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1 Introduction

In this thesis we deal with modular categories as well as their equivariant
versions. In particular, we discuss the correspondence between equivariant
modular categories and extended 3-dimensional topological field theories and
use this correspondence to construct certain equivariant modular categories.
We also investigate, for G a finite group, G-equivariant structures on (weak)
Hopf algebras and their strictification.

In the last few decades, the interaction of algebraic structures and low di-
mensional topology has been extensively investigated. Inspired by theoretical
physics, the mathematical notion of topological field theories (TFTs) was in-
troduced by Atiyah in [Ati88] and since then different variants have been
established, as (fully) extended TFTs and equivariant TFTs. They have
turned out to have various applications in pure mathematics, especially in
representation theory, and furthermore they provide invariants of knots, links
and of 3-manifolds [Tur10b].
Several classification results about TFTs of different types and the corre-
spondent algebraic structure are already established. In dimension two the
relevant algebraic structure are commutative Frobenius algebras. A Frobe-
nius algebra is an algebra that has also the structure of a coalgebra, such
that the coproduct is a morphism of bimodules (where the algebra is seen as
a bimodule over itself with action by multiplication).

A 2d TFT is a symmetric monoidal functor from the category Cob(1, 2) of
compact, closed, oriented smooth 1-manifolds and cobordisms to the cate-
gory VectK of vector spaces over a field K. Given a commutative Frobenius
algebra, one defines a functor ZA from the category Cob(1, 2) on objects by
assigning to the circle the algebra A. The morphisms in Cob(1, 2) are cobor-
disms of compact, closed, oriented 1-manifolds, i.e. oriented 2-dimensional
manifolds with ingoing and outgoing boundaries. These 2-dimensional cobor-
disms can be represented by generators and relations. That is to say, we have
building blocks for the morphisms and the functor is determined by what it
assigns to these blocks. By tensoriality of the TFT ZA, it is clear that a
2-manifold Σ with n ingoing and m outgoing boundaries must be sent to a
linear map ZA(Σ) : A⊗n → A⊗m from the n-fold tensor product of A to the
m-fold tensor product of A. The TFT ZA assigns certain structure maps of
the algebra A to certain building blocks, for example it assigns to the pair of
pants , which in Cob(1, 2) is a morphism between two copies of the circle
to the circle, the multiplication of the algebra. The Frobenius algebra ax-
ioms assure that ZA is well defined, i.e. that the identities of the relations in
Cob(1, 2) get sent to identities in VectK.
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In fact, this assignment is one direction of a one-to-one correspondence,
i.e. from any 2d TFT one gets a commutative Frobenius algebra (see also
[Koc04]). This correspondence is even an equivalence of categories. So ex-
pressed in categorical terms, the category of 2d TFTs and the category of
commutative Frobenius algebras are equivalent. Given a 2d TFT Z, one
takes as AZ the vector space that is assigned to the circle, the product is the
image under Z of the pair of pants and the unit is the image of the cup ,
whereas the coproduct is the image of the co-pair of pants (ingoing and out-
going boundary are interchanged) and the counit is the image of the cap .
From the relations that hold for the morphisms in Cob(1, 2) one can deduce
the axioms of a commutative Frobenius algebra.

Now we will turn to extended 3d TFTs. Note that in this thesis we only
consider an extension down to dimension one and not a full extension down
to a point. So 3d TFT in this thesis will always mean 1-2-3 extended TFTs.
We regard the 3d TFT as a symmetric monoidal 2-functor from a geometric
category to an algebraic category. The source category is the bicategory
Cob(1, 2, 3) of 1-2-3-cobordisms, in which the objects are compact, closed,
oriented smooth 1-manifolds, the 1-morphisms are surfaces with the objects
as boundaries and 2-morphisms are 3-dimensional manifolds with boundaries
and corners (see Definition 1.6). The target category is the 2-category 2VectK

of 2-vector spaces over a field K (see Definition 1.2). In particular, objects
are K-linear, abelian, finitely semi-simple categories.
Now for a given modular category C, define a monoidal functor
ZC : Cob(1, 2, 3)→ 2VectK on the level of objects of Cob(1, 2, 3) by assigning
to the circle the category C. Similar to the construction of a 2d TFT out
of a Frobenius algebra, certain functors that are part of the definition of a
modular category get assigned to certain 2-manifolds with boundary. For
example ZC assigns to the pair of pants, which in Cob(1,2,3) is a morphism
between two copies of the circle to the circle, the tensor product, which is a
functor C�C → C. Here the symbol ‘�’ denotes the Deligne tensor product of
two categories (see [Del90, Sec. 5] or [BK01, Def. 1.1.15] for the definition).
This assignment is expected to be one direction of a one-to-one correspon-
dence, i.e. ZC can be extended to a monoidal functor Cob(1, 2, 3)→ 2VectK

and conversely, it is conjectured that one can extract a modular category
from any extended 3d TFT.
However, there are two main obstacles to prove this correspondence: first of
all, in contrast to the 2d TFT case, the 1- and 2-morphisms are not as easy
to handle, since there is no presentation of them by generators and relations.
And secondly, the axioms of a Frobenius algebra can all be expressed on the
level of morphisms, whereas in a modular category the axiom for duality has
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no expression in terms of functors and natural transformation, which makes
it impossible to derive the categorical data purely from the 3d TFT axioms.
A fairly basic example of a modular category is the representation category
of the Drinfel’d double D(G) of a finite group (see [BK01]). A generalization
of this modular category was proposed in [Ban10], where the representa-
tion categoryM(X ) associated to a finite crossed module X = (X1,X2, ∂, µ)
is considered. A crossed module consists of two finite groups X1 and X2,
together with an action µ of the group X1 on the group X2 and a group
morphism ∂ : X2 → X1 with compatibility conditions (see Definition 2.1). It
was already a result of [Ban10] that the category M(X ) is only modular in
the case where it is equivalent to the representation category of the Drinfel’d
double. Due to Bruguières ([Bru00]) there is a modularization procedure,
that assigns to a premodular category with additional properties a unique
modular category. This modularization was carried out in [Mai09] respec-
tively in the resultant paper [MS11] for the representation category M(X )
of a finite crossed module X . The result was that the category gained from
the modularization of the category M(X ) is as well equivalent to the one
associated to the representation category of the Drinfel’d double D(G) of the
finite group G = Im ∂ = X2/ ker ∂. But in the modularization procedure
another finite group J plays an important role, in the sense that modulariza-
tion can be seen as the inverse of orbifolding with respect to the action of the
group J . Thus we have an action of the group J on D(G)-mod, and so the
question arises, whether this category can be seen as the neutral component
of a J-equivariant category. One of the main results of this thesis is the con-
struction of such an embedding of the categoriesM(X ) that arise from finite
crossed modules X with injective boundary map into an equivariant category.

The embedding of the representation category M(X ) into a J-equivariant
category is realized by using equivariant Dijkgraaf-Witten theory, which is
an equivariant extended 3d TFT. In order to define what a J-equivariant ex-
tended TFT is, we will, for a finite group J , consider the category CobJ(1, 2, 3)
of 1-2-3 cobordisms, where all the manifolds are additionally equipped with
a J-cover. On the other hand, a J-equivariant tensor category is an ordinary
tensor category C equipped with a J-grading C =

⊕
j∈J Cj and with a com-

patible categorical action of the group J , i.e. for each group element j ∈ J we
have a tensor functor φj ∈ Aut(C) with φg(Ch) ⊂ Cghg−1 as well as composi-
tors αi,j : φi ◦φj → φij for every pair of elements i, j ∈ J . Now in contrast to
ordinary modular categories, the braiding is modified by the group action,
and the same applies to the twist. Ordinary modular categories appear as a
special case of J-equivariant categories, when the group J is trivial.
As in the non-equivariant case, one expects a correspondence between ex-
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tended J-equivariant 3d TFTs and J-modular categories. One part of this
correspondence appeared in [Tur10a], where (d + 1)-dimensional homotopy
quantum field theories (HQFT’s) are introduced. The source category of
the HQFT has as objects d-dimensional manifolds M together with a con-
nected CW-space X and a map g : M → X and as morphisms suitable
cobordisms. It is further shown, how a J-equivariant category (there called
crossed J-category) produces a 3-dimensional HQFT where X = K(J, 1) is
an Eilenberg-MacLane space of J .
We are mainly involved with the other direction of the before mentioned
correspondence, i.e. from a certain J-equivariant extended 3d TFT, which
is an equivariant version of Dijkgraaf-Witten theory ([DW90]), we extract a
J-equivariant category CJ(G), and as a main result, show that this category
is J-modular. The category CJ(G) has as its neutral component the modu-
lar category gained from the modularization of the representation category
M(X ) of a finite crossed module X , with X2 = G, injective boundary map
and J = X1/G.

Another part of this thesis deals with the aspect of strictification of a cate-
gorical action of a group G on a G-equivariant tensor category C. As already
mentioned, such an action (φg)g∈G ∈ Aut(C) in particular contains the da-
tum of compositors αg,h : φg ◦ φh → φgh. It has been demonstrated by
Müger [Tur10a, App. 5] that one can replace C by an equivalent category
Cstr with a strict action of G, i.e. the compositors are given by the identity:
φstrg ◦ φstrh = φstrgh , and such that the equivalence C ∼= Cstr is even compatible
with the equivariant structure. Now, if one starts with the representation
category of a G-Hopf algebra A, it is natural to ask whether it is always pos-
sible to ’strictify’ the action on the Hopf algebra, i.e. to find another Hopf
algebra A′, which carries a strict group action such that A-mod is equivalent
as a J-equivariant category to A′-mod. We show that one can not always find
such a Hopf algebra A′. Yet we construct a weak Hopf algebra Astr, which
is G-equivariant with strict G action and for which Astr-mod ∼= A-mod as
G-equivariant categories.

Outline

This thesis is organized as follows:

Chapter I: We first give a short review of extended 1-2-3 extended TFTs
and modular categories. In the second section we define, for a finite group G,
a G-equivariant structure on tensor categories and a G-equivariant structure
on Hopf algebras (G-Hopf algebras) and show how the category of modules
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of a G-Hopf algebra can be equipped with the structure of a G-equivariant
tensor category with duality (Lemma 2.15). We further introduce the no-
tion of G-ribbon categories and G-ribbon algebras and show that G-ribbon
algebras yield G-ribbon categories as their representation categories (Propo-
sition 2.18). In order to define G-modularity (see Definition 2.22) we give
the definition of the orbifold category of a G-equivariant category (Definition
2.20). As a first original result we present the orbifold construction on the
level of algebras: We define the orbifold algebra of a G-equivariant algebra
and show that it corresponds to orbifolding of the representation category
(see Proposition 2.27).
Chapter II: This chapter is dedicated to an easy example of a modular cat-
egory and its generalization: We first recapitulate results about the Drinfel’d
double D(G) of a finite group G (see [BK01] for a textbook reference) and its
category of representations D(G)-mod. Furthermore we give a short intro-
duction to the categories of representationsM(X ) of a finite crossed module
X (see Definition 2.1) of which D(G)-mod is a special case. Summing up the
results from [Ban10] and [Mai09], we will show in Proposition 2.4 that the
modular category associated to a crossed module, the modularization of the
category M(X ), is again equivalent to the category of representations of a
Drinfel’d double.
Chapter III: We first give an introduction to Dijkgraaf-Witten theory as
an example for an extended 3d TFT. In section 2.4 we carry out calculations,
that evaluate the given extended 3d TFT on certain 1-,2- and 3-dimensional
manifolds, beyond the existing calculations in [Mor10, Section 4]. We show
that, evaluated on the circle, this particular extended 3d TFT yields the
representation category of the Drinfel’d double (see Proposition 2.16). We
then define an equivariant version of the Dijkgraaf-Witten theory. These are
essentially new results. The idea is to build a weak action on a group G by
another group J out of a group extension (see Definition 3.1) and then take
manifolds with J-twisted G-bundles as the source category. As mentioned
above, an equivariant Dijkgraaf-Witten theory gives rise to an equivariant
category CJ(G). In subsection 3.5 we implement some of the evaluations
of the TFT on the circle and on certain 2- and 3-manifolds to gather more
structure on the category CJ(G). In subsection 4.2 we introduce a Hopf
algebra, which we call equivariant Drinfel’d double, in order to show some
extra properties of CJ(G). Finally we use the orbifold construction on the
algebra (orbifold algebra, see Definition 2.24 and Proposition 2.27) to show
J-modularity of the category in Theorem 4.11.
Chapter IV: The fourth chapter contains two main results. As a first result,
we show that it is not always possible to strictify the action of a group on a
Hopf algebra within the category of Hopf algebras, i.e. to find a Hopf algebra
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A′ with A-mod ∼= A′-mod as equivariant categories (Theorem 2.2). Yet as
a second result, in Theorem 3.1 we show that this kind of strictification is
possible if we allow A′ to be a weak Hopf algebra. That is to say, the Hopf
algebra axioms of A′ are weakened in contrast to the group action on A′,
which is strict. For this purpose we generalize the notion of an equivariant
structure on a Hopf algebra to weak Hopf algebras (Definition 1.7). A sum-
mary of the different kinds of weakenings of a G-Hopf algebra can be found
in subsection 4.1.

To sum up, this thesis contains the following main results:

• We construct an equivariant braided category C out of an equivariant
extended 3d TFT from a normal group inclusion and show that this
category C can be endowed with the structure of a ribbon category such
that it is an equivariant modular category (Theorem 4.11 of Chapter
III).

• We show that the group action on an equivariant Hopf algebra can not
be strictified in the category of Hopf algebras (Theorem 2.2 of Chapter
IV).

• We show that a strictification is possible if we allow weak Hopf algebras
(see Theorem 3.1 of Chapter IV).

This thesis is based on the following publications:

[MS11] J. Maier and C. Schweigert. Modular categories from finite crossed
modules. J. Pure Appl. Algebra, 215(9):2196–2208, 2011.

[MNS12] J. Maier, T. Nikolaus, and C. Schweigert. Equivariant Modular Cat-
egories via Dijkgraaf-Witten Theory. Adv. Theor. Math. Phys.,
16(1):289–358, 2012

[MNS11] J. Maier, T. Nikolaus, and C. Schweigert. Strictification of weakly
equivariant Hopf algebras. accepted in Bull. Belg. Math. Soc., Arxiv
preprint arXiv:1109.0236, 2011.



Introduction ix

Acknowledgment

First of all I would like to express my gratitude to my advisor Christoph
Schweigert for his great support, his patience and his useful critiques on my
work during the last few years. Secondly I thank David Evans for giving me
the opportunity of an inspiring research stay of five months in Cardiff. I wish
to thank Peter Bantay for his kind hospitality during my stay in Budapest.
Special thanks to my co-author Thomas Nikolaus, who I very much enjoyed
working with. I also would like to thank all other members of our group, in
particular Alexander Barvels, for various interesting and helpful discussions.
Finally I want to thank my officemates Ole Vollertsen, Stephanie Ziegen-
hagen, Marco Freibert and Grace Kennedy for the nice working atmosphere.
This thesis is partially supported by the Research priority program SPP 1388
“Representation theory”.



x CONTENTS



Chapter I

Extended TFTs and
Equivariant Modular
Categories

1 Extended 3d TFTs and Modular Categories

This section is intended to give a brief overview of extended 3d topological
field theories and modular categories and how they are related. The defini-
tions and the detailed construction of a 3d TFT from a modular category
can be found in the books [Tur10b] and [BK01]. In contrast to them, we
will formulate the extended 3d TFT in the language of 2-categories and 2-
functors.

First we will recall the notion of an ordinary 3d TFT from [Ati88]. There
Atiyah gave a definition that describes a topological field theory as a sym-
metric monoidal functor from a geometric category to an algebraic category.
To make this definition explicit, let Cob(2, 3) be the category which has 2-
dimensional compact oriented smooth manifolds as objects. Its morphisms
M : Σ → Σ′ are given by (orientation preserving) diffeomorphism classes of
3-dimensional, compact oriented cobordism from Σ to Σ′ which we write as

Σ ↪→M ←↩ Σ′.

Composition of morphisms is given by gluing cobordisms together along the
boundary. The disjoint union of 2-dimensional manifolds and cobordisms
equips this category with the structure of a symmetric monoidal category.
For the algebraic category, we choose the symmetric tensor category VectK

of finite dimensional vector spaces over an algebraically closed field K of
characteristic zero.

1
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Definition 1.1 (Atiyah). A 3d TFT is a symmetric monoidal functor

Z : Cob(2, 3)→ VectK.

We now want to define an extended 3d TFT in a similar vein as a weak
2-functor from a certain geometric bicategory to an algebraic 2-category. For
a survey on bicategories and 2-categories we refer to [Lei98]. Note that the
source category will not be a 2-category but only a bicategory and therefore
we will have to consider weak 2-functors.
The target category possesses additional properties which can be summarized
by saying that the objects are 2-vector spaces and the morphisms are K-linear
functors in the sense of [KV94]. There exist different definitions of 2-vector
space and the ones we will work with are also called Kapranov Voevodski
2-vector spaces (or KV 2-vector spaces for short). But since there will be no
confusion, in the following we will only use the term 2-vector space.

Definition 1.2. 1. A 2-vector space (over a field K) is a K-linear, abelian,
finitely semi-simple category. Here finitely semi-simple means that the
category has finitely many isomorphism classes of simple objects and
each object is a finite direct sum of simple objects.

2. Morphisms between 2-vector spaces are K-linear functors and 2-morphisms
are natural transformations. We denote the 2-category of 2-vector
spaces by 2VectK.

The category of vector spaces is a symmetric tensor category, and corre-
spondingly, also in the category of 2-vector spaces, we have a tensor-product,
the Deligne tensor product, which is subject of the next definition (see also
[Del90, Sec. 5]).

Definition 1.3. Let C and D be abelian categories over a field K. Their
Deligne tensor product is a K-linear category C�D together with a K-linear
bifunctor � : C × D → C � D that is right exact in each variable such that
for every bifunctor F : C ×D → A that is right exact in each variable, there
is a unique right exact functor F̄ : C �D → A such that F̄ ◦� = F .

In the case of finitely semisimple abelian categories over K we can give
an equivalent description of the Deligne tensor product which was given in
[BK01].

Lemma 1.4. Let C and D be finitely semisimple abelian categories over k.
Define a category with

• objects: finite sums of the form
⊕

Xi � Yi with Xi ∈ C, Yi ∈ D.
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• morphisms:
Hom(

⊕
Xi � Yi,

⊕
X ′i � Y ′i ) =

⊕
i,j HomC(Xi, X

′
j)⊗ HomD(Yi, Y

′
j )

This category fulfills the universal property of the Deligne tensor product. In
particular the Deligne product of two finitely semisimple abelian categories is
again finitely semisimple and abelian.

The proof of this lemma is by checking the universal property.

Remark 1.5. The Deligne tensor product � endows 2VectK with the struc-
ture of a symmetric monoidal 2-category.

The definition and the properties of symmetric monoidal bicategories (resp.
2-categories) can be found in [SP09, Ch. 3].
In the spirit of Definition 1.1, we formalize the properties of the extended the-
ory Z by describing it as a monoidal 2-functor from a cobordism 2-category
to the algebraic category 2VectK. It remains to state the formal definition
of the relevant geometric category. Here, we ought to be a little bit more
careful, since we want to get a 2-category and hence cannot identify diffeo-
morphic 2-manifolds. For the definition of smooth manifolds with corners
that are equipped with collars, as well as precise statements on how to ad-
dress the difficulties in gluing these kinds of manifolds, we refer to [Mor06,
4.3]; here, we confine ourselves to the following short definition:

Definition 1.6. Cob(1, 2, 3) is the following symmetric monoidal bicategory:

• Objects are compact, closed, oriented 1-manifolds S.

• 1-Morphisms are 2-dimensional, compact, oriented collared cobordisms
S × I ↪→ Σ←↩ S ′ × I.

• 2-Morphisms are generated by diffeomorphisms of cobordisms fixing the
collar and 3-dimensional collared, oriented cobordisms with corners M ,
up to diffeomorphisms preserving the orientation and boundary.

• Composition is by gluing along collars.

• The monoidal structure is given by disjoint union with the empty set ∅
as the monoidal unit.

Remark 1.7. The 1-morphisms are defined as collared surfaces, since in the
case of extended cobordism categories, we consider surfaces rather than dif-
feomorphism classes of surfaces. A choice of collar is always possible, but not
unique. The collars ensure that the glued surface has a well-defined smooth
structure. Different choices for the collars yield equivalent 1-morphisms in
Cob(1, 2, 3).
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Obviously, extended cobordism categories can be defined in dimensions dif-
ferent from three as well. The definition of cobordism categories of arbitrary
dimension can for example be found in [Lur09, Example 1.2.11]. We are now
ready to give the definition of an extended TFT which goes essentially back
to Lawrence [Law93]:

Definition 1.8. An extended 3d TFT is a symmetric monoidal 2-functor

Z : Cob(1, 2, 3)→ 2VectK .

We pause to explain in which sense extended TFTs extend the TFTs defined
in definition 1.1. To this end, we note that the monoidal 2-functor Z has to
send the monoidal unit in Cob(1, 2, 3) to the monoidal unit in 2VectK. The
monoidal unit in Cob(1, 2, 3) is the empty set ∅, and the unit in 2VectK is the
category VectK of vector spaces over K. The functor Z restricts to a functor
Z|∅ from the endomorphisms of ∅ in Cob(1, 2, 3) to the endomorphisms of
VectK in 2VectK. The monoidal equivalence EndCob(1,2,3)

(
∅
) ∼= Cob(2, 3) fol-

lows directly from the definition of the two categories. Using the fact that the
morphisms in 2VectK are additive (which follows from K-linearity of functors
in the definition of 2-vector spaces), it is also easy to see that the equivalence
of monoidal categories End2VectK

(
VectK

) ∼= VectK holds: An additive functor
F : VectK → VectK is determined by what it assigns to the one-dimensional
vector space K. So let F,G : VectK → VectK be two K-linear functors and
set VF = F (K), VG = G(K). A linear map from K to K is given by a scalar
λ ∈ K and this gets sent to λidVF resp. λidVG by the K-linear functor F
resp. G. Since all linear maps commute with multiplication by a scalar λ, a
natural transformation η : F → G is a K-linear map from VF to VG. Hence
we have deduced:

Lemma 1.9. Let Z be an extended 3d TFT. Then Z|∅ is a 3d TFT in the
sense of definition 1.1.

At this point, the question arises whether a given (non-extended) 3d TFT can
be extended. In general, there is no reason for this to be true. For Dijkgraaf-
Witten theory, however, such an extension can be constructed based on ideas
which we will describe in Chapter III. A very conceptual presentation of this
construction based on important ideas of [Fre95] and [FQ93] can be found in
[Mor10].

If we unwrap the Definition 1.8, we find that in particular, an extended 3d
TFT Z assigns to the circle S1 a 2-vector space Z(S1). From the geometric
properties of the category Cob(1, 2, 3) one can deduce much more structure
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on the 2-vector space Z(S1) such as a tensor product and a braiding. In fact,
for the example of a TFT Z we will consider in Chapter III, the category
Z(S1) can be shown to be a modular category, which is object of the next
definitions.

Definition 1.10. 1. A strict ribbon category is a strict tensor category
C with

• duality, i.e. for every object X ∈ C there exists an object X∗ ∈ C
together with morphisms

bX : 1→ X ⊗X∗ and dX : X∗ ⊗X → 1

such that

(idX ⊗ dX)(bX ⊗ idX) = idX and (dX ⊗ idX∗)(idX∗ ⊗ bX) = idX∗

• a braiding: Let ⊗op : C×C → C denote the opposite tensor product
which switches the order of the factors X⊗op Y = Y ⊗X. Then a
braiding is a natural isomorphism c : ⊗ → ⊗op, that satisfies the
Hexagon Axiom, that is, if we denote by α the associators in C,
for all objects X, Y, Z ∈ C the diagrams

cX,Y⊗Z = (idX ⊗ cY,Z)(cX,Y ⊗ idZ)

cX⊗Y,Z = (cX,Y ⊗ idZ)(idX ⊗ cY,Z)

are required to commute.

• a twist, i.e a natural isomorphism θ : idC → idC that satisfies for
all objects X, Y ∈ C the relations

θX⊗Y = (θX ⊗ θY )cY,XcX,Y

θX∗ = (θX)∗

2. Let C and C ′ be two ribbon categories with braidings c and c′ and twists
θ and θ′. A ribbon functor from C to C ′ is a tensor functor (F, F2, F0)
that is braided, i.e the diagram

F (X ⊗ Y )
F2(X,Y ) //

F (cX,Y )

��

F (X)⊗ F (Y )

c′FX,FY
��

F (Y ⊗X)
F2(Y,X) // F (Y )⊗ F (X)

commutes and that preserves the twist, i.e F (θ) = θ′.
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Definition 1.11. 1. Let K be an algebraically closed field of characteris-
tic zero. A premodular tensor category over K is a K-linear, abelian,
finitely semisimple category C which has the structure of a ribbon cat-
egory such that the tensor product is linear in each variable and the
tensor unit is absolutely simple, i.e. End(1) = K.

2. Denote by ΛC a set of representatives for the isomorphism classes of
simple objects. The braiding on C allows to define the S-matrix with
entries in the field K

sX,Y := tr(RY,X ◦RX,Y ) (I.1)

where X, Y ∈ ΛC. A premodular category is called modular, if the
S-matrix is invertible.

2 Equivariant Modular Categories

Very much like ordinary modularity, G-modularity is a completeness require-
ment for the relevant tensor category that is suggested by principles of field
theory. Indeed, it ensures that one can construct a G-equivariant topological
field theory, see [Tur10a]. The definition of G-modularity is rather involved
and we will not state it here but refer to [Kir04, Definition 10.1]. In [Kir04]
it is also shown, that G-modularity of a category C is equivalent to ordinary
modularity of its orbifold category. We will use this as the definition of G-
modularity. In the second part of this section we will therefore introduce the
notion of the orbifold category of an equivariant category. Thereafter we will
give the definition of G-modularity (Definition 2.22). We are most interested
in categories that appear as module categories over Hopf algebras and will
hence give a corresponding G-equivariant structure on a Hopf algebra A, such
that the representation category A-mod inherits a G-equivariant structure.

2.1 Equivariant Ribbon Categories and Equivariant Rib-
bon Algebras

We next introduce equivariant categories.

Definition 2.1. Let G be a finite group and C a category.

1. A categorical action of the group G on the category C consists of the
following data:

– A functor φg : C → C for every group element g ∈ G.
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– A natural isomorphism αg,h : φg ◦ φh
∼→ φgh, called compositors,

for every pair of group elements g, h ∈ G

such that the coherence conditions

αgh,k ◦ αg,h = αg,hk ◦ φg(αh,k) and φ1 = id (I.2)

hold.

We use the notation gX := φg(X) for the image of an object X ∈ C
under the functor φg.

2. If C is a monoidal category, we only consider actions by monoidal func-
tors φg and require the natural transformations αg,h to be monoidal nat-
ural transformations. In particular, for each group element g ∈ G, we
have the additional datum of a natural isomorphism

γg(X, Y ) : gX ⊗ gY
∼→ g(X ⊗ Y )

for each pair of objects X, Y of C such that the following diagrams
commute:

g(h(X))⊗ g(h(Y ))

αg,h(X)⊗αg,h(Y )
��

gγh(X,Y )◦γg(hX,kY ) // g(h(X ⊗ Y ))

αg,h(X⊗Y )
��

ghX ⊗ ghY
γgh(X,Y )

// gh(X ⊗ Y )

(The data of a monoidal functor includes an isomorphism φg(1)→ 1 in
principal, but in the sequel, the isomorphism will always be the identity
and therefore we will suppress it in our discussion.)

3. A G-equivariant category C is a category with a grading C =
⊕

g∈G Cg
by the group G and a categorical action (φG, αg,h) of G, subject to the
compatibility requirement

φgCh ⊂ Cghg−1 .

4. A G-equivariant tensor category is a G-equivariant monoidal category
C, subject to the compatibility requirement that the tensor product of
two homogeneous elements X ∈ Cg, Y ∈ Ch is again homogeneous,
X ⊗ Y ∈ Cgh.
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Remark 2.2. We remark that the condition φ1 = id in (I.2) should in general
be replaced by an extra datum, an isomorphism η : id

∼→ φ1 and two coherence
conditions which involve the compositors αg,h. The diagrams can be derived as
follows: For any category C, consider the category AUT(C) whose objects are
automorphisms of C and whose morphisms are natural isomorphisms. The
composition of functors and natural transformations endow AUT(C) with the
natural structure of a strict tensor category. A categorical action of a finite
group G on a category C then amounts to a tensor functor φ : G→ AUT(C),
where G is seen as a tensor category with only identity morphisms. The
condition φ1 = id holds in the categories we are interested in, therefore we
restrict the definition to the equality φ1 = id.

Similarly, for a monoidal category C we consider the category AUTmon(C)
whose objects are monoidal automorphisms of C and whose morphisms are
monoidal natural automorphisms. The categorical actions we consider for
monoidal categories are then tensor functors φ : G→ AUTmon(C). For more
details on this description of the G-action we refer to [Tur10a, Appendix 5].

Definition 2.3. A braiding on a G-equivariant tensor category C =
⊕

g∈G Cg
is a family of isomorphisms for every pair of objects X ∈ Cg, Y ∈ C

cX,Y : X ⊗ Y → gY ⊗X

which are natural in X and Y .

Moreover, a braiding is required to satisfy an analogue of the hexagon axioms,
i.e. if we denote by α the associator of the tensor category C, we require for
g, h ∈ G, X ∈ Cg, Y ∈ Ch and Z ∈ C the following diagrams to commute:

(X ⊗ Y )⊗ Z

α

��

cX⊗Y,Z // ghZ ⊗ (X ⊗ Y ) α−1
// (ghZ ⊗X)⊗ Y

(αg,h⊗id)⊗id

))
(g(hZ)⊗X)⊗ Y

X ⊗ (Y ⊗ Z)
id⊗cY,Z // X ⊗ (hZ ⊗ Y ) α−1

// (X ⊗ hZ)⊗ Y
cX,Z⊗id

55

(I.3)
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X ⊗ (Y ⊗ Z)

α−1

��

cX,Y⊗Z // g(Y ⊗ Z)⊗X
γ−1
g ⊗id

// (gY ⊗ gZ)⊗X
α

))
gY ⊗ (gZ ⊗X)

(X ⊗ Y )⊗ Z
cX,Y ⊗id

// (gY ⊗X)⊗ Z α // gY ⊗ (X ⊗ Z)

id⊗cX,Z

55

(I.4)

and to be preserved under the action of G, i.e. the following diagram com-
mutes for all objects X, Y with X ∈ Ch and g, h ∈ G

g(X ⊗ Y )

γg

��

g(cX,Y )
// g(hY ⊗X)

γg // g(hY )⊗ gX

αgh(Y )⊗id

��
gX ⊗g Y cgX,gY

// ghg−1
(gY )⊗ gX

αghg−1,g(Y )⊗id
// ghY ⊗ gX

(I.5)

Remark 2.4. 1. Note that a braided G-equivariant category is not, in
general, a braided category. Its neutral component C1 with 1 ∈ G the
neutral element, is a braided tensor category.

2. By replacing the underlying category by an equivalent category, one can
replace a weak action by a strict action, compare [Tur10a, Appendix 5].
We still gave the definition of a weak action of a group on a category,
since In our case, weak actions actually lead to simpler algebraic struc-
tures.

Definition 2.5. 1. A G-equivariant ribbon category is a G-braided cate-
gory with dualities and a family of isomorphisms θX : X → gX for all
g ∈ G,X ∈ Cg, such that θ is compatible with duality, braiding and the
action of G

i.e the following diagrams are required to commute for X ∈ Cg and
Y ∈ Ch:

gX∨
(θX)∨ //

θgX∨

��

X∨

g−1
(gX∨)

αg−1,g

<< (I.6)
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X ⊗ Y θX⊗Y //

θX⊗θY
��

gh(X ⊗ Y )

gX ⊗h Y

cgX,hY ''

ghg−1
(gX)⊗gh Y

γgh◦(αghi−1,i⊗id)

OO

g(hY )⊗ gX
αg,h⊗id

// ghY ⊗ gX

cghY,gX

66

(I.7)

hX
hθX //

θhX
��

h(gX)

αh,g
��

hgh−1
(hX) αhgh−1,h

// hgX

(I.8)

2. A G-premodular category is a K-linear, abelian, finitely semi-simple G-
equivariant ribbon category such that the tensor product is a K-bilinear
functor and the tensor unit is absolutely simple.

Remark 2.6. The following facts directly follow from the definition of a
G-equivariant ribbon category:

1. The neutral component C1 is itself a ribbon category. In particular, it
contains the tensor unit of the G-equivariant tensor category.

2. The dual object of an object X ∈ Cg is in the category Cg−1.

We now turn to equivariant structures on algebras.

Definition 2.7. Let A be an (associative, unital) algebra over a field K.
A weak G-action on A consists of algebra automorphisms ϕg ∈ Aut(A) for
every element g ∈ G, and invertible elements cg,h ∈ A for every pair of
elements g, h ∈ G, such that for all g, h, k ∈ G the following conditions hold:

ϕg ◦ϕh = Inncg,h ◦ϕgh ϕg(ch,k) · cg,hk = cg,h · cgh,k and c1,1 = 1 (I.9)

Here Innx with x an invertible element of A denotes the algebra automorphism
a 7→ xax−1. A weak action of a group G is called strict, if cg,h = 1 for all
pairs g, h ∈ G.
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Remark 2.8. A weak action on a K-algebra A can be seen as a categori-
cal action in the sense of 2.1 on the category which has one object and the
elements of A as endomorphisms.

Remark 2.9. Note that our notion of a weak action (ϕg, cg,h) of a group
G on an algebra A corresponds to a weak action in the sense of [BCM86]
together with the normal cocycle

σ : K[G]×K[G]→ A×

(g, h) 7→ cg,h

that fulfills the cocycle and the twisted module condition of [BCM86].

We now want to relate a weak action (ϕg, cg,h) of a group G on an algebra A
to a categorical action on the representation category A-mod. To this end,
we define for each element g ∈ G a functor on objects by

g(M,ρ) := (M,ρ ◦ (ϕg−1 ⊗ idM)) (I.10)

and on morphisms by gf = f . For the natural isomorphisms, we define

αg,h(M,ρ) := ρ
(
(ch−1,g−1)−1 ⊗ idM

)
. (I.11)

The inversions in the above formulas make sure that the action on the level
of categories really becomes a left action.

Lemma 2.10. Given a weak action (ϕg, cg,h) of G on a K-algebra A, these
data define a categorical action on the category A-mod by the formulas I.10
and I.11.

Proof. It is sufficient to show that the maps αg,h defined in (I.11) are com-
positors in the sense of Definition 2.1. Let V be an A-module. We first show
that αg,h is a morphism g(hV ) → ghV in A-mod: Let V ∈ A-mod, then for
every v ∈ V, a ∈ A, we have:

αg,h(V ) ◦ ρg(hV )(a⊗ v) = (ch−1,g−1)−1ϕh−1 ◦ ϕg−1(a).v

= ϕ(gh)−1(a)(ch−1,g−1)−1.v

= ρ(ghV ) ◦ (idA ⊗ αg,h(V ))(a⊗ v),

where we used the abbreviation a.v := ρ(a⊗v). The naturality of αg,h follows
from the fact that morphisms in A-mod commute with the action of A. The
validity of the coherence condition (I.2) for the αg,h follows from the second
equation in (I.9), since the right side of (I.2) evaluated on an element v ∈ V
reads

αg,hk ◦ φg(αh,k)(v) = (c(hk)−1,g−1)−1(ck−1,h−1)−1.v
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and the left one is:

αgh,k ◦ αg,h(v) = (ck−1,(gh)−1)−1ϕk−1(ch−1,g−1)−1.v

It is known that the category of representations A-mod of a Hopf algebra
A can be endowed with the structure of a tensor category with duality. In
order to provide a weak action by tensor functors and tensor transformations
on A-mod, the G-action on A needs to fulfill additional conditions, that are
subject of the next definition.

Definition 2.11. A weak G-action on a Hopf algebra A is a weak G-action
((ϕg)g∈G, (cg,h)g,h∈G) on the underlying algebra which in addition satisfies the
following properties:

• G acts by automorphisms of Hopf algebras.

• The elements (cg,h)g,h∈G are group-like, i.e ∆(cg,h) = cg,h ⊗ cg,h.

Lemma 2.12. Given a weak action of G on a Hopf algebra A, the induced
action on the tensor category A-mod of A-modules is by strict tensor functors
and tensor transformations.

Proof. It is straightforward to verify that Hopf algebra automorphisms in-
duce strict tensor functors on the category of modules and that action by
group-like elements induce tensor natural transformations.

We next turn to an algebraic structure that yields G-equivariant tensor cat-
egories.

Definition 2.13. A G-Hopf algebra over K is a Hopf algebra A with a weak
G-action ((ϕg)g∈G, (cg,h)g,h∈G) and a G-grading A =

⊕
g∈GAg such that:

• The algebra structure of A restricts to the structure of an associative
algebra on each homogeneous component so that A is the direct sum of
the components Ag as an algebra.

• The action of G is compatible with the grading, i.e. ϕg(Ah) ⊂ Aghg−1.

• The coproduct ∆ : A→ A⊗ A respects the grading, i.e.

∆(Ag) ⊂
⊕

p,q∈G,pq=g

Ap ⊗ Aq .
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Remark 2.14. 1. For the counit ε and the antipode S of a G-Hopf alge-
bra, the compatibility relations with the grading ε(Ag) = 0 for g 6= 1
and S(Ag) ⊂ Ag−1 are immediate consequences of the definitions.

2. For the unit 1 of a G-Hopf algebra, it follows directly from the definition
that 1 =

∑
h∈G 1h, where each 1h is a unit for the algebra Ah.

3. The restrictions of the structure maps endow the homogeneous compo-
nent A1 of A with the structure of a Hopf algebra with a weak G-action.

4. G-Hopf algebras with strict G-action have been considered under the
name “G-crossed Hopf coalgebra” in [Tur10a, Chapter VII.1.2].

The category A-mod of finite-dimensional modules over a G-Hopf algebra
inherits a natural duality from the duality of the underlying category of K-
vector spaces. From Lemma 2.12 we know that the weak action described
in Lemma 2.10 is even a monoidal action, since G acts by Hopf algebra
morphisms. Furthermore A-mod can be endowed with a grading by taking
(A-mod)g = Ag-mod as the g-homogeneous component. From the properties
of a G-Hopf algebra one can finally deduce that the tensor product, duality
and grading are compatible with the G-action. We have thus arrived at the
following statement:

Lemma 2.15. The category of representations of a G-Hopf algebra has a
natural structure of a K-linear, abelian G-equivariant tensor category with
compatible duality.

Proof. We show that the grading and the action on A-mod are compatible.
Let V ∈ Ah-mod, then the h-component 1h of the unit in A acts as the
identity on V . We have to check, that gV ∈ Aghg−1-mod, i.e that 1ghg−1 acts
as the identity on gV . For v ∈ gV , we have:

ρg(1ghg−1 ⊗ v) = ϕg−1(1ghg−1).v = 1h.v = v

This shows gV ∈ Aghg−1-mod.

The representation category of an ordinary quasi-triangular Hopf algebra is a
braided tensor category. If the Hopf algebra has, moreover, a twist element,
its representation category is even a ribbon category. We now present G-
equivariant generalizations of these structures.

Definition 2.16. Let A be a G-Hopf algebra.
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1. A G-equivariant R-matrix is an invertible element R = R(1) ⊗ R(2) ∈
A⊗ A such that for V ∈ (A-mod)g, W ∈ A-mod, the map

cV,W : V ⊗W → gW ⊗ V
v ⊗ w 7→ R(2).w ⊗R(1).v

is a G-braiding on the category A-mod according to definition 2.3.

2. A G-twist is an invertible element θ ∈ A such that for every object
V ∈ (A-mod)g the induced map

θV :V →i V

v 7→ θ−1.v

is a G-twist on A-mod as defined in 2.5.

If A has an R-matrix and a twist, we call it a G-ribbon-algebra.

Remark 2.17. • The structure of a G-ribbon algebra is not, in general,
the structure of a ribbon Hopf algebra.

• The component A1 with the obvious restrictions of R and θ is a ribbon
algebra.

• The conditions that the category A-mod is braided resp. ribbon can be
translated into algebraic conditions on the elements R and θ. Since we
are mainly interested in the categorical structure we refrain from giving
the definition in terms of algebraic conditions on the elements R and
θ.

Now we have introduced all the algebraic structure we need to state the
following proposition.

Proposition 2.18. The representation category of a G-ribbon algebra is a
G-ribbon category.

Remark 2.19. In [Tur10a], Hopf algebras and ribbon Hopf algebras with
strict G-action have been considered under the name ribbon Hopf G-coalgebras.
In Chapter III we will give an illustrative example where the natural action
is not strict.
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2.2 Orbifold Category and Orbifold Algebra

In this section we recall the notion of an orbifold category from [Kir04] and
then give, in the manner of the last section, an orbifold construction also on
the level of algebras, called the orbifold algebra. We show that for A-mod the
category of representations of a G-equivariant algebra A, the orbifold cate-
gory is equivalent to the category of representations of the orbifold algebra.

Definition 2.20. Let C =
⊕

g∈G Cg be a G-equivariant category with G-

action (φg, cg,h). The orbifold category CG of C has:

• as objects pairs (X, (ψg)g∈G) consisting of an object X ∈ C and a family
of isomorphisms ψg : gX → X with g ∈ G such that

ψg ◦ gψh = ψgh ◦ αg,h.

• as morphisms f : (X,ψXg ) → (Y, ψYh ) those morphisms f : X → Y in
C for which

ψYg ◦ g(f) = f ◦ ψXg

holds for all g ∈ G.

In [Kir04], it has been shown that the orbifold category of a G-ribbon cate-
gory is an ordinary, non-equivariant ribbon category:

Proposition 2.21. 1. Let C be a G-ribbon category. Then the orbifold
category CG is naturally endowed with the structure of a ribbon category
by the following data:

• The tensor product of the objects (X, (ψXg )) and (Y, (ψYg )) is de-
fined as the object (X ⊗ Y, (ψXg ⊗ ψYg )).

• The tensor unit for this tensor product is 1 = (1, (id))

• The dual object of (X, (ψg)) is the object (X∗, (ψ∗g)
−1), where X∗

denotes the dual object in C.

• The braiding of the two objects (X, (ψXg )) and (Y, (ψYg )) with X ∈
Cg is given by the isomorphism (ψg ⊗ idX) ◦ cX,Y , where cX,Y :
X ⊗ Y → gY ⊗X is the G-braiding in C.

• The twist on an object (X, (ψg)) is ψg ◦ θ, where θ : X → gX is
the twist in C.

2. If C is a G-premodular category, then the orbifold category CG is even
a premodular category.
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We will now give a definition ofG-modularity in terms of the orbifold category
(see [Kir04] for more on G-modularity).

Definition 2.22. A G-premodular category C is G-modular if its orbifold
category CG is modular.

We have the following functors between a G-equivariant category C and its
orbifold category CG:

F : C → CG

X 7→ (
⊕
h

hX,ψg)

where ψg :
⊕

h
hX →

⊕
h
g(hX) →

⊕
h
ghX is the permutation of the sum-

mands.

F ′ : CG → C
(X, (ψg)) 7→ X

These functors are adjoint to each other:

HomC(F (X, (ψg)), Y ) ∼= HomCG((X, (ψg)), F
′(Y ))

In [Kir04] the following proposition is proven:

Proposition 2.23. Let C be a G-equivariant fusion category and let A =
F (1) ∈ CG . Then A has a natural structure of a commutative algebra in CG
with an action of G and the category of A-modules is naturally equivalent to
the category C.

Moreover, the algebra A = F (1) is isomorphic to K(G), the algebra of func-
tions on G.
Thus, we have another natural functor from the category CG to C: induction
on the algebra K(G):

Ind : CG → C
X 7→ (K(G)⊗X,m⊗ id)

In the case where the G-equivariant category turns up as the representation
category of a G-equivariant Hopf algebra, it is even possible to describe the
process of orbifolding on the level of (Hopf-)algebras. Given a G-equivariant

algebra A, we introduce an orbifold algebra ÂG such that its representation
category ÂG-mod is isomorphic to the orbifold category of A-mod.
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Definition 2.24. Let A be an algebra with a weak G-action (ϕg, cg,h). We

endow the vector space ÂG := A⊗K[G] with a unital associative multiplication
which is defined on two elements of the form (a ⊗ g), (b ⊗ h) with a, b ∈ A
and g, h ∈ G by

(a⊗ g)(b⊗ h) := (aϕg(b)cg,h ⊗ gh) .

and unit
1 = (1A ⊗ 1)

This algebra is called the orbifold algebra ÂG of the G-equivariant algebra A
with respect to the weak G-action.

If A is even a G-Hopf algebra, it is possible to also endow the orbifold algebra
with more structure. In order to define the coalgebra structure on the orbifold
algebra, we use the standard coalgebra structure on the group algebra K[G]
with coproduct ∆G(g) = g ⊗ g and counit εG(g) = 1 on the canonical basis

(g)g∈G and we define the coalgebra structure on ÂG as the tensor product
of the two coalgebras. Explicitly, the coproduct and the counit take the
following values on an element of the form (a ⊗ g), (b ⊗ h) with a ∈ A and
g ∈ G The tensor product coalgebra on A ⊗ K[G] has the coproduct and
counit

∆(a⊗g) = (idA⊗τ⊗idK[G])(∆A(a)⊗g⊗g), and ε(a⊗g) = εA(a) (I.12)

which is clearly coassociative and counital.
To show that this endows the orbifold algebra with the structure of a bialge-
bra, we first have to show that the coproduct ∆ is a unital algebra morphism.
This follows from the fact, that ∆A is already an algebra morphism and that
the action of G is by coalgebra morphisms. Next, we have to show that the
counit ε is a unital algebra morphism as well. This follows from the fact
that the action of G commutes with the counit and from the fact that the
elements cg,h are group-like. The compatibility of the counit ε with the unit
is obvious.
In a final step, one verifies that the endomorphism

S(a⊗ g) = (cg−1,g)
−1ϕg−1(SA(a))⊗ g−1 (I.13)

is an antipode. Altogether, one arrives at

Proposition 2.25. If A is a G-Hopf-algebra, then the maps ∆, ε and S given
in I.12 and I.13 equip the orbifold algebra ÂG with the structure of a Hopf
algebra.
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Remark 2.26. 1. The algebra ÂG is not the fixed point subalgebra AG of
A; in general, the categories AG-mod and ÂG-mod are inequivalent.

2. If the action of G on the algebra A is strict, then the algebra A is
a module algebra over the Hopf algebra K[G] (i.e. an algebra in the
tensor category K[G]-mod). In that case the orbifold algebra is the
smash product A#K[G] (see [Mon93, Section 4] for the definitions).

The next proposition justifies the name “orbifold algebra” for ÂG:

Proposition 2.27. Let A be a G-Hopf algebra. Then there is an equivalence
of tensor categories

(A-mod)G ∼= ÂG-mod .

Proof. We first want to find an equivalence F : (A-mod)G → ÂG-mod

• An object of (A-mod)G consists of a K-vector space M , an A-action
ρ : A → End(M) and a family of A-module morphisms (ψg)g∈G. We

define on the same K-vector space M the structure of an ÂG module
by defining ρ̃(a⊗ g) := ρ(a) ◦ (ψg−1)−1.

One next checks that, given two objects (M,ρ, ψ) and (M ′, ρ′, ψ′) in
(A-mod)G, a K-linear map f ∈ HomK(M,M ′) is in the subspace
Hom(A-mod)J (M,M ′) if and only if it is in the subspace
HomÂG-mod(M, ρ̃), (M ′, ρ̃′)).

We can thus consider a K-linear functor

F : (A-mod)G → ÂG-mod (I.14)

which maps on objects by (M,ρ, ψ) 7→ (M, ρ̃) and on morphisms as the
identity. This functor is clearly fully faithful.

To show that the functor is also essentially surjective, we note that for
any object (M, ρ̃) in ÂG-mod, an object in (A-mod)G can be obtained
as follows: on the underlying vector space, we have the structure of an
A-module by restriction, ρ(a) := ρ̃(a ⊗ 1G). A family of equivariant
morphisms is given by ψg := (ρ̃(1⊗ g−1))−1. Clearly its image under F
is isomorphic to (M, ρ̃). This shows that the functor F is an equivalence
of categories, indeed even an isomorphism of categories.

• The functor F is also a strict tensor functor: consider two objects
F (M,ρ, ψ) and F (M ′, ρ′, ψ′) in (A-mod)G. The functor F yields the

following action of the orbifold Hopf algebra ÂG on the K-vector space
M ⊗K M

′:

ρ̃M⊗M ′(a⊗ g) = ρ⊗ ρ′(∆(a)) ◦ ((ψg−1)−1 ⊗ (ψ′g−1)−1) .
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Since the coproduct on ÂG was just given by the tensor product of
coproducts on A and K[G], this coincides with the tensor product of

F (M,ρ, ψ) and F (M ′, ρ′, ψ′) in ÂG-mod.

In a final step, we assume that the G-equivariant algebra A has the additional
structure of a G-ribbon algebra. Then, by proposition 2.18, the category
A-mod is a G-ribbon category and by proposition 2.21 the orbifold category
(A-mod)G is a ribbon category. The strict isomorphism (I.14) of tensor cat-
egories allows us to transport both the braiding and the ribbon structure to
the representation category of the orbifold Hopf algebra ÂG. General results
[Kas95, Prop. 16.6.2] assert that this amounts to a natural structure of a

ribbon algebra on ÂG. In fact, we directly read off the R-matrix and the
ribbon element. For example, the R-matrix R̂ of ÂG equals

R̂ = τ̂ cÂG,ÂG(1ÂG ⊗ 1ÂG) ∈ ÂG ⊗ ÂG ,

where the linear map τ̂ flips the two components of the tensor product ÂG⊗
ÂG. This expression can be explicitly evaluated, using the fact that A⊗K[G]
is an object in (A-mod)G with A-module structure given by left action on the
first component and that the morphisms ψg are given by left multiplication

on the second component. We find for the R-matrix of ÂG

R̂ =
∑
g,h∈G

(id⊗ ψh)(ρ⊗ ρ)(Rgh)((1A ⊗ 1J)⊗ 1A ⊗ 1G)

=
∑
g,h∈G

((Rg,h)1 ⊗ 1G)⊗ ((Rg,h)2 ⊗ g)

where R is the R-matrix of A. The twist element of ÂG can be computed
similarly; one finds

θ−1 =
∑
g∈G

ψg ◦ ρ(θg)(1Ag ⊗ 1G) =
∑
g∈G

(1A ⊗ g−1)−1(θg ⊗ 1G)

We summarize our findings:

Corollary 2.28. If A is a G-ribbon algebra, then the orbifold algebra ÂG

inherits a natural structure of a ribbon algebra such that the equivalence of
tensor categories in Proposition 2.27 is an equivalence of ribbon categories.
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Chapter II

Drinfel’d Double and
Generalization

1 Drinfel’d Double of a Finite Group

In the following, let K be an algebraically closed field of characteristic zero
and let G be a finite group. The Drinfel’d double D(G) of G is a finite
dimensional Hopf algebra over K which is a special case of the quantum
double construction [Dri87] with the Hopf algebra being the group algebra
K[G] ofG. The representation category of the Drinfel’d doubleD(G) provides
a simple example of a modular tensor category.

The Hopf-algebra D(G) is defined as follows: As a vector space, D(G) is
the tensor product K(G) ⊗ K[G] of the algebra of functions on G and the
group algebra of G, i.e. D(G) has the canonical basis (δg ⊗ h)g,h∈G. The
algebra structure can be described as the smash product of the algebras
K(G) and K[G] (see [Mon93]), an analogue of the semi-direct product for
groups, whereas the coalgebra structure is just the tensor product of the two
coalgebras. For two elements g, h ∈ G let δ(g, h) take the value 1 if g = h
and 0 otherwise. In the canonical basis, we have:

• product:

(δh ⊗ g)(δh′ ⊗ g′) = δ(h, gh′g−1)(δg ⊗ gg′)

• unit: ∑
g∈G

δg ⊗ 1

21
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• coproduct:

∆(δh ⊗ g) =
∑
kl=h

(δk ⊗ g)⊗ (δl ⊗ g)

• counit:

ε(δh ⊗ g) = δ(h, 1)

It can easily be checked that this defines a bialgebra structure on K(G)⊗K[G]
and that furthermore the linear map

S : (δh ⊗ g) 7→ (δg−1h−1g ⊗ g−1)

is an antipode for this bialgebra so that D(G) is a Hopf algebra. Furthermore,
the element

R :=
∑
g,h∈G

(δg ⊗ 1)⊗ (δh ⊗ g) ∈ D(G)⊗D(G)

is a universal R-matrix, which fulfills the defining identities of a braided
bialgebra. At last, the element

θ :=
∑
g∈G

(δg ⊗ g−1) ∈ D(G)

is a ribbon-element in D(G), which gives D(G) the structure of a ribbon
algebra (as defined in [Kas95, Def. XIV.6.1]).
The category D(G)-mod is actually endowed with more structure than the
one of a braided monoidal category. Since D(G) is a ribbon Hopf-algebra,
the category of representations D(G)-mod has also dualities and a compati-
ble twist, i.e. has the structure of a ribbon category (see [Kas95, Proposition
XIV.6.2] or [BK01, Def. 2.2.1] for the notion of a ribbon category). Moreover,
the category D(G)-mod is a 2-vector space over K in the sense of Definition
1.2 and thus, in particular, finitely semi-simple.
We will give a short description of the category D(G)-mod:

• An object of D(G)-mod is a vector space V with a G-grading

V =
⊕
h∈G

Vh
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and a group action by the group G, denoted by

ρg : V → V

v 7→ g.v

subject to the compatibility condition

ρgVh = Vghg−1

.

• The tensor product of two objects (V =
⊕

h∈G Vh, ρ
V (g)g∈G)

and (W =
⊕

h∈GWh, ρ
W (g)g∈G) is the vector space V ⊗W with grading

(V ⊗W )h =
⊕
kl=h

Vk ⊗ Vl

and the G-action is the tensor product ρV (g)⊗ρW (g) of the G-actions.

• The duality is inherited from the category of vector spaces, i.e. for an
object (V =

⊕
h∈G Vh, ρ

V (g)g∈G the dual object is the dual vector space
V ∗ with grading

(V ∗)h = V ∗h−1

and the action of a group element g ∈ G on a linear functional ϕ ∈ V ∗
evaluated on a vector v ∈ V is

ρgϕ (v) := ϕ(g−1.v)

• The braiding is for v ∈ Vh, w ∈ W given by

v ⊗ w 7→ h.w ⊗ v.

• The twist on a vector v ∈ Vh is

v → h−1.v

The ribbon structure of the category can directly be deduced from the ribbon
structure of the algebra D(G) (see for example [Kas95] proof of Proposition
XIV.6.2 for a reference).
Another way to look at the module category of D(G)-mod is to consider
it as the representation category of the action groupoid G//G, where the
set of objects is G and G acts by conjugation on itself, i.e. the functor
category [G//G,Vect]. We can then exploit the character theory for action
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groupoids from section 6.2 to calculate the S matrix. Denote by I the set
of isomorphism classes of simple objects of D(G)-mod ∼= [G//G,Vect]. For
i ∈ I let χi be the character of the representative of the simple object i (see
Definition 6.4 of Chapter III). Then for i, j ∈ I the (i, j)-th entry of the
S-matrix is:

Si,j =
1

|G|
∑

g∈G,m∈M

χi(m, g)χj(g,m).

Lemma 1.1. The S-matrix of D(G)-mod is invertible with S2 = 1

Proof. The proof is an application of the orthogonality relations (III.37) and
(III.39) for the characters of the action groupoid G//G.

Proposition 1.2. The category D(G)-mod is modular.

2 Modular Categories from Finite Crossed

Modules

We summarize the results from [Ban10] and [Mai09]. In [Ban10], Bantay
introduced a category of representations for any crossed module and showed
that this category is always premodular (cf Definition 1.11).
We start by stating the definition of a crossed module:

Definition 2.1. A finite crossed module X = (X1,X2, µ, ∂) consists of two
finite groups X1 and X2, together with an action µ of X1 on X2 by group au-
tomorphisms, written as µ(m, g) = g.m, and a group homomorphism, called
the boundary map, ∂ : X2 → X1 that satisfies

∂(g.m) = g(∂m)g−1 and (∂n).m = nmn−1 for all m,n ∈ X2 and g ∈ X1.

The representation category of a crossed module X is isomorphic to the
module category of a Hopf algebra B(X ), which is K(X1)⊗K(X2) as a vector
space and has the following structure on the canonical basis (δm⊗g)m∈X2,g∈X1

• product:

(δm ⊗ g)(δm′ ⊗ g′) = δ(m, g.m)(δm ⊗ gg′)

• unit: ∑
m∈X2

δm ⊗ 1
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• coproduct:

∆(δm ⊗ g) =
∑
kl=m

(δk ⊗ g)⊗ (δl ⊗ g)

• counit:

ε(δm ⊗ g) = δ(m, 1)

• antipode

S : (δm ⊗ g) 7→ (δg−1.m−1 ⊗ g−1)

Using the boundary map ∂ of X , it is even possible to endow the Hopf algebra
B(X ) with a universal R-matrix and a ribbon-element, giving it the structure
of a ribbon-algebra:
The R-matrix is

R :=
∑

m,n∈X2

(δm ⊗ 1)⊗ (δn ⊗ ∂m) ∈ B(X )⊗ B(X )

and the twist is

θ :=
∑
m∈X2

(δm ⊗ ∂m−1) ∈ B(X ).

Comparison with the structure maps of the Drinfel’d double shows that in
the special case of a crossed module X = (G,G, adG, id), where both of the
groups are equal to a finite group G, action of the group G on itself is by
conjugation adG(g, h) = ghg−1 and the boundary map is the identity, the
algebra B(X ) defined above is equal to the Drinfel’d double D(G) of the
group G. The category M(X ) = B(X )-mod associated to a crossed module
X = (X1,X2, µ, δ) is known to be modular, if and only if the boundary map ∂
is an isomorphism [Nai10, Proposition 5.6]. In this case, the categoryM(X )
is equivalent to the representation category of the Drinfel’d double of a finite
group.
For a detailed discussion of the premodular tensor categoryM(X ), including
its character theory, we refer to [Ban10].

Bruguières [Bru00] (see also [Müg00]) has introduced the notion of modular-
ization that associates to any premodular tensor category (obeying certain
conditions) a modular tensor category. The modularization includes in par-
ticular a structure preserving functor that is dominant, which is a weaker
form of essentially surjective:
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Definition 2.2. A functor F : C → C ′ is called dominant, if for every
Y ∈ C ′ there exists an object X ∈ C and morphisms ι : Y → F (X) and
π : F (X)→ Y such that π ◦ ι = idY .

The definition of a ribbon functor was given in 1.10 2.; now we are ready to
recap the definition of a modularization:

Definition 2.3. A modularization of a premodular category C is a dominant
ribbon functor F : C → C ′ with C ′ a modular tensor category. A premodular
category is called modularizable, if it admits a modularization.

The modular category associated to the modularization is unique up to equiv-
alence of braided tensor categories. The representation category M(X ) of a
finite crossed module X obeys the conditions [Ban10] for being modulariz-
able. We state this in the following proposition:

Proposition 2.4. The categoryM(X ) of representations of a crossed module
X is modularizable.

Now the question arises whether modularization of the premodular category
M(X ) provides a source of new modular categories. A first main result
of [Mai09] was a negative answer to this question, which is the following
proposition:

Proposition 2.5. The modularization yields a modular tensor category equiv-
alent to the category for the Drinfel’d double of X2/ker ∂ ∼= Im ∂.

Bruguières gave an explicit modularization procedure. We will give a short
summary here. A certain subcategory of the premodular category, the sym-
metric center, is crucial in the construction of the modularization. It is
subject of the next definition.

Definition 2.6. Let C be a premodular category with braiding c : ⊗ → ⊗op.
The symmetric center of C is the full subcategory Z(C) ⊂ C of object X ∈ C
for which cX,Y = c−1

Y,X holds for all Y ∈ C.

The obstruction for a premodular category C to be modular is reflected by the
fact that its symmetric center Z(C) is not trivial. However, if C is modulariz-
able, the category Z(C) is a Tannakian category, and thus equivalent to the
representation category of a finite group. In [Mai09] it was shown that the
group corresponding to the Tannakian subcategory Z(C) is the semi-direct
product

G(X ) := (ker ∂)∗oµ̂(coker ∂) (II.1)
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Here (ker ∂)∗ is the group of characters of the finite abelian group ker ∂.
The action µ of X1 on X2 restricts to an action of X1 on ker ∂ ⊂ X2 which
factorizes to an action of coker ∂ on ker ∂. Furthermore we define on (ker ∂)∗

an action µ̂ of coker ∂ on the elements g ∈ coker ∂, χ ∈ (ker ∂)∗, x ∈ ker ∂ by
µ̂(g, χ)(x) := χ(g−1x).
The algebra of functions on G(X ) then provides a commutative special sym-
metric Frobenius algebra in the premodular tensor category M(X ). The
category of left modules over this algebra can be shown to be a modular ten-
sor category and the modularization is the induction-functor on the algebra
of functions on G(X ).
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Chapter III

Equivariant Modular
Categories via
Dijkgraaf-Witten Theory

In this chapter we will give an explicit construction of equivariant modular
categories from equivariant Dijkgraaf-Witten Theory. This can also be seen
as a continuation of the last chapter, since the (equivariant) modular cate-
gories we discover can be seen as an equivariant extension of the premodular
categoryM(X ) and its modularization (for crossed modules X with injective
boundary map), as illustrated in diagram III.1.

1 Introduction

This chapter has two seemingly different motivations and, correspondingly,
can be read from two different points of view, a more algebraic and a more
geometric one. Both in the introduction and the main body of the chapter,
we try to separate these two points of view as much as possible, in the hope
to keep this chapter accessible for readers with specific interests.

1.1 Algebraic Motivation: Equivariant Modular Cate-
gories

Among tensor categories, modular tensor categories are of particular interest
for representation theory and mathematical physics. The representation cat-
egories of several algebraic structures give examples of semisimple modular
tensor categories:

29
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1. Left modules over connected factorizable ribbon weak Hopf algebras
with Haar integral over an algebraically closed field [NTV03].

2. Local sectors of a finite µ-index net of von Neumann algebras on R, if
the net is strongly additive and split [KLM01].

3. Representations of selfdual C2-cofinite vertex algebras with an addi-
tional finiteness condition on the homogeneous components and which
have semisimple representation categories [Hua05].

Despite this list and the rather different fields in which modular tensor cat-
egories arise, it is fair to say that modular tensor categories are rare math-
ematical objects. Arguably, the simplest incarnation of the first algebraic
structure in the list is the Drinfel’d double D(G) of a finite group G intro-
duced in Section 1 of Chapter II. Bantay [Ban10] has suggested finite crossed
modules as a more general source for modular tensor categories (see also
Section 2 of Chapter I): In this chapter we will only deal with finite crossed
modules with an injective boundary map, i.e. we consider a pair, consist-
ing of a finite group H and a normal subgroup G / H. Bantay constructs
a ribbon category which is, in a natural way, a representation category of a
ribbon Hopf algebra B(G/H). Unfortunately, it turns out that, for a proper
subgroup inclusion, the category B(G / H)-mod is only premodular and not
modular.
Still, the category B(G/H)-mod is modularizable in the sense of Bruguières
[Bru00], and the next candidate for new modular tensor categories is the
modularization of B(G / H)-mod. However, it has been shown [MS11] that
this modularization is equivalent to the representation category of the Drin-
fel’d double D(G).
The modularization procedure of Bruguières is based on the observation that
the violation of modularity of a modularizable tensor category C is captured
in terms of a canonical Tannakian subcategory of C. For the category B(G/
H)-mod, this subcategory can be realized as the representation category of
the the quotient group J := H/G [MS11] (cf. line II.1 ). The modularization
functor

B(G / H)-mod→ D(G)-mod

is induction along the commutative Frobenius algebra given by the regular
representation of J . This has the important consequence that the modular-
ized category D(G) is endowed with a J-action.
Experience with orbifold constructions, see [Kir04, Tur10a] for a categorical
formulation, raises the question of whether the category D(G)-mod with this
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J-action can be seen in a natural way as the neutral sector of a J-modular
tensor category.
We thus want to complete the following square of tensor categories

D(G)-mod

orbifold
��

J

		
� � // ???

J

��

orbifold
��

B(G / H)-mod

modularization

OO

� � // ???

OO (III.1)

Here vertical arrows pointing upwards stand for induction functors along
the commutative algebra given by the regular representation of J , while
downwards pointing arrows indicate orbifolding. In the upper right corner,
we wish to place a J-modular category, and in the lower right corner its
J-orbifold which, on general grounds [Kir04], has to be a modular tensor
category. Horizontal arrows indicate the inclusion of neutral sectors.
In general, such a completion need not exist. Even if it exists, there might be
inequivalent choices of J-modular tensor categories of which a given modular
tensor category with J-action is the neutral sector [ENO10].

1.2 Geometric Motivation: Equivariant Extended TFT

Topological field theory is a mathematical structure that has been inspired by
physical theories [Wit89] and which has developed into an important tool in
low-dimensional topology. Recently, these theories have received increased
attention due to the advent of extended topological field theories [Lur09,
SP09]. The present chapter focuses on three-dimensional topological field
theory.
Dijkgraaf-Witten theories provide a class of extended topological field theo-
ries. They can be seen as discrete variants of Chern-Simons theories, which
provide invariants of three-manifolds and play an important role in knot
theory [Wit89]. Dijkgraaf-Witten theories have the advantage of being par-
ticularly tractable and admitting a very conceptual geometric construction.
A Dijkgraaf-Witten theory is based on a finite group G; in this case the
’field configurations’ on a manifold M are given by G-bundles over M , de-
noted by AG(M). Furthermore, one has to choose a suitable action func-
tional S : AG(M) → C (which we choose here in fact to be trivial) on field
configurations; this allows to make the structure suggested by formal path
integration rigorous and to obtain a topological field theory. A conceptually
very clear way to carry this construction out rigorously is described in [FQ93]
and [Mor10], see Section 2 of this chapter for a review.
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Let us now assume that as a further input datum we have another finite
group J which acts on G. In this situation, we get an action of J on the
Dijkgraaf-Witten theory based on G. But it turns out that this topological
field theory together with the J-action does not fully reflect the equivariance
of the situation: it has been an important insight that the right notion is the
one of equivariant topological field theories, which have been another point
of recent interest [Kir04, Tur10a]. Roughly speaking, equivariant topological
field theories require that all geometric objects (i.e. manifolds of different
dimensions) have to be decorated by a J-cover (see Definitions 3.11 and 3.13
for details). Equivariant field theories also provide a conceptual setting for
the orbifold construction, one of the standard tools for model building in
conformal field theory and string theory.
Given the action of a finite group J on a finite group G, these considerations
lead to the question of whether Dijkgraaf-Witten theory based on G can be
enlarged to a J-equivariant topological field theory. Let us pose this question
more in detail:

• What exactly is the right notion of an action of J on G that leads to
interesting theories? To keep equivariant Dijkgraaf-Witten theory as
explicit as the non-equivariant theory, one needs notions to keep control
of this action as explicitly as possible.

• Ordinary Dijkgraaf-Witten theory is mainly determined by the choice
of field configurations AG(M) to be G-bundles. As mentioned before,
for J-equivariant theories, we should replace manifolds by manifolds
with J-covers. We thus need a geometric notion of a G-bundle that is
’twisted’ by this J-cover in order to develop the theory parallel to the
non-equivariant one.

Based on an answer to these two points, we wish to construct equivariant
Dijkgraaf-Witten theory as explicitly as possible.

1.3 Summary of the Results

In this chapter both the algebraic and the geometric problem we have just
described are solved. In fact, the two problems turn out to be closely related.
We first solve the problem of explicitly constructing equivariant Dijkgraaf-
Witten and then use our solution to construct the relevant modular categories
that complete the square (III.1).
Despite this strong mathematical interrelation, we have taken some effort to
write this chapter in such a way that it is accessible to readers sharing only
a geometric or algebraic interest. The geometrically minded reader might
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wish to restrict his attention to Section 2 and 3, and only take notice of the
result about J-modularity stated in theorem 4.11. An algebraically oriented
reader, on the other hand, might simply accept the categories described in
Proposition 3.22 together with the structure described in Propositions 3.23,
3.24 and 3.26 and then directly delve into Section 4.

For the benefit of all readers, we present an outline of all our findings. In
Section 2, we review the pertinent aspects of Dijkgraaf-Witten theory and
in particular the specific construction given in [Mor10]. Section 3 is devoted
to the equivariant case: we observe that the correct notion of J-action on G
is what we call a weak action of the group J on the group G; this notion is
introduced in definition 3.1. Based on this notion, we can for every J-cover
P → M very explicitly construct a category AG(P → M) of P -twisted G-
bundles. For the definition and elementary properties of twisted bundles, we
refer to section 3.2 and for a local description to appendix 6.1. We are then
ready to construct equivariant Dijkgraaf Witten theory along the lines of
the construction described in [Mor10]. This is carried out in section 3.3 and
3.4. We obtain a construction of equivariant Dijkgraaf-Witten theory that
is so explicit that we can read off the category CJ(G) it assigns to the circle
S1. The equivariant topological field theory induces additional structure on
this category, which can also be computed by geometric methods due to the
explicit control of the theory, and part of which we compute in section 3.5.
This finishes the geometric part of our work. It remains to show that the
category CJ(G) is indeed J-modular.

To establish the J-modularity of the category CJ(G), we have to resort to
algebraic tools. Our discussion is based on Ch. VIII of [Tur10a] by A.
Virélizier. At the same time, we explain the solution of the algebraic problems
described in section 1.1. The Hopf algebraic notions we encounter in section
4, in particular Hopf algebras with a weak group action and their orbifold
Hopf algebras might be of independent algebraic interest.
In section 4, we introduce the notion of a J-equivariant ribbon Hopf algebra.
It turns out that it is natural to relax some strictness requirements on the
J-action on such a Hopf algebra. Given a weak action of a finite group J
on a finite group G, we describe in proposition 4.7 a specific ribbon Hopf
algebra which we call the equivariant Drinfel’d double DJ(G). This ribbon
Hopf algebra is designed in such a way that its representation category is
equivalent to the geometric category CJ(G) constructed in section 3, compare
proposition 4.8.
The J-modularity of CJ(G) is established via the modularity of its orbifold
category. We introduced the notion of orbifold category and the correspond-
ing notion of an orbifold category in Section 2.2 of Chapter I In the case
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of the equivariant Drinfel’d double DJ(G), this orbifold algebra is shown to
be isomorphic, as a ribbon Hopf algebra, to the Drinfel’d double of a finite
group. This implies modularity of the orbifold theory and, by a result of
[Kir04], J-modularity of the category CJ(G), cf. theorem 4.11.

In the course of our construction, we develop several notions of independent
interest. In fact, this chapter might be seen as a study of the geometry of
chiral backgrounds. It allows for various generalizations, some of which are
briefly sketched in the conclusions. These generalizations include in particu-
lar twists by 3-cocycles in group cohomology and, possibly, even the case of
non-semi simple chiral backgrounds.

2 Dijkgraaf-Witten Theory and Drinfel’d dou-

ble

This section contains a short review of Dijkgraaf-Witten theory as an ex-
tended three-dimensional topological field theory, covering the contributions
of many authors, including in particular the work of Dijkgraaf-Witten [DW90],
of Freed-Quinn [FQ93] and of Morton [Mor10]. We explain how these ex-
tended 3d TFTs give rise to modular tensor categories. These specific modu-
lar tensor categories are the representation categories of a well-known class of
quantum groups, the Drinfel’d doubles of finite groups, that where reviewed
in Section 1 of Chapter II.

While this section does not contain original material, we present the ideas
in such a way that equivariant generalizations of the theories can be con-
veniently discussed. In this section, we also introduce some categories and
functors that we need for later sections.

2.1 Motivation for Dijkgraaf-Witten Theory

We start with a brief motivation for Dijkgraaf-Witten theory from physical
principles. A reader already familiar with Dijkgraaf-Witten theory might
wish to take at least notice of Definition 2.2 and of Proposition 2.3.

It is an old, yet successful idea to extract invariants of manifolds from quan-
tum field theories, in particular from quantum field theories for which the
fields are G-bundles with connection, where G is some group. In this chapter
we mostly consider the case of a finite group and only occasionally make
reference to the case of a compact Lie group.

Let M be a compact oriented manifold of dimension 1,2 or 3, possibly with
boundary. As the ‘space’ of field configurations, we choose G bundles with
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connection,
AG(M) := Bun∇G(M).

This way, we in fact really assign to a manifold a groupoid, rather than an
actual space. The morphisms of the category take gauge transformations
into account. We will nevertheless keep on calling it ’space’ since the cor-
rect framework to handle AG(M) is as a stack on the category of smooth
manifolds.
Moreover, another piece of data specifying the model is a function defined
on manifolds of a specific dimension,

S : AG(M)→ C

called the action. In the simplest case, when G is a finite group, a field
configuration is given by a G-bundle, since all bundles are canonically flat
and no connection data are involved. Then, the simplest action is given by
S[P ] := 0 for all G-bundles P . In the case of a compact, simple, simply
connected Lie group G, consider a 3-manifold M . In this situation, each
G-bundle P over M is globally of the form P ∼= G ×M , because π1(G) =
π2(G) = 0. Hence a field configuration is given by a connection on the trivial
bundle which is a 1-form A ∈ Ω1(M, g) with values in the Lie algebra of
G. An example of an action yielding a topological field theory that can be
defined in this situation is the Chern-Simons action

S[A] :=

∫
M

〈A ∧ dA〉 − 1

6
〈A ∧ A ∧ A〉

where 〈·, ·〉 is the basic invariant inner product on the Lie algebra g.
The heuristic idea is then to introduce an invariant Z(M) for a 3-manifold
M by integration over all field configurations:

Z(M) := ”

∫
AG(M)

dφ eiS[φ] ”.

Warning 2.1. In general, this path integral has only a heuristic meaning.
In the case of a finite group, however, one can choose a counting measure dφ
and thereby reduce the integral to a well-defined finite sum. The definition of
Dijkgraaf-Witten theory [DW90] is based on this idea.

Instead of giving a well-defined meaning to the invariant Z(M) as a path-
integral, we exhibit some formal properties these invariants are expected to
satisfy. To this end, it is crucial to allow for manifolds that are not closed, as
well. This allows to cut a three-manifold into several simpler three-manifolds
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with boundaries so that the computation of the invariant can be reduced to
the computation of the invariants of simpler pieces.
Hence, we consider a 3-manifold M with a 2-dimensional boundary ∂M .
We fix boundary values φ1 ∈ AG(∂M) and consider the space AG(M,φ1) of
all fields φ on M that restrict to the given boundary values φ1. We then
introduce, again at a heuristic level, the quantity

Z(M)φ1 := ”

∫
AG(M,φ1)

dφ eiS[φ] ”. (III.2)

The assignment φ1 7→ Z(M)φ1 could be called a ‘wave function’ on the space
AG(∂M) of boundary values of fields. These ‘wave functions’ form a vector
space H∂M , the state space

H∂M := ”L2
(
AG(∂M),C

)
”

that we assign to the boundary ∂M . The transition to wave functions
amounts to a linearization. The notation L2 should be taken with a grain
of salt and should indicate the choice of an appropriate vector space for the
category AG(∂M); it should not suggest the existence of any distinguished
measure on the category.
In the case of Dijkgraaf-Witten theory based on a finite group G, the space of
states has a basis consisting of δ-functions on the set of isomorphism classes
of field configurations on the boundary ∂M :

H∂M = C
〈
δφ1 | φ1 ∈ IsoAG(∂M)

〉
.

In this way, we associate finite dimensional vector spaces HΣ to compact ori-
ented 2-manifolds Σ. The heuristic path integral in equation (III.2) suggests
to associate to a 3-manifold M with boundary ∂M an element

Z(M) ∈ H∂M ,

or, equivalently, a linear map C→ H∂M .
A natural generalization of this situation are cobordisms M : Σ→ Σ′, where
Σ and Σ′ are compact oriented 2-manifolds. A cobordism is a compact ori-
ented 3-manifold M with boundary ∂M ∼= Σ̄ t Σ′ where Σ̄ denotes Σ, with
the opposite orientation. To a cobordism, we wish to associate a linear map

Z(M) : HΣ → HΣ′

by giving its matrix elements in terms of the path integral

Z(M)φ0,φ1 := ”

∫
AG(M,φ0,φ1)

dφ eiS[φ] ”
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with fixed boundary values φ0 ∈ AG(Σ) and φ1 ∈ AG(Σ′). HereAG(M,φ0, φ1)
is the space of field configurations on M that restrict to the field configura-
tion φ0 on the ingoing boundary Σ and to the field configuration φ1 on the
outgoing boundary Σ′. One can now show that the linear maps Z(M) are
compatible with gluing of cobordisms along boundaries. (If the group G is
not finite, additional subtleties arise; e.g. Z(M)φ0,φ1 has to be interpreted as
an integral kernel.)
Atiyah [Ati88] gave a definition of a topological field theory that formal-
izes these properties: it describes a topological field theory as a symmetric
monoidal functor from a geometric tensor category to an algebraic category.
To make this definition explicit, let Cob(2, 3) be the category which has 2-
dimensional compact oriented smooth manifolds as objects. Its morphisms
M : Σ → Σ′ are given by (orientation preserving) diffeomorphism classes of
3-dimensional, compact oriented cobordism from Σ to Σ′ which we write as

Σ ↪→M ←↩ Σ′.

Composition of morphisms is given by gluing cobordisms together along the
boundary. The disjoint union of 2-dimensional manifolds and cobordisms
equips this category with the structure of a symmetric monoidal category.
For the algebraic category, we choose the symmetric tensor category VectK

of finite dimensional vector spaces over an algebraically closed field K of
characteristic zero. For convenience, we recall Definition 1.1 from chapter I.

Definition 2.2 (Atiyah). A 3d TFT is a symmetric monoidal functor

Z : Cob(2, 3)→ VectK.

Let us set up such a functor for Dijkgraaf-Witten theory, i.e. fix a finite
group G and choose the trivial action S : AG(M) → C, i.e. S[P ] = 0 for
all G-bundles P on M . Then the path integrals reduce to finite sums over 1
hence simply count the number of elements in the category AG. Since we are
counting objects in a category, the stabilizers have to be taken appropriately
into account, for details see e.g. [Mor08, Section 4]. This is achieved by the
groupoid cardinality (which is sometimes also called the Euler-characteristic
of the groupoid Γ)

|Γ| :=
∑

[g]∈Iso(Γ)

1

|Aut(g)|
.

A detailed discussion of groupoid cardinality can be found in [BD01] and
[Lei08].
We summarize the discussion:
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Proposition 2.3 ([DW90],[FQ93]). Given a finite group G, the following
assignment ZG defines a 3d TFT: to a closed, oriented 2-manifold Σ, we
assign the vector space freely generated by the isomorphism classes of G-
bundles on Σ,

Σ 7−→ HΣ := K
〈
δP | P ∈ IsoAG(Σ)

〉
.

To a 3 dimensional cobordism M , we associate the linear map

ZG

(
Σ ↪→M ←↩ Σ′

)
: HΣ → HΣ′

with matrix elements given by the groupoid cardinality of the categories AG(M,P0, P1):

ZG(M)P0,P1 :=
∣∣AG(M,P0, P1)

∣∣ .
Remark 2.4. 1. In the original paper [DW90], a generalization of the

trivial action S[P ] = 0, induced by an element η in the group cohomol-
ogy H3

Gp

(
G,U(1)

)
with values in U(1), has been studied. We postpone

the treatment of this generalization to future work. In the following,
the term Dijkgraaf-Witten theory refers to the 3d TFT of Proposition
2.3 or its extended version.

2. In the case of a compact, simple, simply-connected Lie group G, a def-
inition of a 3d TFT by a path integral is not available. Instead, the
combinatorial definition of Reshetikin-Turaev [RT91] can be used to
set up a 3d TFT which has the properties expected for Chern-Simons
theory.

3. The vector spaces HΣ can be described rather explicitly. Since every
compact, closed, oriented 2-manifold is given by a disjoint union of
surfaces Σg of genus g, it suffices to compute the dimension of HΣg .
This can be done using the well-known description of moduli spaces of
flat G-bundles in terms of homomorphisms from the fundamental group
π1(Σg) to the group G, modulo conjugation,

IsoAG(Σg) ∼= Hom(π1(Σg), G)/G

which can be combined with the usual description of the fundamental
group π1(Σg) in terms of generators and relations. In this way, one
finds that the space is one-dimensional for surfaces of genus 0. In the
case of surfaces of genus 1, it is generated by pairs of commuting group
elements, modulo simultaneous conjugation.
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4. Following the same line of argument, one can show that for a closed
3-manifold M , one has∣∣AG(M)

∣∣ =
∣∣Hom(π1(M), G)

∣∣ / |G| .
This expresses the 3-manifold invariants in terms of the fundamental
group of M .

2.2 Dijkgraaf-Witten Theory as an Extended TFT

Up to this point, we have considered a version of Dijkgraaf-Witten theory
which assigns invariants to closed 3-manifolds Z(M) and vector spaces to 2-
dimensional manifolds Σ. Iterating the argument that has lead us to consider
three-manifolds with boundaries, we might wish to cut the two-manifolds into
smaller pieces as well, and thereby introduce two-manifolds with boundaries
into the picture.
Hence, we drop the requirement on the 2-manifold Σ to be closed and allow
Σ to be a compact, oriented 2-manifold with 1-dimensional boundary ∂Σ.
Given a field configuration φ1 ∈ AG(∂Σ) on the boundary of the surface Σ,
we consider the space of all field configurations AG(Σ, φ1) on Σ that restrict
to the given field configuration φ1 on the boundary ∂Σ. Again, we linearize
the situation and consider for each field configuration φ1 on the 1-dimensional
boundary ∂Σ the vector space freely generated by the isomorphism classes
of field configurations on Σ,

HΣ,φ1 := ”L2
(
AG(Σ, φ1)

)
” = C

〈
δφ | φ ∈ IsoAG(Σ, φ1)

〉
.

The object we associate to the 1-dimensional boundary ∂Σ of a 2-manifold
Σ is thus a map φ1 7→ HΣ,φ1 of field configurations to vector spaces, i.e. a
complex vector bundle over the space of all fields on the boundary. In the
case of a finite group G, we prefer to see these vector bundles as objects of the
functor category from the essentially small category AG(∂Σ) to the category
VectC of finite-dimensional complex vector spaces, i.e. as an element of

Vect(AG(∂Σ)) =
[
AG(∂Σ),VectC

]
.

Thus the extended version of the theory assigns the category Z(S) = [AG(S),VectC]
to a one dimensional, compact oriented manifold S. These categories possess
certain additional properties which can be summarized by saying that they
are 2-vector spaces as defined in 1.2

Proposition 2.5. [Mor10] Given a finite group G, there exists an extended
3d TFT ZG which assigns the categories[

AG(S),VectK

]
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to 1-dimensional, closed oriented manifolds S and whose restriction ZG|∅ is
(isomorphic to) the Dijkgraaf-Witten TFT described in proposition 2.3.

Remark 2.6. One can iterate the procedure of extension and introduce the
notion of a fully extended TFT which also assigns quantities to points rather
than just 1-manifolds. It can be shown that Dijkgraaf-Witten theory can be
turned into a fully extended TFT, see [FHLT09]. The full extension will not
be needed in the present chapter.

2.3 Construction via 2-Linearization

In this subsection, we describe the construction of the extended 3d TFT of
Proposition 2.5in more detail. An impatient reader may skip this subsection
and should still be able to understand most of this chapter. He might, how-
ever, wish to take notice of the technique of 2-linearization in Proposition
2.9 which is also an essential ingredient in our construction of equivariant
Dijkgraaf-Witten theory in the sequel of this chapter.
As emphasized in particular by Morton [Mor10], the construction of the
extended TFT is naturally split into two steps, which have already been im-
plicitly present in preceding sections. The first step is to assign to manifolds
and cobordisms the configuration spaces AG of G bundles. We now restrict
ourselves to the case when G is a finite group. The following fact is standard:

• The assignment M 7→ AG(M) := BunG is a contravariant 2-functor
from the category of manifolds to the 2-category of groupoids. Smooth
maps between manifolds are mapped to the corresponding pullback
functors on categories of bundles.

A few comments are in order: for a connected manifold M , the category
AG(M) can be replaced by the equivalent category given by the action
groupoid Hom

(
π1(M), G

)
//G where G acts by conjugation. In particular,

the category AG(M) is essentially finite, if M is compact. It should be ap-
preciated that at this stage no restriction is imposed on the dimension of the
manifold M .
The functor AG(−) can be evaluated on a 2-dimensional cobordism S ↪→
Σ←↩ S ′ or a 3-dimensional cobordism Σ ↪→M ←↩ Σ′. It then yields diagrams
of the form

AG(S)←− AG(Σ) −→ AG(S ′)

AG(Σ)←− AG(M) −→ AG(Σ′).

Such diagrams are called spans. They are the morphisms of a symmetric
monoidal bicategory Span of spans of groupoids as follows (see e.g. [DPP04]
or [Mor06]):
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• Objects are (essentially finite) groupoids.

• Morphisms are spans of essentially finite groupoids.

• 2-Morphisms are isomorphism classes of spans of span-maps.

• Composition is given by forming weak fiber products.

• The monoidal structure is given by the cartesian product× of groupoids.

Proposition 2.7 ([Mor10]). AG induces a symmetric monoidal 2-functor

ÃG : Cob(1, 2, 3)→ Span.

This functor assigns to a 1-dimensional manifold S the groupoid AG(S), to
a 2-dimensional cobordism S ↪→ Σ ←↩ S ′ the span AG(S) ←− AG(Σ) −→
AG(S ′) and to a 3-cobordism with corners a span of span-maps.

Proof. It only remains to be shown that composition of morphisms and the
monoidal structure is respected. The first assertion is shown in [Mor10, the-
orem 2] and the second assertion follows immediately from the fact that bun-
dles over disjoint unions are given by pairs of bundles over the components,
i.e. AG(M tM ′) = AG(M)×AG(M ′).

The second step in the construction of extended Dijkgraaf-Witten theory is
the 2-linearization of [Mor08]. As we have explained in section 2.1, the idea
is to associate to a groupoid Γ its category of vector bundles VectK(Γ). If Γ
is essentially finite, the category of vector bundles is conveniently defined as
the functor category

[
Γ,VectK

]
. If K is algebraically closed of characteristic

zero, this category is a 2-vector space, see [Mor08, Lemma 4.1.1].

• The assignment Γ 7→ VectK

(
Γ
)

:=
[
Γ,VectK

]
is a contravariant 2-

functor from the bicategory of (essentially finite) groupoids to the 2-
category of 2-vector spaces. Functors between groupoids are sent to
pullback functors.

We next need to explain what 2-linearization assigns to spans of groupoids.
To this end, we use the following lemma due to [Mor08, 4.2.1]:

Lemma 2.8. Let f : Γ→ Γ′ be a functor between essentially finite groupoids.
Then the pullback functor f ∗ : Vect

(
Γ′
)
→ Vect

(
Γ
)

admits a 2-sided adjoint
f∗ : Vect

(
Γ
)
→ Vect

(
Γ′
)
, called the pushforward.

Two-sided adjoints are also called ‘ambidextrous’ adjoint, see [Bar09, Ch. 5]
for a discussion. We use this pushforward to associate to a span
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Λ
s1

xx

t1

&&
Γ Γ′

(III.3)

of (essentially finite) groupoids the ‘pull-push’-functor

(p1)∗ ◦ (p0)∗ : VectK

(
Γ
)
−→ VectK

(
Γ′
)
.

A similar construction [Mor08] associates to spans of span-morphisms a nat-
ural transformation. We will give a sketch here:
Given a 2-morphism in Span, i.e. a diagram of groupoids of the form:

Λ
s1

uu

t1

))
Γ ⇓ θs K

s

OO

t
��

⇓ θt Γ′

Λ′
s2

ii

t2

55

(III.4)

which is commutative only up to natural isomorphisms

θs : s1 ◦ s→ s2 ◦ t and θt : t1 ◦ s→ t2 ◦ t (III.5)

the pullback s∗ : [Λ,Vect]→ [K,Vect] of s has the pushforward s∗ : [K,Vect]→
[Λ,Vect] as a two-sided adjoint (see Lemma 2.8) that comes with natural
transformations

ηs,R : id→ s∗s
∗ εs,R : s∗s∗ → id (III.6)

ηs,L : id→ s∗s∗ εs,L : s∗s
∗ → id (III.7)

and analogously the pullback t∗ : [Λ′,Vect]→ [K,Vect] of t has the pushfor-
ward t∗ : [K,Vect] → [Λ′,Vect] as a two-sided adjoint and we have natural
transformations ηt,R, εt,R, ηt,L and εt,L. Now we assign to the diagram (III.4)
the composition

(θt)∗ • (εt,L ◦ ηs,R) • θ∗s (III.8)

where the symbol ‘•’ denotes the horizontal composition of the 2-morphisms,
‘◦’ denotes the vertical composition and (θt)∗ resp. θ∗s denote the pushforward
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resp. pullback of the natural isomorphism θt and θs that appear in diagram
(III.4). In form of a diagram, the formula (III.8) is:

[Λ,Vect] id //

s∗

��

[Λ,Vect]

(t1)∗

��

⇓ ηs,R

[Γ,Vect]

s∗1

AA

s∗2

��

⇓ θ∗s [K,Vect]

s∗

AA

t∗

��

⇓ (θt)∗ [Γ′,Vect]

⇓ εt,L

[Λ′,Vect]
id

//

t∗

AA

[Λ′,Vect]

(t2)∗

AA

(III.9)
Taking all the assignments on the level of objects, 1- and 2-morphisms of
Span into account we arrive at the following:

Proposition 2.9 ([Mor08]). The assignment Γ 7→ VectK(Γ) can be extended
to a symmetric monoidal 2-functor on the category of spans of groupoids

ṼK : Span→ 2VectK.

This 2-functor is called 2-linearization.

Proof. The proof that ṼK is a 2-functor is in [Mor08, Theorem 7.1.2]. For a
product Γ × Γ′ of essentially finite groupoids Γ and Γ, there is a canonical
equivalence η2 : (Γ,Γ′)VectK

(
Γ
)
� VectK

(
Γ′
) ∼→ VectK

(
Γ × Γ′

)
, which as-

signs to a pair of functors in VectK

(
Γ
)
�VectK

(
Γ′
)

their tensor product and
likewise to a pair of natural transformations their tensor product (by the uni-
versal property of the Deligne tensor product it suffices to define a functor on
pairs of objects and morphisms). The tensor unit in Span is the one object
groupoid 1 with only the identity as morphisms. There is an isomorphism
η0 : [1,VectK]→ VectK from the functor category [1,VectK] to the category
VectK of vector spaces over K, which is the tensor unit in 2Vect. One can
check, that η2 and η0 provide the 2-functor ṼK with a monoidal structure.

Arguments similar to the ones in [DPP04, prop 1.10] which are based on the
universal property of the span category can be used to show that such an
extension is essentially unique.
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We are now in a position to give the functor ZG described in Proposition 2.5
which is Dijkgraaf-Witten theory as an extended 3d TFT as the composition
of functors

ZG := ṼK ◦ ÃG : Cob(1, 2, 3) −→ 2VectK.

It follows from Propositions 2.7 and 2.9 that ZG is an extended 3d TFT in
the sense of Definition 1.8. For the proof of Proposition 2.5, it remains to be
shown that ZG|∅ is the Dijkgraaf-Witten 3d TFT from proposition 2.3; this
follows from a calculation which can be found in [Mor10, Section 5.2].

2.4 Derivation of the Braided Category

The goal of this subsection is a more detailed discussion of extended Dijkgraaf-
Witten theory ZG as described in Proposition 2.5. Our focus is on the object
assigned to the 1-manifold S1 given by the circle with its standard orienta-
tion. We start our discussion by evaluating an arbitrary extended 3d TFT
Z as in definition 1.8 on certain manifolds of different dimensions:

1. To the circle S1, the extended TFT Z assigns a K-linear, abelian finitely
semisimple category CZ := Z(S1).

2. To the two-dimensional sphere with three boundary components, two
incoming and one outgoing, also known as the pair of pants,

the TFT associates a functor

⊗ : CZ � CZ → CZ ,

which turns out to provide a tensor product on the category CZ .

3. The figure
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shows a 2-morphism between two three-punctured spheres, drawn as
the upper and lower lid. The outgoing circle is drawn as the bound-
ary of the big disk. To this cobordism, the TFT associates a natural
transformation

⊗ ⇒ ⊗opp

which turns out to be a braiding.

Moreover, the TFT provides coherence cells, in particular associators and
relations between the given structures. This endows the category CZ with
much additional structure. This structure can be summarized as follows:

Proposition 2.10. For Z an extended 3d TFT, the category CZ := Z(S1) is
naturally endowed with the structure of a braided tensor category.

For details, we refer to [Fre95] [Fre94] [Fre99] and [CY99]. This is not yet the
complete structure that can be extracted: from the braiding-picture above it
is intuitively clear that the braiding is not symmetric; in fact, the braiding is
‘maximally non-symmetric’ in a precise sense that is explained in Definition
1.11 of chapter I. We show this in the next section for the category obtained
from the Dijkgraaf-Witten extended TFT.

We now specialize to the case of extended Dijkgraaf-Witten TFT ZG. We first
determine the category C(G) := CZ ; it is by definition the functor category

C(G) =
[
AG(S1),VectK

]
.

It is a standard result in the theory of coverings that G-covers on S1 are de-
scribed by group homomorphisms π1(S1)→ G and their morphisms by group
elements acting by conjugation. Thus the category AG(S1) is equivalent to
the action groupoid G//G for the conjugation action. As a consequence, we
obtain the abelian category C(G) ∼= [G//G,VectK]. We spell out this functor
category explicitly:

Proposition 2.11. For the extended Dijkgraaf-Witten 3d TFT, the category
C(G) associated to the circle S1 is given by the category of G-graded vector
spaces V =

⊕
h∈G Vg together with a G-action on V such that for all g, h ∈ G

g.Vh ⊂ Vghg−1 .

As a next step we determine the tensor product on C(G). It can be derived
from the image of the pair of pants under the 3d TFT, i.e the following



46 Equivariant Modular Categories via Dijkgraaf-Witten Theory

cobordism:

, �

::

R2

dd

(III.10)

Since the fundamental group of the pair of pants (which is the manifold in
the middle) is the free group on two generators, the relevant category of G-
bundles is equivalent to the action groupoid (G × G)//G where G acts by

simultaneous conjugation on the two copies of G. The 2-linearization ṼK on
the span

(G×G)//G
s1

tt

t1

))
(G//G)× (G//G) G//G

is treated in detail in [Mor10, Rem. 5]; the result of this calculation via the
pull-push construction yields the following tensor product:

Proposition 2.12. The tensor product of two objects V and W in C(G),
which are vector-spaces over K with G-grading V =

⊕
h∈G Vh and W =⊕

h∈GWh and compatible G-action, is given by the G-graded vector space

(V ⊗W )g =
⊕
st=g

Vs ⊗Wt

together with the G-action g.(v, w) = (gv, gw). The associators are the obvi-
ous ones induced by the tensor product in VectK.

In the same vein, the braiding can be calculated. We present the details of
this calculation to illustrate the method of the 2-linearization explained in
Section 2.3. The braiding comes from the following diagram of manifolds
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and inclusions:

� _

��

- 

;;

� q

##

Q1

bb

mM

||?�

OO

(III.11)

Note that the inclusion on the lower left exchanges the two boundary circles
compared to the inclusion on the upper left. The fundamental group of the
pair of pants and the fundamental group of the 3-manifold in the middle is
in both cases the free group on two generators. We consider the fundamental
groups as groupoids with one object. For the ingoing boundary circles on
the left we therefore get a groupoid with two non-connected objects and Z as
automorphism-groups. The groupoid associated to the outgoing boundary
circle on the right hand side is the one object groupoid with Z as the group
of automorphisms. The inclusions induce functors on the groupoids. The
functors induced from the inclusions of the ingoing boundary clearly takes
the two objects to the one object in the target category. On morphisms the
functors are inclusions of the group Z into Z∗Z, where for the lower inclusion,
the entries get exchanged.
The inclusion of the pair of pants into the bottom boundary of the 3-manifold
in the middle, induces the identity on objects, but as for the morphisms,
we have to take into account the effect on the generators a and b of the
fundamental group Z by the braiding. We display it in the following picture:

a b

→ (III.12)

So on the generators a, b ∈ Z ∗ Z of the morphisms, the assignment of the
functor is a 7→ aba−1 and b 7→ a.
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In order to get a span of spans of groupoids we take the categories of G-
bundles AG(M) for the respective manifolds M and pullbacks of the functors
induced by the inclusions. As discussed above, the category of G-bundles on
the manifolds in the middle is equivalent to the action groupoid (G×G)//G
where G acts by simultaneous conjugation on the two copies of G. For the
two boundary circles on the left hand side, the category of G-bundles is the
product category G//G × G//G with adjoint action. This can easily be
seen from the equivalance of the category of G-bundles with the category
of functors from the fundamental groupoid to the group G considered as a
one-object-groupoid, i.e. AG(S1 t S1) ∼= [π1(S1)× π1(S1), G].

(G×G)//G
p

tt

m

))
G//G×G//G (G×G)//G

id

OO

b
��

G//G

(G×G)//G

p̄

jj

m

55

(III.13)

The functors in diagram (III.13) are given on an object (h1, h2) and a mor-
phism g in (G×G)//G by:

p : (h1, h2) 7→ (h1, h2)

(g) 7→ (g, g)

p̄ : (h1, h2) 7→ (h2, h1)

(g) 7→ (g, g)

m : (h1, h2) 7→ h2h1

(g) 7→ g

b : (h1, h2) 7→ (h1h2h
−1
1 , h1)

(g) 7→ g

The endofunctor b∗ on (G × G)//G ∼= [π1(S1) × π1(S1), G] is derived from
the effect of the braiding on the fundamental group π1(S1) × π1(S1) of S1 t
S1 displayed in (III.12). We note that the left side of diagram (III.13) is
commutative only up to a natural isomorphism θ : p⇒ p̄ ◦ b, with

θ(h1, h2) : (h1, h2)
(1,h1)7→ (h1, h1h2h

−1
1 ). (III.14)

The right hand side of (III.13) is strictly commutative.
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We calculate the pullback b∗ : [(G × G)//G,Vect] → [(G × G)//G,Vect] of
b. Let V be an object in the category [(G×G)//G,Vect] i.e. a vector space
with G×G-grading and compatible G-action. Then for (h1, h2) ∈ G×G we
have

b∗(V )(h1,h2) = Vb(h1,h2) = V(h1h2h
−1
1 ,h1)

and the action of g ∈ G on v ∈ b∗(V ) is the same action as on V . Since
the functor b is an isomorphism of categories with inverse b−1 : (h1, h2) 7→
(h2, h

−1
2 h1h2) on objects, its pullback b∗ is also an isomorphism with inverse

(b−1)∗ and the unit and counit of the adjunctions are identities. Thus we
only need to calculate

c := (idm)∗ • θ∗ (III.15)

where θ∗ is the pullback of θ from (III.14): On an object in [(G//G)2,Vect]
which is a pair of vector spaces (V,W ) with G×G-grading
(V,W ) =

⊕
h1,h2

(Vh1 ,Wh2) and G × G-action (ρ(g1), ρ(g2)) : (V,W ) →
(V,W ), the pullback θ looks as follows:

θ∗(V,W )(h1, h2) : Vh1 ⊗Wh2

τ◦ρ(1,h1)−→ Wh1h2h
−1
1
⊗ Vh1 , (III.16)

where the map τ switches the factors of the tensor product. Thus we get for
the map c from III.15:

c(V ⊗W )(h1, h2) : Vh1 ⊗Wh2 → Wh1h2h
−1
1
⊗ Vh1

v ⊗ w 7→ h1.w ⊗ v
where h1.w := ρ(h1)(w) denotes the action of the element h1 ∈ G on W . We
thus have arrived at the following proposition:

Proposition 2.13. The braiding V ⊗W → W ⊗V is for v ∈ Vg and w ∈ W
given by

c : v ⊗ w 7→ g.w ⊗ v.
We now turn to another 2-morphism in Cob(1, 2, 3), the Dehn twist. It is
an automorphism of the identity 1-morphism of the circle, i.e. the cylinder.
The Dehn twist is a rotation of the outgoing boundary of the cylinder by 2π
and can be visualized by the following picture, where the inner circle is the
ingoing boundary and the outer circle is the outgoing boundary:

→
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We can further parametrize the Dehn twist as follows: We embed the cylinder
in the complex plane C as the set

C = {z ∈ C|1
2
≤ |z| ≤ 1} = {r·eiϕ ∈ C|r ∈ [

1

2
, 1], ϕ ∈ [0, 2π]}

Then the Dehn twist is the following map:

D : C → C

reiϕ 7→ re4π(1−r)

The corresponding three-manifold with boundary and corners can be ob-
tained by gluing the two cylinders over C together along the map D. We
draw the corresponding three-manifold as:

The upper lid is the source and the lower lid is the target cylinder. The lines
on the outer surface indicate the rotation of the outer boundary circle by 2π.
Then we have the following diagram of inclusions of manifolds:

� _

��

- 

<<

� q

""

Q1

bb

mM

||?�

OO

The circle on the left hand side is mapped to the inner circle of the annulus
on the top and at the bottom, whereas the circle on the right hand side is
mapped to the outer circle of the respective annuli. The upper annulus is
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mapped to the top of the hollow cylinder and the bottom annulus is mapped
to the bottom of the hollow cylinder.
Note that in this case it is not enough to consider the fundamental group
of the cylinder and the hollow cylinder, as the Dehn twist does not change
the homotopy class of a path with the same start and endpoint. Instead, for
the cylinder we need to look at a slightly bigger but equivalent groupoid π̄1,
which has as objects two points, one on each boundary, and as morphisms
homotopy classes of paths with these points as start- resp. endpoints. This
groupoid can be described as the groupoid with two objects x (for a point
on the inner boundary) and y (for a point on the outer boundary) and with
two morphisms a ∈ Hom(x, x) and b ∈ Hom(x, y) as generators. Thus in π̄1

the groups of automorphisms are Aut(x) = Aut(y) = Z. The Dehn twist has
the following effect on the generators a and b of the fundamental groupoid:

x y

a

b → (III.17)

For the hollow cylinder we choose two points on the on the respective bound-
ary circles of the upper lid. We get the same fundamental groupoid π̄1 as for
the cylinder.
The inclusions of manifolds induce functors of the fundamental groupoids.
The fundamental groupoid π1(S1) of the circle has only one object and Z
as group of automorphisms. The inclusions on the left side induce a func-
tor π1(S1) → π̄1, where the one object in π1(S1) gets mapped to x and the
generator 1 of Z gets mapped to a. The inclusions on the right hand side
induce a functor π1(S1) → π̄1, where the only object of π1(S1) gets mapped
to the object y and the generator 1 of Z gets mapped to bab−1. From the
inclusions in the middle we get two different functors. The inclusions on the
top induces the identity functor on the groupoid π̄1. For the inclusion on the
bottom, we have to take the twist into account and so while the functor is the
identity on objects, the generator a gets mapped to itself but the generator
b gets mapped to ba−1, since the Dehn twist transforms a path between two
points on the different boundaries to one that is wrapped around the inner
boundary ones more, as indicated in picture (III.17).
Now by taking the functor categories Γ = [barπ1, G] and [π1(S1), G] = G//G
from the groupoids π̄1 and π1(S1) to the group G seen as a one-object
groupoid, and pullbacks of the respective functors obtained from the in-
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clusions and we get the following span of spans of groupoids:

Γ
s1

ww

t1

''
G//G Γ

id

OO

t
��

G//G

Γ

s2

gg

t2

77

(III.18)

The groupoid Γ looks as follows:

• objects: (h1, h2) ∈ G2

• morphisms: (g1, g2) ∈ G2, (g1, g2).(h1, h2) = (g1h1g
−1
1 , g2h2g

−1
1 )

Indeed a functor from π̄1 to the one-object-groupoid G is a pair of group
elements, since it amounts to assigning to each of the two generators of the
morphisms in π̄1 a morphism in G which is just a group element. Likewise, a
natural transformation amounts to the choice of two group elements, one for
each object in π̄1 and the effect of a natural transformation on an object can
be derived from the naturality axiom. The morphisms of diagram (III.18)
are given as follows:

s1, s2 : (h1, h2) 7→ h1

(g1, g2) 7→ g1

t1, t2 : (h1, h2) 7→ h2h1h
−1
2

(g1, g2) 7→ g2

t : (h1, h2) 7→ (h1, h2h
−1
1 )

(g1, g2, g3, g4) 7→ (g1, g2)

It can easily be seen, that all the above functors are equivalences of categories,
with the following quasi-inverses:

s′1, s
′
2 : h 7→ (h, 1)

g 7→ (g, g)

t′1, t
′
2 : h 7→ (h, 1)

g 7→ (g, g)

t′ : (h1, h2) 7→ (h1, h2h1)

(g1, g2) 7→ (g1, g2)
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This is very useful for dealing with the pushforwards in the 2-linearization,
since we have the following lemma:

Lemma 2.14. Let f : G → G ′ be an equivalence of categories, with quasi-
inverse f ′. Then the pullback f ∗ : [G ′,Vect]→ [G,Vect] is also an equivalence
of categories with inverse (f ′)∗.

Proof. Assume the functors f : G → G ′ and f ′ : G ′ → G together with the
natural isomorphisms η : idG′ → f ◦ f ′ and ε : f ′ ◦ f → idG constitute an
equivalence of the categories G and G ′.
Then the pullbacks, η∗ : id[G′,Vect] → (f ′)∗ ◦ f ∗ and ε∗ : f ∗ ◦ (f ′)∗ → id[G′,Vect],
given on functors F ∈ G ′, G ∈ G and objects X ∈ G ′, Y ∈ G by η∗(F )(X) =
F (η(X)) and ε∗(G)(Y ) = G(ε(Y )) are also natural isomorphisms. This gives
an equivalence of categories between [G ′,Vect] and [G,Vect].

By applying Lemma 2.14, we only need to use pullbacks in order to calculate
the natural transformation from the Dehn twist. We replace the right hand
side of diagram (III.18) by one with inverse functors:

Γ

id
��

Γ̂ ⇓ θ′r G//G

t′1

hh

t′2
vvΓ

t′

OO

(III.19)

This diagram only commutes up to a natural isomorphism θ′r : t′1 ⇒ t′ ◦ t′2,
since we have on objects t′1(h) = (h, 1), t′ ◦ t′2(h) = (h, h) and on morphisms
t′1(g) = t′ ◦ t′2(g) = (g, g). The natural isomorphism is given on an object
h ∈ G//G by θ′r(h) = (h−1, 1). The right hand side of diagram (III.18) is
strictly commutative, since we have on objects: s1(h1, h2) = s2◦t(h1, h2) = h1

and on morphisms s1(g1, g2) = s2 ◦ t(g1, g2) = g1.

The pullback (θ′r)
∗ of the natural isomorphisms θ′r can be calculated to be:

θ′∗r : (t′1)∗ ⇒ (t′ ◦ t′2)∗

θ′∗r (V )|V(h) = ρ(h−1, 1) : V(h,1) → V(h,h)

Now let V = ((Vh)h∈G, (ρg)g∈G be an object in [G//G,VectK], i.e. a G-
graded vector space with compatible G-action. Equation (III.8) reduces to
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the following natural isomorphism:

θ := θ′∗r • id∗ : (s′ ◦ t′1)∗ ◦ (s1)∗ ⇒ (t′ ◦ t′2)∗ ◦ (s2 ◦ t)∗

θ(V )|Vh = θ′∗r • id∗(V )|Vh = θ′∗r ((s1)∗(V ))|Vh ◦ (s′ ◦ t′1)∗(id∗(V )|V(h,1))

= (s1)∗(ρ)(h−1, 1)|Vh
= ρ(h−1)|Vh

Now we can state the following:

Proposition 2.15. The twist on an object V of [G//G,VectK] and a vector
v ∈ Vh is given by

θ : v 7→ h−1.v (III.20)

2.5 Drinfel’d Double and Modularity

The braided tensor category C(G) we just computed from the last section has
a well-known description as a familiar representation category. In Section 1
of Chapter II we discussed the Drinfel’d double D(G) of a finite group G and
its representation category. In fact, comparison with Propositions 2.12 and
2.13 with the category D(G)-mod described in section 1 of chapter II shows
that we have the following equivalence:

Proposition 2.16. The category C(G) is isomorphic, as a braided tensor
category, to the category D(G)-mod.

And as a direct consequence of this and Proposition 1.2 we get:

Proposition 2.17. The category C(G) ∼= D(G)-mod is modular.

3 Equivariant Dijkgraaf-Witten Theory

We are now ready to turn to the construction of equivariant generalizations
of the results of section 2. We denote again by G a finite group. The
equivariance will be given with respect to another finite group J that acts on
G in a way we will have to explain. As usual, ‘twisted sectors’ [VW95] have
to be taken into account for a consistent equivariant theory. A description of
these twisted sectors in terms of bundles twisted by J-covers is one important
result of this section.
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3.1 Weak Actions and Extensions

Our first task is to identify the appropriate definition of a J-action. The first
idea that comes to mind – a genuine action of the group J acting on G by
group automorphisms – turns out to need a modification. For reasons that
will become apparent in a moment, we only require an action up to inner
automorphism.

Definition 3.1. 1. A weak action of a group J on a group G consists of
a collection of group automorphisms ρj : G → G, one automorphism
for each j ∈ J , and a collection of group elements ci,j ∈ G, one group
element for each pair of elements i, j ∈ J . These data are required to
obey the relations:

ρi ◦ ρj = Innci,j ◦ ρij ρi(cj,k) · ci,jk = ci,j · cij,k and c1,1 = 1

for all i, j, k ∈ J . Here Inng denotes the inner automorphism G → G
associated to an element g ∈ G. We will also use the short hand
notation jg := ρj(g).

2. Two weak actions
(
ρj, ci,j) and

(
ρ′j, c

′
i,j) of a group J on a group G are

called isomorphic, if there is a collection of group elements hj ∈ G, one
group element for each j ∈ J , such that

ρ′j = Innhj ◦ ρj and c′i,j · hij = hi · ρi(hj) · ci,j

Remark 3.2. 1. If all group elements ci,j equal the neutral element, ci,j =
1, the weak action reduces to a strict action of J on G by group auto-
morphisms.

2. A weak action induces a strict action of J on the group Out(G) =
Aut(G)/Inn(G) of outer automorphisms.

3. In more abstract terms, a weak action amounts to a (weak) 2-group
homomorphism J → AUT(G). Here AUT(G) denotes the automor-
phism 2-group of G. This automorphism 2-group can be described as
the monoidal category of endofunctors of the one-object-category with
morphisms G. The group J is considered as a discrete 2-group with
only identities as morphisms. Compare also Remark 2.2. For more
details on 2-groups, we refer to [BL04].

Weak actions are also known under the name Dedecker cocycles, due to the
work [Ded60]. The correspondence between weak actions and extensions of
groups is also termed Schreier theory, with reference to [Sch26]. Let us briefly
sketch this correspondence:
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• Let
(
ρj, ci,j

)
be a weak action of J on G. On the set H := G × J , we

define a multiplication by

(g, i) · (g′, j) :=
(
g · i(g′) · ci,j , ij

)
. (III.21)

One can check that this turns H into a group in such a way that the
sequence G → H → J consisting of the inclusion g 7→ (g, 1) and the
projection (g, j) 7→ j is exact.

• Conversely, let G −→ H
π−→ J be an extension of groups. Choose a

set theoretic section s : J → H of π with s(1) = 1. Conjugation with
the group element s(j) ∈ H leaves the normal subgroup G invariant.
We thus obtain for j ∈ J the automorphism ρj(g) := s(j) g s(j)−1 of
G. Furthermore, the element ci,j := s(i)s(j)s(ij)−1 is in the kernel of
π and thus actually contained in the normal subgroup G. It is then
straightforward to check that

(
ρj, ci,j

)
defines a weak action of J on G.

• Two different set-theoretic sections s and s′ of the extension G→ H →
J differ by a map J → G. This map defines an isomorphism of the
induced weak actions in the sense of definition 3.1.2.

We have thus arrived at the

Proposition 3.3 (Dedecker, Schreier). There is a 1-1 correspondence be-
tween isomorphism classes of weak actions of J on G and isomorphism
classes of group extensions G→ H → J .

Remark 3.4. 1. The correspondence from Proposition 3.3 can be turned
into an equivalence of categories. Since we do not need such a statement
in the following, we refrain from giving a precise formulation of the
equivalence.

2. Under this correspondence, strict actions of J on G correspond to split
extensions. This can be easily seen as follows: given a split extension
G → H → J , one can choose the section J → H as a group homo-
morphism and thus obtains a strict action of J on G. Conversely for
a strict action of J on G it is easy to see that the group constructed in
equation (III.21) is a semidirect product and thus the sequence of groups
splits. In order to take all extensions into account, we thus really need
to consider weak actions.
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3.2 Twisted Bundles

It is a common lesson from field theory that in an equivariant situation,
one has to include “twisted sectors” to obtain a complete theory. Our next
task is to construct the parameters labeling twisted sectors for a given weak
action of a finite group J on G, with corresponding extension G → H → J
of groups and chosen set-theoretic section J → H. We will adhere to a two-
step procedure, similar to the procedure in the non-equivalent case outlined
in Section 2.3. To this end, we will first construct a category of twisted
bundles for any smooth manifold. Then, the linearization functor can be
applied to spans of such categories.
We start our discussion of twisted G-bundles with the most familiar case of
the circle M = S1.
The isomorphism classes of G-bundles on S1 are in bijection to connected
components of the free loop space LBG of the classifying space BG:

Iso
(
AG(S1)

)
= HomHo(Top)(S1, BG) = π0(LBG).

Given a (weak) action of J on G, one can introduce twisted loop spaces. For
any element j ∈ J , we have a group automorphism j : G → G and thus a
homeomorphism j : BG→ BG. The j-twisted loop space is then defined to
be

LjBG :=
{
f : [0, 1]→ BG | f(0) = j · f(1)

}
.

Our goal is to introduce for every group element j ∈ J a category AG(S1, j)
of j-twisted G-bundles on S1 such that

Iso
(
AG(S1, j)

)
= π0(LjBG) .

In the case of the circle S1, the twist parameter was a group element j ∈ J . A
more geometric description uses a family of J-covers Pj over S1, with j ∈ J .
The cover Pj is uniquely determined by its monodromy j for the base point
1 ∈ S1 and a fixed point in the fiber over 1. A concrete construction of the
cover Pj is given by the quotient Pj := [0, 1]× J/ ∼ where (0, i) ∼ (1, ji) for
all i ∈ J . In terms of these J-covers, we can write

LjBG =
{
f : Pj → BG | f is J-equivariant

}
.

This description generalizes to an arbitrary smooth manifold M . The natural

twist parameter in the general case is a J-cover P
J→M .

Suppose, we have a weak J-action on G and construct the corresponding
extension G → H

π→ J . The category of bundles we need are H-lifts of the
given J-cover:
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Definition 3.5. Let J act weakly on G. Let P
J→M be a J-cover over M .

• A P -twisted G-bundle over M is a pair (Q,ϕ), consisting of an H-
bundle Q over M and a smooth map ϕ : Q → P over M that is
required to obey

ϕ(q · h) = ϕ(q) · π(h)

for all q ∈ Q and h ∈ H. Put differently, a P
J→ M-twisted G-bundle

is a lift of the J-cover P reduction along the group homomorphism
π : H → J .

• A morphism of P -twisted bundles (Q,ϕ) and (Q′, ϕ′) is a morphism
f : Q→ Q′ of H-bundles such that ϕ′ ◦ f = ϕ.

• We denote the category of P -twisted G-bundles by AG
(
P → M

)
. For

M = S1, we introduce the abbreviation AG
(
S1, j) := AG

(
Pj → S1

)
for

the standard covers of the circle.

Remark 3.6. There is an alternative point of view on a P -twisted bundle
(Q,ϕ): the subgroup G ⊂ H acts on the total space Q in such a way that the
map ϕ : Q→ P endows Q with the structure of a G-bundle on P . Both the
structure group H of the bundle Q and the bundle P itself carry an action
of G; for twisted bundles, an equivariance condition on this action has to
be imposed. Unfortunately this equivariance property is relatively involved;
therefore, we have opted for the definition in the form given above.

A morphism f : P → P ′ of J-covers over the same manifold induces a functor
f∗ : AG

(
P → M

)
→ AG

(
P ′ → M

)
by f∗(Q,ϕ) := (Q, f ◦ ϕ). Furthermore,

for a smooth map f : M → N , we can pull back the twist data P →M and
get a pullback functor of twisted G-bundles:

f ∗ : AG
(
P → N

)
→ AG

(
f ∗P →M

)
by f ∗(Q,ϕ) = (f ∗Q, f ∗ϕ). Before we discuss more sophisticated properties
of twisted bundles, we have to make sure that our definition is consistent
with ‘untwisted’ bundles:

Lemma 3.7. Let the group J act weakly on the group G. For G-bundles
twisted by the trivial J-cover M×J → M , we have a canonical equivalence
of categories

AG
(
M×J →M

) ∼= AG(M).
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Proof. We have to show that for an element (Q,ϕ) ∈ AG
(
M ×J → M

)
the H-bundle Q can be reduced to a G-bundle. Such a reduction is the
same as a section of the associated fiber bundle π∗(Q) ∈ BunJ(M) see e.g.
[Bau09, Satz 2.14]). Now ϕ : Q→M×J induces an isomorphism of J-covers
Q×H J ∼= (M × J)×H J ∼= M × J so that the bundle Q×H J is trivial as
a J-cover and in particular admits global sections.
Since morphisms of twisted bundles have to commute with these sections,
we obtain in that way a functor AG

(
M×J → M

)
→ AG(M). Its inverse is

given by extension of G-bundles on M to H-bundles on M .

We also give a description of twisted bundles using standard covering theory;
for an alternative description using Čech-cohomology, we refer to appendix
6.1. We start by recalling the following standard fact from covering theory,
see e.g. [Hat02, 1.3] that has already been used to prove proposition 2.11: for
a finite group J , the category of J-covers is equivalent to the action groupoid
Hom(π1(M), J)//J . (Note that this equivalence involves choices and is not
canonical.)
To give a similar description of twisted bundles, fix a J-cover P . Next, we
choose a basepoint m ∈M and a point p in the fiber Pm over m. These data
determine a unique group morphism ω : π1(M,m)→ J representing P .

Proposition 3.8. Let J act weakly on G. Let M be a connected manifold
and P be a J-cover over M represented after the choices just indicated by
the group homomorphism ω : π1(M) → J . Then there is a (non-canonical)
equivalence of categories

AG
(
P →M

) ∼= Homω
(
π1(M), H

)
//G

where we consider group homomorphisms

Homω
(
π1(M), H

)
:=
{
µ : π1(M)→ H | π ◦ µ = ω

}
whose composition restricts to the group homomorphism ω describing the J-
cover P . The group G acts on Homω

(
π1(M), H

)
via pointwise conjugation

using the inclusion G→ H.

Proof. Let m ∈ M and p ∈ P over m be the choices of base point in the
J-cover P → M that lead to the homomorphism ω. Consider a (P → M)
twisted bundle Q → M . Since ϕ : Q → P is surjective, we can choose
a base point q in the fiber of Q over m such that ϕ(q) = p. The group
homomorphism π1(M)→ H describing the H-bundle Q is obtained by lifting
closed paths in M starting in m to paths in Q starting in q. They are mapped
under ϕ to lifts of the same path to P starting at p, and these lifts are just
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described by the group homomorphism ω : π1(M)→ J describing the cover
P . If the end point of the path in Q is qh for some h ∈ H, then by the defining
property of ϕ, the lifted path in P has endpoint ϕ(qh) = ϕ(q)π(h) = pπ(h).
Thus π ◦ µ = ω.

Remark 3.9. For non-connected manifolds, a description as in proposition
3.8 can be obtained for every component. Again the equivalence involves
choices of base points on M and in the fibers over the base points. This
could be fixed by working with pointed manifolds, but pointed manifolds cause
problems when we consider cobordisms. Alternatively, we could use the fun-
damental groupoid instead of the fundamental group, see e.g. [May99].

Example 3.10. We now calculate the categories of twisted bundles over
certain manifolds using Proposition 3.8.

1. For the circle S1, ω ∈ Hom(π1(S1), J) = Hom(Z, J) is determined by
an element j ∈ J and the condition π ◦ µ = ω requires µ(1) ∈ H to be
in the preimage Hj := π−1(j) of j. Thus, we have AG(S1, j) ∼= Hj//G.

2. For the 3-Sphere S3, all twists P and all G-bundles are trivial. Thus,
we have AG(P → S3) ∼= AG(S3) ∼= pt//G.

3.3 Equivariant Dijkgraaf-Witten Theory

The key idea in the construction of equivariant Dijkgraaf-Witten theory is
to take twisted bundles AG(P → M) as the field configurations, taking the
place of G-bundles in Section 2. We then cannot expect to get invariants
of closed 3-manifolds M , but rather invariants of 3-manifolds M together
with a twist datum, i.e. a J-cover P over M . Analogous statements apply to
manifolds with boundary and cobordisms. Therefore we need to generalize
the Definition 1.6 of Chapter I of the category Cob(1, 2, 3) to an equivariant
version, i.e. we need to endow it with an extra datum of a J-cover over each
manifold.

Definition 3.11. CobJ(1, 2, 3) is the following symmetric monoidal bicate-
gory:

• Objects are compact, closed, oriented 1-manifolds S, together with a

J-cover PS
J→ S.

• 1-Morphisms are collared cobordisms

S × I ↪→ Σ←↩ S ′ × I
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where Σ is a 2-dimensional, compact, oriented cobordism, together with
a J-cover PΣ → Σ and isomorphisms

PΣ|(S×I)
∼−→ PS × I and PΣ|(S′×I)

∼−→ PS′ × I.

over the collars.

• 2-Morphisms are generated by

- orientation preserving diffeomorphisms ϕ : Σ → Σ′ of cobordisms
fixing the collar together with an isomorphism ϕ̃ : PΣ → PΣ′ cov-
ering ϕ.

- 3-dimensional collared, oriented cobordisms with corners M with
cover PM →M together with covering isomorphisms over the col-
lars (as before) up to diffeomorphisms preserving the orientation
and boundary.

• Composition is by gluing cobordisms and covers along collars.

• The monoidal structure is given by disjoint union.

Remark 3.12. In analogy to remark 1.7, we point out that the isomorphisms
of covers are defined over the collars, rather than only over the the boundaries.
This endows the glued cover with a well-defined smooth structure.

Definition 3.13. An extended 3d J-TFT is a symmetric monoidal 2-functor

Z : CobJ(1, 2, 3)→ 2VectK.

Just for the sake of completeness, we will also give a definition of non-
extended J-TFT. Therefore define the symmetric monoidal category CobJ(2, 3)
to be the endomorphism category of the monoidal unit ∅ in Cob(1, 2, 3). More
concretely, this category has as objects closed, oriented 2-manifolds with J-
cover and as morphisms J-cobordisms between them.

Definition 3.14. A (non-extended) 3d J-TFT is a symmetric monoidal
functor

CobJ(2, 3)→ VectK.

Similarly as in the non-equivariant case (Lemma 1.9), we get

Lemma 3.15. Let Z be an extended 3d J-TFT. Then Z|∅ is a (non-extended)
3d J-TFT.

Now we can state the main result of this section:
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Theorem 3.16. For a finite group G and a weak J-action on G, there is an
extended 3d J-TFT called ZJ

G which assigns the categories

VectK

(
AG(P → S)

)
=
[
AG(P → S),VectK

]
to 1-dimensional, closed oriented manifolds S with J-cover P → S.

We will give a proof of this theorem in the next sections. Having twisted
bundles at our disposal, the main ingredient will again be the 2-linearization
described in Section 2.3.

3.4 Construction via Spans

As in the case of ordinary Dijkgraaf-Witten theory, cf. Section 2.3, equiv-
ariant Dijkgraaf-Witten ZJ

G theory is constructed as the composition of the
symmetric monoidal 2-functors

ÃG : CobJ(1, 2, 3)→ Span and ṼK : Span→ 2VectK.

The second functor will be exactly the 2-linearization functor of proposition
2.9. Hence we can limit our discussion to the construction of the first functor
ÃG. As it will turn out, our definition of twisted bundles is set up precisely in
such a way that the construction of the corresponding functor in Proposition
2.7 can be generalized.

Our starting point is the following observation:

• The assignment (PM
J→ M) 7−→ AG(PM

J→ M) of twisted bundles
to a twist datum PM → M constitutes a contravariant 2-functor from
the category of manifolds with J-cover to the 2-category of groupoids.
Maps between manifolds with cover are mapped to the corresponding
pullback functors of bundles.

From this functor which is defined on manifolds of any dimension, we con-
struct a functor ÃG on J-cobordisms with values in the 2-category Span of
spans of groupoids, where the category Span is defined in section 2.3. To
an object in CobJ(1, 2, 3), i.e. to a J-cover PS → M , we assign the category
AG(PS → S) of J-covers. To a 1-morphism PS ↪→ PΣ ←↩ P ′S in CobJ(1, 2, 3),
we associate the span

AG(PS → S)← AG(PΣ → Σ)→ AG(PS′ → S ′) (III.22)

and to a 2-morphism of the type PΣ ↪→ PM ←↩ PΣ′ the span

AG(PΣ → Σ)← AG(PM →M)→ AG(PΣ′ → Σ′). (III.23)
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We have to show that this defines a symmetric monoidal functor ÃG :
CobJ(1, 2, 3)→ Span.
In particular, we have to show that the composition of morphisms is re-
spected.

Lemma 3.17. Let PΣ → Σ and PΣ′ → Σ′ be two 1-morphisms in CobJ(1, 2, 3)
which can be composed at the object PS → S to get the 1-morphism

PΣ ◦ PΣ′ :=
(
PΣ tPS×I PΣ′ → Σ tS×I Σ′

)
,

where I = [0, 1] is the standard interval. (Recall that we are gluing over
collars.) Then the category AG

(
PΣ◦PΣ′

)
is the weak pullback of AG(PΣ → Σ)

and AG(PΣ′ → Σ′) over AG(PS → S).

Proof. By definition the category

AG
(
PΣ ◦ PΣ′

)
has as objects twisted G-bundles over the 2-manifold Σ tS×I Σ′ =: N . The
manifold N admits an open covering N = U0 ∪ U1 with U0 = Σ \ S and
U1 = Σ′ \ S where the intersection is the cylinder U0 ∩ U1 = S × (0, 1). By
construction, the restrictions of the glued bundle PN → N to U0 and U1 are
given by PΣ \ PS and PΣ′ \ PS.
The natural inclusions U0 → Σ and U1 → Σ′ induce equivalences

AG(PΣ → Σ)
∼−→ AG(PN |U0 → U0)

AG(PΣ′ → Σ′)
∼−→ AG(PN |U1 → U1)

Analogously, we have an equivalence

AG
(
PN |U0∩U1 → U0 ∩ U1

) ∼−→ AG(PS → S) .

At this point, we have reduced the claim to an assertion about descent of
twisted bundles which we will prove in corollary 3.20. This corollary implies
thatAG(PN → N) is the weak pullback ofAG(PN |U0 → U0) andAG(PN |U1 →
U1) overAG

(
PN |U0∩U1

)
. Since weak pullbacks are invariant under equivalence

of groupoids, this shows the claim.

We now turn to the promised results about descent of twisted bundles. Let
P → M be a J-cover over a manifold M and {Uα} be an open covering of
M , where for the sake of generality we allow for arbitrary open coverings.
We want to show that twisted bundles can be glued together like ordinary
bundles; while the precise meaning of this statement is straightforward, we
briefly summarize the relevant definitions for the sake of completeness:
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Definition 3.18. Let P →M be a J-cover over a manifold M and {Uα} be
an open covering of M . The descent category Desc(Uα, P ) has

• Objects: families of P |Uα-twisted bundles Qα over Uα, together with iso-

morphisms of twisted bundles ϕαβ : Qα|Uα∩Uβ
∼−→ Qβ|Uα∩Uβ satisfying

the cocycle condition ϕαβ ◦ ϕβγ = ϕαγ.

• Morphisms: families of morphisms fα : Qα → Q′α of twisted bundles
such that over Uαβ we have ϕ′αβ ◦ (fα)|Uαβ = (fβ)|Uαβ ◦ ϕαβ.

Proposition 3.19 (Descent for twisted bundles). Let P → M be a J-cover
over a manifold M and {Uα} be an open covering of M . Then the groupoid
AG(P →M) is equivalent to the descent category Desc(Uα, P ).

Proof. Note that the corresponding statements are true for H-bundles and
for J-covers. Then the description in Definition 3.5 of a twisted bundle as an
H-bundle together with a morphism of the associated J-cover immediately
implies the claim.

Corollary 3.20. For an open covering of M by two open sets U0 and U1

the category AG(P → M) is the weak pullback of AG(P |U0 → U0) and
AG(P |U1 → U1) over AG(P |U0∩U1 → U0 ∩ U1).

In order to prove that the assignment (III.22) and (III.23) really promotes

AG to a symmetric monoidal functor ÃG : CobJ(1, 2, 3)→ Span, it remains
to show that AG preserves the monoidal structure.
Now a bundle over a disjoint union is given by a pair of bundles over each
component. Thus, for a disjoint union of J-manifolds P →M = (P1tP2)→
(M1 tM2), we have AG(P → M) ∼= AG(P1 → M1) × AG(P2 → M2). Note
that the manifolds M,M1 and M2 can also be cobordisms. The isomorphism
of categories is clearly associative and preserves the symmetric structure.
Together with lemma 3.17, this proves the next proposition.

Proposition 3.21. AG induces a symmetric monoidal functor

ÃG : CobJ(1, 2, 3)→ Span

which assigns the spans (III.22) and (III.23) to 2 and 3-dimensional cobor-
disms with J-cover.

3.5 Twisted Sectors and Fusion

We next proceed to evaluate the J-equivariant TFT ZJ
G constructed in the

last section on the circle, as we did in Section 2.4 for the non-equivariant
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TFT. We recall from Section 3.2 the fact that over the circle S1 we have for
each j ∈ J a standard cover Pj. The associated category

C(G)j := ZJ
G

(
Pj → S1

)
is called the j-twisted sector of the theory; the sector C(G)1 is called the
neutral sector. By Lemma 3.7, we have an equivalence AG(P1 → S1) ∼=
AG(S1); hence we get an equivalence of categories C(G)1

∼= C(G), where
C(G) is the category arising in the non-equivariant Dijkgraaf-Witten model,
we discussed in Section 2.4. We have already computed the twisted sectors
as abelian categories in Example 3.10 and note the result for future reference:

Proposition 3.22. For the j-twisted sector of equivariant Dijkgraaf-Witten
theory, we have an equivalence of abelian categories

C(G)j ∼= [Hj//G,VectK] ,

where Hj//G is the action groupoid given by the conjugation action of G
on Hj := π−1(j). More concretely, the category C(G)j is equivalent to the
category of Hj-graded vector spaces V =

⊕
h∈Hj Vh together with a G-action

on V such that
g.Vh ⊂ Vghg−1.

As a next step, we want to make explicit additional structure on the cate-
gories C(G)j coming from certain cobordisms. Therefore, consider the pair
of pants Σ(2, 1):

The fundamental group of Σ(2, 1) is the free group on two generators. Thus,

given a pair of group elements j, k ∈ J , there is a J-cover P
Σ(2,1)
j,k → Σ(2, 1)

which restricts to the standard covers Pj and Pk on the two ingoing bound-
aries and to the standard cover Pjk on the outgoing boundary circle. (To
find a concrete construction, one should fix a parametrization of the pair of
pants Σ(2, 1).) The cobordism P

Σ(2,1)
j,k is a morphism

P
Σ(2,1)
j,k :

(
Pj → S1

)
t
(
Pk → S1

)
−→

(
Pjk → S1

)
(III.24)

in the category CobJ(1, 2, 3). Applying the equivariant TFT-functor ZJ
G

yields a functor
⊗jk : C(G)j � C(G)k −→ C(G)jk.
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We describe this functor in terms of the equivalent categories of graded vector
spaces as a functor

Hj//G-mod×Hk//G-mod→ Hjk//G-mod .

Proposition 3.23. For V =
⊕

h∈Hj Vh ∈ Hj//G-mod and W =
⊕

Wh ∈
Hk//G-mod the product V ⊗jk W ∈ Hjk//G-mod is given by

(V ⊗jk W )h =
⊕
st=h

Vs ⊗Wt

together with the action g.(v ⊗ w) = g.v ⊗ g.w.

Proof. As a first step we have to compute the span ÃG(P
Σ(2,1)
j,k ) associated to

the cobordism PH
j,k. From the description of twisted bundles in Proposition

3.8 and the fact that the fundamental group of Σ(2, 1) is the free group on
two generators, we derive the following equivalence of categories:

AG
(
P

Σ(2,1)
jk → Σ(2, 1)

) ∼= (Hj ×Hk)//G .

Here we have Hj×Hk = {(h, h′) ∈ H×H | π(h) = j, π(h′) = k}, on which G
acts by simultaneous conjugation. This leads to the span of action groupoids

Hj//G×Hk//G←− (Hj ×Hk)//G −→ Hjk//G

where the left map is given be projection to the factors and the right hand
map by multiplication. Applying the 2-linearization functor ṼK from Propo-
sition 2.9 amounts to computing the corresponding pull-push functor. This
yields the result.

Next, we consider the 2-manifold Σ(1, 1) given by the cylinder over S1, i.e.
Σ(1, 1) = S1 × I:

There exists a cover P
Σ(1,1)
j,x → Σ(1, 1) for j, x ∈ J that restricts to Pj on

the ingoing circle and to Pxjx−1 on the outgoing circle. The simplest way
to construct such a cover is to consider the cylinder Pxjx−1 × I → S1 × I

and to use the identification of P
Σ(1,1)
j,x over (a collaring neighborhood of) the

outgoing circle by the identity and over the ingoing circle the identification



Equivariant Dijkgraaf-Witten Theory 67

by the morphism PΣ(1,1)|S1×1 = Pj → Px−1jx given by conjugation with x. In
this way, we obtain a cobordism that is a 1-morphism

P
Σ(1,1)
j,x : (Pj → S1) −→ (Pxjx−1 → S1) (III.25)

in the category CobJ(1, 2, 3) and hence induces a functor

φx : C(G)j → C(G)xjx−1 .

We compute the functor on the equivalent action groupoids explicitly:

Proposition 3.24. The image under φx of an object V =
⊕

Vh ∈ Hj//G-mod
is the graded vector space with homogeneous component

φx(V )h = Vs(x−1)hs(x−1)−1

for h ∈ Hxjx−1 and with G-action on v ∈ Vh given by s(x−1)gs (x−1)
−1 · v.

Proof. As before we compute the span ÃG(P
Σ(1,1)
j,x ). Using explicitly the

equivalence given in the proof of proposition 3.8, we obtain the span of action
groupoids

Hj//G← Hxjx−1//G→ Hxjx−1//G

where the right-hand map is the identity and the left-hand map is given by

(h, g) 7→
(
s(x−1)hs(x−1)−1, s(x−1)gs(x−1)−1

)
.

Computing the corresponding pull-push functor, which here in fact only con-
sists of a pullback, shows the claim.

Finally we come to the structure corresponding to the braiding of section
2.4. Note that the cobordism that interchanges the two ingoing circles of the
pair of pants Σ(2, 1), as in the following picture,
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can also be realized as the diffeomorphism F : Σ(2, 1)→ Σ(2, 1) of the pair of
pants that rotates the ingoing circles counterclockwise around each other and
leaves the outgoing circle fixed. In this picture, we think of the cobordism
as the cylinder Σ(2, 1) × I where the identification with Σ(2, 1) on the top
is the identity and on the bottom is given by the diffeomorphism F . More
explicitly, denote by τ : S1×S1 → S1×S1 the map that interchanges the two
copies. We then again consider the following diagram (the same as diagram
III.11 ) in the 2-category Cob(1, 2, 3):

� _

��

- 

;;

� q

##

Q1

bb

mM

||?�

OO

Our next task is to lift this situation to manifolds with J-covers. On the
ingoing pair of pants, we take the J cover P

Σ(2,1)
jk . We denote the symmetry

isomorphism in CobJ(1, 2, 3) by τ as well. Applying the diffeomorphism of
the pair of pants explicitly, one sees that the outgoing pair of pants will have
monodromies jkj−1 and j on the ingoing circles. Hence we have to apply a
J-cover P

Σ(1,1)
j,k of the cylinder Σ(1, 1) first to one insertion. The next lemma

asserts that then the 2-morphism in CobJ(1, 2, 3) is fixed:

Lemma 3.25. In the 2-category CobJ(1, 2, 3), there is a unique 2-morphism

F̂ : P
Σ(2,1)
j,k =⇒

(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
id t PΣ(1,1)

j,k

)
that covers the 2-morphism F in Cob(1, 2, 3).

Proof. First we show that a morphism F̃ : P
Σ(2,1)

jkj−1,j → P
Σ(2,1)
j,k can be found

that covers the diffeomorphism F : Σ(2, 1)→ Σ(2, 1). This morphism is most
easily described using the action of F on the fundamental group π1(Σ(2, 1)) of
the pair of pants. The latter is a free group with two generators which can be
chosen as the paths a, b around the two ingoing circles, π1(Σ(2, 1)) = Z∗Z =
〈a, b〉. Then the induced action of F on the generators is π1(F )(a) = aba−1
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and π1(F )(b) = a. Hence, we find on the covers F ∗Pj,k ∼= Pjkj−1,j. This

implies that we have a diffeomorphism F̃ : Pjkj−1,j → Pj,k covering F .

To extend F̃ to a 2-morphism in CobJ(1, 2, 3), we have to be a bit careful

about how we consider the cover P
Σ(2,1)

jkj−1,j → Σ(2, 1) of the pair of pants
as a 1-morphism. In fact, it has to be considered as a morphism (Pj →
S1) t (Pk → S1) −→ (Pjk → S1) where the ingoing components are first
exchanged and then the identification of Pk → S1 and Pjkj−1 → S1 via the

conjugation isomorphisms P
Σ(1,1)
j,k induced by covers of the cylinders is used

first, compare the lower arrows in the preceding commuting diagram. This
yields the composition

(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
idtPΣ(1,1)

j,k

)
on the right hand side of

the diagram.

The next step is to apply the TFT functor ZJ
G to the 2-morphism F̂ . The tar-

get 1-morphism of F̂ can be computed using the fact that ZJ
G is a symmetric

monoidal 2-functor; we find the following functor C(G)j ⊗ C(G)k → C(G)jk:

ZJ
G

((
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
id t PΣ(1,1)

j,k

))
= (−)j ⊗opjkj−1,j (−)

We thus have the functor which acts on objects as (V,W ) 7→ φj(W )⊗ V for
V ∈ C(G)j and W ∈ C(G)k.

Then c := ZJ
G(F̂ ) is a natural transformation (−)⊗j,k (−) =⇒ (−)j ⊗opjkj−1,j

(−) i.e. a family of isomorphisms

cV,W : V ⊗j,k W
∼−→ φj(W )⊗jkj−1,j V (III.26)

in C(G)jk for V ∈ C(G)j and W ∈ C(G)k.
We next show how this natural transformation is expressed when we use the
equivalent description of the categories C(G)j as vector bundles on action
groupoids:

Proposition 3.26. For V =
⊕

Vh ∈ Hj//G-mod and W =
⊕

Wh ∈
Hk//G-mod the natural isomorphism cV,W : V ⊗W → φj(W ) ⊗ V is given
by

v ⊗ w 7→ (s(j−1)h).w ⊗ v
for v ∈ Vh with h ∈ Hj and w ∈ W .

Proof. We first compute the 1-morphism in the category Span of spans of
finite groupoids that corresponds to the target 1-morphism

(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦(

idtPΣ(1,1)
j,k

)
. From the previous proposition, we obtain the following zig-zag

diagram:

Hj//G×Hk//G← Hjkj−1//G×Hj//G← (Hjkj−1 ×Hk)//G→ Hjk//G .



70 Equivariant Modular Categories via Dijkgraaf-Witten Theory

The first morphism is given by the morphisms implementing the J-action
that has been computed in the proof of proposition 3.24, composed with
the exchange of factors. The second 1-morphism is obtained from the two
projections and the last 1-morphism is the product in the group H.
Thus, the 2-morphism F̂ from Lemma 3.25 yields a 2-morphism F̂G in the
diagram

Hj ×Hk//G

rr **
F̂G

��

Hj//G×Hk//G Hjk//G

Hjkj−1//G×Hj//G

jj

(Hjkj−1 ×Hj)//Goo

44

where F̂G is induced by the equivariant map (h, h′) 7→ (hh′h−1, h). Once the
situation is presented in this way, one can carry out explicitly the calculation
along the lines described in [Mor10, Section 4.3] and obtain the result.

A similar discussion can in principle be carried out to compute the associ-
ators. More generally, structural morphisms on H//G-mod can be derived
from suitable 3-cobordisms. The relevant computations become rather in-
volved. On the other hand, the category H//G-mod also inherits structural
morphisms from the underlying category of vector spaces. We will use in the
sequel the latter type of structural morphism.

4 Equivariant Drinfel’d Double

The goal of this section is to show that the category CJ(G) :=
⊕

j∈J C(G)j
comprising the categories we have constructed in proposition 3.22 has a nat-
ural structure of a J-modular category.

4.1 The Equivariant Braided Structure

Let

1→ G→ H
π→ J → 1 (III.27)

be an exact sequence of finite groups. The normal subgroup G acts on H
by conjugation; denote by H//G the corresponding action groupoid. We
consider the functor category H//G-mod := [H//G,VectK]. The category
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H//G-mod is the category ofH-graded vector spaces, endowed with an action
of the subgroup G such that g.Vh ⊂ Vghg−1 for all g ∈ G, h ∈ H.
An immediate corollary of proposition 3.22 is the following description of the
category CJ(G) :=

⊕
j∈J C(G)j as an abelian category:

Proposition 4.1. The category CJ(G) is equivalent, as an abelian category,
to the category H//G-mod. In particular, the category CJ(G) is a 2-vector
space in the sense of definition 1.2.

Proof. With Hj := π−1(j), Proposition 3.22 gives the equivalence C(G)j ∼=
Hj//G-mod of abelian categories. The equivalence of categories CJ(G) ∼=
H//G-mod now follows from the decomposition H =

⊔
j∈J Hj. By [Mor08,

Lemma 4.1.1], the representation category of a finite groupoid is a 2-vector
space.

Representation categories of finite groupoids are very close in structure to
representation categories of finite groups. In particular, there is a complete
character theory that describes the simple objects, see Appendix 6.2.
The category H//G-mod has a natural structure of a monoidal category: the
tensor product of two objects V = ⊕h∈HVh and W = ⊕h∈HWh is the vector
space V ⊗W with H grading given by (V ⊗W )h := ⊕h1h2=hVh1 ⊗Wh2 and
G action given by g.(v ⊗w) = g.v ⊗ g.w. The associators are inherited from
the underlying category of vector spaces.

Proposition 4.2. Consider the exact sequence (III.27) of finite groups. Any
choice of a a set-theoretic section s : J → H allows us to endow the abelian
category H//G-mod with the structure of a J-equivariant tensor category as
follows: the functor φj is given by shifting the grading from h to s(j)hs(j)−1

and replacing the action by g by the action of s(j)gs(j)−1. The isomorphism
αi,j : φi ◦ φk → φij is given by left action of the element

αi,j = s(i)s(j)s(ij)−1 .

The fact that the action is only a weak action thus accounts for the failure
of s to be a section in the category of groups.

Proof. Only the coherence conditions αij,k ◦ αi,j = αi,jk ◦ φi(αj,k) remain to
be checked. By the results of Dedecker and Schreier, cf. proposition 3.3, the
group elements s(i)s(j)s(ij)−1 ∈ G are the coherence cells of a weak group
action of J on H. By definition 3.1, this implies the coherence identities,
once one takes into account that that composition of functors is written in
different order than group multiplication.
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In subsection 3.5 we derived more structure on the geometric category CJ(G) =⊕
j∈J C(G)j from the geometry of extended cobordism categories. In partic-

ular, from the pair of pants, we get functors ⊗jk : C(G)j � C(G)k → C(G)jk,
spelled out explicitly in proposition 3.23, which we collect into a functor

⊗ : C � C → C. (III.28)

Another structure are the isomorphisms V ⊗W → φj(W )⊗V for V ∈ C(G)j,
described in proposition 3.26. Together with the associators, this suggests to
endow the category CJ(G) with a structure of a braided J-equivariant tensor
category:

Remark 4.3. The J-equivariant monoidal category H//G-mod has a natural
braiding isomorphism that has been described in proposition 3.26

We use the equivalence of abelian categories between CJ(G) =
⊕

j∈J C(G)j
and H//G-mod to endow the category CJ(G) =

⊕
j∈J C(G)j with associators.

The category has now enough structure so that we can state our next result:

Proposition 4.4. The category CJ(G) =
⊕

j∈J C(G)j, with the tensor prod-
uct functor from (III.28), can be endowed with the structure of a braided J-
equivariant tensor category such that the isomorphism CJ(G) =

⊕
j∈J C(G)j ∼=

H//G-mod becomes an isomorphism of braided J-equivariant tensor cate-
gories.

Proof. The compatibility with the grading is implemented by definition via
the graded components ⊗jk of ⊗ and the graded components of cV,W . It
remains to check that the action is by tensor functors and that the braiding
satisfies the hexagon axiom. The second boils down to a simple calculation
and the first is seen by noting that the action is essentially an index shift
which is preserved by tensoring together the respective components.

4.2 Equivariant Drinfel’d Double

In order to identify the structure of a J-modular tensor category on the
geometric category CJ(G) =

⊕
j∈J C(G)j, we need in addition dualities and

a twist.
We will not be able to directly endow the geometric category CJ(G) =⊕

j∈J C(G)j with the structure of a J-equivariant ribbon category. Rather,
we will realize an equivalent category as the category of modules over a suit-
able algebra.
Explicitly, we want to construct a J-ribbon algebra given a finite group G
with a weak J-action, such that our found category is the representation
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category of this algebra and then use Proposition 2.18 of Chapter I.

We start from the well-known fact reviewed in Section 1 of Chapter II that
the Drinfel’d double D(H) of the finite group H is a ribbon Hopf algebra.
The double D(H) has a canonical basis (δh⊗ g) indexed by pairs of elements
g, h ∈ H. Let G ⊂ H be a subgroup. We are interested in the vector subspace
DJ(G) spanned by the basis vectors (δh ⊗ g) with h ∈ H and g ∈ G.

Lemma 4.5. The structure maps of the Hopf algebra D(H) restrict to the
vector subspace DJ(G) in such a way that the latter is endowed with the
structure of a Hopf subalgebra.

The Drinfel’d doubleD(H) of a groupH has the structure of a ribbon algebra.
However, neither the R-matrix nor the the ribbon element yield an R-matrix
or a ribbon element of DJ(G) ⊂ D(H). Rather, this Hopf subalgebra can
be endowed with the structure of a J-ribbon Hopf algebra as in Definition
2.16 of Chapter I. To this end, consider the partition of the group H into the
subsets Hj := π−1(j) ⊂ H, where π is the projection H → J in the exact
sequence (III.27) It gives a J-grading of the algebra DJ(G) as a direct sum
of subalgebras:

DJ(G)j := 〈δh ⊗ g〉h∈Hj ,g∈G .

The set-theoretical section s gives a weak action of J on DJ(G) that can be
described by its action on the canonical basis of DJ(G)j:

ϕj(δh ⊗ g) := (δs(j)hs(j)−1 ⊗ s(j)gs(j)−1) ;

the coherence elements are

cij :=
∑
h∈H

δh ⊗ s(i)s(j)s(ij)−1 .

Proposition 4.6. The Hopf algebra DJ(G), together with the grading and
weak J-action derived from the weak J-action on the group G, has the struc-
ture of a J-Hopf algebra.

Proof. It only remains to check the compatibility relations of grading and
weak J-action with the Hopf algebra structure that have been formulated in
definition 2.13. The fact that ϕi(DJ(G)j) ⊂ DJ(G)iji−1 is immediate, since
s(i)Hjs(i

−1) ⊂ Hiji−1 . The axioms are essentially equivalent to the property
that conjugation commutes with the product and coproduct of the Drinfel’d
double.
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We now turn to the last piece of structure, an R-matrix and a twist ele-
ment in DJ(G). Consider the element R =

∑
ij Ri,j ∈ DJ(G)⊗DJ(G) with

homogeneous elements Ri,j defined as

Ri,j :=
∑

h1∈Hi,h2∈Hj

(δh1 ⊗ 1)⊗ (δh2 ⊗ s(i−1)h1). (III.29)

(Note that π(s(i−1)h1) = 1 for h1 ∈ Hi and thus s(i−1)h1 ∈ G.)
The element Ri,j is invertible with inverse

R−1
i,j =

∑
h1∈Hi,h2∈Hj

(δh1 ⊗ 1)⊗ (δh2 ⊗ h−1
1 s(i−1)−1).

We also introduce a twist element θ =
∑

j∈J θj ∈ DJ(G) with

θ−1
j :=

∑
h∈Hj

δh ⊗ s
(
j−1
)
h ∈ DJ(G)j (III.30)

for every element j ∈ J .

Proposition 4.7. The elements R and θ endow the J-Hopf algebra DJ(G)
with the structure of a J-ribbon algebra that we call the J-Drinfel’d double of
G.

Proof. By Definition 2.16 we have to check that the induced transformations
on the level of categories satisfy the axioms for a braiding and a twist. We
first compute the induced braiding by using the R-matrix given in (III.29):
For V ∈ (DJ(G)-mod)j = DJ(G)j-mod and W ∈ DJ(G)-mod, we get the
linear map

cV,W : V ⊗W → jW ⊗ V
v ⊗ w 7→ s(j−1)h.w ⊗ v for v ∈ Vh

First of all, we show that this is a morphism in DJ(G)-mod. Let v ∈
Vh and w ∈ Wh′ . We have v ⊗ w ∈ (V ⊗ W )hh′ and cV,W (v ⊗ w) =
s(j−1)h.w ⊗ v ∈ (jW ⊗ V )hh′ , since the element s(j−1)h.w is in the com-
ponent (s(j−1)hh′h−1s(j−1)−1) of W which is the component hh′h−1 of jW .
So cV,W respects the grading. As for the action of G, we observe that for
g ∈ G, the element g.v lies in the component Vghg−1 , and so

cV,W (g.(v ⊗ w)) =
(
s(j−1)ghg−1

)
g.w ⊗ g.v = s(j−1)gh.w ⊗ g.v

g.cV,W (v ⊗ w) =
(
s(j−1)gs(j−1)−1

)
s(j−1)h.w ⊗ g.v = s(j−1)gh.w ⊗ g.v
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which shows that cV,W commutes with the action of G.
Furthermore, it needs to be checked, that cV,W satisfies the hexagon axioms
(I.3) and (I.4), which in our case reduce to the two diagrams

U ⊗ V ⊗W
cU⊗V,W //

idU⊗cV,W
��

ijW ⊗ U ⊗ V

U ⊗j W ⊗ V
c
U,jW

⊗idV
// i(jW )⊗ U ⊗ V

αi,j⊗idU

OO

and

U ⊗ V ⊗W
cU,V⊗W //

cU,V ⊗idW
��

iV ⊗iW ⊗ U

iV ⊗ U ⊗W
idiV ⊗cU,W

44

where U ∈ Ci, V ∈ Cj and we suppressed the canonical associators inDJ(G)-mod.
And at last we need to check the compatibility of the braiding and the J-
action, i.e. diagram (I.5). All of that can be proven by straightforward
calculations, which show, that the morphism induced by the element R is
really a braiding in the module category.
We now compute the morphism given by the action with the inverse twist
element (III.30). For V ∈ (DJ(G)-mod)j = DJ(G)j-mod we get the linear
map:

θV : V → jV

v 7→ s(j−1)h.v

for v ∈ Vh. This map is compatible with the H-grading since for v ∈ Vh, we
have s(j−1)h.v ∈ Vs(j−1)hs(j−1)−1 = (jV )h and it is also compatible with the
G-action, since

θV (g.v) = s(j−1)(ghg−1)g.v = s(j−1)gh.v

g.θV (v) =
(
s(j−1)gs(j−1)−1

)
s(j−1)h.v = s(j−1)gh.v

So the induced map is a morphism in the category DJ(G). In order to
proof that it is a twist, we have to check the commutativity of diagrams
(I.6)-(I.8) as well as for every i, j ∈ J and object V in the component j, the
commutativity of the diagrams This again can be checked by straightforward
calculation.
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We are now ready to come back to the J-equivariant tensor category CJ(G) =⊕
j∈J C(G)j described in Proposition 4.4. From this proposition, we know

that the category CJ(G) is equivalent to H//G-mod ∼= DJ(G)-mod as a
J-equivariant tensor category. Also J-action and tensor product coincide
with the ones on DJ(G)-mod. Moreover, the equivariant braiding of CJ(G)
computed in proposition 3.26 coincides with the braiding onDJ(G) computed
in the proof of the last proposition 4.7.

This allows us to transfer also the other structure on the representation
category of the J-Drinfel’d double DJ(G) described in proposition 4.7 to the
category CJ(G):

Proposition 4.8. The J-equivariant tensor category CJ(G) =
⊕

j∈J C(G)j
described in Proposition 4.4 can be endowed with the structure of a J-premodular
category such that it is equivalent, as a J-premodular category, to the category
DJ(G)-mod.

Remark 4.9. At this point, we have constructed in particular a J-equivariant
braided fusion category CJ(G) =

⊕
j∈J C(G)j (see [ENO10]) with neutral

component C(G)1
∼= D(G)-mod from a weak action of the group J on the

group G, or in different words, from a 2-group homomorphisms J → AUT(G)
with AUT(G) the automorphism 2-group of G.

In this remark, we very briefly sketch the relation to the description of J-
equivariant braided fusion categories with given neutral sector B in terms of
3-group homomorphisms J → Pic(B) given in [ENO10]. Here Pic(B) denotes
the so called Picard 3-group whose objects are invertible module-categories of
the category B. The group structure comes from the tensor product of module
categories which can be defined since the braiding on B allows to turn module
categories into bimodule categories.

Using this setting, we give a description of our J-equivariant braided fusion
category DJ(G)-mod in terms of a functor Ξ : J → Pic(D(G)). To this end,
we construct a 3-group homomorphism AUT(G) → Pic(D(G)) and write Ξ
as the composition of this functor and the functor J → AUT(G) defining the
weak J-action.

The 3-group homomorphism AUT(G) → Pic(D(G)) is given as follows: to
an object ϕ ∈ AUT(G) we associate the twisted conjugation groupoid G//ϕG,
where G acts on itself by twisted conjugation, g.x := gxϕ(g)−1. This yields
the category G//ϕG-mod := [G//ϕG,VectK] which is naturally a module
category over D(G)-mod. Morphisms ϕ→ ψ in AUT(G) are given by group
elements g ∈ G with gϕg−1 = ψ; to such a morphism we associate the
functor Lg : G//ϕG → G//ψG given by conjugating with g ∈ G on objects
and morphisms. This induces functors of module categories G//ϕG-mod →
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G//ψG-mod. Natural coherence data exists; one then shows that this really
establishes the desired 3-group homomorphism.

4.3 Equivariant Modularity

It remains to show that the J-equivariant ribbon category CJ(G) =
⊕

j∈J C(G)j
described in 4.7 is J-modular. To this end, we will use the orbifold category
of the J-equivariant category as defined in Definition 2.20 of Chapter 1.

Recall that we gave the definition of J-modularity of a category in terms
of modularity of its orbifold category (Definition 2.22 of Chapter I). Our
problem is thus reduced to showing modularity of the orbifold category of
DJ(G)-mod.

We will therefore show in this subsection that the orbifold category of the
J-equivariant ribbon category CJ(G)-mod is J-modular.

Since we have already seen in Corollary 2.28 of Chapter I that the orbifold
category is equivalent, as a ribbon category, to the representation category of
the orbifold Hopf algebra, it suffices to compute this Hopf algebra explicitly.
Our final result asserts that this Hopf algebra is an ordinary Drinfel’d double:

Proposition 4.10. The K-linear map

Ψ : D̂J(G)
J

→ D(H)

(δh ⊗ g ⊗ j) 7→ (δh ⊗ gs(j))
(III.31)

is an isomorphism of ribbon algebras, where the Drinfel’d double D(H) is
taken with the standard ribbon structure introduced in Section 1 of Chapter
II.

This result immediately implies the equivalence

(D̂J(G)-mod)J ∼= D(H)-mod

of ribbon categories and thus, by Proposition 2.17, the modularity of the
orbifold category, so that we have finally proven:

Theorem 4.11. The category CJ(G) =
⊕

j∈J C(G)j has a natural structure
of a J-modular tensor category.

Proof of proposition 4.10. We show by direct computations that the linear
map Ψ preserves product, coproduct, R-matrix and twist element:
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• Compatibility with the product:

Ψ((δh ⊗ g ⊗ j)(δ′h ⊗ g′ ⊗ j′)) = Ψ((δh ⊗ g) · j(δ′h ⊗ g′)cj,j′ ⊗ jj′)

= Ψ

(
(δh ⊗ g) · (δs(j)h′s(j)−1 ⊗ s(j)g′s(j)−1) ·

∑
h′′∈H

(δh′′ ⊗ s(j)s(j′)s(jj′)−1)⊗ jj′
)

= Ψ
(
δ(h, gs(j)hs(j)−1g−1)(δh ⊗ gs(j)g′s(j′)s(jj′)−1)⊗ jj′

)
= δ(h, gs(j)hs(j)−1g−1)(δh ⊗ gs(j)g′s(j′))
= (δh ⊗ gs(j)) · (δh′ ⊗ g′s(j′))
= Ψ(δh ⊗ g ⊗ j)Ψ(δh′ ⊗ g′ ⊗ j′)

• Compatibility with the coproduct:

(Ψ⊗Ψ)∆(δh ⊗ g ⊗ j) =
∑

h′h′′=h

Ψ(δh′ ⊗ g ⊗ j)⊗Ψ(δh′′ ⊗ g ⊗ j)

=
∑

h′h′′=h

(δh′ ⊗ gs(j))⊗ (δh′′ ⊗ gs(j))

= ∆ (Ψ(δh ⊗ g ⊗ j))

• The R-matrix of the orbifold algebra D̂J(G)
J

can be determined using
the lines preceding Corollary 2.28 and the definition of the R-Matrix
of DJ(G) given in (III.29):

R =
∑
j,j′∈J

∑
h∈Hj ,h′∈Hj′

(δh⊗1G⊗1J)⊗ (1⊗1G⊗ j−1)−1(δh′⊗s(j−1)h⊗1J)

This implies

(Ψ⊗Ψ)(R) =
∑
j,j′∈J

∑
h∈Hj ,h′∈Hj′

Ψ(δh ⊗ 1G ⊗ 1J)⊗Ψ(1⊗ 1G ⊗ j−1)−1

·Ψ(δh′ ⊗ s(j−1)h⊗ 1J)

=
∑
j,j′∈J

∑
h∈Hj ,h′∈Hj′

(δh ⊗ 1H)⊗ (1⊗ s(j−1)−1) · (δh′ ⊗ s(j−1)h)

=
∑

h h′∈H

(δh ⊗ 1)⊗ (δh′ ⊗ h),

which is the standard R-matrix of the Drinfel’d double D(H).
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• The twist in D̂J(G)
J

is by corollary 2.28 equal to

θ−1 =
∑
j∈J

∑
h∈Hj

(δh ⊗ s(j−1)h⊗ 1J)

and thus it gets mapped to the element

Ψ(θ−1) =
∑
j∈J

∑
h∈Hj

Ψ(1⊗ 1G ⊗ j−1)−1Ψ(δh ⊗ s(j−1)h⊗ 1J)

=
∑
j∈J

∑
h∈Hj

(1⊗ s(j−1)−1) · (δh ⊗ s(j−1)h)

=
∑
h∈H

(δh ⊗ h)

which is the inverse of the twist element in D(H).

4.4 Summary of all Tensor Categories involved

We summarize our findings by discussing again the four tensor categories
mentioned in the introduction, in the square of equation (III.1), thereby
presenting the explicit solution of the algebraic problem described in section
1.1. Given a finite group G with a weak action of a finite group J , we
get an extension 1 → G → H → J → 1 of finite groups, together with a
set-theoretic section s : J → H.

Proposition 4.12.
We have the following natural realizations of the categories in question in
terms of categories of finite-dimensional representations over finite-dimensional
ribbon algebras:

1. The premodular category introduced in [Ban10] is B(G/H)-mod. As an
abelian category, it is equivalent to the representation category G//H-mod
of the action groupoid G//H, i.e. to the category of G-graded K-vector
spaces with compatible action of H.

2. The modular category obtained by modularization is D(G)-mod. As an
abelian category, it is equivalent to G//G-mod.

3. The J-modular category constructed in this chapter is DJ(G)-mod. As
an abelian category, it is equivalent to H//G-mod.
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4. The modular category obtained by orbifolding from the J-modular cat-
egory D(G)-mod is equivalent to D(H)-mod. As an abelian category,
it is equivalent to H//H-mod.

Equivalently, the diagram in equation (III.1), has the explicit realization:

D(G)-mod

orbifold

��

J

		
� � // DJ(G)-mod

J





orbifold

��
B(G / H)-mod

modularization

OO

� � // D(H)-mod

OO
(III.32)

We could have chosen the inclusion in the lower line as an alternative start-
ing point for the solution of the algebraic problem presented in introduction
1.1. Recall from the introduction that the category B(G / H)-mod contains
a Tannakian subcategory that can be identified with the category of repre-
sentations of the quotient group J = H/G. The Tannakian subcategory and
thus the category B(G / H)-mod contain a commutative Frobenius algebra
given by the algebra of functions on J ; recall that the modularization func-
tion was just induction along this algebra. The image of this algebra under
the inclusion in the lower line yields a commutative Frobenius algebra in the
category D(H)-mod. In a next step, one can consider induction along this
algebra to obtain another tensor category which, by general results [Kir04,
Theorem 4.2] is a J-modular category.
In this approach, it remains to show that this J-modular tensor category is
equivalent, as a J-modular tensor category, to DJ(G)-mod and, in a next
step that the modularization D(G)-mod can be naturally identified with the
neutral sector of the J-modular category. This line of thought has been dis-
cussed in [Kir01, Lemma 2.2] including the square (III.32) of Hopf algebras.
Our results directly lead to a natural Hopf algebra DJ(G) and additionally
show how the various categories arise from extended topological field theories
which are built on clear geometric principles and through which all additional
structure of the algebraic categories become explicitly computable.

5 Outlook

Our results very explicitly provide an interesting class J-modular tensor cat-
egories. All data of these theories, including the representations of the mod-
ular group SL(2,Z) on the vector spaces assigned to the torus, are directly
accessible in terms of representations of finite groups. Also series of examples
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exist in which closed formulae for all quantities can be derived, e.g. for the
inclusion of the alternating group in the symmetric group.
Our results admit generalizations in various directions. In fact, in this chap-
ter, we have only studied a subclass of Dijkgraaf-Witten theories. The gen-
eral case requires, apart from the choice of a finite group G, the choice of an
element of

H3
Gp(G,U(1)) = H4(AG,Z) .

This element can be interpreted [Wil08] geometrically as a 2-gerbe on AG. It
is known that in this case a quasi-triangular Hopf algebra can be extracted
that is exactly the one discussed in [DPR90]. Indeed, our results can also be
generalized by including the additional choice of a non-trivial element

ω ∈ H4
J(AG,Z) ≡ H4(AG//J,Z) .

Only all these data together allow to investigate in a similar manner the cat-
egories constructed by Bantay [Ban10] for crossed modules with a boundary
map that is not necessarily injective any longer. We plan to explain this
general case in a subsequent publication.

6 Appendix

6.1 Cohomological Description of Twisted Bundles

In this appendix, we give a description of P -twisted bundles as introduced
in definition 3.5 in terms of local data. This local description will also serve
as a motivation for the term ‘twisted’ in twisted bundles. Recall the rel-
evant situation: 1 → G → H

π→ J → 1 is an exact sequence of groups.

Let P
J→ M be a J-cover. A P -twisted bundle on a smooth manifold M is

an H-bundle Q → M , together with a smooth map ϕ : Q → P such that
ϕ(qh) = ϕ(q)π(h) for all q ∈ Q and h ∈ H.

We start with the choice of a contractible open covering {Uα} of M , i.e. a
covering for which all open sets Uα are contractible. Then the J-cover P
admits local sections over Uα. By choosing local sections sα, we obtain the
cocycle

jαβ := s−1
α · sβ : Uα ∩ Uβ → J

describing P .
Let (Q,ϕ) be a P -twisted G-bundle over M . We claim that we can find local
sections

tα : Uα → Q
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of the H-bundle Q which are compatible with the local section of the J-cover
P in the sense that ϕ ◦ tα = sα holds for all α.
To see this, consider the map ϕ : Q → P ; restricting the H-action on Q
along the inclusion G→ H, we get a G-action on Q that covers the identity
on P . Hence Q has the structure of a G-bundle over P . Note that the image
of sα is contractible, since Uα is contractible. Thus the G-bundle Q → P
admits a section s′α over the image of sα. Then tα := s′α ◦ sα is a section of
the H-bundle Q→M that does the job.
With these sections tα : Uα → Q, we obtain the cocycle description

hαβ := t−1
α · tβ : Uα ∩ Uβ → H

of Q.
The set underlying the group H is isomorphic to the set G×J . The relevant
multiplication on this set depends on the choice of a section J → H; it has
been described in equation (III.21):

(g, i) · (g′, j) :=
(
g · i(g′) · ci,j , ij

)
.

This allows us to express the H-valued cocycles hαβ in terms of J-valued and
G-valued functions

gαβ : Uα ∩ Uβ → G .

By the condition ϕ◦tα = sα, the J-valued functions are determined to be the
J-valued cocycles jαβ. Using the multiplication on the set G×J , the cocycle
condition hαβ · hβγ = hαγ can be translated into the following condition for
gαβ

gαβ · jβγ
(
gβγ
)
· cjαβ ,jβγ = gαγ (III.33)

over Uα ∩ Uβ ∩ Uγ. This local expression can serve as a justification of the
term P -twisted G-bundle.

We next turn to morphisms. A morphism f between P -twisted bundles
(Q,ϕ) and (Q′, ψ) which are represented by twisted cocycles gαβ and g′αβ is
represented by a coboundary

lα := (t′α)−1 · f(tα) : Uα → H

between the H-valued cocycles hαβ and h′αβ. Since f satisfies ψ ◦ f = ϕ,
the J-component π ◦ lα : Uα → H → J is given by the constant function to
e ∈ J . Hence the local data describing the morphism f reduce to a family of
functions

kα : Uα → G.
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Under the multiplication (III.21), the coboundary relation lα · hαβ = h′αβ · lβ
translates into

kα · e
(
gαβ
)
· ce,jαβ = g′αβ · jαβ

(
kβ
)
· cjαβ ,e

One can easily conclude from the definition 3.1 of a weak action that eg = g
and ce,g = cg,e = e for all g ∈ G. Hence this condition reduces to the
condition

kα · gαβ = g′αβ · jαβ
(
kβ
)
. (III.34)

We are now ready to present a classification of P -twisted bundles in terms
of Čech-cohomology.
Therefore we define the relevant cohomology set:

Definition 6.1. Let
{
Uα
}

be a contractible cover of M and (jαβ) be a Čech-
cocycle with values in J .

• A (jαβ)-twisted Čech-cocycle is given by a family

gαβ : Uα ∩ Uβ → G

satisfying relation (III.33).

• Two such cocycles gαβ and g′αβ are cobordant if there exists a cobound-
ary, that is a family of functions ka : Uα → G satisfying relation
(III.34).

• The twisted Čech-cohomology set Ȟ1
jαβ

(M,G) is defined as the quotient
of twisted cocycles modulo coboundaries.

Warning 6.2. It might be natural to guess that twisted Čech-cohomology
Ȟ1
jαβ

(M,G) agrees with the preimage of the class [jαβ] under the map π∗ :

Ȟ1(M,H)→ Ȟ1(M,J). This turns out to be wrong: The natural map

Ȟ1
jαβ

(M,G) → Ȟ1(M,H)

[gαβ] 7→ [(gα,β, jαβ)] ,

is, in general, not injective. The image of this map is always the fiber
π∗
−1[jαβ].

We summarize our findings:

Proposition 6.3. Let P be a J-cover of M , described by the cocycle jαβ over
the contractible open cover

{
Uα
}

. Then there is a canonical bijection

Ȟ1
jαβ

(M,G) ∼=
{

Isomorphism classes of P -twisted G-bundles over M

}
.
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6.2 Character Theory for Action Groupoids

In this subsection, we explicitly work out a character theory for finite action
groupoids M//G; in the case of M = pt, this theory specializes to the char-
acter theory of a finite group (cf. [Isa94] and [Ser77]). In the special case
of a finite action groupoid coming from a finite crossed module, a character
theory including orthogonality relation has been presented in [Ban10]. In the
sequel, let K be a field and denote by [M//G,VectK] the category of K-linear
representations of M//G.

Definition 6.4. Let ((Vm)m∈M , (ρg)g∈G) be a K- linear representation of the
action groupoid M//G and denote by P (m) the projection of V =

⊕
n∈M Vn

to the homogeneous component Vm. We call the function

χ : M ×G→ K

χ(m, g) := TrV (ρg ◦ P (m))

the character of the representation.

Example 6.5. On the K-vector space H := K(M)⊗K[G] with canonical basis
(δm⊗g)m∈M,g∈G, we define a grading by Hm =

⊕
g∈G K(δg.m⊗g) and a group

action by ρg(δm ⊗ h) = δm ⊗ gh. This defines an object in [M//G,VectK],
called the regular representation. The character is easily calculated in the
canonical basis and found to be

χH(m, g) =
∑

(n,h)∈M×G

δ(g, 1)δ(h.m, n) = δ(g, 1)|G|

Definition 6.6. We call a function

f : M ×G→ K

an action groupoid class function on M//G, if it satisfies

f(m, g) = 0 if g.m 6= m and f(h.m, hgh−1) = f(m, g) .

The character of any finite dimensional representation is a class function.
From now on, we assume that the characteristic of K does not divide the
order |G| of the group G. This assumption allows us to consider the following
normalized non-degenerate symmetric bilinear form

〈f, f ′〉 :=
1

|G|
∑

g∈G,m∈M

f(m, g−1)f ′(m, g). (III.35)
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If K = C, one can show, precisely as in the case of groups, that the equality
χ(m, g−1) = χ(m, g) holds, which allows to introduce the hermitian scalar
product

(χ, χ′) :=
1

|G|
∑

g∈G,m∈M

χ(m, g)χ′(m, g) . (III.36)

Lemma 6.7. Let K be algebraically closed. The characters of irreducible
M//G-representations are orthogonal and of unit length with respect to the
bilinear form (III.35):

〈χi, χj〉 = δ(i, j) (III.37)

for i, j ∈ I

Proof. The proof proceeds as in the case of finite groups: for a linear map
f : V → W on the vector spaces underlying two irreducible representations,
one considers the intertwiner

f 0 =
1

|G|
∑

g∈G,m∈M

ρW (g−1)PW (m)fPV (m)ρV (g). (III.38)

and applies Schur’s lemma.

A second orthogonality relation∑
i∈I

χi(m, g)χi(n, h
−1) =

∑
z∈G

δ(n, z.m)δ(h, zgz−1) (III.39)

can be derived as in the case of finite groups, as well.
Combining the orthogonality relations with the explicit form for the character
of the regular representation from Example 6.5, we derive in the case of an
algebraically closed field whose characteristic does not divide the order |G|
the following statement:

Lemma 6.8. Every irreducible representation Vi is contained in the regular
representation with multiplicity di := dimK Vi.

As a consequence, the following generalization of Burnside’s Theorem holds:

Proposition 6.9. Denote by (Vi)i∈I a set of representatives for the iso-
morphism classes of simple representations of the action groupoid and by
di := dimK Vi the dimension of the simple object. Then∑

i∈I

|di|2 = |M ||G|
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Proof. One combines the relation dimH =
∑

i∈I di dimVi from Lemma 6.8
with the relation dimH = |M ||G|.

In complete analogy to the case of finite groups, one then shows:

Proposition 6.10. The irreducible characters of M//G form an orthogonal
basis of the space of class functions with respect to the scalar product (III.35).

The above proposition allows us to count the number of irreducible repre-
sentations. On the set

A := {(m, g)|g.m = m} ⊂M ×G

the group G naturally acts by h.(m, g) := (h.m, hgh−1). A class function of
M//G is constant on G-orbits of A; it vanishes on the complement of A in
M × G. We conclude that the number of irreducible characters equals the
number of G-orbits of A.
This can be rephrased as follows: the set A is equal to the set of objects of the
inertia groupoid Λ(M//G) := [•//Z,M//G]. Thus the number of G-orbits
of A equals the number of isomorphism classes of objects in Λ(M//G), thus
|I| = |Iso(Λ(M//G))|.



Chapter IV

Strictification

In the last chapter we constructed for a finite group G a 3-dimensional G-
equivariant topological field theory which is a generalization of the well-
known Dijkgraaf-Witten theory [DW90, FQ93] and extracted a G-braided
category C from it (the group was called J in the last chapter). The cat-
egory C could be equipped with the structure of a G-ribbon category, and
furthermore it was shown to be G-modular.

In general the action of the group G on a G-modular category C is given
by tensor functors φg : C → C together with compositors φg ◦ φh

∼−→ φgh,
subject to coherence laws for threefold products (see Definition 2.1). It has
been demonstrated by Müger [Tur10a, App. 5] that one can replace C by an
equivalent category Cstr with a strict action of G, i.e. there the compositors
are given by the identity: φg ◦ φh = φgh, and such that the equivalence
C ∼= Cstr is even compatible with the equivariant structure.

Now consider the G-modular category C which belongs to our equivariant
Dijkgraaf-Witten theory introduced in Section 3 of Chapter III. Although
the category C can relatively easily be described abstractly, the orbifold con-
struction and proof of the G-modularity of C is rather difficult. Therefore we
realized C as the representation category of an algebra A, which we called the
equivariant Drinfel’d double. The fact that C is a tensor category is reflected
by the fact that A has the additional structure of a Hopf algebra. Further-
more there is also an algebraic structure on A belonging to the G-action on
the representation category. This structure is not just a G-action on A, as
one might naively expect, but a weak G-action, which is an action by Hopf
algebra automorphisms ϕg : A → A such that ϕg ◦ ϕh equals ϕgh only up
to an inner automorphism of A. This weakening of the G-action reflects the
fact that the action on the category is only weak in the sense that we have
coherent isomorphisms φg ◦ φh

∼→ φgh of functors rather than equalities. In
order to accommodate the example of the algebra A, we had to introduce

87
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the notion of Hopf algebra with weak G-action ([MNS12, definition 4.13]),
generalizing the notion of Hopf algebra with strict G-action considered in
existing literature [Tur10a, Vir02].

In the light of Müger’s observation that one can replace a G-equivariant ten-
sor category C by an equivalent category Cstr with strict G-action it is a
natural question to ask whether one can replace a Hopf algebra A with weak
G-action by a Hopf algebra Astr with strict G-action such that the repre-
sentation categories are equivalent as tensor categories. A first result of this
chapter asserts that this is not possible in general, see Theorem 2.2. The
reason is that the Hopf algebra axioms are too restrictive: the tensor prod-
uct of the representation category is, in the case of Hopf algebras, directly
inherited from the underlying tensor product of vector spaces. Weak Hopf
algebras [BNS99, BS00, NV02] have been introduced to provide a more flex-
ible notion for the tensor product. Note that the qualifier weak here refers
to a weakening of the bialgebra axioms (i.e. a weakening of the unitality of
the coproduct or, equivalently, of the counitality of the product) and should
not be confused with ‘weak G-action’. We refer to the appendix for a table
summarizing the situation.

Thus, a refined version of the question posed above would be whether one
can replace a Hopf algebra A with weak G-action by a weak Hopf algebra Astr

with strict G-action such that the representation categories are equivalent.
The second main result of the present chapter is to show that this is indeed
possible, see Theorem 3.1. The given concrete construction of Astr is inspired
by Müger’s strictification procedure [Tur10a, Appendix 5] on the level of cat-
egories. But our construction is presented in an independent manner which
requires no knowledge about orbifold categories and other constructions that
enter in the categorical strictification.

1 Equivariant Weak Hopf Algebras and their

Representation Categories

In this section, we will first give an introduction to weak Hopf algebras and
then generalize the notion of equivariant Hopf algebras to them. The no-
tion of a weak Hopf algebra was first introduced in [BS96] as C∗-weak Hopf
algebras. In the following let K be an algebraically closed field of charac-
teristic zero. In [BNS99] an equivalent definition of weak Hopf algebra can
be found and this is the one we will use. A weak Hopf algebra is still both
an associative and coassociative algebra. The weakening of the Hopf algebra
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axioms appears in the compatibility of the coproduct with the unit and the
compatibility of the product with the counit. These weakenings are dual
concepts in the sense that for a finite dimensional weak Hopf algebra, as for
a finite dimensional Hopf algebra, its dual is again a weak Hopf algebra. The
category of representations of a weak Hopf algebra can still be endowed with
the structure of a tensor category with duality. The reconstruction theorem
[JS91] assures that one can recover a Hopf algebra from its representation
category and a fiber functor into the category VectK of finite dimensional
vector spaces over K. However, a finitely semisimple tensor category C can
be recovered as the category of modules over a Hopf algebra if and only if
there is a fiber functor from C to VectK. In general there is no reason for a
tensor category to have a fiber functor into VectK. So in general C can not
be recovered as the category of modules over a Hopf algebra. But in [Hay99]
it was shown that it is always possible to realize it as the module category
over a weak Hopf algebra.
In the case of an equivariant category C, a related problem appears. It is
known ([Tur10a]) that weak actions of a group on a category can be ’stric-
tified’, i.e. for any G-equivariant category there is an equivalence (which is
compatible with the equivariant structure) to a G-equivariant category C ′ on
which the G-action is strict. Now the question arises whether this strictifi-
cation of the action can also be done on the G-Hopf algebra, if C ∼= H-mod
as G-equivariant categories. In this chapter we show that it is not always
possible to find the strictified category again as the module category over a
Hopf algebra, but that indeed it is always possible to recover it as the module
category over a weak Hopf algebra.
We start by giving the definition of a weak bialgebra from [BNS99].

Definition 1.1. Let A be a K-vector space that has both an algebra structure
(A,m, η) and a coalgebra structure (A,∆, ε). A is called a weak bialgebra if

• ∆ is an algebra morphism, i.e.

∆(xy) = ∆(x)∆(y) for all x, y ∈ A

• The coproduct has the following compatibility with the unit:

(∆⊗ id)∆(1) = (∆(1)⊗ 1)(1⊗∆(1)) = (1⊗∆(1))(∆(1)⊗ 1)

• The counit has the following compatibility with the product:

ε(xyz) = ε(xy(1))ε(y(2)z) = ε(xy(2))ε(y(1)z)

for all x, y, z ∈ A.
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Definition 1.2. A weak bialgebra A is called a weak Hopf algebra if there
exists a K-linear map S : A → A, called the antipode, that satisfies the
following conditions:

x(1)S(x(2)) = ε(1(1)x)1(2) (IV.1)

S(x(1))x(2) = 1(1)ε(x1(2)) (IV.2)

S(x(1))x(2)S(x(3)) = S(x) (IV.3)

The right sides of the equations (IV.1) and (IV.2) also define the target and
source counital maps. For x ∈ A they are:

εt(x) = ε(1(1)x)1(2) (IV.4)

εs(x) = 1(1)ε(x1(2)) (IV.5)

Their images in A are called the target and source subalgebras At := εt(A) and
As := εs(A). They play an important role in the category of left resp. right
modules over A. It can be shown, that they have the following equivalent
description:

Lemma 1.3.

At = {x ∈ A|∆(x) = 1(1)x⊗ 1(2)} (IV.6)

As = {x ∈ A|∆(x) = 1(1) ⊗ x1(2)} (IV.7)

Recall that in the the definition (2.13) of a weak action of a group on a Hopf
algebra, the compositors are required to be grouplike. There is a generaliza-
tion of the notion of grouplike elements to the case of a weak Hopf algebras.
One distinguishes left and right grouplike elements:

Definition 1.4. Let A be a weak Hopf algebra. An element x ∈ A is called
left, resp. right grouplike if εt/s(x) ∈ (At/s)

× and

(xεs(x)x−1 ⊗ x)∆(1) = ∆(x) = ∆(1)(x⊗ x)

resp.

(x⊗ x)∆(1) = ∆(g) = ∆(1)(x⊗ εt(x)−1x).

As in [Vec03] is shown, there is an equivalent definition of grouplike elements
in a weak Hopf algebra:

Lemma 1.5. An element x ∈ A is left/right grouplike if and only if x is
invertible and ∆(x) = (x⊗ x)∆(1) (resp. ∆(x) = ∆(1)(x⊗ x)).
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We now look at the categories of left resp. right modules over a weak Hopf
algebra. The following result shows that they have the same properties as
the ones of a Hopf algebra.

Proposition 1.6. The category of left resp. right modules over a weak Hopf
algebra A has the structure of a tensor category with duality, where the tensor
product of two modules V,W is given by

V ⊗W := ∆(1)V ⊗K W (IV.8)

resp.

V ⊗W := V ⊗K W∆(1) (IV.9)

and the tensor unit is the target resp. source counital algebra. The dual
object of an A-module V is the dual space V ∗ where the action of x ∈ A on
an element φ ∈ V ∗ evaluated on an element v ∈ V is given by

(φ.x)(v) := φ(S(x)v) resp. (x.φ).(v) := φ(vS(x))

We now turn to equivariant structure on a weak Hopf algebra.
In the following, let G be a finite group. In Section 2.1 of Chapter I we gave
the definition of an equivariant Hopf algebra. With a slight change on the
requirement for the compositors, the definition of a G-weak Hopf algebra is
analogously. For convenience, we will state this generalization of Definition
2.13 of Chapter I here:

Definition 1.7. A G-weak Hopf algebra over K is a weak Hopf algebra A
with a weak G-action ((ϕg)g∈G, (cg,h)g,h∈G) and a G-grading A =

⊕
g∈GAg

such that:

• The algebra structure of A restricts to the structure of an associative
algebra on each homogeneous component so that A is the direct sum of
the components Ag as an algebra.

• The action of G is compatible with the grading, i.e. ϕg(Ah) ⊂ Aghg−1.

• The coproduct ∆ : A→ A⊗ A respects the grading, i.e.

∆(Ag) ⊂
⊕

p,q∈G,pq=g

Ap ⊗ Aq .

• The elements (cg,h)g,h∈G are right grouplike.
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Remark 1.8. Weak Hopf algebras with weak G-action give a special case of
G-weak Hopf algebra, where the grading is concentrated in degree 1. Thus all
results of this chapter imply analogous results where the term G-weak Hopf
algebra is replaced by Hopf algebra with weak G-action.

For G-weak Hopf algebras we have a similar result to Lemma I2.15.

Lemma 1.9. The category of representations of a G-Hopf algebra inherits
the natural structure of a K-linear, abelian G-equivariant tensor category with
dualities.

2 Strictification of the Group Action

As mentioned in the introduction of this chapter, the action of the group G
on a G-equivariant tensor category C can always be strictified (see [Tur10a,
App. 5]), i.e. there is an equivalent G-equivariant tensor category Cstr with
strict G-action (all compositors are identities). If one starts with the repre-
sentation category of a G-Hopf algebra A, it is natural to ask whether this
strictification leads to the representation category of another G-Hopf alge-
bra with strict G-action. We will make this precise in the next definition.
A G-equivariant functor between G-equivariant tensor categories is a tensor
functor F together with natural isomorphisms

ψg : F (gM)
∼−→ gF (M)

such that for every pair g, h ∈ G the obvious coherence diagrams of mor-
phisms from F (ghM) to ghF (M) commute. See also [Tur10a, Appendix 5,
Def. 2.5].

Definition 2.1. 1. Let A be a Hopf algebra with weak G-action. A stric-
tification of A is a weak Hopf algebra B with strict G-action and an
equivalence

A-mod
∼−→ B-mod

of tensor categories with G-action.

2. Let A be a G-Hopf algebra. A strictification of A is a G-weak Hopf
algebra B with strict G-action and an equivalence

A-mod
∼−→ B-mod

of G-equivariant tensor categories.



Strictification of the Group Action 93

We will now show that it is in general not possible to find a strictification
that is a Hopf algebra, rather than a weak Hopf algebra. This shows that we
really have to allow for weak Hopf algebras as strictifications. In the next
chapter we then show that a strictification as a weak Hopf algebra always
exists.

Consider the weak action of Z/2×Z/2 = {1, t1, t2, t1t2} on the group algebra
C[Z/2] of Z/2 = {1, t} given by

ϕg = id for all g ∈ Z/2× Z/2

and non-trivial compositors given by the grouplike elements cg,h ∈ C[Z/2] as
in the following table:

h\g 1 t1 t2 t1t2
1 1 1 1 1
t1 1 t t 1
t2 1 1 1 1
t1t2 1 t t 1

(IV.10)

In [MNS12, Section 3.1] we showed how weak actions correspond to exten-
sions of groups together with the choice of a set theoretic section. In this
case, the relevant extension is given by the exact sequence of groups

Z/2→ D4 → Z/2× Z/2 ,

where D4 denotes the dihedral group of order 8. The inclusion of Z/2 into
D4 is given by mapping the nontrivial t element of Z/2 to the rotation by
π. The projection to Z/2×Z/2 is given by mapping the rotation a ∈ D4 by
π
2

to the first generator t1 and the reflection b ∈ D4 to the second generator
t2. The set theoretic section is defined by s : Z/2 × Z/2 → D4 with s(1) =
1, s(t1) = a, s(t2) = b, s(t1t2) = ab.

Theorem 2.2. There is no strictification as a Hopf algebra of C[Z/2] with
the weak Z/2× Z/2-action with compositors as displayed in (IV.10).

Remark 2.3. Note that the algebra C[Z/2] is not a priori endowed with a
grading by Z/2. We can consider it as being trivially graded.

For the proof of proposition 2.2 we need the following elementary facts:

Lemma 2.4. Let A = C[G] be the complex group algebra of a finite abelian
group G.
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1. Let A′ be an arbitrary Hopf algebra. If A-mod ∼= A′-mod as tensor
categories, then A ∼= A′ as algebras (not necessarily as Hopf algebras).

2. The natural endomorphisms of the identity functor Id : A-mod →
A-mod are given by the action of elements in A. More precisely there
is an isomorphism of algebras

A
∼−→ End(Id)A-mod .

3. Let ϕ : A → A be an algebra automorphism such that the restriction
functor resϕ : A-mod→ A-mod is naturally isomorphic to the identity
functor. Then ϕ = id.

Proof. 1.) By the reconstruction theorem we know that we can recover the
Hopf algebra A as endomorphisms of the fibre functor F : A-mod→ C-mod
and A′ as endomorphisms of the fibre functor G : A-mod

∼−→ A′-mod →
C-mod. Now we claim that the underlying functors of F and G are nat-
urally isomorphic. To this end note that for each simple representation Vi
of A we have V n

i
∼= 1 where n is the order of the group. Thus we have

F (Vi) ∼= C ∼= G(Vi) by the fact that F and G are tensor-functors. But it
is easy to see that the C-linearity and the fact that A-mod is semisimple
then already show that F and G are isomorphic as functors between abelian
categories. This implies that A ∼= End(F ) ∼= End(G) ∼= A′. Note that the
functors F and G still might have different tensor functor structures, leading
to different Hopf algebra structures on A and A′.

2.) This follows from the fact that A is abelian and from the fact that the
center of an algebra is isomorphic to the endomorphisms of the identity func-
tor on its representation category.

3) The functor resϕ is an equivalence of categories. Hence it sends simple
objects to simple objects. That means it acts on simple characters χ : G→
C∗. By the fact that this functor is naturally isomorphic to the identity this
action has to be trivial. Hence we know χ ◦ ϕ = χ for each character χ.
Because G is abelian, the characters form a basis of the dual space A∗. Thus
ϕ∗ = id which implies ϕ = id.

Proof of Theorem 2.2. Assume that there is a Hopf algebra H with a strict
action of Z/2 by Hopf algebra automorphisms ϕg together with an equiva-
lence of categories A-mod → H-mod. By Lemma 2.4(1) we know that the
underlying algebra of H is isomorphic to C[Z/2]. We choose an isomorphism
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and transport the action ϕg on H to an action ϕ′g on C[Z/2] (which is now
only an action by algebra automorphisms and not necessarily by Hopf al-
gebra automorphisms). By assumption there are now natural isomorphisms
resϕ′g

∼−→ resϕg = Id hence by lemma 2.4(3) we have ϕ′g = id.
Now we have both times the trivial action on the Hopf algebra C[Z/2], once
with the nontrivial compositors cg,h as displayed in table (IV.10) above and
once with the trivial compositors. By Lemma 2.4(2), an isomorphism be-
tween the two induced actions on the representation categories is induced by
invertible elements (ag ∈ C[Z/2])g∈Z/2×Z/2 such that

agh · cg,h = ag · ah for all g, h ∈ Z/2× Z/2 (IV.11)

We show that such elements can not exist: Assume, there are invertible
elements (ag ∈ C[Z/2])g∈Z/2×Z/2 that fulfill (IV.11). In particular we have, by
setting g = h = 1 in (IV.11), a2

1 = a1, and since the elements ag are invertible,
it follows that a1 = 1. One concludes similarly, by setting g = h = t2 resp.
g = h = t1t2, that a2

t2
= 1 and a2

t1t2
= 1. Now if we set g = t1 and h = t2

in (IV.11) and take the square of the resulting equation, we get a2
t1

= 1, but
clearly those elements don’t fulfill the equation a1t = a2

t1
, which is (IV.11)

with g = h = t1. This contradicts the existence of the strictification Hopf
algebra H of the Z/2× Z/2-equivariant Hopf algebra C(Z/2).

3 Existence of a Strictification

In this section, we will successively prove the following theorem which holds
for Hopf algebras over an arbitrary field K.

Theorem 3.1. 1. For any Hopf algebra with weak G-action there exists
a strictification in the sense of definition 2.1(1).

2. For any G-Hopf algebra there exists a strictification in the sense of
definition 2.1(2).

Note that the first part of Theorem 3.1 follows from the second part if we
consider a Hopf algebra with weak G-action as a G-Hopf algebra with grading
concentrated in degree 1, see also Remark 1.8(4). Therefore we will only prove
the second part.
In the following let A be a G-Hopf algebra with unit 1A, counit εA, coproduct
∆A and a weak G-action ((ϕg)g∈G, (cg,h)g,h∈G). The plan of this section is to
construct step by step a strictification Astr.
In section 3.1 we construct Astr as an algebra, in section 3.2 we endow it
with a weak Hopf algebra structure and finally in section 3.3 we turn it into
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a G-weak Hopf algebra with strict G-action. Along the way, we also provide
the necessary equivalences of the representation categories

F : A-mod
∼→ Astr-mod

and show that they preserve all the structure involved. This implies that
Astr is a strictification, which proves Theorem 3.1.

3.1 The Algebra

In the following we use the notation K(G) for the K-vector space of functions
on the finite group G, with distinguished basis (δg)g∈G. By K[G] we denote
the K-vector space underlying the group algebra with basis (g)g∈G.

Definition 3.2. Set Astr = K(G)⊗KA⊗K K[G] as a vector space and define
a multiplication on the generators of Astr by

(δg ⊗ a⊗ h)(δg′ ⊗ a′ ⊗ h′) = δ(gh′, g′)(δg′ ⊗ aϕh(a′)ch,h′ ⊗ hh′) (IV.12)

where δ(gh′, g′) is the Kronecker delta, i.e. δ(gh′, g′) = 1 if gh′ = g′ and
δ(gh′, g′) = 0 otherwise. This multiplication has the unit

1 =
∑
g∈G

δg ⊗ 1A ⊗ 1. (IV.13)

It can easily be checked that the product and the unit defined in (IV.12) and
(IV.13) endow Astr with the structure of an associative unital algebra.

We next define a functor F : A-mod → Astr-mod: Let M be an object in
A-mod. Define an object in Astr-mod which is M ⊗K K[G] as a vector space
and has the following right action of the algebra Astr: On an element of the
form (m⊗ k) with m ∈M,k ∈ G, the action of (δg ⊗ a⊗ h) reads:

(m⊗ k).(δg ⊗ a⊗ h) := δ(kh, g)(m.ϕk(a)ck,h ⊗ g) (IV.14)

One checks that this really defines a right action of Astr. For a morphism
f ∈ HomA(M,N) we consider the morphism f ⊗ idK[G] ∈ HomAstr(M ⊗
K[G], N ⊗K[G]). Together this defines a functor:

F : A-mod→ Astr-mod (IV.15)

Proposition 3.3. The functor F is an equivalence of abelian categories.
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Proof. We show that F is essentially surjective and fully faithful.
For the essential surjectivity, note that an object N in Astr-mod has a G-
grading N =

⊕
g∈GNg with Ng := N.(δg ⊗ 1A ⊗ 1). Endow the subspace

N1 := N.(δ1 ⊗ 1A ⊗ 1) ⊂ N with the structure of an A-module by setting
n.a := n.(δ1 ⊗ a⊗ 1) for an element n ∈ N1 and a ∈ A.
Define the K-linear map

Θ : F (N1) = N1 ⊗K[G]→ N

by
(n⊗ g) 7→ n.(δg ⊗ 1A ⊗ g).

It is easy to see that Θ is an isomorphism with inverse
n 7→

∑
g∈G n.(δ1⊗ (cg−1,g)

−1⊗ g−1)⊗ g. In order to see that Θ is a morphism
in Astr-mod, note that the action of Astr on F (N1) is given by

(n⊗ k).(δg ⊗ a⊗ h) = δ(kh, g)n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)⊗ g

Hence we have

Θ((n⊗ k).(δg ⊗ a⊗ h)) = δ(kh, g)Θ(n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)⊗ g)

= δ(kh, g)n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)(δg ⊗ 1A ⊗ g)

= δ(kh, g)n.(δg ⊗ ϕk(a)ck,h ⊗ g)

and

Θ(n⊗ k).(δg ⊗ a⊗ h) = n.(δk ⊗ 1A ⊗ k)(δg ⊗ a⊗ h)

= δ(kh, g)n.(δg ⊗ ϕk(a)ck,h ⊗ g).

This shows that F (N1) ∼= N as Astr-modules and thus essential surjectivity.
It is clear that F is faithful. In order to see that F is also full, consider for
two A-modules M,N a morphism f ∈ HomAstr(F (M), F (N)). We have

f(m⊗ k).(δg ⊗ 1A ⊗ 1) = f((m⊗ k).(δg ⊗ 1A ⊗ 1)) = δ(k, g)f(m⊗ k),

so f(m ⊗ k) ∈ N ⊗ Kk and we have f =
∑

g∈G fg ⊗ idKg for some fg ∈
HomK(M,N). From the definition (IV.14) of the action of Astr, it is clear
that f1 ∈ HomA(M,N). Now, since f commutes with the action of Astr, we
have

δ(kh, g)fg(m.ϕk(a)ck,h)⊗ g = f((m⊗ k).(δg ⊗ a⊗ h))

= f(m⊗ k).(δg ⊗ a⊗ h)

= δ(kh, g)fk(m).ϕk(a)ck,h ⊗ g

and (by setting a = 1A, k = 1 and h = g) we get fg = f1 for all g ∈ G and
therefore f is of the form f = f1 ⊗ idK[G].
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3.2 The Weak Hopf Algebra Structure

We need the strictification algebra Astr to have more structure in order for
its representation category to be a tensor category. In fact, we want it to be
a weak Hopf algebra (cf. Definition 1.2)

Proposition 3.4. The linear maps ∆ : Astr → Astr ⊗Astr and ε : Astr → K
defined on the generators of Astr by

∆(δg ⊗ a⊗ h) =
∑
(a)

(δg ⊗ a(1) ⊗ h)⊗ (δg ⊗ a(2) ⊗ h) ,

ε(δg ⊗ a⊗ h) = εA(a)

endow Astr with the structure of a weak bialgebra. Furthermore, the linear
map S : Astr → Astr given by

S(δg ⊗ a⊗ h) = (δgh−1 ⊗ c−1
h−1,h · ϕh−1

(
SA(a)

)
⊗ h−1)

is an antipode for Astr, where SA is the antipode of A.

Proof. The maps ∆ and ε are a coassociative coproduct and a counit on Astr,
as they are just the structural maps of the tensor product coalgebra of K(G),
A and K[G| (where we consider the diagonal coproduct on both K(G) and
K[G]). We show that ∆ is also a morphism of algebras, i.e. that

(m⊗m) ◦ (id⊗ τ ⊗ id)(∆⊗∆) = ∆ ◦m. (IV.16)

If we plug in two elements (δg⊗a⊗h), (δg′⊗a′⊗h′), we get for the left hand
side of (IV.16)∑

(a)

(δg ⊗ a(1) ⊗ h) · (δg′ ⊗ a′(1) ⊗ h′)⊗ (δg ⊗ a(2) ⊗ h) · (δg′ ⊗ a′(2) ⊗ h′)

=
∑
(a)

δ(gh′, g′)(δg′ ⊗ a(1)ϕh(a
′
(1))ch,h′ ⊗ hh′)⊗ (δg′ ⊗ a(2)ϕh(a

′
(2))ch,h′ ⊗ hh′) ,

and for the right hand side

δ(gh′, g′)∆(δg′ ⊗ aϕh(a′)ch,h′ ⊗ hh′)

= δ(gh′, g′)
∑
(a)

(δg′ ⊗ (aϕh(a
′)ch,h′)(1) ⊗ hh′)⊗ (δg′ ⊗ (aϕh(a

′)chh′)(2) ⊗ hh′)

=
∑
(a)

δ(gh′, g′)(δg′ ⊗ a(1)ϕh(a
′
(1))ch,h′ ⊗ hh′)⊗ (δg′ ⊗ a(2)ϕh(a

′
(2))ch,h′ ⊗ hh′) .
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All equations follow just by definition of the product and coproduct, except
for the last one, where we used that the coproduct in A is a morphism of
algebras, that the elements cg,h are group-like and that the action of G on A
is a coalgebra-morphism.
Further equations concerning the compatibilities of the product with the
counit, the coproduct with the unit and the antipode can be checked directly.

In a weak Hopf algebra H the target and source counital maps are defined
on an element h ∈ H by

εt(h) := (ε⊗ idH)(∆(1)(h⊗ 1))

εs(h) := (idH ⊗ ε)((1⊗ h)∆(1))

The maps εt and εs are idempotents. The image of H under them are called
the target and source counital subalgebras

Ht := εt(H)

Hs := εs(H).

The category of right modules over H can be endowed with the structure of
a tensor category, where the tensor product of two modules M,N is defined
via the coproduct on the following vector space:

M⊗̄N := (M ⊗K N)∆(1) .

The tensor unit is the source counital subalgebra Hs with H-action given by
z.h := εs(zh) for h ∈ H, z ∈ Hs.

Lemma 3.5. For the algebra Astr, the target and source counital maps are
given by

εt(δg ⊗ a⊗ h) = εA(a)(δgh−1 ⊗ 1A ⊗ 1) (IV.17)

εs(δg ⊗ a⊗ h) = εA(a)(δg ⊗ 1A ⊗ 1) (IV.18)

and the target and source counital subalgebras are

Astrt
∼= Astrs

∼= K(G) .

Proof. We calculate εt on an element (δg ⊗ a⊗ h) ∈ Astr:

εt(δg ⊗ a⊗ h) = (ε⊗ id)(∆(1)((δg ⊗ a⊗ h)⊗ 1))

= (ε⊗ id)((δg ⊗ a⊗ h)⊗ (δgh−1 ⊗ 1A ⊗ 1))

= εA(a)(δgh−1 ⊗ 1A ⊗ 1) .
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The calculation for the source counital map is completely parallel. Choose a
basis (ai)i∈I of the algebra A with aj = 1A for a fixed j ∈ I, then a general
element b ∈ Astr is of the form

b =
∑

g,h∈G,i∈I

λ(g, h, i)(δg ⊗ ai ⊗ h)

with λ(g, h, i) ∈ K. We have:

∆(b) =
∑

g,h∈G,i∈I

∑
(ai)

λ(g, h, i)(δg ⊗ (ai)(1) ⊗ h)⊗ (δg ⊗ (ai)(2) ⊗ h)

∆(1)(b⊗ 1) =
∑

g,h∈G,i∈I

λ(g, h, i)(δg ⊗ ai ⊗ h)⊗ (δg ⊗ 1A ⊗ h)

By equating coefficients, we get λ(g, h, i) = 0 for h 6= 1, i 6= j and therefore:

Astrt = 〈δg ⊗ 1A ⊗ 1, g ∈ G〉 ∼= K(G) .

An analog calculation shows the same result for Astrs .

Proposition 3.6. The equivalence F : A-mod
∼−→ Astr-mod can be promoted

to an equivalence of tensor categories.

Proof. The tensor unit in the representation category of the weak Hopf al-
gebra Astr is given by the source counital subalgebra, which is by Lemma
3.5 isomorphic to K(G). The weak Hopf algebra Astr acts on the source
counital subalgebra as follows: for an element (δk ⊗ 1A ⊗ 1) ∈ Astrs and
(δg ⊗ a⊗ h) ∈ Astr, we have

(δk⊗1A⊗1).(δg⊗a⊗h) = εs((δk⊗1A⊗1)(δg⊗a⊗h)) = δ(kh, g)εA(a)(δg⊗1A⊗1) .

The action of an element a ∈ A on the tensor unit K in A-mod is by multi-
plication with εA(a). So we get for the image of the tensor unit under F the
vector space K⊗K[G] with Astr-action

(λ⊗ k).(δg ⊗ a⊗ h) = δ(kh, g)εA(a)λ⊗ g .

We clearly have an isomorphism F (1)→ 1 in Astr-mod given by

η0 : (λ⊗ k) 7→ λδk.

Let M,N ∈ A-mod. We have

F (M)⊗̄F (N) = 〈(m⊗ g ⊗ n⊗ g),m ∈M,n ∈ N, g ∈ G〉.
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Thus the linear map

η2(M,N) : (m⊗ g ⊗ n⊗ g) 7→ (m⊗ n⊗ g)

is an isomorphism F (M)⊗̄F (N)
∼−→ F (M ⊗N). It can be checked to com-

mute with the action of Astr and is natural in M,N . Moreover the isomor-
phisms η2 and η0 clearly satisfy the required coherence axioms. We have
therefore established that (F, η0, η2) is a tensor functor.

3.3 G-Action and G-Grading

We will now define a G-equivariant structure on Astr that induces a G-
equivariant structure on the category Astr-mod. The last step of proving
theorem 3.1 is then to show that the categories A-mod and Astr-mod are
even equivalent as G-equivariant categories.

Definition 3.7. On the weak Hopf algebra Astr we have a strict left action
ϕstr of the group G given by translation in the first factor. Explicitly, an
element g′ ∈ G acts on an element (δg ⊗ a⊗ h) ∈ Astr by

ϕstrg′ (δg ⊗ a⊗ h) = (δg′g ⊗ a⊗ h) .

The strict G-action on Astr gives us a strict left G-action on the category
Astr-mod by setting φg(M,ρ) = (M,ρ ◦ (idM ⊗ϕstrg−1). We will now establish,

that the equivalence A-mod ∼= Astr is compatible with the G-actions.

Proposition 3.8. The equivalence F : A-mod
∼−→ Astr-mod given in (IV.15)

respects the G-action of the two categories, i.e. for every element g ∈ G there
are natural isomorphisms

ψg : F (gM)
∼−→ gF (M)

such that for every pair g, h ∈ G the obvious coherence diagrams of mor-
phisms from F (ghM) to ghF (M) commute.

Proof. For M ∈ A-mod consider the linear map ψg : M ⊗K[G]→M ⊗K[G]
defined by

ψg : (m⊗ k) 7→ (m.cg−1,k ⊗ g−1k).

We first show that ψg is a morphism of Astr-modules. To distinguish the
actions on the different modules we use the notation “?” for the Astr-action
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on F (gM) and gF (M), “�” for the action on F (M) and “.” for the A-action
on M .

ψg
(
(m⊗ k) ? (δx ⊗ a⊗ h)

)
= ψg

(
δ(kh, x)(m.ϕg−1(ϕk

(
a)ck,h

)
⊗ x)

)
= δ(kh, x) m.ϕg−1(ϕk

(
a)ck,h

)
cg−1,kh ⊗ g−1kh

= δ(kh, x) m.cg−1,kϕg−1k(a)(cg−1,k)
−1ϕg−1(ck,h)cg−1,kh ⊗ g−1kh

= δ(g−1kh, g−1x) m.cg−1,kϕg−1k(a)cg−1k,h ⊗ g−1kh

= (m.cg−1,k ⊗ g−1k)� (δg−1x ⊗ a⊗ h)

= ψg(m⊗ k) ? (δx ⊗ a⊗ h) .

Moreover we have to verify that the ψg satisfy a coherence condition for
two indices g and h. This condition can be checked similarly to the above
computation, using the cocycle condition for the elements cg,h.

Definition 3.9. We define a G-grading in the sense of 2.13 on the algebra
Astr by:

(Astr)h =
⊕
g∈G

(K(δg)⊗ Ag−1hg)⊗K[G] . (IV.19)

The following Lemma can then be checked directly.

Lemma 3.10. The algebra Astr is a G-weak Hopf algebra with strict G-
action, i.e a weak Hopf algebra with strict G-action and compatible G-grading.

Note that the grading on A resp. Astr gives a grading on the representation
category by (A-mod)h := Ah-mod resp. (Astr-mod)h = (Astr)h-mod.

Proposition 3.11. The equivalence F : A-mod
∼−→ Astr-mod given in

(IV.15) respects the G-grading of the two categories, i.e. for every element
h ∈ G, we have

F ((A-mod)h) ⊂ (Astr-mod)h.

Proof. Let M ∈ (A-mod)h = Ah-mod. We know that the action by the unit
(1A)h of Ah is the identity on M . We need to show, that the h-component of
the unit in Astr, which is 1h =

∑
g∈G(δg⊗(1A)g−1hg⊗1), acts as an idempotent

on F (M) = M ⊗ K[G]. In fact it even acts as the identity: for any element
of the form (m⊗ k), we have:

(m⊗ k).

(∑
g∈G

δg ⊗ (1A)g−1hg ⊗ 1

)
=
∑
g∈G

(δ(k, g)m.ϕk((1A)g−1hg)ck,1 ⊗ k)

= (m.ϕk((1A)k−1hk)⊗ k)

= (m.(1A)h ⊗ k)

= (m⊗ k)



Equivariant R-Matrix and Ribbon-Element 103

where in the first equality we used the definition of the action of Astr on
M ⊗K[G] given in (IV.14), in the third equality the fact that G acts by uni-
tal algebra morphisms and in the last equality that M is in the h-component
of A-mod.
So we have F (M).1h = F (M); therefore F (M) lies in the component (Astr-mod)h.

4 Equivariant R-Matrix and Ribbon-Element

In [MNS12] we considered G-equivariant categories with a G-braiding and
a G-twist as additional data (G-ribbon categories). For the definition see
[Tur10a, Kir04]. Since those categories were our main motivation to study
the strictification in terms of algebras, we want to say a few words about the
G-ribbon structure.
The definition of a G-equivariant R-matrix is rather involved even in the
strict Hopf algebra case. We will refrain here from stating the axioms for it
explicitly, but we will instead make an equivalent definition:

Definition 4.1. Let A be a G-(weak) Hopf algebra.

1. A G-equivariant R-matrix is an element
R = R1 ⊗ R2 ∈ ∆op(1)(A ⊗ A)∆(1) such that for V ∈ (A-mod)g,
W ∈ A-mod, the map

cVW : V ⊗W → gW ⊗ V
v ⊗ w 7→ w.R2 ⊗ v.R1

is a G-braiding, in particular a morphism of A-modules.

2. A G-twist is an invertible element θ ∈ A such that for every object
V ∈ (A-mod)g the induced map

θV : V → gV

v 7→ v.θ−1

is a G-twist in A-mod.

A G-(weak) ribbon-algebra is a G-(weak) Hopf algebra A with a G-equivariant
R-matrix and a G-twist.

Lemma 4.2. A G-weak Hopf algebra A can be endowed with the structure
of a G-weak ribbon algebra if and only if the representation category A-mod
has the structure of a G-ribbon category.
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Proof. If A is a G-ribbon algebra, it follows from the definition that A-mod
is a G-ribbon category. If on the other hand, A-mod is a G-ribbon category
with G-braiding c and G-twist θ, define an R-matrix and a twist of A by

R = τ ◦ cA,A(1A ⊗ 1A) and θ = θA(1)−1 . (IV.20)

For v ∈ V , w ∈ W let v̄ : A → V , w̄ : A → W be the A-linear maps with
v̄(1A) = v, w̄(1A) = w. We then have

τ((v ⊗ w).R) = τ(v̄ ⊗ w̄(R)) = (w̄ ⊗ v̄)cA,A(1A ⊗ 1A) = cV,W (v ⊗ w) ,

v.θ−1 = v.(θA(1A)) = v̄(θA(1A)) = θV v̄(1A) = θV (v).

Thus R and θ satisfy the conditions of definition 4.1 by construction.

As an immediate consequence of lemma 4.2, we have:

Corollary 4.3. If A is a G-ribbon algebra, the strictification algebra Astr

inherits the structure of a G-weak ribbon algebra such that the equivalence
F : A-mod→ Astr-mod is an equivalence of G-ribbon categories.

4.1 Table summarizing Terminology

The following table summarizes the terminology for Hopf algebras with an
action of a finite group G and their weakenings. We consider two types of
weakenings: a weakening of the G-action corresponding to the two rows of
the table, and a weakening of the unitality of the coproduct, corresponding
to the two columns of the table.

Each square contains three different entries, depending on additional struc-
ture on the Hopf algebra. The objects in 1. only have the G-action and no
additional structure (see Definition 2.11). The objects in 2. are equipped
with a G-grading with the compatibilities introduced in Definition 2.13. The
objects in 3. have, in addition to the G-equivariant structure, a G-equivariant
R-matrix and a G-twist as introduced in Definition 4.1.
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Hopf algebra weak Hopf algebra

strict G-action

1. Hopf algebra with strict
G-action

2. G-Hopf algebra with
strict G-action

3. G-ribbon algebra with
strict G-action

1. weak Hopf algebra with
strict G-action

2. G-weak Hopf algebra
with strict G-action

3. G-weak ribbon algebra
with strict G-action

weak G-action

1. Hopf algebra with weak
G-action

2. G-Hopf algebra

3. G-ribbon algebra

1. weak Hopf algebra with
weak G-action

2. G-weak Hopf algebra

3. G-weak ribbon algebra
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Zusammenfassung

In dieser Arbeit untersuchen wir modulare und äquivariant-modulare Tensorkate-
gorien. Modulare Tensorkategorien sind eine Quelle für 3-dimensionale topologi-
sche Feldtheorien (3d TFTs) und somit für Invarianten von 3d Mannigfaltigkeiten
und Links. Für jede endliche Gruppe G gibt es eine Verallgemeinerung der Definiti-
on von 3d TFT, eine sogenannteG-äquivariante 3d TFT. Die relevante algebraische
Struktur ist in diesem Fall eine G-äquivariant-modulare Kategorie. Wir geben in
dieser Arbeit eine geometrische Konstruktion einer Klasse von G-modularen Ka-
tegorien, indem wir die Korrespondenz von G-äquivarianten erweiterten 3d TFTs
und G-äquivariant-modularen Kategorien ausnutzen.
In Kapitel I erinnern wir zunächst an die Zusammenhänge von G-Hopf Algebren,
G-modularen Tensorkategorien und G-äquivarianten TFTs. Ein wesentliches neu-
es Resultat dieses Kapitels ist die Orbifold-Konstruktion, die auf G-äquivarianten
Kategorien existiert, auf dem Niveau von Hopf Algebren.
In Kapitel II analysieren wir die Modularisierung (im Sinne von Bruguières) einer
prämodularen Kategorie anhand des Beispiels der Darstellungskategorie endlicher
gekreuzter Moduln. Sie ergibt die Kategorie D(G)-mod der Moduln des Drinfel’d
Doppel einer Gruppe G, jedoch mit der zusätzlichen Struktur der Wirkung einer
weiteren endliche Gruppe.
Dies ist der Ausgangspunkt der Konstruktion einer äquivarint-modularen Kate-
gorie in Kapitel III, das den Kern dieser Arbeit darstellt. Unsere Konstruktion
basiert auf einer normalen Untergruppe G / H einer endlichen Gruppe H. Wir
betrachten zu diesem Zweck erweiterte TFTs, die nicht nur 3d und 2d, sondern
auch noch 1d Mannigfaltigkeiten eine Größe zuordnen; genauer gesagt, betrach-
ten wir eine Erweiterung von Dijkgraaf-Witten Theorien. Diese ordnet dem Kreis
die Darstellungskategorie D(G)-mod zu. Ausgehend von der erweiterten Dijkgraaf-
Witten Theorie und der exakten Sequenz G ↪→ H → G/H =: J entwickeln wir eine
J-äquivariante erweiterte 3d TFT ZJ

G. Aus ZJ
G gewinnen wir eine J-äquivariante

Tensorkategorie und zeigen dann durch algebraische Überlegungen, dass diese Ka-
tegorie J-modular ist.
In Kapitel IV untersuchen wir die Striktifizierung der Gruppenwirkung auf G-
äquivarianten Kategorien. Die Gruppe G wirke auf einer Kategorie C durch Endo-
funktoren φg ∈ End(C) für jedes Gruppenelement g ∈ G, so dass φg ◦ φh

∼−→ φgh.
Es ist bekannt, dass es eine zu C äquivalente Kategorie gibt, auf der die Grup-
penwirkung strikt ist, d.h. φg ◦ φh = φgh. Die in Kapitel 3 konstruierte Kategorie
ist die Modulkategorie einer Hopf Algebra A, die nur eine schwache Wirkung der
Gruppe G trägt. Dies führt zu der Frage, ob es eine Hopf Algebra Astr gibt, auf die
G strikt wirkt, so dass A-mod ∼= Astr-mod als G-äquivariante Tensorkategorien.
Wir zeigen sowohl, dass es eine schwache Hopf Algebra (im Sinne von Böhm, Nill,
Szlachányi) gibt, die dies erfüllt, als auch, dass im Allgemeinen keine gewöhnliche
Hopf Algebra mit strikter Wirkung und mit dieser Eigenschaft existiert.
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