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Abstract

The analysis of metal-semiconductor-hybrid-systems represents an interest-
ing task, especially the influence of spin and Coulomb interactions on the
transport is an important topic, such as for the understanding and develop-
ment of basic devices for spintronic circuits. Next to other systems, various
arrangements of quantum dots have proven to be worthwile toy-systems for
the investigation of of the fundamental transport properties of these systems.

In this work a double quantum dot system is investigated: two quan-
tum dots are connected in parallel by tunnel to common source and drain
reservoirs. The formation of Kondo correlations affects the physics of the
transport through this system significantly. Both, a spin- and an orbital
Kondo effect are possible in these systems, where the orbital Kondo effect de-
pends on the existance of an orbital degenerate ground state in the quantum
dot system.

The orbital fluctuations then form an SU(2) degree of freedom and thus
can be described analogous to the spin by a pseudo spin. The fluctuation
of this pseudo spin will lead to an increase in the non-resonant transport
through the double quantum dot system at low temperatures due to co-
tunneling processes by the same mechanism as the spin-Kondo-effect. The
investigation of the interplay of these two Kondo-effects respectively the im-
pact on the resulting SU(2) vs. SU(4) symmetry and the intermediate regime
of the Hamiltonian is the objective of this work, which is organized as follows.

After an introductory chapter that briefly introduces the physical basics
of the Kondo effect, the used method of the renormalization group calcu-
lations and different manifestations of the Kondo effect in various systems,
chapter two begins with the description of the system considered in detail.
To describe the orbital Kondo effect, a mixing parameter is defined that de-
scribes how strong the different electronic modes in the reservoirs couple to
each single quantum dot. In the case of strong fluctuations the common reser-
voir for both dots breaks into single reservoirs for each dot depending on the
electronic mode in the reservoir. This is the SU(4)-point of the system, for
which a significantly increased Kondo-temperature, compared to the SU(2)
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situation is predicted.
In the other limiting case of perfectly symmetrical coupling to both Quan-

tum dots, the orbital fluctuations are frozen and the orbital Kondo effect thus
is suppressed. Only the SU(2) Symmetry of the spin Kondo effect remains.
However, since the suppression of the orbital Kondo effect in this situation
goes along with a doubling the density of states by the now common reservoir,
the Kondo temperature is the same for both symmetry points.

The intermediate regime of the two symmetry points results in a decrease
of the Kondo temperature. This is due to the strong destructive effect of the
asymmetric mode of the occupation of quantum dots on the transport: These
states have, due to their weak coupling, a long lifetime, and the Coulomb
blockade suppresses the transport through the strongly coupled symmetric
state. Finally, we consider the effect of an external Zeeman field, which
suppresses the spin-Kondo effect. In the limit of a strong Zeeman field the
transition of a pure spin-Kondo system to a system without Kondo correla-
tions is observed via the mixing parameter.

In the third chapter, the conductivity of the double quantum dot system
is determined. The results of these calculations can be interpreted by an
interesting comparison to the double slit experiment: the situation of strong
fluctuations (separate reservoirs) represents a double slit experiment without
interference effects, the symmetrical coupling to the quantum dots a double
slit experiment with interference. This behavior can clearly be verified at
higher temperatures, and by means of the mixing parameter also intermediate
situations can be considered. As we approach the Kondo temperature Kondo
correlations more and more take over the dominant role of the transport
through the system, resulting in increasing deviations from the double-slit
picture. The Kondo temperature itself is not accessible, due to the breakdown
of the perturbative approach of these calculations at the Kondo temperature.



Zusammenfassung

Die Untersuchung von Metall-Halbleiter-Hybridsystemen stellt eine inter-
essante Aufgabe dar, insbesondere der Einfluss von Spin- und Ladungswech-
selwirkung auf den Transport ist ein wichtiges Thema, z.B. bezüglich des
Verständnisses und der Entwicklung spintronischer Basiselemente. Neben an-
deren Systemen haben sich verschiedene Anordnungen von Quantenpunkten
als für die Untersuchung der grundlegenden Transporteigenschaften lohnens-
werte Modellsysteme herausgestellt.

In dieser Arbeit wird ein Doppelquantenpunktsystem untersucht: Zwei
Quantenpunkte sind parallel durch Tunnelbarrieren mit gemeinsamen Source-
und Drain-Reservoirs verbunden. Die Ausbildung von Kondo-Korrelationen
beeinflußt die Physik des Transports durch diese Systeme wesentlich. Dabei
kann es sowohl zur Ausprägung eines Spin- als auch eines orbitalen Kondo-
effekts kommen, wenn der Grundzustand des Doppelquantenpunkt-Systems
orbital entartet ist.

Die orbitalen Fluktuationen bilden dann einen SU(2)-Freiheitsgrad und
können analog zum Spin durch einen Pseudospin beschrieben werden und
führen, ebenso wie der Spin-Kondoeffekt durch Kotunnelprozesse zu einer
Erhöhung des nichtresonanten Transports durch das Doppelquantenpunkt-
system bei tiefen Temperaturen. Die Untersuchung des Wechselspiels dieser
beiden Kondoeffekte bzw. der Auswirkungen der daraus resultierenden SU(2)
vs. SU(4)-Symmetrie des Hamiltonoperators und der Zwischenbereich dieser
ist das Ziel dieser Arbeit, die sich wie folgt gliedert.

Nach einem einleitend Kapitel, daß kurz die physikalischen Grundlagen
des Kondoeffekts, die verwendete Methode der Renormierungs-Rechnungen
und Manifestationen des Kondoeffekts in verschiedenen Systemen vorstellt,
wird in Kapitel Zwei zunächst das konkret betrachtete System genauer erläu-
tert. Zur Beschreibung des orbitalen Kondoeffekts wird ein Mischungsparam-
ter definiert, der beschreibt wie stark die jeweiligen elektronischen Moden in
den Reservoiren an einzelnen Quantenpunkte koppeln. Für den Fall starker
orbitaler Fluktuationen zerfällt das gemeinsame Reservior in zwei getrennte
Reservoirs die, je nach Mode, an nur einen der Quantenpunkte koppeln. Dies
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ist der SU(4)-Punkt des Systems, für den eine stark erhöhte Kondotempera-
tur gegenüber der SU(2)-Situation erwartet wird.

Im anderen Grenzfall vollkommen symmetrischer Kopplung an beide Quan-
tenpunkte, sind die orbitalen Fluktuationen eingefroren und der orbitale Kon-
doeffekt somit unterdrückt, es bleibt lediglich die SU(2) Symmetrie des Spin
Kondoeffekts erhalten. Da jedoch die Unterdrückung des orbitalen Kondoef-
fekts in dieser Situation mit einer Verdoppelung der Zustandsdichte durch
die nun gemeinsamen Reservoirs einhergeht, ergibt sich eine gleiche Kondo-
temperatur für beide Symmetriepunkte.

Zwischen den beiden Symmetriepunkten ergibt sich ein Abfall der Kondo-
temperatur. Dieser resultiert aus der starken destruktiven Wirkung der asym-
metrischen Mode der Besetzung der Quantenpunkte für den Transport: Diese
Zustände haben, aufgrund ihrer schwachen Kopplung, eine lange Lebenszeit
und blockieren durch die Coulombblockade den Transport durch den stark
koppelnden symmetrischen Zustand. Abschließend der Effekt eines externen
Zeemann-Feldes betrachtet, welches den Spin-Kondoeffekt unterdrückt. Hier
kann im Grenzfall eines starken Zemannfeldes bei Variation des Mischungs-
parametes der Übergang eines reinen Spin-Kondosystems zu einem System
ohne Kondokorrelationen beobachtet werden.

Im dritten Kapitel wird die Leitfähigkeit des Doppelquantenpunktsys-
tems bestimmt. Die Ergebnisse dieser Rechnungen lassen einen interessanten
Vergleich zum Doppelspaltexperiment zu: Die Situation starker Fluktuation
(getrennter Reservoirs) entspricht einem Doppelspaltexperiment ohne Inter-
ferenzeffekte, die der symmetrischen Kopplung an die Quantenpunkte der
des Doppelspaltexperiments mit Interferenz. Dieses Verhalten läßt sich bei
höheren Temperaturen eindeutig verifizieren, wobei mittels des Mischungs-
parameters auch intermediäre Situationen betrachtet werden können. Mit
zunehmder Annäherung an die Kondotemperatur übernehmen die Kondo-
korrelationen immer mehr die dominante Rolle für den Transport durch das
System, so daß sich immer stärkere Abweichungen vom Doppelspalt-Bild er-
geben, wobei die Kondotemperatur selber durch den störungstheoretischen
Ansatz dieser Rechnungen nicht erreicht werden kann.
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Chapter 1

Introduction

The Kondo effect, in which the electronic state is modulated by magnetic
impurities, has been the subject of many theoretical and experimental anal-
yses since its first observation in the 1930s, where de Haas et al. found at
low temperatures an unexpected non-linear increase in the resistivity with
decreasing temperature in their experiments on metals containing diluted
magnetic impurities [1]. Fig. 1.1 shows de Haas’ original experimental data
for different concentrations of iron in gold. An important characteristic of the
measured increase in resistance is the logarithmic temperature dependence:
ρ ∝ ln 1/T . A conventional theory of conductivity of metals would predict a
decrease of resistance with temperature or a saturation due to defects in the
lattice of the conductor.

The effect is named after Jun Kondo, who, in 1964, gave the first theoret-
ical explanation of this effect in his work about the scattering of conduction
electrons by diluted magnetic impurities [2]. Kondo assumed phenomeno-
logically motivated a Hamiltonian for the low energy sector of the system,
consisting of a part describing the electronic states in the conduction band
of the metal and their exchange interaction with the magnetic impurity

HK = Hmetal + J(s · S) (1.1)

with s the spin density in the metal, S the spin operator of the impurity and
J the coupling strength of the interaction.

In an earlier work Anderson modeled in 1961 the magnetic impurity as a
localized quantum state in a metal using the Hamiltonian

HA = Hmetal +Himp +HT

where Hmetal, Himp and HT respectively describes the conduction band of the
metal, the electrons in the impurity and the tunneling processes between the
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Figure 1.1: First experimental data of the Kondo effect by de Haas et al. [1].
Metal alloys with diluted magnetic impurities show an increase in resistivity
with decreasing temperature, the amount of the increase depends on the
concentration of the magnetic impurities
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metal and the impurity [3]. In 1966 Schrieffer and Wolf demonstrated the
equivalence of Anderson’s and Kondo’s models for the low energy sector and
gave an explicit unitary transformation between them [4].

In 1970 Anderson introduced the idea of scaling into the theoretical frame-
work of the Kondo physics [5]. This idea means that it is possible to map
a physical system onto a reduced version of itself by integrating out high
energy contributions. Iterating this process results in flow equations for the
physical quantities, which still is one of the most used methods for theoretical
calculations on Kondo problems today.

1.1 The Kondo effect
The basic mechanism of the Kondo effect is that the electron in the impurity
can lower its energy by pairing with a delocalized electron of opposite spin of
the surrounding metal, thereby building a singlet state [6]. This leads to an
enhanced scattering of electrons at the impurity and therefore to an enhanced
resistivity. As the binding energy of such a paired state is small compared to
the thermal energy of the electrons, this effect just becomes visible for small
temperatures, but becomes the dominant effect if the system is cooled down
below a certain temperature TK , the so called Kondo temperature.

Progresses in experimental nanotechnological methods enable physicists
to realize different setups of the Kondo scenario: a localized magnetic atom in
contact with a metallic environment. Thanks to new techniques it is possible
to build nano structures, in which electron movement is confined to two, one
or zero dimensions. A zero dimensional quantum system is called a quantum
dot or an artificial atom, because of its similarities in the electronic structure
to the quantized energy levels of an atom. Hence such a quantum dot can
play the role of the magnetic impurity in the Kondo scenario.

In 1998 the groups of Goldhaber-Gordon and Kouwenhoven both verified
the Kondo effect in a single electron transistor, using a quantum dot as an
artificial magnetic impurity [7,8]. The schematic setup of such an experiment
to measure the conductivity through a quantum dot is shown in Fig. 1.2. A
quantum dot is connected via tunneling junctions to metallic source and
drain reservoirs, to which a source-drain voltage Vsd can be applied. With an
additional gate voltage Vg all energy levels in the dot can be simultaneously
shifted.

In contrast to the increase in resistivity with decreasing temperature in
experiments in three dimensional metals, the Kondo effect manifests in these
experiments as an increase in the conductivity. The basic reason for this qual-
itative difference is that the same mechanism produces enhanced scattering
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QD

Vsd

Vg

Figure 1.2: Experimental setup: A
quantum dot is connected to a source
and a drain reservoir via tunneling con-
tacts. A source-drain voltage Vsd and
a gate voltage Vg can be applied.

in the case of the three dimensional metals, but enhanced transport due
to extended wave functions in the case of the tunneling junction contacted
quantum dot.

Due to the possibility to tailor the parameters of these artificial atoms
over a wide range, the quantum dots are excellent systems to study the many
particle phenomena of todays condensed matter physics.

1.1.1 Transport Channels and Coulomb blockade
To understand how an electron can tunnel sequentially from the source reser-
voir to the dot and finally from the dot to the drain reservoir to give rise to
a finite conductivity through the dot, let’s assume that N electrons are on
the dot and have a ground state energy of E(N). Adding another electron to
the dot will cost an additional charging energy Q = E(N +1)−E(N) due to
Coulomb interaction with the electrons already in the dot1, see Fig. 1.3(b).
The energy spectrum of the dot therefore is a ladder of energy levels separated
by gaps of width Q.

It is important to note that all these energy levels are not single electron
energy levels, but those of transitions between different states or occupation
numbers in the dot. In this case the energy to change the occupation of the
dot by one from N to N + 1. These discrete levels are also called transport
channels, because an electron tunneling through the dot has to go through
one of them to contribute to the current.

Transport is only possible if a transport channel lays in the region between
the Fermi energies of the left and the right Fermi reservoirs. This region is
also called the transport window. In this case the transition N → N + 1
is possible and the number of electrons in the dot can fluctuate, allowing
electrons to tunnel into and out of the dot, contributing to a non vanishing
current through the dot. In the case of equal Fermi energies in the reservoirs

1strictly speaking this is only true for metallic dots, as only in these the one particle
contribution is neglectable
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EF
N → N+1

(a) transport channel in resonance

EF Q

N → N+1

N−1→ N

(b) Coulomb blockade

Figure 1.3: Energetic situation of a quantum dot in tunneling contact with
metallic reservoirs

(vanishing transport voltage Vsd) that means one of the transport channels
has to be in resonance with the Fermi energy of that reservoirs. This situation
is shown in Fig. 1.3(a).

The situation depicted in Fig. 1.3(b) is a situation where no transport
is possible. The N → N + 1 transport channel is energetically unreachable
for the electrons in the reservoir, and also a tunneling process out of the dot
is impossible since there are no free states in the reservoir for the N − 1 →
N process. This suppression of current through the dot is called Coulomb
blockade.

It is possible to tune the energy levels in the dot via a gate voltage Vg.
Applying a gate voltage results in a simultaneous energetic shift of all levels in
the dot to lower, respectively higher energies. Assuming equal Fermi energies
in the reservoirs, sweeping the gate voltages from higher to lower values will
therefore fill the dot one by one with electrons, when a transition energy
level E(N) → E(N + 1) crosses the Fermi energy of the reservoirs. In this
moment transport through the dot is possible. When no transport channel is
in resonance with the Fermi energies of the reservoirs, transport is suppressed
by the Coulomb blockade. Measuring the differential conductivity versus
the gate voltage exhibits peaks for the resonances separated by so called
Coulomb valleys, resulting from the dot being in Coulomb blockade. This
typical behavior is sketched in Fig. 1.4.

1.1.2 Spin Flip Co-Tunneling

The simple picture of the conductivity through a quantum dot experiences a
drastic change when the Kondo effect plays the dominant role. At gate volt-
ages, where previously the Coulomb blockade suppressed the conductivity,
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in the dot:

Transistions:
Electrons

Vg

dI
dVg

N → N+1 N+ 1→ N+2 N+ 2→ N+3

N N+1 N+3N+2

Figure 1.4: Differential conductivity through a quantum dot connected to
reservoirs with equal Fermi energies: Peaks from the resonant tunneling are
separated by Coulomb valleys.

so called Kondo plateaus arise with falling temperature, reverting the situa-
tion to its opposite: The conductivity reaches for very low temperatures its
unitary limit of 2e2/h and therewith doubling the value for a single resonant
transport channel.

But these Kondo plateaus only appear for odd occupations of the quan-
tum dot with electrons. For even occupations the conductivity follows the
expected behavior of getting smaller with falling temperatures. See Fig. 1.5
for an illustration of this typical fingerprint of the Kondo effect.

The reason of this even-odd pattern in the G − Vg diagram is the spin
of the highest occupied state of the dot: If this state has a remaining spin
of 1/2, correlations between the spin of the dot and a spin in the reservoirs
will result in building a singlet state with a lowered energy. This extended
state, involving an electron in the dot and in the reservoir leads to enhanced
transport through the dot and is the basic mechanism of the Kondo effect.
It will be discussed in more details in the following.

Although the dot is in Coulomb blockade for first order processes, trans-
port through the dot is still possible via co-tunneling processes of higher
order, in which electrons tunnel through the dot by means of a virtual state
as illustrated in Fig. 1.6. As a result of a single co-tunneling process the spin
in the dot and in the reservoir will be flipped. Conservation of energy de-
mands equal energies before and after the co-tunneling process and therefore
spin degenerate states in the dot and in the reservoirs.

The superposition of all these spin flip co-tunneling processes results in a
correlated spin singlet state between the localized spin state and the electrons
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h
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Kondo-
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Coulomb-
valleys

large T

U

odd N even N odd N

Figure 1.5: Characteristic even-odd pattern of the Kondo effect in the G-VG
diagram. Only when the localized system is occupied with an odd number of
electrons, resulting in a remaining spin of ±1/2, the Coulomb valleys evolve
to Kondo plateaus with decreasing temperature. These Kondo plateaus reach
the conductivity of 2e2/h in the unitary limit and are separated by a Coulomb
valley with the width of the charging energy U .
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Q

Figure 1.6: Spin flip co-tunneling through a quantum dot in the Kondo
regime. Left: initial state, middle: virtual state, right: final state. Due to
the Coulomb interaction energy Q the dot is blocked for transport processes
in first order. But the electrons can still co-tunnel through a virtual state
through the dot, leaving the spin in the dot flipped

DOS

TK

E

EF

Figure 1.7: Kondo resonance in the
DOS. The superposition of all tunnel-
ing processes manifests itself a sharp
peak of the virtual state in the den-
sity of states exactly at the Fermi level.
The width of this peak TK determines
the energy scale of the Kondo regime.

in the reservoirs. This state enhances the transport through the dot, in the
unitary limit up to a fully open transport channel. This makes the Kondo
effect one of the few examples in physics where higher order processes com-
pletely govern the physical properties of a system and first order perturbative
descriptions completely fail.

In the density of states (DOS) picture the Kondo effect appears as a sharp
resonance in the DOS of the dot exactly at the Fermi level of the reservoirs
resulting from the virtual state, as sketched in Fig. 1.7. The width of the
peak gives the energy scale on which the Kondo effect plays the dominant role
in the behavior of the system. It is usually given in terms of a temperature
TK which is called the Kondo temperature.

1.2 Perturbative Calculations
We follow Abrikosov [9] to give a basic perturbative treatment of the Kondo
problem. The scattering amplitude of the Kondo Hamiltonian (1.1) in first
order approximation is simply

A(1) = J(s · S)σσ′ , (1.2)
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where σ and σ′ are the initial and final orientation of the electron spin.
Now let us assume an electron getting scattered from a initial state pσ

(where p denotes its momentum and σ its spin) to a final state p′σ′ through
an intermediate state p1σ1. We have two possibilities for this to happen.

1. The electron first gets scattered into the intermediate state pσ → p1σ1
and then to the final state p1σ1 → p′σ′. To calculate the scattering
amplitude for this process we have to respect that the intermediate
state has to be unoccupied by a factor 1−f(p1), where f(p) is the Fermi
distribution function. Taking the sum over all intermediate states we
have

A
(2)
1 = J2∑σ1

∫ (s · S)σ′σ1(s · S)σ1σ(1− f(p1))
ε(p)− ε(p1)

d3p1

(2π~)3 (1.3)

for the scattering amplitude.

2. An electron from the already occupied intermediate state could get
scattered into the final state p1σ1 → p′σ′ and the initial electron fills up
the now free intermediate state pσ → p1σ1. The scattering amplitude
for this process is given by

A
(2)
2 = −J2∑σ1

∫ (s · S)σ1σ(s · S)σ′σ1f(p1)
ε(p1)− ε(p′)

d3p1

(2π~)3 . (1.4)

The minus sign takes the asymmetry of the electronic wave function
into account as the particles are permutated with reference to (1.3).

Since we assume elastic scattering, we have

ε(p) = ε(p′). (1.5)

Using the commutator and eigenvalue relations for the spin operators, we get

(s · S)(s · S) = S(S + 1)− (s · S) (1.6)∑
i,k

σiσkSkSi = S(S + 1) + (s · S). (1.7)

With (1.5)–(1.7) scattering amplitudes (1.3) and (1.4) can be written as

A(2) = A
(2)
1 + A

(2)
2 = J2

∫ {
S(S + 1)δσ′σ
ε(p)− ε(p1) + 2f(p1)− 1

ε(p)− ε(p1)(s · S)σ′σ
}

d3p1

(2π~)3 .

Replacing the energies ε(p) and ε(p1) by their relative value to the Fermi
energy ξ(p) = ε(p)− µ and noting that f(p1) only depends on ξ1 gives

A(2) = J2
∫ {

S(S + 1)
ξ − ξ1

δσ′σ + 2f(ξ1)− 1
ξ − ξ1

(s · S)σ′σ
}
ν(ε)

2 dξ1, (1.8)

9



where ν(ε) is the density of states which is considered constant ν(µ) in the
vicinity of the Fermi energy ε ≈ µ.

The first term in the integrand of (1.8) gives upon integration over ξ1
a value of order ξ/µ, which can be neglected, when we are interested in
electrons in the vicinity of the Fermi energy.

The second term is antisymmetric with respect to ξ1, as

2f(ξ1)− 1 = − tanh
(
ξ1

2T

)
.

Taking the limits of the integral in the order of ±µ and exploiting the asym-
metry of the integrand the integral in (1.8) can be rewritten as

∫ µ

−µ

2f(ξ1)− 1
ξ − ξ1

dξ1 =
∫ µ

0
(2f(ξ1)− 1)

(
1

ξ − ξ1
− 1
ξ + ξ1

)
dξ1

=
∫ µ

0
(2f(ξ1)− 1) 2ξ1

ξ2 − ξ2
1
dξ1. (1.9)

For ξ1 � |ξ|, the ξ2 in the denominator of (1.9) may be ignored. For also ξ1 �
T the Fermi distribution f(ξ1) vanishes and the integral becomes logarithmic.
The logarithmic integral subsequently justifies the choice of the limits as ±µ,
as for logarithmic integrals it is sufficient to know just the order of their
limits. So we can evaluate (1.9) to

2 ln
(

µ

max(|ξ|, T )

)
.

The contribution of the second Born approximation to the scattering ampli-
tude is therefore given by

νJ2(s · S)σ′σ ln
(

µ

max(|ξ|, T )

)
.

Adding this to the first Born approximation (1.2) we end up with

J(s · S)σ′σ
[
1 + νJ ln

(
µ

max(|ξ|, T )

)]
.

Since for the physical description of the system electrons with energies |ξ| ≈
T are most interesting, we drop the case discrimination max(|ξ|, T ) in the
argument of the logarithm.
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The resistance depends on the square of the scattering amplitude. Within
the adopted accuracy we find a correction due to the scattering in first and
second Born approximation of

δρ ∝ 1 + 2νJ ln
(
µ

T

)
.

It turns out that all higher orders of perturbation theory contain powers
of that logarithmic dependency and summing them up results in a geometric
series [10]

δρ ∝
{ ∞∑
n=0

(νJ)n
[
νJ ln

(
µ

T

)]n−1
}2

=
[

νJ

1− νJ ln(µ/T )

]2

(1.10)

Eq. (1.10) has a logarithmic divergence when T approaches the Kondo tem-
perature

TK = µe−
1
νJ . (1.11)

which signals the breakdown of perturbation theory. Due to the many body
character of the Kondo effect, the coupling of the localized spin with the
electrons in the reservoir is not a small perturbation anymore.

1.3 Anderson’s Poor Man Scaling
In (1.9) we introduced the band width µ as a cutoff for the energy integration,
resulting in a logarithmic dependency on the band width in the result (1.10).
As these terms do not vanish for µ→∞, this implies the importance of high
energy excitations (e.g. those with energies close to the band width) in the
Kondo problem. They can’t be neglected and have to be taken into account,
for which the scaling approach provides an elegant solution.

The basic principle of a scaling [5,11] theory is, as said in the beginning, to
map a system onto a reduced version of itself by integrating out high energy
contributions beginning from a cutoff energy. The cutoff may be given for
example by the band width of the system. Of course the new, energetically
reduced system will have different and even newly generated couplings. In
this case it is necessary to rewrite the Hamiltonian in an invariant form for
scaling purposes to get the relation between the old and the new coupling
constants. These relations are called the flow equations. Analyzing them for
fix points, invariants or divergences will reveal important physical properties
of the studied system.

Let us illustrate this method by the analysis of the Kondo effect: Begin-
ning with the coupling term of the Hamiltonian for the SU(2) spin 1/2 Kondo

11
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Figure 1.8: Principle of the scaling: Inte-
grating out high energy shells from −Λ to
−Λ + δΛ and Λ − δΛ to Λ (hatched ar-
eas) has to be reflected in renormalizing
the coupling constants J → J ′

effect (1.1),
HK = J (s · S)

the reduced system is described by a new Hamiltonian

H ′K = HK + δHK

where δHK incorporates the corrections that emerge when integrating out a
high energy shell as sketched in Fig. 1.8. Carrying out the calculations for
scattering processes in the high energy shell in the first non vanishing order
in J gives the correction to the Kondo Hamiltonian in the form

δHK = −νJ2 δΛ
Λ (s · S) . (1.12)

The new Hamiltonian obviously has the same structure as the original one,
no new interactions are generated so it is already in it’s invariant form. Just
the coupling constant has to be replaced by a new one

J → J + δJ

with
δJ = −νJ2 δΛ

Λ . (1.13)

Substituting J by J + δJ is called renormalization of the coupling constant.
For infinitely small energy shells δΛ becomes dΛ in (1.13) and we get (re-
specting the logarithmic derivative on the right hand side of (1.13)) the flow
equation for the coupling constant

dJ

d ln(νΛ) = −νJ2 (1.14)
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ln Λ0
Λ TK

J

Figure 1.9: Flow of the coupling
constant J during the scaling as
a function of the reduced band
width Λ of the system. As J ap-
proaches TK a logarithmic diver-
gence in J appears.

Integrating the flow equation from an initial band width Λ0 and coupling
constant J0 gives

J = J0

1− J0ν ln (Λ0/Λ) . (1.15)

Also in the scaling calculation the Kondo temperature marks the end of the
validity of the results, as the coupling constant diverges when Λ reaches TK .

It may be worth noting, that the expression

TK = Λe− 1
νJ

is a constant during the scaling, where J = J(Λ) as given by 1.15. Values
with this property are called scaling invariants. This underlines the role of
the Kondo temperature as the important energy scale for the Kondo effect.
Systems characterized by the same TK(J, ν) lay on the same trajectories and
show therefore the same low energy behavior.

In summary the scaling method provides a way to include contributions
of high energy processes in first order calculations by summing them up
leading to new coupling constants J for a system with reduced bandwidth,
characterized by the energy scale TK . Higher order contributions could be
taken into account, but it turns out that are irrelevant as these behave like
1/Λ rather then ln Λ and therefore are neglectable for the high energy region.

This remapping of the system on itself comes to an end when the band
width of the new system becomes of the order TK , which corresponds to the
breakdown of the perturbative approach: The assumption of a small pertur-
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bation isn’t justifiable anymore in this case, which is reflected by diverging
coupling constants in the scaling2.

1.4 Realizations of the Kondo Effect
Goldhaber-Gordon [7] and Kouwenhoven [8] both experimentally verified the
predictions of the Kondo model on quantum dots made of GaAs/GaAlAs
heterostructures. They measured the zero bias conductance through a dot in
dependence of the gate voltage. Varying the gate voltage results in adding
or removing an electron to the dot, as the energy spectrum of the dot gets
shifted. The conductance shows coulomb peaks, which arise when a transport
channel is in resonance with the reservoirs. The measured peaks formed pairs
separated by valleys, which reflect the odd or even number of electrons in the
dot. The peaks became better resolved with increasing temperature from 90
mK to 400 mK, suggesting that the range of increased conductivity between
the pairs of peaks results from a Kondo resonance.

In a similar way Nygard [12] could show the Kondo effect using carbon
nanotubes. These Kondo systems differ in several ways from the quantum
dots. Carbon nanotubes show a discrete spectrum like the quantum dots but
are geometrically 2D systems. In contrast to electrostatically defined semicon-
ductor quantum dots the carbon nano tubes are geometrically fixed. While
geometry and contact transmission probabilities of semiconductor quantum
dots depend on the gate voltages these properties are fixed geometrical qual-
ities for carbon nano tubes. These Kondo systems thus enabled the observa-
tion over a wider range of VG, making several hundred Coulomb oscillations
experimentally accessible. The latter enabled measurements on Kondo sys-
tems with very high occupation numbers and the conductivity to be driven
almost to it’s theoretical maximum, the unitary limit. An example of the
results of such an experiment is shown in Fig. 1.10.

The Kondo effect has also been observed in single molecule transistors,
where divanadium molecules play the role of the magnetic impurity [13],
see Fig. 1.11. These systems show very high Kondo temperatures, but the
underlying physics is more complicated. The orbital degrees of freedom play
a role here, as discussed later in this section.

A crucial prerequisite for the Kondo effect is the existence of a degenerate
state in the localized system. In the above mentioned systems this degen-
eracy is related to the occupation of the highest occupied orbital. A single
electron in this state leads to a degeneracy with respect to the possible spin

2For ferromagnetic systems the scaling can be continued down to Λ→ 0 giving J → 0.
The impurity spin becomes uncoupled and asymptotically free.
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Figure 1.10: Experimental results of conductivity measurements of a car-
bon nano tube at different temperatures. E and O indicate even and odd
numbers of electrons in the nano tube, arrows indicate the direction of the
change with decreasing temperature. For high temperatures the Coulomb os-
cillations are visible. With decreasing temperatures the Coulomb valleys for
odd numbers of electrons evolve into Kondo plateaus, those for even numbers
deepen. From [12], compare Fig. 1.5

Figure 1.11: Experimental results of conductivity measurements of a single
molecule transistor at different temperatures. This graph shows Vsd vs. G at
Vg fixed in a Coulomb valley. With decreasing temperatures the Kondo peak
arises at zero bias between source and drain. From [13]
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orientations. A double occupation of the highest occupied orbital, forming
a spinless singlet state of the highest occupied orbital obviously shows no
degeneracy regarding the spin orientations. If the occupation number in the
localized system can be varied with a gate voltage Vg, this change from the
spin ±1/2 to a spinless ground state of the localized system leads to the well
known even-odd pattern in the dI/dVg characteristics of the Kondo effect as
shown in Fig. 1.10 and schematically illustrated in Fig. 1.5.

But experimental results also show the typical zero bias resonance with
logarithmic T dependency, resulting from the enhanced density of states at
the Fermi energy in the Kondo effect for quantum dots with even occupation
numbers [14]. Here it is not a single electron but a two electron ground state
that is the key for understanding the Kondo physics. Two electrons can form
a singlet or a triplet state. With these states again possible degeneracies can
be constructed that generate a Kondo effect:

• First, the triplet could be split up energetically using a magnetic field.
The Zeeman energy can bring one of the components of the triplet into
resonance with the singlet state [15]. This gives rise to a S = 1/2
Kondo effect.

• Second, the singlet state can be brought into resonance with a threefold
degenerate triplet state via magnetic fields in a way that the triplet
state is still nearly degenerate. A fourfold degeneracy arises and all four
states contribute to the Kondo effect, this situation will be discussed
later in details3.

Eto and Nazarov gave theoretical calculations for the enhancement of
the Kondo effect due to competition between singlet and triplet states and
its dependency on the energy differences between them for both limiting
cases [16].

1.4.1 Spinless Kondo Effects
Spin degeneracy is not the only way to realize the Kondo scenario, and ac-
tually other kinds of degeneracy can also cause a Kondo effect and can be
treated theoretically in a similar way as the spin Kondo effect. U. Wilhelm
et al. demonstrated such a spinless Kondo system by using two vertically
stacked quantum dots [17]. In this system the spin degeneracy of the origi-
nal Kondo effect is replaced by the orbital degeneracy of the double quantum

3Because of the s = 1/2 degeneracy of the spins in the reservoirs the localized spin can
not get fully screened, this is called an under-screened Kondo effect
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Figure 1.12: Charging diagram of a double quantum dot system for small
fixed source drain voltage with the characteristical Coulomb diamonds. V1
and V2 are the gate voltages for dot 1 resp. 2. Inside the hexagonal Coulomb
diamonds the transport is blocked through Coulomb blockade, along the
lines one electron is transferred into one of the dots and the total occupation
number changes by one. In the red marked region one electron is transferred
from one dot to the other without any energy costs

dot system: The states, which differ in the occupation numbers of the dots by
one, as (n,m− 1) and (n− 1,m), are energetically degenerate. That means
an electron can be transferred from one dot to the other without any energy
costs (Fig. 1.12). Capacitive coupling of the dots separates these states en-
ergetically from those with different total occupation numbers, so that the
system can be described in terms of a pseudo spin. Pseudo spin up means
an electron in the upper dot and pseudo spin down an electron in the lower
dot. Consequently the low energy sector of these systems is described by
a Hamiltonian obeying the SU(2) symmetry, like ordinary spin systems. A
very similar system will be the subject of this thesis.

Another spinless Kondo system can be realized using carbon nano tubes.
An orbital degree of freedom will also take the role of the degenerate ground
state here. It is easy to see from the cylindrical geometry of the nano tubes
that electrons rotating clockwise or anticlockwise with the same angular mo-
mentum are degenerate. The obvious choice of using these states as a basis

17



of a Kondo effect will be discussed in the next paragraph. Their fourfold
degeneracy according to spin and orbit needs a more subtle analysis. Be-
side from this it is also possible to use a parallel magnetic field to create a
crossing of states with the same spin polarization. These twofold degenerate
states create a purely orbital Kondo effect, since spin flip would break the
degeneracy of the states, as experimentally verified in [18].

1.4.2 SU(4) Kondo Effects
In these orbital Kondo systems both spin and orbital degeneracies of the elec-
trons are possible. The Kondo effects in the spin and orbital sector develop
independently and are characterized by different Kondo temperatures T Spin

K

and TOrbit
K [19, 20]. In the special case that these two energy scales coincide,

a greatly enhanced Kondo temperature has been predicted and experimen-
tally observed in carbon nanotubes [18, 21, 22]. Also the limiting cases of
SU(2) and SU(4) Kondo effects have been investigated and a four-peak split-
ting in the non-linear conductance in the SU(4) point in presence of an axial
magnetic field has been predicted [23].

Concerning quantum dot systems, the double dot systems are obvious
candidates to show a SU(4) Kondo effect. There are different geometrical
setups for such a configuration. In [22] the dots are attached to separate
leads in serial geometry. Another possible geometry for the double dot sys-
tem are parallel dots. Pseudo-spin correlations have been detected in such a
geometry [24,25]. In [26] such a device is used as a Aharonov Bohm interfer-
ometer to investigate the transition form an SU(2) Kondo effect to an SU(2)
Kondo effect due to ground state crossing. A similar geometry of a double
dot system connected in parallel to the leads will be described in detail in
the next chapter.
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Chapter 2

Renormalization Group
Analysis of the Double Dot
System

2.1 Setup
In this thesis a double dot system will be considered, in which two single level
quantum dots are coupled in parallel via tunnel junctions to two reservoirs.
The quantum dots are coupled capacitively to separate gate electrodes, so
that the occupation numbers of the dots and the position of the energy levels
can be controlled via gate voltages V1 and V2. A transport voltage Vsd can
be applied to the source (left) and the drain (right) reservoir (see Fig. 2.1
A, from [24]). An experimental realization of such a setup can be seen in
Fig. 2.1 B. The Hamiltonian of this system consists of three terms, describing
the isolated quantum dots including their inter-dot interaction, the reservoirs
and the tunneling between the reservoirs and the dots

H = HQD +
∑
ν=s,d

Hres
ν +H t. (2.1)

The Hamiltonian of the isolated quantum dots reads

HQD =
∑
i=1,2

∑
σ=↑↓

Ein̂iσ + Un̂i↑n̂i↓

+ U12n̂1n̂2. (2.2)

The term inside the square brackets is the Hamiltonian of the isolated single
quantum dot i with energy level Ei and occupation operator n̂iσ = ĉ†iσ ĉiσ
of electrons with spin projection σ. ĉiσ annihilates one electron with spin
projection σ in dot i. U is the coupling constant for the Coulomb interaction,
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A
V1

V2

QD1

QD2

Vsd

Figure 2.1: (A) Setup of a parallel double dot experiment. Two quantum
dots QD1 and QD2 are connected via tunneling junctions to source and drain
reservoirs, to which a voltage Vsd can be applied. The electronic levels in the
dots can be shifted with separate gate voltages V1 and V2. (B) Experimental
realization of such a setup in an atomic force microscopy picture. Quantum
dots (indicated by blue circles) are formed below the surface in a two dimen-
sional electron gas of a GaAs/AlGaAs heterostructure by applying negative
voltages to the gate electrodes 1, 2, A and B. Source and drain contacts are
formed by an additional layer (dotted lines), which prevents the electron gas
from depletion below the gates A and B, from [24].
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and therefore the second term inside the square brackets describes the intra-
dot Coulomb interaction and the last term of Eq. (2.2) the inter-dot Coulomb
interaction.

The low energy sector of the model consists of states with a total of one
electron in the double dot. The inter-dot Coulomb interaction provides a
strong electrostatic coupling between the dots. Then U12 and U separate the
double occupied states from those with one electron in the double dot. Also
inter-dot tunneling is excluded in this model, e.g. it is not possible for an
electron to tunnel directly from one dot to the other.

An orbital SU(2) Kondo effect can arise if the single electron in the double
dot can be transferred between the dots without energy costs1, that is if
E1 = E2 = E. The tunneling Hamiltonian is given by

H t =
∑
i=1,2
r=s,d
kσ

T ri,k â
†
rkσ ĉiσ + h.c. (2.3)

where ârkσ annihilates an electron with wave number k and spin σ in reservoir
r and T ri,k is the tunneling matrix element for this electron to tunnel into dot
i.

2.1.1 The tunneling angle η
Since we are interested in describing the dynamics of the orbital motion, it
is useful to introduce a tunneling angle by

cos ηrk = |T
r
1k|
T rk

, sin ηrk = |T
r
2k|
T rk

with T rk =
√
|T r1k|2 + |T r2k|2. (2.4)

The geometric meaning of the tunneling angle ηrk is illustrated in Fig. 2.2.
Tunneling matrix elements for wave vectors k that just allow tunneling be-
tween reservoir r and dot 1, T r1k = T rk and T r2k = 0, are described by ηrk = 0,
those that restrict tunneling to and from dot 2 by ηrk = π/2. In these cases
a mode couples explicitly to one dot of the double dot system. Modes that
couple equally to both dots are described by a tunneling angle of ηrk = π/4
as sketched in Fig. 2.2 (c).

In an alternative, but equivalent picture, the tunneling angle describes
different physical setups concerning the reservoirs. For the extreme cases
of modes with ηrk = 0, π/2 the reservoir can be considered as two separate

1A possible inter-dot tunneling would lift this degeneracy: In that case the previous
degenerate states in each dot would couple to a symmetric and an anti-symmetric state,
energetically separated by a splitting ∆SAS
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(a) Possible tunneling processes in the
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1

2

S D

(d) Tunneling angle ηsk = π/4

Figure 2.2: Tunneling processes considered in the model of the double dot
with their tunneling rates and illustration of the tunneling angle ηrk

reservoirs which each just couple do dot 2 respectively dot 1, as sketched
in Fig. 2.3(a) and (b). Between these limiting cases the dots couple to one
common reservoir reaching balance in the couplings for modes with T s1k =
T s2k = 1/

√
2T sk , see Fig. 2.3(c).

In the case of a perpendicular magnetic field the tunneling matrix ele-
ments carry a complex Aharonov-Bohm phase φ. We chose a symmetric
gauge to take φ into account

T s1k = ei
φ
4 |T s1k|, T s2k = e−i

φ
4 |T s2k|, (2.5)

T d1k = e−i
φ
4 |T d1k|, T d2k = ei

φ
4 |T d2k|.

Since the coupling matrix elements crucially decide about the orbital motion
of the electrons, it’s natural to introduce a pseudo spin notation by combining
them to a vector which components describe the relative coupling to dot 1
and dot 2 

T r1k
T rk
T r2k
T rk

 =
e∓iφ4 cos ηrk
e±i

φ
4 sin ηrk


The upper signs relate to the source reservoir, r = s, the lower ones to the
drain reservoir r = d.
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1
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T s1k = TSk

T s2k = 0

(a) Tunneling angle ηsk = 0

1

2T s2k = T sk

T s1k = 0

(b) Tunneling angle ηsk = π/2

1

2

T s1k = 1√
2 T sk

T s2k = 1√
2 T sk

(c) Tunneling angle ηsk = π/4

Figure 2.3: Alternative, equivalent description of the system: (a) modes
with T s2k = 0 can be considered coming from an own reservoir, which just
couples to dot 1, (b) modes with T s1k = 0 respectively as coming from another,
separated reservoir, which just couples to dot 2, (c) modes with T s1k = T s2k
couple to a common reservoir for both dots. Other values of T rik describe the
intermediate region between these limiting cases
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It is important to note that ηrk is not a dynamical degree of freedom, but
just determines the coupling of the states in the reservoir r in dependence of
their wave vector k to the different dots. The tunneling matrix elements T rik
are fixed properties of the setup of the double dot system and the reservoirs.

The angle ηk is not dynamical. Yet this angle can fluctuate with wave vec-
tor k. The magnitude of those fluctuations determines whether the pseudo-
spin in the reservoirs is promoted to a dynamical degree of freedom. For
example, if the reservoirs for two quantum dots are strictly separated, the
angle ηk assumes two possible values 0 and π/2, which results in strong fluc-
tuations of ηk with k, and eventually leads to the pseudo-spin Kondo effect.
In contrast, if there is only a single common reservoir for both dots, then the
tunneling amplitudes to both dots are equal T1k = T2k ∀k. In that case, the
angle ηk is frozen at the value π/4 for any k, and the orbital Kondo effect is
suppressed.

2.1.2 Operators in the dots and the reservoirs
Using the vector of the coupling angle as a pseudo spin it is possible to
introduce a formal bi-spinor notation for the operators in the reservoir by
taking the outer product of the above tunneling vector and the fermionic
operators in the reservoirs

Ψ̂kr =
e∓iφ4 cos ηrk
e±i

φ
4 sin ηrk

⊗ (ârk↑
ârk↓

)
. (2.6)

Also the operators in the dot can be formally combined into one bi-spinor

Φ̂ =


ĉ1↑
ĉ1↓
ĉ2↑
ĉ2↓

 .

In this notation the tunneling Hamiltonian (2.3) reads

H t =
∑
k

Tk

(
T sk
Tk

Ψ̂†sk + T dk
Tk

Ψ̂†dk
)

Φ̂ + h.c. (2.7)

The form of the tunneling Hamiltonian (2.7) suggests to use the linear
combination of operators in the source and drain reservoirs

Ψ̂k = T sk
Tk

Ψ̂sk + T dk
Tk

Ψ̂dk (2.8)
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Figure 2.4: Description of the model by the operators Ψ̂ and Φ̂

and it’s orthogonal mode

Ξ̂k = T dk
Tk

Ψ̂sk −
T sk
Tk

Ψ̂dk, (2.9)

where
Tk =

√
T sk

2 + T dk
2

as a new basis. If one expresses the tunneling Hamiltonian (2.7) in these new
modes, it becomes ∑

k

TkΨ̂†kΦ̂

Since Ξ̂k doesn’t contribute to the tunneling Hamiltonian, this mode doesn’t
couple to the double dot.

2.2 The SU(4) Kondo Hamiltonian
Performing the Schrieffer Wolff-transformation in the basis given by (2.8) for
the Hamiltonian (2.1) we derive the effective Kondo Hamiltonian

HK =
3∑

µ,ν=0

∑
k,k′

Jkk
′

µν

[
Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂

] [
Ψ̂†k (σ̂µ ⊗ σ̂ν) Ψ̂k′

]
+Hres. (2.10)

where σµ and τµ are Pauli matrices and Jkk
′

µν are the Kondo coupling
constants generated during the Schrieffer-Wolff transformation. For more
details on deriving the Kondo-Hamiltonian for this system, see [27].

The SU(4) symmetry point is achieved when E1 = E2 = E and U12 = U .
In this regime the Kondo couplings read

Jkk
′

µν = TkTk′
( 1
E + U

− 1
E

)
∀ µ = 0, 3
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Figure 2.5: One loop renormalization of the Kondo couplings. Solid lines
indicate the propagators for the electrons in the reservoirs G(ω, k), dashed
the spin propagators in the dots D(ω), squares indicate non-perturbative
renormalization vertices

except for Jkk′00 .
This Hamiltonian shows the possible SU(4) symmetry for the hyper-spins

in the dots Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂ and in the reservoirs Ψ†k (σ̂µ ⊗ σ̂ν) Ψ̂k′ . The hyper-
spins in the double dot and the reservoirs are described employing a semi-
fermionic representation [28,29].

2.3 Renormalization Group Analysis
In the following the total tunneling probabilities |T rk |

2 from a given reservoir
into the double dot are assumed to be k-independent for energies close to the
Fermi level of the reservoirs T rk = Tr. Then the Kondo coupling constants
Jkk

′
µν are independent of the wave vectors k and k′. Their indices are therefore

omitted: Jkk′µν → Jµν . We also consider the case of symmetric coupling to
both reservoirs ηsk = ηdk and omit the reservoir’s index of the tunneling angle.

To calculate the renormalization corrections to the coupling constants
in first non-vanishing order one has to evaluate one loop diagrams, like the
typical diagram shown in Fig. 2.5.

Using the propagators of the Fermi liquid in the reservoir

G(iωn) = 1
iωn − ξk

,

and combining them with the definition of the bi-spinor fields (2.6) one ob-
tains the propagators of the fields Ψ̂k

G(iω, k) = 〈Ψ†kΨk〉 = 1
iω − ξk

P (2.11)
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with the matrix

P =
(

cos2 ηk cos ηk sin ηk
cos ηk sin ηk sin2 ηk

)
⊗ 12 (2.12)

describing the non-trivial part of the coupling between the reservoirs and the
dots. The propagator of the fields Φ̂ in the double dot reads

D(iωn, k) = 1
iωn

12 ⊗ 12. (2.13)

Evaluating the diagram shown in Fig. 2.5 gives the following correction to
the Kondo Hamiltonian (2.10)

δH1
K =

∫ ddk′

(2π)d
∫ dω′

2π (σµ⊗σν)G(ω′−ω, k′)(σµ′⊗σν′)(τµ′⊗τ ν′)D(ω′)(τµ⊗τ ν)

=
∫ ddk′

(2π)d
∫ dω′

2π (σµ ⊗ σν)P(σµ′ ⊗ σν′)(τµ′ ⊗ τ ν′)(τµ ⊗ τ ν)×

× 1
ω′ − ω − ξk + i 0 sgn(ω′ − ω)

1
ω′ + i 0 sgnω′ (2.14)

Since ξk = ξk(|~k|) only depends on the absolute value of ~k and P only depends
on the angle of ~k it is useful to split the integration over the wave vector k
in two parts by ∫

ddk =
∫
dΩ

∫
kd−1dk

where dΩ denotes the d − 1 dimensional solid angle element. Then 2.14
becomes

δH1
K =

∫
dΩ(σµ ⊗ σν)P(σµ′ ⊗ σν′)(τµ′ ⊗ τ ν′)(τµ ⊗ τ ν)×

×
∫ ddk′k′d−1

(2π)d
∫ dω′

2π
1

ω′ − ω − ξk + i 0 sgn(ω′ − ω)
1

ω′ + i 0 sgnω′ (2.15)

2.3.1 Integrating out the energy shell
The first integral gives the matrix structure of the correction and will be
discussed later. To integrate out an upper energy shell from Λ − δΛ to Λ
one has to perform the ω integration in the second integral of Eq. (2.14).
Substituting δΛ by Λl to keep the relative size δΛ/Λ of the energy shell
constant all over the scaling and assuming Λ ≫ |ω| the integral can be
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approximated by∫ Λ

Λ−δΛ

dω′

2π
1

ω′ − ω − ξk + i 0 sgn (ω′ − ω)
1

ω′ + i 0 sgnω′

≈
Λl
2π

1
Λ− ξk + i 0

1
Λ + i 0 .

For the remaining k integration the density of states is assumed to be
constant at the Fermi level ddk′

(2π)d → ν0dξk. Using the principle value theorem
one gets ∫ ddk′

(2π)d
Λl
2π

1
Λ− ξk + i 0

1
Λ + i 0

= l

2π

∫ ν0dξk
Λ− ξk + i 0 = l

2π (−2πi)ν0

=− ilν0.

An analogous calculation for the lower energy shell from −Λ + δΛ to −Λ
contributes also −ilν0.

Evaluating all other possible one loop diagrams one gets the following
results for the integrals over ω and ξk

�
−2ilν0

�
2ilν0

�
−2ilν0

�
2ilν0
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2.3.2 Integrating over the solid angle of the wave vec-
tor

The matrix structure P (2.12) of the propagator depends on the tunneling
angle ηk which in turn depends only on the angular part of the wave vector
k. To integrate over k in (2.14) therefore involves averaging over all possible
angles.

〈P〉 =
〈(

cos η2
k cos ηk sin ηk

cos ηk sin ηk sin2 ηk

)〉
⊗ 12 (2.16)

=
(
〈cos η2

k〉 〈cos ηk sin ηk〉
〈cos ηk sin ηk〉 〈sin2 ηk〉

)
⊗ 12 (2.17)

Decomposing (2.17) in the set of the Pauli matrices σi and the unity matrix
gives

〈P〉 =
[1
2〈sin

2 ηk + cos2 ηk〉12 + 〈sin ηk cos ηk〉σ1 + 1
2〈cos2 ηk − sin2 ηk〉σ3

]
⊗ 12

(2.18)

=
(
b012 +

3∑
i=1

biσ
i

)
⊗ 12

with

b0 = 1
2 (2.19)

b1 = 〈sin ηk cos ηk〉 (2.20)
b2 = 0 (2.21)

b3 = 1
2〈cos2 ηk − sin2 ηk〉 (2.22)

In the case of symmetric dots, which is assumed in this work, b3 also van-
ishes. The fluctuations of the tunneling angle are now described by a single
parameter b1. The limiting values for b1 can be interpreted in the following
way:

• In the case of strictly separated reservoirs the tunneling angle is either
ηk = 0 or ηk = π/2 for the different modes. In both cases either the sine
or the cosine in the definition of b1 is zero and therefore b1 = 0. The
strong fluctuations of the tunneling angle will enable an SU(4) Kondo
effect for this value of b1.
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• If all modes couple equally to both dots, which means one common
reservoir for the double dot, the tunneling angle is fixed to ηk = π/4.
This results in b1 = 1/2. The orbital Kondo effect is suppressed and
the system will be in a spin SU(2) Kondo regime.

Because of this interpretation of the parameter b1 it will be called mixing
parameter in what follows. Summing up all diagrams results in a commutator
like structure of the correction to the Kondo-Hamiltonian HK

δHK =πν0 (δΛ/Λ) JµνJµ′ν′
× Φ†

[
(τµ ⊗ τ ν)

(
τµ
′ ⊗ τ ν′

)
−
(
τµ
′ ⊗ τ ν′

)
(τµ ⊗ τ ν)

]
Φ

×Ψ†
[
(σµ ⊗ σν) P

(
σµ
′ ⊗ σν′

)
−
(
σµ
′ ⊗ σν′

)
P (σµ ⊗ σν)

]
Ψ

(2.23)

This correction obviously has another structure than the original Hamiltonian
(2.10)

The reason for this difference is that the original Hamiltonian is not gen-
eral enough to hold during the scaling process. Differently from the scaling
calculations in section 1.3 for the SU(2) spin Kondo effect new interactions
are generated by the renormalization of the coupling constants.

The choice of our basis (2.8), (2.9) determines the matrix structure of the
propagator in the reservoirs P, Eq. (2.19). The basis is chosen in a way that
the non-trivial part of P just operates on σµ and σµ′ in the tensor products
of the Pauli matrices in (2.23). Therefore the indices µ, µ′ of the tensor
product will be called orbital indices and ν, ν ′ spin indices. It is just the non
trivial mixing of the orbital indices that generates new interactions in the
renormalization process. With this consideration in mind, one can suppose
that not all four µ, µ′ and ν, ν ′ indices are needed to describe the correction
to the Kondo Hamiltonian, but just three are enough to reflect the physical
structure of the system.

This motivates the trial to re-write the original Kondo Hamiltonian (2.10)
for the double dot system in a more general form using two independent
orbital indices and one spin index:

HK =
3∑

µ,λ,ν=0
Jµλν

[
Φ†(τµ ⊗ τ ν)Φ

] [
Ψ†(σλ ⊗ τ ν)Ψ

]
(2.24)

and hope that this form is general enough to respect the newly generated
interactions during the scaling.

To get the flow equations for the correction to the Kondo Hamiltonian
one has to redo the calculations leading to correction in the first place, but
this time taking the more general “three index” variant of the Kondo Hamil-
tonian (2.24) as starting point. If no new interactions are generated for this
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generalized Kondo Hamiltonian, the assumption of three independent indices
is justified and the flow equations for the coupling constants Jµλν can be read
off the correction to the Hamiltonian.

2.3.3 Decomposition of the commutator into the gen-
erators of the SU(4)

Redoing the calculations for the generalized Kondo Hamiltonian (2.24) one
ends up with a commutator like structure, similar to (2.23). To find the flow
equations for the coupling constants Jµλν the correction to the Hamiltonian
has to be expanded into a direct product of Pauli matrices. To do this we
use the relation for the product of the Pauli matrices σi extended by σ0 = 12

σnσm = δmnσ
0 + δn0βm0σ

m + δm0βn0σ
n + iεnmkσ

k, (2.25)

where

βij = 1− δij

and the Levi-Civita tensor εijk are utilized. First, we rewrite (2.23) into a
tensor product of matrix products by

(σµ ⊗ σν)(σµ′ ⊗ σν′) = (σµσµ′)⊗ (σνσν′)

and apply identity (2.25) to the result. This gives for the commutator (2.23)

(τµ⊗τ ν)(τµ′ ⊗ τ ν′)− (τµ′ ⊗ τ ν′)(τµ ⊗ τ ν) = (2.26)
−2i

[
(τλ ⊗ τ ν′)β0ν′δ0νεµλµ′ + (τλ ⊗ τ ν)β0νδ0ν′εµλµ′ + (τλ ⊗ τ 0)δνν′εµλµ′

+(τµ′ ⊗ τλ)β0µ′δ0µενλν′ + (τµ ⊗ τλ)β0µδ0µ′ενλν′ + (τ 0 ⊗ τλ)δµµ′ενλν′
]
,

where λ is a summation index.
The non trivial part of the correction to the Kondo Hamiltonian (2.23) is

given by the commutator resulting from the propagator in the reservoirs. It
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expands to

(σµ⊗σν)P(σµ′ ⊗ σν′)− (σµ′ ⊗ σν′)P(σµ ⊗ σν) = (2.27)
−2ib0

[
(σλ ⊗ σν′)β0ν′δ0νεµλµ′ + (σλ ⊗ σν)β0νδ0ν′εµλµ′ + (σλ ⊗ σ0)δνν′εµλµ′

+(σµ′ ⊗ σλ)β0µ′δ0µενλν′ + (σµ ⊗ σλ)β0µδ0µ′ενλν′ + (σ0 ⊗ σλ)δµµ′ενλν′
]

+2ib1
[
(σ0 ⊗ σ0)δνν′ε1µ′µ + (σ0 ⊗ σν)β0νδ0ν′ε1µ′µ + (σ0 ⊗ σν′)β0ν′δ0νε1µ′µ

+(σ0 ⊗ σλ)(δ0µδ1µ′ενν′λ + δ0µ′δ1µενν′λ)
+(σ1 ⊗ σλ)(2δ0µ′δ0µενν′λ − δµ′µενν′λ)
+(σµ′ ⊗ σλ)β0µ′δ1µενν′λ + (σµ ⊗ σλ)β0µδ1µ′ενν′λ

+(σλ ⊗ σ0)(δ0µδνν′ε1µ′λ − δ0µ′δνν′ε1µλ)
+(σλ ⊗ σν)(β0νδ0µδ0ν′ε1µ′λ − β0νδ0µ′δ0ν′ε1µλ)
+(σλ ⊗ σν′)(β0ν′δ0µδ0νε1µ′λ − β0ν′δ0µ′δ0νε1µλ)

]
.

Exploiting these identities for all indices and sorting them by the direct prod-
uct of Pauli matrices one can read off the flow equations for the coupling con-
stants. The full set of these is shown in appendix B. Since no disambiguations
in the corrections to the coupling constants appear the generalized Kondo
Hamiltonian (2.24) has proven to hold during the scaling.

2.3.4 The flow equations

The flow of the coupling constants differs for spin index ν = 0 and ν = 1, 3.
The scaling equations reduce consistently to two sets of equations for these
cases as shown in appendix C. In the following notation the value of the index
ν is therefore restricted to ν = 1, 3 and the case ν = 0 is explicitly denoted
by a zero as spin index.

Assuming that coupling constants with non diagonal orbital indices start
to flow with zero as starting value, it turns out that J10ν , J01ν and J100 are the
only non-diagonal coupling constants generated during the scaling. Further,
the coupling constants with diagonal orbital indices Jµµν , µ = 2, 3 have the
same flow and will be denoted by J⊥0 respective J⊥ν . This eventually results
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in the following set of flow equations:
dJ00ν

dΛ = 8
[
b1(2J00νJ01ν + 2J11νJ10ν) + b0(J2

00ν + J2
11ν + 2J2

⊥ν + J2
01ν + J2

10ν)
]

J110

dΛ = 8b0
[
J2
⊥0 + 3J2

⊥ν

]
J11ν

dΛ = 8 [b1(2J11νJ01ν + 2J00νJ10ν) + b0(2J00νJ11ν + 2J⊥0J⊥ν + 2J01νJ10ν)]
J⊥0

dΛ = 8 [b0(J10J⊥0 + 3J11νJ⊥ν) + b1(J⊥0J100 + 3J⊥νJ10ν)]
dJ⊥ν
dΛ = 8 [b0(J11νJ⊥0 + 2J00νJ⊥ν + J10J⊥ν) + b1(2J⊥νJ01ν + J⊥νJ100 + J⊥0J10ν)]
J01ν

dΛ = 8
[
b0(2J00νJ01ν + 2J11νJ10ν) + b1(J2

00ν + J2
11ν − 2J2

⊥ν + J2
01ν + J2

10ν)
]

dJ100

dΛ = −8b1
[
J2
⊥0 + 3J2

⊥ν

]
dJ10ν

dΛ = 8 [b0(2J11νJ01ν + 2J00νJ10ν) + b1(2J00νJ11ν − 2J⊥0J⊥ν + 2J01νJ10,ν)]

This coupled set of differential equations is integrated numerically from
the starting values

J00ν = J0, J110= J0, J11ν = J0, J⊥0= J0,

J⊥ν = J0, J01ν = 0, J100 = 0, J10ν = 0.

This assumes all non-diagonal coupling constants start to flow as zero, as
they are just generated by the renormalization process. J0 is assumed to be
a small constant, which depends on the properties of the considered metal of
the reservoirs.

The result of the numerical integration is that all coupling constants are
monotonically increasing and diverge all at the same critical value Λc. An
example of this behavior is shown in Fig. 2.6

Integrating the flow equations for different values of the mixing param-
eters b1 gives the dependence of Λc of b1. The Kondo temperature TK is
proportional to exp(−J0Λc). The resulting dependency TK(b1), normalized
to the SU(4) point at b1 = 0 is shown in Fig. 2.7

2.4 Discussion of the results
Fig. 2.7 shows two characteristic features.

• The Kondo temperature is exactly equal for both limiting situations
with a definite symmetry: T SU(4)

K = T
SU(2)
K .
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Figure 2.6: Example of the flow of the coupling constants Jµλν for an arbitrary
but fixed value of b1 during the renormalization process. At a critical length
Λc all coupling constants diverge. In contrast to the simple spin Kondo effect
(see Fig. 1.9 for comparison) new interactions J01ν , J100 and J10ν are generated
during the renormalization. The inset shows that also the coupling constants
which start from the same initial value J0 split up.
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Figure 2.7: Dependence of the Kondo temperature TK on the mixing pa-
rameter b1, normalized to the Kondo temperature of the SU(4) point T SU(4)

K ,
b1 = 0. With increasing mixing of the reservoirs the Kondo temperature first
drops, reaches a minimum at b1 ≈ 0.33 to raise again to the original value at
the SU(2) point b1 = 0.5
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• In the intermediate regime, increasing b1 first pushes the Kondo tem-
perature monotonously to a minimal value at b1,min ≈ 0.33. For even
larger values b1 > b1,min the Kondo temperature rises again to its origi-
nal value.

Both features can be understood in terms of transport channel blocking,
a common phenomena in the transport through quantum dots [30].

2.4.1 Equality of the Kondo temperature in the limit-
ing cases

The two transport channels through the double dot the system correspond
to the projection of the pseudo-spin. The wave functions in the channels
are given by the symmetric and anti-symmetric combinations of the wave
functions of each dot, as sketched in Fig. 2.8.

Figure 2.8: Symmetric and anti-symmetric combination of the states in each
dot

In the SU(2) point of completely symmetric tunneling from each mode
to both quantum dots, b1 = 0.5, the Kondo effect in the orbital sector is
completely suppressed. The channel through the antisymmetric combination
of wave functions is completely decoupled, because of the fixed tunneling
angle. All modes of the unified reservoir couple to a single electron state
given by the symmetric combination of the states in each dot. This results in
the doubling of the density of states in the reservoir for the spin Kondo effect,
compared to the other limit b1 = 0. In the case b1 = 0, which corresponds to
the SU(4) symmetry, each dot couples to its own reservoir, resulting in just
half the density of states, though both transport channels are open.

In the end, the Kondo temperatures for the two symmetry points, the
SU(4) one and the SU (2) one, are equal [21]. The doubling of the density of
states for the spin Kondo effect exactly compensates the suppression of the
orbital Kondo effect.
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2.4.2 Non-monotonous behavior of the Kondo temper-
ature in the intermediate regime

As stated above increasing b1 from zero to 0.5 progressively decouples the an-
tisymmetric combination of wave function from the reservoirs. Let’s assume
we drive the system a bit out of the SU(2) point, that is b1 is just below 0.5.
Now the antisymmetric state is still almost decoupled from the reservoirs,
yet not completely. The Kondo correlations still occur only in the strongly
coupled symmetric channel leading to the spin Kondo effect.

But as the system is not exactly in the SU(2) point there is a small
probability that an electron tunnels into the anti-symmetric combination of
wave functions, occupying this transport channel. These events have a huge
destructive effect on the spin Kondo effect, resulting from three factors:

1. The weak coupling of this state to the reservoirs, leading to a low Kondo
temperature, suppresses the spin Kondo effect in this channel.

2. The Coulomb blockade suppresses the transport through the strong
coupling symmetric state.

3. The antisymmetric state, if occupied, has a long lifetime because of
the weak coupling of the reservoirs to it, although the probability to
occupy it by tunneling from a reservoir is small.

The combination of blocking and spin Kondo effect suppression causes the
steep decay of the Kondo temperature for 0.5 > b1 > b1,min. For even lower
values of b1 the fluctuations of the asymmetric occupation of the dots, due to
higher tunneling rates to them, give raise to the orbital Kondo effect. Finally
for b1 = 0 in the SU(4) symmetry point the Kondo temperature reaches again
its original value.

2.5 External Zeeman field
An external magnetic field would certainly lift the spin degeneracy due to the
Zeeman energy, and therefore destroy the spin Kondo effect. To investigate
this behavior, we included the effect of an external magnetic field into the
scaling calculations.

2.5.1 Adaptation of the Model
Our original Kondo Hamiltonian (2.10) does not depend on the magnetic field,
but could be easily expanded by a Zeeman term. From that we could derive
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the scaling equations and treat the effects of the magnetic field completely
analogous to all other quantities in the renormalization formalism.

However, since we’re just interested in the destruction of the spin Kondo
effect by freezing out the spin fluctuation, we chose a much simpler effective
approach: We compare the Zeeman energy h to the energy scales of the
renormalization calculations. From a certain logarithmic energy scale lh(h)
the Zeeman energy becomes the dominant energy scale and therefore freezes
out spin fluctuations for l > lh, for l < lh the Zeeman field is neglected.

Without loss of generality we take the direction of the Zeeman field along
the z-axis. In this case the coupling constants Jµλν with spin-index ν = 1, 2
stop abruptly to flow for l > lh.

This can be understood in two equivalent pictures:

• In the first we scale the Zeeman energy scale, resulting in a running
Zeeman field h(l) = h0e

l. The switch-over condition then is the running
Zeeman reaching the high energy cutoff h(lh) = Λ.

• We also could think of keeping the Zeeman energy constant and switch
over to the new set of scaling equations with fixed couplings when we
have integrated out enough high-energy shells to have our system scaled
down to the energy scale of the Zeeman field.

Simply switching the scaling equations during the scaling may be figu-
ratively obvious, but the results are to be taken with care when switching
is done abruptly2. Nevertheless the simple method of switching the scaling
equation gives results good enough to illustrate the breakdown of the spin
Kondo effect with increasing external magnetic field and to differ between
different energy regimes.

2.5.2 Discussion of the energy regimes
The results of such a calculation can be seen in Fig. 2.9. The graph shows
in light blue the dependence of the Kondo temperature TK on the mixing
parameter b1 without an external Zeeman-field, compare Fig. 2.7. The black
line shows the crossover of the energy regimes h = T

SU(4)
K , above it is h <

T
SU(4)
K , below h > T

SU(4)
K .

2The problem of this approach is: We switch abruptly from the set of completely
undisturbed (h = 0) flow equations for the coupling constants to those for utterly frozen
spins (h � T

SU(4)
K ) even for intermediate Zeeman energies 0 < h < T

SU(4)
K . While this

is correct in the extremal cases, it is certainly a rough approximation in the intermediate
regime.
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Figure 2.9: Dependence of the Kondo temperature TK on the mixing param-
eter b1 in presence of a Zeeman field, normalized to the Kondo temperature
of the SU(4) point T SU(4)

K with zero Zeeman field. The light blue curve marks
the Kondo temperature without the Zeeman field (see Fig. 2.7). The Zeeman
field h increases from blue (h/T SU(4)

K = 0.993) to red (h/T SU(4)
K = 1.008). The

black curve shows the Kondo temperature for h = T
SU(4)
K . The inset shows

the Kondo temperature for large Zeeman fields (h/T SU(4)
K � 1).
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h < T
SU(4)
K : In this case there exist ranges of b1 in which the Zeeman field
has no effect, the Kondo temperature is identical to the case of no
Zeeman field at all. No switching of the flow equations occurred in the
calculations for these values of b1.
Just in the parameter regime of b1, where the mixing lowered the Kondo
temperature (and therefore the corresponding energy scale) to values
of h > TK(b1) the Zeeman energy becomes the dominant energy scale.
Then the suppression of the spin Kondo effect lowers the Kondo Tem-
perature even further.
With increasing h the regions where the Zeeman field lowers the Kondo
temperature expand naturally to a broader range of b1, since now even
less mixing lowers the Kondo energy scale enough to let the Zeeman
field become effective.

h = T
SU(4)
K : This is the limiting case, where the graphs of the Kondo tem-
perature with and without external Zeeman field separate totally from
each other. Just for the extremal cases b1 = 0 and b1 = 0.5 the Kondo
temperatures still match. The slightest other value of the mixing pa-
rameter lowers the Kondo temperature below h, leading to a further
decrease by the suppression of the spin Kondo effect be freezing out
the spin fluctuation.

h > T
SU(4)
K : In this regime there exists no mixing parameter b1 anymore,
where we could see an undisturbed system. For each value of b1 the
Zeeman field freezes out the spin fluctuations. As these are more impor-
tant for larger values of b1 (meaning closer to the SU(2) point, where
the orbital Kondo effect is suppressed by the fixed tunneling angle) the
Kondo temperature drops drastically for large values of b1 and should
destroy the Kondo effect completely for large Zeeman fields.

The inset in Fig. 2.9 shows the Kondo temperature for large values of the
Zeeman field h� T

SU(4)
K . In this case all values of TK(b1) were derived from

the flow equations for fixed spin, which means that the system only shows
the orbital Kondo effect.

It is clearly visible that the Kondo temperature drops to zero, as b1 ap-
proaches 0.5, which means fixed tunneling angles, and therefore no Kondo
effect at all. In the other limiting case of free orbital fluctuations, b1 = 0,
the graph shows a reduced Kondo temperature compared to the SU(4) case
without Zeeman field. This decline started when h exceeded T SU(4)

K (h = 0)
as explained above and reaches a finite limiting value given by the full sup-
pression of the spin Kondo effect. In the picture of transport channels half
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Figure 2.10: Kondo temperature as function of the Zeeman field h for different
values of the mixing parameters b1, normalized to the Kondo temperature at
the SU(4) point without Zeeman field.

of the transport channels are blocked. The diminished density of states in
the separate reservoirs for each dot in this situation is not compensated by
a second open transport channel. The quantitive result of the numerical
calculation for the lowering of the Kondo temperature from SU(4) to SU(2)
is in good agreement with the expected value for half of the channels of
exp(1/2)/ exp(1/4) ≈ 0.78.

The dependence of the Kondo temperature on the Zeeman field h for
different values of the mixing parameters b1 is shown in Fig. 2.10. b1 was
chosen for both limiting cases, the SU(2) and the SU(4) Kondo effect3, and
for the minimal Kondo temperature without Zeeman field, b1 = 0.33. The
spin fluctuations are frozen out completely for h ≈ 1.65T SU(4)

K (h = 0). Higher
values of the Zeeman field do not decrease the Kondo temperature anymore,
as the double dot system just shows the orbital Kondo effect in this regime
in the case of b1 = 0 and no Kondo effect at all for b1 = 0.5.

3The exact SU(2) point, b1 = 0.5, leads to convergence problems in the numerical
problems in the calculations, so b1 = 0.4999 was chosen as approximation.
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The different regimes of h with respect to T SU(4)
K discussed in the begin-

ning of this section can be found in the small features in the upper left corner
of the graph: Both curves for the Kondo temperature in the SU(2) and the
SU(4) situation begin to show the effect of the Zeeman field at h = T

SU(4)
K ,

starting from the same Kondo temperature, while the curve for the case of
b1 = 0.33 starts with a slightly diminished Kondo temperature, due to the
mixing, and at lower magnetic fields, just because of that lowered Kondo
temperature.
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Chapter 3

Conductance through the
Double Dot

3.1 The current operator

To calculate the current through the double dot system we start out from
the generalization of the effective Kondo Hamiltonian (2.10)

HK =
3∑

µ,λ,ν=0

∑
k,k′

Jkk
′

µλν Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂ Ψ̂†k
(
σ̂λ ⊗ σ̂ν

)
Ψ̂k′ (3.1)

The current operator is defined as an electric charge flow out of the source
reservoirs

ĵ = −e ∂
∂t

∑
k

Ψ̂†skΨ̂sk (3.2)

It should be pointed out that in the effective Hamiltonian (3.1) only the
mode Ψ̂k appears, while in the current operator explicitly the field Ψ̂†sk in the
source reservoir enters. These fields are connected by the linear combinations
(2.8) and (2.9) chosen as basis in chapter 2.1.2

Ψ̂k = T sk
Tk

Ψ̂sk + T dk
Tk

Ψ̂dk,

Ξ̂k = T dk
Tk

Ψ̂sk −
T sk
Tk

Ψ̂dk.
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Calculating the expectation value for j by evaluating the commutator of the
of the Hamiltonian (3.1) with the occupation operator in (3.2) we get

ĵ = −ie
 3∑
µ,λ,ν=0

∑
p,p′

Jpp
′

µλν Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂ Ψ̂†p
(
σ̂λ ⊗ σ̂ν

)
Ψ̂p′ ,

∑
k

Ψ̂†skΨ̂sk


= −ie

3∑
µ,λ,ν=0

∑
p,p′

Jpp
′

µλν Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂
[
Ψ̂†p

(
σ̂λ ⊗ σ̂ν

)
Ψ̂p′ ,

∑
k

Ψ̂†skΨ̂sk

] (3.3)

since the operators of the reservoirs and the dots commute.
To calculate the commutator we need the relation between Ψ̂k and Ψ̂sk

given by (2.8)
[
Ψ̂†p

(
σ̂λ ⊗ σ̂ν

)
Ψ̂p′ ,

∑
k

Ψ̂†skΨ̂sk

]

=
∑
k


(
T sp
Tp

Ψ̂†sp +
T dp
Tp

Ψ̂†dp
)(

σ̂λ ⊗ σ̂ν
)(T sp′

Tp′
Ψ̂sp′ +

T dp′

Tp′
Ψ̂dp′

)
Ψ̂†skΨ̂sk

− Ψ̂†skΨ̂sk

(
T sp
Tp

Ψ̂†sp +
T dp
Tp

Ψ̂†dp
)(

σ̂λ ⊗ σ̂ν
)(T sp′

Tp′
Ψ̂sp′ +

T dp′

Tp′
Ψ̂dp′

)
=
T sp
Tp

T sp′

Tp′

{
Ψ̂†dp

(
σ̂λ ⊗ σ̂ν

)
Ψ̂sp′ − Ψ̂†sp

(
σ̂λ ⊗ σ̂ν

)
Ψ̂dp′

}
(3.4)

This result enables us to rewrite the current operator in a comprehensible
form as the difference of the source-drain current and the current in the
opposite direction

ĵ = ĵsd − ĵds
with

ĵsd = −ie
3∑

µ,λ,ν=0
Φ̂† (τ̂µ ⊗ τ̂ ν) Φ̂

∑
k,k′

Jkk
′

µλν

T sk
Tk

T sk′

Tk′
Ψ̂†dk

(
σ̂λ ⊗ σ̂ν

)
Ψ̂sk′ . (3.5)

As in section 2.3 the Kondo coupling constants Jkk′µλν are assumed independent
of the wave vectors k and k′ and their indices are therefore omitted again:
Jkk

′
µλν → Jµλν .
In equation 3.5 the fields Ψ̂sk and Ψ̂dk in the source and drain reservoirs

enter into the calculation of the current. But it has been shown in the pre-
vious chapter that it is only the field Ψ̂k that couples to the double dot.
Therefore only this field enters the renormalization flow of the coupling con-
stants. To respect this we change our basis again back to the mode Ψ̂k and
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its orthogonal mode Ξ̂k, defined by (2.9)

Ξ̂k = T dk
Tk

Ψ̂sk −
T sk
Tk

Ψ̂dk.

In this basis the current through the double dot system (3.5) reads

ĵ = −ie
3∑

µ,λ,ν=0
JµλνΦ̂† (τ̂µ ⊗ τ̂ ν) Φ̂×

×
∑
k,k′

T sk
Tk

T sk′

Tk′

{
Ψ̂†k

(
σ̂λ ⊗ σ̂ν

)
Ξ̂k′ − Ξ̂†k

(
σ̂λ ⊗ σ̂ν

)
Ψ̂k′

}
. (3.6)

In what follows Eq. (3.6) is used in the explicit calculations of the current.

3.2 Transport Calculations
The current at finite transport voltages is calculated in the Keldysh formal-
ism, see [31] for a presentation of the method.

In this formalism the unperturbed Green functions in the source and the
drain read

Ĝs,d(ε, k) =
(
GR
s,d(ε, k) GK

s,d(ε, k)
0 GA

s,d(ε, k)

)
, (3.7)

where GR denotes the retarded Green function, GA the advanced and GK

the Keldysh Green function, see [31].
Analog to the propagators of the fields (2.11) the unperturbed retarded

and advanced Green functions in (3.7) are

G
R/A
s,d (ε, k) = 1

ε− ξsdk ± i o
Ps,d(k) (3.8)

with
Ps,d(k) =

(
cos2 ηs,dk cos ηk sin ηs,dk

cos ηs,dk sin ηk sin2 ηs,dk

)
⊗ 12 (3.9)

describing the matrix structure of the tunneling interaction, as in Eq. (2.12).
GK
s,d is the Keldysh component of the Green function (3.7), parametrized by

GK
s,d(ε, k) = tanh

(
ε− µs,d

2T

) (
GR
s,d −GA

s,d

)
.

Like in section 2.3 the total tunneling probabilities |T rk |
2 from a given reservoir

into the the double dot are assumed to be k-independent for energies close to
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the Fermi level of the reservoir T rk = T r. The total tunneling rate is denoted
by T0 = (T s)2 + (T d)2 (not to be confused with the temperature T ). Using
the chosen basis Ψ̂k and Ξk, (2.8, 2.9), we can express the unperturbed Green
functions as

G0 = −i〈ΨkΨ†k〉0 = −i
(

(T s)2

T 2
0
〈ΨskΨ†sk〉+ (T d)2

T 2
0
〈ΨdkΨ†dk〉

)

= (T s)2

T 2
0
Gs + (T d)2

T 2
0
Gd, (3.10)

K0 = −i〈ΞkΨ†k〉0

= T sT d

T 2
0

(Gs −Gd), (3.11)

g0 = −i〈ΞkΞ†k〉0

= (T s)2

T 2
0
Gs + (T d)2

T 2
0
Gd. (3.12)

In what follows symmetric couplings to source and drain reservoir are as-
sumed, that is T sik = T dik. In this case the retarded and advanced components
KR/A vanish, as can be seen from (3.11). The only non-vanishing component
of K0 is

KK(ε, k) = −2πiT
sT d

T 2
0

[
tanh

(
ε− µs

2T

)
− tanh

(
ε− µd

2T

)]
δ(ε− ξk) (3.13)

3.2.1 Lowest order correction
The diagram corresponding to the lowest order correction of the current is
shown in Fig. 3.1. An explanation of the elements used in the diagram is
given in table 3.1.

Evaluating the diagram shown in Fig. 3.1 leads to the expression

∫ dε dω1 dω2

(2π)3

∫
(dk)0(dk′)0

∑
a

∑
µ 6=ν

tr {γaG(ε, k)γµK(ε+ ω1 − ω2, k
′)}×

× tr {γaD(ω1)γνD(ω2)} . (3.14)

This integral (3.14) will be solved for different values of a, µ, ν
Let us consider the case a = 0, µ = 1, ν = 0 as an example. Evaluating

the matrix structure of the integrand gives
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� G0(ε, k)� Semi-fermionic Green function D(ε)� K0(ε, k)

� current operator

� Kondo interaction vertex

Table 3.1: Elements used in the current diagrams

�
ω1

ε; k

ω2

ε+ ω1 − ω2; k′

Figure 3.1: Lowest order nonzero contribution to the current through the
dot
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tr
{
Gγ1K

}
= tr

{ (
GR GK
0 GA

)(
0 1
1 0

)(
KR KK
0 KA

)}
(3.15)

= tr
{
GKKR + GAKK

}
(3.16)

= tr
{
GAKK

}
(3.17)

since KR = 0 because of ηsk = ηdk, as mentioned above. The trace over the
semi-fermionic Green function D gives

tr {DD} = tr
{
DRDR +DADA

}
(3.18)

Using (3.17), (3.18) and the definitions (3.7) – (3.13), Eq. (3.14) expands to
∫ dε dω1 dω2

(2π)3

∫
(dk)0(dk′)0

1
ε− ξk − i0

(−2πi)T
sT d

T 2
0
×

×
[
tanh

(
ε+ ω1 − ω2 − µs

2T

)
− tanh

(
ε+ ω1 − ω2 − µd

2T

)]
×

× δ(ε+ ω1 − ω2 − ξk′)
[ 1
ω1 + io

1
ω2 + io

+ 1
ω1 − io

1
ω2 − io

]
tr
{
P2
}
. (3.19)

In the following we express the Fermi levels of the source and drain reservoirs
through the transport voltage V by

µs = 1
2eV (3.20)

µd = −1
2eV. (3.21)

Carrying out the integrations under the assumption that transport voltage
is larger then the temperature energy scale eV/2 > T and using the approx-
imation (see Fig. 3.2)∫

dε
[
tanh

(
ε+ µ

2T

)
− tanh

(
ε− µ
2T

)]
≈
∫ 2T

−2T
dε
[
ε+ µ

2T − ε− µ
2T

]
= 4µ.

(3.22)
expression (3.14) finally yields

πν2
0
T sT k

T 2

(1
2 + 2b2

1

)
eV. (3.23)

The term inside the brackets results from the trace

tr
{
P2
}

= tr
(

1
2 b1
b1

1
2

)2

= 1
2 + 2b2

1
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 1

 0

−1

 2

 1

 0

tanh
(
ε−µ
2T

)tanh
(
ε+µ
2T

)

µ−µ−2T −µ −µ+2T µ−2T µ+2T

Figure 3.2: Approximation by linearizing the tangens hyperbolicus. The
hatched area corresponds to the integral in Eq. 3.22. Upper figure: The
exact values of the tangens hyperbolicus are lined in red and green, the
linearization in blue. Lower figure: The difference between the linearized
tangens hyperbolicus, the hatched area equals 4µ. In the limit T → 0 the
approximation gets exact.

where b1 enters through the averaging over the wave vectors, like described
in Sec. 2.3.2.

Other cases of a, µ and ν contribute in a similar way and eventually we
end up with

j(V ) = 40πe2V ν2
0

(T s)2(T d)2

T 4
0

∑
λ,µ,ν

J2
λµν

(1
2 + 2b2

1

)
(3.24)

3.3 Results
The result for the current through the double dot system j(V ), Eq. (3.24),

j(V ) = 40πe2V ν2
0

(T s)2(T d)2

T 4
0

∑
λ,µ,ν

J2
λµν

(1
2 + 2b2

1

)

consists of three different factors:
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• The prefactor, mainly containing the density of states in the reservoirs
ν0, the transport voltage V and the tunneling amplitudes T s and T d

between the double dots and the source and drain reservoirs,

• the sum of the squares of the coupling constants ∑λ,µ,ν J
2
λµν

• and a factor containing the mixing parameter 1
2 + 2b2

1

Let us take a closer look at the role of the last two factors. The sum over
the coupling constants ∑λ,µ,ν J

2
λµν obviously represents the spin and orbital

Kondo effect, as these quantities are generated during the renormalization
group transformation. It is important to note that the coupling constants
also depend on the mixing parameter b1: Jλµν = Jλµν(b1).

3.3.1 Comparison to the double slit experiment
To elucidate the role of the factor 1

2 + 2b2
1, let us remind of the physical

meaning of the mixing parameter b1. As explained in Sec. 2.3.2 the limiting
cases b1 = 0 and b1 = 1

2 correspond to the physical situations of separate
reservoirs for each dot, respectively a common reservoir for both dots.

Let us ignore for a moment the Kondo correlations in the system. For
b1 = 0, the system splits into two completely decoupled current channels.
Each channel consists of a source, a quantum dot and a drain. The partial
currents through the now non-interacting reservoir-dot systems would simply
add to a total current j0. This situation is depicted in Fig. 3.3.

In the other limiting case, b1 = 1
2 , which corresponds to common source

and drain reservoirs to the double dot, the resulting geometry of the setup can
be interpreted as an analogon to the double slit experiment: In the classical
case the intensity I caused by the amplitudes A1 = A2 = A of the single slits
sum up to

Ic = |A1|2 + |A2|2 = 2|A|2.
In the quantum mechanical case of constructive interference we have

Iq = |A1 + A2|2 = |A1|2 + |A2|2 + 2|A1A2| = 4|A|2 = 2Ic.

Due to single particle interference effects the intensity in the central max-
imum appears by a factor two larger than the expected value of a classical
calculation. If we take a look at the factor 1

2 + 2b2
1 we find the same behavior.

For b1 = 0 this factor gives 1
2 , a value of b1 = 1

2 results in 1
2 + 2b2

1 = 1, repro-
ducing the factor two of the interference effect in the double slit experiment.
Compared to the situation b1 = 0, we would expect a total current of 2j0 for
b1 = 1

2 . This situation is sketched in Fig. 3.4. Decreasing b1 from this value
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SU(4), b = 01

Figure 3.3: Origin of the 1
2 + 2b2

1 term in the expression for the total current
for the limiting case b1 = 0. Separated reservoirs result in a simple addition
of the partial currents through the upper and lower dot. This corresponds to
a double-slit experiment, in which no interference effects are observed. Both
partial intensities simply add up to a total intensity.
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SU(2), b = 0.51

Figure 3.4: b1 = 1
2 , meaning common reservoirs, gives rise to a single-particle

interference term. In case of a constructive interference, as in the central
maximum of the the interference pattern of a quantum mechanical double-
slit experiment, this results in doubling the Intensity, compared to the case
without interference.
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we can gradually suppress the interference effect, returning to the classical
value j0.

Now let us take into account again that the coupling constants Jλµν also
depend on the mixing parameter b1. The different setups also show different
Kondo correlations. A value of the mixing parameter b1 = 0 means strong
orbital fluctuations and therefore the SU(4) Kondo effect, while these fluc-
tuations are suppressed at b1 = 1

2 , reducing the system to a SU(2) Kondo
effect. As the coupling constants Jλµν also enter the total current (3.24) the
Kondo correlations will also affect the conductance through the dot and cause
deviations from the quadratic b1 behavior, predicted by the factor 1

2 + 2b2
1.

3.3.2 Temperature dependence
Far away from the Kondo temperature T � TK the deviations due to Kondo
correlations surely will be small and one would expect the quadratic b1 de-
pendency. Approaching TK the correlations will gain in significance and close
to TK they will dominate the current through the double dot.

This behavior can be seen in Fig. 3.6 to 3.9. These Figures depict the
results of calculations in which the temperature is taken into account by
aborting the flow of the coupling constants before they diverge at the critical
energy Λc.

To justify this approach let us remind of the principle of the renormal-
ization group analysis: The renormalization of the system by integration out
an energy shell led to the flow equations, which describe the behavior of the
coupling constants as a function of an energy cutoff Λ. As the energy cutoff
runs down the coupling constants increase and finally grow above the lim-
its where they can be treated perturbativly. In fact they diverge at a finite
critical energy Λc which we associate with the Kondo temperature TK .

In this meaning the flow of the coupling constants can be physically in-
terpreted as cooling the system down to TK , as we can associate the running
energy cutoff Λ during the renormalization with a corresponding running
temperature T (Λ). The values of the coupling constants can be taken as
their values above the Kondo temperature. This approach is certainly not an
exact consideration of the temperature, but the results are good enough to
demonstrate the deviations from the quadratic behavior, if not taken too far
away from or too close to the Kondo temperature. In the first case the sys-
tem is simply not governed by Kondo physics, in the second the perturbative
approach behind the scaling analysis breaks together.

The calculations have been done using two different methods:

1. The critical energy Λc,SU(4) has been calculated at the SU(4) point.
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T

b1

floating T

fixed T

TK

Figure 3.5: Sketch of the temperature behavior for the two methods used

Using a parameter p < 1 an abortion energy Λa = exp(−p lc,SU(4))
is calculated, where lc,SU(4)) is the critical running logarithmic energy
scale1, at wich the renormaization calculations diverge. The parameter
p is an exponential measure of how close the system is to the Kondo
temperature, which it reaches for p = 1. This abortion energy Λa is
held constant during the calculations for different values of the mixing
parameter b1. These results are labeled “fixed” in the graphs, as this
can be interpreted as a constant temperature for all values of b1.

2. Like in the first approach a parameter p is defined, but this time the
abortion energy is recalculated for each value of the mixing parameter
b1 by Λa = exp(−p lc,SU(4)(b1)). This is done to keep the system in a
constant distance to the Kondo temperature, and therefore having it
in the same regime for all values of b1. These results are labeled as
“floating”

The situation with a fixed abortion energy corresponds to a fixed tempera-
ture during the b1 sweep. This would probably the experimentally relevant
situation for systems undergoing such a transition from a SU(4) to a SU(2)
Kondo-effect.

Tracking the the Kondo-temperature during the b1 sweep with a floating
abortion energy is on the other hand theoretically interesting, since we keep
the system at a constant relative distance to the Kondo-temperature.

These two situations are sketched in Fig. 3.5 As one can see in Fig. 3.6
for temperatures far away from the Kondo temperature both methods show

1The author apologizes for the ambiguity in the use of the letter Λ for the real and the
logarithimic energy scale in this and the previous chapter.
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Figure 3.6: Current dependency on b1 far away from the Kondo temperature,
p = 0.60, good agreement to the parabolic behaviour due to the 1

2 +2b2
1 term.

good agreement with the expected parabolic behavior. The current increases
monotonously with b1 corresponding to the increase in intensity in the double
slit experiment due to single-particle interference effects.

In Fig. 3.7 p is increased to 0.854. The calculations for floating temper-
ature start to show distinct deviations from the quadratic behaviour, while
those for fixed temperature still are in good agreement with it. As expected
the results differ most in the regions where the abortion energy Λc differs
most for both methods, namely in the vicinity of b1,min, where the Kondo
temperature reaches its minimum.

This trend continues for p = 0.931, shown in Fig. 3.8. Now the results
for floating temperature are governed by the Kondo correlations which de-
stroys the monotonic increase of the single-particle interference term. The
suppression of the pseudo-spin correlations for larger values of b1 leads to a
suppression of the current. As for large values of p also the differences be-
tween both calculation methods enhances, the values for fixed temperature
develop a minimum and those for floating temperatures a maximum to keep
their large difference at b1,min.

Finally, for p = 0.990 the parabolic b1 behavior has completely vanished.
The Kondo correlations now completely determine the current characteristics.
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Figure 3.7: Current dependency on b1 for p = 0.854
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Figure 3.8: Current dependency on b1 for p = 0.931
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Figure 3.9: Current dependency on b1 close to the Kondo temperature, p =
0.990

The suppression of the orbital Kondo effect pushes the current below its value
at the SU(4) point. The difference for both methods increases further as the
coupling constants Jµλν get closer to the divergence at TK . This also marks
the breakdown of the perturbative calculations, and therefore these results
close to the Kondo temperature should be treated with care.

These results are summarized in Fig. 3.10. Here is the dependency of j
on b1 and p combined in one graph. To illustrate the qualitative behavior,
the current is normalized to j(b1 = 0) for constant values of p. The graph
would otherwise be dominated by the enormous increase of the coupling con-
stants as p goes to 1, resulting in a divergence when the Kondo-temperature
is eventually reached. The previous graphs displayed in Fig. 3.6–3.9 are
qualitatively cuts parallel to the b1 axis at different values of p.

The parameter p is increased from 0.6 to 0.99 from back to front in this
illustration. Again one can clearly see that both start with basically the same
parabolic behavior for temperatures far away from the Kondo-temperature,
developing the characteristic minimum (respectively maximum) for the dif-
ferent cases of the keeping the temperature constant during the b1 sweep
(respectively tracking the Kondo-temperature).
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Figure 3.10: Current dependency on b1 and p, normalized for each p to
j(b1 = 0)
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Chapter 4

Conclusion

In this work we have considered the transition from a SU(4) spin and orbital
Kondo effect to a SU(2) spin Kondo effect in a double quantum dot system
connected in parallel to metallic reservoirs with spin and orbital degenerate
ground state. The transition is driven by fluctuations of the orbital degree
of freedom, described by a mixing parameter b1. b1 = 0 means asymmetric
coupling of the different electronic modes in the reservoir to just one of the
dots and thereby strong fluctuations, causing the additional orbital Kondo
effect, while b1 = 0.5 strictly symmetric coupling of the electronic modes in
the reservoirs to both dots and therefor suppression of the orbital fluctuations,
leaving us with a purely SU(2) spin Kondo system.

Although a greatly enhanced Kondo effect is predicted for the SU(4) con-
figuration, we found the Kondo temperature TK to be exactly the same for
both symmetry points. The reason for this behavior is the decomposition of
the common reservoirs for both dots into separate reservoirs for each dot in
the case of strong fluctuations, resulting an halved density of states, which
exactly compensates the enhancement of the Kondo effect in the SU(4) ge-
ometry.

In the intermediate regime (0 < b1 < 0.5) between the defined symmetry
points we found a diminished Kondo temperature, reaching a minimum at
b1 ≈ 0.33. This can be understood in the picture of transport channels. No
fluctuations (b1 = 0.5) means that the antisymmetric ground state in the
double dot system is completely decoupled from the reservoirs. But driving
the system just a bit out of this symmetry point (b1 slightly below 0.5) means
a small, but non-vanishing probability for an electron to tunnel through the
antisymmetric transport channel. These events have a destructive effect on
the spin Kondo effect: The weak coupling suppresses the spin Kondo effect
for this channel itself, the Coulomb blockade blocks the transport though the
strong coupling symmetric channel, the weak coupling causes a long lifetime

59



of these states. Decreasing b1 further enhances the orbital Kondo effect,
which eventually restores the Kondo temperature T SU(2)

K in the SU(4) point
for b1 = 0.

Although in our system the Kondo temperature for both symmetries is
exactly the same, T SU(2)

K = T
SU(4)
K , they are easily distinguishable by their

behaviour in an external Zeeman field. We studied the impact of an in plane
Zeeman field and found the expected behavior: While in the SU(4) point
the spin Kondo effect is suppressed by the external field, resulting in the
reduced Kondo temperature of a spin Kondo system, the suppression of the
spin Kondo effect in the SU(2) point leaves us with a system without any
Kondo correlations.

In the second part we calculated the differential conductance through the
double dot as a function of the mixing parameter b1. It turned out that the
conductance is subject to the interplay of two opposing effects. First, the
single particle coherence is increased with b1. In the picture of a double slit
experiment this means that the interference terms cause a quadratic increase
of the differential conductance with b1. Contrariwise we lose the pseudo spin
Kondo correlations of the orbital Kondo effect with increasing b1.

We calculated the differential conductance through the double dot as a
function of b1 and different temperatures for two scenarios: A constant ratio
of the temperature and the Kondo temperature of the system (which is also a
function of b1), which emphasizes the interplay of the two factors for different
regimes, and the experimental important case of a fixed temperature for the
whole b1 sweep. In both cases we found that far away from the Kondo tem-
perature the increase of the single particle coherence is the dominant effect.
Approaching TK we found increasing strong deviations from the quadratic b1
behaviour caused by the Kondo effect, leading to a similar non-monotonous
behaviour as for TK . Close to the Kondo temperature the differential con-
ductance is still non-monotonous, but as the differential conductance for the
SU(2) point is below that of the SU(4) point, we are clearly in a regime where
the suppression of the orbital Kondo effect plays the dominant role.
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Appendix A

Mathematica programs used
for the decompositon of the
Kondo Hamiltionian
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� Definitions

� Definition of tensor product (CircleTimes) and matrix product (CenterDot)

ClearAll@CircleTimes, CenterDotD;

SumIndexNr = 1;

assign associative law to matrix− and tensor product

SetAttributes@CircleTimes, FlatD;
SetAttributes@CircleTimes, OneIdentityD;
SetAttributes@CircleTimes, ListableD;
SetAttributes@CenterDot, FlatD;
SetAttributes@CenterDot, OneIdentityD;
SetAttributes@CenterDot, ListableD;

Default@CircleTimesD = 1;
Default@CenterDotD = 1;

matrix product of Pauli matrices Σ[i], i=0,...,3, where Σ[0]=IdentityMatrix[2]

CenterDot@Σ@n_D, Σ@m_DD := ∆@m, nD Σ@0D + ∆@n, 0D Β@m, 0D Σ@mD + ∆@m, 0D Β@n, 0D Σ@nD
+ä Ε@n, m, C@SumIndexNrDD Σ@C@SumIndexNr++DD;

defining a ’normal ordering’ of the non−commutative matrix products

CenterDot@b_, a_D :=

CenterDot@a, bD �; Hb@@0DD === Σ && FreeQ@a, ΣD && FreeQ@a, CircleTimesDL;
CenterDot@b_, a_D := CenterDot@a, bD �;
Hb@@0DD === CircleTimes && FreeQ@a, CircleTimesDL;

distributive law considering normal ordering

CenterDot@a_, b_D := Plus �� HCenterDot@List �� a, bDL �; Ha@@0DD === PlusL;
CenterDot@b_, a_D := CenterDot@a, bD �; Hb@@0DD =!= Plus && a@@0DD === PlusL;

extract scalar factors from matrix products, considering normal ordering

CenterDot@a_, b_D :=

Times@DeleteCases@a, _ΣD, CenterDot@CenterDot �� Cases@a, _ΣD, bDD �;
Ha@@0DD === Times && Count@a, _ΣD ¹ 0L;

CenterDot@b_, a_D :=

CenterDot@a, bD �; Hb@@0DD =!= Times && a@@0DD === Times && Count@a, _ΣD ¹ 0L;
CenterDot@a_, b_D := Times@DeleteCases@a, _CircleTimesD,

CenterDot@CenterDot �� Cases@a, _CircleTimesD, bDD �;
Ha@@0DD === Times && Not@FreeQ@a, _CircleTimesDDL;

CenterDot@b_, a_D := CenterDot@a, bD �;
Hb@@0DD =!= Times && a@@0DD === Times && Not@FreeQ@a, _CircleTimesDDL;

(a Ä b).(c Ä d) ® (a.c) Ä (b.d), where ’.’ denotes the matrix product

CenterDot@a_, b_D := Inner@CenterDot, List �� a, List �� b, CircleTimesD �;
Ha@@0DD === CircleTimes && b@@0DD === CircleTimesL;

in tensor products reorder Pauli matrices to the right

CircleTimes@b_, a_, c_.D := CircleTimes@a, b, cD �;
Hb@@0DD === Σ && FreeQ@a, ΣDL;

distributive law considering normal ordering
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CircleTimes@a_, b_D := Plus �� HCircleTimes@List �� a, bDL �;
Ha@@0DD === PlusL;

CircleTimes@b_, a_D := CircleTimes@a, bD �;
Hb@@0DD =!= Plus && a@@0DD === PlusL;

extract scalar factors from tensor products, considering normal ordering

CircleTimes@a_, b_D :=

Times@DeleteCases@a, _ΣD, CircleTimes@CircleTimes �� Cases@a, _ΣD, bDD �;
Ha@@0DD === Times && Not@FreeQ@a, _ΣDDL;

CircleTimes@b_, a_D := CircleTimes@a, bD �;
Hb@@0DD =!= Times && a@@0DD === Times && Not@FreeQ@a, _ΣDDL;

� Definition of Kronecker delta and Levi−Civita tensor

the Kronecker delta

SetAttributes@∆, OrderlessD;
∆@a_Integer, b_IntegerD := KroneckerDelta@a, bD;
∆@a_, a_D := 1;
∆@a_, b_D_ ^:= ∆@a, bD;
∆@0, _ΛD := 0;

define the tensor Β as 1−∆

SetAttributes@Β, OrderlessD;
Β@a_Integer, b_IntegerD := 1 - KroneckerDelta@a, bD;
Β@a_, a_D := 0;
Β@a_, b_D_ ^:= Β@a, bD;
Β@0, _ΛD := 1;

the Levi−Civita tensor

Ε@a_Integer, b_Integer, c_IntegerD := Signature@8a, b, c<D �; Ha ¹ 0 && b ¹ 0 && c ¹ 0L;
Ε@a_, b_, c_D := 0 �; Ha � b ÈÈ a � c ÈÈ b � cL;
Ε@a_, b_, c_D := 0 �; Ha � 0 ÈÈ b � 0 ÈÈ c � 0L;
Ε@b_, a_, c_D := -Ε@a, b, cD �; ! OrderedQ@8b, a<D;
Ε@a_, c_, b_D := -Ε@a, b, cD �; ! OrderedQ@8c, b<D;

� various simplification rules

Β@0, a_SymbolD* Ε@i_, j_, k_D ^:= Ε@i, j, kD �; Ha@@0DD =!= Λ && Ha � i ÈÈ a � j ÈÈ a � kLL;

∆@0, a_D* Β@0, a_D ^:= 0;

R_ Β@0, a_SymbolD* ∆@a_Symbol, b_SymbolD ^:= H1 - ∆@0, aDL*H1 - ∆@0, bDL* ∆@a, bD
HR �. 8Β@0, aD ® 1, Β@0, bD ® 1<L;

∆@0, a_SymbolD* ∆@a_Symbol, b_SymbolD ^:= ∆@0, aD* ∆@0, bD;
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Off@General::spell1D;
Εd@a_, b_, c_ΛD* Εd@c_Λ, d_, e_D ^:=

H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@a_, b_, c_ΛD* Εd@d_, c_Λ, e_D ^:=

-H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@a_, b_, c_ΛD* Εd@d_, e_, c_ΛD ^:= H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@a_, c_Λ, b_D* Εd@c_Λ, d_, e_D ^:=

-H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@a_, c_Λ, b_D* Εd@d_, c_Λ, e_D ^:= H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@a_, c_Λ, b_D* Εd@d_, e_, c_ΛD ^:=

-H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@c_Λ, a_, b_D* Εd@c_Λ, d_, e_D ^:= H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@c_Λ, a_, b_D* Εd@d_, c_Λ, e_D ^:=

-H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;
Εd@c_Λ, a_, b_D* Εd@d_, e_, c_ΛD ^:= H∆@a, dD* ∆@b, eD - ∆@a, eD* ∆@b, dDL Β@0, aD Β @0, bD;

∆Ver@a_, b_ΛD* ΕVer@i_, j_, b_ΛD ^:= ΕVer@i, j, aD;
On@General::spell1D;

a_CircleTimes* ∆Ver@b_, c_ΛD ^:= Ha �. c ® bL �; ! FreeQ@a, cD;

∆Ver@a_, Λ@b_DD*R_ ^:= HR �. Λ@bD ® aL Β@a, 0D;

R1_ Β@0, a_SymbolD* ∆@a_Symbol, b_SymbolD*R2_. ^:= R1 R2 Β@0, aD* Β@0, bD* ∆@a, bD �;
HFreeQ@Unevaluated@R1D, Β@0, bDD && FreeQ@Unevaluated@R2D, Β@0, bDD && HR1 ¹ 0LL;

R1_. Β@0, a_SymbolD* ∆@a_Symbol, b_SymbolD*R2_ ^:= R1 R2 Β@0, aD* Β@0, bD* ∆@a, bD �;
HFreeQ@R1, Β@0, bDD && FreeQ@R2, Β@0, bDD && HR1 ¹ 0LL;

� decomposition of an summand in the Kondo Hamiltonian into a sum of a scalar term and terms 
proportional to Pauli matrices and a second−order term Σ Ä Σ.

PauliExpand@x_D := Module@8CNummer, Ergebnis, Iter, KommutRegeln, Term, Renum<,

KommutRegeln = 8
CenterDot@a_, b_D ¦ a*b �; HFreeQ@a, ΣD ÈÈ FreeQ@b, ΣDL,
CircleTimes@a_, b_D ¦ a*b �; HFreeQ@a, ΣD ÈÈ FreeQ@b, ΣDL,
CircleTimes@R1_ a_Σ, R2_ b_ΣD ¦ R1 R2 CircleTimes@a, bD<;

Renum@T_D := Module@8Term, AktN<,
CNummer = 1;
Term = T;
While@! FreeQ@Term, C@_DD,

Term �. 8C@n_D ¦ HAktN = nL<;
Term = Term �. 8C@AktND -> Λ@CNummerD<;
CNummer++;

D;
Return@TermD;

D;

Renum �� Expand@x ��. KommutRegelnD
D;

perform the summation over all different summation indices Λ[i], where each Λ[i] runs from 1 to 3.
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Summation@x_D := Module@8SumIndizes<,
SumIndizes = Union@Cases@x, _Λ, InfinityDD;
If@SumIndizes == 8<, Return@xDD;
SumIndizes = H8#, 1, 3<L & �� SumIndizes;
Return@Sum@x, Evaluate@Sequence �� SumIndizesDDD;

D;

rules to ensure the correct order of application the simplification rules defined above

EpsilonProd@x_D := Module@8Term<,
Term = x �. Ε ® Εd;
Return@Term �. Εd ® ΕD;

D;

DeltaSum@x_D := Module@8Term<,
Term = x �. 8∆ ® ∆Ver, Ε ® ΕVer<;
Return@Term �. 8∆Ver ® ∆, ΕVer ® Ε<D;

D;

� Evaluation of the matrix structure of Kondo Hamiltonian

� Part of the Hamiltonian that is proportional to b0

PauliExpand@HΣ@ΜDÄ Σ@ΝDL×HΣ@Μ’DÄ Σ@Ν’DL - HΣ@Μ’DÄ Σ@Ν’DL×HΣ@ΜDÄ Σ@ΝDLD �� Simplify

-2 ä HΣ@Λ@1DDÄΣ@Ν¢D Β@0, Ν¢D ∆@0, ΝD Ε@Μ, Λ@1D, Μ¢D +
Σ@Λ@1DDÄΣ@ΝD Β@0, ΝD ∆@0, Ν¢D Ε@Μ, Λ@1D, Μ¢D + Σ@Λ@1DDÄΣ@0D ∆@Ν, Ν¢D Ε@Μ, Λ@1D, Μ¢D +
Σ@Μ¢DÄΣ@Λ@1DD Β@0, Μ¢D ∆@0, ΜD Ε@Ν, Λ@1D, Ν¢D +
Σ@ΜDÄΣ@Λ@1DD Β@0, ΜD ∆@0, Μ¢D Ε@Ν, Λ@1D, Ν¢D + Σ@0DÄΣ@Λ@1DD ∆@Μ, Μ¢D Ε@Ν, Λ@1D, Ν¢DL

� Part of the Hamiltonian that is proportional to b1

Split@Sort@List �� HDeltaSum �� Expand@EpsilonProd �� PauliExpand@
HΣ@xDÄ Σ@yDL×HΣ@1DÄ Σ@0DL×HΣ@wDÄ Σ@zDL -

HΣ@wDÄ Σ@zDL×HΣ@1DÄ Σ@0DL×HΣ@xDÄ Σ@yDLDDL,
OrderedQ@8H#1 �. 8-1 ® 1, _Β ® 1, _∆ ® 1, _Ε ® 1<L,
H#2 �. 8-1 ® 1, _Β ® 1, _∆ ® 1, _Ε ® 1<L<D &D,

HH#1 �. 8R_ a_CircleTimes ® a<L == H#2 �. 8R_ a_CircleTimes ® a<LL &D �� TableForm

2 ä Σ@0DÄΣ@0D ∆@y, zD Ε@1, w, xD

2 ä Σ@0DÄΣ@yD Β@0, yD ∆@0, zD Ε@1, w, xD

2 ä Σ@0DÄΣ@zD Β@0, zD ∆@0, yD Ε@1, w, xD

2 ä Σ@0DÄΣ@Λ@1DD ∆@0, xD ∆@1, wD Ε@y, z, Λ@1DD 2 ä Σ@0DÄΣ@Λ@1DD ∆@0, wD ∆@1, x

-2 ä Σ@1DÄΣ@Λ@1DD ∆@w, xD Ε@y, z, Λ@1DD 4 ä Σ@1DÄΣ@Λ@1DD ∆@0, wD ∆@0, x

2 ä Σ@wDÄΣ@Λ@1DD Β@0, wD ∆@1, xD Ε@y, z, Λ@1DD

2 ä Σ@xDÄΣ@Λ@1DD Β@0, xD ∆@1, wD Ε@y, z, Λ@1DD

-2 ä Σ@Λ@1DDÄΣ@0D ∆@0, wD ∆@y, zD Ε@1, x, Λ@1DD 2 ä Σ@Λ@1DDÄΣ@0D ∆@0, xD ∆@y, z

-2 ä Σ@Λ@1DDÄΣ@yD Β@0, yD ∆@0, wD ∆@0, zD Ε@1, x, Λ@1DD 2 ä Σ@Λ@1DDÄΣ@yD Β@0, yD ∆@0, x

-2 ä Σ@Λ@1DDÄΣ@zD Β@0, zD ∆@0, wD ∆@0, yD Ε@1, x, Λ@1DD 2 ä Σ@Λ@1DDÄΣ@zD Β@0, zD ∆@0, x
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Appendix B

Full Set of Flow Equations

J001 = −8( b1(J003J012 + J002J013 + J103J112 + J102J113 + J203J212 + J202J213 + J303J312 + J302J313)+
b0(J002J003 + J012J013 + J022J023 + J032J033 + J102J103 + J112J113 + J122J123 + J132J133 + J202J203+

J212J213 + J222J223 + J232J233 + J302J303 + J312J313 + J322J323 + J332J333))
J002 = −8( b1(J003J011 + J001J013 + J103J111 + J101J113 + J203J211 + J201J213 + J303J311 + J301J313)+

b0(J001J003 + J011J013 + J021J023 + J031J033 + J101J103 + J111J113 + J121J123 + J131J133 + J201J203+
J211J213 + J221J223 + J231J233 + J301J303 + J311J313 + J321J323 + J331J333))

J003 = −8( b1(J002J011 + J001J012 + J102J111 + J101J112 + J202J211 + J201J212 + J302J311 + J301J312)+
b0(J001J002 + J011J012 + J021J022 + J031J032 + J101J102 + J111J112 + J121J122 + J131J132 + J201J202+

J211J212 + J221J222 + J231J232 + J301J302 + J311J312 + J321J322 + J331J332))
J011 = −8( b0(J003J012 + J002J013 + J103J112 + J102J113 + J203J212 + J202J213 + J303J312 + J302J313)+

b1(J002J003 + J012J013 − J022J023 − J032J033 + J102J103 + J112J113 − J122J123 − J132J133 + J202J203+
J212J213 − J222J223 − J232J233 + J302J303 + J312J313 − J322J323 − J332J333))

J012 = −8( b0(J003J011 + J001J013 + J103J111 + J101J113 + J203J211 + J201J213 + J303J311 + J301J313)+
b1(J001J003 + J011J013 − J021J023 − J031J033 + J101J103 + J111J113 − J121J123 − J131J133 + J201J203+

J211J213 − J221J223 − J231J233 + J301J303 + J311J313 − J321J323 − J331J333))
J013 = −8( b0(J002J011 + J001J012 + J102J111 + J101J112 + J202J211 + J201J212 + J302J311 + J301J312)+

b1(J001J002 + J011J012 − J021J022 − J031J032 + J101J102 + J111J112 − J121J122 − J131J132 + J201J202+
J211J212 − J221J222 − J231J232 + J301J302 + J311J312 − J321J322 − J331J332))

J021 = −8( b0(J003J022 + J002J023 + J103J122 + J102J123 + J203J222 + J202J223 + J303J322 + J302J323)+
b1(J013J022 + J012J023 + J113J122 + J112J123 + J213J222 + J212J223 + J313J322 + J312J323))

J022 = −8( b0(J003J021 + J001J023 + J103J121 + J101J123 + J203J221 + J201J223 + J303J321 + J301J323)+
b1(J013J021 + J011J023 + J113J121 + J111J123 + J213J221 + J211J223 + J313J321 + J311J323))

J023 = −8( b0(J002J021 + J001J022 + J102J121 + J101J122 + J202J221 + J201J222 + J302J321 + J301J322)+
b1(J012J021 + J011J022 + J112J121 + J111J122 + J212J221 + J211J222 + J312J321 + J311J322))

J031 = −8( b0(J003J032 + J002J033 + J103J132 + J102J133 + J203J232 + J202J233 + J303J332 + J302J333)+
b1(J013J032 + J012J033 + J113J132 + J112J133 + J213J232 + J212J233 + J313J332 + J312J333))

J032 = −8( b0(J003J031 + J001J033 + J103J131 + J101J133 + J203J231 + J201J233 + J303J331 + J301J333)+
b1(J013J031 + J011J033 + J113J131 + J111J133 + J213J231 + J211J233 + J313J331 + J311J333))

J033 = −8( b0(J002J031 + J001J032 + J102J131 + J101J132 + J202J231 + J201J232 + J302J331 + J301J332)+
b1(J012J031 + J011J032 + J112J131 + J111J132 + J212J231 + J211J232 + J312J331 + J311J332))

J100 = 8 b1(− J230J320 − J231J321 − J232J322 − J233J323 + J220J330 + J221J331 + J222J332 + J223J333)
J101 = −8( b0(J003J102 + J002J103 + J013J112 + J012J113 + J023J122 + J022J123 + J033J132 + J032J133)+

b1(J013J102 + J012J103 + J003J112 + J002J113 + J231J320 + J230J321 − J221J330 − J220J331))
J102 = −8( b0(J003J101 + J001J103 + J013J111 + J011J113 + J023J121 + J021J123 + J033J131 + J031J133)+

b1(J013J101 + J011J103 + J003J111 + J001J113 + J232J320 + J230J322 − J222J330 − J220J332))
J103 = −8( b0(J002J101 + J001J102 + J012J111 + J011J112 + J022J121 + J021J122 + J032J131 + J031J132)+

b1(J012J101 + J011J102 + J002J111 + J001J112 + J233J320 + J230J323 − J223J330 − J220J333))
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J110 = 8 b0(J230J320 + J231J321 + J232J322 + J233J323 − J220J330 − J221J331 − J222J332 − J223J333)
J111 = −8( b1(J003J102 + J002J103 + J013J112 + J012J113 − J023J122 − J022J123 − J033J132 − J032J133)+

b0(J013J102 + J012J103 + J003J112 + J002J113 − J231J320 − J230J321 + J221J330 + J220J331))
J112 = −8( b1(J003J101 + J001J103 + J013J111 + J011J113 − J023J121 − J021J123 − J033J131 − J031J133)+

b0(J013J101 + J011J103 + J003J111 + J001J113 − J232J320 − J230J322 + J222J330 + J220J332))
J113 = −8( b1(J002J101 + J001J102 + J012J111 + J011J112 − J022J121 − J021J122 − J032J131 − J031J132)+

b0(J012J101 + J011J102 + J002J111 + J001J112 − J233J320 − J230J323 + J223J330 + J220J333))
J120 = 8( b1(− J230J300 − J231J301 − J232J302 − J233J303 + J200J330 + J201J331 + J202J332 + J203J333)+

b0(− J230J310 − J231J311 − J232J312 − J233J313 + J210J330 + J211J331 + J212J332 + J213J333))
J121 = −8( b1(J023J112 + J022J113 + J013J122 + J012J123 + J231J300 + J230J301 − J201J330 − J200J331)+

b0(J023J102 + J022J103 + J003J122 + J002J123 + J231J310 + J230J311 − J211J330 − J210J331))
J122 = −8( b1(J023J111 + J021J113 + J013J121 + J011J123 + J232J300 + J230J302 − J202J330 − J200J332)+

b0(J023J101 + J021J103 + J003J121 + J001J123 + J232J310 + J230J312 − J212J330 − J210J332))
J123 = −8( b1(J022J111 + J021J112 + J012J121 + J011J122 + J233J300 + J230J303 − J203J330 − J200J333)+

b0(J022J101 + J021J102 + J002J121 + J001J122 + J233J310 + J230J313 − J213J330 − J210J333))
J130 = −8( b1(− J220J300 − J221J301 − J222J302 − J223J303 + J200J320 + J201J321 + J202J322 + J203J323)+

b0(− J220J310 − J221J311 − J222J312 − J223J313 + J210J320 + J211J321 + J212J322 + J213J323))
J131 = −8( b1(J033J112 + J032J113 + J013J132 + J012J133 − J221J300 − J220J301 + J201J320 + J200J321)+

b0(J033J102 + J032J103 + J003J132 + J002J133 − J221J310 − J220J311 + J211J320 + J210J321))
J132 = −8( b1(J033J111 + J031J113 + J013J131 + J011J133 − J222J300 − J220J302 + J202J320 + J200J322)+

b0(J033J101 + J031J103 + J003J131 + J001J133 − J222J310 − J220J312 + J212J320 + J210J322))
J133 = −8( b1(J032J111 + J031J112 + J012J131 + J011J132 − J223J300 − J220J303 + J203J320 + J200J323)+

b0(J032J101 + J031J102 + J002J131 + J001J132 − J223J310 − J220J313 + J213J320 + J210J323))
J200 = 8 b1(J130J320 + J131J321 + J132J322 + J133J323 − J120J330 − J121J331 − J122J332 − J123J333)
J201 = −8( b0(J003J202 + J002J203 + J013J212 + J012J213 + J023J222 + J022J223 + J033J232 + J032J233)+

b1(J013J202 + J012J203 + J003J212 + J002J213 − J131J320 − J130J321 + J121J330 + J120J331))
J202 = −8( b0(J003J201 + J001J203 + J013J211 + J011J213 + J023J221 + J021J223 + J033J231 + J031J233)+

b1(J013J201 + J011J203 + J003J211 + J001J213 − J132J320 − J130J322 + J122J330 + J120J332))
J203 = −8( b0(J002J201 + J001J202 + J012J211 + J011J212 + J022J221 + J021J222 + J032J231 + J031J232)+

b1(J012J201 + J011J202 + J002J211 + J001J212 − J133J320 − J130J323 + J123J330 + J120J333))
J210 = 8 b0(− J130J320 − J131J321 − J132J322 − J133J323 + J120J330 + J121J331 + J122J332 + J123J333)
J211 = −8( b1(J003J202 + J002J203 + J013J212 + J012J213 − J023J222 − J022J223 − J033J232 − J032J233)+

b0(J013J202 + J012J203 + J003J212 + J002J213 + J131J320 + J130J321 − J121J330 − J120J331))
J212 = −8( b1(J003J201 + J001J203 + J013J211 + J011J213 − J023J221 − J021J223 − J033J231 − J031J233)+

b0(J013J201 + J011J203 + J003J211 + J001J213 + J132J320 + J130J322 − J122J330 − J120J332))
J213 = −8( b1(J002J201 + J001J202 + J012J211 + J011J212 − J022J221 − J021J222 − J032J231 − J031J232)+

b0(J012J201 + J011J202 + J002J211 + J001J212 + J133J320 + J130J323 − J123J330 − J120J333))
J220 = −8( b1(− J130J300 − J131J301 − J132J302 − J133J303 + J100J330 + J101J331 + J102J332 + J103J333)+

b0(− J130J310 − J131J311 − J132J312 − J133J313 + J110J330 + J111J331 + J112J332 + J113J333))
J221 = −8( b1(J023J212 + J022J213 + J013J222 + J012J223 − J131J300 − J130J301 + J101J330 + J100J331)+

b0(J023J202 + J022J203 + J003J222 + J002J223 − J131J310 − J130J311 + J111J330 + J110J331))
J222 = −8( b1(J023J211 + J021J213 + J013J221 + J011J223 − J132J300 − J130J302 + J102J330 + J100J332)+

b0(J023J201 + J021J203 + J003J221 + J001J223 − J132J310 − J130J312 + J112J330 + J110J332))
J223 = −8( b1(J022J211 + J021J212 + J012J221 + J011J222 − J133J300 − J130J303 + J103J330 + J100J333)+

b0(J022J201 + J021J202 + J002J221 + J001J222 − J133J310 − J130J313 + J113J330 + J110J333))
J230 = 8( b1(− J120J300 − J121J301 − J122J302 − J123J303 + J100J320 + J101J321 + J102J322 + J103J323)+

b0(− J120J310 − J121J311 − J122J312 − J123J313 + J110J320 + J111J321 + J112J322 + J113J323))
J231 = −8( b1(J033J212 + J032J213 + J013J232 + J012J233 + J121J300 + J120J301 − J101J320 − J100J321)+

b0(J033J202 + J032J203 + J003J232 + J002J233 + J121J310 + J120J311 − J111J320 − J110J321))
J232 = −8( b1(J033J211 + J031J213 + J013J231 + J011J233 + J122J300 + J120J302 − J102J320 − J100J322)+

b0(J033J201 + J031J203 + J003J231 + J001J233 + J122J310 + J120J312 − J112J320 − J110J322))
J233 = −8( b1(J032J211 + J031J212 + J012J231 + J011J232 + J123J300 + J120J303 − J103J320 − J100J323)+

b0(J032J201 + J031J202 + J002J231 + J001J232 + J123J310 + J120J313 − J113J320 − J110J323))
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J300 = 8 b1(− J130J220 − J131J221 − J132J222 − J133J223 + J120J230 + J121J231 + J122J232 + J123J233)
J301 = −8( b1(J131J220 + J130J221 − J121J230 − J120J231 + J013J302 + J012J303 + J003J312 + J002J313)+

b0(J003J302 + J002J303 + J013J312 + J012J313 + J023J322 + J022J323 + J033J332 + J032J333))
J302 = −8( b1(J132J220 + J130J222 − J122J230 − J120J232 + J013J301 + J011J303 + J003J311 + J001J313)+

b0(J003J301 + J001J303 + J013J311 + J011J313 + J023J321 + J021J323 + J033J331 + J031J333))
J303 = −8( b1(J133J220 + J130J223 − J123J230 − J120J233 + J012J301 + J011J302 + J002J311 + J001J312)+

b0(J002J301 + J001J302 + J012J311 + J011J312 + J022J321 + J021J322 + J032J331 + J031J332))
J310 = 8 b0(J130J220 + J131J221 + J132J222 + J133J223 − J120J230 − J121J231 − J122J232 − J123J233)
J311 = −8( b0(− J131J220 − J130J221 + J121J230 + J120J231 + J013J302 + J012J303 + J003J312 + J002J313)+

b1(J003J302 + J002J303 + J013J312 + J012J313 − J023J322 − J022J323 − J033J332 − J032J333))
J312 = −8( b0(− J132J220 − J130J222 + J122J230 + J120J232 + J013J301 + J011J303 + J003J311 + J001J313)+

b1(J003J301 + J001J303 + J013J311 + J011J313 − J023J321 − J021J323 − J033J331 − J031J333))
J313 = −8( b0(− J133J220 − J130J223 + J123J230 + J120J233 + J012J301 + J011J302 + J002J311 + J001J312)+

b1(J002J301 + J001J302 + J012J311 + J011J312 − J022J321 − J021J322 − J032J331 − J031J332))
J320 = 8( b1(− J130J200 − J131J201 − J132J202 − J133J203 + J100J230 + J101J231 + J102J232 + J103J233)+

b0(− J130J210 − J131J211 − J132J212 − J133J213 + J110J230 + J111J231 + J112J232 + J113J233))
J321 = −8( b0(J131J210 + J130J211 − J111J230 − J110J231 + J023J302 + J022J303 + J003J322 + J002J323)+

b1(J131J200 + J130J201 − J101J230 − J100J231 + J023J312 + J022J313 + J013J322 + J012J323))
J322 = −8( b0(J132J210 + J130J212 − J112J230 − J110J232 + J023J301 + J021J303 + J003J321 + J001J323)+

b1(J132J200 + J130J202 − J102J230 − J100J232 + J023J311 + J021J313 + J013J321 + J011J323))
J323 = −8( b0(J133J210 + J130J213 − J113J230 − J110J233 + J022J301 + J021J302 + J002J321 + J001J322)+

b1(J133J200 + J130J203 − J103J230 − J100J233 + J022J311 + J021J312 + J012J321 + J011J322))
J330 = −8( b1(− J120J200 − J121J201 − J122J202 − J123J203 + J100J220 + J101J221 + J102J222 + J103J223)+

b0(− J120J210 − J121J211 − J122J212 − J123J213 + J110J220 + J111J221 + J112J222 + J113J223))
J331 = −8( b0(− J121J210 − J120J211 + J111J220 + J110J221 + J033J302 + J032J303 + J003J332 + J002J333)+

b1(− J121J200 − J120J201 + J101J220 + J100J221 + J033J312 + J032J313 + J013J332 + J012J333))
J332 = −8( b0(− J122J210 − J120J212 + J112J220 + J110J222 + J033J301 + J031J303 + J003J331 + J001J333)+

b1(− J122J200 − J120J202 + J102J220 + J100J222 + J033J311 + J031J313 + J013J331 + J011J333))
J333 = −8( b0(− J123J210 − J120J213 + J113J220 + J110J223 + J032J301 + J031J302 + J002J331 + J001J332)+

b1(− J123J200 − J120J203 + J103J220 + J100J223 + J032J311 + J031J312 + J012J331 + J011J332))
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Appendix C

Flow Equations for ν = 0 and
ν 6= 0

µ = 0

J00ν = −8(b1(2J00νJ01ν + 2J10νJ11ν + 2J20νJ21ν + 2J30νJ31ν)
+ b0(J2

00ν + J2
01ν + J2

02ν + J2
03ν + J2

10ν + J2
11ν + J2

12ν + J2
13ν

+ J2
20ν + J2

21ν + J2
22ν + J2

23ν + J2
30ν + J2

31ν + J2
32ν + J2

33ν))
J01ν = −8(b0(2J00νJ01ν + 2J10νJ11ν + 2J20νJ21ν + 2J30νJ31ν)

+ b1(J2
00ν + J2

01ν − J2
02ν − J2

03ν + J2
10ν + J2

11ν − J2
12ν − J2

13ν

+ J2
20ν + J2

21ν − J2
22ν − J2

23ν + J2
30ν + J2

31ν − J2
32ν − J2

33ν))
J02ν = −8(b0(2J00νJ02ν + 2J10νJ12ν + 2J20νJ22ν + 2J30νJ32ν)

+ b1(2J01νJ02ν + 2J11νJ12ν + 2J21νJ22ν + 2J31νJ32ν))
J03ν = −8(b0(2J00νJ03ν + 2J10νJ13ν + 2J20νJ23ν + 2J30νJ33ν)

+ b1(2J01νJ03ν + 2J11νJ13ν + 2J21νJ23ν + 2J31νJ33ν))
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µ = 1

J100 = 8b1(−J230J320 − 3J23νJ32ν + J220J330 + 3J22νJ33ν)
J10ν = −8(b0(2J00νJ10ν + 2J01νJ11ν + 2J02νJ12ν + 2J03νJ13ν)

+ b1(2J01νJ10ν + 2J00νJ11ν + J23νJ320 + J230J32ν − J22νJ330 − J220J33ν))
J110 = 8b0(J230J320 + 3J23νJ32ν − J220J330 − 3J22νJ33ν)
J11ν = −8(b1(2J00νJ10ν + 2J01νJ11ν − 2J02νJ12ν − 2J03νJ13ν)

+ b0(2J01νJ10ν + 2J00νJ11ν − J23νJ320 − J230J32ν + J22νJ330 + J220J33ν))
J120 = 8(b1(−J230J300 − 3J23νJ30ν + J200J330 + 3J20νJ33ν)

+ b0(−J230J310 − 3J23νJ31ν + J210J330 + 3J21νJ33ν))
J12ν = −8(b1(2J02νJ11ν + 2J01νJ12ν + J23νJ300 + J230J30ν − J20νJ330 − J200J33ν)

+ b0(2J02νJ10ν + 2J00νJ12ν + J23νJ310 + J230J31ν − J21νJ330 − J210J33ν))
J130 = −8(b1(−J220J300 − 3J22νJ30ν + J200J320 + 3J20νJ32ν)

+ b0(−J220J310 − 3J22νJ31ν + J210J320 + 3J21νJ32ν))
J13ν = −8(b1(2J03νJ11ν + 2J01νJ13ν − J22νJ300 − J220J30ν + J20νJ320 + J200J32ν)

+ b0(2J03νJ10ν + 2J00νJ13ν − J22νJ310 − J220J31ν + J21νJ320 + J210J32ν))

µ = 2

J200 = 8b1(J130J320 + 3J13νJ32ν − J120J330 − 3J12νJ33ν)
J20ν = −8(b0(2J00νJ20ν + 2J01νJ21ν + 2J02νJ22ν + 2J03νJ23ν)

+ b1(2J01νJ20ν + 2J00νJ21ν − J13νJ320 − J130J32ν + J12νJ330 + J120J33ν))
J210 = 8b0(−J130J320 − 3J13νJ32ν + J120J330 + 3J12νJ33ν)
J21ν = −8(b1(2J00νJ20ν + 2J01νJ21ν − 2J02νJ22ν − 2J03νJ23ν)

+ b0(2J01νJ20ν + 2J00νJ21ν + J13νJ320 + J130J32ν − J12νJ330 − J120J33ν))
J220 = −8(b1(−J130J300 − 3J13νJ30ν + J100J330 + 3J10νJ33ν)

+ b0(−J130J310 − 3J13νJ31ν + J110J330 + 3J11νJ33ν))
J22ν = −8(b1(2J02νJ21ν + 2J01νJ22ν − J13νJ300 − J130J30ν + J10νJ330 + J100J33ν)

+ b0(2J02νJ20ν + 2J00νJ22ν − J13νJ310 − J130J31ν + J11νJ330 + J110J33ν))
J230 = 8(b1(−J120J300 − 3J12νJ30ν + J100J320 + 3J10νJ32ν)

+ b0(−J120J310 − 3J12νJ31ν + J110J320 + 3J11νJ32ν))
J23ν = −8(b1(2J03νJ21ν + 2J01νJ23ν + J12νJ300 + J120J30ν − J10νJ320 − J100J32ν)

+ b0(2J03νJ20ν + 2J00νJ23ν + J12νJ310 + J120J31ν − J11νJ320 − J110J32ν))
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µ = 3

J300 = 8b1(−J130J220 − 3J13νJ22ν + J120J230 + 3J12νJ23ν)
J30ν = −8(b1(J13νJ220 + J130J22ν − J12νJ230 − J120J23ν + 2J01νJ30ν + 2J00νJ31ν)

+ b0(2J00νJ30ν + 2J01νJ31ν + 2J02νJ32ν + 2J03νJ33ν))
J310 = 8b0(J130J220 + 3J13νJ22ν − J120J230 − 3J12νJ23ν)
J31ν = −8(b0(−J13νJ220 − J130J22ν + J12νJ230 + J120J23ν + 2J01νJ30ν + 2J00νJ31ν)

+ b1(2J00νJ30ν + 2J01νJ31ν − 2J02νJ32ν − 2J03νJ33ν))
J320 = 8(b1(−J130J200 − 3J13νJ20ν + J100J230 + 3J10νJ23ν)

+ b0(−J130J210 − 3J13νJ21ν + J110J230 + 3J11νJ23ν))
J32ν = −8(b0(J13νJ210 + J130J21ν − J11νJ230 − J110J23ν + 2J02νJ30ν + 2J00νJ32ν)

+ b1(J13νJ200 + J130J20ν − J10νJ230 − J100J23ν + 2J02νJ31ν + 2J01νJ32ν))
J330 = −8(b1(−J120J200 − 3J12νJ20ν + J100J220 + 3J10νJ22ν)

+ b0(−J120J210 − 3J12νJ21ν + J110J220 + 3J11νJ22ν))
J33ν = −8(b0(−J12νJ210 − J120J21ν + J11νJ220 + J110J22ν + 2J03νJ30ν + 2J00νJ33ν)

+ b1(−J12νJ200 − J120J20ν + J10νJ220 + J100J22ν + 2J03νJ31ν + 2J01νJ33ν))
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Appendix D

Example C Program to
Integrate the the Flow
Equations

#include <stdio.h>
#include <math.h>

int
main (void) main
{

double J0, b0, b1, J0n, J10, J1n, Jp0, Jpn, J01n, J100, J10n, TK0;

double l, dl, dJ0n, dJ10, dJ1n, dJp0, dJpn, dJ01n, dJ100, dJ10n, lerror, A; 10

double error;

int first = 1;

int n;

J0 = 0.05;

// init 20

b0 = 0.5;

A = 8.0;
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for (b1 = 0.0; b1 < 0.4999; b1 = b1 + 0.001)
{
n = 0;

J0n = J0;
J10 = J0; 30

J1n = J0;
Jp0 = J0;
Jpn = J0;
J01n = 0;
J100 = 0;
J10n = 0;

l = 0.0;
error = 1E3;
lerror = 1E−10; 40

dl = 1E−5;
while (dl > lerror)

{
again:

dJ0n =
A * (b1 * (2 * J0n * J01n + 2 * J1n * J10n) +

b0 * (J0n * J0n + J1n * J1n + 2 * Jpn * Jpn + J01n * J01n +
J10n * J10n)) * dl;

dJ10 = A * b0 * (Jp0 * Jp0 + 3 * Jpn * Jpn) * dl; 50

dJ1n =
A * (b1 * (2 * J1n * J01n + 2 * J0n * J10n) +

b0 * (2 * J0n * J1n + 2 * Jp0 * Jpn + 2 * J01n * J10n)) * dl;
dJp0 =
A * (b0 * (J10 * Jp0 + 3 * J1n * Jpn) +

b1 * (Jp0 * J100 + 3 * Jpn * J10n)) * dl;
dJpn =
A * (b0 * (J1n * Jp0 + 2 * J0n * Jpn + J10 * Jpn) +

b1 * (2 * Jpn * J01n + Jpn * J100 + Jp0 * J10n)) * dl;
dJ01n = 60

A * (b0 * (2 * J0n * J01n + 2 * J1n * J10n) +
b1 * (J0n * J0n + J1n * J1n − 2 * Jpn * Jpn + J01n * J01n +

J10n * J10n)) * dl;
dJ100 = −A * b1 * (Jp0 * Jp0 + 3 * Jpn * Jpn) * dl;
dJ10n =
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A * (b0 * (2 * J1n * J01n + 2 * J0n * J10n) +
b1 * (2 * J0n * J1n − 2 * Jp0 * Jpn + 2 * J01n * J10n)) * dl;

if ((fabs (dJ0n) > error) | | (fabs (dJ10) > error)
| | (fabs (dJ1n) > error) | | (fabs (dJp0) > error) 70

| | (fabs (dJpn) > error) | | (fabs (dJ10n) > error)
| | (fabs (dJ100) > error) | | (fabs (dJ10n) > error))

{
dl = dl / 2;
goto again;

}

if (dl < lerror)
{
if (first == 1) 80

{
TK0 = exp (−J0 * l);
first = 0;

}

printf
("%f\t%f\t%f\t%f\t%f\t%f\t%d\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",
b1, l, J0 * l, exp (−J0 * l), TK0, J0, n, J0n, J10, J1n, Jp0,
Jpn, J01n, J100, J10n);

} 90

J0n = J0n + dJ0n;
J10 = J10 + dJ10;
J1n = J1n + dJ1n;
Jp0 = Jp0 + dJp0;
Jpn = Jpn + dJpn;
J01n = J01n + dJ01n;
J100 = J100 + dJ100;
J10n = J10n + dJ10n;
l = l + dl; 100

n++;
}

}
return 0;

}
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