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Chapter 1
Introduction

The development of modern quantum mechanics started with the pioneering work on optical

spectroscopy of atoms. The pursuit of an explanation for a spectrum composed of discrete

lines inspired Bohr to formulate a theory in terms of discrete energy levels of individual

atoms. The typical setup for optical spectroscopy comprises the light beams, one shining

on an ensemble of identical atoms and another one which probes the spectrum absorbed

by the ensemble. The incident light can be absorbed only if its frequency matches the

difference of energy between two levels of a single atom. Thus, the position of the absorption

lines generated by the whole ensemble was predicted based the properties of an individual

atom.[1] In other words, an experiment on the macroscopic scale allowed to indirectly

deduce important properties –in this case the energy spectrum– of a quantum system on a

microscopic scale not directly accessible in the experiments.

However, addressing an ensemble of identical quantum systems instead of a single quan-

tum system yields certain limitations. For instance, an atom in an excited electronic state

will decay to a less excited electronic level (a process named quantum jump). The quan-

tum jump is accompanied by the emission of a photon which can be detected by a photon

detector.[2] When the light beam shines on a macroscopic number of atoms, random pho-

ton absorption induces excitation of many atoms. The subsequent quantum jumps are also

random processes. However, the overall signal, i.e., the emitted light from a macroscopic

number of random transitions, is very smooth without any signature of quantum jump

processes. Thus, in order to observe quantum jumps and other interesting quantum effects,

one should be able to address individual atoms. Alternatively one can design experiments

which probe a single macroscopic quantum variable, i. e., a single quantum coherent degree

of freedom of a many-body system.

One of the greatest achievements of the last decades has been the access to single atomic

systems or a single macroscopic quantum variable, starting in the 1970s with traps for single
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neutral atoms[3] and ions.[4] Additionally, in present days, fascinating progress has been

made downsizing artificially made condensed-matter devices like nano-electromechanical

systems[5–8] and quantum electrodynamics circuits[9] among others macroscopic devices,

which start revealing quantum mechanical properties. On the other hand, the observa-

tion of quantum processes is not limited to the isolation and confinement of single atomic

systems. Various quantum phenomena, such as macroscopic quantum tunneling and res-

onant tunneling have been observed in capacitance Josephson-junction circuits, where the

relevant degrees of freedom studied were the phase difference of the superconducting or-

der parameter across a junction or the flux in a superconducting quantum interference

device (SQUID) ring geometry,[9] one of the most interesting application of these devices

implementing quantum bits.[9, 10]

Accessing single quantum systems allows to address very fundamental issues like quan-

tum measurement processes and entangled states.[11] Moreover, there are several important

applications ranging from sensitive detectors[12] to quantum information processing.[11] In

particular, one can describe the measurement process as a “wave function collapse”, i.e.,

as a non-unitary projection which reduces the quantum state of the system to one of the

possible eigenstates of the observed quantity with state-dependent probabilities. However,

in reality any measurement is performed by a device, suitably coupled to the measured

quantum system via a macroscopic readout variable. Its presence, in general, disturbs

any possible quantum manipulations performed on the system.[9] Therefore the dissipative

processes which accompany the measurement should be switched on only when needed.

Sometimes, it is more convenient to amplify the state of the quantum system before its

detection, in order to control the induced measurement noise. In that scheme, the mea-

sured quantum system is coupled with the amplifier by conducting channels (channels of

exchange of information). Depending on the dynamics of the amplifier the noise induced

into the measured system can be optimized.

Driving the amplifier out of its equilibrium state, e.g., by applying an external har-

monic modulation, allows to optimize the measurement process,[13] since the energy scale

is detuned by the external modulation and so are its noise properties. This yields very

rich physics, where the time reversal symmetry is broken and the detailed balance principle

is not valid.[14] In other words, an elementary process in the driven system is in general

not equilibrated by its reverse process. Thereby, it is possible to tune the asymmetry in

frequency of the noise in the quantum amplifier.[15] This asymmetry, a feature in quantum

systems due to the uncertainty principle, measures the ability of the amplifier to absorb or

emit energy from or into the measured system.[13, 15, 16]

Usually, the quantum system is coupled parametrically to the amplifier, thus one can in-

fer on the state of the quantum system through a classical measurement of the parameters of



4 Introduction

the amplifier. In general, nonlinear oscillators are naturally used as basic elements for quan-

tum state amplifications. Examples of those are the Josephson bifurcation amplifier[17–22]

and the cavity bifurcation amplifier.[17, 23] In addition, the amplifier can operate simulta-

neously at high frequencies and at low temperatures, entering the regime where ℏω > kBT ,

with ω being the proper frequency of the oscillator and T its temperature. As such, quan-

tum zero-point fluctuations will play a more dominant role in determining their behaviour

than the more familiar thermal fluctuations. Taking into account the relation between

quantum noise and quantum measurement one is forced to think about the noise proper-

ties of driven nonlinear resonators, and their behaviour as quantum amplifiers in the deep

quantum regime.

Given the above, we will focus in the first part of this Thesis on the noise properties

of modulated nonlinear resonators in the deep quantum regime. As the simplest example,

we consider a monostable anharmonic oscillator which has a quartic nonlinearity (the well

known Duffing oscillator). The second scope of this Thesis is to consider such a device as

a quantum amplifier of the state of a qubit. In this setup, we introduce a combination of

both strategies in measurement theory, bifurcation and dispersion, and propose a nonlinear

detector scheme.

Another important issue in fundamental physics related to quantum measurement pro-

cesses are quantum jumps being observed in single atomic systems or a single macroscopic

quantum variable. One of the techniques to reveal this quantum behaviour so far address the

linear response in form of the amplitude of the transverse vibrations in a nanobeam doubly

clamped to conducting leads. The goal is to excite only a few energy quanta in a resonator

held at low temperature. To measure the response, the ultimate goal of the experiments is

to increase the resolution of the position measurement to the quantum limit.[24–27] As the

response of a damped linear quantum oscillator has the same simple Lorentzian shape as its

classical counterpart,[28] a unique identification of the “quantumness” of a nanoresonator

in the linear regime can sometimes be difficult.

Since transport setups in experimental physics have the advantage that the current-

voltage characteristics are rather easily accessible, it is an interesting question to search for

nonlinear molecular features there. Therefore as the final scope of this Thesis, we address to

the problem of detecting quantum effects, such as quantum jumps, through current-voltage

characteristics. To do so, we consider the doubly clamped nanobeam in its nonlinear regime.

With an ac bias voltage applied to the leads, the current mimics the harmonic driving in

the nonlinear deflection of the nanobeam.
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Outlook

In order to study the quantum and thermal noise properties of driven quantum nonlin-

ear resonators, we introduce in Chapter 2 the theory of quantum dissipation based on

the system-bath-model with special regard to nonequilibrium states. The regime of weak

system-bath coupling and weak external modulation are investigated. Invoking the Born-

Markov and the rotating wave approximations, the dissipative dynamics of the driven sys-

tem is governed by the Lindblad master equation. In the second part of this chapter, using

the formal solution of the master equation we show how to compute correlation functions

by applying the regression theorem.

We study the power spectrum of the photon number fluctuations in the quantum Duffing

oscillator in Chapter 3, starting with a review on the coherent dynamics of the quantum

Duffing oscillator, and concluding with the analysis of different characteristics of the photon

noise, including the second order of coherence function.

In Chapter 4, a measurement scheme is proposed. We introduce an experimental imple-

mentation based on a flux qubit inductively coupled to a driven SQUID. Introducing the

equivalence of the driven SQUID to the Duffing oscillator, and the qubit-SQUID coupling

term, an analysis based on the optimal point of work is presented, guaranteeing the validity

of the approximations. Different characteristics of the amplification process are calculated

and discussed, such as the discrimination power of the detector, the back-action on the

dynamics of the quantum two level system, and the efficiency of the measurement.

For the final scope of the Thesis, we introduce in Chapter 5 the theory of nonequilibrium

quantum transport in nanoscale systems. Introducing zero- and one-dimensional electron

gases, we present a general Hamiltonian model involving time-dependent bias voltages ap-

plied to the conducting leads. We present a general quantum transport theory based on

a real-time diagrammatic approach. Invoking the high-frequency approximation, a master

equation is presented with time-independent transition rates (self-energies). The extension

to the harmonically driven case is presented with the definition of the Feynman rules for

the self-energies. As an example, the special case of a quantum dot with one single-particle

state is presented at the end of the Chapter.

In Chapter 6, we study nonlinear signatures of the deflections of a nanobeam in the cur-

rent characteristics. We introduce the induced electron-phonon coupling by the application

of an electric and a magnetic field. For the sake of simplicity, we consider only the influence

of the magnetic field. In the regime of the rotating-wave approximation, the amplitude of

the alternating current and the amplitude of the nonlinear response of the deflections in

the nanobeam are calculated and discussed.

We summarize in Chapter 7 the main results.



Chapter 2
Dissipation and noise in driven quantum

systems

One of the most challenging questions faced by the founding fathers of quantum mechanics

concerns the emergence of a macroscopic classical reality from a microscopic quantum world.

A closely related problem is a self-consistent description of a quantum measurement which

does not rely on a classical characterization of the measurement apparatus, see also Chapter

4. A milestone route of a full understanding of these phenomena is the modern theory

of dissipative dynamics in open quantum systems. In this framework, dissipation and

decoherence are a natural consequence of the coupling of the quantum system of interest to

a noisy environment which consists of an ensemble of many quantum degrees of freedom.

In the first section, we give a brief introduction with special regard to systems out

of equilibrium. In addition, in the second section, we introduce the regression theorem

to calculate the induced fluctuations in the system by its contact with the environment.

As a first step, we shall describe the phenomenological model for damping introduced in

classical mechanics and its description in the quantum regime. Using the Floquet formalism

we present the master equation for a periodically driven state. In the regime of a weak

modulation amplitude, we show how the Floquet master equation reduces to the standard

Lindblad master equation. Finally, using the formal solution of the master equation we

show how to compute the induced fluctuations in the system by applying the regression

theorem.
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2.1 Dissipation in quantum physics

2.1.1 The classical Langevin equation

In a classical framework, one may often describe dissipation by assuming a homogeneous

environment surrounding the system of interest (central system). The homogeneity implies

that the dynamics does not depend on the relative position of the system in the environment.

Therefore, only a velocity proportional term (viscous force) is introduced in its equation

of motion to model damping effects. For instance, in a damped harmonic oscillator – like

in Fig. 2.1(a), a spring-mass system in a viscous medium – the equation of motion for its

position x including the aforementioned dissipative term characterized by the constant γ,

is given by

ẍ+ γẋ+ ω2
0x = 0 , (2.1)

where ω0 is the proper frequency of the oscillator (linear resonator).

In his experiments with pollen grains in water,[29] the botanist Robert Brown observed

that a viscous force is not sufficient to model the dissipative dynamics of the pollen grains.

In fact, a pollen jiggles about its position. The jiggling motion (called Brownian motion)

was later attributed to random collisions of the pollen grains with smaller particles (which

constitute the noisy environment).[30, 31] The Brownian motion can be described by in-

cluding a fluctuating force ξ(t) on the right-hand-side of Eq. (2.1). Thus, one arrives at the

so-called Langevin equation which not only describes the damped average motion but also

the fluctuations around it.[31] In many cases of practical interest, the random force can be

assumed to satisfy the two conditions, that i) the process ξ(t) is a Gaussian process and is

therefore fully characterized by the mean and the variance, and ii) its correlation time is

infinitely short (δ-correlated), namely

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 ≡ 2πCξδ(t− t′), (2.2)

where Cξ is a constant. The above delta correlated function describes a memoryless envi-

ronment.

Sometimes, the environment is a source of noise with a finite memory time. Then, the

dynamics must be described by a generalized Langevin equation with a time-dependent

damping kernel, γ → γ(t)

ẍ+

∫ t

−∞

dt′γ(t− t′)ẋ(t′) + ω2
0x = ξ(t) . (2.3)

The lower limit in the integral describes the uncoupled system-bath configuration in the

infinity distant past.
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V
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Figure 2.1: (a) Horizontal spring-mass system in a viscous medium. Here the proper frequency is
given by ω0 =

√
κ/m, with m being the mass at the end of the spring, and κ the spring constant.

(b) Circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series
– RLC series circuit. Both systems are modelled by the Eq.(2.1).

Since the random and the viscous forces are two different manifestations of the same

interaction with the environment (the random collisions with water molecules in the case

of the Brownian motion of pollen grains), their intensities are not independent. More

specifically, the Fourier-Laplace transform of γ(t) is connected with the correlation function

〈ξ(t)ξ(t′)〉 by the classical fluctuation-dissipation theorem[28]

mγ(ω) =
1

kBT

∫ ∞

0

dτ〈ξ(τ)ξ(0)〉 exp[−iωτ ] , (2.4)

which implies 〈ξ(ω)ξ(ω′)〉 = kBT

π
mγ(ω)δ(ω + ω′) .

A well known example of damped oscillator with such equation describes also a RLC circuit.

There, the charge q plays the role of the position, the oscillator eigenfrequency is ω0 =

(LC)−1, and the damping is γ = R/L [cf. Fig.2.1(b)]. There, thermal fluctuations in the

resistor induce noise into the resonator. Therefore, one should not only consider a resistance

but also a noise generator, as the fluctuating force ξ(t) in the mechanical analogue. These

thermal fluctuations are connected with damping by Eq. (2.4), and this is known as the

Nyquist theorem in resistor circuits.

2.1.2 The quantum model for loss mechanisms

The Hamiltonian for a generic linear quantum oscillator reads as

H =
1

2m
p2 +

mω2
0

2
x2 ,
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with p and x as the momentum and position operators, respectively. Usually in order to

avoid to directly solve the Schrödinger equation in the coordinate representation for the

wave function φ(x) in the energy state E ,
(
−(ℏ2/2m)∂2x + (mω2

0/2)x
2
)
φ(x) = Eφ(x), one

can introduce the ladder operators a and a† defined as

a =

√
mω0

2ℏ

(
x+ i

p

mω0

)
, (2.5)

a† =

√
mω0

2ℏ

(
x− i p

mω0

)
, (2.6)

where their commutator [a, a†] = 1 is fixed by the Heisenberg indetermination principle.

For a conservative system, the Heisenberg equation of motion for the operators , dO/dt =
(i/ℏ)[H,O] with O as an operator, are formally equivalent to the Hamilton equation. For

the ladder operators we have a†(t) = a† exp[iω0t] and a(t) = a exp[−iω0t].

A naive attempt to incorporate the environmental influence at the quantum level could

be to include the damping directly in the Heisenberg equation of motion in the spirit of the

correspondence principle. The operators would then have the damped solutions

a†(t) = a† exp[iω0t− γt/2] , a(t) = a exp[−(iω0t+ γt/2)] , (2.7)

Then, the commutators for equal time would decay according to [a(t), a†(t)] = exp[−γt] in
violation of the Heisenberg principle.

As it happens in the analogous classical model for damping [cf. Eq. (2.1)], the drawback

of this naive approach lies in the fact that it does not incorporate the influence of external

fluctuating fields. In the classical case, this is not necessary at very low temperatures

when thermal fluctuations vanish according to the classical fluctuation dissipation theorem.

On the other hand, in the quantum regime, zero-point fluctuations are present even at

the absolute zero. These fluctuations are responsible for preventing the violation of the

uncertainty principle. Therefore it is necessary to incorporate a noise generator in the

model, which has sufficient output even at absolute zero to preserve the commutation

relation [a(t), a†(t)] = 1. Thus, the ladder operators should have the structure a†(t) =

a†0(t)+δa
†(t) and a(t) = a0(t)+δa(t), where δa(t) represents quantum fluctuations operators,

which follow the commutation rule [δa(t), δa†(t′)] = 1. There, 〈a0(t)〉 = 〈a(t)〉, and 〈a†0(t)〉 =
〈a†(t)〉. For the determination of the dynamics of the quantum fluctuations operators, we

shall consider a microscopic model for the environment.

The most successful and rather general approach, is based on the concept of a reservoir

or bath consisting in a large collection of systems with many degrees of freedom.[32–37]

The simplest model for a bath corresponds to a collection of harmonic oscillators with
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Hamiltonian

HB =
∑

k

ℏωk b
†
k bk , (2.8)

where the bk and b†k satisfy the commutation rule [bk, b
†
k′ ] = δkk′. Examples range from

the quantized modes of the radiation field (photons), to the quantized modes of elastic

vibrations in a solid (phonons). Taking into account the foregoing discussion, we consider a

bilinear coupling between the bath and the oscillator. In terms of the corresponding ladder

operators it reads

HI = ℏ

∑

k

ck(a
† + a)(b†k + bk) . (2.9)

The Heisenberg equation of motion for the ladder operator of the k-th oscillator in the bath,

is given by

ḃk(t) = −iωkbk(t) + ck
[
a†(t) + a(t)

]
. (2.10)

The second term on the right-hand-side of the above equation corresponds to the forcing

term due to the motion of the resonator displacement.

The solution of Eq. (2.10) reads

bk(t) = bke
−iωkt + ck

∫ t

0

dt′e−i(ωk−ω0)(t−t′)
[
a(t′)eiω0(t′−t)

]
+

ck

∫ t

0

dt′e−i(ωk+ω0)(t−t′)
[
a†(t′)e−iω0(t′−t)

]
. (2.11)

Noticing that the terms in square brackets are slowly varying functions of t′, and that the last

integral on the right hand side involves a fast oscillating terms (∝ exp[i(ωk+ω0)(t− t′)]) in
comparison with the first one that involves slow oscillating terms (∝ exp[i(ωk−ω0)(t− t′)]),
we can approximate the above solution as

bk(t) ≈ bke
−iωkt + ck

∫ t

0

dt′e−i(ωk−ω0)(t−t′)
[
a(t′)eiω0(t′−t)

]
. (2.12)

On the other hand, the equation of motion for the resonator mode reads

ȧ(t) = −iω0a(t) +
∑

k

ck
[
b†k(t) + bk(t)

]

≈ −iω0a(t) +
∑

k

ckbk(t)e
−iωkt +

∑

k

c2k

∫ t

0

dt′e−i(ωk−ω0)(t−t′)
[
a(t′)eiω0(t′−t)

]
. (2.13)

The decay rate of the resonator from the single phonon excited state n = 1 to the ground

state n = 0 would be given by the Fermi Golden Rule expression

γ(ω0) = 2π
∑

k

c2kδ(ω0 − ωk) . (2.14)
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From this we get to a useful relation to solve the integral in Eq. (2.13),
∫ ∞

−∞

dω

2π
γ(ω0 + ω)e−iω(t−t′) =

∑

k

c2ke
−i(ωk−ω0)(t−t′) . (2.15)

In the strict Ohmic case, γ(ω) = γ, and
∑

k c
2
k exp[−i(ωk − ω0)(t− t′)] = γδ(t − t′). With

this, the Eq. (2.13) becomes

ȧ(t) ≈ −iω0a(t)− γa(t)/2− η(t) , (2.16)

with η(t) =
∑

k ck exp[−iωkt] bk. Therefore, the fluctuation operator δa reads

δa(t) = −
∫ t

0

dt′η(t′) exp[−(iω0 + γ/2)(t− t′)]. (2.17)

Now, we can identify the external fluctuating force ξ(t) with ξ(t) = η†(t) + η(t). It has a

Gaussian statistics

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Cξξ(t), (2.18)

with second moment Cξξ(t) given by

Cξξ(t) =
∑

k

c2k
[
n̄(ℏωk)e

iωkt + [1 + n̄(ℏωk)]e
−iωkt

]
, (2.19)

where n̄(ℏωk) = 〈b†kbk〉 =
(
exp[ℏωkβ] − 1

)−1
is the boson occupation number, with β =

1/kBT as the inverse temperature.

Introducing the spectral density of the interaction with the bath

J(ω) =
π

ℏ

∑

k

c2k δ(ω − ωk) , (2.20)

which is proportional to the frequency for the Ohmic bath (J(ω) ∝ ω), one can rewrite the

above correlation function as

Cξξ(t) =
ℏ

π

∫ ∞

0

dωJ(ω)
[
n̄(ℏωk)e

iωkt + [1 + n̄(ℏωk)]e
−iωkt

]
. (2.21)

With this the power spectrum of the fluctuation force (the Fourier transform of Eq. (2.21))

reads

Cξξ[ω] = ℏ coth [βℏω/2]J(ω). (2.22)

From Eq.(2.14), one notices that the spectral density also determines the damping of the

system; in the Ohmic case by J(ω) = mωγ. Thus Eq. (2.22) is a version of the quantum-

mechanical fluctuation-dissipation theorem. We have considered the bath as a collection of

harmonic oscillators, and from the discussion foregoing the bath is only of indirect interest,

and its properties need only to be specified in very general terms, e.g., by the temperature

and the spectral density.[38]
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2.1.3 The influence functional and the Born-Markov master equa-

tion

The system-bath model presented in the previous section describes dissipation and a source

of quantum noise for the central system. The integration of the equations of motion in the

Heisenberg picture appears quite simple, but it is limited to the very rare cases where the

equations can be solved directly. For a more general scenario, where the direct integration is

not possible, a more convenient strategy consists in tracing out the bath degrees of freedom

and studying the dynamics of the reduced density operator ρ, ρ ≡ TrB[W ], with W being

the full density operator and TrB[...] the partial trace over the bath variables.

Since the full knowledge of the whole system state at some specific time is incomplete,

we should appeal to a statistical description, where the system is completely characterized

by the density operator

W (t) =
∑

k

pk|ψk(t)〉〈ψk(t)| , (2.23)

where pk is the probability of the whole system to be in the state |ψk(t)〉. The time evolution

of the density operator is governed by the von-Neumann equation

d

dt
W (t) =

i

ℏ
[H(t),W (t)] , (2.24)

where H(t) = H0(t) +HSB +HB, wherein H0(t) is the Hamiltonian of the central system,

HSB the bilinear bath-system interaction, and HB the bath Hamiltonian. The evolution

operator of the system state U(t, t0), defined by |ψk(t)〉 = U(t, t0)|ψk(t0)〉, follows the same

equation, i.e., ∂t U(t) = i[H(t),U(t)]/ℏ.
We have to perform now the trace over the degrees of freedom of the bath in order to

study the dynamics of the system. To this end, the path-integral formulation of quantum

mechanics has proved to be more convenient than the operator notation.[39] We start with

the integration of the von Neumann equation (2.24),

W (t) = U(t, t0)W (t0)U−1(t, t0) , (2.25)

where U(t, t0) = T exp[−i
∫ t

t0
dsH(s)/ℏ] is the time evolution operator, with T being the

time-ordering operator. In the position representation, the solution Eq. (2.25) reads

W (Xf , X
′
f ; t) ≡ 〈Xf |W (t)|X ′

f〉

=

∫
dX0dX

′
0 U(Xf , t;X0, t0)W (X0, X

′
0, t0)U∗(X ′

f , t;X
′
0, t0) , (2.26)

where we have used the shorthand notation X = {x, x̄1, x̄2, · · · , x̄N} for the resonator coor-
dinates x and for the bath oscillator coordinates x̄1, x̄2, · · · , x̄N . Here we have considered N
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a finite and large number of subsystems in the bath. Furthermore, hereafter the indefinite

integral over coordinates variables denotes implicitly the integration over all the space, i.e.∫ +∞

−∞
.

In Eq. (2.26) the evolution operator (propagator) in the path-integral formulation is

given by[39]

U(Xf , t;X0, t0) =

∫ X(t)=Xf

X(t0)=X0

DX(s) exp [i(S[x] + SB[X ])/ℏ] , (2.27)

which represents the sum over all possible paths X(s) in coordinate space from X0 to

Xf of the functional exp [i(S[x] + SB[X ])/ℏ], where S[x] =
∫ t

t0
dsL(ẋ, x, s) and SB[X ] =∫ t

t0
dsLB(Ẋ,X, s) are the classical actions calculated from the Lagragians L(ẋ, x, s) and

LB(Ẋ,X, s), corresponding to the central system and the bath plus system-bath coupling

respectively, along the trajectory X(s).

We assume as the initial preparation of the whole system, at t = t0, that the bath is not

correlated with the system and it is canonically distributed with respect to the free bath

Hamiltonian, i.e., the initial preparation of the density operator W reads as

W (t0) = ρ(t0)⊗ ρB ,with ρB =
exp[−βHB]

TrB [exp[−βHB]]
. (2.28)

Plugging this initial preparation into Eq. (2.26) and tracing out the bath variables by

integrating over all the bath coordinates x̄1, x̄2, · · · , x̄N , we obtain the reduced density

operator

ρ(xf , x
′
f ; t) =

∫
dx̄1dx̄2 · · · dx̄N〈Xf |W (t)|X ′

f〉

=

∫
dx0dx

′
0 Geff(xf , x′f , t; x0, x′0, t0)ρ(x0, x′0; t0) , (2.29)

where,

Geff(xf , x′f , t; x0, x′0, t0) =

∫ x(t)=xf

x(t0)=x0

Dx
∫ x′(t)=x′

f

x′(t0)=x′
0

Dx′ exp [i(S[x]− S[x′])/ℏ]×

exp[−φFV[x, x
′]/ℏ] (2.30)

is the effective propagator for the reduced density operator. In the second line of Eq.

(2.29) we have used the completeness property
∫
dx|x〉〈x| = I for x0 and x′0, with I being

the identity operator. Furthermore, the last term on the right hand side is the Feynman-

Vernon influence functional which represents the influence of the bath. The influence phase
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φFV[x, x
′] is given by[28]

Re{φFV[x, x
′]} =

∫ t

t0

dt′
∫ t′

t0

dt′′
(
x(t′)− x′(t′)

)
Re{Cξ(t

′ − t′′)}
(
x(t′′)− x′(t′′)

)
,(2.31)

Im{φFV[x, x
′]} = −m

2

∫ t

t0

dt′
∫ t′

t0

dt′′
(
x(t′)− x′(t′)

)
γ(t′ − t′′)

(
ẋ(t′′) + ẋ′(t′′)

)

−m
2

∫ t

t0

dt′
(
x(t′)− x′(t′)

)
γ(t′)

(
x(t0) + x′(t0)

)
. (2.32)

The real part is responsible for the loss of coherence since it provides random pumping of

energy back and forth between system and bath. Additionally, the imaginary part brings

friction into the system as it provides the damping force
∫ t

t0
dt′′γ(t− t′′)

(
ẋ(t′′) + ẋ′(t′′)

)
.[28]

The last term on the right hand side in the imaginary part gives the initial slip, since it

can be added to the stochastic force in the equation of motion for the position x(t), and it

is omitted in the following.[28]

2.1.3.1 Quantum master equation

In the weak coupling limit, where the damping constant γ is the smallest frequency scale

in the system, γ ≪ {kBT/ℏ, ω0, ωex}, we can then expand the influence functional up to

first order in its phase, which is proportional to γ [cf. Eqs. (2.31) and (2.22)]. Thus,

exp[−φFV[x, x
′]/ℏ] ≈ 1− φFV[x, x

′]/ℏ,[40] and the reduced density operator reads

ρ(xf , x
′
f ; t) =

∫
dx0dx

′
0 G0(xf , x′f , t; x0, x′0, t0)ρ(x0, x′0; t0)

−1

ℏ

∫ t

t0

dt′
∫ t′

t0

dt′′
∫
dxt′ dx

′
t′ dxt′′ dx

′
t′′

×G0(xf , x′f , t; xt′ , x′t′ , t′) · (xt′ − x′t′) · G0(xt′ , x′t′ , t′; xt′′ , x′t′′ , t′′)×
[
Re{Cξ(t

′ − t′′)} · (xt′′ − x′t′′)− i
m

2
γ(t′ − t′′) · (ẋt′ − ẋ′t′)

]
ρ(xt′′ , x

′
t′′ , t

′′) ,

(2.33)

where G0(xf , x′f , t; x0, x′0, t0) is the free propagator for the central system, given by

G0(xf , x′f , t; x0, x′0, t0) = U0(xf , t; x0, t0)U∗
0 (x

′
f , t; x

′
0, t0) , (2.34)

with

U0(xf , t; x0, t0) =
∫ x(t)=xf

x(t0)=x0

Dx exp [iS[x]/ℏ] .
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Above we have assumed that the path integration commutes with the integrals over t′

and t′′. Up to zeroth order in γ, we express ρ(t′′) in terms of ρ(t) as follows

ρ(xt′′ , x
′
t′′ , t

′′) =

∫
dxdx′ U0(xt′′ , t′′; x, t)U∗

0 (x
′
t′′ , t

′′; x′, t)ρ(x, x′, t). (2.35)

Inserting this into Eq.(2.33), and differentiating with respect to t, one can obtain the master

equation

ρ̇(xf , x
′
f , t) = −i

[
HS(xf , t)−HS(x

′
f , t)

]
ρ(xf , x

′
f , t)−

1

ℏ

∫ t

t0

dτ

∫
dxt′′ dx

′
t′′ dx dx

′ ×

G0(xf , x′f , t; xt′′ , x′t′′ , t− τ) · (xf − x′f ) · G0(xt′′ , x′t′′ , t− τ ; x, x′, t)×[
Re{Cξ(τ)} · (xt′′ − x′t′′)− i

m

2
γ(τ) · (ẋt′ − ẋ′t′)

]
ρ(x, x′, t). (2.36)

Here, we have substituted the integration variable t′′ by τ = t − t′′. The above master

equation describes the evolution of the system state independently on its past (Makovian

characteristics), since ρ̇(t) depends only on ρ(t). The master equation (2.36) can be written

in a more convenient form as

ρ̇(t) =
1

i ℏ

[
HS(t), ρ(t)

]
+ L(t)ρ(t), (2.37)

where the first term on the right hand side represents the coherent evolution, and the second

one the influence of the bath. The latter is given by

L(t)ρ(t) = −1

ℏ

[
x,
(
Q(t) + iP (t)/2

)
ρ(t)− ρ(t)

(
Q(t)− iP (t)/2

)]
, (2.38)

with the correlations functions

P (t) =

∫ ∞

0

dτ γ(τ)U∗
0 (t− τ, t) pU0(t− τ, t) and (2.39)

Q(t) =

∫ ∞

0

dτ Re{Cξ(τ)} U∗
0 (t− τ, t) xU0(t− τ, t). (2.40)

Furthermore, we have assumed that the integration kernel Re{Cξ(t)} and γ(t) practically
vanish after a finite time τB = ℏ/kBT and then the upper integration limit in Eqs. (2.39)

and (2.40) are extended to infinity, therefore one can implicit consider the elapsed time t

from the preparation to be much larger than τB.

2.1.4 Master equation in the Lindblad form for harmonically

driven systems

So far, we have introduced a method for the study of the dynamics of a system weakly

coupled to a dissipative environment in the spirit of the Caidera-Leggett model.[37] Now,
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we shall focus on a specific case of time-periodic driven systems, where the evolution of the

system is split into a transient and a steady state dynamics. In the former, the system is in

an unstable state. From there, the system eventually reaches a balance between pumping

and dissipation turning the system into an steady state.

2.1.4.1 Floquet formalism

Differential equations involving operators, like Eq. (2.37), must be projected onto a de-

termined set of states for their solution. The choice of this set of states determines, in

some cases, the difficulty of the problem. In a stationary system, we might use the eigen-

states of the system Hamiltonian directly, but for harmonically driven systems we can take

the advantage of the induced periodicity and use Floquet modes. The Floquet modes are

the time-periodic analogy of the Bloch vectors in solid state physics. In the following we

introduce the Floquet formalism in quantum systems.

In harmonically driven systems, according with the Floquet theorem, the solution of the

Schrödinger equation |Ψ(t)〉,
(
HS(t) − iℏ∂t

)
|Ψ(t)〉 = 0, can be determined by the ansatz

|Ψk(t)〉 = exp
[
−iεkt/ℏ

]
|φk(t)〉 [see Ref. 41 for a complete review on the Floquet formalism].

Where |φ(t)〉 is periodic in time, i.e., it is a Floquet mode obeying: |φ(t)〉 = |φ(t+2π/ωex)〉.
Here εk is a real parameter, being unique up to multiples of ℏωex. It is termed the Floquet

characteristic exponent or the quasienergy.[42–44] Replacing the aforementioned ansatz into

the Schrödinger equation, one obtains the eigenvalue equation for the quasienergy εk. With

the Hermitian operator HFL = HS(t)− iℏ∂t, so-called Floquet Hamiltonian, one finds that

HFL|φk(t)〉 = εk|φk(t)〉. (2.41)

The Floquet modes |φk′(t)〉 = exp[inωext]|φk(t)〉 ≡ |φnk(t)〉, with n being an integer number,

yields the identical solution describing the same physical situation, but with a shifted

quasienergy εk → εk′ = εk +nℏωex. Therefore, the index k corresponds to the whole family

of solutions indexed by k′ = (k, n), n ∈ Z. The eigenvalues {εk} hence can be mapped into

a first Brillouin zone obeying −ℏωex < ε < ℏωex.

For the Floquet Hermitian operator it is convenient to introduce the composite Hilbert

space R ⊗ T made up of the original Hilbert space R and space T of functions which are

periodic in time with period 2π/ωex.[45] The temporal part of this new Hilbert space is

spanned by the orthonormal set of Fourier vectors 〈n|t〉 ≡ exp[−inωext], n ∈ Z , and the

inner product in T reads as

(m,n) =
ωex

2π

∫ 2π/ωex

0

dt exp[−i(n−m)ωext] = δn,m. (2.42)

Thus, the eigenvectors of HFL obey the orthogonality condition in the composite Hilbert

space R ⊗ T, i.e. 〈〈φk′(t)|φl′(t)〉〉 = δk′l′ = δklδnm, and form a complete set in R ⊗ T, i.e.
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∑
nα |φnk(t)〉〈φnk(t)| = IR (IR is the unitary matrix in the original Hilbert space R). The

Floquet modes of the same Brillouin zone form a complete set in R, i.e.
∑

k |φk(t)〉〈φk(t)| =
IR.

2.1.4.2 Master equation projected onto Floquet modes

Here, we shall combine the Born-Markov master equation with the Floquet formalism.[46]

We start projecting the reduced density operator onto a selected set of Floquet modes,

such that ρkl(t) = 〈φk(t)|ρ(t)|φl(t)〉, and we describe the evolution of the state by its time

derivative

ρ̇kl(t) = 〈φk(t)|
1

i ℏ

[
HS(t), ρ(t)

]
+ L(t)ρ(t)|φl(t)〉+ 〈φ̇k(t)|ρ(t)|φl(t)〉+ 〈φk(t)|ρ(t)|φ̇l(t)〉

=
1

i ℏ

(
εk − εl

)
ρkl(t) +

∑

r

〈φk(t)|L(t)|φr(t)〉ρrl(t). (2.43)

For the calculation of the matrix elements of the dissipative part of the master equation

〈φk(t)|L(t)|φr(t)〉, we need to consider the Fourier expansion of the Floquet modes |φk(t)〉 =∑
n∈Z exp[−inωext]|φn

k〉. Thus, the projection of an arbitrary operator O onto the selected

set of Floquet modes, i.e. the matrix elements Okl(t) = 〈φk(t)|O|φl(t)〉 may be written as

Okl(t) =
∑

n∈Z

e−inωextOn
kl, with On

kl =
∑

m∈Z

〈φm
k |O|φm+n

l 〉. (2.44)

With this, we can calculate the projection of the correlations Eqs. (2.39) and (2.40). Thus,

the matrix elements Pkl(t) = 〈φk(t)|P (t)|φl(t)〉 and Qkl(t) = 〈φk(t)|Q(t)|φl(t)〉 are given by

Pkl(t) =

∫ ∞

0

dτ γ(τ) 〈φk(t)|U∗
0 (t− τ, t) pU0(t− τ, t)|φl(t)〉 and

=

∫ ∞

0

dτ γ(τ) exp[−i(εk − εl)τ/ℏ] 〈φk(t− τ)|p|φl(t− τ)〉

=
m

i ℏ

(
εk − εl − id/dt

) ∫ ∞

0

dτγ(τ) exp
[
−i(εk − εl)τ/ℏ

]
xkl(t− τ) (2.45)

Qkl(t) =

∫ ∞

0

dτ Re{Cξ(τ)} 〈φk(t)|U∗
0 (t− τ, t) xU0(t− τ, t)|φl(t)〉

=

∫ ∞

0

dτ Re{Cξ(τ)} exp[−i(εk − εl)τ/ℏ]xkl(t− τ) , (2.46)

where xkl(t− τ) =
∑

n∈Z
exp[−inωext]x

n
kl. Furthermore, above we have used U0(t− τ, t) =∑

k exp[iεkτ/ℏ]|φk(t − τ)〉〈φk(t)|, and p/m = −i[HFL, x]/ℏ. With this, we can determine

the matrix elements for Q(t)± iP (t)/2 [cf. Eq. (2.38)],

(
Q(t)± iP (t)/2

)
kl
=
∑

n∈Z

e−inωextNkl,∓n x
n
kl , (2.47)



18 Dissipation and noise in driven quantum systems

where Nkl,n are defined as

Nkl,n = N(εk − εl + nℏωex), with N(ε) = J(|ε|/ℏ)[n̄(|ε|) + Θ(−ε)]/ℏ, (2.48)

in terms of the spectral density J(ε/ℏ) (= mγε/ℏ in the strict Ohmic case), the bosonic

thermal occupation number n̄(ε) = (exp[εβ]− 1)−1, and the Heaviside function Θ(x).

We have calculated the matrix elements of the dissipative part of the master equation,

〈φk(t)|L(t)|φr(t)〉, in terms of Fourier modes xnkl (which depend on the central system), and

bath parameters as temperature T and spectral density J(ω). Then, the master equation

reads[46–48]

ρ̇kl(t) =
1

i ℏ

(
εk − εl

)
ρkl(t)

∑

k′l′,nn′

exp
[
i(n + n′)ωext

]
·
{(
Nkk′,n +Nll′,−n′

)
xnkk′ ρk′l′(t) xll′,n′

−Nl′k′,n′ xnkl′ x
n′

l′k′ ρk′l(t)−Nk′l′,−n′ ρkl′(t)x
n′

l′k′ x
n
k′l

}
(2.49)

2.1.4.3 Rotating wave approximation

The coefficients of the dissipative part are periodic in time, with frequency (n+n′)ωex. In the

weak coupling regime characterized by γ ≪ ω0, and an external driving close to resonance

to the central system (|ω0 − ωex| ≪ ω0), the dissipative effects are relevant only on a time

scale much larger than the period of the driving, due to τB > 2π/ωex.[46] Therefore one

can neglect fast oscillating terms in Eq. (2.49) by averaging over one period of the driving,

yielding the following master equation with time-independent dissipative transition rates

ρ̇kl(t) =
1

i ℏ

(
εk − εl

)
ρkl(t) +

∑

k′l′

Lkl,k′l′ρk′l′(t) , (2.50)

with

Lkl,k′l′ =
∑

n∈Z

[
(Nkk′,−n +Nll′,−n)x

n
kk′x

−n
l′l

−δkk′
∑

k′′

Nk′′l′,−nx
−n
l′k′′x

n
k′′l

−δll′
∑

l′′

Nl′′k′,−nx
−n
kl′′x

n
l′′k′

]
. (2.51)

This approximation was introduced by Ref. 46 under the name of the moderate rotating

wave approximation. Further approximations can be applied when we consider the regime of

weak driving strength. There, we can approximate the Floquet modes by rotated states |ϕk〉,
|φk(t)〉 ≈ R†(t)|ϕk〉, wherein R(t) = exp[ia†aωext]. The rotated states |ϕk〉 are eigenstates

of the Hamiltonian in the full rotating wave approximation, where only propagating terms
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are considered. We shall apply this approximation in the case of the Duffing oscillator in

the next chapter. Using this approximation we can calculate the Fourier modes xnkl. Since

the position operator in the rotated frame has two Fourier modes,

x(t) = xZPF (ae
−iωext + a†eiωext)/

√
2 ,

it is clear that x1kl/xZPF = akl/
√
2 ≡ 〈ϕk|a|ϕl〉/

√
2 , x−1

kl /xZPF = a∗rkl/
√
2 ≡ 〈ϕk|a†|ϕl〉/

√
2,

and xnkl = 0 for the remaining values of the integer n. This approximation restricts the sum

on the Fourier modes in Eq. (2.51) to n = ±1. On the other hand, for the Brillouin

zone chosen for the set {|φk〉} the quasienergies follow |εk − εl| ≪ ℏωex, and therefore

the dependence of the Planck numbers Nkl,n on Floquet modes can be neglected. Thus,

Nkl,1 ≈ J(ωex)n̄(ℏωex) and Nkl,−1 ≈ J(ωex)(n̄(ℏωex) + 1). This means that for n = 1 the

transition rates (2.51) describe an absorption process of one quantum (photon/phonon)

from the bath, whereas n = −1 describe an emission process of one quantum into the bath.

In the operator notation the dissipative transition rates then turn out as

Lρ(t) = γ [n̄(ℏωex) + 1]D[a]ρ(t) + γ n̄(ℏωex)D[a†]ρ(t) (2.52)

with D[O] being the Lindblad superoperator defined as

D[O]ρ(t) =
([
Oρ(t),O†

]
+
[
O, ρ(t)O†

])
/2, (2.53)

where O is an arbitrary operator of the central system. In Eq. (2.52) we have used the

definition of the spectral density for the strict Ohmic case, J(ω) = mγω.

In the following we shall use this simplified version of the transition rates to solve the

master equation. This form has the advantage of conserving the positivity of the density

operator. Additionally, it allows a fully analytical treatment to take into account the

influence of the thermal bath on the system.

2.1.4.4 Transient and steady state

In the operator notation the master equation Eq.(2.50) is given by ρ̇(t) = Mρ(t) =

[H̃, ρ(t)]/ℏ+ Lρ(t), therein H̃ is the Hamiltonian in the full rotating wave approximation.

The solution is given by

ρ(t) = exp
[
M · (t− t0)

]
ρ(t = t0) . (2.54)

In principle the superoperatorM projected onto the set of rotated states {|ϕk〉} is complex

and nonsymmetric, meaning it is in principle nondiagonalizable. However, there is a way

to solve the master equation using the right and left eigenoperators ofM, denote as ρn and

ρn respectively, defined as[49]

Mρn = (Γn + iΩn)ρ
n , ρnM = (Γn + iΩn)ρn , n ∈ N. (2.55)
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The real part of the eigenvalues are always negative numbers, Γn < 0, describing the time

scale of relaxation and decoherent processes. On the other hand, the imaginary part Ωn

determines the timescale of coherent processes. The eigenoperators ρk and ρl constitute

a set of biorthogonal operators, i.e. Tr[ρ†kρ
l] = δkl. Therefore, we can expand the initial

state ρ(t0) in terms of right eigenoperators, ρ(t0) =
∑

k∈NTr[ρ
†
kρ(t0)] ρ

k, and hence write

the solution (2.54) as

ρ(t) =
∑

k∈N

Tr[ρ†kρ(t0)] ρ
k exp[(Γk + iΩk) · (t− t0)] + ρ∞. (2.56)

Thus, the transient and the steady dynamics of the system can be determined solving (2.55).

The last term on the right hand side corresponds to the eigenoperator with eigenvalue

zero, which describes the dynamics of the system at long times. The eigenoperator ρ∞

is not orthogonal to its counterpart, the left eigenoperator ρ∞, and therefore it is given

explicitly in Eq. (2.56). To proof this, consider the conservation of the probability, that

establish
∑

l ρll(t) = 1. Thus, the sum
∑

l ρ̇ll(t) =
∑

k′l′[
∑

lMll,k′l′]ρk′l′(t) = 0, meaning∑
lMll,k′l′ = 0. Therefore, the superoperatorM has one left eigenoperator with eigenvalue

zero, which is the unitary operator ρ∞,kl = δkl. In addition, all of the right eigenoperators

in Eq. (2.56) decay apart from the steady state ρ∞. Therefore Tr[ρ∞] = 1, since the trace

of the density operator must be unitary any time. With this one can expect that for any

right eigenoperator Tr[ρk] = 0 for k 6= “∞”. Using again the conservation of probability,∑
lMll,k′l′ = 0, we can calculate the trace of ρk for k 6= “∞”, as

(Γk + iΩk)
∑

ll

ρkll =
∑

k′l′

[
∑

l

Mll,k′l′

]
ρkk′l′ = 0. (2.57)

This implies that either k = “∞” or
∑

ll ρ
k
ll = 0.

2.2 Quantum noise

In the previous section we described the effects of the environment fluctuations in the

system dynamics by mean of the master equation formulation. Now we shall describe the

fluctuations in the system due to its interaction with a dissipative environment. We start

with a discussion of some characteristics of noise in driven quantum systems, and its relation

with correlation functions. With the regression theorem and the formalism employed in the

previous section for the solution of the master equation, we present a method to compute

correlation functions and power spectra of system operators.
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2.2.1 Noise in nonequilibrium states

Classical noise arises from fluctuations in the motion of particles and in the number of

particles within a given volume. Thermal noise and shot noise are two examples. In the

quantum regime, noise arises from the uncertainty concerning the position and momentum

of quantum mechanical objects. For example, consider the position noise of the linear

resonator considered in the previous section. The position auto-correlation function is

given by

Cxx(t) = 〈x(t)x(0)〉 = x2ZPF

(
〈a†(0)a(0)〉eiω0t + 〈a(0)a†(0)〉e−iω0t

)
/2

= x2ZPF

(
n̄(ℏω0)e

iω0t + [n̄(ℏω0) + 1]e−iω0t
)
/2 , (2.58)

where we have considered the description of the correlation function in terms of the lad-

der operator introduced in the last section, where x(t) = xZPF (a
†(t) + a(t))/

√
2, and

〈a(0)a(0)〉 = 〈a†(0)a†(0)〉 = 0. The above auto-correlation function has a complex nature,

due to the commutation rule [a, a†] = 1, which is a consequence of the uncertainty principle

between position and momentum, [x, p] = iℏ/2. Furthermore, it reflects the fact that the

position operator x does not commute with itself at different times.

The intensity of the noise is characterized by the spectral density or power spectrum,

and it is directly related with the auto-correlation function through the Fourier transform.

Therefore the power spectrum of the position operator x reads as[13]

Sxx(ω) =

∫ +∞

−∞

dt eiωt〈x(t)x(0)〉

= πx2ZPF

(
n̄(ℏω0)δ(ω + ω0) + [n̄(ℏω0) + 1]δ(ω − ω0)

)
, (2.59)

where the two Dirac δ-functions are localized in the negative and positive frequency re-

gion of the spectrum. The first Dirac δ-function describes emission and the second one

absorption processes. They have different weights for low temperatures as a consequence of

the non-commutativity of the position operator with itself at different times. In the high-

temperature limit, the weights in Eq.(2.59) become equal and a symmetric power spectrum

results.

In driven quantum systems, since time translation symmetry is broken, the power spec-

trum is determined by the Fourier transform of the time averaged auto-correlation function.

The average is taken over the characteristic time of the system. In addition, when the driv-

ing is periodic in time, the energy scale of the system is modified and the coherent dynamics

can be described in terms of the quasi-energy spectrum. The same holds for noise proper-

ties. For instance, in a driven cavity which is modelled by a driven harmonic oscillator, the

quasienergy spectrum describes states of a particle in a harmonic potential for a positive



22 Dissipation and noise in driven quantum systems

detuning, or concave harmonic potential for a negative detuning. In the former, at very

low temperatures, the noise has only positive frequencies, that is, the system is only able to

absorb energy. For the latter case, the noise has only negative frequencies and the system

is only able to emit energy. For temperatures, where excited states are also occupied, both

positive and negative frequencies will appear in the spectrum. Thus, when the cavity inter-

acts with another quantum system by means of the photon number (parametric coupling),

the cavity can either amplify the information on the other system for a positive detuning,

or de-amplify it for a negative detuning. The equidistant structure of quasi-energy levels

in the driven cavity defines a structural noise at a single frequency only, which corresponds

to the proper frequency of the cavity detuned by the external modulation.[15]

2.2.2 The regression theorem in a non-stationary state

For stationary systems the power spectrum is just the Fourier transform of the correlation

function [cf. Eqs. (2.58) and (2.59)], due to their time translational invariance property.

[13] However, in driven systems this property is missing, and the system noise varies in

time.[50, 51] By the quantum correspondence principle the above correlation function can be

defined for operators, with a non-symmetric behaviour of the power spectrum appearing due

to the noncommuting algebra for the operators. To compute this correlation function, and

higher correlation function as well, Lax [51] has proposed a method which has been called

quantum regression theorem. In the following, we shall briefly derive the Lax formula, which

describe the cross correlation function of arbitrary operators, CAB(t, τ) = 〈A(t + τ)B(t)〉,
as a mean value. We start with the cross correlation function of operators A and B in the

Heisenberg picture

CAB(t, τ) = TrS⊕B

[
W (0)A(t+ τ)B(t)

]
, (2.60)

where TrS⊕B[· · · ] denotes the trace over the degrees of freedom of the whole system, system

plus bath. One can reorganize the time evolution in the trace using its cyclic property,

yielding

CAB(t, τ) = TrS⊕B

[
B
W (t+ τ)A(0)

]
, (2.61)

where BW (t + τ) = U(t + τ, t)[B(0)W (t)]U †(t + τ, t). There, the correlation between A

and B has the structure of a mean value with BW (t) in the role of an effective density

operator. This artificial density operator follows the same dynamics as W , but without

its probabilistic interpretation, i.e. TrS⊕B[BW ] 6= 1. Hence, it follows the von-Neumann

equation

d

dτ
BW (t+ τ) =

i

ℏ
[H(t+ τ), BW (t+ τ)], (2.62)
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with the separable initial state BW (t) = B(0)W (t) ∼ (B(0)ρ(t)) ⊗ ρB, because in the

regime of weak coupling to the bath W (t) should only show deviations of the order of the

interaction term, HSB, from an uncorrelated state.

If we are to eliminate explicit reference to the environment in (2.61) we need to evaluate

the environment trace over BW (t + τ) to obtain the reduced operator Bρ(τ + t), where

Bρ(t) = B(0)ρ(t). Thus, following the same procedure as in Sec. 2.1.3, the virtual reduced

density operator after time τ is given by

Bρ(t + τ) =
∑

k∈N

Tr[ρ†kB(0)ρ(t)]ρk exp[(Γk + iΩk)τ ]. (2.63)

Considering an initial time in the steady state regime, i.e., ρ(t) → ρ∞, the correlation

function reads

CAB(τ) =
∑

k∈N

Tr[ρ†kB(0)ρ∞]Tr[A(0)ρk] exp[(Γk + iΩk)τ ] , (2.64)

and therefore

SAB(ω) = 2
∑

k

(
Tr[ρ†kB(0)ρ∞]Tr[A(0)ρk]

)
Γk

(ω − Ωk)2 + Γ2
k

. (2.65)

The sum extends over those eigenoperators ρk which belong to non-zero eigenvalues. Thereby,

we have not included the elastic peak 〈A〉〈B〉δ(ω) which trivially comes from the stationary

state ρ∞.



Chapter 3
Noise properties of the quantum Duffing

oscillator

In recent years, considerable interest has developed in driven nonlinear quantum resonators

due to the tremendous progress in fabricating and thus controlling individual macroscopic

quantum systems operating on the nanoscale. This includes superconducting Josephson

junctions [17, 52–54] in different variants and also nanomechanical devices which have

successfully been realized in the deep quantum regime only recently. [55–57] In addition,

quantum transport devices on the basis of molecular junctions have been realized where the

interplay of charge transport and vibrational properties of the molecular bridge has been

studied.[58, 59] An important aspect common to all these approaches lies in the fact that

the nonlinear response and the noise properties of single macroscopic quantum systems can

be addressed instead of measuring an ensemble of resonators where additional averaging is

intrinsically involved.

Coupling a driven quantum mechanical oscillator to environmental fluctuations allows

the resonator dynamics to reach a stationary state. In the stationary state, energy is

coherently absorbed from the pump and leaks into the environment via random dissipa-

tive transitions, which inevitably induce noise in the resonator. This occurs even at zero

temperature where only environmental zero-point quantum fluctuations (quantum noise)

exist. The quantum noise properties of a nonlinear oscillator determine many fundamental

nonequilibrium phenomena such as quantum heating [60–62] and quantum activation.[63]

In general, nonlinear oscillators are naturally used as basic elements for quantum state

detection or amplification. Examples of those are the Josephson bifurcation amplifier [17–

22] and the cavity bifurcation amplifier.[17, 23] In this context, the noise properties of the

resonator, which is used as detector or amplifier, determine the backaction of the measure-

ment or amplification on the system itself.[9, 13, 64] Clearly, it is desirable to keep the
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backaction as weak as possible, while on the other hand, a significant coupling of the am-

plification or measurement device to the system is useful in order to achieve a sufficiently

strong detection or amplification efficiency. A fundamental lower limit for the disturbance

introduced by the noisy detector into the qubit to be detected, however, will be set by

the quantum noise acting in the detector. Hence, in order to design useful concepts for

quantum state detection based on nonlinear resonators in the deep quantum regime, their

quantum noise properties have to be addressed.

The Josephson bifurcation amplifier [17–22] takes advantage of the dynamically induced

bistability due to the intrinsic nonlinearity of the resonator. The eigenstates of the qubit

whose state has to be measured are mapped onto the coexisting stable states of forced

vibrations of the resonator, which have different amplitudes and phase relations relative to

the phase set by the external drive. Hence, they allow for a large discrimination power.

Up to present, these amplifying devices mostly operate in the semiclassical regime where

many quanta in the resonator are excited. This implies that pure quantum fluctuations

are typically small on average. Nevertheless, some experiments have been realized at low

temperature where the relevant fluctuations are quantum mechanical in nature.[17, 22] The

regime of weak fluctuations has been the subject of intense theoretical investigation.[60–

62, 64–69] It has been shown,[60–62] that a stationary distribution over the quasienergy

states of the driven oscillator at zero temperature can be reached which has the form of

an effective Boltzman distribution with an associated nonzero effective temperature even

when the statistical temperature is set to zero. Since only the zero-point fluctuations of the

vacuum are responsible for this stationary distribution, this has been denoted as quantum

heating .[62] This stationary state is reached via activation-type transitions between discrete

quasienergy states of forced vibrations which are induced by zero-temperature quantum

noise [60–62] and are therefore called quantum activation transitions.[63]

Signatures of the onset of quantum fluctuations can be seen in the relative intensities of

the lines of the resonator noise spectrum [62, 65–68] and in the appearance of a fine structure

in the spectral lines of resonators with comparatively large nonlinearities and large quality

factors.[62, 67] Most importantly, it has been shown that the spectral fine structure of the

noise power spectrum of a parametrically modulated oscillator yields detailed information

on the population of the quasienergy states of the resonator in its stationary state.[62, 67]

Since the noise power spectrum is in principle experimentally accessible, one can directly

deduce the stationary nonequilibrium occupation distribution from this measurement signal.

No other means is so far available to achieve this. Below, we also find a spectral fine

structure in the noise power spectrum of the quantum Duffing oscillator which possesses a

similar topology as the parametric oscillator.

In this chapter, we investigate the quantum noise properties of modulated nonlinear
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oscillators in the deep quantum regime. As the simplest example, we consider a monos-

table anharmonic oscillator which has a quartic nonlinearity (quantum Duffing oscillator).

Such a device can be parametrically coupled to a qubit [69] and thus, its photon noise

characteristics is of relevance when used as a parametric detector. Below, we analyse the

power spectrum of the photon number fluctuations in the quantum Duffing oscillator. In

the underdamped regime, we identify Lorentzian peaks in the power spectrum of the photon

number noise which are associated to the multiphoton transitions in the quantum Duffing

oscillator. Their intensities are determined by the stationary occupation probabilities of the

quasienergy states. The latter is directly connected to the effective quantum temperature

which can be identified in the stationary state and which is intimately connected to the

quantum squeezing of the quasienergy states. Hence, measuring the power spectrum of

the photon number fluctuations provides a direct and elegant way to determine the sta-

tionary occupation probabilities of the quasienergy states and thus the effective quantum

temperature.

A weakly nonlinear Duffing oscillator has a remarkable symmetry: its energy levels En

with n ≤ N are pairwise resonant for the same driving frequency ωex, EN−n − En = (N −
2n)ℏωex. An example of the energy spectrum for the case N = 3 is sketched in Fig. 3.1(a).

After preparing the oscillator in its n-th excited state n ≤ N , it displays periodic quantum

oscillations between the n-th and the N − n-th excited states. During these oscillations,

|N−2n| photons are being exchanged between the oscillator and the modulation field. The

oscillations of the photon number n̂ are usually referred to as multiphoton Rabi oscillations.

Their characteristic frequency, the Rabi frequency Ωn,N , depends on the intensity of the

driving field and on the number of photons exchanged. The Rabi frequency Ω0,N for the N -

photon oscillations is the smallest Rabi frequency. The multiphoton Rabi oscillations with

N−n photons involved are underdamped if their Rabi frequency Ωn,N exceeds the dissipative

rate of photon leaking into the environment. The latter is the oscillator relaxation rate γ.

For γ ≪ Ω0,N all the Rabi oscillations are in general underdamped. The periodically driven

resonator reaches its stationary state on the time-scale γ−1.

In the stationary state, quantum noise induces – even at zero temperature – fluctuations

in the photon number n̂. The dynamics of these fluctuations is characterized by multiphoton

oscillations which manifest themselves as peaks in the noise spectrum S(ω) of n̂, located at

plus/minus the Rabi frequencies Ωn,N . In the underdamped regime, the dissipative dynam-

ics of the driven oscillator is most appropriately described in terms of random transitions

between the oscillator quasienergy states. When the driving is resonant, the pairs of oscil-

lator Fock states with n- and N−n-photons are resonantly superposed. The corresponding

oscillator quasienergy states are a symmetric and an antisymmetric superposition of the

two Fock states. Their splitting in quasienergy is given by the Rabi frequency Ωn,N . The
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corresponding peak in the noise spectrum at (−)Ωn,N is due to random transitions from

the state with (highest) lowest to that with the (lowest) highest quasienergy of the doublet.

The peak intensity is proportional to the stationary occupation probability of the initial

quasienergy state. Therefore, the noise spectrum offers a convenient way to directly probe

the stationary nonthermal distribution over all the quasienergy states. Moreover, for weak

driving and exactly zero detuning from the multiphoton resonance, the noise spectrum

of the n̂-photon transition is symmetric, i.e., S(ω) = S(−ω) and two inelastic peaks are

signatures of an oscillatory decay of the fluctuations towards the stationary state. States

belonging to a multiphoton doublet then have the same stationary occupation probabilities.

For a weakly detuned modulation or a stronger driving, the spectrum becomes asymmet-

ric. Besides, an additional quasielastic peak appears at zero frequency which represents

incoherent relaxation of the fluctuations towards the stationary state. These features have

some analogy in the spectral correlation function of a (static) quantum mechanical two-

level system weakly coupled to a dissipative harmonic bath.[28] There, the spin correlation

function is a sum of three Lorentzian peaks. The two inelastic peaks are symmetrically

located at finite frequencies and their width determines the inverse of the dephasing time.

In addition, the quasielastic peak at zero frequency represents incoherent relaxation with

the inverse relaxation time given by its width. In the driven system, the appearance of a

quasielastic peak depends on the intriguing interplay between the nonlinearity, the driving

strength and the dissipation strength. The contents of this Chapter have been published

in Ref. 70.

3.1 Coherent dynamics

3.1.1 Induced multiphoton Rabi oscillations in the Duffing oscil-

lator

We consider a periodically modulated Duffing oscillator with massm, eigenfrequency ω0 and

a quartic (Kerr) nonlinearity characterized by the strength α, described by the Hamiltonian

H(t) =
1

2m
p2 +

1

2
mω2

0x
2 +

1

4
αx4 + Fx cos(ωext). (3.1)

The modulation amplitude F is assumed to be sufficiently small that it induces only weakly

nonlinear vibrations. This is guaranteed by the condition αA2 ≪ mω2
0, with A(F ) being

the typical amplitude of the nonlinear vibrations. The modulation frequency ωex is chosen

to be close to the oscillator eigenfrequency ω0 such that the detuning δω is small, i.e.,

δω ≪ ω0 , δω ≡ ω0 − ωex. (3.2)
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The theory presented here applies to hard as well as to soft nonlinearities α ≶ 0, but for

concreteness we will focus on the case of a hard nonlinearity, α > 0.

The quantum dynamics of the weakly detuned and weakly nonlinear driven oscillator

is most conveniently described in terms of the oscillator ladder operators a and a†, in a

rotating frame determined by the unitary transformation

R(t) = exp[−iωexa
†at] . (3.3)

In the rotating frame, the typical time scale of the resonator dynamics is given by δω−1, so

that terms oscillating with frequencies ±2ωex and ±4ωex average out and can be neglected

in the transformed Hamiltonian R(t)H(t)R†(t) − i ℏR(t) Ṙ†(t). Thereby, we obtain the

RWA Hamiltonian

H̃ = δω n̂+ ν n̂(n̂+ 1)/2 + f(a† + a)/2, (3.4)

where n̂ ≡ a†a is the photon number operator, ν and f are the frequencies associated

with the Kerr nonlinearity and the external field amplitude at the quantum scale xZPF =√
ℏ/mω0, i.e., ν = 3αx4ZPF/4ℏ and f = FxZPF/

√
2ℏ. In order to keep the notation compact

we have set ℏ = 1 in Eq. (3.4) and in the remainder of the paper. The oscillator quasienergies

εn and quasienergy states |ψn〉 are the eigenvalues and eigenvectors of the rotating wave

Hamiltonian, H̃|ψn〉 = εn|ψn〉.
A key property in the dynamics of the Duffing oscillator is its nonlinearity, which gen-

erates multiphoton transitions at frequencies ωex close to the fundamental frequency ω0. In

order to see this, one can consider the undriven nonlinear oscillator, switching off adiabati-

cally the external modulation. There the Floquet states |ψn〉 become oscillator Fock states

|n〉, yielding the following quasienergy spectrum

εn = δωn+ νn(n + 1)/2, for f → 0. (3.5)

Thus, in the undriven scenario the quasienergies depend linearly on external frequency

so that at some frequency values different quasienergy levels εn intercept, such as εn and

εN−n for N > n, when the detuning follows

δω = ν(N + 1)/2 ≡ δωN . (3.6)

This resonance condition sets the amount of the external frequency to be a factor of the

difference of energy levels of the nonlinear oscillator in the static frame EN−n−En [cf. Fig.

3.1a],

EN−n − En ≈ (N − 2n)ωex. (3.7)
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Figure 3.1: Multiphoton Rabi transitions around the N = 3-photon resonance δω = δω3. In
panel (a) we depict a sketch of the driving-induced resonant 3-photon transitions (red arrows) in
the nonlinear oscillator. Likewise, the blue arrows indicate the noise-induced relaxation process.
In panel (b), we show the underlying quasienergy spectrum as a function of the external frequency
together with two zooms to the avoided crossings for the 2− and 3−photon Rabi transitions for
ν = 10−3ω0 and f = ν/10. In panel (c), we schematically indicate of the coherent multiphoton
Rabi transitions (red arrow) and the dissipative transitions (blue arrows) on the quasienergy
surface which results from a semiclassical approach, see text. The upper figure shows the less
tilted case when f = ν/10, while for the lower figure f = ν. We emphasize that relaxational
transitions at zero temperature typically occur in both directions, i.e., downwards and upwards
along the quasienergy surface, which is in striking contrast to dissipative transitions in static

potential surfaces, where only “downward relaxation” is possible. An escape due to “upward
relaxation” is known as quantum activation [63].

For a finite driving (f 6= 0), the driving term [cf. Eq.(3.4)] mixes the degenerate levels,

|n〉 and |N − n〉. According to the von-Neumann-Wigner theorem (level repulsion), these

quasienergy levels will no longer cross. In other words, the degeneracy is lifted and avoided

quasienergy level crossing form, which is a signature of discrete multiple multiphoton tran-

sitions [cf. Fig. 3.1b]. There, up to leading order in the driving, the Floquet states |ψn〉 for
n ≤ N 6= N/2 are a resonant admixture of the pair |n〉 and |N − n〉,

|ψn〉 ≈ (|n〉 ± |N − n〉) /
√
2 . (3.8)

We choose the signs − and + for n < N/2 and N/2 < n ≤ N , respectively. The states

|ψn〉 which are not involved in a multiphoton transition (n > N and n = N/2 for N even)

can be approximated as the corresponding Fock state |ψn〉 ≈ |n〉. Therefore, if the system
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is prepared initially in the state |n〉 (n < N) in the presence of a driving field at resonance

with the Nth multiphoton transition (δω = δωN), it switches continuously between the pair

of states |n〉 and |N −n〉. The time scale of these virtual processes is set by the splitting in

the corresponding avoided quasienergy level crossing, |εn − εN−n|, which is different from

zero for finite driving. This energy splitting, as well called the Rabi frequency, of the

multiphoton oscillations is given by

Ωn,N−n = |εn − εN−n| = f (f/ν)N−2n−1 (N − n)!1/2
n!1/2(N − 2n− 1)!2

. (3.9)

The resonant condition in Eq. (3.6) is not renormalized by a finite driving (within the RWA)

but for a comparatively larger driving f ∼ ν ≪ ω0, the multiphoton transitions have to be

reinterpreted as tunneling transitions between semiclassical states.

As we shall detail in Section 3.3, the multiphoton Rabi oscillations induce peaks in

the spectral densities of oscillator observables only when the Rabi frequency Ω0,N for the

multiphoton transition from the zero-photon ground state is larger than the noise-indcued

level broadening of the relevant quasienergy levels ε0 and εN . In the next section, we will

pave the wave for the calculation of the noise spectrum in this regime, by formulating

the master equation for a weakly nonlinear oscillator and by evaluating the stationary

occupation populations of the quasienergy states.

3.2 Stationary dissipative dynamics in the deep quan-

tum regime

In the presence of a weak bilinear coupling to the fluctuations of a bosonic bath, the

assumptions of small detuning and weak nonlinearity that under the RWA naturally lead

to a Liouville-von Neuman master equation in the Lindblad form, discussed in Section 2.1.4,

for the density matrix ρ of the weakly damped oscillator in the rotating frame.[47, 48]

3.2.1 The stationary distribution

For long times, the density matrix in the rotating frame ρ relaxes to a stationary state ρ∞,

satisfying

Mρ∞ = 0. (3.10)

When the oscillator decay rate γ is larger than the driving, γ ≫ f , the width of the

resonant quasienergy levels εn induced by the bath fluctuations are larger than the corre-

sponding Rabi frequency Ωn,N−n of the multiphoton transitions. Then, the multiphoton
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resonances are smeared out and the coherent effects associated with multiphoton oscilla-

tions are strongly suppressed. Hence, dissipation sets a lower limit for the driving strength,

f ≫ γ. On the other hand, for comparatively larger driving f ∼ ν quantum fluctuations

become small and the oscillator is latched to a classical attractor for a time much longer

than the typical time scale of relaxation, γ−1. In this regime, the (quasi)stationary distri-

bution over the quasienergy states is of Boltzman type. Here, we restrict our analysis to

the deep quantum regime where the driving is larger than the damping but smaller than

the nonlinearity, γ ≪ f ≪ ν. Thereby we have implicitly assumed a comparatively large

nonlinearity ν ≫ γ.

Underdamped regime:

We start our discussion assuming that all Rabi oscillations are underdamped. Put differ-

ently, we assume that the smallest Rabi frequency Ω0,N is larger than the relevant level

width. We refer to this regime as the fully underdamped regime. In the fully under-

damped regime, the off-diagonal matrix elements of the density matrix ρ∞ projected onto

the quasienergy basis |ψl〉 are negligible and we can set them to zero (secular approxima-

tion), i.e.,

ρ∞lk ≡ 〈ψl|ρ∞|ψk〉 = 0 for l 6= k . (3.11)

Then, a balance equation for the stationary occupation probabilities ρ∞ll follows from Eqs.

(2.52) and (3.10) according to

γl ρ
∞
ll −

∑

l 6=k

Wl,k ρ
∞
kk = 0. (3.12)

Here, Wl,k is the transition rate from state |ψl〉 to state |ψk〉 given by

Wk,l ≡ γ
(
(1 + n̄)|〈ψk|a|ψl〉|2 + n̄|〈ψk|a†|ψl〉|2

)
, (3.13)

and γl is the linewidth of quasienergy level εl, γl ≡
∑

k 6=lWkl. We can now formulate

more precisely the condition for underdamped Rabi oscillations of the narrowest resonance,

Ω0,N ≫ γ0.

The solution for stationary occupation probabilities up to leading order in the small

parameters f/ν and n̄ is given in Ref. 47. The pair of multiphoton states |ψn〉 and |ψN−n〉 in
Eq. (3.8) have equal stationary occupation, ρ∞nn = ρ∞N−nN−n. The smallest pair of occupation

probabilities is ρ∞00 = ρ∞NN . The occupation probability grows algebraically as

ρ∞n+1n+1 =
N − n
n + 1

ρ∞nn for n < N/2 . (3.14)

The states |ψl〉 with l > N have vanishing occupation probability, ρ∞ll = 0. The degeneracy

ρ∞00 = ρ∞NN is approximate and is lifted for higher orders in f/ν.
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Quasienergy distribution close to a multiphoton resonance:

One can easily generalize the above expressions to the case where the detuning δω does

not exactly match the resonance condition, δω 6= δωN . Since the Rabi frequencies for the

different pairs of resonance transitions in Eq. (3.9) are exponentially different, we can choose

|δω− δωN | ≪ Ω1,N−1, so that all the pairs of Fock states |n〉 and |N −n〉 with 1 < n < N/2

are still resonantly superposed, except for

|ψ0〉 = cos
θ

2
|0〉 − sin

θ

2
|N〉 , and |ψN 〉 = sin

θ

2
|0〉+ cos

θ

2
|N〉 , (3.15)

with θ = tan−1[Ω0,N/N(δω − δωN)]. The corresponding solution for the stationary density

matrix close to resonance is [cf. App. B]

ρ∞NN = ρ∞00 tan
4 θ

2
, ρ∞11 = ρ∞00N tan2 θ

2
,

ρ∞n+1n+1 =
N − n
n+ 1

ρ∞nn for 1 ≤ n < N/2 . (3.16)

Partially underdamped regime

Next we consider a comparatively large relaxation rate γ, so that the narrowest Rabi reso-

nance is overdamped but the remaining resonances are still underdamped, Ω0,N ≪ Nγ ≪
Ω1,N−1. We refer to this regime as the partially underdamped regime. Then, incoherent

multiphoton transitions from the ground state |0〉 to state |N〉 with a small rate Ω2
0,N/(Nγ)

and the subsequent emission of excitations into the bath determines a small but finite oc-

cupation of the resonant states ρ∞nn, n ≥ 1. Formally, the stationary distribution ρ∞ can be

obtained by setting all the off-diagonal elements of ρ∞lk to zero except for ρ∞N0 and ρ∞0N and

solving Eq. (3.10). Thereby, we find

〈0|ρ∞|0〉 ≈ 1, 〈N |ρ∞|N〉 ≈ Ω2
0,N/(N

2γ2)

ρ∞11 = Ω2
0,N/(Nγ

2) for Ω2
0,N/(Nγ

2)≫ exp[−ω0/(kBT )]

ρ∞n+1n+1 =
N − n
n + 1

ρ∞nn for 1 ≤ n < N/2 . (3.17)

The crossover between this solution and the fully underdamped solution Eq. (3.14) is given

in 47. Both distributions are determined by quantum fluctuations and are very different

from the Boltzman-type distribution for a driven resonator latched to a classical attractor.

3.2.2 The nonlinear response of the oscillator

In the stationary limit t ≫ γ−1, the oscillator state is described by the time-independent

density matrix ρ∞ and the oscillator dynamics is embedded in the time-dependent frame
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of reference R(t) [cf. Eq. (3.3)]. The mean value of an observable O is

〈O(t)〉∞ ≡ lim
t→∞
〈O(t)〉 = Tr〈ρ∞R†(t)OR(t)〉 . (3.18)

In the RWA, the stationary vibrations 〈x(t)〉∞ are sinusoidal,

〈x(t)〉∞ =
√
2 xZPF cos (ωext+ ϕ)|〈a〉∞|, 〈a〉∞ =

∑

lk

ρ∞lk 〈ψl|a|ψk〉 . (3.19)

It has been shown that the nonlinear response of the oscillator as a function of the driving ωex

shows resonances and antiresonances in the deep quantum regime.[47, 48, 71] The response

is proportional to the transmitted amplitude in a heterodyne measurement scheme and it

has already been measured for a weakly nonlinear oscillator.[72] Here, we would only like

to remark that this kind of measurement, or any measurement which probes the stationary

mean values as opposed to correlation functions does not allow to address the different

degenerate resonances separately, and to access the stationary distribution ρ∞ll directly. In

the next section, we will show that this can be achieved by measuring the power spectrum

of the photon number noise.

3.3 Photon noise in the deep quantum regime

In this section, we are specifically interested in the noise spectrum S(ω) of the autocorrelator

of the photon number n̂, 〈n̂(t + δt)n̂(t)〉∞. From Eq. (2.61), we find

〈n̂(t+ δt)n̂(t)〉∞ = Tr
[
n̂ exp

[
Mδt

]
n̂ρ∞

]
. (3.20)

Here, M is the Liouville superoperator, defined in Eq. (2.54). Since this correlator does

not depend on the initial time t as a consequence of the RWA, we can define the noise

spectrum in terms of a single average over quantum fluctuations according to

S(ω) = 2Re

∫ ∞

0

dt eiωt〈n̂(t)n̂(0)〉∞. (3.21)

It is useful to separate the contributions to S(ω) into those coming from the expectation

value of n̂, and those from its fluctuations, i.e.,

S(ω) = 〈n̂〉2∞δ(ω) + δS(ω),

δS(ω) ≡ 2Re

∫ ∞

0

dt eiωt〈δn̂(t)δn̂(0)〉∞. (3.22)

Here, δn̂ is the operator for the photon number fluctuations, i.e., δn = n̂− 〈n̂〉∞.
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Our path to compute the noise spectrum consists in three steps: i) We express the

virtual preparation n̂ρ∞ in terms of right eigenvectors of the superoperatorM. ii) We plug

the resulting decomposition into Eq. (3.20). Then, each term decays exponentially with a

different exponent which is given by the corresponding eigenvalue ofM. iii) We compute

the Fourier integral in Eq. (3.21), which thereby yields a sum over (overlapping) Lorentzian

peaks.

3.3.1 Noise spectrum in the underdamped regime

When all the multiphoton Rabi oscillations are underdamped, Ω0,N ≫ ΓN , the coherences

|ψN−n〉〈ψn| and |ψn〉〈ψN−n| are approximate eigenvectors of the LiouvillianM. Then,

M|ψn〉〈ψN−n| = −(Γn − iΩn,N−n)|ψn〉〈ψN−n| for n < N/2 ,

M|ψN−n〉〈ψn| = −(Γn + iΩn,N−n)|ψN−n〉〈ψn| for n < N/2 , (3.23)

with the level widths being given as Γn = γn = γ(n̄+1/2)N +γn̄ for n < (N −1)/2. For N

odd, Γ(N−1)/2 = γ(1+2n̄)(5N+1)/8+γn̄. Up to leading order in f/ν, the decomposition of

the virtual preparation n̂ρ∞ in terms of right eigenvectors ofM has the simple expression

n̂ρ∞ ≈ (N/2) ρ∞ −
∑

n<N/2

(N/2− n)ρ∞nn (|ψn〉〈ψN−n|+ |ψN−n〉〈ψn|) . (3.24)

Clearly, each term of the above decomposition yields a Lorentzian peak in the noise spec-

trum S(ω). The first term yields the contribution to S(ω) from the expectation value of

n̂, (N/2)2δ(ω). The remaining terms yield inelastic peaks associated to random transi-

tions between quasienergy states belonging to the same multiphoton doublet. Since the

populations ρ∞nn and ρ∞N−nN−n are approximately equal, peaks at opposite frequency have

approximately equal intensity. By putting together Eqs. (3.20), (3.21), (3.23), and (3.24),

we find S(ω) = (N/2)2δ(ω) + δS(ω) with

δS(ω) ≈
∑

n<N/2

Sn(ω) + SN−n(ω), (3.25)

Sn(ω) = SN−n(−ω) =
2Γnρ

∞
nn(N/2− n)2

(ω − Ωn,N−n)2 + Γ2
n

. (3.26)

Hence, the Lorentzian peaks are centred at the multiphoton Rabi frequencies Ωn,N−n and

have a resonance width of Γn. The factor (N − 2n)2/4 is the leading order expression for

the squared matrix element |〈ψn|n̂|ψN−n〉|2. Remarkably, the line intensities depend only

weakly on the driving f and on the temperature through the stationary distribution ρ∞nn.

Up to leading order, the driving f enters only in the splitting of the lines through the Rabi
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Figure 3.2: Photon noise spectrum at the N = 2- and the N = 3-photon resonance are shown
in panel (a) and (b) respectively for ν = 10−3ω0, f = ν/10, γ = Ω0,2/10 in (a) and γ = Ω0,3/10
in (b). Shown are the approximate results obtained with Eq. (3.25) (dashed green lines), and
the results from a full numerical solution of the general expression for the spectrum derived in
2.2(orange solid lines). The gray lines in panel (a) mark a zoom to the subleading off-resonant
transitions.
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frequencies. Notice that Eq. (3.25) is valid only in the vicinity of a multiphoton peak since

terms of order γ are not taken into account. In order to evaluate the tails of the peaks more

precisely, one has to take into account the contribution stemming from all eigenvectors of

M.

In the top and bottom panels of Fig. 3.2, we show the noise spectrum S(ω) for the cases

N = 2 and N = 3, respectively. The noise spectrum for N = 2 shows a pair of symmetric

peaks which correspond to the transitions |ψ0〉 ↔ |ψ2〉. Likewise, the noise spectrum for

N = 3 displays two pairs of symmetric peaks corresponding to the transitions |ψ0〉 ↔ |ψ3〉
and |ψ1〉 ↔ |ψ2〉. The green dashed lines mark the results from our approximate analytical

formula in Eq. (3.25) while the yellow solid lines show the data obtained by numerically

evaluating the expression in Eq. (2.65). An excellent agreement is found.

In Fig. 3.2(a), additional smaller side peaks of the order of f/ν are also visible, see the

black-dashed lines representing a ten-fold zoom. They are not associated to any resonant

transition between multiphoton states and are thus not captured by the leading order

expression given in Eq. (3.25). The particular subleading peaks in Fig. 3.2(a) belong to the

transitions |ψ0〉 ↔ |1〉.
These features have a direct analogy in the spectral correlation function of a static quan-

tum mechanical two-level system which is weakly coupled to a dissipative harmonic bath.[28]

For a general biased two-state system with anticrossing energy levels, the pair correlation

function is a sum of three Lorentzian peaks. The two inelastic peaks are symmetrically

located at finite frequencies and their width determines the inverse of the dephasing time.

For a biased static two-level system away from resonance, an additional quasielastic peak at

zero frequency appears which represents incoherent relaxation with the inverse relaxation

time given by its width. Since we consider here the case strictly at resonance (in the RWA),

no zero-frequency peak is present.

3.3.2 Photon antibunching

In general, the photon emission characteristics of a quantum mechanical resonator can show

peculiar nonclassical features. For instance, counterintuitive correlation phenomena such

as photon antibunching can occur, where the photon number correlation function for short

delay times is smaller than the one for classical, uncorrelated photons. This implies that the

probability for photons to arrive in pairs is suppressed.[2] Our approach provides a natural

framework to investigate a possible non-Poissonian statistics of the multiphoton events in

the nonlinear resonator. Therefore, we consider the normalized photon number correlation
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function or second-order coherence function defined as[2]

g(2)(τ) =
〈a†(t)a†(t + τ)a(t + τ)a(t)〉∞
〈a†(t)a(t)〉∞〈a†(t+ τ)a(t + τ)〉∞

. (3.27)

For long delay times τ , the counts of two photons with a delay time τ are statistically

independent events, g(2)(τ →∞) = 1. For vanishing delay times, we have

g(2)(τ → 0) = 1 +
〈n̂2〉∞ − 〈n̂〉2∞ − 〈n̂〉∞

〈n〉2∞
. (3.28)

Photon antibunching corresponds to the case g(2)(τ = 0) < 1 [cf. App. A]. For the fully

underdamped case, we find the expression

g(2)(τ = 0) =
2N(N − 1) + 4

∑N−1
1 n(n−N)ρnn

N2
= 1− 1

N
, (3.29)

which represents the known result of the second-order correlation function of the electro-

magnetic field [2]. Hence, the oscillator displays photon antibunching close to a multiphoton

transition. The second-order coherence of the stationary state of the quantum Duffing oscil-

lator at the N -th multiphoton resonance has the same value as the second order coherence

for an oscillator prepared in the single Fock state |N〉, in spite of its fluctuations over the

quasienergy states.

3.3.3 Lineshape of the noise spectrum close to a multiphoton

resonance

In presence of a small detuning from the multiphoton resonance, δω − δωN ∼ Ω0,N , the

states |ψ0〉 and |ψN〉 are no longer a resonant superposition of the Fock states |0〉 and |N〉.
Hence, the corresponding stationary occupation probabilities ρ00 and ρNN , given in Eq.

(3.16), become significantly different. In turn, the pair of peaks S0(ω) and SN(ω), which are

associated to the transitions |ψ0〉 ↔ |ψN 〉, become asymmetric such that S0(ω) 6= SN(−ω).
This behavior is shown in shown in Fig. 3.4(a) for the case around the 3-photon resonance.

The peak lineshapes can readily been evaluated and we find

S0(ω) =
2Γ0ρ

∞
00N

2(sin θ cos θ)2

(ω − εN + ε0)2 + Γ2
0

, SN (ω) =
2ΓNρ

∞
NNN

2(sin θ cos θ)2

(ω − ε0 + εN)2 + Γ2
N

. (3.30)

Their distance increases with the quasienergy splitting, εN − ε0 = sgn(δω − δωN)(Ω
2
0,N +

N2|δω − δωN |2)1/2, whereas the peak width does not change close to the multiphoton res-

onance, δω − δωN ∼ Ω0,N . The asymmetry is determined by the stationary occupation

probabilities ρ∞00 and ρ∞NN . From Eq. (3.16), we find

S(ω)

S(−ω) =
ρ∞00
ρ∞NN

= cot4
θ

2
=

[
Ω0,N

|εN − ε0| −N(δω − δωN)

]4
. (3.31)
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This expression is valid for ω close to the center of the largest peak, ω ∼ εN − ε0, and

|δω − δωN | not too large such that S(±ω)≫ γ.

In addition to the peaks at finite frequencies (which induce decaying coherent multi-

photon Rabi oscillations), also a zero frequency peak appears. This quasielastic peak is

associated to incoherent relaxational decay of the multiphoton Rabi oscillations and is also

known for the noise correlation function of a static biased quantum two level system [28].

In Fig. 3.3(b), we show the logarithm of the asymmetry ratio given in Eq. (3.31). The

asymmetry shows a clear maximum at approximately ε3 − ε0.
To further illustrate the asymmetry in the peak heights, we show in Fig. 3.3(c) the

peak maxima associated to the transitions |ψ0〉 → |ψ3〉 and |ψ3〉 → |ψ0〉. At the 3-photon

resonance (black dashed vertical line), both peaks are equal in height (symmetric noise

spectrum). Away from the resonance, the low (high) frequency branch aquires more spectral

weight for negative (positive) detuning.

3.3.4 Photon noise at zero frequency

Fluctuations of an oscillator (quasi)energy induce a broad (with width ∝ γ) zero frequency

peak in the noise spectrum of an observable whose mean value depends on the (quasi)energy

[73]. For weak driving f ≪ ν and at a resonance |δω − δωN | ≪ Ω0,N , the quasienergy

states of the Duffing oscillator have large fluctuations as several quasienergy states have

comparable occupation probabilities even at T = 0. However, the mean value of n̂ becomes

independent from the quasienergy, 〈ψn|n̂|ψn〉 ≈ N/2 for n ≤ N . As a consequence, the

contribution to the noise spectrum of n̂ coming from fluctuations δS(ω) does not have a

peak at zero frequency since δS(0) ∝ γ. Close to resonance, when |δω − δωN | ∼ Ω0,N ,

two dynamical effects compete: on one hand, the quasienergy fluctuations quickly decrease

for increasing detuning, i.e., moving away from resonance as the occupation probability of

the state |ψ0〉 approaches one. On the other hand, the mean value of n̂ becomes strongly

dependent on the quasienergy. As a result of this competition, the intensity of the zero

frequency noise plotted as a function of δω has two maxima at the two opposite sides of the

resonant value δωN . In Fig. 3.4, we show the zero frequency noise for the special case N = 2.

The yellow solid line represents the intensity at zero frequency computed numerically, while

the green dashed line is the leading order contribution (in f/ν)

δS(ω = 0) ≈ sin2(2θ)/4γ (3.32)
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Figure 3.3: (a) Asymmetric structure of the photon noise spectrum at frequency δω = δω3 + δ,
i.e., out of resonance for a detuning δ = 1.6 × 10−4ν for the same parameters used in Fig. 3.2(b)
(orange solid line). In addition, we show in the background the symmetric photon noise at the
resonant frequency δω3 (grey shadowed area). Moreover, we depict the inverted case δ → −δ,
which shows a symmetric behavior under the reflection ω → −ω (green solid line). (b) Noise
asymmetry via the logarithm of Eq. (3.31) for the same parameters as in (a). (c) Height of the
photon noise peak for the transition |ψ0〉 → |ψ3〉 (orange solid line), and |ψ3〉 → |ψ0〉 (green solid
line) as a function of the external frequency. The peak maximum is located at δω3 ± δ.
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Figure 3.4: Photon noise at zero probe frequency as a function of the external frequency for
the parameter set used in Fig. 3.2(a) evaluated around the second multiphoton resonance, δω ∼
−3ν/2. Shown is the comparison of the approach Eq. (3.32) as a green dashed line with the
numerical simulation as an orange solid line.

3.3.5 Noise spectrum towards the semiclassical regime

Next, we investigate the noise spectrum for larger driving strengths, f . ν. In order to

illustrate how the noise spectrum changes for increasing driving, we show the intensities of

the brightest peaks as a function of the driving strength for the N = 5-photon resonance in

Fig. 3.5(a). In Fig. 3.5(b), we also show the quasienergy spectrum, and the noise spectrum

for a comparatively large value of the driving amplitude f = ν is shown in Fig. 3.5(c). A

peak in the noise spectrum at frequency ω = εl − εk is associated to a single transition

|ψk〉 → |ψl〉 and is given by

S(ω) =
∑

lk

2ρ∞ll |〈ψl|a†a|ψk〉|2(γ(al − ak)2 + Γl + Γk)

(ω + εl − εk)2 + (γ(al − ak)2 + Γl + Γk)2
. (3.33)

Hence, the relative intensities of a pair of peaks at opposite frequencies is still related to the

occupation probability of the corresponding initial states via S(εl−εk)/S(εk−εl) = ρkk/ρll.

For weak driving, we have three pairs of approximately symmetric peaks as described

by Eq. (3.25). Each peak corresponds to a transition between two states belonging to a

multiphoton doublet of quasidegenerate states: |ψ0〉 ↔ |ψ5〉, |ψ1〉 ↔ |ψ4〉, and |ψ2〉 ↔ |ψ3〉.
For increasing driving, the spectrum becomes increasingly asymmetric. For moderate values
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Figure 3.5: (a) Height of the photon noise peaks corresponding to the transitions within the pair
|ψn〉 ↔ |ψm〉 as a function of the driving strength f . Each pair is marked by a solid and a dashed
line in the same color. In addition, we depict the rise of the zero frequency peak (black solid
line) as the driving strength increases. The black horizontal lines indicate the expected values
of the noise level evaluated up to leading order in f/ν by using Eq. (3.25). The parameters are
ν = 10−3ω0, δω = δω5. In panel (b), we show for the same parameters the quasienergy spectrum
as a function of the driving strength f . In panel (c), the photon noise spectrum as a function of
the probe frequency ω is shown for a large driving strength f = ν.

of the driving, the noise spectrum undergoes two major qualitative changes: i) the peak at

zero frequency becomes clearly visible; ii) a pair of peaks corresponding to the transitions

|ψ1〉 ↔ |ψ3〉 acquires a significant intensity. For f = ν, the peak associated with the

transition |ψ3〉 → |ψ1〉 is even the second brightest peak.

These qualitative changes can be explained in terms of a semiclassical description valid

beyond the weak driving limit. The RWA Hamiltonian in Eq. (3.4) can be rewritten in terms

of rotating quadratures, and interpreted as a quasienergy surface in phase space [74, 75]. It

has the shape of a tilted Mexican hat and is sketched in Fig. 3.1(c) for two values of f . The

larger f is, the stronger is the induced tilt. The local maximum and the minimum of the

quasienergy surface are the classical attractors. In the static frame, they describe stationary
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oscillations with a small and a large amplitude, respectively. In the vicinity of the attractors

the vibration amplitude and the slow part of the oscillation phase display slow vibrations

with frequency ∝ δω. In absence of resonant transitions, each quasienergy state can be

associated to a quantized quasiclassical orbit which lies on the internal surface around the

local maximum, on the external surface, or along the quasienergy well around the minimum.

For very weak driving, f ≪ ν/
√

2(N + 1), the quantum mechanical Fock states |n〉 with
n < N/2 are associated to quasiclassical trajectories on the internal surface around the local

maximum, whereas the Fock states with photon number n larger than N/2 are associated

to semiclassical orbits on the external surface. Within this representation, the multiphoton

transitions can then be reinterpreted as tunneling transitions between the internal and

the external parts of the surface [74, 75]. For comparatively larger driving, the zero-point

quasienergy associated to the slow vibrations around the minimum (∝ δω) becomes smaller

than the dynamical barrier height. Then, quasienergy states appear which are localized

in the quasienergy well. In turn, the noise spectrum becomes qualitatively different from

the one for weak driving. The small quantum fluctuations around the minimum of the

quasienergy surface can be described in terms of an effective auxiliary oscillator with ladder

operators b and b† and are given by [cf. App. C]

a = ah + b cosh r∗h − b† sinh r∗h . (3.34)

Here, ah is the amplitude of the stationary oscillations rescaled by
√
2xZPF [67, 68].

They can be mimicked by a local effective quantum temperature Te = (2kB ln coth r∗h)
−1

which depends on the squeezing factor r∗h [60, 61, 67, 68]. For f = ν, the states |ψ2〉, |ψ3〉,
and |ψ1〉 can be identified with the groundstate and first two excited states of the auxiliary

oscillator (but in the remainder of this discussion we keep the same labels for the states as

in the weak driving limit). The level spacing ε3 − ε2 is of the order of the frequency of the

slow classical oscillations of the amplitude and slow part of the phase.

Such oscillations appear in the noise spectral density of a classical oscillator as a pair

of peaks. In a nonlinear quantum oscillator whose quasienergy levels are not equidistant

and their distance exceeds the damping strength, the classical peaks have a “quantum”

fine structure [62]. In the present case of the Duffing oscillator, the classical noise peak is

splitted into two peaks associated to the nearest neighbor transitions between the ground

state and the first excited state, and the first and the second excited state, |ψ2〉 ↔ |ψ3〉
and |ψ3〉 ↔ |ψ1〉, respectively. Their peak height is proportional to the square of the

rescaled vibration amplitude ah and to the occupation of the initial state ρ∞nn. The latter,

in particular, is governed by the quantum temperature Te. For the ratio of the peak heights,

we find [62]
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S(ε3 − ε2)
S(ε2 − ε2)

≈ ρ∞22
ρ∞33
≈ coth2 r∗h ≈

ρ∞33
ρ∞11
≈ S(ε1 − ε3)
S(ε3 − ε1)

. (3.35)

Next nearest neighbor transitions can also yield peaks in the noise spectra of a Duffing

oscillator [68]. In the present case, the transitions |ψ2〉 ↔ |ψ1〉 yield a pair of dimmer peaks,

however, located at frequencies outside the frequency range shown in Fig. 3.5.

In the weak damping, weak driving regime discussed so far, the quasienergy well around

the minimum is still very shallow, and the oscillator can escape from the small amplitude

attractor via tunneling. Therefore, the oscillator is not latched to any of the attractors

and the noise spectral density has also peaks which are associated to intrawell transitions.

In particular, the pair of peaks with the smallest splitting describes coherent tunneling

oscillations between the internal and the external part of the quasienergy surface (coherent

dynamical tunneling or multiphoton Rabi oscillations).

Before closing this section, we mention that for the stronger driving f = ν, also a zero

frequency peak appears in the noise spectrum, see Fig. 3.5(c), although the frequency

detuning has been fixed to the 5-photon resonance δω = δω5. However, as discussed above,

this resonance condition is only valid for small f ≪ ν, which is obviously not fullfilled.

So the larger driving induces an effective small detuning away from the exact avoided

quasienergy level crossing and generates an effective bias. Then, a relaxation pole appears

in the relevant self energy [28] which corresponds to a quasielastic relaxation peak at zero

frequency.

3.3.6 Dependence of the noise spectrum on damping and tem-

perature

So far, we have analyzed the case of zero temperature and small damping, n̄ ≪ 1 and

γ ≪ Ω0,N . In this section, we briefly address how the noise spectrum is modified for larger

damping and finite temperature by presenting numerical results of the spectrum in a broad

parameter range.

In Fig. 3.6(a), we show S(ω) for different values of the damping for the 3−photon
resonance where δω = δω3. As expected, the peaks in the noise spectrum get broader

for increasing damping. Outside the fully underdamped regime, the two peaks of the pair

associated with the transitions |ψ0〉 ↔ |ψ3〉 start to overlap and eventually merge into a

single peak at zero frequency. Thereby, the zero frequency noise is no longer suppressed

S(ω ≈ 0) ∝ γ−1, since incoherent relaxation prevails over coherent decay for large damping.

The peaks associated with the underdamped transitions |ψ1〉 ↔ |ψ2〉 are still described by

Eq. (3.25), even when the spectrum has a peak at zero frequency. The decrease in the peak
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Figure 3.6: Photon noise at the 3-photon resonance, δω = δω3, as a function of the probe
frequency. In panel (a), we show the behavior when going from the coherent to the incoherent
regime by increasing the damping constant from γ0 ≪ Ω0,3 to γ3 = Ω0,3 (at T = 0). In panel
(b), we fix the damping constant to γ = Ω0,3/10 and show the noise temperatures increasing from
zero (T = 0) up to finite temperatures (T ≫ ω0). The remaining parameters are ν = 10−3ω0 and
f = ν/10.
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intensities reflects the decrease of the populations ρ∞11 and ρ
∞
22 in the partially underdamped

regime.

The dependence of the noise spectrum on temperature is shown in Fig. 3.6(b) and

behaves qualitatively similarly. For small temperatures n̄ ≪ 1, the spectrum is described

by Eq. (3.25). The temperature dependence enters in the line widths of the quasienergy

levels as well as in the stationary distribution ρ∞nn. For larger temperatures, the two low-

frequency peaks merge into a single peak at zero frequency and the side peaks becomes

increasing broader as expected.

3.4 Conclusions

In recent years, the rich phenomenology of driven and damped nonlinear quantum oscil-

lators has been impressively consolidated, including their nonlinear response behavior in

form of resonant and antiresonant amplification, quantum coherent multiphoton Rabi oscil-

lations, quantum activation and quantum heating. Gradually, the nontrivial effects visible

in noise correlation functions have also moved to the focus of interest. Those become rel-

evant whenever a nonlinear quantum oscillator is used as a central element in an amplifier

or quantum measurement device. In this Chapter, we have analyzed the noise properties of

the quantum Duffing oscillator in the regime when only few quanta are excited. Then, the

nonlinear response shows pronounced multiphoton peaks which are associated to resonant

multiphoton Rabi oscillations. The noise properties of these multiphoton transitions show

a rich phenomenology. To obtain the noise spectrum by analytical means, we invoke the

Lax formula for the autocorrelation function of the photon number at different times and

calculate its Fourier transform. Exactly at a multiphoton resonance, the noise spectrum

consists of a collection of pairs of related resonances which are located at opposite frequen-

cies and which are equal in height. Each pair is associated to a multiphoton doublet. In

spite of large fluctuations over the oscillator quasienergy, no quasielastic peak occurs at zero

frequency. This is a consequence of a special symmetry of the quantum Duffing oscillator:

all quasienergy states which are associated to a multiphoton doublet have the same mean

value of the photon number n̂.

Slightly away from a multiphoton resonance, the noise spectrum becomes asymmetric

and the two resonances are no longer equal in height. In addition, as the mean values of

n̂ become different for quasienergy states with comparable occupations, the quasielastic

peak emerges. Since the quasienergy fluctuations are suppressed away from a multiphoton

resonance, the intensity of the quasielastic peak as a function of the detuning displays a

maximum at the two opposite sides of the resonant value δωN .

Our approach also allows us to evaluate the transition to the semiclassical regime by
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increasing the photon number by a larger driving amplitude. Then, a quasiclassical quasipo-

tential landscape in phase space is a convenient tool to understand the stationary nonequi-

librium dynamics. This view directly leads to quantum mechanical squeezed states which

exist close to the local minimum of the quasienergy landscape. A harmonic expansion al-

lows us to characterize the quantum fluctuations via an effective quantum temperature. At

larger (real) temperature and damping strengths, all these quantum coherent features are

washed out.

Although the time-resolved detection of noise properties of quantum observables of

driven resonators requires considerably more experimental effort, we are confident that

future experiments will soon elucidate the importance of quantum noise in these nonequi-

librium systems.



Chapter 4
Qubit state detection using the quantum

Duffing oscillator

The efficient and reliable detection of the quantum mechanical state of a nanoscale system is

a key component of all present designs of quantum circuits.[13] One nondestructive readout

scheme currently in use for the important class of superconducting flux qubits is based on

a heterodyne detection of the dynamic response of a dc superconducting quantum interfer-

ence device (dc-SQUID) detector which is inductively coupled to the qubit.[76, 77] Thereby,

the dc-SQUID is operated in its linear regime as a shunted variable inductor in a resonant

circuit. In this set-up, its resonance frequency depends on the magnetic flux generated by

the qubit being in the ground or excited state. Hence, measuring the impedance of the

resonant circuit as a function of an externally applied bias current yields two characteris-

tic Lorentzian resonances at two different resonance frequencies, which depend on the two

qubit states. This detection scheme, hence, allows us to infer the state of the qubit from

the resonant response of the detector in the nanocircuit. In order that a reliable discrimi-

nation of the two qubit states becomes possible in this continuous type of readout design,

the probability distributions for the readout values have to be only weakly overlapping.

Due to thermal and quantum fluctuations, the readout naturally is a random process,[77]

and the noise properties of the nanocircuit around the detector resonances determine the

discrimination power of the set-up.

An alternative readout scheme is the Josephson bifurcation amplifier.[17, 18] It is based

on a classical driven nonlinear resonator and exploits the classical bifurcation point of

the dynamically induced bistability with a small- and a large-oscillation state.[78] The

response (or output) of the nonlinear resonator around the bifurcation point is very sensitive

to small changes in the circuit parameters. This is an ideal prerequisite for a sensitive

detector. Depending on the state of the qubit to be sensed, the resonator bifurcation point
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is shifted to a different frequency, allowing for large discrimination powers between the

large- and small-oscillation detector state of up to 98%.[79] Nevertheless, since the detector

is a classical macroscopic device, it introduces considerable dephasing and relaxation to

the qubit state, yielding a reduced contrast of the qubit Rabi oscillations of less than

90%.[79] This implies that the thermal noise properties of the nonlinear detector (together

with semiclassical corrections due to quantum fluctuations) around the classical bifurcation

point determine the discrimination power between the two states close to the classical

bifurcation point.[63, 74, 80, 81] Hence, it would be desirable to combine the advantage of

a large discrimination power of a nonlinear detector with the reduced noise sensitivity of a

nanocircuit operated close to the quantum regime.

An experimental realization of a driven nonlinear resonator in its few-photon quan-

tum regime is in principle possible with present set-ups and technology. In a recent

experiment,[82] a nanoscale superconducting microwave resonator has been driven to its

nonlinear regime by fast frequency-chirped voltage pulses. At low enough temperature,

the regime of quantum noise has been reached. In this experiment, the applied driving

strength has been rather large, which corresponds to a large photon number transferred

to the resonator. No particular few-photon resonances have been revealed and the non-

linear response is similar to previous schemes on classical bifurcation detectors using a

time-dependent driving frequency.[83] However, the route to the few-photon regime seems

to be clear.

In this chapter, we introduce a combination of both strategies, bifurcation and disper-

sive readout, and propose a nonlinear detector scheme in the form of a nonlinear resonator

with an amplitude modulated drive in its few-photon deep quantum regime. In particular,

in this regime, we shall exploit sharp multiphoton resonances in the nonlinear resonator,

[47, 48, 71] which are induced by the external driving field close to the fundamental res-

onator frequency [cf. Chapter 3]. They can be used for the detection of the states of

the qubit and offer the advantage of being rather sharp and externally tunable by vary-

ing the parameters of the external drive. The concept is an extension of the case of a

linear resonator, where the fundamental resonance frequency is shifted depending on the

qubit state. However, the multiphoton resonances in the nonlinear detector close to the

detector’s fundamental frequency show very small line widths. The width of the N -photon

resonance is determined by the corresponding N -photon Rabi frequency, which decreases

with increasing photon number. The sharp resonance lines, in turn, offer the advantage

that only a few measurement cycles are necessary to ensure a large discrimination power.

To understand the back action of the nonlinear multiphoton detector on the qubit state,

we determine the relaxation rate of the qubit due to the coupling to the driven dissipa-

tive nonlinear oscillator around a multiphoton resonance. Notably, the back action of the
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resonator on the qubit is sufficiently weak, yielding to a good qubit-state measurement

fidelity. Furthermore, we show that the discrimination power of the set-up is rather large

and beyond 98% for our choice of realistic parameters of a flux qubit circuit. In fact, it

gives rise to an enhanced measurement fidelity as compared to the linear parametric os-

cillator. Furthermore, we show that the nonlinear multiphoton detector does not have a

worse measurement efficiency as compared to the linear detector scheme. We determine

the measurement efficiency of the set-up via the ratio of the time it takes to collect enough

information on the qubit state (measurement time) and the relaxation time. It turns out

that the measurement efficiency does not considerably decrease as compared to the linear

case. Hence, the detection scheme indeed has the advantage of an overall reduced back

action in combination with an enhanced discrimination power, together with a sufficiently

large measurement efficiency. The contents of this Chapter have been published in Ref. 69.

4.1 Persistent current qubit

We consider the experimental set-up used in Ref. 84 for the qubit, consisting of a supercon-

ducting loop interrupted by three Josephson junctions, two of which have equal Josephson

energies, while the coupling energy of the third is smaller, in order to yield a double-well

potential configuration. In this low-inductance circuit, the flux through the loop remains

close to the externally applied value Φqb. When the latter is close to (n + 1/2)Φ0, where

n ∈ Z and Φ0 is the flux quantum, the device is described by the Hamiltonian in terms of

the Pauli matrices σx,z as

Hqb = ǫ σz/2−∆ σx/2, (4.1)

with the two eigenstates | ↑〉 and | ↓〉 of σz corresponding to the two persistent current

states ±Ip. The minimal energy level splitting ∆ and the current Ip are determined by the

charging and Josephson energies of the Josephson junctions. The asymmetry is given by

ǫ = 2Ip(Φqb − Φ0/2). In the energy eigenbasis, the Hamiltonian follows as

Hqb = ωqbτz/2 , (4.2)

where ωqb =
√
ǫ2 +∆2 is the proper frequency of the qubit, and τz = σz cos θ− σx sin θ the

corresponding Pauli matrix with tan θ = ∆/ǫ. The detection of the qubit state essentially

involves the measurement of the magnetic flux produced by the persistent current states.

To this end, one can use the driven SQUID as a sensitive magnetometer, [76] operating in

its nonlinear region. Below, we will restrict to the few-photon deep quantum regime.
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4.2 Driven SQUID as a nonlinear quantum detector

We consider the standard setup of a dc-SQUID formed by two Josephson junctions in a

superconducting loop, but subject to a time-dependent external bias current.[17] Moreover,

we assume a negligible ring inductance LR of the SQUID (low-inductance approximation).

[85] In this configuration, the superconducting phase differences at each junction, χ1 and

χ2, play the role of dynamical variables with a constraint given by the flux quantization,

i.e., χ1 − χ2 = −Φsq/ϕ0 ≡ −2πϕex, where Φsq is the external magnetic flux piercing the

superconducting loop and ϕ0 = Φ0/2π. Note that within the low-inductance approximation,

LRI0c ≪ ϕ0 with the critical current I0c of the SQUID. Thus, the system is described by

the generalized coordinate χ+ = (χ1 + χ2)/2, with the effective Lagrangian [86]

Lsq(χ+, χ̇+, t) = ϕ2
0C0 χ̇

2
+ + EJ cos (πϕex) cos(χ+)− ϕ0Ib(t)χ+, (4.3)

where we have assumed a symmetric loop, with EJ = ϕ0I0c as the Josephson energy, and

C0 as the capacitance of each junction. Moreover, we include a time-periodic ac current

Ib(t) = I0 cos(ωext) with frequency ωex and amplitude I0 injected “into” the loop. The above

Lagrangian describes an effective superconducting loop (with a negligible ring inductance)

with a single Josephson junction [77] with a tunable Josephson energy EJ cos(πϕex), critical

current Ic = 2I0c| cosπϕex|, cross-junction phase difference χ+, and capacitance C = 2C0.

In order to tune the resonance frequency, the SQUID is shunted [17] with a capacitance

Cs ≫ C. Next, we shall establish the optimal working point of the qubit-detector system,

where the dissipative influence entering via the detector is minimal.

4.2.1 Qubit-detector interaction

The qubit and the SQUID are coupled by means of their mutual inductance M .[9, 77]

Thereby, the SQUID induces the flux MI	 in the qubit loop, where I	 is the circulating

current in the SQUID. The latter can be determined by using current conservation in the

loop and the Josephson relations for the two junctions in the SQUID. For the symmetric

SQUID,[77] it follows that I	(t) = Ic0 sin(πϕex) cos(χ+(t)). Thus, the total magnetic flux

in the qubit is affected by its coupling with the SQUID, and it is composed of the external

flux and the SQUID-generated contribution, i.e., Φqb → Φqb +MI	(t). This implies that

the energy bias of the qubit acquires a contribution that depends on the circulating current

in the SQUID, leading to the effective asymmetry ǫf = ǫ(Φqb)+β(I	(t)), where β(I	(t)) =

2MIpI	(t).

Therefore, two sources of noise can affect the qubit dynamics, i.e., the fluctuations

from the external flux Φqb and from the bias current Ib(t) in the SQUID,[87] which is

related to χ+ by the Josephson equation Ib(t) = Ic0 sin(χ+(t)). By tuning the bias current
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to the critical value I∗b characterized by (dβ/dIb)Ib=I∗
b
= 0, the influence from current

fluctuations in the SQUID can be minimized [87] and the optimal working point is reached.

For a nonsymmetric SQUID, the lowest-order contribution is linear in Ib,[86, 87] while in

the symmetric case this lowest-order contribution vanishes, which implies that around the

optimal working point the phase χ+ is very small, χ+ ∼ 0. In the following, we consider a

setup close to the optimal point, where we can expand the expression for I	 up to second

order in χ+, yielding the interaction term

Hqb−sq = g̃χ2
+σz , (4.4)

with the coupling constant g̃ = 2IpI0cM sin(πϕex).

4.2.2 SQUID modelled as a Duffing oscillator

As we operate the detector in its nonlinear regime, we expand the potential term in Eq.

(4.3) around the optimal point up to fourth order in χ+

V (χ+) = −EJ cos (πϕex) cos(χ+) ≃ V0 +mω2
0χ

2
+/2− α̃χ4

+ , (4.5)

where m = ϕ2
0Cs is the effective mass, ω0 = (Ic/ϕ0Cs)

1/2 the corresponding frequency,

and α̃ = mω2
0/4 the strength of the nonlinearity. We switch to a description in terms

of creation and annihilation operators a and a†, defined by χ+ = χ0(a + a†)/
√
2 with

χZPF =
√
1/(mω0) being the zero-point fluctuations of the phase χ+. Adding the time-

dependent driving term yields us to the Hamiltonian of the driven SQUID described by the

quantum Duffing oscillator model

Hsq = ω0 a
†a− ν(a + a†)4/12 + f(a+ a†) cos (ωext) , (4.6)

with nonlinearity and driving strength given by ν = 3Icϕ0χ
4
ZPF/4 and f = I0ϕ0χZPF/

√
2,

respectively. Similarly, the interaction Hamiltonian in terms of ladder operators reads

Hqb−sq = g(a+ a†)2σz/2 , with g = g̃χ2
ZPF (4.7)

Notice that g and ν depend on the external flux ϕex, i.e., they are tunable in a limited regime

with respect to the desired oscillator frequency ω0, where the coupling term is considered

as a perturbation to the SQUID (g < ν), in order to keep the dynamics of the oscillator to

dominate. The dependence of the dimensionless ratios ν/ω0 and g/ω0 is shown in Fig. 4.1.

We restrict to parameters of the external magnetic flux in the SQUID loop, which generate

a weak nonlinearity and a weak qubit-detector coupling strength, {ν, g} ≪ ω0, i.e., for

ϕex ∼ 0. A typical dependence of both parameters for typical experimental parameters
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Figure 4.1: Dependence of the dimensionless ratios ν/ω0 and g/ω0 on the external flux ϕex in
the SQUID. The parameters of the SQUID are chosen as Cs = 7.65 pF, Ic0 = 200 nA, Ip = 300
nA, and M = 40 pH. [77]

is shown in Fig. 4.1. Both cases of g > ν and g < ν can be achieved. For our purpose

of a qubit-detector setup, the qubit-resonator coupling typically will be required as small

enough in order to ensure a minimal back action. On the other hand, the qubit-detector

coupling should be large enough so that an efficient detection of the qubit state becomes

possible. As is shown in Fig. 4.1 and will be quantitatively discussed in the sequel of this

Chapter, this can indeed be achieved for realistic parameters. Moreover, the choice of the

parameter regime also justifies us to restrict the influence of the resonator coupling on the

effective qubit bias to lowest order in χ+ only. Eventually, the total system is described by

the Hamiltonian H(t) = Hqb +Hqb−sq +Hsq(t).

4.3 Coherent dynamics and rotating-wave approxima-

tion

Before we address the dynamics of the detection scheme based on the nonlinear response

of the Duffing oscillator to the applied periodic driving in the stationary regime, we discuss

the coherent dynamics generated by H(t), which is periodic in time.

Here, we are interested in exploiting few-photon transitions in the detector around the

fundamental detector frequency ω0. Hence, higher harmonics have a small amplitude and

can effectively be neglected. Furthermore, we focus on the regime of weak nonlinearity,

weak driving, and weak qubit-detector coupling as characterized by {ν, f, g} ≪ ω0. The

proposed mechanism of detection is most conveniently discussed in the simplest case, when

the dynamics occurs close to the fundamental oscillator resonance ωex ∼ ω0 ∼ ωqb/2.
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Then, the rotating-wave approximation (RWA) can be invoked in order to obtain a simple

interpretation in terms of few-photon transitions. In passing, we note that we have also

performed a complete analysis in terms of full Floquet theory, thereby avoiding the RWA.

For all cases shown below, both approaches yield coinciding results.

We switch to the rotating reference frame by the transformation R(t) = exp{i(a†a +
τz)ωext}. Then, the RWA eliminates the fast oscillating terms from the transformed Hamil-

tonian H = R(t)H(t)R†(t)− iR(t)Ṙ†(t) and the time-independent Schrödinger equation in

the rotating frame H|ϕα〉 = εα|ϕα〉 follows, with the RWA Hamiltonian given by

H = Hqb +Hqb−sq +Hsq , (4.8)

with

Hqb =
1

2
δωqbτz ,

Hqb−sq = g cos θ a†a τz +
g

2
sin θ (a† 2τ− + a2τ+) ,

Hsq = δω a†a− ν

2
a†a a a† +

f

2
(a+ a†) .

The detuning frequencies follow as δω = ω0 − ωex and δωqb = ωqb − 2ωex, and τ
± = (τx ±

iτy)/2. The quasienergies εα and the RWA eigenstates |ϕα〉 result from a straightforward

numerical diagonalization of H. In the static frame, an orthogonal (at equal times) set

{|ϕ̃α(t)〉} of an approximate solution of the Schrödinger equation follows as

|ϕ̃α(t)〉 ≃ e−iεαt|φα(t)〉 = e−iεαte−i(a†a+τz)ωext|ϕα〉. (4.9)

Here, the quasienergy states |φα(t)〉 ≡ e−i(a†a+τz)ωext|ϕα〉 are time periodic with period

2π/ωex and form a complete basis that will be used below for the description of the dissipa-

tive dynamics. We note that an analytic expression for the multi-photon resonances would

follow from a Van-Vleck perturbative approach in a similar manner as for the pure quantum

Duffing oscillator.[47, 48] However, the resulting expression will be cumbersome and not

further illuminating for the present purpose. We note, furthermore, that the qubit-detector

interaction occurs via a parametric coupling g cos θ a†aτz , and via a two-photon coupling

g sin θ (a† 2τ− + a2τ+)/2.

4.4 Detection in the few photon regime

4.5 Dissipative dynamics

The electronic nanocircuit is embedded in a dissipative environment. In particular, the

SQUID is shunted with an Ohmic resistor, which yields dissipative fluctuations ξ(t).[28]
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We focus to the case of an underdamped SQUID, where the shunt resistance is large, [9, 17]

and use the standard harmonic bath in order to model the fluctuations, which are rooted in

current fluctuations and can be encoded in the Ohmic spectral density J(ω) = γω.[28] They

couple to the resonator’s dipole operator, i.e., Hξ = χ+ξ(t). Thus, the time evolution of

the reduced density operator ρ(t) is described in terms of the master equation Eq. (2.50).

We note that, in the same way, the direct coupling of the qubit to the electromagnetic

fluctuations could be included. However, we have checked [60] that for a related set-up of

a flux qubit coupled to a harmonic oscillator, such a direct dissipation of the qubit yields

only minor quantitative corrections, which should be included in a quantitative description

of an experiment,[87] but do not add qualitatively new physics.

In order to measure the dynamic response of the resonator to the external drive at

asymptotically long times, a heterodyne detection scheme such as in Ref. 72 can be used,[77]

where the coupled qubit-oscillator system approaches the steady state ρ∞. In this regime, we

compute the nonlinear response of the detector, characterized by the mean value 〈χ+〉∞(t)

at asymptotic times (where 〈· · · 〉∞ = Tr[(· · · )ρ∞]). As we restrict the discussion to the

regime close to the first harmonic (small detuning), higher harmonics can be neglected and

we immediately obtain

〈χ+〉∞(t) =
∑

kl

ρ∞kl
(
a†lk exp[iωext] + alk exp[−iωext]

)
. (4.10)

As the system is driven with frequency ωex, 〈χ+〉∞(t) also oscillates with time. Its amplitude

is given by

A =
∑

kl

ρkl(a
†
lk + alk) . (4.11)

Correspondingly, we evaluate the population difference 〈σz〉∞(t) of the qubit states and

obtain

〈σz〉∞(t) = sin θ
∑

kl

̺∞kl (τ
+
lk exp[2iωext] + τ−lk exp[−2iωext]) + cos θ

∑

kl

ρ∞kl τ
z
lk , (4.12)

where τ zlk = 〈ϕl|τz|ϕk〉 and τ±lk = 〈ϕl|τ±|ϕk〉. The population difference oscillates, with a

maximal value given by

P∞ =
∑

kl

ρkl
(
τ zlk cos θ + τxlk sin θ

)
. (4.13)

4.5.1 Detector response for weak coupling to the qubit

Consider a finite coupling of the detector to the qubit whose state is to be sensed, i.e., g 6= 0.

The coupling inevitably induces relaxation and decoherence in the qubit, characterized by

the relaxation and dephasing rate, Γ and Γd, respectively. Typically, the detector couples
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only weakly to the system, i.e., g ≪ ωqb. Then, the associated relaxation and dephasing

times (T1 and T2, respectively) are still much larger than the corresponding relaxation time

scale for the detector given by 1/γ. In passing, we note that the corresponding relaxation

time around a resonant multiphoton transition (in the underdamped case) has been shown

in Refs. 71,48 to be comparable to γ. Moreover, we bias the qubit with a large asymmetry,

ǫ≫ ∆ in order to “gauge” the detector response.

For a rough evaluation of the order of magnitude of the involved time scales, we may

neglect the nonlinearity of the detector (ν = 0) for the moment and estimate the effective

relaxation rate for the qubit coupled to an Ohmically damped harmonic oscillator.[88] This

model can be mapped to a qubit coupled to a structured harmonic environment with an ef-

fective (dimensionless) coupling constant κeff = 8γg2/ω2
0. For the realistic parameters used

in Fig. 4.1 and g = 1.2× 10−3ω0, we find that κeff ≃ 10−10, giving rise to an estimated re-

laxation rate [28, 88] Γharm ≃ (π/2) sin2(θ) κeff ǫ ≃ 10−13ω0 (evaluated at low temperature).

Hence, this illustrates that we can easily achieve the situation where Γharm ≪ γ required

for this detection scheme. Then, for a waiting time (after which we start the measurement)

much longer than the relaxation time γ−1 of the nonlinear oscillator, but still smaller than

Γ−1, the oscillator is able to reliably detect the qubit state. In fact, under these conditions,

the state of the qubit, apart from the inevitable dephasing, remains unaffected in a time

window before it reaches its global stationary state and an effective shift of the oscillator’s

eigenfrequency arises due to the parametric coupling term ∼ g cos θ n τz in Eq. (4.8). Treat-

ing the qubit-detector interaction term in Eq. (4.7) perturbatively to lowest order in g, the

eigenfrequency shift follows straightforwardly as

ω0 → ω0 + g 〈σz〉 .

Thus, the nonlinear response is shifted by −g (+g) if the qubit is prepared in the state

〈σz〉 = −1 (〈σz〉 = +1). This is illustrated in Fig. 4.2, in which we show the nonlinear

response of the resonator for the uncoupled (blue dashed line) and the coupled (black solid

line) case. For a fixed value of g, the shift between the two cases of the opposite qubit

states is given by the frequency gap δωex ≃ 2 g. Figure 4.3(a) shows the nonlinear response

of the detector for the two cases when the qubit is prepared in one of its eigenstates: |↑〉
(orange solid line) and |↓〉 (black dashed line).

An important feature of a detection scheme is that it is efficient in discriminating the

states to be detected. This can be quantified by the discrimination power of the detector,

which can be defined for our case as[76]

D(ωex) =
∣∣A|↑〉(ωex)− A|↓〉(ωex)

∣∣ . (4.14)

The result for D(ωex) is shown in Fig. 4.3 (b). The discrimination power shows a rich

structure of local maxima and minima, which indicates that it can be tuned directly by
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Figure 4.2: Nonlinear response A of the detector as a function of the external driving frequency
ωex in the presence of a finite coupling g = 0.0012ω0 to the qubit (black solid line). The blue
dashed line indicates the response of the isolated detector. The parameters are ν = 0.01ω0,
f = 0.006ω0, T = 0.006ω0, γ = 1.6 × 10−4ω0, and ǫ = 2.2ω0 and ∆ = 0.05ω0, in correspondence
to realistic experimental parameters [77].

tuning the driving frequency. It is moreover important to realize that the discrimination

power can be optimized by tuning g. In the optimized case, a local maximum of the

multiphoton resonance for one qubit state can be made to coincide with a local minimum

of the response for the opposite qubit state yielding to a maximal discrimination power.

An example where the discrimination power has been optimized with respect to the three-

photon resonance is shown in Fig. 4.3 (b).

4.6 Backaction in the qubit

Another important prerequisite for a useful detection scheme is that the coupling of the

qubit to the detector around a multiphoton resonance does not generate a destructive back

action on the qubit dynamics. In this section, we show that the back action in this design

is surprisingly small for a realistic choice of parameters.

The back action of the detector on the qubit arises in the form of two contributions

from the coupling. First, this coupling has a parametric component H1 = g cos θ n τz,

which commutes with the Hamiltonian. Thus, in the presence of a coupling of the oscillator

to the bath, this term only produces dephasing and no relaxation, as it is, for instance,
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Figure 4.3: (Color online) (a) Nonlinear response A of the detector coupled to the qubit prepared
in its ground state |↓〉 (orange solid line) and in its excited state |↑〉 (black dashed line) for the
same parameters as in Fig. 4.2. The quadratic qubit-detector coupling induces a global frequency
shift of the response by δωex = 2g. (b) Discrimination power D(ωex) of the detector coupled to
the qubit for the same parameters as in (a).

required for a quantum non-demolition measurement. This part guarantees an efficient

detection of the qubit state. The second component H2 = g sin θ(a† 2τ− + a2τ+)/2 in the

coupling term yields transitions in the qubit when two-photon processes are induced in the

detector by the external driving and/or by dissipative transition. Since, at low temperature,

dissipation is dominated by photon leaking and the driving is very weak, the decay rate

of the qubit from its excited state to its ground state accompanied by the emission of two

oscillator photons, largely exceeds the excitation rate from the ground state to the excited

state accompanied by the absorption of two photons originally coming from the bath or the

driving. On the other hand, when the effective oscillator frequency is close to a multiphoton

resonance, photon absorption in the coupled system is enhanced and thus the asymptotic

qubit population might be reduced.

Thus, for a large asymmetry |ǫ| ≫ ∆, peaks and dips in the qubit population difference

P∞ are expected when multiphoton transitions in the detector are induced. This is what is

shown in Fig. 3.4(a), where P∞ is shown for several values of f . For an easier orientation,

we show in addition the corresponding stationary nonlinear response of the detector in Fig.

3.4(b). For increasing driving, the deviation from the expected value P∞ = −1 becomes
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Figure 4.4: (Color online) (a) Asymptotic population difference P∞ of the qubit states, and (b)
the corresponding detector response A as a function of the external frequency ωex for the same
parameters as in Fig. 4.2.

more pronounced for larger photon numbers N and larger driving f . The reason is that,

for increasing driving, a larger Rabi frequency for the corresponding transition results [cf.

Eq. (3.9)]. From Fig. 3.4, it follows that when the qubit is prepared in its ground state

|↑〉 (we consider ǫ ≫ ∆) the back action is very small. The impact is less than 2% for the

considered realistic parameters, yielding to a readout contrast of more than 98%. This has

to be compared with presently achievable readout contrasts of less than 90%, [79] which

results from an architecture with a classical Josephson bifurcation amplifier. In passing,

we note that the detector response can also be calculated from the stationary solution of

the master equation (2.52), but for the parameters considered here (in particular because

of the large qubit bias), this coincides with the shifted one.

Moreover, we note that the components H1 and H2 can be tuned by ǫ and ∆. There-

fore, g sin θ can in principle be eliminated by setting ∆ = 0, which would imply that the

measurement scheme keeps the state of the qubit without any relaxation but only pure

dephasing (ideal quantum nondemolition measurement). However, turning off the splitting

implies a major change in the experimental design of the sample, since this parameter is

determined by the Josephson energy in the junctions of the superconducting flux qubit and,

thus, may not be easy to be realized.

The back action of the detector on the qubit should be small not only when the qubit



4.7 Efficiency of the measurement 59

is in its ground state but also when it is in its excited state. We therefore address next the

relaxation rate of the qubit. Energy relaxation in the qubit induced by the measurement

process will be proportional to the fluctuations of the square of the phase operator χ+

induced by the detector’s environment.[13, 76] This relaxation process is characterized by

the transition rate [13, 76]

Γ ≃ g̃2 sin2 θ Sχ2
+
(−ωqb), (4.15)

which has been computed perturbatively to lowest order in g̃. Here,

Sχ2
+
[ω] =

ωex

4π

∫ 2π/ωex

0

dt

∫ +∞

−∞

dτeiωτ 〈{χ2
+(τ + t), χ2

+(t)}〉

(4.16)

is the symmetrized power spectrum of χ2
+ averaged over the period of the external driving

[cf. Sec. 2.2], with {, } indicating the anticommutator. The fact that information on

the qubit state is acquired in the detector via the same channel by which dissipation is

introduced is nicely reflected in the expression of the relaxation rate in Eq. (4.15). In Fig.

3.5(a), the relaxation rate Γ is shown for a large negative asymmetry in the qubit. The

relaxation rate is strongly peaked around the multiphoton transitions. There, the noise

from the detector absorbs more energy from the qubit around the multiphoton transition

(0, N) since the parametric component H1 of the coupling becomes negligible, leading to a

dominant relaxation process induced by H2.

We emphasize that although the relaxation is maximally enhanced at a multiphoton

resonance, the absolute value of Γ is still very small in comparison to the damping constant,

e.g., Γ/γ ∼ 10−6. Thus, we can infer the qubit state with sufficient precision by operating

the detector in its steady state regime as it has been assumed in Section 4.5.1.

4.7 Efficiency of the measurement

The measurement of the qubit state requires a coupling to the outer world, which clearly

introduces noise to the qubit. In turn, the noisy detector yields measurement results, which

are statistically distributed. This implies that several measurements have to be performed

to obtain a reliable statistics. Hence, the relaxation time of the qubit state should not

only exceed the typical relaxation time of the detector but also the time it takes to acquire

sufficient information to infer the qubit state (the measurement time Tmeas). Hence, for a

good measurement fidelity, Tmeas should be smaller than the characteristic time Γ−1 given

by Eq. (4.15), or, Γmeas/Γ≫ 1.

The measurement time can be formalized [9, 13, 76] as the ratio of the symmetrized

power spectrum Sχ+
of the phase operator χ+ (evaluated at zero frequency) and the square
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of the difference between the two expectation values of χ+ when the qubit is in the two

opposite states, i.e., with Eq. (4.14),

Tmeas =
Sχ+

[D(ωex)]2
. (4.17)

The result for Tmeas as a function of ωex is shown in Fig. 3.5 (b) for the parameter set used

above, for which the discrimination power D(ωex) around the 3-photon resonance has been

maximized. In correspondence with this is the relative minimum of Tmeas around the 3-

photon resonance, see Fig. 3.5 (b). Interestingly enough, the time scale of the measurement

time around this resonance is Tmeas ≈ 10−2 × 2π/ω0. Considering realistic numbers of

a typical experimental set-up [77], where ω0 is in the regime of a few GHz, we obtain a

time scale of Tmeas ≈ 100 ps for the nonlinear quantum detection scheme. This should be

contrasted to the measurement time of Tmeas ≈ 300 ns obtained in Ref. 77. In between the

multiphoton resonances, the dependence of Tmeas on ωex shows a rich structure including

several singularities, which are simply due to the several crossings of the two nonlinear

response curves shown in Fig. 3.3 (a), where D(ωex) becomes zero, implying insufficient

discrimination of the two qubit states.

With this, we can evaluate the measurement efficiency, defined by the ratio Γmeas/Γ,

with Γmeas = T−1
meas. This quantity sets the probability to infer the qubit state, based on the

nonlinear response of the detector. We show the result for the efficiency of the measurement

in Fig. 3.5(c). Related to the multiphoton resonances in the detector, the efficiency also

shows local maxima. For the discrimination power being optimized around the three-photon

resonance, the measurement efficiency displays a clear local maximum [cf. Fig. 3.5(c)]. Due

to the small size of the relaxation rate Γ of the detector, the overall measurement efficiency

is rather large in comparison to the detection set-up with a linear resonator, [77] ensuring

Γmeas/Γ≫ 1.

4.8 Conclusions

To conclude, we have in this Chapter introduced a scheme for quantum state detection on

the basis of a nonlinear detector which is operated in the regime of resonant few-photon

transitions. Discrete multiphoton resonances in the detector can be used to infer the state

of the parametrically coupled qubit via a state-dependent frequency shift of the detector’s

nonlinear response function. The multiphoton resonances are well separated in the spectrum

and sharp enough to allow for a good resolution of the qubit state.

By analyzing key quantities of the detector, we have shown that the nonlinear few-

photon detector can be operated efficiently, reliably, and with sufficiently weak back action.
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Figure 4.5: (Color online) (a) Relaxation rate Γ of the nonlinear quantum detector, (b) the
measurement time Tmeas, and (c) the measurement efficiency Γmeas/Γ as a function of the external
frequency ωex. The parameters are the same as in Fig. 4.2.

In fact, it can be efficiently tuned by tuning the amplitude of the ac bias current of the

SQUID. Furthermore, we have shown that the sharpness of the multiphoton resonances can

be used to obtain an increased discrimination power as compared to the linear parametric

detection scheme. Clearly, the relaxation rate at a multiphoton resonance for the qubit

becomes maximal, but in general remains very small. The measurement time around a

multiphoton resonance can be tuned such that it becomes minimal. For realistic experi-

mental parameters, we find surprisingly small measurement times, allowing in principle for

fast measurements. Moreover, the efficiency of the measurement, which takes the time to

acquire enough information to infer the qubit state into account, also assumes large values,

thus allowing for a reliable and highly efficient measurement of the qubit state.

We have chosen realistic values for the involved model parameters such that an exper-

imental realization of this quantum measurement scheme should become possible in the

near future. The nonlinear detection scheme in the deep few-photon quantum regime offers

thus the advantage of an increased discrimination power of more than 98% (for our choice

of realistic parameters), as compared to previous classical detection schemes based on the

Josephson bifurcation amplifier.

A possible setup in order to realize the nonlinear few-photon detector could be the

architecture used in a recent experiment.[82] The low-temperature regime, where quantum

noise effects are important, has already been reached. In order to operate in the regime of

only few photons in the resonator, the sensitivity and stability of the devices might have

still to be further increased. However, no principle obstacles are apparent.



Chapter 5
Nonequilibrium quantum transport in

nanoscale systems

In Chapter 2 we introduced the model for the dissipation mechanism in the quantum

regime. We reviewed the most successful model, the system-bath-model, where the system

is bilinearly coupled to an environment composed of noninteracting harmonic oscillators

(bosonic bath). In this chapter, we shall consider the interaction of two out-of equilibrium

environments yielding a charge and thus a particle current. The nonequilibrium condition in

this context refers to either a difference between the temperatures of both environments or

a difference in their chemical potential. The former would produce a heat current whereas

the latter induces a flow of electric charges. The flowing current is the manifestation of the

total system reaching a nonthermal statistical state.

Besides currents between two environments, we are most often actually interested in

the behaviour of technical components placed in between the environments, like transis-

tors or molecular junctions. Thus, we name the two environments at different tempera-

ture/electrochemical potential in the following as leads and as central system we describe

any possible component between them.

In this chapter we consider nonequilibrium quantum transport in nanoscale systems.

We start with a brief introduction of single-electronic devices, followed by the discussion

of dimensionality of the central system. We restrict ourselves to the cases of zero and

one dimensional gases. Finally, we present a diagrammatic method for the solution of the

master equation for the reduced density operator.
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Figure 5.1: Equivalent circuit of a single-electron transistor, which can be controlled by a gate
voltage VG and a source-drain voltage (bias voltage) V = Vl − Vr. Due to the small capacitance
of the dot, the electric charge is well defined.

5.1 Single-electron devices

A single electron device is a mesoscopic structure whose transport properties are dominated

by single-electron tunneling. Owing to the similarity to real transistors, most of these

devices are called single-electron transistors. The prototype device, an equivalent circuit

is shown in Fig. 5.1, consist of a central island which is connected to two electrodes via

tunnel junctions, and a plunger gate with voltage Vg. Each of the three components has a

capacitance and a voltage which controls its electrochemical potential. The capacitance in

mesoscopic structures can be sufficiently low, such that the energy to charge the device with

one electron becomes the largest energy scale, nowadays of the order of or even larger than

the room temperature. Consequently electronic transport becomes sequential, i.e. electron

are transferred across the system one by one. This is the regime of single-electron tunneling,

which is studied throughout this part of the thesis.

5.2 Electron gases in zero and one dimension

In this section we discuss possible experimental implementations of the aforementioned

devices. We restrict ourselves to only a few possible realizations, where the carriers are

confined in a potential such that their motion in two or three directions is restricted and

thus is quantized, i.e., one (carbon nanotubes) or zero (quantum dots) dimensional confined

electron gases.
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Quantum dots are small islands where the energy of the capacitive electrons is quantized

due to the small dimensions (compare to the Fermi wavelength), thus showing a discrete

spectrum. Semiconducting systems show energy quantization already at system sizes of

order 100 nm[89] which is quite large compared to metallic systems which much higher

density of states. Due to the resemblance to atoms and molecules in the level structure

quantum dots are often called artificial atoms. Just as real atoms, quantum dots can be

brought together to form artificial molecules. Double quantum dots which are connected in

series can form bonding and anti-bonding states. However, quantum dots can also be purely

Coulomb-coupled,[90] without particle exchange, allowing new applications and interesting

physics, such as charge measurements with single charge accuracy, which can be used as

read-out devices for qubits.[10] Large molecules like C60 can be either used as a precursor

in order to synthesize quantum dots on a ruthenium surface[91] or be placed in the gap

between two electrodes, and thus play the role of quantum dots. The latter[92] can also be

realized by contacting the molecule with a scanning tunneling microscope tip from above.

A metallic layer below the substrate can act as a gate in the two electrode case, while the

control knob for a scanning tunneling microscope setup can be realized by changing the tip-

to-molecule distance, i.e., by the voltage applied to the tip’s Piezo element. Contacting a

molecule between two electrodes which are about 1 nm apart is extremely difficult. Today’s

standard approach is to form the electrode by a break-junction technique and to place the

molecules by spilling a solution with the molecules over the junction. Despite the lack of

accuracy concerning the number of molecule in the junction, the mere demonstration of

feasibility can be considered a major achievement.

Single wall carbon nanotubes (SWNT) constitute molecular wires (quasi-one dimensional

electron gas) with remarkable electronic properties and perhaps the best possibility for

studying quantum electromechanical phenomena. A carbon nanotube can be viewed as a

normal graphite sheet rolled up into a cylinder with a radius R0 < 5 nm [93, 94] and a

length L more than a thousand times R0. [see Fig. 5.2] Rigorously, a SWNT is an ideal one

dimensional system since its Fermi wavelength λF is shorter than the longitudinal SWNT

length L. The typical wavelength of electrons in the SWNT around the Fermi level, where

the majority of the charge carriers is located, is about 0.8 nm.[95] In such low-dimensional

systems, subtle and sophisticated features appear which are deeply rooted in quantum

mechanics and tightly associated with many-body interactions.[96, 97]

5.3 Hamiltonian model

The single-electron transistor is modelled by the standard Hamiltonian H(t) = H0(t)+HT ,

in which H0(t) describes the decoupled system and HT the tunneling between the leads and
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Figure 5.2: Single wall carbon nanotube of radius R0, and length l ≫ R0 (not shown in the
sketch).

the island. The decoupled system consists of noninteracting electrons (fermion bath) in the

left and right lead, and a system in the gap region between leads,

H0(t) = Hc +Hl(t) +Hr(t), (5.1)

where Hc describes the Hamiltonian for the central system, and Hl/r(t) the Hamiltonian

for the left/right (l/r) lead. In addition, we consider a time-dependent bias voltage V (t)

between leads yielding an accumulation or depletion of charge near the barriers. The

unscreened Coulomb interaction between the net excess charge is quite strong, and hence the

bias across a tunneling structure is cause by a relatively small excess charge in accumulation

and depletion layers. The formation of these layers then causes a rigid shift of the bottom

of the conduction band deeper in the leads, which is the origin of the rigid shift of energy

levels.[98] Thus, the resulting electrostatic potential difference makes the single-particle

energies in each lead time-dependent according to

ǫk, l/r = ǫ0k, l/r − µl/r → ǫk, l/r(t) = ǫ0k, l/r − µ̃l/r(t) , with µ̃l/r(t) = µl/r + eVl/r(t) , (5.2)

where µl/r and Vl/r(t) are a static electrochemical potential and the time-dependent bias

voltage applied on the left/right lead, respectively. The bias voltages Vl,r(t) follow the con-

straint Vl(t)−Vr(t) = V (t), where V (t) is the time-dependent drop across the central region.

Despite the time-dependent modulation in the bias voltages, the occupation of each state k

in the left/right lead remains unchanged. The occupation, for each contact, is determined

by an equilibrium distribution function established in the distant past, without considering

time dependent potentials or tunneling events between system and leads. Therefore, the

lead Hamiltonian reads

Hp(t) =
∑

k

[
ǫ0k,p − µ̃p(t)

]
c†k, p ck, p , with p = l, r. (5.3)
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There c†k, l/r (ck, l/k) creates (destroys) an electron in k-th state (including spin) in the

left/right lead.

Next, we assume bilinear coupling between the leads and the central system describing

the tunneling of one electron from the leads to central system and vice-versa. Thus, the

tunneling part is given by

HT = HT,l +HT,r, with HT,l/r =
∑

k

Tk,l/r d c
†
k, l/r + h.c. . (5.4)

Here d† (d) creates (destroys) an electron in the central region, and Tk,l/r denotes the

tunneling matrix elements for the left/right lead.

The tunnel coupling leads to a finite lifetime τ of the states in the central system and

therefore to an intrinsic level broadening Γ = ℏ/τ . This broadening is related to the

tunnel rates 2γ±l/r(ℏω) = Γl/r(ℏω)f
±
l/r(ℏω) into/out-of (+/−) the central system through

the left/right barrier, obtained from simple Golden-Rule arguments, by Γ = Γl + Γr and

Γl/r(ℏω) = (2π/ℏ)
∑

k |Tk, l/r|2δ(ℏω−ǫk, l/r). Hereafter f+
l/r(ℏω) =

(
exp[β(ℏω − µl/r)] + 1

)−1

denotes the Fermi distribution in the left/right lead with electrochemical potential µl/r,

whereas f−
l/r(ℏω) = 1− f+

l/r(ℏω).

Furthermore, we assume the standard wide-band limit approximation, where the tun-

neling matrix elements are independent on the energy of states, i.e., Tk, l/r → Tl/r. This

means that the density of states in the leads D(ǫl/r) is approximately constant around the

respective lead Fermi energy and, therefore, the level broadening from each lead becomes

constant Γl/r = (2π/ℏ)|Tl/r|2D(ǫF ).
For later purposes it is convenient to switch into a frame of reference where the tunneling

is driven by the time-dependent bias voltage. To do this, we use the transformation

UV (t) = exp

[
i(e/ℏ)

∑

k

φl(t) c
†
k, lck, l + (l → r)

]
, with φl/r(t) =

∫ t

t0

ds Vl/r(s) . (5.5)

In this frame of reference the transformed Hamiltonian reads as:

HV (t) = U †
V (t)H(t)UV (t)− iℏU †

V (t) U̇V (t).
Above, the first term rescales the creation and destruction operators in the leads,

ck,l/r → ck,l/r exp
[
−ie φl/r(t)/ℏ

]
, and the second term reproduces the time-dependent part

of the leads Hamiltonian, i ℏU †
V (t) U̇V (t) = −

(∑
k µ̃l(t)c

†
k,lck,l + (l → r)

)
. Thus, the time

dependence is translated to the tunneling term. There one can merge the rescaling factor

of the creation and destruction operators, exp
[
±i(e/ℏ)φl/r(t)

]
with the tunneling matrix

elements Tl/r into

T̃l/r(t) = Tl/r exp [−ie φl(t)/ℏ] , (5.6)

yielding time dependent tunneling matrix elements.
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5.4 Real-time transport theory

In this section we review a general transport theory based on a real-time diagrammatic

approach. This theory[99, 100] is closely related to the path-integral method formulated in

Chapter 2. Similarly, the basic idea is to integrate out all reservoir degrees of freedom and

thus end up with a formally exact kinetic equation for the reduced density matrix of the

central system.

In the following, we consider the system in a frame of reference transformed by UV (t)
[cf. Eq. (5.5)], i.e., where the leads and the central are static but the tunneling matrix

elements. In analogy with the bosonic case, we assume that the initial density matrix for

the total system (leads + central system) factorizes into parts for the central system (ρ)

and the leads (ρl/r), i.e.,

W (t0) = ρ(t0)⊗ ρl ⊗ ρr . (5.7)

The leads are treated as large equilibrium reservoirs at temperature T with fixed electro-

chemical potentials µl/r = −eVl/r. The electron distribution is therefore given by Fermi

functions f+
l/r(ω) and the density operator reads

ρl/r =
exp[−β

∑
k(ǫk, l/r − µl/r)c

†
k, l/rck, l/r]

Tr
[
exp[−β

∑
k(ǫk, l/r − µl/r)c

†
k, l/rck, l/r]

] with β = 1/kBT . (5.8)

The time evolution of the density operator W (t) in the interaction picture is given by

W I(t) = U I(t, t0)W (t0)[U I(t, t0)]
† , (5.9)

where U I(t, t0) = T exp[−iΦ(t, t0)], therein Φ(t, t0) =
∫ t

t0
dsHI

T (s)/ℏ and T is the time

ordering operator. The superscript I denotes the interaction picture.

In the superoperator notation, Eq. (5.9) can be written as W I(t) = T exp[−iΦ(t, t0)] ·
W (t0), where Φ(t, t0) ·W (t0) = [Φ(t, t0),W (t0)]. Thus, the density operator at an arbitrary

time W I(t) can be written as a deviation of the initial preparation in a transcendental

equation, i.e. W I(t) = W (t0)− iΦ(t, t0) ·W I(t). This structure allows to expand the time

evolution of the density operator W in orders in the tunneling coupling. Furthermore, we

can write the reduced density operator, after tracing over the degrees of freedom of the

leads, as

ρI(t) = Trl, r[W
I(t)] = ρ(t0) +

1

iℏ

∫ t

t0

dt1Trl, r[H
I
T (t1),W

I(t1)] , (5.10)

where Trl, r denotes the trace over the degrees of freedom of the right and left lead. Differ-

entiating with respect to t, we obtain the master equation for the reduced density operator,

d

dt
ρI(t) = − 1

ℏ2

∫ t

t0

dt1 Trl, r
[
[HI

T (t), [H
I
T (t1),W

I(t1)]] ,
]

(5.11)
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where, for simplicity, we have eliminated the term (1/iℏ)Trl, r
[
[HI

T (t),W
I(t0)]

]
with the

assumption Trl, r
[
HI

T (t)ρl ⊗ ρr
]
= 0. This is equivalent to consider ρl ⊗ ρr diagonal in

energy basis, in other words, it is equivalent to the assumption that the leads are at their

respective equilibrium.

We have stated that W I factorizes at t = t0. At later times correlations between leads

and the central system may arise due to the tunneling term HT . However, for a very weak

coupling, at all times W (t) should only show deviations of order HT from an uncorrelated

state. Thereby, taking into account that the leads are considered as very large whose state

should be virtually unaffected, we can estimate the total state as

W I(t) = ρI(t)⊗ ρl ⊗ ρr +O(HT ) . (5.12)

We now make our first major approximation, a Born approximation by neglecting terms

higher than second order in HT in (5.11). Thus, making an iterating procedure plugging

Eqs. (5.10) and (5.12) into the equation of motion Eq. (5.11), we can determine the effects

of the leads on the central system in many orders in the tunneling term HI
T (t). In doing

so, we can write down the master equation as

d

dt
ρ(t) =

1

iℏ
[Hc, ρ(t)] +

∫ t

t0

dt1Σ(t, t1) · ρ(t1) . (5.13)

In order to describe the coherent dynamics separately from the dissipative one we have

switched to the Schödinger picture. Thus, the first term on the right hand side governs

the dynamics of the close central system, whereas the second term encloses all the effects

of the fermionic bath covered by Σ(t, t1), i.e., self-energies which are induced by the leads

in arbitrary orders in the tunneling. In the diagrammatic expansion of Eq. (5.13), the self

energy Σ(t, t1) encloses only irreducible terms.

The dissipative part of the master equation (5.13) depends on the evolution of ρ(t) from

the initial time t0 to the evaluation time t, including memory effects in the dynamics. In

the weak level broadening limit, we can invoke the Markovian approximation neglecting the

memory effects (replacing ρ(t1) by ρ(t) in the second term on the right hand side in Eq.

(5.13)), yielding a deterministic equation of motion for ρ(t), a Markov master equation, as

d

dt
ρ(t) =

1

iℏ
[Hc, ρ(t)] +

(∫ t

t0

dt1Σ(t, t1)

)
· ρ(t) . (5.14)

In order to calculate the self-energies Σ(t, t1), the trace over the degrees of freedom of

the leads has to be performed. Here, the corresponding sum over the leads’ states can be

replaced by integrals over the energy spectrum using the density of states in the leadsD(ǫ) in
the wide-band-limit, i.e.,

∑
k →

∫ +∞

−∞
dǫl/rD(ǫl/r) ≈ D(ǫF )

∫ +∞

−∞
dǫl/r. For the calculation of

the resulting integrals, introducing diagrams on the Keldysh contour simplifies the notation.

We refer to Refs. 99 and 100 for a detailed description.
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5.4.1 Calculation of the self energy Σ to first order in Γ

The lowest order term of the expansion in the self-energies corresponds to the first iteration

of Eqs. (5.12), (5.10), and (5.11). The diagrams represent the evolution of the system

in real time. The lowest order diagrams carry a factor |Tl/r|2 due to the conservation of

the number of particles. Since the integrations associated with a Feynman diagram run

only over the loop energy, it is convenient to introduce a reduced diagram which represents

precisely the loop integrations by removing all external lines. In addition, they are the

smallest nontrivial Feynman diagrams which form the basic building blocks of all diagrams.

To calculate these irreducible diagrams, it is convenient to split the tunneling term HT into

two parts, describing the creation (+) and destruction (−) of an electron in the central

system,

HI
T (t) = H+

T (t) +H−
T (t) (5.15)

where H−
T (t) = [H+

T (t)]
†, and

H+
T (t) = H+

T,l(t) +H+
T,r(t), with H+

T,l(t) =
∑

k

T̃l/r(t) d
†(t) ck, l/r(t) . (5.16)

In order to simplify the notation we omit the superscript for the interaction picture for

creation and annihilation operators. It is implicitly assumed unless stated otherwise.

The lowest order of the expansion of Σ can be written as

∫ t

t0

dt1Σ(t, t1) · ρ(t) = Σ(t) · ρ(t)

= − 1

ℏ2
TK
∫

K

dt1
(〈
H+

T (t)H
−
T (t1) ρ

I(t)
〉
lr
+
〈
H−

T (t)H
+
T (t1)ρ

I(t)
〉
lr

+
〈
ρI(t)H+

T (t1)H
−
T (t)

〉
lr
+
〈
ρI(t)H−

T (t1)H
+
T (t)

〉
lr

−
〈
H+

T (t)ρ
I(t)H−

T (t1)
〉
lr
+
〈
H−

T (t)ρ
I(t)H+

T (t1)
〉
lr

−
〈
H+

T (t1)ρ
I(t)H−

T (t)
〉
lr
+
〈
H−

T (t1)ρ
I(t)H+

T (t)
〉
lr

)
,

(5.17)

where 〈· · · 〉lr = Trl, r[(· · · )ρl ⊗ ρr], K denotes the closed Keldysh contour which runs from

t0 to t on the real axis and then back again from t to t0, and TK the corresponding time

ordering operator on the Keldysh contour.

In the next chapter we shall stick to the lowest order only. This gives insight into the

sequential tunneling regime, when the time an electron spends on the central system is

much larger than all coherence times.



70 Nonequilibrium quantum transport in nanoscale systems

5.4.2 Extension to the harmonically driven case

Since the influence of the driving field in the dynamics of the leads corresponds to a

shift in their energy levels, i.e., ǫk,l/r → ǫk,l/r − eVl/r(t), for a harmonic driving Vl/r(t) =

±V0/2 cos(ωext), the corresponding lead eigenstates evolve as[101–104]

|kl/r(t)〉 = exp

[
− i
ℏ
ǫk,l/rt+ i

eVl/r
ℏωex

sin(ωext)

]
|kl/r〉

=

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)
exp

[
− i
ℏ
(ǫk,l/r +mℏωex)t

]
|kl/r〉 . (5.18)

Therefore, each state in the left/right lead contains sidebands whose energies are shifted by

multiplies of ℏωex. Above, Vl/r = Vl/r(t = 0) and Jm(x) are the ordinary Bessel functions

of the first kind.

In the stationary case, the electron tunnels from the state |kl/r〉 on left(right) lead into

the state |kr/l〉 on the right(left) one through the quantum dot. In the wide band limit,

the tunneling matrix elements do not depend on the state of the leads. However, in the

driven case, the sidebands of |kl/r(t)〉 are involved in the tunneling process and sideband

dependent tunneling matrix elements arise[101] according to

Tm
l/r(t) = Tl/rJm

(
eVl/r
ℏωex

)
exp[imωext] . (5.19)

This expression is directly derived from Eq. (5.6), where in the case of harmonic driving

the accumulated phase by the driving field, φl/r(t) =
∫ t

0
ds Vl/r(s), can be expanded in

terms of the Bessel functions. Thus, T̃l/r(t) =
∑

m T
m
l/r(t). We have assumed without loss

of generality t0 = 0 in the calculation of the accumulated phase φl/r(t).

Therefore, taking into account the contribution of the sidebands in the tunneling process,

the first integral on the right hand side in Eq. (5.17),

− 1

ℏ2
TK
∫

K

dt1
〈
H+

T,l/r(t)H
−
T,l/r(t1) ρ

I(t)
〉
lr

= − 1

ℏ2
TK
∫

K

dt1
∑

kk′

T k
l/r(t)

[
T k
l/r(t1)

]∗

×d†(t)d(t1)
〈
c†k,l/r(t)ck,l/r(t1)

〉
l/r
ρI(t)

(5.20)

projected onto the eigenstates of the system Hamiltonian |χ〉, Hc|χ〉 = ǫχ|χ〉 (ǫχ is the

corresponding eigenenergy), yields
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χ1

χ2

[
Σ

(1)
l/r(t)

]χ′
1

χ′
2

=

+∞∑

m=−∞

χ1

χ2

[
Σ

(1)
l/r,m(ωex)

]χ′
1

χ′
2

eimωex t , with (5.21)

χ1

χ2

[
Σ

(1)
l/r,m(ωex)

]χ′
1

χ′
2

=
ℏΓl/r

2π

+∞∑

k=−∞

χ1

χ2

[
γ
(1)
l/r,k,m(ωex)

]χ′
1

χ′
2

,

χ1

χ2

[
γ
(1)
l/r,k,m(ωex)

]χ′
1

χ′
2

=
∑

χ′

χ1

χ′
1

[
T m
k (ωex)

]χ′

χ′ δχ2χ′
2
lim
η→0+

∫
dǫ

f−
l/r(ǫ)

i(ǫχ′ − ǫχ2
) + i(ǫ− k ωex) + η

,

and χ1
χ2

[
T m
k (ωex)

]χ′
1

χ′
2

= Jk+m

(
eVl/r/ℏωex

)
Jk
(
eVl/r/ℏωex

)
〈χ′

1|d|χ1〉〈χ2|d†|χ′
2〉. The states in

the tunneling tensor χ1

χ2

[
T m
k (ωex)

]χ′
1

χ′
2

are linked by a forward propagation χ1 → χ′
1 and

backward propagation χ2 ← χ′
2 on the Keldysh contour. The superscript in (5.21) stands

for the ordering in the diagrams, it is not related with the order of the perturbation theory.

For periodic voltages it is more convenient to study the kinetic equation and the tun-

neling current in Fourier-Laplace space. Therefore, in the following, we shall set up the

diagrammatic rules to calculate directly the Fourier-Laplace transformation of the rates.

The Fourier-Laplace transformation for Eq. (5.21) is given by

χ1

χ2

[
Σ

(1)
l/r,m(z)

]χ′
1

χ′
2

=
ωex

2π

∫ 2π/ωex

0

dt

∫ ∞

0

dτe−imωexteizτ χ1

χ2

[
Σ

(1)
l/r(t, t− τ)

]χ′
1

χ′
2

(5.22)

=
ℏΓl/r

2π

+∞∑

k=−∞

χ1

χ2

[
γ
(1)
l/r,k,m(z)

]χ′
1

χ′
2

, with

χ1

χ2

[
γ
(1)
l/r,k,m(z)

]χ′
1

χ′
2

=
∑

χ′

χ1

χ′
1

[
Tm
k (ωex)

]χ′

χ′ δχ2χ′
2

∫
dǫ

f−
l/r(ǫ)

i(ǫχ′ − ǫχ2
) + i(ǫ+ z − k ωex)

.

The relevant rules[99, 100] in energy space for the auxiliary rates γl/r,k,m are:

1© Draw all topologically different diagrams with fixed ordering of the vertices along real

axis, i.e., irrespective on which branch they are in the Keldysh contour. The vertices

are connected by tunneling lines. Assign a lead index (l/r) and the mode of the

corresponding sideband to each tunneling line. The external vertices are connected

by virtual lines with energies mωex.

2© For each vertical cut between vertex i− 1 and vertex i we obtain a resolvent 1/(xi +

liωex + z), wherein xi is the difference of the leftgoing minus the rightgoing energies

(including the energies of sidebands of the left/right lead, and dot lines), and li is the

sum over all Fourier indices of left/right lead lines which are cut by the vertical line

or lie right of it.
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Figure 5.3: First order diagram for tunneling between the central system and driven leads. The
subscript 1 (2) in the states χ denotes the upper (lower) branch of the contour. At the reservoir
line we have indicated which sideband of the reservoir state is involved. In the tunneling event
holes are symbolized by open circles and electrons/particles by full circles.

3© Each vertex containing a central system operator O gives rise to matrix elements

〈φk|O|φs〉, where |φk/s〉 is the state of the central system leaving/entering the vertex

on the Keldysh contour.

4© Each directed tunneling line from the left/right lead gives rise to a factor

(−1)vγ±,m
l/r (ωex)Jk+m

(
eVl/r/ℏωex

)
Jk
(
eVl/r/ℏωex

)
,

if it is going forward/backward (+/−) with respect to the closed time path. Here v is

the number of electron operators (due to external vertices) on the part of the Keldysh

contour from t′ to t. The function γ±,m
l/r (ωex) is given by

γ±,m
l/r (ωex) = f±

l/r(E +mℏωex) Γl/r/2π

5© Each diagram carries a prefactor (−i)n(−1)c, wherein n is the total number of internal

vertices and c the number of crossings of tunneling lines. There may be another minus

sign appearing due to the order of fermionic operators in 〈φk|O|φs〉.

6© Integrate over the energies of the tunneling lines and sum over the leads state and

spin indices (if relevant).

In the sequential tunneling regime, where the time an electron spends on the central

system is much larger than all coherence times, and under the resonance condition |ω0 −
ωex| ≪ ω0, the transport effects are relevant only on a time scale much larger than the period

of the driving, i.e., Γ < ℏωex. Therefore, we can invoke the high frequency approximation, as

in Sec. 2.1.4.3, averaging over one period of the driving. Up to the first Fourier component

in Eq. (5.21) this yields

χ1

χ2

[
Σ

(1)
l/r(t)

]χ′
1

χ′
2

≈ ℏΓl

2π

+∞∑

k=−∞

χ1

χ2

[
γ
(1)
l/r,k,0(z = i0+)

]χ′
1

χ′
2

, with

χ1

χ2

[
γ
(1)
l/r,k,0(z = i0+)

]χ′
1

χ′
2

=
∑

χ′

χ1

χ′
1

[
T 0
k (ωex)

]χ′

χ′ δχ2χ′
2
(−i) I−+,l/r(ǫχ2

− ǫχ′), (5.23)
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where

I±σ,l/r(ǫ) = −πiσf±
l/r(ǫ)∓

1

2

[
ψ

(
1

2
+
iβ

2π
(ǫ− µl/r)

)
+ ψ

(
1

2
− iβ

2π
(ǫ− µl/r)

)]
±

ln

[
βωc

2π

]
with σ = +,− . (5.24)

Above, the cut-off frequency ωc is considered very large compared to the characteristic fre-

quency of the system. The details of the relationship between the integral in Eq. (5.21) and

the digamma function ψ(x) are presented in App. D together with the results for the other

self-energies in a diagrammatic representation. In Fig. 5.3 we show the diagrammatic rep-

resentation of the rate χ1
χ2

[
Σ

(1)
l/r(z = i0−)

]χ′
1

χ′
2

in the energy space, following the aforementioned

rules.

We can see that, under the high frequency approximation, the dynamics of the reduced

density operator is determined by time-independent rates, since one time can be fixed at

zero and the Laplace transformation becomes γl/r,k,m = limη→0

∫ 0

−∞
dt′γl/r,k,m(iη, t

′). Thus,

we can replace the kernel by the self-energy calculated in energy space. In order to solve

the Markov master equation we are left with the eigenvalue problem

L · ρ(t) ≡
[
Hc/iℏ+ lim

η→0
Σ(z = iη)

]
· ρ(t) = ρ̇(t) , with Hc · ρ(t) =

[
Hc, ρ(t)

]
, (5.25)

where

ρ(t) = eL tρ(0) =
∑

k

Tr
[
ρ†k · ρ(0)

]
eΓkt ρk , (5.26)

with L · ρk = Γkρ
k, and ρk · L = Γkρk. Therein, ρk (ρk) are the right (left) eigenoperators

of L with eigenvalue Γk. They have been introduced in Chapter 2. The time derivative in

Eq. (5.26) vanishes when the steady state is reached and the state is determined by the

right eigenoperator ρk
′ ≡ ρ∞ with the eigenvalue Γk′ = 0.

5.4.3 Current

We now use this description to derive an expression for the current flowing out of the

right/left lead. By definition, the current is given by the time derivative of the particle

number Nl/r =
∑

k c
†
k,l/rck,l/r, i.e., by

Il/r(t) = −e d
dt

〈
Nl/r(t)

〉
= −i e

ℏ

〈[
H(t), Nl/r(t)

]〉

= −i e
ℏ

(〈
H+

T,l/r(t)〉 − 〈H−
T,l/r(t)

〉)
. (5.27)
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Figure 5.4: Diagrams describing (a) the components of the stationary current Il/r,0, and (b) the
components of the alternating current Il/r,±1. The internal vertices are not shown.

In leading order of Γ, the current is determined by the components of the self energy, Σ
(5...8)
l/r ,

which describe tunneling processes between leads [cf. App. D] as

Il/r(t) =
∑

m

Il/r,m e
imωex t with (5.28)

Il/r,m = −i e
ℏ

〈
Σ

(5)
l/r,m(ωex) + Σ

(8)
l/r,m(ωex)− Σ

(6)
l/r,m(ωex)− Σ

(7)
l/r,m(ωex)

〉
.

We symmetrize with respect to the leads, such that we compute the current I(t) = Il(t)−
Ir(t). Note however that we are mainly interested in the stationary and the alternating

current, Ist = Il,0 − Ir,0 and Iac(t) =
∑

m=±1(Il,m − Ir,m)eimωext respectively, with

Il/r,m = −i e
ℏ

〈
Σ

(5)
l/r,m(z = i0−) + Σ

(8)
l/r,m(z = i0+)− Σ

(6)
l/r,m(z = i0+)− Σ

(7)
l/r,m(z = i0−)

〉

∞
,

where 〈...〉∞ = Tr[...ρ∞].

The stationary and alternating currents describe different tunneling processes, which

are explained as follows. We denote by Pnn′ the process of tunneling of an electron from

the n-th sideband on the lead into the system, accompanied by the corresponding tunneling

of a hole from the system into the n′-th sideband on the lead. The current Il/r describing

the transport of an electron from the lead into the system, subtracting the transport of the

corresponding hole which is created in the lead, without asking whether the electron has

started and the hole has finished (n/n′-th sideband respectively), is given by the sum over

all the currents corresponding to each process Pnn′, {n, n′} ∈ Z. The current corresponding

to all Pnn′ such that n − n′ = m is fixed, defines the harmonic component Il/r,m. The

stationary current is the special case n = n′. This component describes the creation of

a particle (filled circle in Fig. 5.4(a)) in the central system and a hole (open circle in

Fig. 5.4(a)) in the left/right lead conserving the sideband energy. On the other hand,
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this conservation is not fulfilled for the alternating current (n 6= n′). The diagrams which

represent the alternating current for the combination n−n′ = ±1 are shown in Fig. 5.4(b).

5.5 Driven transport through a single level quantum

dot

As an example, we consider the special case of a quantum dot with one single-particle state

coupled to conducting leads. The Hamiltonian is given by

H(t) = Edd
†d+HT +Hl(t) +Hr(t), (5.29)

where Ed is the energy of the single level in the quantum dot, with d† and d as the creation

and annihilation operator for electrons on the dot. HT describes the standard bilinear

coupling between the leads and the quantum dot given by Eq. (5.4), and Hl/r(t) is the

Hamiltonian of the leads driven by an ac-voltage [cf. Eq. (5.3)]. Under the transformation

(5.5), the system is described by static leads and tunneling matrix elements involving the

phase accumulated by the time-dependent bias voltage φl/r(t) =
∫ t

t0
dsVl/r(s) [cf. Eq. (5.6)].

The nonequilibrium problem treated in this section has been solved exactly by many au-

thors using the Landauer-Büttiker formalism,[105–107] Keldysh formalism,[108–111] equa-

tion of motion methods,[112] and Golden-Rule approach with Lorentzian broadening of the

energy conservation.[113] Here, we shall rederive the solution by solving the rate equation

(5.26).

We denote the empty and singly occupied state by |0〉 and |1〉, respectively. The tun-

neling tensor is given by χ1
χ2
T

χ′
1

χ′
2

= 〈χ′
1|d|χ1〉〈χ2|d†|χ′

2〉 = δχ1,1δχ2,1δχ′
1,0
δχ′

2,0
and, therefore,

the nonvanishing tensor elements of the rates are

1
1

[
Σ

(5)
l/r,0

]0
0

= i
ℏΓl/r

2π

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)2

I−+,l/r(Ed +mℏωex) (5.30)

0
0

[
Σ

(6)
l/r,0

]1
1

= −iℏΓl/r

2π

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)2

I+−,l/r(Ed −mℏωex) (5.31)

0
0

[
Σ

(7)
l/r,0

]1
1

= i
ℏΓl/r

2π

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)2

I++,l/r(Ed −mℏωex) (5.32)

1
1

[
Σ

(8)
l/r,0

]0
0

= −iℏΓl/r

2π

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)2

I−−,l/r(Ed +mℏωex) (5.33)

Plugging these rates into Eq. (5.28), and taking into account that 〈χ1|ρ∞|χ2〉 = δχ1χ2
/2,
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Figure 5.5: (a) Stationary current as a function of the inverse external frequency, with two zooms
to the dips in the current for ωex = Ed/2 and Ed/3. Here the energy is measured from the right
lead electrochemical potential µr and ℏ and e are set to 1. The parameters used in this simulation
are: Vl = Vr = V0/2 = 0.2Ed, µl = 10Ed, kBT = 5× 10−3Ed, and Γl = Γr = Γ = 5× 10−2Ed. The
insets depict the value for the current JN [Eq. (5.35)], blue dashed line. It is in good agreement
with numerical result for the the stationary current at ωex = Ed. In panel (b), we depict a sketch
of the system, a quantum dot coupled to conducting leads, and the sidebands of |k′r〉 including the
state at resonance with the single level in the quantum dot. The widths of the sketched sidebands
indicate their weights given by the m-th Bessel function.
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we get to a simple expression for the stationary current

Ist = Il − Ir, with Il/r = e
Γl/r

2

+∞∑

m=−∞

Jm

(
eVl/r
ℏωex

)2

f−
l/r(Ed +mℏωex) . (5.34)

We see that the quantum transport mechanism for nonequilibrium states in the leads

involves all the sidebands of the state |k′l/r〉 at resonance with the single level in the quantum

dot. Setting up µl > Ed > µr, and considering a weak modulation in the bias voltage

eV0 ≪ ℏω0, the current flowing out of the left lead is mainly described by the first sideband,

i.e. Il ≈ ΓlJ0(eVl/ℏωex)
2/2 ∼ Γl/2 [m = 0 term in Eq. (5.34)]. For the current from the

right lead, only sidebands with energies below the Fermi level play a role in the transport,

i.e. the sidebands with modes m where f r(Ed−mℏωex) 6= 0. When the external frequency

matches the resonance condition ωex = (Ed − µr)/Nℏ ≡ ωN , N = 1, 2, 3, ..., the energy of

the N -th sideband is on the top of the Fermi sea of the right lead and the current is mainly

generated by the sideband and Ir = ΓrJ−N(eVr/ℏωN)
2/4 [see the sketch in Fig. 5.5(b)].

Thus, we can estimate the stationary current at ωex = ωN as

Ist ≈ e
Γl

2
− eΓr

4
J−N

(
eV0
2ℏωex

)2

≡ IN . (5.35)

Out of resonance, only higher orders in the sidebands’ distribution of the state |k′r(t)〉
are relevant in the tunneling process of electrons from/into the right lead, thus producing

a significant decrease in the current Ir. In Fig. 5.5(a) we show the current as a function of

the inverse of the external frequency. We observe dips in the current corresponding to the

process described above.



Chapter 6
Signatures of nonlinearity in driven

nanomechanical quantum transport

Fascinating progress has been achieved in downsizing artificially made condensed-matter de-

vices and micromechanical systems are today evolving into nanoelectrcomechanical systems

(NEMS).[5–8] Thereby, the fundamental physical limits set by the laws of quantum me-

chanics are rapidly approached. The ultimate potential for nanoelectromechanical devices

is governed by the ability to detect NEMS motional response to various external stimuli.

To realize them in form of transversely vibrating beams, lithographically patterned dou-

bly clamped suspended beams [24, 25, 114–122] are also designed. Also suspended doubly

clamped carbon nanotubes display mechanical vibrations [123, 124]. Beyond applications as

electrometers,[114, 115, 117] for detecting ultrasmall forces and displacements,[24, 25] radio-

frequency signal processing,[116] as chemical sensors,[125, 126] as ultrasmall devices used

for signal amplification,[127, 128] or for spin detection purpose, [129] the nanomechanical

devices also allow to investigate fundamental physical phenomena, see, for instance, Refs.

96 and 97.

In particular, due to their small size, the crossover from the classical to the quantum

regime is of interest, where quantum fluctuations in the transverse direction may drasti-

cally influence the dynamics.[130–132] The quantum behaviour arises due to a macroscopic

number of particles whose coherence is disturbed by the interaction with the environment

causing damping and decoherence. Important key experiments on the way to this goal have

already been reported in literature.[7, 8, 24–27, 97, 114–124, 133–135]

Most techniques to reveal the quantum behaviour so far address the linear response

in form of the amplitude of the transverse vibrations of the nanobeam around its eigen-

frequency. The goal is to excite only a few energy quanta in a resonator held at low

temperature. To measure the response, the ultimate goal of the experiments is to increase
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the resolution of the position measurement to the quantum limit.[24–27] As the response of

a damped linear quantum oscillator has the same simple Lorentzian shape as its classical

counterpart,[28] a unique identification of the “quantumness” of a nanoresonator in the

linear regime can sometimes be difficult.

As transport setups in experimental physics have the advantage that the current-voltage

characteristics is rather easily accessible, it is an interesting question to search for nonlinear

molecular features here. An important aspect of quantum transport through molecules con-

cerns vibrational effects,[136–140] e.g., phonon-assisted transport or nonlinear vibrations.

Several works on this topic have appeared in literature. For a comprehensive review of

vibrational effects in molecular transport, see Ref. 139. Cizek, Thoss, and Domcke [141]

treat the inelastic regime by an electron-molecule scattering theory. Vibrational effects

in molecular transistors have also been investigated in a series of papers by the group of

Flensberg,[142–145] primarily within the sequential tunneling picture. In Ref. 142, a vi-

brational mode has been investigated under the assumption of a strong electron-phonon

coupling, and rather strong tunneling broadening of the vibrational sidebands has been

found. Subsequent work [143] included additional damping of the vibrational mode. The

vibrational mode associated with the center-of-mass motion of the molecule was found to

couple strongly to the environment and is thus exposed to an effective damping mechanism.

In Ref. 144, electrostatic aspects were clarified. Finally, in Ref. 145, the Josephson cur-

rent through a single level between two superconducting leads with a bosonic environment

has been calculated for very weak transmission. A suppression of the supercurrent due to

the combined effects of the Coulomb interaction and the environmental fluctuations was

reported.

Current-induced nonequilibrium vibrations in single-molecule devices have been inves-

tigated in Ref. 146, again in the incoherent regime. The role of light-induced effects on

electronic transport has been studied by Hänggi and coworkers.[101] Based on an extension

to nonequilibrium situations, semiclassical expansions about the mean-field solutions for

the equilibrium case have been used to study transport through a resonant level strongly

coupled to a local phonon under nonequilibrium conditions (nonequilibrium local polaron

problem).[147] Recently, normal [148] and superconducting [149] transport through a vibrat-

ing molecule have already been studied by Keldysh Green’s function schemes perturbative

in the electron-phonon coupling. Nonequilibrium phonon dynamics in nanobeams and the

related phonon-assisted losses have been investigated in Ref. 150.

In this Chapter we address the problem of detecting quantum coherent multiphonon

transitions through current characteristics. We consider a nanobeam in its nonlinear regime

clamped to two conducting leads [cf. Fig. 6.1]. For an ac bias voltage applied in the leads,

the current mimics a harmonic driving in the nonlinear deflection of the nanobeam, in-
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ducing coherent multiphonon transitions. Besides, the electronic states in the leads are

split into sidebands defining several tunneling paths for an electron from the left(right) to

the right(left) lead. The alternating current requires a difference between the mode of the

sidebands involved in the tunneling processes of an electron from/into the left(right) lead.

Therefore, the excitation of the mechanical motion of the nanobeam, due to this tunnel-

ing process, suppresses the alternating current. Thus, the current exhibits antiresonance

behaviour as a consequence of multiphonon transitions in the nanobeam.

6.1 Hamiltonian model

We consider a free hanging nanobeam of length l doubly clamped to two externally driven

metallic leads. The leads are at different electrochemical potentials inducing a charge

current through the nanobeam. In order to couple the mechanical motion with the electronic

transport, a magnetic as well as an electric field are applied. In addition, we allow for a

mechanical force F > 0 to compress the beam in longitudinal direction [see Fig. 6.1(a)].

Here, for simplicity we assume a sufficiently strong magnetic field in order to consider

spinless dynamics only.

The Hamiltonian model is given by

H(t) = He +Hm +Hl(t) +Hr(t) +HT , (6.1)

where He is the Hamiltonian of the electron dynamics in the beam, and Hm describes

the mechanical part, Hl/r is the Hamiltonian of the left/right lead [see Eq. (5.3)], and

HT = HT,l+HT,r describes the electron tunneling between the leads and the beam from/into

the left (HT,l) and right (HT,r) lead [see Eq. (5.4)]. The electromechanical coupling is not

written explicitly in Eq. (6.1). Below, in the description of the electronic dynamics, we

shall present this coupling in detail. In the coordinate system introduced in Fig. 6.1

the equilibrium position of the nanobeam is along the x-axis. The external longitudinal

compression force F induces a deflection u(x) in direction of the y-axis from the nanobeam’s

equilibrium position. Because of the external magnetic field and the strong confinement

to the beam’s reference frame, the kinetic momentum P(r) = −eA(r)/c is evaluated only

on the position of the beam ru = (x, u(x), 0), P(r) → P(ru). In the kinetic momentum,

e is the electronic charge, c the speed of light, and A the vector potential, B = ∇ × A.

Thereby, the electronic part of the Hamiltonian beam reads in second quantization form

ass

He =

∫
d3r

[
1

2m
ψ†(r)

(
ℏ

i
∇r +P(ru)

)2

ψ(r)

]
. (6.2)
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Figure 6.1: (a) Sketch of a free hanging nanobeam of length l clamped to two metallic leads.
(b) Description of the beam in point dynamics.

The field operators ψ†(r), ψ(r) create or annihilate an electron at r = (x, y, z), respectively,

and follow the anti-commutation relation
{
ψ†(r), ψ(r′)

}
= δ(r − r′). For simplicity, we

assume a magnetic field aligned with the z-axis, yielding the Landau gauge A(r) = −Byex,
with |B| = B and ex = (1, 0, 0).

The mechanical part of the Hamiltonian model describes bending and compression mod-

elled by[132, 151]

Hm =

∫ l

0

dx

[
1

2ρb
π2(x) +

EI

2
u′′(x)2 − F

2
·
(√

1− u′(x)2 − 1
)]

, (6.3)

where π(x) is the momentum density operator, the conjugate generalized coordinate of the

deflection u(x). By the correspondence principle π(x) and u(x) turn into field operators

following the commutation rule [u(x), π(x′)] = iℏδ(x − x′). In Eq. (6.3) ρb is the linear

mass density of the beam, I the area momentum of inertia, and E the Young’s modulus.

We consider the modulation V0 to be sufficiently strong such that it induces weakly

nonlinear deflections in the nanobeam. Thus, the mechanical part of the nanobeam is well
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described by an expansion up to the fourth order in u′(x) in the third term on the right

hand side in Eq. (6.3), i.e.
√

1− u′(x)2 ≈ 1+u′(x)2 +u′(x)4/4. Moreover, we consider the

mechanical dynamics close to the Euler instability, setting F → Fc = EI(π/l)2, and model

the vibrational motion by a single nonlinear mode.

6.1.1 Magneto-elastic coupling

The nanobeam, called the resonator hereafter, induces electronic transport between the

conducting leads. Due to the the strong confinement potential, any perturbation in the

dynamics of the electrons involved in this process affects directly the mechanical motion

(deflections) of the resonator. The introduction of a magnetic and/or electric field therefore

leads to electron-phonon interactions. We start in this section by introducing the effects on

the dynamics caused by an external magnetic field. We treat the implications related to

the electric field in the next section.[96]

In the presence of a magnetic field, and for a finite potential difference between the

leads, i.e. leads at different electrochemical potential, the electrons are subject to a Lorentz

force which depends on the induced deflection u(x) [see Eq. (6.2)], due to the strong

confinement potential. In order to describe explicitly the induced electron-phonon coupling

by the external magnetic field, the so called magneto-elastic interaction, we resort to the

following unitary transformation[96]

Ub(r) = exp

[
i
eB

ℏc

(∫ x

0

ds u(s)

)
ψ†(r)ψ(r)

]
, (6.4)

which changes the frame of reference of the electronic degrees of freedom incorporating

the effect of mechanical deflections. The aim is to get a model that describes electron

propagation through a double barrier system coupled to conducting leads, where the influ-

ence of mechanical deflections is governed by the tunneling Hamiltonian. The transformed

Hamiltonian H ′(t) ≡ Ub(r)H(t)U †
b(r) = H ′

e +H ′
m +H ′

T,l/r +Hl(t) +Hr(t) is given by

H ′
e = − ℏ2

2m

∫
dr ψ†(r)∇2

r
ψ(r) , (6.5)

H ′
m =

∫ l

0

dx
[ 1

2ρb

(
π(x)− eB

c
Θ(x)ψ†(r)ψ(r)

)2

+
EI

2
u′′(x)− F

2

(
u′(x)2 + u′(x)4/4

)]
, (6.6)

H ′
T,l/r = exp

[
i
eB

ℏc

∫ l

0

ds u(s)

]∑

k

∫
d3rTl/rψ(r) c

†
k,l/r + h.c., (6.7)
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with Θ(x) being the Heaviside function.

In order to keep the model simple, we make some approximations. First, we consider

the limit of weak coupling to the leads, where the spacing of energies associated with the

motion of electrons along the beam δǫ ≃ πℏvF/2l (vF being the electrons’ Fermi velocity),

is much larger than the level broadening due to the coupling to the conducting leads. In

addition, in this limit only the first longitudinal state Ed is relevant, yielding the single

level Hamiltonian,

H ′
e ≃ Ed d

† d (6.8)

for the electronic part of the beam. Above, d† (d) creates (destroys) an electron in the

resonator.

Further simplifications arise if one restricts the mechanical dynamics to the fundamental

bending mode, which expresses the deflection field operator as

u(x) = Y0u0(x/l)(b
† + b)/

√
2 , (6.9)

where u0(x) is the normalized profile of the fundamental mode bending mode, Y0 =(
3ℏ2l2Fc/

(
(Fc − F )ρbEI

))1/4
/2π is he amplitude of zero point fluctuation in the funda-

mental mode, and b†, b are the creation and annihilation boson operators, respectively.

Thus, the mechanical part of the Hamiltonian is given by a quantum harmonic oscillator

model with a Kerr nonlinearity

H ′
m = ℏω0 b

† b+ ℏ
2ν(b† + b)4/12 . (6.10)

In addition to this term, there are constant contributions from the electronic occupation

of the leads and the single electronic level of the resonator, which can be systematically

rescaled and therefore excluded in the final result [96, 152]. In Eq. (6.10)

ω0 = 4
(π
l

)2 [EI
3ρb
· Fc − F

Fc

]1/2
and ν =

4Fc − F
lEIρb

· Fc

Fc − F
(6.11)

are the fundamental frequency of the bending mode and the Kerr nonlinearity, respectively.

The tunneling terms [Eq. (6.7)], which includes the magnetic-elastic coupling, read

H ′
T,l/r = exp[iλmag(b

† + b)]
∑

k

Tl/r d c
†
k, l/r + h.c. , with λmag =

eB

ℏc

Y0l√
2

∫ 1

0

ds u0(s) .

(6.12)

6.1.2 Polaron coupling

So far, we have treated the nanobeam in presence of an external magnetic field transversally

applied to its plane of vibration. In this section we introduce the implications of the external
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electric field in the mechanical dynamics of the resonator. We consider an electric field in

the same direction of the nanobeam deflections, i.e., in the direction of y-axis in Fig. 6.1.

In the following we consider the derivation presented in Ref. 152.

For the creation of an external electric field, we consider an antenna with a gate voltage

Vg, placed at a certain distance h from the nanobeam. The electric field can therefore be

tuned by h and Vg. The electric field causes negative charges to collect on the nanobeam and

positive charges on the antenna forming a capacitor of capacitance Cg (gate capacitance).

When the nanobeam is deflected from its equilibrium position by the external force

F , the geometry of the capacitor changes, thus inducing a variation in the capacitance

Cg = Cg[u(x)]. That is why the storage energy in the capacitor depends on the mechanical

dynamics. This effect is described quantitatively by the electrostatic Hamiltonian[153]

Helec =
e2N2

2Cg[u(x)]
− eVgN , (6.13)

where N is the operator for the total number of electrons in the beam. Since we assume that

only a single electronic level contributes to transport, it is possible to write N = N0 + d†d,

where N0 ≈ CgVg/e is the number of the excess electrons in the filled levels and d†d the

number of electrons in the relevant level.

For small deflections of the beam we can express Cg[u(x)] in terms of (b† + b) as

Cg[u(x)] ≈ Cg[0]
(
1− a0(b† + b)

)
, (6.14)

where

a0 =
Y0

l
√
2

∫ l

0

ds
1

Cg[0]

∂Cg

∂u
[0] u0(s/l) . (6.15)

Plugging Eq. (6.14) into Eq. (6.13) one obtains

Helec =
U∞

2
a0(b

† + b) + (ǫ̃− eVg)d†d+Hpol, (6.16)

where U∞ = e2/Cg[0], ǫ̃ = U∞(N0 + 1/2), and

Hpol = λelec(b
† + b) d†d , with λelec = a0ǫ̃ . (6.17)

The first term in Eq. (6.16) gives a shift in the equilibrium position of the resonator and

can be discarded. Furthermore, we assume U∞ to be the largest energy scale of the system,

allowing to neglect the contribution of the double occupancy state. The second term can

be included in the definition of Ed leading to a renormalization of the level energy. The

last term, defined in Eq. (6.17), is a polaron-like coupling, which models the interaction

between the oscillations and the charge fluctuations in the dot.
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The expression for the polaronic coupling constant λelec can be calculated by using a

model of distributed capacitance[153, 154]

Cg[u(s)] =

∫ l

0

ds
2πǫ0

cosh−1([h− u(s)]/R0)
, (6.18)

where h is the distance of the nanobeam from the antenna, R0 is the nanobeam radius,

and ǫ0 is the vacuum permittivity. Plugging Eq. (6.18) in the definition of the coupling

strength λelec [see Eq. (6.17)] one obtains, for R0 ≪ h,

λelec ≈
eCg[0]|Vg|Y0√
2 2πǫ0h l3

∫ 1

0

ds u0(s) , for Cg[0]Vg ≫ e . (6.19)

Thus, the total Hamiltonian including the electrostatic contribution, reads

H ′(t)+Helec ≈ Edd
†d+H ′

m+Hpol+Hl(t)+Hr(t)+H
′
T , with Ed = ǫ+ ǫ̃−eVg . (6.20)

In the absence of magneto-elastic coupling, the Hamiltonian (6.20) was introduced in Refs.

155 and 156 to describe transport through a quantum dot in the presence of a local electron-

phonon coupling and later studied by several authors.[143, 157–161]

In the linear case, ν = 0 in Eq. (6.10), the Hamiltonian is diagonalized by the polaron

transformation Upol = exp
[
λelec(b

† − b) d†d/ω0

]
. By using the transformation Upol we shift

the bosonic fields b and b† by −λelec/ω0, i.e. Upol b Upol = b − λelec/2ω0. In the regime of

very weak nonlinearity and weak polaronic coupling, {ν/ω0, λelec} ≪ 1, the transformed

mechanical part of the Hamiltonian (6.20), UpolH ′
m U †

pol, can be approximated by

H ′′
m = Upol H ′

m U †
pol ≈ ℏω0b

†b+ ℏ
2ν(b† + b)4/12− λelec(b† + b) d†d (6.21)

The third term on the right hand side in Eq. (6.21) vanishes with the polaronic coupling

Hpol term of the Hamiltonian (6.20). In addition, as a consequence of the transformation

Upol, the single level energy on the dot is modified by E ′
d = Ed − λ2elecω0, the charging

energy by U ′
∞ = U∞ − 2λelecω0, and the fermion operators by d → d exp[λelec(b − b†)].

The Upol transformation translates the polaronic coupling to the tunneling term in the

Hamiltonian. In this way one can combine the electrostatic and magnetic effects in the the

electron-phonon dynamics in the tunneling term. Using the Baker-Hausdorff formula, the

transformed tunneling part of the Hamiltonian reads

H ′′
T,l/r ≡ Upol H ′

T,l/r U †
pol = exp

[
αb− α∗b†

]∑

k

T ′
l/rd c

†
k,l/r + h.c. , (6.22)

where T ′
l/r = Tl/r exp[−iλelecλmag] are the normalized tunneling matrix elements, and α =

λelec + iλmag is the complex electron-phonon coupling.
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Finally, one gets the following Hamiltonian model

H ′′(t) = E ′
d d

†d+H ′
m +Hl(t) +Hr(t) +H ′′

T , (6.23)

where the electron-phonon interaction, induced by external magnetic and electric fields, is

enclosed in the tunneling term H ′′
T [Eq. (6.22)]. The Hamiltonian (6.23) is limited to the

special case where the polaron coupling defines a time regime larger than the decay time of

the electrons in the single level, i.e., 1/ω0λelec ≫ 1/ℏΓ. This is a significant restriction for

the size of the external electric field. In order to keep the system as simple as possible and to

give a straightforward interpretation of the results, we shall consider only a magneto-elastic

coupling between the electron and phonons.

6.2 Current driving the mechanical motion

In this section we consider a time-periodic bias voltage in the leads at frequency ωex with

amplitude Vl/r = ±V0/2. In analogy with Sec. 5.4.2, it is more convenient to change to the

reference frame of time independent bias voltages by using the transformation [cf. (5.5)]

UV (t) = exp [i φl(t) + (l → r)] , with φl/r(t) =
eVl
ℏωex

∑

k

sin(ωext) c
†
k,l ck,l. (6.24)

In doing so, the tunneling matrix elements Tl/r in the tunneling term become time-dependent

involving the phase accumulated by the modulation φl/r(t), i.e., T
′
l/r(t) = Tl/r exp[iφl/r(t)].

This yields the tunneling Hamiltonian

HT,l/r(t) = exp
[
iλ(b† + b)

]∑

k

T ′
l/r(t) d c

†
k, l/r + h.c. . (6.25)

The Hamiltonian of the leads thereby becomes time-independent, i.e., Hl/r(t) → Hl/r. In

Eq. (6.25), we drop out the primes symbols and redefine the magneto-elastic coupling as

λ ≡ λmag in order to simplify the notation. The other elements in (6.23), E ′
d d

†d and H ′
m,

are invariant under UV (t).
We are interested in studying coherent few-phonon transitions in the nanobeam when the

external frequency is close to the fundamental frequency ωex ∼ ω0. Furthermore, we focus on

the regime of weak nonlinearity and weak driving, characterized by {ℏ2ν/ω0, eV0/ω0, λ} ≪
1. In this limit, it is more convenient to switch to the rotating frameR(t) = exp[−iℏωex(b

†b+

d†d) t], and eliminate the fast oscillating terms in a rotating wave approximation. Thus we

get to the following tunneling term

HT,l/r = eλ
2/2Tl/r

∑

k

∞∑

m=−∞

BmJ1−m

(
eVl/r
ℏωex

)
d c†k,l/r + h.c. , (6.26)
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where Bm is a Franck-Condon operator defined by[157, 162]

Bm|n〉 =

∞∑

k=|m|Θ[−m]

(iλ)m+2k

(k +m)!k!
(b†)k+mbk|n〉

= (iλ)|m|

√
(n− |m|Θ[−m])!

(n + |m|Θ[m])!
Ln+|m|Θ[−m]
m (λ2)|n+m〉, (6.27)

where b†b|n〉 = n|n〉, Θ(x) is the Heaviside function, and Ln
m(x) are the generalized Laguerre

polynomials. The Bessel functions in (6.27) provide extra driving-induced weights in the

expansion, making the first terms m = 0, 1 in Eq. (6.26) dominant. To proof this, we

consider the upper limit of 〈n+m|Bm(λ
2)Jm−1(Vl/r/ℏωex)|n〉 ≡ An+m,n in order to compare

the different matrix elements of HT,l/r, and then determine the dominant elements in Eq.

(6.26). For Vl/r ≪ ω0 this is given by[163]

|An+m,n| ≤ λ|m|

√
(n− |m|Θ[−m])!

(n+ |m|Θ[m])!

Γ[n+m(1 + Θ[−m])]

m!Γ[n +mΘ[−m]]

eλ
2/2(λ/2)m−1

Γ[m]
, (6.28)

where, Γ(x) is the Gamma function. Even for λ = 0.1,[152] |An+m,n|/|An+1,n| ≪ 1 for

m 6= {0, 1}. The relative contribution of the m-th (m 6= 0, 1) term in (6.26) in the energy in

perturbation theory is even smaller, meaning that the tunneling can safely be approximated

by

HT,l/r
∼=
∑

k

(
eVl/r
2ℏωex

+ iλb†
)
d c†k,l/r + h.c , (6.29)

using the approximations J0(x) ≈ 1, J1(x) ≈ x/2 for x ≪ 1, and B0 ≈ I, B1 = iλb† for

λ≪ 1. Under these approximations, the resulting RWA Hamiltonian reads

H = HM +HE (6.30)

where

HM = ℏ δω b†b+
ℏ2ν

2
(b†b+ 1) b†b + iλ

[(
b†
∑

k

Tl d c
†
k,l − h.c.

)
+ (l→ r)

]
,(6.31)

and

HE = δǫ d†d+Hl +Hr +

[
∑

k

(
eVl

2ℏωex
Tl d c

†
k,l + h.c.

)
+ (l → r)

]
, (6.32)

with ℏδω = ℏ(ω0−ωex) and δǫ = E ′
d−ωex being the characteristic energy of the mechanical

and electronic dynamics detuned by the external driving, respectively. As in Chapters 3

and 4 the external modulation, in this case the operator iλTldc
†
k.l/r, lifts the degeneracies

at δω = δωN = ν(N + 1)/2, N ∈ Z, inducing coherent multiphonon transitions between

states |n〉 and |N − n〉 in the resonator.
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6.2.1 Nonlinear signatures in the current characteristics

The nonequidistant structure of the energy spectrum of the nonlinear resonator defines

several resonant frequencies. Its energy levels En with n ≤ N are pairwise resonant for the

same driving frequency ωex, EN−n − En = (N − 2n)ℏωex. After preparing the resonator in

its n-th excited state n ≤ N , it displays periodic quantum oscillations between the n-th

and the N -th excited states. These oscillations may be referred to as multiphonon Rabi

oscillations.

Close to the resonance δω = δωN , the relevant states in the dynamics of the resonator are

those involved in the multiphonon transitions, |n〉 and |N − n〉. The matrix representation

of the Hamiltonian can be written in terms of 2× 2 blocks corresponding to the subspaces

formed by |n〉 and |N − n〉, 0 < n < N/2. In the (n + 1)-th block, 0 < n < N/2,

corresponding to the N−n multiphonon transition, the degeneracy is lifted at order N−2n
in perturbation theory in λTl/r/ν. Therefore the diagrammatic expansion in leading order

of Γ, developed in Chap. 5 for driven systems, is sufficient to describe only one phonon

transitions, i.e. for N − 2n = 1, which implies only transitions for odd N .

In Fig. 6.2(a), the amplitude of the nonlinear response exhibits anti-resonances at

δω = δωN for odd N , indicating single phonon transitions. In contrast, the amplitude of

the alternating current, Fig. 6.2(b) exhibits anti-resonance behaviour at δωN for every N .

Since the amplitude of the alternating current vanishes when the nonlinear oscillator gets

excited, the backaction on the nanobeam leads to a decrease in the nonlinear response [see

the zoom for the 3-phonon resonance in the upper panel of Fig. 6.2(c)].

The nonequilibrium behaviour of the nonlinear resonator is best described by the am-

plitude of the alternating current. The current calculated using the Hamiltonian in the

RWA [Eq. (6.30)] is composed of a direct current and an alternating current. We can

identify a part of the direct component from the electronic part of the Hamiltonian, Eq.

(6.32), which is just the current from the first sideband flowing through the quantum dot.

From Eq. (5.34) we can estimate this part as Idc ≈ ΓlJ1(eVl/ℏωex)
2/2. In Fig. (6.2)(b)

we have subtracted this dc component from the total current calculated using (6.30). The

remaining part corresponds entirely to the dynamics of the coupled system. In doing so,

we can estimate the current around the N -th multiphonon resonance. Taking into account

only the relevant states |n〉 and |N − n〉, 0 < n < N/2, and the renormalization of the

tunneling matrix elements, see Eq. (6.32), yielding Γl/r → Γl/r(eV0/4ℏωex)
2, we calculate

the self energies [Σ
(5/6)
l/r + Σ

(8/7)
l/r ], and therefore the current around the N -th multiphonon

resonance [using Eq. (5.29)] and find

INac ≈ eΓ

(
eV0
4ℏωex

)2 ⌈N/2⌉∑

n=0

∑

s=0,1

(ρ∞ns,ns − 1/2N∗), Γl/r = Γ , (6.33)
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where ρ∞ns,ns are the diagonal elements of the reduced density operator in the steady state

regime. In this regime n refers to the mechanical state, s to the electronic state, and N∗

is the number of effective states considered in the simulations, which corresponds to the

number of states enclosed in the difference of the electrochemical potentials in the leads,

i.e., N∗ = ⌊|µl − µr|/ℏωex⌋. Additionally, we have used ρ∞(N−n)s,(N−n)s = ρ∞ns,ns. In the

lower panel of Fig. 6.2(c) we show the approximation (6.33) by the black solid line and the

current calculated using the full numerical method (red solid line). A good agreement is

found.

6.3 Conclusions

To conclude, we have investigated nonlinear mechanical features in the current characteris-

tics of a doubly-clamped nanobeam in its nonlinear regime connected to fermionic reservoirs.

We have considered the special case of a nanobeam in the presence of an external magnetic

field. In leading order of the magneto-elastic coupling, the current flowing through the

nanobeam mimics a harmonic driving in its nonlinear deflections. In the regime of reso-

nant few-phonon transitions (deep quantum regime), discrete multiphonon resonances in

the resonator can be identified as anti-resonances in the alternating current amplitude.

The nonlinear response calculated by means of second order in the tunneling coupling in

the diagrammatic expansion, only describes single-phonon transitions. In order to connect

the nonlinear response to multiphonon transition, we have to consider higher terms in the

diagrammatic expansion. On the other hand, in the alternating current amplitude the

second order in diagrammatic expansion in the tunneling coupling is sufficient to describe

all the multiphonon transitions and the antiresonant lineshape is a clear signature of the

nonlinearity in the nanobeam.
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Figure 6.2: (a) Amplitude of the nonlinear response of the vibrational mode to the external
current (driving) as a function of the external frequency. (b) Alternating current as a function of
the external frequency. (c) Zoom of the nonlinear response (upper plot), and the amplitude of the
alternating current (lower plot) at the 3-phonon transition. (d) Sketch of the energy spectrum of
the system and the sidebands of |k′l/r〉 on the left/right lead, for δω = δω3. There, we compare

the approximation described in Eq. (6.33) (black solid line) with the full numerical result (red
solid line). The parameters used are: λ = 10−3, ν = 10−2ω0, Γl = Γr = Γ = 5 × 10−2ω0,
V0 = 4× 10−1ω0, Ed = 3ω0/2, kBT = 5× 10−3ω0, µl = 10ω0, and µr = 0.



Chapter 7
Summary

In this thesis the quantum noise properties of the driven nonlinear oscillators under nonequi-

librium conditions is studied in different physical situations.

We first consider a Duffing oscillator in the deep quantum regime being a monostable

anharmonic oscillator which has a Kerr nonlinearity. In this system, we analyse the power

spectrum of the photon number fluctuations induced by the coupling of the system to a dis-

sipative environment. In the weak coupling regime of the environment, a weak Kerr nonlin-

earity, a weak amplitude modulation, and close to resonance we resort to the rotating wave

approximation to solve the dissipative dynamics by solving the Lindblad quantum master

equation and thereafter calculating the noise by means of the regression theorem. Both

analytical and numerical calculations are presented, revealing a rich phenomenology. Most

interestingly, we find that the dynamics of the photon number fluctuations is characterized

by multiphoton oscillations which manifest themselves as peaks in the noise spectrum S(ω)

of photon number. The peak intensity is proportional to the stationary occupation prob-

ability of the initial quasienergy state. Therefore, the noise spectrum offers a convenient

way to directly probe the stationary distribution over all the quasienergy states. Exactly

at a multiphoton resonance, the noise spectrum consists in a collection of pairs of related

resonances which are located at opposite frequencies and which are equal in height. Each

pair is associated to a multiphoton doublet. In spite of large fluctuations over the oscillator

quasienergy, no quasielastic peak occurs at zero frequency. Finally, for a weakly detuned

modulation or a stronger driving, the spectrum becomes asymmetric. Besides, an addi-

tional quasielastic peak appears at zero frequency which represents incoherent relaxation

of the fluctuations towards the stationary state. The two inelastic peaks are symmetrically

located at finite frequencies and their width determines the inverse of the dephasing time.

In addition, the quasielastic peak at zero frequency represents incoherent relaxation with

the inverse relaxation time given by its width. In the driven system, the appearance of a
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quasielastic peak depends on the intriguing interplay between the nonlinearity, the driving

strength and the dissipation strength characterizing a full nonequilibrium situation.

In the aforementioned regime, we use the Duffing oscillator as amplifier of the quantum

state of a qubit. There, we exploit sharp multiphoton resonances in the nonlinear oscillator

in the detection/amplification of the states of the qubit. This concept is an extension of the

case of a linear resonator. We find that the sharp resonant lines offer the advantage that

only a few measurement cycles are necessary to ensure a large discrimination power of the

measurement. Moreover, we calculate the relaxation rate of the qubit due to the coupling

with the Duffing oscillator around a multiphoton resonance. Notably, the back-action of

the resonator on the qubit is sufficiently weak, yielding to a good qubit-state measurement

fidelity.

Finally, in the pursuit of a detection scheme for the multiphoton(phonon) transitions

in the Duffing oscillator, we study the electric charge current flowing through a nanobeam,

in its nonlinear regime, clamped to conducting leads. We start with the calculation of

the electron-phonon interaction, considering the general case of a nanobeam in presence of

an electric and magnetic field. For the sake of simplicity, we consider the magnetic field

case, taking into account that the contribution from the electric field is just an imaginary

part in the coupling constant. We find that in the driven case, for ac bias voltages in

the leads, and in leading order in the coupling constant, the current drives directly the

deflection of the nanobeam. In order to compute observables of interest we apply a real-

time diagrammatic expansion in the tunneling coupling, leading to master equation for the

reduced density matrix. In the high frequency approximation, and combining this with the

rotating wave approximation, we calculate the current flowing through the nanobeam. The

ac part shows characteristic antiresonant behaviour as a consequence of the multiphonon

transition transition in the nanobeam.



Appendix A
Second-order coherence function

Intensity-correlation experiments have provided powerful tools especially in astronomy,

since they allow the determination of the angular diameter of distant stars.[164, 165] The

first experiment was conducted by Hanbury-Brown and Twiss.[166] The measured quantity

is the joint probability of counting a photon at time t and another at t+τ . This probability

is, according to Glauber,[167] proportional to the normal-ordered correlation function

G(2)(τ, t) = 〈: n̂(t)n̂(t+ τ) :〉, (A.1)

where n(t) = a†(t)a(t) is the number operator at time t, and the double dots describe normal

ordering in the ladder operators a(t) and a†(t). In a stationary situation, the G(2) function

depends only on the delay time τ . On the other hand, for nonequilibrium states, since

the lack of the translational time invariance in the dynamics the G(2) function, therefore,

depends on the initial time t.[51] In the steady state regime, for long times, the state of the

system does not depend on its initial preparation, and so G(2)(τ, t→∞) = G(2)(τ). In the

following we consider this regime.

The second order of coherence function is defined as[2]

g(2)(τ) = G(2)(τ)/〈n̂〉2∞ . (A.2)

This quantity describes whether the photons in the beam tend to group together or stay

apart. If g(2)(τ) = 1, the probability of joint detection coincides with the probability of

independent detection. This should be the case when τ →∞, since then the memory of the

first photodetection dies out. If g(2)(τ) > g(2)(0), the probability of detecting the second

photon increases with the time delay, which is characteristic of antibunching.

For a single-mode photon field, one has

g(2)(0) = 〈a†a†a a〉∞/〈a†a〉2∞ . (A.3)
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If the mode is in a coherent state, we have g(2)(0) = 1. On the other hand, for a Fock

state |n〉, in which a†a|n〉 = n|n〉, one has

g(2)(0) = 1− 1/n , (A.4)

while for n = 0 or n = 1, one finds trivially that g(2)(0) = 0.

For classical light fields, applying the Schwarz inequality in the classical correlation

function corresponding to Eq. (A.2) shows that one should always have g(2)(τ) 6 g(2)(0).

Additionally for these fields we have g(2)(0) > 1, so that classical fields are never anti-

bunched. Therefore, the two properties g(2) < 1 and g(2)(τ) > g(2)(0) are characteristic

of nonclassical light [an example of the first property is provided by Eq. (A.4)]. Since

g(2)(τ)→ 1 when τ →∞, the property g(2)(0) < 1 always implies that there is antibunch-

ing for some range of values of τ ; unless g(2)(τ) is independent of τ .

The relation between antibunching and sub-Poissonian statistics is a subtle one .[168,

169] In fact, from Eq. (A.3), one can show the following relation between the second order

of coherence and the photon number variance:

g(2)(0) = 1 +
〈∆n̂〉∞ − 〈n̂〉∞

〈n̂〉2∞
. (A.5)

Therefore, in this case sub-Poissonian statistics implies g(2)(0) < 1, which, unless g(2)(τ)

does not depend on τ , implies antibunching for some range of τ . On the other hand, one

cannot state in general that antibunching leads to sub-Poissonian statistics, since g(2)(τ) >

g(2)(0) does not necessarily imply g(2)(0) < 1.[170] In fact, for a stationary field the variance

of the number of photons measured can be expressed in terms of g(2)(τ) in the following

way[169, 170]

〈∆n̂2〉∞ − 〈n̂〉∞ =
〈n̂〉∞
T

∫ +T

−T

dτ (T − |τ |)[g(2)(τ)− 1] . (A.6)

If g(2)(τ) < 1 for all τ , the field will exhibit sub-Poissonian statistics. One could have,

however, g(2)(τ) > g(2)(0), while still having super-Poissonian statistics for some time in-

terval. Furthermore, for a single monochromatic mode, g(2)(τ) does not depend on τ , and

coincides with the value for τ = 0. In this case, g(2)(0) < 1 does no imply antibunching

for any counting interval, since neither short or long time intervals between photons are

favoured.[170]



Appendix B
Density matrix of the steady state around

resonance

In this appendix we compute the stationary solution of the quantum master equation (2.50)

following Ref. 47. Using the balance equation (3.12), and the general order solution for the

quasienergies states given in (3.15). The expressions for the rates read

W0,1 = W0,N−1 =
γ

2
cos2

θ

2

WN,1 = WN,N−1 =
γ

2
sin2 θ

2

W1,0 = WN−1,0 =
γ

2
N sin2 θ

2

W1,N = WN−1,N =
γ

2
N cos2

θ

2
. (B.1)

with θ = tan−1[Ω0,N/N(δω − δωN)]. With these elements, the master equation becomes

0 = −N sin2 θ

2
ρ∞00 + cos2

θ

2
ρ∞11

0 = −N cos2
θ

2
ρ∞NN + sin2 θ

2
ρ∞11 . (B.2)

Thereby, the stationary solution reads

ρ∞NN = ρ∞00 tan
4 θ

2

ρ∞11 = ρ∞00N tan2 θ

2
.

With these matrix elements one can calculate ρ∞nn for 1 ≤ n < N/2. Plugging the quasiener-

gies states (3.8) into the expression for the transition rates in Eq. (3.13), one finds that
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most of the transition rates between two different states belonging to two different resonant

pairs are zero, except for

Wn,n+1 = Wn,N−n =WN−n,n+1 =WN−n,N−n−1 =
γ

4
(n+ 1)

Wn+1,n = Wn+1,N−n =WN−n−1,n =WN−n−1,N−n =
γ

4
(N − n) . (B.3)

The driving field excites the transition from |0〉 to |N〉 while the bath generates transitions

between the Fock states towards lower energies according to |N〉 → |N − 1〉 → · · · →
|0〉 when only spontaneous emission is considered. Thereby, the ration of the occupation

numbers of two states belonging to two neighbouring resonant pairs is simply given by the

ration of the corresponding transition rates according to

ρ∞nn = ρ∞N−n,N−n

ρ∞nn
ρ∞n+1,n+1

=
Wn,n+1

Wn+1,n
=

n+ 1

N − n , for 1 ≤ n < N/2 , (B.4)

with this one can calculate all the matrix elements of ρ∞, starting with ρ∞11 and ρ∞NN , in

terms of ρ∞00.



Appendix C
Semiclassical approximation in the Duffing

oscillator dynamics

The Hamiltonian of the Duffing oscillator in the rotating wave approximation is given by

H = δωn̂+
ν

2
n̂(n̂+ 1) +

f

2
(a+ a†). (C.1)

There, δω describes the frequency detuned by the external driving, ν the nonlinearity

parameter, f the driving strength, a and a† the ladder operators with n̂ = a†a.

In order to obtain a semiclassical treatment following Ref. 75, we introduce the rescaled

coordinate and momentum of the oscillator in the rotating frame (quadratures in the static

frame) as

X =

√
λ

2

(
a† + a

)
, P = i

√
λ

2

(
a† − a

)
, (C.2)

with the commutator
[
X ,P

]
= −iλ, with λ = ν/2δω being an effective Planck constant.

By substituting Eq. (C.2) into the Hamiltonian Eq. (C.1) one obtains

H =

(
2δω2

ν

)(
Q(X ,P)− 1

4
− ν

8

)
(C.3)

with

Q(X ,P) = 1

4

(
X 2 + P2 − 1

)2
+ βX (C.4)

as the quasienergy surface, which depends only on the parameter β = f 2ν/4δω3. The

quasienergy surface has the shape of a tilted Mexican hat [cf. Fig. C.1]. Next, we look for

the stationary points which obey the conditions,

∂Q

∂X

∣∣∣∣
Xe,Pe

= Xe(X 2
e + P2

e − 1) + β1/2 = 0 , (C.5)

∂Q

∂P

∣∣∣∣
Xe,Pe

= Pe(X 2
e + P2

e − 1) = 0 , (C.6)
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X
P

X

XXm M

Figure C.1: Quasienergy potential for the driven nonlinear oscillator corresponding to ν =
10−3ω0, f = ν/10, and δω = −2ν. The surface is divided into an internal and an external dome.

corresponding to Pe = 0 and X 3
e − Xe + β1/2 = 0. For 0 < β < 4/27, this equation has

three solutions associated to a minimum (e = m), a maximum (e = M), and a saddle

point (e = s). They are given by Xm = − cos θ
/√

3 − sin θ, XM = − cos θ
/√

3 + sin θ and

Xs = 2 cos θ
/√

3 with θ = (π − arctan
√

4/27β − 1
/
3). In this interval, 0 < β < 4/27, the

Hamiltonian is bistable, i.e., in a certain range of quasienergies there are two trajectories

corresponding to the same quasienergy, one on the internal part of the surface and the

other on the external part. When the motion is quantized, the quasiclassical trajectories

are associated to quantum levels. In order to compute the energies, and the squeezing

factors of the solutions close to the extremal points (e = n,M), we apply a harmonic

expansion of the quasienergy surface around these points as

Q(X̃ + Xm/M ,P) ≃ Q(Xm/M , 0)±
1

2
mm/Mω

2
eX̃ 2 ± 1

2mm/M

P2, (C.7)

with X̃ = X − Xm/M . The frequency ωm/M and the mass term mm/M are related to

curvature of the surface, ∂2Q/∂P2 = mm/Mω
2
m/M and |∂2Q/∂X 2| = 1/mm/M . Thereby,

ωm/M =
√
3X 4

e − 4X 2
m/M + 1 and mm/M = 1

/
|X 2

m/M − 1|. The corresponding energies are

Em/M =
2δω2

ν

(
Q(Xm/M , 0)±

λ

2
ωm/M

)
+
δω

2
− ν

8
. (C.8)

For the squeezing factor r∗,[2] we use the definition exp[2r] = ∆P/∆X̃ . With this

r∗m/M =
1

2
ln[mm/Mωm/M ] =

1

4
ln

3X 2
m/M − 1

X 2
m/M − 1

. (C.9)
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Thus, the ladder operators a and a† can be described in terms of the ladder operators b

and b† of the effective auxiliary oscillator (characterized by the mass mm/M and frequency

ωm/M ) as

a = am/M + b cosh r∗m/M − b† sinh r∗m/M , (C.10)

where am/M = Xm/M/
√
2λ and b = i(P − imm/Mωm/M X̃ )/

√
2λmm/Mωm/M .



Appendix D
Lowest-order expansion in self energies

To facilitate the understanding and to simplify the notation of the rates

χ1

χ2

[
γ
(1)
l/r,k,m(z)

]χ′
1

χ′
2

=
∑

χ′

χ1

χ′
1

[Tm
k (ωex)]

χ′

χ′ δχ2χ′
2

∫
dǫ

f−
l/r(ǫ)

i(ǫχ′ − ǫχ2
) + i(ǫ+ z − k ωex)

,(D.1)

χ1

χ2

[
γ
(2)
l/r,k,m(z)

]χ′
1

χ′
2

=
∑

χ′

χ′
2

χ2
[Tm

k (ωex)]
χ′

χ′ δχ1χ′
1

∫
dǫ

f−
l/r(ǫ)

i(ǫχ1
− ǫχ′)− i(ǫ− z + k ωex)

,(D.2)

χ1

χ2

[
γ
(3)
l/r,k,m(z)

]χ′
1

χ′
2

=
∑

χ′

χ′

χ′ [T
m
k (ωex)]

χ′
2

χ2
δχ1χ′

1

∫
dǫ

f+
l/r(ǫ)

i(ǫχ1
− ǫχ′) + i(ǫ+ z − k ωex)

,(D.3)

χ1

χ2

[
γ
(4)
l/r,k,m(z)

]χ′
1

χ′
2

=
∑

χ′

χ′

χ′ [T
m
k (ωex)]

χ1

χ′
1
δχ2χ′

2

∫
dǫ

f+
l/r(ǫ)

i(ǫχ′ − ǫχ2
)− i(ǫ− z + k ωex)

,(D.4)

χ1

χ2

[
γ
(5)
l/r,k,m(z)

]χ′
1

χ′
2

= −χ1

χ2
[Tm

k (ωex)]
χ′
2

χ′
1

∫
dǫ

f−
l/r(ǫ)

i(ǫχ′
1
− ǫχ2

) + i(ǫ+ z − k ωex)
, (D.5)

χ1

χ2

[
γ
(6)
l/r,k,m(z)

]χ′
1

χ′
2

= −χ′
2

χ′
1

[Tm
k (ωex)]

χ1

χ2

∫
dǫ

f+
l/r(ǫ)

i(ǫχ′
1
− ǫχ2

)− i(ǫ− z + k ωex)
, (D.6)

χ1

χ2

[
γ
(7)
l/r,k.m(z)

]χ′
1

χ′
2

= −χ′
2

χ′
1

[Tm
k (ωex)]

χ1

χ2

∫
dǫ

f+
l/r(ǫ)

i(ǫχ1
− ǫχ′

2
) + i(ǫ+ z − k ωex)

, (D.7)

χ1

χ2

[
γ
(8)
l/r,k,m(z)

]χ′
1

χ′
2

= −χ1

χ2
[Tm

k (ωex)]
χ′
2

χ′
1

∫
dǫ

f−
l/r(ǫ)

i(ǫχ1
− ǫχ′

2
)− iǫl − z + k ωex)

, (D.8)

we introduce diagrams on the Keldysh contour. Each auxiliary rate stems from each term

on the right hand side in Eq. (5.17). We refer to the rules in Sec. 5.4.2 to draw the
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Figure D.1: Feynman for the transition rates in first order in Γ.
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corresponding diagrams, see Fig. D.1.

D.1 Explicit calculation of the rates

The calculation of the rates (D.1)–(D.8) in the high frequency approximation involves

mainly the calculation of energy integrals of the type

I±σ,l/r(ǫ) = lim
η→0

∫
dE

f±
l/r(E)

ǫ−E + iση
, with σ = +.− . (D.9)

The above infinite integral denotes an integral over the whole spectrum, i.e.,
∫ +∞

−∞
dE. In

order to ensure the convergence of the above integral, one can introduce a Lorentzian cut-off

weight function Dl/r(E) = E2
c /
[
(E − µl/r)

2 + E2
c

]
, i.e.,

∫
dE →

∫
dEDl/r(E) where Ec is

the cut-off energy.

The integral (D.9) can be solved by means of residues of a contour integration along

a path describing a half circle with radius R → ∞ either in the lower or upper complex

plane [cf. Fig. D.2]. To this end, we have to find the poles in the complex plane of the

function in the integral (D.9) (including the weight function), i.e., the poles of f(z) =

Dl/r(z)f
±
l/r(z)/(ǫ − z + iση), z ∈ C. The cut-off weight function Dl/r(z) contributes with

poles at z± = µl/r± iEc, the Fermi function f±
l/r(z) with poles at zm = iπ(2m+1)/β+µl/r,

m ∈ N, and the denominator with the pole z0 = ǫ + iση. Now, we average over the upper

and lower contour, over C1 and C2 respectively,

I±σ,l/r(ǫ) = lim
R→∞

1

2

(∫

C1

f(z)dz +

∫

C2

f(z)dz

)

= πi

(
∑

k

Rez=zkf(z)−
∑

k′

Rez=zk′
f(z)

)
. (D.10)

Above, zk and zk′ are the poles enclosed by the path C1 and C2, respectively. With this,

the integral (D.9) reads

I±σ,l/r(ǫ) = πiDl/r(ǫ)

(
−σf±

l/r(ǫ) +
ǫ− µl/r

2iEc
∓ 1

2
tanh

[
iβEc/2

])

∓πiDl/r(ǫ)β
−1

∞∑

m=0

(
1

ǫ− zm
− 1

ǫ− µl/r + zm

)

∓πiDl/r(ǫ)β
−1

∞∑

m=0

(
1

zm − µl/r − iEc
− 1

zm − µl/r + iEc

)
. (D.11)

For a very large cut-of energy Ec, Dl/r(ǫ) ∼ 1 and using the property of the digamma

functions ψ(z1)−ψ(z2) =
∑∞

m=0 [1/(m+ z2)− 1/(m+ z1)], the Eq. (D.11) might be written
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Figure D.2: Integration contour in the complex plane.

as

I±σ,l/r(ǫ) ≈ −πiσf±
l/r(ǫ)∓

1

2

[
ψ

(
1

2
+
iβ

2π
(ǫ− µl/r)

)
+ ψ

(
1

2
− iβ

2π
(ǫ− µl/r)

)]
±

ln

[
βEc

2π

]
. (D.12)

With this result, the calculation of the rates (D.1)-(D.8) and their numerical implementation

is straightforward.
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[68] S. André, L. Guo, V. Peano, M. Marhaler, and G. Schön, Phys. Rev. A 85, 053825

(2012).

[69] V. Leyton, M. Thorwart, and V. Peano, Phys. Rev. B, 134501(2011).

[70] V. Leyton, V. Peano, and M. Thorwart, New J. Phys. 14, 093024 (2012).

[71] V. Peano and M. Thorwart, Phys. Rev. B 70, 235401 (2004).



108 BIBLIOGRAPHY

[72] L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M.

Girvin, and R. J. Schoelkopf, Nature 5, 105 (2009).

[73] M. I. Dykman, R. Mannella, P. V. E. McClintock, F. Moss, and S. M. Soskin, Phys.

Rev. A 37, 1303 (1988).

[74] A. P. Dmitriev and M. I. D’yakonov, Sov. Phys. JETP 63, 838 (1986).

[75] M. I. Dykman and M. V. Fistul, Phys. Rev. B 71, 140508 (2005).
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[77] A. Lupaşcu, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. B 71, 184506 (2005).

[78] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, 1979).

[79] A. Lupaşcu, E. F. C. Driessen, L. Roschier, C. J. P. M. Harmans, and J. E. Mooij,

Phys. Rev. Lett. 96, 127003 (28 Mar. 2006).

[80] M. I. Dykman and M. A. Krivoglaz, Sov. Phys. JETP 50, 30 (1979).

[81] M. I. Dykman and V. N. Smelyansky, Phys. Rev. A 41, 3090 (1990).

[82] K. W. Murch, R. Vijay, I. Barth, O. Naaman, J. Aumentado, L. Friedland, and

I. Siddiqi, Nature Phys. 7, 105 (2010).

[83] O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, Phys. Rev.

Lett. 101, 117005 (2008).

[84] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, and C. H. van der Wal, Science 285,

1036 (1999).

[85] O. H. Soerensen, J. Appl. Phys. 47, 5030 (1976).

[86] C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).

[87] P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M. Harmans, D. P. DiVincenzo,

and J. E. Mooij, Phys. Rev. Lett. 25, 257002 (2005).

[88] M. Thorwart, E. Paladino, and M. Grifoni, Chem. Phys. 296, 333 (2004).

[89] K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter

Physics (Oxford University Press, 2004).



BIBLIOGRAPHY 109

[90] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and

L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002).

[91] J. Lu, P. S. E. Yeo, C. K. Gan, P. Wu, and K. P. Loh, Nature Nanotech. 6, 247

(2011).

[92] D. R. Strachan, D. E. Smith, D. E. Johnston, T.-H. Park, M. J. Therien, D. A.

Bonnell, and A. T. Johnson, App. Phys. Lett. 86, 043109 (2005).

[93] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and

C. Dekker, Nature 386, 474 (1997).

[94] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature

391, 59 (1998).

[95] N. Y. Kim, Handbook of Nanophysics: Nanotubes and Nanowires (CRC Press, 2011).

[96] R. Shekhter, L. Gorelik, L. I. Glazman, and M. Jonson, Phys. Rev. Lett. 97, 156801

(2006).

[97] C. A. Regal, J. D. Teufel, and K. W. Lehnert, Nature Phys. 4, 555 (2008).

[98] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).

[99] J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B 54, 16820 (1996).

[100] J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 76, 1715 (1996).

[101] S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379 (2005).

[102] P. K. Tien and J. R. Gordon, Phys. Rev. 129, 647 (1963).

[103] L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha, R. M. Westervelt, and

N. S. Wingreen, Mesoscopic electron transport: Electron transport in quantum dots

(Springer, 1997).

[104] L. P. Kouwenjoven, S. Jauhar, K. McCormick, D. Dixon, P. L. McEuen, Y. V.

Nazarov, N. C. van der Vaart, and C. T. Foxon, Phys. Rev. B 50, 2019 (1994).

[105] R. Landauer, IBM J. Res. Dev. 1, 233 (1957).
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