Vt € k, a € R, in case G is not of type Ay,
respectively

(ii) T(Xa(t)) = XT(Q)((—l)hta"'lt),Vt € ka € R, in case G is of type Agy,.

Proof: In our cases the existence of 7 as an automorphism of a linear alge-
braic group G is clear by [36], Corollary to Theorem 29, p. 156f.

We only have to show that we can define our root groups in such a way
that 7 acts in the described manner. By the construction of the Chevalley
groups, look at [36], Chapters 1,2,3, this amounts to finding a Chevalley
basis x4, € R of the corresponding simple complex Lie algebra g, such
that 7 acts on g by:

(i) 7(za) = Tr(a), ¥t € R, in the case G is not of type Agy, or

(ii) 7(zq) = (—1)hta+1$7(a),‘v’t € R, in case G is of type Ayy,.

To prove this, we first introduce a specific order relation on the set of simple
roots II, which is invariant under 7 in the non As,-case and anti-invariant
in the Ag,-case. This is done in the proof of Lemma 2.6 and Remark 2.7
of [39], p. 10. Now, we choose the z,,« € II, in an unspecific way, and we
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define x5, 8 € R — II, by multicommutators

T8 1= [Tays [ [Tay_1» Tag -] (1.7)

respecting the order, i.e. o; < o, for 7 < j, if possible, and such that oy
is the unique maximal element with respect to this order, if this maximal
element appears nontrivially in the linear combination of § as a sum of
simple roots. It is shown in the proof of Lemma 2.6 and in Remark 2.7
of [39], that this basis has the properties (i) and (ii) above. If we choose
Zg,8 € R to be a Chevalley basis of g with Z, = z,, for a € II, then, since
g is simply-laced and henceforth the structure constants are +1 or 0, we
have that Zg corresponds, up to sign, to the above multicommutators. So
by adjusting the signs, which does not change the corresponding Chevalley
algebra, we can achieve the above formulae. Q.
Remark: (i) Let the Dynkin diagram of G be not connected, i.e. let G
be semisimple but not simple and 7 a permutation of different, isomorphic,
irreducible parts of the root system R(G). Then we can lift 7 to G, if and
only if the character lattice x(7") of a maximal torus T of G is T-stable.
(ii) With this choice of 7, the order of 7, considered as an automorphism of
G, is exactly the order of the corresponding diagram automorphism.

We are now interested in the fixed point group G” of G under the auto-
morphism 7, respectively its unit component G{.

Proposition 1.1 For G simple, the type of the group Gf is given in the
following table:

TypeG ‘ A2n71 ‘ A2n ‘ Dn+1,7_2:]- ‘ Eg ‘ D4,7‘3:1 ‘
Type G] ‘ C, ‘ B, ‘ B, ‘ Fy ‘ G, ‘

Additionally, G™ /GJ, is finite abelian and, if G is simply connected, G” is
connected.

Proof: Cf. [7], Section 13.3, p. 221ff, together with a remark in Section
14.4, at the bottom of p. 264. The additional assertions are proven in [37],
Theorem 8.2, p. 52, and Corollary 9.4, p. 60. Q.
Remarks: (i) If R(G) is a union of n copies of an irreducible root system
R and 7 a permutation of the irreducible parts thereof, then the type of G§
is the one of a k-fold union of R, where k is the number of cycles of 7.
(ii)We see: The root system of G is given by "R!, if G is not of type As,, and
by the Bj,-subsystem, given by the roots of short and intermediate length
of TA%H = B(C,, in the As,-case.

(iii) By Lemma 1.3, the root system R’ is exactly the dual of the root system
R(GYT), the root system of the fixed point group.
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(iv) In Chapter 3 we shall give a separate proof of the proposition above,
when we calculate the root systems of centralizers of semisimple elements.
We are now in a position to define the group G , the one we are dealing
with in this work:
Let G be a semisimple linear algebraic group, I' < Aut(A) a subgroup of the
group of diagram automorphism corresponding to G, such that all elements
of I' can be lifted to G. Then we set G := G x . For G simple of type
ADE, the elements of I act on G in the manner given by the theorem
above. Furthermore, we restrict the characteristic of k£ in such a way that
char(k) # 2 and that it does not divide the order of any element of T'.
G is clearly an affine algebraic group, because G and Aut(A) are, and the
elements of Aut(A) act on G as morphisms. In addition, the unit-component
of G is just G. For any element z € G, let C(z) denote the centralizer of z
in G given by Cq(2) :={g € G,gzg ! = z}.
Remarks: (i) For z = 7 we have Cg(z) = G”.
(ii) Our construction of G involves a specific choice of a Borel subgroup
B and a maximal torus T' < B, because we use a specific basis of a root
system of GG. Since all pairs T' < B are conjugate under G, and, therefore,
the corresponding diagram automorphisms are also conjugate under G, the
resulting group G does not depend on the choices.

1.4 Separability of the Orbit Map

This section will only be used in char(k) > 0. Let 7 be a diagram auto-
morphism. Here, conditions on the characteristic are given, such that the
conjugacy action of G, the unit component of G, on a given other compo-
nent G7 is separable. Our reasoning will be similar to [34], Chapter I, §5,
p- E-16ff, where the connected case is treated.

We start with a lemma:

Lemma 1.5 Let G and G be as above and assume, furthermore, that G <
GLy(k), such that the following conditions hold:

(i) gly =g ®m )

(11) m is stable under G < GLy (k).

Then every conjugacy class of G Ly, (k) meets G in finitely many G-conjugacy
classes.

Proof: Take a G L, (k)-conjugacy class C. Note that, since G is connected,
every G-conjugacy class in G is irreducible.

Let Z € GNC be an irreducible component. Since there exist only finitely
many irreducible components of GnC , we are done, if we can show, that Z
consists of only one G-conjugacy class.

By irreducibility, Z has to be G-stable, so let C' C Z be a G-conjugacy class
of G. Choose g € C.
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Next, we define a map

f:GLy(k) — Cg7!
z = zgz gl (1.8)

We clearly have f(e) = e. Now, we show the following statement:
Claim: R

(df)e : gln — T.Cg™" is surjective. (1.9)
Proof of Claim: Since we have dim T,Cg~' = dim G Ly, (k) — dim Car, k) (9),
we must prove dim ker((df).) = dim Cqr, 1)(g). But ker((df)e) is an asso-
ciative (matrix)-algebra and has the explicit form:

ker((df)e) = {X €glp, g X g™ ' = X} (1.10)

Furthermore, Cgr,, (1) (g) is just the group of units of this algebra ker((df).).
This group of units is an open subset of ker((df).) (the complement of the
kernel of the determinant) and therefore ker((df).) and Cgy, () (g) have the
same dimension. )
Now we have

T.Zg ' cT.Cg'ng = (1-Ad(g)(gly)Ng
= (1 - Ad(g))(9)

= (df)e(g)
c T.Cg'cT,Zg !, (1.11)

where the identifications in the first and third line follow from the definition

of f and the identification in the second follows from assumption (ii). Now

we conclude that C has to be an open subset of Z. Since this holds for every

conjugacy class C' C Z, we conclude C' = Z by the irreducibility of Z. Q.
As a consequence, we get two corollaries:

Corollary 1.2 Under the same assumptions as in the preceding lemma, we
have for g € G:
¢g(9) = Lie Cq(g). (1.12)

Proof: From the proof of Lemma 1.5 we have dim (1 — Ad(g))(g) = dim C,
where C is the G conjugacy class of g in G. Since dim c4(g) = dim (ker(1 —
Ad(g))|g), we easily calculate, using the dimension formula and the above
identification:

cg(g) = dimg—dim(1— Ad(g))(9)
= dimG—dimC
= dimCg(g). (1.13)

Since we already know Lie Cz(g) C ¢4(g), the assertion follows. Q.
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Corollary 1.3 Under the same assumptions as in the preceding lemma, we
have that for every T € I' and for every x € G the orbit map

G —- GzcCdGr
g = g:zcg_1 (1.14)

is separable.

Proof: This is just a reformulation of Corollary 1.2. Q.
Let us denote the universal cover of G by G and the covering map by .

Furthermore, denote the kernel of 7 by Cgq < C(G).

In addition, we need the notions of good and very good characteristic as

found in [27], Section 3.13, p. 37f:

Definition 1.3 A prime p is called good for a root system R, iff there does
not exist a Z-closed root subsystem R of R, such that Z(R)/Z(R) has torsion
of order p.

A prime is called very good for R, if p is good for R and if p does not divide

n+ 1, in the case that R contains a component of type A,.

We collect the bad primes for irreducible R in the following table:

Type G| An | Bo | Cn | Dn| Es | Br | Bs | Fu | Gy |
pbad |[mnome | 2 | 2 | 2 [235[23][23][23]23]

In particular, we see, that a very good p does not divide |A(R)/Z(R)].

Now, consider the non-connected group G x I'. Since every diagram
automorphism lifts to the universal cover G of its unit component, there is a
non-connected algebraic group G x T'. By the construction of the Chevalley
groups as given in [36], Chapters 1,2,3, Cg has to be 7 invariant and the
covering map 7 : G- Gtober equivariant. Therefore, we have a covering
map

#:GxI — GxT
go — w(g)o. (1.15)
Now, we have the following statement:

Lemma 1.6 Tuke € Gr and & € G with #(&) = x and let char(k) be
either zero or a very good prime for R(G), then we have, for the respective
orbit maps:

G — G.z s separable < G — G.& s separable (1.16)
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Proof: By the T-equivariance of 7 we see that 7 is G equivariant where § € G
acts on G7 by conjugation and on G7 by conjugating with ().

Since char(k) does not divide |C¢|, by assumption, we conclude that 7 is
separable. Therefore, the Lie algebras g and g are isomorphic. Now the
adjoint actions of z and £ on g coincide and therefore we get:

c() = cq(). (1.17)

Furthermore it follows from 7(Cx(2)) = Ca(x)o, see [37], Lemma 9.2, p.
60, that we have
dim Cp(2) = dim Cg(x). (1.18)

Therefore global and infinitesimal centralizer dimensions coincide for = ex-
actly if they do for z. Q.

With these preparations, we can explicitly describe the cases, where the
orbit maps are separable:

Theorem 1.3 Let G be a simple group of type A, D, E, with nontrivial
group of diagram automorphisms and let T be a nontrivial diagram automor-
phism, which is defined for G. Then the orbit maps G — G.x are separable
for all x € G, if char(k) is either zero or very good and does not divide the
order of T.

Proof: Fixing R and 7, we only need to verify the statement of the theorem
for G of one isomorphism class with R(G) = R, such that 7 exists for G,
by Lemma 1.6. (Recall that all isomorphism classes of algebraic groups G
with R(G) = R only differ by their fundamental groups.) This will be done
case-by-case:
1. G is of type Dy, n > 4, 7> = 1: In this case, we choose G = SO(2n).
Then we have:

G =G x7Z/2Z = 0(2n), (1.19)

E2p 2

where we can choose 7 = ( 0! ) Now we consider the trace form

on gloy:

tr:glo, X gla, — &k
(X,Y) = tr(XY). (1.20)

Then tr is G invariant and we have, as is well known:

g={X €gl,, X=-"X}. (1.21)
Now a direct summand of g in gla, is given by:

m={X €gl,, X ="X}. (1.22)

(The direct sum property is given by the decomposition X = %(X +1X) +
2(X —'X), which holds because of char(k) # 2.) A simple calculation yields
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that m is the orthogonal complement of g with respect to the trace form.
Therefore m has to be G stable. The statement in this case now follows from
Corollary 1.3.

2. G of the other cases: Here our condition on the characteristic can be
rephrased as follows:

char(k) does not divide 2 cox(R(G)),

where coz(R(G)) is the Coxeter number, the order of the Coxeter element.
This follows from explicit consideration of the Coxeter numbers, which are
given, e.g. in [3], Planches, p. 250ff.

Here, we consider the group G of adjoint type. By [36], Chapters 1,2, we
have that g = L ®z k, where L is the Chevalley algebra of adjoint type of
type R(G). Denote the Killing forms of g and L by s and s’ respectively.
By [34], Chapter I, 4.8, p. E-14, we have:

det k' = (—=1)FO7(2 cox(R(G))) " %|A(R) /Z.(R)| " (1.23)

with respect to the corresponding Chevalley basis. Now, our assumption
guarantees, that x is non-degenerate. Let us consider G < GL(g). Then
g = ad(g) C gl(g). Recall that x is just the restriction of the trace form
on gl(g) to g. Then we choose m to be the orthogonal complement of g
with respect to the trace form. This guarantees m to be G stable. Since
restriction of the trace form on gl(g) to g is non-degenerate, we conclude
gNm = 0. Hence we have:

gllg) =g m. (1.24)

The statement now follows from Corollary 1.3. Q.
This result motivates the following definition:

Definition 1.4 The characteristic p = char(k) is called excellent for a pair
(G, T) consisting of a semisimple algebraic group G and an exterior auto-
morphism T € Aut(A(Q)), if p is very good for G and if p does not divide
the order of T.



Chapter 2

Invariant Theory

In this chapter, we want to describe the invariant theory of the adjoint
G-action on an exterior component of G and to give a description of the
corresponding categorical quotient, the so called adjoint quotient. First, we
need the notion of a Cartan subgroup, generalizing the concept of a maximal
torus to non-connected linear algebraic groups, followed by the development
of the representation theory of G. Afterwards, we also investigate the quo-
tient of an exterior component of such a Cartan subgroup modulo the action
of its normalizer in G and show the isomorphism of this quotient with the
former one.

From now on we assume, for the rest of this work, that the algebraically
closed field k is not an algebraic extension of a finite field.

2.1 Cartan Subgroups

We denote a not necessarily connected algebraic group by G and by G its
unit component. Furthermore, we assume knowledge of the theory of linear
algebraic groups as presented in e.g. [13, 2, 33]

Definition 2.1 An algebraic subgroup C < G is called a Cartan subgroup
if all the following properties hold:

(i) C is diagonalizable,

(ii) C has finite index in its normalizer (in G),

(iii) C contains an element z generating C' as an algebraic group.

The finite group W(C) := Ng(C)/Cy is called the outer Weyl group of
(G, C) and denoted by W(C).

As a first consequence of the definition we get:

Lemma 2.1 Let C be as in the definition above. Then C' is abelian.

24
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Proof: Follows directly from the commutator formula (H,H) = (H,H),
found in [2], p. 57 and (iii) of the definition. Q.
Remarks: (a) Clearly we can replace (i) and (iii) in the definition by
(i) C contains a semisimple element z generating C' as an algebraic group.
(b) The existence of Cartan subgroups is not clear, but will be proven for
G reductive in the sequel.
(c) The above definition is motivated by a similar notion of Cartan subgroups
in the theory of non-connected compact groups, cf. [5], Section IV.4.

First we show some properties of Cartan subgroups respectively diago-
nalizable groups:

Lemma 2.2 Let D be a diagonalizable group. Then D contains a generating
element z iff D = (k*)" x Z/IZ, for suitable integers [,n.

Proof: “ < 7 : By [2], Proposition 8.8, p. 115ff, we can find an element
t = (t1,...,tn) € (k*)" generating (k*)". Taking u = (\/%1,...,v/t,) we have
that z = (u, 1) is a generating element of D. (Here the condition on & not
to be an algebraic extension of a finite field enters.)

“=7: D, being diagonalizable, is isomorphic to (k*)" X Z /L7 X ... x /1,7
for appropriately chosen integers n,p,l1,...,l,. Let pro denote the projec-
tion to the product of the finite factors. Now let z be the generating ele-
ment of D. Then pry(z) is a generator of Z/l}Z x ... x Z/1,Z which implies
ZJWZ x ... x Z]1,7Z to be isomorphic to Z/I7Z for a certain choice of [. Q.

We now prove an existence result for Cartan subgroups in the reductive
case:

Proposition 2.1 Let G as above with G reductive. Then every semisimple
element of G is contained in o Cartan subgroup C.

Proof: We prove the proposition first in the case of semisimple G.

Let ¢ € G be a semisimple element, Ca(g)o be the unit component of its
centralizer in G and S < C(g)o a maximal torus thereof. Denote by H the
algebraic subgroup of G generated by S and ¢g. As in the proof of Lemma
2.1, we see that H is abelian. Since, in addition, every element of H is
diagonalizable in a faithful representation of G also H is diagonalizable.
Next observe that S = Hy, because clearly we have S < Hy < Cg(g)o and
Hj is a torus. Now the finite group H/S is generated by ¢S yielding the
existence of a generating element of H. Thus we are left to show that H
has finite index in its normalizer in G.

We have:

[Ng(H) : H] = [Ng(H) : C5(H)|[Cq(H) = H]

IN
=
=
Q
E
Q2
=
=
o
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By [38] Corollary 2(b), p. 43f, the first factor on the right hand side is finite.
Thus we are left with showing the finiteness of the second one:
Combining the two equations

S < C@(H)o < C@(g)g (2.2)
S < CG(H)() < C@(S)o (2.3)

gives S < Ca(H)o < Cr(g)o(S)o- Now it follows from [37], Theorem 7.5, p.
51, Theorem 8.2, p. 52, and Corollary 9.4, p.60, that Cx(g)o is a reductive
group and therefore S = Cc_ (), (S)o by [13], Corollary A, p. 159. Therefore
S = Ci(H)o, which yields our result.
Now let G be reductive and let C(G) be the (in general, positive dimensional)
connected centre of G, and let g € G be again a semisimple element. Denote
the conjugation with g by ¢,. We are done, if we can show that the connected
fixed point group Gy’ = Cg(g)o is reductive, because then we can repeat
the proof as in the semisimple case above. Clearly, we have that c, is an
automorphism of G' and therefore it has to stabilize C(G). Hence ¢, descends
to an automorphism of the semisimple quotient group G = G/C(G) which
we will denote again by ¢,. Now using [37], Statement 4.5, p. 37, our exact
sequence

1 —CG) —G@—G—1 (2.4)

gives rise to an exact sequence

1= C(G) = G — G — ((1 —¢)(G)NC(G)/((1 — ¢g)(C(G))) — 1.
(2.5)
By [37] Corollary 9.4, p. 60, (G®)g is reductive. Since, in our case, C(G) is a
torus, the group ((1—¢4)(G)NC(G))/((1—=¢4)(C(G))) is diagonalizable and
hence abelian. Therefore ((G)g, (G )o) C (G%)o/(C(G)N(G%)p), where
the first group is the semisimple part of (G),. Hence (G)o/(C(G)% N
(G%)o) has to be reductive and since (C(G)% N (G%)y) is diagonalizable,
(G%)p also has to be reductive. Q.
Remark: This proof provides us with a construction recipe for a Cartan
subgroup containing a given semisimple element. This will be exploited
several times in the sequel.
Now, we prove a technical lemma, we will need quite often:

Lemma 2.3 Let C be a Cartan subgroup of G and g € C an element, such
that gCy generates C/Cy. Then Cy is a mazimal torus in Cg(g)o.

Proof: Observe that g and Cj generate C as an algebraic group. Assume
that the statement of the lemma is false. Then, every maximal torus of
Ca(g)o containing Cy will centralize C. So, we get a contradiction to the
fact, that C' has finite index in its normalizer. Q.

Proposition 2.2 Let G, G as above. If C is o Cartan subgroup in G, then
Cy is regular torus in G.
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Proof: Clearly Cy is a torus in G. Therefore Cg(Cy) is reductive group.
(Cc(Cp) is connected, because it is a centralizer of a torus in a connected
algebraic group G, see [13], Theorem 22.3, p. 140.) Hence we can get a
decomposition C;(Cp) = Z@G with finite intersection, where Z is the centre
of C(Cp) and G = (Ca(Cp), C(Ch)) is semisimple. Clearly Cy C Z. We
have to show that G is trivial. Let ¢ be a generating element of C, then Cj
is a maximal torus in C(g)o by Lemma 2.3. Since conjugation with g leaves
Cy invariant, it also stabilizes Cz(Cp) and therefore G. Since, furthermore,
Cy is a maximal torus of C(g)o, which is a reductive group by [37], loc cit,
respectively the argument in the proof of Proposition 2.1 for G reductive,
we have Cyp = Cg(g)o N Ca(Co) = Cry(g)(Co). Therefore the conjugation
map of g

Cq: G—G, h— cg(h) = ghg ™! (2.6)

has only finitely many fixed points on G. Now applying [37], 10.12, p. 71,
we conclude that G is solvable. Being also semisimple it has to be trivial.©.

As a last general result on Cartan subgroups the following assertion
holds:

Lemma 2.4 Let G be as above with G semisimple and simply connected.
Then C NG = Cy, for every Cartan subgroup C.

Proof: Let g be a generating element of C', then, by Lemma 2.3, Cj is a
maximal torus of C;(g). In this case, Cz(g) is connected by [37], Proposition
8.2. Furthermore, C' NG C Cg(g) and hence C NG C Cgy, () (Co) = Co. ©.

We now turn to the special situation of Section 1.3. From now on we
consider G = G x I, where G is a semisimple algebraic group and I' is a
subgroup of the group of diagram automorphisms of the Dynkin diagram
of G. We also restrict the characteristic of £ as given in the beginning of
Section 1.3. Furthermore, let 7 € I be a fixed diagram automorphism, from
now on, and denote by G7 the connected component of G containing 7. Our
next aim is now to prove the following proposition:

Proposition 2.3 Let h,z € G7 be semisimple elements and C a Cartan
subgroup, containing z, such that zCy is a generator of C'/Cy, then h is
G-conjugate into Cyz.

Before proving this result we need some preparations:

Let z € G7 be a semisimple element as above and T < B a pair of a
maximal torus and a Borel subgroup of G' and let C' be a Cartan subgroup
as in the claim of the proposition. Assume T and B to be stabilized by z,
such that Cy = T, where T# denotes the z-fixed points of T" and 7§ its
unit component. (The existence of T' < B can be proven as follows: By
Proposition 2.2, we can take T = C;(Cp). Let B’ be a Borel subgroup of
Ci(2)o containing Cjy. then by [37], Corollary 7.4, p. 50, we can find a Borel
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subgroup B > B’ of G stabilized by z. Since C'g(Cp) is a maximal torus of
G, we get T'= Cp(Cy) C B.)

First, we prove a lemma:

Lemma 2.5 we keep the notations as above. Then, every element of Tz is
T'-conjugate to T z.

Proof: Denote by ¢, : G — G, ¢, (9) = zg 2z~ ! the conjugacy action with z
on G. Then ¢, is a semisimple automorphism of G. By the proof of Proposi-
tion 2.1, the group generated by z and Tj is a Cartan subgroup of G, whose
unit component is 7.

We have to show, that:

VheT 30 €T/T§: Whzh'™" € T¢z, (2.7)

which is equivalent to the following equation:
VYh e T/T¢ 3n € T/T§ - Re, (W1 =hnt, (2.8)

where ¢, operates on T'/T§ in the obvious manner.

Since 7§ is the unit component of a Cartan subgroup containing z and by
property (ii) of the definition of Cartan subgroup, c, can have only finitely
many fixed points on T'/T§. Now we can apply [37], Theorem 10.1, p. 67,
to our situation, yielding the surjectivity of the map T'/T§ — T/T§ given
by h' + h'c,(h'~1), thus proving our lemma. Q.
As a consequence of the previous lemma we get:

Corollary 2.1 FEvery element of Tz is semisimple.

Now we can prove the stated result:
Proof of Proposition 2.3: Let Cy < T < B be a maximal torus and a Borel
subgroup stabilized by z as above, and 7" and B’ be a maximal torus and a
Borel subgroup stabilized by h. After conjugating h with an element of G,
we can assume, that 7' =T" and B = B’. Since, furthermore, Cy = T} we
only have to show, by Lemma 2.5, that h is G-conjugate into T'z.
Now, hz~! is an element in G stabilizing T and B. The first means hz~! €
N¢(T) thus exhibiting an automorphism of the corresponding root system
R(G;T). The latter means hz~! stabilizes a basis thereof, whence hz=! € T,
proving the proposition. Q.
Remark: This result suggests, that every element in G7 is G-conjugate
into the shifted fixed point group G§j7. This result however is false and
counterexamples for each choice of simple G and 7 will be given in the
appendix.

From this result we can now derive some consequences:
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Proposition 2.4 The map

7 : { Cartan subgroups of G} — {cyclic subgroups of I'} given by
m(C)=C/(CNG)=(C/Cy)/((CNG)/Cy) induces

(i) a bijection of G-conjugacy classes of the former set and T-conjugacy
classes of the latter set, as well as

(1) a bijection of G-conjugacy classes of the former set and elements of the
latter set.

Proof: 1. Surjectivity: Any cyclic subgroup of I' is generated by some ele-
ment 7 € I' acting semisimply on G. Therefore it is contained in a Cartan
subgroup C' of G by Proposition 2.1, such that 7Cj generates C'//Cy. Hence
we have the surjectivity.

2. Claim: If C is a Cartan subgroup, v € I' a generator of 7(C) = C/(CNG),
then there exists a generating element z € C, with zG =~ € é/G =T.
Proof of claim: By Lemma 2.2, we have C' = Cy x Z/IZ for a certain | € 7Z.
Now we have C/(C N G) = Z/mZ, where clearly m|l. Let v be a generator
of Z/mZ. To prove the claim we end up with showing that given a surjec-
tive group homomorphism Z/IZ — Z/mZ the inverse image of a generator
downstairs contains a generator upstairs, which can be found e.g. in [5],
Section IV.4, Exercise 3. O,
3. Injectivity: Let C,C" be two Cartan subgroups of G, whose images 7(C)
and 7(C") are conjugate (i) respectively equal (ii) and let z be a generator of
C. Then we can find g € G, such that gz ¢~ 'G is a generator of 7(C"), with
g = e in case (ii). By the claim above, we can find a generator 2’ of C’, such
that gzg~! € 2/G. Since z, 7' are semisimple, we can find, by Proposition
2.3, an element gy € G such that gogzg~'gy' € Chz'. Therefore, C has to
be conjugate to a subgroup of C’ and vice versa by interchanging the roles of
C and C' in the previous reasoning. In particular Cy and C{ are conjugate
to subgroups of one another yielding Cy = C{ by dimension reasons and
irreducibility. Similarly, the number of connected components of C' and C’
must also coincide yielding the stated results. Q.

Corollary 2.2 For G = G xT as above, we have: If C is a Cartan subgroup
of G, then C NG = Cy.

Proof: Let 7 € T" and C(7) be a Cartan subgroup containing 7, such that
C(7)/C(7)o is generated by 7C(7)o. Take, e.g. as in the proof of Propo-
sition 2.1, for C the group generated by 7 and a maximal torus of Gf.
Clearly, we have C(1) N G = C(7)p. Let now C be an arbitrary Cartan
subgroup of G. Then C' is conjugate to a group of type C(7) as above, by
Proposition 2.4. Hence C and C(7) share the same number of connected
components and, again by Proposition 2.4, their quotient groups C/(CNGQG)
and C(7)/(C(17)NG) have the same group order, which equals same number
as the number of connected components, because it does for C'(7). Q.
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Remark: This is a similar result as Lemma 2.4. Here, the group has to
be a semidirect product of a semisimple algebraic group and a subgroup
of the diagram automorphisms of its Dynkin diagram. In Lemma 2.4, the
unit component had to be simply connected, but G did not have to be a
semidirect product.

Proposition 2.5 Let C be a Cartan subgroup of G, and denote by C* the
set of elements of C which are mapped to a generator of C/(CNG) = C/Cy
under the quotient map. Then we have:

(i) Two elements of C* are conjugate under G iff they are under Na&(O),
and:

(i) Two elements of C*, lying in the same connected component of C are
conjugate under G iff they are under Ng(C).

Proof: Let z,y = gz g~ € C* as in the claim of the proposition, with ¢ € G
for case (i) and g € G for case (ii). Then we have z € CNg 'C g and even
z € (g7'C g)*, because C/Cy and ¢g~'C g/g~'Cy g are conjugate in I, by
Proposition 2.4. Therefore, we get the following disjoint union of algebraic
varieties:

C = Cyu..uzl"tc (2.9)
g 'Cg = g 'ChgU...uz""1g7 Oy, (2.10)

where [ is the number of connected components of C. Now Cy and ¢~ 'Cj g
are maximal tori in Cg(z)o by Lemma 2.3. Therefore we can find an element
h € Cq(x)g < G, such that hg 1Cy gh~ ' = Cy, which implies:

hg 'Cgh ™ = hg 'Cogh'U..Uuh2'"lg ' Cogh™*
= C. (2.11)

Hence we must have hg ! € Ng(C) in case (i) respectively hg~' € Ng(O)
in case (ii). Clearly we have y = gzg~' =gh~'zhg™ " Q.

If all cyclic subgroups of I' have prime order, we get the following con-
sequence:

Corollary 2.3 Let G be as above and C a Cartan subgroup of G such that
C/Cy is isomorphic to 7/pZ where p is a prime number. (This holds, in
particular, if G is simple of type A D E and G a nontrivial semidirect product
of G with a subgroup of the diagram automorphisms of G.)

Then two elements of C' not lying in G are conjugate under G, (resp. G,
if they also lie in the same connected component of G}, iff they are under

Ng(C) (resp. Na(C)).
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Remark: If C is connected, which implies that it is a maximal torus of
G, then (ii) gives us the well-known statement, that two elements of C' are
conjugate under G iff they are under the Weyl group.

2.2 A Density Result

In this section we prove the density of the set of semisimple elements of G
in all of G7. Afterwards we derive some consequences thereof.

Proposition 2.6 Let 7 € T, G as above, then the set of semisimple ele-
ments in GT denoted by (GT)s.s. is a dense subset of GT.

Proof: Let C be a Cartan subgroup of G, such that 7Cj is a generator
of C/Cy (i.e. Cp is a maximal torus in G} by Lemma 2.3), then because of
Proposition 2.3 it suffices to show, that UgeGgC’ng*1 = (GT)s.s. contains
an open (hence dense) subset of Gr. This will be shown as follows:

We consider the conjugation map ®:

(I):G/COXCO — Gr
(9gCo,h) — gth_l. (2.12)

The dimensions of the image and preimage spaces are clearly equal. (They
equal the dimension of G.) Since ® is a morphism of algebraic varieties, its
image I'm ® contains an open subset of its closure I'm ®, [11], Exercise 3.19,
p. 94, [38], 1.13, Proposition 1, p. 14.

Apparently, we have dim (Im ®) < dim G. If we can find a point in I'm @,
whose preimage is finite, we can apply the dimension formula for mor-
phisms of algebraic varieties, stating that for a morphism f : X — Y of
algebraic varieties and a connected component V of a fibre of f we have
dimV > dim X —dimY, found e.g. in [11], Exercise 3.22, p. 95, [38], 1.13,
Lemma 2, p. 21. This will give us dim (Im ®) > dim G, and we are done.
So we have to find ¢7 € Co7 such that ®~'(t7) = {g € G/Cy, g~ 'tT g € Co1}
is finite.

Take t7 a generating element of C, then the assumption ¢~ 't7¢g € Cor C C
implies g € N (C) and hence gCj lies in the finite group W(C). Q.
Remark: In the cases where the conjugation map G x Gt — G7 (g,h) —
ghg™! is separable, one gets a second proof of the proposition by showing
that the differential of the map @, as defined in the proof above, is surjective
at some point.
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2.3 The Structure of the Outer Weyl Group

Here we want to give a description of the outer Weyl group W(C) =
Ng(C)/Cy. By Proposition 2.4, it suffices to take as a Cartan subgroup
C' one containing 7, such that 7Cy generates C/Cy. Then we shall denote
W(C) by W. We can even achieve the following situation: 7 stabilizes a
maximal torus 7" of G and a certain Borel B > T, such that Cy = T, the
fixed point torus of T'. Therefore 7 acts on the root system R(G;T) with
basis TI(B) as the diagram automorphism.

Now we can state the first result:

Lemma 2.6 With the notation above we have a split exact sequence
1 — (T/T)) — W S W — 1, (2.13)
where the map ¢ is given by ¢ : nT] — nT, for an element n € Ng(C).

Proof: 1. Exactness: Clearly, we have (T'/T{])" C W, because t centralizes
T and trt~'7=1 € T{, for any representative ¢ with tT] € (T/T§)".
To prove exactness, we have to show the surjectivity and to determine the
structure of the kernel of ¢. -
l.a. Kerg: apparently we have Kerp = {nT]j € W,nTj = nT = T}
yielding n € T, for n € Ng(C),nT§j € Ker ¢. For this choice of n, we must
also have nTn~! € 7T, which directly gives nTj = tnTJ7 !, proving our
claim about Kerp.
1.b. Im ¢: Let nT] € W, then Tnt ! € nT§ C nT. Since T is stabilized by
T we have nT € WT.
If, on the other hand w = nT € W7, we have to find an element ¢ € T, such
that nt € Ng(C). Let z = hr, with h € T, be a generating element for
C. By the assumption on n, there exists ¢’ € T, such that 7~ 'nr = nt'. It
follows that 2 'nz =nt't, with t = 7~ 'n"'h~In hr € T. Clearly, the finite
groups (T'/T7)" and (T/T{)? coincide, therefore by [37], Theorem 10.1, p.
67, applied to conjugation with 2! on (T/Tf), we can find # € T, such that
tz= 4 12T = nt'tn=ITJ. A simple calculation, using the fact that z is a
generator for C, shows tn € Ng(C), whence the surjectivity.
2. Sequence is split: By Theorem 1.1 and Proposition 1.1, we can describe
WT as the Weyl-group of the fixed point group G{, and 7T is a maximal
torus thereof by Lemma 2.3. Hence we get an embedding ¢ : W™ — W. By
the construction of W7 we clearly get ¢ o1 =1d. Q.
Next, we want to understand the structure of the factor (T'/T; )" of W
more thoroughly. Therefore we need some information about the tori T', T]
and their respective character lattices.
Let S be any torus, i.e. a connected diagonalizable affine algebraic group,
then denote by x(S) the character lattice, i.e. the set of all algebraic group
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homomorphisms S — k*. The following discussion uses basic facts about
diagonalizable groups, found in e.g. [38], Section 2.6, [13], Chapter 16, or
[2], Chapter 8.

Let T' now be a maximal torus of G, x(T') the corresponding character lattice,
Ty the unit component of the 7 fixed point torus in G. Then, corresponding
to the embedding i : 7] — T, we have a projection i* : x(T') — x (77 ) which
is just given by taking the mean over each 7-orbit of each element p € x (7).
Thus, by extending the notation of Chapter 1, we have x(77) = "x(T)".
But there is also another lattice involved, the fixed point lattice x(7')" of the
7-action on x(7T'). Corresponding to this lattice and the inclusion x(7')" C
x(T'), we have a torus denoted by T" and a quotient map p : T — T’, such
that p* : x(T)™ — x(T) is just the inclusion. (Note that, for G simply
connected, we have x(T') = A(R(G;T)), the weight lattice, and we are
in the situation described in Chapter 1.) We now identify TJ7 with T7,
(by multiplying with 7~ !). This identification becomes W—equivariant, if

L=t for all

we let W act on 7] by the following rule: w * t := ny, t7n,
t €Ty and w € W with nyTy = w. Since we can realize the YW -part of
W= (T/T§)" x W™ in G7, as in the proof of Lemma 2.6, W™ acts on Tjj in
the usual way, but (T/T{)" acts on Ty by multiplication with ¢ 7¢ 171

We now give another description of 7":

Lemma 2.7 Let ¢ : T — T be the group homomorphism t — ¢(t) =
trt tr=l then T' = T/Im¢. The map ¢ is W -equivariant.

Proof: Denote the projection map T'— T'/Im ¢ by w. Let u be a character
on the torus T'/Im ¢, then 7*(u) is a character on T being trivial on I'm ¢.
Therefore, we have 7*(u)(¢(¢)) = 1, for all ¢ € T, which is equivalent to
o (u)(tt7 1) = 7 (u)(t), for all ¢ € T, which gives us 7*(u) € x(T)".
On the other hand, let u € x(T)7. We define a character g on T'/Im ¢
by fi(t Im ¢) := p(t), which is well defined, because of the 7-invariance of
p. We have n*(i1) = p. Therefore, the character lattices of T'/Im ¢ and
T" coincide (as sublattices of x(7T')) and hence the tori must be isomorphic.
The WT-equivariance is trivial. Q.
For the next result, we need some further notation:
Let us consider the homomorphism v : (T/T])" — T given by tI] —
v(tT§) = t7t~'771. The image of v will be denoted by H. This is a finite
subgroup of Tj. Note that v need not be injective, its kernel is just given
by T7 /Ty
Now we can prove a first result:
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Lemma 2.8 Consider ¢y = poi:

T

Tl

U

Then o : T§ — T" is the quotient map of T§ by the above defined action of
(T/T5)". It is WT -equivariant.

Proof: 1. 1 factors over the quotient map: Let tTj € (T/T§)". Then,
by the definition of the action of (T//T])" on T given above, tT] acts
on Tj by left multiplication, independently of the representative ¢ chosen,
with t7¢71771 € TJ N Im ¢, where ¢ is the map defined in the previous
lemma. By the same lemma, we get p(tT] * s) = p(s), for all s € T] and
Ty € (T/)17)".

This shows that ¢ factors over the quotient map 7] — T /(T/Ty)". There-
fore we have to show ker 1 = H and the surjectivity of 1.

2. Surjectivity of ¢: This is a consequence of Lemma 2.5 and the previous
lemma:

Let ¢ € T be a representative of an element in 7", then we can find (by
Lemma, 2.5) an element s € T, such that ts7s 77! =t ¢(s) is an element
of T§ and also a representative of the same element of T by the previous
lemma.

3. keryp = H: Let t € Kervy =Tj NIm¢, ie. we have t = s7s~ 77! for
an element s € T. We conclude s € (T'/T)".

4. WT-equivariance: Since H = ker1 = Tj N I'm ¢, this follows from the
WT-equivariance of ¢, cf. Lemma 2.7. Q.
Remark: In general, the sequence

1 —Ty — T —Im¢ —1, (2.14)

with ¢ as in Lemma 2.7, fails to be exact. It is exact iff T7 = T]. However,
in that case the sequence cannot be split, since Tj NIm ¢ = (T/T§)" will
turn out to be nontrivial.

Next, we want to understand the structure of the group (7'/7)” which,
clearly, is a finite abelian group.
For simply connected and simple G we can directly calculate (T'/77)":

Lemma 2.9 If G is simply connected and simple, and if 7 is a diagram
automorphism of G as above, then we have:

If 72 =1, then (T/T3)” = (T/)T7)" = (Z)27Z)%mT=dmT5(2 15)
if T =1, then (T/T)” = (T/T7)" = Z/3Z. (2.16)
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Proof: First, observe that G simply connected implies that G is connected
by [37], Theorem 8.2, p. 52. Therefore, T7 = T, because the latter is a
maximal torus of G7.

By the exactness of the sequence of the preceding remark, we have T/T7 =
I'm ¢. This identification is even 7-equivariant. Therefore we can calculate
on I'm ¢.

Case 1: 72 = 1: In this case we calculate 7(¢(t)) = 7t 7t 171771 = ¢(¢t ).
Hence 7 acts on T//T" by inversion and we get (T'/T7)" = {t € Im¢, t =
t~1}. Identifying the torus 7/T7 with a product of as many multiplicative
groups k* as it has dimension, we get the stated result.

Case 2: 73 = 1: In this case G is Sping(k) and G7 is of type G2. Hence
we have dim (T/T™) = 2. The automorphism 7 is therefore a nontrivial
automorphism of a two dimensional torus of order three, giving rise to a
nontrivial automorphism of the corresponding character lattice x(7/T7) =
Z?2. The isomorphism group of this lattice is GL2(Z) and since 7 is of order
three and det(g) = £1 , for all g € GL2(Z), we must have 7 € SLs(Z).
Now the image 7(7) of 7 under the two-to-one cover 7 : SLo(Z) — PSL2(Z)
is again of order three. By the theory of the modular group , see e.g. [25],
théoreme VII. 1.1, w(7) is conjugate in PSLy(Z) to an element of the form
( o -1 ) or ( -t ) Hence 7 is conjugate in SLy(7Z) to an element of

1 1 1 0
or (—1 —1)

the form i( 0 -1 ) or i( -1l ), of which only ( 0 )
(7 )
2

1 1 1 0
Then T acts

have order three. By replacing 7 by 7~! we can assume 7

1

Let now (t1,t2) be appropriate coordinates of T/T™ =2 (k*)~.
by 7(t1,ta) = (t; 'ty ' 1)
A calculation now yields (T/T7)" = {(1,1), (£,€), (£2,€2)} = Z/37Z, for a
primitive third root of unity &. Q.
Remark: (i) In case, that G is semisimple and simply connected and that
T is a permutation of isomorphic simple normal subgroups of G, we obtain
the following result: Let 7 be of order n. Then 7 acts as an isomorphism of
order n on T/T™ and we can conclude that (T/T7)" C (Z/nZ)%mT—dimTg
(ii) The result of the above theorem is also obtainable by direct case-by-case
calculation as in [39], Lemma 4.10, p. 33, where the compact case is treated.

Next, we approach the general case:
Let H be the image of the map v : (T'/Tj)” — T, as defined in the para-
graph preceding Lemma 2.8. By Lemma 2.8 H is exactly the kernel of 1.
Now we have:

Corollary 2.4 If G is simple of type A D E, then the following statements
hold:
(i) We have identifications:

H = x(H) = x(Tg) /x(T") |3 (2.17)
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(11) If G is simply connected, then H = (T/T7)".

Proof: Part (ii) follows from the equality Tj = 77, which holds for simply
connected G by the proof of Lemma, 2.9.
(i) For the second identification consider the exact sequence of diagonalizable
groups

l1—H—T] —T —1, (2.18)

giving rise to an exact sequence of abelian groups, proving the second iden-
tification:
0 «— x(H) «— x(1T]) +— x(T") +— 0. (2.19)

Now we want to prove the first identification. Since H is a finite abelian
group and by the theory of finite groups as developed e.g. in [9, 26], we need
to show that the group order of H is not divided by the characteristic of k.
(Note that we imposed char(k) # 2 respectively char(k) # 2,3, if 73 =1, in
Section 1.3.) In fact, we will show that the order of H is a power of ord T:

Let p : V. — V7 be the projection of the real vector space V', in which our
root and weight lattices are embedded, to its 7-invariant part as defined
in Equation 1.2. Then we have x(T7) = p(x(T)) C "A(R)" and x(T") C
A(R'). Furthermore, let T' be a maximal torus of the simply connected
group of the same type as G, thus X(TOT) = "A(R)'. Let 1" be a torus
corresponding to A(R') and H defined similarly to H with T replaced by
T. Then the commutative diagram of abelian groups with exact rows and
injective columns

0 x(H) x(17)

0 Xx(H) x(T7) x(T") 0

gives rise to commutative diagram of diagonalizable algebraic groups with
exact rows and surjective columns

1 H T T 1
p p
1 H T3 T’ 1.

(The surjectivity follows from the fact that images of algebraic groups under
algebraic homomorphisms are closed, cf. e.g. [38], Section 1.13, Proposition
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2, p. 20.) We have p(H) C H, and by use of the Snake Lemma, we get an
exact sequence

1 — kerply — kerp — kerp — H/p(H) — 1. (2.20)

We now distinguish two cases: If 7 is of order three, e.g. R is of type Dy,
we have by Corollary 1.1 that 7" = T" giving H = p(H). By Lemma 2.9
and (ii) we have H 22 7 /37 and we are done.

If 7 is of order two we get, by Corollary 1.1, that kerp' is either Z/2Z or
trivial and hence so is H/p(H). Furthermore, by Lemma 2.9, H is a direct
product of copies of Z/2Z. Therefore the group order of H also has to be a
power of two. Q.
Remark: (i) If G is not simple but semisimple and 7 a diagram automor-
phism exchanging isomorphic simple normal subgroups of GG, a similar result
holds: The analogue of (ii) is still valid by the same reasoning. To achieve (i),
we can similarly carry out the diagram argument using the Snake Lemma,
if we impose further restriction on the characteristic of the base field k: In
addition to the condition that char(k) does not divide the order of 7 we
also need, that char(k) does not divide the order of the fundamental group
A(R/Z(R).

(ii) In the case of char(k) = 0, we do not need Lemma 2.9 for the proof
of the above corollary, because the isomorphism H 2= x(H) always holds
(note that we are dealing with finite abelian groups). Therefore, we get in
this case, another proof of Lemma 2.9 by use of the above corollary and
direct computation of "TA(R)!/A(R)™ by use of the set of generators of these
lattices as exhibited in Section 1.2.

2.4 Representation Theory of G

Our next aim is to understand the representation theory of G presupposing
that of G. The relevant results may be found e.g. in [13], Chapter XI, or
[38], Sections 3.3 and 3.4.

We start with a definition and a lemma about class functions, which will be
useful later.

Definition 2.2 Let be G as above. A regular function f € k[GT] on the
component Gt of G defined by T € T will be called a class function, if it
s invariant under conjugation by elements in the unit component G, i.e.
f(ghg™') = f(h), for all h € Gt, g € G. The ring of all class functions
will be denoted by k[GT]C.

Remark: This notion is a bit abusive, because class functions are usually
functions on the whole group, invariant under conjugation of the whole

group.
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Now we can state a first lemma:

Lemma 2.10 Let f € k[GT]Y be a class function, g € G, then f(g) =
f(gs), where g5 denotes the semisimple part of g.

Proof: First aremark: If g € G7, then so is g;. Note that gG =7 € T' = é/G
and I" consists only of semisimple elements. The unipotent part g, of g must
therefore lie in G, and hence the statement of the lemma makes sense.

Let g = gsg,, be the Jordan-decomposition of g. Since f is a class function
we can assume, without loss of generality, that g; € Tj7 by Proposition
2.3. Clearly g, € Cg(gs) holds. By [37], Corollary 9.4, p. 60, the group
Ci(9s)/Ca(gs)o is abelian and consists of semisimple elements. We even get
gu € Ci(gs)o, a reductive group by [37], Corollary 9.4, p. 60. Then we can
find a maximal torus T and a Borel subgroup B > T of Cg(gs)o, such that
gu € B. Denote the corresponding basis of the root system R(Cq(gs)o,T)
by II. Since II is a set of Z-linear independent elements of the character lat-
tice x(T') we can find a one-parameter subgroup A : k* — T, i.e. an element
A € x(T)*, such that @(\) > 0, for all @ € II. Then we have a()\) > 0, for

all @ € R(Cq(gs)o, T)™, the set of positive roots in R(Cq(gs)o,T)-
Now it is a well known fact, that the unipotent radical U = B, of our
Borel subgroup is isomorphic to an affine space having the cardinality [ of
R(Cq(gs)o, T)t as its dimension, see for instance [13], Proposition 28.2, p.
170. This isomorphism is given by X5, (¢1) x...x X5,(¢;) — (c1, ..., ¢), where
Xa, : k — Cg(gs)o is the one-parameter additive root group corresponding
to a;, on which ¢t € T acts by t X5, (¢;) 7! = Xa, (a;(t)c;).

Now, the conjugacy action of a one-parameter subgroup p : k* — T on U
corresponds to an action (ci, ..., ¢;) = pu(s).(c1,...,c1) = (s B¢y, .., s )
under the above identification with affine [-space. For our special choice
of one-parameter group A as above, the identity of C(gs)o, which corre-
sponds to the zero point of affine [-space under the identification above,
is in the closure of every Im A orbit in U. Hence, for g, € U, we get
gs € M8)gA(s™1)sep+. Since f is a regular (hence continuous) class func-
tion, we get our result. Q.

For describing the representation theory of G we restrict to the situation,
where I' < Aut(A) is a cyclic group and 7 is a generator thereof. Similarly
to Mackey theory in the theory of finite group, outlined e.g. in [9, 26],
we can extend irreducible representations from G to G. Here, we denote by
V(A) the irreducible highest weight modules of G corresponding to a highest
weight A € x(T).

We have the following result:

Proposition 2.7 Let G be simple:

(i) Let X € x(T') be a dominant character of G.

(a) If T(X) = A, then there exist (ordT)-many inequivalent irreducible G-
representations on V()), denoted by py, ""ﬁ())\rd'r'
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(b) If T(X) # A, then there exists up to equivalence one irreducible represen-
tation * of G on @47 V(11 (N)).

1= ~
(1) If char(k) = 0, every irreducible representation of G is equivalent to one

of type either (a) or (b) in (i).

Proof: This proposition is folklore in the representation theory of liner alge-
braic groups. Since we have not found a reference for this, we give a detailed
proof:
(i) Let V(A) an irreducible G-module and denote the corresponding repre-
sentation by p*. We can define another representation p} of G on V(\) by
twisting with 7:

pr(g) =pMrgT "), Vgea. (2.21)

By Schur’s Lemma and 7G7~! = G, we see that p} is again an irreducible
representation of G. Next, we investigate the action of p} on the weight
spaces V' (A), of V(X). We get that p;\(t)|v(/\)u acts like (771 (u))(?) idy (),
on the corresponding weight space. In particular, we see that 7 '()) is
the highest weight of the representation p?. (Here, we also need, that 7
stabilizes the Borel subgroup B > T, corresponding to our choice of simple
roots.) Therefore, we get an intertwiner S € GLa(p),p” V), ie. S €
Aut(V(X),V(r~1()\)), unique up to a scalar ¢ € k*, such that

SpMg)=p" N(g)S, VgeG (2.22)

holds. Now, we have to distinguish two cases:

(a) 771(A\) = X: In this case we clearly have S € Aut(V(\)) and S operates
on the (one-dimensional) weight space of the highest weight by a scalar
c € k*. Let ¢ be an ord 7-th root of unity, then we define a map 5 : G —
Aut(V (X)) in the following way:

plg) = P9, ifgeq, (2.23)
o) = S7L (2.24)

By use of the Equation 2.22, one easily calculates that 5 is a G-representation.
For different c,c’ these representations are non-isomorphic, because every
isomorphism between ﬁg‘ and ﬁg\, has to be a multiple of the identity, (by
Schur’s Lemma and 5} |¢ = p)|a = p*).

(b) 77Y(A) # A: Let us denote the order of 7 by p, and observe that in
our case p = 2,3, is a prime number. By Equation 2.22 we can find inter-
twiners S; € GL(;(pzlﬂ(/\),pT_i(/\)), for all 7 € 1,..,p — 1. Inductively one
proves now that S;...51 € GLg(pii,pTﬂ()‘)), in particular S := S§,_1...51 €
GLg(p;\p,l,pTlfp(/\)). Let us furthermore set V := @f_, V(7¢())).
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Now we define a map 5 : G — Aut(V) by:

P (9)
M) = : , ifgeq, (2.25)
"N (g)
0 St
Nr) = S (2.26)
S . .. 0

One calculates easily, using Equation 2.22, that 5 is a representation of G.
(In particular, one has to check ord 5* (1) = p.)

Next, we show the irreducibility of 5, which will be done by use of Schur’s
Lemma. Therefore, observe that each p™ 'V, i e {1,...,p} is an irreducible
representation of G. Hence each element z € Endg( b, pTl(/\)) has neces-
sarily to be of the shape

ay FE
T = : : (2.27)
ap B

where ai, ...,a, € k. Conjugating with p*(7) gives:

(N a1 E o . . . 87!
. S1 0
0 5,1
S 0 (ZpE Spfl
a9 FE
aq E
yielding a; = as = .... = ap and hence Endg(p") = k.

Since each §; is unique only up to a constant of k*, we still have to show that
different choices of the S;, i € {1,...,p—1} lead to equivalent representations
. Let pt and gy be two representations as constructed in Equations 2.25
and 2.26. Of course, these representations coincide on G. Now we can find
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C1y-..yCp—1 € k¥, such that

(N
m(r) = oo and (2.28)
0 S
S . 0
0 crtst
. - . .
pr) = | e
0 Cpfl p—1
cl...cp,lS . PR 0

Setting now a; := Hé-;llcj, ie{l,...p} and U := diag(a1 E, ..., ap E), we get
U € GLg(p?}, p3), proving (b).

(ii) If p is an irreducible finite-dimensional G-representation on V' then, since
G is reductive, V' decomposes into a direct sum of highest weight modules
V(p;) for G. (Note that in characteristic zero all reductive groups are lin-
early reductive.) Now, besides p# also the 7/-twisted representation, by (i)
equivalent to p™ () has to appear for all j € {1, ...,p}. Going through the
proof of (i), p has to be isomorphic to a representation of (i)(a) or (b). Note
that for ﬁE\a) (1) being of order p we require p(7) to be of the form either of
Equation 2.24 or 2.26. Q.
Remarks: (i) If G is semisimple and 7 a permutation of isomorphic simple
normal subgroups of G, a similar result holds in this case, too: For 7 of
prime order, the proof is exactly the same as above. If 7 is not of prime or-
der then, apart from the cases discussed in this proof, a third, intermediate
case may occur: A dominant weight A is not fixed by 7 but has a nontrivial
stabilizer I'y.

In this case, a similar discussion as above leads to |I'y| many non-equivalent
representations of G on V = @V (u), where y runs over weights in the
T-orbit of A. In this case, the representation matrix for any element of Gt
has only trivial diagonal entries. We refrain from giving details.

(ii) In characteristic zero this result says, in particular, that every irreducible
G-representation is induced by an irreducible representation of G. If we con-
sider the more general situation of G and G being arbitrary affine algebraic
groups with G < G, the analogous result does not hold in general. An ac-
count on this is e.g. given in [8]. The statement holds, if we have e.g. that G
is a parabolic subgroup of G for connected G. For finite groups G and G the
question, which irreducible G-module is induced by an irreducible G-module
is answered by Mackey theory, which is developed e.g. in [9], Chapter VII.
The main reason, that in our situation the result holds is, that the quotient
G/ G is cyclic, so in particular finite.
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Our next task will be to calculate the characters X (/\a ) of the representa-

tions [)/\a of G keeping the notation of the previous proposition.

Before we do this we need further preparations:

As in Chapter 1, denote the root system of G by R. Let T' be as defined
in the paragraph preceding lemma 2.7, i.e. x(T)” = x(T"). So we see that
every multiplicative character on 7', which is invariant under 7, can be inter-
preted as a character on T”. Furthermore, denote by G’ a group having the
root system R’ of Section 1.2, whose maximal torus is 7”. The requirement
that T" is a maximal torus of G’ fixes the fundamental group of G’. Then,
the following lemma holds:

Lemma 2.11 Let G, 7, T and x(T) be as above. Then x(T')" is the charac-
ter lattice x(T") for a group G', a group having the root system R’ of Section
1.2, whose mazimal torus is T".

If G is simple we have:

G' is simply connected in the cases of Aop, Eg and in case Dy with 73 =1

and either adjoint or simply connected in the other cases (As,—1 and D,
with 72 = 1).

Proof: This is just a rephrasing of Corollary 1.1 in terms of algebraic groups.
Q.

Now, let us denote by X* the character of a G-representation with high-
est weight A and by X'* that of G'.
With these preparations we can now state our result:

Proposition 2.8 IfX(/\a) is the character of the irreducible G-representation
ﬁE\a), the following holds:
(i) If T(\) = A, then we have:

Xile = X2 (2.30)
Xilarsr = a™' X (2.31)
where the denoted equivalence = is given by considering the characters as

elements in the group rings Z[x(T)T| = Z[x(T")].
(ii) If T(X) # A, then we have:

ordT
~ 1 i
Xile = WZX (%) (2.32)
=1
Xilarsr = 0. (2.33)

Proof: By the definition of the representations ﬁg‘a) in the two cases, (look
at Equations 2.23 and 2.25 in the proof of Proposition 2.7, respectively),
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we clearly get the statement for 15?0,)|G' Since in the second case, p*(g), for

g € Gr*! is a block-diagonal matrix with zeros on the diagonal, again,
by the definition in Equation 2.26, we get X*(g) = 0, for ¢ € Gr*'. The
same conclusion holds for semisimple non-simple G and 7 an exterior au-
tomorphism of G exchanging isomorphic simple normal subgroups of G by
Remark (i) following Proposition 2.7.

Thus we are left to show the second part of (i):

By the definition of a, the scalar by which 5}(7) acts on the highest weight
vector, we can assume without loss of generality that ¢« = 1. By definition
of the character, i.e. being a trace function, we have that ) (g) is invariant
under conjugation in G, for all g € G. So, in particular, 5)|q, € k[GT]¢ is
a class function on G7. Therefore, using Lemma 2.10 and Proposition 2.3,
it is completely determined by its values on 7 7.

Consider now the weight-space-decomposition of the G-module V(X):

Vi) = B V) (2.34)

pex(T)

By the definition of the representer 59 (7) in Equation 2.24 and the discussion
at the beginning of the proof of Proposition 2.7, we have that 7 interchanges
the weight spaces V(\), and g} (7)(V(A\),) = V(A)7(u)- On the other hand,
elements ¢ € Tj act on V(X), by u(t) idy(y), -

Therefore, we get the following formula:

XMtr) =trp(tr) = > p(t)tr o} (D)o, (2.35)
pex(T)™

for all t7 € Tjr. (We can restrict to invariant weights because the cor-
responding representation matrix of ¢7 restricted to @fﬁT V(A)riu, a 7-
stable subspace of V' ()), for a weight p # 7(u) is zero on the diagonal.)
Hence we only need to calculate the traces of [)i\(T)|V( n), forall pe x(T)".
This has already been carried out in [15], Chapter 9, Theorem 9, p. 30:

tr ﬁ{‘(tT)|V()\)ﬂ =dimV'(\),, (2.36)

where, now, A\, € x(T)" are considered as weights of the group G’ and
V'(X) is the irreducible G'-module with highest weight .
Therefore we get

Xagr = Y. (dimV'(\)u) (2.37)
pex(T)™

Since characters of semisimple connected algebraic groups G’ are uniquely
determined by their values on a maximal torus 7", we get the stated result of

-1
our proposition. Since 7 and 7~ ! have identical properties, e.g. T, = TéT )



CHAPTER 2. INVARIANT THEORY 44

and 7 acts on the highest weight space with the scalar 1 exactly when 7!

does, we get the same result for restricting to G771, Q.
Remark: In the case of Kac-Moody algebras, traces of exterior automor-
phisms in representations have been determined in [10].

2.5 The Adjoint Quotient of Gt

In this section we will show the isomorphism of the two quotients G7/G
and T 7/ W.

We keep the notation of the previous section. In particular, we require I' to
be cyclic and 7 to be a generator of I'. Using geometric invariant theory as
e.g. developed in [22, 23, 32, 19], we define the categorical quotient VG
of the G-action on an affine variety V by setting VG := Speck[V]%, the
spectrum of the ring of G-invariant functions on V. Note that the existence
of such a quotient is guaranteed, in the case of general reductive groups G,
by [22], Theorem 1.1, p. 27.

In our situation, k[T T]W denotes the W-invariant functions on Ty . Since
W is a finite group, we even get that 7] T//W is a geometric quotient, i.e.
i) w parameterizes exactly the W-orbits in Ty 7, the set of which we will
denote by T{ /W, in the sequel.

Let G’ be as defined in the paragraph preceding Proposition 2.8.

Now we can state our first major result:

Theorem 2.1 (i) The inclusion map i : Tj T — GT gives rise to a commu-
tative diagram

TgT : GT
T ™2
{1 /W ———G1//G

and an isomorphism 1. .
(11) Furthermore, Gt /G = G7//G.

Proof: (i) By the definition of the categorical quotient given above, the
statement of the theorem amounts to showing that the restriction map 7*:

i* : k[GT] — [Ty 7]
f= flrg- (2.38)
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induces an isomorphism on the invariant subrings k[G7]%, k[Tg7]"V. We
proceed as follows: B

1. i*(k[GT]%) C K[T§7]": Since the action of W on T T is given by con-
jugation with a representative in Ng(C'), we clearly have f|rr. € k[T§ ",
for all f € k[G7]C.

2. Injectivity: Let f € k[G7]%, such that flrgr = 0. Then, since f is a class
function, we have

lUyeqotsra— =0 (2.39)

lis a dense subset of G7 by

But f is a regular function and U,cq 97579~
Propositions 2.3 and 2.6. This yields f = 0.

3. Surjectivity: The idea of proof is the following: Take the collection of all
of the characters Xf‘|GT, for dominant A € x(7')", as given in the previous
section on the representation theory. Show that this collection will be a
basis of k[T§ 7]"V, if we restrict its elements to 7] 7.

Using the W—equivariant isomorphism between 7] and 7jj 7 as described
in the paragraph preceding Lemma 2.7 and by Lemma 2.8 as well as the
already proven injectivity of our restriction map f ~ f|ry, for f € k[GT]¢,
we get the following sequence of rings:

KGT]E = KTV = k[T, (2.40)

where the last isomorphism is given by
Y T\T WT T T
WTg Y = (KT rT/707) T = kT /(T Tg) T 2 KTV, (241)

using Lemma 2.6 for the first isomorphism and Lemma 2.8 for the last.
Now denote the composition of the two maps in Equation 2.40 by £.

Let X|gr, for A € x(T)7, be the restriction of the character of the corre-
sponding G-representation to G7. By Proposition 2.8, we have B(Xf‘|GT) =
X ’)‘|T/, a character of G’ as in Lemma 2.11, restricted to the maximal torus
T’ of G'. By the second remark after Lemma 1.4, we see that every restric-
tion to T" of a character X" of a G'-representation can be obtained as the
image under f of a certain X ¥|G+ for suitable p.

Hence we have:

BUXMar, X € x(T)"  dominant }) = {X* |7+, A € x(T") dominant }.
(2.42)
By [35], Lemma 6.3, p. 294, respectively [38], Section 3.4, Theorem 2, p.
87, respectively [3], Chapter VI, §3, the set on the right hand side is a basis
for k[T']V", proving the surjectivity.
(i) In the proof of (i), we have shown that the set of characters {X{|qr, A €
x(T)™ dominant } is a basis of k[GT]%. Since all these elements, being
characters, are invariant under conjugation with G' we get k[G7]% C k[G7].
The inverse inclusion is clear. Q.
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For proving the surjectivity and statement (ii) above in the case of G
simply connected and char(k) = 0, we can indicate a second proof avoiding
the use of representation theory:

Second proof of step 3 and of (ii) above:

Surjectivity: As already indicated, assume char(k) = 0 and G simply con-
nected. Similarly to the proof of Proposition 2.6, we consider the following
map (note that here 7 = T]):

o:G/T" xT't — Gt
(gT7,ht) +— ghrg ' (2.43)

We can define a W-action on G/T™ x Tt by
w.(gT",h7) = (gng ' T",ny hr '), (2.44)

where n,, is a representative of w in Ng(< T7,7 >). (Recall that < T7,7 >
is a Cartan subgroup in the sense of Section 2.1). Apparently, this action
is well defined and @ is W-invariant. By Proposition 2.6 ® is dominant.
Hence @ induces a map of the fields of rational functions of these varieties:

" k(Gr) — K(G/T™ xT7T). (2.45)

Since the transcendence degrees of these fields coincide, k(G/T7 x T71) is
a finite field extension of k(G7) which, in this case, is clearly separable.
Denote the corresponding degree by n.

In this situation, there exists an open subset U C G/T" x T77 such that
for all v € U the preimage ® (®(u)) contains exactly n elements, a well
known fact in algebraic geometry, found e.g. in [19], AT 3.5, p. 251. Observe
that ® is G-equivariant, if we let G act on G/T7 x T77 by left translation
on the left factor and on G7 by conjugation. Hence we have:

9.0 H(®(u) = & H(2(g.u)). (2.46)

Therefore, we can choose U to be G-stable without loss of generality. This
means U = G/T" x V where V is an open subset of T77.

Next, we want to show that n actually is the order of W:

To obtain this, we take A7 € V and consider Cg(h7). We clearly have
T™ < Cg(hT) and, furthermore:

Cq(hr)/T™ x {h7} C ®~Y®(eT7, h1)) = &~ (h7). (2.47)

Since the latter is finite and since C(h7) is connected, cf. [37], Theorem 8.2,
p. 52, we conclude Cg(h1) = T7. Let (gT7,h't) € ®~'(h7),ie. gh'Tg™! =
h7. Then, by Proposition 2.5, we can find ¢’ € Ng(< T7,7 >), such that
g hr gt = W7, giving g¢ € Ca(hr) = T7. Hence ¢T™ = ¢ 'T7 € W,
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proving that the cardinality of ®(h7) is the order of W.
® induces a map -
O W\(G/T™ xT"7) — Gr. (2.48)

By the W—invariaqg/e of ®, we can choose the set V above, w.Lo.g., to be
W-stable. Then, W\(G/T™ x V) C W\(G/T™ x T"1) is an open set, on
which the fibre of ® consists of just one point. Therefore, W\(G/T™ x T"r)
and G are birationally equivalent, yielding:

k(GT) = EW\(G/T™ x T™7)) = k(G/T" x T"1)"V. (2.49)

Observe, furthermore, that the G-action on G/T7 x T" 7 commutes with the
Wh-action so that this G-action descends to W\(G/T™ x T7r) and such that
®' becomes G-equivariant.
Set:

pr:G/T" xT'r =TT, (2.50)

the second projection, which clearly is W—equivariant. Take f € k[T,
Then we have pr*(f) € k[G/T™ x T77]"W*¢ and, therefore, ®*~!(pr*(f)) €
k(GT)Y.

To complete the proof of the surjectivity, we have to show that F :=
®* ~L(pr*(f)) already is a regular function on G7 and that ®* = (pr*(f))|r-r =
f

For the latter, observe: F(ht) = (pr*(f)((eT",h7)) = f(hT), for all
hr €17T.

In our situation, G simply connected and char(k) = 0, the algebra k[G] =
kE[GT] is a unique factorization domain. This follows from the fact that
Pic@ is trivial by [17], Proposition 4.6, p. 74, which amounts to the unique
factorization property of k[G| by [11], Chapter I, Proposition 1.12A, p. 7.
Therefore we can choose Hy, Hy € k[GT]| having no common divisor, such
that F' = % Since F' is G invariant we must have g g; =F = % providing
us with a group homomorphism

c: G — k[GT]", (2.51)

such that ¢g.H; = c(g)H;. By use of [18], Proposition 1.2, p. 78, every
element ¢ of kK[GT]" = k[G]* with ¢(e) = 1 is a multiplicative character of
G, giving k[GT]* = k*. Because of G = (G, Q) it follows, that G has no
nontrivial characters. Hence we get H; € k[GT]°.

Now, we have for arbitrary z € Gr:

Hi(z) = Hi(wy) = Hy(&y) = F(&5)Ho(is) = F(&5)Ha(), (2.52)

where x; denotes the semisimple part of x and Z, is an element of T77
conjugate to zs. The first and last equality follow from Lemma 2.10. Now
we see that Hy(z) = 0 implies H;(z) = 0, giving that each nontrivial divisor
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of Hy divides Hy, forcing Hy to be a unit in k[G7] yielding F' = H; (up to
a unit), and thus completing our proof.

(ii) Here we do not require any restrictions on the fundamental group of G
and the characteristic of k:

The group I' operates by conjugation on 777 and on G'7, and the inclusion
map i is [-equivariant. So are the quotient maps 777 — T77/W and
Gt — G7//G. From the I'-equivariance of i we get the equivariance of the
isomorphism between these quotient spaces. But I' acts trivially on 777 and
therefore also on its quotient T77/W. Q.

We get some consequences of the theorem:

Corollary 2.5 The setN{X'{\|GT,)\ € x(T)™ dominant } of all restrictions
to Gt of characters of G-representations ﬁ{‘ form a linear basis of the ring
of class functions k[GT]%.

Let us denote the fundamental dominant weights of A(R(G)) by {1, ..., Ar}
and the fundamental dominant weights of A(R(G))™ = A(R(G)") by {\], ..., AL }.
Then we have:

Corollary 2.6 (i) If the group G' appearing in the paragraph preceding
Proposition 2.8 is simply connected, i.e. x(T)" = A(R'), then we have:
Gt |G = ATRG" " (This happens, in particular, for G simply connected).

Furthermore, the X{\j|G7, j€{l,...,s} freely generate k[GT]% as k algebra.
(11) In particular the quotient Gt /|G is isomorphic to an affine space of di-
mension dimT] = dimT' = rk G in the following cases:

(a) If G is of type Asy, Eg or Dy with T of order three.

(b) If G is simply connected of type Agn—1 or Dy, with T of order two.

Proof: (i) By the previous theorem and its proof we clearly have G7//G =
T'/WT. The statement now follows from statements in [35], Lemma 6.3, p.
294, respectively [38], Section 3.4, Theorem 2, p. 87 for G’ simply connected

and the equality B()N(l)\j lar) = X" l77, 7 € {1,...,s} (B as in the proof of the
theorem above).
(ii) This is immediate by Lemma 2.11. Q.
It may also happen, in the case where G is not simply connected of type
Agp, 1 or Dy, with 7 of order two, that the categorical quotient is an affine
space. This happens whenever x(7T')” = A(R'). To figure out these cases, we
need a thorough investigation of the action of 7 on the fundamental group
of G, which will be our next purpose. Here, we shall restrict to the case that
G is simple:
Let G be the universal cover of G and denote by C¢ the kernel of the quotient
map p : G — @G, as in Section 1.4. Since the automorphism 7 also exists
for G’, since the left multiplication with elements of C; commutes with the
adjoint action of G on G7, and since the resulting action of G on G7 is just
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the adjoint action of G on G7, we have the following commutative diagram:

AS = G’T//é

G7/G,

where p : Gt — Gt is the map induced by p on the exterior component,
given by g7 — p(g)7 and p is induced by p on the quotient. Here we have
set: s := rkG'. Furthermore, we assume that char(k) does not divide the
order of the centre of G. Then we have the following identification:

O(G) = X(C(G)) = A(R(G)) /Z(R(G)), (2.54)

where x(C(G)) denotes the dual of C(G). The explicit description of the
quotient on the right side of the equation above can be found in [3], Planches,
p- 250ff. We have:

Type é ‘ An ‘ D2n ‘ D2n+1 ‘ EG ‘
C(G) |Z/(n+1)Z | Z/2ZxZJ2L | Z/AL | Z/3L |

With these preparations, we get the following explicit description of the
quotient G7//G :

Proposition 2.9 Under the additional assumption that char(k) does not
divide the order of C(G), we have:

(1) If G is any group of type A,, Fs, or if G is Spina, (k) or SOsqy (k) with
2 =1, or if G is Sping(k) or PSOg(k) with 73 = 1, then G7//G is an
affine space of dimension rk G7.

(ii) If G is of type PSOy,(k) and 72 = 1, then we have:

GT)|G = Z, x A" (2.55)
where Z, = A" [(Z/2Z)and the quotient is formed with respect to the diago-
nal action of (Z/2Z) = {xidsn } on A™.

(iii) If G is of type PSOypio(k) and 72 = 1, then we have:
Gt)|G = Z, x A", (2.56)

with Zy, as in (ii).
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Proof: Let us denote the fundamental dominant weights of A(R(G)) by
{A1, ..., A, } and the fundamental dominant weights of A(R(G))™ = A(R(G)')
by {A], ..., AL}. From Corollary 2.6, we have the following explicit description
of m: . N

n(gr) = (X7 (g7), . X7 (97))- (2.57)
By Schur’s Lemma, we know that every element of C(G) has to act on V()
for every dominant A € A(R(G)) by a multiple of the identity. It is a well
known fact in the theory of linear algebraic groups, that C(G) C T', where
T is any maximal torus of G, e.g. see [13], Corollary 26.2B, p. 160. Hence

for any ¢ € C(G) and weight p of V(X), i.e. V(X), # {0}, we have

Ae) = u(c). (2.58)

But, since R is irreducible we have Z({\ — u, p weight of VI(A)}) = Z(R),
yielding A(c) = A(c), where X is the class of A in x(C(G)). Therefore, we
get the following action of C(G) on G7//G = A®:

c.(ar, .y a5) = (N (€)ar, ..., \(c)as), (2.59)

~

for all ¢ € C(G) and (ay,...,as) € A®. By use of the Diagram 2.53 we see
that the quotient G7//G is just the quotient of A* by Cg.
Therefore, we only need to calculate the X;(c) for all j € {1,...,s} and

~

c € C(G). Since we have V(A+p) C V(A)®V (p) as a subrepresentation for
dominant ), y, we only need to calculate \;(c), i € {1,...,r} and use the fact
the A;-, j €{1,...,s} are just sums over the 7-orbits of the \;, i € {1,...,r}.
By Corollary 2.6, we only need to investigate the cases D,, 72 = 1 and

Agnt1:

In both cases, we label the {Ay,.., A\, } according to [3], Planches, p. 250ff.
1. G of type Agy,y1: By suitably labeling the {\,.., .} (note that we have
r=2n+1and s =n+ 1) we can achieve:

X=Xt donga—i, iFEn+L (2.60)
ntl = Antl (2.61)

Calculating x(C(G)), using the description of the X;, i € {1,..,r} in terms
of the simple roots, as found in [3], Planches, p. 250, we see that A1 is a
generator of x(C(G)) and that A; = i A;. Let £ be the generator of C(QG)
given by fixing A;(£) to be a given (2n + 2)-nd primitive root of unity, we
calculate:

Ni(€) = 1, i#n+1, (2.62)
Nny1(§) = -1 (2.63)

Therefore we get:
(i) p: G7/G — G7//G is an isomorphism, if Cy is generated by an even
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power of £ and

(ii) p : G’T//é’ — GT7//G is a quotient map by Z/2Z, if C¢ is generated by
an odd power of . In the latter case Z/27Z acts by multiplication in the
(n + 1)-st variable with 1. Since A'/(Z/2Z) = A! (the identification is
given by [z] = 22, [2] denoting an element of Al /(Z/27)), we get the stated
result.

2. G of type Doy 41, T2 = 1: By suitably labeling the {\],..,\}} (note that
we have r = 2n + 1 and s = 2n) we can achieve:

Moo= N, 1<2n—1, (2.64)

)

b = Ao + Aot (2.65)

We calculate x(C(G)) using the description of the );, i € {1,..,r} in terms
of the simple roots, as found in [3], Planches, p. 256. We see that Aoy, 18
a generator of X(C(G’)), that A\; = 2Xg,, for i < 2n, odd, that \; = 0, for
i < 2n, even, and that Ag,up1 = 3Aon. Take a generator & of C(G) such that
A2n(€) is a given 4-th primitive root of unity. Then we have:

Ni(€) = 1, i, even, (2.66)
Ni(€) = —1, i, odd. (2.67)

Therefore we get:

(i) p: GT//G — GT7//G is an isomorphism, if Cg is generated by £2, which
corresponds to the case G = SOy, 12(k) and

(ii) p : Gr))G — G7//G is a quotient map by Z/27Z, if Cq is generated by
¢, which corresponds to the case G = PSOuy,42(k). In the latter case Z/2Z
acts by simultaneous multiplication with —1 in the coordinates having an
odd label, which gives us the stated result.

3. G of type Dy, 72 = 1: By suitably labeling the {)\|,..,\.} (note that we
have r = 2n and s = 2n — 1) we can achieve:

X=X, i<2n-2 (2.68)
b1l = on + Aopo1- (2.69)

Using the description of the \;, i € {1,..,7} in terms of the simple roots, as
found in [3], Planches, p. 256, we see that we can choose Ay, and Ag,_; as
generators of x(C/(QG)). Furthermore we have A; = Aop+Aon_1, fori < 2n—1,
odd, and \; = 0, for i < 2n, even. We choose generators &, 1 of C(G’)
according to the rule X, (€) = Aap_1(n) = —1 and Xo,—1(€) = Aan(n) = 1.
Then we see that the induced action of 7 on C(G) just interchanges ¢ and
n. Hence, the only 7-stable subgroup of C(QG) is {e, én} except for the
trivial one and C(QG) itself. The group G = G/{e, &n} is SOy4y (k). Now, we

calculate:

Ni(€)=Ni(n) = 1, i, even, (2.70)
Ni(€) = Ni(n) = -1, i, odd. (2.71)

)
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Therefore we get:

(i) p: GT//G — G7//G is an isomorphism, if C¢ is generated by &n, which

corresponds to the case G = SOy, (k) and

(i) p : GrJ/G — G7//G is a quotient map by Z/2Z, if Cg is C(G), which

corresponds to the case G = PSOyp (k). In the latter case Z/2Z acts by

simultaneous multiplication with —1 in the coordinates having an odd label,

which gives us the stated result. Q.
To conclude this chapter we want to illustrate our results by an example:

Example: We consider the case G = SOy,(k) and 7 the exterior automor-

phism of SOy, (k), such that G = Oy, (k).

As symmetric bilinear I form we choose the matrix I = ( 5, % ). A

particular maximal torus 7" with suitable parameterization can be given as

follows:

4 tl 3\

ty e k*, ie{l,..,n}

~”

—1 )
tl

\ tyt )

(2.72)
Furthermore, we denote by 7' the maximal torus of Spingy,(k), which is
the inverse image of T' under the two-to-one cover Sping, (k) — SOay (k).
Let T’ be parameterized by (t1,...,t,), chosen in such a way that the one-
parameter subgroup t— (1,..,1, i,1,..., 1), having nontrivial entries only in
the i-th position, corresponds to ¢;, the dual root of the simple root «; (for
all i € {1,...,n}). Then, the covering map 7' — T is given by the following
equations:

t, = i, (2.73)
ti = 41, 2<i<n-2, (2.74)
tnr = ot 1ty (2.75)
tn = 1t (2.76)

We see that the kernel of this covering map is

{(Fr, st eT, ti=1,ie{l,...,n =2}, by =t, =1} X Z/27Z (2.77)
The action of the exterior automorphism on 7 is given by interchanging the
last two coordinates:

(tl, ...,in_Q, in—l I?n) — (fl, ...,fn_g, I?n in—l)- (2.78)
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This induces the following 7 action on T":
(tla"'atnfl tn) = (tla"'atnfl t;I) (279)

We see that, in the SOs, (k) case, the action of 7 can be implemented by
conjugation with the following permutation matrix, which clearly is a matrix

in Ogn(k‘)\SOQn(k‘)

E, 0

L tEekY, ie{l,..nty.  (2.80)
En—l

0

1

Hence, we have G' = SOy, (k) X Z/2Z = Oy, (k). Now it is an easy task to
compute the 7 fixed point tori:

T =17 = {(b1,.stn) €T, lpey = tn} (2.81)
T7 = {(ti,ty) €T, t, = £1} (2.82)

Here we see that 77 is not connected and that 77 is mapped to Tjj by the
covering map T —T.

Furthermore, a simple calculation yields (T'/T])" = T7 /1] = Z/2Z. This
shows that the kernel of the map (T'/T{)” — H, as defined in the paragraph
just preceding Corollary 2.4, is nontrivial. Using Theorem 2.1, we get:

GG =Tir/W =T{t/W". (2.84)

Now we could set up coordinates and directly calculate, that this quotient
is an affine space to reproduce the result of Proposition 2.9. but we have a
more convenient argument:

Let us denote the the tori T /(T /T7)" and TJ = Ty /(T/T])™ by 1" respec-
tively T, following the notation of Section 2.3. Then, as in the proof of
Corollary 2.4, we have a commutative diagram with exact rows:

| ———Z/2L 17 T 1
p '
1 1 Ty T L.

Furthermore, we have that the covering TOT — 1§ is two-to-one. Then, using
the Snake Lemma we have an exact sequence:

1 — 7.)27 —> 7.)27 —> kerp' — 1. (2.85)
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This forces ker p’ = 1. So we have:
Gr)|G =TT /W™ =T' /W™ =T'/]W". (2.86)

But by Corollary 2.6 we know that the right hand side is an affine space.
(It would even have been easier to see directly x(7')” = A(R') which again
gives the desired result using Corollary 2.6.)



Chapter 3

The Structure of the Fibres

In this chapter we want to describe the structure of the fibres of our quotient
map 7 : Gt — TJ/W. We will show that they are isomorphic to associ-
ated fibre bundles over a homogeneous spaces of G modulo a centralizer of
semisimple element with a fibre isomorphic to the unipotent variety of that
centralizer. In the second part of this chapter, we investigate the centraliz-
ers of semisimple elements and, in the case of char(k) = 0, we will give a
complete classification of them.

3.1 Description of the Fibres

Before entering the detailed description of the structure of the fibres, we
need some preparations:

First, note that for each closed subgroup H < G of an algebraic group G
the quotient G/H together with the corresponding map 7 : G — G/H is a
principal fibre bundle with fibre H, locally trivial in the etale topology, cf.
[24], Section 2.5, Proposition 3, p. 1-12.

Definition 3.1 Let G be an algebraic group, H < G a closed subgroup and
F be an affine reduced G variety. Then we call the quotient (G x F)/H =
Speck[G x F11 with respect to the action h.(g, f) — (gh™', hf), for all
h e H, ge G, fe€F, the associated fibre bundle over G/H with fibre F,
and we denote it by G x" F.

Elements of G x™ F will be denoted by g * f.

Remark: (i) Note that the quotient actually is a geometric quotient, since
the H cosets in G are already closed.
(ii) By [24] the above bundles are locally trivial in the etale topology.

For standard results in the theory of associated bundles we refer to [24]
and [27], Section 3.7.

95
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Now we resume the notation of the previous chapter, i.e. G is semisimple
and 7 an exterior automorphism of the Dynkin diagram of G. Let 7 : GT —
T77/W be the quotient map.

Theorem 3.1 Let t7 be an element in TjT and V (t7) the unipotent variety
of Ci(tT). Then the reduced fibre (7 (t7))req of its image w(t7) in T§ /W
is G-isomorphic to G xe(7) V (t1).

Proof: First, note that for z € 7~!(n(¢7)) the element x4 is conjugate to t7:
Let © € m (7 (tr)), then 2, € 7 (n(¢t7)) by Lemma 2.10. By Proposition
2.3 and invariance of 7~ (7(¢7)) under conjugation with elements of G we
may assume, that zs € T 7. Using Theorem 2.1, we see that =, and ¢ are
conjugate under W.

Now we identify the conjugacy class O(¢7) of t7 with G/Cq(t7) by ¢Cq (1) —
gtrg . (Cf [2], Proposition 9.1, p. 128.) We construct a G-equivariant
map

1/;:71'71(71'(157)),«@,1 — G/Cq(tr) = O(tT)
T = T (3.1)

Since there exists a polynomial P € k[t], such that z, = P(z) for all z €
M,,(k), which only depends on the eigenvalues of  and its multiplicities, see
[14], Proposition 4.2, p. 17, we have, using a faithful representation of G,
that 9 is a morphism. (The coefficients of P are constant on 7 !(7(¢7)).)
Now, Lemma 4 in [27], Section 3.7, p. 26, provides us with a G-isomorphism

P G xCaltn) 1/;_1(157) — 7T_1(71'(t7'))
(gxu) — gug "t (3.2)

We have ~L(t1) = {g € G1,95 = t1, gy € V(tT)} = t7V (7). So, identify-
ing V (¢t7) with t7V (¢t7) just by right translation with ¢7, which is apparently
Cq(tT) equivariant, we get the stated result. Q.
Remark: In Chapter 5, we will see that the schematic fibres of 7 are already
reduced in the situation, where the group G’, appearing in the paragraph
preceding Proposition 2.8, is simply connected.
Next we want to draw some conclusions of the theorem above.

First observe that Cq(¢7)¢ is reductive for t7 € T 7 and that the quotient
group Cq(t7)/Cq(t7)p is finite and consists only of semisimple elements by
[37], Corollary 9.4, p. 60. Therefore, the unipotent variety V (¢t7) of Cq(t7)
is already contained in Cg(t7)p. Furthermore, by the proof of the theo-
rem above, we see that two elements z,y in 7~ !(7(¢7)) sharing the same
semisimple component are conjugate under G exactly when their unipo-
tent parts z,,y, are under Cg(xs), a group, which itself is G-conjugate to
Cq(t). Hence the orbit structure of 7 !(n(¢7)) is already determined by
the description of the C¢(#7)-conjugacy classes in V(¢7). Their properties
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are given e.g. in [27], Section 3.10, Theorem, p. 31 or [38], Section 3.8,
Theorem 1, p. 116.
We summarize them in a corollary:

Corollary 3.1 Let G, T be as above and m (n(t7)) a fibre of the quotient
map m: G — T77/W. Then we have:

(i) The fibres 7= (m(tT)) of m consist of finitely many conjugacy classes.
(ii) The fibres 7= (w(tT)) are irreducible varieties of codimension equal to
dim Ty

(iii) Each fibre 7~ (m(t7)) contains exactly one conjugacy class consisting of
semisimple elements, the so called semisimple orbit, which is the only closed
orbit in w1 (m(tT)) and which is contained in the closure of every other orbit
of m=Y(m(tT)).

(iv) Each fibre m='(n(t7)) contains one open dense orbit corresponding to
the regular unipotent class in V (tT) having a complement of codimension
two in w~(w(tT)).

Proof: (i) and the irreducibility of (ii) is clear by the reasoning and the
references preceding the statement of the corollary. The uniqueness of the
semisimple class of (iii) was already proved in the proof of the theorem
above.
Because of (i) and the irreducibility of (ii) we must have a unique open
dense orbit in m !(n(¢7)). Denote the orbit of an element € Gr by
O(z). Then we have dim O(x) = dim G/Cq(z) (which is also true in
char(k) = p > 0, even though the two varieties need not be isomorphic)
and Cg(7) = Cey, (1) (Tu) where we may assume zs = 7.
Now, Cey(ir) (2y) is minimal in dimension if z,, is regular unipotent. This,
combined with the fact that the complement of the regular unipotent class
in C(t7) has codimension two in V (¢7), yields (iv).
Next observe that T is a maximal torus in C(¢7) by Lemma 2.3. Hence
the reductive rank rk Cq(t7) of C(t7) equals the dimension of T, giving
dim Cq(tTu) = dim T for u regular unipotent in C(¢7), and thereby prov-
ing (ii).
We are left to prove that every orbit contains the semisimple one in its clo-
sure, which would prove (iii) because, due to the finiteness statement (i),
there has to exist a closed orbit in 7! (7(t7)).
Take x € 7~ !(n(t7)), w.0.L.g. z; = t7. Then we can find a Borel subgroup
B(tr) of C(tT)¢ containing z, and a maximal torus S < B(t7). Proceeding
as in the proof of Lemma 2.10, we can find a one-parameter multiplicative
subgroup A : k* — S, with e € {\(¢) u A(¢)~!, t € k*}, proving (iii). Q.
Another conclusion is the following:

Corollary 3.2 In the case, where GT)/G =2 A% T an affine space, the
quotient map 7 : G — G7//G is flat.




CHAPTER 3. THE STRUCTURE OF THE FIBRES o8

Proof: Since Gt and G7//G are smooth, all their local rings are regular and
therefore Cohen-Macaulay by [11], Chapter II, Theorem 8.21A, p. 184. By
Corollary 3.1, all fibres of m have the same dimension. The statement follows
now from [11], Chapter III, Exercise 10.9, p. 276. Q.

Analogously to the classical situation, we now introduce the notion of
regular elements:

Definition 3.2 Let x be an element of G, then we call x reqular, iff
dim Cq(z) = rk G™ (which, by the corollary above, is the possible minimal
dimension!)

Remark: Since, by definition, the Cartan subgroup C :=< T, 7 > of G,
has a generating element (see Section 2.1) and because of Cq(< Tf, 7 >) =
T7, we see that regular semisimple elements exist, the generating elements
are.

To get a more thorough knowledge of the structure of the fibres we need
to investigate the types of the centralizers of semisimple elements of G,
which will be done in the following section.
Before closing this section we give a description of the singularity structure
of the reduced fibres:

Lemma 3.1 Let G, 7, 7 : GT — TOTT/W be as above. Then we have the
following description of the singularities of the reduced fibre m (7 (t7))yeq:

(7 (W (t))rea) ing = G XD (VI )sing) - (3:3)

If furthermore char(k) = 0 or char(k) > rk G + 1, the nonsingular points
of T N1 (t7))yeq are exactly the regular ones.

Proof: The second statement follows from the first one under the given
restriction of the characteristic, by use of [27], Section 3.10, (vi) of the The-
orem, p. 31, applied to the fibre over the unit element of the semisimple
part of Cq(t7).

To prove the first part of the statement, first recall that the bundle G x € (t7)
V(tr), as a bundle over G/Cg(t7), is locally trivial in the etale topology.
Hence for every z € G/Cq(t1) we find an open subset U C Cg(t7) contain-
ing £ and an etale morphism p : U — U, such that

p* (G xCU V(tr)) = U x V(tr). (3.4)

Since p is etale and G/Cg(t7) is smooth, we have that U is also smooth.
(~Note that ‘p etale’ means that the completions of the local rings of points in

U and its image point under p in U are isomorphic, cf. e.g. [11], Chapter III,
Exercise 10.4, p. 275; it follows from the Cohen Structure Theorem, found
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n [11], Chapter I, Theorem 5.4A, p. 34, that also their Zariski tangent
spaces are isomorphic.) Hence we have:

((7 X V(tT)) =T % (V(£7)sing) - (3.5)
sing

If we denote the bundle projection G x“¢7) V(tr) — G/Cq(t7) by v,
we obtain, by the behaviour of etale morphisms under base change, cf. [11],
Chapter ITI, Proposition 10.1, p. 268, that the induced map p' : p*(G x e ()
V(tr)) — v~ (U) is also etale (note that here p*(G x¢¢(7) V(tr) = U xy
v~ Y(U)). Now we use again the isomorphism of Zariski tangent spaces under
etale morphisms to get the result. Q.
Remark: In Chapter 5 we will obtain a sharper version of the second
statement which is less restrictive on the characteristic.

3.2 Centralizers of Semisimple Elements

In this section we give a description of the root systems of centralizers of
semisimple elements of the exterior component G7 in terms of certain sub-
systems of the folded root system "R! of R = R(G;T). In characteristic
zero, we can give a complete classification of these as proper subsystems of
the twisted affine root system corresponding to R and 7.

We keep the notations of Chapter 1 about the folded root system "R! and
the root system R’. First, we define a map d from the folded root system
TR! to R’ by the following rules:

(i) If R is irreducible and not of type Ag,, we set

d@) = a foralongin R (3.6)
d(@) = (ordt)a for a short in TR'. (3.7)

(ii) If R is of type A, we define
d(@) = 2a for @ long or intermediate in "R (3.8)

d(@) = 4a for & short in "R (3.9)

(iii) If R is reducible and 7 a permutation of irreducible parts of the same
type, then we let I' be the subgroup of Aut(R) generated by 7 and we define:

(ordT)
Tl

d(a) = a, (3.10)
where a € R is an element of p~!(@). Here p is the projection map p: R —
TR! defined in Equation 1.2.

Remarks: (i) The composition d o p is the map a — «' of Section 1.2,
where p : R — TR! is the projection defined in Equation 1.2.
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(i) By the description of "TR! and R’ in Section 1.2, we see that, in case
(i), d is just the map dualizing the folded root system. In case (ii) the
restriction of d to the root subsystem of type B,, in "TR' = BC,, consisting
of roots of intermediate and short length, dualizes this root subsystem of
TR!. (Recall that this root subsystem is the root system of the group C (7)o
by Proposition 1.1.)
(iii) Note, that in both cases the restriction of d to a reduced root subsystem
of TR! is injective, even though d in case (ii) is not. This follows from the
fact that for each short root @ of "R! we have d(a) = d(2 ).
Furthermore, the restriction of d dualizes each root subsystem of "R! in case
(i). In case (ii), d dualizes each connected component of a root subsystem
of TR containing a short root and acts as an isomorphism (multiplication
by two) on each component of a root subsystem of "R! containing no short
root.

With these preparations we can state a first result:

Proposition 3.1 Let G be simple and let t7 be a semisimple element of
Gt, w.lo.g. tt € T{T, and Cg(tT)o its connected centralizer in G. Then we
have:

(i) Cq(tT)o is reductive and T is a mazimal torus of Cq(t1)o. Furthermore,
its root system R(Cq(tT)o) is a reduced root subsystem of the folded root
system "RL.

(ii) d(R(C(tT)o)) is Z-closed in R'.

Proof: The reductiveness claim of (i) was already proved in [37], Corollary
9.4, p. 60. 77 is a maximal torus of C¢(¢7)o by Lemma 2.3.

The proof of the second part of (i) will be a reworking of parts of the proof
of Theorem 8.2 in [37], which is essentially the background for Corollary 9.4
in [37].

Let B be a Borel subgroup of G and T' < B a maximal torus, such that T
and B are stabilized by 7. Furthermore denote the unipotent radical of B
by U. We want to compute the fixed point group Cy(¢7). To do this we
need some preparations.

Let X,,, 7 € {1,...,n}, be the root groups as defined in the paragraph pre-
ceding Theorem 1.2.

We begin with a lemma on the commutator of root groups, proven e.g. in
(2], §14.5, p. 184ft:

Lemma 3.2 With the notation above we have:

(Xa(1), X5(5)) = [ [ X, (P (¢, 5)), (3.11)
v

where vy runs over all elements of RN (Z”%a, B)) and where Py(t,s) =
C,t° s’ is a monomial for y = aa + b and for a suitable element C, €k
independent of s, t.
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Next, recall that n := dim U = |R*| and that, by [13], Proposition 28.1, p.
170, there exists an isomorphism

A" S U
n

(ciromen) ] Xailr)- (3.12)
=1

Here we have {a1,...,a,} = R, whose order is fixed. For us, it is appro-
priate to choose a specific order:

For different o/, ' € R'T = d(p(R")) we want that, between the root groups
of different representatives a, @ € p~'(d~'(’)) in the above product, there
appears no root group corresponding to a representative of p~'(d~(8)).
Among the root groups of the representatives of p~(d=!(«/)) of & € R'T =
d(p(R™)) we choose an order according to the following rule:

Choose a representative a« € R* of p~1(d~!(«/)) for o/ € R'". By Lemma
1.2, we have to distinguish three cases:

(i) We have o = 7(a) and R is not of type As,. Then p~1(d~1(/)) = {a}
and a = /. In this case we need no further ordering. We set

Sy = Xa. (3.13)

Furthermore, denote by Rar the set of the representatives « chosen in this
manner.

(ii) We have @ # 7(a) and &(7(a)) = 0. Then p~1(d~! (<)) = {7(a), i €
{1,...,ord7}} and o/ = 32797 7(a). Then we set

1=

ordT

Sor = [ Xri(a- (3.14)
=1

By the lemma above and Lemma 1.2, the different factors in the product
comimute.
Furthermore, denote by Ri" the set of the representatives « chosen in this
way.
(iii) In the remaining case, choose o € p~(d ' (a/)) such that a # 7() and
&(7(a) # 0.Then p~1(d~ (/) = {a, 7(a), a+7(a)} and o/ = 2(a+ 7(a)).
Then we put:

Sor = Xa Xr(0) Xatr(a) (3.15)

In this case, the rightmost factor commutes with each of the other two. By
[36], Lemma 15, p. 22, we have Cy (o) € k" in the commutator lemma
above.

Furthermore, denote by R;’ the set of the representatives « chosen in this
manner.

We impose no special order on the different S, .

In addition, the set Rar U Rf U R; contains exactly one representative in
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p 1(d (), for every o € R'T.
Clearly, ¢ leaves the images of each of the parameterizations Sq : AP~ (@7 @D
U invariant. Hence we have:

Cy(tr) = [ (ImSa)', (3.16)
o'eR't+

(Im So)'™ denoting the fixed point set of the ¢t7 action on I'm S,y C U. This
will be calculated now: Again we have to distinguish three cases as above:
(i): Sw(c) is a fixed point, iff a(t) =1 or ¢ = 0.

(ii): In this case we calculate, using Theorem 1.2 and the commutativity of
the root groups:

t7 Sor (€1, ey Corar) (07) ™1 = Sor (u(t) Copdrs -nr () Corar—1), (3.17)
if R is not of type Ao, and
t7 Sy (c1, ¢2) (t1) 1 = CK:((—l)h“w”“loz(t) co, (—1)ht0‘+1a(t) c), (3.18)

if R is of type Aogy,.
Here, we get a nontrivial fixed point iff «(t) is an ord 7-th root of unity. In
this case, we even get a one parameter family of fixed points

(Im Sa)'™ = {Su (¢, ..., &7 (t)e), ¢ €k}, (3.19)
if R is not of type Aoy, and
(Im Se)!™ = {Sw(c, (=) a(t)e), ¢k}, (3.20)

if R is of type Asgy,.
(iii): In this case, we use again Theorem 1.2 and the above lemma on the
commutator of root groups to get:

t7 Sar(c1, ca, 3) (t1) 7 = (3.21)
Sa/((—l)hta"‘la(t)cz, (—1)hta+1a(t)cl, Cotr(a) () e ca — ?(t) c3).

In this case, we get a nontrivial fixed point (again even a one-parameter
family) in either of the two subcases:
(a) o?(t) = 1. Then the fixed point set is as follows:

Ca+'r(a)

T (—pMetlat ), cek

(3.22)

(Im So)'™ = {Sa/ (c, (—1)ht0‘+1a(t) c,

But we may also have:
(b) @?(t) = —1. Then we get:

(Im Sy)'™ = {8 (0,0, ¢), c€k}. (3.23)
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We summarize the above calculations:
(i) If R is not of type As,, we have:

ordT

Cy(tr) = H Xal(ca) H H XTi(a)(ai(t) Ca)y Ca €k
i=1

a€R$ aeRrY
a(t)=1 a"rd"(t):l

(3.24)
(ii) If R is of type As, we have:

CU(tT)Z{ [[ Xalew) JI Xalea)Xo@((=D)"*a(t)ca) x

aert aery
a=1(a) az(t)=l

a(t)=—1
[T [Xalca) X (=DM a(t) ca) x

+
a€ER,

a2(t)=1

Xt (5 (104 a0 2)], o€ )

In either case, Cyy(¢7) is connected. By steps (1),(2),(4) and (7) of the proof
of Theorem 8.2 of [37] (mind Lemma 9.2 in [37] if G is not simply connected),
the knowledge of Cp(¢7) allows us to determine the root system R(Cq(t7)).
To summarize the calculations above:

We have obtained the positive roots of R(Cg(t7)) as a subset of TR! + =
p(R™). (Note that in the above description we can replace « € Ujego,1,2) R;-“

by p(e) € TR' *, because Tj is a maximal torus of Cg(¢7).)

Therefore we get (by using the description of the root lengths as given in
Lemma 1.2):

If R is not of type As,, we have:

R(Cg(tr)) = {a € "R, a(t) =1, if @ is long or @”"¢7(t) = 1 if @ is short}.
(3.25)
If R is of type As,, we have:
R(Cg(tr)) = {a€™RY a(t) = -1,
if @ is long, or a*(t) = 1 if @ is intermediate or short}.
This proves (i).

To prove (ii) we apply just the map d to the root system R(Cq(t7)). Using
the definition of d, we get in both cases:

d(R(Cs(tr))) = {o/ € R' /() = 1}, (3.26)

which is clearly Z-closed in R'. Q.
Remarks: (i) If G is semisimple and 7 a permutation of isomorphic normal
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simple subgroups of GG, then the proposition remains valid, though we need
some refinements in the proof:

We can proceed similarly as in the case where G is not of type As,. For
a € R(G) we have to substitute all sums and products over ordt by the
cardinality of the T" orbit of «, where T" is the subgroup of Aut(R) generated
by 7. All elements of the form 77(a) have to be replaced by the elements
of the I'-orbit of a. Again, by the Remark following Lemma 1.2, the root
groups X, and Xg for different o, f with o/ = ' commute. So we can use
the same reasoning as in the case of the proof above where G is not of type
Agp.

Finally, we reach the following description of R(Cg(t7):

R(Cq(tr)) = {a € "R &) (1) = 1}, (3.27)

where k(@) = T?ilT is just the the cardinality of the T'-orbit of « with

p(a) = a, where p is defined as in Equation 1.2. Again we get
d(R(Cq(tr))) = {o' € R' (t) = 1}. (3.28)

(ii) One can easily verify that the parameterizations of the sets (Im Sy/)'7,
as given in the proof above, are additive group homomorphisms in the pa-
rameter c, if these sets contain at least two elements. Therefore, these sets
are the (images of the) root groups of C(t7) and hence the corresponding
parameterizations are the root groups.
(iii) Since by [2], Section 9.1, Proposition, p. 128, we have that Lie(Cg(t1)) =
¢g(t7), tT being semisimple, where ¢y(¢7) denotes the kernel of the adjoint
action of ¢t7 on g = Lie G, we would have been able to derive the same result
using the Lie algebra and its Cartan decomposition. This should have been
a bit simpler, for example we would not have to care about commutators,
but in the next chapter we will make direct use of the description of the root
groups of Cg(t7) given here.

The next statement reduces our situation to that of automorphisms of
G of finite order:

Theorem 3.2 (i) Let t1 be in T 7 as above, then there exists an automor-
phism o of G of finite order, such that R(Cq(t7)) is Q-closed in R(Cg(0)).
(11) If G is simple and char(k) =0, the Dynkin diagram of R(Cq(tT)) is a
proper subdiagram of the Dynkin diagram of the twisted affine root system
R©7) where R is the root system of G.

The Dynkin diagrams of the twisted affine root systems R
the following table:

(0rd™) gre given in
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DEE’) : O Q 0]

Proof: (i) We consider the diagonalizable group H := < (¢7)!,l € Z >. By
Lemma 2.2 we have H = S x Z/IZ, for a suitable [ € Z and a torus S.
Now we can find an element o of G which is a generator of the Z/IZ part of
H. Since t7S is a generator of Z/IZ = H/S we can assume, w.o.l.g., that
o € (T, yielding that ordr is the smallest natural number n, such that
o" eq.

Now we have the the following chain of equations:

Ca(tr) = Cq(H) = Ca(S)NCq(o) = CC(;(O’)(S)' (3.29)

Since o is semisimple C¢(0)g is reductive by Proposition 3.1 and Cg(t7)o =
Coe(e)(S)o is a Levi subgroup thereof (for Levi subgroups cf. e.g. [13],
Section 30).

To prove (i) we are left to prove the following statement:

Claim: Let G be reductive with root system R, S < G a torus and Cg(S)
its centralizer (which is reductive by [13], Corollary 26.2A, p. 159). Then
the root system R(Cg(S)) is Q-closed in R.

Proof of claim: Taking a maximal torus T" of G' containing S we have

R(C(S)) = {a € R,a(s) =1, Vs € S). (3.30)

Take § € RN Q(R(Cs(S))). Then we can find n € N, such that ng €
Z(R(Cg(S))), forcing (B(s))™ =1, for all s € S. Hence S(s) is an n-th root
of unity.

Since f(|g is a regular function on S and since it takes only discrete values,
it must be constant by the connectedness of S. Hence (s) = 5(1) = 1, for
all s € S. $.
(ii) By [3], Chapter VI, §1, n°. 1.7, Proposition 24, p. 165, every basis of a
@-closed root subsystem R of a root system R can be completed to a basis
of R, i.e. the Dynkin diagram A(R) is a subdiagram of A(R) by removing
certain points and all edges meeting these points.

The statement now follows from the classification of Dynkin diagrams of

the centralizers of automorphisms of finite order for algebraic groups (resp.
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their Lie algebras) in characteristic zero given in [16], Theorem 8.6 and
Proposition 8.6, p. 136ff. Q.
Remark: We can understand the second part of the theorem, except for
the As,-case, as follows:
First, note that the set of irregular semisimple elements in 7] 7 is described
by the root system R'. Under the map T — T", defined in Lemma 2.8, this
set corresponds to the set of irregular elements of T, considered as maximal
torus of the connected group G’, defined in Section 2.4. Now, it is a well
known fact that, in characteristic zero, the Dynkin diagram of a centralizer
Cq () for t' € T is a proper subdiagram of the affine non-twisted root
system R'(") of R'. (The proof is just analogously to our proof of part (ii) of
the Theorem.) To obtain the root systems of our centralizers of elements in
Ty 7, we have to dualize, see the remark following the definition of the map
d at the beginning of this section. Looking at the tables of affine Dynkin
diagrams, found e.g. in [16], Tables Aff 1-3, p.54f, we realize that R(°"47) is
exactly the dual of R'(.

By the definition of regular elements in the previous section and this
result, we get the following description of regular elements in T{j 7:

Corollary 3.3 (i) An element tr € T§T is reqular, iff &'(t) # 1, for all
o € R'. (Here we consider the elements of R' as elements of Z("R') via
the map d.)

(i) An element tT € TT is reqular, iff o/(t) # 1, for all o/ € R'. (Here we
consider the elements of R' as elements of Z(R).)

Proof: (i) is clear by the results above.

(ii) follows from (i) by Lemma 2.5 in the following way:

For a singular t7 € T we can find, by Lemma 2.5, t € T and 't € 19T,
such that 7 = t#/7#~! and such that there exists o/ € R’ with o/(#) = 1,
by (i). Then we have

dt)y=d it r ) =d @) (ri i) () = () (F) (T ) (Y
(3.31)
The statement now follows from the 7 invariance of o/, cf. Section 1.2. Q.



Chapter 4

Irregular Elements in the
Exterior Component

In this chapter, we want to give a description of the set of irregular ele-
ments in G7. An element will turn out to be irregular, iff it is conjugate
to an element y € BT, such that there exists a simple root o/ of R’ with
o/ (ys) = 1 and y, in the unipotent radical Uy of a parabolic subgroup P, .
(P, will be defined in this chapter.) Furthermore, we will show that the set
of semisimple irregular elements is dense in the set of all irregular elements.

First we have to prove some rather technical lemmas. We keep the notation
from the previous chapters.

Let B < G be a Borel subgroup of G and T' < B be a maximal torus, such
that B and T are stabilized by 7. Furthermore, denote by U the unipotent
radical of B.

Lemma 4.1 With the notation above, we have:

(1) UgeG gBTg~ ' = GT.

(ii) For x € BT we can find u € U, such that uzsu~' is an element in T7.
(11i) For © = ttu € BT with tt € T, u € U we have that the semisimple
part of x is U-conjugate to tr.

Proof: (i) Since Tj 7 C Bt we have by the density result, Lemma 2.6, that
U e gBTg~! is a dense subset of G7. To prove (i) we merely need to prove
that the latter is closed in GT:

Let B act on G x BT by b.(g, BT) = (gb7 1, bbr b~!). Then we define a map
® from the corresponding associated bundle G' x? Br, cf. Section 3.1 and
the references quoted there, to G7 as follows:

d:Gx®Br - Gr (4.1)

gxbr — ngg_l.

67
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By use of [27], Section 3.7, Lemma 1, p. 25, we get a commutative diagram:

G xB Br 2 Gt

G/B x Gt

Here the closed embedding ¢ is defined by i(g *b7) = (9B, gbr g ') and p is
the projection on the second factor.

Since G/B is a complete variety, cf. e.g. [13], Theorem 21.3, p. 134, the
image ®(G x? Br) = p(1(G xB Br)) C G is closed.

(ii) We consider the closed non-connected subgroup B := Bx < 7!, [ € Z >
of G and regard z € Bt as an element thereof. Considering the projection
map

p:B — B/B=<7llecZ>
x — zB, (4.3)

we see that z; € Bt and z, € U < B. Therefore, by [37], Theorem 7.5, p.
51, we can find a maximal torus 7' of B stabilized by xs.
Now there exists an element v € U, such that uTw™" = T, cf. [13], Theorem
19.3, p. 123. (Note, using the notation there, that B> = U for reductive
G.) So w.o.l.g. we can assume T =T. Then z, operates on the root system
R(G;T), and stabilizes the basis corresponding to B. Hence x5 operates like
a diagram automorphism on the corresponding Dynkin diagram A. Observe
that the element xz, 7! € G also has these properties forcing zs 7! € T
and therefore proving (ii).
(iii) This is just a reformulation of (ii) using the fact that by [13], Theorem
19.3, p. 123, we have B =T x U. Q.
Remarks: (i) The line of proof of (ii) is similar to that of Proposition 2.3.
(ii) Note that by use of Lemma 2.5 we can even achieve that z is conjugate
in T§ 7 in (ii), if we allow conjugation with elements in B rather than U.
As a summary of the lemma above and by Corollary 3.3, we have:

Corollary 4.1 Let B and T be as above. If x € GT1 is irreqular, then x is
conjugate to tTu, where tt € T T and v € U, such that tT and u commute
and such that there exists at least one element o/ € R with o/(t) = 1.

Next we prove a lemma on Borel subgroups of C¢(¢7)o:

Lemma 4.2 Let B be a Borel subgroup stabilized by T and tT € TjjT.
Then BN Cq(tT)o is a Borel subgroup of Cq(tT)o.
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Proof: Clearly, B N Cg(t7)o is solvable. Next we calculate B N Cg(t7)o
directly. By [13], Theorem 19.3, p. 123, B = T x U for each maximal torus
T of B. We choose T' as above, i.e. 7-stable. By the proof of Proposition
3.1 respectively the remark (i) following it, if G is semisimple and nonsimple
and 7 a permutation of its isomorphic normal, simple subgroups, we already
know that Cy(t7) C Cg(tT)o by its connectedness and we already saw that
its dimension is 1| R(C(t7)o)|. Furthermore we know that T is a maximal
torus of Cg(t7)p, by Lemma 2.3. Therefore, we conclude B N Cg(t1)y =
T§Cy(tr). This is a connected solvable subgroup of C(¢7)o having maximal
possible dimension. Hence it must be a Borel subgroup. Q.
Our next step is to construct certain parabolic subgroups of G corre-
sponding to elements of a basis of R’. Let II be the basis of R. Then,
II" := d(p(I1)) = {a,...,a}} is a basis of R', where d is the map defined at
the beginning of Section 3.2. (Note, the composition dop is the map a +— o’
of Section 1.2.)
For each o) € II' we associate a parabolic subgroup Pa; as follows:
Consider the set ¥; := p~}(d~!(a})) C R and define a subgroup W; of the
Weyl group W by W; =< 1,s,, a € ¥; >. Then we define Py by:

P, :=BW;B. (4.4)

Furthermore set U, = R, Pa , the unipotent radical of P,,. To see that
these groups are well defined as parabolic subgroups we have to show that
W; is already generated by the simple reflexions of W which lie in W;, cf.
the theory of parabolic subgroups as developed in [13], Section 30:

To achieve this, we give a description of the sets ¥; using results of Section
1.2, especially Lemma 1.2. We have to distinguish three cases (here I' de-
notes the subgroup of Aut(R(G)) generated by 7:

(i) of = «a; for an element «; € II. Then o; = 7(y). It follows that
U, ={a;} and W; = {1, so,} = Z/27Z.

(i) of = IFiiI erdf 7¢(ay) for a suitable element «; € II. Then a; # 7(o)

and d;(7(;)) = 0 implying ¥; = {77 (o), j € {1, ... OrdT}} and W; =

ordr

<L, S J € {1, 0“”} > (Z/27) Tl

(i) of = 2(ay + T(O{l)) for an element «; € II. Then o; # 7(;) and

@;(7(e;)) # 0 implying ¥; = {a;, 7(a;), a; + 7(a;)} and W; =

<1, 5q;, 87(a;) >= S3. (Note that in this case o, 4r(a;) = Sa; Sr(a;) Sai-)
We now get the description of the unipotent radicals of the Py as follows:

Lemma 4.3 (i) We have

Ua’i = H Ing, (4.5)
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where Xg 1is the root group corresponding to the root B € R.
(it) B normalizes Uy .
(iti) Py and Uy are stabilized by .

Proof: (i) follows from [13], Section 30.2, p. 184f, and (ii) is clear by B < P,.
(iii) follows from the fact that 7 stabilizes B, T' and W; and that U, is the
unipotent radical of P, . Lo

Denote the kernel of o € II' in T, respectively T by T, respectively
T7 ,, and set furthermore '

0’
By, = To Us, = Ty x Uy, (4.6)
Ba; = Tgal_ Uai = Tgal_ X Uai‘

We will show that the sets Ba;T, respectively Ba/iT, which can be considered
as exterior components of algebraic groups

5

= Byx < 7/, j€Z> respectively (4.8)

!
@;

By = Byx <71l jel>, (4.9)

will describe the set of irregular elements of G7. The next two lemmas give
a characterization of irregular elements in G7:

Lemma 4.4 The elements of Ba;T, respectively BO/Z_T, are irreqular in GT.

Proof: Let € By (By,7) C Br, then we have 5 € By (Ba;) and
Zy € Uy. By Lemma 4.1.(ii) and the proof of Corollary 3.3.(ii), we can
assume w.l.o.g. that

z, = tr € Ty, and (4.10)
Tu = u € Uy. (4.11)

(Note that by Lemma 4.3.(ii) Uy, is stabilized by B). Apparently, u €
Cy , (t7).

By the description of the structure of the fibres of 7 : Gt — T 7/ W given
in Theorem 3.1 and by the definition of regularity of elements in Section 3.1,
we only need to show that u is an irregular element of Cg/(¢7)o.

By the description of R(C¢(¢7)) in the proof of Proposition 3.1 there exists
a (unique by the remarks preceding Proposition 3.1) root &; € R(Cq(t7)),
such that d(a;) = o). Furthermore by Remark (ii) following Proposition 3.1
and its proof we have a description of (I'm S,/ )™ as an image of a root group
of Cq(tT)). '

By construction we have

(Im Sa;) N Ua; = {6} (4.12)



CHAPTER 4. IRREGULAR ELEMENTS 71

Let us set s := dim Tjj. Observe that ¢7 U, is a subset of Ba/iT of dimension
dimU,,. Then t7U, is stabilized by Uy, T and (Im S, )IT. Stability
under Uy, follows from the fact that ¢7 u'(tr)~t € Uy, for all v’ € Uy
Observe that stability under 7] and (Im Sa:i)” is clear.

Consider the (solvable) algebraic group generated by Tg and (Im Sy )T,
Since dim (Im Sy, )IT = 1, this group has dimension s + 1. Now set:

G =< Tg, (ImSy)"" > Uy (4.13)

This is an algebraic subgroup of G of dimension s 4+ 1 + dim Uy~ Let us
consider the morphism

¢:G><Ga§ (trUy) — GT
grtru — gtru gt (4.14)

The image of ¢ are exactly the G-conjugacy classes in G7, which meet t7 Ud,

Now, dim G x e (t7Uy) = dim G — s — 1. By Corollary 3.1 the regular
classes in G7 have dimension dim G — s which implies that the image of ¢
only contains irregular elements. Q.

Lemma 4.5 If x € G7 is irreqular, then x is conjugate into one of the sets
By, T, respectively By, T, for a suitable simple root, /; € R'.

Proof: Let z be as in the statement of the lemma. By use of Lemma 4.1,
and Lemma 2.5, we can assume w.l.o.g. that:

zs = tr € Tyr and (4.15)
xy = u € U. (4.16)

Since z is irregular, we can find, by Corollary 4.1, ¢ = d(a@) € R', such
that o/(t) = 1, where @ € R(Cg(tT)) C "R'. We have to show that, by
conjugation, we can achieve o simple and u € Uy

1. Claim: We can assume that & fulfills both of the following properties:
(i) @ is simple in R(Cg(t7)) but not necessarily in "R!, i.e. d(a)(t) = 1.
(ii) The d(@)-part, i.e. the (I'm Syq4))""-part of u € U with respect to the
identification ® of U with the product of the root groups in Equation 3.12,
is trivial.

Proof of Claim: The existence of a with these properties follows from the
characterization of irregular elements in [35], Lemma 3.2 and Theorem 3.3,
p. 286f. (Note that we use here the description of the root groups of C¢(t7)
as given in Remark (ii) following Proposition 3.1.) Q.
From this it follows that the entire I'm S;(4)-part of u has to be trivial with
respect to our coordinates on U (i.e. those corresponding to ).



CHAPTER 4. IRREGULAR ELEMENTS 72

2. Claim 2: By conjugation with representatives, in Ng(< Tg, 7 >), of
elements of W7”, we can achieve a or %64 to be simple in "R'. (The last
possibility appears only in the Ay, -case.)

Claim 2 clearly implies d(@) to be simple in R’, whence the lemma.

Proof of Claim 2: This will be done by induction on ht &.

If htae=1or hta =2 and & = 2 &;, for a simple &; € TR', we are done.
Hence we assume now that At & > 2 and that @ is not the double of a simple
root in "R'. To carry out the induction, our strategy will be as follows:
Find a simple root @; of "R' with a;(a) > 0, which is not a root of
R(Cq(tr)). Conjugate z with a representative ngq,) € Ng(< 15, 7 >)
of the simple reflexion wy(g;) € W'. Then, wgq,)(@) is a simple root of
R(Cq(naa;)tr n;(l&j))) with smaller height than & in "R!.

This will now be carried out in detail:

So, we assume now that ht & > 2 and that & is not the double of a simple
root in TR'. Then we can find a simple root a; € "R!, such that &;(a) > 0.
(Otherwise, we would obtain a contradiction to the fact that the strict convex
cone of simple roots and the convex cone of the negatives of the fundamental
weights only intersect at zero.) By [3] §1, n® 1.3, corollaire du théoreme 1,
p. 149, we have & — @; is an element in "R! T. By the simplicity of & in
R(Cg(tT)), we easily conclude that a; (respectively 2¢@; in the Ajg,-case)
cannot be a root in R(Cg(t7)). (Otherwise, by the same reasoning as above
we would end up with & — & (resp. @ — 2a;) € R(Cq(t1)).)

It therefore follows that, by our identification of U with the direct product
of root groups via @ in Equation 3.12 and by the definition of the S,/ in
the proof of Proposition 3.1, the Sj(4;)-part of u is trivial. Let us denote by
wy(a;) the corresponding reflexion in the Weyl group W7 (which need not
be a reflexion in W!). By the description of the fixed point Weyl group W”
in [7], Chapter 13, and our definition of the W; in the discussion preceding
Lemma 4.3, we see that wy(g;) is the element of greatest length in W; and
the set ¥; C RY is exactly the set of positive roots of R made negative by
Wg(q,) (considered as an element of W.)

Therefore, we see:

-1
uelUn Wy(a;) de(O_é]‘) - Ud(dj)- (4.17)

Next we choose a representative ngq;) € No(< 17, 7 >) of wg(q,). Then
we have:

R -1 T
tlT = 'I’Ld(aj) tT nd(&j) € TO d(wd(&j)(a))T (418)

U= Ng(ay) und(dj) S Ud(dj) cVU, (4.19)

Observe that, in "R!, we have ht (wa(a;)(@)) < ht@. Furthermore:

Ca(t't) = Nd(a;) Ca(tr) n(;(gj). (4.20)
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From this and the fact that the Cq(t7) N U C Ugyq,) (recall that neither
a; nor 2a; are roots in R(Cq(t7))), with Uys,) being wg(q,)-invariant, we
conclude that

UNnCg(t't) = UN Nd(a;) Ca(tr) n(;(gj)

= Nu(a;) (Mg, U nday) N Caltr) myg
= Ng(ay) (U N Cg(tT)) n(;(gj) = Nd(a,) Un(;(gj) N Cg(tlT)
yielding
BN Ca(t'r) =nga, B n;(l&j) N Cq(t'7). (4.21)
Therefore, wgq(q;)(@) must be a simple root of Cg(t'7) with respect to the
Borel subgroup B N Cg(t'7). From this it follows that the Sd(wd(&_)(d))—part
J
of v/, with respect to the identification ® of U as a product of its root groups
is trivial. (Here we use, that the Im X,-part of an element of U, for a simple
root «, is independent of the choice of an isomorphism between U and the
product of its root groups. This follows directly from Lemma 3.2.)
Now, we can apply the induction assumption to get that either a or % « are
simple roots in "R! from which the simplicity of d(a@) in R’ follows. Q.
As a summary of this we have:

Theorem 4.1 (i) The set of irreqular elements (GT)irr of GT has the fol-
lowing shape:

(GT)irr = U gBa’Tgil
geqG
o eIl
= U g Ba/Tgfl. (4.22)
geG
o eIl
(11) The set of semisimple elements of (GT)ipr is dense in (GT)iry.

Proof: (i) is just the combination of Lemmas 4.4 and 4.5.
(ii): We start with defining a set J,, respectively J,, for o/ € I, as follows:

Jo = To\ |J Ty (4.23)
g e Rt
,8, 7é Oél
ja/ = Tga/ \ U T(;—ﬂ’ (424)
B e R'*

Bl?éa/
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Apparently, these are open and dense subsets of T,y respectively T} /.
Hence, J, Uy T, respectively J, Uy 7, are open and dense in By 7, respec-
tively By 7. By use of (i) we conclude that

U gJy Uyrg™t, respectively U gJy Uyrg™t, (4.25)
geG geG
o eIl o eIl

are dense in (GT);r. To complete the proof, we only need to show that
every element z of J, Uy T, respectively J, Uy 7, is semisimple:

We have z = t7u with t € Ty, respectively ¢t € 1jj , and u € Uy By
conjugation of ¢7 with an element of T" we can assume w.lo.g. t € T .
Here, we use Lemma 2.5 together with the 7 invariance of o/ and the T-
stability of Uy, cf. Lemma, 4.3.

Applying Lemma 4.1 (iii) we have w.l.o.g. t7 = z5 and u = z,. (Here we
use that U stabilizes Uy, cf. Lemma 4.3.)

By construction we clearly see that R(C¢(t7)) is of type A;. (A suitable
choice of d~!(o/) and its negative being the only roots.) Therefore, we see
that Cq(tT) NU C Im Sy, which amounts to

uw € Cq(tt) NUy CImSy NUy = {e}, (4.26)

thus proving our assertion. Q.



Chapter 5

The Steinberg Cross Section

In this chapter, we will construct a so called Steinberg Cross Section, a
section with respect to the quotient map 7 : Gr — G7//G, in the case
where the group G’, appearing in the paragraph preceding Proposition 2.8, is
simply connected. Furthermore, a differentiable characterization of regular
elements and further properties of the fibres will be given.

We keep the notation of the previous chapters. Furthermore, let = be the
rank of GG, s the rank of G” which is the same as the rank of G’, and let
II = {ai,...,a,} be a T-stable basis of R(G) which is defined with respect
to a 7-stable maximal torus T of G contained in a 7-stable Borel subgroup
B of G. Throughout this chapter, we assume G’ to be simply connected,
unless stated otherwise, i.e. Z(R)”™ = A(R)". Furthermore, let {A1,..., A}
be the fundamental dominant weights of A(R) corresponding to II and let
{M\,..; AL} be the corresponding generators of A(R)", i.e. the A are the
sums over the 7-orbit of the A;, cf. the proof of Lemma 1.4. Furthermore,
denote the quotient map Gt — G7//G by .

We now define the notion of Steinberg cross section:

Definition 5.1 A Steinberg cross section of the exterior component Gt of
G is a morphism C : AS — G, such that the following properties hold:

(i) Im C is closed in GT.

(11) T\tme : ImC — GTJ/G is an isomorphism.

(113) Im C meets each fibre only in its reqular orbit.

Next we want to construct a map C': A* — G, which has the property of
a Steinberg cross section, according to the following recipe:

Take one representative «; for each 7 orbit of II. By relabeling the elements
of IT and the generators of A(R)” we can assume that «aq,...,as are our
chosen representatives and that \j(c;) = d;; for ¢, j € {1,...,s}.

Let X,,,7 € {1,...,s} be the corresponding root groups of G and n,, €
N¢(T') be a representative of the reflexion s,, in W corresponding to «;, 7 €

75
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{1,...,s}.

Now we define

C: AN — Gt
S

(crromes) =[] Xau(es) n,m (5.1)
=1

Remarks: (i) C' depends on the choices we made, i.e. the order of the
product in the definition of C' and the choices of the representatives of the
considered simple reflexions in W.
(ii) Note that C(0,...,0) = ng,...nq,7 is a representative in Ny (T) of a
twisted Coxeter element, investigated in [31], Section 7. It has similar prop-
erties as the Coxeter element, e.g. it has no eigenvector of eigenvalue one
on the vector space generated by the roots and is unique up to conjugation
in the Weyl group.

Our aim is to prove that C has the properties listed in the above defini-
tion of a Steinberg cross section:

Lemma 5.1 Keeping the notation above, Im C' is closed in Gt and isomor-
phic to A%,

Proof: From the definition of root groups as given e.g. in [38], Section 3.2,
it easily follows that for every @ € R and w € W, with n,, € Ng(T) being
a representative of w, we have

nw Im X, n;l =1Im Xw(a)- (5.2)

Using this property inductively, we easily get

ImC = (HIngl) Ny Moy T (5.3)
=1

where i = (sa;.--Sa; ,)(ci). Observe that {f,...,0s} is just the set of
positive roots made negative by w = s4,...54, OF T '54,...54,, the inverse
of our twisted Coxeter element. (Note that 7 stabilizes the set R™.)

Denoting by B~ the the opposite Borel subgroup with respect to B and by
U~ its unipotent radical (B~ is the Borel subgroup corresponding to the
basis —II), we have by [13], Proposition 28.1, p. 170, the following equality

S
[[imXs =UnwU w . (5.4)
i=1

The right hand side is closed in U and isomorphic to A®. Q.

Our next aim is to evaluate the quotient map on I'm C. To carry out
this, we need some preparations. Recall that, in our situation, the quotient
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map 7 : Gr = T(1/ W is given by the s-tuple of characters characters X {\ i
corresponding to the fundamental dominant weights of A(R'), restricted to
G, see Corollary 2.6:

m(g7) = (X (g7), s X1 (7)), Vg € G. (5.5)

Furthermore, let
Vi) = @ V). (5.6)

pex(T)

be the decomposition of the G-module V/();) in its weight spaces V()\}),.
Denote the canonical injection V(X}), — V(A}) by ¢, and the canonical
projection V(X)) - V(Al), by m,. Then we clearly have:
SN Y
X1(gm) = Y trvon, (mu Ay (g7) o). (5.7)
nex(T)

From now on we assume g7 € I'm C. For our calculations we need a well
known result on the action of the root groups with respect to the weight
spaces, which may be found e.g. in [38], Section 3.3, Proposition 2, p. 80:

Lemma 5.2 Let G be a reductive group, V' o finite dimensional G-module
and Vy a weight space thereof. Then we have, for every v € Vy:

(i) Xale)w = Y220 v,

where v; € Vyyiq ts independent of ¢ and vy = v.

Furthermore, the following holds:

(i) na-v € Vs, 00 = Va_a(has

(i) T.v € V().

We will prove now a sequel of lemmas to get property (ii) of the Steinberg
cross section.

Lemma 5.3 For g7 € Im C we have:

AL
trv oy, (mu L (97) ) =0, (5.8)
if T(p) # p
Proof: By inductive application of Lemma 5.2, we get for every v € V(X)) u
grve P VD ()43 (5.9)
k1, ko€

If we can prove the following assertion, we see that the corresponding trace
of g7 in formula 5.8 vanishes:
Claim: If 7(u) # p we have p & 7(u) + Z(oa, ..., as).
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Proof of Claim: Assume the contrary , i.e. 7(u) # p and p € 7(u) +
Z(ou1, ..., g). Then we can find p; € Z, j € {1,..., s} such that

S
0#p—7(n) =Y pjoy. (5.10)
j=1
Furthermore, we easily see:
ordT )
S 7= () = 0. (5.11)
i=1

Combining these two equations, we get:

0="> " pi7(e). (5.12)

i=1 j=1

By introducing p} € Z,i € {1, ...,r}, by following the rule p; = |T'y,|p; and
ph = p;-, if a; lies in the T'-orbit of «;, we can rewrite the above equation in
the following way (recall that I' is the subgroup of Aut(R) generated by 7):

.
0="> pjaj. (5.13)
j=1

This implies p; = 0, for all j € {1,...,r} which amounts to p; = 0, for all
j € {1,...,s}, a contradiction to the definition of the p;, j € {1,...,s}. Q.
As a direct consequence we get:

Corollary 5.1 For gt € Im C we have:

~\ M
X1gm) = > try, (B (97) w)- (5.14)
HEA(R')

Next, we want to introduce an order relation > on the set of fundamental
dominant weights {\],..., A, } of A(R') by the following rule:

A > X}, iff there exists a dominant weight X' € A(R'), such that X' < X; (in
A(R')), i.e. X, — X is a sum of positive roots and such that we have:

S
N =" mg AL, (5.15)
k=1

with mj; > 0.
Remark: Note, that by representation theory, found e.g. in [38], Sections
3.3 and 3.4, for all weight spaces V()}),, we have p < .

First, we have to show that > actually is a partial order:
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Lemma 5.4 The set {\|,...,\,} with the relation > is a partially ordered
set.

Proof: We only need to show the transitivity and the antisymmetry of the
order: . .

1. Tramsitivity: Let A{ > X; and X} > X}, i.e. we have X', ' € A(R'), such
that:

S

X=X =) nq (5.16)
=1
S

- = Zn;a;, (5.17)
=1

with n;, nj € Z2°, for all | € {1,..., s} and

S

No= ) my N (5.18)
=1

poo= ng)\g (5.19)
I=1

with my, m) € Z29, for all | € {1,...,s}, and mj, m}, > 0. We set:

S

S
vi= M\ — Z(nl +mjn))a; =X —m; Zn? aj. (5.20)
=1 =1

A calculation yields
S

v=> mi\ (5.21)
=1

. " __ o0 "
with m; = m;jm; and m;

= my +mjm; for | # j, yielding m} > 0.
2. Antisymmetry: We prove this by contradiction. Assume X > A and

Aj > X, with i # j. Since we already have the transitivity, we can consider
the following situation:

There exist two sets of positive integers m;, [ € {1,...,s} and ng, [ €
{1, ..., s}, each s-tuple being nontrivial, such that

S S
N — an o) = ka e (5.22)
=1 =1

with m; > 0. This amounts to (3°;_; my A},) — A} being a nontrivial el-
ement in the intersection of the the strict convex cone of negative linear
combinations of positive roots and the strict convex cone of positive linear
combinations of fundamental weights. But, by the table in [14], §13.2, p. 69,
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each fundamental weight is a positive Q-linear combination of the positive
roots, which shows that the two cones intersect only in the origin, giving a
contradiction. Q.

Now we go back to the calculation of w(g7) for g7 € Im C. To simplify
the notation, we introduce Y,, : A = G by

Yo, (c) := Xq, () ng, - (5.23)

Furthermore, we identify g7 € G with its representer ﬁ/l\i (g7) in the repre-

sentation ﬁi‘i. With this, we obtain a lemma:

Lemma 5.5 For all u € A(R') we have:

S S
v, (71'# H Yo, (ci) T LH> = try(), (H(ﬂ'# Yo, (¢i) ty) mu T LH> .

=1 i=1
(5.24)

Proof: The introduction of a pair ¢, 7, directly in front of the the 7 is
justified by Lemma 5.3.
Now take v € V/(A}),. By inductive use of Lemma 5.2 we find:

o0

HYal(Ci) TU = Z Vky o ks (CLy ons Cs), (5.25)
=1

kl,...,ks:—oo

where each vy, r.(c1,...,c5) € V()\;)#Jrzle k; a; depends polynomially on
the cq, ..., cs. Therefore we have

S
WuHYal(Ci)T.U = v, o(c1,...,Cs)
=1

S

= [l Ya, (cd) o) mu 7 10 (5.26)
i=1
The last equality follows by an easy induction on s using the fact that the
a;, 1 € {1,...,s} are linearly independent. Q.
With these preparations, we can compute the trace of an element C(cy, ..., ¢5) €
G7 on a weight space V(A}),:

Lemma 5.6 Let n € A(R') be a weight, assume V(AL),, # 0.
Then, for p=37%_,mjA;j, we have:

m1 m - - .
aycyt...cd*, if pois dominant,

try o, (mu Cler, - cs) ) = { 0. oiherwise (5.27)

for some a, € k.
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Proof: To calculate the trace, we only need, because of Lemma 5.5, to
determine the polynomial in ¢; which appears in the expression 7, Yy, (¢;j).v
for v € V(X),. By use of Lemma 5.2 and the fact that m; = &;(u), we get:

o
T Yo, (cj)v =T, Z cf Vg, (5.28)
k=0

where v, € V/(A})ut(k—m;)a;- Hence, we have

T Yo, (cj)0 = c;.nj Vmn; (5.29)

Otherwise, we have
7y Ya, (cj).v = 0. (5.30)

Proceeding by induction on s, we get:
T, C(cty s Cs) = H c;?lj w, (5.31)

with w € V(X),, if 4 is dominant. Otherwise, we have:
m, Clet, . nCs) v =0 (5.32)

In the first case, w depends only linearly on v by Lemma 5.2. Thus, w =
Av, for a linear endomorphism A of V(X}),. With a, := trA we get our
statement. Q.

We now verify property (ii) of the definition of Steinberg cross section
for our map C:

Proposition 5.1 The quotient map © : Gt — TOTT/W =~ A° induces an
isomorphism of algebraic varieties

Tlme : ImC =5 TE/W. (5.33)

Proof: To prove the proposition we shall prove the following claim:
Claim: Let X a fundamental dominant weight of A(R’). Then:

~)\/
X11(Clets s c5)) = ax i + Pi(et, ..., c5), (5.34)

where ay # 0 and where each P is a polynomial in those ¢; with A <N
and N, # X,

Claim = proposition: If we label the X, i € {1,...,s}, such that X} < hy
implies j < 4. Then we see that 7 o C is clearly invertible by the shape of
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Equation 5.34 $.
Proof of Claim: By Lemma 5.6, we need to show the statement about
the variables appearing nontrivially in the polynomials P; and the prop-
erty ay # 0:

We ha\;e, using Lemma 5.6:

"’A’
X[H(C (€1, c5)) = > tryo, (T Cler, s es) ). (5.35)

p € AR

 dominant

By the remark about representation theory, following the definition of the
partial order >, and by Lemma 5.6, we clearly see that P; is a polynomial
in those ¢; with A} < M. Similarly to the proof of the antisymmetry in
Lemma 5.4, we can see that for every dominant = 377, m; A} € A(R')
with g < A} and p # A, we must have m; = 0.

To show the nontriviality of ay,, we proceed as follows:

Take an element v € V()\;)X_\l{O}. Since dim V(M) = 1, cf. e.g. [13],
Proposition 31.2, p. 189, this is a basis of V()\;)/\fi. ZBy the construction
of our representations of G in Section 2.4 we have 7.v = v. Using Lemma
5.2 and the fact, that all weights p of A(R’) having nontrivial weight spaces
V(X;), in V(X)) have to fulfill © < A, we get:

Yo, () lvin,, = tdvin,, (5.36)

for j #4 and ¢j € k.
Therefore, it remains to show:

Y, (ci)v =aciv+ terms having zero V(A;)/\fi—part, fora#0.  (5.37)

To obtain this, consider the subgroup Gy, =< Im X,,;, Im X_,, > of G of
type A;. Now, V(X))x @ V(X)) x—q, is an irreducible G,-module. (Note,
that the weights A, — ko only have trivial weight spaces in V(X)) for k& > 2.
Otherwise, sq; (A\;—k a;) = Al+(k—1) a; would have a nontrivial weight space
in V(X]) for k > 2, which is absurd.) Then, G,, even has to be isomorphic
to SLy(k) and V/(A})x, @ V(A])x,—q, to its natural representation. Using this
isomorphism, we can choose v :( ! ).Then, Xa, (ci) :( Lo ) Since all
different choices for n,,, differ only by an element in 7', and since all elements
of T" act on the weight spaces by multiplication with a non-zero constant, we
can assume w.1.0.g. nq, to be in G, and to have the form nq, =( % § ),
under the above isomorphism. We easily calculate:

GO D)) o

The result now follows, with a = —1. Q.
We now prove our main result:
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Theorem 5.1 The map C is a Steinberg cross section of the exterior com-
ponent GT.

Proof: Properties (i) and (ii) have already been proven in Lemma 5.1 and
Proposition 5.1. (iii) will be a consequence of Theorem 5.2. Q.

Using the properties of C' proven so far, we can give a characterization
of regular elements by means of the derivative of the quotient map 7 in the
case where G’ as appearing in the paragraph preceding Proposition 2.8 is
simply connected:

Theorem 5.2 Let gt be in GT. Then the three following properties are
equivalent:

(1) g7 is reqular

(it) The derivative of (dm)e, is surjective

(113) g7 is G-conjugate to an element of Im C.

Proof: (iii) = (ii): This follows directly from Proposition 5.1 and
Ty (T3 /W) = Im (dn| 1 0)gr C I (dT)g,. (5.39)

(ii) = (i): We will show that for irregular g7 € G the differentials (dX {\ i lGr)grs
i € {1, ..., s} considered as elements of T, (G) are linearly dependent.
This will be carried out in several steps:

1. W.l.o.g. we can assume that g7 is irregular and semisimple.

Proof: Since the set of semisimple irregular elements in g7 is dense in (GT)p,
cf. Theorem 4.1, we only need to show, that the set of elements in G, for
which the differentials (dX{\ Ii|GT)gT, i € {1,...,s} are linearly dependent, is
closed. (This holds on every smooth algebraic variety and a given set of
global one-forms by a similar reasoning. Anyhow, we will give a proof in
our situation, where the tangent bundle is trivial.)

Since G'1 is isomorphic to G, as an algebraic variety and, since the cotangent
bundle of G is trivial, so is that of GT. Let E7, j € {1,..,n} withn =dim G
be a basis of the vector space of left invariant one forms on G7, which is
isomorphic to g, the dual of Lie G. It is a well known fact, that the (E7)4r,
j € {1,...,n} form a basis of T, (GT).

Hence, we can find polynomial functions C;; € k[GT], © € {1,...,s}, j €
{1,...,n}, such that

n
~ )
dX{'|ar =Y Cij Ej. (5.40)
=1

Now the set where all the dX{\ ’i|GT, i € {1,...,s} are linearly dependent is
exactly the set where all the s x s minors of the matrix (Cj ;)ies, jen vanish.
This set is clearly closed. O
By Proposition 2.3 and the fact that, conjugating with an element of G, is
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an automorphism of G7, we can even assume that g7 € T'7, where T is a
maximal torus stabilized by 7. We shall denote g7 by 7.

For the next step, we introduce some notation: Let B < G be a Borel
subgroup of G, stabilized by 7 and containing 7" and let U be its unipotent
radical and U~ the radical of the opposite Borel subgroup B~. Set t :=
Ty (T7) C Ty (GT). Recall that k[G7]% denotes the ring of class functions
on G'7. Then we have:

2. For every F € k[GT]% the following statement holds:

(dF)i = 0 < (dF)p:)er = (dF)e | = 0. (5.41)

Proof: In this proof we use properties of the Bruhat decomposition, see e.g.
[13], Section 28:

Let U T U T C G7 be the big Bruhat cell, which is open in G7. Then we
have an isomorphism, cf. [13] Proposition 28.5, p. 174:

U AR (B - UTTUT

(a)acr+s (Va)acrts tryntr) =[] Xalu—a) [Jrvtti)r [] Xa(ve)-
=1

a<0 a>0

Here the X, @ € R, are the root groups and the v;, i € {1,...,7} are one-
parameter multiplicative groups spanning 7. (The v;, i € {1,...,7} have to
be chosen in such a manner that they form a basis of x(7)*, the dual of the
character lattice of T'.)

By means of this isomorphism, we can write every element Y € T}, (G1) =
T, (U~ TUT) in a unique way as a sum Y = Y] + Y5, such that we get:

(AT 1) (Y1) = > ca(Ou)u-1(r) T da (Ouy)w-1r) € Ty-1(pr) A7
a€RT

(dqlil)tT(YZ) = Zbl (8ti)lll—1(t7') € T\IJ—l(tT)(k*)r'
=1

with b;, ¢ o, do €k, 1€ {1,....;7}, « € RT.
We have to show that the following equation holds for every Y € T}, (G7):

(dF)ir (V) = (dF) 17 (Ys): (5.42)

Now, we transfer the adjoint T -action on U~ T U 7 to Al x (k*)" via .
Then this action looks as follows:

tl'((ua)aER+7 ('Ua)aeR+7 Liyeens tT) = ((a(t,)_l ua)aER+7 (O[(t,) 'Ua)aeR+7 Liyeens tT)a
(5.43)

with ¢ € T

Next we consider ¥*(F'), which can be uniquely separated in a sum ¥*(F) =

P, + P; of two polynomials P} and P, the first being a polynomial containing
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only powers of tfcl, i € {1,...,r}, while each monomial appearing in the
second contains at least a factor in the u, or v,, a € RT. Now we let 15
act on U*(F'). Since ¥*(F) and P, are T{-invariant, P is also. Since 7]
is a regular subtorus of T', by Proposition 2.2, no root a € R is identically
trivial on Tj. Therefore, every monomial of P» must contain at least two
factors from the set {uq or vy, a € RT} which implies

(d(T ) Py)er (YV) = 0, (5.44)
(because of U~ (t7) € 0 x (k*)" C Al x (k*)"). Therefore, from
(dF)ir(Y) = (d(¥ )" P)er (V) = (d(¥ ) Pr)ir (Y2) = (dF)ir (Y2), (5.45)

we get our statement. &
We can apply this to our characters Xl)\i|GT € k[GT]%, i € {1,...,s} to see
that the (dX{\i|GT)tT, i € {1,...,s} are linearly dependent for tr € T'r, iff
their restrictions to 7’7, i.e. the (dX{\i|TT)tT, i€{l,.., s} are.

By Lemma 2.7 and Lemma 2.8, we have that T'7 )T = Tt/T =T, a
maximal torus of G’. Let us denote the quotient map T'7 — T" by p and by
Ty the kernel of o € R on T. We define T, similarly. By the method of
the proof of Lemma 2.7 we have p~'(T",) = Ty 7.

3. Now the following assertion holds:
p((T7)iry) = T}, and  p NT},) = (T7)irr, (5.46)

rr wrr

(T'7T)irr and T}, denoting the set of irregular elements in T'T respectively T".
Proof: This follows directly from Corollary 3.3 and the characterization of
irregular elements in 7" as given e.g. in [38], Section 3.5, Proposition 3, p.
96. .

For the next step, recall that k[T7]7 = k[T']. In order to cause no
confusion, we denote an element F € k[T7]" by F, if we consider it as

regular function on 7”. With this notation we clearly have p*(F) = F.
4. For every F € k[TT]"" we have:

(dF);; =0 & (dF)yr) = 0. (5.47)

Proof: By Lemma 2.7 and [2], Chapter II, Proposition 6.5 p. 97, the quotient
map p is a fibre bundle. Therefore, (dp);, is surjective for every tr € T'T.
The statement now follows from the chain rule

(dF)ir = (dF)y1r) 0 (dp)ir- (5.48)

.
We want to apply step 4 to F = )N(I)‘i|TT, i € {1,...,s}. Recall, that for

F = X{WTT we have F' = X'i|sv, cf. Proposition 2.8, X' being the
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character of the irreducible representation of G’ with highest weight ..

Hence, the (d)?l)"i|GT)tT, i € {1,...,s} are linearly dependent for tr € T'r, iff
the (X |7) 47y, i € {1, ..., s} are for p(tT) € T".

5. The (dX"™i|p)y, i € {1,...,s} are linearly dependent for t' € T, if t' is
irreqular.

Proof: 'This is proven in [38], Section 3.8, Lemma p. 125, together with
the identity of Weyl mentioned on [38], p. 127. (For a proof of the Weyl
identity, cf. e.g. [14], Lemmas 24.1A and 24.1B, p. 136.) .
Combining steps 3 and 5 yields (ii) = (i).

(i) = (ii1): Let g7 € G7 be regular. Then, we can find hr € I'm C with
w(ht) = 7(g7), by Proposition 5.1. Since we already know that A7 is regular,
the statement follows from Corollary 3.1. Q.

Now we can prove the reducedness of the fibres as promised in the remark
following Theorem 3.1.

Proposition 5.2 The quotient map 7 : Gt — G7//G is flat and its fibres
are reduced and normal.

Proof: The flatness property of m was already proven in Corollary 3.2.

1. Reducedness: To show the reducedness of the schematic fibres, it suffices
to show that they are regular in codimension zero and Cohen-Macaulay, by
[21], Section 17.I, p. 125:

Take y € G7//G. Then we have, for the corresponding schematic fibre:

_ "’AI ~A,
T Hy) = V(X Gr — Yty X1%|Gr — Ys)- (5.49)

Hence, 77! (y) is a complete intersection. By [11], Chapter II, Proposition
8.23, p. 186, it follows that 7 !(y) is Cohen-Macaulay. If we choose x €

7~ 1(y) to be regular we have, by Theorem 5.2, that the d(X'l)\j|GT)x, j €
{1,...,s} are linearly independent. Hence O-1(, 5, the local ring of the
schematic fibre, is a regular local ring. By Corollary 3.1, we know that
the irregular elements in 7~!(y) have codimension two, which implies that
7~ 1(y) is regular in codimension zero. So we see that the schematic fibre is
already reduced.
2. Normality: Since the set of regular elements of 7! (y) is open dense in
7~ (y) with a complement of codimension two, see Corollary 3.1, and since
these elements are nonsingular in 7 !(y) (note that they are all conjugate
to one another), we see that m~!(y) is regular in codimension one. By [11],
Chapter II, Proposition 8.23, p. 186, the normality of 7~!(y) follows. .
As a consequence of Theorem 5.2, we get the following description of the
singular locus of the reduced fibres of the quotient map 7 : Gt — G7//G.
Here G’ does not need to be simply connected. This is a sharper version of
Lemma 3.1:
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Corollary 5.2 If char(k) does not divide the order of the fundamental
group of G, then for every tr € T§ T, the nonsingular points of 71 (7 (7)) eq
are exactly the regular ones.

Proof: By Theorem 5.2, the statement is true in case, that G is simply
connected. If G is not simply connected, let us denote its universal cover
by G. As in Section 2.5, we denote the the kernel of the quotient map
p: G — G by Cg. Recall that we have the following commutative diagram:

A= Gr )G —L2 GG,

where p : Gt — Gt is the map induced by p on the exterior component,
given by g7 — p(g)7 and p is induced by p on the quotient. Apparently p
maps the fibres of 7 onto those of .

By our assumption on the characteristic of k, p is separable and hence etale
because of the smoothness and dimension equality of G and @, see [11],
Chapter III, Proposition 10.4, p. 270. Therefore, the restriction of p to each
fibre of 7 is etal. Hence, p maps the (non-)singular points of each fibre of 7
exactly to the (non-)singular points of the corresponding fibre of 7.
Furthermore, we have, by [37], statement 4.5, p. 37, that dim Cp(g7) =
dim Cq(p(g)7). (Note that C = ker p is finite). Now the result follows. Q.



Chapter 6

Subregular Singularities

In this chapter, we shall establish a connection to singularity theory. To ac-
complish this, we start with a construction of a simultaneous resolution of all
fibres of the quotient map 7 : Gt — Tj7/W, the so called “Grothendieck’s
simultaneous resolution”. Then we construct semiuniversal deformations
of subregular singularities in the fibres over those points in the quotient
T§7/W, of which the centralizer of a semisimple element in the correspond-
ing fibre is simple of maximal possible rank. All the results of this chapter
will be valid in the case where G is simple and 7 acts without fixed points on
the fundamental group of G' and where G’, as defined in Section 2.4, is sim-
ply connected. Furthermore, we need some restrictions on the characteristic
of k.

6.1 Resolution of Individual Fibres

As a first preparatory result, we construct the resolution of a single fibre.
First we state a result by Springer, found in [30], Theorem 1.4, or [27], The-
orem 4.1, p. 43:

Proposition 6.1 Let G be a reductive group, such that char(k) does not
divide the order of the fundamental group of G, B a Borel subgroup with
unipotent radical U, and let V' be the unipotent variety of G. Then the
morphism
p:GxBU - V
gxu — gug ' (6.1)

s a G-equivariant resolution of singularities of V.

Proof: See [27], p. 43. Q.
Furthermore, we prove the following result about base change of G-
equivariant resolutions:

88
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Proposition 6.2 Let G be an algebraic group, H < G a closed subgroup
and v : X — X an H equivariant resolution of singularities.
Then:

GxHv.axBx saxTx (6.2)

is, again, a resolution of singularities.

Proof: We have to show that G x v is proper and that it induces an
isomorphism v 1(X,eg) — Xyeg. Note that G x X is clearly smooth (it is
an associated bundle with smooth fibre):

1. Properness: We have to show that f := G x¥ v is universally closed.
To do this, consider a morphism p : ¥ — G x X and the corresponding
Cartesian square:

YI G XH X ) (63)
f f
Y GxHXx

where Y/ := Y X my (G x® X) is the fibre product. Our aim is to show
that f is closed. We consider the following commutative cube:

VA GxX (6.4)
7! T

Yy’ GxH X
f idXv

f f
VA GxX

! s
Y 5 G xH X

where Z' := Y’ x n (G x X) and % =Y XGxX (G x X), yielding
Cartesian top and bottom faces. Here f is given by f(y, g * Z, (¢', ') =
(y, (¢', v(2')), and m and 7 denote quotient maps by the H-action. (Note
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that f is well defined, ie. Imf C Z, because of p(y) = f(g* &) =
f(@lg, &) = flg'« &) = g« v(&) = 7(g', v(Z)).)
Next we define an H-action on Z' and Z in the following way:

~—

h(y, g+ &, (¢, &) (y, g% &, (¢ h™", hi)) (6.5)
h'(yv (gla :E)) = (yv (gl h_la h(L‘)), (6'6)

with h € H, (y, g * &, (¢, #)) € Z' and (y, (¢, )) € Z. Then f becomes
H-equivariant.

Now we define Z := Z xgxx (G x X), which becomes an H-variety with
respect to the following action of H:

h.(y, (9, 2), (¢, &) = (y, (gh™", ha), (¢ b7, W), (6.7)

for all h € H and (y, (g, ), (¢, &')) € Z. Setting

.7 — 7'
Dy, (9, 2), (¢, 7)) = (v, 9" +7, (¢, 1), (6.8)

for all (y, (g, z), (¢, 7)) € Z, and

V.7 = Z
U(y, g+ 2, (¢, &) = (y, (¢, v(&), (¢, &), (6.9)

for all (y, g * &, (¢', #)) € Z', we see that Z and Z' are isomorphic as H-
varieties. This implies that the back side of the cube is also Cartesian. (We
believe this to be true for all commutative cubes with Cartesian top, bottom
and front side. We gave this proof, because we have not found a reference.)
We are now interested in the categorical quotients ZJ/H and Z'JH. Recall
that we can consider

Z' C Y'x(GxX) (6.10)
Z C Y x(GxX) (6.11)

as closed H-stable subsets, yielding that Z/H and Z'/H are closed subsets
of (Y x (G x X))/ H and (Y’ x (G x X))/ H respectively. Since H operates
on the varieties of the right hand sides of Equations 6.10 and 6.11 only by
acting on the second factor and, since the corresponding quotient of the
respective second factor is geometrical, by [27], Section 3.7, p. 25, see also
[22], remark, p. 8, it follows that also (Y x (G x X))/ H and (Y'x(Gx X))/ H
are geometrical quotients. They have the following explicit form:

Y x (GxX))/H = Y x(Gx"X) (6.12)
(V'x (Gx X))/H = Y'x(GxTX), (6.13)
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yielding:

Z/H = Y xguny (GxTX)2Y (6.14)
Z'/H = Y' xgnz5(Gx"X)=2Y' (6.15)

(Observe that the isomorphism is just given by the embedding of the first
factor as the graph of p, respectively the map induced by p into the product.)
Therefore, we have identified 7’ and ' as quotient morphisms under the H-
actions.
By our hypothesis, v is a proper morphism. Since properness is stable under
base change by [11], Chapter II, Corollary 4.8, p. 102, we have that id X v is
also proper. (We apply this property to the base change pro : G x X — X
and use the isomorphism (G x X) xx X = G x X.) Applying the base
change property again and exploiting the fact, that the back side of the
cube is Cartesian, we get that f is proper. Now choose a closed subset
A CY'. We have X :

F(4) = 7 (F#(A)). (6.16)

Now #'~1(A) C Z' is closed and H-stable. By the H-equivariance and
properness of f we get that f(7'"1(A)) C Z is closed and H-stable. Then
the closedness of f (A) follows from the fact, that 7' is a quotient map.
2. Isomorphism outside the singularity: Analogously to the proof of Lemma
3.1, we have:

(G XH X)sing =G XH (Xsing)' (6'17)

Now the restriction V|)~(\u*1(Xsmg) of v to X\V*I(Xsmg) is an isomorphism:

V|X\V_1(Xsing) : X\Vil(XSing) — X\Xsing- (618)

From this, we apparently get an isomorphism:

(G XH V)|G><HX\GXH(V71(X‘“-”9)) = G XH (V|X\(V71(X3”Lg))> 5 (6.19)

whose inverse is just given by G x (V|)~(\(V,1(Xmg)))*1. Q.

Now let G be a semisimple affine algebraic group and 7 an exterior
automorphism of the Dynkin diagram of G. We fix t7 € Tjj 7. Let us denote
by V(t7) the unipotent variety of C¢(t7), by B(t7) a Borel subgroup of
Cg(tT) and by U(t7) its unipotent radical. Now, we assume that 7 acts
without fixed points on the fundamental group of G. By use of [37], Corollary
9.7, p. 61, this guarantees C(¢7) to be connected for ¢t € T{ 7.
Combining the two propositions above, we get, together with Theorem 3.1
and Corollary 5.2:

Corollary 6.1 Let

pir 2 Caltr)y xPU) Utr) — V(tr) (6.20)
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be the map induced by the conjugation map and assume that char(k) does not
divide the order of the fundamental group of G and of C(tT). Furthermore,
assume that T acts without fixed points on the fundamental group of G.
Then

G xCat) p, G x B U(tr) —» G xCU) v (tr) (6.21)

is a resolution of the reduced fibre 71 (m(t7))req of the quotient ™ : Gt —
GT/G.

6.2 Grothendieck’s Simultaneous Resolution

In this section, we want to construct a simultaneous resolution of the quo-
tient map 7 : Gt — G7//G. Therefore, we choose a Borel subgroup B of
G and a maximal torus T thereof, which are both stabilized by 7. Here,
we assume that 7 acts without fixed points on the fundamental group of
G. By the remark in the paragraph preceding Corollary 6.1, this guarantees
Cq(tT) to be connected for ¢t € T 7.

First, recall the definition of a simultaneous resolution, cf. [27], p. 45:

Definition 6.1 A simultaneous resolution of a morphism © : X — Y of
reduced varieties consists of a commutative diagram of morphisms of reduced
varieties

7—2 >x (6.22)
1<) T
T—2 Y,

such that the following properties hold:
(i) © is smooth,

(1) U is finite and surjective,

(iii) @ is proper,

(1w) for all t € T', the morphism

D : e_l(t) - (W_l(\ll(t)))red (6'23)
s a resolution of singularities.

Before constructing the simultaneous resolution in our situation we need
some preparations:
Let B act on BT and T on Tt by conjugation. Then we have:

Lemma 6.1 The embedding Tt — BT induces an isomorphism TT||T =
Bt/ B.
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Proof: We have to show, that the restriction map of the invariant rings

T k[Br)? — k[Tr]"
f = f|T7— (6.24)

is an isomorphism of rings:

1. Injectivity: The injectivity of ¥ follows from the following claim:

Claim: We have:
UJoTgro ! cBr (6.25)
beB

is a dense subset.

Proof of claim: To prove this, we use Proposition 2.6.

Recall that, in its proof, we defined a map ®:

(I):G/CUXC() — GT
(9Co,h) — ghrg . (6.26)

Now we denote by © its restriction to B/Tj x TjT:

©:B/Tf xTgtr — Gt
(bTg, tr) ~— btrb L. (6.27)

Clearly, Im © C Bt. Now, take ®(eT}], t7) € BT, where ¢7 is a topologically
cyclic element of the Cartan subgroup < 77, 7 >. By the proof of Proposi-
tion 2.6, we know, that ®~Y(®(e Ty, t7)) is finite. Then, O~ (e Ty, t7))
also has to be finite. The claim now follows from the dimension formula.{.
The injectivity of ¥ can now be proven as follows: Take f € k[B7]? with
flrr = 0. This implies:

FlUpepbgro-1 =0 (6.28)

By the claim, f vanishes on a dense subset hence f = 0.

2. Surjectivity: Recall that B = T x U, cf. [13], Theorem 19.3, p. 123.
Therefore, we have Bt = Tt x U, as algebraic varieties, because U is 7-
stable. Denote the projection on the first factor by m. Choose f € k[T'7]T.
We will show that ©*(f) € k[B7]? and that 7*(f)|r, = f. This yields the
surjectivity of W:

The second property, i.e. 7*(f)|7r = f, is apparent by construction.
Therefore, we have to show the B-invariance of 7*(f), for f € k[TT]":

Let b=tu € Band z =t'ru’ € Br, with t,t € T and u, v’ € U. We have
to show that *(f)(z) = n*(f)(bz b '). Now, a simple calculation yields,
that bz b~' =tt' 7t~ 7= 74, for a suitable & € U. Then we conclude:

() bzb ) = f(r(bzb b)) = f(n(tt' 7t 7 r0)) =
ftrt ) = f(t'm) = f(n(z) = 7 (f)(2). (6.29)
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This proves the B-invariance of 7*(f). Q.
Remark: The condition on the action of 7 was not used to derive this
lemma.

As a consequence we have:

Corollary 6.2 With the notation of Section 2.3, the following holds:
BT|B=T7/T 2T]/(T/T§)” =T (6.30)

Proof: The first part follows from Lemma 6.1, and the other isomorphisms
are given in Lemmas 2.7 and 2.8. Q.

Next, recall that for ¢7 € T(j 7 the group B(t7) := BN Cg(tT)o is a Borel
subgroup of Cg(t7)p, by Lemma 4.2, and that U(tt) = U N Cg(t1)g is its
unipotent radical. Furthermore, denote the quotient map BT — Bt //B by
B. The following two lemmas summarize the properties of 3:

Lemma 6.2 8 is smooth and [ = p o 7, where p is the quotient map p :
Tt — T, as in Lemma 2.8, and w : Bt — T'1 is the projection of the first
factor as defined in the proof of the surjectivity of Lemma 6.1. (Note that
here we identify T with Tt via right multiplication with T.)

Proof: 1. 3 = pom: First, observe that for f € k[B7]? and x € BT we have
f(x) = f(zs) analogously to Lemma 2.10. Therefore, we have 8(z) = B(zs),
for x € Br.

Now take x = b7 =tr7u € Bt witht € T and u € U. By use of Lemma 4.1,
xs is conjugate to t7, such that B(x) = p(t7), where we have used Lemma
6.1. Now, the statement is immediate.

2. Smoothness of 3: Since p corresponds, under the identification of T'r with
T, to the quotient map of T' modulo a subtorus, see Lemma 2.7, we have that
p is smooth. Furthermore, 7 is smooth because it is a projection map. The
assertion now follows from the stability of smoothness under composition,
see [11], Chapter III Proposition 10.1, p. 268. Q.
Remark: For this lemma we also do not need that 7 acts on the fundamental
group of G without fixed points.

Lemma 6.3 In the situation described above, we have a B-equivariant iso-
morphism:
A1 (B(tr)) = B xBUD U (tr). (6.31)

Proof: First we show that the above identification holds for the reduced fibre

/6_1 (B(tT))red:
We already know, by the proof of the previous lemma, that for f € k[B7]?

and =z € Bt we have f(z) = f(zs).
For z € B !(B(tr)) we can, by Lemma 4.1 and Lemma 2.5, assume that
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zs € T§T, up to conjugacy in B. We have z; € 83~ 1(B(t7)) and, therefore,
zs and ¢7 have to be conjugate under (T'/7)7, by Proposition 2.5. (Note
that no representative of an element of W7 is contained in B.) Using our
assumption on the action of 7 on the fundamental group of G, we have that
Cq(t7) is connected and, therefore, that Cz(t7) = B(¢7), which follows from
[37], Corollary 9.7, p. 61. By [2], Proposition 9.1, p. 128, we can identify
the B-orbit of ¢7 with B/B(t7). Using this identification, we define a map:

¥ : B~ YB(tr)) — B/B(tr) (6.32)
T = TS (6.33)

If we consider the characteristic polynomial in a given, faithful represen-
tation of G, we see that its coefficients have to be constant for all z €
B Y(B(tT)). (Recall that the semisimple part of a matrix X can be given
as a polynomial in X only involving the coefficients of the characteristic
polynomial, cf. [14], Proposition 4.2, p. 17.) We get that ¥ is an algebraic
morphism. ¥ is clearly B-equivariant. Furthermore, we have:

\ilfl(eB(tT)) = {z € B HB(tr)), xs = tr} = U(tr). (6.34)

The statement now follows from [27], Section 3.7, Lemma 4, p. 26. Therefore
we have:

B HB(tT))rea = B xBUD U (1), (6.35)

Next, we want to show that B~!(B(t7) is reduced:
Since [ is smooth, it is flat and its schematic fibres are regular by [11],
Chapter III, Theorem 10.2, p. 269. The regularity of the fibres of # implies
that they are also Cohen-Macaulay, see [11], Chapter II, Theorem 8.21A, p.
184. Now, the reducedness of the fibres of § follows from [21], Section 17.1,
p. 125. Q0.
To construct the simultaneous resolution of 7 : GT — G7//G, we consider
the space G x® Bt which, clearly, is a smooth variety. We define a map:

d:Gx®Br = Gr (6.36)
gxbr — gbrb! (6.37)

By Lemma 4.1 and its proof, this map is surjective and proper.

We can construct a second map © : G x® Br — B7 /B = T' in the following
way:

If we consider BT /B as a B-variety with trivial B-action, we can define the
following map:

GxBp:. GxBPBr — GxB(BrfB) = G/BxBt)B

gxbr o> gx[br] o (9B, r)), O3
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where [b7] denotes a class in B7//B. (Note that the second isomorphism
follows from [27], Section 3.7, Lemma 1, p. 25 with the trivial G-action on
B7//B.) Then we set

O:=prooGxBB:GxBBr - Br)B=T. (6.39)
We have the following property:
Lemma 6.4 O is a smooth morphism.

Proof: Since pro is smooth as projection map and by [11], Chapter III,
Proposition 10.1, p. 268, we only need to show, that G x? 3 is smooth.
Furthermore, since Bt and G/B x T' are smooth varieties, we only need
to show, that (d(G x® B)); is surjective for every z € G xP Br, by [11],
Chapter III, Proposition 10.4, p. 270. Recall that, by [27], Section 3.7,
the associated bundle v : G xB Br — G/B is locally trivial in the etale
topology. So for every y € G/B we can find an open set U C G/B and an
etale morphism 7 : U’ — U, such that the following identity holds:

(G xP Br) = U’ x Br. (6.40)

For z € G xB Bt we put y = v(x).
Now we have a commutative diagram

!

U' x Bt

v Y U) (6.41)

ldXﬂ (GXBB)‘,,—I(U)

U x T o omxad UxT
where 7’ is induced from 7 by base change and is, therefore, again etale ,
see [11], Chapter III, Proposition 10.1, p. 268. For 2’ € 7'~ !(z) we get an
induced diagram:

dn') s
Ty (U' x BT) ) T,(G xB Br) (6.42)

(d(idx ) (d(GxPB))a

(d(7xid) ;4% g)(2"))
Tiiaxp) ) (U x T") Sl

Taunpa) (G/B xT'),

where the horizontal arrows are isomorphisms, because the corresponding
morphisms are etale. The assertion now follows from the surjectivity of
(d(id x B))4, which follows from the smoothness of 3. Q.

As a last preparation for our simultaneous resolution, we need the follow-
ing lemma for quotients by regular finite group actions on varieties, which
is standard in geometric invariant theory:
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Lemma 6.5 Let X be an affine variety, W a finite group, which acts reg-
ularly on X. Then the quotient map 7X — X/W is a finite morphism.

Proof: Let ©* : k[X]"V < k[X] be the inclusion map. We will show, that
k[X] is a finite k[ X]"Y-module. Since both rings are coordinate rings of affine
varieties, we clearly have that k[X] is a finitely generated k[X]"V-algebra.
Therefore, we only need to show that every element of k[X] is integral over
E[X]WV. If f € k[X], we choose

P(T) = ] (@ - w() € (KIXT]Y) 1] (6.43)

wew

P is a monic and P(f) = 0. Q.
With these preparations we can construct the simultaneous resolution:

Theorem 6.1 Let G be as above, i.e. T acts without fized points on the
fundamental group of G. Furthermore, assume that char(k) > rkG + 1.
Then the following diagram gives a simultaneous resolution of m : G —

Gt)|G:

G xB Br Gt (6.44)
@ Vi
T v T /W7,

where ® and © are defined in the Equations 6.37 and 6.39, and where ¥ is
the quotient map of T by WT.

Proof: Recall that, by the paragraph preceding Corollary 6.1, the assump-
tion on the fundamental group of G implies that all centralizers C(t7) of
semisimple elements ¢7 € Tj 7 are connected.
The finiteness of ¥ was shown in Lemma 6.5. We have proven the smooth-
ness of © in Lemma, 6.4. The proof of Lemma 4.1 yields the properness of
®. We therefore still have to show that ® gives, fibrewise, a resolution of
the reduced fibres and that the diagram is commutative. In this proof, we
will denote the class of t7 € T'r in T" by [t7].
1. Commutativity of the diagram: Take z = g * tTu € G x? Br. Then we
have:

(®(x)) = w(gtrug™"t) = w(tru) = w(tr), (6.45)

where we have used Lemma 2.10 and that (t7u)s is U conjugate to t7 by
Lemma 4.1 in the last step. On the other hand, we calculate:

U(O(z)) = ¥(pra(yB, [t7])) = ¥([t7]) = =(t7), (6.46)
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where the first equality follows from our definition of © and the description

of # in Lemma 6.2 and the last equality follows from Lemma 2.8 and Lemma

2.7.

2. Plo-1(r)) O~ Y([tr]) = 7 YW ([t7]))req is a resolution of singularities:

W.lo.g. we can assume that ¢t7 € Tjj7. Note, that our assumption on the

characteristic implies char(k) > rk Cg(t7)o + 1. Hence char(k) does not

divide the fundamental group of C(t7)o, for all t7 € T|jT.

Furthermore, we have:
o~ ([tr]) (G <7 B)"1G/B x {[tr]})

— @ xP (g ()

~ G xB (B %P U(tr))
~ @ xBO) U(tr)

1%

G xCU) (O (tr) x BN U(tr)), (6.47)

where all isomorphies are G-equivariant and where the third line follows from
Lemma 6.3 while the forth and fifth follow from [27], Section 3.7, Lemma 2,
p. 26. There, an explicit formula for the isomorphism G x (H xX F) —
G x® V for a chain of closed subgroups K < H < G of an algebraic group
and a K-variety V is presented. It is given by g x h x v — gh * v and its
inverse by g * v — g * 1 x v. Using this and our isomorphism in Lemma 6.3,
we see that, under the identifications above, ®|g-1(7)) takes the following
form:

g*(cxu) = gtreuc g™, (6.48)

for every g * (c*xu) € G xc¢UT) (Cq(tr) xBUD U(tr)).
Recall that by Theorem 3.1, we get a G-equivariant isomorphism

7N (U ([t7]))req = G <) U (tr). (6.49)

Applying this isomorphism, we calculate that, under the above identifica-
tions of the fibres of © and those of 7, our map ®|g-1(;)) induces a map

~

d:
b . @ xCaltn) (Cg(tT) x BtT) U(tT)) S G Xt ygr)
g*(cxu) — gx(cuct), (6.50)

which is exactly the resolution map from Lemma 6.1. Q.
As a consequence we get:

Corollary 6.3 If gt € G is reqular and semisimple, we have:

27 (g7)| = W7 (6.51)
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Proof: Under our assumption, we can find an element {7 € Tjj7 which is
G-conjugate to g7, by Proposition 2.3. Denote its image under « in 7" /W7
by #7. By Theorem 6.1, we have, for every ¢’ € U~ 1(#7), that

(I)|®*1(t’) : eil(t,) - (Wﬁl(ﬁ))red (6'52)

is a resolution of singularities. Because of the regularity of {7, we conclude
Cg(tr) =2 T7, a torus, see Section 3.1. Hence, (7 1(#7))yeq is smooth, by
Lemma 3.1, and ®|g-1(y is an isomorphism.
Therefore we have:

0 (g7)| =[O (7). (6.53)

By our description of regular semisimple elements in Corollary 3.3, we see
that o/([tr]) # 1 for all roots & € R', where [t7] denotes the class of {7 in
T'. Therefore, we get |~ (1) = [WT|. Q.

6.3 Transversal Slices and Deformations

In this subsection, we will construct a transversal slice to a subregular
element of G, i.e an element z, whose centralizer Cg(z) has dimension
dim T + 2, the second minimal possibility, by Corollary 3.1. We shall inves-
tigate the singularities in this slice. This will only be carried out for G simple
and specific fibres. We will also establish a link to the deformation theory
of this singularity and provide a simultaneous resolution of the deformation.
To achieve this, we need further restrictions on the characteristic.

First, we recall the definition of transversal slices to orbits, which is given
e.g. in [27], Section 5.1, p. 60:

Definition 6.2 Let G be an algebraic group and X be a G-variety. A
transversal slice S to the G-orbit of a point x € X at x is a locally closed
subvariety of X, such that the following properties hold:

(i) x € S,

(ii) the morphism G x S — X given by (g, s) — g s is smooth,

(73) the dimension of S is the smallest possible, such that (i) and (i) hold.

Without proof, we quote from [27], Section 5.1, Lemma 1, p. 60 or [20],
Lemma III.1, p. 96, the following lemma on the existence of transversal
slices:

Lemma 6.6 Keeping the notation as above, we have: If x is a smooth point
of an affine variety X, then a transversal slice S to the G orbit of a point
x € X exists. Moreover, we can choose S to be stable under a linearly
reductive or a finite subgroup of the stabilizer G.

If G is reductive and the orbit G .z is closed and if, in char(k) > 0, the
orbit map G — G .x is separable, then there exists a much stronger version
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of the lemma, Luna’s Slice Theorem, a proof of which can be found in [28],
84, Satz, p. 97, or [20], §III.1, Théoréme du Slice, p. 97. The condition on
the characteristic is discussed in [1], Section 7:

Theorem 6.2 Let G be a reductive group, X an affine G-variety and 7 :
X — X /G the categorical quotient. Take a point x € X, such that G.z C X
is closed and such that the orbit map G — G. x is separable and such that we
can decompose Ty X = T, G.x @ U into subspaces, where U is stable under
the induced action of the stabilizer G, on T, X. Then there exists a locally
closed subvariety S C X, such that the following properties hold:
(i) z € S.
(11) S is H := Gy-stable.
(iii) The map G x S — X given by (g, s) — ¢s induces an etale, G-
equivariant morphism

v:Gx"Ts - X, (6.54)

which has an affine image.
(1v) The morphism induced by ¥ on the quotients

V)G :SJH = (G x"8))G = X)G (6.55)

18 an etale morphism.
(v) The following diagram is Cartesian:

G xts X (6.56)

v/G

S|H X/ G,

where the vertical arrows are the quotient maps.

Remark: The splitting of the tangent space T, X is immediate in charac-
teristic zero because, in this case, GG, is linearly reductive. It is reductive in
any case.

After this digression on transversal slices, we return to our previous
situation, e.g. G semisimple and 7 an exterior automorphism. From now on
we assume, unless explicitly stated otherwise, that the group G, as defined
in Section 2.4, is simply connected. Recall that, by Proposition 5.2, the
quotient morphism 7 : GT — G7//G is flat and that its fibres are normal.
Take z € G and let S be a transversal slice to the G orbit of z, which exists
by Lemma 6.6. Set .

o=mlg:S —=TyT/W. (6.57)

Then, we have the following result:
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Lemma 6.7 Assume that char(k) does not divide the order of the funda-
mental group of G. Then the morphism o is flat, its fibres are normal and
y € S is nonsingular in o (o (y)), iff it is a reqular element of G.

Proof: This proof is analogous to the proof of the Lemma in [27], Section

5.2, p. 64f. Q.
From now on, we assume, additionally, that 7 has no fixed points on

the fundamental group of G, because we want to apply the results of the

previous section.

We consider the simultaneous resolution of = : Gt — T"/WT as given in

Theorem 6.1:

G xB Br Gt (6.58)
@ ™
T Al T /Wr.

Now we set §” := &~ 1(S) := (GxPB1)xg, S and &' := ®|g and O := O|gr.
Then we have the following assertion:

Lemma 6.8 Assume char(k) > rkG + 1. Then the following diagram is a
simultaneous resolution of o : S — T' /W7 :

’

s’ S (6.59)

T T /Wr.

Proof: This proof is in analogy to the proof of the Corollary in Section 5.3
of [27], p. 65f. Q.
Our next aim is to establish a link to deformation theory. Therefore we
restrict from now on to the case where GG is simple, unless stated otherwise.
Furthermore, we assume that 7 acts without fixed points on the fundamental
group of GG. This implies that all centralizers of semisimple elements are
connected by the remark preceding Corollary 6.1. In addition, assume that
the group G', as defined in Section 2.4, is simply connected. This guarantees
the quotient space G7//G to be an affine space, by Corollary 2.6
We have the following statement:
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Proposition 6.3 Keep all the assumptions made above and assume addi-
tionally that char (k) is excellent for G, .

Then we have:

For tt € Tjt, we find an open subset V. € Cq(tT) which is a transversal
slice to tT in Gt with respect to the G-action. Furthermore, it fulfills the
properties of Theorem 6.2, i.e.:

(i) z € Vitr.

(11) Vit is Cq(tT)-stable.

(iii) The map G X Vit — GT given by (g, viT) — gvitr g~
G-equivariant morphism

Linduces an etale

UG xW) vir 5 Gr, (6.60)

which has an affine image.
(iv) The morphism induced by ¥

)G : Vir[Cqltr) = (G x4 Vir) )G — Gr )@ (6.61)

18 an etale morphism.
(v) The following diagram is Cartesian:

G xCcltn) Vir G (6.62)

v /G

Vir||H G1/G,

where the vertical arrows are the quotient maps.

Proof: Note that, under our assumptions, the orbit of ¢7 is closed, by Corol-
lary 3.1 and that the orbit maps of G on G are separable, by Theorem 1.3.
1. In order to apply Theorem 6.2, we have to show that there exists a
Cq(t)-stable splitting of the tangent space:

Ti:GT = TG .41 @ Lie (Ci(tr)). (6.63)
To prove this, we consider the maps:

p: G — Gt — G

g = gtrg! — gtrgt(tr)"L (6.64)

Then we easily calculate (d¢(X)). = X — Ad(¢t7)(X) which implies:

Im (d)e = (Ad(tr) — id)(g). (6.65)
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Since Ad(tT) —id € gl(g) is diagonalizable, we have the following decompo-
sition into eigenspaces gy to the eigenvalues A € k:

8= ®rckfxr (6.66)
Note that we have go = Lie (C(t7)), [2], Proposition 9.1, p. 128. So we get

Ker (d¢)e = go (6.67)
Im(dg)e = @rer9xr (6.68)

Since the action of Cg(t7) commutes with the action of {7 on g, these
eigenspaces of Ad(t¢7) have to be Cg(t7)-stable. Since T}, (G.t7) is isomor-
phic to Im (d¢). under the right translation r,.—1 : GT — G, we get the
desired decomposition of T}, GT.

Now, we can apply Theorem 6.2 to get the existence of a transversal slice S
with all the properties listed in the proposition.

To prove our proposition, we still have to show:

2. S can be chosen as an open subset of C(t7): This is guaranteed by the
reduction of the proof of Theorem 6.2 as given in [28], §4, Satz p. 97, to the
fundamental lemma, see [28], §4, Fundamentallemma, p. 98, if we can show
the following:

(i) The map

G xW) Cutritr —» Gr
gxx — gzg ! (6.69)

is etale in e * t7.
(ii) The orbits G  {tr} C G xC¢(") Cg(tr)tT and G.tT C G7 are closed in
their respective ambient spaces.
(iii) The map
"/)|G*{t7'} G {tr} — G1 (6.70)

is injective.
(i) follows by [11], Chapter III, Proposition 10.4, p. 270, from the fact that,
by the calculations in 1., the tangent map (di))e«s is surjective and Gt and
G x¢c(7) Cg(t7)tr are smooth and of equal dimension.
(ii) and (iii) are immediate by our assumptions, respectively the definition
of associated fibre bundles. Q.

From the fundamental lemma, [28], §4, Fundamentallemma, p. 98, we
get two important consequences:

Corollary 6.4 Under the assumptions of the Proposition 6.3, we have that
Vitr consists of complete fibres of the adjoint quotient

i : Ca(tT)tr — Cq(tr)tr|Ca(tr). (6.71)
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In particular, we can consider Vit [|Cq(tT) as a subset of Cq(t7)tT |Cq(tT):
Vit |Cq(tr) C Ca(tr)tr)Cq(tr) (6.72)
and the nilpotent variety V (t1) of Cq(tT) is a subset of V.

By the classical results [35], Theorem 6.1 and Corollary 96.4, p. 294f, we
know

Cg(tr)tr | Catr) = Ti /W, (6.73)
where W < W is the Weyl group of Cg (7).

Corollary 6.5 With these notions and the assumptions of the Proposition
6.3, we consider the (ramified) covering map:

UTT/W = TiT /W
tr — tT, (6.74)

where ' denotes the class of t'T in TUTT/W and t'7 denotes the class of t'T
in T{T/W. Then ¥ is etale in iT.

We can give a second, direct proof of this corollary:
Proof: Note that the ramification set Ry of ¥ can easily be described as:

Ry = {1 € TTT/W, 3w € WW, w.t't = '1}. (6.75)

Assume that W is ramified in i1 € T / W, then we would find w € W\W with
w.tT = tr, which is absurd, since C(¢7) is connected by our assumption.
Q.

Now we choose an open set V' C C(t7) as in Proposition 6.3 and define
an embedding

LV G xC) yyr
u o exutrt, (6.76)

as the fibre over eC(t7) € G/Cq(tT).

Furthermore, we define a map ® : G x°¢(!") Vir — V//Cq(t7) in the follow-
ing way:

First recall that we have the isomorphism:

G ) (Vir JCq(tr)) — G/Cq(tr) x Vir[/Caltr)
gx[vtr] — (gCq(t7), [vtr]"), (6.77)

where [vtT]" denotes the class of utT in ViT/Cq(t7). (Note that Cq(t7)
acts trivially on Vi1 /Cg(t7).) Using this identification we set ® := prg o
G xe(7) 1, |y, where 7 : Cq(tt) — Cq(tt)tr/Cq(tr) is the adjoint
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quotient of Cg(t7).
Then, we apparently have the following commutative diagram:

Vv

G xCcUn) (Vir [ Cq(tr)) (6.78)

Tir |V

Vir)Cq(tT).

Now, we take 2 € V and S C V, a transversal slice to the Cg(t7)-orbit
of z at =, which exists by Lemma 6.6. (To be precise, we take a transversal
slice in C(¢7) and intersect it with V.)

Then, we have the following commutative diagram:

Yl oty

§ —Lo v — g 5 Caltr) gy —2 TV g (6.79)

Ttr|S

Ulviryog(tr)
_—

Vit |Ceq(tr) Gt/ G,

where / : S — V is the embedding, where 1 was defined in the proof of
Proposition 6.3, ® and ¢ in the last two paragraphs and ¥ in Corollary 6.5.
Now, we get the following result:

Lemma 6.9 Keeping the assumptions of Proposition 6.3 we have: StT is a
transversal slice to the G-orbit of it at the point ztt in GT.

Proof: We clearly have ztT € Str.
Next, we show the smoothness of the map:

pw:Gx Str — Gr
(g, stT) +— gstrg L. (6.80)

Using the trivial action of C(¢7) on Str, observe that we have the following
identification, by [27], Section 3.7, Lemma 2, p. 26:

G x Str — G x0T (Cy(tr) x Str), (6.81)

given by (g, stt) — g * (e, stt), for all (g, stt) € G x Str. Its inverse is
given by g * (¢, stT) — (gc, str).
Now, let ¢ be the orbit map:
¢:Cq(tr) x Str — Vir
(g, stt) +— gstrg™ ", (6.82)
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which is smooth by assumption. Analogously to the proof of Lemma 6.4,
where we have proven the smoothness of G x? 3 as a morphism between
smooth varieties under the assumption of 3 to be smooth, we get the smooth-
ness of G xet7) 4.

G xCat) ¢ G xCUT) (Cqu(tr) x Str) — G xCe) yir, (6.83)
But, by Proposition 6.3, we know that we have an etale map:

UG x5 Gr
grutt +— gutrg L. (6.84)

Observing that = ¥ o G x¢ (t7) ¢, and using the identification between
G x Str and G x“¢(7) (C(t7) x Str), as above, the smoothness of ;1 follows
from [11], Proposition 10.1, p. 268.

A simple calculation on dimensions gives

dim Gt = dim St + codimg, Str, (6.85)

from which the minimality property of Str is immediate Q.
From now on, we consider elements ¢t7 € 1;j 7, such that

(i) C(t7) has maximal semisimple rank, i.e. the Dynkin diagram A(Cg(t7))

of R(Cg(t7)) has s = dim T points,

and such that

(ii) this Dynkin diagram A(Cg(¢7)) is connected.

Furthermore, we require char(k) = 0 or char(k) > 4cox(G) — 2, where

cox(G) is the Coxeter number of R(G), the order of the Coxeter element,

which we summarize in the following table, see [3], Planches, p. 250ff:

Type G| Ay | By |Cn| D, |Es|E:|Es|F|Gs|
coz(G) [n+1[2n [2n |[2n—2]12 |18 |30 | 12| 6 |
So, in particular, we have char(k) > 4 cox(Cq(t1)) — 2 > rk (Cq(t7)) + 1.
If char(k) = 0, there exist the following possibilities for the type of Ce(t7),
see Theorem 3.2:

A(G) ‘ A2n ‘ A?n—l ‘ Dn-}-l, T2 =1 ‘ E6 ‘ D4, T3 =1 ‘
A(Cg(tr)) | Bn, Cn | Cn, Dy | By | Ci, Fy | A3, Go |

Keeping the same restriction on the characteristic, we define a simple sin-
gularity of type A, where X denotes a singular variety and the indicated
groups are finite subgroups of SLy(k), see [27], Sections 6.1,6.2, p. 75ff:

1. A homogeneous:
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X Type (A) Finite group
A% 71 A, Zin+1, cyclic group
A?/D, o D, Dy, 2, binary dihedral group
A?/T Eg T, binary tetrahedral group
A?/0 Er O, binary octahedral group
A2 /T Ey I, binary icosahedral group

2. A inhomogeneous:
First, we define the associated homogeneous Dynkin diagram Ay by the fol-
lowing table:

A| B, | Co |F|Gs|
Ap | Asn—1 | Dpy1 | Es | Dy |

The space X for A will be the same as in the case for A, but, additionally,
we have a group I' =2 Aut(Aj) < Aut(X) which acts freely on X\ X;,,. We
have the following list, keeping the designations of the groups as above:

X Type (A) r
A% 7o, B, Dy /Zon = 7./27,
A?/D,, 4 Cy, Do(—1)/Dn—1 = Z /27
AZ/T Fy Q/T = Z/2Z
A2 /Dy Go 0/Dy =2 S5

The singular spaces X with the naturally induced symmetry [' will be de-
noted by (X, T).

To establish the bridge from our situation inside the group to these kind
of singularities, we need some further notions:
We begin with a definition which holds in the more general context of Chap-
ter 3, i.e. (G semisimple and 7 an exterior automorphism of G:

Definition 6.3 An element © € G7 is called subregular, iff dim Cq(z) =
dim TS T + 2.

Remark: By Corollary 3.1, this is the second smallest possibility for the
dimension of dim Cg(x), for x € GT.

We have the following description on the number of subregular G con-
jugacy classes in each fibre of 7 : G — G7//G:

Lemma 6.10 If 7 acts with no fixed points on the fundamental group of
G, we have exactly as many subreqular G-conjugacy classes in each fibre
7w Yw(tr)) of m: G — G7/)|G, for tr € T, as A(Cq(tT)) has connected
components.
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Proof: This follows directly from the description of the fibre structure in
Theorem 3.1, which states that the subregular classes in 7! (7 (¢7)) corre-
spond to subregular unipotent classes in C(t7)g = Cg(t7), together with
Lemma 2 in [27], Section 5.4, p. 67f. (Note that Cg(t7)o = C¢(¢7) holds
by [37], Corollary 9.7, p. 62.) Q.
Now, we return to our previous situation: Fix a semisimple element
tT € G, such that our requirements for the root system R(Cq(t7)) are
fulfilled, as well as the restriction on the characteristic, e.g. char(k) = 0
or char(k) > 4cox(G) — 2. Furthermore, assume the conditions on 7 to
have no fixed points on the fundamental group of G and on G’ to be simply
connected.
Then let u € Cg(t7) be a (up to conjugacy unique) subregular unipotent
element and let S be a transversal slice to the C(t7) orbit of v at v in V'
as in Proposition 6.3. We have the following lemma:

Lemma 6.11 Under our assumptions the following holds:
StrNnYw(tr)) = SNV (tr) has an isolated singularity of type A(Cg(tT))
in u. Here, V(tT) is the unipotent variety of Cq(t7).

Proof: This follows from [27], Section 8.4 Theorem, p. 129 for an analogous
situation in Lie(C (7)) together with the Comparison Theorem 3.15 in
[27], p. 41. Note, that this Comparison Theorem also holds in char(k) >
4 cox(G) — 2 because of our more general version of the Slice Theorem 6.2.
Q.

To get a connection with the deformation theory of the singularity St7 N
7 U(w(tT)) =2 SNV (1) we have to choose S in a special way:
We consider the centralizer Cc, () (u) for our subregular unipotent element
in u € V(tr). By [27], Section 7.5, p. 114ff, we have:

Cogtr) (W) /Cog 4ry ()0 = Aut(A(Ca(t7))n)- (6.86)

We choose S to be invariant under a section of the projection to the finite
group Cey,(i7)(u) = Cogr)(1)/Cegir)(u)o, where we also used Lemma 1
in [27], Section 7.6, p. 118.

Now we are ready to establish the connection to the deformation theory of
these singularities. For an account on deformation theory of singularities
with or without symmetry, we refer to [27], Section 2.

We have our main result of this chapter:

Theorem 6.3 Under the assumptions above, we have:
The map o = w|gyr : Stt — G7)/G induces a formal semiuniversal defor-
mation of a simple singularity of type A(Cgq(tT)).
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Proof: We consider the following commutative diagram:

L

Str Gt (6.87)
Ttr|Str o ™
O T/W O T/W,

where ¢ is the inclusion and where, as in Corollary 6.5, W is the Weyl group
of C(t7) and ¥ the corresponding (ramified) covering map. From Lemma
6.7 we have that o is flat.

Now, we consider the corresponding completions in utr, ir respectively t7,
which we denote by a hat. The diagram then takes the form:

o — I ——

(Str, utr) (G, utr) (6.88)

—

Ttr|Str m

Q)

—— T ——

(Tg /W, iT) (Tg /W, 7).

Since ¥ is etale in ¢7, by Corollary 6.5, T is an isomorphism, see [11],
Chapter III, Exercise 10.4, p. 275.
By [27], Section 2.8, Coro