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Kurzfassung

Die vorliegende Arbeit beinhaltet den allgemeinen Teil meiner kumulativen Dis-

sertationsschrift, eingereicht bei der Universität Hamburg im September 2012. Sie

beschreibt meine wissenschaftliche Arbeit an Computerstrategien zur strukturbasierten

Analyse von aktiven Zentren in der Abteilung für Algorithmisches Molekulares Design,

von Juni 2008 bis September 2012. Darüber hinaus beinhaltet meine Dissertations-

schrift sechs wissenschaftliche Veröffentlichungen, die in einem gesonderten Literatur-

verzeichnis aufgelistet sind und mit der Bezeichnung D1 - D6 im Text referenziert

werden.

Molekulare Erkennung und Bindung von kleinen Molekülen an ein Protein ist die Ba-

sis für die Erhaltung biologischer Systeme. Dabei spielt die dreidimensionale Struktur

des Proteins, genauer gesagt die Struktur des aktiven Zentrums, eine elementare Rolle.

Die für die Bindung zwischen Protein und Ligand verantwortlichen Wechselwirkungen

zu verstehen und zu modifizieren ist für die pharmazeutische und biotechnologische

Industrie von großer Bedeutung. Da die Anzahl bekannter Proteinstrukturen immer

größer wird, werden effiziente computergestützte Methoden immer wichtiger, um ex-

perimentelle Verfahren zu unterstützen und zu ergänzen.

In meiner Arbeit habe ich mich mit verschiedenen strukturbasierten Strategien zur com-

putergestützten Analyse aktiver Zentren befasst. Da das aktive Zentrum eines Proteins

der Schlüssel zu seiner Funktion ist, habe ich zuerst einen verläßlichen Algorithmus zur

Erkennung von Bindetaschen entwickelt. Verschiedene globale und lokale Deskriptoren

können anschließend für diese Taschen berechnet werden und in Kombination mit hi-

erarchischen Gruppierungsverfahren, maschinellen Lernverfahren und der Suche nach

nächsten Nachbarn zur Proteinbeschreibung benutzt werden. Die Klassifizierungsmeth-

oden wurden eingesetzt, um Proteine für den Wirkstoffentwurf zu priorisieren und un-

bekannten Proteinen eine Funktion zuzuordnen. In einer weiteren Studie wurde die

sterische Passform der beiden Bindungspartner, Protein und Ligand, untersucht und

ihre Komplementarität numerisch erfasst.

Da die Qualität vieler Ansätze unter der starren Modellierung der flexiblen Protein-

struktur leidet, wurde zusätzlich ein Ansatz zum Vergleich von Bindetaschen auf der

Basis von Dreiecksdeskriptoren entwickelt, der zumindest kleine Veränderungen in der

Bindetasche berücksichtigt.



Abstract

The thesis in hand comprises the general part of my cumulative dissertation, sub-

mitted to the University of Hamburg in September 2012. It describes my scientific

work on computer strategies for structure-based active site analysis in the group for

Computational Molecular Design of the Center for Bioinformatics from June 2008 till

September 2012. Furthermore, this manuscript contains six scientific journal publica-

tions, listed in a separate bibliography at the end of this dissertation and cited in the

text with D1 - D6.

Molecular recognition and binding of small molecules to a protein is the foundation for

the maintenance of biological systems. In this context, the 3D structure of the protein,

more precisely, the structure of the active site plays a fundamental role. Understanding

and modifying the mechanism of ligand binding is of high practical interest in pharma-

ceutical and biotechnological research. Due to the growing number of available three

dimensional protein structures, efficient computational methods are needed to assist

experimental approaches.

In my work, I designed several strategies addressing different parts of the structure-

based computer-aided active site analysis cycle. Since the active site of a protein is

the key to its function, the first step in my work was the development of a novel algo-

rithm for binding site detection. For predicted sites, several global and local descriptors

can subsequently be calculated and used for protein assessment. For protein classifica-

tion, the descriptors are incorporated into hierarchical clustering, machine learning and

nearest neighbor search techniques. These classifiers can be used to prioritize poten-

tial disease modifying proteins in drug development processes, and to annotate protein

function. In a subsequent study, the shape complementarity requirement for molecular

recognition has been explored and numerically registered.

Since many approaches suffer from the rigid modeling of the naturally flexible structure

of proteins, I participated in establishing an approach for active site comparison based

on triangle descriptors of the active site, accounting for small changes in the binding

site.
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Introduction

Bioinformatical software approaches have long entered a broad range of disciplines in

genetics and biochemistry. Due to advances in sequencing and structural genomics,

the vast amount of data cannot be managed without computer assistance anymore.

Besides data organization, computers are established tools in discovery processes like

pharmaceutical drug design [1]. Time and cost expenses for experimental methods

limit high-throughput applications. Thus, efficient computational approaches are in-

creasingly needed to model such scenarios in order to put biological information to

practical use.

It has been known for years that the three dimensional structure of a protein is the key

to its function [2]. The temporary complex formation of proteins and small molecules

is the basis for the conservation of biological systems. Affecting and modulating these

interactions is the main goal of pharmaceutical and biotechnological campaigns. The

understanding of the forces driving molecular recognition is still not sufficient. The

difficulty of the drug and protein design process results from the complexity of the

organisms. Thus, various aspects about the binding scenario have to be known to ef-

fectively modify the natural designation of a protein. Such modifications often address

the inhibition or the optimization of the function of a protein.

My thesis describes the development of a portfolio of computer methods allowing for

a detailed analysis of the active site of a protein based on its structure. Detecting the

active site, which is responsible for the reaction of a protein, and describing it with a

high specificity was one major goal of my work. The developed software can be used to

automatically derive information valuable for protein classification, modification and

comparison.

My project was funded by the BMBF1, grant 0315292A, and was part of the Biocatal-

1Bundesministerium für Bildung und Forschung, PTJ, Jülich
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1. INTRODUCTION

ysis2021 cluster. The project was a cooperation between the Center for Bioinformatics,

Merck1 and BioSolveIT2. This combination triggered a broad functionality and ap-

plicability of the algorithms due to the interdisciplinary nature of the applications in

pharmacy and biotechnology. The pharmaceutical partner Merck is highly interested in

generating information for the drug development process, amongst others the prediction

of the potential to address a disease-related protein by a small molecule. The Biocatal-

ysis2021 cluster investigates topics considering the discovery and efficient yielding of

biocatalysts for optimized biotechnological processes. The analysis and optimization of

the docking process for rational enzyme design was the duty of the cooperation partner

BioSolveIT. In summary, our project was in authority to generate information for ratio-

nal enzyme design, e.g., the comparison of enzymes and the identification of potential

mutations for process optimization.

In the following, the molecular basics to understand the importance of proteins and

their interactions to maintain biological functions are introduced first. Second, the

scope and the importance of bioinformatics tools in pharmaceutical, biotechnology and

biological research is explained. In the third part, the references to and the benefits of

my work are motivated. Finally, the structure of this thesis is outlined, containing an

explanation of the contributions of my scientific publications to the dissertation.

1.1 Proteins, Small Molecules and Interactions

Proteins are the main components of living cells, responsible for a variety of biochemi-

cal functions. They are involved in diverse chemical processes like signal transduction,

metabolism and energy transfer, operated by binding and conversion of small molecules.

Molecules generally consist of atoms from different types of elements connected through

covalent bonds [3]. Proteins are large molecules composed of smaller subunits, so called

amino acids. A set of twenty standard amino acids exists, consisting of a common part

and differing in the side chain which is responsible for their properties. Amino acids

are linearly connected to macromolecules by forming covalent3 peptide bonds. Dur-

ing this process water molecules are released, and the result is an amino acid backbone

consisting of a peptide bond and an amino acid residue responsible for a specific physic-

ochemical property like lipophilicity or charge. The different combination and order

of amino acids produces a variety of proteins with diverse properties and functions.

1Merck KGaA, Merck Serono, Global computational Chemistry, Darmstadt
2BioSolveIT GmbH, St.Augustin, supplies a lead identification software assisting in drug design
3A covalent bond is a form of chemical binding responsible for the solid coherence of atoms in

chemical connections.
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1.1 Proteins, Small Molecules and Interactions

The sequence of a protein is encoded by a unique and finite linear composition of

amino acids. Due to distance dependent attractive and repulsive forces between the

atoms of the amino acids, the protein folds in most cases into a specific conformation.

Nevertheless, the 3D structure of the protein is not rigid. Proteins are in constant mo-

tion in nature, influenced by ligand binding and environmental changes. Possibilities

for protein structure elucidation are crystallization and NMR spectroscopy, whereby a

snapshot of the structure can be gathered [4]. This snapshot holds information of the

3D position of each protein atom in the crystal, as well as possible ligand and water

atoms, within a specified precision.

If a small molecule, called ligand, binds to a protein, these two binding partners form

a complex and react with each other. The position of the protein where the reaction

takes place is called active site or binding site1. The function of most proteins requires

a reversible binding of the ligand. For instance, enzymes are proteins that function

as biocatalysts by increasing the turnover rate of chemical reactions. In enzymatic

reactions, the ligand, in this scenario called substrate, binds to the enzyme, is subse-

quently converted into one or more products, which are finally released. Two binding

partners have to exhibit some complementarity to be engaged, encoded by their sterical

and physicochemical properties. Sterical properties ensure the geometric fit of the two

binding partners to each other. Physicochemical properties describe energetic features

of atoms or functional groups, like hydrophobicity (water repulsion) and hydrophilicity

(water attraction). Furthermore, the interaction between protein and ligand is specific

and selective. The forces driving molecular recognition of a small molecule by a pro-

tein are not fully understood to date. Two prevalent theories are known for complex

formation, the lock-and-key and the induced-fit principle. The lock-and-key princi-

ple [2] preexisted, in which the active site of a protein is available in a specific and

relatively stable form. In this theory, the substrate has to fit like a key into a lock

to bind and interact with the protein. In pursuit of capturing the flexible nature of

proteins, the conformational selection concept [5] can be regarded as a continuation of

this theory. In this concept, the protein preexists in several conformations, of which

the ligand selects the appropriate one. Second, more recently the induced-fit theory

[6] gained importance, where the active site of the protein is considered flexible and

adapts to the substrate. This strategy explains the binding of ligands that do not

properly complement the shape of the unbound protein. In fact, many different inter-

molecular interactions are responsible for complex formation [7]. One of the driving

forces is the hydrophobic effect, which describes the tendency of hydrophobic atoms to

1While both terms describe a position on a protein where a small molecule can bind, the term

active site more precisely specifies an enzyme’s catalytic site.
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1. INTRODUCTION

aggregate in aqueous solution to exclude the energetically unfavorable interaction with

water [8]. Besides these undirected hydrophobic interactions, directed interactions, e.g.,

hydrogen bonds are built between electropositive hydrogen atoms and electronegative

atoms. Hydrogen bonds, salt bridges and van der Waals (vdW) interactions are forms

of electrostatic interactions, resulting from the proximity of charged particles in an elec-

trical field. VdW interactions are attractive or repulsive forces induced by two dipoles

resulting from the distance between two atoms.

1.2 Computer-Aided Design and Analysis

Finding novel drugs addressing a disease is the ultimate goal in pharmaceutical re-

search. Modern drug discovery, including experiments and computers, is executed on

molecular level. Due to the complexity of the human body, the design problem is sub-

ject to high expenses. The estimated time needed for the drug development cycle to

complete is 12 years and costs more than 1 billion U.S.$ [9]. Hence, computer-aided

drug design (CADD) has become a central and very promising task in pharmaceutical

industry. If the structure of the target1 is known, structure-based otherwise ligand-

based approaches are applied [10–12].

The early drug discovery process comprises several steps from target identification

to preclinical development [13]. Selecting a target of interest incorporates knowledge

about the disease relevance, structural aspects, screening feasibility, selectivity, toxi-

city, as well as commercial attractiveness. Rapidly and reliably identifying the most

promising targets out of a large pool of available structures is a challenging task. In

this context, the term druggability prediction has been coined, defined as the general

ability of a disease-related protein to be modulated by low-molecular compounds.

Later in the drug development pipeline continues the identification of small molecules,

termed hits, modulating the function of a target, and their transformation into leads2.

Due to time requirements, computational methods are commonly introduced perform-

ing high-throughput screenings (HTS). Efficient techniques calculating and optimizing

the binding mode3 of a ligand and estimating binding affinities are investigated, e.g.,

docking [14, 15] and virtual screening [16, 17]. Furthermore, molecular modeling is used

to simulate and study the dynamic behavior of the structure of molecules [18]. Areas

of applications for molecular modeling are protein folding, protein stability, molecular

recognition and conformational changes [19]. Such simulations provide insight into the

1The protein of interest to be addressed by a drug is named target.
2The hit identification follows the search for highly effective lead structures (hit-to-lead process).
3The binding mode is the orientation of the ligand relative to the protein.
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1.2 Computer-Aided Design and Analysis

structure-function relationship within proteins.

Furthermore, studying potential drug binding to multiple targets or vice versa is of high

practical value. Polypharmacology, adverse effects and drug promiscuity are problems

in drug design, which have already been addressed with computational methods [20–

23].

As exemplified, virtual methods can help to expand the understanding of the forces that

govern molecular recognition and ligand binding. A more efficient search for drugs that

bind with high affinity and selectivity would be the positive consequence. While such

procedures have been established in pharmaceutical industry for years, biotechnology

realized the benefit more recently and introduced computational methods for rational

enzyme design [24]. Biotechnology is divided in several sectors covering different fields

of action. White biotechnology, which is investigated in the Biocatalysis2021 cluster,

is devoted to biotechnological applications in industrial processes [25]. This includes

the design and application of enzymes as industrial catalysts to produce useful chemi-

cals. Enzymes in living cells from yeast, molds, bacteria and plants are investigated to

synthesize products with optimized parameters, as high yields, easy degradability, less

energy requirements and less waste production. Methods used in drug design can be

applied to a wide range of biotechnological questions after adaption of parameters. In

silico prediction of substrate specificity has already been introduced into biotechnol-

ogy research [26]. By use of docking and virtual screening methods, substrates can be

predicted for specific enzymes [27]. Biochemical profiling for large enzyme families has

also successfully been employed [28]. Molecular dynamics simulations have become an

inherent part in biotechnology, modeling substrate binding and enzyme catalysis [29].

Another challenge of computational biology is protein function prediction. Due to the

fast progress in protein sequence and structure elucidation, the available data pool is

growing rapidly. Since experimental annotation of function is limited due to time and

cost expenses, computational assistance is required to put biological information to

practical use [30]. Over 20 billion sequences are deposited in the Uniprot/TrEMBL

database [31], and over 84 thousand structures can be accessed from the protein data

bank (PDB) [32]. Following the hypothesis of divergent evolution, similarities between

protein sequences or structures suggest related ancestors and thus, common function.

Computer-based homology-driven protein function predictions can assist in making use

of this immense data pool. Although many approaches exist, the failure rate remains

high [33], mirroring the still not satisfying understanding of molecular forces. The

propagation of erroneous function over databases can only be avoided by the initiation

of reliable annotation [34].
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1. INTRODUCTION

The three mentioned scenarios - CADD, rational enzyme design as well as computa-

tional biology - imply the need for reliable prediction methods, particularly for binding

site detection, analysis and recognition feature encoding [35].

1.3 Motivation and Structure of this Work

The computer has become an integral component in many areas of pharmaceutical,

biotechnological and biological research. Although many approaches exist covering dif-

ferent parts of the protein assessment pipeline, there is still room for improvements.

A fundamental step for annotation or modification of protein function is a detailed

description of the position where the reaction takes place and an understanding of its

mode of action. The detection and analysis of specific parts of a protein where small

molecules can potentially bind is of high practical interest. This also concerns the de-

tection of sites other than the active site, i.e., allosteric sites. The challenge within

this task especially lies in the manifold nature of proteins and binding sites, enhanced

by their structural fluctuation. The more granular and precise the description of the

binding site, the better is the derived information. Thus, the inspection of possibilities

to subdivide this location into smaller pieces may gain further insight into the binding

process. These aspects motivated me to further inspect protein binding sites and to

develop a novel algorithm for precise binding site detection, presented in my first pub-

lication [D1].

The gathering of binding site information is very meaningful in a broad range of appli-

cations. Given the situation that several targets of interest participate in executing or

blocking a specific disease related effect, ranking these targets by their potential to be

inhibited by a small molecular compound is very valuable in drug design. Additionally,

if an active substance has been designed, studying drug repurposing and drug promis-

cuity is of high practical interest [21, 22].

In the biotechnological context, computer tools can similarly be used as idea generator,

e.g., predicting mutation sites by comparing the active site of the enzyme of interest

with known enzymes producing the required product.

Furthermore, function annotation investigations benefit from a detailed computer-based

analysis and comprehensive comparisons. As introduced in the last section, nowadays

structures are solved before their function is known, exemplified by several thousands

of unclassified structures deposited in the PDB. Although many approaches exist for

functional annotation [36–38], the number of not (yet) or miss-classified structures is

high [33, 34].

In pursuit of assisting these tasks, I developed novel strategies which can help in protein

6



1.3 Motivation and Structure of this Work

classification, i.e., druggability prediction, function annotation and grouping proteins

into families, published in [D1, D2, D3, D4].

According to the induced-fit theory, considering protein flexibility when predicting or

modeling binding sites is indispensable. Thus, shifting computer methods towards

incorporation of flexibility is still one of the main challenges for computational chem-

istry. Inventing descriptors accounting for a certain degree of structural changes is very

promising. The usage of such triangle-based local descriptors for protein comparison

and function annotation is addressed in my fifth publication [D5].

During my work, I was able to develop strategies for computer-aided protein analysis

exhibiting a novelty value and a performance worth being published in scientific peer-

reviewed journals. These publications are part of this cumulative dissertation. The

single papers describe subsequent interlocking milestones of my work, resulting in a

toolkit for structure-based active site analysis. The workflow showing the individual

steps and their association is depicted in Figure 1.1.

Binding site 
prediction 

Binding- 
pocket Hydrophilic  

Lipophilic  

Function 

Grouping Druggability 

Descriptor 
calculation 

Protein 
Classification 

global 
local 

Feature/Shape Comparison 

SVM 

Figure 1.1: Outline of the process of my work. Starting from the protein structure, bind-

ing sites are identified first. Second, these pockets are described by sterical and physico-

chemical features, which are finally used for protein classification.

My first paper introduces the novel pocket detection algorithm, DoGSite [D1], a ge-

ometric approach using a Difference of Gaussian (DoG) filter. Next, global and local

descriptors are calculated from this representation and used for protein classification.

In my second paper, the profit of a new method, named DoGSiteScorer, using a support

vector machine and a nearest neighbor search for classification, is illustrated in the con-

text of protein druggability prediction [D2]. Furthermore, the complete DoGSiteScorer

functionality was ported to a web server. The usability and the benefit of the server are

7



1. INTRODUCTION

outlined in my third paper [D3]. My subsequent publication exemplifies the application

of the classification method in enzyme function prediction [D4], with the enhancement

of a stepwise annotation with increasing specificity.

Due to the global character of the developed method, it is prone to small changes in the

protein structure. Thus, an enhanced strategy incorporating local triangle descriptors

is introduced for binding site comparison. The method and its results are published in

my fifth publication contributing to this work [D5].

Finally, in pursuit of a better understanding of driving forces in molecular recognition,

the impact of shape complementarity between protein pocket and ligand in the binding

process is discussed in my last publication [D6].

The contributions of all authors to these publications are listed in Appendix A.1.

Since the papers describe approaches and applications that build up on each other, my

thesis is structured as follows: First, a state of the art of the main addressed topics is

provided. Thereafter, the methods section describes the complete strategy from active

site detection based on the protein structure to classifications as outlined in Figure 1.1.

The diverse evaluations and applications are summarized in the results section. Finally,

this thesis finishes with a conclusion of my work and an outlook to possible expansions

of the strategies.

8



2

State of the Art

For a long period of time it has been known that the active site of a protein is the key

to its function. Thus, protein binding site prediction and classification are demanding

tasks in computational chemistry and biology and have been studied by a multitude of

scientific groups. Since the active site is the basis for the diverse classification steps, its

detection is addressed first, followed by the introduction of methods for classification

scenarios, i.e., protein druggability annotation and binding site comparison with focus

on function prediction.

2.1 Active Site Determination

The detection and the description of the active site of a protein is the initial step in

structure-based drug discovery and rational enzyme design. An excerpt of the many

strategies developed for active site prediction will be discussed in the following. The

focus lies on approaches belonging to the same category as the method introduced in

this work. A detailed list of known approaches can be found in my first publication

[D1].

Published approaches for active site detection can mainly be divided in sequence- and

structure-based methods. Sequence- or evolutionary-based methods mostly rely on

multiple sequence alignments [39] or mapping of phylogenetic information onto the

protein surface [40]. Sequences are compared with respect to conservation of residues

following the hypothesis that conserved residues encode the function of a protein. In

this context, active site profiles as well as homology modeling are used.

As mentioned in the introduction, ligand binding depends on its sterical and physic-

ochemical complementarity to the protein’s binding site. Thus, the protein has to

exhibit a binding groove with a volume able to assimilate a ligand. Furthermore, the

9
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3D arrangement of the present amino acids provide specific ligand interaction points.

Both constraints are not captured in sequence-based methods. Therefore, the work in

hand focuses on structure-based approaches, and sequence-based methods will not be

further discussed here.

A common strategy within all structure-based approaches is the identification of inter-

esting points on the protein surface, followed by a clustering step assigning these points

to pockets. The difference lies in the annotation of the points of interest, which can be

divided into the consideration of geometry- and energy-based properties. Geometry-

based methods [41–51], which can further be divided into grid- and sphere-based ap-

proaches, analyze the shape of the molecular surface to locate cavities solely based on

the atomic coordinates of the protein.

Most geometric grid-based methods consider the buriedness of grid points with respect

to the protein surface [42, 45, 50]. LIGSITE [45], e.g., maps the protein on a 3D grid

with 1.0Å grid spacing. Grid points are subsequently labeled as free or occupied, de-

pendent on their coverage by a protein atom. A cube is placed on each free grid point,

and seven lines are spanned through the cube center, traversing its six faces and the

eight corners. For each grid point, so called protein-solvent-protein events are counted

based on the number of lines enclosed on both sides by protein atoms. The higher

this value, the more buried is a grid point. Finally, buried grid points are merged and

represent potential cavities on the protein surface. PocketPicker [50] uses a continua-

tive buriedness approach for cavity detection, based on 30 scan rays obtained from the

triangulation of an octahedron.

The second subgroup of geometric approaches incorporates spheres. SURFNET [43]

and PASS [47] detect pockets by covering the protein surface with spheres. SURFNET,

e.g., fits gap spheres between atom pairs and reduces their radii until they are free of

clashes with any protein atom. Using Voronoi diagrams (CAST [46]), Delaunay trian-

gulations (APROPOS [44]) or alpha shapes (Fpocket [51]) is another common approach

for pocket detection. In Fpocket, the vertices of a Voronoi decomposition of the protein

surface are used to place alpha spheres. Subsequently, spheres are pruned based on a

size criterion. Solvent inaccessible spheres are discarded by the maximum size cut-off;

exposed spheres are subject to the minimum size criterion. The retained spheres de-

scribe clefts and cavities of the protein.

Energy-based methods consider the interaction energy of a probe1 with the protein

[48, 52, 53] or use blind and fragment docking for cavity finding [54, 55]. In both forms,

regions with favorable energetic responses are annotated as potential pockets. DrugSite

1A probe can be an atom or functional group used to sample potential interactions with the envi-

ronment.
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[53] relies on a grid representation of the protein. To calculate the energy potential, a

carbon probe is placed on each free grid point and the van der Waals (vdW) energy

with the surrounding protein atoms is computed. Next, grid points with unfavorable

energy values are truncated and a filter is applied to the grid. Finally, grid points with

energy values satisfying a specified cut-off are kept and merged to pockets.

Recently, fused approaches have been introduced to the binding site detection sector,

combining several strategies to enhance the prediction power [56–58]. Capra et al. [56]

combine evolutionary, sequence and structural information for site prediction. Focus-

ing on structure, SiteMap [57] joins geometric and energy-based information on a grid.

Enclosure of a grid point is calculated by a buriedness criterion similar to the one of

PocketPicker, but with respect to a higher number of scan directions spanned by 110

rays. To capture grid points able to favorably interact with the protein, the vdW en-

ergy, similar to the DrugSite approach, is calculated. Finally, grid points fulfilling both

requirements are clustered into groups representing potential binding sites.

Although the recovery rates in retrospective binding site detection studies for the vast

amount of methods are high, disadvantages exist for the individual modeling strategies.

Methods using a grid representation depend on the protein position and orientation as

well as the grid spacing. When using rays for buriedness annotation, methods relat-

ing to a higher number of scan directions are less dependent on the orientation of the

protein in the grid. Binding site detection methods incorporating spheres encounter

problems with wide and open cavities. Energy-based methods depend on the quality

of the underlying scoring function in capturing the possible interactions. Further un-

certainties lie in the parametrization of the used force fields, the filter procedure or the

introduced cut-offs. Another challenge arises from the variety of cavity space. Binding

pockets are known from being small to large, forming deep grooves or shallow invagina-

tions, from buried to open ones, spanning over several channels or subpockets. Thus,

automatically detecting a perfect pocket for all these shapes is difficult. Additionally,

most publications agree in the fact that the annotation of the boundary, especially

for open cavities, highly depends on the used algorithm and the question of the true

boundary definition can rarely be answered with certainty. Furthermore, small changes

in the protein structure may yield large changes in the detected pocket, thus protein

flexibility adds to the complexity of the problem.

2.2 Protein Classification

This section covers the state of the art of three protein classification scenarios, namely

druggability prediction, function annotation, and binding site comparison.
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2.2.1 Druggability Prediction

The established drug development pipeline suffers from high time and cost expenses [9].

Thus, computer methods assisting and accelerating this process are of high practical

interest. One of the multiple parameters involved in target assessment is the a priori

prediction of target druggability. A prerequisite for investigations in a target is its

general ability to be modulated by low molecular weight compounds. This potential to

interact with small molecules is differently termed in literature, namely druggability,

targetability, ligandability or chemical tractability [59–61]. The terms agree in the fact

that the target must be able to bind a molecule, but they disagree in the properties of

this molecule, categorized into small, drug-like, binding with high affinity, and being

orally bioavailable. Even druggability itself strikes different subclassifications [62–65].

The definition used in the context of this work is restricted to the regulation of a

disease-modifying target by orally bioavailable compounds [62].

For over 15 years already, druggability prediction has been actively researched. A

variety of methods exist covering experimental as well as computational approaches.

Experimental druggability assessment methods like NMR-based screens are commonly

and successfully used in pharmaceutical research [61, 64, 66, 67]. The annotation in

these experiments is based on the correlation between NMR hit rates and success rates

in hit to lead programs. Since computational models require fewer resources, they are

used to analyze the nature of ligand binding sites. Similar to experimental NMR-based

screening, in silico screening methods, calculating success rates of drug-like ligands vir-

tually docked into the pocket, are used to detect the most promising target candidates

[60]. Another common proceeding is the identification of specific properties potentially

responsible for druggability and the incorporation of these properties into clustering,

regression or machine learning techniques.

Due to the availability of sequence prior to structural data, several methods exist, deriv-

ing information from sequence [68–70]. Nevertheless, as stated in a druggability review

in 2008, sequence-based methods do not exceed accuracies above 68% [9], encouraging

the use of structure-based methods [49, 50, 57, 59, 64, 71, 72].

The initial step in structure-based approaches is the specification of the active site,

which can be externally precompiled or calculated internally. Next, relevant structural,

geometrical and physicochemical features are identified from known protein-ligand com-

plexes, and a scoring function is employed to rate the druggability of a target. The

number of features used in the analysis ranges from a couple up to several hundreds

[49, 64]. MAPPOD [71] studies the binding energy using a structure-based maximal

affinity model. The description is reduced to important discrete energy terms and
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combined with drug-like properties describing oral bioavailability. PocketPicker [50]

represents a pocket by a 210-dimensional shape descriptor encoding size and buriedness

and classifies a protein by aid of self-organizing maps. A simple but high-performance

method is SiteMap [57], rating druggability by a linear combination of three single

descriptors. These numerical descriptors include the number of site points encoding

pocket volume, the hydrophobicity and the shape of the pocket. A similar method,

predicting bindability for all proteins of the PDB is DLID (drug-like density) [59]. The

likelihood of a pocket to bind a drug-like ligand is estimated based on the number of

pockets binding a drug-like ligand in the local neighborhood. This neighborhood in

pocket space is described as a linear combination of the properties volume, buriedness,

and hydrophobicity; used parameters were obtained by linear regression. Druggability

prediction with Fpocket [72] incorporates physicochemical features of the pocket, nor-

malized by size. These features, comprising local hydrophobicity density (combining

size and spatial distribution of hydrophobic agglomerations), general hydrophobicity

and normalized polarity, are combined in an exponential function. By aid of a boot-

strapping method, those parameters yielding the highest accuracy on the provided test

set were chosen. DrugPred [73] uses a partial least-squares projection to derive dis-

criminant features yielding a linear model based on five descriptors. Finally, Perola et

al. [74] recently published a rule-based approach providing an intuitive representation

of the preferred property space of druggable pockets.

The findings from the approaches based on descriptors introduced above are in good

agreement and are summarized in the following. No linear dependency of druggability

to one single feature could be observed, thus several combined features are needed for a

description. They highly agree that druggable pockets tend to be larger, more complex

and exhibit a more hydrophobic character.

Nevertheless, many features are not sufficiently addressed by these descriptors, such

as metal or ionic interactions and cofactors1. While most of the aforementioned ap-

proaches use features describing the complete binding site, more recently published

methods focus on local properties. In the druggability study of Schmidtke et al. [72]

the effect of local environmental changes in accessible surface area is investigated.

Another difficulty is the noise arising from uncertainties that result from the pocket

prediction and definition step, no matter if ligand-based or automatically assigned.

Wrong or unspecific pocket or boundary definitions clearly lead to misinterpretations

in druggability assignment. Further pitfalls emerge from the available data, in terms of

annotation and size. The ambiguous definition of the term druggability makes a clear

1Cofactors are helper-molecules that are bound to the protein and are required for its biological

activity.
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assignment very difficult, and the usage of different data sources questionable. Mislead-

ing data strongly affects the prediction power of automatic methods, bearing the risk

of learning from wrong examples. Collecting positive data points can be done easily

by selecting targets with known marketed orally bioavailable drugs. Contrarily, the

assembly of a negative set turns out to be difficult. A pocket should not be annotated

as undruggable, solely because no drug is known. Further pharmaceutical investigation

or serendipity may uncover drugs to yet undruggable targets. Approaches focusing on

bindability are confronted with the same difficulty. Considering ligand free pockets (in

the available crystal structure) as not bindable is equally incorrect. Especially high-

throughput methods, trained on such data sets, suffer from wrong or miss-annotated

data. Despite these inconveniences, several druggable data sets exist. While most data

sets were constituted of less than a hundred structures [64, 71], Schmidtke et al. [72]

released an elaborated set of over a thousand structures. Recently, Krasowski et al.

[73] added a new non-redundant set of druggable and less druggable binding sites, con-

sisting of 115 structures. Such data sets are good starting points for model calibration

and evaluation.

2.2.2 Function Annotation

With respect to the rising number of solved protein sequences and structures, the need

for computational tools for automatic protein function annotation has been growing.

A large number of reviews exist, focusing on different parts of the function prediction

process [24, 36–38, 75–84], a detailed overview can also be found in my publication

concerning this topic [D4]. Similar to approaches for active site prediction, function

prediction methods split into sequence- and structure-based groups. Sequence- and

evolutionary-based methods will only briefly be covered, followed by the motivation for

structure-based approaches which directs the focus of this chapter to structure-based

methods.

Over the last decades, sequence-based methods have dominated the in silico function

annotation field due to the vast amount of available sequence data. Classically, global

similarities are employed to transfer information from proteins with well-established

function to unknown ones. For this purpose, proteins are compared by aid of multiple

sequence alignments and function is inferred with respect to the closest homologue.

Methods performing a comparison of the complete sequence are, e.g., BLAST [85] and

PFAM [86]. In contrast, BLOCKS [87], PRINTS [88] and PROSITE [89] search locally

for function related sequence motifs. Incorporating evolutionary information, e.g., from

gene expression data, genomic context, gene ontology, phylogeny and coevolution, has
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also proven useful for function prediction [82, 90]. Examples for tools processing such

information are GoFigure [91], Phydbac [92], SIFTER [93] or FlowerPower [94].

Due to the large and still growing amount of solved protein structures, automatic tools

for structure-based protein function predictions have been pushed ahead over the last

years. For example, large structural genomic projects reveal new protein structures of

which no knowledge about their function is known beforehand. Furthermore, protein

structure was found to be more conserved than sequence [95], which motivated the

shift towards structure-based protein comparisons. Proteins with low sequence identity

can still share functionality through protein fold similarity. Prominent fold comparison

tools are SCOP [96], CATH [97] and FSSP/Dali [98]. Similar to sequence comparison,

the hypothesis of homology-based information transfer is pursued in structure-based

approaches. Two structures are superposed by means of calculated structural align-

ments; higher compliance suggests higher functional relation. Structural alignments

can be built based on the complete structure or on structural fragments, which can

be recombined to a complete alignment. Methods based on structural alignments are

FATCAT [99], PAST [100], VAST [101], and 3DCOMB [102].

Since the function-specifying reaction takes place in the active site of a protein, structure-

based methods put a stronger emphasis on active site comparison decoding potential

local similarities between distantly related structures. The presence of specific interac-

tion partners within conserved distances in the active site determines the function of

a protein. According to the hypothesis that proteins with similar binding sites share

function, all methods performing binding site comparison are capable of predicting

function by extracting the most similar sites from large data sets. Since binding site

comparison is separately analyzed in this work, this topic is further devised in the sub-

sequent subsection.

One example directly developed for function annotation is the work by Parasuram et

al. [34]. Functional sites are described by electrostatic potentials predicted with theo-

retical microscopic titration curves (THEMATICS). With the aid of a machine learning

technique (implemented in POOL) functionally important residues are detected. Thus,

uncharacterized proteins can be structurally aligned, and the match with proteins of

known biochemical function is used for annotation.

Most of the approaches mentioned so far rely on some kind of alignment or superposi-

tion of the protein or the binding site. A different and less frequently used approach

is the comparison based on descriptors derived from the protein structure. The idea of

descriptor-based approaches is to extract properties of a protein that are specific for one

protein class or family. Thus, by observation of these features one can assign the func-

tion of a new protein based on its belonging to a specific class. Kontoyanni and Rosnick
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[103] used structural, thermodynamic, and geometric attributes of the active site for

function annotation. Since using such descriptors depicts a typical classification prob-

lem, standard machine learning methods can be used for function annotation [104–107].

Dobson and Doig published an attempt to separate enzymes from non-enzymes using a

support vector machine (SVM) [104]. In a subsequent publication, they tried to distin-

guish on a more granular level, i.e., between members of different enzyme classes [105].

In this study, they calculated 55 attributes representing the complete enzyme structure

by crystal structure information, secondary structure content, amino acid composition,

surface fractions and bound ligands. Since the enzyme classes are of different size, they

chose to use 15 pairwise SVM submodels over one multiple SVM model. Accuracies of

35% for top-ranked predictions and 60% for finding the correct class under the top two

ranks have been achieved on a set of 220 non-homologous structures.

Strategies pursuing the hypothesis that proteins with similar biochemical function bind

analog ligands are exemplified in the following. In the first approach, ligands from var-

ious proteins are compared to the ligand of the protein of interest [108]. The authors

calculated the similarities between the bound ligand of a query enzyme and small

molecules from BRENDA [109] to assign a function. The similarity in chemical space

between compounds is rated by 117 topological descriptors. Another approach, which

is based on the similar ligand strategy and independent of structural superposition,

uses predicted binding affinities. As early as 1995, Kauvar et al. introduced affinity

fingerprints for function prediction [110]. This fingerprint represents the potency for

binding of a compound against a small reference set of diverse proteins. Comparison

of these fingerprints can detect similarities between known and not yet annotated en-

zymes.

Furthermore, molecular docking is inserted for function prediction. Docking is in gen-

eral a selection and optimization process, trying to find the best fit of a molecule in the

binding site of a protein. For this purpose, the conformational space of a compound

is sampled, each conformation is placed into the binding site and ranked according to

a scoring function. Based on the estimated binding affinity, potential substrate classes

can be identified that preferably bind to the active site and thus infer the function of a

protein. By using structure-based docking of high-energy forms of potential substrates,

Hermann et al. [111] successfully annotated an adenosine deaminase function to an

unknown protein.

Similarly to other areas described in this chapter, the synergistic use of evolution-

ary, sequence- and structure-based information for protein function prediction has

been launched [80, 112–118]. Pierri et al. [80], e.g., provided a combined protocol
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comprising multiple sequence alignments, binding site prediction, comparative mod-

eling and virtual screening for function annotation. The Enzyme Function Initiative

[118] established a multidisciplinary approach. The in silico prediction of substrate

specificity is in the focus of this strategy including bioinformatics, experimental struc-

tural biology, structural modeling, docking, experimental enzymology, microbiology

and metabolomics.

Success stories can be told for the vast amount of computational methods and their

different lines of action. Nevertheless, still a large amount of structures lack functional

annotation or suffer from miss-annotations [33, 34]. One drawback is the contextual

definition of biochemical function [24, 119, 120]. Inconsistencies and errors are a con-

sequence of the usage of different functional annotation systems and databases.

Furthermore, the required amount of sequence or structure similarity for high-confidence

function transfer is questionable [121]. Clearly, the higher this value the more likely is

a shared function. Nevertheless, shared enzymatic functions were occasionally found

for non-homologous proteins [90] or vice versa [122]. Another downside of some of the

introduced methods is that some ligand binding or class information has to be known

beforehand. This concerns approaches using the bound ligand for comparisons [108],

the a priori substrate selection in docking approaches [111] or the vague knowledge

about the functional class for protein selection [34]. Further problems as mentioned in

the previous section arise from flexibility of the proteins upon ligand binding.

2.2.3 Binding Site Comparison

As annotated in the last section, methods for binding site comparison can generally

be applied for function prediction. As summarized in recent reviews [24, 123], site

comparison methods consist of three steps: encoding of molecular recognition features,

searching for analogies and quantifying these similarities. The recognition feature en-

coding step serves for reducing the complexity of the comparison problem. Simplified

representations are, e.g., 3D coordinates of functional groups, residues or pseudo-centers

and characteristic features of the binding site. The number of developed approaches is

manifold, the pursued strategies can be divided into alignment-based and alignment-

free methods. Alignment-based methods use the encoded features to superimpose the

structures of interest. Strategies such as geometric matching (SuMo [124], SiteBase

[125], ProSurfer [126]), geometric hashing (TESS [88], SiteEngine [127]) and clique

detection (CSC [128], Cavbase [129, 130], eFsite [131], eF-seek [132], IsoCleft [133])

are incorporated for structural alignments. Structural templates [88] or triangles of

physicochemical properties [127] are used to uncover analogies between active sites in
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geometric hashing procedures. Clique detection methods are based on a graph built on

the structure [128], on conserved features [129] or molecular surfaces [131]. In Cavbase

[129], chemical properties of the binding site are represented by pseudo-centers, calcu-

lated by mapping the site residues to a grid. A clique detection algorithm is used to

identify shared 3D pseudo-center clusters in two cavities, which can be used to align

these cavities.

Since finding a superposition is computationally expensive, fingerprint methods have

been introduced avoiding such alignments. In this context, several methods explore

specific distances and their distribution in the active site. Some methods use atomic

distances [120, 134–137], others separation between fragment pairs [138] or property-

encoded shape distributions [139]. For instance, feature vectors describing inter-residue

distance patterns are generated by the aid of a cut-off scanning matrix [120] and used for

efficient automatic function annotation. Another prominent approach is the comparison

of pharmacophoric fingerprints, e.g., FLAP [140], SiteAlign [141] and FuzCav [142]. In

SiteAlign, properties are projected onto a sphere triangulated into 80 equal parts. This

method can be seen as a meta-approach, since the mapping on the sphere allows for

easy alignment. The subsequent development FuzCav is completely alignment-free com-

paring fingerprints of pharmacophoric triplets with high-throughput. Moment-based

pocket representations are rotational invariant and allow for fast comparisons. The

protein surface is described by 3D mathematical functions using spherical-harmonics

[143] or 3D Zernike descriptors [84]. PocketSurfer and PatchSurfer [84] predict ligand

molecules that bind to the query by comparing geometrical shape and physicochemical

pocket properties to a database of known binding pockets, allowing a quick real-time

scan without pre-alignment. PatchSurfer convinces by means of its local comparison of

surface patches, which represent features of local pocket regions accounting for protein

flexibility.

Another group of approaches repurposes methods from other research fields for infor-

mation retrieval, like image or word processing. These methods incorporate spin-images

for surface matching [144], visual words descriptors [145] or simple bit strings [146].

Due to the speed of fingerprint-based methods, high-throughput comparisons of up to

a million bindings sites are practicable. Nevertheless, this speed entails an absence

of interpretability. The outcome of truly fingerprint-based methods is a single num-

ber, describing the similarity between two sites. Besides this number, little is known

about the features responsible for this similarity. As a consequence recently, much ef-

fort has been put into accelerating alignment-based methods, which allow for efficient

calculation and easy interpretation of the results. BSAlign [147] is one example for
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such a combined approach based on clique detection. The recognition features are re-

duced to residues - together with geometric and physicochemical information - instead

of point-based representations. This sparse graph representation, together with the

development of an efficient algorithm to circumvent the NP-hard problem of finding

the maximum subgraph, allows for high-throughput comparison. Desaphy et al. [148]

published another novel bilateral approach, compassing this disadvantage. The new

binding site description VolSite is combined with the novel alignment and comparison

tool Shaper. Negative images of the binding sites, encoding shape and pharmacophoric

properties at regular spaced grid points, are compared. The molecular shape is approx-

imated by smooth Gaussian functions. Thus, the alignment is based on the optimal

volume overlap.

The methods mentioned in this chapter show good performances on a variety of differ-

ent data sets. These data sets vary in their size from a few up to a million sites and

are focused on different scenarios as grouping enzymes, classifying proteins into sub-

families or studying polypharmacology. The runtimes of the different approaches are

highly divers. A comparison study of various alignment-based, fingerprint and meta-

approaches revealed pairwise comparisons in the speed order of several minutes down

to a few milliseconds [142]. Concluding, the quality, the runtime and the results of such

methods provide valuable information for various application scenarios.
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Methods

This chapter introduces the algorithms I developed for structure-based analysis of pro-

tein binding sites. The individual steps, starting from the detection of the active site,

to the derivation of the global binding site descriptors, and their usage for classification,

are explained. Finally, the approach based on local triangle descriptors for binding site

comparison is introduced.

3.1 Protein Pocket Detection

The developed structure-based method DoGSite falls into the category of geometry-

based methods relying on a grid. A detailed description of the algorithm is provided

in my scientific publication [D1] and is summarized in the following1.

First, the protein is embedded in a grid, and grid points are labeled dependent on their

overlap with the vdW radius of any protein atom. Occupied grid points are set to one,

free grid points to zero. In contrast to previous algorithms which mostly rely on buried-

ness calculation, a strategy for edge detection is borrowed from the image processing

field. Edges can be uncovered utilizing a 3D Difference of Gaussian (DoG) filter [149].

For this purpose, the grid is first smoothed by convolution with a Gaussian kernel with

radius σ1. A second convolution is obtained by blurring the grid with a different radius

σ2. Subtracting one image from the other preserves positions with drastic shifts, but

discards all points that are at continuous areas. Due to the naturally concave character

of cavities, pocket grid points have a more drastic response. Next, a specific cut-off for

the calculated density values is used to discard non-informative points.

A further innovation of DoGSite is the preservation of subpockets. Clustering the

surviving grid points yields small agglomerations, called subpockets. Subsequently,

1The original implementation of the DoG filter stems from A. Griewel.
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neighboring subpockets are merged to pockets. Both representations can be used de-

pending on the problem to be analyzed. The complete process is depicted in Figure 3.1.

Figure 3.1: Simplified representation of the DoGSite pocket detection algorithm. The

figure is taken from my publication [D1].

For comparison reason, a geometry- and an energy-based algorithm, LIGSITE [45] and

DrugSite [53], have been reimplemented. A rough outline of their functionality has been

provided in chapter 2.1, a detailed description can be found in the DoGSite publication

[D1].

When evaluating pockets, the criterion defining a correct prediction is ambiguous. In

this work, a new criterion is introduced considering the overlap between pocket and

bound ligand. Pocket coverage is calculated as the percentage of pocket grid points

covered by the VdW radii of the atoms of the ligand. Similarly, the portion of ligand

atoms occupied by pocket grid points describes ligand coverage. The better the ligand

fits into the pocket and the better it fills the pocket, the higher is the respective coverage

and the more precise is the pocket description.

3.2 Pocket Description

The method I developed for protein assessment uses global as well as local descriptors

of predicted pockets to capture the properties of a protein. A detailed description can

be found in my second publication [D2], which is part of this cumulative dissertation;

a short overview will be given in this section. Additionally, the shape descriptor for

direct ligand and pocket shape comparison is introduced [D6].

3.2.1 Global Descriptors

Comparable to other descriptor-based methods, a comprehensive set of properties re-

lated to the structure of the pocket is investigated. The global descriptors describe

properties of the complete pocket and are all of numerical character. Starting from the
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grid representation of the pocket, simple properties can be derived by either iterating

over the grid points belonging to the pocket, or over the amino acids lining the pocket.

Since the molecular recognition depends on shape as well as physicochemical com-

plementarity of two binding partners, these properties are captured in this approach.

Features describing the size and the shape of a pocket include volume, surface, depth,

and ellipsoids fitted into the pocket (Figure 3.2). For this purpose, pocket grid points

are separated with respect to their position in the predicted pocket. A differentiation

is introduced between points without contact to a non-pocket grid point (inside), those

with liaison to a protein atom (surface) and those in touch with the solvent (solvent

exposed).

Figure 3.2: Extraction of calculated global descriptors. The figure is taken from my

publication [D2].

The discrete volume and size of a pocket are calculated by multiplying the number of

pocket grid points with the cubed or squared grid spacing, respectively. Depth of a

pocket is encoded as the maximum distance between any solvent exposed grid point

and an inner grid point, labeled as inside, calculated by means of a breath-first-search.

If a pocket is completely buried, its maximal diameter equals its depth.

Since shape complementarity is important for molecular recognition, the form of a

pocket is elaborated by the main axis of an ellipsoid fitted into the active site. This

ellipsoid is derived from the eigenvalues and eigenvectors of the diagonalized covariance

matrix over all pocket grid points. To further describe the complexity of a pocket, ratios

between several pocket descriptors are calculated. The ratio of surface to volume grid

points and the relation between pocket and ellipsoid volume estimate the roughness

of a pocket. Furthermore, as a measure of the buriedness of a pocket, the grid points

describing the lid of the pocket are related to the grid points describing the hull of the

pocket.

Equally important for ligand binding are the physicochemical properties present in

the pocket. To capture anchor points and the chemical environment of a pocket, the

site lining atoms are investigated. Enumerable properties, like the count of particular
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elements presented by these atoms and the number of specific amino acids to which

they belong, are calculated. Additionally, the amino acids are grouped into positive,

negative, polar and apolar residues. Since metal interactions result in tight bindings,

the number of metals present in the pocket is added to the set of descriptors. Counting

the number of present donor and acceptor anchor points1 captures hydrophilic inter-

actions in the pocket. Furthermore, site interaction centers (SIACs), originating from

the FlexX interaction model [14], are utilized to describe the interaction profile of a

pocket with a potential ligand.

To derive properties specific for proteins but independent of size, most of these de-

scriptors are used in their normalized form. E.g., the fraction of lipophilic centers

compared to all centers present in the pocket is used to express the lipophilic charac-

ter of the pocket; similarly the lipophilic solvent accessible surface fraction is calculated.

3.2.2 Local Descriptors

Local properties better suite the ligand profile and can reveal similarities between dis-

tantly related proteins not sharing overall structural homologies. Furthermore, specific

interaction partners present in the active site within conserved distances dictate the

function of a protein. To analyze the local environment of the anchor points present

in a pocket, distances between these points are investigated. For this purpose, a dis-

tance histogram is calculated for each functional group in the binding site. As potential

anchor point each hydrophilic and hydrophobic pocket atom is investigated. A radial

search is performed, e.g., starting from a hydrophilic interaction (Figure 3.3).

Figure 3.3: Schematic view of the calculation of the distance-dependent histograms. The

figure is taken from my publication [D2].

Next, interactions found in subsequent 2Å radii shells are counted. Based on this

binning, a histogram arises for each functional atom of a pocket. The first nine bins

1Hydrogen bonds can be formed between atoms of different electronegative character. In this case,

a hydrogen attached to one atom (donor) is shared with another atom (acceptor).
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represent the distances between 0Å and 18Å, the last bin contains all pairs above this

distance. The binning effect assists in tolerating small changes within the binding site

residues.

3.2.3 Descriptor for Pairwise Shape Comparison

Since shape complementarity is an important recognition feature, the descriptor set is

extended to allow for a direct protein pocket and ligand shape comparison, which is

investigated in my last publication [D6]. Principal moments of inertia (PMIs) approx-

imating the shape of an object are the basis for the comparisons. For pockets, PMIs

[150] are derived from the pocket grid points endued with a weight of one. Ligands

are processed similarly. For both objects, the moment of inertia tensor is calculated

and the matrix is diagonalized. The resulting eigenvalues and eigenvectors are used for

the subsequent shape comparisons. The PMIs are further converted into normalized

principle moments of inertia ratios (NPRs) [151]. Therefore, the eigenvalues are sorted

in ascending order (I1 < I2 < I3) and the lower values are divided by the higher one

(npr1 = I1/I3, npr2 = I2/I3). NPRs do not require a molecular superposition, are

independent of the size of an object and describe a finite triangular space. The corners

of this triangle are occupied by spherical, discoid, and elongated shapes (Figure 3.4).

Figure 3.4: Overview of the triangular NPR shape space with exemplarily chosen ligand

shapes. Fitted ellipsoids are depicted in green color.

By means of this descriptor, pockets and ligands can be positioned in the spanned NPR

triangle, exposing information about their shapes. Furthermore, the direct distance in
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NPR space can be calculated by the Euclidean distance between the pairs and used as

descriptor for shape complementarity between the two binding partners.

3.3 Grouping and Classification

Protein binding sites can be described through a variety of properties, as introduced

in section 3.2. Nevertheless, annotating the importance of the individual features for

ligand binding is a challenging task. It is difficult to capture the variety of binding

sites and the complexity of ligand binding by simple descriptors. Therefore, diverse

approaches for protein clustering and classification are introduced in the following sec-

tions.

3.3.1 Hierarchical Clustering

Clustering is applied in computational chemistry with the prerequisite of grouping

objects by aid of a specific measure of similarity [152]. A first approach for functional

annotation during my work was, therefore, the adoption of a hierarchical clustering

algorithm [153]. Clustering procedures group a set of objects in a way that objects

within one cluster are more similar to each other than objects of the other clusters. The

FlexX software is equipped with two hierarchical clustering procedures [154], differing in

the linkage criterion used for cluster annotation. Starting from putting all objects into

separate clusters, they are consecutively merged based on the closest pair of clusters.

This pair is determined by the minimal or maximal distance between two clusters in

single and complete linkage approaches, respectively.

To describe the relation between two active sites, the distance between a subset of global

descriptors is used as metric. The similarity between two features is calculated by the

Tanimoto coefficient [155], which has been widely used in computational chemistry

for measuring structural similarity between molecular objects [156]. The non-binary

Tanimoto similarity between two pockets A,B, where diA denotes the value of the i-th

of the n used descriptors for pocket A, is calculated as follows:

SA,B =
1

n
∗

i=n∑
i=1

(diAdiB)

(diA)2 + (diB)2 − (diAdiB)

The used descriptors are normalized and include volume, surface, lipophilic surface

fraction, depth, ellipsoidal main axes, SIAC ratios, hydrophilic and lipophilic pair his-

tograms, acidic and basic amino acid ratios and shape distance. The used distance for

the clustering procedure is calculated by subtracting the normalized similarity score
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3.3 Grouping and Classification

SA,B from one.

For protein clustering, thus, a set of descriptors for a number of proteins of interest

can be entered. Then, the distance matrix is calculated, the objects are clustered and

the algorithm returns the resulting cluster tree. A dendrogram holding the produced

cluster information is used to illustrate the arrangement of objects. This allows for

easy graphical inspection of the relationship between the investigated proteins.

3.3.2 Machine Learning Technique

The method described here was first introduced in the DoGSiteScorer publication [D2]

and has further been investigated in a function prediction scenario [D4]. The first paper

considered the two-class separation of druggable from undruggable targets. The second

function related study implied a separation into multiple classes, e.g., the differentia-

tion into the six enzyme classes. Training and test data sets were separately collected

for both experiments.

The global descriptors derived for a predicted pocket, introduced in section 3.2.1, form

the basic input for the classification approach. Since a linear separation of proteins into

groups or families based on these properties is often not successful, a machine learning

technique is used for classification purpose [157]. Several machine learning techniques

are available, with advantages and disadvantages depending on the number and nature

of the training data and their properties. In a selection study, three different classifiers,

namely a Bayesian net, a random forest and a support vector machine (SVM) were

compared. Trained and tested on the druggability data set, the SVM outperformed the

other two algorithms, and became the method of choice. Throughout this study, the

freely available SVM software package libsvm [157] was used. The libsvm software

convinced by its ability to separate data points into multiple classes, the supply of a

reliability value for predictions as well as the possibility to incorporate weights into the

calculation.

SVMs are widely used to solve regression and classification problems. Non-linear data

is transferred into higher dimensional spaces, where the classes can be separated. SVMs

are known to be relatively robust to overfitting. Although they are able to handle high

numbers of input features, it has proven useful to simplify the models by eliminating

irrelevant features [105]. For this purpose, a feature selection procedure has individu-

ally been applied to both test scenarios. A shrinkage discriminant analysis (SDA) [158],

which accounts for correlations between features, has been utilized as prefilter method.

In each case, the total number of global descriptors has been used as input, and those
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features best suited for data separation are pursued. In my second SVM-based publi-

cation [D4], the built-in libsvm feature selection method [157] has been investigated

as well, yielding the same top ranking features. Thus, a reduced set of discriminating

features from the SDA is returned to the SVM, which can be used without adoptions.

Another approach, not tested in this project, is backwards elimination, where features

are discarded during the prediction process.

For model building in libsvm, the selected features are scaled into the interval [−1, 1].

For each of the different classification scenarios, models are built as follows: The data

is randomly separated into training and test data, and a model is calculated based on

the training data. For kernel parameter selection an internal five-fold cross validation is

performed. Subsequently, the test data is used to evaluate the prediction performance

of the method.

Two enhancements, available in libsvm, have been added to the classification strategy.

The output of the SVM models is enriched by reliability values. The SVM returns a

normalized vector, representing the probability to which a query pocket belongs to the

modeled classes. A clear peak in this vector for one class indicates a high probability

of correct annotation. Otherwise, the vector favors multiple classes, therefore those

predictions are less reliable.

Furthermore, weights are imposed on the test data sets by way of trial. E.g., in the

function prediction scenario, the classes are highly unbalanced. Thus, using weights

accounting for the size of the individual sets is also investigated.

3.3.3 Nearest Neighbor Search

This method was introduced to capture the similarity between sites, based on specific

interaction partners present within conserved distances. The local functional distance

histograms are the basis for the nearest neighbor search (see section 3.2.2). The proce-

dure is exemplified here with respect to the two-class problem of separating druggable

from undruggable pockets. The procedure is based on the similarity between histograms

calculated by means of a histogram distance [159]. This distance is calculated by sum-

ming up the absolute values of prefix sums of the difference in each histogram bin.

A detailed description of the calculation of the nearest neighbor score can be found

in my second publication [D2]. The procedure for finding the nearest neighbor is as

follows: As described in the previous section, local distance dependent histograms are

calculated for a pocket. To classify the pocket as druggable or undruggable, all his-

tograms are individually compared to two precompiled sets of histograms. These two

sets originate from known druggable and undruggable targets, respectively. In each
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round, the current histogram is compared to all precalculated histograms, the above

mentioned histogram distance is calculated, and the score for the most similar his-

togram from each set is stored. Subsequently, the best druggable score is subtracted

from the best undruggable score for each histogram of the query pocket. A score close

to zero indicates an unspecific histogram, a high score specifies a histogram exclusively

found in druggable pockets. Finally, the maximal absolute value over the scores of all

individual histograms of a query pocket represents the nearest neighbor score, and the

druggability type of the respective histogram is transferred to the pocket.

3.4 Triangle-Descriptor Based Comparison

As described in section 1.3, the quality of binding site comparison tools suffers from

small structural changes. Focusing the comparison on local parts of the site and ac-

counting for small variations is, therefore, an important enhancement when comparing

sites. In this section, the concept of TrixP1 [D5] is introduced, a new method for effi-

cient binding site comparison, which is also part of this cumulative dissertation.

As described before [24], methods for binding site comparison have mainly three re-

quirements: a function for the encoding of molecular recognition features, a method

for similarity searching and the respective scoring function. The concept of TrixP is

derived from TrixX [17], a method for efficient structure-based virtual screening, and

adapted to the comparison of binding sites. Recognition features are encoded by trian-

gle descriptors, comprising local physicochemical and shape information of the binding

site (Figure 3.5). An index containing precompiled descriptors from known binding

sites is built and can be screened unlimitedly. In the following, the characteristics will

be explained in more detail, the complete description can be found in the TrixP publi-

cation [D5].

The triangle descriptor introduced in TrixX [17] is suited to capture local properties

of active sites important for ligand binding. TrixP relies on a geometric matching pro-

cedure based on the representation of the binding site by a set of triangle descriptors.

A triangle is spanned between each triplet of interaction points present in the binding

site. Hydrogen bond donor and acceptor atoms as well as apolar points in the pocket

form the corners of the triangles. While apolar points are undirected, hydrophilic in-

teractions sustain a direction modeling the orientation of the attached hydrogen atom

or the free electron pair, respectively. Further attributes of the triangle are the lengths

1The concept of TrixP was developed in a collaboration with M. v. Behren, who implemented the

functionality. Software parts considering index and representation of interactions were provided by A.

Henzler, K. Schomburg and S. Urbaczek.

29



3. METHODS

of its edges and the enclosed angles. Finally, a set of constraints is imposed ensuring

that only meaningful triangles are considered.

The shape of the binding site is captured by the so-called bulk [160]. Resulting from the

refinement of an icosahedron, 80 bulk rays are spanned from the triangle center. The

lengths of these rays describe the distance between the triangle center an the protein

surface. The bulk mimics the ligand accessible volume. Since the intention within the

TrixP development was the projection of local similarities shared between distantly re-

lated binding sites, the use of the original bulk descriptor was impracticable. Thus, the

idea of using a partial bulk, introduced in an yet unpublished ligand-based method by

C. Schärfer, is reused for the binding site scenario. The partial bulk allows to consider

a reduced number of rays adjacent in space. Subsets of 25%, 40% and 50% can be

generated as well as their respective value when subtracted from 100%. Exemplarily,

the annotation of a 25% shape requirement is discussed here (Figure 3.5). Starting

from the icosahedron representation, five triangles surrounding a vertex cover 25% of

the shape and 20 bulk rays. Furthermore, 12 such sets are possible to encode this shape

requirement.

Since the number of calculated descriptors is high and a repetitive calculation of trian-

gle descriptors for similarity searching is impracticable, a bitmap index [160] is used for

efficient data management. During index creation, triangle descriptors are vertically

partitioned by descriptor type, encoded in the triangle corners. This partition avoids a

sequential screening, since triangles differing in their interaction types can be directly

excluded from further matching steps. Each triangle descriptor attribute, e.g., corner

type, side length, angel, direction and bulk ray, describes one dimension in the bitmap

index and is either bit or range encoded. For efficient data storage, the values are

additionally discretized in bins.

Figure 3.5: Example of a triangle descriptor together with its bulk rays, embedded into

an active site (left), as well as the partial bulk (right). A similar version of these figures

can be found in my publication [D5].
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In a binding site comparison scenario, this index is precalculated once for a large amount

of known protein data. For similarity searching, this index can be queried in an efficient

manner avoiding a sequential screening of all descriptors. Next, descriptors are calcu-

lated for the query and the index is scanned using an elaborated query syntax [160].

As a result of this similarity search, matching descriptors are returned from the index.

Proteins can subsequently be superimposed based on these triangles (Figure 3.6). For

the scoring step, matching binding sites are superposed. To avoid the evaluation of a

large number of superpositions and to enhance the quality of such, matching descriptor

pairs are clustered.

Transform

Query
Target

Descriptor match Aligned structures

Figure 3.6: Schematic view of the structural alignment of TrixP. The figure is taken from

my publication [D5].

For the resulting superpositions of clusters, a similarity score is calculated based on

the compliance of interaction points of query and matched binding site. Iteratively,

each query interaction point is investigated. The score is composed of linear terms

rating the similarity of interaction points found within a sphere spanned around the

current point of interest. The function rates the matching and mismatching of interac-

tion types within this sphere, the distance as well as the directionality (if annotated).

Finally, matching binding sites are ranked by score, the larger the score the higher the

detected similarity.
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4

Results and Applications

This chapter comprises the evaluation of the developed software parts and the results

of the performed studies. The following sections show the broad range of applications,

covering pharmaceutical and biotechnological problems, e.g., drug design, biological

function prediction, and protein engineering. First, the applications discussed in my

scientific publications are summarized. Then, a section highlighting a rational enzyme

design experiment, studied in cooperation with a partner from the Biocatalysis2021

cluster, follows.

4.1 Protein Pocket Detection

The reliable detection and specification of the active site of a protein is a crucial step in

most structure-based computer methods. Many approaches have already been proposed

to solve this task (see section 2.1), nevertheless, there is still room for improvements. In

pursuit of generating new insights into this field, I developed DoGSite, a novel pocket

detection algorithm enabling a precise boundary definition and a division into subpock-

ets. A detailed analysis and discussion can be found in the DoGSite publication [D1],

and a short summary will be given here.

The first and obvious demand on a pocket detection algorithm is its ability to consis-

tently recover known binding sites, and to rank the true binding site superior to other

detected sites on the protein surface. Parameters that should be considered when evalu-

ating pocket detection methods are the criteria defining a correct prediction, the pocket

boundary and its volume.

In a first experiment, DoGSite was evaluated on a set of 48 ligand-bound and unbound
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structures1 and was positioned second compared to other published methods tested

on this data set. Besides finding the ligand-binding pocket, predicting a pocket that

does not overestimate the volume available for the ligand is of crucial importance. In

this context, the boundary definition resulting from the pocket algorithm is another

criterion influencing the quality. DoGSite convinces by a globular boundary definition,

which depicts the ligand accessible volume quite well. In pursuit of detecting pockets

that better describe this accessible volume, the terms ligand coverage and pocket cover-

age were introduced in DoGSite, describing the overlap between the binding partners.

DoGSite has been evaluated on two large benchmark data sets, namely PDBbind [161]

and scPDB [162], containing 828 and 6754 structures, respectively. Success rates of 91%

and above on both data sets, with respect to the criterion of finding the true ligand

binding site in the top three ranked pockets, were achieved. Restricting the definition

of correct predictions to objects with 25% pocket coverage and 50% ligand coverage

lowered the overall success rate but obtained more meaningful pockets.

Furthermore, it could be shown that the consideration of subpockets further improved

the specificity of the description. DoGSite allows splitting of pockets at buried bottle-

necks as well as partitions between solvent exposed cores. Studying the impact of this

more granular description on the PDBbind data set showed that over 60% of the pre-

dicted pockets contained subpockets. Such subpockets were proven to better describe

the ligand binding regions. Ligands are rarely contained in more than one subpocket,

underlining the chemical meaning of the separation. This is also exhibited in higher

coverage values of subpockets compared to pockets and thus, improved success rates.

Many algorithms for pocket detection, including DoGSite, are prone to small changes

in the protein structure. Pockets detected for different structures of the same protein

differ in volume and other properties. A set of 124 HIV-proteases was analyzed with

respect to predicted pocket volume and co-crystallized ligand size. A median pocket

volume of 810Å3 was found with a standard deviation of 175Å3, suggesting that the

impact of the structural changes is not drastic. Although the calculated volumes al-

tered with the bound ligand, this change was not proportional to the size of the bound

ligand. In contrast, the coverage of the pocket grew with increasing ligand size. This

suggests that the structure of the binding site is relatively stable and the ligand adapts

to that form up to a certain extend.

Analyzing different states of the protein in this manner lets one draw conclusions about

its flexible structural behavior. Concluding, the new concept enables a good starting

point for subsequent descriptor-based analysis and classification scenarios.

1The success criterion in the respective study was whether the pocket lies within 4Å of any ligand

atom.
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4.2 Druggability Prediction

Early prioritization of promising drug targets is of high practical interest in the drug

development pipeline, and can help to reduce time and cost expenses. I developed

a novel approach, named DoGSiteScorer, for fully automatic druggability predictions

solely based on the protein structure. The introduced method uses global and local

descriptors of detected binding sites incorporated into a support vector machine (SVM)

and a nearest neighbor search to rate the druggability of a target. DoGSiteScorer was

evaluated in detail in [D2]. A short outline about the main aspects will be given here.

The basis for a successful application of the introduced machine learning approach

was a reliable data set to train the SVM models. Fortunately, a druggability data set

(DD) consisting of more than one thousand annotated data points was released in a

recent publication [72]. Data points were annotated as being druggable, difficult and

undruggable. Additionally, a non-redundant version (NRDD) with 70 entries of the

DD was compiled. DoGSiteScorer was used to detect pockets for all structures and

to describe them by multiple global sterical and physicochemical properties. A cor-

relation between several features regarding size, shape and chemistry of the pockets

was observed. Thus, a discriminant analysis was carried out to create a subset of im-

portant properties. Analysis of the features revealed that druggable pockets tend to

be larger, more hydrophilic and complex when compared to undruggable ones, which

was in agreement with previous literature reports [9]. Furthermore, pockets of targets

annotated as difficult were found to be more similar to druggable pockets considering

size and shape parameters, while closer resembling undruggable pockets in terms of

physicochemical features.

For druggability prediction, the discriminating features of the detected pockets based

on the NRDD were used to train the SVM. A comparative study to SiteMap [57] and

Fpocket [72], two other truly automatic methods, has been performed. Comparison of

the relative enrichment curves of the three methods revealed that they all perform well

in rating druggable pockets above undruggable ones1. DoGSiteScorer slightly led the

field, especially when considering subpockets. The trained models were further used to

classify the complete set of 1069 DD structures. In this experiment, structures were

grouped by the protein family to which they belong, and performance was analyzed

based on mean values and standard deviations within the druggability scores of the

family members. Considering the mean value, 88% of the families were correctly clas-

sified as undruggable, difficult or druggable. Generally, low standard deviations within

1Note that a direct comparison is difficult, since the underlying pockets may differ due to the

individual pocket detection algorithm of each method.
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the scores predicted for the contained family members were observed. Since apo- and

holo-structures1 were present in this data set, as well as bound ligands of different size,

the low score deviations showed the robustness of the introduced method with respect

to flexibility in the structures upon ligand binding. E.g., the kinase p38 family was rep-

resented by 40 structures and the detected pockets span volumes between 450Å3 and

1800Å3, depending on the different crystallized activation states. Despite the variation

in size, DoGSiteScorer correctly classified the kinase structures as druggable, because

of the combination of other features considered such as high fractions of lipophilic sur-

face area. In contrast, the discrepancy between annotated druggable character and

predicted low scores for the carbon anhydrase family exposed the limitations of the

global method. The drug binding in carbon anhydrases is dominated by metal binding.

Thus, their druggability results from single interactions in the binding site rather than

a global property.

This encouraged the consideration of local properties. Therefore, distance dependent

histograms, which are irrespective of the global pocket annotation or its boundary, were

calculated with DoGSiteScorer. These profiles were incorporated for homology-driven

knowledge transfer by means of a nearest neighbor search. Druggable and undrug-

gable pockets were compared with respect to distances between their binding motif

histograms. Although, the histograms from both classes were noisy, druggable tar-

gets were found to have more short range hydrophilic-hydrophilic and less short range

lipophilic-lipophilic interaction partners. Generally, predictions on the DD data set

yielded 88% correct annotations.

To improve the outcome and the prediction power of both methods, the combined pre-

dictions were investigated on the DD. While local and global predictions mostly agreed

in the assigned druggability state, focus was on the cases where they differ. Carbon

anhydrases were one example where the global method failed. In contrast, the near-

est neighbor method achieved good results modeling the local characteristics of ligand

binding.

Nevertheless, some challenges remain, being related to the ambiguous definition of

druggability, the uncertainties arising from the pocket prediction step, as well as the

discrepancy in set sizes or wrong annotations in the training data, which were further

discussed in the publication [D2]. Concluding, the study showed that DoGSiteScorer

provides valuable qualitative and quantitative information for target assessment and

drug discovery.

The complete DoGSiteScorer pipeline starting from active site detection, over calcula-

tion of descriptors to the classification based on the trained SVM models, was ported

1Apo describes the ligand-free, holo the ligand-bound form of a protein.
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to a web server [D3] allowing the community to analyze a protein of interest and export

the processed results for further investigation.

4.3 Enzymatic Function Prediction

Predicting the enzymatic function of yet unclassified structures is of high practical

impact in many research areas. In my work published in [D4], I developed a novel

computational protocol aimed at predicting enzymatic function at different levels of

granularity. The enzymatic classification (EC) model [163] was used as basis for this

approach. The EC scheme, encoded in a four-digit number, specifies the reaction an

enzyme catalyzes. The first number divides the enzymes into six main classes. Each

main class consists of several subclasses, encoded in the second digit and so on1.

Developing a pipeline for function prediction with increasing specificity according to

this classification scheme was the aim of this part of my work. Although many ap-

proaches exist for function annotation, no established EC-based benchmark data set

exists to calibrate and evaluate new methods. Using SVMs for classifications requires

a sufficiently large data set for model set-up and training. For this purpose, a large

set containing all enzymes with annotated EC number present in the PDB, restricted

by some quality criteria was assembled. Binding site detection and careful restriction

based on the coverage criterion yielded over 26 000 well defined pockets, attached with

calculated descriptors. None of the descriptors showed clear trends for class separations

by itself, which was not surprising considering the wide range of substrates bound to

the EC class members. Nevertheless, some lessons could be learned, e.g., in terms of

largest volume (EC1), lipophilic surface fraction (EC1), or negative amino acid ratios

(EC3).

For the function prediction cascade, SVM models were built for main class, subclass

and substrate-specific sub-subclass predictions, based on a reduced set of discriminating

features. A cross validation on randomly selected two thirds test and one third training

data yielded 68% accuracy for correct main class annotation. Subsequently, for each

class a sub-model was built to discriminate the respective subclasses. The numbers of

subclasses per main class varied between 6 and 13, while success rates between 60% and

80% were achieved. Finally, the same procedure was applied to the substrate-specific

sub-subclass level. Exemplarily, the performance on the kinase subclass (E.C. 2.7) con-

taining 18 substrate-specific sub-subclasses was outlined and cross-validation studies

yielded 58% correct predictions. An interesting enhancement was the indication of a

reliability value for each prediction based on the estimated SVM probability. During

1BRENDA [109] provides a detailed description about this classification scheme.
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evaluation, special attention was paid to potential influences of data redundancy and

imbalance between class sizes.

Finally, two structures were studied in a retrospective (PDB code: 1p1m) and a hy-

pothetical (PDB code: 1mjh) function prediction scenario. The function prediction

pipeline results were in good accordance with literature and proposals from other tools

in this field [111, 127, 164, 165].

Concluding, the study showed the competitiveness of this method with other published

approaches and the information gain due to the novel prediction cascade on different

levels of granularity.

4.4 Triangle-Based Pocket Comparison

To allow for more reliable predictions with respect to structural changes in protein

binding sites, I took part in the development of a new locally enhanced approach.

TrixP has been developed for structure-based binding site comparison. The usage of

the triangle descriptor, enabled by the bulk-imposed shape requirements, in combina-

tion with an index-based data management allows for high-throughput applications.

A detailed evaluation and several applications of the method were introduced in my

scientific publication [D5], and will be summarized in the following.

The experiments are generally executed in a two-step manner, starting with the build-

ing of the index followed by the screening step. First, triangle descriptors and bulk

rays are calculated for a set of structures with known function. Subsequently, these

descriptors are inserted into an index, which can then be queried with any protein of

interest.

A vital requirement for binding site comparison tools is the ability to detect similarities

between related structures while discarding unrelated ones. A first study was performed

on 1331 similar and dissimilar protein structure pairs [142]. Querying with one repre-

sentative, TrixP was able to recover 81.8% of the respective pairs with a similarity score

above the threshold of 0.3. For dissimilar pairs, in 99.5% of the cases the associated pair

was scored lower than this cut-off. Besides the ability to discriminate, TrixP convinced

with high sensibility in ranking the found structures in accordance with their actual

similarity. In a further experiment, an index built from 9802 scPDB structures [162]

was queried with structures from four families, e.g., the estrogen receptor family (ER).

A detailed analysis of an ERα query showed that 98.5% of the ER structures, included

in the index, were found with high similarity scores. Next, the sensitivity in classifica-

tion was analyzed with respect to TrixP’s ability to group structures into subfamilies,

exemplified on a kinase set [130]. While the query on the scPDB index was based on
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binding sites defined by the co-crystallized ligands, in the kinase study, pockets are

predicted with DoGSite for each index and query structure. A clustering based on the

similarity matrix calculated by an all-by-all comparison grouped the structures in good

accordance with their biological annotation. TrixP especially convinced by its ability

to distinguish between different activation states and sub-subfamilies.

Furthermore, quality and runtime comparison studies on a set of eight difficult struc-

tural pairs demonstrated the efficiency and the competitiveness of TrixP to other recent

and efficient methods in this field.

Summarizing, TrixP convinced in detecting similarities even between distantly related

binding sites. Especially, the local character of the triangle descriptor enhanced with

partial shape matching, which accounts for a certain degree of flexibility, makes TrixP

a very useful tool for structural comparison and function annotation.

4.5 Ligand and Pocket Shape Comparison

Understanding molecular recognition is a prerequisite for proper modeling and modifi-

cation of the binding process. While the driving forces for ligand binding are encoded

in chemical and sterical complementary, the impact of shapes was explicitly analyzed

in the study published in [D6]1 and the findings will be summarize in the following.

To directly compare ligand and binding pocket shapes, the normalized principle mo-

ments of inertia ratios (NPRs), introduced in section 3.2.3, were used. NPRs allow the

mapping of shapes into a triangular space, with the extrema describing truly sphere-,

rod-, and disk-like shapes.

The analysis was performed on selected scPDB structures [162]. For this set, pock-

ets and subpockets were predicted with DoGSite and represented by calculated NPRs.

Similar to findings for small molecules [150], pockets with bound ligands avoid spher-

ical shapes. Nevertheless, spherical shapes were prevalent in small and mostly empty

pockets [166]. Furthermore, a direct shape comparison confirmed that pockets are pre-

dominately only covered to one third by the co-crystallized ligand [167]. In contrast,

subpocket coverage rises to 50%, underlining their more specific and restrictive repre-

sentation of the ligand available volume. In addition, several shape complementarity

parameters were analyzed with respect to pocket coverage. A good shape fit between

ligand and pocket is indicated by pairwise shape distances lower than 0.21, center of

mass (CoM) distances below 2.4Å and angle deviations between the first principle el-

lipsoid axes below 28.8◦.

1This work was performed in collaboration with Matthias Wirth from Merck Serono, Geneva.
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Furthermore, bioactivity and binding efficiency of the co-crystallized ligands was ana-

lyzed and related to pocket shape on a PDBbind [161] subset. No strong correlation

between activity and individual pocket parameters, e.g., pocket coverage, NPR dis-

tance, CoM distance or angle deviation could be stated. The best correlation was

found for pocket coverage with a Pearson correlation coefficient of 0.4. Nevertheless,

by separating the ligands into low, middle and high affinity binders, a trend towards

better coverage, smaller NPRs and CoM distances, as well as lower angle deviations

could be observed for high affinity binders. Furthermore, activity was analyzed with

respect to ligand size, with the goal of deriving ideas about the expected maximal bind-

ing efficiency1 for a given pocket as additional parameter for druggability assessment.

Similar to previous studies [168, 169], a decrease in efficiency with increasing molecule

size was observed. This information could be enriched by finding a similar decline in

efficiency with increasing pocket volumes. Additionally, a range of pocket volumes be-

tween 300-700Å was found exhibiting a higher probability of binding ligands with high

efficiency.

Finally, the usability of the shape distance as screening filter was analyzed based on

the ChEMBL data set [170], screened against four targets. Different distance criteria

between selected pocket, co-crystallized ligand and the minimum energy conformation

of the ChEMBL compounds were taken into account. The distance between pocket

and compound volume proved useful in discarding compounds which were annotated

with unfavorable docking scores in a screening experiment with Glide [171].

Concluding the study revealed new insights into the shape fit between protein and small

molecule.

4.6 Rational Enzyme Design

The Biocatalysis2021 partner Henkel2 investigated in the directed evolution of an alditol

oxidase to enhance its activity towards glycerol. In a crosslink project, potential mu-

tation sites should be suggested by applying the developed binding site comparison

software together with molecular modeling3. I used the developed software to predict

and compare the active sites of alditol oxidases with known glycerol binding proteins.

Since only few alditol oxidase structures were available, the idea was to learn from

the properties of other sites active to glycerol and detect similarities and differences

to the current structures. Typical binding profiles of glycerol binding enzymes shall

1Binding efficiency is calculated by dividing the pKi by the number of ligand heavy atoms.
2Henkel AG & Co. KGaA, Düsseldorf, Germany
3The molecular modeling experiments were mainly carried out by B. Windshügel.
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serve as idea generator for mutations in the active site of alditol oxidases. First, pro-

tein structure data was collected for both sets. At the time of the project, five alditol

oxidase structures were available in the PDB (PDB codes: 2vfr, 2vfu, 2vfv, 2vfs, 2vft).

The search for oxidase structures with bound glycerol yielded 210 structures. Active

sites were calculated for all structures using DoGSite [D1]. Descriptors were calculated

and the previously outlined complete linkage procedure (see section 3.3.1) was used to

group the structures by their descriptor similarity.

The clustering yielded one branch in which all alditol oxidase structures were contained

together with 11 glycerol binders. Four of the five alditol oxidase structures belonged

to one subbranch shared with two other enzymes, of which the most similar one (PDB

code: 1d6z) was used for further investigation. Using molecular modeling software1,

the active site of the amine oxidase (1d6z) was superposed onto the alditol oxidase

and analyzed (Figure 4.1). A direct comparison of these structures suggested that

mutations in the active site might possibly adapt the function of the alditol oxidase

to glycerol binding. Amino acids Glu702 and Lys709 build a salt bridge in 1d6z with

a Cα distance of 11.5Å. An almost equidistant pair was found in the alditol oxidase

between the two amino acids Val250 and Phe275. Furthermore, both amino acids are

located in a similar position with respect to the bound glycerol.

1d6z 2vfr 

Figure 4.1: Comparison of the active sites of the amine oxidase 1d6z and the alditol

oxidase 2vfr.

Nevertheless, these mutations may have high impact on the positions of neighboring

amino acids and the stability of the structure. Other mutations, e.g. Pro249, may be

necessary to create the space for the interactions of the two amino acids. To verify or

1MOE (Molecular Operating Environment), http://www.chemcomp.com/
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falsify these suggestions, nevertheless, detailed modeling experiments should be con-

ducted.

The suggested double mutations together with three other mutations were handed to

the cooperation partner Henkel for experimental testing. Unfortunately, the provided

mutations were found inactive [172]. Mutants with substitutions in the active site could

not be expressed in the cytoplasm and no active oxidase was produced.

Although the software provides valuable information about the active site, information

about the stability of the enzyme is missing. Modifications in the active site often

prevent the expression of active enzymes and thus make reliable predictions by ratio-

nal design difficult. A possible next step would be the investigation into molecular

dynamics simulations.
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Summary and Outlook

My work comprises several approaches for structure-based computer-aided active site

analysis. The algorithms and their applications showed good results on theoretic and

retrospective studies. The approach for pocket prediction introduces a method from

image processing into the field of bioinformatics, and convinces by its accurate pre-

dictions as well as its capability to predict pockets and subpockets. Global and local

descriptors are derived within these pockets and are used for protein classification. The

SVM method provides a generic approach, which has been shown to perform well on

different scenarios, i.e., druggability and function prediction. Besides good results in

both experiments equal or even superior to previous published approaches, the func-

tion prediction example stands out especially by its multi-step approach on different

granularities. The druggability prediction software is already in use at my cooperation

partner Merck, and the provided server for protein assessment also enjoys a growing

popularity. Furthermore, the comparison between protein pocket and ligand creates a

new understanding of facts important in molecular recognition. The newly developed

TrixP approach expands the portfolio of approaches by a method focusing on local

properties accounting for small changes in the binding site.

Nevertheless, as mentioned throughout this study challenges remain. In this section, I

will suggest possible applications and extensions of the developed methods. A mean-

ingful application for the DoGSite algorithm would be the prediction of protein-protein

interactions. For this scenario, the algorithm would have to be reparametrized to the

new problem, and adequate training data would have to be collected. The adapted

classification software could help to solve questions in the protein-protein interaction

research. Another suggestion is its application in the biotechnological context. In a

preliminary study, in cooperation with the group of Prof. Liese, I tried to separate
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polymerization-catalyzing enzymes from other enzymes, with promising results. Fur-

ther application studies, especially with an experimental evaluation, would be of great

value. Another idea is the use of TrixP for the detection of conserved triangles exclu-

sively found within enzyme families. Such positions could give valuable information

about the catalytic mechanism of a specific enzyme family or the separation into sub-

families.

In my opinion, the major challenge is, nevertheless, the not covered and not fully un-

derstood flexibility of a protein. The approaches developed within this work use one

snapshot of the protein structure as input. Small changes in the environment of a

protein or its binding partners induce changes in its conformation. Hence, detected

pockets of one stage may differ from the pockets detected for another conformation.

Deriving descriptors from snapshot representations and using them for annotation bears

the risk of tampering the results. Thus, one further enhancement would be the use of

a new representation for protein flexibility. Until such representations exist, another

circumvention would be the use of protein structural ensembles. The detection of a

meta-pocket, based on a superposition of the ensemble structures, and a grid point

annotation with density probabilities is one suggestion. The adaption of the global

descriptors may be possible but bears the risk of adding noise to the results. Using

such a meta-pocket presentation in the TrixP approach is more conducive. The prob-

abilities could be transferred to the respective triangle corners and be incorporated in

the scoring process. Furthermore, the development of a strategy to account for large

changes in the active site remains a very challenging task.
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Appendix A

Publications and conference

contributions

A.1 Publications in scientific journals

This section summarizes the publications of the author in scientific journals and ex-

plains the authors’ contributions.

D1 A. Volkamer, A. Griewel, T. Grombacher, and M. Rarey. Analyzing the topol-

ogy of active sites: On the prediction of pockets and subpockets. Journal of

Chemical Information and Modeling, 50(11):2041-2052, 2010.

Based on a Difference of Gaussian filter implemented by A. Griewel, a new method

for pocket detection was designed. The author of this thesis, A. Volkamer, de-

veloped the novel DoGSite method and performed the validation studies listed in

the paper. T. Grombacher and M. Rarey supervised this work.

D2 A. Volkamer, D. Kuhn, T. Grombacher, F. Rippmann, and M. Rarey. Com-

bining global and local measures for structure-based druggability predictions.

Journal of Chemical Information and Modeling, 52(2):360-372, 2012.

On the basis of the developed method for pocket detection (D1), the author of

this thesis, A. Volkamer, designed and implemented the new approach for drug-

gability prediction DoGSiteScorer. D. Kuhn assisted the evaluation studies.

T. Grombacher, F. Rippmann and M. Rarey supervised the work.
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D3 A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey. DoGSiteScorer: A web

server for automatic binding site prediction, analysis, and druggability assess-

ment. Bioinformatics, 28(15):2074-75, 2012.

Based on the developed method for druggability prediction (D2), the author of

this thesis, A. Volkamer, set up a web server for pocket detection, description and

druggability prediction of new protein structures. D. Kuhn, F. Rippmann and

M. Rarey supervised this work.

D4 A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey. Predicting enzymatic

function from global binding site descriptors. Proteins: Structure, Function and

Bioinformatics, 81(3):479-89, 2013.

The author of this thesis, A. Volkamer, designed the method, collected the data

sets and performed the studies for enzymatic function prediction. In collaboration

with D. Kuhn the test sets listed in the paper were evaluated. F. Rippmann and

M. Rarey supervised the study.

D5 M. v. Behren, A. Volkamer, A. M. Henzler, K. T. Schomburg, S. Urbaczek,

and M. Rarey. Fast protein binding site comparison via an index-based screening

technology. Journal of Chemical Information and Modeling, accepted January

2013.

M. v. Behren and A. Volkamer jointly established the idea of the new binding

site comparison method TrixP. M. v. Behren implemented the method, assisted

by A. Volkamer, the author of this thesis. Together, they designed and performed

the evaluation studies. Fundamental TrixX functionality was provided by A. M.

Henzler, K. T. Schomburg, S. Urbaczek. M. Rarey supervised this work.

D6 M. Wirth, A. Volkamer, V. Zoete, F. Rippmann, O. Michielin, M. Rarey, and

W. H. B. Sauer. Protein pocket and ligand shape comparison and its application

in virtual screening. To be submitted January 2013.

The idea of the pocket-ligand shape comparison studies evolved from a collabo-

ration between M. Wirth and A. Volkamer, the author of this thesis. The used

moment-of-inertia shape representation stems from a previous work of M. Wirth,

the pocket prediction and description from the previous work of A. Volkamer

(D1, D2). V. Zoete, F. Rippmann, O. Michielin, M. Rarey, and W. H. B. Sauer

supervised the study.
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A.2 Conferences

A.2 Conferences

This section first lists the author’s oral presentations and finishes with the presented

posters.

A.2.1 Talks

1. A. Volkamer, T. Grombacher, F. Rippmann, C. Lemmen and M. Rarey. COM-

PASITES: A Tool for Automated Active-Site Based Structure-Function Analysis.

Biocat2010, Hamburg, 29. August-2. September 2010

2. A. Volkamer, A. Griewel, T. Grombacher, F. Rippmann and M. Rarey. Auto-

matically Predicted Subpockets Pave the Way for Descriptor-based Druggability

Studies. EuroQSAR, Rhodes, 19.-24. September 2010

→ Short presentation due to poster price

3. A. Volkamer, A. Griewel, T. Grombacher, F. Rippmann and M. Rarey. Com-

bining global and local measures for druggability predictions. 9th International

Conference on Chemical Structures (ICCS), Noordwijkerhout, June 5.-9. 2011

4. A. Volkamer, T. Watolla, F. Sonnenburg, C. Lemmen, D. Kuhn, F. Ripp-

mann and M. Rarey. Combining Automatic Active Site Analysis and Docking

for Structure-Based Protein Function Prediction. Dechema 7th Status Seminar

Chemical Biology, Frankfurt, 5.-6. December 2011

5. A. Volkamer, D. Kuhn, F. Rippmann and M. Rarey. Exhaustive Computer-

Aided Active Site Analysis for Structure-Based Protein Function and Druggability

Predictions. 10th Swiss Snow Symposium, Lenk, Swiss, February 2012

6. A. Volkamer, D. Kuhn, F. Rippmann and M. Rarey. Combining global and local

measures for structure-based druggability predictions. ACS Spring Meeting, San

Diego, California, 25.-29. March 2012

7. A. Volkamer, T. Watolla, F. Sonnenburg, C. Lemmen, D. Kuhn, F. Ripp-

mann and M. Rarey. Combining automatic active site analysis and docking for

structure-based protein function predictions. ACS Spring Meeting, San Diego,

California, 25.-29. March 2012
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A.2.2 Posters

1. A. Volkamer, A. Griewel, T. Grombacher and M. Rarey. Where are the bound-

aries? Automated Pocket Detection for Druggability Studies. German Conference

on Cheminformatics, Goslar, 8.-10. November 2009

→ Poster price

2. A. Volkamer, A. Griewel, T. Grombacher and M. Rarey. Pockets are made of

Sub-pockets: Automated Detection of Ligand Binding Sites for Structure-based

Function Analysis and Druggability Studies. CHI - Structure-Based Drug Design,

Boston, 23.-25. June 2010

3. A. Volkamer, A. Griewel, T. Grombacher, F. Rippmann and M. Rarey. Auto-

matically Predicted Subpockets Pave the Way for Descriptor-based Druggability

Studies. EuroQSAR, Rhodes, 19.-24. September 2010

→ Poster price
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Appendix B

Working with COMPASITES

The algorithms developed in my work are implemented in a software named COMPASITES

(Computer-aided Active Site analysis). In the following, a short tutorial about the

usage of the software will be given. The software can be applied in several use cases:

• Prediction of potential binding site(s) of protein structures

• Calculation of various descriptors of the active site

• Clustering of active sites based on the descriptors

• Annotation of druggability (using the SVM-based method)

The program is embedded into the FlexX Toolkit. Therefore, in this section only the

functionality of the COMPASITES functions is listed. For the detailed basic FlexX func-

tionality, please refer to the FlexX user guide (available at http://www.biosolveit.de).

B.1 Starting COMPASITES

Please ensure that you have access to the config.dat, static data and a valid license key

before starting the program. The COMPASITES program can be started from command

line by typing ./bin/CompaSite. If paths and license are set correctly, the program

starts and the prompt FLEXX> appears. By pressing return you get an overview about

the provided functionality. Generally, different output levels can be chosen for user

info. Depending on the level of detail of the process that the user wants to see, the

user can change the granularity by typing SET VERBOSITY.
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B.2 Menu Navigation

In the following, it is explained which steps are needed to address the various use

cases, starting from the FLEXX>-prompt. Each functionality is provided in a separate

submenu.

B.2.1 Load a protein - RECEPTOR

To load a protein, change into the receptor menu (type RECEPTOR ) and read in a PDB

structure of your desired protein (READ [path/]protein.pdb). Make sure that you

either specify the complete path to the file of the protein structure or that the path is

set in your configuration file.

B.2.2 Load a ligand - LIGAND

This step is optional, if you have a co-crystallized ligand and you want to include it

for binding site revision, you can load the ligand by changing into the ligand menu

(LIGAND) and reading in the ligand (READ [path/]ligand[.mol2]). In this step, only

one molecule at a time (in mol2 or sdf format) can be read in. For input of multi-mol2

ligand files, containing multiple ligands, please refer to A.2.3.2.

B.2.3 Pocket detection and analysis - COMPASITE

To start the prediction functionality, change into the COMPASITES submenu (COMPASITE).

The COMPASITE submenu holds the commands for pocket detection (POCKET), pocket

and ligand coverage calculation (LIG CHECK), descriptor calculation (DESCRIPT), draw-

ing (DRAW) and output of the results (WRITE PDB).

B.2.3.1 Predict binding pockets - (M)POCKET

• POCKET

With the command POCKET, the pocket prediction can be started. Per default

the complete protein structure is analyzed. If the monomeric prediction option is

chosen (SET COMPAS IP MONOMER 1), additionally the chain for which the pocket

shall be predicted has to be chosen (for example: POCKET A), otherwise the first

chain is chosen per default. If the user output level is set to zero, the program only

outputs the number and the size of the predicted pockets. If the output level is

set to 4 (SET VERBOSITY 4), you get detailed information about the single steps:

a. Grid size
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b. Energy, buriedness or DoG calculation (based on chosen algorithm)

c. Subpocket calculation

• MPOCKET

This command enables the annotation of a pocket around a user provided ligand

(MPOCKET [path/]lig.mol2). This procedure has been implemented to allow the

user to use the complete COMPASITES functionality for the pocket of interest.

B.2.3.2 Pocket and ligand coverage calculation - LIG CHECK

This command requires the input of a ligand (LIG CHECK [path/]lig.mol2). Firstly,

all ligands specified in the input file are checked one after the other if they lie in the

predicted binding pocket and secondly, the ligand and pocket coverage is calculated.

Nevertheless, the ligands are not globally stored in the program (differing from the

READ LIGAND option shown in A.1.2.2) and cannot be further used. If you want to

visualize the ligand change back into the ligand menu and read in the ligand. Note

that the coverage calculation is only possible if pockets have been calculated before,

the program outputs a warning if no pockets have been predicted so far.

B.2.3.3 Calculate binding pocket descriptors - DESCRIPT

After choosing the DESCRIPT command, all descriptors are calculated and displayed on

the screen. If you want to send the output to a file, use the FlexX SELOUTP command

and specify the name of your file. All calculated descriptors are output in form of a

table, one for the predicted pockets and one for sub pockets, respectively. This descrip-

tion already contains a measure for druggability annotated as simple score, which is

calculated based on linear combination of three pocket properties, describing size, com-

pactness and hydrophobicity of the pocket. Herein, a short overview of the contained

values is given:

• Volume and shape descriptors:

poc: pocket number; s poc: subpocket number (poc spoc)

score: simple druggability score based on linear combination of three properties

volume, se /h gps, and siac ratio

lig : ligand number, if multiple ligands are loaded (-1 if no ligand found)

lig cov : percentage of ligand covered by the predicted pocket

poc cov : percentage of the pocket covered by the provided ligand

B/SE : buried (=1) or solvent exposed (=0) pocket
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se cl : number of solvent exposed clusters, corresponds to the number of solvent

exposed sites of the pocket

energy : total energy of the pocket, summed up over all grid points (only calculated

if energy based pocket detection is enabled)

#s atms: number of surface atoms lining the pocket boarder

depth: depth of the pocket in Å

volume: pocket volume in Å3

surface: solvent accessible pocket surface in Å2

lipo surf : lipophilic surface

nof gps: number of grid points contained in the pocket

nof surf gps: number of surface grid points in Å2

se /v gps: ratio of number of solvent exposed and total number of grid points

se /h gps: ratio of number of solvent exposed and surface grid points

s /v gps: ratio of number of volume and surface grid points

ell vol : quotient of fitted ellipsoid to pocket volume

ell a, ell b, ell b: ellipsoid main axis, with a > b > c

• Amino acid and element composition descriptors:

chain: number of chains pocket belongs to

element type: C, N, O, S or other (X)

ALA, ASN,...: 3-letter code of 20 amino acid types

H-don: number of hydrogen bond donors

H-acc: number of hydrogen bond acceptors

Met : number of metals

Hphob: number of hydrophobic contacts

ratio: relative number of hydrophobic SIACs (Site InterAction Centers)

aa apol/pol/pos/neg : relative number of apolar, polar, positive, and negative

amino acids

This description can also be printed on the screen using the command DESC INFO.

B.2.3.4 Automated process - AUTO

By typing AUTO [ligand], the program automatically carries out the actions POCKET,

LIG CHECK, and DESCRIPT. Please ensure that you provide a ligand, which is needed for

the LIG CHECK step.
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B.2.3.5 Visualization - DRAW

In this submenu context, the DRAW routine is only suitable to draw the detected pockets.

For drawing receptor and ligand please change into the respective menus and refer to the

FlexX user guide. For pocket visualization, you can choose between different coloring

schemes and presentations. You are asked line by line what you want to have drawn.

First you can choose which pockets you want to draw, remember pockets are sorted

by size. Second, you can choose if you want to draw the pocket in the margin cube

presentation or in the grid point presentation. Either pockets, or their division into

subpockets can be annotated by different coloring. In the grid point mode, the coloring

scheme can be further defined by several pocket properties. Pockets can be colored

to represent the shell, buriedness (psp), energy, and tightness of the environment.

Furthermore, you can enable the drawing of the underlying grid density values (DoG)

in mcube representation. If the DoG grid is drawn, the user has the possibility to

change the DoGSite cut-off parameter interactively. This can be done by using the

slider in the FlexV menu (FlexV is the graphic user interface opened after the drawing

dialog is finished in the prompt). Only values below zero give reasonable results. The

closer the value is to zero the larger is the grid cloud, the lower the value, the more

restrictive is the pocket algorithm. This allows for inspection of the cores of detected

pockets.

By typing GO the pocket information is send to FlexV and a new window appears

containing the predicted pockets.

B.2.3.6 Clear data - DEL POC and DEL DESC

These two commands can be used to manually delete the specific information. Never-

theless, whenever new pockets are predicted (POCKET) or new descriptors are calculated

(DESCRIPT), the deletion of the old information is done automatically by the program.

B.2.3.7 Output - WRITE PDB, WRITE DESC, WRITE SVM

These commands can be used to write the generated output to user defined files.

• WRITE PDB

This command can be used to write PDB files of the predicted pockets or bind-

ing sites. You have to provide the name of the output file (without file ending

“.pdb”) and the number of pockets you want to output. Next, you can choose

between two output variations, either the pocket volume in terms of grid points

(0) or the binding site residues (1); the choice will be written to the file. The
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program generates one output file per predicted pocket and attaches the pocket

number to the filename (e.g. 4dfr P0.pdb, 4dfr P1.pdb,...), respectively one for

each subpocket if chosen (e.g. 4dfr P0SP0.pdb, ...).

– Pocket output : Due to the fact that the pockets may be large, only the sur-

face of the pockets is output. Furthermore, the option of a reduced surface

can be enabled, which prints a less granular grid representation of the pocket

surface.

Each line in the PDB file specifies one pocket surface grid point. The regular

PDB format is used and each line consists of the following entries: ATOM,

gp nr, atm, resName, chainID, s poc nr, x, y, z, spec value. Explanation:

gp nr specifies the number of the grid point in the pocket (note: the num-

bering is not continuous, since only surface grid points of the pocket are

output); atm, resName and chainID are set per default to CA, ALA and A

respective; s poc nr specifies the subpocket to which the grid point belongs

and x, y and z are the coordinates of the grid point. Spec value specifies the

buriedness (0), the vdW energy (1) or the dog value (2) of the grid point,

depending on the pocket detection algorithm that is used.

– Binding Site output : If this option is chosen, all pocket lining binding site

residues are printed to the user specified file in PDB format.

• WRITE DESC

This command writes the descriptor information to a user defined output file.

Again, you can specify, if descriptors for pockets, subpockets or both representa-

tions shell be written to the file.

The counter command READ DESC can be used to reenter descriptors to the pro-

gram, which can be of interest when using the clustering procedure, explained in

A.2.4.

• WRITE SVM

This command can be used to store the descriptor data in the libsvm required for-

mat for druggability or function predictions. For further instructions concerning

druggability prediction read section A.2.5.

B.2.4 Clustering by binding site descriptors - CLUSTER

To compare proteins by pocket descriptors and to group them into families, an adapted

version of the FlexX CLUSTER command is provided. Note that you either have to

pre-process your set of structures (e.g, with the COMPASITES functionality AUTO), which
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will make the descriptors globally available for the program, or you can reenter precal-

culated descriptor information using the READ DESC command. After changing into the

submenu CLUSTER, the AUTO command can be used to cluster the set of input structures

by their distance in descriptor space. Per default, a complete linkage clustering is per-

formed, but the user can change this option to single linkage as well. Finally, using the

command DENDRO writes a dendrogram file, which holds the information to graphically

display the generated clusters.

B.2.5 Druggability prediction

For druggability predictions, the software version must provide a folder containing the

support vector machine (SVM) executable of libsvm, as well as the pre-trained SVM-

models. Furthermore, you first need to store the descriptors of your query protein in

the libsvm format by using WRITE SVM (see A.2.3.7). Next, the script contained in

the same directory, named DoGSiteScorer.sh, can be called with the following three

parameters: Query descriptor file, SVM-model file and path to the SVM directory (all

without suffix).

Caution: For pockets and subpockets two different SVM models have been trained.

Make sure that your query and model levels are consistent. After submission, scores

are calculated and output to a file. An example of this proceeding can be found in the

scripting subsection.

B.2.6 COMPASITES parameter setting - SET

The following COMPASITES parameters can be change by typing the name followed

by the desired value, for example SET COMPAS IP POC ALG 0. The value behind the

specific parameter describes the default value; in brackets the options or the value

range is specified. (IP stands for integer parameter, DP for floating point parameter)

• COMPAS IP POC ALG 3 [0-3]: Defines the algorithm by which the pockets are

calculated.

0: Geometric-based algorithm (LIGSITE reimplementation)

1: Energy-based algorithm (DrugSite reimplementation)

2: Combination of 0 and 1 (Not maintained any longer)

3: Edge-detection algorithm (DoGSite)

• COMPAS IP NEIGHBOR 5 [0-26]: Number of neighbors that a point must have

to belong to the final predicted binding site point cluster. (Geometry-based

method).
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• COMPAS IP VDW CUTOFF 8 [4-12]: Van der Waals cut-off in Å for energy calcu-

lation. Maximal distance between the carbon probe that is rolled over the surface

and the surrounding atoms. (Energy-based method)

• COMPAS DP NUM FILTER 1.75 [1-15]: Depending on the chosen algorithm (1,3):

Energy-based method (1): Number of filter steps if average space filter is used;

or value for sigma if Gaussian filter is used. If DoGSite (3) is chosen, it specifies

the value of sigma for difference of Gaussian calculation.

• COMPAS IP FILTER TYPE 2 [1;2]: (Energy-based method)

1: Average space filter

2: Gaussian filter

• COMPAS DP GRID DELTA 0.4 [0.4-1.2]: Grid spacing.

• COMPAS DP MAX VDW -0.4 [-0.8-0.0]: Van der Waals cut-off. All grid points

with a higher value are re-set to the cut-off for the filter procedure.

• COMPAS DP MAP CUTOFF 3 [0.-4.]: Threshold for calculation of the map contour

level: CL = Mean ∗ Threshold− Standard deviation.

• COMPAS IP RANK 2 [0;2]: Generally pockets are ranked by size (0), when DoGSite

algorithm is used, ranking by a slightly different size criterion (2) performs better

which only considers the original kernels of the pockets.

• COMPAS IP MONOMER 0 [0;1]: Defines the part of the structure to be analyzed.

0: Complete protein structure (all chains) is used to predict the pockets

1: Only one chain (which has to be specified, see 4.1) is used to predict the

pockets

• VERBOSITY 4 [0;3;4]: Set Output level.

0: No output

3: Normal user output

4: Detailed user output

B.3 Scripting

Instead of typing each command by hand, you can use a script, containing the above-

mentioned options. Three examples are stored in the script folder and are attached to

this section. The first script can be used to read in a protein, the co-crystallized ligand,
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perform the binding site prediction, get the descriptors and output the predicted pock-

ets as PDB files. You can run it from the command line by typing ./bin/CompaSites

-b example single.bat. Alternatively, it can be accessed during the program execu-

tion by typing SCRIPT example PA3 single. The second script can be used to read

in a list of protein structures specified in a text file (list.txt). The calculations are

performed for all structures in the list and output to a new text file. The command is

analog to the one for the single run. The third script describes the use of the drugga-

bility predictor.

• Script for processing a single protein.

#################################################
# COMPASITES − b i n d i n g s i t e d e t e c t i o n a l gor i th m #
# w r i t t e n by Andrea Volkamer , 2012 #
# s c r i p t : e x a m p l e s i n g l e . ba t #
# S c r i p t to p r e d i c t p o c k e t s and to c a l c u l a t e #
# d e s c r i p t o r s f o r p r o t e i n s t r u c t u r e 1 c5q . pdb #
# A d d i t i o n a l l y , the l a r g e s t 3 p o c k e t s o f the #
# s t r u c t u r e are output to a pdb f i l e . #
#################################################

set v e r b o s i t y 0
l i gand

s e l i n i t ∗
# menu receptor , read r e c e p t o r
r e c ep to r

read . / example /1 c5q . pdb
# change to menu compasite ,
# to c a l u l a t e p o c k e t s and d e s c r i p t o r s
compasite

pocket
l i g c h e c k . / example /1c5q H
d e s c r i p t
wr ite pdb 1 c5q pred 3

end
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• Script for processing a list of proteins with subsequent clustering.

#################################################
# COMPASITES − b i n d i n g s i t e d e t e c t i o n a l gor i th m #
# w r i t t e n by Andrea Volkamer , 2012 #
# s c r i p t : example mul t i . ba t #
# S c r i p t to p r e d i c t p o c k e t s and to c a l c u l a t e #
# d e s c r i p t o r s f o r a l l p r o t e i n s t r u c t u r e s #
# conta ined in the f i l e l i s t . t x t #
# A d d i t i o n a l l y , the l a r g e s t 3 p o c k e t s o f each #
# s t r u c t u r e are output to a pdb f i l e . #
# Pockets can be c l u s t e r e d us ing the c l u s t e r #
# menu and a dot f i l e wi th the c l u s t e r i n g can #
# be output . #
#################################################

SETVAR $ ( pdbdir ) ” . / example/”
SETVAR $ ( workdir ) ” . / ”
SETVAR $ ( l i g d i r ) ” . / example/”

s e l ou tp $ ( workdir )/ example PA3 multi . txt a
set v e r b o s i t y 3

l i gand
s e l i n i t ∗

FOR EACH $ (FILENAME) IN $ ( pdbdir )/ l i s t . txt
# menu receptor , read r e c e p t o r
r e c ep to r

read $ ( pdbdir )/ $ (FILENAME) . pdb
# change to menu compasite ,
# to c a l u l a t e p o c k e t s and d e s c r i p t o r s

compasite
pocket
l i g c h e c k $ ( l i g d i r )/ $ (FILENAME) H
d e s c r i p t
wr ite pdb $ (FILENAME) pred 3
de l poc

# d e l e t e l i g a n d and r e c e p t o r
main

d e l a l l y
END FOR
c l u s t e r

auto
dendro

end
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• Script for processing a single protein and calculate its druggability.

#################################################
# COMPASITES − b i n d i n g s i t e d e t e c t i o n a l gor i th m #
# w r i t t e n by Andrea Volkamer , 2012 #
# s c r i p t : example svm . ba t #
# S c r i p t to p r e d i c t p o c k e t s and to c a l c u l a t e #
# d e s c r i p t o r s f o r p r o t e i n s t r u c t u r e 4 d f r . pdb #
# A d d i t i o n a l l y , the d r u g g a b i l i t y o f the #
# p r e d i c t e d p o c k e t s and s u b p o c k e t s i s e s t imated .#
#################################################

#load r e c e p t o r
r e c ep to r

read tmp/4 d f r . pdb
#change to compasite submenu
compasite

# c a l c u l a t e p o c k e t s
pocket
# c a l c u l a t e l i g a n d coverage
l i g c h e c k tmp/4 d f r . mol2

#c a l c u l a t e d e s c r i p t o r s
d e s c r i p t

#w r i t e svm f i l e pocke t
write svm 0 myLibsvmPoc . txt

#e x t e r n a l c a l l o f f svm s c r i p t
! . / svm/ DoGSiteScorer . sh myLibsvmPoc svmModelPoc . / svm

#w r i t e svm f i l e subpocke t
write svm 1 myLibsvmSpoc . txt

#e x t e r n a l c a l l o f f svm s c r i p t
! . / svm/ DoGSiteScorer . sh myLibsvmSpoc svmModelSPoc4 . / svm
end
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Appendix C

Software Architecture

The COMPASITES software has been implemented in C and is integrated in the FlexX

library. Figure C.1 shows the structure of the software.
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Figure C.1: COMPASITES software structure.
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